1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * 455 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 456 * cannot be sent down to the driver by IP, because of a canput failure, IP 457 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 458 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 459 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 460 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 461 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 462 * the queued messages, and removes the conn from the drain list, if all 463 * messages were drained. It also qenables the next conn in the drain list to 464 * continue the drain process. 465 * 466 * In reality the drain list is not a single list, but a configurable number 467 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 468 * list. If the ip_wsrv of the next qenabled conn does not run, because the 469 * stream closes, ip_close takes responsibility to qenable the next conn in 470 * the drain list. The directly called ip_wput path always does a putq, if 471 * it cannot putnext. Thus synchronization problems are handled between 472 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 473 * functions that manipulate this drain list. Furthermore conn_drain_insert 474 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 475 * running on a queue at any time. conn_drain_tail can be simultaneously called 476 * from both ip_wsrv and ip_close. 477 * 478 * IPQOS notes: 479 * 480 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 481 * and IPQoS modules. IPPF includes hooks in IP at different control points 482 * (callout positions) which direct packets to IPQoS modules for policy 483 * processing. Policies, if present, are global. 484 * 485 * The callout positions are located in the following paths: 486 * o local_in (packets destined for this host) 487 * o local_out (packets orginating from this host ) 488 * o fwd_in (packets forwarded by this m/c - inbound) 489 * o fwd_out (packets forwarded by this m/c - outbound) 490 * Hooks at these callout points can be enabled/disabled using the ndd variable 491 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 492 * By default all the callout positions are enabled. 493 * 494 * Outbound (local_out) 495 * Hooks are placed in ip_wput_ire and ipsec_out_process. 496 * 497 * Inbound (local_in) 498 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 499 * TCP and UDP fanout routines. 500 * 501 * Forwarding (in and out) 502 * Hooks are placed in ip_rput_forward. 503 * 504 * IP Policy Framework processing (IPPF processing) 505 * Policy processing for a packet is initiated by ip_process, which ascertains 506 * that the classifier (ipgpc) is loaded and configured, failing which the 507 * packet resumes normal processing in IP. If the clasifier is present, the 508 * packet is acted upon by one or more IPQoS modules (action instances), per 509 * filters configured in ipgpc and resumes normal IP processing thereafter. 510 * An action instance can drop a packet in course of its processing. 511 * 512 * A boolean variable, ip_policy, is used in all the fanout routines that can 513 * invoke ip_process for a packet. This variable indicates if the packet should 514 * to be sent for policy processing. The variable is set to B_TRUE by default, 515 * i.e. when the routines are invoked in the normal ip procesing path for a 516 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 517 * ip_policy is set to B_FALSE for all the routines called in these two 518 * functions because, in the former case, we don't process loopback traffic 519 * currently while in the latter, the packets have already been processed in 520 * icmp_inbound. 521 * 522 * Zones notes: 523 * 524 * The partitioning rules for networking are as follows: 525 * 1) Packets coming from a zone must have a source address belonging to that 526 * zone. 527 * 2) Packets coming from a zone can only be sent on a physical interface on 528 * which the zone has an IP address. 529 * 3) Between two zones on the same machine, packet delivery is only allowed if 530 * there's a matching route for the destination and zone in the forwarding 531 * table. 532 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 533 * different zones can bind to the same port with the wildcard address 534 * (INADDR_ANY). 535 * 536 * The granularity of interface partitioning is at the logical interface level. 537 * Therefore, every zone has its own IP addresses, and incoming packets can be 538 * attributed to a zone unambiguously. A logical interface is placed into a zone 539 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 540 * structure. Rule (1) is implemented by modifying the source address selection 541 * algorithm so that the list of eligible addresses is filtered based on the 542 * sending process zone. 543 * 544 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 545 * across all zones, depending on their type. Here is the break-up: 546 * 547 * IRE type Shared/exclusive 548 * -------- ---------------- 549 * IRE_BROADCAST Exclusive 550 * IRE_DEFAULT (default routes) Shared (*) 551 * IRE_LOCAL Exclusive (x) 552 * IRE_LOOPBACK Exclusive 553 * IRE_PREFIX (net routes) Shared (*) 554 * IRE_CACHE Exclusive 555 * IRE_IF_NORESOLVER (interface routes) Exclusive 556 * IRE_IF_RESOLVER (interface routes) Exclusive 557 * IRE_HOST (host routes) Shared (*) 558 * 559 * (*) A zone can only use a default or off-subnet route if the gateway is 560 * directly reachable from the zone, that is, if the gateway's address matches 561 * one of the zone's logical interfaces. 562 * 563 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 564 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 565 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 566 * address of the zone itself (the destination). Since IRE_LOCAL is used 567 * for communication between zones, ip_wput_ire has special logic to set 568 * the right source address when sending using an IRE_LOCAL. 569 * 570 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 571 * ire_cache_lookup restricts loopback using an IRE_LOCAL 572 * between zone to the case when L2 would have conceptually looped the packet 573 * back, i.e. the loopback which is required since neither Ethernet drivers 574 * nor Ethernet hardware loops them back. This is the case when the normal 575 * routes (ignoring IREs with different zoneids) would send out the packet on 576 * the same ill as the ill with which is IRE_LOCAL is associated. 577 * 578 * Multiple zones can share a common broadcast address; typically all zones 579 * share the 255.255.255.255 address. Incoming as well as locally originated 580 * broadcast packets must be dispatched to all the zones on the broadcast 581 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 582 * since some zones may not be on the 10.16.72/24 network. To handle this, each 583 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 584 * sent to every zone that has an IRE_BROADCAST entry for the destination 585 * address on the input ill, see conn_wantpacket(). 586 * 587 * Applications in different zones can join the same multicast group address. 588 * For IPv4, group memberships are per-logical interface, so they're already 589 * inherently part of a zone. For IPv6, group memberships are per-physical 590 * interface, so we distinguish IPv6 group memberships based on group address, 591 * interface and zoneid. In both cases, received multicast packets are sent to 592 * every zone for which a group membership entry exists. On IPv6 we need to 593 * check that the target zone still has an address on the receiving physical 594 * interface; it could have been removed since the application issued the 595 * IPV6_JOIN_GROUP. 596 */ 597 598 /* 599 * Squeue Fanout flags: 600 * 0: No fanout. 601 * 1: Fanout across all squeues 602 */ 603 boolean_t ip_squeue_fanout = 0; 604 605 /* 606 * Maximum dups allowed per packet. 607 */ 608 uint_t ip_max_frag_dups = 10; 609 610 #define IS_SIMPLE_IPH(ipha) \ 611 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 612 613 /* RFC 1122 Conformance */ 614 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 615 616 #define ILL_MAX_NAMELEN LIFNAMSIZ 617 618 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 619 620 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 621 cred_t *credp, boolean_t isv6); 622 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 623 ipha_t **); 624 625 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 626 ip_stack_t *); 627 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 628 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 629 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 630 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 631 mblk_t *, int, ip_stack_t *); 632 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 633 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 634 ill_t *, zoneid_t); 635 static void icmp_options_update(ipha_t *); 636 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 637 ip_stack_t *); 638 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 639 zoneid_t zoneid, ip_stack_t *); 640 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 641 static void icmp_redirect(ill_t *, mblk_t *); 642 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 643 ip_stack_t *); 644 645 static void ip_arp_news(queue_t *, mblk_t *); 646 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 647 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 648 char *ip_dot_addr(ipaddr_t, char *); 649 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 650 int ip_close(queue_t *, int); 651 static char *ip_dot_saddr(uchar_t *, char *); 652 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 653 boolean_t, boolean_t, ill_t *, zoneid_t); 654 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 655 boolean_t, boolean_t, zoneid_t); 656 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 657 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_lrput(queue_t *, mblk_t *); 659 ipaddr_t ip_net_mask(ipaddr_t); 660 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 661 ip_stack_t *); 662 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 663 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 664 char *ip_nv_lookup(nv_t *, int); 665 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 666 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 667 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 668 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 669 ipndp_t *, size_t); 670 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 675 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 676 ip_stack_t *); 677 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 678 ire_t *, ip_stack_t *); 679 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 680 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 681 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 682 ip_stack_t *); 683 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 684 uint32_t *, uint16_t *); 685 int ip_snmp_get(queue_t *, mblk_t *, int); 686 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 687 mib2_ipIfStatsEntry_t *, ip_stack_t *); 688 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 689 ip_stack_t *); 690 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 708 ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 710 ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 712 ip_stack_t *ipst); 713 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 714 ip_stack_t *ipst); 715 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 716 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 717 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 718 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 719 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 720 static boolean_t ip_source_route_included(ipha_t *); 721 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 722 723 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 724 zoneid_t, ip_stack_t *, conn_t *); 725 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 726 mblk_t *); 727 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 728 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 729 zoneid_t, ip_stack_t *); 730 731 static void conn_drain_init(ip_stack_t *); 732 static void conn_drain_fini(ip_stack_t *); 733 static void conn_drain_tail(conn_t *connp, boolean_t closing); 734 735 static void conn_walk_drain(ip_stack_t *); 736 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 737 zoneid_t); 738 739 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 740 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 741 static void ip_stack_fini(netstackid_t stackid, void *arg); 742 743 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 744 zoneid_t); 745 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 746 void *dummy_arg); 747 748 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 749 750 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 751 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 752 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 753 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 754 755 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 756 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 757 caddr_t, cred_t *); 758 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 759 cred_t *, boolean_t); 760 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 761 caddr_t cp, cred_t *cr); 762 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 763 cred_t *); 764 static int ip_squeue_switch(int); 765 766 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 767 static void ip_kstat_fini(netstackid_t, kstat_t *); 768 static int ip_kstat_update(kstat_t *kp, int rw); 769 static void *icmp_kstat_init(netstackid_t); 770 static void icmp_kstat_fini(netstackid_t, kstat_t *); 771 static int icmp_kstat_update(kstat_t *kp, int rw); 772 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 773 static void ip_kstat2_fini(netstackid_t, kstat_t *); 774 775 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 776 777 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 778 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 779 780 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 781 ipha_t *, ill_t *, boolean_t, boolean_t); 782 783 static void ipobs_init(ip_stack_t *); 784 static void ipobs_fini(ip_stack_t *); 785 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 786 787 /* How long, in seconds, we allow frags to hang around. */ 788 #define IP_FRAG_TIMEOUT 15 789 790 /* 791 * Threshold which determines whether MDT should be used when 792 * generating IP fragments; payload size must be greater than 793 * this threshold for MDT to take place. 794 */ 795 #define IP_WPUT_FRAG_MDT_MIN 32768 796 797 /* Setable in /etc/system only */ 798 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 799 800 static long ip_rput_pullups; 801 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 802 803 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 804 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 805 806 int ip_debug; 807 808 #ifdef DEBUG 809 uint32_t ipsechw_debug = 0; 810 #endif 811 812 /* 813 * Multirouting/CGTP stuff 814 */ 815 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 816 817 /* 818 * XXX following really should only be in a header. Would need more 819 * header and .c clean up first. 820 */ 821 extern optdb_obj_t ip_opt_obj; 822 823 ulong_t ip_squeue_enter_unbound = 0; 824 825 /* 826 * Named Dispatch Parameter Table. 827 * All of these are alterable, within the min/max values given, at run time. 828 */ 829 static ipparam_t lcl_param_arr[] = { 830 /* min max value name */ 831 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 832 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 833 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 834 { 0, 1, 0, "ip_respond_to_timestamp"}, 835 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 836 { 0, 1, 1, "ip_send_redirects"}, 837 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 838 { 0, 10, 0, "ip_mrtdebug"}, 839 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 840 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 841 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 842 { 1, 255, 255, "ip_def_ttl" }, 843 { 0, 1, 0, "ip_forward_src_routed"}, 844 { 0, 256, 32, "ip_wroff_extra" }, 845 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 846 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 847 { 0, 1, 1, "ip_path_mtu_discovery" }, 848 { 0, 240, 30, "ip_ignore_delete_time" }, 849 { 0, 1, 0, "ip_ignore_redirect" }, 850 { 0, 1, 1, "ip_output_queue" }, 851 { 1, 254, 1, "ip_broadcast_ttl" }, 852 { 0, 99999, 100, "ip_icmp_err_interval" }, 853 { 1, 99999, 10, "ip_icmp_err_burst" }, 854 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 855 { 0, 1, 0, "ip_strict_dst_multihoming" }, 856 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 857 { 0, 1, 0, "ipsec_override_persocket_policy" }, 858 { 0, 1, 1, "icmp_accept_clear_messages" }, 859 { 0, 1, 1, "igmp_accept_clear_messages" }, 860 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 861 "ip_ndp_delay_first_probe_time"}, 862 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 863 "ip_ndp_max_unicast_solicit"}, 864 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 865 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 866 { 0, 1, 0, "ip6_forward_src_routed"}, 867 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 868 { 0, 1, 1, "ip6_send_redirects"}, 869 { 0, 1, 0, "ip6_ignore_redirect" }, 870 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 871 872 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 873 874 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 875 876 { 0, 1, 1, "pim_accept_clear_messages" }, 877 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 878 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 879 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 880 { 0, 15, 0, "ip_policy_mask" }, 881 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 882 { 0, 255, 1, "ip_multirt_ttl" }, 883 { 0, 1, 1, "ip_multidata_outbound" }, 884 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 885 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 886 { 0, 1000, 1, "ip_max_temp_defend" }, 887 { 0, 1000, 3, "ip_max_defend" }, 888 { 0, 999999, 30, "ip_defend_interval" }, 889 { 0, 3600000, 300000, "ip_dup_recovery" }, 890 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 891 { 0, 1, 1, "ip_lso_outbound" }, 892 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 893 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 894 { 68, 65535, 576, "ip_pmtu_min" }, 895 #ifdef DEBUG 896 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 897 #else 898 { 0, 0, 0, "" }, 899 #endif 900 }; 901 902 /* 903 * Extended NDP table 904 * The addresses for the first two are filled in to be ips_ip_g_forward 905 * and ips_ipv6_forward at init time. 906 */ 907 static ipndp_t lcl_ndp_arr[] = { 908 /* getf setf data name */ 909 #define IPNDP_IP_FORWARDING_OFFSET 0 910 { ip_param_generic_get, ip_forward_set, NULL, 911 "ip_forwarding" }, 912 #define IPNDP_IP6_FORWARDING_OFFSET 1 913 { ip_param_generic_get, ip_forward_set, NULL, 914 "ip6_forwarding" }, 915 { ip_ill_report, NULL, NULL, 916 "ip_ill_status" }, 917 { ip_ipif_report, NULL, NULL, 918 "ip_ipif_status" }, 919 { ip_conn_report, NULL, NULL, 920 "ip_conn_status" }, 921 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 922 "ip_rput_pullups" }, 923 { ip_srcid_report, NULL, NULL, 924 "ip_srcid_status" }, 925 { ip_param_generic_get, ip_input_proc_set, 926 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 927 { ip_param_generic_get, ip_int_set, 928 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 929 #define IPNDP_CGTP_FILTER_OFFSET 9 930 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 931 "ip_cgtp_filter" }, 932 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 933 "ip_debug" }, 934 }; 935 936 /* 937 * Table of IP ioctls encoding the various properties of the ioctl and 938 * indexed based on the last byte of the ioctl command. Occasionally there 939 * is a clash, and there is more than 1 ioctl with the same last byte. 940 * In such a case 1 ioctl is encoded in the ndx table and the remaining 941 * ioctls are encoded in the misc table. An entry in the ndx table is 942 * retrieved by indexing on the last byte of the ioctl command and comparing 943 * the ioctl command with the value in the ndx table. In the event of a 944 * mismatch the misc table is then searched sequentially for the desired 945 * ioctl command. 946 * 947 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 948 */ 949 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 950 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 961 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocaddrt, NULL }, 963 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 964 MISC_CMD, ip_siocdelrt, NULL }, 965 966 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 968 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 969 IF_CMD, ip_sioctl_get_addr, NULL }, 970 971 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 973 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 974 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 975 976 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 977 IPI_PRIV | IPI_WR, 978 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 979 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 980 IPI_MODOK | IPI_GET_CMD, 981 IF_CMD, ip_sioctl_get_flags, NULL }, 982 983 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 986 /* copyin size cannot be coded for SIOCGIFCONF */ 987 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 988 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 989 990 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 991 IF_CMD, ip_sioctl_mtu, NULL }, 992 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 993 IF_CMD, ip_sioctl_get_mtu, NULL }, 994 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 995 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1000 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1001 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1002 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1003 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1004 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1005 IF_CMD, ip_sioctl_metric, NULL }, 1006 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1007 1008 /* See 166-168 below for extended SIOC*XARP ioctls */ 1009 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 1016 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1039 MISC_CMD, if_unitsel, if_unitsel_restart }, 1040 1041 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1061 IPI_PRIV | IPI_WR | IPI_MODOK, 1062 IF_CMD, ip_sioctl_sifname, NULL }, 1063 1064 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1079 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1080 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1081 IF_CMD, ip_sioctl_get_muxid, NULL }, 1082 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1083 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1084 1085 /* Both if and lif variants share same func */ 1086 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1087 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1088 /* Both if and lif variants share same func */ 1089 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1115 ip_sioctl_removeif_restart }, 1116 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1117 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_addif, NULL }, 1119 #define SIOCLIFADDR_NDX 112 1120 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1121 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1122 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1123 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1124 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1125 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1126 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1127 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1128 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1129 IPI_PRIV | IPI_WR, 1130 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1131 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_MODOK, 1133 LIF_CMD, ip_sioctl_get_flags, NULL }, 1134 1135 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1139 ip_sioctl_get_lifconf, NULL }, 1140 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1141 LIF_CMD, ip_sioctl_mtu, NULL }, 1142 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1143 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1144 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1145 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1146 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1148 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1149 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1150 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1152 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1153 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1154 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_metric, NULL }, 1156 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1157 IPI_PRIV | IPI_WR | IPI_MODOK, 1158 LIF_CMD, ip_sioctl_slifname, 1159 ip_sioctl_slifname_restart }, 1160 1161 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1162 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1163 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1164 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1165 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1166 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1167 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1168 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1169 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1170 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1171 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_token, NULL }, 1173 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1174 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1175 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1176 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1177 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1178 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1179 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1180 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1181 1182 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1183 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1184 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1185 LIF_CMD, ip_siocdelndp_v6, NULL }, 1186 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1187 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1188 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1189 LIF_CMD, ip_siocsetndp_v6, NULL }, 1190 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1191 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1192 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1193 MISC_CMD, ip_sioctl_tonlink, NULL }, 1194 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1195 MISC_CMD, ip_sioctl_tmysite, NULL }, 1196 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1197 TUN_CMD, ip_sioctl_tunparam, NULL }, 1198 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1199 IPI_PRIV | IPI_WR, 1200 TUN_CMD, ip_sioctl_tunparam, NULL }, 1201 1202 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1203 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1204 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1205 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1206 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1207 1208 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 1210 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_sioctl_get_binding, NULL }, 1212 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1213 IPI_PRIV | IPI_WR, 1214 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1215 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1216 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1217 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1218 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1219 1220 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1221 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 1225 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 1227 /* These are handled in ip_sioctl_copyin_setup itself */ 1228 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1229 MISC_CMD, NULL, NULL }, 1230 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1231 MISC_CMD, NULL, NULL }, 1232 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1233 1234 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1235 ip_sioctl_get_lifconf, NULL }, 1236 1237 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1238 XARP_CMD, ip_sioctl_arp, NULL }, 1239 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1240 XARP_CMD, ip_sioctl_arp, NULL }, 1241 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1242 XARP_CMD, ip_sioctl_arp, NULL }, 1243 1244 /* SIOCPOPSOCKFS is not handled by IP */ 1245 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1246 1247 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1248 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1249 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1250 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1251 ip_sioctl_slifzone_restart }, 1252 /* 172-174 are SCTP ioctls and not handled by IP */ 1253 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1256 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1257 IPI_GET_CMD, LIF_CMD, 1258 ip_sioctl_get_lifusesrc, 0 }, 1259 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR, 1261 LIF_CMD, ip_sioctl_slifusesrc, 1262 NULL }, 1263 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1264 ip_sioctl_get_lifsrcof, NULL }, 1265 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1266 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1267 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1268 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1269 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1270 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1271 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1272 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1273 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* SIOCSENABLESDP is handled by SDP */ 1275 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1276 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1277 }; 1278 1279 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1280 1281 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1282 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1283 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1284 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1287 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1288 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1289 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1290 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1291 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1292 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1293 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1294 MISC_CMD, mrt_ioctl}, 1295 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1296 MISC_CMD, mrt_ioctl}, 1297 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1298 MISC_CMD, mrt_ioctl} 1299 }; 1300 1301 int ip_misc_ioctl_count = 1302 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1303 1304 int conn_drain_nthreads; /* Number of drainers reqd. */ 1305 /* Settable in /etc/system */ 1306 /* Defined in ip_ire.c */ 1307 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1308 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1309 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1310 1311 static nv_t ire_nv_arr[] = { 1312 { IRE_BROADCAST, "BROADCAST" }, 1313 { IRE_LOCAL, "LOCAL" }, 1314 { IRE_LOOPBACK, "LOOPBACK" }, 1315 { IRE_CACHE, "CACHE" }, 1316 { IRE_DEFAULT, "DEFAULT" }, 1317 { IRE_PREFIX, "PREFIX" }, 1318 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1319 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1320 { IRE_HOST, "HOST" }, 1321 { 0 } 1322 }; 1323 1324 nv_t *ire_nv_tbl = ire_nv_arr; 1325 1326 /* Simple ICMP IP Header Template */ 1327 static ipha_t icmp_ipha = { 1328 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1329 }; 1330 1331 struct module_info ip_mod_info = { 1332 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1333 IP_MOD_LOWAT 1334 }; 1335 1336 /* 1337 * Duplicate static symbols within a module confuses mdb; so we avoid the 1338 * problem by making the symbols here distinct from those in udp.c. 1339 */ 1340 1341 /* 1342 * Entry points for IP as a device and as a module. 1343 * FIXME: down the road we might want a separate module and driver qinit. 1344 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1345 */ 1346 static struct qinit iprinitv4 = { 1347 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1348 &ip_mod_info 1349 }; 1350 1351 struct qinit iprinitv6 = { 1352 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1353 &ip_mod_info 1354 }; 1355 1356 static struct qinit ipwinitv4 = { 1357 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1358 &ip_mod_info 1359 }; 1360 1361 struct qinit ipwinitv6 = { 1362 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1363 &ip_mod_info 1364 }; 1365 1366 static struct qinit iplrinit = { 1367 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 static struct qinit iplwinit = { 1372 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 /* For AF_INET aka /dev/ip */ 1377 struct streamtab ipinfov4 = { 1378 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1379 }; 1380 1381 /* For AF_INET6 aka /dev/ip6 */ 1382 struct streamtab ipinfov6 = { 1383 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1384 }; 1385 1386 #ifdef DEBUG 1387 static boolean_t skip_sctp_cksum = B_FALSE; 1388 #endif 1389 1390 /* 1391 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1392 * ip_rput_v6(), ip_output(), etc. If the message 1393 * block already has a M_CTL at the front of it, then simply set the zoneid 1394 * appropriately. 1395 */ 1396 mblk_t * 1397 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1398 { 1399 mblk_t *first_mp; 1400 ipsec_out_t *io; 1401 1402 ASSERT(zoneid != ALL_ZONES); 1403 if (mp->b_datap->db_type == M_CTL) { 1404 io = (ipsec_out_t *)mp->b_rptr; 1405 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1406 io->ipsec_out_zoneid = zoneid; 1407 return (mp); 1408 } 1409 1410 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1411 if (first_mp == NULL) 1412 return (NULL); 1413 io = (ipsec_out_t *)first_mp->b_rptr; 1414 /* This is not a secure packet */ 1415 io->ipsec_out_secure = B_FALSE; 1416 io->ipsec_out_zoneid = zoneid; 1417 first_mp->b_cont = mp; 1418 return (first_mp); 1419 } 1420 1421 /* 1422 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1423 */ 1424 mblk_t * 1425 ip_copymsg(mblk_t *mp) 1426 { 1427 mblk_t *nmp; 1428 ipsec_info_t *in; 1429 1430 if (mp->b_datap->db_type != M_CTL) 1431 return (copymsg(mp)); 1432 1433 in = (ipsec_info_t *)mp->b_rptr; 1434 1435 /* 1436 * Note that M_CTL is also used for delivering ICMP error messages 1437 * upstream to transport layers. 1438 */ 1439 if (in->ipsec_info_type != IPSEC_OUT && 1440 in->ipsec_info_type != IPSEC_IN) 1441 return (copymsg(mp)); 1442 1443 nmp = copymsg(mp->b_cont); 1444 1445 if (in->ipsec_info_type == IPSEC_OUT) { 1446 return (ipsec_out_tag(mp, nmp, 1447 ((ipsec_out_t *)in)->ipsec_out_ns)); 1448 } else { 1449 return (ipsec_in_tag(mp, nmp, 1450 ((ipsec_in_t *)in)->ipsec_in_ns)); 1451 } 1452 } 1453 1454 /* Generate an ICMP fragmentation needed message. */ 1455 static void 1456 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1457 ip_stack_t *ipst) 1458 { 1459 icmph_t icmph; 1460 mblk_t *first_mp; 1461 boolean_t mctl_present; 1462 1463 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1464 1465 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1466 if (mctl_present) 1467 freeb(first_mp); 1468 return; 1469 } 1470 1471 bzero(&icmph, sizeof (icmph_t)); 1472 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1473 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1474 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1476 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1477 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1478 ipst); 1479 } 1480 1481 /* 1482 * icmp_inbound deals with ICMP messages in the following ways. 1483 * 1484 * 1) It needs to send a reply back and possibly delivering it 1485 * to the "interested" upper clients. 1486 * 2) It needs to send it to the upper clients only. 1487 * 3) It needs to change some values in IP only. 1488 * 4) It needs to change some values in IP and upper layers e.g TCP. 1489 * 1490 * We need to accomodate icmp messages coming in clear until we get 1491 * everything secure from the wire. If icmp_accept_clear_messages 1492 * is zero we check with the global policy and act accordingly. If 1493 * it is non-zero, we accept the message without any checks. But 1494 * *this does not mean* that this will be delivered to the upper 1495 * clients. By accepting we might send replies back, change our MTU 1496 * value etc. but delivery to the ULP/clients depends on their policy 1497 * dispositions. 1498 * 1499 * We handle the above 4 cases in the context of IPsec in the 1500 * following way : 1501 * 1502 * 1) Send the reply back in the same way as the request came in. 1503 * If it came in encrypted, it goes out encrypted. If it came in 1504 * clear, it goes out in clear. Thus, this will prevent chosen 1505 * plain text attack. 1506 * 2) The client may or may not expect things to come in secure. 1507 * If it comes in secure, the policy constraints are checked 1508 * before delivering it to the upper layers. If it comes in 1509 * clear, ipsec_inbound_accept_clear will decide whether to 1510 * accept this in clear or not. In both the cases, if the returned 1511 * message (IP header + 8 bytes) that caused the icmp message has 1512 * AH/ESP headers, it is sent up to AH/ESP for validation before 1513 * sending up. If there are only 8 bytes of returned message, then 1514 * upper client will not be notified. 1515 * 3) Check with global policy to see whether it matches the constaints. 1516 * But this will be done only if icmp_accept_messages_in_clear is 1517 * zero. 1518 * 4) If we need to change both in IP and ULP, then the decision taken 1519 * while affecting the values in IP and while delivering up to TCP 1520 * should be the same. 1521 * 1522 * There are two cases. 1523 * 1524 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1525 * failed), we will not deliver it to the ULP, even though they 1526 * are *willing* to accept in *clear*. This is fine as our global 1527 * disposition to icmp messages asks us reject the datagram. 1528 * 1529 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1530 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1531 * to deliver it to ULP (policy failed), it can lead to 1532 * consistency problems. The cases known at this time are 1533 * ICMP_DESTINATION_UNREACHABLE messages with following code 1534 * values : 1535 * 1536 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1537 * and Upper layer rejects. Then the communication will 1538 * come to a stop. This is solved by making similar decisions 1539 * at both levels. Currently, when we are unable to deliver 1540 * to the Upper Layer (due to policy failures) while IP has 1541 * adjusted ire_max_frag, the next outbound datagram would 1542 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1543 * will be with the right level of protection. Thus the right 1544 * value will be communicated even if we are not able to 1545 * communicate when we get from the wire initially. But this 1546 * assumes there would be at least one outbound datagram after 1547 * IP has adjusted its ire_max_frag value. To make things 1548 * simpler, we accept in clear after the validation of 1549 * AH/ESP headers. 1550 * 1551 * - Other ICMP ERRORS : We may not be able to deliver it to the 1552 * upper layer depending on the level of protection the upper 1553 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1554 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1555 * should be accepted in clear when the Upper layer expects secure. 1556 * Thus the communication may get aborted by some bad ICMP 1557 * packets. 1558 * 1559 * IPQoS Notes: 1560 * The only instance when a packet is sent for processing is when there 1561 * isn't an ICMP client and if we are interested in it. 1562 * If there is a client, IPPF processing will take place in the 1563 * ip_fanout_proto routine. 1564 * 1565 * Zones notes: 1566 * The packet is only processed in the context of the specified zone: typically 1567 * only this zone will reply to an echo request, and only interested clients in 1568 * this zone will receive a copy of the packet. This means that the caller must 1569 * call icmp_inbound() for each relevant zone. 1570 */ 1571 static void 1572 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1573 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1574 ill_t *recv_ill, zoneid_t zoneid) 1575 { 1576 icmph_t *icmph; 1577 ipha_t *ipha; 1578 int iph_hdr_length; 1579 int hdr_length; 1580 boolean_t interested; 1581 uint32_t ts; 1582 uchar_t *wptr; 1583 ipif_t *ipif; 1584 mblk_t *first_mp; 1585 ipsec_in_t *ii; 1586 timestruc_t now; 1587 uint32_t ill_index; 1588 ip_stack_t *ipst; 1589 1590 ASSERT(ill != NULL); 1591 ipst = ill->ill_ipst; 1592 1593 first_mp = mp; 1594 if (mctl_present) { 1595 mp = first_mp->b_cont; 1596 ASSERT(mp != NULL); 1597 } 1598 1599 ipha = (ipha_t *)mp->b_rptr; 1600 if (ipst->ips_icmp_accept_clear_messages == 0) { 1601 first_mp = ipsec_check_global_policy(first_mp, NULL, 1602 ipha, NULL, mctl_present, ipst->ips_netstack); 1603 if (first_mp == NULL) 1604 return; 1605 } 1606 1607 /* 1608 * On a labeled system, we have to check whether the zone itself is 1609 * permitted to receive raw traffic. 1610 */ 1611 if (is_system_labeled()) { 1612 if (zoneid == ALL_ZONES) 1613 zoneid = tsol_packet_to_zoneid(mp); 1614 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1615 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1616 zoneid)); 1617 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1618 freemsg(first_mp); 1619 return; 1620 } 1621 } 1622 1623 /* 1624 * We have accepted the ICMP message. It means that we will 1625 * respond to the packet if needed. It may not be delivered 1626 * to the upper client depending on the policy constraints 1627 * and the disposition in ipsec_inbound_accept_clear. 1628 */ 1629 1630 ASSERT(ill != NULL); 1631 1632 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1633 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1634 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1635 /* Last chance to get real. */ 1636 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1637 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1638 freemsg(first_mp); 1639 return; 1640 } 1641 /* Refresh iph following the pullup. */ 1642 ipha = (ipha_t *)mp->b_rptr; 1643 } 1644 /* ICMP header checksum, including checksum field, should be zero. */ 1645 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1646 IP_CSUM(mp, iph_hdr_length, 0)) { 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1648 freemsg(first_mp); 1649 return; 1650 } 1651 /* The IP header will always be a multiple of four bytes */ 1652 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1653 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1654 icmph->icmph_code)); 1655 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1656 /* We will set "interested" to "true" if we want a copy */ 1657 interested = B_FALSE; 1658 switch (icmph->icmph_type) { 1659 case ICMP_ECHO_REPLY: 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1661 break; 1662 case ICMP_DEST_UNREACHABLE: 1663 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1664 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1665 interested = B_TRUE; /* Pass up to transport */ 1666 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1667 break; 1668 case ICMP_SOURCE_QUENCH: 1669 interested = B_TRUE; /* Pass up to transport */ 1670 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1671 break; 1672 case ICMP_REDIRECT: 1673 if (!ipst->ips_ip_ignore_redirect) 1674 interested = B_TRUE; 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1676 break; 1677 case ICMP_ECHO_REQUEST: 1678 /* 1679 * Whether to respond to echo requests that come in as IP 1680 * broadcasts or as IP multicast is subject to debate 1681 * (what isn't?). We aim to please, you pick it. 1682 * Default is do it. 1683 */ 1684 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1685 /* unicast: always respond */ 1686 interested = B_TRUE; 1687 } else if (CLASSD(ipha->ipha_dst)) { 1688 /* multicast: respond based on tunable */ 1689 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1690 } else if (broadcast) { 1691 /* broadcast: respond based on tunable */ 1692 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1693 } 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1695 break; 1696 case ICMP_ROUTER_ADVERTISEMENT: 1697 case ICMP_ROUTER_SOLICITATION: 1698 break; 1699 case ICMP_TIME_EXCEEDED: 1700 interested = B_TRUE; /* Pass up to transport */ 1701 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1702 break; 1703 case ICMP_PARAM_PROBLEM: 1704 interested = B_TRUE; /* Pass up to transport */ 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1706 break; 1707 case ICMP_TIME_STAMP_REQUEST: 1708 /* Response to Time Stamp Requests is local policy. */ 1709 if (ipst->ips_ip_g_resp_to_timestamp && 1710 /* So is whether to respond if it was an IP broadcast. */ 1711 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1712 int tstamp_len = 3 * sizeof (uint32_t); 1713 1714 if (wptr + tstamp_len > mp->b_wptr) { 1715 if (!pullupmsg(mp, wptr + tstamp_len - 1716 mp->b_rptr)) { 1717 BUMP_MIB(ill->ill_ip_mib, 1718 ipIfStatsInDiscards); 1719 freemsg(first_mp); 1720 return; 1721 } 1722 /* Refresh ipha following the pullup. */ 1723 ipha = (ipha_t *)mp->b_rptr; 1724 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1725 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1726 } 1727 interested = B_TRUE; 1728 } 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1730 break; 1731 case ICMP_TIME_STAMP_REPLY: 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1733 break; 1734 case ICMP_INFO_REQUEST: 1735 /* Per RFC 1122 3.2.2.7, ignore this. */ 1736 case ICMP_INFO_REPLY: 1737 break; 1738 case ICMP_ADDRESS_MASK_REQUEST: 1739 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1740 !broadcast) && 1741 /* TODO m_pullup of complete header? */ 1742 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1743 interested = B_TRUE; 1744 } 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1746 break; 1747 case ICMP_ADDRESS_MASK_REPLY: 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1749 break; 1750 default: 1751 interested = B_TRUE; /* Pass up to transport */ 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1753 break; 1754 } 1755 /* See if there is an ICMP client. */ 1756 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1757 /* If there is an ICMP client and we want one too, copy it. */ 1758 mblk_t *first_mp1; 1759 1760 if (!interested) { 1761 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1762 ip_policy, recv_ill, zoneid); 1763 return; 1764 } 1765 first_mp1 = ip_copymsg(first_mp); 1766 if (first_mp1 != NULL) { 1767 ip_fanout_proto(q, first_mp1, ill, ipha, 1768 0, mctl_present, ip_policy, recv_ill, zoneid); 1769 } 1770 } else if (!interested) { 1771 freemsg(first_mp); 1772 return; 1773 } else { 1774 /* 1775 * Initiate policy processing for this packet if ip_policy 1776 * is true. 1777 */ 1778 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1779 ill_index = ill->ill_phyint->phyint_ifindex; 1780 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1781 if (mp == NULL) { 1782 if (mctl_present) { 1783 freeb(first_mp); 1784 } 1785 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1786 return; 1787 } 1788 } 1789 } 1790 /* We want to do something with it. */ 1791 /* Check db_ref to make sure we can modify the packet. */ 1792 if (mp->b_datap->db_ref > 1) { 1793 mblk_t *first_mp1; 1794 1795 first_mp1 = ip_copymsg(first_mp); 1796 freemsg(first_mp); 1797 if (!first_mp1) { 1798 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1799 return; 1800 } 1801 first_mp = first_mp1; 1802 if (mctl_present) { 1803 mp = first_mp->b_cont; 1804 ASSERT(mp != NULL); 1805 } else { 1806 mp = first_mp; 1807 } 1808 ipha = (ipha_t *)mp->b_rptr; 1809 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1810 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1811 } 1812 switch (icmph->icmph_type) { 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1815 if (ipif == NULL) { 1816 freemsg(first_mp); 1817 return; 1818 } 1819 /* 1820 * outging interface must be IPv4 1821 */ 1822 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1823 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1824 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1825 ipif_refrele(ipif); 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1827 break; 1828 case ICMP_ECHO_REQUEST: 1829 icmph->icmph_type = ICMP_ECHO_REPLY; 1830 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1831 break; 1832 case ICMP_TIME_STAMP_REQUEST: { 1833 uint32_t *tsp; 1834 1835 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1836 tsp = (uint32_t *)wptr; 1837 tsp++; /* Skip past 'originate time' */ 1838 /* Compute # of milliseconds since midnight */ 1839 gethrestime(&now); 1840 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1841 now.tv_nsec / (NANOSEC / MILLISEC); 1842 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1843 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1844 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1845 break; 1846 } 1847 default: 1848 ipha = (ipha_t *)&icmph[1]; 1849 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1850 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1852 freemsg(first_mp); 1853 return; 1854 } 1855 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1856 ipha = (ipha_t *)&icmph[1]; 1857 } 1858 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1860 freemsg(first_mp); 1861 return; 1862 } 1863 hdr_length = IPH_HDR_LENGTH(ipha); 1864 if (hdr_length < sizeof (ipha_t)) { 1865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1866 freemsg(first_mp); 1867 return; 1868 } 1869 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1870 if (!pullupmsg(mp, 1871 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1873 freemsg(first_mp); 1874 return; 1875 } 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 ipha = (ipha_t *)&icmph[1]; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_REDIRECT: 1881 /* 1882 * As there is no upper client to deliver, we don't 1883 * need the first_mp any more. 1884 */ 1885 if (mctl_present) { 1886 freeb(first_mp); 1887 } 1888 icmp_redirect(ill, mp); 1889 return; 1890 case ICMP_DEST_UNREACHABLE: 1891 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1892 if (!icmp_inbound_too_big(icmph, ipha, ill, 1893 zoneid, mp, iph_hdr_length, ipst)) { 1894 freemsg(first_mp); 1895 return; 1896 } 1897 /* 1898 * icmp_inbound_too_big() may alter mp. 1899 * Resynch ipha and icmph accordingly. 1900 */ 1901 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1902 ipha = (ipha_t *)&icmph[1]; 1903 } 1904 /* FALLTHRU */ 1905 default : 1906 /* 1907 * IPQoS notes: Since we have already done IPQoS 1908 * processing we don't want to do it again in 1909 * the fanout routines called by 1910 * icmp_inbound_error_fanout, hence the last 1911 * argument, ip_policy, is B_FALSE. 1912 */ 1913 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1914 ipha, iph_hdr_length, hdr_length, mctl_present, 1915 B_FALSE, recv_ill, zoneid); 1916 } 1917 return; 1918 } 1919 /* Send out an ICMP packet */ 1920 icmph->icmph_checksum = 0; 1921 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1922 if (broadcast || CLASSD(ipha->ipha_dst)) { 1923 ipif_t *ipif_chosen; 1924 /* 1925 * Make it look like it was directed to us, so we don't look 1926 * like a fool with a broadcast or multicast source address. 1927 */ 1928 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1929 /* 1930 * Make sure that we haven't grabbed an interface that's DOWN. 1931 */ 1932 if (ipif != NULL) { 1933 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1934 ipha->ipha_src, zoneid); 1935 if (ipif_chosen != NULL) { 1936 ipif_refrele(ipif); 1937 ipif = ipif_chosen; 1938 } 1939 } 1940 if (ipif == NULL) { 1941 ip0dbg(("icmp_inbound: " 1942 "No source for broadcast/multicast:\n" 1943 "\tsrc 0x%x dst 0x%x ill %p " 1944 "ipif_lcl_addr 0x%x\n", 1945 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1946 (void *)ill, 1947 ill->ill_ipif->ipif_lcl_addr)); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1952 ipha->ipha_dst = ipif->ipif_src_addr; 1953 ipif_refrele(ipif); 1954 } 1955 /* Reset time to live. */ 1956 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1957 { 1958 /* Swap source and destination addresses */ 1959 ipaddr_t tmp; 1960 1961 tmp = ipha->ipha_src; 1962 ipha->ipha_src = ipha->ipha_dst; 1963 ipha->ipha_dst = tmp; 1964 } 1965 ipha->ipha_ident = 0; 1966 if (!IS_SIMPLE_IPH(ipha)) 1967 icmp_options_update(ipha); 1968 1969 if (!mctl_present) { 1970 /* 1971 * This packet should go out the same way as it 1972 * came in i.e in clear. To make sure that global 1973 * policy will not be applied to this in ip_wput_ire, 1974 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 1975 */ 1976 ASSERT(first_mp == mp); 1977 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 1978 if (first_mp == NULL) { 1979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1980 freemsg(mp); 1981 return; 1982 } 1983 ii = (ipsec_in_t *)first_mp->b_rptr; 1984 1985 /* This is not a secure packet */ 1986 ii->ipsec_in_secure = B_FALSE; 1987 first_mp->b_cont = mp; 1988 } else { 1989 ii = (ipsec_in_t *)first_mp->b_rptr; 1990 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 1991 } 1992 ii->ipsec_in_zoneid = zoneid; 1993 ASSERT(zoneid != ALL_ZONES); 1994 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 1995 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1996 return; 1997 } 1998 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1999 put(WR(q), first_mp); 2000 } 2001 2002 static ipaddr_t 2003 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2004 { 2005 conn_t *connp; 2006 connf_t *connfp; 2007 ipaddr_t nexthop_addr = INADDR_ANY; 2008 int hdr_length = IPH_HDR_LENGTH(ipha); 2009 uint16_t *up; 2010 uint32_t ports; 2011 ip_stack_t *ipst = ill->ill_ipst; 2012 2013 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2014 switch (ipha->ipha_protocol) { 2015 case IPPROTO_TCP: 2016 { 2017 tcph_t *tcph; 2018 2019 /* do a reverse lookup */ 2020 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2021 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2022 TCPS_LISTEN, ipst); 2023 break; 2024 } 2025 case IPPROTO_UDP: 2026 { 2027 uint32_t dstport, srcport; 2028 2029 ((uint16_t *)&ports)[0] = up[1]; 2030 ((uint16_t *)&ports)[1] = up[0]; 2031 2032 /* Extract ports in net byte order */ 2033 dstport = htons(ntohl(ports) & 0xFFFF); 2034 srcport = htons(ntohl(ports) >> 16); 2035 2036 connfp = &ipst->ips_ipcl_udp_fanout[ 2037 IPCL_UDP_HASH(dstport, ipst)]; 2038 mutex_enter(&connfp->connf_lock); 2039 connp = connfp->connf_head; 2040 2041 /* do a reverse lookup */ 2042 while ((connp != NULL) && 2043 (!IPCL_UDP_MATCH(connp, dstport, 2044 ipha->ipha_src, srcport, ipha->ipha_dst) || 2045 !IPCL_ZONE_MATCH(connp, zoneid))) { 2046 connp = connp->conn_next; 2047 } 2048 if (connp != NULL) 2049 CONN_INC_REF(connp); 2050 mutex_exit(&connfp->connf_lock); 2051 break; 2052 } 2053 case IPPROTO_SCTP: 2054 { 2055 in6_addr_t map_src, map_dst; 2056 2057 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2058 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2059 ((uint16_t *)&ports)[0] = up[1]; 2060 ((uint16_t *)&ports)[1] = up[0]; 2061 2062 connp = sctp_find_conn(&map_src, &map_dst, ports, 2063 zoneid, ipst->ips_netstack->netstack_sctp); 2064 if (connp == NULL) { 2065 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2066 zoneid, ports, ipha, ipst); 2067 } else { 2068 CONN_INC_REF(connp); 2069 SCTP_REFRELE(CONN2SCTP(connp)); 2070 } 2071 break; 2072 } 2073 default: 2074 { 2075 ipha_t ripha; 2076 2077 ripha.ipha_src = ipha->ipha_dst; 2078 ripha.ipha_dst = ipha->ipha_src; 2079 ripha.ipha_protocol = ipha->ipha_protocol; 2080 2081 connfp = &ipst->ips_ipcl_proto_fanout[ 2082 ipha->ipha_protocol]; 2083 mutex_enter(&connfp->connf_lock); 2084 connp = connfp->connf_head; 2085 for (connp = connfp->connf_head; connp != NULL; 2086 connp = connp->conn_next) { 2087 if (IPCL_PROTO_MATCH(connp, 2088 ipha->ipha_protocol, &ripha, ill, 2089 0, zoneid)) { 2090 CONN_INC_REF(connp); 2091 break; 2092 } 2093 } 2094 mutex_exit(&connfp->connf_lock); 2095 } 2096 } 2097 if (connp != NULL) { 2098 if (connp->conn_nexthop_set) 2099 nexthop_addr = connp->conn_nexthop_v4; 2100 CONN_DEC_REF(connp); 2101 } 2102 return (nexthop_addr); 2103 } 2104 2105 /* Table from RFC 1191 */ 2106 static int icmp_frag_size_table[] = 2107 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2108 2109 /* 2110 * Process received ICMP Packet too big. 2111 * After updating any IRE it does the fanout to any matching transport streams. 2112 * Assumes the message has been pulled up till the IP header that caused 2113 * the error. 2114 * 2115 * Returns B_FALSE on failure and B_TRUE on success. 2116 */ 2117 static boolean_t 2118 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2119 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2120 ip_stack_t *ipst) 2121 { 2122 ire_t *ire, *first_ire; 2123 int mtu, orig_mtu; 2124 int hdr_length; 2125 ipaddr_t nexthop_addr; 2126 boolean_t disable_pmtud; 2127 2128 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2129 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2130 ASSERT(ill != NULL); 2131 2132 hdr_length = IPH_HDR_LENGTH(ipha); 2133 2134 /* Drop if the original packet contained a source route */ 2135 if (ip_source_route_included(ipha)) { 2136 return (B_FALSE); 2137 } 2138 /* 2139 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2140 * header. 2141 */ 2142 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2143 mp->b_wptr) { 2144 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2145 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2147 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2148 return (B_FALSE); 2149 } 2150 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2151 ipha = (ipha_t *)&icmph[1]; 2152 } 2153 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2154 if (nexthop_addr != INADDR_ANY) { 2155 /* nexthop set */ 2156 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2157 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2158 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2159 } else { 2160 /* nexthop not set */ 2161 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2162 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2163 } 2164 2165 if (!first_ire) { 2166 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2167 ntohl(ipha->ipha_dst))); 2168 return (B_FALSE); 2169 } 2170 2171 /* Check for MTU discovery advice as described in RFC 1191 */ 2172 mtu = ntohs(icmph->icmph_du_mtu); 2173 orig_mtu = mtu; 2174 disable_pmtud = B_FALSE; 2175 2176 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2177 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2178 ire = ire->ire_next) { 2179 /* 2180 * Look for the connection to which this ICMP message is 2181 * directed. If it has the IP_NEXTHOP option set, then the 2182 * search is limited to IREs with the MATCH_IRE_PRIVATE 2183 * option. Else the search is limited to regular IREs. 2184 */ 2185 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2186 (nexthop_addr != ire->ire_gateway_addr)) || 2187 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2188 (nexthop_addr != INADDR_ANY))) 2189 continue; 2190 2191 mutex_enter(&ire->ire_lock); 2192 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2193 uint32_t length; 2194 int i; 2195 2196 /* 2197 * Use the table from RFC 1191 to figure out 2198 * the next "plateau" based on the length in 2199 * the original IP packet. 2200 */ 2201 length = ntohs(ipha->ipha_length); 2202 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2203 uint32_t, length); 2204 if (ire->ire_max_frag <= length && 2205 ire->ire_max_frag >= length - hdr_length) { 2206 /* 2207 * Handle broken BSD 4.2 systems that 2208 * return the wrong iph_length in ICMP 2209 * errors. 2210 */ 2211 length -= hdr_length; 2212 } 2213 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2214 if (length > icmp_frag_size_table[i]) 2215 break; 2216 } 2217 if (i == A_CNT(icmp_frag_size_table)) { 2218 /* Smaller than 68! */ 2219 disable_pmtud = B_TRUE; 2220 mtu = ipst->ips_ip_pmtu_min; 2221 } else { 2222 mtu = icmp_frag_size_table[i]; 2223 if (mtu < ipst->ips_ip_pmtu_min) { 2224 mtu = ipst->ips_ip_pmtu_min; 2225 disable_pmtud = B_TRUE; 2226 } 2227 } 2228 /* Fool the ULP into believing our guessed PMTU. */ 2229 icmph->icmph_du_zero = 0; 2230 icmph->icmph_du_mtu = htons(mtu); 2231 } 2232 if (disable_pmtud) 2233 ire->ire_frag_flag = 0; 2234 /* Reduce the IRE max frag value as advised. */ 2235 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2236 mutex_exit(&ire->ire_lock); 2237 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2238 ire, int, orig_mtu, int, mtu); 2239 } 2240 rw_exit(&first_ire->ire_bucket->irb_lock); 2241 ire_refrele(first_ire); 2242 return (B_TRUE); 2243 } 2244 2245 /* 2246 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2247 * calls this function. 2248 */ 2249 static mblk_t * 2250 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2251 { 2252 ipha_t *ipha; 2253 icmph_t *icmph; 2254 ipha_t *in_ipha; 2255 int length; 2256 2257 ASSERT(mp->b_datap->db_type == M_DATA); 2258 2259 /* 2260 * For Self-encapsulated packets, we added an extra IP header 2261 * without the options. Inner IP header is the one from which 2262 * the outer IP header was formed. Thus, we need to remove the 2263 * outer IP header. To do this, we pullup the whole message 2264 * and overlay whatever follows the outer IP header over the 2265 * outer IP header. 2266 */ 2267 2268 if (!pullupmsg(mp, -1)) 2269 return (NULL); 2270 2271 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2272 ipha = (ipha_t *)&icmph[1]; 2273 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2274 2275 /* 2276 * The length that we want to overlay is following the inner 2277 * IP header. Subtracting the IP header + icmp header + outer 2278 * IP header's length should give us the length that we want to 2279 * overlay. 2280 */ 2281 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2282 hdr_length; 2283 /* 2284 * Overlay whatever follows the inner header over the 2285 * outer header. 2286 */ 2287 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2288 2289 /* Set the wptr to account for the outer header */ 2290 mp->b_wptr -= hdr_length; 2291 return (mp); 2292 } 2293 2294 /* 2295 * Try to pass the ICMP message upstream in case the ULP cares. 2296 * 2297 * If the packet that caused the ICMP error is secure, we send 2298 * it to AH/ESP to make sure that the attached packet has a 2299 * valid association. ipha in the code below points to the 2300 * IP header of the packet that caused the error. 2301 * 2302 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2303 * in the context of IPsec. Normally we tell the upper layer 2304 * whenever we send the ire (including ip_bind), the IPsec header 2305 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2306 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2307 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2308 * same thing. As TCP has the IPsec options size that needs to be 2309 * adjusted, we just pass the MTU unchanged. 2310 * 2311 * IFN could have been generated locally or by some router. 2312 * 2313 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2314 * This happens because IP adjusted its value of MTU on an 2315 * earlier IFN message and could not tell the upper layer, 2316 * the new adjusted value of MTU e.g. Packet was encrypted 2317 * or there was not enough information to fanout to upper 2318 * layers. Thus on the next outbound datagram, ip_wput_ire 2319 * generates the IFN, where IPsec processing has *not* been 2320 * done. 2321 * 2322 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2323 * could have generated this. This happens because ire_max_frag 2324 * value in IP was set to a new value, while the IPsec processing 2325 * was being done and after we made the fragmentation check in 2326 * ip_wput_ire. Thus on return from IPsec processing, 2327 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2328 * and generates the IFN. As IPsec processing is over, we fanout 2329 * to AH/ESP to remove the header. 2330 * 2331 * In both these cases, ipsec_in_loopback will be set indicating 2332 * that IFN was generated locally. 2333 * 2334 * ROUTER : IFN could be secure or non-secure. 2335 * 2336 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2337 * packet in error has AH/ESP headers to validate the AH/ESP 2338 * headers. AH/ESP will verify whether there is a valid SA or 2339 * not and send it back. We will fanout again if we have more 2340 * data in the packet. 2341 * 2342 * If the packet in error does not have AH/ESP, we handle it 2343 * like any other case. 2344 * 2345 * * NON_SECURE : If the packet in error has AH/ESP headers, 2346 * we attach a dummy ipsec_in and send it up to AH/ESP 2347 * for validation. AH/ESP will verify whether there is a 2348 * valid SA or not and send it back. We will fanout again if 2349 * we have more data in the packet. 2350 * 2351 * If the packet in error does not have AH/ESP, we handle it 2352 * like any other case. 2353 */ 2354 static void 2355 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2356 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2357 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2358 zoneid_t zoneid) 2359 { 2360 uint16_t *up; /* Pointer to ports in ULP header */ 2361 uint32_t ports; /* reversed ports for fanout */ 2362 ipha_t ripha; /* With reversed addresses */ 2363 mblk_t *first_mp; 2364 ipsec_in_t *ii; 2365 tcph_t *tcph; 2366 conn_t *connp; 2367 ip_stack_t *ipst; 2368 2369 ASSERT(ill != NULL); 2370 2371 ASSERT(recv_ill != NULL); 2372 ipst = recv_ill->ill_ipst; 2373 2374 first_mp = mp; 2375 if (mctl_present) { 2376 mp = first_mp->b_cont; 2377 ASSERT(mp != NULL); 2378 2379 ii = (ipsec_in_t *)first_mp->b_rptr; 2380 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2381 } else { 2382 ii = NULL; 2383 } 2384 2385 switch (ipha->ipha_protocol) { 2386 case IPPROTO_UDP: 2387 /* 2388 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2389 * transport header. 2390 */ 2391 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2392 mp->b_wptr) { 2393 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2394 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2395 goto discard_pkt; 2396 } 2397 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2398 ipha = (ipha_t *)&icmph[1]; 2399 } 2400 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2401 2402 /* 2403 * Attempt to find a client stream based on port. 2404 * Note that we do a reverse lookup since the header is 2405 * in the form we sent it out. 2406 * The ripha header is only used for the IP_UDP_MATCH and we 2407 * only set the src and dst addresses and protocol. 2408 */ 2409 ripha.ipha_src = ipha->ipha_dst; 2410 ripha.ipha_dst = ipha->ipha_src; 2411 ripha.ipha_protocol = ipha->ipha_protocol; 2412 ((uint16_t *)&ports)[0] = up[1]; 2413 ((uint16_t *)&ports)[1] = up[0]; 2414 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2415 ntohl(ipha->ipha_src), ntohs(up[0]), 2416 ntohl(ipha->ipha_dst), ntohs(up[1]), 2417 icmph->icmph_type, icmph->icmph_code)); 2418 2419 /* Have to change db_type after any pullupmsg */ 2420 DB_TYPE(mp) = M_CTL; 2421 2422 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2423 mctl_present, ip_policy, recv_ill, zoneid); 2424 return; 2425 2426 case IPPROTO_TCP: 2427 /* 2428 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2429 * transport header. 2430 */ 2431 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2432 mp->b_wptr) { 2433 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2434 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2435 goto discard_pkt; 2436 } 2437 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2438 ipha = (ipha_t *)&icmph[1]; 2439 } 2440 /* 2441 * Find a TCP client stream for this packet. 2442 * Note that we do a reverse lookup since the header is 2443 * in the form we sent it out. 2444 */ 2445 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2446 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2447 ipst); 2448 if (connp == NULL) 2449 goto discard_pkt; 2450 2451 /* Have to change db_type after any pullupmsg */ 2452 DB_TYPE(mp) = M_CTL; 2453 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2454 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2455 return; 2456 2457 case IPPROTO_SCTP: 2458 /* 2459 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2460 * transport header. 2461 */ 2462 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2463 mp->b_wptr) { 2464 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2465 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2466 goto discard_pkt; 2467 } 2468 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2469 ipha = (ipha_t *)&icmph[1]; 2470 } 2471 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2472 /* 2473 * Find a SCTP client stream for this packet. 2474 * Note that we do a reverse lookup since the header is 2475 * in the form we sent it out. 2476 * The ripha header is only used for the matching and we 2477 * only set the src and dst addresses, protocol, and version. 2478 */ 2479 ripha.ipha_src = ipha->ipha_dst; 2480 ripha.ipha_dst = ipha->ipha_src; 2481 ripha.ipha_protocol = ipha->ipha_protocol; 2482 ripha.ipha_version_and_hdr_length = 2483 ipha->ipha_version_and_hdr_length; 2484 ((uint16_t *)&ports)[0] = up[1]; 2485 ((uint16_t *)&ports)[1] = up[0]; 2486 2487 /* Have to change db_type after any pullupmsg */ 2488 DB_TYPE(mp) = M_CTL; 2489 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2490 mctl_present, ip_policy, zoneid); 2491 return; 2492 2493 case IPPROTO_ESP: 2494 case IPPROTO_AH: { 2495 int ipsec_rc; 2496 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2497 2498 /* 2499 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2500 * We will re-use the IPSEC_IN if it is already present as 2501 * AH/ESP will not affect any fields in the IPSEC_IN for 2502 * ICMP errors. If there is no IPSEC_IN, allocate a new 2503 * one and attach it in the front. 2504 */ 2505 if (ii != NULL) { 2506 /* 2507 * ip_fanout_proto_again converts the ICMP errors 2508 * that come back from AH/ESP to M_DATA so that 2509 * if it is non-AH/ESP and we do a pullupmsg in 2510 * this function, it would work. Convert it back 2511 * to M_CTL before we send up as this is a ICMP 2512 * error. This could have been generated locally or 2513 * by some router. Validate the inner IPsec 2514 * headers. 2515 * 2516 * NOTE : ill_index is used by ip_fanout_proto_again 2517 * to locate the ill. 2518 */ 2519 ASSERT(ill != NULL); 2520 ii->ipsec_in_ill_index = 2521 ill->ill_phyint->phyint_ifindex; 2522 ii->ipsec_in_rill_index = 2523 recv_ill->ill_phyint->phyint_ifindex; 2524 DB_TYPE(first_mp->b_cont) = M_CTL; 2525 } else { 2526 /* 2527 * IPSEC_IN is not present. We attach a ipsec_in 2528 * message and send up to IPsec for validating 2529 * and removing the IPsec headers. Clear 2530 * ipsec_in_secure so that when we return 2531 * from IPsec, we don't mistakenly think that this 2532 * is a secure packet came from the network. 2533 * 2534 * NOTE : ill_index is used by ip_fanout_proto_again 2535 * to locate the ill. 2536 */ 2537 ASSERT(first_mp == mp); 2538 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2539 if (first_mp == NULL) { 2540 freemsg(mp); 2541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2542 return; 2543 } 2544 ii = (ipsec_in_t *)first_mp->b_rptr; 2545 2546 /* This is not a secure packet */ 2547 ii->ipsec_in_secure = B_FALSE; 2548 first_mp->b_cont = mp; 2549 DB_TYPE(mp) = M_CTL; 2550 ASSERT(ill != NULL); 2551 ii->ipsec_in_ill_index = 2552 ill->ill_phyint->phyint_ifindex; 2553 ii->ipsec_in_rill_index = 2554 recv_ill->ill_phyint->phyint_ifindex; 2555 } 2556 ip2dbg(("icmp_inbound_error: ipsec\n")); 2557 2558 if (!ipsec_loaded(ipss)) { 2559 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2560 return; 2561 } 2562 2563 if (ipha->ipha_protocol == IPPROTO_ESP) 2564 ipsec_rc = ipsecesp_icmp_error(first_mp); 2565 else 2566 ipsec_rc = ipsecah_icmp_error(first_mp); 2567 if (ipsec_rc == IPSEC_STATUS_FAILED) 2568 return; 2569 2570 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2571 return; 2572 } 2573 default: 2574 /* 2575 * The ripha header is only used for the lookup and we 2576 * only set the src and dst addresses and protocol. 2577 */ 2578 ripha.ipha_src = ipha->ipha_dst; 2579 ripha.ipha_dst = ipha->ipha_src; 2580 ripha.ipha_protocol = ipha->ipha_protocol; 2581 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2582 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2583 ntohl(ipha->ipha_dst), 2584 icmph->icmph_type, icmph->icmph_code)); 2585 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2586 ipha_t *in_ipha; 2587 2588 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2589 mp->b_wptr) { 2590 if (!pullupmsg(mp, (uchar_t *)ipha + 2591 hdr_length + sizeof (ipha_t) - 2592 mp->b_rptr)) { 2593 goto discard_pkt; 2594 } 2595 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2596 ipha = (ipha_t *)&icmph[1]; 2597 } 2598 /* 2599 * Caller has verified that length has to be 2600 * at least the size of IP header. 2601 */ 2602 ASSERT(hdr_length >= sizeof (ipha_t)); 2603 /* 2604 * Check the sanity of the inner IP header like 2605 * we did for the outer header. 2606 */ 2607 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2608 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2609 goto discard_pkt; 2610 } 2611 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2612 goto discard_pkt; 2613 } 2614 /* Check for Self-encapsulated tunnels */ 2615 if (in_ipha->ipha_src == ipha->ipha_src && 2616 in_ipha->ipha_dst == ipha->ipha_dst) { 2617 2618 mp = icmp_inbound_self_encap_error(mp, 2619 iph_hdr_length, hdr_length); 2620 if (mp == NULL) 2621 goto discard_pkt; 2622 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2623 ipha = (ipha_t *)&icmph[1]; 2624 hdr_length = IPH_HDR_LENGTH(ipha); 2625 /* 2626 * The packet in error is self-encapsualted. 2627 * And we are finding it further encapsulated 2628 * which we could not have possibly generated. 2629 */ 2630 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2631 goto discard_pkt; 2632 } 2633 icmp_inbound_error_fanout(q, ill, first_mp, 2634 icmph, ipha, iph_hdr_length, hdr_length, 2635 mctl_present, ip_policy, recv_ill, zoneid); 2636 return; 2637 } 2638 } 2639 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2640 ipha->ipha_protocol == IPPROTO_IPV6) && 2641 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2642 ii != NULL && 2643 ii->ipsec_in_loopback && 2644 ii->ipsec_in_secure) { 2645 /* 2646 * For IP tunnels that get a looped-back 2647 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2648 * reported new MTU to take into account the IPsec 2649 * headers protecting this configured tunnel. 2650 * 2651 * This allows the tunnel module (tun.c) to blindly 2652 * accept the MTU reported in an ICMP "too big" 2653 * message. 2654 * 2655 * Non-looped back ICMP messages will just be 2656 * handled by the security protocols (if needed), 2657 * and the first subsequent packet will hit this 2658 * path. 2659 */ 2660 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2661 ipsec_in_extra_length(first_mp)); 2662 } 2663 /* Have to change db_type after any pullupmsg */ 2664 DB_TYPE(mp) = M_CTL; 2665 2666 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2667 ip_policy, recv_ill, zoneid); 2668 return; 2669 } 2670 /* NOTREACHED */ 2671 discard_pkt: 2672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2673 drop_pkt:; 2674 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2675 freemsg(first_mp); 2676 } 2677 2678 /* 2679 * Common IP options parser. 2680 * 2681 * Setup routine: fill in *optp with options-parsing state, then 2682 * tail-call ipoptp_next to return the first option. 2683 */ 2684 uint8_t 2685 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2686 { 2687 uint32_t totallen; /* total length of all options */ 2688 2689 totallen = ipha->ipha_version_and_hdr_length - 2690 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2691 totallen <<= 2; 2692 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2693 optp->ipoptp_end = optp->ipoptp_next + totallen; 2694 optp->ipoptp_flags = 0; 2695 return (ipoptp_next(optp)); 2696 } 2697 2698 /* 2699 * Common IP options parser: extract next option. 2700 */ 2701 uint8_t 2702 ipoptp_next(ipoptp_t *optp) 2703 { 2704 uint8_t *end = optp->ipoptp_end; 2705 uint8_t *cur = optp->ipoptp_next; 2706 uint8_t opt, len, pointer; 2707 2708 /* 2709 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2710 * has been corrupted. 2711 */ 2712 ASSERT(cur <= end); 2713 2714 if (cur == end) 2715 return (IPOPT_EOL); 2716 2717 opt = cur[IPOPT_OPTVAL]; 2718 2719 /* 2720 * Skip any NOP options. 2721 */ 2722 while (opt == IPOPT_NOP) { 2723 cur++; 2724 if (cur == end) 2725 return (IPOPT_EOL); 2726 opt = cur[IPOPT_OPTVAL]; 2727 } 2728 2729 if (opt == IPOPT_EOL) 2730 return (IPOPT_EOL); 2731 2732 /* 2733 * Option requiring a length. 2734 */ 2735 if ((cur + 1) >= end) { 2736 optp->ipoptp_flags |= IPOPTP_ERROR; 2737 return (IPOPT_EOL); 2738 } 2739 len = cur[IPOPT_OLEN]; 2740 if (len < 2) { 2741 optp->ipoptp_flags |= IPOPTP_ERROR; 2742 return (IPOPT_EOL); 2743 } 2744 optp->ipoptp_cur = cur; 2745 optp->ipoptp_len = len; 2746 optp->ipoptp_next = cur + len; 2747 if (cur + len > end) { 2748 optp->ipoptp_flags |= IPOPTP_ERROR; 2749 return (IPOPT_EOL); 2750 } 2751 2752 /* 2753 * For the options which require a pointer field, make sure 2754 * its there, and make sure it points to either something 2755 * inside this option, or the end of the option. 2756 */ 2757 switch (opt) { 2758 case IPOPT_RR: 2759 case IPOPT_TS: 2760 case IPOPT_LSRR: 2761 case IPOPT_SSRR: 2762 if (len <= IPOPT_OFFSET) { 2763 optp->ipoptp_flags |= IPOPTP_ERROR; 2764 return (opt); 2765 } 2766 pointer = cur[IPOPT_OFFSET]; 2767 if (pointer - 1 > len) { 2768 optp->ipoptp_flags |= IPOPTP_ERROR; 2769 return (opt); 2770 } 2771 break; 2772 } 2773 2774 /* 2775 * Sanity check the pointer field based on the type of the 2776 * option. 2777 */ 2778 switch (opt) { 2779 case IPOPT_RR: 2780 case IPOPT_SSRR: 2781 case IPOPT_LSRR: 2782 if (pointer < IPOPT_MINOFF_SR) 2783 optp->ipoptp_flags |= IPOPTP_ERROR; 2784 break; 2785 case IPOPT_TS: 2786 if (pointer < IPOPT_MINOFF_IT) 2787 optp->ipoptp_flags |= IPOPTP_ERROR; 2788 /* 2789 * Note that the Internet Timestamp option also 2790 * contains two four bit fields (the Overflow field, 2791 * and the Flag field), which follow the pointer 2792 * field. We don't need to check that these fields 2793 * fall within the length of the option because this 2794 * was implicitely done above. We've checked that the 2795 * pointer value is at least IPOPT_MINOFF_IT, and that 2796 * it falls within the option. Since IPOPT_MINOFF_IT > 2797 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2798 */ 2799 ASSERT(len > IPOPT_POS_OV_FLG); 2800 break; 2801 } 2802 2803 return (opt); 2804 } 2805 2806 /* 2807 * Use the outgoing IP header to create an IP_OPTIONS option the way 2808 * it was passed down from the application. 2809 */ 2810 int 2811 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2812 { 2813 ipoptp_t opts; 2814 const uchar_t *opt; 2815 uint8_t optval; 2816 uint8_t optlen; 2817 uint32_t len = 0; 2818 uchar_t *buf1 = buf; 2819 2820 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2821 len += IP_ADDR_LEN; 2822 bzero(buf1, IP_ADDR_LEN); 2823 2824 /* 2825 * OK to cast away const here, as we don't store through the returned 2826 * opts.ipoptp_cur pointer. 2827 */ 2828 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2829 optval != IPOPT_EOL; 2830 optval = ipoptp_next(&opts)) { 2831 int off; 2832 2833 opt = opts.ipoptp_cur; 2834 optlen = opts.ipoptp_len; 2835 switch (optval) { 2836 case IPOPT_SSRR: 2837 case IPOPT_LSRR: 2838 2839 /* 2840 * Insert ipha_dst as the first entry in the source 2841 * route and move down the entries on step. 2842 * The last entry gets placed at buf1. 2843 */ 2844 buf[IPOPT_OPTVAL] = optval; 2845 buf[IPOPT_OLEN] = optlen; 2846 buf[IPOPT_OFFSET] = optlen; 2847 2848 off = optlen - IP_ADDR_LEN; 2849 if (off < 0) { 2850 /* No entries in source route */ 2851 break; 2852 } 2853 /* Last entry in source route */ 2854 bcopy(opt + off, buf1, IP_ADDR_LEN); 2855 off -= IP_ADDR_LEN; 2856 2857 while (off > 0) { 2858 bcopy(opt + off, 2859 buf + off + IP_ADDR_LEN, 2860 IP_ADDR_LEN); 2861 off -= IP_ADDR_LEN; 2862 } 2863 /* ipha_dst into first slot */ 2864 bcopy(&ipha->ipha_dst, 2865 buf + off + IP_ADDR_LEN, 2866 IP_ADDR_LEN); 2867 buf += optlen; 2868 len += optlen; 2869 break; 2870 2871 case IPOPT_COMSEC: 2872 case IPOPT_SECURITY: 2873 /* if passing up a label is not ok, then remove */ 2874 if (is_system_labeled()) 2875 break; 2876 /* FALLTHROUGH */ 2877 default: 2878 bcopy(opt, buf, optlen); 2879 buf += optlen; 2880 len += optlen; 2881 break; 2882 } 2883 } 2884 done: 2885 /* Pad the resulting options */ 2886 while (len & 0x3) { 2887 *buf++ = IPOPT_EOL; 2888 len++; 2889 } 2890 return (len); 2891 } 2892 2893 /* 2894 * Update any record route or timestamp options to include this host. 2895 * Reverse any source route option. 2896 * This routine assumes that the options are well formed i.e. that they 2897 * have already been checked. 2898 */ 2899 static void 2900 icmp_options_update(ipha_t *ipha) 2901 { 2902 ipoptp_t opts; 2903 uchar_t *opt; 2904 uint8_t optval; 2905 ipaddr_t src; /* Our local address */ 2906 ipaddr_t dst; 2907 2908 ip2dbg(("icmp_options_update\n")); 2909 src = ipha->ipha_src; 2910 dst = ipha->ipha_dst; 2911 2912 for (optval = ipoptp_first(&opts, ipha); 2913 optval != IPOPT_EOL; 2914 optval = ipoptp_next(&opts)) { 2915 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2916 opt = opts.ipoptp_cur; 2917 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2918 optval, opts.ipoptp_len)); 2919 switch (optval) { 2920 int off1, off2; 2921 case IPOPT_SSRR: 2922 case IPOPT_LSRR: 2923 /* 2924 * Reverse the source route. The first entry 2925 * should be the next to last one in the current 2926 * source route (the last entry is our address). 2927 * The last entry should be the final destination. 2928 */ 2929 off1 = IPOPT_MINOFF_SR - 1; 2930 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2931 if (off2 < 0) { 2932 /* No entries in source route */ 2933 ip1dbg(( 2934 "icmp_options_update: bad src route\n")); 2935 break; 2936 } 2937 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2938 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2939 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2940 off2 -= IP_ADDR_LEN; 2941 2942 while (off1 < off2) { 2943 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2944 bcopy((char *)opt + off2, (char *)opt + off1, 2945 IP_ADDR_LEN); 2946 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2947 off1 += IP_ADDR_LEN; 2948 off2 -= IP_ADDR_LEN; 2949 } 2950 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2951 break; 2952 } 2953 } 2954 } 2955 2956 /* 2957 * Process received ICMP Redirect messages. 2958 */ 2959 static void 2960 icmp_redirect(ill_t *ill, mblk_t *mp) 2961 { 2962 ipha_t *ipha; 2963 int iph_hdr_length; 2964 icmph_t *icmph; 2965 ipha_t *ipha_err; 2966 ire_t *ire; 2967 ire_t *prev_ire; 2968 ire_t *save_ire; 2969 ipaddr_t src, dst, gateway; 2970 iulp_t ulp_info = { 0 }; 2971 int error; 2972 ip_stack_t *ipst; 2973 2974 ASSERT(ill != NULL); 2975 ipst = ill->ill_ipst; 2976 2977 ipha = (ipha_t *)mp->b_rptr; 2978 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2979 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2980 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2981 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 2982 freemsg(mp); 2983 return; 2984 } 2985 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2986 ipha_err = (ipha_t *)&icmph[1]; 2987 src = ipha->ipha_src; 2988 dst = ipha_err->ipha_dst; 2989 gateway = icmph->icmph_rd_gateway; 2990 /* Make sure the new gateway is reachable somehow. */ 2991 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2992 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2993 /* 2994 * Make sure we had a route for the dest in question and that 2995 * that route was pointing to the old gateway (the source of the 2996 * redirect packet.) 2997 */ 2998 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2999 NULL, MATCH_IRE_GW, ipst); 3000 /* 3001 * Check that 3002 * the redirect was not from ourselves 3003 * the new gateway and the old gateway are directly reachable 3004 */ 3005 if (!prev_ire || 3006 !ire || 3007 ire->ire_type == IRE_LOCAL) { 3008 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3009 freemsg(mp); 3010 if (ire != NULL) 3011 ire_refrele(ire); 3012 if (prev_ire != NULL) 3013 ire_refrele(prev_ire); 3014 return; 3015 } 3016 3017 /* 3018 * Should we use the old ULP info to create the new gateway? From 3019 * a user's perspective, we should inherit the info so that it 3020 * is a "smooth" transition. If we do not do that, then new 3021 * connections going thru the new gateway will have no route metrics, 3022 * which is counter-intuitive to user. From a network point of 3023 * view, this may or may not make sense even though the new gateway 3024 * is still directly connected to us so the route metrics should not 3025 * change much. 3026 * 3027 * But if the old ire_uinfo is not initialized, we do another 3028 * recursive lookup on the dest using the new gateway. There may 3029 * be a route to that. If so, use it to initialize the redirect 3030 * route. 3031 */ 3032 if (prev_ire->ire_uinfo.iulp_set) { 3033 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3034 } else { 3035 ire_t *tmp_ire; 3036 ire_t *sire; 3037 3038 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3039 ALL_ZONES, 0, NULL, 3040 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3041 ipst); 3042 if (sire != NULL) { 3043 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3044 /* 3045 * If sire != NULL, ire_ftable_lookup() should not 3046 * return a NULL value. 3047 */ 3048 ASSERT(tmp_ire != NULL); 3049 ire_refrele(tmp_ire); 3050 ire_refrele(sire); 3051 } else if (tmp_ire != NULL) { 3052 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3053 sizeof (iulp_t)); 3054 ire_refrele(tmp_ire); 3055 } 3056 } 3057 if (prev_ire->ire_type == IRE_CACHE) 3058 ire_delete(prev_ire); 3059 ire_refrele(prev_ire); 3060 /* 3061 * TODO: more precise handling for cases 0, 2, 3, the latter two 3062 * require TOS routing 3063 */ 3064 switch (icmph->icmph_code) { 3065 case 0: 3066 case 1: 3067 /* TODO: TOS specificity for cases 2 and 3 */ 3068 case 2: 3069 case 3: 3070 break; 3071 default: 3072 freemsg(mp); 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3074 ire_refrele(ire); 3075 return; 3076 } 3077 /* 3078 * Create a Route Association. This will allow us to remember that 3079 * someone we believe told us to use the particular gateway. 3080 */ 3081 save_ire = ire; 3082 ire = ire_create( 3083 (uchar_t *)&dst, /* dest addr */ 3084 (uchar_t *)&ip_g_all_ones, /* mask */ 3085 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3086 (uchar_t *)&gateway, /* gateway addr */ 3087 &save_ire->ire_max_frag, /* max frag */ 3088 NULL, /* no src nce */ 3089 NULL, /* no rfq */ 3090 NULL, /* no stq */ 3091 IRE_HOST, 3092 NULL, /* ipif */ 3093 0, /* cmask */ 3094 0, /* phandle */ 3095 0, /* ihandle */ 3096 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3097 &ulp_info, 3098 NULL, /* tsol_gc_t */ 3099 NULL, /* gcgrp */ 3100 ipst); 3101 3102 if (ire == NULL) { 3103 freemsg(mp); 3104 ire_refrele(save_ire); 3105 return; 3106 } 3107 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3108 ire_refrele(save_ire); 3109 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3110 3111 if (error == 0) { 3112 ire_refrele(ire); /* Held in ire_add_v4 */ 3113 /* tell routing sockets that we received a redirect */ 3114 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3115 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3116 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3117 } 3118 3119 /* 3120 * Delete any existing IRE_HOST type redirect ires for this destination. 3121 * This together with the added IRE has the effect of 3122 * modifying an existing redirect. 3123 */ 3124 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3125 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3126 if (prev_ire != NULL) { 3127 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3128 ire_delete(prev_ire); 3129 ire_refrele(prev_ire); 3130 } 3131 3132 freemsg(mp); 3133 } 3134 3135 /* 3136 * Generate an ICMP parameter problem message. 3137 */ 3138 static void 3139 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3140 ip_stack_t *ipst) 3141 { 3142 icmph_t icmph; 3143 boolean_t mctl_present; 3144 mblk_t *first_mp; 3145 3146 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3147 3148 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3149 if (mctl_present) 3150 freeb(first_mp); 3151 return; 3152 } 3153 3154 bzero(&icmph, sizeof (icmph_t)); 3155 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3156 icmph.icmph_pp_ptr = ptr; 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3158 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3159 ipst); 3160 } 3161 3162 /* 3163 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3164 * the ICMP header pointed to by "stuff". (May be called as writer.) 3165 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3166 * an icmp error packet can be sent. 3167 * Assigns an appropriate source address to the packet. If ipha_dst is 3168 * one of our addresses use it for source. Otherwise pick a source based 3169 * on a route lookup back to ipha_src. 3170 * Note that ipha_src must be set here since the 3171 * packet is likely to arrive on an ill queue in ip_wput() which will 3172 * not set a source address. 3173 */ 3174 static void 3175 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3176 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3177 { 3178 ipaddr_t dst; 3179 icmph_t *icmph; 3180 ipha_t *ipha; 3181 uint_t len_needed; 3182 size_t msg_len; 3183 mblk_t *mp1; 3184 ipaddr_t src; 3185 ire_t *ire; 3186 mblk_t *ipsec_mp; 3187 ipsec_out_t *io = NULL; 3188 3189 if (mctl_present) { 3190 /* 3191 * If it is : 3192 * 3193 * 1) a IPSEC_OUT, then this is caused by outbound 3194 * datagram originating on this host. IPsec processing 3195 * may or may not have been done. Refer to comments above 3196 * icmp_inbound_error_fanout for details. 3197 * 3198 * 2) a IPSEC_IN if we are generating a icmp_message 3199 * for an incoming datagram destined for us i.e called 3200 * from ip_fanout_send_icmp. 3201 */ 3202 ipsec_info_t *in; 3203 ipsec_mp = mp; 3204 mp = ipsec_mp->b_cont; 3205 3206 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3207 ipha = (ipha_t *)mp->b_rptr; 3208 3209 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3210 in->ipsec_info_type == IPSEC_IN); 3211 3212 if (in->ipsec_info_type == IPSEC_IN) { 3213 /* 3214 * Convert the IPSEC_IN to IPSEC_OUT. 3215 */ 3216 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3217 BUMP_MIB(&ipst->ips_ip_mib, 3218 ipIfStatsOutDiscards); 3219 return; 3220 } 3221 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3222 } else { 3223 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3224 io = (ipsec_out_t *)in; 3225 /* 3226 * Clear out ipsec_out_proc_begin, so we do a fresh 3227 * ire lookup. 3228 */ 3229 io->ipsec_out_proc_begin = B_FALSE; 3230 } 3231 ASSERT(zoneid == io->ipsec_out_zoneid); 3232 ASSERT(zoneid != ALL_ZONES); 3233 } else { 3234 /* 3235 * This is in clear. The icmp message we are building 3236 * here should go out in clear. 3237 * 3238 * Pardon the convolution of it all, but it's easier to 3239 * allocate a "use cleartext" IPSEC_IN message and convert 3240 * it than it is to allocate a new one. 3241 */ 3242 ipsec_in_t *ii; 3243 ASSERT(DB_TYPE(mp) == M_DATA); 3244 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3245 if (ipsec_mp == NULL) { 3246 freemsg(mp); 3247 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3248 return; 3249 } 3250 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3251 3252 /* This is not a secure packet */ 3253 ii->ipsec_in_secure = B_FALSE; 3254 /* 3255 * For trusted extensions using a shared IP address we can 3256 * send using any zoneid. 3257 */ 3258 if (zoneid == ALL_ZONES) 3259 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3260 else 3261 ii->ipsec_in_zoneid = zoneid; 3262 ipsec_mp->b_cont = mp; 3263 ipha = (ipha_t *)mp->b_rptr; 3264 /* 3265 * Convert the IPSEC_IN to IPSEC_OUT. 3266 */ 3267 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3268 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3269 return; 3270 } 3271 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3272 } 3273 3274 /* Remember our eventual destination */ 3275 dst = ipha->ipha_src; 3276 3277 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3278 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3279 if (ire != NULL && 3280 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3281 src = ipha->ipha_dst; 3282 } else { 3283 if (ire != NULL) 3284 ire_refrele(ire); 3285 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3286 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3287 ipst); 3288 if (ire == NULL) { 3289 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3290 freemsg(ipsec_mp); 3291 return; 3292 } 3293 src = ire->ire_src_addr; 3294 } 3295 3296 if (ire != NULL) 3297 ire_refrele(ire); 3298 3299 /* 3300 * Check if we can send back more then 8 bytes in addition to 3301 * the IP header. We try to send 64 bytes of data and the internal 3302 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3303 */ 3304 len_needed = IPH_HDR_LENGTH(ipha); 3305 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3306 ipha->ipha_protocol == IPPROTO_IPV6) { 3307 3308 if (!pullupmsg(mp, -1)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3310 freemsg(ipsec_mp); 3311 return; 3312 } 3313 ipha = (ipha_t *)mp->b_rptr; 3314 3315 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3316 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3317 len_needed)); 3318 } else { 3319 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3320 3321 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3322 len_needed += ip_hdr_length_v6(mp, ip6h); 3323 } 3324 } 3325 len_needed += ipst->ips_ip_icmp_return; 3326 msg_len = msgdsize(mp); 3327 if (msg_len > len_needed) { 3328 (void) adjmsg(mp, len_needed - msg_len); 3329 msg_len = len_needed; 3330 } 3331 /* Make sure we propagate the cred/label for TX */ 3332 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3333 if (mp1 == NULL) { 3334 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3335 freemsg(ipsec_mp); 3336 return; 3337 } 3338 mp1->b_cont = mp; 3339 mp = mp1; 3340 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3341 ipsec_mp->b_rptr == (uint8_t *)io && 3342 io->ipsec_out_type == IPSEC_OUT); 3343 ipsec_mp->b_cont = mp; 3344 3345 /* 3346 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3347 * node generates be accepted in peace by all on-host destinations. 3348 * If we do NOT assume that all on-host destinations trust 3349 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3350 * (Look for ipsec_out_icmp_loopback). 3351 */ 3352 io->ipsec_out_icmp_loopback = B_TRUE; 3353 3354 ipha = (ipha_t *)mp->b_rptr; 3355 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3356 *ipha = icmp_ipha; 3357 ipha->ipha_src = src; 3358 ipha->ipha_dst = dst; 3359 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3360 msg_len += sizeof (icmp_ipha) + len; 3361 if (msg_len > IP_MAXPACKET) { 3362 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3363 msg_len = IP_MAXPACKET; 3364 } 3365 ipha->ipha_length = htons((uint16_t)msg_len); 3366 icmph = (icmph_t *)&ipha[1]; 3367 bcopy(stuff, icmph, len); 3368 icmph->icmph_checksum = 0; 3369 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3370 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3371 put(q, ipsec_mp); 3372 } 3373 3374 /* 3375 * Determine if an ICMP error packet can be sent given the rate limit. 3376 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3377 * in milliseconds) and a burst size. Burst size number of packets can 3378 * be sent arbitrarely closely spaced. 3379 * The state is tracked using two variables to implement an approximate 3380 * token bucket filter: 3381 * icmp_pkt_err_last - lbolt value when the last burst started 3382 * icmp_pkt_err_sent - number of packets sent in current burst 3383 */ 3384 boolean_t 3385 icmp_err_rate_limit(ip_stack_t *ipst) 3386 { 3387 clock_t now = TICK_TO_MSEC(lbolt); 3388 uint_t refilled; /* Number of packets refilled in tbf since last */ 3389 /* Guard against changes by loading into local variable */ 3390 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3391 3392 if (err_interval == 0) 3393 return (B_FALSE); 3394 3395 if (ipst->ips_icmp_pkt_err_last > now) { 3396 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3397 ipst->ips_icmp_pkt_err_last = 0; 3398 ipst->ips_icmp_pkt_err_sent = 0; 3399 } 3400 /* 3401 * If we are in a burst update the token bucket filter. 3402 * Update the "last" time to be close to "now" but make sure 3403 * we don't loose precision. 3404 */ 3405 if (ipst->ips_icmp_pkt_err_sent != 0) { 3406 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3407 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3408 ipst->ips_icmp_pkt_err_sent = 0; 3409 } else { 3410 ipst->ips_icmp_pkt_err_sent -= refilled; 3411 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3412 } 3413 } 3414 if (ipst->ips_icmp_pkt_err_sent == 0) { 3415 /* Start of new burst */ 3416 ipst->ips_icmp_pkt_err_last = now; 3417 } 3418 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3419 ipst->ips_icmp_pkt_err_sent++; 3420 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3421 ipst->ips_icmp_pkt_err_sent)); 3422 return (B_FALSE); 3423 } 3424 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3425 return (B_TRUE); 3426 } 3427 3428 /* 3429 * Check if it is ok to send an IPv4 ICMP error packet in 3430 * response to the IPv4 packet in mp. 3431 * Free the message and return null if no 3432 * ICMP error packet should be sent. 3433 */ 3434 static mblk_t * 3435 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3436 { 3437 icmph_t *icmph; 3438 ipha_t *ipha; 3439 uint_t len_needed; 3440 ire_t *src_ire; 3441 ire_t *dst_ire; 3442 3443 if (!mp) 3444 return (NULL); 3445 ipha = (ipha_t *)mp->b_rptr; 3446 if (ip_csum_hdr(ipha)) { 3447 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3448 freemsg(mp); 3449 return (NULL); 3450 } 3451 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3452 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3453 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3454 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3455 if (src_ire != NULL || dst_ire != NULL || 3456 CLASSD(ipha->ipha_dst) || 3457 CLASSD(ipha->ipha_src) || 3458 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3459 /* Note: only errors to the fragment with offset 0 */ 3460 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3461 freemsg(mp); 3462 if (src_ire != NULL) 3463 ire_refrele(src_ire); 3464 if (dst_ire != NULL) 3465 ire_refrele(dst_ire); 3466 return (NULL); 3467 } 3468 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3469 /* 3470 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3471 * errors in response to any ICMP errors. 3472 */ 3473 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3474 if (mp->b_wptr - mp->b_rptr < len_needed) { 3475 if (!pullupmsg(mp, len_needed)) { 3476 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3477 freemsg(mp); 3478 return (NULL); 3479 } 3480 ipha = (ipha_t *)mp->b_rptr; 3481 } 3482 icmph = (icmph_t *) 3483 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3484 switch (icmph->icmph_type) { 3485 case ICMP_DEST_UNREACHABLE: 3486 case ICMP_SOURCE_QUENCH: 3487 case ICMP_TIME_EXCEEDED: 3488 case ICMP_PARAM_PROBLEM: 3489 case ICMP_REDIRECT: 3490 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3491 freemsg(mp); 3492 return (NULL); 3493 default: 3494 break; 3495 } 3496 } 3497 /* 3498 * If this is a labeled system, then check to see if we're allowed to 3499 * send a response to this particular sender. If not, then just drop. 3500 */ 3501 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3502 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3503 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3504 freemsg(mp); 3505 return (NULL); 3506 } 3507 if (icmp_err_rate_limit(ipst)) { 3508 /* 3509 * Only send ICMP error packets every so often. 3510 * This should be done on a per port/source basis, 3511 * but for now this will suffice. 3512 */ 3513 freemsg(mp); 3514 return (NULL); 3515 } 3516 return (mp); 3517 } 3518 3519 /* 3520 * Generate an ICMP redirect message. 3521 */ 3522 static void 3523 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3524 { 3525 icmph_t icmph; 3526 3527 /* 3528 * We are called from ip_rput where we could 3529 * not have attached an IPSEC_IN. 3530 */ 3531 ASSERT(mp->b_datap->db_type == M_DATA); 3532 3533 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3534 return; 3535 } 3536 3537 bzero(&icmph, sizeof (icmph_t)); 3538 icmph.icmph_type = ICMP_REDIRECT; 3539 icmph.icmph_code = 1; 3540 icmph.icmph_rd_gateway = gateway; 3541 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3542 /* Redirects sent by router, and router is global zone */ 3543 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3544 } 3545 3546 /* 3547 * Generate an ICMP time exceeded message. 3548 */ 3549 void 3550 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3551 ip_stack_t *ipst) 3552 { 3553 icmph_t icmph; 3554 boolean_t mctl_present; 3555 mblk_t *first_mp; 3556 3557 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3558 3559 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3560 if (mctl_present) 3561 freeb(first_mp); 3562 return; 3563 } 3564 3565 bzero(&icmph, sizeof (icmph_t)); 3566 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3567 icmph.icmph_code = code; 3568 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3569 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3570 ipst); 3571 } 3572 3573 /* 3574 * Generate an ICMP unreachable message. 3575 */ 3576 void 3577 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3578 ip_stack_t *ipst) 3579 { 3580 icmph_t icmph; 3581 mblk_t *first_mp; 3582 boolean_t mctl_present; 3583 3584 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3585 3586 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3587 if (mctl_present) 3588 freeb(first_mp); 3589 return; 3590 } 3591 3592 bzero(&icmph, sizeof (icmph_t)); 3593 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3594 icmph.icmph_code = code; 3595 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3596 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3597 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3598 zoneid, ipst); 3599 } 3600 3601 /* 3602 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3603 * duplicate. As long as someone else holds the address, the interface will 3604 * stay down. When that conflict goes away, the interface is brought back up. 3605 * This is done so that accidental shutdowns of addresses aren't made 3606 * permanent. Your server will recover from a failure. 3607 * 3608 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3609 * user space process (dhcpagent). 3610 * 3611 * Recovery completes if ARP reports that the address is now ours (via 3612 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3613 * 3614 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3615 */ 3616 static void 3617 ipif_dup_recovery(void *arg) 3618 { 3619 ipif_t *ipif = arg; 3620 ill_t *ill = ipif->ipif_ill; 3621 mblk_t *arp_add_mp; 3622 mblk_t *arp_del_mp; 3623 ip_stack_t *ipst = ill->ill_ipst; 3624 3625 ipif->ipif_recovery_id = 0; 3626 3627 /* 3628 * No lock needed for moving or condemned check, as this is just an 3629 * optimization. 3630 */ 3631 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3632 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3633 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3634 /* No reason to try to bring this address back. */ 3635 return; 3636 } 3637 3638 /* ACE_F_UNVERIFIED restarts DAD */ 3639 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3640 goto alloc_fail; 3641 3642 if (ipif->ipif_arp_del_mp == NULL) { 3643 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3644 goto alloc_fail; 3645 ipif->ipif_arp_del_mp = arp_del_mp; 3646 } 3647 3648 putnext(ill->ill_rq, arp_add_mp); 3649 return; 3650 3651 alloc_fail: 3652 /* 3653 * On allocation failure, just restart the timer. Note that the ipif 3654 * is down here, so no other thread could be trying to start a recovery 3655 * timer. The ill_lock protects the condemned flag and the recovery 3656 * timer ID. 3657 */ 3658 freemsg(arp_add_mp); 3659 mutex_enter(&ill->ill_lock); 3660 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3661 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3662 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3663 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3664 } 3665 mutex_exit(&ill->ill_lock); 3666 } 3667 3668 /* 3669 * This is for exclusive changes due to ARP. Either tear down an interface due 3670 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3671 */ 3672 /* ARGSUSED */ 3673 static void 3674 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3675 { 3676 ill_t *ill = rq->q_ptr; 3677 arh_t *arh; 3678 ipaddr_t src; 3679 ipif_t *ipif; 3680 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3681 char hbuf[MAC_STR_LEN]; 3682 char sbuf[INET_ADDRSTRLEN]; 3683 const char *failtype; 3684 boolean_t bring_up; 3685 ip_stack_t *ipst = ill->ill_ipst; 3686 3687 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3688 case AR_CN_READY: 3689 failtype = NULL; 3690 bring_up = B_TRUE; 3691 break; 3692 case AR_CN_FAILED: 3693 failtype = "in use"; 3694 bring_up = B_FALSE; 3695 break; 3696 default: 3697 failtype = "claimed"; 3698 bring_up = B_FALSE; 3699 break; 3700 } 3701 3702 arh = (arh_t *)mp->b_cont->b_rptr; 3703 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3704 3705 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3706 sizeof (hbuf)); 3707 (void) ip_dot_addr(src, sbuf); 3708 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3709 3710 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3711 ipif->ipif_lcl_addr != src) { 3712 continue; 3713 } 3714 3715 /* 3716 * If we failed on a recovery probe, then restart the timer to 3717 * try again later. 3718 */ 3719 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3720 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3721 ill->ill_net_type == IRE_IF_RESOLVER && 3722 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3723 ipst->ips_ip_dup_recovery > 0 && 3724 ipif->ipif_recovery_id == 0) { 3725 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3726 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3727 continue; 3728 } 3729 3730 /* 3731 * If what we're trying to do has already been done, then do 3732 * nothing. 3733 */ 3734 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3735 continue; 3736 3737 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3738 3739 if (failtype == NULL) { 3740 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3741 ibuf); 3742 } else { 3743 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3744 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3745 } 3746 3747 if (bring_up) { 3748 ASSERT(ill->ill_dl_up); 3749 /* 3750 * Free up the ARP delete message so we can allocate 3751 * a fresh one through the normal path. 3752 */ 3753 freemsg(ipif->ipif_arp_del_mp); 3754 ipif->ipif_arp_del_mp = NULL; 3755 if (ipif_resolver_up(ipif, Res_act_initial) != 3756 EINPROGRESS) { 3757 ipif->ipif_addr_ready = 1; 3758 (void) ipif_up_done(ipif); 3759 ASSERT(ill->ill_move_ipif == NULL); 3760 } 3761 continue; 3762 } 3763 3764 mutex_enter(&ill->ill_lock); 3765 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3766 ipif->ipif_flags |= IPIF_DUPLICATE; 3767 ill->ill_ipif_dup_count++; 3768 mutex_exit(&ill->ill_lock); 3769 /* 3770 * Already exclusive on the ill; no need to handle deferred 3771 * processing here. 3772 */ 3773 (void) ipif_down(ipif, NULL, NULL); 3774 ipif_down_tail(ipif); 3775 mutex_enter(&ill->ill_lock); 3776 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3777 ill->ill_net_type == IRE_IF_RESOLVER && 3778 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3779 ipst->ips_ip_dup_recovery > 0) { 3780 ASSERT(ipif->ipif_recovery_id == 0); 3781 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3782 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3783 } 3784 mutex_exit(&ill->ill_lock); 3785 } 3786 freemsg(mp); 3787 } 3788 3789 /* ARGSUSED */ 3790 static void 3791 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3792 { 3793 ill_t *ill = rq->q_ptr; 3794 arh_t *arh; 3795 ipaddr_t src; 3796 ipif_t *ipif; 3797 3798 arh = (arh_t *)mp->b_cont->b_rptr; 3799 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3800 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3801 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3802 (void) ipif_resolver_up(ipif, Res_act_defend); 3803 } 3804 freemsg(mp); 3805 } 3806 3807 /* 3808 * News from ARP. ARP sends notification of interesting events down 3809 * to its clients using M_CTL messages with the interesting ARP packet 3810 * attached via b_cont. 3811 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3812 * queue as opposed to ARP sending the message to all the clients, i.e. all 3813 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3814 * table if a cache IRE is found to delete all the entries for the address in 3815 * the packet. 3816 */ 3817 static void 3818 ip_arp_news(queue_t *q, mblk_t *mp) 3819 { 3820 arcn_t *arcn; 3821 arh_t *arh; 3822 ire_t *ire = NULL; 3823 char hbuf[MAC_STR_LEN]; 3824 char sbuf[INET_ADDRSTRLEN]; 3825 ipaddr_t src; 3826 in6_addr_t v6src; 3827 boolean_t isv6 = B_FALSE; 3828 ipif_t *ipif; 3829 ill_t *ill; 3830 ip_stack_t *ipst; 3831 3832 if (CONN_Q(q)) { 3833 conn_t *connp = Q_TO_CONN(q); 3834 3835 ipst = connp->conn_netstack->netstack_ip; 3836 } else { 3837 ill_t *ill = (ill_t *)q->q_ptr; 3838 3839 ipst = ill->ill_ipst; 3840 } 3841 3842 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3843 if (q->q_next) { 3844 putnext(q, mp); 3845 } else 3846 freemsg(mp); 3847 return; 3848 } 3849 arh = (arh_t *)mp->b_cont->b_rptr; 3850 /* Is it one we are interested in? */ 3851 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3852 isv6 = B_TRUE; 3853 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3854 IPV6_ADDR_LEN); 3855 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3856 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3857 IP_ADDR_LEN); 3858 } else { 3859 freemsg(mp); 3860 return; 3861 } 3862 3863 ill = q->q_ptr; 3864 3865 arcn = (arcn_t *)mp->b_rptr; 3866 switch (arcn->arcn_code) { 3867 case AR_CN_BOGON: 3868 /* 3869 * Someone is sending ARP packets with a source protocol 3870 * address that we have published and for which we believe our 3871 * entry is authoritative and (when ill_arp_extend is set) 3872 * verified to be unique on the network. 3873 * 3874 * The ARP module internally handles the cases where the sender 3875 * is just probing (for DAD) and where the hardware address of 3876 * a non-authoritative entry has changed. Thus, these are the 3877 * real conflicts, and we have to do resolution. 3878 * 3879 * We back away quickly from the address if it's from DHCP or 3880 * otherwise temporary and hasn't been used recently (or at 3881 * all). We'd like to include "deprecated" addresses here as 3882 * well (as there's no real reason to defend something we're 3883 * discarding), but IPMP "reuses" this flag to mean something 3884 * other than the standard meaning. 3885 * 3886 * If the ARP module above is not extended (meaning that it 3887 * doesn't know how to defend the address), then we just log 3888 * the problem as we always did and continue on. It's not 3889 * right, but there's little else we can do, and those old ATM 3890 * users are going away anyway. 3891 */ 3892 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3893 hbuf, sizeof (hbuf)); 3894 (void) ip_dot_addr(src, sbuf); 3895 if (isv6) { 3896 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3897 ipst); 3898 } else { 3899 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3900 } 3901 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3902 uint32_t now; 3903 uint32_t maxage; 3904 clock_t lused; 3905 uint_t maxdefense; 3906 uint_t defs; 3907 3908 /* 3909 * First, figure out if this address hasn't been used 3910 * in a while. If it hasn't, then it's a better 3911 * candidate for abandoning. 3912 */ 3913 ipif = ire->ire_ipif; 3914 ASSERT(ipif != NULL); 3915 now = gethrestime_sec(); 3916 maxage = now - ire->ire_create_time; 3917 if (maxage > ipst->ips_ip_max_temp_idle) 3918 maxage = ipst->ips_ip_max_temp_idle; 3919 lused = drv_hztousec(ddi_get_lbolt() - 3920 ire->ire_last_used_time) / MICROSEC + 1; 3921 if (lused >= maxage && (ipif->ipif_flags & 3922 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3923 maxdefense = ipst->ips_ip_max_temp_defend; 3924 else 3925 maxdefense = ipst->ips_ip_max_defend; 3926 3927 /* 3928 * Now figure out how many times we've defended 3929 * ourselves. Ignore defenses that happened long in 3930 * the past. 3931 */ 3932 mutex_enter(&ire->ire_lock); 3933 if ((defs = ire->ire_defense_count) > 0 && 3934 now - ire->ire_defense_time > 3935 ipst->ips_ip_defend_interval) { 3936 ire->ire_defense_count = defs = 0; 3937 } 3938 ire->ire_defense_count++; 3939 ire->ire_defense_time = now; 3940 mutex_exit(&ire->ire_lock); 3941 ill_refhold(ill); 3942 ire_refrele(ire); 3943 3944 /* 3945 * If we've defended ourselves too many times already, 3946 * then give up and tear down the interface(s) using 3947 * this address. Otherwise, defend by sending out a 3948 * gratuitous ARP. 3949 */ 3950 if (defs >= maxdefense && ill->ill_arp_extend) { 3951 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 3952 B_FALSE); 3953 } else { 3954 cmn_err(CE_WARN, 3955 "node %s is using our IP address %s on %s", 3956 hbuf, sbuf, ill->ill_name); 3957 /* 3958 * If this is an old (ATM) ARP module, then 3959 * don't try to defend the address. Remain 3960 * compatible with the old behavior. Defend 3961 * only with new ARP. 3962 */ 3963 if (ill->ill_arp_extend) { 3964 qwriter_ip(ill, q, mp, ip_arp_defend, 3965 NEW_OP, B_FALSE); 3966 } else { 3967 ill_refrele(ill); 3968 } 3969 } 3970 return; 3971 } 3972 cmn_err(CE_WARN, 3973 "proxy ARP problem? Node '%s' is using %s on %s", 3974 hbuf, sbuf, ill->ill_name); 3975 if (ire != NULL) 3976 ire_refrele(ire); 3977 break; 3978 case AR_CN_ANNOUNCE: 3979 if (isv6) { 3980 /* 3981 * For XRESOLV interfaces. 3982 * Delete the IRE cache entry and NCE for this 3983 * v6 address 3984 */ 3985 ip_ire_clookup_and_delete_v6(&v6src, ipst); 3986 /* 3987 * If v6src is a non-zero, it's a router address 3988 * as below. Do the same sort of thing to clean 3989 * out off-net IRE_CACHE entries that go through 3990 * the router. 3991 */ 3992 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3993 ire_walk_v6(ire_delete_cache_gw_v6, 3994 (char *)&v6src, ALL_ZONES, ipst); 3995 } 3996 } else { 3997 nce_hw_map_t hwm; 3998 3999 /* 4000 * ARP gives us a copy of any packet where it thinks 4001 * the address has changed, so that we can update our 4002 * caches. We're responsible for caching known answers 4003 * in the current design. We check whether the 4004 * hardware address really has changed in all of our 4005 * entries that have cached this mapping, and if so, we 4006 * blow them away. This way we will immediately pick 4007 * up the rare case of a host changing hardware 4008 * address. 