1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 823 zoneid_t); 824 static void conn_setqfull(conn_t *); 825 static void conn_clrqfull(conn_t *); 826 827 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 828 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 829 static void ip_stack_fini(netstackid_t stackid, void *arg); 830 831 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 832 zoneid_t); 833 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 834 void *dummy_arg); 835 836 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 837 838 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 839 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 840 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 841 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 842 843 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 844 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 845 caddr_t, cred_t *); 846 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 847 cred_t *, boolean_t); 848 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 849 caddr_t cp, cred_t *cr); 850 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 851 cred_t *); 852 static int ip_squeue_switch(int); 853 854 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 855 static void ip_kstat_fini(netstackid_t, kstat_t *); 856 static int ip_kstat_update(kstat_t *kp, int rw); 857 static void *icmp_kstat_init(netstackid_t); 858 static void icmp_kstat_fini(netstackid_t, kstat_t *); 859 static int icmp_kstat_update(kstat_t *kp, int rw); 860 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 861 static void ip_kstat2_fini(netstackid_t, kstat_t *); 862 863 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 864 865 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 866 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 867 868 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 869 ipha_t *, ill_t *, boolean_t, boolean_t); 870 871 static void ipobs_init(ip_stack_t *); 872 static void ipobs_fini(ip_stack_t *); 873 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 874 875 /* How long, in seconds, we allow frags to hang around. */ 876 #define IP_FRAG_TIMEOUT 15 877 878 /* 879 * Threshold which determines whether MDT should be used when 880 * generating IP fragments; payload size must be greater than 881 * this threshold for MDT to take place. 882 */ 883 #define IP_WPUT_FRAG_MDT_MIN 32768 884 885 /* Setable in /etc/system only */ 886 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 887 888 static long ip_rput_pullups; 889 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 890 891 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 892 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 893 894 int ip_debug; 895 896 #ifdef DEBUG 897 uint32_t ipsechw_debug = 0; 898 #endif 899 900 /* 901 * Multirouting/CGTP stuff 902 */ 903 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 904 905 /* 906 * XXX following really should only be in a header. Would need more 907 * header and .c clean up first. 908 */ 909 extern optdb_obj_t ip_opt_obj; 910 911 ulong_t ip_squeue_enter_unbound = 0; 912 913 /* 914 * Named Dispatch Parameter Table. 915 * All of these are alterable, within the min/max values given, at run time. 916 */ 917 static ipparam_t lcl_param_arr[] = { 918 /* min max value name */ 919 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 920 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 921 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 922 { 0, 1, 0, "ip_respond_to_timestamp"}, 923 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 924 { 0, 1, 1, "ip_send_redirects"}, 925 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 926 { 0, 10, 0, "ip_mrtdebug"}, 927 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 928 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 929 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 930 { 1, 255, 255, "ip_def_ttl" }, 931 { 0, 1, 0, "ip_forward_src_routed"}, 932 { 0, 256, 32, "ip_wroff_extra" }, 933 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 934 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 935 { 0, 1, 1, "ip_path_mtu_discovery" }, 936 { 0, 240, 30, "ip_ignore_delete_time" }, 937 { 0, 1, 0, "ip_ignore_redirect" }, 938 { 0, 1, 1, "ip_output_queue" }, 939 { 1, 254, 1, "ip_broadcast_ttl" }, 940 { 0, 99999, 100, "ip_icmp_err_interval" }, 941 { 1, 99999, 10, "ip_icmp_err_burst" }, 942 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 943 { 0, 1, 0, "ip_strict_dst_multihoming" }, 944 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 945 { 0, 1, 0, "ipsec_override_persocket_policy" }, 946 { 0, 1, 1, "icmp_accept_clear_messages" }, 947 { 0, 1, 1, "igmp_accept_clear_messages" }, 948 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 949 "ip_ndp_delay_first_probe_time"}, 950 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 951 "ip_ndp_max_unicast_solicit"}, 952 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 953 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 954 { 0, 1, 0, "ip6_forward_src_routed"}, 955 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 956 { 0, 1, 1, "ip6_send_redirects"}, 957 { 0, 1, 0, "ip6_ignore_redirect" }, 958 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 959 960 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 961 962 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 963 964 { 0, 1, 1, "pim_accept_clear_messages" }, 965 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 966 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 967 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 968 { 0, 15, 0, "ip_policy_mask" }, 969 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 970 { 0, 255, 1, "ip_multirt_ttl" }, 971 { 0, 1, 1, "ip_multidata_outbound" }, 972 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 973 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 974 { 0, 1000, 1, "ip_max_temp_defend" }, 975 { 0, 1000, 3, "ip_max_defend" }, 976 { 0, 999999, 30, "ip_defend_interval" }, 977 { 0, 3600000, 300000, "ip_dup_recovery" }, 978 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 979 { 0, 1, 1, "ip_lso_outbound" }, 980 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 981 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 982 { 68, 65535, 576, "ip_pmtu_min" }, 983 #ifdef DEBUG 984 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 985 #else 986 { 0, 0, 0, "" }, 987 #endif 988 }; 989 990 /* 991 * Extended NDP table 992 * The addresses for the first two are filled in to be ips_ip_g_forward 993 * and ips_ipv6_forward at init time. 994 */ 995 static ipndp_t lcl_ndp_arr[] = { 996 /* getf setf data name */ 997 #define IPNDP_IP_FORWARDING_OFFSET 0 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip_forwarding" }, 1000 #define IPNDP_IP6_FORWARDING_OFFSET 1 1001 { ip_param_generic_get, ip_forward_set, NULL, 1002 "ip6_forwarding" }, 1003 { ip_ill_report, NULL, NULL, 1004 "ip_ill_status" }, 1005 { ip_ipif_report, NULL, NULL, 1006 "ip_ipif_status" }, 1007 { ip_conn_report, NULL, NULL, 1008 "ip_conn_status" }, 1009 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1010 "ip_rput_pullups" }, 1011 { ip_srcid_report, NULL, NULL, 1012 "ip_srcid_status" }, 1013 { ip_param_generic_get, ip_input_proc_set, 1014 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1015 { ip_param_generic_get, ip_int_set, 1016 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1017 #define IPNDP_CGTP_FILTER_OFFSET 9 1018 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1019 "ip_cgtp_filter" }, 1020 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1021 "ip_debug" }, 1022 }; 1023 1024 /* 1025 * Table of IP ioctls encoding the various properties of the ioctl and 1026 * indexed based on the last byte of the ioctl command. Occasionally there 1027 * is a clash, and there is more than 1 ioctl with the same last byte. 1028 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1029 * ioctls are encoded in the misc table. An entry in the ndx table is 1030 * retrieved by indexing on the last byte of the ioctl command and comparing 1031 * the ioctl command with the value in the ndx table. In the event of a 1032 * mismatch the misc table is then searched sequentially for the desired 1033 * ioctl command. 1034 * 1035 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1036 */ 1037 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1038 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1050 MISC_CMD, ip_siocaddrt, NULL }, 1051 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1052 MISC_CMD, ip_siocdelrt, NULL }, 1053 1054 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1055 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1056 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1057 IF_CMD, ip_sioctl_get_addr, NULL }, 1058 1059 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1060 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1061 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1062 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1063 1064 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1065 IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1067 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1068 IPI_MODOK | IPI_GET_CMD, 1069 IF_CMD, ip_sioctl_get_flags, NULL }, 1070 1071 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 1074 /* copyin size cannot be coded for SIOCGIFCONF */ 1075 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1076 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1077 1078 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1079 IF_CMD, ip_sioctl_mtu, NULL }, 1080 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1081 IF_CMD, ip_sioctl_get_mtu, NULL }, 1082 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1083 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1084 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_brdaddr, NULL }, 1086 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1087 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1088 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1090 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1091 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1092 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1093 IF_CMD, ip_sioctl_metric, NULL }, 1094 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 1096 /* See 166-168 below for extended SIOC*XARP ioctls */ 1097 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1098 ARP_CMD, ip_sioctl_arp, NULL }, 1099 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1100 ARP_CMD, ip_sioctl_arp, NULL }, 1101 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1102 ARP_CMD, ip_sioctl_arp, NULL }, 1103 1104 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 1126 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1127 MISC_CMD, if_unitsel, if_unitsel_restart }, 1128 1129 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 1148 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1149 IPI_PRIV | IPI_WR | IPI_MODOK, 1150 IF_CMD, ip_sioctl_sifname, NULL }, 1151 1152 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 1166 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1167 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1168 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1169 IF_CMD, ip_sioctl_get_muxid, NULL }, 1170 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1171 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1172 1173 /* Both if and lif variants share same func */ 1174 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1175 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1176 /* Both if and lif variants share same func */ 1177 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1179 1180 /* copyin size cannot be coded for SIOCGIFCONF */ 1181 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1182 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1183 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 1201 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1202 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1203 ip_sioctl_removeif_restart }, 1204 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1205 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1206 LIF_CMD, ip_sioctl_addif, NULL }, 1207 #define SIOCLIFADDR_NDX 112 1208 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1209 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1210 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1211 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1212 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1213 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1214 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1215 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1216 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1217 IPI_PRIV | IPI_WR, 1218 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1219 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1220 IPI_GET_CMD | IPI_MODOK, 1221 LIF_CMD, ip_sioctl_get_flags, NULL }, 1222 1223 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 1226 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1227 ip_sioctl_get_lifconf, NULL }, 1228 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_mtu, NULL }, 1230 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1231 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1232 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1233 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1234 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1235 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1236 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1237 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1238 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1239 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1240 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1241 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1242 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_metric, NULL }, 1244 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR | IPI_MODOK, 1246 LIF_CMD, ip_sioctl_slifname, 1247 ip_sioctl_slifname_restart }, 1248 1249 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1250 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1251 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1252 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1253 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1255 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1256 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1257 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1258 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1259 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_token, NULL }, 1261 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1262 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1263 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1264 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1265 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1266 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1267 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1268 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1269 1270 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1271 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1272 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1273 LIF_CMD, ip_siocdelndp_v6, NULL }, 1274 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1275 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1276 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1277 LIF_CMD, ip_siocsetndp_v6, NULL }, 1278 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1280 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1281 MISC_CMD, ip_sioctl_tonlink, NULL }, 1282 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1283 MISC_CMD, ip_sioctl_tmysite, NULL }, 1284 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1287 IPI_PRIV | IPI_WR, 1288 TUN_CMD, ip_sioctl_tunparam, NULL }, 1289 1290 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1291 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1294 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1295 1296 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1299 LIF_CMD, ip_sioctl_get_binding, NULL }, 1300 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR, 1302 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1303 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1304 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1305 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1306 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1307 1308 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1309 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1310 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1311 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1312 1313 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 1315 /* These are handled in ip_sioctl_copyin_setup itself */ 1316 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1317 MISC_CMD, NULL, NULL }, 1318 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1319 MISC_CMD, NULL, NULL }, 1320 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1321 1322 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1323 ip_sioctl_get_lifconf, NULL }, 1324 1325 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1326 XARP_CMD, ip_sioctl_arp, NULL }, 1327 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1328 XARP_CMD, ip_sioctl_arp, NULL }, 1329 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1330 XARP_CMD, ip_sioctl_arp, NULL }, 1331 1332 /* SIOCPOPSOCKFS is not handled by IP */ 1333 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1334 1335 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1336 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1337 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1338 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1339 ip_sioctl_slifzone_restart }, 1340 /* 172-174 are SCTP ioctls and not handled by IP */ 1341 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1342 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1343 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1344 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1345 IPI_GET_CMD, LIF_CMD, 1346 ip_sioctl_get_lifusesrc, 0 }, 1347 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1348 IPI_PRIV | IPI_WR, 1349 LIF_CMD, ip_sioctl_slifusesrc, 1350 NULL }, 1351 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1352 ip_sioctl_get_lifsrcof, NULL }, 1353 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1354 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1355 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1356 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1357 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1358 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1359 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1360 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1361 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* SIOCSENABLESDP is handled by SDP */ 1363 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1364 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1365 }; 1366 1367 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1368 1369 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1370 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1371 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1372 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1373 TUN_CMD, ip_sioctl_tunparam, NULL }, 1374 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1375 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1376 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1377 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1381 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1382 MISC_CMD, mrt_ioctl}, 1383 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1384 MISC_CMD, mrt_ioctl}, 1385 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1386 MISC_CMD, mrt_ioctl} 1387 }; 1388 1389 int ip_misc_ioctl_count = 1390 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1391 1392 int conn_drain_nthreads; /* Number of drainers reqd. */ 1393 /* Settable in /etc/system */ 1394 /* Defined in ip_ire.c */ 1395 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1396 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1397 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1398 1399 static nv_t ire_nv_arr[] = { 1400 { IRE_BROADCAST, "BROADCAST" }, 1401 { IRE_LOCAL, "LOCAL" }, 1402 { IRE_LOOPBACK, "LOOPBACK" }, 1403 { IRE_CACHE, "CACHE" }, 1404 { IRE_DEFAULT, "DEFAULT" }, 1405 { IRE_PREFIX, "PREFIX" }, 1406 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1407 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1408 { IRE_HOST, "HOST" }, 1409 { 0 } 1410 }; 1411 1412 nv_t *ire_nv_tbl = ire_nv_arr; 1413 1414 /* Simple ICMP IP Header Template */ 1415 static ipha_t icmp_ipha = { 1416 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1417 }; 1418 1419 struct module_info ip_mod_info = { 1420 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1421 IP_MOD_LOWAT 1422 }; 1423 1424 /* 1425 * Duplicate static symbols within a module confuses mdb; so we avoid the 1426 * problem by making the symbols here distinct from those in udp.c. 1427 */ 1428 1429 /* 1430 * Entry points for IP as a device and as a module. 1431 * FIXME: down the road we might want a separate module and driver qinit. 1432 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1433 */ 1434 static struct qinit iprinitv4 = { 1435 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1436 &ip_mod_info 1437 }; 1438 1439 struct qinit iprinitv6 = { 1440 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1441 &ip_mod_info 1442 }; 1443 1444 static struct qinit ipwinitv4 = { 1445 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1446 &ip_mod_info 1447 }; 1448 1449 struct qinit ipwinitv6 = { 1450 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1451 &ip_mod_info 1452 }; 1453 1454 static struct qinit iplrinit = { 1455 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1456 &ip_mod_info 1457 }; 1458 1459 static struct qinit iplwinit = { 1460 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1461 &ip_mod_info 1462 }; 1463 1464 /* For AF_INET aka /dev/ip */ 1465 struct streamtab ipinfov4 = { 1466 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1467 }; 1468 1469 /* For AF_INET6 aka /dev/ip6 */ 1470 struct streamtab ipinfov6 = { 1471 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1472 }; 1473 1474 #ifdef DEBUG 1475 static boolean_t skip_sctp_cksum = B_FALSE; 1476 #endif 1477 1478 /* 1479 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1480 * ip_rput_v6(), ip_output(), etc. If the message 1481 * block already has a M_CTL at the front of it, then simply set the zoneid 1482 * appropriately. 1483 */ 1484 mblk_t * 1485 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1486 { 1487 mblk_t *first_mp; 1488 ipsec_out_t *io; 1489 1490 ASSERT(zoneid != ALL_ZONES); 1491 if (mp->b_datap->db_type == M_CTL) { 1492 io = (ipsec_out_t *)mp->b_rptr; 1493 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1494 io->ipsec_out_zoneid = zoneid; 1495 return (mp); 1496 } 1497 1498 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1499 if (first_mp == NULL) 1500 return (NULL); 1501 io = (ipsec_out_t *)first_mp->b_rptr; 1502 /* This is not a secure packet */ 1503 io->ipsec_out_secure = B_FALSE; 1504 io->ipsec_out_zoneid = zoneid; 1505 first_mp->b_cont = mp; 1506 return (first_mp); 1507 } 1508 1509 /* 1510 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1511 */ 1512 mblk_t * 1513 ip_copymsg(mblk_t *mp) 1514 { 1515 mblk_t *nmp; 1516 ipsec_info_t *in; 1517 1518 if (mp->b_datap->db_type != M_CTL) 1519 return (copymsg(mp)); 1520 1521 in = (ipsec_info_t *)mp->b_rptr; 1522 1523 /* 1524 * Note that M_CTL is also used for delivering ICMP error messages 1525 * upstream to transport layers. 1526 */ 1527 if (in->ipsec_info_type != IPSEC_OUT && 1528 in->ipsec_info_type != IPSEC_IN) 1529 return (copymsg(mp)); 1530 1531 nmp = copymsg(mp->b_cont); 1532 1533 if (in->ipsec_info_type == IPSEC_OUT) { 1534 return (ipsec_out_tag(mp, nmp, 1535 ((ipsec_out_t *)in)->ipsec_out_ns)); 1536 } else { 1537 return (ipsec_in_tag(mp, nmp, 1538 ((ipsec_in_t *)in)->ipsec_in_ns)); 1539 } 1540 } 1541 1542 /* Generate an ICMP fragmentation needed message. */ 1543 static void 1544 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1545 ip_stack_t *ipst) 1546 { 1547 icmph_t icmph; 1548 mblk_t *first_mp; 1549 boolean_t mctl_present; 1550 1551 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1552 1553 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1554 if (mctl_present) 1555 freeb(first_mp); 1556 return; 1557 } 1558 1559 bzero(&icmph, sizeof (icmph_t)); 1560 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1561 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1562 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1563 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1564 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1565 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1566 ipst); 1567 } 1568 1569 /* 1570 * icmp_inbound deals with ICMP messages in the following ways. 1571 * 1572 * 1) It needs to send a reply back and possibly delivering it 1573 * to the "interested" upper clients. 1574 * 2) It needs to send it to the upper clients only. 1575 * 3) It needs to change some values in IP only. 1576 * 4) It needs to change some values in IP and upper layers e.g TCP. 1577 * 1578 * We need to accomodate icmp messages coming in clear until we get 1579 * everything secure from the wire. If icmp_accept_clear_messages 1580 * is zero we check with the global policy and act accordingly. If 1581 * it is non-zero, we accept the message without any checks. But 1582 * *this does not mean* that this will be delivered to the upper 1583 * clients. By accepting we might send replies back, change our MTU 1584 * value etc. but delivery to the ULP/clients depends on their policy 1585 * dispositions. 1586 * 1587 * We handle the above 4 cases in the context of IPsec in the 1588 * following way : 1589 * 1590 * 1) Send the reply back in the same way as the request came in. 1591 * If it came in encrypted, it goes out encrypted. If it came in 1592 * clear, it goes out in clear. Thus, this will prevent chosen 1593 * plain text attack. 1594 * 2) The client may or may not expect things to come in secure. 1595 * If it comes in secure, the policy constraints are checked 1596 * before delivering it to the upper layers. If it comes in 1597 * clear, ipsec_inbound_accept_clear will decide whether to 1598 * accept this in clear or not. In both the cases, if the returned 1599 * message (IP header + 8 bytes) that caused the icmp message has 1600 * AH/ESP headers, it is sent up to AH/ESP for validation before 1601 * sending up. If there are only 8 bytes of returned message, then 1602 * upper client will not be notified. 1603 * 3) Check with global policy to see whether it matches the constaints. 1604 * But this will be done only if icmp_accept_messages_in_clear is 1605 * zero. 1606 * 4) If we need to change both in IP and ULP, then the decision taken 1607 * while affecting the values in IP and while delivering up to TCP 1608 * should be the same. 1609 * 1610 * There are two cases. 1611 * 1612 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1613 * failed), we will not deliver it to the ULP, even though they 1614 * are *willing* to accept in *clear*. This is fine as our global 1615 * disposition to icmp messages asks us reject the datagram. 1616 * 1617 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1618 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1619 * to deliver it to ULP (policy failed), it can lead to 1620 * consistency problems. The cases known at this time are 1621 * ICMP_DESTINATION_UNREACHABLE messages with following code 1622 * values : 1623 * 1624 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1625 * and Upper layer rejects. Then the communication will 1626 * come to a stop. This is solved by making similar decisions 1627 * at both levels. Currently, when we are unable to deliver 1628 * to the Upper Layer (due to policy failures) while IP has 1629 * adjusted ire_max_frag, the next outbound datagram would 1630 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1631 * will be with the right level of protection. Thus the right 1632 * value will be communicated even if we are not able to 1633 * communicate when we get from the wire initially. But this 1634 * assumes there would be at least one outbound datagram after 1635 * IP has adjusted its ire_max_frag value. To make things 1636 * simpler, we accept in clear after the validation of 1637 * AH/ESP headers. 1638 * 1639 * - Other ICMP ERRORS : We may not be able to deliver it to the 1640 * upper layer depending on the level of protection the upper 1641 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1642 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1643 * should be accepted in clear when the Upper layer expects secure. 1644 * Thus the communication may get aborted by some bad ICMP 1645 * packets. 1646 * 1647 * IPQoS Notes: 1648 * The only instance when a packet is sent for processing is when there 1649 * isn't an ICMP client and if we are interested in it. 1650 * If there is a client, IPPF processing will take place in the 1651 * ip_fanout_proto routine. 1652 * 1653 * Zones notes: 1654 * The packet is only processed in the context of the specified zone: typically 1655 * only this zone will reply to an echo request, and only interested clients in 1656 * this zone will receive a copy of the packet. This means that the caller must 1657 * call icmp_inbound() for each relevant zone. 1658 */ 1659 static void 1660 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1661 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1662 ill_t *recv_ill, zoneid_t zoneid) 1663 { 1664 icmph_t *icmph; 1665 ipha_t *ipha; 1666 int iph_hdr_length; 1667 int hdr_length; 1668 boolean_t interested; 1669 uint32_t ts; 1670 uchar_t *wptr; 1671 ipif_t *ipif; 1672 mblk_t *first_mp; 1673 ipsec_in_t *ii; 1674 timestruc_t now; 1675 uint32_t ill_index; 1676 ip_stack_t *ipst; 1677 1678 ASSERT(ill != NULL); 1679 ipst = ill->ill_ipst; 1680 1681 first_mp = mp; 1682 if (mctl_present) { 1683 mp = first_mp->b_cont; 1684 ASSERT(mp != NULL); 1685 } 1686 1687 ipha = (ipha_t *)mp->b_rptr; 1688 if (ipst->ips_icmp_accept_clear_messages == 0) { 1689 first_mp = ipsec_check_global_policy(first_mp, NULL, 1690 ipha, NULL, mctl_present, ipst->ips_netstack); 1691 if (first_mp == NULL) 1692 return; 1693 } 1694 1695 /* 1696 * On a labeled system, we have to check whether the zone itself is 1697 * permitted to receive raw traffic. 1698 */ 1699 if (is_system_labeled()) { 1700 if (zoneid == ALL_ZONES) 1701 zoneid = tsol_packet_to_zoneid(mp); 1702 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1703 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1704 zoneid)); 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1706 freemsg(first_mp); 1707 return; 1708 } 1709 } 1710 1711 /* 1712 * We have accepted the ICMP message. It means that we will 1713 * respond to the packet if needed. It may not be delivered 1714 * to the upper client depending on the policy constraints 1715 * and the disposition in ipsec_inbound_accept_clear. 1716 */ 1717 1718 ASSERT(ill != NULL); 1719 1720 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1721 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1722 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1723 /* Last chance to get real. */ 1724 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1725 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1726 freemsg(first_mp); 1727 return; 1728 } 1729 /* Refresh iph following the pullup. */ 1730 ipha = (ipha_t *)mp->b_rptr; 1731 } 1732 /* ICMP header checksum, including checksum field, should be zero. */ 1733 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1734 IP_CSUM(mp, iph_hdr_length, 0)) { 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1736 freemsg(first_mp); 1737 return; 1738 } 1739 /* The IP header will always be a multiple of four bytes */ 1740 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1741 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1742 icmph->icmph_code)); 1743 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1744 /* We will set "interested" to "true" if we want a copy */ 1745 interested = B_FALSE; 1746 switch (icmph->icmph_type) { 1747 case ICMP_ECHO_REPLY: 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1749 break; 1750 case ICMP_DEST_UNREACHABLE: 1751 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1753 interested = B_TRUE; /* Pass up to transport */ 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1755 break; 1756 case ICMP_SOURCE_QUENCH: 1757 interested = B_TRUE; /* Pass up to transport */ 1758 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1759 break; 1760 case ICMP_REDIRECT: 1761 if (!ipst->ips_ip_ignore_redirect) 1762 interested = B_TRUE; 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1764 break; 1765 case ICMP_ECHO_REQUEST: 1766 /* 1767 * Whether to respond to echo requests that come in as IP 1768 * broadcasts or as IP multicast is subject to debate 1769 * (what isn't?). We aim to please, you pick it. 1770 * Default is do it. 1771 */ 1772 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1773 /* unicast: always respond */ 1774 interested = B_TRUE; 1775 } else if (CLASSD(ipha->ipha_dst)) { 1776 /* multicast: respond based on tunable */ 1777 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1778 } else if (broadcast) { 1779 /* broadcast: respond based on tunable */ 1780 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1781 } 1782 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1783 break; 1784 case ICMP_ROUTER_ADVERTISEMENT: 1785 case ICMP_ROUTER_SOLICITATION: 1786 break; 1787 case ICMP_TIME_EXCEEDED: 1788 interested = B_TRUE; /* Pass up to transport */ 1789 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1790 break; 1791 case ICMP_PARAM_PROBLEM: 1792 interested = B_TRUE; /* Pass up to transport */ 1793 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1794 break; 1795 case ICMP_TIME_STAMP_REQUEST: 1796 /* Response to Time Stamp Requests is local policy. */ 1797 if (ipst->ips_ip_g_resp_to_timestamp && 1798 /* So is whether to respond if it was an IP broadcast. */ 1799 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1800 int tstamp_len = 3 * sizeof (uint32_t); 1801 1802 if (wptr + tstamp_len > mp->b_wptr) { 1803 if (!pullupmsg(mp, wptr + tstamp_len - 1804 mp->b_rptr)) { 1805 BUMP_MIB(ill->ill_ip_mib, 1806 ipIfStatsInDiscards); 1807 freemsg(first_mp); 1808 return; 1809 } 1810 /* Refresh ipha following the pullup. */ 1811 ipha = (ipha_t *)mp->b_rptr; 1812 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1813 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1814 } 1815 interested = B_TRUE; 1816 } 1817 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1818 break; 1819 case ICMP_TIME_STAMP_REPLY: 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1821 break; 1822 case ICMP_INFO_REQUEST: 1823 /* Per RFC 1122 3.2.2.7, ignore this. */ 1824 case ICMP_INFO_REPLY: 1825 break; 1826 case ICMP_ADDRESS_MASK_REQUEST: 1827 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1828 !broadcast) && 1829 /* TODO m_pullup of complete header? */ 1830 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1831 interested = B_TRUE; 1832 } 1833 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1834 break; 1835 case ICMP_ADDRESS_MASK_REPLY: 1836 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1837 break; 1838 default: 1839 interested = B_TRUE; /* Pass up to transport */ 1840 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1841 break; 1842 } 1843 /* See if there is an ICMP client. */ 1844 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1845 /* If there is an ICMP client and we want one too, copy it. */ 1846 mblk_t *first_mp1; 1847 1848 if (!interested) { 1849 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1850 ip_policy, recv_ill, zoneid); 1851 return; 1852 } 1853 first_mp1 = ip_copymsg(first_mp); 1854 if (first_mp1 != NULL) { 1855 ip_fanout_proto(q, first_mp1, ill, ipha, 1856 0, mctl_present, ip_policy, recv_ill, zoneid); 1857 } 1858 } else if (!interested) { 1859 freemsg(first_mp); 1860 return; 1861 } else { 1862 /* 1863 * Initiate policy processing for this packet if ip_policy 1864 * is true. 1865 */ 1866 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1867 ill_index = ill->ill_phyint->phyint_ifindex; 1868 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1869 if (mp == NULL) { 1870 if (mctl_present) { 1871 freeb(first_mp); 1872 } 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1874 return; 1875 } 1876 } 1877 } 1878 /* We want to do something with it. */ 1879 /* Check db_ref to make sure we can modify the packet. */ 1880 if (mp->b_datap->db_ref > 1) { 1881 mblk_t *first_mp1; 1882 1883 first_mp1 = ip_copymsg(first_mp); 1884 freemsg(first_mp); 1885 if (!first_mp1) { 1886 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1887 return; 1888 } 1889 first_mp = first_mp1; 1890 if (mctl_present) { 1891 mp = first_mp->b_cont; 1892 ASSERT(mp != NULL); 1893 } else { 1894 mp = first_mp; 1895 } 1896 ipha = (ipha_t *)mp->b_rptr; 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1899 } 1900 switch (icmph->icmph_type) { 1901 case ICMP_ADDRESS_MASK_REQUEST: 1902 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1903 if (ipif == NULL) { 1904 freemsg(first_mp); 1905 return; 1906 } 1907 /* 1908 * outging interface must be IPv4 1909 */ 1910 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1911 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1912 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1913 ipif_refrele(ipif); 1914 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1915 break; 1916 case ICMP_ECHO_REQUEST: 1917 icmph->icmph_type = ICMP_ECHO_REPLY; 1918 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1919 break; 1920 case ICMP_TIME_STAMP_REQUEST: { 1921 uint32_t *tsp; 1922 1923 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1924 tsp = (uint32_t *)wptr; 1925 tsp++; /* Skip past 'originate time' */ 1926 /* Compute # of milliseconds since midnight */ 1927 gethrestime(&now); 1928 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1929 now.tv_nsec / (NANOSEC / MILLISEC); 1930 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1931 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1932 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1933 break; 1934 } 1935 default: 1936 ipha = (ipha_t *)&icmph[1]; 1937 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1938 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 hdr_length = IPH_HDR_LENGTH(ipha); 1952 if (hdr_length < sizeof (ipha_t)) { 1953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1958 if (!pullupmsg(mp, 1959 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1961 freemsg(first_mp); 1962 return; 1963 } 1964 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1965 ipha = (ipha_t *)&icmph[1]; 1966 } 1967 switch (icmph->icmph_type) { 1968 case ICMP_REDIRECT: 1969 /* 1970 * As there is no upper client to deliver, we don't 1971 * need the first_mp any more. 1972 */ 1973 if (mctl_present) { 1974 freeb(first_mp); 1975 } 1976 icmp_redirect(ill, mp); 1977 return; 1978 case ICMP_DEST_UNREACHABLE: 1979 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1980 if (!icmp_inbound_too_big(icmph, ipha, ill, 1981 zoneid, mp, iph_hdr_length, ipst)) { 1982 freemsg(first_mp); 1983 return; 1984 } 1985 /* 1986 * icmp_inbound_too_big() may alter mp. 1987 * Resynch ipha and icmph accordingly. 1988 */ 1989 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1990 ipha = (ipha_t *)&icmph[1]; 1991 } 1992 /* FALLTHRU */ 1993 default : 1994 /* 1995 * IPQoS notes: Since we have already done IPQoS 1996 * processing we don't want to do it again in 1997 * the fanout routines called by 1998 * icmp_inbound_error_fanout, hence the last 1999 * argument, ip_policy, is B_FALSE. 2000 */ 2001 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2002 ipha, iph_hdr_length, hdr_length, mctl_present, 2003 B_FALSE, recv_ill, zoneid); 2004 } 2005 return; 2006 } 2007 /* Send out an ICMP packet */ 2008 icmph->icmph_checksum = 0; 2009 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2010 if (broadcast || CLASSD(ipha->ipha_dst)) { 2011 ipif_t *ipif_chosen; 2012 /* 2013 * Make it look like it was directed to us, so we don't look 2014 * like a fool with a broadcast or multicast source address. 2015 */ 2016 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2017 /* 2018 * Make sure that we haven't grabbed an interface that's DOWN. 2019 */ 2020 if (ipif != NULL) { 2021 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2022 ipha->ipha_src, zoneid); 2023 if (ipif_chosen != NULL) { 2024 ipif_refrele(ipif); 2025 ipif = ipif_chosen; 2026 } 2027 } 2028 if (ipif == NULL) { 2029 ip0dbg(("icmp_inbound: " 2030 "No source for broadcast/multicast:\n" 2031 "\tsrc 0x%x dst 0x%x ill %p " 2032 "ipif_lcl_addr 0x%x\n", 2033 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2034 (void *)ill, 2035 ill->ill_ipif->ipif_lcl_addr)); 2036 freemsg(first_mp); 2037 return; 2038 } 2039 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2040 ipha->ipha_dst = ipif->ipif_src_addr; 2041 ipif_refrele(ipif); 2042 } 2043 /* Reset time to live. */ 2044 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2045 { 2046 /* Swap source and destination addresses */ 2047 ipaddr_t tmp; 2048 2049 tmp = ipha->ipha_src; 2050 ipha->ipha_src = ipha->ipha_dst; 2051 ipha->ipha_dst = tmp; 2052 } 2053 ipha->ipha_ident = 0; 2054 if (!IS_SIMPLE_IPH(ipha)) 2055 icmp_options_update(ipha); 2056 2057 if (!mctl_present) { 2058 /* 2059 * This packet should go out the same way as it 2060 * came in i.e in clear. To make sure that global 2061 * policy will not be applied to this in ip_wput_ire, 2062 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2063 */ 2064 ASSERT(first_mp == mp); 2065 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2066 if (first_mp == NULL) { 2067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2068 freemsg(mp); 2069 return; 2070 } 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 2073 /* This is not a secure packet */ 2074 ii->ipsec_in_secure = B_FALSE; 2075 first_mp->b_cont = mp; 2076 } else { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } 2080 ii->ipsec_in_zoneid = zoneid; 2081 ASSERT(zoneid != ALL_ZONES); 2082 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2084 return; 2085 } 2086 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2087 put(WR(q), first_mp); 2088 } 2089 2090 static ipaddr_t 2091 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2092 { 2093 conn_t *connp; 2094 connf_t *connfp; 2095 ipaddr_t nexthop_addr = INADDR_ANY; 2096 int hdr_length = IPH_HDR_LENGTH(ipha); 2097 uint16_t *up; 2098 uint32_t ports; 2099 ip_stack_t *ipst = ill->ill_ipst; 2100 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_TCP: 2104 { 2105 tcph_t *tcph; 2106 2107 /* do a reverse lookup */ 2108 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2109 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2110 TCPS_LISTEN, ipst); 2111 break; 2112 } 2113 case IPPROTO_UDP: 2114 { 2115 uint32_t dstport, srcport; 2116 2117 ((uint16_t *)&ports)[0] = up[1]; 2118 ((uint16_t *)&ports)[1] = up[0]; 2119 2120 /* Extract ports in net byte order */ 2121 dstport = htons(ntohl(ports) & 0xFFFF); 2122 srcport = htons(ntohl(ports) >> 16); 2123 2124 connfp = &ipst->ips_ipcl_udp_fanout[ 2125 IPCL_UDP_HASH(dstport, ipst)]; 2126 mutex_enter(&connfp->connf_lock); 2127 connp = connfp->connf_head; 2128 2129 /* do a reverse lookup */ 2130 while ((connp != NULL) && 2131 (!IPCL_UDP_MATCH(connp, dstport, 2132 ipha->ipha_src, srcport, ipha->ipha_dst) || 2133 !IPCL_ZONE_MATCH(connp, zoneid))) { 2134 connp = connp->conn_next; 2135 } 2136 if (connp != NULL) 2137 CONN_INC_REF(connp); 2138 mutex_exit(&connfp->connf_lock); 2139 break; 2140 } 2141 case IPPROTO_SCTP: 2142 { 2143 in6_addr_t map_src, map_dst; 2144 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2147 ((uint16_t *)&ports)[0] = up[1]; 2148 ((uint16_t *)&ports)[1] = up[0]; 2149 2150 connp = sctp_find_conn(&map_src, &map_dst, ports, 2151 zoneid, ipst->ips_netstack->netstack_sctp); 2152 if (connp == NULL) { 2153 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2154 zoneid, ports, ipha, ipst); 2155 } else { 2156 CONN_INC_REF(connp); 2157 SCTP_REFRELE(CONN2SCTP(connp)); 2158 } 2159 break; 2160 } 2161 default: 2162 { 2163 ipha_t ripha; 2164 2165 ripha.ipha_src = ipha->ipha_dst; 2166 ripha.ipha_dst = ipha->ipha_src; 2167 ripha.ipha_protocol = ipha->ipha_protocol; 2168 2169 connfp = &ipst->ips_ipcl_proto_fanout[ 2170 ipha->ipha_protocol]; 2171 mutex_enter(&connfp->connf_lock); 2172 connp = connfp->connf_head; 2173 for (connp = connfp->connf_head; connp != NULL; 2174 connp = connp->conn_next) { 2175 if (IPCL_PROTO_MATCH(connp, 2176 ipha->ipha_protocol, &ripha, ill, 2177 0, zoneid)) { 2178 CONN_INC_REF(connp); 2179 break; 2180 } 2181 } 2182 mutex_exit(&connfp->connf_lock); 2183 } 2184 } 2185 if (connp != NULL) { 2186 if (connp->conn_nexthop_set) 2187 nexthop_addr = connp->conn_nexthop_v4; 2188 CONN_DEC_REF(connp); 2189 } 2190 return (nexthop_addr); 2191 } 2192 2193 /* Table from RFC 1191 */ 2194 static int icmp_frag_size_table[] = 2195 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2196 2197 /* 2198 * Process received ICMP Packet too big. 2199 * After updating any IRE it does the fanout to any matching transport streams. 2200 * Assumes the message has been pulled up till the IP header that caused 2201 * the error. 2202 * 2203 * Returns B_FALSE on failure and B_TRUE on success. 2204 */ 2205 static boolean_t 2206 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2207 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2208 ip_stack_t *ipst) 2209 { 2210 ire_t *ire, *first_ire; 2211 int mtu, orig_mtu; 2212 int hdr_length; 2213 ipaddr_t nexthop_addr; 2214 boolean_t disable_pmtud; 2215 2216 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2217 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2218 ASSERT(ill != NULL); 2219 2220 hdr_length = IPH_HDR_LENGTH(ipha); 2221 2222 /* Drop if the original packet contained a source route */ 2223 if (ip_source_route_included(ipha)) { 2224 return (B_FALSE); 2225 } 2226 /* 2227 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2228 * header. 2229 */ 2230 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2231 mp->b_wptr) { 2232 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2233 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2234 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2235 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2236 return (B_FALSE); 2237 } 2238 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2239 ipha = (ipha_t *)&icmph[1]; 2240 } 2241 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2242 if (nexthop_addr != INADDR_ANY) { 2243 /* nexthop set */ 2244 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2245 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2246 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2247 } else { 2248 /* nexthop not set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2250 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2251 } 2252 2253 if (!first_ire) { 2254 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2255 ntohl(ipha->ipha_dst))); 2256 return (B_FALSE); 2257 } 2258 2259 /* Check for MTU discovery advice as described in RFC 1191 */ 2260 mtu = ntohs(icmph->icmph_du_mtu); 2261 orig_mtu = mtu; 2262 disable_pmtud = B_FALSE; 2263 2264 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2265 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2266 ire = ire->ire_next) { 2267 /* 2268 * Look for the connection to which this ICMP message is 2269 * directed. If it has the IP_NEXTHOP option set, then the 2270 * search is limited to IREs with the MATCH_IRE_PRIVATE 2271 * option. Else the search is limited to regular IREs. 2272 */ 2273 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2274 (nexthop_addr != ire->ire_gateway_addr)) || 2275 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2276 (nexthop_addr != INADDR_ANY))) 2277 continue; 2278 2279 mutex_enter(&ire->ire_lock); 2280 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2281 uint32_t length; 2282 int i; 2283 2284 /* 2285 * Use the table from RFC 1191 to figure out 2286 * the next "plateau" based on the length in 2287 * the original IP packet. 2288 */ 2289 length = ntohs(ipha->ipha_length); 2290 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2291 uint32_t, length); 2292 if (ire->ire_max_frag <= length && 2293 ire->ire_max_frag >= length - hdr_length) { 2294 /* 2295 * Handle broken BSD 4.2 systems that 2296 * return the wrong iph_length in ICMP 2297 * errors. 2298 */ 2299 length -= hdr_length; 2300 } 2301 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2302 if (length > icmp_frag_size_table[i]) 2303 break; 2304 } 2305 if (i == A_CNT(icmp_frag_size_table)) { 2306 /* Smaller than 68! */ 2307 disable_pmtud = B_TRUE; 2308 mtu = ipst->ips_ip_pmtu_min; 2309 } else { 2310 mtu = icmp_frag_size_table[i]; 2311 if (mtu < ipst->ips_ip_pmtu_min) { 2312 mtu = ipst->ips_ip_pmtu_min; 2313 disable_pmtud = B_TRUE; 2314 } 2315 } 2316 /* Fool the ULP into believing our guessed PMTU. */ 2317 icmph->icmph_du_zero = 0; 2318 icmph->icmph_du_mtu = htons(mtu); 2319 } 2320 if (disable_pmtud) 2321 ire->ire_frag_flag = 0; 2322 /* Reduce the IRE max frag value as advised. */ 2323 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2324 mutex_exit(&ire->ire_lock); 2325 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2326 ire, int, orig_mtu, int, mtu); 2327 } 2328 rw_exit(&first_ire->ire_bucket->irb_lock); 2329 ire_refrele(first_ire); 2330 return (B_TRUE); 2331 } 2332 2333 /* 2334 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2335 * calls this function. 2336 */ 2337 static mblk_t * 2338 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2339 { 2340 ipha_t *ipha; 2341 icmph_t *icmph; 2342 ipha_t *in_ipha; 2343 int length; 2344 2345 ASSERT(mp->b_datap->db_type == M_DATA); 2346 2347 /* 2348 * For Self-encapsulated packets, we added an extra IP header 2349 * without the options. Inner IP header is the one from which 2350 * the outer IP header was formed. Thus, we need to remove the 2351 * outer IP header. To do this, we pullup the whole message 2352 * and overlay whatever follows the outer IP header over the 2353 * outer IP header. 2354 */ 2355 2356 if (!pullupmsg(mp, -1)) 2357 return (NULL); 2358 2359 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2360 ipha = (ipha_t *)&icmph[1]; 2361 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2362 2363 /* 2364 * The length that we want to overlay is following the inner 2365 * IP header. Subtracting the IP header + icmp header + outer 2366 * IP header's length should give us the length that we want to 2367 * overlay. 2368 */ 2369 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2370 hdr_length; 2371 /* 2372 * Overlay whatever follows the inner header over the 2373 * outer header. 2374 */ 2375 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2376 2377 /* Set the wptr to account for the outer header */ 2378 mp->b_wptr -= hdr_length; 2379 return (mp); 2380 } 2381 2382 /* 2383 * Try to pass the ICMP message upstream in case the ULP cares. 2384 * 2385 * If the packet that caused the ICMP error is secure, we send 2386 * it to AH/ESP to make sure that the attached packet has a 2387 * valid association. ipha in the code below points to the 2388 * IP header of the packet that caused the error. 2389 * 2390 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2391 * in the context of IPsec. Normally we tell the upper layer 2392 * whenever we send the ire (including ip_bind), the IPsec header 2393 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2394 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2395 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2396 * same thing. As TCP has the IPsec options size that needs to be 2397 * adjusted, we just pass the MTU unchanged. 2398 * 2399 * IFN could have been generated locally or by some router. 2400 * 2401 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2402 * This happens because IP adjusted its value of MTU on an 2403 * earlier IFN message and could not tell the upper layer, 2404 * the new adjusted value of MTU e.g. Packet was encrypted 2405 * or there was not enough information to fanout to upper 2406 * layers. Thus on the next outbound datagram, ip_wput_ire 2407 * generates the IFN, where IPsec processing has *not* been 2408 * done. 2409 * 2410 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2411 * could have generated this. This happens because ire_max_frag 2412 * value in IP was set to a new value, while the IPsec processing 2413 * was being done and after we made the fragmentation check in 2414 * ip_wput_ire. Thus on return from IPsec processing, 2415 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2416 * and generates the IFN. As IPsec processing is over, we fanout 2417 * to AH/ESP to remove the header. 2418 * 2419 * In both these cases, ipsec_in_loopback will be set indicating 2420 * that IFN was generated locally. 2421 * 2422 * ROUTER : IFN could be secure or non-secure. 2423 * 2424 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2425 * packet in error has AH/ESP headers to validate the AH/ESP 2426 * headers. AH/ESP will verify whether there is a valid SA or 2427 * not and send it back. We will fanout again if we have more 2428 * data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 * 2433 * * NON_SECURE : If the packet in error has AH/ESP headers, 2434 * we attach a dummy ipsec_in and send it up to AH/ESP 2435 * for validation. AH/ESP will verify whether there is a 2436 * valid SA or not and send it back. We will fanout again if 2437 * we have more data in the packet. 2438 * 2439 * If the packet in error does not have AH/ESP, we handle it 2440 * like any other case. 2441 */ 2442 static void 2443 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2444 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2445 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2446 zoneid_t zoneid) 2447 { 2448 uint16_t *up; /* Pointer to ports in ULP header */ 2449 uint32_t ports; /* reversed ports for fanout */ 2450 ipha_t ripha; /* With reversed addresses */ 2451 mblk_t *first_mp; 2452 ipsec_in_t *ii; 2453 tcph_t *tcph; 2454 conn_t *connp; 2455 ip_stack_t *ipst; 2456 2457 ASSERT(ill != NULL); 2458 2459 ASSERT(recv_ill != NULL); 2460 ipst = recv_ill->ill_ipst; 2461 2462 first_mp = mp; 2463 if (mctl_present) { 2464 mp = first_mp->b_cont; 2465 ASSERT(mp != NULL); 2466 2467 ii = (ipsec_in_t *)first_mp->b_rptr; 2468 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2469 } else { 2470 ii = NULL; 2471 } 2472 2473 switch (ipha->ipha_protocol) { 2474 case IPPROTO_UDP: 2475 /* 2476 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2477 * transport header. 2478 */ 2479 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2480 mp->b_wptr) { 2481 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2482 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2483 goto discard_pkt; 2484 } 2485 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2486 ipha = (ipha_t *)&icmph[1]; 2487 } 2488 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2489 2490 /* 2491 * Attempt to find a client stream based on port. 2492 * Note that we do a reverse lookup since the header is 2493 * in the form we sent it out. 2494 * The ripha header is only used for the IP_UDP_MATCH and we 2495 * only set the src and dst addresses and protocol. 2496 */ 2497 ripha.ipha_src = ipha->ipha_dst; 2498 ripha.ipha_dst = ipha->ipha_src; 2499 ripha.ipha_protocol = ipha->ipha_protocol; 2500 ((uint16_t *)&ports)[0] = up[1]; 2501 ((uint16_t *)&ports)[1] = up[0]; 2502 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2503 ntohl(ipha->ipha_src), ntohs(up[0]), 2504 ntohl(ipha->ipha_dst), ntohs(up[1]), 2505 icmph->icmph_type, icmph->icmph_code)); 2506 2507 /* Have to change db_type after any pullupmsg */ 2508 DB_TYPE(mp) = M_CTL; 2509 2510 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2511 mctl_present, ip_policy, recv_ill, zoneid); 2512 return; 2513 2514 case IPPROTO_TCP: 2515 /* 2516 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2517 * transport header. 2518 */ 2519 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2520 mp->b_wptr) { 2521 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2522 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2523 goto discard_pkt; 2524 } 2525 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2526 ipha = (ipha_t *)&icmph[1]; 2527 } 2528 /* 2529 * Find a TCP client stream for this packet. 2530 * Note that we do a reverse lookup since the header is 2531 * in the form we sent it out. 2532 */ 2533 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2534 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2535 ipst); 2536 if (connp == NULL) 2537 goto discard_pkt; 2538 2539 /* Have to change db_type after any pullupmsg */ 2540 DB_TYPE(mp) = M_CTL; 2541 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2542 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2543 return; 2544 2545 case IPPROTO_SCTP: 2546 /* 2547 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2548 * transport header. 2549 */ 2550 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2551 mp->b_wptr) { 2552 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2553 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2554 goto discard_pkt; 2555 } 2556 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2557 ipha = (ipha_t *)&icmph[1]; 2558 } 2559 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2560 /* 2561 * Find a SCTP client stream for this packet. 2562 * Note that we do a reverse lookup since the header is 2563 * in the form we sent it out. 2564 * The ripha header is only used for the matching and we 2565 * only set the src and dst addresses, protocol, and version. 2566 */ 2567 ripha.ipha_src = ipha->ipha_dst; 2568 ripha.ipha_dst = ipha->ipha_src; 2569 ripha.ipha_protocol = ipha->ipha_protocol; 2570 ripha.ipha_version_and_hdr_length = 2571 ipha->ipha_version_and_hdr_length; 2572 ((uint16_t *)&ports)[0] = up[1]; 2573 ((uint16_t *)&ports)[1] = up[0]; 2574 2575 /* Have to change db_type after any pullupmsg */ 2576 DB_TYPE(mp) = M_CTL; 2577 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2578 mctl_present, ip_policy, zoneid); 2579 return; 2580 2581 case IPPROTO_ESP: 2582 case IPPROTO_AH: { 2583 int ipsec_rc; 2584 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2585 2586 /* 2587 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2588 * We will re-use the IPSEC_IN if it is already present as 2589 * AH/ESP will not affect any fields in the IPSEC_IN for 2590 * ICMP errors. If there is no IPSEC_IN, allocate a new 2591 * one and attach it in the front. 2592 */ 2593 if (ii != NULL) { 2594 /* 2595 * ip_fanout_proto_again converts the ICMP errors 2596 * that come back from AH/ESP to M_DATA so that 2597 * if it is non-AH/ESP and we do a pullupmsg in 2598 * this function, it would work. Convert it back 2599 * to M_CTL before we send up as this is a ICMP 2600 * error. This could have been generated locally or 2601 * by some router. Validate the inner IPsec 2602 * headers. 2603 * 2604 * NOTE : ill_index is used by ip_fanout_proto_again 2605 * to locate the ill. 2606 */ 2607 ASSERT(ill != NULL); 2608 ii->ipsec_in_ill_index = 2609 ill->ill_phyint->phyint_ifindex; 2610 ii->ipsec_in_rill_index = 2611 recv_ill->ill_phyint->phyint_ifindex; 2612 DB_TYPE(first_mp->b_cont) = M_CTL; 2613 } else { 2614 /* 2615 * IPSEC_IN is not present. We attach a ipsec_in 2616 * message and send up to IPsec for validating 2617 * and removing the IPsec headers. Clear 2618 * ipsec_in_secure so that when we return 2619 * from IPsec, we don't mistakenly think that this 2620 * is a secure packet came from the network. 2621 * 2622 * NOTE : ill_index is used by ip_fanout_proto_again 2623 * to locate the ill. 2624 */ 2625 ASSERT(first_mp == mp); 2626 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2627 if (first_mp == NULL) { 2628 freemsg(mp); 2629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2630 return; 2631 } 2632 ii = (ipsec_in_t *)first_mp->b_rptr; 2633 2634 /* This is not a secure packet */ 2635 ii->ipsec_in_secure = B_FALSE; 2636 first_mp->b_cont = mp; 2637 DB_TYPE(mp) = M_CTL; 2638 ASSERT(ill != NULL); 2639 ii->ipsec_in_ill_index = 2640 ill->ill_phyint->phyint_ifindex; 2641 ii->ipsec_in_rill_index = 2642 recv_ill->ill_phyint->phyint_ifindex; 2643 } 2644 ip2dbg(("icmp_inbound_error: ipsec\n")); 2645 2646 if (!ipsec_loaded(ipss)) { 2647 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2648 return; 2649 } 2650 2651 if (ipha->ipha_protocol == IPPROTO_ESP) 2652 ipsec_rc = ipsecesp_icmp_error(first_mp); 2653 else 2654 ipsec_rc = ipsecah_icmp_error(first_mp); 2655 if (ipsec_rc == IPSEC_STATUS_FAILED) 2656 return; 2657 2658 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2659 return; 2660 } 2661 default: 2662 /* 2663 * The ripha header is only used for the lookup and we 2664 * only set the src and dst addresses and protocol. 2665 */ 2666 ripha.ipha_src = ipha->ipha_dst; 2667 ripha.ipha_dst = ipha->ipha_src; 2668 ripha.ipha_protocol = ipha->ipha_protocol; 2669 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2670 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2671 ntohl(ipha->ipha_dst), 2672 icmph->icmph_type, icmph->icmph_code)); 2673 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2674 ipha_t *in_ipha; 2675 2676 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2677 mp->b_wptr) { 2678 if (!pullupmsg(mp, (uchar_t *)ipha + 2679 hdr_length + sizeof (ipha_t) - 2680 mp->b_rptr)) { 2681 goto discard_pkt; 2682 } 2683 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2684 ipha = (ipha_t *)&icmph[1]; 2685 } 2686 /* 2687 * Caller has verified that length has to be 2688 * at least the size of IP header. 2689 */ 2690 ASSERT(hdr_length >= sizeof (ipha_t)); 2691 /* 2692 * Check the sanity of the inner IP header like 2693 * we did for the outer header. 2694 */ 2695 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2696 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2697 goto discard_pkt; 2698 } 2699 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2700 goto discard_pkt; 2701 } 2702 /* Check for Self-encapsulated tunnels */ 2703 if (in_ipha->ipha_src == ipha->ipha_src && 2704 in_ipha->ipha_dst == ipha->ipha_dst) { 2705 2706 mp = icmp_inbound_self_encap_error(mp, 2707 iph_hdr_length, hdr_length); 2708 if (mp == NULL) 2709 goto discard_pkt; 2710 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2711 ipha = (ipha_t *)&icmph[1]; 2712 hdr_length = IPH_HDR_LENGTH(ipha); 2713 /* 2714 * The packet in error is self-encapsualted. 2715 * And we are finding it further encapsulated 2716 * which we could not have possibly generated. 2717 */ 2718 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2719 goto discard_pkt; 2720 } 2721 icmp_inbound_error_fanout(q, ill, first_mp, 2722 icmph, ipha, iph_hdr_length, hdr_length, 2723 mctl_present, ip_policy, recv_ill, zoneid); 2724 return; 2725 } 2726 } 2727 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2728 ipha->ipha_protocol == IPPROTO_IPV6) && 2729 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2730 ii != NULL && 2731 ii->ipsec_in_loopback && 2732 ii->ipsec_in_secure) { 2733 /* 2734 * For IP tunnels that get a looped-back 2735 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2736 * reported new MTU to take into account the IPsec 2737 * headers protecting this configured tunnel. 2738 * 2739 * This allows the tunnel module (tun.c) to blindly 2740 * accept the MTU reported in an ICMP "too big" 2741 * message. 2742 * 2743 * Non-looped back ICMP messages will just be 2744 * handled by the security protocols (if needed), 2745 * and the first subsequent packet will hit this 2746 * path. 2747 */ 2748 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2749 ipsec_in_extra_length(first_mp)); 2750 } 2751 /* Have to change db_type after any pullupmsg */ 2752 DB_TYPE(mp) = M_CTL; 2753 2754 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2755 ip_policy, recv_ill, zoneid); 2756 return; 2757 } 2758 /* NOTREACHED */ 2759 discard_pkt: 2760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2761 drop_pkt:; 2762 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2763 freemsg(first_mp); 2764 } 2765 2766 /* 2767 * Common IP options parser. 2768 * 2769 * Setup routine: fill in *optp with options-parsing state, then 2770 * tail-call ipoptp_next to return the first option. 2771 */ 2772 uint8_t 2773 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2774 { 2775 uint32_t totallen; /* total length of all options */ 2776 2777 totallen = ipha->ipha_version_and_hdr_length - 2778 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2779 totallen <<= 2; 2780 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2781 optp->ipoptp_end = optp->ipoptp_next + totallen; 2782 optp->ipoptp_flags = 0; 2783 return (ipoptp_next(optp)); 2784 } 2785 2786 /* 2787 * Common IP options parser: extract next option. 2788 */ 2789 uint8_t 2790 ipoptp_next(ipoptp_t *optp) 2791 { 2792 uint8_t *end = optp->ipoptp_end; 2793 uint8_t *cur = optp->ipoptp_next; 2794 uint8_t opt, len, pointer; 2795 2796 /* 2797 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2798 * has been corrupted. 2799 */ 2800 ASSERT(cur <= end); 2801 2802 if (cur == end) 2803 return (IPOPT_EOL); 2804 2805 opt = cur[IPOPT_OPTVAL]; 2806 2807 /* 2808 * Skip any NOP options. 2809 */ 2810 while (opt == IPOPT_NOP) { 2811 cur++; 2812 if (cur == end) 2813 return (IPOPT_EOL); 2814 opt = cur[IPOPT_OPTVAL]; 2815 } 2816 2817 if (opt == IPOPT_EOL) 2818 return (IPOPT_EOL); 2819 2820 /* 2821 * Option requiring a length. 2822 */ 2823 if ((cur + 1) >= end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 len = cur[IPOPT_OLEN]; 2828 if (len < 2) { 2829 optp->ipoptp_flags |= IPOPTP_ERROR; 2830 return (IPOPT_EOL); 2831 } 2832 optp->ipoptp_cur = cur; 2833 optp->ipoptp_len = len; 2834 optp->ipoptp_next = cur + len; 2835 if (cur + len > end) { 2836 optp->ipoptp_flags |= IPOPTP_ERROR; 2837 return (IPOPT_EOL); 2838 } 2839 2840 /* 2841 * For the options which require a pointer field, make sure 2842 * its there, and make sure it points to either something 2843 * inside this option, or the end of the option. 2844 */ 2845 switch (opt) { 2846 case IPOPT_RR: 2847 case IPOPT_TS: 2848 case IPOPT_LSRR: 2849 case IPOPT_SSRR: 2850 if (len <= IPOPT_OFFSET) { 2851 optp->ipoptp_flags |= IPOPTP_ERROR; 2852 return (opt); 2853 } 2854 pointer = cur[IPOPT_OFFSET]; 2855 if (pointer - 1 > len) { 2856 optp->ipoptp_flags |= IPOPTP_ERROR; 2857 return (opt); 2858 } 2859 break; 2860 } 2861 2862 /* 2863 * Sanity check the pointer field based on the type of the 2864 * option. 2865 */ 2866 switch (opt) { 2867 case IPOPT_RR: 2868 case IPOPT_SSRR: 2869 case IPOPT_LSRR: 2870 if (pointer < IPOPT_MINOFF_SR) 2871 optp->ipoptp_flags |= IPOPTP_ERROR; 2872 break; 2873 case IPOPT_TS: 2874 if (pointer < IPOPT_MINOFF_IT) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 /* 2877 * Note that the Internet Timestamp option also 2878 * contains two four bit fields (the Overflow field, 2879 * and the Flag field), which follow the pointer 2880 * field. We don't need to check that these fields 2881 * fall within the length of the option because this 2882 * was implicitely done above. We've checked that the 2883 * pointer value is at least IPOPT_MINOFF_IT, and that 2884 * it falls within the option. Since IPOPT_MINOFF_IT > 2885 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2886 */ 2887 ASSERT(len > IPOPT_POS_OV_FLG); 2888 break; 2889 } 2890 2891 return (opt); 2892 } 2893 2894 /* 2895 * Use the outgoing IP header to create an IP_OPTIONS option the way 2896 * it was passed down from the application. 2897 */ 2898 int 2899 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2900 { 2901 ipoptp_t opts; 2902 const uchar_t *opt; 2903 uint8_t optval; 2904 uint8_t optlen; 2905 uint32_t len = 0; 2906 uchar_t *buf1 = buf; 2907 2908 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2909 len += IP_ADDR_LEN; 2910 bzero(buf1, IP_ADDR_LEN); 2911 2912 /* 2913 * OK to cast away const here, as we don't store through the returned 2914 * opts.ipoptp_cur pointer. 2915 */ 2916 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2917 optval != IPOPT_EOL; 2918 optval = ipoptp_next(&opts)) { 2919 int off; 2920 2921 opt = opts.ipoptp_cur; 2922 optlen = opts.ipoptp_len; 2923 switch (optval) { 2924 case IPOPT_SSRR: 2925 case IPOPT_LSRR: 2926 2927 /* 2928 * Insert ipha_dst as the first entry in the source 2929 * route and move down the entries on step. 2930 * The last entry gets placed at buf1. 2931 */ 2932 buf[IPOPT_OPTVAL] = optval; 2933 buf[IPOPT_OLEN] = optlen; 2934 buf[IPOPT_OFFSET] = optlen; 2935 2936 off = optlen - IP_ADDR_LEN; 2937 if (off < 0) { 2938 /* No entries in source route */ 2939 break; 2940 } 2941 /* Last entry in source route */ 2942 bcopy(opt + off, buf1, IP_ADDR_LEN); 2943 off -= IP_ADDR_LEN; 2944 2945 while (off > 0) { 2946 bcopy(opt + off, 2947 buf + off + IP_ADDR_LEN, 2948 IP_ADDR_LEN); 2949 off -= IP_ADDR_LEN; 2950 } 2951 /* ipha_dst into first slot */ 2952 bcopy(&ipha->ipha_dst, 2953 buf + off + IP_ADDR_LEN, 2954 IP_ADDR_LEN); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 2959 case IPOPT_COMSEC: 2960 case IPOPT_SECURITY: 2961 /* if passing up a label is not ok, then remove */ 2962 if (is_system_labeled()) 2963 break; 2964 /* FALLTHROUGH */ 2965 default: 2966 bcopy(opt, buf, optlen); 2967 buf += optlen; 2968 len += optlen; 2969 break; 2970 } 2971 } 2972 done: 2973 /* Pad the resulting options */ 2974 while (len & 0x3) { 2975 *buf++ = IPOPT_EOL; 2976 len++; 2977 } 2978 return (len); 2979 } 2980 2981 /* 2982 * Update any record route or timestamp options to include this host. 2983 * Reverse any source route option. 2984 * This routine assumes that the options are well formed i.e. that they 2985 * have already been checked. 2986 */ 2987 static void 2988 icmp_options_update(ipha_t *ipha) 2989 { 2990 ipoptp_t opts; 2991 uchar_t *opt; 2992 uint8_t optval; 2993 ipaddr_t src; /* Our local address */ 2994 ipaddr_t dst; 2995 2996 ip2dbg(("icmp_options_update\n")); 2997 src = ipha->ipha_src; 2998 dst = ipha->ipha_dst; 2999 3000 for (optval = ipoptp_first(&opts, ipha); 3001 optval != IPOPT_EOL; 3002 optval = ipoptp_next(&opts)) { 3003 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3004 opt = opts.ipoptp_cur; 3005 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3006 optval, opts.ipoptp_len)); 3007 switch (optval) { 3008 int off1, off2; 3009 case IPOPT_SSRR: 3010 case IPOPT_LSRR: 3011 /* 3012 * Reverse the source route. The first entry 3013 * should be the next to last one in the current 3014 * source route (the last entry is our address). 3015 * The last entry should be the final destination. 3016 */ 3017 off1 = IPOPT_MINOFF_SR - 1; 3018 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3019 if (off2 < 0) { 3020 /* No entries in source route */ 3021 ip1dbg(( 3022 "icmp_options_update: bad src route\n")); 3023 break; 3024 } 3025 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3026 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3027 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3028 off2 -= IP_ADDR_LEN; 3029 3030 while (off1 < off2) { 3031 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3032 bcopy((char *)opt + off2, (char *)opt + off1, 3033 IP_ADDR_LEN); 3034 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3035 off1 += IP_ADDR_LEN; 3036 off2 -= IP_ADDR_LEN; 3037 } 3038 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3039 break; 3040 } 3041 } 3042 } 3043 3044 /* 3045 * Process received ICMP Redirect messages. 3046 */ 3047 static void 3048 icmp_redirect(ill_t *ill, mblk_t *mp) 3049 { 3050 ipha_t *ipha; 3051 int iph_hdr_length; 3052 icmph_t *icmph; 3053 ipha_t *ipha_err; 3054 ire_t *ire; 3055 ire_t *prev_ire; 3056 ire_t *save_ire; 3057 ipaddr_t src, dst, gateway; 3058 iulp_t ulp_info = { 0 }; 3059 int error; 3060 ip_stack_t *ipst; 3061 3062 ASSERT(ill != NULL); 3063 ipst = ill->ill_ipst; 3064 3065 ipha = (ipha_t *)mp->b_rptr; 3066 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3067 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3068 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3069 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3070 freemsg(mp); 3071 return; 3072 } 3073 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3074 ipha_err = (ipha_t *)&icmph[1]; 3075 src = ipha->ipha_src; 3076 dst = ipha_err->ipha_dst; 3077 gateway = icmph->icmph_rd_gateway; 3078 /* Make sure the new gateway is reachable somehow. */ 3079 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3080 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3081 /* 3082 * Make sure we had a route for the dest in question and that 3083 * that route was pointing to the old gateway (the source of the 3084 * redirect packet.) 3085 */ 3086 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3087 NULL, MATCH_IRE_GW, ipst); 3088 /* 3089 * Check that 3090 * the redirect was not from ourselves 3091 * the new gateway and the old gateway are directly reachable 3092 */ 3093 if (!prev_ire || 3094 !ire || 3095 ire->ire_type == IRE_LOCAL) { 3096 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3097 freemsg(mp); 3098 if (ire != NULL) 3099 ire_refrele(ire); 3100 if (prev_ire != NULL) 3101 ire_refrele(prev_ire); 3102 return; 3103 } 3104 3105 /* 3106 * Should we use the old ULP info to create the new gateway? From 3107 * a user's perspective, we should inherit the info so that it 3108 * is a "smooth" transition. If we do not do that, then new 3109 * connections going thru the new gateway will have no route metrics, 3110 * which is counter-intuitive to user. From a network point of 3111 * view, this may or may not make sense even though the new gateway 3112 * is still directly connected to us so the route metrics should not 3113 * change much. 3114 * 3115 * But if the old ire_uinfo is not initialized, we do another 3116 * recursive lookup on the dest using the new gateway. There may 3117 * be a route to that. If so, use it to initialize the redirect 3118 * route. 3119 */ 3120 if (prev_ire->ire_uinfo.iulp_set) { 3121 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3122 } else { 3123 ire_t *tmp_ire; 3124 ire_t *sire; 3125 3126 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3127 ALL_ZONES, 0, NULL, 3128 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3129 ipst); 3130 if (sire != NULL) { 3131 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3132 /* 3133 * If sire != NULL, ire_ftable_lookup() should not 3134 * return a NULL value. 3135 */ 3136 ASSERT(tmp_ire != NULL); 3137 ire_refrele(tmp_ire); 3138 ire_refrele(sire); 3139 } else if (tmp_ire != NULL) { 3140 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3141 sizeof (iulp_t)); 3142 ire_refrele(tmp_ire); 3143 } 3144 } 3145 if (prev_ire->ire_type == IRE_CACHE) 3146 ire_delete(prev_ire); 3147 ire_refrele(prev_ire); 3148 /* 3149 * TODO: more precise handling for cases 0, 2, 3, the latter two 3150 * require TOS routing 3151 */ 3152 switch (icmph->icmph_code) { 3153 case 0: 3154 case 1: 3155 /* TODO: TOS specificity for cases 2 and 3 */ 3156 case 2: 3157 case 3: 3158 break; 3159 default: 3160 freemsg(mp); 3161 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3162 ire_refrele(ire); 3163 return; 3164 } 3165 /* 3166 * Create a Route Association. This will allow us to remember that 3167 * someone we believe told us to use the particular gateway. 3168 */ 3169 save_ire = ire; 3170 ire = ire_create( 3171 (uchar_t *)&dst, /* dest addr */ 3172 (uchar_t *)&ip_g_all_ones, /* mask */ 3173 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3174 (uchar_t *)&gateway, /* gateway addr */ 3175 &save_ire->ire_max_frag, /* max frag */ 3176 NULL, /* no src nce */ 3177 NULL, /* no rfq */ 3178 NULL, /* no stq */ 3179 IRE_HOST, 3180 NULL, /* ipif */ 3181 0, /* cmask */ 3182 0, /* phandle */ 3183 0, /* ihandle */ 3184 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3185 &ulp_info, 3186 NULL, /* tsol_gc_t */ 3187 NULL, /* gcgrp */ 3188 ipst); 3189 3190 if (ire == NULL) { 3191 freemsg(mp); 3192 ire_refrele(save_ire); 3193 return; 3194 } 3195 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3196 ire_refrele(save_ire); 3197 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3198 3199 if (error == 0) { 3200 ire_refrele(ire); /* Held in ire_add_v4 */ 3201 /* tell routing sockets that we received a redirect */ 3202 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3203 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3204 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3205 } 3206 3207 /* 3208 * Delete any existing IRE_HOST type redirect ires for this destination. 3209 * This together with the added IRE has the effect of 3210 * modifying an existing redirect. 3211 */ 3212 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3213 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3214 if (prev_ire != NULL) { 3215 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3216 ire_delete(prev_ire); 3217 ire_refrele(prev_ire); 3218 } 3219 3220 freemsg(mp); 3221 } 3222 3223 /* 3224 * Generate an ICMP parameter problem message. 3225 */ 3226 static void 3227 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3228 ip_stack_t *ipst) 3229 { 3230 icmph_t icmph; 3231 boolean_t mctl_present; 3232 mblk_t *first_mp; 3233 3234 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3235 3236 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3237 if (mctl_present) 3238 freeb(first_mp); 3239 return; 3240 } 3241 3242 bzero(&icmph, sizeof (icmph_t)); 3243 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3244 icmph.icmph_pp_ptr = ptr; 3245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3246 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3247 ipst); 3248 } 3249 3250 /* 3251 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3252 * the ICMP header pointed to by "stuff". (May be called as writer.) 3253 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3254 * an icmp error packet can be sent. 3255 * Assigns an appropriate source address to the packet. If ipha_dst is 3256 * one of our addresses use it for source. Otherwise pick a source based 3257 * on a route lookup back to ipha_src. 3258 * Note that ipha_src must be set here since the 3259 * packet is likely to arrive on an ill queue in ip_wput() which will 3260 * not set a source address. 3261 */ 3262 static void 3263 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3264 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3265 { 3266 ipaddr_t dst; 3267 icmph_t *icmph; 3268 ipha_t *ipha; 3269 uint_t len_needed; 3270 size_t msg_len; 3271 mblk_t *mp1; 3272 ipaddr_t src; 3273 ire_t *ire; 3274 mblk_t *ipsec_mp; 3275 ipsec_out_t *io = NULL; 3276 3277 if (mctl_present) { 3278 /* 3279 * If it is : 3280 * 3281 * 1) a IPSEC_OUT, then this is caused by outbound 3282 * datagram originating on this host. IPsec processing 3283 * may or may not have been done. Refer to comments above 3284 * icmp_inbound_error_fanout for details. 3285 * 3286 * 2) a IPSEC_IN if we are generating a icmp_message 3287 * for an incoming datagram destined for us i.e called 3288 * from ip_fanout_send_icmp. 3289 */ 3290 ipsec_info_t *in; 3291 ipsec_mp = mp; 3292 mp = ipsec_mp->b_cont; 3293 3294 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3295 ipha = (ipha_t *)mp->b_rptr; 3296 3297 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3298 in->ipsec_info_type == IPSEC_IN); 3299 3300 if (in->ipsec_info_type == IPSEC_IN) { 3301 /* 3302 * Convert the IPSEC_IN to IPSEC_OUT. 3303 */ 3304 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3305 BUMP_MIB(&ipst->ips_ip_mib, 3306 ipIfStatsOutDiscards); 3307 return; 3308 } 3309 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3310 } else { 3311 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3312 io = (ipsec_out_t *)in; 3313 /* 3314 * Clear out ipsec_out_proc_begin, so we do a fresh 3315 * ire lookup. 3316 */ 3317 io->ipsec_out_proc_begin = B_FALSE; 3318 } 3319 ASSERT(zoneid == io->ipsec_out_zoneid); 3320 ASSERT(zoneid != ALL_ZONES); 3321 } else { 3322 /* 3323 * This is in clear. The icmp message we are building 3324 * here should go out in clear. 3325 * 3326 * Pardon the convolution of it all, but it's easier to 3327 * allocate a "use cleartext" IPSEC_IN message and convert 3328 * it than it is to allocate a new one. 3329 */ 3330 ipsec_in_t *ii; 3331 ASSERT(DB_TYPE(mp) == M_DATA); 3332 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3333 if (ipsec_mp == NULL) { 3334 freemsg(mp); 3335 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3336 return; 3337 } 3338 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3339 3340 /* This is not a secure packet */ 3341 ii->ipsec_in_secure = B_FALSE; 3342 /* 3343 * For trusted extensions using a shared IP address we can 3344 * send using any zoneid. 3345 */ 3346 if (zoneid == ALL_ZONES) 3347 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3348 else 3349 ii->ipsec_in_zoneid = zoneid; 3350 ipsec_mp->b_cont = mp; 3351 ipha = (ipha_t *)mp->b_rptr; 3352 /* 3353 * Convert the IPSEC_IN to IPSEC_OUT. 3354 */ 3355 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3356 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3357 return; 3358 } 3359 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3360 } 3361 3362 /* Remember our eventual destination */ 3363 dst = ipha->ipha_src; 3364 3365 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3366 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3367 if (ire != NULL && 3368 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3369 src = ipha->ipha_dst; 3370 } else { 3371 if (ire != NULL) 3372 ire_refrele(ire); 3373 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3374 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3375 ipst); 3376 if (ire == NULL) { 3377 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3378 freemsg(ipsec_mp); 3379 return; 3380 } 3381 src = ire->ire_src_addr; 3382 } 3383 3384 if (ire != NULL) 3385 ire_refrele(ire); 3386 3387 /* 3388 * Check if we can send back more then 8 bytes in addition to 3389 * the IP header. We try to send 64 bytes of data and the internal 3390 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3391 */ 3392 len_needed = IPH_HDR_LENGTH(ipha); 3393 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3394 ipha->ipha_protocol == IPPROTO_IPV6) { 3395 3396 if (!pullupmsg(mp, -1)) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 ipha = (ipha_t *)mp->b_rptr; 3402 3403 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3404 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3405 len_needed)); 3406 } else { 3407 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3408 3409 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3410 len_needed += ip_hdr_length_v6(mp, ip6h); 3411 } 3412 } 3413 len_needed += ipst->ips_ip_icmp_return; 3414 msg_len = msgdsize(mp); 3415 if (msg_len > len_needed) { 3416 (void) adjmsg(mp, len_needed - msg_len); 3417 msg_len = len_needed; 3418 } 3419 /* Make sure we propagate the cred/label for TX */ 3420 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3421 if (mp1 == NULL) { 3422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3423 freemsg(ipsec_mp); 3424 return; 3425 } 3426 mp1->b_cont = mp; 3427 mp = mp1; 3428 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3429 ipsec_mp->b_rptr == (uint8_t *)io && 3430 io->ipsec_out_type == IPSEC_OUT); 3431 ipsec_mp->b_cont = mp; 3432 3433 /* 3434 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3435 * node generates be accepted in peace by all on-host destinations. 3436 * If we do NOT assume that all on-host destinations trust 3437 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3438 * (Look for ipsec_out_icmp_loopback). 3439 */ 3440 io->ipsec_out_icmp_loopback = B_TRUE; 3441 3442 ipha = (ipha_t *)mp->b_rptr; 3443 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3444 *ipha = icmp_ipha; 3445 ipha->ipha_src = src; 3446 ipha->ipha_dst = dst; 3447 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3448 msg_len += sizeof (icmp_ipha) + len; 3449 if (msg_len > IP_MAXPACKET) { 3450 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3451 msg_len = IP_MAXPACKET; 3452 } 3453 ipha->ipha_length = htons((uint16_t)msg_len); 3454 icmph = (icmph_t *)&ipha[1]; 3455 bcopy(stuff, icmph, len); 3456 icmph->icmph_checksum = 0; 3457 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3458 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3459 put(q, ipsec_mp); 3460 } 3461 3462 /* 3463 * Determine if an ICMP error packet can be sent given the rate limit. 3464 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3465 * in milliseconds) and a burst size. Burst size number of packets can 3466 * be sent arbitrarely closely spaced. 3467 * The state is tracked using two variables to implement an approximate 3468 * token bucket filter: 3469 * icmp_pkt_err_last - lbolt value when the last burst started 3470 * icmp_pkt_err_sent - number of packets sent in current burst 3471 */ 3472 boolean_t 3473 icmp_err_rate_limit(ip_stack_t *ipst) 3474 { 3475 clock_t now = TICK_TO_MSEC(lbolt); 3476 uint_t refilled; /* Number of packets refilled in tbf since last */ 3477 /* Guard against changes by loading into local variable */ 3478 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3479 3480 if (err_interval == 0) 3481 return (B_FALSE); 3482 3483 if (ipst->ips_icmp_pkt_err_last > now) { 3484 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3485 ipst->ips_icmp_pkt_err_last = 0; 3486 ipst->ips_icmp_pkt_err_sent = 0; 3487 } 3488 /* 3489 * If we are in a burst update the token bucket filter. 3490 * Update the "last" time to be close to "now" but make sure 3491 * we don't loose precision. 3492 */ 3493 if (ipst->ips_icmp_pkt_err_sent != 0) { 3494 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3495 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } else { 3498 ipst->ips_icmp_pkt_err_sent -= refilled; 3499 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3500 } 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent == 0) { 3503 /* Start of new burst */ 3504 ipst->ips_icmp_pkt_err_last = now; 3505 } 3506 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3507 ipst->ips_icmp_pkt_err_sent++; 3508 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3509 ipst->ips_icmp_pkt_err_sent)); 3510 return (B_FALSE); 3511 } 3512 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3513 return (B_TRUE); 3514 } 3515 3516 /* 3517 * Check if it is ok to send an IPv4 ICMP error packet in 3518 * response to the IPv4 packet in mp. 3519 * Free the message and return null if no 3520 * ICMP error packet should be sent. 3521 */ 3522 static mblk_t * 3523 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3524 { 3525 icmph_t *icmph; 3526 ipha_t *ipha; 3527 uint_t len_needed; 3528 ire_t *src_ire; 3529 ire_t *dst_ire; 3530 3531 if (!mp) 3532 return (NULL); 3533 ipha = (ipha_t *)mp->b_rptr; 3534 if (ip_csum_hdr(ipha)) { 3535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3536 freemsg(mp); 3537 return (NULL); 3538 } 3539 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3540 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3541 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3542 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3543 if (src_ire != NULL || dst_ire != NULL || 3544 CLASSD(ipha->ipha_dst) || 3545 CLASSD(ipha->ipha_src) || 3546 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3547 /* Note: only errors to the fragment with offset 0 */ 3548 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3549 freemsg(mp); 3550 if (src_ire != NULL) 3551 ire_refrele(src_ire); 3552 if (dst_ire != NULL) 3553 ire_refrele(dst_ire); 3554 return (NULL); 3555 } 3556 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3557 /* 3558 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3559 * errors in response to any ICMP errors. 3560 */ 3561 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3562 if (mp->b_wptr - mp->b_rptr < len_needed) { 3563 if (!pullupmsg(mp, len_needed)) { 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3565 freemsg(mp); 3566 return (NULL); 3567 } 3568 ipha = (ipha_t *)mp->b_rptr; 3569 } 3570 icmph = (icmph_t *) 3571 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3572 switch (icmph->icmph_type) { 3573 case ICMP_DEST_UNREACHABLE: 3574 case ICMP_SOURCE_QUENCH: 3575 case ICMP_TIME_EXCEEDED: 3576 case ICMP_PARAM_PROBLEM: 3577 case ICMP_REDIRECT: 3578 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3579 freemsg(mp); 3580 return (NULL); 3581 default: 3582 break; 3583 } 3584 } 3585 /* 3586 * If this is a labeled system, then check to see if we're allowed to 3587 * send a response to this particular sender. If not, then just drop. 3588 */ 3589 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3590 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3591 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3592 freemsg(mp); 3593 return (NULL); 3594 } 3595 if (icmp_err_rate_limit(ipst)) { 3596 /* 3597 * Only send ICMP error packets every so often. 3598 * This should be done on a per port/source basis, 3599 * but for now this will suffice. 3600 */ 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 return (mp); 3605 } 3606 3607 /* 3608 * Generate an ICMP redirect message. 3609 */ 3610 static void 3611 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3612 { 3613 icmph_t icmph; 3614 3615 /* 3616 * We are called from ip_rput where we could 3617 * not have attached an IPSEC_IN. 3618 */ 3619 ASSERT(mp->b_datap->db_type == M_DATA); 3620 3621 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3622 return; 3623 } 3624 3625 bzero(&icmph, sizeof (icmph_t)); 3626 icmph.icmph_type = ICMP_REDIRECT; 3627 icmph.icmph_code = 1; 3628 icmph.icmph_rd_gateway = gateway; 3629 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3630 /* Redirects sent by router, and router is global zone */ 3631 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3632 } 3633 3634 /* 3635 * Generate an ICMP time exceeded message. 3636 */ 3637 void 3638 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3639 ip_stack_t *ipst) 3640 { 3641 icmph_t icmph; 3642 boolean_t mctl_present; 3643 mblk_t *first_mp; 3644 3645 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3646 3647 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3648 if (mctl_present) 3649 freeb(first_mp); 3650 return; 3651 } 3652 3653 bzero(&icmph, sizeof (icmph_t)); 3654 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3655 icmph.icmph_code = code; 3656 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3657 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3658 ipst); 3659 } 3660 3661 /* 3662 * Generate an ICMP unreachable message. 3663 */ 3664 void 3665 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3666 ip_stack_t *ipst) 3667 { 3668 icmph_t icmph; 3669 mblk_t *first_mp; 3670 boolean_t mctl_present; 3671 3672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3673 3674 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3675 if (mctl_present) 3676 freeb(first_mp); 3677 return; 3678 } 3679 3680 bzero(&icmph, sizeof (icmph_t)); 3681 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3682 icmph.icmph_code = code; 3683 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3684 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3685 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3686 zoneid, ipst); 3687 } 3688 3689 /* 3690 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3691 * duplicate. As long as someone else holds the address, the interface will 3692 * stay down. When that conflict goes away, the interface is brought back up. 3693 * This is done so that accidental shutdowns of addresses aren't made 3694 * permanent. Your server will recover from a failure. 3695 * 3696 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3697 * user space process (dhcpagent). 3698 * 3699 * Recovery completes if ARP reports that the address is now ours (via 3700 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3701 * 3702 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3703 */ 3704 static void 3705 ipif_dup_recovery(void *arg) 3706 { 3707 ipif_t *ipif = arg; 3708 ill_t *ill = ipif->ipif_ill; 3709 mblk_t *arp_add_mp; 3710 mblk_t *arp_del_mp; 3711 ip_stack_t *ipst = ill->ill_ipst; 3712 3713 ipif->ipif_recovery_id = 0; 3714 3715 /* 3716 * No lock needed for moving or condemned check, as this is just an 3717 * optimization. 3718 */ 3719 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3720 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3721 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3722 /* No reason to try to bring this address back. */ 3723 return; 3724 } 3725 3726 /* ACE_F_UNVERIFIED restarts DAD */ 3727 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3728 goto alloc_fail; 3729 3730 if (ipif->ipif_arp_del_mp == NULL) { 3731 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3732 goto alloc_fail; 3733 ipif->ipif_arp_del_mp = arp_del_mp; 3734 } 3735 3736 putnext(ill->ill_rq, arp_add_mp); 3737 return; 3738 3739 alloc_fail: 3740 /* 3741 * On allocation failure, just restart the timer. Note that the ipif 3742 * is down here, so no other thread could be trying to start a recovery 3743 * timer. The ill_lock protects the condemned flag and the recovery 3744 * timer ID. 3745 */ 3746 freemsg(arp_add_mp); 3747 mutex_enter(&ill->ill_lock); 3748 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3750 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3751 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3752 } 3753 mutex_exit(&ill->ill_lock); 3754 } 3755 3756 /* 3757 * This is for exclusive changes due to ARP. Either tear down an interface due 3758 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3759 */ 3760 /* ARGSUSED */ 3761 static void 3762 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3763 { 3764 ill_t *ill = rq->q_ptr; 3765 arh_t *arh; 3766 ipaddr_t src; 3767 ipif_t *ipif; 3768 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3769 char hbuf[MAC_STR_LEN]; 3770 char sbuf[INET_ADDRSTRLEN]; 3771 const char *failtype; 3772 boolean_t bring_up; 3773 ip_stack_t *ipst = ill->ill_ipst; 3774 3775 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3776 case AR_CN_READY: 3777 failtype = NULL; 3778 bring_up = B_TRUE; 3779 break; 3780 case AR_CN_FAILED: 3781 failtype = "in use"; 3782 bring_up = B_FALSE; 3783 break; 3784 default: 3785 failtype = "claimed"; 3786 bring_up = B_FALSE; 3787 break; 3788 } 3789 3790 arh = (arh_t *)mp->b_cont->b_rptr; 3791 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3792 3793 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3794 sizeof (hbuf)); 3795 (void) ip_dot_addr(src, sbuf); 3796 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3797 3798 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3799 ipif->ipif_lcl_addr != src) { 3800 continue; 3801 } 3802 3803 /* 3804 * If we failed on a recovery probe, then restart the timer to 3805 * try again later. 3806 */ 3807 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3808 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3809 ill->ill_net_type == IRE_IF_RESOLVER && 3810 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3811 ipst->ips_ip_dup_recovery > 0 && 3812 ipif->ipif_recovery_id == 0) { 3813 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3814 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3815 continue; 3816 } 3817 3818 /* 3819 * If what we're trying to do has already been done, then do 3820 * nothing. 3821 */ 3822 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3823 continue; 3824 3825 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3826 3827 if (failtype == NULL) { 3828 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3829 ibuf); 3830 } else { 3831 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3832 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3833 } 3834 3835 if (bring_up) { 3836 ASSERT(ill->ill_dl_up); 3837 /* 3838 * Free up the ARP delete message so we can allocate 3839 * a fresh one through the normal path. 3840 */ 3841 freemsg(ipif->ipif_arp_del_mp); 3842 ipif->ipif_arp_del_mp = NULL; 3843 if (ipif_resolver_up(ipif, Res_act_initial) != 3844 EINPROGRESS) { 3845 ipif->ipif_addr_ready = 1; 3846 (void) ipif_up_done(ipif); 3847 ASSERT(ill->ill_move_ipif == NULL); 3848 } 3849 continue; 3850 } 3851 3852 mutex_enter(&ill->ill_lock); 3853 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3854 ipif->ipif_flags |= IPIF_DUPLICATE; 3855 ill->ill_ipif_dup_count++; 3856 mutex_exit(&ill->ill_lock); 3857 /* 3858 * Already exclusive on the ill; no need to handle deferred 3859 * processing here. 3860 */ 3861 (void) ipif_down(ipif, NULL, NULL); 3862 ipif_down_tail(ipif); 3863 mutex_enter(&ill->ill_lock); 3864 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3865 ill->ill_net_type == IRE_IF_RESOLVER && 3866 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3867 ipst->ips_ip_dup_recovery > 0) { 3868 ASSERT(ipif->ipif_recovery_id == 0); 3869 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3870 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3871 } 3872 mutex_exit(&ill->ill_lock); 3873 } 3874 freemsg(mp); 3875 } 3876 3877 /* ARGSUSED */ 3878 static void 3879 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3880 { 3881 ill_t *ill = rq->q_ptr; 3882 arh_t *arh; 3883 ipaddr_t src; 3884 ipif_t *ipif; 3885 3886 arh = (arh_t *)mp->b_cont->b_rptr; 3887 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3888 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3889 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3890 (void) ipif_resolver_up(ipif, Res_act_defend); 3891 } 3892 freemsg(mp); 3893 } 3894 3895 /* 3896 * News from ARP. ARP sends notification of interesting events down 3897 * to its clients using M_CTL messages with the interesting ARP packet 3898 * attached via b_cont. 3899 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3900 * queue as opposed to ARP sending the message to all the clients, i.e. all 3901 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3902 * table if a cache IRE is found to delete all the entries for the address in 3903 * the packet. 3904 */ 3905 static void 3906 ip_arp_news(queue_t *q, mblk_t *mp) 3907 { 3908 arcn_t *arcn; 3909 arh_t *arh; 3910 ire_t *ire = NULL; 3911 char hbuf[MAC_STR_LEN]; 3912 char sbuf[INET_ADDRSTRLEN]; 3913 ipaddr_t src; 3914 in6_addr_t v6src; 3915 boolean_t isv6 = B_FALSE; 3916 ipif_t *ipif; 3917 ill_t *ill; 3918 ip_stack_t *ipst; 3919 3920 if (CONN_Q(q)) { 3921 conn_t *connp = Q_TO_CONN(q); 3922 3923 ipst = connp->conn_netstack->netstack_ip; 3924 } else { 3925 ill_t *ill = (ill_t *)q->q_ptr; 3926 3927 ipst = ill->ill_ipst; 3928 } 3929 3930 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3931 if (q->q_next) { 3932 putnext(q, mp); 3933 } else 3934 freemsg(mp); 3935 return; 3936 } 3937 arh = (arh_t *)mp->b_cont->b_rptr; 3938 /* Is it one we are interested in? */ 3939 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3940 isv6 = B_TRUE; 3941 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3942 IPV6_ADDR_LEN); 3943 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3944 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3945 IP_ADDR_LEN); 3946 } else { 3947 freemsg(mp); 3948 return; 3949 } 3950 3951 ill = q->q_ptr; 3952 3953 arcn = (arcn_t *)mp->b_rptr; 3954 switch (arcn->arcn_code) { 3955 case AR_CN_BOGON: 3956 /* 3957 * Someone is sending ARP packets with a source protocol 3958 * address that we have published and for which we believe our 3959 * entry is authoritative and (when ill_arp_extend is set) 3960 * verified to be unique on the network. 3961 * 3962 * The ARP module internally handles the cases where the sender 3963 * is just probing (for DAD) and where the hardware address of 3964 * a non-authoritative entry has changed. Thus, these are the 3965 * real conflicts, and we have to do resolution. 3966 * 3967 * We back away quickly from the address if it's from DHCP or 3968 * otherwise temporary and hasn't been used recently (or at 3969 * all). We'd like to include "deprecated" addresses here as 3970 * well (as there's no real reason to defend something we're 3971 * discarding), but IPMP "reuses" this flag to mean something 3972 * other than the standard meaning. 3973 * 3974 * If the ARP module above is not extended (meaning that it 3975 * doesn't know how to defend the address), then we just log 3976 * the problem as we always did and continue on. It's not 3977 * right, but there's little else we can do, and those old ATM 3978 * users are going away anyway. 3979 */ 3980 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3981 hbuf, sizeof (hbuf)); 3982 (void) ip_dot_addr(src, sbuf); 3983 if (isv6) { 3984 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3985 ipst); 3986 } else { 3987 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3988 } 3989 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3990 uint32_t now; 3991 uint32_t maxage; 3992 clock_t lused; 3993 uint_t maxdefense; 3994 uint_t defs; 3995 3996 /* 3997 * First, figure out if this address hasn't been used 3998 * in a while. If it hasn't, then it's a better 3999 * candidate for abandoning. 4000 */ 4001 ipif = ire->ire_ipif; 4002 ASSERT(ipif != NULL); 4003 now = gethrestime_sec(); 4004 maxage = now - ire->ire_create_time; 4005 if (maxage > ipst->ips_ip_max_temp_idle) 4006 maxage = ipst->ips_ip_max_temp_idle; 4007 lused = drv_hztousec(ddi_get_lbolt() - 4008 ire->ire_last_used_time) / MICROSEC + 1; 4009 if (lused >= maxage && (ipif->ipif_flags & 4010 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4011 maxdefense = ipst->ips_ip_max_temp_defend; 4012 else 4013 maxdefense = ipst->ips_ip_max_defend; 4014 4015 /* 4016 * Now figure out how many times we've defended 4017 * ourselves. Ignore defenses that happened long in 4018 * the past. 4019 */ 4020 mutex_enter(&ire->ire_lock); 4021 if ((defs = ire->ire_defense_count) > 0 && 4022 now - ire->ire_defense_time > 4023 ipst->ips_ip_defend_interval) { 4024 ire->ire_defense_count = defs = 0; 4025 } 4026 ire->ire_defense_count++; 4027 ire->ire_defense_time = now; 4028 mutex_exit(&ire->ire_lock); 4029 ill_refhold(ill); 4030 ire_refrele(ire); 4031 4032 /* 4033 * If we've defended ourselves too many times already, 4034 * then give up and tear down the interface(s) using 4035 * this address. Otherwise, defend by sending out a 4036 * gratuitous ARP. 4037 */ 4038 if (defs >= maxdefense && ill->ill_arp_extend) { 4039 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4040 B_FALSE); 4041 } else { 4042 cmn_err(CE_WARN, 4043 "node %s is using our IP address %s on %s", 4044 hbuf, sbuf, ill->ill_name); 4045 /* 4046 * If this is an old (ATM) ARP module, then 4047 * don't try to defend the address. Remain 4048 * compatible with the old behavior. Defend 4049 * only with new ARP. 4050 */ 4051 if (ill->ill_arp_extend) { 4052 qwriter_ip(ill, q, mp, ip_arp_defend, 4053 NEW_OP, B_FALSE); 4054 } else { 4055 ill_refrele(ill); 4056 } 4057 } 4058 return; 4059 } 4060 cmn_err(CE_WARN, 4061 "proxy ARP problem? Node '%s' is using %s on %s", 4062 hbuf, sbuf, ill->ill_name); 4063 if (ire != NULL) 4064 ire_refrele(ire); 4065 break; 4066 case AR_CN_ANNOUNCE: 4067 if (isv6) { 4068 /* 4069 * For XRESOLV interfaces. 4070 * Delete the IRE cache entry and NCE for this 4071 * v6 address 4072 */ 4073 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4074 /* 4075 * If v6src is a non-zero, it's a router address 4076 * as below. Do the same sort of thing to clean 4077 * out off-net IRE_CACHE entries that go through 4078 * the router. 4079 */ 4080 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4081 ire_walk_v6(ire_delete_cache_gw_v6, 4082 (char *)&v6src, ALL_ZONES, ipst); 4083 } 4084 } else { 4085 nce_hw_map_t hwm; 4086 4087 /* 4088 * ARP gives us a copy of any packet where it thinks 4089 * the address has changed, so that we can update our 4090 * caches. We're responsible for caching known answers 4091 * in the current design. We check whether the 4092 * hardware address really has changed in all of our 4093 * entries that have cached this mapping, and if so, we 4094 * blow them away. This way we will immediately pick 4095 * up the rare case of a host changing hardware 4096 * address. 4097 */ 4098 if (src == 0) 4099 break; 4100 hwm.hwm_addr = src; 4101 hwm.hwm_hwlen = arh->arh_hlen; 4102 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4103 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4104 ndp_walk_common(ipst->ips_ndp4, NULL, 4105 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4106 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4107 } 4108 break; 4109 case AR_CN_READY: 4110 /* No external v6 resolver has a contract to use this */ 4111 if (isv6) 4112 break; 4113 /* If the link is down, we'll retry this later */ 4114 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4115 break; 4116 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4117 NULL, NULL, ipst); 4118 if (ipif != NULL) { 4119 /* 4120 * If this is a duplicate recovery, then we now need to 4121 * go exclusive to bring this thing back up. 4122 */ 4123 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4124 IPIF_DUPLICATE) { 4125 ipif_refrele(ipif); 4126 ill_refhold(ill); 4127 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4128 B_FALSE); 4129 return; 4130 } 4131 /* 4132 * If this is the first notice that this address is 4133 * ready, then let the user know now. 4134 */ 4135 if ((ipif->ipif_flags & IPIF_UP) && 4136 !ipif->ipif_addr_ready) { 4137 ipif_mask_reply(ipif); 4138 ipif_up_notify(ipif); 4139 } 4140 ipif->ipif_addr_ready = 1; 4141 ipif_refrele(ipif); 4142 } 4143 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4144 if (ire != NULL) { 4145 ire->ire_defense_count = 0; 4146 ire_refrele(ire); 4147 } 4148 break; 4149 case AR_CN_FAILED: 4150 /* No external v6 resolver has a contract to use this */ 4151 if (isv6) 4152 break; 4153 if (!ill->ill_arp_extend) { 4154 (void) mac_colon_addr((uint8_t *)(arh + 1), 4155 arh->arh_hlen, hbuf, sizeof (hbuf)); 4156 (void) ip_dot_addr(src, sbuf); 4157 4158 cmn_err(CE_WARN, 4159 "node %s is using our IP address %s on %s", 4160 hbuf, sbuf, ill->ill_name); 4161 break; 4162 } 4163 ill_refhold(ill); 4164 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4165 return; 4166 } 4167 freemsg(mp); 4168 } 4169 4170 /* 4171 * Create a mblk suitable for carrying the interface index and/or source link 4172 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4173 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4174 * application. 4175 */ 4176 mblk_t * 4177 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4178 ip_stack_t *ipst) 4179 { 4180 mblk_t *mp; 4181 ip_pktinfo_t *pinfo; 4182 ipha_t *ipha; 4183 struct ether_header *pether; 4184 boolean_t ipmp_ill_held = B_FALSE; 4185 4186 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4187 if (mp == NULL) { 4188 ip1dbg(("ip_add_info: allocation failure.\n")); 4189 return (data_mp); 4190 } 4191 4192 ipha = (ipha_t *)data_mp->b_rptr; 4193 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4194 bzero(pinfo, sizeof (ip_pktinfo_t)); 4195 pinfo->ip_pkt_flags = (uchar_t)flags; 4196 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4197 4198 pether = (struct ether_header *)((char *)ipha 4199 - sizeof (struct ether_header)); 4200 4201 /* 4202 * Make sure the interface is an ethernet type, since this option 4203 * is currently supported only on this type of interface. Also make 4204 * sure we are pointing correctly above db_base. 4205 */ 4206 if ((flags & IPF_RECVSLLA) && 4207 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4208 (ill->ill_type == IFT_ETHER) && 4209 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4210 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4211 bcopy(pether->ether_shost.ether_addr_octet, 4212 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4213 } else { 4214 /* 4215 * Clear the bit. Indicate to upper layer that IP is not 4216 * sending this ancillary info. 4217 */ 4218 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4219 } 4220 4221 /* 4222 * If `ill' is in an IPMP group, use the IPMP ill to determine 4223 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4224 * IPF_RECVADDR support on test addresses is not needed.) 4225 * 4226 * Note that `ill' may already be an IPMP ill if e.g. we're 4227 * processing a packet looped back to an IPMP data address 4228 * (since those IRE_LOCALs are tied to IPMP ills). 4229 */ 4230 if (IS_UNDER_IPMP(ill)) { 4231 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4232 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4233 freemsg(mp); 4234 return (data_mp); 4235 } 4236 ipmp_ill_held = B_TRUE; 4237 } 4238 4239 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4240 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4241 if (flags & IPF_RECVADDR) { 4242 ipif_t *ipif; 4243 ire_t *ire; 4244 4245 /* 4246 * Only valid for V4 4247 */ 4248 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4249 (IPV4_VERSION << 4)); 4250 4251 ipif = ipif_get_next_ipif(NULL, ill); 4252 if (ipif != NULL) { 4253 /* 4254 * Since a decision has already been made to deliver the 4255 * packet, there is no need to test for SECATTR and 4256 * ZONEONLY. 4257 * When a multicast packet is transmitted 4258 * a cache entry is created for the multicast address. 4259 * When delivering a copy of the packet or when new 4260 * packets are received we do not want to match on the 4261 * cached entry so explicitly match on 4262 * IRE_LOCAL and IRE_LOOPBACK 4263 */ 4264 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4265 IRE_LOCAL | IRE_LOOPBACK, 4266 ipif, zoneid, NULL, 4267 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4268 if (ire == NULL) { 4269 /* 4270 * packet must have come on a different 4271 * interface. 4272 * Since a decision has already been made to 4273 * deliver the packet, there is no need to test 4274 * for SECATTR and ZONEONLY. 4275 * Only match on local and broadcast ire's. 4276 * See detailed comment above. 4277 */ 4278 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4279 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4280 NULL, MATCH_IRE_TYPE, ipst); 4281 } 4282 4283 if (ire == NULL) { 4284 /* 4285 * This is either a multicast packet or 4286 * the address has been removed since 4287 * the packet was received. 4288 * Return INADDR_ANY so that normal source 4289 * selection occurs for the response. 4290 */ 4291 4292 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4293 } else { 4294 pinfo->ip_pkt_match_addr.s_addr = 4295 ire->ire_src_addr; 4296 ire_refrele(ire); 4297 } 4298 ipif_refrele(ipif); 4299 } else { 4300 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4301 } 4302 } 4303 4304 if (ipmp_ill_held) 4305 ill_refrele(ill); 4306 4307 mp->b_datap->db_type = M_CTL; 4308 mp->b_wptr += sizeof (ip_pktinfo_t); 4309 mp->b_cont = data_mp; 4310 4311 return (mp); 4312 } 4313 4314 /* 4315 * Used to determine the most accurate cred_t to use for TX. 4316 * First priority is SCM_UCRED having set the label in the message, 4317 * which is used for MLP on UDP. Second priority is the peers label (aka 4318 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4319 * open credentials. 4320 */ 4321 cred_t * 4322 ip_best_cred(mblk_t *mp, conn_t *connp) 4323 { 4324 cred_t *cr; 4325 4326 cr = msg_getcred(mp, NULL); 4327 if (cr != NULL && crgetlabel(cr) != NULL) 4328 return (cr); 4329 return (CONN_CRED(connp)); 4330 } 4331 4332 /* 4333 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4334 * part of the bind request. 4335 */ 4336 4337 boolean_t 4338 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4339 { 4340 ipsec_in_t *ii; 4341 4342 ASSERT(policy_mp != NULL); 4343 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4344 4345 ii = (ipsec_in_t *)policy_mp->b_rptr; 4346 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4347 4348 connp->conn_policy = ii->ipsec_in_policy; 4349 ii->ipsec_in_policy = NULL; 4350 4351 if (ii->ipsec_in_action != NULL) { 4352 if (connp->conn_latch == NULL) { 4353 connp->conn_latch = iplatch_create(); 4354 if (connp->conn_latch == NULL) 4355 return (B_FALSE); 4356 } 4357 ipsec_latch_inbound(connp->conn_latch, ii); 4358 } 4359 return (B_TRUE); 4360 } 4361 4362 static void 4363 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4364 { 4365 /* 4366 * Pass the IPsec headers size in ire_ipsec_overhead. 4367 * We can't do this in ip_bind_get_ire because the policy 4368 * may not have been inherited at that point in time and hence 4369 * conn_out_enforce_policy may not be set. 4370 */ 4371 if (ire_requested && connp->conn_out_enforce_policy && 4372 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4373 ire_t *ire = (ire_t *)mp->b_rptr; 4374 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4375 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4376 } 4377 } 4378 4379 /* 4380 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4381 * and to arrange for power-fanout assist. The ULP is identified by 4382 * adding a single byte at the end of the original bind message. 4383 * A ULP other than UDP or TCP that wishes to be recognized passes 4384 * down a bind with a zero length address. 4385 * 4386 * The binding works as follows: 4387 * - A zero byte address means just bind to the protocol. 4388 * - A four byte address is treated as a request to validate 4389 * that the address is a valid local address, appropriate for 4390 * an application to bind to. This does not affect any fanout 4391 * information in IP. 4392 * - A sizeof sin_t byte address is used to bind to only the local address 4393 * and port. 4394 * - A sizeof ipa_conn_t byte address contains complete fanout information 4395 * consisting of local and remote addresses and ports. In 4396 * this case, the addresses are both validated as appropriate 4397 * for this operation, and, if so, the information is retained 4398 * for use in the inbound fanout. 4399 * 4400 * The ULP (except in the zero-length bind) can append an 4401 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4402 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4403 * a copy of the source or destination IRE (source for local bind; 4404 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4405 * policy information contained should be copied on to the conn. 4406 * 4407 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4408 */ 4409 mblk_t * 4410 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4411 { 4412 ssize_t len; 4413 struct T_bind_req *tbr; 4414 sin_t *sin; 4415 ipa_conn_t *ac; 4416 uchar_t *ucp; 4417 mblk_t *mp1; 4418 boolean_t ire_requested; 4419 int error = 0; 4420 int protocol; 4421 ipa_conn_x_t *acx; 4422 cred_t *cr; 4423 4424 /* 4425 * All Solaris components should pass a db_credp 4426 * for this TPI message, hence we ASSERT. 4427 * But in case there is some other M_PROTO that looks 4428 * like a TPI message sent by some other kernel 4429 * component, we check and return an error. 