1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1755 interested = B_TRUE; 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1757 break; 1758 case ICMP_ADDRESS_MASK_REPLY: 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1760 break; 1761 default: 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1764 break; 1765 } 1766 /* See if there is an ICMP client. */ 1767 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1768 /* If there is an ICMP client and we want one too, copy it. */ 1769 mblk_t *first_mp1; 1770 1771 if (!interested) { 1772 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1773 ip_policy, recv_ill, zoneid); 1774 return; 1775 } 1776 first_mp1 = ip_copymsg(first_mp); 1777 if (first_mp1 != NULL) { 1778 ip_fanout_proto(q, first_mp1, ill, ipha, 1779 0, mctl_present, ip_policy, recv_ill, zoneid); 1780 } 1781 } else if (!interested) { 1782 freemsg(first_mp); 1783 return; 1784 } else { 1785 /* 1786 * Initiate policy processing for this packet if ip_policy 1787 * is true. 1788 */ 1789 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1790 ill_index = ill->ill_phyint->phyint_ifindex; 1791 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1792 if (mp == NULL) { 1793 if (mctl_present) { 1794 freeb(first_mp); 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1797 return; 1798 } 1799 } 1800 } 1801 /* We want to do something with it. */ 1802 /* Check db_ref to make sure we can modify the packet. */ 1803 if (mp->b_datap->db_ref > 1) { 1804 mblk_t *first_mp1; 1805 1806 first_mp1 = ip_copymsg(first_mp); 1807 freemsg(first_mp); 1808 if (!first_mp1) { 1809 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1810 return; 1811 } 1812 first_mp = first_mp1; 1813 if (mctl_present) { 1814 mp = first_mp->b_cont; 1815 ASSERT(mp != NULL); 1816 } else { 1817 mp = first_mp; 1818 } 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 switch (icmph->icmph_type) { 1824 case ICMP_ADDRESS_MASK_REQUEST: 1825 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1826 if (ipif == NULL) { 1827 freemsg(first_mp); 1828 return; 1829 } 1830 /* 1831 * outging interface must be IPv4 1832 */ 1833 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1834 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1835 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1836 ipif_refrele(ipif); 1837 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1838 break; 1839 case ICMP_ECHO_REQUEST: 1840 icmph->icmph_type = ICMP_ECHO_REPLY; 1841 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1842 break; 1843 case ICMP_TIME_STAMP_REQUEST: { 1844 uint32_t *tsp; 1845 1846 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1847 tsp = (uint32_t *)wptr; 1848 tsp++; /* Skip past 'originate time' */ 1849 /* Compute # of milliseconds since midnight */ 1850 gethrestime(&now); 1851 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1852 now.tv_nsec / (NANOSEC / MILLISEC); 1853 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1854 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1856 break; 1857 } 1858 default: 1859 ipha = (ipha_t *)&icmph[1]; 1860 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1861 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1863 freemsg(first_mp); 1864 return; 1865 } 1866 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1867 ipha = (ipha_t *)&icmph[1]; 1868 } 1869 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1871 freemsg(first_mp); 1872 return; 1873 } 1874 hdr_length = IPH_HDR_LENGTH(ipha); 1875 if (hdr_length < sizeof (ipha_t)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1881 if (!pullupmsg(mp, 1882 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1888 ipha = (ipha_t *)&icmph[1]; 1889 } 1890 switch (icmph->icmph_type) { 1891 case ICMP_REDIRECT: 1892 /* 1893 * As there is no upper client to deliver, we don't 1894 * need the first_mp any more. 1895 */ 1896 if (mctl_present) { 1897 freeb(first_mp); 1898 } 1899 icmp_redirect(ill, mp); 1900 return; 1901 case ICMP_DEST_UNREACHABLE: 1902 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1903 if (!icmp_inbound_too_big(icmph, ipha, ill, 1904 zoneid, mp, iph_hdr_length, ipst)) { 1905 freemsg(first_mp); 1906 return; 1907 } 1908 /* 1909 * icmp_inbound_too_big() may alter mp. 1910 * Resynch ipha and icmph accordingly. 1911 */ 1912 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1913 ipha = (ipha_t *)&icmph[1]; 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2042 if (first_mp == NULL) { 2043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2044 freemsg(mp); 2045 return; 2046 } 2047 ii = (ipsec_in_t *)first_mp->b_rptr; 2048 2049 /* This is not a secure packet */ 2050 ii->ipsec_in_secure = B_FALSE; 2051 if (onlink) { 2052 ii->ipsec_in_attach_if = B_TRUE; 2053 ii->ipsec_in_ill_index = 2054 ill->ill_phyint->phyint_ifindex; 2055 ii->ipsec_in_rill_index = 2056 recv_ill->ill_phyint->phyint_ifindex; 2057 } 2058 first_mp->b_cont = mp; 2059 } else if (onlink) { 2060 ii = (ipsec_in_t *)first_mp->b_rptr; 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2063 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2065 } else { 2066 ii = (ipsec_in_t *)first_mp->b_rptr; 2067 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2068 } 2069 ii->ipsec_in_zoneid = zoneid; 2070 ASSERT(zoneid != ALL_ZONES); 2071 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2073 return; 2074 } 2075 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2076 put(WR(q), first_mp); 2077 } 2078 2079 static ipaddr_t 2080 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2081 { 2082 conn_t *connp; 2083 connf_t *connfp; 2084 ipaddr_t nexthop_addr = INADDR_ANY; 2085 int hdr_length = IPH_HDR_LENGTH(ipha); 2086 uint16_t *up; 2087 uint32_t ports; 2088 ip_stack_t *ipst = ill->ill_ipst; 2089 2090 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2091 switch (ipha->ipha_protocol) { 2092 case IPPROTO_TCP: 2093 { 2094 tcph_t *tcph; 2095 2096 /* do a reverse lookup */ 2097 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2098 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2099 TCPS_LISTEN, ipst); 2100 break; 2101 } 2102 case IPPROTO_UDP: 2103 { 2104 uint32_t dstport, srcport; 2105 2106 ((uint16_t *)&ports)[0] = up[1]; 2107 ((uint16_t *)&ports)[1] = up[0]; 2108 2109 /* Extract ports in net byte order */ 2110 dstport = htons(ntohl(ports) & 0xFFFF); 2111 srcport = htons(ntohl(ports) >> 16); 2112 2113 connfp = &ipst->ips_ipcl_udp_fanout[ 2114 IPCL_UDP_HASH(dstport, ipst)]; 2115 mutex_enter(&connfp->connf_lock); 2116 connp = connfp->connf_head; 2117 2118 /* do a reverse lookup */ 2119 while ((connp != NULL) && 2120 (!IPCL_UDP_MATCH(connp, dstport, 2121 ipha->ipha_src, srcport, ipha->ipha_dst) || 2122 !IPCL_ZONE_MATCH(connp, zoneid))) { 2123 connp = connp->conn_next; 2124 } 2125 if (connp != NULL) 2126 CONN_INC_REF(connp); 2127 mutex_exit(&connfp->connf_lock); 2128 break; 2129 } 2130 case IPPROTO_SCTP: 2131 { 2132 in6_addr_t map_src, map_dst; 2133 2134 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2136 ((uint16_t *)&ports)[0] = up[1]; 2137 ((uint16_t *)&ports)[1] = up[0]; 2138 2139 connp = sctp_find_conn(&map_src, &map_dst, ports, 2140 zoneid, ipst->ips_netstack->netstack_sctp); 2141 if (connp == NULL) { 2142 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2143 zoneid, ports, ipha, ipst); 2144 } else { 2145 CONN_INC_REF(connp); 2146 SCTP_REFRELE(CONN2SCTP(connp)); 2147 } 2148 break; 2149 } 2150 default: 2151 { 2152 ipha_t ripha; 2153 2154 ripha.ipha_src = ipha->ipha_dst; 2155 ripha.ipha_dst = ipha->ipha_src; 2156 ripha.ipha_protocol = ipha->ipha_protocol; 2157 2158 connfp = &ipst->ips_ipcl_proto_fanout[ 2159 ipha->ipha_protocol]; 2160 mutex_enter(&connfp->connf_lock); 2161 connp = connfp->connf_head; 2162 for (connp = connfp->connf_head; connp != NULL; 2163 connp = connp->conn_next) { 2164 if (IPCL_PROTO_MATCH(connp, 2165 ipha->ipha_protocol, &ripha, ill, 2166 0, zoneid)) { 2167 CONN_INC_REF(connp); 2168 break; 2169 } 2170 } 2171 mutex_exit(&connfp->connf_lock); 2172 } 2173 } 2174 if (connp != NULL) { 2175 if (connp->conn_nexthop_set) 2176 nexthop_addr = connp->conn_nexthop_v4; 2177 CONN_DEC_REF(connp); 2178 } 2179 return (nexthop_addr); 2180 } 2181 2182 /* Table from RFC 1191 */ 2183 static int icmp_frag_size_table[] = 2184 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2185 2186 /* 2187 * Process received ICMP Packet too big. 2188 * After updating any IRE it does the fanout to any matching transport streams. 2189 * Assumes the message has been pulled up till the IP header that caused 2190 * the error. 2191 * 2192 * Returns B_FALSE on failure and B_TRUE on success. 2193 */ 2194 static boolean_t 2195 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2196 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2197 ip_stack_t *ipst) 2198 { 2199 ire_t *ire, *first_ire; 2200 int mtu; 2201 int hdr_length; 2202 ipaddr_t nexthop_addr; 2203 2204 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2205 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2206 ASSERT(ill != NULL); 2207 2208 hdr_length = IPH_HDR_LENGTH(ipha); 2209 2210 /* Drop if the original packet contained a source route */ 2211 if (ip_source_route_included(ipha)) { 2212 return (B_FALSE); 2213 } 2214 /* 2215 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2216 * header. 2217 */ 2218 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2219 mp->b_wptr) { 2220 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2221 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2223 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2224 return (B_FALSE); 2225 } 2226 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2227 ipha = (ipha_t *)&icmph[1]; 2228 } 2229 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2230 if (nexthop_addr != INADDR_ANY) { 2231 /* nexthop set */ 2232 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2233 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2234 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2235 } else { 2236 /* nexthop not set */ 2237 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2238 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2239 } 2240 2241 if (!first_ire) { 2242 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2243 ntohl(ipha->ipha_dst))); 2244 return (B_FALSE); 2245 } 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2249 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2250 ire = ire->ire_next) { 2251 /* 2252 * Look for the connection to which this ICMP message is 2253 * directed. If it has the IP_NEXTHOP option set, then the 2254 * search is limited to IREs with the MATCH_IRE_PRIVATE 2255 * option. Else the search is limited to regular IREs. 2256 */ 2257 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2258 (nexthop_addr != ire->ire_gateway_addr)) || 2259 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != INADDR_ANY))) 2261 continue; 2262 2263 mutex_enter(&ire->ire_lock); 2264 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2265 /* Reduce the IRE max frag value as advised. */ 2266 ip1dbg(("Received mtu from router: %d (was %d)\n", 2267 mtu, ire->ire_max_frag)); 2268 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2269 } else { 2270 uint32_t length; 2271 int i; 2272 2273 /* 2274 * Use the table from RFC 1191 to figure out 2275 * the next "plateau" based on the length in 2276 * the original IP packet. 2277 */ 2278 length = ntohs(ipha->ipha_length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2287 length, ire->ire_max_frag)); 2288 length -= hdr_length; 2289 } 2290 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2291 if (length > icmp_frag_size_table[i]) 2292 break; 2293 } 2294 if (i == A_CNT(icmp_frag_size_table)) { 2295 /* Smaller than 68! */ 2296 ip1dbg(("Too big for packet size %d\n", 2297 length)); 2298 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2299 ire->ire_frag_flag = 0; 2300 } else { 2301 mtu = icmp_frag_size_table[i]; 2302 ip1dbg(("Calculated mtu %d, packet size %d, " 2303 "before %d", mtu, length, 2304 ire->ire_max_frag)); 2305 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2306 ip1dbg((", after %d\n", ire->ire_max_frag)); 2307 } 2308 /* Record the new max frag size for the ULP. */ 2309 icmph->icmph_du_zero = 0; 2310 icmph->icmph_du_mtu = 2311 htons((uint16_t)ire->ire_max_frag); 2312 } 2313 mutex_exit(&ire->ire_lock); 2314 } 2315 rw_exit(&first_ire->ire_bucket->irb_lock); 2316 ire_refrele(first_ire); 2317 return (B_TRUE); 2318 } 2319 2320 /* 2321 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2322 * calls this function. 2323 */ 2324 static mblk_t * 2325 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2326 { 2327 ipha_t *ipha; 2328 icmph_t *icmph; 2329 ipha_t *in_ipha; 2330 int length; 2331 2332 ASSERT(mp->b_datap->db_type == M_DATA); 2333 2334 /* 2335 * For Self-encapsulated packets, we added an extra IP header 2336 * without the options. Inner IP header is the one from which 2337 * the outer IP header was formed. Thus, we need to remove the 2338 * outer IP header. To do this, we pullup the whole message 2339 * and overlay whatever follows the outer IP header over the 2340 * outer IP header. 2341 */ 2342 2343 if (!pullupmsg(mp, -1)) 2344 return (NULL); 2345 2346 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2347 ipha = (ipha_t *)&icmph[1]; 2348 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2349 2350 /* 2351 * The length that we want to overlay is following the inner 2352 * IP header. Subtracting the IP header + icmp header + outer 2353 * IP header's length should give us the length that we want to 2354 * overlay. 2355 */ 2356 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2357 hdr_length; 2358 /* 2359 * Overlay whatever follows the inner header over the 2360 * outer header. 2361 */ 2362 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2363 2364 /* Set the wptr to account for the outer header */ 2365 mp->b_wptr -= hdr_length; 2366 return (mp); 2367 } 2368 2369 /* 2370 * Try to pass the ICMP message upstream in case the ULP cares. 2371 * 2372 * If the packet that caused the ICMP error is secure, we send 2373 * it to AH/ESP to make sure that the attached packet has a 2374 * valid association. ipha in the code below points to the 2375 * IP header of the packet that caused the error. 2376 * 2377 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2378 * in the context of IPSEC. Normally we tell the upper layer 2379 * whenever we send the ire (including ip_bind), the IPSEC header 2380 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2381 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2382 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2383 * same thing. As TCP has the IPSEC options size that needs to be 2384 * adjusted, we just pass the MTU unchanged. 2385 * 2386 * IFN could have been generated locally or by some router. 2387 * 2388 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2389 * This happens because IP adjusted its value of MTU on an 2390 * earlier IFN message and could not tell the upper layer, 2391 * the new adjusted value of MTU e.g. Packet was encrypted 2392 * or there was not enough information to fanout to upper 2393 * layers. Thus on the next outbound datagram, ip_wput_ire 2394 * generates the IFN, where IPSEC processing has *not* been 2395 * done. 2396 * 2397 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2398 * could have generated this. This happens because ire_max_frag 2399 * value in IP was set to a new value, while the IPSEC processing 2400 * was being done and after we made the fragmentation check in 2401 * ip_wput_ire. Thus on return from IPSEC processing, 2402 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2403 * and generates the IFN. As IPSEC processing is over, we fanout 2404 * to AH/ESP to remove the header. 2405 * 2406 * In both these cases, ipsec_in_loopback will be set indicating 2407 * that IFN was generated locally. 2408 * 2409 * ROUTER : IFN could be secure or non-secure. 2410 * 2411 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2412 * packet in error has AH/ESP headers to validate the AH/ESP 2413 * headers. AH/ESP will verify whether there is a valid SA or 2414 * not and send it back. We will fanout again if we have more 2415 * data in the packet. 2416 * 2417 * If the packet in error does not have AH/ESP, we handle it 2418 * like any other case. 2419 * 2420 * * NON_SECURE : If the packet in error has AH/ESP headers, 2421 * we attach a dummy ipsec_in and send it up to AH/ESP 2422 * for validation. AH/ESP will verify whether there is a 2423 * valid SA or not and send it back. We will fanout again if 2424 * we have more data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 */ 2429 static void 2430 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2431 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2432 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2433 zoneid_t zoneid) 2434 { 2435 uint16_t *up; /* Pointer to ports in ULP header */ 2436 uint32_t ports; /* reversed ports for fanout */ 2437 ipha_t ripha; /* With reversed addresses */ 2438 mblk_t *first_mp; 2439 ipsec_in_t *ii; 2440 tcph_t *tcph; 2441 conn_t *connp; 2442 ip_stack_t *ipst; 2443 2444 ASSERT(ill != NULL); 2445 2446 ASSERT(recv_ill != NULL); 2447 ipst = recv_ill->ill_ipst; 2448 2449 first_mp = mp; 2450 if (mctl_present) { 2451 mp = first_mp->b_cont; 2452 ASSERT(mp != NULL); 2453 2454 ii = (ipsec_in_t *)first_mp->b_rptr; 2455 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2456 } else { 2457 ii = NULL; 2458 } 2459 2460 switch (ipha->ipha_protocol) { 2461 case IPPROTO_UDP: 2462 /* 2463 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2464 * transport header. 2465 */ 2466 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2467 mp->b_wptr) { 2468 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2469 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2470 goto discard_pkt; 2471 } 2472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2473 ipha = (ipha_t *)&icmph[1]; 2474 } 2475 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2476 2477 /* 2478 * Attempt to find a client stream based on port. 2479 * Note that we do a reverse lookup since the header is 2480 * in the form we sent it out. 2481 * The ripha header is only used for the IP_UDP_MATCH and we 2482 * only set the src and dst addresses and protocol. 2483 */ 2484 ripha.ipha_src = ipha->ipha_dst; 2485 ripha.ipha_dst = ipha->ipha_src; 2486 ripha.ipha_protocol = ipha->ipha_protocol; 2487 ((uint16_t *)&ports)[0] = up[1]; 2488 ((uint16_t *)&ports)[1] = up[0]; 2489 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2490 ntohl(ipha->ipha_src), ntohs(up[0]), 2491 ntohl(ipha->ipha_dst), ntohs(up[1]), 2492 icmph->icmph_type, icmph->icmph_code)); 2493 2494 /* Have to change db_type after any pullupmsg */ 2495 DB_TYPE(mp) = M_CTL; 2496 2497 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2498 mctl_present, ip_policy, recv_ill, zoneid); 2499 return; 2500 2501 case IPPROTO_TCP: 2502 /* 2503 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2504 * transport header. 2505 */ 2506 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2507 mp->b_wptr) { 2508 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2509 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2510 goto discard_pkt; 2511 } 2512 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2513 ipha = (ipha_t *)&icmph[1]; 2514 } 2515 /* 2516 * Find a TCP client stream for this packet. 2517 * Note that we do a reverse lookup since the header is 2518 * in the form we sent it out. 2519 */ 2520 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2521 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2522 ipst); 2523 if (connp == NULL) 2524 goto discard_pkt; 2525 2526 /* Have to change db_type after any pullupmsg */ 2527 DB_TYPE(mp) = M_CTL; 2528 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2529 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2530 return; 2531 2532 case IPPROTO_SCTP: 2533 /* 2534 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2535 * transport header. 2536 */ 2537 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2538 mp->b_wptr) { 2539 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2540 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2541 goto discard_pkt; 2542 } 2543 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2544 ipha = (ipha_t *)&icmph[1]; 2545 } 2546 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2547 /* 2548 * Find a SCTP client stream for this packet. 2549 * Note that we do a reverse lookup since the header is 2550 * in the form we sent it out. 2551 * The ripha header is only used for the matching and we 2552 * only set the src and dst addresses, protocol, and version. 2553 */ 2554 ripha.ipha_src = ipha->ipha_dst; 2555 ripha.ipha_dst = ipha->ipha_src; 2556 ripha.ipha_protocol = ipha->ipha_protocol; 2557 ripha.ipha_version_and_hdr_length = 2558 ipha->ipha_version_and_hdr_length; 2559 ((uint16_t *)&ports)[0] = up[1]; 2560 ((uint16_t *)&ports)[1] = up[0]; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2565 mctl_present, ip_policy, zoneid); 2566 return; 2567 2568 case IPPROTO_ESP: 2569 case IPPROTO_AH: { 2570 int ipsec_rc; 2571 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2572 2573 /* 2574 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2575 * We will re-use the IPSEC_IN if it is already present as 2576 * AH/ESP will not affect any fields in the IPSEC_IN for 2577 * ICMP errors. If there is no IPSEC_IN, allocate a new 2578 * one and attach it in the front. 2579 */ 2580 if (ii != NULL) { 2581 /* 2582 * ip_fanout_proto_again converts the ICMP errors 2583 * that come back from AH/ESP to M_DATA so that 2584 * if it is non-AH/ESP and we do a pullupmsg in 2585 * this function, it would work. Convert it back 2586 * to M_CTL before we send up as this is a ICMP 2587 * error. This could have been generated locally or 2588 * by some router. Validate the inner IPSEC 2589 * headers. 2590 * 2591 * NOTE : ill_index is used by ip_fanout_proto_again 2592 * to locate the ill. 2593 */ 2594 ASSERT(ill != NULL); 2595 ii->ipsec_in_ill_index = 2596 ill->ill_phyint->phyint_ifindex; 2597 ii->ipsec_in_rill_index = 2598 recv_ill->ill_phyint->phyint_ifindex; 2599 DB_TYPE(first_mp->b_cont) = M_CTL; 2600 } else { 2601 /* 2602 * IPSEC_IN is not present. We attach a ipsec_in 2603 * message and send up to IPSEC for validating 2604 * and removing the IPSEC headers. Clear 2605 * ipsec_in_secure so that when we return 2606 * from IPSEC, we don't mistakenly think that this 2607 * is a secure packet came from the network. 2608 * 2609 * NOTE : ill_index is used by ip_fanout_proto_again 2610 * to locate the ill. 2611 */ 2612 ASSERT(first_mp == mp); 2613 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2614 if (first_mp == NULL) { 2615 freemsg(mp); 2616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2617 return; 2618 } 2619 ii = (ipsec_in_t *)first_mp->b_rptr; 2620 2621 /* This is not a secure packet */ 2622 ii->ipsec_in_secure = B_FALSE; 2623 first_mp->b_cont = mp; 2624 DB_TYPE(mp) = M_CTL; 2625 ASSERT(ill != NULL); 2626 ii->ipsec_in_ill_index = 2627 ill->ill_phyint->phyint_ifindex; 2628 ii->ipsec_in_rill_index = 2629 recv_ill->ill_phyint->phyint_ifindex; 2630 } 2631 ip2dbg(("icmp_inbound_error: ipsec\n")); 2632 2633 if (!ipsec_loaded(ipss)) { 2634 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2635 return; 2636 } 2637 2638 if (ipha->ipha_protocol == IPPROTO_ESP) 2639 ipsec_rc = ipsecesp_icmp_error(first_mp); 2640 else 2641 ipsec_rc = ipsecah_icmp_error(first_mp); 2642 if (ipsec_rc == IPSEC_STATUS_FAILED) 2643 return; 2644 2645 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2646 return; 2647 } 2648 default: 2649 /* 2650 * The ripha header is only used for the lookup and we 2651 * only set the src and dst addresses and protocol. 2652 */ 2653 ripha.ipha_src = ipha->ipha_dst; 2654 ripha.ipha_dst = ipha->ipha_src; 2655 ripha.ipha_protocol = ipha->ipha_protocol; 2656 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2657 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2658 ntohl(ipha->ipha_dst), 2659 icmph->icmph_type, icmph->icmph_code)); 2660 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2661 ipha_t *in_ipha; 2662 2663 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2664 mp->b_wptr) { 2665 if (!pullupmsg(mp, (uchar_t *)ipha + 2666 hdr_length + sizeof (ipha_t) - 2667 mp->b_rptr)) { 2668 goto discard_pkt; 2669 } 2670 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2671 ipha = (ipha_t *)&icmph[1]; 2672 } 2673 /* 2674 * Caller has verified that length has to be 2675 * at least the size of IP header. 2676 */ 2677 ASSERT(hdr_length >= sizeof (ipha_t)); 2678 /* 2679 * Check the sanity of the inner IP header like 2680 * we did for the outer header. 2681 */ 2682 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2683 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2684 goto discard_pkt; 2685 } 2686 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2687 goto discard_pkt; 2688 } 2689 /* Check for Self-encapsulated tunnels */ 2690 if (in_ipha->ipha_src == ipha->ipha_src && 2691 in_ipha->ipha_dst == ipha->ipha_dst) { 2692 2693 mp = icmp_inbound_self_encap_error(mp, 2694 iph_hdr_length, hdr_length); 2695 if (mp == NULL) 2696 goto discard_pkt; 2697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2698 ipha = (ipha_t *)&icmph[1]; 2699 hdr_length = IPH_HDR_LENGTH(ipha); 2700 /* 2701 * The packet in error is self-encapsualted. 2702 * And we are finding it further encapsulated 2703 * which we could not have possibly generated. 2704 */ 2705 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2706 goto discard_pkt; 2707 } 2708 icmp_inbound_error_fanout(q, ill, first_mp, 2709 icmph, ipha, iph_hdr_length, hdr_length, 2710 mctl_present, ip_policy, recv_ill, zoneid); 2711 return; 2712 } 2713 } 2714 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2715 ipha->ipha_protocol == IPPROTO_IPV6) && 2716 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2717 ii != NULL && 2718 ii->ipsec_in_loopback && 2719 ii->ipsec_in_secure) { 2720 /* 2721 * For IP tunnels that get a looped-back 2722 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2723 * reported new MTU to take into account the IPsec 2724 * headers protecting this configured tunnel. 2725 * 2726 * This allows the tunnel module (tun.c) to blindly 2727 * accept the MTU reported in an ICMP "too big" 2728 * message. 2729 * 2730 * Non-looped back ICMP messages will just be 2731 * handled by the security protocols (if needed), 2732 * and the first subsequent packet will hit this 2733 * path. 2734 */ 2735 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2736 ipsec_in_extra_length(first_mp)); 2737 } 2738 /* Have to change db_type after any pullupmsg */ 2739 DB_TYPE(mp) = M_CTL; 2740 2741 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2742 ip_policy, recv_ill, zoneid); 2743 return; 2744 } 2745 /* NOTREACHED */ 2746 discard_pkt: 2747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2748 drop_pkt:; 2749 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2750 freemsg(first_mp); 2751 } 2752 2753 /* 2754 * Common IP options parser. 2755 * 2756 * Setup routine: fill in *optp with options-parsing state, then 2757 * tail-call ipoptp_next to return the first option. 2758 */ 2759 uint8_t 2760 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2761 { 2762 uint32_t totallen; /* total length of all options */ 2763 2764 totallen = ipha->ipha_version_and_hdr_length - 2765 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2766 totallen <<= 2; 2767 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2768 optp->ipoptp_end = optp->ipoptp_next + totallen; 2769 optp->ipoptp_flags = 0; 2770 return (ipoptp_next(optp)); 2771 } 2772 2773 /* 2774 * Common IP options parser: extract next option. 2775 */ 2776 uint8_t 2777 ipoptp_next(ipoptp_t *optp) 2778 { 2779 uint8_t *end = optp->ipoptp_end; 2780 uint8_t *cur = optp->ipoptp_next; 2781 uint8_t opt, len, pointer; 2782 2783 /* 2784 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2785 * has been corrupted. 2786 */ 2787 ASSERT(cur <= end); 2788 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 2792 opt = cur[IPOPT_OPTVAL]; 2793 2794 /* 2795 * Skip any NOP options. 2796 */ 2797 while (opt == IPOPT_NOP) { 2798 cur++; 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 opt = cur[IPOPT_OPTVAL]; 2802 } 2803 2804 if (opt == IPOPT_EOL) 2805 return (IPOPT_EOL); 2806 2807 /* 2808 * Option requiring a length. 2809 */ 2810 if ((cur + 1) >= end) { 2811 optp->ipoptp_flags |= IPOPTP_ERROR; 2812 return (IPOPT_EOL); 2813 } 2814 len = cur[IPOPT_OLEN]; 2815 if (len < 2) { 2816 optp->ipoptp_flags |= IPOPTP_ERROR; 2817 return (IPOPT_EOL); 2818 } 2819 optp->ipoptp_cur = cur; 2820 optp->ipoptp_len = len; 2821 optp->ipoptp_next = cur + len; 2822 if (cur + len > end) { 2823 optp->ipoptp_flags |= IPOPTP_ERROR; 2824 return (IPOPT_EOL); 2825 } 2826 2827 /* 2828 * For the options which require a pointer field, make sure 2829 * its there, and make sure it points to either something 2830 * inside this option, or the end of the option. 2831 */ 2832 switch (opt) { 2833 case IPOPT_RR: 2834 case IPOPT_TS: 2835 case IPOPT_LSRR: 2836 case IPOPT_SSRR: 2837 if (len <= IPOPT_OFFSET) { 2838 optp->ipoptp_flags |= IPOPTP_ERROR; 2839 return (opt); 2840 } 2841 pointer = cur[IPOPT_OFFSET]; 2842 if (pointer - 1 > len) { 2843 optp->ipoptp_flags |= IPOPTP_ERROR; 2844 return (opt); 2845 } 2846 break; 2847 } 2848 2849 /* 2850 * Sanity check the pointer field based on the type of the 2851 * option. 2852 */ 2853 switch (opt) { 2854 case IPOPT_RR: 2855 case IPOPT_SSRR: 2856 case IPOPT_LSRR: 2857 if (pointer < IPOPT_MINOFF_SR) 2858 optp->ipoptp_flags |= IPOPTP_ERROR; 2859 break; 2860 case IPOPT_TS: 2861 if (pointer < IPOPT_MINOFF_IT) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 /* 2864 * Note that the Internet Timestamp option also 2865 * contains two four bit fields (the Overflow field, 2866 * and the Flag field), which follow the pointer 2867 * field. We don't need to check that these fields 2868 * fall within the length of the option because this 2869 * was implicitely done above. We've checked that the 2870 * pointer value is at least IPOPT_MINOFF_IT, and that 2871 * it falls within the option. Since IPOPT_MINOFF_IT > 2872 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2873 */ 2874 ASSERT(len > IPOPT_POS_OV_FLG); 2875 break; 2876 } 2877 2878 return (opt); 2879 } 2880 2881 /* 2882 * Use the outgoing IP header to create an IP_OPTIONS option the way 2883 * it was passed down from the application. 2884 */ 2885 int 2886 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2887 { 2888 ipoptp_t opts; 2889 const uchar_t *opt; 2890 uint8_t optval; 2891 uint8_t optlen; 2892 uint32_t len = 0; 2893 uchar_t *buf1 = buf; 2894 2895 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2896 len += IP_ADDR_LEN; 2897 bzero(buf1, IP_ADDR_LEN); 2898 2899 /* 2900 * OK to cast away const here, as we don't store through the returned 2901 * opts.ipoptp_cur pointer. 2902 */ 2903 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2904 optval != IPOPT_EOL; 2905 optval = ipoptp_next(&opts)) { 2906 int off; 2907 2908 opt = opts.ipoptp_cur; 2909 optlen = opts.ipoptp_len; 2910 switch (optval) { 2911 case IPOPT_SSRR: 2912 case IPOPT_LSRR: 2913 2914 /* 2915 * Insert ipha_dst as the first entry in the source 2916 * route and move down the entries on step. 2917 * The last entry gets placed at buf1. 2918 */ 2919 buf[IPOPT_OPTVAL] = optval; 2920 buf[IPOPT_OLEN] = optlen; 2921 buf[IPOPT_OFFSET] = optlen; 2922 2923 off = optlen - IP_ADDR_LEN; 2924 if (off < 0) { 2925 /* No entries in source route */ 2926 break; 2927 } 2928 /* Last entry in source route */ 2929 bcopy(opt + off, buf1, IP_ADDR_LEN); 2930 off -= IP_ADDR_LEN; 2931 2932 while (off > 0) { 2933 bcopy(opt + off, 2934 buf + off + IP_ADDR_LEN, 2935 IP_ADDR_LEN); 2936 off -= IP_ADDR_LEN; 2937 } 2938 /* ipha_dst into first slot */ 2939 bcopy(&ipha->ipha_dst, 2940 buf + off + IP_ADDR_LEN, 2941 IP_ADDR_LEN); 2942 buf += optlen; 2943 len += optlen; 2944 break; 2945 2946 case IPOPT_COMSEC: 2947 case IPOPT_SECURITY: 2948 /* if passing up a label is not ok, then remove */ 2949 if (is_system_labeled()) 2950 break; 2951 /* FALLTHROUGH */ 2952 default: 2953 bcopy(opt, buf, optlen); 2954 buf += optlen; 2955 len += optlen; 2956 break; 2957 } 2958 } 2959 done: 2960 /* Pad the resulting options */ 2961 while (len & 0x3) { 2962 *buf++ = IPOPT_EOL; 2963 len++; 2964 } 2965 return (len); 2966 } 2967 2968 /* 2969 * Update any record route or timestamp options to include this host. 2970 * Reverse any source route option. 2971 * This routine assumes that the options are well formed i.e. that they 2972 * have already been checked. 2973 */ 2974 static void 2975 icmp_options_update(ipha_t *ipha) 2976 { 2977 ipoptp_t opts; 2978 uchar_t *opt; 2979 uint8_t optval; 2980 ipaddr_t src; /* Our local address */ 2981 ipaddr_t dst; 2982 2983 ip2dbg(("icmp_options_update\n")); 2984 src = ipha->ipha_src; 2985 dst = ipha->ipha_dst; 2986 2987 for (optval = ipoptp_first(&opts, ipha); 2988 optval != IPOPT_EOL; 2989 optval = ipoptp_next(&opts)) { 2990 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2991 opt = opts.ipoptp_cur; 2992 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2993 optval, opts.ipoptp_len)); 2994 switch (optval) { 2995 int off1, off2; 2996 case IPOPT_SSRR: 2997 case IPOPT_LSRR: 2998 /* 2999 * Reverse the source route. The first entry 3000 * should be the next to last one in the current 3001 * source route (the last entry is our address). 3002 * The last entry should be the final destination. 3003 */ 3004 off1 = IPOPT_MINOFF_SR - 1; 3005 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3006 if (off2 < 0) { 3007 /* No entries in source route */ 3008 ip1dbg(( 3009 "icmp_options_update: bad src route\n")); 3010 break; 3011 } 3012 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3013 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3014 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3015 off2 -= IP_ADDR_LEN; 3016 3017 while (off1 < off2) { 3018 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3019 bcopy((char *)opt + off2, (char *)opt + off1, 3020 IP_ADDR_LEN); 3021 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3022 off1 += IP_ADDR_LEN; 3023 off2 -= IP_ADDR_LEN; 3024 } 3025 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3026 break; 3027 } 3028 } 3029 } 3030 3031 /* 3032 * Process received ICMP Redirect messages. 3033 */ 3034 static void 3035 icmp_redirect(ill_t *ill, mblk_t *mp) 3036 { 3037 ipha_t *ipha; 3038 int iph_hdr_length; 3039 icmph_t *icmph; 3040 ipha_t *ipha_err; 3041 ire_t *ire; 3042 ire_t *prev_ire; 3043 ire_t *save_ire; 3044 ipaddr_t src, dst, gateway; 3045 iulp_t ulp_info = { 0 }; 3046 int error; 3047 ip_stack_t *ipst; 3048 3049 ASSERT(ill != NULL); 3050 ipst = ill->ill_ipst; 3051 3052 ipha = (ipha_t *)mp->b_rptr; 3053 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3054 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3055 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3056 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3057 freemsg(mp); 3058 return; 3059 } 3060 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3061 ipha_err = (ipha_t *)&icmph[1]; 3062 src = ipha->ipha_src; 3063 dst = ipha_err->ipha_dst; 3064 gateway = icmph->icmph_rd_gateway; 3065 /* Make sure the new gateway is reachable somehow. */ 3066 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3067 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3068 /* 3069 * Make sure we had a route for the dest in question and that 3070 * that route was pointing to the old gateway (the source of the 3071 * redirect packet.) 3072 */ 3073 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3074 NULL, MATCH_IRE_GW, ipst); 3075 /* 3076 * Check that 3077 * the redirect was not from ourselves 3078 * the new gateway and the old gateway are directly reachable 3079 */ 3080 if (!prev_ire || 3081 !ire || 3082 ire->ire_type == IRE_LOCAL) { 3083 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3084 freemsg(mp); 3085 if (ire != NULL) 3086 ire_refrele(ire); 3087 if (prev_ire != NULL) 3088 ire_refrele(prev_ire); 3089 return; 3090 } 3091 3092 /* 3093 * Should we use the old ULP info to create the new gateway? From 3094 * a user's perspective, we should inherit the info so that it 3095 * is a "smooth" transition. If we do not do that, then new 3096 * connections going thru the new gateway will have no route metrics, 3097 * which is counter-intuitive to user. From a network point of 3098 * view, this may or may not make sense even though the new gateway 3099 * is still directly connected to us so the route metrics should not 3100 * change much. 3101 * 3102 * But if the old ire_uinfo is not initialized, we do another 3103 * recursive lookup on the dest using the new gateway. There may 3104 * be a route to that. If so, use it to initialize the redirect 3105 * route. 3106 */ 3107 if (prev_ire->ire_uinfo.iulp_set) { 3108 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 } else { 3110 ire_t *tmp_ire; 3111 ire_t *sire; 3112 3113 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3114 ALL_ZONES, 0, NULL, 3115 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3116 ipst); 3117 if (sire != NULL) { 3118 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 /* 3120 * If sire != NULL, ire_ftable_lookup() should not 3121 * return a NULL value. 3122 */ 3123 ASSERT(tmp_ire != NULL); 3124 ire_refrele(tmp_ire); 3125 ire_refrele(sire); 3126 } else if (tmp_ire != NULL) { 3127 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3128 sizeof (iulp_t)); 3129 ire_refrele(tmp_ire); 3130 } 3131 } 3132 if (prev_ire->ire_type == IRE_CACHE) 3133 ire_delete(prev_ire); 3134 ire_refrele(prev_ire); 3135 /* 3136 * TODO: more precise handling for cases 0, 2, 3, the latter two 3137 * require TOS routing 3138 */ 3139 switch (icmph->icmph_code) { 3140 case 0: 3141 case 1: 3142 /* TODO: TOS specificity for cases 2 and 3 */ 3143 case 2: 3144 case 3: 3145 break; 3146 default: 3147 freemsg(mp); 3148 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3149 ire_refrele(ire); 3150 return; 3151 } 3152 /* 3153 * Create a Route Association. This will allow us to remember that 3154 * someone we believe told us to use the particular gateway. 3155 */ 3156 save_ire = ire; 3157 ire = ire_create( 3158 (uchar_t *)&dst, /* dest addr */ 3159 (uchar_t *)&ip_g_all_ones, /* mask */ 3160 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3161 (uchar_t *)&gateway, /* gateway addr */ 3162 NULL, /* no in_srcaddr */ 3163 &save_ire->ire_max_frag, /* max frag */ 3164 NULL, /* Fast Path header */ 3165 NULL, /* no rfq */ 3166 NULL, /* no stq */ 3167 IRE_HOST, 3168 NULL, 3169 NULL, 3170 NULL, 3171 0, 3172 0, 3173 0, 3174 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3175 &ulp_info, 3176 NULL, 3177 NULL, 3178 ipst); 3179 3180 if (ire == NULL) { 3181 freemsg(mp); 3182 ire_refrele(save_ire); 3183 return; 3184 } 3185 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3186 ire_refrele(save_ire); 3187 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3188 3189 if (error == 0) { 3190 ire_refrele(ire); /* Held in ire_add_v4 */ 3191 /* tell routing sockets that we received a redirect */ 3192 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3193 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3194 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3195 } 3196 3197 /* 3198 * Delete any existing IRE_HOST type redirect ires for this destination. 3199 * This together with the added IRE has the effect of 3200 * modifying an existing redirect. 3201 */ 3202 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3203 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3204 if (prev_ire != NULL) { 3205 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3206 ire_delete(prev_ire); 3207 ire_refrele(prev_ire); 3208 } 3209 3210 freemsg(mp); 3211 } 3212 3213 /* 3214 * Generate an ICMP parameter problem message. 3215 */ 3216 static void 3217 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3218 ip_stack_t *ipst) 3219 { 3220 icmph_t icmph; 3221 boolean_t mctl_present; 3222 mblk_t *first_mp; 3223 3224 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3225 3226 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3227 if (mctl_present) 3228 freeb(first_mp); 3229 return; 3230 } 3231 3232 bzero(&icmph, sizeof (icmph_t)); 3233 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3234 icmph.icmph_pp_ptr = ptr; 3235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3236 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3237 ipst); 3238 } 3239 3240 /* 3241 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3242 * the ICMP header pointed to by "stuff". (May be called as writer.) 3243 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3244 * an icmp error packet can be sent. 3245 * Assigns an appropriate source address to the packet. If ipha_dst is 3246 * one of our addresses use it for source. Otherwise pick a source based 3247 * on a route lookup back to ipha_src. 3248 * Note that ipha_src must be set here since the 3249 * packet is likely to arrive on an ill queue in ip_wput() which will 3250 * not set a source address. 3251 */ 3252 static void 3253 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3254 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3255 { 3256 ipaddr_t dst; 3257 icmph_t *icmph; 3258 ipha_t *ipha; 3259 uint_t len_needed; 3260 size_t msg_len; 3261 mblk_t *mp1; 3262 ipaddr_t src; 3263 ire_t *ire; 3264 mblk_t *ipsec_mp; 3265 ipsec_out_t *io = NULL; 3266 boolean_t xmit_if_on = B_FALSE; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPSEC processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 if (io->ipsec_out_xmit_if) 3305 xmit_if_on = B_TRUE; 3306 /* 3307 * Clear out ipsec_out_proc_begin, so we do a fresh 3308 * ire lookup. 3309 */ 3310 io->ipsec_out_proc_begin = B_FALSE; 3311 } 3312 ASSERT(zoneid == io->ipsec_out_zoneid); 3313 ASSERT(zoneid != ALL_ZONES); 3314 } else { 3315 /* 3316 * This is in clear. The icmp message we are building 3317 * here should go out in clear. 3318 * 3319 * Pardon the convolution of it all, but it's easier to 3320 * allocate a "use cleartext" IPSEC_IN message and convert 3321 * it than it is to allocate a new one. 3322 */ 3323 ipsec_in_t *ii; 3324 ASSERT(DB_TYPE(mp) == M_DATA); 3325 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3326 if (ipsec_mp == NULL) { 3327 freemsg(mp); 3328 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3329 return; 3330 } 3331 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3332 3333 /* This is not a secure packet */ 3334 ii->ipsec_in_secure = B_FALSE; 3335 /* 3336 * For trusted extensions using a shared IP address we can 3337 * send using any zoneid. 3338 */ 3339 if (zoneid == ALL_ZONES) 3340 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3341 else 3342 ii->ipsec_in_zoneid = zoneid; 3343 ipsec_mp->b_cont = mp; 3344 ipha = (ipha_t *)mp->b_rptr; 3345 /* 3346 * Convert the IPSEC_IN to IPSEC_OUT. 3347 */ 3348 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3349 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3350 return; 3351 } 3352 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3353 } 3354 3355 /* Remember our eventual destination */ 3356 dst = ipha->ipha_src; 3357 3358 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3359 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3360 if (ire != NULL && 3361 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3362 src = ipha->ipha_dst; 3363 } else if (!xmit_if_on) { 3364 if (ire != NULL) 3365 ire_refrele(ire); 3366 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3367 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3368 ipst); 3369 if (ire == NULL) { 3370 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3371 freemsg(ipsec_mp); 3372 return; 3373 } 3374 src = ire->ire_src_addr; 3375 } else { 3376 ipif_t *ipif = NULL; 3377 ill_t *ill; 3378 /* 3379 * This must be an ICMP error coming from 3380 * ip_mrtun_forward(). The src addr should 3381 * be equal to the IP-addr of the outgoing 3382 * interface. 3383 */ 3384 if (io == NULL) { 3385 /* This is not a IPSEC_OUT type control msg */ 3386 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3387 freemsg(ipsec_mp); 3388 return; 3389 } 3390 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3391 NULL, NULL, NULL, NULL, ipst); 3392 if (ill != NULL) { 3393 ipif = ipif_get_next_ipif(NULL, ill); 3394 ill_refrele(ill); 3395 } 3396 if (ipif == NULL) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 src = ipif->ipif_src_addr; 3402 ipif_refrele(ipif); 3403 } 3404 3405 if (ire != NULL) 3406 ire_refrele(ire); 3407 3408 /* 3409 * Check if we can send back more then 8 bytes in addition 3410 * to the IP header. We will include as much as 64 bytes. 3411 */ 3412 len_needed = IPH_HDR_LENGTH(ipha); 3413 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3414 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3415 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 /* 3430 * On an unlabeled system, dblks don't necessarily have creds. 3431 */ 3432 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3433 if (DB_CRED(mp) != NULL) 3434 mblk_setcred(mp1, DB_CRED(mp)); 3435 mp1->b_cont = mp; 3436 mp = mp1; 3437 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3438 ipsec_mp->b_rptr == (uint8_t *)io && 3439 io->ipsec_out_type == IPSEC_OUT); 3440 ipsec_mp->b_cont = mp; 3441 3442 /* 3443 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3444 * node generates be accepted in peace by all on-host destinations. 3445 * If we do NOT assume that all on-host destinations trust 3446 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3447 * (Look for ipsec_out_icmp_loopback). 3448 */ 3449 io->ipsec_out_icmp_loopback = B_TRUE; 3450 3451 ipha = (ipha_t *)mp->b_rptr; 3452 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3453 *ipha = icmp_ipha; 3454 ipha->ipha_src = src; 3455 ipha->ipha_dst = dst; 3456 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3457 msg_len += sizeof (icmp_ipha) + len; 3458 if (msg_len > IP_MAXPACKET) { 3459 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3460 msg_len = IP_MAXPACKET; 3461 } 3462 ipha->ipha_length = htons((uint16_t)msg_len); 3463 icmph = (icmph_t *)&ipha[1]; 3464 bcopy(stuff, icmph, len); 3465 icmph->icmph_checksum = 0; 3466 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3467 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3468 put(q, ipsec_mp); 3469 } 3470 3471 /* 3472 * Determine if an ICMP error packet can be sent given the rate limit. 3473 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3474 * in milliseconds) and a burst size. Burst size number of packets can 3475 * be sent arbitrarely closely spaced. 3476 * The state is tracked using two variables to implement an approximate 3477 * token bucket filter: 3478 * icmp_pkt_err_last - lbolt value when the last burst started 3479 * icmp_pkt_err_sent - number of packets sent in current burst 3480 */ 3481 boolean_t 3482 icmp_err_rate_limit(ip_stack_t *ipst) 3483 { 3484 clock_t now = TICK_TO_MSEC(lbolt); 3485 uint_t refilled; /* Number of packets refilled in tbf since last */ 3486 /* Guard against changes by loading into local variable */ 3487 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3488 3489 if (err_interval == 0) 3490 return (B_FALSE); 3491 3492 if (ipst->ips_icmp_pkt_err_last > now) { 3493 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3494 ipst->ips_icmp_pkt_err_last = 0; 3495 ipst->ips_icmp_pkt_err_sent = 0; 3496 } 3497 /* 3498 * If we are in a burst update the token bucket filter. 3499 * Update the "last" time to be close to "now" but make sure 3500 * we don't loose precision. 3501 */ 3502 if (ipst->ips_icmp_pkt_err_sent != 0) { 3503 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3504 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3505 ipst->ips_icmp_pkt_err_sent = 0; 3506 } else { 3507 ipst->ips_icmp_pkt_err_sent -= refilled; 3508 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3509 } 3510 } 3511 if (ipst->ips_icmp_pkt_err_sent == 0) { 3512 /* Start of new burst */ 3513 ipst->ips_icmp_pkt_err_last = now; 3514 } 3515 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3516 ipst->ips_icmp_pkt_err_sent++; 3517 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3518 ipst->ips_icmp_pkt_err_sent)); 3519 return (B_FALSE); 3520 } 3521 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3522 return (B_TRUE); 3523 } 3524 3525 /* 3526 * Check if it is ok to send an IPv4 ICMP error packet in 3527 * response to the IPv4 packet in mp. 3528 * Free the message and return null if no 3529 * ICMP error packet should be sent. 3530 */ 3531 static mblk_t * 3532 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3533 { 3534 icmph_t *icmph; 3535 ipha_t *ipha; 3536 uint_t len_needed; 3537 ire_t *src_ire; 3538 ire_t *dst_ire; 3539 3540 if (!mp) 3541 return (NULL); 3542 ipha = (ipha_t *)mp->b_rptr; 3543 if (ip_csum_hdr(ipha)) { 3544 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3545 freemsg(mp); 3546 return (NULL); 3547 } 3548 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3549 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3550 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3551 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3552 if (src_ire != NULL || dst_ire != NULL || 3553 CLASSD(ipha->ipha_dst) || 3554 CLASSD(ipha->ipha_src) || 3555 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3556 /* Note: only errors to the fragment with offset 0 */ 3557 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3558 freemsg(mp); 3559 if (src_ire != NULL) 3560 ire_refrele(src_ire); 3561 if (dst_ire != NULL) 3562 ire_refrele(dst_ire); 3563 return (NULL); 3564 } 3565 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3566 /* 3567 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3568 * errors in response to any ICMP errors. 3569 */ 3570 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3571 if (mp->b_wptr - mp->b_rptr < len_needed) { 3572 if (!pullupmsg(mp, len_needed)) { 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3574 freemsg(mp); 3575 return (NULL); 3576 } 3577 ipha = (ipha_t *)mp->b_rptr; 3578 } 3579 icmph = (icmph_t *) 3580 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3581 switch (icmph->icmph_type) { 3582 case ICMP_DEST_UNREACHABLE: 3583 case ICMP_SOURCE_QUENCH: 3584 case ICMP_TIME_EXCEEDED: 3585 case ICMP_PARAM_PROBLEM: 3586 case ICMP_REDIRECT: 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3588 freemsg(mp); 3589 return (NULL); 3590 default: 3591 break; 3592 } 3593 } 3594 /* 3595 * If this is a labeled system, then check to see if we're allowed to 3596 * send a response to this particular sender. If not, then just drop. 3597 */ 3598 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3599 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 if (icmp_err_rate_limit(ipst)) { 3605 /* 3606 * Only send ICMP error packets every so often. 3607 * This should be done on a per port/source basis, 3608 * but for now this will suffice. 3609 */ 3610 freemsg(mp); 3611 return (NULL); 3612 } 3613 return (mp); 3614 } 3615 3616 /* 3617 * Generate an ICMP redirect message. 3618 */ 3619 static void 3620 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3621 { 3622 icmph_t icmph; 3623 3624 /* 3625 * We are called from ip_rput where we could 3626 * not have attached an IPSEC_IN. 3627 */ 3628 ASSERT(mp->b_datap->db_type == M_DATA); 3629 3630 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3631 return; 3632 } 3633 3634 bzero(&icmph, sizeof (icmph_t)); 3635 icmph.icmph_type = ICMP_REDIRECT; 3636 icmph.icmph_code = 1; 3637 icmph.icmph_rd_gateway = gateway; 3638 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3639 /* Redirects sent by router, and router is global zone */ 3640 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3641 } 3642 3643 /* 3644 * Generate an ICMP time exceeded message. 3645 */ 3646 void 3647 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3648 ip_stack_t *ipst) 3649 { 3650 icmph_t icmph; 3651 boolean_t mctl_present; 3652 mblk_t *first_mp; 3653 3654 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3655 3656 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3657 if (mctl_present) 3658 freeb(first_mp); 3659 return; 3660 } 3661 3662 bzero(&icmph, sizeof (icmph_t)); 3663 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3664 icmph.icmph_code = code; 3665 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3666 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3667 ipst); 3668 } 3669 3670 /* 3671 * Generate an ICMP unreachable message. 3672 */ 3673 void 3674 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3675 ip_stack_t *ipst) 3676 { 3677 icmph_t icmph; 3678 mblk_t *first_mp; 3679 boolean_t mctl_present; 3680 3681 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3682 3683 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3684 if (mctl_present) 3685 freeb(first_mp); 3686 return; 3687 } 3688 3689 bzero(&icmph, sizeof (icmph_t)); 3690 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3691 icmph.icmph_code = code; 3692 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3693 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3694 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3695 zoneid, ipst); 3696 } 3697 3698 /* 3699 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3700 * duplicate. As long as someone else holds the address, the interface will 3701 * stay down. When that conflict goes away, the interface is brought back up. 3702 * This is done so that accidental shutdowns of addresses aren't made 3703 * permanent. Your server will recover from a failure. 3704 * 3705 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3706 * user space process (dhcpagent). 3707 * 3708 * Recovery completes if ARP reports that the address is now ours (via 3709 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3710 * 3711 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3712 */ 3713 static void 3714 ipif_dup_recovery(void *arg) 3715 { 3716 ipif_t *ipif = arg; 3717 ill_t *ill = ipif->ipif_ill; 3718 mblk_t *arp_add_mp; 3719 mblk_t *arp_del_mp; 3720 area_t *area; 3721 ip_stack_t *ipst = ill->ill_ipst; 3722 3723 ipif->ipif_recovery_id = 0; 3724 3725 /* 3726 * No lock needed for moving or condemned check, as this is just an 3727 * optimization. 3728 */ 3729 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3730 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3731 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3732 /* No reason to try to bring this address back. */ 3733 return; 3734 } 3735 3736 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3737 goto alloc_fail; 3738 3739 if (ipif->ipif_arp_del_mp == NULL) { 3740 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3741 goto alloc_fail; 3742 ipif->ipif_arp_del_mp = arp_del_mp; 3743 } 3744 3745 /* Setting the 'unverified' flag restarts DAD */ 3746 area = (area_t *)arp_add_mp->b_rptr; 3747 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3748 ACE_F_UNVERIFIED; 3749 putnext(ill->ill_rq, arp_add_mp); 3750 return; 3751 3752 alloc_fail: 3753 /* 3754 * On allocation failure, just restart the timer. Note that the ipif 3755 * is down here, so no other thread could be trying to start a recovery 3756 * timer. The ill_lock protects the condemned flag and the recovery 3757 * timer ID. 3758 */ 3759 freemsg(arp_add_mp); 3760 mutex_enter(&ill->ill_lock); 3761 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3762 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3763 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3764 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3765 } 3766 mutex_exit(&ill->ill_lock); 3767 } 3768 3769 /* 3770 * This is for exclusive changes due to ARP. Either tear down an interface due 3771 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3772 */ 3773 /* ARGSUSED */ 3774 static void 3775 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3776 { 3777 ill_t *ill = rq->q_ptr; 3778 arh_t *arh; 3779 ipaddr_t src; 3780 ipif_t *ipif; 3781 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3782 char hbuf[MAC_STR_LEN]; 3783 char sbuf[INET_ADDRSTRLEN]; 3784 const char *failtype; 3785 boolean_t bring_up; 3786 ip_stack_t *ipst = ill->ill_ipst; 3787 3788 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3789 case AR_CN_READY: 3790 failtype = NULL; 3791 bring_up = B_TRUE; 3792 break; 3793 case AR_CN_FAILED: 3794 failtype = "in use"; 3795 bring_up = B_FALSE; 3796 break; 3797 default: 3798 failtype = "claimed"; 3799 bring_up = B_FALSE; 3800 break; 3801 } 3802 3803 arh = (arh_t *)mp->b_cont->b_rptr; 3804 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3805 3806 /* Handle failures due to probes */ 3807 if (src == 0) { 3808 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3809 IP_ADDR_LEN); 3810 } 3811 3812 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3813 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3814 sizeof (hbuf)); 3815 (void) ip_dot_addr(src, sbuf); 3816 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3817 3818 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3819 ipif->ipif_lcl_addr != src) { 3820 continue; 3821 } 3822 3823 /* 3824 * If we failed on a recovery probe, then restart the timer to 3825 * try again later. 3826 */ 3827 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3828 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3829 ill->ill_net_type == IRE_IF_RESOLVER && 3830 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3831 ipst->ips_ip_dup_recovery > 0 && 3832 ipif->ipif_recovery_id == 0) { 3833 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3834 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3835 continue; 3836 } 3837 3838 /* 3839 * If what we're trying to do has already been done, then do 3840 * nothing. 3841 */ 3842 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3843 continue; 3844 3845 if (ipif->ipif_id != 0) { 3846 (void) snprintf(ibuf + ill->ill_name_length - 1, 3847 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3848 ipif->ipif_id); 3849 } 3850 if (failtype == NULL) { 3851 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3852 ibuf); 3853 } else { 3854 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3855 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3856 } 3857 3858 if (bring_up) { 3859 ASSERT(ill->ill_dl_up); 3860 /* 3861 * Free up the ARP delete message so we can allocate 3862 * a fresh one through the normal path. 3863 */ 3864 freemsg(ipif->ipif_arp_del_mp); 3865 ipif->ipif_arp_del_mp = NULL; 3866 if (ipif_resolver_up(ipif, Res_act_initial) != 3867 EINPROGRESS) { 3868 ipif->ipif_addr_ready = 1; 3869 (void) ipif_up_done(ipif); 3870 } 3871 continue; 3872 } 3873 3874 mutex_enter(&ill->ill_lock); 3875 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3876 ipif->ipif_flags |= IPIF_DUPLICATE; 3877 ill->ill_ipif_dup_count++; 3878 mutex_exit(&ill->ill_lock); 3879 /* 3880 * Already exclusive on the ill; no need to handle deferred 3881 * processing here. 3882 */ 3883 (void) ipif_down(ipif, NULL, NULL); 3884 ipif_down_tail(ipif); 3885 mutex_enter(&ill->ill_lock); 3886 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3887 ill->ill_net_type == IRE_IF_RESOLVER && 3888 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3889 ipst->ips_ip_dup_recovery > 0) { 3890 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3891 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3892 } 3893 mutex_exit(&ill->ill_lock); 3894 } 3895 freemsg(mp); 3896 } 3897 3898 /* ARGSUSED */ 3899 static void 3900 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3901 { 3902 ill_t *ill = rq->q_ptr; 3903 arh_t *arh; 3904 ipaddr_t src; 3905 ipif_t *ipif; 3906 3907 arh = (arh_t *)mp->b_cont->b_rptr; 3908 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3909 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3910 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3911 (void) ipif_resolver_up(ipif, Res_act_defend); 3912 } 3913 freemsg(mp); 3914 } 3915 3916 /* 3917 * News from ARP. ARP sends notification of interesting events down 3918 * to its clients using M_CTL messages with the interesting ARP packet 3919 * attached via b_cont. 3920 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3921 * queue as opposed to ARP sending the message to all the clients, i.e. all 3922 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3923 * table if a cache IRE is found to delete all the entries for the address in 3924 * the packet. 3925 */ 3926 static void 3927 ip_arp_news(queue_t *q, mblk_t *mp) 3928 { 3929 arcn_t *arcn; 3930 arh_t *arh; 3931 ire_t *ire = NULL; 3932 char hbuf[MAC_STR_LEN]; 3933 char sbuf[INET_ADDRSTRLEN]; 3934 ipaddr_t src; 3935 in6_addr_t v6src; 3936 boolean_t isv6 = B_FALSE; 3937 ipif_t *ipif; 3938 ill_t *ill; 3939 ip_stack_t *ipst; 3940 3941 if (CONN_Q(q)) { 3942 conn_t *connp = Q_TO_CONN(q); 3943 3944 ipst = connp->conn_netstack->netstack_ip; 3945 } else { 3946 ill_t *ill = (ill_t *)q->q_ptr; 3947 3948 ipst = ill->ill_ipst; 3949 } 3950 3951 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3952 if (q->q_next) { 3953 putnext(q, mp); 3954 } else 3955 freemsg(mp); 3956 return; 3957 } 3958 arh = (arh_t *)mp->b_cont->b_rptr; 3959 /* Is it one we are interested in? */ 3960 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3961 isv6 = B_TRUE; 3962 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3963 IPV6_ADDR_LEN); 3964 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3965 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3966 IP_ADDR_LEN); 3967 } else { 3968 freemsg(mp); 3969 return; 3970 } 3971 3972 ill = q->q_ptr; 3973 3974 arcn = (arcn_t *)mp->b_rptr; 3975 switch (arcn->arcn_code) { 3976 case AR_CN_BOGON: 3977 /* 3978 * Someone is sending ARP packets with a source protocol 3979 * address that we have published and for which we believe our 3980 * entry is authoritative and (when ill_arp_extend is set) 3981 * verified to be unique on the network. 3982 * 3983 * The ARP module internally handles the cases where the sender 3984 * is just probing (for DAD) and where the hardware address of 3985 * a non-authoritative entry has changed. Thus, these are the 3986 * real conflicts, and we have to do resolution. 3987 * 3988 * We back away quickly from the address if it's from DHCP or 3989 * otherwise temporary and hasn't been used recently (or at 3990 * all). We'd like to include "deprecated" addresses here as 3991 * well (as there's no real reason to defend something we're 3992 * discarding), but IPMP "reuses" this flag to mean something 3993 * other than the standard meaning. 3994 * 3995 * If the ARP module above is not extended (meaning that it 3996 * doesn't know how to defend the address), then we just log 3997 * the problem as we always did and continue on. It's not 3998 * right, but there's little else we can do, and those old ATM 3999 * users are going away anyway. 4000 */ 4001 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4002 hbuf, sizeof (hbuf)); 4003 (void) ip_dot_addr(src, sbuf); 4004 if (isv6) { 4005 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4006 ipst); 4007 } else { 4008 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4009 } 4010 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4011 uint32_t now; 4012 uint32_t maxage; 4013 clock_t lused; 4014 uint_t maxdefense; 4015 uint_t defs; 4016 4017 /* 4018 * First, figure out if this address hasn't been used 4019 * in a while. If it hasn't, then it's a better 4020 * candidate for abandoning. 4021 */ 4022 ipif = ire->ire_ipif; 4023 ASSERT(ipif != NULL); 4024 now = gethrestime_sec(); 4025 maxage = now - ire->ire_create_time; 4026 if (maxage > ipst->ips_ip_max_temp_idle) 4027 maxage = ipst->ips_ip_max_temp_idle; 4028 lused = drv_hztousec(ddi_get_lbolt() - 4029 ire->ire_last_used_time) / MICROSEC + 1; 4030 if (lused >= maxage && (ipif->ipif_flags & 4031 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4032 maxdefense = ipst->ips_ip_max_temp_defend; 4033 else 4034 maxdefense = ipst->ips_ip_max_defend; 4035 4036 /* 4037 * Now figure out how many times we've defended 4038 * ourselves. Ignore defenses that happened long in 4039 * the past. 4040 */ 4041 mutex_enter(&ire->ire_lock); 4042 if ((defs = ire->ire_defense_count) > 0 && 4043 now - ire->ire_defense_time > 4044 ipst->ips_ip_defend_interval) { 4045 ire->ire_defense_count = defs = 0; 4046 } 4047 ire->ire_defense_count++; 4048 ire->ire_defense_time = now; 4049 mutex_exit(&ire->ire_lock); 4050 ill_refhold(ill); 4051 ire_refrele(ire); 4052 4053 /* 4054 * If we've defended ourselves too many times already, 4055 * then give up and tear down the interface(s) using 4056 * this address. Otherwise, defend by sending out a 4057 * gratuitous ARP. 4058 */ 4059 if (defs >= maxdefense && ill->ill_arp_extend) { 4060 (void) qwriter_ip(NULL, ill, q, mp, 4061 ip_arp_excl, CUR_OP, B_FALSE); 4062 } else { 4063 cmn_err(CE_WARN, 4064 "node %s is using our IP address %s on %s", 4065 hbuf, sbuf, ill->ill_name); 4066 /* 4067 * If this is an old (ATM) ARP module, then 4068 * don't try to defend the address. Remain 4069 * compatible with the old behavior. Defend 4070 * only with new ARP. 4071 */ 4072 if (ill->ill_arp_extend) { 4073 (void) qwriter_ip(NULL, ill, q, mp, 4074 ip_arp_defend, CUR_OP, B_FALSE); 4075 } else { 4076 ill_refrele(ill); 4077 } 4078 } 4079 return; 4080 } 4081 cmn_err(CE_WARN, 4082 "proxy ARP problem? Node '%s' is using %s on %s", 4083 hbuf, sbuf, ill->ill_name); 4084 if (ire != NULL) 4085 ire_refrele(ire); 4086 break; 4087 case AR_CN_ANNOUNCE: 4088 if (isv6) { 4089 /* 4090 * For XRESOLV interfaces. 4091 * Delete the IRE cache entry and NCE for this 4092 * v6 address 4093 */ 4094 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4095 /* 4096 * If v6src is a non-zero, it's a router address 4097 * as below. Do the same sort of thing to clean 4098 * out off-net IRE_CACHE entries that go through 4099 * the router. 4100 */ 4101 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4102 ire_walk_v6(ire_delete_cache_gw_v6, 4103 (char *)&v6src, ALL_ZONES, ipst); 4104 } 4105 } else { 4106 nce_hw_map_t hwm; 4107 4108 /* 4109 * ARP gives us a copy of any packet where it thinks 4110 * the address has changed, so that we can update our 4111 * caches. We're responsible for caching known answers 4112 * in the current design. We check whether the 4113 * hardware address really has changed in all of our 4114 * entries that have cached this mapping, and if so, we 4115 * blow them away. This way we will immediately pick 4116 * up the rare case of a host changing hardware 4117 * address. 4118 */ 4119 if (src == 0) 4120 break; 4121 hwm.hwm_addr = src; 4122 hwm.hwm_hwlen = arh->arh_hlen; 4123 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4124 ndp_walk_common(ipst->ips_ndp4, NULL, 4125 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4126 } 4127 break; 4128 case AR_CN_READY: 4129 /* No external v6 resolver has a contract to use this */ 4130 if (isv6) 4131 break; 4132 /* If the link is down, we'll retry this later */ 4133 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4134 break; 4135 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4136 NULL, NULL, ipst); 4137 if (ipif != NULL) { 4138 /* 4139 * If this is a duplicate recovery, then we now need to 4140 * go exclusive to bring this thing back up. 4141 */ 4142 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4143 IPIF_DUPLICATE) { 4144 ipif_refrele(ipif); 4145 ill_refhold(ill); 4146 (void) qwriter_ip(NULL, ill, q, mp, 4147 ip_arp_excl, CUR_OP, B_FALSE); 4148 return; 4149 } 4150 /* 4151 * If this is the first notice that this address is 4152 * ready, then let the user know now. 4153 */ 4154 if ((ipif->ipif_flags & IPIF_UP) && 4155 !ipif->ipif_addr_ready) { 4156 ipif_mask_reply(ipif); 4157 ip_rts_ifmsg(ipif); 4158 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4159 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4160 } 4161 ipif->ipif_addr_ready = 1; 4162 ipif_refrele(ipif); 4163 } 4164 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4165 if (ire != NULL) { 4166 ire->ire_defense_count = 0; 4167 ire_refrele(ire); 4168 } 4169 break; 4170 case AR_CN_FAILED: 4171 /* No external v6 resolver has a contract to use this */ 4172 if (isv6) 4173 break; 4174 ill_refhold(ill); 4175 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4176 B_FALSE); 4177 return; 4178 } 4179 freemsg(mp); 4180 } 4181 4182 /* 4183 * Create a mblk suitable for carrying the interface index and/or source link 4184 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4185 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4186 * application. 4187 */ 4188 mblk_t * 4189 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4190 ip_stack_t *ipst) 4191 { 4192 mblk_t *mp; 4193 ip_pktinfo_t *pinfo; 4194 ipha_t *ipha; 4195 struct ether_header *pether; 4196 4197 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4198 if (mp == NULL) { 4199 ip1dbg(("ip_add_info: allocation failure.\n")); 4200 return (data_mp); 4201 } 4202 4203 ipha = (ipha_t *)data_mp->b_rptr; 4204 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4205 bzero(pinfo, sizeof (ip_pktinfo_t)); 4206 pinfo->ip_pkt_flags = (uchar_t)flags; 4207 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4208 4209 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4210 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4211 if (flags & IPF_RECVADDR) { 4212 ipif_t *ipif; 4213 ire_t *ire; 4214 4215 /* 4216 * Only valid for V4 4217 */ 4218 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4219 (IPV4_VERSION << 4)); 4220 4221 ipif = ipif_get_next_ipif(NULL, ill); 4222 if (ipif != NULL) { 4223 /* 4224 * Since a decision has already been made to deliver the 4225 * packet, there is no need to test for SECATTR and 4226 * ZONEONLY. 4227 */ 4228 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4229 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4230 if (ire == NULL) { 4231 /* 4232 * packet must have come on a different 4233 * interface. 4234 * Since a decision has already been made to 4235 * deliver the packet, there is no need to test 4236 * for SECATTR and ZONEONLY. 4237 */ 4238 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4239 ipif, zoneid, NULL, NULL, ipst); 4240 } 4241 4242 if (ire == NULL) { 4243 /* 4244 * This is either a multicast packet or 4245 * the address has been removed since 4246 * the packet was received. 4247 * Return INADDR_ANY so that normal source 4248 * selection occurs for the response. 4249 */ 4250 4251 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4252 } else { 4253 ASSERT(ire->ire_type != IRE_CACHE); 4254 pinfo->ip_pkt_match_addr.s_addr = 4255 ire->ire_src_addr; 4256 ire_refrele(ire); 4257 } 4258 ipif_refrele(ipif); 4259 } else { 4260 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4261 } 4262 } 4263 4264 pether = (struct ether_header *)((char *)ipha 4265 - sizeof (struct ether_header)); 4266 /* 4267 * Make sure the interface is an ethernet type, since this option 4268 * is currently supported only on this type of interface. Also make 4269 * sure we are pointing correctly above db_base. 4270 */ 4271 4272 if ((flags & IPF_RECVSLLA) && 4273 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4274 (ill->ill_type == IFT_ETHER) && 4275 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4276 4277 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4278 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4279 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4280 } else { 4281 /* 4282 * Clear the bit. Indicate to upper layer that IP is not 4283 * sending this ancillary info. 4284 */ 4285 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4286 } 4287 4288 mp->b_datap->db_type = M_CTL; 4289 mp->b_wptr += sizeof (ip_pktinfo_t); 4290 mp->b_cont = data_mp; 4291 4292 return (mp); 4293 } 4294 4295 /* 4296 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4297 * part of the bind request. 4298 */ 4299 4300 boolean_t 4301 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4302 { 4303 ipsec_in_t *ii; 4304 4305 ASSERT(policy_mp != NULL); 4306 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4307 4308 ii = (ipsec_in_t *)policy_mp->b_rptr; 4309 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4310 4311 connp->conn_policy = ii->ipsec_in_policy; 4312 ii->ipsec_in_policy = NULL; 4313 4314 if (ii->ipsec_in_action != NULL) { 4315 if (connp->conn_latch == NULL) { 4316 connp->conn_latch = iplatch_create(); 4317 if (connp->conn_latch == NULL) 4318 return (B_FALSE); 4319 } 4320 ipsec_latch_inbound(connp->conn_latch, ii); 4321 } 4322 return (B_TRUE); 4323 } 4324 4325 /* 4326 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4327 * and to arrange for power-fanout assist. The ULP is identified by 4328 * adding a single byte at the end of the original bind message. 4329 * A ULP other than UDP or TCP that wishes to be recognized passes 4330 * down a bind with a zero length address. 4331 * 4332 * The binding works as follows: 4333 * - A zero byte address means just bind to the protocol. 4334 * - A four byte address is treated as a request to validate 4335 * that the address is a valid local address, appropriate for 4336 * an application to bind to. This does not affect any fanout 4337 * information in IP. 4338 * - A sizeof sin_t byte address is used to bind to only the local address 4339 * and port. 4340 * - A sizeof ipa_conn_t byte address contains complete fanout information 4341 * consisting of local and remote addresses and ports. In 4342 * this case, the addresses are both validated as appropriate 4343 * for this operation, and, if so, the information is retained 4344 * for use in the inbound fanout. 4345 * 4346 * The ULP (except in the zero-length bind) can append an 4347 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4348 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4349 * a copy of the source or destination IRE (source for local bind; 4350 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4351 * policy information contained should be copied on to the conn. 4352 * 4353 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4354 */ 4355 mblk_t * 4356 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4357 { 4358 ssize_t len; 4359 struct T_bind_req *tbr; 4360 sin_t *sin; 4361 ipa_conn_t *ac; 4362 uchar_t *ucp; 4363 mblk_t *mp1; 4364 boolean_t ire_requested; 4365 boolean_t ipsec_policy_set = B_FALSE; 4366 int error = 0; 4367 int protocol; 4368 ipa_conn_x_t *acx; 4369 4370 ASSERT(!connp->conn_af_isv6); 4371 connp->conn_pkt_isv6 = B_FALSE; 4372 4373 len = MBLKL(mp); 4374 if (len < (sizeof (*tbr) + 1)) { 4375 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4376 "ip_bind: bogus msg, len %ld", len); 4377 /* XXX: Need to return something better */ 4378 goto bad_addr; 4379 } 4380 /* Back up and extract the protocol identifier. */ 4381 mp->b_wptr--; 4382 protocol = *mp->b_wptr & 0xFF; 4383 tbr = (struct T_bind_req *)mp->b_rptr; 4384 /* Reset the message type in preparation for shipping it back. */ 4385 DB_TYPE(mp) = M_PCPROTO; 4386 4387 connp->conn_ulp = (uint8_t)protocol; 4388 4389 /* 4390 * Check for a zero length address. This is from a protocol that 4391 * wants to register to receive all packets of its type. 4392 */ 4393 if (tbr->ADDR_length == 0) { 4394 /* 4395 * These protocols are now intercepted in ip_bind_v6(). 4396 * Reject protocol-level binds here for now. 4397 * 4398 * For SCTP raw socket, ICMP sends down a bind with sin_t 4399 * so that the protocol type cannot be SCTP. 4400 */ 4401 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4402 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4403 goto bad_addr; 4404 } 4405 4406 /* 4407 * 4408 * The udp module never sends down a zero-length address, 4409 * and allowing this on a labeled system will break MLP 4410 * functionality. 4411 */ 4412 if (is_system_labeled() && protocol == IPPROTO_UDP) 4413 goto bad_addr; 4414 4415 if (connp->conn_mac_exempt) 4416 goto bad_addr; 4417 4418 /* No hash here really. The table is big enough. */ 4419 connp->conn_srcv6 = ipv6_all_zeros; 4420 4421 ipcl_proto_insert(connp, protocol); 4422 4423 tbr->PRIM_type = T_BIND_ACK; 4424 return (mp); 4425 } 4426 4427 /* Extract the address pointer from the message. */ 4428 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4429 tbr->ADDR_length); 4430 if (ucp == NULL) { 4431 ip1dbg(("ip_bind: no address\n")); 4432 goto bad_addr; 4433 } 4434 if (!OK_32PTR(ucp)) { 4435 ip1dbg(("ip_bind: unaligned address\n")); 4436 goto bad_addr; 4437 } 4438 /* 4439 * Check for trailing mps. 4440 */ 4441 4442 mp1 = mp->b_cont; 4443 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4444 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4445 4446 switch (tbr->ADDR_length) { 4447 default: 4448 ip1dbg(("ip_bind: bad address length %d\n", 4449 (int)tbr->ADDR_length)); 4450 goto bad_addr; 4451 4452 case IP_ADDR_LEN: 4453 /* Verification of local address only */ 4454 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4455 ire_requested, ipsec_policy_set, B_FALSE); 4456 break; 4457 4458 case sizeof (sin_t): 4459 sin = (sin_t *)ucp; 4460 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4461 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_t): 4465 ac = (ipa_conn_t *)ucp; 4466 /* For raw socket, the local port is not set. */ 4467 if (ac->ac_lport == 0) 4468 ac->ac_lport = connp->conn_lport; 4469 /* Always verify destination reachability. */ 4470 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4471 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4472 ipsec_policy_set, B_TRUE, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_x_t): 4476 acx = (ipa_conn_x_t *)ucp; 4477 /* 4478 * Whether or not to verify destination reachability depends 4479 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4480 */ 4481 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4482 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4483 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4484 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4485 break; 4486 } 4487 if (error == EINPROGRESS) 4488 return (NULL); 4489 else if (error != 0) 4490 goto bad_addr; 4491 /* 4492 * Pass the IPSEC headers size in ire_ipsec_overhead. 4493 * We can't do this in ip_bind_insert_ire because the policy 4494 * may not have been inherited at that point in time and hence 4495 * conn_out_enforce_policy may not be set. 4496 */ 4497 mp1 = mp->b_cont; 4498 if (ire_requested && connp->conn_out_enforce_policy && 4499 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4500 ire_t *ire = (ire_t *)mp1->b_rptr; 4501 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4502 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4503 } 4504 4505 /* Send it home. */ 4506 mp->b_datap->db_type = M_PCPROTO; 4507 tbr->PRIM_type = T_BIND_ACK; 4508 return (mp); 4509 4510 bad_addr: 4511 /* 4512 * If error = -1 then we generate a TBADADDR - otherwise error is 4513 * a unix errno. 4514 */ 4515 if (error > 0) 4516 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4517 else 4518 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4519 return (mp); 4520 } 4521 4522 /* 4523 * Here address is verified to be a valid local address. 4524 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4525 * address is also considered a valid local address. 4526 * In the case of a broadcast/multicast address, however, the 4527 * upper protocol is expected to reset the src address 4528 * to 0 if it sees a IRE_BROADCAST type returned so that 4529 * no packets are emitted with broadcast/multicast address as 4530 * source address (that violates hosts requirements RFC1122) 4531 * The addresses valid for bind are: 4532 * (1) - INADDR_ANY (0) 4533 * (2) - IP address of an UP interface 4534 * (3) - IP address of a DOWN interface 4535 * (4) - valid local IP broadcast addresses. In this case 4536 * the conn will only receive packets destined to 4537 * the specified broadcast address. 4538 * (5) - a multicast address. In this case 4539 * the conn will only receive packets destined to 4540 * the specified multicast address. Note: the 4541 * application still has to issue an 4542 * IP_ADD_MEMBERSHIP socket option. 4543 * 4544 * On error, return -1 for TBADADDR otherwise pass the 4545 * errno with TSYSERR reply. 4546 * 4547 * In all the above cases, the bound address must be valid in the current zone. 4548 * When the address is loopback, multicast or broadcast, there might be many 4549 * matching IREs so bind has to look up based on the zone. 4550 * 4551 * Note: lport is in network byte order. 4552 */ 4553 int 4554 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4555 boolean_t ire_requested, boolean_t ipsec_policy_set, 4556 boolean_t fanout_insert) 4557 { 4558 int error = 0; 4559 ire_t *src_ire; 4560 mblk_t *policy_mp; 4561 ipif_t *ipif; 4562 zoneid_t zoneid; 4563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4564 4565 if (ipsec_policy_set) { 4566 policy_mp = mp->b_cont; 4567 } 4568 4569 /* 4570 * If it was previously connected, conn_fully_bound would have 4571 * been set. 4572 */ 4573 connp->conn_fully_bound = B_FALSE; 4574 4575 src_ire = NULL; 4576 ipif = NULL; 4577 4578 zoneid = IPCL_ZONEID(connp); 4579 4580 if (src_addr) { 4581 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4582 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4583 /* 4584 * If an address other than 0.0.0.0 is requested, 4585 * we verify that it is a valid address for bind 4586 * Note: Following code is in if-else-if form for 4587 * readability compared to a condition check. 4588 */ 4589 /* LINTED - statement has no consequent */ 4590 if (IRE_IS_LOCAL(src_ire)) { 4591 /* 4592 * (2) Bind to address of local UP interface 4593 */ 4594 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4595 /* 4596 * (4) Bind to broadcast address 4597 * Note: permitted only from transports that 4598 * request IRE 4599 */ 4600 if (!ire_requested) 4601 error = EADDRNOTAVAIL; 4602 } else { 4603 /* 4604 * (3) Bind to address of local DOWN interface 4605 * (ipif_lookup_addr() looks up all interfaces 4606 * but we do not get here for UP interfaces 4607 * - case (2) above) 4608 * We put the protocol byte back into the mblk 4609 * since we may come back via ip_wput_nondata() 4610 * later with this mblk if ipif_lookup_addr chooses 4611 * to defer processing. 4612 */ 4613 *mp->b_wptr++ = (char)connp->conn_ulp; 4614 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4615 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4616 &error, ipst)) != NULL) { 4617 ipif_refrele(ipif); 4618 } else if (error == EINPROGRESS) { 4619 if (src_ire != NULL) 4620 ire_refrele(src_ire); 4621 return (EINPROGRESS); 4622 } else if (CLASSD(src_addr)) { 4623 error = 0; 4624 if (src_ire != NULL) 4625 ire_refrele(src_ire); 4626 /* 4627 * (5) bind to multicast address. 4628 * Fake out the IRE returned to upper 4629 * layer to be a broadcast IRE. 4630 */ 4631 src_ire = ire_ctable_lookup( 4632 INADDR_BROADCAST, INADDR_ANY, 4633 IRE_BROADCAST, NULL, zoneid, NULL, 4634 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4635 ipst); 4636 if (src_ire == NULL || !ire_requested) 4637 error = EADDRNOTAVAIL; 4638 } else { 4639 /* 4640 * Not a valid address for bind 4641 */ 4642 error = EADDRNOTAVAIL; 4643 } 4644 /* 4645 * Just to keep it consistent with the processing in 4646 * ip_bind_v4() 4647 */ 4648 mp->b_wptr--; 4649 } 4650 if (error) { 4651 /* Red Alert! Attempting to be a bogon! */ 4652 ip1dbg(("ip_bind: bad src address 0x%x\n", 4653 ntohl(src_addr))); 4654 goto bad_addr; 4655 } 4656 } 4657 4658 /* 4659 * Allow setting new policies. For example, disconnects come 4660 * down as ipa_t bind. As we would have set conn_policy_cached 4661 * to B_TRUE before, we should set it to B_FALSE, so that policy 4662 * can change after the disconnect. 4663 */ 4664 connp->conn_policy_cached = B_FALSE; 4665 4666 /* 4667 * If not fanout_insert this was just an address verification 4668 */ 4669 if (fanout_insert) { 4670 /* 4671 * The addresses have been verified. Time to insert in 4672 * the correct fanout list. 4673 */ 4674 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4675 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4676 connp->conn_lport = lport; 4677 connp->conn_fport = 0; 4678 /* 4679 * Do we need to add a check to reject Multicast packets 4680 * 4681 * We need to make sure that the conn_recv is set to a non-null 4682 * value before we insert the conn into the classifier table. 4683 * This is to avoid a race with an incoming packet which does an 4684 * ipcl_classify(). 4685 */ 4686 if (*mp->b_wptr == IPPROTO_TCP) 4687 connp->conn_recv = tcp_conn_request; 4688 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4689 } 4690 4691 if (error == 0) { 4692 if (ire_requested) { 4693 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4694 error = -1; 4695 /* Falls through to bad_addr */ 4696 } 4697 } else if (ipsec_policy_set) { 4698 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4699 error = -1; 4700 /* Falls through to bad_addr */ 4701 } 4702 } 4703 } else if (connp->conn_ulp == IPPROTO_TCP) { 4704 connp->conn_recv = tcp_input; 4705 } 4706 bad_addr: 4707 if (error != 0) { 4708 if (connp->conn_anon_port) { 4709 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4710 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4711 B_FALSE); 4712 } 4713 connp->conn_mlp_type = mlptSingle; 4714 } 4715 if (src_ire != NULL) 4716 IRE_REFRELE(src_ire); 4717 if (ipsec_policy_set) { 4718 ASSERT(policy_mp == mp->b_cont); 4719 ASSERT(policy_mp != NULL); 4720 freeb(policy_mp); 4721 /* 4722 * As of now assume that nothing else accompanies 4723 * IPSEC_POLICY_SET. 4724 */ 4725 mp->b_cont = NULL; 4726 } 4727 return (error); 4728 } 4729 4730 /* 4731 * Verify that both the source and destination addresses 4732 * are valid. If verify_dst is false, then the destination address may be 4733 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4734 * destination reachability, while tunnels do not. 4735 * Note that we allow connect to broadcast and multicast 4736 * addresses when ire_requested is set. Thus the ULP 4737 * has to check for IRE_BROADCAST and multicast. 4738 * 4739 * Returns zero if ok. 4740 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4741 * (for use with TSYSERR reply). 4742 * 4743 * Note: lport and fport are in network byte order. 4744 */ 4745 int 4746 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4747 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4748 boolean_t ire_requested, boolean_t ipsec_policy_set, 4749 boolean_t fanout_insert, boolean_t verify_dst) 4750 { 4751 ire_t *src_ire; 4752 ire_t *dst_ire; 4753 int error = 0; 4754 int protocol; 4755 mblk_t *policy_mp; 4756 ire_t *sire = NULL; 4757 ire_t *md_dst_ire = NULL; 4758 ire_t *lso_dst_ire = NULL; 4759 ill_t *ill = NULL; 4760 zoneid_t zoneid; 4761 ipaddr_t src_addr = *src_addrp; 4762 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4763 4764 src_ire = dst_ire = NULL; 4765 protocol = *mp->b_wptr & 0xFF; 4766 4767 /* 4768 * If we never got a disconnect before, clear it now. 4769 */ 4770 connp->conn_fully_bound = B_FALSE; 4771 4772 if (ipsec_policy_set) { 4773 policy_mp = mp->b_cont; 4774 } 4775 4776 zoneid = IPCL_ZONEID(connp); 4777 4778 if (CLASSD(dst_addr)) { 4779 /* Pick up an IRE_BROADCAST */ 4780 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4781 NULL, zoneid, MBLK_GETLABEL(mp), 4782 (MATCH_IRE_RECURSIVE | 4783 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4784 MATCH_IRE_SECATTR), ipst); 4785 } else { 4786 /* 4787 * If conn_dontroute is set or if conn_nexthop_set is set, 4788 * and onlink ipif is not found set ENETUNREACH error. 4789 */ 4790 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4791 ipif_t *ipif; 4792 4793 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4794 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4795 if (ipif == NULL) { 4796 error = ENETUNREACH; 4797 goto bad_addr; 4798 } 4799 ipif_refrele(ipif); 4800 } 4801 4802 if (connp->conn_nexthop_set) { 4803 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4804 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4805 MATCH_IRE_SECATTR, ipst); 4806 } else { 4807 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4808 &sire, zoneid, MBLK_GETLABEL(mp), 4809 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4810 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4811 MATCH_IRE_SECATTR), ipst); 4812 } 4813 } 4814 /* 4815 * dst_ire can't be a broadcast when not ire_requested. 4816 * We also prevent ire's with src address INADDR_ANY to 4817 * be used, which are created temporarily for 4818 * sending out packets from endpoints that have 4819 * conn_unspec_src set. If verify_dst is true, the destination must be 4820 * reachable. If verify_dst is false, the destination needn't be 4821 * reachable. 4822 * 4823 * If we match on a reject or black hole, then we've got a 4824 * local failure. May as well fail out the connect() attempt, 4825 * since it's never going to succeed. 4826 */ 4827 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4828 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4829 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4830 /* 4831 * If we're verifying destination reachability, we always want 4832 * to complain here. 4833 * 4834 * If we're not verifying destination reachability but the 4835 * destination has a route, we still want to fail on the 4836 * temporary address and broadcast address tests. 4837 */ 4838 if (verify_dst || (dst_ire != NULL)) { 4839 if (ip_debug > 2) { 4840 pr_addr_dbg("ip_bind_connected: bad connected " 4841 "dst %s\n", AF_INET, &dst_addr); 4842 } 4843 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4844 error = ENETUNREACH; 4845 else 4846 error = EHOSTUNREACH; 4847 goto bad_addr; 4848 } 4849 } 4850 4851 /* 4852 * We now know that routing will allow us to reach the destination. 4853 * Check whether Trusted Solaris policy allows communication with this 4854 * host, and pretend that the destination is unreachable if not. 4855 * 4856 * This is never a problem for TCP, since that transport is known to 4857 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4858 * handling. If the remote is unreachable, it will be detected at that 4859 * point, so there's no reason to check it here. 4860 * 4861 * Note that for sendto (and other datagram-oriented friends), this 4862 * check is done as part of the data path label computation instead. 4863 * The check here is just to make non-TCP connect() report the right 4864 * error. 4865 */ 4866 if (dst_ire != NULL && is_system_labeled() && 4867 !IPCL_IS_TCP(connp) && 4868 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4869 connp->conn_mac_exempt, ipst) != 0) { 4870 error = EHOSTUNREACH; 4871 if (ip_debug > 2) { 4872 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4873 AF_INET, &dst_addr); 4874 } 4875 goto bad_addr; 4876 } 4877 4878 /* 4879 * If the app does a connect(), it means that it will most likely 4880 * send more than 1 packet to the destination. It makes sense 4881 * to clear the temporary flag. 4882 */ 4883 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4884 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4885 irb_t *irb = dst_ire->ire_bucket; 4886 4887 rw_enter(&irb->irb_lock, RW_WRITER); 4888 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4889 irb->irb_tmp_ire_cnt--; 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && 4920 dst_ire->ire_type == IRE_LOCAL && 4921 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4922 /* 4923 * If the IRE belongs to a different zone, look for a matching 4924 * route in the forwarding table and use the source address from 4925 * that route. 4926 */ 4927 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4928 zoneid, 0, NULL, 4929 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4930 MATCH_IRE_RJ_BHOLE, ipst); 4931 if (src_ire == NULL) { 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4935 if (!(src_ire->ire_type & IRE_HOST)) 4936 error = ENETUNREACH; 4937 else 4938 error = EHOSTUNREACH; 4939 goto bad_addr; 4940 } 4941 if (src_addr == INADDR_ANY) 4942 src_addr = src_ire->ire_src_addr; 4943 ire_refrele(src_ire); 4944 src_ire = NULL; 4945 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4946 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4947 src_addr = sire->ire_src_addr; 4948 ire_refrele(dst_ire); 4949 dst_ire = sire; 4950 sire = NULL; 4951 } else { 4952 /* 4953 * Pick a source address so that a proper inbound 4954 * load spreading would happen. 4955 */ 4956 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4957 ipif_t *src_ipif = NULL; 4958 ire_t *ipif_ire; 4959 4960 /* 4961 * Supply a local source address such that inbound 4962 * load spreading happens. 4963 * 4964 * Determine the best source address on this ill for 4965 * the destination. 4966 * 4967 * 1) For broadcast, we should return a broadcast ire 4968 * found above so that upper layers know that the 4969 * destination address is a broadcast address. 4970 * 4971 * 2) If this is part of a group, select a better 4972 * source address so that better inbound load 4973 * balancing happens. Do the same if the ipif 4974 * is DEPRECATED. 4975 * 4976 * 3) If the outgoing interface is part of a usesrc 4977 * group, then try selecting a source address from 4978 * the usesrc ILL. 4979 */ 4980 if ((dst_ire->ire_zoneid != zoneid && 4981 dst_ire->ire_zoneid != ALL_ZONES) || 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 ((dst_ill->ill_group != NULL) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (dst_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(dst_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 } else if (ipsec_policy_set) { 5112 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 } 5117 5118 /* 5119 * Cache IPsec policy in this conn. If we have per-socket policy, 5120 * we'll cache that. If we don't, we'll inherit global policy. 5121 * 5122 * We can't insert until the conn reflects the policy. Note that 5123 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5124 * connections where we don't have a policy. This is to prevent 5125 * global policy lookups in the inbound path. 5126 * 5127 * If we insert before we set conn_policy_cached, 5128 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5129 * because global policy cound be non-empty. We normally call 5130 * ipsec_check_policy() for conn_policy_cached connections only if 5131 * ipc_in_enforce_policy is set. But in this case, 5132 * conn_policy_cached can get set anytime since we made the 5133 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5134 * called, which will make the above assumption false. Thus, we 5135 * need to insert after we set conn_policy_cached. 