4009 */ 4010 if (src == 0) 4011 break; 4012 hwm.hwm_addr = src; 4013 hwm.hwm_hwlen = arh->arh_hlen; 4014 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4015 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4016 ndp_walk_common(ipst->ips_ndp4, NULL, 4017 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4018 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4019 } 4020 break; 4021 case AR_CN_READY: 4022 /* No external v6 resolver has a contract to use this */ 4023 if (isv6) 4024 break; 4025 /* If the link is down, we'll retry this later */ 4026 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4027 break; 4028 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4029 NULL, NULL, ipst); 4030 if (ipif != NULL) { 4031 /* 4032 * If this is a duplicate recovery, then we now need to 4033 * go exclusive to bring this thing back up. 4034 */ 4035 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4036 IPIF_DUPLICATE) { 4037 ipif_refrele(ipif); 4038 ill_refhold(ill); 4039 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4040 B_FALSE); 4041 return; 4042 } 4043 /* 4044 * If this is the first notice that this address is 4045 * ready, then let the user know now. 4046 */ 4047 if ((ipif->ipif_flags & IPIF_UP) && 4048 !ipif->ipif_addr_ready) { 4049 ipif_mask_reply(ipif); 4050 ipif_up_notify(ipif); 4051 } 4052 ipif->ipif_addr_ready = 1; 4053 ipif_refrele(ipif); 4054 } 4055 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4056 if (ire != NULL) { 4057 ire->ire_defense_count = 0; 4058 ire_refrele(ire); 4059 } 4060 break; 4061 case AR_CN_FAILED: 4062 /* No external v6 resolver has a contract to use this */ 4063 if (isv6) 4064 break; 4065 ill_refhold(ill); 4066 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4067 return; 4068 } 4069 freemsg(mp); 4070 } 4071 4072 /* 4073 * Create a mblk suitable for carrying the interface index and/or source link 4074 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4075 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4076 * application. 4077 */ 4078 mblk_t * 4079 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4080 ip_stack_t *ipst) 4081 { 4082 mblk_t *mp; 4083 ip_pktinfo_t *pinfo; 4084 ipha_t *ipha; 4085 struct ether_header *pether; 4086 boolean_t ipmp_ill_held = B_FALSE; 4087 4088 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4089 if (mp == NULL) { 4090 ip1dbg(("ip_add_info: allocation failure.\n")); 4091 return (data_mp); 4092 } 4093 4094 ipha = (ipha_t *)data_mp->b_rptr; 4095 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4096 bzero(pinfo, sizeof (ip_pktinfo_t)); 4097 pinfo->ip_pkt_flags = (uchar_t)flags; 4098 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4099 4100 pether = (struct ether_header *)((char *)ipha 4101 - sizeof (struct ether_header)); 4102 4103 /* 4104 * Make sure the interface is an ethernet type, since this option 4105 * is currently supported only on this type of interface. Also make 4106 * sure we are pointing correctly above db_base. 4107 */ 4108 if ((flags & IPF_RECVSLLA) && 4109 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4110 (ill->ill_type == IFT_ETHER) && 4111 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4112 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4113 bcopy(pether->ether_shost.ether_addr_octet, 4114 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4115 } else { 4116 /* 4117 * Clear the bit. Indicate to upper layer that IP is not 4118 * sending this ancillary info. 4119 */ 4120 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4121 } 4122 4123 /* 4124 * If `ill' is in an IPMP group, use the IPMP ill to determine 4125 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4126 * IPF_RECVADDR support on test addresses is not needed.) 4127 * 4128 * Note that `ill' may already be an IPMP ill if e.g. we're 4129 * processing a packet looped back to an IPMP data address 4130 * (since those IRE_LOCALs are tied to IPMP ills). 4131 */ 4132 if (IS_UNDER_IPMP(ill)) { 4133 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4134 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4135 freemsg(mp); 4136 return (data_mp); 4137 } 4138 ipmp_ill_held = B_TRUE; 4139 } 4140 4141 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4142 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4143 if (flags & IPF_RECVADDR) { 4144 ipif_t *ipif; 4145 ire_t *ire; 4146 4147 /* 4148 * Only valid for V4 4149 */ 4150 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4151 (IPV4_VERSION << 4)); 4152 4153 ipif = ipif_get_next_ipif(NULL, ill); 4154 if (ipif != NULL) { 4155 /* 4156 * Since a decision has already been made to deliver the 4157 * packet, there is no need to test for SECATTR and 4158 * ZONEONLY. 4159 * When a multicast packet is transmitted 4160 * a cache entry is created for the multicast address. 4161 * When delivering a copy of the packet or when new 4162 * packets are received we do not want to match on the 4163 * cached entry so explicitly match on 4164 * IRE_LOCAL and IRE_LOOPBACK 4165 */ 4166 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4167 IRE_LOCAL | IRE_LOOPBACK, 4168 ipif, zoneid, NULL, 4169 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4170 if (ire == NULL) { 4171 /* 4172 * packet must have come on a different 4173 * interface. 4174 * Since a decision has already been made to 4175 * deliver the packet, there is no need to test 4176 * for SECATTR and ZONEONLY. 4177 * Only match on local and broadcast ire's. 4178 * See detailed comment above. 4179 */ 4180 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4181 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4182 NULL, MATCH_IRE_TYPE, ipst); 4183 } 4184 4185 if (ire == NULL) { 4186 /* 4187 * This is either a multicast packet or 4188 * the address has been removed since 4189 * the packet was received. 4190 * Return INADDR_ANY so that normal source 4191 * selection occurs for the response. 4192 */ 4193 4194 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4195 } else { 4196 pinfo->ip_pkt_match_addr.s_addr = 4197 ire->ire_src_addr; 4198 ire_refrele(ire); 4199 } 4200 ipif_refrele(ipif); 4201 } else { 4202 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4203 } 4204 } 4205 4206 if (ipmp_ill_held) 4207 ill_refrele(ill); 4208 4209 mp->b_datap->db_type = M_CTL; 4210 mp->b_wptr += sizeof (ip_pktinfo_t); 4211 mp->b_cont = data_mp; 4212 4213 return (mp); 4214 } 4215 4216 /* 4217 * Used to determine the most accurate cred_t to use for TX. 4218 * First priority is SCM_UCRED having set the label in the message, 4219 * which is used for MLP on UDP. Second priority is the peers label (aka 4220 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4221 * open credentials. 4222 */ 4223 cred_t * 4224 ip_best_cred(mblk_t *mp, conn_t *connp) 4225 { 4226 cred_t *cr; 4227 4228 cr = msg_getcred(mp, NULL); 4229 if (cr != NULL && crgetlabel(cr) != NULL) 4230 return (cr); 4231 return (CONN_CRED(connp)); 4232 } 4233 4234 /* 4235 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4236 * part of the bind request. 4237 */ 4238 4239 boolean_t 4240 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4241 { 4242 ipsec_in_t *ii; 4243 4244 ASSERT(policy_mp != NULL); 4245 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4246 4247 ii = (ipsec_in_t *)policy_mp->b_rptr; 4248 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4249 4250 connp->conn_policy = ii->ipsec_in_policy; 4251 ii->ipsec_in_policy = NULL; 4252 4253 if (ii->ipsec_in_action != NULL) { 4254 if (connp->conn_latch == NULL) { 4255 connp->conn_latch = iplatch_create(); 4256 if (connp->conn_latch == NULL) 4257 return (B_FALSE); 4258 } 4259 ipsec_latch_inbound(connp->conn_latch, ii); 4260 } 4261 return (B_TRUE); 4262 } 4263 4264 static void 4265 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4266 { 4267 /* 4268 * Pass the IPsec headers size in ire_ipsec_overhead. 4269 * We can't do this in ip_bind_get_ire because the policy 4270 * may not have been inherited at that point in time and hence 4271 * conn_out_enforce_policy may not be set. 4272 */ 4273 if (ire_requested && connp->conn_out_enforce_policy && 4274 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4275 ire_t *ire = (ire_t *)mp->b_rptr; 4276 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4277 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4278 } 4279 } 4280 4281 /* 4282 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4283 * and to arrange for power-fanout assist. The ULP is identified by 4284 * adding a single byte at the end of the original bind message. 4285 * A ULP other than UDP or TCP that wishes to be recognized passes 4286 * down a bind with a zero length address. 4287 * 4288 * The binding works as follows: 4289 * - A zero byte address means just bind to the protocol. 4290 * - A four byte address is treated as a request to validate 4291 * that the address is a valid local address, appropriate for 4292 * an application to bind to. This does not affect any fanout 4293 * information in IP. 4294 * - A sizeof sin_t byte address is used to bind to only the local address 4295 * and port. 4296 * - A sizeof ipa_conn_t byte address contains complete fanout information 4297 * consisting of local and remote addresses and ports. In 4298 * this case, the addresses are both validated as appropriate 4299 * for this operation, and, if so, the information is retained 4300 * for use in the inbound fanout. 4301 * 4302 * The ULP (except in the zero-length bind) can append an 4303 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4304 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4305 * a copy of the source or destination IRE (source for local bind; 4306 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4307 * policy information contained should be copied on to the conn. 4308 * 4309 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4310 */ 4311 mblk_t * 4312 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4313 { 4314 ssize_t len; 4315 struct T_bind_req *tbr; 4316 sin_t *sin; 4317 ipa_conn_t *ac; 4318 uchar_t *ucp; 4319 mblk_t *mp1; 4320 boolean_t ire_requested; 4321 int error = 0; 4322 int protocol; 4323 ipa_conn_x_t *acx; 4324 cred_t *cr; 4325 4326 /* 4327 * All Solaris components should pass a db_credp 4328 * for this TPI message, hence we ASSERT. 4329 * But in case there is some other M_PROTO that looks 4330 * like a TPI message sent by some other kernel 4331 * component, we check and return an error. 4332 */ 4333 cr = msg_getcred(mp, NULL); 4334 ASSERT(cr != NULL); 4335 if (cr == NULL) { 4336 error = EINVAL; 4337 goto bad_addr; 4338 } 4339 4340 ASSERT(!connp->conn_af_isv6); 4341 connp->conn_pkt_isv6 = B_FALSE; 4342 4343 len = MBLKL(mp); 4344 if (len < (sizeof (*tbr) + 1)) { 4345 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4346 "ip_bind: bogus msg, len %ld", len); 4347 /* XXX: Need to return something better */ 4348 goto bad_addr; 4349 } 4350 /* Back up and extract the protocol identifier. */ 4351 mp->b_wptr--; 4352 protocol = *mp->b_wptr & 0xFF; 4353 tbr = (struct T_bind_req *)mp->b_rptr; 4354 /* Reset the message type in preparation for shipping it back. */ 4355 DB_TYPE(mp) = M_PCPROTO; 4356 4357 connp->conn_ulp = (uint8_t)protocol; 4358 4359 /* 4360 * Check for a zero length address. This is from a protocol that 4361 * wants to register to receive all packets of its type. 4362 */ 4363 if (tbr->ADDR_length == 0) { 4364 /* 4365 * These protocols are now intercepted in ip_bind_v6(). 4366 * Reject protocol-level binds here for now. 4367 * 4368 * For SCTP raw socket, ICMP sends down a bind with sin_t 4369 * so that the protocol type cannot be SCTP. 4370 */ 4371 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4372 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4373 goto bad_addr; 4374 } 4375 4376 /* 4377 * 4378 * The udp module never sends down a zero-length address, 4379 * and allowing this on a labeled system will break MLP 4380 * functionality. 4381 */ 4382 if (is_system_labeled() && protocol == IPPROTO_UDP) 4383 goto bad_addr; 4384 4385 if (connp->conn_mac_exempt) 4386 goto bad_addr; 4387 4388 /* No hash here really. The table is big enough. */ 4389 connp->conn_srcv6 = ipv6_all_zeros; 4390 4391 ipcl_proto_insert(connp, protocol); 4392 4393 tbr->PRIM_type = T_BIND_ACK; 4394 return (mp); 4395 } 4396 4397 /* Extract the address pointer from the message. */ 4398 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4399 tbr->ADDR_length); 4400 if (ucp == NULL) { 4401 ip1dbg(("ip_bind: no address\n")); 4402 goto bad_addr; 4403 } 4404 if (!OK_32PTR(ucp)) { 4405 ip1dbg(("ip_bind: unaligned address\n")); 4406 goto bad_addr; 4407 } 4408 /* 4409 * Check for trailing mps. 4410 */ 4411 4412 mp1 = mp->b_cont; 4413 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4414 4415 switch (tbr->ADDR_length) { 4416 default: 4417 ip1dbg(("ip_bind: bad address length %d\n", 4418 (int)tbr->ADDR_length)); 4419 goto bad_addr; 4420 4421 case IP_ADDR_LEN: 4422 /* Verification of local address only */ 4423 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4424 *(ipaddr_t *)ucp, 0, B_FALSE); 4425 break; 4426 4427 case sizeof (sin_t): 4428 sin = (sin_t *)ucp; 4429 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4430 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4431 break; 4432 4433 case sizeof (ipa_conn_t): 4434 ac = (ipa_conn_t *)ucp; 4435 /* For raw socket, the local port is not set. */ 4436 if (ac->ac_lport == 0) 4437 ac->ac_lport = connp->conn_lport; 4438 /* Always verify destination reachability. */ 4439 error = ip_bind_connected_v4(connp, &mp1, protocol, 4440 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4441 B_TRUE, B_TRUE, cr); 4442 break; 4443 4444 case sizeof (ipa_conn_x_t): 4445 acx = (ipa_conn_x_t *)ucp; 4446 /* 4447 * Whether or not to verify destination reachability depends 4448 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4449 */ 4450 error = ip_bind_connected_v4(connp, &mp1, protocol, 4451 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4452 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4453 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4454 break; 4455 } 4456 ASSERT(error != EINPROGRESS); 4457 if (error != 0) 4458 goto bad_addr; 4459 4460 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4461 4462 /* Send it home. */ 4463 mp->b_datap->db_type = M_PCPROTO; 4464 tbr->PRIM_type = T_BIND_ACK; 4465 return (mp); 4466 4467 bad_addr: 4468 /* 4469 * If error = -1 then we generate a TBADADDR - otherwise error is 4470 * a unix errno. 4471 */ 4472 if (error > 0) 4473 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4474 else 4475 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4476 return (mp); 4477 } 4478 4479 /* 4480 * Here address is verified to be a valid local address. 4481 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4482 * address is also considered a valid local address. 4483 * In the case of a broadcast/multicast address, however, the 4484 * upper protocol is expected to reset the src address 4485 * to 0 if it sees a IRE_BROADCAST type returned so that 4486 * no packets are emitted with broadcast/multicast address as 4487 * source address (that violates hosts requirements RFC 1122) 4488 * The addresses valid for bind are: 4489 * (1) - INADDR_ANY (0) 4490 * (2) - IP address of an UP interface 4491 * (3) - IP address of a DOWN interface 4492 * (4) - valid local IP broadcast addresses. In this case 4493 * the conn will only receive packets destined to 4494 * the specified broadcast address. 4495 * (5) - a multicast address. In this case 4496 * the conn will only receive packets destined to 4497 * the specified multicast address. Note: the 4498 * application still has to issue an 4499 * IP_ADD_MEMBERSHIP socket option. 4500 * 4501 * On error, return -1 for TBADADDR otherwise pass the 4502 * errno with TSYSERR reply. 4503 * 4504 * In all the above cases, the bound address must be valid in the current zone. 4505 * When the address is loopback, multicast or broadcast, there might be many 4506 * matching IREs so bind has to look up based on the zone. 4507 * 4508 * Note: lport is in network byte order. 4509 * 4510 */ 4511 int 4512 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4513 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4514 { 4515 int error = 0; 4516 ire_t *src_ire; 4517 zoneid_t zoneid; 4518 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4519 mblk_t *mp = NULL; 4520 boolean_t ire_requested = B_FALSE; 4521 boolean_t ipsec_policy_set = B_FALSE; 4522 4523 if (mpp) 4524 mp = *mpp; 4525 4526 if (mp != NULL) { 4527 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4528 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4529 } 4530 4531 /* 4532 * If it was previously connected, conn_fully_bound would have 4533 * been set. 4534 */ 4535 connp->conn_fully_bound = B_FALSE; 4536 4537 src_ire = NULL; 4538 4539 zoneid = IPCL_ZONEID(connp); 4540 4541 if (src_addr) { 4542 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4543 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4544 /* 4545 * If an address other than 0.0.0.0 is requested, 4546 * we verify that it is a valid address for bind 4547 * Note: Following code is in if-else-if form for 4548 * readability compared to a condition check. 4549 */ 4550 /* LINTED - statement has no consequence */ 4551 if (IRE_IS_LOCAL(src_ire)) { 4552 /* 4553 * (2) Bind to address of local UP interface 4554 */ 4555 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4556 /* 4557 * (4) Bind to broadcast address 4558 * Note: permitted only from transports that 4559 * request IRE 4560 */ 4561 if (!ire_requested) 4562 error = EADDRNOTAVAIL; 4563 } else { 4564 /* 4565 * (3) Bind to address of local DOWN interface 4566 * (ipif_lookup_addr() looks up all interfaces 4567 * but we do not get here for UP interfaces 4568 * - case (2) above) 4569 */ 4570 /* LINTED - statement has no consequent */ 4571 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4572 /* The address exists */ 4573 } else if (CLASSD(src_addr)) { 4574 error = 0; 4575 if (src_ire != NULL) 4576 ire_refrele(src_ire); 4577 /* 4578 * (5) bind to multicast address. 4579 * Fake out the IRE returned to upper 4580 * layer to be a broadcast IRE. 4581 */ 4582 src_ire = ire_ctable_lookup( 4583 INADDR_BROADCAST, INADDR_ANY, 4584 IRE_BROADCAST, NULL, zoneid, NULL, 4585 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4586 ipst); 4587 if (src_ire == NULL || !ire_requested) 4588 error = EADDRNOTAVAIL; 4589 } else { 4590 /* 4591 * Not a valid address for bind 4592 */ 4593 error = EADDRNOTAVAIL; 4594 } 4595 } 4596 if (error) { 4597 /* Red Alert! Attempting to be a bogon! */ 4598 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4599 ntohl(src_addr))); 4600 goto bad_addr; 4601 } 4602 } 4603 4604 /* 4605 * Allow setting new policies. For example, disconnects come 4606 * down as ipa_t bind. As we would have set conn_policy_cached 4607 * to B_TRUE before, we should set it to B_FALSE, so that policy 4608 * can change after the disconnect. 4609 */ 4610 connp->conn_policy_cached = B_FALSE; 4611 4612 /* 4613 * If not fanout_insert this was just an address verification 4614 */ 4615 if (fanout_insert) { 4616 /* 4617 * The addresses have been verified. Time to insert in 4618 * the correct fanout list. 4619 */ 4620 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4621 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4622 connp->conn_lport = lport; 4623 connp->conn_fport = 0; 4624 /* 4625 * Do we need to add a check to reject Multicast packets 4626 */ 4627 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4628 } 4629 4630 if (error == 0) { 4631 if (ire_requested) { 4632 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4633 error = -1; 4634 /* Falls through to bad_addr */ 4635 } 4636 } else if (ipsec_policy_set) { 4637 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4638 error = -1; 4639 /* Falls through to bad_addr */ 4640 } 4641 } 4642 } 4643 bad_addr: 4644 if (error != 0) { 4645 if (connp->conn_anon_port) { 4646 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4647 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4648 B_FALSE); 4649 } 4650 connp->conn_mlp_type = mlptSingle; 4651 } 4652 if (src_ire != NULL) 4653 IRE_REFRELE(src_ire); 4654 return (error); 4655 } 4656 4657 int 4658 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4659 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4660 { 4661 int error; 4662 mblk_t *mp = NULL; 4663 boolean_t ire_requested; 4664 4665 if (ire_mpp) 4666 mp = *ire_mpp; 4667 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4668 4669 ASSERT(!connp->conn_af_isv6); 4670 connp->conn_pkt_isv6 = B_FALSE; 4671 connp->conn_ulp = protocol; 4672 4673 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4674 fanout_insert); 4675 if (error == 0) { 4676 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4677 ire_requested); 4678 } else if (error < 0) { 4679 error = -TBADADDR; 4680 } 4681 return (error); 4682 } 4683 4684 /* 4685 * Verify that both the source and destination addresses 4686 * are valid. If verify_dst is false, then the destination address may be 4687 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4688 * destination reachability, while tunnels do not. 4689 * Note that we allow connect to broadcast and multicast 4690 * addresses when ire_requested is set. Thus the ULP 4691 * has to check for IRE_BROADCAST and multicast. 4692 * 4693 * Returns zero if ok. 4694 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4695 * (for use with TSYSERR reply). 4696 * 4697 * Note: lport and fport are in network byte order. 4698 */ 4699 int 4700 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4701 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4702 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4703 { 4704 4705 ire_t *src_ire; 4706 ire_t *dst_ire; 4707 int error = 0; 4708 ire_t *sire = NULL; 4709 ire_t *md_dst_ire = NULL; 4710 ire_t *lso_dst_ire = NULL; 4711 ill_t *ill = NULL; 4712 zoneid_t zoneid; 4713 ipaddr_t src_addr = *src_addrp; 4714 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4715 mblk_t *mp = NULL; 4716 boolean_t ire_requested = B_FALSE; 4717 boolean_t ipsec_policy_set = B_FALSE; 4718 ts_label_t *tsl = NULL; 4719 4720 if (mpp) 4721 mp = *mpp; 4722 4723 if (mp != NULL) { 4724 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4725 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4726 } 4727 if (cr != NULL) 4728 tsl = crgetlabel(cr); 4729 4730 src_ire = dst_ire = NULL; 4731 4732 /* 4733 * If we never got a disconnect before, clear it now. 4734 */ 4735 connp->conn_fully_bound = B_FALSE; 4736 4737 zoneid = IPCL_ZONEID(connp); 4738 4739 if (CLASSD(dst_addr)) { 4740 /* Pick up an IRE_BROADCAST */ 4741 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4742 NULL, zoneid, tsl, 4743 (MATCH_IRE_RECURSIVE | 4744 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4745 MATCH_IRE_SECATTR), ipst); 4746 } else { 4747 /* 4748 * If conn_dontroute is set or if conn_nexthop_set is set, 4749 * and onlink ipif is not found set ENETUNREACH error. 4750 */ 4751 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4752 ipif_t *ipif; 4753 4754 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4755 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4756 if (ipif == NULL) { 4757 error = ENETUNREACH; 4758 goto bad_addr; 4759 } 4760 ipif_refrele(ipif); 4761 } 4762 4763 if (connp->conn_nexthop_set) { 4764 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4765 0, 0, NULL, NULL, zoneid, tsl, 4766 MATCH_IRE_SECATTR, ipst); 4767 } else { 4768 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4769 &sire, zoneid, tsl, 4770 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4771 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4772 MATCH_IRE_SECATTR), ipst); 4773 } 4774 } 4775 /* 4776 * dst_ire can't be a broadcast when not ire_requested. 4777 * We also prevent ire's with src address INADDR_ANY to 4778 * be used, which are created temporarily for 4779 * sending out packets from endpoints that have 4780 * conn_unspec_src set. If verify_dst is true, the destination must be 4781 * reachable. If verify_dst is false, the destination needn't be 4782 * reachable. 4783 * 4784 * If we match on a reject or black hole, then we've got a 4785 * local failure. May as well fail out the connect() attempt, 4786 * since it's never going to succeed. 4787 */ 4788 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4789 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4790 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4791 /* 4792 * If we're verifying destination reachability, we always want 4793 * to complain here. 4794 * 4795 * If we're not verifying destination reachability but the 4796 * destination has a route, we still want to fail on the 4797 * temporary address and broadcast address tests. 4798 */ 4799 if (verify_dst || (dst_ire != NULL)) { 4800 if (ip_debug > 2) { 4801 pr_addr_dbg("ip_bind_connected_v4:" 4802 "bad connected dst %s\n", 4803 AF_INET, &dst_addr); 4804 } 4805 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4806 error = ENETUNREACH; 4807 else 4808 error = EHOSTUNREACH; 4809 goto bad_addr; 4810 } 4811 } 4812 4813 /* 4814 * We now know that routing will allow us to reach the destination. 4815 * Check whether Trusted Solaris policy allows communication with this 4816 * host, and pretend that the destination is unreachable if not. 4817 * 4818 * This is never a problem for TCP, since that transport is known to 4819 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4820 * handling. If the remote is unreachable, it will be detected at that 4821 * point, so there's no reason to check it here. 4822 * 4823 * Note that for sendto (and other datagram-oriented friends), this 4824 * check is done as part of the data path label computation instead. 4825 * The check here is just to make non-TCP connect() report the right 4826 * error. 4827 */ 4828 if (dst_ire != NULL && is_system_labeled() && 4829 !IPCL_IS_TCP(connp) && 4830 tsol_compute_label(cr, dst_addr, NULL, 4831 connp->conn_mac_exempt, ipst) != 0) { 4832 error = EHOSTUNREACH; 4833 if (ip_debug > 2) { 4834 pr_addr_dbg("ip_bind_connected_v4:" 4835 " no label for dst %s\n", 4836 AF_INET, &dst_addr); 4837 } 4838 goto bad_addr; 4839 } 4840 4841 /* 4842 * If the app does a connect(), it means that it will most likely 4843 * send more than 1 packet to the destination. It makes sense 4844 * to clear the temporary flag. 4845 */ 4846 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4847 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4848 irb_t *irb = dst_ire->ire_bucket; 4849 4850 rw_enter(&irb->irb_lock, RW_WRITER); 4851 /* 4852 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4853 * the lock to guarantee irb_tmp_ire_cnt. 4854 */ 4855 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4856 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4857 irb->irb_tmp_ire_cnt--; 4858 } 4859 rw_exit(&irb->irb_lock); 4860 } 4861 4862 /* 4863 * See if we should notify ULP about LSO/MDT; we do this whether or not 4864 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4865 * eligibility tests for passive connects are handled separately 4866 * through tcp_adapt_ire(). We do this before the source address 4867 * selection, because dst_ire may change after a call to 4868 * ipif_select_source(). This is a best-effort check, as the 4869 * packet for this connection may not actually go through 4870 * dst_ire->ire_stq, and the exact IRE can only be known after 4871 * calling ip_newroute(). This is why we further check on the 4872 * IRE during LSO/Multidata packet transmission in 4873 * tcp_lsosend()/tcp_multisend(). 4874 */ 4875 if (!ipsec_policy_set && dst_ire != NULL && 4876 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4877 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4878 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4879 lso_dst_ire = dst_ire; 4880 IRE_REFHOLD(lso_dst_ire); 4881 } else if (ipst->ips_ip_multidata_outbound && 4882 ILL_MDT_CAPABLE(ill)) { 4883 md_dst_ire = dst_ire; 4884 IRE_REFHOLD(md_dst_ire); 4885 } 4886 } 4887 4888 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4889 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4890 /* 4891 * If the IRE belongs to a different zone, look for a matching 4892 * route in the forwarding table and use the source address from 4893 * that route. 4894 */ 4895 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4896 zoneid, 0, NULL, 4897 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4898 MATCH_IRE_RJ_BHOLE, ipst); 4899 if (src_ire == NULL) { 4900 error = EHOSTUNREACH; 4901 goto bad_addr; 4902 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4903 if (!(src_ire->ire_type & IRE_HOST)) 4904 error = ENETUNREACH; 4905 else 4906 error = EHOSTUNREACH; 4907 goto bad_addr; 4908 } 4909 if (src_addr == INADDR_ANY) 4910 src_addr = src_ire->ire_src_addr; 4911 ire_refrele(src_ire); 4912 src_ire = NULL; 4913 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4914 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4915 src_addr = sire->ire_src_addr; 4916 ire_refrele(dst_ire); 4917 dst_ire = sire; 4918 sire = NULL; 4919 } else { 4920 /* 4921 * Pick a source address so that a proper inbound 4922 * load spreading would happen. 4923 */ 4924 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4925 ipif_t *src_ipif = NULL; 4926 ire_t *ipif_ire; 4927 4928 /* 4929 * Supply a local source address such that inbound 4930 * load spreading happens. 4931 * 4932 * Determine the best source address on this ill for 4933 * the destination. 4934 * 4935 * 1) For broadcast, we should return a broadcast ire 4936 * found above so that upper layers know that the 4937 * destination address is a broadcast address. 4938 * 4939 * 2) If the ipif is DEPRECATED, select a better 4940 * source address. Similarly, if the ipif is on 4941 * the IPMP meta-interface, pick a source address 4942 * at random to improve inbound load spreading. 4943 * 4944 * 3) If the outgoing interface is part of a usesrc 4945 * group, then try selecting a source address from 4946 * the usesrc ILL. 4947 */ 4948 if ((dst_ire->ire_zoneid != zoneid && 4949 dst_ire->ire_zoneid != ALL_ZONES) || 4950 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4951 (!(dst_ire->ire_type & IRE_BROADCAST) && 4952 (IS_IPMP(ire_ill) || 4953 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4954 (ire_ill->ill_usesrc_ifindex != 0)))) { 4955 /* 4956 * If the destination is reachable via a 4957 * given gateway, the selected source address 4958 * should be in the same subnet as the gateway. 4959 * Otherwise, the destination is not reachable. 4960 * 4961 * If there are no interfaces on the same subnet 4962 * as the destination, ipif_select_source gives 4963 * first non-deprecated interface which might be 4964 * on a different subnet than the gateway. 4965 * This is not desirable. Hence pass the dst_ire 4966 * source address to ipif_select_source. 4967 * It is sure that the destination is reachable 4968 * with the dst_ire source address subnet. 4969 * So passing dst_ire source address to 4970 * ipif_select_source will make sure that the 4971 * selected source will be on the same subnet 4972 * as dst_ire source address. 4973 */ 4974 ipaddr_t saddr = 4975 dst_ire->ire_ipif->ipif_src_addr; 4976 src_ipif = ipif_select_source(ire_ill, 4977 saddr, zoneid); 4978 if (src_ipif != NULL) { 4979 if (IS_VNI(src_ipif->ipif_ill)) { 4980 /* 4981 * For VNI there is no 4982 * interface route 4983 */ 4984 src_addr = 4985 src_ipif->ipif_src_addr; 4986 } else { 4987 ipif_ire = 4988 ipif_to_ire(src_ipif); 4989 if (ipif_ire != NULL) { 4990 IRE_REFRELE(dst_ire); 4991 dst_ire = ipif_ire; 4992 } 4993 src_addr = 4994 dst_ire->ire_src_addr; 4995 } 4996 ipif_refrele(src_ipif); 4997 } else { 4998 src_addr = dst_ire->ire_src_addr; 4999 } 5000 } else { 5001 src_addr = dst_ire->ire_src_addr; 5002 } 5003 } 5004 } 5005 5006 /* 5007 * We do ire_route_lookup() here (and not 5008 * interface lookup as we assert that 5009 * src_addr should only come from an 5010 * UP interface for hard binding. 5011 */ 5012 ASSERT(src_ire == NULL); 5013 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5014 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5015 /* src_ire must be a local|loopback */ 5016 if (!IRE_IS_LOCAL(src_ire)) { 5017 if (ip_debug > 2) { 5018 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5019 "src %s\n", AF_INET, &src_addr); 5020 } 5021 error = EADDRNOTAVAIL; 5022 goto bad_addr; 5023 } 5024 5025 /* 5026 * If the source address is a loopback address, the 5027 * destination had best be local or multicast. 5028 * The transports that can't handle multicast will reject 5029 * those addresses. 5030 */ 5031 if (src_ire->ire_type == IRE_LOOPBACK && 5032 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5033 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5034 error = -1; 5035 goto bad_addr; 5036 } 5037 5038 /* 5039 * Allow setting new policies. For example, disconnects come 5040 * down as ipa_t bind. As we would have set conn_policy_cached 5041 * to B_TRUE before, we should set it to B_FALSE, so that policy 5042 * can change after the disconnect. 5043 */ 5044 connp->conn_policy_cached = B_FALSE; 5045 5046 /* 5047 * Set the conn addresses/ports immediately, so the IPsec policy calls 5048 * can handle their passed-in conn's. 5049 */ 5050 5051 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5052 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5053 connp->conn_lport = lport; 5054 connp->conn_fport = fport; 5055 *src_addrp = src_addr; 5056 5057 ASSERT(!(ipsec_policy_set && ire_requested)); 5058 if (ire_requested) { 5059 iulp_t *ulp_info = NULL; 5060 5061 /* 5062 * Note that sire will not be NULL if this is an off-link 5063 * connection and there is not cache for that dest yet. 5064 * 5065 * XXX Because of an existing bug, if there are multiple 5066 * default routes, the IRE returned now may not be the actual 5067 * default route used (default routes are chosen in a 5068 * round robin fashion). So if the metrics for different 5069 * default routes are different, we may return the wrong 5070 * metrics. This will not be a problem if the existing 5071 * bug is fixed. 5072 */ 5073 if (sire != NULL) { 5074 ulp_info = &(sire->ire_uinfo); 5075 } 5076 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5077 error = -1; 5078 goto bad_addr; 5079 } 5080 mp = *mpp; 5081 } else if (ipsec_policy_set) { 5082 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5083 error = -1; 5084 goto bad_addr; 5085 } 5086 } 5087 5088 /* 5089 * Cache IPsec policy in this conn. If we have per-socket policy, 5090 * we'll cache that. If we don't, we'll inherit global policy. 5091 * 5092 * We can't insert until the conn reflects the policy. Note that 5093 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5094 * connections where we don't have a policy. This is to prevent 5095 * global policy lookups in the inbound path. 5096 * 5097 * If we insert before we set conn_policy_cached, 5098 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5099 * because global policy cound be non-empty. We normally call 5100 * ipsec_check_policy() for conn_policy_cached connections only if 5101 * ipc_in_enforce_policy is set. But in this case, 5102 * conn_policy_cached can get set anytime since we made the 5103 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5104 * called, which will make the above assumption false. Thus, we 5105 * need to insert after we set conn_policy_cached. 5106 */ 5107 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5108 goto bad_addr; 5109 5110 if (fanout_insert) { 5111 /* 5112 * The addresses have been verified. Time to insert in 5113 * the correct fanout list. 5114 */ 5115 error = ipcl_conn_insert(connp, protocol, src_addr, 5116 dst_addr, connp->conn_ports); 5117 } 5118 5119 if (error == 0) { 5120 connp->conn_fully_bound = B_TRUE; 5121 /* 5122 * Our initial checks for LSO/MDT have passed; the IRE is not 5123 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5124 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5125 * ip_xxinfo_return(), which performs further checks 5126 * against them and upon success, returns the LSO/MDT info 5127 * mblk which we will attach to the bind acknowledgment. 5128 */ 5129 if (lso_dst_ire != NULL) { 5130 mblk_t *lsoinfo_mp; 5131 5132 ASSERT(ill->ill_lso_capab != NULL); 5133 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5134 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5135 if (mp == NULL) { 5136 *mpp = lsoinfo_mp; 5137 } else { 5138 linkb(mp, lsoinfo_mp); 5139 } 5140 } 5141 } else if (md_dst_ire != NULL) { 5142 mblk_t *mdinfo_mp; 5143 5144 ASSERT(ill->ill_mdt_capab != NULL); 5145 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5146 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5147 if (mp == NULL) { 5148 *mpp = mdinfo_mp; 5149 } else { 5150 linkb(mp, mdinfo_mp); 5151 } 5152 } 5153 } 5154 } 5155 bad_addr: 5156 if (ipsec_policy_set) { 5157 ASSERT(mp != NULL); 5158 freeb(mp); 5159 /* 5160 * As of now assume that nothing else accompanies 5161 * IPSEC_POLICY_SET. 5162 */ 5163 *mpp = NULL; 5164 } 5165 if (src_ire != NULL) 5166 IRE_REFRELE(src_ire); 5167 if (dst_ire != NULL) 5168 IRE_REFRELE(dst_ire); 5169 if (sire != NULL) 5170 IRE_REFRELE(sire); 5171 if (md_dst_ire != NULL) 5172 IRE_REFRELE(md_dst_ire); 5173 if (lso_dst_ire != NULL) 5174 IRE_REFRELE(lso_dst_ire); 5175 return (error); 5176 } 5177 5178 int 5179 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5180 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5181 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5182 { 5183 int error; 5184 mblk_t *mp = NULL; 5185 boolean_t ire_requested; 5186 5187 if (ire_mpp) 5188 mp = *ire_mpp; 5189 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5190 5191 ASSERT(!connp->conn_af_isv6); 5192 connp->conn_pkt_isv6 = B_FALSE; 5193 connp->conn_ulp = protocol; 5194 5195 /* For raw socket, the local port is not set. */ 5196 if (lport == 0) 5197 lport = connp->conn_lport; 5198 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5199 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5200 if (error == 0) { 5201 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5202 ire_requested); 5203 } else if (error < 0) { 5204 error = -TBADADDR; 5205 } 5206 return (error); 5207 } 5208 5209 /* 5210 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5211 * Prefers dst_ire over src_ire. 5212 */ 5213 static boolean_t 5214 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5215 { 5216 mblk_t *mp = *mpp; 5217 ire_t *ret_ire; 5218 5219 ASSERT(mp != NULL); 5220 5221 if (ire != NULL) { 5222 /* 5223 * mp initialized above to IRE_DB_REQ_TYPE 5224 * appended mblk. Its <upper protocol>'s 5225 * job to make sure there is room. 5226 */ 5227 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5228 return (B_FALSE); 5229 5230 mp->b_datap->db_type = IRE_DB_TYPE; 5231 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5232 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5233 ret_ire = (ire_t *)mp->b_rptr; 5234 /* 5235 * Pass the latest setting of the ip_path_mtu_discovery and 5236 * copy the ulp info if any. 5237 */ 5238 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5239 IPH_DF : 0; 5240 if (ulp_info != NULL) { 5241 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5242 sizeof (iulp_t)); 5243 } 5244 ret_ire->ire_mp = mp; 5245 } else { 5246 /* 5247 * No IRE was found. Remove IRE mblk. 5248 */ 5249 *mpp = mp->b_cont; 5250 freeb(mp); 5251 } 5252 return (B_TRUE); 5253 } 5254 5255 /* 5256 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5257 * the final piece where we don't. Return a pointer to the first mblk in the 5258 * result, and update the pointer to the next mblk to chew on. If anything 5259 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5260 * NULL pointer. 5261 */ 5262 mblk_t * 5263 ip_carve_mp(mblk_t **mpp, ssize_t len) 5264 { 5265 mblk_t *mp0; 5266 mblk_t *mp1; 5267 mblk_t *mp2; 5268 5269 if (!len || !mpp || !(mp0 = *mpp)) 5270 return (NULL); 5271 /* If we aren't going to consume the first mblk, we need a dup. */ 5272 if (mp0->b_wptr - mp0->b_rptr > len) { 5273 mp1 = dupb(mp0); 5274 if (mp1) { 5275 /* Partition the data between the two mblks. */ 5276 mp1->b_wptr = mp1->b_rptr + len; 5277 mp0->b_rptr = mp1->b_wptr; 5278 /* 5279 * after adjustments if mblk not consumed is now 5280 * unaligned, try to align it. If this fails free 5281 * all messages and let upper layer recover. 5282 */ 5283 if (!OK_32PTR(mp0->b_rptr)) { 5284 if (!pullupmsg(mp0, -1)) { 5285 freemsg(mp0); 5286 freemsg(mp1); 5287 *mpp = NULL; 5288 return (NULL); 5289 } 5290 } 5291 } 5292 return (mp1); 5293 } 5294 /* Eat through as many mblks as we need to get len bytes. */ 5295 len -= mp0->b_wptr - mp0->b_rptr; 5296 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5297 if (mp2->b_wptr - mp2->b_rptr > len) { 5298 /* 5299 * We won't consume the entire last mblk. Like 5300 * above, dup and partition it. 5301 */ 5302 mp1->b_cont = dupb(mp2); 5303 mp1 = mp1->b_cont; 5304 if (!mp1) { 5305 /* 5306 * Trouble. Rather than go to a lot of 5307 * trouble to clean up, we free the messages. 5308 * This won't be any worse than losing it on 5309 * the wire. 5310 */ 5311 freemsg(mp0); 5312 freemsg(mp2); 5313 *mpp = NULL; 5314 return (NULL); 5315 } 5316 mp1->b_wptr = mp1->b_rptr + len; 5317 mp2->b_rptr = mp1->b_wptr; 5318 /* 5319 * after adjustments if mblk not consumed is now 5320 * unaligned, try to align it. If this fails free 5321 * all messages and let upper layer recover. 5322 */ 5323 if (!OK_32PTR(mp2->b_rptr)) { 5324 if (!pullupmsg(mp2, -1)) { 5325 freemsg(mp0); 5326 freemsg(mp2); 5327 *mpp = NULL; 5328 return (NULL); 5329 } 5330 } 5331 *mpp = mp2; 5332 return (mp0); 5333 } 5334 /* Decrement len by the amount we just got. */ 5335 len -= mp2->b_wptr - mp2->b_rptr; 5336 } 5337 /* 5338 * len should be reduced to zero now. If not our caller has 5339 * screwed up. 5340 */ 5341 if (len) { 5342 /* Shouldn't happen! */ 5343 freemsg(mp0); 5344 *mpp = NULL; 5345 return (NULL); 5346 } 5347 /* 5348 * We consumed up to exactly the end of an mblk. Detach the part 5349 * we are returning from the rest of the chain. 5350 */ 5351 mp1->b_cont = NULL; 5352 *mpp = mp2; 5353 return (mp0); 5354 } 5355 5356 /* The ill stream is being unplumbed. Called from ip_close */ 5357 int 5358 ip_modclose(ill_t *ill) 5359 { 5360 boolean_t success; 5361 ipsq_t *ipsq; 5362 ipif_t *ipif; 5363 queue_t *q = ill->ill_rq; 5364 ip_stack_t *ipst = ill->ill_ipst; 5365 5366 /* 5367 * The punlink prior to this may have initiated a capability 5368 * negotiation. But ipsq_enter will block until that finishes or 5369 * times out. 5370 */ 5371 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5372 5373 /* 5374 * Open/close/push/pop is guaranteed to be single threaded 5375 * per stream by STREAMS. FS guarantees that all references 5376 * from top are gone before close is called. So there can't 5377 * be another close thread that has set CONDEMNED on this ill. 5378 * and cause ipsq_enter to return failure. 5379 */ 5380 ASSERT(success); 5381 ipsq = ill->ill_phyint->phyint_ipsq; 5382 5383 /* 5384 * Mark it condemned. No new reference will be made to this ill. 5385 * Lookup functions will return an error. Threads that try to 5386 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5387 * that the refcnt will drop down to zero. 5388 */ 5389 mutex_enter(&ill->ill_lock); 5390 ill->ill_state_flags |= ILL_CONDEMNED; 5391 for (ipif = ill->ill_ipif; ipif != NULL; 5392 ipif = ipif->ipif_next) { 5393 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5394 } 5395 /* 5396 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5397 * returns error if ILL_CONDEMNED is set 5398 */ 5399 cv_broadcast(&ill->ill_cv); 5400 mutex_exit(&ill->ill_lock); 5401 5402 /* 5403 * Send all the deferred DLPI messages downstream which came in 5404 * during the small window right before ipsq_enter(). We do this 5405 * without waiting for the ACKs because all the ACKs for M_PROTO 5406 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5407 */ 5408 ill_dlpi_send_deferred(ill); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * Call ill_delete to bring down the ipifs, ilms and ill on 5420 * this ill. Then wait for the refcnts to drop to zero. 5421 * ill_is_freeable checks whether the ill is really quiescent. 5422 * Then make sure that threads that are waiting to enter the 5423 * ipsq have seen the error returned by ipsq_enter and have 5424 * gone away. Then we call ill_delete_tail which does the 5425 * DL_UNBIND_REQ with the driver and then qprocsoff. 5426 */ 5427 ill_delete(ill); 5428 mutex_enter(&ill->ill_lock); 5429 while (!ill_is_freeable(ill)) 5430 cv_wait(&ill->ill_cv, &ill->ill_lock); 5431 while (ill->ill_waiters) 5432 cv_wait(&ill->ill_cv, &ill->ill_lock); 5433 5434 mutex_exit(&ill->ill_lock); 5435 5436 /* 5437 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5438 * it held until the end of the function since the cleanup 5439 * below needs to be able to use the ip_stack_t. 5440 */ 5441 netstack_hold(ipst->ips_netstack); 5442 5443 /* qprocsoff is done via ill_delete_tail */ 5444 ill_delete_tail(ill); 5445 ASSERT(ill->ill_ipst == NULL); 5446 5447 /* 5448 * Walk through all upper (conn) streams and qenable 5449 * those that have queued data. 5450 * close synchronization needs this to 5451 * be done to ensure that all upper layers blocked 5452 * due to flow control to the closing device 5453 * get unblocked. 5454 */ 5455 ip1dbg(("ip_wsrv: walking\n")); 5456 conn_walk_drain(ipst); 5457 5458 mutex_enter(&ipst->ips_ip_mi_lock); 5459 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5460 mutex_exit(&ipst->ips_ip_mi_lock); 5461 5462 /* 5463 * credp could be null if the open didn't succeed and ip_modopen 5464 * itself calls ip_close. 5465 */ 5466 if (ill->ill_credp != NULL) 5467 crfree(ill->ill_credp); 5468 5469 /* 5470 * Now we are done with the module close pieces that 5471 * need the netstack_t. 5472 */ 5473 netstack_rele(ipst->ips_netstack); 5474 5475 mi_close_free((IDP)ill); 5476 q->q_ptr = WR(q)->q_ptr = NULL; 5477 5478 ipsq_exit(ipsq); 5479 5480 return (0); 5481 } 5482 5483 /* 5484 * This is called as part of close() for IP, UDP, ICMP, and RTS 5485 * in order to quiesce the conn. 5486 */ 5487 void 5488 ip_quiesce_conn(conn_t *connp) 5489 { 5490 boolean_t drain_cleanup_reqd = B_FALSE; 5491 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5492 boolean_t ilg_cleanup_reqd = B_FALSE; 5493 ip_stack_t *ipst; 5494 5495 ASSERT(!IPCL_IS_TCP(connp)); 5496 ipst = connp->conn_netstack->netstack_ip; 5497 5498 /* 5499 * Mark the conn as closing, and this conn must not be 5500 * inserted in future into any list. Eg. conn_drain_insert(), 5501 * won't insert this conn into the conn_drain_list. 5502 * Similarly ill_pending_mp_add() will not add any mp to 5503 * the pending mp list, after this conn has started closing. 5504 * 5505 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5506 * cannot get set henceforth. 5507 */ 5508 mutex_enter(&connp->conn_lock); 5509 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5510 connp->conn_state_flags |= CONN_CLOSING; 5511 if (connp->conn_idl != NULL) 5512 drain_cleanup_reqd = B_TRUE; 5513 if (connp->conn_oper_pending_ill != NULL) 5514 conn_ioctl_cleanup_reqd = B_TRUE; 5515 if (connp->conn_dhcpinit_ill != NULL) { 5516 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5517 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5518 connp->conn_dhcpinit_ill = NULL; 5519 } 5520 if (connp->conn_ilg_inuse != 0) 5521 ilg_cleanup_reqd = B_TRUE; 5522 mutex_exit(&connp->conn_lock); 5523 5524 if (conn_ioctl_cleanup_reqd) 5525 conn_ioctl_cleanup(connp); 5526 5527 if (is_system_labeled() && connp->conn_anon_port) { 5528 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5529 connp->conn_mlp_type, connp->conn_ulp, 5530 ntohs(connp->conn_lport), B_FALSE); 5531 connp->conn_anon_port = 0; 5532 } 5533 connp->conn_mlp_type = mlptSingle; 5534 5535 /* 5536 * Remove this conn from any fanout list it is on. 5537 * and then wait for any threads currently operating 5538 * on this endpoint to finish 5539 */ 5540 ipcl_hash_remove(connp); 5541 5542 /* 5543 * Remove this conn from the drain list, and do 5544 * any other cleanup that may be required. 5545 * (Only non-tcp streams may have a non-null conn_idl. 5546 * TCP streams are never flow controlled, and 5547 * conn_idl will be null) 5548 */ 5549 if (drain_cleanup_reqd) 5550 conn_drain_tail(connp, B_TRUE); 5551 5552 if (connp == ipst->ips_ip_g_mrouter) 5553 (void) ip_mrouter_done(NULL, ipst); 5554 5555 if (ilg_cleanup_reqd) 5556 ilg_delete_all(connp); 5557 5558 conn_delete_ire(connp, NULL); 5559 5560 /* 5561 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5562 * callers from write side can't be there now because close 5563 * is in progress. The only other caller is ipcl_walk 5564 * which checks for the condemned flag. 5565 */ 5566 mutex_enter(&connp->conn_lock); 5567 connp->conn_state_flags |= CONN_CONDEMNED; 5568 while (connp->conn_ref != 1) 5569 cv_wait(&connp->conn_cv, &connp->conn_lock); 5570 connp->conn_state_flags |= CONN_QUIESCED; 5571 mutex_exit(&connp->conn_lock); 5572 } 5573 5574 /* ARGSUSED */ 5575 int 5576 ip_close(queue_t *q, int flags) 5577 { 5578 conn_t *connp; 5579 5580 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5581 5582 /* 5583 * Call the appropriate delete routine depending on whether this is 5584 * a module or device. 5585 */ 5586 if (WR(q)->q_next != NULL) { 5587 /* This is a module close */ 5588 return (ip_modclose((ill_t *)q->q_ptr)); 5589 } 5590 5591 connp = q->q_ptr; 5592 ip_quiesce_conn(connp); 5593 5594 qprocsoff(q); 5595 5596 /* 5597 * Now we are truly single threaded on this stream, and can 5598 * delete the things hanging off the connp, and finally the connp. 5599 * We removed this connp from the fanout list, it cannot be 5600 * accessed thru the fanouts, and we already waited for the 5601 * conn_ref to drop to 0. We are already in close, so 5602 * there cannot be any other thread from the top. qprocsoff 5603 * has completed, and service has completed or won't run in 5604 * future. 5605 */ 5606 ASSERT(connp->conn_ref == 1); 5607 5608 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5609 5610 connp->conn_ref--; 5611 ipcl_conn_destroy(connp); 5612 5613 q->q_ptr = WR(q)->q_ptr = NULL; 5614 return (0); 5615 } 5616 5617 /* 5618 * Wapper around putnext() so that ip_rts_request can merely use 5619 * conn_recv. 5620 */ 5621 /*ARGSUSED2*/ 5622 static void 5623 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5624 { 5625 conn_t *connp = (conn_t *)arg1; 5626 5627 putnext(connp->conn_rq, mp); 5628 } 5629 5630 /* 5631 * Called when the module is about to be unloaded 5632 */ 5633 void 5634 ip_ddi_destroy(void) 5635 { 5636 tnet_fini(); 5637 5638 icmp_ddi_g_destroy(); 5639 rts_ddi_g_destroy(); 5640 udp_ddi_g_destroy(); 5641 sctp_ddi_g_destroy(); 5642 tcp_ddi_g_destroy(); 5643 ipsec_policy_g_destroy(); 5644 ipcl_g_destroy(); 5645 ip_net_g_destroy(); 5646 ip_ire_g_fini(); 5647 inet_minor_destroy(ip_minor_arena_sa); 5648 #if defined(_LP64) 5649 inet_minor_destroy(ip_minor_arena_la); 5650 #endif 5651 5652 #ifdef DEBUG 5653 list_destroy(&ip_thread_list); 5654 rw_destroy(&ip_thread_rwlock); 5655 tsd_destroy(&ip_thread_data); 5656 #endif 5657 5658 netstack_unregister(NS_IP); 5659 } 5660 5661 /* 5662 * First step in cleanup. 5663 */ 5664 /* ARGSUSED */ 5665 static void 5666 ip_stack_shutdown(netstackid_t stackid, void *arg) 5667 { 5668 ip_stack_t *ipst = (ip_stack_t *)arg; 5669 5670 #ifdef NS_DEBUG 5671 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5672 #endif 5673 5674 /* Get rid of loopback interfaces and their IREs */ 5675 ip_loopback_cleanup(ipst); 5676 5677 /* 5678 * The *_hook_shutdown()s start the process of notifying any 5679 * consumers that things are going away.... nothing is destroyed. 5680 */ 5681 ipv4_hook_shutdown(ipst); 5682 ipv6_hook_shutdown(ipst); 5683 5684 mutex_enter(&ipst->ips_capab_taskq_lock); 5685 ipst->ips_capab_taskq_quit = B_TRUE; 5686 cv_signal(&ipst->ips_capab_taskq_cv); 5687 mutex_exit(&ipst->ips_capab_taskq_lock); 5688 5689 mutex_enter(&ipst->ips_mrt_lock); 5690 ipst->ips_mrt_flags |= IP_MRT_STOP; 5691 cv_signal(&ipst->ips_mrt_cv); 5692 mutex_exit(&ipst->ips_mrt_lock); 5693 } 5694 5695 /* 5696 * Free the IP stack instance. 5697 */ 5698 static void 5699 ip_stack_fini(netstackid_t stackid, void *arg) 5700 { 5701 ip_stack_t *ipst = (ip_stack_t *)arg; 5702 int ret; 5703 5704 #ifdef NS_DEBUG 5705 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5706 #endif 5707 /* 5708 * At this point, all of the notifications that the events and 5709 * protocols are going away have been run, meaning that we can 5710 * now set about starting to clean things up. 5711 */ 5712 ipv4_hook_destroy(ipst); 5713 ipv6_hook_destroy(ipst); 5714 ip_net_destroy(ipst); 5715 5716 mutex_destroy(&ipst->ips_capab_taskq_lock); 5717 cv_destroy(&ipst->ips_capab_taskq_cv); 5718 list_destroy(&ipst->ips_capab_taskq_list); 5719 5720 mutex_enter(&ipst->ips_mrt_lock); 5721 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5722 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5723 mutex_destroy(&ipst->ips_mrt_lock); 5724 cv_destroy(&ipst->ips_mrt_cv); 5725 cv_destroy(&ipst->ips_mrt_done_cv); 5726 5727 ipmp_destroy(ipst); 5728 rw_destroy(&ipst->ips_srcid_lock); 5729 5730 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5731 ipst->ips_ip_mibkp = NULL; 5732 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5733 ipst->ips_icmp_mibkp = NULL; 5734 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5735 ipst->ips_ip_kstat = NULL; 5736 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5737 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5738 ipst->ips_ip6_kstat = NULL; 5739 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5740 5741 nd_free(&ipst->ips_ip_g_nd); 5742 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5743 ipst->ips_param_arr = NULL; 5744 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5745 ipst->ips_ndp_arr = NULL; 5746 5747 ip_mrouter_stack_destroy(ipst); 5748 5749 mutex_destroy(&ipst->ips_ip_mi_lock); 5750 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5751 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5752 rw_destroy(&ipst->ips_ip_g_nd_lock); 5753 5754 ret = untimeout(ipst->ips_igmp_timeout_id); 5755 if (ret == -1) { 5756 ASSERT(ipst->ips_igmp_timeout_id == 0); 5757 } else { 5758 ASSERT(ipst->ips_igmp_timeout_id != 0); 5759 ipst->ips_igmp_timeout_id = 0; 5760 } 5761 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5762 if (ret == -1) { 5763 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5764 } else { 5765 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5766 ipst->ips_igmp_slowtimeout_id = 0; 5767 } 5768 ret = untimeout(ipst->ips_mld_timeout_id); 5769 if (ret == -1) { 5770 ASSERT(ipst->ips_mld_timeout_id == 0); 5771 } else { 5772 ASSERT(ipst->ips_mld_timeout_id != 0); 5773 ipst->ips_mld_timeout_id = 0; 5774 } 5775 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5776 if (ret == -1) { 5777 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5778 } else { 5779 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5780 ipst->ips_mld_slowtimeout_id = 0; 5781 } 5782 ret = untimeout(ipst->ips_ip_ire_expire_id); 5783 if (ret == -1) { 5784 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5785 } else { 5786 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5787 ipst->ips_ip_ire_expire_id = 0; 5788 } 5789 5790 mutex_destroy(&ipst->ips_igmp_timer_lock); 5791 mutex_destroy(&ipst->ips_mld_timer_lock); 5792 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5793 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5794 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5795 rw_destroy(&ipst->ips_ill_g_lock); 5796 5797 ipobs_fini(ipst); 5798 ip_ire_fini(ipst); 5799 ip6_asp_free(ipst); 5800 conn_drain_fini(ipst); 5801 ipcl_destroy(ipst); 5802 5803 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5804 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5805 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5806 ipst->ips_ndp4 = NULL; 5807 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5808 ipst->ips_ndp6 = NULL; 5809 5810 if (ipst->ips_loopback_ksp != NULL) { 5811 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5812 ipst->ips_loopback_ksp = NULL; 5813 } 5814 5815 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5816 ipst->ips_phyint_g_list = NULL; 5817 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5818 ipst->ips_ill_g_heads = NULL; 5819 5820 ldi_ident_release(ipst->ips_ldi_ident); 5821 kmem_free(ipst, sizeof (*ipst)); 5822 } 5823 5824 /* 5825 * This function is called from the TSD destructor, and is used to debug 5826 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5827 * details. 5828 */ 5829 static void 5830 ip_thread_exit(void *phash) 5831 { 5832 th_hash_t *thh = phash; 5833 5834 rw_enter(&ip_thread_rwlock, RW_WRITER); 5835 list_remove(&ip_thread_list, thh); 5836 rw_exit(&ip_thread_rwlock); 5837 mod_hash_destroy_hash(thh->thh_hash); 5838 kmem_free(thh, sizeof (*thh)); 5839 } 5840 5841 /* 5842 * Called when the IP kernel module is loaded into the kernel 5843 */ 5844 void 5845 ip_ddi_init(void) 5846 { 5847 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5848 5849 /* 5850 * For IP and TCP the minor numbers should start from 2 since we have 4 5851 * initial devices: ip, ip6, tcp, tcp6. 5852 */ 5853 /* 5854 * If this is a 64-bit kernel, then create two separate arenas - 5855 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5856 * other for socket apps in the range 2^^18 through 2^^32-1. 5857 */ 5858 ip_minor_arena_la = NULL; 5859 ip_minor_arena_sa = NULL; 5860 #if defined(_LP64) 5861 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5862 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5863 cmn_err(CE_PANIC, 5864 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5865 } 5866 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5867 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5868 cmn_err(CE_PANIC, 5869 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5870 } 5871 #else 5872 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5873 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5874 cmn_err(CE_PANIC, 5875 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5876 } 5877 #endif 5878 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5879 5880 ipcl_g_init(); 5881 ip_ire_g_init(); 5882 ip_net_g_init(); 5883 5884 #ifdef DEBUG 5885 tsd_create(&ip_thread_data, ip_thread_exit); 5886 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5887 list_create(&ip_thread_list, sizeof (th_hash_t), 5888 offsetof(th_hash_t, thh_link)); 5889 #endif 5890 5891 /* 5892 * We want to be informed each time a stack is created or 5893 * destroyed in the kernel, so we can maintain the 5894 * set of udp_stack_t's. 5895 */ 5896 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5897 ip_stack_fini); 5898 5899 ipsec_policy_g_init(); 5900 tcp_ddi_g_init(); 5901 sctp_ddi_g_init(); 5902 5903 tnet_init(); 5904 5905 udp_ddi_g_init(); 5906 rts_ddi_g_init(); 5907 icmp_ddi_g_init(); 5908 } 5909 5910 /* 5911 * Initialize the IP stack instance. 5912 */ 5913 static void * 5914 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5915 { 5916 ip_stack_t *ipst; 5917 ipparam_t *pa; 5918 ipndp_t *na; 5919 major_t major; 5920 5921 #ifdef NS_DEBUG 5922 printf("ip_stack_init(stack %d)\n", stackid); 5923 #endif 5924 5925 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5926 ipst->ips_netstack = ns; 5927 5928 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5929 KM_SLEEP); 5930 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5931 KM_SLEEP); 5932 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5933 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5934 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5936 5937 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5938 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5939 ipst->ips_igmp_deferred_next = INFINITY; 5940 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5941 ipst->ips_mld_deferred_next = INFINITY; 5942 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5943 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5944 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5946 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5947 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5948 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5949 5950 ipcl_init(ipst); 5951 ip_ire_init(ipst); 5952 ip6_asp_init(ipst); 5953 ipif_init(ipst); 5954 conn_drain_init(ipst); 5955 ip_mrouter_stack_init(ipst); 5956 5957 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5958 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5959 5960 ipst->ips_ip_multirt_log_interval = 1000; 5961 5962 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5963 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5964 ipst->ips_ill_index = 1; 5965 5966 ipst->ips_saved_ip_g_forward = -1; 5967 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5968 5969 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5970 ipst->ips_param_arr = pa; 5971 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5972 5973 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5974 ipst->ips_ndp_arr = na; 5975 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5976 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5977 (caddr_t)&ipst->ips_ip_g_forward; 5978 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5979 (caddr_t)&ipst->ips_ipv6_forward; 5980 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5981 "ip_cgtp_filter") == 0); 5982 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5983 (caddr_t)&ipst->ips_ip_cgtp_filter; 5984 5985 (void) ip_param_register(&ipst->ips_ip_g_nd, 5986 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5987 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5988 5989 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5990 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5991 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5992 ipst->ips_ip6_kstat = 5993 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5994 5995 ipst->ips_ip_src_id = 1; 5996 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5997 5998 ipobs_init(ipst); 5999 ip_net_init(ipst, ns); 6000 ipv4_hook_init(ipst); 6001 ipv6_hook_init(ipst); 6002 ipmp_init(ipst); 6003 6004 /* 6005 * Create the taskq dispatcher thread and initialize related stuff. 6006 */ 6007 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6008 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6009 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6010 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6011 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6012 offsetof(mblk_t, b_next)); 6013 6014 /* 6015 * Create the mcast_restart_timers_thread() worker thread. 6016 */ 6017 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6018 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6019 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6020 ipst->ips_mrt_thread = thread_create(NULL, 0, 6021 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6022 6023 major = mod_name_to_major(INET_NAME); 6024 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6025 return (ipst); 6026 } 6027 6028 /* 6029 * Allocate and initialize a DLPI template of the specified length. (May be 6030 * called as writer.) 6031 */ 6032 mblk_t * 6033 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6034 { 6035 mblk_t *mp; 6036 6037 mp = allocb(len, BPRI_MED); 6038 if (!mp) 6039 return (NULL); 6040 6041 /* 6042 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6043 * of which we don't seem to use) are sent with M_PCPROTO, and 6044 * that other DLPI are M_PROTO. 6045 */ 6046 if (prim == DL_INFO_REQ) { 6047 mp->b_datap->db_type = M_PCPROTO; 6048 } else { 6049 mp->b_datap->db_type = M_PROTO; 6050 } 6051 6052 mp->b_wptr = mp->b_rptr + len; 6053 bzero(mp->b_rptr, len); 6054 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6055 return (mp); 6056 } 6057 6058 /* 6059 * Allocate and initialize a DLPI notification. (May be called as writer.) 6060 */ 6061 mblk_t * 6062 ip_dlnotify_alloc(uint_t notification, uint_t data) 6063 { 6064 dl_notify_ind_t *notifyp; 6065 mblk_t *mp; 6066 6067 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6068 return (NULL); 6069 6070 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6071 notifyp->dl_notification = notification; 6072 notifyp->dl_data = data; 6073 return (mp); 6074 } 6075 6076 /* 6077 * Debug formatting routine. Returns a character string representation of the 6078 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6079 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6080 * 6081 * Once the ndd table-printing interfaces are removed, this can be changed to 6082 * standard dotted-decimal form. 6083 */ 6084 char * 6085 ip_dot_addr(ipaddr_t addr, char *buf) 6086 { 6087 uint8_t *ap = (uint8_t *)&addr; 6088 6089 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6090 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6091 return (buf); 6092 } 6093 6094 /* 6095 * Write the given MAC address as a printable string in the usual colon- 6096 * separated format. 6097 */ 6098 const char * 6099 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6100 { 6101 char *bp; 6102 6103 if (alen == 0 || buflen < 4) 6104 return ("?"); 6105 bp = buf; 6106 for (;;) { 6107 /* 6108 * If there are more MAC address bytes available, but we won't 6109 * have any room to print them, then add "..." to the string 6110 * instead. See below for the 'magic number' explanation. 6111 */ 6112 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6113 (void) strcpy(bp, "..."); 6114 break; 6115 } 6116 (void) sprintf(bp, "%02x", *addr++); 6117 bp += 2; 6118 if (--alen == 0) 6119 break; 6120 *bp++ = ':'; 6121 buflen -= 3; 6122 /* 6123 * At this point, based on the first 'if' statement above, 6124 * either alen == 1 and buflen >= 3, or alen > 1 and 6125 * buflen >= 4. The first case leaves room for the final "xx" 6126 * number and trailing NUL byte. The second leaves room for at 6127 * least "...". Thus the apparently 'magic' numbers chosen for 6128 * that statement. 6129 */ 6130 } 6131 return (buf); 6132 } 6133 6134 /* 6135 * Send an ICMP error after patching up the packet appropriately. Returns 6136 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6137 */ 6138 static boolean_t 6139 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6140 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6141 zoneid_t zoneid, ip_stack_t *ipst) 6142 { 6143 ipha_t *ipha; 6144 mblk_t *first_mp; 6145 boolean_t secure; 6146 unsigned char db_type; 6147 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6148 6149 first_mp = mp; 6150 if (mctl_present) { 6151 mp = mp->b_cont; 6152 secure = ipsec_in_is_secure(first_mp); 6153 ASSERT(mp != NULL); 6154 } else { 6155 /* 6156 * If this is an ICMP error being reported - which goes 6157 * up as M_CTLs, we need to convert them to M_DATA till 6158 * we finish checking with global policy because 6159 * ipsec_check_global_policy() assumes M_DATA as clear 6160 * and M_CTL as secure. 6161 */ 6162 db_type = DB_TYPE(mp); 6163 DB_TYPE(mp) = M_DATA; 6164 secure = B_FALSE; 6165 } 6166 /* 6167 * We are generating an icmp error for some inbound packet. 6168 * Called from all ip_fanout_(udp, tcp, proto) functions. 6169 * Before we generate an error, check with global policy 6170 * to see whether this is allowed to enter the system. As 6171 * there is no "conn", we are checking with global policy. 6172 */ 6173 ipha = (ipha_t *)mp->b_rptr; 6174 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6175 first_mp = ipsec_check_global_policy(first_mp, NULL, 6176 ipha, NULL, mctl_present, ipst->ips_netstack); 6177 if (first_mp == NULL) 6178 return (B_FALSE); 6179 } 6180 6181 if (!mctl_present) 6182 DB_TYPE(mp) = db_type; 6183 6184 if (flags & IP_FF_SEND_ICMP) { 6185 if (flags & IP_FF_HDR_COMPLETE) { 6186 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6187 freemsg(first_mp); 6188 return (B_TRUE); 6189 } 6190 } 6191 if (flags & IP_FF_CKSUM) { 6192 /* 6193 * Have to correct checksum since 6194 * the packet might have been 6195 * fragmented and the reassembly code in ip_rput 6196 * does not restore the IP checksum. 6197 */ 6198 ipha->ipha_hdr_checksum = 0; 6199 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6200 } 6201 switch (icmp_type) { 6202 case ICMP_DEST_UNREACHABLE: 6203 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6204 ipst); 6205 break; 6206 default: 6207 freemsg(first_mp); 6208 break; 6209 } 6210 } else { 6211 freemsg(first_mp); 6212 return (B_FALSE); 6213 } 6214 6215 return (B_TRUE); 6216 } 6217 6218 /* 6219 * Used to send an ICMP error message when a packet is received for 6220 * a protocol that is not supported. The mblk passed as argument 6221 * is consumed by this function. 6222 */ 6223 void 6224 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6225 ip_stack_t *ipst) 6226 { 6227 mblk_t *mp; 6228 ipha_t *ipha; 6229 ill_t *ill; 6230 ipsec_in_t *ii; 6231 6232 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6233 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6234 6235 mp = ipsec_mp->b_cont; 6236 ipsec_mp->b_cont = NULL; 6237 ipha = (ipha_t *)mp->b_rptr; 6238 /* Get ill from index in ipsec_in_t. */ 6239 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6240 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6241 ipst); 6242 if (ill != NULL) { 6243 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6244 if (ip_fanout_send_icmp(q, mp, flags, 6245 ICMP_DEST_UNREACHABLE, 6246 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6247 BUMP_MIB(ill->ill_ip_mib, 6248 ipIfStatsInUnknownProtos); 6249 } 6250 } else { 6251 if (ip_fanout_send_icmp_v6(q, mp, flags, 6252 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6253 0, B_FALSE, zoneid, ipst)) { 6254 BUMP_MIB(ill->ill_ip_mib, 6255 ipIfStatsInUnknownProtos); 6256 } 6257 } 6258 ill_refrele(ill); 6259 } else { /* re-link for the freemsg() below. */ 6260 ipsec_mp->b_cont = mp; 6261 } 6262 6263 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6264 freemsg(ipsec_mp); 6265 } 6266 6267 /* 6268 * See if the inbound datagram has had IPsec processing applied to it. 6269 */ 6270 boolean_t 6271 ipsec_in_is_secure(mblk_t *ipsec_mp) 6272 { 6273 ipsec_in_t *ii; 6274 6275 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6276 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6277 6278 if (ii->ipsec_in_loopback) { 6279 return (ii->ipsec_in_secure); 6280 } else { 6281 return (ii->ipsec_in_ah_sa != NULL || 6282 ii->ipsec_in_esp_sa != NULL || 6283 ii->ipsec_in_decaps); 6284 } 6285 } 6286 6287 /* 6288 * Handle protocols with which IP is less intimate. There 6289 * can be more than one stream bound to a particular 6290 * protocol. When this is the case, normally each one gets a copy 6291 * of any incoming packets. 6292 * 6293 * IPsec NOTE : 6294 * 6295 * Don't allow a secure packet going up a non-secure connection. 6296 * We don't allow this because 6297 * 6298 * 1) Reply might go out in clear which will be dropped at 6299 * the sending side. 6300 * 2) If the reply goes out in clear it will give the 6301 * adversary enough information for getting the key in 6302 * most of the cases. 6303 * 6304 * Moreover getting a secure packet when we expect clear 6305 * implies that SA's were added without checking for 6306 * policy on both ends. This should not happen once ISAKMP 6307 * is used to negotiate SAs as SAs will be added only after 6308 * verifying the policy. 6309 * 6310 * NOTE : If the packet was tunneled and not multicast we only send 6311 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6312 * back to delivering packets to AF_INET6 raw sockets. 6313 * 6314 * IPQoS Notes: 6315 * Once we have determined the client, invoke IPPF processing. 6316 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6317 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6318 * ip_policy will be false. 6319 * 6320 * Zones notes: 6321 * Currently only applications in the global zone can create raw sockets for 6322 * protocols other than ICMP. So unlike the broadcast / multicast case of 6323 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6324 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6325 */ 6326 static void 6327 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6328 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6329 zoneid_t zoneid) 6330 { 6331 queue_t *rq; 6332 mblk_t *mp1, *first_mp1; 6333 uint_t protocol = ipha->ipha_protocol; 6334 ipaddr_t dst; 6335 boolean_t one_only; 6336 mblk_t *first_mp = mp; 6337 boolean_t secure; 6338 uint32_t ill_index; 6339 conn_t *connp, *first_connp, *next_connp; 6340 connf_t *connfp; 6341 boolean_t shared_addr; 6342 mib2_ipIfStatsEntry_t *mibptr; 6343 ip_stack_t *ipst = recv_ill->ill_ipst; 6344 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6345 6346 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6347 if (mctl_present) { 6348 mp = first_mp->b_cont; 6349 secure = ipsec_in_is_secure(first_mp); 6350 ASSERT(mp != NULL); 6351 } else { 6352 secure = B_FALSE; 6353 } 6354 dst = ipha->ipha_dst; 6355 /* 6356 * If the packet was tunneled and not multicast we only send to it 6357 * the first match. 6358 */ 6359 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6360 !CLASSD(dst)); 6361 6362 shared_addr = (zoneid == ALL_ZONES); 6363 if (shared_addr) { 6364 /* 6365 * We don't allow multilevel ports for raw IP, so no need to 6366 * check for that here. 6367 */ 6368 zoneid = tsol_packet_to_zoneid(mp); 6369 } 6370 6371 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6372 mutex_enter(&connfp->connf_lock); 6373 connp = connfp->connf_head; 6374 for (connp = connfp->connf_head; connp != NULL; 6375 connp = connp->conn_next) { 6376 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6377 zoneid) && 6378 (!is_system_labeled() || 6379 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6380 connp))) { 6381 break; 6382 } 6383 } 6384 6385 if (connp == NULL) { 6386 /* 6387 * No one bound to these addresses. Is 6388 * there a client that wants all 6389 * unclaimed datagrams? 6390 */ 6391 mutex_exit(&connfp->connf_lock); 6392 /* 6393 * Check for IPPROTO_ENCAP... 6394 */ 6395 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6396 /* 6397 * If an IPsec mblk is here on a multicast 6398 * tunnel (using ip_mroute stuff), check policy here, 6399 * THEN ship off to ip_mroute_decap(). 6400 * 6401 * BTW, If I match a configured IP-in-IP 6402 * tunnel, this path will not be reached, and 6403 * ip_mroute_decap will never be called. 6404 */ 6405 first_mp = ipsec_check_global_policy(first_mp, connp, 6406 ipha, NULL, mctl_present, ipst->ips_netstack); 6407 if (first_mp != NULL) { 6408 if (mctl_present) 6409 freeb(first_mp); 6410 ip_mroute_decap(q, mp, ill); 6411 } /* Else we already freed everything! */ 6412 } else { 6413 /* 6414 * Otherwise send an ICMP protocol unreachable. 6415 */ 6416 if (ip_fanout_send_icmp(q, first_mp, flags, 6417 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6418 mctl_present, zoneid, ipst)) { 6419 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6420 } 6421 } 6422 return; 6423 } 6424 6425 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6426 6427 CONN_INC_REF(connp); 6428 first_connp = connp; 6429 6430 /* 6431 * Only send message to one tunnel driver by immediately 6432 * terminating the loop. 6433 */ 6434 connp = one_only ? NULL : connp->conn_next; 6435 6436 for (;;) { 6437 while (connp != NULL) { 6438 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6439 flags, zoneid) && 6440 (!is_system_labeled() || 6441 tsol_receive_local(mp, &dst, IPV4_VERSION, 6442 shared_addr, connp))) 6443 break; 6444 connp = connp->conn_next; 6445 } 6446 6447 /* 6448 * Copy the packet. 6449 */ 6450 if (connp == NULL || 6451 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6452 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6453 /* 6454 * No more interested clients or memory 6455 * allocation failed 6456 */ 6457 connp = first_connp; 6458 break; 6459 } 6460 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6461 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6462 CONN_INC_REF(connp); 6463 mutex_exit(&connfp->connf_lock); 6464 rq = connp->conn_rq; 6465 6466 /* 6467 * Check flow control 6468 */ 6469 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6470 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6471 if (flags & IP_FF_RAWIP) { 6472 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6473 } else { 6474 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6475 } 6476 6477 freemsg(first_mp1); 6478 } else { 6479 /* 6480 * Don't enforce here if we're an actual tunnel - 6481 * let "tun" do it instead. 6482 */ 6483 if (!IPCL_IS_IPTUN(connp) && 6484 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6485 secure)) { 6486 first_mp1 = ipsec_check_inbound_policy 6487 (first_mp1, connp, ipha, NULL, 6488 mctl_present); 6489 } 6490 if (first_mp1 != NULL) { 6491 int in_flags = 0; 6492 /* 6493 * ip_fanout_proto also gets called from 6494 * icmp_inbound_error_fanout, in which case 6495 * the msg type is M_CTL. Don't add info 6496 * in this case for the time being. In future 6497 * when there is a need for knowing the 6498 * inbound iface index for ICMP error msgs, 6499 * then this can be changed. 6500 */ 6501 if (connp->conn_recvif) 6502 in_flags = IPF_RECVIF; 6503 /* 6504 * The ULP may support IP_RECVPKTINFO for both 6505 * IP v4 and v6 so pass the appropriate argument 6506 * based on conn IP version. 6507 */ 6508 if (connp->conn_ip_recvpktinfo) { 6509 if (connp->conn_af_isv6) { 6510 /* 6511 * V6 only needs index 6512 */ 6513 in_flags |= IPF_RECVIF; 6514 } else { 6515 /* 6516 * V4 needs index + 6517 * matching address. 6518 */ 6519 in_flags |= IPF_RECVADDR; 6520 } 6521 } 6522 if ((in_flags != 0) && 6523 (mp->b_datap->db_type != M_CTL)) { 6524 /* 6525 * the actual data will be 6526 * contained in b_cont upon 6527 * successful return of the 6528 * following call else 6529 * original mblk is returned 6530 */ 6531 ASSERT(recv_ill != NULL); 6532 mp1 = ip_add_info(mp1, recv_ill, 6533 in_flags, IPCL_ZONEID(connp), ipst); 6534 } 6535 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6536 if (mctl_present) 6537 freeb(first_mp1); 6538 (connp->conn_recv)(connp, mp1, NULL); 6539 } 6540 } 6541 mutex_enter(&connfp->connf_lock); 6542 /* Follow the next pointer before releasing the conn. */ 6543 next_connp = connp->conn_next; 6544 CONN_DEC_REF(connp); 6545 connp = next_connp; 6546 } 6547 6548 /* Last one. Send it upstream. */ 6549 mutex_exit(&connfp->connf_lock); 6550 6551 /* 6552 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6553 * will be set to false. 6554 */ 6555 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6556 ill_index = ill->ill_phyint->phyint_ifindex; 6557 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6558 if (mp == NULL) { 6559 CONN_DEC_REF(connp); 6560 if (mctl_present) { 6561 freeb(first_mp); 6562 } 6563 return; 6564 } 6565 } 6566 6567 rq = connp->conn_rq; 6568 /* 6569 * Check flow control 6570 */ 6571 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6572 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6573 if (flags & IP_FF_RAWIP) { 6574 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6575 } else { 6576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6577 } 6578 6579 freemsg(first_mp); 6580 } else { 6581 if (IPCL_IS_IPTUN(connp)) { 6582 /* 6583 * Tunneled packet. We enforce policy in the tunnel 6584 * module itself. 6585 * 6586 * Send the WHOLE packet up (incl. IPSEC_IN) without 6587 * a policy check. 6588 * FIXME to use conn_recv for tun later. 6589 */ 6590 putnext(rq, first_mp); 6591 CONN_DEC_REF(connp); 6592 return; 6593 } 6594 6595 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6596 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6597 ipha, NULL, mctl_present); 6598 } 6599 6600 if (first_mp != NULL) { 6601 int in_flags = 0; 6602 6603 /* 6604 * ip_fanout_proto also gets called 6605 * from icmp_inbound_error_fanout, in 6606 * which case the msg type is M_CTL. 6607 * Don't add info in this case for time 6608 * being. In future when there is a 6609 * need for knowing the inbound iface 6610 * index for ICMP error msgs, then this 6611 * can be changed 6612 */ 6613 if (connp->conn_recvif) 6614 in_flags = IPF_RECVIF; 6615 if (connp->conn_ip_recvpktinfo) { 6616 if (connp->conn_af_isv6) { 6617 /* 6618 * V6 only needs index 6619 */ 6620 in_flags |= IPF_RECVIF; 6621 } else { 6622 /* 6623 * V4 needs index + 6624 * matching address. 6625 */ 6626 in_flags |= IPF_RECVADDR; 6627 } 6628 } 6629 if ((in_flags != 0) && 6630 (mp->b_datap->db_type != M_CTL)) { 6631 6632 /* 6633 * the actual data will be contained in 6634 * b_cont upon successful return 6635 * of the following call else original 6636 * mblk is returned 6637 */ 6638 ASSERT(recv_ill != NULL); 6639 mp = ip_add_info(mp, recv_ill, 6640 in_flags, IPCL_ZONEID(connp), ipst); 6641 } 6642 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6643 (connp->conn_recv)(connp, mp, NULL); 6644 if (mctl_present) 6645 freeb(first_mp); 6646 } 6647 } 6648 CONN_DEC_REF(connp); 6649 } 6650 6651 /* 6652 * Fanout for TCP packets 6653 * The caller puts <fport, lport> in the ports parameter. 6654 * 6655 * IPQoS Notes 6656 * Before sending it to the client, invoke IPPF processing. 6657 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6658 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6659 * ip_policy is false. 6660 */ 6661 static void 6662 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6663 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6664 { 6665 mblk_t *first_mp; 6666 boolean_t secure; 6667 uint32_t ill_index; 6668 int ip_hdr_len; 6669 tcph_t *tcph; 6670 boolean_t syn_present = B_FALSE; 6671 conn_t *connp; 6672 ip_stack_t *ipst = recv_ill->ill_ipst; 6673 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6674 6675 ASSERT(recv_ill != NULL); 6676 6677 first_mp = mp; 6678 if (mctl_present) { 6679 ASSERT(first_mp->b_datap->db_type == M_CTL); 6680 mp = first_mp->b_cont; 6681 secure = ipsec_in_is_secure(first_mp); 6682 ASSERT(mp != NULL); 6683 } else { 6684 secure = B_FALSE; 6685 } 6686 6687 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6688 6689 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6690 zoneid, ipst)) == NULL) { 6691 /* 6692 * No connected connection or listener. Send a 6693 * TH_RST via tcp_xmit_listeners_reset. 6694 */ 6695 6696 /* Initiate IPPf processing, if needed. */ 6697 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6698 uint32_t ill_index; 6699 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6700 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6701 if (first_mp == NULL) 6702 return; 6703 } 6704 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6705 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6706 zoneid)); 6707 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6708 ipst->ips_netstack->netstack_tcp, NULL); 6709 return; 6710 } 6711 6712 /* 6713 * Allocate the SYN for the TCP connection here itself 6714 */ 6715 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6716 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6717 if (IPCL_IS_TCP(connp)) { 6718 squeue_t *sqp; 6719 6720 /* 6721 * For fused tcp loopback, assign the eager's 6722 * squeue to be that of the active connect's. 6723 * Note that we don't check for IP_FF_LOOPBACK 6724 * here since this routine gets called only 6725 * for loopback (unlike the IPv6 counterpart). 6726 */ 6727 ASSERT(Q_TO_CONN(q) != NULL); 6728 if (do_tcp_fusion && 6729 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6730 !secure && 6731 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6732 IPCL_IS_TCP(Q_TO_CONN(q))) { 6733 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6734 sqp = Q_TO_CONN(q)->conn_sqp; 6735 } else { 6736 sqp = IP_SQUEUE_GET(lbolt); 6737 } 6738 6739 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6740 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6741 syn_present = B_TRUE; 6742 } 6743 } 6744 6745 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6746 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6747 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6748 if ((flags & TH_RST) || (flags & TH_URG)) { 6749 CONN_DEC_REF(connp); 6750 freemsg(first_mp); 6751 return; 6752 } 6753 if (flags & TH_ACK) { 6754 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6755 ipst->ips_netstack->netstack_tcp, connp); 6756 CONN_DEC_REF(connp); 6757 return; 6758 } 6759 6760 CONN_DEC_REF(connp); 6761 freemsg(first_mp); 6762 return; 6763 } 6764 6765 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6766 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6767 NULL, mctl_present); 6768 if (first_mp == NULL) { 6769 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6770 CONN_DEC_REF(connp); 6771 return; 6772 } 6773 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6774 ASSERT(syn_present); 6775 if (mctl_present) { 6776 ASSERT(first_mp != mp); 6777 first_mp->b_datap->db_struioflag |= 6778 STRUIO_POLICY; 6779 } else { 6780 ASSERT(first_mp == mp); 6781 mp->b_datap->db_struioflag &= 6782 ~STRUIO_EAGER; 6783 mp->b_datap->db_struioflag |= 6784 STRUIO_POLICY; 6785 } 6786 } else { 6787 /* 6788 * Discard first_mp early since we're dealing with a 6789 * fully-connected conn_t and tcp doesn't do policy in 6790 * this case. 6791 */ 6792 if (mctl_present) { 6793 freeb(first_mp); 6794 mctl_present = B_FALSE; 6795 } 6796 first_mp = mp; 6797 } 6798 } 6799 6800 /* 6801 * Initiate policy processing here if needed. If we get here from 6802 * icmp_inbound_error_fanout, ip_policy is false. 6803 */ 6804 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6805 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6806 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6807 if (mp == NULL) { 6808 CONN_DEC_REF(connp); 6809 if (mctl_present) 6810 freeb(first_mp); 6811 return; 6812 } else if (mctl_present) { 6813 ASSERT(first_mp != mp); 6814 first_mp->b_cont = mp; 6815 } else { 6816 first_mp = mp; 6817 } 6818 } 6819 6820 /* Handle socket options. */ 6821 if (!syn_present && 6822 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6823 /* Add header */ 6824 ASSERT(recv_ill != NULL); 6825 /* 6826 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6827 * IPF_RECVIF. 6828 */ 6829 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6830 ipst); 6831 if (mp == NULL) { 6832 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6833 CONN_DEC_REF(connp); 6834 if (mctl_present) 6835 freeb(first_mp); 6836 return; 6837 } else if (mctl_present) { 6838 /* 6839 * ip_add_info might return a new mp. 6840 */ 6841 ASSERT(first_mp != mp); 6842 first_mp->b_cont = mp; 6843 } else { 6844 first_mp = mp; 6845 } 6846 } 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6848 if (IPCL_IS_TCP(connp)) { 6849 /* do not drain, certain use cases can blow the stack */ 6850 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6851 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6852 } else { 6853 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6854 (connp->conn_recv)(connp, first_mp, NULL); 6855 CONN_DEC_REF(connp); 6856 } 6857 } 6858 6859 /* 6860 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6861 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6862 * is not consumed. 6863 * 6864 * One of four things can happen, all of which affect the passed-in mblk: 6865 * 6866 * 1.) ICMP messages that go through here just get returned TRUE. 6867 * 6868 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6869 * 6870 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6871 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6872 * 6873 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6874 */ 6875 static boolean_t 6876 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6877 ipsec_stack_t *ipss) 6878 { 6879 int shift, plen, iph_len; 6880 ipha_t *ipha; 6881 udpha_t *udpha; 6882 uint32_t *spi; 6883 uint32_t esp_ports; 6884 uint8_t *orptr; 6885 boolean_t free_ire; 6886 6887 if (DB_TYPE(mp) == M_CTL) { 6888 /* 6889 * ICMP message with UDP inside. Don't bother stripping, just 6890 * send it up. 6891 * 6892 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6893 * to ignore errors set by ICMP anyway ('cause they might be 6894 * forged), but that's the app's decision, not ours. 6895 */ 6896 6897 /* Bunch of reality checks for DEBUG kernels... */ 6898 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6899 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6900 6901 return (B_TRUE); 6902 } 6903 6904 ipha = (ipha_t *)mp->b_rptr; 6905 iph_len = IPH_HDR_LENGTH(ipha); 6906 plen = ntohs(ipha->ipha_length); 6907 6908 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6909 /* 6910 * Most likely a keepalive for the benefit of an intervening 6911 * NAT. These aren't for us, per se, so drop it. 6912 * 6913 * RFC 3947/8 doesn't say for sure what to do for 2-3 6914 * byte packets (keepalives are 1-byte), but we'll drop them 6915 * also. 6916 */ 6917 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6918 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6919 return (B_FALSE); 6920 } 6921 6922 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6923 /* might as well pull it all up - it might be ESP. */ 6924 if (!pullupmsg(mp, -1)) { 6925 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6926 DROPPER(ipss, ipds_esp_nomem), 6927 &ipss->ipsec_dropper); 6928 return (B_FALSE); 6929 } 6930 6931 ipha = (ipha_t *)mp->b_rptr; 6932 } 6933 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6934 if (*spi == 0) { 6935 /* UDP packet - remove 0-spi. */ 6936 shift = sizeof (uint32_t); 6937 } else { 6938 /* ESP-in-UDP packet - reduce to ESP. */ 6939 ipha->ipha_protocol = IPPROTO_ESP; 6940 shift = sizeof (udpha_t); 6941 } 6942 6943 /* Fix IP header */ 6944 ipha->ipha_length = htons(plen - shift); 6945 ipha->ipha_hdr_checksum = 0; 6946 6947 orptr = mp->b_rptr; 6948 mp->b_rptr += shift; 6949 6950 udpha = (udpha_t *)(orptr + iph_len); 6951 if (*spi == 0) { 6952 ASSERT((uint8_t *)ipha == orptr); 6953 udpha->uha_length = htons(plen - shift - iph_len); 6954 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6955 esp_ports = 0; 6956 } else { 6957 esp_ports = *((uint32_t *)udpha); 6958 ASSERT(esp_ports != 0); 6959 } 6960 ovbcopy(orptr, orptr + shift, iph_len); 6961 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6962 ipha = (ipha_t *)(orptr + shift); 6963 6964 free_ire = (ire == NULL); 6965 if (free_ire) { 6966 /* Re-acquire ire. */ 6967 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6968 ipss->ipsec_netstack->netstack_ip); 6969 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6970 if (ire != NULL) 6971 ire_refrele(ire); 6972 /* 6973 * Do a regular freemsg(), as this is an IP 6974 * error (no local route) not an IPsec one. 6975 */ 6976 freemsg(mp); 6977 } 6978 } 6979 6980 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6981 if (free_ire) 6982 ire_refrele(ire); 6983 } 6984 6985 return (esp_ports == 0); 6986 } 6987 6988 /* 6989 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6990 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6991 * Caller is responsible for dropping references to the conn, and freeing 6992 * first_mp. 6993 * 6994 * IPQoS Notes 6995 * Before sending it to the client, invoke IPPF processing. Policy processing 6996 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6997 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6998 * ip_wput_local, ip_policy is false. 6999 */ 7000 static void 7001 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7002 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7003 boolean_t ip_policy) 7004 { 7005 boolean_t mctl_present = (first_mp != NULL); 7006 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7007 uint32_t ill_index; 7008 ip_stack_t *ipst = recv_ill->ill_ipst; 7009 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7010 7011 ASSERT(ill != NULL); 7012 7013 if (mctl_present) 7014 first_mp->b_cont = mp; 7015 else 7016 first_mp = mp; 7017 7018 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7019 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7020 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7021 freemsg(first_mp); 7022 return; 7023 } 7024 7025 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7026 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7027 NULL, mctl_present); 7028 /* Freed by ipsec_check_inbound_policy(). */ 7029 if (first_mp == NULL) { 7030 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7031 return; 7032 } 7033 } 7034 if (mctl_present) 7035 freeb(first_mp); 7036 7037 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7038 if (connp->conn_udp->udp_nat_t_endpoint) { 7039 if (mctl_present) { 7040 /* mctl_present *shouldn't* happen. */ 7041 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7042 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7043 &ipss->ipsec_dropper); 7044 return; 7045 } 7046 7047 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7048 return; 7049 } 7050 7051 /* Handle options. */ 7052 if (connp->conn_recvif) 7053 in_flags = IPF_RECVIF; 7054 /* 7055 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7056 * passed to ip_add_info is based on IP version of connp. 7057 */ 7058 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7059 if (connp->conn_af_isv6) { 7060 /* 7061 * V6 only needs index 7062 */ 7063 in_flags |= IPF_RECVIF; 7064 } else { 7065 /* 7066 * V4 needs index + matching address. 7067 */ 7068 in_flags |= IPF_RECVADDR; 7069 } 7070 } 7071 7072 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7073 in_flags |= IPF_RECVSLLA; 7074 7075 /* 7076 * Initiate IPPF processing here, if needed. Note first_mp won't be 7077 * freed if the packet is dropped. The caller will do so. 7078 */ 7079 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7080 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7081 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7082 if (mp == NULL) { 7083 return; 7084 } 7085 } 7086 if ((in_flags != 0) && 7087 (mp->b_datap->db_type != M_CTL)) { 7088 /* 7089 * The actual data will be contained in b_cont 7090 * upon successful return of the following call 7091 * else original mblk is returned 7092 */ 7093 ASSERT(recv_ill != NULL); 7094 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7095 ipst); 7096 } 7097 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7098 /* Send it upstream */ 7099 (connp->conn_recv)(connp, mp, NULL); 7100 } 7101 7102 /* 7103 * Fanout for UDP packets. 7104 * The caller puts <fport, lport> in the ports parameter. 7105 * 7106 * If SO_REUSEADDR is set all multicast and broadcast packets 7107 * will be delivered to all streams bound to the same port. 7108 * 7109 * Zones notes: 7110 * Multicast and broadcast packets will be distributed to streams in all zones. 7111 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7112 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7113 * packets. To maintain this behavior with multiple zones, the conns are grouped 7114 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7115 * each zone. If unset, all the following conns in the same zone are skipped. 7116 */ 7117 static void 7118 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7119 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7120 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7121 { 7122 uint32_t dstport, srcport; 7123 ipaddr_t dst; 7124 mblk_t *first_mp; 7125 boolean_t secure; 7126 in6_addr_t v6src; 7127 conn_t *connp; 7128 connf_t *connfp; 7129 conn_t *first_connp; 7130 conn_t *next_connp; 7131 mblk_t *mp1, *first_mp1; 7132 ipaddr_t src; 7133 zoneid_t last_zoneid; 7134 boolean_t reuseaddr; 7135 boolean_t shared_addr; 7136 boolean_t unlabeled; 7137 ip_stack_t *ipst; 7138 7139 ASSERT(recv_ill != NULL); 7140 ipst = recv_ill->ill_ipst; 7141 7142 first_mp = mp; 7143 if (mctl_present) { 7144 mp = first_mp->b_cont; 7145 first_mp->b_cont = NULL; 7146 secure = ipsec_in_is_secure(first_mp); 7147 ASSERT(mp != NULL); 7148 } else { 7149 first_mp = NULL; 7150 secure = B_FALSE; 7151 } 7152 7153 /* Extract ports in net byte order */ 7154 dstport = htons(ntohl(ports) & 0xFFFF); 7155 srcport = htons(ntohl(ports) >> 16); 7156 dst = ipha->ipha_dst; 7157 src = ipha->ipha_src; 7158 7159 unlabeled = B_FALSE; 7160 if (is_system_labeled()) 7161 /* Cred cannot be null on IPv4 */ 7162 unlabeled = (msg_getlabel(mp)->tsl_flags & 7163 TSLF_UNLABELED) != 0; 7164 shared_addr = (zoneid == ALL_ZONES); 7165 if (shared_addr) { 7166 /* 7167 * No need to handle exclusive-stack zones since ALL_ZONES 7168 * only applies to the shared stack. 7169 */ 7170 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7171 /* 7172 * If no shared MLP is found, tsol_mlp_findzone returns 7173 * ALL_ZONES. In that case, we assume it's SLP, and 7174 * search for the zone based on the packet label. 7175 * 7176 * If there is such a zone, we prefer to find a 7177 * connection in it. Otherwise, we look for a 7178 * MAC-exempt connection in any zone whose label 7179 * dominates the default label on the packet. 7180 */ 7181 if (zoneid == ALL_ZONES) 7182 zoneid = tsol_packet_to_zoneid(mp); 7183 else 7184 unlabeled = B_FALSE; 7185 } 7186 7187 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7188 mutex_enter(&connfp->connf_lock); 7189 connp = connfp->connf_head; 7190 if (!broadcast && !CLASSD(dst)) { 7191 /* 7192 * Not broadcast or multicast. Send to the one (first) 7193 * client we find. No need to check conn_wantpacket() 7194 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7195 * IPv4 unicast packets. 7196 */ 7197 while ((connp != NULL) && 7198 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7199 (!IPCL_ZONE_MATCH(connp, zoneid) && 7200 !(unlabeled && connp->conn_mac_exempt)))) { 7201 /* 7202 * We keep searching since the conn did not match, 7203 * or its zone did not match and it is not either 7204 * an allzones conn or a mac exempt conn (if the 7205 * sender is unlabeled.) 7206 */ 7207 connp = connp->conn_next; 7208 } 7209 7210 if (connp == NULL || 7211 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7212 goto notfound; 7213 7214 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7215 7216 if (is_system_labeled() && 7217 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7218 connp)) 7219 goto notfound; 7220 7221 CONN_INC_REF(connp); 7222 mutex_exit(&connfp->connf_lock); 7223 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7224 flags, recv_ill, ip_policy); 7225 IP_STAT(ipst, ip_udp_fannorm); 7226 CONN_DEC_REF(connp); 7227 return; 7228 } 7229 7230 /* 7231 * Broadcast and multicast case 7232 * 7233 * Need to check conn_wantpacket(). 7234 * If SO_REUSEADDR has been set on the first we send the 7235 * packet to all clients that have joined the group and 7236 * match the port. 7237 */ 7238 7239 while (connp != NULL) { 7240 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7241 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7242 (!is_system_labeled() || 7243 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7244 connp))) 7245 break; 7246 connp = connp->conn_next; 7247 } 7248 7249 if (connp == NULL || 7250 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7251 goto notfound; 7252 7253 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7254 7255 first_connp = connp; 7256 /* 7257 * When SO_REUSEADDR is not set, send the packet only to the first 7258 * matching connection in its zone by keeping track of the zoneid. 7259 */ 7260 reuseaddr = first_connp->conn_reuseaddr; 7261 last_zoneid = first_connp->conn_zoneid; 7262 7263 CONN_INC_REF(connp); 7264 connp = connp->conn_next; 7265 for (;;) { 7266 while (connp != NULL) { 7267 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7268 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7269 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7270 (!is_system_labeled() || 7271 tsol_receive_local(mp, &dst, IPV4_VERSION, 7272 shared_addr, connp))) 7273 break; 7274 connp = connp->conn_next; 7275 } 7276 /* 7277 * Just copy the data part alone. The mctl part is 7278 * needed just for verifying policy and it is never 7279 * sent up. 7280 */ 7281 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7282 ((mp1 = copymsg(mp)) == NULL))) { 7283 /* 7284 * No more interested clients or memory 7285 * allocation failed 7286 */ 7287 connp = first_connp; 7288 break; 7289 } 7290 if (connp->conn_zoneid != last_zoneid) { 7291 /* 7292 * Update the zoneid so that the packet isn't sent to 7293 * any more conns in the same zone unless SO_REUSEADDR 7294 * is set. 7295 */ 7296 reuseaddr = connp->conn_reuseaddr; 7297 last_zoneid = connp->conn_zoneid; 7298 } 7299 if (first_mp != NULL) { 7300 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7301 ipsec_info_type == IPSEC_IN); 7302 first_mp1 = ipsec_in_tag(first_mp, NULL, 7303 ipst->ips_netstack); 7304 if (first_mp1 == NULL) { 7305 freemsg(mp1); 7306 connp = first_connp; 7307 break; 7308 } 7309 } else { 7310 first_mp1 = NULL; 7311 } 7312 CONN_INC_REF(connp); 7313 mutex_exit(&connfp->connf_lock); 7314 /* 7315 * IPQoS notes: We don't send the packet for policy 7316 * processing here, will do it for the last one (below). 7317 * i.e. we do it per-packet now, but if we do policy 7318 * processing per-conn, then we would need to do it 7319 * here too. 7320 */ 7321 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7322 ipha, flags, recv_ill, B_FALSE); 7323 mutex_enter(&connfp->connf_lock); 7324 /* Follow the next pointer before releasing the conn. */ 7325 next_connp = connp->conn_next; 7326 IP_STAT(ipst, ip_udp_fanmb); 7327 CONN_DEC_REF(connp); 7328 connp = next_connp; 7329 } 7330 7331 /* Last one. Send it upstream. */ 7332 mutex_exit(&connfp->connf_lock); 7333 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7334 recv_ill, ip_policy); 7335 IP_STAT(ipst, ip_udp_fanmb); 7336 CONN_DEC_REF(connp); 7337 return; 7338 7339 notfound: 7340 7341 mutex_exit(&connfp->connf_lock); 7342 IP_STAT(ipst, ip_udp_fanothers); 7343 /* 7344 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7345 * have already been matched above, since they live in the IPv4 7346 * fanout tables. This implies we only need to 7347 * check for IPv6 in6addr_any endpoints here. 7348 * Thus we compare using ipv6_all_zeros instead of the destination 7349 * address, except for the multicast group membership lookup which 7350 * uses the IPv4 destination. 7351 */ 7352 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7353 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7354 mutex_enter(&connfp->connf_lock); 7355 connp = connfp->connf_head; 7356 if (!broadcast && !CLASSD(dst)) { 7357 while (connp != NULL) { 7358 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7359 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7360 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7361 !connp->conn_ipv6_v6only) 7362 break; 7363 connp = connp->conn_next; 7364 } 7365 7366 if (connp != NULL && is_system_labeled() && 7367 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7368 connp)) 7369 connp = NULL; 7370 7371 if (connp == NULL || 7372 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7373 /* 7374 * No one bound to this port. Is 7375 * there a client that wants all 7376 * unclaimed datagrams? 7377 */ 7378 mutex_exit(&connfp->connf_lock); 7379 7380 if (mctl_present) 7381 first_mp->b_cont = mp; 7382 else 7383 first_mp = mp; 7384 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7385 connf_head != NULL) { 7386 ip_fanout_proto(q, first_mp, ill, ipha, 7387 flags | IP_FF_RAWIP, mctl_present, 7388 ip_policy, recv_ill, zoneid); 7389 } else { 7390 if (ip_fanout_send_icmp(q, first_mp, flags, 7391 ICMP_DEST_UNREACHABLE, 7392 ICMP_PORT_UNREACHABLE, 7393 mctl_present, zoneid, ipst)) { 7394 BUMP_MIB(ill->ill_ip_mib, 7395 udpIfStatsNoPorts); 7396 } 7397 } 7398 return; 7399 } 7400 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7401 7402 CONN_INC_REF(connp); 7403 mutex_exit(&connfp->connf_lock); 7404 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7405 flags, recv_ill, ip_policy); 7406 CONN_DEC_REF(connp); 7407 return; 7408 } 7409 /* 7410 * IPv4 multicast packet being delivered to an AF_INET6 7411 * in6addr_any endpoint. 7412 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7413 * and not conn_wantpacket_v6() since any multicast membership is 7414 * for an IPv4-mapped multicast address. 7415 * The packet is sent to all clients in all zones that have joined the 7416 * group and match the port. 7417 */ 7418 while (connp != NULL) { 7419 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7420 srcport, v6src) && 7421 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7422 (!is_system_labeled() || 7423 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7424 connp))) 7425 break; 7426 connp = connp->conn_next; 7427 } 7428 7429 if (connp == NULL || 7430 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7431 /* 7432 * No one bound to this port. Is 7433 * there a client that wants all 7434 * unclaimed datagrams? 7435 */ 7436 mutex_exit(&connfp->connf_lock); 7437 7438 if (mctl_present) 7439 first_mp->b_cont = mp; 7440 else 7441 first_mp = mp; 7442 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7443 NULL) { 7444 ip_fanout_proto(q, first_mp, ill, ipha, 7445 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7446 recv_ill, zoneid); 7447 } else { 7448 /* 7449 * We used to attempt to send an icmp error here, but 7450 * since this is known to be a multicast packet 7451 * and we don't send icmp errors in response to 7452 * multicast, just drop the packet and give up sooner. 7453 */ 7454 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7455 freemsg(first_mp); 7456 } 7457 return; 7458 } 7459 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7460 7461 first_connp = connp; 7462 7463 CONN_INC_REF(connp); 7464 connp = connp->conn_next; 7465 for (;;) { 7466 while (connp != NULL) { 7467 if (IPCL_UDP_MATCH_V6(connp, dstport, 7468 ipv6_all_zeros, srcport, v6src) && 7469 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7470 (!is_system_labeled() || 7471 tsol_receive_local(mp, &dst, IPV4_VERSION, 7472 shared_addr, connp))) 7473 break; 7474 connp = connp->conn_next; 7475 } 7476 /* 7477 * Just copy the data part alone. The mctl part is 7478 * needed just for verifying policy and it is never 7479 * sent up. 7480 */ 7481 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7482 ((mp1 = copymsg(mp)) == NULL))) { 7483 /* 7484 * No more intested clients or memory 7485 * allocation failed 7486 */ 7487 connp = first_connp; 7488 break; 7489 } 7490 if (first_mp != NULL) { 7491 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7492 ipsec_info_type == IPSEC_IN); 7493 first_mp1 = ipsec_in_tag(first_mp, NULL, 7494 ipst->ips_netstack); 7495 if (first_mp1 == NULL) { 7496 freemsg(mp1); 7497 connp = first_connp; 7498 break; 7499 } 7500 } else { 7501 first_mp1 = NULL; 7502 } 7503 CONN_INC_REF(connp); 7504 mutex_exit(&connfp->connf_lock); 7505 /* 7506 * IPQoS notes: We don't send the packet for policy 7507 * processing here, will do it for the last one (below). 7508 * i.e. we do it per-packet now, but if we do policy 7509 * processing per-conn, then we would need to do it 7510 * here too. 7511 */ 7512 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7513 ipha, flags, recv_ill, B_FALSE); 7514 mutex_enter(&connfp->connf_lock); 7515 /* Follow the next pointer before releasing the conn. */ 7516 next_connp = connp->conn_next; 7517 CONN_DEC_REF(connp); 7518 connp = next_connp; 7519 } 7520 7521 /* Last one. Send it upstream. */ 7522 mutex_exit(&connfp->connf_lock); 7523 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7524 recv_ill, ip_policy); 7525 CONN_DEC_REF(connp); 7526 } 7527 7528 /* 7529 * Complete the ip_wput header so that it 7530 * is possible to generate ICMP 7531 * errors. 7532 */ 7533 int 7534 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7535 { 7536 ire_t *ire; 7537 7538 if (ipha->ipha_src == INADDR_ANY) { 7539 ire = ire_lookup_local(zoneid, ipst); 7540 if (ire == NULL) { 7541 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7542 return (1); 7543 } 7544 ipha->ipha_src = ire->ire_addr; 7545 ire_refrele(ire); 7546 } 7547 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7548 ipha->ipha_hdr_checksum = 0; 7549 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7550 return (0); 7551 } 7552 7553 /* 7554 * Nobody should be sending 7555 * packets up this stream 7556 */ 7557 static void 7558 ip_lrput(queue_t *q, mblk_t *mp) 7559 { 7560 mblk_t *mp1; 7561 7562 switch (mp->b_datap->db_type) { 7563 case M_FLUSH: 7564 /* Turn around */ 7565 if (*mp->b_rptr & FLUSHW) { 7566 *mp->b_rptr &= ~FLUSHR; 7567 qreply(q, mp); 7568 return; 7569 } 7570 break; 7571 } 7572 /* Could receive messages that passed through ar_rput */ 7573 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7574 mp1->b_prev = mp1->b_next = NULL; 7575 freemsg(mp); 7576 } 7577 7578 /* Nobody should be sending packets down this stream */ 7579 /* ARGSUSED */ 7580 void 7581 ip_lwput(queue_t *q, mblk_t *mp) 7582 { 7583 freemsg(mp); 7584 } 7585 7586 /* 7587 * Move the first hop in any source route to ipha_dst and remove that part of 7588 * the source route. Called by other protocols. Errors in option formatting 7589 * are ignored - will be handled by ip_wput_options Return the final 7590 * destination (either ipha_dst or the last entry in a source route.) 7591 */ 7592 ipaddr_t 7593 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7594 { 7595 ipoptp_t opts; 7596 uchar_t *opt; 7597 uint8_t optval; 7598 uint8_t optlen; 7599 ipaddr_t dst; 7600 int i; 7601 ire_t *ire; 7602 ip_stack_t *ipst = ns->netstack_ip; 7603 7604 ip2dbg(("ip_massage_options\n")); 7605 dst = ipha->ipha_dst; 7606 for (optval = ipoptp_first(&opts, ipha); 7607 optval != IPOPT_EOL; 7608 optval = ipoptp_next(&opts)) { 7609 opt = opts.ipoptp_cur; 7610 switch (optval) { 7611 uint8_t off; 7612 case IPOPT_SSRR: 7613 case IPOPT_LSRR: 7614 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7615 ip1dbg(("ip_massage_options: bad src route\n")); 7616 break; 7617 } 7618 optlen = opts.ipoptp_len; 7619 off = opt[IPOPT_OFFSET]; 7620 off--; 7621 redo_srr: 7622 if (optlen < IP_ADDR_LEN || 7623 off > optlen - IP_ADDR_LEN) { 7624 /* End of source route */ 7625 ip1dbg(("ip_massage_options: end of SR\n")); 7626 break; 7627 } 7628 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7629 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7630 ntohl(dst))); 7631 /* 7632 * Check if our address is present more than 7633 * once as consecutive hops in source route. 7634 * XXX verify per-interface ip_forwarding 7635 * for source route? 7636 */ 7637 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7638 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7639 if (ire != NULL) { 7640 ire_refrele(ire); 7641 off += IP_ADDR_LEN; 7642 goto redo_srr; 7643 } 7644 if (dst == htonl(INADDR_LOOPBACK)) { 7645 ip1dbg(("ip_massage_options: loopback addr in " 7646 "source route!\n")); 7647 break; 7648 } 7649 /* 7650 * Update ipha_dst to be the first hop and remove the 7651 * first hop from the source route (by overwriting 7652 * part of the option with NOP options). 7653 */ 7654 ipha->ipha_dst = dst; 7655 /* Put the last entry in dst */ 7656 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7657 3; 7658 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7659 7660 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7661 ntohl(dst))); 7662 /* Move down and overwrite */ 7663 opt[IP_ADDR_LEN] = opt[0]; 7664 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7665 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7666 for (i = 0; i < IP_ADDR_LEN; i++) 7667 opt[i] = IPOPT_NOP; 7668 break; 7669 } 7670 } 7671 return (dst); 7672 } 7673 7674 /* 7675 * Return the network mask 7676 * associated with the specified address. 7677 */ 7678 ipaddr_t 7679 ip_net_mask(ipaddr_t addr) 7680 { 7681 uchar_t *up = (uchar_t *)&addr; 7682 ipaddr_t mask = 0; 7683 uchar_t *maskp = (uchar_t *)&mask; 7684 7685 #if defined(__i386) || defined(__amd64) 7686 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7687 #endif 7688 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7689 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7690 #endif 7691 if (CLASSD(addr)) { 7692 maskp[0] = 0xF0; 7693 return (mask); 7694 } 7695 7696 /* We assume Class E default netmask to be 32 */ 7697 if (CLASSE(addr)) 7698 return (0xffffffffU); 7699 7700 if (addr == 0) 7701 return (0); 7702 maskp[0] = 0xFF; 7703 if ((up[0] & 0x80) == 0) 7704 return (mask); 7705 7706 maskp[1] = 0xFF; 7707 if ((up[0] & 0xC0) == 0x80) 7708 return (mask); 7709 7710 maskp[2] = 0xFF; 7711 if ((up[0] & 0xE0) == 0xC0) 7712 return (mask); 7713 7714 /* Otherwise return no mask */ 7715 return ((ipaddr_t)0); 7716 } 7717 7718 /* 7719 * Helper ill lookup function used by IPsec. 7720 */ 7721 ill_t * 7722 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7723 { 7724 ill_t *ret_ill; 7725 7726 ASSERT(ifindex != 0); 7727 7728 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7729 ipst); 7730 if (ret_ill == NULL) { 7731 if (isv6) { 7732 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7733 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7734 ifindex)); 7735 } else { 7736 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7737 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7738 ifindex)); 7739 } 7740 freemsg(first_mp); 7741 return (NULL); 7742 } 7743 return (ret_ill); 7744 } 7745 7746 /* 7747 * IPv4 - 7748 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7749 * out a packet to a destination address for which we do not have specific 7750 * (or sufficient) routing information. 7751 * 7752 * NOTE : These are the scopes of some of the variables that point at IRE, 7753 * which needs to be followed while making any future modifications 7754 * to avoid memory leaks. 7755 * 7756 * - ire and sire are the entries looked up initially by 7757 * ire_ftable_lookup. 7758 * - ipif_ire is used to hold the interface ire associated with 7759 * the new cache ire. But it's scope is limited, so we always REFRELE 7760 * it before branching out to error paths. 7761 * - save_ire is initialized before ire_create, so that ire returned 7762 * by ire_create will not over-write the ire. We REFRELE save_ire 7763 * before breaking out of the switch. 7764 * 7765 * Thus on failures, we have to REFRELE only ire and sire, if they 7766 * are not NULL. 7767 */ 7768 void 7769 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7770 zoneid_t zoneid, ip_stack_t *ipst) 7771 { 7772 areq_t *areq; 7773 ipaddr_t gw = 0; 7774 ire_t *ire = NULL; 7775 mblk_t *res_mp; 7776 ipaddr_t *addrp; 7777 ipaddr_t nexthop_addr; 7778 ipif_t *src_ipif = NULL; 7779 ill_t *dst_ill = NULL; 7780 ipha_t *ipha; 7781 ire_t *sire = NULL; 7782 mblk_t *first_mp; 7783 ire_t *save_ire; 7784 ushort_t ire_marks = 0; 7785 boolean_t mctl_present; 7786 ipsec_out_t *io; 7787 mblk_t *saved_mp; 7788 ire_t *first_sire = NULL; 7789 mblk_t *copy_mp = NULL; 7790 mblk_t *xmit_mp = NULL; 7791 ipaddr_t save_dst; 7792 uint32_t multirt_flags = 7793 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7794 boolean_t multirt_is_resolvable; 7795 boolean_t multirt_resolve_next; 7796 boolean_t unspec_src; 7797 boolean_t ip_nexthop = B_FALSE; 7798 tsol_ire_gw_secattr_t *attrp = NULL; 7799 tsol_gcgrp_t *gcgrp = NULL; 7800 tsol_gcgrp_addr_t ga; 7801 7802 if (ip_debug > 2) { 7803 /* ip1dbg */ 7804 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7805 } 7806 7807 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7808 if (mctl_present) { 7809 io = (ipsec_out_t *)first_mp->b_rptr; 7810 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7811 ASSERT(zoneid == io->ipsec_out_zoneid); 7812 ASSERT(zoneid != ALL_ZONES); 7813 } 7814 7815 ipha = (ipha_t *)mp->b_rptr; 7816 7817 /* All multicast lookups come through ip_newroute_ipif() */ 7818 if (CLASSD(dst)) { 7819 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7820 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7821 freemsg(first_mp); 7822 return; 7823 } 7824 7825 if (mctl_present && io->ipsec_out_ip_nexthop) { 7826 ip_nexthop = B_TRUE; 7827 nexthop_addr = io->ipsec_out_nexthop_addr; 7828 } 7829 /* 7830 * If this IRE is created for forwarding or it is not for 7831 * traffic for congestion controlled protocols, mark it as temporary. 7832 */ 7833 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7834 ire_marks |= IRE_MARK_TEMPORARY; 7835 7836 /* 7837 * Get what we can from ire_ftable_lookup which will follow an IRE 7838 * chain until it gets the most specific information available. 