4430 */ 4431 cr = msg_getcred(mp, NULL); 4432 ASSERT(cr != NULL); 4433 if (cr == NULL) { 4434 error = EINVAL; 4435 goto bad_addr; 4436 } 4437 4438 ASSERT(!connp->conn_af_isv6); 4439 connp->conn_pkt_isv6 = B_FALSE; 4440 4441 len = MBLKL(mp); 4442 if (len < (sizeof (*tbr) + 1)) { 4443 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4444 "ip_bind: bogus msg, len %ld", len); 4445 /* XXX: Need to return something better */ 4446 goto bad_addr; 4447 } 4448 /* Back up and extract the protocol identifier. */ 4449 mp->b_wptr--; 4450 protocol = *mp->b_wptr & 0xFF; 4451 tbr = (struct T_bind_req *)mp->b_rptr; 4452 /* Reset the message type in preparation for shipping it back. */ 4453 DB_TYPE(mp) = M_PCPROTO; 4454 4455 connp->conn_ulp = (uint8_t)protocol; 4456 4457 /* 4458 * Check for a zero length address. This is from a protocol that 4459 * wants to register to receive all packets of its type. 4460 */ 4461 if (tbr->ADDR_length == 0) { 4462 /* 4463 * These protocols are now intercepted in ip_bind_v6(). 4464 * Reject protocol-level binds here for now. 4465 * 4466 * For SCTP raw socket, ICMP sends down a bind with sin_t 4467 * so that the protocol type cannot be SCTP. 4468 */ 4469 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4470 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4471 goto bad_addr; 4472 } 4473 4474 /* 4475 * 4476 * The udp module never sends down a zero-length address, 4477 * and allowing this on a labeled system will break MLP 4478 * functionality. 4479 */ 4480 if (is_system_labeled() && protocol == IPPROTO_UDP) 4481 goto bad_addr; 4482 4483 if (connp->conn_mac_exempt) 4484 goto bad_addr; 4485 4486 /* No hash here really. The table is big enough. */ 4487 connp->conn_srcv6 = ipv6_all_zeros; 4488 4489 ipcl_proto_insert(connp, protocol); 4490 4491 tbr->PRIM_type = T_BIND_ACK; 4492 return (mp); 4493 } 4494 4495 /* Extract the address pointer from the message. */ 4496 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4497 tbr->ADDR_length); 4498 if (ucp == NULL) { 4499 ip1dbg(("ip_bind: no address\n")); 4500 goto bad_addr; 4501 } 4502 if (!OK_32PTR(ucp)) { 4503 ip1dbg(("ip_bind: unaligned address\n")); 4504 goto bad_addr; 4505 } 4506 /* 4507 * Check for trailing mps. 4508 */ 4509 4510 mp1 = mp->b_cont; 4511 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4512 4513 switch (tbr->ADDR_length) { 4514 default: 4515 ip1dbg(("ip_bind: bad address length %d\n", 4516 (int)tbr->ADDR_length)); 4517 goto bad_addr; 4518 4519 case IP_ADDR_LEN: 4520 /* Verification of local address only */ 4521 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4522 *(ipaddr_t *)ucp, 0, B_FALSE); 4523 break; 4524 4525 case sizeof (sin_t): 4526 sin = (sin_t *)ucp; 4527 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4528 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4529 break; 4530 4531 case sizeof (ipa_conn_t): 4532 ac = (ipa_conn_t *)ucp; 4533 /* For raw socket, the local port is not set. */ 4534 if (ac->ac_lport == 0) 4535 ac->ac_lport = connp->conn_lport; 4536 /* Always verify destination reachability. */ 4537 error = ip_bind_connected_v4(connp, &mp1, protocol, 4538 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4539 B_TRUE, B_TRUE, cr); 4540 break; 4541 4542 case sizeof (ipa_conn_x_t): 4543 acx = (ipa_conn_x_t *)ucp; 4544 /* 4545 * Whether or not to verify destination reachability depends 4546 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4547 */ 4548 error = ip_bind_connected_v4(connp, &mp1, protocol, 4549 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4550 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4551 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4552 break; 4553 } 4554 ASSERT(error != EINPROGRESS); 4555 if (error != 0) 4556 goto bad_addr; 4557 4558 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4559 4560 /* Send it home. */ 4561 mp->b_datap->db_type = M_PCPROTO; 4562 tbr->PRIM_type = T_BIND_ACK; 4563 return (mp); 4564 4565 bad_addr: 4566 /* 4567 * If error = -1 then we generate a TBADADDR - otherwise error is 4568 * a unix errno. 4569 */ 4570 if (error > 0) 4571 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4572 else 4573 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4574 return (mp); 4575 } 4576 4577 /* 4578 * Here address is verified to be a valid local address. 4579 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4580 * address is also considered a valid local address. 4581 * In the case of a broadcast/multicast address, however, the 4582 * upper protocol is expected to reset the src address 4583 * to 0 if it sees a IRE_BROADCAST type returned so that 4584 * no packets are emitted with broadcast/multicast address as 4585 * source address (that violates hosts requirements RFC 1122) 4586 * The addresses valid for bind are: 4587 * (1) - INADDR_ANY (0) 4588 * (2) - IP address of an UP interface 4589 * (3) - IP address of a DOWN interface 4590 * (4) - valid local IP broadcast addresses. In this case 4591 * the conn will only receive packets destined to 4592 * the specified broadcast address. 4593 * (5) - a multicast address. In this case 4594 * the conn will only receive packets destined to 4595 * the specified multicast address. Note: the 4596 * application still has to issue an 4597 * IP_ADD_MEMBERSHIP socket option. 4598 * 4599 * On error, return -1 for TBADADDR otherwise pass the 4600 * errno with TSYSERR reply. 4601 * 4602 * In all the above cases, the bound address must be valid in the current zone. 4603 * When the address is loopback, multicast or broadcast, there might be many 4604 * matching IREs so bind has to look up based on the zone. 4605 * 4606 * Note: lport is in network byte order. 4607 * 4608 */ 4609 int 4610 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4611 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4612 { 4613 int error = 0; 4614 ire_t *src_ire; 4615 zoneid_t zoneid; 4616 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4617 mblk_t *mp = NULL; 4618 boolean_t ire_requested = B_FALSE; 4619 boolean_t ipsec_policy_set = B_FALSE; 4620 4621 if (mpp) 4622 mp = *mpp; 4623 4624 if (mp != NULL) { 4625 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4626 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4627 } 4628 4629 /* 4630 * If it was previously connected, conn_fully_bound would have 4631 * been set. 4632 */ 4633 connp->conn_fully_bound = B_FALSE; 4634 4635 src_ire = NULL; 4636 4637 zoneid = IPCL_ZONEID(connp); 4638 4639 if (src_addr) { 4640 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4641 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4642 /* 4643 * If an address other than 0.0.0.0 is requested, 4644 * we verify that it is a valid address for bind 4645 * Note: Following code is in if-else-if form for 4646 * readability compared to a condition check. 4647 */ 4648 /* LINTED - statement has no consequence */ 4649 if (IRE_IS_LOCAL(src_ire)) { 4650 /* 4651 * (2) Bind to address of local UP interface 4652 */ 4653 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4654 /* 4655 * (4) Bind to broadcast address 4656 * Note: permitted only from transports that 4657 * request IRE 4658 */ 4659 if (!ire_requested) 4660 error = EADDRNOTAVAIL; 4661 } else { 4662 /* 4663 * (3) Bind to address of local DOWN interface 4664 * (ipif_lookup_addr() looks up all interfaces 4665 * but we do not get here for UP interfaces 4666 * - case (2) above) 4667 */ 4668 /* LINTED - statement has no consequent */ 4669 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4670 /* The address exists */ 4671 } else if (CLASSD(src_addr)) { 4672 error = 0; 4673 if (src_ire != NULL) 4674 ire_refrele(src_ire); 4675 /* 4676 * (5) bind to multicast address. 4677 * Fake out the IRE returned to upper 4678 * layer to be a broadcast IRE. 4679 */ 4680 src_ire = ire_ctable_lookup( 4681 INADDR_BROADCAST, INADDR_ANY, 4682 IRE_BROADCAST, NULL, zoneid, NULL, 4683 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4684 ipst); 4685 if (src_ire == NULL || !ire_requested) 4686 error = EADDRNOTAVAIL; 4687 } else { 4688 /* 4689 * Not a valid address for bind 4690 */ 4691 error = EADDRNOTAVAIL; 4692 } 4693 } 4694 if (error) { 4695 /* Red Alert! Attempting to be a bogon! */ 4696 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4697 ntohl(src_addr))); 4698 goto bad_addr; 4699 } 4700 } 4701 4702 /* 4703 * Allow setting new policies. For example, disconnects come 4704 * down as ipa_t bind. As we would have set conn_policy_cached 4705 * to B_TRUE before, we should set it to B_FALSE, so that policy 4706 * can change after the disconnect. 4707 */ 4708 connp->conn_policy_cached = B_FALSE; 4709 4710 /* 4711 * If not fanout_insert this was just an address verification 4712 */ 4713 if (fanout_insert) { 4714 /* 4715 * The addresses have been verified. Time to insert in 4716 * the correct fanout list. 4717 */ 4718 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4719 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4720 connp->conn_lport = lport; 4721 connp->conn_fport = 0; 4722 /* 4723 * Do we need to add a check to reject Multicast packets 4724 */ 4725 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4726 } 4727 4728 if (error == 0) { 4729 if (ire_requested) { 4730 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4731 error = -1; 4732 /* Falls through to bad_addr */ 4733 } 4734 } else if (ipsec_policy_set) { 4735 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4736 error = -1; 4737 /* Falls through to bad_addr */ 4738 } 4739 } 4740 } 4741 bad_addr: 4742 if (error != 0) { 4743 if (connp->conn_anon_port) { 4744 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4745 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4746 B_FALSE); 4747 } 4748 connp->conn_mlp_type = mlptSingle; 4749 } 4750 if (src_ire != NULL) 4751 IRE_REFRELE(src_ire); 4752 return (error); 4753 } 4754 4755 int 4756 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4757 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4758 { 4759 int error; 4760 mblk_t *mp = NULL; 4761 boolean_t ire_requested; 4762 4763 if (ire_mpp) 4764 mp = *ire_mpp; 4765 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4766 4767 ASSERT(!connp->conn_af_isv6); 4768 connp->conn_pkt_isv6 = B_FALSE; 4769 connp->conn_ulp = protocol; 4770 4771 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4772 fanout_insert); 4773 if (error == 0) { 4774 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4775 ire_requested); 4776 } else if (error < 0) { 4777 error = -TBADADDR; 4778 } 4779 return (error); 4780 } 4781 4782 /* 4783 * Verify that both the source and destination addresses 4784 * are valid. If verify_dst is false, then the destination address may be 4785 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4786 * destination reachability, while tunnels do not. 4787 * Note that we allow connect to broadcast and multicast 4788 * addresses when ire_requested is set. Thus the ULP 4789 * has to check for IRE_BROADCAST and multicast. 4790 * 4791 * Returns zero if ok. 4792 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4793 * (for use with TSYSERR reply). 4794 * 4795 * Note: lport and fport are in network byte order. 4796 */ 4797 int 4798 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4799 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4800 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4801 { 4802 4803 ire_t *src_ire; 4804 ire_t *dst_ire; 4805 int error = 0; 4806 ire_t *sire = NULL; 4807 ire_t *md_dst_ire = NULL; 4808 ire_t *lso_dst_ire = NULL; 4809 ill_t *ill = NULL; 4810 zoneid_t zoneid; 4811 ipaddr_t src_addr = *src_addrp; 4812 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4813 mblk_t *mp = NULL; 4814 boolean_t ire_requested = B_FALSE; 4815 boolean_t ipsec_policy_set = B_FALSE; 4816 ts_label_t *tsl = NULL; 4817 4818 if (mpp) 4819 mp = *mpp; 4820 4821 if (mp != NULL) { 4822 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4823 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4824 } 4825 if (cr != NULL) 4826 tsl = crgetlabel(cr); 4827 4828 src_ire = dst_ire = NULL; 4829 4830 /* 4831 * If we never got a disconnect before, clear it now. 4832 */ 4833 connp->conn_fully_bound = B_FALSE; 4834 4835 zoneid = IPCL_ZONEID(connp); 4836 4837 if (CLASSD(dst_addr)) { 4838 /* Pick up an IRE_BROADCAST */ 4839 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4840 NULL, zoneid, tsl, 4841 (MATCH_IRE_RECURSIVE | 4842 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4843 MATCH_IRE_SECATTR), ipst); 4844 } else { 4845 /* 4846 * If conn_dontroute is set or if conn_nexthop_set is set, 4847 * and onlink ipif is not found set ENETUNREACH error. 4848 */ 4849 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4850 ipif_t *ipif; 4851 4852 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4853 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4854 if (ipif == NULL) { 4855 error = ENETUNREACH; 4856 goto bad_addr; 4857 } 4858 ipif_refrele(ipif); 4859 } 4860 4861 if (connp->conn_nexthop_set) { 4862 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4863 0, 0, NULL, NULL, zoneid, tsl, 4864 MATCH_IRE_SECATTR, ipst); 4865 } else { 4866 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4867 &sire, zoneid, tsl, 4868 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4869 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4870 MATCH_IRE_SECATTR), ipst); 4871 } 4872 } 4873 /* 4874 * dst_ire can't be a broadcast when not ire_requested. 4875 * We also prevent ire's with src address INADDR_ANY to 4876 * be used, which are created temporarily for 4877 * sending out packets from endpoints that have 4878 * conn_unspec_src set. If verify_dst is true, the destination must be 4879 * reachable. If verify_dst is false, the destination needn't be 4880 * reachable. 4881 * 4882 * If we match on a reject or black hole, then we've got a 4883 * local failure. May as well fail out the connect() attempt, 4884 * since it's never going to succeed. 4885 */ 4886 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4887 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4888 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4889 /* 4890 * If we're verifying destination reachability, we always want 4891 * to complain here. 4892 * 4893 * If we're not verifying destination reachability but the 4894 * destination has a route, we still want to fail on the 4895 * temporary address and broadcast address tests. 4896 */ 4897 if (verify_dst || (dst_ire != NULL)) { 4898 if (ip_debug > 2) { 4899 pr_addr_dbg("ip_bind_connected_v4:" 4900 "bad connected dst %s\n", 4901 AF_INET, &dst_addr); 4902 } 4903 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4904 error = ENETUNREACH; 4905 else 4906 error = EHOSTUNREACH; 4907 goto bad_addr; 4908 } 4909 } 4910 4911 /* 4912 * We now know that routing will allow us to reach the destination. 4913 * Check whether Trusted Solaris policy allows communication with this 4914 * host, and pretend that the destination is unreachable if not. 4915 * 4916 * This is never a problem for TCP, since that transport is known to 4917 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4918 * handling. If the remote is unreachable, it will be detected at that 4919 * point, so there's no reason to check it here. 4920 * 4921 * Note that for sendto (and other datagram-oriented friends), this 4922 * check is done as part of the data path label computation instead. 4923 * The check here is just to make non-TCP connect() report the right 4924 * error. 4925 */ 4926 if (dst_ire != NULL && is_system_labeled() && 4927 !IPCL_IS_TCP(connp) && 4928 tsol_compute_label(cr, dst_addr, NULL, 4929 connp->conn_mac_exempt, ipst) != 0) { 4930 error = EHOSTUNREACH; 4931 if (ip_debug > 2) { 4932 pr_addr_dbg("ip_bind_connected_v4:" 4933 " no label for dst %s\n", 4934 AF_INET, &dst_addr); 4935 } 4936 goto bad_addr; 4937 } 4938 4939 /* 4940 * If the app does a connect(), it means that it will most likely 4941 * send more than 1 packet to the destination. It makes sense 4942 * to clear the temporary flag. 4943 */ 4944 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4945 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4946 irb_t *irb = dst_ire->ire_bucket; 4947 4948 rw_enter(&irb->irb_lock, RW_WRITER); 4949 /* 4950 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4951 * the lock to guarantee irb_tmp_ire_cnt. 4952 */ 4953 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4954 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4955 irb->irb_tmp_ire_cnt--; 4956 } 4957 rw_exit(&irb->irb_lock); 4958 } 4959 4960 /* 4961 * See if we should notify ULP about LSO/MDT; we do this whether or not 4962 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4963 * eligibility tests for passive connects are handled separately 4964 * through tcp_adapt_ire(). We do this before the source address 4965 * selection, because dst_ire may change after a call to 4966 * ipif_select_source(). This is a best-effort check, as the 4967 * packet for this connection may not actually go through 4968 * dst_ire->ire_stq, and the exact IRE can only be known after 4969 * calling ip_newroute(). This is why we further check on the 4970 * IRE during LSO/Multidata packet transmission in 4971 * tcp_lsosend()/tcp_multisend(). 4972 */ 4973 if (!ipsec_policy_set && dst_ire != NULL && 4974 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4975 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4976 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4977 lso_dst_ire = dst_ire; 4978 IRE_REFHOLD(lso_dst_ire); 4979 } else if (ipst->ips_ip_multidata_outbound && 4980 ILL_MDT_CAPABLE(ill)) { 4981 md_dst_ire = dst_ire; 4982 IRE_REFHOLD(md_dst_ire); 4983 } 4984 } 4985 4986 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4987 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4988 /* 4989 * If the IRE belongs to a different zone, look for a matching 4990 * route in the forwarding table and use the source address from 4991 * that route. 4992 */ 4993 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4994 zoneid, 0, NULL, 4995 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4996 MATCH_IRE_RJ_BHOLE, ipst); 4997 if (src_ire == NULL) { 4998 error = EHOSTUNREACH; 4999 goto bad_addr; 5000 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5001 if (!(src_ire->ire_type & IRE_HOST)) 5002 error = ENETUNREACH; 5003 else 5004 error = EHOSTUNREACH; 5005 goto bad_addr; 5006 } 5007 if (src_addr == INADDR_ANY) 5008 src_addr = src_ire->ire_src_addr; 5009 ire_refrele(src_ire); 5010 src_ire = NULL; 5011 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5012 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5013 src_addr = sire->ire_src_addr; 5014 ire_refrele(dst_ire); 5015 dst_ire = sire; 5016 sire = NULL; 5017 } else { 5018 /* 5019 * Pick a source address so that a proper inbound 5020 * load spreading would happen. 5021 */ 5022 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5023 ipif_t *src_ipif = NULL; 5024 ire_t *ipif_ire; 5025 5026 /* 5027 * Supply a local source address such that inbound 5028 * load spreading happens. 5029 * 5030 * Determine the best source address on this ill for 5031 * the destination. 5032 * 5033 * 1) For broadcast, we should return a broadcast ire 5034 * found above so that upper layers know that the 5035 * destination address is a broadcast address. 5036 * 5037 * 2) If the ipif is DEPRECATED, select a better 5038 * source address. Similarly, if the ipif is on 5039 * the IPMP meta-interface, pick a source address 5040 * at random to improve inbound load spreading. 5041 * 5042 * 3) If the outgoing interface is part of a usesrc 5043 * group, then try selecting a source address from 5044 * the usesrc ILL. 5045 */ 5046 if ((dst_ire->ire_zoneid != zoneid && 5047 dst_ire->ire_zoneid != ALL_ZONES) || 5048 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5049 (!(dst_ire->ire_type & IRE_BROADCAST) && 5050 (IS_IPMP(ire_ill) || 5051 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5052 (ire_ill->ill_usesrc_ifindex != 0)))) { 5053 /* 5054 * If the destination is reachable via a 5055 * given gateway, the selected source address 5056 * should be in the same subnet as the gateway. 5057 * Otherwise, the destination is not reachable. 5058 * 5059 * If there are no interfaces on the same subnet 5060 * as the destination, ipif_select_source gives 5061 * first non-deprecated interface which might be 5062 * on a different subnet than the gateway. 5063 * This is not desirable. Hence pass the dst_ire 5064 * source address to ipif_select_source. 5065 * It is sure that the destination is reachable 5066 * with the dst_ire source address subnet. 5067 * So passing dst_ire source address to 5068 * ipif_select_source will make sure that the 5069 * selected source will be on the same subnet 5070 * as dst_ire source address. 5071 */ 5072 ipaddr_t saddr = 5073 dst_ire->ire_ipif->ipif_src_addr; 5074 src_ipif = ipif_select_source(ire_ill, 5075 saddr, zoneid); 5076 if (src_ipif != NULL) { 5077 if (IS_VNI(src_ipif->ipif_ill)) { 5078 /* 5079 * For VNI there is no 5080 * interface route 5081 */ 5082 src_addr = 5083 src_ipif->ipif_src_addr; 5084 } else { 5085 ipif_ire = 5086 ipif_to_ire(src_ipif); 5087 if (ipif_ire != NULL) { 5088 IRE_REFRELE(dst_ire); 5089 dst_ire = ipif_ire; 5090 } 5091 src_addr = 5092 dst_ire->ire_src_addr; 5093 } 5094 ipif_refrele(src_ipif); 5095 } else { 5096 src_addr = dst_ire->ire_src_addr; 5097 } 5098 } else { 5099 src_addr = dst_ire->ire_src_addr; 5100 } 5101 } 5102 } 5103 5104 /* 5105 * We do ire_route_lookup() here (and not 5106 * interface lookup as we assert that 5107 * src_addr should only come from an 5108 * UP interface for hard binding. 5109 */ 5110 ASSERT(src_ire == NULL); 5111 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5112 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5113 /* src_ire must be a local|loopback */ 5114 if (!IRE_IS_LOCAL(src_ire)) { 5115 if (ip_debug > 2) { 5116 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5117 "src %s\n", AF_INET, &src_addr); 5118 } 5119 error = EADDRNOTAVAIL; 5120 goto bad_addr; 5121 } 5122 5123 /* 5124 * If the source address is a loopback address, the 5125 * destination had best be local or multicast. 5126 * The transports that can't handle multicast will reject 5127 * those addresses. 5128 */ 5129 if (src_ire->ire_type == IRE_LOOPBACK && 5130 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5131 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5132 error = -1; 5133 goto bad_addr; 5134 } 5135 5136 /* 5137 * Allow setting new policies. For example, disconnects come 5138 * down as ipa_t bind. As we would have set conn_policy_cached 5139 * to B_TRUE before, we should set it to B_FALSE, so that policy 5140 * can change after the disconnect. 5141 */ 5142 connp->conn_policy_cached = B_FALSE; 5143 5144 /* 5145 * Set the conn addresses/ports immediately, so the IPsec policy calls 5146 * can handle their passed-in conn's. 5147 */ 5148 5149 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5150 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5151 connp->conn_lport = lport; 5152 connp->conn_fport = fport; 5153 *src_addrp = src_addr; 5154 5155 ASSERT(!(ipsec_policy_set && ire_requested)); 5156 if (ire_requested) { 5157 iulp_t *ulp_info = NULL; 5158 5159 /* 5160 * Note that sire will not be NULL if this is an off-link 5161 * connection and there is not cache for that dest yet. 5162 * 5163 * XXX Because of an existing bug, if there are multiple 5164 * default routes, the IRE returned now may not be the actual 5165 * default route used (default routes are chosen in a 5166 * round robin fashion). So if the metrics for different 5167 * default routes are different, we may return the wrong 5168 * metrics. This will not be a problem if the existing 5169 * bug is fixed. 5170 */ 5171 if (sire != NULL) { 5172 ulp_info = &(sire->ire_uinfo); 5173 } 5174 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5175 error = -1; 5176 goto bad_addr; 5177 } 5178 mp = *mpp; 5179 } else if (ipsec_policy_set) { 5180 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5181 error = -1; 5182 goto bad_addr; 5183 } 5184 } 5185 5186 /* 5187 * Cache IPsec policy in this conn. If we have per-socket policy, 5188 * we'll cache that. If we don't, we'll inherit global policy. 5189 * 5190 * We can't insert until the conn reflects the policy. Note that 5191 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5192 * connections where we don't have a policy. This is to prevent 5193 * global policy lookups in the inbound path. 5194 * 5195 * If we insert before we set conn_policy_cached, 5196 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5197 * because global policy cound be non-empty. We normally call 5198 * ipsec_check_policy() for conn_policy_cached connections only if 5199 * ipc_in_enforce_policy is set. But in this case, 5200 * conn_policy_cached can get set anytime since we made the 5201 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5202 * called, which will make the above assumption false. Thus, we 5203 * need to insert after we set conn_policy_cached. 5204 */ 5205 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5206 goto bad_addr; 5207 5208 if (fanout_insert) { 5209 /* 5210 * The addresses have been verified. Time to insert in 5211 * the correct fanout list. 5212 */ 5213 error = ipcl_conn_insert(connp, protocol, src_addr, 5214 dst_addr, connp->conn_ports); 5215 } 5216 5217 if (error == 0) { 5218 connp->conn_fully_bound = B_TRUE; 5219 /* 5220 * Our initial checks for LSO/MDT have passed; the IRE is not 5221 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5222 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5223 * ip_xxinfo_return(), which performs further checks 5224 * against them and upon success, returns the LSO/MDT info 5225 * mblk which we will attach to the bind acknowledgment. 5226 */ 5227 if (lso_dst_ire != NULL) { 5228 mblk_t *lsoinfo_mp; 5229 5230 ASSERT(ill->ill_lso_capab != NULL); 5231 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5232 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5233 if (mp == NULL) { 5234 *mpp = lsoinfo_mp; 5235 } else { 5236 linkb(mp, lsoinfo_mp); 5237 } 5238 } 5239 } else if (md_dst_ire != NULL) { 5240 mblk_t *mdinfo_mp; 5241 5242 ASSERT(ill->ill_mdt_capab != NULL); 5243 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5244 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5245 if (mp == NULL) { 5246 *mpp = mdinfo_mp; 5247 } else { 5248 linkb(mp, mdinfo_mp); 5249 } 5250 } 5251 } 5252 } 5253 bad_addr: 5254 if (ipsec_policy_set) { 5255 ASSERT(mp != NULL); 5256 freeb(mp); 5257 /* 5258 * As of now assume that nothing else accompanies 5259 * IPSEC_POLICY_SET. 5260 */ 5261 *mpp = NULL; 5262 } 5263 if (src_ire != NULL) 5264 IRE_REFRELE(src_ire); 5265 if (dst_ire != NULL) 5266 IRE_REFRELE(dst_ire); 5267 if (sire != NULL) 5268 IRE_REFRELE(sire); 5269 if (md_dst_ire != NULL) 5270 IRE_REFRELE(md_dst_ire); 5271 if (lso_dst_ire != NULL) 5272 IRE_REFRELE(lso_dst_ire); 5273 return (error); 5274 } 5275 5276 int 5277 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5278 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5279 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5280 { 5281 int error; 5282 mblk_t *mp = NULL; 5283 boolean_t ire_requested; 5284 5285 if (ire_mpp) 5286 mp = *ire_mpp; 5287 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5288 5289 ASSERT(!connp->conn_af_isv6); 5290 connp->conn_pkt_isv6 = B_FALSE; 5291 connp->conn_ulp = protocol; 5292 5293 /* For raw socket, the local port is not set. */ 5294 if (lport == 0) 5295 lport = connp->conn_lport; 5296 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5297 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5298 if (error == 0) { 5299 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5300 ire_requested); 5301 } else if (error < 0) { 5302 error = -TBADADDR; 5303 } 5304 return (error); 5305 } 5306 5307 /* 5308 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5309 * Prefers dst_ire over src_ire. 5310 */ 5311 static boolean_t 5312 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5313 { 5314 mblk_t *mp = *mpp; 5315 ire_t *ret_ire; 5316 5317 ASSERT(mp != NULL); 5318 5319 if (ire != NULL) { 5320 /* 5321 * mp initialized above to IRE_DB_REQ_TYPE 5322 * appended mblk. Its <upper protocol>'s 5323 * job to make sure there is room. 5324 */ 5325 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5326 return (B_FALSE); 5327 5328 mp->b_datap->db_type = IRE_DB_TYPE; 5329 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5330 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5331 ret_ire = (ire_t *)mp->b_rptr; 5332 /* 5333 * Pass the latest setting of the ip_path_mtu_discovery and 5334 * copy the ulp info if any. 5335 */ 5336 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5337 IPH_DF : 0; 5338 if (ulp_info != NULL) { 5339 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5340 sizeof (iulp_t)); 5341 } 5342 ret_ire->ire_mp = mp; 5343 } else { 5344 /* 5345 * No IRE was found. Remove IRE mblk. 5346 */ 5347 *mpp = mp->b_cont; 5348 freeb(mp); 5349 } 5350 return (B_TRUE); 5351 } 5352 5353 /* 5354 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5355 * the final piece where we don't. Return a pointer to the first mblk in the 5356 * result, and update the pointer to the next mblk to chew on. If anything 5357 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5358 * NULL pointer. 5359 */ 5360 mblk_t * 5361 ip_carve_mp(mblk_t **mpp, ssize_t len) 5362 { 5363 mblk_t *mp0; 5364 mblk_t *mp1; 5365 mblk_t *mp2; 5366 5367 if (!len || !mpp || !(mp0 = *mpp)) 5368 return (NULL); 5369 /* If we aren't going to consume the first mblk, we need a dup. */ 5370 if (mp0->b_wptr - mp0->b_rptr > len) { 5371 mp1 = dupb(mp0); 5372 if (mp1) { 5373 /* Partition the data between the two mblks. */ 5374 mp1->b_wptr = mp1->b_rptr + len; 5375 mp0->b_rptr = mp1->b_wptr; 5376 /* 5377 * after adjustments if mblk not consumed is now 5378 * unaligned, try to align it. If this fails free 5379 * all messages and let upper layer recover. 5380 */ 5381 if (!OK_32PTR(mp0->b_rptr)) { 5382 if (!pullupmsg(mp0, -1)) { 5383 freemsg(mp0); 5384 freemsg(mp1); 5385 *mpp = NULL; 5386 return (NULL); 5387 } 5388 } 5389 } 5390 return (mp1); 5391 } 5392 /* Eat through as many mblks as we need to get len bytes. */ 5393 len -= mp0->b_wptr - mp0->b_rptr; 5394 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5395 if (mp2->b_wptr - mp2->b_rptr > len) { 5396 /* 5397 * We won't consume the entire last mblk. Like 5398 * above, dup and partition it. 5399 */ 5400 mp1->b_cont = dupb(mp2); 5401 mp1 = mp1->b_cont; 5402 if (!mp1) { 5403 /* 5404 * Trouble. Rather than go to a lot of 5405 * trouble to clean up, we free the messages. 5406 * This won't be any worse than losing it on 5407 * the wire. 5408 */ 5409 freemsg(mp0); 5410 freemsg(mp2); 5411 *mpp = NULL; 5412 return (NULL); 5413 } 5414 mp1->b_wptr = mp1->b_rptr + len; 5415 mp2->b_rptr = mp1->b_wptr; 5416 /* 5417 * after adjustments if mblk not consumed is now 5418 * unaligned, try to align it. If this fails free 5419 * all messages and let upper layer recover. 5420 */ 5421 if (!OK_32PTR(mp2->b_rptr)) { 5422 if (!pullupmsg(mp2, -1)) { 5423 freemsg(mp0); 5424 freemsg(mp2); 5425 *mpp = NULL; 5426 return (NULL); 5427 } 5428 } 5429 *mpp = mp2; 5430 return (mp0); 5431 } 5432 /* Decrement len by the amount we just got. */ 5433 len -= mp2->b_wptr - mp2->b_rptr; 5434 } 5435 /* 5436 * len should be reduced to zero now. If not our caller has 5437 * screwed up. 5438 */ 5439 if (len) { 5440 /* Shouldn't happen! */ 5441 freemsg(mp0); 5442 *mpp = NULL; 5443 return (NULL); 5444 } 5445 /* 5446 * We consumed up to exactly the end of an mblk. Detach the part 5447 * we are returning from the rest of the chain. 5448 */ 5449 mp1->b_cont = NULL; 5450 *mpp = mp2; 5451 return (mp0); 5452 } 5453 5454 /* The ill stream is being unplumbed. Called from ip_close */ 5455 int 5456 ip_modclose(ill_t *ill) 5457 { 5458 boolean_t success; 5459 ipsq_t *ipsq; 5460 ipif_t *ipif; 5461 queue_t *q = ill->ill_rq; 5462 ip_stack_t *ipst = ill->ill_ipst; 5463 int i; 5464 5465 /* 5466 * The punlink prior to this may have initiated a capability 5467 * negotiation. But ipsq_enter will block until that finishes or 5468 * times out. 5469 */ 5470 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5471 5472 /* 5473 * Open/close/push/pop is guaranteed to be single threaded 5474 * per stream by STREAMS. FS guarantees that all references 5475 * from top are gone before close is called. So there can't 5476 * be another close thread that has set CONDEMNED on this ill. 5477 * and cause ipsq_enter to return failure. 5478 */ 5479 ASSERT(success); 5480 ipsq = ill->ill_phyint->phyint_ipsq; 5481 5482 /* 5483 * Mark it condemned. No new reference will be made to this ill. 5484 * Lookup functions will return an error. Threads that try to 5485 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5486 * that the refcnt will drop down to zero. 5487 */ 5488 mutex_enter(&ill->ill_lock); 5489 ill->ill_state_flags |= ILL_CONDEMNED; 5490 for (ipif = ill->ill_ipif; ipif != NULL; 5491 ipif = ipif->ipif_next) { 5492 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5493 } 5494 /* 5495 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5496 * returns error if ILL_CONDEMNED is set 5497 */ 5498 cv_broadcast(&ill->ill_cv); 5499 mutex_exit(&ill->ill_lock); 5500 5501 /* 5502 * Send all the deferred DLPI messages downstream which came in 5503 * during the small window right before ipsq_enter(). We do this 5504 * without waiting for the ACKs because all the ACKs for M_PROTO 5505 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5506 */ 5507 ill_dlpi_send_deferred(ill); 5508 5509 /* 5510 * Shut down fragmentation reassembly. 5511 * ill_frag_timer won't start a timer again. 5512 * Now cancel any existing timer 5513 */ 5514 (void) untimeout(ill->ill_frag_timer_id); 5515 (void) ill_frag_timeout(ill, 0); 5516 5517 /* 5518 * Call ill_delete to bring down the ipifs, ilms and ill on 5519 * this ill. Then wait for the refcnts to drop to zero. 5520 * ill_is_freeable checks whether the ill is really quiescent. 5521 * Then make sure that threads that are waiting to enter the 5522 * ipsq have seen the error returned by ipsq_enter and have 5523 * gone away. Then we call ill_delete_tail which does the 5524 * DL_UNBIND_REQ with the driver and then qprocsoff. 5525 */ 5526 ill_delete(ill); 5527 mutex_enter(&ill->ill_lock); 5528 while (!ill_is_freeable(ill)) 5529 cv_wait(&ill->ill_cv, &ill->ill_lock); 5530 while (ill->ill_waiters) 5531 cv_wait(&ill->ill_cv, &ill->ill_lock); 5532 5533 mutex_exit(&ill->ill_lock); 5534 5535 /* 5536 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5537 * it held until the end of the function since the cleanup 5538 * below needs to be able to use the ip_stack_t. 5539 */ 5540 netstack_hold(ipst->ips_netstack); 5541 5542 /* qprocsoff is done via ill_delete_tail */ 5543 ill_delete_tail(ill); 5544 ASSERT(ill->ill_ipst == NULL); 5545 5546 /* 5547 * Walk through all upper (conn) streams and qenable 5548 * those that have queued data. 5549 * close synchronization needs this to 5550 * be done to ensure that all upper layers blocked 5551 * due to flow control to the closing device 5552 * get unblocked. 5553 */ 5554 ip1dbg(("ip_wsrv: walking\n")); 5555 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5556 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5557 } 5558 5559 mutex_enter(&ipst->ips_ip_mi_lock); 5560 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5561 mutex_exit(&ipst->ips_ip_mi_lock); 5562 5563 /* 5564 * credp could be null if the open didn't succeed and ip_modopen 5565 * itself calls ip_close. 5566 */ 5567 if (ill->ill_credp != NULL) 5568 crfree(ill->ill_credp); 5569 5570 /* 5571 * Now we are done with the module close pieces that 5572 * need the netstack_t. 5573 */ 5574 netstack_rele(ipst->ips_netstack); 5575 5576 mi_close_free((IDP)ill); 5577 q->q_ptr = WR(q)->q_ptr = NULL; 5578 5579 ipsq_exit(ipsq); 5580 5581 return (0); 5582 } 5583 5584 /* 5585 * This is called as part of close() for IP, UDP, ICMP, and RTS 5586 * in order to quiesce the conn. 5587 */ 5588 void 5589 ip_quiesce_conn(conn_t *connp) 5590 { 5591 boolean_t drain_cleanup_reqd = B_FALSE; 5592 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5593 boolean_t ilg_cleanup_reqd = B_FALSE; 5594 ip_stack_t *ipst; 5595 5596 ASSERT(!IPCL_IS_TCP(connp)); 5597 ipst = connp->conn_netstack->netstack_ip; 5598 5599 /* 5600 * Mark the conn as closing, and this conn must not be 5601 * inserted in future into any list. Eg. conn_drain_insert(), 5602 * won't insert this conn into the conn_drain_list. 5603 * Similarly ill_pending_mp_add() will not add any mp to 5604 * the pending mp list, after this conn has started closing. 5605 * 5606 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5607 * cannot get set henceforth. 5608 */ 5609 mutex_enter(&connp->conn_lock); 5610 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5611 connp->conn_state_flags |= CONN_CLOSING; 5612 if (connp->conn_idl != NULL) 5613 drain_cleanup_reqd = B_TRUE; 5614 if (connp->conn_oper_pending_ill != NULL) 5615 conn_ioctl_cleanup_reqd = B_TRUE; 5616 if (connp->conn_dhcpinit_ill != NULL) { 5617 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5618 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5619 connp->conn_dhcpinit_ill = NULL; 5620 } 5621 if (connp->conn_ilg_inuse != 0) 5622 ilg_cleanup_reqd = B_TRUE; 5623 mutex_exit(&connp->conn_lock); 5624 5625 if (conn_ioctl_cleanup_reqd) 5626 conn_ioctl_cleanup(connp); 5627 5628 if (is_system_labeled() && connp->conn_anon_port) { 5629 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5630 connp->conn_mlp_type, connp->conn_ulp, 5631 ntohs(connp->conn_lport), B_FALSE); 5632 connp->conn_anon_port = 0; 5633 } 5634 connp->conn_mlp_type = mlptSingle; 5635 5636 /* 5637 * Remove this conn from any fanout list it is on. 5638 * and then wait for any threads currently operating 5639 * on this endpoint to finish 5640 */ 5641 ipcl_hash_remove(connp); 5642 5643 /* 5644 * Remove this conn from the drain list, and do 5645 * any other cleanup that may be required. 5646 * (Only non-tcp streams may have a non-null conn_idl. 5647 * TCP streams are never flow controlled, and 5648 * conn_idl will be null) 5649 */ 5650 if (drain_cleanup_reqd) 5651 conn_drain_tail(connp, B_TRUE); 5652 5653 if (connp == ipst->ips_ip_g_mrouter) 5654 (void) ip_mrouter_done(NULL, ipst); 5655 5656 if (ilg_cleanup_reqd) 5657 ilg_delete_all(connp); 5658 5659 conn_delete_ire(connp, NULL); 5660 5661 /* 5662 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5663 * callers from write side can't be there now because close 5664 * is in progress. The only other caller is ipcl_walk 5665 * which checks for the condemned flag. 5666 */ 5667 mutex_enter(&connp->conn_lock); 5668 connp->conn_state_flags |= CONN_CONDEMNED; 5669 while (connp->conn_ref != 1) 5670 cv_wait(&connp->conn_cv, &connp->conn_lock); 5671 connp->conn_state_flags |= CONN_QUIESCED; 5672 mutex_exit(&connp->conn_lock); 5673 } 5674 5675 /* ARGSUSED */ 5676 int 5677 ip_close(queue_t *q, int flags) 5678 { 5679 conn_t *connp; 5680 5681 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5682 5683 /* 5684 * Call the appropriate delete routine depending on whether this is 5685 * a module or device. 5686 */ 5687 if (WR(q)->q_next != NULL) { 5688 /* This is a module close */ 5689 return (ip_modclose((ill_t *)q->q_ptr)); 5690 } 5691 5692 connp = q->q_ptr; 5693 ip_quiesce_conn(connp); 5694 5695 qprocsoff(q); 5696 5697 /* 5698 * Now we are truly single threaded on this stream, and can 5699 * delete the things hanging off the connp, and finally the connp. 5700 * We removed this connp from the fanout list, it cannot be 5701 * accessed thru the fanouts, and we already waited for the 5702 * conn_ref to drop to 0. We are already in close, so 5703 * there cannot be any other thread from the top. qprocsoff 5704 * has completed, and service has completed or won't run in 5705 * future. 5706 */ 5707 ASSERT(connp->conn_ref == 1); 5708 5709 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5710 5711 connp->conn_ref--; 5712 ipcl_conn_destroy(connp); 5713 5714 q->q_ptr = WR(q)->q_ptr = NULL; 5715 return (0); 5716 } 5717 5718 /* 5719 * Wapper around putnext() so that ip_rts_request can merely use 5720 * conn_recv. 5721 */ 5722 /*ARGSUSED2*/ 5723 static void 5724 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5725 { 5726 conn_t *connp = (conn_t *)arg1; 5727 5728 putnext(connp->conn_rq, mp); 5729 } 5730 5731 /* 5732 * Called when the module is about to be unloaded 5733 */ 5734 void 5735 ip_ddi_destroy(void) 5736 { 5737 tnet_fini(); 5738 5739 icmp_ddi_g_destroy(); 5740 rts_ddi_g_destroy(); 5741 udp_ddi_g_destroy(); 5742 sctp_ddi_g_destroy(); 5743 tcp_ddi_g_destroy(); 5744 ipsec_policy_g_destroy(); 5745 ipcl_g_destroy(); 5746 ip_net_g_destroy(); 5747 ip_ire_g_fini(); 5748 inet_minor_destroy(ip_minor_arena_sa); 5749 #if defined(_LP64) 5750 inet_minor_destroy(ip_minor_arena_la); 5751 #endif 5752 5753 #ifdef DEBUG 5754 list_destroy(&ip_thread_list); 5755 rw_destroy(&ip_thread_rwlock); 5756 tsd_destroy(&ip_thread_data); 5757 #endif 5758 5759 netstack_unregister(NS_IP); 5760 } 5761 5762 /* 5763 * First step in cleanup. 5764 */ 5765 /* ARGSUSED */ 5766 static void 5767 ip_stack_shutdown(netstackid_t stackid, void *arg) 5768 { 5769 ip_stack_t *ipst = (ip_stack_t *)arg; 5770 5771 #ifdef NS_DEBUG 5772 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5773 #endif 5774 5775 /* Get rid of loopback interfaces and their IREs */ 5776 ip_loopback_cleanup(ipst); 5777 5778 /* 5779 * The *_hook_shutdown()s start the process of notifying any 5780 * consumers that things are going away.... nothing is destroyed. 5781 */ 5782 ipv4_hook_shutdown(ipst); 5783 ipv6_hook_shutdown(ipst); 5784 5785 mutex_enter(&ipst->ips_capab_taskq_lock); 5786 ipst->ips_capab_taskq_quit = B_TRUE; 5787 cv_signal(&ipst->ips_capab_taskq_cv); 5788 mutex_exit(&ipst->ips_capab_taskq_lock); 5789 5790 mutex_enter(&ipst->ips_mrt_lock); 5791 ipst->ips_mrt_flags |= IP_MRT_STOP; 5792 cv_signal(&ipst->ips_mrt_cv); 5793 mutex_exit(&ipst->ips_mrt_lock); 5794 } 5795 5796 /* 5797 * Free the IP stack instance. 5798 */ 5799 static void 5800 ip_stack_fini(netstackid_t stackid, void *arg) 5801 { 5802 ip_stack_t *ipst = (ip_stack_t *)arg; 5803 int ret; 5804 5805 #ifdef NS_DEBUG 5806 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5807 #endif 5808 /* 5809 * At this point, all of the notifications that the events and 5810 * protocols are going away have been run, meaning that we can 5811 * now set about starting to clean things up. 5812 */ 5813 ipv4_hook_destroy(ipst); 5814 ipv6_hook_destroy(ipst); 5815 ip_net_destroy(ipst); 5816 5817 mutex_destroy(&ipst->ips_capab_taskq_lock); 5818 cv_destroy(&ipst->ips_capab_taskq_cv); 5819 list_destroy(&ipst->ips_capab_taskq_list); 5820 5821 mutex_enter(&ipst->ips_mrt_lock); 5822 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5823 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5824 mutex_destroy(&ipst->ips_mrt_lock); 5825 cv_destroy(&ipst->ips_mrt_cv); 5826 cv_destroy(&ipst->ips_mrt_done_cv); 5827 5828 ipmp_destroy(ipst); 5829 rw_destroy(&ipst->ips_srcid_lock); 5830 5831 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5832 ipst->ips_ip_mibkp = NULL; 5833 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5834 ipst->ips_icmp_mibkp = NULL; 5835 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5836 ipst->ips_ip_kstat = NULL; 5837 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5838 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5839 ipst->ips_ip6_kstat = NULL; 5840 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5841 5842 nd_free(&ipst->ips_ip_g_nd); 5843 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5844 ipst->ips_param_arr = NULL; 5845 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5846 ipst->ips_ndp_arr = NULL; 5847 5848 ip_mrouter_stack_destroy(ipst); 5849 5850 mutex_destroy(&ipst->ips_ip_mi_lock); 5851 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5852 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5853 rw_destroy(&ipst->ips_ip_g_nd_lock); 5854 5855 ret = untimeout(ipst->ips_igmp_timeout_id); 5856 if (ret == -1) { 5857 ASSERT(ipst->ips_igmp_timeout_id == 0); 5858 } else { 5859 ASSERT(ipst->ips_igmp_timeout_id != 0); 5860 ipst->ips_igmp_timeout_id = 0; 5861 } 5862 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5867 ipst->ips_igmp_slowtimeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_mld_timeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_mld_timeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_mld_timeout_id != 0); 5874 ipst->ips_mld_timeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5881 ipst->ips_mld_slowtimeout_id = 0; 5882 } 5883 ret = untimeout(ipst->ips_ip_ire_expire_id); 5884 if (ret == -1) { 5885 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5886 } else { 5887 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5888 ipst->ips_ip_ire_expire_id = 0; 5889 } 5890 5891 mutex_destroy(&ipst->ips_igmp_timer_lock); 5892 mutex_destroy(&ipst->ips_mld_timer_lock); 5893 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5894 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5895 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5896 rw_destroy(&ipst->ips_ill_g_lock); 5897 5898 ipobs_fini(ipst); 5899 ip_ire_fini(ipst); 5900 ip6_asp_free(ipst); 5901 conn_drain_fini(ipst); 5902 ipcl_destroy(ipst); 5903 5904 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5905 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5906 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5907 ipst->ips_ndp4 = NULL; 5908 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5909 ipst->ips_ndp6 = NULL; 5910 5911 if (ipst->ips_loopback_ksp != NULL) { 5912 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5913 ipst->ips_loopback_ksp = NULL; 5914 } 5915 5916 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5917 ipst->ips_phyint_g_list = NULL; 5918 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5919 ipst->ips_ill_g_heads = NULL; 5920 5921 ldi_ident_release(ipst->ips_ldi_ident); 5922 kmem_free(ipst, sizeof (*ipst)); 5923 } 5924 5925 /* 5926 * This function is called from the TSD destructor, and is used to debug 5927 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5928 * details. 5929 */ 5930 static void 5931 ip_thread_exit(void *phash) 5932 { 5933 th_hash_t *thh = phash; 5934 5935 rw_enter(&ip_thread_rwlock, RW_WRITER); 5936 list_remove(&ip_thread_list, thh); 5937 rw_exit(&ip_thread_rwlock); 5938 mod_hash_destroy_hash(thh->thh_hash); 5939 kmem_free(thh, sizeof (*thh)); 5940 } 5941 5942 /* 5943 * Called when the IP kernel module is loaded into the kernel 5944 */ 5945 void 5946 ip_ddi_init(void) 5947 { 5948 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5949 5950 /* 5951 * For IP and TCP the minor numbers should start from 2 since we have 4 5952 * initial devices: ip, ip6, tcp, tcp6. 5953 */ 5954 /* 5955 * If this is a 64-bit kernel, then create two separate arenas - 5956 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5957 * other for socket apps in the range 2^^18 through 2^^32-1. 5958 */ 5959 ip_minor_arena_la = NULL; 5960 ip_minor_arena_sa = NULL; 5961 #if defined(_LP64) 5962 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5963 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5964 cmn_err(CE_PANIC, 5965 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5966 } 5967 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5968 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5969 cmn_err(CE_PANIC, 5970 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5971 } 5972 #else 5973 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5974 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5975 cmn_err(CE_PANIC, 5976 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5977 } 5978 #endif 5979 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5980 5981 ipcl_g_init(); 5982 ip_ire_g_init(); 5983 ip_net_g_init(); 5984 5985 #ifdef DEBUG 5986 tsd_create(&ip_thread_data, ip_thread_exit); 5987 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5988 list_create(&ip_thread_list, sizeof (th_hash_t), 5989 offsetof(th_hash_t, thh_link)); 5990 #endif 5991 5992 /* 5993 * We want to be informed each time a stack is created or 5994 * destroyed in the kernel, so we can maintain the 5995 * set of udp_stack_t's. 5996 */ 5997 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5998 ip_stack_fini); 5999 6000 ipsec_policy_g_init(); 6001 tcp_ddi_g_init(); 6002 sctp_ddi_g_init(); 6003 6004 tnet_init(); 6005 6006 udp_ddi_g_init(); 6007 rts_ddi_g_init(); 6008 icmp_ddi_g_init(); 6009 } 6010 6011 /* 6012 * Initialize the IP stack instance. 6013 */ 6014 static void * 6015 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6016 { 6017 ip_stack_t *ipst; 6018 ipparam_t *pa; 6019 ipndp_t *na; 6020 major_t major; 6021 6022 #ifdef NS_DEBUG 6023 printf("ip_stack_init(stack %d)\n", stackid); 6024 #endif 6025 6026 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6027 ipst->ips_netstack = ns; 6028 6029 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6030 KM_SLEEP); 6031 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6032 KM_SLEEP); 6033 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6034 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6035 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6036 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6037 6038 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6039 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6040 ipst->ips_igmp_deferred_next = INFINITY; 6041 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6042 ipst->ips_mld_deferred_next = INFINITY; 6043 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6044 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6045 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6046 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6047 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6048 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6049 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6050 6051 ipcl_init(ipst); 6052 ip_ire_init(ipst); 6053 ip6_asp_init(ipst); 6054 ipif_init(ipst); 6055 conn_drain_init(ipst); 6056 ip_mrouter_stack_init(ipst); 6057 6058 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6059 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6060 6061 ipst->ips_ip_multirt_log_interval = 1000; 6062 6063 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6064 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6065 ipst->ips_ill_index = 1; 6066 6067 ipst->ips_saved_ip_g_forward = -1; 6068 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6069 6070 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6071 ipst->ips_param_arr = pa; 6072 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6073 6074 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6075 ipst->ips_ndp_arr = na; 6076 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6077 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6078 (caddr_t)&ipst->ips_ip_g_forward; 6079 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6080 (caddr_t)&ipst->ips_ipv6_forward; 6081 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6082 "ip_cgtp_filter") == 0); 6083 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6084 (caddr_t)&ipst->ips_ip_cgtp_filter; 6085 6086 (void) ip_param_register(&ipst->ips_ip_g_nd, 6087 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6088 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6089 6090 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6091 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6092 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6093 ipst->ips_ip6_kstat = 6094 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6095 6096 ipst->ips_ip_src_id = 1; 6097 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6098 6099 ipobs_init(ipst); 6100 ip_net_init(ipst, ns); 6101 ipv4_hook_init(ipst); 6102 ipv6_hook_init(ipst); 6103 ipmp_init(ipst); 6104 6105 /* 6106 * Create the taskq dispatcher thread and initialize related stuff. 6107 */ 6108 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6109 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6110 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6111 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6112 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6113 offsetof(mblk_t, b_next)); 6114 6115 /* 6116 * Create the mcast_restart_timers_thread() worker thread. 6117 */ 6118 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6119 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6120 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6121 ipst->ips_mrt_thread = thread_create(NULL, 0, 6122 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6123 6124 major = mod_name_to_major(INET_NAME); 6125 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6126 return (ipst); 6127 } 6128 6129 /* 6130 * Allocate and initialize a DLPI template of the specified length. (May be 6131 * called as writer.) 6132 */ 6133 mblk_t * 6134 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6135 { 6136 mblk_t *mp; 6137 6138 mp = allocb(len, BPRI_MED); 6139 if (!mp) 6140 return (NULL); 6141 6142 /* 6143 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6144 * of which we don't seem to use) are sent with M_PCPROTO, and 6145 * that other DLPI are M_PROTO. 6146 */ 6147 if (prim == DL_INFO_REQ) { 6148 mp->b_datap->db_type = M_PCPROTO; 6149 } else { 6150 mp->b_datap->db_type = M_PROTO; 6151 } 6152 6153 mp->b_wptr = mp->b_rptr + len; 6154 bzero(mp->b_rptr, len); 6155 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6156 return (mp); 6157 } 6158 6159 /* 6160 * Allocate and initialize a DLPI notification. (May be called as writer.) 6161 */ 6162 mblk_t * 6163 ip_dlnotify_alloc(uint_t notification, uint_t data) 6164 { 6165 dl_notify_ind_t *notifyp; 6166 mblk_t *mp; 6167 6168 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6169 return (NULL); 6170 6171 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6172 notifyp->dl_notification = notification; 6173 notifyp->dl_data = data; 6174 return (mp); 6175 } 6176 6177 /* 6178 * Debug formatting routine. Returns a character string representation of the 6179 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6180 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6181 * 6182 * Once the ndd table-printing interfaces are removed, this can be changed to 6183 * standard dotted-decimal form. 6184 */ 6185 char * 6186 ip_dot_addr(ipaddr_t addr, char *buf) 6187 { 6188 uint8_t *ap = (uint8_t *)&addr; 6189 6190 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6191 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6192 return (buf); 6193 } 6194 6195 /* 6196 * Write the given MAC address as a printable string in the usual colon- 6197 * separated format. 6198 */ 6199 const char * 6200 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6201 { 6202 char *bp; 6203 6204 if (alen == 0 || buflen < 4) 6205 return ("?"); 6206 bp = buf; 6207 for (;;) { 6208 /* 6209 * If there are more MAC address bytes available, but we won't 6210 * have any room to print them, then add "..." to the string 6211 * instead. See below for the 'magic number' explanation. 6212 */ 6213 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6214 (void) strcpy(bp, "..."); 6215 break; 6216 } 6217 (void) sprintf(bp, "%02x", *addr++); 6218 bp += 2; 6219 if (--alen == 0) 6220 break; 6221 *bp++ = ':'; 6222 buflen -= 3; 6223 /* 6224 * At this point, based on the first 'if' statement above, 6225 * either alen == 1 and buflen >= 3, or alen > 1 and 6226 * buflen >= 4. The first case leaves room for the final "xx" 6227 * number and trailing NUL byte. The second leaves room for at 6228 * least "...". Thus the apparently 'magic' numbers chosen for 6229 * that statement. 6230 */ 6231 } 6232 return (buf); 6233 } 6234 6235 /* 6236 * Send an ICMP error after patching up the packet appropriately. Returns 6237 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6238 */ 6239 static boolean_t 6240 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6241 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6242 zoneid_t zoneid, ip_stack_t *ipst) 6243 { 6244 ipha_t *ipha; 6245 mblk_t *first_mp; 6246 boolean_t secure; 6247 unsigned char db_type; 6248 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6249 6250 first_mp = mp; 6251 if (mctl_present) { 6252 mp = mp->b_cont; 6253 secure = ipsec_in_is_secure(first_mp); 6254 ASSERT(mp != NULL); 6255 } else { 6256 /* 6257 * If this is an ICMP error being reported - which goes 6258 * up as M_CTLs, we need to convert them to M_DATA till 6259 * we finish checking with global policy because 6260 * ipsec_check_global_policy() assumes M_DATA as clear 6261 * and M_CTL as secure. 6262 */ 6263 db_type = DB_TYPE(mp); 6264 DB_TYPE(mp) = M_DATA; 6265 secure = B_FALSE; 6266 } 6267 /* 6268 * We are generating an icmp error for some inbound packet. 6269 * Called from all ip_fanout_(udp, tcp, proto) functions. 6270 * Before we generate an error, check with global policy 6271 * to see whether this is allowed to enter the system. As 6272 * there is no "conn", we are checking with global policy. 6273 */ 6274 ipha = (ipha_t *)mp->b_rptr; 6275 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6276 first_mp = ipsec_check_global_policy(first_mp, NULL, 6277 ipha, NULL, mctl_present, ipst->ips_netstack); 6278 if (first_mp == NULL) 6279 return (B_FALSE); 6280 } 6281 6282 if (!mctl_present) 6283 DB_TYPE(mp) = db_type; 6284 6285 if (flags & IP_FF_SEND_ICMP) { 6286 if (flags & IP_FF_HDR_COMPLETE) { 6287 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6288 freemsg(first_mp); 6289 return (B_TRUE); 6290 } 6291 } 6292 if (flags & IP_FF_CKSUM) { 6293 /* 6294 * Have to correct checksum since 6295 * the packet might have been 6296 * fragmented and the reassembly code in ip_rput 6297 * does not restore the IP checksum. 6298 */ 6299 ipha->ipha_hdr_checksum = 0; 6300 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6301 } 6302 switch (icmp_type) { 6303 case ICMP_DEST_UNREACHABLE: 6304 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6305 ipst); 6306 break; 6307 default: 6308 freemsg(first_mp); 6309 break; 6310 } 6311 } else { 6312 freemsg(first_mp); 6313 return (B_FALSE); 6314 } 6315 6316 return (B_TRUE); 6317 } 6318 6319 /* 6320 * Used to send an ICMP error message when a packet is received for 6321 * a protocol that is not supported. The mblk passed as argument 6322 * is consumed by this function. 6323 */ 6324 void 6325 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6326 ip_stack_t *ipst) 6327 { 6328 mblk_t *mp; 6329 ipha_t *ipha; 6330 ill_t *ill; 6331 ipsec_in_t *ii; 6332 6333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6334 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6335 6336 mp = ipsec_mp->b_cont; 6337 ipsec_mp->b_cont = NULL; 6338 ipha = (ipha_t *)mp->b_rptr; 6339 /* Get ill from index in ipsec_in_t. */ 6340 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6341 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6342 ipst); 6343 if (ill != NULL) { 6344 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6345 if (ip_fanout_send_icmp(q, mp, flags, 6346 ICMP_DEST_UNREACHABLE, 6347 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6348 BUMP_MIB(ill->ill_ip_mib, 6349 ipIfStatsInUnknownProtos); 6350 } 6351 } else { 6352 if (ip_fanout_send_icmp_v6(q, mp, flags, 6353 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6354 0, B_FALSE, zoneid, ipst)) { 6355 BUMP_MIB(ill->ill_ip_mib, 6356 ipIfStatsInUnknownProtos); 6357 } 6358 } 6359 ill_refrele(ill); 6360 } else { /* re-link for the freemsg() below. */ 6361 ipsec_mp->b_cont = mp; 6362 } 6363 6364 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6365 freemsg(ipsec_mp); 6366 } 6367 6368 /* 6369 * See if the inbound datagram has had IPsec processing applied to it. 6370 */ 6371 boolean_t 6372 ipsec_in_is_secure(mblk_t *ipsec_mp) 6373 { 6374 ipsec_in_t *ii; 6375 6376 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6377 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6378 6379 if (ii->ipsec_in_loopback) { 6380 return (ii->ipsec_in_secure); 6381 } else { 6382 return (ii->ipsec_in_ah_sa != NULL || 6383 ii->ipsec_in_esp_sa != NULL || 6384 ii->ipsec_in_decaps); 6385 } 6386 } 6387 6388 /* 6389 * Handle protocols with which IP is less intimate. There 6390 * can be more than one stream bound to a particular 6391 * protocol. When this is the case, normally each one gets a copy 6392 * of any incoming packets. 6393 * 6394 * IPsec NOTE : 6395 * 6396 * Don't allow a secure packet going up a non-secure connection. 6397 * We don't allow this because 6398 * 6399 * 1) Reply might go out in clear which will be dropped at 6400 * the sending side. 6401 * 2) If the reply goes out in clear it will give the 6402 * adversary enough information for getting the key in 6403 * most of the cases. 6404 * 6405 * Moreover getting a secure packet when we expect clear 6406 * implies that SA's were added without checking for 6407 * policy on both ends. This should not happen once ISAKMP 6408 * is used to negotiate SAs as SAs will be added only after 6409 * verifying the policy. 6410 * 6411 * NOTE : If the packet was tunneled and not multicast we only send 6412 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6413 * back to delivering packets to AF_INET6 raw sockets. 6414 * 6415 * IPQoS Notes: 6416 * Once we have determined the client, invoke IPPF processing. 6417 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6418 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6419 * ip_policy will be false. 6420 * 6421 * Zones notes: 6422 * Currently only applications in the global zone can create raw sockets for 6423 * protocols other than ICMP. So unlike the broadcast / multicast case of 6424 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6425 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6426 */ 6427 static void 6428 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6429 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6430 zoneid_t zoneid) 6431 { 6432 queue_t *rq; 6433 mblk_t *mp1, *first_mp1; 6434 uint_t protocol = ipha->ipha_protocol; 6435 ipaddr_t dst; 6436 boolean_t one_only; 6437 mblk_t *first_mp = mp; 6438 boolean_t secure; 6439 uint32_t ill_index; 6440 conn_t *connp, *first_connp, *next_connp; 6441 connf_t *connfp; 6442 boolean_t shared_addr; 6443 mib2_ipIfStatsEntry_t *mibptr; 6444 ip_stack_t *ipst = recv_ill->ill_ipst; 6445 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6446 6447 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6448 if (mctl_present) { 6449 mp = first_mp->b_cont; 6450 secure = ipsec_in_is_secure(first_mp); 6451 ASSERT(mp != NULL); 6452 } else { 6453 secure = B_FALSE; 6454 } 6455 dst = ipha->ipha_dst; 6456 /* 6457 * If the packet was tunneled and not multicast we only send to it 6458 * the first match. 6459 */ 6460 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6461 !CLASSD(dst)); 6462 6463 shared_addr = (zoneid == ALL_ZONES); 6464 if (shared_addr) { 6465 /* 6466 * We don't allow multilevel ports for raw IP, so no need to 6467 * check for that here. 6468 */ 6469 zoneid = tsol_packet_to_zoneid(mp); 6470 } 6471 6472 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6473 mutex_enter(&connfp->connf_lock); 6474 connp = connfp->connf_head; 6475 for (connp = connfp->connf_head; connp != NULL; 6476 connp = connp->conn_next) { 6477 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6478 zoneid) && 6479 (!is_system_labeled() || 6480 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6481 connp))) { 6482 break; 6483 } 6484 } 6485 6486 if (connp == NULL) { 6487 /* 6488 * No one bound to these addresses. Is 6489 * there a client that wants all 6490 * unclaimed datagrams? 6491 */ 6492 mutex_exit(&connfp->connf_lock); 6493 /* 6494 * Check for IPPROTO_ENCAP... 6495 */ 6496 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6497 /* 6498 * If an IPsec mblk is here on a multicast 6499 * tunnel (using ip_mroute stuff), check policy here, 6500 * THEN ship off to ip_mroute_decap(). 6501 * 6502 * BTW, If I match a configured IP-in-IP 6503 * tunnel, this path will not be reached, and 6504 * ip_mroute_decap will never be called. 6505 */ 6506 first_mp = ipsec_check_global_policy(first_mp, connp, 6507 ipha, NULL, mctl_present, ipst->ips_netstack); 6508 if (first_mp != NULL) { 6509 if (mctl_present) 6510 freeb(first_mp); 6511 ip_mroute_decap(q, mp, ill); 6512 } /* Else we already freed everything! */ 6513 } else { 6514 /* 6515 * Otherwise send an ICMP protocol unreachable. 6516 */ 6517 if (ip_fanout_send_icmp(q, first_mp, flags, 6518 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6519 mctl_present, zoneid, ipst)) { 6520 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6521 } 6522 } 6523 return; 6524 } 6525 6526 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6527 6528 CONN_INC_REF(connp); 6529 first_connp = connp; 6530 6531 /* 6532 * Only send message to one tunnel driver by immediately 6533 * terminating the loop. 6534 */ 6535 connp = one_only ? NULL : connp->conn_next; 6536 6537 for (;;) { 6538 while (connp != NULL) { 6539 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6540 flags, zoneid) && 6541 (!is_system_labeled() || 6542 tsol_receive_local(mp, &dst, IPV4_VERSION, 6543 shared_addr, connp))) 6544 break; 6545 connp = connp->conn_next; 6546 } 6547 6548 /* 6549 * Copy the packet. 6550 */ 6551 if (connp == NULL || 6552 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6553 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6554 /* 6555 * No more interested clients or memory 6556 * allocation failed 6557 */ 6558 connp = first_connp; 6559 break; 6560 } 6561 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6562 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6563 CONN_INC_REF(connp); 6564 mutex_exit(&connfp->connf_lock); 6565 rq = connp->conn_rq; 6566 6567 /* 6568 * Check flow control 6569 */ 6570 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6571 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6572 if (flags & IP_FF_RAWIP) { 6573 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6574 } else { 6575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6576 } 6577 6578 freemsg(first_mp1); 6579 } else { 6580 /* 6581 * Don't enforce here if we're an actual tunnel - 6582 * let "tun" do it instead. 6583 */ 6584 if (!IPCL_IS_IPTUN(connp) && 6585 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6586 secure)) { 6587 first_mp1 = ipsec_check_inbound_policy 6588 (first_mp1, connp, ipha, NULL, 6589 mctl_present); 6590 } 6591 if (first_mp1 != NULL) { 6592 int in_flags = 0; 6593 /* 6594 * ip_fanout_proto also gets called from 6595 * icmp_inbound_error_fanout, in which case 6596 * the msg type is M_CTL. Don't add info 6597 * in this case for the time being. In future 6598 * when there is a need for knowing the 6599 * inbound iface index for ICMP error msgs, 6600 * then this can be changed. 6601 */ 6602 if (connp->conn_recvif) 6603 in_flags = IPF_RECVIF; 6604 /* 6605 * The ULP may support IP_RECVPKTINFO for both 6606 * IP v4 and v6 so pass the appropriate argument 6607 * based on conn IP version. 6608 */ 6609 if (connp->conn_ip_recvpktinfo) { 6610 if (connp->conn_af_isv6) { 6611 /* 6612 * V6 only needs index 6613 */ 6614 in_flags |= IPF_RECVIF; 6615 } else { 6616 /* 6617 * V4 needs index + 6618 * matching address. 6619 */ 6620 in_flags |= IPF_RECVADDR; 6621 } 6622 } 6623 if ((in_flags != 0) && 6624 (mp->b_datap->db_type != M_CTL)) { 6625 /* 6626 * the actual data will be 6627 * contained in b_cont upon 6628 * successful return of the 6629 * following call else 6630 * original mblk is returned 6631 */ 6632 ASSERT(recv_ill != NULL); 6633 mp1 = ip_add_info(mp1, recv_ill, 6634 in_flags, IPCL_ZONEID(connp), ipst); 6635 } 6636 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6637 if (mctl_present) 6638 freeb(first_mp1); 6639 (connp->conn_recv)(connp, mp1, NULL); 6640 } 6641 } 6642 mutex_enter(&connfp->connf_lock); 6643 /* Follow the next pointer before releasing the conn. */ 6644 next_connp = connp->conn_next; 6645 CONN_DEC_REF(connp); 6646 connp = next_connp; 6647 } 6648 6649 /* Last one. Send it upstream. */ 6650 mutex_exit(&connfp->connf_lock); 6651 6652 /* 6653 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6654 * will be set to false. 6655 */ 6656 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6657 ill_index = ill->ill_phyint->phyint_ifindex; 6658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6659 if (mp == NULL) { 6660 CONN_DEC_REF(connp); 6661 if (mctl_present) { 6662 freeb(first_mp); 6663 } 6664 return; 6665 } 6666 } 6667 6668 rq = connp->conn_rq; 6669 /* 6670 * Check flow control 6671 */ 6672 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6673 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6674 if (flags & IP_FF_RAWIP) { 6675 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6676 } else { 6677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6678 } 6679 6680 freemsg(first_mp); 6681 } else { 6682 if (IPCL_IS_IPTUN(connp)) { 6683 /* 6684 * Tunneled packet. We enforce policy in the tunnel 6685 * module itself. 6686 * 6687 * Send the WHOLE packet up (incl. IPSEC_IN) without 6688 * a policy check. 6689 * FIXME to use conn_recv for tun later. 6690 */ 6691 putnext(rq, first_mp); 6692 CONN_DEC_REF(connp); 6693 return; 6694 } 6695 6696 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6697 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6698 ipha, NULL, mctl_present); 6699 } 6700 6701 if (first_mp != NULL) { 6702 int in_flags = 0; 6703 6704 /* 6705 * ip_fanout_proto also gets called 6706 * from icmp_inbound_error_fanout, in 6707 * which case the msg type is M_CTL. 6708 * Don't add info in this case for time 6709 * being. In future when there is a 6710 * need for knowing the inbound iface 6711 * index for ICMP error msgs, then this 6712 * can be changed 6713 */ 6714 if (connp->conn_recvif) 6715 in_flags = IPF_RECVIF; 6716 if (connp->conn_ip_recvpktinfo) { 6717 if (connp->conn_af_isv6) { 6718 /* 6719 * V6 only needs index 6720 */ 6721 in_flags |= IPF_RECVIF; 6722 } else { 6723 /* 6724 * V4 needs index + 6725 * matching address. 6726 */ 6727 in_flags |= IPF_RECVADDR; 6728 } 6729 } 6730 if ((in_flags != 0) && 6731 (mp->b_datap->db_type != M_CTL)) { 6732 6733 /* 6734 * the actual data will be contained in 6735 * b_cont upon successful return 6736 * of the following call else original 6737 * mblk is returned 6738 */ 6739 ASSERT(recv_ill != NULL); 6740 mp = ip_add_info(mp, recv_ill, 6741 in_flags, IPCL_ZONEID(connp), ipst); 6742 } 6743 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6744 (connp->conn_recv)(connp, mp, NULL); 6745 if (mctl_present) 6746 freeb(first_mp); 6747 } 6748 } 6749 CONN_DEC_REF(connp); 6750 } 6751 6752 /* 6753 * Fanout for TCP packets 6754 * The caller puts <fport, lport> in the ports parameter. 6755 * 6756 * IPQoS Notes 6757 * Before sending it to the client, invoke IPPF processing. 6758 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6759 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6760 * ip_policy is false. 6761 */ 6762 static void 6763 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6764 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6765 { 6766 mblk_t *first_mp; 6767 boolean_t secure; 6768 uint32_t ill_index; 6769 int ip_hdr_len; 6770 tcph_t *tcph; 6771 boolean_t syn_present = B_FALSE; 6772 conn_t *connp; 6773 ip_stack_t *ipst = recv_ill->ill_ipst; 6774 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6775 6776 ASSERT(recv_ill != NULL); 6777 6778 first_mp = mp; 6779 if (mctl_present) { 6780 ASSERT(first_mp->b_datap->db_type == M_CTL); 6781 mp = first_mp->b_cont; 6782 secure = ipsec_in_is_secure(first_mp); 6783 ASSERT(mp != NULL); 6784 } else { 6785 secure = B_FALSE; 6786 } 6787 6788 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6789 6790 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6791 zoneid, ipst)) == NULL) { 6792 /* 6793 * No connected connection or listener. Send a 6794 * TH_RST via tcp_xmit_listeners_reset. 6795 */ 6796 6797 /* Initiate IPPf processing, if needed. */ 6798 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6799 uint32_t ill_index; 6800 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6801 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6802 if (first_mp == NULL) 6803 return; 6804 } 6805 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6806 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6807 zoneid)); 6808 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6809 ipst->ips_netstack->netstack_tcp, NULL); 6810 return; 6811 } 6812 6813 /* 6814 * Allocate the SYN for the TCP connection here itself 6815 */ 6816 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6817 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6818 if (IPCL_IS_TCP(connp)) { 6819 squeue_t *sqp; 6820 6821 /* 6822 * For fused tcp loopback, assign the eager's 6823 * squeue to be that of the active connect's. 6824 * Note that we don't check for IP_FF_LOOPBACK 6825 * here since this routine gets called only 6826 * for loopback (unlike the IPv6 counterpart). 6827 */ 6828 ASSERT(Q_TO_CONN(q) != NULL); 6829 if (do_tcp_fusion && 6830 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6831 !secure && 6832 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6833 IPCL_IS_TCP(Q_TO_CONN(q))) { 6834 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6835 sqp = Q_TO_CONN(q)->conn_sqp; 6836 } else { 6837 sqp = IP_SQUEUE_GET(lbolt); 6838 } 6839 6840 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6841 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6842 syn_present = B_TRUE; 6843 } 6844 } 6845 6846 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6847 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6848 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6849 if ((flags & TH_RST) || (flags & TH_URG)) { 6850 CONN_DEC_REF(connp); 6851 freemsg(first_mp); 6852 return; 6853 } 6854 if (flags & TH_ACK) { 6855 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6856 ipst->ips_netstack->netstack_tcp, connp); 6857 CONN_DEC_REF(connp); 6858 return; 6859 } 6860 6861 CONN_DEC_REF(connp); 6862 freemsg(first_mp); 6863 return; 6864 } 6865 6866 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6867 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6868 NULL, mctl_present); 6869 if (first_mp == NULL) { 6870 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6871 CONN_DEC_REF(connp); 6872 return; 6873 } 6874 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6875 ASSERT(syn_present); 6876 if (mctl_present) { 6877 ASSERT(first_mp != mp); 6878 first_mp->b_datap->db_struioflag |= 6879 STRUIO_POLICY; 6880 } else { 6881 ASSERT(first_mp == mp); 6882 mp->b_datap->db_struioflag &= 6883 ~STRUIO_EAGER; 6884 mp->b_datap->db_struioflag |= 6885 STRUIO_POLICY; 6886 } 6887 } else { 6888 /* 6889 * Discard first_mp early since we're dealing with a 6890 * fully-connected conn_t and tcp doesn't do policy in 6891 * this case. 6892 */ 6893 if (mctl_present) { 6894 freeb(first_mp); 6895 mctl_present = B_FALSE; 6896 } 6897 first_mp = mp; 6898 } 6899 } 6900 6901 /* 6902 * Initiate policy processing here if needed. If we get here from 6903 * icmp_inbound_error_fanout, ip_policy is false. 6904 */ 6905 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6906 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6907 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6908 if (mp == NULL) { 6909 CONN_DEC_REF(connp); 6910 if (mctl_present) 6911 freeb(first_mp); 6912 return; 6913 } else if (mctl_present) { 6914 ASSERT(first_mp != mp); 6915 first_mp->b_cont = mp; 6916 } else { 6917 first_mp = mp; 6918 } 6919 } 6920 6921 /* Handle socket options. */ 6922 if (!syn_present && 6923 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6924 /* Add header */ 6925 ASSERT(recv_ill != NULL); 6926 /* 6927 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6928 * IPF_RECVIF. 6929 */ 6930 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6931 ipst); 6932 if (mp == NULL) { 6933 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6934 CONN_DEC_REF(connp); 6935 if (mctl_present) 6936 freeb(first_mp); 6937 return; 6938 } else if (mctl_present) { 6939 /* 6940 * ip_add_info might return a new mp. 6941 */ 6942 ASSERT(first_mp != mp); 6943 first_mp->b_cont = mp; 6944 } else { 6945 first_mp = mp; 6946 } 6947 } 6948 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6949 if (IPCL_IS_TCP(connp)) { 6950 /* do not drain, certain use cases can blow the stack */ 6951 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6952 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6953 } else { 6954 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6955 (connp->conn_recv)(connp, first_mp, NULL); 6956 CONN_DEC_REF(connp); 6957 } 6958 } 6959 6960 /* 6961 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6962 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6963 * is not consumed. 6964 * 6965 * One of four things can happen, all of which affect the passed-in mblk: 6966 * 6967 * 1.) ICMP messages that go through here just get returned TRUE. 6968 * 6969 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6970 * 6971 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6972 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6973 * 6974 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6975 */ 6976 static boolean_t 6977 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6978 ipsec_stack_t *ipss) 6979 { 6980 int shift, plen, iph_len; 6981 ipha_t *ipha; 6982 udpha_t *udpha; 6983 uint32_t *spi; 6984 uint32_t esp_ports; 6985 uint8_t *orptr; 6986 boolean_t free_ire; 6987 6988 if (DB_TYPE(mp) == M_CTL) { 6989 /* 6990 * ICMP message with UDP inside. Don't bother stripping, just 6991 * send it up. 6992 * 6993 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6994 * to ignore errors set by ICMP anyway ('cause they might be 6995 * forged), but that's the app's decision, not ours. 6996 */ 6997 6998 /* Bunch of reality checks for DEBUG kernels... */ 6999 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7000 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7001 7002 return (B_TRUE); 7003 } 7004 7005 ipha = (ipha_t *)mp->b_rptr; 7006 iph_len = IPH_HDR_LENGTH(ipha); 7007 plen = ntohs(ipha->ipha_length); 7008 7009 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7010 /* 7011 * Most likely a keepalive for the benefit of an intervening 7012 * NAT. These aren't for us, per se, so drop it. 7013 * 7014 * RFC 3947/8 doesn't say for sure what to do for 2-3 7015 * byte packets (keepalives are 1-byte), but we'll drop them 7016 * also. 7017 */ 7018 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7019 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7020 return (B_FALSE); 7021 } 7022 7023 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7024 /* might as well pull it all up - it might be ESP. */ 7025 if (!pullupmsg(mp, -1)) { 7026 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7027 DROPPER(ipss, ipds_esp_nomem), 7028 &ipss->ipsec_dropper); 7029 return (B_FALSE); 7030 } 7031 7032 ipha = (ipha_t *)mp->b_rptr; 7033 } 7034 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7035 if (*spi == 0) { 7036 /* UDP packet - remove 0-spi. */ 7037 shift = sizeof (uint32_t); 7038 } else { 7039 /* ESP-in-UDP packet - reduce to ESP. */ 7040 ipha->ipha_protocol = IPPROTO_ESP; 7041 shift = sizeof (udpha_t); 7042 } 7043 7044 /* Fix IP header */ 7045 ipha->ipha_length = htons(plen - shift); 7046 ipha->ipha_hdr_checksum = 0; 7047 7048 orptr = mp->b_rptr; 7049 mp->b_rptr += shift; 7050 7051 udpha = (udpha_t *)(orptr + iph_len); 7052 if (*spi == 0) { 7053 ASSERT((uint8_t *)ipha == orptr); 7054 udpha->uha_length = htons(plen - shift - iph_len); 7055 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7056 esp_ports = 0; 7057 } else { 7058 esp_ports = *((uint32_t *)udpha); 7059 ASSERT(esp_ports != 0); 7060 } 7061 ovbcopy(orptr, orptr + shift, iph_len); 7062 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7063 ipha = (ipha_t *)(orptr + shift); 7064 7065 free_ire = (ire == NULL); 7066 if (free_ire) { 7067 /* Re-acquire ire. */ 7068 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7069 ipss->ipsec_netstack->netstack_ip); 7070 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7071 if (ire != NULL) 7072 ire_refrele(ire); 7073 /* 7074 * Do a regular freemsg(), as this is an IP 7075 * error (no local route) not an IPsec one. 7076 */ 7077 freemsg(mp); 7078 } 7079 } 7080 7081 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7082 if (free_ire) 7083 ire_refrele(ire); 7084 } 7085 7086 return (esp_ports == 0); 7087 } 7088 7089 /* 7090 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7091 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7092 * Caller is responsible for dropping references to the conn, and freeing 7093 * first_mp. 7094 * 7095 * IPQoS Notes 7096 * Before sending it to the client, invoke IPPF processing. Policy processing 7097 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7098 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7099 * ip_wput_local, ip_policy is false. 7100 */ 7101 static void 7102 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7103 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7104 boolean_t ip_policy) 7105 { 7106 boolean_t mctl_present = (first_mp != NULL); 7107 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7108 uint32_t ill_index; 7109 ip_stack_t *ipst = recv_ill->ill_ipst; 7110 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7111 7112 ASSERT(ill != NULL); 7113 7114 if (mctl_present) 7115 first_mp->b_cont = mp; 7116 else 7117 first_mp = mp; 7118 7119 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7120 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7121 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7122 freemsg(first_mp); 7123 return; 7124 } 7125 7126 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7127 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7128 NULL, mctl_present); 7129 /* Freed by ipsec_check_inbound_policy(). */ 7130 if (first_mp == NULL) { 7131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7132 return; 7133 } 7134 } 7135 if (mctl_present) 7136 freeb(first_mp); 7137 7138 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7139 if (connp->conn_udp->udp_nat_t_endpoint) { 7140 if (mctl_present) { 7141 /* mctl_present *shouldn't* happen. */ 7142 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7143 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7144 &ipss->ipsec_dropper); 7145 return; 7146 } 7147 7148 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7149 return; 7150 } 7151 7152 /* Handle options. */ 7153 if (connp->conn_recvif) 7154 in_flags = IPF_RECVIF; 7155 /* 7156 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7157 * passed to ip_add_info is based on IP version of connp. 7158 */ 7159 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7160 if (connp->conn_af_isv6) { 7161 /* 7162 * V6 only needs index 7163 */ 7164 in_flags |= IPF_RECVIF; 7165 } else { 7166 /* 7167 * V4 needs index + matching address. 7168 */ 7169 in_flags |= IPF_RECVADDR; 7170 } 7171 } 7172 7173 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7174 in_flags |= IPF_RECVSLLA; 7175 7176 /* 7177 * Initiate IPPF processing here, if needed. Note first_mp won't be 7178 * freed if the packet is dropped. The caller will do so. 7179 */ 7180 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7181 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7182 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7183 if (mp == NULL) { 7184 return; 7185 } 7186 } 7187 if ((in_flags != 0) && 7188 (mp->b_datap->db_type != M_CTL)) { 7189 /* 7190 * The actual data will be contained in b_cont 7191 * upon successful return of the following call 7192 * else original mblk is returned 7193 */ 7194 ASSERT(recv_ill != NULL); 7195 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7196 ipst); 7197 } 7198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7199 /* Send it upstream */ 7200 (connp->conn_recv)(connp, mp, NULL); 7201 } 7202 7203 /* 7204 * Fanout for UDP packets. 7205 * The caller puts <fport, lport> in the ports parameter. 7206 * 7207 * If SO_REUSEADDR is set all multicast and broadcast packets 7208 * will be delivered to all streams bound to the same port. 7209 * 7210 * Zones notes: 7211 * Multicast and broadcast packets will be distributed to streams in all zones. 7212 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7213 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7214 * packets. To maintain this behavior with multiple zones, the conns are grouped 7215 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7216 * each zone. If unset, all the following conns in the same zone are skipped. 7217 */ 7218 static void 7219 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7220 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7221 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7222 { 7223 uint32_t dstport, srcport; 7224 ipaddr_t dst; 7225 mblk_t *first_mp; 7226 boolean_t secure; 7227 in6_addr_t v6src; 7228 conn_t *connp; 7229 connf_t *connfp; 7230 conn_t *first_connp; 7231 conn_t *next_connp; 7232 mblk_t *mp1, *first_mp1; 7233 ipaddr_t src; 7234 zoneid_t last_zoneid; 7235 boolean_t reuseaddr; 7236 boolean_t shared_addr; 7237 boolean_t unlabeled; 7238 ip_stack_t *ipst; 7239 7240 ASSERT(recv_ill != NULL); 7241 ipst = recv_ill->ill_ipst; 7242 7243 first_mp = mp; 7244 if (mctl_present) { 7245 mp = first_mp->b_cont; 7246 first_mp->b_cont = NULL; 7247 secure = ipsec_in_is_secure(first_mp); 7248 ASSERT(mp != NULL); 7249 } else { 7250 first_mp = NULL; 7251 secure = B_FALSE; 7252 } 7253 7254 /* Extract ports in net byte order */ 7255 dstport = htons(ntohl(ports) & 0xFFFF); 7256 srcport = htons(ntohl(ports) >> 16); 7257 dst = ipha->ipha_dst; 7258 src = ipha->ipha_src; 7259 7260 unlabeled = B_FALSE; 7261 if (is_system_labeled()) 7262 /* Cred cannot be null on IPv4 */ 7263 unlabeled = (msg_getlabel(mp)->tsl_flags & 7264 TSLF_UNLABELED) != 0; 7265 shared_addr = (zoneid == ALL_ZONES); 7266 if (shared_addr) { 7267 /* 7268 * No need to handle exclusive-stack zones since ALL_ZONES 7269 * only applies to the shared stack. 7270 */ 7271 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7272 /* 7273 * If no shared MLP is found, tsol_mlp_findzone returns 7274 * ALL_ZONES. In that case, we assume it's SLP, and 7275 * search for the zone based on the packet label. 7276 * 7277 * If there is such a zone, we prefer to find a 7278 * connection in it. Otherwise, we look for a 7279 * MAC-exempt connection in any zone whose label 7280 * dominates the default label on the packet. 7281 */ 7282 if (zoneid == ALL_ZONES) 7283 zoneid = tsol_packet_to_zoneid(mp); 7284 else 7285 unlabeled = B_FALSE; 7286 } 7287 7288 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7289 mutex_enter(&connfp->connf_lock); 7290 connp = connfp->connf_head; 7291 if (!broadcast && !CLASSD(dst)) { 7292 /* 7293 * Not broadcast or multicast. Send to the one (first) 7294 * client we find. No need to check conn_wantpacket() 7295 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7296 * IPv4 unicast packets. 7297 */ 7298 while ((connp != NULL) && 7299 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7300 (!IPCL_ZONE_MATCH(connp, zoneid) && 7301 !(unlabeled && connp->conn_mac_exempt)))) { 7302 /* 7303 * We keep searching since the conn did not match, 7304 * or its zone did not match and it is not either 7305 * an allzones conn or a mac exempt conn (if the 7306 * sender is unlabeled.) 7307 */ 7308 connp = connp->conn_next; 7309 } 7310 7311 if (connp == NULL || 7312 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7313 goto notfound; 7314 7315 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7316 7317 if (is_system_labeled() && 7318 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7319 connp)) 7320 goto notfound; 7321 7322 CONN_INC_REF(connp); 7323 mutex_exit(&connfp->connf_lock); 7324 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7325 flags, recv_ill, ip_policy); 7326 IP_STAT(ipst, ip_udp_fannorm); 7327 CONN_DEC_REF(connp); 7328 return; 7329 } 7330 7331 /* 7332 * Broadcast and multicast case 7333 * 7334 * Need to check conn_wantpacket(). 7335 * If SO_REUSEADDR has been set on the first we send the 7336 * packet to all clients that have joined the group and 7337 * match the port. 7338 */ 7339 7340 while (connp != NULL) { 7341 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7342 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7343 (!is_system_labeled() || 7344 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7345 connp))) 7346 break; 7347 connp = connp->conn_next; 7348 } 7349 7350 if (connp == NULL || 7351 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7352 goto notfound; 7353 7354 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7355 7356 first_connp = connp; 7357 /* 7358 * When SO_REUSEADDR is not set, send the packet only to the first 7359 * matching connection in its zone by keeping track of the zoneid. 7360 */ 7361 reuseaddr = first_connp->conn_reuseaddr; 7362 last_zoneid = first_connp->conn_zoneid; 7363 7364 CONN_INC_REF(connp); 7365 connp = connp->conn_next; 7366 for (;;) { 7367 while (connp != NULL) { 7368 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7369 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7370 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7371 (!is_system_labeled() || 7372 tsol_receive_local(mp, &dst, IPV4_VERSION, 7373 shared_addr, connp))) 7374 break; 7375 connp = connp->conn_next; 7376 } 7377 /* 7378 * Just copy the data part alone. The mctl part is 7379 * needed just for verifying policy and it is never 7380 * sent up. 7381 */ 7382 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7383 ((mp1 = copymsg(mp)) == NULL))) { 7384 /* 7385 * No more interested clients or memory 7386 * allocation failed 7387 */ 7388 connp = first_connp; 7389 break; 7390 } 7391 if (connp->conn_zoneid != last_zoneid) { 7392 /* 7393 * Update the zoneid so that the packet isn't sent to 7394 * any more conns in the same zone unless SO_REUSEADDR 7395 * is set. 7396 */ 7397 reuseaddr = connp->conn_reuseaddr; 7398 last_zoneid = connp->conn_zoneid; 7399 } 7400 if (first_mp != NULL) { 7401 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7402 ipsec_info_type == IPSEC_IN); 7403 first_mp1 = ipsec_in_tag(first_mp, NULL, 7404 ipst->ips_netstack); 7405 if (first_mp1 == NULL) { 7406 freemsg(mp1); 7407 connp = first_connp; 7408 break; 7409 } 7410 } else { 7411 first_mp1 = NULL; 7412 } 7413 CONN_INC_REF(connp); 7414 mutex_exit(&connfp->connf_lock); 7415 /* 7416 * IPQoS notes: We don't send the packet for policy 7417 * processing here, will do it for the last one (below). 7418 * i.e. we do it per-packet now, but if we do policy 7419 * processing per-conn, then we would need to do it 7420 * here too. 7421 */ 7422 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7423 ipha, flags, recv_ill, B_FALSE); 7424 mutex_enter(&connfp->connf_lock); 7425 /* Follow the next pointer before releasing the conn. */ 7426 next_connp = connp->conn_next; 7427 IP_STAT(ipst, ip_udp_fanmb); 7428 CONN_DEC_REF(connp); 7429 connp = next_connp; 7430 } 7431 7432 /* Last one. Send it upstream. */ 7433 mutex_exit(&connfp->connf_lock); 7434 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7435 recv_ill, ip_policy); 7436 IP_STAT(ipst, ip_udp_fanmb); 7437 CONN_DEC_REF(connp); 7438 return; 7439 7440 notfound: 7441 7442 mutex_exit(&connfp->connf_lock); 7443 IP_STAT(ipst, ip_udp_fanothers); 7444 /* 7445 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7446 * have already been matched above, since they live in the IPv4 7447 * fanout tables. This implies we only need to 7448 * check for IPv6 in6addr_any endpoints here. 7449 * Thus we compare using ipv6_all_zeros instead of the destination 7450 * address, except for the multicast group membership lookup which 7451 * uses the IPv4 destination. 7452 */ 7453 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7454 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7455 mutex_enter(&connfp->connf_lock); 7456 connp = connfp->connf_head; 7457 if (!broadcast && !CLASSD(dst)) { 7458 while (connp != NULL) { 7459 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7460 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7461 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7462 !connp->conn_ipv6_v6only) 7463 break; 7464 connp = connp->conn_next; 7465 } 7466 7467 if (connp != NULL && is_system_labeled() && 7468 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7469 connp)) 7470 connp = NULL; 7471 7472 if (connp == NULL || 7473 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7474 /* 7475 * No one bound to this port. Is 7476 * there a client that wants all 7477 * unclaimed datagrams? 7478 */ 7479 mutex_exit(&connfp->connf_lock); 7480 7481 if (mctl_present) 7482 first_mp->b_cont = mp; 7483 else 7484 first_mp = mp; 7485 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7486 connf_head != NULL) { 7487 ip_fanout_proto(q, first_mp, ill, ipha, 7488 flags | IP_FF_RAWIP, mctl_present, 7489 ip_policy, recv_ill, zoneid); 7490 } else { 7491 if (ip_fanout_send_icmp(q, first_mp, flags, 7492 ICMP_DEST_UNREACHABLE, 7493 ICMP_PORT_UNREACHABLE, 7494 mctl_present, zoneid, ipst)) { 7495 BUMP_MIB(ill->ill_ip_mib, 7496 udpIfStatsNoPorts); 7497 } 7498 } 7499 return; 7500 } 7501 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7502 7503 CONN_INC_REF(connp); 7504 mutex_exit(&connfp->connf_lock); 7505 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7506 flags, recv_ill, ip_policy); 7507 CONN_DEC_REF(connp); 7508 return; 7509 } 7510 /* 7511 * IPv4 multicast packet being delivered to an AF_INET6 7512 * in6addr_any endpoint. 7513 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7514 * and not conn_wantpacket_v6() since any multicast membership is 7515 * for an IPv4-mapped multicast address. 7516 * The packet is sent to all clients in all zones that have joined the 7517 * group and match the port. 7518 */ 7519 while (connp != NULL) { 7520 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7521 srcport, v6src) && 7522 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7523 (!is_system_labeled() || 7524 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7525 connp))) 7526 break; 7527 connp = connp->conn_next; 7528 } 7529 7530 if (connp == NULL || 7531 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7532 /* 7533 * No one bound to this port. Is 7534 * there a client that wants all 7535 * unclaimed datagrams? 7536 */ 7537 mutex_exit(&connfp->connf_lock); 7538 7539 if (mctl_present) 7540 first_mp->b_cont = mp; 7541 else 7542 first_mp = mp; 7543 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7544 NULL) { 7545 ip_fanout_proto(q, first_mp, ill, ipha, 7546 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7547 recv_ill, zoneid); 7548 } else { 7549 /* 7550 * We used to attempt to send an icmp error here, but 7551 * since this is known to be a multicast packet 7552 * and we don't send icmp errors in response to 7553 * multicast, just drop the packet and give up sooner. 7554 */ 7555 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7556 freemsg(first_mp); 7557 } 7558 return; 7559 } 7560 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7561 7562 first_connp = connp; 7563 7564 CONN_INC_REF(connp); 7565 connp = connp->conn_next; 7566 for (;;) { 7567 while (connp != NULL) { 7568 if (IPCL_UDP_MATCH_V6(connp, dstport, 7569 ipv6_all_zeros, srcport, v6src) && 7570 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7571 (!is_system_labeled() || 7572 tsol_receive_local(mp, &dst, IPV4_VERSION, 7573 shared_addr, connp))) 7574 break; 7575 connp = connp->conn_next; 7576 } 7577 /* 7578 * Just copy the data part alone. The mctl part is 7579 * needed just for verifying policy and it is never 7580 * sent up. 7581 */ 7582 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7583 ((mp1 = copymsg(mp)) == NULL))) { 7584 /* 7585 * No more intested clients or memory 7586 * allocation failed 7587 */ 7588 connp = first_connp; 7589 break; 7590 } 7591 if (first_mp != NULL) { 7592 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7593 ipsec_info_type == IPSEC_IN); 7594 first_mp1 = ipsec_in_tag(first_mp, NULL, 7595 ipst->ips_netstack); 7596 if (first_mp1 == NULL) { 7597 freemsg(mp1); 7598 connp = first_connp; 7599 break; 7600 } 7601 } else { 7602 first_mp1 = NULL; 7603 } 7604 CONN_INC_REF(connp); 7605 mutex_exit(&connfp->connf_lock); 7606 /* 7607 * IPQoS notes: We don't send the packet for policy 7608 * processing here, will do it for the last one (below). 7609 * i.e. we do it per-packet now, but if we do policy 7610 * processing per-conn, then we would need to do it 7611 * here too. 7612 */ 7613 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7614 ipha, flags, recv_ill, B_FALSE); 7615 mutex_enter(&connfp->connf_lock); 7616 /* Follow the next pointer before releasing the conn. */ 7617 next_connp = connp->conn_next; 7618 CONN_DEC_REF(connp); 7619 connp = next_connp; 7620 } 7621 7622 /* Last one. Send it upstream. */ 7623 mutex_exit(&connfp->connf_lock); 7624 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7625 recv_ill, ip_policy); 7626 CONN_DEC_REF(connp); 7627 } 7628 7629 /* 7630 * Complete the ip_wput header so that it 7631 * is possible to generate ICMP 7632 * errors. 7633 */ 7634 int 7635 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7636 { 7637 ire_t *ire; 7638 7639 if (ipha->ipha_src == INADDR_ANY) { 7640 ire = ire_lookup_local(zoneid, ipst); 7641 if (ire == NULL) { 7642 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7643 return (1); 7644 } 7645 ipha->ipha_src = ire->ire_addr; 7646 ire_refrele(ire); 7647 } 7648 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7649 ipha->ipha_hdr_checksum = 0; 7650 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7651 return (0); 7652 } 7653 7654 /* 7655 * Nobody should be sending 7656 * packets up this stream 7657 */ 7658 static void 7659 ip_lrput(queue_t *q, mblk_t *mp) 7660 { 7661 mblk_t *mp1; 7662 7663 switch (mp->b_datap->db_type) { 7664 case M_FLUSH: 7665 /* Turn around */ 7666 if (*mp->b_rptr & FLUSHW) { 7667 *mp->b_rptr &= ~FLUSHR; 7668 qreply(q, mp); 7669 return; 7670 } 7671 break; 7672 } 7673 /* Could receive messages that passed through ar_rput */ 7674 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7675 mp1->b_prev = mp1->b_next = NULL; 7676 freemsg(mp); 7677 } 7678 7679 /* Nobody should be sending packets down this stream */ 7680 /* ARGSUSED */ 7681 void 7682 ip_lwput(queue_t *q, mblk_t *mp) 7683 { 7684 freemsg(mp); 7685 } 7686 7687 /* 7688 * Move the first hop in any source route to ipha_dst and remove that part of 7689 * the source route. Called by other protocols. Errors in option formatting 7690 * are ignored - will be handled by ip_wput_options Return the final 7691 * destination (either ipha_dst or the last entry in a source route.) 7692 */ 7693 ipaddr_t 7694 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7695 { 7696 ipoptp_t opts; 7697 uchar_t *opt; 7698 uint8_t optval; 7699 uint8_t optlen; 7700 ipaddr_t dst; 7701 int i; 7702 ire_t *ire; 7703 ip_stack_t *ipst = ns->netstack_ip; 7704 7705 ip2dbg(("ip_massage_options\n")); 7706 dst = ipha->ipha_dst; 7707 for (optval = ipoptp_first(&opts, ipha); 7708 optval != IPOPT_EOL; 7709 optval = ipoptp_next(&opts)) { 7710 opt = opts.ipoptp_cur; 7711 switch (optval) { 7712 uint8_t off; 7713 case IPOPT_SSRR: 7714 case IPOPT_LSRR: 7715 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7716 ip1dbg(("ip_massage_options: bad src route\n")); 7717 break; 7718 } 7719 optlen = opts.ipoptp_len; 7720 off = opt[IPOPT_OFFSET]; 7721 off--; 7722 redo_srr: 7723 if (optlen < IP_ADDR_LEN || 7724 off > optlen - IP_ADDR_LEN) { 7725 /* End of source route */ 7726 ip1dbg(("ip_massage_options: end of SR\n")); 7727 break; 7728 } 7729 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7730 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7731 ntohl(dst))); 7732 /* 7733 * Check if our address is present more than 7734 * once as consecutive hops in source route. 7735 * XXX verify per-interface ip_forwarding 7736 * for source route? 7737 */ 7738 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7739 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7740 if (ire != NULL) { 7741 ire_refrele(ire); 7742 off += IP_ADDR_LEN; 7743 goto redo_srr; 7744 } 7745 if (dst == htonl(INADDR_LOOPBACK)) { 7746 ip1dbg(("ip_massage_options: loopback addr in " 7747 "source route!\n")); 7748 break; 7749 } 7750 /* 7751 * Update ipha_dst to be the first hop and remove the 7752 * first hop from the source route (by overwriting 7753 * part of the option with NOP options). 7754 */ 7755 ipha->ipha_dst = dst; 7756 /* Put the last entry in dst */ 7757 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7758 3; 7759 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7760 7761 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7762 ntohl(dst))); 7763 /* Move down and overwrite */ 7764 opt[IP_ADDR_LEN] = opt[0]; 7765 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7766 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7767 for (i = 0; i < IP_ADDR_LEN; i++) 7768 opt[i] = IPOPT_NOP; 7769 break; 7770 } 7771 } 7772 return (dst); 7773 } 7774 7775 /* 7776 * Return the network mask 7777 * associated with the specified address. 7778 */ 7779 ipaddr_t 7780 ip_net_mask(ipaddr_t addr) 7781 { 7782 uchar_t *up = (uchar_t *)&addr; 7783 ipaddr_t mask = 0; 7784 uchar_t *maskp = (uchar_t *)&mask; 7785 7786 #if defined(__i386) || defined(__amd64) 7787 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7788 #endif 7789 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7790 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7791 #endif 7792 if (CLASSD(addr)) { 7793 maskp[0] = 0xF0; 7794 return (mask); 7795 } 7796 7797 /* We assume Class E default netmask to be 32 */ 7798 if (CLASSE(addr)) 7799 return (0xffffffffU); 7800 7801 if (addr == 0) 7802 return (0); 7803 maskp[0] = 0xFF; 7804 if ((up[0] & 0x80) == 0) 7805 return (mask); 7806 7807 maskp[1] = 0xFF; 7808 if ((up[0] & 0xC0) == 0x80) 7809 return (mask); 7810 7811 maskp[2] = 0xFF; 7812 if ((up[0] & 0xE0) == 0xC0) 7813 return (mask); 7814 7815 /* Otherwise return no mask */ 7816 return ((ipaddr_t)0); 7817 } 7818 7819 /* 7820 * Helper ill lookup function used by IPsec. 7821 */ 7822 ill_t * 7823 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7824 { 7825 ill_t *ret_ill; 7826 7827 ASSERT(ifindex != 0); 7828 7829 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7830 ipst); 7831 if (ret_ill == NULL) { 7832 if (isv6) { 7833 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7834 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7835 ifindex)); 7836 } else { 7837 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7838 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7839 ifindex)); 7840 } 7841 freemsg(first_mp); 7842 return (NULL); 7843 } 7844 return (ret_ill); 7845 } 7846 7847 /* 7848 * IPv4 - 7849 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7850 * out a packet to a destination address for which we do not have specific 7851 * (or sufficient) routing information. 7852 * 7853 * NOTE : These are the scopes of some of the variables that point at IRE, 7854 * which needs to be followed while making any future modifications 7855 * to avoid memory leaks. 7856 * 7857 * - ire and sire are the entries looked up initially by 7858 * ire_ftable_lookup. 7859 * - ipif_ire is used to hold the interface ire associated with 7860 * the new cache ire. But it's scope is limited, so we always REFRELE 7861 * it before branching out to error paths. 7862 * - save_ire is initialized before ire_create, so that ire returned 7863 * by ire_create will not over-write the ire. We REFRELE save_ire 7864 * before breaking out of the switch. 7865 * 7866 * Thus on failures, we have to REFRELE only ire and sire, if they 7867 * are not NULL. 7868 */ 7869 void 7870 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7871 zoneid_t zoneid, ip_stack_t *ipst) 7872 { 7873 areq_t *areq; 7874 ipaddr_t gw = 0; 7875 ire_t *ire = NULL; 7876 mblk_t *res_mp; 7877 ipaddr_t *addrp; 7878 ipaddr_t nexthop_addr; 7879 ipif_t *src_ipif = NULL; 7880 ill_t *dst_ill = NULL; 7881 ipha_t *ipha; 7882 ire_t *sire = NULL; 7883 mblk_t *first_mp; 7884 ire_t *save_ire; 7885 ushort_t ire_marks = 0; 7886 boolean_t mctl_present; 7887 ipsec_out_t *io; 7888 mblk_t *saved_mp; 7889 ire_t *first_sire = NULL; 7890 mblk_t *copy_mp = NULL; 7891 mblk_t *xmit_mp = NULL; 7892 ipaddr_t save_dst; 7893 uint32_t multirt_flags = 7894 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7895 boolean_t multirt_is_resolvable; 7896 boolean_t multirt_resolve_next; 7897 boolean_t unspec_src; 7898 boolean_t ip_nexthop = B_FALSE; 7899 tsol_ire_gw_secattr_t *attrp = NULL; 7900 tsol_gcgrp_t *gcgrp = NULL; 7901 tsol_gcgrp_addr_t ga; 7902 7903 if (ip_debug > 2) { 7904 /* ip1dbg */ 7905 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7906 } 7907 7908 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7909 if (mctl_present) { 7910 io = (ipsec_out_t *)first_mp->b_rptr; 7911 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7912 ASSERT(zoneid == io->ipsec_out_zoneid); 7913 ASSERT(zoneid != ALL_ZONES); 7914 } 7915 7916 ipha = (ipha_t *)mp->b_rptr; 7917 7918 /* All multicast lookups come through ip_newroute_ipif() */ 7919 if (CLASSD(dst)) { 7920 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7921 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7922 freemsg(first_mp); 7923 return; 7924 } 7925 7926 if (mctl_present && io->ipsec_out_ip_nexthop) { 7927 ip_nexthop = B_TRUE; 7928 nexthop_addr = io->ipsec_out_nexthop_addr; 7929 } 7930 /* 7931 * If this IRE is created for forwarding or it is not for 7932 * traffic for congestion controlled protocols, mark it as temporary. 7933 */ 7934 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7935 ire_marks |= IRE_MARK_TEMPORARY; 7936 7937 /* 7938 * Get what we can from ire_ftable_lookup which will follow an IRE 7939 * chain until it gets the most specific information available. 7940 * For example, we know that there is no IRE_CACHE for this dest, 7941 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7942 * ire_ftable_lookup will look up the gateway, etc. 7943 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7944 * to the destination, of equal netmask length in the forward table, 7945 * will be recursively explored. If no information is available 7946 * for the final gateway of that route, we force the returned ire 7947 * to be equal to sire using MATCH_IRE_PARENT. 7948 * At least, in this case we have a starting point (in the buckets) 7949 * to look for other routes to the destination in the forward table. 7950 * This is actually used only for multirouting, where a list 7951 * of routes has to be processed in sequence. 7952 * 7953 * In the process of coming up with the most specific information, 7954 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7955 * for the gateway (i.e., one for which the ire_nce->nce_state is 7956 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7957 * Two caveats when handling incomplete ire's in ip_newroute: 7958 * - we should be careful when accessing its ire_nce (specifically 7959 * the nce_res_mp) ast it might change underneath our feet, and, 7960 * - not all legacy code path callers are prepared to handle 7961 * incomplete ire's, so we should not create/add incomplete 7962 * ire_cache entries here. (See discussion about temporary solution 7963 * further below). 7964 * 7965 * In order to minimize packet dropping, and to preserve existing 7966 * behavior, we treat this case as if there were no IRE_CACHE for the 7967 * gateway, and instead use the IF_RESOLVER ire to send out 7968 * another request to ARP (this is achieved by passing the 7969 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7970 * arp response comes back in ip_wput_nondata, we will create 7971 * a per-dst ire_cache that has an ND_COMPLETE ire. 7972 * 7973 * Note that this is a temporary solution; the correct solution is 7974 * to create an incomplete per-dst ire_cache entry, and send the 7975 * packet out when the gw's nce is resolved. In order to achieve this, 7976 * all packet processing must have been completed prior to calling 7977 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7978 * to be modified to accomodate this solution. 7979 */ 7980 if (ip_nexthop) { 7981 /* 7982 * The first time we come here, we look for an IRE_INTERFACE 7983 * entry for the specified nexthop, set the dst to be the 7984 * nexthop address and create an IRE_CACHE entry for the 7985 * nexthop. The next time around, we are able to find an 7986 * IRE_CACHE entry for the nexthop, set the gateway to be the 7987 * nexthop address and create an IRE_CACHE entry for the 7988 * destination address via the specified nexthop. 7989 */ 7990 ire = ire_cache_lookup(nexthop_addr, zoneid, 7991 msg_getlabel(mp), ipst); 7992 if (ire != NULL) { 7993 gw = nexthop_addr; 7994 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7995 } else { 7996 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7997 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7998 msg_getlabel(mp), 7999 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8000 ipst); 8001 if (ire != NULL) { 8002 dst = nexthop_addr; 8003 } 8004 } 8005 } else { 8006 ire = ire_ftable_lookup(dst, 0, 0, 0, 8007 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8008 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8009 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8010 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8011 ipst); 8012 } 8013 8014 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8015 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8016 8017 /* 8018 * This loop is run only once in most cases. 8019 * We loop to resolve further routes only when the destination 8020 * can be reached through multiple RTF_MULTIRT-flagged ires. 8021 */ 8022 do { 8023 /* Clear the previous iteration's values */ 8024 if (src_ipif != NULL) { 8025 ipif_refrele(src_ipif); 8026 src_ipif = NULL; 8027 } 8028 if (dst_ill != NULL) { 8029 ill_refrele(dst_ill); 8030 dst_ill = NULL; 8031 } 8032 8033 multirt_resolve_next = B_FALSE; 8034 /* 8035 * We check if packets have to be multirouted. 8036 * In this case, given the current <ire, sire> couple, 8037 * we look for the next suitable <ire, sire>. 8038 * This check is done in ire_multirt_lookup(), 8039 * which applies various criteria to find the next route 8040 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8041 * unchanged if it detects it has not been tried yet. 8042 */ 8043 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8044 ip3dbg(("ip_newroute: starting next_resolution " 8045 "with first_mp %p, tag %d\n", 8046 (void *)first_mp, 8047 MULTIRT_DEBUG_TAGGED(first_mp))); 8048 8049 ASSERT(sire != NULL); 8050 multirt_is_resolvable = 8051 ire_multirt_lookup(&ire, &sire, multirt_flags, 8052 msg_getlabel(mp), ipst); 8053 8054 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8055 "ire %p, sire %p\n", 8056 multirt_is_resolvable, 8057 (void *)ire, (void *)sire)); 8058 8059 if (!multirt_is_resolvable) { 8060 /* 8061 * No more multirt route to resolve; give up 8062 * (all routes resolved or no more 8063 * resolvable routes). 8064 */ 8065 if (ire != NULL) { 8066 ire_refrele(ire); 8067 ire = NULL; 8068 } 8069 } else { 8070 ASSERT(sire != NULL); 8071 ASSERT(ire != NULL); 8072 /* 8073 * We simply use first_sire as a flag that 8074 * indicates if a resolvable multirt route 8075 * has already been found. 8076 * If it is not the case, we may have to send 8077 * an ICMP error to report that the 8078 * destination is unreachable. 8079 * We do not IRE_REFHOLD first_sire. 8080 */ 8081 if (first_sire == NULL) { 8082 first_sire = sire; 8083 } 8084 } 8085 } 8086 if (ire == NULL) { 8087 if (ip_debug > 3) { 8088 /* ip2dbg */ 8089 pr_addr_dbg("ip_newroute: " 8090 "can't resolve %s\n", AF_INET, &dst); 8091 } 8092 ip3dbg(("ip_newroute: " 8093 "ire %p, sire %p, first_sire %p\n", 8094 (void *)ire, (void *)sire, (void *)first_sire)); 8095 8096 if (sire != NULL) { 8097 ire_refrele(sire); 8098 sire = NULL; 8099 } 8100 8101 if (first_sire != NULL) { 8102 /* 8103 * At least one multirt route has been found 8104 * in the same call to ip_newroute(); 8105 * there is no need to report an ICMP error. 8106 * first_sire was not IRE_REFHOLDed. 8107 */ 8108 MULTIRT_DEBUG_UNTAG(first_mp); 8109 freemsg(first_mp); 8110 return; 8111 } 8112 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8113 RTA_DST, ipst); 8114 goto icmp_err_ret; 8115 } 8116 8117 /* 8118 * Verify that the returned IRE does not have either 8119 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8120 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8121 */ 8122 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8123 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8124 goto icmp_err_ret; 8125 } 8126 /* 8127 * Increment the ire_ob_pkt_count field for ire if it is an 8128 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8129 * increment the same for the parent IRE, sire, if it is some 8130 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8131 */ 8132 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8133 UPDATE_OB_PKT_COUNT(ire); 8134 ire->ire_last_used_time = lbolt; 8135 } 8136 8137 if (sire != NULL) { 8138 gw = sire->ire_gateway_addr; 8139 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8140 IRE_INTERFACE)) == 0); 8141 UPDATE_OB_PKT_COUNT(sire); 8142 sire->ire_last_used_time = lbolt; 8143 } 8144 /* 8145 * We have a route to reach the destination. Find the 8146 * appropriate ill, then get a source address using 8147 * ipif_select_source(). 8148 * 8149 * If we are here trying to create an IRE_CACHE for an offlink 8150 * destination and have an IRE_CACHE entry for VNI, then use 8151 * ire_stq instead since VNI's queue is a black hole. 8152 */ 8153 if ((ire->ire_type == IRE_CACHE) && 8154 IS_VNI(ire->ire_ipif->ipif_ill)) { 8155 dst_ill = ire->ire_stq->q_ptr; 8156 ill_refhold(dst_ill); 8157 } else { 8158 ill_t *ill = ire->ire_ipif->ipif_ill; 8159 8160 if (IS_IPMP(ill)) { 8161 dst_ill = 8162 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8163 } else { 8164 dst_ill = ill; 8165 ill_refhold(dst_ill); 8166 } 8167 } 8168 8169 if (dst_ill == NULL) { 8170 if (ip_debug > 2) { 8171 pr_addr_dbg("ip_newroute: no dst " 8172 "ill for dst %s\n", AF_INET, &dst); 8173 } 8174 goto icmp_err_ret; 8175 } 8176 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8177 8178 /* 8179 * Pick the best source address from dst_ill. 8180 * 8181 * 1) Try to pick the source address from the destination 8182 * route. Clustering assumes that when we have multiple 8183 * prefixes hosted on an interface, the prefix of the 8184 * source address matches the prefix of the destination 8185 * route. We do this only if the address is not 8186 * DEPRECATED. 8187 * 8188 * 2) If the conn is in a different zone than the ire, we 8189 * need to pick a source address from the right zone. 8190 */ 8191 ASSERT(src_ipif == NULL); 8192 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8193 /* 8194 * The RTF_SETSRC flag is set in the parent ire (sire). 8195 * Check that the ipif matching the requested source 8196 * address still exists. 