5136 */ 5137 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5138 goto bad_addr; 5139 5140 if (fanout_insert) { 5141 /* 5142 * The addresses have been verified. Time to insert in 5143 * the correct fanout list. 5144 * We need to make sure that the conn_recv is set to a non-null 5145 * value before we insert into the classifier table to avoid a 5146 * race with an incoming packet which does an ipcl_classify(). 5147 */ 5148 if (protocol == IPPROTO_TCP) 5149 connp->conn_recv = tcp_input; 5150 error = ipcl_conn_insert(connp, protocol, src_addr, 5151 dst_addr, connp->conn_ports); 5152 } 5153 5154 if (error == 0) { 5155 connp->conn_fully_bound = B_TRUE; 5156 /* 5157 * Our initial checks for LSO/MDT have passed; the IRE is not 5158 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5159 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5160 * ip_xxinfo_return(), which performs further checks 5161 * against them and upon success, returns the LSO/MDT info 5162 * mblk which we will attach to the bind acknowledgment. 5163 */ 5164 if (lso_dst_ire != NULL) { 5165 mblk_t *lsoinfo_mp; 5166 5167 ASSERT(ill->ill_lso_capab != NULL); 5168 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5169 ill->ill_name, ill->ill_lso_capab)) != NULL) 5170 linkb(mp, lsoinfo_mp); 5171 } else if (md_dst_ire != NULL) { 5172 mblk_t *mdinfo_mp; 5173 5174 ASSERT(ill->ill_mdt_capab != NULL); 5175 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5176 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5177 linkb(mp, mdinfo_mp); 5178 } 5179 } 5180 bad_addr: 5181 if (ipsec_policy_set) { 5182 ASSERT(policy_mp == mp->b_cont); 5183 ASSERT(policy_mp != NULL); 5184 freeb(policy_mp); 5185 /* 5186 * As of now assume that nothing else accompanies 5187 * IPSEC_POLICY_SET. 5188 */ 5189 mp->b_cont = NULL; 5190 } 5191 if (src_ire != NULL) 5192 IRE_REFRELE(src_ire); 5193 if (dst_ire != NULL) 5194 IRE_REFRELE(dst_ire); 5195 if (sire != NULL) 5196 IRE_REFRELE(sire); 5197 if (md_dst_ire != NULL) 5198 IRE_REFRELE(md_dst_ire); 5199 if (lso_dst_ire != NULL) 5200 IRE_REFRELE(lso_dst_ire); 5201 return (error); 5202 } 5203 5204 /* 5205 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5206 * Prefers dst_ire over src_ire. 5207 */ 5208 static boolean_t 5209 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5210 { 5211 mblk_t *mp1; 5212 ire_t *ret_ire = NULL; 5213 5214 mp1 = mp->b_cont; 5215 ASSERT(mp1 != NULL); 5216 5217 if (ire != NULL) { 5218 /* 5219 * mp1 initialized above to IRE_DB_REQ_TYPE 5220 * appended mblk. Its <upper protocol>'s 5221 * job to make sure there is room. 5222 */ 5223 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5224 return (0); 5225 5226 mp1->b_datap->db_type = IRE_DB_TYPE; 5227 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5228 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5229 ret_ire = (ire_t *)mp1->b_rptr; 5230 /* 5231 * Pass the latest setting of the ip_path_mtu_discovery and 5232 * copy the ulp info if any. 5233 */ 5234 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5235 IPH_DF : 0; 5236 if (ulp_info != NULL) { 5237 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5238 sizeof (iulp_t)); 5239 } 5240 ret_ire->ire_mp = mp1; 5241 } else { 5242 /* 5243 * No IRE was found. Remove IRE mblk. 5244 */ 5245 mp->b_cont = mp1->b_cont; 5246 freeb(mp1); 5247 } 5248 5249 return (1); 5250 } 5251 5252 /* 5253 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5254 * the final piece where we don't. Return a pointer to the first mblk in the 5255 * result, and update the pointer to the next mblk to chew on. If anything 5256 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5257 * NULL pointer. 5258 */ 5259 mblk_t * 5260 ip_carve_mp(mblk_t **mpp, ssize_t len) 5261 { 5262 mblk_t *mp0; 5263 mblk_t *mp1; 5264 mblk_t *mp2; 5265 5266 if (!len || !mpp || !(mp0 = *mpp)) 5267 return (NULL); 5268 /* If we aren't going to consume the first mblk, we need a dup. */ 5269 if (mp0->b_wptr - mp0->b_rptr > len) { 5270 mp1 = dupb(mp0); 5271 if (mp1) { 5272 /* Partition the data between the two mblks. */ 5273 mp1->b_wptr = mp1->b_rptr + len; 5274 mp0->b_rptr = mp1->b_wptr; 5275 /* 5276 * after adjustments if mblk not consumed is now 5277 * unaligned, try to align it. If this fails free 5278 * all messages and let upper layer recover. 5279 */ 5280 if (!OK_32PTR(mp0->b_rptr)) { 5281 if (!pullupmsg(mp0, -1)) { 5282 freemsg(mp0); 5283 freemsg(mp1); 5284 *mpp = NULL; 5285 return (NULL); 5286 } 5287 } 5288 } 5289 return (mp1); 5290 } 5291 /* Eat through as many mblks as we need to get len bytes. */ 5292 len -= mp0->b_wptr - mp0->b_rptr; 5293 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5294 if (mp2->b_wptr - mp2->b_rptr > len) { 5295 /* 5296 * We won't consume the entire last mblk. Like 5297 * above, dup and partition it. 5298 */ 5299 mp1->b_cont = dupb(mp2); 5300 mp1 = mp1->b_cont; 5301 if (!mp1) { 5302 /* 5303 * Trouble. Rather than go to a lot of 5304 * trouble to clean up, we free the messages. 5305 * This won't be any worse than losing it on 5306 * the wire. 5307 */ 5308 freemsg(mp0); 5309 freemsg(mp2); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 mp1->b_wptr = mp1->b_rptr + len; 5314 mp2->b_rptr = mp1->b_wptr; 5315 /* 5316 * after adjustments if mblk not consumed is now 5317 * unaligned, try to align it. If this fails free 5318 * all messages and let upper layer recover. 5319 */ 5320 if (!OK_32PTR(mp2->b_rptr)) { 5321 if (!pullupmsg(mp2, -1)) { 5322 freemsg(mp0); 5323 freemsg(mp2); 5324 *mpp = NULL; 5325 return (NULL); 5326 } 5327 } 5328 *mpp = mp2; 5329 return (mp0); 5330 } 5331 /* Decrement len by the amount we just got. */ 5332 len -= mp2->b_wptr - mp2->b_rptr; 5333 } 5334 /* 5335 * len should be reduced to zero now. If not our caller has 5336 * screwed up. 5337 */ 5338 if (len) { 5339 /* Shouldn't happen! */ 5340 freemsg(mp0); 5341 *mpp = NULL; 5342 return (NULL); 5343 } 5344 /* 5345 * We consumed up to exactly the end of an mblk. Detach the part 5346 * we are returning from the rest of the chain. 5347 */ 5348 mp1->b_cont = NULL; 5349 *mpp = mp2; 5350 return (mp0); 5351 } 5352 5353 /* The ill stream is being unplumbed. Called from ip_close */ 5354 int 5355 ip_modclose(ill_t *ill) 5356 { 5357 5358 boolean_t success; 5359 ipsq_t *ipsq; 5360 ipif_t *ipif; 5361 queue_t *q = ill->ill_rq; 5362 ip_stack_t *ipst = ill->ill_ipst; 5363 clock_t timeout; 5364 5365 /* 5366 * Wait for the ACKs of all deferred control messages to be processed. 5367 * In particular, we wait for a potential capability reset initiated 5368 * in ip_sioctl_plink() to complete before proceeding. 5369 * 5370 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5371 * in case the driver never replies. 5372 */ 5373 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5374 mutex_enter(&ill->ill_lock); 5375 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5376 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5377 /* Timeout */ 5378 break; 5379 } 5380 } 5381 mutex_exit(&ill->ill_lock); 5382 5383 /* 5384 * Forcibly enter the ipsq after some delay. This is to take 5385 * care of the case when some ioctl does not complete because 5386 * we sent a control message to the driver and it did not 5387 * send us a reply. We want to be able to at least unplumb 5388 * and replumb rather than force the user to reboot the system. 5389 */ 5390 success = ipsq_enter(ill, B_FALSE); 5391 5392 /* 5393 * Open/close/push/pop is guaranteed to be single threaded 5394 * per stream by STREAMS. FS guarantees that all references 5395 * from top are gone before close is called. So there can't 5396 * be another close thread that has set CONDEMNED on this ill. 5397 * and cause ipsq_enter to return failure. 5398 */ 5399 ASSERT(success); 5400 ipsq = ill->ill_phyint->phyint_ipsq; 5401 5402 /* 5403 * Mark it condemned. No new reference will be made to this ill. 5404 * Lookup functions will return an error. Threads that try to 5405 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5406 * that the refcnt will drop down to zero. 5407 */ 5408 mutex_enter(&ill->ill_lock); 5409 ill->ill_state_flags |= ILL_CONDEMNED; 5410 for (ipif = ill->ill_ipif; ipif != NULL; 5411 ipif = ipif->ipif_next) { 5412 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5413 } 5414 /* 5415 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5416 * returns error if ILL_CONDEMNED is set 5417 */ 5418 cv_broadcast(&ill->ill_cv); 5419 mutex_exit(&ill->ill_lock); 5420 5421 /* 5422 * Send all the deferred control messages downstream which came in 5423 * during the small window right before ipsq_enter(). We do this 5424 * without waiting for the ACKs because all the ACKs for M_PROTO 5425 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5426 */ 5427 ill_send_all_deferred_mp(ill); 5428 5429 /* 5430 * Shut down fragmentation reassembly. 5431 * ill_frag_timer won't start a timer again. 5432 * Now cancel any existing timer 5433 */ 5434 (void) untimeout(ill->ill_frag_timer_id); 5435 (void) ill_frag_timeout(ill, 0); 5436 5437 /* 5438 * If MOVE was in progress, clear the 5439 * move_in_progress fields also. 5440 */ 5441 if (ill->ill_move_in_progress) { 5442 ILL_CLEAR_MOVE(ill); 5443 } 5444 5445 /* 5446 * Call ill_delete to bring down the ipifs, ilms and ill on 5447 * this ill. Then wait for the refcnts to drop to zero. 5448 * ill_is_quiescent checks whether the ill is really quiescent. 5449 * Then make sure that threads that are waiting to enter the 5450 * ipsq have seen the error returned by ipsq_enter and have 5451 * gone away. Then we call ill_delete_tail which does the 5452 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5453 */ 5454 ill_delete(ill); 5455 mutex_enter(&ill->ill_lock); 5456 while (!ill_is_quiescent(ill)) 5457 cv_wait(&ill->ill_cv, &ill->ill_lock); 5458 while (ill->ill_waiters) 5459 cv_wait(&ill->ill_cv, &ill->ill_lock); 5460 5461 mutex_exit(&ill->ill_lock); 5462 5463 /* 5464 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5465 * it held until the end of the function since the cleanup 5466 * below needs to be able to use the ip_stack_t. 5467 */ 5468 netstack_hold(ipst->ips_netstack); 5469 5470 /* qprocsoff is called in ill_delete_tail */ 5471 ill_delete_tail(ill); 5472 ASSERT(ill->ill_ipst == NULL); 5473 5474 /* 5475 * Walk through all upper (conn) streams and qenable 5476 * those that have queued data. 5477 * close synchronization needs this to 5478 * be done to ensure that all upper layers blocked 5479 * due to flow control to the closing device 5480 * get unblocked. 5481 */ 5482 ip1dbg(("ip_wsrv: walking\n")); 5483 conn_walk_drain(ipst); 5484 5485 mutex_enter(&ipst->ips_ip_mi_lock); 5486 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5487 mutex_exit(&ipst->ips_ip_mi_lock); 5488 5489 /* 5490 * credp could be null if the open didn't succeed and ip_modopen 5491 * itself calls ip_close. 5492 */ 5493 if (ill->ill_credp != NULL) 5494 crfree(ill->ill_credp); 5495 5496 mutex_enter(&ill->ill_lock); 5497 ill_nic_info_dispatch(ill); 5498 mutex_exit(&ill->ill_lock); 5499 5500 /* 5501 * Now we are done with the module close pieces that 5502 * need the netstack_t. 5503 */ 5504 netstack_rele(ipst->ips_netstack); 5505 5506 mi_close_free((IDP)ill); 5507 q->q_ptr = WR(q)->q_ptr = NULL; 5508 5509 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5510 5511 return (0); 5512 } 5513 5514 /* 5515 * This is called as part of close() for both IP and UDP 5516 * in order to quiesce the conn. 5517 */ 5518 void 5519 ip_quiesce_conn(conn_t *connp) 5520 { 5521 boolean_t drain_cleanup_reqd = B_FALSE; 5522 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5523 boolean_t ilg_cleanup_reqd = B_FALSE; 5524 ip_stack_t *ipst; 5525 5526 ASSERT(!IPCL_IS_TCP(connp)); 5527 ipst = connp->conn_netstack->netstack_ip; 5528 5529 /* 5530 * Mark the conn as closing, and this conn must not be 5531 * inserted in future into any list. Eg. conn_drain_insert(), 5532 * won't insert this conn into the conn_drain_list. 5533 * Similarly ill_pending_mp_add() will not add any mp to 5534 * the pending mp list, after this conn has started closing. 5535 * 5536 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5537 * cannot get set henceforth. 5538 */ 5539 mutex_enter(&connp->conn_lock); 5540 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5541 connp->conn_state_flags |= CONN_CLOSING; 5542 if (connp->conn_idl != NULL) 5543 drain_cleanup_reqd = B_TRUE; 5544 if (connp->conn_oper_pending_ill != NULL) 5545 conn_ioctl_cleanup_reqd = B_TRUE; 5546 if (connp->conn_ilg_inuse != 0) 5547 ilg_cleanup_reqd = B_TRUE; 5548 mutex_exit(&connp->conn_lock); 5549 5550 if (IPCL_IS_UDP(connp)) 5551 udp_quiesce_conn(connp); 5552 5553 if (conn_ioctl_cleanup_reqd) 5554 conn_ioctl_cleanup(connp); 5555 5556 if (is_system_labeled() && connp->conn_anon_port) { 5557 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5558 connp->conn_mlp_type, connp->conn_ulp, 5559 ntohs(connp->conn_lport), B_FALSE); 5560 connp->conn_anon_port = 0; 5561 } 5562 connp->conn_mlp_type = mlptSingle; 5563 5564 /* 5565 * Remove this conn from any fanout list it is on. 5566 * and then wait for any threads currently operating 5567 * on this endpoint to finish 5568 */ 5569 ipcl_hash_remove(connp); 5570 5571 /* 5572 * Remove this conn from the drain list, and do 5573 * any other cleanup that may be required. 5574 * (Only non-tcp streams may have a non-null conn_idl. 5575 * TCP streams are never flow controlled, and 5576 * conn_idl will be null) 5577 */ 5578 if (drain_cleanup_reqd) 5579 conn_drain_tail(connp, B_TRUE); 5580 5581 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5582 connp->conn_wq == ipst->ips_ip_g_mrouter) 5583 (void) ip_mrouter_done(NULL, ipst); 5584 5585 if (ilg_cleanup_reqd) 5586 ilg_delete_all(connp); 5587 5588 conn_delete_ire(connp, NULL); 5589 5590 /* 5591 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5592 * callers from write side can't be there now because close 5593 * is in progress. The only other caller is ipcl_walk 5594 * which checks for the condemned flag. 5595 */ 5596 mutex_enter(&connp->conn_lock); 5597 connp->conn_state_flags |= CONN_CONDEMNED; 5598 while (connp->conn_ref != 1) 5599 cv_wait(&connp->conn_cv, &connp->conn_lock); 5600 connp->conn_state_flags |= CONN_QUIESCED; 5601 mutex_exit(&connp->conn_lock); 5602 } 5603 5604 /* ARGSUSED */ 5605 int 5606 ip_close(queue_t *q, int flags) 5607 { 5608 conn_t *connp; 5609 5610 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5611 5612 /* 5613 * Call the appropriate delete routine depending on whether this is 5614 * a module or device. 5615 */ 5616 if (WR(q)->q_next != NULL) { 5617 /* This is a module close */ 5618 return (ip_modclose((ill_t *)q->q_ptr)); 5619 } 5620 5621 connp = q->q_ptr; 5622 ip_quiesce_conn(connp); 5623 5624 qprocsoff(q); 5625 5626 /* 5627 * Now we are truly single threaded on this stream, and can 5628 * delete the things hanging off the connp, and finally the connp. 5629 * We removed this connp from the fanout list, it cannot be 5630 * accessed thru the fanouts, and we already waited for the 5631 * conn_ref to drop to 0. We are already in close, so 5632 * there cannot be any other thread from the top. qprocsoff 5633 * has completed, and service has completed or won't run in 5634 * future. 5635 */ 5636 ASSERT(connp->conn_ref == 1); 5637 5638 /* 5639 * A conn which was previously marked as IPCL_UDP cannot 5640 * retain the flag because it would have been cleared by 5641 * udp_close(). 5642 */ 5643 ASSERT(!IPCL_IS_UDP(connp)); 5644 5645 if (connp->conn_latch != NULL) { 5646 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5647 connp->conn_latch = NULL; 5648 } 5649 if (connp->conn_policy != NULL) { 5650 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5651 connp->conn_policy = NULL; 5652 } 5653 if (connp->conn_ipsec_opt_mp != NULL) { 5654 freemsg(connp->conn_ipsec_opt_mp); 5655 connp->conn_ipsec_opt_mp = NULL; 5656 } 5657 5658 inet_minor_free(ip_minor_arena, connp->conn_dev); 5659 5660 connp->conn_ref--; 5661 ipcl_conn_destroy(connp); 5662 5663 q->q_ptr = WR(q)->q_ptr = NULL; 5664 return (0); 5665 } 5666 5667 int 5668 ip_snmpmod_close(queue_t *q) 5669 { 5670 conn_t *connp = Q_TO_CONN(q); 5671 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5672 5673 qprocsoff(q); 5674 5675 if (connp->conn_flags & IPCL_UDPMOD) 5676 udp_close_free(connp); 5677 5678 if (connp->conn_cred != NULL) { 5679 crfree(connp->conn_cred); 5680 connp->conn_cred = NULL; 5681 } 5682 CONN_DEC_REF(connp); 5683 q->q_ptr = WR(q)->q_ptr = NULL; 5684 return (0); 5685 } 5686 5687 /* 5688 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5689 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5690 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5691 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5692 * queues as we never enqueue messages there and we don't handle any ioctls. 5693 * Everything else is freed. 5694 */ 5695 void 5696 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5697 { 5698 conn_t *connp = q->q_ptr; 5699 pfi_t setfn; 5700 pfi_t getfn; 5701 5702 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5703 5704 switch (DB_TYPE(mp)) { 5705 case M_PROTO: 5706 case M_PCPROTO: 5707 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5708 ((((union T_primitives *)mp->b_rptr)->type == 5709 T_SVR4_OPTMGMT_REQ) || 5710 (((union T_primitives *)mp->b_rptr)->type == 5711 T_OPTMGMT_REQ))) { 5712 /* 5713 * This is the only TPI primitive supported. Its 5714 * handling does not require tcp_t, but it does require 5715 * conn_t to check permissions. 5716 */ 5717 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5718 5719 if (connp->conn_flags & IPCL_TCPMOD) { 5720 setfn = tcp_snmp_set; 5721 getfn = tcp_snmp_get; 5722 } else { 5723 setfn = udp_snmp_set; 5724 getfn = udp_snmp_get; 5725 } 5726 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5727 freemsg(mp); 5728 return; 5729 } 5730 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5731 != NULL) 5732 qreply(q, mp); 5733 break; 5734 case M_FLUSH: 5735 case M_IOCTL: 5736 putnext(q, mp); 5737 break; 5738 default: 5739 freemsg(mp); 5740 break; 5741 } 5742 } 5743 5744 /* Return the IP checksum for the IP header at "iph". */ 5745 uint16_t 5746 ip_csum_hdr(ipha_t *ipha) 5747 { 5748 uint16_t *uph; 5749 uint32_t sum; 5750 int opt_len; 5751 5752 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5753 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5754 uph = (uint16_t *)ipha; 5755 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5756 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5757 if (opt_len > 0) { 5758 do { 5759 sum += uph[10]; 5760 sum += uph[11]; 5761 uph += 2; 5762 } while (--opt_len); 5763 } 5764 sum = (sum & 0xFFFF) + (sum >> 16); 5765 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5766 if (sum == 0xffff) 5767 sum = 0; 5768 return ((uint16_t)sum); 5769 } 5770 5771 /* 5772 * Called when the module is about to be unloaded 5773 */ 5774 void 5775 ip_ddi_destroy(void) 5776 { 5777 tnet_fini(); 5778 5779 sctp_ddi_g_destroy(); 5780 tcp_ddi_g_destroy(); 5781 ipsec_policy_g_destroy(); 5782 ipcl_g_destroy(); 5783 ip_net_g_destroy(); 5784 ip_ire_g_fini(); 5785 inet_minor_destroy(ip_minor_arena); 5786 5787 netstack_unregister(NS_IP); 5788 } 5789 5790 /* 5791 * First step in cleanup. 5792 */ 5793 /* ARGSUSED */ 5794 static void 5795 ip_stack_shutdown(netstackid_t stackid, void *arg) 5796 { 5797 ip_stack_t *ipst = (ip_stack_t *)arg; 5798 5799 #ifdef NS_DEBUG 5800 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5801 #endif 5802 5803 /* Get rid of loopback interfaces and their IREs */ 5804 ip_loopback_cleanup(ipst); 5805 } 5806 5807 /* 5808 * Free the IP stack instance. 5809 */ 5810 static void 5811 ip_stack_fini(netstackid_t stackid, void *arg) 5812 { 5813 ip_stack_t *ipst = (ip_stack_t *)arg; 5814 int ret; 5815 5816 #ifdef NS_DEBUG 5817 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5818 #endif 5819 ipv4_hook_destroy(ipst); 5820 ipv6_hook_destroy(ipst); 5821 ip_net_destroy(ipst); 5822 5823 rw_destroy(&ipst->ips_srcid_lock); 5824 5825 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5826 ipst->ips_ip_mibkp = NULL; 5827 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5828 ipst->ips_icmp_mibkp = NULL; 5829 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5830 ipst->ips_ip_kstat = NULL; 5831 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5832 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5833 ipst->ips_ip6_kstat = NULL; 5834 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5835 5836 nd_free(&ipst->ips_ip_g_nd); 5837 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5838 ipst->ips_param_arr = NULL; 5839 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5840 ipst->ips_ndp_arr = NULL; 5841 5842 ip_mrouter_stack_destroy(ipst); 5843 5844 mutex_destroy(&ipst->ips_ip_mi_lock); 5845 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5846 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5847 rw_destroy(&ipst->ips_ip_g_nd_lock); 5848 5849 ret = untimeout(ipst->ips_igmp_timeout_id); 5850 if (ret == -1) { 5851 ASSERT(ipst->ips_igmp_timeout_id == 0); 5852 } else { 5853 ASSERT(ipst->ips_igmp_timeout_id != 0); 5854 ipst->ips_igmp_timeout_id = 0; 5855 } 5856 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5857 if (ret == -1) { 5858 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5859 } else { 5860 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5861 ipst->ips_igmp_slowtimeout_id = 0; 5862 } 5863 ret = untimeout(ipst->ips_mld_timeout_id); 5864 if (ret == -1) { 5865 ASSERT(ipst->ips_mld_timeout_id == 0); 5866 } else { 5867 ASSERT(ipst->ips_mld_timeout_id != 0); 5868 ipst->ips_mld_timeout_id = 0; 5869 } 5870 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5871 if (ret == -1) { 5872 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5873 } else { 5874 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5875 ipst->ips_mld_slowtimeout_id = 0; 5876 } 5877 ret = untimeout(ipst->ips_ip_ire_expire_id); 5878 if (ret == -1) { 5879 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5880 } else { 5881 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5882 ipst->ips_ip_ire_expire_id = 0; 5883 } 5884 5885 mutex_destroy(&ipst->ips_igmp_timer_lock); 5886 mutex_destroy(&ipst->ips_mld_timer_lock); 5887 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5888 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5889 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5890 rw_destroy(&ipst->ips_ill_g_lock); 5891 5892 ip_ire_fini(ipst); 5893 ip6_asp_free(ipst); 5894 conn_drain_fini(ipst); 5895 ipcl_destroy(ipst); 5896 5897 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5898 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5899 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5900 ipst->ips_ndp4 = NULL; 5901 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5902 ipst->ips_ndp6 = NULL; 5903 5904 if (ipst->ips_loopback_ksp != NULL) { 5905 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5906 ipst->ips_loopback_ksp = NULL; 5907 } 5908 5909 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5910 ipst->ips_phyint_g_list = NULL; 5911 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5912 ipst->ips_ill_g_heads = NULL; 5913 5914 kmem_free(ipst, sizeof (*ipst)); 5915 } 5916 5917 /* 5918 * Called when the IP kernel module is loaded into the kernel 5919 */ 5920 void 5921 ip_ddi_init(void) 5922 { 5923 TCP6_MAJ = ddi_name_to_major(TCP6); 5924 TCP_MAJ = ddi_name_to_major(TCP); 5925 SCTP_MAJ = ddi_name_to_major(SCTP); 5926 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5927 5928 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5929 5930 /* 5931 * For IP and TCP the minor numbers should start from 2 since we have 4 5932 * initial devices: ip, ip6, tcp, tcp6. 5933 */ 5934 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5935 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5936 cmn_err(CE_PANIC, 5937 "ip_ddi_init: ip_minor_arena creation failed\n"); 5938 } 5939 5940 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5941 5942 ipcl_g_init(); 5943 ip_ire_g_init(); 5944 ip_net_g_init(); 5945 5946 /* 5947 * We want to be informed each time a stack is created or 5948 * destroyed in the kernel, so we can maintain the 5949 * set of udp_stack_t's. 5950 */ 5951 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5952 ip_stack_fini); 5953 5954 ipsec_policy_g_init(); 5955 tcp_ddi_g_init(); 5956 sctp_ddi_g_init(); 5957 5958 tnet_init(); 5959 } 5960 5961 /* 5962 * Initialize the IP stack instance. 5963 */ 5964 static void * 5965 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5966 { 5967 ip_stack_t *ipst; 5968 ipparam_t *pa; 5969 ipndp_t *na; 5970 5971 #ifdef NS_DEBUG 5972 printf("ip_stack_init(stack %d)\n", stackid); 5973 #endif 5974 5975 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5976 ipst->ips_netstack = ns; 5977 5978 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5979 KM_SLEEP); 5980 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5981 KM_SLEEP); 5982 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5983 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5984 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5985 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5986 5987 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5988 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5989 ipst->ips_igmp_deferred_next = INFINITY; 5990 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5991 ipst->ips_mld_deferred_next = INFINITY; 5992 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5993 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5994 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5995 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5996 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5997 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5998 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5999 6000 ipcl_init(ipst); 6001 ip_ire_init(ipst); 6002 ip6_asp_init(ipst); 6003 ipif_init(ipst); 6004 conn_drain_init(ipst); 6005 ip_mrouter_stack_init(ipst); 6006 6007 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6008 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6009 6010 ipst->ips_ip_multirt_log_interval = 1000; 6011 6012 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6013 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6014 ipst->ips_ill_index = 1; 6015 6016 ipst->ips_saved_ip_g_forward = -1; 6017 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6018 6019 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6020 ipst->ips_param_arr = pa; 6021 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6022 6023 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6024 ipst->ips_ndp_arr = na; 6025 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6026 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6027 (caddr_t)&ipst->ips_ip_g_forward; 6028 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6029 (caddr_t)&ipst->ips_ipv6_forward; 6030 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6031 "ip_cgtp_filter") == 0); 6032 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6033 (caddr_t)&ip_cgtp_filter; 6034 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6035 "ipmp_hook_emulation") == 0); 6036 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6037 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6038 6039 (void) ip_param_register(&ipst->ips_ip_g_nd, 6040 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6041 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6042 6043 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6044 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6045 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6046 ipst->ips_ip6_kstat = 6047 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6048 6049 ipst->ips_ipmp_enable_failback = B_TRUE; 6050 6051 ipst->ips_ip_src_id = 1; 6052 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6053 6054 ip_net_init(ipst, ns); 6055 ipv4_hook_init(ipst); 6056 ipv6_hook_init(ipst); 6057 6058 return (ipst); 6059 } 6060 6061 /* 6062 * Allocate and initialize a DLPI template of the specified length. (May be 6063 * called as writer.) 6064 */ 6065 mblk_t * 6066 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6067 { 6068 mblk_t *mp; 6069 6070 mp = allocb(len, BPRI_MED); 6071 if (!mp) 6072 return (NULL); 6073 6074 /* 6075 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6076 * of which we don't seem to use) are sent with M_PCPROTO, and 6077 * that other DLPI are M_PROTO. 6078 */ 6079 if (prim == DL_INFO_REQ) { 6080 mp->b_datap->db_type = M_PCPROTO; 6081 } else { 6082 mp->b_datap->db_type = M_PROTO; 6083 } 6084 6085 mp->b_wptr = mp->b_rptr + len; 6086 bzero(mp->b_rptr, len); 6087 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6088 return (mp); 6089 } 6090 6091 const char * 6092 dlpi_prim_str(int prim) 6093 { 6094 switch (prim) { 6095 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6096 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6097 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6098 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6099 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6100 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6101 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6102 case DL_OK_ACK: return ("DL_OK_ACK"); 6103 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6104 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6105 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6106 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6107 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6108 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6109 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6110 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6111 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6112 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6113 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6114 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6115 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6116 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6117 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6118 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6119 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6120 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6121 default: return ("<unknown primitive>"); 6122 } 6123 } 6124 6125 const char * 6126 dlpi_err_str(int err) 6127 { 6128 switch (err) { 6129 case DL_ACCESS: return ("DL_ACCESS"); 6130 case DL_BADADDR: return ("DL_BADADDR"); 6131 case DL_BADCORR: return ("DL_BADCORR"); 6132 case DL_BADDATA: return ("DL_BADDATA"); 6133 case DL_BADPPA: return ("DL_BADPPA"); 6134 case DL_BADPRIM: return ("DL_BADPRIM"); 6135 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6136 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6137 case DL_BADSAP: return ("DL_BADSAP"); 6138 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6139 case DL_BOUND: return ("DL_BOUND"); 6140 case DL_INITFAILED: return ("DL_INITFAILED"); 6141 case DL_NOADDR: return ("DL_NOADDR"); 6142 case DL_NOTINIT: return ("DL_NOTINIT"); 6143 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6144 case DL_SYSERR: return ("DL_SYSERR"); 6145 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6146 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6147 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6148 case DL_TOOMANY: return ("DL_TOOMANY"); 6149 case DL_NOTENAB: return ("DL_NOTENAB"); 6150 case DL_BUSY: return ("DL_BUSY"); 6151 case DL_NOAUTO: return ("DL_NOAUTO"); 6152 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6153 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6154 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6155 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6156 case DL_PENDING: return ("DL_PENDING"); 6157 default: return ("<unknown error>"); 6158 } 6159 } 6160 6161 /* 6162 * Debug formatting routine. Returns a character string representation of the 6163 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6164 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6165 * 6166 * Once the ndd table-printing interfaces are removed, this can be changed to 6167 * standard dotted-decimal form. 6168 */ 6169 char * 6170 ip_dot_addr(ipaddr_t addr, char *buf) 6171 { 6172 uint8_t *ap = (uint8_t *)&addr; 6173 6174 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6175 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6176 return (buf); 6177 } 6178 6179 /* 6180 * Write the given MAC address as a printable string in the usual colon- 6181 * separated format. 6182 */ 6183 const char * 6184 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6185 { 6186 char *bp; 6187 6188 if (alen == 0 || buflen < 4) 6189 return ("?"); 6190 bp = buf; 6191 for (;;) { 6192 /* 6193 * If there are more MAC address bytes available, but we won't 6194 * have any room to print them, then add "..." to the string 6195 * instead. See below for the 'magic number' explanation. 6196 */ 6197 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6198 (void) strcpy(bp, "..."); 6199 break; 6200 } 6201 (void) sprintf(bp, "%02x", *addr++); 6202 bp += 2; 6203 if (--alen == 0) 6204 break; 6205 *bp++ = ':'; 6206 buflen -= 3; 6207 /* 6208 * At this point, based on the first 'if' statement above, 6209 * either alen == 1 and buflen >= 3, or alen > 1 and 6210 * buflen >= 4. The first case leaves room for the final "xx" 6211 * number and trailing NUL byte. The second leaves room for at 6212 * least "...". Thus the apparently 'magic' numbers chosen for 6213 * that statement. 6214 */ 6215 } 6216 return (buf); 6217 } 6218 6219 /* 6220 * Send an ICMP error after patching up the packet appropriately. Returns 6221 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6222 */ 6223 static boolean_t 6224 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6225 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6226 zoneid_t zoneid, ip_stack_t *ipst) 6227 { 6228 ipha_t *ipha; 6229 mblk_t *first_mp; 6230 boolean_t secure; 6231 unsigned char db_type; 6232 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6233 6234 first_mp = mp; 6235 if (mctl_present) { 6236 mp = mp->b_cont; 6237 secure = ipsec_in_is_secure(first_mp); 6238 ASSERT(mp != NULL); 6239 } else { 6240 /* 6241 * If this is an ICMP error being reported - which goes 6242 * up as M_CTLs, we need to convert them to M_DATA till 6243 * we finish checking with global policy because 6244 * ipsec_check_global_policy() assumes M_DATA as clear 6245 * and M_CTL as secure. 6246 */ 6247 db_type = DB_TYPE(mp); 6248 DB_TYPE(mp) = M_DATA; 6249 secure = B_FALSE; 6250 } 6251 /* 6252 * We are generating an icmp error for some inbound packet. 6253 * Called from all ip_fanout_(udp, tcp, proto) functions. 6254 * Before we generate an error, check with global policy 6255 * to see whether this is allowed to enter the system. As 6256 * there is no "conn", we are checking with global policy. 6257 */ 6258 ipha = (ipha_t *)mp->b_rptr; 6259 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6260 first_mp = ipsec_check_global_policy(first_mp, NULL, 6261 ipha, NULL, mctl_present, ipst->ips_netstack); 6262 if (first_mp == NULL) 6263 return (B_FALSE); 6264 } 6265 6266 if (!mctl_present) 6267 DB_TYPE(mp) = db_type; 6268 6269 if (flags & IP_FF_SEND_ICMP) { 6270 if (flags & IP_FF_HDR_COMPLETE) { 6271 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6272 freemsg(first_mp); 6273 return (B_TRUE); 6274 } 6275 } 6276 if (flags & IP_FF_CKSUM) { 6277 /* 6278 * Have to correct checksum since 6279 * the packet might have been 6280 * fragmented and the reassembly code in ip_rput 6281 * does not restore the IP checksum. 6282 */ 6283 ipha->ipha_hdr_checksum = 0; 6284 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6285 } 6286 switch (icmp_type) { 6287 case ICMP_DEST_UNREACHABLE: 6288 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6289 ipst); 6290 break; 6291 default: 6292 freemsg(first_mp); 6293 break; 6294 } 6295 } else { 6296 freemsg(first_mp); 6297 return (B_FALSE); 6298 } 6299 6300 return (B_TRUE); 6301 } 6302 6303 /* 6304 * Used to send an ICMP error message when a packet is received for 6305 * a protocol that is not supported. The mblk passed as argument 6306 * is consumed by this function. 6307 */ 6308 void 6309 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6310 ip_stack_t *ipst) 6311 { 6312 mblk_t *mp; 6313 ipha_t *ipha; 6314 ill_t *ill; 6315 ipsec_in_t *ii; 6316 6317 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6318 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6319 6320 mp = ipsec_mp->b_cont; 6321 ipsec_mp->b_cont = NULL; 6322 ipha = (ipha_t *)mp->b_rptr; 6323 /* Get ill from index in ipsec_in_t. */ 6324 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6325 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6326 ipst); 6327 if (ill != NULL) { 6328 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6329 if (ip_fanout_send_icmp(q, mp, flags, 6330 ICMP_DEST_UNREACHABLE, 6331 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6332 BUMP_MIB(ill->ill_ip_mib, 6333 ipIfStatsInUnknownProtos); 6334 } 6335 } else { 6336 if (ip_fanout_send_icmp_v6(q, mp, flags, 6337 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6338 0, B_FALSE, zoneid, ipst)) { 6339 BUMP_MIB(ill->ill_ip_mib, 6340 ipIfStatsInUnknownProtos); 6341 } 6342 } 6343 ill_refrele(ill); 6344 } else { /* re-link for the freemsg() below. */ 6345 ipsec_mp->b_cont = mp; 6346 } 6347 6348 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6349 freemsg(ipsec_mp); 6350 } 6351 6352 /* 6353 * See if the inbound datagram has had IPsec processing applied to it. 6354 */ 6355 boolean_t 6356 ipsec_in_is_secure(mblk_t *ipsec_mp) 6357 { 6358 ipsec_in_t *ii; 6359 6360 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6361 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6362 6363 if (ii->ipsec_in_loopback) { 6364 return (ii->ipsec_in_secure); 6365 } else { 6366 return (ii->ipsec_in_ah_sa != NULL || 6367 ii->ipsec_in_esp_sa != NULL || 6368 ii->ipsec_in_decaps); 6369 } 6370 } 6371 6372 /* 6373 * Handle protocols with which IP is less intimate. There 6374 * can be more than one stream bound to a particular 6375 * protocol. When this is the case, normally each one gets a copy 6376 * of any incoming packets. 6377 * 6378 * IPSEC NOTE : 6379 * 6380 * Don't allow a secure packet going up a non-secure connection. 6381 * We don't allow this because 6382 * 6383 * 1) Reply might go out in clear which will be dropped at 6384 * the sending side. 6385 * 2) If the reply goes out in clear it will give the 6386 * adversary enough information for getting the key in 6387 * most of the cases. 6388 * 6389 * Moreover getting a secure packet when we expect clear 6390 * implies that SA's were added without checking for 6391 * policy on both ends. This should not happen once ISAKMP 6392 * is used to negotiate SAs as SAs will be added only after 6393 * verifying the policy. 6394 * 6395 * NOTE : If the packet was tunneled and not multicast we only send 6396 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6397 * back to delivering packets to AF_INET6 raw sockets. 6398 * 6399 * IPQoS Notes: 6400 * Once we have determined the client, invoke IPPF processing. 6401 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6402 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6403 * ip_policy will be false. 6404 * 6405 * Zones notes: 6406 * Currently only applications in the global zone can create raw sockets for 6407 * protocols other than ICMP. So unlike the broadcast / multicast case of 6408 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6409 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6410 */ 6411 static void 6412 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6413 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6414 zoneid_t zoneid) 6415 { 6416 queue_t *rq; 6417 mblk_t *mp1, *first_mp1; 6418 uint_t protocol = ipha->ipha_protocol; 6419 ipaddr_t dst; 6420 boolean_t one_only; 6421 mblk_t *first_mp = mp; 6422 boolean_t secure; 6423 uint32_t ill_index; 6424 conn_t *connp, *first_connp, *next_connp; 6425 connf_t *connfp; 6426 boolean_t shared_addr; 6427 mib2_ipIfStatsEntry_t *mibptr; 6428 ip_stack_t *ipst = recv_ill->ill_ipst; 6429 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6430 6431 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6432 if (mctl_present) { 6433 mp = first_mp->b_cont; 6434 secure = ipsec_in_is_secure(first_mp); 6435 ASSERT(mp != NULL); 6436 } else { 6437 secure = B_FALSE; 6438 } 6439 dst = ipha->ipha_dst; 6440 /* 6441 * If the packet was tunneled and not multicast we only send to it 6442 * the first match. 6443 */ 6444 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6445 !CLASSD(dst)); 6446 6447 shared_addr = (zoneid == ALL_ZONES); 6448 if (shared_addr) { 6449 /* 6450 * We don't allow multilevel ports for raw IP, so no need to 6451 * check for that here. 6452 */ 6453 zoneid = tsol_packet_to_zoneid(mp); 6454 } 6455 6456 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6457 mutex_enter(&connfp->connf_lock); 6458 connp = connfp->connf_head; 6459 for (connp = connfp->connf_head; connp != NULL; 6460 connp = connp->conn_next) { 6461 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6462 zoneid) && 6463 (!is_system_labeled() || 6464 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6465 connp))) 6466 break; 6467 } 6468 6469 if (connp == NULL || connp->conn_upq == NULL) { 6470 /* 6471 * No one bound to these addresses. Is 6472 * there a client that wants all 6473 * unclaimed datagrams? 6474 */ 6475 mutex_exit(&connfp->connf_lock); 6476 /* 6477 * Check for IPPROTO_ENCAP... 6478 */ 6479 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6480 /* 6481 * If an IPsec mblk is here on a multicast 6482 * tunnel (using ip_mroute stuff), check policy here, 6483 * THEN ship off to ip_mroute_decap(). 6484 * 6485 * BTW, If I match a configured IP-in-IP 6486 * tunnel, this path will not be reached, and 6487 * ip_mroute_decap will never be called. 6488 */ 6489 first_mp = ipsec_check_global_policy(first_mp, connp, 6490 ipha, NULL, mctl_present, ipst->ips_netstack); 6491 if (first_mp != NULL) { 6492 if (mctl_present) 6493 freeb(first_mp); 6494 ip_mroute_decap(q, mp, ill); 6495 } /* Else we already freed everything! */ 6496 } else { 6497 /* 6498 * Otherwise send an ICMP protocol unreachable. 6499 */ 6500 if (ip_fanout_send_icmp(q, first_mp, flags, 6501 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6502 mctl_present, zoneid, ipst)) { 6503 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6504 } 6505 } 6506 return; 6507 } 6508 CONN_INC_REF(connp); 6509 first_connp = connp; 6510 6511 /* 6512 * Only send message to one tunnel driver by immediately 6513 * terminating the loop. 6514 */ 6515 connp = one_only ? NULL : connp->conn_next; 6516 6517 for (;;) { 6518 while (connp != NULL) { 6519 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6520 flags, zoneid) && 6521 (!is_system_labeled() || 6522 tsol_receive_local(mp, &dst, IPV4_VERSION, 6523 shared_addr, connp))) 6524 break; 6525 connp = connp->conn_next; 6526 } 6527 6528 /* 6529 * Copy the packet. 6530 */ 6531 if (connp == NULL || connp->conn_upq == NULL || 6532 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6533 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6534 /* 6535 * No more interested clients or memory 6536 * allocation failed 6537 */ 6538 connp = first_connp; 6539 break; 6540 } 6541 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6542 CONN_INC_REF(connp); 6543 mutex_exit(&connfp->connf_lock); 6544 rq = connp->conn_rq; 6545 if (!canputnext(rq)) { 6546 if (flags & IP_FF_RAWIP) { 6547 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6548 } else { 6549 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6550 } 6551 6552 freemsg(first_mp1); 6553 } else { 6554 /* 6555 * Don't enforce here if we're an actual tunnel - 6556 * let "tun" do it instead. 6557 */ 6558 if (!IPCL_IS_IPTUN(connp) && 6559 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6560 secure)) { 6561 first_mp1 = ipsec_check_inbound_policy 6562 (first_mp1, connp, ipha, NULL, 6563 mctl_present); 6564 } 6565 if (first_mp1 != NULL) { 6566 int in_flags = 0; 6567 /* 6568 * ip_fanout_proto also gets called from 6569 * icmp_inbound_error_fanout, in which case 6570 * the msg type is M_CTL. Don't add info 6571 * in this case for the time being. In future 6572 * when there is a need for knowing the 6573 * inbound iface index for ICMP error msgs, 6574 * then this can be changed. 6575 */ 6576 if (connp->conn_recvif) 6577 in_flags = IPF_RECVIF; 6578 /* 6579 * The ULP may support IP_RECVPKTINFO for both 6580 * IP v4 and v6 so pass the appropriate argument 6581 * based on conn IP version. 6582 */ 6583 if (connp->conn_ip_recvpktinfo) { 6584 if (connp->conn_af_isv6) { 6585 /* 6586 * V6 only needs index 6587 */ 6588 in_flags |= IPF_RECVIF; 6589 } else { 6590 /* 6591 * V4 needs index + 6592 * matching address. 6593 */ 6594 in_flags |= IPF_RECVADDR; 6595 } 6596 } 6597 if ((in_flags != 0) && 6598 (mp->b_datap->db_type != M_CTL)) { 6599 /* 6600 * the actual data will be 6601 * contained in b_cont upon 6602 * successful return of the 6603 * following call else 6604 * original mblk is returned 6605 */ 6606 ASSERT(recv_ill != NULL); 6607 mp1 = ip_add_info(mp1, recv_ill, 6608 in_flags, IPCL_ZONEID(connp), ipst); 6609 } 6610 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6611 if (mctl_present) 6612 freeb(first_mp1); 6613 putnext(rq, mp1); 6614 } 6615 } 6616 mutex_enter(&connfp->connf_lock); 6617 /* Follow the next pointer before releasing the conn. */ 6618 next_connp = connp->conn_next; 6619 CONN_DEC_REF(connp); 6620 connp = next_connp; 6621 } 6622 6623 /* Last one. Send it upstream. */ 6624 mutex_exit(&connfp->connf_lock); 6625 6626 /* 6627 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6628 * will be set to false. 6629 */ 6630 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6631 ill_index = ill->ill_phyint->phyint_ifindex; 6632 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6633 if (mp == NULL) { 6634 CONN_DEC_REF(connp); 6635 if (mctl_present) { 6636 freeb(first_mp); 6637 } 6638 return; 6639 } 6640 } 6641 6642 rq = connp->conn_rq; 6643 if (!canputnext(rq)) { 6644 if (flags & IP_FF_RAWIP) { 6645 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6646 } else { 6647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6648 } 6649 6650 freemsg(first_mp); 6651 } else { 6652 if (IPCL_IS_IPTUN(connp)) { 6653 /* 6654 * Tunneled packet. We enforce policy in the tunnel 6655 * module itself. 6656 * 6657 * Send the WHOLE packet up (incl. IPSEC_IN) without 6658 * a policy check. 6659 */ 6660 putnext(rq, first_mp); 6661 CONN_DEC_REF(connp); 6662 return; 6663 } 6664 6665 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6666 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6667 ipha, NULL, mctl_present); 6668 } 6669 6670 if (first_mp != NULL) { 6671 int in_flags = 0; 6672 6673 /* 6674 * ip_fanout_proto also gets called 6675 * from icmp_inbound_error_fanout, in 6676 * which case the msg type is M_CTL. 6677 * Don't add info in this case for time 6678 * being. In future when there is a 6679 * need for knowing the inbound iface 6680 * index for ICMP error msgs, then this 6681 * can be changed 6682 */ 6683 if (connp->conn_recvif) 6684 in_flags = IPF_RECVIF; 6685 if (connp->conn_ip_recvpktinfo) { 6686 if (connp->conn_af_isv6) { 6687 /* 6688 * V6 only needs index 6689 */ 6690 in_flags |= IPF_RECVIF; 6691 } else { 6692 /* 6693 * V4 needs index + 6694 * matching address. 6695 */ 6696 in_flags |= IPF_RECVADDR; 6697 } 6698 } 6699 if ((in_flags != 0) && 6700 (mp->b_datap->db_type != M_CTL)) { 6701 6702 /* 6703 * the actual data will be contained in 6704 * b_cont upon successful return 6705 * of the following call else original 6706 * mblk is returned 6707 */ 6708 ASSERT(recv_ill != NULL); 6709 mp = ip_add_info(mp, recv_ill, 6710 in_flags, IPCL_ZONEID(connp), ipst); 6711 } 6712 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6713 putnext(rq, mp); 6714 if (mctl_present) 6715 freeb(first_mp); 6716 } 6717 } 6718 CONN_DEC_REF(connp); 6719 } 6720 6721 /* 6722 * Fanout for TCP packets 6723 * The caller puts <fport, lport> in the ports parameter. 6724 * 6725 * IPQoS Notes 6726 * Before sending it to the client, invoke IPPF processing. 6727 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6728 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6729 * ip_policy is false. 6730 */ 6731 static void 6732 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6733 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6734 { 6735 mblk_t *first_mp; 6736 boolean_t secure; 6737 uint32_t ill_index; 6738 int ip_hdr_len; 6739 tcph_t *tcph; 6740 boolean_t syn_present = B_FALSE; 6741 conn_t *connp; 6742 ip_stack_t *ipst = recv_ill->ill_ipst; 6743 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6744 6745 ASSERT(recv_ill != NULL); 6746 6747 first_mp = mp; 6748 if (mctl_present) { 6749 ASSERT(first_mp->b_datap->db_type == M_CTL); 6750 mp = first_mp->b_cont; 6751 secure = ipsec_in_is_secure(first_mp); 6752 ASSERT(mp != NULL); 6753 } else { 6754 secure = B_FALSE; 6755 } 6756 6757 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6758 6759 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6760 zoneid, ipst)) == NULL) { 6761 /* 6762 * No connected connection or listener. Send a 6763 * TH_RST via tcp_xmit_listeners_reset. 6764 */ 6765 6766 /* Initiate IPPf processing, if needed. */ 6767 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6768 uint32_t ill_index; 6769 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6770 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6771 if (first_mp == NULL) 6772 return; 6773 } 6774 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6775 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6776 zoneid)); 6777 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6778 ipst->ips_netstack->netstack_tcp); 6779 return; 6780 } 6781 6782 /* 6783 * Allocate the SYN for the TCP connection here itself 6784 */ 6785 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6786 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6787 if (IPCL_IS_TCP(connp)) { 6788 squeue_t *sqp; 6789 6790 /* 6791 * For fused tcp loopback, assign the eager's 6792 * squeue to be that of the active connect's. 6793 * Note that we don't check for IP_FF_LOOPBACK 6794 * here since this routine gets called only 6795 * for loopback (unlike the IPv6 counterpart). 6796 */ 6797 ASSERT(Q_TO_CONN(q) != NULL); 6798 if (do_tcp_fusion && 6799 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6800 !secure && 6801 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6802 IPCL_IS_TCP(Q_TO_CONN(q))) { 6803 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6804 sqp = Q_TO_CONN(q)->conn_sqp; 6805 } else { 6806 sqp = IP_SQUEUE_GET(lbolt); 6807 } 6808 6809 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6810 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6811 syn_present = B_TRUE; 6812 } 6813 } 6814 6815 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6816 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6817 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6818 if ((flags & TH_RST) || (flags & TH_URG)) { 6819 CONN_DEC_REF(connp); 6820 freemsg(first_mp); 6821 return; 6822 } 6823 if (flags & TH_ACK) { 6824 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6825 ipst->ips_netstack->netstack_tcp); 6826 CONN_DEC_REF(connp); 6827 return; 6828 } 6829 6830 CONN_DEC_REF(connp); 6831 freemsg(first_mp); 6832 return; 6833 } 6834 6835 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6836 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6837 NULL, mctl_present); 6838 if (first_mp == NULL) { 6839 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6840 CONN_DEC_REF(connp); 6841 return; 6842 } 6843 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6844 ASSERT(syn_present); 6845 if (mctl_present) { 6846 ASSERT(first_mp != mp); 6847 first_mp->b_datap->db_struioflag |= 6848 STRUIO_POLICY; 6849 } else { 6850 ASSERT(first_mp == mp); 6851 mp->b_datap->db_struioflag &= 6852 ~STRUIO_EAGER; 6853 mp->b_datap->db_struioflag |= 6854 STRUIO_POLICY; 6855 } 6856 } else { 6857 /* 6858 * Discard first_mp early since we're dealing with a 6859 * fully-connected conn_t and tcp doesn't do policy in 6860 * this case. 6861 */ 6862 if (mctl_present) { 6863 freeb(first_mp); 6864 mctl_present = B_FALSE; 6865 } 6866 first_mp = mp; 6867 } 6868 } 6869 6870 /* 6871 * Initiate policy processing here if needed. If we get here from 6872 * icmp_inbound_error_fanout, ip_policy is false. 6873 */ 6874 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6875 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6876 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6877 if (mp == NULL) { 6878 CONN_DEC_REF(connp); 6879 if (mctl_present) 6880 freeb(first_mp); 6881 return; 6882 } else if (mctl_present) { 6883 ASSERT(first_mp != mp); 6884 first_mp->b_cont = mp; 6885 } else { 6886 first_mp = mp; 6887 } 6888 } 6889 6890 6891 6892 /* Handle socket options. */ 6893 if (!syn_present && 6894 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6895 /* Add header */ 6896 ASSERT(recv_ill != NULL); 6897 /* 6898 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6899 * IPF_RECVIF. 6900 */ 6901 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6902 ipst); 6903 if (mp == NULL) { 6904 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6905 CONN_DEC_REF(connp); 6906 if (mctl_present) 6907 freeb(first_mp); 6908 return; 6909 } else if (mctl_present) { 6910 /* 6911 * ip_add_info might return a new mp. 6912 */ 6913 ASSERT(first_mp != mp); 6914 first_mp->b_cont = mp; 6915 } else { 6916 first_mp = mp; 6917 } 6918 } 6919 6920 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6921 if (IPCL_IS_TCP(connp)) { 6922 (*ip_input_proc)(connp->conn_sqp, first_mp, 6923 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6924 } else { 6925 putnext(connp->conn_rq, first_mp); 6926 CONN_DEC_REF(connp); 6927 } 6928 } 6929 6930 /* 6931 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6932 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6933 * Caller is responsible for dropping references to the conn, and freeing 6934 * first_mp. 6935 * 6936 * IPQoS Notes 6937 * Before sending it to the client, invoke IPPF processing. Policy processing 6938 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6939 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6940 * ip_wput_local, ip_policy is false. 6941 */ 6942 static void 6943 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6944 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6945 boolean_t ip_policy) 6946 { 6947 boolean_t mctl_present = (first_mp != NULL); 6948 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6949 uint32_t ill_index; 6950 ip_stack_t *ipst = recv_ill->ill_ipst; 6951 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6952 6953 ASSERT(ill != NULL); 6954 6955 if (mctl_present) 6956 first_mp->b_cont = mp; 6957 else 6958 first_mp = mp; 6959 6960 if (CONN_UDP_FLOWCTLD(connp)) { 6961 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6962 freemsg(first_mp); 6963 return; 6964 } 6965 6966 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6967 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6968 NULL, mctl_present); 6969 if (first_mp == NULL) { 6970 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6971 return; /* Freed by ipsec_check_inbound_policy(). */ 6972 } 6973 } 6974 if (mctl_present) 6975 freeb(first_mp); 6976 6977 /* Handle options. */ 6978 if (connp->conn_recvif) 6979 in_flags = IPF_RECVIF; 6980 /* 6981 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6982 * passed to ip_add_info is based on IP version of connp. 6983 */ 6984 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6985 if (connp->conn_af_isv6) { 6986 /* 6987 * V6 only needs index 6988 */ 6989 in_flags |= IPF_RECVIF; 6990 } else { 6991 /* 6992 * V4 needs index + matching address. 6993 */ 6994 in_flags |= IPF_RECVADDR; 6995 } 6996 } 6997 6998 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6999 in_flags |= IPF_RECVSLLA; 7000 7001 /* 7002 * Initiate IPPF processing here, if needed. Note first_mp won't be 7003 * freed if the packet is dropped. The caller will do so. 7004 */ 7005 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7006 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7007 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7008 if (mp == NULL) { 7009 return; 7010 } 7011 } 7012 if ((in_flags != 0) && 7013 (mp->b_datap->db_type != M_CTL)) { 7014 /* 7015 * The actual data will be contained in b_cont 7016 * upon successful return of the following call 7017 * else original mblk is returned 7018 */ 7019 ASSERT(recv_ill != NULL); 7020 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7021 ipst); 7022 } 7023 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7024 /* Send it upstream */ 7025 CONN_UDP_RECV(connp, mp); 7026 } 7027 7028 /* 7029 * Fanout for UDP packets. 7030 * The caller puts <fport, lport> in the ports parameter. 7031 * 7032 * If SO_REUSEADDR is set all multicast and broadcast packets 7033 * will be delivered to all streams bound to the same port. 7034 * 7035 * Zones notes: 7036 * Multicast and broadcast packets will be distributed to streams in all zones. 7037 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7038 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7039 * packets. To maintain this behavior with multiple zones, the conns are grouped 7040 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7041 * each zone. If unset, all the following conns in the same zone are skipped. 7042 */ 7043 static void 7044 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7045 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7046 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7047 { 7048 uint32_t dstport, srcport; 7049 ipaddr_t dst; 7050 mblk_t *first_mp; 7051 boolean_t secure; 7052 in6_addr_t v6src; 7053 conn_t *connp; 7054 connf_t *connfp; 7055 conn_t *first_connp; 7056 conn_t *next_connp; 7057 mblk_t *mp1, *first_mp1; 7058 ipaddr_t src; 7059 zoneid_t last_zoneid; 7060 boolean_t reuseaddr; 7061 boolean_t shared_addr; 7062 ip_stack_t *ipst; 7063 7064 ASSERT(recv_ill != NULL); 7065 ipst = recv_ill->ill_ipst; 7066 7067 first_mp = mp; 7068 if (mctl_present) { 7069 mp = first_mp->b_cont; 7070 first_mp->b_cont = NULL; 7071 secure = ipsec_in_is_secure(first_mp); 7072 ASSERT(mp != NULL); 7073 } else { 7074 first_mp = NULL; 7075 secure = B_FALSE; 7076 } 7077 7078 /* Extract ports in net byte order */ 7079 dstport = htons(ntohl(ports) & 0xFFFF); 7080 srcport = htons(ntohl(ports) >> 16); 7081 dst = ipha->ipha_dst; 7082 src = ipha->ipha_src; 7083 7084 shared_addr = (zoneid == ALL_ZONES); 7085 if (shared_addr) { 7086 /* 7087 * No need to handle exclusive-stack zones since ALL_ZONES 7088 * only applies to the shared stack. 7089 */ 7090 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7091 if (zoneid == ALL_ZONES) 7092 zoneid = tsol_packet_to_zoneid(mp); 7093 } 7094 7095 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7096 mutex_enter(&connfp->connf_lock); 7097 connp = connfp->connf_head; 7098 if (!broadcast && !CLASSD(dst)) { 7099 /* 7100 * Not broadcast or multicast. Send to the one (first) 7101 * client we find. No need to check conn_wantpacket() 7102 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7103 * IPv4 unicast packets. 7104 */ 7105 while ((connp != NULL) && 7106 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7107 !IPCL_ZONE_MATCH(connp, zoneid))) { 7108 connp = connp->conn_next; 7109 } 7110 7111 if (connp == NULL || connp->conn_upq == NULL) 7112 goto notfound; 7113 7114 if (is_system_labeled() && 7115 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7116 connp)) 7117 goto notfound; 7118 7119 CONN_INC_REF(connp); 7120 mutex_exit(&connfp->connf_lock); 7121 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7122 flags, recv_ill, ip_policy); 7123 IP_STAT(ipst, ip_udp_fannorm); 7124 CONN_DEC_REF(connp); 7125 return; 7126 } 7127 7128 /* 7129 * Broadcast and multicast case 7130 * 7131 * Need to check conn_wantpacket(). 7132 * If SO_REUSEADDR has been set on the first we send the 7133 * packet to all clients that have joined the group and 7134 * match the port. 7135 */ 7136 7137 while (connp != NULL) { 7138 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7139 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7140 (!is_system_labeled() || 7141 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7142 connp))) 7143 break; 7144 connp = connp->conn_next; 7145 } 7146 7147 if (connp == NULL || connp->conn_upq == NULL) 7148 goto notfound; 7149 7150 first_connp = connp; 7151 /* 7152 * When SO_REUSEADDR is not set, send the packet only to the first 7153 * matching connection in its zone by keeping track of the zoneid. 7154 */ 7155 reuseaddr = first_connp->conn_reuseaddr; 7156 last_zoneid = first_connp->conn_zoneid; 7157 7158 CONN_INC_REF(connp); 7159 connp = connp->conn_next; 7160 for (;;) { 7161 while (connp != NULL) { 7162 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7163 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7164 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7165 (!is_system_labeled() || 7166 tsol_receive_local(mp, &dst, IPV4_VERSION, 7167 shared_addr, connp))) 7168 break; 7169 connp = connp->conn_next; 7170 } 7171 /* 7172 * Just copy the data part alone. The mctl part is 7173 * needed just for verifying policy and it is never 7174 * sent up. 7175 */ 7176 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7177 ((mp1 = copymsg(mp)) == NULL))) { 7178 /* 7179 * No more interested clients or memory 7180 * allocation failed 7181 */ 7182 connp = first_connp; 7183 break; 7184 } 7185 if (connp->conn_zoneid != last_zoneid) { 7186 /* 7187 * Update the zoneid so that the packet isn't sent to 7188 * any more conns in the same zone unless SO_REUSEADDR 7189 * is set. 7190 */ 7191 reuseaddr = connp->conn_reuseaddr; 7192 last_zoneid = connp->conn_zoneid; 7193 } 7194 if (first_mp != NULL) { 7195 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7196 ipsec_info_type == IPSEC_IN); 7197 first_mp1 = ipsec_in_tag(first_mp, NULL, 7198 ipst->ips_netstack); 7199 if (first_mp1 == NULL) { 7200 freemsg(mp1); 7201 connp = first_connp; 7202 break; 7203 } 7204 } else { 7205 first_mp1 = NULL; 7206 } 7207 CONN_INC_REF(connp); 7208 mutex_exit(&connfp->connf_lock); 7209 /* 7210 * IPQoS notes: We don't send the packet for policy 7211 * processing here, will do it for the last one (below). 7212 * i.e. we do it per-packet now, but if we do policy 7213 * processing per-conn, then we would need to do it 7214 * here too. 7215 */ 7216 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7217 ipha, flags, recv_ill, B_FALSE); 7218 mutex_enter(&connfp->connf_lock); 7219 /* Follow the next pointer before releasing the conn. */ 7220 next_connp = connp->conn_next; 7221 IP_STAT(ipst, ip_udp_fanmb); 7222 CONN_DEC_REF(connp); 7223 connp = next_connp; 7224 } 7225 7226 /* Last one. Send it upstream. */ 7227 mutex_exit(&connfp->connf_lock); 7228 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7229 recv_ill, ip_policy); 7230 IP_STAT(ipst, ip_udp_fanmb); 7231 CONN_DEC_REF(connp); 7232 return; 7233 7234 notfound: 7235 7236 mutex_exit(&connfp->connf_lock); 7237 IP_STAT(ipst, ip_udp_fanothers); 7238 /* 7239 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7240 * have already been matched above, since they live in the IPv4 7241 * fanout tables. This implies we only need to 7242 * check for IPv6 in6addr_any endpoints here. 7243 * Thus we compare using ipv6_all_zeros instead of the destination 7244 * address, except for the multicast group membership lookup which 7245 * uses the IPv4 destination. 7246 */ 7247 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7248 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7249 mutex_enter(&connfp->connf_lock); 7250 connp = connfp->connf_head; 7251 if (!broadcast && !CLASSD(dst)) { 7252 while (connp != NULL) { 7253 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7254 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7255 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7256 !connp->conn_ipv6_v6only) 7257 break; 7258 connp = connp->conn_next; 7259 } 7260 7261 if (connp != NULL && is_system_labeled() && 7262 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7263 connp)) 7264 connp = NULL; 7265 7266 if (connp == NULL || connp->conn_upq == NULL) { 7267 /* 7268 * No one bound to this port. Is 7269 * there a client that wants all 7270 * unclaimed datagrams? 7271 */ 7272 mutex_exit(&connfp->connf_lock); 7273 7274 if (mctl_present) 7275 first_mp->b_cont = mp; 7276 else 7277 first_mp = mp; 7278 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7279 connf_head != NULL) { 7280 ip_fanout_proto(q, first_mp, ill, ipha, 7281 flags | IP_FF_RAWIP, mctl_present, 7282 ip_policy, recv_ill, zoneid); 7283 } else { 7284 if (ip_fanout_send_icmp(q, first_mp, flags, 7285 ICMP_DEST_UNREACHABLE, 7286 ICMP_PORT_UNREACHABLE, 7287 mctl_present, zoneid, ipst)) { 7288 BUMP_MIB(ill->ill_ip_mib, 7289 udpIfStatsNoPorts); 7290 } 7291 } 7292 return; 7293 } 7294 7295 CONN_INC_REF(connp); 7296 mutex_exit(&connfp->connf_lock); 7297 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7298 flags, recv_ill, ip_policy); 7299 CONN_DEC_REF(connp); 7300 return; 7301 } 7302 /* 7303 * IPv4 multicast packet being delivered to an AF_INET6 7304 * in6addr_any endpoint. 7305 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7306 * and not conn_wantpacket_v6() since any multicast membership is 7307 * for an IPv4-mapped multicast address. 7308 * The packet is sent to all clients in all zones that have joined the 7309 * group and match the port. 7310 */ 7311 while (connp != NULL) { 7312 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7313 srcport, v6src) && 7314 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7315 (!is_system_labeled() || 7316 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7317 connp))) 7318 break; 7319 connp = connp->conn_next; 7320 } 7321 7322 if (connp == NULL || connp->conn_upq == NULL) { 7323 /* 7324 * No one bound to this port. Is 7325 * there a client that wants all 7326 * unclaimed datagrams? 7327 */ 7328 mutex_exit(&connfp->connf_lock); 7329 7330 if (mctl_present) 7331 first_mp->b_cont = mp; 7332 else 7333 first_mp = mp; 7334 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7335 NULL) { 7336 ip_fanout_proto(q, first_mp, ill, ipha, 7337 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7338 recv_ill, zoneid); 7339 } else { 7340 /* 7341 * We used to attempt to send an icmp error here, but 7342 * since this is known to be a multicast packet 7343 * and we don't send icmp errors in response to 7344 * multicast, just drop the packet and give up sooner. 7345 */ 7346 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7347 freemsg(first_mp); 7348 } 7349 return; 7350 } 7351 7352 first_connp = connp; 7353 7354 CONN_INC_REF(connp); 7355 connp = connp->conn_next; 7356 for (;;) { 7357 while (connp != NULL) { 7358 if (IPCL_UDP_MATCH_V6(connp, dstport, 7359 ipv6_all_zeros, srcport, v6src) && 7360 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7361 (!is_system_labeled() || 7362 tsol_receive_local(mp, &dst, IPV4_VERSION, 7363 shared_addr, connp))) 7364 break; 7365 connp = connp->conn_next; 7366 } 7367 /* 7368 * Just copy the data part alone. The mctl part is 7369 * needed just for verifying policy and it is never 7370 * sent up. 7371 */ 7372 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7373 ((mp1 = copymsg(mp)) == NULL))) { 7374 /* 7375 * No more intested clients or memory 7376 * allocation failed 7377 */ 7378 connp = first_connp; 7379 break; 7380 } 7381 if (first_mp != NULL) { 7382 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7383 ipsec_info_type == IPSEC_IN); 7384 first_mp1 = ipsec_in_tag(first_mp, NULL, 7385 ipst->ips_netstack); 7386 if (first_mp1 == NULL) { 7387 freemsg(mp1); 7388 connp = first_connp; 7389 break; 7390 } 7391 } else { 7392 first_mp1 = NULL; 7393 } 7394 CONN_INC_REF(connp); 7395 mutex_exit(&connfp->connf_lock); 7396 /* 7397 * IPQoS notes: We don't send the packet for policy 7398 * processing here, will do it for the last one (below). 7399 * i.e. we do it per-packet now, but if we do policy 7400 * processing per-conn, then we would need to do it 7401 * here too. 7402 */ 7403 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7404 ipha, flags, recv_ill, B_FALSE); 7405 mutex_enter(&connfp->connf_lock); 7406 /* Follow the next pointer before releasing the conn. */ 7407 next_connp = connp->conn_next; 7408 CONN_DEC_REF(connp); 7409 connp = next_connp; 7410 } 7411 7412 /* Last one. Send it upstream. */ 7413 mutex_exit(&connfp->connf_lock); 7414 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7415 recv_ill, ip_policy); 7416 CONN_DEC_REF(connp); 7417 } 7418 7419 /* 7420 * Complete the ip_wput header so that it 7421 * is possible to generate ICMP 7422 * errors. 7423 */ 7424 int 7425 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7426 { 7427 ire_t *ire; 7428 7429 if (ipha->ipha_src == INADDR_ANY) { 7430 ire = ire_lookup_local(zoneid, ipst); 7431 if (ire == NULL) { 7432 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7433 return (1); 7434 } 7435 ipha->ipha_src = ire->ire_addr; 7436 ire_refrele(ire); 7437 } 7438 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7439 ipha->ipha_hdr_checksum = 0; 7440 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7441 return (0); 7442 } 7443 7444 /* 7445 * Nobody should be sending 7446 * packets up this stream 7447 */ 7448 static void 7449 ip_lrput(queue_t *q, mblk_t *mp) 7450 { 7451 mblk_t *mp1; 7452 7453 switch (mp->b_datap->db_type) { 7454 case M_FLUSH: 7455 /* Turn around */ 7456 if (*mp->b_rptr & FLUSHW) { 7457 *mp->b_rptr &= ~FLUSHR; 7458 qreply(q, mp); 7459 return; 7460 } 7461 break; 7462 } 7463 /* Could receive messages that passed through ar_rput */ 7464 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7465 mp1->b_prev = mp1->b_next = NULL; 7466 freemsg(mp); 7467 } 7468 7469 /* Nobody should be sending packets down this stream */ 7470 /* ARGSUSED */ 7471 void 7472 ip_lwput(queue_t *q, mblk_t *mp) 7473 { 7474 freemsg(mp); 7475 } 7476 7477 /* 7478 * Move the first hop in any source route to ipha_dst and remove that part of 7479 * the source route. Called by other protocols. Errors in option formatting 7480 * are ignored - will be handled by ip_wput_options Return the final 7481 * destination (either ipha_dst or the last entry in a source route.) 7482 */ 7483 ipaddr_t 7484 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7485 { 7486 ipoptp_t opts; 7487 uchar_t *opt; 7488 uint8_t optval; 7489 uint8_t optlen; 7490 ipaddr_t dst; 7491 int i; 7492 ire_t *ire; 7493 ip_stack_t *ipst = ns->netstack_ip; 7494 7495 ip2dbg(("ip_massage_options\n")); 7496 dst = ipha->ipha_dst; 7497 for (optval = ipoptp_first(&opts, ipha); 7498 optval != IPOPT_EOL; 7499 optval = ipoptp_next(&opts)) { 7500 opt = opts.ipoptp_cur; 7501 switch (optval) { 7502 uint8_t off; 7503 case IPOPT_SSRR: 7504 case IPOPT_LSRR: 7505 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7506 ip1dbg(("ip_massage_options: bad src route\n")); 7507 break; 7508 } 7509 optlen = opts.ipoptp_len; 7510 off = opt[IPOPT_OFFSET]; 7511 off--; 7512 redo_srr: 7513 if (optlen < IP_ADDR_LEN || 7514 off > optlen - IP_ADDR_LEN) { 7515 /* End of source route */ 7516 ip1dbg(("ip_massage_options: end of SR\n")); 7517 break; 7518 } 7519 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7520 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7521 ntohl(dst))); 7522 /* 7523 * Check if our address is present more than 7524 * once as consecutive hops in source route. 7525 * XXX verify per-interface ip_forwarding 7526 * for source route? 7527 */ 7528 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7529 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7530 if (ire != NULL) { 7531 ire_refrele(ire); 7532 off += IP_ADDR_LEN; 7533 goto redo_srr; 7534 } 7535 if (dst == htonl(INADDR_LOOPBACK)) { 7536 ip1dbg(("ip_massage_options: loopback addr in " 7537 "source route!\n")); 7538 break; 7539 } 7540 /* 7541 * Update ipha_dst to be the first hop and remove the 7542 * first hop from the source route (by overwriting 7543 * part of the option with NOP options). 7544 */ 7545 ipha->ipha_dst = dst; 7546 /* Put the last entry in dst */ 7547 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7548 3; 7549 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7550 7551 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7552 ntohl(dst))); 7553 /* Move down and overwrite */ 7554 opt[IP_ADDR_LEN] = opt[0]; 7555 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7556 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7557 for (i = 0; i < IP_ADDR_LEN; i++) 7558 opt[i] = IPOPT_NOP; 7559 break; 7560 } 7561 } 7562 return (dst); 7563 } 7564 7565 /* 7566 * This function's job is to forward data to the reverse tunnel (FA->HA) 7567 * after doing a few checks. It is assumed that the incoming interface 7568 * of the packet is always different than the outgoing interface and the 7569 * ire_type of the found ire has to be a non-resolver type. 7570 * 7571 * IPQoS notes 7572 * IP policy is invoked twice for a forwarded packet, once on the read side 7573 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7574 * enabled. 7575 */ 7576 static void 7577 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7578 { 7579 ipha_t *ipha; 7580 queue_t *q; 7581 uint32_t pkt_len; 7582 #define rptr ((uchar_t *)ipha) 7583 uint32_t sum; 7584 uint32_t max_frag; 7585 mblk_t *first_mp; 7586 uint32_t ill_index; 7587 ipxmit_state_t pktxmit_state; 7588 ill_t *out_ill; 7589 ip_stack_t *ipst = in_ill->ill_ipst; 7590 7591 ASSERT(ire != NULL); 7592 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7593 ASSERT(ire->ire_stq != NULL); 7594 7595 /* Initiate read side IPPF processing */ 7596 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7597 ill_index = in_ill->ill_phyint->phyint_ifindex; 7598 ip_process(IPP_FWD_IN, &mp, ill_index); 7599 if (mp == NULL) { 7600 ip2dbg(("ip_mrtun_forward: inbound pkt " 7601 "dropped during IPPF processing\n")); 7602 return; 7603 } 7604 } 7605 7606 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7607 ILLF_ROUTER) == 0) || 7608 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7609 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7610 ip0dbg(("ip_mrtun_forward: Can't forward :" 7611 "forwarding is not turned on\n")); 7612 goto drop_pkt; 7613 } 7614 7615 /* 7616 * Don't forward if the interface is down 7617 */ 7618 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7619 goto discard_pkt; 7620 } 7621 7622 ipha = (ipha_t *)mp->b_rptr; 7623 pkt_len = ntohs(ipha->ipha_length); 7624 /* Adjust the checksum to reflect the ttl decrement. */ 7625 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7626 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7627 if (ipha->ipha_ttl-- <= 1) { 7628 if (ip_csum_hdr(ipha)) { 7629 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7630 goto drop_pkt; 7631 } 7632 q = ire->ire_stq; 7633 if ((first_mp = allocb(sizeof (ipsec_info_t), 7634 BPRI_HI)) == NULL) { 7635 goto discard_pkt; 7636 } 7637 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7638 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7639 /* Sent by forwarding path, and router is global zone */ 7640 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7641 GLOBAL_ZONEID, ipst); 7642 return; 7643 } 7644 7645 /* Get the ill_index of the ILL */ 7646 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7647 7648 /* 7649 * This location is chosen for the placement of the forwarding hook 7650 * because at this point we know that we have a path out for the 7651 * packet but haven't yet applied any logic (such as fragmenting) 7652 * that happen as part of transmitting the packet out. 7653 */ 7654 out_ill = ire->ire_ipif->ipif_ill; 7655 7656 DTRACE_PROBE4(ip4__forwarding__start, 7657 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7658 7659 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7660 ipst->ips_ipv4firewall_forwarding, 7661 in_ill, out_ill, ipha, mp, mp, ipst); 7662 7663 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7664 7665 if (mp == NULL) 7666 return; 7667 pkt_len = ntohs(ipha->ipha_length); 7668 7669 /* 7670 * ip_mrtun_forward is only used by foreign agent to reverse 7671 * tunnel the incoming packet. So it does not do any option 7672 * processing for source routing. 7673 */ 7674 max_frag = ire->ire_max_frag; 7675 if (pkt_len > max_frag) { 7676 /* 7677 * It needs fragging on its way out. We haven't 7678 * verified the header checksum yet. Since we 7679 * are going to put a surely good checksum in the 7680 * outgoing header, we have to make sure that it 7681 * was good coming in. 7682 */ 7683 if (ip_csum_hdr(ipha)) { 7684 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7685 goto drop_pkt; 7686 } 7687 7688 /* Initiate write side IPPF processing */ 7689 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7690 ip_process(IPP_FWD_OUT, &mp, ill_index); 7691 if (mp == NULL) { 7692 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7693 "dropped/deferred during ip policy "\ 7694 "processing\n")); 7695 return; 7696 } 7697 } 7698 if ((first_mp = allocb(sizeof (ipsec_info_t), 7699 BPRI_HI)) == NULL) { 7700 goto discard_pkt; 7701 } 7702 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7703 mp = first_mp; 7704 7705 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7706 return; 7707 } 7708 7709 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7710 7711 ASSERT(ire->ire_ipif != NULL); 7712 7713 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7714 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7715 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7716 ipst->ips_ipv4firewall_physical_out, 7717 NULL, out_ill, ipha, mp, mp, ipst); 7718 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7719 if (mp == NULL) 7720 return; 7721 7722 /* Now send the packet to the tunnel interface */ 7723 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7724 q = ire->ire_stq; 7725 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7726 if ((pktxmit_state == SEND_FAILED) || 7727 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7728 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7729 q->q_ptr)); 7730 } 7731 7732 return; 7733 discard_pkt: 7734 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7735 drop_pkt:; 7736 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7737 freemsg(mp); 7738 #undef rptr 7739 } 7740 7741 /* 7742 * Fills the ipsec_out_t data structure with appropriate fields and 7743 * prepends it to mp which contains the IP hdr + data that was meant 7744 * to be forwarded. Please note that ipsec_out_info data structure 7745 * is used here to communicate the outgoing ill path at ip_wput() 7746 * for the ICMP error packet. This has nothing to do with ipsec IP 7747 * security. ipsec_out_t is really used to pass the info to the module 7748 * IP where this information cannot be extracted from conn. 7749 * This functions is called by ip_mrtun_forward(). 7750 */ 7751 void 7752 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7753 { 7754 ipsec_out_t *io; 7755 7756 ASSERT(xmit_ill != NULL); 7757 first_mp->b_datap->db_type = M_CTL; 7758 first_mp->b_wptr += sizeof (ipsec_info_t); 7759 /* 7760 * This is to pass info to ip_wput in absence of conn. 7761 * ipsec_out_secure will be B_FALSE because of this. 7762 * Thus ipsec_out_secure being B_FALSE indicates that 7763 * this is not IPSEC security related information. 7764 */ 7765 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7766 io = (ipsec_out_t *)first_mp->b_rptr; 7767 io->ipsec_out_type = IPSEC_OUT; 7768 io->ipsec_out_len = sizeof (ipsec_out_t); 7769 first_mp->b_cont = mp; 7770 io->ipsec_out_ill_index = 7771 xmit_ill->ill_phyint->phyint_ifindex; 7772 io->ipsec_out_xmit_if = B_TRUE; 7773 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7774 } 7775 7776 /* 7777 * Return the network mask 7778 * associated with the specified address. 7779 */ 7780 ipaddr_t 7781 ip_net_mask(ipaddr_t addr) 7782 { 7783 uchar_t *up = (uchar_t *)&addr; 7784 ipaddr_t mask = 0; 7785 uchar_t *maskp = (uchar_t *)&mask; 7786 7787 #if defined(__i386) || defined(__amd64) 7788 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7789 #endif 7790 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7791 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7792 #endif 7793 if (CLASSD(addr)) { 7794 maskp[0] = 0xF0; 7795 return (mask); 7796 } 7797 if (addr == 0) 7798 return (0); 7799 maskp[0] = 0xFF; 7800 if ((up[0] & 0x80) == 0) 7801 return (mask); 7802 7803 maskp[1] = 0xFF; 7804 if ((up[0] & 0xC0) == 0x80) 7805 return (mask); 7806 7807 maskp[2] = 0xFF; 7808 if ((up[0] & 0xE0) == 0xC0) 7809 return (mask); 7810 7811 /* Must be experimental or multicast, indicate as much */ 7812 return ((ipaddr_t)0); 7813 } 7814 7815 /* 7816 * Select an ill for the packet by considering load spreading across 7817 * a different ill in the group if dst_ill is part of some group. 7818 */ 7819 ill_t * 7820 ip_newroute_get_dst_ill(ill_t *dst_ill) 7821 { 7822 ill_t *ill; 7823 7824 /* 7825 * We schedule irrespective of whether the source address is 7826 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7827 */ 7828 ill = illgrp_scheduler(dst_ill); 7829 if (ill == NULL) 7830 return (NULL); 7831 7832 /* 7833 * For groups with names ip_sioctl_groupname ensures that all 7834 * ills are of same type. For groups without names, ifgrp_insert 7835 * ensures this. 7836 */ 7837 ASSERT(dst_ill->ill_type == ill->ill_type); 7838 7839 return (ill); 7840 } 7841 7842 /* 7843 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7844 */ 7845 ill_t * 7846 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7847 ip_stack_t *ipst) 7848 { 7849 ill_t *ret_ill; 7850 7851 ASSERT(ifindex != 0); 7852 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7853 ipst); 7854 if (ret_ill == NULL || 7855 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7856 if (isv6) { 7857 if (ill != NULL) { 7858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7859 } else { 7860 BUMP_MIB(&ipst->ips_ip6_mib, 7861 ipIfStatsOutDiscards); 7862 } 7863 ip1dbg(("ip_grab_attach_ill (IPv6): " 7864 "bad ifindex %d.\n", ifindex)); 7865 } else { 7866 if (ill != NULL) { 7867 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7868 } else { 7869 BUMP_MIB(&ipst->ips_ip_mib, 7870 ipIfStatsOutDiscards); 7871 } 7872 ip1dbg(("ip_grab_attach_ill (IPv4): " 7873 "bad ifindex %d.\n", ifindex)); 7874 } 7875 if (ret_ill != NULL) 7876 ill_refrele(ret_ill); 7877 freemsg(first_mp); 7878 return (NULL); 7879 } 7880 7881 return (ret_ill); 7882 } 7883 7884 /* 7885 * IPv4 - 7886 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7887 * out a packet to a destination address for which we do not have specific 7888 * (or sufficient) routing information. 7889 * 7890 * NOTE : These are the scopes of some of the variables that point at IRE, 7891 * which needs to be followed while making any future modifications 7892 * to avoid memory leaks. 7893 * 7894 * - ire and sire are the entries looked up initially by 7895 * ire_ftable_lookup. 7896 * - ipif_ire is used to hold the interface ire associated with 7897 * the new cache ire. But it's scope is limited, so we always REFRELE 7898 * it before branching out to error paths. 7899 * - save_ire is initialized before ire_create, so that ire returned 7900 * by ire_create will not over-write the ire. We REFRELE save_ire 7901 * before breaking out of the switch. 7902 * 7903 * Thus on failures, we have to REFRELE only ire and sire, if they 7904 * are not NULL. 7905 */ 7906 void 7907 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7908 zoneid_t zoneid, ip_stack_t *ipst) 7909 { 7910 areq_t *areq; 7911 ipaddr_t gw = 0; 7912 ire_t *ire = NULL; 7913 mblk_t *res_mp; 7914 ipaddr_t *addrp; 7915 ipaddr_t nexthop_addr; 7916 ipif_t *src_ipif = NULL; 7917 ill_t *dst_ill = NULL; 7918 ipha_t *ipha; 7919 ire_t *sire = NULL; 7920 mblk_t *first_mp; 7921 ire_t *save_ire; 7922 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7923 ushort_t ire_marks = 0; 7924 boolean_t mctl_present; 7925 ipsec_out_t *io; 7926 mblk_t *saved_mp; 7927 ire_t *first_sire = NULL; 7928 mblk_t *copy_mp = NULL; 7929 mblk_t *xmit_mp = NULL; 7930 ipaddr_t save_dst; 7931 uint32_t multirt_flags = 7932 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7933 boolean_t multirt_is_resolvable; 7934 boolean_t multirt_resolve_next; 7935 boolean_t do_attach_ill = B_FALSE; 7936 boolean_t ip_nexthop = B_FALSE; 7937 tsol_ire_gw_secattr_t *attrp = NULL; 7938 tsol_gcgrp_t *gcgrp = NULL; 7939 tsol_gcgrp_addr_t ga; 7940 7941 if (ip_debug > 2) { 7942 /* ip1dbg */ 7943 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7944 } 7945 7946 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7947 if (mctl_present) { 7948 io = (ipsec_out_t *)first_mp->b_rptr; 7949 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7950 ASSERT(zoneid == io->ipsec_out_zoneid); 7951 ASSERT(zoneid != ALL_ZONES); 7952 } 7953 7954 ipha = (ipha_t *)mp->b_rptr; 7955 7956 /* All multicast lookups come through ip_newroute_ipif() */ 7957 if (CLASSD(dst)) { 7958 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7959 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7960 freemsg(first_mp); 7961 return; 7962 } 7963 7964 if (mctl_present && io->ipsec_out_attach_if) { 7965 /* ip_grab_attach_ill returns a held ill */ 7966 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7967 io->ipsec_out_ill_index, B_FALSE, ipst); 7968 7969 /* Failure case frees things for us. */ 7970 if (attach_ill == NULL) 7971 return; 7972 7973 /* 7974 * Check if we need an ire that will not be 7975 * looked up by anybody else i.e. HIDDEN. 7976 */ 7977 if (ill_is_probeonly(attach_ill)) 7978 ire_marks = IRE_MARK_HIDDEN; 7979 } 7980 if (mctl_present && io->ipsec_out_ip_nexthop) { 7981 ip_nexthop = B_TRUE; 7982 nexthop_addr = io->ipsec_out_nexthop_addr; 7983 } 7984 /* 7985 * If this IRE is created for forwarding or it is not for 7986 * traffic for congestion controlled protocols, mark it as temporary. 7987 */ 7988 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7989 ire_marks |= IRE_MARK_TEMPORARY; 7990 7991 /* 7992 * Get what we can from ire_ftable_lookup which will follow an IRE 7993 * chain until it gets the most specific information available. 7994 * For example, we know that there is no IRE_CACHE for this dest, 7995 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7996 * ire_ftable_lookup will look up the gateway, etc. 7997 * Check if in_ill != NULL. If it is true, the packet must be 7998 * from an incoming interface where RTA_SRCIFP is set. 7999 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8000 * to the destination, of equal netmask length in the forward table, 8001 * will be recursively explored. If no information is available 8002 * for the final gateway of that route, we force the returned ire 8003 * to be equal to sire using MATCH_IRE_PARENT. 8004 * At least, in this case we have a starting point (in the buckets) 8005 * to look for other routes to the destination in the forward table. 8006 * This is actually used only for multirouting, where a list 8007 * of routes has to be processed in sequence. 8008 * 8009 * In the process of coming up with the most specific information, 8010 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8011 * for the gateway (i.e., one for which the ire_nce->nce_state is 8012 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8013 * Two caveats when handling incomplete ire's in ip_newroute: 8014 * - we should be careful when accessing its ire_nce (specifically 8015 * the nce_res_mp) ast it might change underneath our feet, and, 8016 * - not all legacy code path callers are prepared to handle 8017 * incomplete ire's, so we should not create/add incomplete 8018 * ire_cache entries here. (See discussion about temporary solution 8019 * further below). 8020 * 8021 * In order to minimize packet dropping, and to preserve existing 8022 * behavior, we treat this case as if there were no IRE_CACHE for the 8023 * gateway, and instead use the IF_RESOLVER ire to send out 8024 * another request to ARP (this is achieved by passing the 8025 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8026 * arp response comes back in ip_wput_nondata, we will create 8027 * a per-dst ire_cache that has an ND_COMPLETE ire. 8028 * 8029 * Note that this is a temporary solution; the correct solution is 8030 * to create an incomplete per-dst ire_cache entry, and send the 8031 * packet out when the gw's nce is resolved. In order to achieve this, 8032 * all packet processing must have been completed prior to calling 8033 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8034 * to be modified to accomodate this solution. 8035 */ 8036 if (in_ill != NULL) { 8037 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8038 in_ill, MATCH_IRE_TYPE); 8039 } else if (ip_nexthop) { 8040 /* 8041 * The first time we come here, we look for an IRE_INTERFACE 8042 * entry for the specified nexthop, set the dst to be the 8043 * nexthop address and create an IRE_CACHE entry for the 8044 * nexthop. The next time around, we are able to find an 8045 * IRE_CACHE entry for the nexthop, set the gateway to be the 8046 * nexthop address and create an IRE_CACHE entry for the 8047 * destination address via the specified nexthop. 8048 */ 8049 ire = ire_cache_lookup(nexthop_addr, zoneid, 8050 MBLK_GETLABEL(mp), ipst); 8051 if (ire != NULL) { 8052 gw = nexthop_addr; 8053 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8054 } else { 8055 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8056 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8057 MBLK_GETLABEL(mp), 8058 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8059 ipst); 8060 if (ire != NULL) { 8061 dst = nexthop_addr; 8062 } 8063 } 8064 } else if (attach_ill == NULL) { 8065 ire = ire_ftable_lookup(dst, 0, 0, 0, 8066 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8067 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8068 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8069 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8070 ipst); 8071 } else { 8072 /* 8073 * attach_ill is set only for communicating with 8074 * on-link hosts. So, don't look for DEFAULT. 8075 */ 8076 ipif_t *attach_ipif; 8077 8078 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8079 if (attach_ipif == NULL) { 8080 ill_refrele(attach_ill); 8081 goto icmp_err_ret; 8082 } 8083 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8084 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8085 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8086 MATCH_IRE_SECATTR, ipst); 8087 ipif_refrele(attach_ipif); 8088 } 8089 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8090 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8091 8092 /* 8093 * This loop is run only once in most cases. 8094 * We loop to resolve further routes only when the destination 8095 * can be reached through multiple RTF_MULTIRT-flagged ires. 8096 */ 8097 do { 8098 /* Clear the previous iteration's values */ 8099 if (src_ipif != NULL) { 8100 ipif_refrele(src_ipif); 8101 src_ipif = NULL; 8102 } 8103 if (dst_ill != NULL) { 8104 ill_refrele(dst_ill); 8105 dst_ill = NULL; 8106 } 8107 8108 multirt_resolve_next = B_FALSE; 8109 /* 8110 * We check if packets have to be multirouted. 8111 * In this case, given the current <ire, sire> couple, 8112 * we look for the next suitable <ire, sire>. 8113 * This check is done in ire_multirt_lookup(), 8114 * which applies various criteria to find the next route 8115 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8116 * unchanged if it detects it has not been tried yet. 8117 */ 8118 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8119 ip3dbg(("ip_newroute: starting next_resolution " 8120 "with first_mp %p, tag %d\n", 8121 (void *)first_mp, 8122 MULTIRT_DEBUG_TAGGED(first_mp))); 8123 8124 ASSERT(sire != NULL); 8125 multirt_is_resolvable = 8126 ire_multirt_lookup(&ire, &sire, multirt_flags, 8127 MBLK_GETLABEL(mp), ipst); 8128 8129 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8130 "ire %p, sire %p\n", 8131 multirt_is_resolvable, 8132 (void *)ire, (void *)sire)); 8133 8134 if (!multirt_is_resolvable) { 8135 /* 8136 * No more multirt route to resolve; give up 8137 * (all routes resolved or no more 8138 * resolvable routes). 8139 */ 8140 if (ire != NULL) { 8141 ire_refrele(ire); 8142 ire = NULL; 8143 } 8144 } else { 8145 ASSERT(sire != NULL); 8146 ASSERT(ire != NULL); 8147 /* 8148 * We simply use first_sire as a flag that 8149 * indicates if a resolvable multirt route 8150 * has already been found. 8151 * If it is not the case, we may have to send 8152 * an ICMP error to report that the 8153 * destination is unreachable. 8154 * We do not IRE_REFHOLD first_sire. 8155 */ 8156 if (first_sire == NULL) { 8157 first_sire = sire; 8158 } 8159 } 8160 } 8161 if (ire == NULL) { 8162 if (ip_debug > 3) { 8163 /* ip2dbg */ 8164 pr_addr_dbg("ip_newroute: " 8165 "can't resolve %s\n", AF_INET, &dst); 8166 } 8167 ip3dbg(("ip_newroute: " 8168 "ire %p, sire %p, first_sire %p\n", 8169 (void *)ire, (void *)sire, (void *)first_sire)); 8170 8171 if (sire != NULL) { 8172 ire_refrele(sire); 8173 sire = NULL; 8174 } 8175 8176 if (first_sire != NULL) { 8177 /* 8178 * At least one multirt route has been found 8179 * in the same call to ip_newroute(); 8180 * there is no need to report an ICMP error. 8181 * first_sire was not IRE_REFHOLDed. 8182 */ 8183 MULTIRT_DEBUG_UNTAG(first_mp); 8184 freemsg(first_mp); 8185 return; 8186 } 8187 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8188 RTA_DST, ipst); 8189 if (attach_ill != NULL) 8190 ill_refrele(attach_ill); 8191 goto icmp_err_ret; 8192 } 8193 8194 /* 8195 * When RTA_SRCIFP is used to add a route, then an interface 8196 * route is added in the source interface's routing table. 8197 * If the outgoing interface of this route is of type 8198 * IRE_IF_RESOLVER, then upon creation of the ire, 8199 * ire_nce->nce_res_mp is set to NULL. 8200 * Later, when this route is first used for forwarding 8201 * a packet, ip_newroute() is called 8202 * to resolve the hardware address of the outgoing ipif. 8203 * We do not come here for IRE_IF_NORESOLVER entries in the 8204 * source interface based table. We only come here if the 8205 * outgoing interface is a resolver interface and we don't 8206 * have the ire_nce->nce_res_mp information yet. 8207 * If in_ill is not null that means it is called from 8208 * ip_rput. 8209 */ 8210 8211 ASSERT(ire->ire_in_ill == NULL || 8212 (ire->ire_type == IRE_IF_RESOLVER && 8213 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8214 8215 /* 8216 * Verify that the returned IRE does not have either 8217 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8218 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8219 */ 8220 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8221 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8222 if (attach_ill != NULL) 8223 ill_refrele(attach_ill); 8224 goto icmp_err_ret; 8225 } 8226 /* 8227 * Increment the ire_ob_pkt_count field for ire if it is an 8228 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8229 * increment the same for the parent IRE, sire, if it is some 8230 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 8231 * and HOST_REDIRECT). 