7839 * For example, we know that there is no IRE_CACHE for this dest, 7840 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7841 * ire_ftable_lookup will look up the gateway, etc. 7842 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7843 * to the destination, of equal netmask length in the forward table, 7844 * will be recursively explored. If no information is available 7845 * for the final gateway of that route, we force the returned ire 7846 * to be equal to sire using MATCH_IRE_PARENT. 7847 * At least, in this case we have a starting point (in the buckets) 7848 * to look for other routes to the destination in the forward table. 7849 * This is actually used only for multirouting, where a list 7850 * of routes has to be processed in sequence. 7851 * 7852 * In the process of coming up with the most specific information, 7853 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7854 * for the gateway (i.e., one for which the ire_nce->nce_state is 7855 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7856 * Two caveats when handling incomplete ire's in ip_newroute: 7857 * - we should be careful when accessing its ire_nce (specifically 7858 * the nce_res_mp) ast it might change underneath our feet, and, 7859 * - not all legacy code path callers are prepared to handle 7860 * incomplete ire's, so we should not create/add incomplete 7861 * ire_cache entries here. (See discussion about temporary solution 7862 * further below). 7863 * 7864 * In order to minimize packet dropping, and to preserve existing 7865 * behavior, we treat this case as if there were no IRE_CACHE for the 7866 * gateway, and instead use the IF_RESOLVER ire to send out 7867 * another request to ARP (this is achieved by passing the 7868 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7869 * arp response comes back in ip_wput_nondata, we will create 7870 * a per-dst ire_cache that has an ND_COMPLETE ire. 7871 * 7872 * Note that this is a temporary solution; the correct solution is 7873 * to create an incomplete per-dst ire_cache entry, and send the 7874 * packet out when the gw's nce is resolved. In order to achieve this, 7875 * all packet processing must have been completed prior to calling 7876 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7877 * to be modified to accomodate this solution. 7878 */ 7879 if (ip_nexthop) { 7880 /* 7881 * The first time we come here, we look for an IRE_INTERFACE 7882 * entry for the specified nexthop, set the dst to be the 7883 * nexthop address and create an IRE_CACHE entry for the 7884 * nexthop. The next time around, we are able to find an 7885 * IRE_CACHE entry for the nexthop, set the gateway to be the 7886 * nexthop address and create an IRE_CACHE entry for the 7887 * destination address via the specified nexthop. 7888 */ 7889 ire = ire_cache_lookup(nexthop_addr, zoneid, 7890 msg_getlabel(mp), ipst); 7891 if (ire != NULL) { 7892 gw = nexthop_addr; 7893 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7894 } else { 7895 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7896 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7897 msg_getlabel(mp), 7898 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7899 ipst); 7900 if (ire != NULL) { 7901 dst = nexthop_addr; 7902 } 7903 } 7904 } else { 7905 ire = ire_ftable_lookup(dst, 0, 0, 0, 7906 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7907 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7908 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7909 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7910 ipst); 7911 } 7912 7913 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7914 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7915 7916 /* 7917 * This loop is run only once in most cases. 7918 * We loop to resolve further routes only when the destination 7919 * can be reached through multiple RTF_MULTIRT-flagged ires. 7920 */ 7921 do { 7922 /* Clear the previous iteration's values */ 7923 if (src_ipif != NULL) { 7924 ipif_refrele(src_ipif); 7925 src_ipif = NULL; 7926 } 7927 if (dst_ill != NULL) { 7928 ill_refrele(dst_ill); 7929 dst_ill = NULL; 7930 } 7931 7932 multirt_resolve_next = B_FALSE; 7933 /* 7934 * We check if packets have to be multirouted. 7935 * In this case, given the current <ire, sire> couple, 7936 * we look for the next suitable <ire, sire>. 7937 * This check is done in ire_multirt_lookup(), 7938 * which applies various criteria to find the next route 7939 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7940 * unchanged if it detects it has not been tried yet. 7941 */ 7942 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7943 ip3dbg(("ip_newroute: starting next_resolution " 7944 "with first_mp %p, tag %d\n", 7945 (void *)first_mp, 7946 MULTIRT_DEBUG_TAGGED(first_mp))); 7947 7948 ASSERT(sire != NULL); 7949 multirt_is_resolvable = 7950 ire_multirt_lookup(&ire, &sire, multirt_flags, 7951 msg_getlabel(mp), ipst); 7952 7953 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7954 "ire %p, sire %p\n", 7955 multirt_is_resolvable, 7956 (void *)ire, (void *)sire)); 7957 7958 if (!multirt_is_resolvable) { 7959 /* 7960 * No more multirt route to resolve; give up 7961 * (all routes resolved or no more 7962 * resolvable routes). 7963 */ 7964 if (ire != NULL) { 7965 ire_refrele(ire); 7966 ire = NULL; 7967 } 7968 } else { 7969 ASSERT(sire != NULL); 7970 ASSERT(ire != NULL); 7971 /* 7972 * We simply use first_sire as a flag that 7973 * indicates if a resolvable multirt route 7974 * has already been found. 7975 * If it is not the case, we may have to send 7976 * an ICMP error to report that the 7977 * destination is unreachable. 7978 * We do not IRE_REFHOLD first_sire. 7979 */ 7980 if (first_sire == NULL) { 7981 first_sire = sire; 7982 } 7983 } 7984 } 7985 if (ire == NULL) { 7986 if (ip_debug > 3) { 7987 /* ip2dbg */ 7988 pr_addr_dbg("ip_newroute: " 7989 "can't resolve %s\n", AF_INET, &dst); 7990 } 7991 ip3dbg(("ip_newroute: " 7992 "ire %p, sire %p, first_sire %p\n", 7993 (void *)ire, (void *)sire, (void *)first_sire)); 7994 7995 if (sire != NULL) { 7996 ire_refrele(sire); 7997 sire = NULL; 7998 } 7999 8000 if (first_sire != NULL) { 8001 /* 8002 * At least one multirt route has been found 8003 * in the same call to ip_newroute(); 8004 * there is no need to report an ICMP error. 8005 * first_sire was not IRE_REFHOLDed. 8006 */ 8007 MULTIRT_DEBUG_UNTAG(first_mp); 8008 freemsg(first_mp); 8009 return; 8010 } 8011 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8012 RTA_DST, ipst); 8013 goto icmp_err_ret; 8014 } 8015 8016 /* 8017 * Verify that the returned IRE does not have either 8018 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8019 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8020 */ 8021 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8022 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8023 goto icmp_err_ret; 8024 } 8025 /* 8026 * Increment the ire_ob_pkt_count field for ire if it is an 8027 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8028 * increment the same for the parent IRE, sire, if it is some 8029 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8030 */ 8031 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8032 UPDATE_OB_PKT_COUNT(ire); 8033 ire->ire_last_used_time = lbolt; 8034 } 8035 8036 if (sire != NULL) { 8037 gw = sire->ire_gateway_addr; 8038 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8039 IRE_INTERFACE)) == 0); 8040 UPDATE_OB_PKT_COUNT(sire); 8041 sire->ire_last_used_time = lbolt; 8042 } 8043 /* 8044 * We have a route to reach the destination. Find the 8045 * appropriate ill, then get a source address using 8046 * ipif_select_source(). 8047 * 8048 * If we are here trying to create an IRE_CACHE for an offlink 8049 * destination and have an IRE_CACHE entry for VNI, then use 8050 * ire_stq instead since VNI's queue is a black hole. 8051 */ 8052 if ((ire->ire_type == IRE_CACHE) && 8053 IS_VNI(ire->ire_ipif->ipif_ill)) { 8054 dst_ill = ire->ire_stq->q_ptr; 8055 ill_refhold(dst_ill); 8056 } else { 8057 ill_t *ill = ire->ire_ipif->ipif_ill; 8058 8059 if (IS_IPMP(ill)) { 8060 dst_ill = 8061 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8062 } else { 8063 dst_ill = ill; 8064 ill_refhold(dst_ill); 8065 } 8066 } 8067 8068 if (dst_ill == NULL) { 8069 if (ip_debug > 2) { 8070 pr_addr_dbg("ip_newroute: no dst " 8071 "ill for dst %s\n", AF_INET, &dst); 8072 } 8073 goto icmp_err_ret; 8074 } 8075 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8076 8077 /* 8078 * Pick the best source address from dst_ill. 8079 * 8080 * 1) Try to pick the source address from the destination 8081 * route. Clustering assumes that when we have multiple 8082 * prefixes hosted on an interface, the prefix of the 8083 * source address matches the prefix of the destination 8084 * route. We do this only if the address is not 8085 * DEPRECATED. 8086 * 8087 * 2) If the conn is in a different zone than the ire, we 8088 * need to pick a source address from the right zone. 8089 */ 8090 ASSERT(src_ipif == NULL); 8091 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8092 /* 8093 * The RTF_SETSRC flag is set in the parent ire (sire). 8094 * Check that the ipif matching the requested source 8095 * address still exists. 8096 */ 8097 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8098 zoneid, NULL, NULL, NULL, NULL, ipst); 8099 } 8100 8101 unspec_src = (connp != NULL && connp->conn_unspec_src); 8102 8103 if (src_ipif == NULL && 8104 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8105 ire_marks |= IRE_MARK_USESRC_CHECK; 8106 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8107 IS_IPMP(ire->ire_ipif->ipif_ill) || 8108 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8109 (connp != NULL && ire->ire_zoneid != zoneid && 8110 ire->ire_zoneid != ALL_ZONES) || 8111 (dst_ill->ill_usesrc_ifindex != 0)) { 8112 /* 8113 * If the destination is reachable via a 8114 * given gateway, the selected source address 8115 * should be in the same subnet as the gateway. 8116 * Otherwise, the destination is not reachable. 8117 * 8118 * If there are no interfaces on the same subnet 8119 * as the destination, ipif_select_source gives 8120 * first non-deprecated interface which might be 8121 * on a different subnet than the gateway. 8122 * This is not desirable. Hence pass the dst_ire 8123 * source address to ipif_select_source. 8124 * It is sure that the destination is reachable 8125 * with the dst_ire source address subnet. 8126 * So passing dst_ire source address to 8127 * ipif_select_source will make sure that the 8128 * selected source will be on the same subnet 8129 * as dst_ire source address. 8130 */ 8131 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8132 8133 src_ipif = ipif_select_source(dst_ill, saddr, 8134 zoneid); 8135 if (src_ipif == NULL) { 8136 if (ip_debug > 2) { 8137 pr_addr_dbg("ip_newroute: " 8138 "no src for dst %s ", 8139 AF_INET, &dst); 8140 printf("on interface %s\n", 8141 dst_ill->ill_name); 8142 } 8143 goto icmp_err_ret; 8144 } 8145 } else { 8146 src_ipif = ire->ire_ipif; 8147 ASSERT(src_ipif != NULL); 8148 /* hold src_ipif for uniformity */ 8149 ipif_refhold(src_ipif); 8150 } 8151 } 8152 8153 /* 8154 * Assign a source address while we have the conn. 8155 * We can't have ip_wput_ire pick a source address when the 8156 * packet returns from arp since we need to look at 8157 * conn_unspec_src and conn_zoneid, and we lose the conn when 8158 * going through arp. 8159 * 8160 * NOTE : ip_newroute_v6 does not have this piece of code as 8161 * it uses ip6i to store this information. 8162 */ 8163 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8164 ipha->ipha_src = src_ipif->ipif_src_addr; 8165 8166 if (ip_debug > 3) { 8167 /* ip2dbg */ 8168 pr_addr_dbg("ip_newroute: first hop %s\n", 8169 AF_INET, &gw); 8170 } 8171 ip2dbg(("\tire type %s (%d)\n", 8172 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8173 8174 /* 8175 * The TTL of multirouted packets is bounded by the 8176 * ip_multirt_ttl ndd variable. 8177 */ 8178 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8179 /* Force TTL of multirouted packets */ 8180 if ((ipst->ips_ip_multirt_ttl > 0) && 8181 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8182 ip2dbg(("ip_newroute: forcing multirt TTL " 8183 "to %d (was %d), dst 0x%08x\n", 8184 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8185 ntohl(sire->ire_addr))); 8186 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8187 } 8188 } 8189 /* 8190 * At this point in ip_newroute(), ire is either the 8191 * IRE_CACHE of the next-hop gateway for an off-subnet 8192 * destination or an IRE_INTERFACE type that should be used 8193 * to resolve an on-subnet destination or an on-subnet 8194 * next-hop gateway. 8195 * 8196 * In the IRE_CACHE case, we have the following : 8197 * 8198 * 1) src_ipif - used for getting a source address. 8199 * 8200 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8201 * means packets using this IRE_CACHE will go out on 8202 * dst_ill. 8203 * 8204 * 3) The IRE sire will point to the prefix that is the 8205 * longest matching route for the destination. These 8206 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8207 * 8208 * The newly created IRE_CACHE entry for the off-subnet 8209 * destination is tied to both the prefix route and the 8210 * interface route used to resolve the next-hop gateway 8211 * via the ire_phandle and ire_ihandle fields, 8212 * respectively. 8213 * 8214 * In the IRE_INTERFACE case, we have the following : 8215 * 8216 * 1) src_ipif - used for getting a source address. 8217 * 8218 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8219 * means packets using the IRE_CACHE that we will build 8220 * here will go out on dst_ill. 8221 * 8222 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8223 * to be created will only be tied to the IRE_INTERFACE 8224 * that was derived from the ire_ihandle field. 8225 * 8226 * If sire is non-NULL, it means the destination is 8227 * off-link and we will first create the IRE_CACHE for the 8228 * gateway. Next time through ip_newroute, we will create 8229 * the IRE_CACHE for the final destination as described 8230 * above. 8231 * 8232 * In both cases, after the current resolution has been 8233 * completed (or possibly initialised, in the IRE_INTERFACE 8234 * case), the loop may be re-entered to attempt the resolution 8235 * of another RTF_MULTIRT route. 8236 * 8237 * When an IRE_CACHE entry for the off-subnet destination is 8238 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8239 * for further processing in emission loops. 8240 */ 8241 save_ire = ire; 8242 switch (ire->ire_type) { 8243 case IRE_CACHE: { 8244 ire_t *ipif_ire; 8245 8246 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8247 if (gw == 0) 8248 gw = ire->ire_gateway_addr; 8249 /* 8250 * We need 3 ire's to create a new cache ire for an 8251 * off-link destination from the cache ire of the 8252 * gateway. 8253 * 8254 * 1. The prefix ire 'sire' (Note that this does 8255 * not apply to the conn_nexthop_set case) 8256 * 2. The cache ire of the gateway 'ire' 8257 * 3. The interface ire 'ipif_ire' 8258 * 8259 * We have (1) and (2). We lookup (3) below. 8260 * 8261 * If there is no interface route to the gateway, 8262 * it is a race condition, where we found the cache 8263 * but the interface route has been deleted. 8264 */ 8265 if (ip_nexthop) { 8266 ipif_ire = ire_ihandle_lookup_onlink(ire); 8267 } else { 8268 ipif_ire = 8269 ire_ihandle_lookup_offlink(ire, sire); 8270 } 8271 if (ipif_ire == NULL) { 8272 ip1dbg(("ip_newroute: " 8273 "ire_ihandle_lookup_offlink failed\n")); 8274 goto icmp_err_ret; 8275 } 8276 8277 /* 8278 * Check cached gateway IRE for any security 8279 * attributes; if found, associate the gateway 8280 * credentials group to the destination IRE. 8281 */ 8282 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8283 mutex_enter(&attrp->igsa_lock); 8284 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8285 GCGRP_REFHOLD(gcgrp); 8286 mutex_exit(&attrp->igsa_lock); 8287 } 8288 8289 /* 8290 * XXX For the source of the resolver mp, 8291 * we are using the same DL_UNITDATA_REQ 8292 * (from save_ire->ire_nce->nce_res_mp) 8293 * though the save_ire is not pointing at the same ill. 8294 * This is incorrect. We need to send it up to the 8295 * resolver to get the right res_mp. For ethernets 8296 * this may be okay (ill_type == DL_ETHER). 8297 */ 8298 8299 ire = ire_create( 8300 (uchar_t *)&dst, /* dest address */ 8301 (uchar_t *)&ip_g_all_ones, /* mask */ 8302 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8303 (uchar_t *)&gw, /* gateway address */ 8304 &save_ire->ire_max_frag, 8305 save_ire->ire_nce, /* src nce */ 8306 dst_ill->ill_rq, /* recv-from queue */ 8307 dst_ill->ill_wq, /* send-to queue */ 8308 IRE_CACHE, /* IRE type */ 8309 src_ipif, 8310 (sire != NULL) ? 8311 sire->ire_mask : 0, /* Parent mask */ 8312 (sire != NULL) ? 8313 sire->ire_phandle : 0, /* Parent handle */ 8314 ipif_ire->ire_ihandle, /* Interface handle */ 8315 (sire != NULL) ? (sire->ire_flags & 8316 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8317 (sire != NULL) ? 8318 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8319 NULL, 8320 gcgrp, 8321 ipst); 8322 8323 if (ire == NULL) { 8324 if (gcgrp != NULL) { 8325 GCGRP_REFRELE(gcgrp); 8326 gcgrp = NULL; 8327 } 8328 ire_refrele(ipif_ire); 8329 ire_refrele(save_ire); 8330 break; 8331 } 8332 8333 /* reference now held by IRE */ 8334 gcgrp = NULL; 8335 8336 ire->ire_marks |= ire_marks; 8337 8338 /* 8339 * Prevent sire and ipif_ire from getting deleted. 8340 * The newly created ire is tied to both of them via 8341 * the phandle and ihandle respectively. 8342 */ 8343 if (sire != NULL) { 8344 IRB_REFHOLD(sire->ire_bucket); 8345 /* Has it been removed already ? */ 8346 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8347 IRB_REFRELE(sire->ire_bucket); 8348 ire_refrele(ipif_ire); 8349 ire_refrele(save_ire); 8350 break; 8351 } 8352 } 8353 8354 IRB_REFHOLD(ipif_ire->ire_bucket); 8355 /* Has it been removed already ? */ 8356 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8357 IRB_REFRELE(ipif_ire->ire_bucket); 8358 if (sire != NULL) 8359 IRB_REFRELE(sire->ire_bucket); 8360 ire_refrele(ipif_ire); 8361 ire_refrele(save_ire); 8362 break; 8363 } 8364 8365 xmit_mp = first_mp; 8366 /* 8367 * In the case of multirouting, a copy 8368 * of the packet is done before its sending. 8369 * The copy is used to attempt another 8370 * route resolution, in a next loop. 8371 */ 8372 if (ire->ire_flags & RTF_MULTIRT) { 8373 copy_mp = copymsg(first_mp); 8374 if (copy_mp != NULL) { 8375 xmit_mp = copy_mp; 8376 MULTIRT_DEBUG_TAG(first_mp); 8377 } 8378 } 8379 8380 ire_add_then_send(q, ire, xmit_mp); 8381 ire_refrele(save_ire); 8382 8383 /* Assert that sire is not deleted yet. */ 8384 if (sire != NULL) { 8385 ASSERT(sire->ire_ptpn != NULL); 8386 IRB_REFRELE(sire->ire_bucket); 8387 } 8388 8389 /* Assert that ipif_ire is not deleted yet. */ 8390 ASSERT(ipif_ire->ire_ptpn != NULL); 8391 IRB_REFRELE(ipif_ire->ire_bucket); 8392 ire_refrele(ipif_ire); 8393 8394 /* 8395 * If copy_mp is not NULL, multirouting was 8396 * requested. We loop to initiate a next 8397 * route resolution attempt, starting from sire. 8398 */ 8399 if (copy_mp != NULL) { 8400 /* 8401 * Search for the next unresolved 8402 * multirt route. 8403 */ 8404 copy_mp = NULL; 8405 ipif_ire = NULL; 8406 ire = NULL; 8407 multirt_resolve_next = B_TRUE; 8408 continue; 8409 } 8410 if (sire != NULL) 8411 ire_refrele(sire); 8412 ipif_refrele(src_ipif); 8413 ill_refrele(dst_ill); 8414 return; 8415 } 8416 case IRE_IF_NORESOLVER: { 8417 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8418 dst_ill->ill_resolver_mp == NULL) { 8419 ip1dbg(("ip_newroute: dst_ill %p " 8420 "for IRE_IF_NORESOLVER ire %p has " 8421 "no ill_resolver_mp\n", 8422 (void *)dst_ill, (void *)ire)); 8423 break; 8424 } 8425 8426 /* 8427 * TSol note: We are creating the ire cache for the 8428 * destination 'dst'. If 'dst' is offlink, going 8429 * through the first hop 'gw', the security attributes 8430 * of 'dst' must be set to point to the gateway 8431 * credentials of gateway 'gw'. If 'dst' is onlink, it 8432 * is possible that 'dst' is a potential gateway that is 8433 * referenced by some route that has some security 8434 * attributes. Thus in the former case, we need to do a 8435 * gcgrp_lookup of 'gw' while in the latter case we 8436 * need to do gcgrp_lookup of 'dst' itself. 8437 */ 8438 ga.ga_af = AF_INET; 8439 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8440 &ga.ga_addr); 8441 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8442 8443 ire = ire_create( 8444 (uchar_t *)&dst, /* dest address */ 8445 (uchar_t *)&ip_g_all_ones, /* mask */ 8446 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8447 (uchar_t *)&gw, /* gateway address */ 8448 &save_ire->ire_max_frag, 8449 NULL, /* no src nce */ 8450 dst_ill->ill_rq, /* recv-from queue */ 8451 dst_ill->ill_wq, /* send-to queue */ 8452 IRE_CACHE, 8453 src_ipif, 8454 save_ire->ire_mask, /* Parent mask */ 8455 (sire != NULL) ? /* Parent handle */ 8456 sire->ire_phandle : 0, 8457 save_ire->ire_ihandle, /* Interface handle */ 8458 (sire != NULL) ? sire->ire_flags & 8459 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8460 &(save_ire->ire_uinfo), 8461 NULL, 8462 gcgrp, 8463 ipst); 8464 8465 if (ire == NULL) { 8466 if (gcgrp != NULL) { 8467 GCGRP_REFRELE(gcgrp); 8468 gcgrp = NULL; 8469 } 8470 ire_refrele(save_ire); 8471 break; 8472 } 8473 8474 /* reference now held by IRE */ 8475 gcgrp = NULL; 8476 8477 ire->ire_marks |= ire_marks; 8478 8479 /* Prevent save_ire from getting deleted */ 8480 IRB_REFHOLD(save_ire->ire_bucket); 8481 /* Has it been removed already ? */ 8482 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8483 IRB_REFRELE(save_ire->ire_bucket); 8484 ire_refrele(save_ire); 8485 break; 8486 } 8487 8488 /* 8489 * In the case of multirouting, a copy 8490 * of the packet is made before it is sent. 8491 * The copy is used in the next 8492 * loop to attempt another resolution. 8493 */ 8494 xmit_mp = first_mp; 8495 if ((sire != NULL) && 8496 (sire->ire_flags & RTF_MULTIRT)) { 8497 copy_mp = copymsg(first_mp); 8498 if (copy_mp != NULL) { 8499 xmit_mp = copy_mp; 8500 MULTIRT_DEBUG_TAG(first_mp); 8501 } 8502 } 8503 ire_add_then_send(q, ire, xmit_mp); 8504 8505 /* Assert that it is not deleted yet. */ 8506 ASSERT(save_ire->ire_ptpn != NULL); 8507 IRB_REFRELE(save_ire->ire_bucket); 8508 ire_refrele(save_ire); 8509 8510 if (copy_mp != NULL) { 8511 /* 8512 * If we found a (no)resolver, we ignore any 8513 * trailing top priority IRE_CACHE in further 8514 * loops. This ensures that we do not omit any 8515 * (no)resolver. 8516 * This IRE_CACHE, if any, will be processed 8517 * by another thread entering ip_newroute(). 8518 * IRE_CACHE entries, if any, will be processed 8519 * by another thread entering ip_newroute(), 8520 * (upon resolver response, for instance). 8521 * This aims to force parallel multirt 8522 * resolutions as soon as a packet must be sent. 8523 * In the best case, after the tx of only one 8524 * packet, all reachable routes are resolved. 8525 * Otherwise, the resolution of all RTF_MULTIRT 8526 * routes would require several emissions. 8527 */ 8528 multirt_flags &= ~MULTIRT_CACHEGW; 8529 8530 /* 8531 * Search for the next unresolved multirt 8532 * route. 8533 */ 8534 copy_mp = NULL; 8535 save_ire = NULL; 8536 ire = NULL; 8537 multirt_resolve_next = B_TRUE; 8538 continue; 8539 } 8540 8541 /* 8542 * Don't need sire anymore 8543 */ 8544 if (sire != NULL) 8545 ire_refrele(sire); 8546 8547 ipif_refrele(src_ipif); 8548 ill_refrele(dst_ill); 8549 return; 8550 } 8551 case IRE_IF_RESOLVER: 8552 /* 8553 * We can't build an IRE_CACHE yet, but at least we 8554 * found a resolver that can help. 8555 */ 8556 res_mp = dst_ill->ill_resolver_mp; 8557 if (!OK_RESOLVER_MP(res_mp)) 8558 break; 8559 8560 /* 8561 * To be at this point in the code with a non-zero gw 8562 * means that dst is reachable through a gateway that 8563 * we have never resolved. By changing dst to the gw 8564 * addr we resolve the gateway first. 8565 * When ire_add_then_send() tries to put the IP dg 8566 * to dst, it will reenter ip_newroute() at which 8567 * time we will find the IRE_CACHE for the gw and 8568 * create another IRE_CACHE in case IRE_CACHE above. 8569 */ 8570 if (gw != INADDR_ANY) { 8571 /* 8572 * The source ipif that was determined above was 8573 * relative to the destination address, not the 8574 * gateway's. If src_ipif was not taken out of 8575 * the IRE_IF_RESOLVER entry, we'll need to call 8576 * ipif_select_source() again. 8577 */ 8578 if (src_ipif != ire->ire_ipif) { 8579 ipif_refrele(src_ipif); 8580 src_ipif = ipif_select_source(dst_ill, 8581 gw, zoneid); 8582 if (src_ipif == NULL) { 8583 if (ip_debug > 2) { 8584 pr_addr_dbg( 8585 "ip_newroute: no " 8586 "src for gw %s ", 8587 AF_INET, &gw); 8588 printf("on " 8589 "interface %s\n", 8590 dst_ill->ill_name); 8591 } 8592 goto icmp_err_ret; 8593 } 8594 } 8595 save_dst = dst; 8596 dst = gw; 8597 gw = INADDR_ANY; 8598 } 8599 8600 /* 8601 * We obtain a partial IRE_CACHE which we will pass 8602 * along with the resolver query. When the response 8603 * comes back it will be there ready for us to add. 8604 * The ire_max_frag is atomically set under the 8605 * irebucket lock in ire_add_v[46]. 8606 */ 8607 8608 ire = ire_create_mp( 8609 (uchar_t *)&dst, /* dest address */ 8610 (uchar_t *)&ip_g_all_ones, /* mask */ 8611 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8612 (uchar_t *)&gw, /* gateway address */ 8613 NULL, /* ire_max_frag */ 8614 NULL, /* no src nce */ 8615 dst_ill->ill_rq, /* recv-from queue */ 8616 dst_ill->ill_wq, /* send-to queue */ 8617 IRE_CACHE, 8618 src_ipif, /* Interface ipif */ 8619 save_ire->ire_mask, /* Parent mask */ 8620 0, 8621 save_ire->ire_ihandle, /* Interface handle */ 8622 0, /* flags if any */ 8623 &(save_ire->ire_uinfo), 8624 NULL, 8625 NULL, 8626 ipst); 8627 8628 if (ire == NULL) { 8629 ire_refrele(save_ire); 8630 break; 8631 } 8632 8633 if ((sire != NULL) && 8634 (sire->ire_flags & RTF_MULTIRT)) { 8635 copy_mp = copymsg(first_mp); 8636 if (copy_mp != NULL) 8637 MULTIRT_DEBUG_TAG(copy_mp); 8638 } 8639 8640 ire->ire_marks |= ire_marks; 8641 8642 /* 8643 * Construct message chain for the resolver 8644 * of the form: 8645 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8646 * Packet could contain a IPSEC_OUT mp. 8647 * 8648 * NOTE : ire will be added later when the response 8649 * comes back from ARP. If the response does not 8650 * come back, ARP frees the packet. For this reason, 8651 * we can't REFHOLD the bucket of save_ire to prevent 8652 * deletions. We may not be able to REFRELE the bucket 8653 * if the response never comes back. Thus, before 8654 * adding the ire, ire_add_v4 will make sure that the 8655 * interface route does not get deleted. This is the 8656 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8657 * where we can always prevent deletions because of 8658 * the synchronous nature of adding IRES i.e 8659 * ire_add_then_send is called after creating the IRE. 8660 */ 8661 ASSERT(ire->ire_mp != NULL); 8662 ire->ire_mp->b_cont = first_mp; 8663 /* Have saved_mp handy, for cleanup if canput fails */ 8664 saved_mp = mp; 8665 mp = copyb(res_mp); 8666 if (mp == NULL) { 8667 /* Prepare for cleanup */ 8668 mp = saved_mp; /* pkt */ 8669 ire_delete(ire); /* ire_mp */ 8670 ire = NULL; 8671 ire_refrele(save_ire); 8672 if (copy_mp != NULL) { 8673 MULTIRT_DEBUG_UNTAG(copy_mp); 8674 freemsg(copy_mp); 8675 copy_mp = NULL; 8676 } 8677 break; 8678 } 8679 linkb(mp, ire->ire_mp); 8680 8681 /* 8682 * Fill in the source and dest addrs for the resolver. 8683 * NOTE: this depends on memory layouts imposed by 8684 * ill_init(). 8685 */ 8686 areq = (areq_t *)mp->b_rptr; 8687 addrp = (ipaddr_t *)((char *)areq + 8688 areq->areq_sender_addr_offset); 8689 *addrp = save_ire->ire_src_addr; 8690 8691 ire_refrele(save_ire); 8692 addrp = (ipaddr_t *)((char *)areq + 8693 areq->areq_target_addr_offset); 8694 *addrp = dst; 8695 /* Up to the resolver. */ 8696 if (canputnext(dst_ill->ill_rq) && 8697 !(dst_ill->ill_arp_closing)) { 8698 putnext(dst_ill->ill_rq, mp); 8699 ire = NULL; 8700 if (copy_mp != NULL) { 8701 /* 8702 * If we found a resolver, we ignore 8703 * any trailing top priority IRE_CACHE 8704 * in the further loops. This ensures 8705 * that we do not omit any resolver. 8706 * IRE_CACHE entries, if any, will be 8707 * processed next time we enter 8708 * ip_newroute(). 8709 */ 8710 multirt_flags &= ~MULTIRT_CACHEGW; 8711 /* 8712 * Search for the next unresolved 8713 * multirt route. 8714 */ 8715 first_mp = copy_mp; 8716 copy_mp = NULL; 8717 /* Prepare the next resolution loop. */ 8718 mp = first_mp; 8719 EXTRACT_PKT_MP(mp, first_mp, 8720 mctl_present); 8721 if (mctl_present) 8722 io = (ipsec_out_t *) 8723 first_mp->b_rptr; 8724 ipha = (ipha_t *)mp->b_rptr; 8725 8726 ASSERT(sire != NULL); 8727 8728 dst = save_dst; 8729 multirt_resolve_next = B_TRUE; 8730 continue; 8731 } 8732 8733 if (sire != NULL) 8734 ire_refrele(sire); 8735 8736 /* 8737 * The response will come back in ip_wput 8738 * with db_type IRE_DB_TYPE. 8739 */ 8740 ipif_refrele(src_ipif); 8741 ill_refrele(dst_ill); 8742 return; 8743 } else { 8744 /* Prepare for cleanup */ 8745 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8746 mp); 8747 mp->b_cont = NULL; 8748 freeb(mp); /* areq */ 8749 /* 8750 * this is an ire that is not added to the 8751 * cache. ire_freemblk will handle the release 8752 * of any resources associated with the ire. 8753 */ 8754 ire_delete(ire); /* ire_mp */ 8755 mp = saved_mp; /* pkt */ 8756 ire = NULL; 8757 if (copy_mp != NULL) { 8758 MULTIRT_DEBUG_UNTAG(copy_mp); 8759 freemsg(copy_mp); 8760 copy_mp = NULL; 8761 } 8762 break; 8763 } 8764 default: 8765 break; 8766 } 8767 } while (multirt_resolve_next); 8768 8769 ip1dbg(("ip_newroute: dropped\n")); 8770 /* Did this packet originate externally? */ 8771 if (mp->b_prev) { 8772 mp->b_next = NULL; 8773 mp->b_prev = NULL; 8774 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8775 } else { 8776 if (dst_ill != NULL) { 8777 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8778 } else { 8779 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8780 } 8781 } 8782 ASSERT(copy_mp == NULL); 8783 MULTIRT_DEBUG_UNTAG(first_mp); 8784 freemsg(first_mp); 8785 if (ire != NULL) 8786 ire_refrele(ire); 8787 if (sire != NULL) 8788 ire_refrele(sire); 8789 if (src_ipif != NULL) 8790 ipif_refrele(src_ipif); 8791 if (dst_ill != NULL) 8792 ill_refrele(dst_ill); 8793 return; 8794 8795 icmp_err_ret: 8796 ip1dbg(("ip_newroute: no route\n")); 8797 if (src_ipif != NULL) 8798 ipif_refrele(src_ipif); 8799 if (dst_ill != NULL) 8800 ill_refrele(dst_ill); 8801 if (sire != NULL) 8802 ire_refrele(sire); 8803 /* Did this packet originate externally? */ 8804 if (mp->b_prev) { 8805 mp->b_next = NULL; 8806 mp->b_prev = NULL; 8807 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8808 q = WR(q); 8809 } else { 8810 /* 8811 * There is no outgoing ill, so just increment the 8812 * system MIB. 8813 */ 8814 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8815 /* 8816 * Since ip_wput() isn't close to finished, we fill 8817 * in enough of the header for credible error reporting. 8818 */ 8819 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8820 /* Failed */ 8821 MULTIRT_DEBUG_UNTAG(first_mp); 8822 freemsg(first_mp); 8823 if (ire != NULL) 8824 ire_refrele(ire); 8825 return; 8826 } 8827 } 8828 8829 /* 8830 * At this point we will have ire only if RTF_BLACKHOLE 8831 * or RTF_REJECT flags are set on the IRE. It will not 8832 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8833 */ 8834 if (ire != NULL) { 8835 if (ire->ire_flags & RTF_BLACKHOLE) { 8836 ire_refrele(ire); 8837 MULTIRT_DEBUG_UNTAG(first_mp); 8838 freemsg(first_mp); 8839 return; 8840 } 8841 ire_refrele(ire); 8842 } 8843 if (ip_source_routed(ipha, ipst)) { 8844 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8845 zoneid, ipst); 8846 return; 8847 } 8848 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8849 } 8850 8851 ip_opt_info_t zero_info; 8852 8853 /* 8854 * IPv4 - 8855 * ip_newroute_ipif is called by ip_wput_multicast and 8856 * ip_rput_forward_multicast whenever we need to send 8857 * out a packet to a destination address for which we do not have specific 8858 * routing information. It is used when the packet will be sent out 8859 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8860 * socket option is set or icmp error message wants to go out on a particular 8861 * interface for a unicast packet. 8862 * 8863 * In most cases, the destination address is resolved thanks to the ipif 8864 * intrinsic resolver. However, there are some cases where the call to 8865 * ip_newroute_ipif must take into account the potential presence of 8866 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8867 * that uses the interface. This is specified through flags, 8868 * which can be a combination of: 8869 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8870 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8871 * and flags. Additionally, the packet source address has to be set to 8872 * the specified address. The caller is thus expected to set this flag 8873 * if the packet has no specific source address yet. 8874 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8875 * flag, the resulting ire will inherit the flag. All unresolved routes 8876 * to the destination must be explored in the same call to 8877 * ip_newroute_ipif(). 8878 */ 8879 static void 8880 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8881 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8882 { 8883 areq_t *areq; 8884 ire_t *ire = NULL; 8885 mblk_t *res_mp; 8886 ipaddr_t *addrp; 8887 mblk_t *first_mp; 8888 ire_t *save_ire = NULL; 8889 ipif_t *src_ipif = NULL; 8890 ushort_t ire_marks = 0; 8891 ill_t *dst_ill = NULL; 8892 ipha_t *ipha; 8893 mblk_t *saved_mp; 8894 ire_t *fire = NULL; 8895 mblk_t *copy_mp = NULL; 8896 boolean_t multirt_resolve_next; 8897 boolean_t unspec_src; 8898 ipaddr_t ipha_dst; 8899 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8900 8901 /* 8902 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8903 * here for uniformity 8904 */ 8905 ipif_refhold(ipif); 8906 8907 /* 8908 * This loop is run only once in most cases. 8909 * We loop to resolve further routes only when the destination 8910 * can be reached through multiple RTF_MULTIRT-flagged ires. 8911 */ 8912 do { 8913 if (dst_ill != NULL) { 8914 ill_refrele(dst_ill); 8915 dst_ill = NULL; 8916 } 8917 if (src_ipif != NULL) { 8918 ipif_refrele(src_ipif); 8919 src_ipif = NULL; 8920 } 8921 multirt_resolve_next = B_FALSE; 8922 8923 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8924 ipif->ipif_ill->ill_name)); 8925 8926 first_mp = mp; 8927 if (DB_TYPE(mp) == M_CTL) 8928 mp = mp->b_cont; 8929 ipha = (ipha_t *)mp->b_rptr; 8930 8931 /* 8932 * Save the packet destination address, we may need it after 8933 * the packet has been consumed. 8934 */ 8935 ipha_dst = ipha->ipha_dst; 8936 8937 /* 8938 * If the interface is a pt-pt interface we look for an 8939 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8940 * local_address and the pt-pt destination address. Otherwise 8941 * we just match the local address. 8942 * NOTE: dst could be different than ipha->ipha_dst in case 8943 * of sending igmp multicast packets over a point-to-point 8944 * connection. 8945 * Thus we must be careful enough to check ipha_dst to be a 8946 * multicast address, otherwise it will take xmit_if path for 8947 * multicast packets resulting into kernel stack overflow by 8948 * repeated calls to ip_newroute_ipif from ire_send(). 8949 */ 8950 if (CLASSD(ipha_dst) && 8951 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8952 goto err_ret; 8953 } 8954 8955 /* 8956 * We check if an IRE_OFFSUBNET for the addr that goes through 8957 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8958 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8959 * propagate its flags to the new ire. 8960 */ 8961 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8962 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8963 ip2dbg(("ip_newroute_ipif: " 8964 "ipif_lookup_multi_ire(" 8965 "ipif %p, dst %08x) = fire %p\n", 8966 (void *)ipif, ntohl(dst), (void *)fire)); 8967 } 8968 8969 /* 8970 * Note: While we pick a dst_ill we are really only 8971 * interested in the ill for load spreading. The source 8972 * ipif is determined by source address selection below. 8973 */ 8974 if (IS_IPMP(ipif->ipif_ill)) { 8975 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 8976 8977 if (CLASSD(ipha_dst)) 8978 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 8979 else 8980 dst_ill = ipmp_illgrp_hold_next_ill(illg); 8981 } else { 8982 dst_ill = ipif->ipif_ill; 8983 ill_refhold(dst_ill); 8984 } 8985 8986 if (dst_ill == NULL) { 8987 if (ip_debug > 2) { 8988 pr_addr_dbg("ip_newroute_ipif: no dst ill " 8989 "for dst %s\n", AF_INET, &dst); 8990 } 8991 goto err_ret; 8992 } 8993 8994 /* 8995 * Pick a source address preferring non-deprecated ones. 8996 * Unlike ip_newroute, we don't do any source address 8997 * selection here since for multicast it really does not help 8998 * in inbound load spreading as in the unicast case. 8999 */ 9000 if ((flags & RTF_SETSRC) && (fire != NULL) && 9001 (fire->ire_flags & RTF_SETSRC)) { 9002 /* 9003 * As requested by flags, an IRE_OFFSUBNET was looked up 9004 * on that interface. This ire has RTF_SETSRC flag, so 9005 * the source address of the packet must be changed. 9006 * Check that the ipif matching the requested source 9007 * address still exists. 9008 */ 9009 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9010 zoneid, NULL, NULL, NULL, NULL, ipst); 9011 } 9012 9013 unspec_src = (connp != NULL && connp->conn_unspec_src); 9014 9015 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9016 (IS_IPMP(ipif->ipif_ill) || 9017 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9018 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9019 (connp != NULL && ipif->ipif_zoneid != zoneid && 9020 ipif->ipif_zoneid != ALL_ZONES)) && 9021 (src_ipif == NULL) && 9022 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9023 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9024 if (src_ipif == NULL) { 9025 if (ip_debug > 2) { 9026 /* ip1dbg */ 9027 pr_addr_dbg("ip_newroute_ipif: " 9028 "no src for dst %s", 9029 AF_INET, &dst); 9030 } 9031 ip1dbg((" on interface %s\n", 9032 dst_ill->ill_name)); 9033 goto err_ret; 9034 } 9035 ipif_refrele(ipif); 9036 ipif = src_ipif; 9037 ipif_refhold(ipif); 9038 } 9039 if (src_ipif == NULL) { 9040 src_ipif = ipif; 9041 ipif_refhold(src_ipif); 9042 } 9043 9044 /* 9045 * Assign a source address while we have the conn. 9046 * We can't have ip_wput_ire pick a source address when the 9047 * packet returns from arp since conn_unspec_src might be set 9048 * and we lose the conn when going through arp. 9049 */ 9050 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9051 ipha->ipha_src = src_ipif->ipif_src_addr; 9052 9053 /* 9054 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9055 * that the outgoing interface does not have an interface ire. 9056 */ 9057 if (CLASSD(ipha_dst) && (connp == NULL || 9058 connp->conn_outgoing_ill == NULL) && 9059 infop->ip_opt_ill_index == 0) { 9060 /* ipif_to_ire returns an held ire */ 9061 ire = ipif_to_ire(ipif); 9062 if (ire == NULL) 9063 goto err_ret; 9064 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9065 goto err_ret; 9066 save_ire = ire; 9067 9068 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9069 "flags %04x\n", 9070 (void *)ire, (void *)ipif, flags)); 9071 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9072 (fire->ire_flags & RTF_MULTIRT)) { 9073 /* 9074 * As requested by flags, an IRE_OFFSUBNET was 9075 * looked up on that interface. This ire has 9076 * RTF_MULTIRT flag, so the resolution loop will 9077 * be re-entered to resolve additional routes on 9078 * other interfaces. For that purpose, a copy of 9079 * the packet is performed at this point. 9080 */ 9081 fire->ire_last_used_time = lbolt; 9082 copy_mp = copymsg(first_mp); 9083 if (copy_mp) { 9084 MULTIRT_DEBUG_TAG(copy_mp); 9085 } 9086 } 9087 if ((flags & RTF_SETSRC) && (fire != NULL) && 9088 (fire->ire_flags & RTF_SETSRC)) { 9089 /* 9090 * As requested by flags, an IRE_OFFSUBET was 9091 * looked up on that interface. This ire has 9092 * RTF_SETSRC flag, so the source address of the 9093 * packet must be changed. 9094 */ 9095 ipha->ipha_src = fire->ire_src_addr; 9096 } 9097 } else { 9098 /* 9099 * The only ways we can come here are: 9100 * 1) IP_BOUND_IF socket option is set 9101 * 2) SO_DONTROUTE socket option is set 9102 * 3) IP_PKTINFO option is passed in as ancillary data. 9103 * In all cases, the new ire will not be added 9104 * into cache table. 9105 */ 9106 ASSERT(connp == NULL || connp->conn_dontroute || 9107 connp->conn_outgoing_ill != NULL || 9108 infop->ip_opt_ill_index != 0); 9109 ire_marks |= IRE_MARK_NOADD; 9110 } 9111 9112 switch (ipif->ipif_net_type) { 9113 case IRE_IF_NORESOLVER: { 9114 /* We have what we need to build an IRE_CACHE. */ 9115 9116 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9117 (dst_ill->ill_resolver_mp == NULL)) { 9118 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9119 "for IRE_IF_NORESOLVER ire %p has " 9120 "no ill_resolver_mp\n", 9121 (void *)dst_ill, (void *)ire)); 9122 break; 9123 } 9124 9125 /* 9126 * The new ire inherits the IRE_OFFSUBNET flags 9127 * and source address, if this was requested. 9128 */ 9129 ire = ire_create( 9130 (uchar_t *)&dst, /* dest address */ 9131 (uchar_t *)&ip_g_all_ones, /* mask */ 9132 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9133 NULL, /* gateway address */ 9134 &ipif->ipif_mtu, 9135 NULL, /* no src nce */ 9136 dst_ill->ill_rq, /* recv-from queue */ 9137 dst_ill->ill_wq, /* send-to queue */ 9138 IRE_CACHE, 9139 src_ipif, 9140 (save_ire != NULL ? save_ire->ire_mask : 0), 9141 (fire != NULL) ? /* Parent handle */ 9142 fire->ire_phandle : 0, 9143 (save_ire != NULL) ? /* Interface handle */ 9144 save_ire->ire_ihandle : 0, 9145 (fire != NULL) ? 9146 (fire->ire_flags & 9147 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9148 (save_ire == NULL ? &ire_uinfo_null : 9149 &save_ire->ire_uinfo), 9150 NULL, 9151 NULL, 9152 ipst); 9153 9154 if (ire == NULL) { 9155 if (save_ire != NULL) 9156 ire_refrele(save_ire); 9157 break; 9158 } 9159 9160 ire->ire_marks |= ire_marks; 9161 9162 /* 9163 * If IRE_MARK_NOADD is set then we need to convert 9164 * the max_fragp to a useable value now. This is 9165 * normally done in ire_add_v[46]. We also need to 9166 * associate the ire with an nce (normally would be 9167 * done in ip_wput_nondata()). 9168 * 9169 * Note that IRE_MARK_NOADD packets created here 9170 * do not have a non-null ire_mp pointer. The null 9171 * value of ire_bucket indicates that they were 9172 * never added. 9173 */ 9174 if (ire->ire_marks & IRE_MARK_NOADD) { 9175 uint_t max_frag; 9176 9177 max_frag = *ire->ire_max_fragp; 9178 ire->ire_max_fragp = NULL; 9179 ire->ire_max_frag = max_frag; 9180 9181 if ((ire->ire_nce = ndp_lookup_v4( 9182 ire_to_ill(ire), 9183 (ire->ire_gateway_addr != INADDR_ANY ? 9184 &ire->ire_gateway_addr : &ire->ire_addr), 9185 B_FALSE)) == NULL) { 9186 if (save_ire != NULL) 9187 ire_refrele(save_ire); 9188 break; 9189 } 9190 ASSERT(ire->ire_nce->nce_state == 9191 ND_REACHABLE); 9192 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9193 } 9194 9195 /* Prevent save_ire from getting deleted */ 9196 if (save_ire != NULL) { 9197 IRB_REFHOLD(save_ire->ire_bucket); 9198 /* Has it been removed already ? */ 9199 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9200 IRB_REFRELE(save_ire->ire_bucket); 9201 ire_refrele(save_ire); 9202 break; 9203 } 9204 } 9205 9206 ire_add_then_send(q, ire, first_mp); 9207 9208 /* Assert that save_ire is not deleted yet. */ 9209 if (save_ire != NULL) { 9210 ASSERT(save_ire->ire_ptpn != NULL); 9211 IRB_REFRELE(save_ire->ire_bucket); 9212 ire_refrele(save_ire); 9213 save_ire = NULL; 9214 } 9215 if (fire != NULL) { 9216 ire_refrele(fire); 9217 fire = NULL; 9218 } 9219 9220 /* 9221 * the resolution loop is re-entered if this 9222 * was requested through flags and if we 9223 * actually are in a multirouting case. 9224 */ 9225 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9226 boolean_t need_resolve = 9227 ire_multirt_need_resolve(ipha_dst, 9228 msg_getlabel(copy_mp), ipst); 9229 if (!need_resolve) { 9230 MULTIRT_DEBUG_UNTAG(copy_mp); 9231 freemsg(copy_mp); 9232 copy_mp = NULL; 9233 } else { 9234 /* 9235 * ipif_lookup_group() calls 9236 * ire_lookup_multi() that uses 9237 * ire_ftable_lookup() to find 9238 * an IRE_INTERFACE for the group. 9239 * In the multirt case, 9240 * ire_lookup_multi() then invokes 9241 * ire_multirt_lookup() to find 9242 * the next resolvable ire. 9243 * As a result, we obtain an new 9244 * interface, derived from the 9245 * next ire. 9246 */ 9247 ipif_refrele(ipif); 9248 ipif = ipif_lookup_group(ipha_dst, 9249 zoneid, ipst); 9250 ip2dbg(("ip_newroute_ipif: " 9251 "multirt dst %08x, ipif %p\n", 9252 htonl(dst), (void *)ipif)); 9253 if (ipif != NULL) { 9254 mp = copy_mp; 9255 copy_mp = NULL; 9256 multirt_resolve_next = B_TRUE; 9257 continue; 9258 } else { 9259 freemsg(copy_mp); 9260 } 9261 } 9262 } 9263 if (ipif != NULL) 9264 ipif_refrele(ipif); 9265 ill_refrele(dst_ill); 9266 ipif_refrele(src_ipif); 9267 return; 9268 } 9269 case IRE_IF_RESOLVER: 9270 /* 9271 * We can't build an IRE_CACHE yet, but at least 9272 * we found a resolver that can help. 9273 */ 9274 res_mp = dst_ill->ill_resolver_mp; 9275 if (!OK_RESOLVER_MP(res_mp)) 9276 break; 9277 9278 /* 9279 * We obtain a partial IRE_CACHE which we will pass 9280 * along with the resolver query. When the response 9281 * comes back it will be there ready for us to add. 9282 * The new ire inherits the IRE_OFFSUBNET flags 9283 * and source address, if this was requested. 9284 * The ire_max_frag is atomically set under the 9285 * irebucket lock in ire_add_v[46]. Only in the 9286 * case of IRE_MARK_NOADD, we set it here itself. 9287 */ 9288 ire = ire_create_mp( 9289 (uchar_t *)&dst, /* dest address */ 9290 (uchar_t *)&ip_g_all_ones, /* mask */ 9291 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9292 NULL, /* gateway address */ 9293 (ire_marks & IRE_MARK_NOADD) ? 9294 ipif->ipif_mtu : 0, /* max_frag */ 9295 NULL, /* no src nce */ 9296 dst_ill->ill_rq, /* recv-from queue */ 9297 dst_ill->ill_wq, /* send-to queue */ 9298 IRE_CACHE, 9299 src_ipif, 9300 (save_ire != NULL ? save_ire->ire_mask : 0), 9301 (fire != NULL) ? /* Parent handle */ 9302 fire->ire_phandle : 0, 9303 (save_ire != NULL) ? /* Interface handle */ 9304 save_ire->ire_ihandle : 0, 9305 (fire != NULL) ? /* flags if any */ 9306 (fire->ire_flags & 9307 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9308 (save_ire == NULL ? &ire_uinfo_null : 9309 &save_ire->ire_uinfo), 9310 NULL, 9311 NULL, 9312 ipst); 9313 9314 if (save_ire != NULL) { 9315 ire_refrele(save_ire); 9316 save_ire = NULL; 9317 } 9318 if (ire == NULL) 9319 break; 9320 9321 ire->ire_marks |= ire_marks; 9322 /* 9323 * Construct message chain for the resolver of the 9324 * form: 9325 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9326 * 9327 * NOTE : ire will be added later when the response 9328 * comes back from ARP. If the response does not 9329 * come back, ARP frees the packet. For this reason, 9330 * we can't REFHOLD the bucket of save_ire to prevent 9331 * deletions. We may not be able to REFRELE the 9332 * bucket if the response never comes back. 9333 * Thus, before adding the ire, ire_add_v4 will make 9334 * sure that the interface route does not get deleted. 9335 * This is the only case unlike ip_newroute_v6, 9336 * ip_newroute_ipif_v6 where we can always prevent 9337 * deletions because ire_add_then_send is called after 9338 * creating the IRE. 9339 * If IRE_MARK_NOADD is set, then ire_add_then_send 9340 * does not add this IRE into the IRE CACHE. 9341 */ 9342 ASSERT(ire->ire_mp != NULL); 9343 ire->ire_mp->b_cont = first_mp; 9344 /* Have saved_mp handy, for cleanup if canput fails */ 9345 saved_mp = mp; 9346 mp = copyb(res_mp); 9347 if (mp == NULL) { 9348 /* Prepare for cleanup */ 9349 mp = saved_mp; /* pkt */ 9350 ire_delete(ire); /* ire_mp */ 9351 ire = NULL; 9352 if (copy_mp != NULL) { 9353 MULTIRT_DEBUG_UNTAG(copy_mp); 9354 freemsg(copy_mp); 9355 copy_mp = NULL; 9356 } 9357 break; 9358 } 9359 linkb(mp, ire->ire_mp); 9360 9361 /* 9362 * Fill in the source and dest addrs for the resolver. 9363 * NOTE: this depends on memory layouts imposed by 9364 * ill_init(). There are corner cases above where we 9365 * might've created the IRE with an INADDR_ANY source 9366 * address (e.g., if the zeroth ipif on an underlying 9367 * ill in an IPMP group is 0.0.0.0, but another ipif 9368 * on the ill has a usable test address). If so, tell 9369 * ARP to use ipha_src as its sender address. 9370 */ 9371 areq = (areq_t *)mp->b_rptr; 9372 addrp = (ipaddr_t *)((char *)areq + 9373 areq->areq_sender_addr_offset); 9374 if (ire->ire_src_addr != INADDR_ANY) 9375 *addrp = ire->ire_src_addr; 9376 else 9377 *addrp = ipha->ipha_src; 9378 addrp = (ipaddr_t *)((char *)areq + 9379 areq->areq_target_addr_offset); 9380 *addrp = dst; 9381 /* Up to the resolver. */ 9382 if (canputnext(dst_ill->ill_rq) && 9383 !(dst_ill->ill_arp_closing)) { 9384 putnext(dst_ill->ill_rq, mp); 9385 /* 9386 * The response will come back in ip_wput 9387 * with db_type IRE_DB_TYPE. 9388 */ 9389 } else { 9390 mp->b_cont = NULL; 9391 freeb(mp); /* areq */ 9392 ire_delete(ire); /* ire_mp */ 9393 saved_mp->b_next = NULL; 9394 saved_mp->b_prev = NULL; 9395 freemsg(first_mp); /* pkt */ 9396 ip2dbg(("ip_newroute_ipif: dropped\n")); 9397 } 9398 9399 if (fire != NULL) { 9400 ire_refrele(fire); 9401 fire = NULL; 9402 } 9403 9404 /* 9405 * The resolution loop is re-entered if this was 9406 * requested through flags and we actually are 9407 * in a multirouting case. 9408 */ 9409 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9410 boolean_t need_resolve = 9411 ire_multirt_need_resolve(ipha_dst, 9412 msg_getlabel(copy_mp), ipst); 9413 if (!need_resolve) { 9414 MULTIRT_DEBUG_UNTAG(copy_mp); 9415 freemsg(copy_mp); 9416 copy_mp = NULL; 9417 } else { 9418 /* 9419 * ipif_lookup_group() calls 9420 * ire_lookup_multi() that uses 9421 * ire_ftable_lookup() to find 9422 * an IRE_INTERFACE for the group. 9423 * In the multirt case, 9424 * ire_lookup_multi() then invokes 9425 * ire_multirt_lookup() to find 9426 * the next resolvable ire. 9427 * As a result, we obtain an new 9428 * interface, derived from the 9429 * next ire. 9430 */ 9431 ipif_refrele(ipif); 9432 ipif = ipif_lookup_group(ipha_dst, 9433 zoneid, ipst); 9434 if (ipif != NULL) { 9435 mp = copy_mp; 9436 copy_mp = NULL; 9437 multirt_resolve_next = B_TRUE; 9438 continue; 9439 } else { 9440 freemsg(copy_mp); 9441 } 9442 } 9443 } 9444 if (ipif != NULL) 9445 ipif_refrele(ipif); 9446 ill_refrele(dst_ill); 9447 ipif_refrele(src_ipif); 9448 return; 9449 default: 9450 break; 9451 } 9452 } while (multirt_resolve_next); 9453 9454 err_ret: 9455 ip2dbg(("ip_newroute_ipif: dropped\n")); 9456 if (fire != NULL) 9457 ire_refrele(fire); 9458 ipif_refrele(ipif); 9459 /* Did this packet originate externally? */ 9460 if (dst_ill != NULL) 9461 ill_refrele(dst_ill); 9462 if (src_ipif != NULL) 9463 ipif_refrele(src_ipif); 9464 if (mp->b_prev || mp->b_next) { 9465 mp->b_next = NULL; 9466 mp->b_prev = NULL; 9467 } else { 9468 /* 9469 * Since ip_wput() isn't close to finished, we fill 9470 * in enough of the header for credible error reporting. 9471 */ 9472 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9473 /* Failed */ 9474 freemsg(first_mp); 9475 if (ire != NULL) 9476 ire_refrele(ire); 9477 return; 9478 } 9479 } 9480 /* 9481 * At this point we will have ire only if RTF_BLACKHOLE 9482 * or RTF_REJECT flags are set on the IRE. It will not 9483 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9484 */ 9485 if (ire != NULL) { 9486 if (ire->ire_flags & RTF_BLACKHOLE) { 9487 ire_refrele(ire); 9488 freemsg(first_mp); 9489 return; 9490 } 9491 ire_refrele(ire); 9492 } 9493 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9494 } 9495 9496 /* Name/Value Table Lookup Routine */ 9497 char * 9498 ip_nv_lookup(nv_t *nv, int value) 9499 { 9500 if (!nv) 9501 return (NULL); 9502 for (; nv->nv_name; nv++) { 9503 if (nv->nv_value == value) 9504 return (nv->nv_name); 9505 } 9506 return ("unknown"); 9507 } 9508 9509 /* 9510 * This is a module open, i.e. this is a control stream for access 9511 * to a DLPI device. We allocate an ill_t as the instance data in 9512 * this case. 9513 */ 9514 int 9515 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9516 { 9517 ill_t *ill; 9518 int err; 9519 zoneid_t zoneid; 9520 netstack_t *ns; 9521 ip_stack_t *ipst; 9522 9523 /* 9524 * Prevent unprivileged processes from pushing IP so that 9525 * they can't send raw IP. 9526 */ 9527 if (secpolicy_net_rawaccess(credp) != 0) 9528 return (EPERM); 9529 9530 ns = netstack_find_by_cred(credp); 9531 ASSERT(ns != NULL); 9532 ipst = ns->netstack_ip; 9533 ASSERT(ipst != NULL); 9534 9535 /* 9536 * For exclusive stacks we set the zoneid to zero 9537 * to make IP operate as if in the global zone. 9538 */ 9539 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9540 zoneid = GLOBAL_ZONEID; 9541 else 9542 zoneid = crgetzoneid(credp); 9543 9544 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9545 q->q_ptr = WR(q)->q_ptr = ill; 9546 ill->ill_ipst = ipst; 9547 ill->ill_zoneid = zoneid; 9548 9549 /* 9550 * ill_init initializes the ill fields and then sends down 9551 * down a DL_INFO_REQ after calling qprocson. 9552 */ 9553 err = ill_init(q, ill); 9554 if (err != 0) { 9555 mi_free(ill); 9556 netstack_rele(ipst->ips_netstack); 9557 q->q_ptr = NULL; 9558 WR(q)->q_ptr = NULL; 9559 return (err); 9560 } 9561 9562 /* ill_init initializes the ipsq marking this thread as writer */ 9563 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9564 /* Wait for the DL_INFO_ACK */ 9565 mutex_enter(&ill->ill_lock); 9566 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9567 /* 9568 * Return value of 0 indicates a pending signal. 9569 */ 9570 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9571 if (err == 0) { 9572 mutex_exit(&ill->ill_lock); 9573 (void) ip_close(q, 0); 9574 return (EINTR); 9575 } 9576 } 9577 mutex_exit(&ill->ill_lock); 9578 9579 /* 9580 * ip_rput_other could have set an error in ill_error on 9581 * receipt of M_ERROR. 9582 */ 9583 9584 err = ill->ill_error; 9585 if (err != 0) { 9586 (void) ip_close(q, 0); 9587 return (err); 9588 } 9589 9590 ill->ill_credp = credp; 9591 crhold(credp); 9592 9593 mutex_enter(&ipst->ips_ip_mi_lock); 9594 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9595 credp); 9596 mutex_exit(&ipst->ips_ip_mi_lock); 9597 if (err) { 9598 (void) ip_close(q, 0); 9599 return (err); 9600 } 9601 return (0); 9602 } 9603 9604 /* For /dev/ip aka AF_INET open */ 9605 int 9606 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9607 { 9608 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9609 } 9610 9611 /* For /dev/ip6 aka AF_INET6 open */ 9612 int 9613 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9614 { 9615 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9616 } 9617 9618 /* IP open routine. */ 9619 int 9620 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9621 boolean_t isv6) 9622 { 9623 conn_t *connp; 9624 major_t maj; 9625 zoneid_t zoneid; 9626 netstack_t *ns; 9627 ip_stack_t *ipst; 9628 9629 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9630 9631 /* Allow reopen. */ 9632 if (q->q_ptr != NULL) 9633 return (0); 9634 9635 if (sflag & MODOPEN) { 9636 /* This is a module open */ 9637 return (ip_modopen(q, devp, flag, sflag, credp)); 9638 } 9639 9640 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9641 /* 9642 * Non streams based socket looking for a stream 9643 * to access IP 9644 */ 9645 return (ip_helper_stream_setup(q, devp, flag, sflag, 9646 credp, isv6)); 9647 } 9648 9649 ns = netstack_find_by_cred(credp); 9650 ASSERT(ns != NULL); 9651 ipst = ns->netstack_ip; 9652 ASSERT(ipst != NULL); 9653 9654 /* 9655 * For exclusive stacks we set the zoneid to zero 9656 * to make IP operate as if in the global zone. 9657 */ 9658 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9659 zoneid = GLOBAL_ZONEID; 9660 else 9661 zoneid = crgetzoneid(credp); 9662 9663 /* 9664 * We are opening as a device. This is an IP client stream, and we 9665 * allocate an conn_t as the instance data. 9666 */ 9667 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9668 9669 /* 9670 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9671 * done by netstack_find_by_cred() 9672 */ 9673 netstack_rele(ipst->ips_netstack); 9674 9675 connp->conn_zoneid = zoneid; 9676 connp->conn_sqp = NULL; 9677 connp->conn_initial_sqp = NULL; 9678 connp->conn_final_sqp = NULL; 9679 9680 connp->conn_upq = q; 9681 q->q_ptr = WR(q)->q_ptr = connp; 9682 9683 if (flag & SO_SOCKSTR) 9684 connp->conn_flags |= IPCL_SOCKET; 9685 9686 /* Minor tells us which /dev entry was opened */ 9687 if (isv6) { 9688 connp->conn_flags |= IPCL_ISV6; 9689 connp->conn_af_isv6 = B_TRUE; 9690 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9691 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9692 } else { 9693 connp->conn_af_isv6 = B_FALSE; 9694 connp->conn_pkt_isv6 = B_FALSE; 9695 } 9696 9697 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9698 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9699 connp->conn_minor_arena = ip_minor_arena_la; 9700 } else { 9701 /* 9702 * Either minor numbers in the large arena were exhausted 9703 * or a non socket application is doing the open. 9704 * Try to allocate from the small arena. 9705 */ 9706 if ((connp->conn_dev = 9707 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9708 /* CONN_DEC_REF takes care of netstack_rele() */ 9709 q->q_ptr = WR(q)->q_ptr = NULL; 9710 CONN_DEC_REF(connp); 9711 return (EBUSY); 9712 } 9713 connp->conn_minor_arena = ip_minor_arena_sa; 9714 } 9715 9716 maj = getemajor(*devp); 9717 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9718 9719 /* 9720 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9721 */ 9722 connp->conn_cred = credp; 9723 9724 /* 9725 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9726 */ 9727 connp->conn_recv = ip_conn_input; 9728 9729 crhold(connp->conn_cred); 9730 9731 /* 9732 * If the caller has the process-wide flag set, then default to MAC 9733 * exempt mode. This allows read-down to unlabeled hosts. 9734 */ 9735 if (getpflags(NET_MAC_AWARE, credp) != 0) 9736 connp->conn_mac_exempt = B_TRUE; 9737 9738 connp->conn_rq = q; 9739 connp->conn_wq = WR(q); 9740 9741 /* Non-zero default values */ 9742 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9743 9744 /* 9745 * Make the conn globally visible to walkers 9746 */ 9747 ASSERT(connp->conn_ref == 1); 9748 mutex_enter(&connp->conn_lock); 9749 connp->conn_state_flags &= ~CONN_INCIPIENT; 9750 mutex_exit(&connp->conn_lock); 9751 9752 qprocson(q); 9753 9754 return (0); 9755 } 9756 9757 /* 9758 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9759 * Note that there is no race since either ip_output function works - it 9760 * is just an optimization to enter the best ip_output routine directly. 9761 */ 9762 void 9763 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9764 ip_stack_t *ipst) 9765 { 9766 if (isv6) { 9767 if (bump_mib) { 9768 BUMP_MIB(&ipst->ips_ip6_mib, 9769 ipIfStatsOutSwitchIPVersion); 9770 } 9771 connp->conn_send = ip_output_v6; 9772 connp->conn_pkt_isv6 = B_TRUE; 9773 } else { 9774 if (bump_mib) { 9775 BUMP_MIB(&ipst->ips_ip_mib, 9776 ipIfStatsOutSwitchIPVersion); 9777 } 9778 connp->conn_send = ip_output; 9779 connp->conn_pkt_isv6 = B_FALSE; 9780 } 9781 9782 } 9783 9784 /* 9785 * See if IPsec needs loading because of the options in mp. 9786 */ 9787 static boolean_t 9788 ipsec_opt_present(mblk_t *mp) 9789 { 9790 uint8_t *optcp, *next_optcp, *opt_endcp; 9791 struct opthdr *opt; 9792 struct T_opthdr *topt; 9793 int opthdr_len; 9794 t_uscalar_t optname, optlevel; 9795 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9796 ipsec_req_t *ipsr; 9797 9798 /* 9799 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9800 * return TRUE. 9801 */ 9802 9803 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9804 opt_endcp = optcp + tor->OPT_length; 9805 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9806 opthdr_len = sizeof (struct T_opthdr); 9807 } else { /* O_OPTMGMT_REQ */ 9808 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9809 opthdr_len = sizeof (struct opthdr); 9810 } 9811 for (; optcp < opt_endcp; optcp = next_optcp) { 9812 if (optcp + opthdr_len > opt_endcp) 9813 return (B_FALSE); /* Not enough option header. */ 9814 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9815 topt = (struct T_opthdr *)optcp; 9816 optlevel = topt->level; 9817 optname = topt->name; 9818 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9819 } else { 9820 opt = (struct opthdr *)optcp; 9821 optlevel = opt->level; 9822 optname = opt->name; 9823 next_optcp = optcp + opthdr_len + 9824 _TPI_ALIGN_OPT(opt->len); 9825 } 9826 if ((next_optcp < optcp) || /* wraparound pointer space */ 9827 ((next_optcp >= opt_endcp) && /* last option bad len */ 9828 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9829 return (B_FALSE); /* bad option buffer */ 9830 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9831 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9832 /* 9833 * Check to see if it's an all-bypass or all-zeroes 9834 * IPsec request. Don't bother loading IPsec if 9835 * the socket doesn't want to use it. (A good example 9836 * is a bypass request.) 9837 * 9838 * Basically, if any of the non-NEVER bits are set, 9839 * load IPsec. 9840 */ 9841 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9842 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9843 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9844 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9845 != 0) 9846 return (B_TRUE); 9847 } 9848 } 9849 return (B_FALSE); 9850 } 9851 9852 /* 9853 * If conn is is waiting for ipsec to finish loading, kick it. 9854 */ 9855 /* ARGSUSED */ 9856 static void 9857 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9858 { 9859 t_scalar_t optreq_prim; 9860 mblk_t *mp; 9861 cred_t *cr; 9862 int err = 0; 9863 9864 /* 9865 * This function is called, after ipsec loading is complete. 9866 * Since IP checks exclusively and atomically (i.e it prevents 9867 * ipsec load from completing until ip_optcom_req completes) 9868 * whether ipsec load is complete, there cannot be a race with IP 9869 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9870 */ 9871 mutex_enter(&connp->conn_lock); 9872 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9873 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9874 mp = connp->conn_ipsec_opt_mp; 9875 connp->conn_ipsec_opt_mp = NULL; 9876 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9877 mutex_exit(&connp->conn_lock); 9878 9879 /* 9880 * All Solaris components should pass a db_credp 9881 * for this TPI message, hence we ASSERT. 9882 * But in case there is some other M_PROTO that looks 9883 * like a TPI message sent by some other kernel 9884 * component, we check and return an error. 9885 */ 9886 cr = msg_getcred(mp, NULL); 9887 ASSERT(cr != NULL); 9888 if (cr == NULL) { 9889 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9890 if (mp != NULL) 9891 qreply(connp->conn_wq, mp); 9892 return; 9893 } 9894 9895 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9896 9897 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9898 if (optreq_prim == T_OPTMGMT_REQ) { 9899 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9900 &ip_opt_obj, B_FALSE); 9901 } else { 9902 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9903 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9904 &ip_opt_obj, B_FALSE); 9905 } 9906 if (err != EINPROGRESS) 9907 CONN_OPER_PENDING_DONE(connp); 9908 return; 9909 } 9910 mutex_exit(&connp->conn_lock); 9911 } 9912 9913 /* 9914 * Called from the ipsec_loader thread, outside any perimeter, to tell 9915 * ip qenable any of the queues waiting for the ipsec loader to 9916 * complete. 9917 */ 9918 void 9919 ip_ipsec_load_complete(ipsec_stack_t *ipss) 9920 { 9921 netstack_t *ns = ipss->ipsec_netstack; 9922 9923 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 9924 } 9925 9926 /* 9927 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9928 * determines the grp on which it has to become exclusive, queues the mp 9929 * and IPSQ draining restarts the optmgmt 9930 */ 9931 static boolean_t 9932 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9933 { 9934 conn_t *connp = Q_TO_CONN(q); 9935 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 9936 9937 /* 9938 * Take IPsec requests and treat them special. 9939 */ 9940 if (ipsec_opt_present(mp)) { 9941 /* First check if IPsec is loaded. */ 9942 mutex_enter(&ipss->ipsec_loader_lock); 9943 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 9944 mutex_exit(&ipss->ipsec_loader_lock); 9945 return (B_FALSE); 9946 } 9947 mutex_enter(&connp->conn_lock); 9948 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9949 9950 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9951 connp->conn_ipsec_opt_mp = mp; 9952 mutex_exit(&connp->conn_lock); 9953 mutex_exit(&ipss->ipsec_loader_lock); 9954 9955 ipsec_loader_loadnow(ipss); 9956 return (B_TRUE); 9957 } 9958 return (B_FALSE); 9959 } 9960 9961 /* 9962 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9963 * all of them are copied to the conn_t. If the req is "zero", the policy is 9964 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9965 * fields. 9966 * We keep only the latest setting of the policy and thus policy setting 9967 * is not incremental/cumulative. 9968 * 9969 * Requests to set policies with multiple alternative actions will 9970 * go through a different API. 9971 */ 9972 int 9973 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9974 { 9975 uint_t ah_req = 0; 9976 uint_t esp_req = 0; 9977 uint_t se_req = 0; 9978 ipsec_selkey_t sel; 9979 ipsec_act_t *actp = NULL; 9980 uint_t nact; 9981 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9982 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9983 ipsec_policy_root_t *pr; 9984 ipsec_policy_head_t *ph; 9985 int fam; 9986 boolean_t is_pol_reset; 9987 int error = 0; 9988 netstack_t *ns = connp->conn_netstack; 9989 ip_stack_t *ipst = ns->netstack_ip; 9990 ipsec_stack_t *ipss = ns->netstack_ipsec; 9991 9992 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9993 9994 /* 9995 * The IP_SEC_OPT option does not allow variable length parameters, 9996 * hence a request cannot be NULL. 9997 */ 9998 if (req == NULL) 9999 return (EINVAL); 10000 10001 ah_req = req->ipsr_ah_req; 10002 esp_req = req->ipsr_esp_req; 10003 se_req = req->ipsr_self_encap_req; 10004 10005 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10006 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10007 return (EINVAL); 10008 10009 /* 10010 * Are we dealing with a request to reset the policy (i.e. 10011 * zero requests). 10012 */ 10013 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10014 (esp_req & REQ_MASK) == 0 && 10015 (se_req & REQ_MASK) == 0); 10016 10017 if (!is_pol_reset) { 10018 /* 10019 * If we couldn't load IPsec, fail with "protocol 10020 * not supported". 10021 * IPsec may not have been loaded for a request with zero 10022 * policies, so we don't fail in this case. 10023 */ 10024 mutex_enter(&ipss->ipsec_loader_lock); 10025 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10026 mutex_exit(&ipss->ipsec_loader_lock); 10027 return (EPROTONOSUPPORT); 10028 } 10029 mutex_exit(&ipss->ipsec_loader_lock); 10030 10031 /* 10032 * Test for valid requests. Invalid algorithms 10033 * need to be tested by IPsec code because new 10034 * algorithms can be added dynamically. 10035 */ 10036 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10037 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10038 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10039 return (EINVAL); 10040 } 10041 10042 /* 10043 * Only privileged users can issue these 10044 * requests. 10045 */ 10046 if (((ah_req & IPSEC_PREF_NEVER) || 10047 (esp_req & IPSEC_PREF_NEVER) || 10048 (se_req & IPSEC_PREF_NEVER)) && 10049 secpolicy_ip_config(cr, B_FALSE) != 0) { 10050 return (EPERM); 10051 } 10052 10053 /* 10054 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10055 * are mutually exclusive. 10056 */ 10057 if (((ah_req & REQ_MASK) == REQ_MASK) || 10058 ((esp_req & REQ_MASK) == REQ_MASK) || 10059 ((se_req & REQ_MASK) == REQ_MASK)) { 10060 /* Both of them are set */ 10061 return (EINVAL); 10062 } 10063 } 10064 10065 mutex_enter(&connp->conn_lock); 10066 10067 /* 10068 * If we have already cached policies in ip_bind_connected*(), don't 10069 * let them change now. We cache policies for connections 10070 * whose src,dst [addr, port] is known. 10071 */ 10072 if (connp->conn_policy_cached) { 10073 mutex_exit(&connp->conn_lock); 10074 return (EINVAL); 10075 } 10076 10077 /* 10078 * We have a zero policies, reset the connection policy if already 10079 * set. This will cause the connection to inherit the 10080 * global policy, if any. 10081 */ 10082 if (is_pol_reset) { 10083 if (connp->conn_policy != NULL) { 10084 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10085 connp->conn_policy = NULL; 10086 } 10087 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10088 connp->conn_in_enforce_policy = B_FALSE; 10089 connp->conn_out_enforce_policy = B_FALSE; 10090 mutex_exit(&connp->conn_lock); 10091 return (0); 10092 } 10093 10094 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10095 ipst->ips_netstack); 10096 if (ph == NULL) 10097 goto enomem; 10098 10099 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10100 if (actp == NULL) 10101 goto enomem; 10102 10103 /* 10104 * Always allocate IPv4 policy entries, since they can also 10105 * apply to ipv6 sockets being used in ipv4-compat mode. 10106 */ 10107 bzero(&sel, sizeof (sel)); 10108 sel.ipsl_valid = IPSL_IPV4; 10109 10110 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10111 ipst->ips_netstack); 10112 if (pin4 == NULL) 10113 goto enomem; 10114 10115 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10116 ipst->ips_netstack); 10117 if (pout4 == NULL) 10118 goto enomem; 10119 10120 if (connp->conn_af_isv6) { 10121 /* 10122 * We're looking at a v6 socket, also allocate the 10123 * v6-specific entries... 10124 */ 10125 sel.ipsl_valid = IPSL_IPV6; 10126 pin6 = ipsec_policy_create(&sel, actp, nact, 10127 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10128 if (pin6 == NULL) 10129 goto enomem; 10130 10131 pout6 = ipsec_policy_create(&sel, actp, nact, 10132 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10133 if (pout6 == NULL) 10134 goto enomem; 10135 10136 /* 10137 * .. and file them away in the right place. 10138 */ 10139 fam = IPSEC_AF_V6; 10140 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10141 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10142 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10143 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10144 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10145 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10146 } 10147 10148 ipsec_actvec_free(actp, nact); 10149 10150 /* 10151 * File the v4 policies. 10152 */ 10153 fam = IPSEC_AF_V4; 10154 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10155 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10156 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10157 10158 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10159 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10160 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10161 10162 /* 10163 * If the requests need security, set enforce_policy. 10164 * If the requests are IPSEC_PREF_NEVER, one should 10165 * still set conn_out_enforce_policy so that an ipsec_out 10166 * gets attached in ip_wput. This is needed so that 10167 * for connections that we don't cache policy in ip_bind, 10168 * if global policy matches in ip_wput_attach_policy, we 10169 * don't wrongly inherit global policy. Similarly, we need 10170 * to set conn_in_enforce_policy also so that we don't verify 10171 * policy wrongly. 10172 */ 10173 if ((ah_req & REQ_MASK) != 0 || 10174 (esp_req & REQ_MASK) != 0 || 10175 (se_req & REQ_MASK) != 0) { 10176 connp->conn_in_enforce_policy = B_TRUE; 10177 connp->conn_out_enforce_policy = B_TRUE; 10178 connp->conn_flags |= IPCL_CHECK_POLICY; 10179 } 10180 10181 mutex_exit(&connp->conn_lock); 10182 return (error); 10183 #undef REQ_MASK 10184 10185 /* 10186 * Common memory-allocation-failure exit path. 10187 */ 10188 enomem: 10189 mutex_exit(&connp->conn_lock); 10190 if (actp != NULL) 10191 ipsec_actvec_free(actp, nact); 10192 if (pin4 != NULL) 10193 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10194 if (pout4 != NULL) 10195 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10196 if (pin6 != NULL) 10197 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10198 if (pout6 != NULL) 10199 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10200 return (ENOMEM); 10201 } 10202 10203 /* 10204 * Only for options that pass in an IP addr. Currently only V4 options 10205 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10206 * So this function assumes level is IPPROTO_IP 10207 */ 10208 int 10209 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10210 mblk_t *first_mp) 10211 { 10212 ipif_t *ipif = NULL; 10213 int error; 10214 ill_t *ill; 10215 int zoneid; 10216 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10217 10218 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10219 10220 if (addr != INADDR_ANY || checkonly) { 10221 ASSERT(connp != NULL); 10222 zoneid = IPCL_ZONEID(connp); 10223 if (option == IP_NEXTHOP) { 10224 ipif = ipif_lookup_onlink_addr(addr, 10225 connp->conn_zoneid, ipst); 10226 } else { 10227 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10228 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10229 &error, ipst); 10230 } 10231 if (ipif == NULL) { 10232 if (error == EINPROGRESS) 10233 return (error); 10234 if ((option == IP_MULTICAST_IF) || 10235 (option == IP_NEXTHOP)) 10236 return (EHOSTUNREACH); 10237 else 10238 return (EINVAL); 10239 } else if (checkonly) { 10240 if (option == IP_MULTICAST_IF) { 10241 ill = ipif->ipif_ill; 10242 /* not supported by the virtual network iface */ 10243 if (IS_VNI(ill)) { 10244 ipif_refrele(ipif); 10245 return (EINVAL); 10246 } 10247 } 10248 ipif_refrele(ipif); 10249 return (0); 10250 } 10251 ill = ipif->ipif_ill; 10252 mutex_enter(&connp->conn_lock); 10253 mutex_enter(&ill->ill_lock); 10254 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10255 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10256 mutex_exit(&ill->ill_lock); 10257 mutex_exit(&connp->conn_lock); 10258 ipif_refrele(ipif); 10259 return (option == IP_MULTICAST_IF ? 10260 EHOSTUNREACH : EINVAL); 10261 } 10262 } else { 10263 mutex_enter(&connp->conn_lock); 10264 } 10265 10266 /* None of the options below are supported on the VNI */ 10267 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10268 mutex_exit(&ill->ill_lock); 10269 mutex_exit(&connp->conn_lock); 10270 ipif_refrele(ipif); 10271 return (EINVAL); 10272 } 10273 10274 switch (option) { 10275 case IP_MULTICAST_IF: 10276 connp->conn_multicast_ipif = ipif; 10277 break; 10278 case IP_NEXTHOP: 10279 connp->conn_nexthop_v4 = addr; 10280 connp->conn_nexthop_set = B_TRUE; 10281 break; 10282 } 10283 10284 if (ipif != NULL) { 10285 mutex_exit(&ill->ill_lock); 10286 mutex_exit(&connp->conn_lock); 10287 ipif_refrele(ipif); 10288 return (0); 10289 } 10290 mutex_exit(&connp->conn_lock); 10291 /* We succeded in cleared the option */ 10292 return (0); 10293 } 10294 10295 /* 10296 * For options that pass in an ifindex specifying the ill. V6 options always 10297 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10298 */ 10299 int 10300 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10301 int level, int option, mblk_t *first_mp) 10302 { 10303 ill_t *ill = NULL; 10304 int error = 0; 10305 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10306 10307 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10308 if (ifindex != 0) { 10309 ASSERT(connp != NULL); 10310 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10311 first_mp, ip_restart_optmgmt, &error, ipst); 10312 if (ill != NULL) { 10313 if (checkonly) { 10314 /* not supported by the virtual network iface */ 10315 if (IS_VNI(ill)) { 10316 ill_refrele(ill); 10317 return (EINVAL); 10318 } 10319 ill_refrele(ill); 10320 return (0); 10321 } 10322 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10323 0, NULL)) { 10324 ill_refrele(ill); 10325 ill = NULL; 10326 mutex_enter(&connp->conn_lock); 10327 goto setit; 10328 } 10329 mutex_enter(&connp->conn_lock); 10330 mutex_enter(&ill->ill_lock); 10331 if (ill->ill_state_flags & ILL_CONDEMNED) { 10332 mutex_exit(&ill->ill_lock); 10333 mutex_exit(&connp->conn_lock); 10334 ill_refrele(ill); 10335 ill = NULL; 10336 mutex_enter(&connp->conn_lock); 10337 } 10338 goto setit; 10339 } else if (error == EINPROGRESS) { 10340 return (error); 10341 } else { 10342 error = 0; 10343 } 10344 } 10345 mutex_enter(&connp->conn_lock); 10346 setit: 10347 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10348 10349 /* 10350 * The options below assume that the ILL (if any) transmits and/or 10351 * receives traffic. Neither of which is true for the virtual network 10352 * interface, so fail setting these on a VNI. 10353 */ 10354 if (IS_VNI(ill)) { 10355 ASSERT(ill != NULL); 10356 mutex_exit(&ill->ill_lock); 10357 mutex_exit(&connp->conn_lock); 10358 ill_refrele(ill); 10359 return (EINVAL); 10360 } 10361 10362 if (level == IPPROTO_IP) { 10363 switch (option) { 10364 case IP_BOUND_IF: 10365 connp->conn_incoming_ill = ill; 10366 connp->conn_outgoing_ill = ill; 10367 break; 10368 10369 case IP_MULTICAST_IF: 10370 /* 10371 * This option is an internal special. The socket 10372 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10373 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10374 * specifies an ifindex and we try first on V6 ill's. 10375 * If we don't find one, we they try using on v4 ill's 10376 * intenally and we come here. 10377 */ 10378 if (!checkonly && ill != NULL) { 10379 ipif_t *ipif; 10380 ipif = ill->ill_ipif; 10381 10382 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10383 mutex_exit(&ill->ill_lock); 10384 mutex_exit(&connp->conn_lock); 10385 ill_refrele(ill); 10386 ill = NULL; 10387 mutex_enter(&connp->conn_lock); 10388 } else { 10389 connp->conn_multicast_ipif = ipif; 10390 } 10391 } 10392 break; 10393 10394 case IP_DHCPINIT_IF: 10395 if (connp->conn_dhcpinit_ill != NULL) { 10396 /* 10397 * We've locked the conn so conn_cleanup_ill() 10398 * cannot clear conn_dhcpinit_ill -- so it's 10399 * safe to access the ill. 10400 */ 10401 ill_t *oill = connp->conn_dhcpinit_ill; 10402 10403 ASSERT(oill->ill_dhcpinit != 0); 10404 atomic_dec_32(&oill->ill_dhcpinit); 10405 connp->conn_dhcpinit_ill = NULL; 10406 } 10407 10408 if (ill != NULL) { 10409 connp->conn_dhcpinit_ill = ill; 10410 atomic_inc_32(&ill->ill_dhcpinit); 10411 } 10412 break; 10413 } 10414 } else { 10415 switch (option) { 10416 case IPV6_BOUND_IF: 10417 connp->conn_incoming_ill = ill; 10418 connp->conn_outgoing_ill = ill; 10419 break; 10420 10421 case IPV6_MULTICAST_IF: 10422 /* 10423 * Set conn_multicast_ill to be the IPv6 ill. 10424 * Set conn_multicast_ipif to be an IPv4 ipif 10425 * for ifindex to make IPv4 mapped addresses 10426 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10427 * Even if no IPv6 ill exists for the ifindex 10428 * we need to check for an IPv4 ifindex in order 10429 * for this to work with mapped addresses. In that 10430 * case only set conn_multicast_ipif. 10431 */ 10432 if (!checkonly) { 10433 if (ifindex == 0) { 10434 connp->conn_multicast_ill = NULL; 10435 connp->conn_multicast_ipif = NULL; 10436 } else if (ill != NULL) { 10437 connp->conn_multicast_ill = ill; 10438 } 10439 } 10440 break; 10441 } 10442 } 10443 10444 if (ill != NULL) { 10445 mutex_exit(&ill->ill_lock); 10446 mutex_exit(&connp->conn_lock); 10447 ill_refrele(ill); 10448 return (0); 10449 } 10450 mutex_exit(&connp->conn_lock); 10451 /* 10452 * We succeeded in clearing the option (ifindex == 0) or failed to 10453 * locate the ill and could not set the option (ifindex != 0) 10454 */ 10455 return (ifindex == 0 ? 0 : EINVAL); 10456 } 10457 10458 /* This routine sets socket options. */ 10459 /* ARGSUSED */ 10460 int 10461 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10462 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10463 void *dummy, cred_t *cr, mblk_t *first_mp) 10464 { 10465 int *i1 = (int *)invalp; 10466 conn_t *connp = Q_TO_CONN(q); 10467 int error = 0; 10468 boolean_t checkonly; 10469 ire_t *ire; 10470 boolean_t found; 10471 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10472 10473 switch (optset_context) { 10474 10475 case SETFN_OPTCOM_CHECKONLY: 10476 checkonly = B_TRUE; 10477 /* 10478 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10479 * inlen != 0 implies value supplied and 10480 * we have to "pretend" to set it. 10481 * inlen == 0 implies that there is no 10482 * value part in T_CHECK request and just validation 10483 * done elsewhere should be enough, we just return here. 10484 */ 10485 if (inlen == 0) { 10486 *outlenp = 0; 10487 return (0); 10488 } 10489 break; 10490 case SETFN_OPTCOM_NEGOTIATE: 10491 case SETFN_UD_NEGOTIATE: 10492 case SETFN_CONN_NEGOTIATE: 10493 checkonly = B_FALSE; 10494 break; 10495 default: 10496 /* 10497 * We should never get here 10498 */ 10499 *outlenp = 0; 10500 return (EINVAL); 10501 } 10502 10503 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10504 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10505 10506 /* 10507 * For fixed length options, no sanity check 10508 * of passed in length is done. It is assumed *_optcom_req() 10509 * routines do the right thing. 10510 */ 10511 10512 switch (level) { 10513 case SOL_SOCKET: 10514 /* 10515 * conn_lock protects the bitfields, and is used to 10516 * set the fields atomically. 10517 */ 10518 switch (name) { 10519 case SO_BROADCAST: 10520 if (!checkonly) { 10521 /* TODO: use value someplace? */ 10522 mutex_enter(&connp->conn_lock); 10523 connp->conn_broadcast = *i1 ? 1 : 0; 10524 mutex_exit(&connp->conn_lock); 10525 } 10526 break; /* goto sizeof (int) option return */ 10527 case SO_USELOOPBACK: 10528 if (!checkonly) { 10529 /* TODO: use value someplace? */ 10530 mutex_enter(&connp->conn_lock); 10531 connp->conn_loopback = *i1 ? 1 : 0; 10532 mutex_exit(&connp->conn_lock); 10533 } 10534 break; /* goto sizeof (int) option return */ 10535 case SO_DONTROUTE: 10536 if (!checkonly) { 10537 mutex_enter(&connp->conn_lock); 10538 connp->conn_dontroute = *i1 ? 1 : 0; 10539 mutex_exit(&connp->conn_lock); 10540 } 10541 break; /* goto sizeof (int) option return */ 10542 case SO_REUSEADDR: 10543 if (!checkonly) { 10544 mutex_enter(&connp->conn_lock); 10545 connp->conn_reuseaddr = *i1 ? 1 : 0; 10546 mutex_exit(&connp->conn_lock); 10547 } 10548 break; /* goto sizeof (int) option return */ 10549 case SO_PROTOTYPE: 10550 if (!checkonly) { 10551 mutex_enter(&connp->conn_lock); 10552 connp->conn_proto = *i1; 10553 mutex_exit(&connp->conn_lock); 10554 } 10555 break; /* goto sizeof (int) option return */ 10556 case SO_ALLZONES: 10557 if (!checkonly) { 10558 mutex_enter(&connp->conn_lock); 10559 if (IPCL_IS_BOUND(connp)) { 10560 mutex_exit(&connp->conn_lock); 10561 return (EINVAL); 10562 } 10563 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10564 mutex_exit(&connp->conn_lock); 10565 } 10566 break; /* goto sizeof (int) option return */ 10567 case SO_ANON_MLP: 10568 if (!checkonly) { 10569 mutex_enter(&connp->conn_lock); 10570 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10571 mutex_exit(&connp->conn_lock); 10572 } 10573 break; /* goto sizeof (int) option return */ 10574 case SO_MAC_EXEMPT: 10575 if (secpolicy_net_mac_aware(cr) != 0 || 10576 IPCL_IS_BOUND(connp)) 10577 return (EACCES); 10578 if (!checkonly) { 10579 mutex_enter(&connp->conn_lock); 10580 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10581 mutex_exit(&connp->conn_lock); 10582 } 10583 break; /* goto sizeof (int) option return */ 10584 default: 10585 /* 10586 * "soft" error (negative) 10587 * option not handled at this level 10588 * Note: Do not modify *outlenp 10589 */ 10590 return (-EINVAL); 10591 } 10592 break; 10593 case IPPROTO_IP: 10594 switch (name) { 10595 case IP_NEXTHOP: 10596 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10597 return (EPERM); 10598 /* FALLTHRU */ 10599 case IP_MULTICAST_IF: { 10600 ipaddr_t addr = *i1; 10601 10602 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10603 first_mp); 10604 if (error != 0) 10605 return (error); 10606 break; /* goto sizeof (int) option return */ 10607 } 10608 10609 case IP_MULTICAST_TTL: 10610 /* Recorded in transport above IP */ 10611 *outvalp = *invalp; 10612 *outlenp = sizeof (uchar_t); 10613 return (0); 10614 case IP_MULTICAST_LOOP: 10615 if (!checkonly) { 10616 mutex_enter(&connp->conn_lock); 10617 connp->conn_multicast_loop = *invalp ? 1 : 0; 10618 mutex_exit(&connp->conn_lock); 10619 } 10620 *outvalp = *invalp; 10621 *outlenp = sizeof (uchar_t); 10622 return (0); 10623 case IP_ADD_MEMBERSHIP: 10624 case MCAST_JOIN_GROUP: 10625 case IP_DROP_MEMBERSHIP: 10626 case MCAST_LEAVE_GROUP: { 10627 struct ip_mreq *mreqp; 10628 struct group_req *greqp; 10629 ire_t *ire; 10630 boolean_t done = B_FALSE; 10631 ipaddr_t group, ifaddr; 10632 struct sockaddr_in *sin; 10633 uint32_t *ifindexp; 10634 boolean_t mcast_opt = B_TRUE; 10635 mcast_record_t fmode; 10636 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10637 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10638 10639 switch (name) { 10640 case IP_ADD_MEMBERSHIP: 10641 mcast_opt = B_FALSE; 10642 /* FALLTHRU */ 10643 case MCAST_JOIN_GROUP: 10644 fmode = MODE_IS_EXCLUDE; 10645 optfn = ip_opt_add_group; 10646 break; 10647 10648 case IP_DROP_MEMBERSHIP: 10649 mcast_opt = B_FALSE; 10650 /* FALLTHRU */ 10651 case MCAST_LEAVE_GROUP: 10652 fmode = MODE_IS_INCLUDE; 10653 optfn = ip_opt_delete_group; 10654 break; 10655 } 10656 10657 if (mcast_opt) { 10658 greqp = (struct group_req *)i1; 10659 sin = (struct sockaddr_in *)&greqp->gr_group; 10660 if (sin->sin_family != AF_INET) { 10661 *outlenp = 0; 10662 return (ENOPROTOOPT); 10663 } 10664 group = (ipaddr_t)sin->sin_addr.s_addr; 10665 ifaddr = INADDR_ANY; 10666 ifindexp = &greqp->gr_interface; 10667 } else { 10668 mreqp = (struct ip_mreq *)i1; 10669 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10670 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10671 ifindexp = NULL; 10672 } 10673 10674 /* 10675 * In the multirouting case, we need to replicate 10676 * the request on all interfaces that will take part 10677 * in replication. We do so because multirouting is 10678 * reflective, thus we will probably receive multi- 10679 * casts on those interfaces. 10680 * The ip_multirt_apply_membership() succeeds if the 10681 * operation succeeds on at least one interface. 10682 */ 10683 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10684 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10685 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10686 if (ire != NULL) { 10687 if (ire->ire_flags & RTF_MULTIRT) { 10688 error = ip_multirt_apply_membership( 10689 optfn, ire, connp, checkonly, group, 10690 fmode, INADDR_ANY, first_mp); 10691 done = B_TRUE; 10692 } 10693 ire_refrele(ire); 10694 } 10695 if (!done) { 10696 error = optfn(connp, checkonly, group, ifaddr, 10697 ifindexp, fmode, INADDR_ANY, first_mp); 10698 } 10699 if (error) { 10700 /* 10701 * EINPROGRESS is a soft error, needs retry 10702 * so don't make *outlenp zero. 10703 */ 10704 if (error != EINPROGRESS) 10705 *outlenp = 0; 10706 return (error); 10707 } 10708 /* OK return - copy input buffer into output buffer */ 10709 if (invalp != outvalp) { 10710 /* don't trust bcopy for identical src/dst */ 10711 bcopy(invalp, outvalp, inlen); 10712 } 10713 *outlenp = inlen; 10714 return (0); 10715 } 10716 case IP_BLOCK_SOURCE: 10717 case IP_UNBLOCK_SOURCE: 10718 case IP_ADD_SOURCE_MEMBERSHIP: 10719 case IP_DROP_SOURCE_MEMBERSHIP: 10720 case MCAST_BLOCK_SOURCE: 10721 case MCAST_UNBLOCK_SOURCE: 10722 case MCAST_JOIN_SOURCE_GROUP: 10723 case MCAST_LEAVE_SOURCE_GROUP: { 10724 struct ip_mreq_source *imreqp; 10725 struct group_source_req *gsreqp; 10726 in_addr_t grp, src, ifaddr = INADDR_ANY; 10727 uint32_t ifindex = 0; 10728 mcast_record_t fmode; 10729 struct sockaddr_in *sin; 10730 ire_t *ire; 10731 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10732 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10733 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10734 10735 switch (name) { 10736 case IP_BLOCK_SOURCE: 10737 mcast_opt = B_FALSE; 10738 /* FALLTHRU */ 10739 case MCAST_BLOCK_SOURCE: 10740 fmode = MODE_IS_EXCLUDE; 10741 optfn = ip_opt_add_group; 10742 break; 10743 10744 case IP_UNBLOCK_SOURCE: 10745 mcast_opt = B_FALSE; 10746 /* FALLTHRU */ 10747 case MCAST_UNBLOCK_SOURCE: 10748 fmode = MODE_IS_EXCLUDE; 10749 optfn = ip_opt_delete_group; 10750 break; 10751 10752 case IP_ADD_SOURCE_MEMBERSHIP: 10753 mcast_opt = B_FALSE; 10754 /* FALLTHRU */ 10755 case MCAST_JOIN_SOURCE_GROUP: 10756 fmode = MODE_IS_INCLUDE; 10757 optfn = ip_opt_add_group; 10758 break; 10759 10760 case IP_DROP_SOURCE_MEMBERSHIP: 10761 mcast_opt = B_FALSE; 10762 /* FALLTHRU */ 10763 case MCAST_LEAVE_SOURCE_GROUP: 10764 fmode = MODE_IS_INCLUDE; 10765 optfn = ip_opt_delete_group; 10766 break; 10767 } 10768 10769 if (mcast_opt) { 10770 gsreqp = (struct group_source_req *)i1; 10771 if (gsreqp->gsr_group.ss_family != AF_INET) { 10772 *outlenp = 0; 10773 return (ENOPROTOOPT); 10774 } 10775 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10776 grp = (ipaddr_t)sin->sin_addr.s_addr; 10777 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10778 src = (ipaddr_t)sin->sin_addr.s_addr; 10779 ifindex = gsreqp->gsr_interface; 10780 } else { 10781 imreqp = (struct ip_mreq_source *)i1; 10782 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10783 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10784 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10785 } 10786 10787 /* 10788 * In the multirouting case, we need to replicate 10789 * the request as noted in the mcast cases above. 10790 */ 10791 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10792 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10793 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10794 if (ire != NULL) { 10795 if (ire->ire_flags & RTF_MULTIRT) { 10796 error = ip_multirt_apply_membership( 10797 optfn, ire, connp, checkonly, grp, 10798 fmode, src, first_mp); 10799 done = B_TRUE; 10800 } 10801 ire_refrele(ire); 10802 } 10803 if (!done) { 10804 error = optfn(connp, checkonly, grp, ifaddr, 10805 &ifindex, fmode, src, first_mp); 10806 } 10807 if (error != 0) { 10808 /* 10809 * EINPROGRESS is a soft error, needs retry 10810 * so don't make *outlenp zero. 10811 */ 10812 if (error != EINPROGRESS) 10813 *outlenp = 0; 10814 return (error); 10815 } 10816 /* OK return - copy input buffer into output buffer */ 10817 if (invalp != outvalp) { 10818 bcopy(invalp, outvalp, inlen); 10819 } 10820 *outlenp = inlen; 10821 return (0); 10822 } 10823 case IP_SEC_OPT: 10824 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10825 if (error != 0) { 10826 *outlenp = 0; 10827 return (error); 10828 } 10829 break; 10830 case IP_HDRINCL: 10831 case IP_OPTIONS: 10832 case T_IP_OPTIONS: 10833 case IP_TOS: 10834 case T_IP_TOS: 10835 case IP_TTL: 10836 case IP_RECVDSTADDR: 10837 case IP_RECVOPTS: 10838 /* OK return - copy input buffer into output buffer */ 10839 if (invalp != outvalp) { 10840 /* don't trust bcopy for identical src/dst */ 10841 bcopy(invalp, outvalp, inlen); 10842 } 10843 *outlenp = inlen; 10844 return (0); 10845 case IP_RECVIF: 10846 /* Retrieve the inbound interface index */ 10847 if (!checkonly) { 10848 mutex_enter(&connp->conn_lock); 10849 connp->conn_recvif = *i1 ? 1 : 0; 10850 mutex_exit(&connp->conn_lock); 10851 } 10852 break; /* goto sizeof (int) option return */ 10853 case IP_RECVPKTINFO: 10854 if (!checkonly) { 10855 mutex_enter(&connp->conn_lock); 10856 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10857 mutex_exit(&connp->conn_lock); 10858 } 10859 break; /* goto sizeof (int) option return */ 10860 case IP_RECVSLLA: 10861 /* Retrieve the source link layer address */ 10862 if (!checkonly) { 10863 mutex_enter(&connp->conn_lock); 10864 connp->conn_recvslla = *i1 ? 1 : 0; 10865 mutex_exit(&connp->conn_lock); 10866 } 10867 break; /* goto sizeof (int) option return */ 10868 case MRT_INIT: 10869 case MRT_DONE: 10870 case MRT_ADD_VIF: 10871 case MRT_DEL_VIF: 10872 case MRT_ADD_MFC: 10873 case MRT_DEL_MFC: 10874 case MRT_ASSERT: 10875 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10876 *outlenp = 0; 10877 return (error); 10878 } 10879 error = ip_mrouter_set((int)name, q, checkonly, 10880 (uchar_t *)invalp, inlen, first_mp); 10881 if (error) { 10882 *outlenp = 0; 10883 return (error); 10884 } 10885 /* OK return - copy input buffer into output buffer */ 10886 if (invalp != outvalp) { 10887 /* don't trust bcopy for identical src/dst */ 10888 bcopy(invalp, outvalp, inlen); 10889 } 10890 *outlenp = inlen; 10891 return (0); 10892 case IP_BOUND_IF: 10893 case IP_DHCPINIT_IF: 10894 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10895 level, name, first_mp); 10896 if (error != 0) 10897 return (error); 10898 break; /* goto sizeof (int) option return */ 10899 10900 case IP_UNSPEC_SRC: 10901 /* Allow sending with a zero source address */ 10902 if (!checkonly) { 10903 mutex_enter(&connp->conn_lock); 10904 connp->conn_unspec_src = *i1 ? 1 : 0; 10905 mutex_exit(&connp->conn_lock); 10906 } 10907 break; /* goto sizeof (int) option return */ 10908 default: 10909 /* 10910 * "soft" error (negative) 10911 * option not handled at this level 10912 * Note: Do not modify *outlenp 10913 */ 10914 return (-EINVAL); 10915 } 10916 break; 10917 case IPPROTO_IPV6: 10918 switch (name) { 10919 case IPV6_BOUND_IF: 10920 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10921 level, name, first_mp); 10922 if (error != 0) 10923 return (error); 10924 break; /* goto sizeof (int) option return */ 10925 10926 case IPV6_MULTICAST_IF: 10927 /* 10928 * The only possible errors are EINPROGRESS and 10929 * EINVAL. EINPROGRESS will be restarted and is not 10930 * a hard error. We call this option on both V4 and V6 10931 * If both return EINVAL, then this call returns 10932 * EINVAL. If at least one of them succeeds we 10933 * return success. 10934 */ 10935 found = B_FALSE; 10936 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10937 level, name, first_mp); 10938 if (error == EINPROGRESS) 10939 return (error); 10940 if (error == 0) 10941 found = B_TRUE; 10942 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10943 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10944 if (error == 0) 10945 found = B_TRUE; 10946 if (!found) 10947 return (error); 10948 break; /* goto sizeof (int) option return */ 10949 10950 case IPV6_MULTICAST_HOPS: 10951 /* Recorded in transport above IP */ 10952 break; /* goto sizeof (int) option return */ 10953 case IPV6_MULTICAST_LOOP: 10954 if (!checkonly) { 10955 mutex_enter(&connp->conn_lock); 10956 connp->conn_multicast_loop = *i1; 10957 mutex_exit(&connp->conn_lock); 10958 } 10959 break; /* goto sizeof (int) option return */ 10960 case IPV6_JOIN_GROUP: 10961 case MCAST_JOIN_GROUP: 10962 case IPV6_LEAVE_GROUP: 10963 case MCAST_LEAVE_GROUP: { 10964 struct ipv6_mreq *ip_mreqp; 10965 struct group_req *greqp; 10966 ire_t *ire; 10967 boolean_t done = B_FALSE; 10968 in6_addr_t groupv6; 10969 uint32_t ifindex; 10970 boolean_t mcast_opt = B_TRUE; 10971 mcast_record_t fmode; 10972 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10973 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10974 10975 switch (name) { 10976 case IPV6_JOIN_GROUP: 10977 mcast_opt = B_FALSE; 10978 /* FALLTHRU */ 10979 case MCAST_JOIN_GROUP: 10980 fmode = MODE_IS_EXCLUDE; 10981 optfn = ip_opt_add_group_v6; 10982 break; 10983 10984 case IPV6_LEAVE_GROUP: 10985 mcast_opt = B_FALSE; 10986 /* FALLTHRU */ 10987 case MCAST_LEAVE_GROUP: 10988 fmode = MODE_IS_INCLUDE; 10989 optfn = ip_opt_delete_group_v6; 10990 break; 10991 } 10992 10993 if (mcast_opt) { 10994 struct sockaddr_in *sin; 10995 struct sockaddr_in6 *sin6; 10996 greqp = (struct group_req *)i1; 10997 if (greqp->gr_group.ss_family == AF_INET) { 10998 sin = (struct sockaddr_in *) 10999 &(greqp->gr_group); 11000 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11001 &groupv6); 11002 } else { 11003 sin6 = (struct sockaddr_in6 *) 11004 &(greqp->gr_group); 11005 groupv6 = sin6->sin6_addr; 11006 } 11007 ifindex = greqp->gr_interface; 11008 } else { 11009 ip_mreqp = (struct ipv6_mreq *)i1; 11010 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11011 ifindex = ip_mreqp->ipv6mr_interface; 11012 } 11013 /* 11014 * In the multirouting case, we need to replicate 11015 * the request on all interfaces that will take part 11016 * in replication. We do so because multirouting is 11017 * reflective, thus we will probably receive multi- 11018 * casts on those interfaces. 11019 * The ip_multirt_apply_membership_v6() succeeds if 11020 * the operation succeeds on at least one interface. 11021 */ 11022 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11023 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11024 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11025 if (ire != NULL) { 11026 if (ire->ire_flags & RTF_MULTIRT) { 11027 error = ip_multirt_apply_membership_v6( 11028 optfn, ire, connp, checkonly, 11029 &groupv6, fmode, &ipv6_all_zeros, 11030 first_mp); 11031 done = B_TRUE; 11032 } 11033 ire_refrele(ire); 11034 } 11035 if (!done) { 11036 error = optfn(connp, checkonly, &groupv6, 11037 ifindex, fmode, &ipv6_all_zeros, first_mp); 11038 } 11039 if (error) { 11040 /* 11041 * EINPROGRESS is a soft error, needs retry 11042 * so don't make *outlenp zero. 11043 */ 11044 if (error != EINPROGRESS) 11045 *outlenp = 0; 11046 return (error); 11047 } 11048 /* OK return - copy input buffer into output buffer */ 11049 if (invalp != outvalp) { 11050 /* don't trust bcopy for identical src/dst */ 11051 bcopy(invalp, outvalp, inlen); 11052 } 11053 *outlenp = inlen; 11054 return (0); 11055 } 11056 case MCAST_BLOCK_SOURCE: 11057 case MCAST_UNBLOCK_SOURCE: 11058 case MCAST_JOIN_SOURCE_GROUP: 11059 case MCAST_LEAVE_SOURCE_GROUP: { 11060 struct group_source_req *gsreqp; 11061 in6_addr_t v6grp, v6src; 11062 uint32_t ifindex; 11063 mcast_record_t fmode; 11064 ire_t *ire; 11065 boolean_t done = B_FALSE; 11066 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11067 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11068 11069 switch (name) { 11070 case MCAST_BLOCK_SOURCE: 11071 fmode = MODE_IS_EXCLUDE; 11072 optfn = ip_opt_add_group_v6; 11073 break; 11074 case MCAST_UNBLOCK_SOURCE: 11075 fmode = MODE_IS_EXCLUDE; 11076 optfn = ip_opt_delete_group_v6; 11077 break; 11078 case MCAST_JOIN_SOURCE_GROUP: 11079 fmode = MODE_IS_INCLUDE; 11080 optfn = ip_opt_add_group_v6; 11081 break; 11082 case MCAST_LEAVE_SOURCE_GROUP: 11083 fmode = MODE_IS_INCLUDE; 11084 optfn = ip_opt_delete_group_v6; 11085 break; 11086 } 11087 11088 gsreqp = (struct group_source_req *)i1; 11089 ifindex = gsreqp->gsr_interface; 11090 if (gsreqp->gsr_group.ss_family == AF_INET) { 11091 struct sockaddr_in *s; 11092 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11093 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11094 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11095 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11096 } else { 11097 struct sockaddr_in6 *s6; 11098 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11099 v6grp = s6->sin6_addr; 11100 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11101 v6src = s6->sin6_addr; 11102 } 11103 11104 /* 11105 * In the multirouting case, we need to replicate 11106 * the request as noted in the mcast cases above. 11107 */ 11108 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11109 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11110 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11111 if (ire != NULL) { 11112 if (ire->ire_flags & RTF_MULTIRT) { 11113 error = ip_multirt_apply_membership_v6( 11114 optfn, ire, connp, checkonly, 11115 &v6grp, fmode, &v6src, first_mp); 11116 done = B_TRUE; 11117 } 11118 ire_refrele(ire); 11119 } 11120 if (!done) { 11121 error = optfn(connp, checkonly, &v6grp, 11122 ifindex, fmode, &v6src, first_mp); 11123 } 11124 if (error != 0) { 11125 /* 11126 * EINPROGRESS is a soft error, needs retry 11127 * so don't make *outlenp zero. 11128 */ 11129 if (error != EINPROGRESS) 11130 *outlenp = 0; 11131 return (error); 11132 } 11133 /* OK return - copy input buffer into output buffer */ 11134 if (invalp != outvalp) { 11135 bcopy(invalp, outvalp, inlen); 11136 } 11137 *outlenp = inlen; 11138 return (0); 11139 } 11140 case IPV6_UNICAST_HOPS: 11141 /* Recorded in transport above IP */ 11142 break; /* goto sizeof (int) option return */ 11143 case IPV6_UNSPEC_SRC: 11144 /* Allow sending with a zero source address */ 11145 if (!checkonly) { 11146 mutex_enter(&connp->conn_lock); 11147 connp->conn_unspec_src = *i1 ? 1 : 0; 11148 mutex_exit(&connp->conn_lock); 11149 } 11150 break; /* goto sizeof (int) option return */ 11151 case IPV6_RECVPKTINFO: 11152 if (!checkonly) { 11153 mutex_enter(&connp->conn_lock); 11154 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11155 mutex_exit(&connp->conn_lock); 11156 } 11157 break; /* goto sizeof (int) option return */ 11158 case IPV6_RECVTCLASS: 11159 if (!checkonly) { 11160 if (*i1 < 0 || *i1 > 1) { 11161 return (EINVAL); 11162 } 11163 mutex_enter(&connp->conn_lock); 11164 connp->conn_ipv6_recvtclass = *i1; 11165 mutex_exit(&connp->conn_lock); 11166 } 11167 break; 11168 case IPV6_RECVPATHMTU: 11169 if (!checkonly) { 11170 if (*i1 < 0 || *i1 > 1) { 11171 return (EINVAL); 11172 } 11173 mutex_enter(&connp->conn_lock); 11174 connp->conn_ipv6_recvpathmtu = *i1; 11175 mutex_exit(&connp->conn_lock); 11176 } 11177 break; 11178 case IPV6_RECVHOPLIMIT: 11179 if (!checkonly) { 11180 mutex_enter(&connp->conn_lock); 11181 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11182 mutex_exit(&connp->conn_lock); 11183 } 11184 break; /* goto sizeof (int) option return */ 11185 case IPV6_RECVHOPOPTS: 11186 if (!checkonly) { 11187 mutex_enter(&connp->conn_lock); 11188 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11189 mutex_exit(&connp->conn_lock); 11190 } 11191 break; /* goto sizeof (int) option return */ 11192 case IPV6_RECVDSTOPTS: 11193 if (!checkonly) { 11194 mutex_enter(&connp->conn_lock); 11195 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11196 mutex_exit(&connp->conn_lock); 11197 } 11198 break; /* goto sizeof (int) option return */ 11199 case IPV6_RECVRTHDR: 11200 if (!checkonly) { 11201 mutex_enter(&connp->conn_lock); 11202 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11203 mutex_exit(&connp->conn_lock); 11204 } 11205 break; /* goto sizeof (int) option return */ 11206 case IPV6_RECVRTHDRDSTOPTS: 11207 if (!checkonly) { 11208 mutex_enter(&connp->conn_lock); 11209 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11210 mutex_exit(&connp->conn_lock); 11211 } 11212 break; /* goto sizeof (int) option return */ 11213 case IPV6_PKTINFO: 11214 if (inlen == 0) 11215 return (-EINVAL); /* clearing option */ 11216 error = ip6_set_pktinfo(cr, connp, 11217 (struct in6_pktinfo *)invalp); 11218 if (error != 0) 11219 *outlenp = 0; 11220 else 11221 *outlenp = inlen; 11222 return (error); 11223 case IPV6_NEXTHOP: { 11224 struct sockaddr_in6 *sin6; 11225 11226 /* Verify that the nexthop is reachable */ 11227 if (inlen == 0) 11228 return (-EINVAL); /* clearing option */ 11229 11230 sin6 = (struct sockaddr_in6 *)invalp; 11231 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11232 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11233 NULL, MATCH_IRE_DEFAULT, ipst); 11234 11235 if (ire == NULL) { 11236 *outlenp = 0; 11237 return (EHOSTUNREACH); 11238 } 11239 ire_refrele(ire); 11240 return (-EINVAL); 11241 } 11242 case IPV6_SEC_OPT: 11243 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11244 if (error != 0) { 11245 *outlenp = 0; 11246 return (error); 11247 } 11248 break; 11249 case IPV6_SRC_PREFERENCES: { 11250 /* 11251 * This is implemented strictly in the ip module 11252 * (here and in tcp_opt_*() to accomodate tcp 11253 * sockets). Modules above ip pass this option 11254 * down here since ip is the only one that needs to 11255 * be aware of source address preferences. 11256 * 11257 * This socket option only affects connected 11258 * sockets that haven't already bound to a specific 11259 * IPv6 address. In other words, sockets that 11260 * don't call bind() with an address other than the 11261 * unspecified address and that call connect(). 11262 * ip_bind_connected_v6() passes these preferences 11263 * to the ipif_select_source_v6() function. 11264 */ 11265 if (inlen != sizeof (uint32_t)) 11266 return (EINVAL); 11267 error = ip6_set_src_preferences(connp, 11268 *(uint32_t *)invalp); 11269 if (error != 0) { 11270 *outlenp = 0; 11271 return (error); 11272 } else { 11273 *outlenp = sizeof (uint32_t); 11274 } 11275 break; 11276 } 11277 case IPV6_V6ONLY: 11278 if (*i1 < 0 || *i1 > 1) { 11279 return (EINVAL); 11280 } 11281 mutex_enter(&connp->conn_lock); 11282 connp->conn_ipv6_v6only = *i1; 11283 mutex_exit(&connp->conn_lock); 11284 break; 11285 default: 11286 return (-EINVAL); 11287 } 11288 break; 11289 default: 11290 /* 11291 * "soft" error (negative) 11292 * option not handled at this level 11293 * Note: Do not modify *outlenp 11294 */ 11295 return (-EINVAL); 11296 } 11297 /* 11298 * Common case of return from an option that is sizeof (int) 11299 */ 11300 *(int *)outvalp = *i1; 11301 *outlenp = sizeof (int); 11302 return (0); 11303 } 11304 11305 /* 11306 * This routine gets default values of certain options whose default 11307 * values are maintained by protocol specific code 11308 */ 11309 /* ARGSUSED */ 11310 int 11311 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11312 { 11313 int *i1 = (int *)ptr; 11314 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11315 11316 switch (level) { 11317 case IPPROTO_IP: 11318 switch (name) { 11319 case IP_MULTICAST_TTL: 11320 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11321 return (sizeof (uchar_t)); 11322 case IP_MULTICAST_LOOP: 11323 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11324 return (sizeof (uchar_t)); 11325 default: 11326 return (-1); 11327 } 11328 case IPPROTO_IPV6: 11329 switch (name) { 11330 case IPV6_UNICAST_HOPS: 11331 *i1 = ipst->ips_ipv6_def_hops; 11332 return (sizeof (int)); 11333 case IPV6_MULTICAST_HOPS: 11334 *i1 = IP_DEFAULT_MULTICAST_TTL; 11335 return (sizeof (int)); 11336 case IPV6_MULTICAST_LOOP: 11337 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11338 return (sizeof (int)); 11339 case IPV6_V6ONLY: 11340 *i1 = 1; 11341 return (sizeof (int)); 11342 default: 11343 return (-1); 11344 } 11345 default: 11346 return (-1); 11347 } 11348 /* NOTREACHED */ 11349 } 11350 11351 /* 11352 * Given a destination address and a pointer to where to put the information 11353 * this routine fills in the mtuinfo. 11354 */ 11355 int 11356 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11357 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11358 { 11359 ire_t *ire; 11360 ip_stack_t *ipst = ns->netstack_ip; 11361 11362 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11363 return (-1); 11364 11365 bzero(mtuinfo, sizeof (*mtuinfo)); 11366 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11367 mtuinfo->ip6m_addr.sin6_port = port; 11368 mtuinfo->ip6m_addr.sin6_addr = *in6; 11369 11370 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11371 if (ire != NULL) { 11372 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11373 ire_refrele(ire); 11374 } else { 11375 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11376 } 11377 return (sizeof (struct ip6_mtuinfo)); 11378 } 11379 11380 /* 11381 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11382 * checking of cred and that ip_g_mrouter is set should be done and 11383 * isn't. This doesn't matter as the error checking is done properly for the 11384 * other MRT options coming in through ip_opt_set. 11385 */ 11386 int 11387 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11388 { 11389 conn_t *connp = Q_TO_CONN(q); 11390 ipsec_req_t *req = (ipsec_req_t *)ptr; 11391 11392 switch (level) { 11393 case IPPROTO_IP: 11394 switch (name) { 11395 case MRT_VERSION: 11396 case MRT_ASSERT: 11397 (void) ip_mrouter_get(name, q, ptr); 11398 return (sizeof (int)); 11399 case IP_SEC_OPT: 11400 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11401 case IP_NEXTHOP: 11402 if (connp->conn_nexthop_set) { 11403 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11404 return (sizeof (ipaddr_t)); 11405 } else 11406 return (0); 11407 case IP_RECVPKTINFO: 11408 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11409 return (sizeof (int)); 11410 default: 11411 break; 11412 } 11413 break; 11414 case IPPROTO_IPV6: 11415 switch (name) { 11416 case IPV6_SEC_OPT: 11417 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11418 case IPV6_SRC_PREFERENCES: { 11419 return (ip6_get_src_preferences(connp, 11420 (uint32_t *)ptr)); 11421 } 11422 case IPV6_V6ONLY: 11423 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11424 return (sizeof (int)); 11425 case IPV6_PATHMTU: 11426 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11427 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11428 default: 11429 break; 11430 } 11431 break; 11432 default: 11433 break; 11434 } 11435 return (-1); 11436 } 11437 /* Named Dispatch routine to get a current value out of our parameter table. */ 11438 /* ARGSUSED */ 11439 static int 11440 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11441 { 11442 ipparam_t *ippa = (ipparam_t *)cp; 11443 11444 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11445 return (0); 11446 } 11447 11448 /* ARGSUSED */ 11449 static int 11450 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11451 { 11452 11453 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11454 return (0); 11455 } 11456 11457 /* 11458 * Set ip{,6}_forwarding values. This means walking through all of the 11459 * ill's and toggling their forwarding values. 11460 */ 11461 /* ARGSUSED */ 11462 static int 11463 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11464 { 11465 long new_value; 11466 int *forwarding_value = (int *)cp; 11467 ill_t *ill; 11468 boolean_t isv6; 11469 ill_walk_context_t ctx; 11470 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11471 11472 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11473 11474 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11475 new_value < 0 || new_value > 1) { 11476 return (EINVAL); 11477 } 11478 11479 *forwarding_value = new_value; 11480 11481 /* 11482 * Regardless of the current value of ip_forwarding, set all per-ill 11483 * values of ip_forwarding to the value being set. 11484 * 11485 * Bring all the ill's up to date with the new global value. 11486 */ 11487 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11488 11489 if (isv6) 11490 ill = ILL_START_WALK_V6(&ctx, ipst); 11491 else 11492 ill = ILL_START_WALK_V4(&ctx, ipst); 11493 11494 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11495 (void) ill_forward_set(ill, new_value != 0); 11496 11497 rw_exit(&ipst->ips_ill_g_lock); 11498 return (0); 11499 } 11500 11501 /* 11502 * Walk through the param array specified registering each element with the 11503 * Named Dispatch handler. This is called only during init. So it is ok 11504 * not to acquire any locks 11505 */ 11506 static boolean_t 11507 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11508 ipndp_t *ipnd, size_t ipnd_cnt) 11509 { 11510 for (; ippa_cnt-- > 0; ippa++) { 11511 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11512 if (!nd_load(ndp, ippa->ip_param_name, 11513 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11514 nd_free(ndp); 11515 return (B_FALSE); 11516 } 11517 } 11518 } 11519 11520 for (; ipnd_cnt-- > 0; ipnd++) { 11521 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11522 if (!nd_load(ndp, ipnd->ip_ndp_name, 11523 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11524 ipnd->ip_ndp_data)) { 11525 nd_free(ndp); 11526 return (B_FALSE); 11527 } 11528 } 11529 } 11530 11531 return (B_TRUE); 11532 } 11533 11534 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11535 /* ARGSUSED */ 11536 static int 11537 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11538 { 11539 long new_value; 11540 ipparam_t *ippa = (ipparam_t *)cp; 11541 11542 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11543 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11544 return (EINVAL); 11545 } 11546 ippa->ip_param_value = new_value; 11547 return (0); 11548 } 11549 11550 /* 11551 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11552 * When an ipf is passed here for the first time, if 11553 * we already have in-order fragments on the queue, we convert from the fast- 11554 * path reassembly scheme to the hard-case scheme. From then on, additional 11555 * fragments are reassembled here. We keep track of the start and end offsets 11556 * of each piece, and the number of holes in the chain. When the hole count 11557 * goes to zero, we are done! 11558 * 11559 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11560 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11561 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11562 * after the call to ip_reassemble(). 11563 */ 11564 int 11565 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11566 size_t msg_len) 11567 { 11568 uint_t end; 11569 mblk_t *next_mp; 11570 mblk_t *mp1; 11571 uint_t offset; 11572 boolean_t incr_dups = B_TRUE; 11573 boolean_t offset_zero_seen = B_FALSE; 11574 boolean_t pkt_boundary_checked = B_FALSE; 11575 11576 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11577 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11578 11579 /* Add in byte count */ 11580 ipf->ipf_count += msg_len; 11581 if (ipf->ipf_end) { 11582 /* 11583 * We were part way through in-order reassembly, but now there 11584 * is a hole. We walk through messages already queued, and 11585 * mark them for hard case reassembly. We know that up till 11586 * now they were in order starting from offset zero. 11587 */ 11588 offset = 0; 11589 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11590 IP_REASS_SET_START(mp1, offset); 11591 if (offset == 0) { 11592 ASSERT(ipf->ipf_nf_hdr_len != 0); 11593 offset = -ipf->ipf_nf_hdr_len; 11594 } 11595 offset += mp1->b_wptr - mp1->b_rptr; 11596 IP_REASS_SET_END(mp1, offset); 11597 } 11598 /* One hole at the end. */ 11599 ipf->ipf_hole_cnt = 1; 11600 /* Brand it as a hard case, forever. */ 11601 ipf->ipf_end = 0; 11602 } 11603 /* Walk through all the new pieces. */ 11604 do { 11605 end = start + (mp->b_wptr - mp->b_rptr); 11606 /* 11607 * If start is 0, decrease 'end' only for the first mblk of 11608 * the fragment. Otherwise 'end' can get wrong value in the 11609 * second pass of the loop if first mblk is exactly the 11610 * size of ipf_nf_hdr_len. 11611 */ 11612 if (start == 0 && !offset_zero_seen) { 11613 /* First segment */ 11614 ASSERT(ipf->ipf_nf_hdr_len != 0); 11615 end -= ipf->ipf_nf_hdr_len; 11616 offset_zero_seen = B_TRUE; 11617 } 11618 next_mp = mp->b_cont; 11619 /* 11620 * We are checking to see if there is any interesing data 11621 * to process. If there isn't and the mblk isn't the 11622 * one which carries the unfragmentable header then we 11623 * drop it. It's possible to have just the unfragmentable 11624 * header come through without any data. That needs to be 11625 * saved. 11626 * 11627 * If the assert at the top of this function holds then the 11628 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11629 * is infrequently traveled enough that the test is left in 11630 * to protect against future code changes which break that 11631 * invariant. 11632 */ 11633 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11634 /* Empty. Blast it. */ 11635 IP_REASS_SET_START(mp, 0); 11636 IP_REASS_SET_END(mp, 0); 11637 /* 11638 * If the ipf points to the mblk we are about to free, 11639 * update ipf to point to the next mblk (or NULL 11640 * if none). 