8197 */ 8198 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8199 zoneid, NULL, NULL, NULL, NULL, ipst); 8200 } 8201 8202 unspec_src = (connp != NULL && connp->conn_unspec_src); 8203 8204 if (src_ipif == NULL && 8205 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8206 ire_marks |= IRE_MARK_USESRC_CHECK; 8207 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8208 IS_IPMP(ire->ire_ipif->ipif_ill) || 8209 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8210 (connp != NULL && ire->ire_zoneid != zoneid && 8211 ire->ire_zoneid != ALL_ZONES) || 8212 (dst_ill->ill_usesrc_ifindex != 0)) { 8213 /* 8214 * If the destination is reachable via a 8215 * given gateway, the selected source address 8216 * should be in the same subnet as the gateway. 8217 * Otherwise, the destination is not reachable. 8218 * 8219 * If there are no interfaces on the same subnet 8220 * as the destination, ipif_select_source gives 8221 * first non-deprecated interface which might be 8222 * on a different subnet than the gateway. 8223 * This is not desirable. Hence pass the dst_ire 8224 * source address to ipif_select_source. 8225 * It is sure that the destination is reachable 8226 * with the dst_ire source address subnet. 8227 * So passing dst_ire source address to 8228 * ipif_select_source will make sure that the 8229 * selected source will be on the same subnet 8230 * as dst_ire source address. 8231 */ 8232 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8233 8234 src_ipif = ipif_select_source(dst_ill, saddr, 8235 zoneid); 8236 if (src_ipif == NULL) { 8237 if (ip_debug > 2) { 8238 pr_addr_dbg("ip_newroute: " 8239 "no src for dst %s ", 8240 AF_INET, &dst); 8241 printf("on interface %s\n", 8242 dst_ill->ill_name); 8243 } 8244 goto icmp_err_ret; 8245 } 8246 } else { 8247 src_ipif = ire->ire_ipif; 8248 ASSERT(src_ipif != NULL); 8249 /* hold src_ipif for uniformity */ 8250 ipif_refhold(src_ipif); 8251 } 8252 } 8253 8254 /* 8255 * Assign a source address while we have the conn. 8256 * We can't have ip_wput_ire pick a source address when the 8257 * packet returns from arp since we need to look at 8258 * conn_unspec_src and conn_zoneid, and we lose the conn when 8259 * going through arp. 8260 * 8261 * NOTE : ip_newroute_v6 does not have this piece of code as 8262 * it uses ip6i to store this information. 8263 */ 8264 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8265 ipha->ipha_src = src_ipif->ipif_src_addr; 8266 8267 if (ip_debug > 3) { 8268 /* ip2dbg */ 8269 pr_addr_dbg("ip_newroute: first hop %s\n", 8270 AF_INET, &gw); 8271 } 8272 ip2dbg(("\tire type %s (%d)\n", 8273 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8274 8275 /* 8276 * The TTL of multirouted packets is bounded by the 8277 * ip_multirt_ttl ndd variable. 8278 */ 8279 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8280 /* Force TTL of multirouted packets */ 8281 if ((ipst->ips_ip_multirt_ttl > 0) && 8282 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8283 ip2dbg(("ip_newroute: forcing multirt TTL " 8284 "to %d (was %d), dst 0x%08x\n", 8285 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8286 ntohl(sire->ire_addr))); 8287 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8288 } 8289 } 8290 /* 8291 * At this point in ip_newroute(), ire is either the 8292 * IRE_CACHE of the next-hop gateway for an off-subnet 8293 * destination or an IRE_INTERFACE type that should be used 8294 * to resolve an on-subnet destination or an on-subnet 8295 * next-hop gateway. 8296 * 8297 * In the IRE_CACHE case, we have the following : 8298 * 8299 * 1) src_ipif - used for getting a source address. 8300 * 8301 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8302 * means packets using this IRE_CACHE will go out on 8303 * dst_ill. 8304 * 8305 * 3) The IRE sire will point to the prefix that is the 8306 * longest matching route for the destination. These 8307 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8308 * 8309 * The newly created IRE_CACHE entry for the off-subnet 8310 * destination is tied to both the prefix route and the 8311 * interface route used to resolve the next-hop gateway 8312 * via the ire_phandle and ire_ihandle fields, 8313 * respectively. 8314 * 8315 * In the IRE_INTERFACE case, we have the following : 8316 * 8317 * 1) src_ipif - used for getting a source address. 8318 * 8319 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8320 * means packets using the IRE_CACHE that we will build 8321 * here will go out on dst_ill. 8322 * 8323 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8324 * to be created will only be tied to the IRE_INTERFACE 8325 * that was derived from the ire_ihandle field. 8326 * 8327 * If sire is non-NULL, it means the destination is 8328 * off-link and we will first create the IRE_CACHE for the 8329 * gateway. Next time through ip_newroute, we will create 8330 * the IRE_CACHE for the final destination as described 8331 * above. 8332 * 8333 * In both cases, after the current resolution has been 8334 * completed (or possibly initialised, in the IRE_INTERFACE 8335 * case), the loop may be re-entered to attempt the resolution 8336 * of another RTF_MULTIRT route. 8337 * 8338 * When an IRE_CACHE entry for the off-subnet destination is 8339 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8340 * for further processing in emission loops. 8341 */ 8342 save_ire = ire; 8343 switch (ire->ire_type) { 8344 case IRE_CACHE: { 8345 ire_t *ipif_ire; 8346 8347 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8348 if (gw == 0) 8349 gw = ire->ire_gateway_addr; 8350 /* 8351 * We need 3 ire's to create a new cache ire for an 8352 * off-link destination from the cache ire of the 8353 * gateway. 8354 * 8355 * 1. The prefix ire 'sire' (Note that this does 8356 * not apply to the conn_nexthop_set case) 8357 * 2. The cache ire of the gateway 'ire' 8358 * 3. The interface ire 'ipif_ire' 8359 * 8360 * We have (1) and (2). We lookup (3) below. 8361 * 8362 * If there is no interface route to the gateway, 8363 * it is a race condition, where we found the cache 8364 * but the interface route has been deleted. 8365 */ 8366 if (ip_nexthop) { 8367 ipif_ire = ire_ihandle_lookup_onlink(ire); 8368 } else { 8369 ipif_ire = 8370 ire_ihandle_lookup_offlink(ire, sire); 8371 } 8372 if (ipif_ire == NULL) { 8373 ip1dbg(("ip_newroute: " 8374 "ire_ihandle_lookup_offlink failed\n")); 8375 goto icmp_err_ret; 8376 } 8377 8378 /* 8379 * Check cached gateway IRE for any security 8380 * attributes; if found, associate the gateway 8381 * credentials group to the destination IRE. 8382 */ 8383 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8384 mutex_enter(&attrp->igsa_lock); 8385 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8386 GCGRP_REFHOLD(gcgrp); 8387 mutex_exit(&attrp->igsa_lock); 8388 } 8389 8390 /* 8391 * XXX For the source of the resolver mp, 8392 * we are using the same DL_UNITDATA_REQ 8393 * (from save_ire->ire_nce->nce_res_mp) 8394 * though the save_ire is not pointing at the same ill. 8395 * This is incorrect. We need to send it up to the 8396 * resolver to get the right res_mp. For ethernets 8397 * this may be okay (ill_type == DL_ETHER). 8398 */ 8399 8400 ire = ire_create( 8401 (uchar_t *)&dst, /* dest address */ 8402 (uchar_t *)&ip_g_all_ones, /* mask */ 8403 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8404 (uchar_t *)&gw, /* gateway address */ 8405 &save_ire->ire_max_frag, 8406 save_ire->ire_nce, /* src nce */ 8407 dst_ill->ill_rq, /* recv-from queue */ 8408 dst_ill->ill_wq, /* send-to queue */ 8409 IRE_CACHE, /* IRE type */ 8410 src_ipif, 8411 (sire != NULL) ? 8412 sire->ire_mask : 0, /* Parent mask */ 8413 (sire != NULL) ? 8414 sire->ire_phandle : 0, /* Parent handle */ 8415 ipif_ire->ire_ihandle, /* Interface handle */ 8416 (sire != NULL) ? (sire->ire_flags & 8417 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8418 (sire != NULL) ? 8419 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8420 NULL, 8421 gcgrp, 8422 ipst); 8423 8424 if (ire == NULL) { 8425 if (gcgrp != NULL) { 8426 GCGRP_REFRELE(gcgrp); 8427 gcgrp = NULL; 8428 } 8429 ire_refrele(ipif_ire); 8430 ire_refrele(save_ire); 8431 break; 8432 } 8433 8434 /* reference now held by IRE */ 8435 gcgrp = NULL; 8436 8437 ire->ire_marks |= ire_marks; 8438 8439 /* 8440 * Prevent sire and ipif_ire from getting deleted. 8441 * The newly created ire is tied to both of them via 8442 * the phandle and ihandle respectively. 8443 */ 8444 if (sire != NULL) { 8445 IRB_REFHOLD(sire->ire_bucket); 8446 /* Has it been removed already ? */ 8447 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8448 IRB_REFRELE(sire->ire_bucket); 8449 ire_refrele(ipif_ire); 8450 ire_refrele(save_ire); 8451 break; 8452 } 8453 } 8454 8455 IRB_REFHOLD(ipif_ire->ire_bucket); 8456 /* Has it been removed already ? */ 8457 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8458 IRB_REFRELE(ipif_ire->ire_bucket); 8459 if (sire != NULL) 8460 IRB_REFRELE(sire->ire_bucket); 8461 ire_refrele(ipif_ire); 8462 ire_refrele(save_ire); 8463 break; 8464 } 8465 8466 xmit_mp = first_mp; 8467 /* 8468 * In the case of multirouting, a copy 8469 * of the packet is done before its sending. 8470 * The copy is used to attempt another 8471 * route resolution, in a next loop. 8472 */ 8473 if (ire->ire_flags & RTF_MULTIRT) { 8474 copy_mp = copymsg(first_mp); 8475 if (copy_mp != NULL) { 8476 xmit_mp = copy_mp; 8477 MULTIRT_DEBUG_TAG(first_mp); 8478 } 8479 } 8480 8481 ire_add_then_send(q, ire, xmit_mp); 8482 ire_refrele(save_ire); 8483 8484 /* Assert that sire is not deleted yet. */ 8485 if (sire != NULL) { 8486 ASSERT(sire->ire_ptpn != NULL); 8487 IRB_REFRELE(sire->ire_bucket); 8488 } 8489 8490 /* Assert that ipif_ire is not deleted yet. */ 8491 ASSERT(ipif_ire->ire_ptpn != NULL); 8492 IRB_REFRELE(ipif_ire->ire_bucket); 8493 ire_refrele(ipif_ire); 8494 8495 /* 8496 * If copy_mp is not NULL, multirouting was 8497 * requested. We loop to initiate a next 8498 * route resolution attempt, starting from sire. 8499 */ 8500 if (copy_mp != NULL) { 8501 /* 8502 * Search for the next unresolved 8503 * multirt route. 8504 */ 8505 copy_mp = NULL; 8506 ipif_ire = NULL; 8507 ire = NULL; 8508 multirt_resolve_next = B_TRUE; 8509 continue; 8510 } 8511 if (sire != NULL) 8512 ire_refrele(sire); 8513 ipif_refrele(src_ipif); 8514 ill_refrele(dst_ill); 8515 return; 8516 } 8517 case IRE_IF_NORESOLVER: { 8518 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8519 dst_ill->ill_resolver_mp == NULL) { 8520 ip1dbg(("ip_newroute: dst_ill %p " 8521 "for IRE_IF_NORESOLVER ire %p has " 8522 "no ill_resolver_mp\n", 8523 (void *)dst_ill, (void *)ire)); 8524 break; 8525 } 8526 8527 /* 8528 * TSol note: We are creating the ire cache for the 8529 * destination 'dst'. If 'dst' is offlink, going 8530 * through the first hop 'gw', the security attributes 8531 * of 'dst' must be set to point to the gateway 8532 * credentials of gateway 'gw'. If 'dst' is onlink, it 8533 * is possible that 'dst' is a potential gateway that is 8534 * referenced by some route that has some security 8535 * attributes. Thus in the former case, we need to do a 8536 * gcgrp_lookup of 'gw' while in the latter case we 8537 * need to do gcgrp_lookup of 'dst' itself. 8538 */ 8539 ga.ga_af = AF_INET; 8540 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8541 &ga.ga_addr); 8542 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8543 8544 ire = ire_create( 8545 (uchar_t *)&dst, /* dest address */ 8546 (uchar_t *)&ip_g_all_ones, /* mask */ 8547 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8548 (uchar_t *)&gw, /* gateway address */ 8549 &save_ire->ire_max_frag, 8550 NULL, /* no src nce */ 8551 dst_ill->ill_rq, /* recv-from queue */ 8552 dst_ill->ill_wq, /* send-to queue */ 8553 IRE_CACHE, 8554 src_ipif, 8555 save_ire->ire_mask, /* Parent mask */ 8556 (sire != NULL) ? /* Parent handle */ 8557 sire->ire_phandle : 0, 8558 save_ire->ire_ihandle, /* Interface handle */ 8559 (sire != NULL) ? sire->ire_flags & 8560 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8561 &(save_ire->ire_uinfo), 8562 NULL, 8563 gcgrp, 8564 ipst); 8565 8566 if (ire == NULL) { 8567 if (gcgrp != NULL) { 8568 GCGRP_REFRELE(gcgrp); 8569 gcgrp = NULL; 8570 } 8571 ire_refrele(save_ire); 8572 break; 8573 } 8574 8575 /* reference now held by IRE */ 8576 gcgrp = NULL; 8577 8578 ire->ire_marks |= ire_marks; 8579 8580 /* Prevent save_ire from getting deleted */ 8581 IRB_REFHOLD(save_ire->ire_bucket); 8582 /* Has it been removed already ? */ 8583 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8584 IRB_REFRELE(save_ire->ire_bucket); 8585 ire_refrele(save_ire); 8586 break; 8587 } 8588 8589 /* 8590 * In the case of multirouting, a copy 8591 * of the packet is made before it is sent. 8592 * The copy is used in the next 8593 * loop to attempt another resolution. 8594 */ 8595 xmit_mp = first_mp; 8596 if ((sire != NULL) && 8597 (sire->ire_flags & RTF_MULTIRT)) { 8598 copy_mp = copymsg(first_mp); 8599 if (copy_mp != NULL) { 8600 xmit_mp = copy_mp; 8601 MULTIRT_DEBUG_TAG(first_mp); 8602 } 8603 } 8604 ire_add_then_send(q, ire, xmit_mp); 8605 8606 /* Assert that it is not deleted yet. */ 8607 ASSERT(save_ire->ire_ptpn != NULL); 8608 IRB_REFRELE(save_ire->ire_bucket); 8609 ire_refrele(save_ire); 8610 8611 if (copy_mp != NULL) { 8612 /* 8613 * If we found a (no)resolver, we ignore any 8614 * trailing top priority IRE_CACHE in further 8615 * loops. This ensures that we do not omit any 8616 * (no)resolver. 8617 * This IRE_CACHE, if any, will be processed 8618 * by another thread entering ip_newroute(). 8619 * IRE_CACHE entries, if any, will be processed 8620 * by another thread entering ip_newroute(), 8621 * (upon resolver response, for instance). 8622 * This aims to force parallel multirt 8623 * resolutions as soon as a packet must be sent. 8624 * In the best case, after the tx of only one 8625 * packet, all reachable routes are resolved. 8626 * Otherwise, the resolution of all RTF_MULTIRT 8627 * routes would require several emissions. 8628 */ 8629 multirt_flags &= ~MULTIRT_CACHEGW; 8630 8631 /* 8632 * Search for the next unresolved multirt 8633 * route. 8634 */ 8635 copy_mp = NULL; 8636 save_ire = NULL; 8637 ire = NULL; 8638 multirt_resolve_next = B_TRUE; 8639 continue; 8640 } 8641 8642 /* 8643 * Don't need sire anymore 8644 */ 8645 if (sire != NULL) 8646 ire_refrele(sire); 8647 8648 ipif_refrele(src_ipif); 8649 ill_refrele(dst_ill); 8650 return; 8651 } 8652 case IRE_IF_RESOLVER: 8653 /* 8654 * We can't build an IRE_CACHE yet, but at least we 8655 * found a resolver that can help. 8656 */ 8657 res_mp = dst_ill->ill_resolver_mp; 8658 if (!OK_RESOLVER_MP(res_mp)) 8659 break; 8660 8661 /* 8662 * To be at this point in the code with a non-zero gw 8663 * means that dst is reachable through a gateway that 8664 * we have never resolved. By changing dst to the gw 8665 * addr we resolve the gateway first. 8666 * When ire_add_then_send() tries to put the IP dg 8667 * to dst, it will reenter ip_newroute() at which 8668 * time we will find the IRE_CACHE for the gw and 8669 * create another IRE_CACHE in case IRE_CACHE above. 8670 */ 8671 if (gw != INADDR_ANY) { 8672 /* 8673 * The source ipif that was determined above was 8674 * relative to the destination address, not the 8675 * gateway's. If src_ipif was not taken out of 8676 * the IRE_IF_RESOLVER entry, we'll need to call 8677 * ipif_select_source() again. 8678 */ 8679 if (src_ipif != ire->ire_ipif) { 8680 ipif_refrele(src_ipif); 8681 src_ipif = ipif_select_source(dst_ill, 8682 gw, zoneid); 8683 if (src_ipif == NULL) { 8684 if (ip_debug > 2) { 8685 pr_addr_dbg( 8686 "ip_newroute: no " 8687 "src for gw %s ", 8688 AF_INET, &gw); 8689 printf("on " 8690 "interface %s\n", 8691 dst_ill->ill_name); 8692 } 8693 goto icmp_err_ret; 8694 } 8695 } 8696 save_dst = dst; 8697 dst = gw; 8698 gw = INADDR_ANY; 8699 } 8700 8701 /* 8702 * We obtain a partial IRE_CACHE which we will pass 8703 * along with the resolver query. When the response 8704 * comes back it will be there ready for us to add. 8705 * The ire_max_frag is atomically set under the 8706 * irebucket lock in ire_add_v[46]. 8707 */ 8708 8709 ire = ire_create_mp( 8710 (uchar_t *)&dst, /* dest address */ 8711 (uchar_t *)&ip_g_all_ones, /* mask */ 8712 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8713 (uchar_t *)&gw, /* gateway address */ 8714 NULL, /* ire_max_frag */ 8715 NULL, /* no src nce */ 8716 dst_ill->ill_rq, /* recv-from queue */ 8717 dst_ill->ill_wq, /* send-to queue */ 8718 IRE_CACHE, 8719 src_ipif, /* Interface ipif */ 8720 save_ire->ire_mask, /* Parent mask */ 8721 0, 8722 save_ire->ire_ihandle, /* Interface handle */ 8723 0, /* flags if any */ 8724 &(save_ire->ire_uinfo), 8725 NULL, 8726 NULL, 8727 ipst); 8728 8729 if (ire == NULL) { 8730 ire_refrele(save_ire); 8731 break; 8732 } 8733 8734 if ((sire != NULL) && 8735 (sire->ire_flags & RTF_MULTIRT)) { 8736 copy_mp = copymsg(first_mp); 8737 if (copy_mp != NULL) 8738 MULTIRT_DEBUG_TAG(copy_mp); 8739 } 8740 8741 ire->ire_marks |= ire_marks; 8742 8743 /* 8744 * Construct message chain for the resolver 8745 * of the form: 8746 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8747 * Packet could contain a IPSEC_OUT mp. 8748 * 8749 * NOTE : ire will be added later when the response 8750 * comes back from ARP. If the response does not 8751 * come back, ARP frees the packet. For this reason, 8752 * we can't REFHOLD the bucket of save_ire to prevent 8753 * deletions. We may not be able to REFRELE the bucket 8754 * if the response never comes back. Thus, before 8755 * adding the ire, ire_add_v4 will make sure that the 8756 * interface route does not get deleted. This is the 8757 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8758 * where we can always prevent deletions because of 8759 * the synchronous nature of adding IRES i.e 8760 * ire_add_then_send is called after creating the IRE. 8761 */ 8762 ASSERT(ire->ire_mp != NULL); 8763 ire->ire_mp->b_cont = first_mp; 8764 /* Have saved_mp handy, for cleanup if canput fails */ 8765 saved_mp = mp; 8766 mp = copyb(res_mp); 8767 if (mp == NULL) { 8768 /* Prepare for cleanup */ 8769 mp = saved_mp; /* pkt */ 8770 ire_delete(ire); /* ire_mp */ 8771 ire = NULL; 8772 ire_refrele(save_ire); 8773 if (copy_mp != NULL) { 8774 MULTIRT_DEBUG_UNTAG(copy_mp); 8775 freemsg(copy_mp); 8776 copy_mp = NULL; 8777 } 8778 break; 8779 } 8780 linkb(mp, ire->ire_mp); 8781 8782 /* 8783 * Fill in the source and dest addrs for the resolver. 8784 * NOTE: this depends on memory layouts imposed by 8785 * ill_init(). 8786 */ 8787 areq = (areq_t *)mp->b_rptr; 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_sender_addr_offset); 8790 *addrp = save_ire->ire_src_addr; 8791 8792 ire_refrele(save_ire); 8793 addrp = (ipaddr_t *)((char *)areq + 8794 areq->areq_target_addr_offset); 8795 *addrp = dst; 8796 /* Up to the resolver. */ 8797 if (canputnext(dst_ill->ill_rq) && 8798 !(dst_ill->ill_arp_closing)) { 8799 putnext(dst_ill->ill_rq, mp); 8800 ire = NULL; 8801 if (copy_mp != NULL) { 8802 /* 8803 * If we found a resolver, we ignore 8804 * any trailing top priority IRE_CACHE 8805 * in the further loops. This ensures 8806 * that we do not omit any resolver. 8807 * IRE_CACHE entries, if any, will be 8808 * processed next time we enter 8809 * ip_newroute(). 8810 */ 8811 multirt_flags &= ~MULTIRT_CACHEGW; 8812 /* 8813 * Search for the next unresolved 8814 * multirt route. 8815 */ 8816 first_mp = copy_mp; 8817 copy_mp = NULL; 8818 /* Prepare the next resolution loop. */ 8819 mp = first_mp; 8820 EXTRACT_PKT_MP(mp, first_mp, 8821 mctl_present); 8822 if (mctl_present) 8823 io = (ipsec_out_t *) 8824 first_mp->b_rptr; 8825 ipha = (ipha_t *)mp->b_rptr; 8826 8827 ASSERT(sire != NULL); 8828 8829 dst = save_dst; 8830 multirt_resolve_next = B_TRUE; 8831 continue; 8832 } 8833 8834 if (sire != NULL) 8835 ire_refrele(sire); 8836 8837 /* 8838 * The response will come back in ip_wput 8839 * with db_type IRE_DB_TYPE. 8840 */ 8841 ipif_refrele(src_ipif); 8842 ill_refrele(dst_ill); 8843 return; 8844 } else { 8845 /* Prepare for cleanup */ 8846 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8847 mp); 8848 mp->b_cont = NULL; 8849 freeb(mp); /* areq */ 8850 /* 8851 * this is an ire that is not added to the 8852 * cache. ire_freemblk will handle the release 8853 * of any resources associated with the ire. 8854 */ 8855 ire_delete(ire); /* ire_mp */ 8856 mp = saved_mp; /* pkt */ 8857 ire = NULL; 8858 if (copy_mp != NULL) { 8859 MULTIRT_DEBUG_UNTAG(copy_mp); 8860 freemsg(copy_mp); 8861 copy_mp = NULL; 8862 } 8863 break; 8864 } 8865 default: 8866 break; 8867 } 8868 } while (multirt_resolve_next); 8869 8870 ip1dbg(("ip_newroute: dropped\n")); 8871 /* Did this packet originate externally? */ 8872 if (mp->b_prev) { 8873 mp->b_next = NULL; 8874 mp->b_prev = NULL; 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8876 } else { 8877 if (dst_ill != NULL) { 8878 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8879 } else { 8880 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8881 } 8882 } 8883 ASSERT(copy_mp == NULL); 8884 MULTIRT_DEBUG_UNTAG(first_mp); 8885 freemsg(first_mp); 8886 if (ire != NULL) 8887 ire_refrele(ire); 8888 if (sire != NULL) 8889 ire_refrele(sire); 8890 if (src_ipif != NULL) 8891 ipif_refrele(src_ipif); 8892 if (dst_ill != NULL) 8893 ill_refrele(dst_ill); 8894 return; 8895 8896 icmp_err_ret: 8897 ip1dbg(("ip_newroute: no route\n")); 8898 if (src_ipif != NULL) 8899 ipif_refrele(src_ipif); 8900 if (dst_ill != NULL) 8901 ill_refrele(dst_ill); 8902 if (sire != NULL) 8903 ire_refrele(sire); 8904 /* Did this packet originate externally? */ 8905 if (mp->b_prev) { 8906 mp->b_next = NULL; 8907 mp->b_prev = NULL; 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8909 q = WR(q); 8910 } else { 8911 /* 8912 * There is no outgoing ill, so just increment the 8913 * system MIB. 8914 */ 8915 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8916 /* 8917 * Since ip_wput() isn't close to finished, we fill 8918 * in enough of the header for credible error reporting. 8919 */ 8920 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8921 /* Failed */ 8922 MULTIRT_DEBUG_UNTAG(first_mp); 8923 freemsg(first_mp); 8924 if (ire != NULL) 8925 ire_refrele(ire); 8926 return; 8927 } 8928 } 8929 8930 /* 8931 * At this point we will have ire only if RTF_BLACKHOLE 8932 * or RTF_REJECT flags are set on the IRE. It will not 8933 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8934 */ 8935 if (ire != NULL) { 8936 if (ire->ire_flags & RTF_BLACKHOLE) { 8937 ire_refrele(ire); 8938 MULTIRT_DEBUG_UNTAG(first_mp); 8939 freemsg(first_mp); 8940 return; 8941 } 8942 ire_refrele(ire); 8943 } 8944 if (ip_source_routed(ipha, ipst)) { 8945 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8946 zoneid, ipst); 8947 return; 8948 } 8949 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8950 } 8951 8952 ip_opt_info_t zero_info; 8953 8954 /* 8955 * IPv4 - 8956 * ip_newroute_ipif is called by ip_wput_multicast and 8957 * ip_rput_forward_multicast whenever we need to send 8958 * out a packet to a destination address for which we do not have specific 8959 * routing information. It is used when the packet will be sent out 8960 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8961 * socket option is set or icmp error message wants to go out on a particular 8962 * interface for a unicast packet. 8963 * 8964 * In most cases, the destination address is resolved thanks to the ipif 8965 * intrinsic resolver. However, there are some cases where the call to 8966 * ip_newroute_ipif must take into account the potential presence of 8967 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8968 * that uses the interface. This is specified through flags, 8969 * which can be a combination of: 8970 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8971 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8972 * and flags. Additionally, the packet source address has to be set to 8973 * the specified address. The caller is thus expected to set this flag 8974 * if the packet has no specific source address yet. 8975 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8976 * flag, the resulting ire will inherit the flag. All unresolved routes 8977 * to the destination must be explored in the same call to 8978 * ip_newroute_ipif(). 8979 */ 8980 static void 8981 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8982 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8983 { 8984 areq_t *areq; 8985 ire_t *ire = NULL; 8986 mblk_t *res_mp; 8987 ipaddr_t *addrp; 8988 mblk_t *first_mp; 8989 ire_t *save_ire = NULL; 8990 ipif_t *src_ipif = NULL; 8991 ushort_t ire_marks = 0; 8992 ill_t *dst_ill = NULL; 8993 ipha_t *ipha; 8994 mblk_t *saved_mp; 8995 ire_t *fire = NULL; 8996 mblk_t *copy_mp = NULL; 8997 boolean_t multirt_resolve_next; 8998 boolean_t unspec_src; 8999 ipaddr_t ipha_dst; 9000 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9001 9002 /* 9003 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9004 * here for uniformity 9005 */ 9006 ipif_refhold(ipif); 9007 9008 /* 9009 * This loop is run only once in most cases. 9010 * We loop to resolve further routes only when the destination 9011 * can be reached through multiple RTF_MULTIRT-flagged ires. 9012 */ 9013 do { 9014 if (dst_ill != NULL) { 9015 ill_refrele(dst_ill); 9016 dst_ill = NULL; 9017 } 9018 if (src_ipif != NULL) { 9019 ipif_refrele(src_ipif); 9020 src_ipif = NULL; 9021 } 9022 multirt_resolve_next = B_FALSE; 9023 9024 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9025 ipif->ipif_ill->ill_name)); 9026 9027 first_mp = mp; 9028 if (DB_TYPE(mp) == M_CTL) 9029 mp = mp->b_cont; 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 /* 9033 * Save the packet destination address, we may need it after 9034 * the packet has been consumed. 9035 */ 9036 ipha_dst = ipha->ipha_dst; 9037 9038 /* 9039 * If the interface is a pt-pt interface we look for an 9040 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9041 * local_address and the pt-pt destination address. Otherwise 9042 * we just match the local address. 9043 * NOTE: dst could be different than ipha->ipha_dst in case 9044 * of sending igmp multicast packets over a point-to-point 9045 * connection. 9046 * Thus we must be careful enough to check ipha_dst to be a 9047 * multicast address, otherwise it will take xmit_if path for 9048 * multicast packets resulting into kernel stack overflow by 9049 * repeated calls to ip_newroute_ipif from ire_send(). 9050 */ 9051 if (CLASSD(ipha_dst) && 9052 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9053 goto err_ret; 9054 } 9055 9056 /* 9057 * We check if an IRE_OFFSUBNET for the addr that goes through 9058 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9059 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9060 * propagate its flags to the new ire. 9061 */ 9062 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9063 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9064 ip2dbg(("ip_newroute_ipif: " 9065 "ipif_lookup_multi_ire(" 9066 "ipif %p, dst %08x) = fire %p\n", 9067 (void *)ipif, ntohl(dst), (void *)fire)); 9068 } 9069 9070 /* 9071 * Note: While we pick a dst_ill we are really only 9072 * interested in the ill for load spreading. The source 9073 * ipif is determined by source address selection below. 9074 */ 9075 if (IS_IPMP(ipif->ipif_ill)) { 9076 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9077 9078 if (CLASSD(ipha_dst)) 9079 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9080 else 9081 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9082 } else { 9083 dst_ill = ipif->ipif_ill; 9084 ill_refhold(dst_ill); 9085 } 9086 9087 if (dst_ill == NULL) { 9088 if (ip_debug > 2) { 9089 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9090 "for dst %s\n", AF_INET, &dst); 9091 } 9092 goto err_ret; 9093 } 9094 9095 /* 9096 * Pick a source address preferring non-deprecated ones. 9097 * Unlike ip_newroute, we don't do any source address 9098 * selection here since for multicast it really does not help 9099 * in inbound load spreading as in the unicast case. 9100 */ 9101 if ((flags & RTF_SETSRC) && (fire != NULL) && 9102 (fire->ire_flags & RTF_SETSRC)) { 9103 /* 9104 * As requested by flags, an IRE_OFFSUBNET was looked up 9105 * on that interface. This ire has RTF_SETSRC flag, so 9106 * the source address of the packet must be changed. 9107 * Check that the ipif matching the requested source 9108 * address still exists. 9109 */ 9110 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9111 zoneid, NULL, NULL, NULL, NULL, ipst); 9112 } 9113 9114 unspec_src = (connp != NULL && connp->conn_unspec_src); 9115 9116 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9117 (IS_IPMP(ipif->ipif_ill) || 9118 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9119 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9120 (connp != NULL && ipif->ipif_zoneid != zoneid && 9121 ipif->ipif_zoneid != ALL_ZONES)) && 9122 (src_ipif == NULL) && 9123 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9124 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9125 if (src_ipif == NULL) { 9126 if (ip_debug > 2) { 9127 /* ip1dbg */ 9128 pr_addr_dbg("ip_newroute_ipif: " 9129 "no src for dst %s", 9130 AF_INET, &dst); 9131 } 9132 ip1dbg((" on interface %s\n", 9133 dst_ill->ill_name)); 9134 goto err_ret; 9135 } 9136 ipif_refrele(ipif); 9137 ipif = src_ipif; 9138 ipif_refhold(ipif); 9139 } 9140 if (src_ipif == NULL) { 9141 src_ipif = ipif; 9142 ipif_refhold(src_ipif); 9143 } 9144 9145 /* 9146 * Assign a source address while we have the conn. 9147 * We can't have ip_wput_ire pick a source address when the 9148 * packet returns from arp since conn_unspec_src might be set 9149 * and we lose the conn when going through arp. 9150 */ 9151 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9152 ipha->ipha_src = src_ipif->ipif_src_addr; 9153 9154 /* 9155 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9156 * that the outgoing interface does not have an interface ire. 9157 */ 9158 if (CLASSD(ipha_dst) && (connp == NULL || 9159 connp->conn_outgoing_ill == NULL) && 9160 infop->ip_opt_ill_index == 0) { 9161 /* ipif_to_ire returns an held ire */ 9162 ire = ipif_to_ire(ipif); 9163 if (ire == NULL) 9164 goto err_ret; 9165 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9166 goto err_ret; 9167 save_ire = ire; 9168 9169 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9170 "flags %04x\n", 9171 (void *)ire, (void *)ipif, flags)); 9172 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9173 (fire->ire_flags & RTF_MULTIRT)) { 9174 /* 9175 * As requested by flags, an IRE_OFFSUBNET was 9176 * looked up on that interface. This ire has 9177 * RTF_MULTIRT flag, so the resolution loop will 9178 * be re-entered to resolve additional routes on 9179 * other interfaces. For that purpose, a copy of 9180 * the packet is performed at this point. 9181 */ 9182 fire->ire_last_used_time = lbolt; 9183 copy_mp = copymsg(first_mp); 9184 if (copy_mp) { 9185 MULTIRT_DEBUG_TAG(copy_mp); 9186 } 9187 } 9188 if ((flags & RTF_SETSRC) && (fire != NULL) && 9189 (fire->ire_flags & RTF_SETSRC)) { 9190 /* 9191 * As requested by flags, an IRE_OFFSUBET was 9192 * looked up on that interface. This ire has 9193 * RTF_SETSRC flag, so the source address of the 9194 * packet must be changed. 9195 */ 9196 ipha->ipha_src = fire->ire_src_addr; 9197 } 9198 } else { 9199 /* 9200 * The only ways we can come here are: 9201 * 1) IP_BOUND_IF socket option is set 9202 * 2) SO_DONTROUTE socket option is set 9203 * 3) IP_PKTINFO option is passed in as ancillary data. 9204 * In all cases, the new ire will not be added 9205 * into cache table. 9206 */ 9207 ASSERT(connp == NULL || connp->conn_dontroute || 9208 connp->conn_outgoing_ill != NULL || 9209 infop->ip_opt_ill_index != 0); 9210 ire_marks |= IRE_MARK_NOADD; 9211 } 9212 9213 switch (ipif->ipif_net_type) { 9214 case IRE_IF_NORESOLVER: { 9215 /* We have what we need to build an IRE_CACHE. */ 9216 9217 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9218 (dst_ill->ill_resolver_mp == NULL)) { 9219 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9220 "for IRE_IF_NORESOLVER ire %p has " 9221 "no ill_resolver_mp\n", 9222 (void *)dst_ill, (void *)ire)); 9223 break; 9224 } 9225 9226 /* 9227 * The new ire inherits the IRE_OFFSUBNET flags 9228 * and source address, if this was requested. 9229 */ 9230 ire = ire_create( 9231 (uchar_t *)&dst, /* dest address */ 9232 (uchar_t *)&ip_g_all_ones, /* mask */ 9233 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9234 NULL, /* gateway address */ 9235 &ipif->ipif_mtu, 9236 NULL, /* no src nce */ 9237 dst_ill->ill_rq, /* recv-from queue */ 9238 dst_ill->ill_wq, /* send-to queue */ 9239 IRE_CACHE, 9240 src_ipif, 9241 (save_ire != NULL ? save_ire->ire_mask : 0), 9242 (fire != NULL) ? /* Parent handle */ 9243 fire->ire_phandle : 0, 9244 (save_ire != NULL) ? /* Interface handle */ 9245 save_ire->ire_ihandle : 0, 9246 (fire != NULL) ? 9247 (fire->ire_flags & 9248 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9249 (save_ire == NULL ? &ire_uinfo_null : 9250 &save_ire->ire_uinfo), 9251 NULL, 9252 NULL, 9253 ipst); 9254 9255 if (ire == NULL) { 9256 if (save_ire != NULL) 9257 ire_refrele(save_ire); 9258 break; 9259 } 9260 9261 ire->ire_marks |= ire_marks; 9262 9263 /* 9264 * If IRE_MARK_NOADD is set then we need to convert 9265 * the max_fragp to a useable value now. This is 9266 * normally done in ire_add_v[46]. We also need to 9267 * associate the ire with an nce (normally would be 9268 * done in ip_wput_nondata()). 9269 * 9270 * Note that IRE_MARK_NOADD packets created here 9271 * do not have a non-null ire_mp pointer. The null 9272 * value of ire_bucket indicates that they were 9273 * never added. 9274 */ 9275 if (ire->ire_marks & IRE_MARK_NOADD) { 9276 uint_t max_frag; 9277 9278 max_frag = *ire->ire_max_fragp; 9279 ire->ire_max_fragp = NULL; 9280 ire->ire_max_frag = max_frag; 9281 9282 if ((ire->ire_nce = ndp_lookup_v4( 9283 ire_to_ill(ire), 9284 (ire->ire_gateway_addr != INADDR_ANY ? 9285 &ire->ire_gateway_addr : &ire->ire_addr), 9286 B_FALSE)) == NULL) { 9287 if (save_ire != NULL) 9288 ire_refrele(save_ire); 9289 break; 9290 } 9291 ASSERT(ire->ire_nce->nce_state == 9292 ND_REACHABLE); 9293 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9294 } 9295 9296 /* Prevent save_ire from getting deleted */ 9297 if (save_ire != NULL) { 9298 IRB_REFHOLD(save_ire->ire_bucket); 9299 /* Has it been removed already ? */ 9300 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9301 IRB_REFRELE(save_ire->ire_bucket); 9302 ire_refrele(save_ire); 9303 break; 9304 } 9305 } 9306 9307 ire_add_then_send(q, ire, first_mp); 9308 9309 /* Assert that save_ire is not deleted yet. */ 9310 if (save_ire != NULL) { 9311 ASSERT(save_ire->ire_ptpn != NULL); 9312 IRB_REFRELE(save_ire->ire_bucket); 9313 ire_refrele(save_ire); 9314 save_ire = NULL; 9315 } 9316 if (fire != NULL) { 9317 ire_refrele(fire); 9318 fire = NULL; 9319 } 9320 9321 /* 9322 * the resolution loop is re-entered if this 9323 * was requested through flags and if we 9324 * actually are in a multirouting case. 9325 */ 9326 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9327 boolean_t need_resolve = 9328 ire_multirt_need_resolve(ipha_dst, 9329 msg_getlabel(copy_mp), ipst); 9330 if (!need_resolve) { 9331 MULTIRT_DEBUG_UNTAG(copy_mp); 9332 freemsg(copy_mp); 9333 copy_mp = NULL; 9334 } else { 9335 /* 9336 * ipif_lookup_group() calls 9337 * ire_lookup_multi() that uses 9338 * ire_ftable_lookup() to find 9339 * an IRE_INTERFACE for the group. 9340 * In the multirt case, 9341 * ire_lookup_multi() then invokes 9342 * ire_multirt_lookup() to find 9343 * the next resolvable ire. 9344 * As a result, we obtain an new 9345 * interface, derived from the 9346 * next ire. 9347 */ 9348 ipif_refrele(ipif); 9349 ipif = ipif_lookup_group(ipha_dst, 9350 zoneid, ipst); 9351 ip2dbg(("ip_newroute_ipif: " 9352 "multirt dst %08x, ipif %p\n", 9353 htonl(dst), (void *)ipif)); 9354 if (ipif != NULL) { 9355 mp = copy_mp; 9356 copy_mp = NULL; 9357 multirt_resolve_next = B_TRUE; 9358 continue; 9359 } else { 9360 freemsg(copy_mp); 9361 } 9362 } 9363 } 9364 if (ipif != NULL) 9365 ipif_refrele(ipif); 9366 ill_refrele(dst_ill); 9367 ipif_refrele(src_ipif); 9368 return; 9369 } 9370 case IRE_IF_RESOLVER: 9371 /* 9372 * We can't build an IRE_CACHE yet, but at least 9373 * we found a resolver that can help. 9374 */ 9375 res_mp = dst_ill->ill_resolver_mp; 9376 if (!OK_RESOLVER_MP(res_mp)) 9377 break; 9378 9379 /* 9380 * We obtain a partial IRE_CACHE which we will pass 9381 * along with the resolver query. When the response 9382 * comes back it will be there ready for us to add. 9383 * The new ire inherits the IRE_OFFSUBNET flags 9384 * and source address, if this was requested. 9385 * The ire_max_frag is atomically set under the 9386 * irebucket lock in ire_add_v[46]. Only in the 9387 * case of IRE_MARK_NOADD, we set it here itself. 9388 */ 9389 ire = ire_create_mp( 9390 (uchar_t *)&dst, /* dest address */ 9391 (uchar_t *)&ip_g_all_ones, /* mask */ 9392 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9393 NULL, /* gateway address */ 9394 (ire_marks & IRE_MARK_NOADD) ? 9395 ipif->ipif_mtu : 0, /* max_frag */ 9396 NULL, /* no src nce */ 9397 dst_ill->ill_rq, /* recv-from queue */ 9398 dst_ill->ill_wq, /* send-to queue */ 9399 IRE_CACHE, 9400 src_ipif, 9401 (save_ire != NULL ? save_ire->ire_mask : 0), 9402 (fire != NULL) ? /* Parent handle */ 9403 fire->ire_phandle : 0, 9404 (save_ire != NULL) ? /* Interface handle */ 9405 save_ire->ire_ihandle : 0, 9406 (fire != NULL) ? /* flags if any */ 9407 (fire->ire_flags & 9408 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9409 (save_ire == NULL ? &ire_uinfo_null : 9410 &save_ire->ire_uinfo), 9411 NULL, 9412 NULL, 9413 ipst); 9414 9415 if (save_ire != NULL) { 9416 ire_refrele(save_ire); 9417 save_ire = NULL; 9418 } 9419 if (ire == NULL) 9420 break; 9421 9422 ire->ire_marks |= ire_marks; 9423 /* 9424 * Construct message chain for the resolver of the 9425 * form: 9426 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9427 * 9428 * NOTE : ire will be added later when the response 9429 * comes back from ARP. If the response does not 9430 * come back, ARP frees the packet. For this reason, 9431 * we can't REFHOLD the bucket of save_ire to prevent 9432 * deletions. We may not be able to REFRELE the 9433 * bucket if the response never comes back. 9434 * Thus, before adding the ire, ire_add_v4 will make 9435 * sure that the interface route does not get deleted. 9436 * This is the only case unlike ip_newroute_v6, 9437 * ip_newroute_ipif_v6 where we can always prevent 9438 * deletions because ire_add_then_send is called after 9439 * creating the IRE. 9440 * If IRE_MARK_NOADD is set, then ire_add_then_send 9441 * does not add this IRE into the IRE CACHE. 9442 */ 9443 ASSERT(ire->ire_mp != NULL); 9444 ire->ire_mp->b_cont = first_mp; 9445 /* Have saved_mp handy, for cleanup if canput fails */ 9446 saved_mp = mp; 9447 mp = copyb(res_mp); 9448 if (mp == NULL) { 9449 /* Prepare for cleanup */ 9450 mp = saved_mp; /* pkt */ 9451 ire_delete(ire); /* ire_mp */ 9452 ire = NULL; 9453 if (copy_mp != NULL) { 9454 MULTIRT_DEBUG_UNTAG(copy_mp); 9455 freemsg(copy_mp); 9456 copy_mp = NULL; 9457 } 9458 break; 9459 } 9460 linkb(mp, ire->ire_mp); 9461 9462 /* 9463 * Fill in the source and dest addrs for the resolver. 9464 * NOTE: this depends on memory layouts imposed by 9465 * ill_init(). There are corner cases above where we 9466 * might've created the IRE with an INADDR_ANY source 9467 * address (e.g., if the zeroth ipif on an underlying 9468 * ill in an IPMP group is 0.0.0.0, but another ipif 9469 * on the ill has a usable test address). If so, tell 9470 * ARP to use ipha_src as its sender address. 9471 */ 9472 areq = (areq_t *)mp->b_rptr; 9473 addrp = (ipaddr_t *)((char *)areq + 9474 areq->areq_sender_addr_offset); 9475 if (ire->ire_src_addr != INADDR_ANY) 9476 *addrp = ire->ire_src_addr; 9477 else 9478 *addrp = ipha->ipha_src; 9479 addrp = (ipaddr_t *)((char *)areq + 9480 areq->areq_target_addr_offset); 9481 *addrp = dst; 9482 /* Up to the resolver. */ 9483 if (canputnext(dst_ill->ill_rq) && 9484 !(dst_ill->ill_arp_closing)) { 9485 putnext(dst_ill->ill_rq, mp); 9486 /* 9487 * The response will come back in ip_wput 9488 * with db_type IRE_DB_TYPE. 9489 */ 9490 } else { 9491 mp->b_cont = NULL; 9492 freeb(mp); /* areq */ 9493 ire_delete(ire); /* ire_mp */ 9494 saved_mp->b_next = NULL; 9495 saved_mp->b_prev = NULL; 9496 freemsg(first_mp); /* pkt */ 9497 ip2dbg(("ip_newroute_ipif: dropped\n")); 9498 } 9499 9500 if (fire != NULL) { 9501 ire_refrele(fire); 9502 fire = NULL; 9503 } 9504 9505 /* 9506 * The resolution loop is re-entered if this was 9507 * requested through flags and we actually are 9508 * in a multirouting case. 9509 */ 9510 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9511 boolean_t need_resolve = 9512 ire_multirt_need_resolve(ipha_dst, 9513 msg_getlabel(copy_mp), ipst); 9514 if (!need_resolve) { 9515 MULTIRT_DEBUG_UNTAG(copy_mp); 9516 freemsg(copy_mp); 9517 copy_mp = NULL; 9518 } else { 9519 /* 9520 * ipif_lookup_group() calls 9521 * ire_lookup_multi() that uses 9522 * ire_ftable_lookup() to find 9523 * an IRE_INTERFACE for the group. 9524 * In the multirt case, 9525 * ire_lookup_multi() then invokes 9526 * ire_multirt_lookup() to find 9527 * the next resolvable ire. 9528 * As a result, we obtain an new 9529 * interface, derived from the 9530 * next ire. 9531 */ 9532 ipif_refrele(ipif); 9533 ipif = ipif_lookup_group(ipha_dst, 9534 zoneid, ipst); 9535 if (ipif != NULL) { 9536 mp = copy_mp; 9537 copy_mp = NULL; 9538 multirt_resolve_next = B_TRUE; 9539 continue; 9540 } else { 9541 freemsg(copy_mp); 9542 } 9543 } 9544 } 9545 if (ipif != NULL) 9546 ipif_refrele(ipif); 9547 ill_refrele(dst_ill); 9548 ipif_refrele(src_ipif); 9549 return; 9550 default: 9551 break; 9552 } 9553 } while (multirt_resolve_next); 9554 9555 err_ret: 9556 ip2dbg(("ip_newroute_ipif: dropped\n")); 9557 if (fire != NULL) 9558 ire_refrele(fire); 9559 ipif_refrele(ipif); 9560 /* Did this packet originate externally? */ 9561 if (dst_ill != NULL) 9562 ill_refrele(dst_ill); 9563 if (src_ipif != NULL) 9564 ipif_refrele(src_ipif); 9565 if (mp->b_prev || mp->b_next) { 9566 mp->b_next = NULL; 9567 mp->b_prev = NULL; 9568 } else { 9569 /* 9570 * Since ip_wput() isn't close to finished, we fill 9571 * in enough of the header for credible error reporting. 9572 */ 9573 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9574 /* Failed */ 9575 freemsg(first_mp); 9576 if (ire != NULL) 9577 ire_refrele(ire); 9578 return; 9579 } 9580 } 9581 /* 9582 * At this point we will have ire only if RTF_BLACKHOLE 9583 * or RTF_REJECT flags are set on the IRE. It will not 9584 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9585 */ 9586 if (ire != NULL) { 9587 if (ire->ire_flags & RTF_BLACKHOLE) { 9588 ire_refrele(ire); 9589 freemsg(first_mp); 9590 return; 9591 } 9592 ire_refrele(ire); 9593 } 9594 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9595 } 9596 9597 /* Name/Value Table Lookup Routine */ 9598 char * 9599 ip_nv_lookup(nv_t *nv, int value) 9600 { 9601 if (!nv) 9602 return (NULL); 9603 for (; nv->nv_name; nv++) { 9604 if (nv->nv_value == value) 9605 return (nv->nv_name); 9606 } 9607 return ("unknown"); 9608 } 9609 9610 /* 9611 * This is a module open, i.e. this is a control stream for access 9612 * to a DLPI device. We allocate an ill_t as the instance data in 9613 * this case. 9614 */ 9615 int 9616 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9617 { 9618 ill_t *ill; 9619 int err; 9620 zoneid_t zoneid; 9621 netstack_t *ns; 9622 ip_stack_t *ipst; 9623 9624 /* 9625 * Prevent unprivileged processes from pushing IP so that 9626 * they can't send raw IP. 9627 */ 9628 if (secpolicy_net_rawaccess(credp) != 0) 9629 return (EPERM); 9630 9631 ns = netstack_find_by_cred(credp); 9632 ASSERT(ns != NULL); 9633 ipst = ns->netstack_ip; 9634 ASSERT(ipst != NULL); 9635 9636 /* 9637 * For exclusive stacks we set the zoneid to zero 9638 * to make IP operate as if in the global zone. 9639 */ 9640 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9641 zoneid = GLOBAL_ZONEID; 9642 else 9643 zoneid = crgetzoneid(credp); 9644 9645 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9646 q->q_ptr = WR(q)->q_ptr = ill; 9647 ill->ill_ipst = ipst; 9648 ill->ill_zoneid = zoneid; 9649 9650 /* 9651 * ill_init initializes the ill fields and then sends down 9652 * down a DL_INFO_REQ after calling qprocson. 9653 */ 9654 err = ill_init(q, ill); 9655 if (err != 0) { 9656 mi_free(ill); 9657 netstack_rele(ipst->ips_netstack); 9658 q->q_ptr = NULL; 9659 WR(q)->q_ptr = NULL; 9660 return (err); 9661 } 9662 9663 /* ill_init initializes the ipsq marking this thread as writer */ 9664 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9665 /* Wait for the DL_INFO_ACK */ 9666 mutex_enter(&ill->ill_lock); 9667 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9668 /* 9669 * Return value of 0 indicates a pending signal. 9670 */ 9671 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9672 if (err == 0) { 9673 mutex_exit(&ill->ill_lock); 9674 (void) ip_close(q, 0); 9675 return (EINTR); 9676 } 9677 } 9678 mutex_exit(&ill->ill_lock); 9679 9680 /* 9681 * ip_rput_other could have set an error in ill_error on 9682 * receipt of M_ERROR. 9683 */ 9684 9685 err = ill->ill_error; 9686 if (err != 0) { 9687 (void) ip_close(q, 0); 9688 return (err); 9689 } 9690 9691 ill->ill_credp = credp; 9692 crhold(credp); 9693 9694 mutex_enter(&ipst->ips_ip_mi_lock); 9695 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9696 credp); 9697 mutex_exit(&ipst->ips_ip_mi_lock); 9698 if (err) { 9699 (void) ip_close(q, 0); 9700 return (err); 9701 } 9702 return (0); 9703 } 9704 9705 /* For /dev/ip aka AF_INET open */ 9706 int 9707 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9708 { 9709 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9710 } 9711 9712 /* For /dev/ip6 aka AF_INET6 open */ 9713 int 9714 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9715 { 9716 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9717 } 9718 9719 /* IP open routine. */ 9720 int 9721 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9722 boolean_t isv6) 9723 { 9724 conn_t *connp; 9725 major_t maj; 9726 zoneid_t zoneid; 9727 netstack_t *ns; 9728 ip_stack_t *ipst; 9729 9730 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9731 9732 /* Allow reopen. */ 9733 if (q->q_ptr != NULL) 9734 return (0); 9735 9736 if (sflag & MODOPEN) { 9737 /* This is a module open */ 9738 return (ip_modopen(q, devp, flag, sflag, credp)); 9739 } 9740 9741 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9742 /* 9743 * Non streams based socket looking for a stream 9744 * to access IP 9745 */ 9746 return (ip_helper_stream_setup(q, devp, flag, sflag, 9747 credp, isv6)); 9748 } 9749 9750 ns = netstack_find_by_cred(credp); 9751 ASSERT(ns != NULL); 9752 ipst = ns->netstack_ip; 9753 ASSERT(ipst != NULL); 9754 9755 /* 9756 * For exclusive stacks we set the zoneid to zero 9757 * to make IP operate as if in the global zone. 9758 */ 9759 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9760 zoneid = GLOBAL_ZONEID; 9761 else 9762 zoneid = crgetzoneid(credp); 9763 9764 /* 9765 * We are opening as a device. This is an IP client stream, and we 9766 * allocate an conn_t as the instance data. 9767 */ 9768 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9769 9770 /* 9771 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9772 * done by netstack_find_by_cred() 9773 */ 9774 netstack_rele(ipst->ips_netstack); 9775 9776 connp->conn_zoneid = zoneid; 9777 connp->conn_sqp = NULL; 9778 connp->conn_initial_sqp = NULL; 9779 connp->conn_final_sqp = NULL; 9780 9781 connp->conn_upq = q; 9782 q->q_ptr = WR(q)->q_ptr = connp; 9783 9784 if (flag & SO_SOCKSTR) 9785 connp->conn_flags |= IPCL_SOCKET; 9786 9787 /* Minor tells us which /dev entry was opened */ 9788 if (isv6) { 9789 connp->conn_flags |= IPCL_ISV6; 9790 connp->conn_af_isv6 = B_TRUE; 9791 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9792 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9793 } else { 9794 connp->conn_af_isv6 = B_FALSE; 9795 connp->conn_pkt_isv6 = B_FALSE; 9796 } 9797 9798 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9799 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9800 connp->conn_minor_arena = ip_minor_arena_la; 9801 } else { 9802 /* 9803 * Either minor numbers in the large arena were exhausted 9804 * or a non socket application is doing the open. 9805 * Try to allocate from the small arena. 9806 */ 9807 if ((connp->conn_dev = 9808 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9809 /* CONN_DEC_REF takes care of netstack_rele() */ 9810 q->q_ptr = WR(q)->q_ptr = NULL; 9811 CONN_DEC_REF(connp); 9812 return (EBUSY); 9813 } 9814 connp->conn_minor_arena = ip_minor_arena_sa; 9815 } 9816 9817 maj = getemajor(*devp); 9818 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9819 9820 /* 9821 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9822 */ 9823 connp->conn_cred = credp; 9824 9825 /* 9826 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9827 */ 9828 connp->conn_recv = ip_conn_input; 9829 9830 crhold(connp->conn_cred); 9831 9832 /* 9833 * If the caller has the process-wide flag set, then default to MAC 9834 * exempt mode. This allows read-down to unlabeled hosts. 9835 */ 9836 if (getpflags(NET_MAC_AWARE, credp) != 0) 9837 connp->conn_mac_exempt = B_TRUE; 9838 9839 connp->conn_rq = q; 9840 connp->conn_wq = WR(q); 9841 9842 /* Non-zero default values */ 9843 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9844 9845 /* 9846 * Make the conn globally visible to walkers 9847 */ 9848 ASSERT(connp->conn_ref == 1); 9849 mutex_enter(&connp->conn_lock); 9850 connp->conn_state_flags &= ~CONN_INCIPIENT; 9851 mutex_exit(&connp->conn_lock); 9852 9853 qprocson(q); 9854 9855 return (0); 9856 } 9857 9858 /* 9859 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9860 * Note that there is no race since either ip_output function works - it 9861 * is just an optimization to enter the best ip_output routine directly. 9862 */ 9863 void 9864 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9865 ip_stack_t *ipst) 9866 { 9867 if (isv6) { 9868 if (bump_mib) { 9869 BUMP_MIB(&ipst->ips_ip6_mib, 9870 ipIfStatsOutSwitchIPVersion); 9871 } 9872 connp->conn_send = ip_output_v6; 9873 connp->conn_pkt_isv6 = B_TRUE; 9874 } else { 9875 if (bump_mib) { 9876 BUMP_MIB(&ipst->ips_ip_mib, 9877 ipIfStatsOutSwitchIPVersion); 9878 } 9879 connp->conn_send = ip_output; 9880 connp->conn_pkt_isv6 = B_FALSE; 9881 } 9882 9883 } 9884 9885 /* 9886 * See if IPsec needs loading because of the options in mp. 9887 */ 9888 static boolean_t 9889 ipsec_opt_present(mblk_t *mp) 9890 { 9891 uint8_t *optcp, *next_optcp, *opt_endcp; 9892 struct opthdr *opt; 9893 struct T_opthdr *topt; 9894 int opthdr_len; 9895 t_uscalar_t optname, optlevel; 9896 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9897 ipsec_req_t *ipsr; 9898 9899 /* 9900 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9901 * return TRUE. 9902 */ 9903 9904 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9905 opt_endcp = optcp + tor->OPT_length; 9906 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9907 opthdr_len = sizeof (struct T_opthdr); 9908 } else { /* O_OPTMGMT_REQ */ 9909 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9910 opthdr_len = sizeof (struct opthdr); 9911 } 9912 for (; optcp < opt_endcp; optcp = next_optcp) { 9913 if (optcp + opthdr_len > opt_endcp) 9914 return (B_FALSE); /* Not enough option header. */ 9915 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9916 topt = (struct T_opthdr *)optcp; 9917 optlevel = topt->level; 9918 optname = topt->name; 9919 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9920 } else { 9921 opt = (struct opthdr *)optcp; 9922 optlevel = opt->level; 9923 optname = opt->name; 9924 next_optcp = optcp + opthdr_len + 9925 _TPI_ALIGN_OPT(opt->len); 9926 } 9927 if ((next_optcp < optcp) || /* wraparound pointer space */ 9928 ((next_optcp >= opt_endcp) && /* last option bad len */ 9929 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9930 return (B_FALSE); /* bad option buffer */ 9931 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9932 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9933 /* 9934 * Check to see if it's an all-bypass or all-zeroes 9935 * IPsec request. Don't bother loading IPsec if 9936 * the socket doesn't want to use it. (A good example 9937 * is a bypass request.) 9938 * 9939 * Basically, if any of the non-NEVER bits are set, 9940 * load IPsec. 9941 */ 9942 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9943 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9944 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9945 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9946 != 0) 9947 return (B_TRUE); 9948 } 9949 } 9950 return (B_FALSE); 9951 } 9952 9953 /* 9954 * If conn is is waiting for ipsec to finish loading, kick it. 9955 */ 9956 /* ARGSUSED */ 9957 static void 9958 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9959 { 9960 t_scalar_t optreq_prim; 9961 mblk_t *mp; 9962 cred_t *cr; 9963 int err = 0; 9964 9965 /* 9966 * This function is called, after ipsec loading is complete. 9967 * Since IP checks exclusively and atomically (i.e it prevents 9968 * ipsec load from completing until ip_optcom_req completes) 9969 * whether ipsec load is complete, there cannot be a race with IP 9970 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9971 */ 9972 mutex_enter(&connp->conn_lock); 9973 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9974 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9975 mp = connp->conn_ipsec_opt_mp; 9976 connp->conn_ipsec_opt_mp = NULL; 9977 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9978 mutex_exit(&connp->conn_lock); 9979 9980 /* 9981 * All Solaris components should pass a db_credp 9982 * for this TPI message, hence we ASSERT. 9983 * But in case there is some other M_PROTO that looks 9984 * like a TPI message sent by some other kernel 9985 * component, we check and return an error. 9986 */ 9987 cr = msg_getcred(mp, NULL); 9988 ASSERT(cr != NULL); 9989 if (cr == NULL) { 9990 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9991 if (mp != NULL) 9992 qreply(connp->conn_wq, mp); 9993 return; 9994 } 9995 9996 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9997 9998 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9999 if (optreq_prim == T_OPTMGMT_REQ) { 10000 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10001 &ip_opt_obj, B_FALSE); 10002 } else { 10003 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10004 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10005 &ip_opt_obj, B_FALSE); 10006 } 10007 if (err != EINPROGRESS) 10008 CONN_OPER_PENDING_DONE(connp); 10009 return; 10010 } 10011 mutex_exit(&connp->conn_lock); 10012 } 10013 10014 /* 10015 * Called from the ipsec_loader thread, outside any perimeter, to tell 10016 * ip qenable any of the queues waiting for the ipsec loader to 10017 * complete. 10018 */ 10019 void 10020 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10021 { 10022 netstack_t *ns = ipss->ipsec_netstack; 10023 10024 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10025 } 10026 10027 /* 10028 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10029 * determines the grp on which it has to become exclusive, queues the mp 10030 * and IPSQ draining restarts the optmgmt 10031 */ 10032 static boolean_t 10033 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10034 { 10035 conn_t *connp = Q_TO_CONN(q); 10036 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10037 10038 /* 10039 * Take IPsec requests and treat them special. 10040 */ 10041 if (ipsec_opt_present(mp)) { 10042 /* First check if IPsec is loaded. */ 10043 mutex_enter(&ipss->ipsec_loader_lock); 10044 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10045 mutex_exit(&ipss->ipsec_loader_lock); 10046 return (B_FALSE); 10047 } 10048 mutex_enter(&connp->conn_lock); 10049 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10050 10051 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10052 connp->conn_ipsec_opt_mp = mp; 10053 mutex_exit(&connp->conn_lock); 10054 mutex_exit(&ipss->ipsec_loader_lock); 10055 10056 ipsec_loader_loadnow(ipss); 10057 return (B_TRUE); 10058 } 10059 return (B_FALSE); 10060 } 10061 10062 /* 10063 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10064 * all of them are copied to the conn_t. If the req is "zero", the policy is 10065 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10066 * fields. 10067 * We keep only the latest setting of the policy and thus policy setting 10068 * is not incremental/cumulative. 10069 * 10070 * Requests to set policies with multiple alternative actions will 10071 * go through a different API. 10072 */ 10073 int 10074 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10075 { 10076 uint_t ah_req = 0; 10077 uint_t esp_req = 0; 10078 uint_t se_req = 0; 10079 ipsec_selkey_t sel; 10080 ipsec_act_t *actp = NULL; 10081 uint_t nact; 10082 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10083 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10084 ipsec_policy_root_t *pr; 10085 ipsec_policy_head_t *ph; 10086 int fam; 10087 boolean_t is_pol_reset; 10088 int error = 0; 10089 netstack_t *ns = connp->conn_netstack; 10090 ip_stack_t *ipst = ns->netstack_ip; 10091 ipsec_stack_t *ipss = ns->netstack_ipsec; 10092 10093 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10094 10095 /* 10096 * The IP_SEC_OPT option does not allow variable length parameters, 10097 * hence a request cannot be NULL. 10098 */ 10099 if (req == NULL) 10100 return (EINVAL); 10101 10102 ah_req = req->ipsr_ah_req; 10103 esp_req = req->ipsr_esp_req; 10104 se_req = req->ipsr_self_encap_req; 10105 10106 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10107 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10108 return (EINVAL); 10109 10110 /* 10111 * Are we dealing with a request to reset the policy (i.e. 10112 * zero requests). 10113 */ 10114 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10115 (esp_req & REQ_MASK) == 0 && 10116 (se_req & REQ_MASK) == 0); 10117 10118 if (!is_pol_reset) { 10119 /* 10120 * If we couldn't load IPsec, fail with "protocol 10121 * not supported". 10122 * IPsec may not have been loaded for a request with zero 10123 * policies, so we don't fail in this case. 10124 */ 10125 mutex_enter(&ipss->ipsec_loader_lock); 10126 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10127 mutex_exit(&ipss->ipsec_loader_lock); 10128 return (EPROTONOSUPPORT); 10129 } 10130 mutex_exit(&ipss->ipsec_loader_lock); 10131 10132 /* 10133 * Test for valid requests. Invalid algorithms 10134 * need to be tested by IPsec code because new 10135 * algorithms can be added dynamically. 10136 */ 10137 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10138 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10139 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10140 return (EINVAL); 10141 } 10142 10143 /* 10144 * Only privileged users can issue these 10145 * requests. 10146 */ 10147 if (((ah_req & IPSEC_PREF_NEVER) || 10148 (esp_req & IPSEC_PREF_NEVER) || 10149 (se_req & IPSEC_PREF_NEVER)) && 10150 secpolicy_ip_config(cr, B_FALSE) != 0) { 10151 return (EPERM); 10152 } 10153 10154 /* 10155 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10156 * are mutually exclusive. 10157 */ 10158 if (((ah_req & REQ_MASK) == REQ_MASK) || 10159 ((esp_req & REQ_MASK) == REQ_MASK) || 10160 ((se_req & REQ_MASK) == REQ_MASK)) { 10161 /* Both of them are set */ 10162 return (EINVAL); 10163 } 10164 } 10165 10166 mutex_enter(&connp->conn_lock); 10167 10168 /* 10169 * If we have already cached policies in ip_bind_connected*(), don't 10170 * let them change now. We cache policies for connections 10171 * whose src,dst [addr, port] is known. 10172 */ 10173 if (connp->conn_policy_cached) { 10174 mutex_exit(&connp->conn_lock); 10175 return (EINVAL); 10176 } 10177 10178 /* 10179 * We have a zero policies, reset the connection policy if already 10180 * set. This will cause the connection to inherit the 10181 * global policy, if any. 10182 */ 10183 if (is_pol_reset) { 10184 if (connp->conn_policy != NULL) { 10185 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10186 connp->conn_policy = NULL; 10187 } 10188 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10189 connp->conn_in_enforce_policy = B_FALSE; 10190 connp->conn_out_enforce_policy = B_FALSE; 10191 mutex_exit(&connp->conn_lock); 10192 return (0); 10193 } 10194 10195 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10196 ipst->ips_netstack); 10197 if (ph == NULL) 10198 goto enomem; 10199 10200 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10201 if (actp == NULL) 10202 goto enomem; 10203 10204 /* 10205 * Always allocate IPv4 policy entries, since they can also 10206 * apply to ipv6 sockets being used in ipv4-compat mode. 10207 */ 10208 bzero(&sel, sizeof (sel)); 10209 sel.ipsl_valid = IPSL_IPV4; 10210 10211 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10212 ipst->ips_netstack); 10213 if (pin4 == NULL) 10214 goto enomem; 10215 10216 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10217 ipst->ips_netstack); 10218 if (pout4 == NULL) 10219 goto enomem; 10220 10221 if (connp->conn_af_isv6) { 10222 /* 10223 * We're looking at a v6 socket, also allocate the 10224 * v6-specific entries... 10225 */ 10226 sel.ipsl_valid = IPSL_IPV6; 10227 pin6 = ipsec_policy_create(&sel, actp, nact, 10228 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10229 if (pin6 == NULL) 10230 goto enomem; 10231 10232 pout6 = ipsec_policy_create(&sel, actp, nact, 10233 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10234 if (pout6 == NULL) 10235 goto enomem; 10236 10237 /* 10238 * .. and file them away in the right place. 10239 */ 10240 fam = IPSEC_AF_V6; 10241 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10242 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10243 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10244 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10245 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10246 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10247 } 10248 10249 ipsec_actvec_free(actp, nact); 10250 10251 /* 10252 * File the v4 policies. 10253 */ 10254 fam = IPSEC_AF_V4; 10255 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10256 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10257 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10258 10259 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10260 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10261 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10262 10263 /* 10264 * If the requests need security, set enforce_policy. 10265 * If the requests are IPSEC_PREF_NEVER, one should 10266 * still set conn_out_enforce_policy so that an ipsec_out 10267 * gets attached in ip_wput. This is needed so that 10268 * for connections that we don't cache policy in ip_bind, 10269 * if global policy matches in ip_wput_attach_policy, we 10270 * don't wrongly inherit global policy. Similarly, we need 10271 * to set conn_in_enforce_policy also so that we don't verify 10272 * policy wrongly. 10273 */ 10274 if ((ah_req & REQ_MASK) != 0 || 10275 (esp_req & REQ_MASK) != 0 || 10276 (se_req & REQ_MASK) != 0) { 10277 connp->conn_in_enforce_policy = B_TRUE; 10278 connp->conn_out_enforce_policy = B_TRUE; 10279 connp->conn_flags |= IPCL_CHECK_POLICY; 10280 } 10281 10282 mutex_exit(&connp->conn_lock); 10283 return (error); 10284 #undef REQ_MASK 10285 10286 /* 10287 * Common memory-allocation-failure exit path. 10288 */ 10289 enomem: 10290 mutex_exit(&connp->conn_lock); 10291 if (actp != NULL) 10292 ipsec_actvec_free(actp, nact); 10293 if (pin4 != NULL) 10294 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10295 if (pout4 != NULL) 10296 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10297 if (pin6 != NULL) 10298 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10299 if (pout6 != NULL) 10300 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10301 return (ENOMEM); 10302 } 10303 10304 /* 10305 * Only for options that pass in an IP addr. Currently only V4 options 10306 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10307 * So this function assumes level is IPPROTO_IP 10308 */ 10309 int 10310 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10311 mblk_t *first_mp) 10312 { 10313 ipif_t *ipif = NULL; 10314 int error; 10315 ill_t *ill; 10316 int zoneid; 10317 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10318 10319 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10320 10321 if (addr != INADDR_ANY || checkonly) { 10322 ASSERT(connp != NULL); 10323 zoneid = IPCL_ZONEID(connp); 10324 if (option == IP_NEXTHOP) { 10325 ipif = ipif_lookup_onlink_addr(addr, 10326 connp->conn_zoneid, ipst); 10327 } else { 10328 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10329 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10330 &error, ipst); 10331 } 10332 if (ipif == NULL) { 10333 if (error == EINPROGRESS) 10334 return (error); 10335 if ((option == IP_MULTICAST_IF) || 10336 (option == IP_NEXTHOP)) 10337 return (EHOSTUNREACH); 10338 else 10339 return (EINVAL); 10340 } else if (checkonly) { 10341 if (option == IP_MULTICAST_IF) { 10342 ill = ipif->ipif_ill; 10343 /* not supported by the virtual network iface */ 10344 if (IS_VNI(ill)) { 10345 ipif_refrele(ipif); 10346 return (EINVAL); 10347 } 10348 } 10349 ipif_refrele(ipif); 10350 return (0); 10351 } 10352 ill = ipif->ipif_ill; 10353 mutex_enter(&connp->conn_lock); 10354 mutex_enter(&ill->ill_lock); 10355 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10356 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10357 mutex_exit(&ill->ill_lock); 10358 mutex_exit(&connp->conn_lock); 10359 ipif_refrele(ipif); 10360 return (option == IP_MULTICAST_IF ? 10361 EHOSTUNREACH : EINVAL); 10362 } 10363 } else { 10364 mutex_enter(&connp->conn_lock); 10365 } 10366 10367 /* None of the options below are supported on the VNI */ 10368 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10369 mutex_exit(&ill->ill_lock); 10370 mutex_exit(&connp->conn_lock); 10371 ipif_refrele(ipif); 10372 return (EINVAL); 10373 } 10374 10375 switch (option) { 10376 case IP_MULTICAST_IF: 10377 connp->conn_multicast_ipif = ipif; 10378 break; 10379 case IP_NEXTHOP: 10380 connp->conn_nexthop_v4 = addr; 10381 connp->conn_nexthop_set = B_TRUE; 10382 break; 10383 } 10384 10385 if (ipif != NULL) { 10386 mutex_exit(&ill->ill_lock); 10387 mutex_exit(&connp->conn_lock); 10388 ipif_refrele(ipif); 10389 return (0); 10390 } 10391 mutex_exit(&connp->conn_lock); 10392 /* We succeded in cleared the option */ 10393 return (0); 10394 } 10395 10396 /* 10397 * For options that pass in an ifindex specifying the ill. V6 options always 10398 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10399 */ 10400 int 10401 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10402 int level, int option, mblk_t *first_mp) 10403 { 10404 ill_t *ill = NULL; 10405 int error = 0; 10406 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10407 10408 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10409 if (ifindex != 0) { 10410 ASSERT(connp != NULL); 10411 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10412 first_mp, ip_restart_optmgmt, &error, ipst); 10413 if (ill != NULL) { 10414 if (checkonly) { 10415 /* not supported by the virtual network iface */ 10416 if (IS_VNI(ill)) { 10417 ill_refrele(ill); 10418 return (EINVAL); 10419 } 10420 ill_refrele(ill); 10421 return (0); 10422 } 10423 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10424 0, NULL)) { 10425 ill_refrele(ill); 10426 ill = NULL; 10427 mutex_enter(&connp->conn_lock); 10428 goto setit; 10429 } 10430 mutex_enter(&connp->conn_lock); 10431 mutex_enter(&ill->ill_lock); 10432 if (ill->ill_state_flags & ILL_CONDEMNED) { 10433 mutex_exit(&ill->ill_lock); 10434 mutex_exit(&connp->conn_lock); 10435 ill_refrele(ill); 10436 ill = NULL; 10437 mutex_enter(&connp->conn_lock); 10438 } 10439 goto setit; 10440 } else if (error == EINPROGRESS) { 10441 return (error); 10442 } else { 10443 error = 0; 10444 } 10445 } 10446 mutex_enter(&connp->conn_lock); 10447 setit: 10448 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10449 10450 /* 10451 * The options below assume that the ILL (if any) transmits and/or 10452 * receives traffic. Neither of which is true for the virtual network 10453 * interface, so fail setting these on a VNI. 10454 */ 10455 if (IS_VNI(ill)) { 10456 ASSERT(ill != NULL); 10457 mutex_exit(&ill->ill_lock); 10458 mutex_exit(&connp->conn_lock); 10459 ill_refrele(ill); 10460 return (EINVAL); 10461 } 10462 10463 if (level == IPPROTO_IP) { 10464 switch (option) { 10465 case IP_BOUND_IF: 10466 connp->conn_incoming_ill = ill; 10467 connp->conn_outgoing_ill = ill; 10468 break; 10469 10470 case IP_MULTICAST_IF: 10471 /* 10472 * This option is an internal special. The socket 10473 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10474 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10475 * specifies an ifindex and we try first on V6 ill's. 10476 * If we don't find one, we they try using on v4 ill's 10477 * intenally and we come here. 10478 */ 10479 if (!checkonly && ill != NULL) { 10480 ipif_t *ipif; 10481 ipif = ill->ill_ipif; 10482 10483 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10484 mutex_exit(&ill->ill_lock); 10485 mutex_exit(&connp->conn_lock); 10486 ill_refrele(ill); 10487 ill = NULL; 10488 mutex_enter(&connp->conn_lock); 10489 } else { 10490 connp->conn_multicast_ipif = ipif; 10491 } 10492 } 10493 break; 10494 10495 case IP_DHCPINIT_IF: 10496 if (connp->conn_dhcpinit_ill != NULL) { 10497 /* 10498 * We've locked the conn so conn_cleanup_ill() 10499 * cannot clear conn_dhcpinit_ill -- so it's 10500 * safe to access the ill. 10501 */ 10502 ill_t *oill = connp->conn_dhcpinit_ill; 10503 10504 ASSERT(oill->ill_dhcpinit != 0); 10505 atomic_dec_32(&oill->ill_dhcpinit); 10506 connp->conn_dhcpinit_ill = NULL; 10507 } 10508 10509 if (ill != NULL) { 10510 connp->conn_dhcpinit_ill = ill; 10511 atomic_inc_32(&ill->ill_dhcpinit); 10512 } 10513 break; 10514 } 10515 } else { 10516 switch (option) { 10517 case IPV6_BOUND_IF: 10518 connp->conn_incoming_ill = ill; 10519 connp->conn_outgoing_ill = ill; 10520 break; 10521 10522 case IPV6_MULTICAST_IF: 10523 /* 10524 * Set conn_multicast_ill to be the IPv6 ill. 10525 * Set conn_multicast_ipif to be an IPv4 ipif 10526 * for ifindex to make IPv4 mapped addresses 10527 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10528 * Even if no IPv6 ill exists for the ifindex 10529 * we need to check for an IPv4 ifindex in order 10530 * for this to work with mapped addresses. In that 10531 * case only set conn_multicast_ipif. 10532 */ 10533 if (!checkonly) { 10534 if (ifindex == 0) { 10535 connp->conn_multicast_ill = NULL; 10536 connp->conn_multicast_ipif = NULL; 10537 } else if (ill != NULL) { 10538 connp->conn_multicast_ill = ill; 10539 } 10540 } 10541 break; 10542 } 10543 } 10544 10545 if (ill != NULL) { 10546 mutex_exit(&ill->ill_lock); 10547 mutex_exit(&connp->conn_lock); 10548 ill_refrele(ill); 10549 return (0); 10550 } 10551 mutex_exit(&connp->conn_lock); 10552 /* 10553 * We succeeded in clearing the option (ifindex == 0) or failed to 10554 * locate the ill and could not set the option (ifindex != 0) 10555 */ 10556 return (ifindex == 0 ? 0 : EINVAL); 10557 } 10558 10559 /* This routine sets socket options. */ 10560 /* ARGSUSED */ 10561 int 10562 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10563 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10564 void *dummy, cred_t *cr, mblk_t *first_mp) 10565 { 10566 int *i1 = (int *)invalp; 10567 conn_t *connp = Q_TO_CONN(q); 10568 int error = 0; 10569 boolean_t checkonly; 10570 ire_t *ire; 10571 boolean_t found; 10572 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10573 10574 switch (optset_context) { 10575 10576 case SETFN_OPTCOM_CHECKONLY: 10577 checkonly = B_TRUE; 10578 /* 10579 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10580 * inlen != 0 implies value supplied and 10581 * we have to "pretend" to set it. 10582 * inlen == 0 implies that there is no 10583 * value part in T_CHECK request and just validation 10584 * done elsewhere should be enough, we just return here. 10585 */ 10586 if (inlen == 0) { 10587 *outlenp = 0; 10588 return (0); 10589 } 10590 break; 10591 case SETFN_OPTCOM_NEGOTIATE: 10592 case SETFN_UD_NEGOTIATE: 10593 case SETFN_CONN_NEGOTIATE: 10594 checkonly = B_FALSE; 10595 break; 10596 default: 10597 /* 10598 * We should never get here 10599 */ 10600 *outlenp = 0; 10601 return (EINVAL); 10602 } 10603 10604 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10605 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10606 10607 /* 10608 * For fixed length options, no sanity check 10609 * of passed in length is done. It is assumed *_optcom_req() 10610 * routines do the right thing. 10611 */ 10612 10613 switch (level) { 10614 case SOL_SOCKET: 10615 /* 10616 * conn_lock protects the bitfields, and is used to 10617 * set the fields atomically. 10618 */ 10619 switch (name) { 10620 case SO_BROADCAST: 10621 if (!checkonly) { 10622 /* TODO: use value someplace? */ 10623 mutex_enter(&connp->conn_lock); 10624 connp->conn_broadcast = *i1 ? 1 : 0; 10625 mutex_exit(&connp->conn_lock); 10626 } 10627 break; /* goto sizeof (int) option return */ 10628 case SO_USELOOPBACK: 10629 if (!checkonly) { 10630 /* TODO: use value someplace? */ 10631 mutex_enter(&connp->conn_lock); 10632 connp->conn_loopback = *i1 ? 1 : 0; 10633 mutex_exit(&connp->conn_lock); 10634 } 10635 break; /* goto sizeof (int) option return */ 10636 case SO_DONTROUTE: 10637 if (!checkonly) { 10638 mutex_enter(&connp->conn_lock); 10639 connp->conn_dontroute = *i1 ? 1 : 0; 10640 mutex_exit(&connp->conn_lock); 10641 } 10642 break; /* goto sizeof (int) option return */ 10643 case SO_REUSEADDR: 10644 if (!checkonly) { 10645 mutex_enter(&connp->conn_lock); 10646 connp->conn_reuseaddr = *i1 ? 1 : 0; 10647 mutex_exit(&connp->conn_lock); 10648 } 10649 break; /* goto sizeof (int) option return */ 10650 case SO_PROTOTYPE: 10651 if (!checkonly) { 10652 mutex_enter(&connp->conn_lock); 10653 connp->conn_proto = *i1; 10654 mutex_exit(&connp->conn_lock); 10655 } 10656 break; /* goto sizeof (int) option return */ 10657 case SO_ALLZONES: 10658 if (!checkonly) { 10659 mutex_enter(&connp->conn_lock); 10660 if (IPCL_IS_BOUND(connp)) { 10661 mutex_exit(&connp->conn_lock); 10662 return (EINVAL); 10663 } 10664 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10665 mutex_exit(&connp->conn_lock); 10666 } 10667 break; /* goto sizeof (int) option return */ 10668 case SO_ANON_MLP: 10669 if (!checkonly) { 10670 mutex_enter(&connp->conn_lock); 10671 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10672 mutex_exit(&connp->conn_lock); 10673 } 10674 break; /* goto sizeof (int) option return */ 10675 case SO_MAC_EXEMPT: 10676 if (secpolicy_net_mac_aware(cr) != 0 || 10677 IPCL_IS_BOUND(connp)) 10678 return (EACCES); 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 break; /* goto sizeof (int) option return */ 10685 default: 10686 /* 10687 * "soft" error (negative) 10688 * option not handled at this level 10689 * Note: Do not modify *outlenp 10690 */ 10691 return (-EINVAL); 10692 } 10693 break; 10694 case IPPROTO_IP: 10695 switch (name) { 10696 case IP_NEXTHOP: 10697 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10698 return (EPERM); 10699 /* FALLTHRU */ 10700 case IP_MULTICAST_IF: { 10701 ipaddr_t addr = *i1; 10702 10703 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10704 first_mp); 10705 if (error != 0) 10706 return (error); 10707 break; /* goto sizeof (int) option return */ 10708 } 10709 10710 case IP_MULTICAST_TTL: 10711 /* Recorded in transport above IP */ 10712 *outvalp = *invalp; 10713 *outlenp = sizeof (uchar_t); 10714 return (0); 10715 case IP_MULTICAST_LOOP: 10716 if (!checkonly) { 10717 mutex_enter(&connp->conn_lock); 10718 connp->conn_multicast_loop = *invalp ? 1 : 0; 10719 mutex_exit(&connp->conn_lock); 10720 } 10721 *outvalp = *invalp; 10722 *outlenp = sizeof (uchar_t); 10723 return (0); 10724 case IP_ADD_MEMBERSHIP: 10725 case MCAST_JOIN_GROUP: 10726 case IP_DROP_MEMBERSHIP: 10727 case MCAST_LEAVE_GROUP: { 10728 struct ip_mreq *mreqp; 10729 struct group_req *greqp; 10730 ire_t *ire; 10731 boolean_t done = B_FALSE; 10732 ipaddr_t group, ifaddr; 10733 struct sockaddr_in *sin; 10734 uint32_t *ifindexp; 10735 boolean_t mcast_opt = B_TRUE; 10736 mcast_record_t fmode; 10737 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10738 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10739 10740 switch (name) { 10741 case IP_ADD_MEMBERSHIP: 10742 mcast_opt = B_FALSE; 10743 /* FALLTHRU */ 10744 case MCAST_JOIN_GROUP: 10745 fmode = MODE_IS_EXCLUDE; 10746 optfn = ip_opt_add_group; 10747 break; 10748 10749 case IP_DROP_MEMBERSHIP: 10750 mcast_opt = B_FALSE; 10751 /* FALLTHRU */ 10752 case MCAST_LEAVE_GROUP: 10753 fmode = MODE_IS_INCLUDE; 10754 optfn = ip_opt_delete_group; 10755 break; 10756 } 10757 10758 if (mcast_opt) { 10759 greqp = (struct group_req *)i1; 10760 sin = (struct sockaddr_in *)&greqp->gr_group; 10761 if (sin->sin_family != AF_INET) { 10762 *outlenp = 0; 10763 return (ENOPROTOOPT); 10764 } 10765 group = (ipaddr_t)sin->sin_addr.s_addr; 10766 ifaddr = INADDR_ANY; 10767 ifindexp = &greqp->gr_interface; 10768 } else { 10769 mreqp = (struct ip_mreq *)i1; 10770 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10771 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10772 ifindexp = NULL; 10773 } 10774 10775 /* 10776 * In the multirouting case, we need to replicate 10777 * the request on all interfaces that will take part 10778 * in replication. We do so because multirouting is 10779 * reflective, thus we will probably receive multi- 10780 * casts on those interfaces. 10781 * The ip_multirt_apply_membership() succeeds if the 10782 * operation succeeds on at least one interface. 10783 */ 10784 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10785 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10786 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10787 if (ire != NULL) { 10788 if (ire->ire_flags & RTF_MULTIRT) { 10789 error = ip_multirt_apply_membership( 10790 optfn, ire, connp, checkonly, group, 10791 fmode, INADDR_ANY, first_mp); 10792 done = B_TRUE; 10793 } 10794 ire_refrele(ire); 10795 } 10796 if (!done) { 10797 error = optfn(connp, checkonly, group, ifaddr, 10798 ifindexp, fmode, INADDR_ANY, first_mp); 10799 } 10800 if (error) { 10801 /* 10802 * EINPROGRESS is a soft error, needs retry 10803 * so don't make *outlenp zero. 10804 */ 10805 if (error != EINPROGRESS) 10806 *outlenp = 0; 10807 return (error); 10808 } 10809 /* OK return - copy input buffer into output buffer */ 10810 if (invalp != outvalp) { 10811 /* don't trust bcopy for identical src/dst */ 10812 bcopy(invalp, outvalp, inlen); 10813 } 10814 *outlenp = inlen; 10815 return (0); 10816 } 10817 case IP_BLOCK_SOURCE: 10818 case IP_UNBLOCK_SOURCE: 10819 case IP_ADD_SOURCE_MEMBERSHIP: 10820 case IP_DROP_SOURCE_MEMBERSHIP: 10821 case MCAST_BLOCK_SOURCE: 10822 case MCAST_UNBLOCK_SOURCE: 10823 case MCAST_JOIN_SOURCE_GROUP: 10824 case MCAST_LEAVE_SOURCE_GROUP: { 10825 struct ip_mreq_source *imreqp; 10826 struct group_source_req *gsreqp; 10827 in_addr_t grp, src, ifaddr = INADDR_ANY; 10828 uint32_t ifindex = 0; 10829 mcast_record_t fmode; 10830 struct sockaddr_in *sin; 10831 ire_t *ire; 10832 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10833 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10834 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10835 10836 switch (name) { 10837 case IP_BLOCK_SOURCE: 10838 mcast_opt = B_FALSE; 10839 /* FALLTHRU */ 10840 case MCAST_BLOCK_SOURCE: 10841 fmode = MODE_IS_EXCLUDE; 10842 optfn = ip_opt_add_group; 10843 break; 10844 10845 case IP_UNBLOCK_SOURCE: 10846 mcast_opt = B_FALSE; 10847 /* FALLTHRU */ 10848 case MCAST_UNBLOCK_SOURCE: 10849 fmode = MODE_IS_EXCLUDE; 10850 optfn = ip_opt_delete_group; 10851 break; 10852 10853 case IP_ADD_SOURCE_MEMBERSHIP: 10854 mcast_opt = B_FALSE; 10855 /* FALLTHRU */ 10856 case MCAST_JOIN_SOURCE_GROUP: 10857 fmode = MODE_IS_INCLUDE; 10858 optfn = ip_opt_add_group; 10859 break; 10860 10861 case IP_DROP_SOURCE_MEMBERSHIP: 10862 mcast_opt = B_FALSE; 10863 /* FALLTHRU */ 10864 case MCAST_LEAVE_SOURCE_GROUP: 10865 fmode = MODE_IS_INCLUDE; 10866 optfn = ip_opt_delete_group; 10867 break; 10868 } 10869 10870 if (mcast_opt) { 10871 gsreqp = (struct group_source_req *)i1; 10872 if (gsreqp->gsr_group.ss_family != AF_INET) { 10873 *outlenp = 0; 10874 return (ENOPROTOOPT); 10875 } 10876 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10877 grp = (ipaddr_t)sin->sin_addr.s_addr; 10878 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10879 src = (ipaddr_t)sin->sin_addr.s_addr; 10880 ifindex = gsreqp->gsr_interface; 10881 } else { 10882 imreqp = (struct ip_mreq_source *)i1; 10883 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10884 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10885 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10886 } 10887 10888 /* 10889 * In the multirouting case, we need to replicate 10890 * the request as noted in the mcast cases above. 10891 */ 10892 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10893 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10894 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10895 if (ire != NULL) { 10896 if (ire->ire_flags & RTF_MULTIRT) { 10897 error = ip_multirt_apply_membership( 10898 optfn, ire, connp, checkonly, grp, 10899 fmode, src, first_mp); 10900 done = B_TRUE; 10901 } 10902 ire_refrele(ire); 10903 } 10904 if (!done) { 10905 error = optfn(connp, checkonly, grp, ifaddr, 10906 &ifindex, fmode, src, first_mp); 10907 } 10908 if (error != 0) { 10909 /* 10910 * EINPROGRESS is a soft error, needs retry 10911 * so don't make *outlenp zero. 10912 */ 10913 if (error != EINPROGRESS) 10914 *outlenp = 0; 10915 return (error); 10916 } 10917 /* OK return - copy input buffer into output buffer */ 10918 if (invalp != outvalp) { 10919 bcopy(invalp, outvalp, inlen); 10920 } 10921 *outlenp = inlen; 10922 return (0); 10923 } 10924 case IP_SEC_OPT: 10925 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10926 if (error != 0) { 10927 *outlenp = 0; 10928 return (error); 10929 } 10930 break; 10931 case IP_HDRINCL: 10932 case IP_OPTIONS: 10933 case T_IP_OPTIONS: 10934 case IP_TOS: 10935 case T_IP_TOS: 10936 case IP_TTL: 10937 case IP_RECVDSTADDR: 10938 case IP_RECVOPTS: 10939 /* OK return - copy input buffer into output buffer */ 10940 if (invalp != outvalp) { 10941 /* don't trust bcopy for identical src/dst */ 10942 bcopy(invalp, outvalp, inlen); 10943 } 10944 *outlenp = inlen; 10945 return (0); 10946 case IP_RECVIF: 10947 /* Retrieve the inbound interface index */ 10948 if (!checkonly) { 10949 mutex_enter(&connp->conn_lock); 10950 connp->conn_recvif = *i1 ? 1 : 0; 10951 mutex_exit(&connp->conn_lock); 10952 } 10953 break; /* goto sizeof (int) option return */ 10954 case IP_RECVPKTINFO: 10955 if (!checkonly) { 10956 mutex_enter(&connp->conn_lock); 10957 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10958 mutex_exit(&connp->conn_lock); 10959 } 10960 break; /* goto sizeof (int) option return */ 10961 case IP_RECVSLLA: 10962 /* Retrieve the source link layer address */ 10963 if (!checkonly) { 10964 mutex_enter(&connp->conn_lock); 10965 connp->conn_recvslla = *i1 ? 1 : 0; 10966 mutex_exit(&connp->conn_lock); 10967 } 10968 break; /* goto sizeof (int) option return */ 10969 case MRT_INIT: 10970 case MRT_DONE: 10971 case MRT_ADD_VIF: 10972 case MRT_DEL_VIF: 10973 case MRT_ADD_MFC: 10974 case MRT_DEL_MFC: 10975 case MRT_ASSERT: 10976 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10977 *outlenp = 0; 10978 return (error); 10979 } 10980 error = ip_mrouter_set((int)name, q, checkonly, 10981 (uchar_t *)invalp, inlen, first_mp); 10982 if (error) { 10983 *outlenp = 0; 10984 return (error); 10985 } 10986 /* OK return - copy input buffer into output buffer */ 10987 if (invalp != outvalp) { 10988 /* don't trust bcopy for identical src/dst */ 10989 bcopy(invalp, outvalp, inlen); 10990 } 10991 *outlenp = inlen; 10992 return (0); 10993 case IP_BOUND_IF: 10994 case IP_DHCPINIT_IF: 10995 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10996 level, name, first_mp); 10997 if (error != 0) 10998 return (error); 10999 break; /* goto sizeof (int) option return */ 11000 11001 case IP_UNSPEC_SRC: 11002 /* Allow sending with a zero source address */ 11003 if (!checkonly) { 11004 mutex_enter(&connp->conn_lock); 11005 connp->conn_unspec_src = *i1 ? 1 : 0; 11006 mutex_exit(&connp->conn_lock); 11007 } 11008 break; /* goto sizeof (int) option return */ 11009 default: 11010 /* 11011 * "soft" error (negative) 11012 * option not handled at this level 11013 * Note: Do not modify *outlenp 11014 */ 11015 return (-EINVAL); 11016 } 11017 break; 11018 case IPPROTO_IPV6: 11019 switch (name) { 11020 case IPV6_BOUND_IF: 11021 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11022 level, name, first_mp); 11023 if (error != 0) 11024 return (error); 11025 break; /* goto sizeof (int) option return */ 11026 11027 case IPV6_MULTICAST_IF: 11028 /* 11029 * The only possible errors are EINPROGRESS and 11030 * EINVAL. EINPROGRESS will be restarted and is not 11031 * a hard error. We call this option on both V4 and V6 11032 * If both return EINVAL, then this call returns 11033 * EINVAL. If at least one of them succeeds we 11034 * return success. 11035 */ 11036 found = B_FALSE; 11037 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11038 level, name, first_mp); 11039 if (error == EINPROGRESS) 11040 return (error); 11041 if (error == 0) 11042 found = B_TRUE; 11043 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11044 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11045 if (error == 0) 11046 found = B_TRUE; 11047 if (!found) 11048 return (error); 11049 break; /* goto sizeof (int) option return */ 11050 11051 case IPV6_MULTICAST_HOPS: 11052 /* Recorded in transport above IP */ 11053 break; /* goto sizeof (int) option return */ 11054 case IPV6_MULTICAST_LOOP: 11055 if (!checkonly) { 11056 mutex_enter(&connp->conn_lock); 11057 connp->conn_multicast_loop = *i1; 11058 mutex_exit(&connp->conn_lock); 11059 } 11060 break; /* goto sizeof (int) option return */ 11061 case IPV6_JOIN_GROUP: 11062 case MCAST_JOIN_GROUP: 11063 case IPV6_LEAVE_GROUP: 11064 case MCAST_LEAVE_GROUP: { 11065 struct ipv6_mreq *ip_mreqp; 11066 struct group_req *greqp; 11067 ire_t *ire; 11068 boolean_t done = B_FALSE; 11069 in6_addr_t groupv6; 11070 uint32_t ifindex; 11071 boolean_t mcast_opt = B_TRUE; 11072 mcast_record_t fmode; 11073 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11074 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11075 11076 switch (name) { 11077 case IPV6_JOIN_GROUP: 11078 mcast_opt = B_FALSE; 11079 /* FALLTHRU */ 11080 case MCAST_JOIN_GROUP: 11081 fmode = MODE_IS_EXCLUDE; 11082 optfn = ip_opt_add_group_v6; 11083 break; 11084 11085 case IPV6_LEAVE_GROUP: 11086 mcast_opt = B_FALSE; 11087 /* FALLTHRU */ 11088 case MCAST_LEAVE_GROUP: 11089 fmode = MODE_IS_INCLUDE; 11090 optfn = ip_opt_delete_group_v6; 11091 break; 11092 } 11093 11094 if (mcast_opt) { 11095 struct sockaddr_in *sin; 11096 struct sockaddr_in6 *sin6; 11097 greqp = (struct group_req *)i1; 11098 if (greqp->gr_group.ss_family == AF_INET) { 11099 sin = (struct sockaddr_in *) 11100 &(greqp->gr_group); 11101 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11102 &groupv6); 11103 } else { 11104 sin6 = (struct sockaddr_in6 *) 11105 &(greqp->gr_group); 11106 groupv6 = sin6->sin6_addr; 11107 } 11108 ifindex = greqp->gr_interface; 11109 } else { 11110 ip_mreqp = (struct ipv6_mreq *)i1; 11111 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11112 ifindex = ip_mreqp->ipv6mr_interface; 11113 } 11114 /* 11115 * In the multirouting case, we need to replicate 11116 * the request on all interfaces that will take part 11117 * in replication. We do so because multirouting is 11118 * reflective, thus we will probably receive multi- 11119 * casts on those interfaces. 11120 * The ip_multirt_apply_membership_v6() succeeds if 11121 * the operation succeeds on at least one interface. 11122 */ 11123 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11124 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11125 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11126 if (ire != NULL) { 11127 if (ire->ire_flags & RTF_MULTIRT) { 11128 error = ip_multirt_apply_membership_v6( 11129 optfn, ire, connp, checkonly, 11130 &groupv6, fmode, &ipv6_all_zeros, 11131 first_mp); 11132 done = B_TRUE; 11133 } 11134 ire_refrele(ire); 11135 } 11136 if (!done) { 11137 error = optfn(connp, checkonly, &groupv6, 11138 ifindex, fmode, &ipv6_all_zeros, first_mp); 11139 } 11140 if (error) { 11141 /* 11142 * EINPROGRESS is a soft error, needs retry 11143 * so don't make *outlenp zero. 11144 */ 11145 if (error != EINPROGRESS) 11146 *outlenp = 0; 11147 return (error); 11148 } 11149 /* OK return - copy input buffer into output buffer */ 11150 if (invalp != outvalp) { 11151 /* don't trust bcopy for identical src/dst */ 11152 bcopy(invalp, outvalp, inlen); 11153 } 11154 *outlenp = inlen; 11155 return (0); 11156 } 11157 case MCAST_BLOCK_SOURCE: 11158 case MCAST_UNBLOCK_SOURCE: 11159 case MCAST_JOIN_SOURCE_GROUP: 11160 case MCAST_LEAVE_SOURCE_GROUP: { 11161 struct group_source_req *gsreqp; 11162 in6_addr_t v6grp, v6src; 11163 uint32_t ifindex; 11164 mcast_record_t fmode; 11165 ire_t *ire; 11166 boolean_t done = B_FALSE; 11167 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11168 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11169 11170 switch (name) { 11171 case MCAST_BLOCK_SOURCE: 11172 fmode = MODE_IS_EXCLUDE; 11173 optfn = ip_opt_add_group_v6; 11174 break; 11175 case MCAST_UNBLOCK_SOURCE: 11176 fmode = MODE_IS_EXCLUDE; 11177 optfn = ip_opt_delete_group_v6; 11178 break; 11179 case MCAST_JOIN_SOURCE_GROUP: 11180 fmode = MODE_IS_INCLUDE; 11181 optfn = ip_opt_add_group_v6; 11182 break; 11183 case MCAST_LEAVE_SOURCE_GROUP: 11184 fmode = MODE_IS_INCLUDE; 11185 optfn = ip_opt_delete_group_v6; 11186 break; 11187 } 11188 11189 gsreqp = (struct group_source_req *)i1; 11190 ifindex = gsreqp->gsr_interface; 11191 if (gsreqp->gsr_group.ss_family == AF_INET) { 11192 struct sockaddr_in *s; 11193 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11194 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11195 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11196 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11197 } else { 11198 struct sockaddr_in6 *s6; 11199 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11200 v6grp = s6->sin6_addr; 11201 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11202 v6src = s6->sin6_addr; 11203 } 11204 11205 /* 11206 * In the multirouting case, we need to replicate 11207 * the request as noted in the mcast cases above. 11208 */ 11209 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11210 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11211 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11212 if (ire != NULL) { 11213 if (ire->ire_flags & RTF_MULTIRT) { 11214 error = ip_multirt_apply_membership_v6( 11215 optfn, ire, connp, checkonly, 11216 &v6grp, fmode, &v6src, first_mp); 11217 done = B_TRUE; 11218 } 11219 ire_refrele(ire); 11220 } 11221 if (!done) { 11222 error = optfn(connp, checkonly, &v6grp, 11223 ifindex, fmode, &v6src, first_mp); 11224 } 11225 if (error != 0) { 11226 /* 11227 * EINPROGRESS is a soft error, needs retry 11228 * so don't make *outlenp zero. 11229 */ 11230 if (error != EINPROGRESS) 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 /* OK return - copy input buffer into output buffer */ 11235 if (invalp != outvalp) { 11236 bcopy(invalp, outvalp, inlen); 11237 } 11238 *outlenp = inlen; 11239 return (0); 11240 } 11241 case IPV6_UNICAST_HOPS: 11242 /* Recorded in transport above IP */ 11243 break; /* goto sizeof (int) option return */ 11244 case IPV6_UNSPEC_SRC: 11245 /* Allow sending with a zero source address */ 11246 if (!checkonly) { 11247 mutex_enter(&connp->conn_lock); 11248 connp->conn_unspec_src = *i1 ? 1 : 0; 11249 mutex_exit(&connp->conn_lock); 11250 } 11251 break; /* goto sizeof (int) option return */ 11252 case IPV6_RECVPKTINFO: 11253 if (!checkonly) { 11254 mutex_enter(&connp->conn_lock); 11255 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11256 mutex_exit(&connp->conn_lock); 11257 } 11258 break; /* goto sizeof (int) option return */ 11259 case IPV6_RECVTCLASS: 11260 if (!checkonly) { 11261 if (*i1 < 0 || *i1 > 1) { 11262 return (EINVAL); 11263 } 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_ipv6_recvtclass = *i1; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; 11269 case IPV6_RECVPATHMTU: 11270 if (!checkonly) { 11271 if (*i1 < 0 || *i1 > 1) { 11272 return (EINVAL); 11273 } 11274 mutex_enter(&connp->conn_lock); 11275 connp->conn_ipv6_recvpathmtu = *i1; 11276 mutex_exit(&connp->conn_lock); 11277 } 11278 break; 11279 case IPV6_RECVHOPLIMIT: 11280 if (!checkonly) { 11281 mutex_enter(&connp->conn_lock); 11282 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11283 mutex_exit(&connp->conn_lock); 11284 } 11285 break; /* goto sizeof (int) option return */ 11286 case IPV6_RECVHOPOPTS: 11287 if (!checkonly) { 11288 mutex_enter(&connp->conn_lock); 11289 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11290 mutex_exit(&connp->conn_lock); 11291 } 11292 break; /* goto sizeof (int) option return */ 11293 case IPV6_RECVDSTOPTS: 11294 if (!checkonly) { 11295 mutex_enter(&connp->conn_lock); 11296 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11297 mutex_exit(&connp->conn_lock); 11298 } 11299 break; /* goto sizeof (int) option return */ 11300 case IPV6_RECVRTHDR: 11301 if (!checkonly) { 11302 mutex_enter(&connp->conn_lock); 11303 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11304 mutex_exit(&connp->conn_lock); 11305 } 11306 break; /* goto sizeof (int) option return */ 11307 case IPV6_RECVRTHDRDSTOPTS: 11308 if (!checkonly) { 11309 mutex_enter(&connp->conn_lock); 11310 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11311 mutex_exit(&connp->conn_lock); 11312 } 11313 break; /* goto sizeof (int) option return */ 11314 case IPV6_PKTINFO: 11315 if (inlen == 0) 11316 return (-EINVAL); /* clearing option */ 11317 error = ip6_set_pktinfo(cr, connp, 11318 (struct in6_pktinfo *)invalp); 11319 if (error != 0) 11320 *outlenp = 0; 11321 else 11322 *outlenp = inlen; 11323 return (error); 11324 case IPV6_NEXTHOP: { 11325 struct sockaddr_in6 *sin6; 11326 11327 /* Verify that the nexthop is reachable */ 11328 if (inlen == 0) 11329 return (-EINVAL); /* clearing option */ 11330 11331 sin6 = (struct sockaddr_in6 *)invalp; 11332 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11333 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11334 NULL, MATCH_IRE_DEFAULT, ipst); 11335 11336 if (ire == NULL) { 11337 *outlenp = 0; 11338 return (EHOSTUNREACH); 11339 } 11340 ire_refrele(ire); 11341 return (-EINVAL); 11342 } 11343 case IPV6_SEC_OPT: 11344 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11345 if (error != 0) { 11346 *outlenp = 0; 11347 return (error); 11348 } 11349 break; 11350 case IPV6_SRC_PREFERENCES: { 11351 /* 11352 * This is implemented strictly in the ip module 11353 * (here and in tcp_opt_*() to accomodate tcp 11354 * sockets). Modules above ip pass this option 11355 * down here since ip is the only one that needs to 11356 * be aware of source address preferences. 11357 * 11358 * This socket option only affects connected 11359 * sockets that haven't already bound to a specific 11360 * IPv6 address. In other words, sockets that 11361 * don't call bind() with an address other than the 11362 * unspecified address and that call connect(). 11363 * ip_bind_connected_v6() passes these preferences 11364 * to the ipif_select_source_v6() function. 11365 */ 11366 if (inlen != sizeof (uint32_t)) 11367 return (EINVAL); 11368 error = ip6_set_src_preferences(connp, 11369 *(uint32_t *)invalp); 11370 if (error != 0) { 11371 *outlenp = 0; 11372 return (error); 11373 } else { 11374 *outlenp = sizeof (uint32_t); 11375 } 11376 break; 11377 } 11378 case IPV6_V6ONLY: 11379 if (*i1 < 0 || *i1 > 1) { 11380 return (EINVAL); 11381 } 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_v6only = *i1; 11384 mutex_exit(&connp->conn_lock); 11385 break; 11386 default: 11387 return (-EINVAL); 11388 } 11389 break; 11390 default: 11391 /* 11392 * "soft" error (negative) 11393 * option not handled at this level 11394 * Note: Do not modify *outlenp 11395 */ 11396 return (-EINVAL); 11397 } 11398 /* 11399 * Common case of return from an option that is sizeof (int) 11400 */ 11401 *(int *)outvalp = *i1; 11402 *outlenp = sizeof (int); 11403 return (0); 11404 } 11405 11406 /* 11407 * This routine gets default values of certain options whose default 11408 * values are maintained by protocol specific code 11409 */ 11410 /* ARGSUSED */ 11411 int 11412 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11413 { 11414 int *i1 = (int *)ptr; 11415 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11416 11417 switch (level) { 11418 case IPPROTO_IP: 11419 switch (name) { 11420 case IP_MULTICAST_TTL: 11421 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11422 return (sizeof (uchar_t)); 11423 case IP_MULTICAST_LOOP: 11424 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11425 return (sizeof (uchar_t)); 11426 default: 11427 return (-1); 11428 } 11429 case IPPROTO_IPV6: 11430 switch (name) { 11431 case IPV6_UNICAST_HOPS: 11432 *i1 = ipst->ips_ipv6_def_hops; 11433 return (sizeof (int)); 11434 case IPV6_MULTICAST_HOPS: 11435 *i1 = IP_DEFAULT_MULTICAST_TTL; 11436 return (sizeof (int)); 11437 case IPV6_MULTICAST_LOOP: 11438 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11439 return (sizeof (int)); 11440 case IPV6_V6ONLY: 11441 *i1 = 1; 11442 return (sizeof (int)); 11443 default: 11444 return (-1); 11445 } 11446 default: 11447 return (-1); 11448 } 11449 /* NOTREACHED */ 11450 } 11451 11452 /* 11453 * Given a destination address and a pointer to where to put the information 11454 * this routine fills in the mtuinfo. 11455 */ 11456 int 11457 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11458 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11459 { 11460 ire_t *ire; 11461 ip_stack_t *ipst = ns->netstack_ip; 11462 11463 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11464 return (-1); 11465 11466 bzero(mtuinfo, sizeof (*mtuinfo)); 11467 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11468 mtuinfo->ip6m_addr.sin6_port = port; 11469 mtuinfo->ip6m_addr.sin6_addr = *in6; 11470 11471 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11472 if (ire != NULL) { 11473 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11474 ire_refrele(ire); 11475 } else { 11476 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11477 } 11478 return (sizeof (struct ip6_mtuinfo)); 11479 } 11480 11481 /* 11482 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11483 * checking of cred and that ip_g_mrouter is set should be done and 11484 * isn't. This doesn't matter as the error checking is done properly for the 11485 * other MRT options coming in through ip_opt_set. 11486 */ 11487 int 11488 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11489 { 11490 conn_t *connp = Q_TO_CONN(q); 11491 ipsec_req_t *req = (ipsec_req_t *)ptr; 11492 11493 switch (level) { 11494 case IPPROTO_IP: 11495 switch (name) { 11496 case MRT_VERSION: 11497 case MRT_ASSERT: 11498 (void) ip_mrouter_get(name, q, ptr); 11499 return (sizeof (int)); 11500 case IP_SEC_OPT: 11501 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11502 case IP_NEXTHOP: 11503 if (connp->conn_nexthop_set) { 11504 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11505 return (sizeof (ipaddr_t)); 11506 } else 11507 return (0); 11508 case IP_RECVPKTINFO: 11509 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11510 return (sizeof (int)); 11511 default: 11512 break; 11513 } 11514 break; 11515 case IPPROTO_IPV6: 11516 switch (name) { 11517 case IPV6_SEC_OPT: 11518 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11519 case IPV6_SRC_PREFERENCES: { 11520 return (ip6_get_src_preferences(connp, 11521 (uint32_t *)ptr)); 11522 } 11523 case IPV6_V6ONLY: 11524 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11525 return (sizeof (int)); 11526 case IPV6_PATHMTU: 11527 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11528 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11529 default: 11530 break; 11531 } 11532 break; 11533 default: 11534 break; 11535 } 11536 return (-1); 11537 } 11538 /* Named Dispatch routine to get a current value out of our parameter table. */ 11539 /* ARGSUSED */ 11540 static int 11541 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11542 { 11543 ipparam_t *ippa = (ipparam_t *)cp; 11544 11545 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11546 return (0); 11547 } 11548 11549 /* ARGSUSED */ 11550 static int 11551 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11552 { 11553 11554 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11555 return (0); 11556 } 11557 11558 /* 11559 * Set ip{,6}_forwarding values. This means walking through all of the 11560 * ill's and toggling their forwarding values. 11561 */ 11562 /* ARGSUSED */ 11563 static int 11564 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11565 { 11566 long new_value; 11567 int *forwarding_value = (int *)cp; 11568 ill_t *ill; 11569 boolean_t isv6; 11570 ill_walk_context_t ctx; 11571 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11572 11573 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11574 11575 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11576 new_value < 0 || new_value > 1) { 11577 return (EINVAL); 11578 } 11579 11580 *forwarding_value = new_value; 11581 11582 /* 11583 * Regardless of the current value of ip_forwarding, set all per-ill 11584 * values of ip_forwarding to the value being set. 11585 * 11586 * Bring all the ill's up to date with the new global value. 11587 */ 11588 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11589 11590 if (isv6) 11591 ill = ILL_START_WALK_V6(&ctx, ipst); 11592 else 11593 ill = ILL_START_WALK_V4(&ctx, ipst); 11594 11595 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11596 (void) ill_forward_set(ill, new_value != 0); 11597 11598 rw_exit(&ipst->ips_ill_g_lock); 11599 return (0); 11600 } 11601 11602 /* 11603 * Walk through the param array specified registering each element with the 11604 * Named Dispatch handler. This is called only during init. So it is ok 11605 * not to acquire any locks 11606 */ 11607 static boolean_t 11608 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11609 ipndp_t *ipnd, size_t ipnd_cnt) 11610 { 11611 for (; ippa_cnt-- > 0; ippa++) { 11612 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11613 if (!nd_load(ndp, ippa->ip_param_name, 11614 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11615 nd_free(ndp); 11616 return (B_FALSE); 11617 } 11618 } 11619 } 11620 11621 for (; ipnd_cnt-- > 0; ipnd++) { 11622 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11623 if (!nd_load(ndp, ipnd->ip_ndp_name, 11624 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11625 ipnd->ip_ndp_data)) { 11626 nd_free(ndp); 11627 return (B_FALSE); 11628 } 11629 } 11630 } 11631 11632 return (B_TRUE); 11633 } 11634 11635 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11636 /* ARGSUSED */ 11637 static int 11638 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11639 { 11640 long new_value; 11641 ipparam_t *ippa = (ipparam_t *)cp; 11642 11643 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11644 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11645 return (EINVAL); 11646 } 11647 ippa->ip_param_value = new_value; 11648 return (0); 11649 } 11650 11651 /* 11652 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11653 * When an ipf is passed here for the first time, if 11654 * we already have in-order fragments on the queue, we convert from the fast- 11655 * path reassembly scheme to the hard-case scheme. From then on, additional 11656 * fragments are reassembled here. We keep track of the start and end offsets 11657 * of each piece, and the number of holes in the chain. When the hole count 11658 * goes to zero, we are done! 11659 * 11660 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11661 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11662 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11663 * after the call to ip_reassemble(). 11664 */ 11665 int 11666 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11667 size_t msg_len) 11668 { 11669 uint_t end; 11670 mblk_t *next_mp; 11671 mblk_t *mp1; 11672 uint_t offset; 11673 boolean_t incr_dups = B_TRUE; 11674 boolean_t offset_zero_seen = B_FALSE; 11675 boolean_t pkt_boundary_checked = B_FALSE; 11676 11677 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11678 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11679 11680 /* Add in byte count */ 11681 ipf->ipf_count += msg_len; 11682 if (ipf->ipf_end) { 11683 /* 11684 * We were part way through in-order reassembly, but now there 11685 * is a hole. We walk through messages already queued, and 11686 * mark them for hard case reassembly. We know that up till 11687 * now they were in order starting from offset zero. 11688 */ 11689 offset = 0; 11690 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11691 IP_REASS_SET_START(mp1, offset); 11692 if (offset == 0) { 11693 ASSERT(ipf->ipf_nf_hdr_len != 0); 11694 offset = -ipf->ipf_nf_hdr_len; 11695 } 11696 offset += mp1->b_wptr - mp1->b_rptr; 11697 IP_REASS_SET_END(mp1, offset); 11698 } 11699 /* One hole at the end. */ 11700 ipf->ipf_hole_cnt = 1; 11701 /* Brand it as a hard case, forever. */ 11702 ipf->ipf_end = 0; 11703 } 11704 /* Walk through all the new pieces. */ 11705 do { 11706 end = start + (mp->b_wptr - mp->b_rptr); 11707 /* 11708 * If start is 0, decrease 'end' only for the first mblk of 11709 * the fragment. Otherwise 'end' can get wrong value in the 11710 * second pass of the loop if first mblk is exactly the 11711 * size of ipf_nf_hdr_len. 11712 */ 11713 if (start == 0 && !offset_zero_seen) { 11714 /* First segment */ 11715 ASSERT(ipf->ipf_nf_hdr_len != 0); 11716 end -= ipf->ipf_nf_hdr_len; 11717 offset_zero_seen = B_TRUE; 11718 } 11719 next_mp = mp->b_cont; 11720 /* 11721 * We are checking to see if there is any interesing data 11722 * to process. If there isn't and the mblk isn't the 11723 * one which carries the unfragmentable header then we 11724 * drop it. It's possible to have just the unfragmentable 11725 * header come through without any data. That needs to be 11726 * saved. 11727 * 11728 * If the assert at the top of this function holds then the 11729 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11730 * is infrequently traveled enough that the test is left in 11731 * to protect against future code changes which break that 11732 * invariant. 11733 */ 11734 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11735 /* Empty. Blast it. */ 11736 IP_REASS_SET_START(mp, 0); 11737 IP_REASS_SET_END(mp, 0); 11738 /* 11739 * If the ipf points to the mblk we are about to free, 11740 * update ipf to point to the next mblk (or NULL 11741 * if none). 11742 */ 11743 if (ipf->ipf_mp->b_cont == mp) 11744 ipf->ipf_mp->b_cont = next_mp; 11745 freeb(mp); 11746 continue; 11747 } 11748 mp->b_cont = NULL; 11749 IP_REASS_SET_START(mp, start); 11750 IP_REASS_SET_END(mp, end); 11751 if (!ipf->ipf_tail_mp) { 11752 ipf->ipf_tail_mp = mp; 11753 ipf->ipf_mp->b_cont = mp; 11754 if (start == 0 || !more) { 11755 ipf->ipf_hole_cnt = 1; 11756 /* 11757 * if the first fragment comes in more than one 11758 * mblk, this loop will be executed for each 11759 * mblk. Need to adjust hole count so exiting 11760 * this routine will leave hole count at 1. 11761 */ 11762 if (next_mp) 11763 ipf->ipf_hole_cnt++; 11764 } else 11765 ipf->ipf_hole_cnt = 2; 11766 continue; 11767 } else if (ipf->ipf_last_frag_seen && !more && 11768 !pkt_boundary_checked) { 11769 /* 11770 * We check datagram boundary only if this fragment 11771 * claims to be the last fragment and we have seen a 11772 * last fragment in the past too. We do this only 11773 * once for a given fragment. 11774 * 11775 * start cannot be 0 here as fragments with start=0 11776 * and MF=0 gets handled as a complete packet. These 11777 * fragments should not reach here. 11778 */ 11779 11780 if (start + msgdsize(mp) != 11781 IP_REASS_END(ipf->ipf_tail_mp)) { 11782 /* 11783 * We have two fragments both of which claim 11784 * to be the last fragment but gives conflicting 11785 * information about the whole datagram size. 11786 * Something fishy is going on. Drop the 11787 * fragment and free up the reassembly list. 11788 */ 11789 return (IP_REASS_FAILED); 11790 } 11791 11792 /* 11793 * We shouldn't come to this code block again for this 11794 * particular fragment. 11795 */ 11796 pkt_boundary_checked = B_TRUE; 11797 } 11798 11799 /* New stuff at or beyond tail? */ 11800 offset = IP_REASS_END(ipf->ipf_tail_mp); 11801 if (start >= offset) { 11802 if (ipf->ipf_last_frag_seen) { 11803 /* current fragment is beyond last fragment */ 11804 return (IP_REASS_FAILED); 11805 } 11806 /* Link it on end. */ 11807 ipf->ipf_tail_mp->b_cont = mp; 11808 ipf->ipf_tail_mp = mp; 11809 if (more) { 11810 if (start != offset) 11811 ipf->ipf_hole_cnt++; 11812 } else if (start == offset && next_mp == NULL) 11813 ipf->ipf_hole_cnt--; 11814 continue; 11815 } 11816 mp1 = ipf->ipf_mp->b_cont; 11817 offset = IP_REASS_START(mp1); 11818 /* New stuff at the front? */ 11819 if (start < offset) { 11820 if (start == 0) { 11821 if (end >= offset) { 11822 /* Nailed the hole at the begining. */ 11823 ipf->ipf_hole_cnt--; 11824 } 11825 } else if (end < offset) { 11826 /* 11827 * A hole, stuff, and a hole where there used 11828 * to be just a hole. 11829 */ 11830 ipf->ipf_hole_cnt++; 11831 } 11832 mp->b_cont = mp1; 11833 /* Check for overlap. */ 11834 while (end > offset) { 11835 if (end < IP_REASS_END(mp1)) { 11836 mp->b_wptr -= end - offset; 11837 IP_REASS_SET_END(mp, offset); 11838 BUMP_MIB(ill->ill_ip_mib, 11839 ipIfStatsReasmPartDups); 11840 break; 11841 } 11842 /* Did we cover another hole? */ 11843 if ((mp1->b_cont && 11844 IP_REASS_END(mp1) != 11845 IP_REASS_START(mp1->b_cont) && 11846 end >= IP_REASS_START(mp1->b_cont)) || 11847 (!ipf->ipf_last_frag_seen && !more)) { 11848 ipf->ipf_hole_cnt--; 11849 } 11850 /* Clip out mp1. */ 11851 if ((mp->b_cont = mp1->b_cont) == NULL) { 11852 /* 11853 * After clipping out mp1, this guy 11854 * is now hanging off the end. 11855 */ 11856 ipf->ipf_tail_mp = mp; 11857 } 11858 IP_REASS_SET_START(mp1, 0); 11859 IP_REASS_SET_END(mp1, 0); 11860 /* Subtract byte count */ 11861 ipf->ipf_count -= mp1->b_datap->db_lim - 11862 mp1->b_datap->db_base; 11863 freeb(mp1); 11864 BUMP_MIB(ill->ill_ip_mib, 11865 ipIfStatsReasmPartDups); 11866 mp1 = mp->b_cont; 11867 if (!mp1) 11868 break; 11869 offset = IP_REASS_START(mp1); 11870 } 11871 ipf->ipf_mp->b_cont = mp; 11872 continue; 11873 } 11874 /* 11875 * The new piece starts somewhere between the start of the head 11876 * and before the end of the tail. 11877 */ 11878 for (; mp1; mp1 = mp1->b_cont) { 11879 offset = IP_REASS_END(mp1); 11880 if (start < offset) { 11881 if (end <= offset) { 11882 /* Nothing new. */ 11883 IP_REASS_SET_START(mp, 0); 11884 IP_REASS_SET_END(mp, 0); 11885 /* Subtract byte count */ 11886 ipf->ipf_count -= mp->b_datap->db_lim - 11887 mp->b_datap->db_base; 11888 if (incr_dups) { 11889 ipf->ipf_num_dups++; 11890 incr_dups = B_FALSE; 11891 } 11892 freeb(mp); 11893 BUMP_MIB(ill->ill_ip_mib, 11894 ipIfStatsReasmDuplicates); 11895 break; 11896 } 11897 /* 11898 * Trim redundant stuff off beginning of new 11899 * piece. 11900 */ 11901 IP_REASS_SET_START(mp, offset); 11902 mp->b_rptr += offset - start; 11903 BUMP_MIB(ill->ill_ip_mib, 11904 ipIfStatsReasmPartDups); 11905 start = offset; 11906 if (!mp1->b_cont) { 11907 /* 11908 * After trimming, this guy is now 11909 * hanging off the end. 11910 */ 11911 mp1->b_cont = mp; 11912 ipf->ipf_tail_mp = mp; 11913 if (!more) { 11914 ipf->ipf_hole_cnt--; 11915 } 11916 break; 11917 } 11918 } 11919 if (start >= IP_REASS_START(mp1->b_cont)) 11920 continue; 11921 /* Fill a hole */ 11922 if (start > offset) 11923 ipf->ipf_hole_cnt++; 11924 mp->b_cont = mp1->b_cont; 11925 mp1->b_cont = mp; 11926 mp1 = mp->b_cont; 11927 offset = IP_REASS_START(mp1); 11928 if (end >= offset) { 11929 ipf->ipf_hole_cnt--; 11930 /* Check for overlap. */ 11931 while (end > offset) { 11932 if (end < IP_REASS_END(mp1)) { 11933 mp->b_wptr -= end - offset; 11934 IP_REASS_SET_END(mp, offset); 11935 /* 11936 * TODO we might bump 11937 * this up twice if there is 11938 * overlap at both ends. 11939 */ 11940 BUMP_MIB(ill->ill_ip_mib, 11941 ipIfStatsReasmPartDups); 11942 break; 11943 } 11944 /* Did we cover another hole? */ 11945 if ((mp1->b_cont && 11946 IP_REASS_END(mp1) 11947 != IP_REASS_START(mp1->b_cont) && 11948 end >= 11949 IP_REASS_START(mp1->b_cont)) || 11950 (!ipf->ipf_last_frag_seen && 11951 !more)) { 11952 ipf->ipf_hole_cnt--; 11953 } 11954 /* Clip out mp1. */ 11955 if ((mp->b_cont = mp1->b_cont) == 11956 NULL) { 11957 /* 11958 * After clipping out mp1, 11959 * this guy is now hanging 11960 * off the end. 11961 */ 11962 ipf->ipf_tail_mp = mp; 11963 } 11964 IP_REASS_SET_START(mp1, 0); 11965 IP_REASS_SET_END(mp1, 0); 11966 /* Subtract byte count */ 11967 ipf->ipf_count -= 11968 mp1->b_datap->db_lim - 11969 mp1->b_datap->db_base; 11970 freeb(mp1); 11971 BUMP_MIB(ill->ill_ip_mib, 11972 ipIfStatsReasmPartDups); 11973 mp1 = mp->b_cont; 11974 if (!mp1) 11975 break; 11976 offset = IP_REASS_START(mp1); 11977 } 11978 } 11979 break; 11980 } 11981 } while (start = end, mp = next_mp); 11982 11983 /* Fragment just processed could be the last one. Remember this fact */ 11984 if (!more) 11985 ipf->ipf_last_frag_seen = B_TRUE; 11986 11987 /* Still got holes? */ 11988 if (ipf->ipf_hole_cnt) 11989 return (IP_REASS_PARTIAL); 11990 /* Clean up overloaded fields to avoid upstream disasters. */ 11991 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11992 IP_REASS_SET_START(mp1, 0); 11993 IP_REASS_SET_END(mp1, 0); 11994 } 11995 return (IP_REASS_COMPLETE); 11996 } 11997 11998 /* 11999 * ipsec processing for the fast path, used for input UDP Packets 12000 * Returns true if ready for passup to UDP. 12001 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12002 * was an ESP-in-UDP packet, etc.). 12003 */ 12004 static boolean_t 12005 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12006 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12007 { 12008 uint32_t ill_index; 12009 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12010 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12011 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12012 udp_t *udp = connp->conn_udp; 12013 12014 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12015 /* The ill_index of the incoming ILL */ 12016 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12017 12018 /* pass packet up to the transport */ 12019 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12020 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12021 NULL, mctl_present); 12022 if (*first_mpp == NULL) { 12023 return (B_FALSE); 12024 } 12025 } 12026 12027 /* Initiate IPPF processing for fastpath UDP */ 12028 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12029 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12030 if (*mpp == NULL) { 12031 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12032 "deferred/dropped during IPPF processing\n")); 12033 return (B_FALSE); 12034 } 12035 } 12036 /* 12037 * Remove 0-spi if it's 0, or move everything behind 12038 * the UDP header over it and forward to ESP via 12039 * ip_proto_input(). 