8232 */ 8233 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8234 UPDATE_OB_PKT_COUNT(ire); 8235 ire->ire_last_used_time = lbolt; 8236 } 8237 8238 if (sire != NULL) { 8239 gw = sire->ire_gateway_addr; 8240 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8241 IRE_INTERFACE)) == 0); 8242 UPDATE_OB_PKT_COUNT(sire); 8243 sire->ire_last_used_time = lbolt; 8244 } 8245 /* 8246 * We have a route to reach the destination. 8247 * 8248 * 1) If the interface is part of ill group, try to get a new 8249 * ill taking load spreading into account. 8250 * 8251 * 2) After selecting the ill, get a source address that 8252 * might create good inbound load spreading. 8253 * ipif_select_source does this for us. 8254 * 8255 * If the application specified the ill (ifindex), we still 8256 * load spread. Only if the packets needs to go out 8257 * specifically on a given ill e.g. binding to 8258 * IPIF_NOFAILOVER address, then we don't try to use a 8259 * different ill for load spreading. 8260 */ 8261 if (attach_ill == NULL) { 8262 /* 8263 * Don't perform outbound load spreading in the 8264 * case of an RTF_MULTIRT route, as we actually 8265 * typically want to replicate outgoing packets 8266 * through particular interfaces. 8267 */ 8268 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8269 dst_ill = ire->ire_ipif->ipif_ill; 8270 /* for uniformity */ 8271 ill_refhold(dst_ill); 8272 } else { 8273 /* 8274 * If we are here trying to create an IRE_CACHE 8275 * for an offlink destination and have the 8276 * IRE_CACHE for the next hop and the latter is 8277 * using virtual IP source address selection i.e 8278 * it's ire->ire_ipif is pointing to a virtual 8279 * network interface (vni) then 8280 * ip_newroute_get_dst_ll() will return the vni 8281 * interface as the dst_ill. Since the vni is 8282 * virtual i.e not associated with any physical 8283 * interface, it cannot be the dst_ill, hence 8284 * in such a case call ip_newroute_get_dst_ll() 8285 * with the stq_ill instead of the ire_ipif ILL. 8286 * The function returns a refheld ill. 8287 */ 8288 if ((ire->ire_type == IRE_CACHE) && 8289 IS_VNI(ire->ire_ipif->ipif_ill)) 8290 dst_ill = ip_newroute_get_dst_ill( 8291 ire->ire_stq->q_ptr); 8292 else 8293 dst_ill = ip_newroute_get_dst_ill( 8294 ire->ire_ipif->ipif_ill); 8295 } 8296 if (dst_ill == NULL) { 8297 if (ip_debug > 2) { 8298 pr_addr_dbg("ip_newroute: " 8299 "no dst ill for dst" 8300 " %s\n", AF_INET, &dst); 8301 } 8302 goto icmp_err_ret; 8303 } 8304 } else { 8305 dst_ill = ire->ire_ipif->ipif_ill; 8306 /* for uniformity */ 8307 ill_refhold(dst_ill); 8308 /* 8309 * We should have found a route matching ill as we 8310 * called ire_ftable_lookup with MATCH_IRE_ILL. 8311 * Rather than asserting, when there is a mismatch, 8312 * we just drop the packet. 8313 */ 8314 if (dst_ill != attach_ill) { 8315 ip0dbg(("ip_newroute: Packet dropped as " 8316 "IPIF_NOFAILOVER ill is %s, " 8317 "ire->ire_ipif->ipif_ill is %s\n", 8318 attach_ill->ill_name, 8319 dst_ill->ill_name)); 8320 ill_refrele(attach_ill); 8321 goto icmp_err_ret; 8322 } 8323 } 8324 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8325 if (attach_ill != NULL) { 8326 ill_refrele(attach_ill); 8327 attach_ill = NULL; 8328 do_attach_ill = B_TRUE; 8329 } 8330 ASSERT(dst_ill != NULL); 8331 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8332 8333 /* 8334 * Pick the best source address from dst_ill. 8335 * 8336 * 1) If it is part of a multipathing group, we would 8337 * like to spread the inbound packets across different 8338 * interfaces. ipif_select_source picks a random source 8339 * across the different ills in the group. 8340 * 8341 * 2) If it is not part of a multipathing group, we try 8342 * to pick the source address from the destination 8343 * route. Clustering assumes that when we have multiple 8344 * prefixes hosted on an interface, the prefix of the 8345 * source address matches the prefix of the destination 8346 * route. We do this only if the address is not 8347 * DEPRECATED. 8348 * 8349 * 3) If the conn is in a different zone than the ire, we 8350 * need to pick a source address from the right zone. 8351 * 8352 * NOTE : If we hit case (1) above, the prefix of the source 8353 * address picked may not match the prefix of the 8354 * destination routes prefix as ipif_select_source 8355 * does not look at "dst" while picking a source 8356 * address. 8357 * If we want the same behavior as (2), we will need 8358 * to change the behavior of ipif_select_source. 8359 */ 8360 ASSERT(src_ipif == NULL); 8361 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8362 /* 8363 * The RTF_SETSRC flag is set in the parent ire (sire). 8364 * Check that the ipif matching the requested source 8365 * address still exists. 8366 */ 8367 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8368 zoneid, NULL, NULL, NULL, NULL, ipst); 8369 } 8370 if (src_ipif == NULL) { 8371 ire_marks |= IRE_MARK_USESRC_CHECK; 8372 if ((dst_ill->ill_group != NULL) || 8373 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8374 (connp != NULL && ire->ire_zoneid != zoneid && 8375 ire->ire_zoneid != ALL_ZONES) || 8376 (dst_ill->ill_usesrc_ifindex != 0)) { 8377 /* 8378 * If the destination is reachable via a 8379 * given gateway, the selected source address 8380 * should be in the same subnet as the gateway. 8381 * Otherwise, the destination is not reachable. 8382 * 8383 * If there are no interfaces on the same subnet 8384 * as the destination, ipif_select_source gives 8385 * first non-deprecated interface which might be 8386 * on a different subnet than the gateway. 8387 * This is not desirable. Hence pass the dst_ire 8388 * source address to ipif_select_source. 8389 * It is sure that the destination is reachable 8390 * with the dst_ire source address subnet. 8391 * So passing dst_ire source address to 8392 * ipif_select_source will make sure that the 8393 * selected source will be on the same subnet 8394 * as dst_ire source address. 8395 */ 8396 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8397 src_ipif = ipif_select_source(dst_ill, saddr, 8398 zoneid); 8399 if (src_ipif == NULL) { 8400 if (ip_debug > 2) { 8401 pr_addr_dbg("ip_newroute: " 8402 "no src for dst %s ", 8403 AF_INET, &dst); 8404 printf("through interface %s\n", 8405 dst_ill->ill_name); 8406 } 8407 goto icmp_err_ret; 8408 } 8409 } else { 8410 src_ipif = ire->ire_ipif; 8411 ASSERT(src_ipif != NULL); 8412 /* hold src_ipif for uniformity */ 8413 ipif_refhold(src_ipif); 8414 } 8415 } 8416 8417 /* 8418 * Assign a source address while we have the conn. 8419 * We can't have ip_wput_ire pick a source address when the 8420 * packet returns from arp since we need to look at 8421 * conn_unspec_src and conn_zoneid, and we lose the conn when 8422 * going through arp. 8423 * 8424 * NOTE : ip_newroute_v6 does not have this piece of code as 8425 * it uses ip6i to store this information. 8426 */ 8427 if (ipha->ipha_src == INADDR_ANY && 8428 (connp == NULL || !connp->conn_unspec_src)) { 8429 ipha->ipha_src = src_ipif->ipif_src_addr; 8430 } 8431 if (ip_debug > 3) { 8432 /* ip2dbg */ 8433 pr_addr_dbg("ip_newroute: first hop %s\n", 8434 AF_INET, &gw); 8435 } 8436 ip2dbg(("\tire type %s (%d)\n", 8437 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8438 8439 /* 8440 * The TTL of multirouted packets is bounded by the 8441 * ip_multirt_ttl ndd variable. 8442 */ 8443 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8444 /* Force TTL of multirouted packets */ 8445 if ((ipst->ips_ip_multirt_ttl > 0) && 8446 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8447 ip2dbg(("ip_newroute: forcing multirt TTL " 8448 "to %d (was %d), dst 0x%08x\n", 8449 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8450 ntohl(sire->ire_addr))); 8451 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8452 } 8453 } 8454 /* 8455 * At this point in ip_newroute(), ire is either the 8456 * IRE_CACHE of the next-hop gateway for an off-subnet 8457 * destination or an IRE_INTERFACE type that should be used 8458 * to resolve an on-subnet destination or an on-subnet 8459 * next-hop gateway. 8460 * 8461 * In the IRE_CACHE case, we have the following : 8462 * 8463 * 1) src_ipif - used for getting a source address. 8464 * 8465 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8466 * means packets using this IRE_CACHE will go out on 8467 * dst_ill. 8468 * 8469 * 3) The IRE sire will point to the prefix that is the 8470 * longest matching route for the destination. These 8471 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8472 * 8473 * The newly created IRE_CACHE entry for the off-subnet 8474 * destination is tied to both the prefix route and the 8475 * interface route used to resolve the next-hop gateway 8476 * via the ire_phandle and ire_ihandle fields, 8477 * respectively. 8478 * 8479 * In the IRE_INTERFACE case, we have the following : 8480 * 8481 * 1) src_ipif - used for getting a source address. 8482 * 8483 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8484 * means packets using the IRE_CACHE that we will build 8485 * here will go out on dst_ill. 8486 * 8487 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8488 * to be created will only be tied to the IRE_INTERFACE 8489 * that was derived from the ire_ihandle field. 8490 * 8491 * If sire is non-NULL, it means the destination is 8492 * off-link and we will first create the IRE_CACHE for the 8493 * gateway. Next time through ip_newroute, we will create 8494 * the IRE_CACHE for the final destination as described 8495 * above. 8496 * 8497 * In both cases, after the current resolution has been 8498 * completed (or possibly initialised, in the IRE_INTERFACE 8499 * case), the loop may be re-entered to attempt the resolution 8500 * of another RTF_MULTIRT route. 8501 * 8502 * When an IRE_CACHE entry for the off-subnet destination is 8503 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8504 * for further processing in emission loops. 8505 */ 8506 save_ire = ire; 8507 switch (ire->ire_type) { 8508 case IRE_CACHE: { 8509 ire_t *ipif_ire; 8510 mblk_t *ire_fp_mp; 8511 8512 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8513 if (gw == 0) 8514 gw = ire->ire_gateway_addr; 8515 /* 8516 * We need 3 ire's to create a new cache ire for an 8517 * off-link destination from the cache ire of the 8518 * gateway. 8519 * 8520 * 1. The prefix ire 'sire' (Note that this does 8521 * not apply to the conn_nexthop_set case) 8522 * 2. The cache ire of the gateway 'ire' 8523 * 3. The interface ire 'ipif_ire' 8524 * 8525 * We have (1) and (2). We lookup (3) below. 8526 * 8527 * If there is no interface route to the gateway, 8528 * it is a race condition, where we found the cache 8529 * but the interface route has been deleted. 8530 */ 8531 if (ip_nexthop) { 8532 ipif_ire = ire_ihandle_lookup_onlink(ire); 8533 } else { 8534 ipif_ire = 8535 ire_ihandle_lookup_offlink(ire, sire); 8536 } 8537 if (ipif_ire == NULL) { 8538 ip1dbg(("ip_newroute: " 8539 "ire_ihandle_lookup_offlink failed\n")); 8540 goto icmp_err_ret; 8541 } 8542 /* 8543 * XXX We are using the same res_mp 8544 * (DL_UNITDATA_REQ) though the save_ire is not 8545 * pointing at the same ill. 8546 * This is incorrect. We need to send it up to the 8547 * resolver to get the right res_mp. For ethernets 8548 * this may be okay (ill_type == DL_ETHER). 8549 */ 8550 res_mp = save_ire->ire_nce->nce_res_mp; 8551 ire_fp_mp = NULL; 8552 8553 /* 8554 * Check cached gateway IRE for any security 8555 * attributes; if found, associate the gateway 8556 * credentials group to the destination IRE. 8557 */ 8558 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8559 mutex_enter(&attrp->igsa_lock); 8560 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8561 GCGRP_REFHOLD(gcgrp); 8562 mutex_exit(&attrp->igsa_lock); 8563 } 8564 8565 ire = ire_create( 8566 (uchar_t *)&dst, /* dest address */ 8567 (uchar_t *)&ip_g_all_ones, /* mask */ 8568 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8569 (uchar_t *)&gw, /* gateway address */ 8570 NULL, 8571 &save_ire->ire_max_frag, 8572 ire_fp_mp, /* Fast Path header */ 8573 dst_ill->ill_rq, /* recv-from queue */ 8574 dst_ill->ill_wq, /* send-to queue */ 8575 IRE_CACHE, /* IRE type */ 8576 res_mp, 8577 src_ipif, 8578 in_ill, /* incoming ill */ 8579 (sire != NULL) ? 8580 sire->ire_mask : 0, /* Parent mask */ 8581 (sire != NULL) ? 8582 sire->ire_phandle : 0, /* Parent handle */ 8583 ipif_ire->ire_ihandle, /* Interface handle */ 8584 (sire != NULL) ? (sire->ire_flags & 8585 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8586 (sire != NULL) ? 8587 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8588 NULL, 8589 gcgrp, 8590 ipst); 8591 8592 if (ire == NULL) { 8593 if (gcgrp != NULL) { 8594 GCGRP_REFRELE(gcgrp); 8595 gcgrp = NULL; 8596 } 8597 ire_refrele(ipif_ire); 8598 ire_refrele(save_ire); 8599 break; 8600 } 8601 8602 /* reference now held by IRE */ 8603 gcgrp = NULL; 8604 8605 ire->ire_marks |= ire_marks; 8606 8607 /* 8608 * Prevent sire and ipif_ire from getting deleted. 8609 * The newly created ire is tied to both of them via 8610 * the phandle and ihandle respectively. 8611 */ 8612 if (sire != NULL) { 8613 IRB_REFHOLD(sire->ire_bucket); 8614 /* Has it been removed already ? */ 8615 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8616 IRB_REFRELE(sire->ire_bucket); 8617 ire_refrele(ipif_ire); 8618 ire_refrele(save_ire); 8619 break; 8620 } 8621 } 8622 8623 IRB_REFHOLD(ipif_ire->ire_bucket); 8624 /* Has it been removed already ? */ 8625 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8626 IRB_REFRELE(ipif_ire->ire_bucket); 8627 if (sire != NULL) 8628 IRB_REFRELE(sire->ire_bucket); 8629 ire_refrele(ipif_ire); 8630 ire_refrele(save_ire); 8631 break; 8632 } 8633 8634 xmit_mp = first_mp; 8635 /* 8636 * In the case of multirouting, a copy 8637 * of the packet is done before its sending. 8638 * The copy is used to attempt another 8639 * route resolution, in a next loop. 8640 */ 8641 if (ire->ire_flags & RTF_MULTIRT) { 8642 copy_mp = copymsg(first_mp); 8643 if (copy_mp != NULL) { 8644 xmit_mp = copy_mp; 8645 MULTIRT_DEBUG_TAG(first_mp); 8646 } 8647 } 8648 ire_add_then_send(q, ire, xmit_mp); 8649 ire_refrele(save_ire); 8650 8651 /* Assert that sire is not deleted yet. */ 8652 if (sire != NULL) { 8653 ASSERT(sire->ire_ptpn != NULL); 8654 IRB_REFRELE(sire->ire_bucket); 8655 } 8656 8657 /* Assert that ipif_ire is not deleted yet. */ 8658 ASSERT(ipif_ire->ire_ptpn != NULL); 8659 IRB_REFRELE(ipif_ire->ire_bucket); 8660 ire_refrele(ipif_ire); 8661 8662 /* 8663 * If copy_mp is not NULL, multirouting was 8664 * requested. We loop to initiate a next 8665 * route resolution attempt, starting from sire. 8666 */ 8667 if (copy_mp != NULL) { 8668 /* 8669 * Search for the next unresolved 8670 * multirt route. 8671 */ 8672 copy_mp = NULL; 8673 ipif_ire = NULL; 8674 ire = NULL; 8675 multirt_resolve_next = B_TRUE; 8676 continue; 8677 } 8678 if (sire != NULL) 8679 ire_refrele(sire); 8680 ipif_refrele(src_ipif); 8681 ill_refrele(dst_ill); 8682 return; 8683 } 8684 case IRE_IF_NORESOLVER: { 8685 /* 8686 * We have what we need to build an IRE_CACHE. 8687 * 8688 * Create a new res_mp with the IP gateway address 8689 * in destination address in the DLPI hdr if the 8690 * physical length is exactly 4 bytes. 8691 */ 8692 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8693 uchar_t *addr; 8694 8695 if (gw) 8696 addr = (uchar_t *)&gw; 8697 else 8698 addr = (uchar_t *)&dst; 8699 8700 res_mp = ill_dlur_gen(addr, 8701 dst_ill->ill_phys_addr_length, 8702 dst_ill->ill_sap, 8703 dst_ill->ill_sap_length); 8704 8705 if (res_mp == NULL) { 8706 ip1dbg(("ip_newroute: res_mp NULL\n")); 8707 break; 8708 } 8709 } else if (dst_ill->ill_resolver_mp == NULL) { 8710 ip1dbg(("ip_newroute: dst_ill %p " 8711 "for IF_NORESOLV ire %p has " 8712 "no ill_resolver_mp\n", 8713 (void *)dst_ill, (void *)ire)); 8714 break; 8715 } else { 8716 res_mp = NULL; 8717 } 8718 8719 /* 8720 * TSol note: We are creating the ire cache for the 8721 * destination 'dst'. If 'dst' is offlink, going 8722 * through the first hop 'gw', the security attributes 8723 * of 'dst' must be set to point to the gateway 8724 * credentials of gateway 'gw'. If 'dst' is onlink, it 8725 * is possible that 'dst' is a potential gateway that is 8726 * referenced by some route that has some security 8727 * attributes. Thus in the former case, we need to do a 8728 * gcgrp_lookup of 'gw' while in the latter case we 8729 * need to do gcgrp_lookup of 'dst' itself. 8730 */ 8731 ga.ga_af = AF_INET; 8732 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8733 &ga.ga_addr); 8734 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8735 8736 ire = ire_create( 8737 (uchar_t *)&dst, /* dest address */ 8738 (uchar_t *)&ip_g_all_ones, /* mask */ 8739 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8740 (uchar_t *)&gw, /* gateway address */ 8741 NULL, 8742 &save_ire->ire_max_frag, 8743 NULL, /* Fast Path header */ 8744 dst_ill->ill_rq, /* recv-from queue */ 8745 dst_ill->ill_wq, /* send-to queue */ 8746 IRE_CACHE, 8747 res_mp, 8748 src_ipif, 8749 in_ill, /* Incoming ill */ 8750 save_ire->ire_mask, /* Parent mask */ 8751 (sire != NULL) ? /* Parent handle */ 8752 sire->ire_phandle : 0, 8753 save_ire->ire_ihandle, /* Interface handle */ 8754 (sire != NULL) ? sire->ire_flags & 8755 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8756 &(save_ire->ire_uinfo), 8757 NULL, 8758 gcgrp, 8759 ipst); 8760 8761 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8762 freeb(res_mp); 8763 8764 if (ire == NULL) { 8765 if (gcgrp != NULL) { 8766 GCGRP_REFRELE(gcgrp); 8767 gcgrp = NULL; 8768 } 8769 ire_refrele(save_ire); 8770 break; 8771 } 8772 8773 /* reference now held by IRE */ 8774 gcgrp = NULL; 8775 8776 ire->ire_marks |= ire_marks; 8777 8778 /* Prevent save_ire from getting deleted */ 8779 IRB_REFHOLD(save_ire->ire_bucket); 8780 /* Has it been removed already ? */ 8781 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8782 IRB_REFRELE(save_ire->ire_bucket); 8783 ire_refrele(save_ire); 8784 break; 8785 } 8786 8787 /* 8788 * In the case of multirouting, a copy 8789 * of the packet is made before it is sent. 8790 * The copy is used in the next 8791 * loop to attempt another resolution. 8792 */ 8793 xmit_mp = first_mp; 8794 if ((sire != NULL) && 8795 (sire->ire_flags & RTF_MULTIRT)) { 8796 copy_mp = copymsg(first_mp); 8797 if (copy_mp != NULL) { 8798 xmit_mp = copy_mp; 8799 MULTIRT_DEBUG_TAG(first_mp); 8800 } 8801 } 8802 ire_add_then_send(q, ire, xmit_mp); 8803 8804 /* Assert that it is not deleted yet. */ 8805 ASSERT(save_ire->ire_ptpn != NULL); 8806 IRB_REFRELE(save_ire->ire_bucket); 8807 ire_refrele(save_ire); 8808 8809 if (copy_mp != NULL) { 8810 /* 8811 * If we found a (no)resolver, we ignore any 8812 * trailing top priority IRE_CACHE in further 8813 * loops. This ensures that we do not omit any 8814 * (no)resolver. 8815 * This IRE_CACHE, if any, will be processed 8816 * by another thread entering ip_newroute(). 8817 * IRE_CACHE entries, if any, will be processed 8818 * by another thread entering ip_newroute(), 8819 * (upon resolver response, for instance). 8820 * This aims to force parallel multirt 8821 * resolutions as soon as a packet must be sent. 8822 * In the best case, after the tx of only one 8823 * packet, all reachable routes are resolved. 8824 * Otherwise, the resolution of all RTF_MULTIRT 8825 * routes would require several emissions. 8826 */ 8827 multirt_flags &= ~MULTIRT_CACHEGW; 8828 8829 /* 8830 * Search for the next unresolved multirt 8831 * route. 8832 */ 8833 copy_mp = NULL; 8834 save_ire = NULL; 8835 ire = NULL; 8836 multirt_resolve_next = B_TRUE; 8837 continue; 8838 } 8839 8840 /* 8841 * Don't need sire anymore 8842 */ 8843 if (sire != NULL) 8844 ire_refrele(sire); 8845 8846 ipif_refrele(src_ipif); 8847 ill_refrele(dst_ill); 8848 return; 8849 } 8850 case IRE_IF_RESOLVER: 8851 /* 8852 * We can't build an IRE_CACHE yet, but at least we 8853 * found a resolver that can help. 8854 */ 8855 res_mp = dst_ill->ill_resolver_mp; 8856 if (!OK_RESOLVER_MP(res_mp)) 8857 break; 8858 8859 /* 8860 * To be at this point in the code with a non-zero gw 8861 * means that dst is reachable through a gateway that 8862 * we have never resolved. By changing dst to the gw 8863 * addr we resolve the gateway first. 8864 * When ire_add_then_send() tries to put the IP dg 8865 * to dst, it will reenter ip_newroute() at which 8866 * time we will find the IRE_CACHE for the gw and 8867 * create another IRE_CACHE in case IRE_CACHE above. 8868 */ 8869 if (gw != INADDR_ANY) { 8870 /* 8871 * The source ipif that was determined above was 8872 * relative to the destination address, not the 8873 * gateway's. If src_ipif was not taken out of 8874 * the IRE_IF_RESOLVER entry, we'll need to call 8875 * ipif_select_source() again. 8876 */ 8877 if (src_ipif != ire->ire_ipif) { 8878 ipif_refrele(src_ipif); 8879 src_ipif = ipif_select_source(dst_ill, 8880 gw, zoneid); 8881 if (src_ipif == NULL) { 8882 if (ip_debug > 2) { 8883 pr_addr_dbg( 8884 "ip_newroute: no " 8885 "src for gw %s ", 8886 AF_INET, &gw); 8887 printf("through " 8888 "interface %s\n", 8889 dst_ill->ill_name); 8890 } 8891 goto icmp_err_ret; 8892 } 8893 } 8894 save_dst = dst; 8895 dst = gw; 8896 gw = INADDR_ANY; 8897 } 8898 8899 /* 8900 * We obtain a partial IRE_CACHE which we will pass 8901 * along with the resolver query. When the response 8902 * comes back it will be there ready for us to add. 8903 * The ire_max_frag is atomically set under the 8904 * irebucket lock in ire_add_v[46]. 8905 */ 8906 8907 ire = ire_create_mp( 8908 (uchar_t *)&dst, /* dest address */ 8909 (uchar_t *)&ip_g_all_ones, /* mask */ 8910 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8911 (uchar_t *)&gw, /* gateway address */ 8912 NULL, /* no in_src_addr */ 8913 NULL, /* ire_max_frag */ 8914 NULL, /* Fast Path header */ 8915 dst_ill->ill_rq, /* recv-from queue */ 8916 dst_ill->ill_wq, /* send-to queue */ 8917 IRE_CACHE, 8918 NULL, 8919 src_ipif, /* Interface ipif */ 8920 in_ill, /* Incoming ILL */ 8921 save_ire->ire_mask, /* Parent mask */ 8922 0, 8923 save_ire->ire_ihandle, /* Interface handle */ 8924 0, /* flags if any */ 8925 &(save_ire->ire_uinfo), 8926 NULL, 8927 NULL, 8928 ipst); 8929 8930 if (ire == NULL) { 8931 ire_refrele(save_ire); 8932 break; 8933 } 8934 8935 if ((sire != NULL) && 8936 (sire->ire_flags & RTF_MULTIRT)) { 8937 copy_mp = copymsg(first_mp); 8938 if (copy_mp != NULL) 8939 MULTIRT_DEBUG_TAG(copy_mp); 8940 } 8941 8942 ire->ire_marks |= ire_marks; 8943 8944 /* 8945 * Construct message chain for the resolver 8946 * of the form: 8947 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8948 * Packet could contain a IPSEC_OUT mp. 8949 * 8950 * NOTE : ire will be added later when the response 8951 * comes back from ARP. If the response does not 8952 * come back, ARP frees the packet. For this reason, 8953 * we can't REFHOLD the bucket of save_ire to prevent 8954 * deletions. We may not be able to REFRELE the bucket 8955 * if the response never comes back. Thus, before 8956 * adding the ire, ire_add_v4 will make sure that the 8957 * interface route does not get deleted. This is the 8958 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8959 * where we can always prevent deletions because of 8960 * the synchronous nature of adding IRES i.e 8961 * ire_add_then_send is called after creating the IRE. 8962 */ 8963 ASSERT(ire->ire_mp != NULL); 8964 ire->ire_mp->b_cont = first_mp; 8965 /* Have saved_mp handy, for cleanup if canput fails */ 8966 saved_mp = mp; 8967 mp = copyb(res_mp); 8968 if (mp == NULL) { 8969 /* Prepare for cleanup */ 8970 mp = saved_mp; /* pkt */ 8971 ire_delete(ire); /* ire_mp */ 8972 ire = NULL; 8973 ire_refrele(save_ire); 8974 if (copy_mp != NULL) { 8975 MULTIRT_DEBUG_UNTAG(copy_mp); 8976 freemsg(copy_mp); 8977 copy_mp = NULL; 8978 } 8979 break; 8980 } 8981 linkb(mp, ire->ire_mp); 8982 8983 /* 8984 * Fill in the source and dest addrs for the resolver. 8985 * NOTE: this depends on memory layouts imposed by 8986 * ill_init(). 8987 */ 8988 areq = (areq_t *)mp->b_rptr; 8989 addrp = (ipaddr_t *)((char *)areq + 8990 areq->areq_sender_addr_offset); 8991 if (do_attach_ill) { 8992 /* 8993 * This is bind to no failover case. 8994 * arp packet also must go out on attach_ill. 8995 */ 8996 ASSERT(ipha->ipha_src != NULL); 8997 *addrp = ipha->ipha_src; 8998 } else { 8999 *addrp = save_ire->ire_src_addr; 9000 } 9001 9002 ire_refrele(save_ire); 9003 addrp = (ipaddr_t *)((char *)areq + 9004 areq->areq_target_addr_offset); 9005 *addrp = dst; 9006 /* Up to the resolver. */ 9007 if (canputnext(dst_ill->ill_rq) && 9008 !(dst_ill->ill_arp_closing)) { 9009 putnext(dst_ill->ill_rq, mp); 9010 ire = NULL; 9011 if (copy_mp != NULL) { 9012 /* 9013 * If we found a resolver, we ignore 9014 * any trailing top priority IRE_CACHE 9015 * in the further loops. This ensures 9016 * that we do not omit any resolver. 9017 * IRE_CACHE entries, if any, will be 9018 * processed next time we enter 9019 * ip_newroute(). 9020 */ 9021 multirt_flags &= ~MULTIRT_CACHEGW; 9022 /* 9023 * Search for the next unresolved 9024 * multirt route. 9025 */ 9026 first_mp = copy_mp; 9027 copy_mp = NULL; 9028 /* Prepare the next resolution loop. */ 9029 mp = first_mp; 9030 EXTRACT_PKT_MP(mp, first_mp, 9031 mctl_present); 9032 if (mctl_present) 9033 io = (ipsec_out_t *) 9034 first_mp->b_rptr; 9035 ipha = (ipha_t *)mp->b_rptr; 9036 9037 ASSERT(sire != NULL); 9038 9039 dst = save_dst; 9040 multirt_resolve_next = B_TRUE; 9041 continue; 9042 } 9043 9044 if (sire != NULL) 9045 ire_refrele(sire); 9046 9047 /* 9048 * The response will come back in ip_wput 9049 * with db_type IRE_DB_TYPE. 9050 */ 9051 ipif_refrele(src_ipif); 9052 ill_refrele(dst_ill); 9053 return; 9054 } else { 9055 /* Prepare for cleanup */ 9056 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9057 mp); 9058 mp->b_cont = NULL; 9059 freeb(mp); /* areq */ 9060 /* 9061 * this is an ire that is not added to the 9062 * cache. ire_freemblk will handle the release 9063 * of any resources associated with the ire. 9064 */ 9065 ire_delete(ire); /* ire_mp */ 9066 mp = saved_mp; /* pkt */ 9067 ire = NULL; 9068 if (copy_mp != NULL) { 9069 MULTIRT_DEBUG_UNTAG(copy_mp); 9070 freemsg(copy_mp); 9071 copy_mp = NULL; 9072 } 9073 break; 9074 } 9075 default: 9076 break; 9077 } 9078 } while (multirt_resolve_next); 9079 9080 ip1dbg(("ip_newroute: dropped\n")); 9081 /* Did this packet originate externally? */ 9082 if (mp->b_prev) { 9083 mp->b_next = NULL; 9084 mp->b_prev = NULL; 9085 if (in_ill != NULL) { 9086 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9087 } else { 9088 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9089 } 9090 } else { 9091 if (dst_ill != NULL) { 9092 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9093 } else { 9094 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9095 } 9096 } 9097 ASSERT(copy_mp == NULL); 9098 MULTIRT_DEBUG_UNTAG(first_mp); 9099 freemsg(first_mp); 9100 if (ire != NULL) 9101 ire_refrele(ire); 9102 if (sire != NULL) 9103 ire_refrele(sire); 9104 if (src_ipif != NULL) 9105 ipif_refrele(src_ipif); 9106 if (dst_ill != NULL) 9107 ill_refrele(dst_ill); 9108 return; 9109 9110 icmp_err_ret: 9111 ip1dbg(("ip_newroute: no route\n")); 9112 if (src_ipif != NULL) 9113 ipif_refrele(src_ipif); 9114 if (dst_ill != NULL) 9115 ill_refrele(dst_ill); 9116 if (sire != NULL) 9117 ire_refrele(sire); 9118 /* Did this packet originate externally? */ 9119 if (mp->b_prev) { 9120 mp->b_next = NULL; 9121 mp->b_prev = NULL; 9122 if (in_ill != NULL) { 9123 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9124 } else { 9125 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9126 } 9127 q = WR(q); 9128 } else { 9129 /* 9130 * There is no outgoing ill, so just increment the 9131 * system MIB. 9132 */ 9133 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9134 /* 9135 * Since ip_wput() isn't close to finished, we fill 9136 * in enough of the header for credible error reporting. 9137 */ 9138 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9139 /* Failed */ 9140 MULTIRT_DEBUG_UNTAG(first_mp); 9141 freemsg(first_mp); 9142 if (ire != NULL) 9143 ire_refrele(ire); 9144 return; 9145 } 9146 } 9147 9148 /* 9149 * At this point we will have ire only if RTF_BLACKHOLE 9150 * or RTF_REJECT flags are set on the IRE. It will not 9151 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9152 */ 9153 if (ire != NULL) { 9154 if (ire->ire_flags & RTF_BLACKHOLE) { 9155 ire_refrele(ire); 9156 MULTIRT_DEBUG_UNTAG(first_mp); 9157 freemsg(first_mp); 9158 return; 9159 } 9160 ire_refrele(ire); 9161 } 9162 if (ip_source_routed(ipha, ipst)) { 9163 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9164 zoneid, ipst); 9165 return; 9166 } 9167 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9168 } 9169 9170 ip_opt_info_t zero_info; 9171 9172 /* 9173 * IPv4 - 9174 * ip_newroute_ipif is called by ip_wput_multicast and 9175 * ip_rput_forward_multicast whenever we need to send 9176 * out a packet to a destination address for which we do not have specific 9177 * routing information. It is used when the packet will be sent out 9178 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9179 * socket option is set or icmp error message wants to go out on a particular 9180 * interface for a unicast packet. 9181 * 9182 * In most cases, the destination address is resolved thanks to the ipif 9183 * intrinsic resolver. However, there are some cases where the call to 9184 * ip_newroute_ipif must take into account the potential presence of 9185 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9186 * that uses the interface. This is specified through flags, 9187 * which can be a combination of: 9188 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9189 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9190 * and flags. Additionally, the packet source address has to be set to 9191 * the specified address. The caller is thus expected to set this flag 9192 * if the packet has no specific source address yet. 9193 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9194 * flag, the resulting ire will inherit the flag. All unresolved routes 9195 * to the destination must be explored in the same call to 9196 * ip_newroute_ipif(). 9197 */ 9198 static void 9199 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9200 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9201 { 9202 areq_t *areq; 9203 ire_t *ire = NULL; 9204 mblk_t *res_mp; 9205 ipaddr_t *addrp; 9206 mblk_t *first_mp; 9207 ire_t *save_ire = NULL; 9208 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9209 ipif_t *src_ipif = NULL; 9210 ushort_t ire_marks = 0; 9211 ill_t *dst_ill = NULL; 9212 boolean_t mctl_present; 9213 ipsec_out_t *io; 9214 ipha_t *ipha; 9215 int ihandle = 0; 9216 mblk_t *saved_mp; 9217 ire_t *fire = NULL; 9218 mblk_t *copy_mp = NULL; 9219 boolean_t multirt_resolve_next; 9220 ipaddr_t ipha_dst; 9221 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9222 9223 /* 9224 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9225 * here for uniformity 9226 */ 9227 ipif_refhold(ipif); 9228 9229 /* 9230 * This loop is run only once in most cases. 9231 * We loop to resolve further routes only when the destination 9232 * can be reached through multiple RTF_MULTIRT-flagged ires. 9233 */ 9234 do { 9235 if (dst_ill != NULL) { 9236 ill_refrele(dst_ill); 9237 dst_ill = NULL; 9238 } 9239 if (src_ipif != NULL) { 9240 ipif_refrele(src_ipif); 9241 src_ipif = NULL; 9242 } 9243 multirt_resolve_next = B_FALSE; 9244 9245 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9246 ipif->ipif_ill->ill_name)); 9247 9248 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9249 if (mctl_present) 9250 io = (ipsec_out_t *)first_mp->b_rptr; 9251 9252 ipha = (ipha_t *)mp->b_rptr; 9253 9254 /* 9255 * Save the packet destination address, we may need it after 9256 * the packet has been consumed. 9257 */ 9258 ipha_dst = ipha->ipha_dst; 9259 9260 /* 9261 * If the interface is a pt-pt interface we look for an 9262 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9263 * local_address and the pt-pt destination address. Otherwise 9264 * we just match the local address. 9265 * NOTE: dst could be different than ipha->ipha_dst in case 9266 * of sending igmp multicast packets over a point-to-point 9267 * connection. 9268 * Thus we must be careful enough to check ipha_dst to be a 9269 * multicast address, otherwise it will take xmit_if path for 9270 * multicast packets resulting into kernel stack overflow by 9271 * repeated calls to ip_newroute_ipif from ire_send(). 9272 */ 9273 if (CLASSD(ipha_dst) && 9274 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9275 goto err_ret; 9276 } 9277 9278 /* 9279 * We check if an IRE_OFFSUBNET for the addr that goes through 9280 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9281 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9282 * propagate its flags to the new ire. 9283 */ 9284 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9285 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9286 ip2dbg(("ip_newroute_ipif: " 9287 "ipif_lookup_multi_ire(" 9288 "ipif %p, dst %08x) = fire %p\n", 9289 (void *)ipif, ntohl(dst), (void *)fire)); 9290 } 9291 9292 if (mctl_present && io->ipsec_out_attach_if) { 9293 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9294 io->ipsec_out_ill_index, B_FALSE, ipst); 9295 9296 /* Failure case frees things for us. */ 9297 if (attach_ill == NULL) { 9298 ipif_refrele(ipif); 9299 if (fire != NULL) 9300 ire_refrele(fire); 9301 return; 9302 } 9303 9304 /* 9305 * Check if we need an ire that will not be 9306 * looked up by anybody else i.e. HIDDEN. 9307 */ 9308 if (ill_is_probeonly(attach_ill)) { 9309 ire_marks = IRE_MARK_HIDDEN; 9310 } 9311 /* 9312 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9313 * case. 9314 */ 9315 dst_ill = ipif->ipif_ill; 9316 /* attach_ill has been refheld by ip_grab_attach_ill */ 9317 ASSERT(dst_ill == attach_ill); 9318 } else { 9319 /* 9320 * If this is set by IP_XMIT_IF, then make sure that 9321 * ipif is pointing to the same ill as the IP_XMIT_IF 9322 * specified ill. 9323 */ 9324 ASSERT((connp == NULL) || 9325 (connp->conn_xmit_if_ill == NULL) || 9326 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9327 /* 9328 * If the interface belongs to an interface group, 9329 * make sure the next possible interface in the group 9330 * is used. This encourages load spreading among 9331 * peers in an interface group. 9332 * Note: load spreading is disabled for RTF_MULTIRT 9333 * routes. 9334 */ 9335 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9336 (fire->ire_flags & RTF_MULTIRT)) { 9337 /* 9338 * Don't perform outbound load spreading 9339 * in the case of an RTF_MULTIRT issued route, 9340 * we actually typically want to replicate 9341 * outgoing packets through particular 9342 * interfaces. 9343 */ 9344 dst_ill = ipif->ipif_ill; 9345 ill_refhold(dst_ill); 9346 } else { 9347 dst_ill = ip_newroute_get_dst_ill( 9348 ipif->ipif_ill); 9349 } 9350 if (dst_ill == NULL) { 9351 if (ip_debug > 2) { 9352 pr_addr_dbg("ip_newroute_ipif: " 9353 "no dst ill for dst %s\n", 9354 AF_INET, &dst); 9355 } 9356 goto err_ret; 9357 } 9358 } 9359 9360 /* 9361 * Pick a source address preferring non-deprecated ones. 9362 * Unlike ip_newroute, we don't do any source address 9363 * selection here since for multicast it really does not help 9364 * in inbound load spreading as in the unicast case. 9365 */ 9366 if ((flags & RTF_SETSRC) && (fire != NULL) && 9367 (fire->ire_flags & RTF_SETSRC)) { 9368 /* 9369 * As requested by flags, an IRE_OFFSUBNET was looked up 9370 * on that interface. This ire has RTF_SETSRC flag, so 9371 * the source address of the packet must be changed. 9372 * Check that the ipif matching the requested source 9373 * address still exists. 9374 */ 9375 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9376 zoneid, NULL, NULL, NULL, NULL, ipst); 9377 } 9378 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9379 (connp != NULL && ipif->ipif_zoneid != zoneid && 9380 ipif->ipif_zoneid != ALL_ZONES)) && 9381 (src_ipif == NULL)) { 9382 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9383 if (src_ipif == NULL) { 9384 if (ip_debug > 2) { 9385 /* ip1dbg */ 9386 pr_addr_dbg("ip_newroute_ipif: " 9387 "no src for dst %s", 9388 AF_INET, &dst); 9389 } 9390 ip1dbg((" through interface %s\n", 9391 dst_ill->ill_name)); 9392 goto err_ret; 9393 } 9394 ipif_refrele(ipif); 9395 ipif = src_ipif; 9396 ipif_refhold(ipif); 9397 } 9398 if (src_ipif == NULL) { 9399 src_ipif = ipif; 9400 ipif_refhold(src_ipif); 9401 } 9402 9403 /* 9404 * Assign a source address while we have the conn. 9405 * We can't have ip_wput_ire pick a source address when the 9406 * packet returns from arp since conn_unspec_src might be set 9407 * and we loose the conn when going through arp. 9408 */ 9409 if (ipha->ipha_src == INADDR_ANY && 9410 (connp == NULL || !connp->conn_unspec_src)) { 9411 ipha->ipha_src = src_ipif->ipif_src_addr; 9412 } 9413 9414 /* 9415 * In case of IP_XMIT_IF, it is possible that the outgoing 9416 * interface does not have an interface ire. 9417 * Example: Thousands of mobileip PPP interfaces to mobile 9418 * nodes. We don't want to create interface ires because 9419 * packets from other mobile nodes must not take the route 9420 * via interface ires to the visiting mobile node without 9421 * going through the home agent, in absence of mobileip 9422 * route optimization. 9423 */ 9424 if (CLASSD(ipha_dst) && (connp == NULL || 9425 connp->conn_xmit_if_ill == NULL) && 9426 infop->ip_opt_ill_index == 0) { 9427 /* ipif_to_ire returns an held ire */ 9428 ire = ipif_to_ire(ipif); 9429 if (ire == NULL) 9430 goto err_ret; 9431 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9432 goto err_ret; 9433 /* 9434 * ihandle is needed when the ire is added to 9435 * cache table. 9436 */ 9437 save_ire = ire; 9438 ihandle = save_ire->ire_ihandle; 9439 9440 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9441 "flags %04x\n", 9442 (void *)ire, (void *)ipif, flags)); 9443 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9444 (fire->ire_flags & RTF_MULTIRT)) { 9445 /* 9446 * As requested by flags, an IRE_OFFSUBNET was 9447 * looked up on that interface. This ire has 9448 * RTF_MULTIRT flag, so the resolution loop will 9449 * be re-entered to resolve additional routes on 9450 * other interfaces. For that purpose, a copy of 9451 * the packet is performed at this point. 9452 */ 9453 fire->ire_last_used_time = lbolt; 9454 copy_mp = copymsg(first_mp); 9455 if (copy_mp) { 9456 MULTIRT_DEBUG_TAG(copy_mp); 9457 } 9458 } 9459 if ((flags & RTF_SETSRC) && (fire != NULL) && 9460 (fire->ire_flags & RTF_SETSRC)) { 9461 /* 9462 * As requested by flags, an IRE_OFFSUBET was 9463 * looked up on that interface. This ire has 9464 * RTF_SETSRC flag, so the source address of the 9465 * packet must be changed. 9466 */ 9467 ipha->ipha_src = fire->ire_src_addr; 9468 } 9469 } else { 9470 ASSERT((connp == NULL) || 9471 (connp->conn_xmit_if_ill != NULL) || 9472 (connp->conn_dontroute) || 9473 infop->ip_opt_ill_index != 0); 9474 /* 9475 * The only ways we can come here are: 9476 * 1) IP_XMIT_IF socket option is set 9477 * 2) ICMP error message generated from 9478 * ip_mrtun_forward() routine and it needs 9479 * to go through the specified ill. 9480 * 3) SO_DONTROUTE socket option is set 9481 * 4) IP_PKTINFO option is passed in as ancillary data. 9482 * In all cases, the new ire will not be added 9483 * into cache table. 9484 */ 9485 ire_marks |= IRE_MARK_NOADD; 9486 } 9487 9488 switch (ipif->ipif_net_type) { 9489 case IRE_IF_NORESOLVER: { 9490 /* We have what we need to build an IRE_CACHE. */ 9491 mblk_t *res_mp; 9492 9493 /* 9494 * Create a new res_mp with the 9495 * IP gateway address as destination address in the 9496 * DLPI hdr if the physical length is exactly 4 bytes. 9497 */ 9498 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9499 res_mp = ill_dlur_gen((uchar_t *)&dst, 9500 dst_ill->ill_phys_addr_length, 9501 dst_ill->ill_sap, 9502 dst_ill->ill_sap_length); 9503 } else if (dst_ill->ill_resolver_mp == NULL) { 9504 ip1dbg(("ip_newroute: dst_ill %p " 9505 "for IF_NORESOLV ire %p has " 9506 "no ill_resolver_mp\n", 9507 (void *)dst_ill, (void *)ire)); 9508 break; 9509 } else { 9510 /* use the value set in ip_ll_subnet_defaults */ 9511 res_mp = ill_dlur_gen(NULL, 9512 dst_ill->ill_phys_addr_length, 9513 dst_ill->ill_sap, 9514 dst_ill->ill_sap_length); 9515 } 9516 9517 if (res_mp == NULL) 9518 break; 9519 /* 9520 * The new ire inherits the IRE_OFFSUBNET flags 9521 * and source address, if this was requested. 9522 */ 9523 ire = ire_create( 9524 (uchar_t *)&dst, /* dest address */ 9525 (uchar_t *)&ip_g_all_ones, /* mask */ 9526 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9527 NULL, /* gateway address */ 9528 NULL, 9529 &ipif->ipif_mtu, 9530 NULL, /* Fast Path header */ 9531 dst_ill->ill_rq, /* recv-from queue */ 9532 dst_ill->ill_wq, /* send-to queue */ 9533 IRE_CACHE, 9534 res_mp, 9535 src_ipif, 9536 NULL, 9537 (save_ire != NULL ? save_ire->ire_mask : 0), 9538 (fire != NULL) ? /* Parent handle */ 9539 fire->ire_phandle : 0, 9540 ihandle, /* Interface handle */ 9541 (fire != NULL) ? 9542 (fire->ire_flags & 9543 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9544 (save_ire == NULL ? &ire_uinfo_null : 9545 &save_ire->ire_uinfo), 9546 NULL, 9547 NULL, 9548 ipst); 9549 9550 freeb(res_mp); 9551 9552 if (ire == NULL) { 9553 if (save_ire != NULL) 9554 ire_refrele(save_ire); 9555 break; 9556 } 9557 9558 ire->ire_marks |= ire_marks; 9559 9560 /* 9561 * If IRE_MARK_NOADD is set then we need to convert 9562 * the max_fragp to a useable value now. This is 9563 * normally done in ire_add_v[46]. We also need to 9564 * associate the ire with an nce (normally would be 9565 * done in ip_wput_nondata()). 9566 * 9567 * Note that IRE_MARK_NOADD packets created here 9568 * do not have a non-null ire_mp pointer. The null 9569 * value of ire_bucket indicates that they were 9570 * never added. 9571 */ 9572 if (ire->ire_marks & IRE_MARK_NOADD) { 9573 uint_t max_frag; 9574 9575 max_frag = *ire->ire_max_fragp; 9576 ire->ire_max_fragp = NULL; 9577 ire->ire_max_frag = max_frag; 9578 9579 if ((ire->ire_nce = ndp_lookup_v4( 9580 ire_to_ill(ire), 9581 (ire->ire_gateway_addr != INADDR_ANY ? 9582 &ire->ire_gateway_addr : &ire->ire_addr), 9583 B_FALSE)) == NULL) { 9584 if (save_ire != NULL) 9585 ire_refrele(save_ire); 9586 break; 9587 } 9588 ASSERT(ire->ire_nce->nce_state == 9589 ND_REACHABLE); 9590 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9591 } 9592 9593 /* Prevent save_ire from getting deleted */ 9594 if (save_ire != NULL) { 9595 IRB_REFHOLD(save_ire->ire_bucket); 9596 /* Has it been removed already ? */ 9597 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9598 IRB_REFRELE(save_ire->ire_bucket); 9599 ire_refrele(save_ire); 9600 break; 9601 } 9602 } 9603 9604 ire_add_then_send(q, ire, first_mp); 9605 9606 /* Assert that save_ire is not deleted yet. */ 9607 if (save_ire != NULL) { 9608 ASSERT(save_ire->ire_ptpn != NULL); 9609 IRB_REFRELE(save_ire->ire_bucket); 9610 ire_refrele(save_ire); 9611 save_ire = NULL; 9612 } 9613 if (fire != NULL) { 9614 ire_refrele(fire); 9615 fire = NULL; 9616 } 9617 9618 /* 9619 * the resolution loop is re-entered if this 9620 * was requested through flags and if we 9621 * actually are in a multirouting case. 9622 */ 9623 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9624 boolean_t need_resolve = 9625 ire_multirt_need_resolve(ipha_dst, 9626 MBLK_GETLABEL(copy_mp), ipst); 9627 if (!need_resolve) { 9628 MULTIRT_DEBUG_UNTAG(copy_mp); 9629 freemsg(copy_mp); 9630 copy_mp = NULL; 9631 } else { 9632 /* 9633 * ipif_lookup_group() calls 9634 * ire_lookup_multi() that uses 9635 * ire_ftable_lookup() to find 9636 * an IRE_INTERFACE for the group. 9637 * In the multirt case, 9638 * ire_lookup_multi() then invokes 9639 * ire_multirt_lookup() to find 9640 * the next resolvable ire. 9641 * As a result, we obtain an new 9642 * interface, derived from the 9643 * next ire. 9644 */ 9645 ipif_refrele(ipif); 9646 ipif = ipif_lookup_group(ipha_dst, 9647 zoneid, ipst); 9648 ip2dbg(("ip_newroute_ipif: " 9649 "multirt dst %08x, ipif %p\n", 9650 htonl(dst), (void *)ipif)); 9651 if (ipif != NULL) { 9652 mp = copy_mp; 9653 copy_mp = NULL; 9654 multirt_resolve_next = B_TRUE; 9655 continue; 9656 } else { 9657 freemsg(copy_mp); 9658 } 9659 } 9660 } 9661 if (ipif != NULL) 9662 ipif_refrele(ipif); 9663 ill_refrele(dst_ill); 9664 ipif_refrele(src_ipif); 9665 return; 9666 } 9667 case IRE_IF_RESOLVER: 9668 /* 9669 * We can't build an IRE_CACHE yet, but at least 9670 * we found a resolver that can help. 9671 */ 9672 res_mp = dst_ill->ill_resolver_mp; 9673 if (!OK_RESOLVER_MP(res_mp)) 9674 break; 9675 9676 /* 9677 * We obtain a partial IRE_CACHE which we will pass 9678 * along with the resolver query. When the response 9679 * comes back it will be there ready for us to add. 9680 * The new ire inherits the IRE_OFFSUBNET flags 9681 * and source address, if this was requested. 9682 * The ire_max_frag is atomically set under the 9683 * irebucket lock in ire_add_v[46]. Only in the 9684 * case of IRE_MARK_NOADD, we set it here itself. 9685 */ 9686 ire = ire_create_mp( 9687 (uchar_t *)&dst, /* dest address */ 9688 (uchar_t *)&ip_g_all_ones, /* mask */ 9689 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9690 NULL, /* gateway address */ 9691 NULL, /* no in_src_addr */ 9692 (ire_marks & IRE_MARK_NOADD) ? 9693 ipif->ipif_mtu : 0, /* max_frag */ 9694 NULL, /* Fast path header */ 9695 dst_ill->ill_rq, /* recv-from queue */ 9696 dst_ill->ill_wq, /* send-to queue */ 9697 IRE_CACHE, 9698 NULL, /* let ire_nce_init figure res_mp out */ 9699 src_ipif, 9700 NULL, 9701 (save_ire != NULL ? save_ire->ire_mask : 0), 9702 (fire != NULL) ? /* Parent handle */ 9703 fire->ire_phandle : 0, 9704 ihandle, /* Interface handle */ 9705 (fire != NULL) ? /* flags if any */ 9706 (fire->ire_flags & 9707 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9708 (save_ire == NULL ? &ire_uinfo_null : 9709 &save_ire->ire_uinfo), 9710 NULL, 9711 NULL, 9712 ipst); 9713 9714 if (save_ire != NULL) { 9715 ire_refrele(save_ire); 9716 save_ire = NULL; 9717 } 9718 if (ire == NULL) 9719 break; 9720 9721 ire->ire_marks |= ire_marks; 9722 /* 9723 * Construct message chain for the resolver of the 9724 * form: 9725 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9726 * 9727 * NOTE : ire will be added later when the response 9728 * comes back from ARP. If the response does not 9729 * come back, ARP frees the packet. For this reason, 9730 * we can't REFHOLD the bucket of save_ire to prevent 9731 * deletions. We may not be able to REFRELE the 9732 * bucket if the response never comes back. 9733 * Thus, before adding the ire, ire_add_v4 will make 9734 * sure that the interface route does not get deleted. 9735 * This is the only case unlike ip_newroute_v6, 9736 * ip_newroute_ipif_v6 where we can always prevent 9737 * deletions because ire_add_then_send is called after 9738 * creating the IRE. 9739 * If IRE_MARK_NOADD is set, then ire_add_then_send 9740 * does not add this IRE into the IRE CACHE. 9741 */ 9742 ASSERT(ire->ire_mp != NULL); 9743 ire->ire_mp->b_cont = first_mp; 9744 /* Have saved_mp handy, for cleanup if canput fails */ 9745 saved_mp = mp; 9746 mp = copyb(res_mp); 9747 if (mp == NULL) { 9748 /* Prepare for cleanup */ 9749 mp = saved_mp; /* pkt */ 9750 ire_delete(ire); /* ire_mp */ 9751 ire = NULL; 9752 if (copy_mp != NULL) { 9753 MULTIRT_DEBUG_UNTAG(copy_mp); 9754 freemsg(copy_mp); 9755 copy_mp = NULL; 9756 } 9757 break; 9758 } 9759 linkb(mp, ire->ire_mp); 9760 9761 /* 9762 * Fill in the source and dest addrs for the resolver. 9763 * NOTE: this depends on memory layouts imposed by 9764 * ill_init(). 9765 */ 9766 areq = (areq_t *)mp->b_rptr; 9767 addrp = (ipaddr_t *)((char *)areq + 9768 areq->areq_sender_addr_offset); 9769 *addrp = ire->ire_src_addr; 9770 addrp = (ipaddr_t *)((char *)areq + 9771 areq->areq_target_addr_offset); 9772 *addrp = dst; 9773 /* Up to the resolver. */ 9774 if (canputnext(dst_ill->ill_rq) && 9775 !(dst_ill->ill_arp_closing)) { 9776 putnext(dst_ill->ill_rq, mp); 9777 /* 9778 * The response will come back in ip_wput 9779 * with db_type IRE_DB_TYPE. 9780 */ 9781 } else { 9782 mp->b_cont = NULL; 9783 freeb(mp); /* areq */ 9784 ire_delete(ire); /* ire_mp */ 9785 saved_mp->b_next = NULL; 9786 saved_mp->b_prev = NULL; 9787 freemsg(first_mp); /* pkt */ 9788 ip2dbg(("ip_newroute_ipif: dropped\n")); 9789 } 9790 9791 if (fire != NULL) { 9792 ire_refrele(fire); 9793 fire = NULL; 9794 } 9795 9796 9797 /* 9798 * The resolution loop is re-entered if this was 9799 * requested through flags and we actually are 9800 * in a multirouting case. 9801 */ 9802 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9803 boolean_t need_resolve = 9804 ire_multirt_need_resolve(ipha_dst, 9805 MBLK_GETLABEL(copy_mp), ipst); 9806 if (!need_resolve) { 9807 MULTIRT_DEBUG_UNTAG(copy_mp); 9808 freemsg(copy_mp); 9809 copy_mp = NULL; 9810 } else { 9811 /* 9812 * ipif_lookup_group() calls 9813 * ire_lookup_multi() that uses 9814 * ire_ftable_lookup() to find 9815 * an IRE_INTERFACE for the group. 9816 * In the multirt case, 9817 * ire_lookup_multi() then invokes 9818 * ire_multirt_lookup() to find 9819 * the next resolvable ire. 9820 * As a result, we obtain an new 9821 * interface, derived from the 9822 * next ire. 9823 */ 9824 ipif_refrele(ipif); 9825 ipif = ipif_lookup_group(ipha_dst, 9826 zoneid, ipst); 9827 if (ipif != NULL) { 9828 mp = copy_mp; 9829 copy_mp = NULL; 9830 multirt_resolve_next = B_TRUE; 9831 continue; 9832 } else { 9833 freemsg(copy_mp); 9834 } 9835 } 9836 } 9837 if (ipif != NULL) 9838 ipif_refrele(ipif); 9839 ill_refrele(dst_ill); 9840 ipif_refrele(src_ipif); 9841 return; 9842 default: 9843 break; 9844 } 9845 } while (multirt_resolve_next); 9846 9847 err_ret: 9848 ip2dbg(("ip_newroute_ipif: dropped\n")); 9849 if (fire != NULL) 9850 ire_refrele(fire); 9851 ipif_refrele(ipif); 9852 /* Did this packet originate externally? */ 9853 if (dst_ill != NULL) 9854 ill_refrele(dst_ill); 9855 if (src_ipif != NULL) 9856 ipif_refrele(src_ipif); 9857 if (mp->b_prev || mp->b_next) { 9858 mp->b_next = NULL; 9859 mp->b_prev = NULL; 9860 } else { 9861 /* 9862 * Since ip_wput() isn't close to finished, we fill 9863 * in enough of the header for credible error reporting. 9864 */ 9865 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9866 /* Failed */ 9867 freemsg(first_mp); 9868 if (ire != NULL) 9869 ire_refrele(ire); 9870 return; 9871 } 9872 } 9873 /* 9874 * At this point we will have ire only if RTF_BLACKHOLE 9875 * or RTF_REJECT flags are set on the IRE. It will not 9876 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9877 */ 9878 if (ire != NULL) { 9879 if (ire->ire_flags & RTF_BLACKHOLE) { 9880 ire_refrele(ire); 9881 freemsg(first_mp); 9882 return; 9883 } 9884 ire_refrele(ire); 9885 } 9886 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9887 } 9888 9889 /* Name/Value Table Lookup Routine */ 9890 char * 9891 ip_nv_lookup(nv_t *nv, int value) 9892 { 9893 if (!nv) 9894 return (NULL); 9895 for (; nv->nv_name; nv++) { 9896 if (nv->nv_value == value) 9897 return (nv->nv_name); 9898 } 9899 return ("unknown"); 9900 } 9901 9902 /* 9903 * This is a module open, i.e. this is a control stream for access 9904 * to a DLPI device. We allocate an ill_t as the instance data in 9905 * this case. 9906 */ 9907 int 9908 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9909 { 9910 ill_t *ill; 9911 int err; 9912 zoneid_t zoneid; 9913 netstack_t *ns; 9914 ip_stack_t *ipst; 9915 9916 /* 9917 * Prevent unprivileged processes from pushing IP so that 9918 * they can't send raw IP. 9919 */ 9920 if (secpolicy_net_rawaccess(credp) != 0) 9921 return (EPERM); 9922 9923 ns = netstack_find_by_cred(credp); 9924 ASSERT(ns != NULL); 9925 ipst = ns->netstack_ip; 9926 ASSERT(ipst != NULL); 9927 9928 /* 9929 * For exclusive stacks we set the zoneid to zero 9930 * to make IP operate as if in the global zone. 9931 */ 9932 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9933 zoneid = GLOBAL_ZONEID; 9934 else 9935 zoneid = crgetzoneid(credp); 9936 9937 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9938 q->q_ptr = WR(q)->q_ptr = ill; 9939 ill->ill_ipst = ipst; 9940 ill->ill_zoneid = zoneid; 9941 9942 /* 9943 * ill_init initializes the ill fields and then sends down 9944 * down a DL_INFO_REQ after calling qprocson. 9945 */ 9946 err = ill_init(q, ill); 9947 if (err != 0) { 9948 mi_free(ill); 9949 netstack_rele(ipst->ips_netstack); 9950 q->q_ptr = NULL; 9951 WR(q)->q_ptr = NULL; 9952 return (err); 9953 } 9954 9955 /* ill_init initializes the ipsq marking this thread as writer */ 9956 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9957 /* Wait for the DL_INFO_ACK */ 9958 mutex_enter(&ill->ill_lock); 9959 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9960 /* 9961 * Return value of 0 indicates a pending signal. 9962 */ 9963 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9964 if (err == 0) { 9965 mutex_exit(&ill->ill_lock); 9966 (void) ip_close(q, 0); 9967 return (EINTR); 9968 } 9969 } 9970 mutex_exit(&ill->ill_lock); 9971 9972 /* 9973 * ip_rput_other could have set an error in ill_error on 9974 * receipt of M_ERROR. 9975 */ 9976 9977 err = ill->ill_error; 9978 if (err != 0) { 9979 (void) ip_close(q, 0); 9980 return (err); 9981 } 9982 9983 ill->ill_credp = credp; 9984 crhold(credp); 9985 9986 mutex_enter(&ipst->ips_ip_mi_lock); 9987 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9988 credp); 9989 mutex_exit(&ipst->ips_ip_mi_lock); 9990 if (err) { 9991 (void) ip_close(q, 0); 9992 return (err); 9993 } 9994 return (0); 9995 } 9996 9997 /* IP open routine. */ 9998 int 9999 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10000 { 10001 conn_t *connp; 10002 major_t maj; 10003 zoneid_t zoneid; 10004 netstack_t *ns; 10005 ip_stack_t *ipst; 10006 10007 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10008 10009 /* Allow reopen. */ 10010 if (q->q_ptr != NULL) 10011 return (0); 10012 10013 if (sflag & MODOPEN) { 10014 /* This is a module open */ 10015 return (ip_modopen(q, devp, flag, sflag, credp)); 10016 } 10017 10018 ns = netstack_find_by_cred(credp); 10019 ASSERT(ns != NULL); 10020 ipst = ns->netstack_ip; 10021 ASSERT(ipst != NULL); 10022 10023 /* 10024 * For exclusive stacks we set the zoneid to zero 10025 * to make IP operate as if in the global zone. 10026 */ 10027 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10028 zoneid = GLOBAL_ZONEID; 10029 else 10030 zoneid = crgetzoneid(credp); 10031 10032 /* 10033 * We are opening as a device. This is an IP client stream, and we 10034 * allocate an conn_t as the instance data. 10035 */ 10036 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10037 10038 /* 10039 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10040 * done by netstack_find_by_cred() 10041 */ 10042 netstack_rele(ipst->ips_netstack); 10043 10044 connp->conn_zoneid = zoneid; 10045 10046 connp->conn_upq = q; 10047 q->q_ptr = WR(q)->q_ptr = connp; 10048 10049 if (flag & SO_SOCKSTR) 10050 connp->conn_flags |= IPCL_SOCKET; 10051 10052 /* Minor tells us which /dev entry was opened */ 10053 if (geteminor(*devp) == IPV6_MINOR) { 10054 connp->conn_flags |= IPCL_ISV6; 10055 connp->conn_af_isv6 = B_TRUE; 10056 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10057 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10058 } else { 10059 connp->conn_af_isv6 = B_FALSE; 10060 connp->conn_pkt_isv6 = B_FALSE; 10061 } 10062 10063 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10064 /* CONN_DEC_REF takes care of netstack_rele() */ 10065 q->q_ptr = WR(q)->q_ptr = NULL; 10066 CONN_DEC_REF(connp); 10067 return (EBUSY); 10068 } 10069 10070 maj = getemajor(*devp); 10071 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10072 10073 /* 10074 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10075 */ 10076 connp->conn_cred = credp; 10077 crhold(connp->conn_cred); 10078 10079 /* 10080 * If the caller has the process-wide flag set, then default to MAC 10081 * exempt mode. This allows read-down to unlabeled hosts. 10082 */ 10083 if (getpflags(NET_MAC_AWARE, credp) != 0) 10084 connp->conn_mac_exempt = B_TRUE; 10085 10086 /* 10087 * This should only happen for ndd, netstat, raw socket or other SCTP 10088 * administrative ops. In these cases, we just need a normal conn_t 10089 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10090 * an error will be returned. 10091 */ 10092 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10093 connp->conn_rq = q; 10094 connp->conn_wq = WR(q); 10095 } else { 10096 connp->conn_ulp = IPPROTO_SCTP; 10097 connp->conn_rq = connp->conn_wq = NULL; 10098 } 10099 /* Non-zero default values */ 10100 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10101 10102 /* 10103 * Make the conn globally visible to walkers 10104 */ 10105 mutex_enter(&connp->conn_lock); 10106 connp->conn_state_flags &= ~CONN_INCIPIENT; 10107 mutex_exit(&connp->conn_lock); 10108 ASSERT(connp->conn_ref == 1); 10109 10110 qprocson(q); 10111 10112 return (0); 10113 } 10114 10115 /* 10116 * Change q_qinfo based on the value of isv6. 10117 * This can not called on an ill queue. 10118 * Note that there is no race since either q_qinfo works for conn queues - it 10119 * is just an optimization to enter the best wput routine directly. 10120 */ 10121 void 10122 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10123 { 10124 ASSERT(q->q_flag & QREADR); 10125 ASSERT(WR(q)->q_next == NULL); 10126 ASSERT(q->q_ptr != NULL); 10127 10128 if (minor == IPV6_MINOR) { 10129 if (bump_mib) { 10130 BUMP_MIB(&ipst->ips_ip6_mib, 10131 ipIfStatsOutSwitchIPVersion); 10132 } 10133 q->q_qinfo = &rinit_ipv6; 10134 WR(q)->q_qinfo = &winit_ipv6; 10135 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10136 } else { 10137 if (bump_mib) { 10138 BUMP_MIB(&ipst->ips_ip_mib, 10139 ipIfStatsOutSwitchIPVersion); 10140 } 10141 q->q_qinfo = &iprinit; 10142 WR(q)->q_qinfo = &ipwinit; 10143 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10144 } 10145 10146 } 10147 10148 /* 10149 * See if IPsec needs loading because of the options in mp. 10150 */ 10151 static boolean_t 10152 ipsec_opt_present(mblk_t *mp) 10153 { 10154 uint8_t *optcp, *next_optcp, *opt_endcp; 10155 struct opthdr *opt; 10156 struct T_opthdr *topt; 10157 int opthdr_len; 10158 t_uscalar_t optname, optlevel; 10159 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10160 ipsec_req_t *ipsr; 10161 10162 /* 10163 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10164 * return TRUE. 10165 */ 10166 10167 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10168 opt_endcp = optcp + tor->OPT_length; 10169 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10170 opthdr_len = sizeof (struct T_opthdr); 10171 } else { /* O_OPTMGMT_REQ */ 10172 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10173 opthdr_len = sizeof (struct opthdr); 10174 } 10175 for (; optcp < opt_endcp; optcp = next_optcp) { 10176 if (optcp + opthdr_len > opt_endcp) 10177 return (B_FALSE); /* Not enough option header. */ 10178 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10179 topt = (struct T_opthdr *)optcp; 10180 optlevel = topt->level; 10181 optname = topt->name; 10182 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10183 } else { 10184 opt = (struct opthdr *)optcp; 10185 optlevel = opt->level; 10186 optname = opt->name; 10187 next_optcp = optcp + opthdr_len + 10188 _TPI_ALIGN_OPT(opt->len); 10189 } 10190 if ((next_optcp < optcp) || /* wraparound pointer space */ 10191 ((next_optcp >= opt_endcp) && /* last option bad len */ 10192 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10193 return (B_FALSE); /* bad option buffer */ 10194 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10195 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10196 /* 10197 * Check to see if it's an all-bypass or all-zeroes 10198 * IPsec request. Don't bother loading IPsec if 10199 * the socket doesn't want to use it. (A good example 10200 * is a bypass request.) 10201 * 10202 * Basically, if any of the non-NEVER bits are set, 10203 * load IPsec. 10204 */ 10205 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10206 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10207 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10208 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10209 != 0) 10210 return (B_TRUE); 10211 } 10212 } 10213 return (B_FALSE); 10214 } 10215 10216 /* 10217 * If conn is is waiting for ipsec to finish loading, kick it. 10218 */ 10219 /* ARGSUSED */ 10220 static void 10221 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10222 { 10223 t_scalar_t optreq_prim; 10224 mblk_t *mp; 10225 cred_t *cr; 10226 int err = 0; 10227 10228 /* 10229 * This function is called, after ipsec loading is complete. 10230 * Since IP checks exclusively and atomically (i.e it prevents 10231 * ipsec load from completing until ip_optcom_req completes) 10232 * whether ipsec load is complete, there cannot be a race with IP 10233 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10234 */ 10235 mutex_enter(&connp->conn_lock); 10236 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10237 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10238 mp = connp->conn_ipsec_opt_mp; 10239 connp->conn_ipsec_opt_mp = NULL; 10240 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10241 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10242 mutex_exit(&connp->conn_lock); 10243 10244 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10245 10246 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10247 if (optreq_prim == T_OPTMGMT_REQ) { 10248 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10249 &ip_opt_obj); 10250 } else { 10251 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10252 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10253 &ip_opt_obj); 10254 } 10255 if (err != EINPROGRESS) 10256 CONN_OPER_PENDING_DONE(connp); 10257 return; 10258 } 10259 mutex_exit(&connp->conn_lock); 10260 } 10261 10262 /* 10263 * Called from the ipsec_loader thread, outside any perimeter, to tell 10264 * ip qenable any of the queues waiting for the ipsec loader to 10265 * complete. 10266 */ 10267 void 10268 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10269 { 10270 netstack_t *ns = ipss->ipsec_netstack; 10271 10272 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10273 } 10274 10275 /* 10276 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10277 * determines the grp on which it has to become exclusive, queues the mp 10278 * and sq draining restarts the optmgmt 10279 */ 10280 static boolean_t 10281 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10282 { 10283 conn_t *connp = Q_TO_CONN(q); 10284 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10285 10286 /* 10287 * Take IPsec requests and treat them special. 10288 */ 10289 if (ipsec_opt_present(mp)) { 10290 /* First check if IPsec is loaded. */ 10291 mutex_enter(&ipss->ipsec_loader_lock); 10292 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10293 mutex_exit(&ipss->ipsec_loader_lock); 10294 return (B_FALSE); 10295 } 10296 mutex_enter(&connp->conn_lock); 10297 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10298 10299 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10300 connp->conn_ipsec_opt_mp = mp; 10301 mutex_exit(&connp->conn_lock); 10302 mutex_exit(&ipss->ipsec_loader_lock); 10303 10304 ipsec_loader_loadnow(ipss); 10305 return (B_TRUE); 10306 } 10307 return (B_FALSE); 10308 } 10309 10310 /* 10311 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10312 * all of them are copied to the conn_t. If the req is "zero", the policy is 10313 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10314 * fields. 10315 * We keep only the latest setting of the policy and thus policy setting 10316 * is not incremental/cumulative. 10317 * 10318 * Requests to set policies with multiple alternative actions will 10319 * go through a different API. 10320 */ 10321 int 10322 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10323 { 10324 uint_t ah_req = 0; 10325 uint_t esp_req = 0; 10326 uint_t se_req = 0; 10327 ipsec_selkey_t sel; 10328 ipsec_act_t *actp = NULL; 10329 uint_t nact; 10330 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10331 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10332 ipsec_policy_root_t *pr; 10333 ipsec_policy_head_t *ph; 10334 int fam; 10335 boolean_t is_pol_reset; 10336 int error = 0; 10337 netstack_t *ns = connp->conn_netstack; 10338 ip_stack_t *ipst = ns->netstack_ip; 10339 ipsec_stack_t *ipss = ns->netstack_ipsec; 10340 10341 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10342 10343 /* 10344 * The IP_SEC_OPT option does not allow variable length parameters, 10345 * hence a request cannot be NULL. 10346 */ 10347 if (req == NULL) 10348 return (EINVAL); 10349 10350 ah_req = req->ipsr_ah_req; 10351 esp_req = req->ipsr_esp_req; 10352 se_req = req->ipsr_self_encap_req; 10353 10354 /* 10355 * Are we dealing with a request to reset the policy (i.e. 10356 * zero requests). 10357 */ 10358 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10359 (esp_req & REQ_MASK) == 0 && 10360 (se_req & REQ_MASK) == 0); 10361 10362 if (!is_pol_reset) { 10363 /* 10364 * If we couldn't load IPsec, fail with "protocol 10365 * not supported". 10366 * IPsec may not have been loaded for a request with zero 10367 * policies, so we don't fail in this case. 10368 */ 10369 mutex_enter(&ipss->ipsec_loader_lock); 10370 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10371 mutex_exit(&ipss->ipsec_loader_lock); 10372 return (EPROTONOSUPPORT); 10373 } 10374 mutex_exit(&ipss->ipsec_loader_lock); 10375 10376 /* 10377 * Test for valid requests. Invalid algorithms 10378 * need to be tested by IPSEC code because new 10379 * algorithms can be added dynamically. 10380 */ 10381 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10382 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10383 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10384 return (EINVAL); 10385 } 10386 10387 /* 10388 * Only privileged users can issue these 10389 * requests. 10390 */ 10391 if (((ah_req & IPSEC_PREF_NEVER) || 10392 (esp_req & IPSEC_PREF_NEVER) || 10393 (se_req & IPSEC_PREF_NEVER)) && 10394 secpolicy_ip_config(cr, B_FALSE) != 0) { 10395 return (EPERM); 10396 } 10397 10398 /* 10399 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10400 * are mutually exclusive. 10401 */ 10402 if (((ah_req & REQ_MASK) == REQ_MASK) || 10403 ((esp_req & REQ_MASK) == REQ_MASK) || 10404 ((se_req & REQ_MASK) == REQ_MASK)) { 10405 /* Both of them are set */ 10406 return (EINVAL); 10407 } 10408 } 10409 10410 mutex_enter(&connp->conn_lock); 10411 10412 /* 10413 * If we have already cached policies in ip_bind_connected*(), don't 10414 * let them change now. We cache policies for connections 10415 * whose src,dst [addr, port] is known. 10416 */ 10417 if (connp->conn_policy_cached) { 10418 mutex_exit(&connp->conn_lock); 10419 return (EINVAL); 10420 } 10421 10422 /* 10423 * We have a zero policies, reset the connection policy if already 10424 * set. This will cause the connection to inherit the 10425 * global policy, if any. 10426 */ 10427 if (is_pol_reset) { 10428 if (connp->conn_policy != NULL) { 10429 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10430 connp->conn_policy = NULL; 10431 } 10432 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10433 connp->conn_in_enforce_policy = B_FALSE; 10434 connp->conn_out_enforce_policy = B_FALSE; 10435 mutex_exit(&connp->conn_lock); 10436 return (0); 10437 } 10438 10439 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10440 ipst->ips_netstack); 10441 if (ph == NULL) 10442 goto enomem; 10443 10444 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10445 if (actp == NULL) 10446 goto enomem; 10447 10448 /* 10449 * Always allocate IPv4 policy entries, since they can also 10450 * apply to ipv6 sockets being used in ipv4-compat mode. 10451 */ 10452 bzero(&sel, sizeof (sel)); 10453 sel.ipsl_valid = IPSL_IPV4; 10454 10455 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10456 ipst->ips_netstack); 10457 if (pin4 == NULL) 10458 goto enomem; 10459 10460 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10461 ipst->ips_netstack); 10462 if (pout4 == NULL) 10463 goto enomem; 10464 10465 if (connp->conn_pkt_isv6) { 10466 /* 10467 * We're looking at a v6 socket, also allocate the 10468 * v6-specific entries... 10469 */ 10470 sel.ipsl_valid = IPSL_IPV6; 10471 pin6 = ipsec_policy_create(&sel, actp, nact, 10472 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10473 if (pin6 == NULL) 10474 goto enomem; 10475 10476 pout6 = ipsec_policy_create(&sel, actp, nact, 10477 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10478 if (pout6 == NULL) 10479 goto enomem; 10480 10481 /* 10482 * .. and file them away in the right place. 10483 */ 10484 fam = IPSEC_AF_V6; 10485 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10486 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10487 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10488 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10489 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10490 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10491 } 10492 10493 ipsec_actvec_free(actp, nact); 10494 10495 /* 10496 * File the v4 policies. 10497 */ 10498 fam = IPSEC_AF_V4; 10499 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10500 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10501 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10502 10503 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10504 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10505 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10506 10507 /* 10508 * If the requests need security, set enforce_policy. 10509 * If the requests are IPSEC_PREF_NEVER, one should 10510 * still set conn_out_enforce_policy so that an ipsec_out 10511 * gets attached in ip_wput. This is needed so that 10512 * for connections that we don't cache policy in ip_bind, 10513 * if global policy matches in ip_wput_attach_policy, we 10514 * don't wrongly inherit global policy. Similarly, we need 10515 * to set conn_in_enforce_policy also so that we don't verify 10516 * policy wrongly. 10517 */ 10518 if ((ah_req & REQ_MASK) != 0 || 10519 (esp_req & REQ_MASK) != 0 || 10520 (se_req & REQ_MASK) != 0) { 10521 connp->conn_in_enforce_policy = B_TRUE; 10522 connp->conn_out_enforce_policy = B_TRUE; 10523 connp->conn_flags |= IPCL_CHECK_POLICY; 10524 } 10525 10526 mutex_exit(&connp->conn_lock); 10527 return (error); 10528 #undef REQ_MASK 10529 10530 /* 10531 * Common memory-allocation-failure exit path. 10532 */ 10533 enomem: 10534 mutex_exit(&connp->conn_lock); 10535 if (actp != NULL) 10536 ipsec_actvec_free(actp, nact); 10537 if (pin4 != NULL) 10538 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10539 if (pout4 != NULL) 10540 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10541 if (pin6 != NULL) 10542 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10543 if (pout6 != NULL) 10544 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10545 return (ENOMEM); 10546 } 10547 10548 /* 10549 * Only for options that pass in an IP addr. Currently only V4 options 10550 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10551 * So this function assumes level is IPPROTO_IP 10552 */ 10553 int 10554 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10555 mblk_t *first_mp) 10556 { 10557 ipif_t *ipif = NULL; 10558 int error; 10559 ill_t *ill; 10560 int zoneid; 10561 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10562 10563 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10564 10565 if (addr != INADDR_ANY || checkonly) { 10566 ASSERT(connp != NULL); 10567 zoneid = IPCL_ZONEID(connp); 10568 if (option == IP_NEXTHOP) { 10569 ipif = ipif_lookup_onlink_addr(addr, 10570 connp->conn_zoneid, ipst); 10571 } else { 10572 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10573 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10574 &error, ipst); 10575 } 10576 if (ipif == NULL) { 10577 if (error == EINPROGRESS) 10578 return (error); 10579 else if ((option == IP_MULTICAST_IF) || 10580 (option == IP_NEXTHOP)) 10581 return (EHOSTUNREACH); 10582 else 10583 return (EINVAL); 10584 } else if (checkonly) { 10585 if (option == IP_MULTICAST_IF) { 10586 ill = ipif->ipif_ill; 10587 /* not supported by the virtual network iface */ 10588 if (IS_VNI(ill)) { 10589 ipif_refrele(ipif); 10590 return (EINVAL); 10591 } 10592 } 10593 ipif_refrele(ipif); 10594 return (0); 10595 } 10596 ill = ipif->ipif_ill; 10597 mutex_enter(&connp->conn_lock); 10598 mutex_enter(&ill->ill_lock); 10599 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10600 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10601 mutex_exit(&ill->ill_lock); 10602 mutex_exit(&connp->conn_lock); 10603 ipif_refrele(ipif); 10604 return (option == IP_MULTICAST_IF ? 10605 EHOSTUNREACH : EINVAL); 10606 } 10607 } else { 10608 mutex_enter(&connp->conn_lock); 10609 } 10610 10611 /* None of the options below are supported on the VNI */ 10612 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10613 mutex_exit(&ill->ill_lock); 10614 mutex_exit(&connp->conn_lock); 10615 ipif_refrele(ipif); 10616 return (EINVAL); 10617 } 10618 10619 switch (option) { 10620 case IP_DONTFAILOVER_IF: 10621 /* 10622 * This option is used by in.mpathd to ensure 10623 * that IPMP probe packets only go out on the 10624 * test interfaces. in.mpathd sets this option 10625 * on the non-failover interfaces. 10626 * For backward compatibility, this option 10627 * implicitly sets IP_MULTICAST_IF, as used 10628 * be done in bind(), so that ip_wput gets 10629 * this ipif to send mcast packets. 10630 */ 10631 if (ipif != NULL) { 10632 ASSERT(addr != INADDR_ANY); 10633 connp->conn_nofailover_ill = ipif->ipif_ill; 10634 connp->conn_multicast_ipif = ipif; 10635 } else { 10636 ASSERT(addr == INADDR_ANY); 10637 connp->conn_nofailover_ill = NULL; 10638 connp->conn_multicast_ipif = NULL; 10639 } 10640 break; 10641 10642 case IP_MULTICAST_IF: 10643 connp->conn_multicast_ipif = ipif; 10644 break; 10645 case IP_NEXTHOP: 10646 connp->conn_nexthop_v4 = addr; 10647 connp->conn_nexthop_set = B_TRUE; 10648 break; 10649 } 10650 10651 if (ipif != NULL) { 10652 mutex_exit(&ill->ill_lock); 10653 mutex_exit(&connp->conn_lock); 10654 ipif_refrele(ipif); 10655 return (0); 10656 } 10657 mutex_exit(&connp->conn_lock); 10658 /* We succeded in cleared the option */ 10659 return (0); 10660 } 10661 10662 /* 10663 * For options that pass in an ifindex specifying the ill. V6 options always 10664 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10665 */ 10666 int 10667 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10668 int level, int option, mblk_t *first_mp) 10669 { 10670 ill_t *ill = NULL; 10671 int error = 0; 10672 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10673 10674 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10675 if (ifindex != 0) { 10676 ASSERT(connp != NULL); 10677 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10678 first_mp, ip_restart_optmgmt, &error, ipst); 10679 if (ill != NULL) { 10680 if (checkonly) { 10681 /* not supported by the virtual network iface */ 10682 if (IS_VNI(ill)) { 10683 ill_refrele(ill); 10684 return (EINVAL); 10685 } 10686 ill_refrele(ill); 10687 return (0); 10688 } 10689 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10690 0, NULL)) { 10691 ill_refrele(ill); 10692 ill = NULL; 10693 mutex_enter(&connp->conn_lock); 10694 goto setit; 10695 } 10696 mutex_enter(&connp->conn_lock); 10697 mutex_enter(&ill->ill_lock); 10698 if (ill->ill_state_flags & ILL_CONDEMNED) { 10699 mutex_exit(&ill->ill_lock); 10700 mutex_exit(&connp->conn_lock); 10701 ill_refrele(ill); 10702 ill = NULL; 10703 mutex_enter(&connp->conn_lock); 10704 } 10705 goto setit; 10706 } else if (error == EINPROGRESS) { 10707 return (error); 10708 } else { 10709 error = 0; 10710 } 10711 } 10712 mutex_enter(&connp->conn_lock); 10713 setit: 10714 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10715 10716 /* 10717 * The options below assume that the ILL (if any) transmits and/or 10718 * receives traffic. Neither of which is true for the virtual network 10719 * interface, so fail setting these on a VNI. 10720 */ 10721 if (IS_VNI(ill)) { 10722 ASSERT(ill != NULL); 10723 mutex_exit(&ill->ill_lock); 10724 mutex_exit(&connp->conn_lock); 10725 ill_refrele(ill); 10726 return (EINVAL); 10727 } 10728 10729 if (level == IPPROTO_IP) { 10730 switch (option) { 10731 case IP_BOUND_IF: 10732 connp->conn_incoming_ill = ill; 10733 connp->conn_outgoing_ill = ill; 10734 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10735 0 : ifindex; 10736 break; 10737 10738 case IP_XMIT_IF: 10739 /* 10740 * Similar to IP_BOUND_IF, but this only 10741 * determines the outgoing interface for 10742 * unicast packets. Also no IRE_CACHE entry 10743 * is added for the destination of the 10744 * outgoing packets. This feature is needed 10745 * for mobile IP. 10746 */ 10747 connp->conn_xmit_if_ill = ill; 10748 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10749 0 : ifindex; 10750 break; 10751 10752 case IP_MULTICAST_IF: 10753 /* 10754 * This option is an internal special. The socket 10755 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10756 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10757 * specifies an ifindex and we try first on V6 ill's. 10758 * If we don't find one, we they try using on v4 ill's 10759 * intenally and we come here. 10760 */ 10761 if (!checkonly && ill != NULL) { 10762 ipif_t *ipif; 10763 ipif = ill->ill_ipif; 10764 10765 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10766 mutex_exit(&ill->ill_lock); 10767 mutex_exit(&connp->conn_lock); 10768 ill_refrele(ill); 10769 ill = NULL; 10770 mutex_enter(&connp->conn_lock); 10771 } else { 10772 connp->conn_multicast_ipif = ipif; 10773 } 10774 } 10775 break; 10776 } 10777 } else { 10778 switch (option) { 10779 case IPV6_BOUND_IF: 10780 connp->conn_incoming_ill = ill; 10781 connp->conn_outgoing_ill = ill; 10782 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10783 0 : ifindex; 10784 break; 10785 10786 case IPV6_BOUND_PIF: 10787 /* 10788 * Limit all transmit to this ill. 10789 * Unlike IPV6_BOUND_IF, using this option 10790 * prevents load spreading and failover from 10791 * happening when the interface is part of the 10792 * group. That's why we don't need to remember 10793 * the ifindex in orig_bound_ifindex as in 10794 * IPV6_BOUND_IF. 10795 */ 10796 connp->conn_outgoing_pill = ill; 10797 break; 10798 10799 case IPV6_DONTFAILOVER_IF: 10800 /* 10801 * This option is used by in.mpathd to ensure 10802 * that IPMP probe packets only go out on the 10803 * test interfaces. in.mpathd sets this option 10804 * on the non-failover interfaces. 10805 */ 10806 connp->conn_nofailover_ill = ill; 10807 /* 10808 * For backward compatibility, this option 10809 * implicitly sets ip_multicast_ill as used in 10810 * IP_MULTICAST_IF so that ip_wput gets 10811 * this ipif to send mcast packets. 10812 */ 10813 connp->conn_multicast_ill = ill; 10814 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10815 0 : ifindex; 10816 break; 10817 10818 case IPV6_MULTICAST_IF: 10819 /* 10820 * Set conn_multicast_ill to be the IPv6 ill. 10821 * Set conn_multicast_ipif to be an IPv4 ipif 10822 * for ifindex to make IPv4 mapped addresses 10823 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10824 * Even if no IPv6 ill exists for the ifindex 10825 * we need to check for an IPv4 ifindex in order 10826 * for this to work with mapped addresses. In that 10827 * case only set conn_multicast_ipif. 10828 */ 10829 if (!checkonly) { 10830 if (ifindex == 0) { 10831 connp->conn_multicast_ill = NULL; 10832 connp->conn_orig_multicast_ifindex = 0; 10833 connp->conn_multicast_ipif = NULL; 10834 } else if (ill != NULL) { 10835 connp->conn_multicast_ill = ill; 10836 connp->conn_orig_multicast_ifindex = 10837 ifindex; 10838 } 10839 } 10840 break; 10841 } 10842 } 10843 10844 if (ill != NULL) { 10845 mutex_exit(&ill->ill_lock); 10846 mutex_exit(&connp->conn_lock); 10847 ill_refrele(ill); 10848 return (0); 10849 } 10850 mutex_exit(&connp->conn_lock); 10851 /* 10852 * We succeeded in clearing the option (ifindex == 0) or failed to 10853 * locate the ill and could not set the option (ifindex != 0) 10854 */ 10855 return (ifindex == 0 ? 0 : EINVAL); 10856 } 10857 10858 /* This routine sets socket options. */ 10859 /* ARGSUSED */ 10860 int 10861 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10862 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10863 void *dummy, cred_t *cr, mblk_t *first_mp) 10864 { 10865 int *i1 = (int *)invalp; 10866 conn_t *connp = Q_TO_CONN(q); 10867 int error = 0; 10868 boolean_t checkonly; 10869 ire_t *ire; 10870 boolean_t found; 10871 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10872 10873 switch (optset_context) { 10874 10875 case SETFN_OPTCOM_CHECKONLY: 10876 checkonly = B_TRUE; 10877 /* 10878 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10879 * inlen != 0 implies value supplied and 10880 * we have to "pretend" to set it. 10881 * inlen == 0 implies that there is no 10882 * value part in T_CHECK request and just validation 10883 * done elsewhere should be enough, we just return here. 10884 */ 10885 if (inlen == 0) { 10886 *outlenp = 0; 10887 return (0); 10888 } 10889 break; 10890 case SETFN_OPTCOM_NEGOTIATE: 10891 case SETFN_UD_NEGOTIATE: 10892 case SETFN_CONN_NEGOTIATE: 10893 checkonly = B_FALSE; 10894 break; 10895 default: 10896 /* 10897 * We should never get here 10898 */ 10899 *outlenp = 0; 10900 return (EINVAL); 10901 } 10902 10903 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10904 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10905 10906 /* 10907 * For fixed length options, no sanity check 10908 * of passed in length is done. It is assumed *_optcom_req() 10909 * routines do the right thing. 10910 */ 10911 10912 switch (level) { 10913 case SOL_SOCKET: 10914 /* 10915 * conn_lock protects the bitfields, and is used to 10916 * set the fields atomically. 10917 */ 10918 switch (name) { 10919 case SO_BROADCAST: 10920 if (!checkonly) { 10921 /* TODO: use value someplace? */ 10922 mutex_enter(&connp->conn_lock); 10923 connp->conn_broadcast = *i1 ? 1 : 0; 10924 mutex_exit(&connp->conn_lock); 10925 } 10926 break; /* goto sizeof (int) option return */ 10927 case SO_USELOOPBACK: 10928 if (!checkonly) { 10929 /* TODO: use value someplace? */ 10930 mutex_enter(&connp->conn_lock); 10931 connp->conn_loopback = *i1 ? 1 : 0; 10932 mutex_exit(&connp->conn_lock); 10933 } 10934 break; /* goto sizeof (int) option return */ 10935 case SO_DONTROUTE: 10936 if (!checkonly) { 10937 mutex_enter(&connp->conn_lock); 10938 connp->conn_dontroute = *i1 ? 1 : 0; 10939 mutex_exit(&connp->conn_lock); 10940 } 10941 break; /* goto sizeof (int) option return */ 10942 case SO_REUSEADDR: 10943 if (!checkonly) { 10944 mutex_enter(&connp->conn_lock); 10945 connp->conn_reuseaddr = *i1 ? 1 : 0; 10946 mutex_exit(&connp->conn_lock); 10947 } 10948 break; /* goto sizeof (int) option return */ 10949 case SO_PROTOTYPE: 10950 if (!checkonly) { 10951 mutex_enter(&connp->conn_lock); 10952 connp->conn_proto = *i1; 10953 mutex_exit(&connp->conn_lock); 10954 } 10955 break; /* goto sizeof (int) option return */ 10956 case SO_ALLZONES: 10957 if (!checkonly) { 10958 mutex_enter(&connp->conn_lock); 10959 if (IPCL_IS_BOUND(connp)) { 10960 mutex_exit(&connp->conn_lock); 10961 return (EINVAL); 10962 } 10963 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10964 mutex_exit(&connp->conn_lock); 10965 } 10966 break; /* goto sizeof (int) option return */ 10967 case SO_ANON_MLP: 10968 if (!checkonly) { 10969 mutex_enter(&connp->conn_lock); 10970 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10971 mutex_exit(&connp->conn_lock); 10972 } 10973 break; /* goto sizeof (int) option return */ 10974 case SO_MAC_EXEMPT: 10975 if (secpolicy_net_mac_aware(cr) != 0 || 10976 IPCL_IS_BOUND(connp)) 10977 return (EACCES); 10978 if (!checkonly) { 10979 mutex_enter(&connp->conn_lock); 10980 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10981 mutex_exit(&connp->conn_lock); 10982 } 10983 break; /* goto sizeof (int) option return */ 10984 default: 10985 /* 10986 * "soft" error (negative) 10987 * option not handled at this level 10988 * Note: Do not modify *outlenp 10989 */ 10990 return (-EINVAL); 10991 } 10992 break; 10993 case IPPROTO_IP: 10994 switch (name) { 10995 case IP_NEXTHOP: 10996 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10997 return (EPERM); 10998 /* FALLTHRU */ 10999 case IP_MULTICAST_IF: 11000 case IP_DONTFAILOVER_IF: { 11001 ipaddr_t addr = *i1; 11002 11003 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11004 first_mp); 11005 if (error != 0) 11006 return (error); 11007 break; /* goto sizeof (int) option return */ 11008 } 11009 11010 case IP_MULTICAST_TTL: 11011 /* Recorded in transport above IP */ 11012 *outvalp = *invalp; 11013 *outlenp = sizeof (uchar_t); 11014 return (0); 11015 case IP_MULTICAST_LOOP: 11016 if (!checkonly) { 11017 mutex_enter(&connp->conn_lock); 11018 connp->conn_multicast_loop = *invalp ? 1 : 0; 11019 mutex_exit(&connp->conn_lock); 11020 } 11021 *outvalp = *invalp; 11022 *outlenp = sizeof (uchar_t); 11023 return (0); 11024 case IP_ADD_MEMBERSHIP: 11025 case MCAST_JOIN_GROUP: 11026 case IP_DROP_MEMBERSHIP: 11027 case MCAST_LEAVE_GROUP: { 11028 struct ip_mreq *mreqp; 11029 struct group_req *greqp; 11030 ire_t *ire; 11031 boolean_t done = B_FALSE; 11032 ipaddr_t group, ifaddr; 11033 struct sockaddr_in *sin; 11034 uint32_t *ifindexp; 11035 boolean_t mcast_opt = B_TRUE; 11036 mcast_record_t fmode; 11037 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11038 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11039 11040 switch (name) { 11041 case IP_ADD_MEMBERSHIP: 11042 mcast_opt = B_FALSE; 11043 /* FALLTHRU */ 11044 case MCAST_JOIN_GROUP: 11045 fmode = MODE_IS_EXCLUDE; 11046 optfn = ip_opt_add_group; 11047 break; 11048 11049 case IP_DROP_MEMBERSHIP: 11050 mcast_opt = B_FALSE; 11051 /* FALLTHRU */ 11052 case MCAST_LEAVE_GROUP: 11053 fmode = MODE_IS_INCLUDE; 11054 optfn = ip_opt_delete_group; 11055 break; 11056 } 11057 11058 if (mcast_opt) { 11059 greqp = (struct group_req *)i1; 11060 sin = (struct sockaddr_in *)&greqp->gr_group; 11061 if (sin->sin_family != AF_INET) { 11062 *outlenp = 0; 11063 return (ENOPROTOOPT); 11064 } 11065 group = (ipaddr_t)sin->sin_addr.s_addr; 11066 ifaddr = INADDR_ANY; 11067 ifindexp = &greqp->gr_interface; 11068 } else { 11069 mreqp = (struct ip_mreq *)i1; 11070 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11071 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11072 ifindexp = NULL; 11073 } 11074 11075 /* 11076 * In the multirouting case, we need to replicate 11077 * the request on all interfaces that will take part 11078 * in replication. We do so because multirouting is 11079 * reflective, thus we will probably receive multi- 11080 * casts on those interfaces. 11081 * The ip_multirt_apply_membership() succeeds if the 11082 * operation succeeds on at least one interface. 11083 */ 11084 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11085 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11086 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11087 if (ire != NULL) { 11088 if (ire->ire_flags & RTF_MULTIRT) { 11089 error = ip_multirt_apply_membership( 11090 optfn, ire, connp, checkonly, group, 11091 fmode, INADDR_ANY, first_mp); 11092 done = B_TRUE; 11093 } 11094 ire_refrele(ire); 11095 } 11096 if (!done) { 11097 error = optfn(connp, checkonly, group, ifaddr, 11098 ifindexp, fmode, INADDR_ANY, first_mp); 11099 } 11100 if (error) { 11101 /* 11102 * EINPROGRESS is a soft error, needs retry 11103 * so don't make *outlenp zero. 11104 */ 11105 if (error != EINPROGRESS) 11106 *outlenp = 0; 11107 return (error); 11108 } 11109 /* OK return - copy input buffer into output buffer */ 11110 if (invalp != outvalp) { 11111 /* don't trust bcopy for identical src/dst */ 11112 bcopy(invalp, outvalp, inlen); 11113 } 11114 *outlenp = inlen; 11115 return (0); 11116 } 11117 case IP_BLOCK_SOURCE: 11118 case IP_UNBLOCK_SOURCE: 11119 case IP_ADD_SOURCE_MEMBERSHIP: 11120 case IP_DROP_SOURCE_MEMBERSHIP: 11121 case MCAST_BLOCK_SOURCE: 11122 case MCAST_UNBLOCK_SOURCE: 11123 case MCAST_JOIN_SOURCE_GROUP: 11124 case MCAST_LEAVE_SOURCE_GROUP: { 11125 struct ip_mreq_source *imreqp; 11126 struct group_source_req *gsreqp; 11127 in_addr_t grp, src, ifaddr = INADDR_ANY; 11128 uint32_t ifindex = 0; 11129 mcast_record_t fmode; 11130 struct sockaddr_in *sin; 11131 ire_t *ire; 11132 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11133 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11134 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11135 11136 switch (name) { 11137 case IP_BLOCK_SOURCE: 11138 mcast_opt = B_FALSE; 11139 /* FALLTHRU */ 11140 case MCAST_BLOCK_SOURCE: 11141 fmode = MODE_IS_EXCLUDE; 11142 optfn = ip_opt_add_group; 11143 break; 11144 11145 case IP_UNBLOCK_SOURCE: 11146 mcast_opt = B_FALSE; 11147 /* FALLTHRU */ 11148 case MCAST_UNBLOCK_SOURCE: 11149 fmode = MODE_IS_EXCLUDE; 11150 optfn = ip_opt_delete_group; 11151 break; 11152 11153 case IP_ADD_SOURCE_MEMBERSHIP: 11154 mcast_opt = B_FALSE; 11155 /* FALLTHRU */ 11156 case MCAST_JOIN_SOURCE_GROUP: 11157 fmode = MODE_IS_INCLUDE; 11158 optfn = ip_opt_add_group; 11159 break; 11160 11161 case IP_DROP_SOURCE_MEMBERSHIP: 11162 mcast_opt = B_FALSE; 11163 /* FALLTHRU */ 11164 case MCAST_LEAVE_SOURCE_GROUP: 11165 fmode = MODE_IS_INCLUDE; 11166 optfn = ip_opt_delete_group; 11167 break; 11168 } 11169 11170 if (mcast_opt) { 11171 gsreqp = (struct group_source_req *)i1; 11172 if (gsreqp->gsr_group.ss_family != AF_INET) { 11173 *outlenp = 0; 11174 return (ENOPROTOOPT); 11175 } 11176 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11177 grp = (ipaddr_t)sin->sin_addr.s_addr; 11178 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11179 src = (ipaddr_t)sin->sin_addr.s_addr; 11180 ifindex = gsreqp->gsr_interface; 11181 } else { 11182 imreqp = (struct ip_mreq_source *)i1; 11183 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11184 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11185 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11186 } 11187 11188 /* 11189 * In the multirouting case, we need to replicate 11190 * the request as noted in the mcast cases above. 11191 */ 11192 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11193 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11194 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11195 if (ire != NULL) { 11196 if (ire->ire_flags & RTF_MULTIRT) { 11197 error = ip_multirt_apply_membership( 11198 optfn, ire, connp, checkonly, grp, 11199 fmode, src, first_mp); 11200 done = B_TRUE; 11201 } 11202 ire_refrele(ire); 11203 } 11204 if (!done) { 11205 error = optfn(connp, checkonly, grp, ifaddr, 11206 &ifindex, fmode, src, first_mp); 11207 } 11208 if (error != 0) { 11209 /* 11210 * EINPROGRESS is a soft error, needs retry 11211 * so don't make *outlenp zero. 11212 */ 11213 if (error != EINPROGRESS) 11214 *outlenp = 0; 11215 return (error); 11216 } 11217 /* OK return - copy input buffer into output buffer */ 11218 if (invalp != outvalp) { 11219 bcopy(invalp, outvalp, inlen); 11220 } 11221 *outlenp = inlen; 11222 return (0); 11223 } 11224 case IP_SEC_OPT: 11225 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11226 if (error != 0) { 11227 *outlenp = 0; 11228 return (error); 11229 } 11230 break; 11231 case IP_HDRINCL: 11232 case IP_OPTIONS: 11233 case T_IP_OPTIONS: 11234 case IP_TOS: 11235 case T_IP_TOS: 11236 case IP_TTL: 11237 case IP_RECVDSTADDR: 11238 case IP_RECVOPTS: 11239 /* OK return - copy input buffer into output buffer */ 11240 if (invalp != outvalp) { 11241 /* don't trust bcopy for identical src/dst */ 11242 bcopy(invalp, outvalp, inlen); 11243 } 11244 *outlenp = inlen; 11245 return (0); 11246 case IP_RECVIF: 11247 /* Retrieve the inbound interface index */ 11248 if (!checkonly) { 11249 mutex_enter(&connp->conn_lock); 11250 connp->conn_recvif = *i1 ? 1 : 0; 11251 mutex_exit(&connp->conn_lock); 11252 } 11253 break; /* goto sizeof (int) option return */ 11254 case IP_RECVPKTINFO: 11255 if (!checkonly) { 11256 mutex_enter(&connp->conn_lock); 11257 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11258 mutex_exit(&connp->conn_lock); 11259 } 11260 break; /* goto sizeof (int) option return */ 11261 case IP_RECVSLLA: 11262 /* Retrieve the source link layer address */ 11263 if (!checkonly) { 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_recvslla = *i1 ? 1 : 0; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; /* goto sizeof (int) option return */ 11269 case MRT_INIT: 11270 case MRT_DONE: 11271 case MRT_ADD_VIF: 11272 case MRT_DEL_VIF: 11273 case MRT_ADD_MFC: 11274 case MRT_DEL_MFC: 11275 case MRT_ASSERT: 11276 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11277 *outlenp = 0; 11278 return (error); 11279 } 11280 error = ip_mrouter_set((int)name, q, checkonly, 11281 (uchar_t *)invalp, inlen, first_mp); 11282 if (error) { 11283 *outlenp = 0; 11284 return (error); 11285 } 11286 /* OK return - copy input buffer into output buffer */ 11287 if (invalp != outvalp) { 11288 /* don't trust bcopy for identical src/dst */ 11289 bcopy(invalp, outvalp, inlen); 11290 } 11291 *outlenp = inlen; 11292 return (0); 11293 case IP_BOUND_IF: 11294 case IP_XMIT_IF: 11295 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11296 level, name, first_mp); 11297 if (error != 0) 11298 return (error); 11299 break; /* goto sizeof (int) option return */ 11300 11301 case IP_UNSPEC_SRC: 11302 /* Allow sending with a zero source address */ 11303 if (!checkonly) { 11304 mutex_enter(&connp->conn_lock); 11305 connp->conn_unspec_src = *i1 ? 1 : 0; 11306 mutex_exit(&connp->conn_lock); 11307 } 11308 break; /* goto sizeof (int) option return */ 11309 default: 11310 /* 11311 * "soft" error (negative) 11312 * option not handled at this level 11313 * Note: Do not modify *outlenp 11314 */ 11315 return (-EINVAL); 11316 } 11317 break; 11318 case IPPROTO_IPV6: 11319 switch (name) { 11320 case IPV6_BOUND_IF: 11321 case IPV6_BOUND_PIF: 11322 case IPV6_DONTFAILOVER_IF: 11323 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11324 level, name, first_mp); 11325 if (error != 0) 11326 return (error); 11327 break; /* goto sizeof (int) option return */ 11328 11329 case IPV6_MULTICAST_IF: 11330 /* 11331 * The only possible errors are EINPROGRESS and 11332 * EINVAL. EINPROGRESS will be restarted and is not 11333 * a hard error. We call this option on both V4 and V6 11334 * If both return EINVAL, then this call returns 11335 * EINVAL. If at least one of them succeeds we 11336 * return success. 