11641 */ 11642 if (ipf->ipf_mp->b_cont == mp) 11643 ipf->ipf_mp->b_cont = next_mp; 11644 freeb(mp); 11645 continue; 11646 } 11647 mp->b_cont = NULL; 11648 IP_REASS_SET_START(mp, start); 11649 IP_REASS_SET_END(mp, end); 11650 if (!ipf->ipf_tail_mp) { 11651 ipf->ipf_tail_mp = mp; 11652 ipf->ipf_mp->b_cont = mp; 11653 if (start == 0 || !more) { 11654 ipf->ipf_hole_cnt = 1; 11655 /* 11656 * if the first fragment comes in more than one 11657 * mblk, this loop will be executed for each 11658 * mblk. Need to adjust hole count so exiting 11659 * this routine will leave hole count at 1. 11660 */ 11661 if (next_mp) 11662 ipf->ipf_hole_cnt++; 11663 } else 11664 ipf->ipf_hole_cnt = 2; 11665 continue; 11666 } else if (ipf->ipf_last_frag_seen && !more && 11667 !pkt_boundary_checked) { 11668 /* 11669 * We check datagram boundary only if this fragment 11670 * claims to be the last fragment and we have seen a 11671 * last fragment in the past too. We do this only 11672 * once for a given fragment. 11673 * 11674 * start cannot be 0 here as fragments with start=0 11675 * and MF=0 gets handled as a complete packet. These 11676 * fragments should not reach here. 11677 */ 11678 11679 if (start + msgdsize(mp) != 11680 IP_REASS_END(ipf->ipf_tail_mp)) { 11681 /* 11682 * We have two fragments both of which claim 11683 * to be the last fragment but gives conflicting 11684 * information about the whole datagram size. 11685 * Something fishy is going on. Drop the 11686 * fragment and free up the reassembly list. 11687 */ 11688 return (IP_REASS_FAILED); 11689 } 11690 11691 /* 11692 * We shouldn't come to this code block again for this 11693 * particular fragment. 11694 */ 11695 pkt_boundary_checked = B_TRUE; 11696 } 11697 11698 /* New stuff at or beyond tail? */ 11699 offset = IP_REASS_END(ipf->ipf_tail_mp); 11700 if (start >= offset) { 11701 if (ipf->ipf_last_frag_seen) { 11702 /* current fragment is beyond last fragment */ 11703 return (IP_REASS_FAILED); 11704 } 11705 /* Link it on end. */ 11706 ipf->ipf_tail_mp->b_cont = mp; 11707 ipf->ipf_tail_mp = mp; 11708 if (more) { 11709 if (start != offset) 11710 ipf->ipf_hole_cnt++; 11711 } else if (start == offset && next_mp == NULL) 11712 ipf->ipf_hole_cnt--; 11713 continue; 11714 } 11715 mp1 = ipf->ipf_mp->b_cont; 11716 offset = IP_REASS_START(mp1); 11717 /* New stuff at the front? */ 11718 if (start < offset) { 11719 if (start == 0) { 11720 if (end >= offset) { 11721 /* Nailed the hole at the begining. */ 11722 ipf->ipf_hole_cnt--; 11723 } 11724 } else if (end < offset) { 11725 /* 11726 * A hole, stuff, and a hole where there used 11727 * to be just a hole. 11728 */ 11729 ipf->ipf_hole_cnt++; 11730 } 11731 mp->b_cont = mp1; 11732 /* Check for overlap. */ 11733 while (end > offset) { 11734 if (end < IP_REASS_END(mp1)) { 11735 mp->b_wptr -= end - offset; 11736 IP_REASS_SET_END(mp, offset); 11737 BUMP_MIB(ill->ill_ip_mib, 11738 ipIfStatsReasmPartDups); 11739 break; 11740 } 11741 /* Did we cover another hole? */ 11742 if ((mp1->b_cont && 11743 IP_REASS_END(mp1) != 11744 IP_REASS_START(mp1->b_cont) && 11745 end >= IP_REASS_START(mp1->b_cont)) || 11746 (!ipf->ipf_last_frag_seen && !more)) { 11747 ipf->ipf_hole_cnt--; 11748 } 11749 /* Clip out mp1. */ 11750 if ((mp->b_cont = mp1->b_cont) == NULL) { 11751 /* 11752 * After clipping out mp1, this guy 11753 * is now hanging off the end. 11754 */ 11755 ipf->ipf_tail_mp = mp; 11756 } 11757 IP_REASS_SET_START(mp1, 0); 11758 IP_REASS_SET_END(mp1, 0); 11759 /* Subtract byte count */ 11760 ipf->ipf_count -= mp1->b_datap->db_lim - 11761 mp1->b_datap->db_base; 11762 freeb(mp1); 11763 BUMP_MIB(ill->ill_ip_mib, 11764 ipIfStatsReasmPartDups); 11765 mp1 = mp->b_cont; 11766 if (!mp1) 11767 break; 11768 offset = IP_REASS_START(mp1); 11769 } 11770 ipf->ipf_mp->b_cont = mp; 11771 continue; 11772 } 11773 /* 11774 * The new piece starts somewhere between the start of the head 11775 * and before the end of the tail. 11776 */ 11777 for (; mp1; mp1 = mp1->b_cont) { 11778 offset = IP_REASS_END(mp1); 11779 if (start < offset) { 11780 if (end <= offset) { 11781 /* Nothing new. */ 11782 IP_REASS_SET_START(mp, 0); 11783 IP_REASS_SET_END(mp, 0); 11784 /* Subtract byte count */ 11785 ipf->ipf_count -= mp->b_datap->db_lim - 11786 mp->b_datap->db_base; 11787 if (incr_dups) { 11788 ipf->ipf_num_dups++; 11789 incr_dups = B_FALSE; 11790 } 11791 freeb(mp); 11792 BUMP_MIB(ill->ill_ip_mib, 11793 ipIfStatsReasmDuplicates); 11794 break; 11795 } 11796 /* 11797 * Trim redundant stuff off beginning of new 11798 * piece. 11799 */ 11800 IP_REASS_SET_START(mp, offset); 11801 mp->b_rptr += offset - start; 11802 BUMP_MIB(ill->ill_ip_mib, 11803 ipIfStatsReasmPartDups); 11804 start = offset; 11805 if (!mp1->b_cont) { 11806 /* 11807 * After trimming, this guy is now 11808 * hanging off the end. 11809 */ 11810 mp1->b_cont = mp; 11811 ipf->ipf_tail_mp = mp; 11812 if (!more) { 11813 ipf->ipf_hole_cnt--; 11814 } 11815 break; 11816 } 11817 } 11818 if (start >= IP_REASS_START(mp1->b_cont)) 11819 continue; 11820 /* Fill a hole */ 11821 if (start > offset) 11822 ipf->ipf_hole_cnt++; 11823 mp->b_cont = mp1->b_cont; 11824 mp1->b_cont = mp; 11825 mp1 = mp->b_cont; 11826 offset = IP_REASS_START(mp1); 11827 if (end >= offset) { 11828 ipf->ipf_hole_cnt--; 11829 /* Check for overlap. */ 11830 while (end > offset) { 11831 if (end < IP_REASS_END(mp1)) { 11832 mp->b_wptr -= end - offset; 11833 IP_REASS_SET_END(mp, offset); 11834 /* 11835 * TODO we might bump 11836 * this up twice if there is 11837 * overlap at both ends. 11838 */ 11839 BUMP_MIB(ill->ill_ip_mib, 11840 ipIfStatsReasmPartDups); 11841 break; 11842 } 11843 /* Did we cover another hole? */ 11844 if ((mp1->b_cont && 11845 IP_REASS_END(mp1) 11846 != IP_REASS_START(mp1->b_cont) && 11847 end >= 11848 IP_REASS_START(mp1->b_cont)) || 11849 (!ipf->ipf_last_frag_seen && 11850 !more)) { 11851 ipf->ipf_hole_cnt--; 11852 } 11853 /* Clip out mp1. */ 11854 if ((mp->b_cont = mp1->b_cont) == 11855 NULL) { 11856 /* 11857 * After clipping out mp1, 11858 * this guy is now hanging 11859 * off the end. 11860 */ 11861 ipf->ipf_tail_mp = mp; 11862 } 11863 IP_REASS_SET_START(mp1, 0); 11864 IP_REASS_SET_END(mp1, 0); 11865 /* Subtract byte count */ 11866 ipf->ipf_count -= 11867 mp1->b_datap->db_lim - 11868 mp1->b_datap->db_base; 11869 freeb(mp1); 11870 BUMP_MIB(ill->ill_ip_mib, 11871 ipIfStatsReasmPartDups); 11872 mp1 = mp->b_cont; 11873 if (!mp1) 11874 break; 11875 offset = IP_REASS_START(mp1); 11876 } 11877 } 11878 break; 11879 } 11880 } while (start = end, mp = next_mp); 11881 11882 /* Fragment just processed could be the last one. Remember this fact */ 11883 if (!more) 11884 ipf->ipf_last_frag_seen = B_TRUE; 11885 11886 /* Still got holes? */ 11887 if (ipf->ipf_hole_cnt) 11888 return (IP_REASS_PARTIAL); 11889 /* Clean up overloaded fields to avoid upstream disasters. */ 11890 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11891 IP_REASS_SET_START(mp1, 0); 11892 IP_REASS_SET_END(mp1, 0); 11893 } 11894 return (IP_REASS_COMPLETE); 11895 } 11896 11897 /* 11898 * ipsec processing for the fast path, used for input UDP Packets 11899 * Returns true if ready for passup to UDP. 11900 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11901 * was an ESP-in-UDP packet, etc.). 11902 */ 11903 static boolean_t 11904 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11905 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11906 { 11907 uint32_t ill_index; 11908 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11909 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11910 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11911 udp_t *udp = connp->conn_udp; 11912 11913 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11914 /* The ill_index of the incoming ILL */ 11915 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11916 11917 /* pass packet up to the transport */ 11918 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11919 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11920 NULL, mctl_present); 11921 if (*first_mpp == NULL) { 11922 return (B_FALSE); 11923 } 11924 } 11925 11926 /* Initiate IPPF processing for fastpath UDP */ 11927 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11928 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11929 if (*mpp == NULL) { 11930 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11931 "deferred/dropped during IPPF processing\n")); 11932 return (B_FALSE); 11933 } 11934 } 11935 /* 11936 * Remove 0-spi if it's 0, or move everything behind 11937 * the UDP header over it and forward to ESP via 11938 * ip_proto_input(). 11939 */ 11940 if (udp->udp_nat_t_endpoint) { 11941 if (mctl_present) { 11942 /* mctl_present *shouldn't* happen. */ 11943 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11944 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11945 &ipss->ipsec_dropper); 11946 *first_mpp = NULL; 11947 return (B_FALSE); 11948 } 11949 11950 /* "ill" is "recv_ill" in actuality. */ 11951 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 11952 return (B_FALSE); 11953 11954 /* Else continue like a normal UDP packet. */ 11955 } 11956 11957 /* 11958 * We make the checks as below since we are in the fast path 11959 * and want to minimize the number of checks if the IP_RECVIF and/or 11960 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11961 */ 11962 if (connp->conn_recvif || connp->conn_recvslla || 11963 connp->conn_ip_recvpktinfo) { 11964 if (connp->conn_recvif) { 11965 in_flags = IPF_RECVIF; 11966 } 11967 /* 11968 * UDP supports IP_RECVPKTINFO option for both v4 and v6 11969 * so the flag passed to ip_add_info is based on IP version 11970 * of connp. 11971 */ 11972 if (connp->conn_ip_recvpktinfo) { 11973 if (connp->conn_af_isv6) { 11974 /* 11975 * V6 only needs index 11976 */ 11977 in_flags |= IPF_RECVIF; 11978 } else { 11979 /* 11980 * V4 needs index + matching address. 11981 */ 11982 in_flags |= IPF_RECVADDR; 11983 } 11984 } 11985 if (connp->conn_recvslla) { 11986 in_flags |= IPF_RECVSLLA; 11987 } 11988 /* 11989 * since in_flags are being set ill will be 11990 * referenced in ip_add_info, so it better not 11991 * be NULL. 11992 */ 11993 /* 11994 * the actual data will be contained in b_cont 11995 * upon successful return of the following call. 11996 * If the call fails then the original mblk is 11997 * returned. 11998 */ 11999 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12000 ipst); 12001 } 12002 12003 return (B_TRUE); 12004 } 12005 12006 /* 12007 * Fragmentation reassembly. Each ILL has a hash table for 12008 * queuing packets undergoing reassembly for all IPIFs 12009 * associated with the ILL. The hash is based on the packet 12010 * IP ident field. The ILL frag hash table was allocated 12011 * as a timer block at the time the ILL was created. Whenever 12012 * there is anything on the reassembly queue, the timer will 12013 * be running. Returns B_TRUE if successful else B_FALSE; 12014 * frees mp on failure. 12015 */ 12016 static boolean_t 12017 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12018 uint32_t *cksum_val, uint16_t *cksum_flags) 12019 { 12020 uint32_t frag_offset_flags; 12021 mblk_t *mp = *mpp; 12022 mblk_t *t_mp; 12023 ipaddr_t dst; 12024 uint8_t proto = ipha->ipha_protocol; 12025 uint32_t sum_val; 12026 uint16_t sum_flags; 12027 ipf_t *ipf; 12028 ipf_t **ipfp; 12029 ipfb_t *ipfb; 12030 uint16_t ident; 12031 uint32_t offset; 12032 ipaddr_t src; 12033 uint_t hdr_length; 12034 uint32_t end; 12035 mblk_t *mp1; 12036 mblk_t *tail_mp; 12037 size_t count; 12038 size_t msg_len; 12039 uint8_t ecn_info = 0; 12040 uint32_t packet_size; 12041 boolean_t pruned = B_FALSE; 12042 ip_stack_t *ipst = ill->ill_ipst; 12043 12044 if (cksum_val != NULL) 12045 *cksum_val = 0; 12046 if (cksum_flags != NULL) 12047 *cksum_flags = 0; 12048 12049 /* 12050 * Drop the fragmented as early as possible, if 12051 * we don't have resource(s) to re-assemble. 12052 */ 12053 if (ipst->ips_ip_reass_queue_bytes == 0) { 12054 freemsg(mp); 12055 return (B_FALSE); 12056 } 12057 12058 /* Check for fragmentation offset; return if there's none */ 12059 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12060 (IPH_MF | IPH_OFFSET)) == 0) 12061 return (B_TRUE); 12062 12063 /* 12064 * We utilize hardware computed checksum info only for UDP since 12065 * IP fragmentation is a normal occurrence for the protocol. In 12066 * addition, checksum offload support for IP fragments carrying 12067 * UDP payload is commonly implemented across network adapters. 12068 */ 12069 ASSERT(recv_ill != NULL); 12070 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12071 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12072 mblk_t *mp1 = mp->b_cont; 12073 int32_t len; 12074 12075 /* Record checksum information from the packet */ 12076 sum_val = (uint32_t)DB_CKSUM16(mp); 12077 sum_flags = DB_CKSUMFLAGS(mp); 12078 12079 /* IP payload offset from beginning of mblk */ 12080 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12081 12082 if ((sum_flags & HCK_PARTIALCKSUM) && 12083 (mp1 == NULL || mp1->b_cont == NULL) && 12084 offset >= DB_CKSUMSTART(mp) && 12085 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12086 uint32_t adj; 12087 /* 12088 * Partial checksum has been calculated by hardware 12089 * and attached to the packet; in addition, any 12090 * prepended extraneous data is even byte aligned. 12091 * If any such data exists, we adjust the checksum; 12092 * this would also handle any postpended data. 12093 */ 12094 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12095 mp, mp1, len, adj); 12096 12097 /* One's complement subtract extraneous checksum */ 12098 if (adj >= sum_val) 12099 sum_val = ~(adj - sum_val) & 0xFFFF; 12100 else 12101 sum_val -= adj; 12102 } 12103 } else { 12104 sum_val = 0; 12105 sum_flags = 0; 12106 } 12107 12108 /* Clear hardware checksumming flag */ 12109 DB_CKSUMFLAGS(mp) = 0; 12110 12111 ident = ipha->ipha_ident; 12112 offset = (frag_offset_flags << 3) & 0xFFFF; 12113 src = ipha->ipha_src; 12114 dst = ipha->ipha_dst; 12115 hdr_length = IPH_HDR_LENGTH(ipha); 12116 end = ntohs(ipha->ipha_length) - hdr_length; 12117 12118 /* If end == 0 then we have a packet with no data, so just free it */ 12119 if (end == 0) { 12120 freemsg(mp); 12121 return (B_FALSE); 12122 } 12123 12124 /* Record the ECN field info. */ 12125 ecn_info = (ipha->ipha_type_of_service & 0x3); 12126 if (offset != 0) { 12127 /* 12128 * If this isn't the first piece, strip the header, and 12129 * add the offset to the end value. 12130 */ 12131 mp->b_rptr += hdr_length; 12132 end += offset; 12133 } 12134 12135 msg_len = MBLKSIZE(mp); 12136 tail_mp = mp; 12137 while (tail_mp->b_cont != NULL) { 12138 tail_mp = tail_mp->b_cont; 12139 msg_len += MBLKSIZE(tail_mp); 12140 } 12141 12142 /* If the reassembly list for this ILL will get too big, prune it */ 12143 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12144 ipst->ips_ip_reass_queue_bytes) { 12145 ill_frag_prune(ill, 12146 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12147 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12148 pruned = B_TRUE; 12149 } 12150 12151 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12152 mutex_enter(&ipfb->ipfb_lock); 12153 12154 ipfp = &ipfb->ipfb_ipf; 12155 /* Try to find an existing fragment queue for this packet. */ 12156 for (;;) { 12157 ipf = ipfp[0]; 12158 if (ipf != NULL) { 12159 /* 12160 * It has to match on ident and src/dst address. 12161 */ 12162 if (ipf->ipf_ident == ident && 12163 ipf->ipf_src == src && 12164 ipf->ipf_dst == dst && 12165 ipf->ipf_protocol == proto) { 12166 /* 12167 * If we have received too many 12168 * duplicate fragments for this packet 12169 * free it. 12170 */ 12171 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12172 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12173 freemsg(mp); 12174 mutex_exit(&ipfb->ipfb_lock); 12175 return (B_FALSE); 12176 } 12177 /* Found it. */ 12178 break; 12179 } 12180 ipfp = &ipf->ipf_hash_next; 12181 continue; 12182 } 12183 12184 /* 12185 * If we pruned the list, do we want to store this new 12186 * fragment?. We apply an optimization here based on the 12187 * fact that most fragments will be received in order. 12188 * So if the offset of this incoming fragment is zero, 12189 * it is the first fragment of a new packet. We will 12190 * keep it. Otherwise drop the fragment, as we have 12191 * probably pruned the packet already (since the 12192 * packet cannot be found). 12193 */ 12194 if (pruned && offset != 0) { 12195 mutex_exit(&ipfb->ipfb_lock); 12196 freemsg(mp); 12197 return (B_FALSE); 12198 } 12199 12200 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12201 /* 12202 * Too many fragmented packets in this hash 12203 * bucket. Free the oldest. 12204 */ 12205 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12206 } 12207 12208 /* New guy. Allocate a frag message. */ 12209 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12210 if (mp1 == NULL) { 12211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12212 freemsg(mp); 12213 reass_done: 12214 mutex_exit(&ipfb->ipfb_lock); 12215 return (B_FALSE); 12216 } 12217 12218 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12219 mp1->b_cont = mp; 12220 12221 /* Initialize the fragment header. */ 12222 ipf = (ipf_t *)mp1->b_rptr; 12223 ipf->ipf_mp = mp1; 12224 ipf->ipf_ptphn = ipfp; 12225 ipfp[0] = ipf; 12226 ipf->ipf_hash_next = NULL; 12227 ipf->ipf_ident = ident; 12228 ipf->ipf_protocol = proto; 12229 ipf->ipf_src = src; 12230 ipf->ipf_dst = dst; 12231 ipf->ipf_nf_hdr_len = 0; 12232 /* Record reassembly start time. */ 12233 ipf->ipf_timestamp = gethrestime_sec(); 12234 /* Record ipf generation and account for frag header */ 12235 ipf->ipf_gen = ill->ill_ipf_gen++; 12236 ipf->ipf_count = MBLKSIZE(mp1); 12237 ipf->ipf_last_frag_seen = B_FALSE; 12238 ipf->ipf_ecn = ecn_info; 12239 ipf->ipf_num_dups = 0; 12240 ipfb->ipfb_frag_pkts++; 12241 ipf->ipf_checksum = 0; 12242 ipf->ipf_checksum_flags = 0; 12243 12244 /* Store checksum value in fragment header */ 12245 if (sum_flags != 0) { 12246 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12247 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12248 ipf->ipf_checksum = sum_val; 12249 ipf->ipf_checksum_flags = sum_flags; 12250 } 12251 12252 /* 12253 * We handle reassembly two ways. In the easy case, 12254 * where all the fragments show up in order, we do 12255 * minimal bookkeeping, and just clip new pieces on 12256 * the end. If we ever see a hole, then we go off 12257 * to ip_reassemble which has to mark the pieces and 12258 * keep track of the number of holes, etc. Obviously, 12259 * the point of having both mechanisms is so we can 12260 * handle the easy case as efficiently as possible. 12261 */ 12262 if (offset == 0) { 12263 /* Easy case, in-order reassembly so far. */ 12264 ipf->ipf_count += msg_len; 12265 ipf->ipf_tail_mp = tail_mp; 12266 /* 12267 * Keep track of next expected offset in 12268 * ipf_end. 12269 */ 12270 ipf->ipf_end = end; 12271 ipf->ipf_nf_hdr_len = hdr_length; 12272 } else { 12273 /* Hard case, hole at the beginning. */ 12274 ipf->ipf_tail_mp = NULL; 12275 /* 12276 * ipf_end == 0 means that we have given up 12277 * on easy reassembly. 12278 */ 12279 ipf->ipf_end = 0; 12280 12281 /* Forget checksum offload from now on */ 12282 ipf->ipf_checksum_flags = 0; 12283 12284 /* 12285 * ipf_hole_cnt is set by ip_reassemble. 12286 * ipf_count is updated by ip_reassemble. 12287 * No need to check for return value here 12288 * as we don't expect reassembly to complete 12289 * or fail for the first fragment itself. 12290 */ 12291 (void) ip_reassemble(mp, ipf, 12292 (frag_offset_flags & IPH_OFFSET) << 3, 12293 (frag_offset_flags & IPH_MF), ill, msg_len); 12294 } 12295 /* Update per ipfb and ill byte counts */ 12296 ipfb->ipfb_count += ipf->ipf_count; 12297 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12298 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12299 /* If the frag timer wasn't already going, start it. */ 12300 mutex_enter(&ill->ill_lock); 12301 ill_frag_timer_start(ill); 12302 mutex_exit(&ill->ill_lock); 12303 goto reass_done; 12304 } 12305 12306 /* 12307 * If the packet's flag has changed (it could be coming up 12308 * from an interface different than the previous, therefore 12309 * possibly different checksum capability), then forget about 12310 * any stored checksum states. Otherwise add the value to 12311 * the existing one stored in the fragment header. 12312 */ 12313 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12314 sum_val += ipf->ipf_checksum; 12315 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12316 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12317 ipf->ipf_checksum = sum_val; 12318 } else if (ipf->ipf_checksum_flags != 0) { 12319 /* Forget checksum offload from now on */ 12320 ipf->ipf_checksum_flags = 0; 12321 } 12322 12323 /* 12324 * We have a new piece of a datagram which is already being 12325 * reassembled. Update the ECN info if all IP fragments 12326 * are ECN capable. If there is one which is not, clear 12327 * all the info. If there is at least one which has CE 12328 * code point, IP needs to report that up to transport. 12329 */ 12330 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12331 if (ecn_info == IPH_ECN_CE) 12332 ipf->ipf_ecn = IPH_ECN_CE; 12333 } else { 12334 ipf->ipf_ecn = IPH_ECN_NECT; 12335 } 12336 if (offset && ipf->ipf_end == offset) { 12337 /* The new fragment fits at the end */ 12338 ipf->ipf_tail_mp->b_cont = mp; 12339 /* Update the byte count */ 12340 ipf->ipf_count += msg_len; 12341 /* Update per ipfb and ill byte counts */ 12342 ipfb->ipfb_count += msg_len; 12343 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12344 atomic_add_32(&ill->ill_frag_count, msg_len); 12345 if (frag_offset_flags & IPH_MF) { 12346 /* More to come. */ 12347 ipf->ipf_end = end; 12348 ipf->ipf_tail_mp = tail_mp; 12349 goto reass_done; 12350 } 12351 } else { 12352 /* Go do the hard cases. */ 12353 int ret; 12354 12355 if (offset == 0) 12356 ipf->ipf_nf_hdr_len = hdr_length; 12357 12358 /* Save current byte count */ 12359 count = ipf->ipf_count; 12360 ret = ip_reassemble(mp, ipf, 12361 (frag_offset_flags & IPH_OFFSET) << 3, 12362 (frag_offset_flags & IPH_MF), ill, msg_len); 12363 /* Count of bytes added and subtracted (freeb()ed) */ 12364 count = ipf->ipf_count - count; 12365 if (count) { 12366 /* Update per ipfb and ill byte counts */ 12367 ipfb->ipfb_count += count; 12368 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12369 atomic_add_32(&ill->ill_frag_count, count); 12370 } 12371 if (ret == IP_REASS_PARTIAL) { 12372 goto reass_done; 12373 } else if (ret == IP_REASS_FAILED) { 12374 /* Reassembly failed. Free up all resources */ 12375 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12376 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12377 IP_REASS_SET_START(t_mp, 0); 12378 IP_REASS_SET_END(t_mp, 0); 12379 } 12380 freemsg(mp); 12381 goto reass_done; 12382 } 12383 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12384 } 12385 /* 12386 * We have completed reassembly. Unhook the frag header from 12387 * the reassembly list. 12388 * 12389 * Before we free the frag header, record the ECN info 12390 * to report back to the transport. 12391 */ 12392 ecn_info = ipf->ipf_ecn; 12393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12394 ipfp = ipf->ipf_ptphn; 12395 12396 /* We need to supply these to caller */ 12397 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12398 sum_val = ipf->ipf_checksum; 12399 else 12400 sum_val = 0; 12401 12402 mp1 = ipf->ipf_mp; 12403 count = ipf->ipf_count; 12404 ipf = ipf->ipf_hash_next; 12405 if (ipf != NULL) 12406 ipf->ipf_ptphn = ipfp; 12407 ipfp[0] = ipf; 12408 atomic_add_32(&ill->ill_frag_count, -count); 12409 ASSERT(ipfb->ipfb_count >= count); 12410 ipfb->ipfb_count -= count; 12411 ipfb->ipfb_frag_pkts--; 12412 mutex_exit(&ipfb->ipfb_lock); 12413 /* Ditch the frag header. */ 12414 mp = mp1->b_cont; 12415 12416 freeb(mp1); 12417 12418 /* Restore original IP length in header. */ 12419 packet_size = (uint32_t)msgdsize(mp); 12420 if (packet_size > IP_MAXPACKET) { 12421 freemsg(mp); 12422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12423 return (B_FALSE); 12424 } 12425 12426 if (DB_REF(mp) > 1) { 12427 mblk_t *mp2 = copymsg(mp); 12428 12429 freemsg(mp); 12430 if (mp2 == NULL) { 12431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12432 return (B_FALSE); 12433 } 12434 mp = mp2; 12435 } 12436 ipha = (ipha_t *)mp->b_rptr; 12437 12438 ipha->ipha_length = htons((uint16_t)packet_size); 12439 /* We're now complete, zip the frag state */ 12440 ipha->ipha_fragment_offset_and_flags = 0; 12441 /* Record the ECN info. */ 12442 ipha->ipha_type_of_service &= 0xFC; 12443 ipha->ipha_type_of_service |= ecn_info; 12444 *mpp = mp; 12445 12446 /* Reassembly is successful; return checksum information if needed */ 12447 if (cksum_val != NULL) 12448 *cksum_val = sum_val; 12449 if (cksum_flags != NULL) 12450 *cksum_flags = sum_flags; 12451 12452 return (B_TRUE); 12453 } 12454 12455 /* 12456 * Perform ip header check sum update local options. 12457 * return B_TRUE if all is well, else return B_FALSE and release 12458 * the mp. caller is responsible for decrementing ire ref cnt. 12459 */ 12460 static boolean_t 12461 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12462 ip_stack_t *ipst) 12463 { 12464 mblk_t *first_mp; 12465 boolean_t mctl_present; 12466 uint16_t sum; 12467 12468 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12469 /* 12470 * Don't do the checksum if it has gone through AH/ESP 12471 * processing. 12472 */ 12473 if (!mctl_present) { 12474 sum = ip_csum_hdr(ipha); 12475 if (sum != 0) { 12476 if (ill != NULL) { 12477 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12478 } else { 12479 BUMP_MIB(&ipst->ips_ip_mib, 12480 ipIfStatsInCksumErrs); 12481 } 12482 freemsg(first_mp); 12483 return (B_FALSE); 12484 } 12485 } 12486 12487 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12488 if (mctl_present) 12489 freeb(first_mp); 12490 return (B_FALSE); 12491 } 12492 12493 return (B_TRUE); 12494 } 12495 12496 /* 12497 * All udp packet are delivered to the local host via this routine. 12498 */ 12499 void 12500 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12501 ill_t *recv_ill) 12502 { 12503 uint32_t sum; 12504 uint32_t u1; 12505 boolean_t mctl_present; 12506 conn_t *connp; 12507 mblk_t *first_mp; 12508 uint16_t *up; 12509 ill_t *ill = (ill_t *)q->q_ptr; 12510 uint16_t reass_hck_flags = 0; 12511 ip_stack_t *ipst; 12512 12513 ASSERT(recv_ill != NULL); 12514 ipst = recv_ill->ill_ipst; 12515 12516 #define rptr ((uchar_t *)ipha) 12517 12518 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12519 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12520 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12521 ASSERT(ill != NULL); 12522 12523 /* 12524 * FAST PATH for udp packets 12525 */ 12526 12527 /* u1 is # words of IP options */ 12528 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12529 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12530 12531 /* IP options present */ 12532 if (u1 != 0) 12533 goto ipoptions; 12534 12535 /* Check the IP header checksum. */ 12536 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12537 /* Clear the IP header h/w cksum flag */ 12538 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12539 } else if (!mctl_present) { 12540 /* 12541 * Don't verify header checksum if this packet is coming 12542 * back from AH/ESP as we already did it. 12543 */ 12544 #define uph ((uint16_t *)ipha) 12545 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12546 uph[6] + uph[7] + uph[8] + uph[9]; 12547 #undef uph 12548 /* finish doing IP checksum */ 12549 sum = (sum & 0xFFFF) + (sum >> 16); 12550 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12551 if (sum != 0 && sum != 0xFFFF) { 12552 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12553 freemsg(first_mp); 12554 return; 12555 } 12556 } 12557 12558 /* 12559 * Count for SNMP of inbound packets for ire. 12560 * if mctl is present this might be a secure packet and 12561 * has already been counted for in ip_proto_input(). 12562 */ 12563 if (!mctl_present) { 12564 UPDATE_IB_PKT_COUNT(ire); 12565 ire->ire_last_used_time = lbolt; 12566 } 12567 12568 /* packet part of fragmented IP packet? */ 12569 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12570 if (u1 & (IPH_MF | IPH_OFFSET)) { 12571 goto fragmented; 12572 } 12573 12574 /* u1 = IP header length (20 bytes) */ 12575 u1 = IP_SIMPLE_HDR_LENGTH; 12576 12577 /* packet does not contain complete IP & UDP headers */ 12578 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12579 goto udppullup; 12580 12581 /* up points to UDP header */ 12582 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12583 #define iphs ((uint16_t *)ipha) 12584 12585 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12586 if (up[3] != 0) { 12587 mblk_t *mp1 = mp->b_cont; 12588 boolean_t cksum_err; 12589 uint16_t hck_flags = 0; 12590 12591 /* Pseudo-header checksum */ 12592 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12593 iphs[9] + up[2]; 12594 12595 /* 12596 * Revert to software checksum calculation if the interface 12597 * isn't capable of checksum offload or if IPsec is present. 12598 */ 12599 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12600 hck_flags = DB_CKSUMFLAGS(mp); 12601 12602 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12603 IP_STAT(ipst, ip_in_sw_cksum); 12604 12605 IP_CKSUM_RECV(hck_flags, u1, 12606 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12607 (int32_t)((uchar_t *)up - rptr), 12608 mp, mp1, cksum_err); 12609 12610 if (cksum_err) { 12611 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12612 if (hck_flags & HCK_FULLCKSUM) 12613 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12614 else if (hck_flags & HCK_PARTIALCKSUM) 12615 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12616 else 12617 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12618 12619 freemsg(first_mp); 12620 return; 12621 } 12622 } 12623 12624 /* Non-fragmented broadcast or multicast packet? */ 12625 if (ire->ire_type == IRE_BROADCAST) 12626 goto udpslowpath; 12627 12628 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12629 ire->ire_zoneid, ipst)) != NULL) { 12630 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12631 IP_STAT(ipst, ip_udp_fast_path); 12632 12633 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12634 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12635 freemsg(mp); 12636 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12637 } else { 12638 if (!mctl_present) { 12639 BUMP_MIB(ill->ill_ip_mib, 12640 ipIfStatsHCInDelivers); 12641 } 12642 /* 12643 * mp and first_mp can change. 12644 */ 12645 if (ip_udp_check(q, connp, recv_ill, 12646 ipha, &mp, &first_mp, mctl_present, ire)) { 12647 /* Send it upstream */ 12648 (connp->conn_recv)(connp, mp, NULL); 12649 } 12650 } 12651 /* 12652 * freeb() cannot deal with null mblk being passed 12653 * in and first_mp can be set to null in the call 12654 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12655 */ 12656 if (mctl_present && first_mp != NULL) { 12657 freeb(first_mp); 12658 } 12659 CONN_DEC_REF(connp); 12660 return; 12661 } 12662 12663 /* 12664 * if we got here we know the packet is not fragmented and 12665 * has no options. The classifier could not find a conn_t and 12666 * most likely its an icmp packet so send it through slow path. 12667 */ 12668 12669 goto udpslowpath; 12670 12671 ipoptions: 12672 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12673 goto slow_done; 12674 } 12675 12676 UPDATE_IB_PKT_COUNT(ire); 12677 ire->ire_last_used_time = lbolt; 12678 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12679 if (u1 & (IPH_MF | IPH_OFFSET)) { 12680 fragmented: 12681 /* 12682 * "sum" and "reass_hck_flags" are non-zero if the 12683 * reassembled packet has a valid hardware computed 12684 * checksum information associated with it. 12685 */ 12686 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12687 &reass_hck_flags)) { 12688 goto slow_done; 12689 } 12690 12691 /* 12692 * Make sure that first_mp points back to mp as 12693 * the mp we came in with could have changed in 12694 * ip_rput_fragment(). 12695 */ 12696 ASSERT(!mctl_present); 12697 ipha = (ipha_t *)mp->b_rptr; 12698 first_mp = mp; 12699 } 12700 12701 /* Now we have a complete datagram, destined for this machine. */ 12702 u1 = IPH_HDR_LENGTH(ipha); 12703 /* Pull up the UDP header, if necessary. */ 12704 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12705 udppullup: 12706 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12707 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12708 freemsg(first_mp); 12709 goto slow_done; 12710 } 12711 ipha = (ipha_t *)mp->b_rptr; 12712 } 12713 12714 /* 12715 * Validate the checksum for the reassembled packet; for the 12716 * pullup case we calculate the payload checksum in software. 12717 */ 12718 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12719 if (up[3] != 0) { 12720 boolean_t cksum_err; 12721 12722 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12723 IP_STAT(ipst, ip_in_sw_cksum); 12724 12725 IP_CKSUM_RECV_REASS(reass_hck_flags, 12726 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12727 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12728 iphs[9] + up[2], sum, cksum_err); 12729 12730 if (cksum_err) { 12731 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12732 12733 if (reass_hck_flags & HCK_FULLCKSUM) 12734 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12735 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12736 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12737 else 12738 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12739 12740 freemsg(first_mp); 12741 goto slow_done; 12742 } 12743 } 12744 udpslowpath: 12745 12746 /* Clear hardware checksum flag to be safe */ 12747 DB_CKSUMFLAGS(mp) = 0; 12748 12749 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12750 (ire->ire_type == IRE_BROADCAST), 12751 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12752 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12753 12754 slow_done: 12755 IP_STAT(ipst, ip_udp_slow_path); 12756 return; 12757 12758 #undef iphs 12759 #undef rptr 12760 } 12761 12762 /* ARGSUSED */ 12763 static mblk_t * 12764 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12765 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12766 ill_rx_ring_t *ill_ring) 12767 { 12768 conn_t *connp; 12769 uint32_t sum; 12770 uint32_t u1; 12771 uint16_t *up; 12772 int offset; 12773 ssize_t len; 12774 mblk_t *mp1; 12775 boolean_t syn_present = B_FALSE; 12776 tcph_t *tcph; 12777 uint_t tcph_flags; 12778 uint_t ip_hdr_len; 12779 ill_t *ill = (ill_t *)q->q_ptr; 12780 zoneid_t zoneid = ire->ire_zoneid; 12781 boolean_t cksum_err; 12782 uint16_t hck_flags = 0; 12783 ip_stack_t *ipst = recv_ill->ill_ipst; 12784 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12785 12786 #define rptr ((uchar_t *)ipha) 12787 12788 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12789 ASSERT(ill != NULL); 12790 12791 /* 12792 * FAST PATH for tcp packets 12793 */ 12794 12795 /* u1 is # words of IP options */ 12796 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12797 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12798 12799 /* IP options present */ 12800 if (u1) { 12801 goto ipoptions; 12802 } else if (!mctl_present) { 12803 /* Check the IP header checksum. */ 12804 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12805 /* Clear the IP header h/w cksum flag */ 12806 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12807 } else if (!mctl_present) { 12808 /* 12809 * Don't verify header checksum if this packet 12810 * is coming back from AH/ESP as we already did it. 12811 */ 12812 #define uph ((uint16_t *)ipha) 12813 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12814 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12815 #undef uph 12816 /* finish doing IP checksum */ 12817 sum = (sum & 0xFFFF) + (sum >> 16); 12818 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12819 if (sum != 0 && sum != 0xFFFF) { 12820 BUMP_MIB(ill->ill_ip_mib, 12821 ipIfStatsInCksumErrs); 12822 goto error; 12823 } 12824 } 12825 } 12826 12827 if (!mctl_present) { 12828 UPDATE_IB_PKT_COUNT(ire); 12829 ire->ire_last_used_time = lbolt; 12830 } 12831 12832 /* packet part of fragmented IP packet? */ 12833 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12834 if (u1 & (IPH_MF | IPH_OFFSET)) { 12835 goto fragmented; 12836 } 12837 12838 /* u1 = IP header length (20 bytes) */ 12839 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12840 12841 /* does packet contain IP+TCP headers? */ 12842 len = mp->b_wptr - rptr; 12843 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12844 IP_STAT(ipst, ip_tcppullup); 12845 goto tcppullup; 12846 } 12847 12848 /* TCP options present? */ 12849 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12850 12851 /* 12852 * If options need to be pulled up, then goto tcpoptions. 12853 * otherwise we are still in the fast path 12854 */ 12855 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12856 IP_STAT(ipst, ip_tcpoptions); 12857 goto tcpoptions; 12858 } 12859 12860 /* multiple mblks of tcp data? */ 12861 if ((mp1 = mp->b_cont) != NULL) { 12862 /* more then two? */ 12863 if (mp1->b_cont != NULL) { 12864 IP_STAT(ipst, ip_multipkttcp); 12865 goto multipkttcp; 12866 } 12867 len += mp1->b_wptr - mp1->b_rptr; 12868 } 12869 12870 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12871 12872 /* part of pseudo checksum */ 12873 12874 /* TCP datagram length */ 12875 u1 = len - IP_SIMPLE_HDR_LENGTH; 12876 12877 #define iphs ((uint16_t *)ipha) 12878 12879 #ifdef _BIG_ENDIAN 12880 u1 += IPPROTO_TCP; 12881 #else 12882 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12883 #endif 12884 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12885 12886 /* 12887 * Revert to software checksum calculation if the interface 12888 * isn't capable of checksum offload or if IPsec is present. 12889 */ 12890 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12891 hck_flags = DB_CKSUMFLAGS(mp); 12892 12893 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12894 IP_STAT(ipst, ip_in_sw_cksum); 12895 12896 IP_CKSUM_RECV(hck_flags, u1, 12897 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12898 (int32_t)((uchar_t *)up - rptr), 12899 mp, mp1, cksum_err); 12900 12901 if (cksum_err) { 12902 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12903 12904 if (hck_flags & HCK_FULLCKSUM) 12905 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12906 else if (hck_flags & HCK_PARTIALCKSUM) 12907 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12908 else 12909 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12910 12911 goto error; 12912 } 12913 12914 try_again: 12915 12916 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12917 zoneid, ipst)) == NULL) { 12918 /* Send the TH_RST */ 12919 goto no_conn; 12920 } 12921 12922 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12923 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12924 12925 /* 12926 * TCP FAST PATH for AF_INET socket. 12927 * 12928 * TCP fast path to avoid extra work. An AF_INET socket type 12929 * does not have facility to receive extra information via 12930 * ip_process or ip_add_info. Also, when the connection was 12931 * established, we made a check if this connection is impacted 12932 * by any global IPsec policy or per connection policy (a 12933 * policy that comes in effect later will not apply to this 12934 * connection). Since all this can be determined at the 12935 * connection establishment time, a quick check of flags 12936 * can avoid extra work. 12937 */ 12938 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12939 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12940 ASSERT(first_mp == mp); 12941 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12942 if (tcph_flags != (TH_SYN | TH_ACK)) { 12943 SET_SQUEUE(mp, tcp_rput_data, connp); 12944 return (mp); 12945 } 12946 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 12947 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 12948 SET_SQUEUE(mp, tcp_input, connp); 12949 return (mp); 12950 } 12951 12952 if (tcph_flags == TH_SYN) { 12953 if (IPCL_IS_TCP(connp)) { 12954 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12955 DB_CKSUMSTART(mp) = 12956 (intptr_t)ip_squeue_get(ill_ring); 12957 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12958 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12959 BUMP_MIB(ill->ill_ip_mib, 12960 ipIfStatsHCInDelivers); 12961 SET_SQUEUE(mp, connp->conn_recv, connp); 12962 return (mp); 12963 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12964 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12965 BUMP_MIB(ill->ill_ip_mib, 12966 ipIfStatsHCInDelivers); 12967 ip_squeue_enter_unbound++; 12968 SET_SQUEUE(mp, tcp_conn_request_unbound, 12969 connp); 12970 return (mp); 12971 } 12972 syn_present = B_TRUE; 12973 } 12974 } 12975 12976 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12977 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12978 12979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12980 /* No need to send this packet to TCP */ 12981 if ((flags & TH_RST) || (flags & TH_URG)) { 12982 CONN_DEC_REF(connp); 12983 freemsg(first_mp); 12984 return (NULL); 12985 } 12986 if (flags & TH_ACK) { 12987 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 12988 ipst->ips_netstack->netstack_tcp, connp); 12989 CONN_DEC_REF(connp); 12990 return (NULL); 12991 } 12992 12993 CONN_DEC_REF(connp); 12994 freemsg(first_mp); 12995 return (NULL); 12996 } 12997 12998 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12999 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13000 ipha, NULL, mctl_present); 13001 if (first_mp == NULL) { 13002 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13003 CONN_DEC_REF(connp); 13004 return (NULL); 13005 } 13006 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13007 ASSERT(syn_present); 13008 if (mctl_present) { 13009 ASSERT(first_mp != mp); 13010 first_mp->b_datap->db_struioflag |= 13011 STRUIO_POLICY; 13012 } else { 13013 ASSERT(first_mp == mp); 13014 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13015 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13016 } 13017 } else { 13018 /* 13019 * Discard first_mp early since we're dealing with a 13020 * fully-connected conn_t and tcp doesn't do policy in 13021 * this case. 13022 */ 13023 if (mctl_present) { 13024 freeb(first_mp); 13025 mctl_present = B_FALSE; 13026 } 13027 first_mp = mp; 13028 } 13029 } 13030 13031 /* Initiate IPPF processing for fastpath */ 13032 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13033 uint32_t ill_index; 13034 13035 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13036 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13037 if (mp == NULL) { 13038 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13039 "deferred/dropped during IPPF processing\n")); 13040 CONN_DEC_REF(connp); 13041 if (mctl_present) 13042 freeb(first_mp); 13043 return (NULL); 13044 } else if (mctl_present) { 13045 /* 13046 * ip_process might return a new mp. 13047 */ 13048 ASSERT(first_mp != mp); 13049 first_mp->b_cont = mp; 13050 } else { 13051 first_mp = mp; 13052 } 13053 13054 } 13055 13056 if (!syn_present && connp->conn_ip_recvpktinfo) { 13057 /* 13058 * TCP does not support IP_RECVPKTINFO for v4 so lets 13059 * make sure IPF_RECVIF is passed to ip_add_info. 13060 */ 13061 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13062 IPCL_ZONEID(connp), ipst); 13063 if (mp == NULL) { 13064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13065 CONN_DEC_REF(connp); 13066 if (mctl_present) 13067 freeb(first_mp); 13068 return (NULL); 13069 } else if (mctl_present) { 13070 /* 13071 * ip_add_info might return a new mp. 13072 */ 13073 ASSERT(first_mp != mp); 13074 first_mp->b_cont = mp; 13075 } else { 13076 first_mp = mp; 13077 } 13078 } 13079 13080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13081 if (IPCL_IS_TCP(connp)) { 13082 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13083 return (first_mp); 13084 } else { 13085 /* SOCK_RAW, IPPROTO_TCP case */ 13086 (connp->conn_recv)(connp, first_mp, NULL); 13087 CONN_DEC_REF(connp); 13088 return (NULL); 13089 } 13090 13091 no_conn: 13092 /* Initiate IPPf processing, if needed. */ 13093 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13094 uint32_t ill_index; 13095 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13096 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13097 if (first_mp == NULL) { 13098 return (NULL); 13099 } 13100 } 13101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13102 13103 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13104 ipst->ips_netstack->netstack_tcp, NULL); 13105 return (NULL); 13106 ipoptions: 13107 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13108 goto slow_done; 13109 } 13110 13111 UPDATE_IB_PKT_COUNT(ire); 13112 ire->ire_last_used_time = lbolt; 13113 13114 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13115 if (u1 & (IPH_MF | IPH_OFFSET)) { 13116 fragmented: 13117 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13118 if (mctl_present) 13119 freeb(first_mp); 13120 goto slow_done; 13121 } 13122 /* 13123 * Make sure that first_mp points back to mp as 13124 * the mp we came in with could have changed in 13125 * ip_rput_fragment(). 13126 */ 13127 ASSERT(!mctl_present); 13128 ipha = (ipha_t *)mp->b_rptr; 13129 first_mp = mp; 13130 } 13131 13132 /* Now we have a complete datagram, destined for this machine. */ 13133 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13134 13135 len = mp->b_wptr - mp->b_rptr; 13136 /* Pull up a minimal TCP header, if necessary. */ 13137 if (len < (u1 + 20)) { 13138 tcppullup: 13139 if (!pullupmsg(mp, u1 + 20)) { 13140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13141 goto error; 13142 } 13143 ipha = (ipha_t *)mp->b_rptr; 13144 len = mp->b_wptr - mp->b_rptr; 13145 } 13146 13147 /* 13148 * Extract the offset field from the TCP header. As usual, we 13149 * try to help the compiler more than the reader. 13150 */ 13151 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13152 if (offset != 5) { 13153 tcpoptions: 13154 if (offset < 5) { 13155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13156 goto error; 13157 } 13158 /* 13159 * There must be TCP options. 13160 * Make sure we can grab them. 13161 */ 13162 offset <<= 2; 13163 offset += u1; 13164 if (len < offset) { 13165 if (!pullupmsg(mp, offset)) { 13166 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13167 goto error; 13168 } 13169 ipha = (ipha_t *)mp->b_rptr; 13170 len = mp->b_wptr - rptr; 13171 } 13172 } 13173 13174 /* Get the total packet length in len, including headers. */ 13175 if (mp->b_cont) { 13176 multipkttcp: 13177 len = msgdsize(mp); 13178 } 13179 13180 /* 13181 * Check the TCP checksum by pulling together the pseudo- 13182 * header checksum, and passing it to ip_csum to be added in 13183 * with the TCP datagram. 13184 * 13185 * Since we are not using the hwcksum if available we must 13186 * clear the flag. We may come here via tcppullup or tcpoptions. 13187 * If either of these fails along the way the mblk is freed. 13188 * If this logic ever changes and mblk is reused to say send 13189 * ICMP's back, then this flag may need to be cleared in 13190 * other places as well. 13191 */ 13192 DB_CKSUMFLAGS(mp) = 0; 13193 13194 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13195 13196 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13197 #ifdef _BIG_ENDIAN 13198 u1 += IPPROTO_TCP; 13199 #else 13200 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13201 #endif 13202 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13203 /* 13204 * Not M_DATA mblk or its a dup, so do the checksum now. 13205 */ 13206 IP_STAT(ipst, ip_in_sw_cksum); 13207 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13208 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13209 goto error; 13210 } 13211 13212 IP_STAT(ipst, ip_tcp_slow_path); 13213 goto try_again; 13214 #undef iphs 13215 #undef rptr 13216 13217 error: 13218 freemsg(first_mp); 13219 slow_done: 13220 return (NULL); 13221 } 13222 13223 /* ARGSUSED */ 13224 static void 13225 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13226 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13227 { 13228 conn_t *connp; 13229 uint32_t sum; 13230 uint32_t u1; 13231 ssize_t len; 13232 sctp_hdr_t *sctph; 13233 zoneid_t zoneid = ire->ire_zoneid; 13234 uint32_t pktsum; 13235 uint32_t calcsum; 13236 uint32_t ports; 13237 in6_addr_t map_src, map_dst; 13238 ill_t *ill = (ill_t *)q->q_ptr; 13239 ip_stack_t *ipst; 13240 sctp_stack_t *sctps; 13241 boolean_t sctp_csum_err = B_FALSE; 13242 13243 ASSERT(recv_ill != NULL); 13244 ipst = recv_ill->ill_ipst; 13245 sctps = ipst->ips_netstack->netstack_sctp; 13246 13247 #define rptr ((uchar_t *)ipha) 13248 13249 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13250 ASSERT(ill != NULL); 13251 13252 /* u1 is # words of IP options */ 13253 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13254 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13255 13256 /* IP options present */ 13257 if (u1 > 0) { 13258 goto ipoptions; 13259 } else { 13260 /* Check the IP header checksum. */ 13261 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13262 !mctl_present) { 13263 #define uph ((uint16_t *)ipha) 13264 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13265 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13266 #undef uph 13267 /* finish doing IP checksum */ 13268 sum = (sum & 0xFFFF) + (sum >> 16); 13269 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13270 /* 13271 * Don't verify header checksum if this packet 13272 * is coming back from AH/ESP as we already did it. 13273 */ 13274 if (sum != 0 && sum != 0xFFFF) { 13275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13276 goto error; 13277 } 13278 } 13279 /* 13280 * Since there is no SCTP h/w cksum support yet, just 13281 * clear the flag. 13282 */ 13283 DB_CKSUMFLAGS(mp) = 0; 13284 } 13285 13286 /* 13287 * Don't verify header checksum if this packet is coming 13288 * back from AH/ESP as we already did it. 13289 */ 13290 if (!mctl_present) { 13291 UPDATE_IB_PKT_COUNT(ire); 13292 ire->ire_last_used_time = lbolt; 13293 } 13294 13295 /* packet part of fragmented IP packet? */ 13296 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13297 if (u1 & (IPH_MF | IPH_OFFSET)) 13298 goto fragmented; 13299 13300 /* u1 = IP header length (20 bytes) */ 13301 u1 = IP_SIMPLE_HDR_LENGTH; 13302 13303 find_sctp_client: 13304 /* Pullup if we don't have the sctp common header. */ 13305 len = MBLKL(mp); 13306 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13307 if (mp->b_cont == NULL || 13308 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13310 goto error; 13311 } 13312 ipha = (ipha_t *)mp->b_rptr; 13313 len = MBLKL(mp); 13314 } 13315 13316 sctph = (sctp_hdr_t *)(rptr + u1); 13317 #ifdef DEBUG 13318 if (!skip_sctp_cksum) { 13319 #endif 13320 pktsum = sctph->sh_chksum; 13321 sctph->sh_chksum = 0; 13322 calcsum = sctp_cksum(mp, u1); 13323 sctph->sh_chksum = pktsum; 13324 if (calcsum != pktsum) 13325 sctp_csum_err = B_TRUE; 13326 #ifdef DEBUG /* skip_sctp_cksum */ 13327 } 13328 #endif 13329 /* get the ports */ 13330 ports = *(uint32_t *)&sctph->sh_sport; 13331 13332 IRE_REFRELE(ire); 13333 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13334 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13335 if (sctp_csum_err) { 13336 /* 13337 * No potential sctp checksum errors go to the Sun 13338 * sctp stack however they might be Adler-32 summed 13339 * packets a userland stack bound to a raw IP socket 13340 * could reasonably use. Note though that Adler-32 is 13341 * a long deprecated algorithm and customer sctp 13342 * networks should eventually migrate to CRC-32 at 13343 * which time this facility should be removed. 13344 */ 13345 flags |= IP_FF_SCTP_CSUM_ERR; 13346 goto no_conn; 13347 } 13348 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13349 sctps)) == NULL) { 13350 /* Check for raw socket or OOTB handling */ 13351 goto no_conn; 13352 } 13353 13354 /* Found a client; up it goes */ 13355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13356 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13357 return; 13358 13359 no_conn: 13360 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13361 ports, mctl_present, flags, B_TRUE, zoneid); 13362 return; 13363 13364 ipoptions: 13365 DB_CKSUMFLAGS(mp) = 0; 13366 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13367 goto slow_done; 13368 13369 UPDATE_IB_PKT_COUNT(ire); 13370 ire->ire_last_used_time = lbolt; 13371 13372 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13373 if (u1 & (IPH_MF | IPH_OFFSET)) { 13374 fragmented: 13375 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13376 goto slow_done; 13377 /* 13378 * Make sure that first_mp points back to mp as 13379 * the mp we came in with could have changed in 13380 * ip_rput_fragment(). 13381 */ 13382 ASSERT(!mctl_present); 13383 ipha = (ipha_t *)mp->b_rptr; 13384 first_mp = mp; 13385 } 13386 13387 /* Now we have a complete datagram, destined for this machine. */ 13388 u1 = IPH_HDR_LENGTH(ipha); 13389 goto find_sctp_client; 13390 #undef iphs 13391 #undef rptr 13392 13393 error: 13394 freemsg(first_mp); 13395 slow_done: 13396 IRE_REFRELE(ire); 13397 } 13398 13399 #define VER_BITS 0xF0 13400 #define VERSION_6 0x60 13401 13402 static boolean_t 13403 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13404 ipaddr_t *dstp, ip_stack_t *ipst) 13405 { 13406 uint_t opt_len; 13407 ipha_t *ipha; 13408 ssize_t len; 13409 uint_t pkt_len; 13410 13411 ASSERT(ill != NULL); 13412 IP_STAT(ipst, ip_ipoptions); 13413 ipha = *iphapp; 13414 13415 #define rptr ((uchar_t *)ipha) 13416 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13417 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13419 freemsg(mp); 13420 return (B_FALSE); 13421 } 13422 13423 /* multiple mblk or too short */ 13424 pkt_len = ntohs(ipha->ipha_length); 13425 13426 /* Get the number of words of IP options in the IP header. */ 13427 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13428 if (opt_len) { 13429 /* IP Options present! Validate and process. */ 13430 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13432 goto done; 13433 } 13434 /* 13435 * Recompute complete header length and make sure we 13436 * have access to all of it. 13437 */ 13438 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13439 if (len > (mp->b_wptr - rptr)) { 13440 if (len > pkt_len) { 13441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13442 goto done; 13443 } 13444 if (!pullupmsg(mp, len)) { 13445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13446 goto done; 13447 } 13448 ipha = (ipha_t *)mp->b_rptr; 13449 } 13450 /* 13451 * Go off to ip_rput_options which returns the next hop 13452 * destination address, which may have been affected 13453 * by source routing. 13454 */ 13455 IP_STAT(ipst, ip_opt); 13456 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13458 return (B_FALSE); 13459 } 13460 } 13461 *iphapp = ipha; 13462 return (B_TRUE); 13463 done: 13464 /* clear b_prev - used by ip_mroute_decap */ 13465 mp->b_prev = NULL; 13466 freemsg(mp); 13467 return (B_FALSE); 13468 #undef rptr 13469 } 13470 13471 /* 13472 * Deal with the fact that there is no ire for the destination. 13473 */ 13474 static ire_t * 13475 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13476 { 13477 ipha_t *ipha; 13478 ill_t *ill; 13479 ire_t *ire; 13480 ip_stack_t *ipst; 13481 enum ire_forward_action ret_action; 13482 13483 ipha = (ipha_t *)mp->b_rptr; 13484 ill = (ill_t *)q->q_ptr; 13485 13486 ASSERT(ill != NULL); 13487 ipst = ill->ill_ipst; 13488 13489 /* 13490 * No IRE for this destination, so it can't be for us. 13491 * Unless we are forwarding, drop the packet. 13492 * We have to let source routed packets through 13493 * since we don't yet know if they are 'ping -l' 13494 * packets i.e. if they will go out over the 13495 * same interface as they came in on. 13496 */ 13497 if (ll_multicast) { 13498 freemsg(mp); 13499 return (NULL); 13500 } 13501 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13503 freemsg(mp); 13504 return (NULL); 13505 } 13506 13507 /* 13508 * Mark this packet as having originated externally. 13509 * 13510 * For non-forwarding code path, ire_send later double 13511 * checks this interface to see if it is still exists 13512 * post-ARP resolution. 13513 * 13514 * Also, IPQOS uses this to differentiate between 13515 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13516 * QOS packet processing in ip_wput_attach_llhdr(). 13517 * The QoS module can mark the b_band for a fastpath message 13518 * or the dl_priority field in a unitdata_req header for 13519 * CoS marking. This info can only be found in 13520 * ip_wput_attach_llhdr(). 13521 */ 13522 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13523 /* 13524 * Clear the indication that this may have a hardware checksum 13525 * as we are not using it 13526 */ 13527 DB_CKSUMFLAGS(mp) = 0; 13528 13529 ire = ire_forward(dst, &ret_action, NULL, NULL, 13530 msg_getlabel(mp), ipst); 13531 13532 if (ire == NULL && ret_action == Forward_check_multirt) { 13533 /* Let ip_newroute handle CGTP */ 13534 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13535 return (NULL); 13536 } 13537 13538 if (ire != NULL) 13539 return (ire); 13540 13541 mp->b_prev = mp->b_next = 0; 13542 13543 if (ret_action == Forward_blackhole) { 13544 freemsg(mp); 13545 return (NULL); 13546 } 13547 /* send icmp unreachable */ 13548 q = WR(q); 13549 /* Sent by forwarding path, and router is global zone */ 13550 if (ip_source_routed(ipha, ipst)) { 13551 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13552 GLOBAL_ZONEID, ipst); 13553 } else { 13554 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13555 ipst); 13556 } 13557 13558 return (NULL); 13559 13560 } 13561 13562 /* 13563 * check ip header length and align it. 13564 */ 13565 static boolean_t 13566 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13567 { 13568 ssize_t len; 13569 ill_t *ill; 13570 ipha_t *ipha; 13571 13572 len = MBLKL(mp); 13573 13574 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13575 ill = (ill_t *)q->q_ptr; 13576 13577 if (!OK_32PTR(mp->b_rptr)) 13578 IP_STAT(ipst, ip_notaligned1); 13579 else 13580 IP_STAT(ipst, ip_notaligned2); 13581 /* Guard against bogus device drivers */ 13582 if (len < 0) { 13583 /* clear b_prev - used by ip_mroute_decap */ 13584 mp->b_prev = NULL; 13585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13586 freemsg(mp); 13587 return (B_FALSE); 13588 } 13589 13590 if (ip_rput_pullups++ == 0) { 13591 ipha = (ipha_t *)mp->b_rptr; 13592 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13593 "ip_check_and_align_header: %s forced us to " 13594 " pullup pkt, hdr len %ld, hdr addr %p", 13595 ill->ill_name, len, (void *)ipha); 13596 } 13597 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13598 /* clear b_prev - used by ip_mroute_decap */ 13599 mp->b_prev = NULL; 13600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13601 freemsg(mp); 13602 return (B_FALSE); 13603 } 13604 } 13605 return (B_TRUE); 13606 } 13607 13608 /* 13609 * Handle the situation where a packet came in on `ill' but matched an IRE 13610 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13611 * for interface statistics. 13612 */ 13613 ire_t * 13614 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13615 { 13616 ire_t *new_ire; 13617 ill_t *ire_ill; 13618 uint_t ifindex; 13619 ip_stack_t *ipst = ill->ill_ipst; 13620 boolean_t strict_check = B_FALSE; 13621 13622 /* 13623 * IPMP common case: if IRE and ILL are in the same group, there's no 13624 * issue (e.g. packet received on an underlying interface matched an 13625 * IRE_LOCAL on its associated group interface). 13626 */ 13627 if (ire->ire_rfq != NULL && 13628 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13629 return (ire); 13630 } 13631 13632 /* 13633 * Do another ire lookup here, using the ingress ill, to see if the 13634 * interface is in a usesrc group. 13635 * As long as the ills belong to the same group, we don't consider 13636 * them to be arriving on the wrong interface. Thus, if the switch 13637 * is doing inbound load spreading, we won't drop packets when the 13638 * ip*_strict_dst_multihoming switch is on. 13639 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13640 * where the local address may not be unique. In this case we were 13641 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13642 * actually returned. The new lookup, which is more specific, should 13643 * only find the IRE_LOCAL associated with the ingress ill if one 13644 * exists. 13645 */ 13646 13647 if (ire->ire_ipversion == IPV4_VERSION) { 13648 if (ipst->ips_ip_strict_dst_multihoming) 13649 strict_check = B_TRUE; 13650 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13651 ill->ill_ipif, ALL_ZONES, NULL, 13652 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13653 } else { 13654 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13655 if (ipst->ips_ipv6_strict_dst_multihoming) 13656 strict_check = B_TRUE; 13657 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13658 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13659 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13660 } 13661 /* 13662 * If the same ire that was returned in ip_input() is found then this 13663 * is an indication that usesrc groups are in use. The packet 13664 * arrived on a different ill in the group than the one associated with 13665 * the destination address. If a different ire was found then the same 13666 * IP address must be hosted on multiple ills. This is possible with 13667 * unnumbered point2point interfaces. We switch to use this new ire in 13668 * order to have accurate interface statistics. 13669 */ 13670 if (new_ire != NULL) { 13671 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13672 ire_refrele(ire); 13673 ire = new_ire; 13674 } else { 13675 ire_refrele(new_ire); 13676 } 13677 return (ire); 13678 } else if ((ire->ire_rfq == NULL) && 13679 (ire->ire_ipversion == IPV4_VERSION)) { 13680 /* 13681 * The best match could have been the original ire which 13682 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13683 * the strict multihoming checks are irrelevant as we consider 13684 * local addresses hosted on lo0 to be interface agnostic. We 13685 * only expect a null ire_rfq on IREs which are associated with 13686 * lo0 hence we can return now. 13687 */ 13688 return (ire); 13689 } 13690 13691 /* 13692 * Chase pointers once and store locally. 13693 */ 13694 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13695 (ill_t *)(ire->ire_rfq->q_ptr); 13696 ifindex = ill->ill_usesrc_ifindex; 13697 13698 /* 13699 * Check if it's a legal address on the 'usesrc' interface. 13700 */ 13701 if ((ifindex != 0) && (ire_ill != NULL) && 13702 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13703 return (ire); 13704 } 13705 13706 /* 13707 * If the ip*_strict_dst_multihoming switch is on then we can 13708 * only accept this packet if the interface is marked as routing. 13709 */ 13710 if (!(strict_check)) 13711 return (ire); 13712 13713 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13714 ILLF_ROUTER) != 0) { 13715 return (ire); 13716 } 13717 13718 ire_refrele(ire); 13719 return (NULL); 13720 } 13721 13722 /* 13723 * 13724 * This is the fast forward path. If we are here, we dont need to 13725 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13726 * needed to find the nexthop in this case is much simpler 13727 */ 13728 ire_t * 13729 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13730 { 13731 ipha_t *ipha; 13732 ire_t *src_ire; 13733 ill_t *stq_ill; 13734 uint_t hlen; 13735 uint_t pkt_len; 13736 uint32_t sum; 13737 queue_t *dev_q; 13738 ip_stack_t *ipst = ill->ill_ipst; 13739 mblk_t *fpmp; 13740 enum ire_forward_action ret_action; 13741 13742 ipha = (ipha_t *)mp->b_rptr; 13743 13744 if (ire != NULL && 13745 ire->ire_zoneid != GLOBAL_ZONEID && 13746 ire->ire_zoneid != ALL_ZONES) { 13747 /* 13748 * Should only use IREs that are visible to the global 13749 * zone for forwarding. 13750 */ 13751 ire_refrele(ire); 13752 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13753 /* 13754 * ire_cache_lookup() can return ire of IRE_LOCAL in 13755 * transient cases. In such case, just drop the packet 13756 */ 13757 if (ire->ire_type != IRE_CACHE) 13758 goto drop; 13759 } 13760 13761 /* 13762 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13763 * The loopback address check for both src and dst has already 13764 * been checked in ip_input 13765 */ 13766 13767 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13768 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13769 goto drop; 13770 } 13771 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13772 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13773 13774 if (src_ire != NULL) { 13775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13776 ire_refrele(src_ire); 13777 goto drop; 13778 } 13779 13780 /* No ire cache of nexthop. So first create one */ 13781 if (ire == NULL) { 13782 13783 ire = ire_forward_simple(dst, &ret_action, ipst); 13784 13785 /* 13786 * We only come to ip_fast_forward if ip_cgtp_filter 13787 * is not set. So ire_forward() should not return with 13788 * Forward_check_multirt as the next action. 13789 */ 13790 ASSERT(ret_action != Forward_check_multirt); 13791 if (ire == NULL) { 13792 /* An attempt was made to forward the packet */ 13793 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13794 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13795 mp->b_prev = mp->b_next = 0; 13796 /* send icmp unreachable */ 13797 /* Sent by forwarding path, and router is global zone */ 13798 if (ret_action == Forward_ret_icmp_err) { 13799 if (ip_source_routed(ipha, ipst)) { 13800 icmp_unreachable(ill->ill_wq, mp, 13801 ICMP_SOURCE_ROUTE_FAILED, 13802 GLOBAL_ZONEID, ipst); 13803 } else { 13804 icmp_unreachable(ill->ill_wq, mp, 13805 ICMP_HOST_UNREACHABLE, 13806 GLOBAL_ZONEID, ipst); 13807 } 13808 } else { 13809 freemsg(mp); 13810 } 13811 return (NULL); 13812 } 13813 } 13814 13815 /* 13816 * Forwarding fastpath exception case: 13817 * If any of the following are true, we take the slowpath: 13818 * o forwarding is not enabled 13819 * o incoming and outgoing interface are the same, or in the same 13820 * IPMP group. 13821 * o corresponding ire is in incomplete state 13822 * o packet needs fragmentation 13823 * o ARP cache is not resolved 13824 * 13825 * The codeflow from here on is thus: 13826 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13827 */ 13828 pkt_len = ntohs(ipha->ipha_length); 13829 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13830 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13831 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13832 (ire->ire_nce == NULL) || 13833 (pkt_len > ire->ire_max_frag) || 13834 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13835 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13836 ipha->ipha_ttl <= 1) { 13837 ip_rput_process_forward(ill->ill_rq, mp, ire, 13838 ipha, ill, B_FALSE, B_TRUE); 13839 return (ire); 13840 } 13841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13842 13843 DTRACE_PROBE4(ip4__forwarding__start, 13844 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13845 13846 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13847 ipst->ips_ipv4firewall_forwarding, 13848 ill, stq_ill, ipha, mp, mp, 0, ipst); 13849 13850 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13851 13852 if (mp == NULL) 13853 goto drop; 13854 13855 mp->b_datap->db_struioun.cksum.flags = 0; 13856 /* Adjust the checksum to reflect the ttl decrement. */ 13857 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13858 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13859 ipha->ipha_ttl--; 13860 13861 /* 13862 * Write the link layer header. We can do this safely here, 13863 * because we have already tested to make sure that the IP 13864 * policy is not set, and that we have a fast path destination 13865 * header. 13866 */ 13867 mp->b_rptr -= hlen; 13868 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13869 13870 UPDATE_IB_PKT_COUNT(ire); 13871 ire->ire_last_used_time = lbolt; 13872 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13873 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13874 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13875 13876 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13877 dev_q = ire->ire_stq->q_next; 13878 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13879 goto indiscard; 13880 } 13881 13882 DTRACE_PROBE4(ip4__physical__out__start, 13883 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13884 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13885 ipst->ips_ipv4firewall_physical_out, 13886 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13887 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13888 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13889 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13890 ip6_t *, NULL, int, 0); 13891 13892 if (mp != NULL) { 13893 if (ipst->ips_ipobs_enabled) { 13894 zoneid_t szone; 13895 13896 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13897 ipst, ALL_ZONES); 13898 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13899 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 13900 } 13901 13902 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 13903 } 13904 return (ire); 13905 13906 indiscard: 13907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13908 drop: 13909 if (mp != NULL) 13910 freemsg(mp); 13911 return (ire); 13912 13913 } 13914 13915 /* 13916 * This function is called in the forwarding slowpath, when 13917 * either the ire lacks the link-layer address, or the packet needs 13918 * further processing(eg. fragmentation), before transmission. 13919 */ 13920 13921 static void 13922 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13923 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13924 { 13925 queue_t *dev_q; 13926 ire_t *src_ire; 13927 ip_stack_t *ipst = ill->ill_ipst; 13928 boolean_t same_illgrp = B_FALSE; 13929 13930 ASSERT(ire->ire_stq != NULL); 13931 13932 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13933 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13934 13935 /* 13936 * If the caller of this function is ip_fast_forward() skip the 13937 * next three checks as it does not apply. 13938 */ 13939 if (from_ip_fast_forward) 13940 goto skip; 13941 13942 if (ll_multicast != 0) { 13943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13944 goto drop_pkt; 13945 } 13946 13947 /* 13948 * check if ipha_src is a broadcast address. Note that this 13949 * check is redundant when we get here from ip_fast_forward() 13950 * which has already done this check. However, since we can 13951 * also get here from ip_rput_process_broadcast() or, for 13952 * for the slow path through ip_fast_forward(), we perform 13953 * the check again for code-reusability 13954 */ 13955 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13956 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13957 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 13958 if (src_ire != NULL) 13959 ire_refrele(src_ire); 13960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13961 ip2dbg(("ip_rput_process_forward: Received packet with" 13962 " bad src/dst address on %s\n", ill->ill_name)); 13963 goto drop_pkt; 13964 } 13965 13966 /* 13967 * Check if we want to forward this one at this time. 13968 * We allow source routed packets on a host provided that 13969 * they go out the same ill or illgrp as they came in on. 13970 * 13971 * XXX To be quicker, we may wish to not chase pointers to 13972 * get the ILLF_ROUTER flag and instead store the 13973 * forwarding policy in the ire. An unfortunate 13974 * side-effect of that would be requiring an ire flush 13975 * whenever the ILLF_ROUTER flag changes. 13976 */ 13977 skip: 13978 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 13979 13980 if (((ill->ill_flags & 13981 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 13982 !(ip_source_routed(ipha, ipst) && 13983 (ire->ire_rfq == q || same_illgrp))) { 13984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13985 if (ip_source_routed(ipha, ipst)) { 13986 q = WR(q); 13987 /* 13988 * Clear the indication that this may have 13989 * hardware checksum as we are not using it. 13990 */ 13991 DB_CKSUMFLAGS(mp) = 0; 13992 /* Sent by forwarding path, and router is global zone */ 13993 icmp_unreachable(q, mp, 13994 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 13995 return; 13996 } 13997 goto drop_pkt; 13998 } 13999 14000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14001 14002 /* Packet is being forwarded. Turning off hwcksum flag. */ 14003 DB_CKSUMFLAGS(mp) = 0; 14004 if (ipst->ips_ip_g_send_redirects) { 14005 /* 14006 * Check whether the incoming interface and outgoing 14007 * interface is part of the same group. If so, 14008 * send redirects. 14009 * 14010 * Check the source address to see if it originated 14011 * on the same logical subnet it is going back out on. 14012 * If so, we should be able to send it a redirect. 14013 * Avoid sending a redirect if the destination 14014 * is directly connected (i.e., ipha_dst is the same 14015 * as ire_gateway_addr or the ire_addr of the 14016 * nexthop IRE_CACHE ), or if the packet was source 14017 * routed out this interface. 14018 */ 14019 ipaddr_t src, nhop; 14020 mblk_t *mp1; 14021 ire_t *nhop_ire = NULL; 14022 14023 /* 14024 * Check whether ire_rfq and q are from the same ill or illgrp. 14025 * If so, send redirects. 14026 */ 14027 if ((ire->ire_rfq == q || same_illgrp) && 14028 !ip_source_routed(ipha, ipst)) { 14029 14030 nhop = (ire->ire_gateway_addr != 0 ? 14031 ire->ire_gateway_addr : ire->ire_addr); 14032 14033 if (ipha->ipha_dst == nhop) { 14034 /* 14035 * We avoid sending a redirect if the 14036 * destination is directly connected 14037 * because it is possible that multiple 14038 * IP subnets may have been configured on 14039 * the link, and the source may not 14040 * be on the same subnet as ip destination, 14041 * even though they are on the same 14042 * physical link. 14043 */ 14044 goto sendit; 14045 } 14046 14047 src = ipha->ipha_src; 14048 14049 /* 14050 * We look up the interface ire for the nexthop, 14051 * to see if ipha_src is in the same subnet 14052 * as the nexthop. 14053 * 14054 * Note that, if, in the future, IRE_CACHE entries 14055 * are obsoleted, this lookup will not be needed, 14056 * as the ire passed to this function will be the 14057 * same as the nhop_ire computed below. 14058 */ 14059 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14060 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14061 0, NULL, MATCH_IRE_TYPE, ipst); 14062 14063 if (nhop_ire != NULL) { 14064 if ((src & nhop_ire->ire_mask) == 14065 (nhop & nhop_ire->ire_mask)) { 14066 /* 14067 * The source is directly connected. 14068 * Just copy the ip header (which is 14069 * in the first mblk) 14070 */ 14071 mp1 = copyb(mp); 14072 if (mp1 != NULL) { 14073 icmp_send_redirect(WR(q), mp1, 14074 nhop, ipst); 14075 } 14076 } 14077 ire_refrele(nhop_ire); 14078 } 14079 } 14080 } 14081 sendit: 14082 dev_q = ire->ire_stq->q_next; 14083 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14085 freemsg(mp); 14086 return; 14087 } 14088 14089 ip_rput_forward(ire, ipha, mp, ill); 14090 return; 14091 14092 drop_pkt: 14093 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14094 freemsg(mp); 14095 } 14096 14097 ire_t * 14098 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14099 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14100 { 14101 queue_t *q; 14102 uint16_t hcksumflags; 14103 ip_stack_t *ipst = ill->ill_ipst; 14104 14105 q = *qp; 14106 14107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14108 14109 /* 14110 * Clear the indication that this may have hardware 14111 * checksum as we are not using it for forwarding. 14112 */ 14113 hcksumflags = DB_CKSUMFLAGS(mp); 14114 DB_CKSUMFLAGS(mp) = 0; 14115 14116 /* 14117 * Directed broadcast forwarding: if the packet came in over a 14118 * different interface then it is routed out over we can forward it. 14119 */ 14120 if (ipha->ipha_protocol == IPPROTO_TCP) { 14121 ire_refrele(ire); 14122 freemsg(mp); 14123 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14124 return (NULL); 14125 } 14126 /* 14127 * For multicast we have set dst to be INADDR_BROADCAST 14128 * for delivering to all STREAMS. 14129 */ 14130 if (!CLASSD(ipha->ipha_dst)) { 14131 ire_t *new_ire; 14132 ipif_t *ipif; 14133 14134 ipif = ipif_get_next_ipif(NULL, ill); 14135 if (ipif == NULL) { 14136 discard: ire_refrele(ire); 14137 freemsg(mp); 14138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14139 return (NULL); 14140 } 14141 new_ire = ire_ctable_lookup(dst, 0, 0, 14142 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14143 ipif_refrele(ipif); 14144 14145 if (new_ire != NULL) { 14146 /* 14147 * If the matching IRE_BROADCAST is part of an IPMP 14148 * group, then drop the packet unless our ill has been 14149 * nominated to receive for the group. 14150 */ 14151 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14152 new_ire->ire_rfq != q) { 14153 ire_refrele(new_ire); 14154 goto discard; 14155 } 14156 14157 /* 14158 * In the special case of multirouted broadcast 14159 * packets, we unconditionally need to "gateway" 14160 * them to the appropriate interface here. 14161 * In the normal case, this cannot happen, because 14162 * there is no broadcast IRE tagged with the 14163 * RTF_MULTIRT flag. 14164 */ 14165 if (new_ire->ire_flags & RTF_MULTIRT) { 14166 ire_refrele(new_ire); 14167 if (ire->ire_rfq != NULL) { 14168 q = ire->ire_rfq; 14169 *qp = q; 14170 } 14171 } else { 14172 ire_refrele(ire); 14173 ire = new_ire; 14174 } 14175 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14176 if (!ipst->ips_ip_g_forward_directed_bcast) { 14177 /* 14178 * Free the message if 14179 * ip_g_forward_directed_bcast is turned 14180 * off for non-local broadcast. 14181 */ 14182 ire_refrele(ire); 14183 freemsg(mp); 14184 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14185 return (NULL); 14186 } 14187 } else { 14188 /* 14189 * This CGTP packet successfully passed the 14190 * CGTP filter, but the related CGTP 14191 * broadcast IRE has not been found, 14192 * meaning that the redundant ipif is 14193 * probably down. However, if we discarded 14194 * this packet, its duplicate would be 14195 * filtered out by the CGTP filter so none 14196 * of them would get through. So we keep 14197 * going with this one. 14198 */ 14199 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14200 if (ire->ire_rfq != NULL) { 14201 q = ire->ire_rfq; 14202 *qp = q; 14203 } 14204 } 14205 } 14206 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14207 /* 14208 * Verify that there are not more then one 14209 * IRE_BROADCAST with this broadcast address which 14210 * has ire_stq set. 14211 * TODO: simplify, loop over all IRE's 14212 */ 14213 ire_t *ire1; 14214 int num_stq = 0; 14215 mblk_t *mp1; 14216 14217 /* Find the first one with ire_stq set */ 14218 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14219 for (ire1 = ire; ire1 && 14220 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14221 ire1 = ire1->ire_next) 14222 ; 14223 if (ire1) { 14224 ire_refrele(ire); 14225 ire = ire1; 14226 IRE_REFHOLD(ire); 14227 } 14228 14229 /* Check if there are additional ones with stq set */ 14230 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14231 if (ire->ire_addr != ire1->ire_addr) 14232 break; 14233 if (ire1->ire_stq) { 14234 num_stq++; 14235 break; 14236 } 14237 } 14238 rw_exit(&ire->ire_bucket->irb_lock); 14239 if (num_stq == 1 && ire->ire_stq != NULL) { 14240 ip1dbg(("ip_rput_process_broadcast: directed " 14241 "broadcast to 0x%x\n", 14242 ntohl(ire->ire_addr))); 14243 mp1 = copymsg(mp); 14244 if (mp1) { 14245 switch (ipha->ipha_protocol) { 14246 case IPPROTO_UDP: 14247 ip_udp_input(q, mp1, ipha, ire, ill); 14248 break; 14249 default: 14250 ip_proto_input(q, mp1, ipha, ire, ill, 14251 0); 14252 break; 14253 } 14254 } 14255 /* 14256 * Adjust ttl to 2 (1+1 - the forward engine 14257 * will decrement it by one. 14258 */ 14259 if (ip_csum_hdr(ipha)) { 14260 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14261 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14262 freemsg(mp); 14263 ire_refrele(ire); 14264 return (NULL); 14265 } 14266 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14267 ipha->ipha_hdr_checksum = 0; 14268 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14269 ip_rput_process_forward(q, mp, ire, ipha, 14270 ill, ll_multicast, B_FALSE); 14271 ire_refrele(ire); 14272 return (NULL); 14273 } 14274 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14275 ntohl(ire->ire_addr))); 14276 } 14277 14278 /* Restore any hardware checksum flags */ 14279 DB_CKSUMFLAGS(mp) = hcksumflags; 14280 return (ire); 14281 } 14282 14283 /* ARGSUSED */ 14284 static boolean_t 14285 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14286 int *ll_multicast, ipaddr_t *dstp) 14287 { 14288 ip_stack_t *ipst = ill->ill_ipst; 14289 14290 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14291 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14292 ntohs(ipha->ipha_length)); 14293 14294 /* 14295 * So that we don't end up with dups, only one ill in an IPMP group is 14296 * nominated to receive multicast traffic. 14297 */ 14298 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14299 goto drop_pkt; 14300 14301 /* 14302 * Forward packets only if we have joined the allmulti 14303 * group on this interface. 14304 */ 14305 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14306 int retval; 14307 14308 /* 14309 * Clear the indication that this may have hardware 14310 * checksum as we are not using it. 14311 */ 14312 DB_CKSUMFLAGS(mp) = 0; 14313 retval = ip_mforward(ill, ipha, mp); 14314 /* ip_mforward updates mib variables if needed */ 14315 /* clear b_prev - used by ip_mroute_decap */ 14316 mp->b_prev = NULL; 14317 14318 switch (retval) { 14319 case 0: 14320 /* 14321 * pkt is okay and arrived on phyint. 14322 * 14323 * If we are running as a multicast router 14324 * we need to see all IGMP and/or PIM packets. 14325 */ 14326 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14327 (ipha->ipha_protocol == IPPROTO_PIM)) { 14328 goto done; 14329 } 14330 break; 14331 case -1: 14332 /* pkt is mal-formed, toss it */ 14333 goto drop_pkt; 14334 case 1: 14335 /* pkt is okay and arrived on a tunnel */ 14336 /* 14337 * If we are running a multicast router 14338 * we need to see all igmp packets. 14339 */ 14340 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14341 *dstp = INADDR_BROADCAST; 14342 *ll_multicast = 1; 14343 return (B_FALSE); 14344 } 14345 14346 goto drop_pkt; 14347 } 14348 } 14349 14350 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14351 /* 14352 * This might just be caused by the fact that 14353 * multiple IP Multicast addresses map to the same 14354 * link layer multicast - no need to increment counter! 14355 */ 14356 freemsg(mp); 14357 return (B_TRUE); 14358 } 14359 done: 14360 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14361 /* 14362 * This assumes the we deliver to all streams for multicast 14363 * and broadcast packets. 14364 */ 14365 *dstp = INADDR_BROADCAST; 14366 *ll_multicast = 1; 14367 return (B_FALSE); 14368 drop_pkt: 14369 ip2dbg(("ip_rput: drop pkt\n")); 14370 freemsg(mp); 14371 return (B_TRUE); 14372 } 14373 14374 /* 14375 * This function is used to both return an indication of whether or not 14376 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14377 * and in doing so, determine whether or not it is broadcast vs multicast. 14378 * For it to be a broadcast packet, we must have the appropriate mblk_t 14379 * hanging off the ill_t. If this is either not present or doesn't match 14380 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14381 * to be multicast. Thus NICs that have no broadcast address (or no 14382 * capability for one, such as point to point links) cannot return as 14383 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14384 * the return values simplifies the current use of the return value of this 14385 * function, which is to pass through the multicast/broadcast characteristic 14386 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14387 * changing the return value to some other symbol demands the appropriate 14388 * "translation" when hpe_flags is set prior to calling hook_run() for 14389 * packet events. 14390 */ 14391 int 14392 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14393 { 14394 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14395 mblk_t *bmp; 14396 14397 if (ind->dl_group_address) { 14398 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14399 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14400 MBLKL(mb) && 14401 (bmp = ill->ill_bcast_mp) != NULL) { 14402 dl_unitdata_req_t *dlur; 14403 uint8_t *bphys_addr; 14404 14405 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14406 if (ill->ill_sap_length < 0) 14407 bphys_addr = (uchar_t *)dlur + 14408 dlur->dl_dest_addr_offset; 14409 else 14410 bphys_addr = (uchar_t *)dlur + 14411 dlur->dl_dest_addr_offset + 14412 ill->ill_sap_length; 14413 14414 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14415 bphys_addr, ind->dl_dest_addr_length) == 0) { 14416 return (HPE_BROADCAST); 14417 } 14418 return (HPE_MULTICAST); 14419 } 14420 return (HPE_MULTICAST); 14421 } 14422 return (0); 14423 } 14424 14425 static boolean_t 14426 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14427 int *ll_multicast, mblk_t **mpp) 14428 { 14429 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14430 boolean_t must_copy = B_FALSE; 14431 struct iocblk *iocp; 14432 ipha_t *ipha; 14433 ip_stack_t *ipst = ill->ill_ipst; 14434 14435 #define rptr ((uchar_t *)ipha) 14436 14437 first_mp = *first_mpp; 14438 mp = *mpp; 14439 14440 ASSERT(first_mp == mp); 14441 14442 /* 14443 * if db_ref > 1 then copymsg and free original. Packet may be 14444 * changed and do not want other entity who has a reference to this 14445 * message to trip over the changes. This is a blind change because 14446 * trying to catch all places that might change packet is too 14447 * difficult (since it may be a module above this one) 14448 * 14449 * This corresponds to the non-fast path case. We walk down the full 14450 * chain in this case, and check the db_ref count of all the dblks, 14451 * and do a copymsg if required. It is possible that the db_ref counts 14452 * of the data blocks in the mblk chain can be different. 14453 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14454 * count of 1, followed by a M_DATA block with a ref count of 2, if 14455 * 'snoop' is running. 14456 */ 14457 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14458 if (mp1->b_datap->db_ref > 1) { 14459 must_copy = B_TRUE; 14460 break; 14461 } 14462 } 14463 14464 if (must_copy) { 14465 mp1 = copymsg(mp); 14466 if (mp1 == NULL) { 14467 for (mp1 = mp; mp1 != NULL; 14468 mp1 = mp1->b_cont) { 14469 mp1->b_next = NULL; 14470 mp1->b_prev = NULL; 14471 } 14472 freemsg(mp); 14473 if (ill != NULL) { 14474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14475 } else { 14476 BUMP_MIB(&ipst->ips_ip_mib, 14477 ipIfStatsInDiscards); 14478 } 14479 return (B_TRUE); 14480 } 14481 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14482 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14483 /* Copy b_prev - used by ip_mroute_decap */ 14484 to_mp->b_prev = from_mp->b_prev; 14485 from_mp->b_prev = NULL; 14486 } 14487 *first_mpp = first_mp = mp1; 14488 freemsg(mp); 14489 mp = mp1; 14490 *mpp = mp1; 14491 } 14492 14493 ipha = (ipha_t *)mp->b_rptr; 14494 14495 /* 14496 * previous code has a case for M_DATA. 14497 * We want to check how that happens. 14498 */ 14499 ASSERT(first_mp->b_datap->db_type != M_DATA); 14500 switch (first_mp->b_datap->db_type) { 14501 case M_PROTO: 14502 case M_PCPROTO: 14503 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14504 DL_UNITDATA_IND) { 14505 /* Go handle anything other than data elsewhere. */ 14506 ip_rput_dlpi(q, mp); 14507 return (B_TRUE); 14508 } 14509 14510 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14511 /* Ditch the DLPI header. */ 14512 mp1 = mp->b_cont; 14513 ASSERT(first_mp == mp); 14514 *first_mpp = mp1; 14515 freeb(mp); 14516 *mpp = mp1; 14517 return (B_FALSE); 14518 case M_IOCACK: 14519 ip1dbg(("got iocack ")); 14520 iocp = (struct iocblk *)mp->b_rptr; 14521 switch (iocp->ioc_cmd) { 14522 case DL_IOC_HDR_INFO: 14523 ill = (ill_t *)q->q_ptr; 14524 ill_fastpath_ack(ill, mp); 14525 return (B_TRUE); 14526 case SIOCSTUNPARAM: 14527 case OSIOCSTUNPARAM: 14528 /* Go through qwriter_ip */ 14529 break; 14530 case SIOCGTUNPARAM: 14531 case OSIOCGTUNPARAM: 14532 ip_rput_other(NULL, q, mp, NULL); 14533 return (B_TRUE); 14534 default: 14535 putnext(q, mp); 14536 return (B_TRUE); 14537 } 14538 /* FALLTHRU */ 14539 case M_ERROR: 14540 case M_HANGUP: 14541 /* 14542 * Since this is on the ill stream we unconditionally 14543 * bump up the refcount 14544 */ 14545 ill_refhold(ill); 14546 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14547 return (B_TRUE); 14548 case M_CTL: 14549 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14550 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14551 IPHADA_M_CTL)) { 14552 /* 14553 * It's an IPsec accelerated packet. 14554 * Make sure that the ill from which we received the 14555 * packet has enabled IPsec hardware acceleration. 14556 */ 14557 if (!(ill->ill_capabilities & 14558 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14559 /* IPsec kstats: bean counter */ 14560 freemsg(mp); 14561 return (B_TRUE); 14562 } 14563 14564 /* 14565 * Make mp point to the mblk following the M_CTL, 14566 * then process according to type of mp. 14567 * After this processing, first_mp will point to 14568 * the data-attributes and mp to the pkt following 14569 * the M_CTL. 14570 */ 14571 mp = first_mp->b_cont; 14572 if (mp == NULL) { 14573 freemsg(first_mp); 14574 return (B_TRUE); 14575 } 14576 /* 14577 * A Hardware Accelerated packet can only be M_DATA 14578 * ESP or AH packet. 14579 */ 14580 if (mp->b_datap->db_type != M_DATA) { 14581 /* non-M_DATA IPsec accelerated packet */ 14582 IPSECHW_DEBUG(IPSECHW_PKT, 14583 ("non-M_DATA IPsec accelerated pkt\n")); 14584 freemsg(first_mp); 14585 return (B_TRUE); 14586 } 14587 ipha = (ipha_t *)mp->b_rptr; 14588 if (ipha->ipha_protocol != IPPROTO_AH && 14589 ipha->ipha_protocol != IPPROTO_ESP) { 14590 IPSECHW_DEBUG(IPSECHW_PKT, 14591 ("non-M_DATA IPsec accelerated pkt\n")); 14592 freemsg(first_mp); 14593 return (B_TRUE); 14594 } 14595 *mpp = mp; 14596 return (B_FALSE); 14597 } 14598 putnext(q, mp); 14599 return (B_TRUE); 14600 case M_IOCNAK: 14601 ip1dbg(("got iocnak ")); 14602 iocp = (struct iocblk *)mp->b_rptr; 14603 switch (iocp->ioc_cmd) { 14604 case SIOCSTUNPARAM: 14605 case OSIOCSTUNPARAM: 14606 /* 14607 * Since this is on the ill stream we unconditionally 14608 * bump up the refcount 14609 */ 14610 ill_refhold(ill); 14611 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14612 return (B_TRUE); 14613 case DL_IOC_HDR_INFO: 14614 case SIOCGTUNPARAM: 14615 case OSIOCGTUNPARAM: 14616 ip_rput_other(NULL, q, mp, NULL); 14617 return (B_TRUE); 14618 default: 14619 break; 14620 } 14621 /* FALLTHRU */ 14622 default: 14623 putnext(q, mp); 14624 return (B_TRUE); 14625 } 14626 } 14627 14628 /* Read side put procedure. Packets coming from the wire arrive here. */ 14629 void 14630 ip_rput(queue_t *q, mblk_t *mp) 14631 { 14632 ill_t *ill; 14633 union DL_primitives *dl; 14634 14635 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14636 14637 ill = (ill_t *)q->q_ptr; 14638 14639 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14640 /* 14641 * If things are opening or closing, only accept high-priority 14642 * DLPI messages. (On open ill->ill_ipif has not yet been 14643 * created; on close, things hanging off the ill may have been 14644 * freed already.) 14645 */ 14646 dl = (union DL_primitives *)mp->b_rptr; 14647 if (DB_TYPE(mp) != M_PCPROTO || 14648 dl->dl_primitive == DL_UNITDATA_IND) { 14649 /* 14650 * SIOC[GS]TUNPARAM ioctls can come here. 14651 */ 14652 inet_freemsg(mp); 14653 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14654 "ip_rput_end: q %p (%S)", q, "uninit"); 14655 return; 14656 } 14657 } 14658 14659 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14660 "ip_rput_end: q %p (%S)", q, "end"); 14661 14662 ip_input(ill, NULL, mp, NULL); 14663 } 14664 14665 static mblk_t * 14666 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14667 { 14668 mblk_t *mp1; 14669 boolean_t adjusted = B_FALSE; 14670 ip_stack_t *ipst = ill->ill_ipst; 14671 14672 IP_STAT(ipst, ip_db_ref); 14673 /* 14674 * The IP_RECVSLLA option depends on having the 14675 * link layer header. First check that: 14676 * a> the underlying device is of type ether, 14677 * since this option is currently supported only 14678 * over ethernet. 14679 * b> there is enough room to copy over the link 14680 * layer header. 14681 * 14682 * Once the checks are done, adjust rptr so that 14683 * the link layer header will be copied via 14684 * copymsg. Note that, IFT_ETHER may be returned 14685 * by some non-ethernet drivers but in this case 14686 * the second check will fail. 14687 */ 14688 if (ill->ill_type == IFT_ETHER && 14689 (mp->b_rptr - mp->b_datap->db_base) >= 14690 sizeof (struct ether_header)) { 14691 mp->b_rptr -= sizeof (struct ether_header); 14692 adjusted = B_TRUE; 14693 } 14694 mp1 = copymsg(mp); 14695 14696 if (mp1 == NULL) { 14697 mp->b_next = NULL; 14698 /* clear b_prev - used by ip_mroute_decap */ 14699 mp->b_prev = NULL; 14700 freemsg(mp); 14701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14702 return (NULL); 14703 } 14704 14705 if (adjusted) { 14706 /* 14707 * Copy is done. Restore the pointer in 14708 * the _new_ mblk 14709 */ 14710 mp1->b_rptr += sizeof (struct ether_header); 14711 } 14712 14713 /* Copy b_prev - used by ip_mroute_decap */ 14714 mp1->b_prev = mp->b_prev; 14715 mp->b_prev = NULL; 14716 14717 /* preserve the hardware checksum flags and data, if present */ 14718 if (DB_CKSUMFLAGS(mp) != 0) { 14719 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14720 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14721 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14722 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14723 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14724 } 14725 14726 freemsg(mp); 14727 return (mp1); 14728 } 14729 14730 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14731 if (tail != NULL) \ 14732 tail->b_next = mp; \ 14733 else \ 14734 head = mp; \ 14735 tail = mp; \ 14736 cnt++; \ 14737 } 14738 14739 /* 14740 * Direct read side procedure capable of dealing with chains. GLDv3 based 14741 * drivers call this function directly with mblk chains while STREAMS 14742 * read side procedure ip_rput() calls this for single packet with ip_ring 14743 * set to NULL to process one packet at a time. 14744 * 14745 * The ill will always be valid if this function is called directly from 14746 * the driver. 14747 * 14748 * If ip_input() is called from GLDv3: 14749 * 14750 * - This must be a non-VLAN IP stream. 14751 * - 'mp' is either an untagged or a special priority-tagged packet. 14752 * - Any VLAN tag that was in the MAC header has been stripped. 14753 * 14754 * If the IP header in packet is not 32-bit aligned, every message in the 14755 * chain will be aligned before further operations. This is required on SPARC 14756 * platform. 14757 */ 14758 /* ARGSUSED */ 14759 void 14760 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14761 struct mac_header_info_s *mhip) 14762 { 14763 ipaddr_t dst = NULL; 14764 ipaddr_t prev_dst; 14765 ire_t *ire = NULL; 14766 ipha_t *ipha; 14767 uint_t pkt_len; 14768 ssize_t len; 14769 uint_t opt_len; 14770 int ll_multicast; 14771 int cgtp_flt_pkt; 14772 queue_t *q = ill->ill_rq; 14773 squeue_t *curr_sqp = NULL; 14774 mblk_t *head = NULL; 14775 mblk_t *tail = NULL; 14776 mblk_t *first_mp; 14777 int cnt = 0; 14778 ip_stack_t *ipst = ill->ill_ipst; 14779 mblk_t *mp; 14780 mblk_t *dmp; 14781 uint8_t tag; 14782 14783 ASSERT(mp_chain != NULL); 14784 ASSERT(ill != NULL); 14785 14786 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14787 14788 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14789 14790 #define rptr ((uchar_t *)ipha) 14791 14792 while (mp_chain != NULL) { 14793 mp = mp_chain; 14794 mp_chain = mp_chain->b_next; 14795 mp->b_next = NULL; 14796 ll_multicast = 0; 14797 14798 /* 14799 * We do ire caching from one iteration to 14800 * another. In the event the packet chain contains 14801 * all packets from the same dst, this caching saves 14802 * an ire_cache_lookup for each of the succeeding 14803 * packets in a packet chain. 14804 */ 14805 prev_dst = dst; 14806 14807 /* 14808 * if db_ref > 1 then copymsg and free original. Packet 14809 * may be changed and we do not want the other entity 14810 * who has a reference to this message to trip over the 14811 * changes. This is a blind change because trying to 14812 * catch all places that might change the packet is too 14813 * difficult. 14814 * 14815 * This corresponds to the fast path case, where we have 14816 * a chain of M_DATA mblks. We check the db_ref count 14817 * of only the 1st data block in the mblk chain. There 14818 * doesn't seem to be a reason why a device driver would 14819 * send up data with varying db_ref counts in the mblk 14820 * chain. In any case the Fast path is a private 14821 * interface, and our drivers don't do such a thing. 14822 * Given the above assumption, there is no need to walk 14823 * down the entire mblk chain (which could have a 14824 * potential performance problem) 14825 * 14826 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14827 * to here because of exclusive ip stacks and vnics. 14828 * Packets transmitted from exclusive stack over vnic 14829 * can have db_ref > 1 and when it gets looped back to 14830 * another vnic in a different zone, you have ip_input() 14831 * getting dblks with db_ref > 1. So if someone 14832 * complains of TCP performance under this scenario, 14833 * take a serious look here on the impact of copymsg(). 14834 */ 14835 14836 if (DB_REF(mp) > 1) { 14837 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14838 continue; 14839 } 14840 14841 /* 14842 * Check and align the IP header. 14843 */ 14844 first_mp = mp; 14845 if (DB_TYPE(mp) == M_DATA) { 14846 dmp = mp; 14847 } else if (DB_TYPE(mp) == M_PROTO && 14848 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14849 dmp = mp->b_cont; 14850 } else { 14851 dmp = NULL; 14852 } 14853 if (dmp != NULL) { 14854 /* 14855 * IP header ptr not aligned? 14856 * OR IP header not complete in first mblk 14857 */ 14858 if (!OK_32PTR(dmp->b_rptr) || 14859 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14860 if (!ip_check_and_align_header(q, dmp, ipst)) 14861 continue; 14862 } 14863 } 14864 14865 /* 14866 * ip_input fast path 14867 */ 14868 14869 /* mblk type is not M_DATA */ 14870 if (DB_TYPE(mp) != M_DATA) { 14871 if (ip_rput_process_notdata(q, &first_mp, ill, 14872 &ll_multicast, &mp)) 14873 continue; 14874 14875 /* 14876 * The only way we can get here is if we had a 14877 * packet that was either a DL_UNITDATA_IND or 14878 * an M_CTL for an IPsec accelerated packet. 14879 * 14880 * In either case, the first_mp will point to 14881 * the leading M_PROTO or M_CTL. 14882 */ 14883 ASSERT(first_mp != NULL); 14884 } else if (mhip != NULL) { 14885 /* 14886 * ll_multicast is set here so that it is ready 14887 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14888 * manipulates ll_multicast in the same fashion when 14889 * called from ip_rput_process_notdata. 14890 */ 14891 switch (mhip->mhi_dsttype) { 14892 case MAC_ADDRTYPE_MULTICAST : 14893 ll_multicast = HPE_MULTICAST; 14894 break; 14895 case MAC_ADDRTYPE_BROADCAST : 14896 ll_multicast = HPE_BROADCAST; 14897 break; 14898 default : 14899 break; 14900 } 14901 } 14902 14903 /* Only M_DATA can come here and it is always aligned */ 14904 ASSERT(DB_TYPE(mp) == M_DATA); 14905 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14906 14907 ipha = (ipha_t *)mp->b_rptr; 14908 len = mp->b_wptr - rptr; 14909 pkt_len = ntohs(ipha->ipha_length); 14910 14911 /* 14912 * We must count all incoming packets, even if they end 14913 * up being dropped later on. 14914 */ 14915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14916 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14917 14918 /* multiple mblk or too short */ 14919 len -= pkt_len; 14920 if (len != 0) { 14921 /* 14922 * Make sure we have data length consistent 14923 * with the IP header. 14924 */ 14925 if (mp->b_cont == NULL) { 14926 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14927 BUMP_MIB(ill->ill_ip_mib, 14928 ipIfStatsInHdrErrors); 14929 ip2dbg(("ip_input: drop pkt\n")); 14930 freemsg(mp); 14931 continue; 14932 } 14933 mp->b_wptr = rptr + pkt_len; 14934 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14935 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14936 BUMP_MIB(ill->ill_ip_mib, 14937 ipIfStatsInHdrErrors); 14938 ip2dbg(("ip_input: drop pkt\n")); 14939 freemsg(mp); 14940 continue; 14941 } 14942 (void) adjmsg(mp, -len); 14943 IP_STAT(ipst, ip_multimblk3); 14944 } 14945 } 14946 14947 /* Obtain the dst of the current packet */ 14948 dst = ipha->ipha_dst; 14949 14950 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 14951 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 14952 ipha, ip6_t *, NULL, int, 0); 14953 14954 /* 14955 * The following test for loopback is faster than 14956 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 14957 * operations. 14958 * Note that these addresses are always in network byte order 14959 */ 14960 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 14961 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 14962 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14963 freemsg(mp); 14964 continue; 14965 } 14966 14967 /* 14968 * The event for packets being received from a 'physical' 14969 * interface is placed after validation of the source and/or 14970 * destination address as being local so that packets can be 14971 * redirected to loopback addresses using ipnat. 14972 */ 14973 DTRACE_PROBE4(ip4__physical__in__start, 14974 ill_t *, ill, ill_t *, NULL, 14975 ipha_t *, ipha, mblk_t *, first_mp); 14976 14977 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14978 ipst->ips_ipv4firewall_physical_in, 14979 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 14980 14981 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14982 14983 if (first_mp == NULL) { 14984 continue; 14985 } 14986 dst = ipha->ipha_dst; 14987 /* 14988 * Attach any necessary label information to 14989 * this packet 14990 */ 14991 if (is_system_labeled() && 14992 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14993 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14994 freemsg(mp); 14995 continue; 14996 } 14997 14998 if (ipst->ips_ipobs_enabled) { 14999 zoneid_t dzone; 15000 15001 /* 15002 * On the inbound path the src zone will be unknown as 15003 * this packet has come from the wire. 15004 */ 15005 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15006 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15007 ill, IPV4_VERSION, 0, ipst); 15008 } 15009 15010 /* 15011 * Reuse the cached ire only if the ipha_dst of the previous 15012 * packet is the same as the current packet AND it is not 15013 * INADDR_ANY. 15014 */ 15015 if (!(dst == prev_dst && dst != INADDR_ANY) && 15016 (ire != NULL)) { 15017 ire_refrele(ire); 15018 ire = NULL; 15019 } 15020 15021 opt_len = ipha->ipha_version_and_hdr_length - 15022 IP_SIMPLE_HDR_VERSION; 15023 15024 /* 15025 * Check to see if we can take the fastpath. 15026 * That is possible if the following conditions are met 15027 * o Tsol disabled 15028 * o CGTP disabled 15029 * o ipp_action_count is 0 15030 * o no options in the packet 15031 * o not a RSVP packet 15032 * o not a multicast packet 15033 * o ill not in IP_DHCPINIT_IF mode 15034 */ 15035 if (!is_system_labeled() && 15036 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15037 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15038 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15039 if (ire == NULL) 15040 ire = ire_cache_lookup_simple(dst, ipst); 15041 /* 15042 * Unless forwarding is enabled, dont call 15043 * ip_fast_forward(). Incoming packet is for forwarding 15044 */ 15045 if ((ill->ill_flags & ILLF_ROUTER) && 15046 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15047 ire = ip_fast_forward(ire, dst, ill, mp); 15048 continue; 15049 } 15050 /* incoming packet is for local consumption */ 15051 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15052 goto local; 15053 } 15054 15055 /* 15056 * Disable ire caching for anything more complex 15057 * than the simple fast path case we checked for above. 15058 */ 15059 if (ire != NULL) { 15060 ire_refrele(ire); 15061 ire = NULL; 15062 } 15063 15064 /* 15065 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15066 * server to unicast DHCP packets to a DHCP client using the 15067 * IP address it is offering to the client. This can be 15068 * disabled through the "broadcast bit", but not all DHCP 15069 * servers honor that bit. Therefore, to interoperate with as 15070 * many DHCP servers as possible, the DHCP client allows the 15071 * server to unicast, but we treat those packets as broadcast 15072 * here. Note that we don't rewrite the packet itself since 15073 * (a) that would mess up the checksums and (b) the DHCP 15074 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15075 * hand it the packet regardless. 15076 */ 15077 if (ill->ill_dhcpinit != 0 && 15078 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15079 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15080 udpha_t *udpha; 15081 15082 /* 15083 * Reload ipha since pullupmsg() can change b_rptr. 15084 */ 15085 ipha = (ipha_t *)mp->b_rptr; 15086 udpha = (udpha_t *)&ipha[1]; 15087 15088 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15089 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15090 mblk_t *, mp); 15091 dst = INADDR_BROADCAST; 15092 } 15093 } 15094 15095 /* Full-blown slow path */ 15096 if (opt_len != 0) { 15097 if (len != 0) 15098 IP_STAT(ipst, ip_multimblk4); 15099 else 15100 IP_STAT(ipst, ip_ipoptions); 15101 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15102 &dst, ipst)) 15103 continue; 15104 } 15105 15106 /* 15107 * Invoke the CGTP (multirouting) filtering module to process 15108 * the incoming packet. Packets identified as duplicates 15109 * must be discarded. Filtering is active only if the 15110 * the ip_cgtp_filter ndd variable is non-zero. 15111 */ 15112 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15113 if (ipst->ips_ip_cgtp_filter && 15114 ipst->ips_ip_cgtp_filter_ops != NULL) { 15115 netstackid_t stackid; 15116 15117 stackid = ipst->ips_netstack->netstack_stackid; 15118 cgtp_flt_pkt = 15119 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15120 ill->ill_phyint->phyint_ifindex, mp); 15121 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15122 freemsg(first_mp); 15123 continue; 15124 } 15125 } 15126 15127 /* 15128 * If rsvpd is running, let RSVP daemon handle its processing 15129 * and forwarding of RSVP multicast/unicast packets. 15130 * If rsvpd is not running but mrouted is running, RSVP 15131 * multicast packets are forwarded as multicast traffic 15132 * and RSVP unicast packets are forwarded by unicast router. 15133 * If neither rsvpd nor mrouted is running, RSVP multicast 15134 * packets are not forwarded, but the unicast packets are 15135 * forwarded like unicast traffic. 15136 */ 15137 if (ipha->ipha_protocol == IPPROTO_RSVP && 15138 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15139 NULL) { 15140 /* RSVP packet and rsvpd running. Treat as ours */ 15141 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15142 /* 15143 * This assumes that we deliver to all streams for 15144 * multicast and broadcast packets. 15145 * We have to force ll_multicast to 1 to handle the 15146 * M_DATA messages passed in from ip_mroute_decap. 15147 */ 15148 dst = INADDR_BROADCAST; 15149 ll_multicast = 1; 15150 } else if (CLASSD(dst)) { 15151 /* packet is multicast */ 15152 mp->b_next = NULL; 15153 if (ip_rput_process_multicast(q, mp, ill, ipha, 15154 &ll_multicast, &dst)) 15155 continue; 15156 } 15157 15158 if (ire == NULL) { 15159 ire = ire_cache_lookup(dst, ALL_ZONES, 15160 msg_getlabel(mp), ipst); 15161 } 15162 15163 if (ire != NULL && ire->ire_stq != NULL && 15164 ire->ire_zoneid != GLOBAL_ZONEID && 15165 ire->ire_zoneid != ALL_ZONES) { 15166 /* 15167 * Should only use IREs that are visible from the 15168 * global zone for forwarding. 15169 */ 15170 ire_refrele(ire); 15171 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15172 msg_getlabel(mp), ipst); 15173 } 15174 15175 if (ire == NULL) { 15176 /* 15177 * No IRE for this destination, so it can't be for us. 15178 * Unless we are forwarding, drop the packet. 15179 * We have to let source routed packets through 15180 * since we don't yet know if they are 'ping -l' 15181 * packets i.e. if they will go out over the 15182 * same interface as they came in on. 15183 */ 15184 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15185 if (ire == NULL) 15186 continue; 15187 } 15188 15189 /* 15190 * Broadcast IRE may indicate either broadcast or 15191 * multicast packet 15192 */ 15193 if (ire->ire_type == IRE_BROADCAST) { 15194 /* 15195 * Skip broadcast checks if packet is UDP multicast; 15196 * we'd rather not enter ip_rput_process_broadcast() 15197 * unless the packet is broadcast for real, since 15198 * that routine is a no-op for multicast. 15199 */ 15200 if (ipha->ipha_protocol != IPPROTO_UDP || 15201 !CLASSD(ipha->ipha_dst)) { 15202 ire = ip_rput_process_broadcast(&q, mp, 15203 ire, ipha, ill, dst, cgtp_flt_pkt, 15204 ll_multicast); 15205 if (ire == NULL) 15206 continue; 15207 } 15208 } else if (ire->ire_stq != NULL) { 15209 /* fowarding? */ 15210 ip_rput_process_forward(q, mp, ire, ipha, ill, 15211 ll_multicast, B_FALSE); 15212 /* ip_rput_process_forward consumed the packet */ 15213 continue; 15214 } 15215 15216 local: 15217 /* 15218 * If the queue in the ire is different to the ingress queue 15219 * then we need to check to see if we can accept the packet. 15220 * Note that for multicast packets and broadcast packets sent 15221 * to a broadcast address which is shared between multiple 15222 * interfaces we should not do this since we just got a random 15223 * broadcast ire. 15224 */ 15225 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15226 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15227 if (ire == NULL) { 15228 /* Drop packet */ 15229 BUMP_MIB(ill->ill_ip_mib, 15230 ipIfStatsForwProhibits); 15231 freemsg(mp); 15232 continue; 15233 } 15234 if (ire->ire_rfq != NULL) 15235 q = ire->ire_rfq; 15236 } 15237 15238 switch (ipha->ipha_protocol) { 15239 case IPPROTO_TCP: 15240 ASSERT(first_mp == mp); 15241 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15242 mp, 0, q, ip_ring)) != NULL) { 15243 if (curr_sqp == NULL) { 15244 curr_sqp = GET_SQUEUE(mp); 15245 ASSERT(cnt == 0); 15246 cnt++; 15247 head = tail = mp; 15248 } else if (curr_sqp == GET_SQUEUE(mp)) { 15249 ASSERT(tail != NULL); 15250 cnt++; 15251 tail->b_next = mp; 15252 tail = mp; 15253 } else { 15254 /* 15255 * A different squeue. Send the 15256 * chain for the previous squeue on 15257 * its way. This shouldn't happen 15258 * often unless interrupt binding 15259 * changes. 15260 */ 15261 IP_STAT(ipst, ip_input_multi_squeue); 15262 SQUEUE_ENTER(curr_sqp, head, 15263 tail, cnt, SQ_PROCESS, tag); 15264 curr_sqp = GET_SQUEUE(mp); 15265 head = mp; 15266 tail = mp; 15267 cnt = 1; 15268 } 15269 } 15270 continue; 15271 case IPPROTO_UDP: 15272 ASSERT(first_mp == mp); 15273 ip_udp_input(q, mp, ipha, ire, ill); 15274 continue; 15275 case IPPROTO_SCTP: 15276 ASSERT(first_mp == mp); 15277 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15278 q, dst); 15279 /* ire has been released by ip_sctp_input */ 15280 ire = NULL; 15281 continue; 15282 default: 15283 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15284 continue; 15285 } 15286 } 15287 15288 if (ire != NULL) 15289 ire_refrele(ire); 15290 15291 if (head != NULL) 15292 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15293 15294 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15295 "ip_input_end: q %p (%S)", q, "end"); 15296 #undef rptr 15297 } 15298 15299 /* 15300 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15301 * a chain of packets in the poll mode. The packets have gone through the 15302 * data link processing but not IP processing. For performance and latency 15303 * reasons, the squeue wants to process the chain in line instead of feeding 15304 * it back via ip_input path. 15305 * 15306 * So this is a light weight function which checks to see if the packets 15307 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15308 * but we still do the paranoid check) meant for local machine and we don't 15309 * have labels etc enabled. Packets that meet the criterion are returned to 15310 * the squeue and processed inline while the rest go via ip_input path. 15311 */ 15312 /*ARGSUSED*/ 15313 mblk_t * 15314 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15315 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15316 { 15317 mblk_t *mp; 15318 ipaddr_t dst = NULL; 15319 ipaddr_t prev_dst; 15320 ire_t *ire = NULL; 15321 ipha_t *ipha; 15322 uint_t pkt_len; 15323 ssize_t len; 15324 uint_t opt_len; 15325 queue_t *q = ill->ill_rq; 15326 squeue_t *curr_sqp; 15327 mblk_t *ahead = NULL; /* Accepted head */ 15328 mblk_t *atail = NULL; /* Accepted tail */ 15329 uint_t acnt = 0; /* Accepted count */ 15330 mblk_t *utail = NULL; /* Unaccepted head */ 15331 mblk_t *uhead = NULL; /* Unaccepted tail */ 15332 uint_t ucnt = 0; /* Unaccepted cnt */ 15333 ip_stack_t *ipst = ill->ill_ipst; 15334 15335 *cnt = 0; 15336 15337 ASSERT(ill != NULL); 15338 ASSERT(ip_ring != NULL); 15339 15340 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15341 15342 #define rptr ((uchar_t *)ipha) 15343 15344 while (mp_chain != NULL) { 15345 mp = mp_chain; 15346 mp_chain = mp_chain->b_next; 15347 mp->b_next = NULL; 15348 15349 /* 15350 * We do ire caching from one iteration to 15351 * another. In the event the packet chain contains 15352 * all packets from the same dst, this caching saves 15353 * an ire_cache_lookup for each of the succeeding 15354 * packets in a packet chain. 15355 */ 15356 prev_dst = dst; 15357 15358 ipha = (ipha_t *)mp->b_rptr; 15359 len = mp->b_wptr - rptr; 15360 15361 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15362 15363 /* 15364 * If it is a non TCP packet, or doesn't have H/W cksum, 15365 * or doesn't have min len, reject. 15366 */ 15367 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15368 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15369 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15370 continue; 15371 } 15372 15373 pkt_len = ntohs(ipha->ipha_length); 15374 if (len != pkt_len) { 15375 if (len > pkt_len) { 15376 mp->b_wptr = rptr + pkt_len; 15377 } else { 15378 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15379 continue; 15380 } 15381 } 15382 15383 opt_len = ipha->ipha_version_and_hdr_length - 15384 IP_SIMPLE_HDR_VERSION; 15385 dst = ipha->ipha_dst; 15386 15387 /* IP version bad or there are IP options */ 15388 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15389 mp, &ipha, &dst, ipst))) 15390 continue; 15391 15392 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15393 (ipst->ips_ip_cgtp_filter && 15394 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15395 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15396 continue; 15397 } 15398 15399 /* 15400 * Reuse the cached ire only if the ipha_dst of the previous 15401 * packet is the same as the current packet AND it is not 15402 * INADDR_ANY. 15403 */ 15404 if (!(dst == prev_dst && dst != INADDR_ANY) && 15405 (ire != NULL)) { 15406 ire_refrele(ire); 15407 ire = NULL; 15408 } 15409 15410 if (ire == NULL) 15411 ire = ire_cache_lookup_simple(dst, ipst); 15412 15413 /* 15414 * Unless forwarding is enabled, dont call 15415 * ip_fast_forward(). Incoming packet is for forwarding 15416 */ 15417 if ((ill->ill_flags & ILLF_ROUTER) && 15418 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15419 15420 DTRACE_PROBE4(ip4__physical__in__start, 15421 ill_t *, ill, ill_t *, NULL, 15422 ipha_t *, ipha, mblk_t *, mp); 15423 15424 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15425 ipst->ips_ipv4firewall_physical_in, 15426 ill, NULL, ipha, mp, mp, 0, ipst); 15427 15428 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15429 15430 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15431 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15432 pkt_len); 15433 15434 ire = ip_fast_forward(ire, dst, ill, mp); 15435 continue; 15436 } 15437 15438 /* incoming packet is for local consumption */ 15439 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15440 goto local_accept; 15441 15442 /* 15443 * Disable ire caching for anything more complex 15444 * than the simple fast path case we checked for above. 