12040 */ 12041 if (udp->udp_nat_t_endpoint) { 12042 if (mctl_present) { 12043 /* mctl_present *shouldn't* happen. */ 12044 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12045 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12046 &ipss->ipsec_dropper); 12047 *first_mpp = NULL; 12048 return (B_FALSE); 12049 } 12050 12051 /* "ill" is "recv_ill" in actuality. */ 12052 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12053 return (B_FALSE); 12054 12055 /* Else continue like a normal UDP packet. */ 12056 } 12057 12058 /* 12059 * We make the checks as below since we are in the fast path 12060 * and want to minimize the number of checks if the IP_RECVIF and/or 12061 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12062 */ 12063 if (connp->conn_recvif || connp->conn_recvslla || 12064 connp->conn_ip_recvpktinfo) { 12065 if (connp->conn_recvif) { 12066 in_flags = IPF_RECVIF; 12067 } 12068 /* 12069 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12070 * so the flag passed to ip_add_info is based on IP version 12071 * of connp. 12072 */ 12073 if (connp->conn_ip_recvpktinfo) { 12074 if (connp->conn_af_isv6) { 12075 /* 12076 * V6 only needs index 12077 */ 12078 in_flags |= IPF_RECVIF; 12079 } else { 12080 /* 12081 * V4 needs index + matching address. 12082 */ 12083 in_flags |= IPF_RECVADDR; 12084 } 12085 } 12086 if (connp->conn_recvslla) { 12087 in_flags |= IPF_RECVSLLA; 12088 } 12089 /* 12090 * since in_flags are being set ill will be 12091 * referenced in ip_add_info, so it better not 12092 * be NULL. 12093 */ 12094 /* 12095 * the actual data will be contained in b_cont 12096 * upon successful return of the following call. 12097 * If the call fails then the original mblk is 12098 * returned. 12099 */ 12100 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12101 ipst); 12102 } 12103 12104 return (B_TRUE); 12105 } 12106 12107 /* 12108 * Fragmentation reassembly. Each ILL has a hash table for 12109 * queuing packets undergoing reassembly for all IPIFs 12110 * associated with the ILL. The hash is based on the packet 12111 * IP ident field. The ILL frag hash table was allocated 12112 * as a timer block at the time the ILL was created. Whenever 12113 * there is anything on the reassembly queue, the timer will 12114 * be running. Returns B_TRUE if successful else B_FALSE; 12115 * frees mp on failure. 12116 */ 12117 static boolean_t 12118 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12119 uint32_t *cksum_val, uint16_t *cksum_flags) 12120 { 12121 uint32_t frag_offset_flags; 12122 mblk_t *mp = *mpp; 12123 mblk_t *t_mp; 12124 ipaddr_t dst; 12125 uint8_t proto = ipha->ipha_protocol; 12126 uint32_t sum_val; 12127 uint16_t sum_flags; 12128 ipf_t *ipf; 12129 ipf_t **ipfp; 12130 ipfb_t *ipfb; 12131 uint16_t ident; 12132 uint32_t offset; 12133 ipaddr_t src; 12134 uint_t hdr_length; 12135 uint32_t end; 12136 mblk_t *mp1; 12137 mblk_t *tail_mp; 12138 size_t count; 12139 size_t msg_len; 12140 uint8_t ecn_info = 0; 12141 uint32_t packet_size; 12142 boolean_t pruned = B_FALSE; 12143 ip_stack_t *ipst = ill->ill_ipst; 12144 12145 if (cksum_val != NULL) 12146 *cksum_val = 0; 12147 if (cksum_flags != NULL) 12148 *cksum_flags = 0; 12149 12150 /* 12151 * Drop the fragmented as early as possible, if 12152 * we don't have resource(s) to re-assemble. 12153 */ 12154 if (ipst->ips_ip_reass_queue_bytes == 0) { 12155 freemsg(mp); 12156 return (B_FALSE); 12157 } 12158 12159 /* Check for fragmentation offset; return if there's none */ 12160 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12161 (IPH_MF | IPH_OFFSET)) == 0) 12162 return (B_TRUE); 12163 12164 /* 12165 * We utilize hardware computed checksum info only for UDP since 12166 * IP fragmentation is a normal occurrence for the protocol. In 12167 * addition, checksum offload support for IP fragments carrying 12168 * UDP payload is commonly implemented across network adapters. 12169 */ 12170 ASSERT(recv_ill != NULL); 12171 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12172 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12173 mblk_t *mp1 = mp->b_cont; 12174 int32_t len; 12175 12176 /* Record checksum information from the packet */ 12177 sum_val = (uint32_t)DB_CKSUM16(mp); 12178 sum_flags = DB_CKSUMFLAGS(mp); 12179 12180 /* IP payload offset from beginning of mblk */ 12181 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12182 12183 if ((sum_flags & HCK_PARTIALCKSUM) && 12184 (mp1 == NULL || mp1->b_cont == NULL) && 12185 offset >= DB_CKSUMSTART(mp) && 12186 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12187 uint32_t adj; 12188 /* 12189 * Partial checksum has been calculated by hardware 12190 * and attached to the packet; in addition, any 12191 * prepended extraneous data is even byte aligned. 12192 * If any such data exists, we adjust the checksum; 12193 * this would also handle any postpended data. 12194 */ 12195 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12196 mp, mp1, len, adj); 12197 12198 /* One's complement subtract extraneous checksum */ 12199 if (adj >= sum_val) 12200 sum_val = ~(adj - sum_val) & 0xFFFF; 12201 else 12202 sum_val -= adj; 12203 } 12204 } else { 12205 sum_val = 0; 12206 sum_flags = 0; 12207 } 12208 12209 /* Clear hardware checksumming flag */ 12210 DB_CKSUMFLAGS(mp) = 0; 12211 12212 ident = ipha->ipha_ident; 12213 offset = (frag_offset_flags << 3) & 0xFFFF; 12214 src = ipha->ipha_src; 12215 dst = ipha->ipha_dst; 12216 hdr_length = IPH_HDR_LENGTH(ipha); 12217 end = ntohs(ipha->ipha_length) - hdr_length; 12218 12219 /* If end == 0 then we have a packet with no data, so just free it */ 12220 if (end == 0) { 12221 freemsg(mp); 12222 return (B_FALSE); 12223 } 12224 12225 /* Record the ECN field info. */ 12226 ecn_info = (ipha->ipha_type_of_service & 0x3); 12227 if (offset != 0) { 12228 /* 12229 * If this isn't the first piece, strip the header, and 12230 * add the offset to the end value. 12231 */ 12232 mp->b_rptr += hdr_length; 12233 end += offset; 12234 } 12235 12236 msg_len = MBLKSIZE(mp); 12237 tail_mp = mp; 12238 while (tail_mp->b_cont != NULL) { 12239 tail_mp = tail_mp->b_cont; 12240 msg_len += MBLKSIZE(tail_mp); 12241 } 12242 12243 /* If the reassembly list for this ILL will get too big, prune it */ 12244 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12245 ipst->ips_ip_reass_queue_bytes) { 12246 ill_frag_prune(ill, 12247 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12248 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12249 pruned = B_TRUE; 12250 } 12251 12252 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12253 mutex_enter(&ipfb->ipfb_lock); 12254 12255 ipfp = &ipfb->ipfb_ipf; 12256 /* Try to find an existing fragment queue for this packet. */ 12257 for (;;) { 12258 ipf = ipfp[0]; 12259 if (ipf != NULL) { 12260 /* 12261 * It has to match on ident and src/dst address. 12262 */ 12263 if (ipf->ipf_ident == ident && 12264 ipf->ipf_src == src && 12265 ipf->ipf_dst == dst && 12266 ipf->ipf_protocol == proto) { 12267 /* 12268 * If we have received too many 12269 * duplicate fragments for this packet 12270 * free it. 12271 */ 12272 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12273 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12274 freemsg(mp); 12275 mutex_exit(&ipfb->ipfb_lock); 12276 return (B_FALSE); 12277 } 12278 /* Found it. */ 12279 break; 12280 } 12281 ipfp = &ipf->ipf_hash_next; 12282 continue; 12283 } 12284 12285 /* 12286 * If we pruned the list, do we want to store this new 12287 * fragment?. We apply an optimization here based on the 12288 * fact that most fragments will be received in order. 12289 * So if the offset of this incoming fragment is zero, 12290 * it is the first fragment of a new packet. We will 12291 * keep it. Otherwise drop the fragment, as we have 12292 * probably pruned the packet already (since the 12293 * packet cannot be found). 12294 */ 12295 if (pruned && offset != 0) { 12296 mutex_exit(&ipfb->ipfb_lock); 12297 freemsg(mp); 12298 return (B_FALSE); 12299 } 12300 12301 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12302 /* 12303 * Too many fragmented packets in this hash 12304 * bucket. Free the oldest. 12305 */ 12306 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12307 } 12308 12309 /* New guy. Allocate a frag message. */ 12310 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12311 if (mp1 == NULL) { 12312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12313 freemsg(mp); 12314 reass_done: 12315 mutex_exit(&ipfb->ipfb_lock); 12316 return (B_FALSE); 12317 } 12318 12319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12320 mp1->b_cont = mp; 12321 12322 /* Initialize the fragment header. */ 12323 ipf = (ipf_t *)mp1->b_rptr; 12324 ipf->ipf_mp = mp1; 12325 ipf->ipf_ptphn = ipfp; 12326 ipfp[0] = ipf; 12327 ipf->ipf_hash_next = NULL; 12328 ipf->ipf_ident = ident; 12329 ipf->ipf_protocol = proto; 12330 ipf->ipf_src = src; 12331 ipf->ipf_dst = dst; 12332 ipf->ipf_nf_hdr_len = 0; 12333 /* Record reassembly start time. */ 12334 ipf->ipf_timestamp = gethrestime_sec(); 12335 /* Record ipf generation and account for frag header */ 12336 ipf->ipf_gen = ill->ill_ipf_gen++; 12337 ipf->ipf_count = MBLKSIZE(mp1); 12338 ipf->ipf_last_frag_seen = B_FALSE; 12339 ipf->ipf_ecn = ecn_info; 12340 ipf->ipf_num_dups = 0; 12341 ipfb->ipfb_frag_pkts++; 12342 ipf->ipf_checksum = 0; 12343 ipf->ipf_checksum_flags = 0; 12344 12345 /* Store checksum value in fragment header */ 12346 if (sum_flags != 0) { 12347 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12348 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12349 ipf->ipf_checksum = sum_val; 12350 ipf->ipf_checksum_flags = sum_flags; 12351 } 12352 12353 /* 12354 * We handle reassembly two ways. In the easy case, 12355 * where all the fragments show up in order, we do 12356 * minimal bookkeeping, and just clip new pieces on 12357 * the end. If we ever see a hole, then we go off 12358 * to ip_reassemble which has to mark the pieces and 12359 * keep track of the number of holes, etc. Obviously, 12360 * the point of having both mechanisms is so we can 12361 * handle the easy case as efficiently as possible. 12362 */ 12363 if (offset == 0) { 12364 /* Easy case, in-order reassembly so far. */ 12365 ipf->ipf_count += msg_len; 12366 ipf->ipf_tail_mp = tail_mp; 12367 /* 12368 * Keep track of next expected offset in 12369 * ipf_end. 12370 */ 12371 ipf->ipf_end = end; 12372 ipf->ipf_nf_hdr_len = hdr_length; 12373 } else { 12374 /* Hard case, hole at the beginning. */ 12375 ipf->ipf_tail_mp = NULL; 12376 /* 12377 * ipf_end == 0 means that we have given up 12378 * on easy reassembly. 12379 */ 12380 ipf->ipf_end = 0; 12381 12382 /* Forget checksum offload from now on */ 12383 ipf->ipf_checksum_flags = 0; 12384 12385 /* 12386 * ipf_hole_cnt is set by ip_reassemble. 12387 * ipf_count is updated by ip_reassemble. 12388 * No need to check for return value here 12389 * as we don't expect reassembly to complete 12390 * or fail for the first fragment itself. 12391 */ 12392 (void) ip_reassemble(mp, ipf, 12393 (frag_offset_flags & IPH_OFFSET) << 3, 12394 (frag_offset_flags & IPH_MF), ill, msg_len); 12395 } 12396 /* Update per ipfb and ill byte counts */ 12397 ipfb->ipfb_count += ipf->ipf_count; 12398 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12399 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12400 /* If the frag timer wasn't already going, start it. */ 12401 mutex_enter(&ill->ill_lock); 12402 ill_frag_timer_start(ill); 12403 mutex_exit(&ill->ill_lock); 12404 goto reass_done; 12405 } 12406 12407 /* 12408 * If the packet's flag has changed (it could be coming up 12409 * from an interface different than the previous, therefore 12410 * possibly different checksum capability), then forget about 12411 * any stored checksum states. Otherwise add the value to 12412 * the existing one stored in the fragment header. 12413 */ 12414 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12415 sum_val += ipf->ipf_checksum; 12416 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12417 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12418 ipf->ipf_checksum = sum_val; 12419 } else if (ipf->ipf_checksum_flags != 0) { 12420 /* Forget checksum offload from now on */ 12421 ipf->ipf_checksum_flags = 0; 12422 } 12423 12424 /* 12425 * We have a new piece of a datagram which is already being 12426 * reassembled. Update the ECN info if all IP fragments 12427 * are ECN capable. If there is one which is not, clear 12428 * all the info. If there is at least one which has CE 12429 * code point, IP needs to report that up to transport. 12430 */ 12431 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12432 if (ecn_info == IPH_ECN_CE) 12433 ipf->ipf_ecn = IPH_ECN_CE; 12434 } else { 12435 ipf->ipf_ecn = IPH_ECN_NECT; 12436 } 12437 if (offset && ipf->ipf_end == offset) { 12438 /* The new fragment fits at the end */ 12439 ipf->ipf_tail_mp->b_cont = mp; 12440 /* Update the byte count */ 12441 ipf->ipf_count += msg_len; 12442 /* Update per ipfb and ill byte counts */ 12443 ipfb->ipfb_count += msg_len; 12444 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12445 atomic_add_32(&ill->ill_frag_count, msg_len); 12446 if (frag_offset_flags & IPH_MF) { 12447 /* More to come. */ 12448 ipf->ipf_end = end; 12449 ipf->ipf_tail_mp = tail_mp; 12450 goto reass_done; 12451 } 12452 } else { 12453 /* Go do the hard cases. */ 12454 int ret; 12455 12456 if (offset == 0) 12457 ipf->ipf_nf_hdr_len = hdr_length; 12458 12459 /* Save current byte count */ 12460 count = ipf->ipf_count; 12461 ret = ip_reassemble(mp, ipf, 12462 (frag_offset_flags & IPH_OFFSET) << 3, 12463 (frag_offset_flags & IPH_MF), ill, msg_len); 12464 /* Count of bytes added and subtracted (freeb()ed) */ 12465 count = ipf->ipf_count - count; 12466 if (count) { 12467 /* Update per ipfb and ill byte counts */ 12468 ipfb->ipfb_count += count; 12469 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12470 atomic_add_32(&ill->ill_frag_count, count); 12471 } 12472 if (ret == IP_REASS_PARTIAL) { 12473 goto reass_done; 12474 } else if (ret == IP_REASS_FAILED) { 12475 /* Reassembly failed. Free up all resources */ 12476 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12477 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12478 IP_REASS_SET_START(t_mp, 0); 12479 IP_REASS_SET_END(t_mp, 0); 12480 } 12481 freemsg(mp); 12482 goto reass_done; 12483 } 12484 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12485 } 12486 /* 12487 * We have completed reassembly. Unhook the frag header from 12488 * the reassembly list. 12489 * 12490 * Before we free the frag header, record the ECN info 12491 * to report back to the transport. 12492 */ 12493 ecn_info = ipf->ipf_ecn; 12494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12495 ipfp = ipf->ipf_ptphn; 12496 12497 /* We need to supply these to caller */ 12498 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12499 sum_val = ipf->ipf_checksum; 12500 else 12501 sum_val = 0; 12502 12503 mp1 = ipf->ipf_mp; 12504 count = ipf->ipf_count; 12505 ipf = ipf->ipf_hash_next; 12506 if (ipf != NULL) 12507 ipf->ipf_ptphn = ipfp; 12508 ipfp[0] = ipf; 12509 atomic_add_32(&ill->ill_frag_count, -count); 12510 ASSERT(ipfb->ipfb_count >= count); 12511 ipfb->ipfb_count -= count; 12512 ipfb->ipfb_frag_pkts--; 12513 mutex_exit(&ipfb->ipfb_lock); 12514 /* Ditch the frag header. */ 12515 mp = mp1->b_cont; 12516 12517 freeb(mp1); 12518 12519 /* Restore original IP length in header. */ 12520 packet_size = (uint32_t)msgdsize(mp); 12521 if (packet_size > IP_MAXPACKET) { 12522 freemsg(mp); 12523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12524 return (B_FALSE); 12525 } 12526 12527 if (DB_REF(mp) > 1) { 12528 mblk_t *mp2 = copymsg(mp); 12529 12530 freemsg(mp); 12531 if (mp2 == NULL) { 12532 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12533 return (B_FALSE); 12534 } 12535 mp = mp2; 12536 } 12537 ipha = (ipha_t *)mp->b_rptr; 12538 12539 ipha->ipha_length = htons((uint16_t)packet_size); 12540 /* We're now complete, zip the frag state */ 12541 ipha->ipha_fragment_offset_and_flags = 0; 12542 /* Record the ECN info. */ 12543 ipha->ipha_type_of_service &= 0xFC; 12544 ipha->ipha_type_of_service |= ecn_info; 12545 *mpp = mp; 12546 12547 /* Reassembly is successful; return checksum information if needed */ 12548 if (cksum_val != NULL) 12549 *cksum_val = sum_val; 12550 if (cksum_flags != NULL) 12551 *cksum_flags = sum_flags; 12552 12553 return (B_TRUE); 12554 } 12555 12556 /* 12557 * Perform ip header check sum update local options. 12558 * return B_TRUE if all is well, else return B_FALSE and release 12559 * the mp. caller is responsible for decrementing ire ref cnt. 12560 */ 12561 static boolean_t 12562 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12563 ip_stack_t *ipst) 12564 { 12565 mblk_t *first_mp; 12566 boolean_t mctl_present; 12567 uint16_t sum; 12568 12569 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12570 /* 12571 * Don't do the checksum if it has gone through AH/ESP 12572 * processing. 12573 */ 12574 if (!mctl_present) { 12575 sum = ip_csum_hdr(ipha); 12576 if (sum != 0) { 12577 if (ill != NULL) { 12578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12579 } else { 12580 BUMP_MIB(&ipst->ips_ip_mib, 12581 ipIfStatsInCksumErrs); 12582 } 12583 freemsg(first_mp); 12584 return (B_FALSE); 12585 } 12586 } 12587 12588 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12589 if (mctl_present) 12590 freeb(first_mp); 12591 return (B_FALSE); 12592 } 12593 12594 return (B_TRUE); 12595 } 12596 12597 /* 12598 * All udp packet are delivered to the local host via this routine. 12599 */ 12600 void 12601 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12602 ill_t *recv_ill) 12603 { 12604 uint32_t sum; 12605 uint32_t u1; 12606 boolean_t mctl_present; 12607 conn_t *connp; 12608 mblk_t *first_mp; 12609 uint16_t *up; 12610 ill_t *ill = (ill_t *)q->q_ptr; 12611 uint16_t reass_hck_flags = 0; 12612 ip_stack_t *ipst; 12613 12614 ASSERT(recv_ill != NULL); 12615 ipst = recv_ill->ill_ipst; 12616 12617 #define rptr ((uchar_t *)ipha) 12618 12619 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12620 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12621 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12622 ASSERT(ill != NULL); 12623 12624 /* 12625 * FAST PATH for udp packets 12626 */ 12627 12628 /* u1 is # words of IP options */ 12629 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12630 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12631 12632 /* IP options present */ 12633 if (u1 != 0) 12634 goto ipoptions; 12635 12636 /* Check the IP header checksum. */ 12637 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12638 /* Clear the IP header h/w cksum flag */ 12639 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12640 } else if (!mctl_present) { 12641 /* 12642 * Don't verify header checksum if this packet is coming 12643 * back from AH/ESP as we already did it. 12644 */ 12645 #define uph ((uint16_t *)ipha) 12646 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12647 uph[6] + uph[7] + uph[8] + uph[9]; 12648 #undef uph 12649 /* finish doing IP checksum */ 12650 sum = (sum & 0xFFFF) + (sum >> 16); 12651 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12652 if (sum != 0 && sum != 0xFFFF) { 12653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12654 freemsg(first_mp); 12655 return; 12656 } 12657 } 12658 12659 /* 12660 * Count for SNMP of inbound packets for ire. 12661 * if mctl is present this might be a secure packet and 12662 * has already been counted for in ip_proto_input(). 12663 */ 12664 if (!mctl_present) { 12665 UPDATE_IB_PKT_COUNT(ire); 12666 ire->ire_last_used_time = lbolt; 12667 } 12668 12669 /* packet part of fragmented IP packet? */ 12670 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12671 if (u1 & (IPH_MF | IPH_OFFSET)) { 12672 goto fragmented; 12673 } 12674 12675 /* u1 = IP header length (20 bytes) */ 12676 u1 = IP_SIMPLE_HDR_LENGTH; 12677 12678 /* packet does not contain complete IP & UDP headers */ 12679 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12680 goto udppullup; 12681 12682 /* up points to UDP header */ 12683 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12684 #define iphs ((uint16_t *)ipha) 12685 12686 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12687 if (up[3] != 0) { 12688 mblk_t *mp1 = mp->b_cont; 12689 boolean_t cksum_err; 12690 uint16_t hck_flags = 0; 12691 12692 /* Pseudo-header checksum */ 12693 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12694 iphs[9] + up[2]; 12695 12696 /* 12697 * Revert to software checksum calculation if the interface 12698 * isn't capable of checksum offload or if IPsec is present. 12699 */ 12700 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12701 hck_flags = DB_CKSUMFLAGS(mp); 12702 12703 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12704 IP_STAT(ipst, ip_in_sw_cksum); 12705 12706 IP_CKSUM_RECV(hck_flags, u1, 12707 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12708 (int32_t)((uchar_t *)up - rptr), 12709 mp, mp1, cksum_err); 12710 12711 if (cksum_err) { 12712 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12713 if (hck_flags & HCK_FULLCKSUM) 12714 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12715 else if (hck_flags & HCK_PARTIALCKSUM) 12716 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12717 else 12718 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12719 12720 freemsg(first_mp); 12721 return; 12722 } 12723 } 12724 12725 /* Non-fragmented broadcast or multicast packet? */ 12726 if (ire->ire_type == IRE_BROADCAST) 12727 goto udpslowpath; 12728 12729 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12730 ire->ire_zoneid, ipst)) != NULL) { 12731 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12732 IP_STAT(ipst, ip_udp_fast_path); 12733 12734 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12735 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12736 freemsg(mp); 12737 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12738 } else { 12739 if (!mctl_present) { 12740 BUMP_MIB(ill->ill_ip_mib, 12741 ipIfStatsHCInDelivers); 12742 } 12743 /* 12744 * mp and first_mp can change. 12745 */ 12746 if (ip_udp_check(q, connp, recv_ill, 12747 ipha, &mp, &first_mp, mctl_present, ire)) { 12748 /* Send it upstream */ 12749 (connp->conn_recv)(connp, mp, NULL); 12750 } 12751 } 12752 /* 12753 * freeb() cannot deal with null mblk being passed 12754 * in and first_mp can be set to null in the call 12755 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12756 */ 12757 if (mctl_present && first_mp != NULL) { 12758 freeb(first_mp); 12759 } 12760 CONN_DEC_REF(connp); 12761 return; 12762 } 12763 12764 /* 12765 * if we got here we know the packet is not fragmented and 12766 * has no options. The classifier could not find a conn_t and 12767 * most likely its an icmp packet so send it through slow path. 12768 */ 12769 12770 goto udpslowpath; 12771 12772 ipoptions: 12773 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12774 goto slow_done; 12775 } 12776 12777 UPDATE_IB_PKT_COUNT(ire); 12778 ire->ire_last_used_time = lbolt; 12779 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12780 if (u1 & (IPH_MF | IPH_OFFSET)) { 12781 fragmented: 12782 /* 12783 * "sum" and "reass_hck_flags" are non-zero if the 12784 * reassembled packet has a valid hardware computed 12785 * checksum information associated with it. 12786 */ 12787 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12788 &reass_hck_flags)) { 12789 goto slow_done; 12790 } 12791 12792 /* 12793 * Make sure that first_mp points back to mp as 12794 * the mp we came in with could have changed in 12795 * ip_rput_fragment(). 12796 */ 12797 ASSERT(!mctl_present); 12798 ipha = (ipha_t *)mp->b_rptr; 12799 first_mp = mp; 12800 } 12801 12802 /* Now we have a complete datagram, destined for this machine. */ 12803 u1 = IPH_HDR_LENGTH(ipha); 12804 /* Pull up the UDP header, if necessary. */ 12805 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12806 udppullup: 12807 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12808 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12809 freemsg(first_mp); 12810 goto slow_done; 12811 } 12812 ipha = (ipha_t *)mp->b_rptr; 12813 } 12814 12815 /* 12816 * Validate the checksum for the reassembled packet; for the 12817 * pullup case we calculate the payload checksum in software. 12818 */ 12819 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12820 if (up[3] != 0) { 12821 boolean_t cksum_err; 12822 12823 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12824 IP_STAT(ipst, ip_in_sw_cksum); 12825 12826 IP_CKSUM_RECV_REASS(reass_hck_flags, 12827 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12828 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12829 iphs[9] + up[2], sum, cksum_err); 12830 12831 if (cksum_err) { 12832 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12833 12834 if (reass_hck_flags & HCK_FULLCKSUM) 12835 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12836 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12837 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12838 else 12839 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12840 12841 freemsg(first_mp); 12842 goto slow_done; 12843 } 12844 } 12845 udpslowpath: 12846 12847 /* Clear hardware checksum flag to be safe */ 12848 DB_CKSUMFLAGS(mp) = 0; 12849 12850 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12851 (ire->ire_type == IRE_BROADCAST), 12852 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12853 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12854 12855 slow_done: 12856 IP_STAT(ipst, ip_udp_slow_path); 12857 return; 12858 12859 #undef iphs 12860 #undef rptr 12861 } 12862 12863 /* ARGSUSED */ 12864 static mblk_t * 12865 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12866 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12867 ill_rx_ring_t *ill_ring) 12868 { 12869 conn_t *connp; 12870 uint32_t sum; 12871 uint32_t u1; 12872 uint16_t *up; 12873 int offset; 12874 ssize_t len; 12875 mblk_t *mp1; 12876 boolean_t syn_present = B_FALSE; 12877 tcph_t *tcph; 12878 uint_t tcph_flags; 12879 uint_t ip_hdr_len; 12880 ill_t *ill = (ill_t *)q->q_ptr; 12881 zoneid_t zoneid = ire->ire_zoneid; 12882 boolean_t cksum_err; 12883 uint16_t hck_flags = 0; 12884 ip_stack_t *ipst = recv_ill->ill_ipst; 12885 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12886 12887 #define rptr ((uchar_t *)ipha) 12888 12889 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12890 ASSERT(ill != NULL); 12891 12892 /* 12893 * FAST PATH for tcp packets 12894 */ 12895 12896 /* u1 is # words of IP options */ 12897 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12898 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12899 12900 /* IP options present */ 12901 if (u1) { 12902 goto ipoptions; 12903 } else if (!mctl_present) { 12904 /* Check the IP header checksum. */ 12905 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12906 /* Clear the IP header h/w cksum flag */ 12907 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12908 } else if (!mctl_present) { 12909 /* 12910 * Don't verify header checksum if this packet 12911 * is coming back from AH/ESP as we already did it. 12912 */ 12913 #define uph ((uint16_t *)ipha) 12914 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12915 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12916 #undef uph 12917 /* finish doing IP checksum */ 12918 sum = (sum & 0xFFFF) + (sum >> 16); 12919 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12920 if (sum != 0 && sum != 0xFFFF) { 12921 BUMP_MIB(ill->ill_ip_mib, 12922 ipIfStatsInCksumErrs); 12923 goto error; 12924 } 12925 } 12926 } 12927 12928 if (!mctl_present) { 12929 UPDATE_IB_PKT_COUNT(ire); 12930 ire->ire_last_used_time = lbolt; 12931 } 12932 12933 /* packet part of fragmented IP packet? */ 12934 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12935 if (u1 & (IPH_MF | IPH_OFFSET)) { 12936 goto fragmented; 12937 } 12938 12939 /* u1 = IP header length (20 bytes) */ 12940 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12941 12942 /* does packet contain IP+TCP headers? */ 12943 len = mp->b_wptr - rptr; 12944 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12945 IP_STAT(ipst, ip_tcppullup); 12946 goto tcppullup; 12947 } 12948 12949 /* TCP options present? */ 12950 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12951 12952 /* 12953 * If options need to be pulled up, then goto tcpoptions. 12954 * otherwise we are still in the fast path 12955 */ 12956 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12957 IP_STAT(ipst, ip_tcpoptions); 12958 goto tcpoptions; 12959 } 12960 12961 /* multiple mblks of tcp data? */ 12962 if ((mp1 = mp->b_cont) != NULL) { 12963 /* more then two? */ 12964 if (mp1->b_cont != NULL) { 12965 IP_STAT(ipst, ip_multipkttcp); 12966 goto multipkttcp; 12967 } 12968 len += mp1->b_wptr - mp1->b_rptr; 12969 } 12970 12971 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12972 12973 /* part of pseudo checksum */ 12974 12975 /* TCP datagram length */ 12976 u1 = len - IP_SIMPLE_HDR_LENGTH; 12977 12978 #define iphs ((uint16_t *)ipha) 12979 12980 #ifdef _BIG_ENDIAN 12981 u1 += IPPROTO_TCP; 12982 #else 12983 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12984 #endif 12985 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12986 12987 /* 12988 * Revert to software checksum calculation if the interface 12989 * isn't capable of checksum offload or if IPsec is present. 12990 */ 12991 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12992 hck_flags = DB_CKSUMFLAGS(mp); 12993 12994 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12995 IP_STAT(ipst, ip_in_sw_cksum); 12996 12997 IP_CKSUM_RECV(hck_flags, u1, 12998 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12999 (int32_t)((uchar_t *)up - rptr), 13000 mp, mp1, cksum_err); 13001 13002 if (cksum_err) { 13003 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13004 13005 if (hck_flags & HCK_FULLCKSUM) 13006 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13007 else if (hck_flags & HCK_PARTIALCKSUM) 13008 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13009 else 13010 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13011 13012 goto error; 13013 } 13014 13015 try_again: 13016 13017 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13018 zoneid, ipst)) == NULL) { 13019 /* Send the TH_RST */ 13020 goto no_conn; 13021 } 13022 13023 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13024 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13025 13026 /* 13027 * TCP FAST PATH for AF_INET socket. 13028 * 13029 * TCP fast path to avoid extra work. An AF_INET socket type 13030 * does not have facility to receive extra information via 13031 * ip_process or ip_add_info. Also, when the connection was 13032 * established, we made a check if this connection is impacted 13033 * by any global IPsec policy or per connection policy (a 13034 * policy that comes in effect later will not apply to this 13035 * connection). Since all this can be determined at the 13036 * connection establishment time, a quick check of flags 13037 * can avoid extra work. 13038 */ 13039 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13040 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13041 ASSERT(first_mp == mp); 13042 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13043 if (tcph_flags != (TH_SYN | TH_ACK)) { 13044 SET_SQUEUE(mp, tcp_rput_data, connp); 13045 return (mp); 13046 } 13047 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13048 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13049 SET_SQUEUE(mp, tcp_input, connp); 13050 return (mp); 13051 } 13052 13053 if (tcph_flags == TH_SYN) { 13054 if (IPCL_IS_TCP(connp)) { 13055 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13056 DB_CKSUMSTART(mp) = 13057 (intptr_t)ip_squeue_get(ill_ring); 13058 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13059 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13060 BUMP_MIB(ill->ill_ip_mib, 13061 ipIfStatsHCInDelivers); 13062 SET_SQUEUE(mp, connp->conn_recv, connp); 13063 return (mp); 13064 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13065 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13066 BUMP_MIB(ill->ill_ip_mib, 13067 ipIfStatsHCInDelivers); 13068 ip_squeue_enter_unbound++; 13069 SET_SQUEUE(mp, tcp_conn_request_unbound, 13070 connp); 13071 return (mp); 13072 } 13073 syn_present = B_TRUE; 13074 } 13075 } 13076 13077 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13078 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13079 13080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13081 /* No need to send this packet to TCP */ 13082 if ((flags & TH_RST) || (flags & TH_URG)) { 13083 CONN_DEC_REF(connp); 13084 freemsg(first_mp); 13085 return (NULL); 13086 } 13087 if (flags & TH_ACK) { 13088 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13089 ipst->ips_netstack->netstack_tcp, connp); 13090 CONN_DEC_REF(connp); 13091 return (NULL); 13092 } 13093 13094 CONN_DEC_REF(connp); 13095 freemsg(first_mp); 13096 return (NULL); 13097 } 13098 13099 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13100 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13101 ipha, NULL, mctl_present); 13102 if (first_mp == NULL) { 13103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13104 CONN_DEC_REF(connp); 13105 return (NULL); 13106 } 13107 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13108 ASSERT(syn_present); 13109 if (mctl_present) { 13110 ASSERT(first_mp != mp); 13111 first_mp->b_datap->db_struioflag |= 13112 STRUIO_POLICY; 13113 } else { 13114 ASSERT(first_mp == mp); 13115 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13116 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13117 } 13118 } else { 13119 /* 13120 * Discard first_mp early since we're dealing with a 13121 * fully-connected conn_t and tcp doesn't do policy in 13122 * this case. 13123 */ 13124 if (mctl_present) { 13125 freeb(first_mp); 13126 mctl_present = B_FALSE; 13127 } 13128 first_mp = mp; 13129 } 13130 } 13131 13132 /* Initiate IPPF processing for fastpath */ 13133 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13134 uint32_t ill_index; 13135 13136 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13137 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13138 if (mp == NULL) { 13139 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13140 "deferred/dropped during IPPF processing\n")); 13141 CONN_DEC_REF(connp); 13142 if (mctl_present) 13143 freeb(first_mp); 13144 return (NULL); 13145 } else if (mctl_present) { 13146 /* 13147 * ip_process might return a new mp. 13148 */ 13149 ASSERT(first_mp != mp); 13150 first_mp->b_cont = mp; 13151 } else { 13152 first_mp = mp; 13153 } 13154 13155 } 13156 13157 if (!syn_present && connp->conn_ip_recvpktinfo) { 13158 /* 13159 * TCP does not support IP_RECVPKTINFO for v4 so lets 13160 * make sure IPF_RECVIF is passed to ip_add_info. 13161 */ 13162 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13163 IPCL_ZONEID(connp), ipst); 13164 if (mp == NULL) { 13165 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13166 CONN_DEC_REF(connp); 13167 if (mctl_present) 13168 freeb(first_mp); 13169 return (NULL); 13170 } else if (mctl_present) { 13171 /* 13172 * ip_add_info might return a new mp. 13173 */ 13174 ASSERT(first_mp != mp); 13175 first_mp->b_cont = mp; 13176 } else { 13177 first_mp = mp; 13178 } 13179 } 13180 13181 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13182 if (IPCL_IS_TCP(connp)) { 13183 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13184 return (first_mp); 13185 } else { 13186 /* SOCK_RAW, IPPROTO_TCP case */ 13187 (connp->conn_recv)(connp, first_mp, NULL); 13188 CONN_DEC_REF(connp); 13189 return (NULL); 13190 } 13191 13192 no_conn: 13193 /* Initiate IPPf processing, if needed. */ 13194 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13195 uint32_t ill_index; 13196 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13197 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13198 if (first_mp == NULL) { 13199 return (NULL); 13200 } 13201 } 13202 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13203 13204 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13205 ipst->ips_netstack->netstack_tcp, NULL); 13206 return (NULL); 13207 ipoptions: 13208 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13209 goto slow_done; 13210 } 13211 13212 UPDATE_IB_PKT_COUNT(ire); 13213 ire->ire_last_used_time = lbolt; 13214 13215 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13216 if (u1 & (IPH_MF | IPH_OFFSET)) { 13217 fragmented: 13218 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13219 if (mctl_present) 13220 freeb(first_mp); 13221 goto slow_done; 13222 } 13223 /* 13224 * Make sure that first_mp points back to mp as 13225 * the mp we came in with could have changed in 13226 * ip_rput_fragment(). 13227 */ 13228 ASSERT(!mctl_present); 13229 ipha = (ipha_t *)mp->b_rptr; 13230 first_mp = mp; 13231 } 13232 13233 /* Now we have a complete datagram, destined for this machine. */ 13234 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13235 13236 len = mp->b_wptr - mp->b_rptr; 13237 /* Pull up a minimal TCP header, if necessary. */ 13238 if (len < (u1 + 20)) { 13239 tcppullup: 13240 if (!pullupmsg(mp, u1 + 20)) { 13241 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13242 goto error; 13243 } 13244 ipha = (ipha_t *)mp->b_rptr; 13245 len = mp->b_wptr - mp->b_rptr; 13246 } 13247 13248 /* 13249 * Extract the offset field from the TCP header. As usual, we 13250 * try to help the compiler more than the reader. 13251 */ 13252 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13253 if (offset != 5) { 13254 tcpoptions: 13255 if (offset < 5) { 13256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13257 goto error; 13258 } 13259 /* 13260 * There must be TCP options. 13261 * Make sure we can grab them. 13262 */ 13263 offset <<= 2; 13264 offset += u1; 13265 if (len < offset) { 13266 if (!pullupmsg(mp, offset)) { 13267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13268 goto error; 13269 } 13270 ipha = (ipha_t *)mp->b_rptr; 13271 len = mp->b_wptr - rptr; 13272 } 13273 } 13274 13275 /* Get the total packet length in len, including headers. */ 13276 if (mp->b_cont) { 13277 multipkttcp: 13278 len = msgdsize(mp); 13279 } 13280 13281 /* 13282 * Check the TCP checksum by pulling together the pseudo- 13283 * header checksum, and passing it to ip_csum to be added in 13284 * with the TCP datagram. 13285 * 13286 * Since we are not using the hwcksum if available we must 13287 * clear the flag. We may come here via tcppullup or tcpoptions. 13288 * If either of these fails along the way the mblk is freed. 13289 * If this logic ever changes and mblk is reused to say send 13290 * ICMP's back, then this flag may need to be cleared in 13291 * other places as well. 13292 */ 13293 DB_CKSUMFLAGS(mp) = 0; 13294 13295 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13296 13297 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13298 #ifdef _BIG_ENDIAN 13299 u1 += IPPROTO_TCP; 13300 #else 13301 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13302 #endif 13303 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13304 /* 13305 * Not M_DATA mblk or its a dup, so do the checksum now. 13306 */ 13307 IP_STAT(ipst, ip_in_sw_cksum); 13308 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13309 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13310 goto error; 13311 } 13312 13313 IP_STAT(ipst, ip_tcp_slow_path); 13314 goto try_again; 13315 #undef iphs 13316 #undef rptr 13317 13318 error: 13319 freemsg(first_mp); 13320 slow_done: 13321 return (NULL); 13322 } 13323 13324 /* ARGSUSED */ 13325 static void 13326 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13327 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13328 { 13329 conn_t *connp; 13330 uint32_t sum; 13331 uint32_t u1; 13332 ssize_t len; 13333 sctp_hdr_t *sctph; 13334 zoneid_t zoneid = ire->ire_zoneid; 13335 uint32_t pktsum; 13336 uint32_t calcsum; 13337 uint32_t ports; 13338 in6_addr_t map_src, map_dst; 13339 ill_t *ill = (ill_t *)q->q_ptr; 13340 ip_stack_t *ipst; 13341 sctp_stack_t *sctps; 13342 boolean_t sctp_csum_err = B_FALSE; 13343 13344 ASSERT(recv_ill != NULL); 13345 ipst = recv_ill->ill_ipst; 13346 sctps = ipst->ips_netstack->netstack_sctp; 13347 13348 #define rptr ((uchar_t *)ipha) 13349 13350 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13351 ASSERT(ill != NULL); 13352 13353 /* u1 is # words of IP options */ 13354 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13355 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13356 13357 /* IP options present */ 13358 if (u1 > 0) { 13359 goto ipoptions; 13360 } else { 13361 /* Check the IP header checksum. */ 13362 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13363 !mctl_present) { 13364 #define uph ((uint16_t *)ipha) 13365 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13366 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13367 #undef uph 13368 /* finish doing IP checksum */ 13369 sum = (sum & 0xFFFF) + (sum >> 16); 13370 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13371 /* 13372 * Don't verify header checksum if this packet 13373 * is coming back from AH/ESP as we already did it. 13374 */ 13375 if (sum != 0 && sum != 0xFFFF) { 13376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13377 goto error; 13378 } 13379 } 13380 /* 13381 * Since there is no SCTP h/w cksum support yet, just 13382 * clear the flag. 13383 */ 13384 DB_CKSUMFLAGS(mp) = 0; 13385 } 13386 13387 /* 13388 * Don't verify header checksum if this packet is coming 13389 * back from AH/ESP as we already did it. 13390 */ 13391 if (!mctl_present) { 13392 UPDATE_IB_PKT_COUNT(ire); 13393 ire->ire_last_used_time = lbolt; 13394 } 13395 13396 /* packet part of fragmented IP packet? */ 13397 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13398 if (u1 & (IPH_MF | IPH_OFFSET)) 13399 goto fragmented; 13400 13401 /* u1 = IP header length (20 bytes) */ 13402 u1 = IP_SIMPLE_HDR_LENGTH; 13403 13404 find_sctp_client: 13405 /* Pullup if we don't have the sctp common header. */ 13406 len = MBLKL(mp); 13407 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13408 if (mp->b_cont == NULL || 13409 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13410 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13411 goto error; 13412 } 13413 ipha = (ipha_t *)mp->b_rptr; 13414 len = MBLKL(mp); 13415 } 13416 13417 sctph = (sctp_hdr_t *)(rptr + u1); 13418 #ifdef DEBUG 13419 if (!skip_sctp_cksum) { 13420 #endif 13421 pktsum = sctph->sh_chksum; 13422 sctph->sh_chksum = 0; 13423 calcsum = sctp_cksum(mp, u1); 13424 sctph->sh_chksum = pktsum; 13425 if (calcsum != pktsum) 13426 sctp_csum_err = B_TRUE; 13427 #ifdef DEBUG /* skip_sctp_cksum */ 13428 } 13429 #endif 13430 /* get the ports */ 13431 ports = *(uint32_t *)&sctph->sh_sport; 13432 13433 IRE_REFRELE(ire); 13434 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13435 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13436 if (sctp_csum_err) { 13437 /* 13438 * No potential sctp checksum errors go to the Sun 13439 * sctp stack however they might be Adler-32 summed 13440 * packets a userland stack bound to a raw IP socket 13441 * could reasonably use. Note though that Adler-32 is 13442 * a long deprecated algorithm and customer sctp 13443 * networks should eventually migrate to CRC-32 at 13444 * which time this facility should be removed. 13445 */ 13446 flags |= IP_FF_SCTP_CSUM_ERR; 13447 goto no_conn; 13448 } 13449 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13450 sctps)) == NULL) { 13451 /* Check for raw socket or OOTB handling */ 13452 goto no_conn; 13453 } 13454 13455 /* Found a client; up it goes */ 13456 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13457 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13458 return; 13459 13460 no_conn: 13461 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13462 ports, mctl_present, flags, B_TRUE, zoneid); 13463 return; 13464 13465 ipoptions: 13466 DB_CKSUMFLAGS(mp) = 0; 13467 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13468 goto slow_done; 13469 13470 UPDATE_IB_PKT_COUNT(ire); 13471 ire->ire_last_used_time = lbolt; 13472 13473 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13474 if (u1 & (IPH_MF | IPH_OFFSET)) { 13475 fragmented: 13476 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13477 goto slow_done; 13478 /* 13479 * Make sure that first_mp points back to mp as 13480 * the mp we came in with could have changed in 13481 * ip_rput_fragment(). 13482 */ 13483 ASSERT(!mctl_present); 13484 ipha = (ipha_t *)mp->b_rptr; 13485 first_mp = mp; 13486 } 13487 13488 /* Now we have a complete datagram, destined for this machine. */ 13489 u1 = IPH_HDR_LENGTH(ipha); 13490 goto find_sctp_client; 13491 #undef iphs 13492 #undef rptr 13493 13494 error: 13495 freemsg(first_mp); 13496 slow_done: 13497 IRE_REFRELE(ire); 13498 } 13499 13500 #define VER_BITS 0xF0 13501 #define VERSION_6 0x60 13502 13503 static boolean_t 13504 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13505 ipaddr_t *dstp, ip_stack_t *ipst) 13506 { 13507 uint_t opt_len; 13508 ipha_t *ipha; 13509 ssize_t len; 13510 uint_t pkt_len; 13511 13512 ASSERT(ill != NULL); 13513 IP_STAT(ipst, ip_ipoptions); 13514 ipha = *iphapp; 13515 13516 #define rptr ((uchar_t *)ipha) 13517 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13518 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13520 freemsg(mp); 13521 return (B_FALSE); 13522 } 13523 13524 /* multiple mblk or too short */ 13525 pkt_len = ntohs(ipha->ipha_length); 13526 13527 /* Get the number of words of IP options in the IP header. */ 13528 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13529 if (opt_len) { 13530 /* IP Options present! Validate and process. */ 13531 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13532 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13533 goto done; 13534 } 13535 /* 13536 * Recompute complete header length and make sure we 13537 * have access to all of it. 13538 */ 13539 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13540 if (len > (mp->b_wptr - rptr)) { 13541 if (len > pkt_len) { 13542 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13543 goto done; 13544 } 13545 if (!pullupmsg(mp, len)) { 13546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13547 goto done; 13548 } 13549 ipha = (ipha_t *)mp->b_rptr; 13550 } 13551 /* 13552 * Go off to ip_rput_options which returns the next hop 13553 * destination address, which may have been affected 13554 * by source routing. 13555 */ 13556 IP_STAT(ipst, ip_opt); 13557 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13558 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13559 return (B_FALSE); 13560 } 13561 } 13562 *iphapp = ipha; 13563 return (B_TRUE); 13564 done: 13565 /* clear b_prev - used by ip_mroute_decap */ 13566 mp->b_prev = NULL; 13567 freemsg(mp); 13568 return (B_FALSE); 13569 #undef rptr 13570 } 13571 13572 /* 13573 * Deal with the fact that there is no ire for the destination. 13574 */ 13575 static ire_t * 13576 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13577 { 13578 ipha_t *ipha; 13579 ill_t *ill; 13580 ire_t *ire; 13581 ip_stack_t *ipst; 13582 enum ire_forward_action ret_action; 13583 13584 ipha = (ipha_t *)mp->b_rptr; 13585 ill = (ill_t *)q->q_ptr; 13586 13587 ASSERT(ill != NULL); 13588 ipst = ill->ill_ipst; 13589 13590 /* 13591 * No IRE for this destination, so it can't be for us. 13592 * Unless we are forwarding, drop the packet. 13593 * We have to let source routed packets through 13594 * since we don't yet know if they are 'ping -l' 13595 * packets i.e. if they will go out over the 13596 * same interface as they came in on. 13597 */ 13598 if (ll_multicast) { 13599 freemsg(mp); 13600 return (NULL); 13601 } 13602 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13604 freemsg(mp); 13605 return (NULL); 13606 } 13607 13608 /* 13609 * Mark this packet as having originated externally. 13610 * 13611 * For non-forwarding code path, ire_send later double 13612 * checks this interface to see if it is still exists 13613 * post-ARP resolution. 13614 * 13615 * Also, IPQOS uses this to differentiate between 13616 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13617 * QOS packet processing in ip_wput_attach_llhdr(). 13618 * The QoS module can mark the b_band for a fastpath message 13619 * or the dl_priority field in a unitdata_req header for 13620 * CoS marking. This info can only be found in 13621 * ip_wput_attach_llhdr(). 13622 */ 13623 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13624 /* 13625 * Clear the indication that this may have a hardware checksum 13626 * as we are not using it 13627 */ 13628 DB_CKSUMFLAGS(mp) = 0; 13629 13630 ire = ire_forward(dst, &ret_action, NULL, NULL, 13631 msg_getlabel(mp), ipst); 13632 13633 if (ire == NULL && ret_action == Forward_check_multirt) { 13634 /* Let ip_newroute handle CGTP */ 13635 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13636 return (NULL); 13637 } 13638 13639 if (ire != NULL) 13640 return (ire); 13641 13642 mp->b_prev = mp->b_next = 0; 13643 13644 if (ret_action == Forward_blackhole) { 13645 freemsg(mp); 13646 return (NULL); 13647 } 13648 /* send icmp unreachable */ 13649 q = WR(q); 13650 /* Sent by forwarding path, and router is global zone */ 13651 if (ip_source_routed(ipha, ipst)) { 13652 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13653 GLOBAL_ZONEID, ipst); 13654 } else { 13655 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13656 ipst); 13657 } 13658 13659 return (NULL); 13660 13661 } 13662 13663 /* 13664 * check ip header length and align it. 13665 */ 13666 static boolean_t 13667 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13668 { 13669 ssize_t len; 13670 ill_t *ill; 13671 ipha_t *ipha; 13672 13673 len = MBLKL(mp); 13674 13675 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13676 ill = (ill_t *)q->q_ptr; 13677 13678 if (!OK_32PTR(mp->b_rptr)) 13679 IP_STAT(ipst, ip_notaligned1); 13680 else 13681 IP_STAT(ipst, ip_notaligned2); 13682 /* Guard against bogus device drivers */ 13683 if (len < 0) { 13684 /* clear b_prev - used by ip_mroute_decap */ 13685 mp->b_prev = NULL; 13686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13687 freemsg(mp); 13688 return (B_FALSE); 13689 } 13690 13691 if (ip_rput_pullups++ == 0) { 13692 ipha = (ipha_t *)mp->b_rptr; 13693 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13694 "ip_check_and_align_header: %s forced us to " 13695 " pullup pkt, hdr len %ld, hdr addr %p", 13696 ill->ill_name, len, (void *)ipha); 13697 } 13698 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13699 /* clear b_prev - used by ip_mroute_decap */ 13700 mp->b_prev = NULL; 13701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13702 freemsg(mp); 13703 return (B_FALSE); 13704 } 13705 } 13706 return (B_TRUE); 13707 } 13708 13709 /* 13710 * Handle the situation where a packet came in on `ill' but matched an IRE 13711 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13712 * for interface statistics. 13713 */ 13714 ire_t * 13715 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13716 { 13717 ire_t *new_ire; 13718 ill_t *ire_ill; 13719 uint_t ifindex; 13720 ip_stack_t *ipst = ill->ill_ipst; 13721 boolean_t strict_check = B_FALSE; 13722 13723 /* 13724 * IPMP common case: if IRE and ILL are in the same group, there's no 13725 * issue (e.g. packet received on an underlying interface matched an 13726 * IRE_LOCAL on its associated group interface). 13727 */ 13728 if (ire->ire_rfq != NULL && 13729 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13730 return (ire); 13731 } 13732 13733 /* 13734 * Do another ire lookup here, using the ingress ill, to see if the 13735 * interface is in a usesrc group. 13736 * As long as the ills belong to the same group, we don't consider 13737 * them to be arriving on the wrong interface. Thus, if the switch 13738 * is doing inbound load spreading, we won't drop packets when the 13739 * ip*_strict_dst_multihoming switch is on. 13740 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13741 * where the local address may not be unique. In this case we were 13742 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13743 * actually returned. The new lookup, which is more specific, should 13744 * only find the IRE_LOCAL associated with the ingress ill if one 13745 * exists. 13746 */ 13747 13748 if (ire->ire_ipversion == IPV4_VERSION) { 13749 if (ipst->ips_ip_strict_dst_multihoming) 13750 strict_check = B_TRUE; 13751 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13752 ill->ill_ipif, ALL_ZONES, NULL, 13753 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13754 } else { 13755 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13756 if (ipst->ips_ipv6_strict_dst_multihoming) 13757 strict_check = B_TRUE; 13758 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13759 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13760 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13761 } 13762 /* 13763 * If the same ire that was returned in ip_input() is found then this 13764 * is an indication that usesrc groups are in use. The packet 13765 * arrived on a different ill in the group than the one associated with 13766 * the destination address. If a different ire was found then the same 13767 * IP address must be hosted on multiple ills. This is possible with 13768 * unnumbered point2point interfaces. We switch to use this new ire in 13769 * order to have accurate interface statistics. 13770 */ 13771 if (new_ire != NULL) { 13772 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13773 ire_refrele(ire); 13774 ire = new_ire; 13775 } else { 13776 ire_refrele(new_ire); 13777 } 13778 return (ire); 13779 } else if ((ire->ire_rfq == NULL) && 13780 (ire->ire_ipversion == IPV4_VERSION)) { 13781 /* 13782 * The best match could have been the original ire which 13783 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13784 * the strict multihoming checks are irrelevant as we consider 13785 * local addresses hosted on lo0 to be interface agnostic. We 13786 * only expect a null ire_rfq on IREs which are associated with 13787 * lo0 hence we can return now. 13788 */ 13789 return (ire); 13790 } 13791 13792 /* 13793 * Chase pointers once and store locally. 13794 */ 13795 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13796 (ill_t *)(ire->ire_rfq->q_ptr); 13797 ifindex = ill->ill_usesrc_ifindex; 13798 13799 /* 13800 * Check if it's a legal address on the 'usesrc' interface. 13801 */ 13802 if ((ifindex != 0) && (ire_ill != NULL) && 13803 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13804 return (ire); 13805 } 13806 13807 /* 13808 * If the ip*_strict_dst_multihoming switch is on then we can 13809 * only accept this packet if the interface is marked as routing. 13810 */ 13811 if (!(strict_check)) 13812 return (ire); 13813 13814 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13815 ILLF_ROUTER) != 0) { 13816 return (ire); 13817 } 13818 13819 ire_refrele(ire); 13820 return (NULL); 13821 } 13822 13823 /* 13824 * 13825 * This is the fast forward path. If we are here, we dont need to 13826 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13827 * needed to find the nexthop in this case is much simpler 13828 */ 13829 ire_t * 13830 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13831 { 13832 ipha_t *ipha; 13833 ire_t *src_ire; 13834 ill_t *stq_ill; 13835 uint_t hlen; 13836 uint_t pkt_len; 13837 uint32_t sum; 13838 queue_t *dev_q; 13839 ip_stack_t *ipst = ill->ill_ipst; 13840 mblk_t *fpmp; 13841 enum ire_forward_action ret_action; 13842 13843 ipha = (ipha_t *)mp->b_rptr; 13844 13845 if (ire != NULL && 13846 ire->ire_zoneid != GLOBAL_ZONEID && 13847 ire->ire_zoneid != ALL_ZONES) { 13848 /* 13849 * Should only use IREs that are visible to the global 13850 * zone for forwarding. 13851 */ 13852 ire_refrele(ire); 13853 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13854 /* 13855 * ire_cache_lookup() can return ire of IRE_LOCAL in 13856 * transient cases. In such case, just drop the packet 13857 */ 13858 if (ire->ire_type != IRE_CACHE) 13859 goto drop; 13860 } 13861 13862 /* 13863 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13864 * The loopback address check for both src and dst has already 13865 * been checked in ip_input 13866 */ 13867 13868 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13870 goto drop; 13871 } 13872 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13873 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13874 13875 if (src_ire != NULL) { 13876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13877 ire_refrele(src_ire); 13878 goto drop; 13879 } 13880 13881 /* No ire cache of nexthop. So first create one */ 13882 if (ire == NULL) { 13883 13884 ire = ire_forward_simple(dst, &ret_action, ipst); 13885 13886 /* 13887 * We only come to ip_fast_forward if ip_cgtp_filter 13888 * is not set. So ire_forward() should not return with 13889 * Forward_check_multirt as the next action. 13890 */ 13891 ASSERT(ret_action != Forward_check_multirt); 13892 if (ire == NULL) { 13893 /* An attempt was made to forward the packet */ 13894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13895 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13896 mp->b_prev = mp->b_next = 0; 13897 /* send icmp unreachable */ 13898 /* Sent by forwarding path, and router is global zone */ 13899 if (ret_action == Forward_ret_icmp_err) { 13900 if (ip_source_routed(ipha, ipst)) { 13901 icmp_unreachable(ill->ill_wq, mp, 13902 ICMP_SOURCE_ROUTE_FAILED, 13903 GLOBAL_ZONEID, ipst); 13904 } else { 13905 icmp_unreachable(ill->ill_wq, mp, 13906 ICMP_HOST_UNREACHABLE, 13907 GLOBAL_ZONEID, ipst); 13908 } 13909 } else { 13910 freemsg(mp); 13911 } 13912 return (NULL); 13913 } 13914 } 13915 13916 /* 13917 * Forwarding fastpath exception case: 13918 * If any of the following are true, we take the slowpath: 13919 * o forwarding is not enabled 13920 * o incoming and outgoing interface are the same, or in the same 13921 * IPMP group. 13922 * o corresponding ire is in incomplete state 13923 * o packet needs fragmentation 13924 * o ARP cache is not resolved 13925 * 13926 * The codeflow from here on is thus: 13927 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13928 */ 13929 pkt_len = ntohs(ipha->ipha_length); 13930 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13931 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13932 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13933 (ire->ire_nce == NULL) || 13934 (pkt_len > ire->ire_max_frag) || 13935 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13936 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13937 ipha->ipha_ttl <= 1) { 13938 ip_rput_process_forward(ill->ill_rq, mp, ire, 13939 ipha, ill, B_FALSE, B_TRUE); 13940 return (ire); 13941 } 13942 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13943 13944 DTRACE_PROBE4(ip4__forwarding__start, 13945 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13946 13947 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13948 ipst->ips_ipv4firewall_forwarding, 13949 ill, stq_ill, ipha, mp, mp, 0, ipst); 13950 13951 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13952 13953 if (mp == NULL) 13954 goto drop; 13955 13956 mp->b_datap->db_struioun.cksum.flags = 0; 13957 /* Adjust the checksum to reflect the ttl decrement. */ 13958 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13959 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13960 ipha->ipha_ttl--; 13961 13962 /* 13963 * Write the link layer header. We can do this safely here, 13964 * because we have already tested to make sure that the IP 13965 * policy is not set, and that we have a fast path destination 13966 * header. 13967 */ 13968 mp->b_rptr -= hlen; 13969 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13970 13971 UPDATE_IB_PKT_COUNT(ire); 13972 ire->ire_last_used_time = lbolt; 13973 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13974 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13975 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13976 13977 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13978 dev_q = ire->ire_stq->q_next; 13979 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13980 goto indiscard; 13981 } 13982 13983 DTRACE_PROBE4(ip4__physical__out__start, 13984 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13985 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13986 ipst->ips_ipv4firewall_physical_out, 13987 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13988 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13989 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13990 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13991 ip6_t *, NULL, int, 0); 13992 13993 if (mp != NULL) { 13994 if (ipst->ips_ipobs_enabled) { 13995 zoneid_t szone; 13996 13997 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13998 ipst, ALL_ZONES); 13999 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14000 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14001 } 14002 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14003 } 14004 return (ire); 14005 14006 indiscard: 14007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14008 drop: 14009 if (mp != NULL) 14010 freemsg(mp); 14011 return (ire); 14012 14013 } 14014 14015 /* 14016 * This function is called in the forwarding slowpath, when 14017 * either the ire lacks the link-layer address, or the packet needs 14018 * further processing(eg. fragmentation), before transmission. 14019 */ 14020 14021 static void 14022 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14023 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14024 { 14025 queue_t *dev_q; 14026 ire_t *src_ire; 14027 ip_stack_t *ipst = ill->ill_ipst; 14028 boolean_t same_illgrp = B_FALSE; 14029 14030 ASSERT(ire->ire_stq != NULL); 14031 14032 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14033 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14034 14035 /* 14036 * If the caller of this function is ip_fast_forward() skip the 14037 * next three checks as it does not apply. 14038 */ 14039 if (from_ip_fast_forward) 14040 goto skip; 14041 14042 if (ll_multicast != 0) { 14043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14044 goto drop_pkt; 14045 } 14046 14047 /* 14048 * check if ipha_src is a broadcast address. Note that this 14049 * check is redundant when we get here from ip_fast_forward() 14050 * which has already done this check. However, since we can 14051 * also get here from ip_rput_process_broadcast() or, for 14052 * for the slow path through ip_fast_forward(), we perform 14053 * the check again for code-reusability 14054 */ 14055 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14056 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14057 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14058 if (src_ire != NULL) 14059 ire_refrele(src_ire); 14060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14061 ip2dbg(("ip_rput_process_forward: Received packet with" 14062 " bad src/dst address on %s\n", ill->ill_name)); 14063 goto drop_pkt; 14064 } 14065 14066 /* 14067 * Check if we want to forward this one at this time. 14068 * We allow source routed packets on a host provided that 14069 * they go out the same ill or illgrp as they came in on. 14070 * 14071 * XXX To be quicker, we may wish to not chase pointers to 14072 * get the ILLF_ROUTER flag and instead store the 14073 * forwarding policy in the ire. An unfortunate 14074 * side-effect of that would be requiring an ire flush 14075 * whenever the ILLF_ROUTER flag changes. 14076 */ 14077 skip: 14078 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14079 14080 if (((ill->ill_flags & 14081 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14082 !(ip_source_routed(ipha, ipst) && 14083 (ire->ire_rfq == q || same_illgrp))) { 14084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14085 if (ip_source_routed(ipha, ipst)) { 14086 q = WR(q); 14087 /* 14088 * Clear the indication that this may have 14089 * hardware checksum as we are not using it. 14090 */ 14091 DB_CKSUMFLAGS(mp) = 0; 14092 /* Sent by forwarding path, and router is global zone */ 14093 icmp_unreachable(q, mp, 14094 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14095 return; 14096 } 14097 goto drop_pkt; 14098 } 14099 14100 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14101 14102 /* Packet is being forwarded. Turning off hwcksum flag. */ 14103 DB_CKSUMFLAGS(mp) = 0; 14104 if (ipst->ips_ip_g_send_redirects) { 14105 /* 14106 * Check whether the incoming interface and outgoing 14107 * interface is part of the same group. If so, 14108 * send redirects. 14109 * 14110 * Check the source address to see if it originated 14111 * on the same logical subnet it is going back out on. 14112 * If so, we should be able to send it a redirect. 14113 * Avoid sending a redirect if the destination 14114 * is directly connected (i.e., ipha_dst is the same 14115 * as ire_gateway_addr or the ire_addr of the 14116 * nexthop IRE_CACHE ), or if the packet was source 14117 * routed out this interface. 14118 */ 14119 ipaddr_t src, nhop; 14120 mblk_t *mp1; 14121 ire_t *nhop_ire = NULL; 14122 14123 /* 14124 * Check whether ire_rfq and q are from the same ill or illgrp. 14125 * If so, send redirects. 14126 */ 14127 if ((ire->ire_rfq == q || same_illgrp) && 14128 !ip_source_routed(ipha, ipst)) { 14129 14130 nhop = (ire->ire_gateway_addr != 0 ? 14131 ire->ire_gateway_addr : ire->ire_addr); 14132 14133 if (ipha->ipha_dst == nhop) { 14134 /* 14135 * We avoid sending a redirect if the 14136 * destination is directly connected 14137 * because it is possible that multiple 14138 * IP subnets may have been configured on 14139 * the link, and the source may not 14140 * be on the same subnet as ip destination, 14141 * even though they are on the same 14142 * physical link. 14143 */ 14144 goto sendit; 14145 } 14146 14147 src = ipha->ipha_src; 14148 14149 /* 14150 * We look up the interface ire for the nexthop, 14151 * to see if ipha_src is in the same subnet 14152 * as the nexthop. 14153 * 14154 * Note that, if, in the future, IRE_CACHE entries 14155 * are obsoleted, this lookup will not be needed, 14156 * as the ire passed to this function will be the 14157 * same as the nhop_ire computed below. 14158 */ 14159 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14160 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14161 0, NULL, MATCH_IRE_TYPE, ipst); 14162 14163 if (nhop_ire != NULL) { 14164 if ((src & nhop_ire->ire_mask) == 14165 (nhop & nhop_ire->ire_mask)) { 14166 /* 14167 * The source is directly connected. 14168 * Just copy the ip header (which is 14169 * in the first mblk) 14170 */ 14171 mp1 = copyb(mp); 14172 if (mp1 != NULL) { 14173 icmp_send_redirect(WR(q), mp1, 14174 nhop, ipst); 14175 } 14176 } 14177 ire_refrele(nhop_ire); 14178 } 14179 } 14180 } 14181 sendit: 14182 dev_q = ire->ire_stq->q_next; 14183 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14184 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14185 freemsg(mp); 14186 return; 14187 } 14188 14189 ip_rput_forward(ire, ipha, mp, ill); 14190 return; 14191 14192 drop_pkt: 14193 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14194 freemsg(mp); 14195 } 14196 14197 ire_t * 14198 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14199 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14200 { 14201 queue_t *q; 14202 uint16_t hcksumflags; 14203 ip_stack_t *ipst = ill->ill_ipst; 14204 14205 q = *qp; 14206 14207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14208 14209 /* 14210 * Clear the indication that this may have hardware 14211 * checksum as we are not using it for forwarding. 14212 */ 14213 hcksumflags = DB_CKSUMFLAGS(mp); 14214 DB_CKSUMFLAGS(mp) = 0; 14215 14216 /* 14217 * Directed broadcast forwarding: if the packet came in over a 14218 * different interface then it is routed out over we can forward it. 14219 */ 14220 if (ipha->ipha_protocol == IPPROTO_TCP) { 14221 ire_refrele(ire); 14222 freemsg(mp); 14223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14224 return (NULL); 14225 } 14226 /* 14227 * For multicast we have set dst to be INADDR_BROADCAST 14228 * for delivering to all STREAMS. 14229 */ 14230 if (!CLASSD(ipha->ipha_dst)) { 14231 ire_t *new_ire; 14232 ipif_t *ipif; 14233 14234 ipif = ipif_get_next_ipif(NULL, ill); 14235 if (ipif == NULL) { 14236 discard: ire_refrele(ire); 14237 freemsg(mp); 14238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14239 return (NULL); 14240 } 14241 new_ire = ire_ctable_lookup(dst, 0, 0, 14242 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14243 ipif_refrele(ipif); 14244 14245 if (new_ire != NULL) { 14246 /* 14247 * If the matching IRE_BROADCAST is part of an IPMP 14248 * group, then drop the packet unless our ill has been 14249 * nominated to receive for the group. 14250 */ 14251 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14252 new_ire->ire_rfq != q) { 14253 ire_refrele(new_ire); 14254 goto discard; 14255 } 14256 14257 /* 14258 * In the special case of multirouted broadcast 14259 * packets, we unconditionally need to "gateway" 14260 * them to the appropriate interface here. 14261 * In the normal case, this cannot happen, because 14262 * there is no broadcast IRE tagged with the 14263 * RTF_MULTIRT flag. 14264 */ 14265 if (new_ire->ire_flags & RTF_MULTIRT) { 14266 ire_refrele(new_ire); 14267 if (ire->ire_rfq != NULL) { 14268 q = ire->ire_rfq; 14269 *qp = q; 14270 } 14271 } else { 14272 ire_refrele(ire); 14273 ire = new_ire; 14274 } 14275 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14276 if (!ipst->ips_ip_g_forward_directed_bcast) { 14277 /* 14278 * Free the message if 14279 * ip_g_forward_directed_bcast is turned 14280 * off for non-local broadcast. 14281 */ 14282 ire_refrele(ire); 14283 freemsg(mp); 14284 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14285 return (NULL); 14286 } 14287 } else { 14288 /* 14289 * This CGTP packet successfully passed the 14290 * CGTP filter, but the related CGTP 14291 * broadcast IRE has not been found, 14292 * meaning that the redundant ipif is 14293 * probably down. However, if we discarded 14294 * this packet, its duplicate would be 14295 * filtered out by the CGTP filter so none 14296 * of them would get through. So we keep 14297 * going with this one. 14298 */ 14299 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14300 if (ire->ire_rfq != NULL) { 14301 q = ire->ire_rfq; 14302 *qp = q; 14303 } 14304 } 14305 } 14306 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14307 /* 14308 * Verify that there are not more then one 14309 * IRE_BROADCAST with this broadcast address which 14310 * has ire_stq set. 14311 * TODO: simplify, loop over all IRE's 14312 */ 14313 ire_t *ire1; 14314 int num_stq = 0; 14315 mblk_t *mp1; 14316 14317 /* Find the first one with ire_stq set */ 14318 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14319 for (ire1 = ire; ire1 && 14320 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14321 ire1 = ire1->ire_next) 14322 ; 14323 if (ire1) { 14324 ire_refrele(ire); 14325 ire = ire1; 14326 IRE_REFHOLD(ire); 14327 } 14328 14329 /* Check if there are additional ones with stq set */ 14330 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14331 if (ire->ire_addr != ire1->ire_addr) 14332 break; 14333 if (ire1->ire_stq) { 14334 num_stq++; 14335 break; 14336 } 14337 } 14338 rw_exit(&ire->ire_bucket->irb_lock); 14339 if (num_stq == 1 && ire->ire_stq != NULL) { 14340 ip1dbg(("ip_rput_process_broadcast: directed " 14341 "broadcast to 0x%x\n", 14342 ntohl(ire->ire_addr))); 14343 mp1 = copymsg(mp); 14344 if (mp1) { 14345 switch (ipha->ipha_protocol) { 14346 case IPPROTO_UDP: 14347 ip_udp_input(q, mp1, ipha, ire, ill); 14348 break; 14349 default: 14350 ip_proto_input(q, mp1, ipha, ire, ill, 14351 0); 14352 break; 14353 } 14354 } 14355 /* 14356 * Adjust ttl to 2 (1+1 - the forward engine 14357 * will decrement it by one. 14358 */ 14359 if (ip_csum_hdr(ipha)) { 14360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14361 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14362 freemsg(mp); 14363 ire_refrele(ire); 14364 return (NULL); 14365 } 14366 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14367 ipha->ipha_hdr_checksum = 0; 14368 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14369 ip_rput_process_forward(q, mp, ire, ipha, 14370 ill, ll_multicast, B_FALSE); 14371 ire_refrele(ire); 14372 return (NULL); 14373 } 14374 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14375 ntohl(ire->ire_addr))); 14376 } 14377 14378 /* Restore any hardware checksum flags */ 14379 DB_CKSUMFLAGS(mp) = hcksumflags; 14380 return (ire); 14381 } 14382 14383 /* ARGSUSED */ 14384 static boolean_t 14385 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14386 int *ll_multicast, ipaddr_t *dstp) 14387 { 14388 ip_stack_t *ipst = ill->ill_ipst; 14389 14390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14391 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14392 ntohs(ipha->ipha_length)); 14393 14394 /* 14395 * So that we don't end up with dups, only one ill in an IPMP group is 14396 * nominated to receive multicast traffic. 14397 */ 14398 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14399 goto drop_pkt; 14400 14401 /* 14402 * Forward packets only if we have joined the allmulti 14403 * group on this interface. 14404 */ 14405 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14406 int retval; 14407 14408 /* 14409 * Clear the indication that this may have hardware 14410 * checksum as we are not using it. 14411 */ 14412 DB_CKSUMFLAGS(mp) = 0; 14413 retval = ip_mforward(ill, ipha, mp); 14414 /* ip_mforward updates mib variables if needed */ 14415 /* clear b_prev - used by ip_mroute_decap */ 14416 mp->b_prev = NULL; 14417 14418 switch (retval) { 14419 case 0: 14420 /* 14421 * pkt is okay and arrived on phyint. 14422 * 14423 * If we are running as a multicast router 14424 * we need to see all IGMP and/or PIM packets. 14425 */ 14426 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14427 (ipha->ipha_protocol == IPPROTO_PIM)) { 14428 goto done; 14429 } 14430 break; 14431 case -1: 14432 /* pkt is mal-formed, toss it */ 14433 goto drop_pkt; 14434 case 1: 14435 /* pkt is okay and arrived on a tunnel */ 14436 /* 14437 * If we are running a multicast router 14438 * we need to see all igmp packets. 14439 */ 14440 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14441 *dstp = INADDR_BROADCAST; 14442 *ll_multicast = 1; 14443 return (B_FALSE); 14444 } 14445 14446 goto drop_pkt; 14447 } 14448 } 14449 14450 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14451 /* 14452 * This might just be caused by the fact that 14453 * multiple IP Multicast addresses map to the same 14454 * link layer multicast - no need to increment counter! 14455 */ 14456 freemsg(mp); 14457 return (B_TRUE); 14458 } 14459 done: 14460 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14461 /* 14462 * This assumes the we deliver to all streams for multicast 14463 * and broadcast packets. 14464 */ 14465 *dstp = INADDR_BROADCAST; 14466 *ll_multicast = 1; 14467 return (B_FALSE); 14468 drop_pkt: 14469 ip2dbg(("ip_rput: drop pkt\n")); 14470 freemsg(mp); 14471 return (B_TRUE); 14472 } 14473 14474 /* 14475 * This function is used to both return an indication of whether or not 14476 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14477 * and in doing so, determine whether or not it is broadcast vs multicast. 14478 * For it to be a broadcast packet, we must have the appropriate mblk_t 14479 * hanging off the ill_t. If this is either not present or doesn't match 14480 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14481 * to be multicast. Thus NICs that have no broadcast address (or no 14482 * capability for one, such as point to point links) cannot return as 14483 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14484 * the return values simplifies the current use of the return value of this 14485 * function, which is to pass through the multicast/broadcast characteristic 14486 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14487 * changing the return value to some other symbol demands the appropriate 14488 * "translation" when hpe_flags is set prior to calling hook_run() for 14489 * packet events. 14490 */ 14491 int 14492 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14493 { 14494 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14495 mblk_t *bmp; 14496 14497 if (ind->dl_group_address) { 14498 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14499 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14500 MBLKL(mb) && 14501 (bmp = ill->ill_bcast_mp) != NULL) { 14502 dl_unitdata_req_t *dlur; 14503 uint8_t *bphys_addr; 14504 14505 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14506 if (ill->ill_sap_length < 0) 14507 bphys_addr = (uchar_t *)dlur + 14508 dlur->dl_dest_addr_offset; 14509 else 14510 bphys_addr = (uchar_t *)dlur + 14511 dlur->dl_dest_addr_offset + 14512 ill->ill_sap_length; 14513 14514 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14515 bphys_addr, ind->dl_dest_addr_length) == 0) { 14516 return (HPE_BROADCAST); 14517 } 14518 return (HPE_MULTICAST); 14519 } 14520 return (HPE_MULTICAST); 14521 } 14522 return (0); 14523 } 14524 14525 static boolean_t 14526 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14527 int *ll_multicast, mblk_t **mpp) 14528 { 14529 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14530 boolean_t must_copy = B_FALSE; 14531 struct iocblk *iocp; 14532 ipha_t *ipha; 14533 ip_stack_t *ipst = ill->ill_ipst; 14534 14535 #define rptr ((uchar_t *)ipha) 14536 14537 first_mp = *first_mpp; 14538 mp = *mpp; 14539 14540 ASSERT(first_mp == mp); 14541 14542 /* 14543 * if db_ref > 1 then copymsg and free original. Packet may be 14544 * changed and do not want other entity who has a reference to this 14545 * message to trip over the changes. This is a blind change because 14546 * trying to catch all places that might change packet is too 14547 * difficult (since it may be a module above this one) 14548 * 14549 * This corresponds to the non-fast path case. We walk down the full 14550 * chain in this case, and check the db_ref count of all the dblks, 14551 * and do a copymsg if required. It is possible that the db_ref counts 14552 * of the data blocks in the mblk chain can be different. 14553 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14554 * count of 1, followed by a M_DATA block with a ref count of 2, if 14555 * 'snoop' is running. 14556 */ 14557 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14558 if (mp1->b_datap->db_ref > 1) { 14559 must_copy = B_TRUE; 14560 break; 14561 } 14562 } 14563 14564 if (must_copy) { 14565 mp1 = copymsg(mp); 14566 if (mp1 == NULL) { 14567 for (mp1 = mp; mp1 != NULL; 14568 mp1 = mp1->b_cont) { 14569 mp1->b_next = NULL; 14570 mp1->b_prev = NULL; 14571 } 14572 freemsg(mp); 14573 if (ill != NULL) { 14574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14575 } else { 14576 BUMP_MIB(&ipst->ips_ip_mib, 14577 ipIfStatsInDiscards); 14578 } 14579 return (B_TRUE); 14580 } 14581 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14582 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14583 /* Copy b_prev - used by ip_mroute_decap */ 14584 to_mp->b_prev = from_mp->b_prev; 14585 from_mp->b_prev = NULL; 14586 } 14587 *first_mpp = first_mp = mp1; 14588 freemsg(mp); 14589 mp = mp1; 14590 *mpp = mp1; 14591 } 14592 14593 ipha = (ipha_t *)mp->b_rptr; 14594 14595 /* 14596 * previous code has a case for M_DATA. 14597 * We want to check how that happens. 14598 */ 14599 ASSERT(first_mp->b_datap->db_type != M_DATA); 14600 switch (first_mp->b_datap->db_type) { 14601 case M_PROTO: 14602 case M_PCPROTO: 14603 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14604 DL_UNITDATA_IND) { 14605 /* Go handle anything other than data elsewhere. */ 14606 ip_rput_dlpi(q, mp); 14607 return (B_TRUE); 14608 } 14609 14610 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14611 /* Ditch the DLPI header. */ 14612 mp1 = mp->b_cont; 14613 ASSERT(first_mp == mp); 14614 *first_mpp = mp1; 14615 freeb(mp); 14616 *mpp = mp1; 14617 return (B_FALSE); 14618 case M_IOCACK: 14619 ip1dbg(("got iocack ")); 14620 iocp = (struct iocblk *)mp->b_rptr; 14621 switch (iocp->ioc_cmd) { 14622 case DL_IOC_HDR_INFO: 14623 ill = (ill_t *)q->q_ptr; 14624 ill_fastpath_ack(ill, mp); 14625 return (B_TRUE); 14626 case SIOCSTUNPARAM: 14627 case OSIOCSTUNPARAM: 14628 /* Go through qwriter_ip */ 14629 break; 14630 case SIOCGTUNPARAM: 14631 case OSIOCGTUNPARAM: 14632 ip_rput_other(NULL, q, mp, NULL); 14633 return (B_TRUE); 14634 default: 14635 putnext(q, mp); 14636 return (B_TRUE); 14637 } 14638 /* FALLTHRU */ 14639 case M_ERROR: 14640 case M_HANGUP: 14641 /* 14642 * Since this is on the ill stream we unconditionally 14643 * bump up the refcount 14644 */ 14645 ill_refhold(ill); 14646 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14647 return (B_TRUE); 14648 case M_CTL: 14649 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14650 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14651 IPHADA_M_CTL)) { 14652 /* 14653 * It's an IPsec accelerated packet. 14654 * Make sure that the ill from which we received the 14655 * packet has enabled IPsec hardware acceleration. 14656 */ 14657 if (!(ill->ill_capabilities & 14658 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14659 /* IPsec kstats: bean counter */ 14660 freemsg(mp); 14661 return (B_TRUE); 14662 } 14663 14664 /* 14665 * Make mp point to the mblk following the M_CTL, 14666 * then process according to type of mp. 14667 * After this processing, first_mp will point to 14668 * the data-attributes and mp to the pkt following 14669 * the M_CTL. 14670 */ 14671 mp = first_mp->b_cont; 14672 if (mp == NULL) { 14673 freemsg(first_mp); 14674 return (B_TRUE); 14675 } 14676 /* 14677 * A Hardware Accelerated packet can only be M_DATA 14678 * ESP or AH packet. 14679 */ 14680 if (mp->b_datap->db_type != M_DATA) { 14681 /* non-M_DATA IPsec accelerated packet */ 14682 IPSECHW_DEBUG(IPSECHW_PKT, 14683 ("non-M_DATA IPsec accelerated pkt\n")); 14684 freemsg(first_mp); 14685 return (B_TRUE); 14686 } 14687 ipha = (ipha_t *)mp->b_rptr; 14688 if (ipha->ipha_protocol != IPPROTO_AH && 14689 ipha->ipha_protocol != IPPROTO_ESP) { 14690 IPSECHW_DEBUG(IPSECHW_PKT, 14691 ("non-M_DATA IPsec accelerated pkt\n")); 14692 freemsg(first_mp); 14693 return (B_TRUE); 14694 } 14695 *mpp = mp; 14696 return (B_FALSE); 14697 } 14698 putnext(q, mp); 14699 return (B_TRUE); 14700 case M_IOCNAK: 14701 ip1dbg(("got iocnak ")); 14702 iocp = (struct iocblk *)mp->b_rptr; 14703 switch (iocp->ioc_cmd) { 14704 case SIOCSTUNPARAM: 14705 case OSIOCSTUNPARAM: 14706 /* 14707 * Since this is on the ill stream we unconditionally 14708 * bump up the refcount 14709 */ 14710 ill_refhold(ill); 14711 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14712 return (B_TRUE); 14713 case DL_IOC_HDR_INFO: 14714 case SIOCGTUNPARAM: 14715 case OSIOCGTUNPARAM: 14716 ip_rput_other(NULL, q, mp, NULL); 14717 return (B_TRUE); 14718 default: 14719 break; 14720 } 14721 /* FALLTHRU */ 14722 default: 14723 putnext(q, mp); 14724 return (B_TRUE); 14725 } 14726 } 14727 14728 /* Read side put procedure. Packets coming from the wire arrive here. */ 14729 void 14730 ip_rput(queue_t *q, mblk_t *mp) 14731 { 14732 ill_t *ill; 14733 union DL_primitives *dl; 14734 14735 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14736 14737 ill = (ill_t *)q->q_ptr; 14738 14739 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14740 /* 14741 * If things are opening or closing, only accept high-priority 14742 * DLPI messages. (On open ill->ill_ipif has not yet been 14743 * created; on close, things hanging off the ill may have been 14744 * freed already.) 14745 */ 14746 dl = (union DL_primitives *)mp->b_rptr; 14747 if (DB_TYPE(mp) != M_PCPROTO || 14748 dl->dl_primitive == DL_UNITDATA_IND) { 14749 /* 14750 * SIOC[GS]TUNPARAM ioctls can come here. 14751 */ 14752 inet_freemsg(mp); 14753 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14754 "ip_rput_end: q %p (%S)", q, "uninit"); 14755 return; 14756 } 14757 } 14758 14759 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14760 "ip_rput_end: q %p (%S)", q, "end"); 14761 14762 ip_input(ill, NULL, mp, NULL); 14763 } 14764 14765 static mblk_t * 14766 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14767 { 14768 mblk_t *mp1; 14769 boolean_t adjusted = B_FALSE; 14770 ip_stack_t *ipst = ill->ill_ipst; 14771 14772 IP_STAT(ipst, ip_db_ref); 14773 /* 14774 * The IP_RECVSLLA option depends on having the 14775 * link layer header. First check that: 14776 * a> the underlying device is of type ether, 14777 * since this option is currently supported only 14778 * over ethernet. 14779 * b> there is enough room to copy over the link 14780 * layer header. 14781 * 14782 * Once the checks are done, adjust rptr so that 14783 * the link layer header will be copied via 14784 * copymsg. Note that, IFT_ETHER may be returned 14785 * by some non-ethernet drivers but in this case 14786 * the second check will fail. 14787 */ 14788 if (ill->ill_type == IFT_ETHER && 14789 (mp->b_rptr - mp->b_datap->db_base) >= 14790 sizeof (struct ether_header)) { 14791 mp->b_rptr -= sizeof (struct ether_header); 14792 adjusted = B_TRUE; 14793 } 14794 mp1 = copymsg(mp); 14795 14796 if (mp1 == NULL) { 14797 mp->b_next = NULL; 14798 /* clear b_prev - used by ip_mroute_decap */ 14799 mp->b_prev = NULL; 14800 freemsg(mp); 14801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14802 return (NULL); 14803 } 14804 14805 if (adjusted) { 14806 /* 14807 * Copy is done. Restore the pointer in 14808 * the _new_ mblk 14809 */ 14810 mp1->b_rptr += sizeof (struct ether_header); 14811 } 14812 14813 /* Copy b_prev - used by ip_mroute_decap */ 14814 mp1->b_prev = mp->b_prev; 14815 mp->b_prev = NULL; 14816 14817 /* preserve the hardware checksum flags and data, if present */ 14818 if (DB_CKSUMFLAGS(mp) != 0) { 14819 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14820 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14821 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14822 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14823 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14824 } 14825 14826 freemsg(mp); 14827 return (mp1); 14828 } 14829 14830 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14831 if (tail != NULL) \ 14832 tail->b_next = mp; \ 14833 else \ 14834 head = mp; \ 14835 tail = mp; \ 14836 cnt++; \ 14837 } 14838 14839 /* 14840 * Direct read side procedure capable of dealing with chains. GLDv3 based 14841 * drivers call this function directly with mblk chains while STREAMS 14842 * read side procedure ip_rput() calls this for single packet with ip_ring 14843 * set to NULL to process one packet at a time. 14844 * 14845 * The ill will always be valid if this function is called directly from 14846 * the driver. 14847 * 14848 * If ip_input() is called from GLDv3: 14849 * 14850 * - This must be a non-VLAN IP stream. 14851 * - 'mp' is either an untagged or a special priority-tagged packet. 14852 * - Any VLAN tag that was in the MAC header has been stripped. 14853 * 14854 * If the IP header in packet is not 32-bit aligned, every message in the 14855 * chain will be aligned before further operations. This is required on SPARC 14856 * platform. 14857 */ 14858 /* ARGSUSED */ 14859 void 14860 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14861 struct mac_header_info_s *mhip) 14862 { 14863 ipaddr_t dst = NULL; 14864 ipaddr_t prev_dst; 14865 ire_t *ire = NULL; 14866 ipha_t *ipha; 14867 uint_t pkt_len; 14868 ssize_t len; 14869 uint_t opt_len; 14870 int ll_multicast; 14871 int cgtp_flt_pkt; 14872 queue_t *q = ill->ill_rq; 14873 squeue_t *curr_sqp = NULL; 14874 mblk_t *head = NULL; 14875 mblk_t *tail = NULL; 14876 mblk_t *first_mp; 14877 int cnt = 0; 14878 ip_stack_t *ipst = ill->ill_ipst; 14879 mblk_t *mp; 14880 mblk_t *dmp; 14881 uint8_t tag; 14882 14883 ASSERT(mp_chain != NULL); 14884 ASSERT(ill != NULL); 14885 14886 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14887 14888 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14889 14890 #define rptr ((uchar_t *)ipha) 14891 14892 while (mp_chain != NULL) { 14893 mp = mp_chain; 14894 mp_chain = mp_chain->b_next; 14895 mp->b_next = NULL; 14896 ll_multicast = 0; 14897 14898 /* 14899 * We do ire caching from one iteration to 14900 * another. In the event the packet chain contains 14901 * all packets from the same dst, this caching saves 14902 * an ire_cache_lookup for each of the succeeding 14903 * packets in a packet chain. 14904 */ 14905 prev_dst = dst; 14906 14907 /* 14908 * if db_ref > 1 then copymsg and free original. Packet 14909 * may be changed and we do not want the other entity 14910 * who has a reference to this message to trip over the 14911 * changes. This is a blind change because trying to 14912 * catch all places that might change the packet is too 14913 * difficult. 14914 * 14915 * This corresponds to the fast path case, where we have 14916 * a chain of M_DATA mblks. We check the db_ref count 14917 * of only the 1st data block in the mblk chain. There 14918 * doesn't seem to be a reason why a device driver would 14919 * send up data with varying db_ref counts in the mblk 14920 * chain. In any case the Fast path is a private 14921 * interface, and our drivers don't do such a thing. 14922 * Given the above assumption, there is no need to walk 14923 * down the entire mblk chain (which could have a 14924 * potential performance problem) 14925 * 14926 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14927 * to here because of exclusive ip stacks and vnics. 14928 * Packets transmitted from exclusive stack over vnic 14929 * can have db_ref > 1 and when it gets looped back to 14930 * another vnic in a different zone, you have ip_input() 14931 * getting dblks with db_ref > 1. So if someone 14932 * complains of TCP performance under this scenario, 14933 * take a serious look here on the impact of copymsg(). 14934 */ 14935 14936 if (DB_REF(mp) > 1) { 14937 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14938 continue; 14939 } 14940 14941 /* 14942 * Check and align the IP header. 14943 */ 14944 first_mp = mp; 14945 if (DB_TYPE(mp) == M_DATA) { 14946 dmp = mp; 14947 } else if (DB_TYPE(mp) == M_PROTO && 14948 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14949 dmp = mp->b_cont; 14950 } else { 14951 dmp = NULL; 14952 } 14953 if (dmp != NULL) { 14954 /* 14955 * IP header ptr not aligned? 14956 * OR IP header not complete in first mblk 14957 */ 14958 if (!OK_32PTR(dmp->b_rptr) || 14959 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14960 if (!ip_check_and_align_header(q, dmp, ipst)) 14961 continue; 14962 } 14963 } 14964 14965 /* 14966 * ip_input fast path 14967 */ 14968 14969 /* mblk type is not M_DATA */ 14970 if (DB_TYPE(mp) != M_DATA) { 14971 if (ip_rput_process_notdata(q, &first_mp, ill, 14972 &ll_multicast, &mp)) 14973 continue; 14974 14975 /* 14976 * The only way we can get here is if we had a 14977 * packet that was either a DL_UNITDATA_IND or 14978 * an M_CTL for an IPsec accelerated packet. 14979 * 14980 * In either case, the first_mp will point to 14981 * the leading M_PROTO or M_CTL. 14982 */ 14983 ASSERT(first_mp != NULL); 14984 } else if (mhip != NULL) { 14985 /* 14986 * ll_multicast is set here so that it is ready 14987 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14988 * manipulates ll_multicast in the same fashion when 14989 * called from ip_rput_process_notdata. 14990 */ 14991 switch (mhip->mhi_dsttype) { 14992 case MAC_ADDRTYPE_MULTICAST : 14993 ll_multicast = HPE_MULTICAST; 14994 break; 14995 case MAC_ADDRTYPE_BROADCAST : 14996 ll_multicast = HPE_BROADCAST; 14997 break; 14998 default : 14999 break; 15000 } 15001 } 15002 15003 /* Only M_DATA can come here and it is always aligned */ 15004 ASSERT(DB_TYPE(mp) == M_DATA); 15005 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15006 15007 ipha = (ipha_t *)mp->b_rptr; 15008 len = mp->b_wptr - rptr; 15009 pkt_len = ntohs(ipha->ipha_length); 15010 15011 /* 15012 * We must count all incoming packets, even if they end 15013 * up being dropped later on. 15014 */ 15015 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15016 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15017 15018 /* multiple mblk or too short */ 15019 len -= pkt_len; 15020 if (len != 0) { 15021 /* 15022 * Make sure we have data length consistent 15023 * with the IP header. 15024 */ 15025 if (mp->b_cont == NULL) { 15026 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15027 BUMP_MIB(ill->ill_ip_mib, 15028 ipIfStatsInHdrErrors); 15029 ip2dbg(("ip_input: drop pkt\n")); 15030 freemsg(mp); 15031 continue; 15032 } 15033 mp->b_wptr = rptr + pkt_len; 15034 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15035 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15036 BUMP_MIB(ill->ill_ip_mib, 15037 ipIfStatsInHdrErrors); 15038 ip2dbg(("ip_input: drop pkt\n")); 15039 freemsg(mp); 15040 continue; 15041 } 15042 (void) adjmsg(mp, -len); 15043 IP_STAT(ipst, ip_multimblk3); 15044 } 15045 } 15046 15047 /* Obtain the dst of the current packet */ 15048 dst = ipha->ipha_dst; 15049 15050 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15051 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15052 ipha, ip6_t *, NULL, int, 0); 15053 15054 /* 15055 * The following test for loopback is faster than 15056 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15057 * operations. 15058 * Note that these addresses are always in network byte order 15059 */ 15060 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15061 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15063 freemsg(mp); 15064 continue; 15065 } 15066 15067 /* 15068 * The event for packets being received from a 'physical' 15069 * interface is placed after validation of the source and/or 15070 * destination address as being local so that packets can be 15071 * redirected to loopback addresses using ipnat. 15072 */ 15073 DTRACE_PROBE4(ip4__physical__in__start, 15074 ill_t *, ill, ill_t *, NULL, 15075 ipha_t *, ipha, mblk_t *, first_mp); 15076 15077 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15078 ipst->ips_ipv4firewall_physical_in, 15079 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15080 15081 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15082 15083 if (first_mp == NULL) { 15084 continue; 15085 } 15086 dst = ipha->ipha_dst; 15087 /* 15088 * Attach any necessary label information to 15089 * this packet 15090 */ 15091 if (is_system_labeled() && 15092 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15094 freemsg(mp); 15095 continue; 15096 } 15097 15098 if (ipst->ips_ipobs_enabled) { 15099 zoneid_t dzone; 15100 15101 /* 15102 * On the inbound path the src zone will be unknown as 15103 * this packet has come from the wire. 15104 */ 15105 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15106 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15107 ill, IPV4_VERSION, 0, ipst); 15108 } 15109 15110 /* 15111 * Reuse the cached ire only if the ipha_dst of the previous 15112 * packet is the same as the current packet AND it is not 15113 * INADDR_ANY. 15114 */ 15115 if (!(dst == prev_dst && dst != INADDR_ANY) && 15116 (ire != NULL)) { 15117 ire_refrele(ire); 15118 ire = NULL; 15119 } 15120 15121 opt_len = ipha->ipha_version_and_hdr_length - 15122 IP_SIMPLE_HDR_VERSION; 15123 15124 /* 15125 * Check to see if we can take the fastpath. 15126 * That is possible if the following conditions are met 15127 * o Tsol disabled 15128 * o CGTP disabled 15129 * o ipp_action_count is 0 15130 * o no options in the packet 15131 * o not a RSVP packet 15132 * o not a multicast packet 15133 * o ill not in IP_DHCPINIT_IF mode 15134 */ 15135 if (!is_system_labeled() && 15136 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15137 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15138 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15139 if (ire == NULL) 15140 ire = ire_cache_lookup_simple(dst, ipst); 15141 /* 15142 * Unless forwarding is enabled, dont call 15143 * ip_fast_forward(). Incoming packet is for forwarding 15144 */ 15145 if ((ill->ill_flags & ILLF_ROUTER) && 15146 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15147 ire = ip_fast_forward(ire, dst, ill, mp); 15148 continue; 15149 } 15150 /* incoming packet is for local consumption */ 15151 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15152 goto local; 15153 } 15154 15155 /* 15156 * Disable ire caching for anything more complex 15157 * than the simple fast path case we checked for above. 15158 */ 15159 if (ire != NULL) { 15160 ire_refrele(ire); 15161 ire = NULL; 15162 } 15163 15164 /* 15165 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15166 * server to unicast DHCP packets to a DHCP client using the 15167 * IP address it is offering to the client. This can be 15168 * disabled through the "broadcast bit", but not all DHCP 15169 * servers honor that bit. Therefore, to interoperate with as 15170 * many DHCP servers as possible, the DHCP client allows the 15171 * server to unicast, but we treat those packets as broadcast 15172 * here. Note that we don't rewrite the packet itself since 15173 * (a) that would mess up the checksums and (b) the DHCP 15174 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15175 * hand it the packet regardless. 15176 */ 15177 if (ill->ill_dhcpinit != 0 && 15178 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15179 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15180 udpha_t *udpha; 15181 15182 /* 15183 * Reload ipha since pullupmsg() can change b_rptr. 15184 */ 15185 ipha = (ipha_t *)mp->b_rptr; 15186 udpha = (udpha_t *)&ipha[1]; 15187 15188 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15189 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15190 mblk_t *, mp); 15191 dst = INADDR_BROADCAST; 15192 } 15193 } 15194 15195 /* Full-blown slow path */ 15196 if (opt_len != 0) { 15197 if (len != 0) 15198 IP_STAT(ipst, ip_multimblk4); 15199 else 15200 IP_STAT(ipst, ip_ipoptions); 15201 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15202 &dst, ipst)) 15203 continue; 15204 } 15205 15206 /* 15207 * Invoke the CGTP (multirouting) filtering module to process 15208 * the incoming packet. Packets identified as duplicates 15209 * must be discarded. Filtering is active only if the 15210 * the ip_cgtp_filter ndd variable is non-zero. 15211 */ 15212 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15213 if (ipst->ips_ip_cgtp_filter && 15214 ipst->ips_ip_cgtp_filter_ops != NULL) { 15215 netstackid_t stackid; 15216 15217 stackid = ipst->ips_netstack->netstack_stackid; 15218 cgtp_flt_pkt = 15219 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15220 ill->ill_phyint->phyint_ifindex, mp); 15221 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15222 freemsg(first_mp); 15223 continue; 15224 } 15225 } 15226 15227 /* 15228 * If rsvpd is running, let RSVP daemon handle its processing 15229 * and forwarding of RSVP multicast/unicast packets. 15230 * If rsvpd is not running but mrouted is running, RSVP 15231 * multicast packets are forwarded as multicast traffic 15232 * and RSVP unicast packets are forwarded by unicast router. 15233 * If neither rsvpd nor mrouted is running, RSVP multicast 15234 * packets are not forwarded, but the unicast packets are 15235 * forwarded like unicast traffic. 15236 */ 15237 if (ipha->ipha_protocol == IPPROTO_RSVP && 15238 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15239 NULL) { 15240 /* RSVP packet and rsvpd running. Treat as ours */ 15241 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15242 /* 15243 * This assumes that we deliver to all streams for 15244 * multicast and broadcast packets. 15245 * We have to force ll_multicast to 1 to handle the 15246 * M_DATA messages passed in from ip_mroute_decap. 15247 */ 15248 dst = INADDR_BROADCAST; 15249 ll_multicast = 1; 15250 } else if (CLASSD(dst)) { 15251 /* packet is multicast */ 15252 mp->b_next = NULL; 15253 if (ip_rput_process_multicast(q, mp, ill, ipha, 15254 &ll_multicast, &dst)) 15255 continue; 15256 } 15257 15258 if (ire == NULL) { 15259 ire = ire_cache_lookup(dst, ALL_ZONES, 15260 msg_getlabel(mp), ipst); 15261 } 15262 15263 if (ire != NULL && ire->ire_stq != NULL && 15264 ire->ire_zoneid != GLOBAL_ZONEID && 15265 ire->ire_zoneid != ALL_ZONES) { 15266 /* 15267 * Should only use IREs that are visible from the 15268 * global zone for forwarding. 15269 */ 15270 ire_refrele(ire); 15271 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15272 msg_getlabel(mp), ipst); 15273 } 15274 15275 if (ire == NULL) { 15276 /* 15277 * No IRE for this destination, so it can't be for us. 15278 * Unless we are forwarding, drop the packet. 15279 * We have to let source routed packets through 15280 * since we don't yet know if they are 'ping -l' 15281 * packets i.e. if they will go out over the 15282 * same interface as they came in on. 15283 */ 15284 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15285 if (ire == NULL) 15286 continue; 15287 } 15288 15289 /* 15290 * Broadcast IRE may indicate either broadcast or 15291 * multicast packet 15292 */ 15293 if (ire->ire_type == IRE_BROADCAST) { 15294 /* 15295 * Skip broadcast checks if packet is UDP multicast; 15296 * we'd rather not enter ip_rput_process_broadcast() 15297 * unless the packet is broadcast for real, since 15298 * that routine is a no-op for multicast. 15299 */ 15300 if (ipha->ipha_protocol != IPPROTO_UDP || 15301 !CLASSD(ipha->ipha_dst)) { 15302 ire = ip_rput_process_broadcast(&q, mp, 15303 ire, ipha, ill, dst, cgtp_flt_pkt, 15304 ll_multicast); 15305 if (ire == NULL) 15306 continue; 15307 } 15308 } else if (ire->ire_stq != NULL) { 15309 /* fowarding? */ 15310 ip_rput_process_forward(q, mp, ire, ipha, ill, 15311 ll_multicast, B_FALSE); 15312 /* ip_rput_process_forward consumed the packet */ 15313 continue; 15314 } 15315 15316 local: 15317 /* 15318 * If the queue in the ire is different to the ingress queue 15319 * then we need to check to see if we can accept the packet. 15320 * Note that for multicast packets and broadcast packets sent 15321 * to a broadcast address which is shared between multiple 15322 * interfaces we should not do this since we just got a random 15323 * broadcast ire. 15324 */ 15325 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15326 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15327 if (ire == NULL) { 15328 /* Drop packet */ 15329 BUMP_MIB(ill->ill_ip_mib, 15330 ipIfStatsForwProhibits); 15331 freemsg(mp); 15332 continue; 15333 } 15334 if (ire->ire_rfq != NULL) 15335 q = ire->ire_rfq; 15336 } 15337 15338 switch (ipha->ipha_protocol) { 15339 case IPPROTO_TCP: 15340 ASSERT(first_mp == mp); 15341 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15342 mp, 0, q, ip_ring)) != NULL) { 15343 if (curr_sqp == NULL) { 15344 curr_sqp = GET_SQUEUE(mp); 15345 ASSERT(cnt == 0); 15346 cnt++; 15347 head = tail = mp; 15348 } else if (curr_sqp == GET_SQUEUE(mp)) { 15349 ASSERT(tail != NULL); 15350 cnt++; 15351 tail->b_next = mp; 15352 tail = mp; 15353 } else { 15354 /* 15355 * A different squeue. Send the 15356 * chain for the previous squeue on 15357 * its way. This shouldn't happen 15358 * often unless interrupt binding 15359 * changes. 15360 */ 15361 IP_STAT(ipst, ip_input_multi_squeue); 15362 SQUEUE_ENTER(curr_sqp, head, 15363 tail, cnt, SQ_PROCESS, tag); 15364 curr_sqp = GET_SQUEUE(mp); 15365 head = mp; 15366 tail = mp; 15367 cnt = 1; 15368 } 15369 } 15370 continue; 15371 case IPPROTO_UDP: 15372 ASSERT(first_mp == mp); 15373 ip_udp_input(q, mp, ipha, ire, ill); 15374 continue; 15375 case IPPROTO_SCTP: 15376 ASSERT(first_mp == mp); 15377 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15378 q, dst); 15379 /* ire has been released by ip_sctp_input */ 15380 ire = NULL; 15381 continue; 15382 default: 15383 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15384 continue; 15385 } 15386 } 15387 15388 if (ire != NULL) 15389 ire_refrele(ire); 15390 15391 if (head != NULL) 15392 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15393 15394 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15395 "ip_input_end: q %p (%S)", q, "end"); 15396 #undef rptr 15397 } 15398 15399 /* 15400 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15401 * a chain of packets in the poll mode. The packets have gone through the 15402 * data link processing but not IP processing. For performance and latency 15403 * reasons, the squeue wants to process the chain in line instead of feeding 15404 * it back via ip_input path. 15405 * 15406 * So this is a light weight function which checks to see if the packets 15407 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15408 * but we still do the paranoid check) meant for local machine and we don't 15409 * have labels etc enabled. Packets that meet the criterion are returned to 15410 * the squeue and processed inline while the rest go via ip_input path. 15411 */ 15412 /*ARGSUSED*/ 15413 mblk_t * 15414 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15415 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15416 { 15417 mblk_t *mp; 15418 ipaddr_t dst = NULL; 15419 ipaddr_t prev_dst; 15420 ire_t *ire = NULL; 15421 ipha_t *ipha; 15422 uint_t pkt_len; 15423 ssize_t len; 15424 uint_t opt_len; 15425 queue_t *q = ill->ill_rq; 15426 squeue_t *curr_sqp; 15427 mblk_t *ahead = NULL; /* Accepted head */ 15428 mblk_t *atail = NULL; /* Accepted tail */ 15429 uint_t acnt = 0; /* Accepted count */ 15430 mblk_t *utail = NULL; /* Unaccepted head */ 15431 mblk_t *uhead = NULL; /* Unaccepted tail */ 15432 uint_t ucnt = 0; /* Unaccepted cnt */ 15433 ip_stack_t *ipst = ill->ill_ipst; 15434 15435 *cnt = 0; 15436 15437 ASSERT(ill != NULL); 15438 ASSERT(ip_ring != NULL); 15439 15440 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15441 15442 #define rptr ((uchar_t *)ipha) 15443 15444 while (mp_chain != NULL) { 15445 mp = mp_chain; 15446 mp_chain = mp_chain->b_next; 15447 mp->b_next = NULL; 15448 15449 /* 15450 * We do ire caching from one iteration to 15451 * another. In the event the packet chain contains 15452 * all packets from the same dst, this caching saves 15453 * an ire_cache_lookup for each of the succeeding 15454 * packets in a packet chain. 15455 */ 15456 prev_dst = dst; 15457 15458 ipha = (ipha_t *)mp->b_rptr; 15459 len = mp->b_wptr - rptr; 15460 15461 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15462 15463 /* 15464 * If it is a non TCP packet, or doesn't have H/W cksum, 15465 * or doesn't have min len, reject. 15466 */ 15467 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15468 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15469 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15470 continue; 15471 } 15472 15473 pkt_len = ntohs(ipha->ipha_length); 15474 if (len != pkt_len) { 15475 if (len > pkt_len) { 15476 mp->b_wptr = rptr + pkt_len; 15477 } else { 15478 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15479 continue; 15480 } 15481 } 15482 15483 opt_len = ipha->ipha_version_and_hdr_length - 15484 IP_SIMPLE_HDR_VERSION; 15485 dst = ipha->ipha_dst; 15486 15487 /* IP version bad or there are IP options */ 15488 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15489 mp, &ipha, &dst, ipst))) 15490 continue; 15491 15492 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15493 (ipst->ips_ip_cgtp_filter && 15494 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15495 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15496 continue; 15497 } 15498 15499 /* 15500 * Reuse the cached ire only if the ipha_dst of the previous 15501 * packet is the same as the current packet AND it is not 15502 * INADDR_ANY. 15503 */ 15504 if (!(dst == prev_dst && dst != INADDR_ANY) && 15505 (ire != NULL)) { 15506 ire_refrele(ire); 15507 ire = NULL; 15508 } 15509 15510 if (ire == NULL) 15511 ire = ire_cache_lookup_simple(dst, ipst); 15512 15513 /* 15514 * Unless forwarding is enabled, dont call 15515 * ip_fast_forward(). Incoming packet is for forwarding 15516 */ 15517 if ((ill->ill_flags & ILLF_ROUTER) && 15518 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15519 15520 DTRACE_PROBE4(ip4__physical__in__start, 15521 ill_t *, ill, ill_t *, NULL, 15522 ipha_t *, ipha, mblk_t *, mp); 15523 15524 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15525 ipst->ips_ipv4firewall_physical_in, 15526 ill, NULL, ipha, mp, mp, 0, ipst); 15527 15528 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15529 15530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15531 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15532 pkt_len); 15533 15534 ire = ip_fast_forward(ire, dst, ill, mp); 15535 continue; 15536 } 15537 15538 /* incoming packet is for local consumption */ 15539 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15540 goto local_accept; 15541 15542 /* 15543 * Disable ire caching for anything more complex 15544 * than the simple fast path case we checked for above. 15545 */ 15546 if (ire != NULL) { 15547 ire_refrele(ire); 15548 ire = NULL; 15549 } 15550 15551 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15552 ipst); 15553 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15554 ire->ire_stq != NULL) { 15555 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15556 if (ire != NULL) { 15557 ire_refrele(ire); 15558 ire = NULL; 15559 } 15560 continue; 15561 } 15562 15563 local_accept: 15564 15565 if (ire->ire_rfq != q) { 15566 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15567 if (ire != NULL) { 15568 ire_refrele(ire); 15569 ire = NULL; 15570 } 15571 continue; 15572 } 15573 15574 /* 15575 * The event for packets being received from a 'physical' 15576 * interface is placed after validation of the source and/or 15577 * destination address as being local so that packets can be 15578 * redirected to loopback addresses using ipnat. 15579 */ 15580 DTRACE_PROBE4(ip4__physical__in__start, 15581 ill_t *, ill, ill_t *, NULL, 15582 ipha_t *, ipha, mblk_t *, mp); 15583 15584 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15585 ipst->ips_ipv4firewall_physical_in, 15586 ill, NULL, ipha, mp, mp, 0, ipst); 15587 15588 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15589 15590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15591 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15592 15593 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15594 0, q, ip_ring)) != NULL) { 15595 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15596 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15597 } else { 15598 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15599 SQ_FILL, SQTAG_IP_INPUT); 15600 } 15601 } 15602 } 15603 15604 if (ire != NULL) 15605 ire_refrele(ire); 15606 15607 if (uhead != NULL) 15608 ip_input(ill, ip_ring, uhead, NULL); 15609 15610 if (ahead != NULL) { 15611 *last = atail; 15612 *cnt = acnt; 15613 return (ahead); 15614 } 15615 15616 return (NULL); 15617 #undef rptr 15618 } 15619 15620 static void 15621 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15622 t_uscalar_t err) 15623 { 15624 if (dl_err == DL_SYSERR) { 15625 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15626 "%s: %s failed: DL_SYSERR (errno %u)\n", 15627 ill->ill_name, dl_primstr(prim), err); 15628 return; 15629 } 15630 15631 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15632 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15633 dl_errstr(dl_err)); 15634 } 15635 15636 /* 15637 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15638 * than DL_UNITDATA_IND messages. If we need to process this message 15639 * exclusively, we call qwriter_ip, in which case we also need to call 15640 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15641 */ 15642 void 15643 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15644 { 15645 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15646 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15647 ill_t *ill = q->q_ptr; 15648 t_uscalar_t prim = dloa->dl_primitive; 15649 t_uscalar_t reqprim = DL_PRIM_INVAL; 15650 15651 ip1dbg(("ip_rput_dlpi")); 15652 15653 /* 15654 * If we received an ACK but didn't send a request for it, then it 15655 * can't be part of any pending operation; discard up-front. 15656 */ 15657 switch (prim) { 15658 case DL_ERROR_ACK: 15659 reqprim = dlea->dl_error_primitive; 15660 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15661 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15662 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15663 dlea->dl_unix_errno)); 15664 break; 15665 case DL_OK_ACK: 15666 reqprim = dloa->dl_correct_primitive; 15667 break; 15668 case DL_INFO_ACK: 15669 reqprim = DL_INFO_REQ; 15670 break; 15671 case DL_BIND_ACK: 15672 reqprim = DL_BIND_REQ; 15673 break; 15674 case DL_PHYS_ADDR_ACK: 15675 reqprim = DL_PHYS_ADDR_REQ; 15676 break; 15677 case DL_NOTIFY_ACK: 15678 reqprim = DL_NOTIFY_REQ; 15679 break; 15680 case DL_CONTROL_ACK: 15681 reqprim = DL_CONTROL_REQ; 15682 break; 15683 case DL_CAPABILITY_ACK: 15684 reqprim = DL_CAPABILITY_REQ; 15685 break; 15686 } 15687 15688 if (prim != DL_NOTIFY_IND) { 15689 if (reqprim == DL_PRIM_INVAL || 15690 !ill_dlpi_pending(ill, reqprim)) { 15691 /* Not a DLPI message we support or expected */ 15692 freemsg(mp); 15693 return; 15694 } 15695 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15696 dl_primstr(reqprim))); 15697 } 15698 15699 switch (reqprim) { 15700 case DL_UNBIND_REQ: 15701 /* 15702 * NOTE: we mark the unbind as complete even if we got a 15703 * DL_ERROR_ACK, since there's not much else we can do. 15704 */ 15705 mutex_enter(&ill->ill_lock); 15706 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15707 cv_signal(&ill->ill_cv); 15708 mutex_exit(&ill->ill_lock); 15709 break; 15710 15711 case DL_ENABMULTI_REQ: 15712 if (prim == DL_OK_ACK) { 15713 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15714 ill->ill_dlpi_multicast_state = IDS_OK; 15715 } 15716 break; 15717 } 15718 15719 /* 15720 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15721 * need to become writer to continue to process it. Because an 15722 * exclusive operation doesn't complete until replies to all queued 15723 * DLPI messages have been received, we know we're in the middle of an 15724 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15725 * 15726 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15727 * Since this is on the ill stream we unconditionally bump up the 15728 * refcount without doing ILL_CAN_LOOKUP(). 15729 */ 15730 ill_refhold(ill); 15731 if (prim == DL_NOTIFY_IND) 15732 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15733 else 15734 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15735 } 15736 15737 /* 15738 * Handling of DLPI messages that require exclusive access to the ipsq. 15739 * 15740 * Need to do ill_pending_mp_release on ioctl completion, which could 15741 * happen here. (along with mi_copy_done) 15742 */ 15743 /* ARGSUSED */ 15744 static void 15745 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15746 { 15747 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15748 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15749 int err = 0; 15750 ill_t *ill; 15751 ipif_t *ipif = NULL; 15752 mblk_t *mp1 = NULL; 15753 conn_t *connp = NULL; 15754 t_uscalar_t paddrreq; 15755 mblk_t *mp_hw; 15756 boolean_t success; 15757 boolean_t ioctl_aborted = B_FALSE; 15758 boolean_t log = B_TRUE; 15759 ip_stack_t *ipst; 15760 15761 ip1dbg(("ip_rput_dlpi_writer ..")); 15762 ill = (ill_t *)q->q_ptr; 15763 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15764 ASSERT(IAM_WRITER_ILL(ill)); 15765 15766 ipst = ill->ill_ipst; 15767 15768 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15769 /* 15770 * The current ioctl could have been aborted by the user and a new 15771 * ioctl to bring up another ill could have started. We could still 15772 * get a response from the driver later. 