11337 */ 11338 found = B_FALSE; 11339 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11340 level, name, first_mp); 11341 if (error == EINPROGRESS) 11342 return (error); 11343 if (error == 0) 11344 found = B_TRUE; 11345 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11346 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11347 if (error == 0) 11348 found = B_TRUE; 11349 if (!found) 11350 return (error); 11351 break; /* goto sizeof (int) option return */ 11352 11353 case IPV6_MULTICAST_HOPS: 11354 /* Recorded in transport above IP */ 11355 break; /* goto sizeof (int) option return */ 11356 case IPV6_MULTICAST_LOOP: 11357 if (!checkonly) { 11358 mutex_enter(&connp->conn_lock); 11359 connp->conn_multicast_loop = *i1; 11360 mutex_exit(&connp->conn_lock); 11361 } 11362 break; /* goto sizeof (int) option return */ 11363 case IPV6_JOIN_GROUP: 11364 case MCAST_JOIN_GROUP: 11365 case IPV6_LEAVE_GROUP: 11366 case MCAST_LEAVE_GROUP: { 11367 struct ipv6_mreq *ip_mreqp; 11368 struct group_req *greqp; 11369 ire_t *ire; 11370 boolean_t done = B_FALSE; 11371 in6_addr_t groupv6; 11372 uint32_t ifindex; 11373 boolean_t mcast_opt = B_TRUE; 11374 mcast_record_t fmode; 11375 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11376 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11377 11378 switch (name) { 11379 case IPV6_JOIN_GROUP: 11380 mcast_opt = B_FALSE; 11381 /* FALLTHRU */ 11382 case MCAST_JOIN_GROUP: 11383 fmode = MODE_IS_EXCLUDE; 11384 optfn = ip_opt_add_group_v6; 11385 break; 11386 11387 case IPV6_LEAVE_GROUP: 11388 mcast_opt = B_FALSE; 11389 /* FALLTHRU */ 11390 case MCAST_LEAVE_GROUP: 11391 fmode = MODE_IS_INCLUDE; 11392 optfn = ip_opt_delete_group_v6; 11393 break; 11394 } 11395 11396 if (mcast_opt) { 11397 struct sockaddr_in *sin; 11398 struct sockaddr_in6 *sin6; 11399 greqp = (struct group_req *)i1; 11400 if (greqp->gr_group.ss_family == AF_INET) { 11401 sin = (struct sockaddr_in *) 11402 &(greqp->gr_group); 11403 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11404 &groupv6); 11405 } else { 11406 sin6 = (struct sockaddr_in6 *) 11407 &(greqp->gr_group); 11408 groupv6 = sin6->sin6_addr; 11409 } 11410 ifindex = greqp->gr_interface; 11411 } else { 11412 ip_mreqp = (struct ipv6_mreq *)i1; 11413 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11414 ifindex = ip_mreqp->ipv6mr_interface; 11415 } 11416 /* 11417 * In the multirouting case, we need to replicate 11418 * the request on all interfaces that will take part 11419 * in replication. We do so because multirouting is 11420 * reflective, thus we will probably receive multi- 11421 * casts on those interfaces. 11422 * The ip_multirt_apply_membership_v6() succeeds if 11423 * the operation succeeds on at least one interface. 11424 */ 11425 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11426 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11427 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11428 if (ire != NULL) { 11429 if (ire->ire_flags & RTF_MULTIRT) { 11430 error = ip_multirt_apply_membership_v6( 11431 optfn, ire, connp, checkonly, 11432 &groupv6, fmode, &ipv6_all_zeros, 11433 first_mp); 11434 done = B_TRUE; 11435 } 11436 ire_refrele(ire); 11437 } 11438 if (!done) { 11439 error = optfn(connp, checkonly, &groupv6, 11440 ifindex, fmode, &ipv6_all_zeros, first_mp); 11441 } 11442 if (error) { 11443 /* 11444 * EINPROGRESS is a soft error, needs retry 11445 * so don't make *outlenp zero. 11446 */ 11447 if (error != EINPROGRESS) 11448 *outlenp = 0; 11449 return (error); 11450 } 11451 /* OK return - copy input buffer into output buffer */ 11452 if (invalp != outvalp) { 11453 /* don't trust bcopy for identical src/dst */ 11454 bcopy(invalp, outvalp, inlen); 11455 } 11456 *outlenp = inlen; 11457 return (0); 11458 } 11459 case MCAST_BLOCK_SOURCE: 11460 case MCAST_UNBLOCK_SOURCE: 11461 case MCAST_JOIN_SOURCE_GROUP: 11462 case MCAST_LEAVE_SOURCE_GROUP: { 11463 struct group_source_req *gsreqp; 11464 in6_addr_t v6grp, v6src; 11465 uint32_t ifindex; 11466 mcast_record_t fmode; 11467 ire_t *ire; 11468 boolean_t done = B_FALSE; 11469 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11470 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11471 11472 switch (name) { 11473 case MCAST_BLOCK_SOURCE: 11474 fmode = MODE_IS_EXCLUDE; 11475 optfn = ip_opt_add_group_v6; 11476 break; 11477 case MCAST_UNBLOCK_SOURCE: 11478 fmode = MODE_IS_EXCLUDE; 11479 optfn = ip_opt_delete_group_v6; 11480 break; 11481 case MCAST_JOIN_SOURCE_GROUP: 11482 fmode = MODE_IS_INCLUDE; 11483 optfn = ip_opt_add_group_v6; 11484 break; 11485 case MCAST_LEAVE_SOURCE_GROUP: 11486 fmode = MODE_IS_INCLUDE; 11487 optfn = ip_opt_delete_group_v6; 11488 break; 11489 } 11490 11491 gsreqp = (struct group_source_req *)i1; 11492 ifindex = gsreqp->gsr_interface; 11493 if (gsreqp->gsr_group.ss_family == AF_INET) { 11494 struct sockaddr_in *s; 11495 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11496 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11497 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11498 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11499 } else { 11500 struct sockaddr_in6 *s6; 11501 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11502 v6grp = s6->sin6_addr; 11503 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11504 v6src = s6->sin6_addr; 11505 } 11506 11507 /* 11508 * In the multirouting case, we need to replicate 11509 * the request as noted in the mcast cases above. 11510 */ 11511 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11512 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11513 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11514 if (ire != NULL) { 11515 if (ire->ire_flags & RTF_MULTIRT) { 11516 error = ip_multirt_apply_membership_v6( 11517 optfn, ire, connp, checkonly, 11518 &v6grp, fmode, &v6src, first_mp); 11519 done = B_TRUE; 11520 } 11521 ire_refrele(ire); 11522 } 11523 if (!done) { 11524 error = optfn(connp, checkonly, &v6grp, 11525 ifindex, fmode, &v6src, first_mp); 11526 } 11527 if (error != 0) { 11528 /* 11529 * EINPROGRESS is a soft error, needs retry 11530 * so don't make *outlenp zero. 11531 */ 11532 if (error != EINPROGRESS) 11533 *outlenp = 0; 11534 return (error); 11535 } 11536 /* OK return - copy input buffer into output buffer */ 11537 if (invalp != outvalp) { 11538 bcopy(invalp, outvalp, inlen); 11539 } 11540 *outlenp = inlen; 11541 return (0); 11542 } 11543 case IPV6_UNICAST_HOPS: 11544 /* Recorded in transport above IP */ 11545 break; /* goto sizeof (int) option return */ 11546 case IPV6_UNSPEC_SRC: 11547 /* Allow sending with a zero source address */ 11548 if (!checkonly) { 11549 mutex_enter(&connp->conn_lock); 11550 connp->conn_unspec_src = *i1 ? 1 : 0; 11551 mutex_exit(&connp->conn_lock); 11552 } 11553 break; /* goto sizeof (int) option return */ 11554 case IPV6_RECVPKTINFO: 11555 if (!checkonly) { 11556 mutex_enter(&connp->conn_lock); 11557 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11558 mutex_exit(&connp->conn_lock); 11559 } 11560 break; /* goto sizeof (int) option return */ 11561 case IPV6_RECVTCLASS: 11562 if (!checkonly) { 11563 if (*i1 < 0 || *i1 > 1) { 11564 return (EINVAL); 11565 } 11566 mutex_enter(&connp->conn_lock); 11567 connp->conn_ipv6_recvtclass = *i1; 11568 mutex_exit(&connp->conn_lock); 11569 } 11570 break; 11571 case IPV6_RECVPATHMTU: 11572 if (!checkonly) { 11573 if (*i1 < 0 || *i1 > 1) { 11574 return (EINVAL); 11575 } 11576 mutex_enter(&connp->conn_lock); 11577 connp->conn_ipv6_recvpathmtu = *i1; 11578 mutex_exit(&connp->conn_lock); 11579 } 11580 break; 11581 case IPV6_RECVHOPLIMIT: 11582 if (!checkonly) { 11583 mutex_enter(&connp->conn_lock); 11584 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11585 mutex_exit(&connp->conn_lock); 11586 } 11587 break; /* goto sizeof (int) option return */ 11588 case IPV6_RECVHOPOPTS: 11589 if (!checkonly) { 11590 mutex_enter(&connp->conn_lock); 11591 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11592 mutex_exit(&connp->conn_lock); 11593 } 11594 break; /* goto sizeof (int) option return */ 11595 case IPV6_RECVDSTOPTS: 11596 if (!checkonly) { 11597 mutex_enter(&connp->conn_lock); 11598 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11599 mutex_exit(&connp->conn_lock); 11600 } 11601 break; /* goto sizeof (int) option return */ 11602 case IPV6_RECVRTHDR: 11603 if (!checkonly) { 11604 mutex_enter(&connp->conn_lock); 11605 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11606 mutex_exit(&connp->conn_lock); 11607 } 11608 break; /* goto sizeof (int) option return */ 11609 case IPV6_RECVRTHDRDSTOPTS: 11610 if (!checkonly) { 11611 mutex_enter(&connp->conn_lock); 11612 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11613 mutex_exit(&connp->conn_lock); 11614 } 11615 break; /* goto sizeof (int) option return */ 11616 case IPV6_PKTINFO: 11617 if (inlen == 0) 11618 return (-EINVAL); /* clearing option */ 11619 error = ip6_set_pktinfo(cr, connp, 11620 (struct in6_pktinfo *)invalp, first_mp); 11621 if (error != 0) 11622 *outlenp = 0; 11623 else 11624 *outlenp = inlen; 11625 return (error); 11626 case IPV6_NEXTHOP: { 11627 struct sockaddr_in6 *sin6; 11628 11629 /* Verify that the nexthop is reachable */ 11630 if (inlen == 0) 11631 return (-EINVAL); /* clearing option */ 11632 11633 sin6 = (struct sockaddr_in6 *)invalp; 11634 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11635 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11636 NULL, MATCH_IRE_DEFAULT, ipst); 11637 11638 if (ire == NULL) { 11639 *outlenp = 0; 11640 return (EHOSTUNREACH); 11641 } 11642 ire_refrele(ire); 11643 return (-EINVAL); 11644 } 11645 case IPV6_SEC_OPT: 11646 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11647 if (error != 0) { 11648 *outlenp = 0; 11649 return (error); 11650 } 11651 break; 11652 case IPV6_SRC_PREFERENCES: { 11653 /* 11654 * This is implemented strictly in the ip module 11655 * (here and in tcp_opt_*() to accomodate tcp 11656 * sockets). Modules above ip pass this option 11657 * down here since ip is the only one that needs to 11658 * be aware of source address preferences. 11659 * 11660 * This socket option only affects connected 11661 * sockets that haven't already bound to a specific 11662 * IPv6 address. In other words, sockets that 11663 * don't call bind() with an address other than the 11664 * unspecified address and that call connect(). 11665 * ip_bind_connected_v6() passes these preferences 11666 * to the ipif_select_source_v6() function. 11667 */ 11668 if (inlen != sizeof (uint32_t)) 11669 return (EINVAL); 11670 error = ip6_set_src_preferences(connp, 11671 *(uint32_t *)invalp); 11672 if (error != 0) { 11673 *outlenp = 0; 11674 return (error); 11675 } else { 11676 *outlenp = sizeof (uint32_t); 11677 } 11678 break; 11679 } 11680 case IPV6_V6ONLY: 11681 if (*i1 < 0 || *i1 > 1) { 11682 return (EINVAL); 11683 } 11684 mutex_enter(&connp->conn_lock); 11685 connp->conn_ipv6_v6only = *i1; 11686 mutex_exit(&connp->conn_lock); 11687 break; 11688 default: 11689 return (-EINVAL); 11690 } 11691 break; 11692 default: 11693 /* 11694 * "soft" error (negative) 11695 * option not handled at this level 11696 * Note: Do not modify *outlenp 11697 */ 11698 return (-EINVAL); 11699 } 11700 /* 11701 * Common case of return from an option that is sizeof (int) 11702 */ 11703 *(int *)outvalp = *i1; 11704 *outlenp = sizeof (int); 11705 return (0); 11706 } 11707 11708 /* 11709 * This routine gets default values of certain options whose default 11710 * values are maintained by protocol specific code 11711 */ 11712 /* ARGSUSED */ 11713 int 11714 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11715 { 11716 int *i1 = (int *)ptr; 11717 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11718 11719 switch (level) { 11720 case IPPROTO_IP: 11721 switch (name) { 11722 case IP_MULTICAST_TTL: 11723 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11724 return (sizeof (uchar_t)); 11725 case IP_MULTICAST_LOOP: 11726 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11727 return (sizeof (uchar_t)); 11728 default: 11729 return (-1); 11730 } 11731 case IPPROTO_IPV6: 11732 switch (name) { 11733 case IPV6_UNICAST_HOPS: 11734 *i1 = ipst->ips_ipv6_def_hops; 11735 return (sizeof (int)); 11736 case IPV6_MULTICAST_HOPS: 11737 *i1 = IP_DEFAULT_MULTICAST_TTL; 11738 return (sizeof (int)); 11739 case IPV6_MULTICAST_LOOP: 11740 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11741 return (sizeof (int)); 11742 case IPV6_V6ONLY: 11743 *i1 = 1; 11744 return (sizeof (int)); 11745 default: 11746 return (-1); 11747 } 11748 default: 11749 return (-1); 11750 } 11751 /* NOTREACHED */ 11752 } 11753 11754 /* 11755 * Given a destination address and a pointer to where to put the information 11756 * this routine fills in the mtuinfo. 11757 */ 11758 int 11759 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11760 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11761 { 11762 ire_t *ire; 11763 ip_stack_t *ipst = ns->netstack_ip; 11764 11765 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11766 return (-1); 11767 11768 bzero(mtuinfo, sizeof (*mtuinfo)); 11769 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11770 mtuinfo->ip6m_addr.sin6_port = port; 11771 mtuinfo->ip6m_addr.sin6_addr = *in6; 11772 11773 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11774 if (ire != NULL) { 11775 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11776 ire_refrele(ire); 11777 } else { 11778 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11779 } 11780 return (sizeof (struct ip6_mtuinfo)); 11781 } 11782 11783 /* 11784 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11785 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11786 * isn't. This doesn't matter as the error checking is done properly for the 11787 * other MRT options coming in through ip_opt_set. 11788 */ 11789 int 11790 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11791 { 11792 conn_t *connp = Q_TO_CONN(q); 11793 ipsec_req_t *req = (ipsec_req_t *)ptr; 11794 11795 switch (level) { 11796 case IPPROTO_IP: 11797 switch (name) { 11798 case MRT_VERSION: 11799 case MRT_ASSERT: 11800 (void) ip_mrouter_get(name, q, ptr); 11801 return (sizeof (int)); 11802 case IP_SEC_OPT: 11803 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11804 case IP_NEXTHOP: 11805 if (connp->conn_nexthop_set) { 11806 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11807 return (sizeof (ipaddr_t)); 11808 } else 11809 return (0); 11810 case IP_RECVPKTINFO: 11811 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11812 return (sizeof (int)); 11813 default: 11814 break; 11815 } 11816 break; 11817 case IPPROTO_IPV6: 11818 switch (name) { 11819 case IPV6_SEC_OPT: 11820 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11821 case IPV6_SRC_PREFERENCES: { 11822 return (ip6_get_src_preferences(connp, 11823 (uint32_t *)ptr)); 11824 } 11825 case IPV6_V6ONLY: 11826 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11827 return (sizeof (int)); 11828 case IPV6_PATHMTU: 11829 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11830 (struct ip6_mtuinfo *)ptr, 11831 connp->conn_netstack)); 11832 default: 11833 break; 11834 } 11835 break; 11836 default: 11837 break; 11838 } 11839 return (-1); 11840 } 11841 11842 /* Named Dispatch routine to get a current value out of our parameter table. */ 11843 /* ARGSUSED */ 11844 static int 11845 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11846 { 11847 ipparam_t *ippa = (ipparam_t *)cp; 11848 11849 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11850 return (0); 11851 } 11852 11853 /* ARGSUSED */ 11854 static int 11855 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11856 { 11857 11858 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11859 return (0); 11860 } 11861 11862 /* 11863 * Set ip{,6}_forwarding values. This means walking through all of the 11864 * ill's and toggling their forwarding values. 11865 */ 11866 /* ARGSUSED */ 11867 static int 11868 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11869 { 11870 long new_value; 11871 int *forwarding_value = (int *)cp; 11872 ill_t *walker; 11873 boolean_t isv6; 11874 ill_walk_context_t ctx; 11875 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11876 11877 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11878 11879 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11880 new_value < 0 || new_value > 1) { 11881 return (EINVAL); 11882 } 11883 11884 *forwarding_value = new_value; 11885 11886 /* 11887 * Regardless of the current value of ip_forwarding, set all per-ill 11888 * values of ip_forwarding to the value being set. 11889 * 11890 * Bring all the ill's up to date with the new global value. 11891 */ 11892 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11893 11894 if (isv6) 11895 walker = ILL_START_WALK_V6(&ctx, ipst); 11896 else 11897 walker = ILL_START_WALK_V4(&ctx, ipst); 11898 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11899 (void) ill_forward_set(q, mp, (new_value != 0), 11900 (caddr_t)walker); 11901 } 11902 rw_exit(&ipst->ips_ill_g_lock); 11903 11904 return (0); 11905 } 11906 11907 /* 11908 * Walk through the param array specified registering each element with the 11909 * Named Dispatch handler. This is called only during init. So it is ok 11910 * not to acquire any locks 11911 */ 11912 static boolean_t 11913 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11914 ipndp_t *ipnd, size_t ipnd_cnt) 11915 { 11916 for (; ippa_cnt-- > 0; ippa++) { 11917 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11918 if (!nd_load(ndp, ippa->ip_param_name, 11919 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11920 nd_free(ndp); 11921 return (B_FALSE); 11922 } 11923 } 11924 } 11925 11926 for (; ipnd_cnt-- > 0; ipnd++) { 11927 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11928 if (!nd_load(ndp, ipnd->ip_ndp_name, 11929 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11930 ipnd->ip_ndp_data)) { 11931 nd_free(ndp); 11932 return (B_FALSE); 11933 } 11934 } 11935 } 11936 11937 return (B_TRUE); 11938 } 11939 11940 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11941 /* ARGSUSED */ 11942 static int 11943 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11944 { 11945 long new_value; 11946 ipparam_t *ippa = (ipparam_t *)cp; 11947 11948 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11949 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11950 return (EINVAL); 11951 } 11952 ippa->ip_param_value = new_value; 11953 return (0); 11954 } 11955 11956 /* 11957 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11958 * When an ipf is passed here for the first time, if 11959 * we already have in-order fragments on the queue, we convert from the fast- 11960 * path reassembly scheme to the hard-case scheme. From then on, additional 11961 * fragments are reassembled here. We keep track of the start and end offsets 11962 * of each piece, and the number of holes in the chain. When the hole count 11963 * goes to zero, we are done! 11964 * 11965 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11966 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11967 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11968 * after the call to ip_reassemble(). 11969 */ 11970 int 11971 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11972 size_t msg_len) 11973 { 11974 uint_t end; 11975 mblk_t *next_mp; 11976 mblk_t *mp1; 11977 uint_t offset; 11978 boolean_t incr_dups = B_TRUE; 11979 boolean_t offset_zero_seen = B_FALSE; 11980 boolean_t pkt_boundary_checked = B_FALSE; 11981 11982 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11983 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11984 11985 /* Add in byte count */ 11986 ipf->ipf_count += msg_len; 11987 if (ipf->ipf_end) { 11988 /* 11989 * We were part way through in-order reassembly, but now there 11990 * is a hole. We walk through messages already queued, and 11991 * mark them for hard case reassembly. We know that up till 11992 * now they were in order starting from offset zero. 11993 */ 11994 offset = 0; 11995 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11996 IP_REASS_SET_START(mp1, offset); 11997 if (offset == 0) { 11998 ASSERT(ipf->ipf_nf_hdr_len != 0); 11999 offset = -ipf->ipf_nf_hdr_len; 12000 } 12001 offset += mp1->b_wptr - mp1->b_rptr; 12002 IP_REASS_SET_END(mp1, offset); 12003 } 12004 /* One hole at the end. */ 12005 ipf->ipf_hole_cnt = 1; 12006 /* Brand it as a hard case, forever. */ 12007 ipf->ipf_end = 0; 12008 } 12009 /* Walk through all the new pieces. */ 12010 do { 12011 end = start + (mp->b_wptr - mp->b_rptr); 12012 /* 12013 * If start is 0, decrease 'end' only for the first mblk of 12014 * the fragment. Otherwise 'end' can get wrong value in the 12015 * second pass of the loop if first mblk is exactly the 12016 * size of ipf_nf_hdr_len. 12017 */ 12018 if (start == 0 && !offset_zero_seen) { 12019 /* First segment */ 12020 ASSERT(ipf->ipf_nf_hdr_len != 0); 12021 end -= ipf->ipf_nf_hdr_len; 12022 offset_zero_seen = B_TRUE; 12023 } 12024 next_mp = mp->b_cont; 12025 /* 12026 * We are checking to see if there is any interesing data 12027 * to process. If there isn't and the mblk isn't the 12028 * one which carries the unfragmentable header then we 12029 * drop it. It's possible to have just the unfragmentable 12030 * header come through without any data. That needs to be 12031 * saved. 12032 * 12033 * If the assert at the top of this function holds then the 12034 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12035 * is infrequently traveled enough that the test is left in 12036 * to protect against future code changes which break that 12037 * invariant. 12038 */ 12039 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12040 /* Empty. Blast it. */ 12041 IP_REASS_SET_START(mp, 0); 12042 IP_REASS_SET_END(mp, 0); 12043 /* 12044 * If the ipf points to the mblk we are about to free, 12045 * update ipf to point to the next mblk (or NULL 12046 * if none). 12047 */ 12048 if (ipf->ipf_mp->b_cont == mp) 12049 ipf->ipf_mp->b_cont = next_mp; 12050 freeb(mp); 12051 continue; 12052 } 12053 mp->b_cont = NULL; 12054 IP_REASS_SET_START(mp, start); 12055 IP_REASS_SET_END(mp, end); 12056 if (!ipf->ipf_tail_mp) { 12057 ipf->ipf_tail_mp = mp; 12058 ipf->ipf_mp->b_cont = mp; 12059 if (start == 0 || !more) { 12060 ipf->ipf_hole_cnt = 1; 12061 /* 12062 * if the first fragment comes in more than one 12063 * mblk, this loop will be executed for each 12064 * mblk. Need to adjust hole count so exiting 12065 * this routine will leave hole count at 1. 12066 */ 12067 if (next_mp) 12068 ipf->ipf_hole_cnt++; 12069 } else 12070 ipf->ipf_hole_cnt = 2; 12071 continue; 12072 } else if (ipf->ipf_last_frag_seen && !more && 12073 !pkt_boundary_checked) { 12074 /* 12075 * We check datagram boundary only if this fragment 12076 * claims to be the last fragment and we have seen a 12077 * last fragment in the past too. We do this only 12078 * once for a given fragment. 12079 * 12080 * start cannot be 0 here as fragments with start=0 12081 * and MF=0 gets handled as a complete packet. These 12082 * fragments should not reach here. 12083 */ 12084 12085 if (start + msgdsize(mp) != 12086 IP_REASS_END(ipf->ipf_tail_mp)) { 12087 /* 12088 * We have two fragments both of which claim 12089 * to be the last fragment but gives conflicting 12090 * information about the whole datagram size. 12091 * Something fishy is going on. Drop the 12092 * fragment and free up the reassembly list. 12093 */ 12094 return (IP_REASS_FAILED); 12095 } 12096 12097 /* 12098 * We shouldn't come to this code block again for this 12099 * particular fragment. 12100 */ 12101 pkt_boundary_checked = B_TRUE; 12102 } 12103 12104 /* New stuff at or beyond tail? */ 12105 offset = IP_REASS_END(ipf->ipf_tail_mp); 12106 if (start >= offset) { 12107 if (ipf->ipf_last_frag_seen) { 12108 /* current fragment is beyond last fragment */ 12109 return (IP_REASS_FAILED); 12110 } 12111 /* Link it on end. */ 12112 ipf->ipf_tail_mp->b_cont = mp; 12113 ipf->ipf_tail_mp = mp; 12114 if (more) { 12115 if (start != offset) 12116 ipf->ipf_hole_cnt++; 12117 } else if (start == offset && next_mp == NULL) 12118 ipf->ipf_hole_cnt--; 12119 continue; 12120 } 12121 mp1 = ipf->ipf_mp->b_cont; 12122 offset = IP_REASS_START(mp1); 12123 /* New stuff at the front? */ 12124 if (start < offset) { 12125 if (start == 0) { 12126 if (end >= offset) { 12127 /* Nailed the hole at the begining. */ 12128 ipf->ipf_hole_cnt--; 12129 } 12130 } else if (end < offset) { 12131 /* 12132 * A hole, stuff, and a hole where there used 12133 * to be just a hole. 12134 */ 12135 ipf->ipf_hole_cnt++; 12136 } 12137 mp->b_cont = mp1; 12138 /* Check for overlap. */ 12139 while (end > offset) { 12140 if (end < IP_REASS_END(mp1)) { 12141 mp->b_wptr -= end - offset; 12142 IP_REASS_SET_END(mp, offset); 12143 BUMP_MIB(ill->ill_ip_mib, 12144 ipIfStatsReasmPartDups); 12145 break; 12146 } 12147 /* Did we cover another hole? */ 12148 if ((mp1->b_cont && 12149 IP_REASS_END(mp1) != 12150 IP_REASS_START(mp1->b_cont) && 12151 end >= IP_REASS_START(mp1->b_cont)) || 12152 (!ipf->ipf_last_frag_seen && !more)) { 12153 ipf->ipf_hole_cnt--; 12154 } 12155 /* Clip out mp1. */ 12156 if ((mp->b_cont = mp1->b_cont) == NULL) { 12157 /* 12158 * After clipping out mp1, this guy 12159 * is now hanging off the end. 12160 */ 12161 ipf->ipf_tail_mp = mp; 12162 } 12163 IP_REASS_SET_START(mp1, 0); 12164 IP_REASS_SET_END(mp1, 0); 12165 /* Subtract byte count */ 12166 ipf->ipf_count -= mp1->b_datap->db_lim - 12167 mp1->b_datap->db_base; 12168 freeb(mp1); 12169 BUMP_MIB(ill->ill_ip_mib, 12170 ipIfStatsReasmPartDups); 12171 mp1 = mp->b_cont; 12172 if (!mp1) 12173 break; 12174 offset = IP_REASS_START(mp1); 12175 } 12176 ipf->ipf_mp->b_cont = mp; 12177 continue; 12178 } 12179 /* 12180 * The new piece starts somewhere between the start of the head 12181 * and before the end of the tail. 12182 */ 12183 for (; mp1; mp1 = mp1->b_cont) { 12184 offset = IP_REASS_END(mp1); 12185 if (start < offset) { 12186 if (end <= offset) { 12187 /* Nothing new. */ 12188 IP_REASS_SET_START(mp, 0); 12189 IP_REASS_SET_END(mp, 0); 12190 /* Subtract byte count */ 12191 ipf->ipf_count -= mp->b_datap->db_lim - 12192 mp->b_datap->db_base; 12193 if (incr_dups) { 12194 ipf->ipf_num_dups++; 12195 incr_dups = B_FALSE; 12196 } 12197 freeb(mp); 12198 BUMP_MIB(ill->ill_ip_mib, 12199 ipIfStatsReasmDuplicates); 12200 break; 12201 } 12202 /* 12203 * Trim redundant stuff off beginning of new 12204 * piece. 12205 */ 12206 IP_REASS_SET_START(mp, offset); 12207 mp->b_rptr += offset - start; 12208 BUMP_MIB(ill->ill_ip_mib, 12209 ipIfStatsReasmPartDups); 12210 start = offset; 12211 if (!mp1->b_cont) { 12212 /* 12213 * After trimming, this guy is now 12214 * hanging off the end. 12215 */ 12216 mp1->b_cont = mp; 12217 ipf->ipf_tail_mp = mp; 12218 if (!more) { 12219 ipf->ipf_hole_cnt--; 12220 } 12221 break; 12222 } 12223 } 12224 if (start >= IP_REASS_START(mp1->b_cont)) 12225 continue; 12226 /* Fill a hole */ 12227 if (start > offset) 12228 ipf->ipf_hole_cnt++; 12229 mp->b_cont = mp1->b_cont; 12230 mp1->b_cont = mp; 12231 mp1 = mp->b_cont; 12232 offset = IP_REASS_START(mp1); 12233 if (end >= offset) { 12234 ipf->ipf_hole_cnt--; 12235 /* Check for overlap. */ 12236 while (end > offset) { 12237 if (end < IP_REASS_END(mp1)) { 12238 mp->b_wptr -= end - offset; 12239 IP_REASS_SET_END(mp, offset); 12240 /* 12241 * TODO we might bump 12242 * this up twice if there is 12243 * overlap at both ends. 12244 */ 12245 BUMP_MIB(ill->ill_ip_mib, 12246 ipIfStatsReasmPartDups); 12247 break; 12248 } 12249 /* Did we cover another hole? */ 12250 if ((mp1->b_cont && 12251 IP_REASS_END(mp1) 12252 != IP_REASS_START(mp1->b_cont) && 12253 end >= 12254 IP_REASS_START(mp1->b_cont)) || 12255 (!ipf->ipf_last_frag_seen && 12256 !more)) { 12257 ipf->ipf_hole_cnt--; 12258 } 12259 /* Clip out mp1. */ 12260 if ((mp->b_cont = mp1->b_cont) == 12261 NULL) { 12262 /* 12263 * After clipping out mp1, 12264 * this guy is now hanging 12265 * off the end. 12266 */ 12267 ipf->ipf_tail_mp = mp; 12268 } 12269 IP_REASS_SET_START(mp1, 0); 12270 IP_REASS_SET_END(mp1, 0); 12271 /* Subtract byte count */ 12272 ipf->ipf_count -= 12273 mp1->b_datap->db_lim - 12274 mp1->b_datap->db_base; 12275 freeb(mp1); 12276 BUMP_MIB(ill->ill_ip_mib, 12277 ipIfStatsReasmPartDups); 12278 mp1 = mp->b_cont; 12279 if (!mp1) 12280 break; 12281 offset = IP_REASS_START(mp1); 12282 } 12283 } 12284 break; 12285 } 12286 } while (start = end, mp = next_mp); 12287 12288 /* Fragment just processed could be the last one. Remember this fact */ 12289 if (!more) 12290 ipf->ipf_last_frag_seen = B_TRUE; 12291 12292 /* Still got holes? */ 12293 if (ipf->ipf_hole_cnt) 12294 return (IP_REASS_PARTIAL); 12295 /* Clean up overloaded fields to avoid upstream disasters. */ 12296 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12297 IP_REASS_SET_START(mp1, 0); 12298 IP_REASS_SET_END(mp1, 0); 12299 } 12300 return (IP_REASS_COMPLETE); 12301 } 12302 12303 /* 12304 * ipsec processing for the fast path, used for input UDP Packets 12305 */ 12306 static boolean_t 12307 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12308 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12309 { 12310 uint32_t ill_index; 12311 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12312 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12313 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12314 12315 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12316 /* The ill_index of the incoming ILL */ 12317 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12318 12319 /* pass packet up to the transport */ 12320 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12321 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12322 NULL, mctl_present); 12323 if (*first_mpp == NULL) { 12324 return (B_FALSE); 12325 } 12326 } 12327 12328 /* Initiate IPPF processing for fastpath UDP */ 12329 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12330 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12331 if (*mpp == NULL) { 12332 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12333 "deferred/dropped during IPPF processing\n")); 12334 return (B_FALSE); 12335 } 12336 } 12337 /* 12338 * We make the checks as below since we are in the fast path 12339 * and want to minimize the number of checks if the IP_RECVIF and/or 12340 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12341 */ 12342 if (connp->conn_recvif || connp->conn_recvslla || 12343 connp->conn_ip_recvpktinfo) { 12344 if (connp->conn_recvif) { 12345 in_flags = IPF_RECVIF; 12346 } 12347 /* 12348 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12349 * so the flag passed to ip_add_info is based on IP version 12350 * of connp. 12351 */ 12352 if (connp->conn_ip_recvpktinfo) { 12353 if (connp->conn_af_isv6) { 12354 /* 12355 * V6 only needs index 12356 */ 12357 in_flags |= IPF_RECVIF; 12358 } else { 12359 /* 12360 * V4 needs index + matching address. 12361 */ 12362 in_flags |= IPF_RECVADDR; 12363 } 12364 } 12365 if (connp->conn_recvslla) { 12366 in_flags |= IPF_RECVSLLA; 12367 } 12368 /* 12369 * since in_flags are being set ill will be 12370 * referenced in ip_add_info, so it better not 12371 * be NULL. 12372 */ 12373 /* 12374 * the actual data will be contained in b_cont 12375 * upon successful return of the following call. 12376 * If the call fails then the original mblk is 12377 * returned. 12378 */ 12379 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12380 ipst); 12381 } 12382 12383 return (B_TRUE); 12384 } 12385 12386 /* 12387 * Fragmentation reassembly. Each ILL has a hash table for 12388 * queuing packets undergoing reassembly for all IPIFs 12389 * associated with the ILL. The hash is based on the packet 12390 * IP ident field. The ILL frag hash table was allocated 12391 * as a timer block at the time the ILL was created. Whenever 12392 * there is anything on the reassembly queue, the timer will 12393 * be running. Returns B_TRUE if successful else B_FALSE; 12394 * frees mp on failure. 12395 */ 12396 static boolean_t 12397 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12398 uint32_t *cksum_val, uint16_t *cksum_flags) 12399 { 12400 uint32_t frag_offset_flags; 12401 ill_t *ill = (ill_t *)q->q_ptr; 12402 mblk_t *mp = *mpp; 12403 mblk_t *t_mp; 12404 ipaddr_t dst; 12405 uint8_t proto = ipha->ipha_protocol; 12406 uint32_t sum_val; 12407 uint16_t sum_flags; 12408 ipf_t *ipf; 12409 ipf_t **ipfp; 12410 ipfb_t *ipfb; 12411 uint16_t ident; 12412 uint32_t offset; 12413 ipaddr_t src; 12414 uint_t hdr_length; 12415 uint32_t end; 12416 mblk_t *mp1; 12417 mblk_t *tail_mp; 12418 size_t count; 12419 size_t msg_len; 12420 uint8_t ecn_info = 0; 12421 uint32_t packet_size; 12422 boolean_t pruned = B_FALSE; 12423 ip_stack_t *ipst = ill->ill_ipst; 12424 12425 if (cksum_val != NULL) 12426 *cksum_val = 0; 12427 if (cksum_flags != NULL) 12428 *cksum_flags = 0; 12429 12430 /* 12431 * Drop the fragmented as early as possible, if 12432 * we don't have resource(s) to re-assemble. 12433 */ 12434 if (ipst->ips_ip_reass_queue_bytes == 0) { 12435 freemsg(mp); 12436 return (B_FALSE); 12437 } 12438 12439 /* Check for fragmentation offset; return if there's none */ 12440 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12441 (IPH_MF | IPH_OFFSET)) == 0) 12442 return (B_TRUE); 12443 12444 /* 12445 * We utilize hardware computed checksum info only for UDP since 12446 * IP fragmentation is a normal occurence for the protocol. In 12447 * addition, checksum offload support for IP fragments carrying 12448 * UDP payload is commonly implemented across network adapters. 12449 */ 12450 ASSERT(ill != NULL); 12451 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12452 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12453 mblk_t *mp1 = mp->b_cont; 12454 int32_t len; 12455 12456 /* Record checksum information from the packet */ 12457 sum_val = (uint32_t)DB_CKSUM16(mp); 12458 sum_flags = DB_CKSUMFLAGS(mp); 12459 12460 /* IP payload offset from beginning of mblk */ 12461 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12462 12463 if ((sum_flags & HCK_PARTIALCKSUM) && 12464 (mp1 == NULL || mp1->b_cont == NULL) && 12465 offset >= DB_CKSUMSTART(mp) && 12466 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12467 uint32_t adj; 12468 /* 12469 * Partial checksum has been calculated by hardware 12470 * and attached to the packet; in addition, any 12471 * prepended extraneous data is even byte aligned. 12472 * If any such data exists, we adjust the checksum; 12473 * this would also handle any postpended data. 12474 */ 12475 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12476 mp, mp1, len, adj); 12477 12478 /* One's complement subtract extraneous checksum */ 12479 if (adj >= sum_val) 12480 sum_val = ~(adj - sum_val) & 0xFFFF; 12481 else 12482 sum_val -= adj; 12483 } 12484 } else { 12485 sum_val = 0; 12486 sum_flags = 0; 12487 } 12488 12489 /* Clear hardware checksumming flag */ 12490 DB_CKSUMFLAGS(mp) = 0; 12491 12492 ident = ipha->ipha_ident; 12493 offset = (frag_offset_flags << 3) & 0xFFFF; 12494 src = ipha->ipha_src; 12495 dst = ipha->ipha_dst; 12496 hdr_length = IPH_HDR_LENGTH(ipha); 12497 end = ntohs(ipha->ipha_length) - hdr_length; 12498 12499 /* If end == 0 then we have a packet with no data, so just free it */ 12500 if (end == 0) { 12501 freemsg(mp); 12502 return (B_FALSE); 12503 } 12504 12505 /* Record the ECN field info. */ 12506 ecn_info = (ipha->ipha_type_of_service & 0x3); 12507 if (offset != 0) { 12508 /* 12509 * If this isn't the first piece, strip the header, and 12510 * add the offset to the end value. 12511 */ 12512 mp->b_rptr += hdr_length; 12513 end += offset; 12514 } 12515 12516 msg_len = MBLKSIZE(mp); 12517 tail_mp = mp; 12518 while (tail_mp->b_cont != NULL) { 12519 tail_mp = tail_mp->b_cont; 12520 msg_len += MBLKSIZE(tail_mp); 12521 } 12522 12523 /* If the reassembly list for this ILL will get too big, prune it */ 12524 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12525 ipst->ips_ip_reass_queue_bytes) { 12526 ill_frag_prune(ill, 12527 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12528 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12529 pruned = B_TRUE; 12530 } 12531 12532 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12533 mutex_enter(&ipfb->ipfb_lock); 12534 12535 ipfp = &ipfb->ipfb_ipf; 12536 /* Try to find an existing fragment queue for this packet. */ 12537 for (;;) { 12538 ipf = ipfp[0]; 12539 if (ipf != NULL) { 12540 /* 12541 * It has to match on ident and src/dst address. 12542 */ 12543 if (ipf->ipf_ident == ident && 12544 ipf->ipf_src == src && 12545 ipf->ipf_dst == dst && 12546 ipf->ipf_protocol == proto) { 12547 /* 12548 * If we have received too many 12549 * duplicate fragments for this packet 12550 * free it. 12551 */ 12552 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12553 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12554 freemsg(mp); 12555 mutex_exit(&ipfb->ipfb_lock); 12556 return (B_FALSE); 12557 } 12558 /* Found it. */ 12559 break; 12560 } 12561 ipfp = &ipf->ipf_hash_next; 12562 continue; 12563 } 12564 12565 /* 12566 * If we pruned the list, do we want to store this new 12567 * fragment?. We apply an optimization here based on the 12568 * fact that most fragments will be received in order. 12569 * So if the offset of this incoming fragment is zero, 12570 * it is the first fragment of a new packet. We will 12571 * keep it. Otherwise drop the fragment, as we have 12572 * probably pruned the packet already (since the 12573 * packet cannot be found). 12574 */ 12575 if (pruned && offset != 0) { 12576 mutex_exit(&ipfb->ipfb_lock); 12577 freemsg(mp); 12578 return (B_FALSE); 12579 } 12580 12581 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12582 /* 12583 * Too many fragmented packets in this hash 12584 * bucket. Free the oldest. 12585 */ 12586 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12587 } 12588 12589 /* New guy. Allocate a frag message. */ 12590 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12591 if (mp1 == NULL) { 12592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12593 freemsg(mp); 12594 reass_done: 12595 mutex_exit(&ipfb->ipfb_lock); 12596 return (B_FALSE); 12597 } 12598 12599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12600 mp1->b_cont = mp; 12601 12602 /* Initialize the fragment header. */ 12603 ipf = (ipf_t *)mp1->b_rptr; 12604 ipf->ipf_mp = mp1; 12605 ipf->ipf_ptphn = ipfp; 12606 ipfp[0] = ipf; 12607 ipf->ipf_hash_next = NULL; 12608 ipf->ipf_ident = ident; 12609 ipf->ipf_protocol = proto; 12610 ipf->ipf_src = src; 12611 ipf->ipf_dst = dst; 12612 ipf->ipf_nf_hdr_len = 0; 12613 /* Record reassembly start time. */ 12614 ipf->ipf_timestamp = gethrestime_sec(); 12615 /* Record ipf generation and account for frag header */ 12616 ipf->ipf_gen = ill->ill_ipf_gen++; 12617 ipf->ipf_count = MBLKSIZE(mp1); 12618 ipf->ipf_last_frag_seen = B_FALSE; 12619 ipf->ipf_ecn = ecn_info; 12620 ipf->ipf_num_dups = 0; 12621 ipfb->ipfb_frag_pkts++; 12622 ipf->ipf_checksum = 0; 12623 ipf->ipf_checksum_flags = 0; 12624 12625 /* Store checksum value in fragment header */ 12626 if (sum_flags != 0) { 12627 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12628 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12629 ipf->ipf_checksum = sum_val; 12630 ipf->ipf_checksum_flags = sum_flags; 12631 } 12632 12633 /* 12634 * We handle reassembly two ways. In the easy case, 12635 * where all the fragments show up in order, we do 12636 * minimal bookkeeping, and just clip new pieces on 12637 * the end. If we ever see a hole, then we go off 12638 * to ip_reassemble which has to mark the pieces and 12639 * keep track of the number of holes, etc. Obviously, 12640 * the point of having both mechanisms is so we can 12641 * handle the easy case as efficiently as possible. 12642 */ 12643 if (offset == 0) { 12644 /* Easy case, in-order reassembly so far. */ 12645 ipf->ipf_count += msg_len; 12646 ipf->ipf_tail_mp = tail_mp; 12647 /* 12648 * Keep track of next expected offset in 12649 * ipf_end. 12650 */ 12651 ipf->ipf_end = end; 12652 ipf->ipf_nf_hdr_len = hdr_length; 12653 } else { 12654 /* Hard case, hole at the beginning. */ 12655 ipf->ipf_tail_mp = NULL; 12656 /* 12657 * ipf_end == 0 means that we have given up 12658 * on easy reassembly. 12659 */ 12660 ipf->ipf_end = 0; 12661 12662 /* Forget checksum offload from now on */ 12663 ipf->ipf_checksum_flags = 0; 12664 12665 /* 12666 * ipf_hole_cnt is set by ip_reassemble. 12667 * ipf_count is updated by ip_reassemble. 12668 * No need to check for return value here 12669 * as we don't expect reassembly to complete 12670 * or fail for the first fragment itself. 12671 */ 12672 (void) ip_reassemble(mp, ipf, 12673 (frag_offset_flags & IPH_OFFSET) << 3, 12674 (frag_offset_flags & IPH_MF), ill, msg_len); 12675 } 12676 /* Update per ipfb and ill byte counts */ 12677 ipfb->ipfb_count += ipf->ipf_count; 12678 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12679 ill->ill_frag_count += ipf->ipf_count; 12680 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12681 /* If the frag timer wasn't already going, start it. */ 12682 mutex_enter(&ill->ill_lock); 12683 ill_frag_timer_start(ill); 12684 mutex_exit(&ill->ill_lock); 12685 goto reass_done; 12686 } 12687 12688 /* 12689 * If the packet's flag has changed (it could be coming up 12690 * from an interface different than the previous, therefore 12691 * possibly different checksum capability), then forget about 12692 * any stored checksum states. Otherwise add the value to 12693 * the existing one stored in the fragment header. 12694 */ 12695 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12696 sum_val += ipf->ipf_checksum; 12697 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12698 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12699 ipf->ipf_checksum = sum_val; 12700 } else if (ipf->ipf_checksum_flags != 0) { 12701 /* Forget checksum offload from now on */ 12702 ipf->ipf_checksum_flags = 0; 12703 } 12704 12705 /* 12706 * We have a new piece of a datagram which is already being 12707 * reassembled. Update the ECN info if all IP fragments 12708 * are ECN capable. If there is one which is not, clear 12709 * all the info. If there is at least one which has CE 12710 * code point, IP needs to report that up to transport. 12711 */ 12712 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12713 if (ecn_info == IPH_ECN_CE) 12714 ipf->ipf_ecn = IPH_ECN_CE; 12715 } else { 12716 ipf->ipf_ecn = IPH_ECN_NECT; 12717 } 12718 if (offset && ipf->ipf_end == offset) { 12719 /* The new fragment fits at the end */ 12720 ipf->ipf_tail_mp->b_cont = mp; 12721 /* Update the byte count */ 12722 ipf->ipf_count += msg_len; 12723 /* Update per ipfb and ill byte counts */ 12724 ipfb->ipfb_count += msg_len; 12725 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12726 ill->ill_frag_count += msg_len; 12727 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12728 if (frag_offset_flags & IPH_MF) { 12729 /* More to come. */ 12730 ipf->ipf_end = end; 12731 ipf->ipf_tail_mp = tail_mp; 12732 goto reass_done; 12733 } 12734 } else { 12735 /* Go do the hard cases. */ 12736 int ret; 12737 12738 if (offset == 0) 12739 ipf->ipf_nf_hdr_len = hdr_length; 12740 12741 /* Save current byte count */ 12742 count = ipf->ipf_count; 12743 ret = ip_reassemble(mp, ipf, 12744 (frag_offset_flags & IPH_OFFSET) << 3, 12745 (frag_offset_flags & IPH_MF), ill, msg_len); 12746 /* Count of bytes added and subtracted (freeb()ed) */ 12747 count = ipf->ipf_count - count; 12748 if (count) { 12749 /* Update per ipfb and ill byte counts */ 12750 ipfb->ipfb_count += count; 12751 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12752 ill->ill_frag_count += count; 12753 ASSERT(ill->ill_frag_count > 0); 12754 } 12755 if (ret == IP_REASS_PARTIAL) { 12756 goto reass_done; 12757 } else if (ret == IP_REASS_FAILED) { 12758 /* Reassembly failed. Free up all resources */ 12759 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12760 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12761 IP_REASS_SET_START(t_mp, 0); 12762 IP_REASS_SET_END(t_mp, 0); 12763 } 12764 freemsg(mp); 12765 goto reass_done; 12766 } 12767 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12768 } 12769 /* 12770 * We have completed reassembly. Unhook the frag header from 12771 * the reassembly list. 12772 * 12773 * Before we free the frag header, record the ECN info 12774 * to report back to the transport. 12775 */ 12776 ecn_info = ipf->ipf_ecn; 12777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12778 ipfp = ipf->ipf_ptphn; 12779 12780 /* We need to supply these to caller */ 12781 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12782 sum_val = ipf->ipf_checksum; 12783 else 12784 sum_val = 0; 12785 12786 mp1 = ipf->ipf_mp; 12787 count = ipf->ipf_count; 12788 ipf = ipf->ipf_hash_next; 12789 if (ipf != NULL) 12790 ipf->ipf_ptphn = ipfp; 12791 ipfp[0] = ipf; 12792 ill->ill_frag_count -= count; 12793 ASSERT(ipfb->ipfb_count >= count); 12794 ipfb->ipfb_count -= count; 12795 ipfb->ipfb_frag_pkts--; 12796 mutex_exit(&ipfb->ipfb_lock); 12797 /* Ditch the frag header. */ 12798 mp = mp1->b_cont; 12799 12800 freeb(mp1); 12801 12802 /* Restore original IP length in header. */ 12803 packet_size = (uint32_t)msgdsize(mp); 12804 if (packet_size > IP_MAXPACKET) { 12805 freemsg(mp); 12806 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12807 return (B_FALSE); 12808 } 12809 12810 if (DB_REF(mp) > 1) { 12811 mblk_t *mp2 = copymsg(mp); 12812 12813 freemsg(mp); 12814 if (mp2 == NULL) { 12815 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12816 return (B_FALSE); 12817 } 12818 mp = mp2; 12819 } 12820 ipha = (ipha_t *)mp->b_rptr; 12821 12822 ipha->ipha_length = htons((uint16_t)packet_size); 12823 /* We're now complete, zip the frag state */ 12824 ipha->ipha_fragment_offset_and_flags = 0; 12825 /* Record the ECN info. */ 12826 ipha->ipha_type_of_service &= 0xFC; 12827 ipha->ipha_type_of_service |= ecn_info; 12828 *mpp = mp; 12829 12830 /* Reassembly is successful; return checksum information if needed */ 12831 if (cksum_val != NULL) 12832 *cksum_val = sum_val; 12833 if (cksum_flags != NULL) 12834 *cksum_flags = sum_flags; 12835 12836 return (B_TRUE); 12837 } 12838 12839 /* 12840 * Perform ip header check sum update local options. 12841 * return B_TRUE if all is well, else return B_FALSE and release 12842 * the mp. caller is responsible for decrementing ire ref cnt. 12843 */ 12844 static boolean_t 12845 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12846 ip_stack_t *ipst) 12847 { 12848 mblk_t *first_mp; 12849 boolean_t mctl_present; 12850 uint16_t sum; 12851 12852 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12853 /* 12854 * Don't do the checksum if it has gone through AH/ESP 12855 * processing. 12856 */ 12857 if (!mctl_present) { 12858 sum = ip_csum_hdr(ipha); 12859 if (sum != 0) { 12860 if (ill != NULL) { 12861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12862 } else { 12863 BUMP_MIB(&ipst->ips_ip_mib, 12864 ipIfStatsInCksumErrs); 12865 } 12866 freemsg(first_mp); 12867 return (B_FALSE); 12868 } 12869 } 12870 12871 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12872 if (mctl_present) 12873 freeb(first_mp); 12874 return (B_FALSE); 12875 } 12876 12877 return (B_TRUE); 12878 } 12879 12880 /* 12881 * All udp packet are delivered to the local host via this routine. 12882 */ 12883 void 12884 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12885 ill_t *recv_ill) 12886 { 12887 uint32_t sum; 12888 uint32_t u1; 12889 boolean_t mctl_present; 12890 conn_t *connp; 12891 mblk_t *first_mp; 12892 uint16_t *up; 12893 ill_t *ill = (ill_t *)q->q_ptr; 12894 uint16_t reass_hck_flags = 0; 12895 ip_stack_t *ipst; 12896 12897 ASSERT(recv_ill != NULL); 12898 ipst = recv_ill->ill_ipst; 12899 12900 #define rptr ((uchar_t *)ipha) 12901 12902 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12903 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12904 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12905 ASSERT(ill != NULL); 12906 12907 /* 12908 * FAST PATH for udp packets 12909 */ 12910 12911 /* u1 is # words of IP options */ 12912 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12913 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12914 12915 /* IP options present */ 12916 if (u1 != 0) 12917 goto ipoptions; 12918 12919 /* Check the IP header checksum. */ 12920 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12921 /* Clear the IP header h/w cksum flag */ 12922 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12923 } else { 12924 #define uph ((uint16_t *)ipha) 12925 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12926 uph[6] + uph[7] + uph[8] + uph[9]; 12927 #undef uph 12928 /* finish doing IP checksum */ 12929 sum = (sum & 0xFFFF) + (sum >> 16); 12930 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12931 /* 12932 * Don't verify header checksum if this packet is coming 12933 * back from AH/ESP as we already did it. 12934 */ 12935 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12937 freemsg(first_mp); 12938 return; 12939 } 12940 } 12941 12942 /* 12943 * Count for SNMP of inbound packets for ire. 12944 * if mctl is present this might be a secure packet and 12945 * has already been counted for in ip_proto_input(). 12946 */ 12947 if (!mctl_present) { 12948 UPDATE_IB_PKT_COUNT(ire); 12949 ire->ire_last_used_time = lbolt; 12950 } 12951 12952 /* packet part of fragmented IP packet? */ 12953 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12954 if (u1 & (IPH_MF | IPH_OFFSET)) { 12955 goto fragmented; 12956 } 12957 12958 /* u1 = IP header length (20 bytes) */ 12959 u1 = IP_SIMPLE_HDR_LENGTH; 12960 12961 /* packet does not contain complete IP & UDP headers */ 12962 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12963 goto udppullup; 12964 12965 /* up points to UDP header */ 12966 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12967 #define iphs ((uint16_t *)ipha) 12968 12969 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12970 if (up[3] != 0) { 12971 mblk_t *mp1 = mp->b_cont; 12972 boolean_t cksum_err; 12973 uint16_t hck_flags = 0; 12974 12975 /* Pseudo-header checksum */ 12976 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12977 iphs[9] + up[2]; 12978 12979 /* 12980 * Revert to software checksum calculation if the interface 12981 * isn't capable of checksum offload or if IPsec is present. 12982 */ 12983 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12984 hck_flags = DB_CKSUMFLAGS(mp); 12985 12986 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12987 IP_STAT(ipst, ip_in_sw_cksum); 12988 12989 IP_CKSUM_RECV(hck_flags, u1, 12990 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12991 (int32_t)((uchar_t *)up - rptr), 12992 mp, mp1, cksum_err); 12993 12994 if (cksum_err) { 12995 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12996 if (hck_flags & HCK_FULLCKSUM) 12997 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12998 else if (hck_flags & HCK_PARTIALCKSUM) 12999 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13000 else 13001 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13002 13003 freemsg(first_mp); 13004 return; 13005 } 13006 } 13007 13008 /* Non-fragmented broadcast or multicast packet? */ 13009 if (ire->ire_type == IRE_BROADCAST) 13010 goto udpslowpath; 13011 13012 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13013 ire->ire_zoneid, ipst)) != NULL) { 13014 ASSERT(connp->conn_upq != NULL); 13015 IP_STAT(ipst, ip_udp_fast_path); 13016 13017 if (CONN_UDP_FLOWCTLD(connp)) { 13018 freemsg(mp); 13019 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13020 } else { 13021 if (!mctl_present) { 13022 BUMP_MIB(ill->ill_ip_mib, 13023 ipIfStatsHCInDelivers); 13024 } 13025 /* 13026 * mp and first_mp can change. 13027 */ 13028 if (ip_udp_check(q, connp, recv_ill, 13029 ipha, &mp, &first_mp, mctl_present)) { 13030 /* Send it upstream */ 13031 CONN_UDP_RECV(connp, mp); 13032 } 13033 } 13034 /* 13035 * freeb() cannot deal with null mblk being passed 13036 * in and first_mp can be set to null in the call 13037 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13038 */ 13039 if (mctl_present && first_mp != NULL) { 13040 freeb(first_mp); 13041 } 13042 CONN_DEC_REF(connp); 13043 return; 13044 } 13045 13046 /* 13047 * if we got here we know the packet is not fragmented and 13048 * has no options. The classifier could not find a conn_t and 13049 * most likely its an icmp packet so send it through slow path. 13050 */ 13051 13052 goto udpslowpath; 13053 13054 ipoptions: 13055 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13056 goto slow_done; 13057 } 13058 13059 UPDATE_IB_PKT_COUNT(ire); 13060 ire->ire_last_used_time = lbolt; 13061 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13062 if (u1 & (IPH_MF | IPH_OFFSET)) { 13063 fragmented: 13064 /* 13065 * "sum" and "reass_hck_flags" are non-zero if the 13066 * reassembled packet has a valid hardware computed 13067 * checksum information associated with it. 13068 */ 13069 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13070 goto slow_done; 13071 /* 13072 * Make sure that first_mp points back to mp as 13073 * the mp we came in with could have changed in 13074 * ip_rput_fragment(). 13075 */ 13076 ASSERT(!mctl_present); 13077 ipha = (ipha_t *)mp->b_rptr; 13078 first_mp = mp; 13079 } 13080 13081 /* Now we have a complete datagram, destined for this machine. */ 13082 u1 = IPH_HDR_LENGTH(ipha); 13083 /* Pull up the UDP header, if necessary. */ 13084 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13085 udppullup: 13086 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13088 freemsg(first_mp); 13089 goto slow_done; 13090 } 13091 ipha = (ipha_t *)mp->b_rptr; 13092 } 13093 13094 /* 13095 * Validate the checksum for the reassembled packet; for the 13096 * pullup case we calculate the payload checksum in software. 13097 */ 13098 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13099 if (up[3] != 0) { 13100 boolean_t cksum_err; 13101 13102 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13103 IP_STAT(ipst, ip_in_sw_cksum); 13104 13105 IP_CKSUM_RECV_REASS(reass_hck_flags, 13106 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13107 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13108 iphs[9] + up[2], sum, cksum_err); 13109 13110 if (cksum_err) { 13111 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13112 13113 if (reass_hck_flags & HCK_FULLCKSUM) 13114 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13115 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13116 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13117 else 13118 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13119 13120 freemsg(first_mp); 13121 goto slow_done; 13122 } 13123 } 13124 udpslowpath: 13125 13126 /* Clear hardware checksum flag to be safe */ 13127 DB_CKSUMFLAGS(mp) = 0; 13128 13129 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13130 (ire->ire_type == IRE_BROADCAST), 13131 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13132 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13133 13134 slow_done: 13135 IP_STAT(ipst, ip_udp_slow_path); 13136 return; 13137 13138 #undef iphs 13139 #undef rptr 13140 } 13141 13142 /* ARGSUSED */ 13143 static mblk_t * 13144 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13145 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13146 ill_rx_ring_t *ill_ring) 13147 { 13148 conn_t *connp; 13149 uint32_t sum; 13150 uint32_t u1; 13151 uint16_t *up; 13152 int offset; 13153 ssize_t len; 13154 mblk_t *mp1; 13155 boolean_t syn_present = B_FALSE; 13156 tcph_t *tcph; 13157 uint_t ip_hdr_len; 13158 ill_t *ill = (ill_t *)q->q_ptr; 13159 zoneid_t zoneid = ire->ire_zoneid; 13160 boolean_t cksum_err; 13161 uint16_t hck_flags = 0; 13162 ip_stack_t *ipst = recv_ill->ill_ipst; 13163 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13164 13165 #define rptr ((uchar_t *)ipha) 13166 13167 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13168 ASSERT(ill != NULL); 13169 13170 /* 13171 * FAST PATH for tcp packets 13172 */ 13173 13174 /* u1 is # words of IP options */ 13175 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13176 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13177 13178 /* IP options present */ 13179 if (u1) { 13180 goto ipoptions; 13181 } else { 13182 /* Check the IP header checksum. */ 13183 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13184 /* Clear the IP header h/w cksum flag */ 13185 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13186 } else { 13187 #define uph ((uint16_t *)ipha) 13188 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13189 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13190 #undef uph 13191 /* finish doing IP checksum */ 13192 sum = (sum & 0xFFFF) + (sum >> 16); 13193 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13194 /* 13195 * Don't verify header checksum if this packet 13196 * is coming back from AH/ESP as we already did it. 13197 */ 13198 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13199 BUMP_MIB(ill->ill_ip_mib, 13200 ipIfStatsInCksumErrs); 13201 goto error; 13202 } 13203 } 13204 } 13205 13206 if (!mctl_present) { 13207 UPDATE_IB_PKT_COUNT(ire); 13208 ire->ire_last_used_time = lbolt; 13209 } 13210 13211 /* packet part of fragmented IP packet? */ 13212 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13213 if (u1 & (IPH_MF | IPH_OFFSET)) { 13214 goto fragmented; 13215 } 13216 13217 /* u1 = IP header length (20 bytes) */ 13218 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13219 13220 /* does packet contain IP+TCP headers? */ 13221 len = mp->b_wptr - rptr; 13222 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13223 IP_STAT(ipst, ip_tcppullup); 13224 goto tcppullup; 13225 } 13226 13227 /* TCP options present? */ 13228 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13229 13230 /* 13231 * If options need to be pulled up, then goto tcpoptions. 13232 * otherwise we are still in the fast path 13233 */ 13234 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13235 IP_STAT(ipst, ip_tcpoptions); 13236 goto tcpoptions; 13237 } 13238 13239 /* multiple mblks of tcp data? */ 13240 if ((mp1 = mp->b_cont) != NULL) { 13241 /* more then two? */ 13242 if (mp1->b_cont != NULL) { 13243 IP_STAT(ipst, ip_multipkttcp); 13244 goto multipkttcp; 13245 } 13246 len += mp1->b_wptr - mp1->b_rptr; 13247 } 13248 13249 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13250 13251 /* part of pseudo checksum */ 13252 13253 /* TCP datagram length */ 13254 u1 = len - IP_SIMPLE_HDR_LENGTH; 13255 13256 #define iphs ((uint16_t *)ipha) 13257 13258 #ifdef _BIG_ENDIAN 13259 u1 += IPPROTO_TCP; 13260 #else 13261 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13262 #endif 13263 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13264 13265 /* 13266 * Revert to software checksum calculation if the interface 13267 * isn't capable of checksum offload or if IPsec is present. 13268 */ 13269 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13270 hck_flags = DB_CKSUMFLAGS(mp); 13271 13272 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13273 IP_STAT(ipst, ip_in_sw_cksum); 13274 13275 IP_CKSUM_RECV(hck_flags, u1, 13276 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13277 (int32_t)((uchar_t *)up - rptr), 13278 mp, mp1, cksum_err); 13279 13280 if (cksum_err) { 13281 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13282 13283 if (hck_flags & HCK_FULLCKSUM) 13284 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13285 else if (hck_flags & HCK_PARTIALCKSUM) 13286 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13287 else 13288 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13289 13290 goto error; 13291 } 13292 13293 try_again: 13294 13295 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13296 zoneid, ipst)) == NULL) { 13297 /* Send the TH_RST */ 13298 goto no_conn; 13299 } 13300 13301 /* 13302 * TCP FAST PATH for AF_INET socket. 13303 * 13304 * TCP fast path to avoid extra work. An AF_INET socket type 13305 * does not have facility to receive extra information via 13306 * ip_process or ip_add_info. Also, when the connection was 13307 * established, we made a check if this connection is impacted 13308 * by any global IPSec policy or per connection policy (a 13309 * policy that comes in effect later will not apply to this 13310 * connection). Since all this can be determined at the 13311 * connection establishment time, a quick check of flags 13312 * can avoid extra work. 13313 */ 13314 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13315 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13316 ASSERT(first_mp == mp); 13317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13318 SET_SQUEUE(mp, tcp_rput_data, connp); 13319 return (mp); 13320 } 13321 13322 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13323 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13324 if (IPCL_IS_TCP(connp)) { 13325 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13326 DB_CKSUMSTART(mp) = 13327 (intptr_t)ip_squeue_get(ill_ring); 13328 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13329 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13330 BUMP_MIB(ill->ill_ip_mib, 13331 ipIfStatsHCInDelivers); 13332 SET_SQUEUE(mp, connp->conn_recv, connp); 13333 return (mp); 13334 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13335 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13336 BUMP_MIB(ill->ill_ip_mib, 13337 ipIfStatsHCInDelivers); 13338 ip_squeue_enter_unbound++; 13339 SET_SQUEUE(mp, tcp_conn_request_unbound, 13340 connp); 13341 return (mp); 13342 } 13343 syn_present = B_TRUE; 13344 } 13345 13346 } 13347 13348 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13349 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13350 13351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13352 /* No need to send this packet to TCP */ 13353 if ((flags & TH_RST) || (flags & TH_URG)) { 13354 CONN_DEC_REF(connp); 13355 freemsg(first_mp); 13356 return (NULL); 13357 } 13358 if (flags & TH_ACK) { 13359 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13360 ipst->ips_netstack->netstack_tcp); 13361 CONN_DEC_REF(connp); 13362 return (NULL); 13363 } 13364 13365 CONN_DEC_REF(connp); 13366 freemsg(first_mp); 13367 return (NULL); 13368 } 13369 13370 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13371 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13372 ipha, NULL, mctl_present); 13373 if (first_mp == NULL) { 13374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13375 CONN_DEC_REF(connp); 13376 return (NULL); 13377 } 13378 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13379 ASSERT(syn_present); 13380 if (mctl_present) { 13381 ASSERT(first_mp != mp); 13382 first_mp->b_datap->db_struioflag |= 13383 STRUIO_POLICY; 13384 } else { 13385 ASSERT(first_mp == mp); 13386 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13387 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13388 } 13389 } else { 13390 /* 13391 * Discard first_mp early since we're dealing with a 13392 * fully-connected conn_t and tcp doesn't do policy in 13393 * this case. 13394 */ 13395 if (mctl_present) { 13396 freeb(first_mp); 13397 mctl_present = B_FALSE; 13398 } 13399 first_mp = mp; 13400 } 13401 } 13402 13403 /* Initiate IPPF processing for fastpath */ 13404 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13405 uint32_t ill_index; 13406 13407 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13408 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13409 if (mp == NULL) { 13410 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13411 "deferred/dropped during IPPF processing\n")); 13412 CONN_DEC_REF(connp); 13413 if (mctl_present) 13414 freeb(first_mp); 13415 return (NULL); 13416 } else if (mctl_present) { 13417 /* 13418 * ip_process might return a new mp. 13419 */ 13420 ASSERT(first_mp != mp); 13421 first_mp->b_cont = mp; 13422 } else { 13423 first_mp = mp; 13424 } 13425 13426 } 13427 13428 if (!syn_present && connp->conn_ip_recvpktinfo) { 13429 /* 13430 * TCP does not support IP_RECVPKTINFO for v4 so lets 13431 * make sure IPF_RECVIF is passed to ip_add_info. 13432 */ 13433 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13434 IPCL_ZONEID(connp), ipst); 13435 if (mp == NULL) { 13436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13437 CONN_DEC_REF(connp); 13438 if (mctl_present) 13439 freeb(first_mp); 13440 return (NULL); 13441 } else if (mctl_present) { 13442 /* 13443 * ip_add_info might return a new mp. 13444 */ 13445 ASSERT(first_mp != mp); 13446 first_mp->b_cont = mp; 13447 } else { 13448 first_mp = mp; 13449 } 13450 } 13451 13452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13453 if (IPCL_IS_TCP(connp)) { 13454 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13455 return (first_mp); 13456 } else { 13457 putnext(connp->conn_rq, first_mp); 13458 CONN_DEC_REF(connp); 13459 return (NULL); 13460 } 13461 13462 no_conn: 13463 /* Initiate IPPf processing, if needed. */ 13464 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13465 uint32_t ill_index; 13466 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13467 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13468 if (first_mp == NULL) { 13469 return (NULL); 13470 } 13471 } 13472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13473 13474 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13475 ipst->ips_netstack->netstack_tcp); 13476 return (NULL); 13477 ipoptions: 13478 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13479 goto slow_done; 13480 } 13481 13482 UPDATE_IB_PKT_COUNT(ire); 13483 ire->ire_last_used_time = lbolt; 13484 13485 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13486 if (u1 & (IPH_MF | IPH_OFFSET)) { 13487 fragmented: 13488 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13489 if (mctl_present) 13490 freeb(first_mp); 13491 goto slow_done; 13492 } 13493 /* 13494 * Make sure that first_mp points back to mp as 13495 * the mp we came in with could have changed in 13496 * ip_rput_fragment(). 13497 */ 13498 ASSERT(!mctl_present); 13499 ipha = (ipha_t *)mp->b_rptr; 13500 first_mp = mp; 13501 } 13502 13503 /* Now we have a complete datagram, destined for this machine. */ 13504 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13505 13506 len = mp->b_wptr - mp->b_rptr; 13507 /* Pull up a minimal TCP header, if necessary. */ 13508 if (len < (u1 + 20)) { 13509 tcppullup: 13510 if (!pullupmsg(mp, u1 + 20)) { 13511 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13512 goto error; 13513 } 13514 ipha = (ipha_t *)mp->b_rptr; 13515 len = mp->b_wptr - mp->b_rptr; 13516 } 13517 13518 /* 13519 * Extract the offset field from the TCP header. As usual, we 13520 * try to help the compiler more than the reader. 13521 */ 13522 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13523 if (offset != 5) { 13524 tcpoptions: 13525 if (offset < 5) { 13526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13527 goto error; 13528 } 13529 /* 13530 * There must be TCP options. 13531 * Make sure we can grab them. 13532 */ 13533 offset <<= 2; 13534 offset += u1; 13535 if (len < offset) { 13536 if (!pullupmsg(mp, offset)) { 13537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13538 goto error; 13539 } 13540 ipha = (ipha_t *)mp->b_rptr; 13541 len = mp->b_wptr - rptr; 13542 } 13543 } 13544 13545 /* Get the total packet length in len, including headers. */ 13546 if (mp->b_cont) { 13547 multipkttcp: 13548 len = msgdsize(mp); 13549 } 13550 13551 /* 13552 * Check the TCP checksum by pulling together the pseudo- 13553 * header checksum, and passing it to ip_csum to be added in 13554 * with the TCP datagram. 13555 * 13556 * Since we are not using the hwcksum if available we must 13557 * clear the flag. We may come here via tcppullup or tcpoptions. 13558 * If either of these fails along the way the mblk is freed. 13559 * If this logic ever changes and mblk is reused to say send 13560 * ICMP's back, then this flag may need to be cleared in 13561 * other places as well. 13562 */ 13563 DB_CKSUMFLAGS(mp) = 0; 13564 13565 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13566 13567 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13568 #ifdef _BIG_ENDIAN 13569 u1 += IPPROTO_TCP; 13570 #else 13571 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13572 #endif 13573 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13574 /* 13575 * Not M_DATA mblk or its a dup, so do the checksum now. 13576 */ 13577 IP_STAT(ipst, ip_in_sw_cksum); 13578 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13579 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13580 goto error; 13581 } 13582 13583 IP_STAT(ipst, ip_tcp_slow_path); 13584 goto try_again; 13585 #undef iphs 13586 #undef rptr 13587 13588 error: 13589 freemsg(first_mp); 13590 slow_done: 13591 return (NULL); 13592 } 13593 13594 /* ARGSUSED */ 13595 static void 13596 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13597 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13598 { 13599 conn_t *connp; 13600 uint32_t sum; 13601 uint32_t u1; 13602 ssize_t len; 13603 sctp_hdr_t *sctph; 13604 zoneid_t zoneid = ire->ire_zoneid; 13605 uint32_t pktsum; 13606 uint32_t calcsum; 13607 uint32_t ports; 13608 in6_addr_t map_src, map_dst; 13609 ill_t *ill = (ill_t *)q->q_ptr; 13610 ip_stack_t *ipst; 13611 sctp_stack_t *sctps; 13612 13613 ASSERT(recv_ill != NULL); 13614 ipst = recv_ill->ill_ipst; 13615 sctps = ipst->ips_netstack->netstack_sctp; 13616 13617 #define rptr ((uchar_t *)ipha) 13618 13619 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13620 ASSERT(ill != NULL); 13621 13622 /* u1 is # words of IP options */ 13623 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13624 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13625 13626 /* IP options present */ 13627 if (u1 > 0) { 13628 goto ipoptions; 13629 } else { 13630 /* Check the IP header checksum. */ 13631 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13632 #define uph ((uint16_t *)ipha) 13633 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13634 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13635 #undef uph 13636 /* finish doing IP checksum */ 13637 sum = (sum & 0xFFFF) + (sum >> 16); 13638 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13639 /* 13640 * Don't verify header checksum if this packet 13641 * is coming back from AH/ESP as we already did it. 13642 */ 13643 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13645 goto error; 13646 } 13647 } 13648 /* 13649 * Since there is no SCTP h/w cksum support yet, just 13650 * clear the flag. 13651 */ 13652 DB_CKSUMFLAGS(mp) = 0; 13653 } 13654 13655 /* 13656 * Don't verify header checksum if this packet is coming 13657 * back from AH/ESP as we already did it. 13658 */ 13659 if (!mctl_present) { 13660 UPDATE_IB_PKT_COUNT(ire); 13661 ire->ire_last_used_time = lbolt; 13662 } 13663 13664 /* packet part of fragmented IP packet? */ 13665 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13666 if (u1 & (IPH_MF | IPH_OFFSET)) 13667 goto fragmented; 13668 13669 /* u1 = IP header length (20 bytes) */ 13670 u1 = IP_SIMPLE_HDR_LENGTH; 13671 13672 find_sctp_client: 13673 /* Pullup if we don't have the sctp common header. */ 13674 len = MBLKL(mp); 13675 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13676 if (mp->b_cont == NULL || 13677 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13679 goto error; 13680 } 13681 ipha = (ipha_t *)mp->b_rptr; 13682 len = MBLKL(mp); 13683 } 13684 13685 sctph = (sctp_hdr_t *)(rptr + u1); 13686 #ifdef DEBUG 13687 if (!skip_sctp_cksum) { 13688 #endif 13689 pktsum = sctph->sh_chksum; 13690 sctph->sh_chksum = 0; 13691 calcsum = sctp_cksum(mp, u1); 13692 if (calcsum != pktsum) { 13693 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13694 goto error; 13695 } 13696 sctph->sh_chksum = pktsum; 13697 #ifdef DEBUG /* skip_sctp_cksum */ 13698 } 13699 #endif 13700 /* get the ports */ 13701 ports = *(uint32_t *)&sctph->sh_sport; 13702 13703 IRE_REFRELE(ire); 13704 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13705 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13706 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13707 sctps)) == NULL) { 13708 /* Check for raw socket or OOTB handling */ 13709 goto no_conn; 13710 } 13711 13712 /* Found a client; up it goes */ 13713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13714 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13715 return; 13716 13717 no_conn: 13718 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13719 ports, mctl_present, flags, B_TRUE, zoneid); 13720 return; 13721 13722 ipoptions: 13723 DB_CKSUMFLAGS(mp) = 0; 13724 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13725 goto slow_done; 13726 13727 UPDATE_IB_PKT_COUNT(ire); 13728 ire->ire_last_used_time = lbolt; 13729 13730 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13731 if (u1 & (IPH_MF | IPH_OFFSET)) { 13732 fragmented: 13733 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13734 goto slow_done; 13735 /* 13736 * Make sure that first_mp points back to mp as 13737 * the mp we came in with could have changed in 13738 * ip_rput_fragment(). 13739 */ 13740 ASSERT(!mctl_present); 13741 ipha = (ipha_t *)mp->b_rptr; 13742 first_mp = mp; 13743 } 13744 13745 /* Now we have a complete datagram, destined for this machine. */ 13746 u1 = IPH_HDR_LENGTH(ipha); 13747 goto find_sctp_client; 13748 #undef iphs 13749 #undef rptr 13750 13751 error: 13752 freemsg(first_mp); 13753 slow_done: 13754 IRE_REFRELE(ire); 13755 } 13756 13757 #define VER_BITS 0xF0 13758 #define VERSION_6 0x60 13759 13760 static boolean_t 13761 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13762 ipaddr_t *dstp, ip_stack_t *ipst) 13763 { 13764 uint_t opt_len; 13765 ipha_t *ipha; 13766 ssize_t len; 13767 uint_t pkt_len; 13768 13769 ASSERT(ill != NULL); 13770 IP_STAT(ipst, ip_ipoptions); 13771 ipha = *iphapp; 13772 13773 #define rptr ((uchar_t *)ipha) 13774 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13775 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13777 freemsg(mp); 13778 return (B_FALSE); 13779 } 13780 13781 /* multiple mblk or too short */ 13782 pkt_len = ntohs(ipha->ipha_length); 13783 13784 /* Get the number of words of IP options in the IP header. */ 13785 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13786 if (opt_len) { 13787 /* IP Options present! Validate and process. */ 13788 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13789 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13790 goto done; 13791 } 13792 /* 13793 * Recompute complete header length and make sure we 13794 * have access to all of it. 13795 */ 13796 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13797 if (len > (mp->b_wptr - rptr)) { 13798 if (len > pkt_len) { 13799 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13800 goto done; 13801 } 13802 if (!pullupmsg(mp, len)) { 13803 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13804 goto done; 13805 } 13806 ipha = (ipha_t *)mp->b_rptr; 13807 } 13808 /* 13809 * Go off to ip_rput_options which returns the next hop 13810 * destination address, which may have been affected 13811 * by source routing. 13812 */ 13813 IP_STAT(ipst, ip_opt); 13814 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13815 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13816 return (B_FALSE); 13817 } 13818 } 13819 *iphapp = ipha; 13820 return (B_TRUE); 13821 done: 13822 /* clear b_prev - used by ip_mroute_decap */ 13823 mp->b_prev = NULL; 13824 freemsg(mp); 13825 return (B_FALSE); 13826 #undef rptr 13827 } 13828 13829 /* 13830 * Deal with the fact that there is no ire for the destination. 13831 * The incoming ill (in_ill) is passed in to ip_newroute only 13832 * in the case of packets coming from mobile ip forward tunnel. 13833 * It must be null otherwise. 13834 */ 13835 static ire_t * 13836 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13837 ipaddr_t dst) 13838 { 13839 ipha_t *ipha; 13840 ill_t *ill; 13841 ire_t *ire; 13842 boolean_t check_multirt = B_FALSE; 13843 ip_stack_t *ipst; 13844 13845 ipha = (ipha_t *)mp->b_rptr; 13846 ill = (ill_t *)q->q_ptr; 13847 13848 ASSERT(ill != NULL); 13849 ipst = ill->ill_ipst; 13850 13851 /* 13852 * No IRE for this destination, so it can't be for us. 13853 * Unless we are forwarding, drop the packet. 13854 * We have to let source routed packets through 13855 * since we don't yet know if they are 'ping -l' 13856 * packets i.e. if they will go out over the 13857 * same interface as they came in on. 13858 */ 13859 if (ll_multicast) { 13860 freemsg(mp); 13861 return (NULL); 13862 } 13863 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13864 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13865 freemsg(mp); 13866 return (NULL); 13867 } 13868 13869 /* 13870 * Mark this packet as having originated externally. 13871 * 13872 * For non-forwarding code path, ire_send later double 13873 * checks this interface to see if it is still exists 13874 * post-ARP resolution. 13875 * 13876 * Also, IPQOS uses this to differentiate between 13877 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13878 * QOS packet processing in ip_wput_attach_llhdr(). 13879 * The QoS module can mark the b_band for a fastpath message 13880 * or the dl_priority field in a unitdata_req header for 13881 * CoS marking. This info can only be found in 13882 * ip_wput_attach_llhdr(). 13883 */ 13884 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13885 /* 13886 * Clear the indication that this may have a hardware checksum 13887 * as we are not using it 13888 */ 13889 DB_CKSUMFLAGS(mp) = 0; 13890 13891 if (in_ill != NULL) { 13892 /* 13893 * Now hand the packet to ip_newroute. 13894 */ 13895 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13896 return (NULL); 13897 } 13898 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13899 MBLK_GETLABEL(mp), ipst); 13900 13901 if (ire == NULL && check_multirt) { 13902 /* Let ip_newroute handle CGTP */ 13903 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13904 return (NULL); 13905 } 13906 13907 if (ire != NULL) 13908 return (ire); 13909 13910 mp->b_prev = mp->b_next = 0; 13911 /* send icmp unreachable */ 13912 q = WR(q); 13913 /* Sent by forwarding path, and router is global zone */ 13914 if (ip_source_routed(ipha, ipst)) { 13915 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13916 GLOBAL_ZONEID, ipst); 13917 } else { 13918 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13919 ipst); 13920 } 13921 13922 return (NULL); 13923 13924 } 13925 13926 /* 13927 * check ip header length and align it. 13928 */ 13929 static boolean_t 13930 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13931 { 13932 ssize_t len; 13933 ill_t *ill; 13934 ipha_t *ipha; 13935 13936 len = MBLKL(mp); 13937 13938 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13939 ill = (ill_t *)q->q_ptr; 13940 13941 if (!OK_32PTR(mp->b_rptr)) 13942 IP_STAT(ipst, ip_notaligned1); 13943 else 13944 IP_STAT(ipst, ip_notaligned2); 13945 /* Guard against bogus device drivers */ 13946 if (len < 0) { 13947 /* clear b_prev - used by ip_mroute_decap */ 13948 mp->b_prev = NULL; 13949 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13950 freemsg(mp); 13951 return (B_FALSE); 13952 } 13953 13954 if (ip_rput_pullups++ == 0) { 13955 ipha = (ipha_t *)mp->b_rptr; 13956 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13957 "ip_check_and_align_header: %s forced us to " 13958 " pullup pkt, hdr len %ld, hdr addr %p", 13959 ill->ill_name, len, ipha); 13960 } 13961 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13962 /* clear b_prev - used by ip_mroute_decap */ 13963 mp->b_prev = NULL; 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13965 freemsg(mp); 13966 return (B_FALSE); 13967 } 13968 } 13969 return (B_TRUE); 13970 } 13971 13972 ire_t * 13973 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13974 { 13975 ire_t *new_ire; 13976 ill_t *ire_ill; 13977 uint_t ifindex; 13978 ip_stack_t *ipst = ill->ill_ipst; 13979 boolean_t strict_check = B_FALSE; 13980 13981 /* 13982 * This packet came in on an interface other than the one associated 13983 * with the first ire we found for the destination address. We do 13984 * another ire lookup here, using the ingress ill, to see if the 13985 * interface is in an interface group. 13986 * As long as the ills belong to the same group, we don't consider 13987 * them to be arriving on the wrong interface. Thus, if the switch 13988 * is doing inbound load spreading, we won't drop packets when the 13989 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13990 * for 'usesrc groups' where the destination address may belong to 13991 * another interface to allow multipathing to happen. 13992 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13993 * where the local address may not be unique. In this case we were 13994 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13995 * actually returned. The new lookup, which is more specific, should 13996 * only find the IRE_LOCAL associated with the ingress ill if one 13997 * exists. 13998 */ 13999 14000 if (ire->ire_ipversion == IPV4_VERSION) { 14001 if (ipst->ips_ip_strict_dst_multihoming) 14002 strict_check = B_TRUE; 14003 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14004 ill->ill_ipif, ALL_ZONES, NULL, 14005 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14006 } else { 14007 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14008 if (ipst->ips_ipv6_strict_dst_multihoming) 14009 strict_check = B_TRUE; 14010 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14011 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14012 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14013 } 14014 /* 14015 * If the same ire that was returned in ip_input() is found then this 14016 * is an indication that interface groups are in use. The packet 14017 * arrived on a different ill in the group than the one associated with 14018 * the destination address. If a different ire was found then the same 14019 * IP address must be hosted on multiple ills. This is possible with 14020 * unnumbered point2point interfaces. We switch to use this new ire in 14021 * order to have accurate interface statistics. 14022 */ 14023 if (new_ire != NULL) { 14024 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14025 ire_refrele(ire); 14026 ire = new_ire; 14027 } else { 14028 ire_refrele(new_ire); 14029 } 14030 return (ire); 14031 } else if ((ire->ire_rfq == NULL) && 14032 (ire->ire_ipversion == IPV4_VERSION)) { 14033 /* 14034 * The best match could have been the original ire which 14035 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14036 * the strict multihoming checks are irrelevant as we consider 14037 * local addresses hosted on lo0 to be interface agnostic. We 14038 * only expect a null ire_rfq on IREs which are associated with 14039 * lo0 hence we can return now. 14040 */ 14041 return (ire); 14042 } 14043 14044 /* 14045 * Chase pointers once and store locally. 14046 */ 14047 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14048 (ill_t *)(ire->ire_rfq->q_ptr); 14049 ifindex = ill->ill_usesrc_ifindex; 14050 14051 /* 14052 * Check if it's a legal address on the 'usesrc' interface. 14053 */ 14054 if ((ifindex != 0) && (ire_ill != NULL) && 14055 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14056 return (ire); 14057 } 14058 14059 /* 14060 * If the ip*_strict_dst_multihoming switch is on then we can 14061 * only accept this packet if the interface is marked as routing. 14062 */ 14063 if (!(strict_check)) 14064 return (ire); 14065 14066 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14067 ILLF_ROUTER) != 0) { 14068 return (ire); 14069 } 14070 14071 ire_refrele(ire); 14072 return (NULL); 14073 } 14074 14075 ire_t * 14076 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14077 { 14078 ipha_t *ipha; 14079 ipaddr_t ip_dst, ip_src; 14080 ire_t *src_ire = NULL; 14081 ill_t *stq_ill; 14082 uint_t hlen; 14083 uint_t pkt_len; 14084 uint32_t sum; 14085 queue_t *dev_q; 14086 boolean_t check_multirt = B_FALSE; 14087 ip_stack_t *ipst = ill->ill_ipst; 14088 14089 ipha = (ipha_t *)mp->b_rptr; 14090 14091 /* 14092 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14093 * The loopback address check for both src and dst has already 14094 * been checked in ip_input 14095 */ 14096 ip_dst = ntohl(dst); 14097 ip_src = ntohl(ipha->ipha_src); 14098 14099 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14100 IN_CLASSD(ip_src)) { 14101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14102 goto drop; 14103 } 14104 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14105 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14106 14107 if (src_ire != NULL) { 14108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14109 goto drop; 14110 } 14111 14112 14113 /* No ire cache of nexthop. So first create one */ 14114 if (ire == NULL) { 14115 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14116 /* 14117 * We only come to ip_fast_forward if ip_cgtp_filter is 14118 * is not set. So upon return from ire_forward 14119 * check_multirt should remain as false. 14120 */ 14121 ASSERT(!check_multirt); 14122 if (ire == NULL) { 14123 /* An attempt was made to forward the packet */ 14124 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14126 mp->b_prev = mp->b_next = 0; 14127 /* send icmp unreachable */ 14128 /* Sent by forwarding path, and router is global zone */ 14129 if (ip_source_routed(ipha, ipst)) { 14130 icmp_unreachable(ill->ill_wq, mp, 14131 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14132 ipst); 14133 } else { 14134 icmp_unreachable(ill->ill_wq, mp, 14135 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14136 ipst); 14137 } 14138 return (ire); 14139 } 14140 } 14141 14142 /* 14143 * Forwarding fastpath exception case: 14144 * If either of the follwoing case is true, we take 14145 * the slowpath 14146 * o forwarding is not enabled 14147 * o incoming and outgoing interface are the same, or the same 14148 * IPMP group 14149 * o corresponding ire is in incomplete state 14150 * o packet needs fragmentation 14151 * 14152 * The codeflow from here on is thus: 14153 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14154 */ 14155 pkt_len = ntohs(ipha->ipha_length); 14156 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14157 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14158 !(ill->ill_flags & ILLF_ROUTER) || 14159 (ill == stq_ill) || 14160 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14161 (ire->ire_nce == NULL) || 14162 (ire->ire_nce->nce_state != ND_REACHABLE) || 14163 (pkt_len > ire->ire_max_frag) || 14164 ipha->ipha_ttl <= 1) { 14165 ip_rput_process_forward(ill->ill_rq, mp, ire, 14166 ipha, ill, B_FALSE); 14167 return (ire); 14168 } 14169 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14170 14171 DTRACE_PROBE4(ip4__forwarding__start, 14172 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14173 14174 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14175 ipst->ips_ipv4firewall_forwarding, 14176 ill, stq_ill, ipha, mp, mp, ipst); 14177 14178 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14179 14180 if (mp == NULL) 14181 goto drop; 14182 14183 mp->b_datap->db_struioun.cksum.flags = 0; 14184 /* Adjust the checksum to reflect the ttl decrement. */ 14185 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14186 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14187 ipha->ipha_ttl--; 14188 14189 dev_q = ire->ire_stq->q_next; 14190 if ((dev_q->q_next != NULL || 14191 dev_q->q_first != NULL) && !canput(dev_q)) { 14192 goto indiscard; 14193 } 14194 14195 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14196 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14197 14198 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14199 mblk_t *mpip = mp; 14200 14201 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14202 if (mp != NULL) { 14203 DTRACE_PROBE4(ip4__physical__out__start, 14204 ill_t *, NULL, ill_t *, stq_ill, 14205 ipha_t *, ipha, mblk_t *, mp); 14206 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14207 ipst->ips_ipv4firewall_physical_out, 14208 NULL, stq_ill, ipha, mp, mpip, ipst); 14209 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14210 mp); 14211 if (mp == NULL) 14212 goto drop; 14213 14214 UPDATE_IB_PKT_COUNT(ire); 14215 ire->ire_last_used_time = lbolt; 14216 BUMP_MIB(stq_ill->ill_ip_mib, 14217 ipIfStatsHCOutForwDatagrams); 14218 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14219 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14220 pkt_len); 14221 putnext(ire->ire_stq, mp); 14222 return (ire); 14223 } 14224 } 14225 14226 indiscard: 14227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14228 drop: 14229 if (mp != NULL) 14230 freemsg(mp); 14231 if (src_ire != NULL) 14232 ire_refrele(src_ire); 14233 return (ire); 14234 14235 } 14236 14237 /* 14238 * This function is called in the forwarding slowpath, when 14239 * either the ire lacks the link-layer address, or the packet needs 14240 * further processing(eg. fragmentation), before transmission. 14241 */ 14242 14243 static void 14244 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14245 ill_t *ill, boolean_t ll_multicast) 14246 { 14247 ill_group_t *ill_group; 14248 ill_group_t *ire_group; 14249 queue_t *dev_q; 14250 ire_t *src_ire; 14251 ip_stack_t *ipst = ill->ill_ipst; 14252 14253 ASSERT(ire->ire_stq != NULL); 14254 14255 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14256 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14257 14258 if (ll_multicast != 0) { 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 goto drop_pkt; 14261 } 14262 14263 /* 14264 * check if ipha_src is a broadcast address. Note that this 14265 * check is redundant when we get here from ip_fast_forward() 14266 * which has already done this check. However, since we can 14267 * also get here from ip_rput_process_broadcast() or, for 14268 * for the slow path through ip_fast_forward(), we perform 14269 * the check again for code-reusability 14270 */ 14271 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14272 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14273 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14274 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14275 if (src_ire != NULL) 14276 ire_refrele(src_ire); 14277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14278 ip2dbg(("ip_rput_process_forward: Received packet with" 14279 " bad src/dst address on %s\n", ill->ill_name)); 14280 goto drop_pkt; 14281 } 14282 14283 ill_group = ill->ill_group; 14284 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14285 /* 14286 * Check if we want to forward this one at this time. 14287 * We allow source routed packets on a host provided that 14288 * they go out the same interface or same interface group 14289 * as they came in on. 14290 * 14291 * XXX To be quicker, we may wish to not chase pointers to 14292 * get the ILLF_ROUTER flag and instead store the 14293 * forwarding policy in the ire. An unfortunate 14294 * side-effect of that would be requiring an ire flush 14295 * whenever the ILLF_ROUTER flag changes. 14296 */ 14297 if (((ill->ill_flags & 14298 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14299 ILLF_ROUTER) == 0) && 14300 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14301 (ill_group != NULL && ill_group == ire_group)))) { 14302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14303 if (ip_source_routed(ipha, ipst)) { 14304 q = WR(q); 14305 /* 14306 * Clear the indication that this may have 14307 * hardware checksum as we are not using it. 14308 */ 14309 DB_CKSUMFLAGS(mp) = 0; 14310 /* Sent by forwarding path, and router is global zone */ 14311 icmp_unreachable(q, mp, 14312 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14313 return; 14314 } 14315 goto drop_pkt; 14316 } 14317 14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14319 14320 /* Packet is being forwarded. Turning off hwcksum flag. */ 14321 DB_CKSUMFLAGS(mp) = 0; 14322 if (ipst->ips_ip_g_send_redirects) { 14323 /* 14324 * Check whether the incoming interface and outgoing 14325 * interface is part of the same group. If so, 14326 * send redirects. 14327 * 14328 * Check the source address to see if it originated 14329 * on the same logical subnet it is going back out on. 14330 * If so, we should be able to send it a redirect. 14331 * Avoid sending a redirect if the destination 14332 * is directly connected (i.e., ipha_dst is the same 14333 * as ire_gateway_addr or the ire_addr of the 14334 * nexthop IRE_CACHE ), or if the packet was source 14335 * routed out this interface. 14336 */ 14337 ipaddr_t src, nhop; 14338 mblk_t *mp1; 14339 ire_t *nhop_ire = NULL; 14340 14341 /* 14342 * Check whether ire_rfq and q are from the same ill 14343 * or if they are not same, they at least belong 14344 * to the same group. If so, send redirects. 14345 */ 14346 if ((ire->ire_rfq == q || 14347 (ill_group != NULL && ill_group == ire_group)) && 14348 !ip_source_routed(ipha, ipst)) { 14349 14350 nhop = (ire->ire_gateway_addr != 0 ? 14351 ire->ire_gateway_addr : ire->ire_addr); 14352 14353 if (ipha->ipha_dst == nhop) { 14354 /* 14355 * We avoid sending a redirect if the 14356 * destination is directly connected 14357 * because it is possible that multiple 14358 * IP subnets may have been configured on 14359 * the link, and the source may not 14360 * be on the same subnet as ip destination, 14361 * even though they are on the same 14362 * physical link. 14363 */ 14364 goto sendit; 14365 } 14366 14367 src = ipha->ipha_src; 14368 14369 /* 14370 * We look up the interface ire for the nexthop, 14371 * to see if ipha_src is in the same subnet 14372 * as the nexthop. 14373 * 14374 * Note that, if, in the future, IRE_CACHE entries 14375 * are obsoleted, this lookup will not be needed, 14376 * as the ire passed to this function will be the 14377 * same as the nhop_ire computed below. 14378 */ 14379 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14380 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14381 0, NULL, MATCH_IRE_TYPE, ipst); 14382 14383 if (nhop_ire != NULL) { 14384 if ((src & nhop_ire->ire_mask) == 14385 (nhop & nhop_ire->ire_mask)) { 14386 /* 14387 * The source is directly connected. 14388 * Just copy the ip header (which is 14389 * in the first mblk) 14390 */ 14391 mp1 = copyb(mp); 14392 if (mp1 != NULL) { 14393 icmp_send_redirect(WR(q), mp1, 14394 nhop, ipst); 14395 } 14396 } 14397 ire_refrele(nhop_ire); 14398 } 14399 } 14400 } 14401 sendit: 14402 dev_q = ire->ire_stq->q_next; 14403 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14404 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14405 freemsg(mp); 14406 return; 14407 } 14408 14409 ip_rput_forward(ire, ipha, mp, ill); 14410 return; 14411 14412 drop_pkt: 14413 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14414 freemsg(mp); 14415 } 14416 14417 ire_t * 14418 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14419 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14420 { 14421 queue_t *q; 14422 uint16_t hcksumflags; 14423 ip_stack_t *ipst = ill->ill_ipst; 14424 14425 q = *qp; 14426 14427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14428 14429 /* 14430 * Clear the indication that this may have hardware 14431 * checksum as we are not using it for forwarding. 