15445 */ 15446 if (ire != NULL) { 15447 ire_refrele(ire); 15448 ire = NULL; 15449 } 15450 15451 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15452 ipst); 15453 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15454 ire->ire_stq != NULL) { 15455 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15456 if (ire != NULL) { 15457 ire_refrele(ire); 15458 ire = NULL; 15459 } 15460 continue; 15461 } 15462 15463 local_accept: 15464 15465 if (ire->ire_rfq != q) { 15466 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15467 if (ire != NULL) { 15468 ire_refrele(ire); 15469 ire = NULL; 15470 } 15471 continue; 15472 } 15473 15474 /* 15475 * The event for packets being received from a 'physical' 15476 * interface is placed after validation of the source and/or 15477 * destination address as being local so that packets can be 15478 * redirected to loopback addresses using ipnat. 15479 */ 15480 DTRACE_PROBE4(ip4__physical__in__start, 15481 ill_t *, ill, ill_t *, NULL, 15482 ipha_t *, ipha, mblk_t *, mp); 15483 15484 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15485 ipst->ips_ipv4firewall_physical_in, 15486 ill, NULL, ipha, mp, mp, 0, ipst); 15487 15488 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15489 15490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15491 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15492 15493 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15494 0, q, ip_ring)) != NULL) { 15495 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15496 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15497 } else { 15498 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15499 SQ_FILL, SQTAG_IP_INPUT); 15500 } 15501 } 15502 } 15503 15504 if (ire != NULL) 15505 ire_refrele(ire); 15506 15507 if (uhead != NULL) 15508 ip_input(ill, ip_ring, uhead, NULL); 15509 15510 if (ahead != NULL) { 15511 *last = atail; 15512 *cnt = acnt; 15513 return (ahead); 15514 } 15515 15516 return (NULL); 15517 #undef rptr 15518 } 15519 15520 static void 15521 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15522 t_uscalar_t err) 15523 { 15524 if (dl_err == DL_SYSERR) { 15525 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15526 "%s: %s failed: DL_SYSERR (errno %u)\n", 15527 ill->ill_name, dl_primstr(prim), err); 15528 return; 15529 } 15530 15531 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15532 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15533 dl_errstr(dl_err)); 15534 } 15535 15536 /* 15537 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15538 * than DL_UNITDATA_IND messages. If we need to process this message 15539 * exclusively, we call qwriter_ip, in which case we also need to call 15540 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15541 */ 15542 void 15543 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15544 { 15545 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15546 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15547 ill_t *ill = q->q_ptr; 15548 t_uscalar_t prim = dloa->dl_primitive; 15549 t_uscalar_t reqprim = DL_PRIM_INVAL; 15550 15551 ip1dbg(("ip_rput_dlpi")); 15552 15553 /* 15554 * If we received an ACK but didn't send a request for it, then it 15555 * can't be part of any pending operation; discard up-front. 15556 */ 15557 switch (prim) { 15558 case DL_ERROR_ACK: 15559 reqprim = dlea->dl_error_primitive; 15560 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15561 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15562 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15563 dlea->dl_unix_errno)); 15564 break; 15565 case DL_OK_ACK: 15566 reqprim = dloa->dl_correct_primitive; 15567 break; 15568 case DL_INFO_ACK: 15569 reqprim = DL_INFO_REQ; 15570 break; 15571 case DL_BIND_ACK: 15572 reqprim = DL_BIND_REQ; 15573 break; 15574 case DL_PHYS_ADDR_ACK: 15575 reqprim = DL_PHYS_ADDR_REQ; 15576 break; 15577 case DL_NOTIFY_ACK: 15578 reqprim = DL_NOTIFY_REQ; 15579 break; 15580 case DL_CONTROL_ACK: 15581 reqprim = DL_CONTROL_REQ; 15582 break; 15583 case DL_CAPABILITY_ACK: 15584 reqprim = DL_CAPABILITY_REQ; 15585 break; 15586 } 15587 15588 if (prim != DL_NOTIFY_IND) { 15589 if (reqprim == DL_PRIM_INVAL || 15590 !ill_dlpi_pending(ill, reqprim)) { 15591 /* Not a DLPI message we support or expected */ 15592 freemsg(mp); 15593 return; 15594 } 15595 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15596 dl_primstr(reqprim))); 15597 } 15598 15599 switch (reqprim) { 15600 case DL_UNBIND_REQ: 15601 /* 15602 * NOTE: we mark the unbind as complete even if we got a 15603 * DL_ERROR_ACK, since there's not much else we can do. 15604 */ 15605 mutex_enter(&ill->ill_lock); 15606 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15607 cv_signal(&ill->ill_cv); 15608 mutex_exit(&ill->ill_lock); 15609 break; 15610 15611 case DL_ENABMULTI_REQ: 15612 if (prim == DL_OK_ACK) { 15613 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15614 ill->ill_dlpi_multicast_state = IDS_OK; 15615 } 15616 break; 15617 } 15618 15619 /* 15620 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15621 * need to become writer to continue to process it. Because an 15622 * exclusive operation doesn't complete until replies to all queued 15623 * DLPI messages have been received, we know we're in the middle of an 15624 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15625 * 15626 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15627 * Since this is on the ill stream we unconditionally bump up the 15628 * refcount without doing ILL_CAN_LOOKUP(). 15629 */ 15630 ill_refhold(ill); 15631 if (prim == DL_NOTIFY_IND) 15632 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15633 else 15634 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15635 } 15636 15637 /* 15638 * Handling of DLPI messages that require exclusive access to the ipsq. 15639 * 15640 * Need to do ill_pending_mp_release on ioctl completion, which could 15641 * happen here. (along with mi_copy_done) 15642 */ 15643 /* ARGSUSED */ 15644 static void 15645 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15646 { 15647 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15648 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15649 int err = 0; 15650 ill_t *ill; 15651 ipif_t *ipif = NULL; 15652 mblk_t *mp1 = NULL; 15653 conn_t *connp = NULL; 15654 t_uscalar_t paddrreq; 15655 mblk_t *mp_hw; 15656 boolean_t success; 15657 boolean_t ioctl_aborted = B_FALSE; 15658 boolean_t log = B_TRUE; 15659 ip_stack_t *ipst; 15660 15661 ip1dbg(("ip_rput_dlpi_writer ..")); 15662 ill = (ill_t *)q->q_ptr; 15663 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15664 ASSERT(IAM_WRITER_ILL(ill)); 15665 15666 ipst = ill->ill_ipst; 15667 15668 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15669 /* 15670 * The current ioctl could have been aborted by the user and a new 15671 * ioctl to bring up another ill could have started. We could still 15672 * get a response from the driver later. 15673 */ 15674 if (ipif != NULL && ipif->ipif_ill != ill) 15675 ioctl_aborted = B_TRUE; 15676 15677 switch (dloa->dl_primitive) { 15678 case DL_ERROR_ACK: 15679 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15680 dl_primstr(dlea->dl_error_primitive))); 15681 15682 switch (dlea->dl_error_primitive) { 15683 case DL_DISABMULTI_REQ: 15684 if (!ill->ill_isv6) 15685 ipsq_current_finish(ipsq); 15686 ill_dlpi_done(ill, dlea->dl_error_primitive); 15687 break; 15688 case DL_PROMISCON_REQ: 15689 case DL_PROMISCOFF_REQ: 15690 case DL_UNBIND_REQ: 15691 case DL_ATTACH_REQ: 15692 case DL_INFO_REQ: 15693 ill_dlpi_done(ill, dlea->dl_error_primitive); 15694 break; 15695 case DL_NOTIFY_REQ: 15696 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15697 log = B_FALSE; 15698 break; 15699 case DL_PHYS_ADDR_REQ: 15700 /* 15701 * For IPv6 only, there are two additional 15702 * phys_addr_req's sent to the driver to get the 15703 * IPv6 token and lla. This allows IP to acquire 15704 * the hardware address format for a given interface 15705 * without having built in knowledge of the hardware 15706 * address. ill_phys_addr_pend keeps track of the last 15707 * DL_PAR sent so we know which response we are 15708 * dealing with. ill_dlpi_done will update 15709 * ill_phys_addr_pend when it sends the next req. 15710 * We don't complete the IOCTL until all three DL_PARs 15711 * have been attempted, so set *_len to 0 and break. 15712 */ 15713 paddrreq = ill->ill_phys_addr_pend; 15714 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15715 if (paddrreq == DL_IPV6_TOKEN) { 15716 ill->ill_token_length = 0; 15717 log = B_FALSE; 15718 break; 15719 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15720 ill->ill_nd_lla_len = 0; 15721 log = B_FALSE; 15722 break; 15723 } 15724 /* 15725 * Something went wrong with the DL_PHYS_ADDR_REQ. 15726 * We presumably have an IOCTL hanging out waiting 15727 * for completion. Find it and complete the IOCTL 15728 * with the error noted. 15729 * However, ill_dl_phys was called on an ill queue 15730 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15731 * set. But the ioctl is known to be pending on ill_wq. 15732 */ 15733 if (!ill->ill_ifname_pending) 15734 break; 15735 ill->ill_ifname_pending = 0; 15736 if (!ioctl_aborted) 15737 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15738 if (mp1 != NULL) { 15739 /* 15740 * This operation (SIOCSLIFNAME) must have 15741 * happened on the ill. Assert there is no conn 15742 */ 15743 ASSERT(connp == NULL); 15744 q = ill->ill_wq; 15745 } 15746 break; 15747 case DL_BIND_REQ: 15748 ill_dlpi_done(ill, DL_BIND_REQ); 15749 if (ill->ill_ifname_pending) 15750 break; 15751 /* 15752 * Something went wrong with the bind. We presumably 15753 * have an IOCTL hanging out waiting for completion. 15754 * Find it, take down the interface that was coming 15755 * up, and complete the IOCTL with the error noted. 15756 */ 15757 if (!ioctl_aborted) 15758 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15759 if (mp1 != NULL) { 15760 /* 15761 * This operation (SIOCSLIFFLAGS) must have 15762 * happened from a conn. 15763 */ 15764 ASSERT(connp != NULL); 15765 q = CONNP_TO_WQ(connp); 15766 (void) ipif_down(ipif, NULL, NULL); 15767 /* error is set below the switch */ 15768 } 15769 break; 15770 case DL_ENABMULTI_REQ: 15771 if (!ill->ill_isv6) 15772 ipsq_current_finish(ipsq); 15773 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15774 15775 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15776 ill->ill_dlpi_multicast_state = IDS_FAILED; 15777 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15778 ipif_t *ipif; 15779 15780 printf("ip: joining multicasts failed (%d)" 15781 " on %s - will use link layer " 15782 "broadcasts for multicast\n", 15783 dlea->dl_errno, ill->ill_name); 15784 15785 /* 15786 * Set up the multicast mapping alone. 15787 * writer, so ok to access ill->ill_ipif 15788 * without any lock. 15789 */ 15790 ipif = ill->ill_ipif; 15791 mutex_enter(&ill->ill_phyint->phyint_lock); 15792 ill->ill_phyint->phyint_flags |= 15793 PHYI_MULTI_BCAST; 15794 mutex_exit(&ill->ill_phyint->phyint_lock); 15795 15796 if (!ill->ill_isv6) { 15797 (void) ipif_arp_setup_multicast(ipif, 15798 NULL); 15799 } else { 15800 (void) ipif_ndp_setup_multicast(ipif, 15801 NULL); 15802 } 15803 } 15804 freemsg(mp); /* Don't want to pass this up */ 15805 return; 15806 case DL_CONTROL_REQ: 15807 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15808 "DL_CONTROL_REQ\n")); 15809 ill_dlpi_done(ill, dlea->dl_error_primitive); 15810 freemsg(mp); 15811 return; 15812 case DL_CAPABILITY_REQ: 15813 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15814 "DL_CAPABILITY REQ\n")); 15815 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15816 ill->ill_dlpi_capab_state = IDCS_FAILED; 15817 ill_capability_done(ill); 15818 freemsg(mp); 15819 return; 15820 } 15821 /* 15822 * Note the error for IOCTL completion (mp1 is set when 15823 * ready to complete ioctl). If ill_ifname_pending_err is 15824 * set, an error occured during plumbing (ill_ifname_pending), 15825 * so we want to report that error. 15826 * 15827 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15828 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15829 * expected to get errack'd if the driver doesn't support 15830 * these flags (e.g. ethernet). log will be set to B_FALSE 15831 * if these error conditions are encountered. 15832 */ 15833 if (mp1 != NULL) { 15834 if (ill->ill_ifname_pending_err != 0) { 15835 err = ill->ill_ifname_pending_err; 15836 ill->ill_ifname_pending_err = 0; 15837 } else { 15838 err = dlea->dl_unix_errno ? 15839 dlea->dl_unix_errno : ENXIO; 15840 } 15841 /* 15842 * If we're plumbing an interface and an error hasn't already 15843 * been saved, set ill_ifname_pending_err to the error passed 15844 * up. Ignore the error if log is B_FALSE (see comment above). 15845 */ 15846 } else if (log && ill->ill_ifname_pending && 15847 ill->ill_ifname_pending_err == 0) { 15848 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15849 dlea->dl_unix_errno : ENXIO; 15850 } 15851 15852 if (log) 15853 ip_dlpi_error(ill, dlea->dl_error_primitive, 15854 dlea->dl_errno, dlea->dl_unix_errno); 15855 break; 15856 case DL_CAPABILITY_ACK: 15857 ill_capability_ack(ill, mp); 15858 /* 15859 * The message has been handed off to ill_capability_ack 15860 * and must not be freed below 15861 */ 15862 mp = NULL; 15863 break; 15864 15865 case DL_CONTROL_ACK: 15866 /* We treat all of these as "fire and forget" */ 15867 ill_dlpi_done(ill, DL_CONTROL_REQ); 15868 break; 15869 case DL_INFO_ACK: 15870 /* Call a routine to handle this one. */ 15871 ill_dlpi_done(ill, DL_INFO_REQ); 15872 ip_ll_subnet_defaults(ill, mp); 15873 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15874 return; 15875 case DL_BIND_ACK: 15876 /* 15877 * We should have an IOCTL waiting on this unless 15878 * sent by ill_dl_phys, in which case just return 15879 */ 15880 ill_dlpi_done(ill, DL_BIND_REQ); 15881 if (ill->ill_ifname_pending) 15882 break; 15883 15884 if (!ioctl_aborted) 15885 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15886 if (mp1 == NULL) 15887 break; 15888 /* 15889 * Because mp1 was added by ill_dl_up(), and it always 15890 * passes a valid connp, connp must be valid here. 15891 */ 15892 ASSERT(connp != NULL); 15893 q = CONNP_TO_WQ(connp); 15894 15895 /* 15896 * We are exclusive. So nothing can change even after 15897 * we get the pending mp. If need be we can put it back 15898 * and restart, as in calling ipif_arp_up() below. 15899 */ 15900 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15901 15902 mutex_enter(&ill->ill_lock); 15903 ill->ill_dl_up = 1; 15904 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15905 mutex_exit(&ill->ill_lock); 15906 15907 /* 15908 * Now bring up the resolver; when that is complete, we'll 15909 * create IREs. Note that we intentionally mirror what 15910 * ipif_up() would have done, because we got here by way of 15911 * ill_dl_up(), which stopped ipif_up()'s processing. 15912 */ 15913 if (ill->ill_isv6) { 15914 if (ill->ill_flags & ILLF_XRESOLV) { 15915 mutex_enter(&connp->conn_lock); 15916 mutex_enter(&ill->ill_lock); 15917 success = ipsq_pending_mp_add(connp, ipif, q, 15918 mp1, 0); 15919 mutex_exit(&ill->ill_lock); 15920 mutex_exit(&connp->conn_lock); 15921 if (success) { 15922 err = ipif_resolver_up(ipif, 15923 Res_act_initial); 15924 if (err == EINPROGRESS) { 15925 freemsg(mp); 15926 return; 15927 } 15928 ASSERT(err != 0); 15929 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15930 ASSERT(mp1 != NULL); 15931 } else { 15932 /* conn has started closing */ 15933 err = EINTR; 15934 } 15935 } else { /* Non XRESOLV interface */ 15936 (void) ipif_resolver_up(ipif, Res_act_initial); 15937 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 15938 err = ipif_up_done_v6(ipif); 15939 } 15940 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15941 /* 15942 * ARP and other v4 external resolvers. 15943 * Leave the pending mblk intact so that 15944 * the ioctl completes in ip_rput(). 15945 */ 15946 mutex_enter(&connp->conn_lock); 15947 mutex_enter(&ill->ill_lock); 15948 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15949 mutex_exit(&ill->ill_lock); 15950 mutex_exit(&connp->conn_lock); 15951 if (success) { 15952 err = ipif_resolver_up(ipif, Res_act_initial); 15953 if (err == EINPROGRESS) { 15954 freemsg(mp); 15955 return; 15956 } 15957 ASSERT(err != 0); 15958 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15959 } else { 15960 /* The conn has started closing */ 15961 err = EINTR; 15962 } 15963 } else { 15964 /* 15965 * This one is complete. Reply to pending ioctl. 15966 */ 15967 (void) ipif_resolver_up(ipif, Res_act_initial); 15968 err = ipif_up_done(ipif); 15969 } 15970 15971 if ((err == 0) && (ill->ill_up_ipifs)) { 15972 err = ill_up_ipifs(ill, q, mp1); 15973 if (err == EINPROGRESS) { 15974 freemsg(mp); 15975 return; 15976 } 15977 } 15978 15979 /* 15980 * If we have a moved ipif to bring up, and everything has 15981 * succeeded to this point, bring it up on the IPMP ill. 15982 * Otherwise, leave it down -- the admin can try to bring it 15983 * up by hand if need be. 15984 */ 15985 if (ill->ill_move_ipif != NULL) { 15986 if (err != 0) { 15987 ill->ill_move_ipif = NULL; 15988 } else { 15989 ipif = ill->ill_move_ipif; 15990 ill->ill_move_ipif = NULL; 15991 err = ipif_up(ipif, q, mp1); 15992 if (err == EINPROGRESS) { 15993 freemsg(mp); 15994 return; 15995 } 15996 } 15997 } 15998 break; 15999 16000 case DL_NOTIFY_IND: { 16001 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16002 ire_t *ire; 16003 uint_t orig_mtu; 16004 boolean_t need_ire_walk_v4 = B_FALSE; 16005 boolean_t need_ire_walk_v6 = B_FALSE; 16006 16007 switch (notify->dl_notification) { 16008 case DL_NOTE_PHYS_ADDR: 16009 err = ill_set_phys_addr(ill, mp); 16010 break; 16011 16012 case DL_NOTE_FASTPATH_FLUSH: 16013 ill_fastpath_flush(ill); 16014 break; 16015 16016 case DL_NOTE_SDU_SIZE: 16017 /* 16018 * Change the MTU size of the interface, of all 16019 * attached ipif's, and of all relevant ire's. The 16020 * new value's a uint32_t at notify->dl_data. 16021 * Mtu change Vs. new ire creation - protocol below. 16022 * 16023 * a Mark the ipif as IPIF_CHANGING. 16024 * b Set the new mtu in the ipif. 16025 * c Change the ire_max_frag on all affected ires 16026 * d Unmark the IPIF_CHANGING 16027 * 16028 * To see how the protocol works, assume an interface 16029 * route is also being added simultaneously by 16030 * ip_rt_add and let 'ipif' be the ipif referenced by 16031 * the ire. If the ire is created before step a, 16032 * it will be cleaned up by step c. If the ire is 16033 * created after step d, it will see the new value of 16034 * ipif_mtu. Any attempt to create the ire between 16035 * steps a to d will fail because of the IPIF_CHANGING 16036 * flag. Note that ire_create() is passed a pointer to 16037 * the ipif_mtu, and not the value. During ire_add 16038 * under the bucket lock, the ire_max_frag of the 16039 * new ire being created is set from the ipif/ire from 16040 * which it is being derived. 16041 */ 16042 mutex_enter(&ill->ill_lock); 16043 16044 orig_mtu = ill->ill_max_mtu; 16045 ill->ill_max_frag = (uint_t)notify->dl_data; 16046 ill->ill_max_mtu = (uint_t)notify->dl_data; 16047 16048 /* 16049 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16050 * clamp ill_max_mtu at it. 16051 */ 16052 if (ill->ill_user_mtu != 0 && 16053 ill->ill_user_mtu < ill->ill_max_mtu) 16054 ill->ill_max_mtu = ill->ill_user_mtu; 16055 16056 /* 16057 * If the MTU is unchanged, we're done. 16058 */ 16059 if (orig_mtu == ill->ill_max_mtu) { 16060 mutex_exit(&ill->ill_lock); 16061 break; 16062 } 16063 16064 if (ill->ill_isv6) { 16065 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16066 ill->ill_max_mtu = IPV6_MIN_MTU; 16067 } else { 16068 if (ill->ill_max_mtu < IP_MIN_MTU) 16069 ill->ill_max_mtu = IP_MIN_MTU; 16070 } 16071 for (ipif = ill->ill_ipif; ipif != NULL; 16072 ipif = ipif->ipif_next) { 16073 /* 16074 * Don't override the mtu if the user 16075 * has explicitly set it. 16076 */ 16077 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16078 continue; 16079 ipif->ipif_mtu = (uint_t)notify->dl_data; 16080 if (ipif->ipif_isv6) 16081 ire = ipif_to_ire_v6(ipif); 16082 else 16083 ire = ipif_to_ire(ipif); 16084 if (ire != NULL) { 16085 ire->ire_max_frag = ipif->ipif_mtu; 16086 ire_refrele(ire); 16087 } 16088 if (ipif->ipif_flags & IPIF_UP) { 16089 if (ill->ill_isv6) 16090 need_ire_walk_v6 = B_TRUE; 16091 else 16092 need_ire_walk_v4 = B_TRUE; 16093 } 16094 } 16095 mutex_exit(&ill->ill_lock); 16096 if (need_ire_walk_v4) 16097 ire_walk_v4(ill_mtu_change, (char *)ill, 16098 ALL_ZONES, ipst); 16099 if (need_ire_walk_v6) 16100 ire_walk_v6(ill_mtu_change, (char *)ill, 16101 ALL_ZONES, ipst); 16102 16103 /* 16104 * Refresh IPMP meta-interface MTU if necessary. 16105 */ 16106 if (IS_UNDER_IPMP(ill)) 16107 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16108 break; 16109 16110 case DL_NOTE_LINK_UP: 16111 case DL_NOTE_LINK_DOWN: { 16112 /* 16113 * We are writer. ill / phyint / ipsq assocs stable. 16114 * The RUNNING flag reflects the state of the link. 16115 */ 16116 phyint_t *phyint = ill->ill_phyint; 16117 uint64_t new_phyint_flags; 16118 boolean_t changed = B_FALSE; 16119 boolean_t went_up; 16120 16121 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16122 mutex_enter(&phyint->phyint_lock); 16123 16124 new_phyint_flags = went_up ? 16125 phyint->phyint_flags | PHYI_RUNNING : 16126 phyint->phyint_flags & ~PHYI_RUNNING; 16127 16128 if (IS_IPMP(ill)) { 16129 new_phyint_flags = went_up ? 16130 new_phyint_flags & ~PHYI_FAILED : 16131 new_phyint_flags | PHYI_FAILED; 16132 } 16133 16134 if (new_phyint_flags != phyint->phyint_flags) { 16135 phyint->phyint_flags = new_phyint_flags; 16136 changed = B_TRUE; 16137 } 16138 mutex_exit(&phyint->phyint_lock); 16139 /* 16140 * ill_restart_dad handles the DAD restart and routing 16141 * socket notification logic. 16142 */ 16143 if (changed) { 16144 ill_restart_dad(phyint->phyint_illv4, went_up); 16145 ill_restart_dad(phyint->phyint_illv6, went_up); 16146 } 16147 break; 16148 } 16149 case DL_NOTE_PROMISC_ON_PHYS: 16150 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16151 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16152 mutex_enter(&ill->ill_lock); 16153 ill->ill_promisc_on_phys = B_TRUE; 16154 mutex_exit(&ill->ill_lock); 16155 break; 16156 case DL_NOTE_PROMISC_OFF_PHYS: 16157 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16158 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16159 mutex_enter(&ill->ill_lock); 16160 ill->ill_promisc_on_phys = B_FALSE; 16161 mutex_exit(&ill->ill_lock); 16162 break; 16163 case DL_NOTE_CAPAB_RENEG: 16164 /* 16165 * Something changed on the driver side. 16166 * It wants us to renegotiate the capabilities 16167 * on this ill. One possible cause is the aggregation 16168 * interface under us where a port got added or 16169 * went away. 16170 * 16171 * If the capability negotiation is already done 16172 * or is in progress, reset the capabilities and 16173 * mark the ill's ill_capab_reneg to be B_TRUE, 16174 * so that when the ack comes back, we can start 16175 * the renegotiation process. 16176 * 16177 * Note that if ill_capab_reneg is already B_TRUE 16178 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16179 * the capability resetting request has been sent 16180 * and the renegotiation has not been started yet; 16181 * nothing needs to be done in this case. 16182 */ 16183 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16184 ill_capability_reset(ill, B_TRUE); 16185 ipsq_current_finish(ipsq); 16186 break; 16187 default: 16188 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16189 "type 0x%x for DL_NOTIFY_IND\n", 16190 notify->dl_notification)); 16191 break; 16192 } 16193 16194 /* 16195 * As this is an asynchronous operation, we 16196 * should not call ill_dlpi_done 16197 */ 16198 break; 16199 } 16200 case DL_NOTIFY_ACK: { 16201 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16202 16203 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16204 ill->ill_note_link = 1; 16205 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16206 break; 16207 } 16208 case DL_PHYS_ADDR_ACK: { 16209 /* 16210 * As part of plumbing the interface via SIOCSLIFNAME, 16211 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16212 * whose answers we receive here. As each answer is received, 16213 * we call ill_dlpi_done() to dispatch the next request as 16214 * we're processing the current one. Once all answers have 16215 * been received, we use ipsq_pending_mp_get() to dequeue the 16216 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16217 * is invoked from an ill queue, conn_oper_pending_ill is not 16218 * available, but we know the ioctl is pending on ill_wq.) 16219 */ 16220 uint_t paddrlen, paddroff; 16221 16222 paddrreq = ill->ill_phys_addr_pend; 16223 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16224 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16225 16226 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16227 if (paddrreq == DL_IPV6_TOKEN) { 16228 /* 16229 * bcopy to low-order bits of ill_token 16230 * 16231 * XXX Temporary hack - currently, all known tokens 16232 * are 64 bits, so I'll cheat for the moment. 16233 */ 16234 bcopy(mp->b_rptr + paddroff, 16235 &ill->ill_token.s6_addr32[2], paddrlen); 16236 ill->ill_token_length = paddrlen; 16237 break; 16238 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16239 ASSERT(ill->ill_nd_lla_mp == NULL); 16240 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16241 mp = NULL; 16242 break; 16243 } 16244 16245 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16246 ASSERT(ill->ill_phys_addr_mp == NULL); 16247 if (!ill->ill_ifname_pending) 16248 break; 16249 ill->ill_ifname_pending = 0; 16250 if (!ioctl_aborted) 16251 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16252 if (mp1 != NULL) { 16253 ASSERT(connp == NULL); 16254 q = ill->ill_wq; 16255 } 16256 /* 16257 * If any error acks received during the plumbing sequence, 16258 * ill_ifname_pending_err will be set. Break out and send up 16259 * the error to the pending ioctl. 16260 */ 16261 if (ill->ill_ifname_pending_err != 0) { 16262 err = ill->ill_ifname_pending_err; 16263 ill->ill_ifname_pending_err = 0; 16264 break; 16265 } 16266 16267 ill->ill_phys_addr_mp = mp; 16268 ill->ill_phys_addr = mp->b_rptr + paddroff; 16269 mp = NULL; 16270 16271 /* 16272 * If paddrlen is zero, the DLPI provider doesn't support 16273 * physical addresses. The other two tests were historical 16274 * workarounds for bugs in our former PPP implementation, but 16275 * now other things have grown dependencies on them -- e.g., 16276 * the tun module specifies a dl_addr_length of zero in its 16277 * DL_BIND_ACK, but then specifies an incorrect value in its 16278 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16279 * but only after careful testing ensures that all dependent 16280 * broken DLPI providers have been fixed. 16281 */ 16282 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16283 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16284 ill->ill_phys_addr = NULL; 16285 } else if (paddrlen != ill->ill_phys_addr_length) { 16286 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16287 paddrlen, ill->ill_phys_addr_length)); 16288 err = EINVAL; 16289 break; 16290 } 16291 16292 if (ill->ill_nd_lla_mp == NULL) { 16293 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16294 err = ENOMEM; 16295 break; 16296 } 16297 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16298 } 16299 16300 /* 16301 * Set the interface token. If the zeroth interface address 16302 * is unspecified, then set it to the link local address. 16303 */ 16304 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16305 (void) ill_setdefaulttoken(ill); 16306 16307 ASSERT(ill->ill_ipif->ipif_id == 0); 16308 if (ipif != NULL && 16309 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16310 (void) ipif_setlinklocal(ipif); 16311 } 16312 break; 16313 } 16314 case DL_OK_ACK: 16315 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16316 dl_primstr((int)dloa->dl_correct_primitive), 16317 dloa->dl_correct_primitive)); 16318 switch (dloa->dl_correct_primitive) { 16319 case DL_ENABMULTI_REQ: 16320 case DL_DISABMULTI_REQ: 16321 if (!ill->ill_isv6) 16322 ipsq_current_finish(ipsq); 16323 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16324 break; 16325 case DL_PROMISCON_REQ: 16326 case DL_PROMISCOFF_REQ: 16327 case DL_UNBIND_REQ: 16328 case DL_ATTACH_REQ: 16329 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16330 break; 16331 } 16332 break; 16333 default: 16334 break; 16335 } 16336 16337 freemsg(mp); 16338 if (mp1 == NULL) 16339 return; 16340 16341 /* 16342 * The operation must complete without EINPROGRESS since 16343 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16344 * the operation will be stuck forever inside the IPSQ. 16345 */ 16346 ASSERT(err != EINPROGRESS); 16347 16348 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16349 case 0: 16350 ipsq_current_finish(ipsq); 16351 break; 16352 16353 case SIOCSLIFNAME: 16354 case IF_UNITSEL: { 16355 ill_t *ill_other = ILL_OTHER(ill); 16356 16357 /* 16358 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16359 * ill has a peer which is in an IPMP group, then place ill 16360 * into the same group. One catch: although ifconfig plumbs 16361 * the appropriate IPMP meta-interface prior to plumbing this 16362 * ill, it is possible for multiple ifconfig applications to 16363 * race (or for another application to adjust plumbing), in 16364 * which case the IPMP meta-interface we need will be missing. 16365 * If so, kick the phyint out of the group. 16366 */ 16367 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16368 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16369 ipmp_illgrp_t *illg; 16370 16371 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16372 if (illg == NULL) 16373 ipmp_phyint_leave_grp(ill->ill_phyint); 16374 else 16375 ipmp_ill_join_illgrp(ill, illg); 16376 } 16377 16378 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16379 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16380 else 16381 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16382 break; 16383 } 16384 case SIOCLIFADDIF: 16385 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16386 break; 16387 16388 default: 16389 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16390 break; 16391 } 16392 } 16393 16394 /* 16395 * ip_rput_other is called by ip_rput to handle messages modifying the global 16396 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16397 */ 16398 /* ARGSUSED */ 16399 void 16400 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16401 { 16402 ill_t *ill = q->q_ptr; 16403 struct iocblk *iocp; 16404 mblk_t *mp1; 16405 conn_t *connp = NULL; 16406 16407 ip1dbg(("ip_rput_other ")); 16408 if (ipsq != NULL) { 16409 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16410 ASSERT(ipsq->ipsq_xop == 16411 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16412 } 16413 16414 switch (mp->b_datap->db_type) { 16415 case M_ERROR: 16416 case M_HANGUP: 16417 /* 16418 * The device has a problem. We force the ILL down. It can 16419 * be brought up again manually using SIOCSIFFLAGS (via 16420 * ifconfig or equivalent). 16421 */ 16422 ASSERT(ipsq != NULL); 16423 if (mp->b_rptr < mp->b_wptr) 16424 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16425 if (ill->ill_error == 0) 16426 ill->ill_error = ENXIO; 16427 if (!ill_down_start(q, mp)) 16428 return; 16429 ipif_all_down_tail(ipsq, q, mp, NULL); 16430 break; 16431 case M_IOCACK: 16432 iocp = (struct iocblk *)mp->b_rptr; 16433 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16434 switch (iocp->ioc_cmd) { 16435 case SIOCSTUNPARAM: 16436 case OSIOCSTUNPARAM: 16437 ASSERT(ipsq != NULL); 16438 /* 16439 * Finish socket ioctl passed through to tun. 16440 * We should have an IOCTL waiting on this. 16441 */ 16442 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16443 if (ill->ill_isv6) { 16444 struct iftun_req *ta; 16445 16446 /* 16447 * if a source or destination is 16448 * being set, try and set the link 16449 * local address for the tunnel 16450 */ 16451 ta = (struct iftun_req *)mp->b_cont-> 16452 b_cont->b_rptr; 16453 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16454 ipif_set_tun_llink(ill, ta); 16455 } 16456 16457 } 16458 if (mp1 != NULL) { 16459 /* 16460 * Now copy back the b_next/b_prev used by 16461 * mi code for the mi_copy* functions. 16462 * See ip_sioctl_tunparam() for the reason. 16463 * Also protect against missing b_cont. 16464 */ 16465 if (mp->b_cont != NULL) { 16466 mp->b_cont->b_next = 16467 mp1->b_cont->b_next; 16468 mp->b_cont->b_prev = 16469 mp1->b_cont->b_prev; 16470 } 16471 inet_freemsg(mp1); 16472 ASSERT(connp != NULL); 16473 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16474 iocp->ioc_error, NO_COPYOUT, ipsq); 16475 } else { 16476 ASSERT(connp == NULL); 16477 putnext(q, mp); 16478 } 16479 break; 16480 case SIOCGTUNPARAM: 16481 case OSIOCGTUNPARAM: 16482 /* 16483 * This is really M_IOCDATA from the tunnel driver. 16484 * convert back and complete the ioctl. 16485 * We should have an IOCTL waiting on this. 16486 */ 16487 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16488 if (mp1) { 16489 /* 16490 * Now copy back the b_next/b_prev used by 16491 * mi code for the mi_copy* functions. 16492 * See ip_sioctl_tunparam() for the reason. 16493 * Also protect against missing b_cont. 16494 */ 16495 if (mp->b_cont != NULL) { 16496 mp->b_cont->b_next = 16497 mp1->b_cont->b_next; 16498 mp->b_cont->b_prev = 16499 mp1->b_cont->b_prev; 16500 } 16501 inet_freemsg(mp1); 16502 if (iocp->ioc_error == 0) 16503 mp->b_datap->db_type = M_IOCDATA; 16504 ASSERT(connp != NULL); 16505 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16506 iocp->ioc_error, COPYOUT, NULL); 16507 } else { 16508 ASSERT(connp == NULL); 16509 putnext(q, mp); 16510 } 16511 break; 16512 default: 16513 break; 16514 } 16515 break; 16516 case M_IOCNAK: 16517 iocp = (struct iocblk *)mp->b_rptr; 16518 16519 switch (iocp->ioc_cmd) { 16520 int mode; 16521 16522 case DL_IOC_HDR_INFO: 16523 /* 16524 * If this was the first attempt, turn off the 16525 * fastpath probing. 16526 */ 16527 mutex_enter(&ill->ill_lock); 16528 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16529 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16530 mutex_exit(&ill->ill_lock); 16531 ill_fastpath_nack(ill); 16532 ip1dbg(("ip_rput: DLPI fastpath off on " 16533 "interface %s\n", 16534 ill->ill_name)); 16535 } else { 16536 mutex_exit(&ill->ill_lock); 16537 } 16538 freemsg(mp); 16539 break; 16540 case SIOCSTUNPARAM: 16541 case OSIOCSTUNPARAM: 16542 ASSERT(ipsq != NULL); 16543 /* 16544 * Finish socket ioctl passed through to tun 16545 * We should have an IOCTL waiting on this. 16546 */ 16547 /* FALLTHRU */ 16548 case SIOCGTUNPARAM: 16549 case OSIOCGTUNPARAM: 16550 /* 16551 * This is really M_IOCDATA from the tunnel driver. 16552 * convert back and complete the ioctl. 16553 * We should have an IOCTL waiting on this. 16554 */ 16555 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16556 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16557 mp1 = ill_pending_mp_get(ill, &connp, 16558 iocp->ioc_id); 16559 mode = COPYOUT; 16560 ipsq = NULL; 16561 } else { 16562 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16563 mode = NO_COPYOUT; 16564 } 16565 if (mp1 != NULL) { 16566 /* 16567 * Now copy back the b_next/b_prev used by 16568 * mi code for the mi_copy* functions. 16569 * See ip_sioctl_tunparam() for the reason. 16570 * Also protect against missing b_cont. 16571 */ 16572 if (mp->b_cont != NULL) { 16573 mp->b_cont->b_next = 16574 mp1->b_cont->b_next; 16575 mp->b_cont->b_prev = 16576 mp1->b_cont->b_prev; 16577 } 16578 inet_freemsg(mp1); 16579 if (iocp->ioc_error == 0) 16580 iocp->ioc_error = EINVAL; 16581 ASSERT(connp != NULL); 16582 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16583 iocp->ioc_error, mode, ipsq); 16584 } else { 16585 ASSERT(connp == NULL); 16586 putnext(q, mp); 16587 } 16588 break; 16589 default: 16590 break; 16591 } 16592 default: 16593 break; 16594 } 16595 } 16596 16597 /* 16598 * NOTE : This function does not ire_refrele the ire argument passed in. 16599 * 16600 * IPQoS notes 16601 * IP policy is invoked twice for a forwarded packet, once on the read side 16602 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16603 * enabled. An additional parameter, in_ill, has been added for this purpose. 16604 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16605 * because ip_mroute drops this information. 16606 * 16607 */ 16608 void 16609 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16610 { 16611 uint32_t old_pkt_len; 16612 uint32_t pkt_len; 16613 queue_t *q; 16614 uint32_t sum; 16615 #define rptr ((uchar_t *)ipha) 16616 uint32_t max_frag; 16617 uint32_t ill_index; 16618 ill_t *out_ill; 16619 mib2_ipIfStatsEntry_t *mibptr; 16620 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16621 16622 /* Get the ill_index of the incoming ILL */ 16623 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16624 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16625 16626 /* Initiate Read side IPPF processing */ 16627 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16628 ip_process(IPP_FWD_IN, &mp, ill_index); 16629 if (mp == NULL) { 16630 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16631 "during IPPF processing\n")); 16632 return; 16633 } 16634 } 16635 16636 /* Adjust the checksum to reflect the ttl decrement. */ 16637 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16638 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16639 16640 if (ipha->ipha_ttl-- <= 1) { 16641 if (ip_csum_hdr(ipha)) { 16642 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16643 goto drop_pkt; 16644 } 16645 /* 16646 * Note: ire_stq this will be NULL for multicast 16647 * datagrams using the long path through arp (the IRE 16648 * is not an IRE_CACHE). This should not cause 16649 * problems since we don't generate ICMP errors for 16650 * multicast packets. 16651 */ 16652 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16653 q = ire->ire_stq; 16654 if (q != NULL) { 16655 /* Sent by forwarding path, and router is global zone */ 16656 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16657 GLOBAL_ZONEID, ipst); 16658 } else 16659 freemsg(mp); 16660 return; 16661 } 16662 16663 /* 16664 * Don't forward if the interface is down 16665 */ 16666 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16667 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16668 ip2dbg(("ip_rput_forward:interface is down\n")); 16669 goto drop_pkt; 16670 } 16671 16672 /* Get the ill_index of the outgoing ILL */ 16673 out_ill = ire_to_ill(ire); 16674 ill_index = out_ill->ill_phyint->phyint_ifindex; 16675 16676 DTRACE_PROBE4(ip4__forwarding__start, 16677 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16678 16679 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16680 ipst->ips_ipv4firewall_forwarding, 16681 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16682 16683 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16684 16685 if (mp == NULL) 16686 return; 16687 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16688 16689 if (is_system_labeled()) { 16690 mblk_t *mp1; 16691 16692 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16693 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16694 goto drop_pkt; 16695 } 16696 /* Size may have changed */ 16697 mp = mp1; 16698 ipha = (ipha_t *)mp->b_rptr; 16699 pkt_len = ntohs(ipha->ipha_length); 16700 } 16701 16702 /* Check if there are options to update */ 16703 if (!IS_SIMPLE_IPH(ipha)) { 16704 if (ip_csum_hdr(ipha)) { 16705 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16706 goto drop_pkt; 16707 } 16708 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16709 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16710 return; 16711 } 16712 16713 ipha->ipha_hdr_checksum = 0; 16714 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16715 } 16716 max_frag = ire->ire_max_frag; 16717 if (pkt_len > max_frag) { 16718 /* 16719 * It needs fragging on its way out. We haven't 16720 * verified the header checksum yet. Since we 16721 * are going to put a surely good checksum in the 16722 * outgoing header, we have to make sure that it 16723 * was good coming in. 16724 */ 16725 if (ip_csum_hdr(ipha)) { 16726 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16727 goto drop_pkt; 16728 } 16729 /* Initiate Write side IPPF processing */ 16730 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16731 ip_process(IPP_FWD_OUT, &mp, ill_index); 16732 if (mp == NULL) { 16733 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16734 " during IPPF processing\n")); 16735 return; 16736 } 16737 } 16738 /* 16739 * Handle labeled packet resizing. 16740 * 16741 * If we have added a label, inform ip_wput_frag() of its 16742 * effect on the MTU for ICMP messages. 16743 */ 16744 if (pkt_len > old_pkt_len) { 16745 uint32_t secopt_size; 16746 16747 secopt_size = pkt_len - old_pkt_len; 16748 if (secopt_size < max_frag) 16749 max_frag -= secopt_size; 16750 } 16751 16752 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16753 GLOBAL_ZONEID, ipst, NULL); 16754 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16755 return; 16756 } 16757 16758 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16759 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16760 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16761 ipst->ips_ipv4firewall_physical_out, 16762 NULL, out_ill, ipha, mp, mp, 0, ipst); 16763 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16764 if (mp == NULL) 16765 return; 16766 16767 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16768 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16769 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16770 /* ip_xmit_v4 always consumes the packet */ 16771 return; 16772 16773 drop_pkt:; 16774 ip1dbg(("ip_rput_forward: drop pkt\n")); 16775 freemsg(mp); 16776 #undef rptr 16777 } 16778 16779 void 16780 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16781 { 16782 ire_t *ire; 16783 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16784 16785 ASSERT(!ipif->ipif_isv6); 16786 /* 16787 * Find an IRE which matches the destination and the outgoing 16788 * queue in the cache table. All we need is an IRE_CACHE which 16789 * is pointing at ipif->ipif_ill. 16790 */ 16791 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16792 dst = ipif->ipif_pp_dst_addr; 16793 16794 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16795 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16796 if (ire == NULL) { 16797 /* 16798 * Mark this packet to make it be delivered to 16799 * ip_rput_forward after the new ire has been 16800 * created. 16801 */ 16802 mp->b_prev = NULL; 16803 mp->b_next = mp; 16804 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16805 NULL, 0, GLOBAL_ZONEID, &zero_info); 16806 } else { 16807 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16808 IRE_REFRELE(ire); 16809 } 16810 } 16811 16812 /* Update any source route, record route or timestamp options */ 16813 static int 16814 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16815 { 16816 ipoptp_t opts; 16817 uchar_t *opt; 16818 uint8_t optval; 16819 uint8_t optlen; 16820 ipaddr_t dst; 16821 uint32_t ts; 16822 ire_t *dst_ire = NULL; 16823 ire_t *tmp_ire = NULL; 16824 timestruc_t now; 16825 16826 ip2dbg(("ip_rput_forward_options\n")); 16827 dst = ipha->ipha_dst; 16828 for (optval = ipoptp_first(&opts, ipha); 16829 optval != IPOPT_EOL; 16830 optval = ipoptp_next(&opts)) { 16831 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16832 opt = opts.ipoptp_cur; 16833 optlen = opts.ipoptp_len; 16834 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16835 optval, opts.ipoptp_len)); 16836 switch (optval) { 16837 uint32_t off; 16838 case IPOPT_SSRR: 16839 case IPOPT_LSRR: 16840 /* Check if adminstratively disabled */ 16841 if (!ipst->ips_ip_forward_src_routed) { 16842 if (ire->ire_stq != NULL) { 16843 /* 16844 * Sent by forwarding path, and router 16845 * is global zone 16846 */ 16847 icmp_unreachable(ire->ire_stq, mp, 16848 ICMP_SOURCE_ROUTE_FAILED, 16849 GLOBAL_ZONEID, ipst); 16850 } else { 16851 ip0dbg(("ip_rput_forward_options: " 16852 "unable to send unreach\n")); 16853 freemsg(mp); 16854 } 16855 return (-1); 16856 } 16857 16858 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16859 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16860 if (dst_ire == NULL) { 16861 /* 16862 * Must be partial since ip_rput_options 16863 * checked for strict. 16864 */ 16865 break; 16866 } 16867 off = opt[IPOPT_OFFSET]; 16868 off--; 16869 redo_srr: 16870 if (optlen < IP_ADDR_LEN || 16871 off > optlen - IP_ADDR_LEN) { 16872 /* End of source route */ 16873 ip1dbg(( 16874 "ip_rput_forward_options: end of SR\n")); 16875 ire_refrele(dst_ire); 16876 break; 16877 } 16878 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16879 bcopy(&ire->ire_src_addr, (char *)opt + off, 16880 IP_ADDR_LEN); 16881 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16882 ntohl(dst))); 16883 16884 /* 16885 * Check if our address is present more than 16886 * once as consecutive hops in source route. 16887 */ 16888 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16889 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16890 if (tmp_ire != NULL) { 16891 ire_refrele(tmp_ire); 16892 off += IP_ADDR_LEN; 16893 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16894 goto redo_srr; 16895 } 16896 ipha->ipha_dst = dst; 16897 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16898 ire_refrele(dst_ire); 16899 break; 16900 case IPOPT_RR: 16901 off = opt[IPOPT_OFFSET]; 16902 off--; 16903 if (optlen < IP_ADDR_LEN || 16904 off > optlen - IP_ADDR_LEN) { 16905 /* No more room - ignore */ 16906 ip1dbg(( 16907 "ip_rput_forward_options: end of RR\n")); 16908 break; 16909 } 16910 bcopy(&ire->ire_src_addr, (char *)opt + off, 16911 IP_ADDR_LEN); 16912 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16913 break; 16914 case IPOPT_TS: 16915 /* Insert timestamp if there is room */ 16916 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16917 case IPOPT_TS_TSONLY: 16918 off = IPOPT_TS_TIMELEN; 16919 break; 16920 case IPOPT_TS_PRESPEC: 16921 case IPOPT_TS_PRESPEC_RFC791: 16922 /* Verify that the address matched */ 16923 off = opt[IPOPT_OFFSET] - 1; 16924 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16925 dst_ire = ire_ctable_lookup(dst, 0, 16926 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16927 MATCH_IRE_TYPE, ipst); 16928 if (dst_ire == NULL) { 16929 /* Not for us */ 16930 break; 16931 } 16932 ire_refrele(dst_ire); 16933 /* FALLTHRU */ 16934 case IPOPT_TS_TSANDADDR: 16935 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16936 break; 16937 default: 16938 /* 16939 * ip_*put_options should have already 16940 * dropped this packet. 16941 */ 16942 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16943 "unknown IT - bug in ip_rput_options?\n"); 16944 return (0); /* Keep "lint" happy */ 16945 } 16946 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16947 /* Increase overflow counter */ 16948 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16949 opt[IPOPT_POS_OV_FLG] = 16950 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16951 (off << 4)); 16952 break; 16953 } 16954 off = opt[IPOPT_OFFSET] - 1; 16955 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16956 case IPOPT_TS_PRESPEC: 16957 case IPOPT_TS_PRESPEC_RFC791: 16958 case IPOPT_TS_TSANDADDR: 16959 bcopy(&ire->ire_src_addr, 16960 (char *)opt + off, IP_ADDR_LEN); 16961 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16962 /* FALLTHRU */ 16963 case IPOPT_TS_TSONLY: 16964 off = opt[IPOPT_OFFSET] - 1; 16965 /* Compute # of milliseconds since midnight */ 16966 gethrestime(&now); 16967 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16968 now.tv_nsec / (NANOSEC / MILLISEC); 16969 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16970 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16971 break; 16972 } 16973 break; 16974 } 16975 } 16976 return (0); 16977 } 16978 16979 /* 16980 * This is called after processing at least one of AH/ESP headers. 16981 * 16982 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16983 * the actual, physical interface on which the packet was received, 16984 * but, when ip_strict_dst_multihoming is set to 1, could be the 16985 * interface which had the ipha_dst configured when the packet went 16986 * through ip_rput. The ill_index corresponding to the recv_ill 16987 * is saved in ipsec_in_rill_index 16988 * 16989 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16990 * cannot assume "ire" points to valid data for any IPv6 cases. 16991 */ 16992 void 16993 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16994 { 16995 mblk_t *mp; 16996 ipaddr_t dst; 16997 in6_addr_t *v6dstp; 16998 ipha_t *ipha; 16999 ip6_t *ip6h; 17000 ipsec_in_t *ii; 17001 boolean_t ill_need_rele = B_FALSE; 17002 boolean_t rill_need_rele = B_FALSE; 17003 boolean_t ire_need_rele = B_FALSE; 17004 netstack_t *ns; 17005 ip_stack_t *ipst; 17006 17007 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17008 ASSERT(ii->ipsec_in_ill_index != 0); 17009 ns = ii->ipsec_in_ns; 17010 ASSERT(ii->ipsec_in_ns != NULL); 17011 ipst = ns->netstack_ip; 17012 17013 mp = ipsec_mp->b_cont; 17014 ASSERT(mp != NULL); 17015 17016 if (ill == NULL) { 17017 ASSERT(recv_ill == NULL); 17018 /* 17019 * We need to get the original queue on which ip_rput_local 17020 * or ip_rput_data_v6 was called. 17021 */ 17022 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17023 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17024 ill_need_rele = B_TRUE; 17025 17026 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17027 recv_ill = ill_lookup_on_ifindex( 17028 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17029 NULL, NULL, NULL, NULL, ipst); 17030 rill_need_rele = B_TRUE; 17031 } else { 17032 recv_ill = ill; 17033 } 17034 17035 if ((ill == NULL) || (recv_ill == NULL)) { 17036 ip0dbg(("ip_fanout_proto_again: interface " 17037 "disappeared\n")); 17038 if (ill != NULL) 17039 ill_refrele(ill); 17040 if (recv_ill != NULL) 17041 ill_refrele(recv_ill); 17042 freemsg(ipsec_mp); 17043 return; 17044 } 17045 } 17046 17047 ASSERT(ill != NULL && recv_ill != NULL); 17048 17049 if (mp->b_datap->db_type == M_CTL) { 17050 /* 17051 * AH/ESP is returning the ICMP message after 17052 * removing their headers. Fanout again till 17053 * it gets to the right protocol. 17054 */ 17055 if (ii->ipsec_in_v4) { 17056 icmph_t *icmph; 17057 int iph_hdr_length; 17058 int hdr_length; 17059 17060 ipha = (ipha_t *)mp->b_rptr; 17061 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17062 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17063 ipha = (ipha_t *)&icmph[1]; 17064 hdr_length = IPH_HDR_LENGTH(ipha); 17065 /* 17066 * icmp_inbound_error_fanout may need to do pullupmsg. 17067 * Reset the type to M_DATA. 17068 */ 17069 mp->b_datap->db_type = M_DATA; 17070 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17071 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17072 B_FALSE, ill, ii->ipsec_in_zoneid); 17073 } else { 17074 icmp6_t *icmp6; 17075 int hdr_length; 17076 17077 ip6h = (ip6_t *)mp->b_rptr; 17078 /* Don't call hdr_length_v6() unless you have to. */ 17079 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17080 hdr_length = ip_hdr_length_v6(mp, ip6h); 17081 else 17082 hdr_length = IPV6_HDR_LEN; 17083 17084 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17085 /* 17086 * icmp_inbound_error_fanout_v6 may need to do 17087 * pullupmsg. Reset the type to M_DATA. 17088 */ 17089 mp->b_datap->db_type = M_DATA; 17090 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17091 ip6h, icmp6, ill, recv_ill, B_TRUE, 17092 ii->ipsec_in_zoneid); 17093 } 17094 if (ill_need_rele) 17095 ill_refrele(ill); 17096 if (rill_need_rele) 17097 ill_refrele(recv_ill); 17098 return; 17099 } 17100 17101 if (ii->ipsec_in_v4) { 17102 ipha = (ipha_t *)mp->b_rptr; 17103 dst = ipha->ipha_dst; 17104 if (CLASSD(dst)) { 17105 /* 17106 * Multicast has to be delivered to all streams. 17107 */ 17108 dst = INADDR_BROADCAST; 17109 } 17110 17111 if (ire == NULL) { 17112 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17113 msg_getlabel(mp), ipst); 17114 if (ire == NULL) { 17115 if (ill_need_rele) 17116 ill_refrele(ill); 17117 if (rill_need_rele) 17118 ill_refrele(recv_ill); 17119 ip1dbg(("ip_fanout_proto_again: " 17120 "IRE not found")); 17121 freemsg(ipsec_mp); 17122 return; 17123 } 17124 ire_need_rele = B_TRUE; 17125 } 17126 17127 switch (ipha->ipha_protocol) { 17128 case IPPROTO_UDP: 17129 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17130 recv_ill); 17131 if (ire_need_rele) 17132 ire_refrele(ire); 17133 break; 17134 case IPPROTO_TCP: 17135 if (!ire_need_rele) 17136 IRE_REFHOLD(ire); 17137 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17138 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17139 IRE_REFRELE(ire); 17140 if (mp != NULL) { 17141 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17142 mp, 1, SQ_PROCESS, 17143 SQTAG_IP_PROTO_AGAIN); 17144 } 17145 break; 17146 case IPPROTO_SCTP: 17147 if (!ire_need_rele) 17148 IRE_REFHOLD(ire); 17149 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17150 ipsec_mp, 0, ill->ill_rq, dst); 17151 break; 17152 default: 17153 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17154 recv_ill, 0); 17155 if (ire_need_rele) 17156 ire_refrele(ire); 17157 break; 17158 } 17159 } else { 17160 uint32_t rput_flags = 0; 17161 17162 ip6h = (ip6_t *)mp->b_rptr; 17163 v6dstp = &ip6h->ip6_dst; 17164 /* 17165 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17166 * address. 17167 * 17168 * Currently, we don't store that state in the IPSEC_IN 17169 * message, and we may need to. 17170 */ 17171 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17172 IP6_IN_LLMCAST : 0); 17173 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17174 NULL, NULL); 17175 } 17176 if (ill_need_rele) 17177 ill_refrele(ill); 17178 if (rill_need_rele) 17179 ill_refrele(recv_ill); 17180 } 17181 17182 /* 17183 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17184 * returns 'true' if there are still fragments left on the queue, in 17185 * which case we restart the timer. 17186 */ 17187 void 17188 ill_frag_timer(void *arg) 17189 { 17190 ill_t *ill = (ill_t *)arg; 17191 boolean_t frag_pending; 17192 ip_stack_t *ipst = ill->ill_ipst; 17193 17194 mutex_enter(&ill->ill_lock); 17195 ASSERT(!ill->ill_fragtimer_executing); 17196 if (ill->ill_state_flags & ILL_CONDEMNED) { 17197 ill->ill_frag_timer_id = 0; 17198 mutex_exit(&ill->ill_lock); 17199 return; 17200 } 17201 ill->ill_fragtimer_executing = 1; 17202 mutex_exit(&ill->ill_lock); 17203 17204 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17205 17206 /* 17207 * Restart the timer, if we have fragments pending or if someone 17208 * wanted us to be scheduled again. 17209 */ 17210 mutex_enter(&ill->ill_lock); 17211 ill->ill_fragtimer_executing = 0; 17212 ill->ill_frag_timer_id = 0; 17213 if (frag_pending || ill->ill_fragtimer_needrestart) 17214 ill_frag_timer_start(ill); 17215 mutex_exit(&ill->ill_lock); 17216 } 17217 17218 void 17219 ill_frag_timer_start(ill_t *ill) 17220 { 17221 ip_stack_t *ipst = ill->ill_ipst; 17222 17223 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17224 17225 /* If the ill is closing or opening don't proceed */ 17226 if (ill->ill_state_flags & ILL_CONDEMNED) 17227 return; 17228 17229 if (ill->ill_fragtimer_executing) { 17230 /* 17231 * ill_frag_timer is currently executing. Just record the 17232 * the fact that we want the timer to be restarted. 17233 * ill_frag_timer will post a timeout before it returns, 17234 * ensuring it will be called again. 17235 */ 17236 ill->ill_fragtimer_needrestart = 1; 17237 return; 17238 } 17239 17240 if (ill->ill_frag_timer_id == 0) { 17241 /* 17242 * The timer is neither running nor is the timeout handler 17243 * executing. Post a timeout so that ill_frag_timer will be 17244 * called 17245 */ 17246 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17247 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17248 ill->ill_fragtimer_needrestart = 0; 17249 } 17250 } 17251 17252 /* 17253 * This routine is needed for loopback when forwarding multicasts. 17254 * 17255 * IPQoS Notes: 17256 * IPPF processing is done in fanout routines. 17257 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17258 * processing for IPsec packets is done when it comes back in clear. 17259 * NOTE : The callers of this function need to do the ire_refrele for the 17260 * ire that is being passed in. 17261 */ 17262 void 17263 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17264 ill_t *recv_ill, uint32_t esp_udp_ports) 17265 { 17266 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17267 ill_t *ill = (ill_t *)q->q_ptr; 17268 uint32_t sum; 17269 uint32_t u1; 17270 uint32_t u2; 17271 int hdr_length; 17272 boolean_t mctl_present; 17273 mblk_t *first_mp = mp; 17274 mblk_t *hada_mp = NULL; 17275 ipha_t *inner_ipha; 17276 ip_stack_t *ipst; 17277 17278 ASSERT(recv_ill != NULL); 17279 ipst = recv_ill->ill_ipst; 17280 17281 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17282 "ip_rput_locl_start: q %p", q); 17283 17284 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17285 ASSERT(ill != NULL); 17286 17287 #define rptr ((uchar_t *)ipha) 17288 #define iphs ((uint16_t *)ipha) 17289 17290 /* 17291 * no UDP or TCP packet should come here anymore. 17292 */ 17293 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17294 ipha->ipha_protocol != IPPROTO_UDP); 17295 17296 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17297 if (mctl_present && 17298 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17299 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17300 17301 /* 17302 * It's an IPsec accelerated packet. 17303 * Keep a pointer to the data attributes around until 17304 * we allocate the ipsec_info_t. 17305 */ 17306 IPSECHW_DEBUG(IPSECHW_PKT, 17307 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17308 hada_mp = first_mp; 17309 hada_mp->b_cont = NULL; 17310 /* 17311 * Since it is accelerated, it comes directly from 17312 * the ill and the data attributes is followed by 17313 * the packet data. 17314 */ 17315 ASSERT(mp->b_datap->db_type != M_CTL); 17316 first_mp = mp; 17317 mctl_present = B_FALSE; 17318 } 17319 17320 /* 17321 * IF M_CTL is not present, then ipsec_in_is_secure 17322 * should return B_TRUE. There is a case where loopback 17323 * packets has an M_CTL in the front with all the 17324 * IPsec options set to IPSEC_PREF_NEVER - which means 17325 * ipsec_in_is_secure will return B_FALSE. As loopback 17326 * packets never comes here, it is safe to ASSERT the 17327 * following. 17328 */ 17329 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17330 17331 /* 17332 * Also, we should never have an mctl_present if this is an 17333 * ESP-in-UDP packet. 17334 */ 17335 ASSERT(!mctl_present || !esp_in_udp_packet); 17336 17337 /* u1 is # words of IP options */ 17338 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17339 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17340 17341 /* 17342 * Don't verify header checksum if we just removed UDP header or 17343 * packet is coming back from AH/ESP. 17344 */ 17345 if (!esp_in_udp_packet && !mctl_present) { 17346 if (u1) { 17347 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17348 if (hada_mp != NULL) 17349 freemsg(hada_mp); 17350 return; 17351 } 17352 } else { 17353 /* Check the IP header checksum. */ 17354 #define uph ((uint16_t *)ipha) 17355 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17356 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17357 #undef uph 17358 /* finish doing IP checksum */ 17359 sum = (sum & 0xFFFF) + (sum >> 16); 17360 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17361 if (sum && sum != 0xFFFF) { 17362 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17363 goto drop_pkt; 17364 } 17365 } 17366 } 17367 17368 /* 17369 * Count for SNMP of inbound packets for ire. As ip_proto_input 17370 * might be called more than once for secure packets, count only 17371 * the first time. 17372 */ 17373 if (!mctl_present) { 17374 UPDATE_IB_PKT_COUNT(ire); 17375 ire->ire_last_used_time = lbolt; 17376 } 17377 17378 /* Check for fragmentation offset. */ 17379 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17380 u1 = u2 & (IPH_MF | IPH_OFFSET); 17381 if (u1) { 17382 /* 17383 * We re-assemble fragments before we do the AH/ESP 17384 * processing. Thus, M_CTL should not be present 17385 * while we are re-assembling. 17386 */ 17387 ASSERT(!mctl_present); 17388 ASSERT(first_mp == mp); 17389 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17390 return; 17391 17392 /* 17393 * Make sure that first_mp points back to mp as 17394 * the mp we came in with could have changed in 17395 * ip_rput_fragment(). 17396 */ 17397 ipha = (ipha_t *)mp->b_rptr; 17398 first_mp = mp; 17399 } 17400 17401 /* 17402 * Clear hardware checksumming flag as it is currently only 17403 * used by TCP and UDP. 17404 */ 17405 DB_CKSUMFLAGS(mp) = 0; 17406 17407 /* Now we have a complete datagram, destined for this machine. */ 17408 u1 = IPH_HDR_LENGTH(ipha); 17409 switch (ipha->ipha_protocol) { 17410 case IPPROTO_ICMP: { 17411 ire_t *ire_zone; 17412 ilm_t *ilm; 17413 mblk_t *mp1; 17414 zoneid_t last_zoneid; 17415 ilm_walker_t ilw; 17416 17417 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17418 ASSERT(ire->ire_type == IRE_BROADCAST); 17419 17420 /* 17421 * In the multicast case, applications may have joined 17422 * the group from different zones, so we need to deliver 17423 * the packet to each of them. Loop through the 17424 * multicast memberships structures (ilm) on the receive 17425 * ill and send a copy of the packet up each matching 17426 * one. However, we don't do this for multicasts sent on 17427 * the loopback interface (PHYI_LOOPBACK flag set) as 17428 * they must stay in the sender's zone. 17429 * 17430 * ilm_add_v6() ensures that ilms in the same zone are 17431 * contiguous in the ill_ilm list. We use this property 17432 * to avoid sending duplicates needed when two 17433 * applications in the same zone join the same group on 17434 * different logical interfaces: we ignore the ilm if 17435 * its zoneid is the same as the last matching one. 17436 * In addition, the sending of the packet for 17437 * ire_zoneid is delayed until all of the other ilms 17438 * have been exhausted. 17439 */ 17440 last_zoneid = -1; 17441 ilm = ilm_walker_start(&ilw, recv_ill); 17442 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17443 if (ipha->ipha_dst != ilm->ilm_addr || 17444 ilm->ilm_zoneid == last_zoneid || 17445 ilm->ilm_zoneid == ire->ire_zoneid || 17446 ilm->ilm_zoneid == ALL_ZONES || 17447 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17448 continue; 17449 mp1 = ip_copymsg(first_mp); 17450 if (mp1 == NULL) 17451 continue; 17452 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17453 0, sum, mctl_present, B_TRUE, 17454 recv_ill, ilm->ilm_zoneid); 17455 last_zoneid = ilm->ilm_zoneid; 17456 } 17457 ilm_walker_finish(&ilw); 17458 } else if (ire->ire_type == IRE_BROADCAST) { 17459 /* 17460 * In the broadcast case, there may be many zones 17461 * which need a copy of the packet delivered to them. 17462 * There is one IRE_BROADCAST per broadcast address 17463 * and per zone; we walk those using a helper function. 17464 * In addition, the sending of the packet for ire is 17465 * delayed until all of the other ires have been 17466 * processed. 17467 */ 17468 IRB_REFHOLD(ire->ire_bucket); 17469 ire_zone = NULL; 17470 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17471 ire)) != NULL) { 17472 mp1 = ip_copymsg(first_mp); 17473 if (mp1 == NULL) 17474 continue; 17475 17476 UPDATE_IB_PKT_COUNT(ire_zone); 17477 ire_zone->ire_last_used_time = lbolt; 17478 icmp_inbound(q, mp1, B_TRUE, ill, 17479 0, sum, mctl_present, B_TRUE, 17480 recv_ill, ire_zone->ire_zoneid); 17481 } 17482 IRB_REFRELE(ire->ire_bucket); 17483 } 17484 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17485 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17486 ire->ire_zoneid); 17487 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17488 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17489 return; 17490 } 17491 case IPPROTO_IGMP: 17492 /* 17493 * If we are not willing to accept IGMP packets in clear, 17494 * then check with global policy. 17495 */ 17496 if (ipst->ips_igmp_accept_clear_messages == 0) { 17497 first_mp = ipsec_check_global_policy(first_mp, NULL, 17498 ipha, NULL, mctl_present, ipst->ips_netstack); 17499 if (first_mp == NULL) 17500 return; 17501 } 17502 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17503 freemsg(first_mp); 17504 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17506 return; 17507 } 17508 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17509 /* Bad packet - discarded by igmp_input */ 17510 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17511 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17512 if (mctl_present) 17513 freeb(first_mp); 17514 return; 17515 } 17516 /* 17517 * igmp_input() may have returned the pulled up message. 17518 * So first_mp and ipha need to be reinitialized. 17519 */ 17520 ipha = (ipha_t *)mp->b_rptr; 17521 if (mctl_present) 17522 first_mp->b_cont = mp; 17523 else 17524 first_mp = mp; 17525 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17526 connf_head != NULL) { 17527 /* No user-level listener for IGMP packets */ 17528 goto drop_pkt; 17529 } 17530 /* deliver to local raw users */ 17531 break; 17532 case IPPROTO_PIM: 17533 /* 17534 * If we are not willing to accept PIM packets in clear, 17535 * then check with global policy. 17536 */ 17537 if (ipst->ips_pim_accept_clear_messages == 0) { 17538 first_mp = ipsec_check_global_policy(first_mp, NULL, 17539 ipha, NULL, mctl_present, ipst->ips_netstack); 17540 if (first_mp == NULL) 17541 return; 17542 } 17543 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17544 freemsg(first_mp); 17545 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17547 return; 17548 } 17549 if (pim_input(q, mp, ill) != 0) { 17550 /* Bad packet - discarded by pim_input */ 17551 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17552 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17553 if (mctl_present) 17554 freeb(first_mp); 17555 return; 17556 } 17557 17558 /* 17559 * pim_input() may have pulled up the message so ipha needs to 17560 * be reinitialized. 17561 */ 17562 ipha = (ipha_t *)mp->b_rptr; 17563 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17564 connf_head != NULL) { 17565 /* No user-level listener for PIM packets */ 17566 goto drop_pkt; 17567 } 17568 /* deliver to local raw users */ 17569 break; 17570 case IPPROTO_ENCAP: 17571 /* 17572 * Handle self-encapsulated packets (IP-in-IP where 17573 * the inner addresses == the outer addresses). 17574 */ 17575 hdr_length = IPH_HDR_LENGTH(ipha); 17576 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17577 mp->b_wptr) { 17578 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17579 sizeof (ipha_t) - mp->b_rptr)) { 17580 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17581 freemsg(first_mp); 17582 return; 17583 } 17584 ipha = (ipha_t *)mp->b_rptr; 17585 } 17586 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17587 /* 17588 * Check the sanity of the inner IP header. 17589 */ 17590 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17592 freemsg(first_mp); 17593 return; 17594 } 17595 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17597 freemsg(first_mp); 17598 return; 17599 } 17600 if (inner_ipha->ipha_src == ipha->ipha_src && 17601 inner_ipha->ipha_dst == ipha->ipha_dst) { 17602 ipsec_in_t *ii; 17603 17604 /* 17605 * Self-encapsulated tunnel packet. Remove 17606 * the outer IP header and fanout again. 17607 * We also need to make sure that the inner 17608 * header is pulled up until options. 17609 */ 17610 mp->b_rptr = (uchar_t *)inner_ipha; 17611 ipha = inner_ipha; 17612 hdr_length = IPH_HDR_LENGTH(ipha); 17613 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17614 if (!pullupmsg(mp, (uchar_t *)ipha + 17615 + hdr_length - mp->b_rptr)) { 17616 freemsg(first_mp); 17617 return; 17618 } 17619 ipha = (ipha_t *)mp->b_rptr; 17620 } 17621 if (hdr_length > sizeof (ipha_t)) { 17622 /* We got options on the inner packet. */ 17623 ipaddr_t dst = ipha->ipha_dst; 17624 17625 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17626 -1) { 17627 /* Bad options! */ 17628 return; 17629 } 17630 if (dst != ipha->ipha_dst) { 17631 /* 17632 * Someone put a source-route in 17633 * the inside header of a self- 17634 * encapsulated packet. Drop it 17635 * with extreme prejudice and let 17636 * the sender know. 17637 */ 17638 icmp_unreachable(q, first_mp, 17639 ICMP_SOURCE_ROUTE_FAILED, 17640 recv_ill->ill_zoneid, ipst); 17641 return; 17642 } 17643 } 17644 if (!mctl_present) { 17645 ASSERT(first_mp == mp); 17646 /* 17647 * This means that somebody is sending 17648 * Self-encapsualted packets without AH/ESP. 17649 * If AH/ESP was present, we would have already 17650 * allocated the first_mp. 17651 * 17652 * Send this packet to find a tunnel endpoint. 17653 * if I can't find one, an ICMP 17654 * PROTOCOL_UNREACHABLE will get sent. 17655 */ 17656 goto fanout; 17657 } 17658 /* 17659 * We generally store the ill_index if we need to 17660 * do IPsec processing as we lose the ill queue when 17661 * we come back. But in this case, we never should 17662 * have to store the ill_index here as it should have 17663 * been stored previously when we processed the 17664 * AH/ESP header in this routine or for non-ipsec 17665 * cases, we still have the queue. But for some bad 17666 * packets from the wire, we can get to IPsec after 17667 * this and we better store the index for that case. 17668 */ 17669 ill = (ill_t *)q->q_ptr; 17670 ii = (ipsec_in_t *)first_mp->b_rptr; 17671 ii->ipsec_in_ill_index = 17672 ill->ill_phyint->phyint_ifindex; 17673 ii->ipsec_in_rill_index = 17674 recv_ill->ill_phyint->phyint_ifindex; 17675 if (ii->ipsec_in_decaps) { 17676 /* 17677 * This packet is self-encapsulated multiple 17678 * times. We don't want to recurse infinitely. 17679 * To keep it simple, drop the packet. 17680 */ 17681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17682 freemsg(first_mp); 17683 return; 17684 } 17685 ii->ipsec_in_decaps = B_TRUE; 17686 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17687 ire); 17688 return; 17689 } 17690 break; 17691 case IPPROTO_AH: 17692 case IPPROTO_ESP: { 17693 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17694 17695 /* 17696 * Fast path for AH/ESP. If this is the first time 17697 * we are sending a datagram to AH/ESP, allocate 17698 * a IPSEC_IN message and prepend it. Otherwise, 17699 * just fanout. 17700 */ 17701 17702 int ipsec_rc; 17703 ipsec_in_t *ii; 17704 netstack_t *ns = ipst->ips_netstack; 17705 17706 IP_STAT(ipst, ipsec_proto_ahesp); 17707 if (!mctl_present) { 17708 ASSERT(first_mp == mp); 17709 first_mp = ipsec_in_alloc(B_TRUE, ns); 17710 if (first_mp == NULL) { 17711 ip1dbg(("ip_proto_input: IPSEC_IN " 17712 "allocation failure.\n")); 17713 freemsg(hada_mp); /* okay ifnull */ 17714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17715 freemsg(mp); 17716 return; 17717 } 17718 /* 17719 * Store the ill_index so that when we come back 17720 * from IPsec we ride on the same queue. 17721 */ 17722 ill = (ill_t *)q->q_ptr; 17723 ii = (ipsec_in_t *)first_mp->b_rptr; 17724 ii->ipsec_in_ill_index = 17725 ill->ill_phyint->phyint_ifindex; 17726 ii->ipsec_in_rill_index = 17727 recv_ill->ill_phyint->phyint_ifindex; 17728 first_mp->b_cont = mp; 17729 /* 17730 * Cache hardware acceleration info. 17731 */ 17732 if (hada_mp != NULL) { 17733 IPSECHW_DEBUG(IPSECHW_PKT, 17734 ("ip_rput_local: caching data attr.\n")); 17735 ii->ipsec_in_accelerated = B_TRUE; 17736 ii->ipsec_in_da = hada_mp; 17737 hada_mp = NULL; 17738 } 17739 } else { 17740 ii = (ipsec_in_t *)first_mp->b_rptr; 17741 } 17742 17743 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17744 17745 if (!ipsec_loaded(ipss)) { 17746 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17747 ire->ire_zoneid, ipst); 17748 return; 17749 } 17750 17751 ns = ipst->ips_netstack; 17752 /* select inbound SA and have IPsec process the pkt */ 17753 if (ipha->ipha_protocol == IPPROTO_ESP) { 17754 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17755 boolean_t esp_in_udp_sa; 17756 if (esph == NULL) 17757 return; 17758 ASSERT(ii->ipsec_in_esp_sa != NULL); 17759 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17760 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17761 IPSA_F_NATT) != 0); 17762 /* 17763 * The following is a fancy, but quick, way of saying: 17764 * ESP-in-UDP SA and Raw ESP packet --> drop 17765 * OR 17766 * ESP SA and ESP-in-UDP packet --> drop 17767 */ 17768 if (esp_in_udp_sa != esp_in_udp_packet) { 17769 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17770 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17771 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17772 &ns->netstack_ipsec->ipsec_dropper); 17773 return; 17774 } 17775 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17776 first_mp, esph); 17777 } else { 17778 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17779 if (ah == NULL) 17780 return; 17781 ASSERT(ii->ipsec_in_ah_sa != NULL); 17782 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17783 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17784 first_mp, ah); 17785 } 17786 17787 switch (ipsec_rc) { 17788 case IPSEC_STATUS_SUCCESS: 17789 break; 17790 case IPSEC_STATUS_FAILED: 17791 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17792 /* FALLTHRU */ 17793 case IPSEC_STATUS_PENDING: 17794 return; 17795 } 17796 /* we're done with IPsec processing, send it up */ 17797 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17798 return; 17799 } 17800 default: 17801 break; 17802 } 17803 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17804 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17805 ire->ire_zoneid)); 17806 goto drop_pkt; 17807 } 17808 /* 17809 * Handle protocols with which IP is less intimate. There 17810 * can be more than one stream bound to a particular 17811 * protocol. When this is the case, each one gets a copy 17812 * of any incoming packets. 17813 */ 17814 fanout: 17815 ip_fanout_proto(q, first_mp, ill, ipha, 17816 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17817 B_TRUE, recv_ill, ire->ire_zoneid); 17818 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17819 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17820 return; 17821 17822 drop_pkt: 17823 freemsg(first_mp); 17824 if (hada_mp != NULL) 17825 freeb(hada_mp); 17826 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17827 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17828 #undef rptr 17829 #undef iphs 17830 17831 } 17832 17833 /* 17834 * Update any source route, record route or timestamp options. 17835 * Check that we are at end of strict source route. 17836 * The options have already been checked for sanity in ip_rput_options(). 17837 */ 17838 static boolean_t 17839 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17840 ip_stack_t *ipst) 17841 { 17842 ipoptp_t opts; 17843 uchar_t *opt; 17844 uint8_t optval; 17845 uint8_t optlen; 17846 ipaddr_t dst; 17847 uint32_t ts; 17848 ire_t *dst_ire; 17849 timestruc_t now; 17850 zoneid_t zoneid; 17851 ill_t *ill; 17852 17853 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17854 17855 ip2dbg(("ip_rput_local_options\n")); 17856 17857 for (optval = ipoptp_first(&opts, ipha); 17858 optval != IPOPT_EOL; 17859 optval = ipoptp_next(&opts)) { 17860 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17861 opt = opts.ipoptp_cur; 17862 optlen = opts.ipoptp_len; 17863 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17864 optval, optlen)); 17865 switch (optval) { 17866 uint32_t off; 17867 case IPOPT_SSRR: 17868 case IPOPT_LSRR: 17869 off = opt[IPOPT_OFFSET]; 17870 off--; 17871 if (optlen < IP_ADDR_LEN || 17872 off > optlen - IP_ADDR_LEN) { 17873 /* End of source route */ 17874 ip1dbg(("ip_rput_local_options: end of SR\n")); 17875 break; 17876 } 17877 /* 17878 * This will only happen if two consecutive entries 17879 * in the source route contains our address or if 17880 * it is a packet with a loose source route which 17881 * reaches us before consuming the whole source route 17882 */ 17883 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17884 if (optval == IPOPT_SSRR) { 17885 goto bad_src_route; 17886 } 17887 /* 17888 * Hack: instead of dropping the packet truncate the 17889 * source route to what has been used by filling the 17890 * rest with IPOPT_NOP. 17891 */ 17892 opt[IPOPT_OLEN] = (uint8_t)off; 17893 while (off < optlen) { 17894 opt[off++] = IPOPT_NOP; 17895 } 17896 break; 17897 case IPOPT_RR: 17898 off = opt[IPOPT_OFFSET]; 17899 off--; 17900 if (optlen < IP_ADDR_LEN || 17901 off > optlen - IP_ADDR_LEN) { 17902 /* No more room - ignore */ 17903 ip1dbg(( 17904 "ip_rput_local_options: end of RR\n")); 17905 break; 17906 } 17907 bcopy(&ire->ire_src_addr, (char *)opt + off, 17908 IP_ADDR_LEN); 17909 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17910 break; 17911 case IPOPT_TS: 17912 /* Insert timestamp if there is romm */ 17913 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17914 case IPOPT_TS_TSONLY: 17915 off = IPOPT_TS_TIMELEN; 17916 break; 17917 case IPOPT_TS_PRESPEC: 17918 case IPOPT_TS_PRESPEC_RFC791: 17919 /* Verify that the address matched */ 17920 off = opt[IPOPT_OFFSET] - 1; 17921 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17922 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17923 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17924 ipst); 17925 if (dst_ire == NULL) { 17926 /* Not for us */ 17927 break; 17928 } 17929 ire_refrele(dst_ire); 17930 /* FALLTHRU */ 17931 case IPOPT_TS_TSANDADDR: 17932 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17933 break; 17934 default: 17935 /* 17936 * ip_*put_options should have already 17937 * dropped this packet. 17938 */ 17939 cmn_err(CE_PANIC, "ip_rput_local_options: " 17940 "unknown IT - bug in ip_rput_options?\n"); 17941 return (B_TRUE); /* Keep "lint" happy */ 17942 } 17943 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17944 /* Increase overflow counter */ 17945 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17946 opt[IPOPT_POS_OV_FLG] = 17947 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17948 (off << 4)); 17949 break; 17950 } 17951 off = opt[IPOPT_OFFSET] - 1; 17952 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17953 case IPOPT_TS_PRESPEC: 17954 case IPOPT_TS_PRESPEC_RFC791: 17955 case IPOPT_TS_TSANDADDR: 17956 bcopy(&ire->ire_src_addr, (char *)opt + off, 17957 IP_ADDR_LEN); 17958 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17959 /* FALLTHRU */ 17960 case IPOPT_TS_TSONLY: 17961 off = opt[IPOPT_OFFSET] - 1; 17962 /* Compute # of milliseconds since midnight */ 17963 gethrestime(&now); 17964 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17965 now.tv_nsec / (NANOSEC / MILLISEC); 17966 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17967 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17968 break; 17969 } 17970 break; 17971 } 17972 } 17973 return (B_TRUE); 17974 17975 bad_src_route: 17976 q = WR(q); 17977 if (q->q_next != NULL) 17978 ill = q->q_ptr; 17979 else 17980 ill = NULL; 17981 17982 /* make sure we clear any indication of a hardware checksum */ 17983 DB_CKSUMFLAGS(mp) = 0; 17984 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17985 if (zoneid == ALL_ZONES) 17986 freemsg(mp); 17987 else 17988 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17989 return (B_FALSE); 17990 17991 } 17992 17993 /* 17994 * Process IP options in an inbound packet. If an option affects the 17995 * effective destination address, return the next hop address via dstp. 17996 * Returns -1 if something fails in which case an ICMP error has been sent 17997 * and mp freed. 17998 */ 17999 static int 18000 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18001 ip_stack_t *ipst) 18002 { 18003 ipoptp_t opts; 18004 uchar_t *opt; 18005 uint8_t optval; 18006 uint8_t optlen; 18007 ipaddr_t dst; 18008 intptr_t code = 0; 18009 ire_t *ire = NULL; 18010 zoneid_t zoneid; 18011 ill_t *ill; 18012 18013 ip2dbg(("ip_rput_options\n")); 18014 dst = ipha->ipha_dst; 18015 for (optval = ipoptp_first(&opts, ipha); 18016 optval != IPOPT_EOL; 18017 optval = ipoptp_next(&opts)) { 18018 opt = opts.ipoptp_cur; 18019 optlen = opts.ipoptp_len; 18020 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18021 optval, optlen)); 18022 /* 18023 * Note: we need to verify the checksum before we 18024 * modify anything thus this routine only extracts the next 18025 * hop dst from any source route. 18026 */ 18027 switch (optval) { 18028 uint32_t off; 18029 case IPOPT_SSRR: 18030 case IPOPT_LSRR: 18031 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18032 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18033 if (ire == NULL) { 18034 if (optval == IPOPT_SSRR) { 18035 ip1dbg(("ip_rput_options: not next" 18036 " strict source route 0x%x\n", 18037 ntohl(dst))); 18038 code = (char *)&ipha->ipha_dst - 18039 (char *)ipha; 18040 goto param_prob; /* RouterReq's */ 18041 } 18042 ip2dbg(("ip_rput_options: " 18043 "not next source route 0x%x\n", 18044 ntohl(dst))); 18045 break; 18046 } 18047 ire_refrele(ire); 18048 18049 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18050 ip1dbg(( 18051 "ip_rput_options: bad option offset\n")); 18052 code = (char *)&opt[IPOPT_OLEN] - 18053 (char *)ipha; 18054 goto param_prob; 18055 } 18056 off = opt[IPOPT_OFFSET]; 18057 off--; 18058 redo_srr: 18059 if (optlen < IP_ADDR_LEN || 18060 off > optlen - IP_ADDR_LEN) { 18061 /* End of source route */ 18062 ip1dbg(("ip_rput_options: end of SR\n")); 18063 break; 18064 } 18065 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18066 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18067 ntohl(dst))); 18068 18069 /* 18070 * Check if our address is present more than 18071 * once as consecutive hops in source route. 18072 * XXX verify per-interface ip_forwarding 18073 * for source route? 18074 */ 18075 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18076 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18077 18078 if (ire != NULL) { 18079 ire_refrele(ire); 18080 off += IP_ADDR_LEN; 18081 goto redo_srr; 18082 } 18083 18084 if (dst == htonl(INADDR_LOOPBACK)) { 18085 ip1dbg(("ip_rput_options: loopback addr in " 18086 "source route!\n")); 18087 goto bad_src_route; 18088 } 18089 /* 18090 * For strict: verify that dst is directly 18091 * reachable. 18092 */ 18093 if (optval == IPOPT_SSRR) { 18094 ire = ire_ftable_lookup(dst, 0, 0, 18095 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18096 msg_getlabel(mp), 18097 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18098 if (ire == NULL) { 18099 ip1dbg(("ip_rput_options: SSRR not " 18100 "directly reachable: 0x%x\n", 18101 ntohl(dst))); 18102 goto bad_src_route; 18103 } 18104 ire_refrele(ire); 18105 } 18106 /* 18107 * Defer update of the offset and the record route 18108 * until the packet is forwarded. 18109 */ 18110 break; 18111 case IPOPT_RR: 18112 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18113 ip1dbg(( 18114 "ip_rput_options: bad option offset\n")); 18115 code = (char *)&opt[IPOPT_OLEN] - 18116 (char *)ipha; 18117 goto param_prob; 18118 } 18119 break; 18120 case IPOPT_TS: 18121 /* 18122 * Verify that length >= 5 and that there is either 18123 * room for another timestamp or that the overflow 18124 * counter is not maxed out. 18125 */ 18126 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18127 if (optlen < IPOPT_MINLEN_IT) { 18128 goto param_prob; 18129 } 18130 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18131 ip1dbg(( 18132 "ip_rput_options: bad option offset\n")); 18133 code = (char *)&opt[IPOPT_OFFSET] - 18134 (char *)ipha; 18135 goto param_prob; 18136 } 18137 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18138 case IPOPT_TS_TSONLY: 18139 off = IPOPT_TS_TIMELEN; 18140 break; 18141 case IPOPT_TS_TSANDADDR: 18142 case IPOPT_TS_PRESPEC: 18143 case IPOPT_TS_PRESPEC_RFC791: 18144 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18145 break; 18146 default: 18147 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18148 (char *)ipha; 18149 goto param_prob; 18150 } 18151 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18152 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18153 /* 18154 * No room and the overflow counter is 15 18155 * already. 18156 */ 18157 goto param_prob; 18158 } 18159 break; 18160 } 18161 } 18162 18163 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18164 *dstp = dst; 18165 return (0); 18166 } 18167 18168 ip1dbg(("ip_rput_options: error processing IP options.")); 18169 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18170 18171 param_prob: 18172 q = WR(q); 18173 if (q->q_next != NULL) 18174 ill = q->q_ptr; 18175 else 18176 ill = NULL; 18177 18178 /* make sure we clear any indication of a hardware checksum */ 18179 DB_CKSUMFLAGS(mp) = 0; 18180 /* Don't know whether this is for non-global or global/forwarding */ 18181 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18182 if (zoneid == ALL_ZONES) 18183 freemsg(mp); 18184 else 18185 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18186 return (-1); 18187 18188 bad_src_route: 18189 q = WR(q); 18190 if (q->q_next != NULL) 18191 ill = q->q_ptr; 18192 else 18193 ill = NULL; 18194 18195 /* make sure we clear any indication of a hardware checksum */ 18196 DB_CKSUMFLAGS(mp) = 0; 18197 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18198 if (zoneid == ALL_ZONES) 18199 freemsg(mp); 18200 else 18201 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18202 return (-1); 18203 } 18204 18205 /* 18206 * IP & ICMP info in >=14 msg's ... 18207 * - ip fixed part (mib2_ip_t) 18208 * - icmp fixed part (mib2_icmp_t) 18209 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18210 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18211 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18212 * - ipRouteAttributeTable (ip 102) labeled routes 18213 * - ip multicast membership (ip_member_t) 18214 * - ip multicast source filtering (ip_grpsrc_t) 18215 * - igmp fixed part (struct igmpstat) 18216 * - multicast routing stats (struct mrtstat) 18217 * - multicast routing vifs (array of struct vifctl) 18218 * - multicast routing routes (array of struct mfcctl) 18219 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18220 * One per ill plus one generic 18221 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18222 * One per ill plus one generic 18223 * - ipv6RouteEntry all IPv6 IREs 18224 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18225 * - ipv6NetToMediaEntry all Neighbor Cache entries 18226 * - ipv6AddrEntry all IPv6 ipifs 18227 * - ipv6 multicast membership (ipv6_member_t) 18228 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18229 * 18230 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18231 * 18232 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18233 * already filled in by the caller. 18234 * Return value of 0 indicates that no messages were sent and caller 18235 * should free mpctl. 18236 */ 18237 int 18238 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18239 { 18240 ip_stack_t *ipst; 18241 sctp_stack_t *sctps; 18242 18243 if (q->q_next != NULL) { 18244 ipst = ILLQ_TO_IPST(q); 18245 } else { 18246 ipst = CONNQ_TO_IPST(q); 18247 } 18248 ASSERT(ipst != NULL); 18249 sctps = ipst->ips_netstack->netstack_sctp; 18250 18251 if (mpctl == NULL || mpctl->b_cont == NULL) { 18252 return (0); 18253 } 18254 18255 /* 18256 * For the purposes of the (broken) packet shell use 18257 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18258 * to make TCP and UDP appear first in the list of mib items. 18259 * TBD: We could expand this and use it in netstat so that 18260 * the kernel doesn't have to produce large tables (connections, 18261 * routes, etc) when netstat only wants the statistics or a particular 18262 * table. 18263 */ 18264 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18265 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18266 return (1); 18267 } 18268 } 18269 18270 if (level != MIB2_TCP) { 18271 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18272 return (1); 18273 } 18274 } 18275 18276 if (level != MIB2_UDP) { 18277 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18278 return (1); 18279 } 18280 } 18281 18282 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18283 ipst)) == NULL) { 18284 return (1); 18285 } 18286 18287 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18288 return (1); 18289 } 18290 18291 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18292 return (1); 18293 } 18294 18295 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18296 return (1); 18297 } 18298 18299 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18300 return (1); 18301 } 18302 18303 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18304 return (1); 18305 } 18306 18307 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18308 return (1); 18309 } 18310 18311 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18312 return (1); 18313 } 18314 18315 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18316 return (1); 18317 } 18318 18319 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18320 return (1); 18321 } 18322 18323 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18324 return (1); 18325 } 18326 18327 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18328 return (1); 18329 } 18330 18331 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18332 return (1); 18333 } 18334 18335 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18336 return (1); 18337 } 18338 18339 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18340 if (mpctl == NULL) 18341 return (1); 18342 18343 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18344 if (mpctl == NULL) 18345 return (1); 18346 18347 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18348 return (1); 18349 } 18350 freemsg(mpctl); 18351 return (1); 18352 } 18353 18354 /* Get global (legacy) IPv4 statistics */ 18355 static mblk_t * 18356 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18357 ip_stack_t *ipst) 18358 { 18359 mib2_ip_t old_ip_mib; 18360 struct opthdr *optp; 18361 mblk_t *mp2ctl; 18362 18363 /* 18364 * make a copy of the original message 18365 */ 18366 mp2ctl = copymsg(mpctl); 18367 18368 /* fixed length IP structure... */ 18369 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18370 optp->level = MIB2_IP; 18371 optp->name = 0; 18372 SET_MIB(old_ip_mib.ipForwarding, 18373 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18374 SET_MIB(old_ip_mib.ipDefaultTTL, 18375 (uint32_t)ipst->ips_ip_def_ttl); 18376 SET_MIB(old_ip_mib.ipReasmTimeout, 18377 ipst->ips_ip_g_frag_timeout); 18378 SET_MIB(old_ip_mib.ipAddrEntrySize, 18379 sizeof (mib2_ipAddrEntry_t)); 18380 SET_MIB(old_ip_mib.ipRouteEntrySize, 18381 sizeof (mib2_ipRouteEntry_t)); 18382 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18383 sizeof (mib2_ipNetToMediaEntry_t)); 18384 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18385 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18386 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18387 sizeof (mib2_ipAttributeEntry_t)); 18388 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18389 18390 /* 18391 * Grab the statistics from the new IP MIB 18392 */ 18393 SET_MIB(old_ip_mib.ipInReceives, 18394 (uint32_t)ipmib->ipIfStatsHCInReceives); 18395 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18396 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18397 SET_MIB(old_ip_mib.ipForwDatagrams, 18398 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18399 SET_MIB(old_ip_mib.ipInUnknownProtos, 18400 ipmib->ipIfStatsInUnknownProtos); 18401 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18402 SET_MIB(old_ip_mib.ipInDelivers, 18403 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18404 SET_MIB(old_ip_mib.ipOutRequests, 18405 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18406 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18407 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18408 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18409 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18410 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18411 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18412 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18413 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18414 18415 /* ipRoutingDiscards is not being used */ 18416 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18417 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18418 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18419 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18420 SET_MIB(old_ip_mib.ipReasmDuplicates, 18421 ipmib->ipIfStatsReasmDuplicates); 18422 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18423 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18424 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18425 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18426 SET_MIB(old_ip_mib.rawipInOverflows, 18427 ipmib->rawipIfStatsInOverflows); 18428 18429 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18430 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18431 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18432 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18433 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18434 ipmib->ipIfStatsOutSwitchIPVersion); 18435 18436 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18437 (int)sizeof (old_ip_mib))) { 18438 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18439 (uint_t)sizeof (old_ip_mib))); 18440 } 18441 18442 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18443 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18444 (int)optp->level, (int)optp->name, (int)optp->len)); 18445 qreply(q, mpctl); 18446 return (mp2ctl); 18447 } 18448 18449 /* Per interface IPv4 statistics */ 18450 static mblk_t * 18451 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18452 { 18453 struct opthdr *optp; 18454 mblk_t *mp2ctl; 18455 ill_t *ill; 18456 ill_walk_context_t ctx; 18457 mblk_t *mp_tail = NULL; 18458 mib2_ipIfStatsEntry_t global_ip_mib; 18459 18460 /* 18461 * Make a copy of the original message 18462 */ 18463 mp2ctl = copymsg(mpctl); 18464 18465 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18466 optp->level = MIB2_IP; 18467 optp->name = MIB2_IP_TRAFFIC_STATS; 18468 /* Include "unknown interface" ip_mib */ 18469 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18470 ipst->ips_ip_mib.ipIfStatsIfIndex = 18471 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18472 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18473 (ipst->ips_ip_g_forward ? 1 : 2)); 18474 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18475 (uint32_t)ipst->ips_ip_def_ttl); 18476 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18477 sizeof (mib2_ipIfStatsEntry_t)); 18478 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18479 sizeof (mib2_ipAddrEntry_t)); 18480 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18481 sizeof (mib2_ipRouteEntry_t)); 18482 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18483 sizeof (mib2_ipNetToMediaEntry_t)); 18484 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18485 sizeof (ip_member_t)); 18486 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18487 sizeof (ip_grpsrc_t)); 18488 18489 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18490 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18491 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18492 "failed to allocate %u bytes\n", 18493 (uint_t)sizeof (ipst->ips_ip_mib))); 18494 } 18495 18496 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18497 18498 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18499 ill = ILL_START_WALK_V4(&ctx, ipst); 18500 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18501 ill->ill_ip_mib->ipIfStatsIfIndex = 18502 ill->ill_phyint->phyint_ifindex; 18503 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18504 (ipst->ips_ip_g_forward ? 1 : 2)); 18505 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18506 (uint32_t)ipst->ips_ip_def_ttl); 18507 18508 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18509 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18510 (char *)ill->ill_ip_mib, 18511 (int)sizeof (*ill->ill_ip_mib))) { 18512 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18513 "failed to allocate %u bytes\n", 18514 (uint_t)sizeof (*ill->ill_ip_mib))); 18515 } 18516 } 18517 rw_exit(&ipst->ips_ill_g_lock); 18518 18519 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18520 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18521 "level %d, name %d, len %d\n", 18522 (int)optp->level, (int)optp->name, (int)optp->len)); 18523 qreply(q, mpctl); 18524 18525 if (mp2ctl == NULL) 18526 return (NULL); 18527 18528 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18529 } 18530 18531 /* Global IPv4 ICMP statistics */ 18532 static mblk_t * 18533 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18534 { 18535 struct opthdr *optp; 18536 mblk_t *mp2ctl; 18537 18538 /* 18539 * Make a copy of the original message 18540 */ 18541 mp2ctl = copymsg(mpctl); 18542 18543 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18544 optp->level = MIB2_ICMP; 18545 optp->name = 0; 18546 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18547 (int)sizeof (ipst->ips_icmp_mib))) { 18548 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18549 (uint_t)sizeof (ipst->ips_icmp_mib))); 18550 } 18551 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18552 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18553 (int)optp->level, (int)optp->name, (int)optp->len)); 18554 qreply(q, mpctl); 18555 return (mp2ctl); 18556 } 18557 18558 /* Global IPv4 IGMP statistics */ 18559 static mblk_t * 18560 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18561 { 18562 struct opthdr *optp; 18563 mblk_t *mp2ctl; 18564 18565 /* 18566 * make a copy of the original message 18567 */ 18568 mp2ctl = copymsg(mpctl); 18569 18570 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18571 optp->level = EXPER_IGMP; 18572 optp->name = 0; 18573 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18574 (int)sizeof (ipst->ips_igmpstat))) { 18575 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18576 (uint_t)sizeof (ipst->ips_igmpstat))); 18577 } 18578 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18579 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18580 (int)optp->level, (int)optp->name, (int)optp->len)); 18581 qreply(q, mpctl); 18582 return (mp2ctl); 18583 } 18584 18585 /* Global IPv4 Multicast Routing statistics */ 18586 static mblk_t * 18587 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18588 { 18589 struct opthdr *optp; 18590 mblk_t *mp2ctl; 18591 18592 /* 18593 * make a copy of the original message 18594 */ 18595 mp2ctl = copymsg(mpctl); 18596 18597 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18598 optp->level = EXPER_DVMRP; 18599 optp->name = 0; 18600 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18601 ip0dbg(("ip_mroute_stats: failed\n")); 18602 } 18603 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18604 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18605 (int)optp->level, (int)optp->name, (int)optp->len)); 18606 qreply(q, mpctl); 18607 return (mp2ctl); 18608 } 18609 18610 /* IPv4 address information */ 18611 static mblk_t * 18612 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18613 { 18614 struct opthdr *optp; 18615 mblk_t *mp2ctl; 18616 mblk_t *mp_tail = NULL; 18617 ill_t *ill; 18618 ipif_t *ipif; 18619 uint_t bitval; 18620 mib2_ipAddrEntry_t mae; 18621 zoneid_t zoneid; 18622 ill_walk_context_t ctx; 18623 18624 /* 18625 * make a copy of the original message 18626 */ 18627 mp2ctl = copymsg(mpctl); 18628 18629 /* ipAddrEntryTable */ 18630 18631 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18632 optp->level = MIB2_IP; 18633 optp->name = MIB2_IP_ADDR; 18634 zoneid = Q_TO_CONN(q)->conn_zoneid; 18635 18636 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18637 ill = ILL_START_WALK_V4(&ctx, ipst); 18638 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18639 for (ipif = ill->ill_ipif; ipif != NULL; 18640 ipif = ipif->ipif_next) { 18641 if (ipif->ipif_zoneid != zoneid && 18642 ipif->ipif_zoneid != ALL_ZONES) 18643 continue; 18644 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18645 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18646 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18647 18648 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18649 OCTET_LENGTH); 18650 mae.ipAdEntIfIndex.o_length = 18651 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18652 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18653 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18654 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18655 mae.ipAdEntInfo.ae_subnet_len = 18656 ip_mask_to_plen(ipif->ipif_net_mask); 18657 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18658 for (bitval = 1; 18659 bitval && 18660 !(bitval & ipif->ipif_brd_addr); 18661 bitval <<= 1) 18662 noop; 18663 mae.ipAdEntBcastAddr = bitval; 18664 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18665 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18666 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18667 mae.ipAdEntInfo.ae_broadcast_addr = 18668 ipif->ipif_brd_addr; 18669 mae.ipAdEntInfo.ae_pp_dst_addr = 18670 ipif->ipif_pp_dst_addr; 18671 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18672 ill->ill_flags | ill->ill_phyint->phyint_flags; 18673 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18674 18675 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18676 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18677 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18678 "allocate %u bytes\n", 18679 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18680 } 18681 } 18682 } 18683 rw_exit(&ipst->ips_ill_g_lock); 18684 18685 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18686 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18687 (int)optp->level, (int)optp->name, (int)optp->len)); 18688 qreply(q, mpctl); 18689 return (mp2ctl); 18690 } 18691 18692 /* IPv6 address information */ 18693 static mblk_t * 18694 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18695 { 18696 struct opthdr *optp; 18697 mblk_t *mp2ctl; 18698 mblk_t *mp_tail = NULL; 18699 ill_t *ill; 18700 ipif_t *ipif; 18701 mib2_ipv6AddrEntry_t mae6; 18702 zoneid_t zoneid; 18703 ill_walk_context_t ctx; 18704 18705 /* 18706 * make a copy of the original message 18707 */ 18708 mp2ctl = copymsg(mpctl); 18709 18710 /* ipv6AddrEntryTable */ 18711 18712 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18713 optp->level = MIB2_IP6; 18714 optp->name = MIB2_IP6_ADDR; 18715 zoneid = Q_TO_CONN(q)->conn_zoneid; 18716 18717 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18718 ill = ILL_START_WALK_V6(&ctx, ipst); 18719 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18720 for (ipif = ill->ill_ipif; ipif != NULL; 18721 ipif = ipif->ipif_next) { 18722 if (ipif->ipif_zoneid != zoneid && 18723 ipif->ipif_zoneid != ALL_ZONES) 18724 continue; 18725 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18726 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18727 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18728 18729 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18730 OCTET_LENGTH); 18731 mae6.ipv6AddrIfIndex.o_length = 18732 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18733 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18734 mae6.ipv6AddrPfxLength = 18735 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18736 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18737 mae6.ipv6AddrInfo.ae_subnet_len = 18738 mae6.ipv6AddrPfxLength; 18739 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18740 18741 /* Type: stateless(1), stateful(2), unknown(3) */ 18742 if (ipif->ipif_flags & IPIF_ADDRCONF) 18743 mae6.ipv6AddrType = 1; 18744 else 18745 mae6.ipv6AddrType = 2; 18746 /* Anycast: true(1), false(2) */ 18747 if (ipif->ipif_flags & IPIF_ANYCAST) 18748 mae6.ipv6AddrAnycastFlag = 1; 18749 else 18750 mae6.ipv6AddrAnycastFlag = 2; 18751 18752 /* 18753 * Address status: preferred(1), deprecated(2), 18754 * invalid(3), inaccessible(4), unknown(5) 18755 */ 18756 if (ipif->ipif_flags & IPIF_NOLOCAL) 18757 mae6.ipv6AddrStatus = 3; 18758 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18759 mae6.ipv6AddrStatus = 2; 18760 else 18761 mae6.ipv6AddrStatus = 1; 18762 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18763 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18764 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18765 ipif->ipif_v6pp_dst_addr; 18766 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18767 ill->ill_flags | ill->ill_phyint->phyint_flags; 18768 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18769 mae6.ipv6AddrIdentifier = ill->ill_token; 18770 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18771 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18772 mae6.ipv6AddrRetransmitTime = 18773 ill->ill_reachable_retrans_time; 18774 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18775 (char *)&mae6, 18776 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18777 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18778 "allocate %u bytes\n", 18779 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18780 } 18781 } 18782 } 18783 rw_exit(&ipst->ips_ill_g_lock); 18784 18785 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18786 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18787 (int)optp->level, (int)optp->name, (int)optp->len)); 18788 qreply(q, mpctl); 18789 return (mp2ctl); 18790 } 18791 18792 /* IPv4 multicast group membership. */ 18793 static mblk_t * 18794 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18795 { 18796 struct opthdr *optp; 18797 mblk_t *mp2ctl; 18798 ill_t *ill; 18799 ipif_t *ipif; 18800 ilm_t *ilm; 18801 ip_member_t ipm; 18802 mblk_t *mp_tail = NULL; 18803 ill_walk_context_t ctx; 18804 zoneid_t zoneid; 18805 ilm_walker_t ilw; 18806 18807 /* 18808 * make a copy of the original message 18809 */ 18810 mp2ctl = copymsg(mpctl); 18811 zoneid = Q_TO_CONN(q)->conn_zoneid; 18812 18813 /* ipGroupMember table */ 18814 optp = (struct opthdr *)&mpctl->b_rptr[ 18815 sizeof (struct T_optmgmt_ack)]; 18816 optp->level = MIB2_IP; 18817 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18818 18819 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18820 ill = ILL_START_WALK_V4(&ctx, ipst); 18821 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18822 if (IS_UNDER_IPMP(ill)) 18823 continue; 18824 18825 ilm = ilm_walker_start(&ilw, ill); 18826 for (ipif = ill->ill_ipif; ipif != NULL; 18827 ipif = ipif->ipif_next) { 18828 if (ipif->ipif_zoneid != zoneid && 18829 ipif->ipif_zoneid != ALL_ZONES) 18830 continue; /* not this zone */ 18831 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18832 OCTET_LENGTH); 18833 ipm.ipGroupMemberIfIndex.o_length = 18834 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18835 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18836 ASSERT(ilm->ilm_ipif != NULL); 18837 ASSERT(ilm->ilm_ill == NULL); 18838 if (ilm->ilm_ipif != ipif) 18839 continue; 18840 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18841 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18842 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18843 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18844 (char *)&ipm, (int)sizeof (ipm))) { 18845 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18846 "failed to allocate %u bytes\n", 18847 (uint_t)sizeof (ipm))); 18848 } 18849 } 18850 } 18851 ilm_walker_finish(&ilw); 18852 } 18853 rw_exit(&ipst->ips_ill_g_lock); 18854 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18855 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18856 (int)optp->level, (int)optp->name, (int)optp->len)); 18857 qreply(q, mpctl); 18858 return (mp2ctl); 18859 } 18860 18861 /* IPv6 multicast group membership. */ 18862 static mblk_t * 18863 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18864 { 18865 struct opthdr *optp; 18866 mblk_t *mp2ctl; 18867 ill_t *ill; 18868 ilm_t *ilm; 18869 ipv6_member_t ipm6; 18870 mblk_t *mp_tail = NULL; 18871 ill_walk_context_t ctx; 18872 zoneid_t zoneid; 18873 ilm_walker_t ilw; 18874 18875 /* 18876 * make a copy of the original message 18877 */ 18878 mp2ctl = copymsg(mpctl); 18879 zoneid = Q_TO_CONN(q)->conn_zoneid; 18880 18881 /* ip6GroupMember table */ 18882 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18883 optp->level = MIB2_IP6; 18884 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18885 18886 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18887 ill = ILL_START_WALK_V6(&ctx, ipst); 18888 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18889 if (IS_UNDER_IPMP(ill)) 18890 continue; 18891 18892 ilm = ilm_walker_start(&ilw, ill); 18893 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18894 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18895 ASSERT(ilm->ilm_ipif == NULL); 18896 ASSERT(ilm->ilm_ill != NULL); 18897 if (ilm->ilm_zoneid != zoneid) 18898 continue; /* not this zone */ 18899 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18900 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18901 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18902 if (!snmp_append_data2(mpctl->b_cont, 18903 &mp_tail, 18904 (char *)&ipm6, (int)sizeof (ipm6))) { 18905 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18906 "failed to allocate %u bytes\n", 18907 (uint_t)sizeof (ipm6))); 18908 } 18909 } 18910 ilm_walker_finish(&ilw); 18911 } 18912 rw_exit(&ipst->ips_ill_g_lock); 18913 18914 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18915 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18916 (int)optp->level, (int)optp->name, (int)optp->len)); 18917 qreply(q, mpctl); 18918 return (mp2ctl); 18919 } 18920 18921 /* IP multicast filtered sources */ 18922 static mblk_t * 18923 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18924 { 18925 struct opthdr *optp; 18926 mblk_t *mp2ctl; 18927 ill_t *ill; 18928 ipif_t *ipif; 18929 ilm_t *ilm; 18930 ip_grpsrc_t ips; 18931 mblk_t *mp_tail = NULL; 18932 ill_walk_context_t ctx; 18933 zoneid_t zoneid; 18934 int i; 18935 slist_t *sl; 18936 ilm_walker_t ilw; 18937 18938 /* 18939 * make a copy of the original message 18940 */ 18941 mp2ctl = copymsg(mpctl); 18942 zoneid = Q_TO_CONN(q)->conn_zoneid; 18943 18944 /* ipGroupSource table */ 18945 optp = (struct opthdr *)&mpctl->b_rptr[ 18946 sizeof (struct T_optmgmt_ack)]; 18947 optp->level = MIB2_IP; 18948 optp->name = EXPER_IP_GROUP_SOURCES; 18949 18950 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18951 ill = ILL_START_WALK_V4(&ctx, ipst); 18952 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18953 if (IS_UNDER_IPMP(ill)) 18954 continue; 18955 18956 ilm = ilm_walker_start(&ilw, ill); 18957 for (ipif = ill->ill_ipif; ipif != NULL; 18958 ipif = ipif->ipif_next) { 18959 if (ipif->ipif_zoneid != zoneid) 18960 continue; /* not this zone */ 18961 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18962 OCTET_LENGTH); 18963 ips.ipGroupSourceIfIndex.o_length = 18964 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18965 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18966 ASSERT(ilm->ilm_ipif != NULL); 18967 ASSERT(ilm->ilm_ill == NULL); 18968 sl = ilm->ilm_filter; 18969 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18970 continue; 18971 ips.ipGroupSourceGroup = ilm->ilm_addr; 18972 for (i = 0; i < sl->sl_numsrc; i++) { 18973 if (!IN6_IS_ADDR_V4MAPPED( 18974 &sl->sl_addr[i])) 18975 continue; 18976 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18977 ips.ipGroupSourceAddress); 18978 if (snmp_append_data2(mpctl->b_cont, 18979 &mp_tail, (char *)&ips, 18980 (int)sizeof (ips)) == 0) { 18981 ip1dbg(("ip_snmp_get_mib2_" 18982 "ip_group_src: failed to " 18983 "allocate %u bytes\n", 18984 (uint_t)sizeof (ips))); 18985 } 18986 } 18987 } 18988 } 18989 ilm_walker_finish(&ilw); 18990 } 18991 rw_exit(&ipst->ips_ill_g_lock); 18992 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18993 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18994 (int)optp->level, (int)optp->name, (int)optp->len)); 18995 qreply(q, mpctl); 18996 return (mp2ctl); 18997 } 18998 18999 /* IPv6 multicast filtered sources. */ 19000 static mblk_t * 19001 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19002 { 19003 struct opthdr *optp; 19004 mblk_t *mp2ctl; 19005 ill_t *ill; 19006 ilm_t *ilm; 19007 ipv6_grpsrc_t ips6; 19008 mblk_t *mp_tail = NULL; 19009 ill_walk_context_t ctx; 19010 zoneid_t zoneid; 19011 int i; 19012 slist_t *sl; 19013 ilm_walker_t ilw; 19014 19015 /* 19016 * make a copy of the original message 19017 */ 19018 mp2ctl = copymsg(mpctl); 19019 zoneid = Q_TO_CONN(q)->conn_zoneid; 19020 19021 /* ip6GroupMember table */ 19022 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19023 optp->level = MIB2_IP6; 19024 optp->name = EXPER_IP6_GROUP_SOURCES; 19025 19026 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19027 ill = ILL_START_WALK_V6(&ctx, ipst); 19028 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19029 if (IS_UNDER_IPMP(ill)) 19030 continue; 19031 19032 ilm = ilm_walker_start(&ilw, ill); 19033 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19034 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19035 ASSERT(ilm->ilm_ipif == NULL); 19036 ASSERT(ilm->ilm_ill != NULL); 19037 sl = ilm->ilm_filter; 19038 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19039 continue; 19040 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19041 for (i = 0; i < sl->sl_numsrc; i++) { 19042 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19043 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19044 (char *)&ips6, (int)sizeof (ips6))) { 19045 ip1dbg(("ip_snmp_get_mib2_ip6_" 19046 "group_src: failed to allocate " 19047 "%u bytes\n", 19048 (uint_t)sizeof (ips6))); 19049 } 19050 } 19051 } 19052 ilm_walker_finish(&ilw); 19053 } 19054 rw_exit(&ipst->ips_ill_g_lock); 19055 19056 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19057 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19058 (int)optp->level, (int)optp->name, (int)optp->len)); 19059 qreply(q, mpctl); 19060 return (mp2ctl); 19061 } 19062 19063 /* Multicast routing virtual interface table. */ 19064 static mblk_t * 19065 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19066 { 19067 struct opthdr *optp; 19068 mblk_t *mp2ctl; 19069 19070 /* 19071 * make a copy of the original message 19072 */ 19073 mp2ctl = copymsg(mpctl); 19074 19075 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19076 optp->level = EXPER_DVMRP; 19077 optp->name = EXPER_DVMRP_VIF; 19078 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19079 ip0dbg(("ip_mroute_vif: failed\n")); 19080 } 19081 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19082 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19083 (int)optp->level, (int)optp->name, (int)optp->len)); 19084 qreply(q, mpctl); 19085 return (mp2ctl); 19086 } 19087 19088 /* Multicast routing table. */ 19089 static mblk_t * 19090 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19091 { 19092 struct opthdr *optp; 19093 mblk_t *mp2ctl; 19094 19095 /* 19096 * make a copy of the original message 19097 */ 19098 mp2ctl = copymsg(mpctl); 19099 19100 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19101 optp->level = EXPER_DVMRP; 19102 optp->name = EXPER_DVMRP_MRT; 19103 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19104 ip0dbg(("ip_mroute_mrt: failed\n")); 19105 } 19106 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19107 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19108 (int)optp->level, (int)optp->name, (int)optp->len)); 19109 qreply(q, mpctl); 19110 return (mp2ctl); 19111 } 19112 19113 /* 19114 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19115 * in one IRE walk. 19116 */ 19117 static mblk_t * 19118 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19119 ip_stack_t *ipst) 19120 { 19121 struct opthdr *optp; 19122 mblk_t *mp2ctl; /* Returned */ 19123 mblk_t *mp3ctl; /* nettomedia */ 19124 mblk_t *mp4ctl; /* routeattrs */ 19125 iproutedata_t ird; 19126 zoneid_t zoneid; 19127 19128 /* 19129 * make copies of the original message 19130 * - mp2ctl is returned unchanged to the caller for his use 19131 * - mpctl is sent upstream as ipRouteEntryTable 19132 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19133 * - mp4ctl is sent upstream as ipRouteAttributeTable 19134 */ 19135 mp2ctl = copymsg(mpctl); 19136 mp3ctl = copymsg(mpctl); 19137 mp4ctl = copymsg(mpctl); 19138 if (mp3ctl == NULL || mp4ctl == NULL) { 19139 freemsg(mp4ctl); 19140 freemsg(mp3ctl); 19141 freemsg(mp2ctl); 19142 freemsg(mpctl); 19143 return (NULL); 19144 } 19145 19146 bzero(&ird, sizeof (ird)); 19147 19148 ird.ird_route.lp_head = mpctl->b_cont; 19149 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19150 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19151 /* 19152 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19153 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19154 * intended a temporary solution until a proper MIB API is provided 19155 * that provides complete filtering/caller-opt-in. 19156 */ 19157 if (level == EXPER_IP_AND_TESTHIDDEN) 19158 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19159 19160 zoneid = Q_TO_CONN(q)->conn_zoneid; 19161 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19162 19163 /* ipRouteEntryTable in mpctl */ 19164 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19165 optp->level = MIB2_IP; 19166 optp->name = MIB2_IP_ROUTE; 19167 optp->len = msgdsize(ird.ird_route.lp_head); 19168 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19169 (int)optp->level, (int)optp->name, (int)optp->len)); 19170 qreply(q, mpctl); 19171 19172 /* ipNetToMediaEntryTable in mp3ctl */ 19173 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19174 optp->level = MIB2_IP; 19175 optp->name = MIB2_IP_MEDIA; 19176 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19177 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19178 (int)optp->level, (int)optp->name, (int)optp->len)); 19179 qreply(q, mp3ctl); 19180 19181 /* ipRouteAttributeTable in mp4ctl */ 19182 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19183 optp->level = MIB2_IP; 19184 optp->name = EXPER_IP_RTATTR; 19185 optp->len = msgdsize(ird.ird_attrs.lp_head); 19186 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19187 (int)optp->level, (int)optp->name, (int)optp->len)); 19188 if (optp->len == 0) 19189 freemsg(mp4ctl); 19190 else 19191 qreply(q, mp4ctl); 19192 19193 return (mp2ctl); 19194 } 19195 19196 /* 19197 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19198 * ipv6NetToMediaEntryTable in an NDP walk. 19199 */ 19200 static mblk_t * 19201 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19202 ip_stack_t *ipst) 19203 { 19204 struct opthdr *optp; 19205 mblk_t *mp2ctl; /* Returned */ 19206 mblk_t *mp3ctl; /* nettomedia */ 19207 mblk_t *mp4ctl; /* routeattrs */ 19208 iproutedata_t ird; 19209 zoneid_t zoneid; 19210 19211 /* 19212 * make copies of the original message 19213 * - mp2ctl is returned unchanged to the caller for his use 19214 * - mpctl is sent upstream as ipv6RouteEntryTable 19215 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19216 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19217 */ 19218 mp2ctl = copymsg(mpctl); 19219 mp3ctl = copymsg(mpctl); 19220 mp4ctl = copymsg(mpctl); 19221 if (mp3ctl == NULL || mp4ctl == NULL) { 19222 freemsg(mp4ctl); 19223 freemsg(mp3ctl); 19224 freemsg(mp2ctl); 19225 freemsg(mpctl); 19226 return (NULL); 19227 } 19228 19229 bzero(&ird, sizeof (ird)); 19230 19231 ird.ird_route.lp_head = mpctl->b_cont; 19232 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19233 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19234 /* 19235 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19236 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19237 * intended a temporary solution until a proper MIB API is provided 19238 * that provides complete filtering/caller-opt-in. 19239 */ 19240 if (level == EXPER_IP_AND_TESTHIDDEN) 19241 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19242 19243 zoneid = Q_TO_CONN(q)->conn_zoneid; 19244 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19245 19246 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19247 optp->level = MIB2_IP6; 19248 optp->name = MIB2_IP6_ROUTE; 19249 optp->len = msgdsize(ird.ird_route.lp_head); 19250 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19251 (int)optp->level, (int)optp->name, (int)optp->len)); 19252 qreply(q, mpctl); 19253 19254 /* ipv6NetToMediaEntryTable in mp3ctl */ 19255 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19256 19257 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19258 optp->level = MIB2_IP6; 19259 optp->name = MIB2_IP6_MEDIA; 19260 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19261 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19262 (int)optp->level, (int)optp->name, (int)optp->len)); 19263 qreply(q, mp3ctl); 19264 19265 /* ipv6RouteAttributeTable in mp4ctl */ 19266 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19267 optp->level = MIB2_IP6; 19268 optp->name = EXPER_IP_RTATTR; 19269 optp->len = msgdsize(ird.ird_attrs.lp_head); 19270 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19271 (int)optp->level, (int)optp->name, (int)optp->len)); 19272 if (optp->len == 0) 19273 freemsg(mp4ctl); 19274 else 19275 qreply(q, mp4ctl); 19276 19277 return (mp2ctl); 19278 } 19279 19280 /* 19281 * IPv6 mib: One per ill 19282 */ 19283 static mblk_t * 19284 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19285 { 19286 struct opthdr *optp; 19287 mblk_t *mp2ctl; 19288 ill_t *ill; 19289 ill_walk_context_t ctx; 19290 mblk_t *mp_tail = NULL; 19291 19292 /* 19293 * Make a copy of the original message 19294 */ 19295 mp2ctl = copymsg(mpctl); 19296 19297 /* fixed length IPv6 structure ... */ 19298 19299 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19300 optp->level = MIB2_IP6; 19301 optp->name = 0; 19302 /* Include "unknown interface" ip6_mib */ 19303 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19304 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19305 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19306 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19307 ipst->ips_ipv6_forward ? 