15773 */ 15774 if (ipif != NULL && ipif->ipif_ill != ill) 15775 ioctl_aborted = B_TRUE; 15776 15777 switch (dloa->dl_primitive) { 15778 case DL_ERROR_ACK: 15779 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15780 dl_primstr(dlea->dl_error_primitive))); 15781 15782 switch (dlea->dl_error_primitive) { 15783 case DL_DISABMULTI_REQ: 15784 if (!ill->ill_isv6) 15785 ipsq_current_finish(ipsq); 15786 ill_dlpi_done(ill, dlea->dl_error_primitive); 15787 break; 15788 case DL_PROMISCON_REQ: 15789 case DL_PROMISCOFF_REQ: 15790 case DL_UNBIND_REQ: 15791 case DL_ATTACH_REQ: 15792 case DL_INFO_REQ: 15793 ill_dlpi_done(ill, dlea->dl_error_primitive); 15794 break; 15795 case DL_NOTIFY_REQ: 15796 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15797 log = B_FALSE; 15798 break; 15799 case DL_PHYS_ADDR_REQ: 15800 /* 15801 * For IPv6 only, there are two additional 15802 * phys_addr_req's sent to the driver to get the 15803 * IPv6 token and lla. This allows IP to acquire 15804 * the hardware address format for a given interface 15805 * without having built in knowledge of the hardware 15806 * address. ill_phys_addr_pend keeps track of the last 15807 * DL_PAR sent so we know which response we are 15808 * dealing with. ill_dlpi_done will update 15809 * ill_phys_addr_pend when it sends the next req. 15810 * We don't complete the IOCTL until all three DL_PARs 15811 * have been attempted, so set *_len to 0 and break. 15812 */ 15813 paddrreq = ill->ill_phys_addr_pend; 15814 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15815 if (paddrreq == DL_IPV6_TOKEN) { 15816 ill->ill_token_length = 0; 15817 log = B_FALSE; 15818 break; 15819 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15820 ill->ill_nd_lla_len = 0; 15821 log = B_FALSE; 15822 break; 15823 } 15824 /* 15825 * Something went wrong with the DL_PHYS_ADDR_REQ. 15826 * We presumably have an IOCTL hanging out waiting 15827 * for completion. Find it and complete the IOCTL 15828 * with the error noted. 15829 * However, ill_dl_phys was called on an ill queue 15830 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15831 * set. But the ioctl is known to be pending on ill_wq. 15832 */ 15833 if (!ill->ill_ifname_pending) 15834 break; 15835 ill->ill_ifname_pending = 0; 15836 if (!ioctl_aborted) 15837 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15838 if (mp1 != NULL) { 15839 /* 15840 * This operation (SIOCSLIFNAME) must have 15841 * happened on the ill. Assert there is no conn 15842 */ 15843 ASSERT(connp == NULL); 15844 q = ill->ill_wq; 15845 } 15846 break; 15847 case DL_BIND_REQ: 15848 ill_dlpi_done(ill, DL_BIND_REQ); 15849 if (ill->ill_ifname_pending) 15850 break; 15851 /* 15852 * Something went wrong with the bind. We presumably 15853 * have an IOCTL hanging out waiting for completion. 15854 * Find it, take down the interface that was coming 15855 * up, and complete the IOCTL with the error noted. 15856 */ 15857 if (!ioctl_aborted) 15858 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15859 if (mp1 != NULL) { 15860 /* 15861 * This operation (SIOCSLIFFLAGS) must have 15862 * happened from a conn. 15863 */ 15864 ASSERT(connp != NULL); 15865 q = CONNP_TO_WQ(connp); 15866 (void) ipif_down(ipif, NULL, NULL); 15867 /* error is set below the switch */ 15868 } 15869 break; 15870 case DL_ENABMULTI_REQ: 15871 if (!ill->ill_isv6) 15872 ipsq_current_finish(ipsq); 15873 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15874 15875 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15876 ill->ill_dlpi_multicast_state = IDS_FAILED; 15877 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15878 ipif_t *ipif; 15879 15880 printf("ip: joining multicasts failed (%d)" 15881 " on %s - will use link layer " 15882 "broadcasts for multicast\n", 15883 dlea->dl_errno, ill->ill_name); 15884 15885 /* 15886 * Set up the multicast mapping alone. 15887 * writer, so ok to access ill->ill_ipif 15888 * without any lock. 15889 */ 15890 ipif = ill->ill_ipif; 15891 mutex_enter(&ill->ill_phyint->phyint_lock); 15892 ill->ill_phyint->phyint_flags |= 15893 PHYI_MULTI_BCAST; 15894 mutex_exit(&ill->ill_phyint->phyint_lock); 15895 15896 if (!ill->ill_isv6) { 15897 (void) ipif_arp_setup_multicast(ipif, 15898 NULL); 15899 } else { 15900 (void) ipif_ndp_setup_multicast(ipif, 15901 NULL); 15902 } 15903 } 15904 freemsg(mp); /* Don't want to pass this up */ 15905 return; 15906 case DL_CONTROL_REQ: 15907 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15908 "DL_CONTROL_REQ\n")); 15909 ill_dlpi_done(ill, dlea->dl_error_primitive); 15910 freemsg(mp); 15911 return; 15912 case DL_CAPABILITY_REQ: 15913 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15914 "DL_CAPABILITY REQ\n")); 15915 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15916 ill->ill_dlpi_capab_state = IDCS_FAILED; 15917 ill_capability_done(ill); 15918 freemsg(mp); 15919 return; 15920 } 15921 /* 15922 * Note the error for IOCTL completion (mp1 is set when 15923 * ready to complete ioctl). If ill_ifname_pending_err is 15924 * set, an error occured during plumbing (ill_ifname_pending), 15925 * so we want to report that error. 15926 * 15927 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15928 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15929 * expected to get errack'd if the driver doesn't support 15930 * these flags (e.g. ethernet). log will be set to B_FALSE 15931 * if these error conditions are encountered. 15932 */ 15933 if (mp1 != NULL) { 15934 if (ill->ill_ifname_pending_err != 0) { 15935 err = ill->ill_ifname_pending_err; 15936 ill->ill_ifname_pending_err = 0; 15937 } else { 15938 err = dlea->dl_unix_errno ? 15939 dlea->dl_unix_errno : ENXIO; 15940 } 15941 /* 15942 * If we're plumbing an interface and an error hasn't already 15943 * been saved, set ill_ifname_pending_err to the error passed 15944 * up. Ignore the error if log is B_FALSE (see comment above). 15945 */ 15946 } else if (log && ill->ill_ifname_pending && 15947 ill->ill_ifname_pending_err == 0) { 15948 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15949 dlea->dl_unix_errno : ENXIO; 15950 } 15951 15952 if (log) 15953 ip_dlpi_error(ill, dlea->dl_error_primitive, 15954 dlea->dl_errno, dlea->dl_unix_errno); 15955 break; 15956 case DL_CAPABILITY_ACK: 15957 ill_capability_ack(ill, mp); 15958 /* 15959 * The message has been handed off to ill_capability_ack 15960 * and must not be freed below 15961 */ 15962 mp = NULL; 15963 break; 15964 15965 case DL_CONTROL_ACK: 15966 /* We treat all of these as "fire and forget" */ 15967 ill_dlpi_done(ill, DL_CONTROL_REQ); 15968 break; 15969 case DL_INFO_ACK: 15970 /* Call a routine to handle this one. */ 15971 ill_dlpi_done(ill, DL_INFO_REQ); 15972 ip_ll_subnet_defaults(ill, mp); 15973 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15974 return; 15975 case DL_BIND_ACK: 15976 /* 15977 * We should have an IOCTL waiting on this unless 15978 * sent by ill_dl_phys, in which case just return 15979 */ 15980 ill_dlpi_done(ill, DL_BIND_REQ); 15981 if (ill->ill_ifname_pending) 15982 break; 15983 15984 if (!ioctl_aborted) 15985 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15986 if (mp1 == NULL) 15987 break; 15988 /* 15989 * Because mp1 was added by ill_dl_up(), and it always 15990 * passes a valid connp, connp must be valid here. 15991 */ 15992 ASSERT(connp != NULL); 15993 q = CONNP_TO_WQ(connp); 15994 15995 /* 15996 * We are exclusive. So nothing can change even after 15997 * we get the pending mp. If need be we can put it back 15998 * and restart, as in calling ipif_arp_up() below. 15999 */ 16000 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16001 16002 mutex_enter(&ill->ill_lock); 16003 ill->ill_dl_up = 1; 16004 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16005 mutex_exit(&ill->ill_lock); 16006 16007 /* 16008 * Now bring up the resolver; when that is complete, we'll 16009 * create IREs. Note that we intentionally mirror what 16010 * ipif_up() would have done, because we got here by way of 16011 * ill_dl_up(), which stopped ipif_up()'s processing. 16012 */ 16013 if (ill->ill_isv6) { 16014 if (ill->ill_flags & ILLF_XRESOLV) { 16015 mutex_enter(&connp->conn_lock); 16016 mutex_enter(&ill->ill_lock); 16017 success = ipsq_pending_mp_add(connp, ipif, q, 16018 mp1, 0); 16019 mutex_exit(&ill->ill_lock); 16020 mutex_exit(&connp->conn_lock); 16021 if (success) { 16022 err = ipif_resolver_up(ipif, 16023 Res_act_initial); 16024 if (err == EINPROGRESS) { 16025 freemsg(mp); 16026 return; 16027 } 16028 ASSERT(err != 0); 16029 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16030 ASSERT(mp1 != NULL); 16031 } else { 16032 /* conn has started closing */ 16033 err = EINTR; 16034 } 16035 } else { /* Non XRESOLV interface */ 16036 (void) ipif_resolver_up(ipif, Res_act_initial); 16037 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16038 err = ipif_up_done_v6(ipif); 16039 } 16040 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16041 /* 16042 * ARP and other v4 external resolvers. 16043 * Leave the pending mblk intact so that 16044 * the ioctl completes in ip_rput(). 16045 */ 16046 mutex_enter(&connp->conn_lock); 16047 mutex_enter(&ill->ill_lock); 16048 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16049 mutex_exit(&ill->ill_lock); 16050 mutex_exit(&connp->conn_lock); 16051 if (success) { 16052 err = ipif_resolver_up(ipif, Res_act_initial); 16053 if (err == EINPROGRESS) { 16054 freemsg(mp); 16055 return; 16056 } 16057 ASSERT(err != 0); 16058 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16059 } else { 16060 /* The conn has started closing */ 16061 err = EINTR; 16062 } 16063 } else { 16064 /* 16065 * This one is complete. Reply to pending ioctl. 16066 */ 16067 (void) ipif_resolver_up(ipif, Res_act_initial); 16068 err = ipif_up_done(ipif); 16069 } 16070 16071 if ((err == 0) && (ill->ill_up_ipifs)) { 16072 err = ill_up_ipifs(ill, q, mp1); 16073 if (err == EINPROGRESS) { 16074 freemsg(mp); 16075 return; 16076 } 16077 } 16078 16079 /* 16080 * If we have a moved ipif to bring up, and everything has 16081 * succeeded to this point, bring it up on the IPMP ill. 16082 * Otherwise, leave it down -- the admin can try to bring it 16083 * up by hand if need be. 16084 */ 16085 if (ill->ill_move_ipif != NULL) { 16086 if (err != 0) { 16087 ill->ill_move_ipif = NULL; 16088 } else { 16089 ipif = ill->ill_move_ipif; 16090 ill->ill_move_ipif = NULL; 16091 err = ipif_up(ipif, q, mp1); 16092 if (err == EINPROGRESS) { 16093 freemsg(mp); 16094 return; 16095 } 16096 } 16097 } 16098 break; 16099 16100 case DL_NOTIFY_IND: { 16101 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16102 ire_t *ire; 16103 uint_t orig_mtu; 16104 boolean_t need_ire_walk_v4 = B_FALSE; 16105 boolean_t need_ire_walk_v6 = B_FALSE; 16106 16107 switch (notify->dl_notification) { 16108 case DL_NOTE_PHYS_ADDR: 16109 err = ill_set_phys_addr(ill, mp); 16110 break; 16111 16112 case DL_NOTE_FASTPATH_FLUSH: 16113 ill_fastpath_flush(ill); 16114 break; 16115 16116 case DL_NOTE_SDU_SIZE: 16117 /* 16118 * Change the MTU size of the interface, of all 16119 * attached ipif's, and of all relevant ire's. The 16120 * new value's a uint32_t at notify->dl_data. 16121 * Mtu change Vs. new ire creation - protocol below. 16122 * 16123 * a Mark the ipif as IPIF_CHANGING. 16124 * b Set the new mtu in the ipif. 16125 * c Change the ire_max_frag on all affected ires 16126 * d Unmark the IPIF_CHANGING 16127 * 16128 * To see how the protocol works, assume an interface 16129 * route is also being added simultaneously by 16130 * ip_rt_add and let 'ipif' be the ipif referenced by 16131 * the ire. If the ire is created before step a, 16132 * it will be cleaned up by step c. If the ire is 16133 * created after step d, it will see the new value of 16134 * ipif_mtu. Any attempt to create the ire between 16135 * steps a to d will fail because of the IPIF_CHANGING 16136 * flag. Note that ire_create() is passed a pointer to 16137 * the ipif_mtu, and not the value. During ire_add 16138 * under the bucket lock, the ire_max_frag of the 16139 * new ire being created is set from the ipif/ire from 16140 * which it is being derived. 16141 */ 16142 mutex_enter(&ill->ill_lock); 16143 16144 orig_mtu = ill->ill_max_mtu; 16145 ill->ill_max_frag = (uint_t)notify->dl_data; 16146 ill->ill_max_mtu = (uint_t)notify->dl_data; 16147 16148 /* 16149 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16150 * clamp ill_max_mtu at it. 16151 */ 16152 if (ill->ill_user_mtu != 0 && 16153 ill->ill_user_mtu < ill->ill_max_mtu) 16154 ill->ill_max_mtu = ill->ill_user_mtu; 16155 16156 /* 16157 * If the MTU is unchanged, we're done. 16158 */ 16159 if (orig_mtu == ill->ill_max_mtu) { 16160 mutex_exit(&ill->ill_lock); 16161 break; 16162 } 16163 16164 if (ill->ill_isv6) { 16165 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16166 ill->ill_max_mtu = IPV6_MIN_MTU; 16167 } else { 16168 if (ill->ill_max_mtu < IP_MIN_MTU) 16169 ill->ill_max_mtu = IP_MIN_MTU; 16170 } 16171 for (ipif = ill->ill_ipif; ipif != NULL; 16172 ipif = ipif->ipif_next) { 16173 /* 16174 * Don't override the mtu if the user 16175 * has explicitly set it. 16176 */ 16177 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16178 continue; 16179 ipif->ipif_mtu = (uint_t)notify->dl_data; 16180 if (ipif->ipif_isv6) 16181 ire = ipif_to_ire_v6(ipif); 16182 else 16183 ire = ipif_to_ire(ipif); 16184 if (ire != NULL) { 16185 ire->ire_max_frag = ipif->ipif_mtu; 16186 ire_refrele(ire); 16187 } 16188 if (ipif->ipif_flags & IPIF_UP) { 16189 if (ill->ill_isv6) 16190 need_ire_walk_v6 = B_TRUE; 16191 else 16192 need_ire_walk_v4 = B_TRUE; 16193 } 16194 } 16195 mutex_exit(&ill->ill_lock); 16196 if (need_ire_walk_v4) 16197 ire_walk_v4(ill_mtu_change, (char *)ill, 16198 ALL_ZONES, ipst); 16199 if (need_ire_walk_v6) 16200 ire_walk_v6(ill_mtu_change, (char *)ill, 16201 ALL_ZONES, ipst); 16202 16203 /* 16204 * Refresh IPMP meta-interface MTU if necessary. 16205 */ 16206 if (IS_UNDER_IPMP(ill)) 16207 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16208 break; 16209 16210 case DL_NOTE_LINK_UP: 16211 case DL_NOTE_LINK_DOWN: { 16212 /* 16213 * We are writer. ill / phyint / ipsq assocs stable. 16214 * The RUNNING flag reflects the state of the link. 16215 */ 16216 phyint_t *phyint = ill->ill_phyint; 16217 uint64_t new_phyint_flags; 16218 boolean_t changed = B_FALSE; 16219 boolean_t went_up; 16220 16221 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16222 mutex_enter(&phyint->phyint_lock); 16223 16224 new_phyint_flags = went_up ? 16225 phyint->phyint_flags | PHYI_RUNNING : 16226 phyint->phyint_flags & ~PHYI_RUNNING; 16227 16228 if (IS_IPMP(ill)) { 16229 new_phyint_flags = went_up ? 16230 new_phyint_flags & ~PHYI_FAILED : 16231 new_phyint_flags | PHYI_FAILED; 16232 } 16233 16234 if (new_phyint_flags != phyint->phyint_flags) { 16235 phyint->phyint_flags = new_phyint_flags; 16236 changed = B_TRUE; 16237 } 16238 mutex_exit(&phyint->phyint_lock); 16239 /* 16240 * ill_restart_dad handles the DAD restart and routing 16241 * socket notification logic. 16242 */ 16243 if (changed) { 16244 ill_restart_dad(phyint->phyint_illv4, went_up); 16245 ill_restart_dad(phyint->phyint_illv6, went_up); 16246 } 16247 break; 16248 } 16249 case DL_NOTE_PROMISC_ON_PHYS: 16250 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16251 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16252 mutex_enter(&ill->ill_lock); 16253 ill->ill_promisc_on_phys = B_TRUE; 16254 mutex_exit(&ill->ill_lock); 16255 break; 16256 case DL_NOTE_PROMISC_OFF_PHYS: 16257 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16258 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16259 mutex_enter(&ill->ill_lock); 16260 ill->ill_promisc_on_phys = B_FALSE; 16261 mutex_exit(&ill->ill_lock); 16262 break; 16263 case DL_NOTE_CAPAB_RENEG: 16264 /* 16265 * Something changed on the driver side. 16266 * It wants us to renegotiate the capabilities 16267 * on this ill. One possible cause is the aggregation 16268 * interface under us where a port got added or 16269 * went away. 16270 * 16271 * If the capability negotiation is already done 16272 * or is in progress, reset the capabilities and 16273 * mark the ill's ill_capab_reneg to be B_TRUE, 16274 * so that when the ack comes back, we can start 16275 * the renegotiation process. 16276 * 16277 * Note that if ill_capab_reneg is already B_TRUE 16278 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16279 * the capability resetting request has been sent 16280 * and the renegotiation has not been started yet; 16281 * nothing needs to be done in this case. 16282 */ 16283 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16284 ill_capability_reset(ill, B_TRUE); 16285 ipsq_current_finish(ipsq); 16286 break; 16287 default: 16288 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16289 "type 0x%x for DL_NOTIFY_IND\n", 16290 notify->dl_notification)); 16291 break; 16292 } 16293 16294 /* 16295 * As this is an asynchronous operation, we 16296 * should not call ill_dlpi_done 16297 */ 16298 break; 16299 } 16300 case DL_NOTIFY_ACK: { 16301 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16302 16303 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16304 ill->ill_note_link = 1; 16305 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16306 break; 16307 } 16308 case DL_PHYS_ADDR_ACK: { 16309 /* 16310 * As part of plumbing the interface via SIOCSLIFNAME, 16311 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16312 * whose answers we receive here. As each answer is received, 16313 * we call ill_dlpi_done() to dispatch the next request as 16314 * we're processing the current one. Once all answers have 16315 * been received, we use ipsq_pending_mp_get() to dequeue the 16316 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16317 * is invoked from an ill queue, conn_oper_pending_ill is not 16318 * available, but we know the ioctl is pending on ill_wq.) 16319 */ 16320 uint_t paddrlen, paddroff; 16321 16322 paddrreq = ill->ill_phys_addr_pend; 16323 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16324 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16325 16326 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16327 if (paddrreq == DL_IPV6_TOKEN) { 16328 /* 16329 * bcopy to low-order bits of ill_token 16330 * 16331 * XXX Temporary hack - currently, all known tokens 16332 * are 64 bits, so I'll cheat for the moment. 16333 */ 16334 bcopy(mp->b_rptr + paddroff, 16335 &ill->ill_token.s6_addr32[2], paddrlen); 16336 ill->ill_token_length = paddrlen; 16337 break; 16338 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16339 ASSERT(ill->ill_nd_lla_mp == NULL); 16340 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16341 mp = NULL; 16342 break; 16343 } 16344 16345 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16346 ASSERT(ill->ill_phys_addr_mp == NULL); 16347 if (!ill->ill_ifname_pending) 16348 break; 16349 ill->ill_ifname_pending = 0; 16350 if (!ioctl_aborted) 16351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16352 if (mp1 != NULL) { 16353 ASSERT(connp == NULL); 16354 q = ill->ill_wq; 16355 } 16356 /* 16357 * If any error acks received during the plumbing sequence, 16358 * ill_ifname_pending_err will be set. Break out and send up 16359 * the error to the pending ioctl. 16360 */ 16361 if (ill->ill_ifname_pending_err != 0) { 16362 err = ill->ill_ifname_pending_err; 16363 ill->ill_ifname_pending_err = 0; 16364 break; 16365 } 16366 16367 ill->ill_phys_addr_mp = mp; 16368 ill->ill_phys_addr = mp->b_rptr + paddroff; 16369 mp = NULL; 16370 16371 /* 16372 * If paddrlen is zero, the DLPI provider doesn't support 16373 * physical addresses. The other two tests were historical 16374 * workarounds for bugs in our former PPP implementation, but 16375 * now other things have grown dependencies on them -- e.g., 16376 * the tun module specifies a dl_addr_length of zero in its 16377 * DL_BIND_ACK, but then specifies an incorrect value in its 16378 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16379 * but only after careful testing ensures that all dependent 16380 * broken DLPI providers have been fixed. 16381 */ 16382 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16383 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16384 ill->ill_phys_addr = NULL; 16385 } else if (paddrlen != ill->ill_phys_addr_length) { 16386 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16387 paddrlen, ill->ill_phys_addr_length)); 16388 err = EINVAL; 16389 break; 16390 } 16391 16392 if (ill->ill_nd_lla_mp == NULL) { 16393 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16394 err = ENOMEM; 16395 break; 16396 } 16397 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16398 } 16399 16400 /* 16401 * Set the interface token. If the zeroth interface address 16402 * is unspecified, then set it to the link local address. 16403 */ 16404 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16405 (void) ill_setdefaulttoken(ill); 16406 16407 ASSERT(ill->ill_ipif->ipif_id == 0); 16408 if (ipif != NULL && 16409 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16410 (void) ipif_setlinklocal(ipif); 16411 } 16412 break; 16413 } 16414 case DL_OK_ACK: 16415 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16416 dl_primstr((int)dloa->dl_correct_primitive), 16417 dloa->dl_correct_primitive)); 16418 switch (dloa->dl_correct_primitive) { 16419 case DL_ENABMULTI_REQ: 16420 case DL_DISABMULTI_REQ: 16421 if (!ill->ill_isv6) 16422 ipsq_current_finish(ipsq); 16423 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16424 break; 16425 case DL_PROMISCON_REQ: 16426 case DL_PROMISCOFF_REQ: 16427 case DL_UNBIND_REQ: 16428 case DL_ATTACH_REQ: 16429 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16430 break; 16431 } 16432 break; 16433 default: 16434 break; 16435 } 16436 16437 freemsg(mp); 16438 if (mp1 == NULL) 16439 return; 16440 16441 /* 16442 * The operation must complete without EINPROGRESS since 16443 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16444 * the operation will be stuck forever inside the IPSQ. 16445 */ 16446 ASSERT(err != EINPROGRESS); 16447 16448 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16449 case 0: 16450 ipsq_current_finish(ipsq); 16451 break; 16452 16453 case SIOCSLIFNAME: 16454 case IF_UNITSEL: { 16455 ill_t *ill_other = ILL_OTHER(ill); 16456 16457 /* 16458 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16459 * ill has a peer which is in an IPMP group, then place ill 16460 * into the same group. One catch: although ifconfig plumbs 16461 * the appropriate IPMP meta-interface prior to plumbing this 16462 * ill, it is possible for multiple ifconfig applications to 16463 * race (or for another application to adjust plumbing), in 16464 * which case the IPMP meta-interface we need will be missing. 16465 * If so, kick the phyint out of the group. 16466 */ 16467 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16468 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16469 ipmp_illgrp_t *illg; 16470 16471 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16472 if (illg == NULL) 16473 ipmp_phyint_leave_grp(ill->ill_phyint); 16474 else 16475 ipmp_ill_join_illgrp(ill, illg); 16476 } 16477 16478 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16479 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16480 else 16481 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16482 break; 16483 } 16484 case SIOCLIFADDIF: 16485 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16486 break; 16487 16488 default: 16489 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16490 break; 16491 } 16492 } 16493 16494 /* 16495 * ip_rput_other is called by ip_rput to handle messages modifying the global 16496 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16497 */ 16498 /* ARGSUSED */ 16499 void 16500 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16501 { 16502 ill_t *ill = q->q_ptr; 16503 struct iocblk *iocp; 16504 mblk_t *mp1; 16505 conn_t *connp = NULL; 16506 16507 ip1dbg(("ip_rput_other ")); 16508 if (ipsq != NULL) { 16509 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16510 ASSERT(ipsq->ipsq_xop == 16511 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16512 } 16513 16514 switch (mp->b_datap->db_type) { 16515 case M_ERROR: 16516 case M_HANGUP: 16517 /* 16518 * The device has a problem. We force the ILL down. It can 16519 * be brought up again manually using SIOCSIFFLAGS (via 16520 * ifconfig or equivalent). 16521 */ 16522 ASSERT(ipsq != NULL); 16523 if (mp->b_rptr < mp->b_wptr) 16524 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16525 if (ill->ill_error == 0) 16526 ill->ill_error = ENXIO; 16527 if (!ill_down_start(q, mp)) 16528 return; 16529 ipif_all_down_tail(ipsq, q, mp, NULL); 16530 break; 16531 case M_IOCACK: 16532 iocp = (struct iocblk *)mp->b_rptr; 16533 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16534 switch (iocp->ioc_cmd) { 16535 case SIOCSTUNPARAM: 16536 case OSIOCSTUNPARAM: 16537 ASSERT(ipsq != NULL); 16538 /* 16539 * Finish socket ioctl passed through to tun. 16540 * We should have an IOCTL waiting on this. 16541 */ 16542 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16543 if (ill->ill_isv6) { 16544 struct iftun_req *ta; 16545 16546 /* 16547 * if a source or destination is 16548 * being set, try and set the link 16549 * local address for the tunnel 16550 */ 16551 ta = (struct iftun_req *)mp->b_cont-> 16552 b_cont->b_rptr; 16553 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16554 ipif_set_tun_llink(ill, ta); 16555 } 16556 16557 } 16558 if (mp1 != NULL) { 16559 /* 16560 * Now copy back the b_next/b_prev used by 16561 * mi code for the mi_copy* functions. 16562 * See ip_sioctl_tunparam() for the reason. 16563 * Also protect against missing b_cont. 16564 */ 16565 if (mp->b_cont != NULL) { 16566 mp->b_cont->b_next = 16567 mp1->b_cont->b_next; 16568 mp->b_cont->b_prev = 16569 mp1->b_cont->b_prev; 16570 } 16571 inet_freemsg(mp1); 16572 ASSERT(connp != NULL); 16573 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16574 iocp->ioc_error, NO_COPYOUT, ipsq); 16575 } else { 16576 ASSERT(connp == NULL); 16577 putnext(q, mp); 16578 } 16579 break; 16580 case SIOCGTUNPARAM: 16581 case OSIOCGTUNPARAM: 16582 /* 16583 * This is really M_IOCDATA from the tunnel driver. 16584 * convert back and complete the ioctl. 16585 * We should have an IOCTL waiting on this. 16586 */ 16587 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16588 if (mp1) { 16589 /* 16590 * Now copy back the b_next/b_prev used by 16591 * mi code for the mi_copy* functions. 16592 * See ip_sioctl_tunparam() for the reason. 16593 * Also protect against missing b_cont. 16594 */ 16595 if (mp->b_cont != NULL) { 16596 mp->b_cont->b_next = 16597 mp1->b_cont->b_next; 16598 mp->b_cont->b_prev = 16599 mp1->b_cont->b_prev; 16600 } 16601 inet_freemsg(mp1); 16602 if (iocp->ioc_error == 0) 16603 mp->b_datap->db_type = M_IOCDATA; 16604 ASSERT(connp != NULL); 16605 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16606 iocp->ioc_error, COPYOUT, NULL); 16607 } else { 16608 ASSERT(connp == NULL); 16609 putnext(q, mp); 16610 } 16611 break; 16612 default: 16613 break; 16614 } 16615 break; 16616 case M_IOCNAK: 16617 iocp = (struct iocblk *)mp->b_rptr; 16618 16619 switch (iocp->ioc_cmd) { 16620 int mode; 16621 16622 case DL_IOC_HDR_INFO: 16623 /* 16624 * If this was the first attempt, turn off the 16625 * fastpath probing. 16626 */ 16627 mutex_enter(&ill->ill_lock); 16628 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16629 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16630 mutex_exit(&ill->ill_lock); 16631 ill_fastpath_nack(ill); 16632 ip1dbg(("ip_rput: DLPI fastpath off on " 16633 "interface %s\n", 16634 ill->ill_name)); 16635 } else { 16636 mutex_exit(&ill->ill_lock); 16637 } 16638 freemsg(mp); 16639 break; 16640 case SIOCSTUNPARAM: 16641 case OSIOCSTUNPARAM: 16642 ASSERT(ipsq != NULL); 16643 /* 16644 * Finish socket ioctl passed through to tun 16645 * We should have an IOCTL waiting on this. 16646 */ 16647 /* FALLTHRU */ 16648 case SIOCGTUNPARAM: 16649 case OSIOCGTUNPARAM: 16650 /* 16651 * This is really M_IOCDATA from the tunnel driver. 16652 * convert back and complete the ioctl. 16653 * We should have an IOCTL waiting on this. 16654 */ 16655 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16656 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16657 mp1 = ill_pending_mp_get(ill, &connp, 16658 iocp->ioc_id); 16659 mode = COPYOUT; 16660 ipsq = NULL; 16661 } else { 16662 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16663 mode = NO_COPYOUT; 16664 } 16665 if (mp1 != NULL) { 16666 /* 16667 * Now copy back the b_next/b_prev used by 16668 * mi code for the mi_copy* functions. 16669 * See ip_sioctl_tunparam() for the reason. 16670 * Also protect against missing b_cont. 16671 */ 16672 if (mp->b_cont != NULL) { 16673 mp->b_cont->b_next = 16674 mp1->b_cont->b_next; 16675 mp->b_cont->b_prev = 16676 mp1->b_cont->b_prev; 16677 } 16678 inet_freemsg(mp1); 16679 if (iocp->ioc_error == 0) 16680 iocp->ioc_error = EINVAL; 16681 ASSERT(connp != NULL); 16682 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16683 iocp->ioc_error, mode, ipsq); 16684 } else { 16685 ASSERT(connp == NULL); 16686 putnext(q, mp); 16687 } 16688 break; 16689 default: 16690 break; 16691 } 16692 default: 16693 break; 16694 } 16695 } 16696 16697 /* 16698 * NOTE : This function does not ire_refrele the ire argument passed in. 16699 * 16700 * IPQoS notes 16701 * IP policy is invoked twice for a forwarded packet, once on the read side 16702 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16703 * enabled. An additional parameter, in_ill, has been added for this purpose. 16704 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16705 * because ip_mroute drops this information. 16706 * 16707 */ 16708 void 16709 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16710 { 16711 uint32_t old_pkt_len; 16712 uint32_t pkt_len; 16713 queue_t *q; 16714 uint32_t sum; 16715 #define rptr ((uchar_t *)ipha) 16716 uint32_t max_frag; 16717 uint32_t ill_index; 16718 ill_t *out_ill; 16719 mib2_ipIfStatsEntry_t *mibptr; 16720 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16721 16722 /* Get the ill_index of the incoming ILL */ 16723 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16724 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16725 16726 /* Initiate Read side IPPF processing */ 16727 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16728 ip_process(IPP_FWD_IN, &mp, ill_index); 16729 if (mp == NULL) { 16730 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16731 "during IPPF processing\n")); 16732 return; 16733 } 16734 } 16735 16736 /* Adjust the checksum to reflect the ttl decrement. */ 16737 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16738 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16739 16740 if (ipha->ipha_ttl-- <= 1) { 16741 if (ip_csum_hdr(ipha)) { 16742 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16743 goto drop_pkt; 16744 } 16745 /* 16746 * Note: ire_stq this will be NULL for multicast 16747 * datagrams using the long path through arp (the IRE 16748 * is not an IRE_CACHE). This should not cause 16749 * problems since we don't generate ICMP errors for 16750 * multicast packets. 16751 */ 16752 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16753 q = ire->ire_stq; 16754 if (q != NULL) { 16755 /* Sent by forwarding path, and router is global zone */ 16756 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16757 GLOBAL_ZONEID, ipst); 16758 } else 16759 freemsg(mp); 16760 return; 16761 } 16762 16763 /* 16764 * Don't forward if the interface is down 16765 */ 16766 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16767 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16768 ip2dbg(("ip_rput_forward:interface is down\n")); 16769 goto drop_pkt; 16770 } 16771 16772 /* Get the ill_index of the outgoing ILL */ 16773 out_ill = ire_to_ill(ire); 16774 ill_index = out_ill->ill_phyint->phyint_ifindex; 16775 16776 DTRACE_PROBE4(ip4__forwarding__start, 16777 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16778 16779 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16780 ipst->ips_ipv4firewall_forwarding, 16781 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16782 16783 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16784 16785 if (mp == NULL) 16786 return; 16787 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16788 16789 if (is_system_labeled()) { 16790 mblk_t *mp1; 16791 16792 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16793 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16794 goto drop_pkt; 16795 } 16796 /* Size may have changed */ 16797 mp = mp1; 16798 ipha = (ipha_t *)mp->b_rptr; 16799 pkt_len = ntohs(ipha->ipha_length); 16800 } 16801 16802 /* Check if there are options to update */ 16803 if (!IS_SIMPLE_IPH(ipha)) { 16804 if (ip_csum_hdr(ipha)) { 16805 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16806 goto drop_pkt; 16807 } 16808 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16809 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16810 return; 16811 } 16812 16813 ipha->ipha_hdr_checksum = 0; 16814 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16815 } 16816 max_frag = ire->ire_max_frag; 16817 if (pkt_len > max_frag) { 16818 /* 16819 * It needs fragging on its way out. We haven't 16820 * verified the header checksum yet. Since we 16821 * are going to put a surely good checksum in the 16822 * outgoing header, we have to make sure that it 16823 * was good coming in. 16824 */ 16825 if (ip_csum_hdr(ipha)) { 16826 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16827 goto drop_pkt; 16828 } 16829 /* Initiate Write side IPPF processing */ 16830 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16831 ip_process(IPP_FWD_OUT, &mp, ill_index); 16832 if (mp == NULL) { 16833 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16834 " during IPPF processing\n")); 16835 return; 16836 } 16837 } 16838 /* 16839 * Handle labeled packet resizing. 16840 * 16841 * If we have added a label, inform ip_wput_frag() of its 16842 * effect on the MTU for ICMP messages. 16843 */ 16844 if (pkt_len > old_pkt_len) { 16845 uint32_t secopt_size; 16846 16847 secopt_size = pkt_len - old_pkt_len; 16848 if (secopt_size < max_frag) 16849 max_frag -= secopt_size; 16850 } 16851 16852 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16853 GLOBAL_ZONEID, ipst, NULL); 16854 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16855 return; 16856 } 16857 16858 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16859 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16860 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16861 ipst->ips_ipv4firewall_physical_out, 16862 NULL, out_ill, ipha, mp, mp, 0, ipst); 16863 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16864 if (mp == NULL) 16865 return; 16866 16867 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16868 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16869 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16870 /* ip_xmit_v4 always consumes the packet */ 16871 return; 16872 16873 drop_pkt:; 16874 ip1dbg(("ip_rput_forward: drop pkt\n")); 16875 freemsg(mp); 16876 #undef rptr 16877 } 16878 16879 void 16880 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16881 { 16882 ire_t *ire; 16883 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16884 16885 ASSERT(!ipif->ipif_isv6); 16886 /* 16887 * Find an IRE which matches the destination and the outgoing 16888 * queue in the cache table. All we need is an IRE_CACHE which 16889 * is pointing at ipif->ipif_ill. 16890 */ 16891 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16892 dst = ipif->ipif_pp_dst_addr; 16893 16894 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16895 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16896 if (ire == NULL) { 16897 /* 16898 * Mark this packet to make it be delivered to 16899 * ip_rput_forward after the new ire has been 16900 * created. 16901 */ 16902 mp->b_prev = NULL; 16903 mp->b_next = mp; 16904 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16905 NULL, 0, GLOBAL_ZONEID, &zero_info); 16906 } else { 16907 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16908 IRE_REFRELE(ire); 16909 } 16910 } 16911 16912 /* Update any source route, record route or timestamp options */ 16913 static int 16914 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16915 { 16916 ipoptp_t opts; 16917 uchar_t *opt; 16918 uint8_t optval; 16919 uint8_t optlen; 16920 ipaddr_t dst; 16921 uint32_t ts; 16922 ire_t *dst_ire = NULL; 16923 ire_t *tmp_ire = NULL; 16924 timestruc_t now; 16925 16926 ip2dbg(("ip_rput_forward_options\n")); 16927 dst = ipha->ipha_dst; 16928 for (optval = ipoptp_first(&opts, ipha); 16929 optval != IPOPT_EOL; 16930 optval = ipoptp_next(&opts)) { 16931 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16932 opt = opts.ipoptp_cur; 16933 optlen = opts.ipoptp_len; 16934 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16935 optval, opts.ipoptp_len)); 16936 switch (optval) { 16937 uint32_t off; 16938 case IPOPT_SSRR: 16939 case IPOPT_LSRR: 16940 /* Check if adminstratively disabled */ 16941 if (!ipst->ips_ip_forward_src_routed) { 16942 if (ire->ire_stq != NULL) { 16943 /* 16944 * Sent by forwarding path, and router 16945 * is global zone 16946 */ 16947 icmp_unreachable(ire->ire_stq, mp, 16948 ICMP_SOURCE_ROUTE_FAILED, 16949 GLOBAL_ZONEID, ipst); 16950 } else { 16951 ip0dbg(("ip_rput_forward_options: " 16952 "unable to send unreach\n")); 16953 freemsg(mp); 16954 } 16955 return (-1); 16956 } 16957 16958 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16959 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16960 if (dst_ire == NULL) { 16961 /* 16962 * Must be partial since ip_rput_options 16963 * checked for strict. 16964 */ 16965 break; 16966 } 16967 off = opt[IPOPT_OFFSET]; 16968 off--; 16969 redo_srr: 16970 if (optlen < IP_ADDR_LEN || 16971 off > optlen - IP_ADDR_LEN) { 16972 /* End of source route */ 16973 ip1dbg(( 16974 "ip_rput_forward_options: end of SR\n")); 16975 ire_refrele(dst_ire); 16976 break; 16977 } 16978 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16979 bcopy(&ire->ire_src_addr, (char *)opt + off, 16980 IP_ADDR_LEN); 16981 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16982 ntohl(dst))); 16983 16984 /* 16985 * Check if our address is present more than 16986 * once as consecutive hops in source route. 16987 */ 16988 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16989 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16990 if (tmp_ire != NULL) { 16991 ire_refrele(tmp_ire); 16992 off += IP_ADDR_LEN; 16993 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16994 goto redo_srr; 16995 } 16996 ipha->ipha_dst = dst; 16997 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16998 ire_refrele(dst_ire); 16999 break; 17000 case IPOPT_RR: 17001 off = opt[IPOPT_OFFSET]; 17002 off--; 17003 if (optlen < IP_ADDR_LEN || 17004 off > optlen - IP_ADDR_LEN) { 17005 /* No more room - ignore */ 17006 ip1dbg(( 17007 "ip_rput_forward_options: end of RR\n")); 17008 break; 17009 } 17010 bcopy(&ire->ire_src_addr, (char *)opt + off, 17011 IP_ADDR_LEN); 17012 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17013 break; 17014 case IPOPT_TS: 17015 /* Insert timestamp if there is room */ 17016 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17017 case IPOPT_TS_TSONLY: 17018 off = IPOPT_TS_TIMELEN; 17019 break; 17020 case IPOPT_TS_PRESPEC: 17021 case IPOPT_TS_PRESPEC_RFC791: 17022 /* Verify that the address matched */ 17023 off = opt[IPOPT_OFFSET] - 1; 17024 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17025 dst_ire = ire_ctable_lookup(dst, 0, 17026 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17027 MATCH_IRE_TYPE, ipst); 17028 if (dst_ire == NULL) { 17029 /* Not for us */ 17030 break; 17031 } 17032 ire_refrele(dst_ire); 17033 /* FALLTHRU */ 17034 case IPOPT_TS_TSANDADDR: 17035 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17036 break; 17037 default: 17038 /* 17039 * ip_*put_options should have already 17040 * dropped this packet. 17041 */ 17042 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17043 "unknown IT - bug in ip_rput_options?\n"); 17044 return (0); /* Keep "lint" happy */ 17045 } 17046 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17047 /* Increase overflow counter */ 17048 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17049 opt[IPOPT_POS_OV_FLG] = 17050 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17051 (off << 4)); 17052 break; 17053 } 17054 off = opt[IPOPT_OFFSET] - 1; 17055 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17056 case IPOPT_TS_PRESPEC: 17057 case IPOPT_TS_PRESPEC_RFC791: 17058 case IPOPT_TS_TSANDADDR: 17059 bcopy(&ire->ire_src_addr, 17060 (char *)opt + off, IP_ADDR_LEN); 17061 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17062 /* FALLTHRU */ 17063 case IPOPT_TS_TSONLY: 17064 off = opt[IPOPT_OFFSET] - 1; 17065 /* Compute # of milliseconds since midnight */ 17066 gethrestime(&now); 17067 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17068 now.tv_nsec / (NANOSEC / MILLISEC); 17069 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17070 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17071 break; 17072 } 17073 break; 17074 } 17075 } 17076 return (0); 17077 } 17078 17079 /* 17080 * This is called after processing at least one of AH/ESP headers. 17081 * 17082 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17083 * the actual, physical interface on which the packet was received, 17084 * but, when ip_strict_dst_multihoming is set to 1, could be the 17085 * interface which had the ipha_dst configured when the packet went 17086 * through ip_rput. The ill_index corresponding to the recv_ill 17087 * is saved in ipsec_in_rill_index 17088 * 17089 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17090 * cannot assume "ire" points to valid data for any IPv6 cases. 17091 */ 17092 void 17093 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17094 { 17095 mblk_t *mp; 17096 ipaddr_t dst; 17097 in6_addr_t *v6dstp; 17098 ipha_t *ipha; 17099 ip6_t *ip6h; 17100 ipsec_in_t *ii; 17101 boolean_t ill_need_rele = B_FALSE; 17102 boolean_t rill_need_rele = B_FALSE; 17103 boolean_t ire_need_rele = B_FALSE; 17104 netstack_t *ns; 17105 ip_stack_t *ipst; 17106 17107 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17108 ASSERT(ii->ipsec_in_ill_index != 0); 17109 ns = ii->ipsec_in_ns; 17110 ASSERT(ii->ipsec_in_ns != NULL); 17111 ipst = ns->netstack_ip; 17112 17113 mp = ipsec_mp->b_cont; 17114 ASSERT(mp != NULL); 17115 17116 if (ill == NULL) { 17117 ASSERT(recv_ill == NULL); 17118 /* 17119 * We need to get the original queue on which ip_rput_local 17120 * or ip_rput_data_v6 was called. 17121 */ 17122 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17123 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17124 ill_need_rele = B_TRUE; 17125 17126 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17127 recv_ill = ill_lookup_on_ifindex( 17128 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17129 NULL, NULL, NULL, NULL, ipst); 17130 rill_need_rele = B_TRUE; 17131 } else { 17132 recv_ill = ill; 17133 } 17134 17135 if ((ill == NULL) || (recv_ill == NULL)) { 17136 ip0dbg(("ip_fanout_proto_again: interface " 17137 "disappeared\n")); 17138 if (ill != NULL) 17139 ill_refrele(ill); 17140 if (recv_ill != NULL) 17141 ill_refrele(recv_ill); 17142 freemsg(ipsec_mp); 17143 return; 17144 } 17145 } 17146 17147 ASSERT(ill != NULL && recv_ill != NULL); 17148 17149 if (mp->b_datap->db_type == M_CTL) { 17150 /* 17151 * AH/ESP is returning the ICMP message after 17152 * removing their headers. Fanout again till 17153 * it gets to the right protocol. 17154 */ 17155 if (ii->ipsec_in_v4) { 17156 icmph_t *icmph; 17157 int iph_hdr_length; 17158 int hdr_length; 17159 17160 ipha = (ipha_t *)mp->b_rptr; 17161 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17162 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17163 ipha = (ipha_t *)&icmph[1]; 17164 hdr_length = IPH_HDR_LENGTH(ipha); 17165 /* 17166 * icmp_inbound_error_fanout may need to do pullupmsg. 17167 * Reset the type to M_DATA. 17168 */ 17169 mp->b_datap->db_type = M_DATA; 17170 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17171 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17172 B_FALSE, ill, ii->ipsec_in_zoneid); 17173 } else { 17174 icmp6_t *icmp6; 17175 int hdr_length; 17176 17177 ip6h = (ip6_t *)mp->b_rptr; 17178 /* Don't call hdr_length_v6() unless you have to. */ 17179 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17180 hdr_length = ip_hdr_length_v6(mp, ip6h); 17181 else 17182 hdr_length = IPV6_HDR_LEN; 17183 17184 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17185 /* 17186 * icmp_inbound_error_fanout_v6 may need to do 17187 * pullupmsg. Reset the type to M_DATA. 17188 */ 17189 mp->b_datap->db_type = M_DATA; 17190 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17191 ip6h, icmp6, ill, recv_ill, B_TRUE, 17192 ii->ipsec_in_zoneid); 17193 } 17194 if (ill_need_rele) 17195 ill_refrele(ill); 17196 if (rill_need_rele) 17197 ill_refrele(recv_ill); 17198 return; 17199 } 17200 17201 if (ii->ipsec_in_v4) { 17202 ipha = (ipha_t *)mp->b_rptr; 17203 dst = ipha->ipha_dst; 17204 if (CLASSD(dst)) { 17205 /* 17206 * Multicast has to be delivered to all streams. 17207 */ 17208 dst = INADDR_BROADCAST; 17209 } 17210 17211 if (ire == NULL) { 17212 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17213 msg_getlabel(mp), ipst); 17214 if (ire == NULL) { 17215 if (ill_need_rele) 17216 ill_refrele(ill); 17217 if (rill_need_rele) 17218 ill_refrele(recv_ill); 17219 ip1dbg(("ip_fanout_proto_again: " 17220 "IRE not found")); 17221 freemsg(ipsec_mp); 17222 return; 17223 } 17224 ire_need_rele = B_TRUE; 17225 } 17226 17227 switch (ipha->ipha_protocol) { 17228 case IPPROTO_UDP: 17229 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17230 recv_ill); 17231 if (ire_need_rele) 17232 ire_refrele(ire); 17233 break; 17234 case IPPROTO_TCP: 17235 if (!ire_need_rele) 17236 IRE_REFHOLD(ire); 17237 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17238 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17239 IRE_REFRELE(ire); 17240 if (mp != NULL) { 17241 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17242 mp, 1, SQ_PROCESS, 17243 SQTAG_IP_PROTO_AGAIN); 17244 } 17245 break; 17246 case IPPROTO_SCTP: 17247 if (!ire_need_rele) 17248 IRE_REFHOLD(ire); 17249 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17250 ipsec_mp, 0, ill->ill_rq, dst); 17251 break; 17252 default: 17253 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17254 recv_ill, 0); 17255 if (ire_need_rele) 17256 ire_refrele(ire); 17257 break; 17258 } 17259 } else { 17260 uint32_t rput_flags = 0; 17261 17262 ip6h = (ip6_t *)mp->b_rptr; 17263 v6dstp = &ip6h->ip6_dst; 17264 /* 17265 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17266 * address. 17267 * 17268 * Currently, we don't store that state in the IPSEC_IN 17269 * message, and we may need to. 17270 */ 17271 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17272 IP6_IN_LLMCAST : 0); 17273 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17274 NULL, NULL); 17275 } 17276 if (ill_need_rele) 17277 ill_refrele(ill); 17278 if (rill_need_rele) 17279 ill_refrele(recv_ill); 17280 } 17281 17282 /* 17283 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17284 * returns 'true' if there are still fragments left on the queue, in 17285 * which case we restart the timer. 17286 */ 17287 void 17288 ill_frag_timer(void *arg) 17289 { 17290 ill_t *ill = (ill_t *)arg; 17291 boolean_t frag_pending; 17292 ip_stack_t *ipst = ill->ill_ipst; 17293 17294 mutex_enter(&ill->ill_lock); 17295 ASSERT(!ill->ill_fragtimer_executing); 17296 if (ill->ill_state_flags & ILL_CONDEMNED) { 17297 ill->ill_frag_timer_id = 0; 17298 mutex_exit(&ill->ill_lock); 17299 return; 17300 } 17301 ill->ill_fragtimer_executing = 1; 17302 mutex_exit(&ill->ill_lock); 17303 17304 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17305 17306 /* 17307 * Restart the timer, if we have fragments pending or if someone 17308 * wanted us to be scheduled again. 17309 */ 17310 mutex_enter(&ill->ill_lock); 17311 ill->ill_fragtimer_executing = 0; 17312 ill->ill_frag_timer_id = 0; 17313 if (frag_pending || ill->ill_fragtimer_needrestart) 17314 ill_frag_timer_start(ill); 17315 mutex_exit(&ill->ill_lock); 17316 } 17317 17318 void 17319 ill_frag_timer_start(ill_t *ill) 17320 { 17321 ip_stack_t *ipst = ill->ill_ipst; 17322 17323 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17324 17325 /* If the ill is closing or opening don't proceed */ 17326 if (ill->ill_state_flags & ILL_CONDEMNED) 17327 return; 17328 17329 if (ill->ill_fragtimer_executing) { 17330 /* 17331 * ill_frag_timer is currently executing. Just record the 17332 * the fact that we want the timer to be restarted. 17333 * ill_frag_timer will post a timeout before it returns, 17334 * ensuring it will be called again. 17335 */ 17336 ill->ill_fragtimer_needrestart = 1; 17337 return; 17338 } 17339 17340 if (ill->ill_frag_timer_id == 0) { 17341 /* 17342 * The timer is neither running nor is the timeout handler 17343 * executing. Post a timeout so that ill_frag_timer will be 17344 * called 17345 */ 17346 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17347 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17348 ill->ill_fragtimer_needrestart = 0; 17349 } 17350 } 17351 17352 /* 17353 * This routine is needed for loopback when forwarding multicasts. 17354 * 17355 * IPQoS Notes: 17356 * IPPF processing is done in fanout routines. 17357 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17358 * processing for IPsec packets is done when it comes back in clear. 17359 * NOTE : The callers of this function need to do the ire_refrele for the 17360 * ire that is being passed in. 17361 */ 17362 void 17363 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17364 ill_t *recv_ill, uint32_t esp_udp_ports) 17365 { 17366 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17367 ill_t *ill = (ill_t *)q->q_ptr; 17368 uint32_t sum; 17369 uint32_t u1; 17370 uint32_t u2; 17371 int hdr_length; 17372 boolean_t mctl_present; 17373 mblk_t *first_mp = mp; 17374 mblk_t *hada_mp = NULL; 17375 ipha_t *inner_ipha; 17376 ip_stack_t *ipst; 17377 17378 ASSERT(recv_ill != NULL); 17379 ipst = recv_ill->ill_ipst; 17380 17381 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17382 "ip_rput_locl_start: q %p", q); 17383 17384 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17385 ASSERT(ill != NULL); 17386 17387 #define rptr ((uchar_t *)ipha) 17388 #define iphs ((uint16_t *)ipha) 17389 17390 /* 17391 * no UDP or TCP packet should come here anymore. 17392 */ 17393 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17394 ipha->ipha_protocol != IPPROTO_UDP); 17395 17396 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17397 if (mctl_present && 17398 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17399 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17400 17401 /* 17402 * It's an IPsec accelerated packet. 17403 * Keep a pointer to the data attributes around until 17404 * we allocate the ipsec_info_t. 17405 */ 17406 IPSECHW_DEBUG(IPSECHW_PKT, 17407 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17408 hada_mp = first_mp; 17409 hada_mp->b_cont = NULL; 17410 /* 17411 * Since it is accelerated, it comes directly from 17412 * the ill and the data attributes is followed by 17413 * the packet data. 17414 */ 17415 ASSERT(mp->b_datap->db_type != M_CTL); 17416 first_mp = mp; 17417 mctl_present = B_FALSE; 17418 } 17419 17420 /* 17421 * IF M_CTL is not present, then ipsec_in_is_secure 17422 * should return B_TRUE. There is a case where loopback 17423 * packets has an M_CTL in the front with all the 17424 * IPsec options set to IPSEC_PREF_NEVER - which means 17425 * ipsec_in_is_secure will return B_FALSE. As loopback 17426 * packets never comes here, it is safe to ASSERT the 17427 * following. 17428 */ 17429 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17430 17431 /* 17432 * Also, we should never have an mctl_present if this is an 17433 * ESP-in-UDP packet. 17434 */ 17435 ASSERT(!mctl_present || !esp_in_udp_packet); 17436 17437 /* u1 is # words of IP options */ 17438 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17439 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17440 17441 /* 17442 * Don't verify header checksum if we just removed UDP header or 17443 * packet is coming back from AH/ESP. 17444 */ 17445 if (!esp_in_udp_packet && !mctl_present) { 17446 if (u1) { 17447 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17448 if (hada_mp != NULL) 17449 freemsg(hada_mp); 17450 return; 17451 } 17452 } else { 17453 /* Check the IP header checksum. */ 17454 #define uph ((uint16_t *)ipha) 17455 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17456 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17457 #undef uph 17458 /* finish doing IP checksum */ 17459 sum = (sum & 0xFFFF) + (sum >> 16); 17460 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17461 if (sum && sum != 0xFFFF) { 17462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17463 goto drop_pkt; 17464 } 17465 } 17466 } 17467 17468 /* 17469 * Count for SNMP of inbound packets for ire. As ip_proto_input 17470 * might be called more than once for secure packets, count only 17471 * the first time. 17472 */ 17473 if (!mctl_present) { 17474 UPDATE_IB_PKT_COUNT(ire); 17475 ire->ire_last_used_time = lbolt; 17476 } 17477 17478 /* Check for fragmentation offset. */ 17479 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17480 u1 = u2 & (IPH_MF | IPH_OFFSET); 17481 if (u1) { 17482 /* 17483 * We re-assemble fragments before we do the AH/ESP 17484 * processing. Thus, M_CTL should not be present 17485 * while we are re-assembling. 17486 */ 17487 ASSERT(!mctl_present); 17488 ASSERT(first_mp == mp); 17489 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17490 return; 17491 17492 /* 17493 * Make sure that first_mp points back to mp as 17494 * the mp we came in with could have changed in 17495 * ip_rput_fragment(). 17496 */ 17497 ipha = (ipha_t *)mp->b_rptr; 17498 first_mp = mp; 17499 } 17500 17501 /* 17502 * Clear hardware checksumming flag as it is currently only 17503 * used by TCP and UDP. 17504 */ 17505 DB_CKSUMFLAGS(mp) = 0; 17506 17507 /* Now we have a complete datagram, destined for this machine. */ 17508 u1 = IPH_HDR_LENGTH(ipha); 17509 switch (ipha->ipha_protocol) { 17510 case IPPROTO_ICMP: { 17511 ire_t *ire_zone; 17512 ilm_t *ilm; 17513 mblk_t *mp1; 17514 zoneid_t last_zoneid; 17515 ilm_walker_t ilw; 17516 17517 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17518 ASSERT(ire->ire_type == IRE_BROADCAST); 17519 17520 /* 17521 * In the multicast case, applications may have joined 17522 * the group from different zones, so we need to deliver 17523 * the packet to each of them. Loop through the 17524 * multicast memberships structures (ilm) on the receive 17525 * ill and send a copy of the packet up each matching 17526 * one. However, we don't do this for multicasts sent on 17527 * the loopback interface (PHYI_LOOPBACK flag set) as 17528 * they must stay in the sender's zone. 17529 * 17530 * ilm_add_v6() ensures that ilms in the same zone are 17531 * contiguous in the ill_ilm list. We use this property 17532 * to avoid sending duplicates needed when two 17533 * applications in the same zone join the same group on 17534 * different logical interfaces: we ignore the ilm if 17535 * its zoneid is the same as the last matching one. 17536 * In addition, the sending of the packet for 17537 * ire_zoneid is delayed until all of the other ilms 17538 * have been exhausted. 17539 */ 17540 last_zoneid = -1; 17541 ilm = ilm_walker_start(&ilw, recv_ill); 17542 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17543 if (ipha->ipha_dst != ilm->ilm_addr || 17544 ilm->ilm_zoneid == last_zoneid || 17545 ilm->ilm_zoneid == ire->ire_zoneid || 17546 ilm->ilm_zoneid == ALL_ZONES || 17547 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17548 continue; 17549 mp1 = ip_copymsg(first_mp); 17550 if (mp1 == NULL) 17551 continue; 17552 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17553 0, sum, mctl_present, B_TRUE, 17554 recv_ill, ilm->ilm_zoneid); 17555 last_zoneid = ilm->ilm_zoneid; 17556 } 17557 ilm_walker_finish(&ilw); 17558 } else if (ire->ire_type == IRE_BROADCAST) { 17559 /* 17560 * In the broadcast case, there may be many zones 17561 * which need a copy of the packet delivered to them. 17562 * There is one IRE_BROADCAST per broadcast address 17563 * and per zone; we walk those using a helper function. 17564 * In addition, the sending of the packet for ire is 17565 * delayed until all of the other ires have been 17566 * processed. 17567 */ 17568 IRB_REFHOLD(ire->ire_bucket); 17569 ire_zone = NULL; 17570 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17571 ire)) != NULL) { 17572 mp1 = ip_copymsg(first_mp); 17573 if (mp1 == NULL) 17574 continue; 17575 17576 UPDATE_IB_PKT_COUNT(ire_zone); 17577 ire_zone->ire_last_used_time = lbolt; 17578 icmp_inbound(q, mp1, B_TRUE, ill, 17579 0, sum, mctl_present, B_TRUE, 17580 recv_ill, ire_zone->ire_zoneid); 17581 } 17582 IRB_REFRELE(ire->ire_bucket); 17583 } 17584 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17585 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17586 ire->ire_zoneid); 17587 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17588 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17589 return; 17590 } 17591 case IPPROTO_IGMP: 17592 /* 17593 * If we are not willing to accept IGMP packets in clear, 17594 * then check with global policy. 17595 */ 17596 if (ipst->ips_igmp_accept_clear_messages == 0) { 17597 first_mp = ipsec_check_global_policy(first_mp, NULL, 17598 ipha, NULL, mctl_present, ipst->ips_netstack); 17599 if (first_mp == NULL) 17600 return; 17601 } 17602 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17603 freemsg(first_mp); 17604 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17606 return; 17607 } 17608 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17609 /* Bad packet - discarded by igmp_input */ 17610 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17611 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17612 if (mctl_present) 17613 freeb(first_mp); 17614 return; 17615 } 17616 /* 17617 * igmp_input() may have returned the pulled up message. 17618 * So first_mp and ipha need to be reinitialized. 17619 */ 17620 ipha = (ipha_t *)mp->b_rptr; 17621 if (mctl_present) 17622 first_mp->b_cont = mp; 17623 else 17624 first_mp = mp; 17625 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17626 connf_head != NULL) { 17627 /* No user-level listener for IGMP packets */ 17628 goto drop_pkt; 17629 } 17630 /* deliver to local raw users */ 17631 break; 17632 case IPPROTO_PIM: 17633 /* 17634 * If we are not willing to accept PIM packets in clear, 17635 * then check with global policy. 17636 */ 17637 if (ipst->ips_pim_accept_clear_messages == 0) { 17638 first_mp = ipsec_check_global_policy(first_mp, NULL, 17639 ipha, NULL, mctl_present, ipst->ips_netstack); 17640 if (first_mp == NULL) 17641 return; 17642 } 17643 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17644 freemsg(first_mp); 17645 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17647 return; 17648 } 17649 if (pim_input(q, mp, ill) != 0) { 17650 /* Bad packet - discarded by pim_input */ 17651 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17652 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17653 if (mctl_present) 17654 freeb(first_mp); 17655 return; 17656 } 17657 17658 /* 17659 * pim_input() may have pulled up the message so ipha needs to 17660 * be reinitialized. 17661 */ 17662 ipha = (ipha_t *)mp->b_rptr; 17663 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17664 connf_head != NULL) { 17665 /* No user-level listener for PIM packets */ 17666 goto drop_pkt; 17667 } 17668 /* deliver to local raw users */ 17669 break; 17670 case IPPROTO_ENCAP: 17671 /* 17672 * Handle self-encapsulated packets (IP-in-IP where 17673 * the inner addresses == the outer addresses). 17674 */ 17675 hdr_length = IPH_HDR_LENGTH(ipha); 17676 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17677 mp->b_wptr) { 17678 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17679 sizeof (ipha_t) - mp->b_rptr)) { 17680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17681 freemsg(first_mp); 17682 return; 17683 } 17684 ipha = (ipha_t *)mp->b_rptr; 17685 } 17686 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17687 /* 17688 * Check the sanity of the inner IP header. 17689 */ 17690 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17692 freemsg(first_mp); 17693 return; 17694 } 17695 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17697 freemsg(first_mp); 17698 return; 17699 } 17700 if (inner_ipha->ipha_src == ipha->ipha_src && 17701 inner_ipha->ipha_dst == ipha->ipha_dst) { 17702 ipsec_in_t *ii; 17703 17704 /* 17705 * Self-encapsulated tunnel packet. Remove 17706 * the outer IP header and fanout again. 17707 * We also need to make sure that the inner 17708 * header is pulled up until options. 17709 */ 17710 mp->b_rptr = (uchar_t *)inner_ipha; 17711 ipha = inner_ipha; 17712 hdr_length = IPH_HDR_LENGTH(ipha); 17713 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17714 if (!pullupmsg(mp, (uchar_t *)ipha + 17715 + hdr_length - mp->b_rptr)) { 17716 freemsg(first_mp); 17717 return; 17718 } 17719 ipha = (ipha_t *)mp->b_rptr; 17720 } 17721 if (hdr_length > sizeof (ipha_t)) { 17722 /* We got options on the inner packet. */ 17723 ipaddr_t dst = ipha->ipha_dst; 17724 17725 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17726 -1) { 17727 /* Bad options! */ 17728 return; 17729 } 17730 if (dst != ipha->ipha_dst) { 17731 /* 17732 * Someone put a source-route in 17733 * the inside header of a self- 17734 * encapsulated packet. Drop it 17735 * with extreme prejudice and let 17736 * the sender know. 17737 */ 17738 icmp_unreachable(q, first_mp, 17739 ICMP_SOURCE_ROUTE_FAILED, 17740 recv_ill->ill_zoneid, ipst); 17741 return; 17742 } 17743 } 17744 if (!mctl_present) { 17745 ASSERT(first_mp == mp); 17746 /* 17747 * This means that somebody is sending 17748 * Self-encapsualted packets without AH/ESP. 17749 * If AH/ESP was present, we would have already 17750 * allocated the first_mp. 17751 * 17752 * Send this packet to find a tunnel endpoint. 17753 * if I can't find one, an ICMP 17754 * PROTOCOL_UNREACHABLE will get sent. 17755 */ 17756 goto fanout; 17757 } 17758 /* 17759 * We generally store the ill_index if we need to 17760 * do IPsec processing as we lose the ill queue when 17761 * we come back. But in this case, we never should 17762 * have to store the ill_index here as it should have 17763 * been stored previously when we processed the 17764 * AH/ESP header in this routine or for non-ipsec 17765 * cases, we still have the queue. But for some bad 17766 * packets from the wire, we can get to IPsec after 17767 * this and we better store the index for that case. 17768 */ 17769 ill = (ill_t *)q->q_ptr; 17770 ii = (ipsec_in_t *)first_mp->b_rptr; 17771 ii->ipsec_in_ill_index = 17772 ill->ill_phyint->phyint_ifindex; 17773 ii->ipsec_in_rill_index = 17774 recv_ill->ill_phyint->phyint_ifindex; 17775 if (ii->ipsec_in_decaps) { 17776 /* 17777 * This packet is self-encapsulated multiple 17778 * times. We don't want to recurse infinitely. 17779 * To keep it simple, drop the packet. 17780 */ 17781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17782 freemsg(first_mp); 17783 return; 17784 } 17785 ii->ipsec_in_decaps = B_TRUE; 17786 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17787 ire); 17788 return; 17789 } 17790 break; 17791 case IPPROTO_AH: 17792 case IPPROTO_ESP: { 17793 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17794 17795 /* 17796 * Fast path for AH/ESP. If this is the first time 17797 * we are sending a datagram to AH/ESP, allocate 17798 * a IPSEC_IN message and prepend it. Otherwise, 17799 * just fanout. 17800 */ 17801 17802 int ipsec_rc; 17803 ipsec_in_t *ii; 17804 netstack_t *ns = ipst->ips_netstack; 17805 17806 IP_STAT(ipst, ipsec_proto_ahesp); 17807 if (!mctl_present) { 17808 ASSERT(first_mp == mp); 17809 first_mp = ipsec_in_alloc(B_TRUE, ns); 17810 if (first_mp == NULL) { 17811 ip1dbg(("ip_proto_input: IPSEC_IN " 17812 "allocation failure.\n")); 17813 freemsg(hada_mp); /* okay ifnull */ 17814 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17815 freemsg(mp); 17816 return; 17817 } 17818 /* 17819 * Store the ill_index so that when we come back 17820 * from IPsec we ride on the same queue. 17821 */ 17822 ill = (ill_t *)q->q_ptr; 17823 ii = (ipsec_in_t *)first_mp->b_rptr; 17824 ii->ipsec_in_ill_index = 17825 ill->ill_phyint->phyint_ifindex; 17826 ii->ipsec_in_rill_index = 17827 recv_ill->ill_phyint->phyint_ifindex; 17828 first_mp->b_cont = mp; 17829 /* 17830 * Cache hardware acceleration info. 17831 */ 17832 if (hada_mp != NULL) { 17833 IPSECHW_DEBUG(IPSECHW_PKT, 17834 ("ip_rput_local: caching data attr.\n")); 17835 ii->ipsec_in_accelerated = B_TRUE; 17836 ii->ipsec_in_da = hada_mp; 17837 hada_mp = NULL; 17838 } 17839 } else { 17840 ii = (ipsec_in_t *)first_mp->b_rptr; 17841 } 17842 17843 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17844 17845 if (!ipsec_loaded(ipss)) { 17846 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17847 ire->ire_zoneid, ipst); 17848 return; 17849 } 17850 17851 ns = ipst->ips_netstack; 17852 /* select inbound SA and have IPsec process the pkt */ 17853 if (ipha->ipha_protocol == IPPROTO_ESP) { 17854 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17855 boolean_t esp_in_udp_sa; 17856 if (esph == NULL) 17857 return; 17858 ASSERT(ii->ipsec_in_esp_sa != NULL); 17859 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17860 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17861 IPSA_F_NATT) != 0); 17862 /* 17863 * The following is a fancy, but quick, way of saying: 17864 * ESP-in-UDP SA and Raw ESP packet --> drop 17865 * OR 17866 * ESP SA and ESP-in-UDP packet --> drop 17867 */ 17868 if (esp_in_udp_sa != esp_in_udp_packet) { 17869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17870 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17871 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17872 &ns->netstack_ipsec->ipsec_dropper); 17873 return; 17874 } 17875 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17876 first_mp, esph); 17877 } else { 17878 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17879 if (ah == NULL) 17880 return; 17881 ASSERT(ii->ipsec_in_ah_sa != NULL); 17882 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17883 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17884 first_mp, ah); 17885 } 17886 17887 switch (ipsec_rc) { 17888 case IPSEC_STATUS_SUCCESS: 17889 break; 17890 case IPSEC_STATUS_FAILED: 17891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17892 /* FALLTHRU */ 17893 case IPSEC_STATUS_PENDING: 17894 return; 17895 } 17896 /* we're done with IPsec processing, send it up */ 17897 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17898 return; 17899 } 17900 default: 17901 break; 17902 } 17903 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17904 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17905 ire->ire_zoneid)); 17906 goto drop_pkt; 17907 } 17908 /* 17909 * Handle protocols with which IP is less intimate. There 17910 * can be more than one stream bound to a particular 17911 * protocol. When this is the case, each one gets a copy 17912 * of any incoming packets. 17913 */ 17914 fanout: 17915 ip_fanout_proto(q, first_mp, ill, ipha, 17916 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17917 B_TRUE, recv_ill, ire->ire_zoneid); 17918 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17919 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17920 return; 17921 17922 drop_pkt: 17923 freemsg(first_mp); 17924 if (hada_mp != NULL) 17925 freeb(hada_mp); 17926 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17927 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17928 #undef rptr 17929 #undef iphs 17930 17931 } 17932 17933 /* 17934 * Update any source route, record route or timestamp options. 17935 * Check that we are at end of strict source route. 17936 * The options have already been checked for sanity in ip_rput_options(). 17937 */ 17938 static boolean_t 17939 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17940 ip_stack_t *ipst) 17941 { 17942 ipoptp_t opts; 17943 uchar_t *opt; 17944 uint8_t optval; 17945 uint8_t optlen; 17946 ipaddr_t dst; 17947 uint32_t ts; 17948 ire_t *dst_ire; 17949 timestruc_t now; 17950 zoneid_t zoneid; 17951 ill_t *ill; 17952 17953 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17954 17955 ip2dbg(("ip_rput_local_options\n")); 17956 17957 for (optval = ipoptp_first(&opts, ipha); 17958 optval != IPOPT_EOL; 17959 optval = ipoptp_next(&opts)) { 17960 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17961 opt = opts.ipoptp_cur; 17962 optlen = opts.ipoptp_len; 17963 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17964 optval, optlen)); 17965 switch (optval) { 17966 uint32_t off; 17967 case IPOPT_SSRR: 17968 case IPOPT_LSRR: 17969 off = opt[IPOPT_OFFSET]; 17970 off--; 17971 if (optlen < IP_ADDR_LEN || 17972 off > optlen - IP_ADDR_LEN) { 17973 /* End of source route */ 17974 ip1dbg(("ip_rput_local_options: end of SR\n")); 17975 break; 17976 } 17977 /* 17978 * This will only happen if two consecutive entries 17979 * in the source route contains our address or if 17980 * it is a packet with a loose source route which 17981 * reaches us before consuming the whole source route 17982 */ 17983 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17984 if (optval == IPOPT_SSRR) { 17985 goto bad_src_route; 17986 } 17987 /* 17988 * Hack: instead of dropping the packet truncate the 17989 * source route to what has been used by filling the 17990 * rest with IPOPT_NOP. 17991 */ 17992 opt[IPOPT_OLEN] = (uint8_t)off; 17993 while (off < optlen) { 17994 opt[off++] = IPOPT_NOP; 17995 } 17996 break; 17997 case IPOPT_RR: 17998 off = opt[IPOPT_OFFSET]; 17999 off--; 18000 if (optlen < IP_ADDR_LEN || 18001 off > optlen - IP_ADDR_LEN) { 18002 /* No more room - ignore */ 18003 ip1dbg(( 18004 "ip_rput_local_options: end of RR\n")); 18005 break; 18006 } 18007 bcopy(&ire->ire_src_addr, (char *)opt + off, 18008 IP_ADDR_LEN); 18009 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18010 break; 18011 case IPOPT_TS: 18012 /* Insert timestamp if there is romm */ 18013 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18014 case IPOPT_TS_TSONLY: 18015 off = IPOPT_TS_TIMELEN; 18016 break; 18017 case IPOPT_TS_PRESPEC: 18018 case IPOPT_TS_PRESPEC_RFC791: 18019 /* Verify that the address matched */ 18020 off = opt[IPOPT_OFFSET] - 1; 18021 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18022 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18023 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18024 ipst); 18025 if (dst_ire == NULL) { 18026 /* Not for us */ 18027 break; 18028 } 18029 ire_refrele(dst_ire); 18030 /* FALLTHRU */ 18031 case IPOPT_TS_TSANDADDR: 18032 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18033 break; 18034 default: 18035 /* 18036 * ip_*put_options should have already 18037 * dropped this packet. 18038 */ 18039 cmn_err(CE_PANIC, "ip_rput_local_options: " 18040 "unknown IT - bug in ip_rput_options?\n"); 18041 return (B_TRUE); /* Keep "lint" happy */ 18042 } 18043 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18044 /* Increase overflow counter */ 18045 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18046 opt[IPOPT_POS_OV_FLG] = 18047 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18048 (off << 4)); 18049 break; 18050 } 18051 off = opt[IPOPT_OFFSET] - 1; 18052 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18053 case IPOPT_TS_PRESPEC: 18054 case IPOPT_TS_PRESPEC_RFC791: 18055 case IPOPT_TS_TSANDADDR: 18056 bcopy(&ire->ire_src_addr, (char *)opt + off, 18057 IP_ADDR_LEN); 18058 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18059 /* FALLTHRU */ 18060 case IPOPT_TS_TSONLY: 18061 off = opt[IPOPT_OFFSET] - 1; 18062 /* Compute # of milliseconds since midnight */ 18063 gethrestime(&now); 18064 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18065 now.tv_nsec / (NANOSEC / MILLISEC); 18066 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18067 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18068 break; 18069 } 18070 break; 18071 } 18072 } 18073 return (B_TRUE); 18074 18075 bad_src_route: 18076 q = WR(q); 18077 if (q->q_next != NULL) 18078 ill = q->q_ptr; 18079 else 18080 ill = NULL; 18081 18082 /* make sure we clear any indication of a hardware checksum */ 18083 DB_CKSUMFLAGS(mp) = 0; 18084 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18085 if (zoneid == ALL_ZONES) 18086 freemsg(mp); 18087 else 18088 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18089 return (B_FALSE); 18090 18091 } 18092 18093 /* 18094 * Process IP options in an inbound packet. If an option affects the 18095 * effective destination address, return the next hop address via dstp. 18096 * Returns -1 if something fails in which case an ICMP error has been sent 18097 * and mp freed. 18098 */ 18099 static int 18100 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18101 ip_stack_t *ipst) 18102 { 18103 ipoptp_t opts; 18104 uchar_t *opt; 18105 uint8_t optval; 18106 uint8_t optlen; 18107 ipaddr_t dst; 18108 intptr_t code = 0; 18109 ire_t *ire = NULL; 18110 zoneid_t zoneid; 18111 ill_t *ill; 18112 18113 ip2dbg(("ip_rput_options\n")); 18114 dst = ipha->ipha_dst; 18115 for (optval = ipoptp_first(&opts, ipha); 18116 optval != IPOPT_EOL; 18117 optval = ipoptp_next(&opts)) { 18118 opt = opts.ipoptp_cur; 18119 optlen = opts.ipoptp_len; 18120 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18121 optval, optlen)); 18122 /* 18123 * Note: we need to verify the checksum before we 18124 * modify anything thus this routine only extracts the next 18125 * hop dst from any source route. 18126 */ 18127 switch (optval) { 18128 uint32_t off; 18129 case IPOPT_SSRR: 18130 case IPOPT_LSRR: 18131 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18132 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18133 if (ire == NULL) { 18134 if (optval == IPOPT_SSRR) { 18135 ip1dbg(("ip_rput_options: not next" 18136 " strict source route 0x%x\n", 18137 ntohl(dst))); 18138 code = (char *)&ipha->ipha_dst - 18139 (char *)ipha; 18140 goto param_prob; /* RouterReq's */ 18141 } 18142 ip2dbg(("ip_rput_options: " 18143 "not next source route 0x%x\n", 18144 ntohl(dst))); 18145 break; 18146 } 18147 ire_refrele(ire); 18148 18149 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18150 ip1dbg(( 18151 "ip_rput_options: bad option offset\n")); 18152 code = (char *)&opt[IPOPT_OLEN] - 18153 (char *)ipha; 18154 goto param_prob; 18155 } 18156 off = opt[IPOPT_OFFSET]; 18157 off--; 18158 redo_srr: 18159 if (optlen < IP_ADDR_LEN || 18160 off > optlen - IP_ADDR_LEN) { 18161 /* End of source route */ 18162 ip1dbg(("ip_rput_options: end of SR\n")); 18163 break; 18164 } 18165 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18166 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18167 ntohl(dst))); 18168 18169 /* 18170 * Check if our address is present more than 18171 * once as consecutive hops in source route. 18172 * XXX verify per-interface ip_forwarding 18173 * for source route? 18174 */ 18175 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18176 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18177 18178 if (ire != NULL) { 18179 ire_refrele(ire); 18180 off += IP_ADDR_LEN; 18181 goto redo_srr; 18182 } 18183 18184 if (dst == htonl(INADDR_LOOPBACK)) { 18185 ip1dbg(("ip_rput_options: loopback addr in " 18186 "source route!\n")); 18187 goto bad_src_route; 18188 } 18189 /* 18190 * For strict: verify that dst is directly 18191 * reachable. 18192 */ 18193 if (optval == IPOPT_SSRR) { 18194 ire = ire_ftable_lookup(dst, 0, 0, 18195 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18196 msg_getlabel(mp), 18197 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18198 if (ire == NULL) { 18199 ip1dbg(("ip_rput_options: SSRR not " 18200 "directly reachable: 0x%x\n", 18201 ntohl(dst))); 18202 goto bad_src_route; 18203 } 18204 ire_refrele(ire); 18205 } 18206 /* 18207 * Defer update of the offset and the record route 18208 * until the packet is forwarded. 18209 */ 18210 break; 18211 case IPOPT_RR: 18212 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18213 ip1dbg(( 18214 "ip_rput_options: bad option offset\n")); 18215 code = (char *)&opt[IPOPT_OLEN] - 18216 (char *)ipha; 18217 goto param_prob; 18218 } 18219 break; 18220 case IPOPT_TS: 18221 /* 18222 * Verify that length >= 5 and that there is either 18223 * room for another timestamp or that the overflow 18224 * counter is not maxed out. 18225 */ 18226 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18227 if (optlen < IPOPT_MINLEN_IT) { 18228 goto param_prob; 18229 } 18230 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18231 ip1dbg(( 18232 "ip_rput_options: bad option offset\n")); 18233 code = (char *)&opt[IPOPT_OFFSET] - 18234 (char *)ipha; 18235 goto param_prob; 18236 } 18237 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18238 case IPOPT_TS_TSONLY: 18239 off = IPOPT_TS_TIMELEN; 18240 break; 18241 case IPOPT_TS_TSANDADDR: 18242 case IPOPT_TS_PRESPEC: 18243 case IPOPT_TS_PRESPEC_RFC791: 18244 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18245 break; 18246 default: 18247 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18248 (char *)ipha; 18249 goto param_prob; 18250 } 18251 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18252 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18253 /* 18254 * No room and the overflow counter is 15 18255 * already. 18256 */ 18257 goto param_prob; 18258 } 18259 break; 18260 } 18261 } 18262 18263 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18264 *dstp = dst; 18265 return (0); 18266 } 18267 18268 ip1dbg(("ip_rput_options: error processing IP options.")); 18269 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18270 18271 param_prob: 18272 q = WR(q); 18273 if (q->q_next != NULL) 18274 ill = q->q_ptr; 18275 else 18276 ill = NULL; 18277 18278 /* make sure we clear any indication of a hardware checksum */ 18279 DB_CKSUMFLAGS(mp) = 0; 18280 /* Don't know whether this is for non-global or global/forwarding */ 18281 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18282 if (zoneid == ALL_ZONES) 18283 freemsg(mp); 18284 else 18285 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18286 return (-1); 18287 18288 bad_src_route: 18289 q = WR(q); 18290 if (q->q_next != NULL) 18291 ill = q->q_ptr; 18292 else 18293 ill = NULL; 18294 18295 /* make sure we clear any indication of a hardware checksum */ 18296 DB_CKSUMFLAGS(mp) = 0; 18297 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18298 if (zoneid == ALL_ZONES) 18299 freemsg(mp); 18300 else 18301 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18302 return (-1); 18303 } 18304 18305 /* 18306 * IP & ICMP info in >=14 msg's ... 18307 * - ip fixed part (mib2_ip_t) 18308 * - icmp fixed part (mib2_icmp_t) 18309 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18310 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18311 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18312 * - ipRouteAttributeTable (ip 102) labeled routes 18313 * - ip multicast membership (ip_member_t) 18314 * - ip multicast source filtering (ip_grpsrc_t) 18315 * - igmp fixed part (struct igmpstat) 18316 * - multicast routing stats (struct mrtstat) 18317 * - multicast routing vifs (array of struct vifctl) 18318 * - multicast routing routes (array of struct mfcctl) 18319 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18320 * One per ill plus one generic 18321 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18322 * One per ill plus one generic 18323 * - ipv6RouteEntry all IPv6 IREs 18324 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18325 * - ipv6NetToMediaEntry all Neighbor Cache entries 18326 * - ipv6AddrEntry all IPv6 ipifs 18327 * - ipv6 multicast membership (ipv6_member_t) 18328 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18329 * 18330 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18331 * 18332 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18333 * already filled in by the caller. 18334 * Return value of 0 indicates that no messages were sent and caller 18335 * should free mpctl. 18336 */ 18337 int 18338 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18339 { 18340 ip_stack_t *ipst; 18341 sctp_stack_t *sctps; 18342 18343 if (q->q_next != NULL) { 18344 ipst = ILLQ_TO_IPST(q); 18345 } else { 18346 ipst = CONNQ_TO_IPST(q); 18347 } 18348 ASSERT(ipst != NULL); 18349 sctps = ipst->ips_netstack->netstack_sctp; 18350 18351 if (mpctl == NULL || mpctl->b_cont == NULL) { 18352 return (0); 18353 } 18354 18355 /* 18356 * For the purposes of the (broken) packet shell use 18357 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18358 * to make TCP and UDP appear first in the list of mib items. 18359 * TBD: We could expand this and use it in netstat so that 18360 * the kernel doesn't have to produce large tables (connections, 18361 * routes, etc) when netstat only wants the statistics or a particular 18362 * table. 18363 */ 18364 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18365 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18366 return (1); 18367 } 18368 } 18369 18370 if (level != MIB2_TCP) { 18371 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18372 return (1); 18373 } 18374 } 18375 18376 if (level != MIB2_UDP) { 18377 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18378 return (1); 18379 } 18380 } 18381 18382 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18383 ipst)) == NULL) { 18384 return (1); 18385 } 18386 18387 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18388 return (1); 18389 } 18390 18391 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18392 return (1); 18393 } 18394 18395 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18396 return (1); 18397 } 18398 18399 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18400 return (1); 18401 } 18402 18403 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18404 return (1); 18405 } 18406 18407 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18408 return (1); 18409 } 18410 18411 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18412 return (1); 18413 } 18414 18415 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18416 return (1); 18417 } 18418 18419 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18420 return (1); 18421 } 18422 18423 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18424 return (1); 18425 } 18426 18427 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18428 return (1); 18429 } 18430 18431 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18432 return (1); 18433 } 18434 18435 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18436 return (1); 18437 } 18438 18439 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18440 if (mpctl == NULL) 18441 return (1); 18442 18443 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18444 if (mpctl == NULL) 18445 return (1); 18446 18447 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18448 return (1); 18449 } 18450 freemsg(mpctl); 18451 return (1); 18452 } 18453 18454 /* Get global (legacy) IPv4 statistics */ 18455 static mblk_t * 18456 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18457 ip_stack_t *ipst) 18458 { 18459 mib2_ip_t old_ip_mib; 18460 struct opthdr *optp; 18461 mblk_t *mp2ctl; 18462 18463 /* 18464 * make a copy of the original message 18465 */ 18466 mp2ctl = copymsg(mpctl); 18467 18468 /* fixed length IP structure... */ 18469 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18470 optp->level = MIB2_IP; 18471 optp->name = 0; 18472 SET_MIB(old_ip_mib.ipForwarding, 18473 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18474 SET_MIB(old_ip_mib.ipDefaultTTL, 18475 (uint32_t)ipst->ips_ip_def_ttl); 18476 SET_MIB(old_ip_mib.ipReasmTimeout, 18477 ipst->ips_ip_g_frag_timeout); 18478 SET_MIB(old_ip_mib.ipAddrEntrySize, 18479 sizeof (mib2_ipAddrEntry_t)); 18480 SET_MIB(old_ip_mib.ipRouteEntrySize, 18481 sizeof (mib2_ipRouteEntry_t)); 18482 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18483 sizeof (mib2_ipNetToMediaEntry_t)); 18484 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18485 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18486 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18487 sizeof (mib2_ipAttributeEntry_t)); 18488 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18489 18490 /* 18491 * Grab the statistics from the new IP MIB 18492 */ 18493 SET_MIB(old_ip_mib.ipInReceives, 18494 (uint32_t)ipmib->ipIfStatsHCInReceives); 18495 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18496 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18497 SET_MIB(old_ip_mib.ipForwDatagrams, 18498 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18499 SET_MIB(old_ip_mib.ipInUnknownProtos, 18500 ipmib->ipIfStatsInUnknownProtos); 18501 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18502 SET_MIB(old_ip_mib.ipInDelivers, 18503 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18504 SET_MIB(old_ip_mib.ipOutRequests, 18505 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18506 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18507 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18508 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18509 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18510 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18511 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18512 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18513 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18514 18515 /* ipRoutingDiscards is not being used */ 18516 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18517 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18518 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18519 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18520 SET_MIB(old_ip_mib.ipReasmDuplicates, 18521 ipmib->ipIfStatsReasmDuplicates); 18522 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18523 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18524 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18525 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18526 SET_MIB(old_ip_mib.rawipInOverflows, 18527 ipmib->rawipIfStatsInOverflows); 18528 18529 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18530 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18531 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18532 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18533 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18534 ipmib->ipIfStatsOutSwitchIPVersion); 18535 18536 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18537 (int)sizeof (old_ip_mib))) { 18538 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18539 (uint_t)sizeof (old_ip_mib))); 18540 } 18541 18542 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18543 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18544 (int)optp->level, (int)optp->name, (int)optp->len)); 18545 qreply(q, mpctl); 18546 return (mp2ctl); 18547 } 18548 18549 /* Per interface IPv4 statistics */ 18550 static mblk_t * 18551 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18552 { 18553 struct opthdr *optp; 18554 mblk_t *mp2ctl; 18555 ill_t *ill; 18556 ill_walk_context_t ctx; 18557 mblk_t *mp_tail = NULL; 18558 mib2_ipIfStatsEntry_t global_ip_mib; 18559 18560 /* 18561 * Make a copy of the original message 18562 */ 18563 mp2ctl = copymsg(mpctl); 18564 18565 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18566 optp->level = MIB2_IP; 18567 optp->name = MIB2_IP_TRAFFIC_STATS; 18568 /* Include "unknown interface" ip_mib */ 18569 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18570 ipst->ips_ip_mib.ipIfStatsIfIndex = 18571 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18572 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18573 (ipst->ips_ip_g_forward ? 1 : 2)); 18574 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18575 (uint32_t)ipst->ips_ip_def_ttl); 18576 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18577 sizeof (mib2_ipIfStatsEntry_t)); 18578 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18579 sizeof (mib2_ipAddrEntry_t)); 18580 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18581 sizeof (mib2_ipRouteEntry_t)); 18582 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18583 sizeof (mib2_ipNetToMediaEntry_t)); 18584 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18585 sizeof (ip_member_t)); 18586 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18587 sizeof (ip_grpsrc_t)); 18588 18589 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18590 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18591 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18592 "failed to allocate %u bytes\n", 18593 (uint_t)sizeof (ipst->ips_ip_mib))); 18594 } 18595 18596 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18597 18598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18599 ill = ILL_START_WALK_V4(&ctx, ipst); 18600 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18601 ill->ill_ip_mib->ipIfStatsIfIndex = 18602 ill->ill_phyint->phyint_ifindex; 18603 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18604 (ipst->ips_ip_g_forward ? 1 : 2)); 18605 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18606 (uint32_t)ipst->ips_ip_def_ttl); 18607 18608 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18609 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18610 (char *)ill->ill_ip_mib, 18611 (int)sizeof (*ill->ill_ip_mib))) { 18612 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18613 "failed to allocate %u bytes\n", 18614 (uint_t)sizeof (*ill->ill_ip_mib))); 18615 } 18616 } 18617 rw_exit(&ipst->ips_ill_g_lock); 18618 18619 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18620 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18621 "level %d, name %d, len %d\n", 18622 (int)optp->level, (int)optp->name, (int)optp->len)); 18623 qreply(q, mpctl); 18624 18625 if (mp2ctl == NULL) 18626 return (NULL); 18627 18628 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18629 } 18630 18631 /* Global IPv4 ICMP statistics */ 18632 static mblk_t * 18633 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18634 { 18635 struct opthdr *optp; 18636 mblk_t *mp2ctl; 18637 18638 /* 18639 * Make a copy of the original message 18640 */ 18641 mp2ctl = copymsg(mpctl); 18642 18643 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18644 optp->level = MIB2_ICMP; 18645 optp->name = 0; 18646 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18647 (int)sizeof (ipst->ips_icmp_mib))) { 18648 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18649 (uint_t)sizeof (ipst->ips_icmp_mib))); 18650 } 18651 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18652 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18653 (int)optp->level, (int)optp->name, (int)optp->len)); 18654 qreply(q, mpctl); 18655 return (mp2ctl); 18656 } 18657 18658 /* Global IPv4 IGMP statistics */ 18659 static mblk_t * 18660 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18661 { 18662 struct opthdr *optp; 18663 mblk_t *mp2ctl; 18664 18665 /* 18666 * make a copy of the original message 18667 */ 18668 mp2ctl = copymsg(mpctl); 18669 18670 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18671 optp->level = EXPER_IGMP; 18672 optp->name = 0; 18673 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18674 (int)sizeof (ipst->ips_igmpstat))) { 18675 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18676 (uint_t)sizeof (ipst->ips_igmpstat))); 18677 } 18678 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18679 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18680 (int)optp->level, (int)optp->name, (int)optp->len)); 18681 qreply(q, mpctl); 18682 return (mp2ctl); 18683 } 18684 18685 /* Global IPv4 Multicast Routing statistics */ 18686 static mblk_t * 18687 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18688 { 18689 struct opthdr *optp; 18690 mblk_t *mp2ctl; 18691 18692 /* 18693 * make a copy of the original message 18694 */ 18695 mp2ctl = copymsg(mpctl); 18696 18697 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18698 optp->level = EXPER_DVMRP; 18699 optp->name = 0; 18700 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18701 ip0dbg(("ip_mroute_stats: failed\n")); 18702 } 18703 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18704 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18705 (int)optp->level, (int)optp->name, (int)optp->len)); 18706 qreply(q, mpctl); 18707 return (mp2ctl); 18708 } 18709 18710 /* IPv4 address information */ 18711 static mblk_t * 18712 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18713 { 18714 struct opthdr *optp; 18715 mblk_t *mp2ctl; 18716 mblk_t *mp_tail = NULL; 18717 ill_t *ill; 18718 ipif_t *ipif; 18719 uint_t bitval; 18720 mib2_ipAddrEntry_t mae; 18721 zoneid_t zoneid; 18722 ill_walk_context_t ctx; 18723 18724 /* 18725 * make a copy of the original message 18726 */ 18727 mp2ctl = copymsg(mpctl); 18728 18729 /* ipAddrEntryTable */ 18730 18731 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18732 optp->level = MIB2_IP; 18733 optp->name = MIB2_IP_ADDR; 18734 zoneid = Q_TO_CONN(q)->conn_zoneid; 18735 18736 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18737 ill = ILL_START_WALK_V4(&ctx, ipst); 18738 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18739 for (ipif = ill->ill_ipif; ipif != NULL; 18740 ipif = ipif->ipif_next) { 18741 if (ipif->ipif_zoneid != zoneid && 18742 ipif->ipif_zoneid != ALL_ZONES) 18743 continue; 18744 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18745 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18746 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18747 18748 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18749 OCTET_LENGTH); 18750 mae.ipAdEntIfIndex.o_length = 18751 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18752 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18753 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18754 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18755 mae.ipAdEntInfo.ae_subnet_len = 18756 ip_mask_to_plen(ipif->ipif_net_mask); 18757 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18758 for (bitval = 1; 18759 bitval && 18760 !(bitval & ipif->ipif_brd_addr); 18761 bitval <<= 1) 18762 noop; 18763 mae.ipAdEntBcastAddr = bitval; 18764 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18765 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18766 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18767 mae.ipAdEntInfo.ae_broadcast_addr = 18768 ipif->ipif_brd_addr; 18769 mae.ipAdEntInfo.ae_pp_dst_addr = 18770 ipif->ipif_pp_dst_addr; 18771 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18772 ill->ill_flags | ill->ill_phyint->phyint_flags; 18773 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18774 18775 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18776 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18777 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18778 "allocate %u bytes\n", 18779 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18780 } 18781 } 18782 } 18783 rw_exit(&ipst->ips_ill_g_lock); 18784 18785 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18786 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18787 (int)optp->level, (int)optp->name, (int)optp->len)); 18788 qreply(q, mpctl); 18789 return (mp2ctl); 18790 } 18791 18792 /* IPv6 address information */ 18793 static mblk_t * 18794 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18795 { 18796 struct opthdr *optp; 18797 mblk_t *mp2ctl; 18798 mblk_t *mp_tail = NULL; 18799 ill_t *ill; 18800 ipif_t *ipif; 18801 mib2_ipv6AddrEntry_t mae6; 18802 zoneid_t zoneid; 18803 ill_walk_context_t ctx; 18804 18805 /* 18806 * make a copy of the original message 18807 */ 18808 mp2ctl = copymsg(mpctl); 18809 18810 /* ipv6AddrEntryTable */ 18811 18812 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18813 optp->level = MIB2_IP6; 18814 optp->name = MIB2_IP6_ADDR; 18815 zoneid = Q_TO_CONN(q)->conn_zoneid; 18816 18817 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18818 ill = ILL_START_WALK_V6(&ctx, ipst); 18819 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18820 for (ipif = ill->ill_ipif; ipif != NULL; 18821 ipif = ipif->ipif_next) { 18822 if (ipif->ipif_zoneid != zoneid && 18823 ipif->ipif_zoneid != ALL_ZONES) 18824 continue; 18825 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18826 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18827 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18828 18829 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18830 OCTET_LENGTH); 18831 mae6.ipv6AddrIfIndex.o_length = 18832 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18833 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18834 mae6.ipv6AddrPfxLength = 18835 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18836 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18837 mae6.ipv6AddrInfo.ae_subnet_len = 18838 mae6.ipv6AddrPfxLength; 18839 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18840 18841 /* Type: stateless(1), stateful(2), unknown(3) */ 18842 if (ipif->ipif_flags & IPIF_ADDRCONF) 18843 mae6.ipv6AddrType = 1; 18844 else 18845 mae6.ipv6AddrType = 2; 18846 /* Anycast: true(1), false(2) */ 18847 if (ipif->ipif_flags & IPIF_ANYCAST) 18848 mae6.ipv6AddrAnycastFlag = 1; 18849 else 18850 mae6.ipv6AddrAnycastFlag = 2; 18851 18852 /* 18853 * Address status: preferred(1), deprecated(2), 18854 * invalid(3), inaccessible(4), unknown(5) 18855 */ 18856 if (ipif->ipif_flags & IPIF_NOLOCAL) 18857 mae6.ipv6AddrStatus = 3; 18858 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18859 mae6.ipv6AddrStatus = 2; 18860 else 18861 mae6.ipv6AddrStatus = 1; 18862 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18863 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18864 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18865 ipif->ipif_v6pp_dst_addr; 18866 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18867 ill->ill_flags | ill->ill_phyint->phyint_flags; 18868 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18869 mae6.ipv6AddrIdentifier = ill->ill_token; 18870 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18871 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18872 mae6.ipv6AddrRetransmitTime = 18873 ill->ill_reachable_retrans_time; 18874 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18875 (char *)&mae6, 18876 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18877 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18878 "allocate %u bytes\n", 18879 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18880 } 18881 } 18882 } 18883 rw_exit(&ipst->ips_ill_g_lock); 18884 18885 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18886 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18887 (int)optp->level, (int)optp->name, (int)optp->len)); 18888 qreply(q, mpctl); 18889 return (mp2ctl); 18890 } 18891 18892 /* IPv4 multicast group membership. */ 18893 static mblk_t * 18894 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18895 { 18896 struct opthdr *optp; 18897 mblk_t *mp2ctl; 18898 ill_t *ill; 18899 ipif_t *ipif; 18900 ilm_t *ilm; 18901 ip_member_t ipm; 18902 mblk_t *mp_tail = NULL; 18903 ill_walk_context_t ctx; 18904 zoneid_t zoneid; 18905 ilm_walker_t ilw; 18906 18907 /* 18908 * make a copy of the original message 18909 */ 18910 mp2ctl = copymsg(mpctl); 18911 zoneid = Q_TO_CONN(q)->conn_zoneid; 18912 18913 /* ipGroupMember table */ 18914 optp = (struct opthdr *)&mpctl->b_rptr[ 18915 sizeof (struct T_optmgmt_ack)]; 18916 optp->level = MIB2_IP; 18917 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18918 18919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18920 ill = ILL_START_WALK_V4(&ctx, ipst); 18921 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18922 if (IS_UNDER_IPMP(ill)) 18923 continue; 18924 18925 ilm = ilm_walker_start(&ilw, ill); 18926 for (ipif = ill->ill_ipif; ipif != NULL; 18927 ipif = ipif->ipif_next) { 18928 if (ipif->ipif_zoneid != zoneid && 18929 ipif->ipif_zoneid != ALL_ZONES) 18930 continue; /* not this zone */ 18931 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18932 OCTET_LENGTH); 18933 ipm.ipGroupMemberIfIndex.o_length = 18934 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18935 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18936 ASSERT(ilm->ilm_ipif != NULL); 18937 ASSERT(ilm->ilm_ill == NULL); 18938 if (ilm->ilm_ipif != ipif) 18939 continue; 18940 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18941 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18942 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18943 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18944 (char *)&ipm, (int)sizeof (ipm))) { 18945 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18946 "failed to allocate %u bytes\n", 18947 (uint_t)sizeof (ipm))); 18948 } 18949 } 18950 } 18951 ilm_walker_finish(&ilw); 18952 } 18953 rw_exit(&ipst->ips_ill_g_lock); 18954 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18955 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18956 (int)optp->level, (int)optp->name, (int)optp->len)); 18957 qreply(q, mpctl); 18958 return (mp2ctl); 18959 } 18960 18961 /* IPv6 multicast group membership. */ 18962 static mblk_t * 18963 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18964 { 18965 struct opthdr *optp; 18966 mblk_t *mp2ctl; 18967 ill_t *ill; 18968 ilm_t *ilm; 18969 ipv6_member_t ipm6; 18970 mblk_t *mp_tail = NULL; 18971 ill_walk_context_t ctx; 18972 zoneid_t zoneid; 18973 ilm_walker_t ilw; 18974 18975 /* 18976 * make a copy of the original message 18977 */ 18978 mp2ctl = copymsg(mpctl); 18979 zoneid = Q_TO_CONN(q)->conn_zoneid; 18980 18981 /* ip6GroupMember table */ 18982 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18983 optp->level = MIB2_IP6; 18984 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18985 18986 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18987 ill = ILL_START_WALK_V6(&ctx, ipst); 18988 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18989 if (IS_UNDER_IPMP(ill)) 18990 continue; 18991 18992 ilm = ilm_walker_start(&ilw, ill); 18993 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18994 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18995 ASSERT(ilm->ilm_ipif == NULL); 18996 ASSERT(ilm->ilm_ill != NULL); 18997 if (ilm->ilm_zoneid != zoneid) 18998 continue; /* not this zone */ 18999 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19000 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19001 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19002 if (!snmp_append_data2(mpctl->b_cont, 19003 &mp_tail, 19004 (char *)&ipm6, (int)sizeof (ipm6))) { 19005 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19006 "failed to allocate %u bytes\n", 19007 (uint_t)sizeof (ipm6))); 19008 } 19009 } 19010 ilm_walker_finish(&ilw); 19011 } 19012 rw_exit(&ipst->ips_ill_g_lock); 19013 19014 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19015 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19016 (int)optp->level, (int)optp->name, (int)optp->len)); 19017 qreply(q, mpctl); 19018 return (mp2ctl); 19019 } 19020 19021 /* IP multicast filtered sources */ 19022 static mblk_t * 19023 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19024 { 19025 struct opthdr *optp; 19026 mblk_t *mp2ctl; 19027 ill_t *ill; 19028 ipif_t *ipif; 19029 ilm_t *ilm; 19030 ip_grpsrc_t ips; 19031 mblk_t *mp_tail = NULL; 19032 ill_walk_context_t ctx; 19033 zoneid_t zoneid; 19034 int i; 19035 slist_t *sl; 19036 ilm_walker_t ilw; 19037 19038 /* 19039 * make a copy of the original message 19040 */ 19041 mp2ctl = copymsg(mpctl); 19042 zoneid = Q_TO_CONN(q)->conn_zoneid; 19043 19044 /* ipGroupSource table */ 19045 optp = (struct opthdr *)&mpctl->b_rptr[ 19046 sizeof (struct T_optmgmt_ack)]; 19047 optp->level = MIB2_IP; 19048 optp->name = EXPER_IP_GROUP_SOURCES; 19049 19050 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19051 ill = ILL_START_WALK_V4(&ctx, ipst); 19052 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19053 if (IS_UNDER_IPMP(ill)) 19054 continue; 19055 19056 ilm = ilm_walker_start(&ilw, ill); 19057 for (ipif = ill->ill_ipif; ipif != NULL; 19058 ipif = ipif->ipif_next) { 19059 if (ipif->ipif_zoneid != zoneid) 19060 continue; /* not this zone */ 19061 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19062 OCTET_LENGTH); 19063 ips.ipGroupSourceIfIndex.o_length = 19064 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19065 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19066 ASSERT(ilm->ilm_ipif != NULL); 19067 ASSERT(ilm->ilm_ill == NULL); 19068 sl = ilm->ilm_filter; 19069 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19070 continue; 19071 ips.ipGroupSourceGroup = ilm->ilm_addr; 19072 for (i = 0; i < sl->sl_numsrc; i++) { 19073 if (!IN6_IS_ADDR_V4MAPPED( 19074 &sl->sl_addr[i])) 19075 continue; 19076 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19077 ips.ipGroupSourceAddress); 19078 if (snmp_append_data2(mpctl->b_cont, 19079 &mp_tail, (char *)&ips, 19080 (int)sizeof (ips)) == 0) { 19081 ip1dbg(("ip_snmp_get_mib2_" 19082 "ip_group_src: failed to " 19083 "allocate %u bytes\n", 19084 (uint_t)sizeof (ips))); 19085 } 19086 } 19087 } 19088 } 19089 ilm_walker_finish(&ilw); 19090 } 19091 rw_exit(&ipst->ips_ill_g_lock); 19092 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19093 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19094 (int)optp->level, (int)optp->name, (int)optp->len)); 19095 qreply(q, mpctl); 19096 return (mp2ctl); 19097 } 19098 19099 /* IPv6 multicast filtered sources. */ 19100 static mblk_t * 19101 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19102 { 19103 struct opthdr *optp; 19104 mblk_t *mp2ctl; 19105 ill_t *ill; 19106 ilm_t *ilm; 19107 ipv6_grpsrc_t ips6; 19108 mblk_t *mp_tail = NULL; 19109 ill_walk_context_t ctx; 19110 zoneid_t zoneid; 19111 int i; 19112 slist_t *sl; 19113 ilm_walker_t ilw; 19114 19115 /* 19116 * make a copy of the original message 19117 */ 19118 mp2ctl = copymsg(mpctl); 19119 zoneid = Q_TO_CONN(q)->conn_zoneid; 19120 19121 /* ip6GroupMember table */ 19122 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19123 optp->level = MIB2_IP6; 19124 optp->name = EXPER_IP6_GROUP_SOURCES; 19125 19126 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19127 ill = ILL_START_WALK_V6(&ctx, ipst); 19128 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19129 if (IS_UNDER_IPMP(ill)) 19130 continue; 19131 19132 ilm = ilm_walker_start(&ilw, ill); 19133 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19134 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19135 ASSERT(ilm->ilm_ipif == NULL); 19136 ASSERT(ilm->ilm_ill != NULL); 19137 sl = ilm->ilm_filter; 19138 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19139 continue; 19140 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19141 for (i = 0; i < sl->sl_numsrc; i++) { 19142 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19143 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19144 (char *)&ips6, (int)sizeof (ips6))) { 19145 ip1dbg(("ip_snmp_get_mib2_ip6_" 19146 "group_src: failed to allocate " 19147 "%u bytes\n", 19148 (uint_t)sizeof (ips6))); 19149 } 19150 } 19151 } 19152 ilm_walker_finish(&ilw); 19153 } 19154 rw_exit(&ipst->ips_ill_g_lock); 19155 19156 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19157 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19158 (int)optp->level, (int)optp->name, (int)optp->len)); 19159 qreply(q, mpctl); 19160 return (mp2ctl); 19161 } 19162 19163 /* Multicast routing virtual interface table. */ 19164 static mblk_t * 19165 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19166 { 19167 struct opthdr *optp; 19168 mblk_t *mp2ctl; 19169 19170 /* 19171 * make a copy of the original message 19172 */ 19173 mp2ctl = copymsg(mpctl); 19174 19175 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19176 optp->level = EXPER_DVMRP; 19177 optp->name = EXPER_DVMRP_VIF; 19178 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19179 ip0dbg(("ip_mroute_vif: failed\n")); 19180 } 19181 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19182 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19183 (int)optp->level, (int)optp->name, (int)optp->len)); 19184 qreply(q, mpctl); 19185 return (mp2ctl); 19186 } 19187 19188 /* Multicast routing table. */ 19189 static mblk_t * 19190 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19191 { 19192 struct opthdr *optp; 19193 mblk_t *mp2ctl; 19194 19195 /* 19196 * make a copy of the original message 19197 */ 19198 mp2ctl = copymsg(mpctl); 19199 19200 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19201 optp->level = EXPER_DVMRP; 19202 optp->name = EXPER_DVMRP_MRT; 19203 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19204 ip0dbg(("ip_mroute_mrt: failed\n")); 19205 } 19206 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19207 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19208 (int)optp->level, (int)optp->name, (int)optp->len)); 19209 qreply(q, mpctl); 19210 return (mp2ctl); 19211 } 19212 19213 /* 19214 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19215 * in one IRE walk. 19216 */ 19217 static mblk_t * 19218 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19219 ip_stack_t *ipst) 19220 { 19221 struct opthdr *optp; 19222 mblk_t *mp2ctl; /* Returned */ 19223 mblk_t *mp3ctl; /* nettomedia */ 19224 mblk_t *mp4ctl; /* routeattrs */ 19225 iproutedata_t ird; 19226 zoneid_t zoneid; 19227 19228 /* 19229 * make copies of the original message 19230 * - mp2ctl is returned unchanged to the caller for his use 19231 * - mpctl is sent upstream as ipRouteEntryTable 19232 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19233 * - mp4ctl is sent upstream as ipRouteAttributeTable 19234 */ 19235 mp2ctl = copymsg(mpctl); 19236 mp3ctl = copymsg(mpctl); 19237 mp4ctl = copymsg(mpctl); 19238 if (mp3ctl == NULL || mp4ctl == NULL) { 19239 freemsg(mp4ctl); 19240 freemsg(mp3ctl); 19241 freemsg(mp2ctl); 19242 freemsg(mpctl); 19243 return (NULL); 19244 } 19245 19246 bzero(&ird, sizeof (ird)); 19247 19248 ird.ird_route.lp_head = mpctl->b_cont; 19249 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19250 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19251 /* 19252 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19253 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19254 * intended a temporary solution until a proper MIB API is provided 19255 * that provides complete filtering/caller-opt-in. 19256 */ 19257 if (level == EXPER_IP_AND_TESTHIDDEN) 19258 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19259 19260 zoneid = Q_TO_CONN(q)->conn_zoneid; 19261 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19262 19263 /* ipRouteEntryTable in mpctl */ 19264 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19265 optp->level = MIB2_IP; 19266 optp->name = MIB2_IP_ROUTE; 19267 optp->len = msgdsize(ird.ird_route.lp_head); 19268 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19269 (int)optp->level, (int)optp->name, (int)optp->len)); 19270 qreply(q, mpctl); 19271 19272 /* ipNetToMediaEntryTable in mp3ctl */ 19273 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19274 optp->level = MIB2_IP; 19275 optp->name = MIB2_IP_MEDIA; 19276 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19277 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19278 (int)optp->level, (int)optp->name, (int)optp->len)); 19279 qreply(q, mp3ctl); 19280 19281 /* ipRouteAttributeTable in mp4ctl */ 19282 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19283 optp->level = MIB2_IP; 19284 optp->name = EXPER_IP_RTATTR; 19285 optp->len = msgdsize(ird.ird_attrs.lp_head); 19286 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19287 (int)optp->level, (int)optp->name, (int)optp->len)); 19288 if (optp->len == 0) 19289 freemsg(mp4ctl); 19290 else 19291 qreply(q, mp4ctl); 19292 19293 return (mp2ctl); 19294 } 19295 19296 /* 19297 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19298 * ipv6NetToMediaEntryTable in an NDP walk. 19299 */ 19300 static mblk_t * 19301 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19302 ip_stack_t *ipst) 19303 { 19304 struct opthdr *optp; 19305 mblk_t *mp2ctl; /* Returned */ 19306 mblk_t *mp3ctl; /* nettomedia */ 19307 mblk_t *mp4ctl; /* routeattrs */ 19308 iproutedata_t ird; 19309 zoneid_t zoneid; 19310 19311 /* 19312 * make copies of the original message 19313 * - mp2ctl is returned unchanged to the caller for his use 19314 * - mpctl is sent upstream as ipv6RouteEntryTable 19315 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19316 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19317 */ 19318 mp2ctl = copymsg(mpctl); 19319 mp3ctl = copymsg(mpctl); 19320 mp4ctl = copymsg(mpctl); 19321 if (mp3ctl == NULL || mp4ctl == NULL) { 19322 freemsg(mp4ctl); 19323 freemsg(mp3ctl); 19324 freemsg(mp2ctl); 19325 freemsg(mpctl); 19326 return (NULL); 19327 } 19328 19329 bzero(&ird, sizeof (ird)); 19330 19331 ird.ird_route.lp_head = mpctl->b_cont; 19332 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19333 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19334 /* 19335 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19336 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19337 * intended a temporary solution until a proper MIB API is provided 19338 * that provides complete filtering/caller-opt-in. 19339 */ 19340 if (level == EXPER_IP_AND_TESTHIDDEN) 19341 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19342 19343 zoneid = Q_TO_CONN(q)->conn_zoneid; 19344 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19345 19346 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19347 optp->level = MIB2_IP6; 19348 optp->name = MIB2_IP6_ROUTE; 19349 optp->len = msgdsize(ird.ird_route.lp_head); 19350 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19351 (int)optp->level, (int)optp->name, (int)optp->len)); 19352 qreply(q, mpctl); 19353 19354 /* ipv6NetToMediaEntryTable in mp3ctl */ 19355 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19356 19357 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19358 optp->level = MIB2_IP6; 19359 optp->name = MIB2_IP6_MEDIA; 19360 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19361 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19362 (int)optp->level, (int)optp->name, (int)optp->len)); 19363 qreply(q, mp3ctl); 19364 19365 /* ipv6RouteAttributeTable in mp4ctl */ 19366 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19367 optp->level = MIB2_IP6; 19368 optp->name = EXPER_IP_RTATTR; 19369 optp->len = msgdsize(ird.ird_attrs.lp_head); 19370 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19371 (int)optp->level, (int)optp->name, (int)optp->len)); 19372 if (optp->len == 0) 19373 freemsg(mp4ctl); 19374 else 19375 qreply(q, mp4ctl); 19376 19377 return (mp2ctl); 19378 } 19379 19380 /* 19381 * IPv6 mib: One per ill 19382 */ 19383 static mblk_t * 19384 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19385 { 19386 struct opthdr *optp; 19387 mblk_t *mp2ctl; 19388 ill_t *ill; 19389 ill_walk_context_t ctx; 19390 mblk_t *mp_tail = NULL; 19391 19392 /* 19393 * Make a copy of the original message 19394 */ 19395 mp2ctl = copymsg(mpctl); 19396 19397 /* fixed length IPv6 structure ... */ 19398 19399 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19400 optp->level = MIB2_IP6; 19401 optp->name = 0; 19402 /* Include "unknown interface" ip6_mib */ 19403 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19404 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19405 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19406 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19407 ipst->ips_ipv6_forward ? 