14432 */ 14433 hcksumflags = DB_CKSUMFLAGS(mp); 14434 DB_CKSUMFLAGS(mp) = 0; 14435 14436 /* 14437 * Directed broadcast forwarding: if the packet came in over a 14438 * different interface then it is routed out over we can forward it. 14439 */ 14440 if (ipha->ipha_protocol == IPPROTO_TCP) { 14441 ire_refrele(ire); 14442 freemsg(mp); 14443 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14444 return (NULL); 14445 } 14446 /* 14447 * For multicast we have set dst to be INADDR_BROADCAST 14448 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14449 * only for broadcast packets. 14450 */ 14451 if (!CLASSD(ipha->ipha_dst)) { 14452 ire_t *new_ire; 14453 ipif_t *ipif; 14454 /* 14455 * For ill groups, as the switch duplicates broadcasts 14456 * across all the ports, we need to filter out and 14457 * send up only one copy. There is one copy for every 14458 * broadcast address on each ill. Thus, we look for a 14459 * specific IRE on this ill and look at IRE_MARK_NORECV 14460 * later to see whether this ill is eligible to receive 14461 * them or not. ill_nominate_bcast_rcv() nominates only 14462 * one set of IREs for receiving. 14463 */ 14464 14465 ipif = ipif_get_next_ipif(NULL, ill); 14466 if (ipif == NULL) { 14467 ire_refrele(ire); 14468 freemsg(mp); 14469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14470 return (NULL); 14471 } 14472 new_ire = ire_ctable_lookup(dst, 0, 0, 14473 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14474 ipif_refrele(ipif); 14475 14476 if (new_ire != NULL) { 14477 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14478 ire_refrele(ire); 14479 ire_refrele(new_ire); 14480 freemsg(mp); 14481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14482 return (NULL); 14483 } 14484 /* 14485 * In the special case of multirouted broadcast 14486 * packets, we unconditionally need to "gateway" 14487 * them to the appropriate interface here. 14488 * In the normal case, this cannot happen, because 14489 * there is no broadcast IRE tagged with the 14490 * RTF_MULTIRT flag. 14491 */ 14492 if (new_ire->ire_flags & RTF_MULTIRT) { 14493 ire_refrele(new_ire); 14494 if (ire->ire_rfq != NULL) { 14495 q = ire->ire_rfq; 14496 *qp = q; 14497 } 14498 } else { 14499 ire_refrele(ire); 14500 ire = new_ire; 14501 } 14502 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14503 if (!ipst->ips_ip_g_forward_directed_bcast) { 14504 /* 14505 * Free the message if 14506 * ip_g_forward_directed_bcast is turned 14507 * off for non-local broadcast. 14508 */ 14509 ire_refrele(ire); 14510 freemsg(mp); 14511 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14512 return (NULL); 14513 } 14514 } else { 14515 /* 14516 * This CGTP packet successfully passed the 14517 * CGTP filter, but the related CGTP 14518 * broadcast IRE has not been found, 14519 * meaning that the redundant ipif is 14520 * probably down. However, if we discarded 14521 * this packet, its duplicate would be 14522 * filtered out by the CGTP filter so none 14523 * of them would get through. So we keep 14524 * going with this one. 14525 */ 14526 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14527 if (ire->ire_rfq != NULL) { 14528 q = ire->ire_rfq; 14529 *qp = q; 14530 } 14531 } 14532 } 14533 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14534 /* 14535 * Verify that there are not more then one 14536 * IRE_BROADCAST with this broadcast address which 14537 * has ire_stq set. 14538 * TODO: simplify, loop over all IRE's 14539 */ 14540 ire_t *ire1; 14541 int num_stq = 0; 14542 mblk_t *mp1; 14543 14544 /* Find the first one with ire_stq set */ 14545 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14546 for (ire1 = ire; ire1 && 14547 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14548 ire1 = ire1->ire_next) 14549 ; 14550 if (ire1) { 14551 ire_refrele(ire); 14552 ire = ire1; 14553 IRE_REFHOLD(ire); 14554 } 14555 14556 /* Check if there are additional ones with stq set */ 14557 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14558 if (ire->ire_addr != ire1->ire_addr) 14559 break; 14560 if (ire1->ire_stq) { 14561 num_stq++; 14562 break; 14563 } 14564 } 14565 rw_exit(&ire->ire_bucket->irb_lock); 14566 if (num_stq == 1 && ire->ire_stq != NULL) { 14567 ip1dbg(("ip_rput_process_broadcast: directed " 14568 "broadcast to 0x%x\n", 14569 ntohl(ire->ire_addr))); 14570 mp1 = copymsg(mp); 14571 if (mp1) { 14572 switch (ipha->ipha_protocol) { 14573 case IPPROTO_UDP: 14574 ip_udp_input(q, mp1, ipha, ire, ill); 14575 break; 14576 default: 14577 ip_proto_input(q, mp1, ipha, ire, ill); 14578 break; 14579 } 14580 } 14581 /* 14582 * Adjust ttl to 2 (1+1 - the forward engine 14583 * will decrement it by one. 14584 */ 14585 if (ip_csum_hdr(ipha)) { 14586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14587 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14588 freemsg(mp); 14589 ire_refrele(ire); 14590 return (NULL); 14591 } 14592 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14593 ipha->ipha_hdr_checksum = 0; 14594 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14595 ip_rput_process_forward(q, mp, ire, ipha, 14596 ill, ll_multicast); 14597 ire_refrele(ire); 14598 return (NULL); 14599 } 14600 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14601 ntohl(ire->ire_addr))); 14602 } 14603 14604 14605 /* Restore any hardware checksum flags */ 14606 DB_CKSUMFLAGS(mp) = hcksumflags; 14607 return (ire); 14608 } 14609 14610 /* ARGSUSED */ 14611 static boolean_t 14612 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14613 int *ll_multicast, ipaddr_t *dstp) 14614 { 14615 ip_stack_t *ipst = ill->ill_ipst; 14616 14617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14618 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14619 ntohs(ipha->ipha_length)); 14620 14621 /* 14622 * Forward packets only if we have joined the allmulti 14623 * group on this interface. 14624 */ 14625 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14626 int retval; 14627 14628 /* 14629 * Clear the indication that this may have hardware 14630 * checksum as we are not using it. 14631 */ 14632 DB_CKSUMFLAGS(mp) = 0; 14633 retval = ip_mforward(ill, ipha, mp); 14634 /* ip_mforward updates mib variables if needed */ 14635 /* clear b_prev - used by ip_mroute_decap */ 14636 mp->b_prev = NULL; 14637 14638 switch (retval) { 14639 case 0: 14640 /* 14641 * pkt is okay and arrived on phyint. 14642 * 14643 * If we are running as a multicast router 14644 * we need to see all IGMP and/or PIM packets. 14645 */ 14646 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14647 (ipha->ipha_protocol == IPPROTO_PIM)) { 14648 goto done; 14649 } 14650 break; 14651 case -1: 14652 /* pkt is mal-formed, toss it */ 14653 goto drop_pkt; 14654 case 1: 14655 /* pkt is okay and arrived on a tunnel */ 14656 /* 14657 * If we are running a multicast router 14658 * we need to see all igmp packets. 14659 */ 14660 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14661 *dstp = INADDR_BROADCAST; 14662 *ll_multicast = 1; 14663 return (B_FALSE); 14664 } 14665 14666 goto drop_pkt; 14667 } 14668 } 14669 14670 ILM_WALKER_HOLD(ill); 14671 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14672 /* 14673 * This might just be caused by the fact that 14674 * multiple IP Multicast addresses map to the same 14675 * link layer multicast - no need to increment counter! 14676 */ 14677 ILM_WALKER_RELE(ill); 14678 freemsg(mp); 14679 return (B_TRUE); 14680 } 14681 ILM_WALKER_RELE(ill); 14682 done: 14683 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14684 /* 14685 * This assumes the we deliver to all streams for multicast 14686 * and broadcast packets. 14687 */ 14688 *dstp = INADDR_BROADCAST; 14689 *ll_multicast = 1; 14690 return (B_FALSE); 14691 drop_pkt: 14692 ip2dbg(("ip_rput: drop pkt\n")); 14693 freemsg(mp); 14694 return (B_TRUE); 14695 } 14696 14697 static boolean_t 14698 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14699 int *ll_multicast, mblk_t **mpp) 14700 { 14701 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14702 boolean_t must_copy = B_FALSE; 14703 struct iocblk *iocp; 14704 ipha_t *ipha; 14705 ip_stack_t *ipst = ill->ill_ipst; 14706 14707 #define rptr ((uchar_t *)ipha) 14708 14709 first_mp = *first_mpp; 14710 mp = *mpp; 14711 14712 ASSERT(first_mp == mp); 14713 14714 /* 14715 * if db_ref > 1 then copymsg and free original. Packet may be 14716 * changed and do not want other entity who has a reference to this 14717 * message to trip over the changes. This is a blind change because 14718 * trying to catch all places that might change packet is too 14719 * difficult (since it may be a module above this one) 14720 * 14721 * This corresponds to the non-fast path case. We walk down the full 14722 * chain in this case, and check the db_ref count of all the dblks, 14723 * and do a copymsg if required. It is possible that the db_ref counts 14724 * of the data blocks in the mblk chain can be different. 14725 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14726 * count of 1, followed by a M_DATA block with a ref count of 2, if 14727 * 'snoop' is running. 14728 */ 14729 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14730 if (mp1->b_datap->db_ref > 1) { 14731 must_copy = B_TRUE; 14732 break; 14733 } 14734 } 14735 14736 if (must_copy) { 14737 mp1 = copymsg(mp); 14738 if (mp1 == NULL) { 14739 for (mp1 = mp; mp1 != NULL; 14740 mp1 = mp1->b_cont) { 14741 mp1->b_next = NULL; 14742 mp1->b_prev = NULL; 14743 } 14744 freemsg(mp); 14745 if (ill != NULL) { 14746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14747 } else { 14748 BUMP_MIB(&ipst->ips_ip_mib, 14749 ipIfStatsInDiscards); 14750 } 14751 return (B_TRUE); 14752 } 14753 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14754 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14755 /* Copy b_prev - used by ip_mroute_decap */ 14756 to_mp->b_prev = from_mp->b_prev; 14757 from_mp->b_prev = NULL; 14758 } 14759 *first_mpp = first_mp = mp1; 14760 freemsg(mp); 14761 mp = mp1; 14762 *mpp = mp1; 14763 } 14764 14765 ipha = (ipha_t *)mp->b_rptr; 14766 14767 /* 14768 * previous code has a case for M_DATA. 14769 * We want to check how that happens. 14770 */ 14771 ASSERT(first_mp->b_datap->db_type != M_DATA); 14772 switch (first_mp->b_datap->db_type) { 14773 case M_PROTO: 14774 case M_PCPROTO: 14775 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14776 DL_UNITDATA_IND) { 14777 /* Go handle anything other than data elsewhere. */ 14778 ip_rput_dlpi(q, mp); 14779 return (B_TRUE); 14780 } 14781 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14782 /* Ditch the DLPI header. */ 14783 mp1 = mp->b_cont; 14784 ASSERT(first_mp == mp); 14785 *first_mpp = mp1; 14786 freeb(mp); 14787 *mpp = mp1; 14788 return (B_FALSE); 14789 case M_IOCACK: 14790 ip1dbg(("got iocack ")); 14791 iocp = (struct iocblk *)mp->b_rptr; 14792 switch (iocp->ioc_cmd) { 14793 case DL_IOC_HDR_INFO: 14794 ill = (ill_t *)q->q_ptr; 14795 ill_fastpath_ack(ill, mp); 14796 return (B_TRUE); 14797 case SIOCSTUNPARAM: 14798 case OSIOCSTUNPARAM: 14799 /* Go through qwriter_ip */ 14800 break; 14801 case SIOCGTUNPARAM: 14802 case OSIOCGTUNPARAM: 14803 ip_rput_other(NULL, q, mp, NULL); 14804 return (B_TRUE); 14805 default: 14806 putnext(q, mp); 14807 return (B_TRUE); 14808 } 14809 /* FALLTHRU */ 14810 case M_ERROR: 14811 case M_HANGUP: 14812 /* 14813 * Since this is on the ill stream we unconditionally 14814 * bump up the refcount 14815 */ 14816 ill_refhold(ill); 14817 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14818 B_FALSE); 14819 return (B_TRUE); 14820 case M_CTL: 14821 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14822 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14823 IPHADA_M_CTL)) { 14824 /* 14825 * It's an IPsec accelerated packet. 14826 * Make sure that the ill from which we received the 14827 * packet has enabled IPsec hardware acceleration. 14828 */ 14829 if (!(ill->ill_capabilities & 14830 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14831 /* IPsec kstats: bean counter */ 14832 freemsg(mp); 14833 return (B_TRUE); 14834 } 14835 14836 /* 14837 * Make mp point to the mblk following the M_CTL, 14838 * then process according to type of mp. 14839 * After this processing, first_mp will point to 14840 * the data-attributes and mp to the pkt following 14841 * the M_CTL. 14842 */ 14843 mp = first_mp->b_cont; 14844 if (mp == NULL) { 14845 freemsg(first_mp); 14846 return (B_TRUE); 14847 } 14848 /* 14849 * A Hardware Accelerated packet can only be M_DATA 14850 * ESP or AH packet. 14851 */ 14852 if (mp->b_datap->db_type != M_DATA) { 14853 /* non-M_DATA IPsec accelerated packet */ 14854 IPSECHW_DEBUG(IPSECHW_PKT, 14855 ("non-M_DATA IPsec accelerated pkt\n")); 14856 freemsg(first_mp); 14857 return (B_TRUE); 14858 } 14859 ipha = (ipha_t *)mp->b_rptr; 14860 if (ipha->ipha_protocol != IPPROTO_AH && 14861 ipha->ipha_protocol != IPPROTO_ESP) { 14862 IPSECHW_DEBUG(IPSECHW_PKT, 14863 ("non-M_DATA IPsec accelerated pkt\n")); 14864 freemsg(first_mp); 14865 return (B_TRUE); 14866 } 14867 *mpp = mp; 14868 return (B_FALSE); 14869 } 14870 putnext(q, mp); 14871 return (B_TRUE); 14872 case M_FLUSH: 14873 if (*mp->b_rptr & FLUSHW) { 14874 *mp->b_rptr &= ~FLUSHR; 14875 qreply(q, mp); 14876 return (B_TRUE); 14877 } 14878 freemsg(mp); 14879 return (B_TRUE); 14880 case M_IOCNAK: 14881 ip1dbg(("got iocnak ")); 14882 iocp = (struct iocblk *)mp->b_rptr; 14883 switch (iocp->ioc_cmd) { 14884 case DL_IOC_HDR_INFO: 14885 case SIOCSTUNPARAM: 14886 case OSIOCSTUNPARAM: 14887 /* 14888 * Since this is on the ill stream we unconditionally 14889 * bump up the refcount 14890 */ 14891 ill_refhold(ill); 14892 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14893 CUR_OP, B_FALSE); 14894 return (B_TRUE); 14895 case SIOCGTUNPARAM: 14896 case OSIOCGTUNPARAM: 14897 ip_rput_other(NULL, q, mp, NULL); 14898 return (B_TRUE); 14899 default: 14900 break; 14901 } 14902 /* FALLTHRU */ 14903 default: 14904 putnext(q, mp); 14905 return (B_TRUE); 14906 } 14907 } 14908 14909 /* Read side put procedure. Packets coming from the wire arrive here. */ 14910 void 14911 ip_rput(queue_t *q, mblk_t *mp) 14912 { 14913 ill_t *ill; 14914 ip_stack_t *ipst; 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14917 14918 ill = (ill_t *)q->q_ptr; 14919 ipst = ill->ill_ipst; 14920 14921 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14922 union DL_primitives *dl; 14923 14924 /* 14925 * Things are opening or closing. Only accept DLPI control 14926 * messages. In the open case, the ill->ill_ipif has not yet 14927 * been created. In the close case, things hanging off the 14928 * ill could have been freed already. In either case it 14929 * may not be safe to proceed further. 14930 */ 14931 14932 dl = (union DL_primitives *)mp->b_rptr; 14933 if ((mp->b_datap->db_type != M_PCPROTO) || 14934 (dl->dl_primitive == DL_UNITDATA_IND)) { 14935 /* 14936 * Also SIOC[GS]TUN* ioctls can come here. 14937 */ 14938 inet_freemsg(mp); 14939 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14940 "ip_input_end: q %p (%S)", q, "uninit"); 14941 return; 14942 } 14943 } 14944 14945 /* 14946 * if db_ref > 1 then copymsg and free original. Packet may be 14947 * changed and we do not want the other entity who has a reference to 14948 * this message to trip over the changes. This is a blind change because 14949 * trying to catch all places that might change the packet is too 14950 * difficult. 14951 * 14952 * This corresponds to the fast path case, where we have a chain of 14953 * M_DATA mblks. We check the db_ref count of only the 1st data block 14954 * in the mblk chain. There doesn't seem to be a reason why a device 14955 * driver would send up data with varying db_ref counts in the mblk 14956 * chain. In any case the Fast path is a private interface, and our 14957 * drivers don't do such a thing. Given the above assumption, there is 14958 * no need to walk down the entire mblk chain (which could have a 14959 * potential performance problem) 14960 */ 14961 if (mp->b_datap->db_ref > 1) { 14962 mblk_t *mp1; 14963 boolean_t adjusted = B_FALSE; 14964 IP_STAT(ipst, ip_db_ref); 14965 14966 /* 14967 * The IP_RECVSLLA option depends on having the link layer 14968 * header. First check that: 14969 * a> the underlying device is of type ether, since this 14970 * option is currently supported only over ethernet. 14971 * b> there is enough room to copy over the link layer header. 14972 * 14973 * Once the checks are done, adjust rptr so that the link layer 14974 * header will be copied via copymsg. Note that, IFT_ETHER may 14975 * be returned by some non-ethernet drivers but in this case the 14976 * second check will fail. 14977 */ 14978 if (ill->ill_type == IFT_ETHER && 14979 (mp->b_rptr - mp->b_datap->db_base) >= 14980 sizeof (struct ether_header)) { 14981 mp->b_rptr -= sizeof (struct ether_header); 14982 adjusted = B_TRUE; 14983 } 14984 mp1 = copymsg(mp); 14985 if (mp1 == NULL) { 14986 mp->b_next = NULL; 14987 /* clear b_prev - used by ip_mroute_decap */ 14988 mp->b_prev = NULL; 14989 freemsg(mp); 14990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14991 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14992 "ip_rput_end: q %p (%S)", q, "copymsg"); 14993 return; 14994 } 14995 if (adjusted) { 14996 /* 14997 * Copy is done. Restore the pointer in the _new_ mblk 14998 */ 14999 mp1->b_rptr += sizeof (struct ether_header); 15000 } 15001 /* Copy b_prev - used by ip_mroute_decap */ 15002 mp1->b_prev = mp->b_prev; 15003 mp->b_prev = NULL; 15004 freemsg(mp); 15005 mp = mp1; 15006 } 15007 15008 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15009 "ip_rput_end: q %p (%S)", q, "end"); 15010 15011 ip_input(ill, NULL, mp, NULL); 15012 } 15013 15014 /* 15015 * Direct read side procedure capable of dealing with chains. GLDv3 based 15016 * drivers call this function directly with mblk chains while STREAMS 15017 * read side procedure ip_rput() calls this for single packet with ip_ring 15018 * set to NULL to process one packet at a time. 15019 * 15020 * The ill will always be valid if this function is called directly from 15021 * the driver. 15022 * 15023 * If ip_input() is called from GLDv3: 15024 * 15025 * - This must be a non-VLAN IP stream. 15026 * - 'mp' is either an untagged or a special priority-tagged packet. 15027 * - Any VLAN tag that was in the MAC header has been stripped. 15028 * 15029 * If the IP header in packet is not 32-bit aligned, every message in the 15030 * chain will be aligned before further operations. This is required on SPARC 15031 * platform. 15032 */ 15033 /* ARGSUSED */ 15034 void 15035 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15036 struct mac_header_info_s *mhip) 15037 { 15038 ipaddr_t dst = NULL; 15039 ipaddr_t prev_dst; 15040 ire_t *ire = NULL; 15041 ipha_t *ipha; 15042 uint_t pkt_len; 15043 ssize_t len; 15044 uint_t opt_len; 15045 int ll_multicast; 15046 int cgtp_flt_pkt; 15047 queue_t *q = ill->ill_rq; 15048 squeue_t *curr_sqp = NULL; 15049 mblk_t *head = NULL; 15050 mblk_t *tail = NULL; 15051 mblk_t *first_mp; 15052 mblk_t *mp; 15053 mblk_t *dmp; 15054 int cnt = 0; 15055 ip_stack_t *ipst = ill->ill_ipst; 15056 15057 ASSERT(mp_chain != NULL); 15058 ASSERT(ill != NULL); 15059 15060 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15061 15062 #define rptr ((uchar_t *)ipha) 15063 15064 while (mp_chain != NULL) { 15065 first_mp = mp = mp_chain; 15066 mp_chain = mp_chain->b_next; 15067 mp->b_next = NULL; 15068 ll_multicast = 0; 15069 15070 /* 15071 * We do ire caching from one iteration to 15072 * another. In the event the packet chain contains 15073 * all packets from the same dst, this caching saves 15074 * an ire_cache_lookup for each of the succeeding 15075 * packets in a packet chain. 15076 */ 15077 prev_dst = dst; 15078 15079 /* 15080 * Check and align the IP header. 15081 */ 15082 if (DB_TYPE(mp) == M_DATA) { 15083 dmp = mp; 15084 } else if (DB_TYPE(mp) == M_PROTO && 15085 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15086 dmp = mp->b_cont; 15087 } else { 15088 dmp = NULL; 15089 } 15090 if (dmp != NULL) { 15091 /* 15092 * IP header ptr not aligned? 15093 * OR IP header not complete in first mblk 15094 */ 15095 if (!OK_32PTR(dmp->b_rptr) || 15096 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15097 if (!ip_check_and_align_header(q, dmp, ipst)) 15098 continue; 15099 } 15100 } 15101 15102 /* 15103 * ip_input fast path 15104 */ 15105 15106 /* mblk type is not M_DATA */ 15107 if (DB_TYPE(mp) != M_DATA) { 15108 if (ip_rput_process_notdata(q, &first_mp, ill, 15109 &ll_multicast, &mp)) 15110 continue; 15111 } 15112 15113 /* Make sure its an M_DATA and that its aligned */ 15114 ASSERT(DB_TYPE(mp) == M_DATA); 15115 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15116 15117 ipha = (ipha_t *)mp->b_rptr; 15118 len = mp->b_wptr - rptr; 15119 pkt_len = ntohs(ipha->ipha_length); 15120 15121 /* 15122 * We must count all incoming packets, even if they end 15123 * up being dropped later on. 15124 */ 15125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15126 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15127 15128 /* multiple mblk or too short */ 15129 len -= pkt_len; 15130 if (len != 0) { 15131 /* 15132 * Make sure we have data length consistent 15133 * with the IP header. 15134 */ 15135 if (mp->b_cont == NULL) { 15136 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15137 BUMP_MIB(ill->ill_ip_mib, 15138 ipIfStatsInHdrErrors); 15139 ip2dbg(("ip_input: drop pkt\n")); 15140 freemsg(mp); 15141 continue; 15142 } 15143 mp->b_wptr = rptr + pkt_len; 15144 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15145 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15146 BUMP_MIB(ill->ill_ip_mib, 15147 ipIfStatsInHdrErrors); 15148 ip2dbg(("ip_input: drop pkt\n")); 15149 freemsg(mp); 15150 continue; 15151 } 15152 (void) adjmsg(mp, -len); 15153 IP_STAT(ipst, ip_multimblk3); 15154 } 15155 } 15156 15157 /* Obtain the dst of the current packet */ 15158 dst = ipha->ipha_dst; 15159 15160 if (IP_LOOPBACK_ADDR(dst) || 15161 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15162 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15163 cmn_err(CE_CONT, "dst %X src %X\n", 15164 dst, ipha->ipha_src); 15165 freemsg(mp); 15166 continue; 15167 } 15168 15169 /* 15170 * The event for packets being received from a 'physical' 15171 * interface is placed after validation of the source and/or 15172 * destination address as being local so that packets can be 15173 * redirected to loopback addresses using ipnat. 15174 */ 15175 DTRACE_PROBE4(ip4__physical__in__start, 15176 ill_t *, ill, ill_t *, NULL, 15177 ipha_t *, ipha, mblk_t *, first_mp); 15178 15179 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15180 ipst->ips_ipv4firewall_physical_in, 15181 ill, NULL, ipha, first_mp, mp, ipst); 15182 15183 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15184 15185 if (first_mp == NULL) { 15186 continue; 15187 } 15188 dst = ipha->ipha_dst; 15189 15190 /* 15191 * Attach any necessary label information to 15192 * this packet 15193 */ 15194 if (is_system_labeled() && 15195 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15196 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15197 freemsg(mp); 15198 continue; 15199 } 15200 15201 /* 15202 * Reuse the cached ire only if the ipha_dst of the previous 15203 * packet is the same as the current packet AND it is not 15204 * INADDR_ANY. 15205 */ 15206 if (!(dst == prev_dst && dst != INADDR_ANY) && 15207 (ire != NULL)) { 15208 ire_refrele(ire); 15209 ire = NULL; 15210 } 15211 opt_len = ipha->ipha_version_and_hdr_length - 15212 IP_SIMPLE_HDR_VERSION; 15213 15214 /* 15215 * Check to see if we can take the fastpath. 15216 * That is possible if the following conditions are met 15217 * o Tsol disabled 15218 * o CGTP disabled 15219 * o ipp_action_count is 0 15220 * o Mobile IP not running 15221 * o no options in the packet 15222 * o not a RSVP packet 15223 * o not a multicast packet 15224 */ 15225 if (!is_system_labeled() && 15226 !ip_cgtp_filter && ipp_action_count == 0 && 15227 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15228 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15229 !ll_multicast && !CLASSD(dst)) { 15230 if (ire == NULL) 15231 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15232 ipst); 15233 15234 /* incoming packet is for forwarding */ 15235 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15236 ire = ip_fast_forward(ire, dst, ill, mp); 15237 continue; 15238 } 15239 /* incoming packet is for local consumption */ 15240 if (ire->ire_type & IRE_LOCAL) 15241 goto local; 15242 } 15243 15244 /* 15245 * Disable ire caching for anything more complex 15246 * than the simple fast path case we checked for above. 15247 */ 15248 if (ire != NULL) { 15249 ire_refrele(ire); 15250 ire = NULL; 15251 } 15252 15253 /* Full-blown slow path */ 15254 if (opt_len != 0) { 15255 if (len != 0) 15256 IP_STAT(ipst, ip_multimblk4); 15257 else 15258 IP_STAT(ipst, ip_ipoptions); 15259 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15260 &dst, ipst)) 15261 continue; 15262 } 15263 15264 /* 15265 * Invoke the CGTP (multirouting) filtering module to process 15266 * the incoming packet. Packets identified as duplicates 15267 * must be discarded. Filtering is active only if the 15268 * the ip_cgtp_filter ndd variable is non-zero. 15269 * 15270 * Only applies to the shared stack since the filter_ops 15271 * do not carry an ip_stack_t or zoneid. 15272 */ 15273 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15274 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15275 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15276 cgtp_flt_pkt = 15277 ip_cgtp_filter_ops->cfo_filter(q, mp); 15278 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15279 freemsg(first_mp); 15280 continue; 15281 } 15282 } 15283 15284 /* 15285 * If rsvpd is running, let RSVP daemon handle its processing 15286 * and forwarding of RSVP multicast/unicast packets. 15287 * If rsvpd is not running but mrouted is running, RSVP 15288 * multicast packets are forwarded as multicast traffic 15289 * and RSVP unicast packets are forwarded by unicast router. 15290 * If neither rsvpd nor mrouted is running, RSVP multicast 15291 * packets are not forwarded, but the unicast packets are 15292 * forwarded like unicast traffic. 15293 */ 15294 if (ipha->ipha_protocol == IPPROTO_RSVP && 15295 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15296 NULL) { 15297 /* RSVP packet and rsvpd running. Treat as ours */ 15298 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15299 /* 15300 * This assumes that we deliver to all streams for 15301 * multicast and broadcast packets. 15302 * We have to force ll_multicast to 1 to handle the 15303 * M_DATA messages passed in from ip_mroute_decap. 15304 */ 15305 dst = INADDR_BROADCAST; 15306 ll_multicast = 1; 15307 } else if (CLASSD(dst)) { 15308 /* packet is multicast */ 15309 mp->b_next = NULL; 15310 if (ip_rput_process_multicast(q, mp, ill, ipha, 15311 &ll_multicast, &dst)) 15312 continue; 15313 } 15314 15315 15316 /* 15317 * Check if the packet is coming from the Mobile IP 15318 * forward tunnel interface 15319 */ 15320 if (ill->ill_srcif_refcnt > 0) { 15321 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15322 NULL, ill, MATCH_IRE_TYPE); 15323 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15324 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15325 15326 /* We need to resolve the link layer info */ 15327 ire_refrele(ire); 15328 ire = NULL; 15329 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15330 ll_multicast, dst); 15331 continue; 15332 } 15333 } 15334 15335 if (ire == NULL) { 15336 ire = ire_cache_lookup(dst, ALL_ZONES, 15337 MBLK_GETLABEL(mp), ipst); 15338 } 15339 15340 /* 15341 * If mipagent is running and reverse tunnel is created as per 15342 * mobile node request, then any packet coming through the 15343 * incoming interface from the mobile-node, should be reverse 15344 * tunneled to it's home agent except those that are destined 15345 * to foreign agent only. 15346 * This needs source address based ire lookup. The routing 15347 * entries for source address based lookup are only created by 15348 * mipagent program only when a reverse tunnel is created. 15349 * Reference : RFC2002, RFC2344 15350 */ 15351 if (ill->ill_mrtun_refcnt > 0) { 15352 ipaddr_t srcaddr; 15353 ire_t *tmp_ire; 15354 15355 tmp_ire = ire; /* Save, we might need it later */ 15356 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15357 ire->ire_type != IRE_BROADCAST)) { 15358 srcaddr = ipha->ipha_src; 15359 ire = ire_mrtun_lookup(srcaddr, ill); 15360 if (ire != NULL) { 15361 /* 15362 * Should not be getting iphada packet 15363 * here. we should only get those for 15364 * IRE_LOCAL traffic, excluded above. 15365 * Fail-safe (drop packet) in the event 15366 * hardware is misbehaving. 15367 */ 15368 if (first_mp != mp) { 15369 /* IPsec KSTATS: beancount me */ 15370 freemsg(first_mp); 15371 } else { 15372 /* 15373 * This packet must be forwarded 15374 * to Reverse Tunnel 15375 */ 15376 ip_mrtun_forward(ire, ill, mp); 15377 } 15378 ire_refrele(ire); 15379 ire = NULL; 15380 if (tmp_ire != NULL) { 15381 ire_refrele(tmp_ire); 15382 tmp_ire = NULL; 15383 } 15384 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15385 "ip_input_end: q %p (%S)", 15386 q, "uninit"); 15387 continue; 15388 } 15389 } 15390 /* 15391 * If this packet is from a non-mobilenode or a 15392 * mobile-node which does not request reverse 15393 * tunnel service 15394 */ 15395 ire = tmp_ire; 15396 } 15397 15398 15399 /* 15400 * If we reach here that means the incoming packet satisfies 15401 * one of the following conditions: 15402 * - packet is from a mobile node which does not request 15403 * reverse tunnel 15404 * - packet is from a non-mobile node, which is the most 15405 * common case 15406 * - packet is from a reverse tunnel enabled mobile node 15407 * and destined to foreign agent only 15408 */ 15409 15410 if (ire == NULL) { 15411 /* 15412 * No IRE for this destination, so it can't be for us. 15413 * Unless we are forwarding, drop the packet. 15414 * We have to let source routed packets through 15415 * since we don't yet know if they are 'ping -l' 15416 * packets i.e. if they will go out over the 15417 * same interface as they came in on. 15418 */ 15419 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15420 if (ire == NULL) 15421 continue; 15422 } 15423 15424 /* 15425 * Broadcast IRE may indicate either broadcast or 15426 * multicast packet 15427 */ 15428 if (ire->ire_type == IRE_BROADCAST) { 15429 /* 15430 * Skip broadcast checks if packet is UDP multicast; 15431 * we'd rather not enter ip_rput_process_broadcast() 15432 * unless the packet is broadcast for real, since 15433 * that routine is a no-op for multicast. 15434 */ 15435 if (ipha->ipha_protocol != IPPROTO_UDP || 15436 !CLASSD(ipha->ipha_dst)) { 15437 ire = ip_rput_process_broadcast(&q, mp, 15438 ire, ipha, ill, dst, cgtp_flt_pkt, 15439 ll_multicast); 15440 if (ire == NULL) 15441 continue; 15442 } 15443 } else if (ire->ire_stq != NULL) { 15444 /* fowarding? */ 15445 ip_rput_process_forward(q, mp, ire, ipha, ill, 15446 ll_multicast); 15447 /* ip_rput_process_forward consumed the packet */ 15448 continue; 15449 } 15450 15451 local: 15452 /* 15453 * If the queue in the ire is different to the ingress queue 15454 * then we need to check to see if we can accept the packet. 15455 * Note that for multicast packets and broadcast packets sent 15456 * to a broadcast address which is shared between multiple 15457 * interfaces we should not do this since we just got a random 15458 * broadcast ire. 15459 */ 15460 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15461 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15462 ill)) == NULL) { 15463 /* Drop packet */ 15464 BUMP_MIB(ill->ill_ip_mib, 15465 ipIfStatsForwProhibits); 15466 freemsg(mp); 15467 continue; 15468 } 15469 if (ire->ire_rfq != NULL) 15470 q = ire->ire_rfq; 15471 } 15472 15473 switch (ipha->ipha_protocol) { 15474 case IPPROTO_TCP: 15475 ASSERT(first_mp == mp); 15476 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15477 mp, 0, q, ip_ring)) != NULL) { 15478 if (curr_sqp == NULL) { 15479 curr_sqp = GET_SQUEUE(mp); 15480 ASSERT(cnt == 0); 15481 cnt++; 15482 head = tail = mp; 15483 } else if (curr_sqp == GET_SQUEUE(mp)) { 15484 ASSERT(tail != NULL); 15485 cnt++; 15486 tail->b_next = mp; 15487 tail = mp; 15488 } else { 15489 /* 15490 * A different squeue. Send the 15491 * chain for the previous squeue on 15492 * its way. This shouldn't happen 15493 * often unless interrupt binding 15494 * changes. 15495 */ 15496 IP_STAT(ipst, ip_input_multi_squeue); 15497 squeue_enter_chain(curr_sqp, head, 15498 tail, cnt, SQTAG_IP_INPUT); 15499 curr_sqp = GET_SQUEUE(mp); 15500 head = mp; 15501 tail = mp; 15502 cnt = 1; 15503 } 15504 } 15505 continue; 15506 case IPPROTO_UDP: 15507 ASSERT(first_mp == mp); 15508 ip_udp_input(q, mp, ipha, ire, ill); 15509 continue; 15510 case IPPROTO_SCTP: 15511 ASSERT(first_mp == mp); 15512 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15513 q, dst); 15514 /* ire has been released by ip_sctp_input */ 15515 ire = NULL; 15516 continue; 15517 default: 15518 ip_proto_input(q, first_mp, ipha, ire, ill); 15519 continue; 15520 } 15521 } 15522 15523 if (ire != NULL) 15524 ire_refrele(ire); 15525 15526 if (head != NULL) 15527 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15528 15529 /* 15530 * This code is there just to make netperf/ttcp look good. 15531 * 15532 * Its possible that after being in polling mode (and having cleared 15533 * the backlog), squeues have turned the interrupt frequency higher 15534 * to improve latency at the expense of more CPU utilization (less 15535 * packets per interrupts or more number of interrupts). Workloads 15536 * like ttcp/netperf do manage to tickle polling once in a while 15537 * but for the remaining time, stay in higher interrupt mode since 15538 * their packet arrival rate is pretty uniform and this shows up 15539 * as higher CPU utilization. Since people care about CPU utilization 15540 * while running netperf/ttcp, turn the interrupt frequency back to 15541 * normal/default if polling has not been used in ip_poll_normal_ticks. 15542 */ 15543 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15544 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15545 ip_ring->rr_poll_state &= ~ILL_POLLING; 15546 ip_ring->rr_blank(ip_ring->rr_handle, 15547 ip_ring->rr_normal_blank_time, 15548 ip_ring->rr_normal_pkt_cnt); 15549 } 15550 } 15551 15552 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15553 "ip_input_end: q %p (%S)", q, "end"); 15554 #undef rptr 15555 } 15556 15557 static void 15558 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15559 t_uscalar_t err) 15560 { 15561 if (dl_err == DL_SYSERR) { 15562 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15563 "%s: %s failed: DL_SYSERR (errno %u)\n", 15564 ill->ill_name, dlpi_prim_str(prim), err); 15565 return; 15566 } 15567 15568 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15569 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15570 dlpi_err_str(dl_err)); 15571 } 15572 15573 /* 15574 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15575 * than DL_UNITDATA_IND messages. If we need to process this message 15576 * exclusively, we call qwriter_ip, in which case we also need to call 15577 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15578 */ 15579 void 15580 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15581 { 15582 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15583 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15584 ill_t *ill; 15585 15586 ip1dbg(("ip_rput_dlpi")); 15587 ill = (ill_t *)q->q_ptr; 15588 switch (dloa->dl_primitive) { 15589 case DL_ERROR_ACK: 15590 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15591 "%s (0x%x), unix %u\n", ill->ill_name, 15592 dlpi_prim_str(dlea->dl_error_primitive), 15593 dlea->dl_error_primitive, 15594 dlpi_err_str(dlea->dl_errno), 15595 dlea->dl_errno, 15596 dlea->dl_unix_errno)); 15597 switch (dlea->dl_error_primitive) { 15598 case DL_UNBIND_REQ: 15599 mutex_enter(&ill->ill_lock); 15600 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15601 cv_signal(&ill->ill_cv); 15602 mutex_exit(&ill->ill_lock); 15603 /* FALLTHRU */ 15604 case DL_NOTIFY_REQ: 15605 case DL_ATTACH_REQ: 15606 case DL_DETACH_REQ: 15607 case DL_INFO_REQ: 15608 case DL_BIND_REQ: 15609 case DL_ENABMULTI_REQ: 15610 case DL_PHYS_ADDR_REQ: 15611 case DL_CAPABILITY_REQ: 15612 case DL_CONTROL_REQ: 15613 /* 15614 * Refhold the ill to match qwriter_ip which does a 15615 * refrele. Since this is on the ill stream we 15616 * unconditionally bump up the refcount without 15617 * checking for ILL_CAN_LOOKUP 15618 */ 15619 ill_refhold(ill); 15620 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15621 CUR_OP, B_FALSE); 15622 return; 15623 case DL_DISABMULTI_REQ: 15624 freemsg(mp); /* Don't want to pass this up */ 15625 return; 15626 default: 15627 break; 15628 } 15629 ip_dlpi_error(ill, dlea->dl_error_primitive, 15630 dlea->dl_errno, dlea->dl_unix_errno); 15631 freemsg(mp); 15632 return; 15633 case DL_INFO_ACK: 15634 case DL_BIND_ACK: 15635 case DL_PHYS_ADDR_ACK: 15636 case DL_NOTIFY_ACK: 15637 case DL_CAPABILITY_ACK: 15638 case DL_CONTROL_ACK: 15639 /* 15640 * Refhold the ill to match qwriter_ip which does a refrele 15641 * Since this is on the ill stream we unconditionally 15642 * bump up the refcount without doing ILL_CAN_LOOKUP. 15643 */ 15644 ill_refhold(ill); 15645 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15646 CUR_OP, B_FALSE); 15647 return; 15648 case DL_NOTIFY_IND: 15649 ill_refhold(ill); 15650 /* 15651 * The DL_NOTIFY_IND is an asynchronous message that has no 15652 * relation to the current ioctl in progress (if any). Hence we 15653 * pass in NEW_OP in this case. 15654 */ 15655 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15656 NEW_OP, B_FALSE); 15657 return; 15658 case DL_OK_ACK: 15659 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15660 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15661 switch (dloa->dl_correct_primitive) { 15662 case DL_UNBIND_REQ: 15663 mutex_enter(&ill->ill_lock); 15664 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15665 cv_signal(&ill->ill_cv); 15666 mutex_exit(&ill->ill_lock); 15667 /* FALLTHRU */ 15668 case DL_ATTACH_REQ: 15669 case DL_DETACH_REQ: 15670 /* 15671 * Refhold the ill to match qwriter_ip which does a 15672 * refrele. Since this is on the ill stream we 15673 * unconditionally bump up the refcount 15674 */ 15675 ill_refhold(ill); 15676 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15677 CUR_OP, B_FALSE); 15678 return; 15679 case DL_ENABMULTI_REQ: 15680 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15681 ill->ill_dlpi_multicast_state = IDS_OK; 15682 break; 15683 15684 } 15685 break; 15686 default: 15687 break; 15688 } 15689 freemsg(mp); 15690 } 15691 15692 /* 15693 * Handling of DLPI messages that require exclusive access to the ipsq. 15694 * 15695 * Need to do ill_pending_mp_release on ioctl completion, which could 15696 * happen here. (along with mi_copy_done) 15697 */ 15698 /* ARGSUSED */ 15699 static void 15700 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15701 { 15702 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15703 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15704 int err = 0; 15705 ill_t *ill; 15706 ipif_t *ipif = NULL; 15707 mblk_t *mp1 = NULL; 15708 conn_t *connp = NULL; 15709 t_uscalar_t paddrreq; 15710 mblk_t *mp_hw; 15711 boolean_t success; 15712 boolean_t ioctl_aborted = B_FALSE; 15713 boolean_t log = B_TRUE; 15714 hook_nic_event_t *info; 15715 ip_stack_t *ipst; 15716 15717 ip1dbg(("ip_rput_dlpi_writer ..")); 15718 ill = (ill_t *)q->q_ptr; 15719 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15720 15721 ASSERT(IAM_WRITER_ILL(ill)); 15722 15723 ipst = ill->ill_ipst; 15724 15725 /* 15726 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15727 * both are null or non-null. However we can assert that only 15728 * after grabbing the ipsq_lock. So we don't make any assertion 15729 * here and in other places in the code. 15730 */ 15731 ipif = ipsq->ipsq_pending_ipif; 15732 /* 15733 * The current ioctl could have been aborted by the user and a new 15734 * ioctl to bring up another ill could have started. We could still 15735 * get a response from the driver later. 15736 */ 15737 if (ipif != NULL && ipif->ipif_ill != ill) 15738 ioctl_aborted = B_TRUE; 15739 15740 switch (dloa->dl_primitive) { 15741 case DL_ERROR_ACK: 15742 switch (dlea->dl_error_primitive) { 15743 case DL_UNBIND_REQ: 15744 case DL_ATTACH_REQ: 15745 case DL_DETACH_REQ: 15746 case DL_INFO_REQ: 15747 ill_dlpi_done(ill, dlea->dl_error_primitive); 15748 break; 15749 case DL_NOTIFY_REQ: 15750 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15751 log = B_FALSE; 15752 break; 15753 case DL_PHYS_ADDR_REQ: 15754 /* 15755 * For IPv6 only, there are two additional 15756 * phys_addr_req's sent to the driver to get the 15757 * IPv6 token and lla. This allows IP to acquire 15758 * the hardware address format for a given interface 15759 * without having built in knowledge of the hardware 15760 * address. ill_phys_addr_pend keeps track of the last 15761 * DL_PAR sent so we know which response we are 15762 * dealing with. ill_dlpi_done will update 15763 * ill_phys_addr_pend when it sends the next req. 15764 * We don't complete the IOCTL until all three DL_PARs 15765 * have been attempted, so set *_len to 0 and break. 15766 */ 15767 paddrreq = ill->ill_phys_addr_pend; 15768 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15769 if (paddrreq == DL_IPV6_TOKEN) { 15770 ill->ill_token_length = 0; 15771 log = B_FALSE; 15772 break; 15773 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15774 ill->ill_nd_lla_len = 0; 15775 log = B_FALSE; 15776 break; 15777 } 15778 /* 15779 * Something went wrong with the DL_PHYS_ADDR_REQ. 15780 * We presumably have an IOCTL hanging out waiting 15781 * for completion. Find it and complete the IOCTL 15782 * with the error noted. 15783 * However, ill_dl_phys was called on an ill queue 15784 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15785 * set. But the ioctl is known to be pending on ill_wq. 15786 */ 15787 if (!ill->ill_ifname_pending) 15788 break; 15789 ill->ill_ifname_pending = 0; 15790 if (!ioctl_aborted) 15791 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15792 if (mp1 != NULL) { 15793 /* 15794 * This operation (SIOCSLIFNAME) must have 15795 * happened on the ill. Assert there is no conn 15796 */ 15797 ASSERT(connp == NULL); 15798 q = ill->ill_wq; 15799 } 15800 break; 15801 case DL_BIND_REQ: 15802 ill_dlpi_done(ill, DL_BIND_REQ); 15803 if (ill->ill_ifname_pending) 15804 break; 15805 /* 15806 * Something went wrong with the bind. We presumably 15807 * have an IOCTL hanging out waiting for completion. 15808 * Find it, take down the interface that was coming 15809 * up, and complete the IOCTL with the error noted. 15810 */ 15811 if (!ioctl_aborted) 15812 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15813 if (mp1 != NULL) { 15814 /* 15815 * This operation (SIOCSLIFFLAGS) must have 15816 * happened from a conn. 15817 */ 15818 ASSERT(connp != NULL); 15819 q = CONNP_TO_WQ(connp); 15820 if (ill->ill_move_in_progress) { 15821 ILL_CLEAR_MOVE(ill); 15822 } 15823 (void) ipif_down(ipif, NULL, NULL); 15824 /* error is set below the switch */ 15825 } 15826 break; 15827 case DL_ENABMULTI_REQ: 15828 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15829 15830 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15831 ill->ill_dlpi_multicast_state = IDS_FAILED; 15832 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15833 ipif_t *ipif; 15834 15835 log = B_FALSE; 15836 printf("ip: joining multicasts failed (%d)" 15837 " on %s - will use link layer " 15838 "broadcasts for multicast\n", 15839 dlea->dl_errno, ill->ill_name); 15840 15841 /* 15842 * Set up the multicast mapping alone. 15843 * writer, so ok to access ill->ill_ipif 15844 * without any lock. 15845 */ 15846 ipif = ill->ill_ipif; 15847 mutex_enter(&ill->ill_phyint->phyint_lock); 15848 ill->ill_phyint->phyint_flags |= 15849 PHYI_MULTI_BCAST; 15850 mutex_exit(&ill->ill_phyint->phyint_lock); 15851 15852 if (!ill->ill_isv6) { 15853 (void) ipif_arp_setup_multicast(ipif, 15854 NULL); 15855 } else { 15856 (void) ipif_ndp_setup_multicast(ipif, 15857 NULL); 15858 } 15859 } 15860 freemsg(mp); /* Don't want to pass this up */ 15861 return; 15862 case DL_CAPABILITY_REQ: 15863 case DL_CONTROL_REQ: 15864 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15865 "DL_CAPABILITY/CONTROL REQ\n")); 15866 ill_dlpi_done(ill, dlea->dl_error_primitive); 15867 ill->ill_dlpi_capab_state = IDS_FAILED; 15868 freemsg(mp); 15869 return; 15870 } 15871 /* 15872 * Note the error for IOCTL completion (mp1 is set when 15873 * ready to complete ioctl). If ill_ifname_pending_err is 15874 * set, an error occured during plumbing (ill_ifname_pending), 15875 * so we want to report that error. 15876 * 15877 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15878 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15879 * expected to get errack'd if the driver doesn't support 15880 * these flags (e.g. ethernet). log will be set to B_FALSE 15881 * if these error conditions are encountered. 15882 */ 15883 if (mp1 != NULL) { 15884 if (ill->ill_ifname_pending_err != 0) { 15885 err = ill->ill_ifname_pending_err; 15886 ill->ill_ifname_pending_err = 0; 15887 } else { 15888 err = dlea->dl_unix_errno ? 15889 dlea->dl_unix_errno : ENXIO; 15890 } 15891 /* 15892 * If we're plumbing an interface and an error hasn't already 15893 * been saved, set ill_ifname_pending_err to the error passed 15894 * up. Ignore the error if log is B_FALSE (see comment above). 15895 */ 15896 } else if (log && ill->ill_ifname_pending && 15897 ill->ill_ifname_pending_err == 0) { 15898 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15899 dlea->dl_unix_errno : ENXIO; 15900 } 15901 15902 if (log) 15903 ip_dlpi_error(ill, dlea->dl_error_primitive, 15904 dlea->dl_errno, dlea->dl_unix_errno); 15905 break; 15906 case DL_CAPABILITY_ACK: { 15907 boolean_t reneg_flag = B_FALSE; 15908 /* Call a routine to handle this one. */ 15909 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15910 /* 15911 * Check if the ACK is due to renegotiation case since we 15912 * will need to send a new CAPABILITY_REQ later. 15913 */ 15914 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15915 /* This is the ack for a renogiation case */ 15916 reneg_flag = B_TRUE; 15917 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15918 } 15919 ill_capability_ack(ill, mp); 15920 if (reneg_flag) 15921 ill_capability_probe(ill); 15922 break; 15923 } 15924 case DL_CONTROL_ACK: 15925 /* We treat all of these as "fire and forget" */ 15926 ill_dlpi_done(ill, DL_CONTROL_REQ); 15927 break; 15928 case DL_INFO_ACK: 15929 /* Call a routine to handle this one. */ 15930 ill_dlpi_done(ill, DL_INFO_REQ); 15931 ip_ll_subnet_defaults(ill, mp); 15932 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15933 return; 15934 case DL_BIND_ACK: 15935 /* 15936 * We should have an IOCTL waiting on this unless 15937 * sent by ill_dl_phys, in which case just return 15938 */ 15939 ill_dlpi_done(ill, DL_BIND_REQ); 15940 if (ill->ill_ifname_pending) 15941 break; 15942 15943 if (!ioctl_aborted) 15944 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15945 if (mp1 == NULL) 15946 break; 15947 /* 15948 * Because mp1 was added by ill_dl_up(), and it always 15949 * passes a valid connp, connp must be valid here. 15950 */ 15951 ASSERT(connp != NULL); 15952 q = CONNP_TO_WQ(connp); 15953 15954 /* 15955 * We are exclusive. So nothing can change even after 15956 * we get the pending mp. If need be we can put it back 15957 * and restart, as in calling ipif_arp_up() below. 15958 */ 15959 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15960 15961 mutex_enter(&ill->ill_lock); 15962 15963 ill->ill_dl_up = 1; 15964 15965 if ((info = ill->ill_nic_event_info) != NULL) { 15966 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15967 "attached for %s\n", info->hne_event, 15968 ill->ill_name)); 15969 if (info->hne_data != NULL) 15970 kmem_free(info->hne_data, info->hne_datalen); 15971 kmem_free(info, sizeof (hook_nic_event_t)); 15972 } 15973 15974 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15975 if (info != NULL) { 15976 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15977 info->hne_lif = 0; 15978 info->hne_event = NE_UP; 15979 info->hne_data = NULL; 15980 info->hne_datalen = 0; 15981 info->hne_family = ill->ill_isv6 ? 15982 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15983 } else 15984 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15985 "event information for %s (ENOMEM)\n", 15986 ill->ill_name)); 15987 15988 ill->ill_nic_event_info = info; 15989 15990 mutex_exit(&ill->ill_lock); 15991 15992 /* 15993 * Now bring up the resolver; when that is complete, we'll 15994 * create IREs. Note that we intentionally mirror what 15995 * ipif_up() would have done, because we got here by way of 15996 * ill_dl_up(), which stopped ipif_up()'s processing. 15997 */ 15998 if (ill->ill_isv6) { 15999 /* 16000 * v6 interfaces. 16001 * Unlike ARP which has to do another bind 16002 * and attach, once we get here we are 16003 * done with NDP. Except in the case of 16004 * ILLF_XRESOLV, in which case we send an 16005 * AR_INTERFACE_UP to the external resolver. 16006 * If all goes well, the ioctl will complete 16007 * in ip_rput(). If there's an error, we 16008 * complete it here. 16009 */ 16010 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16011 if (err == 0) { 16012 if (ill->ill_flags & ILLF_XRESOLV) { 16013 mutex_enter(&connp->conn_lock); 16014 mutex_enter(&ill->ill_lock); 16015 success = ipsq_pending_mp_add( 16016 connp, ipif, q, mp1, 0); 16017 mutex_exit(&ill->ill_lock); 16018 mutex_exit(&connp->conn_lock); 16019 if (success) { 16020 err = ipif_resolver_up(ipif, 16021 Res_act_initial); 16022 if (err == EINPROGRESS) { 16023 freemsg(mp); 16024 return; 16025 } 16026 ASSERT(err != 0); 16027 mp1 = ipsq_pending_mp_get(ipsq, 16028 &connp); 16029 ASSERT(mp1 != NULL); 16030 } else { 16031 /* conn has started closing */ 16032 err = EINTR; 16033 } 16034 } else { /* Non XRESOLV interface */ 16035 (void) ipif_resolver_up(ipif, 16036 Res_act_initial); 16037 err = ipif_up_done_v6(ipif); 16038 } 16039 } 16040 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16041 /* 16042 * ARP and other v4 external resolvers. 16043 * Leave the pending mblk intact so that 16044 * the ioctl completes in ip_rput(). 16045 */ 16046 mutex_enter(&connp->conn_lock); 16047 mutex_enter(&ill->ill_lock); 16048 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16049 mutex_exit(&ill->ill_lock); 16050 mutex_exit(&connp->conn_lock); 16051 if (success) { 16052 err = ipif_resolver_up(ipif, Res_act_initial); 16053 if (err == EINPROGRESS) { 16054 freemsg(mp); 16055 return; 16056 } 16057 ASSERT(err != 0); 16058 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16059 } else { 16060 /* The conn has started closing */ 16061 err = EINTR; 16062 } 16063 } else { 16064 /* 16065 * This one is complete. Reply to pending ioctl. 16066 */ 16067 (void) ipif_resolver_up(ipif, Res_act_initial); 16068 err = ipif_up_done(ipif); 16069 } 16070 16071 if ((err == 0) && (ill->ill_up_ipifs)) { 16072 err = ill_up_ipifs(ill, q, mp1); 16073 if (err == EINPROGRESS) { 16074 freemsg(mp); 16075 return; 16076 } 16077 } 16078 16079 if (ill->ill_up_ipifs) { 16080 ill_group_cleanup(ill); 16081 } 16082 16083 break; 16084 case DL_NOTIFY_IND: { 16085 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16086 ire_t *ire; 16087 boolean_t need_ire_walk_v4 = B_FALSE; 16088 boolean_t need_ire_walk_v6 = B_FALSE; 16089 16090 switch (notify->dl_notification) { 16091 case DL_NOTE_PHYS_ADDR: 16092 err = ill_set_phys_addr(ill, mp); 16093 break; 16094 16095 case DL_NOTE_FASTPATH_FLUSH: 16096 ill_fastpath_flush(ill); 16097 break; 16098 16099 case DL_NOTE_SDU_SIZE: 16100 /* 16101 * Change the MTU size of the interface, of all 16102 * attached ipif's, and of all relevant ire's. The 16103 * new value's a uint32_t at notify->dl_data. 16104 * Mtu change Vs. new ire creation - protocol below. 16105 * 16106 * a Mark the ipif as IPIF_CHANGING. 16107 * b Set the new mtu in the ipif. 16108 * c Change the ire_max_frag on all affected ires 16109 * d Unmark the IPIF_CHANGING 16110 * 16111 * To see how the protocol works, assume an interface 16112 * route is also being added simultaneously by 16113 * ip_rt_add and let 'ipif' be the ipif referenced by 16114 * the ire. If the ire is created before step a, 16115 * it will be cleaned up by step c. If the ire is 16116 * created after step d, it will see the new value of 16117 * ipif_mtu. Any attempt to create the ire between 16118 * steps a to d will fail because of the IPIF_CHANGING 16119 * flag. Note that ire_create() is passed a pointer to 16120 * the ipif_mtu, and not the value. During ire_add 16121 * under the bucket lock, the ire_max_frag of the 16122 * new ire being created is set from the ipif/ire from 16123 * which it is being derived. 16124 */ 16125 mutex_enter(&ill->ill_lock); 16126 ill->ill_max_frag = (uint_t)notify->dl_data; 16127 16128 /* 16129 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16130 * leave it alone 16131 */ 16132 if (ill->ill_mtu_userspecified) { 16133 mutex_exit(&ill->ill_lock); 16134 break; 16135 } 16136 ill->ill_max_mtu = ill->ill_max_frag; 16137 if (ill->ill_isv6) { 16138 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16139 ill->ill_max_mtu = IPV6_MIN_MTU; 16140 } else { 16141 if (ill->ill_max_mtu < IP_MIN_MTU) 16142 ill->ill_max_mtu = IP_MIN_MTU; 16143 } 16144 for (ipif = ill->ill_ipif; ipif != NULL; 16145 ipif = ipif->ipif_next) { 16146 /* 16147 * Don't override the mtu if the user 16148 * has explicitly set it. 16149 */ 16150 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16151 continue; 16152 ipif->ipif_mtu = (uint_t)notify->dl_data; 16153 if (ipif->ipif_isv6) 16154 ire = ipif_to_ire_v6(ipif); 16155 else 16156 ire = ipif_to_ire(ipif); 16157 if (ire != NULL) { 16158 ire->ire_max_frag = ipif->ipif_mtu; 16159 ire_refrele(ire); 16160 } 16161 if (ipif->ipif_flags & IPIF_UP) { 16162 if (ill->ill_isv6) 16163 need_ire_walk_v6 = B_TRUE; 16164 else 16165 need_ire_walk_v4 = B_TRUE; 16166 } 16167 } 16168 mutex_exit(&ill->ill_lock); 16169 if (need_ire_walk_v4) 16170 ire_walk_v4(ill_mtu_change, (char *)ill, 16171 ALL_ZONES, ipst); 16172 if (need_ire_walk_v6) 16173 ire_walk_v6(ill_mtu_change, (char *)ill, 16174 ALL_ZONES, ipst); 16175 break; 16176 case DL_NOTE_LINK_UP: 16177 case DL_NOTE_LINK_DOWN: { 16178 /* 16179 * We are writer. ill / phyint / ipsq assocs stable. 16180 * The RUNNING flag reflects the state of the link. 16181 */ 16182 phyint_t *phyint = ill->ill_phyint; 16183 uint64_t new_phyint_flags; 16184 boolean_t changed = B_FALSE; 16185 boolean_t went_up; 16186 16187 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16188 mutex_enter(&phyint->phyint_lock); 16189 new_phyint_flags = went_up ? 16190 phyint->phyint_flags | PHYI_RUNNING : 16191 phyint->phyint_flags & ~PHYI_RUNNING; 16192 if (new_phyint_flags != phyint->phyint_flags) { 16193 phyint->phyint_flags = new_phyint_flags; 16194 changed = B_TRUE; 16195 } 16196 mutex_exit(&phyint->phyint_lock); 16197 /* 16198 * ill_restart_dad handles the DAD restart and routing 16199 * socket notification logic. 16200 */ 16201 if (changed) { 16202 ill_restart_dad(phyint->phyint_illv4, went_up); 16203 ill_restart_dad(phyint->phyint_illv6, went_up); 16204 } 16205 break; 16206 } 16207 case DL_NOTE_PROMISC_ON_PHYS: 16208 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16209 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16210 mutex_enter(&ill->ill_lock); 16211 ill->ill_promisc_on_phys = B_TRUE; 16212 mutex_exit(&ill->ill_lock); 16213 break; 16214 case DL_NOTE_PROMISC_OFF_PHYS: 16215 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16216 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16217 mutex_enter(&ill->ill_lock); 16218 ill->ill_promisc_on_phys = B_FALSE; 16219 mutex_exit(&ill->ill_lock); 16220 break; 16221 case DL_NOTE_CAPAB_RENEG: 16222 /* 16223 * Something changed on the driver side. 16224 * It wants us to renegotiate the capabilities 16225 * on this ill. The most likely cause is the 16226 * aggregation interface under us where a 16227 * port got added or went away. 16228 * 16229 * We reset the capabilities and set the 16230 * state to IDS_RENG so that when the ack 16231 * comes back, we can start the 16232 * renegotiation process. 16233 */ 16234 ill_capability_reset(ill); 16235 ill->ill_dlpi_capab_state = IDS_RENEG; 16236 break; 16237 default: 16238 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16239 "type 0x%x for DL_NOTIFY_IND\n", 16240 notify->dl_notification)); 16241 break; 16242 } 16243 16244 /* 16245 * As this is an asynchronous operation, we 16246 * should not call ill_dlpi_done 16247 */ 16248 break; 16249 } 16250 case DL_NOTIFY_ACK: { 16251 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16252 16253 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16254 ill->ill_note_link = 1; 16255 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16256 break; 16257 } 16258 case DL_PHYS_ADDR_ACK: { 16259 /* 16260 * As part of plumbing the interface via SIOCSLIFNAME, 16261 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16262 * whose answers we receive here. As each answer is received, 16263 * we call ill_dlpi_done() to dispatch the next request as 16264 * we're processing the current one. Once all answers have 16265 * been received, we use ipsq_pending_mp_get() to dequeue the 16266 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16267 * is invoked from an ill queue, conn_oper_pending_ill is not 16268 * available, but we know the ioctl is pending on ill_wq.) 16269 */ 16270 uint_t paddrlen, paddroff; 16271 16272 paddrreq = ill->ill_phys_addr_pend; 16273 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16274 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16275 16276 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16277 if (paddrreq == DL_IPV6_TOKEN) { 16278 /* 16279 * bcopy to low-order bits of ill_token 16280 * 16281 * XXX Temporary hack - currently, all known tokens 16282 * are 64 bits, so I'll cheat for the moment. 16283 */ 16284 bcopy(mp->b_rptr + paddroff, 16285 &ill->ill_token.s6_addr32[2], paddrlen); 16286 ill->ill_token_length = paddrlen; 16287 break; 16288 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16289 ASSERT(ill->ill_nd_lla_mp == NULL); 16290 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16291 mp = NULL; 16292 break; 16293 } 16294 16295 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16296 ASSERT(ill->ill_phys_addr_mp == NULL); 16297 if (!ill->ill_ifname_pending) 16298 break; 16299 ill->ill_ifname_pending = 0; 16300 if (!ioctl_aborted) 16301 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16302 if (mp1 != NULL) { 16303 ASSERT(connp == NULL); 16304 q = ill->ill_wq; 16305 } 16306 /* 16307 * If any error acks received during the plumbing sequence, 16308 * ill_ifname_pending_err will be set. Break out and send up 16309 * the error to the pending ioctl. 16310 */ 16311 if (ill->ill_ifname_pending_err != 0) { 16312 err = ill->ill_ifname_pending_err; 16313 ill->ill_ifname_pending_err = 0; 16314 break; 16315 } 16316 16317 ill->ill_phys_addr_mp = mp; 16318 ill->ill_phys_addr = mp->b_rptr + paddroff; 16319 mp = NULL; 16320 16321 /* 16322 * If paddrlen is zero, the DLPI provider doesn't support 16323 * physical addresses. The other two tests were historical 16324 * workarounds for bugs in our former PPP implementation, but 16325 * now other things have grown dependencies on them -- e.g., 16326 * the tun module specifies a dl_addr_length of zero in its 16327 * DL_BIND_ACK, but then specifies an incorrect value in its 16328 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16329 * but only after careful testing ensures that all dependent 16330 * broken DLPI providers have been fixed. 16331 */ 16332 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16333 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16334 ill->ill_phys_addr = NULL; 16335 } else if (paddrlen != ill->ill_phys_addr_length) { 16336 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16337 paddrlen, ill->ill_phys_addr_length)); 16338 err = EINVAL; 16339 break; 16340 } 16341 16342 if (ill->ill_nd_lla_mp == NULL) { 16343 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16344 err = ENOMEM; 16345 break; 16346 } 16347 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16348 } 16349 16350 /* 16351 * Set the interface token. If the zeroth interface address 16352 * is unspecified, then set it to the link local address. 16353 */ 16354 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16355 (void) ill_setdefaulttoken(ill); 16356 16357 ASSERT(ill->ill_ipif->ipif_id == 0); 16358 if (ipif != NULL && 16359 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16360 (void) ipif_setlinklocal(ipif); 16361 } 16362 break; 16363 } 16364 case DL_OK_ACK: 16365 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16366 dlpi_prim_str((int)dloa->dl_correct_primitive), 16367 dloa->dl_correct_primitive)); 16368 switch (dloa->dl_correct_primitive) { 16369 case DL_UNBIND_REQ: 16370 case DL_ATTACH_REQ: 16371 case DL_DETACH_REQ: 16372 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16373 break; 16374 } 16375 break; 16376 default: 16377 break; 16378 } 16379 16380 freemsg(mp); 16381 if (mp1 != NULL) { 16382 /* 16383 * The operation must complete without EINPROGRESS 16384 * since ipsq_pending_mp_get() has removed the mblk 16385 * from ipsq_pending_mp. Otherwise, the operation 16386 * will be stuck forever in the ipsq. 16387 */ 16388 ASSERT(err != EINPROGRESS); 16389 16390 switch (ipsq->ipsq_current_ioctl) { 16391 case 0: 16392 ipsq_current_finish(ipsq); 16393 break; 16394 16395 case SIOCLIFADDIF: 16396 case SIOCSLIFNAME: 16397 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16398 break; 16399 16400 default: 16401 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16402 break; 16403 } 16404 } 16405 } 16406 16407 /* 16408 * ip_rput_other is called by ip_rput to handle messages modifying the global 16409 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16410 */ 16411 /* ARGSUSED */ 16412 void 16413 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16414 { 16415 ill_t *ill; 16416 struct iocblk *iocp; 16417 mblk_t *mp1; 16418 conn_t *connp = NULL; 16419 16420 ip1dbg(("ip_rput_other ")); 16421 ill = (ill_t *)q->q_ptr; 16422 /* 16423 * This routine is not a writer in the case of SIOCGTUNPARAM 16424 * in which case ipsq is NULL. 16425 */ 16426 if (ipsq != NULL) { 16427 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16428 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16429 } 16430 16431 switch (mp->b_datap->db_type) { 16432 case M_ERROR: 16433 case M_HANGUP: 16434 /* 16435 * The device has a problem. We force the ILL down. It can 16436 * be brought up again manually using SIOCSIFFLAGS (via 16437 * ifconfig or equivalent). 16438 */ 16439 ASSERT(ipsq != NULL); 16440 if (mp->b_rptr < mp->b_wptr) 16441 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16442 if (ill->ill_error == 0) 16443 ill->ill_error = ENXIO; 16444 if (!ill_down_start(q, mp)) 16445 return; 16446 ipif_all_down_tail(ipsq, q, mp, NULL); 16447 break; 16448 case M_IOCACK: 16449 iocp = (struct iocblk *)mp->b_rptr; 16450 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16451 switch (iocp->ioc_cmd) { 16452 case SIOCSTUNPARAM: 16453 case OSIOCSTUNPARAM: 16454 ASSERT(ipsq != NULL); 16455 /* 16456 * Finish socket ioctl passed through to tun. 16457 * We should have an IOCTL waiting on this. 16458 */ 16459 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16460 if (ill->ill_isv6) { 16461 struct iftun_req *ta; 16462 16463 /* 16464 * if a source or destination is 16465 * being set, try and set the link 16466 * local address for the tunnel 16467 */ 16468 ta = (struct iftun_req *)mp->b_cont-> 16469 b_cont->b_rptr; 16470 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16471 ipif_set_tun_llink(ill, ta); 16472 } 16473 16474 } 16475 if (mp1 != NULL) { 16476 /* 16477 * Now copy back the b_next/b_prev used by 16478 * mi code for the mi_copy* functions. 16479 * See ip_sioctl_tunparam() for the reason. 16480 * Also protect against missing b_cont. 16481 */ 16482 if (mp->b_cont != NULL) { 16483 mp->b_cont->b_next = 16484 mp1->b_cont->b_next; 16485 mp->b_cont->b_prev = 16486 mp1->b_cont->b_prev; 16487 } 16488 inet_freemsg(mp1); 16489 ASSERT(connp != NULL); 16490 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16491 iocp->ioc_error, NO_COPYOUT, ipsq); 16492 } else { 16493 ASSERT(connp == NULL); 16494 putnext(q, mp); 16495 } 16496 break; 16497 case SIOCGTUNPARAM: 16498 case OSIOCGTUNPARAM: 16499 /* 16500 * This is really M_IOCDATA from the tunnel driver. 16501 * convert back and complete the ioctl. 16502 * We should have an IOCTL waiting on this. 16503 */ 16504 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16505 if (mp1) { 16506 /* 16507 * Now copy back the b_next/b_prev used by 16508 * mi code for the mi_copy* functions. 16509 * See ip_sioctl_tunparam() for the reason. 16510 * Also protect against missing b_cont. 16511 */ 16512 if (mp->b_cont != NULL) { 16513 mp->b_cont->b_next = 16514 mp1->b_cont->b_next; 16515 mp->b_cont->b_prev = 16516 mp1->b_cont->b_prev; 16517 } 16518 inet_freemsg(mp1); 16519 if (iocp->ioc_error == 0) 16520 mp->b_datap->db_type = M_IOCDATA; 16521 ASSERT(connp != NULL); 16522 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16523 iocp->ioc_error, COPYOUT, NULL); 16524 } else { 16525 ASSERT(connp == NULL); 16526 putnext(q, mp); 16527 } 16528 break; 16529 default: 16530 break; 16531 } 16532 break; 16533 case M_IOCNAK: 16534 iocp = (struct iocblk *)mp->b_rptr; 16535 16536 switch (iocp->ioc_cmd) { 16537 int mode; 16538 16539 case DL_IOC_HDR_INFO: 16540 /* 16541 * If this was the first attempt turn of the 16542 * fastpath probing. 16543 */ 16544 mutex_enter(&ill->ill_lock); 16545 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16546 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16547 mutex_exit(&ill->ill_lock); 16548 ill_fastpath_nack(ill); 16549 ip1dbg(("ip_rput: DLPI fastpath off on " 16550 "interface %s\n", 16551 ill->ill_name)); 16552 } else { 16553 mutex_exit(&ill->ill_lock); 16554 } 16555 freemsg(mp); 16556 break; 16557 case SIOCSTUNPARAM: 16558 case OSIOCSTUNPARAM: 16559 ASSERT(ipsq != NULL); 16560 /* 16561 * Finish socket ioctl passed through to tun 16562 * We should have an IOCTL waiting on this. 16563 */ 16564 /* FALLTHRU */ 16565 case SIOCGTUNPARAM: 16566 case OSIOCGTUNPARAM: 16567 /* 16568 * This is really M_IOCDATA from the tunnel driver. 16569 * convert back and complete the ioctl. 16570 * We should have an IOCTL waiting on this. 16571 */ 16572 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16573 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16574 mp1 = ill_pending_mp_get(ill, &connp, 16575 iocp->ioc_id); 16576 mode = COPYOUT; 16577 ipsq = NULL; 16578 } else { 16579 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16580 mode = NO_COPYOUT; 16581 } 16582 if (mp1 != NULL) { 16583 /* 16584 * Now copy back the b_next/b_prev used by 16585 * mi code for the mi_copy* functions. 16586 * See ip_sioctl_tunparam() for the reason. 16587 * Also protect against missing b_cont. 16588 */ 16589 if (mp->b_cont != NULL) { 16590 mp->b_cont->b_next = 16591 mp1->b_cont->b_next; 16592 mp->b_cont->b_prev = 16593 mp1->b_cont->b_prev; 16594 } 16595 inet_freemsg(mp1); 16596 if (iocp->ioc_error == 0) 16597 iocp->ioc_error = EINVAL; 16598 ASSERT(connp != NULL); 16599 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16600 iocp->ioc_error, mode, ipsq); 16601 } else { 16602 ASSERT(connp == NULL); 16603 putnext(q, mp); 16604 } 16605 break; 16606 default: 16607 break; 16608 } 16609 default: 16610 break; 16611 } 16612 } 16613 16614 /* 16615 * NOTE : This function does not ire_refrele the ire argument passed in. 16616 * 16617 * IPQoS notes 16618 * IP policy is invoked twice for a forwarded packet, once on the read side 16619 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16620 * enabled. An additional parameter, in_ill, has been added for this purpose. 16621 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16622 * because ip_mroute drops this information. 16623 * 16624 */ 16625 void 16626 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16627 { 16628 uint32_t pkt_len; 16629 queue_t *q; 16630 uint32_t sum; 16631 #define rptr ((uchar_t *)ipha) 16632 uint32_t max_frag; 16633 uint32_t ill_index; 16634 ill_t *out_ill; 16635 mib2_ipIfStatsEntry_t *mibptr; 16636 ip_stack_t *ipst = in_ill->ill_ipst; 16637 16638 /* Get the ill_index of the incoming ILL */ 16639 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16640 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16641 16642 /* Initiate Read side IPPF processing */ 16643 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16644 ip_process(IPP_FWD_IN, &mp, ill_index); 16645 if (mp == NULL) { 16646 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16647 "during IPPF processing\n")); 16648 return; 16649 } 16650 } 16651 16652 pkt_len = ntohs(ipha->ipha_length); 16653 16654 /* Adjust the checksum to reflect the ttl decrement. */ 16655 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16656 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16657 16658 if (ipha->ipha_ttl-- <= 1) { 16659 if (ip_csum_hdr(ipha)) { 16660 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16661 goto drop_pkt; 16662 } 16663 /* 16664 * Note: ire_stq this will be NULL for multicast 16665 * datagrams using the long path through arp (the IRE 16666 * is not an IRE_CACHE). This should not cause 16667 * problems since we don't generate ICMP errors for 16668 * multicast packets. 16669 */ 16670 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16671 q = ire->ire_stq; 16672 if (q != NULL) { 16673 /* Sent by forwarding path, and router is global zone */ 16674 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16675 GLOBAL_ZONEID, ipst); 16676 } else 16677 freemsg(mp); 16678 return; 16679 } 16680 16681 /* 16682 * Don't forward if the interface is down 16683 */ 16684 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16685 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16686 ip2dbg(("ip_rput_forward:interface is down\n")); 16687 goto drop_pkt; 16688 } 16689 16690 /* Get the ill_index of the outgoing ILL */ 16691 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16692 16693 out_ill = ire->ire_ipif->ipif_ill; 16694 16695 DTRACE_PROBE4(ip4__forwarding__start, 16696 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16697 16698 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16699 ipst->ips_ipv4firewall_forwarding, 16700 in_ill, out_ill, ipha, mp, mp, ipst); 16701 16702 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16703 16704 if (mp == NULL) 16705 return; 16706 pkt_len = ntohs(ipha->ipha_length); 16707 16708 if (is_system_labeled()) { 16709 mblk_t *mp1; 16710 16711 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16712 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16713 goto drop_pkt; 16714 } 16715 /* Size may have changed */ 16716 mp = mp1; 16717 ipha = (ipha_t *)mp->b_rptr; 16718 pkt_len = ntohs(ipha->ipha_length); 16719 } 16720 16721 /* Check if there are options to update */ 16722 if (!IS_SIMPLE_IPH(ipha)) { 16723 if (ip_csum_hdr(ipha)) { 16724 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16725 goto drop_pkt; 16726 } 16727 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16728 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16729 return; 16730 } 16731 16732 ipha->ipha_hdr_checksum = 0; 16733 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16734 } 16735 max_frag = ire->ire_max_frag; 16736 if (pkt_len > max_frag) { 16737 /* 16738 * It needs fragging on its way out. We haven't 16739 * verified the header checksum yet. Since we 16740 * are going to put a surely good checksum in the 16741 * outgoing header, we have to make sure that it 16742 * was good coming in. 16743 */ 16744 if (ip_csum_hdr(ipha)) { 16745 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16746 goto drop_pkt; 16747 } 16748 /* Initiate Write side IPPF processing */ 16749 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16750 ip_process(IPP_FWD_OUT, &mp, ill_index); 16751 if (mp == NULL) { 16752 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16753 " during IPPF processing\n")); 16754 return; 16755 } 16756 } 16757 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16758 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16759 return; 16760 } 16761 16762 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16763 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16764 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16765 ipst->ips_ipv4firewall_physical_out, 16766 NULL, out_ill, ipha, mp, mp, ipst); 16767 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16768 if (mp == NULL) 16769 return; 16770 16771 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16772 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16773 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16774 /* ip_xmit_v4 always consumes the packet */ 16775 return; 16776 16777 drop_pkt:; 16778 ip1dbg(("ip_rput_forward: drop pkt\n")); 16779 freemsg(mp); 16780 #undef rptr 16781 } 16782 16783 void 16784 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16785 { 16786 ire_t *ire; 16787 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16788 16789 ASSERT(!ipif->ipif_isv6); 16790 /* 16791 * Find an IRE which matches the destination and the outgoing 16792 * queue in the cache table. All we need is an IRE_CACHE which 16793 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16794 * then it is enough to have some IRE_CACHE in the group. 16795 */ 16796 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16797 dst = ipif->ipif_pp_dst_addr; 16798 16799 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16800 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16801 if (ire == NULL) { 16802 /* 16803 * Mark this packet to make it be delivered to 16804 * ip_rput_forward after the new ire has been 16805 * created. 16806 */ 16807 mp->b_prev = NULL; 16808 mp->b_next = mp; 16809 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16810 NULL, 0, GLOBAL_ZONEID, &zero_info); 16811 } else { 16812 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16813 IRE_REFRELE(ire); 16814 } 16815 } 16816 16817 /* Update any source route, record route or timestamp options */ 16818 static int 16819 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16820 { 16821 ipoptp_t opts; 16822 uchar_t *opt; 16823 uint8_t optval; 16824 uint8_t optlen; 16825 ipaddr_t dst; 16826 uint32_t ts; 16827 ire_t *dst_ire = NULL; 16828 ire_t *tmp_ire = NULL; 16829 timestruc_t now; 16830 16831 ip2dbg(("ip_rput_forward_options\n")); 16832 dst = ipha->ipha_dst; 16833 for (optval = ipoptp_first(&opts, ipha); 16834 optval != IPOPT_EOL; 16835 optval = ipoptp_next(&opts)) { 16836 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16837 opt = opts.ipoptp_cur; 16838 optlen = opts.ipoptp_len; 16839 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16840 optval, opts.ipoptp_len)); 16841 switch (optval) { 16842 uint32_t off; 16843 case IPOPT_SSRR: 16844 case IPOPT_LSRR: 16845 /* Check if adminstratively disabled */ 16846 if (!ipst->ips_ip_forward_src_routed) { 16847 if (ire->ire_stq != NULL) { 16848 /* 16849 * Sent by forwarding path, and router 16850 * is global zone 16851 */ 16852 icmp_unreachable(ire->ire_stq, mp, 16853 ICMP_SOURCE_ROUTE_FAILED, 16854 GLOBAL_ZONEID, ipst); 16855 } else { 16856 ip0dbg(("ip_rput_forward_options: " 16857 "unable to send unreach\n")); 16858 freemsg(mp); 16859 } 16860 return (-1); 16861 } 16862 16863 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16864 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16865 if (dst_ire == NULL) { 16866 /* 16867 * Must be partial since ip_rput_options 16868 * checked for strict. 16869 */ 16870 break; 16871 } 16872 off = opt[IPOPT_OFFSET]; 16873 off--; 16874 redo_srr: 16875 if (optlen < IP_ADDR_LEN || 16876 off > optlen - IP_ADDR_LEN) { 16877 /* End of source route */ 16878 ip1dbg(( 16879 "ip_rput_forward_options: end of SR\n")); 16880 ire_refrele(dst_ire); 16881 break; 16882 } 16883 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16884 bcopy(&ire->ire_src_addr, (char *)opt + off, 16885 IP_ADDR_LEN); 16886 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16887 ntohl(dst))); 16888 16889 /* 16890 * Check if our address is present more than 16891 * once as consecutive hops in source route. 16892 */ 16893 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16894 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16895 if (tmp_ire != NULL) { 16896 ire_refrele(tmp_ire); 16897 off += IP_ADDR_LEN; 16898 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16899 goto redo_srr; 16900 } 16901 ipha->ipha_dst = dst; 16902 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16903 ire_refrele(dst_ire); 16904 break; 16905 case IPOPT_RR: 16906 off = opt[IPOPT_OFFSET]; 16907 off--; 16908 if (optlen < IP_ADDR_LEN || 16909 off > optlen - IP_ADDR_LEN) { 16910 /* No more room - ignore */ 16911 ip1dbg(( 16912 "ip_rput_forward_options: end of RR\n")); 16913 break; 16914 } 16915 bcopy(&ire->ire_src_addr, (char *)opt + off, 16916 IP_ADDR_LEN); 16917 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16918 break; 16919 case IPOPT_TS: 16920 /* Insert timestamp if there is room */ 16921 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16922 case IPOPT_TS_TSONLY: 16923 off = IPOPT_TS_TIMELEN; 16924 break; 16925 case IPOPT_TS_PRESPEC: 16926 case IPOPT_TS_PRESPEC_RFC791: 16927 /* Verify that the address matched */ 16928 off = opt[IPOPT_OFFSET] - 1; 16929 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16930 dst_ire = ire_ctable_lookup(dst, 0, 16931 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16932 MATCH_IRE_TYPE, ipst); 16933 if (dst_ire == NULL) { 16934 /* Not for us */ 16935 break; 16936 } 16937 ire_refrele(dst_ire); 16938 /* FALLTHRU */ 16939 case IPOPT_TS_TSANDADDR: 16940 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16941 break; 16942 default: 16943 /* 16944 * ip_*put_options should have already 16945 * dropped this packet. 16946 */ 16947 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16948 "unknown IT - bug in ip_rput_options?\n"); 16949 return (0); /* Keep "lint" happy */ 16950 } 16951 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16952 /* Increase overflow counter */ 16953 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16954 opt[IPOPT_POS_OV_FLG] = 16955 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16956 (off << 4)); 16957 break; 16958 } 16959 off = opt[IPOPT_OFFSET] - 1; 16960 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16961 case IPOPT_TS_PRESPEC: 16962 case IPOPT_TS_PRESPEC_RFC791: 16963 case IPOPT_TS_TSANDADDR: 16964 bcopy(&ire->ire_src_addr, 16965 (char *)opt + off, IP_ADDR_LEN); 16966 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16967 /* FALLTHRU */ 16968 case IPOPT_TS_TSONLY: 16969 off = opt[IPOPT_OFFSET] - 1; 16970 /* Compute # of milliseconds since midnight */ 16971 gethrestime(&now); 16972 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16973 now.tv_nsec / (NANOSEC / MILLISEC); 16974 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16975 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16976 break; 16977 } 16978 break; 16979 } 16980 } 16981 return (0); 16982 } 16983 16984 /* 16985 * This is called after processing at least one of AH/ESP headers. 16986 * 16987 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16988 * the actual, physical interface on which the packet was received, 16989 * but, when ip_strict_dst_multihoming is set to 1, could be the 16990 * interface which had the ipha_dst configured when the packet went 16991 * through ip_rput. The ill_index corresponding to the recv_ill 16992 * is saved in ipsec_in_rill_index 16993 */ 16994 void 16995 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16996 { 16997 mblk_t *mp; 16998 ipaddr_t dst; 16999 in6_addr_t *v6dstp; 17000 ipha_t *ipha; 17001 ip6_t *ip6h; 17002 ipsec_in_t *ii; 17003 boolean_t ill_need_rele = B_FALSE; 17004 boolean_t rill_need_rele = B_FALSE; 17005 boolean_t ire_need_rele = B_FALSE; 17006 netstack_t *ns; 17007 ip_stack_t *ipst; 17008 17009 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17010 ASSERT(ii->ipsec_in_ill_index != 0); 17011 ns = ii->ipsec_in_ns; 17012 ASSERT(ii->ipsec_in_ns != NULL); 17013 ipst = ns->netstack_ip; 17014 17015 mp = ipsec_mp->b_cont; 17016 ASSERT(mp != NULL); 17017 17018 17019 if (ill == NULL) { 17020 ASSERT(recv_ill == NULL); 17021 /* 17022 * We need to get the original queue on which ip_rput_local 17023 * or ip_rput_data_v6 was called. 17024 */ 17025 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17026 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17027 ill_need_rele = B_TRUE; 17028 17029 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17030 recv_ill = ill_lookup_on_ifindex( 17031 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17032 NULL, NULL, NULL, NULL, ipst); 17033 rill_need_rele = B_TRUE; 17034 } else { 17035 recv_ill = ill; 17036 } 17037 17038 if ((ill == NULL) || (recv_ill == NULL)) { 17039 ip0dbg(("ip_fanout_proto_again: interface " 17040 "disappeared\n")); 17041 if (ill != NULL) 17042 ill_refrele(ill); 17043 if (recv_ill != NULL) 17044 ill_refrele(recv_ill); 17045 freemsg(ipsec_mp); 17046 return; 17047 } 17048 } 17049 17050 ASSERT(ill != NULL && recv_ill != NULL); 17051 17052 if (mp->b_datap->db_type == M_CTL) { 17053 /* 17054 * AH/ESP is returning the ICMP message after 17055 * removing their headers. Fanout again till 17056 * it gets to the right protocol. 17057 */ 17058 if (ii->ipsec_in_v4) { 17059 icmph_t *icmph; 17060 int iph_hdr_length; 17061 int hdr_length; 17062 17063 ipha = (ipha_t *)mp->b_rptr; 17064 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17065 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17066 ipha = (ipha_t *)&icmph[1]; 17067 hdr_length = IPH_HDR_LENGTH(ipha); 17068 /* 17069 * icmp_inbound_error_fanout may need to do pullupmsg. 17070 * Reset the type to M_DATA. 17071 */ 17072 mp->b_datap->db_type = M_DATA; 17073 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17074 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17075 B_FALSE, ill, ii->ipsec_in_zoneid); 17076 } else { 17077 icmp6_t *icmp6; 17078 int hdr_length; 17079 17080 ip6h = (ip6_t *)mp->b_rptr; 17081 /* Don't call hdr_length_v6() unless you have to. */ 17082 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17083 hdr_length = ip_hdr_length_v6(mp, ip6h); 17084 else 17085 hdr_length = IPV6_HDR_LEN; 17086 17087 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17088 /* 17089 * icmp_inbound_error_fanout_v6 may need to do 17090 * pullupmsg. Reset the type to M_DATA. 17091 */ 17092 mp->b_datap->db_type = M_DATA; 17093 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17094 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17095 } 17096 if (ill_need_rele) 17097 ill_refrele(ill); 17098 if (rill_need_rele) 17099 ill_refrele(recv_ill); 17100 return; 17101 } 17102 17103 if (ii->ipsec_in_v4) { 17104 ipha = (ipha_t *)mp->b_rptr; 17105 dst = ipha->ipha_dst; 17106 if (CLASSD(dst)) { 17107 /* 17108 * Multicast has to be delivered to all streams. 17109 */ 17110 dst = INADDR_BROADCAST; 17111 } 17112 17113 if (ire == NULL) { 17114 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17115 MBLK_GETLABEL(mp), ipst); 17116 if (ire == NULL) { 17117 if (ill_need_rele) 17118 ill_refrele(ill); 17119 if (rill_need_rele) 17120 ill_refrele(recv_ill); 17121 ip1dbg(("ip_fanout_proto_again: " 17122 "IRE not found")); 17123 freemsg(ipsec_mp); 17124 return; 17125 } 17126 ire_need_rele = B_TRUE; 17127 } 17128 17129 switch (ipha->ipha_protocol) { 17130 case IPPROTO_UDP: 17131 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17132 recv_ill); 17133 if (ire_need_rele) 17134 ire_refrele(ire); 17135 break; 17136 case IPPROTO_TCP: 17137 if (!ire_need_rele) 17138 IRE_REFHOLD(ire); 17139 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17140 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17141 IRE_REFRELE(ire); 17142 if (mp != NULL) 17143 squeue_enter_chain(GET_SQUEUE(mp), mp, 17144 mp, 1, SQTAG_IP_PROTO_AGAIN); 17145 break; 17146 case IPPROTO_SCTP: 17147 if (!ire_need_rele) 17148 IRE_REFHOLD(ire); 17149 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17150 ipsec_mp, 0, ill->ill_rq, dst); 17151 break; 17152 default: 17153 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17154 recv_ill); 17155 if (ire_need_rele) 17156 ire_refrele(ire); 17157 break; 17158 } 17159 } else { 17160 uint32_t rput_flags = 0; 17161 17162 ip6h = (ip6_t *)mp->b_rptr; 17163 v6dstp = &ip6h->ip6_dst; 17164 /* 17165 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17166 * address. 17167 * 17168 * Currently, we don't store that state in the IPSEC_IN 17169 * message, and we may need to. 17170 */ 17171 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17172 IP6_IN_LLMCAST : 0); 17173 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17174 NULL, NULL); 17175 } 17176 if (ill_need_rele) 17177 ill_refrele(ill); 17178 if (rill_need_rele) 17179 ill_refrele(recv_ill); 17180 } 17181 17182 /* 17183 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17184 * returns 'true' if there are still fragments left on the queue, in 17185 * which case we restart the timer. 17186 */ 17187 void 17188 ill_frag_timer(void *arg) 17189 { 17190 ill_t *ill = (ill_t *)arg; 17191 boolean_t frag_pending; 17192 ip_stack_t *ipst = ill->ill_ipst; 17193 17194 mutex_enter(&ill->ill_lock); 17195 ASSERT(!ill->ill_fragtimer_executing); 17196 if (ill->ill_state_flags & ILL_CONDEMNED) { 17197 ill->ill_frag_timer_id = 0; 17198 mutex_exit(&ill->ill_lock); 17199 return; 17200 } 17201 ill->ill_fragtimer_executing = 1; 17202 mutex_exit(&ill->ill_lock); 17203 17204 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17205 17206 /* 17207 * Restart the timer, if we have fragments pending or if someone 17208 * wanted us to be scheduled again. 17209 */ 17210 mutex_enter(&ill->ill_lock); 17211 ill->ill_fragtimer_executing = 0; 17212 ill->ill_frag_timer_id = 0; 17213 if (frag_pending || ill->ill_fragtimer_needrestart) 17214 ill_frag_timer_start(ill); 17215 mutex_exit(&ill->ill_lock); 17216 } 17217 17218 void 17219 ill_frag_timer_start(ill_t *ill) 17220 { 17221 ip_stack_t *ipst = ill->ill_ipst; 17222 17223 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17224 17225 /* If the ill is closing or opening don't proceed */ 17226 if (ill->ill_state_flags & ILL_CONDEMNED) 17227 return; 17228 17229 if (ill->ill_fragtimer_executing) { 17230 /* 17231 * ill_frag_timer is currently executing. Just record the 17232 * the fact that we want the timer to be restarted. 17233 * ill_frag_timer will post a timeout before it returns, 17234 * ensuring it will be called again. 17235 */ 17236 ill->ill_fragtimer_needrestart = 1; 17237 return; 17238 } 17239 17240 if (ill->ill_frag_timer_id == 0) { 17241 /* 17242 * The timer is neither running nor is the timeout handler 17243 * executing. Post a timeout so that ill_frag_timer will be 17244 * called 17245 */ 17246 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17247 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17248 ill->ill_fragtimer_needrestart = 0; 17249 } 17250 } 17251 17252 /* 17253 * This routine is needed for loopback when forwarding multicasts. 17254 * 17255 * IPQoS Notes: 17256 * IPPF processing is done in fanout routines. 17257 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17258 * processing for IPSec packets is done when it comes back in clear. 17259 * NOTE : The callers of this function need to do the ire_refrele for the 17260 * ire that is being passed in. 17261 */ 17262 void 17263 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17264 ill_t *recv_ill) 17265 { 17266 ill_t *ill = (ill_t *)q->q_ptr; 17267 uint32_t sum; 17268 uint32_t u1; 17269 uint32_t u2; 17270 int hdr_length; 17271 boolean_t mctl_present; 17272 mblk_t *first_mp = mp; 17273 mblk_t *hada_mp = NULL; 17274 ipha_t *inner_ipha; 17275 ip_stack_t *ipst; 17276 17277 ASSERT(recv_ill != NULL); 17278 ipst = recv_ill->ill_ipst; 17279 17280 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17281 "ip_rput_locl_start: q %p", q); 17282 17283 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17284 ASSERT(ill != NULL); 17285 17286 17287 #define rptr ((uchar_t *)ipha) 17288 #define iphs ((uint16_t *)ipha) 17289 17290 /* 17291 * no UDP or TCP packet should come here anymore. 17292 */ 17293 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17294 (ipha->ipha_protocol != IPPROTO_UDP)); 17295 17296 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17297 if (mctl_present && 17298 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17299 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17300 17301 /* 17302 * It's an IPsec accelerated packet. 17303 * Keep a pointer to the data attributes around until 17304 * we allocate the ipsec_info_t. 17305 */ 17306 IPSECHW_DEBUG(IPSECHW_PKT, 17307 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17308 hada_mp = first_mp; 17309 hada_mp->b_cont = NULL; 17310 /* 17311 * Since it is accelerated, it comes directly from 17312 * the ill and the data attributes is followed by 17313 * the packet data. 17314 */ 17315 ASSERT(mp->b_datap->db_type != M_CTL); 17316 first_mp = mp; 17317 mctl_present = B_FALSE; 17318 } 17319 17320 /* 17321 * IF M_CTL is not present, then ipsec_in_is_secure 17322 * should return B_TRUE. There is a case where loopback 17323 * packets has an M_CTL in the front with all the 17324 * IPSEC options set to IPSEC_PREF_NEVER - which means 17325 * ipsec_in_is_secure will return B_FALSE. As loopback 17326 * packets never comes here, it is safe to ASSERT the 17327 * following. 17328 */ 17329 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17330 17331 17332 /* u1 is # words of IP options */ 17333 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17334 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17335 17336 if (u1) { 17337 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17338 if (hada_mp != NULL) 17339 freemsg(hada_mp); 17340 return; 17341 } 17342 } else { 17343 /* Check the IP header checksum. */ 17344 #define uph ((uint16_t *)ipha) 17345 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17346 uph[6] + uph[7] + uph[8] + uph[9]; 17347 #undef uph 17348 /* finish doing IP checksum */ 17349 sum = (sum & 0xFFFF) + (sum >> 16); 17350 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17351 /* 17352 * Don't verify header checksum if this packet is coming 17353 * back from AH/ESP as we already did it. 17354 */ 17355 if (!mctl_present && (sum && sum != 0xFFFF)) { 17356 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17357 goto drop_pkt; 17358 } 17359 } 17360 17361 /* 17362 * Count for SNMP of inbound packets for ire. As ip_proto_input 17363 * might be called more than once for secure packets, count only 17364 * the first time. 17365 */ 17366 if (!mctl_present) { 17367 UPDATE_IB_PKT_COUNT(ire); 17368 ire->ire_last_used_time = lbolt; 17369 } 17370 17371 /* Check for fragmentation offset. */ 17372 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17373 u1 = u2 & (IPH_MF | IPH_OFFSET); 17374 if (u1) { 17375 /* 17376 * We re-assemble fragments before we do the AH/ESP 17377 * processing. Thus, M_CTL should not be present 17378 * while we are re-assembling. 17379 */ 17380 ASSERT(!mctl_present); 17381 ASSERT(first_mp == mp); 17382 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17383 return; 17384 } 17385 /* 17386 * Make sure that first_mp points back to mp as 17387 * the mp we came in with could have changed in 17388 * ip_rput_fragment(). 17389 */ 17390 ipha = (ipha_t *)mp->b_rptr; 17391 first_mp = mp; 17392 } 17393 17394 /* 17395 * Clear hardware checksumming flag as it is currently only 17396 * used by TCP and UDP. 17397 */ 17398 DB_CKSUMFLAGS(mp) = 0; 17399 17400 /* Now we have a complete datagram, destined for this machine. */ 17401 u1 = IPH_HDR_LENGTH(ipha); 17402 switch (ipha->ipha_protocol) { 17403 case IPPROTO_ICMP: { 17404 ire_t *ire_zone; 17405 ilm_t *ilm; 17406 mblk_t *mp1; 17407 zoneid_t last_zoneid; 17408 17409 if (CLASSD(ipha->ipha_dst) && 17410 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17411 ASSERT(ire->ire_type == IRE_BROADCAST); 17412 /* 17413 * In the multicast case, applications may have joined 17414 * the group from different zones, so we need to deliver 17415 * the packet to each of them. Loop through the 17416 * multicast memberships structures (ilm) on the receive 17417 * ill and send a copy of the packet up each matching 17418 * one. However, we don't do this for multicasts sent on 17419 * the loopback interface (PHYI_LOOPBACK flag set) as 17420 * they must stay in the sender's zone. 17421 * 17422 * ilm_add_v6() ensures that ilms in the same zone are 17423 * contiguous in the ill_ilm list. We use this property 17424 * to avoid sending duplicates needed when two 17425 * applications in the same zone join the same group on 17426 * different logical interfaces: we ignore the ilm if 17427 * its zoneid is the same as the last matching one. 17428 * In addition, the sending of the packet for 17429 * ire_zoneid is delayed until all of the other ilms 17430 * have been exhausted. 17431 */ 17432 last_zoneid = -1; 17433 ILM_WALKER_HOLD(recv_ill); 17434 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17435 ilm = ilm->ilm_next) { 17436 if ((ilm->ilm_flags & ILM_DELETED) || 17437 ipha->ipha_dst != ilm->ilm_addr || 17438 ilm->ilm_zoneid == last_zoneid || 17439 ilm->ilm_zoneid == ire->ire_zoneid || 17440 ilm->ilm_zoneid == ALL_ZONES || 17441 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17442 continue; 17443 mp1 = ip_copymsg(first_mp); 17444 if (mp1 == NULL) 17445 continue; 17446 icmp_inbound(q, mp1, B_TRUE, ill, 17447 0, sum, mctl_present, B_TRUE, 17448 recv_ill, ilm->ilm_zoneid); 17449 last_zoneid = ilm->ilm_zoneid; 17450 } 17451 ILM_WALKER_RELE(recv_ill); 17452 } else if (ire->ire_type == IRE_BROADCAST) { 17453 /* 17454 * In the broadcast case, there may be many zones 17455 * which need a copy of the packet delivered to them. 17456 * There is one IRE_BROADCAST per broadcast address 17457 * and per zone; we walk those using a helper function. 