1 : 2); 19308 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19309 ipst->ips_ipv6_def_hops); 19310 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19311 sizeof (mib2_ipIfStatsEntry_t)); 19312 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19313 sizeof (mib2_ipv6AddrEntry_t)); 19314 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19315 sizeof (mib2_ipv6RouteEntry_t)); 19316 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19317 sizeof (mib2_ipv6NetToMediaEntry_t)); 19318 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19319 sizeof (ipv6_member_t)); 19320 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19321 sizeof (ipv6_grpsrc_t)); 19322 19323 /* 19324 * Synchronize 64- and 32-bit counters 19325 */ 19326 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19327 ipIfStatsHCInReceives); 19328 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19329 ipIfStatsHCInDelivers); 19330 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19331 ipIfStatsHCOutRequests); 19332 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19333 ipIfStatsHCOutForwDatagrams); 19334 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19335 ipIfStatsHCOutMcastPkts); 19336 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19337 ipIfStatsHCInMcastPkts); 19338 19339 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19340 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19341 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19342 (uint_t)sizeof (ipst->ips_ip6_mib))); 19343 } 19344 19345 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19346 ill = ILL_START_WALK_V6(&ctx, ipst); 19347 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19348 ill->ill_ip_mib->ipIfStatsIfIndex = 19349 ill->ill_phyint->phyint_ifindex; 19350 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19351 ipst->ips_ipv6_forward ? 1 : 2); 19352 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19353 ill->ill_max_hops); 19354 19355 /* 19356 * Synchronize 64- and 32-bit counters 19357 */ 19358 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19359 ipIfStatsHCInReceives); 19360 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19361 ipIfStatsHCInDelivers); 19362 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19363 ipIfStatsHCOutRequests); 19364 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19365 ipIfStatsHCOutForwDatagrams); 19366 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19367 ipIfStatsHCOutMcastPkts); 19368 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19369 ipIfStatsHCInMcastPkts); 19370 19371 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19372 (char *)ill->ill_ip_mib, 19373 (int)sizeof (*ill->ill_ip_mib))) { 19374 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19375 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19376 } 19377 } 19378 rw_exit(&ipst->ips_ill_g_lock); 19379 19380 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19381 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19382 (int)optp->level, (int)optp->name, (int)optp->len)); 19383 qreply(q, mpctl); 19384 return (mp2ctl); 19385 } 19386 19387 /* 19388 * ICMPv6 mib: One per ill 19389 */ 19390 static mblk_t * 19391 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19392 { 19393 struct opthdr *optp; 19394 mblk_t *mp2ctl; 19395 ill_t *ill; 19396 ill_walk_context_t ctx; 19397 mblk_t *mp_tail = NULL; 19398 /* 19399 * Make a copy of the original message 19400 */ 19401 mp2ctl = copymsg(mpctl); 19402 19403 /* fixed length ICMPv6 structure ... */ 19404 19405 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19406 optp->level = MIB2_ICMP6; 19407 optp->name = 0; 19408 /* Include "unknown interface" icmp6_mib */ 19409 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19410 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19411 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19412 sizeof (mib2_ipv6IfIcmpEntry_t); 19413 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19414 (char *)&ipst->ips_icmp6_mib, 19415 (int)sizeof (ipst->ips_icmp6_mib))) { 19416 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19417 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19418 } 19419 19420 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19421 ill = ILL_START_WALK_V6(&ctx, ipst); 19422 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19423 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19424 ill->ill_phyint->phyint_ifindex; 19425 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19426 (char *)ill->ill_icmp6_mib, 19427 (int)sizeof (*ill->ill_icmp6_mib))) { 19428 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19429 "%u bytes\n", 19430 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19431 } 19432 } 19433 rw_exit(&ipst->ips_ill_g_lock); 19434 19435 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19436 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19437 (int)optp->level, (int)optp->name, (int)optp->len)); 19438 qreply(q, mpctl); 19439 return (mp2ctl); 19440 } 19441 19442 /* 19443 * ire_walk routine to create both ipRouteEntryTable and 19444 * ipRouteAttributeTable in one IRE walk 19445 */ 19446 static void 19447 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19448 { 19449 ill_t *ill; 19450 ipif_t *ipif; 19451 mib2_ipRouteEntry_t *re; 19452 mib2_ipAttributeEntry_t *iae, *iaeptr; 19453 ipaddr_t gw_addr; 19454 tsol_ire_gw_secattr_t *attrp; 19455 tsol_gc_t *gc = NULL; 19456 tsol_gcgrp_t *gcgrp = NULL; 19457 uint_t sacnt = 0; 19458 int i; 19459 19460 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19461 19462 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19463 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19464 return; 19465 } 19466 19467 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19468 return; 19469 19470 if ((attrp = ire->ire_gw_secattr) != NULL) { 19471 mutex_enter(&attrp->igsa_lock); 19472 if ((gc = attrp->igsa_gc) != NULL) { 19473 gcgrp = gc->gc_grp; 19474 ASSERT(gcgrp != NULL); 19475 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19476 sacnt = 1; 19477 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19478 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19479 gc = gcgrp->gcgrp_head; 19480 sacnt = gcgrp->gcgrp_count; 19481 } 19482 mutex_exit(&attrp->igsa_lock); 19483 19484 /* do nothing if there's no gc to report */ 19485 if (gc == NULL) { 19486 ASSERT(sacnt == 0); 19487 if (gcgrp != NULL) { 19488 /* we might as well drop the lock now */ 19489 rw_exit(&gcgrp->gcgrp_rwlock); 19490 gcgrp = NULL; 19491 } 19492 attrp = NULL; 19493 } 19494 19495 ASSERT(gc == NULL || (gcgrp != NULL && 19496 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19497 } 19498 ASSERT(sacnt == 0 || gc != NULL); 19499 19500 if (sacnt != 0 && 19501 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19502 kmem_free(re, sizeof (*re)); 19503 rw_exit(&gcgrp->gcgrp_rwlock); 19504 return; 19505 } 19506 19507 /* 19508 * Return all IRE types for route table... let caller pick and choose 19509 */ 19510 re->ipRouteDest = ire->ire_addr; 19511 ipif = ire->ire_ipif; 19512 re->ipRouteIfIndex.o_length = 0; 19513 if (ire->ire_type == IRE_CACHE) { 19514 ill = (ill_t *)ire->ire_stq->q_ptr; 19515 re->ipRouteIfIndex.o_length = 19516 ill->ill_name_length == 0 ? 0 : 19517 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19518 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19519 re->ipRouteIfIndex.o_length); 19520 } else if (ipif != NULL) { 19521 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19522 re->ipRouteIfIndex.o_length = 19523 mi_strlen(re->ipRouteIfIndex.o_bytes); 19524 } 19525 re->ipRouteMetric1 = -1; 19526 re->ipRouteMetric2 = -1; 19527 re->ipRouteMetric3 = -1; 19528 re->ipRouteMetric4 = -1; 19529 19530 gw_addr = ire->ire_gateway_addr; 19531 19532 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19533 re->ipRouteNextHop = ire->ire_src_addr; 19534 else 19535 re->ipRouteNextHop = gw_addr; 19536 /* indirect(4), direct(3), or invalid(2) */ 19537 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19538 re->ipRouteType = 2; 19539 else 19540 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19541 re->ipRouteProto = -1; 19542 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19543 re->ipRouteMask = ire->ire_mask; 19544 re->ipRouteMetric5 = -1; 19545 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19546 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19547 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19548 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19549 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19550 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19551 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19552 re->ipRouteInfo.re_flags = ire->ire_flags; 19553 19554 if (ire->ire_flags & RTF_DYNAMIC) { 19555 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19556 } else { 19557 re->ipRouteInfo.re_ire_type = ire->ire_type; 19558 } 19559 19560 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19561 (char *)re, (int)sizeof (*re))) { 19562 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19563 (uint_t)sizeof (*re))); 19564 } 19565 19566 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19567 iaeptr->iae_routeidx = ird->ird_idx; 19568 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19569 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19570 } 19571 19572 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19573 (char *)iae, sacnt * sizeof (*iae))) { 19574 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19575 (unsigned)(sacnt * sizeof (*iae)))); 19576 } 19577 19578 /* bump route index for next pass */ 19579 ird->ird_idx++; 19580 19581 kmem_free(re, sizeof (*re)); 19582 if (sacnt != 0) 19583 kmem_free(iae, sacnt * sizeof (*iae)); 19584 19585 if (gcgrp != NULL) 19586 rw_exit(&gcgrp->gcgrp_rwlock); 19587 } 19588 19589 /* 19590 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19591 */ 19592 static void 19593 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19594 { 19595 ill_t *ill; 19596 ipif_t *ipif; 19597 mib2_ipv6RouteEntry_t *re; 19598 mib2_ipAttributeEntry_t *iae, *iaeptr; 19599 in6_addr_t gw_addr_v6; 19600 tsol_ire_gw_secattr_t *attrp; 19601 tsol_gc_t *gc = NULL; 19602 tsol_gcgrp_t *gcgrp = NULL; 19603 uint_t sacnt = 0; 19604 int i; 19605 19606 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19607 19608 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19609 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19610 return; 19611 } 19612 19613 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19614 return; 19615 19616 if ((attrp = ire->ire_gw_secattr) != NULL) { 19617 mutex_enter(&attrp->igsa_lock); 19618 if ((gc = attrp->igsa_gc) != NULL) { 19619 gcgrp = gc->gc_grp; 19620 ASSERT(gcgrp != NULL); 19621 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19622 sacnt = 1; 19623 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19624 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19625 gc = gcgrp->gcgrp_head; 19626 sacnt = gcgrp->gcgrp_count; 19627 } 19628 mutex_exit(&attrp->igsa_lock); 19629 19630 /* do nothing if there's no gc to report */ 19631 if (gc == NULL) { 19632 ASSERT(sacnt == 0); 19633 if (gcgrp != NULL) { 19634 /* we might as well drop the lock now */ 19635 rw_exit(&gcgrp->gcgrp_rwlock); 19636 gcgrp = NULL; 19637 } 19638 attrp = NULL; 19639 } 19640 19641 ASSERT(gc == NULL || (gcgrp != NULL && 19642 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19643 } 19644 ASSERT(sacnt == 0 || gc != NULL); 19645 19646 if (sacnt != 0 && 19647 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19648 kmem_free(re, sizeof (*re)); 19649 rw_exit(&gcgrp->gcgrp_rwlock); 19650 return; 19651 } 19652 19653 /* 19654 * Return all IRE types for route table... let caller pick and choose 19655 */ 19656 re->ipv6RouteDest = ire->ire_addr_v6; 19657 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19658 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19659 re->ipv6RouteIfIndex.o_length = 0; 19660 ipif = ire->ire_ipif; 19661 if (ire->ire_type == IRE_CACHE) { 19662 ill = (ill_t *)ire->ire_stq->q_ptr; 19663 re->ipv6RouteIfIndex.o_length = 19664 ill->ill_name_length == 0 ? 0 : 19665 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19666 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19667 re->ipv6RouteIfIndex.o_length); 19668 } else if (ipif != NULL) { 19669 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19670 re->ipv6RouteIfIndex.o_length = 19671 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19672 } 19673 19674 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19675 19676 mutex_enter(&ire->ire_lock); 19677 gw_addr_v6 = ire->ire_gateway_addr_v6; 19678 mutex_exit(&ire->ire_lock); 19679 19680 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19681 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19682 else 19683 re->ipv6RouteNextHop = gw_addr_v6; 19684 19685 /* remote(4), local(3), or discard(2) */ 19686 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19687 re->ipv6RouteType = 2; 19688 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19689 re->ipv6RouteType = 3; 19690 else 19691 re->ipv6RouteType = 4; 19692 19693 re->ipv6RouteProtocol = -1; 19694 re->ipv6RoutePolicy = 0; 19695 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19696 re->ipv6RouteNextHopRDI = 0; 19697 re->ipv6RouteWeight = 0; 19698 re->ipv6RouteMetric = 0; 19699 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19700 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19701 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19702 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19703 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19704 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19705 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19706 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19707 19708 if (ire->ire_flags & RTF_DYNAMIC) { 19709 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19710 } else { 19711 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19712 } 19713 19714 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19715 (char *)re, (int)sizeof (*re))) { 19716 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19717 (uint_t)sizeof (*re))); 19718 } 19719 19720 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19721 iaeptr->iae_routeidx = ird->ird_idx; 19722 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19723 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19724 } 19725 19726 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19727 (char *)iae, sacnt * sizeof (*iae))) { 19728 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19729 (unsigned)(sacnt * sizeof (*iae)))); 19730 } 19731 19732 /* bump route index for next pass */ 19733 ird->ird_idx++; 19734 19735 kmem_free(re, sizeof (*re)); 19736 if (sacnt != 0) 19737 kmem_free(iae, sacnt * sizeof (*iae)); 19738 19739 if (gcgrp != NULL) 19740 rw_exit(&gcgrp->gcgrp_rwlock); 19741 } 19742 19743 /* 19744 * ndp_walk routine to create ipv6NetToMediaEntryTable 19745 */ 19746 static int 19747 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19748 { 19749 ill_t *ill; 19750 mib2_ipv6NetToMediaEntry_t ntme; 19751 dl_unitdata_req_t *dl; 19752 19753 ill = nce->nce_ill; 19754 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19755 return (0); 19756 19757 /* 19758 * Neighbor cache entry attached to IRE with on-link 19759 * destination. 19760 */ 19761 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19762 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19763 if ((ill->ill_flags & ILLF_XRESOLV) && 19764 (nce->nce_res_mp != NULL)) { 19765 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19766 ntme.ipv6NetToMediaPhysAddress.o_length = 19767 dl->dl_dest_addr_length; 19768 } else { 19769 ntme.ipv6NetToMediaPhysAddress.o_length = 19770 ill->ill_phys_addr_length; 19771 } 19772 if (nce->nce_res_mp != NULL) { 19773 bcopy((char *)nce->nce_res_mp->b_rptr + 19774 NCE_LL_ADDR_OFFSET(ill), 19775 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19776 ntme.ipv6NetToMediaPhysAddress.o_length); 19777 } else { 19778 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19779 ill->ill_phys_addr_length); 19780 } 19781 /* 19782 * Note: Returns ND_* states. Should be: 19783 * reachable(1), stale(2), delay(3), probe(4), 19784 * invalid(5), unknown(6) 19785 */ 19786 ntme.ipv6NetToMediaState = nce->nce_state; 19787 ntme.ipv6NetToMediaLastUpdated = 0; 19788 19789 /* other(1), dynamic(2), static(3), local(4) */ 19790 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19791 ntme.ipv6NetToMediaType = 4; 19792 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19793 ntme.ipv6NetToMediaType = 1; 19794 } else { 19795 ntme.ipv6NetToMediaType = 2; 19796 } 19797 19798 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19799 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19800 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19801 (uint_t)sizeof (ntme))); 19802 } 19803 return (0); 19804 } 19805 19806 /* 19807 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19808 */ 19809 /* ARGSUSED */ 19810 int 19811 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19812 { 19813 switch (level) { 19814 case MIB2_IP: 19815 case MIB2_ICMP: 19816 switch (name) { 19817 default: 19818 break; 19819 } 19820 return (1); 19821 default: 19822 return (1); 19823 } 19824 } 19825 19826 /* 19827 * When there exists both a 64- and 32-bit counter of a particular type 19828 * (i.e., InReceives), only the 64-bit counters are added. 19829 */ 19830 void 19831 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19832 { 19833 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19834 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19835 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19836 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19837 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19838 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19839 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19840 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19841 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19842 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19843 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19844 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19845 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19846 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19847 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19848 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19849 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19850 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19851 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19852 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19853 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19854 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19855 o2->ipIfStatsInWrongIPVersion); 19856 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19857 o2->ipIfStatsInWrongIPVersion); 19858 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19859 o2->ipIfStatsOutSwitchIPVersion); 19860 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19861 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19862 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19863 o2->ipIfStatsHCInForwDatagrams); 19864 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19865 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19866 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19867 o2->ipIfStatsHCOutForwDatagrams); 19868 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19869 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19870 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19871 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19872 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19873 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19874 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19875 o2->ipIfStatsHCOutMcastOctets); 19876 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19877 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19878 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19879 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19880 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19881 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19882 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19883 } 19884 19885 void 19886 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19887 { 19888 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19889 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19890 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19891 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19892 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19893 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19894 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19895 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19896 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19897 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19898 o2->ipv6IfIcmpInRouterSolicits); 19899 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19900 o2->ipv6IfIcmpInRouterAdvertisements); 19901 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19902 o2->ipv6IfIcmpInNeighborSolicits); 19903 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19904 o2->ipv6IfIcmpInNeighborAdvertisements); 19905 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19906 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19907 o2->ipv6IfIcmpInGroupMembQueries); 19908 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19909 o2->ipv6IfIcmpInGroupMembResponses); 19910 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19911 o2->ipv6IfIcmpInGroupMembReductions); 19912 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19913 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19914 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19915 o2->ipv6IfIcmpOutDestUnreachs); 19916 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19917 o2->ipv6IfIcmpOutAdminProhibs); 19918 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19919 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19920 o2->ipv6IfIcmpOutParmProblems); 19921 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19922 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19923 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19924 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19925 o2->ipv6IfIcmpOutRouterSolicits); 19926 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19927 o2->ipv6IfIcmpOutRouterAdvertisements); 19928 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19929 o2->ipv6IfIcmpOutNeighborSolicits); 19930 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19931 o2->ipv6IfIcmpOutNeighborAdvertisements); 19932 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19933 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19934 o2->ipv6IfIcmpOutGroupMembQueries); 19935 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19936 o2->ipv6IfIcmpOutGroupMembResponses); 19937 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19938 o2->ipv6IfIcmpOutGroupMembReductions); 19939 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19940 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19941 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19942 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19943 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19944 o2->ipv6IfIcmpInBadNeighborSolicitations); 19945 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19946 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19947 o2->ipv6IfIcmpInGroupMembTotal); 19948 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19949 o2->ipv6IfIcmpInGroupMembBadQueries); 19950 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19951 o2->ipv6IfIcmpInGroupMembBadReports); 19952 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19953 o2->ipv6IfIcmpInGroupMembOurReports); 19954 } 19955 19956 /* 19957 * Called before the options are updated to check if this packet will 19958 * be source routed from here. 19959 * This routine assumes that the options are well formed i.e. that they 19960 * have already been checked. 19961 */ 19962 static boolean_t 19963 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19964 { 19965 ipoptp_t opts; 19966 uchar_t *opt; 19967 uint8_t optval; 19968 uint8_t optlen; 19969 ipaddr_t dst; 19970 ire_t *ire; 19971 19972 if (IS_SIMPLE_IPH(ipha)) { 19973 ip2dbg(("not source routed\n")); 19974 return (B_FALSE); 19975 } 19976 dst = ipha->ipha_dst; 19977 for (optval = ipoptp_first(&opts, ipha); 19978 optval != IPOPT_EOL; 19979 optval = ipoptp_next(&opts)) { 19980 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19981 opt = opts.ipoptp_cur; 19982 optlen = opts.ipoptp_len; 19983 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19984 optval, optlen)); 19985 switch (optval) { 19986 uint32_t off; 19987 case IPOPT_SSRR: 19988 case IPOPT_LSRR: 19989 /* 19990 * If dst is one of our addresses and there are some 19991 * entries left in the source route return (true). 19992 */ 19993 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19994 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19995 if (ire == NULL) { 19996 ip2dbg(("ip_source_routed: not next" 19997 " source route 0x%x\n", 19998 ntohl(dst))); 19999 return (B_FALSE); 20000 } 20001 ire_refrele(ire); 20002 off = opt[IPOPT_OFFSET]; 20003 off--; 20004 if (optlen < IP_ADDR_LEN || 20005 off > optlen - IP_ADDR_LEN) { 20006 /* End of source route */ 20007 ip1dbg(("ip_source_routed: end of SR\n")); 20008 return (B_FALSE); 20009 } 20010 return (B_TRUE); 20011 } 20012 } 20013 ip2dbg(("not source routed\n")); 20014 return (B_FALSE); 20015 } 20016 20017 /* 20018 * Check if the packet contains any source route. 20019 */ 20020 static boolean_t 20021 ip_source_route_included(ipha_t *ipha) 20022 { 20023 ipoptp_t opts; 20024 uint8_t optval; 20025 20026 if (IS_SIMPLE_IPH(ipha)) 20027 return (B_FALSE); 20028 for (optval = ipoptp_first(&opts, ipha); 20029 optval != IPOPT_EOL; 20030 optval = ipoptp_next(&opts)) { 20031 switch (optval) { 20032 case IPOPT_SSRR: 20033 case IPOPT_LSRR: 20034 return (B_TRUE); 20035 } 20036 } 20037 return (B_FALSE); 20038 } 20039 20040 /* 20041 * Called when the IRE expiration timer fires. 20042 */ 20043 void 20044 ip_trash_timer_expire(void *args) 20045 { 20046 int flush_flag = 0; 20047 ire_expire_arg_t iea; 20048 ip_stack_t *ipst = (ip_stack_t *)args; 20049 20050 iea.iea_ipst = ipst; /* No netstack_hold */ 20051 20052 /* 20053 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20054 * This lock makes sure that a new invocation of this function 20055 * that occurs due to an almost immediate timer firing will not 20056 * progress beyond this point until the current invocation is done 20057 */ 20058 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20059 ipst->ips_ip_ire_expire_id = 0; 20060 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20061 20062 /* Periodic timer */ 20063 if (ipst->ips_ip_ire_arp_time_elapsed >= 20064 ipst->ips_ip_ire_arp_interval) { 20065 /* 20066 * Remove all IRE_CACHE entries since they might 20067 * contain arp information. 20068 */ 20069 flush_flag |= FLUSH_ARP_TIME; 20070 ipst->ips_ip_ire_arp_time_elapsed = 0; 20071 IP_STAT(ipst, ip_ire_arp_timer_expired); 20072 } 20073 if (ipst->ips_ip_ire_rd_time_elapsed >= 20074 ipst->ips_ip_ire_redir_interval) { 20075 /* Remove all redirects */ 20076 flush_flag |= FLUSH_REDIRECT_TIME; 20077 ipst->ips_ip_ire_rd_time_elapsed = 0; 20078 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20079 } 20080 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20081 ipst->ips_ip_ire_pathmtu_interval) { 20082 /* Increase path mtu */ 20083 flush_flag |= FLUSH_MTU_TIME; 20084 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20085 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20086 } 20087 20088 /* 20089 * Optimize for the case when there are no redirects in the 20090 * ftable, that is, no need to walk the ftable in that case. 20091 */ 20092 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20093 iea.iea_flush_flag = flush_flag; 20094 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20095 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20096 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20097 NULL, ALL_ZONES, ipst); 20098 } 20099 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20100 ipst->ips_ip_redirect_cnt > 0) { 20101 iea.iea_flush_flag = flush_flag; 20102 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20103 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20104 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20105 } 20106 if (flush_flag & FLUSH_MTU_TIME) { 20107 /* 20108 * Walk all IPv6 IRE's and update them 20109 * Note that ARP and redirect timers are not 20110 * needed since NUD handles stale entries. 20111 */ 20112 flush_flag = FLUSH_MTU_TIME; 20113 iea.iea_flush_flag = flush_flag; 20114 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20115 ALL_ZONES, ipst); 20116 } 20117 20118 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20119 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20120 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20121 20122 /* 20123 * Hold the lock to serialize timeout calls and prevent 20124 * stale values in ip_ire_expire_id. Otherwise it is possible 20125 * for the timer to fire and a new invocation of this function 20126 * to start before the return value of timeout has been stored 20127 * in ip_ire_expire_id by the current invocation. 20128 */ 20129 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20130 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20131 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20132 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20133 } 20134 20135 /* 20136 * Called by the memory allocator subsystem directly, when the system 20137 * is running low on memory. 20138 */ 20139 /* ARGSUSED */ 20140 void 20141 ip_trash_ire_reclaim(void *args) 20142 { 20143 netstack_handle_t nh; 20144 netstack_t *ns; 20145 20146 netstack_next_init(&nh); 20147 while ((ns = netstack_next(&nh)) != NULL) { 20148 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20149 netstack_rele(ns); 20150 } 20151 netstack_next_fini(&nh); 20152 } 20153 20154 static void 20155 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20156 { 20157 ire_cache_count_t icc; 20158 ire_cache_reclaim_t icr; 20159 ncc_cache_count_t ncc; 20160 nce_cache_reclaim_t ncr; 20161 uint_t delete_cnt; 20162 /* 20163 * Memory reclaim call back. 20164 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20165 * Then, with a target of freeing 1/Nth of IRE_CACHE 20166 * entries, determine what fraction to free for 20167 * each category of IRE_CACHE entries giving absolute priority 20168 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20169 * entry will be freed unless all offlink entries are freed). 20170 */ 20171 icc.icc_total = 0; 20172 icc.icc_unused = 0; 20173 icc.icc_offlink = 0; 20174 icc.icc_pmtu = 0; 20175 icc.icc_onlink = 0; 20176 ire_walk(ire_cache_count, (char *)&icc, ipst); 20177 20178 /* 20179 * Free NCEs for IPv6 like the onlink ires. 20180 */ 20181 ncc.ncc_total = 0; 20182 ncc.ncc_host = 0; 20183 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20184 20185 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20186 icc.icc_pmtu + icc.icc_onlink); 20187 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20188 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20189 if (delete_cnt == 0) 20190 return; 20191 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20192 /* Always delete all unused offlink entries */ 20193 icr.icr_ipst = ipst; 20194 icr.icr_unused = 1; 20195 if (delete_cnt <= icc.icc_unused) { 20196 /* 20197 * Only need to free unused entries. In other words, 20198 * there are enough unused entries to free to meet our 20199 * target number of freed ire cache entries. 20200 */ 20201 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20202 ncr.ncr_host = 0; 20203 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20204 /* 20205 * Only need to free unused entries, plus a fraction of offlink 20206 * entries. It follows from the first if statement that 20207 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20208 */ 20209 delete_cnt -= icc.icc_unused; 20210 /* Round up # deleted by truncating fraction */ 20211 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20212 icr.icr_pmtu = icr.icr_onlink = 0; 20213 ncr.ncr_host = 0; 20214 } else if (delete_cnt <= 20215 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20216 /* 20217 * Free all unused and offlink entries, plus a fraction of 20218 * pmtu entries. It follows from the previous if statement 20219 * that icc_pmtu is non-zero, and that 20220 * delete_cnt != icc_unused + icc_offlink. 20221 */ 20222 icr.icr_offlink = 1; 20223 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20224 /* Round up # deleted by truncating fraction */ 20225 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20226 icr.icr_onlink = 0; 20227 ncr.ncr_host = 0; 20228 } else { 20229 /* 20230 * Free all unused, offlink, and pmtu entries, plus a fraction 20231 * of onlink entries. If we're here, then we know that 20232 * icc_onlink is non-zero, and that 20233 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20234 */ 20235 icr.icr_offlink = icr.icr_pmtu = 1; 20236 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20237 icc.icc_pmtu; 20238 /* Round up # deleted by truncating fraction */ 20239 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20240 /* Using the same delete fraction as for onlink IREs */ 20241 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20242 } 20243 #ifdef DEBUG 20244 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20245 "fractions %d/%d/%d/%d\n", 20246 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20247 icc.icc_unused, icc.icc_offlink, 20248 icc.icc_pmtu, icc.icc_onlink, 20249 icr.icr_unused, icr.icr_offlink, 20250 icr.icr_pmtu, icr.icr_onlink)); 20251 #endif 20252 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20253 if (ncr.ncr_host != 0) 20254 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20255 (uchar_t *)&ncr, ipst); 20256 #ifdef DEBUG 20257 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20258 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20259 ire_walk(ire_cache_count, (char *)&icc, ipst); 20260 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20261 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20262 icc.icc_pmtu, icc.icc_onlink)); 20263 #endif 20264 } 20265 20266 /* 20267 * ip_unbind is called when a copy of an unbind request is received from the 20268 * upper level protocol. We remove this conn from any fanout hash list it is 20269 * on, and zero out the bind information. No reply is expected up above. 20270 */ 20271 void 20272 ip_unbind(conn_t *connp) 20273 { 20274 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20275 20276 if (is_system_labeled() && connp->conn_anon_port) { 20277 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20278 connp->conn_mlp_type, connp->conn_ulp, 20279 ntohs(connp->conn_lport), B_FALSE); 20280 connp->conn_anon_port = 0; 20281 } 20282 connp->conn_mlp_type = mlptSingle; 20283 20284 ipcl_hash_remove(connp); 20285 20286 } 20287 20288 /* 20289 * Write side put procedure. Outbound data, IOCTLs, responses from 20290 * resolvers, etc, come down through here. 20291 * 20292 * arg2 is always a queue_t *. 20293 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20294 * the zoneid. 20295 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20296 */ 20297 void 20298 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20299 { 20300 ip_output_options(arg, mp, arg2, caller, &zero_info); 20301 } 20302 20303 void 20304 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20305 ip_opt_info_t *infop) 20306 { 20307 conn_t *connp = NULL; 20308 queue_t *q = (queue_t *)arg2; 20309 ipha_t *ipha; 20310 #define rptr ((uchar_t *)ipha) 20311 ire_t *ire = NULL; 20312 ire_t *sctp_ire = NULL; 20313 uint32_t v_hlen_tos_len; 20314 ipaddr_t dst; 20315 mblk_t *first_mp = NULL; 20316 boolean_t mctl_present; 20317 ipsec_out_t *io; 20318 int match_flags; 20319 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20320 ipif_t *dst_ipif; 20321 boolean_t multirt_need_resolve = B_FALSE; 20322 mblk_t *copy_mp = NULL; 20323 int err; 20324 zoneid_t zoneid; 20325 boolean_t need_decref = B_FALSE; 20326 boolean_t ignore_dontroute = B_FALSE; 20327 boolean_t ignore_nexthop = B_FALSE; 20328 boolean_t ip_nexthop = B_FALSE; 20329 ipaddr_t nexthop_addr; 20330 ip_stack_t *ipst; 20331 20332 #ifdef _BIG_ENDIAN 20333 #define V_HLEN (v_hlen_tos_len >> 24) 20334 #else 20335 #define V_HLEN (v_hlen_tos_len & 0xFF) 20336 #endif 20337 20338 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20339 "ip_wput_start: q %p", q); 20340 20341 /* 20342 * ip_wput fast path 20343 */ 20344 20345 /* is packet from ARP ? */ 20346 if (q->q_next != NULL) { 20347 zoneid = (zoneid_t)(uintptr_t)arg; 20348 goto qnext; 20349 } 20350 20351 connp = (conn_t *)arg; 20352 ASSERT(connp != NULL); 20353 zoneid = connp->conn_zoneid; 20354 ipst = connp->conn_netstack->netstack_ip; 20355 ASSERT(ipst != NULL); 20356 20357 /* is queue flow controlled? */ 20358 if ((q->q_first != NULL || connp->conn_draining) && 20359 (caller == IP_WPUT)) { 20360 ASSERT(!need_decref); 20361 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20362 (void) putq(q, mp); 20363 return; 20364 } 20365 20366 /* Multidata transmit? */ 20367 if (DB_TYPE(mp) == M_MULTIDATA) { 20368 /* 20369 * We should never get here, since all Multidata messages 20370 * originating from tcp should have been directed over to 20371 * tcp_multisend() in the first place. 20372 */ 20373 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20374 freemsg(mp); 20375 return; 20376 } else if (DB_TYPE(mp) != M_DATA) 20377 goto notdata; 20378 20379 if (mp->b_flag & MSGHASREF) { 20380 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20381 mp->b_flag &= ~MSGHASREF; 20382 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20383 need_decref = B_TRUE; 20384 } 20385 ipha = (ipha_t *)mp->b_rptr; 20386 20387 /* is IP header non-aligned or mblk smaller than basic IP header */ 20388 #ifndef SAFETY_BEFORE_SPEED 20389 if (!OK_32PTR(rptr) || 20390 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20391 goto hdrtoosmall; 20392 #endif 20393 20394 ASSERT(OK_32PTR(ipha)); 20395 20396 /* 20397 * This function assumes that mp points to an IPv4 packet. If it's the 20398 * wrong version, we'll catch it again in ip_output_v6. 20399 * 20400 * Note that this is *only* locally-generated output here, and never 20401 * forwarded data, and that we need to deal only with transports that 20402 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20403 * label.) 20404 */ 20405 if (is_system_labeled() && 20406 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20407 !connp->conn_ulp_labeled) { 20408 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20409 connp->conn_mac_exempt, ipst); 20410 ipha = (ipha_t *)mp->b_rptr; 20411 if (err != 0) { 20412 first_mp = mp; 20413 if (err == EINVAL) 20414 goto icmp_parameter_problem; 20415 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20416 goto discard_pkt; 20417 } 20418 } 20419 20420 ASSERT(infop != NULL); 20421 20422 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20423 /* 20424 * IP_PKTINFO ancillary option is present. 20425 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20426 * allows using address of any zone as the source address. 20427 */ 20428 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20429 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20430 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20431 if (ire == NULL) 20432 goto drop_pkt; 20433 ire_refrele(ire); 20434 ire = NULL; 20435 } 20436 20437 /* 20438 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20439 */ 20440 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20441 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20442 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20443 20444 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20445 goto drop_pkt; 20446 /* 20447 * check that there is an ipif belonging 20448 * to our zone. IPCL_ZONEID is not used because 20449 * IP_ALLZONES option is valid only when the ill is 20450 * accessible from all zones i.e has a valid ipif in 20451 * all zones. 20452 */ 20453 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20454 goto drop_pkt; 20455 } 20456 } 20457 20458 /* 20459 * If there is a policy, try to attach an ipsec_out in 20460 * the front. At the end, first_mp either points to a 20461 * M_DATA message or IPSEC_OUT message linked to a 20462 * M_DATA message. We have to do it now as we might 20463 * lose the "conn" if we go through ip_newroute. 20464 */ 20465 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20466 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20467 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20468 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20469 if (need_decref) 20470 CONN_DEC_REF(connp); 20471 return; 20472 } else { 20473 ASSERT(mp->b_datap->db_type == M_CTL); 20474 first_mp = mp; 20475 mp = mp->b_cont; 20476 mctl_present = B_TRUE; 20477 } 20478 } else { 20479 first_mp = mp; 20480 mctl_present = B_FALSE; 20481 } 20482 20483 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20484 20485 /* is wrong version or IP options present */ 20486 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20487 goto version_hdrlen_check; 20488 dst = ipha->ipha_dst; 20489 20490 /* If IP_BOUND_IF has been set, use that ill. */ 20491 if (connp->conn_outgoing_ill != NULL) { 20492 xmit_ill = conn_get_held_ill(connp, 20493 &connp->conn_outgoing_ill, &err); 20494 if (err == ILL_LOOKUP_FAILED) 20495 goto drop_pkt; 20496 20497 goto send_from_ill; 20498 } 20499 20500 /* is packet multicast? */ 20501 if (CLASSD(dst)) 20502 goto multicast; 20503 20504 /* 20505 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20506 * takes precedence over conn_dontroute and conn_nexthop_set 20507 */ 20508 if (xmit_ill != NULL) 20509 goto send_from_ill; 20510 20511 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20512 /* 20513 * If the destination is a broadcast, local, or loopback 20514 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20515 * standard path. 20516 */ 20517 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20518 if ((ire == NULL) || (ire->ire_type & 20519 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20520 if (ire != NULL) { 20521 ire_refrele(ire); 20522 /* No more access to ire */ 20523 ire = NULL; 20524 } 20525 /* 20526 * bypass routing checks and go directly to interface. 20527 */ 20528 if (connp->conn_dontroute) 20529 goto dontroute; 20530 20531 ASSERT(connp->conn_nexthop_set); 20532 ip_nexthop = B_TRUE; 20533 nexthop_addr = connp->conn_nexthop_v4; 20534 goto send_from_ill; 20535 } 20536 20537 /* Must be a broadcast, a loopback or a local ire */ 20538 ire_refrele(ire); 20539 /* No more access to ire */ 20540 ire = NULL; 20541 } 20542 20543 /* 20544 * We cache IRE_CACHEs to avoid lookups. We don't do 20545 * this for the tcp global queue and listen end point 20546 * as it does not really have a real destination to 20547 * talk to. This is also true for SCTP. 20548 */ 20549 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20550 !connp->conn_fully_bound) { 20551 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20552 if (ire == NULL) 20553 goto noirefound; 20554 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20555 "ip_wput_end: q %p (%S)", q, "end"); 20556 20557 /* 20558 * Check if the ire has the RTF_MULTIRT flag, inherited 20559 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20560 */ 20561 if (ire->ire_flags & RTF_MULTIRT) { 20562 20563 /* 20564 * Force the TTL of multirouted packets if required. 20565 * The TTL of such packets is bounded by the 20566 * ip_multirt_ttl ndd variable. 20567 */ 20568 if ((ipst->ips_ip_multirt_ttl > 0) && 20569 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20570 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20571 "(was %d), dst 0x%08x\n", 20572 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20573 ntohl(ire->ire_addr))); 20574 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20575 } 20576 /* 20577 * We look at this point if there are pending 20578 * unresolved routes. ire_multirt_resolvable() 20579 * checks in O(n) that all IRE_OFFSUBNET ire 20580 * entries for the packet's destination and 20581 * flagged RTF_MULTIRT are currently resolved. 20582 * If some remain unresolved, we make a copy 20583 * of the current message. It will be used 20584 * to initiate additional route resolutions. 20585 */ 20586 multirt_need_resolve = 20587 ire_multirt_need_resolve(ire->ire_addr, 20588 msg_getlabel(first_mp), ipst); 20589 ip2dbg(("ip_wput[TCP]: ire %p, " 20590 "multirt_need_resolve %d, first_mp %p\n", 20591 (void *)ire, multirt_need_resolve, 20592 (void *)first_mp)); 20593 if (multirt_need_resolve) { 20594 copy_mp = copymsg(first_mp); 20595 if (copy_mp != NULL) { 20596 MULTIRT_DEBUG_TAG(copy_mp); 20597 } 20598 } 20599 } 20600 20601 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20602 20603 /* 20604 * Try to resolve another multiroute if 20605 * ire_multirt_need_resolve() deemed it necessary. 20606 */ 20607 if (copy_mp != NULL) 20608 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20609 if (need_decref) 20610 CONN_DEC_REF(connp); 20611 return; 20612 } 20613 20614 /* 20615 * Access to conn_ire_cache. (protected by conn_lock) 20616 * 20617 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20618 * the ire bucket lock here to check for CONDEMNED as it is okay to 20619 * send a packet or two with the IRE_CACHE that is going away. 20620 * Access to the ire requires an ire refhold on the ire prior to 20621 * its use since an interface unplumb thread may delete the cached 20622 * ire and release the refhold at any time. 20623 * 20624 * Caching an ire in the conn_ire_cache 20625 * 20626 * o Caching an ire pointer in the conn requires a strict check for 20627 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20628 * ires before cleaning up the conns. So the caching of an ire pointer 20629 * in the conn is done after making sure under the bucket lock that the 20630 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20631 * caching an ire after the unplumb thread has cleaned up the conn. 20632 * If the conn does not send a packet subsequently the unplumb thread 20633 * will be hanging waiting for the ire count to drop to zero. 20634 * 20635 * o We also need to atomically test for a null conn_ire_cache and 20636 * set the conn_ire_cache under the the protection of the conn_lock 20637 * to avoid races among concurrent threads trying to simultaneously 20638 * cache an ire in the conn_ire_cache. 20639 */ 20640 mutex_enter(&connp->conn_lock); 20641 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20642 20643 if (ire != NULL && ire->ire_addr == dst && 20644 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20645 20646 IRE_REFHOLD(ire); 20647 mutex_exit(&connp->conn_lock); 20648 20649 } else { 20650 boolean_t cached = B_FALSE; 20651 connp->conn_ire_cache = NULL; 20652 mutex_exit(&connp->conn_lock); 20653 /* Release the old ire */ 20654 if (ire != NULL && sctp_ire == NULL) 20655 IRE_REFRELE_NOTR(ire); 20656 20657 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20658 if (ire == NULL) 20659 goto noirefound; 20660 IRE_REFHOLD_NOTR(ire); 20661 20662 mutex_enter(&connp->conn_lock); 20663 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20664 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20665 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20666 if (connp->conn_ulp == IPPROTO_TCP) 20667 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20668 connp->conn_ire_cache = ire; 20669 cached = B_TRUE; 20670 } 20671 rw_exit(&ire->ire_bucket->irb_lock); 20672 } 20673 mutex_exit(&connp->conn_lock); 20674 20675 /* 20676 * We can continue to use the ire but since it was 20677 * not cached, we should drop the extra reference. 20678 */ 20679 if (!cached) 20680 IRE_REFRELE_NOTR(ire); 20681 } 20682 20683 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20684 "ip_wput_end: q %p (%S)", q, "end"); 20685 20686 /* 20687 * Check if the ire has the RTF_MULTIRT flag, inherited 20688 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20689 */ 20690 if (ire->ire_flags & RTF_MULTIRT) { 20691 /* 20692 * Force the TTL of multirouted packets if required. 20693 * The TTL of such packets is bounded by the 20694 * ip_multirt_ttl ndd variable. 20695 */ 20696 if ((ipst->ips_ip_multirt_ttl > 0) && 20697 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20698 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20699 "(was %d), dst 0x%08x\n", 20700 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20701 ntohl(ire->ire_addr))); 20702 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20703 } 20704 20705 /* 20706 * At this point, we check to see if there are any pending 20707 * unresolved routes. ire_multirt_resolvable() 20708 * checks in O(n) that all IRE_OFFSUBNET ire 20709 * entries for the packet's destination and 20710 * flagged RTF_MULTIRT are currently resolved. 20711 * If some remain unresolved, we make a copy 20712 * of the current message. It will be used 20713 * to initiate additional route resolutions. 20714 */ 20715 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20716 msg_getlabel(first_mp), ipst); 20717 ip2dbg(("ip_wput[not TCP]: ire %p, " 20718 "multirt_need_resolve %d, first_mp %p\n", 20719 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20720 if (multirt_need_resolve) { 20721 copy_mp = copymsg(first_mp); 20722 if (copy_mp != NULL) { 20723 MULTIRT_DEBUG_TAG(copy_mp); 20724 } 20725 } 20726 } 20727 20728 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20729 20730 /* 20731 * Try to resolve another multiroute if 20732 * ire_multirt_resolvable() deemed it necessary 20733 */ 20734 if (copy_mp != NULL) 20735 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20736 if (need_decref) 20737 CONN_DEC_REF(connp); 20738 return; 20739 20740 qnext: 20741 /* 20742 * Upper Level Protocols pass down complete IP datagrams 20743 * as M_DATA messages. Everything else is a sideshow. 20744 * 20745 * 1) We could be re-entering ip_wput because of ip_neworute 20746 * in which case we could have a IPSEC_OUT message. We 20747 * need to pass through ip_wput like other datagrams and 20748 * hence cannot branch to ip_wput_nondata. 20749 * 20750 * 2) ARP, AH, ESP, and other clients who are on the module 20751 * instance of IP stream, give us something to deal with. 20752 * We will handle AH and ESP here and rest in ip_wput_nondata. 20753 * 20754 * 3) ICMP replies also could come here. 20755 */ 20756 ipst = ILLQ_TO_IPST(q); 20757 20758 if (DB_TYPE(mp) != M_DATA) { 20759 notdata: 20760 if (DB_TYPE(mp) == M_CTL) { 20761 /* 20762 * M_CTL messages are used by ARP, AH and ESP to 20763 * communicate with IP. We deal with IPSEC_IN and 20764 * IPSEC_OUT here. ip_wput_nondata handles other 20765 * cases. 20766 */ 20767 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20768 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20769 first_mp = mp->b_cont; 20770 first_mp->b_flag &= ~MSGHASREF; 20771 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20772 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20773 CONN_DEC_REF(connp); 20774 connp = NULL; 20775 } 20776 if (ii->ipsec_info_type == IPSEC_IN) { 20777 /* 20778 * Either this message goes back to 20779 * IPsec for further processing or to 20780 * ULP after policy checks. 20781 */ 20782 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20783 return; 20784 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20785 io = (ipsec_out_t *)ii; 20786 if (io->ipsec_out_proc_begin) { 20787 /* 20788 * IPsec processing has already started. 20789 * Complete it. 20790 * IPQoS notes: We don't care what is 20791 * in ipsec_out_ill_index since this 20792 * won't be processed for IPQoS policies 20793 * in ipsec_out_process. 20794 */ 20795 ipsec_out_process(q, mp, NULL, 20796 io->ipsec_out_ill_index); 20797 return; 20798 } else { 20799 connp = (q->q_next != NULL) ? 20800 NULL : Q_TO_CONN(q); 20801 first_mp = mp; 20802 mp = mp->b_cont; 20803 mctl_present = B_TRUE; 20804 } 20805 zoneid = io->ipsec_out_zoneid; 20806 ASSERT(zoneid != ALL_ZONES); 20807 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20808 /* 20809 * It's an IPsec control message requesting 20810 * an SADB update to be sent to the IPsec 20811 * hardware acceleration capable ills. 20812 */ 20813 ipsec_ctl_t *ipsec_ctl = 20814 (ipsec_ctl_t *)mp->b_rptr; 20815 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20816 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20817 mblk_t *cmp = mp->b_cont; 20818 20819 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20820 ASSERT(cmp != NULL); 20821 20822 freeb(mp); 20823 ill_ipsec_capab_send_all(satype, cmp, sa, 20824 ipst->ips_netstack); 20825 return; 20826 } else { 20827 /* 20828 * This must be ARP or special TSOL signaling. 20829 */ 20830 ip_wput_nondata(NULL, q, mp, NULL); 20831 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20832 "ip_wput_end: q %p (%S)", q, "nondata"); 20833 return; 20834 } 20835 } else { 20836 /* 20837 * This must be non-(ARP/AH/ESP) messages. 20838 */ 20839 ASSERT(!need_decref); 20840 ip_wput_nondata(NULL, q, mp, NULL); 20841 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20842 "ip_wput_end: q %p (%S)", q, "nondata"); 20843 return; 20844 } 20845 } else { 20846 first_mp = mp; 20847 mctl_present = B_FALSE; 20848 } 20849 20850 ASSERT(first_mp != NULL); 20851 20852 if (mctl_present) { 20853 io = (ipsec_out_t *)first_mp->b_rptr; 20854 if (io->ipsec_out_ip_nexthop) { 20855 /* 20856 * We may have lost the conn context if we are 20857 * coming here from ip_newroute(). Copy the 20858 * nexthop information. 20859 */ 20860 ip_nexthop = B_TRUE; 20861 nexthop_addr = io->ipsec_out_nexthop_addr; 20862 20863 ipha = (ipha_t *)mp->b_rptr; 20864 dst = ipha->ipha_dst; 20865 goto send_from_ill; 20866 } 20867 } 20868 20869 ASSERT(xmit_ill == NULL); 20870 20871 /* We have a complete IP datagram heading outbound. */ 20872 ipha = (ipha_t *)mp->b_rptr; 20873 20874 #ifndef SPEED_BEFORE_SAFETY 20875 /* 20876 * Make sure we have a full-word aligned message and that at least 20877 * a simple IP header is accessible in the first message. If not, 20878 * try a pullup. For labeled systems we need to always take this 20879 * path as M_CTLs are "notdata" but have trailing data to process. 20880 */ 20881 if (!OK_32PTR(rptr) || 20882 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20883 hdrtoosmall: 20884 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20885 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20886 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20887 if (first_mp == NULL) 20888 first_mp = mp; 20889 goto discard_pkt; 20890 } 20891 20892 /* This function assumes that mp points to an IPv4 packet. */ 20893 if (is_system_labeled() && q->q_next == NULL && 20894 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20895 !connp->conn_ulp_labeled) { 20896 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20897 connp->conn_mac_exempt, ipst); 20898 ipha = (ipha_t *)mp->b_rptr; 20899 if (first_mp != NULL) 20900 first_mp->b_cont = mp; 20901 if (err != 0) { 20902 if (first_mp == NULL) 20903 first_mp = mp; 20904 if (err == EINVAL) 20905 goto icmp_parameter_problem; 20906 ip2dbg(("ip_wput: label check failed (%d)\n", 20907 err)); 20908 goto discard_pkt; 20909 } 20910 } 20911 20912 ipha = (ipha_t *)mp->b_rptr; 20913 if (first_mp == NULL) { 20914 ASSERT(xmit_ill == NULL); 20915 /* 20916 * If we got here because of "goto hdrtoosmall" 20917 * We need to attach a IPSEC_OUT. 20918 */ 20919 if (connp->conn_out_enforce_policy) { 20920 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20921 NULL, ipha->ipha_protocol, 20922 ipst->ips_netstack)) == NULL)) { 20923 BUMP_MIB(&ipst->ips_ip_mib, 20924 ipIfStatsOutDiscards); 20925 if (need_decref) 20926 CONN_DEC_REF(connp); 20927 return; 20928 } else { 20929 ASSERT(mp->b_datap->db_type == M_CTL); 20930 first_mp = mp; 20931 mp = mp->b_cont; 20932 mctl_present = B_TRUE; 20933 } 20934 } else { 20935 first_mp = mp; 20936 mctl_present = B_FALSE; 20937 } 20938 } 20939 } 20940 #endif 20941 20942 /* Most of the code below is written for speed, not readability */ 20943 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20944 20945 /* 20946 * If ip_newroute() fails, we're going to need a full 20947 * header for the icmp wraparound. 20948 */ 20949 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20950 uint_t v_hlen; 20951 version_hdrlen_check: 20952 ASSERT(first_mp != NULL); 20953 v_hlen = V_HLEN; 20954 /* 20955 * siphon off IPv6 packets coming down from transport 20956 * layer modules here. 20957 * Note: high-order bit carries NUD reachability confirmation 20958 */ 20959 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20960 /* 20961 * FIXME: assume that callers of ip_output* call 20962 * the right version? 20963 */ 20964 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20965 ASSERT(xmit_ill == NULL); 20966 if (need_decref) 20967 mp->b_flag |= MSGHASREF; 20968 (void) ip_output_v6(arg, first_mp, arg2, caller); 20969 return; 20970 } 20971 20972 if ((v_hlen >> 4) != IP_VERSION) { 20973 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20974 "ip_wput_end: q %p (%S)", q, "badvers"); 20975 goto discard_pkt; 20976 } 20977 /* 20978 * Is the header length at least 20 bytes? 20979 * 20980 * Are there enough bytes accessible in the header? If 20981 * not, try a pullup. 20982 */ 20983 v_hlen &= 0xF; 20984 v_hlen <<= 2; 20985 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20986 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20987 "ip_wput_end: q %p (%S)", q, "badlen"); 20988 goto discard_pkt; 20989 } 20990 if (v_hlen > (mp->b_wptr - rptr)) { 20991 if (!pullupmsg(mp, v_hlen)) { 20992 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20993 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20994 goto discard_pkt; 20995 } 20996 ipha = (ipha_t *)mp->b_rptr; 20997 } 20998 /* 20999 * Move first entry from any source route into ipha_dst and 21000 * verify the options 21001 */ 21002 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21003 zoneid, ipst)) { 21004 ASSERT(xmit_ill == NULL); 21005 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21006 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21007 "ip_wput_end: q %p (%S)", q, "badopts"); 21008 if (need_decref) 21009 CONN_DEC_REF(connp); 21010 return; 21011 } 21012 } 21013 dst = ipha->ipha_dst; 21014 21015 /* 21016 * Try to get an IRE_CACHE for the destination address. If we can't, 21017 * we have to run the packet through ip_newroute which will take 21018 * the appropriate action to arrange for an IRE_CACHE, such as querying 21019 * a resolver, or assigning a default gateway, etc. 21020 */ 21021 if (CLASSD(dst)) { 21022 ipif_t *ipif; 21023 uint32_t setsrc = 0; 21024 21025 multicast: 21026 ASSERT(first_mp != NULL); 21027 ip2dbg(("ip_wput: CLASSD\n")); 21028 if (connp == NULL) { 21029 /* 21030 * Use the first good ipif on the ill. 21031 * XXX Should this ever happen? (Appears 21032 * to show up with just ppp and no ethernet due 21033 * to in.rdisc.) 21034 * However, ire_send should be able to 21035 * call ip_wput_ire directly. 21036 * 21037 * XXX Also, this can happen for ICMP and other packets 21038 * with multicast source addresses. Perhaps we should 21039 * fix things so that we drop the packet in question, 21040 * but for now, just run with it. 21041 */ 21042 ill_t *ill = (ill_t *)q->q_ptr; 21043 21044 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21045 if (ipif == NULL) { 21046 if (need_decref) 21047 CONN_DEC_REF(connp); 21048 freemsg(first_mp); 21049 return; 21050 } 21051 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21052 ntohl(dst), ill->ill_name)); 21053 } else { 21054 /* 21055 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21056 * and IP_MULTICAST_IF. The block comment above this 21057 * function explains the locking mechanism used here. 21058 */ 21059 if (xmit_ill == NULL) { 21060 xmit_ill = conn_get_held_ill(connp, 21061 &connp->conn_outgoing_ill, &err); 21062 if (err == ILL_LOOKUP_FAILED) { 21063 ip1dbg(("ip_wput: No ill for " 21064 "IP_BOUND_IF\n")); 21065 BUMP_MIB(&ipst->ips_ip_mib, 21066 ipIfStatsOutNoRoutes); 21067 goto drop_pkt; 21068 } 21069 } 21070 21071 if (xmit_ill == NULL) { 21072 ipif = conn_get_held_ipif(connp, 21073 &connp->conn_multicast_ipif, &err); 21074 if (err == IPIF_LOOKUP_FAILED) { 21075 ip1dbg(("ip_wput: No ipif for " 21076 "multicast\n")); 21077 BUMP_MIB(&ipst->ips_ip_mib, 21078 ipIfStatsOutNoRoutes); 21079 goto drop_pkt; 21080 } 21081 } 21082 if (xmit_ill != NULL) { 21083 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21084 if (ipif == NULL) { 21085 ip1dbg(("ip_wput: No ipif for " 21086 "xmit_ill\n")); 21087 BUMP_MIB(&ipst->ips_ip_mib, 21088 ipIfStatsOutNoRoutes); 21089 goto drop_pkt; 21090 } 21091 } else if (ipif == NULL || ipif->ipif_isv6) { 21092 /* 21093 * We must do this ipif determination here 21094 * else we could pass through ip_newroute 21095 * and come back here without the conn context. 21096 * 21097 * Note: we do late binding i.e. we bind to 21098 * the interface when the first packet is sent. 21099 * For performance reasons we do not rebind on 21100 * each packet but keep the binding until the 21101 * next IP_MULTICAST_IF option. 21102 * 21103 * conn_multicast_{ipif,ill} are shared between 21104 * IPv4 and IPv6 and AF_INET6 sockets can 21105 * send both IPv4 and IPv6 packets. Hence 21106 * we have to check that "isv6" matches above. 21107 */ 21108 if (ipif != NULL) 21109 ipif_refrele(ipif); 21110 ipif = ipif_lookup_group(dst, zoneid, ipst); 21111 if (ipif == NULL) { 21112 ip1dbg(("ip_wput: No ipif for " 21113 "multicast\n")); 21114 BUMP_MIB(&ipst->ips_ip_mib, 21115 ipIfStatsOutNoRoutes); 21116 goto drop_pkt; 21117 } 21118 err = conn_set_held_ipif(connp, 21119 &connp->conn_multicast_ipif, ipif); 21120 if (err == IPIF_LOOKUP_FAILED) { 21121 ipif_refrele(ipif); 21122 ip1dbg(("ip_wput: No ipif for " 21123 "multicast\n")); 21124 BUMP_MIB(&ipst->ips_ip_mib, 21125 ipIfStatsOutNoRoutes); 21126 goto drop_pkt; 21127 } 21128 } 21129 } 21130 ASSERT(!ipif->ipif_isv6); 21131 /* 21132 * As we may lose the conn by the time we reach ip_wput_ire, 21133 * we copy conn_multicast_loop and conn_dontroute on to an 21134 * ipsec_out. In case if this datagram goes out secure, 21135 * we need the ill_index also. Copy that also into the 21136 * ipsec_out. 21137 */ 21138 if (mctl_present) { 21139 io = (ipsec_out_t *)first_mp->b_rptr; 21140 ASSERT(first_mp->b_datap->db_type == M_CTL); 21141 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21142 } else { 21143 ASSERT(mp == first_mp); 21144 if ((first_mp = allocb(sizeof (ipsec_info_t), 21145 BPRI_HI)) == NULL) { 21146 ipif_refrele(ipif); 21147 first_mp = mp; 21148 goto discard_pkt; 21149 } 21150 first_mp->b_datap->db_type = M_CTL; 21151 first_mp->b_wptr += sizeof (ipsec_info_t); 21152 /* ipsec_out_secure is B_FALSE now */ 21153 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21154 io = (ipsec_out_t *)first_mp->b_rptr; 21155 io->ipsec_out_type = IPSEC_OUT; 21156 io->ipsec_out_len = sizeof (ipsec_out_t); 21157 io->ipsec_out_use_global_policy = B_TRUE; 21158 io->ipsec_out_ns = ipst->ips_netstack; 21159 first_mp->b_cont = mp; 21160 mctl_present = B_TRUE; 21161 } 21162 21163 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21164 io->ipsec_out_ill_index = 21165 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21166 21167 if (connp != NULL) { 21168 io->ipsec_out_multicast_loop = 21169 connp->conn_multicast_loop; 21170 io->ipsec_out_dontroute = connp->conn_dontroute; 21171 io->ipsec_out_zoneid = connp->conn_zoneid; 21172 } 21173 /* 21174 * If the application uses IP_MULTICAST_IF with 21175 * different logical addresses of the same ILL, we 21176 * need to make sure that the soruce address of 21177 * the packet matches the logical IP address used 21178 * in the option. We do it by initializing ipha_src 21179 * here. This should keep IPsec also happy as 21180 * when we return from IPsec processing, we don't 21181 * have to worry about getting the right address on 21182 * the packet. Thus it is sufficient to look for 21183 * IRE_CACHE using MATCH_IRE_ILL rathen than 21184 * MATCH_IRE_IPIF. 21185 * 21186 * NOTE : We need to do it for non-secure case also as 21187 * this might go out secure if there is a global policy 21188 * match in ip_wput_ire. 21189 * 21190 * As we do not have the ire yet, it is possible that 21191 * we set the source address here and then later discover 21192 * that the ire implies the source address to be assigned 21193 * through the RTF_SETSRC flag. 21194 * In that case, the setsrc variable will remind us 21195 * that overwritting the source address by the one 21196 * of the RTF_SETSRC-flagged ire is allowed. 21197 */ 21198 if (ipha->ipha_src == INADDR_ANY && 21199 (connp == NULL || !connp->conn_unspec_src)) { 21200 ipha->ipha_src = ipif->ipif_src_addr; 21201 setsrc = RTF_SETSRC; 21202 } 21203 /* 21204 * Find an IRE which matches the destination and the outgoing 21205 * queue (i.e. the outgoing interface.) 21206 * For loopback use a unicast IP address for 21207 * the ire lookup. 21208 */ 21209 if (IS_LOOPBACK(ipif->ipif_ill)) 21210 dst = ipif->ipif_lcl_addr; 21211 21212 /* 21213 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21214 * We don't need to lookup ire in ctable as the packet 21215 * needs to be sent to the destination through the specified 21216 * ill irrespective of ires in the cache table. 21217 */ 21218 ire = NULL; 21219 if (xmit_ill == NULL) { 21220 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21221 zoneid, msg_getlabel(mp), match_flags, ipst); 21222 } 21223 21224 if (ire == NULL) { 21225 /* 21226 * Multicast loopback and multicast forwarding is 21227 * done in ip_wput_ire. 21228 * 21229 * Mark this packet to make it be delivered to 21230 * ip_wput_ire after the new ire has been 21231 * created. 21232 * 21233 * The call to ip_newroute_ipif takes into account 21234 * the setsrc reminder. In any case, we take care 21235 * of the RTF_MULTIRT flag. 21236 */ 21237 mp->b_prev = mp->b_next = NULL; 21238 if (xmit_ill == NULL || 21239 xmit_ill->ill_ipif_up_count > 0) { 21240 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21241 setsrc | RTF_MULTIRT, zoneid, infop); 21242 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21243 "ip_wput_end: q %p (%S)", q, "noire"); 21244 } else { 21245 freemsg(first_mp); 21246 } 21247 ipif_refrele(ipif); 21248 if (xmit_ill != NULL) 21249 ill_refrele(xmit_ill); 21250 if (need_decref) 21251 CONN_DEC_REF(connp); 21252 return; 21253 } 21254 21255 ipif_refrele(ipif); 21256 ipif = NULL; 21257 ASSERT(xmit_ill == NULL); 21258 21259 /* 21260 * Honor the RTF_SETSRC flag for multicast packets, 21261 * if allowed by the setsrc reminder. 21262 */ 21263 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21264 ipha->ipha_src = ire->ire_src_addr; 21265 } 21266 21267 /* 21268 * Unconditionally force the TTL to 1 for 21269 * multirouted multicast packets: 21270 * multirouted multicast should not cross 21271 * multicast routers. 21272 */ 21273 if (ire->ire_flags & RTF_MULTIRT) { 21274 if (ipha->ipha_ttl > 1) { 21275 ip2dbg(("ip_wput: forcing multicast " 21276 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21277 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21278 ipha->ipha_ttl = 1; 21279 } 21280 } 21281 } else { 21282 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21283 if ((ire != NULL) && (ire->ire_type & 21284 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21285 ignore_dontroute = B_TRUE; 21286 ignore_nexthop = B_TRUE; 21287 } 21288 if (ire != NULL) { 21289 ire_refrele(ire); 21290 ire = NULL; 21291 } 21292 /* 21293 * Guard against coming in from arp in which case conn is NULL. 21294 * Also guard against non M_DATA with dontroute set but 21295 * destined to local, loopback or broadcast addresses. 21296 */ 21297 if (connp != NULL && connp->conn_dontroute && 21298 !ignore_dontroute) { 21299 dontroute: 21300 /* 21301 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21302 * routing protocols from seeing false direct 21303 * connectivity. 21304 */ 21305 ipha->ipha_ttl = 1; 21306 /* If suitable ipif not found, drop packet */ 21307 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21308 if (dst_ipif == NULL) { 21309 noroute: 21310 ip1dbg(("ip_wput: no route for dst using" 21311 " SO_DONTROUTE\n")); 21312 BUMP_MIB(&ipst->ips_ip_mib, 21313 ipIfStatsOutNoRoutes); 21314 mp->b_prev = mp->b_next = NULL; 21315 if (first_mp == NULL) 21316 first_mp = mp; 21317 goto drop_pkt; 21318 } else { 21319 /* 21320 * If suitable ipif has been found, set 21321 * xmit_ill to the corresponding 21322 * ipif_ill because we'll be using the 21323 * send_from_ill logic below. 21324 */ 21325 ASSERT(xmit_ill == NULL); 21326 xmit_ill = dst_ipif->ipif_ill; 21327 mutex_enter(&xmit_ill->ill_lock); 21328 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21329 mutex_exit(&xmit_ill->ill_lock); 21330 xmit_ill = NULL; 21331 ipif_refrele(dst_ipif); 21332 goto noroute; 21333 } 21334 ill_refhold_locked(xmit_ill); 21335 mutex_exit(&xmit_ill->ill_lock); 21336 ipif_refrele(dst_ipif); 21337 } 21338 } 21339 21340 send_from_ill: 21341 if (xmit_ill != NULL) { 21342 ipif_t *ipif; 21343 21344 /* 21345 * Mark this packet as originated locally 21346 */ 21347 mp->b_prev = mp->b_next = NULL; 21348 21349 /* 21350 * Could be SO_DONTROUTE case also. 21351 * Verify that at least one ipif is up on the ill. 21352 */ 21353 if (xmit_ill->ill_ipif_up_count == 0) { 21354 ip1dbg(("ip_output: xmit_ill %s is down\n", 21355 xmit_ill->ill_name)); 21356 goto drop_pkt; 21357 } 21358 21359 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21360 if (ipif == NULL) { 21361 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21362 xmit_ill->ill_name)); 21363 goto drop_pkt; 21364 } 21365 21366 match_flags = 0; 21367 if (IS_UNDER_IPMP(xmit_ill)) 21368 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21369 21370 /* 21371 * Look for a ire that is part of the group, 21372 * if found use it else call ip_newroute_ipif. 21373 * IPCL_ZONEID is not used for matching because 21374 * IP_ALLZONES option is valid only when the 21375 * ill is accessible from all zones i.e has a 21376 * valid ipif in all zones. 21377 */ 21378 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21379 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21380 msg_getlabel(mp), match_flags, ipst); 21381 /* 21382 * If an ire exists use it or else create 21383 * an ire but don't add it to the cache. 21384 * Adding an ire may cause issues with 21385 * asymmetric routing. 21386 * In case of multiroute always act as if 21387 * ire does not exist. 21388 */ 21389 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21390 if (ire != NULL) 21391 ire_refrele(ire); 21392 ip_newroute_ipif(q, first_mp, ipif, 21393 dst, connp, 0, zoneid, infop); 21394 ipif_refrele(ipif); 21395 ip1dbg(("ip_output: xmit_ill via %s\n", 21396 xmit_ill->ill_name)); 21397 ill_refrele(xmit_ill); 21398 if (need_decref) 21399 CONN_DEC_REF(connp); 21400 return; 21401 } 21402 ipif_refrele(ipif); 21403 } else if (ip_nexthop || (connp != NULL && 21404 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21405 if (!ip_nexthop) { 21406 ip_nexthop = B_TRUE; 21407 nexthop_addr = connp->conn_nexthop_v4; 21408 } 21409 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21410 MATCH_IRE_GW; 21411 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21412 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21413 } else { 21414 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21415 ipst); 21416 } 21417 if (!ire) { 21418 if (ip_nexthop && !ignore_nexthop) { 21419 if (mctl_present) { 21420 io = (ipsec_out_t *)first_mp->b_rptr; 21421 ASSERT(first_mp->b_datap->db_type == 21422 M_CTL); 21423 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21424 } else { 21425 ASSERT(mp == first_mp); 21426 first_mp = allocb( 21427 sizeof (ipsec_info_t), BPRI_HI); 21428 if (first_mp == NULL) { 21429 first_mp = mp; 21430 goto discard_pkt; 21431 } 21432 first_mp->b_datap->db_type = M_CTL; 21433 first_mp->b_wptr += 21434 sizeof (ipsec_info_t); 21435 /* ipsec_out_secure is B_FALSE now */ 21436 bzero(first_mp->b_rptr, 21437 sizeof (ipsec_info_t)); 21438 io = (ipsec_out_t *)first_mp->b_rptr; 21439 io->ipsec_out_type = IPSEC_OUT; 21440 io->ipsec_out_len = 21441 sizeof (ipsec_out_t); 21442 io->ipsec_out_use_global_policy = 21443 B_TRUE; 21444 io->ipsec_out_ns = ipst->ips_netstack; 21445 first_mp->b_cont = mp; 21446 mctl_present = B_TRUE; 21447 } 21448 io->ipsec_out_ip_nexthop = ip_nexthop; 21449 io->ipsec_out_nexthop_addr = nexthop_addr; 21450 } 21451 noirefound: 21452 /* 21453 * Mark this packet as having originated on 21454 * this machine. This will be noted in 21455 * ire_add_then_send, which needs to know 21456 * whether to run it back through ip_wput or 21457 * ip_rput following successful resolution. 21458 */ 21459 mp->b_prev = NULL; 21460 mp->b_next = NULL; 21461 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21462 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21463 "ip_wput_end: q %p (%S)", q, "newroute"); 21464 if (xmit_ill != NULL) 21465 ill_refrele(xmit_ill); 21466 if (need_decref) 21467 CONN_DEC_REF(connp); 21468 return; 21469 } 21470 } 21471 21472 /* We now know where we are going with it. */ 21473 21474 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21475 "ip_wput_end: q %p (%S)", q, "end"); 21476 21477 /* 21478 * Check if the ire has the RTF_MULTIRT flag, inherited 21479 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21480 */ 21481 if (ire->ire_flags & RTF_MULTIRT) { 21482 /* 21483 * Force the TTL of multirouted packets if required. 21484 * The TTL of such packets is bounded by the 21485 * ip_multirt_ttl ndd variable. 21486 */ 21487 if ((ipst->ips_ip_multirt_ttl > 0) && 21488 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21489 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21490 "(was %d), dst 0x%08x\n", 21491 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21492 ntohl(ire->ire_addr))); 21493 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21494 } 21495 /* 21496 * At this point, we check to see if there are any pending 21497 * unresolved routes. ire_multirt_resolvable() 21498 * checks in O(n) that all IRE_OFFSUBNET ire 21499 * entries for the packet's destination and 21500 * flagged RTF_MULTIRT are currently resolved. 21501 * If some remain unresolved, we make a copy 21502 * of the current message. It will be used 21503 * to initiate additional route resolutions. 21504 */ 21505 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21506 msg_getlabel(first_mp), ipst); 21507 ip2dbg(("ip_wput[noirefound]: ire %p, " 21508 "multirt_need_resolve %d, first_mp %p\n", 21509 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21510 if (multirt_need_resolve) { 21511 copy_mp = copymsg(first_mp); 21512 if (copy_mp != NULL) { 21513 MULTIRT_DEBUG_TAG(copy_mp); 21514 } 21515 } 21516 } 21517 21518 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21519 /* 21520 * Try to resolve another multiroute if 21521 * ire_multirt_resolvable() deemed it necessary. 21522 * At this point, we need to distinguish 21523 * multicasts from other packets. For multicasts, 21524 * we call ip_newroute_ipif() and request that both 21525 * multirouting and setsrc flags are checked. 21526 */ 21527 if (copy_mp != NULL) { 21528 if (CLASSD(dst)) { 21529 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21530 if (ipif) { 21531 ASSERT(infop->ip_opt_ill_index == 0); 21532 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21533 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21534 ipif_refrele(ipif); 21535 } else { 21536 MULTIRT_DEBUG_UNTAG(copy_mp); 21537 freemsg(copy_mp); 21538 copy_mp = NULL; 21539 } 21540 } else { 21541 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21542 } 21543 } 21544 if (xmit_ill != NULL) 21545 ill_refrele(xmit_ill); 21546 if (need_decref) 21547 CONN_DEC_REF(connp); 21548 return; 21549 21550 icmp_parameter_problem: 21551 /* could not have originated externally */ 21552 ASSERT(mp->b_prev == NULL); 21553 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21554 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21555 /* it's the IP header length that's in trouble */ 21556 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21557 first_mp = NULL; 21558 } 21559 21560 discard_pkt: 21561 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21562 drop_pkt: 21563 ip1dbg(("ip_wput: dropped packet\n")); 21564 if (ire != NULL) 21565 ire_refrele(ire); 21566 if (need_decref) 21567 CONN_DEC_REF(connp); 21568 freemsg(first_mp); 21569 if (xmit_ill != NULL) 21570 ill_refrele(xmit_ill); 21571 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21572 "ip_wput_end: q %p (%S)", q, "droppkt"); 21573 } 21574 21575 /* 21576 * If this is a conn_t queue, then we pass in the conn. This includes the 21577 * zoneid. 21578 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21579 * in which case we use the global zoneid since those are all part of 21580 * the global zone. 21581 */ 21582 void 21583 ip_wput(queue_t *q, mblk_t *mp) 21584 { 21585 if (CONN_Q(q)) 21586 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21587 else 21588 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21589 } 21590 21591 /* 21592 * 21593 * The following rules must be observed when accessing any ipif or ill 21594 * that has been cached in the conn. Typically conn_outgoing_ill, 21595 * conn_multicast_ipif and conn_multicast_ill. 21596 * 21597 * Access: The ipif or ill pointed to from the conn can be accessed under 21598 * the protection of the conn_lock or after it has been refheld under the 21599 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21600 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21601 * The reason for this is that a concurrent unplumb could actually be 21602 * cleaning up these cached pointers by walking the conns and might have 21603 * finished cleaning up the conn in question. The macros check that an 21604 * unplumb has not yet started on the ipif or ill. 21605 * 21606 * Caching: An ipif or ill pointer may be cached in the conn only after 21607 * making sure that an unplumb has not started. So the caching is done 21608 * while holding both the conn_lock and the ill_lock and after using the 21609 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21610 * flag before starting the cleanup of conns. 21611 * 21612 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21613 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21614 * or a reference to the ipif or a reference to an ire that references the 21615 * ipif. An ipif only changes its ill when migrating from an underlying ill 21616 * to an IPMP ill in ipif_up(). 21617 */ 21618 ipif_t * 21619 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21620 { 21621 ipif_t *ipif; 21622 ill_t *ill; 21623 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21624 21625 *err = 0; 21626 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21627 mutex_enter(&connp->conn_lock); 21628 ipif = *ipifp; 21629 if (ipif != NULL) { 21630 ill = ipif->ipif_ill; 21631 mutex_enter(&ill->ill_lock); 21632 if (IPIF_CAN_LOOKUP(ipif)) { 21633 ipif_refhold_locked(ipif); 21634 mutex_exit(&ill->ill_lock); 21635 mutex_exit(&connp->conn_lock); 21636 rw_exit(&ipst->ips_ill_g_lock); 21637 return (ipif); 21638 } else { 21639 *err = IPIF_LOOKUP_FAILED; 21640 } 21641 mutex_exit(&ill->ill_lock); 21642 } 21643 mutex_exit(&connp->conn_lock); 21644 rw_exit(&ipst->ips_ill_g_lock); 21645 return (NULL); 21646 } 21647 21648 ill_t * 21649 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21650 { 21651 ill_t *ill; 21652 21653 *err = 0; 21654 mutex_enter(&connp->conn_lock); 21655 ill = *illp; 21656 if (ill != NULL) { 21657 mutex_enter(&ill->ill_lock); 21658 if (ILL_CAN_LOOKUP(ill)) { 21659 ill_refhold_locked(ill); 21660 mutex_exit(&ill->ill_lock); 21661 mutex_exit(&connp->conn_lock); 21662 return (ill); 21663 } else { 21664 *err = ILL_LOOKUP_FAILED; 21665 } 21666 mutex_exit(&ill->ill_lock); 21667 } 21668 mutex_exit(&connp->conn_lock); 21669 return (NULL); 21670 } 21671 21672 static int 21673 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21674 { 21675 ill_t *ill; 21676 21677 ill = ipif->ipif_ill; 21678 mutex_enter(&connp->conn_lock); 21679 mutex_enter(&ill->ill_lock); 21680 if (IPIF_CAN_LOOKUP(ipif)) { 21681 *ipifp = ipif; 21682 mutex_exit(&ill->ill_lock); 21683 mutex_exit(&connp->conn_lock); 21684 return (0); 21685 } 21686 mutex_exit(&ill->ill_lock); 21687 mutex_exit(&connp->conn_lock); 21688 return (IPIF_LOOKUP_FAILED); 21689 } 21690 21691 /* 21692 * This is called if the outbound datagram needs fragmentation. 21693 * 21694 * NOTE : This function does not ire_refrele the ire argument passed in. 21695 */ 21696 static void 21697 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21698 ip_stack_t *ipst, conn_t *connp) 21699 { 21700 ipha_t *ipha; 21701 mblk_t *mp; 21702 uint32_t v_hlen_tos_len; 21703 uint32_t max_frag; 21704 uint32_t frag_flag; 21705 boolean_t dont_use; 21706 21707 if (ipsec_mp->b_datap->db_type == M_CTL) { 21708 mp = ipsec_mp->b_cont; 21709 } else { 21710 mp = ipsec_mp; 21711 } 21712 21713 ipha = (ipha_t *)mp->b_rptr; 21714 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21715 21716 #ifdef _BIG_ENDIAN 21717 #define V_HLEN (v_hlen_tos_len >> 24) 21718 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21719 #else 21720 #define V_HLEN (v_hlen_tos_len & 0xFF) 21721 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21722 #endif 21723 21724 #ifndef SPEED_BEFORE_SAFETY 21725 /* 21726 * Check that ipha_length is consistent with 21727 * the mblk length 21728 */ 21729 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21730 ip0dbg(("Packet length mismatch: %d, %ld\n", 21731 LENGTH, msgdsize(mp))); 21732 freemsg(ipsec_mp); 21733 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21734 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21735 "packet length mismatch"); 21736 return; 21737 } 21738 #endif 21739 /* 21740 * Don't use frag_flag if pre-built packet or source 21741 * routed or if multicast (since multicast packets do not solicit 21742 * ICMP "packet too big" messages). Get the values of 21743 * max_frag and frag_flag atomically by acquiring the 21744 * ire_lock. 21745 */ 21746 mutex_enter(&ire->ire_lock); 21747 max_frag = ire->ire_max_frag; 21748 frag_flag = ire->ire_frag_flag; 21749 mutex_exit(&ire->ire_lock); 21750 21751 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21752 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21753 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21754 21755 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21756 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21757 } 21758 21759 /* 21760 * Used for deciding the MSS size for the upper layer. Thus 21761 * we need to check the outbound policy values in the conn. 21762 */ 21763 int 21764 conn_ipsec_length(conn_t *connp) 21765 { 21766 ipsec_latch_t *ipl; 21767 21768 ipl = connp->conn_latch; 21769 if (ipl == NULL) 21770 return (0); 21771 21772 if (ipl->ipl_out_policy == NULL) 21773 return (0); 21774 21775 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21776 } 21777 21778 /* 21779 * Returns an estimate of the IPsec headers size. This is used if 21780 * we don't want to call into IPsec to get the exact size. 21781 */ 21782 int 21783 ipsec_out_extra_length(mblk_t *ipsec_mp) 21784 { 21785 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21786 ipsec_action_t *a; 21787 21788 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21789 if (!io->ipsec_out_secure) 21790 return (0); 21791 21792 a = io->ipsec_out_act; 21793 21794 if (a == NULL) { 21795 ASSERT(io->ipsec_out_policy != NULL); 21796 a = io->ipsec_out_policy->ipsp_act; 21797 } 21798 ASSERT(a != NULL); 21799 21800 return (a->ipa_ovhd); 21801 } 21802 21803 /* 21804 * Returns an estimate of the IPsec headers size. This is used if 21805 * we don't want to call into IPsec to get the exact size. 21806 */ 21807 int 21808 ipsec_in_extra_length(mblk_t *ipsec_mp) 21809 { 21810 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21811 ipsec_action_t *a; 21812 21813 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21814 21815 a = ii->ipsec_in_action; 21816 return (a == NULL ? 0 : a->ipa_ovhd); 21817 } 21818 21819 /* 21820 * If there are any source route options, return the true final 21821 * destination. Otherwise, return the destination. 21822 */ 21823 ipaddr_t 21824 ip_get_dst(ipha_t *ipha) 21825 { 21826 ipoptp_t opts; 21827 uchar_t *opt; 21828 uint8_t optval; 21829 uint8_t optlen; 21830 ipaddr_t dst; 21831 uint32_t off; 21832 21833 dst = ipha->ipha_dst; 21834 21835 if (IS_SIMPLE_IPH(ipha)) 21836 return (dst); 21837 21838 for (optval = ipoptp_first(&opts, ipha); 21839 optval != IPOPT_EOL; 21840 optval = ipoptp_next(&opts)) { 21841 opt = opts.ipoptp_cur; 21842 optlen = opts.ipoptp_len; 21843 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21844 switch (optval) { 21845 case IPOPT_SSRR: 21846 case IPOPT_LSRR: 21847 off = opt[IPOPT_OFFSET]; 21848 /* 21849 * If one of the conditions is true, it means 21850 * end of options and dst already has the right 21851 * value. 21852 */ 21853 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21854 off = optlen - IP_ADDR_LEN; 21855 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21856 } 21857 return (dst); 21858 default: 21859 break; 21860 } 21861 } 21862 21863 return (dst); 21864 } 21865 21866 mblk_t * 21867 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21868 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21869 { 21870 ipsec_out_t *io; 21871 mblk_t *first_mp; 21872 boolean_t policy_present; 21873 ip_stack_t *ipst; 21874 ipsec_stack_t *ipss; 21875 21876 ASSERT(ire != NULL); 21877 ipst = ire->ire_ipst; 21878 ipss = ipst->ips_netstack->netstack_ipsec; 21879 21880 first_mp = mp; 21881 if (mp->b_datap->db_type == M_CTL) { 21882 io = (ipsec_out_t *)first_mp->b_rptr; 21883 /* 21884 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21885 * 21886 * 1) There is per-socket policy (including cached global 21887 * policy) or a policy on the IP-in-IP tunnel. 21888 * 2) There is no per-socket policy, but it is 21889 * a multicast packet that needs to go out 21890 * on a specific interface. This is the case 21891 * where (ip_wput and ip_wput_multicast) attaches 21892 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21893 * 21894 * In case (2) we check with global policy to 21895 * see if there is a match and set the ill_index 21896 * appropriately so that we can lookup the ire 21897 * properly in ip_wput_ipsec_out. 21898 */ 21899 21900 /* 21901 * ipsec_out_use_global_policy is set to B_FALSE 21902 * in ipsec_in_to_out(). Refer to that function for 21903 * details. 21904 */ 21905 if ((io->ipsec_out_latch == NULL) && 21906 (io->ipsec_out_use_global_policy)) { 21907 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21908 ire, connp, unspec_src, zoneid)); 21909 } 21910 if (!io->ipsec_out_secure) { 21911 /* 21912 * If this is not a secure packet, drop 21913 * the IPSEC_OUT mp and treat it as a clear 21914 * packet. This happens when we are sending 21915 * a ICMP reply back to a clear packet. See 21916 * ipsec_in_to_out() for details. 21917 */ 21918 mp = first_mp->b_cont; 21919 freeb(first_mp); 21920 } 21921 return (mp); 21922 } 21923 /* 21924 * See whether we need to attach a global policy here. We 21925 * don't depend on the conn (as it could be null) for deciding 21926 * what policy this datagram should go through because it 21927 * should have happened in ip_wput if there was some 21928 * policy. This normally happens for connections which are not 21929 * fully bound preventing us from caching policies in 21930 * ip_bind. Packets coming from the TCP listener/global queue 21931 * - which are non-hard_bound - could also be affected by 21932 * applying policy here. 21933 * 21934 * If this packet is coming from tcp global queue or listener, 21935 * we will be applying policy here. This may not be *right* 21936 * if these packets are coming from the detached connection as 21937 * it could have gone in clear before. This happens only if a 21938 * TCP connection started when there is no policy and somebody 21939 * added policy before it became detached. Thus packets of the 21940 * detached connection could go out secure and the other end 21941 * would drop it because it will be expecting in clear. The 21942 * converse is not true i.e if somebody starts a TCP 21943 * connection and deletes the policy, all the packets will 21944 * still go out with the policy that existed before deleting 21945 * because ip_unbind sends up policy information which is used 21946 * by TCP on subsequent ip_wputs. The right solution is to fix 21947 * TCP to attach a dummy IPSEC_OUT and set 21948 * ipsec_out_use_global_policy to B_FALSE. As this might 21949 * affect performance for normal cases, we are not doing it. 21950 * Thus, set policy before starting any TCP connections. 21951 * 21952 * NOTE - We might apply policy even for a hard bound connection 21953 * - for which we cached policy in ip_bind - if somebody added 21954 * global policy after we inherited the policy in ip_bind. 21955 * This means that the packets that were going out in clear 21956 * previously would start going secure and hence get dropped 21957 * on the other side. To fix this, TCP attaches a dummy 21958 * ipsec_out and make sure that we don't apply global policy. 21959 */ 21960 if (ipha != NULL) 21961 policy_present = ipss->ipsec_outbound_v4_policy_present; 21962 else 21963 policy_present = ipss->ipsec_outbound_v6_policy_present; 21964 if (!policy_present) 21965 return (mp); 21966 21967 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21968 zoneid)); 21969 } 21970 21971 /* 21972 * This function does the ire_refrele of the ire passed in as the 21973 * argument. As this function looks up more ires i.e broadcast ires, 21974 * it needs to REFRELE them. Currently, for simplicity we don't 21975 * differentiate the one passed in and looked up here. We always 21976 * REFRELE. 21977 * IPQoS Notes: 21978 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21979 * IPsec packets are done in ipsec_out_process. 21980 */ 21981 void 21982 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21983 zoneid_t zoneid) 21984 { 21985 ipha_t *ipha; 21986 #define rptr ((uchar_t *)ipha) 21987 queue_t *stq; 21988 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21989 uint32_t v_hlen_tos_len; 21990 uint32_t ttl_protocol; 21991 ipaddr_t src; 21992 ipaddr_t dst; 21993 uint32_t cksum; 21994 ipaddr_t orig_src; 21995 ire_t *ire1; 21996 mblk_t *next_mp; 21997 uint_t hlen; 21998 uint16_t *up; 21999 uint32_t max_frag = ire->ire_max_frag; 22000 ill_t *ill = ire_to_ill(ire); 22001 int clusterwide; 22002 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22003 int ipsec_len; 22004 mblk_t *first_mp; 22005 ipsec_out_t *io; 22006 boolean_t conn_dontroute; /* conn value for multicast */ 22007 boolean_t conn_multicast_loop; /* conn value for multicast */ 22008 boolean_t multicast_forward; /* Should we forward ? */ 22009 boolean_t unspec_src; 22010 ill_t *conn_outgoing_ill = NULL; 22011 ill_t *ire_ill; 22012 ill_t *ire1_ill; 22013 ill_t *out_ill; 22014 uint32_t ill_index = 0; 22015 boolean_t multirt_send = B_FALSE; 22016 int err; 22017 ipxmit_state_t pktxmit_state; 22018 ip_stack_t *ipst = ire->ire_ipst; 22019 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22020 22021 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22022 "ip_wput_ire_start: q %p", q); 22023 22024 multicast_forward = B_FALSE; 22025 unspec_src = (connp != NULL && connp->conn_unspec_src); 22026 22027 if (ire->ire_flags & RTF_MULTIRT) { 22028 /* 22029 * Multirouting case. The bucket where ire is stored 22030 * probably holds other RTF_MULTIRT flagged ire 22031 * to the destination. In this call to ip_wput_ire, 22032 * we attempt to send the packet through all 22033 * those ires. Thus, we first ensure that ire is the 22034 * first RTF_MULTIRT ire in the bucket, 22035 * before walking the ire list. 22036 */ 22037 ire_t *first_ire; 22038 irb_t *irb = ire->ire_bucket; 22039 ASSERT(irb != NULL); 22040 22041 /* Make sure we do not omit any multiroute ire. */ 22042 IRB_REFHOLD(irb); 22043 for (first_ire = irb->irb_ire; 22044 first_ire != NULL; 22045 first_ire = first_ire->ire_next) { 22046 if ((first_ire->ire_flags & RTF_MULTIRT) && 22047 (first_ire->ire_addr == ire->ire_addr) && 22048 !(first_ire->ire_marks & 22049 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22050 break; 22051 } 22052 22053 if ((first_ire != NULL) && (first_ire != ire)) { 22054 IRE_REFHOLD(first_ire); 22055 ire_refrele(ire); 22056 ire = first_ire; 22057 ill = ire_to_ill(ire); 22058 } 22059 IRB_REFRELE(irb); 22060 } 22061 22062 /* 22063 * conn_outgoing_ill variable is used only in the broadcast loop. 22064 * for performance we don't grab the mutexs in the fastpath 22065 */ 22066 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22067 connp->conn_outgoing_ill != NULL) { 22068 conn_outgoing_ill = conn_get_held_ill(connp, 22069 &connp->conn_outgoing_ill, &err); 22070 if (err == ILL_LOOKUP_FAILED) { 22071 ire_refrele(ire); 22072 freemsg(mp); 22073 return; 22074 } 22075 } 22076 22077 if (mp->b_datap->db_type != M_CTL) { 22078 ipha = (ipha_t *)mp->b_rptr; 22079 } else { 22080 io = (ipsec_out_t *)mp->b_rptr; 22081 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22082 ASSERT(zoneid == io->ipsec_out_zoneid); 22083 ASSERT(zoneid != ALL_ZONES); 22084 ipha = (ipha_t *)mp->b_cont->b_rptr; 22085 dst = ipha->ipha_dst; 22086 /* 22087 * For the multicast case, ipsec_out carries conn_dontroute and 22088 * conn_multicast_loop as conn may not be available here. We 22089 * need this for multicast loopback and forwarding which is done 22090 * later in the code. 22091 */ 22092 if (CLASSD(dst)) { 22093 conn_dontroute = io->ipsec_out_dontroute; 22094 conn_multicast_loop = io->ipsec_out_multicast_loop; 22095 /* 22096 * If conn_dontroute is not set or conn_multicast_loop 22097 * is set, we need to do forwarding/loopback. For 22098 * datagrams from ip_wput_multicast, conn_dontroute is 22099 * set to B_TRUE and conn_multicast_loop is set to 22100 * B_FALSE so that we neither do forwarding nor 22101 * loopback. 22102 */ 22103 if (!conn_dontroute || conn_multicast_loop) 22104 multicast_forward = B_TRUE; 22105 } 22106 } 22107 22108 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22109 ire->ire_zoneid != ALL_ZONES) { 22110 /* 22111 * When a zone sends a packet to another zone, we try to deliver 22112 * the packet under the same conditions as if the destination 22113 * was a real node on the network. To do so, we look for a 22114 * matching route in the forwarding table. 22115 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22116 * ip_newroute() does. 22117 * Note that IRE_LOCAL are special, since they are used 22118 * when the zoneid doesn't match in some cases. This means that 22119 * we need to handle ipha_src differently since ire_src_addr 22120 * belongs to the receiving zone instead of the sending zone. 22121 * When ip_restrict_interzone_loopback is set, then 22122 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22123 * for loopback between zones when the logical "Ethernet" would 22124 * have looped them back. 22125 */ 22126 ire_t *src_ire; 22127 22128 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22129 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22130 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22131 if (src_ire != NULL && 22132 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22133 (!ipst->ips_ip_restrict_interzone_loopback || 22134 ire_local_same_lan(ire, src_ire))) { 22135 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22136 ipha->ipha_src = src_ire->ire_src_addr; 22137 ire_refrele(src_ire); 22138 } else { 22139 ire_refrele(ire); 22140 if (conn_outgoing_ill != NULL) 22141 ill_refrele(conn_outgoing_ill); 22142 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22143 if (src_ire != NULL) { 22144 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22145 ire_refrele(src_ire); 22146 freemsg(mp); 22147 return; 22148 } 22149 ire_refrele(src_ire); 22150 } 22151 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22152 /* Failed */ 22153 freemsg(mp); 22154 return; 22155 } 22156 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22157 ipst); 22158 return; 22159 } 22160 } 22161 22162 if (mp->b_datap->db_type == M_CTL || 22163 ipss->ipsec_outbound_v4_policy_present) { 22164 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22165 unspec_src, zoneid); 22166 if (mp == NULL) { 22167 ire_refrele(ire); 22168 if (conn_outgoing_ill != NULL) 22169 ill_refrele(conn_outgoing_ill); 22170 return; 22171 } 22172 /* 22173 * Trusted Extensions supports all-zones interfaces, so 22174 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22175 * the global zone. 22176 */ 22177 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22178 io = (ipsec_out_t *)mp->b_rptr; 22179 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22180 zoneid = io->ipsec_out_zoneid; 22181 } 22182 } 22183 22184 first_mp = mp; 22185 ipsec_len = 0; 22186 22187 if (first_mp->b_datap->db_type == M_CTL) { 22188 io = (ipsec_out_t *)first_mp->b_rptr; 22189 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22190 mp = first_mp->b_cont; 22191 ipsec_len = ipsec_out_extra_length(first_mp); 22192 ASSERT(ipsec_len >= 0); 22193 /* We already picked up the zoneid from the M_CTL above */ 22194 ASSERT(zoneid == io->ipsec_out_zoneid); 22195 ASSERT(zoneid != ALL_ZONES); 22196 22197 /* 22198 * Drop M_CTL here if IPsec processing is not needed. 22199 * (Non-IPsec use of M_CTL extracted any information it 22200 * needed above). 22201 */ 22202 if (ipsec_len == 0) { 22203 freeb(first_mp); 22204 first_mp = mp; 22205 } 22206 } 22207 22208 /* 22209 * Fast path for ip_wput_ire 22210 */ 22211 22212 ipha = (ipha_t *)mp->b_rptr; 22213 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22214 dst = ipha->ipha_dst; 22215 22216 /* 22217 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22218 * if the socket is a SOCK_RAW type. The transport checksum should 22219 * be provided in the pre-built packet, so we don't need to compute it. 22220 * Also, other application set flags, like DF, should not be altered. 22221 * Other transport MUST pass down zero. 22222 */ 22223 ip_hdr_included = ipha->ipha_ident; 22224 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22225 22226 if (CLASSD(dst)) { 22227 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22228 ntohl(dst), 22229 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22230 ntohl(ire->ire_addr))); 22231 } 22232 22233 /* Macros to extract header fields from data already in registers */ 22234 #ifdef _BIG_ENDIAN 22235 #define V_HLEN (v_hlen_tos_len >> 24) 22236 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22237 #define PROTO (ttl_protocol & 0xFF) 22238 #else 22239 #define V_HLEN (v_hlen_tos_len & 0xFF) 22240 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22241 #define PROTO (ttl_protocol >> 8) 22242 #endif 22243 22244 orig_src = src = ipha->ipha_src; 22245 /* (The loop back to "another" is explained down below.) */ 22246 another:; 22247 /* 22248 * Assign an ident value for this packet. We assign idents on 22249 * a per destination basis out of the IRE. There could be 22250 * other threads targeting the same destination, so we have to 22251 * arrange for a atomic increment. Note that we use a 32-bit 22252 * atomic add because it has better performance than its 22253 * 16-bit sibling. 22254 * 22255 * If running in cluster mode and if the source address 22256 * belongs to a replicated service then vector through 22257 * cl_inet_ipident vector to allocate ip identifier 22258 * NOTE: This is a contract private interface with the 22259 * clustering group. 22260 */ 22261 clusterwide = 0; 22262 if (cl_inet_ipident) { 22263 ASSERT(cl_inet_isclusterwide); 22264 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22265 22266 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22267 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22268 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22269 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22270 (uint8_t *)(uintptr_t)dst, NULL); 22271 clusterwide = 1; 22272 } 22273 } 22274 if (!clusterwide) { 22275 ipha->ipha_ident = 22276 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22277 } 22278 22279 #ifndef _BIG_ENDIAN 22280 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22281 #endif 22282 22283 /* 22284 * Set source address unless sent on an ill or conn_unspec_src is set. 22285 * This is needed to obey conn_unspec_src when packets go through 22286 * ip_newroute + arp. 22287 * Assumes ip_newroute{,_multi} sets the source address as well. 22288 */ 22289 if (src == INADDR_ANY && !unspec_src) { 22290 /* 22291 * Assign the appropriate source address from the IRE if none 22292 * was specified. 22293 */ 22294 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22295 22296 src = ire->ire_src_addr; 22297 if (connp == NULL) { 22298 ip1dbg(("ip_wput_ire: no connp and no src " 22299 "address for dst 0x%x, using src 0x%x\n", 22300 ntohl(dst), 22301 ntohl(src))); 22302 } 22303 ipha->ipha_src = src; 22304 } 22305 stq = ire->ire_stq; 22306 22307 /* 22308 * We only allow ire chains for broadcasts since there will 22309 * be multiple IRE_CACHE entries for the same multicast 22310 * address (one per ipif). 22311 */ 22312 next_mp = NULL; 22313 22314 /* broadcast packet */ 22315 if (ire->ire_type == IRE_BROADCAST) 22316 goto broadcast; 22317 22318 /* loopback ? */ 22319 if (stq == NULL) 22320 goto nullstq; 22321 22322 /* The ill_index for outbound ILL */ 22323 ill_index = Q_TO_INDEX(stq); 22324 22325 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22326 ttl_protocol = ((uint16_t *)ipha)[4]; 22327 22328 /* pseudo checksum (do it in parts for IP header checksum) */ 22329 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22330 22331 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22332 queue_t *dev_q = stq->q_next; 22333 22334 /* flow controlled */ 22335 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22336 goto blocked; 22337 22338 if ((PROTO == IPPROTO_UDP) && 22339 (ip_hdr_included != IP_HDR_INCLUDED)) { 22340 hlen = (V_HLEN & 0xF) << 2; 22341 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22342 if (*up != 0) { 22343 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22344 hlen, LENGTH, max_frag, ipsec_len, cksum); 22345 /* Software checksum? */ 22346 if (DB_CKSUMFLAGS(mp) == 0) { 22347 IP_STAT(ipst, ip_out_sw_cksum); 22348 IP_STAT_UPDATE(ipst, 22349 ip_udp_out_sw_cksum_bytes, 22350 LENGTH - hlen); 22351 } 22352 } 22353 } 22354 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22355 hlen = (V_HLEN & 0xF) << 2; 22356 if (PROTO == IPPROTO_TCP) { 22357 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22358 /* 22359 * The packet header is processed once and for all, even 22360 * in the multirouting case. We disable hardware 22361 * checksum if the packet is multirouted, as it will be 22362 * replicated via several interfaces, and not all of 22363 * them may have this capability. 22364 */ 22365 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22366 LENGTH, max_frag, ipsec_len, cksum); 22367 /* Software checksum? */ 22368 if (DB_CKSUMFLAGS(mp) == 0) { 22369 IP_STAT(ipst, ip_out_sw_cksum); 22370 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22371 LENGTH - hlen); 22372 } 22373 } else { 22374 sctp_hdr_t *sctph; 22375 22376 ASSERT(PROTO == IPPROTO_SCTP); 22377 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22378 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22379 /* 22380 * Zero out the checksum field to ensure proper 22381 * checksum calculation. 22382 */ 22383 sctph->sh_chksum = 0; 22384 #ifdef DEBUG 22385 if (!skip_sctp_cksum) 22386 #endif 22387 sctph->sh_chksum = sctp_cksum(mp, hlen); 22388 } 22389 } 22390 22391 /* 22392 * If this is a multicast packet and originated from ip_wput 22393 * we need to do loopback and forwarding checks. If it comes 22394 * from ip_wput_multicast, we SHOULD not do this. 22395 */ 22396 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22397 22398 /* checksum */ 22399 cksum += ttl_protocol; 22400 22401 /* fragment the packet */ 22402 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22403 goto fragmentit; 22404 /* 22405 * Don't use frag_flag if packet is pre-built or source 22406 * routed or if multicast (since multicast packets do 22407 * not solicit ICMP "packet too big" messages). 22408 */ 22409 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22410 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22411 !ip_source_route_included(ipha)) && 22412 !CLASSD(ipha->ipha_dst)) 22413 ipha->ipha_fragment_offset_and_flags |= 22414 htons(ire->ire_frag_flag); 22415 22416 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22417 /* calculate IP header checksum */ 22418 cksum += ipha->ipha_ident; 22419 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22420 cksum += ipha->ipha_fragment_offset_and_flags; 22421 22422 /* IP options present */ 22423 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22424 if (hlen) 22425 goto checksumoptions; 22426 22427 /* calculate hdr checksum */ 22428 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22429 cksum = ~(cksum + (cksum >> 16)); 22430 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22431 } 22432 if (ipsec_len != 0) { 22433 /* 22434 * We will do the rest of the processing after 22435 * we come back from IPsec in ip_wput_ipsec_out(). 22436 */ 22437 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22438 22439 io = (ipsec_out_t *)first_mp->b_rptr; 22440 io->ipsec_out_ill_index = 22441 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22442 ipsec_out_process(q, first_mp, ire, 0); 22443 ire_refrele(ire); 22444 if (conn_outgoing_ill != NULL) 22445 ill_refrele(conn_outgoing_ill); 22446 return; 22447 } 22448 22449 /* 22450 * In most cases, the emission loop below is entered only 22451 * once. Only in the case where the ire holds the 22452 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22453 * flagged ires in the bucket, and send the packet 22454 * through all crossed RTF_MULTIRT routes. 22455 */ 22456 if (ire->ire_flags & RTF_MULTIRT) { 22457 multirt_send = B_TRUE; 22458 } 22459 do { 22460 if (multirt_send) { 22461 irb_t *irb; 22462 /* 22463 * We are in a multiple send case, need to get 22464 * the next ire and make a duplicate of the packet. 22465 * ire1 holds here the next ire to process in the 22466 * bucket. If multirouting is expected, 22467 * any non-RTF_MULTIRT ire that has the 22468 * right destination address is ignored. 22469 */ 22470 irb = ire->ire_bucket; 22471 ASSERT(irb != NULL); 22472 22473 IRB_REFHOLD(irb); 22474 for (ire1 = ire->ire_next; 22475 ire1 != NULL; 22476 ire1 = ire1->ire_next) { 22477 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22478 continue; 22479 if (ire1->ire_addr != ire->ire_addr) 22480 continue; 22481 if (ire1->ire_marks & 22482 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22483 continue; 22484 22485 /* Got one */ 22486 IRE_REFHOLD(ire1); 22487 break; 22488 } 22489 IRB_REFRELE(irb); 22490 22491 if (ire1 != NULL) { 22492 next_mp = copyb(mp); 22493 if ((next_mp == NULL) || 22494 ((mp->b_cont != NULL) && 22495 ((next_mp->b_cont = 22496 dupmsg(mp->b_cont)) == NULL))) { 22497 freemsg(next_mp); 22498 next_mp = NULL; 22499 ire_refrele(ire1); 22500 ire1 = NULL; 22501 } 22502 } 22503 22504 /* Last multiroute ire; don't loop anymore. */ 22505 if (ire1 == NULL) { 22506 multirt_send = B_FALSE; 22507 } 22508 } 22509 22510 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22511 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22512 mblk_t *, mp); 22513 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22514 ipst->ips_ipv4firewall_physical_out, 22515 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22516 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22517 22518 if (mp == NULL) 22519 goto release_ire_and_ill; 22520 22521 if (ipst->ips_ipobs_enabled) { 22522 zoneid_t szone; 22523 22524 /* 22525 * On the outbound path the destination zone will be 22526 * unknown as we're sending this packet out on the 22527 * wire. 22528 */ 22529 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22530 ALL_ZONES); 22531 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22532 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22533 } 22534 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22535 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22536 22537 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22538 22539 if ((pktxmit_state == SEND_FAILED) || 22540 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22541 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22542 "- packet dropped\n")); 22543 release_ire_and_ill: 22544 ire_refrele(ire); 22545 if (next_mp != NULL) { 22546 freemsg(next_mp); 22547 ire_refrele(ire1); 22548 } 22549 if (conn_outgoing_ill != NULL) 22550 ill_refrele(conn_outgoing_ill); 22551 return; 22552 } 22553 22554 if (CLASSD(dst)) { 22555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22556 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22557 LENGTH); 22558 } 22559 22560 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22561 "ip_wput_ire_end: q %p (%S)", 22562 q, "last copy out"); 22563 IRE_REFRELE(ire); 22564 22565 if (multirt_send) { 22566 ASSERT(ire1); 22567 /* 22568 * Proceed with the next RTF_MULTIRT ire, 22569 * Also set up the send-to queue accordingly. 22570 */ 22571 ire = ire1; 22572 ire1 = NULL; 22573 stq = ire->ire_stq; 22574 mp = next_mp; 22575 next_mp = NULL; 22576 ipha = (ipha_t *)mp->b_rptr; 22577 ill_index = Q_TO_INDEX(stq); 22578 ill = (ill_t *)stq->q_ptr; 22579 } 22580 } while (multirt_send); 22581 if (conn_outgoing_ill != NULL) 22582 ill_refrele(conn_outgoing_ill); 22583 return; 22584 22585 /* 22586 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22587 */ 22588 broadcast: 22589 { 22590 /* 22591 * To avoid broadcast storms, we usually set the TTL to 1 for 22592 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22593 * can be overridden stack-wide through the ip_broadcast_ttl 22594 * ndd tunable, or on a per-connection basis through the 22595 * IP_BROADCAST_TTL socket option. 