1 : 2); 19408 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19409 ipst->ips_ipv6_def_hops); 19410 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19411 sizeof (mib2_ipIfStatsEntry_t)); 19412 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19413 sizeof (mib2_ipv6AddrEntry_t)); 19414 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19415 sizeof (mib2_ipv6RouteEntry_t)); 19416 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19417 sizeof (mib2_ipv6NetToMediaEntry_t)); 19418 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19419 sizeof (ipv6_member_t)); 19420 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19421 sizeof (ipv6_grpsrc_t)); 19422 19423 /* 19424 * Synchronize 64- and 32-bit counters 19425 */ 19426 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19427 ipIfStatsHCInReceives); 19428 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19429 ipIfStatsHCInDelivers); 19430 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19431 ipIfStatsHCOutRequests); 19432 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19433 ipIfStatsHCOutForwDatagrams); 19434 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19435 ipIfStatsHCOutMcastPkts); 19436 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19437 ipIfStatsHCInMcastPkts); 19438 19439 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19440 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19441 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19442 (uint_t)sizeof (ipst->ips_ip6_mib))); 19443 } 19444 19445 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19446 ill = ILL_START_WALK_V6(&ctx, ipst); 19447 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19448 ill->ill_ip_mib->ipIfStatsIfIndex = 19449 ill->ill_phyint->phyint_ifindex; 19450 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19451 ipst->ips_ipv6_forward ? 1 : 2); 19452 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19453 ill->ill_max_hops); 19454 19455 /* 19456 * Synchronize 64- and 32-bit counters 19457 */ 19458 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19459 ipIfStatsHCInReceives); 19460 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19461 ipIfStatsHCInDelivers); 19462 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19463 ipIfStatsHCOutRequests); 19464 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19465 ipIfStatsHCOutForwDatagrams); 19466 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19467 ipIfStatsHCOutMcastPkts); 19468 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19469 ipIfStatsHCInMcastPkts); 19470 19471 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19472 (char *)ill->ill_ip_mib, 19473 (int)sizeof (*ill->ill_ip_mib))) { 19474 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19475 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19476 } 19477 } 19478 rw_exit(&ipst->ips_ill_g_lock); 19479 19480 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19481 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19482 (int)optp->level, (int)optp->name, (int)optp->len)); 19483 qreply(q, mpctl); 19484 return (mp2ctl); 19485 } 19486 19487 /* 19488 * ICMPv6 mib: One per ill 19489 */ 19490 static mblk_t * 19491 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19492 { 19493 struct opthdr *optp; 19494 mblk_t *mp2ctl; 19495 ill_t *ill; 19496 ill_walk_context_t ctx; 19497 mblk_t *mp_tail = NULL; 19498 /* 19499 * Make a copy of the original message 19500 */ 19501 mp2ctl = copymsg(mpctl); 19502 19503 /* fixed length ICMPv6 structure ... */ 19504 19505 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19506 optp->level = MIB2_ICMP6; 19507 optp->name = 0; 19508 /* Include "unknown interface" icmp6_mib */ 19509 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19510 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19511 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19512 sizeof (mib2_ipv6IfIcmpEntry_t); 19513 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19514 (char *)&ipst->ips_icmp6_mib, 19515 (int)sizeof (ipst->ips_icmp6_mib))) { 19516 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19517 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19518 } 19519 19520 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19521 ill = ILL_START_WALK_V6(&ctx, ipst); 19522 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19523 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19524 ill->ill_phyint->phyint_ifindex; 19525 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19526 (char *)ill->ill_icmp6_mib, 19527 (int)sizeof (*ill->ill_icmp6_mib))) { 19528 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19529 "%u bytes\n", 19530 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19531 } 19532 } 19533 rw_exit(&ipst->ips_ill_g_lock); 19534 19535 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19536 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19537 (int)optp->level, (int)optp->name, (int)optp->len)); 19538 qreply(q, mpctl); 19539 return (mp2ctl); 19540 } 19541 19542 /* 19543 * ire_walk routine to create both ipRouteEntryTable and 19544 * ipRouteAttributeTable in one IRE walk 19545 */ 19546 static void 19547 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19548 { 19549 ill_t *ill; 19550 ipif_t *ipif; 19551 mib2_ipRouteEntry_t *re; 19552 mib2_ipAttributeEntry_t *iae, *iaeptr; 19553 ipaddr_t gw_addr; 19554 tsol_ire_gw_secattr_t *attrp; 19555 tsol_gc_t *gc = NULL; 19556 tsol_gcgrp_t *gcgrp = NULL; 19557 uint_t sacnt = 0; 19558 int i; 19559 19560 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19561 19562 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19563 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19564 return; 19565 } 19566 19567 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19568 return; 19569 19570 if ((attrp = ire->ire_gw_secattr) != NULL) { 19571 mutex_enter(&attrp->igsa_lock); 19572 if ((gc = attrp->igsa_gc) != NULL) { 19573 gcgrp = gc->gc_grp; 19574 ASSERT(gcgrp != NULL); 19575 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19576 sacnt = 1; 19577 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19578 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19579 gc = gcgrp->gcgrp_head; 19580 sacnt = gcgrp->gcgrp_count; 19581 } 19582 mutex_exit(&attrp->igsa_lock); 19583 19584 /* do nothing if there's no gc to report */ 19585 if (gc == NULL) { 19586 ASSERT(sacnt == 0); 19587 if (gcgrp != NULL) { 19588 /* we might as well drop the lock now */ 19589 rw_exit(&gcgrp->gcgrp_rwlock); 19590 gcgrp = NULL; 19591 } 19592 attrp = NULL; 19593 } 19594 19595 ASSERT(gc == NULL || (gcgrp != NULL && 19596 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19597 } 19598 ASSERT(sacnt == 0 || gc != NULL); 19599 19600 if (sacnt != 0 && 19601 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19602 kmem_free(re, sizeof (*re)); 19603 rw_exit(&gcgrp->gcgrp_rwlock); 19604 return; 19605 } 19606 19607 /* 19608 * Return all IRE types for route table... let caller pick and choose 19609 */ 19610 re->ipRouteDest = ire->ire_addr; 19611 ipif = ire->ire_ipif; 19612 re->ipRouteIfIndex.o_length = 0; 19613 if (ire->ire_type == IRE_CACHE) { 19614 ill = (ill_t *)ire->ire_stq->q_ptr; 19615 re->ipRouteIfIndex.o_length = 19616 ill->ill_name_length == 0 ? 0 : 19617 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19618 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19619 re->ipRouteIfIndex.o_length); 19620 } else if (ipif != NULL) { 19621 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19622 re->ipRouteIfIndex.o_length = 19623 mi_strlen(re->ipRouteIfIndex.o_bytes); 19624 } 19625 re->ipRouteMetric1 = -1; 19626 re->ipRouteMetric2 = -1; 19627 re->ipRouteMetric3 = -1; 19628 re->ipRouteMetric4 = -1; 19629 19630 gw_addr = ire->ire_gateway_addr; 19631 19632 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19633 re->ipRouteNextHop = ire->ire_src_addr; 19634 else 19635 re->ipRouteNextHop = gw_addr; 19636 /* indirect(4), direct(3), or invalid(2) */ 19637 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19638 re->ipRouteType = 2; 19639 else 19640 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19641 re->ipRouteProto = -1; 19642 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19643 re->ipRouteMask = ire->ire_mask; 19644 re->ipRouteMetric5 = -1; 19645 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19646 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19647 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19648 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19649 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19650 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19651 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19652 re->ipRouteInfo.re_flags = ire->ire_flags; 19653 19654 if (ire->ire_flags & RTF_DYNAMIC) { 19655 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19656 } else { 19657 re->ipRouteInfo.re_ire_type = ire->ire_type; 19658 } 19659 19660 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19661 (char *)re, (int)sizeof (*re))) { 19662 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19663 (uint_t)sizeof (*re))); 19664 } 19665 19666 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19667 iaeptr->iae_routeidx = ird->ird_idx; 19668 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19669 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19670 } 19671 19672 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19673 (char *)iae, sacnt * sizeof (*iae))) { 19674 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19675 (unsigned)(sacnt * sizeof (*iae)))); 19676 } 19677 19678 /* bump route index for next pass */ 19679 ird->ird_idx++; 19680 19681 kmem_free(re, sizeof (*re)); 19682 if (sacnt != 0) 19683 kmem_free(iae, sacnt * sizeof (*iae)); 19684 19685 if (gcgrp != NULL) 19686 rw_exit(&gcgrp->gcgrp_rwlock); 19687 } 19688 19689 /* 19690 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19691 */ 19692 static void 19693 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19694 { 19695 ill_t *ill; 19696 ipif_t *ipif; 19697 mib2_ipv6RouteEntry_t *re; 19698 mib2_ipAttributeEntry_t *iae, *iaeptr; 19699 in6_addr_t gw_addr_v6; 19700 tsol_ire_gw_secattr_t *attrp; 19701 tsol_gc_t *gc = NULL; 19702 tsol_gcgrp_t *gcgrp = NULL; 19703 uint_t sacnt = 0; 19704 int i; 19705 19706 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19707 19708 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19709 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19710 return; 19711 } 19712 19713 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19714 return; 19715 19716 if ((attrp = ire->ire_gw_secattr) != NULL) { 19717 mutex_enter(&attrp->igsa_lock); 19718 if ((gc = attrp->igsa_gc) != NULL) { 19719 gcgrp = gc->gc_grp; 19720 ASSERT(gcgrp != NULL); 19721 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19722 sacnt = 1; 19723 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19724 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19725 gc = gcgrp->gcgrp_head; 19726 sacnt = gcgrp->gcgrp_count; 19727 } 19728 mutex_exit(&attrp->igsa_lock); 19729 19730 /* do nothing if there's no gc to report */ 19731 if (gc == NULL) { 19732 ASSERT(sacnt == 0); 19733 if (gcgrp != NULL) { 19734 /* we might as well drop the lock now */ 19735 rw_exit(&gcgrp->gcgrp_rwlock); 19736 gcgrp = NULL; 19737 } 19738 attrp = NULL; 19739 } 19740 19741 ASSERT(gc == NULL || (gcgrp != NULL && 19742 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19743 } 19744 ASSERT(sacnt == 0 || gc != NULL); 19745 19746 if (sacnt != 0 && 19747 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19748 kmem_free(re, sizeof (*re)); 19749 rw_exit(&gcgrp->gcgrp_rwlock); 19750 return; 19751 } 19752 19753 /* 19754 * Return all IRE types for route table... let caller pick and choose 19755 */ 19756 re->ipv6RouteDest = ire->ire_addr_v6; 19757 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19758 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19759 re->ipv6RouteIfIndex.o_length = 0; 19760 ipif = ire->ire_ipif; 19761 if (ire->ire_type == IRE_CACHE) { 19762 ill = (ill_t *)ire->ire_stq->q_ptr; 19763 re->ipv6RouteIfIndex.o_length = 19764 ill->ill_name_length == 0 ? 0 : 19765 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19766 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19767 re->ipv6RouteIfIndex.o_length); 19768 } else if (ipif != NULL) { 19769 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19770 re->ipv6RouteIfIndex.o_length = 19771 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19772 } 19773 19774 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19775 19776 mutex_enter(&ire->ire_lock); 19777 gw_addr_v6 = ire->ire_gateway_addr_v6; 19778 mutex_exit(&ire->ire_lock); 19779 19780 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19781 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19782 else 19783 re->ipv6RouteNextHop = gw_addr_v6; 19784 19785 /* remote(4), local(3), or discard(2) */ 19786 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19787 re->ipv6RouteType = 2; 19788 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19789 re->ipv6RouteType = 3; 19790 else 19791 re->ipv6RouteType = 4; 19792 19793 re->ipv6RouteProtocol = -1; 19794 re->ipv6RoutePolicy = 0; 19795 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19796 re->ipv6RouteNextHopRDI = 0; 19797 re->ipv6RouteWeight = 0; 19798 re->ipv6RouteMetric = 0; 19799 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19800 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19801 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19802 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19803 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19804 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19805 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19806 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19807 19808 if (ire->ire_flags & RTF_DYNAMIC) { 19809 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19810 } else { 19811 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19812 } 19813 19814 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19815 (char *)re, (int)sizeof (*re))) { 19816 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19817 (uint_t)sizeof (*re))); 19818 } 19819 19820 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19821 iaeptr->iae_routeidx = ird->ird_idx; 19822 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19823 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19824 } 19825 19826 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19827 (char *)iae, sacnt * sizeof (*iae))) { 19828 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19829 (unsigned)(sacnt * sizeof (*iae)))); 19830 } 19831 19832 /* bump route index for next pass */ 19833 ird->ird_idx++; 19834 19835 kmem_free(re, sizeof (*re)); 19836 if (sacnt != 0) 19837 kmem_free(iae, sacnt * sizeof (*iae)); 19838 19839 if (gcgrp != NULL) 19840 rw_exit(&gcgrp->gcgrp_rwlock); 19841 } 19842 19843 /* 19844 * ndp_walk routine to create ipv6NetToMediaEntryTable 19845 */ 19846 static int 19847 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19848 { 19849 ill_t *ill; 19850 mib2_ipv6NetToMediaEntry_t ntme; 19851 dl_unitdata_req_t *dl; 19852 19853 ill = nce->nce_ill; 19854 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19855 return (0); 19856 19857 /* 19858 * Neighbor cache entry attached to IRE with on-link 19859 * destination. 19860 */ 19861 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19862 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19863 if ((ill->ill_flags & ILLF_XRESOLV) && 19864 (nce->nce_res_mp != NULL)) { 19865 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19866 ntme.ipv6NetToMediaPhysAddress.o_length = 19867 dl->dl_dest_addr_length; 19868 } else { 19869 ntme.ipv6NetToMediaPhysAddress.o_length = 19870 ill->ill_phys_addr_length; 19871 } 19872 if (nce->nce_res_mp != NULL) { 19873 bcopy((char *)nce->nce_res_mp->b_rptr + 19874 NCE_LL_ADDR_OFFSET(ill), 19875 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19876 ntme.ipv6NetToMediaPhysAddress.o_length); 19877 } else { 19878 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19879 ill->ill_phys_addr_length); 19880 } 19881 /* 19882 * Note: Returns ND_* states. Should be: 19883 * reachable(1), stale(2), delay(3), probe(4), 19884 * invalid(5), unknown(6) 19885 */ 19886 ntme.ipv6NetToMediaState = nce->nce_state; 19887 ntme.ipv6NetToMediaLastUpdated = 0; 19888 19889 /* other(1), dynamic(2), static(3), local(4) */ 19890 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19891 ntme.ipv6NetToMediaType = 4; 19892 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19893 ntme.ipv6NetToMediaType = 1; 19894 } else { 19895 ntme.ipv6NetToMediaType = 2; 19896 } 19897 19898 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19899 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19900 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19901 (uint_t)sizeof (ntme))); 19902 } 19903 return (0); 19904 } 19905 19906 /* 19907 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19908 */ 19909 /* ARGSUSED */ 19910 int 19911 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19912 { 19913 switch (level) { 19914 case MIB2_IP: 19915 case MIB2_ICMP: 19916 switch (name) { 19917 default: 19918 break; 19919 } 19920 return (1); 19921 default: 19922 return (1); 19923 } 19924 } 19925 19926 /* 19927 * When there exists both a 64- and 32-bit counter of a particular type 19928 * (i.e., InReceives), only the 64-bit counters are added. 19929 */ 19930 void 19931 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19932 { 19933 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19934 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19935 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19936 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19937 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19938 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19939 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19940 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19941 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19942 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19943 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19944 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19945 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19946 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19947 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19948 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19949 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19950 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19951 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19952 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19953 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19954 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19955 o2->ipIfStatsInWrongIPVersion); 19956 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19957 o2->ipIfStatsInWrongIPVersion); 19958 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19959 o2->ipIfStatsOutSwitchIPVersion); 19960 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19961 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19962 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19963 o2->ipIfStatsHCInForwDatagrams); 19964 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19965 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19966 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19967 o2->ipIfStatsHCOutForwDatagrams); 19968 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19969 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19970 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19971 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19972 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19973 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19974 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19975 o2->ipIfStatsHCOutMcastOctets); 19976 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19977 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19978 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19979 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19980 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19981 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19982 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19983 } 19984 19985 void 19986 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19987 { 19988 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19989 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19990 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19991 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19992 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19993 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19994 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19995 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19996 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19997 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19998 o2->ipv6IfIcmpInRouterSolicits); 19999 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20000 o2->ipv6IfIcmpInRouterAdvertisements); 20001 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20002 o2->ipv6IfIcmpInNeighborSolicits); 20003 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20004 o2->ipv6IfIcmpInNeighborAdvertisements); 20005 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20006 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20007 o2->ipv6IfIcmpInGroupMembQueries); 20008 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20009 o2->ipv6IfIcmpInGroupMembResponses); 20010 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20011 o2->ipv6IfIcmpInGroupMembReductions); 20012 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20013 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20014 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20015 o2->ipv6IfIcmpOutDestUnreachs); 20016 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20017 o2->ipv6IfIcmpOutAdminProhibs); 20018 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20019 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20020 o2->ipv6IfIcmpOutParmProblems); 20021 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20022 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20023 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20024 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20025 o2->ipv6IfIcmpOutRouterSolicits); 20026 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20027 o2->ipv6IfIcmpOutRouterAdvertisements); 20028 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20029 o2->ipv6IfIcmpOutNeighborSolicits); 20030 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20031 o2->ipv6IfIcmpOutNeighborAdvertisements); 20032 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20033 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20034 o2->ipv6IfIcmpOutGroupMembQueries); 20035 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20036 o2->ipv6IfIcmpOutGroupMembResponses); 20037 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20038 o2->ipv6IfIcmpOutGroupMembReductions); 20039 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20040 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20041 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20042 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20043 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20044 o2->ipv6IfIcmpInBadNeighborSolicitations); 20045 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20046 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20047 o2->ipv6IfIcmpInGroupMembTotal); 20048 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20049 o2->ipv6IfIcmpInGroupMembBadQueries); 20050 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20051 o2->ipv6IfIcmpInGroupMembBadReports); 20052 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20053 o2->ipv6IfIcmpInGroupMembOurReports); 20054 } 20055 20056 /* 20057 * Called before the options are updated to check if this packet will 20058 * be source routed from here. 20059 * This routine assumes that the options are well formed i.e. that they 20060 * have already been checked. 20061 */ 20062 static boolean_t 20063 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20064 { 20065 ipoptp_t opts; 20066 uchar_t *opt; 20067 uint8_t optval; 20068 uint8_t optlen; 20069 ipaddr_t dst; 20070 ire_t *ire; 20071 20072 if (IS_SIMPLE_IPH(ipha)) { 20073 ip2dbg(("not source routed\n")); 20074 return (B_FALSE); 20075 } 20076 dst = ipha->ipha_dst; 20077 for (optval = ipoptp_first(&opts, ipha); 20078 optval != IPOPT_EOL; 20079 optval = ipoptp_next(&opts)) { 20080 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20081 opt = opts.ipoptp_cur; 20082 optlen = opts.ipoptp_len; 20083 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20084 optval, optlen)); 20085 switch (optval) { 20086 uint32_t off; 20087 case IPOPT_SSRR: 20088 case IPOPT_LSRR: 20089 /* 20090 * If dst is one of our addresses and there are some 20091 * entries left in the source route return (true). 20092 */ 20093 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20094 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20095 if (ire == NULL) { 20096 ip2dbg(("ip_source_routed: not next" 20097 " source route 0x%x\n", 20098 ntohl(dst))); 20099 return (B_FALSE); 20100 } 20101 ire_refrele(ire); 20102 off = opt[IPOPT_OFFSET]; 20103 off--; 20104 if (optlen < IP_ADDR_LEN || 20105 off > optlen - IP_ADDR_LEN) { 20106 /* End of source route */ 20107 ip1dbg(("ip_source_routed: end of SR\n")); 20108 return (B_FALSE); 20109 } 20110 return (B_TRUE); 20111 } 20112 } 20113 ip2dbg(("not source routed\n")); 20114 return (B_FALSE); 20115 } 20116 20117 /* 20118 * Check if the packet contains any source route. 20119 */ 20120 static boolean_t 20121 ip_source_route_included(ipha_t *ipha) 20122 { 20123 ipoptp_t opts; 20124 uint8_t optval; 20125 20126 if (IS_SIMPLE_IPH(ipha)) 20127 return (B_FALSE); 20128 for (optval = ipoptp_first(&opts, ipha); 20129 optval != IPOPT_EOL; 20130 optval = ipoptp_next(&opts)) { 20131 switch (optval) { 20132 case IPOPT_SSRR: 20133 case IPOPT_LSRR: 20134 return (B_TRUE); 20135 } 20136 } 20137 return (B_FALSE); 20138 } 20139 20140 /* 20141 * Called when the IRE expiration timer fires. 20142 */ 20143 void 20144 ip_trash_timer_expire(void *args) 20145 { 20146 int flush_flag = 0; 20147 ire_expire_arg_t iea; 20148 ip_stack_t *ipst = (ip_stack_t *)args; 20149 20150 iea.iea_ipst = ipst; /* No netstack_hold */ 20151 20152 /* 20153 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20154 * This lock makes sure that a new invocation of this function 20155 * that occurs due to an almost immediate timer firing will not 20156 * progress beyond this point until the current invocation is done 20157 */ 20158 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20159 ipst->ips_ip_ire_expire_id = 0; 20160 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20161 20162 /* Periodic timer */ 20163 if (ipst->ips_ip_ire_arp_time_elapsed >= 20164 ipst->ips_ip_ire_arp_interval) { 20165 /* 20166 * Remove all IRE_CACHE entries since they might 20167 * contain arp information. 20168 */ 20169 flush_flag |= FLUSH_ARP_TIME; 20170 ipst->ips_ip_ire_arp_time_elapsed = 0; 20171 IP_STAT(ipst, ip_ire_arp_timer_expired); 20172 } 20173 if (ipst->ips_ip_ire_rd_time_elapsed >= 20174 ipst->ips_ip_ire_redir_interval) { 20175 /* Remove all redirects */ 20176 flush_flag |= FLUSH_REDIRECT_TIME; 20177 ipst->ips_ip_ire_rd_time_elapsed = 0; 20178 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20179 } 20180 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20181 ipst->ips_ip_ire_pathmtu_interval) { 20182 /* Increase path mtu */ 20183 flush_flag |= FLUSH_MTU_TIME; 20184 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20185 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20186 } 20187 20188 /* 20189 * Optimize for the case when there are no redirects in the 20190 * ftable, that is, no need to walk the ftable in that case. 20191 */ 20192 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20193 iea.iea_flush_flag = flush_flag; 20194 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20195 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20196 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20197 NULL, ALL_ZONES, ipst); 20198 } 20199 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20200 ipst->ips_ip_redirect_cnt > 0) { 20201 iea.iea_flush_flag = flush_flag; 20202 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20203 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20204 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20205 } 20206 if (flush_flag & FLUSH_MTU_TIME) { 20207 /* 20208 * Walk all IPv6 IRE's and update them 20209 * Note that ARP and redirect timers are not 20210 * needed since NUD handles stale entries. 20211 */ 20212 flush_flag = FLUSH_MTU_TIME; 20213 iea.iea_flush_flag = flush_flag; 20214 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20215 ALL_ZONES, ipst); 20216 } 20217 20218 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20219 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20220 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20221 20222 /* 20223 * Hold the lock to serialize timeout calls and prevent 20224 * stale values in ip_ire_expire_id. Otherwise it is possible 20225 * for the timer to fire and a new invocation of this function 20226 * to start before the return value of timeout has been stored 20227 * in ip_ire_expire_id by the current invocation. 20228 */ 20229 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20230 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20231 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20232 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20233 } 20234 20235 /* 20236 * Called by the memory allocator subsystem directly, when the system 20237 * is running low on memory. 20238 */ 20239 /* ARGSUSED */ 20240 void 20241 ip_trash_ire_reclaim(void *args) 20242 { 20243 netstack_handle_t nh; 20244 netstack_t *ns; 20245 20246 netstack_next_init(&nh); 20247 while ((ns = netstack_next(&nh)) != NULL) { 20248 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20249 netstack_rele(ns); 20250 } 20251 netstack_next_fini(&nh); 20252 } 20253 20254 static void 20255 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20256 { 20257 ire_cache_count_t icc; 20258 ire_cache_reclaim_t icr; 20259 ncc_cache_count_t ncc; 20260 nce_cache_reclaim_t ncr; 20261 uint_t delete_cnt; 20262 /* 20263 * Memory reclaim call back. 20264 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20265 * Then, with a target of freeing 1/Nth of IRE_CACHE 20266 * entries, determine what fraction to free for 20267 * each category of IRE_CACHE entries giving absolute priority 20268 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20269 * entry will be freed unless all offlink entries are freed). 20270 */ 20271 icc.icc_total = 0; 20272 icc.icc_unused = 0; 20273 icc.icc_offlink = 0; 20274 icc.icc_pmtu = 0; 20275 icc.icc_onlink = 0; 20276 ire_walk(ire_cache_count, (char *)&icc, ipst); 20277 20278 /* 20279 * Free NCEs for IPv6 like the onlink ires. 20280 */ 20281 ncc.ncc_total = 0; 20282 ncc.ncc_host = 0; 20283 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20284 20285 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20286 icc.icc_pmtu + icc.icc_onlink); 20287 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20288 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20289 if (delete_cnt == 0) 20290 return; 20291 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20292 /* Always delete all unused offlink entries */ 20293 icr.icr_ipst = ipst; 20294 icr.icr_unused = 1; 20295 if (delete_cnt <= icc.icc_unused) { 20296 /* 20297 * Only need to free unused entries. In other words, 20298 * there are enough unused entries to free to meet our 20299 * target number of freed ire cache entries. 20300 */ 20301 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20302 ncr.ncr_host = 0; 20303 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20304 /* 20305 * Only need to free unused entries, plus a fraction of offlink 20306 * entries. It follows from the first if statement that 20307 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20308 */ 20309 delete_cnt -= icc.icc_unused; 20310 /* Round up # deleted by truncating fraction */ 20311 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20312 icr.icr_pmtu = icr.icr_onlink = 0; 20313 ncr.ncr_host = 0; 20314 } else if (delete_cnt <= 20315 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20316 /* 20317 * Free all unused and offlink entries, plus a fraction of 20318 * pmtu entries. It follows from the previous if statement 20319 * that icc_pmtu is non-zero, and that 20320 * delete_cnt != icc_unused + icc_offlink. 20321 */ 20322 icr.icr_offlink = 1; 20323 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20324 /* Round up # deleted by truncating fraction */ 20325 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20326 icr.icr_onlink = 0; 20327 ncr.ncr_host = 0; 20328 } else { 20329 /* 20330 * Free all unused, offlink, and pmtu entries, plus a fraction 20331 * of onlink entries. If we're here, then we know that 20332 * icc_onlink is non-zero, and that 20333 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20334 */ 20335 icr.icr_offlink = icr.icr_pmtu = 1; 20336 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20337 icc.icc_pmtu; 20338 /* Round up # deleted by truncating fraction */ 20339 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20340 /* Using the same delete fraction as for onlink IREs */ 20341 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20342 } 20343 #ifdef DEBUG 20344 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20345 "fractions %d/%d/%d/%d\n", 20346 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20347 icc.icc_unused, icc.icc_offlink, 20348 icc.icc_pmtu, icc.icc_onlink, 20349 icr.icr_unused, icr.icr_offlink, 20350 icr.icr_pmtu, icr.icr_onlink)); 20351 #endif 20352 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20353 if (ncr.ncr_host != 0) 20354 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20355 (uchar_t *)&ncr, ipst); 20356 #ifdef DEBUG 20357 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20358 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20359 ire_walk(ire_cache_count, (char *)&icc, ipst); 20360 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20361 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20362 icc.icc_pmtu, icc.icc_onlink)); 20363 #endif 20364 } 20365 20366 /* 20367 * ip_unbind is called when a copy of an unbind request is received from the 20368 * upper level protocol. We remove this conn from any fanout hash list it is 20369 * on, and zero out the bind information. No reply is expected up above. 20370 */ 20371 void 20372 ip_unbind(conn_t *connp) 20373 { 20374 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20375 20376 if (is_system_labeled() && connp->conn_anon_port) { 20377 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20378 connp->conn_mlp_type, connp->conn_ulp, 20379 ntohs(connp->conn_lport), B_FALSE); 20380 connp->conn_anon_port = 0; 20381 } 20382 connp->conn_mlp_type = mlptSingle; 20383 20384 ipcl_hash_remove(connp); 20385 20386 } 20387 20388 /* 20389 * Write side put procedure. Outbound data, IOCTLs, responses from 20390 * resolvers, etc, come down through here. 20391 * 20392 * arg2 is always a queue_t *. 20393 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20394 * the zoneid. 20395 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20396 */ 20397 void 20398 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20399 { 20400 ip_output_options(arg, mp, arg2, caller, &zero_info); 20401 } 20402 20403 void 20404 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20405 ip_opt_info_t *infop) 20406 { 20407 conn_t *connp = NULL; 20408 queue_t *q = (queue_t *)arg2; 20409 ipha_t *ipha; 20410 #define rptr ((uchar_t *)ipha) 20411 ire_t *ire = NULL; 20412 ire_t *sctp_ire = NULL; 20413 uint32_t v_hlen_tos_len; 20414 ipaddr_t dst; 20415 mblk_t *first_mp = NULL; 20416 boolean_t mctl_present; 20417 ipsec_out_t *io; 20418 int match_flags; 20419 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20420 ipif_t *dst_ipif; 20421 boolean_t multirt_need_resolve = B_FALSE; 20422 mblk_t *copy_mp = NULL; 20423 int err; 20424 zoneid_t zoneid; 20425 boolean_t need_decref = B_FALSE; 20426 boolean_t ignore_dontroute = B_FALSE; 20427 boolean_t ignore_nexthop = B_FALSE; 20428 boolean_t ip_nexthop = B_FALSE; 20429 ipaddr_t nexthop_addr; 20430 ip_stack_t *ipst; 20431 20432 #ifdef _BIG_ENDIAN 20433 #define V_HLEN (v_hlen_tos_len >> 24) 20434 #else 20435 #define V_HLEN (v_hlen_tos_len & 0xFF) 20436 #endif 20437 20438 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20439 "ip_wput_start: q %p", q); 20440 20441 /* 20442 * ip_wput fast path 20443 */ 20444 20445 /* is packet from ARP ? */ 20446 if (q->q_next != NULL) { 20447 zoneid = (zoneid_t)(uintptr_t)arg; 20448 goto qnext; 20449 } 20450 20451 connp = (conn_t *)arg; 20452 ASSERT(connp != NULL); 20453 zoneid = connp->conn_zoneid; 20454 ipst = connp->conn_netstack->netstack_ip; 20455 ASSERT(ipst != NULL); 20456 20457 /* is queue flow controlled? */ 20458 if ((q->q_first != NULL || connp->conn_draining) && 20459 (caller == IP_WPUT)) { 20460 ASSERT(!need_decref); 20461 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20462 (void) putq(q, mp); 20463 return; 20464 } 20465 20466 /* Multidata transmit? */ 20467 if (DB_TYPE(mp) == M_MULTIDATA) { 20468 /* 20469 * We should never get here, since all Multidata messages 20470 * originating from tcp should have been directed over to 20471 * tcp_multisend() in the first place. 20472 */ 20473 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20474 freemsg(mp); 20475 return; 20476 } else if (DB_TYPE(mp) != M_DATA) 20477 goto notdata; 20478 20479 if (mp->b_flag & MSGHASREF) { 20480 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20481 mp->b_flag &= ~MSGHASREF; 20482 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20483 need_decref = B_TRUE; 20484 } 20485 ipha = (ipha_t *)mp->b_rptr; 20486 20487 /* is IP header non-aligned or mblk smaller than basic IP header */ 20488 #ifndef SAFETY_BEFORE_SPEED 20489 if (!OK_32PTR(rptr) || 20490 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20491 goto hdrtoosmall; 20492 #endif 20493 20494 ASSERT(OK_32PTR(ipha)); 20495 20496 /* 20497 * This function assumes that mp points to an IPv4 packet. If it's the 20498 * wrong version, we'll catch it again in ip_output_v6. 20499 * 20500 * Note that this is *only* locally-generated output here, and never 20501 * forwarded data, and that we need to deal only with transports that 20502 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20503 * label.) 20504 */ 20505 if (is_system_labeled() && 20506 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20507 !connp->conn_ulp_labeled) { 20508 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20509 connp->conn_mac_exempt, ipst); 20510 ipha = (ipha_t *)mp->b_rptr; 20511 if (err != 0) { 20512 first_mp = mp; 20513 if (err == EINVAL) 20514 goto icmp_parameter_problem; 20515 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20516 goto discard_pkt; 20517 } 20518 } 20519 20520 ASSERT(infop != NULL); 20521 20522 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20523 /* 20524 * IP_PKTINFO ancillary option is present. 20525 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20526 * allows using address of any zone as the source address. 20527 */ 20528 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20529 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20530 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20531 if (ire == NULL) 20532 goto drop_pkt; 20533 ire_refrele(ire); 20534 ire = NULL; 20535 } 20536 20537 /* 20538 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20539 */ 20540 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20541 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20542 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20543 20544 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20545 goto drop_pkt; 20546 /* 20547 * check that there is an ipif belonging 20548 * to our zone. IPCL_ZONEID is not used because 20549 * IP_ALLZONES option is valid only when the ill is 20550 * accessible from all zones i.e has a valid ipif in 20551 * all zones. 20552 */ 20553 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20554 goto drop_pkt; 20555 } 20556 } 20557 20558 /* 20559 * If there is a policy, try to attach an ipsec_out in 20560 * the front. At the end, first_mp either points to a 20561 * M_DATA message or IPSEC_OUT message linked to a 20562 * M_DATA message. We have to do it now as we might 20563 * lose the "conn" if we go through ip_newroute. 20564 */ 20565 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20566 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20567 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20568 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20569 if (need_decref) 20570 CONN_DEC_REF(connp); 20571 return; 20572 } else { 20573 ASSERT(mp->b_datap->db_type == M_CTL); 20574 first_mp = mp; 20575 mp = mp->b_cont; 20576 mctl_present = B_TRUE; 20577 } 20578 } else { 20579 first_mp = mp; 20580 mctl_present = B_FALSE; 20581 } 20582 20583 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20584 20585 /* is wrong version or IP options present */ 20586 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20587 goto version_hdrlen_check; 20588 dst = ipha->ipha_dst; 20589 20590 /* If IP_BOUND_IF has been set, use that ill. */ 20591 if (connp->conn_outgoing_ill != NULL) { 20592 xmit_ill = conn_get_held_ill(connp, 20593 &connp->conn_outgoing_ill, &err); 20594 if (err == ILL_LOOKUP_FAILED) 20595 goto drop_pkt; 20596 20597 goto send_from_ill; 20598 } 20599 20600 /* is packet multicast? */ 20601 if (CLASSD(dst)) 20602 goto multicast; 20603 20604 /* 20605 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20606 * takes precedence over conn_dontroute and conn_nexthop_set 20607 */ 20608 if (xmit_ill != NULL) 20609 goto send_from_ill; 20610 20611 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20612 /* 20613 * If the destination is a broadcast, local, or loopback 20614 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20615 * standard path. 20616 */ 20617 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20618 if ((ire == NULL) || (ire->ire_type & 20619 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20620 if (ire != NULL) { 20621 ire_refrele(ire); 20622 /* No more access to ire */ 20623 ire = NULL; 20624 } 20625 /* 20626 * bypass routing checks and go directly to interface. 20627 */ 20628 if (connp->conn_dontroute) 20629 goto dontroute; 20630 20631 ASSERT(connp->conn_nexthop_set); 20632 ip_nexthop = B_TRUE; 20633 nexthop_addr = connp->conn_nexthop_v4; 20634 goto send_from_ill; 20635 } 20636 20637 /* Must be a broadcast, a loopback or a local ire */ 20638 ire_refrele(ire); 20639 /* No more access to ire */ 20640 ire = NULL; 20641 } 20642 20643 /* 20644 * We cache IRE_CACHEs to avoid lookups. We don't do 20645 * this for the tcp global queue and listen end point 20646 * as it does not really have a real destination to 20647 * talk to. This is also true for SCTP. 20648 */ 20649 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20650 !connp->conn_fully_bound) { 20651 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20652 if (ire == NULL) 20653 goto noirefound; 20654 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20655 "ip_wput_end: q %p (%S)", q, "end"); 20656 20657 /* 20658 * Check if the ire has the RTF_MULTIRT flag, inherited 20659 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20660 */ 20661 if (ire->ire_flags & RTF_MULTIRT) { 20662 20663 /* 20664 * Force the TTL of multirouted packets if required. 20665 * The TTL of such packets is bounded by the 20666 * ip_multirt_ttl ndd variable. 20667 */ 20668 if ((ipst->ips_ip_multirt_ttl > 0) && 20669 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20670 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20671 "(was %d), dst 0x%08x\n", 20672 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20673 ntohl(ire->ire_addr))); 20674 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20675 } 20676 /* 20677 * We look at this point if there are pending 20678 * unresolved routes. ire_multirt_resolvable() 20679 * checks in O(n) that all IRE_OFFSUBNET ire 20680 * entries for the packet's destination and 20681 * flagged RTF_MULTIRT are currently resolved. 20682 * If some remain unresolved, we make a copy 20683 * of the current message. It will be used 20684 * to initiate additional route resolutions. 20685 */ 20686 multirt_need_resolve = 20687 ire_multirt_need_resolve(ire->ire_addr, 20688 msg_getlabel(first_mp), ipst); 20689 ip2dbg(("ip_wput[TCP]: ire %p, " 20690 "multirt_need_resolve %d, first_mp %p\n", 20691 (void *)ire, multirt_need_resolve, 20692 (void *)first_mp)); 20693 if (multirt_need_resolve) { 20694 copy_mp = copymsg(first_mp); 20695 if (copy_mp != NULL) { 20696 MULTIRT_DEBUG_TAG(copy_mp); 20697 } 20698 } 20699 } 20700 20701 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20702 20703 /* 20704 * Try to resolve another multiroute if 20705 * ire_multirt_need_resolve() deemed it necessary. 20706 */ 20707 if (copy_mp != NULL) 20708 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20709 if (need_decref) 20710 CONN_DEC_REF(connp); 20711 return; 20712 } 20713 20714 /* 20715 * Access to conn_ire_cache. (protected by conn_lock) 20716 * 20717 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20718 * the ire bucket lock here to check for CONDEMNED as it is okay to 20719 * send a packet or two with the IRE_CACHE that is going away. 20720 * Access to the ire requires an ire refhold on the ire prior to 20721 * its use since an interface unplumb thread may delete the cached 20722 * ire and release the refhold at any time. 20723 * 20724 * Caching an ire in the conn_ire_cache 20725 * 20726 * o Caching an ire pointer in the conn requires a strict check for 20727 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20728 * ires before cleaning up the conns. So the caching of an ire pointer 20729 * in the conn is done after making sure under the bucket lock that the 20730 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20731 * caching an ire after the unplumb thread has cleaned up the conn. 20732 * If the conn does not send a packet subsequently the unplumb thread 20733 * will be hanging waiting for the ire count to drop to zero. 20734 * 20735 * o We also need to atomically test for a null conn_ire_cache and 20736 * set the conn_ire_cache under the the protection of the conn_lock 20737 * to avoid races among concurrent threads trying to simultaneously 20738 * cache an ire in the conn_ire_cache. 20739 */ 20740 mutex_enter(&connp->conn_lock); 20741 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20742 20743 if (ire != NULL && ire->ire_addr == dst && 20744 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20745 20746 IRE_REFHOLD(ire); 20747 mutex_exit(&connp->conn_lock); 20748 20749 } else { 20750 boolean_t cached = B_FALSE; 20751 connp->conn_ire_cache = NULL; 20752 mutex_exit(&connp->conn_lock); 20753 /* Release the old ire */ 20754 if (ire != NULL && sctp_ire == NULL) 20755 IRE_REFRELE_NOTR(ire); 20756 20757 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20758 if (ire == NULL) 20759 goto noirefound; 20760 IRE_REFHOLD_NOTR(ire); 20761 20762 mutex_enter(&connp->conn_lock); 20763 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20764 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20765 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20766 if (connp->conn_ulp == IPPROTO_TCP) 20767 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20768 connp->conn_ire_cache = ire; 20769 cached = B_TRUE; 20770 } 20771 rw_exit(&ire->ire_bucket->irb_lock); 20772 } 20773 mutex_exit(&connp->conn_lock); 20774 20775 /* 20776 * We can continue to use the ire but since it was 20777 * not cached, we should drop the extra reference. 20778 */ 20779 if (!cached) 20780 IRE_REFRELE_NOTR(ire); 20781 } 20782 20783 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20784 "ip_wput_end: q %p (%S)", q, "end"); 20785 20786 /* 20787 * Check if the ire has the RTF_MULTIRT flag, inherited 20788 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20789 */ 20790 if (ire->ire_flags & RTF_MULTIRT) { 20791 /* 20792 * Force the TTL of multirouted packets if required. 20793 * The TTL of such packets is bounded by the 20794 * ip_multirt_ttl ndd variable. 20795 */ 20796 if ((ipst->ips_ip_multirt_ttl > 0) && 20797 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20798 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20799 "(was %d), dst 0x%08x\n", 20800 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20801 ntohl(ire->ire_addr))); 20802 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20803 } 20804 20805 /* 20806 * At this point, we check to see if there are any pending 20807 * unresolved routes. ire_multirt_resolvable() 20808 * checks in O(n) that all IRE_OFFSUBNET ire 20809 * entries for the packet's destination and 20810 * flagged RTF_MULTIRT are currently resolved. 20811 * If some remain unresolved, we make a copy 20812 * of the current message. It will be used 20813 * to initiate additional route resolutions. 20814 */ 20815 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20816 msg_getlabel(first_mp), ipst); 20817 ip2dbg(("ip_wput[not TCP]: ire %p, " 20818 "multirt_need_resolve %d, first_mp %p\n", 20819 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20820 if (multirt_need_resolve) { 20821 copy_mp = copymsg(first_mp); 20822 if (copy_mp != NULL) { 20823 MULTIRT_DEBUG_TAG(copy_mp); 20824 } 20825 } 20826 } 20827 20828 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20829 20830 /* 20831 * Try to resolve another multiroute if 20832 * ire_multirt_resolvable() deemed it necessary 20833 */ 20834 if (copy_mp != NULL) 20835 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20836 if (need_decref) 20837 CONN_DEC_REF(connp); 20838 return; 20839 20840 qnext: 20841 /* 20842 * Upper Level Protocols pass down complete IP datagrams 20843 * as M_DATA messages. Everything else is a sideshow. 20844 * 20845 * 1) We could be re-entering ip_wput because of ip_neworute 20846 * in which case we could have a IPSEC_OUT message. We 20847 * need to pass through ip_wput like other datagrams and 20848 * hence cannot branch to ip_wput_nondata. 20849 * 20850 * 2) ARP, AH, ESP, and other clients who are on the module 20851 * instance of IP stream, give us something to deal with. 20852 * We will handle AH and ESP here and rest in ip_wput_nondata. 20853 * 20854 * 3) ICMP replies also could come here. 20855 */ 20856 ipst = ILLQ_TO_IPST(q); 20857 20858 if (DB_TYPE(mp) != M_DATA) { 20859 notdata: 20860 if (DB_TYPE(mp) == M_CTL) { 20861 /* 20862 * M_CTL messages are used by ARP, AH and ESP to 20863 * communicate with IP. We deal with IPSEC_IN and 20864 * IPSEC_OUT here. ip_wput_nondata handles other 20865 * cases. 20866 */ 20867 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20868 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20869 first_mp = mp->b_cont; 20870 first_mp->b_flag &= ~MSGHASREF; 20871 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20872 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20873 CONN_DEC_REF(connp); 20874 connp = NULL; 20875 } 20876 if (ii->ipsec_info_type == IPSEC_IN) { 20877 /* 20878 * Either this message goes back to 20879 * IPsec for further processing or to 20880 * ULP after policy checks. 20881 */ 20882 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20883 return; 20884 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20885 io = (ipsec_out_t *)ii; 20886 if (io->ipsec_out_proc_begin) { 20887 /* 20888 * IPsec processing has already started. 20889 * Complete it. 20890 * IPQoS notes: We don't care what is 20891 * in ipsec_out_ill_index since this 20892 * won't be processed for IPQoS policies 20893 * in ipsec_out_process. 20894 */ 20895 ipsec_out_process(q, mp, NULL, 20896 io->ipsec_out_ill_index); 20897 return; 20898 } else { 20899 connp = (q->q_next != NULL) ? 20900 NULL : Q_TO_CONN(q); 20901 first_mp = mp; 20902 mp = mp->b_cont; 20903 mctl_present = B_TRUE; 20904 } 20905 zoneid = io->ipsec_out_zoneid; 20906 ASSERT(zoneid != ALL_ZONES); 20907 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20908 /* 20909 * It's an IPsec control message requesting 20910 * an SADB update to be sent to the IPsec 20911 * hardware acceleration capable ills. 20912 */ 20913 ipsec_ctl_t *ipsec_ctl = 20914 (ipsec_ctl_t *)mp->b_rptr; 20915 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20916 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20917 mblk_t *cmp = mp->b_cont; 20918 20919 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20920 ASSERT(cmp != NULL); 20921 20922 freeb(mp); 20923 ill_ipsec_capab_send_all(satype, cmp, sa, 20924 ipst->ips_netstack); 20925 return; 20926 } else { 20927 /* 20928 * This must be ARP or special TSOL signaling. 20929 */ 20930 ip_wput_nondata(NULL, q, mp, NULL); 20931 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20932 "ip_wput_end: q %p (%S)", q, "nondata"); 20933 return; 20934 } 20935 } else { 20936 /* 20937 * This must be non-(ARP/AH/ESP) messages. 20938 */ 20939 ASSERT(!need_decref); 20940 ip_wput_nondata(NULL, q, mp, NULL); 20941 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20942 "ip_wput_end: q %p (%S)", q, "nondata"); 20943 return; 20944 } 20945 } else { 20946 first_mp = mp; 20947 mctl_present = B_FALSE; 20948 } 20949 20950 ASSERT(first_mp != NULL); 20951 20952 if (mctl_present) { 20953 io = (ipsec_out_t *)first_mp->b_rptr; 20954 if (io->ipsec_out_ip_nexthop) { 20955 /* 20956 * We may have lost the conn context if we are 20957 * coming here from ip_newroute(). Copy the 20958 * nexthop information. 20959 */ 20960 ip_nexthop = B_TRUE; 20961 nexthop_addr = io->ipsec_out_nexthop_addr; 20962 20963 ipha = (ipha_t *)mp->b_rptr; 20964 dst = ipha->ipha_dst; 20965 goto send_from_ill; 20966 } 20967 } 20968 20969 ASSERT(xmit_ill == NULL); 20970 20971 /* We have a complete IP datagram heading outbound. */ 20972 ipha = (ipha_t *)mp->b_rptr; 20973 20974 #ifndef SPEED_BEFORE_SAFETY 20975 /* 20976 * Make sure we have a full-word aligned message and that at least 20977 * a simple IP header is accessible in the first message. If not, 20978 * try a pullup. For labeled systems we need to always take this 20979 * path as M_CTLs are "notdata" but have trailing data to process. 20980 */ 20981 if (!OK_32PTR(rptr) || 20982 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20983 hdrtoosmall: 20984 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20985 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20986 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20987 if (first_mp == NULL) 20988 first_mp = mp; 20989 goto discard_pkt; 20990 } 20991 20992 /* This function assumes that mp points to an IPv4 packet. */ 20993 if (is_system_labeled() && q->q_next == NULL && 20994 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20995 !connp->conn_ulp_labeled) { 20996 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20997 connp->conn_mac_exempt, ipst); 20998 ipha = (ipha_t *)mp->b_rptr; 20999 if (first_mp != NULL) 21000 first_mp->b_cont = mp; 21001 if (err != 0) { 21002 if (first_mp == NULL) 21003 first_mp = mp; 21004 if (err == EINVAL) 21005 goto icmp_parameter_problem; 21006 ip2dbg(("ip_wput: label check failed (%d)\n", 21007 err)); 21008 goto discard_pkt; 21009 } 21010 } 21011 21012 ipha = (ipha_t *)mp->b_rptr; 21013 if (first_mp == NULL) { 21014 ASSERT(xmit_ill == NULL); 21015 /* 21016 * If we got here because of "goto hdrtoosmall" 21017 * We need to attach a IPSEC_OUT. 21018 */ 21019 if (connp->conn_out_enforce_policy) { 21020 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21021 NULL, ipha->ipha_protocol, 21022 ipst->ips_netstack)) == NULL)) { 21023 BUMP_MIB(&ipst->ips_ip_mib, 21024 ipIfStatsOutDiscards); 21025 if (need_decref) 21026 CONN_DEC_REF(connp); 21027 return; 21028 } else { 21029 ASSERT(mp->b_datap->db_type == M_CTL); 21030 first_mp = mp; 21031 mp = mp->b_cont; 21032 mctl_present = B_TRUE; 21033 } 21034 } else { 21035 first_mp = mp; 21036 mctl_present = B_FALSE; 21037 } 21038 } 21039 } 21040 #endif 21041 21042 /* Most of the code below is written for speed, not readability */ 21043 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21044 21045 /* 21046 * If ip_newroute() fails, we're going to need a full 21047 * header for the icmp wraparound. 21048 */ 21049 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21050 uint_t v_hlen; 21051 version_hdrlen_check: 21052 ASSERT(first_mp != NULL); 21053 v_hlen = V_HLEN; 21054 /* 21055 * siphon off IPv6 packets coming down from transport 21056 * layer modules here. 21057 * Note: high-order bit carries NUD reachability confirmation 21058 */ 21059 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21060 /* 21061 * FIXME: assume that callers of ip_output* call 21062 * the right version? 21063 */ 21064 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21065 ASSERT(xmit_ill == NULL); 21066 if (need_decref) 21067 mp->b_flag |= MSGHASREF; 21068 (void) ip_output_v6(arg, first_mp, arg2, caller); 21069 return; 21070 } 21071 21072 if ((v_hlen >> 4) != IP_VERSION) { 21073 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21074 "ip_wput_end: q %p (%S)", q, "badvers"); 21075 goto discard_pkt; 21076 } 21077 /* 21078 * Is the header length at least 20 bytes? 21079 * 21080 * Are there enough bytes accessible in the header? If 21081 * not, try a pullup. 21082 */ 21083 v_hlen &= 0xF; 21084 v_hlen <<= 2; 21085 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21086 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21087 "ip_wput_end: q %p (%S)", q, "badlen"); 21088 goto discard_pkt; 21089 } 21090 if (v_hlen > (mp->b_wptr - rptr)) { 21091 if (!pullupmsg(mp, v_hlen)) { 21092 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21093 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21094 goto discard_pkt; 21095 } 21096 ipha = (ipha_t *)mp->b_rptr; 21097 } 21098 /* 21099 * Move first entry from any source route into ipha_dst and 21100 * verify the options 21101 */ 21102 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21103 zoneid, ipst)) { 21104 ASSERT(xmit_ill == NULL); 21105 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21106 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21107 "ip_wput_end: q %p (%S)", q, "badopts"); 21108 if (need_decref) 21109 CONN_DEC_REF(connp); 21110 return; 21111 } 21112 } 21113 dst = ipha->ipha_dst; 21114 21115 /* 21116 * Try to get an IRE_CACHE for the destination address. If we can't, 21117 * we have to run the packet through ip_newroute which will take 21118 * the appropriate action to arrange for an IRE_CACHE, such as querying 21119 * a resolver, or assigning a default gateway, etc. 21120 */ 21121 if (CLASSD(dst)) { 21122 ipif_t *ipif; 21123 uint32_t setsrc = 0; 21124 21125 multicast: 21126 ASSERT(first_mp != NULL); 21127 ip2dbg(("ip_wput: CLASSD\n")); 21128 if (connp == NULL) { 21129 /* 21130 * Use the first good ipif on the ill. 21131 * XXX Should this ever happen? (Appears 21132 * to show up with just ppp and no ethernet due 21133 * to in.rdisc.) 21134 * However, ire_send should be able to 21135 * call ip_wput_ire directly. 21136 * 21137 * XXX Also, this can happen for ICMP and other packets 21138 * with multicast source addresses. Perhaps we should 21139 * fix things so that we drop the packet in question, 21140 * but for now, just run with it. 21141 */ 21142 ill_t *ill = (ill_t *)q->q_ptr; 21143 21144 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21145 if (ipif == NULL) { 21146 if (need_decref) 21147 CONN_DEC_REF(connp); 21148 freemsg(first_mp); 21149 return; 21150 } 21151 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21152 ntohl(dst), ill->ill_name)); 21153 } else { 21154 /* 21155 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21156 * and IP_MULTICAST_IF. The block comment above this 21157 * function explains the locking mechanism used here. 21158 */ 21159 if (xmit_ill == NULL) { 21160 xmit_ill = conn_get_held_ill(connp, 21161 &connp->conn_outgoing_ill, &err); 21162 if (err == ILL_LOOKUP_FAILED) { 21163 ip1dbg(("ip_wput: No ill for " 21164 "IP_BOUND_IF\n")); 21165 BUMP_MIB(&ipst->ips_ip_mib, 21166 ipIfStatsOutNoRoutes); 21167 goto drop_pkt; 21168 } 21169 } 21170 21171 if (xmit_ill == NULL) { 21172 ipif = conn_get_held_ipif(connp, 21173 &connp->conn_multicast_ipif, &err); 21174 if (err == IPIF_LOOKUP_FAILED) { 21175 ip1dbg(("ip_wput: No ipif for " 21176 "multicast\n")); 21177 BUMP_MIB(&ipst->ips_ip_mib, 21178 ipIfStatsOutNoRoutes); 21179 goto drop_pkt; 21180 } 21181 } 21182 if (xmit_ill != NULL) { 21183 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21184 if (ipif == NULL) { 21185 ip1dbg(("ip_wput: No ipif for " 21186 "xmit_ill\n")); 21187 BUMP_MIB(&ipst->ips_ip_mib, 21188 ipIfStatsOutNoRoutes); 21189 goto drop_pkt; 21190 } 21191 } else if (ipif == NULL || ipif->ipif_isv6) { 21192 /* 21193 * We must do this ipif determination here 21194 * else we could pass through ip_newroute 21195 * and come back here without the conn context. 21196 * 21197 * Note: we do late binding i.e. we bind to 21198 * the interface when the first packet is sent. 21199 * For performance reasons we do not rebind on 21200 * each packet but keep the binding until the 21201 * next IP_MULTICAST_IF option. 21202 * 21203 * conn_multicast_{ipif,ill} are shared between 21204 * IPv4 and IPv6 and AF_INET6 sockets can 21205 * send both IPv4 and IPv6 packets. Hence 21206 * we have to check that "isv6" matches above. 21207 */ 21208 if (ipif != NULL) 21209 ipif_refrele(ipif); 21210 ipif = ipif_lookup_group(dst, zoneid, ipst); 21211 if (ipif == NULL) { 21212 ip1dbg(("ip_wput: No ipif for " 21213 "multicast\n")); 21214 BUMP_MIB(&ipst->ips_ip_mib, 21215 ipIfStatsOutNoRoutes); 21216 goto drop_pkt; 21217 } 21218 err = conn_set_held_ipif(connp, 21219 &connp->conn_multicast_ipif, ipif); 21220 if (err == IPIF_LOOKUP_FAILED) { 21221 ipif_refrele(ipif); 21222 ip1dbg(("ip_wput: No ipif for " 21223 "multicast\n")); 21224 BUMP_MIB(&ipst->ips_ip_mib, 21225 ipIfStatsOutNoRoutes); 21226 goto drop_pkt; 21227 } 21228 } 21229 } 21230 ASSERT(!ipif->ipif_isv6); 21231 /* 21232 * As we may lose the conn by the time we reach ip_wput_ire, 21233 * we copy conn_multicast_loop and conn_dontroute on to an 21234 * ipsec_out. In case if this datagram goes out secure, 21235 * we need the ill_index also. Copy that also into the 21236 * ipsec_out. 21237 */ 21238 if (mctl_present) { 21239 io = (ipsec_out_t *)first_mp->b_rptr; 21240 ASSERT(first_mp->b_datap->db_type == M_CTL); 21241 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21242 } else { 21243 ASSERT(mp == first_mp); 21244 if ((first_mp = allocb(sizeof (ipsec_info_t), 21245 BPRI_HI)) == NULL) { 21246 ipif_refrele(ipif); 21247 first_mp = mp; 21248 goto discard_pkt; 21249 } 21250 first_mp->b_datap->db_type = M_CTL; 21251 first_mp->b_wptr += sizeof (ipsec_info_t); 21252 /* ipsec_out_secure is B_FALSE now */ 21253 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21254 io = (ipsec_out_t *)first_mp->b_rptr; 21255 io->ipsec_out_type = IPSEC_OUT; 21256 io->ipsec_out_len = sizeof (ipsec_out_t); 21257 io->ipsec_out_use_global_policy = B_TRUE; 21258 io->ipsec_out_ns = ipst->ips_netstack; 21259 first_mp->b_cont = mp; 21260 mctl_present = B_TRUE; 21261 } 21262 21263 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21264 io->ipsec_out_ill_index = 21265 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21266 21267 if (connp != NULL) { 21268 io->ipsec_out_multicast_loop = 21269 connp->conn_multicast_loop; 21270 io->ipsec_out_dontroute = connp->conn_dontroute; 21271 io->ipsec_out_zoneid = connp->conn_zoneid; 21272 } 21273 /* 21274 * If the application uses IP_MULTICAST_IF with 21275 * different logical addresses of the same ILL, we 21276 * need to make sure that the soruce address of 21277 * the packet matches the logical IP address used 21278 * in the option. We do it by initializing ipha_src 21279 * here. This should keep IPsec also happy as 21280 * when we return from IPsec processing, we don't 21281 * have to worry about getting the right address on 21282 * the packet. Thus it is sufficient to look for 21283 * IRE_CACHE using MATCH_IRE_ILL rathen than 21284 * MATCH_IRE_IPIF. 21285 * 21286 * NOTE : We need to do it for non-secure case also as 21287 * this might go out secure if there is a global policy 21288 * match in ip_wput_ire. 21289 * 21290 * As we do not have the ire yet, it is possible that 21291 * we set the source address here and then later discover 21292 * that the ire implies the source address to be assigned 21293 * through the RTF_SETSRC flag. 21294 * In that case, the setsrc variable will remind us 21295 * that overwritting the source address by the one 21296 * of the RTF_SETSRC-flagged ire is allowed. 21297 */ 21298 if (ipha->ipha_src == INADDR_ANY && 21299 (connp == NULL || !connp->conn_unspec_src)) { 21300 ipha->ipha_src = ipif->ipif_src_addr; 21301 setsrc = RTF_SETSRC; 21302 } 21303 /* 21304 * Find an IRE which matches the destination and the outgoing 21305 * queue (i.e. the outgoing interface.) 21306 * For loopback use a unicast IP address for 21307 * the ire lookup. 21308 */ 21309 if (IS_LOOPBACK(ipif->ipif_ill)) 21310 dst = ipif->ipif_lcl_addr; 21311 21312 /* 21313 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21314 * We don't need to lookup ire in ctable as the packet 21315 * needs to be sent to the destination through the specified 21316 * ill irrespective of ires in the cache table. 21317 */ 21318 ire = NULL; 21319 if (xmit_ill == NULL) { 21320 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21321 zoneid, msg_getlabel(mp), match_flags, ipst); 21322 } 21323 21324 if (ire == NULL) { 21325 /* 21326 * Multicast loopback and multicast forwarding is 21327 * done in ip_wput_ire. 21328 * 21329 * Mark this packet to make it be delivered to 21330 * ip_wput_ire after the new ire has been 21331 * created. 21332 * 21333 * The call to ip_newroute_ipif takes into account 21334 * the setsrc reminder. In any case, we take care 21335 * of the RTF_MULTIRT flag. 21336 */ 21337 mp->b_prev = mp->b_next = NULL; 21338 if (xmit_ill == NULL || 21339 xmit_ill->ill_ipif_up_count > 0) { 21340 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21341 setsrc | RTF_MULTIRT, zoneid, infop); 21342 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21343 "ip_wput_end: q %p (%S)", q, "noire"); 21344 } else { 21345 freemsg(first_mp); 21346 } 21347 ipif_refrele(ipif); 21348 if (xmit_ill != NULL) 21349 ill_refrele(xmit_ill); 21350 if (need_decref) 21351 CONN_DEC_REF(connp); 21352 return; 21353 } 21354 21355 ipif_refrele(ipif); 21356 ipif = NULL; 21357 ASSERT(xmit_ill == NULL); 21358 21359 /* 21360 * Honor the RTF_SETSRC flag for multicast packets, 21361 * if allowed by the setsrc reminder. 21362 */ 21363 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21364 ipha->ipha_src = ire->ire_src_addr; 21365 } 21366 21367 /* 21368 * Unconditionally force the TTL to 1 for 21369 * multirouted multicast packets: 21370 * multirouted multicast should not cross 21371 * multicast routers. 21372 */ 21373 if (ire->ire_flags & RTF_MULTIRT) { 21374 if (ipha->ipha_ttl > 1) { 21375 ip2dbg(("ip_wput: forcing multicast " 21376 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21377 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21378 ipha->ipha_ttl = 1; 21379 } 21380 } 21381 } else { 21382 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21383 if ((ire != NULL) && (ire->ire_type & 21384 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21385 ignore_dontroute = B_TRUE; 21386 ignore_nexthop = B_TRUE; 21387 } 21388 if (ire != NULL) { 21389 ire_refrele(ire); 21390 ire = NULL; 21391 } 21392 /* 21393 * Guard against coming in from arp in which case conn is NULL. 21394 * Also guard against non M_DATA with dontroute set but 21395 * destined to local, loopback or broadcast addresses. 21396 */ 21397 if (connp != NULL && connp->conn_dontroute && 21398 !ignore_dontroute) { 21399 dontroute: 21400 /* 21401 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21402 * routing protocols from seeing false direct 21403 * connectivity. 21404 */ 21405 ipha->ipha_ttl = 1; 21406 /* If suitable ipif not found, drop packet */ 21407 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21408 if (dst_ipif == NULL) { 21409 noroute: 21410 ip1dbg(("ip_wput: no route for dst using" 21411 " SO_DONTROUTE\n")); 21412 BUMP_MIB(&ipst->ips_ip_mib, 21413 ipIfStatsOutNoRoutes); 21414 mp->b_prev = mp->b_next = NULL; 21415 if (first_mp == NULL) 21416 first_mp = mp; 21417 goto drop_pkt; 21418 } else { 21419 /* 21420 * If suitable ipif has been found, set 21421 * xmit_ill to the corresponding 21422 * ipif_ill because we'll be using the 21423 * send_from_ill logic below. 21424 */ 21425 ASSERT(xmit_ill == NULL); 21426 xmit_ill = dst_ipif->ipif_ill; 21427 mutex_enter(&xmit_ill->ill_lock); 21428 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21429 mutex_exit(&xmit_ill->ill_lock); 21430 xmit_ill = NULL; 21431 ipif_refrele(dst_ipif); 21432 goto noroute; 21433 } 21434 ill_refhold_locked(xmit_ill); 21435 mutex_exit(&xmit_ill->ill_lock); 21436 ipif_refrele(dst_ipif); 21437 } 21438 } 21439 21440 send_from_ill: 21441 if (xmit_ill != NULL) { 21442 ipif_t *ipif; 21443 21444 /* 21445 * Mark this packet as originated locally 21446 */ 21447 mp->b_prev = mp->b_next = NULL; 21448 21449 /* 21450 * Could be SO_DONTROUTE case also. 21451 * Verify that at least one ipif is up on the ill. 21452 */ 21453 if (xmit_ill->ill_ipif_up_count == 0) { 21454 ip1dbg(("ip_output: xmit_ill %s is down\n", 21455 xmit_ill->ill_name)); 21456 goto drop_pkt; 21457 } 21458 21459 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21460 if (ipif == NULL) { 21461 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21462 xmit_ill->ill_name)); 21463 goto drop_pkt; 21464 } 21465 21466 match_flags = 0; 21467 if (IS_UNDER_IPMP(xmit_ill)) 21468 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21469 21470 /* 21471 * Look for a ire that is part of the group, 21472 * if found use it else call ip_newroute_ipif. 21473 * IPCL_ZONEID is not used for matching because 21474 * IP_ALLZONES option is valid only when the 21475 * ill is accessible from all zones i.e has a 21476 * valid ipif in all zones. 21477 */ 21478 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21479 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21480 msg_getlabel(mp), match_flags, ipst); 21481 /* 21482 * If an ire exists use it or else create 21483 * an ire but don't add it to the cache. 21484 * Adding an ire may cause issues with 21485 * asymmetric routing. 21486 * In case of multiroute always act as if 21487 * ire does not exist. 21488 */ 21489 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21490 if (ire != NULL) 21491 ire_refrele(ire); 21492 ip_newroute_ipif(q, first_mp, ipif, 21493 dst, connp, 0, zoneid, infop); 21494 ipif_refrele(ipif); 21495 ip1dbg(("ip_output: xmit_ill via %s\n", 21496 xmit_ill->ill_name)); 21497 ill_refrele(xmit_ill); 21498 if (need_decref) 21499 CONN_DEC_REF(connp); 21500 return; 21501 } 21502 ipif_refrele(ipif); 21503 } else if (ip_nexthop || (connp != NULL && 21504 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21505 if (!ip_nexthop) { 21506 ip_nexthop = B_TRUE; 21507 nexthop_addr = connp->conn_nexthop_v4; 21508 } 21509 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21510 MATCH_IRE_GW; 21511 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21512 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21513 } else { 21514 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21515 ipst); 21516 } 21517 if (!ire) { 21518 if (ip_nexthop && !ignore_nexthop) { 21519 if (mctl_present) { 21520 io = (ipsec_out_t *)first_mp->b_rptr; 21521 ASSERT(first_mp->b_datap->db_type == 21522 M_CTL); 21523 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21524 } else { 21525 ASSERT(mp == first_mp); 21526 first_mp = allocb( 21527 sizeof (ipsec_info_t), BPRI_HI); 21528 if (first_mp == NULL) { 21529 first_mp = mp; 21530 goto discard_pkt; 21531 } 21532 first_mp->b_datap->db_type = M_CTL; 21533 first_mp->b_wptr += 21534 sizeof (ipsec_info_t); 21535 /* ipsec_out_secure is B_FALSE now */ 21536 bzero(first_mp->b_rptr, 21537 sizeof (ipsec_info_t)); 21538 io = (ipsec_out_t *)first_mp->b_rptr; 21539 io->ipsec_out_type = IPSEC_OUT; 21540 io->ipsec_out_len = 21541 sizeof (ipsec_out_t); 21542 io->ipsec_out_use_global_policy = 21543 B_TRUE; 21544 io->ipsec_out_ns = ipst->ips_netstack; 21545 first_mp->b_cont = mp; 21546 mctl_present = B_TRUE; 21547 } 21548 io->ipsec_out_ip_nexthop = ip_nexthop; 21549 io->ipsec_out_nexthop_addr = nexthop_addr; 21550 } 21551 noirefound: 21552 /* 21553 * Mark this packet as having originated on 21554 * this machine. This will be noted in 21555 * ire_add_then_send, which needs to know 21556 * whether to run it back through ip_wput or 21557 * ip_rput following successful resolution. 21558 */ 21559 mp->b_prev = NULL; 21560 mp->b_next = NULL; 21561 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21562 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21563 "ip_wput_end: q %p (%S)", q, "newroute"); 21564 if (xmit_ill != NULL) 21565 ill_refrele(xmit_ill); 21566 if (need_decref) 21567 CONN_DEC_REF(connp); 21568 return; 21569 } 21570 } 21571 21572 /* We now know where we are going with it. */ 21573 21574 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21575 "ip_wput_end: q %p (%S)", q, "end"); 21576 21577 /* 21578 * Check if the ire has the RTF_MULTIRT flag, inherited 21579 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21580 */ 21581 if (ire->ire_flags & RTF_MULTIRT) { 21582 /* 21583 * Force the TTL of multirouted packets if required. 21584 * The TTL of such packets is bounded by the 21585 * ip_multirt_ttl ndd variable. 21586 */ 21587 if ((ipst->ips_ip_multirt_ttl > 0) && 21588 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21589 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21590 "(was %d), dst 0x%08x\n", 21591 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21592 ntohl(ire->ire_addr))); 21593 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21594 } 21595 /* 21596 * At this point, we check to see if there are any pending 21597 * unresolved routes. ire_multirt_resolvable() 21598 * checks in O(n) that all IRE_OFFSUBNET ire 21599 * entries for the packet's destination and 21600 * flagged RTF_MULTIRT are currently resolved. 21601 * If some remain unresolved, we make a copy 21602 * of the current message. It will be used 21603 * to initiate additional route resolutions. 21604 */ 21605 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21606 msg_getlabel(first_mp), ipst); 21607 ip2dbg(("ip_wput[noirefound]: ire %p, " 21608 "multirt_need_resolve %d, first_mp %p\n", 21609 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21610 if (multirt_need_resolve) { 21611 copy_mp = copymsg(first_mp); 21612 if (copy_mp != NULL) { 21613 MULTIRT_DEBUG_TAG(copy_mp); 21614 } 21615 } 21616 } 21617 21618 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21619 /* 21620 * Try to resolve another multiroute if 21621 * ire_multirt_resolvable() deemed it necessary. 21622 * At this point, we need to distinguish 21623 * multicasts from other packets. For multicasts, 21624 * we call ip_newroute_ipif() and request that both 21625 * multirouting and setsrc flags are checked. 21626 */ 21627 if (copy_mp != NULL) { 21628 if (CLASSD(dst)) { 21629 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21630 if (ipif) { 21631 ASSERT(infop->ip_opt_ill_index == 0); 21632 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21633 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21634 ipif_refrele(ipif); 21635 } else { 21636 MULTIRT_DEBUG_UNTAG(copy_mp); 21637 freemsg(copy_mp); 21638 copy_mp = NULL; 21639 } 21640 } else { 21641 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21642 } 21643 } 21644 if (xmit_ill != NULL) 21645 ill_refrele(xmit_ill); 21646 if (need_decref) 21647 CONN_DEC_REF(connp); 21648 return; 21649 21650 icmp_parameter_problem: 21651 /* could not have originated externally */ 21652 ASSERT(mp->b_prev == NULL); 21653 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21654 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21655 /* it's the IP header length that's in trouble */ 21656 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21657 first_mp = NULL; 21658 } 21659 21660 discard_pkt: 21661 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21662 drop_pkt: 21663 ip1dbg(("ip_wput: dropped packet\n")); 21664 if (ire != NULL) 21665 ire_refrele(ire); 21666 if (need_decref) 21667 CONN_DEC_REF(connp); 21668 freemsg(first_mp); 21669 if (xmit_ill != NULL) 21670 ill_refrele(xmit_ill); 21671 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21672 "ip_wput_end: q %p (%S)", q, "droppkt"); 21673 } 21674 21675 /* 21676 * If this is a conn_t queue, then we pass in the conn. This includes the 21677 * zoneid. 21678 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21679 * in which case we use the global zoneid since those are all part of 21680 * the global zone. 21681 */ 21682 void 21683 ip_wput(queue_t *q, mblk_t *mp) 21684 { 21685 if (CONN_Q(q)) 21686 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21687 else 21688 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21689 } 21690 21691 /* 21692 * 21693 * The following rules must be observed when accessing any ipif or ill 21694 * that has been cached in the conn. Typically conn_outgoing_ill, 21695 * conn_multicast_ipif and conn_multicast_ill. 21696 * 21697 * Access: The ipif or ill pointed to from the conn can be accessed under 21698 * the protection of the conn_lock or after it has been refheld under the 21699 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21700 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21701 * The reason for this is that a concurrent unplumb could actually be 21702 * cleaning up these cached pointers by walking the conns and might have 21703 * finished cleaning up the conn in question. The macros check that an 21704 * unplumb has not yet started on the ipif or ill. 21705 * 21706 * Caching: An ipif or ill pointer may be cached in the conn only after 21707 * making sure that an unplumb has not started. So the caching is done 21708 * while holding both the conn_lock and the ill_lock and after using the 21709 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21710 * flag before starting the cleanup of conns. 21711 * 21712 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21713 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21714 * or a reference to the ipif or a reference to an ire that references the 21715 * ipif. An ipif only changes its ill when migrating from an underlying ill 21716 * to an IPMP ill in ipif_up(). 21717 */ 21718 ipif_t * 21719 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21720 { 21721 ipif_t *ipif; 21722 ill_t *ill; 21723 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21724 21725 *err = 0; 21726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21727 mutex_enter(&connp->conn_lock); 21728 ipif = *ipifp; 21729 if (ipif != NULL) { 21730 ill = ipif->ipif_ill; 21731 mutex_enter(&ill->ill_lock); 21732 if (IPIF_CAN_LOOKUP(ipif)) { 21733 ipif_refhold_locked(ipif); 21734 mutex_exit(&ill->ill_lock); 21735 mutex_exit(&connp->conn_lock); 21736 rw_exit(&ipst->ips_ill_g_lock); 21737 return (ipif); 21738 } else { 21739 *err = IPIF_LOOKUP_FAILED; 21740 } 21741 mutex_exit(&ill->ill_lock); 21742 } 21743 mutex_exit(&connp->conn_lock); 21744 rw_exit(&ipst->ips_ill_g_lock); 21745 return (NULL); 21746 } 21747 21748 ill_t * 21749 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21750 { 21751 ill_t *ill; 21752 21753 *err = 0; 21754 mutex_enter(&connp->conn_lock); 21755 ill = *illp; 21756 if (ill != NULL) { 21757 mutex_enter(&ill->ill_lock); 21758 if (ILL_CAN_LOOKUP(ill)) { 21759 ill_refhold_locked(ill); 21760 mutex_exit(&ill->ill_lock); 21761 mutex_exit(&connp->conn_lock); 21762 return (ill); 21763 } else { 21764 *err = ILL_LOOKUP_FAILED; 21765 } 21766 mutex_exit(&ill->ill_lock); 21767 } 21768 mutex_exit(&connp->conn_lock); 21769 return (NULL); 21770 } 21771 21772 static int 21773 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21774 { 21775 ill_t *ill; 21776 21777 ill = ipif->ipif_ill; 21778 mutex_enter(&connp->conn_lock); 21779 mutex_enter(&ill->ill_lock); 21780 if (IPIF_CAN_LOOKUP(ipif)) { 21781 *ipifp = ipif; 21782 mutex_exit(&ill->ill_lock); 21783 mutex_exit(&connp->conn_lock); 21784 return (0); 21785 } 21786 mutex_exit(&ill->ill_lock); 21787 mutex_exit(&connp->conn_lock); 21788 return (IPIF_LOOKUP_FAILED); 21789 } 21790 21791 /* 21792 * This is called if the outbound datagram needs fragmentation. 21793 * 21794 * NOTE : This function does not ire_refrele the ire argument passed in. 21795 */ 21796 static void 21797 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21798 ip_stack_t *ipst, conn_t *connp) 21799 { 21800 ipha_t *ipha; 21801 mblk_t *mp; 21802 uint32_t v_hlen_tos_len; 21803 uint32_t max_frag; 21804 uint32_t frag_flag; 21805 boolean_t dont_use; 21806 21807 if (ipsec_mp->b_datap->db_type == M_CTL) { 21808 mp = ipsec_mp->b_cont; 21809 } else { 21810 mp = ipsec_mp; 21811 } 21812 21813 ipha = (ipha_t *)mp->b_rptr; 21814 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21815 21816 #ifdef _BIG_ENDIAN 21817 #define V_HLEN (v_hlen_tos_len >> 24) 21818 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21819 #else 21820 #define V_HLEN (v_hlen_tos_len & 0xFF) 21821 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21822 #endif 21823 21824 #ifndef SPEED_BEFORE_SAFETY 21825 /* 21826 * Check that ipha_length is consistent with 21827 * the mblk length 21828 */ 21829 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21830 ip0dbg(("Packet length mismatch: %d, %ld\n", 21831 LENGTH, msgdsize(mp))); 21832 freemsg(ipsec_mp); 21833 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21834 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21835 "packet length mismatch"); 21836 return; 21837 } 21838 #endif 21839 /* 21840 * Don't use frag_flag if pre-built packet or source 21841 * routed or if multicast (since multicast packets do not solicit 21842 * ICMP "packet too big" messages). Get the values of 21843 * max_frag and frag_flag atomically by acquiring the 21844 * ire_lock. 21845 */ 21846 mutex_enter(&ire->ire_lock); 21847 max_frag = ire->ire_max_frag; 21848 frag_flag = ire->ire_frag_flag; 21849 mutex_exit(&ire->ire_lock); 21850 21851 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21852 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21853 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21854 21855 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21856 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21857 } 21858 21859 /* 21860 * Used for deciding the MSS size for the upper layer. Thus 21861 * we need to check the outbound policy values in the conn. 21862 */ 21863 int 21864 conn_ipsec_length(conn_t *connp) 21865 { 21866 ipsec_latch_t *ipl; 21867 21868 ipl = connp->conn_latch; 21869 if (ipl == NULL) 21870 return (0); 21871 21872 if (ipl->ipl_out_policy == NULL) 21873 return (0); 21874 21875 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21876 } 21877 21878 /* 21879 * Returns an estimate of the IPsec headers size. This is used if 21880 * we don't want to call into IPsec to get the exact size. 21881 */ 21882 int 21883 ipsec_out_extra_length(mblk_t *ipsec_mp) 21884 { 21885 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21886 ipsec_action_t *a; 21887 21888 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21889 if (!io->ipsec_out_secure) 21890 return (0); 21891 21892 a = io->ipsec_out_act; 21893 21894 if (a == NULL) { 21895 ASSERT(io->ipsec_out_policy != NULL); 21896 a = io->ipsec_out_policy->ipsp_act; 21897 } 21898 ASSERT(a != NULL); 21899 21900 return (a->ipa_ovhd); 21901 } 21902 21903 /* 21904 * Returns an estimate of the IPsec headers size. This is used if 21905 * we don't want to call into IPsec to get the exact size. 21906 */ 21907 int 21908 ipsec_in_extra_length(mblk_t *ipsec_mp) 21909 { 21910 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21911 ipsec_action_t *a; 21912 21913 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21914 21915 a = ii->ipsec_in_action; 21916 return (a == NULL ? 0 : a->ipa_ovhd); 21917 } 21918 21919 /* 21920 * If there are any source route options, return the true final 21921 * destination. Otherwise, return the destination. 21922 */ 21923 ipaddr_t 21924 ip_get_dst(ipha_t *ipha) 21925 { 21926 ipoptp_t opts; 21927 uchar_t *opt; 21928 uint8_t optval; 21929 uint8_t optlen; 21930 ipaddr_t dst; 21931 uint32_t off; 21932 21933 dst = ipha->ipha_dst; 21934 21935 if (IS_SIMPLE_IPH(ipha)) 21936 return (dst); 21937 21938 for (optval = ipoptp_first(&opts, ipha); 21939 optval != IPOPT_EOL; 21940 optval = ipoptp_next(&opts)) { 21941 opt = opts.ipoptp_cur; 21942 optlen = opts.ipoptp_len; 21943 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21944 switch (optval) { 21945 case IPOPT_SSRR: 21946 case IPOPT_LSRR: 21947 off = opt[IPOPT_OFFSET]; 21948 /* 21949 * If one of the conditions is true, it means 21950 * end of options and dst already has the right 21951 * value. 21952 */ 21953 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21954 off = optlen - IP_ADDR_LEN; 21955 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21956 } 21957 return (dst); 21958 default: 21959 break; 21960 } 21961 } 21962 21963 return (dst); 21964 } 21965 21966 mblk_t * 21967 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21968 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21969 { 21970 ipsec_out_t *io; 21971 mblk_t *first_mp; 21972 boolean_t policy_present; 21973 ip_stack_t *ipst; 21974 ipsec_stack_t *ipss; 21975 21976 ASSERT(ire != NULL); 21977 ipst = ire->ire_ipst; 21978 ipss = ipst->ips_netstack->netstack_ipsec; 21979 21980 first_mp = mp; 21981 if (mp->b_datap->db_type == M_CTL) { 21982 io = (ipsec_out_t *)first_mp->b_rptr; 21983 /* 21984 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21985 * 21986 * 1) There is per-socket policy (including cached global 21987 * policy) or a policy on the IP-in-IP tunnel. 21988 * 2) There is no per-socket policy, but it is 21989 * a multicast packet that needs to go out 21990 * on a specific interface. This is the case 21991 * where (ip_wput and ip_wput_multicast) attaches 21992 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21993 * 21994 * In case (2) we check with global policy to 21995 * see if there is a match and set the ill_index 21996 * appropriately so that we can lookup the ire 21997 * properly in ip_wput_ipsec_out. 21998 */ 21999 22000 /* 22001 * ipsec_out_use_global_policy is set to B_FALSE 22002 * in ipsec_in_to_out(). Refer to that function for 22003 * details. 22004 */ 22005 if ((io->ipsec_out_latch == NULL) && 22006 (io->ipsec_out_use_global_policy)) { 22007 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22008 ire, connp, unspec_src, zoneid)); 22009 } 22010 if (!io->ipsec_out_secure) { 22011 /* 22012 * If this is not a secure packet, drop 22013 * the IPSEC_OUT mp and treat it as a clear 22014 * packet. This happens when we are sending 22015 * a ICMP reply back to a clear packet. See 22016 * ipsec_in_to_out() for details. 22017 */ 22018 mp = first_mp->b_cont; 22019 freeb(first_mp); 22020 } 22021 return (mp); 22022 } 22023 /* 22024 * See whether we need to attach a global policy here. We 22025 * don't depend on the conn (as it could be null) for deciding 22026 * what policy this datagram should go through because it 22027 * should have happened in ip_wput if there was some 22028 * policy. This normally happens for connections which are not 22029 * fully bound preventing us from caching policies in 22030 * ip_bind. Packets coming from the TCP listener/global queue 22031 * - which are non-hard_bound - could also be affected by 22032 * applying policy here. 22033 * 22034 * If this packet is coming from tcp global queue or listener, 22035 * we will be applying policy here. This may not be *right* 22036 * if these packets are coming from the detached connection as 22037 * it could have gone in clear before. This happens only if a 22038 * TCP connection started when there is no policy and somebody 22039 * added policy before it became detached. Thus packets of the 22040 * detached connection could go out secure and the other end 22041 * would drop it because it will be expecting in clear. The 22042 * converse is not true i.e if somebody starts a TCP 22043 * connection and deletes the policy, all the packets will 22044 * still go out with the policy that existed before deleting 22045 * because ip_unbind sends up policy information which is used 22046 * by TCP on subsequent ip_wputs. The right solution is to fix 22047 * TCP to attach a dummy IPSEC_OUT and set 22048 * ipsec_out_use_global_policy to B_FALSE. As this might 22049 * affect performance for normal cases, we are not doing it. 22050 * Thus, set policy before starting any TCP connections. 22051 * 22052 * NOTE - We might apply policy even for a hard bound connection 22053 * - for which we cached policy in ip_bind - if somebody added 22054 * global policy after we inherited the policy in ip_bind. 22055 * This means that the packets that were going out in clear 22056 * previously would start going secure and hence get dropped 22057 * on the other side. To fix this, TCP attaches a dummy 22058 * ipsec_out and make sure that we don't apply global policy. 22059 */ 22060 if (ipha != NULL) 22061 policy_present = ipss->ipsec_outbound_v4_policy_present; 22062 else 22063 policy_present = ipss->ipsec_outbound_v6_policy_present; 22064 if (!policy_present) 22065 return (mp); 22066 22067 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22068 zoneid)); 22069 } 22070 22071 /* 22072 * This function does the ire_refrele of the ire passed in as the 22073 * argument. As this function looks up more ires i.e broadcast ires, 22074 * it needs to REFRELE them. Currently, for simplicity we don't 22075 * differentiate the one passed in and looked up here. We always 22076 * REFRELE. 22077 * IPQoS Notes: 22078 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22079 * IPsec packets are done in ipsec_out_process. 22080 */ 22081 void 22082 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22083 zoneid_t zoneid) 22084 { 22085 ipha_t *ipha; 22086 #define rptr ((uchar_t *)ipha) 22087 queue_t *stq; 22088 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22089 uint32_t v_hlen_tos_len; 22090 uint32_t ttl_protocol; 22091 ipaddr_t src; 22092 ipaddr_t dst; 22093 uint32_t cksum; 22094 ipaddr_t orig_src; 22095 ire_t *ire1; 22096 mblk_t *next_mp; 22097 uint_t hlen; 22098 uint16_t *up; 22099 uint32_t max_frag = ire->ire_max_frag; 22100 ill_t *ill = ire_to_ill(ire); 22101 int clusterwide; 22102 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22103 int ipsec_len; 22104 mblk_t *first_mp; 22105 ipsec_out_t *io; 22106 boolean_t conn_dontroute; /* conn value for multicast */ 22107 boolean_t conn_multicast_loop; /* conn value for multicast */ 22108 boolean_t multicast_forward; /* Should we forward ? */ 22109 boolean_t unspec_src; 22110 ill_t *conn_outgoing_ill = NULL; 22111 ill_t *ire_ill; 22112 ill_t *ire1_ill; 22113 ill_t *out_ill; 22114 uint32_t ill_index = 0; 22115 boolean_t multirt_send = B_FALSE; 22116 int err; 22117 ipxmit_state_t pktxmit_state; 22118 ip_stack_t *ipst = ire->ire_ipst; 22119 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22120 22121 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22122 "ip_wput_ire_start: q %p", q); 22123 22124 multicast_forward = B_FALSE; 22125 unspec_src = (connp != NULL && connp->conn_unspec_src); 22126 22127 if (ire->ire_flags & RTF_MULTIRT) { 22128 /* 22129 * Multirouting case. The bucket where ire is stored 22130 * probably holds other RTF_MULTIRT flagged ire 22131 * to the destination. In this call to ip_wput_ire, 22132 * we attempt to send the packet through all 22133 * those ires. Thus, we first ensure that ire is the 22134 * first RTF_MULTIRT ire in the bucket, 22135 * before walking the ire list. 22136 */ 22137 ire_t *first_ire; 22138 irb_t *irb = ire->ire_bucket; 22139 ASSERT(irb != NULL); 22140 22141 /* Make sure we do not omit any multiroute ire. */ 22142 IRB_REFHOLD(irb); 22143 for (first_ire = irb->irb_ire; 22144 first_ire != NULL; 22145 first_ire = first_ire->ire_next) { 22146 if ((first_ire->ire_flags & RTF_MULTIRT) && 22147 (first_ire->ire_addr == ire->ire_addr) && 22148 !(first_ire->ire_marks & 22149 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22150 break; 22151 } 22152 22153 if ((first_ire != NULL) && (first_ire != ire)) { 22154 IRE_REFHOLD(first_ire); 22155 ire_refrele(ire); 22156 ire = first_ire; 22157 ill = ire_to_ill(ire); 22158 } 22159 IRB_REFRELE(irb); 22160 } 22161 22162 /* 22163 * conn_outgoing_ill variable is used only in the broadcast loop. 22164 * for performance we don't grab the mutexs in the fastpath 22165 */ 22166 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22167 connp->conn_outgoing_ill != NULL) { 22168 conn_outgoing_ill = conn_get_held_ill(connp, 22169 &connp->conn_outgoing_ill, &err); 22170 if (err == ILL_LOOKUP_FAILED) { 22171 ire_refrele(ire); 22172 freemsg(mp); 22173 return; 22174 } 22175 } 22176 22177 if (mp->b_datap->db_type != M_CTL) { 22178 ipha = (ipha_t *)mp->b_rptr; 22179 } else { 22180 io = (ipsec_out_t *)mp->b_rptr; 22181 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22182 ASSERT(zoneid == io->ipsec_out_zoneid); 22183 ASSERT(zoneid != ALL_ZONES); 22184 ipha = (ipha_t *)mp->b_cont->b_rptr; 22185 dst = ipha->ipha_dst; 22186 /* 22187 * For the multicast case, ipsec_out carries conn_dontroute and 22188 * conn_multicast_loop as conn may not be available here. We 22189 * need this for multicast loopback and forwarding which is done 22190 * later in the code. 22191 */ 22192 if (CLASSD(dst)) { 22193 conn_dontroute = io->ipsec_out_dontroute; 22194 conn_multicast_loop = io->ipsec_out_multicast_loop; 22195 /* 22196 * If conn_dontroute is not set or conn_multicast_loop 22197 * is set, we need to do forwarding/loopback. For 22198 * datagrams from ip_wput_multicast, conn_dontroute is 22199 * set to B_TRUE and conn_multicast_loop is set to 22200 * B_FALSE so that we neither do forwarding nor 22201 * loopback. 22202 */ 22203 if (!conn_dontroute || conn_multicast_loop) 22204 multicast_forward = B_TRUE; 22205 } 22206 } 22207 22208 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22209 ire->ire_zoneid != ALL_ZONES) { 22210 /* 22211 * When a zone sends a packet to another zone, we try to deliver 22212 * the packet under the same conditions as if the destination 22213 * was a real node on the network. To do so, we look for a 22214 * matching route in the forwarding table. 22215 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22216 * ip_newroute() does. 22217 * Note that IRE_LOCAL are special, since they are used 22218 * when the zoneid doesn't match in some cases. This means that 22219 * we need to handle ipha_src differently since ire_src_addr 22220 * belongs to the receiving zone instead of the sending zone. 22221 * When ip_restrict_interzone_loopback is set, then 22222 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22223 * for loopback between zones when the logical "Ethernet" would 22224 * have looped them back. 22225 */ 22226 ire_t *src_ire; 22227 22228 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22229 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22230 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22231 if (src_ire != NULL && 22232 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22233 (!ipst->ips_ip_restrict_interzone_loopback || 22234 ire_local_same_lan(ire, src_ire))) { 22235 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22236 ipha->ipha_src = src_ire->ire_src_addr; 22237 ire_refrele(src_ire); 22238 } else { 22239 ire_refrele(ire); 22240 if (conn_outgoing_ill != NULL) 22241 ill_refrele(conn_outgoing_ill); 22242 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22243 if (src_ire != NULL) { 22244 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22245 ire_refrele(src_ire); 22246 freemsg(mp); 22247 return; 22248 } 22249 ire_refrele(src_ire); 22250 } 22251 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22252 /* Failed */ 22253 freemsg(mp); 22254 return; 22255 } 22256 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22257 ipst); 22258 return; 22259 } 22260 } 22261 22262 if (mp->b_datap->db_type == M_CTL || 22263 ipss->ipsec_outbound_v4_policy_present) { 22264 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22265 unspec_src, zoneid); 22266 if (mp == NULL) { 22267 ire_refrele(ire); 22268 if (conn_outgoing_ill != NULL) 22269 ill_refrele(conn_outgoing_ill); 22270 return; 22271 } 22272 /* 22273 * Trusted Extensions supports all-zones interfaces, so 22274 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22275 * the global zone. 22276 */ 22277 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22278 io = (ipsec_out_t *)mp->b_rptr; 22279 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22280 zoneid = io->ipsec_out_zoneid; 22281 } 22282 } 22283 22284 first_mp = mp; 22285 ipsec_len = 0; 22286 22287 if (first_mp->b_datap->db_type == M_CTL) { 22288 io = (ipsec_out_t *)first_mp->b_rptr; 22289 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22290 mp = first_mp->b_cont; 22291 ipsec_len = ipsec_out_extra_length(first_mp); 22292 ASSERT(ipsec_len >= 0); 22293 /* We already picked up the zoneid from the M_CTL above */ 22294 ASSERT(zoneid == io->ipsec_out_zoneid); 22295 ASSERT(zoneid != ALL_ZONES); 22296 22297 /* 22298 * Drop M_CTL here if IPsec processing is not needed. 22299 * (Non-IPsec use of M_CTL extracted any information it 22300 * needed above). 22301 */ 22302 if (ipsec_len == 0) { 22303 freeb(first_mp); 22304 first_mp = mp; 22305 } 22306 } 22307 22308 /* 22309 * Fast path for ip_wput_ire 22310 */ 22311 22312 ipha = (ipha_t *)mp->b_rptr; 22313 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22314 dst = ipha->ipha_dst; 22315 22316 /* 22317 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22318 * if the socket is a SOCK_RAW type. The transport checksum should 22319 * be provided in the pre-built packet, so we don't need to compute it. 22320 * Also, other application set flags, like DF, should not be altered. 22321 * Other transport MUST pass down zero. 22322 */ 22323 ip_hdr_included = ipha->ipha_ident; 22324 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22325 22326 if (CLASSD(dst)) { 22327 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22328 ntohl(dst), 22329 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22330 ntohl(ire->ire_addr))); 22331 } 22332 22333 /* Macros to extract header fields from data already in registers */ 22334 #ifdef _BIG_ENDIAN 22335 #define V_HLEN (v_hlen_tos_len >> 24) 22336 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22337 #define PROTO (ttl_protocol & 0xFF) 22338 #else 22339 #define V_HLEN (v_hlen_tos_len & 0xFF) 22340 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22341 #define PROTO (ttl_protocol >> 8) 22342 #endif 22343 22344 orig_src = src = ipha->ipha_src; 22345 /* (The loop back to "another" is explained down below.) */ 22346 another:; 22347 /* 22348 * Assign an ident value for this packet. We assign idents on 22349 * a per destination basis out of the IRE. There could be 22350 * other threads targeting the same destination, so we have to 22351 * arrange for a atomic increment. Note that we use a 32-bit 22352 * atomic add because it has better performance than its 22353 * 16-bit sibling. 22354 * 22355 * If running in cluster mode and if the source address 22356 * belongs to a replicated service then vector through 22357 * cl_inet_ipident vector to allocate ip identifier 22358 * NOTE: This is a contract private interface with the 22359 * clustering group. 22360 */ 22361 clusterwide = 0; 22362 if (cl_inet_ipident) { 22363 ASSERT(cl_inet_isclusterwide); 22364 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22365 22366 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22367 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22368 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22369 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22370 (uint8_t *)(uintptr_t)dst, NULL); 22371 clusterwide = 1; 22372 } 22373 } 22374 if (!clusterwide) { 22375 ipha->ipha_ident = 22376 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22377 } 22378 22379 #ifndef _BIG_ENDIAN 22380 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22381 #endif 22382 22383 /* 22384 * Set source address unless sent on an ill or conn_unspec_src is set. 22385 * This is needed to obey conn_unspec_src when packets go through 22386 * ip_newroute + arp. 22387 * Assumes ip_newroute{,_multi} sets the source address as well. 22388 */ 22389 if (src == INADDR_ANY && !unspec_src) { 22390 /* 22391 * Assign the appropriate source address from the IRE if none 22392 * was specified. 22393 */ 22394 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22395 22396 src = ire->ire_src_addr; 22397 if (connp == NULL) { 22398 ip1dbg(("ip_wput_ire: no connp and no src " 22399 "address for dst 0x%x, using src 0x%x\n", 22400 ntohl(dst), 22401 ntohl(src))); 22402 } 22403 ipha->ipha_src = src; 22404 } 22405 stq = ire->ire_stq; 22406 22407 /* 22408 * We only allow ire chains for broadcasts since there will 22409 * be multiple IRE_CACHE entries for the same multicast 22410 * address (one per ipif). 22411 */ 22412 next_mp = NULL; 22413 22414 /* broadcast packet */ 22415 if (ire->ire_type == IRE_BROADCAST) 22416 goto broadcast; 22417 22418 /* loopback ? */ 22419 if (stq == NULL) 22420 goto nullstq; 22421 22422 /* The ill_index for outbound ILL */ 22423 ill_index = Q_TO_INDEX(stq); 22424 22425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22426 ttl_protocol = ((uint16_t *)ipha)[4]; 22427 22428 /* pseudo checksum (do it in parts for IP header checksum) */ 22429 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22430 22431 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22432 queue_t *dev_q = stq->q_next; 22433 22434 /* 22435 * For DIRECT_CAPABLE, we do flow control at 22436 * the time of sending the packet. See 22437 * ILL_SEND_TX(). 22438 */ 22439 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22440 (DEV_Q_FLOW_BLOCKED(dev_q))) 22441 goto blocked; 22442 22443 if ((PROTO == IPPROTO_UDP) && 22444 (ip_hdr_included != IP_HDR_INCLUDED)) { 22445 hlen = (V_HLEN & 0xF) << 2; 22446 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22447 if (*up != 0) { 22448 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22449 hlen, LENGTH, max_frag, ipsec_len, cksum); 22450 /* Software checksum? */ 22451 if (DB_CKSUMFLAGS(mp) == 0) { 22452 IP_STAT(ipst, ip_out_sw_cksum); 22453 IP_STAT_UPDATE(ipst, 22454 ip_udp_out_sw_cksum_bytes, 22455 LENGTH - hlen); 22456 } 22457 } 22458 } 22459 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22460 hlen = (V_HLEN & 0xF) << 2; 22461 if (PROTO == IPPROTO_TCP) { 22462 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22463 /* 22464 * The packet header is processed once and for all, even 22465 * in the multirouting case. We disable hardware 22466 * checksum if the packet is multirouted, as it will be 22467 * replicated via several interfaces, and not all of 22468 * them may have this capability. 22469 */ 22470 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22471 LENGTH, max_frag, ipsec_len, cksum); 22472 /* Software checksum? */ 22473 if (DB_CKSUMFLAGS(mp) == 0) { 22474 IP_STAT(ipst, ip_out_sw_cksum); 22475 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22476 LENGTH - hlen); 22477 } 22478 } else { 22479 sctp_hdr_t *sctph; 22480 22481 ASSERT(PROTO == IPPROTO_SCTP); 22482 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22483 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22484 /* 22485 * Zero out the checksum field to ensure proper 22486 * checksum calculation. 22487 */ 22488 sctph->sh_chksum = 0; 22489 #ifdef DEBUG 22490 if (!skip_sctp_cksum) 22491 #endif 22492 sctph->sh_chksum = sctp_cksum(mp, hlen); 22493 } 22494 } 22495 22496 /* 22497 * If this is a multicast packet and originated from ip_wput 22498 * we need to do loopback and forwarding checks. If it comes 22499 * from ip_wput_multicast, we SHOULD not do this. 22500 */ 22501 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22502 22503 /* checksum */ 22504 cksum += ttl_protocol; 22505 22506 /* fragment the packet */ 22507 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22508 goto fragmentit; 22509 /* 22510 * Don't use frag_flag if packet is pre-built or source 22511 * routed or if multicast (since multicast packets do 22512 * not solicit ICMP "packet too big" messages). 22513 */ 22514 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22515 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22516 !ip_source_route_included(ipha)) && 22517 !CLASSD(ipha->ipha_dst)) 22518 ipha->ipha_fragment_offset_and_flags |= 22519 htons(ire->ire_frag_flag); 22520 22521 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22522 /* calculate IP header checksum */ 22523 cksum += ipha->ipha_ident; 22524 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22525 cksum += ipha->ipha_fragment_offset_and_flags; 22526 22527 /* IP options present */ 22528 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22529 if (hlen) 22530 goto checksumoptions; 22531 22532 /* calculate hdr checksum */ 22533 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22534 cksum = ~(cksum + (cksum >> 16)); 22535 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22536 } 22537 if (ipsec_len != 0) { 22538 /* 22539 * We will do the rest of the processing after 22540 * we come back from IPsec in ip_wput_ipsec_out(). 22541 */ 22542 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22543 22544 io = (ipsec_out_t *)first_mp->b_rptr; 22545 io->ipsec_out_ill_index = 22546 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22547 ipsec_out_process(q, first_mp, ire, 0); 22548 ire_refrele(ire); 22549 if (conn_outgoing_ill != NULL) 22550 ill_refrele(conn_outgoing_ill); 22551 return; 22552 } 22553 22554 /* 22555 * In most cases, the emission loop below is entered only 22556 * once. Only in the case where the ire holds the 22557 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22558 * flagged ires in the bucket, and send the packet 22559 * through all crossed RTF_MULTIRT routes. 22560 */ 22561 if (ire->ire_flags & RTF_MULTIRT) { 22562 multirt_send = B_TRUE; 22563 } 22564 do { 22565 if (multirt_send) { 22566 irb_t *irb; 22567 /* 22568 * We are in a multiple send case, need to get 22569 * the next ire and make a duplicate of the packet. 22570 * ire1 holds here the next ire to process in the 22571 * bucket. If multirouting is expected, 22572 * any non-RTF_MULTIRT ire that has the 22573 * right destination address is ignored. 22574 */ 22575 irb = ire->ire_bucket; 22576 ASSERT(irb != NULL); 22577 22578 IRB_REFHOLD(irb); 22579 for (ire1 = ire->ire_next; 22580 ire1 != NULL; 22581 ire1 = ire1->ire_next) { 22582 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22583 continue; 22584 if (ire1->ire_addr != ire->ire_addr) 22585 continue; 22586 if (ire1->ire_marks & 22587 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22588 continue; 22589 22590 /* Got one */ 22591 IRE_REFHOLD(ire1); 22592 break; 22593 } 22594 IRB_REFRELE(irb); 22595 22596 if (ire1 != NULL) { 22597 next_mp = copyb(mp); 22598 if ((next_mp == NULL) || 22599 ((mp->b_cont != NULL) && 22600 ((next_mp->b_cont = 22601 dupmsg(mp->b_cont)) == NULL))) { 22602 freemsg(next_mp); 22603 next_mp = NULL; 22604 ire_refrele(ire1); 22605 ire1 = NULL; 22606 } 22607 } 22608 22609 /* Last multiroute ire; don't loop anymore. */ 22610 if (ire1 == NULL) { 22611 multirt_send = B_FALSE; 22612 } 22613 } 22614 22615 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22616 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22617 mblk_t *, mp); 22618 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22619 ipst->ips_ipv4firewall_physical_out, 22620 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22621 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22622 22623 if (mp == NULL) 22624 goto release_ire_and_ill; 22625 22626 if (ipst->ips_ipobs_enabled) { 22627 zoneid_t szone; 22628 22629 /* 22630 * On the outbound path the destination zone will be 22631 * unknown as we're sending this packet out on the 22632 * wire. 22633 */ 22634 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22635 ALL_ZONES); 22636 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22637 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22638 } 22639 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22640 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22641 22642 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22643 22644 if ((pktxmit_state == SEND_FAILED) || 22645 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22646 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22647 "- packet dropped\n")); 22648 release_ire_and_ill: 22649 ire_refrele(ire); 22650 if (next_mp != NULL) { 22651 freemsg(next_mp); 22652 ire_refrele(ire1); 22653 } 22654 if (conn_outgoing_ill != NULL) 22655 ill_refrele(conn_outgoing_ill); 22656 return; 22657 } 22658 22659 if (CLASSD(dst)) { 22660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22661 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22662 LENGTH); 22663 } 22664 22665 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22666 "ip_wput_ire_end: q %p (%S)", 22667 q, "last copy out"); 22668 IRE_REFRELE(ire); 22669 22670 if (multirt_send) { 22671 ASSERT(ire1); 22672 /* 22673 * Proceed with the next RTF_MULTIRT ire, 22674 * Also set up the send-to queue accordingly. 22675 */ 22676 ire = ire1; 22677 ire1 = NULL; 22678 stq = ire->ire_stq; 22679 mp = next_mp; 22680 next_mp = NULL; 22681 ipha = (ipha_t *)mp->b_rptr; 22682 ill_index = Q_TO_INDEX(stq); 22683 ill = (ill_t *)stq->q_ptr; 22684 } 22685 } while (multirt_send); 22686 if (conn_outgoing_ill != NULL) 22687 ill_refrele(conn_outgoing_ill); 22688 return; 22689 22690 /* 22691 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22692 */ 22693 broadcast: 22694 { 22695 /* 22696 * To avoid broadcast storms, we usually set the TTL to 1 for 22697 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22698 * can be overridden stack-wide through the ip_broadcast_ttl 22699 * ndd tunable, or on a per-connection basis through the 22700 * IP_BROADCAST_TTL socket option. 22701 * 22702 * In the event that we are replying to incoming ICMP packets, 22703 * connp could be NULL. 22704 */ 22705 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22706 if (connp != NULL) { 22707 if (connp->conn_dontroute) 22708 ipha->ipha_ttl = 1; 22709 else if (connp->conn_broadcast_ttl != 0) 22710 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22711 } 22712 22713 /* 22714 * Note that we are not doing a IRB_REFHOLD here. 22715 * Actually we don't care if the list changes i.e 22716 * if somebody deletes an IRE from the list while 22717 * we drop the lock, the next time we come around 22718 * ire_next will be NULL and hence we won't send 22719 * out multiple copies which is fine. 22720 */ 22721 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22722 ire1 = ire->ire_next; 22723 if (conn_outgoing_ill != NULL) { 22724 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22725 ASSERT(ire1 == ire->ire_next); 22726 if (ire1 != NULL && ire1->ire_addr == dst) { 22727 ire_refrele(ire); 22728 ire = ire1; 22729 IRE_REFHOLD(ire); 22730 ire1 = ire->ire_next; 22731 continue; 22732 } 22733 rw_exit(&ire->ire_bucket->irb_lock); 22734 /* Did not find a matching ill */ 22735 ip1dbg(("ip_wput_ire: broadcast with no " 22736 "matching IP_BOUND_IF ill %s dst %x\n", 22737 conn_outgoing_ill->ill_name, dst)); 22738 freemsg(first_mp); 22739 if (ire != NULL) 22740 ire_refrele(ire); 22741 ill_refrele(conn_outgoing_ill); 22742 return; 22743 } 22744 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22745 /* 22746 * If the next IRE has the same address and is not one 22747 * of the two copies that we need to send, try to see 22748 * whether this copy should be sent at all. This 22749 * assumes that we insert loopbacks first and then 22750 * non-loopbacks. This is acheived by inserting the 22751 * loopback always before non-loopback. 22752 * This is used to send a single copy of a broadcast 22753 * packet out all physical interfaces that have an 22754 * matching IRE_BROADCAST while also looping 22755 * back one copy (to ip_wput_local) for each 22756 * matching physical interface. However, we avoid 22757 * sending packets out different logical that match by 22758 * having ipif_up/ipif_down supress duplicate 22759 * IRE_BROADCASTS. 22760 * 22761 * This feature is currently used to get broadcasts 22762 * sent to multiple interfaces, when the broadcast 22763 * address being used applies to multiple interfaces. 22764 * For example, a whole net broadcast will be 22765 * replicated on every connected subnet of 22766 * the target net. 22767 * 22768 * Each zone has its own set of IRE_BROADCASTs, so that 22769 * we're able to distribute inbound packets to multiple 22770 * zones who share a broadcast address. We avoid looping 22771 * back outbound packets in different zones but on the 22772 * same ill, as the application would see duplicates. 22773 * 22774 * This logic assumes that ire_add_v4() groups the 22775 * IRE_BROADCAST entries so that those with the same 22776 * ire_addr are kept together. 22777 */ 22778 ire_ill = ire->ire_ipif->ipif_ill; 22779 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22780 while (ire1 != NULL && ire1->ire_addr == dst) { 22781 ire1_ill = ire1->ire_ipif->ipif_ill; 22782 if (ire1_ill != ire_ill) 22783 break; 22784 ire1 = ire1->ire_next; 22785 } 22786 } 22787 } 22788 ASSERT(multirt_send == B_FALSE); 22789 if (ire1 != NULL && ire1->ire_addr == dst) { 22790 if ((ire->ire_flags & RTF_MULTIRT) && 22791 (ire1->ire_flags & RTF_MULTIRT)) { 22792 /* 22793 * We are in the multirouting case. 22794 * The message must be sent at least 22795 * on both ires. These ires have been 22796 * inserted AFTER the standard ones 22797 * in ip_rt_add(). There are thus no 22798 * other ire entries for the destination 22799 * address in the rest of the bucket 22800 * that do not have the RTF_MULTIRT 22801 * flag. We don't process a copy 22802 * of the message here. This will be 22803 * done in the final sending loop. 22804 */ 22805 multirt_send = B_TRUE; 22806 } else { 22807 next_mp = ip_copymsg(first_mp); 22808 if (next_mp != NULL) 22809 IRE_REFHOLD(ire1); 22810 } 22811 } 22812 rw_exit(&ire->ire_bucket->irb_lock); 22813 } 22814 22815 if (stq) { 22816 /* 22817 * A non-NULL send-to queue means this packet is going 22818 * out of this machine. 