17458 * In addition, the sending of the packet for ire is 17459 * delayed until all of the other ires have been 17460 * processed. 17461 */ 17462 IRB_REFHOLD(ire->ire_bucket); 17463 ire_zone = NULL; 17464 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17465 ire)) != NULL) { 17466 mp1 = ip_copymsg(first_mp); 17467 if (mp1 == NULL) 17468 continue; 17469 17470 UPDATE_IB_PKT_COUNT(ire_zone); 17471 ire_zone->ire_last_used_time = lbolt; 17472 icmp_inbound(q, mp1, B_TRUE, ill, 17473 0, sum, mctl_present, B_TRUE, 17474 recv_ill, ire_zone->ire_zoneid); 17475 } 17476 IRB_REFRELE(ire->ire_bucket); 17477 } 17478 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17479 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17480 ire->ire_zoneid); 17481 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17482 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17483 return; 17484 } 17485 case IPPROTO_IGMP: 17486 /* 17487 * If we are not willing to accept IGMP packets in clear, 17488 * then check with global policy. 17489 */ 17490 if (ipst->ips_igmp_accept_clear_messages == 0) { 17491 first_mp = ipsec_check_global_policy(first_mp, NULL, 17492 ipha, NULL, mctl_present, ipst->ips_netstack); 17493 if (first_mp == NULL) 17494 return; 17495 } 17496 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17497 freemsg(first_mp); 17498 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17499 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17500 return; 17501 } 17502 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17503 /* Bad packet - discarded by igmp_input */ 17504 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17505 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17506 if (mctl_present) 17507 freeb(first_mp); 17508 return; 17509 } 17510 /* 17511 * igmp_input() may have returned the pulled up message. 17512 * So first_mp and ipha need to be reinitialized. 17513 */ 17514 ipha = (ipha_t *)mp->b_rptr; 17515 if (mctl_present) 17516 first_mp->b_cont = mp; 17517 else 17518 first_mp = mp; 17519 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17520 connf_head != NULL) { 17521 /* No user-level listener for IGMP packets */ 17522 goto drop_pkt; 17523 } 17524 /* deliver to local raw users */ 17525 break; 17526 case IPPROTO_PIM: 17527 /* 17528 * If we are not willing to accept PIM packets in clear, 17529 * then check with global policy. 17530 */ 17531 if (ipst->ips_pim_accept_clear_messages == 0) { 17532 first_mp = ipsec_check_global_policy(first_mp, NULL, 17533 ipha, NULL, mctl_present, ipst->ips_netstack); 17534 if (first_mp == NULL) 17535 return; 17536 } 17537 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17538 freemsg(first_mp); 17539 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17541 return; 17542 } 17543 if (pim_input(q, mp, ill) != 0) { 17544 /* Bad packet - discarded by pim_input */ 17545 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17546 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17547 if (mctl_present) 17548 freeb(first_mp); 17549 return; 17550 } 17551 17552 /* 17553 * pim_input() may have pulled up the message so ipha needs to 17554 * be reinitialized. 17555 */ 17556 ipha = (ipha_t *)mp->b_rptr; 17557 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17558 connf_head != NULL) { 17559 /* No user-level listener for PIM packets */ 17560 goto drop_pkt; 17561 } 17562 /* deliver to local raw users */ 17563 break; 17564 case IPPROTO_ENCAP: 17565 /* 17566 * Handle self-encapsulated packets (IP-in-IP where 17567 * the inner addresses == the outer addresses). 17568 */ 17569 hdr_length = IPH_HDR_LENGTH(ipha); 17570 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17571 mp->b_wptr) { 17572 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17573 sizeof (ipha_t) - mp->b_rptr)) { 17574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17575 freemsg(first_mp); 17576 return; 17577 } 17578 ipha = (ipha_t *)mp->b_rptr; 17579 } 17580 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17581 /* 17582 * Check the sanity of the inner IP header. 17583 */ 17584 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17586 freemsg(first_mp); 17587 return; 17588 } 17589 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17591 freemsg(first_mp); 17592 return; 17593 } 17594 if (inner_ipha->ipha_src == ipha->ipha_src && 17595 inner_ipha->ipha_dst == ipha->ipha_dst) { 17596 ipsec_in_t *ii; 17597 17598 /* 17599 * Self-encapsulated tunnel packet. Remove 17600 * the outer IP header and fanout again. 17601 * We also need to make sure that the inner 17602 * header is pulled up until options. 17603 */ 17604 mp->b_rptr = (uchar_t *)inner_ipha; 17605 ipha = inner_ipha; 17606 hdr_length = IPH_HDR_LENGTH(ipha); 17607 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17608 if (!pullupmsg(mp, (uchar_t *)ipha + 17609 + hdr_length - mp->b_rptr)) { 17610 freemsg(first_mp); 17611 return; 17612 } 17613 ipha = (ipha_t *)mp->b_rptr; 17614 } 17615 if (!mctl_present) { 17616 ASSERT(first_mp == mp); 17617 /* 17618 * This means that somebody is sending 17619 * Self-encapsualted packets without AH/ESP. 17620 * If AH/ESP was present, we would have already 17621 * allocated the first_mp. 17622 */ 17623 first_mp = ipsec_in_alloc(B_TRUE, 17624 ipst->ips_netstack); 17625 if (first_mp == NULL) { 17626 ip1dbg(("ip_proto_input: IPSEC_IN " 17627 "allocation failure.\n")); 17628 BUMP_MIB(ill->ill_ip_mib, 17629 ipIfStatsInDiscards); 17630 freemsg(mp); 17631 return; 17632 } 17633 first_mp->b_cont = mp; 17634 } 17635 /* 17636 * We generally store the ill_index if we need to 17637 * do IPSEC processing as we lose the ill queue when 17638 * we come back. But in this case, we never should 17639 * have to store the ill_index here as it should have 17640 * been stored previously when we processed the 17641 * AH/ESP header in this routine or for non-ipsec 17642 * cases, we still have the queue. But for some bad 17643 * packets from the wire, we can get to IPSEC after 17644 * this and we better store the index for that case. 17645 */ 17646 ill = (ill_t *)q->q_ptr; 17647 ii = (ipsec_in_t *)first_mp->b_rptr; 17648 ii->ipsec_in_ill_index = 17649 ill->ill_phyint->phyint_ifindex; 17650 ii->ipsec_in_rill_index = 17651 recv_ill->ill_phyint->phyint_ifindex; 17652 if (ii->ipsec_in_decaps) { 17653 /* 17654 * This packet is self-encapsulated multiple 17655 * times. We don't want to recurse infinitely. 17656 * To keep it simple, drop the packet. 17657 */ 17658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17659 freemsg(first_mp); 17660 return; 17661 } 17662 ii->ipsec_in_decaps = B_TRUE; 17663 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17664 ire); 17665 return; 17666 } 17667 break; 17668 case IPPROTO_AH: 17669 case IPPROTO_ESP: { 17670 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17671 17672 /* 17673 * Fast path for AH/ESP. If this is the first time 17674 * we are sending a datagram to AH/ESP, allocate 17675 * a IPSEC_IN message and prepend it. Otherwise, 17676 * just fanout. 17677 */ 17678 17679 int ipsec_rc; 17680 ipsec_in_t *ii; 17681 netstack_t *ns = ipst->ips_netstack; 17682 17683 IP_STAT(ipst, ipsec_proto_ahesp); 17684 if (!mctl_present) { 17685 ASSERT(first_mp == mp); 17686 first_mp = ipsec_in_alloc(B_TRUE, ns); 17687 if (first_mp == NULL) { 17688 ip1dbg(("ip_proto_input: IPSEC_IN " 17689 "allocation failure.\n")); 17690 freemsg(hada_mp); /* okay ifnull */ 17691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17692 freemsg(mp); 17693 return; 17694 } 17695 /* 17696 * Store the ill_index so that when we come back 17697 * from IPSEC we ride on the same queue. 17698 */ 17699 ill = (ill_t *)q->q_ptr; 17700 ii = (ipsec_in_t *)first_mp->b_rptr; 17701 ii->ipsec_in_ill_index = 17702 ill->ill_phyint->phyint_ifindex; 17703 ii->ipsec_in_rill_index = 17704 recv_ill->ill_phyint->phyint_ifindex; 17705 first_mp->b_cont = mp; 17706 /* 17707 * Cache hardware acceleration info. 17708 */ 17709 if (hada_mp != NULL) { 17710 IPSECHW_DEBUG(IPSECHW_PKT, 17711 ("ip_rput_local: caching data attr.\n")); 17712 ii->ipsec_in_accelerated = B_TRUE; 17713 ii->ipsec_in_da = hada_mp; 17714 hada_mp = NULL; 17715 } 17716 } else { 17717 ii = (ipsec_in_t *)first_mp->b_rptr; 17718 } 17719 17720 if (!ipsec_loaded(ipss)) { 17721 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17722 ire->ire_zoneid, ipst); 17723 return; 17724 } 17725 17726 ns = ipst->ips_netstack; 17727 /* select inbound SA and have IPsec process the pkt */ 17728 if (ipha->ipha_protocol == IPPROTO_ESP) { 17729 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17730 if (esph == NULL) 17731 return; 17732 ASSERT(ii->ipsec_in_esp_sa != NULL); 17733 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17734 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17735 first_mp, esph); 17736 } else { 17737 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17738 if (ah == NULL) 17739 return; 17740 ASSERT(ii->ipsec_in_ah_sa != NULL); 17741 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17742 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17743 first_mp, ah); 17744 } 17745 17746 switch (ipsec_rc) { 17747 case IPSEC_STATUS_SUCCESS: 17748 break; 17749 case IPSEC_STATUS_FAILED: 17750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17751 /* FALLTHRU */ 17752 case IPSEC_STATUS_PENDING: 17753 return; 17754 } 17755 /* we're done with IPsec processing, send it up */ 17756 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17757 return; 17758 } 17759 default: 17760 break; 17761 } 17762 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17763 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17764 ire->ire_zoneid)); 17765 goto drop_pkt; 17766 } 17767 /* 17768 * Handle protocols with which IP is less intimate. There 17769 * can be more than one stream bound to a particular 17770 * protocol. When this is the case, each one gets a copy 17771 * of any incoming packets. 17772 */ 17773 ip_fanout_proto(q, first_mp, ill, ipha, 17774 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17775 B_TRUE, recv_ill, ire->ire_zoneid); 17776 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17777 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17778 return; 17779 17780 drop_pkt: 17781 freemsg(first_mp); 17782 if (hada_mp != NULL) 17783 freeb(hada_mp); 17784 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17785 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17786 #undef rptr 17787 #undef iphs 17788 17789 } 17790 17791 /* 17792 * Update any source route, record route or timestamp options. 17793 * Check that we are at end of strict source route. 17794 * The options have already been checked for sanity in ip_rput_options(). 17795 */ 17796 static boolean_t 17797 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17798 ip_stack_t *ipst) 17799 { 17800 ipoptp_t opts; 17801 uchar_t *opt; 17802 uint8_t optval; 17803 uint8_t optlen; 17804 ipaddr_t dst; 17805 uint32_t ts; 17806 ire_t *dst_ire; 17807 timestruc_t now; 17808 zoneid_t zoneid; 17809 ill_t *ill; 17810 17811 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17812 17813 ip2dbg(("ip_rput_local_options\n")); 17814 17815 for (optval = ipoptp_first(&opts, ipha); 17816 optval != IPOPT_EOL; 17817 optval = ipoptp_next(&opts)) { 17818 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17819 opt = opts.ipoptp_cur; 17820 optlen = opts.ipoptp_len; 17821 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17822 optval, optlen)); 17823 switch (optval) { 17824 uint32_t off; 17825 case IPOPT_SSRR: 17826 case IPOPT_LSRR: 17827 off = opt[IPOPT_OFFSET]; 17828 off--; 17829 if (optlen < IP_ADDR_LEN || 17830 off > optlen - IP_ADDR_LEN) { 17831 /* End of source route */ 17832 ip1dbg(("ip_rput_local_options: end of SR\n")); 17833 break; 17834 } 17835 /* 17836 * This will only happen if two consecutive entries 17837 * in the source route contains our address or if 17838 * it is a packet with a loose source route which 17839 * reaches us before consuming the whole source route 17840 */ 17841 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17842 if (optval == IPOPT_SSRR) { 17843 goto bad_src_route; 17844 } 17845 /* 17846 * Hack: instead of dropping the packet truncate the 17847 * source route to what has been used by filling the 17848 * rest with IPOPT_NOP. 17849 */ 17850 opt[IPOPT_OLEN] = (uint8_t)off; 17851 while (off < optlen) { 17852 opt[off++] = IPOPT_NOP; 17853 } 17854 break; 17855 case IPOPT_RR: 17856 off = opt[IPOPT_OFFSET]; 17857 off--; 17858 if (optlen < IP_ADDR_LEN || 17859 off > optlen - IP_ADDR_LEN) { 17860 /* No more room - ignore */ 17861 ip1dbg(( 17862 "ip_rput_local_options: end of RR\n")); 17863 break; 17864 } 17865 bcopy(&ire->ire_src_addr, (char *)opt + off, 17866 IP_ADDR_LEN); 17867 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17868 break; 17869 case IPOPT_TS: 17870 /* Insert timestamp if there is romm */ 17871 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17872 case IPOPT_TS_TSONLY: 17873 off = IPOPT_TS_TIMELEN; 17874 break; 17875 case IPOPT_TS_PRESPEC: 17876 case IPOPT_TS_PRESPEC_RFC791: 17877 /* Verify that the address matched */ 17878 off = opt[IPOPT_OFFSET] - 1; 17879 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17880 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17881 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17882 ipst); 17883 if (dst_ire == NULL) { 17884 /* Not for us */ 17885 break; 17886 } 17887 ire_refrele(dst_ire); 17888 /* FALLTHRU */ 17889 case IPOPT_TS_TSANDADDR: 17890 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17891 break; 17892 default: 17893 /* 17894 * ip_*put_options should have already 17895 * dropped this packet. 17896 */ 17897 cmn_err(CE_PANIC, "ip_rput_local_options: " 17898 "unknown IT - bug in ip_rput_options?\n"); 17899 return (B_TRUE); /* Keep "lint" happy */ 17900 } 17901 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17902 /* Increase overflow counter */ 17903 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17904 opt[IPOPT_POS_OV_FLG] = 17905 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17906 (off << 4)); 17907 break; 17908 } 17909 off = opt[IPOPT_OFFSET] - 1; 17910 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17911 case IPOPT_TS_PRESPEC: 17912 case IPOPT_TS_PRESPEC_RFC791: 17913 case IPOPT_TS_TSANDADDR: 17914 bcopy(&ire->ire_src_addr, (char *)opt + off, 17915 IP_ADDR_LEN); 17916 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17917 /* FALLTHRU */ 17918 case IPOPT_TS_TSONLY: 17919 off = opt[IPOPT_OFFSET] - 1; 17920 /* Compute # of milliseconds since midnight */ 17921 gethrestime(&now); 17922 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17923 now.tv_nsec / (NANOSEC / MILLISEC); 17924 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17925 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17926 break; 17927 } 17928 break; 17929 } 17930 } 17931 return (B_TRUE); 17932 17933 bad_src_route: 17934 q = WR(q); 17935 if (q->q_next != NULL) 17936 ill = q->q_ptr; 17937 else 17938 ill = NULL; 17939 17940 /* make sure we clear any indication of a hardware checksum */ 17941 DB_CKSUMFLAGS(mp) = 0; 17942 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17943 if (zoneid == ALL_ZONES) 17944 freemsg(mp); 17945 else 17946 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17947 return (B_FALSE); 17948 17949 } 17950 17951 /* 17952 * Process IP options in an inbound packet. If an option affects the 17953 * effective destination address, return the next hop address via dstp. 17954 * Returns -1 if something fails in which case an ICMP error has been sent 17955 * and mp freed. 17956 */ 17957 static int 17958 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17959 ip_stack_t *ipst) 17960 { 17961 ipoptp_t opts; 17962 uchar_t *opt; 17963 uint8_t optval; 17964 uint8_t optlen; 17965 ipaddr_t dst; 17966 intptr_t code = 0; 17967 ire_t *ire = NULL; 17968 zoneid_t zoneid; 17969 ill_t *ill; 17970 17971 ip2dbg(("ip_rput_options\n")); 17972 dst = ipha->ipha_dst; 17973 for (optval = ipoptp_first(&opts, ipha); 17974 optval != IPOPT_EOL; 17975 optval = ipoptp_next(&opts)) { 17976 opt = opts.ipoptp_cur; 17977 optlen = opts.ipoptp_len; 17978 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17979 optval, optlen)); 17980 /* 17981 * Note: we need to verify the checksum before we 17982 * modify anything thus this routine only extracts the next 17983 * hop dst from any source route. 17984 */ 17985 switch (optval) { 17986 uint32_t off; 17987 case IPOPT_SSRR: 17988 case IPOPT_LSRR: 17989 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17990 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17991 if (ire == NULL) { 17992 if (optval == IPOPT_SSRR) { 17993 ip1dbg(("ip_rput_options: not next" 17994 " strict source route 0x%x\n", 17995 ntohl(dst))); 17996 code = (char *)&ipha->ipha_dst - 17997 (char *)ipha; 17998 goto param_prob; /* RouterReq's */ 17999 } 18000 ip2dbg(("ip_rput_options: " 18001 "not next source route 0x%x\n", 18002 ntohl(dst))); 18003 break; 18004 } 18005 ire_refrele(ire); 18006 18007 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18008 ip1dbg(( 18009 "ip_rput_options: bad option offset\n")); 18010 code = (char *)&opt[IPOPT_OLEN] - 18011 (char *)ipha; 18012 goto param_prob; 18013 } 18014 off = opt[IPOPT_OFFSET]; 18015 off--; 18016 redo_srr: 18017 if (optlen < IP_ADDR_LEN || 18018 off > optlen - IP_ADDR_LEN) { 18019 /* End of source route */ 18020 ip1dbg(("ip_rput_options: end of SR\n")); 18021 break; 18022 } 18023 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18024 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18025 ntohl(dst))); 18026 18027 /* 18028 * Check if our address is present more than 18029 * once as consecutive hops in source route. 18030 * XXX verify per-interface ip_forwarding 18031 * for source route? 18032 */ 18033 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18034 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18035 18036 if (ire != NULL) { 18037 ire_refrele(ire); 18038 off += IP_ADDR_LEN; 18039 goto redo_srr; 18040 } 18041 18042 if (dst == htonl(INADDR_LOOPBACK)) { 18043 ip1dbg(("ip_rput_options: loopback addr in " 18044 "source route!\n")); 18045 goto bad_src_route; 18046 } 18047 /* 18048 * For strict: verify that dst is directly 18049 * reachable. 18050 */ 18051 if (optval == IPOPT_SSRR) { 18052 ire = ire_ftable_lookup(dst, 0, 0, 18053 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18054 MBLK_GETLABEL(mp), 18055 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18056 if (ire == NULL) { 18057 ip1dbg(("ip_rput_options: SSRR not " 18058 "directly reachable: 0x%x\n", 18059 ntohl(dst))); 18060 goto bad_src_route; 18061 } 18062 ire_refrele(ire); 18063 } 18064 /* 18065 * Defer update of the offset and the record route 18066 * until the packet is forwarded. 18067 */ 18068 break; 18069 case IPOPT_RR: 18070 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18071 ip1dbg(( 18072 "ip_rput_options: bad option offset\n")); 18073 code = (char *)&opt[IPOPT_OLEN] - 18074 (char *)ipha; 18075 goto param_prob; 18076 } 18077 break; 18078 case IPOPT_TS: 18079 /* 18080 * Verify that length >= 5 and that there is either 18081 * room for another timestamp or that the overflow 18082 * counter is not maxed out. 18083 */ 18084 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18085 if (optlen < IPOPT_MINLEN_IT) { 18086 goto param_prob; 18087 } 18088 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18089 ip1dbg(( 18090 "ip_rput_options: bad option offset\n")); 18091 code = (char *)&opt[IPOPT_OFFSET] - 18092 (char *)ipha; 18093 goto param_prob; 18094 } 18095 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18096 case IPOPT_TS_TSONLY: 18097 off = IPOPT_TS_TIMELEN; 18098 break; 18099 case IPOPT_TS_TSANDADDR: 18100 case IPOPT_TS_PRESPEC: 18101 case IPOPT_TS_PRESPEC_RFC791: 18102 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18103 break; 18104 default: 18105 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18106 (char *)ipha; 18107 goto param_prob; 18108 } 18109 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18110 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18111 /* 18112 * No room and the overflow counter is 15 18113 * already. 18114 */ 18115 goto param_prob; 18116 } 18117 break; 18118 } 18119 } 18120 18121 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18122 *dstp = dst; 18123 return (0); 18124 } 18125 18126 ip1dbg(("ip_rput_options: error processing IP options.")); 18127 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18128 18129 param_prob: 18130 q = WR(q); 18131 if (q->q_next != NULL) 18132 ill = q->q_ptr; 18133 else 18134 ill = NULL; 18135 18136 /* make sure we clear any indication of a hardware checksum */ 18137 DB_CKSUMFLAGS(mp) = 0; 18138 /* Don't know whether this is for non-global or global/forwarding */ 18139 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18140 if (zoneid == ALL_ZONES) 18141 freemsg(mp); 18142 else 18143 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18144 return (-1); 18145 18146 bad_src_route: 18147 q = WR(q); 18148 if (q->q_next != NULL) 18149 ill = q->q_ptr; 18150 else 18151 ill = NULL; 18152 18153 /* make sure we clear any indication of a hardware checksum */ 18154 DB_CKSUMFLAGS(mp) = 0; 18155 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18156 if (zoneid == ALL_ZONES) 18157 freemsg(mp); 18158 else 18159 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18160 return (-1); 18161 } 18162 18163 /* 18164 * IP & ICMP info in >=14 msg's ... 18165 * - ip fixed part (mib2_ip_t) 18166 * - icmp fixed part (mib2_icmp_t) 18167 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18168 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18169 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18170 * - ipRouteAttributeTable (ip 102) labeled routes 18171 * - ip multicast membership (ip_member_t) 18172 * - ip multicast source filtering (ip_grpsrc_t) 18173 * - igmp fixed part (struct igmpstat) 18174 * - multicast routing stats (struct mrtstat) 18175 * - multicast routing vifs (array of struct vifctl) 18176 * - multicast routing routes (array of struct mfcctl) 18177 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18178 * One per ill plus one generic 18179 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18180 * One per ill plus one generic 18181 * - ipv6RouteEntry all IPv6 IREs 18182 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18183 * - ipv6NetToMediaEntry all Neighbor Cache entries 18184 * - ipv6AddrEntry all IPv6 ipifs 18185 * - ipv6 multicast membership (ipv6_member_t) 18186 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18187 * 18188 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18189 * 18190 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18191 * already filled in by the caller. 18192 * Return value of 0 indicates that no messages were sent and caller 18193 * should free mpctl. 18194 */ 18195 int 18196 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18197 { 18198 ip_stack_t *ipst; 18199 sctp_stack_t *sctps; 18200 18201 18202 if (q->q_next != NULL) { 18203 ipst = ILLQ_TO_IPST(q); 18204 } else { 18205 ipst = CONNQ_TO_IPST(q); 18206 } 18207 ASSERT(ipst != NULL); 18208 sctps = ipst->ips_netstack->netstack_sctp; 18209 18210 if (mpctl == NULL || mpctl->b_cont == NULL) { 18211 return (0); 18212 } 18213 18214 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18215 ipst)) == NULL) { 18216 return (1); 18217 } 18218 18219 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18220 return (1); 18221 } 18222 18223 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18224 return (1); 18225 } 18226 18227 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18228 return (1); 18229 } 18230 18231 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18232 return (1); 18233 } 18234 18235 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18236 return (1); 18237 } 18238 18239 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18240 return (1); 18241 } 18242 18243 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18244 return (1); 18245 } 18246 18247 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18248 return (1); 18249 } 18250 18251 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18252 return (1); 18253 } 18254 18255 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18256 return (1); 18257 } 18258 18259 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18260 return (1); 18261 } 18262 18263 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18264 return (1); 18265 } 18266 18267 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18268 return (1); 18269 } 18270 18271 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18272 return (1); 18273 } 18274 18275 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18276 if (mpctl == NULL) { 18277 return (1); 18278 } 18279 18280 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18281 return (1); 18282 } 18283 freemsg(mpctl); 18284 return (1); 18285 } 18286 18287 18288 /* Get global (legacy) IPv4 statistics */ 18289 static mblk_t * 18290 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18291 ip_stack_t *ipst) 18292 { 18293 mib2_ip_t old_ip_mib; 18294 struct opthdr *optp; 18295 mblk_t *mp2ctl; 18296 18297 /* 18298 * make a copy of the original message 18299 */ 18300 mp2ctl = copymsg(mpctl); 18301 18302 /* fixed length IP structure... */ 18303 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18304 optp->level = MIB2_IP; 18305 optp->name = 0; 18306 SET_MIB(old_ip_mib.ipForwarding, 18307 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18308 SET_MIB(old_ip_mib.ipDefaultTTL, 18309 (uint32_t)ipst->ips_ip_def_ttl); 18310 SET_MIB(old_ip_mib.ipReasmTimeout, 18311 ipst->ips_ip_g_frag_timeout); 18312 SET_MIB(old_ip_mib.ipAddrEntrySize, 18313 sizeof (mib2_ipAddrEntry_t)); 18314 SET_MIB(old_ip_mib.ipRouteEntrySize, 18315 sizeof (mib2_ipRouteEntry_t)); 18316 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18317 sizeof (mib2_ipNetToMediaEntry_t)); 18318 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18319 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18320 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18321 sizeof (mib2_ipAttributeEntry_t)); 18322 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18323 18324 /* 18325 * Grab the statistics from the new IP MIB 18326 */ 18327 SET_MIB(old_ip_mib.ipInReceives, 18328 (uint32_t)ipmib->ipIfStatsHCInReceives); 18329 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18330 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18331 SET_MIB(old_ip_mib.ipForwDatagrams, 18332 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18333 SET_MIB(old_ip_mib.ipInUnknownProtos, 18334 ipmib->ipIfStatsInUnknownProtos); 18335 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18336 SET_MIB(old_ip_mib.ipInDelivers, 18337 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18338 SET_MIB(old_ip_mib.ipOutRequests, 18339 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18340 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18341 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18342 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18343 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18344 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18345 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18346 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18347 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18348 18349 /* ipRoutingDiscards is not being used */ 18350 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18351 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18352 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18353 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18354 SET_MIB(old_ip_mib.ipReasmDuplicates, 18355 ipmib->ipIfStatsReasmDuplicates); 18356 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18357 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18358 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18359 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18360 SET_MIB(old_ip_mib.rawipInOverflows, 18361 ipmib->rawipIfStatsInOverflows); 18362 18363 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18364 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18365 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18366 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18367 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18368 ipmib->ipIfStatsOutSwitchIPVersion); 18369 18370 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18371 (int)sizeof (old_ip_mib))) { 18372 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18373 (uint_t)sizeof (old_ip_mib))); 18374 } 18375 18376 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18377 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18378 (int)optp->level, (int)optp->name, (int)optp->len)); 18379 qreply(q, mpctl); 18380 return (mp2ctl); 18381 } 18382 18383 /* Per interface IPv4 statistics */ 18384 static mblk_t * 18385 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18386 { 18387 struct opthdr *optp; 18388 mblk_t *mp2ctl; 18389 ill_t *ill; 18390 ill_walk_context_t ctx; 18391 mblk_t *mp_tail = NULL; 18392 mib2_ipIfStatsEntry_t global_ip_mib; 18393 18394 /* 18395 * Make a copy of the original message 18396 */ 18397 mp2ctl = copymsg(mpctl); 18398 18399 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18400 optp->level = MIB2_IP; 18401 optp->name = MIB2_IP_TRAFFIC_STATS; 18402 /* Include "unknown interface" ip_mib */ 18403 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18404 ipst->ips_ip_mib.ipIfStatsIfIndex = 18405 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18406 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18407 (ipst->ips_ip_g_forward ? 1 : 2)); 18408 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18409 (uint32_t)ipst->ips_ip_def_ttl); 18410 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18411 sizeof (mib2_ipIfStatsEntry_t)); 18412 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18413 sizeof (mib2_ipAddrEntry_t)); 18414 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18415 sizeof (mib2_ipRouteEntry_t)); 18416 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18417 sizeof (mib2_ipNetToMediaEntry_t)); 18418 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18419 sizeof (ip_member_t)); 18420 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18421 sizeof (ip_grpsrc_t)); 18422 18423 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18424 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18425 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18426 "failed to allocate %u bytes\n", 18427 (uint_t)sizeof (ipst->ips_ip_mib))); 18428 } 18429 18430 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18431 18432 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18433 ill = ILL_START_WALK_V4(&ctx, ipst); 18434 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18435 ill->ill_ip_mib->ipIfStatsIfIndex = 18436 ill->ill_phyint->phyint_ifindex; 18437 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18438 (ipst->ips_ip_g_forward ? 1 : 2)); 18439 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18440 (uint32_t)ipst->ips_ip_def_ttl); 18441 18442 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18443 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18444 (char *)ill->ill_ip_mib, 18445 (int)sizeof (*ill->ill_ip_mib))) { 18446 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18447 "failed to allocate %u bytes\n", 18448 (uint_t)sizeof (*ill->ill_ip_mib))); 18449 } 18450 } 18451 rw_exit(&ipst->ips_ill_g_lock); 18452 18453 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18454 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18455 "level %d, name %d, len %d\n", 18456 (int)optp->level, (int)optp->name, (int)optp->len)); 18457 qreply(q, mpctl); 18458 18459 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18460 } 18461 18462 /* Global IPv4 ICMP statistics */ 18463 static mblk_t * 18464 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18465 { 18466 struct opthdr *optp; 18467 mblk_t *mp2ctl; 18468 18469 /* 18470 * Make a copy of the original message 18471 */ 18472 mp2ctl = copymsg(mpctl); 18473 18474 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18475 optp->level = MIB2_ICMP; 18476 optp->name = 0; 18477 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18478 (int)sizeof (ipst->ips_icmp_mib))) { 18479 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18480 (uint_t)sizeof (ipst->ips_icmp_mib))); 18481 } 18482 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18483 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18484 (int)optp->level, (int)optp->name, (int)optp->len)); 18485 qreply(q, mpctl); 18486 return (mp2ctl); 18487 } 18488 18489 /* Global IPv4 IGMP statistics */ 18490 static mblk_t * 18491 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18492 { 18493 struct opthdr *optp; 18494 mblk_t *mp2ctl; 18495 18496 /* 18497 * make a copy of the original message 18498 */ 18499 mp2ctl = copymsg(mpctl); 18500 18501 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18502 optp->level = EXPER_IGMP; 18503 optp->name = 0; 18504 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18505 (int)sizeof (ipst->ips_igmpstat))) { 18506 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18507 (uint_t)sizeof (ipst->ips_igmpstat))); 18508 } 18509 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18510 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18511 (int)optp->level, (int)optp->name, (int)optp->len)); 18512 qreply(q, mpctl); 18513 return (mp2ctl); 18514 } 18515 18516 /* Global IPv4 Multicast Routing statistics */ 18517 static mblk_t * 18518 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18519 { 18520 struct opthdr *optp; 18521 mblk_t *mp2ctl; 18522 18523 /* 18524 * make a copy of the original message 18525 */ 18526 mp2ctl = copymsg(mpctl); 18527 18528 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18529 optp->level = EXPER_DVMRP; 18530 optp->name = 0; 18531 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18532 ip0dbg(("ip_mroute_stats: failed\n")); 18533 } 18534 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18535 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18536 (int)optp->level, (int)optp->name, (int)optp->len)); 18537 qreply(q, mpctl); 18538 return (mp2ctl); 18539 } 18540 18541 /* IPv4 address information */ 18542 static mblk_t * 18543 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18544 { 18545 struct opthdr *optp; 18546 mblk_t *mp2ctl; 18547 mblk_t *mp_tail = NULL; 18548 ill_t *ill; 18549 ipif_t *ipif; 18550 uint_t bitval; 18551 mib2_ipAddrEntry_t mae; 18552 zoneid_t zoneid; 18553 ill_walk_context_t ctx; 18554 18555 /* 18556 * make a copy of the original message 18557 */ 18558 mp2ctl = copymsg(mpctl); 18559 18560 /* ipAddrEntryTable */ 18561 18562 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18563 optp->level = MIB2_IP; 18564 optp->name = MIB2_IP_ADDR; 18565 zoneid = Q_TO_CONN(q)->conn_zoneid; 18566 18567 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18568 ill = ILL_START_WALK_V4(&ctx, ipst); 18569 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18570 for (ipif = ill->ill_ipif; ipif != NULL; 18571 ipif = ipif->ipif_next) { 18572 if (ipif->ipif_zoneid != zoneid && 18573 ipif->ipif_zoneid != ALL_ZONES) 18574 continue; 18575 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18576 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18577 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18578 18579 (void) ipif_get_name(ipif, 18580 mae.ipAdEntIfIndex.o_bytes, 18581 OCTET_LENGTH); 18582 mae.ipAdEntIfIndex.o_length = 18583 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18584 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18585 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18586 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18587 mae.ipAdEntInfo.ae_subnet_len = 18588 ip_mask_to_plen(ipif->ipif_net_mask); 18589 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18590 for (bitval = 1; 18591 bitval && 18592 !(bitval & ipif->ipif_brd_addr); 18593 bitval <<= 1) 18594 noop; 18595 mae.ipAdEntBcastAddr = bitval; 18596 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18597 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18598 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18599 mae.ipAdEntInfo.ae_broadcast_addr = 18600 ipif->ipif_brd_addr; 18601 mae.ipAdEntInfo.ae_pp_dst_addr = 18602 ipif->ipif_pp_dst_addr; 18603 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18604 ill->ill_flags | ill->ill_phyint->phyint_flags; 18605 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18606 18607 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18608 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18609 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18610 "allocate %u bytes\n", 18611 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18612 } 18613 } 18614 } 18615 rw_exit(&ipst->ips_ill_g_lock); 18616 18617 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18618 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18619 (int)optp->level, (int)optp->name, (int)optp->len)); 18620 qreply(q, mpctl); 18621 return (mp2ctl); 18622 } 18623 18624 /* IPv6 address information */ 18625 static mblk_t * 18626 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18627 { 18628 struct opthdr *optp; 18629 mblk_t *mp2ctl; 18630 mblk_t *mp_tail = NULL; 18631 ill_t *ill; 18632 ipif_t *ipif; 18633 mib2_ipv6AddrEntry_t mae6; 18634 zoneid_t zoneid; 18635 ill_walk_context_t ctx; 18636 18637 /* 18638 * make a copy of the original message 18639 */ 18640 mp2ctl = copymsg(mpctl); 18641 18642 /* ipv6AddrEntryTable */ 18643 18644 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18645 optp->level = MIB2_IP6; 18646 optp->name = MIB2_IP6_ADDR; 18647 zoneid = Q_TO_CONN(q)->conn_zoneid; 18648 18649 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18650 ill = ILL_START_WALK_V6(&ctx, ipst); 18651 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18652 for (ipif = ill->ill_ipif; ipif != NULL; 18653 ipif = ipif->ipif_next) { 18654 if (ipif->ipif_zoneid != zoneid && 18655 ipif->ipif_zoneid != ALL_ZONES) 18656 continue; 18657 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18658 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18659 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18660 18661 (void) ipif_get_name(ipif, 18662 mae6.ipv6AddrIfIndex.o_bytes, 18663 OCTET_LENGTH); 18664 mae6.ipv6AddrIfIndex.o_length = 18665 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18666 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18667 mae6.ipv6AddrPfxLength = 18668 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18669 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18670 mae6.ipv6AddrInfo.ae_subnet_len = 18671 mae6.ipv6AddrPfxLength; 18672 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18673 18674 /* Type: stateless(1), stateful(2), unknown(3) */ 18675 if (ipif->ipif_flags & IPIF_ADDRCONF) 18676 mae6.ipv6AddrType = 1; 18677 else 18678 mae6.ipv6AddrType = 2; 18679 /* Anycast: true(1), false(2) */ 18680 if (ipif->ipif_flags & IPIF_ANYCAST) 18681 mae6.ipv6AddrAnycastFlag = 1; 18682 else 18683 mae6.ipv6AddrAnycastFlag = 2; 18684 18685 /* 18686 * Address status: preferred(1), deprecated(2), 18687 * invalid(3), inaccessible(4), unknown(5) 18688 */ 18689 if (ipif->ipif_flags & IPIF_NOLOCAL) 18690 mae6.ipv6AddrStatus = 3; 18691 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18692 mae6.ipv6AddrStatus = 2; 18693 else 18694 mae6.ipv6AddrStatus = 1; 18695 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18696 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18697 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18698 ipif->ipif_v6pp_dst_addr; 18699 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18700 ill->ill_flags | ill->ill_phyint->phyint_flags; 18701 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18702 mae6.ipv6AddrIdentifier = ill->ill_token; 18703 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18704 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18705 mae6.ipv6AddrRetransmitTime = 18706 ill->ill_reachable_retrans_time; 18707 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18708 (char *)&mae6, 18709 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18710 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18711 "allocate %u bytes\n", 18712 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18713 } 18714 } 18715 } 18716 rw_exit(&ipst->ips_ill_g_lock); 18717 18718 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18719 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18720 (int)optp->level, (int)optp->name, (int)optp->len)); 18721 qreply(q, mpctl); 18722 return (mp2ctl); 18723 } 18724 18725 /* IPv4 multicast group membership. */ 18726 static mblk_t * 18727 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18728 { 18729 struct opthdr *optp; 18730 mblk_t *mp2ctl; 18731 ill_t *ill; 18732 ipif_t *ipif; 18733 ilm_t *ilm; 18734 ip_member_t ipm; 18735 mblk_t *mp_tail = NULL; 18736 ill_walk_context_t ctx; 18737 zoneid_t zoneid; 18738 18739 /* 18740 * make a copy of the original message 18741 */ 18742 mp2ctl = copymsg(mpctl); 18743 zoneid = Q_TO_CONN(q)->conn_zoneid; 18744 18745 /* ipGroupMember table */ 18746 optp = (struct opthdr *)&mpctl->b_rptr[ 18747 sizeof (struct T_optmgmt_ack)]; 18748 optp->level = MIB2_IP; 18749 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18750 18751 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18752 ill = ILL_START_WALK_V4(&ctx, ipst); 18753 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18754 ILM_WALKER_HOLD(ill); 18755 for (ipif = ill->ill_ipif; ipif != NULL; 18756 ipif = ipif->ipif_next) { 18757 if (ipif->ipif_zoneid != zoneid && 18758 ipif->ipif_zoneid != ALL_ZONES) 18759 continue; /* not this zone */ 18760 (void) ipif_get_name(ipif, 18761 ipm.ipGroupMemberIfIndex.o_bytes, 18762 OCTET_LENGTH); 18763 ipm.ipGroupMemberIfIndex.o_length = 18764 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18765 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18766 ASSERT(ilm->ilm_ipif != NULL); 18767 ASSERT(ilm->ilm_ill == NULL); 18768 if (ilm->ilm_ipif != ipif) 18769 continue; 18770 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18771 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18772 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18773 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18774 (char *)&ipm, (int)sizeof (ipm))) { 18775 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18776 "failed to allocate %u bytes\n", 18777 (uint_t)sizeof (ipm))); 18778 } 18779 } 18780 } 18781 ILM_WALKER_RELE(ill); 18782 } 18783 rw_exit(&ipst->ips_ill_g_lock); 18784 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18785 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18786 (int)optp->level, (int)optp->name, (int)optp->len)); 18787 qreply(q, mpctl); 18788 return (mp2ctl); 18789 } 18790 18791 /* IPv6 multicast group membership. */ 18792 static mblk_t * 18793 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18794 { 18795 struct opthdr *optp; 18796 mblk_t *mp2ctl; 18797 ill_t *ill; 18798 ilm_t *ilm; 18799 ipv6_member_t ipm6; 18800 mblk_t *mp_tail = NULL; 18801 ill_walk_context_t ctx; 18802 zoneid_t zoneid; 18803 18804 /* 18805 * make a copy of the original message 18806 */ 18807 mp2ctl = copymsg(mpctl); 18808 zoneid = Q_TO_CONN(q)->conn_zoneid; 18809 18810 /* ip6GroupMember table */ 18811 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18812 optp->level = MIB2_IP6; 18813 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18814 18815 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18816 ill = ILL_START_WALK_V6(&ctx, ipst); 18817 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18818 ILM_WALKER_HOLD(ill); 18819 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18820 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18821 ASSERT(ilm->ilm_ipif == NULL); 18822 ASSERT(ilm->ilm_ill != NULL); 18823 if (ilm->ilm_zoneid != zoneid) 18824 continue; /* not this zone */ 18825 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18826 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18827 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18828 if (!snmp_append_data2(mpctl->b_cont, 18829 &mp_tail, 18830 (char *)&ipm6, (int)sizeof (ipm6))) { 18831 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18832 "failed to allocate %u bytes\n", 18833 (uint_t)sizeof (ipm6))); 18834 } 18835 } 18836 ILM_WALKER_RELE(ill); 18837 } 18838 rw_exit(&ipst->ips_ill_g_lock); 18839 18840 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18841 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18842 (int)optp->level, (int)optp->name, (int)optp->len)); 18843 qreply(q, mpctl); 18844 return (mp2ctl); 18845 } 18846 18847 /* IP multicast filtered sources */ 18848 static mblk_t * 18849 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18850 { 18851 struct opthdr *optp; 18852 mblk_t *mp2ctl; 18853 ill_t *ill; 18854 ipif_t *ipif; 18855 ilm_t *ilm; 18856 ip_grpsrc_t ips; 18857 mblk_t *mp_tail = NULL; 18858 ill_walk_context_t ctx; 18859 zoneid_t zoneid; 18860 int i; 18861 slist_t *sl; 18862 18863 /* 18864 * make a copy of the original message 18865 */ 18866 mp2ctl = copymsg(mpctl); 18867 zoneid = Q_TO_CONN(q)->conn_zoneid; 18868 18869 /* ipGroupSource table */ 18870 optp = (struct opthdr *)&mpctl->b_rptr[ 18871 sizeof (struct T_optmgmt_ack)]; 18872 optp->level = MIB2_IP; 18873 optp->name = EXPER_IP_GROUP_SOURCES; 18874 18875 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18876 ill = ILL_START_WALK_V4(&ctx, ipst); 18877 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18878 ILM_WALKER_HOLD(ill); 18879 for (ipif = ill->ill_ipif; ipif != NULL; 18880 ipif = ipif->ipif_next) { 18881 if (ipif->ipif_zoneid != zoneid) 18882 continue; /* not this zone */ 18883 (void) ipif_get_name(ipif, 18884 ips.ipGroupSourceIfIndex.o_bytes, 18885 OCTET_LENGTH); 18886 ips.ipGroupSourceIfIndex.o_length = 18887 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18888 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18889 ASSERT(ilm->ilm_ipif != NULL); 18890 ASSERT(ilm->ilm_ill == NULL); 18891 sl = ilm->ilm_filter; 18892 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18893 continue; 18894 ips.ipGroupSourceGroup = ilm->ilm_addr; 18895 for (i = 0; i < sl->sl_numsrc; i++) { 18896 if (!IN6_IS_ADDR_V4MAPPED( 18897 &sl->sl_addr[i])) 18898 continue; 18899 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18900 ips.ipGroupSourceAddress); 18901 if (snmp_append_data2(mpctl->b_cont, 18902 &mp_tail, (char *)&ips, 18903 (int)sizeof (ips)) == 0) { 18904 ip1dbg(("ip_snmp_get_mib2_" 18905 "ip_group_src: failed to " 18906 "allocate %u bytes\n", 18907 (uint_t)sizeof (ips))); 18908 } 18909 } 18910 } 18911 } 18912 ILM_WALKER_RELE(ill); 18913 } 18914 rw_exit(&ipst->ips_ill_g_lock); 18915 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18916 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18917 (int)optp->level, (int)optp->name, (int)optp->len)); 18918 qreply(q, mpctl); 18919 return (mp2ctl); 18920 } 18921 18922 /* IPv6 multicast filtered sources. */ 18923 static mblk_t * 18924 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18925 { 18926 struct opthdr *optp; 18927 mblk_t *mp2ctl; 18928 ill_t *ill; 18929 ilm_t *ilm; 18930 ipv6_grpsrc_t ips6; 18931 mblk_t *mp_tail = NULL; 18932 ill_walk_context_t ctx; 18933 zoneid_t zoneid; 18934 int i; 18935 slist_t *sl; 18936 18937 /* 18938 * make a copy of the original message 18939 */ 18940 mp2ctl = copymsg(mpctl); 18941 zoneid = Q_TO_CONN(q)->conn_zoneid; 18942 18943 /* ip6GroupMember table */ 18944 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18945 optp->level = MIB2_IP6; 18946 optp->name = EXPER_IP6_GROUP_SOURCES; 18947 18948 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18949 ill = ILL_START_WALK_V6(&ctx, ipst); 18950 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18951 ILM_WALKER_HOLD(ill); 18952 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18953 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18954 ASSERT(ilm->ilm_ipif == NULL); 18955 ASSERT(ilm->ilm_ill != NULL); 18956 sl = ilm->ilm_filter; 18957 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18958 continue; 18959 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18960 for (i = 0; i < sl->sl_numsrc; i++) { 18961 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18962 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18963 (char *)&ips6, (int)sizeof (ips6))) { 18964 ip1dbg(("ip_snmp_get_mib2_ip6_" 18965 "group_src: failed to allocate " 18966 "%u bytes\n", 18967 (uint_t)sizeof (ips6))); 18968 } 18969 } 18970 } 18971 ILM_WALKER_RELE(ill); 18972 } 18973 rw_exit(&ipst->ips_ill_g_lock); 18974 18975 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18976 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18977 (int)optp->level, (int)optp->name, (int)optp->len)); 18978 qreply(q, mpctl); 18979 return (mp2ctl); 18980 } 18981 18982 /* Multicast routing virtual interface table. */ 18983 static mblk_t * 18984 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18985 { 18986 struct opthdr *optp; 18987 mblk_t *mp2ctl; 18988 18989 /* 18990 * make a copy of the original message 18991 */ 18992 mp2ctl = copymsg(mpctl); 18993 18994 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18995 optp->level = EXPER_DVMRP; 18996 optp->name = EXPER_DVMRP_VIF; 18997 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18998 ip0dbg(("ip_mroute_vif: failed\n")); 18999 } 19000 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19001 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19002 (int)optp->level, (int)optp->name, (int)optp->len)); 19003 qreply(q, mpctl); 19004 return (mp2ctl); 19005 } 19006 19007 /* Multicast routing table. */ 19008 static mblk_t * 19009 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19010 { 19011 struct opthdr *optp; 19012 mblk_t *mp2ctl; 19013 19014 /* 19015 * make a copy of the original message 19016 */ 19017 mp2ctl = copymsg(mpctl); 19018 19019 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19020 optp->level = EXPER_DVMRP; 19021 optp->name = EXPER_DVMRP_MRT; 19022 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19023 ip0dbg(("ip_mroute_mrt: failed\n")); 19024 } 19025 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19026 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19027 (int)optp->level, (int)optp->name, (int)optp->len)); 19028 qreply(q, mpctl); 19029 return (mp2ctl); 19030 } 19031 19032 /* 19033 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19034 * in one IRE walk. 19035 */ 19036 static mblk_t * 19037 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19038 { 19039 struct opthdr *optp; 19040 mblk_t *mp2ctl; /* Returned */ 19041 mblk_t *mp3ctl; /* nettomedia */ 19042 mblk_t *mp4ctl; /* routeattrs */ 19043 iproutedata_t ird; 19044 zoneid_t zoneid; 19045 19046 /* 19047 * make copies of the original message 19048 * - mp2ctl is returned unchanged to the caller for his use 19049 * - mpctl is sent upstream as ipRouteEntryTable 19050 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19051 * - mp4ctl is sent upstream as ipRouteAttributeTable 19052 */ 19053 mp2ctl = copymsg(mpctl); 19054 mp3ctl = copymsg(mpctl); 19055 mp4ctl = copymsg(mpctl); 19056 if (mp3ctl == NULL || mp4ctl == NULL) { 19057 freemsg(mp4ctl); 19058 freemsg(mp3ctl); 19059 freemsg(mp2ctl); 19060 freemsg(mpctl); 19061 return (NULL); 19062 } 19063 19064 bzero(&ird, sizeof (ird)); 19065 19066 ird.ird_route.lp_head = mpctl->b_cont; 19067 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19068 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19069 19070 zoneid = Q_TO_CONN(q)->conn_zoneid; 19071 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19072 if (zoneid == GLOBAL_ZONEID) { 19073 /* 19074 * Those IREs are used by Mobile-IP; since mipagent(1M) 19075 * requires the sys_net_config or sys_ip_config privilege, 19076 * it can only run in the global zone or an exclusive-IP zone, 19077 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19078 */ 19079 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19080 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19081 } 19082 19083 /* ipRouteEntryTable in mpctl */ 19084 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19085 optp->level = MIB2_IP; 19086 optp->name = MIB2_IP_ROUTE; 19087 optp->len = msgdsize(ird.ird_route.lp_head); 19088 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19089 (int)optp->level, (int)optp->name, (int)optp->len)); 19090 qreply(q, mpctl); 19091 19092 /* ipNetToMediaEntryTable in mp3ctl */ 19093 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19094 optp->level = MIB2_IP; 19095 optp->name = MIB2_IP_MEDIA; 19096 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19097 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19098 (int)optp->level, (int)optp->name, (int)optp->len)); 19099 qreply(q, mp3ctl); 19100 19101 /* ipRouteAttributeTable in mp4ctl */ 19102 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19103 optp->level = MIB2_IP; 19104 optp->name = EXPER_IP_RTATTR; 19105 optp->len = msgdsize(ird.ird_attrs.lp_head); 19106 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19107 (int)optp->level, (int)optp->name, (int)optp->len)); 19108 if (optp->len == 0) 19109 freemsg(mp4ctl); 19110 else 19111 qreply(q, mp4ctl); 19112 19113 return (mp2ctl); 19114 } 19115 19116 /* 19117 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19118 * ipv6NetToMediaEntryTable in an NDP walk. 19119 */ 19120 static mblk_t * 19121 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19122 { 19123 struct opthdr *optp; 19124 mblk_t *mp2ctl; /* Returned */ 19125 mblk_t *mp3ctl; /* nettomedia */ 19126 mblk_t *mp4ctl; /* routeattrs */ 19127 iproutedata_t ird; 19128 zoneid_t zoneid; 19129 19130 /* 19131 * make copies of the original message 19132 * - mp2ctl is returned unchanged to the caller for his use 19133 * - mpctl is sent upstream as ipv6RouteEntryTable 19134 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19135 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19136 */ 19137 mp2ctl = copymsg(mpctl); 19138 mp3ctl = copymsg(mpctl); 19139 mp4ctl = copymsg(mpctl); 19140 if (mp3ctl == NULL || mp4ctl == NULL) { 19141 freemsg(mp4ctl); 19142 freemsg(mp3ctl); 19143 freemsg(mp2ctl); 19144 freemsg(mpctl); 19145 return (NULL); 19146 } 19147 19148 bzero(&ird, sizeof (ird)); 19149 19150 ird.ird_route.lp_head = mpctl->b_cont; 19151 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19152 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19153 19154 zoneid = Q_TO_CONN(q)->conn_zoneid; 19155 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19156 19157 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19158 optp->level = MIB2_IP6; 19159 optp->name = MIB2_IP6_ROUTE; 19160 optp->len = msgdsize(ird.ird_route.lp_head); 19161 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19162 (int)optp->level, (int)optp->name, (int)optp->len)); 19163 qreply(q, mpctl); 19164 19165 /* ipv6NetToMediaEntryTable in mp3ctl */ 19166 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19167 19168 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19169 optp->level = MIB2_IP6; 19170 optp->name = MIB2_IP6_MEDIA; 19171 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19172 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19173 (int)optp->level, (int)optp->name, (int)optp->len)); 19174 qreply(q, mp3ctl); 19175 19176 /* ipv6RouteAttributeTable in mp4ctl */ 19177 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19178 optp->level = MIB2_IP6; 19179 optp->name = EXPER_IP_RTATTR; 19180 optp->len = msgdsize(ird.ird_attrs.lp_head); 19181 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19182 (int)optp->level, (int)optp->name, (int)optp->len)); 19183 if (optp->len == 0) 19184 freemsg(mp4ctl); 19185 else 19186 qreply(q, mp4ctl); 19187 19188 return (mp2ctl); 19189 } 19190 19191 /* 19192 * IPv6 mib: One per ill 19193 */ 19194 static mblk_t * 19195 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19196 { 19197 struct opthdr *optp; 19198 mblk_t *mp2ctl; 19199 ill_t *ill; 19200 ill_walk_context_t ctx; 19201 mblk_t *mp_tail = NULL; 19202 19203 /* 19204 * Make a copy of the original message 19205 */ 19206 mp2ctl = copymsg(mpctl); 19207 19208 /* fixed length IPv6 structure ... */ 19209 19210 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19211 optp->level = MIB2_IP6; 19212 optp->name = 0; 19213 /* Include "unknown interface" ip6_mib */ 19214 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19215 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19216 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19217 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19218 ipst->ips_ipv6_forward ? 1 : 2); 19219 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19220 ipst->ips_ipv6_def_hops); 19221 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19222 sizeof (mib2_ipIfStatsEntry_t)); 19223 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19224 sizeof (mib2_ipv6AddrEntry_t)); 19225 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19226 sizeof (mib2_ipv6RouteEntry_t)); 19227 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19228 sizeof (mib2_ipv6NetToMediaEntry_t)); 19229 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19230 sizeof (ipv6_member_t)); 19231 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19232 sizeof (ipv6_grpsrc_t)); 19233 19234 /* 19235 * Synchronize 64- and 32-bit counters 19236 */ 19237 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19238 ipIfStatsHCInReceives); 19239 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19240 ipIfStatsHCInDelivers); 19241 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19242 ipIfStatsHCOutRequests); 19243 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19244 ipIfStatsHCOutForwDatagrams); 19245 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19246 ipIfStatsHCOutMcastPkts); 19247 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19248 ipIfStatsHCInMcastPkts); 19249 19250 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19251 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19252 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19253 (uint_t)sizeof (ipst->ips_ip6_mib))); 19254 } 19255 19256 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19257 ill = ILL_START_WALK_V6(&ctx, ipst); 19258 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19259 ill->ill_ip_mib->ipIfStatsIfIndex = 19260 ill->ill_phyint->phyint_ifindex; 19261 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19262 ipst->ips_ipv6_forward ? 1 : 2); 19263 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19264 ill->ill_max_hops); 19265 19266 /* 19267 * Synchronize 64- and 32-bit counters 19268 */ 19269 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19270 ipIfStatsHCInReceives); 19271 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19272 ipIfStatsHCInDelivers); 19273 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19274 ipIfStatsHCOutRequests); 19275 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19276 ipIfStatsHCOutForwDatagrams); 19277 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19278 ipIfStatsHCOutMcastPkts); 19279 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19280 ipIfStatsHCInMcastPkts); 19281 19282 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19283 (char *)ill->ill_ip_mib, 19284 (int)sizeof (*ill->ill_ip_mib))) { 19285 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19286 "%u bytes\n", 19287 (uint_t)sizeof (*ill->ill_ip_mib))); 19288 } 19289 } 19290 rw_exit(&ipst->ips_ill_g_lock); 19291 19292 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19293 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19294 (int)optp->level, (int)optp->name, (int)optp->len)); 19295 qreply(q, mpctl); 19296 return (mp2ctl); 19297 } 19298 19299 /* 19300 * ICMPv6 mib: One per ill 19301 */ 19302 static mblk_t * 19303 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19304 { 19305 struct opthdr *optp; 19306 mblk_t *mp2ctl; 19307 ill_t *ill; 19308 ill_walk_context_t ctx; 19309 mblk_t *mp_tail = NULL; 19310 /* 19311 * Make a copy of the original message 19312 */ 19313 mp2ctl = copymsg(mpctl); 19314 19315 /* fixed length ICMPv6 structure ... */ 19316 19317 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19318 optp->level = MIB2_ICMP6; 19319 optp->name = 0; 19320 /* Include "unknown interface" icmp6_mib */ 19321 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19322 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19323 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19324 sizeof (mib2_ipv6IfIcmpEntry_t); 19325 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19326 (char *)&ipst->ips_icmp6_mib, 19327 (int)sizeof (ipst->ips_icmp6_mib))) { 19328 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19329 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19330 } 19331 19332 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19333 ill = ILL_START_WALK_V6(&ctx, ipst); 19334 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19335 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19336 ill->ill_phyint->phyint_ifindex; 19337 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19338 (char *)ill->ill_icmp6_mib, 19339 (int)sizeof (*ill->ill_icmp6_mib))) { 19340 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19341 "%u bytes\n", 19342 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19343 } 19344 } 19345 rw_exit(&ipst->ips_ill_g_lock); 19346 19347 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19348 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19349 (int)optp->level, (int)optp->name, (int)optp->len)); 19350 qreply(q, mpctl); 19351 return (mp2ctl); 19352 } 19353 19354 /* 19355 * ire_walk routine to create both ipRouteEntryTable and 19356 * ipRouteAttributeTable in one IRE walk 19357 */ 19358 static void 19359 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19360 { 19361 ill_t *ill; 19362 ipif_t *ipif; 19363 mib2_ipRouteEntry_t *re; 19364 mib2_ipAttributeEntry_t *iae, *iaeptr; 19365 ipaddr_t gw_addr; 19366 tsol_ire_gw_secattr_t *attrp; 19367 tsol_gc_t *gc = NULL; 19368 tsol_gcgrp_t *gcgrp = NULL; 19369 uint_t sacnt = 0; 19370 int i; 19371 19372 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19373 19374 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19375 return; 19376 19377 if ((attrp = ire->ire_gw_secattr) != NULL) { 19378 mutex_enter(&attrp->igsa_lock); 19379 if ((gc = attrp->igsa_gc) != NULL) { 19380 gcgrp = gc->gc_grp; 19381 ASSERT(gcgrp != NULL); 19382 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19383 sacnt = 1; 19384 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19385 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19386 gc = gcgrp->gcgrp_head; 19387 sacnt = gcgrp->gcgrp_count; 19388 } 19389 mutex_exit(&attrp->igsa_lock); 19390 19391 /* do nothing if there's no gc to report */ 19392 if (gc == NULL) { 19393 ASSERT(sacnt == 0); 19394 if (gcgrp != NULL) { 19395 /* we might as well drop the lock now */ 19396 rw_exit(&gcgrp->gcgrp_rwlock); 19397 gcgrp = NULL; 19398 } 19399 attrp = NULL; 19400 } 19401 19402 ASSERT(gc == NULL || (gcgrp != NULL && 19403 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19404 } 19405 ASSERT(sacnt == 0 || gc != NULL); 19406 19407 if (sacnt != 0 && 19408 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19409 kmem_free(re, sizeof (*re)); 19410 rw_exit(&gcgrp->gcgrp_rwlock); 19411 return; 19412 } 19413 19414 /* 19415 * Return all IRE types for route table... let caller pick and choose 19416 */ 19417 re->ipRouteDest = ire->ire_addr; 19418 ipif = ire->ire_ipif; 19419 re->ipRouteIfIndex.o_length = 0; 19420 if (ire->ire_type == IRE_CACHE) { 19421 ill = (ill_t *)ire->ire_stq->q_ptr; 19422 re->ipRouteIfIndex.o_length = 19423 ill->ill_name_length == 0 ? 0 : 19424 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19425 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19426 re->ipRouteIfIndex.o_length); 19427 } else if (ipif != NULL) { 19428 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19429 OCTET_LENGTH); 19430 re->ipRouteIfIndex.o_length = 19431 mi_strlen(re->ipRouteIfIndex.o_bytes); 19432 } 19433 re->ipRouteMetric1 = -1; 19434 re->ipRouteMetric2 = -1; 19435 re->ipRouteMetric3 = -1; 19436 re->ipRouteMetric4 = -1; 19437 19438 gw_addr = ire->ire_gateway_addr; 19439 19440 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19441 re->ipRouteNextHop = ire->ire_src_addr; 19442 else 19443 re->ipRouteNextHop = gw_addr; 19444 /* indirect(4), direct(3), or invalid(2) */ 19445 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19446 re->ipRouteType = 2; 19447 else 19448 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19449 re->ipRouteProto = -1; 19450 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19451 re->ipRouteMask = ire->ire_mask; 19452 re->ipRouteMetric5 = -1; 19453 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19454 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19455 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19456 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19457 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19458 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19459 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19460 re->ipRouteInfo.re_flags = ire->ire_flags; 19461 re->ipRouteInfo.re_in_ill.o_length = 0; 19462 19463 if (ire->ire_flags & RTF_DYNAMIC) { 19464 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19465 } else { 19466 re->ipRouteInfo.re_ire_type = ire->ire_type; 19467 } 19468 19469 if (ire->ire_in_ill != NULL) { 19470 re->ipRouteInfo.re_in_ill.o_length = 19471 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19472 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19473 bcopy(ire->ire_in_ill->ill_name, 19474 re->ipRouteInfo.re_in_ill.o_bytes, 19475 re->ipRouteInfo.re_in_ill.o_length); 19476 } 19477 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19478 19479 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19480 (char *)re, (int)sizeof (*re))) { 19481 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19482 (uint_t)sizeof (*re))); 19483 } 19484 19485 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19486 iaeptr->iae_routeidx = ird->ird_idx; 19487 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19488 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19489 } 19490 19491 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19492 (char *)iae, sacnt * sizeof (*iae))) { 19493 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19494 (unsigned)(sacnt * sizeof (*iae)))); 19495 } 19496 19497 /* bump route index for next pass */ 19498 ird->ird_idx++; 19499 19500 kmem_free(re, sizeof (*re)); 19501 if (sacnt != 0) 19502 kmem_free(iae, sacnt * sizeof (*iae)); 19503 19504 if (gcgrp != NULL) 19505 rw_exit(&gcgrp->gcgrp_rwlock); 19506 } 19507 19508 /* 19509 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19510 */ 19511 static void 19512 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19513 { 19514 ill_t *ill; 19515 ipif_t *ipif; 19516 mib2_ipv6RouteEntry_t *re; 19517 mib2_ipAttributeEntry_t *iae, *iaeptr; 19518 in6_addr_t gw_addr_v6; 19519 tsol_ire_gw_secattr_t *attrp; 19520 tsol_gc_t *gc = NULL; 19521 tsol_gcgrp_t *gcgrp = NULL; 19522 uint_t sacnt = 0; 19523 int i; 19524 19525 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19526 19527 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19528 return; 19529 19530 if ((attrp = ire->ire_gw_secattr) != NULL) { 19531 mutex_enter(&attrp->igsa_lock); 19532 if ((gc = attrp->igsa_gc) != NULL) { 19533 gcgrp = gc->gc_grp; 19534 ASSERT(gcgrp != NULL); 19535 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19536 sacnt = 1; 19537 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19538 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19539 gc = gcgrp->gcgrp_head; 19540 sacnt = gcgrp->gcgrp_count; 19541 } 19542 mutex_exit(&attrp->igsa_lock); 19543 19544 /* do nothing if there's no gc to report */ 19545 if (gc == NULL) { 19546 ASSERT(sacnt == 0); 19547 if (gcgrp != NULL) { 19548 /* we might as well drop the lock now */ 19549 rw_exit(&gcgrp->gcgrp_rwlock); 19550 gcgrp = NULL; 19551 } 19552 attrp = NULL; 19553 } 19554 19555 ASSERT(gc == NULL || (gcgrp != NULL && 19556 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19557 } 19558 ASSERT(sacnt == 0 || gc != NULL); 19559 19560 if (sacnt != 0 && 19561 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19562 kmem_free(re, sizeof (*re)); 19563 rw_exit(&gcgrp->gcgrp_rwlock); 19564 return; 19565 } 19566 19567 /* 19568 * Return all IRE types for route table... let caller pick and choose 19569 */ 19570 re->ipv6RouteDest = ire->ire_addr_v6; 19571 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19572 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19573 re->ipv6RouteIfIndex.o_length = 0; 19574 ipif = ire->ire_ipif; 19575 if (ire->ire_type == IRE_CACHE) { 19576 ill = (ill_t *)ire->ire_stq->q_ptr; 19577 re->ipv6RouteIfIndex.o_length = 19578 ill->ill_name_length == 0 ? 0 : 19579 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19580 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19581 re->ipv6RouteIfIndex.o_length); 19582 } else if (ipif != NULL) { 19583 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19584 OCTET_LENGTH); 19585 re->ipv6RouteIfIndex.o_length = 19586 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19587 } 19588 19589 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19590 19591 mutex_enter(&ire->ire_lock); 19592 gw_addr_v6 = ire->ire_gateway_addr_v6; 19593 mutex_exit(&ire->ire_lock); 19594 19595 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19596 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19597 else 19598 re->ipv6RouteNextHop = gw_addr_v6; 19599 19600 /* remote(4), local(3), or discard(2) */ 19601 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19602 re->ipv6RouteType = 2; 19603 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19604 re->ipv6RouteType = 3; 19605 else 19606 re->ipv6RouteType = 4; 19607 19608 re->ipv6RouteProtocol = -1; 19609 re->ipv6RoutePolicy = 0; 19610 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19611 re->ipv6RouteNextHopRDI = 0; 19612 re->ipv6RouteWeight = 0; 19613 re->ipv6RouteMetric = 0; 19614 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19615 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19616 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19617 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19618 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19619 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19620 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19621 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19622 19623 if (ire->ire_flags & RTF_DYNAMIC) { 19624 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19625 } else { 19626 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19627 } 19628 19629 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19630 (char *)re, (int)sizeof (*re))) { 19631 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19632 (uint_t)sizeof (*re))); 19633 } 19634 19635 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19636 iaeptr->iae_routeidx = ird->ird_idx; 19637 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19638 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19639 } 19640 19641 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19642 (char *)iae, sacnt * sizeof (*iae))) { 19643 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19644 (unsigned)(sacnt * sizeof (*iae)))); 19645 } 19646 19647 /* bump route index for next pass */ 19648 ird->ird_idx++; 19649 19650 kmem_free(re, sizeof (*re)); 19651 if (sacnt != 0) 19652 kmem_free(iae, sacnt * sizeof (*iae)); 19653 19654 if (gcgrp != NULL) 19655 rw_exit(&gcgrp->gcgrp_rwlock); 19656 } 19657 19658 /* 19659 * ndp_walk routine to create ipv6NetToMediaEntryTable 19660 */ 19661 static int 19662 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19663 { 19664 ill_t *ill; 19665 mib2_ipv6NetToMediaEntry_t ntme; 19666 dl_unitdata_req_t *dl; 19667 19668 ill = nce->nce_ill; 19669 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19670 return (0); 19671 19672 /* 19673 * Neighbor cache entry attached to IRE with on-link 19674 * destination. 19675 */ 19676 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19677 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19678 if ((ill->ill_flags & ILLF_XRESOLV) && 19679 (nce->nce_res_mp != NULL)) { 19680 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19681 ntme.ipv6NetToMediaPhysAddress.o_length = 19682 dl->dl_dest_addr_length; 19683 } else { 19684 ntme.ipv6NetToMediaPhysAddress.o_length = 19685 ill->ill_phys_addr_length; 19686 } 19687 if (nce->nce_res_mp != NULL) { 19688 bcopy((char *)nce->nce_res_mp->b_rptr + 19689 NCE_LL_ADDR_OFFSET(ill), 19690 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19691 ntme.ipv6NetToMediaPhysAddress.o_length); 19692 } else { 19693 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19694 ill->ill_phys_addr_length); 19695 } 19696 /* 19697 * Note: Returns ND_* states. Should be: 19698 * reachable(1), stale(2), delay(3), probe(4), 19699 * invalid(5), unknown(6) 19700 */ 19701 ntme.ipv6NetToMediaState = nce->nce_state; 19702 ntme.ipv6NetToMediaLastUpdated = 0; 19703 19704 /* other(1), dynamic(2), static(3), local(4) */ 19705 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19706 ntme.ipv6NetToMediaType = 4; 19707 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19708 ntme.ipv6NetToMediaType = 1; 19709 } else { 19710 ntme.ipv6NetToMediaType = 2; 19711 } 19712 19713 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19714 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19715 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19716 (uint_t)sizeof (ntme))); 19717 } 19718 return (0); 19719 } 19720 19721 /* 19722 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19723 */ 19724 /* ARGSUSED */ 19725 int 19726 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19727 { 19728 switch (level) { 19729 case MIB2_IP: 19730 case MIB2_ICMP: 19731 switch (name) { 19732 default: 19733 break; 19734 } 19735 return (1); 19736 default: 19737 return (1); 19738 } 19739 } 19740 19741 /* 19742 * When there exists both a 64- and 32-bit counter of a particular type 19743 * (i.e., InReceives), only the 64-bit counters are added. 19744 */ 19745 void 19746 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19747 { 19748 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19749 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19750 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19751 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19752 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19753 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19754 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19755 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19756 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19757 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19758 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19759 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19760 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19761 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19762 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19763 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19764 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19765 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19766 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19767 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19768 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19769 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19770 o2->ipIfStatsInWrongIPVersion); 19771 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19772 o2->ipIfStatsInWrongIPVersion); 19773 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19774 o2->ipIfStatsOutSwitchIPVersion); 19775 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19776 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19777 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19778 o2->ipIfStatsHCInForwDatagrams); 19779 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19780 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19781 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19782 o2->ipIfStatsHCOutForwDatagrams); 19783 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19784 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19785 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19786 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19787 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19788 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19789 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19790 o2->ipIfStatsHCOutMcastOctets); 19791 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19792 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19793 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19794 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19795 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19796 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19797 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19798 } 19799 19800 void 19801 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19802 { 19803 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19804 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19805 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19806 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19807 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19808 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19809 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19810 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19811 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19812 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19813 o2->ipv6IfIcmpInRouterSolicits); 19814 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19815 o2->ipv6IfIcmpInRouterAdvertisements); 19816 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19817 o2->ipv6IfIcmpInNeighborSolicits); 19818 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19819 o2->ipv6IfIcmpInNeighborAdvertisements); 19820 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19821 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19822 o2->ipv6IfIcmpInGroupMembQueries); 19823 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19824 o2->ipv6IfIcmpInGroupMembResponses); 19825 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19826 o2->ipv6IfIcmpInGroupMembReductions); 19827 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19828 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19830 o2->ipv6IfIcmpOutDestUnreachs); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19832 o2->ipv6IfIcmpOutAdminProhibs); 19833 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19834 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19835 o2->ipv6IfIcmpOutParmProblems); 19836 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19837 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19838 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19839 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19840 o2->ipv6IfIcmpOutRouterSolicits); 19841 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19842 o2->ipv6IfIcmpOutRouterAdvertisements); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19844 o2->ipv6IfIcmpOutNeighborSolicits); 19845 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19846 o2->ipv6IfIcmpOutNeighborAdvertisements); 19847 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19848 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19849 o2->ipv6IfIcmpOutGroupMembQueries); 19850 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19851 o2->ipv6IfIcmpOutGroupMembResponses); 19852 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19853 o2->ipv6IfIcmpOutGroupMembReductions); 19854 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19855 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19856 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19857 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19858 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19859 o2->ipv6IfIcmpInBadNeighborSolicitations); 19860 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19861 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19862 o2->ipv6IfIcmpInGroupMembTotal); 19863 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19864 o2->ipv6IfIcmpInGroupMembBadQueries); 19865 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19866 o2->ipv6IfIcmpInGroupMembBadReports); 19867 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19868 o2->ipv6IfIcmpInGroupMembOurReports); 19869 } 19870 19871 /* 19872 * Called before the options are updated to check if this packet will 19873 * be source routed from here. 19874 * This routine assumes that the options are well formed i.e. that they 19875 * have already been checked. 19876 */ 19877 static boolean_t 19878 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19879 { 19880 ipoptp_t opts; 19881 uchar_t *opt; 19882 uint8_t optval; 19883 uint8_t optlen; 19884 ipaddr_t dst; 19885 ire_t *ire; 19886 19887 if (IS_SIMPLE_IPH(ipha)) { 19888 ip2dbg(("not source routed\n")); 19889 return (B_FALSE); 19890 } 19891 dst = ipha->ipha_dst; 19892 for (optval = ipoptp_first(&opts, ipha); 19893 optval != IPOPT_EOL; 19894 optval = ipoptp_next(&opts)) { 19895 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19896 opt = opts.ipoptp_cur; 19897 optlen = opts.ipoptp_len; 19898 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19899 optval, optlen)); 19900 switch (optval) { 19901 uint32_t off; 19902 case IPOPT_SSRR: 19903 case IPOPT_LSRR: 19904 /* 19905 * If dst is one of our addresses and there are some 19906 * entries left in the source route return (true). 19907 */ 19908 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19909 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19910 if (ire == NULL) { 19911 ip2dbg(("ip_source_routed: not next" 19912 " source route 0x%x\n", 19913 ntohl(dst))); 19914 return (B_FALSE); 19915 } 19916 ire_refrele(ire); 19917 off = opt[IPOPT_OFFSET]; 19918 off--; 19919 if (optlen < IP_ADDR_LEN || 19920 off > optlen - IP_ADDR_LEN) { 19921 /* End of source route */ 19922 ip1dbg(("ip_source_routed: end of SR\n")); 19923 return (B_FALSE); 19924 } 19925 return (B_TRUE); 19926 } 19927 } 19928 ip2dbg(("not source routed\n")); 19929 return (B_FALSE); 19930 } 19931 19932 /* 19933 * Check if the packet contains any source route. 19934 */ 19935 static boolean_t 19936 ip_source_route_included(ipha_t *ipha) 19937 { 19938 ipoptp_t opts; 19939 uint8_t optval; 19940 19941 if (IS_SIMPLE_IPH(ipha)) 19942 return (B_FALSE); 19943 for (optval = ipoptp_first(&opts, ipha); 19944 optval != IPOPT_EOL; 19945 optval = ipoptp_next(&opts)) { 19946 switch (optval) { 19947 case IPOPT_SSRR: 19948 case IPOPT_LSRR: 19949 return (B_TRUE); 19950 } 19951 } 19952 return (B_FALSE); 19953 } 19954 19955 /* 19956 * Called when the IRE expiration timer fires. 19957 */ 19958 void 19959 ip_trash_timer_expire(void *args) 19960 { 19961 int flush_flag = 0; 19962 ire_expire_arg_t iea; 19963 ip_stack_t *ipst = (ip_stack_t *)args; 19964 19965 iea.iea_ipst = ipst; /* No netstack_hold */ 19966 19967 /* 19968 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19969 * This lock makes sure that a new invocation of this function 19970 * that occurs due to an almost immediate timer firing will not 19971 * progress beyond this point until the current invocation is done 19972 */ 19973 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19974 ipst->ips_ip_ire_expire_id = 0; 19975 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19976 19977 /* Periodic timer */ 19978 if (ipst->ips_ip_ire_arp_time_elapsed >= 19979 ipst->ips_ip_ire_arp_interval) { 19980 /* 19981 * Remove all IRE_CACHE entries since they might 19982 * contain arp information. 19983 */ 19984 flush_flag |= FLUSH_ARP_TIME; 19985 ipst->ips_ip_ire_arp_time_elapsed = 0; 19986 IP_STAT(ipst, ip_ire_arp_timer_expired); 19987 } 19988 if (ipst->ips_ip_ire_rd_time_elapsed >= 19989 ipst->ips_ip_ire_redir_interval) { 19990 /* Remove all redirects */ 19991 flush_flag |= FLUSH_REDIRECT_TIME; 19992 ipst->ips_ip_ire_rd_time_elapsed = 0; 19993 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19994 } 19995 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19996 ipst->ips_ip_ire_pathmtu_interval) { 19997 /* Increase path mtu */ 19998 flush_flag |= FLUSH_MTU_TIME; 19999 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20000 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20001 } 20002 20003 /* 20004 * Optimize for the case when there are no redirects in the 20005 * ftable, that is, no need to walk the ftable in that case. 20006 */ 20007 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20008 iea.iea_flush_flag = flush_flag; 20009 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20010 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20011 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20012 NULL, ALL_ZONES, ipst); 20013 } 20014 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20015 ipst->ips_ip_redirect_cnt > 0) { 20016 iea.iea_flush_flag = flush_flag; 20017 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20018 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20019 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20020 } 20021 if (flush_flag & FLUSH_MTU_TIME) { 20022 /* 20023 * Walk all IPv6 IRE's and update them 20024 * Note that ARP and redirect timers are not 20025 * needed since NUD handles stale entries. 20026 */ 20027 flush_flag = FLUSH_MTU_TIME; 20028 iea.iea_flush_flag = flush_flag; 20029 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20030 ALL_ZONES, ipst); 20031 } 20032 20033 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20034 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20035 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20036 20037 /* 20038 * Hold the lock to serialize timeout calls and prevent 20039 * stale values in ip_ire_expire_id. Otherwise it is possible 20040 * for the timer to fire and a new invocation of this function 20041 * to start before the return value of timeout has been stored 20042 * in ip_ire_expire_id by the current invocation. 20043 */ 20044 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20045 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20046 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20047 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20048 } 20049 20050 /* 20051 * Called by the memory allocator subsystem directly, when the system 20052 * is running low on memory. 20053 */ 20054 /* ARGSUSED */ 20055 void 20056 ip_trash_ire_reclaim(void *args) 20057 { 20058 netstack_handle_t nh; 20059 netstack_t *ns; 20060 20061 netstack_next_init(&nh); 20062 while ((ns = netstack_next(&nh)) != NULL) { 20063 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20064 netstack_rele(ns); 20065 } 20066 netstack_next_fini(&nh); 20067 } 20068 20069 static void 20070 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20071 { 20072 ire_cache_count_t icc; 20073 ire_cache_reclaim_t icr; 20074 ncc_cache_count_t ncc; 20075 nce_cache_reclaim_t ncr; 20076 uint_t delete_cnt; 20077 /* 20078 * Memory reclaim call back. 20079 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20080 * Then, with a target of freeing 1/Nth of IRE_CACHE 20081 * entries, determine what fraction to free for 20082 * each category of IRE_CACHE entries giving absolute priority 20083 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20084 * entry will be freed unless all offlink entries are freed). 20085 */ 20086 icc.icc_total = 0; 20087 icc.icc_unused = 0; 20088 icc.icc_offlink = 0; 20089 icc.icc_pmtu = 0; 20090 icc.icc_onlink = 0; 20091 ire_walk(ire_cache_count, (char *)&icc, ipst); 20092 20093 /* 20094 * Free NCEs for IPv6 like the onlink ires. 20095 */ 20096 ncc.ncc_total = 0; 20097 ncc.ncc_host = 0; 20098 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20099 20100 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20101 icc.icc_pmtu + icc.icc_onlink); 20102 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20103 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20104 if (delete_cnt == 0) 20105 return; 20106 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20107 /* Always delete all unused offlink entries */ 20108 icr.icr_ipst = ipst; 20109 icr.icr_unused = 1; 20110 if (delete_cnt <= icc.icc_unused) { 20111 /* 20112 * Only need to free unused entries. In other words, 20113 * there are enough unused entries to free to meet our 20114 * target number of freed ire cache entries. 20115 */ 20116 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20117 ncr.ncr_host = 0; 20118 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20119 /* 20120 * Only need to free unused entries, plus a fraction of offlink 20121 * entries. It follows from the first if statement that 20122 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20123 */ 20124 delete_cnt -= icc.icc_unused; 20125 /* Round up # deleted by truncating fraction */ 20126 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20127 icr.icr_pmtu = icr.icr_onlink = 0; 20128 ncr.ncr_host = 0; 20129 } else if (delete_cnt <= 20130 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20131 /* 20132 * Free all unused and offlink entries, plus a fraction of 20133 * pmtu entries. It follows from the previous if statement 20134 * that icc_pmtu is non-zero, and that 20135 * delete_cnt != icc_unused + icc_offlink. 20136 */ 20137 icr.icr_offlink = 1; 20138 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20139 /* Round up # deleted by truncating fraction */ 20140 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20141 icr.icr_onlink = 0; 20142 ncr.ncr_host = 0; 20143 } else { 20144 /* 20145 * Free all unused, offlink, and pmtu entries, plus a fraction 20146 * of onlink entries. If we're here, then we know that 20147 * icc_onlink is non-zero, and that 20148 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20149 */ 20150 icr.icr_offlink = icr.icr_pmtu = 1; 20151 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20152 icc.icc_pmtu; 20153 /* Round up # deleted by truncating fraction */ 20154 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20155 /* Using the same delete fraction as for onlink IREs */ 20156 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20157 } 20158 #ifdef DEBUG 20159 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20160 "fractions %d/%d/%d/%d\n", 20161 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20162 icc.icc_unused, icc.icc_offlink, 20163 icc.icc_pmtu, icc.icc_onlink, 20164 icr.icr_unused, icr.icr_offlink, 20165 icr.icr_pmtu, icr.icr_onlink)); 20166 #endif 20167 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20168 if (ncr.ncr_host != 0) 20169 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20170 (uchar_t *)&ncr, ipst); 20171 #ifdef DEBUG 20172 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20173 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20174 ire_walk(ire_cache_count, (char *)&icc, ipst); 20175 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20176 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20177 icc.icc_pmtu, icc.icc_onlink)); 20178 #endif 20179 } 20180 20181 /* 20182 * ip_unbind is called when a copy of an unbind request is received from the 20183 * upper level protocol. We remove this conn from any fanout hash list it is 20184 * on, and zero out the bind information. No reply is expected up above. 20185 */ 20186 mblk_t * 20187 ip_unbind(queue_t *q, mblk_t *mp) 20188 { 20189 conn_t *connp = Q_TO_CONN(q); 20190 20191 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20192 20193 if (is_system_labeled() && connp->conn_anon_port) { 20194 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20195 connp->conn_mlp_type, connp->conn_ulp, 20196 ntohs(connp->conn_lport), B_FALSE); 20197 connp->conn_anon_port = 0; 20198 } 20199 connp->conn_mlp_type = mlptSingle; 20200 20201 ipcl_hash_remove(connp); 20202 20203 ASSERT(mp->b_cont == NULL); 20204 /* 20205 * Convert mp into a T_OK_ACK 20206 */ 20207 mp = mi_tpi_ok_ack_alloc(mp); 20208 20209 /* 20210 * should not happen in practice... T_OK_ACK is smaller than the 20211 * original message. 20212 */ 20213 if (mp == NULL) 20214 return (NULL); 20215 20216 /* 20217 * Don't bzero the ports if its TCP since TCP still needs the 20218 * lport to remove it from its own bind hash. TCP will do the 20219 * cleanup. 20220 */ 20221 if (!IPCL_IS_TCP(connp)) 20222 bzero(&connp->u_port, sizeof (connp->u_port)); 20223 20224 return (mp); 20225 } 20226 20227 /* 20228 * Write side put procedure. Outbound data, IOCTLs, responses from 20229 * resolvers, etc, come down through here. 20230 * 20231 * arg2 is always a queue_t *. 20232 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20233 * the zoneid. 20234 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20235 */ 20236 void 20237 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20238 { 20239 ip_output_options(arg, mp, arg2, caller, &zero_info); 20240 } 20241 20242 void 20243 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20244 ip_opt_info_t *infop) 20245 { 20246 conn_t *connp = NULL; 20247 queue_t *q = (queue_t *)arg2; 20248 ipha_t *ipha; 20249 #define rptr ((uchar_t *)ipha) 20250 ire_t *ire = NULL; 20251 ire_t *sctp_ire = NULL; 20252 uint32_t v_hlen_tos_len; 20253 ipaddr_t dst; 20254 mblk_t *first_mp = NULL; 20255 boolean_t mctl_present; 20256 ipsec_out_t *io; 20257 int match_flags; 20258 ill_t *attach_ill = NULL; 20259 /* Bind to IPIF_NOFAILOVER ill etc. */ 20260 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20261 ipif_t *dst_ipif; 20262 boolean_t multirt_need_resolve = B_FALSE; 20263 mblk_t *copy_mp = NULL; 20264 int err; 20265 zoneid_t zoneid; 20266 int adjust; 20267 uint16_t iplen; 20268 boolean_t need_decref = B_FALSE; 20269 boolean_t ignore_dontroute = B_FALSE; 20270 boolean_t ignore_nexthop = B_FALSE; 20271 boolean_t ip_nexthop = B_FALSE; 20272 ipaddr_t nexthop_addr; 20273 ip_stack_t *ipst; 20274 20275 #ifdef _BIG_ENDIAN 20276 #define V_HLEN (v_hlen_tos_len >> 24) 20277 #else 20278 #define V_HLEN (v_hlen_tos_len & 0xFF) 20279 #endif 20280 20281 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20282 "ip_wput_start: q %p", q); 20283 20284 /* 20285 * ip_wput fast path 20286 */ 20287 20288 /* is packet from ARP ? */ 20289 if (q->q_next != NULL) { 20290 zoneid = (zoneid_t)(uintptr_t)arg; 20291 goto qnext; 20292 } 20293 20294 connp = (conn_t *)arg; 20295 ASSERT(connp != NULL); 20296 zoneid = connp->conn_zoneid; 20297 ipst = connp->conn_netstack->netstack_ip; 20298 20299 /* is queue flow controlled? */ 20300 if ((q->q_first != NULL || connp->conn_draining) && 20301 (caller == IP_WPUT)) { 20302 ASSERT(!need_decref); 20303 (void) putq(q, mp); 20304 return; 20305 } 20306 20307 /* Multidata transmit? */ 20308 if (DB_TYPE(mp) == M_MULTIDATA) { 20309 /* 20310 * We should never get here, since all Multidata messages 20311 * originating from tcp should have been directed over to 20312 * tcp_multisend() in the first place. 