22596 * 22597 * In the event that we are replying to incoming ICMP packets, 22598 * connp could be NULL. 22599 */ 22600 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22601 if (connp != NULL) { 22602 if (connp->conn_dontroute) 22603 ipha->ipha_ttl = 1; 22604 else if (connp->conn_broadcast_ttl != 0) 22605 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22606 } 22607 22608 /* 22609 * Note that we are not doing a IRB_REFHOLD here. 22610 * Actually we don't care if the list changes i.e 22611 * if somebody deletes an IRE from the list while 22612 * we drop the lock, the next time we come around 22613 * ire_next will be NULL and hence we won't send 22614 * out multiple copies which is fine. 22615 */ 22616 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22617 ire1 = ire->ire_next; 22618 if (conn_outgoing_ill != NULL) { 22619 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22620 ASSERT(ire1 == ire->ire_next); 22621 if (ire1 != NULL && ire1->ire_addr == dst) { 22622 ire_refrele(ire); 22623 ire = ire1; 22624 IRE_REFHOLD(ire); 22625 ire1 = ire->ire_next; 22626 continue; 22627 } 22628 rw_exit(&ire->ire_bucket->irb_lock); 22629 /* Did not find a matching ill */ 22630 ip1dbg(("ip_wput_ire: broadcast with no " 22631 "matching IP_BOUND_IF ill %s dst %x\n", 22632 conn_outgoing_ill->ill_name, dst)); 22633 freemsg(first_mp); 22634 if (ire != NULL) 22635 ire_refrele(ire); 22636 ill_refrele(conn_outgoing_ill); 22637 return; 22638 } 22639 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22640 /* 22641 * If the next IRE has the same address and is not one 22642 * of the two copies that we need to send, try to see 22643 * whether this copy should be sent at all. This 22644 * assumes that we insert loopbacks first and then 22645 * non-loopbacks. This is acheived by inserting the 22646 * loopback always before non-loopback. 22647 * This is used to send a single copy of a broadcast 22648 * packet out all physical interfaces that have an 22649 * matching IRE_BROADCAST while also looping 22650 * back one copy (to ip_wput_local) for each 22651 * matching physical interface. However, we avoid 22652 * sending packets out different logical that match by 22653 * having ipif_up/ipif_down supress duplicate 22654 * IRE_BROADCASTS. 22655 * 22656 * This feature is currently used to get broadcasts 22657 * sent to multiple interfaces, when the broadcast 22658 * address being used applies to multiple interfaces. 22659 * For example, a whole net broadcast will be 22660 * replicated on every connected subnet of 22661 * the target net. 22662 * 22663 * Each zone has its own set of IRE_BROADCASTs, so that 22664 * we're able to distribute inbound packets to multiple 22665 * zones who share a broadcast address. We avoid looping 22666 * back outbound packets in different zones but on the 22667 * same ill, as the application would see duplicates. 22668 * 22669 * This logic assumes that ire_add_v4() groups the 22670 * IRE_BROADCAST entries so that those with the same 22671 * ire_addr are kept together. 22672 */ 22673 ire_ill = ire->ire_ipif->ipif_ill; 22674 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22675 while (ire1 != NULL && ire1->ire_addr == dst) { 22676 ire1_ill = ire1->ire_ipif->ipif_ill; 22677 if (ire1_ill != ire_ill) 22678 break; 22679 ire1 = ire1->ire_next; 22680 } 22681 } 22682 } 22683 ASSERT(multirt_send == B_FALSE); 22684 if (ire1 != NULL && ire1->ire_addr == dst) { 22685 if ((ire->ire_flags & RTF_MULTIRT) && 22686 (ire1->ire_flags & RTF_MULTIRT)) { 22687 /* 22688 * We are in the multirouting case. 22689 * The message must be sent at least 22690 * on both ires. These ires have been 22691 * inserted AFTER the standard ones 22692 * in ip_rt_add(). There are thus no 22693 * other ire entries for the destination 22694 * address in the rest of the bucket 22695 * that do not have the RTF_MULTIRT 22696 * flag. We don't process a copy 22697 * of the message here. This will be 22698 * done in the final sending loop. 22699 */ 22700 multirt_send = B_TRUE; 22701 } else { 22702 next_mp = ip_copymsg(first_mp); 22703 if (next_mp != NULL) 22704 IRE_REFHOLD(ire1); 22705 } 22706 } 22707 rw_exit(&ire->ire_bucket->irb_lock); 22708 } 22709 22710 if (stq) { 22711 /* 22712 * A non-NULL send-to queue means this packet is going 22713 * out of this machine. 22714 */ 22715 out_ill = (ill_t *)stq->q_ptr; 22716 22717 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22718 ttl_protocol = ((uint16_t *)ipha)[4]; 22719 /* 22720 * We accumulate the pseudo header checksum in cksum. 22721 * This is pretty hairy code, so watch close. One 22722 * thing to keep in mind is that UDP and TCP have 22723 * stored their respective datagram lengths in their 22724 * checksum fields. This lines things up real nice. 22725 */ 22726 cksum = (dst >> 16) + (dst & 0xFFFF) + 22727 (src >> 16) + (src & 0xFFFF); 22728 /* 22729 * We assume the udp checksum field contains the 22730 * length, so to compute the pseudo header checksum, 22731 * all we need is the protocol number and src/dst. 22732 */ 22733 /* Provide the checksums for UDP and TCP. */ 22734 if ((PROTO == IPPROTO_TCP) && 22735 (ip_hdr_included != IP_HDR_INCLUDED)) { 22736 /* hlen gets the number of uchar_ts in the IP header */ 22737 hlen = (V_HLEN & 0xF) << 2; 22738 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22739 IP_STAT(ipst, ip_out_sw_cksum); 22740 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22741 LENGTH - hlen); 22742 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22743 } else if (PROTO == IPPROTO_SCTP && 22744 (ip_hdr_included != IP_HDR_INCLUDED)) { 22745 sctp_hdr_t *sctph; 22746 22747 hlen = (V_HLEN & 0xF) << 2; 22748 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22749 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22750 sctph->sh_chksum = 0; 22751 #ifdef DEBUG 22752 if (!skip_sctp_cksum) 22753 #endif 22754 sctph->sh_chksum = sctp_cksum(mp, hlen); 22755 } else { 22756 queue_t *dev_q = stq->q_next; 22757 22758 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 22759 blocked: 22760 ipha->ipha_ident = ip_hdr_included; 22761 /* 22762 * If we don't have a conn to apply 22763 * backpressure, free the message. 22764 * In the ire_send path, we don't know 22765 * the position to requeue the packet. Rather 22766 * than reorder packets, we just drop this 22767 * packet. 22768 */ 22769 if (ipst->ips_ip_output_queue && 22770 connp != NULL && 22771 caller != IRE_SEND) { 22772 if (caller == IP_WSRV) { 22773 connp->conn_did_putbq = 1; 22774 (void) putbq(connp->conn_wq, 22775 first_mp); 22776 conn_drain_insert(connp); 22777 /* 22778 * This is the service thread, 22779 * and the queue is already 22780 * noenabled. The check for 22781 * canput and the putbq is not 22782 * atomic. So we need to check 22783 * again. 22784 */ 22785 if (canput(stq->q_next)) 22786 connp->conn_did_putbq 22787 = 0; 22788 IP_STAT(ipst, ip_conn_flputbq); 22789 } else { 22790 /* 22791 * We are not the service proc. 22792 * ip_wsrv will be scheduled or 22793 * is already running. 22794 */ 22795 22796 (void) putq(connp->conn_wq, 22797 first_mp); 22798 } 22799 } else { 22800 out_ill = (ill_t *)stq->q_ptr; 22801 BUMP_MIB(out_ill->ill_ip_mib, 22802 ipIfStatsOutDiscards); 22803 freemsg(first_mp); 22804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22805 "ip_wput_ire_end: q %p (%S)", 22806 q, "discard"); 22807 } 22808 ire_refrele(ire); 22809 if (next_mp) { 22810 ire_refrele(ire1); 22811 freemsg(next_mp); 22812 } 22813 if (conn_outgoing_ill != NULL) 22814 ill_refrele(conn_outgoing_ill); 22815 return; 22816 } 22817 if ((PROTO == IPPROTO_UDP) && 22818 (ip_hdr_included != IP_HDR_INCLUDED)) { 22819 /* 22820 * hlen gets the number of uchar_ts in the 22821 * IP header 22822 */ 22823 hlen = (V_HLEN & 0xF) << 2; 22824 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22825 max_frag = ire->ire_max_frag; 22826 if (*up != 0) { 22827 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22828 up, PROTO, hlen, LENGTH, max_frag, 22829 ipsec_len, cksum); 22830 /* Software checksum? */ 22831 if (DB_CKSUMFLAGS(mp) == 0) { 22832 IP_STAT(ipst, ip_out_sw_cksum); 22833 IP_STAT_UPDATE(ipst, 22834 ip_udp_out_sw_cksum_bytes, 22835 LENGTH - hlen); 22836 } 22837 } 22838 } 22839 } 22840 /* 22841 * Need to do this even when fragmenting. The local 22842 * loopback can be done without computing checksums 22843 * but forwarding out other interface must be done 22844 * after the IP checksum (and ULP checksums) have been 22845 * computed. 22846 * 22847 * NOTE : multicast_forward is set only if this packet 22848 * originated from ip_wput. For packets originating from 22849 * ip_wput_multicast, it is not set. 22850 */ 22851 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22852 multi_loopback: 22853 ip2dbg(("ip_wput: multicast, loop %d\n", 22854 conn_multicast_loop)); 22855 22856 /* Forget header checksum offload */ 22857 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22858 22859 /* 22860 * Local loopback of multicasts? Check the 22861 * ill. 22862 * 22863 * Note that the loopback function will not come 22864 * in through ip_rput - it will only do the 22865 * client fanout thus we need to do an mforward 22866 * as well. The is different from the BSD 22867 * logic. 22868 */ 22869 if (ill != NULL) { 22870 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22871 ALL_ZONES) != NULL) { 22872 /* 22873 * Pass along the virtual output q. 22874 * ip_wput_local() will distribute the 22875 * packet to all the matching zones, 22876 * except the sending zone when 22877 * IP_MULTICAST_LOOP is false. 22878 */ 22879 ip_multicast_loopback(q, ill, first_mp, 22880 conn_multicast_loop ? 0 : 22881 IP_FF_NO_MCAST_LOOP, zoneid); 22882 } 22883 } 22884 if (ipha->ipha_ttl == 0) { 22885 /* 22886 * 0 => only to this host i.e. we are 22887 * done. We are also done if this was the 22888 * loopback interface since it is sufficient 22889 * to loopback one copy of a multicast packet. 22890 */ 22891 freemsg(first_mp); 22892 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22893 "ip_wput_ire_end: q %p (%S)", 22894 q, "loopback"); 22895 ire_refrele(ire); 22896 if (conn_outgoing_ill != NULL) 22897 ill_refrele(conn_outgoing_ill); 22898 return; 22899 } 22900 /* 22901 * ILLF_MULTICAST is checked in ip_newroute 22902 * i.e. we don't need to check it here since 22903 * all IRE_CACHEs come from ip_newroute. 22904 * For multicast traffic, SO_DONTROUTE is interpreted 22905 * to mean only send the packet out the interface 22906 * (optionally specified with IP_MULTICAST_IF) 22907 * and do not forward it out additional interfaces. 22908 * RSVP and the rsvp daemon is an example of a 22909 * protocol and user level process that 22910 * handles it's own routing. Hence, it uses the 22911 * SO_DONTROUTE option to accomplish this. 22912 */ 22913 22914 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22915 ill != NULL) { 22916 /* Unconditionally redo the checksum */ 22917 ipha->ipha_hdr_checksum = 0; 22918 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22919 22920 /* 22921 * If this needs to go out secure, we need 22922 * to wait till we finish the IPsec 22923 * processing. 22924 */ 22925 if (ipsec_len == 0 && 22926 ip_mforward(ill, ipha, mp)) { 22927 freemsg(first_mp); 22928 ip1dbg(("ip_wput: mforward failed\n")); 22929 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22930 "ip_wput_ire_end: q %p (%S)", 22931 q, "mforward failed"); 22932 ire_refrele(ire); 22933 if (conn_outgoing_ill != NULL) 22934 ill_refrele(conn_outgoing_ill); 22935 return; 22936 } 22937 } 22938 } 22939 max_frag = ire->ire_max_frag; 22940 cksum += ttl_protocol; 22941 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22942 /* No fragmentation required for this one. */ 22943 /* 22944 * Don't use frag_flag if packet is pre-built or source 22945 * routed or if multicast (since multicast packets do 22946 * not solicit ICMP "packet too big" messages). 22947 */ 22948 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22949 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22950 !ip_source_route_included(ipha)) && 22951 !CLASSD(ipha->ipha_dst)) 22952 ipha->ipha_fragment_offset_and_flags |= 22953 htons(ire->ire_frag_flag); 22954 22955 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22956 /* Complete the IP header checksum. */ 22957 cksum += ipha->ipha_ident; 22958 cksum += (v_hlen_tos_len >> 16)+ 22959 (v_hlen_tos_len & 0xFFFF); 22960 cksum += ipha->ipha_fragment_offset_and_flags; 22961 hlen = (V_HLEN & 0xF) - 22962 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22963 if (hlen) { 22964 checksumoptions: 22965 /* 22966 * Account for the IP Options in the IP 22967 * header checksum. 22968 */ 22969 up = (uint16_t *)(rptr+ 22970 IP_SIMPLE_HDR_LENGTH); 22971 do { 22972 cksum += up[0]; 22973 cksum += up[1]; 22974 up += 2; 22975 } while (--hlen); 22976 } 22977 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22978 cksum = ~(cksum + (cksum >> 16)); 22979 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22980 } 22981 if (ipsec_len != 0) { 22982 ipsec_out_process(q, first_mp, ire, ill_index); 22983 if (!next_mp) { 22984 ire_refrele(ire); 22985 if (conn_outgoing_ill != NULL) 22986 ill_refrele(conn_outgoing_ill); 22987 return; 22988 } 22989 goto next; 22990 } 22991 22992 /* 22993 * multirt_send has already been handled 22994 * for broadcast, but not yet for multicast 22995 * or IP options. 22996 */ 22997 if (next_mp == NULL) { 22998 if (ire->ire_flags & RTF_MULTIRT) { 22999 multirt_send = B_TRUE; 23000 } 23001 } 23002 23003 /* 23004 * In most cases, the emission loop below is 23005 * entered only once. Only in the case where 23006 * the ire holds the RTF_MULTIRT flag, do we loop 23007 * to process all RTF_MULTIRT ires in the bucket, 23008 * and send the packet through all crossed 23009 * RTF_MULTIRT routes. 23010 */ 23011 do { 23012 if (multirt_send) { 23013 irb_t *irb; 23014 23015 irb = ire->ire_bucket; 23016 ASSERT(irb != NULL); 23017 /* 23018 * We are in a multiple send case, 23019 * need to get the next IRE and make 23020 * a duplicate of the packet. 23021 */ 23022 IRB_REFHOLD(irb); 23023 for (ire1 = ire->ire_next; 23024 ire1 != NULL; 23025 ire1 = ire1->ire_next) { 23026 if (!(ire1->ire_flags & 23027 RTF_MULTIRT)) 23028 continue; 23029 23030 if (ire1->ire_addr != 23031 ire->ire_addr) 23032 continue; 23033 23034 if (ire1->ire_marks & 23035 (IRE_MARK_CONDEMNED | 23036 IRE_MARK_TESTHIDDEN)) 23037 continue; 23038 23039 /* Got one */ 23040 IRE_REFHOLD(ire1); 23041 break; 23042 } 23043 IRB_REFRELE(irb); 23044 23045 if (ire1 != NULL) { 23046 next_mp = copyb(mp); 23047 if ((next_mp == NULL) || 23048 ((mp->b_cont != NULL) && 23049 ((next_mp->b_cont = 23050 dupmsg(mp->b_cont)) 23051 == NULL))) { 23052 freemsg(next_mp); 23053 next_mp = NULL; 23054 ire_refrele(ire1); 23055 ire1 = NULL; 23056 } 23057 } 23058 23059 /* 23060 * Last multiroute ire; don't loop 23061 * anymore. The emission is over 23062 * and next_mp is NULL. 23063 */ 23064 if (ire1 == NULL) { 23065 multirt_send = B_FALSE; 23066 } 23067 } 23068 23069 out_ill = ire_to_ill(ire); 23070 DTRACE_PROBE4(ip4__physical__out__start, 23071 ill_t *, NULL, 23072 ill_t *, out_ill, 23073 ipha_t *, ipha, mblk_t *, mp); 23074 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23075 ipst->ips_ipv4firewall_physical_out, 23076 NULL, out_ill, ipha, mp, mp, 0, ipst); 23077 DTRACE_PROBE1(ip4__physical__out__end, 23078 mblk_t *, mp); 23079 if (mp == NULL) 23080 goto release_ire_and_ill_2; 23081 23082 ASSERT(ipsec_len == 0); 23083 mp->b_prev = 23084 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23085 DTRACE_PROBE2(ip__xmit__2, 23086 mblk_t *, mp, ire_t *, ire); 23087 pktxmit_state = ip_xmit_v4(mp, ire, 23088 NULL, B_TRUE, connp); 23089 if ((pktxmit_state == SEND_FAILED) || 23090 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23091 release_ire_and_ill_2: 23092 if (next_mp) { 23093 freemsg(next_mp); 23094 ire_refrele(ire1); 23095 } 23096 ire_refrele(ire); 23097 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23098 "ip_wput_ire_end: q %p (%S)", 23099 q, "discard MDATA"); 23100 if (conn_outgoing_ill != NULL) 23101 ill_refrele(conn_outgoing_ill); 23102 return; 23103 } 23104 23105 if (CLASSD(dst)) { 23106 BUMP_MIB(out_ill->ill_ip_mib, 23107 ipIfStatsHCOutMcastPkts); 23108 UPDATE_MIB(out_ill->ill_ip_mib, 23109 ipIfStatsHCOutMcastOctets, 23110 LENGTH); 23111 } else if (ire->ire_type == IRE_BROADCAST) { 23112 BUMP_MIB(out_ill->ill_ip_mib, 23113 ipIfStatsHCOutBcastPkts); 23114 } 23115 23116 if (multirt_send) { 23117 /* 23118 * We are in a multiple send case, 23119 * need to re-enter the sending loop 23120 * using the next ire. 23121 */ 23122 ire_refrele(ire); 23123 ire = ire1; 23124 stq = ire->ire_stq; 23125 mp = next_mp; 23126 next_mp = NULL; 23127 ipha = (ipha_t *)mp->b_rptr; 23128 ill_index = Q_TO_INDEX(stq); 23129 } 23130 } while (multirt_send); 23131 23132 if (!next_mp) { 23133 /* 23134 * Last copy going out (the ultra-common 23135 * case). Note that we intentionally replicate 23136 * the putnext rather than calling it before 23137 * the next_mp check in hopes of a little 23138 * tail-call action out of the compiler. 23139 */ 23140 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23141 "ip_wput_ire_end: q %p (%S)", 23142 q, "last copy out(1)"); 23143 ire_refrele(ire); 23144 if (conn_outgoing_ill != NULL) 23145 ill_refrele(conn_outgoing_ill); 23146 return; 23147 } 23148 /* More copies going out below. */ 23149 } else { 23150 int offset; 23151 fragmentit: 23152 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23153 /* 23154 * If this would generate a icmp_frag_needed message, 23155 * we need to handle it before we do the IPsec 23156 * processing. Otherwise, we need to strip the IPsec 23157 * headers before we send up the message to the ULPs 23158 * which becomes messy and difficult. 23159 */ 23160 if (ipsec_len != 0) { 23161 if ((max_frag < (unsigned int)(LENGTH + 23162 ipsec_len)) && (offset & IPH_DF)) { 23163 out_ill = (ill_t *)stq->q_ptr; 23164 BUMP_MIB(out_ill->ill_ip_mib, 23165 ipIfStatsOutFragFails); 23166 BUMP_MIB(out_ill->ill_ip_mib, 23167 ipIfStatsOutFragReqds); 23168 ipha->ipha_hdr_checksum = 0; 23169 ipha->ipha_hdr_checksum = 23170 (uint16_t)ip_csum_hdr(ipha); 23171 icmp_frag_needed(ire->ire_stq, first_mp, 23172 max_frag, zoneid, ipst); 23173 if (!next_mp) { 23174 ire_refrele(ire); 23175 if (conn_outgoing_ill != NULL) { 23176 ill_refrele( 23177 conn_outgoing_ill); 23178 } 23179 return; 23180 } 23181 } else { 23182 /* 23183 * This won't cause a icmp_frag_needed 23184 * message. to be generated. Send it on 23185 * the wire. Note that this could still 23186 * cause fragmentation and all we 23187 * do is the generation of the message 23188 * to the ULP if needed before IPsec. 23189 */ 23190 if (!next_mp) { 23191 ipsec_out_process(q, first_mp, 23192 ire, ill_index); 23193 TRACE_2(TR_FAC_IP, 23194 TR_IP_WPUT_IRE_END, 23195 "ip_wput_ire_end: q %p " 23196 "(%S)", q, 23197 "last ipsec_out_process"); 23198 ire_refrele(ire); 23199 if (conn_outgoing_ill != NULL) { 23200 ill_refrele( 23201 conn_outgoing_ill); 23202 } 23203 return; 23204 } 23205 ipsec_out_process(q, first_mp, 23206 ire, ill_index); 23207 } 23208 } else { 23209 /* 23210 * Initiate IPPF processing. For 23211 * fragmentable packets we finish 23212 * all QOS packet processing before 23213 * calling: 23214 * ip_wput_ire_fragmentit->ip_wput_frag 23215 */ 23216 23217 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23218 ip_process(IPP_LOCAL_OUT, &mp, 23219 ill_index); 23220 if (mp == NULL) { 23221 out_ill = (ill_t *)stq->q_ptr; 23222 BUMP_MIB(out_ill->ill_ip_mib, 23223 ipIfStatsOutDiscards); 23224 if (next_mp != NULL) { 23225 freemsg(next_mp); 23226 ire_refrele(ire1); 23227 } 23228 ire_refrele(ire); 23229 TRACE_2(TR_FAC_IP, 23230 TR_IP_WPUT_IRE_END, 23231 "ip_wput_ire: q %p (%S)", 23232 q, "discard MDATA"); 23233 if (conn_outgoing_ill != NULL) { 23234 ill_refrele( 23235 conn_outgoing_ill); 23236 } 23237 return; 23238 } 23239 } 23240 if (!next_mp) { 23241 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23242 "ip_wput_ire_end: q %p (%S)", 23243 q, "last fragmentation"); 23244 ip_wput_ire_fragmentit(mp, ire, 23245 zoneid, ipst, connp); 23246 ire_refrele(ire); 23247 if (conn_outgoing_ill != NULL) 23248 ill_refrele(conn_outgoing_ill); 23249 return; 23250 } 23251 ip_wput_ire_fragmentit(mp, ire, 23252 zoneid, ipst, connp); 23253 } 23254 } 23255 } else { 23256 nullstq: 23257 /* A NULL stq means the destination address is local. */ 23258 UPDATE_OB_PKT_COUNT(ire); 23259 ire->ire_last_used_time = lbolt; 23260 ASSERT(ire->ire_ipif != NULL); 23261 if (!next_mp) { 23262 /* 23263 * Is there an "in" and "out" for traffic local 23264 * to a host (loopback)? The code in Solaris doesn't 23265 * explicitly draw a line in its code for in vs out, 23266 * so we've had to draw a line in the sand: ip_wput_ire 23267 * is considered to be the "output" side and 23268 * ip_wput_local to be the "input" side. 23269 */ 23270 out_ill = ire_to_ill(ire); 23271 23272 /* 23273 * DTrace this as ip:::send. A blocked packet will 23274 * fire the send probe, but not the receive probe. 23275 */ 23276 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23277 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23278 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23279 23280 DTRACE_PROBE4(ip4__loopback__out__start, 23281 ill_t *, NULL, ill_t *, out_ill, 23282 ipha_t *, ipha, mblk_t *, first_mp); 23283 23284 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23285 ipst->ips_ipv4firewall_loopback_out, 23286 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23287 23288 DTRACE_PROBE1(ip4__loopback__out_end, 23289 mblk_t *, first_mp); 23290 23291 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23292 "ip_wput_ire_end: q %p (%S)", 23293 q, "local address"); 23294 23295 if (first_mp != NULL) 23296 ip_wput_local(q, out_ill, ipha, 23297 first_mp, ire, 0, ire->ire_zoneid); 23298 ire_refrele(ire); 23299 if (conn_outgoing_ill != NULL) 23300 ill_refrele(conn_outgoing_ill); 23301 return; 23302 } 23303 23304 out_ill = ire_to_ill(ire); 23305 23306 /* 23307 * DTrace this as ip:::send. A blocked packet will fire the 23308 * send probe, but not the receive probe. 23309 */ 23310 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23311 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23312 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23313 23314 DTRACE_PROBE4(ip4__loopback__out__start, 23315 ill_t *, NULL, ill_t *, out_ill, 23316 ipha_t *, ipha, mblk_t *, first_mp); 23317 23318 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23319 ipst->ips_ipv4firewall_loopback_out, 23320 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23321 23322 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23323 23324 if (first_mp != NULL) 23325 ip_wput_local(q, out_ill, ipha, 23326 first_mp, ire, 0, ire->ire_zoneid); 23327 } 23328 next: 23329 /* 23330 * More copies going out to additional interfaces. 23331 * ire1 has already been held. We don't need the 23332 * "ire" anymore. 23333 */ 23334 ire_refrele(ire); 23335 ire = ire1; 23336 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23337 mp = next_mp; 23338 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23339 ill = ire_to_ill(ire); 23340 first_mp = mp; 23341 if (ipsec_len != 0) { 23342 ASSERT(first_mp->b_datap->db_type == M_CTL); 23343 mp = mp->b_cont; 23344 } 23345 dst = ire->ire_addr; 23346 ipha = (ipha_t *)mp->b_rptr; 23347 /* 23348 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23349 * Restore ipha_ident "no checksum" flag. 23350 */ 23351 src = orig_src; 23352 ipha->ipha_ident = ip_hdr_included; 23353 goto another; 23354 23355 #undef rptr 23356 #undef Q_TO_INDEX 23357 } 23358 23359 /* 23360 * Routine to allocate a message that is used to notify the ULP about MDT. 23361 * The caller may provide a pointer to the link-layer MDT capabilities, 23362 * or NULL if MDT is to be disabled on the stream. 23363 */ 23364 mblk_t * 23365 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23366 { 23367 mblk_t *mp; 23368 ip_mdt_info_t *mdti; 23369 ill_mdt_capab_t *idst; 23370 23371 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23372 DB_TYPE(mp) = M_CTL; 23373 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23374 mdti = (ip_mdt_info_t *)mp->b_rptr; 23375 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23376 idst = &(mdti->mdt_capab); 23377 23378 /* 23379 * If the caller provides us with the capability, copy 23380 * it over into our notification message; otherwise 23381 * we zero out the capability portion. 23382 */ 23383 if (isrc != NULL) 23384 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23385 else 23386 bzero((caddr_t)idst, sizeof (*idst)); 23387 } 23388 return (mp); 23389 } 23390 23391 /* 23392 * Routine which determines whether MDT can be enabled on the destination 23393 * IRE and IPC combination, and if so, allocates and returns the MDT 23394 * notification mblk that may be used by ULP. We also check if we need to 23395 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23396 * MDT usage in the past have been lifted. This gets called during IP 23397 * and ULP binding. 23398 */ 23399 mblk_t * 23400 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23401 ill_mdt_capab_t *mdt_cap) 23402 { 23403 mblk_t *mp; 23404 boolean_t rc = B_FALSE; 23405 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23406 23407 ASSERT(dst_ire != NULL); 23408 ASSERT(connp != NULL); 23409 ASSERT(mdt_cap != NULL); 23410 23411 /* 23412 * Currently, we only support simple TCP/{IPv4,IPv6} with 23413 * Multidata, which is handled in tcp_multisend(). This 23414 * is the reason why we do all these checks here, to ensure 23415 * that we don't enable Multidata for the cases which we 23416 * can't handle at the moment. 23417 */ 23418 do { 23419 /* Only do TCP at the moment */ 23420 if (connp->conn_ulp != IPPROTO_TCP) 23421 break; 23422 23423 /* 23424 * IPsec outbound policy present? Note that we get here 23425 * after calling ipsec_conn_cache_policy() where the global 23426 * policy checking is performed. conn_latch will be 23427 * non-NULL as long as there's a policy defined, 23428 * i.e. conn_out_enforce_policy may be NULL in such case 23429 * when the connection is non-secure, and hence we check 23430 * further if the latch refers to an outbound policy. 23431 */ 23432 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23433 break; 23434 23435 /* CGTP (multiroute) is enabled? */ 23436 if (dst_ire->ire_flags & RTF_MULTIRT) 23437 break; 23438 23439 /* Outbound IPQoS enabled? */ 23440 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23441 /* 23442 * In this case, we disable MDT for this and all 23443 * future connections going over the interface. 23444 */ 23445 mdt_cap->ill_mdt_on = 0; 23446 break; 23447 } 23448 23449 /* socket option(s) present? */ 23450 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23451 break; 23452 23453 rc = B_TRUE; 23454 /* CONSTCOND */ 23455 } while (0); 23456 23457 /* Remember the result */ 23458 connp->conn_mdt_ok = rc; 23459 23460 if (!rc) 23461 return (NULL); 23462 else if (!mdt_cap->ill_mdt_on) { 23463 /* 23464 * If MDT has been previously turned off in the past, and we 23465 * currently can do MDT (due to IPQoS policy removal, etc.) 23466 * then enable it for this interface. 23467 */ 23468 mdt_cap->ill_mdt_on = 1; 23469 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23470 "interface %s\n", ill_name)); 23471 } 23472 23473 /* Allocate the MDT info mblk */ 23474 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23475 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23476 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23477 return (NULL); 23478 } 23479 return (mp); 23480 } 23481 23482 /* 23483 * Routine to allocate a message that is used to notify the ULP about LSO. 23484 * The caller may provide a pointer to the link-layer LSO capabilities, 23485 * or NULL if LSO is to be disabled on the stream. 23486 */ 23487 mblk_t * 23488 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23489 { 23490 mblk_t *mp; 23491 ip_lso_info_t *lsoi; 23492 ill_lso_capab_t *idst; 23493 23494 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23495 DB_TYPE(mp) = M_CTL; 23496 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23497 lsoi = (ip_lso_info_t *)mp->b_rptr; 23498 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23499 idst = &(lsoi->lso_capab); 23500 23501 /* 23502 * If the caller provides us with the capability, copy 23503 * it over into our notification message; otherwise 23504 * we zero out the capability portion. 23505 */ 23506 if (isrc != NULL) 23507 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23508 else 23509 bzero((caddr_t)idst, sizeof (*idst)); 23510 } 23511 return (mp); 23512 } 23513 23514 /* 23515 * Routine which determines whether LSO can be enabled on the destination 23516 * IRE and IPC combination, and if so, allocates and returns the LSO 23517 * notification mblk that may be used by ULP. We also check if we need to 23518 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23519 * LSO usage in the past have been lifted. This gets called during IP 23520 * and ULP binding. 23521 */ 23522 mblk_t * 23523 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23524 ill_lso_capab_t *lso_cap) 23525 { 23526 mblk_t *mp; 23527 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23528 23529 ASSERT(dst_ire != NULL); 23530 ASSERT(connp != NULL); 23531 ASSERT(lso_cap != NULL); 23532 23533 connp->conn_lso_ok = B_TRUE; 23534 23535 if ((connp->conn_ulp != IPPROTO_TCP) || 23536 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23537 (dst_ire->ire_flags & RTF_MULTIRT) || 23538 !CONN_IS_LSO_MD_FASTPATH(connp) || 23539 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23540 connp->conn_lso_ok = B_FALSE; 23541 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23542 /* 23543 * Disable LSO for this and all future connections going 23544 * over the interface. 23545 */ 23546 lso_cap->ill_lso_on = 0; 23547 } 23548 } 23549 23550 if (!connp->conn_lso_ok) 23551 return (NULL); 23552 else if (!lso_cap->ill_lso_on) { 23553 /* 23554 * If LSO has been previously turned off in the past, and we 23555 * currently can do LSO (due to IPQoS policy removal, etc.) 23556 * then enable it for this interface. 23557 */ 23558 lso_cap->ill_lso_on = 1; 23559 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23560 ill_name)); 23561 } 23562 23563 /* Allocate the LSO info mblk */ 23564 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23565 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23566 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23567 23568 return (mp); 23569 } 23570 23571 /* 23572 * Create destination address attribute, and fill it with the physical 23573 * destination address and SAP taken from the template DL_UNITDATA_REQ 23574 * message block. 23575 */ 23576 boolean_t 23577 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23578 { 23579 dl_unitdata_req_t *dlurp; 23580 pattr_t *pa; 23581 pattrinfo_t pa_info; 23582 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23583 uint_t das_len, das_off; 23584 23585 ASSERT(dlmp != NULL); 23586 23587 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23588 das_len = dlurp->dl_dest_addr_length; 23589 das_off = dlurp->dl_dest_addr_offset; 23590 23591 pa_info.type = PATTR_DSTADDRSAP; 23592 pa_info.len = sizeof (**das) + das_len - 1; 23593 23594 /* create and associate the attribute */ 23595 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23596 if (pa != NULL) { 23597 ASSERT(*das != NULL); 23598 (*das)->addr_is_group = 0; 23599 (*das)->addr_len = (uint8_t)das_len; 23600 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23601 } 23602 23603 return (pa != NULL); 23604 } 23605 23606 /* 23607 * Create hardware checksum attribute and fill it with the values passed. 23608 */ 23609 boolean_t 23610 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23611 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23612 { 23613 pattr_t *pa; 23614 pattrinfo_t pa_info; 23615 23616 ASSERT(mmd != NULL); 23617 23618 pa_info.type = PATTR_HCKSUM; 23619 pa_info.len = sizeof (pattr_hcksum_t); 23620 23621 /* create and associate the attribute */ 23622 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23623 if (pa != NULL) { 23624 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23625 23626 hck->hcksum_start_offset = start_offset; 23627 hck->hcksum_stuff_offset = stuff_offset; 23628 hck->hcksum_end_offset = end_offset; 23629 hck->hcksum_flags = flags; 23630 } 23631 return (pa != NULL); 23632 } 23633 23634 /* 23635 * Create zerocopy attribute and fill it with the specified flags 23636 */ 23637 boolean_t 23638 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23639 { 23640 pattr_t *pa; 23641 pattrinfo_t pa_info; 23642 23643 ASSERT(mmd != NULL); 23644 pa_info.type = PATTR_ZCOPY; 23645 pa_info.len = sizeof (pattr_zcopy_t); 23646 23647 /* create and associate the attribute */ 23648 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23649 if (pa != NULL) { 23650 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23651 23652 zcopy->zcopy_flags = flags; 23653 } 23654 return (pa != NULL); 23655 } 23656 23657 /* 23658 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23659 * block chain. We could rewrite to handle arbitrary message block chains but 23660 * that would make the code complicated and slow. Right now there three 23661 * restrictions: 23662 * 23663 * 1. The first message block must contain the complete IP header and 23664 * at least 1 byte of payload data. 23665 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23666 * so that we can use a single Multidata message. 23667 * 3. No frag must be distributed over two or more message blocks so 23668 * that we don't need more than two packet descriptors per frag. 23669 * 23670 * The above restrictions allow us to support userland applications (which 23671 * will send down a single message block) and NFS over UDP (which will 23672 * send down a chain of at most three message blocks). 23673 * 23674 * We also don't use MDT for payloads with less than or equal to 23675 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23676 */ 23677 boolean_t 23678 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23679 { 23680 int blocks; 23681 ssize_t total, missing, size; 23682 23683 ASSERT(mp != NULL); 23684 ASSERT(hdr_len > 0); 23685 23686 size = MBLKL(mp) - hdr_len; 23687 if (size <= 0) 23688 return (B_FALSE); 23689 23690 /* The first mblk contains the header and some payload. */ 23691 blocks = 1; 23692 total = size; 23693 size %= len; 23694 missing = (size == 0) ? 0 : (len - size); 23695 mp = mp->b_cont; 23696 23697 while (mp != NULL) { 23698 /* 23699 * Give up if we encounter a zero length message block. 23700 * In practice, this should rarely happen and therefore 23701 * not worth the trouble of freeing and re-linking the 23702 * mblk from the chain to handle such case. 23703 */ 23704 if ((size = MBLKL(mp)) == 0) 23705 return (B_FALSE); 23706 23707 /* Too many payload buffers for a single Multidata message? */ 23708 if (++blocks > MULTIDATA_MAX_PBUFS) 23709 return (B_FALSE); 23710 23711 total += size; 23712 /* Is a frag distributed over two or more message blocks? */ 23713 if (missing > size) 23714 return (B_FALSE); 23715 size -= missing; 23716 23717 size %= len; 23718 missing = (size == 0) ? 0 : (len - size); 23719 23720 mp = mp->b_cont; 23721 } 23722 23723 return (total > ip_wput_frag_mdt_min); 23724 } 23725 23726 /* 23727 * Outbound IPv4 fragmentation routine using MDT. 23728 */ 23729 static void 23730 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23731 uint32_t frag_flag, int offset) 23732 { 23733 ipha_t *ipha_orig; 23734 int i1, ip_data_end; 23735 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23736 mblk_t *hdr_mp, *md_mp = NULL; 23737 unsigned char *hdr_ptr, *pld_ptr; 23738 multidata_t *mmd; 23739 ip_pdescinfo_t pdi; 23740 ill_t *ill; 23741 ip_stack_t *ipst = ire->ire_ipst; 23742 23743 ASSERT(DB_TYPE(mp) == M_DATA); 23744 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23745 23746 ill = ire_to_ill(ire); 23747 ASSERT(ill != NULL); 23748 23749 ipha_orig = (ipha_t *)mp->b_rptr; 23750 mp->b_rptr += sizeof (ipha_t); 23751 23752 /* Calculate how many packets we will send out */ 23753 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23754 pkts = (i1 + len - 1) / len; 23755 ASSERT(pkts > 1); 23756 23757 /* Allocate a message block which will hold all the IP Headers. */ 23758 wroff = ipst->ips_ip_wroff_extra; 23759 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23760 23761 i1 = pkts * hdr_chunk_len; 23762 /* 23763 * Create the header buffer, Multidata and destination address 23764 * and SAP attribute that should be associated with it. 23765 */ 23766 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23767 ((hdr_mp->b_wptr += i1), 23768 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23769 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23770 freemsg(mp); 23771 if (md_mp == NULL) { 23772 freemsg(hdr_mp); 23773 } else { 23774 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23775 freemsg(md_mp); 23776 } 23777 IP_STAT(ipst, ip_frag_mdt_allocfail); 23778 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23779 return; 23780 } 23781 IP_STAT(ipst, ip_frag_mdt_allocd); 23782 23783 /* 23784 * Add a payload buffer to the Multidata; this operation must not 23785 * fail, or otherwise our logic in this routine is broken. There 23786 * is no memory allocation done by the routine, so any returned 23787 * failure simply tells us that we've done something wrong. 23788 * 23789 * A failure tells us that either we're adding the same payload 23790 * buffer more than once, or we're trying to add more buffers than 23791 * allowed. None of the above cases should happen, and we panic 23792 * because either there's horrible heap corruption, and/or 23793 * programming mistake. 23794 */ 23795 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23796 goto pbuf_panic; 23797 23798 hdr_ptr = hdr_mp->b_rptr; 23799 pld_ptr = mp->b_rptr; 23800 23801 /* Establish the ending byte offset, based on the starting offset. */ 23802 offset <<= 3; 23803 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23804 IP_SIMPLE_HDR_LENGTH; 23805 23806 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23807 23808 while (pld_ptr < mp->b_wptr) { 23809 ipha_t *ipha; 23810 uint16_t offset_and_flags; 23811 uint16_t ip_len; 23812 int error; 23813 23814 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23815 ipha = (ipha_t *)(hdr_ptr + wroff); 23816 ASSERT(OK_32PTR(ipha)); 23817 *ipha = *ipha_orig; 23818 23819 if (ip_data_end - offset > len) { 23820 offset_and_flags = IPH_MF; 23821 } else { 23822 /* 23823 * Last frag. Set len to the length of this last piece. 23824 */ 23825 len = ip_data_end - offset; 23826 /* A frag of a frag might have IPH_MF non-zero */ 23827 offset_and_flags = 23828 ntohs(ipha->ipha_fragment_offset_and_flags) & 23829 IPH_MF; 23830 } 23831 offset_and_flags |= (uint16_t)(offset >> 3); 23832 offset_and_flags |= (uint16_t)frag_flag; 23833 /* Store the offset and flags in the IP header. */ 23834 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23835 23836 /* Store the length in the IP header. */ 23837 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23838 ipha->ipha_length = htons(ip_len); 23839 23840 /* 23841 * Set the IP header checksum. Note that mp is just 23842 * the header, so this is easy to pass to ip_csum. 23843 */ 23844 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23845 23846 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23847 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23848 NULL, int, 0); 23849 23850 /* 23851 * Record offset and size of header and data of the next packet 23852 * in the multidata message. 23853 */ 23854 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23855 PDESC_PLD_INIT(&pdi); 23856 i1 = MIN(mp->b_wptr - pld_ptr, len); 23857 ASSERT(i1 > 0); 23858 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23859 if (i1 == len) { 23860 pld_ptr += len; 23861 } else { 23862 i1 = len - i1; 23863 mp = mp->b_cont; 23864 ASSERT(mp != NULL); 23865 ASSERT(MBLKL(mp) >= i1); 23866 /* 23867 * Attach the next payload message block to the 23868 * multidata message. 23869 */ 23870 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23871 goto pbuf_panic; 23872 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23873 pld_ptr = mp->b_rptr + i1; 23874 } 23875 23876 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23877 KM_NOSLEEP)) == NULL) { 23878 /* 23879 * Any failure other than ENOMEM indicates that we 23880 * have passed in invalid pdesc info or parameters 23881 * to mmd_addpdesc, which must not happen. 23882 * 23883 * EINVAL is a result of failure on boundary checks 23884 * against the pdesc info contents. It should not 23885 * happen, and we panic because either there's 23886 * horrible heap corruption, and/or programming 23887 * mistake. 23888 */ 23889 if (error != ENOMEM) { 23890 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23891 "pdesc logic error detected for " 23892 "mmd %p pinfo %p (%d)\n", 23893 (void *)mmd, (void *)&pdi, error); 23894 /* NOTREACHED */ 23895 } 23896 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23897 /* Free unattached payload message blocks as well */ 23898 md_mp->b_cont = mp->b_cont; 23899 goto free_mmd; 23900 } 23901 23902 /* Advance fragment offset. */ 23903 offset += len; 23904 23905 /* Advance to location for next header in the buffer. */ 23906 hdr_ptr += hdr_chunk_len; 23907 23908 /* Did we reach the next payload message block? */ 23909 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23910 mp = mp->b_cont; 23911 /* 23912 * Attach the next message block with payload 23913 * data to the multidata message. 23914 */ 23915 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23916 goto pbuf_panic; 23917 pld_ptr = mp->b_rptr; 23918 } 23919 } 23920 23921 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23922 ASSERT(mp->b_wptr == pld_ptr); 23923 23924 /* Update IP statistics */ 23925 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23926 23927 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23929 23930 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23931 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23932 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23933 23934 if (pkt_type == OB_PKT) { 23935 ire->ire_ob_pkt_count += pkts; 23936 if (ire->ire_ipif != NULL) 23937 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23938 } else { 23939 /* The type is IB_PKT in the forwarding path. */ 23940 ire->ire_ib_pkt_count += pkts; 23941 ASSERT(!IRE_IS_LOCAL(ire)); 23942 if (ire->ire_type & IRE_BROADCAST) { 23943 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23944 } else { 23945 UPDATE_MIB(ill->ill_ip_mib, 23946 ipIfStatsHCOutForwDatagrams, pkts); 23947 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23948 } 23949 } 23950 ire->ire_last_used_time = lbolt; 23951 /* Send it down */ 23952 putnext(ire->ire_stq, md_mp); 23953 return; 23954 23955 pbuf_panic: 23956 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23957 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23958 pbuf_idx); 23959 /* NOTREACHED */ 23960 } 23961 23962 /* 23963 * Outbound IP fragmentation routine. 23964 * 23965 * NOTE : This routine does not ire_refrele the ire that is passed in 23966 * as the argument. 23967 */ 23968 static void 23969 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23970 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23971 { 23972 int i1; 23973 mblk_t *ll_hdr_mp; 23974 int ll_hdr_len; 23975 int hdr_len; 23976 mblk_t *hdr_mp; 23977 ipha_t *ipha; 23978 int ip_data_end; 23979 int len; 23980 mblk_t *mp = mp_orig, *mp1; 23981 int offset; 23982 queue_t *q; 23983 uint32_t v_hlen_tos_len; 23984 mblk_t *first_mp; 23985 boolean_t mctl_present; 23986 ill_t *ill; 23987 ill_t *out_ill; 23988 mblk_t *xmit_mp; 23989 mblk_t *carve_mp; 23990 ire_t *ire1 = NULL; 23991 ire_t *save_ire = NULL; 23992 mblk_t *next_mp = NULL; 23993 boolean_t last_frag = B_FALSE; 23994 boolean_t multirt_send = B_FALSE; 23995 ire_t *first_ire = NULL; 23996 irb_t *irb = NULL; 23997 mib2_ipIfStatsEntry_t *mibptr = NULL; 23998 23999 ill = ire_to_ill(ire); 24000 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24001 24002 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24003 24004 if (max_frag == 0) { 24005 ip1dbg(("ip_wput_frag: ire frag size is 0" 24006 " - dropping packet\n")); 24007 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24008 freemsg(mp); 24009 return; 24010 } 24011 24012 /* 24013 * IPsec does not allow hw accelerated packets to be fragmented 24014 * This check is made in ip_wput_ipsec_out prior to coming here 24015 * via ip_wput_ire_fragmentit. 24016 * 24017 * If at this point we have an ire whose ARP request has not 24018 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24019 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24020 * This packet and all fragmentable packets for this ire will 24021 * continue to get dropped while ire_nce->nce_state remains in 24022 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24023 * ND_REACHABLE, all subsquent large packets for this ire will 24024 * get fragemented and sent out by this function. 24025 */ 24026 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24027 /* If nce_state is ND_INITIAL, trigger ARP query */ 24028 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24029 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24030 " - dropping packet\n")); 24031 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24032 freemsg(mp); 24033 return; 24034 } 24035 24036 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24037 "ip_wput_frag_start:"); 24038 24039 if (mp->b_datap->db_type == M_CTL) { 24040 first_mp = mp; 24041 mp_orig = mp = mp->b_cont; 24042 mctl_present = B_TRUE; 24043 } else { 24044 first_mp = mp; 24045 mctl_present = B_FALSE; 24046 } 24047 24048 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24049 ipha = (ipha_t *)mp->b_rptr; 24050 24051 /* 24052 * If the Don't Fragment flag is on, generate an ICMP destination 24053 * unreachable, fragmentation needed. 24054 */ 24055 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24056 if (offset & IPH_DF) { 24057 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24058 if (is_system_labeled()) { 24059 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24060 ire->ire_max_frag - max_frag, AF_INET); 24061 } 24062 /* 24063 * Need to compute hdr checksum if called from ip_wput_ire. 24064 * Note that ip_rput_forward verifies the checksum before 24065 * calling this routine so in that case this is a noop. 24066 */ 24067 ipha->ipha_hdr_checksum = 0; 24068 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24069 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24070 ipst); 24071 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24072 "ip_wput_frag_end:(%S)", 24073 "don't fragment"); 24074 return; 24075 } 24076 /* 24077 * Labeled systems adjust max_frag if they add a label 24078 * to send the correct path mtu. We need the real mtu since we 24079 * are fragmenting the packet after label adjustment. 24080 */ 24081 if (is_system_labeled()) 24082 max_frag = ire->ire_max_frag; 24083 if (mctl_present) 24084 freeb(first_mp); 24085 /* 24086 * Establish the starting offset. May not be zero if we are fragging 24087 * a fragment that is being forwarded. 24088 */ 24089 offset = offset & IPH_OFFSET; 24090 24091 /* TODO why is this test needed? */ 24092 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24093 if (((max_frag - LENGTH) & ~7) < 8) { 24094 /* TODO: notify ulp somehow */ 24095 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24096 freemsg(mp); 24097 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24098 "ip_wput_frag_end:(%S)", 24099 "len < 8"); 24100 return; 24101 } 24102 24103 hdr_len = (V_HLEN & 0xF) << 2; 24104 24105 ipha->ipha_hdr_checksum = 0; 24106 24107 /* 24108 * Establish the number of bytes maximum per frag, after putting 24109 * in the header. 24110 */ 24111 len = (max_frag - hdr_len) & ~7; 24112 24113 /* Check if we can use MDT to send out the frags. */ 24114 ASSERT(!IRE_IS_LOCAL(ire)); 24115 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24116 ipst->ips_ip_multidata_outbound && 24117 !(ire->ire_flags & RTF_MULTIRT) && 24118 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24119 ill != NULL && ILL_MDT_CAPABLE(ill) && 24120 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24121 ASSERT(ill->ill_mdt_capab != NULL); 24122 if (!ill->ill_mdt_capab->ill_mdt_on) { 24123 /* 24124 * If MDT has been previously turned off in the past, 24125 * and we currently can do MDT (due to IPQoS policy 24126 * removal, etc.) then enable it for this interface. 24127 */ 24128 ill->ill_mdt_capab->ill_mdt_on = 1; 24129 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24130 ill->ill_name)); 24131 } 24132 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24133 offset); 24134 return; 24135 } 24136 24137 /* Get a copy of the header for the trailing frags */ 24138 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24139 mp); 24140 if (!hdr_mp) { 24141 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24142 freemsg(mp); 24143 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24144 "ip_wput_frag_end:(%S)", 24145 "couldn't copy hdr"); 24146 return; 24147 } 24148 24149 /* Store the starting offset, with the MoreFrags flag. */ 24150 i1 = offset | IPH_MF | frag_flag; 24151 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24152 24153 /* Establish the ending byte offset, based on the starting offset. */ 24154 offset <<= 3; 24155 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24156 24157 /* Store the length of the first fragment in the IP header. */ 24158 i1 = len + hdr_len; 24159 ASSERT(i1 <= IP_MAXPACKET); 24160 ipha->ipha_length = htons((uint16_t)i1); 24161 24162 /* 24163 * Compute the IP header checksum for the first frag. We have to 24164 * watch out that we stop at the end of the header. 24165 */ 24166 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24167 24168 /* 24169 * Now carve off the first frag. Note that this will include the 24170 * original IP header. 24171 */ 24172 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24173 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24174 freeb(hdr_mp); 24175 freemsg(mp_orig); 24176 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24177 "ip_wput_frag_end:(%S)", 24178 "couldn't carve first"); 24179 return; 24180 } 24181 24182 /* 24183 * Multirouting case. Each fragment is replicated 24184 * via all non-condemned RTF_MULTIRT routes 24185 * currently resolved. 24186 * We ensure that first_ire is the first RTF_MULTIRT 24187 * ire in the bucket. 24188 */ 24189 if (ire->ire_flags & RTF_MULTIRT) { 24190 irb = ire->ire_bucket; 24191 ASSERT(irb != NULL); 24192 24193 multirt_send = B_TRUE; 24194 24195 /* Make sure we do not omit any multiroute ire. */ 24196 IRB_REFHOLD(irb); 24197 for (first_ire = irb->irb_ire; 24198 first_ire != NULL; 24199 first_ire = first_ire->ire_next) { 24200 if ((first_ire->ire_flags & RTF_MULTIRT) && 24201 (first_ire->ire_addr == ire->ire_addr) && 24202 !(first_ire->ire_marks & 24203 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24204 break; 24205 } 24206 24207 if (first_ire != NULL) { 24208 if (first_ire != ire) { 24209 IRE_REFHOLD(first_ire); 24210 /* 24211 * Do not release the ire passed in 24212 * as the argument. 24213 */ 24214 ire = first_ire; 24215 } else { 24216 first_ire = NULL; 24217 } 24218 } 24219 IRB_REFRELE(irb); 24220 24221 /* 24222 * Save the first ire; we will need to restore it 24223 * for the trailing frags. 24224 * We REFHOLD save_ire, as each iterated ire will be 24225 * REFRELEd. 24226 */ 24227 save_ire = ire; 24228 IRE_REFHOLD(save_ire); 24229 } 24230 24231 /* 24232 * First fragment emission loop. 24233 * In most cases, the emission loop below is entered only 24234 * once. Only in the case where the ire holds the RTF_MULTIRT 24235 * flag, do we loop to process all RTF_MULTIRT ires in the 24236 * bucket, and send the fragment through all crossed 24237 * RTF_MULTIRT routes. 24238 */ 24239 do { 24240 if (ire->ire_flags & RTF_MULTIRT) { 24241 /* 24242 * We are in a multiple send case, need to get 24243 * the next ire and make a copy of the packet. 24244 * ire1 holds here the next ire to process in the 24245 * bucket. If multirouting is expected, 24246 * any non-RTF_MULTIRT ire that has the 24247 * right destination address is ignored. 24248 * 24249 * We have to take into account the MTU of 24250 * each walked ire. max_frag is set by the 24251 * the caller and generally refers to 24252 * the primary ire entry. Here we ensure that 24253 * no route with a lower MTU will be used, as 24254 * fragments are carved once for all ires, 24255 * then replicated. 24256 */ 24257 ASSERT(irb != NULL); 24258 IRB_REFHOLD(irb); 24259 for (ire1 = ire->ire_next; 24260 ire1 != NULL; 24261 ire1 = ire1->ire_next) { 24262 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24263 continue; 24264 if (ire1->ire_addr != ire->ire_addr) 24265 continue; 24266 if (ire1->ire_marks & 24267 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24268 continue; 24269 /* 24270 * Ensure we do not exceed the MTU 24271 * of the next route. 24272 */ 24273 if (ire1->ire_max_frag < max_frag) { 24274 ip_multirt_bad_mtu(ire1, max_frag); 24275 continue; 24276 } 24277 24278 /* Got one. */ 24279 IRE_REFHOLD(ire1); 24280 break; 24281 } 24282 IRB_REFRELE(irb); 24283 24284 if (ire1 != NULL) { 24285 next_mp = copyb(mp); 24286 if ((next_mp == NULL) || 24287 ((mp->b_cont != NULL) && 24288 ((next_mp->b_cont = 24289 dupmsg(mp->b_cont)) == NULL))) { 24290 freemsg(next_mp); 24291 next_mp = NULL; 24292 ire_refrele(ire1); 24293 ire1 = NULL; 24294 } 24295 } 24296 24297 /* Last multiroute ire; don't loop anymore. */ 24298 if (ire1 == NULL) { 24299 multirt_send = B_FALSE; 24300 } 24301 } 24302 24303 ll_hdr_len = 0; 24304 LOCK_IRE_FP_MP(ire); 24305 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24306 if (ll_hdr_mp != NULL) { 24307 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24308 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24309 } else { 24310 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24311 } 24312 24313 /* If there is a transmit header, get a copy for this frag. */ 24314 /* 24315 * TODO: should check db_ref before calling ip_carve_mp since 24316 * it might give us a dup. 24317 */ 24318 if (!ll_hdr_mp) { 24319 /* No xmit header. */ 24320 xmit_mp = mp; 24321 24322 /* We have a link-layer header that can fit in our mblk. */ 24323 } else if (mp->b_datap->db_ref == 1 && 24324 ll_hdr_len != 0 && 24325 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24326 /* M_DATA fastpath */ 24327 mp->b_rptr -= ll_hdr_len; 24328 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24329 xmit_mp = mp; 24330 24331 /* Corner case if copyb has failed */ 24332 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24333 UNLOCK_IRE_FP_MP(ire); 24334 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24335 freeb(hdr_mp); 24336 freemsg(mp); 24337 freemsg(mp_orig); 24338 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24339 "ip_wput_frag_end:(%S)", 24340 "discard"); 24341 24342 if (multirt_send) { 24343 ASSERT(ire1); 24344 ASSERT(next_mp); 24345 24346 freemsg(next_mp); 24347 ire_refrele(ire1); 24348 } 24349 if (save_ire != NULL) 24350 IRE_REFRELE(save_ire); 24351 24352 if (first_ire != NULL) 24353 ire_refrele(first_ire); 24354 return; 24355 24356 /* 24357 * Case of res_mp OR the fastpath mp can't fit 24358 * in the mblk 24359 */ 24360 } else { 24361 xmit_mp->b_cont = mp; 24362 24363 /* 24364 * Get priority marking, if any. 24365 * We propagate the CoS marking from the 24366 * original packet that went to QoS processing 24367 * in ip_wput_ire to the newly carved mp. 24368 */ 24369 if (DB_TYPE(xmit_mp) == M_DATA) 24370 xmit_mp->b_band = mp->b_band; 24371 } 24372 UNLOCK_IRE_FP_MP(ire); 24373 24374 q = ire->ire_stq; 24375 out_ill = (ill_t *)q->q_ptr; 24376 24377 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24378 24379 DTRACE_PROBE4(ip4__physical__out__start, 24380 ill_t *, NULL, ill_t *, out_ill, 24381 ipha_t *, ipha, mblk_t *, xmit_mp); 24382 24383 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24384 ipst->ips_ipv4firewall_physical_out, 24385 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24386 24387 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24388 24389 if (xmit_mp != NULL) { 24390 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24391 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24392 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24393 24394 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24395 24396 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24397 UPDATE_MIB(out_ill->ill_ip_mib, 24398 ipIfStatsHCOutOctets, i1); 24399 24400 if (pkt_type != OB_PKT) { 24401 /* 24402 * Update the packet count and MIB stats 24403 * of trailing RTF_MULTIRT ires. 24404 */ 24405 UPDATE_OB_PKT_COUNT(ire); 24406 BUMP_MIB(out_ill->ill_ip_mib, 24407 ipIfStatsOutFragReqds); 24408 } 24409 } 24410 24411 if (multirt_send) { 24412 /* 24413 * We are in a multiple send case; look for 24414 * the next ire and re-enter the loop. 24415 */ 24416 ASSERT(ire1); 24417 ASSERT(next_mp); 24418 /* REFRELE the current ire before looping */ 24419 ire_refrele(ire); 24420 ire = ire1; 24421 ire1 = NULL; 24422 mp = next_mp; 24423 next_mp = NULL; 24424 } 24425 } while (multirt_send); 24426 24427 ASSERT(ire1 == NULL); 24428 24429 /* Restore the original ire; we need it for the trailing frags */ 24430 if (save_ire != NULL) { 24431 /* REFRELE the last iterated ire */ 24432 ire_refrele(ire); 24433 /* save_ire has been REFHOLDed */ 24434 ire = save_ire; 24435 save_ire = NULL; 24436 q = ire->ire_stq; 24437 } 24438 24439 if (pkt_type == OB_PKT) { 24440 UPDATE_OB_PKT_COUNT(ire); 24441 } else { 24442 out_ill = (ill_t *)q->q_ptr; 24443 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24444 UPDATE_IB_PKT_COUNT(ire); 24445 } 24446 24447 /* Advance the offset to the second frag starting point. */ 24448 offset += len; 24449 /* 24450 * Update hdr_len from the copied header - there might be less options 24451 * in the later fragments. 24452 */ 24453 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24454 /* Loop until done. */ 24455 for (;;) { 24456 uint16_t offset_and_flags; 24457 uint16_t ip_len; 24458 24459 if (ip_data_end - offset > len) { 24460 /* 24461 * Carve off the appropriate amount from the original 24462 * datagram. 24463 */ 24464 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24465 mp = NULL; 24466 break; 24467 } 24468 /* 24469 * More frags after this one. Get another copy 24470 * of the header. 24471 */ 24472 if (carve_mp->b_datap->db_ref == 1 && 24473 hdr_mp->b_wptr - hdr_mp->b_rptr < 24474 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24475 /* Inline IP header */ 24476 carve_mp->b_rptr -= hdr_mp->b_wptr - 24477 hdr_mp->b_rptr; 24478 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24479 hdr_mp->b_wptr - hdr_mp->b_rptr); 24480 mp = carve_mp; 24481 } else { 24482 if (!(mp = copyb(hdr_mp))) { 24483 freemsg(carve_mp); 24484 break; 24485 } 24486 /* Get priority marking, if any. */ 24487 mp->b_band = carve_mp->b_band; 24488 mp->b_cont = carve_mp; 24489 } 24490 ipha = (ipha_t *)mp->b_rptr; 24491 offset_and_flags = IPH_MF; 24492 } else { 24493 /* 24494 * Last frag. Consume the header. Set len to 24495 * the length of this last piece. 24496 */ 24497 len = ip_data_end - offset; 24498 24499 /* 24500 * Carve off the appropriate amount from the original 24501 * datagram. 24502 */ 24503 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24504 mp = NULL; 24505 break; 24506 } 24507 if (carve_mp->b_datap->db_ref == 1 && 24508 hdr_mp->b_wptr - hdr_mp->b_rptr < 24509 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24510 /* Inline IP header */ 24511 carve_mp->b_rptr -= hdr_mp->b_wptr - 24512 hdr_mp->b_rptr; 24513 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24514 hdr_mp->b_wptr - hdr_mp->b_rptr); 24515 mp = carve_mp; 24516 freeb(hdr_mp); 24517 hdr_mp = mp; 24518 } else { 24519 mp = hdr_mp; 24520 /* Get priority marking, if any. */ 24521 mp->b_band = carve_mp->b_band; 24522 mp->b_cont = carve_mp; 24523 } 24524 ipha = (ipha_t *)mp->b_rptr; 24525 /* A frag of a frag might have IPH_MF non-zero */ 24526 offset_and_flags = 24527 ntohs(ipha->ipha_fragment_offset_and_flags) & 24528 IPH_MF; 24529 } 24530 offset_and_flags |= (uint16_t)(offset >> 3); 24531 offset_and_flags |= (uint16_t)frag_flag; 24532 /* Store the offset and flags in the IP header. */ 24533 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24534 24535 /* Store the length in the IP header. */ 24536 ip_len = (uint16_t)(len + hdr_len); 24537 ipha->ipha_length = htons(ip_len); 24538 24539 /* 24540 * Set the IP header checksum. Note that mp is just 24541 * the header, so this is easy to pass to ip_csum. 24542 */ 24543 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24544 24545 /* Attach a transmit header, if any, and ship it. */ 24546 if (pkt_type == OB_PKT) { 24547 UPDATE_OB_PKT_COUNT(ire); 24548 } else { 24549 out_ill = (ill_t *)q->q_ptr; 24550 BUMP_MIB(out_ill->ill_ip_mib, 24551 ipIfStatsHCOutForwDatagrams); 24552 UPDATE_IB_PKT_COUNT(ire); 24553 } 24554 24555 if (ire->ire_flags & RTF_MULTIRT) { 24556 irb = ire->ire_bucket; 24557 ASSERT(irb != NULL); 24558 24559 multirt_send = B_TRUE; 24560 24561 /* 24562 * Save the original ire; we will need to restore it 24563 * for the tailing frags. 24564 */ 24565 save_ire = ire; 24566 IRE_REFHOLD(save_ire); 24567 } 24568 /* 24569 * Emission loop for this fragment, similar 24570 * to what is done for the first fragment. 24571 */ 24572 do { 24573 if (multirt_send) { 24574 /* 24575 * We are in a multiple send case, need to get 24576 * the next ire and make a copy of the packet. 24577 */ 24578 ASSERT(irb != NULL); 24579 IRB_REFHOLD(irb); 24580 for (ire1 = ire->ire_next; 24581 ire1 != NULL; 24582 ire1 = ire1->ire_next) { 24583 if (!(ire1->ire_flags & RTF_MULTIRT)) 24584 continue; 24585 if (ire1->ire_addr != ire->ire_addr) 24586 continue; 24587 if (ire1->ire_marks & 24588 (IRE_MARK_CONDEMNED | 24589 IRE_MARK_TESTHIDDEN)) 24590 continue; 24591 /* 24592 * Ensure we do not exceed the MTU 24593 * of the next route. 24594 */ 24595 if (ire1->ire_max_frag < max_frag) { 24596 ip_multirt_bad_mtu(ire1, 24597 max_frag); 24598 continue; 24599 } 24600 24601 /* Got one. */ 24602 IRE_REFHOLD(ire1); 24603 break; 24604 } 24605 IRB_REFRELE(irb); 24606 24607 if (ire1 != NULL) { 24608 next_mp = copyb(mp); 24609 if ((next_mp == NULL) || 24610 ((mp->b_cont != NULL) && 24611 ((next_mp->b_cont = 24612 dupmsg(mp->b_cont)) == NULL))) { 24613 freemsg(next_mp); 24614 next_mp = NULL; 24615 ire_refrele(ire1); 24616 ire1 = NULL; 24617 } 24618 } 24619 24620 /* Last multiroute ire; don't loop anymore. */ 24621 if (ire1 == NULL) { 24622 multirt_send = B_FALSE; 24623 } 24624 } 24625 24626 /* Update transmit header */ 24627 ll_hdr_len = 0; 24628 LOCK_IRE_FP_MP(ire); 24629 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24630 if (ll_hdr_mp != NULL) { 24631 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24632 ll_hdr_len = MBLKL(ll_hdr_mp); 24633 } else { 24634 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24635 } 24636 24637 if (!ll_hdr_mp) { 24638 xmit_mp = mp; 24639 24640 /* 24641 * We have link-layer header that can fit in 24642 * our mblk. 24643 */ 24644 } else if (mp->b_datap->db_ref == 1 && 24645 ll_hdr_len != 0 && 24646 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24647 /* M_DATA fastpath */ 24648 mp->b_rptr -= ll_hdr_len; 24649 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24650 ll_hdr_len); 24651 xmit_mp = mp; 24652 24653 /* 24654 * Case of res_mp OR the fastpath mp can't fit 24655 * in the mblk 24656 */ 24657 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24658 xmit_mp->b_cont = mp; 24659 /* Get priority marking, if any. */ 24660 if (DB_TYPE(xmit_mp) == M_DATA) 24661 xmit_mp->b_band = mp->b_band; 24662 24663 /* Corner case if copyb failed */ 24664 } else { 24665 /* 24666 * Exit both the replication and 24667 * fragmentation loops. 24668 */ 24669 UNLOCK_IRE_FP_MP(ire); 24670 goto drop_pkt; 24671 } 24672 UNLOCK_IRE_FP_MP(ire); 24673 24674 mp1 = mp; 24675 out_ill = (ill_t *)q->q_ptr; 24676 24677 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24678 24679 DTRACE_PROBE4(ip4__physical__out__start, 24680 ill_t *, NULL, ill_t *, out_ill, 24681 ipha_t *, ipha, mblk_t *, xmit_mp); 24682 24683 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24684 ipst->ips_ipv4firewall_physical_out, 24685 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24686 24687 DTRACE_PROBE1(ip4__physical__out__end, 24688 mblk_t *, xmit_mp); 24689 24690 if (mp != mp1 && hdr_mp == mp1) 24691 hdr_mp = mp; 24692 if (mp != mp1 && mp_orig == mp1) 24693 mp_orig = mp; 24694 24695 if (xmit_mp != NULL) { 24696 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24697 NULL, void_ip_t *, ipha, 24698 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24699 ipha, ip6_t *, NULL, int, 0); 24700 24701 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24702 24703 BUMP_MIB(out_ill->ill_ip_mib, 24704 ipIfStatsHCOutTransmits); 24705 UPDATE_MIB(out_ill->ill_ip_mib, 24706 ipIfStatsHCOutOctets, ip_len); 24707 24708 if (pkt_type != OB_PKT) { 24709 /* 24710 * Update the packet count of trailing 24711 * RTF_MULTIRT ires. 24712 */ 24713 UPDATE_OB_PKT_COUNT(ire); 24714 } 24715 } 24716 24717 /* All done if we just consumed the hdr_mp. */ 24718 if (mp == hdr_mp) { 24719 last_frag = B_TRUE; 24720 BUMP_MIB(out_ill->ill_ip_mib, 24721 ipIfStatsOutFragOKs); 24722 } 24723 24724 if (multirt_send) { 24725 /* 24726 * We are in a multiple send case; look for 24727 * the next ire and re-enter the loop. 24728 */ 24729 ASSERT(ire1); 24730 ASSERT(next_mp); 24731 /* REFRELE the current ire before looping */ 24732 ire_refrele(ire); 24733 ire = ire1; 24734 ire1 = NULL; 24735 q = ire->ire_stq; 24736 mp = next_mp; 24737 next_mp = NULL; 24738 } 24739 } while (multirt_send); 24740 /* 24741 * Restore the original ire; we need it for the 24742 * trailing frags 24743 */ 24744 if (save_ire != NULL) { 24745 ASSERT(ire1 == NULL); 24746 /* REFRELE the last iterated ire */ 24747 ire_refrele(ire); 24748 /* save_ire has been REFHOLDed */ 24749 ire = save_ire; 24750 q = ire->ire_stq; 24751 save_ire = NULL; 24752 } 24753 24754 if (last_frag) { 24755 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24756 "ip_wput_frag_end:(%S)", 24757 "consumed hdr_mp"); 24758 24759 if (first_ire != NULL) 24760 ire_refrele(first_ire); 24761 return; 24762 } 24763 /* Otherwise, advance and loop. */ 24764 offset += len; 24765 } 24766 24767 drop_pkt: 24768 /* Clean up following allocation failure. */ 24769 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24770 freemsg(mp); 24771 if (mp != hdr_mp) 24772 freeb(hdr_mp); 24773 if (mp != mp_orig) 24774 freemsg(mp_orig); 24775 24776 if (save_ire != NULL) 24777 IRE_REFRELE(save_ire); 24778 if (first_ire != NULL) 24779 ire_refrele(first_ire); 24780 24781 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24782 "ip_wput_frag_end:(%S)", 24783 "end--alloc failure"); 24784 } 24785 24786 /* 24787 * Copy the header plus those options which have the copy bit set 24788 * src is the template to make sure we preserve the cred for TX purposes. 24789 */ 24790 static mblk_t * 24791 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24792 mblk_t *src) 24793 { 24794 mblk_t *mp; 24795 uchar_t *up; 24796 24797 /* 24798 * Quick check if we need to look for options without the copy bit 24799 * set 24800 */ 24801 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24802 if (!mp) 24803 return (mp); 24804 mp->b_rptr += ipst->ips_ip_wroff_extra; 24805 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24806 bcopy(rptr, mp->b_rptr, hdr_len); 24807 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24808 return (mp); 24809 } 24810 up = mp->b_rptr; 24811 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24812 up += IP_SIMPLE_HDR_LENGTH; 24813 rptr += IP_SIMPLE_HDR_LENGTH; 24814 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24815 while (hdr_len > 0) { 24816 uint32_t optval; 24817 uint32_t optlen; 24818 24819 optval = *rptr; 24820 if (optval == IPOPT_EOL) 24821 break; 24822 if (optval == IPOPT_NOP) 24823 optlen = 1; 24824 else 24825 optlen = rptr[1]; 24826 if (optval & IPOPT_COPY) { 24827 bcopy(rptr, up, optlen); 24828 up += optlen; 24829 } 24830 rptr += optlen; 24831 hdr_len -= optlen; 24832 } 24833 /* 24834 * Make sure that we drop an even number of words by filling 24835 * with EOL to the next word boundary. 24836 */ 24837 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24838 hdr_len & 0x3; hdr_len++) 24839 *up++ = IPOPT_EOL; 24840 mp->b_wptr = up; 24841 /* Update header length */ 24842 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24843 return (mp); 24844 } 24845 24846 /* 24847 * Delivery to local recipients including fanout to multiple recipients. 24848 * Does not do checksumming of UDP/TCP. 24849 * Note: q should be the read side queue for either the ill or conn. 24850 * Note: rq should be the read side q for the lower (ill) stream. 24851 * We don't send packets to IPPF processing, thus the last argument 24852 * to all the fanout calls are B_FALSE. 24853 */ 24854 void 24855 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24856 int fanout_flags, zoneid_t zoneid) 24857 { 24858 uint32_t protocol; 24859 mblk_t *first_mp; 24860 boolean_t mctl_present; 24861 int ire_type; 24862 #define rptr ((uchar_t *)ipha) 24863 ip_stack_t *ipst = ill->ill_ipst; 24864 24865 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24866 "ip_wput_local_start: q %p", q); 24867 24868 if (ire != NULL) { 24869 ire_type = ire->ire_type; 24870 } else { 24871 /* 24872 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24873 * packet is not multicast, we can't tell the ire type. 24874 */ 24875 ASSERT(CLASSD(ipha->ipha_dst)); 24876 ire_type = IRE_BROADCAST; 24877 } 24878 24879 first_mp = mp; 24880 if (first_mp->b_datap->db_type == M_CTL) { 24881 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24882 if (!io->ipsec_out_secure) { 24883 /* 24884 * This ipsec_out_t was allocated in ip_wput 24885 * for multicast packets to store the ill_index. 24886 * As this is being delivered locally, we don't 24887 * need this anymore. 24888 */ 24889 mp = first_mp->b_cont; 24890 freeb(first_mp); 24891 first_mp = mp; 24892 mctl_present = B_FALSE; 24893 } else { 24894 /* 24895 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24896 * security properties for the looped-back packet. 24897 */ 24898 mctl_present = B_TRUE; 24899 mp = first_mp->b_cont; 24900 ASSERT(mp != NULL); 24901 ipsec_out_to_in(first_mp); 24902 } 24903 } else { 24904 mctl_present = B_FALSE; 24905 } 24906 24907 DTRACE_PROBE4(ip4__loopback__in__start, 24908 ill_t *, ill, ill_t *, NULL, 24909 ipha_t *, ipha, mblk_t *, first_mp); 24910 24911 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24912 ipst->ips_ipv4firewall_loopback_in, 24913 ill, NULL, ipha, first_mp, mp, 0, ipst); 24914 24915 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24916 24917 if (first_mp == NULL) 24918 return; 24919 24920 if (ipst->ips_ipobs_enabled) { 24921 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24922 zoneid_t stackzoneid = netstackid_to_zoneid( 24923 ipst->ips_netstack->netstack_stackid); 24924 24925 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24926 /* 24927 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24928 * address. Restrict the lookup below to the destination zone. 24929 */ 24930 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24931 lookup_zoneid = zoneid; 24932 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24933 lookup_zoneid); 24934 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 24935 IPV4_VERSION, 0, ipst); 24936 } 24937 24938 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24939 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24940 int, 1); 24941 24942 ipst->ips_loopback_packets++; 24943 24944 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24945 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24946 if (!IS_SIMPLE_IPH(ipha)) { 24947 ip_wput_local_options(ipha, ipst); 24948 } 24949 24950 protocol = ipha->ipha_protocol; 24951 switch (protocol) { 24952 case IPPROTO_ICMP: { 24953 ire_t *ire_zone; 24954 ilm_t *ilm; 24955 mblk_t *mp1; 24956 zoneid_t last_zoneid; 24957 ilm_walker_t ilw; 24958 24959 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24960 ASSERT(ire_type == IRE_BROADCAST); 24961 /* 24962 * In the multicast case, applications may have joined 24963 * the group from different zones, so we need to deliver 24964 * the packet to each of them. Loop through the 24965 * multicast memberships structures (ilm) on the receive 24966 * ill and send a copy of the packet up each matching 24967 * one. However, we don't do this for multicasts sent on 24968 * the loopback interface (PHYI_LOOPBACK flag set) as 24969 * they must stay in the sender's zone. 24970 * 24971 * ilm_add_v6() ensures that ilms in the same zone are 24972 * contiguous in the ill_ilm list. We use this property 24973 * to avoid sending duplicates needed when two 24974 * applications in the same zone join the same group on 24975 * different logical interfaces: we ignore the ilm if 24976 * it's zoneid is the same as the last matching one. 24977 * In addition, the sending of the packet for 24978 * ire_zoneid is delayed until all of the other ilms 24979 * have been exhausted. 24980 */ 24981 last_zoneid = -1; 24982 ilm = ilm_walker_start(&ilw, ill); 24983 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24984 if (ipha->ipha_dst != ilm->ilm_addr || 24985 ilm->ilm_zoneid == last_zoneid || 24986 ilm->ilm_zoneid == zoneid || 24987 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24988 continue; 24989 mp1 = ip_copymsg(first_mp); 24990 if (mp1 == NULL) 24991 continue; 24992 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24993 0, 0, mctl_present, B_FALSE, ill, 24994 ilm->ilm_zoneid); 24995 last_zoneid = ilm->ilm_zoneid; 24996 } 24997 ilm_walker_finish(&ilw); 24998 /* 24999 * Loopback case: the sending endpoint has 25000 * IP_MULTICAST_LOOP disabled, therefore we don't 25001 * dispatch the multicast packet to the sending zone. 25002 */ 25003 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25004 freemsg(first_mp); 25005 return; 25006 } 25007 } else if (ire_type == IRE_BROADCAST) { 25008 /* 25009 * In the broadcast case, there may be many zones 25010 * which need a copy of the packet delivered to them. 25011 * There is one IRE_BROADCAST per broadcast address 25012 * and per zone; we walk those using a helper function. 25013 * In addition, the sending of the packet for zoneid is 25014 * delayed until all of the other ires have been 25015 * processed. 25016 */ 25017 IRB_REFHOLD(ire->ire_bucket); 25018 ire_zone = NULL; 25019 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25020 ire)) != NULL) { 25021 mp1 = ip_copymsg(first_mp); 25022 if (mp1 == NULL) 25023 continue; 25024 25025 UPDATE_IB_PKT_COUNT(ire_zone); 25026 ire_zone->ire_last_used_time = lbolt; 25027 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25028 mctl_present, B_FALSE, ill, 25029 ire_zone->ire_zoneid); 25030 } 25031 IRB_REFRELE(ire->ire_bucket); 25032 } 25033 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25034 0, mctl_present, B_FALSE, ill, zoneid); 25035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25036 "ip_wput_local_end: q %p (%S)", 25037 q, "icmp"); 25038 return; 25039 } 25040 case IPPROTO_IGMP: 25041 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25042 /* Bad packet - discarded by igmp_input */ 25043 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25044 "ip_wput_local_end: q %p (%S)", 25045 q, "igmp_input--bad packet"); 25046 if (mctl_present) 25047 freeb(first_mp); 25048 return; 25049 } 25050 /* 25051 * igmp_input() may have returned the pulled up message. 25052 * So first_mp and ipha need to be reinitialized. 25053 */ 25054 ipha = (ipha_t *)mp->b_rptr; 25055 if (mctl_present) 25056 first_mp->b_cont = mp; 25057 else 25058 first_mp = mp; 25059 /* deliver to local raw users */ 25060 break; 25061 case IPPROTO_ENCAP: 25062 /* 25063 * This case is covered by either ip_fanout_proto, or by 25064 * the above security processing for self-tunneled packets. 25065 */ 25066 break; 25067 case IPPROTO_UDP: { 25068 uint16_t *up; 25069 uint32_t ports; 25070 25071 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25072 UDP_PORTS_OFFSET); 25073 /* Force a 'valid' checksum. */ 25074 up[3] = 0; 25075 25076 ports = *(uint32_t *)up; 25077 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25078 (ire_type == IRE_BROADCAST), 25079 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25080 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25081 ill, zoneid); 25082 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25083 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25084 return; 25085 } 25086 case IPPROTO_TCP: { 25087 25088 /* 25089 * For TCP, discard broadcast packets. 25090 */ 25091 if ((ushort_t)ire_type == IRE_BROADCAST) { 25092 freemsg(first_mp); 25093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25094 ip2dbg(("ip_wput_local: discard broadcast\n")); 25095 return; 25096 } 25097 25098 if (mp->b_datap->db_type == M_DATA) { 25099 /* 25100 * M_DATA mblk, so init mblk (chain) for no struio(). 25101 */ 25102 mblk_t *mp1 = mp; 25103 25104 do { 25105 mp1->b_datap->db_struioflag = 0; 25106 } while ((mp1 = mp1->b_cont) != NULL); 25107 } 25108 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25109 <= mp->b_wptr); 25110 ip_fanout_tcp(q, first_mp, ill, ipha, 25111 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25112 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25113 mctl_present, B_FALSE, zoneid); 25114 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25115 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25116 return; 25117 } 25118 case IPPROTO_SCTP: 25119 { 25120 uint32_t ports; 25121 25122 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25123 ip_fanout_sctp(first_mp, ill, ipha, ports, 25124 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25125 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25126 return; 25127 } 25128 25129 default: 25130 break; 25131 } 25132 /* 25133 * Find a client for some other protocol. We give 25134 * copies to multiple clients, if more than one is 25135 * bound. 25136 */ 25137 ip_fanout_proto(q, first_mp, ill, ipha, 25138 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25139 mctl_present, B_FALSE, ill, zoneid); 25140 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25141 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25142 #undef rptr 25143 } 25144 25145 /* 25146 * Update any source route, record route, or timestamp options. 25147 * Check that we are at end of strict source route. 25148 * The options have been sanity checked by ip_wput_options(). 25149 */ 25150 static void 25151 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25152 { 25153 ipoptp_t opts; 25154 uchar_t *opt; 25155 uint8_t optval; 25156 uint8_t optlen; 25157 ipaddr_t dst; 25158 uint32_t ts; 25159 ire_t *ire; 25160 timestruc_t now; 25161 25162 ip2dbg(("ip_wput_local_options\n")); 25163 for (optval = ipoptp_first(&opts, ipha); 25164 optval != IPOPT_EOL; 25165 optval = ipoptp_next(&opts)) { 25166 opt = opts.ipoptp_cur; 25167 optlen = opts.ipoptp_len; 25168 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25169 switch (optval) { 25170 uint32_t off; 25171 case IPOPT_SSRR: 25172 case IPOPT_LSRR: 25173 off = opt[IPOPT_OFFSET]; 25174 off--; 25175 if (optlen < IP_ADDR_LEN || 25176 off > optlen - IP_ADDR_LEN) { 25177 /* End of source route */ 25178 break; 25179 } 25180 /* 25181 * This will only happen if two consecutive entries 25182 * in the source route contains our address or if 25183 * it is a packet with a loose source route which 25184 * reaches us before consuming the whole source route 25185 */ 25186 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25187 if (optval == IPOPT_SSRR) { 25188 return; 25189 } 25190 /* 25191 * Hack: instead of dropping the packet truncate the 25192 * source route to what has been used by filling the 25193 * rest with IPOPT_NOP. 25194 */ 25195 opt[IPOPT_OLEN] = (uint8_t)off; 25196 while (off < optlen) { 25197 opt[off++] = IPOPT_NOP; 25198 } 25199 break; 25200 case IPOPT_RR: 25201 off = opt[IPOPT_OFFSET]; 25202 off--; 25203 if (optlen < IP_ADDR_LEN || 25204 off > optlen - IP_ADDR_LEN) { 25205 /* No more room - ignore */ 25206 ip1dbg(( 25207 "ip_wput_forward_options: end of RR\n")); 25208 break; 25209 } 25210 dst = htonl(INADDR_LOOPBACK); 25211 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25212 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25213 break; 25214 case IPOPT_TS: 25215 /* Insert timestamp if there is romm */ 25216 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25217 case IPOPT_TS_TSONLY: 25218 off = IPOPT_TS_TIMELEN; 25219 break; 25220 case IPOPT_TS_PRESPEC: 25221 case IPOPT_TS_PRESPEC_RFC791: 25222 /* Verify that the address matched */ 25223 off = opt[IPOPT_OFFSET] - 1; 25224 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25225 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25226 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25227 ipst); 25228 if (ire == NULL) { 25229 /* Not for us */ 25230 break; 25231 } 25232 ire_refrele(ire); 25233 /* FALLTHRU */ 25234 case IPOPT_TS_TSANDADDR: 25235 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25236 break; 25237 default: 25238 /* 25239 * ip_*put_options should have already 25240 * dropped this packet. 25241 */ 25242 cmn_err(CE_PANIC, "ip_wput_local_options: " 25243 "unknown IT - bug in ip_wput_options?\n"); 25244 return; /* Keep "lint" happy */ 25245 } 25246 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25247 /* Increase overflow counter */ 25248 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25249 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25250 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25251 (off << 4); 25252 break; 25253 } 25254 off = opt[IPOPT_OFFSET] - 1; 25255 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25256 case IPOPT_TS_PRESPEC: 25257 case IPOPT_TS_PRESPEC_RFC791: 25258 case IPOPT_TS_TSANDADDR: 25259 dst = htonl(INADDR_LOOPBACK); 25260 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25261 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25262 /* FALLTHRU */ 25263 case IPOPT_TS_TSONLY: 25264 off = opt[IPOPT_OFFSET] - 1; 25265 /* Compute # of milliseconds since midnight */ 25266 gethrestime(&now); 25267 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25268 now.tv_nsec / (NANOSEC / MILLISEC); 25269 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25270 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25271 break; 25272 } 25273 break; 25274 } 25275 } 25276 } 25277 25278 /* 25279 * Send out a multicast packet on interface ipif. 25280 * The sender does not have an conn. 25281 * Caller verifies that this isn't a PHYI_LOOPBACK. 25282 */ 25283 void 25284 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25285 { 25286 ipha_t *ipha; 25287 ire_t *ire; 25288 ipaddr_t dst; 25289 mblk_t *first_mp; 25290 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25291 25292 /* igmp_sendpkt always allocates a ipsec_out_t */ 25293 ASSERT(mp->b_datap->db_type == M_CTL); 25294 ASSERT(!ipif->ipif_isv6); 25295 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25296 25297 first_mp = mp; 25298 mp = first_mp->b_cont; 25299 ASSERT(mp->b_datap->db_type == M_DATA); 25300 ipha = (ipha_t *)mp->b_rptr; 25301 25302 /* 25303 * Find an IRE which matches the destination and the outgoing 25304 * queue (i.e. the outgoing interface.) 25305 */ 25306 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25307 dst = ipif->ipif_pp_dst_addr; 25308 else 25309 dst = ipha->ipha_dst; 25310 /* 25311 * The source address has already been initialized by the 25312 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25313 * be sufficient rather than MATCH_IRE_IPIF. 25314 * 25315 * This function is used for sending IGMP packets. For IPMP, 25316 * we sidestep IGMP snooping issues by sending all multicast 25317 * traffic on a single interface in the IPMP group. 25318 */ 25319 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25320 MATCH_IRE_ILL, ipst); 25321 if (!ire) { 25322 /* 25323 * Mark this packet to make it be delivered to 25324 * ip_wput_ire after the new ire has been 25325 * created. 25326 */ 25327 mp->b_prev = NULL; 25328 mp->b_next = NULL; 25329 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25330 zoneid, &zero_info); 25331 return; 25332 } 25333 25334 /* 25335 * Honor the RTF_SETSRC flag; this is the only case 25336 * where we force this addr whatever the current src addr is, 25337 * because this address is set by igmp_sendpkt(), and 25338 * cannot be specified by any user. 25339 */ 25340 if (ire->ire_flags & RTF_SETSRC) { 25341 ipha->ipha_src = ire->ire_src_addr; 25342 } 25343 25344 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25345 } 25346 25347 /* 25348 * NOTE : This function does not ire_refrele the ire argument passed in. 25349 * 25350 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25351 * failure. The nce_fp_mp can vanish any time in the case of 25352 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25353 * the ire_lock to access the nce_fp_mp in this case. 25354 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25355 * prepending a fastpath message IPQoS processing must precede it, we also set 25356 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25357 * (IPQoS might have set the b_band for CoS marking). 25358 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25359 * must follow it so that IPQoS can mark the dl_priority field for CoS 25360 * marking, if needed. 25361 */ 25362 static mblk_t * 25363 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25364 uint32_t ill_index, ipha_t **iphap) 25365 { 25366 uint_t hlen; 25367 ipha_t *ipha; 25368 mblk_t *mp1; 25369 boolean_t qos_done = B_FALSE; 25370 uchar_t *ll_hdr; 25371 ip_stack_t *ipst = ire->ire_ipst; 25372 25373 #define rptr ((uchar_t *)ipha) 25374 25375 ipha = (ipha_t *)mp->b_rptr; 25376 hlen = 0; 25377 LOCK_IRE_FP_MP(ire); 25378 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25379 ASSERT(DB_TYPE(mp1) == M_DATA); 25380 /* Initiate IPPF processing */ 25381 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25382 UNLOCK_IRE_FP_MP(ire); 25383 ip_process(proc, &mp, ill_index); 25384 if (mp == NULL) 25385 return (NULL); 25386 25387 ipha = (ipha_t *)mp->b_rptr; 25388 LOCK_IRE_FP_MP(ire); 25389 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25390 qos_done = B_TRUE; 25391 goto no_fp_mp; 25392 } 25393 ASSERT(DB_TYPE(mp1) == M_DATA); 25394 } 25395 hlen = MBLKL(mp1); 25396 /* 25397 * Check if we have enough room to prepend fastpath 25398 * header 25399 */ 25400 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25401 ll_hdr = rptr - hlen; 25402 bcopy(mp1->b_rptr, ll_hdr, hlen); 25403 /* 25404 * Set the b_rptr to the start of the link layer 25405 * header 25406 */ 25407 mp->b_rptr = ll_hdr; 25408 mp1 = mp; 25409 } else { 25410 mp1 = copyb(mp1); 25411 if (mp1 == NULL) 25412 goto unlock_err; 25413 mp1->b_band = mp->b_band; 25414 mp1->b_cont = mp; 25415 /* 25416 * XXX disable ICK_VALID and compute checksum 25417 * here; can happen if nce_fp_mp changes and 25418 * it can't be copied now due to insufficient 25419 * space. (unlikely, fp mp can change, but it 25420 * does not increase in length) 25421 */ 25422 } 25423 UNLOCK_IRE_FP_MP(ire); 25424 } else { 25425 no_fp_mp: 25426 mp1 = copyb(ire->ire_nce->nce_res_mp); 25427 if (mp1 == NULL) { 25428 unlock_err: 25429 UNLOCK_IRE_FP_MP(ire); 25430 freemsg(mp); 25431 return (NULL); 25432 } 25433 UNLOCK_IRE_FP_MP(ire); 25434 mp1->b_cont = mp; 25435 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25436 ip_process(proc, &mp1, ill_index); 25437 if (mp1 == NULL) 25438 return (NULL); 25439 25440 if (mp1->b_cont == NULL) 25441 ipha = NULL; 25442 else 25443 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25444 } 25445 } 25446 25447 *iphap = ipha; 25448 return (mp1); 25449 #undef rptr 25450 } 25451 25452 /* 25453 * Finish the outbound IPsec processing for an IPv6 packet. This function 25454 * is called from ipsec_out_process() if the IPsec packet was processed 25455 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25456 * asynchronously. 25457 */ 25458 void 25459 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25460 ire_t *ire_arg) 25461 { 25462 in6_addr_t *v6dstp; 25463 ire_t *ire; 25464 mblk_t *mp; 25465 ip6_t *ip6h1; 25466 uint_t ill_index; 25467 ipsec_out_t *io; 25468 boolean_t hwaccel; 25469 uint32_t flags = IP6_NO_IPPOLICY; 25470 int match_flags; 25471 zoneid_t zoneid; 25472 boolean_t ill_need_rele = B_FALSE; 25473 boolean_t ire_need_rele = B_FALSE; 25474 ip_stack_t *ipst; 25475 25476 mp = ipsec_mp->b_cont; 25477 ip6h1 = (ip6_t *)mp->b_rptr; 25478 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25479 ASSERT(io->ipsec_out_ns != NULL); 25480 ipst = io->ipsec_out_ns->netstack_ip; 25481 ill_index = io->ipsec_out_ill_index; 25482 if (io->ipsec_out_reachable) { 25483 flags |= IPV6_REACHABILITY_CONFIRMATION; 25484 } 25485 hwaccel = io->ipsec_out_accelerated; 25486 zoneid = io->ipsec_out_zoneid; 25487 ASSERT(zoneid != ALL_ZONES); 25488 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25489 /* Multicast addresses should have non-zero ill_index. */ 25490 v6dstp = &ip6h->ip6_dst; 25491 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25492 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25493 25494 if (ill == NULL && ill_index != 0) { 25495 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25496 /* Failure case frees things for us. */ 25497 if (ill == NULL) 25498 return; 25499 25500 ill_need_rele = B_TRUE; 25501 } 25502 ASSERT(mp != NULL); 25503 25504 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25505 boolean_t unspec_src; 25506 ipif_t *ipif; 25507 25508 /* 25509 * Use the ill_index to get the right ill. 25510 */ 25511 unspec_src = io->ipsec_out_unspec_src; 25512 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25513 if (ipif == NULL) { 25514 if (ill_need_rele) 25515 ill_refrele(ill); 25516 freemsg(ipsec_mp); 25517 return; 25518 } 25519 25520 if (ire_arg != NULL) { 25521 ire = ire_arg; 25522 } else { 25523 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25524 zoneid, msg_getlabel(mp), match_flags, ipst); 25525 ire_need_rele = B_TRUE; 25526 } 25527 if (ire != NULL) { 25528 ipif_refrele(ipif); 25529 /* 25530 * XXX Do the multicast forwarding now, as the IPsec 25531 * processing has been done. 25532 */ 25533 goto send; 25534 } 25535 25536 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25537 mp->b_prev = NULL; 25538 mp->b_next = NULL; 25539 25540 /* 25541 * If the IPsec packet was processed asynchronously, 25542 * drop it now. 25543 */ 25544 if (q == NULL) { 25545 if (ill_need_rele) 25546 ill_refrele(ill); 25547 freemsg(ipsec_mp); 25548 return; 25549 } 25550 25551 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25552 unspec_src, zoneid); 25553 ipif_refrele(ipif); 25554 } else { 25555 if (ire_arg != NULL) { 25556 ire = ire_arg; 25557 } else { 25558 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25559 ire_need_rele = B_TRUE; 25560 } 25561 if (ire != NULL) 25562 goto send; 25563 /* 25564 * ire disappeared underneath. 25565 * 25566 * What we need to do here is the ip_newroute 25567 * logic to get the ire without doing the IPsec 25568 * processing. Follow the same old path. But this 25569 * time, ip_wput or ire_add_then_send will call us 25570 * directly as all the IPsec operations are done. 25571 */ 25572 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25573 mp->b_prev = NULL; 25574 mp->b_next = NULL; 25575 25576 /* 25577 * If the IPsec packet was processed asynchronously, 25578 * drop it now. 25579 */ 25580 if (q == NULL) { 25581 if (ill_need_rele) 25582 ill_refrele(ill); 25583 freemsg(ipsec_mp); 25584 return; 25585 } 25586 25587 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25588 zoneid, ipst); 25589 } 25590 if (ill != NULL && ill_need_rele) 25591 ill_refrele(ill); 25592 return; 25593 send: 25594 if (ill != NULL && ill_need_rele) 25595 ill_refrele(ill); 25596 25597 /* Local delivery */ 25598 if (ire->ire_stq == NULL) { 25599 ill_t *out_ill; 25600 ASSERT(q != NULL); 25601 25602 /* PFHooks: LOOPBACK_OUT */ 25603 out_ill = ire_to_ill(ire); 25604 25605 /* 25606 * DTrace this as ip:::send. A blocked packet will fire the 25607 * send probe, but not the receive probe. 25608 */ 25609 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25610 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25611 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25612 25613 DTRACE_PROBE4(ip6__loopback__out__start, 25614 ill_t *, NULL, ill_t *, out_ill, 25615 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25616 25617 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25618 ipst->ips_ipv6firewall_loopback_out, 25619 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25620 25621 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25622 25623 if (ipsec_mp != NULL) { 25624 ip_wput_local_v6(RD(q), out_ill, 25625 ip6h, ipsec_mp, ire, 0, zoneid); 25626 } 25627 if (ire_need_rele) 25628 ire_refrele(ire); 25629 return; 25630 } 25631 /* 25632 * Everything is done. Send it out on the wire. 25633 * We force the insertion of a fragment header using the 25634 * IPH_FRAG_HDR flag in two cases: 25635 * - after reception of an ICMPv6 "packet too big" message 25636 * with a MTU < 1280 (cf. RFC 2460 section 5) 25637 * - for multirouted IPv6 packets, so that the receiver can 25638 * discard duplicates according to their fragment identifier 25639 */ 25640 /* XXX fix flow control problems. */ 25641 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25642 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25643 if (hwaccel) { 25644 /* 25645 * hardware acceleration does not handle these 25646 * "slow path" cases. 25647 */ 25648 /* IPsec KSTATS: should bump bean counter here. */ 25649 if (ire_need_rele) 25650 ire_refrele(ire); 25651 freemsg(ipsec_mp); 25652 return; 25653 } 25654 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25655 (mp->b_cont ? msgdsize(mp) : 25656 mp->b_wptr - (uchar_t *)ip6h)) { 25657 /* IPsec KSTATS: should bump bean counter here. */ 25658 ip0dbg(("Packet length mismatch: %d, %ld\n", 25659 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25660 msgdsize(mp))); 25661 if (ire_need_rele) 25662 ire_refrele(ire); 25663 freemsg(ipsec_mp); 25664 return; 25665 } 25666 ASSERT(mp->b_prev == NULL); 25667 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25668 ntohs(ip6h->ip6_plen) + 25669 IPV6_HDR_LEN, ire->ire_max_frag)); 25670 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25671 ire->ire_max_frag); 25672 } else { 25673 UPDATE_OB_PKT_COUNT(ire); 25674 ire->ire_last_used_time = lbolt; 25675 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25676 } 25677 if (ire_need_rele) 25678 ire_refrele(ire); 25679 freeb(ipsec_mp); 25680 } 25681 25682 void 25683 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25684 { 25685 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25686 da_ipsec_t *hada; /* data attributes */ 25687 ill_t *ill = (ill_t *)q->q_ptr; 25688 25689 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25690 25691 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25692 /* IPsec KSTATS: Bump lose counter here! */ 25693 freemsg(mp); 25694 return; 25695 } 25696 25697 /* 25698 * It's an IPsec packet that must be 25699 * accelerated by the Provider, and the 25700 * outbound ill is IPsec acceleration capable. 25701 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25702 * to the ill. 25703 * IPsec KSTATS: should bump packet counter here. 25704 */ 25705 25706 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25707 if (hada_mp == NULL) { 25708 /* IPsec KSTATS: should bump packet counter here. */ 25709 freemsg(mp); 25710 return; 25711 } 25712 25713 hada_mp->b_datap->db_type = M_CTL; 25714 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25715 hada_mp->b_cont = mp; 25716 25717 hada = (da_ipsec_t *)hada_mp->b_rptr; 25718 bzero(hada, sizeof (da_ipsec_t)); 25719 hada->da_type = IPHADA_M_CTL; 25720 25721 putnext(q, hada_mp); 25722 } 25723 25724 /* 25725 * Finish the outbound IPsec processing. This function is called from 25726 * ipsec_out_process() if the IPsec packet was processed 25727 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25728 * asynchronously. 25729 */ 25730 void 25731 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25732 ire_t *ire_arg) 25733 { 25734 uint32_t v_hlen_tos_len; 25735 ipaddr_t dst; 25736 ipif_t *ipif = NULL; 25737 ire_t *ire; 25738 ire_t *ire1 = NULL; 25739 mblk_t *next_mp = NULL; 25740 uint32_t max_frag; 25741 boolean_t multirt_send = B_FALSE; 25742 mblk_t *mp; 25743 ipha_t *ipha1; 25744 uint_t ill_index; 25745 ipsec_out_t *io; 25746 int match_flags; 25747 irb_t *irb = NULL; 25748 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25749 zoneid_t zoneid; 25750 ipxmit_state_t pktxmit_state; 25751 ip_stack_t *ipst; 25752 25753 #ifdef _BIG_ENDIAN 25754 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25755 #else 25756 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25757 #endif 25758 25759 mp = ipsec_mp->b_cont; 25760 ipha1 = (ipha_t *)mp->b_rptr; 25761 ASSERT(mp != NULL); 25762 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25763 dst = ipha->ipha_dst; 25764 25765 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25766 ill_index = io->ipsec_out_ill_index; 25767 zoneid = io->ipsec_out_zoneid; 25768 ASSERT(zoneid != ALL_ZONES); 25769 ipst = io->ipsec_out_ns->netstack_ip; 25770 ASSERT(io->ipsec_out_ns != NULL); 25771 25772 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25773 if (ill == NULL && ill_index != 0) { 25774 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25775 /* Failure case frees things for us. */ 25776 if (ill == NULL) 25777 return; 25778 25779 ill_need_rele = B_TRUE; 25780 } 25781 25782 if (CLASSD(dst)) { 25783 boolean_t conn_dontroute; 25784 /* 25785 * Use the ill_index to get the right ipif. 25786 */ 25787 conn_dontroute = io->ipsec_out_dontroute; 25788 if (ill_index == 0) 25789 ipif = ipif_lookup_group(dst, zoneid, ipst); 25790 else 25791 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25792 if (ipif == NULL) { 25793 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25794 " multicast\n")); 25795 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25796 freemsg(ipsec_mp); 25797 goto done; 25798 } 25799 /* 25800 * ipha_src has already been intialized with the 25801 * value of the ipif in ip_wput. All we need now is 25802 * an ire to send this downstream. 25803 */ 25804 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25805 msg_getlabel(mp), match_flags, ipst); 25806 if (ire != NULL) { 25807 ill_t *ill1; 25808 /* 25809 * Do the multicast forwarding now, as the IPsec 25810 * processing has been done. 25811 */ 25812 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25813 (ill1 = ire_to_ill(ire))) { 25814 if (ip_mforward(ill1, ipha, mp)) { 25815 freemsg(ipsec_mp); 25816 ip1dbg(("ip_wput_ipsec_out: mforward " 25817 "failed\n")); 25818 ire_refrele(ire); 25819 goto done; 25820 } 25821 } 25822 goto send; 25823 } 25824 25825 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25826 mp->b_prev = NULL; 25827 mp->b_next = NULL; 25828 25829 /* 25830 * If the IPsec packet was processed asynchronously, 25831 * drop it now. 25832 */ 25833 if (q == NULL) { 25834 freemsg(ipsec_mp); 25835 goto done; 25836 } 25837 25838 /* 25839 * We may be using a wrong ipif to create the ire. 25840 * But it is okay as the source address is assigned 25841 * for the packet already. Next outbound packet would 25842 * create the IRE with the right IPIF in ip_wput. 25843 * 25844 * Also handle RTF_MULTIRT routes. 25845 */ 25846 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25847 zoneid, &zero_info); 25848 } else { 25849 if (ire_arg != NULL) { 25850 ire = ire_arg; 25851 ire_need_rele = B_FALSE; 25852 } else { 25853 ire = ire_cache_lookup(dst, zoneid, 25854 msg_getlabel(mp), ipst); 25855 } 25856 if (ire != NULL) { 25857 goto send; 25858 } 25859 25860 /* 25861 * ire disappeared underneath. 25862 * 25863 * What we need to do here is the ip_newroute 25864 * logic to get the ire without doing the IPsec 25865 * processing. Follow the same old path. But this 25866 * time, ip_wput or ire_add_then_put will call us 25867 * directly as all the IPsec operations are done. 25868 */ 25869 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25870 mp->b_prev = NULL; 25871 mp->b_next = NULL; 25872 25873 /* 25874 * If the IPsec packet was processed asynchronously, 25875 * drop it now. 25876 */ 25877 if (q == NULL) { 25878 freemsg(ipsec_mp); 25879 goto done; 25880 } 25881 25882 /* 25883 * Since we're going through ip_newroute() again, we 25884 * need to make sure we don't: 25885 * 25886 * 1.) Trigger the ASSERT() with the ipha_ident 25887 * overloading. 25888 * 2.) Redo transport-layer checksumming, since we've 25889 * already done all that to get this far. 25890 * 25891 * The easiest way not do either of the above is to set 25892 * the ipha_ident field to IP_HDR_INCLUDED. 25893 */ 25894 ipha->ipha_ident = IP_HDR_INCLUDED; 25895 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25896 zoneid, ipst); 25897 } 25898 goto done; 25899 send: 25900 if (ire->ire_stq == NULL) { 25901 ill_t *out_ill; 25902 /* 25903 * Loopbacks go through ip_wput_local except for one case. 25904 * We come here if we generate a icmp_frag_needed message 25905 * after IPsec processing is over. When this function calls 25906 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25907 * icmp_frag_needed. The message generated comes back here 25908 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25909 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25910 * source address as it is usually set in ip_wput_ire. As 25911 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25912 * and we end up here. We can't enter ip_wput_ire once the 25913 * IPsec processing is over and hence we need to do it here. 25914 */ 25915 ASSERT(q != NULL); 25916 UPDATE_OB_PKT_COUNT(ire); 25917 ire->ire_last_used_time = lbolt; 25918 if (ipha->ipha_src == 0) 25919 ipha->ipha_src = ire->ire_src_addr; 25920 25921 /* PFHooks: LOOPBACK_OUT */ 25922 out_ill = ire_to_ill(ire); 25923 25924 /* 25925 * DTrace this as ip:::send. A blocked packet will fire the 25926 * send probe, but not the receive probe. 25927 */ 25928 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25929 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25930 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25931 25932 DTRACE_PROBE4(ip4__loopback__out__start, 25933 ill_t *, NULL, ill_t *, out_ill, 25934 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25935 25936 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25937 ipst->ips_ipv4firewall_loopback_out, 25938 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25939 25940 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25941 25942 if (ipsec_mp != NULL) 25943 ip_wput_local(RD(q), out_ill, 25944 ipha, ipsec_mp, ire, 0, zoneid); 25945 if (ire_need_rele) 25946 ire_refrele(ire); 25947 goto done; 25948 } 25949 25950 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25951 /* 25952 * We are through with IPsec processing. 25953 * Fragment this and send it on the wire. 25954 */ 25955 if (io->ipsec_out_accelerated) { 25956 /* 25957 * The packet has been accelerated but must 25958 * be fragmented. This should not happen 25959 * since AH and ESP must not accelerate 25960 * packets that need fragmentation, however 25961 * the configuration could have changed 25962 * since the AH or ESP processing. 25963 * Drop packet. 25964 * IPsec KSTATS: bump bean counter here. 25965 */ 25966 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25967 "fragmented accelerated packet!\n")); 25968 freemsg(ipsec_mp); 25969 } else { 25970 ip_wput_ire_fragmentit(ipsec_mp, ire, 25971 zoneid, ipst, NULL); 25972 } 25973 if (ire_need_rele) 25974 ire_refrele(ire); 25975 goto done; 25976 } 25977 25978 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25979 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25980 (void *)ire->ire_ipif, (void *)ipif)); 25981 25982 /* 25983 * Multiroute the secured packet. 25984 */ 25985 if (ire->ire_flags & RTF_MULTIRT) { 25986 ire_t *first_ire; 25987 irb = ire->ire_bucket; 25988 ASSERT(irb != NULL); 25989 /* 25990 * This ire has been looked up as the one that 25991 * goes through the given ipif; 25992 * make sure we do not omit any other multiroute ire 25993 * that may be present in the bucket before this one. 25994 */ 25995 IRB_REFHOLD(irb); 25996 for (first_ire = irb->irb_ire; 25997 first_ire != NULL; 25998 first_ire = first_ire->ire_next) { 25999 if ((first_ire->ire_flags & RTF_MULTIRT) && 26000 (first_ire->ire_addr == ire->ire_addr) && 26001 !(first_ire->ire_marks & 26002 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26003 break; 26004 } 26005 26006 if ((first_ire != NULL) && (first_ire != ire)) { 26007 /* 26008 * Don't change the ire if the packet must 26009 * be fragmented if sent via this new one. 26010 */ 26011 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26012 IRE_REFHOLD(first_ire); 26013 if (ire_need_rele) 26014 ire_refrele(ire); 26015 else 26016 ire_need_rele = B_TRUE; 26017 ire = first_ire; 26018 } 26019 } 26020 IRB_REFRELE(irb); 26021 26022 multirt_send = B_TRUE; 26023 max_frag = ire->ire_max_frag; 26024 } 26025 26026 /* 26027 * In most cases, the emission loop below is entered only once. 26028 * Only in the case where the ire holds the RTF_MULTIRT 26029 * flag, we loop to process all RTF_MULTIRT ires in the 26030 * bucket, and send the packet through all crossed 26031 * RTF_MULTIRT routes. 26032 */ 26033 do { 26034 if (multirt_send) { 26035 /* 26036 * ire1 holds here the next ire to process in the 26037 * bucket. If multirouting is expected, 26038 * any non-RTF_MULTIRT ire that has the 26039 * right destination address is ignored. 26040 */ 26041 ASSERT(irb != NULL); 26042 IRB_REFHOLD(irb); 26043 for (ire1 = ire->ire_next; 26044 ire1 != NULL; 26045 ire1 = ire1->ire_next) { 26046 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26047 continue; 26048 if (ire1->ire_addr != ire->ire_addr) 26049 continue; 26050 if (ire1->ire_marks & 26051 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26052 continue; 26053 /* No loopback here */ 26054 if (ire1->ire_stq == NULL) 26055 continue; 26056 /* 26057 * Ensure we do not exceed the MTU 26058 * of the next route. 26059 */ 26060 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26061 ip_multirt_bad_mtu(ire1, max_frag); 26062 continue; 26063 } 26064 26065 IRE_REFHOLD(ire1); 26066 break; 26067 } 26068 IRB_REFRELE(irb); 26069 if (ire1 != NULL) { 26070 /* 26071 * We are in a multiple send case, need to 26072 * make a copy of the packet. 26073 */ 26074 next_mp = copymsg(ipsec_mp); 26075 if (next_mp == NULL) { 26076 ire_refrele(ire1); 26077 ire1 = NULL; 26078 } 26079 } 26080 } 26081 /* 26082 * Everything is done. Send it out on the wire 26083 * 26084 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26085 * either send it on the wire or, in the case of 26086 * HW acceleration, call ipsec_hw_putnext. 26087 */ 26088 if (ire->ire_nce && 26089 ire->ire_nce->nce_state != ND_REACHABLE) { 26090 DTRACE_PROBE2(ip__wput__ipsec__bail, 26091 (ire_t *), ire, (mblk_t *), ipsec_mp); 26092 /* 26093 * If ire's link-layer is unresolved (this 26094 * would only happen if the incomplete ire 26095 * was added to cachetable via forwarding path) 26096 * don't bother going to ip_xmit_v4. Just drop the 26097 * packet. 26098 * There is a slight risk here, in that, if we 26099 * have the forwarding path create an incomplete 26100 * IRE, then until the IRE is completed, any 26101 * transmitted IPsec packets will be dropped 26102 * instead of being queued waiting for resolution. 26103 * 26104 * But the likelihood of a forwarding packet and a wput 26105 * packet sending to the same dst at the same time 26106 * and there not yet be an ARP entry for it is small. 26107 * Furthermore, if this actually happens, it might 26108 * be likely that wput would generate multiple 26109 * packets (and forwarding would also have a train 26110 * of packets) for that destination. If this is 26111 * the case, some of them would have been dropped 26112 * anyway, since ARP only queues a few packets while 26113 * waiting for resolution 26114 * 26115 * NOTE: We should really call ip_xmit_v4, 26116 * and let it queue the packet and send the 26117 * ARP query and have ARP come back thus: 26118 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26119 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26120 * hw accel work. But it's too complex to get 26121 * the IPsec hw acceleration approach to fit 26122 * well with ip_xmit_v4 doing ARP without 26123 * doing IPsec simplification. For now, we just 26124 * poke ip_xmit_v4 to trigger the arp resolve, so 26125 * that we can continue with the send on the next 26126 * attempt. 26127 * 26128 * XXX THis should be revisited, when 26129 * the IPsec/IP interaction is cleaned up 26130 */ 26131 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26132 " - dropping packet\n")); 26133 freemsg(ipsec_mp); 26134 /* 26135 * Call ip_xmit_v4() to trigger ARP query 26136 * in case the nce_state is ND_INITIAL 26137 */ 26138 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26139 goto drop_pkt; 26140 } 26141 26142 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26143 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26144 mblk_t *, ipsec_mp); 26145 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26146 ipst->ips_ipv4firewall_physical_out, NULL, 26147 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26148 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26149 if (ipsec_mp == NULL) 26150 goto drop_pkt; 26151 26152 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26153 pktxmit_state = ip_xmit_v4(mp, ire, 26154 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26155 26156 if ((pktxmit_state == SEND_FAILED) || 26157 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26158 26159 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26160 drop_pkt: 26161 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26162 ipIfStatsOutDiscards); 26163 if (ire_need_rele) 26164 ire_refrele(ire); 26165 if (ire1 != NULL) { 26166 ire_refrele(ire1); 26167 freemsg(next_mp); 26168 } 26169 goto done; 26170 } 26171 26172 freeb(ipsec_mp); 26173 if (ire_need_rele) 26174 ire_refrele(ire); 26175 26176 if (ire1 != NULL) { 26177 ire = ire1; 26178 ire_need_rele = B_TRUE; 26179 ASSERT(next_mp); 26180 ipsec_mp = next_mp; 26181 mp = ipsec_mp->b_cont; 26182 ire1 = NULL; 26183 next_mp = NULL; 26184 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26185 } else { 26186 multirt_send = B_FALSE; 26187 } 26188 } while (multirt_send); 26189 done: 26190 if (ill != NULL && ill_need_rele) 26191 ill_refrele(ill); 26192 if (ipif != NULL) 26193 ipif_refrele(ipif); 26194 } 26195 26196 /* 26197 * Get the ill corresponding to the specified ire, and compare its 26198 * capabilities with the protocol and algorithms specified by the 26199 * the SA obtained from ipsec_out. If they match, annotate the 26200 * ipsec_out structure to indicate that the packet needs acceleration. 26201 * 26202 * 26203 * A packet is eligible for outbound hardware acceleration if the 26204 * following conditions are satisfied: 26205 * 26206 * 1. the packet will not be fragmented 26207 * 2. the provider supports the algorithm 26208 * 3. there is no pending control message being exchanged 26209 * 4. snoop is not attached 26210 * 5. the destination address is not a broadcast or multicast address. 26211 * 26212 * Rationale: 26213 * - Hardware drivers do not support fragmentation with 26214 * the current interface. 26215 * - snoop, multicast, and broadcast may result in exposure of 26216 * a cleartext datagram. 26217 * We check all five of these conditions here. 26218 * 26219 * XXX would like to nuke "ire_t *" parameter here; problem is that 26220 * IRE is only way to figure out if a v4 address is a broadcast and 26221 * thus ineligible for acceleration... 26222 */ 26223 static void 26224 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26225 { 26226 ipsec_out_t *io; 26227 mblk_t *data_mp; 26228 uint_t plen, overhead; 26229 ip_stack_t *ipst; 26230 26231 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26232 return; 26233 26234 if (ill == NULL) 26235 return; 26236 ipst = ill->ill_ipst; 26237 /* 26238 * Destination address is a broadcast or multicast. Punt. 26239 */ 26240 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26241 IRE_LOCAL))) 26242 return; 26243 26244 data_mp = ipsec_mp->b_cont; 26245 26246 if (ill->ill_isv6) { 26247 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26248 26249 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26250 return; 26251 26252 plen = ip6h->ip6_plen; 26253 } else { 26254 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26255 26256 if (CLASSD(ipha->ipha_dst)) 26257 return; 26258 26259 plen = ipha->ipha_length; 26260 } 26261 /* 26262 * Is there a pending DLPI control message being exchanged 26263 * between IP/IPsec and the DLS Provider? If there is, it 26264 * could be a SADB update, and the state of the DLS Provider 26265 * SADB might not be in sync with the SADB maintained by 26266 * IPsec. To avoid dropping packets or using the wrong keying 26267 * material, we do not accelerate this packet. 26268 */ 26269 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26270 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26271 "ill_dlpi_pending! don't accelerate packet\n")); 26272 return; 26273 } 26274 26275 /* 26276 * Is the Provider in promiscous mode? If it does, we don't 26277 * accelerate the packet since it will bounce back up to the 26278 * listeners in the clear. 26279 */ 26280 if (ill->ill_promisc_on_phys) { 26281 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26282 "ill in promiscous mode, don't accelerate packet\n")); 26283 return; 26284 } 26285 26286 /* 26287 * Will the packet require fragmentation? 26288 */ 26289 26290 /* 26291 * IPsec ESP note: this is a pessimistic estimate, but the same 26292 * as is used elsewhere. 26293 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26294 * + 2-byte trailer 26295 */ 26296 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26297 IPSEC_BASE_ESP_HDR_SIZE(sa); 26298 26299 if ((plen + overhead) > ill->ill_max_mtu) 26300 return; 26301 26302 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26303 26304 /* 26305 * Can the ill accelerate this IPsec protocol and algorithm 26306 * specified by the SA? 26307 */ 26308 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26309 ill->ill_isv6, sa, ipst->ips_netstack)) { 26310 return; 26311 } 26312 26313 /* 26314 * Tell AH or ESP that the outbound ill is capable of 26315 * accelerating this packet. 26316 */ 26317 io->ipsec_out_is_capab_ill = B_TRUE; 26318 } 26319 26320 /* 26321 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26322 * 26323 * If this function returns B_TRUE, the requested SA's have been filled 26324 * into the ipsec_out_*_sa pointers. 26325 * 26326 * If the function returns B_FALSE, the packet has been "consumed", most 26327 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26328 * 26329 * The SA references created by the protocol-specific "select" 26330 * function will be released when the ipsec_mp is freed, thanks to the 26331 * ipsec_out_free destructor -- see spd.c. 26332 */ 26333 static boolean_t 26334 ipsec_out_select_sa(mblk_t *ipsec_mp) 26335 { 26336 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26337 ipsec_out_t *io; 26338 ipsec_policy_t *pp; 26339 ipsec_action_t *ap; 26340 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26341 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26342 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26343 26344 if (!io->ipsec_out_secure) { 26345 /* 26346 * We came here by mistake. 26347 * Don't bother with ipsec processing 26348 * We should "discourage" this path in the future. 