22819 */ 22820 out_ill = (ill_t *)stq->q_ptr; 22821 22822 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22823 ttl_protocol = ((uint16_t *)ipha)[4]; 22824 /* 22825 * We accumulate the pseudo header checksum in cksum. 22826 * This is pretty hairy code, so watch close. One 22827 * thing to keep in mind is that UDP and TCP have 22828 * stored their respective datagram lengths in their 22829 * checksum fields. This lines things up real nice. 22830 */ 22831 cksum = (dst >> 16) + (dst & 0xFFFF) + 22832 (src >> 16) + (src & 0xFFFF); 22833 /* 22834 * We assume the udp checksum field contains the 22835 * length, so to compute the pseudo header checksum, 22836 * all we need is the protocol number and src/dst. 22837 */ 22838 /* Provide the checksums for UDP and TCP. */ 22839 if ((PROTO == IPPROTO_TCP) && 22840 (ip_hdr_included != IP_HDR_INCLUDED)) { 22841 /* hlen gets the number of uchar_ts in the IP header */ 22842 hlen = (V_HLEN & 0xF) << 2; 22843 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22844 IP_STAT(ipst, ip_out_sw_cksum); 22845 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22846 LENGTH - hlen); 22847 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22848 } else if (PROTO == IPPROTO_SCTP && 22849 (ip_hdr_included != IP_HDR_INCLUDED)) { 22850 sctp_hdr_t *sctph; 22851 22852 hlen = (V_HLEN & 0xF) << 2; 22853 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22854 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22855 sctph->sh_chksum = 0; 22856 #ifdef DEBUG 22857 if (!skip_sctp_cksum) 22858 #endif 22859 sctph->sh_chksum = sctp_cksum(mp, hlen); 22860 } else { 22861 queue_t *dev_q = stq->q_next; 22862 22863 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22864 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22865 blocked: 22866 ipha->ipha_ident = ip_hdr_included; 22867 /* 22868 * If we don't have a conn to apply 22869 * backpressure, free the message. 22870 * In the ire_send path, we don't know 22871 * the position to requeue the packet. Rather 22872 * than reorder packets, we just drop this 22873 * packet. 22874 */ 22875 if (ipst->ips_ip_output_queue && 22876 connp != NULL && 22877 caller != IRE_SEND) { 22878 if (caller == IP_WSRV) { 22879 idl_tx_list_t *idl_txl; 22880 22881 idl_txl = 22882 &ipst->ips_idl_tx_list[0]; 22883 connp->conn_did_putbq = 1; 22884 (void) putbq(connp->conn_wq, 22885 first_mp); 22886 conn_drain_insert(connp, 22887 idl_txl); 22888 /* 22889 * This is the service thread, 22890 * and the queue is already 22891 * noenabled. The check for 22892 * canput and the putbq is not 22893 * atomic. So we need to check 22894 * again. 22895 */ 22896 if (canput(stq->q_next)) 22897 connp->conn_did_putbq 22898 = 0; 22899 IP_STAT(ipst, ip_conn_flputbq); 22900 } else { 22901 /* 22902 * We are not the service proc. 22903 * ip_wsrv will be scheduled or 22904 * is already running. 22905 */ 22906 22907 (void) putq(connp->conn_wq, 22908 first_mp); 22909 } 22910 } else { 22911 out_ill = (ill_t *)stq->q_ptr; 22912 BUMP_MIB(out_ill->ill_ip_mib, 22913 ipIfStatsOutDiscards); 22914 freemsg(first_mp); 22915 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22916 "ip_wput_ire_end: q %p (%S)", 22917 q, "discard"); 22918 } 22919 ire_refrele(ire); 22920 if (next_mp) { 22921 ire_refrele(ire1); 22922 freemsg(next_mp); 22923 } 22924 if (conn_outgoing_ill != NULL) 22925 ill_refrele(conn_outgoing_ill); 22926 return; 22927 } 22928 if ((PROTO == IPPROTO_UDP) && 22929 (ip_hdr_included != IP_HDR_INCLUDED)) { 22930 /* 22931 * hlen gets the number of uchar_ts in the 22932 * IP header 22933 */ 22934 hlen = (V_HLEN & 0xF) << 2; 22935 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22936 max_frag = ire->ire_max_frag; 22937 if (*up != 0) { 22938 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22939 up, PROTO, hlen, LENGTH, max_frag, 22940 ipsec_len, cksum); 22941 /* Software checksum? */ 22942 if (DB_CKSUMFLAGS(mp) == 0) { 22943 IP_STAT(ipst, ip_out_sw_cksum); 22944 IP_STAT_UPDATE(ipst, 22945 ip_udp_out_sw_cksum_bytes, 22946 LENGTH - hlen); 22947 } 22948 } 22949 } 22950 } 22951 /* 22952 * Need to do this even when fragmenting. The local 22953 * loopback can be done without computing checksums 22954 * but forwarding out other interface must be done 22955 * after the IP checksum (and ULP checksums) have been 22956 * computed. 22957 * 22958 * NOTE : multicast_forward is set only if this packet 22959 * originated from ip_wput. For packets originating from 22960 * ip_wput_multicast, it is not set. 22961 */ 22962 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22963 multi_loopback: 22964 ip2dbg(("ip_wput: multicast, loop %d\n", 22965 conn_multicast_loop)); 22966 22967 /* Forget header checksum offload */ 22968 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22969 22970 /* 22971 * Local loopback of multicasts? Check the 22972 * ill. 22973 * 22974 * Note that the loopback function will not come 22975 * in through ip_rput - it will only do the 22976 * client fanout thus we need to do an mforward 22977 * as well. The is different from the BSD 22978 * logic. 22979 */ 22980 if (ill != NULL) { 22981 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22982 ALL_ZONES) != NULL) { 22983 /* 22984 * Pass along the virtual output q. 22985 * ip_wput_local() will distribute the 22986 * packet to all the matching zones, 22987 * except the sending zone when 22988 * IP_MULTICAST_LOOP is false. 22989 */ 22990 ip_multicast_loopback(q, ill, first_mp, 22991 conn_multicast_loop ? 0 : 22992 IP_FF_NO_MCAST_LOOP, zoneid); 22993 } 22994 } 22995 if (ipha->ipha_ttl == 0) { 22996 /* 22997 * 0 => only to this host i.e. we are 22998 * done. We are also done if this was the 22999 * loopback interface since it is sufficient 23000 * to loopback one copy of a multicast packet. 23001 */ 23002 freemsg(first_mp); 23003 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23004 "ip_wput_ire_end: q %p (%S)", 23005 q, "loopback"); 23006 ire_refrele(ire); 23007 if (conn_outgoing_ill != NULL) 23008 ill_refrele(conn_outgoing_ill); 23009 return; 23010 } 23011 /* 23012 * ILLF_MULTICAST is checked in ip_newroute 23013 * i.e. we don't need to check it here since 23014 * all IRE_CACHEs come from ip_newroute. 23015 * For multicast traffic, SO_DONTROUTE is interpreted 23016 * to mean only send the packet out the interface 23017 * (optionally specified with IP_MULTICAST_IF) 23018 * and do not forward it out additional interfaces. 23019 * RSVP and the rsvp daemon is an example of a 23020 * protocol and user level process that 23021 * handles it's own routing. Hence, it uses the 23022 * SO_DONTROUTE option to accomplish this. 23023 */ 23024 23025 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23026 ill != NULL) { 23027 /* Unconditionally redo the checksum */ 23028 ipha->ipha_hdr_checksum = 0; 23029 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23030 23031 /* 23032 * If this needs to go out secure, we need 23033 * to wait till we finish the IPsec 23034 * processing. 23035 */ 23036 if (ipsec_len == 0 && 23037 ip_mforward(ill, ipha, mp)) { 23038 freemsg(first_mp); 23039 ip1dbg(("ip_wput: mforward failed\n")); 23040 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23041 "ip_wput_ire_end: q %p (%S)", 23042 q, "mforward failed"); 23043 ire_refrele(ire); 23044 if (conn_outgoing_ill != NULL) 23045 ill_refrele(conn_outgoing_ill); 23046 return; 23047 } 23048 } 23049 } 23050 max_frag = ire->ire_max_frag; 23051 cksum += ttl_protocol; 23052 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23053 /* No fragmentation required for this one. */ 23054 /* 23055 * Don't use frag_flag if packet is pre-built or source 23056 * routed or if multicast (since multicast packets do 23057 * not solicit ICMP "packet too big" messages). 23058 */ 23059 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23060 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23061 !ip_source_route_included(ipha)) && 23062 !CLASSD(ipha->ipha_dst)) 23063 ipha->ipha_fragment_offset_and_flags |= 23064 htons(ire->ire_frag_flag); 23065 23066 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23067 /* Complete the IP header checksum. */ 23068 cksum += ipha->ipha_ident; 23069 cksum += (v_hlen_tos_len >> 16)+ 23070 (v_hlen_tos_len & 0xFFFF); 23071 cksum += ipha->ipha_fragment_offset_and_flags; 23072 hlen = (V_HLEN & 0xF) - 23073 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23074 if (hlen) { 23075 checksumoptions: 23076 /* 23077 * Account for the IP Options in the IP 23078 * header checksum. 23079 */ 23080 up = (uint16_t *)(rptr+ 23081 IP_SIMPLE_HDR_LENGTH); 23082 do { 23083 cksum += up[0]; 23084 cksum += up[1]; 23085 up += 2; 23086 } while (--hlen); 23087 } 23088 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23089 cksum = ~(cksum + (cksum >> 16)); 23090 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23091 } 23092 if (ipsec_len != 0) { 23093 ipsec_out_process(q, first_mp, ire, ill_index); 23094 if (!next_mp) { 23095 ire_refrele(ire); 23096 if (conn_outgoing_ill != NULL) 23097 ill_refrele(conn_outgoing_ill); 23098 return; 23099 } 23100 goto next; 23101 } 23102 23103 /* 23104 * multirt_send has already been handled 23105 * for broadcast, but not yet for multicast 23106 * or IP options. 23107 */ 23108 if (next_mp == NULL) { 23109 if (ire->ire_flags & RTF_MULTIRT) { 23110 multirt_send = B_TRUE; 23111 } 23112 } 23113 23114 /* 23115 * In most cases, the emission loop below is 23116 * entered only once. Only in the case where 23117 * the ire holds the RTF_MULTIRT flag, do we loop 23118 * to process all RTF_MULTIRT ires in the bucket, 23119 * and send the packet through all crossed 23120 * RTF_MULTIRT routes. 23121 */ 23122 do { 23123 if (multirt_send) { 23124 irb_t *irb; 23125 23126 irb = ire->ire_bucket; 23127 ASSERT(irb != NULL); 23128 /* 23129 * We are in a multiple send case, 23130 * need to get the next IRE and make 23131 * a duplicate of the packet. 23132 */ 23133 IRB_REFHOLD(irb); 23134 for (ire1 = ire->ire_next; 23135 ire1 != NULL; 23136 ire1 = ire1->ire_next) { 23137 if (!(ire1->ire_flags & 23138 RTF_MULTIRT)) 23139 continue; 23140 23141 if (ire1->ire_addr != 23142 ire->ire_addr) 23143 continue; 23144 23145 if (ire1->ire_marks & 23146 (IRE_MARK_CONDEMNED | 23147 IRE_MARK_TESTHIDDEN)) 23148 continue; 23149 23150 /* Got one */ 23151 IRE_REFHOLD(ire1); 23152 break; 23153 } 23154 IRB_REFRELE(irb); 23155 23156 if (ire1 != NULL) { 23157 next_mp = copyb(mp); 23158 if ((next_mp == NULL) || 23159 ((mp->b_cont != NULL) && 23160 ((next_mp->b_cont = 23161 dupmsg(mp->b_cont)) 23162 == NULL))) { 23163 freemsg(next_mp); 23164 next_mp = NULL; 23165 ire_refrele(ire1); 23166 ire1 = NULL; 23167 } 23168 } 23169 23170 /* 23171 * Last multiroute ire; don't loop 23172 * anymore. The emission is over 23173 * and next_mp is NULL. 23174 */ 23175 if (ire1 == NULL) { 23176 multirt_send = B_FALSE; 23177 } 23178 } 23179 23180 out_ill = ire_to_ill(ire); 23181 DTRACE_PROBE4(ip4__physical__out__start, 23182 ill_t *, NULL, 23183 ill_t *, out_ill, 23184 ipha_t *, ipha, mblk_t *, mp); 23185 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23186 ipst->ips_ipv4firewall_physical_out, 23187 NULL, out_ill, ipha, mp, mp, 0, ipst); 23188 DTRACE_PROBE1(ip4__physical__out__end, 23189 mblk_t *, mp); 23190 if (mp == NULL) 23191 goto release_ire_and_ill_2; 23192 23193 ASSERT(ipsec_len == 0); 23194 mp->b_prev = 23195 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23196 DTRACE_PROBE2(ip__xmit__2, 23197 mblk_t *, mp, ire_t *, ire); 23198 pktxmit_state = ip_xmit_v4(mp, ire, 23199 NULL, B_TRUE, connp); 23200 if ((pktxmit_state == SEND_FAILED) || 23201 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23202 release_ire_and_ill_2: 23203 if (next_mp) { 23204 freemsg(next_mp); 23205 ire_refrele(ire1); 23206 } 23207 ire_refrele(ire); 23208 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23209 "ip_wput_ire_end: q %p (%S)", 23210 q, "discard MDATA"); 23211 if (conn_outgoing_ill != NULL) 23212 ill_refrele(conn_outgoing_ill); 23213 return; 23214 } 23215 23216 if (CLASSD(dst)) { 23217 BUMP_MIB(out_ill->ill_ip_mib, 23218 ipIfStatsHCOutMcastPkts); 23219 UPDATE_MIB(out_ill->ill_ip_mib, 23220 ipIfStatsHCOutMcastOctets, 23221 LENGTH); 23222 } else if (ire->ire_type == IRE_BROADCAST) { 23223 BUMP_MIB(out_ill->ill_ip_mib, 23224 ipIfStatsHCOutBcastPkts); 23225 } 23226 23227 if (multirt_send) { 23228 /* 23229 * We are in a multiple send case, 23230 * need to re-enter the sending loop 23231 * using the next ire. 23232 */ 23233 ire_refrele(ire); 23234 ire = ire1; 23235 stq = ire->ire_stq; 23236 mp = next_mp; 23237 next_mp = NULL; 23238 ipha = (ipha_t *)mp->b_rptr; 23239 ill_index = Q_TO_INDEX(stq); 23240 } 23241 } while (multirt_send); 23242 23243 if (!next_mp) { 23244 /* 23245 * Last copy going out (the ultra-common 23246 * case). Note that we intentionally replicate 23247 * the putnext rather than calling it before 23248 * the next_mp check in hopes of a little 23249 * tail-call action out of the compiler. 23250 */ 23251 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23252 "ip_wput_ire_end: q %p (%S)", 23253 q, "last copy out(1)"); 23254 ire_refrele(ire); 23255 if (conn_outgoing_ill != NULL) 23256 ill_refrele(conn_outgoing_ill); 23257 return; 23258 } 23259 /* More copies going out below. */ 23260 } else { 23261 int offset; 23262 fragmentit: 23263 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23264 /* 23265 * If this would generate a icmp_frag_needed message, 23266 * we need to handle it before we do the IPsec 23267 * processing. Otherwise, we need to strip the IPsec 23268 * headers before we send up the message to the ULPs 23269 * which becomes messy and difficult. 23270 */ 23271 if (ipsec_len != 0) { 23272 if ((max_frag < (unsigned int)(LENGTH + 23273 ipsec_len)) && (offset & IPH_DF)) { 23274 out_ill = (ill_t *)stq->q_ptr; 23275 BUMP_MIB(out_ill->ill_ip_mib, 23276 ipIfStatsOutFragFails); 23277 BUMP_MIB(out_ill->ill_ip_mib, 23278 ipIfStatsOutFragReqds); 23279 ipha->ipha_hdr_checksum = 0; 23280 ipha->ipha_hdr_checksum = 23281 (uint16_t)ip_csum_hdr(ipha); 23282 icmp_frag_needed(ire->ire_stq, first_mp, 23283 max_frag, zoneid, ipst); 23284 if (!next_mp) { 23285 ire_refrele(ire); 23286 if (conn_outgoing_ill != NULL) { 23287 ill_refrele( 23288 conn_outgoing_ill); 23289 } 23290 return; 23291 } 23292 } else { 23293 /* 23294 * This won't cause a icmp_frag_needed 23295 * message. to be generated. Send it on 23296 * the wire. Note that this could still 23297 * cause fragmentation and all we 23298 * do is the generation of the message 23299 * to the ULP if needed before IPsec. 23300 */ 23301 if (!next_mp) { 23302 ipsec_out_process(q, first_mp, 23303 ire, ill_index); 23304 TRACE_2(TR_FAC_IP, 23305 TR_IP_WPUT_IRE_END, 23306 "ip_wput_ire_end: q %p " 23307 "(%S)", q, 23308 "last ipsec_out_process"); 23309 ire_refrele(ire); 23310 if (conn_outgoing_ill != NULL) { 23311 ill_refrele( 23312 conn_outgoing_ill); 23313 } 23314 return; 23315 } 23316 ipsec_out_process(q, first_mp, 23317 ire, ill_index); 23318 } 23319 } else { 23320 /* 23321 * Initiate IPPF processing. For 23322 * fragmentable packets we finish 23323 * all QOS packet processing before 23324 * calling: 23325 * ip_wput_ire_fragmentit->ip_wput_frag 23326 */ 23327 23328 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23329 ip_process(IPP_LOCAL_OUT, &mp, 23330 ill_index); 23331 if (mp == NULL) { 23332 out_ill = (ill_t *)stq->q_ptr; 23333 BUMP_MIB(out_ill->ill_ip_mib, 23334 ipIfStatsOutDiscards); 23335 if (next_mp != NULL) { 23336 freemsg(next_mp); 23337 ire_refrele(ire1); 23338 } 23339 ire_refrele(ire); 23340 TRACE_2(TR_FAC_IP, 23341 TR_IP_WPUT_IRE_END, 23342 "ip_wput_ire: q %p (%S)", 23343 q, "discard MDATA"); 23344 if (conn_outgoing_ill != NULL) { 23345 ill_refrele( 23346 conn_outgoing_ill); 23347 } 23348 return; 23349 } 23350 } 23351 if (!next_mp) { 23352 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23353 "ip_wput_ire_end: q %p (%S)", 23354 q, "last fragmentation"); 23355 ip_wput_ire_fragmentit(mp, ire, 23356 zoneid, ipst, connp); 23357 ire_refrele(ire); 23358 if (conn_outgoing_ill != NULL) 23359 ill_refrele(conn_outgoing_ill); 23360 return; 23361 } 23362 ip_wput_ire_fragmentit(mp, ire, 23363 zoneid, ipst, connp); 23364 } 23365 } 23366 } else { 23367 nullstq: 23368 /* A NULL stq means the destination address is local. */ 23369 UPDATE_OB_PKT_COUNT(ire); 23370 ire->ire_last_used_time = lbolt; 23371 ASSERT(ire->ire_ipif != NULL); 23372 if (!next_mp) { 23373 /* 23374 * Is there an "in" and "out" for traffic local 23375 * to a host (loopback)? The code in Solaris doesn't 23376 * explicitly draw a line in its code for in vs out, 23377 * so we've had to draw a line in the sand: ip_wput_ire 23378 * is considered to be the "output" side and 23379 * ip_wput_local to be the "input" side. 23380 */ 23381 out_ill = ire_to_ill(ire); 23382 23383 /* 23384 * DTrace this as ip:::send. A blocked packet will 23385 * fire the send probe, but not the receive probe. 23386 */ 23387 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23388 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23389 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23390 23391 DTRACE_PROBE4(ip4__loopback__out__start, 23392 ill_t *, NULL, ill_t *, out_ill, 23393 ipha_t *, ipha, mblk_t *, first_mp); 23394 23395 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23396 ipst->ips_ipv4firewall_loopback_out, 23397 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23398 23399 DTRACE_PROBE1(ip4__loopback__out_end, 23400 mblk_t *, first_mp); 23401 23402 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23403 "ip_wput_ire_end: q %p (%S)", 23404 q, "local address"); 23405 23406 if (first_mp != NULL) 23407 ip_wput_local(q, out_ill, ipha, 23408 first_mp, ire, 0, ire->ire_zoneid); 23409 ire_refrele(ire); 23410 if (conn_outgoing_ill != NULL) 23411 ill_refrele(conn_outgoing_ill); 23412 return; 23413 } 23414 23415 out_ill = ire_to_ill(ire); 23416 23417 /* 23418 * DTrace this as ip:::send. A blocked packet will fire the 23419 * send probe, but not the receive probe. 23420 */ 23421 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23422 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23423 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23424 23425 DTRACE_PROBE4(ip4__loopback__out__start, 23426 ill_t *, NULL, ill_t *, out_ill, 23427 ipha_t *, ipha, mblk_t *, first_mp); 23428 23429 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23430 ipst->ips_ipv4firewall_loopback_out, 23431 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23432 23433 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23434 23435 if (first_mp != NULL) 23436 ip_wput_local(q, out_ill, ipha, 23437 first_mp, ire, 0, ire->ire_zoneid); 23438 } 23439 next: 23440 /* 23441 * More copies going out to additional interfaces. 23442 * ire1 has already been held. We don't need the 23443 * "ire" anymore. 23444 */ 23445 ire_refrele(ire); 23446 ire = ire1; 23447 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23448 mp = next_mp; 23449 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23450 ill = ire_to_ill(ire); 23451 first_mp = mp; 23452 if (ipsec_len != 0) { 23453 ASSERT(first_mp->b_datap->db_type == M_CTL); 23454 mp = mp->b_cont; 23455 } 23456 dst = ire->ire_addr; 23457 ipha = (ipha_t *)mp->b_rptr; 23458 /* 23459 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23460 * Restore ipha_ident "no checksum" flag. 23461 */ 23462 src = orig_src; 23463 ipha->ipha_ident = ip_hdr_included; 23464 goto another; 23465 23466 #undef rptr 23467 #undef Q_TO_INDEX 23468 } 23469 23470 /* 23471 * Routine to allocate a message that is used to notify the ULP about MDT. 23472 * The caller may provide a pointer to the link-layer MDT capabilities, 23473 * or NULL if MDT is to be disabled on the stream. 23474 */ 23475 mblk_t * 23476 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23477 { 23478 mblk_t *mp; 23479 ip_mdt_info_t *mdti; 23480 ill_mdt_capab_t *idst; 23481 23482 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23483 DB_TYPE(mp) = M_CTL; 23484 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23485 mdti = (ip_mdt_info_t *)mp->b_rptr; 23486 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23487 idst = &(mdti->mdt_capab); 23488 23489 /* 23490 * If the caller provides us with the capability, copy 23491 * it over into our notification message; otherwise 23492 * we zero out the capability portion. 23493 */ 23494 if (isrc != NULL) 23495 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23496 else 23497 bzero((caddr_t)idst, sizeof (*idst)); 23498 } 23499 return (mp); 23500 } 23501 23502 /* 23503 * Routine which determines whether MDT can be enabled on the destination 23504 * IRE and IPC combination, and if so, allocates and returns the MDT 23505 * notification mblk that may be used by ULP. We also check if we need to 23506 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23507 * MDT usage in the past have been lifted. This gets called during IP 23508 * and ULP binding. 23509 */ 23510 mblk_t * 23511 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23512 ill_mdt_capab_t *mdt_cap) 23513 { 23514 mblk_t *mp; 23515 boolean_t rc = B_FALSE; 23516 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23517 23518 ASSERT(dst_ire != NULL); 23519 ASSERT(connp != NULL); 23520 ASSERT(mdt_cap != NULL); 23521 23522 /* 23523 * Currently, we only support simple TCP/{IPv4,IPv6} with 23524 * Multidata, which is handled in tcp_multisend(). This 23525 * is the reason why we do all these checks here, to ensure 23526 * that we don't enable Multidata for the cases which we 23527 * can't handle at the moment. 23528 */ 23529 do { 23530 /* Only do TCP at the moment */ 23531 if (connp->conn_ulp != IPPROTO_TCP) 23532 break; 23533 23534 /* 23535 * IPsec outbound policy present? Note that we get here 23536 * after calling ipsec_conn_cache_policy() where the global 23537 * policy checking is performed. conn_latch will be 23538 * non-NULL as long as there's a policy defined, 23539 * i.e. conn_out_enforce_policy may be NULL in such case 23540 * when the connection is non-secure, and hence we check 23541 * further if the latch refers to an outbound policy. 23542 */ 23543 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23544 break; 23545 23546 /* CGTP (multiroute) is enabled? */ 23547 if (dst_ire->ire_flags & RTF_MULTIRT) 23548 break; 23549 23550 /* Outbound IPQoS enabled? */ 23551 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23552 /* 23553 * In this case, we disable MDT for this and all 23554 * future connections going over the interface. 23555 */ 23556 mdt_cap->ill_mdt_on = 0; 23557 break; 23558 } 23559 23560 /* socket option(s) present? */ 23561 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23562 break; 23563 23564 rc = B_TRUE; 23565 /* CONSTCOND */ 23566 } while (0); 23567 23568 /* Remember the result */ 23569 connp->conn_mdt_ok = rc; 23570 23571 if (!rc) 23572 return (NULL); 23573 else if (!mdt_cap->ill_mdt_on) { 23574 /* 23575 * If MDT has been previously turned off in the past, and we 23576 * currently can do MDT (due to IPQoS policy removal, etc.) 23577 * then enable it for this interface. 23578 */ 23579 mdt_cap->ill_mdt_on = 1; 23580 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23581 "interface %s\n", ill_name)); 23582 } 23583 23584 /* Allocate the MDT info mblk */ 23585 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23586 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23587 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23588 return (NULL); 23589 } 23590 return (mp); 23591 } 23592 23593 /* 23594 * Routine to allocate a message that is used to notify the ULP about LSO. 23595 * The caller may provide a pointer to the link-layer LSO capabilities, 23596 * or NULL if LSO is to be disabled on the stream. 23597 */ 23598 mblk_t * 23599 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23600 { 23601 mblk_t *mp; 23602 ip_lso_info_t *lsoi; 23603 ill_lso_capab_t *idst; 23604 23605 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23606 DB_TYPE(mp) = M_CTL; 23607 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23608 lsoi = (ip_lso_info_t *)mp->b_rptr; 23609 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23610 idst = &(lsoi->lso_capab); 23611 23612 /* 23613 * If the caller provides us with the capability, copy 23614 * it over into our notification message; otherwise 23615 * we zero out the capability portion. 23616 */ 23617 if (isrc != NULL) 23618 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23619 else 23620 bzero((caddr_t)idst, sizeof (*idst)); 23621 } 23622 return (mp); 23623 } 23624 23625 /* 23626 * Routine which determines whether LSO can be enabled on the destination 23627 * IRE and IPC combination, and if so, allocates and returns the LSO 23628 * notification mblk that may be used by ULP. We also check if we need to 23629 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23630 * LSO usage in the past have been lifted. This gets called during IP 23631 * and ULP binding. 23632 */ 23633 mblk_t * 23634 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23635 ill_lso_capab_t *lso_cap) 23636 { 23637 mblk_t *mp; 23638 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23639 23640 ASSERT(dst_ire != NULL); 23641 ASSERT(connp != NULL); 23642 ASSERT(lso_cap != NULL); 23643 23644 connp->conn_lso_ok = B_TRUE; 23645 23646 if ((connp->conn_ulp != IPPROTO_TCP) || 23647 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23648 (dst_ire->ire_flags & RTF_MULTIRT) || 23649 !CONN_IS_LSO_MD_FASTPATH(connp) || 23650 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23651 connp->conn_lso_ok = B_FALSE; 23652 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23653 /* 23654 * Disable LSO for this and all future connections going 23655 * over the interface. 23656 */ 23657 lso_cap->ill_lso_on = 0; 23658 } 23659 } 23660 23661 if (!connp->conn_lso_ok) 23662 return (NULL); 23663 else if (!lso_cap->ill_lso_on) { 23664 /* 23665 * If LSO has been previously turned off in the past, and we 23666 * currently can do LSO (due to IPQoS policy removal, etc.) 23667 * then enable it for this interface. 23668 */ 23669 lso_cap->ill_lso_on = 1; 23670 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23671 ill_name)); 23672 } 23673 23674 /* Allocate the LSO info mblk */ 23675 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23676 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23677 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23678 23679 return (mp); 23680 } 23681 23682 /* 23683 * Create destination address attribute, and fill it with the physical 23684 * destination address and SAP taken from the template DL_UNITDATA_REQ 23685 * message block. 23686 */ 23687 boolean_t 23688 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23689 { 23690 dl_unitdata_req_t *dlurp; 23691 pattr_t *pa; 23692 pattrinfo_t pa_info; 23693 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23694 uint_t das_len, das_off; 23695 23696 ASSERT(dlmp != NULL); 23697 23698 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23699 das_len = dlurp->dl_dest_addr_length; 23700 das_off = dlurp->dl_dest_addr_offset; 23701 23702 pa_info.type = PATTR_DSTADDRSAP; 23703 pa_info.len = sizeof (**das) + das_len - 1; 23704 23705 /* create and associate the attribute */ 23706 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23707 if (pa != NULL) { 23708 ASSERT(*das != NULL); 23709 (*das)->addr_is_group = 0; 23710 (*das)->addr_len = (uint8_t)das_len; 23711 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23712 } 23713 23714 return (pa != NULL); 23715 } 23716 23717 /* 23718 * Create hardware checksum attribute and fill it with the values passed. 23719 */ 23720 boolean_t 23721 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23722 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23723 { 23724 pattr_t *pa; 23725 pattrinfo_t pa_info; 23726 23727 ASSERT(mmd != NULL); 23728 23729 pa_info.type = PATTR_HCKSUM; 23730 pa_info.len = sizeof (pattr_hcksum_t); 23731 23732 /* create and associate the attribute */ 23733 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23734 if (pa != NULL) { 23735 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23736 23737 hck->hcksum_start_offset = start_offset; 23738 hck->hcksum_stuff_offset = stuff_offset; 23739 hck->hcksum_end_offset = end_offset; 23740 hck->hcksum_flags = flags; 23741 } 23742 return (pa != NULL); 23743 } 23744 23745 /* 23746 * Create zerocopy attribute and fill it with the specified flags 23747 */ 23748 boolean_t 23749 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23750 { 23751 pattr_t *pa; 23752 pattrinfo_t pa_info; 23753 23754 ASSERT(mmd != NULL); 23755 pa_info.type = PATTR_ZCOPY; 23756 pa_info.len = sizeof (pattr_zcopy_t); 23757 23758 /* create and associate the attribute */ 23759 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23760 if (pa != NULL) { 23761 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23762 23763 zcopy->zcopy_flags = flags; 23764 } 23765 return (pa != NULL); 23766 } 23767 23768 /* 23769 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23770 * block chain. We could rewrite to handle arbitrary message block chains but 23771 * that would make the code complicated and slow. Right now there three 23772 * restrictions: 23773 * 23774 * 1. The first message block must contain the complete IP header and 23775 * at least 1 byte of payload data. 23776 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23777 * so that we can use a single Multidata message. 23778 * 3. No frag must be distributed over two or more message blocks so 23779 * that we don't need more than two packet descriptors per frag. 23780 * 23781 * The above restrictions allow us to support userland applications (which 23782 * will send down a single message block) and NFS over UDP (which will 23783 * send down a chain of at most three message blocks). 23784 * 23785 * We also don't use MDT for payloads with less than or equal to 23786 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23787 */ 23788 boolean_t 23789 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23790 { 23791 int blocks; 23792 ssize_t total, missing, size; 23793 23794 ASSERT(mp != NULL); 23795 ASSERT(hdr_len > 0); 23796 23797 size = MBLKL(mp) - hdr_len; 23798 if (size <= 0) 23799 return (B_FALSE); 23800 23801 /* The first mblk contains the header and some payload. */ 23802 blocks = 1; 23803 total = size; 23804 size %= len; 23805 missing = (size == 0) ? 0 : (len - size); 23806 mp = mp->b_cont; 23807 23808 while (mp != NULL) { 23809 /* 23810 * Give up if we encounter a zero length message block. 23811 * In practice, this should rarely happen and therefore 23812 * not worth the trouble of freeing and re-linking the 23813 * mblk from the chain to handle such case. 23814 */ 23815 if ((size = MBLKL(mp)) == 0) 23816 return (B_FALSE); 23817 23818 /* Too many payload buffers for a single Multidata message? */ 23819 if (++blocks > MULTIDATA_MAX_PBUFS) 23820 return (B_FALSE); 23821 23822 total += size; 23823 /* Is a frag distributed over two or more message blocks? */ 23824 if (missing > size) 23825 return (B_FALSE); 23826 size -= missing; 23827 23828 size %= len; 23829 missing = (size == 0) ? 0 : (len - size); 23830 23831 mp = mp->b_cont; 23832 } 23833 23834 return (total > ip_wput_frag_mdt_min); 23835 } 23836 23837 /* 23838 * Outbound IPv4 fragmentation routine using MDT. 23839 */ 23840 static void 23841 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23842 uint32_t frag_flag, int offset) 23843 { 23844 ipha_t *ipha_orig; 23845 int i1, ip_data_end; 23846 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23847 mblk_t *hdr_mp, *md_mp = NULL; 23848 unsigned char *hdr_ptr, *pld_ptr; 23849 multidata_t *mmd; 23850 ip_pdescinfo_t pdi; 23851 ill_t *ill; 23852 ip_stack_t *ipst = ire->ire_ipst; 23853 23854 ASSERT(DB_TYPE(mp) == M_DATA); 23855 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23856 23857 ill = ire_to_ill(ire); 23858 ASSERT(ill != NULL); 23859 23860 ipha_orig = (ipha_t *)mp->b_rptr; 23861 mp->b_rptr += sizeof (ipha_t); 23862 23863 /* Calculate how many packets we will send out */ 23864 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23865 pkts = (i1 + len - 1) / len; 23866 ASSERT(pkts > 1); 23867 23868 /* Allocate a message block which will hold all the IP Headers. */ 23869 wroff = ipst->ips_ip_wroff_extra; 23870 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23871 23872 i1 = pkts * hdr_chunk_len; 23873 /* 23874 * Create the header buffer, Multidata and destination address 23875 * and SAP attribute that should be associated with it. 23876 */ 23877 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23878 ((hdr_mp->b_wptr += i1), 23879 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23880 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23881 freemsg(mp); 23882 if (md_mp == NULL) { 23883 freemsg(hdr_mp); 23884 } else { 23885 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23886 freemsg(md_mp); 23887 } 23888 IP_STAT(ipst, ip_frag_mdt_allocfail); 23889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23890 return; 23891 } 23892 IP_STAT(ipst, ip_frag_mdt_allocd); 23893 23894 /* 23895 * Add a payload buffer to the Multidata; this operation must not 23896 * fail, or otherwise our logic in this routine is broken. There 23897 * is no memory allocation done by the routine, so any returned 23898 * failure simply tells us that we've done something wrong. 23899 * 23900 * A failure tells us that either we're adding the same payload 23901 * buffer more than once, or we're trying to add more buffers than 23902 * allowed. None of the above cases should happen, and we panic 23903 * because either there's horrible heap corruption, and/or 23904 * programming mistake. 23905 */ 23906 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23907 goto pbuf_panic; 23908 23909 hdr_ptr = hdr_mp->b_rptr; 23910 pld_ptr = mp->b_rptr; 23911 23912 /* Establish the ending byte offset, based on the starting offset. */ 23913 offset <<= 3; 23914 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23915 IP_SIMPLE_HDR_LENGTH; 23916 23917 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23918 23919 while (pld_ptr < mp->b_wptr) { 23920 ipha_t *ipha; 23921 uint16_t offset_and_flags; 23922 uint16_t ip_len; 23923 int error; 23924 23925 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23926 ipha = (ipha_t *)(hdr_ptr + wroff); 23927 ASSERT(OK_32PTR(ipha)); 23928 *ipha = *ipha_orig; 23929 23930 if (ip_data_end - offset > len) { 23931 offset_and_flags = IPH_MF; 23932 } else { 23933 /* 23934 * Last frag. Set len to the length of this last piece. 23935 */ 23936 len = ip_data_end - offset; 23937 /* A frag of a frag might have IPH_MF non-zero */ 23938 offset_and_flags = 23939 ntohs(ipha->ipha_fragment_offset_and_flags) & 23940 IPH_MF; 23941 } 23942 offset_and_flags |= (uint16_t)(offset >> 3); 23943 offset_and_flags |= (uint16_t)frag_flag; 23944 /* Store the offset and flags in the IP header. */ 23945 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23946 23947 /* Store the length in the IP header. */ 23948 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23949 ipha->ipha_length = htons(ip_len); 23950 23951 /* 23952 * Set the IP header checksum. Note that mp is just 23953 * the header, so this is easy to pass to ip_csum. 23954 */ 23955 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23956 23957 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23958 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23959 NULL, int, 0); 23960 23961 /* 23962 * Record offset and size of header and data of the next packet 23963 * in the multidata message. 23964 */ 23965 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23966 PDESC_PLD_INIT(&pdi); 23967 i1 = MIN(mp->b_wptr - pld_ptr, len); 23968 ASSERT(i1 > 0); 23969 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23970 if (i1 == len) { 23971 pld_ptr += len; 23972 } else { 23973 i1 = len - i1; 23974 mp = mp->b_cont; 23975 ASSERT(mp != NULL); 23976 ASSERT(MBLKL(mp) >= i1); 23977 /* 23978 * Attach the next payload message block to the 23979 * multidata message. 23980 */ 23981 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23982 goto pbuf_panic; 23983 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23984 pld_ptr = mp->b_rptr + i1; 23985 } 23986 23987 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23988 KM_NOSLEEP)) == NULL) { 23989 /* 23990 * Any failure other than ENOMEM indicates that we 23991 * have passed in invalid pdesc info or parameters 23992 * to mmd_addpdesc, which must not happen. 23993 * 23994 * EINVAL is a result of failure on boundary checks 23995 * against the pdesc info contents. It should not 23996 * happen, and we panic because either there's 23997 * horrible heap corruption, and/or programming 23998 * mistake. 23999 */ 24000 if (error != ENOMEM) { 24001 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24002 "pdesc logic error detected for " 24003 "mmd %p pinfo %p (%d)\n", 24004 (void *)mmd, (void *)&pdi, error); 24005 /* NOTREACHED */ 24006 } 24007 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24008 /* Free unattached payload message blocks as well */ 24009 md_mp->b_cont = mp->b_cont; 24010 goto free_mmd; 24011 } 24012 24013 /* Advance fragment offset. */ 24014 offset += len; 24015 24016 /* Advance to location for next header in the buffer. */ 24017 hdr_ptr += hdr_chunk_len; 24018 24019 /* Did we reach the next payload message block? */ 24020 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24021 mp = mp->b_cont; 24022 /* 24023 * Attach the next message block with payload 24024 * data to the multidata message. 24025 */ 24026 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24027 goto pbuf_panic; 24028 pld_ptr = mp->b_rptr; 24029 } 24030 } 24031 24032 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24033 ASSERT(mp->b_wptr == pld_ptr); 24034 24035 /* Update IP statistics */ 24036 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24037 24038 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24039 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24040 24041 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24042 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24043 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24044 24045 if (pkt_type == OB_PKT) { 24046 ire->ire_ob_pkt_count += pkts; 24047 if (ire->ire_ipif != NULL) 24048 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24049 } else { 24050 /* The type is IB_PKT in the forwarding path. */ 24051 ire->ire_ib_pkt_count += pkts; 24052 ASSERT(!IRE_IS_LOCAL(ire)); 24053 if (ire->ire_type & IRE_BROADCAST) { 24054 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24055 } else { 24056 UPDATE_MIB(ill->ill_ip_mib, 24057 ipIfStatsHCOutForwDatagrams, pkts); 24058 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24059 } 24060 } 24061 ire->ire_last_used_time = lbolt; 24062 /* Send it down */ 24063 putnext(ire->ire_stq, md_mp); 24064 return; 24065 24066 pbuf_panic: 24067 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24068 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24069 pbuf_idx); 24070 /* NOTREACHED */ 24071 } 24072 24073 /* 24074 * Outbound IP fragmentation routine. 24075 * 24076 * NOTE : This routine does not ire_refrele the ire that is passed in 24077 * as the argument. 24078 */ 24079 static void 24080 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24081 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24082 { 24083 int i1; 24084 mblk_t *ll_hdr_mp; 24085 int ll_hdr_len; 24086 int hdr_len; 24087 mblk_t *hdr_mp; 24088 ipha_t *ipha; 24089 int ip_data_end; 24090 int len; 24091 mblk_t *mp = mp_orig, *mp1; 24092 int offset; 24093 queue_t *q; 24094 uint32_t v_hlen_tos_len; 24095 mblk_t *first_mp; 24096 boolean_t mctl_present; 24097 ill_t *ill; 24098 ill_t *out_ill; 24099 mblk_t *xmit_mp; 24100 mblk_t *carve_mp; 24101 ire_t *ire1 = NULL; 24102 ire_t *save_ire = NULL; 24103 mblk_t *next_mp = NULL; 24104 boolean_t last_frag = B_FALSE; 24105 boolean_t multirt_send = B_FALSE; 24106 ire_t *first_ire = NULL; 24107 irb_t *irb = NULL; 24108 mib2_ipIfStatsEntry_t *mibptr = NULL; 24109 24110 ill = ire_to_ill(ire); 24111 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24112 24113 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24114 24115 if (max_frag == 0) { 24116 ip1dbg(("ip_wput_frag: ire frag size is 0" 24117 " - dropping packet\n")); 24118 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24119 freemsg(mp); 24120 return; 24121 } 24122 24123 /* 24124 * IPsec does not allow hw accelerated packets to be fragmented 24125 * This check is made in ip_wput_ipsec_out prior to coming here 24126 * via ip_wput_ire_fragmentit. 24127 * 24128 * If at this point we have an ire whose ARP request has not 24129 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24130 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24131 * This packet and all fragmentable packets for this ire will 24132 * continue to get dropped while ire_nce->nce_state remains in 24133 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24134 * ND_REACHABLE, all subsquent large packets for this ire will 24135 * get fragemented and sent out by this function. 24136 */ 24137 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24138 /* If nce_state is ND_INITIAL, trigger ARP query */ 24139 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24140 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24141 " - dropping packet\n")); 24142 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24143 freemsg(mp); 24144 return; 24145 } 24146 24147 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24148 "ip_wput_frag_start:"); 24149 24150 if (mp->b_datap->db_type == M_CTL) { 24151 first_mp = mp; 24152 mp_orig = mp = mp->b_cont; 24153 mctl_present = B_TRUE; 24154 } else { 24155 first_mp = mp; 24156 mctl_present = B_FALSE; 24157 } 24158 24159 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24160 ipha = (ipha_t *)mp->b_rptr; 24161 24162 /* 24163 * If the Don't Fragment flag is on, generate an ICMP destination 24164 * unreachable, fragmentation needed. 24165 */ 24166 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24167 if (offset & IPH_DF) { 24168 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24169 if (is_system_labeled()) { 24170 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24171 ire->ire_max_frag - max_frag, AF_INET); 24172 } 24173 /* 24174 * Need to compute hdr checksum if called from ip_wput_ire. 24175 * Note that ip_rput_forward verifies the checksum before 24176 * calling this routine so in that case this is a noop. 24177 */ 24178 ipha->ipha_hdr_checksum = 0; 24179 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24180 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24181 ipst); 24182 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24183 "ip_wput_frag_end:(%S)", 24184 "don't fragment"); 24185 return; 24186 } 24187 /* 24188 * Labeled systems adjust max_frag if they add a label 24189 * to send the correct path mtu. We need the real mtu since we 24190 * are fragmenting the packet after label adjustment. 24191 */ 24192 if (is_system_labeled()) 24193 max_frag = ire->ire_max_frag; 24194 if (mctl_present) 24195 freeb(first_mp); 24196 /* 24197 * Establish the starting offset. May not be zero if we are fragging 24198 * a fragment that is being forwarded. 24199 */ 24200 offset = offset & IPH_OFFSET; 24201 24202 /* TODO why is this test needed? */ 24203 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24204 if (((max_frag - LENGTH) & ~7) < 8) { 24205 /* TODO: notify ulp somehow */ 24206 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24207 freemsg(mp); 24208 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24209 "ip_wput_frag_end:(%S)", 24210 "len < 8"); 24211 return; 24212 } 24213 24214 hdr_len = (V_HLEN & 0xF) << 2; 24215 24216 ipha->ipha_hdr_checksum = 0; 24217 24218 /* 24219 * Establish the number of bytes maximum per frag, after putting 24220 * in the header. 24221 */ 24222 len = (max_frag - hdr_len) & ~7; 24223 24224 /* Check if we can use MDT to send out the frags. */ 24225 ASSERT(!IRE_IS_LOCAL(ire)); 24226 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24227 ipst->ips_ip_multidata_outbound && 24228 !(ire->ire_flags & RTF_MULTIRT) && 24229 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24230 ill != NULL && ILL_MDT_CAPABLE(ill) && 24231 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24232 ASSERT(ill->ill_mdt_capab != NULL); 24233 if (!ill->ill_mdt_capab->ill_mdt_on) { 24234 /* 24235 * If MDT has been previously turned off in the past, 24236 * and we currently can do MDT (due to IPQoS policy 24237 * removal, etc.) then enable it for this interface. 24238 */ 24239 ill->ill_mdt_capab->ill_mdt_on = 1; 24240 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24241 ill->ill_name)); 24242 } 24243 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24244 offset); 24245 return; 24246 } 24247 24248 /* Get a copy of the header for the trailing frags */ 24249 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24250 mp); 24251 if (!hdr_mp) { 24252 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24253 freemsg(mp); 24254 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24255 "ip_wput_frag_end:(%S)", 24256 "couldn't copy hdr"); 24257 return; 24258 } 24259 24260 /* Store the starting offset, with the MoreFrags flag. */ 24261 i1 = offset | IPH_MF | frag_flag; 24262 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24263 24264 /* Establish the ending byte offset, based on the starting offset. */ 24265 offset <<= 3; 24266 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24267 24268 /* Store the length of the first fragment in the IP header. */ 24269 i1 = len + hdr_len; 24270 ASSERT(i1 <= IP_MAXPACKET); 24271 ipha->ipha_length = htons((uint16_t)i1); 24272 24273 /* 24274 * Compute the IP header checksum for the first frag. We have to 24275 * watch out that we stop at the end of the header. 24276 */ 24277 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24278 24279 /* 24280 * Now carve off the first frag. Note that this will include the 24281 * original IP header. 24282 */ 24283 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24284 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24285 freeb(hdr_mp); 24286 freemsg(mp_orig); 24287 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24288 "ip_wput_frag_end:(%S)", 24289 "couldn't carve first"); 24290 return; 24291 } 24292 24293 /* 24294 * Multirouting case. Each fragment is replicated 24295 * via all non-condemned RTF_MULTIRT routes 24296 * currently resolved. 24297 * We ensure that first_ire is the first RTF_MULTIRT 24298 * ire in the bucket. 24299 */ 24300 if (ire->ire_flags & RTF_MULTIRT) { 24301 irb = ire->ire_bucket; 24302 ASSERT(irb != NULL); 24303 24304 multirt_send = B_TRUE; 24305 24306 /* Make sure we do not omit any multiroute ire. */ 24307 IRB_REFHOLD(irb); 24308 for (first_ire = irb->irb_ire; 24309 first_ire != NULL; 24310 first_ire = first_ire->ire_next) { 24311 if ((first_ire->ire_flags & RTF_MULTIRT) && 24312 (first_ire->ire_addr == ire->ire_addr) && 24313 !(first_ire->ire_marks & 24314 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24315 break; 24316 } 24317 24318 if (first_ire != NULL) { 24319 if (first_ire != ire) { 24320 IRE_REFHOLD(first_ire); 24321 /* 24322 * Do not release the ire passed in 24323 * as the argument. 24324 */ 24325 ire = first_ire; 24326 } else { 24327 first_ire = NULL; 24328 } 24329 } 24330 IRB_REFRELE(irb); 24331 24332 /* 24333 * Save the first ire; we will need to restore it 24334 * for the trailing frags. 24335 * We REFHOLD save_ire, as each iterated ire will be 24336 * REFRELEd. 24337 */ 24338 save_ire = ire; 24339 IRE_REFHOLD(save_ire); 24340 } 24341 24342 /* 24343 * First fragment emission loop. 24344 * In most cases, the emission loop below is entered only 24345 * once. Only in the case where the ire holds the RTF_MULTIRT 24346 * flag, do we loop to process all RTF_MULTIRT ires in the 24347 * bucket, and send the fragment through all crossed 24348 * RTF_MULTIRT routes. 24349 */ 24350 do { 24351 if (ire->ire_flags & RTF_MULTIRT) { 24352 /* 24353 * We are in a multiple send case, need to get 24354 * the next ire and make a copy of the packet. 24355 * ire1 holds here the next ire to process in the 24356 * bucket. If multirouting is expected, 24357 * any non-RTF_MULTIRT ire that has the 24358 * right destination address is ignored. 24359 * 24360 * We have to take into account the MTU of 24361 * each walked ire. max_frag is set by the 24362 * the caller and generally refers to 24363 * the primary ire entry. Here we ensure that 24364 * no route with a lower MTU will be used, as 24365 * fragments are carved once for all ires, 24366 * then replicated. 24367 */ 24368 ASSERT(irb != NULL); 24369 IRB_REFHOLD(irb); 24370 for (ire1 = ire->ire_next; 24371 ire1 != NULL; 24372 ire1 = ire1->ire_next) { 24373 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24374 continue; 24375 if (ire1->ire_addr != ire->ire_addr) 24376 continue; 24377 if (ire1->ire_marks & 24378 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24379 continue; 24380 /* 24381 * Ensure we do not exceed the MTU 24382 * of the next route. 24383 */ 24384 if (ire1->ire_max_frag < max_frag) { 24385 ip_multirt_bad_mtu(ire1, max_frag); 24386 continue; 24387 } 24388 24389 /* Got one. */ 24390 IRE_REFHOLD(ire1); 24391 break; 24392 } 24393 IRB_REFRELE(irb); 24394 24395 if (ire1 != NULL) { 24396 next_mp = copyb(mp); 24397 if ((next_mp == NULL) || 24398 ((mp->b_cont != NULL) && 24399 ((next_mp->b_cont = 24400 dupmsg(mp->b_cont)) == NULL))) { 24401 freemsg(next_mp); 24402 next_mp = NULL; 24403 ire_refrele(ire1); 24404 ire1 = NULL; 24405 } 24406 } 24407 24408 /* Last multiroute ire; don't loop anymore. */ 24409 if (ire1 == NULL) { 24410 multirt_send = B_FALSE; 24411 } 24412 } 24413 24414 ll_hdr_len = 0; 24415 LOCK_IRE_FP_MP(ire); 24416 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24417 if (ll_hdr_mp != NULL) { 24418 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24419 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24420 } else { 24421 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24422 } 24423 24424 /* If there is a transmit header, get a copy for this frag. */ 24425 /* 24426 * TODO: should check db_ref before calling ip_carve_mp since 24427 * it might give us a dup. 24428 */ 24429 if (!ll_hdr_mp) { 24430 /* No xmit header. */ 24431 xmit_mp = mp; 24432 24433 /* We have a link-layer header that can fit in our mblk. */ 24434 } else if (mp->b_datap->db_ref == 1 && 24435 ll_hdr_len != 0 && 24436 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24437 /* M_DATA fastpath */ 24438 mp->b_rptr -= ll_hdr_len; 24439 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24440 xmit_mp = mp; 24441 24442 /* Corner case if copyb has failed */ 24443 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24444 UNLOCK_IRE_FP_MP(ire); 24445 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24446 freeb(hdr_mp); 24447 freemsg(mp); 24448 freemsg(mp_orig); 24449 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24450 "ip_wput_frag_end:(%S)", 24451 "discard"); 24452 24453 if (multirt_send) { 24454 ASSERT(ire1); 24455 ASSERT(next_mp); 24456 24457 freemsg(next_mp); 24458 ire_refrele(ire1); 24459 } 24460 if (save_ire != NULL) 24461 IRE_REFRELE(save_ire); 24462 24463 if (first_ire != NULL) 24464 ire_refrele(first_ire); 24465 return; 24466 24467 /* 24468 * Case of res_mp OR the fastpath mp can't fit 24469 * in the mblk 24470 */ 24471 } else { 24472 xmit_mp->b_cont = mp; 24473 24474 /* 24475 * Get priority marking, if any. 24476 * We propagate the CoS marking from the 24477 * original packet that went to QoS processing 24478 * in ip_wput_ire to the newly carved mp. 24479 */ 24480 if (DB_TYPE(xmit_mp) == M_DATA) 24481 xmit_mp->b_band = mp->b_band; 24482 } 24483 UNLOCK_IRE_FP_MP(ire); 24484 24485 q = ire->ire_stq; 24486 out_ill = (ill_t *)q->q_ptr; 24487 24488 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24489 24490 DTRACE_PROBE4(ip4__physical__out__start, 24491 ill_t *, NULL, ill_t *, out_ill, 24492 ipha_t *, ipha, mblk_t *, xmit_mp); 24493 24494 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24495 ipst->ips_ipv4firewall_physical_out, 24496 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24497 24498 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24499 24500 if (xmit_mp != NULL) { 24501 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24502 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24503 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24504 24505 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24506 24507 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24508 UPDATE_MIB(out_ill->ill_ip_mib, 24509 ipIfStatsHCOutOctets, i1); 24510 24511 if (pkt_type != OB_PKT) { 24512 /* 24513 * Update the packet count and MIB stats 24514 * of trailing RTF_MULTIRT ires. 24515 */ 24516 UPDATE_OB_PKT_COUNT(ire); 24517 BUMP_MIB(out_ill->ill_ip_mib, 24518 ipIfStatsOutFragReqds); 24519 } 24520 } 24521 24522 if (multirt_send) { 24523 /* 24524 * We are in a multiple send case; look for 24525 * the next ire and re-enter the loop. 24526 */ 24527 ASSERT(ire1); 24528 ASSERT(next_mp); 24529 /* REFRELE the current ire before looping */ 24530 ire_refrele(ire); 24531 ire = ire1; 24532 ire1 = NULL; 24533 mp = next_mp; 24534 next_mp = NULL; 24535 } 24536 } while (multirt_send); 24537 24538 ASSERT(ire1 == NULL); 24539 24540 /* Restore the original ire; we need it for the trailing frags */ 24541 if (save_ire != NULL) { 24542 /* REFRELE the last iterated ire */ 24543 ire_refrele(ire); 24544 /* save_ire has been REFHOLDed */ 24545 ire = save_ire; 24546 save_ire = NULL; 24547 q = ire->ire_stq; 24548 } 24549 24550 if (pkt_type == OB_PKT) { 24551 UPDATE_OB_PKT_COUNT(ire); 24552 } else { 24553 out_ill = (ill_t *)q->q_ptr; 24554 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24555 UPDATE_IB_PKT_COUNT(ire); 24556 } 24557 24558 /* Advance the offset to the second frag starting point. */ 24559 offset += len; 24560 /* 24561 * Update hdr_len from the copied header - there might be less options 24562 * in the later fragments. 24563 */ 24564 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24565 /* Loop until done. */ 24566 for (;;) { 24567 uint16_t offset_and_flags; 24568 uint16_t ip_len; 24569 24570 if (ip_data_end - offset > len) { 24571 /* 24572 * Carve off the appropriate amount from the original 24573 * datagram. 24574 */ 24575 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24576 mp = NULL; 24577 break; 24578 } 24579 /* 24580 * More frags after this one. Get another copy 24581 * of the header. 24582 */ 24583 if (carve_mp->b_datap->db_ref == 1 && 24584 hdr_mp->b_wptr - hdr_mp->b_rptr < 24585 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24586 /* Inline IP header */ 24587 carve_mp->b_rptr -= hdr_mp->b_wptr - 24588 hdr_mp->b_rptr; 24589 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24590 hdr_mp->b_wptr - hdr_mp->b_rptr); 24591 mp = carve_mp; 24592 } else { 24593 if (!(mp = copyb(hdr_mp))) { 24594 freemsg(carve_mp); 24595 break; 24596 } 24597 /* Get priority marking, if any. */ 24598 mp->b_band = carve_mp->b_band; 24599 mp->b_cont = carve_mp; 24600 } 24601 ipha = (ipha_t *)mp->b_rptr; 24602 offset_and_flags = IPH_MF; 24603 } else { 24604 /* 24605 * Last frag. Consume the header. Set len to 24606 * the length of this last piece. 24607 */ 24608 len = ip_data_end - offset; 24609 24610 /* 24611 * Carve off the appropriate amount from the original 24612 * datagram. 24613 */ 24614 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24615 mp = NULL; 24616 break; 24617 } 24618 if (carve_mp->b_datap->db_ref == 1 && 24619 hdr_mp->b_wptr - hdr_mp->b_rptr < 24620 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24621 /* Inline IP header */ 24622 carve_mp->b_rptr -= hdr_mp->b_wptr - 24623 hdr_mp->b_rptr; 24624 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24625 hdr_mp->b_wptr - hdr_mp->b_rptr); 24626 mp = carve_mp; 24627 freeb(hdr_mp); 24628 hdr_mp = mp; 24629 } else { 24630 mp = hdr_mp; 24631 /* Get priority marking, if any. */ 24632 mp->b_band = carve_mp->b_band; 24633 mp->b_cont = carve_mp; 24634 } 24635 ipha = (ipha_t *)mp->b_rptr; 24636 /* A frag of a frag might have IPH_MF non-zero */ 24637 offset_and_flags = 24638 ntohs(ipha->ipha_fragment_offset_and_flags) & 24639 IPH_MF; 24640 } 24641 offset_and_flags |= (uint16_t)(offset >> 3); 24642 offset_and_flags |= (uint16_t)frag_flag; 24643 /* Store the offset and flags in the IP header. */ 24644 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24645 24646 /* Store the length in the IP header. */ 24647 ip_len = (uint16_t)(len + hdr_len); 24648 ipha->ipha_length = htons(ip_len); 24649 24650 /* 24651 * Set the IP header checksum. Note that mp is just 24652 * the header, so this is easy to pass to ip_csum. 24653 */ 24654 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24655 24656 /* Attach a transmit header, if any, and ship it. */ 24657 if (pkt_type == OB_PKT) { 24658 UPDATE_OB_PKT_COUNT(ire); 24659 } else { 24660 out_ill = (ill_t *)q->q_ptr; 24661 BUMP_MIB(out_ill->ill_ip_mib, 24662 ipIfStatsHCOutForwDatagrams); 24663 UPDATE_IB_PKT_COUNT(ire); 24664 } 24665 24666 if (ire->ire_flags & RTF_MULTIRT) { 24667 irb = ire->ire_bucket; 24668 ASSERT(irb != NULL); 24669 24670 multirt_send = B_TRUE; 24671 24672 /* 24673 * Save the original ire; we will need to restore it 24674 * for the tailing frags. 24675 */ 24676 save_ire = ire; 24677 IRE_REFHOLD(save_ire); 24678 } 24679 /* 24680 * Emission loop for this fragment, similar 24681 * to what is done for the first fragment. 24682 */ 24683 do { 24684 if (multirt_send) { 24685 /* 24686 * We are in a multiple send case, need to get 24687 * the next ire and make a copy of the packet. 24688 */ 24689 ASSERT(irb != NULL); 24690 IRB_REFHOLD(irb); 24691 for (ire1 = ire->ire_next; 24692 ire1 != NULL; 24693 ire1 = ire1->ire_next) { 24694 if (!(ire1->ire_flags & RTF_MULTIRT)) 24695 continue; 24696 if (ire1->ire_addr != ire->ire_addr) 24697 continue; 24698 if (ire1->ire_marks & 24699 (IRE_MARK_CONDEMNED | 24700 IRE_MARK_TESTHIDDEN)) 24701 continue; 24702 /* 24703 * Ensure we do not exceed the MTU 24704 * of the next route. 24705 */ 24706 if (ire1->ire_max_frag < max_frag) { 24707 ip_multirt_bad_mtu(ire1, 24708 max_frag); 24709 continue; 24710 } 24711 24712 /* Got one. */ 24713 IRE_REFHOLD(ire1); 24714 break; 24715 } 24716 IRB_REFRELE(irb); 24717 24718 if (ire1 != NULL) { 24719 next_mp = copyb(mp); 24720 if ((next_mp == NULL) || 24721 ((mp->b_cont != NULL) && 24722 ((next_mp->b_cont = 24723 dupmsg(mp->b_cont)) == NULL))) { 24724 freemsg(next_mp); 24725 next_mp = NULL; 24726 ire_refrele(ire1); 24727 ire1 = NULL; 24728 } 24729 } 24730 24731 /* Last multiroute ire; don't loop anymore. */ 24732 if (ire1 == NULL) { 24733 multirt_send = B_FALSE; 24734 } 24735 } 24736 24737 /* Update transmit header */ 24738 ll_hdr_len = 0; 24739 LOCK_IRE_FP_MP(ire); 24740 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24741 if (ll_hdr_mp != NULL) { 24742 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24743 ll_hdr_len = MBLKL(ll_hdr_mp); 24744 } else { 24745 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24746 } 24747 24748 if (!ll_hdr_mp) { 24749 xmit_mp = mp; 24750 24751 /* 24752 * We have link-layer header that can fit in 24753 * our mblk. 24754 */ 24755 } else if (mp->b_datap->db_ref == 1 && 24756 ll_hdr_len != 0 && 24757 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24758 /* M_DATA fastpath */ 24759 mp->b_rptr -= ll_hdr_len; 24760 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24761 ll_hdr_len); 24762 xmit_mp = mp; 24763 24764 /* 24765 * Case of res_mp OR the fastpath mp can't fit 24766 * in the mblk 24767 */ 24768 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24769 xmit_mp->b_cont = mp; 24770 /* Get priority marking, if any. */ 24771 if (DB_TYPE(xmit_mp) == M_DATA) 24772 xmit_mp->b_band = mp->b_band; 24773 24774 /* Corner case if copyb failed */ 24775 } else { 24776 /* 24777 * Exit both the replication and 24778 * fragmentation loops. 24779 */ 24780 UNLOCK_IRE_FP_MP(ire); 24781 goto drop_pkt; 24782 } 24783 UNLOCK_IRE_FP_MP(ire); 24784 24785 mp1 = mp; 24786 out_ill = (ill_t *)q->q_ptr; 24787 24788 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24789 24790 DTRACE_PROBE4(ip4__physical__out__start, 24791 ill_t *, NULL, ill_t *, out_ill, 24792 ipha_t *, ipha, mblk_t *, xmit_mp); 24793 24794 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24795 ipst->ips_ipv4firewall_physical_out, 24796 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24797 24798 DTRACE_PROBE1(ip4__physical__out__end, 24799 mblk_t *, xmit_mp); 24800 24801 if (mp != mp1 && hdr_mp == mp1) 24802 hdr_mp = mp; 24803 if (mp != mp1 && mp_orig == mp1) 24804 mp_orig = mp; 24805 24806 if (xmit_mp != NULL) { 24807 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24808 NULL, void_ip_t *, ipha, 24809 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24810 ipha, ip6_t *, NULL, int, 0); 24811 24812 ILL_SEND_TX(out_ill, ire, connp, 24813 xmit_mp, 0, connp); 24814 24815 BUMP_MIB(out_ill->ill_ip_mib, 24816 ipIfStatsHCOutTransmits); 24817 UPDATE_MIB(out_ill->ill_ip_mib, 24818 ipIfStatsHCOutOctets, ip_len); 24819 24820 if (pkt_type != OB_PKT) { 24821 /* 24822 * Update the packet count of trailing 24823 * RTF_MULTIRT ires. 24824 */ 24825 UPDATE_OB_PKT_COUNT(ire); 24826 } 24827 } 24828 24829 /* All done if we just consumed the hdr_mp. */ 24830 if (mp == hdr_mp) { 24831 last_frag = B_TRUE; 24832 BUMP_MIB(out_ill->ill_ip_mib, 24833 ipIfStatsOutFragOKs); 24834 } 24835 24836 if (multirt_send) { 24837 /* 24838 * We are in a multiple send case; look for 24839 * the next ire and re-enter the loop. 24840 */ 24841 ASSERT(ire1); 24842 ASSERT(next_mp); 24843 /* REFRELE the current ire before looping */ 24844 ire_refrele(ire); 24845 ire = ire1; 24846 ire1 = NULL; 24847 q = ire->ire_stq; 24848 mp = next_mp; 24849 next_mp = NULL; 24850 } 24851 } while (multirt_send); 24852 /* 24853 * Restore the original ire; we need it for the 24854 * trailing frags 24855 */ 24856 if (save_ire != NULL) { 24857 ASSERT(ire1 == NULL); 24858 /* REFRELE the last iterated ire */ 24859 ire_refrele(ire); 24860 /* save_ire has been REFHOLDed */ 24861 ire = save_ire; 24862 q = ire->ire_stq; 24863 save_ire = NULL; 24864 } 24865 24866 if (last_frag) { 24867 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24868 "ip_wput_frag_end:(%S)", 24869 "consumed hdr_mp"); 24870 24871 if (first_ire != NULL) 24872 ire_refrele(first_ire); 24873 return; 24874 } 24875 /* Otherwise, advance and loop. */ 24876 offset += len; 24877 } 24878 24879 drop_pkt: 24880 /* Clean up following allocation failure. */ 24881 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24882 freemsg(mp); 24883 if (mp != hdr_mp) 24884 freeb(hdr_mp); 24885 if (mp != mp_orig) 24886 freemsg(mp_orig); 24887 24888 if (save_ire != NULL) 24889 IRE_REFRELE(save_ire); 24890 if (first_ire != NULL) 24891 ire_refrele(first_ire); 24892 24893 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24894 "ip_wput_frag_end:(%S)", 24895 "end--alloc failure"); 24896 } 24897 24898 /* 24899 * Copy the header plus those options which have the copy bit set 24900 * src is the template to make sure we preserve the cred for TX purposes. 24901 */ 24902 static mblk_t * 24903 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24904 mblk_t *src) 24905 { 24906 mblk_t *mp; 24907 uchar_t *up; 24908 24909 /* 24910 * Quick check if we need to look for options without the copy bit 24911 * set 24912 */ 24913 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24914 if (!mp) 24915 return (mp); 24916 mp->b_rptr += ipst->ips_ip_wroff_extra; 24917 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24918 bcopy(rptr, mp->b_rptr, hdr_len); 24919 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24920 return (mp); 24921 } 24922 up = mp->b_rptr; 24923 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24924 up += IP_SIMPLE_HDR_LENGTH; 24925 rptr += IP_SIMPLE_HDR_LENGTH; 24926 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24927 while (hdr_len > 0) { 24928 uint32_t optval; 24929 uint32_t optlen; 24930 24931 optval = *rptr; 24932 if (optval == IPOPT_EOL) 24933 break; 24934 if (optval == IPOPT_NOP) 24935 optlen = 1; 24936 else 24937 optlen = rptr[1]; 24938 if (optval & IPOPT_COPY) { 24939 bcopy(rptr, up, optlen); 24940 up += optlen; 24941 } 24942 rptr += optlen; 24943 hdr_len -= optlen; 24944 } 24945 /* 24946 * Make sure that we drop an even number of words by filling 24947 * with EOL to the next word boundary. 24948 */ 24949 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24950 hdr_len & 0x3; hdr_len++) 24951 *up++ = IPOPT_EOL; 24952 mp->b_wptr = up; 24953 /* Update header length */ 24954 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24955 return (mp); 24956 } 24957 24958 /* 24959 * Delivery to local recipients including fanout to multiple recipients. 24960 * Does not do checksumming of UDP/TCP. 24961 * Note: q should be the read side queue for either the ill or conn. 24962 * Note: rq should be the read side q for the lower (ill) stream. 24963 * We don't send packets to IPPF processing, thus the last argument 24964 * to all the fanout calls are B_FALSE. 24965 */ 24966 void 24967 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24968 int fanout_flags, zoneid_t zoneid) 24969 { 24970 uint32_t protocol; 24971 mblk_t *first_mp; 24972 boolean_t mctl_present; 24973 int ire_type; 24974 #define rptr ((uchar_t *)ipha) 24975 ip_stack_t *ipst = ill->ill_ipst; 24976 24977 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24978 "ip_wput_local_start: q %p", q); 24979 24980 if (ire != NULL) { 24981 ire_type = ire->ire_type; 24982 } else { 24983 /* 24984 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24985 * packet is not multicast, we can't tell the ire type. 24986 */ 24987 ASSERT(CLASSD(ipha->ipha_dst)); 24988 ire_type = IRE_BROADCAST; 24989 } 24990 24991 first_mp = mp; 24992 if (first_mp->b_datap->db_type == M_CTL) { 24993 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24994 if (!io->ipsec_out_secure) { 24995 /* 24996 * This ipsec_out_t was allocated in ip_wput 24997 * for multicast packets to store the ill_index. 24998 * As this is being delivered locally, we don't 24999 * need this anymore. 25000 */ 25001 mp = first_mp->b_cont; 25002 freeb(first_mp); 25003 first_mp = mp; 25004 mctl_present = B_FALSE; 25005 } else { 25006 /* 25007 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25008 * security properties for the looped-back packet. 25009 */ 25010 mctl_present = B_TRUE; 25011 mp = first_mp->b_cont; 25012 ASSERT(mp != NULL); 25013 ipsec_out_to_in(first_mp); 25014 } 25015 } else { 25016 mctl_present = B_FALSE; 25017 } 25018 25019 DTRACE_PROBE4(ip4__loopback__in__start, 25020 ill_t *, ill, ill_t *, NULL, 25021 ipha_t *, ipha, mblk_t *, first_mp); 25022 25023 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25024 ipst->ips_ipv4firewall_loopback_in, 25025 ill, NULL, ipha, first_mp, mp, 0, ipst); 25026 25027 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25028 25029 if (first_mp == NULL) 25030 return; 25031 25032 if (ipst->ips_ipobs_enabled) { 25033 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25034 zoneid_t stackzoneid = netstackid_to_zoneid( 25035 ipst->ips_netstack->netstack_stackid); 25036 25037 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25038 /* 25039 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25040 * address. Restrict the lookup below to the destination zone. 25041 */ 25042 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25043 lookup_zoneid = zoneid; 25044 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25045 lookup_zoneid); 25046 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25047 IPV4_VERSION, 0, ipst); 25048 } 25049 25050 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25051 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25052 int, 1); 25053 25054 ipst->ips_loopback_packets++; 25055 25056 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25057 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25058 if (!IS_SIMPLE_IPH(ipha)) { 25059 ip_wput_local_options(ipha, ipst); 25060 } 25061 25062 protocol = ipha->ipha_protocol; 25063 switch (protocol) { 25064 case IPPROTO_ICMP: { 25065 ire_t *ire_zone; 25066 ilm_t *ilm; 25067 mblk_t *mp1; 25068 zoneid_t last_zoneid; 25069 ilm_walker_t ilw; 25070 25071 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25072 ASSERT(ire_type == IRE_BROADCAST); 25073 /* 25074 * In the multicast case, applications may have joined 25075 * the group from different zones, so we need to deliver 25076 * the packet to each of them. Loop through the 25077 * multicast memberships structures (ilm) on the receive 25078 * ill and send a copy of the packet up each matching 25079 * one. However, we don't do this for multicasts sent on 25080 * the loopback interface (PHYI_LOOPBACK flag set) as 25081 * they must stay in the sender's zone. 25082 * 25083 * ilm_add_v6() ensures that ilms in the same zone are 25084 * contiguous in the ill_ilm list. We use this property 25085 * to avoid sending duplicates needed when two 25086 * applications in the same zone join the same group on 25087 * different logical interfaces: we ignore the ilm if 25088 * it's zoneid is the same as the last matching one. 25089 * In addition, the sending of the packet for 25090 * ire_zoneid is delayed until all of the other ilms 25091 * have been exhausted. 25092 */ 25093 last_zoneid = -1; 25094 ilm = ilm_walker_start(&ilw, ill); 25095 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25096 if (ipha->ipha_dst != ilm->ilm_addr || 25097 ilm->ilm_zoneid == last_zoneid || 25098 ilm->ilm_zoneid == zoneid || 25099 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25100 continue; 25101 mp1 = ip_copymsg(first_mp); 25102 if (mp1 == NULL) 25103 continue; 25104 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25105 0, 0, mctl_present, B_FALSE, ill, 25106 ilm->ilm_zoneid); 25107 last_zoneid = ilm->ilm_zoneid; 25108 } 25109 ilm_walker_finish(&ilw); 25110 /* 25111 * Loopback case: the sending endpoint has 25112 * IP_MULTICAST_LOOP disabled, therefore we don't 25113 * dispatch the multicast packet to the sending zone. 25114 */ 25115 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25116 freemsg(first_mp); 25117 return; 25118 } 25119 } else if (ire_type == IRE_BROADCAST) { 25120 /* 25121 * In the broadcast case, there may be many zones 25122 * which need a copy of the packet delivered to them. 25123 * There is one IRE_BROADCAST per broadcast address 25124 * and per zone; we walk those using a helper function. 25125 * In addition, the sending of the packet for zoneid is 25126 * delayed until all of the other ires have been 25127 * processed. 25128 */ 25129 IRB_REFHOLD(ire->ire_bucket); 25130 ire_zone = NULL; 25131 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25132 ire)) != NULL) { 25133 mp1 = ip_copymsg(first_mp); 25134 if (mp1 == NULL) 25135 continue; 25136 25137 UPDATE_IB_PKT_COUNT(ire_zone); 25138 ire_zone->ire_last_used_time = lbolt; 25139 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25140 mctl_present, B_FALSE, ill, 25141 ire_zone->ire_zoneid); 25142 } 25143 IRB_REFRELE(ire->ire_bucket); 25144 } 25145 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25146 0, mctl_present, B_FALSE, ill, zoneid); 25147 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25148 "ip_wput_local_end: q %p (%S)", 25149 q, "icmp"); 25150 return; 25151 } 25152 case IPPROTO_IGMP: 25153 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25154 /* Bad packet - discarded by igmp_input */ 25155 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25156 "ip_wput_local_end: q %p (%S)", 25157 q, "igmp_input--bad packet"); 25158 if (mctl_present) 25159 freeb(first_mp); 25160 return; 25161 } 25162 /* 25163 * igmp_input() may have returned the pulled up message. 25164 * So first_mp and ipha need to be reinitialized. 25165 */ 25166 ipha = (ipha_t *)mp->b_rptr; 25167 if (mctl_present) 25168 first_mp->b_cont = mp; 25169 else 25170 first_mp = mp; 25171 /* deliver to local raw users */ 25172 break; 25173 case IPPROTO_ENCAP: 25174 /* 25175 * This case is covered by either ip_fanout_proto, or by 25176 * the above security processing for self-tunneled packets. 25177 */ 25178 break; 25179 case IPPROTO_UDP: { 25180 uint16_t *up; 25181 uint32_t ports; 25182 25183 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25184 UDP_PORTS_OFFSET); 25185 /* Force a 'valid' checksum. */ 25186 up[3] = 0; 25187 25188 ports = *(uint32_t *)up; 25189 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25190 (ire_type == IRE_BROADCAST), 25191 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25192 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25193 ill, zoneid); 25194 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25195 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25196 return; 25197 } 25198 case IPPROTO_TCP: { 25199 25200 /* 25201 * For TCP, discard broadcast packets. 25202 */ 25203 if ((ushort_t)ire_type == IRE_BROADCAST) { 25204 freemsg(first_mp); 25205 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25206 ip2dbg(("ip_wput_local: discard broadcast\n")); 25207 return; 25208 } 25209 25210 if (mp->b_datap->db_type == M_DATA) { 25211 /* 25212 * M_DATA mblk, so init mblk (chain) for no struio(). 25213 */ 25214 mblk_t *mp1 = mp; 25215 25216 do { 25217 mp1->b_datap->db_struioflag = 0; 25218 } while ((mp1 = mp1->b_cont) != NULL); 25219 } 25220 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25221 <= mp->b_wptr); 25222 ip_fanout_tcp(q, first_mp, ill, ipha, 25223 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25224 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25225 mctl_present, B_FALSE, zoneid); 25226 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25227 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25228 return; 25229 } 25230 case IPPROTO_SCTP: 25231 { 25232 uint32_t ports; 25233 25234 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25235 ip_fanout_sctp(first_mp, ill, ipha, ports, 25236 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25237 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25238 return; 25239 } 25240 25241 default: 25242 break; 25243 } 25244 /* 25245 * Find a client for some other protocol. We give 25246 * copies to multiple clients, if more than one is 25247 * bound. 25248 */ 25249 ip_fanout_proto(q, first_mp, ill, ipha, 25250 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25251 mctl_present, B_FALSE, ill, zoneid); 25252 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25253 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25254 #undef rptr 25255 } 25256 25257 /* 25258 * Update any source route, record route, or timestamp options. 25259 * Check that we are at end of strict source route. 25260 * The options have been sanity checked by ip_wput_options(). 25261 */ 25262 static void 25263 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25264 { 25265 ipoptp_t opts; 25266 uchar_t *opt; 25267 uint8_t optval; 25268 uint8_t optlen; 25269 ipaddr_t dst; 25270 uint32_t ts; 25271 ire_t *ire; 25272 timestruc_t now; 25273 25274 ip2dbg(("ip_wput_local_options\n")); 25275 for (optval = ipoptp_first(&opts, ipha); 25276 optval != IPOPT_EOL; 25277 optval = ipoptp_next(&opts)) { 25278 opt = opts.ipoptp_cur; 25279 optlen = opts.ipoptp_len; 25280 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25281 switch (optval) { 25282 uint32_t off; 25283 case IPOPT_SSRR: 25284 case IPOPT_LSRR: 25285 off = opt[IPOPT_OFFSET]; 25286 off--; 25287 if (optlen < IP_ADDR_LEN || 25288 off > optlen - IP_ADDR_LEN) { 25289 /* End of source route */ 25290 break; 25291 } 25292 /* 25293 * This will only happen if two consecutive entries 25294 * in the source route contains our address or if 25295 * it is a packet with a loose source route which 25296 * reaches us before consuming the whole source route 25297 */ 25298 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25299 if (optval == IPOPT_SSRR) { 25300 return; 25301 } 25302 /* 25303 * Hack: instead of dropping the packet truncate the 25304 * source route to what has been used by filling the 25305 * rest with IPOPT_NOP. 25306 */ 25307 opt[IPOPT_OLEN] = (uint8_t)off; 25308 while (off < optlen) { 25309 opt[off++] = IPOPT_NOP; 25310 } 25311 break; 25312 case IPOPT_RR: 25313 off = opt[IPOPT_OFFSET]; 25314 off--; 25315 if (optlen < IP_ADDR_LEN || 25316 off > optlen - IP_ADDR_LEN) { 25317 /* No more room - ignore */ 25318 ip1dbg(( 25319 "ip_wput_forward_options: end of RR\n")); 25320 break; 25321 } 25322 dst = htonl(INADDR_LOOPBACK); 25323 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25324 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25325 break; 25326 case IPOPT_TS: 25327 /* Insert timestamp if there is romm */ 25328 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25329 case IPOPT_TS_TSONLY: 25330 off = IPOPT_TS_TIMELEN; 25331 break; 25332 case IPOPT_TS_PRESPEC: 25333 case IPOPT_TS_PRESPEC_RFC791: 25334 /* Verify that the address matched */ 25335 off = opt[IPOPT_OFFSET] - 1; 25336 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25337 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25338 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25339 ipst); 25340 if (ire == NULL) { 25341 /* Not for us */ 25342 break; 25343 } 25344 ire_refrele(ire); 25345 /* FALLTHRU */ 25346 case IPOPT_TS_TSANDADDR: 25347 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25348 break; 25349 default: 25350 /* 25351 * ip_*put_options should have already 25352 * dropped this packet. 25353 */ 25354 cmn_err(CE_PANIC, "ip_wput_local_options: " 25355 "unknown IT - bug in ip_wput_options?\n"); 25356 return; /* Keep "lint" happy */ 25357 } 25358 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25359 /* Increase overflow counter */ 25360 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25361 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25362 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25363 (off << 4); 25364 break; 25365 } 25366 off = opt[IPOPT_OFFSET] - 1; 25367 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25368 case IPOPT_TS_PRESPEC: 25369 case IPOPT_TS_PRESPEC_RFC791: 25370 case IPOPT_TS_TSANDADDR: 25371 dst = htonl(INADDR_LOOPBACK); 25372 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25373 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25374 /* FALLTHRU */ 25375 case IPOPT_TS_TSONLY: 25376 off = opt[IPOPT_OFFSET] - 1; 25377 /* Compute # of milliseconds since midnight */ 25378 gethrestime(&now); 25379 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25380 now.tv_nsec / (NANOSEC / MILLISEC); 25381 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25382 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25383 break; 25384 } 25385 break; 25386 } 25387 } 25388 } 25389 25390 /* 25391 * Send out a multicast packet on interface ipif. 25392 * The sender does not have an conn. 25393 * Caller verifies that this isn't a PHYI_LOOPBACK. 25394 */ 25395 void 25396 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25397 { 25398 ipha_t *ipha; 25399 ire_t *ire; 25400 ipaddr_t dst; 25401 mblk_t *first_mp; 25402 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25403 25404 /* igmp_sendpkt always allocates a ipsec_out_t */ 25405 ASSERT(mp->b_datap->db_type == M_CTL); 25406 ASSERT(!ipif->ipif_isv6); 25407 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25408 25409 first_mp = mp; 25410 mp = first_mp->b_cont; 25411 ASSERT(mp->b_datap->db_type == M_DATA); 25412 ipha = (ipha_t *)mp->b_rptr; 25413 25414 /* 25415 * Find an IRE which matches the destination and the outgoing 25416 * queue (i.e. the outgoing interface.) 25417 */ 25418 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25419 dst = ipif->ipif_pp_dst_addr; 25420 else 25421 dst = ipha->ipha_dst; 25422 /* 25423 * The source address has already been initialized by the 25424 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25425 * be sufficient rather than MATCH_IRE_IPIF. 25426 * 25427 * This function is used for sending IGMP packets. For IPMP, 25428 * we sidestep IGMP snooping issues by sending all multicast 25429 * traffic on a single interface in the IPMP group. 25430 */ 25431 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25432 MATCH_IRE_ILL, ipst); 25433 if (!ire) { 25434 /* 25435 * Mark this packet to make it be delivered to 25436 * ip_wput_ire after the new ire has been 25437 * created. 25438 */ 25439 mp->b_prev = NULL; 25440 mp->b_next = NULL; 25441 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25442 zoneid, &zero_info); 25443 return; 25444 } 25445 25446 /* 25447 * Honor the RTF_SETSRC flag; this is the only case 25448 * where we force this addr whatever the current src addr is, 25449 * because this address is set by igmp_sendpkt(), and 25450 * cannot be specified by any user. 25451 */ 25452 if (ire->ire_flags & RTF_SETSRC) { 25453 ipha->ipha_src = ire->ire_src_addr; 25454 } 25455 25456 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25457 } 25458 25459 /* 25460 * NOTE : This function does not ire_refrele the ire argument passed in. 25461 * 25462 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25463 * failure. The nce_fp_mp can vanish any time in the case of 25464 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25465 * the ire_lock to access the nce_fp_mp in this case. 25466 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25467 * prepending a fastpath message IPQoS processing must precede it, we also set 25468 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25469 * (IPQoS might have set the b_band for CoS marking). 25470 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25471 * must follow it so that IPQoS can mark the dl_priority field for CoS 25472 * marking, if needed. 25473 */ 25474 static mblk_t * 25475 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25476 uint32_t ill_index, ipha_t **iphap) 25477 { 25478 uint_t hlen; 25479 ipha_t *ipha; 25480 mblk_t *mp1; 25481 boolean_t qos_done = B_FALSE; 25482 uchar_t *ll_hdr; 25483 ip_stack_t *ipst = ire->ire_ipst; 25484 25485 #define rptr ((uchar_t *)ipha) 25486 25487 ipha = (ipha_t *)mp->b_rptr; 25488 hlen = 0; 25489 LOCK_IRE_FP_MP(ire); 25490 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25491 ASSERT(DB_TYPE(mp1) == M_DATA); 25492 /* Initiate IPPF processing */ 25493 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25494 UNLOCK_IRE_FP_MP(ire); 25495 ip_process(proc, &mp, ill_index); 25496 if (mp == NULL) 25497 return (NULL); 25498 25499 ipha = (ipha_t *)mp->b_rptr; 25500 LOCK_IRE_FP_MP(ire); 25501 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25502 qos_done = B_TRUE; 25503 goto no_fp_mp; 25504 } 25505 ASSERT(DB_TYPE(mp1) == M_DATA); 25506 } 25507 hlen = MBLKL(mp1); 25508 /* 25509 * Check if we have enough room to prepend fastpath 25510 * header 25511 */ 25512 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25513 ll_hdr = rptr - hlen; 25514 bcopy(mp1->b_rptr, ll_hdr, hlen); 25515 /* 25516 * Set the b_rptr to the start of the link layer 25517 * header 25518 */ 25519 mp->b_rptr = ll_hdr; 25520 mp1 = mp; 25521 } else { 25522 mp1 = copyb(mp1); 25523 if (mp1 == NULL) 25524 goto unlock_err; 25525 mp1->b_band = mp->b_band; 25526 mp1->b_cont = mp; 25527 /* 25528 * XXX disable ICK_VALID and compute checksum 25529 * here; can happen if nce_fp_mp changes and 25530 * it can't be copied now due to insufficient 25531 * space. (unlikely, fp mp can change, but it 25532 * does not increase in length) 25533 */ 25534 } 25535 UNLOCK_IRE_FP_MP(ire); 25536 } else { 25537 no_fp_mp: 25538 mp1 = copyb(ire->ire_nce->nce_res_mp); 25539 if (mp1 == NULL) { 25540 unlock_err: 25541 UNLOCK_IRE_FP_MP(ire); 25542 freemsg(mp); 25543 return (NULL); 25544 } 25545 UNLOCK_IRE_FP_MP(ire); 25546 mp1->b_cont = mp; 25547 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25548 ip_process(proc, &mp1, ill_index); 25549 if (mp1 == NULL) 25550 return (NULL); 25551 25552 if (mp1->b_cont == NULL) 25553 ipha = NULL; 25554 else 25555 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25556 } 25557 } 25558 25559 *iphap = ipha; 25560 return (mp1); 25561 #undef rptr 25562 } 25563 25564 /* 25565 * Finish the outbound IPsec processing for an IPv6 packet. This function 25566 * is called from ipsec_out_process() if the IPsec packet was processed 25567 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25568 * asynchronously. 25569 */ 25570 void 25571 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25572 ire_t *ire_arg) 25573 { 25574 in6_addr_t *v6dstp; 25575 ire_t *ire; 25576 mblk_t *mp; 25577 ip6_t *ip6h1; 25578 uint_t ill_index; 25579 ipsec_out_t *io; 25580 boolean_t hwaccel; 25581 uint32_t flags = IP6_NO_IPPOLICY; 25582 int match_flags; 25583 zoneid_t zoneid; 25584 boolean_t ill_need_rele = B_FALSE; 25585 boolean_t ire_need_rele = B_FALSE; 25586 ip_stack_t *ipst; 25587 25588 mp = ipsec_mp->b_cont; 25589 ip6h1 = (ip6_t *)mp->b_rptr; 25590 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25591 ASSERT(io->ipsec_out_ns != NULL); 25592 ipst = io->ipsec_out_ns->netstack_ip; 25593 ill_index = io->ipsec_out_ill_index; 25594 if (io->ipsec_out_reachable) { 25595 flags |= IPV6_REACHABILITY_CONFIRMATION; 25596 } 25597 hwaccel = io->ipsec_out_accelerated; 25598 zoneid = io->ipsec_out_zoneid; 25599 ASSERT(zoneid != ALL_ZONES); 25600 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25601 /* Multicast addresses should have non-zero ill_index. */ 25602 v6dstp = &ip6h->ip6_dst; 25603 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25604 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25605 25606 if (ill == NULL && ill_index != 0) { 25607 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25608 /* Failure case frees things for us. */ 25609 if (ill == NULL) 25610 return; 25611 25612 ill_need_rele = B_TRUE; 25613 } 25614 ASSERT(mp != NULL); 25615 25616 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25617 boolean_t unspec_src; 25618 ipif_t *ipif; 25619 25620 /* 25621 * Use the ill_index to get the right ill. 25622 */ 25623 unspec_src = io->ipsec_out_unspec_src; 25624 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25625 if (ipif == NULL) { 25626 if (ill_need_rele) 25627 ill_refrele(ill); 25628 freemsg(ipsec_mp); 25629 return; 25630 } 25631 25632 if (ire_arg != NULL) { 25633 ire = ire_arg; 25634 } else { 25635 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25636 zoneid, msg_getlabel(mp), match_flags, ipst); 25637 ire_need_rele = B_TRUE; 25638 } 25639 if (ire != NULL) { 25640 ipif_refrele(ipif); 25641 /* 25642 * XXX Do the multicast forwarding now, as the IPsec 25643 * processing has been done. 25644 */ 25645 goto send; 25646 } 25647 25648 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25649 mp->b_prev = NULL; 25650 mp->b_next = NULL; 25651 25652 /* 25653 * If the IPsec packet was processed asynchronously, 25654 * drop it now. 25655 */ 25656 if (q == NULL) { 25657 if (ill_need_rele) 25658 ill_refrele(ill); 25659 freemsg(ipsec_mp); 25660 return; 25661 } 25662 25663 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25664 unspec_src, zoneid); 25665 ipif_refrele(ipif); 25666 } else { 25667 if (ire_arg != NULL) { 25668 ire = ire_arg; 25669 } else { 25670 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25671 ire_need_rele = B_TRUE; 25672 } 25673 if (ire != NULL) 25674 goto send; 25675 /* 25676 * ire disappeared underneath. 25677 * 25678 * What we need to do here is the ip_newroute 25679 * logic to get the ire without doing the IPsec 25680 * processing. Follow the same old path. But this 25681 * time, ip_wput or ire_add_then_send will call us 25682 * directly as all the IPsec operations are done. 25683 */ 25684 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25685 mp->b_prev = NULL; 25686 mp->b_next = NULL; 25687 25688 /* 25689 * If the IPsec packet was processed asynchronously, 25690 * drop it now. 25691 */ 25692 if (q == NULL) { 25693 if (ill_need_rele) 25694 ill_refrele(ill); 25695 freemsg(ipsec_mp); 25696 return; 25697 } 25698 25699 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25700 zoneid, ipst); 25701 } 25702 if (ill != NULL && ill_need_rele) 25703 ill_refrele(ill); 25704 return; 25705 send: 25706 if (ill != NULL && ill_need_rele) 25707 ill_refrele(ill); 25708 25709 /* Local delivery */ 25710 if (ire->ire_stq == NULL) { 25711 ill_t *out_ill; 25712 ASSERT(q != NULL); 25713 25714 /* PFHooks: LOOPBACK_OUT */ 25715 out_ill = ire_to_ill(ire); 25716 25717 /* 25718 * DTrace this as ip:::send. A blocked packet will fire the 25719 * send probe, but not the receive probe. 25720 */ 25721 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25722 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25723 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25724 25725 DTRACE_PROBE4(ip6__loopback__out__start, 25726 ill_t *, NULL, ill_t *, out_ill, 25727 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25728 25729 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25730 ipst->ips_ipv6firewall_loopback_out, 25731 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25732 25733 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25734 25735 if (ipsec_mp != NULL) { 25736 ip_wput_local_v6(RD(q), out_ill, 25737 ip6h, ipsec_mp, ire, 0, zoneid); 25738 } 25739 if (ire_need_rele) 25740 ire_refrele(ire); 25741 return; 25742 } 25743 /* 25744 * Everything is done. Send it out on the wire. 25745 * We force the insertion of a fragment header using the 25746 * IPH_FRAG_HDR flag in two cases: 25747 * - after reception of an ICMPv6 "packet too big" message 25748 * with a MTU < 1280 (cf. RFC 2460 section 5) 25749 * - for multirouted IPv6 packets, so that the receiver can 25750 * discard duplicates according to their fragment identifier 25751 */ 25752 /* XXX fix flow control problems. */ 25753 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25754 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25755 if (hwaccel) { 25756 /* 25757 * hardware acceleration does not handle these 25758 * "slow path" cases. 25759 */ 25760 /* IPsec KSTATS: should bump bean counter here. */ 25761 if (ire_need_rele) 25762 ire_refrele(ire); 25763 freemsg(ipsec_mp); 25764 return; 25765 } 25766 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25767 (mp->b_cont ? msgdsize(mp) : 25768 mp->b_wptr - (uchar_t *)ip6h)) { 25769 /* IPsec KSTATS: should bump bean counter here. */ 25770 ip0dbg(("Packet length mismatch: %d, %ld\n", 25771 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25772 msgdsize(mp))); 25773 if (ire_need_rele) 25774 ire_refrele(ire); 25775 freemsg(ipsec_mp); 25776 return; 25777 } 25778 ASSERT(mp->b_prev == NULL); 25779 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25780 ntohs(ip6h->ip6_plen) + 25781 IPV6_HDR_LEN, ire->ire_max_frag)); 25782 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25783 ire->ire_max_frag); 25784 } else { 25785 UPDATE_OB_PKT_COUNT(ire); 25786 ire->ire_last_used_time = lbolt; 25787 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25788 } 25789 if (ire_need_rele) 25790 ire_refrele(ire); 25791 freeb(ipsec_mp); 25792 } 25793 25794 void 25795 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25796 { 25797 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25798 da_ipsec_t *hada; /* data attributes */ 25799 ill_t *ill = (ill_t *)q->q_ptr; 25800 25801 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25802 25803 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25804 /* IPsec KSTATS: Bump lose counter here! */ 25805 freemsg(mp); 25806 return; 25807 } 25808 25809 /* 25810 * It's an IPsec packet that must be 25811 * accelerated by the Provider, and the 25812 * outbound ill is IPsec acceleration capable. 25813 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25814 * to the ill. 25815 * IPsec KSTATS: should bump packet counter here. 25816 */ 25817 25818 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25819 if (hada_mp == NULL) { 25820 /* IPsec KSTATS: should bump packet counter here. */ 25821 freemsg(mp); 25822 return; 25823 } 25824 25825 hada_mp->b_datap->db_type = M_CTL; 25826 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25827 hada_mp->b_cont = mp; 25828 25829 hada = (da_ipsec_t *)hada_mp->b_rptr; 25830 bzero(hada, sizeof (da_ipsec_t)); 25831 hada->da_type = IPHADA_M_CTL; 25832 25833 putnext(q, hada_mp); 25834 } 25835 25836 /* 25837 * Finish the outbound IPsec processing. This function is called from 25838 * ipsec_out_process() if the IPsec packet was processed 25839 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25840 * asynchronously. 25841 */ 25842 void 25843 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25844 ire_t *ire_arg) 25845 { 25846 uint32_t v_hlen_tos_len; 25847 ipaddr_t dst; 25848 ipif_t *ipif = NULL; 25849 ire_t *ire; 25850 ire_t *ire1 = NULL; 25851 mblk_t *next_mp = NULL; 25852 uint32_t max_frag; 25853 boolean_t multirt_send = B_FALSE; 25854 mblk_t *mp; 25855 ipha_t *ipha1; 25856 uint_t ill_index; 25857 ipsec_out_t *io; 25858 int match_flags; 25859 irb_t *irb = NULL; 25860 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25861 zoneid_t zoneid; 25862 ipxmit_state_t pktxmit_state; 25863 ip_stack_t *ipst; 25864 25865 #ifdef _BIG_ENDIAN 25866 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25867 #else 25868 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25869 #endif 25870 25871 mp = ipsec_mp->b_cont; 25872 ipha1 = (ipha_t *)mp->b_rptr; 25873 ASSERT(mp != NULL); 25874 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25875 dst = ipha->ipha_dst; 25876 25877 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25878 ill_index = io->ipsec_out_ill_index; 25879 zoneid = io->ipsec_out_zoneid; 25880 ASSERT(zoneid != ALL_ZONES); 25881 ipst = io->ipsec_out_ns->netstack_ip; 25882 ASSERT(io->ipsec_out_ns != NULL); 25883 25884 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25885 if (ill == NULL && ill_index != 0) { 25886 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25887 /* Failure case frees things for us. */ 25888 if (ill == NULL) 25889 return; 25890 25891 ill_need_rele = B_TRUE; 25892 } 25893 25894 if (CLASSD(dst)) { 25895 boolean_t conn_dontroute; 25896 /* 25897 * Use the ill_index to get the right ipif. 25898 */ 25899 conn_dontroute = io->ipsec_out_dontroute; 25900 if (ill_index == 0) 25901 ipif = ipif_lookup_group(dst, zoneid, ipst); 25902 else 25903 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25904 if (ipif == NULL) { 25905 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25906 " multicast\n")); 25907 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25908 freemsg(ipsec_mp); 25909 goto done; 25910 } 25911 /* 25912 * ipha_src has already been intialized with the 25913 * value of the ipif in ip_wput. All we need now is 25914 * an ire to send this downstream. 25915 */ 25916 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25917 msg_getlabel(mp), match_flags, ipst); 25918 if (ire != NULL) { 25919 ill_t *ill1; 25920 /* 25921 * Do the multicast forwarding now, as the IPsec 25922 * processing has been done. 25923 */ 25924 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25925 (ill1 = ire_to_ill(ire))) { 25926 if (ip_mforward(ill1, ipha, mp)) { 25927 freemsg(ipsec_mp); 25928 ip1dbg(("ip_wput_ipsec_out: mforward " 25929 "failed\n")); 25930 ire_refrele(ire); 25931 goto done; 25932 } 25933 } 25934 goto send; 25935 } 25936 25937 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25938 mp->b_prev = NULL; 25939 mp->b_next = NULL; 25940 25941 /* 25942 * If the IPsec packet was processed asynchronously, 25943 * drop it now. 25944 */ 25945 if (q == NULL) { 25946 freemsg(ipsec_mp); 25947 goto done; 25948 } 25949 25950 /* 25951 * We may be using a wrong ipif to create the ire. 25952 * But it is okay as the source address is assigned 25953 * for the packet already. Next outbound packet would 25954 * create the IRE with the right IPIF in ip_wput. 25955 * 25956 * Also handle RTF_MULTIRT routes. 25957 */ 25958 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25959 zoneid, &zero_info); 25960 } else { 25961 if (ire_arg != NULL) { 25962 ire = ire_arg; 25963 ire_need_rele = B_FALSE; 25964 } else { 25965 ire = ire_cache_lookup(dst, zoneid, 25966 msg_getlabel(mp), ipst); 25967 } 25968 if (ire != NULL) { 25969 goto send; 25970 } 25971 25972 /* 25973 * ire disappeared underneath. 25974 * 25975 * What we need to do here is the ip_newroute 25976 * logic to get the ire without doing the IPsec 25977 * processing. Follow the same old path. But this 25978 * time, ip_wput or ire_add_then_put will call us 25979 * directly as all the IPsec operations are done. 25980 */ 25981 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25982 mp->b_prev = NULL; 25983 mp->b_next = NULL; 25984 25985 /* 25986 * If the IPsec packet was processed asynchronously, 25987 * drop it now. 25988 */ 25989 if (q == NULL) { 25990 freemsg(ipsec_mp); 25991 goto done; 25992 } 25993 25994 /* 25995 * Since we're going through ip_newroute() again, we 25996 * need to make sure we don't: 25997 * 25998 * 1.) Trigger the ASSERT() with the ipha_ident 25999 * overloading. 26000 * 2.) Redo transport-layer checksumming, since we've 26001 * already done all that to get this far. 26002 * 26003 * The easiest way not do either of the above is to set 26004 * the ipha_ident field to IP_HDR_INCLUDED. 26005 */ 26006 ipha->ipha_ident = IP_HDR_INCLUDED; 26007 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26008 zoneid, ipst); 26009 } 26010 goto done; 26011 send: 26012 if (ire->ire_stq == NULL) { 26013 ill_t *out_ill; 26014 /* 26015 * Loopbacks go through ip_wput_local except for one case. 26016 * We come here if we generate a icmp_frag_needed message 26017 * after IPsec processing is over. When this function calls 26018 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26019 * icmp_frag_needed. The message generated comes back here 26020 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26021 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26022 * source address as it is usually set in ip_wput_ire. As 26023 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26024 * and we end up here. We can't enter ip_wput_ire once the 26025 * IPsec processing is over and hence we need to do it here. 26026 */ 26027 ASSERT(q != NULL); 26028 UPDATE_OB_PKT_COUNT(ire); 26029 ire->ire_last_used_time = lbolt; 26030 if (ipha->ipha_src == 0) 26031 ipha->ipha_src = ire->ire_src_addr; 26032 26033 /* PFHooks: LOOPBACK_OUT */ 26034 out_ill = ire_to_ill(ire); 26035 26036 /* 26037 * DTrace this as ip:::send. A blocked packet will fire the 26038 * send probe, but not the receive probe. 26039 */ 26040 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26041 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26042 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26043 26044 DTRACE_PROBE4(ip4__loopback__out__start, 26045 ill_t *, NULL, ill_t *, out_ill, 26046 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26047 26048 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26049 ipst->ips_ipv4firewall_loopback_out, 26050 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26051 26052 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26053 26054 if (ipsec_mp != NULL) 26055 ip_wput_local(RD(q), out_ill, 26056 ipha, ipsec_mp, ire, 0, zoneid); 26057 if (ire_need_rele) 26058 ire_refrele(ire); 26059 goto done; 26060 } 26061 26062 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26063 /* 26064 * We are through with IPsec processing. 26065 * Fragment this and send it on the wire. 26066 */ 26067 if (io->ipsec_out_accelerated) { 26068 /* 26069 * The packet has been accelerated but must 26070 * be fragmented. This should not happen 26071 * since AH and ESP must not accelerate 26072 * packets that need fragmentation, however 26073 * the configuration could have changed 26074 * since the AH or ESP processing. 26075 * Drop packet. 26076 * IPsec KSTATS: bump bean counter here. 26077 */ 26078 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26079 "fragmented accelerated packet!\n")); 26080 freemsg(ipsec_mp); 26081 } else { 26082 ip_wput_ire_fragmentit(ipsec_mp, ire, 26083 zoneid, ipst, NULL); 26084 } 26085 if (ire_need_rele) 26086 ire_refrele(ire); 26087 goto done; 26088 } 26089 26090 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26091 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26092 (void *)ire->ire_ipif, (void *)ipif)); 26093 26094 /* 26095 * Multiroute the secured packet. 26096 */ 26097 if (ire->ire_flags & RTF_MULTIRT) { 26098 ire_t *first_ire; 26099 irb = ire->ire_bucket; 26100 ASSERT(irb != NULL); 26101 /* 26102 * This ire has been looked up as the one that 26103 * goes through the given ipif; 26104 * make sure we do not omit any other multiroute ire 26105 * that may be present in the bucket before this one. 26106 */ 26107 IRB_REFHOLD(irb); 26108 for (first_ire = irb->irb_ire; 26109 first_ire != NULL; 26110 first_ire = first_ire->ire_next) { 26111 if ((first_ire->ire_flags & RTF_MULTIRT) && 26112 (first_ire->ire_addr == ire->ire_addr) && 26113 !(first_ire->ire_marks & 26114 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26115 break; 26116 } 26117 26118 if ((first_ire != NULL) && (first_ire != ire)) { 26119 /* 26120 * Don't change the ire if the packet must 26121 * be fragmented if sent via this new one. 26122 */ 26123 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26124 IRE_REFHOLD(first_ire); 26125 if (ire_need_rele) 26126 ire_refrele(ire); 26127 else 26128 ire_need_rele = B_TRUE; 26129 ire = first_ire; 26130 } 26131 } 26132 IRB_REFRELE(irb); 26133 26134 multirt_send = B_TRUE; 26135 max_frag = ire->ire_max_frag; 26136 } 26137 26138 /* 26139 * In most cases, the emission loop below is entered only once. 26140 * Only in the case where the ire holds the RTF_MULTIRT 26141 * flag, we loop to process all RTF_MULTIRT ires in the 26142 * bucket, and send the packet through all crossed 26143 * RTF_MULTIRT routes. 26144 */ 26145 do { 26146 if (multirt_send) { 26147 /* 26148 * ire1 holds here the next ire to process in the 26149 * bucket. If multirouting is expected, 26150 * any non-RTF_MULTIRT ire that has the 26151 * right destination address is ignored. 26152 */ 26153 ASSERT(irb != NULL); 26154 IRB_REFHOLD(irb); 26155 for (ire1 = ire->ire_next; 26156 ire1 != NULL; 26157 ire1 = ire1->ire_next) { 26158 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26159 continue; 26160 if (ire1->ire_addr != ire->ire_addr) 26161 continue; 26162 if (ire1->ire_marks & 26163 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26164 continue; 26165 /* No loopback here */ 26166 if (ire1->ire_stq == NULL) 26167 continue; 26168 /* 26169 * Ensure we do not exceed the MTU 26170 * of the next route. 26171 */ 26172 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26173 ip_multirt_bad_mtu(ire1, max_frag); 26174 continue; 26175 } 26176 26177 IRE_REFHOLD(ire1); 26178 break; 26179 } 26180 IRB_REFRELE(irb); 26181 if (ire1 != NULL) { 26182 /* 26183 * We are in a multiple send case, need to 26184 * make a copy of the packet. 26185 */ 26186 next_mp = copymsg(ipsec_mp); 26187 if (next_mp == NULL) { 26188 ire_refrele(ire1); 26189 ire1 = NULL; 26190 } 26191 } 26192 } 26193 /* 26194 * Everything is done. Send it out on the wire 26195 * 26196 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26197 * either send it on the wire or, in the case of 26198 * HW acceleration, call ipsec_hw_putnext. 26199 */ 26200 if (ire->ire_nce && 26201 ire->ire_nce->nce_state != ND_REACHABLE) { 26202 DTRACE_PROBE2(ip__wput__ipsec__bail, 26203 (ire_t *), ire, (mblk_t *), ipsec_mp); 26204 /* 26205 * If ire's link-layer is unresolved (this 26206 * would only happen if the incomplete ire 26207 * was added to cachetable via forwarding path) 26208 * don't bother going to ip_xmit_v4. Just drop the 26209 * packet. 26210 * There is a slight risk here, in that, if we 26211 * have the forwarding path create an incomplete 26212 * IRE, then until the IRE is completed, any 26213 * transmitted IPsec packets will be dropped 26214 * instead of being queued waiting for resolution. 26215 * 26216 * But the likelihood of a forwarding packet and a wput 26217 * packet sending to the same dst at the same time 26218 * and there not yet be an ARP entry for it is small. 26219 * Furthermore, if this actually happens, it might 26220 * be likely that wput would generate multiple 26221 * packets (and forwarding would also have a train 26222 * of packets) for that destination. If this is 26223 * the case, some of them would have been dropped 26224 * anyway, since ARP only queues a few packets while 26225 * waiting for resolution 26226 * 26227 * NOTE: We should really call ip_xmit_v4, 26228 * and let it queue the packet and send the 26229 * ARP query and have ARP come back thus: 26230 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26231 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26232 * hw accel work. But it's too complex to get 26233 * the IPsec hw acceleration approach to fit 26234 * well with ip_xmit_v4 doing ARP without 26235 * doing IPsec simplification. For now, we just 26236 * poke ip_xmit_v4 to trigger the arp resolve, so 26237 * that we can continue with the send on the next 26238 * attempt. 26239 * 26240 * XXX THis should be revisited, when 26241 * the IPsec/IP interaction is cleaned up 26242 */ 26243 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26244 " - dropping packet\n")); 26245 freemsg(ipsec_mp); 26246 /* 26247 * Call ip_xmit_v4() to trigger ARP query 26248 * in case the nce_state is ND_INITIAL 26249 */ 26250 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26251 goto drop_pkt; 26252 } 26253 26254 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26255 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26256 mblk_t *, ipsec_mp); 26257 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26258 ipst->ips_ipv4firewall_physical_out, NULL, 26259 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26260 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26261 if (ipsec_mp == NULL) 26262 goto drop_pkt; 26263 26264 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26265 pktxmit_state = ip_xmit_v4(mp, ire, 26266 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26267 26268 if ((pktxmit_state == SEND_FAILED) || 26269 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26270 26271 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26272 drop_pkt: 26273 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26274 ipIfStatsOutDiscards); 26275 if (ire_need_rele) 26276 ire_refrele(ire); 26277 if (ire1 != NULL) { 26278 ire_refrele(ire1); 26279 freemsg(next_mp); 26280 } 26281 goto done; 26282 } 26283 26284 freeb(ipsec_mp); 26285 if (ire_need_rele) 26286 ire_refrele(ire); 26287 26288 if (ire1 != NULL) { 26289 ire = ire1; 26290 ire_need_rele = B_TRUE; 26291 ASSERT(next_mp); 26292 ipsec_mp = next_mp; 26293 mp = ipsec_mp->b_cont; 26294 ire1 = NULL; 26295 next_mp = NULL; 26296 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26297 } else { 26298 multirt_send = B_FALSE; 26299 } 26300 } while (multirt_send); 26301 done: 26302 if (ill != NULL && ill_need_rele) 26303 ill_refrele(ill); 26304 if (ipif != NULL) 26305 ipif_refrele(ipif); 26306 } 26307 26308 /* 26309 * Get the ill corresponding to the specified ire, and compare its 26310 * capabilities with the protocol and algorithms specified by the 26311 * the SA obtained from ipsec_out. If they match, annotate the 26312 * ipsec_out structure to indicate that the packet needs acceleration. 26313 * 26314 * 26315 * A packet is eligible for outbound hardware acceleration if the 26316 * following conditions are satisfied: 26317 * 26318 * 1. the packet will not be fragmented 26319 * 2. the provider supports the algorithm 26320 * 3. there is no pending control message being exchanged 26321 * 4. snoop is not attached 26322 * 5. the destination address is not a broadcast or multicast address. 26323 * 26324 * Rationale: 26325 * - Hardware drivers do not support fragmentation with 26326 * the current interface. 26327 * - snoop, multicast, and broadcast may result in exposure of 26328 * a cleartext datagram. 26329 * We check all five of these conditions here. 26330 * 26331 * XXX would like to nuke "ire_t *" parameter here; problem is that 26332 * IRE is only way to figure out if a v4 address is a broadcast and 26333 * thus ineligible for acceleration... 26334 */ 26335 static void 26336 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26337 { 26338 ipsec_out_t *io; 26339 mblk_t *data_mp; 26340 uint_t plen, overhead; 26341 ip_stack_t *ipst; 26342 26343 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26344 return; 26345 26346 if (ill == NULL) 26347 return; 26348 ipst = ill->ill_ipst; 26349 /* 26350 * Destination address is a broadcast or multicast. Punt. 26351 */ 26352 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26353 IRE_LOCAL))) 26354 return; 26355 26356 data_mp = ipsec_mp->b_cont; 26357 26358 if (ill->ill_isv6) { 26359 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26360 26361 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26362 return; 26363 26364 plen = ip6h->ip6_plen; 26365 } else { 26366 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26367 26368 if (CLASSD(ipha->ipha_dst)) 26369 return; 26370 26371 plen = ipha->ipha_length; 26372 } 26373 /* 26374 * Is there a pending DLPI control message being exchanged 26375 * between IP/IPsec and the DLS Provider? If there is, it 26376 * could be a SADB update, and the state of the DLS Provider 26377 * SADB might not be in sync with the SADB maintained by 26378 * IPsec. To avoid dropping packets or using the wrong keying 26379 * material, we do not accelerate this packet. 26380 */ 26381 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26382 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26383 "ill_dlpi_pending! don't accelerate packet\n")); 26384 return; 26385 } 26386 26387 /* 26388 * Is the Provider in promiscous mode? If it does, we don't 26389 * accelerate the packet since it will bounce back up to the 26390 * listeners in the clear. 26391 */ 26392 if (ill->ill_promisc_on_phys) { 26393 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26394 "ill in promiscous mode, don't accelerate packet\n")); 26395 return; 26396 } 26397 26398 /* 26399 * Will the packet require fragmentation? 26400 */ 26401 26402 /* 26403 * IPsec ESP note: this is a pessimistic estimate, but the same 26404 * as is used elsewhere. 26405 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26406 * + 2-byte trailer 26407 */ 26408 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26409 IPSEC_BASE_ESP_HDR_SIZE(sa); 26410 26411 if ((plen + overhead) > ill->ill_max_mtu) 26412 return; 26413 26414 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26415 26416 /* 26417 * Can the ill accelerate this IPsec protocol and algorithm 26418 * specified by the SA? 26419 */ 26420 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26421 ill->ill_isv6, sa, ipst->ips_netstack)) { 26422 return; 26423 } 26424 26425 /* 26426 * Tell AH or ESP that the outbound ill is capable of 26427 * accelerating this packet. 26428 */ 26429 io->ipsec_out_is_capab_ill = B_TRUE; 26430 } 26431 26432 /* 26433 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26434 * 26435 * If this function returns B_TRUE, the requested SA's have been filled 26436 * into the ipsec_out_*_sa pointers. 26437 * 26438 * If the function returns B_FALSE, the packet has been "consumed", most 26439 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26440 * 26441 * The SA references created by the protocol-specific "select" 26442 * function will be released when the ipsec_mp is freed, thanks to the 26443 * ipsec_out_free destructor -- see spd.c. 26444 */ 26445 static boolean_t 26446 ipsec_out_select_sa(mblk_t *ipsec_mp) 26447 { 26448 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26449 ipsec_out_t *io; 26450 ipsec_policy_t *pp; 26451 ipsec_action_t *ap; 26452 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26453 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26454 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26455 26456 if (!io->ipsec_out_secure) { 26457 /* 26458 * We came here by mistake. 26459 * Don't bother with ipsec processing 26460 * We should "discourage" this path in the future. 26461 */ 26462 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26463 return (B_FALSE); 26464 } 26465 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26466 ASSERT((io->ipsec_out_policy != NULL) || 26467 (io->ipsec_out_act != NULL)); 26468 26469 ASSERT(io->ipsec_out_failed == B_FALSE); 26470 26471 /* 26472 * IPsec processing has started. 26473 */ 26474 io->ipsec_out_proc_begin = B_TRUE; 26475 ap = io->ipsec_out_act; 26476 if (ap == NULL) { 26477 pp = io->ipsec_out_policy; 26478 ASSERT(pp != NULL); 26479 ap = pp->ipsp_act; 26480 ASSERT(ap != NULL); 26481 } 26482 26483 /* 26484 * We have an action. now, let's select SA's. 26485 * (In the future, we can cache this in the conn_t..) 26486 */ 26487 if (ap->ipa_want_esp) { 26488 if (io->ipsec_out_esp_sa == NULL) { 26489 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26490 IPPROTO_ESP); 26491 } 26492 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26493 } 26494 26495 if (ap->ipa_want_ah) { 26496 if (io->ipsec_out_ah_sa == NULL) { 26497 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26498 IPPROTO_AH); 26499 } 26500 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26501 /* 26502 * The ESP and AH processing order needs to be preserved 26503 * when both protocols are required (ESP should be applied 26504 * before AH for an outbound packet). Force an ESP ACQUIRE 26505 * when both ESP and AH are required, and an AH ACQUIRE 26506 * is needed. 26507 */ 26508 if (ap->ipa_want_esp && need_ah_acquire) 26509 need_esp_acquire = B_TRUE; 26510 } 26511 26512 /* 26513 * Send an ACQUIRE (extended, regular, or both) if we need one. 26514 * Release SAs that got referenced, but will not be used until we 26515 * acquire _all_ of the SAs we need. 26516 */ 26517 if (need_ah_acquire || need_esp_acquire) { 26518 if (io->ipsec_out_ah_sa != NULL) { 26519 IPSA_REFRELE(io->ipsec_out_ah_sa); 26520 io->ipsec_out_ah_sa = NULL; 26521 } 26522 if (io->ipsec_out_esp_sa != NULL) { 26523 IPSA_REFRELE(io->ipsec_out_esp_sa); 26524 io->ipsec_out_esp_sa = NULL; 26525 } 26526 26527 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26528 return (B_FALSE); 26529 } 26530 26531 return (B_TRUE); 26532 } 26533 26534 /* 26535 * Process an IPSEC_OUT message and see what you can 26536 * do with it. 26537 * IPQoS Notes: 26538 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26539 * IPsec. 26540 * XXX would like to nuke ire_t. 26541 * XXX ill_index better be "real" 26542 */ 26543 void 26544 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26545 { 26546 ipsec_out_t *io; 26547 ipsec_policy_t *pp; 26548 ipsec_action_t *ap; 26549 ipha_t *ipha; 26550 ip6_t *ip6h; 26551 mblk_t *mp; 26552 ill_t *ill; 26553 zoneid_t zoneid; 26554 ipsec_status_t ipsec_rc; 26555 boolean_t ill_need_rele = B_FALSE; 26556 ip_stack_t *ipst; 26557 ipsec_stack_t *ipss; 26558 26559 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26560 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26561 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26562 ipst = io->ipsec_out_ns->netstack_ip; 26563 mp = ipsec_mp->b_cont; 26564 26565 /* 26566 * Initiate IPPF processing. We do it here to account for packets 26567 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26568 * We can check for ipsec_out_proc_begin even for such packets, as 26569 * they will always be false (asserted below). 