20313 */ 20314 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20315 freemsg(mp); 20316 return; 20317 } else if (DB_TYPE(mp) != M_DATA) 20318 goto notdata; 20319 20320 if (mp->b_flag & MSGHASREF) { 20321 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20322 mp->b_flag &= ~MSGHASREF; 20323 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20324 need_decref = B_TRUE; 20325 } 20326 ipha = (ipha_t *)mp->b_rptr; 20327 20328 /* is IP header non-aligned or mblk smaller than basic IP header */ 20329 #ifndef SAFETY_BEFORE_SPEED 20330 if (!OK_32PTR(rptr) || 20331 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20332 goto hdrtoosmall; 20333 #endif 20334 20335 ASSERT(OK_32PTR(ipha)); 20336 20337 /* 20338 * This function assumes that mp points to an IPv4 packet. If it's the 20339 * wrong version, we'll catch it again in ip_output_v6. 20340 * 20341 * Note that this is *only* locally-generated output here, and never 20342 * forwarded data, and that we need to deal only with transports that 20343 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20344 * label.) 20345 */ 20346 if (is_system_labeled() && 20347 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20348 !connp->conn_ulp_labeled) { 20349 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20350 connp->conn_mac_exempt, ipst); 20351 ipha = (ipha_t *)mp->b_rptr; 20352 if (err != 0) { 20353 first_mp = mp; 20354 if (err == EINVAL) 20355 goto icmp_parameter_problem; 20356 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20357 goto discard_pkt; 20358 } 20359 iplen = ntohs(ipha->ipha_length) + adjust; 20360 ipha->ipha_length = htons(iplen); 20361 } 20362 20363 ASSERT(infop != NULL); 20364 20365 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20366 /* 20367 * IP_PKTINFO ancillary option is present. 20368 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20369 * allows using address of any zone as the source address. 20370 */ 20371 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20372 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20373 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20374 if (ire == NULL) 20375 goto drop_pkt; 20376 ire_refrele(ire); 20377 ire = NULL; 20378 } 20379 20380 /* 20381 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20382 * ill index passed in IP_PKTINFO. 20383 */ 20384 if (infop->ip_opt_ill_index != 0 && 20385 connp->conn_xmit_if_ill == NULL && 20386 connp->conn_nofailover_ill == NULL) { 20387 20388 xmit_ill = ill_lookup_on_ifindex( 20389 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20390 ipst); 20391 20392 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20393 goto drop_pkt; 20394 /* 20395 * check that there is an ipif belonging 20396 * to our zone. IPCL_ZONEID is not used because 20397 * IP_ALLZONES option is valid only when the ill is 20398 * accessible from all zones i.e has a valid ipif in 20399 * all zones. 20400 */ 20401 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20402 goto drop_pkt; 20403 } 20404 } 20405 20406 /* 20407 * If there is a policy, try to attach an ipsec_out in 20408 * the front. At the end, first_mp either points to a 20409 * M_DATA message or IPSEC_OUT message linked to a 20410 * M_DATA message. We have to do it now as we might 20411 * lose the "conn" if we go through ip_newroute. 20412 */ 20413 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20414 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 20415 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20416 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20417 if (need_decref) 20418 CONN_DEC_REF(connp); 20419 return; 20420 } else { 20421 ASSERT(mp->b_datap->db_type == M_CTL); 20422 first_mp = mp; 20423 mp = mp->b_cont; 20424 mctl_present = B_TRUE; 20425 } 20426 } else { 20427 first_mp = mp; 20428 mctl_present = B_FALSE; 20429 } 20430 20431 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20432 20433 /* is wrong version or IP options present */ 20434 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20435 goto version_hdrlen_check; 20436 dst = ipha->ipha_dst; 20437 20438 if (connp->conn_nofailover_ill != NULL) { 20439 attach_ill = conn_get_held_ill(connp, 20440 &connp->conn_nofailover_ill, &err); 20441 if (err == ILL_LOOKUP_FAILED) { 20442 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20443 if (need_decref) 20444 CONN_DEC_REF(connp); 20445 freemsg(first_mp); 20446 return; 20447 } 20448 } 20449 20450 20451 /* is packet multicast? */ 20452 if (CLASSD(dst)) 20453 goto multicast; 20454 20455 /* 20456 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20457 * takes precedence over conn_dontroute and conn_nexthop_set 20458 */ 20459 if (xmit_ill != NULL) { 20460 goto send_from_ill; 20461 } 20462 20463 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20464 (connp->conn_nexthop_set)) { 20465 /* 20466 * If the destination is a broadcast or a loopback 20467 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20468 * through the standard path. But in the case of local 20469 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20470 * the standard path not IP_XMIT_IF. 20471 */ 20472 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20473 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20474 (ire->ire_type != IRE_LOOPBACK))) { 20475 if ((connp->conn_dontroute || 20476 connp->conn_nexthop_set) && (ire != NULL) && 20477 (ire->ire_type == IRE_LOCAL)) 20478 goto standard_path; 20479 20480 if (ire != NULL) { 20481 ire_refrele(ire); 20482 /* No more access to ire */ 20483 ire = NULL; 20484 } 20485 /* 20486 * bypass routing checks and go directly to 20487 * interface. 20488 */ 20489 if (connp->conn_dontroute) { 20490 goto dontroute; 20491 } else if (connp->conn_nexthop_set) { 20492 ip_nexthop = B_TRUE; 20493 nexthop_addr = connp->conn_nexthop_v4; 20494 goto send_from_ill; 20495 } 20496 20497 /* 20498 * If IP_XMIT_IF socket option is set, 20499 * then we allow unicast and multicast 20500 * packets to go through the ill. It is 20501 * quite possible that the destination 20502 * is not in the ire cache table and we 20503 * do not want to go to ip_newroute() 20504 * instead we call ip_newroute_ipif. 20505 */ 20506 xmit_ill = conn_get_held_ill(connp, 20507 &connp->conn_xmit_if_ill, &err); 20508 if (err == ILL_LOOKUP_FAILED) { 20509 BUMP_MIB(&ipst->ips_ip_mib, 20510 ipIfStatsOutDiscards); 20511 if (attach_ill != NULL) 20512 ill_refrele(attach_ill); 20513 if (need_decref) 20514 CONN_DEC_REF(connp); 20515 freemsg(first_mp); 20516 return; 20517 } 20518 goto send_from_ill; 20519 } 20520 standard_path: 20521 /* Must be a broadcast, a loopback or a local ire */ 20522 if (ire != NULL) { 20523 ire_refrele(ire); 20524 /* No more access to ire */ 20525 ire = NULL; 20526 } 20527 } 20528 20529 if (attach_ill != NULL) 20530 goto send_from_ill; 20531 20532 /* 20533 * We cache IRE_CACHEs to avoid lookups. We don't do 20534 * this for the tcp global queue and listen end point 20535 * as it does not really have a real destination to 20536 * talk to. This is also true for SCTP. 20537 */ 20538 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20539 !connp->conn_fully_bound) { 20540 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20541 if (ire == NULL) 20542 goto noirefound; 20543 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20544 "ip_wput_end: q %p (%S)", q, "end"); 20545 20546 /* 20547 * Check if the ire has the RTF_MULTIRT flag, inherited 20548 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20549 */ 20550 if (ire->ire_flags & RTF_MULTIRT) { 20551 20552 /* 20553 * Force the TTL of multirouted packets if required. 20554 * The TTL of such packets is bounded by the 20555 * ip_multirt_ttl ndd variable. 20556 */ 20557 if ((ipst->ips_ip_multirt_ttl > 0) && 20558 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20559 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20560 "(was %d), dst 0x%08x\n", 20561 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20562 ntohl(ire->ire_addr))); 20563 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20564 } 20565 /* 20566 * We look at this point if there are pending 20567 * unresolved routes. ire_multirt_resolvable() 20568 * checks in O(n) that all IRE_OFFSUBNET ire 20569 * entries for the packet's destination and 20570 * flagged RTF_MULTIRT are currently resolved. 20571 * If some remain unresolved, we make a copy 20572 * of the current message. It will be used 20573 * to initiate additional route resolutions. 20574 */ 20575 multirt_need_resolve = 20576 ire_multirt_need_resolve(ire->ire_addr, 20577 MBLK_GETLABEL(first_mp), ipst); 20578 ip2dbg(("ip_wput[TCP]: ire %p, " 20579 "multirt_need_resolve %d, first_mp %p\n", 20580 (void *)ire, multirt_need_resolve, 20581 (void *)first_mp)); 20582 if (multirt_need_resolve) { 20583 copy_mp = copymsg(first_mp); 20584 if (copy_mp != NULL) { 20585 MULTIRT_DEBUG_TAG(copy_mp); 20586 } 20587 } 20588 } 20589 20590 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20591 20592 /* 20593 * Try to resolve another multiroute if 20594 * ire_multirt_need_resolve() deemed it necessary. 20595 */ 20596 if (copy_mp != NULL) { 20597 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20598 } 20599 if (need_decref) 20600 CONN_DEC_REF(connp); 20601 return; 20602 } 20603 20604 /* 20605 * Access to conn_ire_cache. (protected by conn_lock) 20606 * 20607 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20608 * the ire bucket lock here to check for CONDEMNED as it is okay to 20609 * send a packet or two with the IRE_CACHE that is going away. 20610 * Access to the ire requires an ire refhold on the ire prior to 20611 * its use since an interface unplumb thread may delete the cached 20612 * ire and release the refhold at any time. 20613 * 20614 * Caching an ire in the conn_ire_cache 20615 * 20616 * o Caching an ire pointer in the conn requires a strict check for 20617 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20618 * ires before cleaning up the conns. So the caching of an ire pointer 20619 * in the conn is done after making sure under the bucket lock that the 20620 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20621 * caching an ire after the unplumb thread has cleaned up the conn. 20622 * If the conn does not send a packet subsequently the unplumb thread 20623 * will be hanging waiting for the ire count to drop to zero. 20624 * 20625 * o We also need to atomically test for a null conn_ire_cache and 20626 * set the conn_ire_cache under the the protection of the conn_lock 20627 * to avoid races among concurrent threads trying to simultaneously 20628 * cache an ire in the conn_ire_cache. 20629 */ 20630 mutex_enter(&connp->conn_lock); 20631 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20632 20633 if (ire != NULL && ire->ire_addr == dst && 20634 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20635 20636 IRE_REFHOLD(ire); 20637 mutex_exit(&connp->conn_lock); 20638 20639 } else { 20640 boolean_t cached = B_FALSE; 20641 connp->conn_ire_cache = NULL; 20642 mutex_exit(&connp->conn_lock); 20643 /* Release the old ire */ 20644 if (ire != NULL && sctp_ire == NULL) 20645 IRE_REFRELE_NOTR(ire); 20646 20647 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20648 if (ire == NULL) 20649 goto noirefound; 20650 IRE_REFHOLD_NOTR(ire); 20651 20652 mutex_enter(&connp->conn_lock); 20653 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20654 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20655 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20656 connp->conn_ire_cache = ire; 20657 cached = B_TRUE; 20658 } 20659 rw_exit(&ire->ire_bucket->irb_lock); 20660 } 20661 mutex_exit(&connp->conn_lock); 20662 20663 /* 20664 * We can continue to use the ire but since it was 20665 * not cached, we should drop the extra reference. 20666 */ 20667 if (!cached) 20668 IRE_REFRELE_NOTR(ire); 20669 } 20670 20671 20672 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20673 "ip_wput_end: q %p (%S)", q, "end"); 20674 20675 /* 20676 * Check if the ire has the RTF_MULTIRT flag, inherited 20677 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20678 */ 20679 if (ire->ire_flags & RTF_MULTIRT) { 20680 20681 /* 20682 * Force the TTL of multirouted packets if required. 20683 * The TTL of such packets is bounded by the 20684 * ip_multirt_ttl ndd variable. 20685 */ 20686 if ((ipst->ips_ip_multirt_ttl > 0) && 20687 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20688 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20689 "(was %d), dst 0x%08x\n", 20690 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20691 ntohl(ire->ire_addr))); 20692 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20693 } 20694 20695 /* 20696 * At this point, we check to see if there are any pending 20697 * unresolved routes. ire_multirt_resolvable() 20698 * checks in O(n) that all IRE_OFFSUBNET ire 20699 * entries for the packet's destination and 20700 * flagged RTF_MULTIRT are currently resolved. 20701 * If some remain unresolved, we make a copy 20702 * of the current message. It will be used 20703 * to initiate additional route resolutions. 20704 */ 20705 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20706 MBLK_GETLABEL(first_mp), ipst); 20707 ip2dbg(("ip_wput[not TCP]: ire %p, " 20708 "multirt_need_resolve %d, first_mp %p\n", 20709 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20710 if (multirt_need_resolve) { 20711 copy_mp = copymsg(first_mp); 20712 if (copy_mp != NULL) { 20713 MULTIRT_DEBUG_TAG(copy_mp); 20714 } 20715 } 20716 } 20717 20718 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20719 20720 /* 20721 * Try to resolve another multiroute if 20722 * ire_multirt_resolvable() deemed it necessary 20723 */ 20724 if (copy_mp != NULL) { 20725 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20726 } 20727 if (need_decref) 20728 CONN_DEC_REF(connp); 20729 return; 20730 20731 qnext: 20732 /* 20733 * Upper Level Protocols pass down complete IP datagrams 20734 * as M_DATA messages. Everything else is a sideshow. 20735 * 20736 * 1) We could be re-entering ip_wput because of ip_neworute 20737 * in which case we could have a IPSEC_OUT message. We 20738 * need to pass through ip_wput like other datagrams and 20739 * hence cannot branch to ip_wput_nondata. 20740 * 20741 * 2) ARP, AH, ESP, and other clients who are on the module 20742 * instance of IP stream, give us something to deal with. 20743 * We will handle AH and ESP here and rest in ip_wput_nondata. 20744 * 20745 * 3) ICMP replies also could come here. 20746 */ 20747 ipst = ILLQ_TO_IPST(q); 20748 20749 if (DB_TYPE(mp) != M_DATA) { 20750 notdata: 20751 if (DB_TYPE(mp) == M_CTL) { 20752 /* 20753 * M_CTL messages are used by ARP, AH and ESP to 20754 * communicate with IP. We deal with IPSEC_IN and 20755 * IPSEC_OUT here. ip_wput_nondata handles other 20756 * cases. 20757 */ 20758 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20759 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20760 first_mp = mp->b_cont; 20761 first_mp->b_flag &= ~MSGHASREF; 20762 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20763 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20764 CONN_DEC_REF(connp); 20765 connp = NULL; 20766 } 20767 if (ii->ipsec_info_type == IPSEC_IN) { 20768 /* 20769 * Either this message goes back to 20770 * IPSEC for further processing or to 20771 * ULP after policy checks. 20772 */ 20773 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20774 return; 20775 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20776 io = (ipsec_out_t *)ii; 20777 if (io->ipsec_out_proc_begin) { 20778 /* 20779 * IPSEC processing has already started. 20780 * Complete it. 20781 * IPQoS notes: We don't care what is 20782 * in ipsec_out_ill_index since this 20783 * won't be processed for IPQoS policies 20784 * in ipsec_out_process. 20785 */ 20786 ipsec_out_process(q, mp, NULL, 20787 io->ipsec_out_ill_index); 20788 return; 20789 } else { 20790 connp = (q->q_next != NULL) ? 20791 NULL : Q_TO_CONN(q); 20792 first_mp = mp; 20793 mp = mp->b_cont; 20794 mctl_present = B_TRUE; 20795 } 20796 zoneid = io->ipsec_out_zoneid; 20797 ASSERT(zoneid != ALL_ZONES); 20798 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20799 /* 20800 * It's an IPsec control message requesting 20801 * an SADB update to be sent to the IPsec 20802 * hardware acceleration capable ills. 20803 */ 20804 ipsec_ctl_t *ipsec_ctl = 20805 (ipsec_ctl_t *)mp->b_rptr; 20806 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20807 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20808 mblk_t *cmp = mp->b_cont; 20809 20810 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20811 ASSERT(cmp != NULL); 20812 20813 freeb(mp); 20814 ill_ipsec_capab_send_all(satype, cmp, sa, 20815 ipst->ips_netstack); 20816 return; 20817 } else { 20818 /* 20819 * This must be ARP or special TSOL signaling. 20820 */ 20821 ip_wput_nondata(NULL, q, mp, NULL); 20822 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20823 "ip_wput_end: q %p (%S)", q, "nondata"); 20824 return; 20825 } 20826 } else { 20827 /* 20828 * This must be non-(ARP/AH/ESP) messages. 20829 */ 20830 ASSERT(!need_decref); 20831 ip_wput_nondata(NULL, q, mp, NULL); 20832 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20833 "ip_wput_end: q %p (%S)", q, "nondata"); 20834 return; 20835 } 20836 } else { 20837 first_mp = mp; 20838 mctl_present = B_FALSE; 20839 } 20840 20841 ASSERT(first_mp != NULL); 20842 /* 20843 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20844 * to make sure that this packet goes out on the same interface it 20845 * came in. We handle that here. 20846 */ 20847 if (mctl_present) { 20848 uint_t ifindex; 20849 20850 io = (ipsec_out_t *)first_mp->b_rptr; 20851 if (io->ipsec_out_attach_if || 20852 io->ipsec_out_xmit_if || 20853 io->ipsec_out_ip_nexthop) { 20854 ill_t *ill; 20855 20856 /* 20857 * We may have lost the conn context if we are 20858 * coming here from ip_newroute(). Copy the 20859 * nexthop information. 20860 */ 20861 if (io->ipsec_out_ip_nexthop) { 20862 ip_nexthop = B_TRUE; 20863 nexthop_addr = io->ipsec_out_nexthop_addr; 20864 20865 ipha = (ipha_t *)mp->b_rptr; 20866 dst = ipha->ipha_dst; 20867 goto send_from_ill; 20868 } else { 20869 ASSERT(io->ipsec_out_ill_index != 0); 20870 ifindex = io->ipsec_out_ill_index; 20871 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20872 NULL, NULL, NULL, NULL, ipst); 20873 /* 20874 * ipsec_out_xmit_if bit is used to tell 20875 * ip_wput to use the ill to send outgoing data 20876 * as we have no conn when data comes from ICMP 20877 * error msg routines. Currently this feature is 20878 * only used by ip_mrtun_forward routine. 20879 */ 20880 if (io->ipsec_out_xmit_if) { 20881 xmit_ill = ill; 20882 if (xmit_ill == NULL) { 20883 ip1dbg(("ip_output:bad ifindex " 20884 "for xmit_ill %d\n", 20885 ifindex)); 20886 freemsg(first_mp); 20887 BUMP_MIB(&ipst->ips_ip_mib, 20888 ipIfStatsOutDiscards); 20889 ASSERT(!need_decref); 20890 return; 20891 } 20892 /* Free up the ipsec_out_t mblk */ 20893 ASSERT(first_mp->b_cont == mp); 20894 first_mp->b_cont = NULL; 20895 freeb(first_mp); 20896 /* Just send the IP header+ICMP+data */ 20897 first_mp = mp; 20898 ipha = (ipha_t *)mp->b_rptr; 20899 dst = ipha->ipha_dst; 20900 goto send_from_ill; 20901 } else { 20902 attach_ill = ill; 20903 } 20904 20905 if (attach_ill == NULL) { 20906 ASSERT(xmit_ill == NULL); 20907 ip1dbg(("ip_output: bad ifindex for " 20908 "(BIND TO IPIF_NOFAILOVER) %d\n", 20909 ifindex)); 20910 freemsg(first_mp); 20911 BUMP_MIB(&ipst->ips_ip_mib, 20912 ipIfStatsOutDiscards); 20913 ASSERT(!need_decref); 20914 return; 20915 } 20916 } 20917 } 20918 } 20919 20920 ASSERT(xmit_ill == NULL); 20921 20922 /* We have a complete IP datagram heading outbound. */ 20923 ipha = (ipha_t *)mp->b_rptr; 20924 20925 #ifndef SPEED_BEFORE_SAFETY 20926 /* 20927 * Make sure we have a full-word aligned message and that at least 20928 * a simple IP header is accessible in the first message. If not, 20929 * try a pullup. 20930 */ 20931 if (!OK_32PTR(rptr) || 20932 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20933 hdrtoosmall: 20934 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20935 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20936 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20937 if (first_mp == NULL) 20938 first_mp = mp; 20939 goto discard_pkt; 20940 } 20941 20942 /* This function assumes that mp points to an IPv4 packet. */ 20943 if (is_system_labeled() && q->q_next == NULL && 20944 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20945 !connp->conn_ulp_labeled) { 20946 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20947 &adjust, connp->conn_mac_exempt, ipst); 20948 ipha = (ipha_t *)mp->b_rptr; 20949 if (first_mp != NULL) 20950 first_mp->b_cont = mp; 20951 if (err != 0) { 20952 if (first_mp == NULL) 20953 first_mp = mp; 20954 if (err == EINVAL) 20955 goto icmp_parameter_problem; 20956 ip2dbg(("ip_wput: label check failed (%d)\n", 20957 err)); 20958 goto discard_pkt; 20959 } 20960 iplen = ntohs(ipha->ipha_length) + adjust; 20961 ipha->ipha_length = htons(iplen); 20962 } 20963 20964 ipha = (ipha_t *)mp->b_rptr; 20965 if (first_mp == NULL) { 20966 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20967 /* 20968 * If we got here because of "goto hdrtoosmall" 20969 * We need to attach a IPSEC_OUT. 20970 */ 20971 if (connp->conn_out_enforce_policy) { 20972 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20973 NULL, ipha->ipha_protocol, 20974 ipst->ips_netstack)) == NULL)) { 20975 BUMP_MIB(&ipst->ips_ip_mib, 20976 ipIfStatsOutDiscards); 20977 if (need_decref) 20978 CONN_DEC_REF(connp); 20979 return; 20980 } else { 20981 ASSERT(mp->b_datap->db_type == M_CTL); 20982 first_mp = mp; 20983 mp = mp->b_cont; 20984 mctl_present = B_TRUE; 20985 } 20986 } else { 20987 first_mp = mp; 20988 mctl_present = B_FALSE; 20989 } 20990 } 20991 } 20992 #endif 20993 20994 /* Most of the code below is written for speed, not readability */ 20995 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20996 20997 /* 20998 * If ip_newroute() fails, we're going to need a full 20999 * header for the icmp wraparound. 21000 */ 21001 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21002 uint_t v_hlen; 21003 version_hdrlen_check: 21004 ASSERT(first_mp != NULL); 21005 v_hlen = V_HLEN; 21006 /* 21007 * siphon off IPv6 packets coming down from transport 21008 * layer modules here. 21009 * Note: high-order bit carries NUD reachability confirmation 21010 */ 21011 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21012 /* 21013 * XXX implement a IPv4 and IPv6 packet counter per 21014 * conn and switch when ratio exceeds e.g. 10:1 21015 */ 21016 #ifdef notyet 21017 if (q->q_next == NULL) /* Avoid ill queue */ 21018 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21019 #endif 21020 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21021 ASSERT(xmit_ill == NULL); 21022 if (attach_ill != NULL) 21023 ill_refrele(attach_ill); 21024 if (need_decref) 21025 mp->b_flag |= MSGHASREF; 21026 (void) ip_output_v6(arg, first_mp, arg2, caller); 21027 return; 21028 } 21029 21030 if ((v_hlen >> 4) != IP_VERSION) { 21031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21032 "ip_wput_end: q %p (%S)", q, "badvers"); 21033 goto discard_pkt; 21034 } 21035 /* 21036 * Is the header length at least 20 bytes? 21037 * 21038 * Are there enough bytes accessible in the header? If 21039 * not, try a pullup. 21040 */ 21041 v_hlen &= 0xF; 21042 v_hlen <<= 2; 21043 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21044 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21045 "ip_wput_end: q %p (%S)", q, "badlen"); 21046 goto discard_pkt; 21047 } 21048 if (v_hlen > (mp->b_wptr - rptr)) { 21049 if (!pullupmsg(mp, v_hlen)) { 21050 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21051 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21052 goto discard_pkt; 21053 } 21054 ipha = (ipha_t *)mp->b_rptr; 21055 } 21056 /* 21057 * Move first entry from any source route into ipha_dst and 21058 * verify the options 21059 */ 21060 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21061 zoneid, ipst)) { 21062 ASSERT(xmit_ill == NULL); 21063 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21064 if (attach_ill != NULL) 21065 ill_refrele(attach_ill); 21066 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21067 "ip_wput_end: q %p (%S)", q, "badopts"); 21068 if (need_decref) 21069 CONN_DEC_REF(connp); 21070 return; 21071 } 21072 } 21073 dst = ipha->ipha_dst; 21074 21075 /* 21076 * Try to get an IRE_CACHE for the destination address. If we can't, 21077 * we have to run the packet through ip_newroute which will take 21078 * the appropriate action to arrange for an IRE_CACHE, such as querying 21079 * a resolver, or assigning a default gateway, etc. 21080 */ 21081 if (CLASSD(dst)) { 21082 ipif_t *ipif; 21083 uint32_t setsrc = 0; 21084 21085 multicast: 21086 ASSERT(first_mp != NULL); 21087 ip2dbg(("ip_wput: CLASSD\n")); 21088 if (connp == NULL) { 21089 /* 21090 * Use the first good ipif on the ill. 21091 * XXX Should this ever happen? (Appears 21092 * to show up with just ppp and no ethernet due 21093 * to in.rdisc.) 21094 * However, ire_send should be able to 21095 * call ip_wput_ire directly. 21096 * 21097 * XXX Also, this can happen for ICMP and other packets 21098 * with multicast source addresses. Perhaps we should 21099 * fix things so that we drop the packet in question, 21100 * but for now, just run with it. 21101 */ 21102 ill_t *ill = (ill_t *)q->q_ptr; 21103 21104 /* 21105 * Don't honor attach_if for this case. If ill 21106 * is part of the group, ipif could belong to 21107 * any ill and we cannot maintain attach_ill 21108 * and ipif_ill same anymore and the assert 21109 * below would fail. 21110 */ 21111 if (mctl_present && io->ipsec_out_attach_if) { 21112 io->ipsec_out_ill_index = 0; 21113 io->ipsec_out_attach_if = B_FALSE; 21114 ASSERT(attach_ill != NULL); 21115 ill_refrele(attach_ill); 21116 attach_ill = NULL; 21117 } 21118 21119 ASSERT(attach_ill == NULL); 21120 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21121 if (ipif == NULL) { 21122 if (need_decref) 21123 CONN_DEC_REF(connp); 21124 freemsg(first_mp); 21125 return; 21126 } 21127 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21128 ntohl(dst), ill->ill_name)); 21129 } else { 21130 /* 21131 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21132 * and IP_MULTICAST_IF. 21133 * Block comment above this function explains the 21134 * locking mechanism used here 21135 */ 21136 if (xmit_ill == NULL) { 21137 xmit_ill = conn_get_held_ill(connp, 21138 &connp->conn_xmit_if_ill, &err); 21139 if (err == ILL_LOOKUP_FAILED) { 21140 ip1dbg(("ip_wput: No ill for " 21141 "IP_XMIT_IF\n")); 21142 BUMP_MIB(&ipst->ips_ip_mib, 21143 ipIfStatsOutNoRoutes); 21144 goto drop_pkt; 21145 } 21146 } 21147 21148 if (xmit_ill == NULL) { 21149 ipif = conn_get_held_ipif(connp, 21150 &connp->conn_multicast_ipif, &err); 21151 if (err == IPIF_LOOKUP_FAILED) { 21152 ip1dbg(("ip_wput: No ipif for " 21153 "multicast\n")); 21154 BUMP_MIB(&ipst->ips_ip_mib, 21155 ipIfStatsOutNoRoutes); 21156 goto drop_pkt; 21157 } 21158 } 21159 if (xmit_ill != NULL) { 21160 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21161 if (ipif == NULL) { 21162 ip1dbg(("ip_wput: No ipif for " 21163 "IP_XMIT_IF\n")); 21164 BUMP_MIB(&ipst->ips_ip_mib, 21165 ipIfStatsOutNoRoutes); 21166 goto drop_pkt; 21167 } 21168 } else if (ipif == NULL || ipif->ipif_isv6) { 21169 /* 21170 * We must do this ipif determination here 21171 * else we could pass through ip_newroute 21172 * and come back here without the conn context. 21173 * 21174 * Note: we do late binding i.e. we bind to 21175 * the interface when the first packet is sent. 21176 * For performance reasons we do not rebind on 21177 * each packet but keep the binding until the 21178 * next IP_MULTICAST_IF option. 21179 * 21180 * conn_multicast_{ipif,ill} are shared between 21181 * IPv4 and IPv6 and AF_INET6 sockets can 21182 * send both IPv4 and IPv6 packets. Hence 21183 * we have to check that "isv6" matches above. 21184 */ 21185 if (ipif != NULL) 21186 ipif_refrele(ipif); 21187 ipif = ipif_lookup_group(dst, zoneid, ipst); 21188 if (ipif == NULL) { 21189 ip1dbg(("ip_wput: No ipif for " 21190 "multicast\n")); 21191 BUMP_MIB(&ipst->ips_ip_mib, 21192 ipIfStatsOutNoRoutes); 21193 goto drop_pkt; 21194 } 21195 err = conn_set_held_ipif(connp, 21196 &connp->conn_multicast_ipif, ipif); 21197 if (err == IPIF_LOOKUP_FAILED) { 21198 ipif_refrele(ipif); 21199 ip1dbg(("ip_wput: No ipif for " 21200 "multicast\n")); 21201 BUMP_MIB(&ipst->ips_ip_mib, 21202 ipIfStatsOutNoRoutes); 21203 goto drop_pkt; 21204 } 21205 } 21206 } 21207 ASSERT(!ipif->ipif_isv6); 21208 /* 21209 * As we may lose the conn by the time we reach ip_wput_ire, 21210 * we copy conn_multicast_loop and conn_dontroute on to an 21211 * ipsec_out. In case if this datagram goes out secure, 21212 * we need the ill_index also. Copy that also into the 21213 * ipsec_out. 21214 */ 21215 if (mctl_present) { 21216 io = (ipsec_out_t *)first_mp->b_rptr; 21217 ASSERT(first_mp->b_datap->db_type == M_CTL); 21218 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21219 } else { 21220 ASSERT(mp == first_mp); 21221 if ((first_mp = allocb(sizeof (ipsec_info_t), 21222 BPRI_HI)) == NULL) { 21223 ipif_refrele(ipif); 21224 first_mp = mp; 21225 goto discard_pkt; 21226 } 21227 first_mp->b_datap->db_type = M_CTL; 21228 first_mp->b_wptr += sizeof (ipsec_info_t); 21229 /* ipsec_out_secure is B_FALSE now */ 21230 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21231 io = (ipsec_out_t *)first_mp->b_rptr; 21232 io->ipsec_out_type = IPSEC_OUT; 21233 io->ipsec_out_len = sizeof (ipsec_out_t); 21234 io->ipsec_out_use_global_policy = B_TRUE; 21235 io->ipsec_out_ns = ipst->ips_netstack; 21236 first_mp->b_cont = mp; 21237 mctl_present = B_TRUE; 21238 } 21239 if (attach_ill != NULL) { 21240 ASSERT(attach_ill == ipif->ipif_ill); 21241 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21242 21243 /* 21244 * Check if we need an ire that will not be 21245 * looked up by anybody else i.e. HIDDEN. 21246 */ 21247 if (ill_is_probeonly(attach_ill)) { 21248 match_flags |= MATCH_IRE_MARK_HIDDEN; 21249 } 21250 io->ipsec_out_ill_index = 21251 attach_ill->ill_phyint->phyint_ifindex; 21252 io->ipsec_out_attach_if = B_TRUE; 21253 } else { 21254 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21255 io->ipsec_out_ill_index = 21256 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21257 } 21258 if (connp != NULL) { 21259 io->ipsec_out_multicast_loop = 21260 connp->conn_multicast_loop; 21261 io->ipsec_out_dontroute = connp->conn_dontroute; 21262 io->ipsec_out_zoneid = connp->conn_zoneid; 21263 } 21264 /* 21265 * If the application uses IP_MULTICAST_IF with 21266 * different logical addresses of the same ILL, we 21267 * need to make sure that the soruce address of 21268 * the packet matches the logical IP address used 21269 * in the option. We do it by initializing ipha_src 21270 * here. This should keep IPSEC also happy as 21271 * when we return from IPSEC processing, we don't 21272 * have to worry about getting the right address on 21273 * the packet. Thus it is sufficient to look for 21274 * IRE_CACHE using MATCH_IRE_ILL rathen than 21275 * MATCH_IRE_IPIF. 21276 * 21277 * NOTE : We need to do it for non-secure case also as 21278 * this might go out secure if there is a global policy 21279 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21280 * address, the source should be initialized already and 21281 * hence we won't be initializing here. 21282 * 21283 * As we do not have the ire yet, it is possible that 21284 * we set the source address here and then later discover 21285 * that the ire implies the source address to be assigned 21286 * through the RTF_SETSRC flag. 21287 * In that case, the setsrc variable will remind us 21288 * that overwritting the source address by the one 21289 * of the RTF_SETSRC-flagged ire is allowed. 21290 */ 21291 if (ipha->ipha_src == INADDR_ANY && 21292 (connp == NULL || !connp->conn_unspec_src)) { 21293 ipha->ipha_src = ipif->ipif_src_addr; 21294 setsrc = RTF_SETSRC; 21295 } 21296 /* 21297 * Find an IRE which matches the destination and the outgoing 21298 * queue (i.e. the outgoing interface.) 21299 * For loopback use a unicast IP address for 21300 * the ire lookup. 21301 */ 21302 if (ipif->ipif_ill->ill_phyint->phyint_flags & 21303 PHYI_LOOPBACK) { 21304 dst = ipif->ipif_lcl_addr; 21305 } 21306 /* 21307 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21308 * We don't need to lookup ire in ctable as the packet 21309 * needs to be sent to the destination through the specified 21310 * ill irrespective of ires in the cache table. 21311 */ 21312 ire = NULL; 21313 if (xmit_ill == NULL) { 21314 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21315 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21316 } 21317 21318 /* 21319 * refrele attach_ill as its not needed anymore. 21320 */ 21321 if (attach_ill != NULL) { 21322 ill_refrele(attach_ill); 21323 attach_ill = NULL; 21324 } 21325 21326 if (ire == NULL) { 21327 /* 21328 * Multicast loopback and multicast forwarding is 21329 * done in ip_wput_ire. 21330 * 21331 * Mark this packet to make it be delivered to 21332 * ip_wput_ire after the new ire has been 21333 * created. 21334 * 21335 * The call to ip_newroute_ipif takes into account 21336 * the setsrc reminder. In any case, we take care 21337 * of the RTF_MULTIRT flag. 21338 */ 21339 mp->b_prev = mp->b_next = NULL; 21340 if (xmit_ill == NULL || 21341 xmit_ill->ill_ipif_up_count > 0) { 21342 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21343 setsrc | RTF_MULTIRT, zoneid, infop); 21344 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21345 "ip_wput_end: q %p (%S)", q, "noire"); 21346 } else { 21347 freemsg(first_mp); 21348 } 21349 ipif_refrele(ipif); 21350 if (xmit_ill != NULL) 21351 ill_refrele(xmit_ill); 21352 if (need_decref) 21353 CONN_DEC_REF(connp); 21354 return; 21355 } 21356 21357 ipif_refrele(ipif); 21358 ipif = NULL; 21359 ASSERT(xmit_ill == NULL); 21360 21361 /* 21362 * Honor the RTF_SETSRC flag for multicast packets, 21363 * if allowed by the setsrc reminder. 21364 */ 21365 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21366 ipha->ipha_src = ire->ire_src_addr; 21367 } 21368 21369 /* 21370 * Unconditionally force the TTL to 1 for 21371 * multirouted multicast packets: 21372 * multirouted multicast should not cross 21373 * multicast routers. 21374 */ 21375 if (ire->ire_flags & RTF_MULTIRT) { 21376 if (ipha->ipha_ttl > 1) { 21377 ip2dbg(("ip_wput: forcing multicast " 21378 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21379 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21380 ipha->ipha_ttl = 1; 21381 } 21382 } 21383 } else { 21384 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21385 if ((ire != NULL) && (ire->ire_type & 21386 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21387 ignore_dontroute = B_TRUE; 21388 ignore_nexthop = B_TRUE; 21389 } 21390 if (ire != NULL) { 21391 ire_refrele(ire); 21392 ire = NULL; 21393 } 21394 /* 21395 * Guard against coming in from arp in which case conn is NULL. 21396 * Also guard against non M_DATA with dontroute set but 21397 * destined to local, loopback or broadcast addresses. 21398 */ 21399 if (connp != NULL && connp->conn_dontroute && 21400 !ignore_dontroute) { 21401 dontroute: 21402 /* 21403 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21404 * routing protocols from seeing false direct 21405 * connectivity. 21406 */ 21407 ipha->ipha_ttl = 1; 21408 /* 21409 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21410 * along with SO_DONTROUTE, higher precedence is 21411 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21412 */ 21413 if (connp->conn_xmit_if_ill == NULL) { 21414 /* If suitable ipif not found, drop packet */ 21415 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21416 ipst); 21417 if (dst_ipif == NULL) { 21418 ip1dbg(("ip_wput: no route for " 21419 "dst using SO_DONTROUTE\n")); 21420 BUMP_MIB(&ipst->ips_ip_mib, 21421 ipIfStatsOutNoRoutes); 21422 mp->b_prev = mp->b_next = NULL; 21423 if (first_mp == NULL) 21424 first_mp = mp; 21425 goto drop_pkt; 21426 } else { 21427 /* 21428 * If suitable ipif has been found, set 21429 * xmit_ill to the corresponding 21430 * ipif_ill because we'll be following 21431 * the IP_XMIT_IF logic. 21432 */ 21433 ASSERT(xmit_ill == NULL); 21434 xmit_ill = dst_ipif->ipif_ill; 21435 mutex_enter(&xmit_ill->ill_lock); 21436 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21437 mutex_exit(&xmit_ill->ill_lock); 21438 xmit_ill = NULL; 21439 ipif_refrele(dst_ipif); 21440 ip1dbg(("ip_wput: no route for" 21441 " dst using" 21442 " SO_DONTROUTE\n")); 21443 BUMP_MIB(&ipst->ips_ip_mib, 21444 ipIfStatsOutNoRoutes); 21445 mp->b_prev = mp->b_next = NULL; 21446 if (first_mp == NULL) 21447 first_mp = mp; 21448 goto drop_pkt; 21449 } 21450 ill_refhold_locked(xmit_ill); 21451 mutex_exit(&xmit_ill->ill_lock); 21452 ipif_refrele(dst_ipif); 21453 } 21454 } 21455 21456 } 21457 /* 21458 * If we are bound to IPIF_NOFAILOVER address, look for 21459 * an IRE_CACHE matching the ill. 21460 */ 21461 send_from_ill: 21462 if (attach_ill != NULL) { 21463 ipif_t *attach_ipif; 21464 21465 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21466 21467 /* 21468 * Check if we need an ire that will not be 21469 * looked up by anybody else i.e. HIDDEN. 21470 */ 21471 if (ill_is_probeonly(attach_ill)) { 21472 match_flags |= MATCH_IRE_MARK_HIDDEN; 21473 } 21474 21475 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21476 if (attach_ipif == NULL) { 21477 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21478 goto discard_pkt; 21479 } 21480 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21481 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21482 ipif_refrele(attach_ipif); 21483 } else if (xmit_ill != NULL || (connp != NULL && 21484 connp->conn_xmit_if_ill != NULL)) { 21485 /* 21486 * Mark this packet as originated locally 21487 */ 21488 mp->b_prev = mp->b_next = NULL; 21489 /* 21490 * xmit_ill could be NULL if SO_DONTROUTE 21491 * is also set. 21492 */ 21493 if (xmit_ill == NULL) { 21494 xmit_ill = conn_get_held_ill(connp, 21495 &connp->conn_xmit_if_ill, &err); 21496 if (err == ILL_LOOKUP_FAILED) { 21497 BUMP_MIB(&ipst->ips_ip_mib, 21498 ipIfStatsOutDiscards); 21499 if (need_decref) 21500 CONN_DEC_REF(connp); 21501 freemsg(first_mp); 21502 return; 21503 } 21504 if (xmit_ill == NULL) { 21505 if (connp->conn_dontroute) 21506 goto dontroute; 21507 goto send_from_ill; 21508 } 21509 } 21510 /* 21511 * Could be SO_DONTROUTE case also. 21512 * check at least one interface is UP as 21513 * specified by this ILL 21514 */ 21515 if (xmit_ill->ill_ipif_up_count > 0) { 21516 ipif_t *ipif; 21517 21518 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21519 if (ipif == NULL) { 21520 ip1dbg(("ip_output: " 21521 "xmit_ill NULL ipif\n")); 21522 goto drop_pkt; 21523 } 21524 /* 21525 * Look for a ire that is part of the group, 21526 * if found use it else call ip_newroute_ipif. 21527 * IPCL_ZONEID is not used for matching because 21528 * IP_ALLZONES option is valid only when the 21529 * ill is accessible from all zones i.e has a 21530 * valid ipif in all zones. 21531 */ 21532 match_flags = MATCH_IRE_ILL_GROUP | 21533 MATCH_IRE_SECATTR; 21534 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21535 MBLK_GETLABEL(mp), match_flags, ipst); 21536 /* 21537 * If an ire exists use it or else create 21538 * an ire but don't add it to the cache. 21539 * Adding an ire may cause issues with 21540 * asymmetric routing. 21541 * In case of multiroute always act as if 21542 * ire does not exist. 21543 */ 21544 if (ire == NULL || 21545 ire->ire_flags & RTF_MULTIRT) { 21546 if (ire != NULL) 21547 ire_refrele(ire); 21548 ip_newroute_ipif(q, first_mp, ipif, 21549 dst, connp, 0, zoneid, infop); 21550 ipif_refrele(ipif); 21551 ip1dbg(("ip_wput: ip_unicast_if\n")); 21552 ill_refrele(xmit_ill); 21553 if (need_decref) 21554 CONN_DEC_REF(connp); 21555 return; 21556 } 21557 ipif_refrele(ipif); 21558 } else { 21559 goto drop_pkt; 21560 } 21561 } else if (ip_nexthop || (connp != NULL && 21562 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21563 if (!ip_nexthop) { 21564 ip_nexthop = B_TRUE; 21565 nexthop_addr = connp->conn_nexthop_v4; 21566 } 21567 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21568 MATCH_IRE_GW; 21569 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21570 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21571 } else { 21572 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21573 ipst); 21574 } 21575 if (!ire) { 21576 /* 21577 * Make sure we don't load spread if this 21578 * is IPIF_NOFAILOVER case. 21579 */ 21580 if ((attach_ill != NULL) || 21581 (ip_nexthop && !ignore_nexthop)) { 21582 if (mctl_present) { 21583 io = (ipsec_out_t *)first_mp->b_rptr; 21584 ASSERT(first_mp->b_datap->db_type == 21585 M_CTL); 21586 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21587 } else { 21588 ASSERT(mp == first_mp); 21589 first_mp = allocb( 21590 sizeof (ipsec_info_t), BPRI_HI); 21591 if (first_mp == NULL) { 21592 first_mp = mp; 21593 goto discard_pkt; 21594 } 21595 first_mp->b_datap->db_type = M_CTL; 21596 first_mp->b_wptr += 21597 sizeof (ipsec_info_t); 21598 /* ipsec_out_secure is B_FALSE now */ 21599 bzero(first_mp->b_rptr, 21600 sizeof (ipsec_info_t)); 21601 io = (ipsec_out_t *)first_mp->b_rptr; 21602 io->ipsec_out_type = IPSEC_OUT; 21603 io->ipsec_out_len = 21604 sizeof (ipsec_out_t); 21605 io->ipsec_out_use_global_policy = 21606 B_TRUE; 21607 io->ipsec_out_ns = ipst->ips_netstack; 21608 first_mp->b_cont = mp; 21609 mctl_present = B_TRUE; 21610 } 21611 if (attach_ill != NULL) { 21612 io->ipsec_out_ill_index = attach_ill-> 21613 ill_phyint->phyint_ifindex; 21614 io->ipsec_out_attach_if = B_TRUE; 21615 } else { 21616 io->ipsec_out_ip_nexthop = ip_nexthop; 21617 io->ipsec_out_nexthop_addr = 21618 nexthop_addr; 21619 } 21620 } 21621 noirefound: 21622 /* 21623 * Mark this packet as having originated on 21624 * this machine. This will be noted in 21625 * ire_add_then_send, which needs to know 21626 * whether to run it back through ip_wput or 21627 * ip_rput following successful resolution. 21628 */ 21629 mp->b_prev = NULL; 21630 mp->b_next = NULL; 21631 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21632 ipst); 21633 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21634 "ip_wput_end: q %p (%S)", q, "newroute"); 21635 if (attach_ill != NULL) 21636 ill_refrele(attach_ill); 21637 if (xmit_ill != NULL) 21638 ill_refrele(xmit_ill); 21639 if (need_decref) 21640 CONN_DEC_REF(connp); 21641 return; 21642 } 21643 } 21644 21645 /* We now know where we are going with it. */ 21646 21647 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21648 "ip_wput_end: q %p (%S)", q, "end"); 21649 21650 /* 21651 * Check if the ire has the RTF_MULTIRT flag, inherited 21652 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21653 */ 21654 if (ire->ire_flags & RTF_MULTIRT) { 21655 /* 21656 * Force the TTL of multirouted packets if required. 21657 * The TTL of such packets is bounded by the 21658 * ip_multirt_ttl ndd variable. 21659 */ 21660 if ((ipst->ips_ip_multirt_ttl > 0) && 21661 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21662 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21663 "(was %d), dst 0x%08x\n", 21664 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21665 ntohl(ire->ire_addr))); 21666 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21667 } 21668 /* 21669 * At this point, we check to see if there are any pending 21670 * unresolved routes. ire_multirt_resolvable() 21671 * checks in O(n) that all IRE_OFFSUBNET ire 21672 * entries for the packet's destination and 21673 * flagged RTF_MULTIRT are currently resolved. 21674 * If some remain unresolved, we make a copy 21675 * of the current message. It will be used 21676 * to initiate additional route resolutions. 21677 */ 21678 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21679 MBLK_GETLABEL(first_mp), ipst); 21680 ip2dbg(("ip_wput[noirefound]: ire %p, " 21681 "multirt_need_resolve %d, first_mp %p\n", 21682 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21683 if (multirt_need_resolve) { 21684 copy_mp = copymsg(first_mp); 21685 if (copy_mp != NULL) { 21686 MULTIRT_DEBUG_TAG(copy_mp); 21687 } 21688 } 21689 } 21690 21691 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21692 /* 21693 * Try to resolve another multiroute if 21694 * ire_multirt_resolvable() deemed it necessary. 21695 * At this point, we need to distinguish 21696 * multicasts from other packets. For multicasts, 21697 * we call ip_newroute_ipif() and request that both 21698 * multirouting and setsrc flags are checked. 21699 */ 21700 if (copy_mp != NULL) { 21701 if (CLASSD(dst)) { 21702 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21703 if (ipif) { 21704 ASSERT(infop->ip_opt_ill_index == 0); 21705 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21706 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21707 ipif_refrele(ipif); 21708 } else { 21709 MULTIRT_DEBUG_UNTAG(copy_mp); 21710 freemsg(copy_mp); 21711 copy_mp = NULL; 21712 } 21713 } else { 21714 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21715 } 21716 } 21717 if (attach_ill != NULL) 21718 ill_refrele(attach_ill); 21719 if (xmit_ill != NULL) 21720 ill_refrele(xmit_ill); 21721 if (need_decref) 21722 CONN_DEC_REF(connp); 21723 return; 21724 21725 icmp_parameter_problem: 21726 /* could not have originated externally */ 21727 ASSERT(mp->b_prev == NULL); 21728 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21729 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21730 /* it's the IP header length that's in trouble */ 21731 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21732 first_mp = NULL; 21733 } 21734 21735 discard_pkt: 21736 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21737 drop_pkt: 21738 ip1dbg(("ip_wput: dropped packet\n")); 21739 if (ire != NULL) 21740 ire_refrele(ire); 21741 if (need_decref) 21742 CONN_DEC_REF(connp); 21743 freemsg(first_mp); 21744 if (attach_ill != NULL) 21745 ill_refrele(attach_ill); 21746 if (xmit_ill != NULL) 21747 ill_refrele(xmit_ill); 21748 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21749 "ip_wput_end: q %p (%S)", q, "droppkt"); 21750 } 21751 21752 /* 21753 * If this is a conn_t queue, then we pass in the conn. This includes the 21754 * zoneid. 21755 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21756 * in which case we use the global zoneid since those are all part of 21757 * the global zone. 21758 */ 21759 void 21760 ip_wput(queue_t *q, mblk_t *mp) 21761 { 21762 if (CONN_Q(q)) 21763 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21764 else 21765 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21766 } 21767 21768 /* 21769 * 21770 * The following rules must be observed when accessing any ipif or ill 21771 * that has been cached in the conn. Typically conn_nofailover_ill, 21772 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21773 * 21774 * Access: The ipif or ill pointed to from the conn can be accessed under 21775 * the protection of the conn_lock or after it has been refheld under the 21776 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21777 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21778 * The reason for this is that a concurrent unplumb could actually be 21779 * cleaning up these cached pointers by walking the conns and might have 21780 * finished cleaning up the conn in question. The macros check that an 21781 * unplumb has not yet started on the ipif or ill. 21782 * 21783 * Caching: An ipif or ill pointer may be cached in the conn only after 21784 * making sure that an unplumb has not started. So the caching is done 21785 * while holding both the conn_lock and the ill_lock and after using the 21786 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21787 * flag before starting the cleanup of conns. 21788 * 21789 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21790 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21791 * or a reference to the ipif or a reference to an ire that references the 21792 * ipif. An ipif does not change its ill except for failover/failback. Since 21793 * failover/failback happens only after bringing down the ipif and making sure 21794 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21795 * the above holds. 21796 */ 21797 ipif_t * 21798 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21799 { 21800 ipif_t *ipif; 21801 ill_t *ill; 21802 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21803 21804 *err = 0; 21805 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21806 mutex_enter(&connp->conn_lock); 21807 ipif = *ipifp; 21808 if (ipif != NULL) { 21809 ill = ipif->ipif_ill; 21810 mutex_enter(&ill->ill_lock); 21811 if (IPIF_CAN_LOOKUP(ipif)) { 21812 ipif_refhold_locked(ipif); 21813 mutex_exit(&ill->ill_lock); 21814 mutex_exit(&connp->conn_lock); 21815 rw_exit(&ipst->ips_ill_g_lock); 21816 return (ipif); 21817 } else { 21818 *err = IPIF_LOOKUP_FAILED; 21819 } 21820 mutex_exit(&ill->ill_lock); 21821 } 21822 mutex_exit(&connp->conn_lock); 21823 rw_exit(&ipst->ips_ill_g_lock); 21824 return (NULL); 21825 } 21826 21827 ill_t * 21828 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21829 { 21830 ill_t *ill; 21831 21832 *err = 0; 21833 mutex_enter(&connp->conn_lock); 21834 ill = *illp; 21835 if (ill != NULL) { 21836 mutex_enter(&ill->ill_lock); 21837 if (ILL_CAN_LOOKUP(ill)) { 21838 ill_refhold_locked(ill); 21839 mutex_exit(&ill->ill_lock); 21840 mutex_exit(&connp->conn_lock); 21841 return (ill); 21842 } else { 21843 *err = ILL_LOOKUP_FAILED; 21844 } 21845 mutex_exit(&ill->ill_lock); 21846 } 21847 mutex_exit(&connp->conn_lock); 21848 return (NULL); 21849 } 21850 21851 static int 21852 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21853 { 21854 ill_t *ill; 21855 21856 ill = ipif->ipif_ill; 21857 mutex_enter(&connp->conn_lock); 21858 mutex_enter(&ill->ill_lock); 21859 if (IPIF_CAN_LOOKUP(ipif)) { 21860 *ipifp = ipif; 21861 mutex_exit(&ill->ill_lock); 21862 mutex_exit(&connp->conn_lock); 21863 return (0); 21864 } 21865 mutex_exit(&ill->ill_lock); 21866 mutex_exit(&connp->conn_lock); 21867 return (IPIF_LOOKUP_FAILED); 21868 } 21869 21870 /* 21871 * This is called if the outbound datagram needs fragmentation. 21872 * 21873 * NOTE : This function does not ire_refrele the ire argument passed in. 21874 */ 21875 static void 21876 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21877 ip_stack_t *ipst) 21878 { 21879 ipha_t *ipha; 21880 mblk_t *mp; 21881 uint32_t v_hlen_tos_len; 21882 uint32_t max_frag; 21883 uint32_t frag_flag; 21884 boolean_t dont_use; 21885 21886 if (ipsec_mp->b_datap->db_type == M_CTL) { 21887 mp = ipsec_mp->b_cont; 21888 } else { 21889 mp = ipsec_mp; 21890 } 21891 21892 ipha = (ipha_t *)mp->b_rptr; 21893 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21894 21895 #ifdef _BIG_ENDIAN 21896 #define V_HLEN (v_hlen_tos_len >> 24) 21897 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21898 #else 21899 #define V_HLEN (v_hlen_tos_len & 0xFF) 21900 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21901 #endif 21902 21903 #ifndef SPEED_BEFORE_SAFETY 21904 /* 21905 * Check that ipha_length is consistent with 21906 * the mblk length 21907 */ 21908 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21909 ip0dbg(("Packet length mismatch: %d, %ld\n", 21910 LENGTH, msgdsize(mp))); 21911 freemsg(ipsec_mp); 21912 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21913 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21914 "packet length mismatch"); 21915 return; 21916 } 21917 #endif 21918 /* 21919 * Don't use frag_flag if pre-built packet or source 21920 * routed or if multicast (since multicast packets do not solicit 21921 * ICMP "packet too big" messages). Get the values of 21922 * max_frag and frag_flag atomically by acquiring the 21923 * ire_lock. 21924 */ 21925 mutex_enter(&ire->ire_lock); 21926 max_frag = ire->ire_max_frag; 21927 frag_flag = ire->ire_frag_flag; 21928 mutex_exit(&ire->ire_lock); 21929 21930 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21931 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21932 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21933 21934 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21935 (dont_use ? 0 : frag_flag), zoneid, ipst); 21936 } 21937 21938 /* 21939 * Used for deciding the MSS size for the upper layer. Thus 21940 * we need to check the outbound policy values in the conn. 21941 */ 21942 int 21943 conn_ipsec_length(conn_t *connp) 21944 { 21945 ipsec_latch_t *ipl; 21946 21947 ipl = connp->conn_latch; 21948 if (ipl == NULL) 21949 return (0); 21950 21951 if (ipl->ipl_out_policy == NULL) 21952 return (0); 21953 21954 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21955 } 21956 21957 /* 21958 * Returns an estimate of the IPSEC headers size. This is used if 21959 * we don't want to call into IPSEC to get the exact size. 21960 */ 21961 int 21962 ipsec_out_extra_length(mblk_t *ipsec_mp) 21963 { 21964 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21965 ipsec_action_t *a; 21966 21967 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21968 if (!io->ipsec_out_secure) 21969 return (0); 21970 21971 a = io->ipsec_out_act; 21972 21973 if (a == NULL) { 21974 ASSERT(io->ipsec_out_policy != NULL); 21975 a = io->ipsec_out_policy->ipsp_act; 21976 } 21977 ASSERT(a != NULL); 21978 21979 return (a->ipa_ovhd); 21980 } 21981 21982 /* 21983 * Returns an estimate of the IPSEC headers size. This is used if 21984 * we don't want to call into IPSEC to get the exact size. 21985 */ 21986 int 21987 ipsec_in_extra_length(mblk_t *ipsec_mp) 21988 { 21989 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21990 ipsec_action_t *a; 21991 21992 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21993 21994 a = ii->ipsec_in_action; 21995 return (a == NULL ? 0 : a->ipa_ovhd); 21996 } 21997 21998 /* 21999 * If there are any source route options, return the true final 22000 * destination. Otherwise, return the destination. 22001 */ 22002 ipaddr_t 22003 ip_get_dst(ipha_t *ipha) 22004 { 22005 ipoptp_t opts; 22006 uchar_t *opt; 22007 uint8_t optval; 22008 uint8_t optlen; 22009 ipaddr_t dst; 22010 uint32_t off; 22011 22012 dst = ipha->ipha_dst; 22013 22014 if (IS_SIMPLE_IPH(ipha)) 22015 return (dst); 22016 22017 for (optval = ipoptp_first(&opts, ipha); 22018 optval != IPOPT_EOL; 22019 optval = ipoptp_next(&opts)) { 22020 opt = opts.ipoptp_cur; 22021 optlen = opts.ipoptp_len; 22022 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22023 switch (optval) { 22024 case IPOPT_SSRR: 22025 case IPOPT_LSRR: 22026 off = opt[IPOPT_OFFSET]; 22027 /* 22028 * If one of the conditions is true, it means 22029 * end of options and dst already has the right 22030 * value. 22031 */ 22032 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22033 off = optlen - IP_ADDR_LEN; 22034 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22035 } 22036 return (dst); 22037 default: 22038 break; 22039 } 22040 } 22041 22042 return (dst); 22043 } 22044 22045 mblk_t * 22046 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22047 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22048 { 22049 ipsec_out_t *io; 22050 mblk_t *first_mp; 22051 boolean_t policy_present; 22052 ip_stack_t *ipst; 22053 ipsec_stack_t *ipss; 22054 22055 ASSERT(ire != NULL); 22056 ipst = ire->ire_ipst; 22057 ipss = ipst->ips_netstack->netstack_ipsec; 22058 22059 first_mp = mp; 22060 if (mp->b_datap->db_type == M_CTL) { 22061 io = (ipsec_out_t *)first_mp->b_rptr; 22062 /* 22063 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22064 * 22065 * 1) There is per-socket policy (including cached global 22066 * policy) or a policy on the IP-in-IP tunnel. 22067 * 2) There is no per-socket policy, but it is 22068 * a multicast packet that needs to go out 22069 * on a specific interface. This is the case 22070 * where (ip_wput and ip_wput_multicast) attaches 22071 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22072 * 22073 * In case (2) we check with global policy to 22074 * see if there is a match and set the ill_index 22075 * appropriately so that we can lookup the ire 22076 * properly in ip_wput_ipsec_out. 22077 */ 22078 22079 /* 22080 * ipsec_out_use_global_policy is set to B_FALSE 22081 * in ipsec_in_to_out(). Refer to that function for 22082 * details. 22083 */ 22084 if ((io->ipsec_out_latch == NULL) && 22085 (io->ipsec_out_use_global_policy)) { 22086 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22087 ire, connp, unspec_src, zoneid)); 22088 } 22089 if (!io->ipsec_out_secure) { 22090 /* 22091 * If this is not a secure packet, drop 22092 * the IPSEC_OUT mp and treat it as a clear 22093 * packet. This happens when we are sending 22094 * a ICMP reply back to a clear packet. See 22095 * ipsec_in_to_out() for details. 22096 */ 22097 mp = first_mp->b_cont; 22098 freeb(first_mp); 22099 } 22100 return (mp); 22101 } 22102 /* 22103 * See whether we need to attach a global policy here. We 22104 * don't depend on the conn (as it could be null) for deciding 22105 * what policy this datagram should go through because it 22106 * should have happened in ip_wput if there was some 22107 * policy. This normally happens for connections which are not 22108 * fully bound preventing us from caching policies in 22109 * ip_bind. Packets coming from the TCP listener/global queue 22110 * - which are non-hard_bound - could also be affected by 22111 * applying policy here. 22112 * 22113 * If this packet is coming from tcp global queue or listener, 22114 * we will be applying policy here. This may not be *right* 22115 * if these packets are coming from the detached connection as 22116 * it could have gone in clear before. This happens only if a 22117 * TCP connection started when there is no policy and somebody 22118 * added policy before it became detached. Thus packets of the 22119 * detached connection could go out secure and the other end 22120 * would drop it because it will be expecting in clear. The 22121 * converse is not true i.e if somebody starts a TCP 22122 * connection and deletes the policy, all the packets will 22123 * still go out with the policy that existed before deleting 22124 * because ip_unbind sends up policy information which is used 22125 * by TCP on subsequent ip_wputs. The right solution is to fix 22126 * TCP to attach a dummy IPSEC_OUT and set 22127 * ipsec_out_use_global_policy to B_FALSE. As this might 22128 * affect performance for normal cases, we are not doing it. 22129 * Thus, set policy before starting any TCP connections. 22130 * 22131 * NOTE - We might apply policy even for a hard bound connection 22132 * - for which we cached policy in ip_bind - if somebody added 22133 * global policy after we inherited the policy in ip_bind. 22134 * This means that the packets that were going out in clear 22135 * previously would start going secure and hence get dropped 22136 * on the other side. To fix this, TCP attaches a dummy 22137 * ipsec_out and make sure that we don't apply global policy. 22138 */ 22139 if (ipha != NULL) 22140 policy_present = ipss->ipsec_outbound_v4_policy_present; 22141 else 22142 policy_present = ipss->ipsec_outbound_v6_policy_present; 22143 if (!policy_present) 22144 return (mp); 22145 22146 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22147 zoneid)); 22148 } 22149 22150 ire_t * 22151 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22152 { 22153 ipaddr_t addr; 22154 ire_t *save_ire; 22155 irb_t *irb; 22156 ill_group_t *illgrp; 22157 int err; 22158 22159 save_ire = ire; 22160 addr = ire->ire_addr; 22161 22162 ASSERT(ire->ire_type == IRE_BROADCAST); 22163 22164 illgrp = connp->conn_outgoing_ill->ill_group; 22165 if (illgrp == NULL) { 22166 *conn_outgoing_ill = conn_get_held_ill(connp, 22167 &connp->conn_outgoing_ill, &err); 22168 if (err == ILL_LOOKUP_FAILED) { 22169 ire_refrele(save_ire); 22170 return (NULL); 22171 } 22172 return (save_ire); 22173 } 22174 /* 22175 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22176 * If it is part of the group, we need to send on the ire 22177 * that has been cleared of IRE_MARK_NORECV and that belongs 22178 * to this group. This is okay as IP_BOUND_IF really means 22179 * any ill in the group. We depend on the fact that the 22180 * first ire in the group is always cleared of IRE_MARK_NORECV 22181 * if such an ire exists. This is possible only if you have 22182 * at least one ill in the group that has not failed. 22183 * 22184 * First get to the ire that matches the address and group. 22185 * 22186 * We don't look for an ire with a matching zoneid because a given zone 22187 * won't always have broadcast ires on all ills in the group. 22188 */ 22189 irb = ire->ire_bucket; 22190 rw_enter(&irb->irb_lock, RW_READER); 22191 if (ire->ire_marks & IRE_MARK_NORECV) { 22192 /* 22193 * If the current zone only has an ire broadcast for this 22194 * address marked NORECV, the ire we want is ahead in the 22195 * bucket, so we look it up deliberately ignoring the zoneid. 22196 */ 22197 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22198 if (ire->ire_addr != addr) 22199 continue; 22200 /* skip over deleted ires */ 22201 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22202 continue; 22203 } 22204 } 22205 while (ire != NULL) { 22206 /* 22207 * If a new interface is coming up, we could end up 22208 * seeing the loopback ire and the non-loopback ire 22209 * may not have been added yet. So check for ire_stq 22210 */ 22211 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22212 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22213 break; 22214 } 22215 ire = ire->ire_next; 22216 } 22217 if (ire != NULL && ire->ire_addr == addr && 22218 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22219 IRE_REFHOLD(ire); 22220 rw_exit(&irb->irb_lock); 22221 ire_refrele(save_ire); 22222 *conn_outgoing_ill = ire_to_ill(ire); 22223 /* 22224 * Refhold the ill to make the conn_outgoing_ill 22225 * independent of the ire. ip_wput_ire goes in a loop 22226 * and may refrele the ire. Since we have an ire at this 22227 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22228 */ 22229 ill_refhold(*conn_outgoing_ill); 22230 return (ire); 22231 } 22232 rw_exit(&irb->irb_lock); 22233 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22234 /* 22235 * If we can't find a suitable ire, return the original ire. 22236 */ 22237 return (save_ire); 22238 } 22239 22240 /* 22241 * This function does the ire_refrele of the ire passed in as the 22242 * argument. As this function looks up more ires i.e broadcast ires, 22243 * it needs to REFRELE them. Currently, for simplicity we don't 22244 * differentiate the one passed in and looked up here. We always 22245 * REFRELE. 22246 * IPQoS Notes: 22247 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22248 * IPSec packets are done in ipsec_out_process. 22249 * 22250 */ 22251 void 22252 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22253 zoneid_t zoneid) 22254 { 22255 ipha_t *ipha; 22256 #define rptr ((uchar_t *)ipha) 22257 queue_t *stq; 22258 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22259 uint32_t v_hlen_tos_len; 22260 uint32_t ttl_protocol; 22261 ipaddr_t src; 22262 ipaddr_t dst; 22263 uint32_t cksum; 22264 ipaddr_t orig_src; 22265 ire_t *ire1; 22266 mblk_t *next_mp; 22267 uint_t hlen; 22268 uint16_t *up; 22269 uint32_t max_frag = ire->ire_max_frag; 22270 ill_t *ill = ire_to_ill(ire); 22271 int clusterwide; 22272 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22273 int ipsec_len; 22274 mblk_t *first_mp; 22275 ipsec_out_t *io; 22276 boolean_t conn_dontroute; /* conn value for multicast */ 22277 boolean_t conn_multicast_loop; /* conn value for multicast */ 22278 boolean_t multicast_forward; /* Should we forward ? */ 22279 boolean_t unspec_src; 22280 ill_t *conn_outgoing_ill = NULL; 22281 ill_t *ire_ill; 22282 ill_t *ire1_ill; 22283 ill_t *out_ill; 22284 uint32_t ill_index = 0; 22285 boolean_t multirt_send = B_FALSE; 22286 int err; 22287 ipxmit_state_t pktxmit_state; 22288 ip_stack_t *ipst = ire->ire_ipst; 22289 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22290 22291 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22292 "ip_wput_ire_start: q %p", q); 22293 22294 multicast_forward = B_FALSE; 22295 unspec_src = (connp != NULL && connp->conn_unspec_src); 22296 22297 if (ire->ire_flags & RTF_MULTIRT) { 22298 /* 22299 * Multirouting case. The bucket where ire is stored 22300 * probably holds other RTF_MULTIRT flagged ire 22301 * to the destination. In this call to ip_wput_ire, 22302 * we attempt to send the packet through all 22303 * those ires. Thus, we first ensure that ire is the 22304 * first RTF_MULTIRT ire in the bucket, 22305 * before walking the ire list. 22306 */ 22307 ire_t *first_ire; 22308 irb_t *irb = ire->ire_bucket; 22309 ASSERT(irb != NULL); 22310 22311 /* Make sure we do not omit any multiroute ire. */ 22312 IRB_REFHOLD(irb); 22313 for (first_ire = irb->irb_ire; 22314 first_ire != NULL; 22315 first_ire = first_ire->ire_next) { 22316 if ((first_ire->ire_flags & RTF_MULTIRT) && 22317 (first_ire->ire_addr == ire->ire_addr) && 22318 !(first_ire->ire_marks & 22319 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22320 break; 22321 } 22322 22323 if ((first_ire != NULL) && (first_ire != ire)) { 22324 IRE_REFHOLD(first_ire); 22325 ire_refrele(ire); 22326 ire = first_ire; 22327 ill = ire_to_ill(ire); 22328 } 22329 IRB_REFRELE(irb); 22330 } 22331 22332 /* 22333 * conn_outgoing_ill is used only in the broadcast loop. 22334 * for performance we don't grab the mutexs in the fastpath 22335 */ 22336 if ((connp != NULL) && 22337 (connp->conn_xmit_if_ill == NULL) && 22338 (ire->ire_type == IRE_BROADCAST) && 22339 ((connp->conn_nofailover_ill != NULL) || 22340 (connp->conn_outgoing_ill != NULL))) { 22341 /* 22342 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22343 * option. So, see if this endpoint is bound to a 22344 * IPIF_NOFAILOVER address. If so, honor it. This implies 22345 * that if the interface is failed, we will still send 22346 * the packet on the same ill which is what we want. 22347 */ 22348 conn_outgoing_ill = conn_get_held_ill(connp, 22349 &connp->conn_nofailover_ill, &err); 22350 if (err == ILL_LOOKUP_FAILED) { 22351 ire_refrele(ire); 22352 freemsg(mp); 22353 return; 22354 } 22355 if (conn_outgoing_ill == NULL) { 22356 /* 22357 * Choose a good ill in the group to send the 22358 * packets on. 22359 */ 22360 ire = conn_set_outgoing_ill(connp, ire, 22361 &conn_outgoing_ill); 22362 if (ire == NULL) { 22363 freemsg(mp); 22364 return; 22365 } 22366 } 22367 } 22368 22369 if (mp->b_datap->db_type != M_CTL) { 22370 ipha = (ipha_t *)mp->b_rptr; 22371 } else { 22372 io = (ipsec_out_t *)mp->b_rptr; 22373 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22374 ASSERT(zoneid == io->ipsec_out_zoneid); 22375 ASSERT(zoneid != ALL_ZONES); 22376 ipha = (ipha_t *)mp->b_cont->b_rptr; 22377 dst = ipha->ipha_dst; 22378 /* 22379 * For the multicast case, ipsec_out carries conn_dontroute and 22380 * conn_multicast_loop as conn may not be available here. We 22381 * need this for multicast loopback and forwarding which is done 22382 * later in the code. 22383 */ 22384 if (CLASSD(dst)) { 22385 conn_dontroute = io->ipsec_out_dontroute; 22386 conn_multicast_loop = io->ipsec_out_multicast_loop; 22387 /* 22388 * If conn_dontroute is not set or conn_multicast_loop 22389 * is set, we need to do forwarding/loopback. For 22390 * datagrams from ip_wput_multicast, conn_dontroute is 22391 * set to B_TRUE and conn_multicast_loop is set to 22392 * B_FALSE so that we neither do forwarding nor 22393 * loopback. 22394 */ 22395 if (!conn_dontroute || conn_multicast_loop) 22396 multicast_forward = B_TRUE; 22397 } 22398 } 22399 22400 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22401 ire->ire_zoneid != ALL_ZONES) { 22402 /* 22403 * When a zone sends a packet to another zone, we try to deliver 22404 * the packet under the same conditions as if the destination 22405 * was a real node on the network. To do so, we look for a 22406 * matching route in the forwarding table. 22407 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22408 * ip_newroute() does. 22409 * Note that IRE_LOCAL are special, since they are used 22410 * when the zoneid doesn't match in some cases. This means that 22411 * we need to handle ipha_src differently since ire_src_addr 22412 * belongs to the receiving zone instead of the sending zone. 22413 * When ip_restrict_interzone_loopback is set, then 22414 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22415 * for loopback between zones when the logical "Ethernet" would 22416 * have looped them back. 22417 */ 22418 ire_t *src_ire; 22419 22420 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22421 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22422 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22423 if (src_ire != NULL && 22424 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22425 (!ipst->ips_ip_restrict_interzone_loopback || 22426 ire_local_same_ill_group(ire, src_ire))) { 22427 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22428 ipha->ipha_src = src_ire->ire_src_addr; 22429 ire_refrele(src_ire); 22430 } else { 22431 ire_refrele(ire); 22432 if (conn_outgoing_ill != NULL) 22433 ill_refrele(conn_outgoing_ill); 22434 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22435 if (src_ire != NULL) { 22436 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22437 ire_refrele(src_ire); 22438 freemsg(mp); 22439 return; 22440 } 22441 ire_refrele(src_ire); 22442 } 22443 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22444 /* Failed */ 22445 freemsg(mp); 22446 return; 22447 } 22448 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22449 ipst); 22450 return; 22451 } 22452 } 22453 22454 if (mp->b_datap->db_type == M_CTL || 22455 ipss->ipsec_outbound_v4_policy_present) { 22456 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22457 unspec_src, zoneid); 22458 if (mp == NULL) { 22459 ire_refrele(ire); 22460 if (conn_outgoing_ill != NULL) 22461 ill_refrele(conn_outgoing_ill); 22462 return; 22463 } 22464 } 22465 22466 first_mp = mp; 22467 ipsec_len = 0; 22468 22469 if (first_mp->b_datap->db_type == M_CTL) { 22470 io = (ipsec_out_t *)first_mp->b_rptr; 22471 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22472 mp = first_mp->b_cont; 22473 ipsec_len = ipsec_out_extra_length(first_mp); 22474 ASSERT(ipsec_len >= 0); 22475 /* We already picked up the zoneid from the M_CTL above */ 22476 ASSERT(zoneid == io->ipsec_out_zoneid); 22477 ASSERT(zoneid != ALL_ZONES); 22478 22479 /* 22480 * Drop M_CTL here if IPsec processing is not needed. 22481 * (Non-IPsec use of M_CTL extracted any information it 22482 * needed above). 22483 */ 22484 if (ipsec_len == 0) { 22485 freeb(first_mp); 22486 first_mp = mp; 22487 } 22488 } 22489 22490 /* 22491 * Fast path for ip_wput_ire 22492 */ 22493 22494 ipha = (ipha_t *)mp->b_rptr; 22495 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22496 dst = ipha->ipha_dst; 22497 22498 /* 22499 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22500 * if the socket is a SOCK_RAW type. The transport checksum should 22501 * be provided in the pre-built packet, so we don't need to compute it. 22502 * Also, other application set flags, like DF, should not be altered. 22503 * Other transport MUST pass down zero. 22504 */ 22505 ip_hdr_included = ipha->ipha_ident; 22506 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22507 22508 if (CLASSD(dst)) { 22509 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22510 ntohl(dst), 22511 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22512 ntohl(ire->ire_addr))); 22513 } 22514 22515 /* Macros to extract header fields from data already in registers */ 22516 #ifdef _BIG_ENDIAN 22517 #define V_HLEN (v_hlen_tos_len >> 24) 22518 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22519 #define PROTO (ttl_protocol & 0xFF) 22520 #else 22521 #define V_HLEN (v_hlen_tos_len & 0xFF) 22522 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22523 #define PROTO (ttl_protocol >> 8) 22524 #endif 22525 22526 22527 orig_src = src = ipha->ipha_src; 22528 /* (The loop back to "another" is explained down below.) */ 22529 another:; 22530 /* 22531 * Assign an ident value for this packet. We assign idents on 22532 * a per destination basis out of the IRE. There could be 22533 * other threads targeting the same destination, so we have to 22534 * arrange for a atomic increment. Note that we use a 32-bit 22535 * atomic add because it has better performance than its 22536 * 16-bit sibling. 22537 * 22538 * If running in cluster mode and if the source address 22539 * belongs to a replicated service then vector through 22540 * cl_inet_ipident vector to allocate ip identifier 22541 * NOTE: This is a contract private interface with the 22542 * clustering group. 22543 */ 22544 clusterwide = 0; 22545 if (cl_inet_ipident) { 22546 ASSERT(cl_inet_isclusterwide); 22547 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22548 AF_INET, (uint8_t *)(uintptr_t)src)) { 22549 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22550 AF_INET, (uint8_t *)(uintptr_t)src, 22551 (uint8_t *)(uintptr_t)dst); 22552 clusterwide = 1; 22553 } 22554 } 22555 if (!clusterwide) { 22556 ipha->ipha_ident = 22557 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22558 } 22559 22560 #ifndef _BIG_ENDIAN 22561 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22562 #endif 22563 22564 /* 22565 * Set source address unless sent on an ill or conn_unspec_src is set. 22566 * This is needed to obey conn_unspec_src when packets go through 22567 * ip_newroute + arp. 22568 * Assumes ip_newroute{,_multi} sets the source address as well. 22569 */ 22570 if (src == INADDR_ANY && !unspec_src) { 22571 /* 22572 * Assign the appropriate source address from the IRE if none 22573 * was specified. 22574 */ 22575 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22576 22577 /* 22578 * With IP multipathing, broadcast packets are sent on the ire 22579 * that has been cleared of IRE_MARK_NORECV and that belongs to 22580 * the group. However, this ire might not be in the same zone so 22581 * we can't always use its source address. We look for a 22582 * broadcast ire in the same group and in the right zone. 22583 */ 22584 if (ire->ire_type == IRE_BROADCAST && 22585 ire->ire_zoneid != zoneid) { 22586 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22587 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22588 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22589 if (src_ire != NULL) { 22590 src = src_ire->ire_src_addr; 22591 ire_refrele(src_ire); 22592 } else { 22593 ire_refrele(ire); 22594 if (conn_outgoing_ill != NULL) 22595 ill_refrele(conn_outgoing_ill); 22596 freemsg(first_mp); 22597 if (ill != NULL) { 22598 BUMP_MIB(ill->ill_ip_mib, 22599 ipIfStatsOutDiscards); 22600 } else { 22601 BUMP_MIB(&ipst->ips_ip_mib, 22602 ipIfStatsOutDiscards); 22603 } 22604 return; 22605 } 22606 } else { 22607 src = ire->ire_src_addr; 22608 } 22609 22610 if (connp == NULL) { 22611 ip1dbg(("ip_wput_ire: no connp and no src " 22612 "address for dst 0x%x, using src 0x%x\n", 22613 ntohl(dst), 22614 ntohl(src))); 22615 } 22616 ipha->ipha_src = src; 22617 } 22618 stq = ire->ire_stq; 22619 22620 /* 22621 * We only allow ire chains for broadcasts since there will 22622 * be multiple IRE_CACHE entries for the same multicast 22623 * address (one per ipif). 22624 */ 22625 next_mp = NULL; 22626 22627 /* broadcast packet */ 22628 if (ire->ire_type == IRE_BROADCAST) 22629 goto broadcast; 22630 22631 /* loopback ? */ 22632 if (stq == NULL) 22633 goto nullstq; 22634 22635 /* The ill_index for outbound ILL */ 22636 ill_index = Q_TO_INDEX(stq); 22637 22638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22639 ttl_protocol = ((uint16_t *)ipha)[4]; 22640 22641 /* pseudo checksum (do it in parts for IP header checksum) */ 22642 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22643 22644 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22645 queue_t *dev_q = stq->q_next; 22646 22647 /* flow controlled */ 22648 if ((dev_q->q_next || dev_q->q_first) && 22649 !canput(dev_q)) 22650 goto blocked; 22651 if ((PROTO == IPPROTO_UDP) && 22652 (ip_hdr_included != IP_HDR_INCLUDED)) { 22653 hlen = (V_HLEN & 0xF) << 2; 22654 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22655 if (*up != 0) { 22656 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22657 hlen, LENGTH, max_frag, ipsec_len, cksum); 22658 /* Software checksum? */ 22659 if (DB_CKSUMFLAGS(mp) == 0) { 22660 IP_STAT(ipst, ip_out_sw_cksum); 22661 IP_STAT_UPDATE(ipst, 22662 ip_udp_out_sw_cksum_bytes, 22663 LENGTH - hlen); 22664 } 22665 } 22666 } 22667 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22668 hlen = (V_HLEN & 0xF) << 2; 22669 if (PROTO == IPPROTO_TCP) { 22670 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22671 /* 22672 * The packet header is processed once and for all, even 22673 * in the multirouting case. We disable hardware 22674 * checksum if the packet is multirouted, as it will be 22675 * replicated via several interfaces, and not all of 22676 * them may have this capability. 22677 */ 22678 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22679 LENGTH, max_frag, ipsec_len, cksum); 22680 /* Software checksum? */ 22681 if (DB_CKSUMFLAGS(mp) == 0) { 22682 IP_STAT(ipst, ip_out_sw_cksum); 22683 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22684 LENGTH - hlen); 22685 } 22686 } else { 22687 sctp_hdr_t *sctph; 22688 22689 ASSERT(PROTO == IPPROTO_SCTP); 22690 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22691 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22692 /* 22693 * Zero out the checksum field to ensure proper 22694 * checksum calculation. 22695 */ 22696 sctph->sh_chksum = 0; 22697 #ifdef DEBUG 22698 if (!skip_sctp_cksum) 22699 #endif 22700 sctph->sh_chksum = sctp_cksum(mp, hlen); 22701 } 22702 } 22703 22704 /* 22705 * If this is a multicast packet and originated from ip_wput 22706 * we need to do loopback and forwarding checks. If it comes 22707 * from ip_wput_multicast, we SHOULD not do this. 22708 */ 22709 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22710 22711 /* checksum */ 22712 cksum += ttl_protocol; 22713 22714 /* fragment the packet */ 22715 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22716 goto fragmentit; 22717 /* 22718 * Don't use frag_flag if packet is pre-built or source 22719 * routed or if multicast (since multicast packets do 22720 * not solicit ICMP "packet too big" messages). 22721 */ 22722 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22723 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22724 !ip_source_route_included(ipha)) && 22725 !CLASSD(ipha->ipha_dst)) 22726 ipha->ipha_fragment_offset_and_flags |= 22727 htons(ire->ire_frag_flag); 22728 22729 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22730 /* calculate IP header checksum */ 22731 cksum += ipha->ipha_ident; 22732 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22733 cksum += ipha->ipha_fragment_offset_and_flags; 22734 22735 /* IP options present */ 22736 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22737 if (hlen) 22738 goto checksumoptions; 22739 22740 /* calculate hdr checksum */ 22741 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22742 cksum = ~(cksum + (cksum >> 16)); 22743 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22744 } 22745 if (ipsec_len != 0) { 22746 /* 22747 * We will do the rest of the processing after 22748 * we come back from IPSEC in ip_wput_ipsec_out(). 22749 */ 22750 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22751 22752 io = (ipsec_out_t *)first_mp->b_rptr; 22753 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22754 ill_phyint->phyint_ifindex; 22755 22756 ipsec_out_process(q, first_mp, ire, ill_index); 22757 ire_refrele(ire); 22758 if (conn_outgoing_ill != NULL) 22759 ill_refrele(conn_outgoing_ill); 22760 return; 22761 } 22762 22763 /* 22764 * In most cases, the emission loop below is entered only 22765 * once. Only in the case where the ire holds the 22766 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22767 * flagged ires in the bucket, and send the packet 22768 * through all crossed RTF_MULTIRT routes. 22769 */ 22770 if (ire->ire_flags & RTF_MULTIRT) { 22771 multirt_send = B_TRUE; 22772 } 22773 do { 22774 if (multirt_send) { 22775 irb_t *irb; 22776 /* 22777 * We are in a multiple send case, need to get 22778 * the next ire and make a duplicate of the packet. 22779 * ire1 holds here the next ire to process in the 22780 * bucket. If multirouting is expected, 22781 * any non-RTF_MULTIRT ire that has the 22782 * right destination address is ignored. 22783 */ 22784 irb = ire->ire_bucket; 22785 ASSERT(irb != NULL); 22786 22787 IRB_REFHOLD(irb); 22788 for (ire1 = ire->ire_next; 22789 ire1 != NULL; 22790 ire1 = ire1->ire_next) { 22791 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22792 continue; 22793 if (ire1->ire_addr != ire->ire_addr) 22794 continue; 22795 if (ire1->ire_marks & 22796 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22797 continue; 22798 22799 /* Got one */ 22800 IRE_REFHOLD(ire1); 22801 break; 22802 } 22803 IRB_REFRELE(irb); 22804 22805 if (ire1 != NULL) { 22806 next_mp = copyb(mp); 22807 if ((next_mp == NULL) || 22808 ((mp->b_cont != NULL) && 22809 ((next_mp->b_cont = 22810 dupmsg(mp->b_cont)) == NULL))) { 22811 freemsg(next_mp); 22812 next_mp = NULL; 22813 ire_refrele(ire1); 22814 ire1 = NULL; 22815 } 22816 } 22817 22818 /* Last multiroute ire; don't loop anymore. */ 22819 if (ire1 == NULL) { 22820 multirt_send = B_FALSE; 22821 } 22822 } 22823 22824 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22825 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22826 mblk_t *, mp); 22827 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22828 ipst->ips_ipv4firewall_physical_out, 22829 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22830 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22831 if (mp == NULL) 22832 goto release_ire_and_ill; 22833 22834 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22835 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22836 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22837 if ((pktxmit_state == SEND_FAILED) || 22838 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22839 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22840 "- packet dropped\n")); 22841 release_ire_and_ill: 22842 ire_refrele(ire); 22843 if (next_mp != NULL) { 22844 freemsg(next_mp); 22845 ire_refrele(ire1); 22846 } 22847 if (conn_outgoing_ill != NULL) 22848 ill_refrele(conn_outgoing_ill); 22849 return; 22850 } 22851 22852 if (CLASSD(dst)) { 22853 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22854 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22855 LENGTH); 22856 } 22857 22858 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22859 "ip_wput_ire_end: q %p (%S)", 22860 q, "last copy out"); 22861 IRE_REFRELE(ire); 22862 22863 if (multirt_send) { 22864 ASSERT(ire1); 22865 /* 22866 * Proceed with the next RTF_MULTIRT ire, 22867 * Also set up the send-to queue accordingly. 22868 */ 22869 ire = ire1; 22870 ire1 = NULL; 22871 stq = ire->ire_stq; 22872 mp = next_mp; 22873 next_mp = NULL; 22874 ipha = (ipha_t *)mp->b_rptr; 22875 ill_index = Q_TO_INDEX(stq); 22876 ill = (ill_t *)stq->q_ptr; 22877 } 22878 } while (multirt_send); 22879 if (conn_outgoing_ill != NULL) 22880 ill_refrele(conn_outgoing_ill); 22881 return; 22882 22883 /* 22884 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22885 */ 22886 broadcast: 22887 { 22888 /* 22889 * Avoid broadcast storms by setting the ttl to 1 22890 * for broadcasts. This parameter can be set 22891 * via ndd, so make sure that for the SO_DONTROUTE 22892 * case that ipha_ttl is always set to 1. 22893 * In the event that we are replying to incoming 22894 * ICMP packets, conn could be NULL. 22895 */ 22896 if ((connp != NULL) && connp->conn_dontroute) 22897 ipha->ipha_ttl = 1; 22898 else 22899 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22900 22901 /* 22902 * Note that we are not doing a IRB_REFHOLD here. 22903 * Actually we don't care if the list changes i.e 22904 * if somebody deletes an IRE from the list while 22905 * we drop the lock, the next time we come around 22906 * ire_next will be NULL and hence we won't send 22907 * out multiple copies which is fine. 22908 */ 22909 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22910 ire1 = ire->ire_next; 22911 if (conn_outgoing_ill != NULL) { 22912 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22913 ASSERT(ire1 == ire->ire_next); 22914 if (ire1 != NULL && ire1->ire_addr == dst) { 22915 ire_refrele(ire); 22916 ire = ire1; 22917 IRE_REFHOLD(ire); 22918 ire1 = ire->ire_next; 22919 continue; 22920 } 22921 rw_exit(&ire->ire_bucket->irb_lock); 22922 /* Did not find a matching ill */ 22923 ip1dbg(("ip_wput_ire: broadcast with no " 22924 "matching IP_BOUND_IF ill %s\n", 22925 conn_outgoing_ill->ill_name)); 22926 freemsg(first_mp); 22927 if (ire != NULL) 22928 ire_refrele(ire); 22929 ill_refrele(conn_outgoing_ill); 22930 return; 22931 } 22932 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22933 /* 22934 * If the next IRE has the same address and is not one 22935 * of the two copies that we need to send, try to see 22936 * whether this copy should be sent at all. This 22937 * assumes that we insert loopbacks first and then 22938 * non-loopbacks. This is acheived by inserting the 22939 * loopback always before non-loopback. 22940 * This is used to send a single copy of a broadcast 22941 * packet out all physical interfaces that have an 22942 * matching IRE_BROADCAST while also looping 22943 * back one copy (to ip_wput_local) for each 22944 * matching physical interface. However, we avoid 22945 * sending packets out different logical that match by 22946 * having ipif_up/ipif_down supress duplicate 22947 * IRE_BROADCASTS. 22948 * 22949 * This feature is currently used to get broadcasts 22950 * sent to multiple interfaces, when the broadcast 22951 * address being used applies to multiple interfaces. 22952 * For example, a whole net broadcast will be 22953 * replicated on every connected subnet of 22954 * the target net. 22955 * 22956 * Each zone has its own set of IRE_BROADCASTs, so that 22957 * we're able to distribute inbound packets to multiple 22958 * zones who share a broadcast address. We avoid looping 22959 * back outbound packets in different zones but on the 22960 * same ill, as the application would see duplicates. 22961 * 22962 * If the interfaces are part of the same group, 22963 * we would want to send only one copy out for 22964 * whole group. 22965 * 22966 * This logic assumes that ire_add_v4() groups the 22967 * IRE_BROADCAST entries so that those with the same 22968 * ire_addr and ill_group are kept together. 22969 */ 22970 ire_ill = ire->ire_ipif->ipif_ill; 22971 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22972 if (ire_ill->ill_group != NULL && 22973 (ire->ire_marks & IRE_MARK_NORECV)) { 22974 /* 22975 * If the current zone only has an ire 22976 * broadcast for this address marked 22977 * NORECV, the ire we want is ahead in 22978 * the bucket, so we look it up 22979 * deliberately ignoring the zoneid. 22980 */ 22981 for (ire1 = ire->ire_bucket->irb_ire; 22982 ire1 != NULL; 22983 ire1 = ire1->ire_next) { 22984 ire1_ill = 22985 ire1->ire_ipif->ipif_ill; 22986 if (ire1->ire_addr != dst) 22987 continue; 22988 /* skip over the current ire */ 22989 if (ire1 == ire) 22990 continue; 22991 /* skip over deleted ires */ 22992 if (ire1->ire_marks & 22993 IRE_MARK_CONDEMNED) 22994 continue; 22995 /* 22996 * non-loopback ire in our 22997 * group: use it for the next 22998 * pass in the loop 22999 */ 23000 if (ire1->ire_stq != NULL && 23001 ire1_ill->ill_group == 23002 ire_ill->ill_group) 23003 break; 23004 } 23005 } 23006 } else { 23007 while (ire1 != NULL && ire1->ire_addr == dst) { 23008 ire1_ill = ire1->ire_ipif->ipif_ill; 23009 /* 23010 * We can have two broadcast ires on the 23011 * same ill in different zones; here 23012 * we'll send a copy of the packet on 23013 * each ill and the fanout code will 23014 * call conn_wantpacket() to check that 23015 * the zone has the broadcast address 23016 * configured on the ill. If the two 23017 * ires are in the same group we only 23018 * send one copy up. 23019 */ 23020 if (ire1_ill != ire_ill && 23021 (ire1_ill->ill_group == NULL || 23022 ire_ill->ill_group == NULL || 23023 ire1_ill->ill_group != 23024 ire_ill->ill_group)) { 23025 break; 23026 } 23027 ire1 = ire1->ire_next; 23028 } 23029 } 23030 } 23031 ASSERT(multirt_send == B_FALSE); 23032 if (ire1 != NULL && ire1->ire_addr == dst) { 23033 if ((ire->ire_flags & RTF_MULTIRT) && 23034 (ire1->ire_flags & RTF_MULTIRT)) { 23035 /* 23036 * We are in the multirouting case. 23037 * The message must be sent at least 23038 * on both ires. These ires have been 23039 * inserted AFTER the standard ones 23040 * in ip_rt_add(). There are thus no 23041 * other ire entries for the destination 23042 * address in the rest of the bucket 23043 * that do not have the RTF_MULTIRT 23044 * flag. We don't process a copy 23045 * of the message here. This will be 23046 * done in the final sending loop. 23047 */ 23048 multirt_send = B_TRUE; 23049 } else { 23050 next_mp = ip_copymsg(first_mp); 23051 if (next_mp != NULL) 23052 IRE_REFHOLD(ire1); 23053 } 23054 } 23055 rw_exit(&ire->ire_bucket->irb_lock); 23056 } 23057 23058 if (stq) { 23059 /* 23060 * A non-NULL send-to queue means this packet is going 23061 * out of this machine. 23062 */ 23063 out_ill = (ill_t *)stq->q_ptr; 23064 23065 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23066 ttl_protocol = ((uint16_t *)ipha)[4]; 23067 /* 23068 * We accumulate the pseudo header checksum in cksum. 23069 * This is pretty hairy code, so watch close. One 23070 * thing to keep in mind is that UDP and TCP have 23071 * stored their respective datagram lengths in their 23072 * checksum fields. This lines things up real nice. 23073 */ 23074 cksum = (dst >> 16) + (dst & 0xFFFF) + 23075 (src >> 16) + (src & 0xFFFF); 23076 /* 23077 * We assume the udp checksum field contains the 23078 * length, so to compute the pseudo header checksum, 23079 * all we need is the protocol number and src/dst. 23080 */ 23081 /* Provide the checksums for UDP and TCP. */ 23082 if ((PROTO == IPPROTO_TCP) && 23083 (ip_hdr_included != IP_HDR_INCLUDED)) { 23084 /* hlen gets the number of uchar_ts in the IP header */ 23085 hlen = (V_HLEN & 0xF) << 2; 23086 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23087 IP_STAT(ipst, ip_out_sw_cksum); 23088 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23089 LENGTH - hlen); 23090 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23091 } else if (PROTO == IPPROTO_SCTP && 23092 (ip_hdr_included != IP_HDR_INCLUDED)) { 23093 sctp_hdr_t *sctph; 23094 23095 hlen = (V_HLEN & 0xF) << 2; 23096 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23097 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23098 sctph->sh_chksum = 0; 23099 #ifdef DEBUG 23100 if (!skip_sctp_cksum) 23101 #endif 23102 sctph->sh_chksum = sctp_cksum(mp, hlen); 23103 } else { 23104 queue_t *dev_q = stq->q_next; 23105 23106 if ((dev_q->q_next || dev_q->q_first) && 23107 !canput(dev_q)) { 23108 blocked: 23109 ipha->ipha_ident = ip_hdr_included; 23110 /* 23111 * If we don't have a conn to apply 23112 * backpressure, free the message. 23113 * In the ire_send path, we don't know 23114 * the position to requeue the packet. Rather 23115 * than reorder packets, we just drop this 23116 * packet. 23117 */ 23118 if (ipst->ips_ip_output_queue && 23119 connp != NULL && 23120 caller != IRE_SEND) { 23121 if (caller == IP_WSRV) { 23122 connp->conn_did_putbq = 1; 23123 (void) putbq(connp->conn_wq, 23124 first_mp); 23125 conn_drain_insert(connp); 23126 /* 23127 * This is the service thread, 23128 * and the queue is already 23129 * noenabled. The check for 23130 * canput and the putbq is not 23131 * atomic. So we need to check 23132 * again. 23133 */ 23134 if (canput(stq->q_next)) 23135 connp->conn_did_putbq 23136 = 0; 23137 IP_STAT(ipst, ip_conn_flputbq); 23138 } else { 23139 /* 23140 * We are not the service proc. 23141 * ip_wsrv will be scheduled or 23142 * is already running. 23143 */ 23144 (void) putq(connp->conn_wq, 23145 first_mp); 23146 } 23147 } else { 23148 out_ill = (ill_t *)stq->q_ptr; 23149 BUMP_MIB(out_ill->ill_ip_mib, 23150 ipIfStatsOutDiscards); 23151 freemsg(first_mp); 23152 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23153 "ip_wput_ire_end: q %p (%S)", 23154 q, "discard"); 23155 } 23156 ire_refrele(ire); 23157 if (next_mp) { 23158 ire_refrele(ire1); 23159 freemsg(next_mp); 23160 } 23161 if (conn_outgoing_ill != NULL) 23162 ill_refrele(conn_outgoing_ill); 23163 return; 23164 } 23165 if ((PROTO == IPPROTO_UDP) && 23166 (ip_hdr_included != IP_HDR_INCLUDED)) { 23167 /* 23168 * hlen gets the number of uchar_ts in the 23169 * IP header 23170 */ 23171 hlen = (V_HLEN & 0xF) << 2; 23172 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23173 max_frag = ire->ire_max_frag; 23174 if (*up != 0) { 23175 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23176 up, PROTO, hlen, LENGTH, max_frag, 23177 ipsec_len, cksum); 23178 /* Software checksum? */ 23179 if (DB_CKSUMFLAGS(mp) == 0) { 23180 IP_STAT(ipst, ip_out_sw_cksum); 23181 IP_STAT_UPDATE(ipst, 23182 ip_udp_out_sw_cksum_bytes, 23183 LENGTH - hlen); 23184 } 23185 } 23186 } 23187 } 23188 /* 23189 * Need to do this even when fragmenting. The local 23190 * loopback can be done without computing checksums 23191 * but forwarding out other interface must be done 23192 * after the IP checksum (and ULP checksums) have been 23193 * computed. 23194 * 23195 * NOTE : multicast_forward is set only if this packet 23196 * originated from ip_wput. For packets originating from 23197 * ip_wput_multicast, it is not set. 23198 */ 23199 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23200 multi_loopback: 23201 ip2dbg(("ip_wput: multicast, loop %d\n", 23202 conn_multicast_loop)); 23203 23204 /* Forget header checksum offload */ 23205 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23206 23207 /* 23208 * Local loopback of multicasts? Check the 23209 * ill. 23210 * 23211 * Note that the loopback function will not come 23212 * in through ip_rput - it will only do the 23213 * client fanout thus we need to do an mforward 23214 * as well. The is different from the BSD 23215 * logic. 