26349 */ 26350 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26351 return (B_FALSE); 26352 } 26353 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26354 ASSERT((io->ipsec_out_policy != NULL) || 26355 (io->ipsec_out_act != NULL)); 26356 26357 ASSERT(io->ipsec_out_failed == B_FALSE); 26358 26359 /* 26360 * IPsec processing has started. 26361 */ 26362 io->ipsec_out_proc_begin = B_TRUE; 26363 ap = io->ipsec_out_act; 26364 if (ap == NULL) { 26365 pp = io->ipsec_out_policy; 26366 ASSERT(pp != NULL); 26367 ap = pp->ipsp_act; 26368 ASSERT(ap != NULL); 26369 } 26370 26371 /* 26372 * We have an action. now, let's select SA's. 26373 * (In the future, we can cache this in the conn_t..) 26374 */ 26375 if (ap->ipa_want_esp) { 26376 if (io->ipsec_out_esp_sa == NULL) { 26377 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26378 IPPROTO_ESP); 26379 } 26380 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26381 } 26382 26383 if (ap->ipa_want_ah) { 26384 if (io->ipsec_out_ah_sa == NULL) { 26385 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26386 IPPROTO_AH); 26387 } 26388 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26389 /* 26390 * The ESP and AH processing order needs to be preserved 26391 * when both protocols are required (ESP should be applied 26392 * before AH for an outbound packet). Force an ESP ACQUIRE 26393 * when both ESP and AH are required, and an AH ACQUIRE 26394 * is needed. 26395 */ 26396 if (ap->ipa_want_esp && need_ah_acquire) 26397 need_esp_acquire = B_TRUE; 26398 } 26399 26400 /* 26401 * Send an ACQUIRE (extended, regular, or both) if we need one. 26402 * Release SAs that got referenced, but will not be used until we 26403 * acquire _all_ of the SAs we need. 26404 */ 26405 if (need_ah_acquire || need_esp_acquire) { 26406 if (io->ipsec_out_ah_sa != NULL) { 26407 IPSA_REFRELE(io->ipsec_out_ah_sa); 26408 io->ipsec_out_ah_sa = NULL; 26409 } 26410 if (io->ipsec_out_esp_sa != NULL) { 26411 IPSA_REFRELE(io->ipsec_out_esp_sa); 26412 io->ipsec_out_esp_sa = NULL; 26413 } 26414 26415 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26416 return (B_FALSE); 26417 } 26418 26419 return (B_TRUE); 26420 } 26421 26422 /* 26423 * Process an IPSEC_OUT message and see what you can 26424 * do with it. 26425 * IPQoS Notes: 26426 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26427 * IPsec. 26428 * XXX would like to nuke ire_t. 26429 * XXX ill_index better be "real" 26430 */ 26431 void 26432 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26433 { 26434 ipsec_out_t *io; 26435 ipsec_policy_t *pp; 26436 ipsec_action_t *ap; 26437 ipha_t *ipha; 26438 ip6_t *ip6h; 26439 mblk_t *mp; 26440 ill_t *ill; 26441 zoneid_t zoneid; 26442 ipsec_status_t ipsec_rc; 26443 boolean_t ill_need_rele = B_FALSE; 26444 ip_stack_t *ipst; 26445 ipsec_stack_t *ipss; 26446 26447 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26448 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26449 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26450 ipst = io->ipsec_out_ns->netstack_ip; 26451 mp = ipsec_mp->b_cont; 26452 26453 /* 26454 * Initiate IPPF processing. We do it here to account for packets 26455 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26456 * We can check for ipsec_out_proc_begin even for such packets, as 26457 * they will always be false (asserted below). 26458 */ 26459 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26460 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26461 io->ipsec_out_ill_index : ill_index); 26462 if (mp == NULL) { 26463 ip2dbg(("ipsec_out_process: packet dropped "\ 26464 "during IPPF processing\n")); 26465 freeb(ipsec_mp); 26466 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26467 return; 26468 } 26469 } 26470 26471 if (!io->ipsec_out_secure) { 26472 /* 26473 * We came here by mistake. 26474 * Don't bother with ipsec processing 26475 * Should "discourage" this path in the future. 26476 */ 26477 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26478 goto done; 26479 } 26480 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26481 ASSERT((io->ipsec_out_policy != NULL) || 26482 (io->ipsec_out_act != NULL)); 26483 ASSERT(io->ipsec_out_failed == B_FALSE); 26484 26485 ipss = ipst->ips_netstack->netstack_ipsec; 26486 if (!ipsec_loaded(ipss)) { 26487 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26488 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26489 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26490 } else { 26491 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26492 } 26493 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26494 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26495 &ipss->ipsec_dropper); 26496 return; 26497 } 26498 26499 /* 26500 * IPsec processing has started. 26501 */ 26502 io->ipsec_out_proc_begin = B_TRUE; 26503 ap = io->ipsec_out_act; 26504 if (ap == NULL) { 26505 pp = io->ipsec_out_policy; 26506 ASSERT(pp != NULL); 26507 ap = pp->ipsp_act; 26508 ASSERT(ap != NULL); 26509 } 26510 26511 /* 26512 * Save the outbound ill index. When the packet comes back 26513 * from IPsec, we make sure the ill hasn't changed or disappeared 26514 * before sending it the accelerated packet. 26515 */ 26516 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26517 ill = ire_to_ill(ire); 26518 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26519 } 26520 26521 /* 26522 * The order of processing is first insert a IP header if needed. 26523 * Then insert the ESP header and then the AH header. 26524 */ 26525 if ((io->ipsec_out_se_done == B_FALSE) && 26526 (ap->ipa_want_se)) { 26527 /* 26528 * First get the outer IP header before sending 26529 * it to ESP. 26530 */ 26531 ipha_t *oipha, *iipha; 26532 mblk_t *outer_mp, *inner_mp; 26533 26534 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26535 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26536 "ipsec_out_process: " 26537 "Self-Encapsulation failed: Out of memory\n"); 26538 freemsg(ipsec_mp); 26539 if (ill != NULL) { 26540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26541 } else { 26542 BUMP_MIB(&ipst->ips_ip_mib, 26543 ipIfStatsOutDiscards); 26544 } 26545 return; 26546 } 26547 inner_mp = ipsec_mp->b_cont; 26548 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26549 oipha = (ipha_t *)outer_mp->b_rptr; 26550 iipha = (ipha_t *)inner_mp->b_rptr; 26551 *oipha = *iipha; 26552 outer_mp->b_wptr += sizeof (ipha_t); 26553 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26554 sizeof (ipha_t)); 26555 oipha->ipha_protocol = IPPROTO_ENCAP; 26556 oipha->ipha_version_and_hdr_length = 26557 IP_SIMPLE_HDR_VERSION; 26558 oipha->ipha_hdr_checksum = 0; 26559 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26560 outer_mp->b_cont = inner_mp; 26561 ipsec_mp->b_cont = outer_mp; 26562 26563 io->ipsec_out_se_done = B_TRUE; 26564 io->ipsec_out_tunnel = B_TRUE; 26565 } 26566 26567 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26568 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26569 !ipsec_out_select_sa(ipsec_mp)) 26570 return; 26571 26572 /* 26573 * By now, we know what SA's to use. Toss over to ESP & AH 26574 * to do the heavy lifting. 26575 */ 26576 zoneid = io->ipsec_out_zoneid; 26577 ASSERT(zoneid != ALL_ZONES); 26578 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26579 ASSERT(io->ipsec_out_esp_sa != NULL); 26580 io->ipsec_out_esp_done = B_TRUE; 26581 /* 26582 * Note that since hw accel can only apply one transform, 26583 * not two, we skip hw accel for ESP if we also have AH 26584 * This is an design limitation of the interface 26585 * which should be revisited. 26586 */ 26587 ASSERT(ire != NULL); 26588 if (io->ipsec_out_ah_sa == NULL) { 26589 ill = (ill_t *)ire->ire_stq->q_ptr; 26590 ipsec_out_is_accelerated(ipsec_mp, 26591 io->ipsec_out_esp_sa, ill, ire); 26592 } 26593 26594 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26595 switch (ipsec_rc) { 26596 case IPSEC_STATUS_SUCCESS: 26597 break; 26598 case IPSEC_STATUS_FAILED: 26599 if (ill != NULL) { 26600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26601 } else { 26602 BUMP_MIB(&ipst->ips_ip_mib, 26603 ipIfStatsOutDiscards); 26604 } 26605 /* FALLTHRU */ 26606 case IPSEC_STATUS_PENDING: 26607 return; 26608 } 26609 } 26610 26611 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26612 ASSERT(io->ipsec_out_ah_sa != NULL); 26613 io->ipsec_out_ah_done = B_TRUE; 26614 if (ire == NULL) { 26615 int idx = io->ipsec_out_capab_ill_index; 26616 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26617 NULL, NULL, NULL, NULL, ipst); 26618 ill_need_rele = B_TRUE; 26619 } else { 26620 ill = (ill_t *)ire->ire_stq->q_ptr; 26621 } 26622 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26623 ire); 26624 26625 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26626 switch (ipsec_rc) { 26627 case IPSEC_STATUS_SUCCESS: 26628 break; 26629 case IPSEC_STATUS_FAILED: 26630 if (ill != NULL) { 26631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26632 } else { 26633 BUMP_MIB(&ipst->ips_ip_mib, 26634 ipIfStatsOutDiscards); 26635 } 26636 /* FALLTHRU */ 26637 case IPSEC_STATUS_PENDING: 26638 if (ill != NULL && ill_need_rele) 26639 ill_refrele(ill); 26640 return; 26641 } 26642 } 26643 /* 26644 * We are done with IPsec processing. Send it over the wire. 26645 */ 26646 done: 26647 mp = ipsec_mp->b_cont; 26648 ipha = (ipha_t *)mp->b_rptr; 26649 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26650 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26651 ire); 26652 } else { 26653 ip6h = (ip6_t *)ipha; 26654 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26655 ire); 26656 } 26657 if (ill != NULL && ill_need_rele) 26658 ill_refrele(ill); 26659 } 26660 26661 /* ARGSUSED */ 26662 void 26663 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26664 { 26665 opt_restart_t *or; 26666 int err; 26667 conn_t *connp; 26668 cred_t *cr; 26669 26670 ASSERT(CONN_Q(q)); 26671 connp = Q_TO_CONN(q); 26672 26673 ASSERT(first_mp->b_datap->db_type == M_CTL); 26674 or = (opt_restart_t *)first_mp->b_rptr; 26675 /* 26676 * We checked for a db_credp the first time svr4_optcom_req 26677 * was called (from ip_wput_nondata). So we can just ASSERT here. 26678 */ 26679 cr = msg_getcred(first_mp, NULL); 26680 ASSERT(cr != NULL); 26681 26682 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26683 err = svr4_optcom_req(q, first_mp, cr, 26684 &ip_opt_obj, B_FALSE); 26685 } else { 26686 ASSERT(or->or_type == T_OPTMGMT_REQ); 26687 err = tpi_optcom_req(q, first_mp, cr, 26688 &ip_opt_obj, B_FALSE); 26689 } 26690 if (err != EINPROGRESS) { 26691 /* operation is done */ 26692 CONN_OPER_PENDING_DONE(connp); 26693 } 26694 } 26695 26696 /* 26697 * ioctls that go through a down/up sequence may need to wait for the down 26698 * to complete. This involves waiting for the ire and ipif refcnts to go down 26699 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26700 */ 26701 /* ARGSUSED */ 26702 void 26703 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26704 { 26705 struct iocblk *iocp; 26706 mblk_t *mp1; 26707 ip_ioctl_cmd_t *ipip; 26708 int err; 26709 sin_t *sin; 26710 struct lifreq *lifr; 26711 struct ifreq *ifr; 26712 26713 iocp = (struct iocblk *)mp->b_rptr; 26714 ASSERT(ipsq != NULL); 26715 /* Existence of mp1 verified in ip_wput_nondata */ 26716 mp1 = mp->b_cont->b_cont; 26717 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26718 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26719 /* 26720 * Special case where ipx_current_ipif is not set: 26721 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26722 * We are here as were not able to complete the operation in 26723 * ipif_set_values because we could not become exclusive on 26724 * the new ipsq. 26725 */ 26726 ill_t *ill = q->q_ptr; 26727 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26728 } 26729 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26730 26731 if (ipip->ipi_cmd_type == IF_CMD) { 26732 /* This a old style SIOC[GS]IF* command */ 26733 ifr = (struct ifreq *)mp1->b_rptr; 26734 sin = (sin_t *)&ifr->ifr_addr; 26735 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26736 /* This a new style SIOC[GS]LIF* command */ 26737 lifr = (struct lifreq *)mp1->b_rptr; 26738 sin = (sin_t *)&lifr->lifr_addr; 26739 } else { 26740 sin = NULL; 26741 } 26742 26743 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26744 q, mp, ipip, mp1->b_rptr); 26745 26746 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26747 } 26748 26749 /* 26750 * ioctl processing 26751 * 26752 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26753 * the ioctl command in the ioctl tables, determines the copyin data size 26754 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26755 * 26756 * ioctl processing then continues when the M_IOCDATA makes its way down to 26757 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26758 * associated 'conn' is refheld till the end of the ioctl and the general 26759 * ioctl processing function ip_process_ioctl() is called to extract the 26760 * arguments and process the ioctl. To simplify extraction, ioctl commands 26761 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26762 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26763 * is used to extract the ioctl's arguments. 26764 * 26765 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26766 * so goes thru the serialization primitive ipsq_try_enter. Then the 26767 * appropriate function to handle the ioctl is called based on the entry in 26768 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26769 * which also refreleases the 'conn' that was refheld at the start of the 26770 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26771 * 26772 * Many exclusive ioctls go thru an internal down up sequence as part of 26773 * the operation. For example an attempt to change the IP address of an 26774 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26775 * does all the cleanup such as deleting all ires that use this address. 26776 * Then we need to wait till all references to the interface go away. 26777 */ 26778 void 26779 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26780 { 26781 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26782 ip_ioctl_cmd_t *ipip = arg; 26783 ip_extract_func_t *extract_funcp; 26784 cmd_info_t ci; 26785 int err; 26786 boolean_t entered_ipsq = B_FALSE; 26787 26788 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26789 26790 if (ipip == NULL) 26791 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26792 26793 /* 26794 * SIOCLIFADDIF needs to go thru a special path since the 26795 * ill may not exist yet. This happens in the case of lo0 26796 * which is created using this ioctl. 26797 */ 26798 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26799 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26800 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26801 return; 26802 } 26803 26804 ci.ci_ipif = NULL; 26805 if (ipip->ipi_cmd_type == MISC_CMD) { 26806 /* 26807 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26808 */ 26809 if (ipip->ipi_cmd == IF_UNITSEL) { 26810 /* ioctl comes down the ill */ 26811 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26812 ipif_refhold(ci.ci_ipif); 26813 } 26814 err = 0; 26815 ci.ci_sin = NULL; 26816 ci.ci_sin6 = NULL; 26817 ci.ci_lifr = NULL; 26818 } else { 26819 switch (ipip->ipi_cmd_type) { 26820 case IF_CMD: 26821 case LIF_CMD: 26822 extract_funcp = ip_extract_lifreq; 26823 break; 26824 26825 case ARP_CMD: 26826 case XARP_CMD: 26827 extract_funcp = ip_extract_arpreq; 26828 break; 26829 26830 case TUN_CMD: 26831 extract_funcp = ip_extract_tunreq; 26832 break; 26833 26834 case MSFILT_CMD: 26835 extract_funcp = ip_extract_msfilter; 26836 break; 26837 26838 default: 26839 ASSERT(0); 26840 } 26841 26842 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26843 if (err != 0) { 26844 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26845 return; 26846 } 26847 26848 /* 26849 * All of the extraction functions return a refheld ipif. 26850 */ 26851 ASSERT(ci.ci_ipif != NULL); 26852 } 26853 26854 if (!(ipip->ipi_flags & IPI_WR)) { 26855 /* 26856 * A return value of EINPROGRESS means the ioctl is 26857 * either queued and waiting for some reason or has 26858 * already completed. 26859 */ 26860 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26861 ci.ci_lifr); 26862 if (ci.ci_ipif != NULL) 26863 ipif_refrele(ci.ci_ipif); 26864 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26865 return; 26866 } 26867 26868 ASSERT(ci.ci_ipif != NULL); 26869 26870 /* 26871 * If ipsq is non-NULL, we are already being called exclusively. 26872 */ 26873 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26874 if (ipsq == NULL) { 26875 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26876 NEW_OP, B_TRUE); 26877 if (ipsq == NULL) { 26878 ipif_refrele(ci.ci_ipif); 26879 return; 26880 } 26881 entered_ipsq = B_TRUE; 26882 } 26883 26884 /* 26885 * Release the ipif so that ipif_down and friends that wait for 26886 * references to go away are not misled about the current ipif_refcnt 26887 * values. We are writer so we can access the ipif even after releasing 26888 * the ipif. 26889 */ 26890 ipif_refrele(ci.ci_ipif); 26891 26892 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26893 26894 /* 26895 * For most set ioctls that come here, this serves as a single point 26896 * where we set the IPIF_CHANGING flag. This ensures that there won't 26897 * be any new references to the ipif. This helps functions that go 26898 * through this path and end up trying to wait for the refcnts 26899 * associated with the ipif to go down to zero. The exception is 26900 * SIOCSLIFREMOVEIF, which sets IPIF_CONDEMNED internally after 26901 * identifying the right ipif to operate on. 26902 */ 26903 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26904 if (ipip->ipi_cmd != SIOCLIFREMOVEIF) 26905 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26906 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26907 26908 /* 26909 * A return value of EINPROGRESS means the ioctl is 26910 * either queued and waiting for some reason or has 26911 * already completed. 26912 */ 26913 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26914 26915 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26916 26917 if (entered_ipsq) 26918 ipsq_exit(ipsq); 26919 } 26920 26921 /* 26922 * Complete the ioctl. Typically ioctls use the mi package and need to 26923 * do mi_copyout/mi_copy_done. 26924 */ 26925 void 26926 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26927 { 26928 conn_t *connp = NULL; 26929 26930 if (err == EINPROGRESS) 26931 return; 26932 26933 if (CONN_Q(q)) { 26934 connp = Q_TO_CONN(q); 26935 ASSERT(connp->conn_ref >= 2); 26936 } 26937 26938 switch (mode) { 26939 case COPYOUT: 26940 if (err == 0) 26941 mi_copyout(q, mp); 26942 else 26943 mi_copy_done(q, mp, err); 26944 break; 26945 26946 case NO_COPYOUT: 26947 mi_copy_done(q, mp, err); 26948 break; 26949 26950 default: 26951 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26952 break; 26953 } 26954 26955 /* 26956 * The refhold placed at the start of the ioctl is released here. 26957 */ 26958 if (connp != NULL) 26959 CONN_OPER_PENDING_DONE(connp); 26960 26961 if (ipsq != NULL) 26962 ipsq_current_finish(ipsq); 26963 } 26964 26965 /* Called from ip_wput for all non data messages */ 26966 /* ARGSUSED */ 26967 void 26968 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26969 { 26970 mblk_t *mp1; 26971 ire_t *ire, *fake_ire; 26972 ill_t *ill; 26973 struct iocblk *iocp; 26974 ip_ioctl_cmd_t *ipip; 26975 cred_t *cr; 26976 conn_t *connp; 26977 int err; 26978 nce_t *nce; 26979 ipif_t *ipif; 26980 ip_stack_t *ipst; 26981 char *proto_str; 26982 26983 if (CONN_Q(q)) { 26984 connp = Q_TO_CONN(q); 26985 ipst = connp->conn_netstack->netstack_ip; 26986 } else { 26987 connp = NULL; 26988 ipst = ILLQ_TO_IPST(q); 26989 } 26990 26991 switch (DB_TYPE(mp)) { 26992 case M_IOCTL: 26993 /* 26994 * IOCTL processing begins in ip_sioctl_copyin_setup which 26995 * will arrange to copy in associated control structures. 26996 */ 26997 ip_sioctl_copyin_setup(q, mp); 26998 return; 26999 case M_IOCDATA: 27000 /* 27001 * Ensure that this is associated with one of our trans- 27002 * parent ioctls. If it's not ours, discard it if we're 27003 * running as a driver, or pass it on if we're a module. 27004 */ 27005 iocp = (struct iocblk *)mp->b_rptr; 27006 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27007 if (ipip == NULL) { 27008 if (q->q_next == NULL) { 27009 goto nak; 27010 } else { 27011 putnext(q, mp); 27012 } 27013 return; 27014 } 27015 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27016 /* 27017 * the ioctl is one we recognise, but is not 27018 * consumed by IP as a module, pass M_IOCDATA 27019 * for processing downstream, but only for 27020 * common Streams ioctls. 27021 */ 27022 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27023 putnext(q, mp); 27024 return; 27025 } else { 27026 goto nak; 27027 } 27028 } 27029 27030 /* IOCTL continuation following copyin or copyout. */ 27031 if (mi_copy_state(q, mp, NULL) == -1) { 27032 /* 27033 * The copy operation failed. mi_copy_state already 27034 * cleaned up, so we're out of here. 27035 */ 27036 return; 27037 } 27038 /* 27039 * If we just completed a copy in, we become writer and 27040 * continue processing in ip_sioctl_copyin_done. If it 27041 * was a copy out, we call mi_copyout again. If there is 27042 * nothing more to copy out, it will complete the IOCTL. 27043 */ 27044 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27045 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27046 mi_copy_done(q, mp, EPROTO); 27047 return; 27048 } 27049 /* 27050 * Check for cases that need more copying. A return 27051 * value of 0 means a second copyin has been started, 27052 * so we return; a return value of 1 means no more 27053 * copying is needed, so we continue. 27054 */ 27055 if (ipip->ipi_cmd_type == MSFILT_CMD && 27056 MI_COPY_COUNT(mp) == 1) { 27057 if (ip_copyin_msfilter(q, mp) == 0) 27058 return; 27059 } 27060 /* 27061 * Refhold the conn, till the ioctl completes. This is 27062 * needed in case the ioctl ends up in the pending mp 27063 * list. Every mp in the ill_pending_mp list and 27064 * the ipx_pending_mp must have a refhold on the conn 27065 * to resume processing. The refhold is released when 27066 * the ioctl completes. (normally or abnormally) 27067 * In all cases ip_ioctl_finish is called to finish 27068 * the ioctl. 27069 */ 27070 if (connp != NULL) { 27071 /* This is not a reentry */ 27072 ASSERT(ipsq == NULL); 27073 CONN_INC_REF(connp); 27074 } else { 27075 if (!(ipip->ipi_flags & IPI_MODOK)) { 27076 mi_copy_done(q, mp, EINVAL); 27077 return; 27078 } 27079 } 27080 27081 ip_process_ioctl(ipsq, q, mp, ipip); 27082 27083 } else { 27084 mi_copyout(q, mp); 27085 } 27086 return; 27087 nak: 27088 iocp->ioc_error = EINVAL; 27089 mp->b_datap->db_type = M_IOCNAK; 27090 iocp->ioc_count = 0; 27091 qreply(q, mp); 27092 return; 27093 27094 case M_IOCNAK: 27095 /* 27096 * The only way we could get here is if a resolver didn't like 27097 * an IOCTL we sent it. This shouldn't happen. 27098 */ 27099 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27100 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27101 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27102 freemsg(mp); 27103 return; 27104 case M_IOCACK: 27105 /* /dev/ip shouldn't see this */ 27106 if (CONN_Q(q)) 27107 goto nak; 27108 27109 /* 27110 * Finish socket ioctls passed through to ARP. We use the 27111 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27112 * we need to become writer before calling ip_sioctl_iocack(). 27113 * Note that qwriter_ip() will release the refhold, and that a 27114 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27115 * ill stream. 27116 */ 27117 iocp = (struct iocblk *)mp->b_rptr; 27118 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27119 ip_sioctl_iocack(NULL, q, mp, NULL); 27120 return; 27121 } 27122 27123 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27124 iocp->ioc_cmd == AR_ENTRY_ADD); 27125 ill = q->q_ptr; 27126 ill_refhold(ill); 27127 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27128 return; 27129 case M_FLUSH: 27130 if (*mp->b_rptr & FLUSHW) 27131 flushq(q, FLUSHALL); 27132 if (q->q_next) { 27133 putnext(q, mp); 27134 return; 27135 } 27136 if (*mp->b_rptr & FLUSHR) { 27137 *mp->b_rptr &= ~FLUSHW; 27138 qreply(q, mp); 27139 return; 27140 } 27141 freemsg(mp); 27142 return; 27143 case IRE_DB_REQ_TYPE: 27144 if (connp == NULL) { 27145 proto_str = "IRE_DB_REQ_TYPE"; 27146 goto protonak; 27147 } 27148 /* An Upper Level Protocol wants a copy of an IRE. */ 27149 ip_ire_req(q, mp); 27150 return; 27151 case M_CTL: 27152 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27153 break; 27154 27155 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27156 TUN_HELLO) { 27157 ASSERT(connp != NULL); 27158 connp->conn_flags |= IPCL_IPTUN; 27159 freeb(mp); 27160 return; 27161 } 27162 27163 /* M_CTL messages are used by ARP to tell us things. */ 27164 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27165 break; 27166 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27167 case AR_ENTRY_SQUERY: 27168 ip_wput_ctl(q, mp); 27169 return; 27170 case AR_CLIENT_NOTIFY: 27171 ip_arp_news(q, mp); 27172 return; 27173 case AR_DLPIOP_DONE: 27174 ASSERT(q->q_next != NULL); 27175 ill = (ill_t *)q->q_ptr; 27176 /* qwriter_ip releases the refhold */ 27177 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27178 ill_refhold(ill); 27179 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27180 return; 27181 case AR_ARP_CLOSING: 27182 /* 27183 * ARP (above us) is closing. If no ARP bringup is 27184 * currently pending, ack the message so that ARP 27185 * can complete its close. Also mark ill_arp_closing 27186 * so that new ARP bringups will fail. If any 27187 * ARP bringup is currently in progress, we will 27188 * ack this when the current ARP bringup completes. 27189 */ 27190 ASSERT(q->q_next != NULL); 27191 ill = (ill_t *)q->q_ptr; 27192 mutex_enter(&ill->ill_lock); 27193 ill->ill_arp_closing = 1; 27194 if (!ill->ill_arp_bringup_pending) { 27195 mutex_exit(&ill->ill_lock); 27196 qreply(q, mp); 27197 } else { 27198 mutex_exit(&ill->ill_lock); 27199 freemsg(mp); 27200 } 27201 return; 27202 case AR_ARP_EXTEND: 27203 /* 27204 * The ARP module above us is capable of duplicate 27205 * address detection. Old ATM drivers will not send 27206 * this message. 27207 */ 27208 ASSERT(q->q_next != NULL); 27209 ill = (ill_t *)q->q_ptr; 27210 ill->ill_arp_extend = B_TRUE; 27211 freemsg(mp); 27212 return; 27213 default: 27214 break; 27215 } 27216 break; 27217 case M_PROTO: 27218 case M_PCPROTO: 27219 /* 27220 * The only PROTO messages we expect are copies of option 27221 * negotiation acknowledgements, AH and ESP bind requests 27222 * are also expected. 27223 */ 27224 switch (((union T_primitives *)mp->b_rptr)->type) { 27225 case O_T_BIND_REQ: 27226 case T_BIND_REQ: { 27227 /* Request can get queued in bind */ 27228 if (connp == NULL) { 27229 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27230 goto protonak; 27231 } 27232 /* 27233 * The transports except SCTP call ip_bind_{v4,v6}() 27234 * directly instead of a a putnext. SCTP doesn't 27235 * generate any T_BIND_REQ since it has its own 27236 * fanout data structures. However, ESP and AH 27237 * come in for regular binds; all other cases are 27238 * bind retries. 27239 */ 27240 ASSERT(!IPCL_IS_SCTP(connp)); 27241 27242 /* Don't increment refcnt if this is a re-entry */ 27243 if (ipsq == NULL) 27244 CONN_INC_REF(connp); 27245 27246 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27247 connp, NULL) : ip_bind_v4(q, mp, connp); 27248 ASSERT(mp != NULL); 27249 27250 ASSERT(!IPCL_IS_TCP(connp)); 27251 ASSERT(!IPCL_IS_UDP(connp)); 27252 ASSERT(!IPCL_IS_RAWIP(connp)); 27253 27254 /* The case of AH and ESP */ 27255 qreply(q, mp); 27256 CONN_OPER_PENDING_DONE(connp); 27257 return; 27258 } 27259 case T_SVR4_OPTMGMT_REQ: 27260 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27261 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27262 27263 if (connp == NULL) { 27264 proto_str = "T_SVR4_OPTMGMT_REQ"; 27265 goto protonak; 27266 } 27267 27268 /* 27269 * All Solaris components should pass a db_credp 27270 * for this TPI message, hence we ASSERT. 27271 * But in case there is some other M_PROTO that looks 27272 * like a TPI message sent by some other kernel 27273 * component, we check and return an error. 27274 */ 27275 cr = msg_getcred(mp, NULL); 27276 ASSERT(cr != NULL); 27277 if (cr == NULL) { 27278 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27279 if (mp != NULL) 27280 qreply(q, mp); 27281 return; 27282 } 27283 27284 if (!snmpcom_req(q, mp, ip_snmp_set, 27285 ip_snmp_get, cr)) { 27286 /* 27287 * Call svr4_optcom_req so that it can 27288 * generate the ack. We don't come here 27289 * if this operation is being restarted. 27290 * ip_restart_optmgmt will drop the conn ref. 27291 * In the case of ipsec option after the ipsec 27292 * load is complete conn_restart_ipsec_waiter 27293 * drops the conn ref. 27294 */ 27295 ASSERT(ipsq == NULL); 27296 CONN_INC_REF(connp); 27297 if (ip_check_for_ipsec_opt(q, mp)) 27298 return; 27299 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27300 B_FALSE); 27301 if (err != EINPROGRESS) { 27302 /* Operation is done */ 27303 CONN_OPER_PENDING_DONE(connp); 27304 } 27305 } 27306 return; 27307 case T_OPTMGMT_REQ: 27308 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27309 /* 27310 * Note: No snmpcom_req support through new 27311 * T_OPTMGMT_REQ. 27312 * Call tpi_optcom_req so that it can 27313 * generate the ack. 27314 */ 27315 if (connp == NULL) { 27316 proto_str = "T_OPTMGMT_REQ"; 27317 goto protonak; 27318 } 27319 27320 /* 27321 * All Solaris components should pass a db_credp 27322 * for this TPI message, hence we ASSERT. 27323 * But in case there is some other M_PROTO that looks 27324 * like a TPI message sent by some other kernel 27325 * component, we check and return an error. 27326 */ 27327 cr = msg_getcred(mp, NULL); 27328 ASSERT(cr != NULL); 27329 if (cr == NULL) { 27330 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27331 if (mp != NULL) 27332 qreply(q, mp); 27333 return; 27334 } 27335 ASSERT(ipsq == NULL); 27336 /* 27337 * We don't come here for restart. ip_restart_optmgmt 27338 * will drop the conn ref. In the case of ipsec option 27339 * after the ipsec load is complete 27340 * conn_restart_ipsec_waiter drops the conn ref. 27341 */ 27342 CONN_INC_REF(connp); 27343 if (ip_check_for_ipsec_opt(q, mp)) 27344 return; 27345 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27346 if (err != EINPROGRESS) { 27347 /* Operation is done */ 27348 CONN_OPER_PENDING_DONE(connp); 27349 } 27350 return; 27351 case T_UNBIND_REQ: 27352 if (connp == NULL) { 27353 proto_str = "T_UNBIND_REQ"; 27354 goto protonak; 27355 } 27356 ip_unbind(Q_TO_CONN(q)); 27357 mp = mi_tpi_ok_ack_alloc(mp); 27358 qreply(q, mp); 27359 return; 27360 default: 27361 /* 27362 * Have to drop any DLPI messages coming down from 27363 * arp (such as an info_req which would cause ip 27364 * to receive an extra info_ack if it was passed 27365 * through. 27366 */ 27367 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27368 (int)*(uint_t *)mp->b_rptr)); 27369 freemsg(mp); 27370 return; 27371 } 27372 /* NOTREACHED */ 27373 case IRE_DB_TYPE: { 27374 nce_t *nce; 27375 ill_t *ill; 27376 in6_addr_t gw_addr_v6; 27377 27378 /* 27379 * This is a response back from a resolver. It 27380 * consists of a message chain containing: 27381 * IRE_MBLK-->LL_HDR_MBLK->pkt 27382 * The IRE_MBLK is the one we allocated in ip_newroute. 27383 * The LL_HDR_MBLK is the DLPI header to use to get 27384 * the attached packet, and subsequent ones for the 27385 * same destination, transmitted. 27386 */ 27387 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27388 break; 27389 /* 27390 * First, check to make sure the resolution succeeded. 27391 * If it failed, the second mblk will be empty. 27392 * If it is, free the chain, dropping the packet. 27393 * (We must ire_delete the ire; that frees the ire mblk) 27394 * We're doing this now to support PVCs for ATM; it's 27395 * a partial xresolv implementation. When we fully implement 27396 * xresolv interfaces, instead of freeing everything here 27397 * we'll initiate neighbor discovery. 27398 * 27399 * For v4 (ARP and other external resolvers) the resolver 27400 * frees the message, so no check is needed. This check 27401 * is required, though, for a full xresolve implementation. 27402 * Including this code here now both shows how external 27403 * resolvers can NACK a resolution request using an 27404 * existing design that has no specific provisions for NACKs, 27405 * and also takes into account that the current non-ARP 27406 * external resolver has been coded to use this method of 27407 * NACKing for all IPv6 (xresolv) cases, 27408 * whether our xresolv implementation is complete or not. 27409 * 27410 */ 27411 ire = (ire_t *)mp->b_rptr; 27412 ill = ire_to_ill(ire); 27413 mp1 = mp->b_cont; /* dl_unitdata_req */ 27414 if (mp1->b_rptr == mp1->b_wptr) { 27415 if (ire->ire_ipversion == IPV6_VERSION) { 27416 /* 27417 * XRESOLV interface. 27418 */ 27419 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27420 mutex_enter(&ire->ire_lock); 27421 gw_addr_v6 = ire->ire_gateway_addr_v6; 27422 mutex_exit(&ire->ire_lock); 27423 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27424 nce = ndp_lookup_v6(ill, B_FALSE, 27425 &ire->ire_addr_v6, B_FALSE); 27426 } else { 27427 nce = ndp_lookup_v6(ill, B_FALSE, 27428 &gw_addr_v6, B_FALSE); 27429 } 27430 if (nce != NULL) { 27431 nce_resolv_failed(nce); 27432 ndp_delete(nce); 27433 NCE_REFRELE(nce); 27434 } 27435 } 27436 mp->b_cont = NULL; 27437 freemsg(mp1); /* frees the pkt as well */ 27438 ASSERT(ire->ire_nce == NULL); 27439 ire_delete((ire_t *)mp->b_rptr); 27440 return; 27441 } 27442 27443 /* 27444 * Split them into IRE_MBLK and pkt and feed it into 27445 * ire_add_then_send. Then in ire_add_then_send 27446 * the IRE will be added, and then the packet will be 27447 * run back through ip_wput. This time it will make 27448 * it to the wire. 27449 */ 27450 mp->b_cont = NULL; 27451 mp = mp1->b_cont; /* now, mp points to pkt */ 27452 mp1->b_cont = NULL; 27453 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27454 if (ire->ire_ipversion == IPV6_VERSION) { 27455 /* 27456 * XRESOLV interface. Find the nce and put a copy 27457 * of the dl_unitdata_req in nce_res_mp 27458 */ 27459 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27460 mutex_enter(&ire->ire_lock); 27461 gw_addr_v6 = ire->ire_gateway_addr_v6; 27462 mutex_exit(&ire->ire_lock); 27463 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27464 nce = ndp_lookup_v6(ill, B_FALSE, 27465 &ire->ire_addr_v6, B_FALSE); 27466 } else { 27467 nce = ndp_lookup_v6(ill, B_FALSE, 27468 &gw_addr_v6, B_FALSE); 27469 } 27470 if (nce != NULL) { 27471 /* 27472 * We have to protect nce_res_mp here 27473 * from being accessed by other threads 27474 * while we change the mblk pointer. 27475 * Other functions will also lock the nce when 27476 * accessing nce_res_mp. 27477 * 27478 * The reason we change the mblk pointer 27479 * here rather than copying the resolved address 27480 * into the template is that, unlike with 27481 * ethernet, we have no guarantee that the 27482 * resolved address length will be 27483 * smaller than or equal to the lla length 27484 * with which the template was allocated, 27485 * (for ethernet, they're equal) 27486 * so we have to use the actual resolved 27487 * address mblk - which holds the real 27488 * dl_unitdata_req with the resolved address. 27489 * 27490 * Doing this is the same behavior as was 27491 * previously used in the v4 ARP case. 27492 */ 27493 mutex_enter(&nce->nce_lock); 27494 if (nce->nce_res_mp != NULL) 27495 freemsg(nce->nce_res_mp); 27496 nce->nce_res_mp = mp1; 27497 mutex_exit(&nce->nce_lock); 27498 /* 27499 * We do a fastpath probe here because 27500 * we have resolved the address without 27501 * using Neighbor Discovery. 27502 * In the non-XRESOLV v6 case, the fastpath 27503 * probe is done right after neighbor 27504 * discovery completes. 27505 */ 27506 if (nce->nce_res_mp != NULL) { 27507 int res; 27508 nce_fastpath_list_add(nce); 27509 res = ill_fastpath_probe(ill, 27510 nce->nce_res_mp); 27511 if (res != 0 && res != EAGAIN) 27512 nce_fastpath_list_delete(nce); 27513 } 27514 27515 ire_add_then_send(q, ire, mp); 27516 /* 27517 * Now we have to clean out any packets 27518 * that may have been queued on the nce 27519 * while it was waiting for address resolution 27520 * to complete. 27521 */ 27522 mutex_enter(&nce->nce_lock); 27523 mp1 = nce->nce_qd_mp; 27524 nce->nce_qd_mp = NULL; 27525 mutex_exit(&nce->nce_lock); 27526 while (mp1 != NULL) { 27527 mblk_t *nxt_mp; 27528 queue_t *fwdq = NULL; 27529 ill_t *inbound_ill; 27530 uint_t ifindex; 27531 27532 nxt_mp = mp1->b_next; 27533 mp1->b_next = NULL; 27534 /* 27535 * Retrieve ifindex stored in 27536 * ip_rput_data_v6() 27537 */ 27538 ifindex = 27539 (uint_t)(uintptr_t)mp1->b_prev; 27540 inbound_ill = 27541 ill_lookup_on_ifindex(ifindex, 27542 B_TRUE, NULL, NULL, NULL, 27543 NULL, ipst); 27544 mp1->b_prev = NULL; 27545 if (inbound_ill != NULL) 27546 fwdq = inbound_ill->ill_rq; 27547 27548 if (fwdq != NULL) { 27549 put(fwdq, mp1); 27550 ill_refrele(inbound_ill); 27551 } else 27552 put(WR(ill->ill_rq), mp1); 27553 mp1 = nxt_mp; 27554 } 27555 NCE_REFRELE(nce); 27556 } else { /* nce is NULL; clean up */ 27557 ire_delete(ire); 27558 freemsg(mp); 27559 freemsg(mp1); 27560 return; 27561 } 27562 } else { 27563 nce_t *arpce; 27564 /* 27565 * Link layer resolution succeeded. Recompute the 27566 * ire_nce. 27567 */ 27568 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27569 if ((arpce = ndp_lookup_v4(ill, 27570 (ire->ire_gateway_addr != INADDR_ANY ? 27571 &ire->ire_gateway_addr : &ire->ire_addr), 27572 B_FALSE)) == NULL) { 27573 freeb(ire->ire_mp); 27574 freeb(mp1); 27575 freemsg(mp); 27576 return; 27577 } 27578 mutex_enter(&arpce->nce_lock); 27579 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27580 if (arpce->nce_state == ND_REACHABLE) { 27581 /* 27582 * Someone resolved this before us; 27583 * cleanup the res_mp. Since ire has 27584 * not been added yet, the call to ire_add_v4 27585 * from ire_add_then_send (when a dup is 27586 * detected) will clean up the ire. 27587 */ 27588 freeb(mp1); 27589 } else { 27590 ASSERT(arpce->nce_res_mp == NULL); 27591 arpce->nce_res_mp = mp1; 27592 arpce->nce_state = ND_REACHABLE; 27593 } 27594 mutex_exit(&arpce->nce_lock); 27595 if (ire->ire_marks & IRE_MARK_NOADD) { 27596 /* 27597 * this ire will not be added to the ire 27598 * cache table, so we can set the ire_nce 27599 * here, as there are no atomicity constraints. 27600 */ 27601 ire->ire_nce = arpce; 27602 /* 27603 * We are associating this nce with the ire 27604 * so change the nce ref taken in 27605 * ndp_lookup_v4() from 27606 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27607 */ 27608 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27609 } else { 27610 NCE_REFRELE(arpce); 27611 } 27612 ire_add_then_send(q, ire, mp); 27613 } 27614 return; /* All is well, the packet has been sent. */ 27615 } 27616 case IRE_ARPRESOLVE_TYPE: { 27617 27618 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27619 break; 27620 mp1 = mp->b_cont; /* dl_unitdata_req */ 27621 mp->b_cont = NULL; 27622 /* 27623 * First, check to make sure the resolution succeeded. 27624 * If it failed, the second mblk will be empty. 27625 */ 27626 if (mp1->b_rptr == mp1->b_wptr) { 27627 /* cleanup the incomplete ire, free queued packets */ 27628 freemsg(mp); /* fake ire */ 27629 freeb(mp1); /* dl_unitdata response */ 27630 return; 27631 } 27632 27633 /* 27634 * Update any incomplete nce_t found. We search the ctable 27635 * and find the nce from the ire->ire_nce because we need 27636 * to pass the ire to ip_xmit_v4 later, and can find both 27637 * ire and nce in one lookup. 27638 */ 27639 fake_ire = (ire_t *)mp->b_rptr; 27640 27641 /* 27642 * By the time we come back here from ARP the logical outgoing 27643 * interface of the incomplete ire we added in ire_forward() 27644 * could have disappeared, causing the incomplete ire to also 27645 * disappear. So we need to retreive the proper ipif for the 27646 * ire before looking in ctable. In the case of IPMP, the 27647 * ipif may be on the IPMP ill, so look it up based on the 27648 * ire_ipif_ifindex we stashed back in ire_init_common(). 27649 * Then, we can verify that ire_ipif_seqid still exists. 27650 */ 27651 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27652 NULL, NULL, NULL, NULL, ipst); 27653 if (ill == NULL) { 27654 ip1dbg(("ill for incomplete ire vanished\n")); 27655 freemsg(mp); /* fake ire */ 27656 freeb(mp1); /* dl_unitdata response */ 27657 return; 27658 } 27659 27660 /* Get the outgoing ipif */ 27661 mutex_enter(&ill->ill_lock); 27662 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27663 if (ipif == NULL) { 27664 mutex_exit(&ill->ill_lock); 27665 ill_refrele(ill); 27666 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27667 freemsg(mp); /* fake_ire */ 27668 freeb(mp1); /* dl_unitdata response */ 27669 return; 27670 } 27671 27672 ipif_refhold_locked(ipif); 27673 mutex_exit(&ill->ill_lock); 27674 ill_refrele(ill); 27675 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27676 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27677 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27678 ipif_refrele(ipif); 27679 if (ire == NULL) { 27680 /* 27681 * no ire was found; check if there is an nce 27682 * for this lookup; if it has no ire's pointing at it 27683 * cleanup. 27684 */ 27685 if ((nce = ndp_lookup_v4(q->q_ptr, 27686 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27687 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27688 B_FALSE)) != NULL) { 27689 /* 27690 * cleanup: 27691 * We check for refcnt 2 (one for the nce 27692 * hash list + 1 for the ref taken by 27693 * ndp_lookup_v4) to check that there are 27694 * no ire's pointing at the nce. 27695 */ 27696 if (nce->nce_refcnt == 2) 27697 ndp_delete(nce); 27698 NCE_REFRELE(nce); 27699 } 27700 freeb(mp1); /* dl_unitdata response */ 27701 freemsg(mp); /* fake ire */ 27702 return; 27703 } 27704 27705 nce = ire->ire_nce; 27706 DTRACE_PROBE2(ire__arpresolve__type, 27707 ire_t *, ire, nce_t *, nce); 27708 ASSERT(nce->nce_state != ND_INITIAL); 27709 mutex_enter(&nce->nce_lock); 27710 nce->nce_last = TICK_TO_MSEC(lbolt64); 27711 if (nce->nce_state == ND_REACHABLE) { 27712 /* 27713 * Someone resolved this before us; 27714 * our response is not needed any more. 27715 */ 27716 mutex_exit(&nce->nce_lock); 27717 freeb(mp1); /* dl_unitdata response */ 27718 } else { 27719 ASSERT(nce->nce_res_mp == NULL); 27720 nce->nce_res_mp = mp1; 27721 nce->nce_state = ND_REACHABLE; 27722 mutex_exit(&nce->nce_lock); 27723 nce_fastpath(nce); 27724 } 27725 /* 27726 * The cached nce_t has been updated to be reachable; 27727 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27728 */ 27729 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27730 freemsg(mp); 27731 /* 27732 * send out queued packets. 27733 */ 27734 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27735 27736 IRE_REFRELE(ire); 27737 return; 27738 } 27739 default: 27740 break; 27741 } 27742 if (q->q_next) { 27743 putnext(q, mp); 27744 } else 27745 freemsg(mp); 27746 return; 27747 27748 protonak: 27749 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27750 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27751 qreply(q, mp); 27752 } 27753 27754 /* 27755 * Process IP options in an outbound packet. Modify the destination if there 27756 * is a source route option. 27757 * Returns non-zero if something fails in which case an ICMP error has been 27758 * sent and mp freed. 27759 */ 27760 static int 27761 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27762 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27763 { 27764 ipoptp_t opts; 27765 uchar_t *opt; 27766 uint8_t optval; 27767 uint8_t optlen; 27768 ipaddr_t dst; 27769 intptr_t code = 0; 27770 mblk_t *mp; 27771 ire_t *ire = NULL; 27772 27773 ip2dbg(("ip_wput_options\n")); 27774 mp = ipsec_mp; 27775 if (mctl_present) { 27776 mp = ipsec_mp->b_cont; 27777 } 27778 27779 dst = ipha->ipha_dst; 27780 for (optval = ipoptp_first(&opts, ipha); 27781 optval != IPOPT_EOL; 27782 optval = ipoptp_next(&opts)) { 27783 opt = opts.ipoptp_cur; 27784 optlen = opts.ipoptp_len; 27785 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27786 optval, optlen)); 27787 switch (optval) { 27788 uint32_t off; 27789 case IPOPT_SSRR: 27790 case IPOPT_LSRR: 27791 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27792 ip1dbg(( 27793 "ip_wput_options: bad option offset\n")); 27794 code = (char *)&opt[IPOPT_OLEN] - 27795 (char *)ipha; 27796 goto param_prob; 27797 } 27798 off = opt[IPOPT_OFFSET]; 27799 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27800 ntohl(dst))); 27801 /* 27802 * For strict: verify that dst is directly 27803 * reachable. 27804 */ 27805 if (optval == IPOPT_SSRR) { 27806 ire = ire_ftable_lookup(dst, 0, 0, 27807 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27808 msg_getlabel(mp), 27809 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27810 if (ire == NULL) { 27811 ip1dbg(("ip_wput_options: SSRR not" 27812 " directly reachable: 0x%x\n", 27813 ntohl(dst))); 27814 goto bad_src_route; 27815 } 27816 ire_refrele(ire); 27817 } 27818 break; 27819 case IPOPT_RR: 27820 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27821 ip1dbg(( 27822 "ip_wput_options: bad option offset\n")); 27823 code = (char *)&opt[IPOPT_OLEN] - 27824 (char *)ipha; 27825 goto param_prob; 27826 } 27827 break; 27828 case IPOPT_TS: 27829 /* 27830 * Verify that length >=5 and that there is either 27831 * room for another timestamp or that the overflow 27832 * counter is not maxed out. 27833 */ 27834 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27835 if (optlen < IPOPT_MINLEN_IT) { 27836 goto param_prob; 27837 } 27838 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27839 ip1dbg(( 27840 "ip_wput_options: bad option offset\n")); 27841 code = (char *)&opt[IPOPT_OFFSET] - 27842 (char *)ipha; 27843 goto param_prob; 27844 } 27845 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27846 case IPOPT_TS_TSONLY: 27847 off = IPOPT_TS_TIMELEN; 27848 break; 27849 case IPOPT_TS_TSANDADDR: 27850 case IPOPT_TS_PRESPEC: 27851 case IPOPT_TS_PRESPEC_RFC791: 27852 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27853 break; 27854 default: 27855 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27856 (char *)ipha; 27857 goto param_prob; 27858 } 27859 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27860 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27861 /* 27862 * No room and the overflow counter is 15 27863 * already. 27864 */ 27865 goto param_prob; 27866 } 27867 break; 27868 } 27869 } 27870 27871 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27872 return (0); 27873 27874 ip1dbg(("ip_wput_options: error processing IP options.")); 27875 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27876 27877 param_prob: 27878 /* 27879 * Since ip_wput() isn't close to finished, we fill 27880 * in enough of the header for credible error reporting. 27881 */ 27882 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27883 /* Failed */ 27884 freemsg(ipsec_mp); 27885 return (-1); 27886 } 27887 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27888 return (-1); 27889 27890 bad_src_route: 27891 /* 27892 * Since ip_wput() isn't close to finished, we fill 27893 * in enough of the header for credible error reporting. 27894 */ 27895 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27896 /* Failed */ 27897 freemsg(ipsec_mp); 27898 return (-1); 27899 } 27900 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27901 return (-1); 27902 } 27903 27904 /* 27905 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27906 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27907 * thru /etc/system. 27908 */ 27909 #define CONN_MAXDRAINCNT 64 27910 27911 static void 27912 conn_drain_init(ip_stack_t *ipst) 27913 { 27914 int i; 27915 27916 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27917 27918 if ((ipst->ips_conn_drain_list_cnt == 0) || 27919 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27920 /* 27921 * Default value of the number of drainers is the 27922 * number of cpus, subject to maximum of 8 drainers. 27923 */ 27924 if (boot_max_ncpus != -1) 27925 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27926 else 27927 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27928 } 27929 27930 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27931 sizeof (idl_t), KM_SLEEP); 27932 27933 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27934 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27935 MUTEX_DEFAULT, NULL); 27936 } 27937 } 27938 27939 static void 27940 conn_drain_fini(ip_stack_t *ipst) 27941 { 27942 int i; 27943 27944 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27945 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27946 kmem_free(ipst->ips_conn_drain_list, 27947 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27948 ipst->ips_conn_drain_list = NULL; 27949 } 27950 27951 /* 27952 * Note: For an overview of how flowcontrol is handled in IP please see the 27953 * IP Flowcontrol notes at the top of this file. 27954 * 27955 * Flow control has blocked us from proceeding. Insert the given conn in one 27956 * of the conn drain lists. These conn wq's will be qenabled later on when 27957 * STREAMS flow control does a backenable. conn_walk_drain will enable 27958 * the first conn in each of these drain lists. Each of these qenabled conns 27959 * in turn enables the next in the list, after it runs, or when it closes, 27960 * thus sustaining the drain process. 27961 * 27962 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27963 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27964 * running at any time, on a given conn, since there can be only 1 service proc 27965 * running on a queue at any time. 27966 */ 27967 void 27968 conn_drain_insert(conn_t *connp) 27969 { 27970 idl_t *idl; 27971 uint_t index; 27972 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27973 27974 mutex_enter(&connp->conn_lock); 27975 if (connp->conn_state_flags & CONN_CLOSING) { 27976 /* 27977 * The conn is closing as a result of which CONN_CLOSING 27978 * is set. Return. 27979 */ 27980 mutex_exit(&connp->conn_lock); 27981 return; 27982 } else if (connp->conn_idl == NULL) { 27983 /* 27984 * Assign the next drain list round robin. We dont' use 27985 * a lock, and thus it may not be strictly round robin. 27986 * Atomicity of load/stores is enough to make sure that 27987 * conn_drain_list_index is always within bounds. 27988 */ 27989 index = ipst->ips_conn_drain_list_index; 27990 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27991 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 27992 index++; 27993 if (index == ipst->ips_conn_drain_list_cnt) 27994 index = 0; 27995 ipst->ips_conn_drain_list_index = index; 27996 } 27997 mutex_exit(&connp->conn_lock); 27998 27999 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28000 if ((connp->conn_drain_prev != NULL) || 28001 (connp->conn_state_flags & CONN_CLOSING)) { 28002 /* 28003 * The conn is already in the drain list, OR 28004 * the conn is closing. We need to check again for 28005 * the closing case again since close can happen 28006 * after we drop the conn_lock, and before we 28007 * acquire the CONN_DRAIN_LIST_LOCK. 28008 */ 28009 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28010 return; 28011 } else { 28012 idl = connp->conn_idl; 28013 } 28014 28015 /* 28016 * The conn is not in the drain list. Insert it at the 28017 * tail of the drain list. The drain list is circular 28018 * and doubly linked. idl_conn points to the 1st element 28019 * in the list. 28020 */ 28021 if (idl->idl_conn == NULL) { 28022 idl->idl_conn = connp; 28023 connp->conn_drain_next = connp; 28024 connp->conn_drain_prev = connp; 28025 } else { 28026 conn_t *head = idl->idl_conn; 28027 28028 connp->conn_drain_next = head; 28029 connp->conn_drain_prev = head->conn_drain_prev; 28030 head->conn_drain_prev->conn_drain_next = connp; 28031 head->conn_drain_prev = connp; 28032 } 28033 /* 28034 * For non streams based sockets assert flow control. 28035 */ 28036 if (IPCL_IS_NONSTR(connp)) { 28037 (*connp->conn_upcalls->su_txq_full) 28038 (connp->conn_upper_handle, B_TRUE); 28039 } 28040 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28041 } 28042 28043 /* 28044 * This conn is closing, and we are called from ip_close. OR 28045 * This conn has been serviced by ip_wsrv, and we need to do the tail 28046 * processing. 28047 * If this conn is part of the drain list, we may need to sustain the drain 28048 * process by qenabling the next conn in the drain list. We may also need to 28049 * remove this conn from the list, if it is done. 28050 */ 28051 static void 28052 conn_drain_tail(conn_t *connp, boolean_t closing) 28053 { 28054 idl_t *idl; 28055 28056 /* 28057 * connp->conn_idl is stable at this point, and no lock is needed 28058 * to check it. If we are called from ip_close, close has already 28059 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28060 * called us only because conn_idl is non-null. If we are called thru 28061 * service, conn_idl could be null, but it cannot change because 28062 * service is single-threaded per queue, and there cannot be another 28063 * instance of service trying to call conn_drain_insert on this conn 28064 * now. 28065 */ 28066 ASSERT(!closing || (connp->conn_idl != NULL)); 28067 28068 /* 28069 * If connp->conn_idl is null, the conn has not been inserted into any 28070 * drain list even once since creation of the conn. Just return. 28071 */ 28072 if (connp->conn_idl == NULL) 28073 return; 28074 28075 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28076 28077 if (connp->conn_drain_prev == NULL) { 28078 /* This conn is currently not in the drain list. */ 28079 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28080 return; 28081 } 28082 idl = connp->conn_idl; 28083 if (idl->idl_conn_draining == connp) { 28084 /* 28085 * This conn is the current drainer. If this is the last conn 28086 * in the drain list, we need to do more checks, in the 'if' 28087 * below. Otherwwise we need to just qenable the next conn, 28088 * to sustain the draining, and is handled in the 'else' 28089 * below. 28090 */ 28091 if (connp->conn_drain_next == idl->idl_conn) { 28092 /* 28093 * This conn is the last in this list. This round 28094 * of draining is complete. If idl_repeat is set, 28095 * it means another flow enabling has happened from 28096 * the driver/streams and we need to another round 28097 * of draining. 28098 * If there are more than 2 conns in the drain list, 28099 * do a left rotate by 1, so that all conns except the 28100 * conn at the head move towards the head by 1, and the 28101 * the conn at the head goes to the tail. This attempts 28102 * a more even share for all queues that are being 28103 * drained. 28104 */ 28105 if ((connp->conn_drain_next != connp) && 28106 (idl->idl_conn->conn_drain_next != connp)) { 28107 idl->idl_conn = idl->idl_conn->conn_drain_next; 28108 } 28109 if (idl->idl_repeat) { 28110 qenable(idl->idl_conn->conn_wq); 28111 idl->idl_conn_draining = idl->idl_conn; 28112 idl->idl_repeat = 0; 28113 } else { 28114 idl->idl_conn_draining = NULL; 28115 } 28116 } else { 28117 /* 28118 * If the next queue that we are now qenable'ing, 28119 * is closing, it will remove itself from this list 28120 * and qenable the subsequent queue in ip_close(). 28121 * Serialization is acheived thru idl_lock. 28122 */ 28123 qenable(connp->conn_drain_next->conn_wq); 28124 idl->idl_conn_draining = connp->conn_drain_next; 28125 } 28126 } 28127 if (!connp->conn_did_putbq || closing) { 28128 /* 28129 * Remove ourself from the drain list, if we did not do 28130 * a putbq, or if the conn is closing. 28131 * Note: It is possible that q->q_first is non-null. It means 28132 * that these messages landed after we did a enableok() in 28133 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28134 * service them. 28135 */ 28136 if (connp->conn_drain_next == connp) { 28137 /* Singleton in the list */ 28138 ASSERT(connp->conn_drain_prev == connp); 28139 idl->idl_conn = NULL; 28140 idl->idl_conn_draining = NULL; 28141 } else { 28142 connp->conn_drain_prev->conn_drain_next = 28143 connp->conn_drain_next; 28144 connp->conn_drain_next->conn_drain_prev = 28145 connp->conn_drain_prev; 28146 if (idl->idl_conn == connp) 28147 idl->idl_conn = connp->conn_drain_next; 28148 ASSERT(idl->idl_conn_draining != connp); 28149 28150 } 28151 connp->conn_drain_next = NULL; 28152 connp->conn_drain_prev = NULL; 28153 28154 /* 28155 * For non streams based sockets open up flow control. 28156 */ 28157 if (IPCL_IS_NONSTR(connp)) { 28158 (*connp->conn_upcalls->su_txq_full) 28159 (connp->conn_upper_handle, B_FALSE); 28160 } 28161 } 28162 28163 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28164 } 28165 28166 /* 28167 * Write service routine. Shared perimeter entry point. 28168 * ip_wsrv can be called in any of the following ways. 28169 * 1. The device queue's messages has fallen below the low water mark 28170 * and STREAMS has backenabled the ill_wq. We walk thru all the 28171 * the drain lists and backenable the first conn in each list. 28172 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28173 * qenabled non-tcp upper layers. We start dequeing messages and call 28174 * ip_wput for each message. 28175 */ 28176 28177 void 28178 ip_wsrv(queue_t *q) 28179 { 28180 conn_t *connp; 28181 ill_t *ill; 28182 mblk_t *mp; 28183 28184 if (q->q_next) { 28185 ill = (ill_t *)q->q_ptr; 28186 if (ill->ill_state_flags == 0) { 28187 /* 28188 * The device flow control has opened up. 28189 * Walk through conn drain lists and qenable the 28190 * first conn in each list. This makes sense only 28191 * if the stream is fully plumbed and setup. 28192 * Hence the if check above. 28193 */ 28194 ip1dbg(("ip_wsrv: walking\n")); 28195 conn_walk_drain(ill->ill_ipst); 28196 } 28197 return; 28198 } 28199 28200 connp = Q_TO_CONN(q); 28201 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28202 28203 /* 28204 * 1. Set conn_draining flag to signal that service is active. 28205 * 28206 * 2. ip_output determines whether it has been called from service, 28207 * based on the last parameter. If it is IP_WSRV it concludes it 28208 * has been called from service. 28209 * 28210 * 3. Message ordering is preserved by the following logic. 28211 * i. A directly called ip_output (i.e. not thru service) will queue 28212 * the message at the tail, if conn_draining is set (i.e. service 28213 * is running) or if q->q_first is non-null. 28214 * 28215 * ii. If ip_output is called from service, and if ip_output cannot 28216 * putnext due to flow control, it does a putbq. 28217 * 28218 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28219 * (causing an infinite loop). 28220 */ 28221 ASSERT(!connp->conn_did_putbq); 28222 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28223 connp->conn_draining = 1; 28224 noenable(q); 28225 while ((mp = getq(q)) != NULL) { 28226 ASSERT(CONN_Q(q)); 28227 28228 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28229 if (connp->conn_did_putbq) { 28230 /* ip_wput did a putbq */ 28231 break; 28232 } 28233 } 28234 /* 28235 * At this point, a thread coming down from top, calling 28236 * ip_wput, may end up queueing the message. We have not yet 28237 * enabled the queue, so ip_wsrv won't be called again. 28238 * To avoid this race, check q->q_first again (in the loop) 28239 * If the other thread queued the message before we call 28240 * enableok(), we will catch it in the q->q_first check. 28241 * If the other thread queues the message after we call 28242 * enableok(), ip_wsrv will be called again by STREAMS. 28243 */ 28244 connp->conn_draining = 0; 28245 enableok(q); 28246 28247 } 28248 28249 /* Enable the next conn for draining */ 28250 conn_drain_tail(connp, B_FALSE); 28251 28252 connp->conn_did_putbq = 0; 28253 } 28254 28255 /* 28256 * Callback to disable flow control in IP. 28257 * 28258 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28259 * is enabled. 28260 * 28261 * When MAC_TX() is not able to send any more packets, dld sets its queue 28262 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28263 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28264 * function and wakes up corresponding mac worker threads, which in turn 28265 * calls this callback function, and disables flow control. 28266 */ 28267 /* ARGSUSED */ 28268 void 28269 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28270 { 28271 qenable(((ill_t *)ill)->ill_wq); 28272 } 28273 28274 /* 28275 * Walk the list of all conn's calling the function provided with the 28276 * specified argument for each. Note that this only walks conn's that 28277 * have been bound. 28278 * Applies to both IPv4 and IPv6. 28279 */ 28280 static void 28281 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28282 { 28283 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28284 ipst->ips_ipcl_udp_fanout_size, 28285 func, arg, zoneid); 28286 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28287 ipst->ips_ipcl_conn_fanout_size, 28288 func, arg, zoneid); 28289 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28290 ipst->ips_ipcl_bind_fanout_size, 28291 func, arg, zoneid); 28292 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28293 IPPROTO_MAX, func, arg, zoneid); 28294 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28295 IPPROTO_MAX, func, arg, zoneid); 28296 } 28297 28298 /* 28299 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28300 * of conns that need to be drained, check if drain is already in progress. 28301 * If so set the idl_repeat bit, indicating that the last conn in the list 28302 * needs to reinitiate the drain once again, for the list. If drain is not 28303 * in progress for the list, initiate the draining, by qenabling the 1st 28304 * conn in the list. The drain is self-sustaining, each qenabled conn will 28305 * in turn qenable the next conn, when it is done/blocked/closing. 28306 */ 28307 static void 28308 conn_walk_drain(ip_stack_t *ipst) 28309 { 28310 int i; 28311 idl_t *idl; 28312 28313 IP_STAT(ipst, ip_conn_walk_drain); 28314 28315 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28316 idl = &ipst->ips_conn_drain_list[i]; 28317 mutex_enter(&idl->idl_lock); 28318 if (idl->idl_conn == NULL) { 28319 mutex_exit(&idl->idl_lock); 28320 continue; 28321 } 28322 /* 28323 * If this list is not being drained currently by 28324 * an ip_wsrv thread, start the process. 28325 */ 28326 if (idl->idl_conn_draining == NULL) { 28327 ASSERT(idl->idl_repeat == 0); 28328 qenable(idl->idl_conn->conn_wq); 28329 idl->idl_conn_draining = idl->idl_conn; 28330 } else { 28331 idl->idl_repeat = 1; 28332 } 28333 mutex_exit(&idl->idl_lock); 28334 } 28335 } 28336 28337 /* 28338 * Walk an conn hash table of `count' buckets, calling func for each entry. 28339 */ 28340 static void 28341 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28342 zoneid_t zoneid) 28343 { 28344 conn_t *connp; 28345 28346 while (count-- > 0) { 28347 mutex_enter(&connfp->connf_lock); 28348 for (connp = connfp->connf_head; connp != NULL; 28349 connp = connp->conn_next) { 28350 if (zoneid == GLOBAL_ZONEID || 28351 zoneid == connp->conn_zoneid) { 28352 CONN_INC_REF(connp); 28353 mutex_exit(&connfp->connf_lock); 28354 (*func)(connp, arg); 28355 mutex_enter(&connfp->connf_lock); 28356 CONN_DEC_REF(connp); 28357 } 28358 } 28359 mutex_exit(&connfp->connf_lock); 28360 connfp++; 28361 } 28362 } 28363 28364 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28365 static void 28366 conn_report1(conn_t *connp, void *mp) 28367 { 28368 char buf1[INET6_ADDRSTRLEN]; 28369 char buf2[INET6_ADDRSTRLEN]; 28370 uint_t print_len, buf_len; 28371 28372 ASSERT(connp != NULL); 28373 28374 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28375 if (buf_len <= 0) 28376 return; 28377 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28378 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28379 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28380 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28381 "%5d %s/%05d %s/%05d\n", 28382 (void *)connp, (void *)CONNP_TO_RQ(connp), 28383 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28384 buf1, connp->conn_lport, 28385 buf2, connp->conn_fport); 28386 if (print_len < buf_len) { 28387 ((mblk_t *)mp)->b_wptr += print_len; 28388 } else { 28389 ((mblk_t *)mp)->b_wptr += buf_len; 28390 } 28391 } 28392 28393 /* 28394 * Named Dispatch routine to produce a formatted report on all conns 28395 * that are listed in one of the fanout tables. 28396 * This report is accessed by using the ndd utility to "get" ND variable 28397 * "ip_conn_status". 28398 */ 28399 /* ARGSUSED */ 28400 static int 28401 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28402 { 28403 conn_t *connp = Q_TO_CONN(q); 28404 28405 (void) mi_mpprintf(mp, 28406 "CONN " MI_COL_HDRPAD_STR 28407 "rfq " MI_COL_HDRPAD_STR 28408 "stq " MI_COL_HDRPAD_STR 28409 " zone local remote"); 28410 28411 /* 28412 * Because of the ndd constraint, at most we can have 64K buffer 28413 * to put in all conn info. So to be more efficient, just 28414 * allocate a 64K buffer here, assuming we need that large buffer. 28415 * This should be OK as only privileged processes can do ndd /dev/ip. 28416 */ 28417 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28418 /* The following may work even if we cannot get a large buf. */ 28419 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28420 return (0); 28421 } 28422 28423 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28424 connp->conn_netstack->netstack_ip); 28425 return (0); 28426 } 28427 28428 /* 28429 * Determine if the ill and multicast aspects of that packets 28430 * "matches" the conn. 28431 */ 28432 boolean_t 28433 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28434 zoneid_t zoneid) 28435 { 28436 ill_t *bound_ill; 28437 boolean_t found; 28438 ipif_t *ipif; 28439 ire_t *ire; 28440 ipaddr_t dst, src; 28441 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28442 28443 dst = ipha->ipha_dst; 28444 src = ipha->ipha_src; 28445 28446 /* 28447 * conn_incoming_ill is set by IP_BOUND_IF which limits 28448 * unicast, broadcast and multicast reception to 28449 * conn_incoming_ill. conn_wantpacket itself is called 28450 * only for BROADCAST and multicast. 28451 */ 28452 bound_ill = connp->conn_incoming_ill; 28453 if (bound_ill != NULL) { 28454 if (IS_IPMP(bound_ill)) { 28455 if (bound_ill->ill_grp != ill->ill_grp) 28456 return (B_FALSE); 28457 } else { 28458 if (bound_ill != ill) 28459 return (B_FALSE); 28460 } 28461 } 28462 28463 if (!CLASSD(dst)) { 28464 if (IPCL_ZONE_MATCH(connp, zoneid)) 28465 return (B_TRUE); 28466 /* 28467 * The conn is in a different zone; we need to check that this 28468 * broadcast address is configured in the application's zone. 28469 */ 28470 ipif = ipif_get_next_ipif(NULL, ill); 28471 if (ipif == NULL) 28472 return (B_FALSE); 28473 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28474 connp->conn_zoneid, NULL, 28475 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28476 ipif_refrele(ipif); 28477 if (ire != NULL) { 28478 ire_refrele(ire); 28479 return (B_TRUE); 28480 } else { 28481 return (B_FALSE); 28482 } 28483 } 28484 28485 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28486 connp->conn_zoneid == zoneid) { 28487 /* 28488 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28489 * disabled, therefore we don't dispatch the multicast packet to 28490 * the sending zone. 28491 */ 28492 return (B_FALSE); 28493 } 28494 28495 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28496 /* 28497 * Multicast packet on the loopback interface: we only match 28498 * conns who joined the group in the specified zone. 28499 */ 28500 return (B_FALSE); 28501 } 28502 28503 if (connp->conn_multi_router) { 28504 /* multicast packet and multicast router socket: send up */ 28505 return (B_TRUE); 28506 } 28507 28508 mutex_enter(&connp->conn_lock); 28509 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28510 mutex_exit(&connp->conn_lock); 28511 return (found); 28512 } 28513 28514 /* 28515 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28516 */ 28517 /* ARGSUSED */ 28518 static void 28519 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28520 { 28521 ill_t *ill = (ill_t *)q->q_ptr; 28522 mblk_t *mp1, *mp2; 28523 ipif_t *ipif; 28524 int err = 0; 28525 conn_t *connp = NULL; 28526 ipsq_t *ipsq; 28527 arc_t *arc; 28528 28529 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28530 28531 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28532 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28533 28534 ASSERT(IAM_WRITER_ILL(ill)); 28535 mp2 = mp->b_cont; 28536 mp->b_cont = NULL; 28537 28538 /* 28539 * We have now received the arp bringup completion message 28540 * from ARP. Mark the arp bringup as done. Also if the arp 28541 * stream has already started closing, send up the AR_ARP_CLOSING 28542 * ack now since ARP is waiting in close for this ack. 28543 */ 28544 mutex_enter(&ill->ill_lock); 28545 ill->ill_arp_bringup_pending = 0; 28546 if (ill->ill_arp_closing) { 28547 mutex_exit(&ill->ill_lock); 28548 /* Let's reuse the mp for sending the ack */ 28549 arc = (arc_t *)mp->b_rptr; 28550 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28551 arc->arc_cmd = AR_ARP_CLOSING; 28552 qreply(q, mp); 28553 } else { 28554 mutex_exit(&ill->ill_lock); 28555 freeb(mp); 28556 } 28557 28558 ipsq = ill->ill_phyint->phyint_ipsq; 28559 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28560 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28561 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28562 if (mp1 == NULL) { 28563 /* bringup was aborted by the user */ 28564 freemsg(mp2); 28565 return; 28566 } 28567 28568 /* 28569 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28570 * must have an associated conn_t. Otherwise, we're bringing this 28571 * interface back up as part of handling an asynchronous event (e.g., 28572 * physical address change). 28573 */ 28574 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28575 ASSERT(connp != NULL); 28576 q = CONNP_TO_WQ(connp); 28577 } else { 28578 ASSERT(connp == NULL); 28579 q = ill->ill_rq; 28580 } 28581 28582 /* 28583 * If the DL_BIND_REQ fails, it is noted 28584 * in arc_name_offset. 28585 */ 28586 err = *((int *)mp2->b_rptr); 28587 if (err == 0) { 28588 if (ipif->ipif_isv6) { 28589 if ((err = ipif_up_done_v6(ipif)) != 0) 28590 ip0dbg(("ip_arp_done: init failed\n")); 28591 } else { 28592 if ((err = ipif_up_done(ipif)) != 0) 28593 ip0dbg(("ip_arp_done: init failed\n")); 28594 } 28595 } else { 28596 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28597 } 28598 28599 freemsg(mp2); 28600 28601 if ((err == 0) && (ill->ill_up_ipifs)) { 28602 err = ill_up_ipifs(ill, q, mp1); 28603 if (err == EINPROGRESS) 28604 return; 28605 } 28606 28607 /* 28608 * If we have a moved ipif to bring up, and everything has succeeded 28609 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28610 * down -- the admin can try to bring it up by hand if need be. 28611 */ 28612 if (ill->ill_move_ipif != NULL) { 28613 ipif = ill->ill_move_ipif; 28614 ill->ill_move_ipif = NULL; 28615 if (err == 0) { 28616 err = ipif_up(ipif, q, mp1); 28617 if (err == EINPROGRESS) 28618 return; 28619 } 28620 } 28621 28622 /* 28623 * The operation must complete without EINPROGRESS since 28624 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28625 * operation will be stuck forever in the ipsq. 28626 */ 28627 ASSERT(err != EINPROGRESS); 28628 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28629 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28630 else 28631 ipsq_current_finish(ipsq); 28632 } 28633 28634 /* Allocate the private structure */ 28635 static int 28636 ip_priv_alloc(void **bufp) 28637 { 28638 void *buf; 28639 28640 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28641 return (ENOMEM); 28642 28643 *bufp = buf; 28644 return (0); 28645 } 28646 28647 /* Function to delete the private structure */ 28648 void 28649 ip_priv_free(void *buf) 28650 { 28651 ASSERT(buf != NULL); 28652 kmem_free(buf, sizeof (ip_priv_t)); 28653 } 28654 28655 /* 28656 * The entry point for IPPF processing. 28657 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28658 * routine just returns. 28659 * 28660 * When called, ip_process generates an ipp_packet_t structure 28661 * which holds the state information for this packet and invokes the 28662 * the classifier (via ipp_packet_process). The classification, depending on 28663 * configured filters, results in a list of actions for this packet. Invoking 28664 * an action may cause the packet to be dropped, in which case the resulting 28665 * mblk (*mpp) is NULL. proc indicates the callout position for 28666 * this packet and ill_index is the interface this packet on or will leave 28667 * on (inbound and outbound resp.). 28668 */ 28669 void 28670 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28671 { 28672 mblk_t *mp; 28673 ip_priv_t *priv; 28674 ipp_action_id_t aid; 28675 int rc = 0; 28676 ipp_packet_t *pp; 28677 #define IP_CLASS "ip" 28678 28679 /* If the classifier is not loaded, return */ 28680 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28681 return; 28682 } 28683 28684 mp = *mpp; 28685 ASSERT(mp != NULL); 28686 28687 /* Allocate the packet structure */ 28688 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28689 if (rc != 0) { 28690 *mpp = NULL; 28691 freemsg(mp); 28692 return; 28693 } 28694 28695 /* Allocate the private structure */ 28696 rc = ip_priv_alloc((void **)&priv); 28697 if (rc != 0) { 28698 *mpp = NULL; 28699 freemsg(mp); 28700 ipp_packet_free(pp); 28701 return; 28702 } 28703 priv->proc = proc; 28704 priv->ill_index = ill_index; 28705 ipp_packet_set_private(pp, priv, ip_priv_free); 28706 ipp_packet_set_data(pp, mp); 28707 28708 /* Invoke the classifier */ 28709 rc = ipp_packet_process(&pp); 28710 if (pp != NULL) { 28711 mp = ipp_packet_get_data(pp); 28712 ipp_packet_free(pp); 28713 if (rc != 0) { 28714 freemsg(mp); 28715 *mpp = NULL; 28716 } 28717 } else { 28718 *mpp = NULL; 28719 } 28720 #undef IP_CLASS 28721 } 28722 28723 /* 28724 * Propagate a multicast group membership operation (add/drop) on 28725 * all the interfaces crossed by the related multirt routes. 28726 * The call is considered successful if the operation succeeds 28727 * on at least one interface. 28728 */ 28729 static int 28730 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28731 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28732 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28733 mblk_t *first_mp) 28734 { 28735 ire_t *ire_gw; 28736 irb_t *irb; 28737 int error = 0; 28738 opt_restart_t *or; 28739 ip_stack_t *ipst = ire->ire_ipst; 28740 28741 irb = ire->ire_bucket; 28742 ASSERT(irb != NULL); 28743 28744 ASSERT(DB_TYPE(first_mp) == M_CTL); 28745 28746 or = (opt_restart_t *)first_mp->b_rptr; 28747 IRB_REFHOLD(irb); 28748 for (; ire != NULL; ire = ire->ire_next) { 28749 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28750 continue; 28751 if (ire->ire_addr != group) 28752 continue; 28753 28754 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28755 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28756 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28757 /* No resolver exists for the gateway; skip this ire. */ 28758 if (ire_gw == NULL) 28759 continue; 28760 28761 /* 28762 * This function can return EINPROGRESS. If so the operation 28763 * will be restarted from ip_restart_optmgmt which will 28764 * call ip_opt_set and option processing will restart for 28765 * this option. So we may end up calling 'fn' more than once. 28766 * This requires that 'fn' is idempotent except for the 28767 * return value. The operation is considered a success if 28768 * it succeeds at least once on any one interface. 28769 */ 28770 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28771 NULL, fmode, src, first_mp); 28772 if (error == 0) 28773 or->or_private = CGTP_MCAST_SUCCESS; 28774 28775 if (ip_debug > 0) { 28776 ulong_t off; 28777 char *ksym; 28778 ksym = kobj_getsymname((uintptr_t)fn, &off); 28779 ip2dbg(("ip_multirt_apply_membership: " 28780 "called %s, multirt group 0x%08x via itf 0x%08x, " 28781 "error %d [success %u]\n", 28782 ksym ? ksym : "?", 28783 ntohl(group), ntohl(ire_gw->ire_src_addr), 28784 error, or->or_private)); 28785 } 28786 28787 ire_refrele(ire_gw); 28788 if (error == EINPROGRESS) { 28789 IRB_REFRELE(irb); 28790 return (error); 28791 } 28792 } 28793 IRB_REFRELE(irb); 28794 /* 28795 * Consider the call as successful if we succeeded on at least 28796 * one interface. Otherwise, return the last encountered error. 28797 */ 28798 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28799 } 28800 28801 /* 28802 * Issue a warning regarding a route crossing an interface with an 28803 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28804 * amount of time is logged. 28805 */ 28806 static void 28807 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28808 { 28809 hrtime_t current = gethrtime(); 28810 char buf[INET_ADDRSTRLEN]; 28811 ip_stack_t *ipst = ire->ire_ipst; 28812 28813 /* Convert interval in ms to hrtime in ns */ 28814 if (ipst->ips_multirt_bad_mtu_last_time + 28815 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28816 current) { 28817 cmn_err(CE_WARN, "ip: ignoring multiroute " 28818 "to %s, incorrect MTU %u (expected %u)\n", 28819 ip_dot_addr(ire->ire_addr, buf), 28820 ire->ire_max_frag, max_frag); 28821 28822 ipst->ips_multirt_bad_mtu_last_time = current; 28823 } 28824 } 28825 28826 /* 28827 * Get the CGTP (multirouting) filtering status. 28828 * If 0, the CGTP hooks are transparent. 28829 */ 28830 /* ARGSUSED */ 28831 static int 28832 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28833 { 28834 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28835 28836 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28837 return (0); 28838 } 28839 28840 /* 28841 * Set the CGTP (multirouting) filtering status. 28842 * If the status is changed from active to transparent 28843 * or from transparent to active, forward the new status 28844 * to the filtering module (if loaded). 28845 */ 28846 /* ARGSUSED */ 28847 static int 28848 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28849 cred_t *ioc_cr) 28850 { 28851 long new_value; 28852 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28853 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28854 28855 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28856 return (EPERM); 28857 28858 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28859 new_value < 0 || new_value > 1) { 28860 return (EINVAL); 28861 } 28862 28863 if ((!*ip_cgtp_filter_value) && new_value) { 28864 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28865 ipst->ips_ip_cgtp_filter_ops == NULL ? 28866 " (module not loaded)" : ""); 28867 } 28868 if (*ip_cgtp_filter_value && (!new_value)) { 28869 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28870 ipst->ips_ip_cgtp_filter_ops == NULL ? 28871 " (module not loaded)" : ""); 28872 } 28873 28874 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28875 int res; 28876 netstackid_t stackid; 28877 28878 stackid = ipst->ips_netstack->netstack_stackid; 28879 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28880 new_value); 28881 if (res) 28882 return (res); 28883 } 28884 28885 *ip_cgtp_filter_value = (boolean_t)new_value; 28886 28887 return (0); 28888 } 28889 28890 /* 28891 * Return the expected CGTP hooks version number. 28892 */ 28893 int 28894 ip_cgtp_filter_supported(void) 28895 { 28896 return (ip_cgtp_filter_rev); 28897 } 28898 28899 /* 28900 * CGTP hooks can be registered by invoking this function. 28901 * Checks that the version number matches. 28902 */ 28903 int 28904 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28905 { 28906 netstack_t *ns; 28907 ip_stack_t *ipst; 28908 28909 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28910 return (ENOTSUP); 28911 28912 ns = netstack_find_by_stackid(stackid); 28913 if (ns == NULL) 28914 return (EINVAL); 28915 ipst = ns->netstack_ip; 28916 ASSERT(ipst != NULL); 28917 28918 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28919 netstack_rele(ns); 28920 return (EALREADY); 28921 } 28922 28923 ipst->ips_ip_cgtp_filter_ops = ops; 28924 netstack_rele(ns); 28925 return (0); 28926 } 28927 28928 /* 28929 * CGTP hooks can be unregistered by invoking this function. 28930 * Returns ENXIO if there was no registration. 28931 * Returns EBUSY if the ndd variable has not been turned off. 28932 */ 28933 int 28934 ip_cgtp_filter_unregister(netstackid_t stackid) 28935 { 28936 netstack_t *ns; 28937 ip_stack_t *ipst; 28938 28939 ns = netstack_find_by_stackid(stackid); 28940 if (ns == NULL) 28941 return (EINVAL); 28942 ipst = ns->netstack_ip; 28943 ASSERT(ipst != NULL); 28944 28945 if (ipst->ips_ip_cgtp_filter) { 28946 netstack_rele(ns); 28947 return (EBUSY); 28948 } 28949 28950 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28951 netstack_rele(ns); 28952 return (ENXIO); 28953 } 28954 ipst->ips_ip_cgtp_filter_ops = NULL; 28955 netstack_rele(ns); 28956 return (0); 28957 } 28958 28959 /* 28960 * Check whether there is a CGTP filter registration. 28961 * Returns non-zero if there is a registration, otherwise returns zero. 28962 * Note: returns zero if bad stackid. 28963 */ 28964 int 28965 ip_cgtp_filter_is_registered(netstackid_t stackid) 28966 { 28967 netstack_t *ns; 28968 ip_stack_t *ipst; 28969 int ret; 28970 28971 ns = netstack_find_by_stackid(stackid); 28972 if (ns == NULL) 28973 return (0); 28974 ipst = ns->netstack_ip; 28975 ASSERT(ipst != NULL); 28976 28977 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28978 ret = 1; 28979 else 28980 ret = 0; 28981 28982 netstack_rele(ns); 28983 return (ret); 28984 } 28985 28986 static int 28987 ip_squeue_switch(int val) 28988 { 28989 int rval = SQ_FILL; 28990 28991 switch (val) { 28992 case IP_SQUEUE_ENTER_NODRAIN: 28993 rval = SQ_NODRAIN; 28994 break; 28995 case IP_SQUEUE_ENTER: 28996 rval = SQ_PROCESS; 28997 break; 28998 default: 28999 break; 29000 } 29001 return (rval); 29002 } 29003 29004 /* ARGSUSED */ 29005 static int 29006 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29007 caddr_t addr, cred_t *cr) 29008 { 29009 int *v = (int *)addr; 29010 long new_value; 29011 29012 if (secpolicy_net_config(cr, B_FALSE) != 0) 29013 return (EPERM); 29014 29015 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29016 return (EINVAL); 29017 29018 ip_squeue_flag = ip_squeue_switch(new_value); 29019 *v = new_value; 29020 return (0); 29021 } 29022 29023 /* 29024 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29025 * ip_debug. 29026 */ 29027 /* ARGSUSED */ 29028 static int 29029 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29030 caddr_t addr, cred_t *cr) 29031 { 29032 int *v = (int *)addr; 29033 long new_value; 29034 29035 if (secpolicy_net_config(cr, B_FALSE) != 0) 29036 return (EPERM); 29037 29038 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29039 return (EINVAL); 29040 29041 *v = new_value; 29042 return (0); 29043 } 29044 29045 static void * 29046 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29047 { 29048 kstat_t *ksp; 29049 29050 ip_stat_t template = { 29051 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29052 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29053 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29054 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29055 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29056 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29057 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29058 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29059 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29060 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29061 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29062 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29063 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29064 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29065 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29066 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29067 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29068 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29069 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29070 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29071 { "ip_opt", KSTAT_DATA_UINT64 }, 29072 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29073 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29074 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29075 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29076 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29077 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29078 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29079 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29080 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29081 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29082 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29083 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29084 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29085 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29086 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29087 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29088 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29089 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29090 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29091 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29092 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29093 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29094 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29095 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29096 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29097 }; 29098 29099 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29100 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29101 KSTAT_FLAG_VIRTUAL, stackid); 29102 29103 if (ksp == NULL) 29104 return (NULL); 29105 29106 bcopy(&template, ip_statisticsp, sizeof (template)); 29107 ksp->ks_data = (void *)ip_statisticsp; 29108 ksp->ks_private = (void *)(uintptr_t)stackid; 29109 29110 kstat_install(ksp); 29111 return (ksp); 29112 } 29113 29114 static void 29115 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29116 { 29117 if (ksp != NULL) { 29118 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29119 kstat_delete_netstack(ksp, stackid); 29120 } 29121 } 29122 29123 static void * 29124 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29125 { 29126 kstat_t *ksp; 29127 29128 ip_named_kstat_t template = { 29129 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29130 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29131 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29132 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29133 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29134 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29135 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29136 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29137 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29138 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29139 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29140 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29141 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29142 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29143 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29144 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29145 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29146 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29147 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29148 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29149 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29150 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29151 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29152 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29153 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29154 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29155 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29156 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29157 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29158 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29159 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29160 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29161 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29162 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29163 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29164 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29165 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29166 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29167 }; 29168 29169 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29170 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29171 if (ksp == NULL || ksp->ks_data == NULL) 29172 return (NULL); 29173 29174 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29175 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29176 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29177 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29178 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29179 29180 template.netToMediaEntrySize.value.i32 = 29181 sizeof (mib2_ipNetToMediaEntry_t); 29182 29183 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29184 29185 bcopy(&template, ksp->ks_data, sizeof (template)); 29186 ksp->ks_update = ip_kstat_update; 29187 ksp->ks_private = (void *)(uintptr_t)stackid; 29188 29189 kstat_install(ksp); 29190 return (ksp); 29191 } 29192 29193 static void 29194 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29195 { 29196 if (ksp != NULL) { 29197 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29198 kstat_delete_netstack(ksp, stackid); 29199 } 29200 } 29201 29202 static int 29203 ip_kstat_update(kstat_t *kp, int rw) 29204 { 29205 ip_named_kstat_t *ipkp; 29206 mib2_ipIfStatsEntry_t ipmib; 29207 ill_walk_context_t ctx; 29208 ill_t *ill; 29209 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29210 netstack_t *ns; 29211 ip_stack_t *ipst; 29212 29213 if (kp == NULL || kp->ks_data == NULL) 29214 return (EIO); 29215 29216 if (rw == KSTAT_WRITE) 29217 return (EACCES); 29218 29219 ns = netstack_find_by_stackid(stackid); 29220 if (ns == NULL) 29221 return (-1); 29222 ipst = ns->netstack_ip; 29223 if (ipst == NULL) { 29224 netstack_rele(ns); 29225 return (-1); 29226 } 29227 ipkp = (ip_named_kstat_t *)kp->ks_data; 29228 29229 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29230 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29231 ill = ILL_START_WALK_V4(&ctx, ipst); 29232 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29233 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29234 rw_exit(&ipst->ips_ill_g_lock); 29235 29236 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29237 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29238 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29239 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29240 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29241 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29242 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29243 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29244 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29245 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29246 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29247 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29248 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29249 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29250 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29251 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29252 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29253 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29254 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29255 29256 ipkp->routingDiscards.value.ui32 = 0; 29257 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29258 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29259 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29260 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29261 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29262 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29263 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29264 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29265 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29266 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29267 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29268 29269 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29270 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29271 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29272 29273 netstack_rele(ns); 29274 29275 return (0); 29276 } 29277 29278 static void * 29279 icmp_kstat_init(netstackid_t stackid) 29280 { 29281 kstat_t *ksp; 29282 29283 icmp_named_kstat_t template = { 29284 { "inMsgs", KSTAT_DATA_UINT32 }, 29285 { "inErrors", KSTAT_DATA_UINT32 }, 29286 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29287 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29288 { "inParmProbs", KSTAT_DATA_UINT32 }, 29289 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29290 { "inRedirects", KSTAT_DATA_UINT32 }, 29291 { "inEchos", KSTAT_DATA_UINT32 }, 29292 { "inEchoReps", KSTAT_DATA_UINT32 }, 29293 { "inTimestamps", KSTAT_DATA_UINT32 }, 29294 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29295 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29296 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29297 { "outMsgs", KSTAT_DATA_UINT32 }, 29298 { "outErrors", KSTAT_DATA_UINT32 }, 29299 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29300 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29301 { "outParmProbs", KSTAT_DATA_UINT32 }, 29302 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29303 { "outRedirects", KSTAT_DATA_UINT32 }, 29304 { "outEchos", KSTAT_DATA_UINT32 }, 29305 { "outEchoReps", KSTAT_DATA_UINT32 }, 29306 { "outTimestamps", KSTAT_DATA_UINT32 }, 29307 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29308 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29309 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29310 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29311 { "inUnknowns", KSTAT_DATA_UINT32 }, 29312 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29313 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29314 { "outDrops", KSTAT_DATA_UINT32 }, 29315 { "inOverFlows", KSTAT_DATA_UINT32 }, 29316 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29317 }; 29318 29319 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29320 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29321 if (ksp == NULL || ksp->ks_data == NULL) 29322 return (NULL); 29323 29324 bcopy(&template, ksp->ks_data, sizeof (template)); 29325 29326 ksp->ks_update = icmp_kstat_update; 29327 ksp->ks_private = (void *)(uintptr_t)stackid; 29328 29329 kstat_install(ksp); 29330 return (ksp); 29331 } 29332 29333 static void 29334 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29335 { 29336 if (ksp != NULL) { 29337 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29338 kstat_delete_netstack(ksp, stackid); 29339 } 29340 } 29341 29342 static int 29343 icmp_kstat_update(kstat_t *kp, int rw) 29344 { 29345 icmp_named_kstat_t *icmpkp; 29346 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29347 netstack_t *ns; 29348 ip_stack_t *ipst; 29349 29350 if ((kp == NULL) || (kp->ks_data == NULL)) 29351 return (EIO); 29352 29353 if (rw == KSTAT_WRITE) 29354 return (EACCES); 29355 29356 ns = netstack_find_by_stackid(stackid); 29357 if (ns == NULL) 29358 return (-1); 29359 ipst = ns->netstack_ip; 29360 if (ipst == NULL) { 29361 netstack_rele(ns); 29362 return (-1); 29363 } 29364 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29365 29366 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29367 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29368 icmpkp->inDestUnreachs.value.ui32 = 29369 ipst->ips_icmp_mib.icmpInDestUnreachs; 29370 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29371 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29372 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29373 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29374 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29375 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29376 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29377 icmpkp->inTimestampReps.value.ui32 = 29378 ipst->ips_icmp_mib.icmpInTimestampReps; 29379 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29380 icmpkp->inAddrMaskReps.value.ui32 = 29381 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29382 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29383 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29384 icmpkp->outDestUnreachs.value.ui32 = 29385 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29386 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29387 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29388 icmpkp->outSrcQuenchs.value.ui32 = 29389 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29390 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29391 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29392 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29393 icmpkp->outTimestamps.value.ui32 = 29394 ipst->ips_icmp_mib.icmpOutTimestamps; 29395 icmpkp->outTimestampReps.value.ui32 = 29396 ipst->ips_icmp_mib.icmpOutTimestampReps; 29397 icmpkp->outAddrMasks.value.ui32 = 29398 ipst->ips_icmp_mib.icmpOutAddrMasks; 29399 icmpkp->outAddrMaskReps.value.ui32 = 29400 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29401 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29402 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29403 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29404 icmpkp->outFragNeeded.value.ui32 = 29405 ipst->ips_icmp_mib.icmpOutFragNeeded; 29406 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29407 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29408 icmpkp->inBadRedirects.value.ui32 = 29409 ipst->ips_icmp_mib.icmpInBadRedirects; 29410 29411 netstack_rele(ns); 29412 return (0); 29413 } 29414 29415 /* 29416 * This is the fanout function for raw socket opened for SCTP. Note 29417 * that it is called after SCTP checks that there is no socket which 29418 * wants a packet. Then before SCTP handles this out of the blue packet, 29419 * this function is called to see if there is any raw socket for SCTP. 29420 * If there is and it is bound to the correct address, the packet will 29421 * be sent to that socket. Note that only one raw socket can be bound to 29422 * a port. This is assured in ipcl_sctp_hash_insert(); 29423 */ 29424 void 29425 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29426 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29427 zoneid_t zoneid) 29428 { 29429 conn_t *connp; 29430 queue_t *rq; 29431 mblk_t *first_mp; 29432 boolean_t secure; 29433 ip6_t *ip6h; 29434 ip_stack_t *ipst = recv_ill->ill_ipst; 29435 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29436 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29437 boolean_t sctp_csum_err = B_FALSE; 29438 29439 if (flags & IP_FF_SCTP_CSUM_ERR) { 29440 sctp_csum_err = B_TRUE; 29441 flags &= ~IP_FF_SCTP_CSUM_ERR; 29442 } 29443 29444 first_mp = mp; 29445 if (mctl_present) { 29446 mp = first_mp->b_cont; 29447 secure = ipsec_in_is_secure(first_mp); 29448 ASSERT(mp != NULL); 29449 } else { 29450 secure = B_FALSE; 29451 } 29452 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29453 29454 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29455 if (connp == NULL) { 29456 /* 29457 * Although raw sctp is not summed, OOB chunks must be. 29458 * Drop the packet here if the sctp checksum failed. 29459 */ 29460 if (sctp_csum_err) { 29461 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29462 freemsg(first_mp); 29463 return; 29464 } 29465 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29466 return; 29467 } 29468 rq = connp->conn_rq; 29469 if (!canputnext(rq)) { 29470 CONN_DEC_REF(connp); 29471 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29472 freemsg(first_mp); 29473 return; 29474 } 29475 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29476 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29477 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29478 (isv4 ? ipha : NULL), ip6h, mctl_present); 29479 if (first_mp == NULL) { 29480 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29481 CONN_DEC_REF(connp); 29482 return; 29483 } 29484 } 29485 /* 29486 * We probably should not send M_CTL message up to 29487 * raw socket. 29488 */ 29489 if (mctl_present) 29490 freeb(first_mp); 29491 29492 /* Initiate IPPF processing here if needed. */ 29493 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29494 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29495 ip_process(IPP_LOCAL_IN, &mp, 29496 recv_ill->ill_phyint->phyint_ifindex); 29497 if (mp == NULL) { 29498 CONN_DEC_REF(connp); 29499 return; 29500 } 29501 } 29502 29503 if (connp->conn_recvif || connp->conn_recvslla || 29504 ((connp->conn_ip_recvpktinfo || 29505 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29506 (flags & IP_FF_IPINFO))) { 29507 int in_flags = 0; 29508 29509 /* 29510 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29511 * IPF_RECVIF. 29512 */ 29513 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29514 in_flags = IPF_RECVIF; 29515 } 29516 if (connp->conn_recvslla) { 29517 in_flags |= IPF_RECVSLLA; 29518 } 29519 if (isv4) { 29520 mp = ip_add_info(mp, recv_ill, in_flags, 29521 IPCL_ZONEID(connp), ipst); 29522 } else { 29523 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29524 if (mp == NULL) { 29525 BUMP_MIB(recv_ill->ill_ip_mib, 29526 ipIfStatsInDiscards); 29527 CONN_DEC_REF(connp); 29528 return; 29529 } 29530 } 29531 } 29532 29533 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29534 /* 29535 * We are sending the IPSEC_IN message also up. Refer 29536 * to comments above this function. 29537 * This is the SOCK_RAW, IPPROTO_SCTP case. 29538 */ 29539 (connp->conn_recv)(connp, mp, NULL); 29540 CONN_DEC_REF(connp); 29541 } 29542 29543 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29544 { \ 29545 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29546 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29547 } 29548 /* 29549 * This function should be called only if all packet processing 29550 * including fragmentation is complete. Callers of this function 29551 * must set mp->b_prev to one of these values: 29552 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29553 * prior to handing over the mp as first argument to this function. 29554 * 29555 * If the ire passed by caller is incomplete, this function 29556 * queues the packet and if necessary, sends ARP request and bails. 29557 * If the ire passed is fully resolved, we simply prepend 29558 * the link-layer header to the packet, do ipsec hw acceleration 29559 * work if necessary, and send the packet out on the wire. 29560 * 29561 * NOTE: IPsec will only call this function with fully resolved 29562 * ires if hw acceleration is involved. 29563 * TODO list : 29564 * a Handle M_MULTIDATA so that 29565 * tcp_multisend->tcp_multisend_data can 29566 * call ip_xmit_v4 directly 29567 * b Handle post-ARP work for fragments so that 29568 * ip_wput_frag can call this function. 29569 */ 29570 ipxmit_state_t 29571 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29572 boolean_t flow_ctl_enabled, conn_t *connp) 29573 { 29574 nce_t *arpce; 29575 ipha_t *ipha; 29576 queue_t *q; 29577 int ill_index; 29578 mblk_t *nxt_mp, *first_mp; 29579 boolean_t xmit_drop = B_FALSE; 29580 ip_proc_t proc; 29581 ill_t *out_ill; 29582 int pkt_len; 29583 29584 arpce = ire->ire_nce; 29585 ASSERT(arpce != NULL); 29586 29587 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29588 29589 mutex_enter(&arpce->nce_lock); 29590 switch (arpce->nce_state) { 29591 case ND_REACHABLE: 29592 /* If there are other queued packets, queue this packet */ 29593 if (arpce->nce_qd_mp != NULL) { 29594 if (mp != NULL) 29595 nce_queue_mp_common(arpce, mp, B_FALSE); 29596 mp = arpce->nce_qd_mp; 29597 } 29598 arpce->nce_qd_mp = NULL; 29599 mutex_exit(&arpce->nce_lock); 29600 29601 /* 29602 * Flush the queue. In the common case, where the 29603 * ARP is already resolved, it will go through the 29604 * while loop only once. 29605 */ 29606 while (mp != NULL) { 29607 29608 nxt_mp = mp->b_next; 29609 mp->b_next = NULL; 29610 ASSERT(mp->b_datap->db_type != M_CTL); 29611 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29612 /* 29613 * This info is needed for IPQOS to do COS marking 29614 * in ip_wput_attach_llhdr->ip_process. 29615 */ 29616 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29617 mp->b_prev = NULL; 29618 29619 /* set up ill index for outbound qos processing */ 29620 out_ill = ire_to_ill(ire); 29621 ill_index = out_ill->ill_phyint->phyint_ifindex; 29622 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29623 ill_index, &ipha); 29624 if (first_mp == NULL) { 29625 xmit_drop = B_TRUE; 29626 BUMP_MIB(out_ill->ill_ip_mib, 29627 ipIfStatsOutDiscards); 29628 goto next_mp; 29629 } 29630 29631 /* non-ipsec hw accel case */ 29632 if (io == NULL || !io->ipsec_out_accelerated) { 29633 /* send it */ 29634 q = ire->ire_stq; 29635 if (proc == IPP_FWD_OUT) { 29636 UPDATE_IB_PKT_COUNT(ire); 29637 } else { 29638 UPDATE_OB_PKT_COUNT(ire); 29639 } 29640 ire->ire_last_used_time = lbolt; 29641 29642 if (flow_ctl_enabled || canputnext(q)) { 29643 if (proc == IPP_FWD_OUT) { 29644 29645 BUMP_MIB(out_ill->ill_ip_mib, 29646 ipIfStatsHCOutForwDatagrams); 29647 29648 } 29649 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29650 pkt_len); 29651 29652 DTRACE_IP7(send, mblk_t *, first_mp, 29653 conn_t *, NULL, void_ip_t *, ipha, 29654 __dtrace_ipsr_ill_t *, out_ill, 29655 ipha_t *, ipha, ip6_t *, NULL, int, 29656 0); 29657 29658 ILL_SEND_TX(out_ill, 29659 ire, connp, first_mp, 0); 29660 } else { 29661 BUMP_MIB(out_ill->ill_ip_mib, 29662 ipIfStatsOutDiscards); 29663 xmit_drop = B_TRUE; 29664 freemsg(first_mp); 29665 } 29666 } else { 29667 /* 29668 * Safety Pup says: make sure this 29669 * is going to the right interface! 29670 */ 29671 ill_t *ill1 = 29672 (ill_t *)ire->ire_stq->q_ptr; 29673 int ifindex = 29674 ill1->ill_phyint->phyint_ifindex; 29675 if (ifindex != 29676 io->ipsec_out_capab_ill_index) { 29677 xmit_drop = B_TRUE; 29678 freemsg(mp); 29679 } else { 29680 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29681 pkt_len); 29682 29683 DTRACE_IP7(send, mblk_t *, first_mp, 29684 conn_t *, NULL, void_ip_t *, ipha, 29685 __dtrace_ipsr_ill_t *, ill1, 29686 ipha_t *, ipha, ip6_t *, NULL, 29687 int, 0); 29688 29689 ipsec_hw_putnext(ire->ire_stq, mp); 29690 } 29691 } 29692 next_mp: 29693 mp = nxt_mp; 29694 } /* while (mp != NULL) */ 29695 if (xmit_drop) 29696 return (SEND_FAILED); 29697 else 29698 return (SEND_PASSED); 29699 29700 case ND_INITIAL: 29701 case ND_INCOMPLETE: 29702 29703 /* 29704 * While we do send off packets to dests that 29705 * use fully-resolved CGTP routes, we do not 29706 * handle unresolved CGTP routes. 29707 */ 29708 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29709 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29710 29711 if (mp != NULL) { 29712 /* queue the packet */ 29713 nce_queue_mp_common(arpce, mp, B_FALSE); 29714 } 29715 29716 if (arpce->nce_state == ND_INCOMPLETE) { 29717 mutex_exit(&arpce->nce_lock); 29718 DTRACE_PROBE3(ip__xmit__incomplete, 29719 (ire_t *), ire, (mblk_t *), mp, 29720 (ipsec_out_t *), io); 29721 return (LOOKUP_IN_PROGRESS); 29722 } 29723 29724 arpce->nce_state = ND_INCOMPLETE; 29725 mutex_exit(&arpce->nce_lock); 29726 29727 /* 29728 * Note that ire_add() (called from ire_forward()) 29729 * holds a ref on the ire until ARP is completed. 29730 */ 29731 ire_arpresolve(ire); 29732 return (LOOKUP_IN_PROGRESS); 29733 default: 29734 ASSERT(0); 29735 mutex_exit(&arpce->nce_lock); 29736 return (LLHDR_RESLV_FAILED); 29737 } 29738 } 29739 29740 #undef UPDATE_IP_MIB_OB_COUNTERS 29741 29742 /* 29743 * Return B_TRUE if the buffers differ in length or content. 29744 * This is used for comparing extension header buffers. 29745 * Note that an extension header would be declared different 29746 * even if all that changed was the next header value in that header i.e. 29747 * what really changed is the next extension header. 29748 */ 29749 boolean_t 29750 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29751 uint_t blen) 29752 { 29753 if (!b_valid) 29754 blen = 0; 29755 29756 if (alen != blen) 29757 return (B_TRUE); 29758 if (alen == 0) 29759 return (B_FALSE); /* Both zero length */ 29760 return (bcmp(abuf, bbuf, alen)); 29761 } 29762 29763 /* 29764 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29765 * Return B_FALSE if memory allocation fails - don't change any state! 29766 */ 29767 boolean_t 29768 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29769 const void *src, uint_t srclen) 29770 { 29771 void *dst; 29772 29773 if (!src_valid) 29774 srclen = 0; 29775 29776 ASSERT(*dstlenp == 0); 29777 if (src != NULL && srclen != 0) { 29778 dst = mi_alloc(srclen, BPRI_MED); 29779 if (dst == NULL) 29780 return (B_FALSE); 29781 } else { 29782 dst = NULL; 29783 } 29784 if (*dstp != NULL) 29785 mi_free(*dstp); 29786 *dstp = dst; 29787 *dstlenp = dst == NULL ? 0 : srclen; 29788 return (B_TRUE); 29789 } 29790 29791 /* 29792 * Replace what is in *dst, *dstlen with the source. 29793 * Assumes ip_allocbuf has already been called. 29794 */ 29795 void 29796 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29797 const void *src, uint_t srclen) 29798 { 29799 if (!src_valid) 29800 srclen = 0; 29801 29802 ASSERT(*dstlenp == srclen); 29803 if (src != NULL && srclen != 0) 29804 bcopy(src, *dstp, srclen); 29805 } 29806 29807 /* 29808 * Free the storage pointed to by the members of an ip6_pkt_t. 29809 */ 29810 void 29811 ip6_pkt_free(ip6_pkt_t *ipp) 29812 { 29813 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29814 29815 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29816 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29817 ipp->ipp_hopopts = NULL; 29818 ipp->ipp_hopoptslen = 0; 29819 } 29820 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29821 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29822 ipp->ipp_rtdstopts = NULL; 29823 ipp->ipp_rtdstoptslen = 0; 29824 } 29825 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29826 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29827 ipp->ipp_dstopts = NULL; 29828 ipp->ipp_dstoptslen = 0; 29829 } 29830 if (ipp->ipp_fields & IPPF_RTHDR) { 29831 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29832 ipp->ipp_rthdr = NULL; 29833 ipp->ipp_rthdrlen = 0; 29834 } 29835 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29836 IPPF_RTHDR); 29837 } 29838 29839 zoneid_t 29840 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29841 zoneid_t lookup_zoneid) 29842 { 29843 ire_t *ire; 29844 int ire_flags = MATCH_IRE_TYPE; 29845 zoneid_t zoneid = ALL_ZONES; 29846 29847 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29848 return (ALL_ZONES); 29849 29850 if (lookup_zoneid != ALL_ZONES) 29851 ire_flags |= MATCH_IRE_ZONEONLY; 29852 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29853 lookup_zoneid, NULL, ire_flags, ipst); 29854 if (ire != NULL) { 29855 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29856 ire_refrele(ire); 29857 } 29858 return (zoneid); 29859 } 29860 29861 zoneid_t 29862 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29863 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29864 { 29865 ire_t *ire; 29866 int ire_flags = MATCH_IRE_TYPE; 29867 zoneid_t zoneid = ALL_ZONES; 29868 ipif_t *ipif_arg = NULL; 29869 29870 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29871 return (ALL_ZONES); 29872 29873 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29874 ire_flags |= MATCH_IRE_ILL; 29875 ipif_arg = ill->ill_ipif; 29876 } 29877 if (lookup_zoneid != ALL_ZONES) 29878 ire_flags |= MATCH_IRE_ZONEONLY; 29879 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29880 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29881 if (ire != NULL) { 29882 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29883 ire_refrele(ire); 29884 } 29885 return (zoneid); 29886 } 29887 29888 /* 29889 * IP obserability hook support functions. 29890 */ 29891 29892 static void 29893 ipobs_init(ip_stack_t *ipst) 29894 { 29895 ipst->ips_ipobs_enabled = B_FALSE; 29896 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29897 offsetof(ipobs_cb_t, ipobs_cbnext)); 29898 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29899 ipst->ips_ipobs_cb_nwalkers = 0; 29900 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 29901 } 29902 29903 static void 29904 ipobs_fini(ip_stack_t *ipst) 29905 { 29906 ipobs_cb_t *cb; 29907 29908 mutex_enter(&ipst->ips_ipobs_cb_lock); 29909 while (ipst->ips_ipobs_cb_nwalkers != 0) 29910 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29911 29912 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 29913 list_remove(&ipst->ips_ipobs_cb_list, cb); 29914 kmem_free(cb, sizeof (*cb)); 29915 } 29916 list_destroy(&ipst->ips_ipobs_cb_list); 29917 mutex_exit(&ipst->ips_ipobs_cb_lock); 29918 mutex_destroy(&ipst->ips_ipobs_cb_lock); 29919 cv_destroy(&ipst->ips_ipobs_cb_cv); 29920 } 29921 29922 void 29923 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29924 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 29925 { 29926 mblk_t *mp2; 29927 ipobs_cb_t *ipobs_cb; 29928 ipobs_hook_data_t *ihd; 29929 uint64_t grifindex = 0; 29930 29931 ASSERT(DB_TYPE(mp) == M_DATA); 29932 29933 if (IS_UNDER_IPMP(ill)) 29934 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29935 29936 mutex_enter(&ipst->ips_ipobs_cb_lock); 29937 ipst->ips_ipobs_cb_nwalkers++; 29938 mutex_exit(&ipst->ips_ipobs_cb_lock); 29939 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 29940 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 29941 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 29942 if (mp2 != NULL) { 29943 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 29944 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 29945 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 29946 freemsg(mp2); 29947 continue; 29948 } 29949 ihd->ihd_mp->b_rptr += hlen; 29950 ihd->ihd_htype = htype; 29951 ihd->ihd_ipver = ipver; 29952 ihd->ihd_zsrc = zsrc; 29953 ihd->ihd_zdst = zdst; 29954 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 29955 ihd->ihd_grifindex = grifindex; 29956 ihd->ihd_stack = ipst->ips_netstack; 29957 mp2->b_wptr += sizeof (*ihd); 29958 ipobs_cb->ipobs_cbfunc(mp2); 29959 } 29960 } 29961 mutex_enter(&ipst->ips_ipobs_cb_lock); 29962 ipst->ips_ipobs_cb_nwalkers--; 29963 if (ipst->ips_ipobs_cb_nwalkers == 0) 29964 cv_broadcast(&ipst->ips_ipobs_cb_cv); 29965 mutex_exit(&ipst->ips_ipobs_cb_lock); 29966 } 29967 29968 void 29969 ipobs_register_hook(netstack_t *ns, pfv_t func) 29970 { 29971 ipobs_cb_t *cb; 29972 ip_stack_t *ipst = ns->netstack_ip; 29973 29974 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 29975 29976 mutex_enter(&ipst->ips_ipobs_cb_lock); 29977 while (ipst->ips_ipobs_cb_nwalkers != 0) 29978 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29979 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 29980 29981 cb->ipobs_cbfunc = func; 29982 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 29983 ipst->ips_ipobs_enabled = B_TRUE; 29984 mutex_exit(&ipst->ips_ipobs_cb_lock); 29985 } 29986 29987 void 29988 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 29989 { 29990 ipobs_cb_t *curcb; 29991 ip_stack_t *ipst = ns->netstack_ip; 29992 29993 mutex_enter(&ipst->ips_ipobs_cb_lock); 29994 while (ipst->ips_ipobs_cb_nwalkers != 0) 29995 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29996 29997 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 29998 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 29999 if (func == curcb->ipobs_cbfunc) { 30000 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30001 kmem_free(curcb, sizeof (*curcb)); 30002 break; 30003 } 30004 } 30005 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30006 ipst->ips_ipobs_enabled = B_FALSE; 30007 mutex_exit(&ipst->ips_ipobs_cb_lock); 30008 } 30009