26570 */ 26571 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26572 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26573 io->ipsec_out_ill_index : ill_index); 26574 if (mp == NULL) { 26575 ip2dbg(("ipsec_out_process: packet dropped "\ 26576 "during IPPF processing\n")); 26577 freeb(ipsec_mp); 26578 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26579 return; 26580 } 26581 } 26582 26583 if (!io->ipsec_out_secure) { 26584 /* 26585 * We came here by mistake. 26586 * Don't bother with ipsec processing 26587 * Should "discourage" this path in the future. 26588 */ 26589 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26590 goto done; 26591 } 26592 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26593 ASSERT((io->ipsec_out_policy != NULL) || 26594 (io->ipsec_out_act != NULL)); 26595 ASSERT(io->ipsec_out_failed == B_FALSE); 26596 26597 ipss = ipst->ips_netstack->netstack_ipsec; 26598 if (!ipsec_loaded(ipss)) { 26599 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26600 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26601 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26602 } else { 26603 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26604 } 26605 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26606 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26607 &ipss->ipsec_dropper); 26608 return; 26609 } 26610 26611 /* 26612 * IPsec processing has started. 26613 */ 26614 io->ipsec_out_proc_begin = B_TRUE; 26615 ap = io->ipsec_out_act; 26616 if (ap == NULL) { 26617 pp = io->ipsec_out_policy; 26618 ASSERT(pp != NULL); 26619 ap = pp->ipsp_act; 26620 ASSERT(ap != NULL); 26621 } 26622 26623 /* 26624 * Save the outbound ill index. When the packet comes back 26625 * from IPsec, we make sure the ill hasn't changed or disappeared 26626 * before sending it the accelerated packet. 26627 */ 26628 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26629 ill = ire_to_ill(ire); 26630 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26631 } 26632 26633 /* 26634 * The order of processing is first insert a IP header if needed. 26635 * Then insert the ESP header and then the AH header. 26636 */ 26637 if ((io->ipsec_out_se_done == B_FALSE) && 26638 (ap->ipa_want_se)) { 26639 /* 26640 * First get the outer IP header before sending 26641 * it to ESP. 26642 */ 26643 ipha_t *oipha, *iipha; 26644 mblk_t *outer_mp, *inner_mp; 26645 26646 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26647 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26648 "ipsec_out_process: " 26649 "Self-Encapsulation failed: Out of memory\n"); 26650 freemsg(ipsec_mp); 26651 if (ill != NULL) { 26652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26653 } else { 26654 BUMP_MIB(&ipst->ips_ip_mib, 26655 ipIfStatsOutDiscards); 26656 } 26657 return; 26658 } 26659 inner_mp = ipsec_mp->b_cont; 26660 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26661 oipha = (ipha_t *)outer_mp->b_rptr; 26662 iipha = (ipha_t *)inner_mp->b_rptr; 26663 *oipha = *iipha; 26664 outer_mp->b_wptr += sizeof (ipha_t); 26665 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26666 sizeof (ipha_t)); 26667 oipha->ipha_protocol = IPPROTO_ENCAP; 26668 oipha->ipha_version_and_hdr_length = 26669 IP_SIMPLE_HDR_VERSION; 26670 oipha->ipha_hdr_checksum = 0; 26671 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26672 outer_mp->b_cont = inner_mp; 26673 ipsec_mp->b_cont = outer_mp; 26674 26675 io->ipsec_out_se_done = B_TRUE; 26676 io->ipsec_out_tunnel = B_TRUE; 26677 } 26678 26679 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26680 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26681 !ipsec_out_select_sa(ipsec_mp)) 26682 return; 26683 26684 /* 26685 * By now, we know what SA's to use. Toss over to ESP & AH 26686 * to do the heavy lifting. 26687 */ 26688 zoneid = io->ipsec_out_zoneid; 26689 ASSERT(zoneid != ALL_ZONES); 26690 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26691 ASSERT(io->ipsec_out_esp_sa != NULL); 26692 io->ipsec_out_esp_done = B_TRUE; 26693 /* 26694 * Note that since hw accel can only apply one transform, 26695 * not two, we skip hw accel for ESP if we also have AH 26696 * This is an design limitation of the interface 26697 * which should be revisited. 26698 */ 26699 ASSERT(ire != NULL); 26700 if (io->ipsec_out_ah_sa == NULL) { 26701 ill = (ill_t *)ire->ire_stq->q_ptr; 26702 ipsec_out_is_accelerated(ipsec_mp, 26703 io->ipsec_out_esp_sa, ill, ire); 26704 } 26705 26706 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26707 switch (ipsec_rc) { 26708 case IPSEC_STATUS_SUCCESS: 26709 break; 26710 case IPSEC_STATUS_FAILED: 26711 if (ill != NULL) { 26712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26713 } else { 26714 BUMP_MIB(&ipst->ips_ip_mib, 26715 ipIfStatsOutDiscards); 26716 } 26717 /* FALLTHRU */ 26718 case IPSEC_STATUS_PENDING: 26719 return; 26720 } 26721 } 26722 26723 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26724 ASSERT(io->ipsec_out_ah_sa != NULL); 26725 io->ipsec_out_ah_done = B_TRUE; 26726 if (ire == NULL) { 26727 int idx = io->ipsec_out_capab_ill_index; 26728 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26729 NULL, NULL, NULL, NULL, ipst); 26730 ill_need_rele = B_TRUE; 26731 } else { 26732 ill = (ill_t *)ire->ire_stq->q_ptr; 26733 } 26734 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26735 ire); 26736 26737 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26738 switch (ipsec_rc) { 26739 case IPSEC_STATUS_SUCCESS: 26740 break; 26741 case IPSEC_STATUS_FAILED: 26742 if (ill != NULL) { 26743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26744 } else { 26745 BUMP_MIB(&ipst->ips_ip_mib, 26746 ipIfStatsOutDiscards); 26747 } 26748 /* FALLTHRU */ 26749 case IPSEC_STATUS_PENDING: 26750 if (ill != NULL && ill_need_rele) 26751 ill_refrele(ill); 26752 return; 26753 } 26754 } 26755 /* 26756 * We are done with IPsec processing. Send it over the wire. 26757 */ 26758 done: 26759 mp = ipsec_mp->b_cont; 26760 ipha = (ipha_t *)mp->b_rptr; 26761 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26762 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26763 ire); 26764 } else { 26765 ip6h = (ip6_t *)ipha; 26766 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26767 ire); 26768 } 26769 if (ill != NULL && ill_need_rele) 26770 ill_refrele(ill); 26771 } 26772 26773 /* ARGSUSED */ 26774 void 26775 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26776 { 26777 opt_restart_t *or; 26778 int err; 26779 conn_t *connp; 26780 cred_t *cr; 26781 26782 ASSERT(CONN_Q(q)); 26783 connp = Q_TO_CONN(q); 26784 26785 ASSERT(first_mp->b_datap->db_type == M_CTL); 26786 or = (opt_restart_t *)first_mp->b_rptr; 26787 /* 26788 * We checked for a db_credp the first time svr4_optcom_req 26789 * was called (from ip_wput_nondata). So we can just ASSERT here. 26790 */ 26791 cr = msg_getcred(first_mp, NULL); 26792 ASSERT(cr != NULL); 26793 26794 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26795 err = svr4_optcom_req(q, first_mp, cr, 26796 &ip_opt_obj, B_FALSE); 26797 } else { 26798 ASSERT(or->or_type == T_OPTMGMT_REQ); 26799 err = tpi_optcom_req(q, first_mp, cr, 26800 &ip_opt_obj, B_FALSE); 26801 } 26802 if (err != EINPROGRESS) { 26803 /* operation is done */ 26804 CONN_OPER_PENDING_DONE(connp); 26805 } 26806 } 26807 26808 /* 26809 * ioctls that go through a down/up sequence may need to wait for the down 26810 * to complete. This involves waiting for the ire and ipif refcnts to go down 26811 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26812 */ 26813 /* ARGSUSED */ 26814 void 26815 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26816 { 26817 struct iocblk *iocp; 26818 mblk_t *mp1; 26819 ip_ioctl_cmd_t *ipip; 26820 int err; 26821 sin_t *sin; 26822 struct lifreq *lifr; 26823 struct ifreq *ifr; 26824 26825 iocp = (struct iocblk *)mp->b_rptr; 26826 ASSERT(ipsq != NULL); 26827 /* Existence of mp1 verified in ip_wput_nondata */ 26828 mp1 = mp->b_cont->b_cont; 26829 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26830 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26831 /* 26832 * Special case where ipx_current_ipif is not set: 26833 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26834 * We are here as were not able to complete the operation in 26835 * ipif_set_values because we could not become exclusive on 26836 * the new ipsq. 26837 */ 26838 ill_t *ill = q->q_ptr; 26839 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26840 } 26841 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26842 26843 if (ipip->ipi_cmd_type == IF_CMD) { 26844 /* This a old style SIOC[GS]IF* command */ 26845 ifr = (struct ifreq *)mp1->b_rptr; 26846 sin = (sin_t *)&ifr->ifr_addr; 26847 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26848 /* This a new style SIOC[GS]LIF* command */ 26849 lifr = (struct lifreq *)mp1->b_rptr; 26850 sin = (sin_t *)&lifr->lifr_addr; 26851 } else { 26852 sin = NULL; 26853 } 26854 26855 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26856 q, mp, ipip, mp1->b_rptr); 26857 26858 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26859 } 26860 26861 /* 26862 * ioctl processing 26863 * 26864 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26865 * the ioctl command in the ioctl tables, determines the copyin data size 26866 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26867 * 26868 * ioctl processing then continues when the M_IOCDATA makes its way down to 26869 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26870 * associated 'conn' is refheld till the end of the ioctl and the general 26871 * ioctl processing function ip_process_ioctl() is called to extract the 26872 * arguments and process the ioctl. To simplify extraction, ioctl commands 26873 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26874 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26875 * is used to extract the ioctl's arguments. 26876 * 26877 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26878 * so goes thru the serialization primitive ipsq_try_enter. Then the 26879 * appropriate function to handle the ioctl is called based on the entry in 26880 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26881 * which also refreleases the 'conn' that was refheld at the start of the 26882 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26883 * 26884 * Many exclusive ioctls go thru an internal down up sequence as part of 26885 * the operation. For example an attempt to change the IP address of an 26886 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26887 * does all the cleanup such as deleting all ires that use this address. 26888 * Then we need to wait till all references to the interface go away. 26889 */ 26890 void 26891 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26892 { 26893 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26894 ip_ioctl_cmd_t *ipip = arg; 26895 ip_extract_func_t *extract_funcp; 26896 cmd_info_t ci; 26897 int err; 26898 boolean_t entered_ipsq = B_FALSE; 26899 26900 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26901 26902 if (ipip == NULL) 26903 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26904 26905 /* 26906 * SIOCLIFADDIF needs to go thru a special path since the 26907 * ill may not exist yet. This happens in the case of lo0 26908 * which is created using this ioctl. 26909 */ 26910 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26911 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26912 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26913 return; 26914 } 26915 26916 ci.ci_ipif = NULL; 26917 if (ipip->ipi_cmd_type == MISC_CMD) { 26918 /* 26919 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26920 */ 26921 if (ipip->ipi_cmd == IF_UNITSEL) { 26922 /* ioctl comes down the ill */ 26923 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26924 ipif_refhold(ci.ci_ipif); 26925 } 26926 err = 0; 26927 ci.ci_sin = NULL; 26928 ci.ci_sin6 = NULL; 26929 ci.ci_lifr = NULL; 26930 } else { 26931 switch (ipip->ipi_cmd_type) { 26932 case IF_CMD: 26933 case LIF_CMD: 26934 extract_funcp = ip_extract_lifreq; 26935 break; 26936 26937 case ARP_CMD: 26938 case XARP_CMD: 26939 extract_funcp = ip_extract_arpreq; 26940 break; 26941 26942 case TUN_CMD: 26943 extract_funcp = ip_extract_tunreq; 26944 break; 26945 26946 case MSFILT_CMD: 26947 extract_funcp = ip_extract_msfilter; 26948 break; 26949 26950 default: 26951 ASSERT(0); 26952 } 26953 26954 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26955 if (err != 0) { 26956 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26957 return; 26958 } 26959 26960 /* 26961 * All of the extraction functions return a refheld ipif. 26962 */ 26963 ASSERT(ci.ci_ipif != NULL); 26964 } 26965 26966 if (!(ipip->ipi_flags & IPI_WR)) { 26967 /* 26968 * A return value of EINPROGRESS means the ioctl is 26969 * either queued and waiting for some reason or has 26970 * already completed. 26971 */ 26972 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26973 ci.ci_lifr); 26974 if (ci.ci_ipif != NULL) 26975 ipif_refrele(ci.ci_ipif); 26976 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26977 return; 26978 } 26979 26980 ASSERT(ci.ci_ipif != NULL); 26981 26982 /* 26983 * If ipsq is non-NULL, we are already being called exclusively. 26984 */ 26985 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26986 if (ipsq == NULL) { 26987 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26988 NEW_OP, B_TRUE); 26989 if (ipsq == NULL) { 26990 ipif_refrele(ci.ci_ipif); 26991 return; 26992 } 26993 entered_ipsq = B_TRUE; 26994 } 26995 26996 /* 26997 * Release the ipif so that ipif_down and friends that wait for 26998 * references to go away are not misled about the current ipif_refcnt 26999 * values. We are writer so we can access the ipif even after releasing 27000 * the ipif. 27001 */ 27002 ipif_refrele(ci.ci_ipif); 27003 27004 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27005 27006 /* 27007 * For most set ioctls that come here, this serves as a single point 27008 * where we set the IPIF_CHANGING flag. This ensures that there won't 27009 * be any new references to the ipif. This helps functions that go 27010 * through this path and end up trying to wait for the refcnts 27011 * associated with the ipif to go down to zero. The exception is 27012 * SIOCSLIFREMOVEIF, which sets IPIF_CONDEMNED internally after 27013 * identifying the right ipif to operate on. 27014 */ 27015 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27016 if (ipip->ipi_cmd != SIOCLIFREMOVEIF) 27017 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27018 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27019 27020 /* 27021 * A return value of EINPROGRESS means the ioctl is 27022 * either queued and waiting for some reason or has 27023 * already completed. 27024 */ 27025 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27026 27027 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27028 27029 if (entered_ipsq) 27030 ipsq_exit(ipsq); 27031 } 27032 27033 /* 27034 * Complete the ioctl. Typically ioctls use the mi package and need to 27035 * do mi_copyout/mi_copy_done. 27036 */ 27037 void 27038 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27039 { 27040 conn_t *connp = NULL; 27041 27042 if (err == EINPROGRESS) 27043 return; 27044 27045 if (CONN_Q(q)) { 27046 connp = Q_TO_CONN(q); 27047 ASSERT(connp->conn_ref >= 2); 27048 } 27049 27050 switch (mode) { 27051 case COPYOUT: 27052 if (err == 0) 27053 mi_copyout(q, mp); 27054 else 27055 mi_copy_done(q, mp, err); 27056 break; 27057 27058 case NO_COPYOUT: 27059 mi_copy_done(q, mp, err); 27060 break; 27061 27062 default: 27063 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27064 break; 27065 } 27066 27067 /* 27068 * The refhold placed at the start of the ioctl is released here. 27069 */ 27070 if (connp != NULL) 27071 CONN_OPER_PENDING_DONE(connp); 27072 27073 if (ipsq != NULL) 27074 ipsq_current_finish(ipsq); 27075 } 27076 27077 /* Called from ip_wput for all non data messages */ 27078 /* ARGSUSED */ 27079 void 27080 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27081 { 27082 mblk_t *mp1; 27083 ire_t *ire, *fake_ire; 27084 ill_t *ill; 27085 struct iocblk *iocp; 27086 ip_ioctl_cmd_t *ipip; 27087 cred_t *cr; 27088 conn_t *connp; 27089 int err; 27090 nce_t *nce; 27091 ipif_t *ipif; 27092 ip_stack_t *ipst; 27093 char *proto_str; 27094 27095 if (CONN_Q(q)) { 27096 connp = Q_TO_CONN(q); 27097 ipst = connp->conn_netstack->netstack_ip; 27098 } else { 27099 connp = NULL; 27100 ipst = ILLQ_TO_IPST(q); 27101 } 27102 27103 switch (DB_TYPE(mp)) { 27104 case M_IOCTL: 27105 /* 27106 * IOCTL processing begins in ip_sioctl_copyin_setup which 27107 * will arrange to copy in associated control structures. 27108 */ 27109 ip_sioctl_copyin_setup(q, mp); 27110 return; 27111 case M_IOCDATA: 27112 /* 27113 * Ensure that this is associated with one of our trans- 27114 * parent ioctls. If it's not ours, discard it if we're 27115 * running as a driver, or pass it on if we're a module. 27116 */ 27117 iocp = (struct iocblk *)mp->b_rptr; 27118 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27119 if (ipip == NULL) { 27120 if (q->q_next == NULL) { 27121 goto nak; 27122 } else { 27123 putnext(q, mp); 27124 } 27125 return; 27126 } 27127 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27128 /* 27129 * the ioctl is one we recognise, but is not 27130 * consumed by IP as a module, pass M_IOCDATA 27131 * for processing downstream, but only for 27132 * common Streams ioctls. 27133 */ 27134 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27135 putnext(q, mp); 27136 return; 27137 } else { 27138 goto nak; 27139 } 27140 } 27141 27142 /* IOCTL continuation following copyin or copyout. */ 27143 if (mi_copy_state(q, mp, NULL) == -1) { 27144 /* 27145 * The copy operation failed. mi_copy_state already 27146 * cleaned up, so we're out of here. 27147 */ 27148 return; 27149 } 27150 /* 27151 * If we just completed a copy in, we become writer and 27152 * continue processing in ip_sioctl_copyin_done. If it 27153 * was a copy out, we call mi_copyout again. If there is 27154 * nothing more to copy out, it will complete the IOCTL. 27155 */ 27156 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27157 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27158 mi_copy_done(q, mp, EPROTO); 27159 return; 27160 } 27161 /* 27162 * Check for cases that need more copying. A return 27163 * value of 0 means a second copyin has been started, 27164 * so we return; a return value of 1 means no more 27165 * copying is needed, so we continue. 27166 */ 27167 if (ipip->ipi_cmd_type == MSFILT_CMD && 27168 MI_COPY_COUNT(mp) == 1) { 27169 if (ip_copyin_msfilter(q, mp) == 0) 27170 return; 27171 } 27172 /* 27173 * Refhold the conn, till the ioctl completes. This is 27174 * needed in case the ioctl ends up in the pending mp 27175 * list. Every mp in the ill_pending_mp list and 27176 * the ipx_pending_mp must have a refhold on the conn 27177 * to resume processing. The refhold is released when 27178 * the ioctl completes. (normally or abnormally) 27179 * In all cases ip_ioctl_finish is called to finish 27180 * the ioctl. 27181 */ 27182 if (connp != NULL) { 27183 /* This is not a reentry */ 27184 ASSERT(ipsq == NULL); 27185 CONN_INC_REF(connp); 27186 } else { 27187 if (!(ipip->ipi_flags & IPI_MODOK)) { 27188 mi_copy_done(q, mp, EINVAL); 27189 return; 27190 } 27191 } 27192 27193 ip_process_ioctl(ipsq, q, mp, ipip); 27194 27195 } else { 27196 mi_copyout(q, mp); 27197 } 27198 return; 27199 nak: 27200 iocp->ioc_error = EINVAL; 27201 mp->b_datap->db_type = M_IOCNAK; 27202 iocp->ioc_count = 0; 27203 qreply(q, mp); 27204 return; 27205 27206 case M_IOCNAK: 27207 /* 27208 * The only way we could get here is if a resolver didn't like 27209 * an IOCTL we sent it. This shouldn't happen. 27210 */ 27211 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27212 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27213 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27214 freemsg(mp); 27215 return; 27216 case M_IOCACK: 27217 /* /dev/ip shouldn't see this */ 27218 if (CONN_Q(q)) 27219 goto nak; 27220 27221 /* 27222 * Finish socket ioctls passed through to ARP. We use the 27223 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27224 * we need to become writer before calling ip_sioctl_iocack(). 27225 * Note that qwriter_ip() will release the refhold, and that a 27226 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27227 * ill stream. 27228 */ 27229 iocp = (struct iocblk *)mp->b_rptr; 27230 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27231 ip_sioctl_iocack(NULL, q, mp, NULL); 27232 return; 27233 } 27234 27235 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27236 iocp->ioc_cmd == AR_ENTRY_ADD); 27237 ill = q->q_ptr; 27238 ill_refhold(ill); 27239 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27240 return; 27241 case M_FLUSH: 27242 if (*mp->b_rptr & FLUSHW) 27243 flushq(q, FLUSHALL); 27244 if (q->q_next) { 27245 putnext(q, mp); 27246 return; 27247 } 27248 if (*mp->b_rptr & FLUSHR) { 27249 *mp->b_rptr &= ~FLUSHW; 27250 qreply(q, mp); 27251 return; 27252 } 27253 freemsg(mp); 27254 return; 27255 case IRE_DB_REQ_TYPE: 27256 if (connp == NULL) { 27257 proto_str = "IRE_DB_REQ_TYPE"; 27258 goto protonak; 27259 } 27260 /* An Upper Level Protocol wants a copy of an IRE. */ 27261 ip_ire_req(q, mp); 27262 return; 27263 case M_CTL: 27264 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27265 break; 27266 27267 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27268 TUN_HELLO) { 27269 ASSERT(connp != NULL); 27270 connp->conn_flags |= IPCL_IPTUN; 27271 freeb(mp); 27272 return; 27273 } 27274 27275 /* M_CTL messages are used by ARP to tell us things. */ 27276 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27277 break; 27278 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27279 case AR_ENTRY_SQUERY: 27280 ip_wput_ctl(q, mp); 27281 return; 27282 case AR_CLIENT_NOTIFY: 27283 ip_arp_news(q, mp); 27284 return; 27285 case AR_DLPIOP_DONE: 27286 ASSERT(q->q_next != NULL); 27287 ill = (ill_t *)q->q_ptr; 27288 /* qwriter_ip releases the refhold */ 27289 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27290 ill_refhold(ill); 27291 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27292 return; 27293 case AR_ARP_CLOSING: 27294 /* 27295 * ARP (above us) is closing. If no ARP bringup is 27296 * currently pending, ack the message so that ARP 27297 * can complete its close. Also mark ill_arp_closing 27298 * so that new ARP bringups will fail. If any 27299 * ARP bringup is currently in progress, we will 27300 * ack this when the current ARP bringup completes. 27301 */ 27302 ASSERT(q->q_next != NULL); 27303 ill = (ill_t *)q->q_ptr; 27304 mutex_enter(&ill->ill_lock); 27305 ill->ill_arp_closing = 1; 27306 if (!ill->ill_arp_bringup_pending) { 27307 mutex_exit(&ill->ill_lock); 27308 qreply(q, mp); 27309 } else { 27310 mutex_exit(&ill->ill_lock); 27311 freemsg(mp); 27312 } 27313 return; 27314 case AR_ARP_EXTEND: 27315 /* 27316 * The ARP module above us is capable of duplicate 27317 * address detection. Old ATM drivers will not send 27318 * this message. 27319 */ 27320 ASSERT(q->q_next != NULL); 27321 ill = (ill_t *)q->q_ptr; 27322 ill->ill_arp_extend = B_TRUE; 27323 freemsg(mp); 27324 return; 27325 default: 27326 break; 27327 } 27328 break; 27329 case M_PROTO: 27330 case M_PCPROTO: 27331 /* 27332 * The only PROTO messages we expect are copies of option 27333 * negotiation acknowledgements, AH and ESP bind requests 27334 * are also expected. 27335 */ 27336 switch (((union T_primitives *)mp->b_rptr)->type) { 27337 case O_T_BIND_REQ: 27338 case T_BIND_REQ: { 27339 /* Request can get queued in bind */ 27340 if (connp == NULL) { 27341 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27342 goto protonak; 27343 } 27344 /* 27345 * The transports except SCTP call ip_bind_{v4,v6}() 27346 * directly instead of a a putnext. SCTP doesn't 27347 * generate any T_BIND_REQ since it has its own 27348 * fanout data structures. However, ESP and AH 27349 * come in for regular binds; all other cases are 27350 * bind retries. 27351 */ 27352 ASSERT(!IPCL_IS_SCTP(connp)); 27353 27354 /* Don't increment refcnt if this is a re-entry */ 27355 if (ipsq == NULL) 27356 CONN_INC_REF(connp); 27357 27358 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27359 connp, NULL) : ip_bind_v4(q, mp, connp); 27360 ASSERT(mp != NULL); 27361 27362 ASSERT(!IPCL_IS_TCP(connp)); 27363 ASSERT(!IPCL_IS_UDP(connp)); 27364 ASSERT(!IPCL_IS_RAWIP(connp)); 27365 27366 /* The case of AH and ESP */ 27367 qreply(q, mp); 27368 CONN_OPER_PENDING_DONE(connp); 27369 return; 27370 } 27371 case T_SVR4_OPTMGMT_REQ: 27372 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27373 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27374 27375 if (connp == NULL) { 27376 proto_str = "T_SVR4_OPTMGMT_REQ"; 27377 goto protonak; 27378 } 27379 27380 /* 27381 * All Solaris components should pass a db_credp 27382 * for this TPI message, hence we ASSERT. 27383 * But in case there is some other M_PROTO that looks 27384 * like a TPI message sent by some other kernel 27385 * component, we check and return an error. 27386 */ 27387 cr = msg_getcred(mp, NULL); 27388 ASSERT(cr != NULL); 27389 if (cr == NULL) { 27390 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27391 if (mp != NULL) 27392 qreply(q, mp); 27393 return; 27394 } 27395 27396 if (!snmpcom_req(q, mp, ip_snmp_set, 27397 ip_snmp_get, cr)) { 27398 /* 27399 * Call svr4_optcom_req so that it can 27400 * generate the ack. We don't come here 27401 * if this operation is being restarted. 27402 * ip_restart_optmgmt will drop the conn ref. 27403 * In the case of ipsec option after the ipsec 27404 * load is complete conn_restart_ipsec_waiter 27405 * drops the conn ref. 27406 */ 27407 ASSERT(ipsq == NULL); 27408 CONN_INC_REF(connp); 27409 if (ip_check_for_ipsec_opt(q, mp)) 27410 return; 27411 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27412 B_FALSE); 27413 if (err != EINPROGRESS) { 27414 /* Operation is done */ 27415 CONN_OPER_PENDING_DONE(connp); 27416 } 27417 } 27418 return; 27419 case T_OPTMGMT_REQ: 27420 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27421 /* 27422 * Note: No snmpcom_req support through new 27423 * T_OPTMGMT_REQ. 27424 * Call tpi_optcom_req so that it can 27425 * generate the ack. 27426 */ 27427 if (connp == NULL) { 27428 proto_str = "T_OPTMGMT_REQ"; 27429 goto protonak; 27430 } 27431 27432 /* 27433 * All Solaris components should pass a db_credp 27434 * for this TPI message, hence we ASSERT. 27435 * But in case there is some other M_PROTO that looks 27436 * like a TPI message sent by some other kernel 27437 * component, we check and return an error. 27438 */ 27439 cr = msg_getcred(mp, NULL); 27440 ASSERT(cr != NULL); 27441 if (cr == NULL) { 27442 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27443 if (mp != NULL) 27444 qreply(q, mp); 27445 return; 27446 } 27447 ASSERT(ipsq == NULL); 27448 /* 27449 * We don't come here for restart. ip_restart_optmgmt 27450 * will drop the conn ref. In the case of ipsec option 27451 * after the ipsec load is complete 27452 * conn_restart_ipsec_waiter drops the conn ref. 27453 */ 27454 CONN_INC_REF(connp); 27455 if (ip_check_for_ipsec_opt(q, mp)) 27456 return; 27457 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27458 if (err != EINPROGRESS) { 27459 /* Operation is done */ 27460 CONN_OPER_PENDING_DONE(connp); 27461 } 27462 return; 27463 case T_UNBIND_REQ: 27464 if (connp == NULL) { 27465 proto_str = "T_UNBIND_REQ"; 27466 goto protonak; 27467 } 27468 ip_unbind(Q_TO_CONN(q)); 27469 mp = mi_tpi_ok_ack_alloc(mp); 27470 qreply(q, mp); 27471 return; 27472 default: 27473 /* 27474 * Have to drop any DLPI messages coming down from 27475 * arp (such as an info_req which would cause ip 27476 * to receive an extra info_ack if it was passed 27477 * through. 27478 */ 27479 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27480 (int)*(uint_t *)mp->b_rptr)); 27481 freemsg(mp); 27482 return; 27483 } 27484 /* NOTREACHED */ 27485 case IRE_DB_TYPE: { 27486 nce_t *nce; 27487 ill_t *ill; 27488 in6_addr_t gw_addr_v6; 27489 27490 /* 27491 * This is a response back from a resolver. It 27492 * consists of a message chain containing: 27493 * IRE_MBLK-->LL_HDR_MBLK->pkt 27494 * The IRE_MBLK is the one we allocated in ip_newroute. 27495 * The LL_HDR_MBLK is the DLPI header to use to get 27496 * the attached packet, and subsequent ones for the 27497 * same destination, transmitted. 27498 */ 27499 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27500 break; 27501 /* 27502 * First, check to make sure the resolution succeeded. 27503 * If it failed, the second mblk will be empty. 27504 * If it is, free the chain, dropping the packet. 27505 * (We must ire_delete the ire; that frees the ire mblk) 27506 * We're doing this now to support PVCs for ATM; it's 27507 * a partial xresolv implementation. When we fully implement 27508 * xresolv interfaces, instead of freeing everything here 27509 * we'll initiate neighbor discovery. 27510 * 27511 * For v4 (ARP and other external resolvers) the resolver 27512 * frees the message, so no check is needed. This check 27513 * is required, though, for a full xresolve implementation. 27514 * Including this code here now both shows how external 27515 * resolvers can NACK a resolution request using an 27516 * existing design that has no specific provisions for NACKs, 27517 * and also takes into account that the current non-ARP 27518 * external resolver has been coded to use this method of 27519 * NACKing for all IPv6 (xresolv) cases, 27520 * whether our xresolv implementation is complete or not. 27521 * 27522 */ 27523 ire = (ire_t *)mp->b_rptr; 27524 ill = ire_to_ill(ire); 27525 mp1 = mp->b_cont; /* dl_unitdata_req */ 27526 if (mp1->b_rptr == mp1->b_wptr) { 27527 if (ire->ire_ipversion == IPV6_VERSION) { 27528 /* 27529 * XRESOLV interface. 27530 */ 27531 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27532 mutex_enter(&ire->ire_lock); 27533 gw_addr_v6 = ire->ire_gateway_addr_v6; 27534 mutex_exit(&ire->ire_lock); 27535 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27536 nce = ndp_lookup_v6(ill, B_FALSE, 27537 &ire->ire_addr_v6, B_FALSE); 27538 } else { 27539 nce = ndp_lookup_v6(ill, B_FALSE, 27540 &gw_addr_v6, B_FALSE); 27541 } 27542 if (nce != NULL) { 27543 nce_resolv_failed(nce); 27544 ndp_delete(nce); 27545 NCE_REFRELE(nce); 27546 } 27547 } 27548 mp->b_cont = NULL; 27549 freemsg(mp1); /* frees the pkt as well */ 27550 ASSERT(ire->ire_nce == NULL); 27551 ire_delete((ire_t *)mp->b_rptr); 27552 return; 27553 } 27554 27555 /* 27556 * Split them into IRE_MBLK and pkt and feed it into 27557 * ire_add_then_send. Then in ire_add_then_send 27558 * the IRE will be added, and then the packet will be 27559 * run back through ip_wput. This time it will make 27560 * it to the wire. 27561 */ 27562 mp->b_cont = NULL; 27563 mp = mp1->b_cont; /* now, mp points to pkt */ 27564 mp1->b_cont = NULL; 27565 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27566 if (ire->ire_ipversion == IPV6_VERSION) { 27567 /* 27568 * XRESOLV interface. Find the nce and put a copy 27569 * of the dl_unitdata_req in nce_res_mp 27570 */ 27571 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27572 mutex_enter(&ire->ire_lock); 27573 gw_addr_v6 = ire->ire_gateway_addr_v6; 27574 mutex_exit(&ire->ire_lock); 27575 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27576 nce = ndp_lookup_v6(ill, B_FALSE, 27577 &ire->ire_addr_v6, B_FALSE); 27578 } else { 27579 nce = ndp_lookup_v6(ill, B_FALSE, 27580 &gw_addr_v6, B_FALSE); 27581 } 27582 if (nce != NULL) { 27583 /* 27584 * We have to protect nce_res_mp here 27585 * from being accessed by other threads 27586 * while we change the mblk pointer. 27587 * Other functions will also lock the nce when 27588 * accessing nce_res_mp. 27589 * 27590 * The reason we change the mblk pointer 27591 * here rather than copying the resolved address 27592 * into the template is that, unlike with 27593 * ethernet, we have no guarantee that the 27594 * resolved address length will be 27595 * smaller than or equal to the lla length 27596 * with which the template was allocated, 27597 * (for ethernet, they're equal) 27598 * so we have to use the actual resolved 27599 * address mblk - which holds the real 27600 * dl_unitdata_req with the resolved address. 27601 * 27602 * Doing this is the same behavior as was 27603 * previously used in the v4 ARP case. 27604 */ 27605 mutex_enter(&nce->nce_lock); 27606 if (nce->nce_res_mp != NULL) 27607 freemsg(nce->nce_res_mp); 27608 nce->nce_res_mp = mp1; 27609 mutex_exit(&nce->nce_lock); 27610 /* 27611 * We do a fastpath probe here because 27612 * we have resolved the address without 27613 * using Neighbor Discovery. 27614 * In the non-XRESOLV v6 case, the fastpath 27615 * probe is done right after neighbor 27616 * discovery completes. 27617 */ 27618 if (nce->nce_res_mp != NULL) { 27619 int res; 27620 nce_fastpath_list_add(nce); 27621 res = ill_fastpath_probe(ill, 27622 nce->nce_res_mp); 27623 if (res != 0 && res != EAGAIN) 27624 nce_fastpath_list_delete(nce); 27625 } 27626 27627 ire_add_then_send(q, ire, mp); 27628 /* 27629 * Now we have to clean out any packets 27630 * that may have been queued on the nce 27631 * while it was waiting for address resolution 27632 * to complete. 27633 */ 27634 mutex_enter(&nce->nce_lock); 27635 mp1 = nce->nce_qd_mp; 27636 nce->nce_qd_mp = NULL; 27637 mutex_exit(&nce->nce_lock); 27638 while (mp1 != NULL) { 27639 mblk_t *nxt_mp; 27640 queue_t *fwdq = NULL; 27641 ill_t *inbound_ill; 27642 uint_t ifindex; 27643 27644 nxt_mp = mp1->b_next; 27645 mp1->b_next = NULL; 27646 /* 27647 * Retrieve ifindex stored in 27648 * ip_rput_data_v6() 27649 */ 27650 ifindex = 27651 (uint_t)(uintptr_t)mp1->b_prev; 27652 inbound_ill = 27653 ill_lookup_on_ifindex(ifindex, 27654 B_TRUE, NULL, NULL, NULL, 27655 NULL, ipst); 27656 mp1->b_prev = NULL; 27657 if (inbound_ill != NULL) 27658 fwdq = inbound_ill->ill_rq; 27659 27660 if (fwdq != NULL) { 27661 put(fwdq, mp1); 27662 ill_refrele(inbound_ill); 27663 } else 27664 put(WR(ill->ill_rq), mp1); 27665 mp1 = nxt_mp; 27666 } 27667 NCE_REFRELE(nce); 27668 } else { /* nce is NULL; clean up */ 27669 ire_delete(ire); 27670 freemsg(mp); 27671 freemsg(mp1); 27672 return; 27673 } 27674 } else { 27675 nce_t *arpce; 27676 /* 27677 * Link layer resolution succeeded. Recompute the 27678 * ire_nce. 27679 */ 27680 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27681 if ((arpce = ndp_lookup_v4(ill, 27682 (ire->ire_gateway_addr != INADDR_ANY ? 27683 &ire->ire_gateway_addr : &ire->ire_addr), 27684 B_FALSE)) == NULL) { 27685 freeb(ire->ire_mp); 27686 freeb(mp1); 27687 freemsg(mp); 27688 return; 27689 } 27690 mutex_enter(&arpce->nce_lock); 27691 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27692 if (arpce->nce_state == ND_REACHABLE) { 27693 /* 27694 * Someone resolved this before us; 27695 * cleanup the res_mp. Since ire has 27696 * not been added yet, the call to ire_add_v4 27697 * from ire_add_then_send (when a dup is 27698 * detected) will clean up the ire. 27699 */ 27700 freeb(mp1); 27701 } else { 27702 ASSERT(arpce->nce_res_mp == NULL); 27703 arpce->nce_res_mp = mp1; 27704 arpce->nce_state = ND_REACHABLE; 27705 } 27706 mutex_exit(&arpce->nce_lock); 27707 if (ire->ire_marks & IRE_MARK_NOADD) { 27708 /* 27709 * this ire will not be added to the ire 27710 * cache table, so we can set the ire_nce 27711 * here, as there are no atomicity constraints. 27712 */ 27713 ire->ire_nce = arpce; 27714 /* 27715 * We are associating this nce with the ire 27716 * so change the nce ref taken in 27717 * ndp_lookup_v4() from 27718 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27719 */ 27720 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27721 } else { 27722 NCE_REFRELE(arpce); 27723 } 27724 ire_add_then_send(q, ire, mp); 27725 } 27726 return; /* All is well, the packet has been sent. */ 27727 } 27728 case IRE_ARPRESOLVE_TYPE: { 27729 27730 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27731 break; 27732 mp1 = mp->b_cont; /* dl_unitdata_req */ 27733 mp->b_cont = NULL; 27734 /* 27735 * First, check to make sure the resolution succeeded. 27736 * If it failed, the second mblk will be empty. 27737 */ 27738 if (mp1->b_rptr == mp1->b_wptr) { 27739 /* cleanup the incomplete ire, free queued packets */ 27740 freemsg(mp); /* fake ire */ 27741 freeb(mp1); /* dl_unitdata response */ 27742 return; 27743 } 27744 27745 /* 27746 * Update any incomplete nce_t found. We search the ctable 27747 * and find the nce from the ire->ire_nce because we need 27748 * to pass the ire to ip_xmit_v4 later, and can find both 27749 * ire and nce in one lookup. 27750 */ 27751 fake_ire = (ire_t *)mp->b_rptr; 27752 27753 /* 27754 * By the time we come back here from ARP the logical outgoing 27755 * interface of the incomplete ire we added in ire_forward() 27756 * could have disappeared, causing the incomplete ire to also 27757 * disappear. So we need to retreive the proper ipif for the 27758 * ire before looking in ctable. In the case of IPMP, the 27759 * ipif may be on the IPMP ill, so look it up based on the 27760 * ire_ipif_ifindex we stashed back in ire_init_common(). 27761 * Then, we can verify that ire_ipif_seqid still exists. 27762 */ 27763 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27764 NULL, NULL, NULL, NULL, ipst); 27765 if (ill == NULL) { 27766 ip1dbg(("ill for incomplete ire vanished\n")); 27767 freemsg(mp); /* fake ire */ 27768 freeb(mp1); /* dl_unitdata response */ 27769 return; 27770 } 27771 27772 /* Get the outgoing ipif */ 27773 mutex_enter(&ill->ill_lock); 27774 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27775 if (ipif == NULL) { 27776 mutex_exit(&ill->ill_lock); 27777 ill_refrele(ill); 27778 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27779 freemsg(mp); /* fake_ire */ 27780 freeb(mp1); /* dl_unitdata response */ 27781 return; 27782 } 27783 27784 ipif_refhold_locked(ipif); 27785 mutex_exit(&ill->ill_lock); 27786 ill_refrele(ill); 27787 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27788 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27789 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27790 ipif_refrele(ipif); 27791 if (ire == NULL) { 27792 /* 27793 * no ire was found; check if there is an nce 27794 * for this lookup; if it has no ire's pointing at it 27795 * cleanup. 27796 */ 27797 if ((nce = ndp_lookup_v4(q->q_ptr, 27798 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27799 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27800 B_FALSE)) != NULL) { 27801 /* 27802 * cleanup: 27803 * We check for refcnt 2 (one for the nce 27804 * hash list + 1 for the ref taken by 27805 * ndp_lookup_v4) to check that there are 27806 * no ire's pointing at the nce. 27807 */ 27808 if (nce->nce_refcnt == 2) 27809 ndp_delete(nce); 27810 NCE_REFRELE(nce); 27811 } 27812 freeb(mp1); /* dl_unitdata response */ 27813 freemsg(mp); /* fake ire */ 27814 return; 27815 } 27816 27817 nce = ire->ire_nce; 27818 DTRACE_PROBE2(ire__arpresolve__type, 27819 ire_t *, ire, nce_t *, nce); 27820 ASSERT(nce->nce_state != ND_INITIAL); 27821 mutex_enter(&nce->nce_lock); 27822 nce->nce_last = TICK_TO_MSEC(lbolt64); 27823 if (nce->nce_state == ND_REACHABLE) { 27824 /* 27825 * Someone resolved this before us; 27826 * our response is not needed any more. 27827 */ 27828 mutex_exit(&nce->nce_lock); 27829 freeb(mp1); /* dl_unitdata response */ 27830 } else { 27831 ASSERT(nce->nce_res_mp == NULL); 27832 nce->nce_res_mp = mp1; 27833 nce->nce_state = ND_REACHABLE; 27834 mutex_exit(&nce->nce_lock); 27835 nce_fastpath(nce); 27836 } 27837 /* 27838 * The cached nce_t has been updated to be reachable; 27839 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27840 */ 27841 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27842 freemsg(mp); 27843 /* 27844 * send out queued packets. 27845 */ 27846 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27847 27848 IRE_REFRELE(ire); 27849 return; 27850 } 27851 default: 27852 break; 27853 } 27854 if (q->q_next) { 27855 putnext(q, mp); 27856 } else 27857 freemsg(mp); 27858 return; 27859 27860 protonak: 27861 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27862 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27863 qreply(q, mp); 27864 } 27865 27866 /* 27867 * Process IP options in an outbound packet. Modify the destination if there 27868 * is a source route option. 27869 * Returns non-zero if something fails in which case an ICMP error has been 27870 * sent and mp freed. 27871 */ 27872 static int 27873 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27874 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27875 { 27876 ipoptp_t opts; 27877 uchar_t *opt; 27878 uint8_t optval; 27879 uint8_t optlen; 27880 ipaddr_t dst; 27881 intptr_t code = 0; 27882 mblk_t *mp; 27883 ire_t *ire = NULL; 27884 27885 ip2dbg(("ip_wput_options\n")); 27886 mp = ipsec_mp; 27887 if (mctl_present) { 27888 mp = ipsec_mp->b_cont; 27889 } 27890 27891 dst = ipha->ipha_dst; 27892 for (optval = ipoptp_first(&opts, ipha); 27893 optval != IPOPT_EOL; 27894 optval = ipoptp_next(&opts)) { 27895 opt = opts.ipoptp_cur; 27896 optlen = opts.ipoptp_len; 27897 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27898 optval, optlen)); 27899 switch (optval) { 27900 uint32_t off; 27901 case IPOPT_SSRR: 27902 case IPOPT_LSRR: 27903 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27904 ip1dbg(( 27905 "ip_wput_options: bad option offset\n")); 27906 code = (char *)&opt[IPOPT_OLEN] - 27907 (char *)ipha; 27908 goto param_prob; 27909 } 27910 off = opt[IPOPT_OFFSET]; 27911 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27912 ntohl(dst))); 27913 /* 27914 * For strict: verify that dst is directly 27915 * reachable. 27916 */ 27917 if (optval == IPOPT_SSRR) { 27918 ire = ire_ftable_lookup(dst, 0, 0, 27919 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27920 msg_getlabel(mp), 27921 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27922 if (ire == NULL) { 27923 ip1dbg(("ip_wput_options: SSRR not" 27924 " directly reachable: 0x%x\n", 27925 ntohl(dst))); 27926 goto bad_src_route; 27927 } 27928 ire_refrele(ire); 27929 } 27930 break; 27931 case IPOPT_RR: 27932 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27933 ip1dbg(( 27934 "ip_wput_options: bad option offset\n")); 27935 code = (char *)&opt[IPOPT_OLEN] - 27936 (char *)ipha; 27937 goto param_prob; 27938 } 27939 break; 27940 case IPOPT_TS: 27941 /* 27942 * Verify that length >=5 and that there is either 27943 * room for another timestamp or that the overflow 27944 * counter is not maxed out. 27945 */ 27946 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27947 if (optlen < IPOPT_MINLEN_IT) { 27948 goto param_prob; 27949 } 27950 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27951 ip1dbg(( 27952 "ip_wput_options: bad option offset\n")); 27953 code = (char *)&opt[IPOPT_OFFSET] - 27954 (char *)ipha; 27955 goto param_prob; 27956 } 27957 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27958 case IPOPT_TS_TSONLY: 27959 off = IPOPT_TS_TIMELEN; 27960 break; 27961 case IPOPT_TS_TSANDADDR: 27962 case IPOPT_TS_PRESPEC: 27963 case IPOPT_TS_PRESPEC_RFC791: 27964 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27965 break; 27966 default: 27967 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27968 (char *)ipha; 27969 goto param_prob; 27970 } 27971 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27972 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27973 /* 27974 * No room and the overflow counter is 15 27975 * already. 27976 */ 27977 goto param_prob; 27978 } 27979 break; 27980 } 27981 } 27982 27983 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27984 return (0); 27985 27986 ip1dbg(("ip_wput_options: error processing IP options.")); 27987 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27988 27989 param_prob: 27990 /* 27991 * Since ip_wput() isn't close to finished, we fill 27992 * in enough of the header for credible error reporting. 27993 */ 27994 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27995 /* Failed */ 27996 freemsg(ipsec_mp); 27997 return (-1); 27998 } 27999 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28000 return (-1); 28001 28002 bad_src_route: 28003 /* 28004 * Since ip_wput() isn't close to finished, we fill 28005 * in enough of the header for credible error reporting. 28006 */ 28007 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28008 /* Failed */ 28009 freemsg(ipsec_mp); 28010 return (-1); 28011 } 28012 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28013 return (-1); 28014 } 28015 28016 /* 28017 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28018 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28019 * thru /etc/system. 28020 */ 28021 #define CONN_MAXDRAINCNT 64 28022 28023 static void 28024 conn_drain_init(ip_stack_t *ipst) 28025 { 28026 int i, j; 28027 idl_tx_list_t *itl_tx; 28028 28029 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28030 28031 if ((ipst->ips_conn_drain_list_cnt == 0) || 28032 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28033 /* 28034 * Default value of the number of drainers is the 28035 * number of cpus, subject to maximum of 8 drainers. 28036 */ 28037 if (boot_max_ncpus != -1) 28038 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28039 else 28040 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28041 } 28042 28043 ipst->ips_idl_tx_list = 28044 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28045 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28046 itl_tx = &ipst->ips_idl_tx_list[i]; 28047 itl_tx->txl_drain_list = 28048 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28049 sizeof (idl_t), KM_SLEEP); 28050 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28051 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28052 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28053 MUTEX_DEFAULT, NULL); 28054 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28055 } 28056 } 28057 } 28058 28059 static void 28060 conn_drain_fini(ip_stack_t *ipst) 28061 { 28062 int i; 28063 idl_tx_list_t *itl_tx; 28064 28065 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28066 itl_tx = &ipst->ips_idl_tx_list[i]; 28067 kmem_free(itl_tx->txl_drain_list, 28068 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28069 } 28070 kmem_free(ipst->ips_idl_tx_list, 28071 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28072 ipst->ips_idl_tx_list = NULL; 28073 } 28074 28075 /* 28076 * Note: For an overview of how flowcontrol is handled in IP please see the 28077 * IP Flowcontrol notes at the top of this file. 28078 * 28079 * Flow control has blocked us from proceeding. Insert the given conn in one 28080 * of the conn drain lists. These conn wq's will be qenabled later on when 28081 * STREAMS flow control does a backenable. conn_walk_drain will enable 28082 * the first conn in each of these drain lists. Each of these qenabled conns 28083 * in turn enables the next in the list, after it runs, or when it closes, 28084 * thus sustaining the drain process. 28085 */ 28086 void 28087 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28088 { 28089 idl_t *idl = tx_list->txl_drain_list; 28090 uint_t index; 28091 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28092 28093 mutex_enter(&connp->conn_lock); 28094 if (connp->conn_state_flags & CONN_CLOSING) { 28095 /* 28096 * The conn is closing as a result of which CONN_CLOSING 28097 * is set. Return. 28098 */ 28099 mutex_exit(&connp->conn_lock); 28100 return; 28101 } else if (connp->conn_idl == NULL) { 28102 /* 28103 * Assign the next drain list round robin. We dont' use 28104 * a lock, and thus it may not be strictly round robin. 28105 * Atomicity of load/stores is enough to make sure that 28106 * conn_drain_list_index is always within bounds. 28107 */ 28108 index = tx_list->txl_drain_index; 28109 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28110 connp->conn_idl = &tx_list->txl_drain_list[index]; 28111 index++; 28112 if (index == ipst->ips_conn_drain_list_cnt) 28113 index = 0; 28114 tx_list->txl_drain_index = index; 28115 } 28116 mutex_exit(&connp->conn_lock); 28117 28118 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28119 if ((connp->conn_drain_prev != NULL) || 28120 (connp->conn_state_flags & CONN_CLOSING)) { 28121 /* 28122 * The conn is already in the drain list, OR 28123 * the conn is closing. We need to check again for 28124 * the closing case again since close can happen 28125 * after we drop the conn_lock, and before we 28126 * acquire the CONN_DRAIN_LIST_LOCK. 28127 */ 28128 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28129 return; 28130 } else { 28131 idl = connp->conn_idl; 28132 } 28133 28134 /* 28135 * The conn is not in the drain list. Insert it at the 28136 * tail of the drain list. The drain list is circular 28137 * and doubly linked. idl_conn points to the 1st element 28138 * in the list. 28139 */ 28140 if (idl->idl_conn == NULL) { 28141 idl->idl_conn = connp; 28142 connp->conn_drain_next = connp; 28143 connp->conn_drain_prev = connp; 28144 } else { 28145 conn_t *head = idl->idl_conn; 28146 28147 connp->conn_drain_next = head; 28148 connp->conn_drain_prev = head->conn_drain_prev; 28149 head->conn_drain_prev->conn_drain_next = connp; 28150 head->conn_drain_prev = connp; 28151 } 28152 /* 28153 * For non streams based sockets assert flow control. 28154 */ 28155 if (IPCL_IS_NONSTR(connp)) { 28156 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28157 (*connp->conn_upcalls->su_txq_full) 28158 (connp->conn_upper_handle, B_TRUE); 28159 } else { 28160 conn_setqfull(connp); 28161 noenable(connp->conn_wq); 28162 } 28163 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28164 } 28165 28166 /* 28167 * This conn is closing, and we are called from ip_close. OR 28168 * This conn has been serviced by ip_wsrv, and we need to do the tail 28169 * processing. 28170 * If this conn is part of the drain list, we may need to sustain the drain 28171 * process by qenabling the next conn in the drain list. We may also need to 28172 * remove this conn from the list, if it is done. 28173 */ 28174 static void 28175 conn_drain_tail(conn_t *connp, boolean_t closing) 28176 { 28177 idl_t *idl; 28178 28179 /* 28180 * connp->conn_idl is stable at this point, and no lock is needed 28181 * to check it. If we are called from ip_close, close has already 28182 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28183 * called us only because conn_idl is non-null. If we are called thru 28184 * service, conn_idl could be null, but it cannot change because 28185 * service is single-threaded per queue, and there cannot be another 28186 * instance of service trying to call conn_drain_insert on this conn 28187 * now. 28188 */ 28189 ASSERT(!closing || (connp->conn_idl != NULL)); 28190 28191 /* 28192 * If connp->conn_idl is null, the conn has not been inserted into any 28193 * drain list even once since creation of the conn. Just return. 28194 */ 28195 if (connp->conn_idl == NULL) 28196 return; 28197 28198 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28199 28200 if (connp->conn_drain_prev == NULL) { 28201 /* This conn is currently not in the drain list. */ 28202 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28203 return; 28204 } 28205 idl = connp->conn_idl; 28206 if (idl->idl_conn_draining == connp) { 28207 /* 28208 * This conn is the current drainer. If this is the last conn 28209 * in the drain list, we need to do more checks, in the 'if' 28210 * below. Otherwwise we need to just qenable the next conn, 28211 * to sustain the draining, and is handled in the 'else' 28212 * below. 28213 */ 28214 if (connp->conn_drain_next == idl->idl_conn) { 28215 /* 28216 * This conn is the last in this list. This round 28217 * of draining is complete. If idl_repeat is set, 28218 * it means another flow enabling has happened from 28219 * the driver/streams and we need to another round 28220 * of draining. 28221 * If there are more than 2 conns in the drain list, 28222 * do a left rotate by 1, so that all conns except the 28223 * conn at the head move towards the head by 1, and the 28224 * the conn at the head goes to the tail. This attempts 28225 * a more even share for all queues that are being 28226 * drained. 28227 */ 28228 if ((connp->conn_drain_next != connp) && 28229 (idl->idl_conn->conn_drain_next != connp)) { 28230 idl->idl_conn = idl->idl_conn->conn_drain_next; 28231 } 28232 if (idl->idl_repeat) { 28233 qenable(idl->idl_conn->conn_wq); 28234 idl->idl_conn_draining = idl->idl_conn; 28235 idl->idl_repeat = 0; 28236 } else { 28237 idl->idl_conn_draining = NULL; 28238 } 28239 } else { 28240 /* 28241 * If the next queue that we are now qenable'ing, 28242 * is closing, it will remove itself from this list 28243 * and qenable the subsequent queue in ip_close(). 28244 * Serialization is acheived thru idl_lock. 28245 */ 28246 qenable(connp->conn_drain_next->conn_wq); 28247 idl->idl_conn_draining = connp->conn_drain_next; 28248 } 28249 } 28250 if (!connp->conn_did_putbq || closing) { 28251 /* 28252 * Remove ourself from the drain list, if we did not do 28253 * a putbq, or if the conn is closing. 28254 * Note: It is possible that q->q_first is non-null. It means 28255 * that these messages landed after we did a enableok() in 28256 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28257 * service them. 28258 */ 28259 if (connp->conn_drain_next == connp) { 28260 /* Singleton in the list */ 28261 ASSERT(connp->conn_drain_prev == connp); 28262 idl->idl_conn = NULL; 28263 idl->idl_conn_draining = NULL; 28264 } else { 28265 connp->conn_drain_prev->conn_drain_next = 28266 connp->conn_drain_next; 28267 connp->conn_drain_next->conn_drain_prev = 28268 connp->conn_drain_prev; 28269 if (idl->idl_conn == connp) 28270 idl->idl_conn = connp->conn_drain_next; 28271 ASSERT(idl->idl_conn_draining != connp); 28272 28273 } 28274 connp->conn_drain_next = NULL; 28275 connp->conn_drain_prev = NULL; 28276 28277 /* 28278 * For non streams based sockets open up flow control. 28279 */ 28280 if (IPCL_IS_NONSTR(connp)) { 28281 (*connp->conn_upcalls->su_txq_full) 28282 (connp->conn_upper_handle, B_FALSE); 28283 } else { 28284 conn_clrqfull(connp); 28285 enableok(connp->conn_wq); 28286 } 28287 } 28288 28289 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28290 } 28291 28292 /* 28293 * Write service routine. Shared perimeter entry point. 28294 * ip_wsrv can be called in any of the following ways. 28295 * 1. The device queue's messages has fallen below the low water mark 28296 * and STREAMS has backenabled the ill_wq. We walk thru all the 28297 * the drain lists and backenable the first conn in each list. 28298 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28299 * qenabled non-tcp upper layers. We start dequeing messages and call 28300 * ip_wput for each message. 28301 */ 28302 28303 void 28304 ip_wsrv(queue_t *q) 28305 { 28306 conn_t *connp; 28307 ill_t *ill; 28308 mblk_t *mp; 28309 28310 if (q->q_next) { 28311 ill = (ill_t *)q->q_ptr; 28312 if (ill->ill_state_flags == 0) { 28313 ip_stack_t *ipst = ill->ill_ipst; 28314 28315 /* 28316 * The device flow control has opened up. 28317 * Walk through conn drain lists and qenable the 28318 * first conn in each list. This makes sense only 28319 * if the stream is fully plumbed and setup. 28320 * Hence the if check above. 28321 */ 28322 ip1dbg(("ip_wsrv: walking\n")); 28323 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28324 } 28325 return; 28326 } 28327 28328 connp = Q_TO_CONN(q); 28329 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28330 28331 /* 28332 * 1. Set conn_draining flag to signal that service is active. 28333 * 28334 * 2. ip_output determines whether it has been called from service, 28335 * based on the last parameter. If it is IP_WSRV it concludes it 28336 * has been called from service. 28337 * 28338 * 3. Message ordering is preserved by the following logic. 28339 * i. A directly called ip_output (i.e. not thru service) will queue 28340 * the message at the tail, if conn_draining is set (i.e. service 28341 * is running) or if q->q_first is non-null. 28342 * 28343 * ii. If ip_output is called from service, and if ip_output cannot 28344 * putnext due to flow control, it does a putbq. 28345 * 28346 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28347 * (causing an infinite loop). 28348 */ 28349 ASSERT(!connp->conn_did_putbq); 28350 28351 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28352 connp->conn_draining = 1; 28353 noenable(q); 28354 while ((mp = getq(q)) != NULL) { 28355 ASSERT(CONN_Q(q)); 28356 28357 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28358 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28359 if (connp->conn_did_putbq) { 28360 /* ip_wput did a putbq */ 28361 break; 28362 } 28363 } 28364 /* 28365 * At this point, a thread coming down from top, calling 28366 * ip_wput, may end up queueing the message. We have not yet 28367 * enabled the queue, so ip_wsrv won't be called again. 28368 * To avoid this race, check q->q_first again (in the loop) 28369 * If the other thread queued the message before we call 28370 * enableok(), we will catch it in the q->q_first check. 28371 * If the other thread queues the message after we call 28372 * enableok(), ip_wsrv will be called again by STREAMS. 28373 */ 28374 connp->conn_draining = 0; 28375 enableok(q); 28376 } 28377 28378 /* Enable the next conn for draining */ 28379 conn_drain_tail(connp, B_FALSE); 28380 28381 /* 28382 * conn_direct_blocked is used to indicate blocked 28383 * condition for direct path (ILL_DIRECT_CAPABLE()). 28384 * This is the only place where it is set without 28385 * checking for ILL_DIRECT_CAPABLE() and setting it 28386 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28387 */ 28388 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28389 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28390 connp->conn_direct_blocked = B_FALSE; 28391 } 28392 28393 connp->conn_did_putbq = 0; 28394 } 28395 28396 /* 28397 * Callback to disable flow control in IP. 28398 * 28399 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28400 * is enabled. 28401 * 28402 * When MAC_TX() is not able to send any more packets, dld sets its queue 28403 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28404 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28405 * function and wakes up corresponding mac worker threads, which in turn 28406 * calls this callback function, and disables flow control. 28407 */ 28408 void 28409 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28410 { 28411 ill_t *ill = (ill_t *)arg; 28412 ip_stack_t *ipst = ill->ill_ipst; 28413 idl_tx_list_t *idl_txl; 28414 28415 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28416 mutex_enter(&idl_txl->txl_lock); 28417 /* add code to to set a flag to indicate idl_txl is enabled */ 28418 conn_walk_drain(ipst, idl_txl); 28419 mutex_exit(&idl_txl->txl_lock); 28420 } 28421 28422 /* 28423 * Walk the list of all conn's calling the function provided with the 28424 * specified argument for each. Note that this only walks conn's that 28425 * have been bound. 28426 * Applies to both IPv4 and IPv6. 28427 */ 28428 static void 28429 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28430 { 28431 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28432 ipst->ips_ipcl_udp_fanout_size, 28433 func, arg, zoneid); 28434 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28435 ipst->ips_ipcl_conn_fanout_size, 28436 func, arg, zoneid); 28437 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28438 ipst->ips_ipcl_bind_fanout_size, 28439 func, arg, zoneid); 28440 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28441 IPPROTO_MAX, func, arg, zoneid); 28442 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28443 IPPROTO_MAX, func, arg, zoneid); 28444 } 28445 28446 /* 28447 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28448 * of conns that need to be drained, check if drain is already in progress. 28449 * If so set the idl_repeat bit, indicating that the last conn in the list 28450 * needs to reinitiate the drain once again, for the list. If drain is not 28451 * in progress for the list, initiate the draining, by qenabling the 1st 28452 * conn in the list. The drain is self-sustaining, each qenabled conn will 28453 * in turn qenable the next conn, when it is done/blocked/closing. 28454 */ 28455 static void 28456 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28457 { 28458 int i; 28459 idl_t *idl; 28460 28461 IP_STAT(ipst, ip_conn_walk_drain); 28462 28463 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28464 idl = &tx_list->txl_drain_list[i]; 28465 mutex_enter(&idl->idl_lock); 28466 if (idl->idl_conn == NULL) { 28467 mutex_exit(&idl->idl_lock); 28468 continue; 28469 } 28470 /* 28471 * If this list is not being drained currently by 28472 * an ip_wsrv thread, start the process. 28473 */ 28474 if (idl->idl_conn_draining == NULL) { 28475 ASSERT(idl->idl_repeat == 0); 28476 qenable(idl->idl_conn->conn_wq); 28477 idl->idl_conn_draining = idl->idl_conn; 28478 } else { 28479 idl->idl_repeat = 1; 28480 } 28481 mutex_exit(&idl->idl_lock); 28482 } 28483 } 28484 28485 /* 28486 * Walk an conn hash table of `count' buckets, calling func for each entry. 28487 */ 28488 static void 28489 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28490 zoneid_t zoneid) 28491 { 28492 conn_t *connp; 28493 28494 while (count-- > 0) { 28495 mutex_enter(&connfp->connf_lock); 28496 for (connp = connfp->connf_head; connp != NULL; 28497 connp = connp->conn_next) { 28498 if (zoneid == GLOBAL_ZONEID || 28499 zoneid == connp->conn_zoneid) { 28500 CONN_INC_REF(connp); 28501 mutex_exit(&connfp->connf_lock); 28502 (*func)(connp, arg); 28503 mutex_enter(&connfp->connf_lock); 28504 CONN_DEC_REF(connp); 28505 } 28506 } 28507 mutex_exit(&connfp->connf_lock); 28508 connfp++; 28509 } 28510 } 28511 28512 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28513 static void 28514 conn_report1(conn_t *connp, void *mp) 28515 { 28516 char buf1[INET6_ADDRSTRLEN]; 28517 char buf2[INET6_ADDRSTRLEN]; 28518 uint_t print_len, buf_len; 28519 28520 ASSERT(connp != NULL); 28521 28522 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28523 if (buf_len <= 0) 28524 return; 28525 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28526 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28527 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28528 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28529 "%5d %s/%05d %s/%05d\n", 28530 (void *)connp, (void *)CONNP_TO_RQ(connp), 28531 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28532 buf1, connp->conn_lport, 28533 buf2, connp->conn_fport); 28534 if (print_len < buf_len) { 28535 ((mblk_t *)mp)->b_wptr += print_len; 28536 } else { 28537 ((mblk_t *)mp)->b_wptr += buf_len; 28538 } 28539 } 28540 28541 /* 28542 * Named Dispatch routine to produce a formatted report on all conns 28543 * that are listed in one of the fanout tables. 28544 * This report is accessed by using the ndd utility to "get" ND variable 28545 * "ip_conn_status". 28546 */ 28547 /* ARGSUSED */ 28548 static int 28549 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28550 { 28551 conn_t *connp = Q_TO_CONN(q); 28552 28553 (void) mi_mpprintf(mp, 28554 "CONN " MI_COL_HDRPAD_STR 28555 "rfq " MI_COL_HDRPAD_STR 28556 "stq " MI_COL_HDRPAD_STR 28557 " zone local remote"); 28558 28559 /* 28560 * Because of the ndd constraint, at most we can have 64K buffer 28561 * to put in all conn info. So to be more efficient, just 28562 * allocate a 64K buffer here, assuming we need that large buffer. 28563 * This should be OK as only privileged processes can do ndd /dev/ip. 28564 */ 28565 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28566 /* The following may work even if we cannot get a large buf. */ 28567 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28568 return (0); 28569 } 28570 28571 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28572 connp->conn_netstack->netstack_ip); 28573 return (0); 28574 } 28575 28576 /* 28577 * Determine if the ill and multicast aspects of that packets 28578 * "matches" the conn. 28579 */ 28580 boolean_t 28581 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28582 zoneid_t zoneid) 28583 { 28584 ill_t *bound_ill; 28585 boolean_t found; 28586 ipif_t *ipif; 28587 ire_t *ire; 28588 ipaddr_t dst, src; 28589 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28590 28591 dst = ipha->ipha_dst; 28592 src = ipha->ipha_src; 28593 28594 /* 28595 * conn_incoming_ill is set by IP_BOUND_IF which limits 28596 * unicast, broadcast and multicast reception to 28597 * conn_incoming_ill. conn_wantpacket itself is called 28598 * only for BROADCAST and multicast. 28599 */ 28600 bound_ill = connp->conn_incoming_ill; 28601 if (bound_ill != NULL) { 28602 if (IS_IPMP(bound_ill)) { 28603 if (bound_ill->ill_grp != ill->ill_grp) 28604 return (B_FALSE); 28605 } else { 28606 if (bound_ill != ill) 28607 return (B_FALSE); 28608 } 28609 } 28610 28611 if (!CLASSD(dst)) { 28612 if (IPCL_ZONE_MATCH(connp, zoneid)) 28613 return (B_TRUE); 28614 /* 28615 * The conn is in a different zone; we need to check that this 28616 * broadcast address is configured in the application's zone. 28617 */ 28618 ipif = ipif_get_next_ipif(NULL, ill); 28619 if (ipif == NULL) 28620 return (B_FALSE); 28621 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28622 connp->conn_zoneid, NULL, 28623 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28624 ipif_refrele(ipif); 28625 if (ire != NULL) { 28626 ire_refrele(ire); 28627 return (B_TRUE); 28628 } else { 28629 return (B_FALSE); 28630 } 28631 } 28632 28633 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28634 connp->conn_zoneid == zoneid) { 28635 /* 28636 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28637 * disabled, therefore we don't dispatch the multicast packet to 28638 * the sending zone. 28639 */ 28640 return (B_FALSE); 28641 } 28642 28643 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28644 /* 28645 * Multicast packet on the loopback interface: we only match 28646 * conns who joined the group in the specified zone. 28647 */ 28648 return (B_FALSE); 28649 } 28650 28651 if (connp->conn_multi_router) { 28652 /* multicast packet and multicast router socket: send up */ 28653 return (B_TRUE); 28654 } 28655 28656 mutex_enter(&connp->conn_lock); 28657 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28658 mutex_exit(&connp->conn_lock); 28659 return (found); 28660 } 28661 28662 static void 28663 conn_setqfull(conn_t *connp) 28664 { 28665 queue_t *q = connp->conn_wq; 28666 28667 if (!(q->q_flag & QFULL)) { 28668 mutex_enter(QLOCK(q)); 28669 if (!(q->q_flag & QFULL)) { 28670 /* still need to set QFULL */ 28671 q->q_flag |= QFULL; 28672 mutex_exit(QLOCK(q)); 28673 } else { 28674 mutex_exit(QLOCK(q)); 28675 } 28676 } 28677 } 28678 28679 static void 28680 conn_clrqfull(conn_t *connp) 28681 { 28682 queue_t *q = connp->conn_wq; 28683 28684 if (q->q_flag & QFULL) { 28685 mutex_enter(QLOCK(q)); 28686 if (q->q_flag & QFULL) { 28687 q->q_flag &= ~QFULL; 28688 mutex_exit(QLOCK(q)); 28689 if (q->q_flag & QWANTW) 28690 qbackenable(q, 0); 28691 } else { 28692 mutex_exit(QLOCK(q)); 28693 } 28694 } 28695 } 28696 28697 /* 28698 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28699 */ 28700 /* ARGSUSED */ 28701 static void 28702 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28703 { 28704 ill_t *ill = (ill_t *)q->q_ptr; 28705 mblk_t *mp1, *mp2; 28706 ipif_t *ipif; 28707 int err = 0; 28708 conn_t *connp = NULL; 28709 ipsq_t *ipsq; 28710 arc_t *arc; 28711 28712 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28713 28714 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28715 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28716 28717 ASSERT(IAM_WRITER_ILL(ill)); 28718 mp2 = mp->b_cont; 28719 mp->b_cont = NULL; 28720 28721 /* 28722 * We have now received the arp bringup completion message 28723 * from ARP. Mark the arp bringup as done. Also if the arp 28724 * stream has already started closing, send up the AR_ARP_CLOSING 28725 * ack now since ARP is waiting in close for this ack. 28726 */ 28727 mutex_enter(&ill->ill_lock); 28728 ill->ill_arp_bringup_pending = 0; 28729 if (ill->ill_arp_closing) { 28730 mutex_exit(&ill->ill_lock); 28731 /* Let's reuse the mp for sending the ack */ 28732 arc = (arc_t *)mp->b_rptr; 28733 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28734 arc->arc_cmd = AR_ARP_CLOSING; 28735 qreply(q, mp); 28736 } else { 28737 mutex_exit(&ill->ill_lock); 28738 freeb(mp); 28739 } 28740 28741 ipsq = ill->ill_phyint->phyint_ipsq; 28742 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28743 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28744 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28745 if (mp1 == NULL) { 28746 /* bringup was aborted by the user */ 28747 freemsg(mp2); 28748 return; 28749 } 28750 28751 /* 28752 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28753 * must have an associated conn_t. Otherwise, we're bringing this 28754 * interface back up as part of handling an asynchronous event (e.g., 28755 * physical address change). 28756 */ 28757 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28758 ASSERT(connp != NULL); 28759 q = CONNP_TO_WQ(connp); 28760 } else { 28761 ASSERT(connp == NULL); 28762 q = ill->ill_rq; 28763 } 28764 28765 /* 28766 * If the DL_BIND_REQ fails, it is noted 28767 * in arc_name_offset. 28768 */ 28769 err = *((int *)mp2->b_rptr); 28770 if (err == 0) { 28771 if (ipif->ipif_isv6) { 28772 if ((err = ipif_up_done_v6(ipif)) != 0) 28773 ip0dbg(("ip_arp_done: init failed\n")); 28774 } else { 28775 if ((err = ipif_up_done(ipif)) != 0) 28776 ip0dbg(("ip_arp_done: init failed\n")); 28777 } 28778 } else { 28779 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28780 } 28781 28782 freemsg(mp2); 28783 28784 if ((err == 0) && (ill->ill_up_ipifs)) { 28785 err = ill_up_ipifs(ill, q, mp1); 28786 if (err == EINPROGRESS) 28787 return; 28788 } 28789 28790 /* 28791 * If we have a moved ipif to bring up, and everything has succeeded 28792 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28793 * down -- the admin can try to bring it up by hand if need be. 28794 */ 28795 if (ill->ill_move_ipif != NULL) { 28796 ipif = ill->ill_move_ipif; 28797 ill->ill_move_ipif = NULL; 28798 if (err == 0) { 28799 err = ipif_up(ipif, q, mp1); 28800 if (err == EINPROGRESS) 28801 return; 28802 } 28803 } 28804 28805 /* 28806 * The operation must complete without EINPROGRESS since 28807 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28808 * operation will be stuck forever in the ipsq. 28809 */ 28810 ASSERT(err != EINPROGRESS); 28811 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28812 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28813 else 28814 ipsq_current_finish(ipsq); 28815 } 28816 28817 /* Allocate the private structure */ 28818 static int 28819 ip_priv_alloc(void **bufp) 28820 { 28821 void *buf; 28822 28823 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28824 return (ENOMEM); 28825 28826 *bufp = buf; 28827 return (0); 28828 } 28829 28830 /* Function to delete the private structure */ 28831 void 28832 ip_priv_free(void *buf) 28833 { 28834 ASSERT(buf != NULL); 28835 kmem_free(buf, sizeof (ip_priv_t)); 28836 } 28837 28838 /* 28839 * The entry point for IPPF processing. 28840 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28841 * routine just returns. 28842 * 28843 * When called, ip_process generates an ipp_packet_t structure 28844 * which holds the state information for this packet and invokes the 28845 * the classifier (via ipp_packet_process). The classification, depending on 28846 * configured filters, results in a list of actions for this packet. Invoking 28847 * an action may cause the packet to be dropped, in which case the resulting 28848 * mblk (*mpp) is NULL. proc indicates the callout position for 28849 * this packet and ill_index is the interface this packet on or will leave 28850 * on (inbound and outbound resp.). 28851 */ 28852 void 28853 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28854 { 28855 mblk_t *mp; 28856 ip_priv_t *priv; 28857 ipp_action_id_t aid; 28858 int rc = 0; 28859 ipp_packet_t *pp; 28860 #define IP_CLASS "ip" 28861 28862 /* If the classifier is not loaded, return */ 28863 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28864 return; 28865 } 28866 28867 mp = *mpp; 28868 ASSERT(mp != NULL); 28869 28870 /* Allocate the packet structure */ 28871 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28872 if (rc != 0) { 28873 *mpp = NULL; 28874 freemsg(mp); 28875 return; 28876 } 28877 28878 /* Allocate the private structure */ 28879 rc = ip_priv_alloc((void **)&priv); 28880 if (rc != 0) { 28881 *mpp = NULL; 28882 freemsg(mp); 28883 ipp_packet_free(pp); 28884 return; 28885 } 28886 priv->proc = proc; 28887 priv->ill_index = ill_index; 28888 ipp_packet_set_private(pp, priv, ip_priv_free); 28889 ipp_packet_set_data(pp, mp); 28890 28891 /* Invoke the classifier */ 28892 rc = ipp_packet_process(&pp); 28893 if (pp != NULL) { 28894 mp = ipp_packet_get_data(pp); 28895 ipp_packet_free(pp); 28896 if (rc != 0) { 28897 freemsg(mp); 28898 *mpp = NULL; 28899 } 28900 } else { 28901 *mpp = NULL; 28902 } 28903 #undef IP_CLASS 28904 } 28905 28906 /* 28907 * Propagate a multicast group membership operation (add/drop) on 28908 * all the interfaces crossed by the related multirt routes. 28909 * The call is considered successful if the operation succeeds 28910 * on at least one interface. 28911 */ 28912 static int 28913 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28914 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28915 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28916 mblk_t *first_mp) 28917 { 28918 ire_t *ire_gw; 28919 irb_t *irb; 28920 int error = 0; 28921 opt_restart_t *or; 28922 ip_stack_t *ipst = ire->ire_ipst; 28923 28924 irb = ire->ire_bucket; 28925 ASSERT(irb != NULL); 28926 28927 ASSERT(DB_TYPE(first_mp) == M_CTL); 28928 28929 or = (opt_restart_t *)first_mp->b_rptr; 28930 IRB_REFHOLD(irb); 28931 for (; ire != NULL; ire = ire->ire_next) { 28932 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28933 continue; 28934 if (ire->ire_addr != group) 28935 continue; 28936 28937 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28938 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28939 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28940 /* No resolver exists for the gateway; skip this ire. */ 28941 if (ire_gw == NULL) 28942 continue; 28943 28944 /* 28945 * This function can return EINPROGRESS. If so the operation 28946 * will be restarted from ip_restart_optmgmt which will 28947 * call ip_opt_set and option processing will restart for 28948 * this option. So we may end up calling 'fn' more than once. 28949 * This requires that 'fn' is idempotent except for the 28950 * return value. The operation is considered a success if 28951 * it succeeds at least once on any one interface. 28952 */ 28953 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28954 NULL, fmode, src, first_mp); 28955 if (error == 0) 28956 or->or_private = CGTP_MCAST_SUCCESS; 28957 28958 if (ip_debug > 0) { 28959 ulong_t off; 28960 char *ksym; 28961 ksym = kobj_getsymname((uintptr_t)fn, &off); 28962 ip2dbg(("ip_multirt_apply_membership: " 28963 "called %s, multirt group 0x%08x via itf 0x%08x, " 28964 "error %d [success %u]\n", 28965 ksym ? ksym : "?", 28966 ntohl(group), ntohl(ire_gw->ire_src_addr), 28967 error, or->or_private)); 28968 } 28969 28970 ire_refrele(ire_gw); 28971 if (error == EINPROGRESS) { 28972 IRB_REFRELE(irb); 28973 return (error); 28974 } 28975 } 28976 IRB_REFRELE(irb); 28977 /* 28978 * Consider the call as successful if we succeeded on at least 28979 * one interface. Otherwise, return the last encountered error. 28980 */ 28981 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28982 } 28983 28984 /* 28985 * Issue a warning regarding a route crossing an interface with an 28986 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28987 * amount of time is logged. 28988 */ 28989 static void 28990 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28991 { 28992 hrtime_t current = gethrtime(); 28993 char buf[INET_ADDRSTRLEN]; 28994 ip_stack_t *ipst = ire->ire_ipst; 28995 28996 /* Convert interval in ms to hrtime in ns */ 28997 if (ipst->ips_multirt_bad_mtu_last_time + 28998 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28999 current) { 29000 cmn_err(CE_WARN, "ip: ignoring multiroute " 29001 "to %s, incorrect MTU %u (expected %u)\n", 29002 ip_dot_addr(ire->ire_addr, buf), 29003 ire->ire_max_frag, max_frag); 29004 29005 ipst->ips_multirt_bad_mtu_last_time = current; 29006 } 29007 } 29008 29009 /* 29010 * Get the CGTP (multirouting) filtering status. 29011 * If 0, the CGTP hooks are transparent. 29012 */ 29013 /* ARGSUSED */ 29014 static int 29015 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29016 { 29017 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29018 29019 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29020 return (0); 29021 } 29022 29023 /* 29024 * Set the CGTP (multirouting) filtering status. 29025 * If the status is changed from active to transparent 29026 * or from transparent to active, forward the new status 29027 * to the filtering module (if loaded). 29028 */ 29029 /* ARGSUSED */ 29030 static int 29031 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29032 cred_t *ioc_cr) 29033 { 29034 long new_value; 29035 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29036 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29037 29038 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29039 return (EPERM); 29040 29041 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29042 new_value < 0 || new_value > 1) { 29043 return (EINVAL); 29044 } 29045 29046 if ((!*ip_cgtp_filter_value) && new_value) { 29047 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29048 ipst->ips_ip_cgtp_filter_ops == NULL ? 29049 " (module not loaded)" : ""); 29050 } 29051 if (*ip_cgtp_filter_value && (!new_value)) { 29052 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29053 ipst->ips_ip_cgtp_filter_ops == NULL ? 29054 " (module not loaded)" : ""); 29055 } 29056 29057 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29058 int res; 29059 netstackid_t stackid; 29060 29061 stackid = ipst->ips_netstack->netstack_stackid; 29062 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29063 new_value); 29064 if (res) 29065 return (res); 29066 } 29067 29068 *ip_cgtp_filter_value = (boolean_t)new_value; 29069 29070 return (0); 29071 } 29072 29073 /* 29074 * Return the expected CGTP hooks version number. 29075 */ 29076 int 29077 ip_cgtp_filter_supported(void) 29078 { 29079 return (ip_cgtp_filter_rev); 29080 } 29081 29082 /* 29083 * CGTP hooks can be registered by invoking this function. 29084 * Checks that the version number matches. 29085 */ 29086 int 29087 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29088 { 29089 netstack_t *ns; 29090 ip_stack_t *ipst; 29091 29092 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29093 return (ENOTSUP); 29094 29095 ns = netstack_find_by_stackid(stackid); 29096 if (ns == NULL) 29097 return (EINVAL); 29098 ipst = ns->netstack_ip; 29099 ASSERT(ipst != NULL); 29100 29101 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29102 netstack_rele(ns); 29103 return (EALREADY); 29104 } 29105 29106 ipst->ips_ip_cgtp_filter_ops = ops; 29107 netstack_rele(ns); 29108 return (0); 29109 } 29110 29111 /* 29112 * CGTP hooks can be unregistered by invoking this function. 29113 * Returns ENXIO if there was no registration. 29114 * Returns EBUSY if the ndd variable has not been turned off. 29115 */ 29116 int 29117 ip_cgtp_filter_unregister(netstackid_t stackid) 29118 { 29119 netstack_t *ns; 29120 ip_stack_t *ipst; 29121 29122 ns = netstack_find_by_stackid(stackid); 29123 if (ns == NULL) 29124 return (EINVAL); 29125 ipst = ns->netstack_ip; 29126 ASSERT(ipst != NULL); 29127 29128 if (ipst->ips_ip_cgtp_filter) { 29129 netstack_rele(ns); 29130 return (EBUSY); 29131 } 29132 29133 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29134 netstack_rele(ns); 29135 return (ENXIO); 29136 } 29137 ipst->ips_ip_cgtp_filter_ops = NULL; 29138 netstack_rele(ns); 29139 return (0); 29140 } 29141 29142 /* 29143 * Check whether there is a CGTP filter registration. 29144 * Returns non-zero if there is a registration, otherwise returns zero. 29145 * Note: returns zero if bad stackid. 29146 */ 29147 int 29148 ip_cgtp_filter_is_registered(netstackid_t stackid) 29149 { 29150 netstack_t *ns; 29151 ip_stack_t *ipst; 29152 int ret; 29153 29154 ns = netstack_find_by_stackid(stackid); 29155 if (ns == NULL) 29156 return (0); 29157 ipst = ns->netstack_ip; 29158 ASSERT(ipst != NULL); 29159 29160 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29161 ret = 1; 29162 else 29163 ret = 0; 29164 29165 netstack_rele(ns); 29166 return (ret); 29167 } 29168 29169 static int 29170 ip_squeue_switch(int val) 29171 { 29172 int rval = SQ_FILL; 29173 29174 switch (val) { 29175 case IP_SQUEUE_ENTER_NODRAIN: 29176 rval = SQ_NODRAIN; 29177 break; 29178 case IP_SQUEUE_ENTER: 29179 rval = SQ_PROCESS; 29180 break; 29181 default: 29182 break; 29183 } 29184 return (rval); 29185 } 29186 29187 /* ARGSUSED */ 29188 static int 29189 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29190 caddr_t addr, cred_t *cr) 29191 { 29192 int *v = (int *)addr; 29193 long new_value; 29194 29195 if (secpolicy_net_config(cr, B_FALSE) != 0) 29196 return (EPERM); 29197 29198 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29199 return (EINVAL); 29200 29201 ip_squeue_flag = ip_squeue_switch(new_value); 29202 *v = new_value; 29203 return (0); 29204 } 29205 29206 /* 29207 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29208 * ip_debug. 29209 */ 29210 /* ARGSUSED */ 29211 static int 29212 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29213 caddr_t addr, cred_t *cr) 29214 { 29215 int *v = (int *)addr; 29216 long new_value; 29217 29218 if (secpolicy_net_config(cr, B_FALSE) != 0) 29219 return (EPERM); 29220 29221 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29222 return (EINVAL); 29223 29224 *v = new_value; 29225 return (0); 29226 } 29227 29228 static void * 29229 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29230 { 29231 kstat_t *ksp; 29232 29233 ip_stat_t template = { 29234 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29235 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29236 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29237 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29238 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29239 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29240 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29241 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29242 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29243 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29244 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29245 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29246 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29247 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29248 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29249 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29250 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29251 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29252 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29253 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29254 { "ip_opt", KSTAT_DATA_UINT64 }, 29255 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29256 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29257 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29258 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29259 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29260 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29261 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29262 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29263 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29264 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29265 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29266 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29267 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29268 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29269 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29270 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29271 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29272 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29273 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29274 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29275 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29276 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29277 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29278 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29279 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29280 }; 29281 29282 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29283 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29284 KSTAT_FLAG_VIRTUAL, stackid); 29285 29286 if (ksp == NULL) 29287 return (NULL); 29288 29289 bcopy(&template, ip_statisticsp, sizeof (template)); 29290 ksp->ks_data = (void *)ip_statisticsp; 29291 ksp->ks_private = (void *)(uintptr_t)stackid; 29292 29293 kstat_install(ksp); 29294 return (ksp); 29295 } 29296 29297 static void 29298 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29299 { 29300 if (ksp != NULL) { 29301 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29302 kstat_delete_netstack(ksp, stackid); 29303 } 29304 } 29305 29306 static void * 29307 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29308 { 29309 kstat_t *ksp; 29310 29311 ip_named_kstat_t template = { 29312 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29313 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29314 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29315 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29316 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29317 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29318 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29319 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29320 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29321 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29322 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29323 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29324 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29325 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29326 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29327 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29328 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29329 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29330 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29331 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29332 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29333 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29334 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29335 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29336 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29337 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29338 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29339 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29340 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29341 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29342 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29343 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29344 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29345 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29346 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29347 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29348 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29349 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29350 }; 29351 29352 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29353 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29354 if (ksp == NULL || ksp->ks_data == NULL) 29355 return (NULL); 29356 29357 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29358 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29359 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29360 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29361 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29362 29363 template.netToMediaEntrySize.value.i32 = 29364 sizeof (mib2_ipNetToMediaEntry_t); 29365 29366 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29367 29368 bcopy(&template, ksp->ks_data, sizeof (template)); 29369 ksp->ks_update = ip_kstat_update; 29370 ksp->ks_private = (void *)(uintptr_t)stackid; 29371 29372 kstat_install(ksp); 29373 return (ksp); 29374 } 29375 29376 static void 29377 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29378 { 29379 if (ksp != NULL) { 29380 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29381 kstat_delete_netstack(ksp, stackid); 29382 } 29383 } 29384 29385 static int 29386 ip_kstat_update(kstat_t *kp, int rw) 29387 { 29388 ip_named_kstat_t *ipkp; 29389 mib2_ipIfStatsEntry_t ipmib; 29390 ill_walk_context_t ctx; 29391 ill_t *ill; 29392 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29393 netstack_t *ns; 29394 ip_stack_t *ipst; 29395 29396 if (kp == NULL || kp->ks_data == NULL) 29397 return (EIO); 29398 29399 if (rw == KSTAT_WRITE) 29400 return (EACCES); 29401 29402 ns = netstack_find_by_stackid(stackid); 29403 if (ns == NULL) 29404 return (-1); 29405 ipst = ns->netstack_ip; 29406 if (ipst == NULL) { 29407 netstack_rele(ns); 29408 return (-1); 29409 } 29410 ipkp = (ip_named_kstat_t *)kp->ks_data; 29411 29412 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29413 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29414 ill = ILL_START_WALK_V4(&ctx, ipst); 29415 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29416 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29417 rw_exit(&ipst->ips_ill_g_lock); 29418 29419 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29420 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29421 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29422 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29423 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29424 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29425 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29426 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29427 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29428 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29429 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29430 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29431 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29432 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29433 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29434 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29435 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29436 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29437 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29438 29439 ipkp->routingDiscards.value.ui32 = 0; 29440 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29441 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29442 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29443 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29444 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29445 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29446 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29447 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29448 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29449 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29450 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29451 29452 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29453 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29454 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29455 29456 netstack_rele(ns); 29457 29458 return (0); 29459 } 29460 29461 static void * 29462 icmp_kstat_init(netstackid_t stackid) 29463 { 29464 kstat_t *ksp; 29465 29466 icmp_named_kstat_t template = { 29467 { "inMsgs", KSTAT_DATA_UINT32 }, 29468 { "inErrors", KSTAT_DATA_UINT32 }, 29469 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29470 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29471 { "inParmProbs", KSTAT_DATA_UINT32 }, 29472 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29473 { "inRedirects", KSTAT_DATA_UINT32 }, 29474 { "inEchos", KSTAT_DATA_UINT32 }, 29475 { "inEchoReps", KSTAT_DATA_UINT32 }, 29476 { "inTimestamps", KSTAT_DATA_UINT32 }, 29477 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29478 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29479 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29480 { "outMsgs", KSTAT_DATA_UINT32 }, 29481 { "outErrors", KSTAT_DATA_UINT32 }, 29482 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29483 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29484 { "outParmProbs", KSTAT_DATA_UINT32 }, 29485 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29486 { "outRedirects", KSTAT_DATA_UINT32 }, 29487 { "outEchos", KSTAT_DATA_UINT32 }, 29488 { "outEchoReps", KSTAT_DATA_UINT32 }, 29489 { "outTimestamps", KSTAT_DATA_UINT32 }, 29490 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29491 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29492 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29493 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29494 { "inUnknowns", KSTAT_DATA_UINT32 }, 29495 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29496 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29497 { "outDrops", KSTAT_DATA_UINT32 }, 29498 { "inOverFlows", KSTAT_DATA_UINT32 }, 29499 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29500 }; 29501 29502 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29503 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29504 if (ksp == NULL || ksp->ks_data == NULL) 29505 return (NULL); 29506 29507 bcopy(&template, ksp->ks_data, sizeof (template)); 29508 29509 ksp->ks_update = icmp_kstat_update; 29510 ksp->ks_private = (void *)(uintptr_t)stackid; 29511 29512 kstat_install(ksp); 29513 return (ksp); 29514 } 29515 29516 static void 29517 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29518 { 29519 if (ksp != NULL) { 29520 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29521 kstat_delete_netstack(ksp, stackid); 29522 } 29523 } 29524 29525 static int 29526 icmp_kstat_update(kstat_t *kp, int rw) 29527 { 29528 icmp_named_kstat_t *icmpkp; 29529 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29530 netstack_t *ns; 29531 ip_stack_t *ipst; 29532 29533 if ((kp == NULL) || (kp->ks_data == NULL)) 29534 return (EIO); 29535 29536 if (rw == KSTAT_WRITE) 29537 return (EACCES); 29538 29539 ns = netstack_find_by_stackid(stackid); 29540 if (ns == NULL) 29541 return (-1); 29542 ipst = ns->netstack_ip; 29543 if (ipst == NULL) { 29544 netstack_rele(ns); 29545 return (-1); 29546 } 29547 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29548 29549 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29550 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29551 icmpkp->inDestUnreachs.value.ui32 = 29552 ipst->ips_icmp_mib.icmpInDestUnreachs; 29553 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29554 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29555 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29556 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29557 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29558 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29559 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29560 icmpkp->inTimestampReps.value.ui32 = 29561 ipst->ips_icmp_mib.icmpInTimestampReps; 29562 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29563 icmpkp->inAddrMaskReps.value.ui32 = 29564 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29565 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29566 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29567 icmpkp->outDestUnreachs.value.ui32 = 29568 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29569 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29570 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29571 icmpkp->outSrcQuenchs.value.ui32 = 29572 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29573 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29574 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29575 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29576 icmpkp->outTimestamps.value.ui32 = 29577 ipst->ips_icmp_mib.icmpOutTimestamps; 29578 icmpkp->outTimestampReps.value.ui32 = 29579 ipst->ips_icmp_mib.icmpOutTimestampReps; 29580 icmpkp->outAddrMasks.value.ui32 = 29581 ipst->ips_icmp_mib.icmpOutAddrMasks; 29582 icmpkp->outAddrMaskReps.value.ui32 = 29583 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29584 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29585 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29586 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29587 icmpkp->outFragNeeded.value.ui32 = 29588 ipst->ips_icmp_mib.icmpOutFragNeeded; 29589 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29590 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29591 icmpkp->inBadRedirects.value.ui32 = 29592 ipst->ips_icmp_mib.icmpInBadRedirects; 29593 29594 netstack_rele(ns); 29595 return (0); 29596 } 29597 29598 /* 29599 * This is the fanout function for raw socket opened for SCTP. Note 29600 * that it is called after SCTP checks that there is no socket which 29601 * wants a packet. Then before SCTP handles this out of the blue packet, 29602 * this function is called to see if there is any raw socket for SCTP. 29603 * If there is and it is bound to the correct address, the packet will 29604 * be sent to that socket. Note that only one raw socket can be bound to 29605 * a port. This is assured in ipcl_sctp_hash_insert(); 29606 */ 29607 void 29608 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29609 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29610 zoneid_t zoneid) 29611 { 29612 conn_t *connp; 29613 queue_t *rq; 29614 mblk_t *first_mp; 29615 boolean_t secure; 29616 ip6_t *ip6h; 29617 ip_stack_t *ipst = recv_ill->ill_ipst; 29618 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29619 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29620 boolean_t sctp_csum_err = B_FALSE; 29621 29622 if (flags & IP_FF_SCTP_CSUM_ERR) { 29623 sctp_csum_err = B_TRUE; 29624 flags &= ~IP_FF_SCTP_CSUM_ERR; 29625 } 29626 29627 first_mp = mp; 29628 if (mctl_present) { 29629 mp = first_mp->b_cont; 29630 secure = ipsec_in_is_secure(first_mp); 29631 ASSERT(mp != NULL); 29632 } else { 29633 secure = B_FALSE; 29634 } 29635 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29636 29637 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29638 if (connp == NULL) { 29639 /* 29640 * Although raw sctp is not summed, OOB chunks must be. 29641 * Drop the packet here if the sctp checksum failed. 29642 */ 29643 if (sctp_csum_err) { 29644 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29645 freemsg(first_mp); 29646 return; 29647 } 29648 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29649 return; 29650 } 29651 rq = connp->conn_rq; 29652 if (!canputnext(rq)) { 29653 CONN_DEC_REF(connp); 29654 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29655 freemsg(first_mp); 29656 return; 29657 } 29658 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29659 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29660 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29661 (isv4 ? ipha : NULL), ip6h, mctl_present); 29662 if (first_mp == NULL) { 29663 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29664 CONN_DEC_REF(connp); 29665 return; 29666 } 29667 } 29668 /* 29669 * We probably should not send M_CTL message up to 29670 * raw socket. 29671 */ 29672 if (mctl_present) 29673 freeb(first_mp); 29674 29675 /* Initiate IPPF processing here if needed. */ 29676 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29677 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29678 ip_process(IPP_LOCAL_IN, &mp, 29679 recv_ill->ill_phyint->phyint_ifindex); 29680 if (mp == NULL) { 29681 CONN_DEC_REF(connp); 29682 return; 29683 } 29684 } 29685 29686 if (connp->conn_recvif || connp->conn_recvslla || 29687 ((connp->conn_ip_recvpktinfo || 29688 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29689 (flags & IP_FF_IPINFO))) { 29690 int in_flags = 0; 29691 29692 /* 29693 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29694 * IPF_RECVIF. 29695 */ 29696 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29697 in_flags = IPF_RECVIF; 29698 } 29699 if (connp->conn_recvslla) { 29700 in_flags |= IPF_RECVSLLA; 29701 } 29702 if (isv4) { 29703 mp = ip_add_info(mp, recv_ill, in_flags, 29704 IPCL_ZONEID(connp), ipst); 29705 } else { 29706 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29707 if (mp == NULL) { 29708 BUMP_MIB(recv_ill->ill_ip_mib, 29709 ipIfStatsInDiscards); 29710 CONN_DEC_REF(connp); 29711 return; 29712 } 29713 } 29714 } 29715 29716 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29717 /* 29718 * We are sending the IPSEC_IN message also up. Refer 29719 * to comments above this function. 29720 * This is the SOCK_RAW, IPPROTO_SCTP case. 29721 */ 29722 (connp->conn_recv)(connp, mp, NULL); 29723 CONN_DEC_REF(connp); 29724 } 29725 29726 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29727 { \ 29728 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29729 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29730 } 29731 /* 29732 * This function should be called only if all packet processing 29733 * including fragmentation is complete. Callers of this function 29734 * must set mp->b_prev to one of these values: 29735 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29736 * prior to handing over the mp as first argument to this function. 29737 * 29738 * If the ire passed by caller is incomplete, this function 29739 * queues the packet and if necessary, sends ARP request and bails. 29740 * If the ire passed is fully resolved, we simply prepend 29741 * the link-layer header to the packet, do ipsec hw acceleration 29742 * work if necessary, and send the packet out on the wire. 29743 * 29744 * NOTE: IPsec will only call this function with fully resolved 29745 * ires if hw acceleration is involved. 29746 * TODO list : 29747 * a Handle M_MULTIDATA so that 29748 * tcp_multisend->tcp_multisend_data can 29749 * call ip_xmit_v4 directly 29750 * b Handle post-ARP work for fragments so that 29751 * ip_wput_frag can call this function. 29752 */ 29753 ipxmit_state_t 29754 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29755 boolean_t flow_ctl_enabled, conn_t *connp) 29756 { 29757 nce_t *arpce; 29758 ipha_t *ipha; 29759 queue_t *q; 29760 int ill_index; 29761 mblk_t *nxt_mp, *first_mp; 29762 boolean_t xmit_drop = B_FALSE; 29763 ip_proc_t proc; 29764 ill_t *out_ill; 29765 int pkt_len; 29766 29767 arpce = ire->ire_nce; 29768 ASSERT(arpce != NULL); 29769 29770 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29771 29772 mutex_enter(&arpce->nce_lock); 29773 switch (arpce->nce_state) { 29774 case ND_REACHABLE: 29775 /* If there are other queued packets, queue this packet */ 29776 if (arpce->nce_qd_mp != NULL) { 29777 if (mp != NULL) 29778 nce_queue_mp_common(arpce, mp, B_FALSE); 29779 mp = arpce->nce_qd_mp; 29780 } 29781 arpce->nce_qd_mp = NULL; 29782 mutex_exit(&arpce->nce_lock); 29783 29784 /* 29785 * Flush the queue. In the common case, where the 29786 * ARP is already resolved, it will go through the 29787 * while loop only once. 29788 */ 29789 while (mp != NULL) { 29790 29791 nxt_mp = mp->b_next; 29792 mp->b_next = NULL; 29793 ASSERT(mp->b_datap->db_type != M_CTL); 29794 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29795 /* 29796 * This info is needed for IPQOS to do COS marking 29797 * in ip_wput_attach_llhdr->ip_process. 29798 */ 29799 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29800 mp->b_prev = NULL; 29801 29802 /* set up ill index for outbound qos processing */ 29803 out_ill = ire_to_ill(ire); 29804 ill_index = out_ill->ill_phyint->phyint_ifindex; 29805 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29806 ill_index, &ipha); 29807 if (first_mp == NULL) { 29808 xmit_drop = B_TRUE; 29809 BUMP_MIB(out_ill->ill_ip_mib, 29810 ipIfStatsOutDiscards); 29811 goto next_mp; 29812 } 29813 29814 /* non-ipsec hw accel case */ 29815 if (io == NULL || !io->ipsec_out_accelerated) { 29816 /* send it */ 29817 q = ire->ire_stq; 29818 if (proc == IPP_FWD_OUT) { 29819 UPDATE_IB_PKT_COUNT(ire); 29820 } else { 29821 UPDATE_OB_PKT_COUNT(ire); 29822 } 29823 ire->ire_last_used_time = lbolt; 29824 29825 if (flow_ctl_enabled || canputnext(q)) { 29826 if (proc == IPP_FWD_OUT) { 29827 29828 BUMP_MIB(out_ill->ill_ip_mib, 29829 ipIfStatsHCOutForwDatagrams); 29830 29831 } 29832 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29833 pkt_len); 29834 29835 DTRACE_IP7(send, mblk_t *, first_mp, 29836 conn_t *, NULL, void_ip_t *, ipha, 29837 __dtrace_ipsr_ill_t *, out_ill, 29838 ipha_t *, ipha, ip6_t *, NULL, int, 29839 0); 29840 29841 ILL_SEND_TX(out_ill, 29842 ire, connp, first_mp, 0, connp); 29843 } else { 29844 BUMP_MIB(out_ill->ill_ip_mib, 29845 ipIfStatsOutDiscards); 29846 xmit_drop = B_TRUE; 29847 freemsg(first_mp); 29848 } 29849 } else { 29850 /* 29851 * Safety Pup says: make sure this 29852 * is going to the right interface! 29853 */ 29854 ill_t *ill1 = 29855 (ill_t *)ire->ire_stq->q_ptr; 29856 int ifindex = 29857 ill1->ill_phyint->phyint_ifindex; 29858 if (ifindex != 29859 io->ipsec_out_capab_ill_index) { 29860 xmit_drop = B_TRUE; 29861 freemsg(mp); 29862 } else { 29863 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29864 pkt_len); 29865 29866 DTRACE_IP7(send, mblk_t *, first_mp, 29867 conn_t *, NULL, void_ip_t *, ipha, 29868 __dtrace_ipsr_ill_t *, ill1, 29869 ipha_t *, ipha, ip6_t *, NULL, 29870 int, 0); 29871 29872 ipsec_hw_putnext(ire->ire_stq, mp); 29873 } 29874 } 29875 next_mp: 29876 mp = nxt_mp; 29877 } /* while (mp != NULL) */ 29878 if (xmit_drop) 29879 return (SEND_FAILED); 29880 else 29881 return (SEND_PASSED); 29882 29883 case ND_INITIAL: 29884 case ND_INCOMPLETE: 29885 29886 /* 29887 * While we do send off packets to dests that 29888 * use fully-resolved CGTP routes, we do not 29889 * handle unresolved CGTP routes. 29890 */ 29891 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29892 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29893 29894 if (mp != NULL) { 29895 /* queue the packet */ 29896 nce_queue_mp_common(arpce, mp, B_FALSE); 29897 } 29898 29899 if (arpce->nce_state == ND_INCOMPLETE) { 29900 mutex_exit(&arpce->nce_lock); 29901 DTRACE_PROBE3(ip__xmit__incomplete, 29902 (ire_t *), ire, (mblk_t *), mp, 29903 (ipsec_out_t *), io); 29904 return (LOOKUP_IN_PROGRESS); 29905 } 29906 29907 arpce->nce_state = ND_INCOMPLETE; 29908 mutex_exit(&arpce->nce_lock); 29909 29910 /* 29911 * Note that ire_add() (called from ire_forward()) 29912 * holds a ref on the ire until ARP is completed. 29913 */ 29914 ire_arpresolve(ire); 29915 return (LOOKUP_IN_PROGRESS); 29916 default: 29917 ASSERT(0); 29918 mutex_exit(&arpce->nce_lock); 29919 return (LLHDR_RESLV_FAILED); 29920 } 29921 } 29922 29923 #undef UPDATE_IP_MIB_OB_COUNTERS 29924 29925 /* 29926 * Return B_TRUE if the buffers differ in length or content. 29927 * This is used for comparing extension header buffers. 29928 * Note that an extension header would be declared different 29929 * even if all that changed was the next header value in that header i.e. 29930 * what really changed is the next extension header. 29931 */ 29932 boolean_t 29933 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29934 uint_t blen) 29935 { 29936 if (!b_valid) 29937 blen = 0; 29938 29939 if (alen != blen) 29940 return (B_TRUE); 29941 if (alen == 0) 29942 return (B_FALSE); /* Both zero length */ 29943 return (bcmp(abuf, bbuf, alen)); 29944 } 29945 29946 /* 29947 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29948 * Return B_FALSE if memory allocation fails - don't change any state! 29949 */ 29950 boolean_t 29951 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29952 const void *src, uint_t srclen) 29953 { 29954 void *dst; 29955 29956 if (!src_valid) 29957 srclen = 0; 29958 29959 ASSERT(*dstlenp == 0); 29960 if (src != NULL && srclen != 0) { 29961 dst = mi_alloc(srclen, BPRI_MED); 29962 if (dst == NULL) 29963 return (B_FALSE); 29964 } else { 29965 dst = NULL; 29966 } 29967 if (*dstp != NULL) 29968 mi_free(*dstp); 29969 *dstp = dst; 29970 *dstlenp = dst == NULL ? 0 : srclen; 29971 return (B_TRUE); 29972 } 29973 29974 /* 29975 * Replace what is in *dst, *dstlen with the source. 29976 * Assumes ip_allocbuf has already been called. 29977 */ 29978 void 29979 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29980 const void *src, uint_t srclen) 29981 { 29982 if (!src_valid) 29983 srclen = 0; 29984 29985 ASSERT(*dstlenp == srclen); 29986 if (src != NULL && srclen != 0) 29987 bcopy(src, *dstp, srclen); 29988 } 29989 29990 /* 29991 * Free the storage pointed to by the members of an ip6_pkt_t. 29992 */ 29993 void 29994 ip6_pkt_free(ip6_pkt_t *ipp) 29995 { 29996 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29997 29998 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29999 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30000 ipp->ipp_hopopts = NULL; 30001 ipp->ipp_hopoptslen = 0; 30002 } 30003 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30004 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30005 ipp->ipp_rtdstopts = NULL; 30006 ipp->ipp_rtdstoptslen = 0; 30007 } 30008 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30009 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30010 ipp->ipp_dstopts = NULL; 30011 ipp->ipp_dstoptslen = 0; 30012 } 30013 if (ipp->ipp_fields & IPPF_RTHDR) { 30014 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30015 ipp->ipp_rthdr = NULL; 30016 ipp->ipp_rthdrlen = 0; 30017 } 30018 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30019 IPPF_RTHDR); 30020 } 30021 30022 zoneid_t 30023 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30024 zoneid_t lookup_zoneid) 30025 { 30026 ire_t *ire; 30027 int ire_flags = MATCH_IRE_TYPE; 30028 zoneid_t zoneid = ALL_ZONES; 30029 30030 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30031 return (ALL_ZONES); 30032 30033 if (lookup_zoneid != ALL_ZONES) 30034 ire_flags |= MATCH_IRE_ZONEONLY; 30035 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30036 lookup_zoneid, NULL, ire_flags, ipst); 30037 if (ire != NULL) { 30038 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30039 ire_refrele(ire); 30040 } 30041 return (zoneid); 30042 } 30043 30044 zoneid_t 30045 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30046 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30047 { 30048 ire_t *ire; 30049 int ire_flags = MATCH_IRE_TYPE; 30050 zoneid_t zoneid = ALL_ZONES; 30051 ipif_t *ipif_arg = NULL; 30052 30053 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30054 return (ALL_ZONES); 30055 30056 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30057 ire_flags |= MATCH_IRE_ILL; 30058 ipif_arg = ill->ill_ipif; 30059 } 30060 if (lookup_zoneid != ALL_ZONES) 30061 ire_flags |= MATCH_IRE_ZONEONLY; 30062 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30063 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30064 if (ire != NULL) { 30065 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30066 ire_refrele(ire); 30067 } 30068 return (zoneid); 30069 } 30070 30071 /* 30072 * IP obserability hook support functions. 30073 */ 30074 30075 static void 30076 ipobs_init(ip_stack_t *ipst) 30077 { 30078 ipst->ips_ipobs_enabled = B_FALSE; 30079 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30080 offsetof(ipobs_cb_t, ipobs_cbnext)); 30081 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30082 ipst->ips_ipobs_cb_nwalkers = 0; 30083 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30084 } 30085 30086 static void 30087 ipobs_fini(ip_stack_t *ipst) 30088 { 30089 ipobs_cb_t *cb; 30090 30091 mutex_enter(&ipst->ips_ipobs_cb_lock); 30092 while (ipst->ips_ipobs_cb_nwalkers != 0) 30093 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30094 30095 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30096 list_remove(&ipst->ips_ipobs_cb_list, cb); 30097 kmem_free(cb, sizeof (*cb)); 30098 } 30099 list_destroy(&ipst->ips_ipobs_cb_list); 30100 mutex_exit(&ipst->ips_ipobs_cb_lock); 30101 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30102 cv_destroy(&ipst->ips_ipobs_cb_cv); 30103 } 30104 30105 void 30106 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30107 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30108 { 30109 mblk_t *mp2; 30110 ipobs_cb_t *ipobs_cb; 30111 ipobs_hook_data_t *ihd; 30112 uint64_t grifindex = 0; 30113 30114 ASSERT(DB_TYPE(mp) == M_DATA); 30115 30116 if (IS_UNDER_IPMP(ill)) 30117 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30118 30119 mutex_enter(&ipst->ips_ipobs_cb_lock); 30120 ipst->ips_ipobs_cb_nwalkers++; 30121 mutex_exit(&ipst->ips_ipobs_cb_lock); 30122 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30123 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30124 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30125 if (mp2 != NULL) { 30126 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30127 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30128 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30129 freemsg(mp2); 30130 continue; 30131 } 30132 ihd->ihd_mp->b_rptr += hlen; 30133 ihd->ihd_htype = htype; 30134 ihd->ihd_ipver = ipver; 30135 ihd->ihd_zsrc = zsrc; 30136 ihd->ihd_zdst = zdst; 30137 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30138 ihd->ihd_grifindex = grifindex; 30139 ihd->ihd_stack = ipst->ips_netstack; 30140 mp2->b_wptr += sizeof (*ihd); 30141 ipobs_cb->ipobs_cbfunc(mp2); 30142 } 30143 } 30144 mutex_enter(&ipst->ips_ipobs_cb_lock); 30145 ipst->ips_ipobs_cb_nwalkers--; 30146 if (ipst->ips_ipobs_cb_nwalkers == 0) 30147 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30148 mutex_exit(&ipst->ips_ipobs_cb_lock); 30149 } 30150 30151 void 30152 ipobs_register_hook(netstack_t *ns, pfv_t func) 30153 { 30154 ipobs_cb_t *cb; 30155 ip_stack_t *ipst = ns->netstack_ip; 30156 30157 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30158 30159 mutex_enter(&ipst->ips_ipobs_cb_lock); 30160 while (ipst->ips_ipobs_cb_nwalkers != 0) 30161 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30162 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30163 30164 cb->ipobs_cbfunc = func; 30165 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30166 ipst->ips_ipobs_enabled = B_TRUE; 30167 mutex_exit(&ipst->ips_ipobs_cb_lock); 30168 } 30169 30170 void 30171 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30172 { 30173 ipobs_cb_t *curcb; 30174 ip_stack_t *ipst = ns->netstack_ip; 30175 30176 mutex_enter(&ipst->ips_ipobs_cb_lock); 30177 while (ipst->ips_ipobs_cb_nwalkers != 0) 30178 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30179 30180 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30181 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30182 if (func == curcb->ipobs_cbfunc) { 30183 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30184 kmem_free(curcb, sizeof (*curcb)); 30185 break; 30186 } 30187 } 30188 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30189 ipst->ips_ipobs_enabled = B_FALSE; 30190 mutex_exit(&ipst->ips_ipobs_cb_lock); 30191 } 30192