23216 */ 23217 if (ill != NULL) { 23218 ilm_t *ilm; 23219 23220 ILM_WALKER_HOLD(ill); 23221 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23222 ALL_ZONES); 23223 ILM_WALKER_RELE(ill); 23224 if (ilm != NULL) { 23225 /* 23226 * Pass along the virtual output q. 23227 * ip_wput_local() will distribute the 23228 * packet to all the matching zones, 23229 * except the sending zone when 23230 * IP_MULTICAST_LOOP is false. 23231 */ 23232 ip_multicast_loopback(q, ill, first_mp, 23233 conn_multicast_loop ? 0 : 23234 IP_FF_NO_MCAST_LOOP, zoneid); 23235 } 23236 } 23237 if (ipha->ipha_ttl == 0) { 23238 /* 23239 * 0 => only to this host i.e. we are 23240 * done. We are also done if this was the 23241 * loopback interface since it is sufficient 23242 * to loopback one copy of a multicast packet. 23243 */ 23244 freemsg(first_mp); 23245 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23246 "ip_wput_ire_end: q %p (%S)", 23247 q, "loopback"); 23248 ire_refrele(ire); 23249 if (conn_outgoing_ill != NULL) 23250 ill_refrele(conn_outgoing_ill); 23251 return; 23252 } 23253 /* 23254 * ILLF_MULTICAST is checked in ip_newroute 23255 * i.e. we don't need to check it here since 23256 * all IRE_CACHEs come from ip_newroute. 23257 * For multicast traffic, SO_DONTROUTE is interpreted 23258 * to mean only send the packet out the interface 23259 * (optionally specified with IP_MULTICAST_IF) 23260 * and do not forward it out additional interfaces. 23261 * RSVP and the rsvp daemon is an example of a 23262 * protocol and user level process that 23263 * handles it's own routing. Hence, it uses the 23264 * SO_DONTROUTE option to accomplish this. 23265 */ 23266 23267 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23268 ill != NULL) { 23269 /* Unconditionally redo the checksum */ 23270 ipha->ipha_hdr_checksum = 0; 23271 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23272 23273 /* 23274 * If this needs to go out secure, we need 23275 * to wait till we finish the IPSEC 23276 * processing. 23277 */ 23278 if (ipsec_len == 0 && 23279 ip_mforward(ill, ipha, mp)) { 23280 freemsg(first_mp); 23281 ip1dbg(("ip_wput: mforward failed\n")); 23282 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23283 "ip_wput_ire_end: q %p (%S)", 23284 q, "mforward failed"); 23285 ire_refrele(ire); 23286 if (conn_outgoing_ill != NULL) 23287 ill_refrele(conn_outgoing_ill); 23288 return; 23289 } 23290 } 23291 } 23292 max_frag = ire->ire_max_frag; 23293 cksum += ttl_protocol; 23294 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23295 /* No fragmentation required for this one. */ 23296 /* 23297 * Don't use frag_flag if packet is pre-built or source 23298 * routed or if multicast (since multicast packets do 23299 * not solicit ICMP "packet too big" messages). 23300 */ 23301 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23302 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23303 !ip_source_route_included(ipha)) && 23304 !CLASSD(ipha->ipha_dst)) 23305 ipha->ipha_fragment_offset_and_flags |= 23306 htons(ire->ire_frag_flag); 23307 23308 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23309 /* Complete the IP header checksum. */ 23310 cksum += ipha->ipha_ident; 23311 cksum += (v_hlen_tos_len >> 16)+ 23312 (v_hlen_tos_len & 0xFFFF); 23313 cksum += ipha->ipha_fragment_offset_and_flags; 23314 hlen = (V_HLEN & 0xF) - 23315 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23316 if (hlen) { 23317 checksumoptions: 23318 /* 23319 * Account for the IP Options in the IP 23320 * header checksum. 23321 */ 23322 up = (uint16_t *)(rptr+ 23323 IP_SIMPLE_HDR_LENGTH); 23324 do { 23325 cksum += up[0]; 23326 cksum += up[1]; 23327 up += 2; 23328 } while (--hlen); 23329 } 23330 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23331 cksum = ~(cksum + (cksum >> 16)); 23332 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23333 } 23334 if (ipsec_len != 0) { 23335 ipsec_out_process(q, first_mp, ire, ill_index); 23336 if (!next_mp) { 23337 ire_refrele(ire); 23338 if (conn_outgoing_ill != NULL) 23339 ill_refrele(conn_outgoing_ill); 23340 return; 23341 } 23342 goto next; 23343 } 23344 23345 /* 23346 * multirt_send has already been handled 23347 * for broadcast, but not yet for multicast 23348 * or IP options. 23349 */ 23350 if (next_mp == NULL) { 23351 if (ire->ire_flags & RTF_MULTIRT) { 23352 multirt_send = B_TRUE; 23353 } 23354 } 23355 23356 /* 23357 * In most cases, the emission loop below is 23358 * entered only once. Only in the case where 23359 * the ire holds the RTF_MULTIRT flag, do we loop 23360 * to process all RTF_MULTIRT ires in the bucket, 23361 * and send the packet through all crossed 23362 * RTF_MULTIRT routes. 23363 */ 23364 do { 23365 if (multirt_send) { 23366 irb_t *irb; 23367 23368 irb = ire->ire_bucket; 23369 ASSERT(irb != NULL); 23370 /* 23371 * We are in a multiple send case, 23372 * need to get the next IRE and make 23373 * a duplicate of the packet. 23374 */ 23375 IRB_REFHOLD(irb); 23376 for (ire1 = ire->ire_next; 23377 ire1 != NULL; 23378 ire1 = ire1->ire_next) { 23379 if (!(ire1->ire_flags & 23380 RTF_MULTIRT)) 23381 continue; 23382 if (ire1->ire_addr != 23383 ire->ire_addr) 23384 continue; 23385 if (ire1->ire_marks & 23386 (IRE_MARK_CONDEMNED| 23387 IRE_MARK_HIDDEN)) 23388 continue; 23389 23390 /* Got one */ 23391 IRE_REFHOLD(ire1); 23392 break; 23393 } 23394 IRB_REFRELE(irb); 23395 23396 if (ire1 != NULL) { 23397 next_mp = copyb(mp); 23398 if ((next_mp == NULL) || 23399 ((mp->b_cont != NULL) && 23400 ((next_mp->b_cont = 23401 dupmsg(mp->b_cont)) 23402 == NULL))) { 23403 freemsg(next_mp); 23404 next_mp = NULL; 23405 ire_refrele(ire1); 23406 ire1 = NULL; 23407 } 23408 } 23409 23410 /* 23411 * Last multiroute ire; don't loop 23412 * anymore. The emission is over 23413 * and next_mp is NULL. 23414 */ 23415 if (ire1 == NULL) { 23416 multirt_send = B_FALSE; 23417 } 23418 } 23419 23420 out_ill = ire->ire_ipif->ipif_ill; 23421 DTRACE_PROBE4(ip4__physical__out__start, 23422 ill_t *, NULL, 23423 ill_t *, out_ill, 23424 ipha_t *, ipha, mblk_t *, mp); 23425 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23426 ipst->ips_ipv4firewall_physical_out, 23427 NULL, out_ill, ipha, mp, mp, ipst); 23428 DTRACE_PROBE1(ip4__physical__out__end, 23429 mblk_t *, mp); 23430 if (mp == NULL) 23431 goto release_ire_and_ill_2; 23432 23433 ASSERT(ipsec_len == 0); 23434 mp->b_prev = 23435 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23436 DTRACE_PROBE2(ip__xmit__2, 23437 mblk_t *, mp, ire_t *, ire); 23438 pktxmit_state = ip_xmit_v4(mp, ire, 23439 NULL, B_TRUE); 23440 if ((pktxmit_state == SEND_FAILED) || 23441 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23442 release_ire_and_ill_2: 23443 if (next_mp) { 23444 freemsg(next_mp); 23445 ire_refrele(ire1); 23446 } 23447 ire_refrele(ire); 23448 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23449 "ip_wput_ire_end: q %p (%S)", 23450 q, "discard MDATA"); 23451 if (conn_outgoing_ill != NULL) 23452 ill_refrele(conn_outgoing_ill); 23453 return; 23454 } 23455 23456 if (CLASSD(dst)) { 23457 BUMP_MIB(out_ill->ill_ip_mib, 23458 ipIfStatsHCOutMcastPkts); 23459 UPDATE_MIB(out_ill->ill_ip_mib, 23460 ipIfStatsHCOutMcastOctets, 23461 LENGTH); 23462 } else if (ire->ire_type == IRE_BROADCAST) { 23463 BUMP_MIB(out_ill->ill_ip_mib, 23464 ipIfStatsHCOutBcastPkts); 23465 } 23466 23467 if (multirt_send) { 23468 /* 23469 * We are in a multiple send case, 23470 * need to re-enter the sending loop 23471 * using the next ire. 23472 */ 23473 ire_refrele(ire); 23474 ire = ire1; 23475 stq = ire->ire_stq; 23476 mp = next_mp; 23477 next_mp = NULL; 23478 ipha = (ipha_t *)mp->b_rptr; 23479 ill_index = Q_TO_INDEX(stq); 23480 } 23481 } while (multirt_send); 23482 23483 if (!next_mp) { 23484 /* 23485 * Last copy going out (the ultra-common 23486 * case). Note that we intentionally replicate 23487 * the putnext rather than calling it before 23488 * the next_mp check in hopes of a little 23489 * tail-call action out of the compiler. 23490 */ 23491 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23492 "ip_wput_ire_end: q %p (%S)", 23493 q, "last copy out(1)"); 23494 ire_refrele(ire); 23495 if (conn_outgoing_ill != NULL) 23496 ill_refrele(conn_outgoing_ill); 23497 return; 23498 } 23499 /* More copies going out below. */ 23500 } else { 23501 int offset; 23502 fragmentit: 23503 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23504 /* 23505 * If this would generate a icmp_frag_needed message, 23506 * we need to handle it before we do the IPSEC 23507 * processing. Otherwise, we need to strip the IPSEC 23508 * headers before we send up the message to the ULPs 23509 * which becomes messy and difficult. 23510 */ 23511 if (ipsec_len != 0) { 23512 if ((max_frag < (unsigned int)(LENGTH + 23513 ipsec_len)) && (offset & IPH_DF)) { 23514 out_ill = (ill_t *)stq->q_ptr; 23515 BUMP_MIB(out_ill->ill_ip_mib, 23516 ipIfStatsOutFragFails); 23517 BUMP_MIB(out_ill->ill_ip_mib, 23518 ipIfStatsOutFragReqds); 23519 ipha->ipha_hdr_checksum = 0; 23520 ipha->ipha_hdr_checksum = 23521 (uint16_t)ip_csum_hdr(ipha); 23522 icmp_frag_needed(ire->ire_stq, first_mp, 23523 max_frag, zoneid, ipst); 23524 if (!next_mp) { 23525 ire_refrele(ire); 23526 if (conn_outgoing_ill != NULL) { 23527 ill_refrele( 23528 conn_outgoing_ill); 23529 } 23530 return; 23531 } 23532 } else { 23533 /* 23534 * This won't cause a icmp_frag_needed 23535 * message. to be generated. Send it on 23536 * the wire. Note that this could still 23537 * cause fragmentation and all we 23538 * do is the generation of the message 23539 * to the ULP if needed before IPSEC. 23540 */ 23541 if (!next_mp) { 23542 ipsec_out_process(q, first_mp, 23543 ire, ill_index); 23544 TRACE_2(TR_FAC_IP, 23545 TR_IP_WPUT_IRE_END, 23546 "ip_wput_ire_end: q %p " 23547 "(%S)", q, 23548 "last ipsec_out_process"); 23549 ire_refrele(ire); 23550 if (conn_outgoing_ill != NULL) { 23551 ill_refrele( 23552 conn_outgoing_ill); 23553 } 23554 return; 23555 } 23556 ipsec_out_process(q, first_mp, 23557 ire, ill_index); 23558 } 23559 } else { 23560 /* 23561 * Initiate IPPF processing. For 23562 * fragmentable packets we finish 23563 * all QOS packet processing before 23564 * calling: 23565 * ip_wput_ire_fragmentit->ip_wput_frag 23566 */ 23567 23568 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23569 ip_process(IPP_LOCAL_OUT, &mp, 23570 ill_index); 23571 if (mp == NULL) { 23572 out_ill = (ill_t *)stq->q_ptr; 23573 BUMP_MIB(out_ill->ill_ip_mib, 23574 ipIfStatsOutDiscards); 23575 if (next_mp != NULL) { 23576 freemsg(next_mp); 23577 ire_refrele(ire1); 23578 } 23579 ire_refrele(ire); 23580 TRACE_2(TR_FAC_IP, 23581 TR_IP_WPUT_IRE_END, 23582 "ip_wput_ire: q %p (%S)", 23583 q, "discard MDATA"); 23584 if (conn_outgoing_ill != NULL) { 23585 ill_refrele( 23586 conn_outgoing_ill); 23587 } 23588 return; 23589 } 23590 } 23591 if (!next_mp) { 23592 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23593 "ip_wput_ire_end: q %p (%S)", 23594 q, "last fragmentation"); 23595 ip_wput_ire_fragmentit(mp, ire, 23596 zoneid, ipst); 23597 ire_refrele(ire); 23598 if (conn_outgoing_ill != NULL) 23599 ill_refrele(conn_outgoing_ill); 23600 return; 23601 } 23602 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23603 } 23604 } 23605 } else { 23606 nullstq: 23607 /* A NULL stq means the destination address is local. */ 23608 UPDATE_OB_PKT_COUNT(ire); 23609 ire->ire_last_used_time = lbolt; 23610 ASSERT(ire->ire_ipif != NULL); 23611 if (!next_mp) { 23612 /* 23613 * Is there an "in" and "out" for traffic local 23614 * to a host (loopback)? The code in Solaris doesn't 23615 * explicitly draw a line in its code for in vs out, 23616 * so we've had to draw a line in the sand: ip_wput_ire 23617 * is considered to be the "output" side and 23618 * ip_wput_local to be the "input" side. 23619 */ 23620 out_ill = ire->ire_ipif->ipif_ill; 23621 23622 DTRACE_PROBE4(ip4__loopback__out__start, 23623 ill_t *, NULL, ill_t *, out_ill, 23624 ipha_t *, ipha, mblk_t *, first_mp); 23625 23626 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23627 ipst->ips_ipv4firewall_loopback_out, 23628 NULL, out_ill, ipha, first_mp, mp, ipst); 23629 23630 DTRACE_PROBE1(ip4__loopback__out_end, 23631 mblk_t *, first_mp); 23632 23633 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23634 "ip_wput_ire_end: q %p (%S)", 23635 q, "local address"); 23636 23637 if (first_mp != NULL) 23638 ip_wput_local(q, out_ill, ipha, 23639 first_mp, ire, 0, ire->ire_zoneid); 23640 ire_refrele(ire); 23641 if (conn_outgoing_ill != NULL) 23642 ill_refrele(conn_outgoing_ill); 23643 return; 23644 } 23645 23646 out_ill = ire->ire_ipif->ipif_ill; 23647 23648 DTRACE_PROBE4(ip4__loopback__out__start, 23649 ill_t *, NULL, ill_t *, out_ill, 23650 ipha_t *, ipha, mblk_t *, first_mp); 23651 23652 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23653 ipst->ips_ipv4firewall_loopback_out, 23654 NULL, out_ill, ipha, first_mp, mp, ipst); 23655 23656 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23657 23658 if (first_mp != NULL) 23659 ip_wput_local(q, out_ill, ipha, 23660 first_mp, ire, 0, ire->ire_zoneid); 23661 } 23662 next: 23663 /* 23664 * More copies going out to additional interfaces. 23665 * ire1 has already been held. We don't need the 23666 * "ire" anymore. 23667 */ 23668 ire_refrele(ire); 23669 ire = ire1; 23670 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23671 mp = next_mp; 23672 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23673 ill = ire_to_ill(ire); 23674 first_mp = mp; 23675 if (ipsec_len != 0) { 23676 ASSERT(first_mp->b_datap->db_type == M_CTL); 23677 mp = mp->b_cont; 23678 } 23679 dst = ire->ire_addr; 23680 ipha = (ipha_t *)mp->b_rptr; 23681 /* 23682 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23683 * Restore ipha_ident "no checksum" flag. 23684 */ 23685 src = orig_src; 23686 ipha->ipha_ident = ip_hdr_included; 23687 goto another; 23688 23689 #undef rptr 23690 #undef Q_TO_INDEX 23691 } 23692 23693 /* 23694 * Routine to allocate a message that is used to notify the ULP about MDT. 23695 * The caller may provide a pointer to the link-layer MDT capabilities, 23696 * or NULL if MDT is to be disabled on the stream. 23697 */ 23698 mblk_t * 23699 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23700 { 23701 mblk_t *mp; 23702 ip_mdt_info_t *mdti; 23703 ill_mdt_capab_t *idst; 23704 23705 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23706 DB_TYPE(mp) = M_CTL; 23707 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23708 mdti = (ip_mdt_info_t *)mp->b_rptr; 23709 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23710 idst = &(mdti->mdt_capab); 23711 23712 /* 23713 * If the caller provides us with the capability, copy 23714 * it over into our notification message; otherwise 23715 * we zero out the capability portion. 23716 */ 23717 if (isrc != NULL) 23718 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23719 else 23720 bzero((caddr_t)idst, sizeof (*idst)); 23721 } 23722 return (mp); 23723 } 23724 23725 /* 23726 * Routine which determines whether MDT can be enabled on the destination 23727 * IRE and IPC combination, and if so, allocates and returns the MDT 23728 * notification mblk that may be used by ULP. We also check if we need to 23729 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23730 * MDT usage in the past have been lifted. This gets called during IP 23731 * and ULP binding. 23732 */ 23733 mblk_t * 23734 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23735 ill_mdt_capab_t *mdt_cap) 23736 { 23737 mblk_t *mp; 23738 boolean_t rc = B_FALSE; 23739 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23740 23741 ASSERT(dst_ire != NULL); 23742 ASSERT(connp != NULL); 23743 ASSERT(mdt_cap != NULL); 23744 23745 /* 23746 * Currently, we only support simple TCP/{IPv4,IPv6} with 23747 * Multidata, which is handled in tcp_multisend(). This 23748 * is the reason why we do all these checks here, to ensure 23749 * that we don't enable Multidata for the cases which we 23750 * can't handle at the moment. 23751 */ 23752 do { 23753 /* Only do TCP at the moment */ 23754 if (connp->conn_ulp != IPPROTO_TCP) 23755 break; 23756 23757 /* 23758 * IPSEC outbound policy present? Note that we get here 23759 * after calling ipsec_conn_cache_policy() where the global 23760 * policy checking is performed. conn_latch will be 23761 * non-NULL as long as there's a policy defined, 23762 * i.e. conn_out_enforce_policy may be NULL in such case 23763 * when the connection is non-secure, and hence we check 23764 * further if the latch refers to an outbound policy. 23765 */ 23766 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23767 break; 23768 23769 /* CGTP (multiroute) is enabled? */ 23770 if (dst_ire->ire_flags & RTF_MULTIRT) 23771 break; 23772 23773 /* Outbound IPQoS enabled? */ 23774 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23775 /* 23776 * In this case, we disable MDT for this and all 23777 * future connections going over the interface. 23778 */ 23779 mdt_cap->ill_mdt_on = 0; 23780 break; 23781 } 23782 23783 /* socket option(s) present? */ 23784 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23785 break; 23786 23787 rc = B_TRUE; 23788 /* CONSTCOND */ 23789 } while (0); 23790 23791 /* Remember the result */ 23792 connp->conn_mdt_ok = rc; 23793 23794 if (!rc) 23795 return (NULL); 23796 else if (!mdt_cap->ill_mdt_on) { 23797 /* 23798 * If MDT has been previously turned off in the past, and we 23799 * currently can do MDT (due to IPQoS policy removal, etc.) 23800 * then enable it for this interface. 23801 */ 23802 mdt_cap->ill_mdt_on = 1; 23803 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23804 "interface %s\n", ill_name)); 23805 } 23806 23807 /* Allocate the MDT info mblk */ 23808 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23809 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23810 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23811 return (NULL); 23812 } 23813 return (mp); 23814 } 23815 23816 /* 23817 * Routine to allocate a message that is used to notify the ULP about LSO. 23818 * The caller may provide a pointer to the link-layer LSO capabilities, 23819 * or NULL if LSO is to be disabled on the stream. 23820 */ 23821 mblk_t * 23822 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23823 { 23824 mblk_t *mp; 23825 ip_lso_info_t *lsoi; 23826 ill_lso_capab_t *idst; 23827 23828 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23829 DB_TYPE(mp) = M_CTL; 23830 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23831 lsoi = (ip_lso_info_t *)mp->b_rptr; 23832 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23833 idst = &(lsoi->lso_capab); 23834 23835 /* 23836 * If the caller provides us with the capability, copy 23837 * it over into our notification message; otherwise 23838 * we zero out the capability portion. 23839 */ 23840 if (isrc != NULL) 23841 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23842 else 23843 bzero((caddr_t)idst, sizeof (*idst)); 23844 } 23845 return (mp); 23846 } 23847 23848 /* 23849 * Routine which determines whether LSO can be enabled on the destination 23850 * IRE and IPC combination, and if so, allocates and returns the LSO 23851 * notification mblk that may be used by ULP. We also check if we need to 23852 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23853 * LSO usage in the past have been lifted. This gets called during IP 23854 * and ULP binding. 23855 */ 23856 mblk_t * 23857 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23858 ill_lso_capab_t *lso_cap) 23859 { 23860 mblk_t *mp; 23861 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23862 23863 ASSERT(dst_ire != NULL); 23864 ASSERT(connp != NULL); 23865 ASSERT(lso_cap != NULL); 23866 23867 connp->conn_lso_ok = B_TRUE; 23868 23869 if ((connp->conn_ulp != IPPROTO_TCP) || 23870 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23871 (dst_ire->ire_flags & RTF_MULTIRT) || 23872 !CONN_IS_LSO_MD_FASTPATH(connp) || 23873 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23874 connp->conn_lso_ok = B_FALSE; 23875 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23876 /* 23877 * Disable LSO for this and all future connections going 23878 * over the interface. 23879 */ 23880 lso_cap->ill_lso_on = 0; 23881 } 23882 } 23883 23884 if (!connp->conn_lso_ok) 23885 return (NULL); 23886 else if (!lso_cap->ill_lso_on) { 23887 /* 23888 * If LSO has been previously turned off in the past, and we 23889 * currently can do LSO (due to IPQoS policy removal, etc.) 23890 * then enable it for this interface. 23891 */ 23892 lso_cap->ill_lso_on = 1; 23893 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23894 ill_name)); 23895 } 23896 23897 /* Allocate the LSO info mblk */ 23898 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23899 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23900 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23901 23902 return (mp); 23903 } 23904 23905 /* 23906 * Create destination address attribute, and fill it with the physical 23907 * destination address and SAP taken from the template DL_UNITDATA_REQ 23908 * message block. 23909 */ 23910 boolean_t 23911 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23912 { 23913 dl_unitdata_req_t *dlurp; 23914 pattr_t *pa; 23915 pattrinfo_t pa_info; 23916 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23917 uint_t das_len, das_off; 23918 23919 ASSERT(dlmp != NULL); 23920 23921 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23922 das_len = dlurp->dl_dest_addr_length; 23923 das_off = dlurp->dl_dest_addr_offset; 23924 23925 pa_info.type = PATTR_DSTADDRSAP; 23926 pa_info.len = sizeof (**das) + das_len - 1; 23927 23928 /* create and associate the attribute */ 23929 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23930 if (pa != NULL) { 23931 ASSERT(*das != NULL); 23932 (*das)->addr_is_group = 0; 23933 (*das)->addr_len = (uint8_t)das_len; 23934 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23935 } 23936 23937 return (pa != NULL); 23938 } 23939 23940 /* 23941 * Create hardware checksum attribute and fill it with the values passed. 23942 */ 23943 boolean_t 23944 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23945 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23946 { 23947 pattr_t *pa; 23948 pattrinfo_t pa_info; 23949 23950 ASSERT(mmd != NULL); 23951 23952 pa_info.type = PATTR_HCKSUM; 23953 pa_info.len = sizeof (pattr_hcksum_t); 23954 23955 /* create and associate the attribute */ 23956 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23957 if (pa != NULL) { 23958 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23959 23960 hck->hcksum_start_offset = start_offset; 23961 hck->hcksum_stuff_offset = stuff_offset; 23962 hck->hcksum_end_offset = end_offset; 23963 hck->hcksum_flags = flags; 23964 } 23965 return (pa != NULL); 23966 } 23967 23968 /* 23969 * Create zerocopy attribute and fill it with the specified flags 23970 */ 23971 boolean_t 23972 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23973 { 23974 pattr_t *pa; 23975 pattrinfo_t pa_info; 23976 23977 ASSERT(mmd != NULL); 23978 pa_info.type = PATTR_ZCOPY; 23979 pa_info.len = sizeof (pattr_zcopy_t); 23980 23981 /* create and associate the attribute */ 23982 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23983 if (pa != NULL) { 23984 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23985 23986 zcopy->zcopy_flags = flags; 23987 } 23988 return (pa != NULL); 23989 } 23990 23991 /* 23992 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23993 * block chain. We could rewrite to handle arbitrary message block chains but 23994 * that would make the code complicated and slow. Right now there three 23995 * restrictions: 23996 * 23997 * 1. The first message block must contain the complete IP header and 23998 * at least 1 byte of payload data. 23999 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24000 * so that we can use a single Multidata message. 24001 * 3. No frag must be distributed over two or more message blocks so 24002 * that we don't need more than two packet descriptors per frag. 24003 * 24004 * The above restrictions allow us to support userland applications (which 24005 * will send down a single message block) and NFS over UDP (which will 24006 * send down a chain of at most three message blocks). 24007 * 24008 * We also don't use MDT for payloads with less than or equal to 24009 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24010 */ 24011 boolean_t 24012 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24013 { 24014 int blocks; 24015 ssize_t total, missing, size; 24016 24017 ASSERT(mp != NULL); 24018 ASSERT(hdr_len > 0); 24019 24020 size = MBLKL(mp) - hdr_len; 24021 if (size <= 0) 24022 return (B_FALSE); 24023 24024 /* The first mblk contains the header and some payload. */ 24025 blocks = 1; 24026 total = size; 24027 size %= len; 24028 missing = (size == 0) ? 0 : (len - size); 24029 mp = mp->b_cont; 24030 24031 while (mp != NULL) { 24032 /* 24033 * Give up if we encounter a zero length message block. 24034 * In practice, this should rarely happen and therefore 24035 * not worth the trouble of freeing and re-linking the 24036 * mblk from the chain to handle such case. 24037 */ 24038 if ((size = MBLKL(mp)) == 0) 24039 return (B_FALSE); 24040 24041 /* Too many payload buffers for a single Multidata message? */ 24042 if (++blocks > MULTIDATA_MAX_PBUFS) 24043 return (B_FALSE); 24044 24045 total += size; 24046 /* Is a frag distributed over two or more message blocks? */ 24047 if (missing > size) 24048 return (B_FALSE); 24049 size -= missing; 24050 24051 size %= len; 24052 missing = (size == 0) ? 0 : (len - size); 24053 24054 mp = mp->b_cont; 24055 } 24056 24057 return (total > ip_wput_frag_mdt_min); 24058 } 24059 24060 /* 24061 * Outbound IPv4 fragmentation routine using MDT. 24062 */ 24063 static void 24064 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24065 uint32_t frag_flag, int offset) 24066 { 24067 ipha_t *ipha_orig; 24068 int i1, ip_data_end; 24069 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24070 mblk_t *hdr_mp, *md_mp = NULL; 24071 unsigned char *hdr_ptr, *pld_ptr; 24072 multidata_t *mmd; 24073 ip_pdescinfo_t pdi; 24074 ill_t *ill; 24075 ip_stack_t *ipst = ire->ire_ipst; 24076 24077 ASSERT(DB_TYPE(mp) == M_DATA); 24078 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24079 24080 ill = ire_to_ill(ire); 24081 ASSERT(ill != NULL); 24082 24083 ipha_orig = (ipha_t *)mp->b_rptr; 24084 mp->b_rptr += sizeof (ipha_t); 24085 24086 /* Calculate how many packets we will send out */ 24087 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24088 pkts = (i1 + len - 1) / len; 24089 ASSERT(pkts > 1); 24090 24091 /* Allocate a message block which will hold all the IP Headers. */ 24092 wroff = ipst->ips_ip_wroff_extra; 24093 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24094 24095 i1 = pkts * hdr_chunk_len; 24096 /* 24097 * Create the header buffer, Multidata and destination address 24098 * and SAP attribute that should be associated with it. 24099 */ 24100 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24101 ((hdr_mp->b_wptr += i1), 24102 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24103 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24104 freemsg(mp); 24105 if (md_mp == NULL) { 24106 freemsg(hdr_mp); 24107 } else { 24108 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24109 freemsg(md_mp); 24110 } 24111 IP_STAT(ipst, ip_frag_mdt_allocfail); 24112 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24113 return; 24114 } 24115 IP_STAT(ipst, ip_frag_mdt_allocd); 24116 24117 /* 24118 * Add a payload buffer to the Multidata; this operation must not 24119 * fail, or otherwise our logic in this routine is broken. There 24120 * is no memory allocation done by the routine, so any returned 24121 * failure simply tells us that we've done something wrong. 24122 * 24123 * A failure tells us that either we're adding the same payload 24124 * buffer more than once, or we're trying to add more buffers than 24125 * allowed. None of the above cases should happen, and we panic 24126 * because either there's horrible heap corruption, and/or 24127 * programming mistake. 24128 */ 24129 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24130 goto pbuf_panic; 24131 24132 hdr_ptr = hdr_mp->b_rptr; 24133 pld_ptr = mp->b_rptr; 24134 24135 /* Establish the ending byte offset, based on the starting offset. */ 24136 offset <<= 3; 24137 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24138 IP_SIMPLE_HDR_LENGTH; 24139 24140 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24141 24142 while (pld_ptr < mp->b_wptr) { 24143 ipha_t *ipha; 24144 uint16_t offset_and_flags; 24145 uint16_t ip_len; 24146 int error; 24147 24148 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24149 ipha = (ipha_t *)(hdr_ptr + wroff); 24150 ASSERT(OK_32PTR(ipha)); 24151 *ipha = *ipha_orig; 24152 24153 if (ip_data_end - offset > len) { 24154 offset_and_flags = IPH_MF; 24155 } else { 24156 /* 24157 * Last frag. Set len to the length of this last piece. 24158 */ 24159 len = ip_data_end - offset; 24160 /* A frag of a frag might have IPH_MF non-zero */ 24161 offset_and_flags = 24162 ntohs(ipha->ipha_fragment_offset_and_flags) & 24163 IPH_MF; 24164 } 24165 offset_and_flags |= (uint16_t)(offset >> 3); 24166 offset_and_flags |= (uint16_t)frag_flag; 24167 /* Store the offset and flags in the IP header. */ 24168 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24169 24170 /* Store the length in the IP header. */ 24171 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24172 ipha->ipha_length = htons(ip_len); 24173 24174 /* 24175 * Set the IP header checksum. Note that mp is just 24176 * the header, so this is easy to pass to ip_csum. 24177 */ 24178 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24179 24180 /* 24181 * Record offset and size of header and data of the next packet 24182 * in the multidata message. 24183 */ 24184 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24185 PDESC_PLD_INIT(&pdi); 24186 i1 = MIN(mp->b_wptr - pld_ptr, len); 24187 ASSERT(i1 > 0); 24188 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24189 if (i1 == len) { 24190 pld_ptr += len; 24191 } else { 24192 i1 = len - i1; 24193 mp = mp->b_cont; 24194 ASSERT(mp != NULL); 24195 ASSERT(MBLKL(mp) >= i1); 24196 /* 24197 * Attach the next payload message block to the 24198 * multidata message. 24199 */ 24200 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24201 goto pbuf_panic; 24202 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24203 pld_ptr = mp->b_rptr + i1; 24204 } 24205 24206 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24207 KM_NOSLEEP)) == NULL) { 24208 /* 24209 * Any failure other than ENOMEM indicates that we 24210 * have passed in invalid pdesc info or parameters 24211 * to mmd_addpdesc, which must not happen. 24212 * 24213 * EINVAL is a result of failure on boundary checks 24214 * against the pdesc info contents. It should not 24215 * happen, and we panic because either there's 24216 * horrible heap corruption, and/or programming 24217 * mistake. 24218 */ 24219 if (error != ENOMEM) { 24220 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24221 "pdesc logic error detected for " 24222 "mmd %p pinfo %p (%d)\n", 24223 (void *)mmd, (void *)&pdi, error); 24224 /* NOTREACHED */ 24225 } 24226 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24227 /* Free unattached payload message blocks as well */ 24228 md_mp->b_cont = mp->b_cont; 24229 goto free_mmd; 24230 } 24231 24232 /* Advance fragment offset. */ 24233 offset += len; 24234 24235 /* Advance to location for next header in the buffer. */ 24236 hdr_ptr += hdr_chunk_len; 24237 24238 /* Did we reach the next payload message block? */ 24239 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24240 mp = mp->b_cont; 24241 /* 24242 * Attach the next message block with payload 24243 * data to the multidata message. 24244 */ 24245 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24246 goto pbuf_panic; 24247 pld_ptr = mp->b_rptr; 24248 } 24249 } 24250 24251 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24252 ASSERT(mp->b_wptr == pld_ptr); 24253 24254 /* Update IP statistics */ 24255 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24256 24257 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24259 24260 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24261 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24262 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24263 24264 if (pkt_type == OB_PKT) { 24265 ire->ire_ob_pkt_count += pkts; 24266 if (ire->ire_ipif != NULL) 24267 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24268 } else { 24269 /* 24270 * The type is IB_PKT in the forwarding path and in 24271 * the mobile IP case when the packet is being reverse- 24272 * tunneled to the home agent. 24273 */ 24274 ire->ire_ib_pkt_count += pkts; 24275 ASSERT(!IRE_IS_LOCAL(ire)); 24276 if (ire->ire_type & IRE_BROADCAST) { 24277 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24278 } else { 24279 UPDATE_MIB(ill->ill_ip_mib, 24280 ipIfStatsHCOutForwDatagrams, pkts); 24281 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24282 } 24283 } 24284 ire->ire_last_used_time = lbolt; 24285 /* Send it down */ 24286 putnext(ire->ire_stq, md_mp); 24287 return; 24288 24289 pbuf_panic: 24290 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24291 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24292 pbuf_idx); 24293 /* NOTREACHED */ 24294 } 24295 24296 /* 24297 * Outbound IP fragmentation routine. 24298 * 24299 * NOTE : This routine does not ire_refrele the ire that is passed in 24300 * as the argument. 24301 */ 24302 static void 24303 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24304 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24305 { 24306 int i1; 24307 mblk_t *ll_hdr_mp; 24308 int ll_hdr_len; 24309 int hdr_len; 24310 mblk_t *hdr_mp; 24311 ipha_t *ipha; 24312 int ip_data_end; 24313 int len; 24314 mblk_t *mp = mp_orig, *mp1; 24315 int offset; 24316 queue_t *q; 24317 uint32_t v_hlen_tos_len; 24318 mblk_t *first_mp; 24319 boolean_t mctl_present; 24320 ill_t *ill; 24321 ill_t *out_ill; 24322 mblk_t *xmit_mp; 24323 mblk_t *carve_mp; 24324 ire_t *ire1 = NULL; 24325 ire_t *save_ire = NULL; 24326 mblk_t *next_mp = NULL; 24327 boolean_t last_frag = B_FALSE; 24328 boolean_t multirt_send = B_FALSE; 24329 ire_t *first_ire = NULL; 24330 irb_t *irb = NULL; 24331 mib2_ipIfStatsEntry_t *mibptr = NULL; 24332 24333 ill = ire_to_ill(ire); 24334 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24335 24336 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24337 24338 /* 24339 * IPSEC does not allow hw accelerated packets to be fragmented 24340 * This check is made in ip_wput_ipsec_out prior to coming here 24341 * via ip_wput_ire_fragmentit. 24342 * 24343 * If at this point we have an ire whose ARP request has not 24344 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24345 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24346 * This packet and all fragmentable packets for this ire will 24347 * continue to get dropped while ire_nce->nce_state remains in 24348 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24349 * ND_REACHABLE, all subsquent large packets for this ire will 24350 * get fragemented and sent out by this function. 24351 */ 24352 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24353 /* If nce_state is ND_INITIAL, trigger ARP query */ 24354 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24355 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24356 " - dropping packet\n")); 24357 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24358 freemsg(mp); 24359 return; 24360 } 24361 24362 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24363 "ip_wput_frag_start:"); 24364 24365 if (mp->b_datap->db_type == M_CTL) { 24366 first_mp = mp; 24367 mp_orig = mp = mp->b_cont; 24368 mctl_present = B_TRUE; 24369 } else { 24370 first_mp = mp; 24371 mctl_present = B_FALSE; 24372 } 24373 24374 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24375 ipha = (ipha_t *)mp->b_rptr; 24376 24377 /* 24378 * If the Don't Fragment flag is on, generate an ICMP destination 24379 * unreachable, fragmentation needed. 24380 */ 24381 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24382 if (offset & IPH_DF) { 24383 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24384 /* 24385 * Need to compute hdr checksum if called from ip_wput_ire. 24386 * Note that ip_rput_forward verifies the checksum before 24387 * calling this routine so in that case this is a noop. 24388 */ 24389 ipha->ipha_hdr_checksum = 0; 24390 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24391 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24392 ipst); 24393 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24394 "ip_wput_frag_end:(%S)", 24395 "don't fragment"); 24396 return; 24397 } 24398 if (mctl_present) 24399 freeb(first_mp); 24400 /* 24401 * Establish the starting offset. May not be zero if we are fragging 24402 * a fragment that is being forwarded. 24403 */ 24404 offset = offset & IPH_OFFSET; 24405 24406 /* TODO why is this test needed? */ 24407 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24408 if (((max_frag - LENGTH) & ~7) < 8) { 24409 /* TODO: notify ulp somehow */ 24410 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24411 freemsg(mp); 24412 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24413 "ip_wput_frag_end:(%S)", 24414 "len < 8"); 24415 return; 24416 } 24417 24418 hdr_len = (V_HLEN & 0xF) << 2; 24419 24420 ipha->ipha_hdr_checksum = 0; 24421 24422 /* 24423 * Establish the number of bytes maximum per frag, after putting 24424 * in the header. 24425 */ 24426 len = (max_frag - hdr_len) & ~7; 24427 24428 /* Check if we can use MDT to send out the frags. */ 24429 ASSERT(!IRE_IS_LOCAL(ire)); 24430 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24431 ipst->ips_ip_multidata_outbound && 24432 !(ire->ire_flags & RTF_MULTIRT) && 24433 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24434 ill != NULL && ILL_MDT_CAPABLE(ill) && 24435 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24436 ASSERT(ill->ill_mdt_capab != NULL); 24437 if (!ill->ill_mdt_capab->ill_mdt_on) { 24438 /* 24439 * If MDT has been previously turned off in the past, 24440 * and we currently can do MDT (due to IPQoS policy 24441 * removal, etc.) then enable it for this interface. 24442 */ 24443 ill->ill_mdt_capab->ill_mdt_on = 1; 24444 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24445 ill->ill_name)); 24446 } 24447 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24448 offset); 24449 return; 24450 } 24451 24452 /* Get a copy of the header for the trailing frags */ 24453 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24454 if (!hdr_mp) { 24455 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24456 freemsg(mp); 24457 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24458 "ip_wput_frag_end:(%S)", 24459 "couldn't copy hdr"); 24460 return; 24461 } 24462 if (DB_CRED(mp) != NULL) 24463 mblk_setcred(hdr_mp, DB_CRED(mp)); 24464 24465 /* Store the starting offset, with the MoreFrags flag. */ 24466 i1 = offset | IPH_MF | frag_flag; 24467 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24468 24469 /* Establish the ending byte offset, based on the starting offset. */ 24470 offset <<= 3; 24471 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24472 24473 /* Store the length of the first fragment in the IP header. */ 24474 i1 = len + hdr_len; 24475 ASSERT(i1 <= IP_MAXPACKET); 24476 ipha->ipha_length = htons((uint16_t)i1); 24477 24478 /* 24479 * Compute the IP header checksum for the first frag. We have to 24480 * watch out that we stop at the end of the header. 24481 */ 24482 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24483 24484 /* 24485 * Now carve off the first frag. Note that this will include the 24486 * original IP header. 24487 */ 24488 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24489 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24490 freeb(hdr_mp); 24491 freemsg(mp_orig); 24492 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24493 "ip_wput_frag_end:(%S)", 24494 "couldn't carve first"); 24495 return; 24496 } 24497 24498 /* 24499 * Multirouting case. Each fragment is replicated 24500 * via all non-condemned RTF_MULTIRT routes 24501 * currently resolved. 24502 * We ensure that first_ire is the first RTF_MULTIRT 24503 * ire in the bucket. 24504 */ 24505 if (ire->ire_flags & RTF_MULTIRT) { 24506 irb = ire->ire_bucket; 24507 ASSERT(irb != NULL); 24508 24509 multirt_send = B_TRUE; 24510 24511 /* Make sure we do not omit any multiroute ire. */ 24512 IRB_REFHOLD(irb); 24513 for (first_ire = irb->irb_ire; 24514 first_ire != NULL; 24515 first_ire = first_ire->ire_next) { 24516 if ((first_ire->ire_flags & RTF_MULTIRT) && 24517 (first_ire->ire_addr == ire->ire_addr) && 24518 !(first_ire->ire_marks & 24519 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24520 break; 24521 } 24522 24523 if (first_ire != NULL) { 24524 if (first_ire != ire) { 24525 IRE_REFHOLD(first_ire); 24526 /* 24527 * Do not release the ire passed in 24528 * as the argument. 24529 */ 24530 ire = first_ire; 24531 } else { 24532 first_ire = NULL; 24533 } 24534 } 24535 IRB_REFRELE(irb); 24536 24537 /* 24538 * Save the first ire; we will need to restore it 24539 * for the trailing frags. 24540 * We REFHOLD save_ire, as each iterated ire will be 24541 * REFRELEd. 24542 */ 24543 save_ire = ire; 24544 IRE_REFHOLD(save_ire); 24545 } 24546 24547 /* 24548 * First fragment emission loop. 24549 * In most cases, the emission loop below is entered only 24550 * once. Only in the case where the ire holds the RTF_MULTIRT 24551 * flag, do we loop to process all RTF_MULTIRT ires in the 24552 * bucket, and send the fragment through all crossed 24553 * RTF_MULTIRT routes. 24554 */ 24555 do { 24556 if (ire->ire_flags & RTF_MULTIRT) { 24557 /* 24558 * We are in a multiple send case, need to get 24559 * the next ire and make a copy of the packet. 24560 * ire1 holds here the next ire to process in the 24561 * bucket. If multirouting is expected, 24562 * any non-RTF_MULTIRT ire that has the 24563 * right destination address is ignored. 24564 * 24565 * We have to take into account the MTU of 24566 * each walked ire. max_frag is set by the 24567 * the caller and generally refers to 24568 * the primary ire entry. Here we ensure that 24569 * no route with a lower MTU will be used, as 24570 * fragments are carved once for all ires, 24571 * then replicated. 24572 */ 24573 ASSERT(irb != NULL); 24574 IRB_REFHOLD(irb); 24575 for (ire1 = ire->ire_next; 24576 ire1 != NULL; 24577 ire1 = ire1->ire_next) { 24578 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24579 continue; 24580 if (ire1->ire_addr != ire->ire_addr) 24581 continue; 24582 if (ire1->ire_marks & 24583 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24584 continue; 24585 /* 24586 * Ensure we do not exceed the MTU 24587 * of the next route. 24588 */ 24589 if (ire1->ire_max_frag < max_frag) { 24590 ip_multirt_bad_mtu(ire1, max_frag); 24591 continue; 24592 } 24593 24594 /* Got one. */ 24595 IRE_REFHOLD(ire1); 24596 break; 24597 } 24598 IRB_REFRELE(irb); 24599 24600 if (ire1 != NULL) { 24601 next_mp = copyb(mp); 24602 if ((next_mp == NULL) || 24603 ((mp->b_cont != NULL) && 24604 ((next_mp->b_cont = 24605 dupmsg(mp->b_cont)) == NULL))) { 24606 freemsg(next_mp); 24607 next_mp = NULL; 24608 ire_refrele(ire1); 24609 ire1 = NULL; 24610 } 24611 } 24612 24613 /* Last multiroute ire; don't loop anymore. */ 24614 if (ire1 == NULL) { 24615 multirt_send = B_FALSE; 24616 } 24617 } 24618 24619 ll_hdr_len = 0; 24620 LOCK_IRE_FP_MP(ire); 24621 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24622 if (ll_hdr_mp != NULL) { 24623 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24624 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24625 } else { 24626 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24627 } 24628 24629 /* If there is a transmit header, get a copy for this frag. */ 24630 /* 24631 * TODO: should check db_ref before calling ip_carve_mp since 24632 * it might give us a dup. 24633 */ 24634 if (!ll_hdr_mp) { 24635 /* No xmit header. */ 24636 xmit_mp = mp; 24637 24638 /* We have a link-layer header that can fit in our mblk. */ 24639 } else if (mp->b_datap->db_ref == 1 && 24640 ll_hdr_len != 0 && 24641 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24642 /* M_DATA fastpath */ 24643 mp->b_rptr -= ll_hdr_len; 24644 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24645 xmit_mp = mp; 24646 24647 /* Corner case if copyb has failed */ 24648 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24649 UNLOCK_IRE_FP_MP(ire); 24650 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24651 freeb(hdr_mp); 24652 freemsg(mp); 24653 freemsg(mp_orig); 24654 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24655 "ip_wput_frag_end:(%S)", 24656 "discard"); 24657 24658 if (multirt_send) { 24659 ASSERT(ire1); 24660 ASSERT(next_mp); 24661 24662 freemsg(next_mp); 24663 ire_refrele(ire1); 24664 } 24665 if (save_ire != NULL) 24666 IRE_REFRELE(save_ire); 24667 24668 if (first_ire != NULL) 24669 ire_refrele(first_ire); 24670 return; 24671 24672 /* 24673 * Case of res_mp OR the fastpath mp can't fit 24674 * in the mblk 24675 */ 24676 } else { 24677 xmit_mp->b_cont = mp; 24678 if (DB_CRED(mp) != NULL) 24679 mblk_setcred(xmit_mp, DB_CRED(mp)); 24680 /* 24681 * Get priority marking, if any. 24682 * We propagate the CoS marking from the 24683 * original packet that went to QoS processing 24684 * in ip_wput_ire to the newly carved mp. 24685 */ 24686 if (DB_TYPE(xmit_mp) == M_DATA) 24687 xmit_mp->b_band = mp->b_band; 24688 } 24689 UNLOCK_IRE_FP_MP(ire); 24690 24691 q = ire->ire_stq; 24692 out_ill = (ill_t *)q->q_ptr; 24693 24694 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24695 24696 DTRACE_PROBE4(ip4__physical__out__start, 24697 ill_t *, NULL, ill_t *, out_ill, 24698 ipha_t *, ipha, mblk_t *, xmit_mp); 24699 24700 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24701 ipst->ips_ipv4firewall_physical_out, 24702 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24703 24704 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24705 24706 if (xmit_mp != NULL) { 24707 putnext(q, xmit_mp); 24708 24709 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24710 UPDATE_MIB(out_ill->ill_ip_mib, 24711 ipIfStatsHCOutOctets, i1); 24712 24713 if (pkt_type != OB_PKT) { 24714 /* 24715 * Update the packet count and MIB stats 24716 * of trailing RTF_MULTIRT ires. 24717 */ 24718 UPDATE_OB_PKT_COUNT(ire); 24719 BUMP_MIB(out_ill->ill_ip_mib, 24720 ipIfStatsOutFragReqds); 24721 } 24722 } 24723 24724 if (multirt_send) { 24725 /* 24726 * We are in a multiple send case; look for 24727 * the next ire and re-enter the loop. 24728 */ 24729 ASSERT(ire1); 24730 ASSERT(next_mp); 24731 /* REFRELE the current ire before looping */ 24732 ire_refrele(ire); 24733 ire = ire1; 24734 ire1 = NULL; 24735 mp = next_mp; 24736 next_mp = NULL; 24737 } 24738 } while (multirt_send); 24739 24740 ASSERT(ire1 == NULL); 24741 24742 /* Restore the original ire; we need it for the trailing frags */ 24743 if (save_ire != NULL) { 24744 /* REFRELE the last iterated ire */ 24745 ire_refrele(ire); 24746 /* save_ire has been REFHOLDed */ 24747 ire = save_ire; 24748 save_ire = NULL; 24749 q = ire->ire_stq; 24750 } 24751 24752 if (pkt_type == OB_PKT) { 24753 UPDATE_OB_PKT_COUNT(ire); 24754 } else { 24755 out_ill = (ill_t *)q->q_ptr; 24756 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24757 UPDATE_IB_PKT_COUNT(ire); 24758 } 24759 24760 /* Advance the offset to the second frag starting point. */ 24761 offset += len; 24762 /* 24763 * Update hdr_len from the copied header - there might be less options 24764 * in the later fragments. 24765 */ 24766 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24767 /* Loop until done. */ 24768 for (;;) { 24769 uint16_t offset_and_flags; 24770 uint16_t ip_len; 24771 24772 if (ip_data_end - offset > len) { 24773 /* 24774 * Carve off the appropriate amount from the original 24775 * datagram. 24776 */ 24777 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24778 mp = NULL; 24779 break; 24780 } 24781 /* 24782 * More frags after this one. Get another copy 24783 * of the header. 24784 */ 24785 if (carve_mp->b_datap->db_ref == 1 && 24786 hdr_mp->b_wptr - hdr_mp->b_rptr < 24787 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24788 /* Inline IP header */ 24789 carve_mp->b_rptr -= hdr_mp->b_wptr - 24790 hdr_mp->b_rptr; 24791 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24792 hdr_mp->b_wptr - hdr_mp->b_rptr); 24793 mp = carve_mp; 24794 } else { 24795 if (!(mp = copyb(hdr_mp))) { 24796 freemsg(carve_mp); 24797 break; 24798 } 24799 /* Get priority marking, if any. */ 24800 mp->b_band = carve_mp->b_band; 24801 mp->b_cont = carve_mp; 24802 } 24803 ipha = (ipha_t *)mp->b_rptr; 24804 offset_and_flags = IPH_MF; 24805 } else { 24806 /* 24807 * Last frag. Consume the header. Set len to 24808 * the length of this last piece. 24809 */ 24810 len = ip_data_end - offset; 24811 24812 /* 24813 * Carve off the appropriate amount from the original 24814 * datagram. 24815 */ 24816 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24817 mp = NULL; 24818 break; 24819 } 24820 if (carve_mp->b_datap->db_ref == 1 && 24821 hdr_mp->b_wptr - hdr_mp->b_rptr < 24822 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24823 /* Inline IP header */ 24824 carve_mp->b_rptr -= hdr_mp->b_wptr - 24825 hdr_mp->b_rptr; 24826 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24827 hdr_mp->b_wptr - hdr_mp->b_rptr); 24828 mp = carve_mp; 24829 freeb(hdr_mp); 24830 hdr_mp = mp; 24831 } else { 24832 mp = hdr_mp; 24833 /* Get priority marking, if any. */ 24834 mp->b_band = carve_mp->b_band; 24835 mp->b_cont = carve_mp; 24836 } 24837 ipha = (ipha_t *)mp->b_rptr; 24838 /* A frag of a frag might have IPH_MF non-zero */ 24839 offset_and_flags = 24840 ntohs(ipha->ipha_fragment_offset_and_flags) & 24841 IPH_MF; 24842 } 24843 offset_and_flags |= (uint16_t)(offset >> 3); 24844 offset_and_flags |= (uint16_t)frag_flag; 24845 /* Store the offset and flags in the IP header. */ 24846 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24847 24848 /* Store the length in the IP header. */ 24849 ip_len = (uint16_t)(len + hdr_len); 24850 ipha->ipha_length = htons(ip_len); 24851 24852 /* 24853 * Set the IP header checksum. Note that mp is just 24854 * the header, so this is easy to pass to ip_csum. 24855 */ 24856 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24857 24858 /* Attach a transmit header, if any, and ship it. */ 24859 if (pkt_type == OB_PKT) { 24860 UPDATE_OB_PKT_COUNT(ire); 24861 } else { 24862 out_ill = (ill_t *)q->q_ptr; 24863 BUMP_MIB(out_ill->ill_ip_mib, 24864 ipIfStatsHCOutForwDatagrams); 24865 UPDATE_IB_PKT_COUNT(ire); 24866 } 24867 24868 if (ire->ire_flags & RTF_MULTIRT) { 24869 irb = ire->ire_bucket; 24870 ASSERT(irb != NULL); 24871 24872 multirt_send = B_TRUE; 24873 24874 /* 24875 * Save the original ire; we will need to restore it 24876 * for the tailing frags. 24877 */ 24878 save_ire = ire; 24879 IRE_REFHOLD(save_ire); 24880 } 24881 /* 24882 * Emission loop for this fragment, similar 24883 * to what is done for the first fragment. 24884 */ 24885 do { 24886 if (multirt_send) { 24887 /* 24888 * We are in a multiple send case, need to get 24889 * the next ire and make a copy of the packet. 24890 */ 24891 ASSERT(irb != NULL); 24892 IRB_REFHOLD(irb); 24893 for (ire1 = ire->ire_next; 24894 ire1 != NULL; 24895 ire1 = ire1->ire_next) { 24896 if (!(ire1->ire_flags & RTF_MULTIRT)) 24897 continue; 24898 if (ire1->ire_addr != ire->ire_addr) 24899 continue; 24900 if (ire1->ire_marks & 24901 (IRE_MARK_CONDEMNED| 24902 IRE_MARK_HIDDEN)) 24903 continue; 24904 /* 24905 * Ensure we do not exceed the MTU 24906 * of the next route. 24907 */ 24908 if (ire1->ire_max_frag < max_frag) { 24909 ip_multirt_bad_mtu(ire1, 24910 max_frag); 24911 continue; 24912 } 24913 24914 /* Got one. */ 24915 IRE_REFHOLD(ire1); 24916 break; 24917 } 24918 IRB_REFRELE(irb); 24919 24920 if (ire1 != NULL) { 24921 next_mp = copyb(mp); 24922 if ((next_mp == NULL) || 24923 ((mp->b_cont != NULL) && 24924 ((next_mp->b_cont = 24925 dupmsg(mp->b_cont)) == NULL))) { 24926 freemsg(next_mp); 24927 next_mp = NULL; 24928 ire_refrele(ire1); 24929 ire1 = NULL; 24930 } 24931 } 24932 24933 /* Last multiroute ire; don't loop anymore. */ 24934 if (ire1 == NULL) { 24935 multirt_send = B_FALSE; 24936 } 24937 } 24938 24939 /* Update transmit header */ 24940 ll_hdr_len = 0; 24941 LOCK_IRE_FP_MP(ire); 24942 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24943 if (ll_hdr_mp != NULL) { 24944 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24945 ll_hdr_len = MBLKL(ll_hdr_mp); 24946 } else { 24947 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24948 } 24949 24950 if (!ll_hdr_mp) { 24951 xmit_mp = mp; 24952 24953 /* 24954 * We have link-layer header that can fit in 24955 * our mblk. 24956 */ 24957 } else if (mp->b_datap->db_ref == 1 && 24958 ll_hdr_len != 0 && 24959 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24960 /* M_DATA fastpath */ 24961 mp->b_rptr -= ll_hdr_len; 24962 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24963 ll_hdr_len); 24964 xmit_mp = mp; 24965 24966 /* 24967 * Case of res_mp OR the fastpath mp can't fit 24968 * in the mblk 24969 */ 24970 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24971 xmit_mp->b_cont = mp; 24972 if (DB_CRED(mp) != NULL) 24973 mblk_setcred(xmit_mp, DB_CRED(mp)); 24974 /* Get priority marking, if any. */ 24975 if (DB_TYPE(xmit_mp) == M_DATA) 24976 xmit_mp->b_band = mp->b_band; 24977 24978 /* Corner case if copyb failed */ 24979 } else { 24980 /* 24981 * Exit both the replication and 24982 * fragmentation loops. 24983 */ 24984 UNLOCK_IRE_FP_MP(ire); 24985 goto drop_pkt; 24986 } 24987 UNLOCK_IRE_FP_MP(ire); 24988 24989 mp1 = mp; 24990 out_ill = (ill_t *)q->q_ptr; 24991 24992 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24993 24994 DTRACE_PROBE4(ip4__physical__out__start, 24995 ill_t *, NULL, ill_t *, out_ill, 24996 ipha_t *, ipha, mblk_t *, xmit_mp); 24997 24998 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24999 ipst->ips_ipv4firewall_physical_out, 25000 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25001 25002 DTRACE_PROBE1(ip4__physical__out__end, 25003 mblk_t *, xmit_mp); 25004 25005 if (mp != mp1 && hdr_mp == mp1) 25006 hdr_mp = mp; 25007 if (mp != mp1 && mp_orig == mp1) 25008 mp_orig = mp; 25009 25010 if (xmit_mp != NULL) { 25011 putnext(q, xmit_mp); 25012 25013 BUMP_MIB(out_ill->ill_ip_mib, 25014 ipIfStatsHCOutTransmits); 25015 UPDATE_MIB(out_ill->ill_ip_mib, 25016 ipIfStatsHCOutOctets, ip_len); 25017 25018 if (pkt_type != OB_PKT) { 25019 /* 25020 * Update the packet count of trailing 25021 * RTF_MULTIRT ires. 25022 */ 25023 UPDATE_OB_PKT_COUNT(ire); 25024 } 25025 } 25026 25027 /* All done if we just consumed the hdr_mp. */ 25028 if (mp == hdr_mp) { 25029 last_frag = B_TRUE; 25030 BUMP_MIB(out_ill->ill_ip_mib, 25031 ipIfStatsOutFragOKs); 25032 } 25033 25034 if (multirt_send) { 25035 /* 25036 * We are in a multiple send case; look for 25037 * the next ire and re-enter the loop. 25038 */ 25039 ASSERT(ire1); 25040 ASSERT(next_mp); 25041 /* REFRELE the current ire before looping */ 25042 ire_refrele(ire); 25043 ire = ire1; 25044 ire1 = NULL; 25045 q = ire->ire_stq; 25046 mp = next_mp; 25047 next_mp = NULL; 25048 } 25049 } while (multirt_send); 25050 /* 25051 * Restore the original ire; we need it for the 25052 * trailing frags 25053 */ 25054 if (save_ire != NULL) { 25055 ASSERT(ire1 == NULL); 25056 /* REFRELE the last iterated ire */ 25057 ire_refrele(ire); 25058 /* save_ire has been REFHOLDed */ 25059 ire = save_ire; 25060 q = ire->ire_stq; 25061 save_ire = NULL; 25062 } 25063 25064 if (last_frag) { 25065 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25066 "ip_wput_frag_end:(%S)", 25067 "consumed hdr_mp"); 25068 25069 if (first_ire != NULL) 25070 ire_refrele(first_ire); 25071 return; 25072 } 25073 /* Otherwise, advance and loop. */ 25074 offset += len; 25075 } 25076 25077 drop_pkt: 25078 /* Clean up following allocation failure. */ 25079 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25080 freemsg(mp); 25081 if (mp != hdr_mp) 25082 freeb(hdr_mp); 25083 if (mp != mp_orig) 25084 freemsg(mp_orig); 25085 25086 if (save_ire != NULL) 25087 IRE_REFRELE(save_ire); 25088 if (first_ire != NULL) 25089 ire_refrele(first_ire); 25090 25091 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25092 "ip_wput_frag_end:(%S)", 25093 "end--alloc failure"); 25094 } 25095 25096 /* 25097 * Copy the header plus those options which have the copy bit set 25098 */ 25099 static mblk_t * 25100 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25101 { 25102 mblk_t *mp; 25103 uchar_t *up; 25104 25105 /* 25106 * Quick check if we need to look for options without the copy bit 25107 * set 25108 */ 25109 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25110 if (!mp) 25111 return (mp); 25112 mp->b_rptr += ipst->ips_ip_wroff_extra; 25113 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25114 bcopy(rptr, mp->b_rptr, hdr_len); 25115 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25116 return (mp); 25117 } 25118 up = mp->b_rptr; 25119 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25120 up += IP_SIMPLE_HDR_LENGTH; 25121 rptr += IP_SIMPLE_HDR_LENGTH; 25122 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25123 while (hdr_len > 0) { 25124 uint32_t optval; 25125 uint32_t optlen; 25126 25127 optval = *rptr; 25128 if (optval == IPOPT_EOL) 25129 break; 25130 if (optval == IPOPT_NOP) 25131 optlen = 1; 25132 else 25133 optlen = rptr[1]; 25134 if (optval & IPOPT_COPY) { 25135 bcopy(rptr, up, optlen); 25136 up += optlen; 25137 } 25138 rptr += optlen; 25139 hdr_len -= optlen; 25140 } 25141 /* 25142 * Make sure that we drop an even number of words by filling 25143 * with EOL to the next word boundary. 25144 */ 25145 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25146 hdr_len & 0x3; hdr_len++) 25147 *up++ = IPOPT_EOL; 25148 mp->b_wptr = up; 25149 /* Update header length */ 25150 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25151 return (mp); 25152 } 25153 25154 /* 25155 * Delivery to local recipients including fanout to multiple recipients. 25156 * Does not do checksumming of UDP/TCP. 25157 * Note: q should be the read side queue for either the ill or conn. 25158 * Note: rq should be the read side q for the lower (ill) stream. 25159 * We don't send packets to IPPF processing, thus the last argument 25160 * to all the fanout calls are B_FALSE. 25161 */ 25162 void 25163 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25164 int fanout_flags, zoneid_t zoneid) 25165 { 25166 uint32_t protocol; 25167 mblk_t *first_mp; 25168 boolean_t mctl_present; 25169 int ire_type; 25170 #define rptr ((uchar_t *)ipha) 25171 ip_stack_t *ipst = ill->ill_ipst; 25172 25173 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25174 "ip_wput_local_start: q %p", q); 25175 25176 if (ire != NULL) { 25177 ire_type = ire->ire_type; 25178 } else { 25179 /* 25180 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25181 * packet is not multicast, we can't tell the ire type. 25182 */ 25183 ASSERT(CLASSD(ipha->ipha_dst)); 25184 ire_type = IRE_BROADCAST; 25185 } 25186 25187 first_mp = mp; 25188 if (first_mp->b_datap->db_type == M_CTL) { 25189 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25190 if (!io->ipsec_out_secure) { 25191 /* 25192 * This ipsec_out_t was allocated in ip_wput 25193 * for multicast packets to store the ill_index. 25194 * As this is being delivered locally, we don't 25195 * need this anymore. 25196 */ 25197 mp = first_mp->b_cont; 25198 freeb(first_mp); 25199 first_mp = mp; 25200 mctl_present = B_FALSE; 25201 } else { 25202 /* 25203 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25204 * security properties for the looped-back packet. 25205 */ 25206 mctl_present = B_TRUE; 25207 mp = first_mp->b_cont; 25208 ASSERT(mp != NULL); 25209 ipsec_out_to_in(first_mp); 25210 } 25211 } else { 25212 mctl_present = B_FALSE; 25213 } 25214 25215 DTRACE_PROBE4(ip4__loopback__in__start, 25216 ill_t *, ill, ill_t *, NULL, 25217 ipha_t *, ipha, mblk_t *, first_mp); 25218 25219 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25220 ipst->ips_ipv4firewall_loopback_in, 25221 ill, NULL, ipha, first_mp, mp, ipst); 25222 25223 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25224 25225 if (first_mp == NULL) 25226 return; 25227 25228 ipst->ips_loopback_packets++; 25229 25230 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25231 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25232 if (!IS_SIMPLE_IPH(ipha)) { 25233 ip_wput_local_options(ipha, ipst); 25234 } 25235 25236 protocol = ipha->ipha_protocol; 25237 switch (protocol) { 25238 case IPPROTO_ICMP: { 25239 ire_t *ire_zone; 25240 ilm_t *ilm; 25241 mblk_t *mp1; 25242 zoneid_t last_zoneid; 25243 25244 if (CLASSD(ipha->ipha_dst) && 25245 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 25246 ASSERT(ire_type == IRE_BROADCAST); 25247 /* 25248 * In the multicast case, applications may have joined 25249 * the group from different zones, so we need to deliver 25250 * the packet to each of them. Loop through the 25251 * multicast memberships structures (ilm) on the receive 25252 * ill and send a copy of the packet up each matching 25253 * one. However, we don't do this for multicasts sent on 25254 * the loopback interface (PHYI_LOOPBACK flag set) as 25255 * they must stay in the sender's zone. 25256 * 25257 * ilm_add_v6() ensures that ilms in the same zone are 25258 * contiguous in the ill_ilm list. We use this property 25259 * to avoid sending duplicates needed when two 25260 * applications in the same zone join the same group on 25261 * different logical interfaces: we ignore the ilm if 25262 * it's zoneid is the same as the last matching one. 25263 * In addition, the sending of the packet for 25264 * ire_zoneid is delayed until all of the other ilms 25265 * have been exhausted. 25266 */ 25267 last_zoneid = -1; 25268 ILM_WALKER_HOLD(ill); 25269 for (ilm = ill->ill_ilm; ilm != NULL; 25270 ilm = ilm->ilm_next) { 25271 if ((ilm->ilm_flags & ILM_DELETED) || 25272 ipha->ipha_dst != ilm->ilm_addr || 25273 ilm->ilm_zoneid == last_zoneid || 25274 ilm->ilm_zoneid == zoneid || 25275 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25276 continue; 25277 mp1 = ip_copymsg(first_mp); 25278 if (mp1 == NULL) 25279 continue; 25280 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25281 mctl_present, B_FALSE, ill, 25282 ilm->ilm_zoneid); 25283 last_zoneid = ilm->ilm_zoneid; 25284 } 25285 ILM_WALKER_RELE(ill); 25286 /* 25287 * Loopback case: the sending endpoint has 25288 * IP_MULTICAST_LOOP disabled, therefore we don't 25289 * dispatch the multicast packet to the sending zone. 25290 */ 25291 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25292 freemsg(first_mp); 25293 return; 25294 } 25295 } else if (ire_type == IRE_BROADCAST) { 25296 /* 25297 * In the broadcast case, there may be many zones 25298 * which need a copy of the packet delivered to them. 25299 * There is one IRE_BROADCAST per broadcast address 25300 * and per zone; we walk those using a helper function. 25301 * In addition, the sending of the packet for zoneid is 25302 * delayed until all of the other ires have been 25303 * processed. 25304 */ 25305 IRB_REFHOLD(ire->ire_bucket); 25306 ire_zone = NULL; 25307 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25308 ire)) != NULL) { 25309 mp1 = ip_copymsg(first_mp); 25310 if (mp1 == NULL) 25311 continue; 25312 25313 UPDATE_IB_PKT_COUNT(ire_zone); 25314 ire_zone->ire_last_used_time = lbolt; 25315 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25316 mctl_present, B_FALSE, ill, 25317 ire_zone->ire_zoneid); 25318 } 25319 IRB_REFRELE(ire->ire_bucket); 25320 } 25321 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25322 0, mctl_present, B_FALSE, ill, zoneid); 25323 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25324 "ip_wput_local_end: q %p (%S)", 25325 q, "icmp"); 25326 return; 25327 } 25328 case IPPROTO_IGMP: 25329 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25330 /* Bad packet - discarded by igmp_input */ 25331 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25332 "ip_wput_local_end: q %p (%S)", 25333 q, "igmp_input--bad packet"); 25334 if (mctl_present) 25335 freeb(first_mp); 25336 return; 25337 } 25338 /* 25339 * igmp_input() may have returned the pulled up message. 25340 * So first_mp and ipha need to be reinitialized. 25341 */ 25342 ipha = (ipha_t *)mp->b_rptr; 25343 if (mctl_present) 25344 first_mp->b_cont = mp; 25345 else 25346 first_mp = mp; 25347 /* deliver to local raw users */ 25348 break; 25349 case IPPROTO_ENCAP: 25350 /* 25351 * This case is covered by either ip_fanout_proto, or by 25352 * the above security processing for self-tunneled packets. 25353 */ 25354 break; 25355 case IPPROTO_UDP: { 25356 uint16_t *up; 25357 uint32_t ports; 25358 25359 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25360 UDP_PORTS_OFFSET); 25361 /* Force a 'valid' checksum. */ 25362 up[3] = 0; 25363 25364 ports = *(uint32_t *)up; 25365 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25366 (ire_type == IRE_BROADCAST), 25367 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25368 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25369 ill, zoneid); 25370 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25371 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25372 return; 25373 } 25374 case IPPROTO_TCP: { 25375 25376 /* 25377 * For TCP, discard broadcast packets. 25378 */ 25379 if ((ushort_t)ire_type == IRE_BROADCAST) { 25380 freemsg(first_mp); 25381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25382 ip2dbg(("ip_wput_local: discard broadcast\n")); 25383 return; 25384 } 25385 25386 if (mp->b_datap->db_type == M_DATA) { 25387 /* 25388 * M_DATA mblk, so init mblk (chain) for no struio(). 25389 */ 25390 mblk_t *mp1 = mp; 25391 25392 do 25393 mp1->b_datap->db_struioflag = 0; 25394 while ((mp1 = mp1->b_cont) != NULL); 25395 } 25396 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25397 <= mp->b_wptr); 25398 ip_fanout_tcp(q, first_mp, ill, ipha, 25399 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25400 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25401 mctl_present, B_FALSE, zoneid); 25402 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25403 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25404 return; 25405 } 25406 case IPPROTO_SCTP: 25407 { 25408 uint32_t ports; 25409 25410 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25411 ip_fanout_sctp(first_mp, ill, ipha, ports, 25412 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25413 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25414 return; 25415 } 25416 25417 default: 25418 break; 25419 } 25420 /* 25421 * Find a client for some other protocol. We give 25422 * copies to multiple clients, if more than one is 25423 * bound. 25424 */ 25425 ip_fanout_proto(q, first_mp, ill, ipha, 25426 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25427 mctl_present, B_FALSE, ill, zoneid); 25428 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25429 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25430 #undef rptr 25431 } 25432 25433 /* 25434 * Update any source route, record route, or timestamp options. 25435 * Check that we are at end of strict source route. 25436 * The options have been sanity checked by ip_wput_options(). 25437 */ 25438 static void 25439 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25440 { 25441 ipoptp_t opts; 25442 uchar_t *opt; 25443 uint8_t optval; 25444 uint8_t optlen; 25445 ipaddr_t dst; 25446 uint32_t ts; 25447 ire_t *ire; 25448 timestruc_t now; 25449 25450 ip2dbg(("ip_wput_local_options\n")); 25451 for (optval = ipoptp_first(&opts, ipha); 25452 optval != IPOPT_EOL; 25453 optval = ipoptp_next(&opts)) { 25454 opt = opts.ipoptp_cur; 25455 optlen = opts.ipoptp_len; 25456 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25457 switch (optval) { 25458 uint32_t off; 25459 case IPOPT_SSRR: 25460 case IPOPT_LSRR: 25461 off = opt[IPOPT_OFFSET]; 25462 off--; 25463 if (optlen < IP_ADDR_LEN || 25464 off > optlen - IP_ADDR_LEN) { 25465 /* End of source route */ 25466 break; 25467 } 25468 /* 25469 * This will only happen if two consecutive entries 25470 * in the source route contains our address or if 25471 * it is a packet with a loose source route which 25472 * reaches us before consuming the whole source route 25473 */ 25474 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25475 if (optval == IPOPT_SSRR) { 25476 return; 25477 } 25478 /* 25479 * Hack: instead of dropping the packet truncate the 25480 * source route to what has been used by filling the 25481 * rest with IPOPT_NOP. 25482 */ 25483 opt[IPOPT_OLEN] = (uint8_t)off; 25484 while (off < optlen) { 25485 opt[off++] = IPOPT_NOP; 25486 } 25487 break; 25488 case IPOPT_RR: 25489 off = opt[IPOPT_OFFSET]; 25490 off--; 25491 if (optlen < IP_ADDR_LEN || 25492 off > optlen - IP_ADDR_LEN) { 25493 /* No more room - ignore */ 25494 ip1dbg(( 25495 "ip_wput_forward_options: end of RR\n")); 25496 break; 25497 } 25498 dst = htonl(INADDR_LOOPBACK); 25499 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25500 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25501 break; 25502 case IPOPT_TS: 25503 /* Insert timestamp if there is romm */ 25504 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25505 case IPOPT_TS_TSONLY: 25506 off = IPOPT_TS_TIMELEN; 25507 break; 25508 case IPOPT_TS_PRESPEC: 25509 case IPOPT_TS_PRESPEC_RFC791: 25510 /* Verify that the address matched */ 25511 off = opt[IPOPT_OFFSET] - 1; 25512 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25513 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25514 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25515 ipst); 25516 if (ire == NULL) { 25517 /* Not for us */ 25518 break; 25519 } 25520 ire_refrele(ire); 25521 /* FALLTHRU */ 25522 case IPOPT_TS_TSANDADDR: 25523 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25524 break; 25525 default: 25526 /* 25527 * ip_*put_options should have already 25528 * dropped this packet. 25529 */ 25530 cmn_err(CE_PANIC, "ip_wput_local_options: " 25531 "unknown IT - bug in ip_wput_options?\n"); 25532 return; /* Keep "lint" happy */ 25533 } 25534 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25535 /* Increase overflow counter */ 25536 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25537 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25538 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25539 (off << 4); 25540 break; 25541 } 25542 off = opt[IPOPT_OFFSET] - 1; 25543 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25544 case IPOPT_TS_PRESPEC: 25545 case IPOPT_TS_PRESPEC_RFC791: 25546 case IPOPT_TS_TSANDADDR: 25547 dst = htonl(INADDR_LOOPBACK); 25548 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25549 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25550 /* FALLTHRU */ 25551 case IPOPT_TS_TSONLY: 25552 off = opt[IPOPT_OFFSET] - 1; 25553 /* Compute # of milliseconds since midnight */ 25554 gethrestime(&now); 25555 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25556 now.tv_nsec / (NANOSEC / MILLISEC); 25557 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25558 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25559 break; 25560 } 25561 break; 25562 } 25563 } 25564 } 25565 25566 /* 25567 * Send out a multicast packet on interface ipif. 25568 * The sender does not have an conn. 25569 * Caller verifies that this isn't a PHYI_LOOPBACK. 25570 */ 25571 void 25572 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25573 { 25574 ipha_t *ipha; 25575 ire_t *ire; 25576 ipaddr_t dst; 25577 mblk_t *first_mp; 25578 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25579 25580 /* igmp_sendpkt always allocates a ipsec_out_t */ 25581 ASSERT(mp->b_datap->db_type == M_CTL); 25582 ASSERT(!ipif->ipif_isv6); 25583 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25584 25585 first_mp = mp; 25586 mp = first_mp->b_cont; 25587 ASSERT(mp->b_datap->db_type == M_DATA); 25588 ipha = (ipha_t *)mp->b_rptr; 25589 25590 /* 25591 * Find an IRE which matches the destination and the outgoing 25592 * queue (i.e. the outgoing interface.) 25593 */ 25594 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25595 dst = ipif->ipif_pp_dst_addr; 25596 else 25597 dst = ipha->ipha_dst; 25598 /* 25599 * The source address has already been initialized by the 25600 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25601 * be sufficient rather than MATCH_IRE_IPIF. 25602 * 25603 * This function is used for sending IGMP packets. We need 25604 * to make sure that we send the packet out of the interface 25605 * (ipif->ipif_ill) where we joined the group. This is to 25606 * prevent from switches doing IGMP snooping to send us multicast 25607 * packets for a given group on the interface we have joined. 25608 * If we can't find an ire, igmp_sendpkt has already initialized 25609 * ipsec_out_attach_if so that this will not be load spread in 25610 * ip_newroute_ipif. 25611 */ 25612 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25613 MATCH_IRE_ILL, ipst); 25614 if (!ire) { 25615 /* 25616 * Mark this packet to make it be delivered to 25617 * ip_wput_ire after the new ire has been 25618 * created. 25619 */ 25620 mp->b_prev = NULL; 25621 mp->b_next = NULL; 25622 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25623 zoneid, &zero_info); 25624 return; 25625 } 25626 25627 /* 25628 * Honor the RTF_SETSRC flag; this is the only case 25629 * where we force this addr whatever the current src addr is, 25630 * because this address is set by igmp_sendpkt(), and 25631 * cannot be specified by any user. 25632 */ 25633 if (ire->ire_flags & RTF_SETSRC) { 25634 ipha->ipha_src = ire->ire_src_addr; 25635 } 25636 25637 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25638 } 25639 25640 /* 25641 * NOTE : This function does not ire_refrele the ire argument passed in. 25642 * 25643 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25644 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25645 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25646 * the ire_lock to access the nce_fp_mp in this case. 25647 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25648 * prepending a fastpath message IPQoS processing must precede it, we also set 25649 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25650 * (IPQoS might have set the b_band for CoS marking). 25651 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25652 * must follow it so that IPQoS can mark the dl_priority field for CoS 25653 * marking, if needed. 25654 */ 25655 static mblk_t * 25656 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25657 { 25658 uint_t hlen; 25659 ipha_t *ipha; 25660 mblk_t *mp1; 25661 boolean_t qos_done = B_FALSE; 25662 uchar_t *ll_hdr; 25663 ip_stack_t *ipst = ire->ire_ipst; 25664 25665 #define rptr ((uchar_t *)ipha) 25666 25667 ipha = (ipha_t *)mp->b_rptr; 25668 hlen = 0; 25669 LOCK_IRE_FP_MP(ire); 25670 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25671 ASSERT(DB_TYPE(mp1) == M_DATA); 25672 /* Initiate IPPF processing */ 25673 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25674 UNLOCK_IRE_FP_MP(ire); 25675 ip_process(proc, &mp, ill_index); 25676 if (mp == NULL) 25677 return (NULL); 25678 25679 ipha = (ipha_t *)mp->b_rptr; 25680 LOCK_IRE_FP_MP(ire); 25681 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25682 qos_done = B_TRUE; 25683 goto no_fp_mp; 25684 } 25685 ASSERT(DB_TYPE(mp1) == M_DATA); 25686 } 25687 hlen = MBLKL(mp1); 25688 /* 25689 * Check if we have enough room to prepend fastpath 25690 * header 25691 */ 25692 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25693 ll_hdr = rptr - hlen; 25694 bcopy(mp1->b_rptr, ll_hdr, hlen); 25695 /* 25696 * Set the b_rptr to the start of the link layer 25697 * header 25698 */ 25699 mp->b_rptr = ll_hdr; 25700 mp1 = mp; 25701 } else { 25702 mp1 = copyb(mp1); 25703 if (mp1 == NULL) 25704 goto unlock_err; 25705 mp1->b_band = mp->b_band; 25706 mp1->b_cont = mp; 25707 /* 25708 * certain system generated traffic may not 25709 * have cred/label in ip header block. This 25710 * is true even for a labeled system. But for 25711 * labeled traffic, inherit the label in the 25712 * new header. 25713 */ 25714 if (DB_CRED(mp) != NULL) 25715 mblk_setcred(mp1, DB_CRED(mp)); 25716 /* 25717 * XXX disable ICK_VALID and compute checksum 25718 * here; can happen if nce_fp_mp changes and 25719 * it can't be copied now due to insufficient 25720 * space. (unlikely, fp mp can change, but it 25721 * does not increase in length) 25722 */ 25723 } 25724 UNLOCK_IRE_FP_MP(ire); 25725 } else { 25726 no_fp_mp: 25727 mp1 = copyb(ire->ire_nce->nce_res_mp); 25728 if (mp1 == NULL) { 25729 unlock_err: 25730 UNLOCK_IRE_FP_MP(ire); 25731 freemsg(mp); 25732 return (NULL); 25733 } 25734 UNLOCK_IRE_FP_MP(ire); 25735 mp1->b_cont = mp; 25736 /* 25737 * certain system generated traffic may not 25738 * have cred/label in ip header block. This 25739 * is true even for a labeled system. But for 25740 * labeled traffic, inherit the label in the 25741 * new header. 25742 */ 25743 if (DB_CRED(mp) != NULL) 25744 mblk_setcred(mp1, DB_CRED(mp)); 25745 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25746 ip_process(proc, &mp1, ill_index); 25747 if (mp1 == NULL) 25748 return (NULL); 25749 } 25750 } 25751 return (mp1); 25752 #undef rptr 25753 } 25754 25755 /* 25756 * Finish the outbound IPsec processing for an IPv6 packet. This function 25757 * is called from ipsec_out_process() if the IPsec packet was processed 25758 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25759 * asynchronously. 25760 */ 25761 void 25762 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25763 ire_t *ire_arg) 25764 { 25765 in6_addr_t *v6dstp; 25766 ire_t *ire; 25767 mblk_t *mp; 25768 ip6_t *ip6h1; 25769 uint_t ill_index; 25770 ipsec_out_t *io; 25771 boolean_t attach_if, hwaccel; 25772 uint32_t flags = IP6_NO_IPPOLICY; 25773 int match_flags; 25774 zoneid_t zoneid; 25775 boolean_t ill_need_rele = B_FALSE; 25776 boolean_t ire_need_rele = B_FALSE; 25777 ip_stack_t *ipst; 25778 25779 mp = ipsec_mp->b_cont; 25780 ip6h1 = (ip6_t *)mp->b_rptr; 25781 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25782 ASSERT(io->ipsec_out_ns != NULL); 25783 ipst = io->ipsec_out_ns->netstack_ip; 25784 ill_index = io->ipsec_out_ill_index; 25785 if (io->ipsec_out_reachable) { 25786 flags |= IPV6_REACHABILITY_CONFIRMATION; 25787 } 25788 attach_if = io->ipsec_out_attach_if; 25789 hwaccel = io->ipsec_out_accelerated; 25790 zoneid = io->ipsec_out_zoneid; 25791 ASSERT(zoneid != ALL_ZONES); 25792 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25793 /* Multicast addresses should have non-zero ill_index. */ 25794 v6dstp = &ip6h->ip6_dst; 25795 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25796 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25797 ASSERT(!attach_if || ill_index != 0); 25798 if (ill_index != 0) { 25799 if (ill == NULL) { 25800 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25801 B_TRUE, ipst); 25802 25803 /* Failure case frees things for us. */ 25804 if (ill == NULL) 25805 return; 25806 25807 ill_need_rele = B_TRUE; 25808 } 25809 /* 25810 * If this packet needs to go out on a particular interface 25811 * honor it. 25812 */ 25813 if (attach_if) { 25814 match_flags = MATCH_IRE_ILL; 25815 25816 /* 25817 * Check if we need an ire that will not be 25818 * looked up by anybody else i.e. HIDDEN. 25819 */ 25820 if (ill_is_probeonly(ill)) { 25821 match_flags |= MATCH_IRE_MARK_HIDDEN; 25822 } 25823 } 25824 } 25825 ASSERT(mp != NULL); 25826 25827 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25828 boolean_t unspec_src; 25829 ipif_t *ipif; 25830 25831 /* 25832 * Use the ill_index to get the right ill. 25833 */ 25834 unspec_src = io->ipsec_out_unspec_src; 25835 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25836 if (ipif == NULL) { 25837 if (ill_need_rele) 25838 ill_refrele(ill); 25839 freemsg(ipsec_mp); 25840 return; 25841 } 25842 25843 if (ire_arg != NULL) { 25844 ire = ire_arg; 25845 } else { 25846 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25847 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25848 ire_need_rele = B_TRUE; 25849 } 25850 if (ire != NULL) { 25851 ipif_refrele(ipif); 25852 /* 25853 * XXX Do the multicast forwarding now, as the IPSEC 25854 * processing has been done. 25855 */ 25856 goto send; 25857 } 25858 25859 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25860 mp->b_prev = NULL; 25861 mp->b_next = NULL; 25862 25863 /* 25864 * If the IPsec packet was processed asynchronously, 25865 * drop it now. 25866 */ 25867 if (q == NULL) { 25868 if (ill_need_rele) 25869 ill_refrele(ill); 25870 freemsg(ipsec_mp); 25871 return; 25872 } 25873 25874 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25875 unspec_src, zoneid); 25876 ipif_refrele(ipif); 25877 } else { 25878 if (attach_if) { 25879 ipif_t *ipif; 25880 25881 ipif = ipif_get_next_ipif(NULL, ill); 25882 if (ipif == NULL) { 25883 if (ill_need_rele) 25884 ill_refrele(ill); 25885 freemsg(ipsec_mp); 25886 return; 25887 } 25888 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25889 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25890 ire_need_rele = B_TRUE; 25891 ipif_refrele(ipif); 25892 } else { 25893 if (ire_arg != NULL) { 25894 ire = ire_arg; 25895 } else { 25896 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25897 ipst); 25898 ire_need_rele = B_TRUE; 25899 } 25900 } 25901 if (ire != NULL) 25902 goto send; 25903 /* 25904 * ire disappeared underneath. 25905 * 25906 * What we need to do here is the ip_newroute 25907 * logic to get the ire without doing the IPSEC 25908 * processing. Follow the same old path. But this 25909 * time, ip_wput or ire_add_then_send will call us 25910 * directly as all the IPSEC operations are done. 25911 */ 25912 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25913 mp->b_prev = NULL; 25914 mp->b_next = NULL; 25915 25916 /* 25917 * If the IPsec packet was processed asynchronously, 25918 * drop it now. 25919 */ 25920 if (q == NULL) { 25921 if (ill_need_rele) 25922 ill_refrele(ill); 25923 freemsg(ipsec_mp); 25924 return; 25925 } 25926 25927 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25928 zoneid, ipst); 25929 } 25930 if (ill != NULL && ill_need_rele) 25931 ill_refrele(ill); 25932 return; 25933 send: 25934 if (ill != NULL && ill_need_rele) 25935 ill_refrele(ill); 25936 25937 /* Local delivery */ 25938 if (ire->ire_stq == NULL) { 25939 ill_t *out_ill; 25940 ASSERT(q != NULL); 25941 25942 /* PFHooks: LOOPBACK_OUT */ 25943 out_ill = ire->ire_ipif->ipif_ill; 25944 25945 DTRACE_PROBE4(ip6__loopback__out__start, 25946 ill_t *, NULL, ill_t *, out_ill, 25947 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25948 25949 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25950 ipst->ips_ipv6firewall_loopback_out, 25951 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25952 25953 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25954 25955 if (ipsec_mp != NULL) 25956 ip_wput_local_v6(RD(q), out_ill, 25957 ip6h, ipsec_mp, ire, 0); 25958 if (ire_need_rele) 25959 ire_refrele(ire); 25960 return; 25961 } 25962 /* 25963 * Everything is done. Send it out on the wire. 25964 * We force the insertion of a fragment header using the 25965 * IPH_FRAG_HDR flag in two cases: 25966 * - after reception of an ICMPv6 "packet too big" message 25967 * with a MTU < 1280 (cf. RFC 2460 section 5) 25968 * - for multirouted IPv6 packets, so that the receiver can 25969 * discard duplicates according to their fragment identifier 25970 */ 25971 /* XXX fix flow control problems. */ 25972 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25973 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25974 if (hwaccel) { 25975 /* 25976 * hardware acceleration does not handle these 25977 * "slow path" cases. 25978 */ 25979 /* IPsec KSTATS: should bump bean counter here. */ 25980 if (ire_need_rele) 25981 ire_refrele(ire); 25982 freemsg(ipsec_mp); 25983 return; 25984 } 25985 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25986 (mp->b_cont ? msgdsize(mp) : 25987 mp->b_wptr - (uchar_t *)ip6h)) { 25988 /* IPsec KSTATS: should bump bean counter here. */ 25989 ip0dbg(("Packet length mismatch: %d, %ld\n", 25990 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25991 msgdsize(mp))); 25992 if (ire_need_rele) 25993 ire_refrele(ire); 25994 freemsg(ipsec_mp); 25995 return; 25996 } 25997 ASSERT(mp->b_prev == NULL); 25998 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25999 ntohs(ip6h->ip6_plen) + 26000 IPV6_HDR_LEN, ire->ire_max_frag)); 26001 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26002 ire->ire_max_frag); 26003 } else { 26004 UPDATE_OB_PKT_COUNT(ire); 26005 ire->ire_last_used_time = lbolt; 26006 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26007 } 26008 if (ire_need_rele) 26009 ire_refrele(ire); 26010 freeb(ipsec_mp); 26011 } 26012 26013 void 26014 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26015 { 26016 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26017 da_ipsec_t *hada; /* data attributes */ 26018 ill_t *ill = (ill_t *)q->q_ptr; 26019 26020 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26021 26022 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26023 /* IPsec KSTATS: Bump lose counter here! */ 26024 freemsg(mp); 26025 return; 26026 } 26027 26028 /* 26029 * It's an IPsec packet that must be 26030 * accelerated by the Provider, and the 26031 * outbound ill is IPsec acceleration capable. 26032 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26033 * to the ill. 26034 * IPsec KSTATS: should bump packet counter here. 26035 */ 26036 26037 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26038 if (hada_mp == NULL) { 26039 /* IPsec KSTATS: should bump packet counter here. */ 26040 freemsg(mp); 26041 return; 26042 } 26043 26044 hada_mp->b_datap->db_type = M_CTL; 26045 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26046 hada_mp->b_cont = mp; 26047 26048 hada = (da_ipsec_t *)hada_mp->b_rptr; 26049 bzero(hada, sizeof (da_ipsec_t)); 26050 hada->da_type = IPHADA_M_CTL; 26051 26052 putnext(q, hada_mp); 26053 } 26054 26055 /* 26056 * Finish the outbound IPsec processing. This function is called from 26057 * ipsec_out_process() if the IPsec packet was processed 26058 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26059 * asynchronously. 26060 */ 26061 void 26062 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26063 ire_t *ire_arg) 26064 { 26065 uint32_t v_hlen_tos_len; 26066 ipaddr_t dst; 26067 ipif_t *ipif = NULL; 26068 ire_t *ire; 26069 ire_t *ire1 = NULL; 26070 mblk_t *next_mp = NULL; 26071 uint32_t max_frag; 26072 boolean_t multirt_send = B_FALSE; 26073 mblk_t *mp; 26074 mblk_t *mp1; 26075 ipha_t *ipha1; 26076 uint_t ill_index; 26077 ipsec_out_t *io; 26078 boolean_t attach_if; 26079 int match_flags, offset; 26080 irb_t *irb = NULL; 26081 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26082 zoneid_t zoneid; 26083 uint32_t cksum; 26084 uint16_t *up; 26085 ipxmit_state_t pktxmit_state; 26086 ip_stack_t *ipst; 26087 26088 #ifdef _BIG_ENDIAN 26089 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26090 #else 26091 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26092 #endif 26093 26094 mp = ipsec_mp->b_cont; 26095 ipha1 = (ipha_t *)mp->b_rptr; 26096 ASSERT(mp != NULL); 26097 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26098 dst = ipha->ipha_dst; 26099 26100 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26101 ill_index = io->ipsec_out_ill_index; 26102 attach_if = io->ipsec_out_attach_if; 26103 zoneid = io->ipsec_out_zoneid; 26104 ASSERT(zoneid != ALL_ZONES); 26105 ipst = io->ipsec_out_ns->netstack_ip; 26106 ASSERT(io->ipsec_out_ns != NULL); 26107 26108 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26109 if (ill_index != 0) { 26110 if (ill == NULL) { 26111 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26112 ill_index, B_FALSE, ipst); 26113 26114 /* Failure case frees things for us. */ 26115 if (ill == NULL) 26116 return; 26117 26118 ill_need_rele = B_TRUE; 26119 } 26120 /* 26121 * If this packet needs to go out on a particular interface 26122 * honor it. 26123 */ 26124 if (attach_if) { 26125 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26126 26127 /* 26128 * Check if we need an ire that will not be 26129 * looked up by anybody else i.e. HIDDEN. 26130 */ 26131 if (ill_is_probeonly(ill)) { 26132 match_flags |= MATCH_IRE_MARK_HIDDEN; 26133 } 26134 } 26135 } 26136 26137 if (CLASSD(dst)) { 26138 boolean_t conn_dontroute; 26139 /* 26140 * Use the ill_index to get the right ipif. 26141 */ 26142 conn_dontroute = io->ipsec_out_dontroute; 26143 if (ill_index == 0) 26144 ipif = ipif_lookup_group(dst, zoneid, ipst); 26145 else 26146 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26147 if (ipif == NULL) { 26148 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26149 " multicast\n")); 26150 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26151 freemsg(ipsec_mp); 26152 goto done; 26153 } 26154 /* 26155 * ipha_src has already been intialized with the 26156 * value of the ipif in ip_wput. All we need now is 26157 * an ire to send this downstream. 26158 */ 26159 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26160 MBLK_GETLABEL(mp), match_flags, ipst); 26161 if (ire != NULL) { 26162 ill_t *ill1; 26163 /* 26164 * Do the multicast forwarding now, as the IPSEC 26165 * processing has been done. 26166 */ 26167 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26168 (ill1 = ire_to_ill(ire))) { 26169 if (ip_mforward(ill1, ipha, mp)) { 26170 freemsg(ipsec_mp); 26171 ip1dbg(("ip_wput_ipsec_out: mforward " 26172 "failed\n")); 26173 ire_refrele(ire); 26174 goto done; 26175 } 26176 } 26177 goto send; 26178 } 26179 26180 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26181 mp->b_prev = NULL; 26182 mp->b_next = NULL; 26183 26184 /* 26185 * If the IPsec packet was processed asynchronously, 26186 * drop it now. 26187 */ 26188 if (q == NULL) { 26189 freemsg(ipsec_mp); 26190 goto done; 26191 } 26192 26193 /* 26194 * We may be using a wrong ipif to create the ire. 26195 * But it is okay as the source address is assigned 26196 * for the packet already. Next outbound packet would 26197 * create the IRE with the right IPIF in ip_wput. 26198 * 26199 * Also handle RTF_MULTIRT routes. 26200 */ 26201 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26202 zoneid, &zero_info); 26203 } else { 26204 if (attach_if) { 26205 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26206 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26207 } else { 26208 if (ire_arg != NULL) { 26209 ire = ire_arg; 26210 ire_need_rele = B_FALSE; 26211 } else { 26212 ire = ire_cache_lookup(dst, zoneid, 26213 MBLK_GETLABEL(mp), ipst); 26214 } 26215 } 26216 if (ire != NULL) { 26217 goto send; 26218 } 26219 26220 /* 26221 * ire disappeared underneath. 26222 * 26223 * What we need to do here is the ip_newroute 26224 * logic to get the ire without doing the IPSEC 26225 * processing. Follow the same old path. But this 26226 * time, ip_wput or ire_add_then_put will call us 26227 * directly as all the IPSEC operations are done. 26228 */ 26229 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26230 mp->b_prev = NULL; 26231 mp->b_next = NULL; 26232 26233 /* 26234 * If the IPsec packet was processed asynchronously, 26235 * drop it now. 26236 */ 26237 if (q == NULL) { 26238 freemsg(ipsec_mp); 26239 goto done; 26240 } 26241 26242 /* 26243 * Since we're going through ip_newroute() again, we 26244 * need to make sure we don't: 26245 * 26246 * 1.) Trigger the ASSERT() with the ipha_ident 26247 * overloading. 26248 * 2.) Redo transport-layer checksumming, since we've 26249 * already done all that to get this far. 26250 * 26251 * The easiest way not do either of the above is to set 26252 * the ipha_ident field to IP_HDR_INCLUDED. 26253 */ 26254 ipha->ipha_ident = IP_HDR_INCLUDED; 26255 ip_newroute(q, ipsec_mp, dst, NULL, 26256 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26257 } 26258 goto done; 26259 send: 26260 if (ipha->ipha_protocol == IPPROTO_UDP && 26261 udp_compute_checksum(ipst->ips_netstack)) { 26262 /* 26263 * ESP NAT-Traversal packet. 26264 * 26265 * Just do software checksum for now. 26266 */ 26267 26268 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26269 IP_STAT(ipst, ip_out_sw_cksum); 26270 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26271 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26272 #define iphs ((uint16_t *)ipha) 26273 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26274 iphs[9] + ntohs(htons(ipha->ipha_length) - 26275 IP_SIMPLE_HDR_LENGTH); 26276 #undef iphs 26277 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26278 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26279 if (mp1->b_wptr - mp1->b_rptr >= 26280 offset + sizeof (uint16_t)) { 26281 up = (uint16_t *)(mp1->b_rptr + offset); 26282 *up = cksum; 26283 break; /* out of for loop */ 26284 } else { 26285 offset -= (mp->b_wptr - mp->b_rptr); 26286 } 26287 } /* Otherwise, just keep the all-zero checksum. */ 26288 26289 if (ire->ire_stq == NULL) { 26290 ill_t *out_ill; 26291 /* 26292 * Loopbacks go through ip_wput_local except for one case. 26293 * We come here if we generate a icmp_frag_needed message 26294 * after IPSEC processing is over. When this function calls 26295 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26296 * icmp_frag_needed. The message generated comes back here 26297 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26298 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26299 * source address as it is usually set in ip_wput_ire. As 26300 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26301 * and we end up here. We can't enter ip_wput_ire once the 26302 * IPSEC processing is over and hence we need to do it here. 26303 */ 26304 ASSERT(q != NULL); 26305 UPDATE_OB_PKT_COUNT(ire); 26306 ire->ire_last_used_time = lbolt; 26307 if (ipha->ipha_src == 0) 26308 ipha->ipha_src = ire->ire_src_addr; 26309 26310 /* PFHooks: LOOPBACK_OUT */ 26311 out_ill = ire->ire_ipif->ipif_ill; 26312 26313 DTRACE_PROBE4(ip4__loopback__out__start, 26314 ill_t *, NULL, ill_t *, out_ill, 26315 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26316 26317 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26318 ipst->ips_ipv4firewall_loopback_out, 26319 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26320 26321 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26322 26323 if (ipsec_mp != NULL) 26324 ip_wput_local(RD(q), out_ill, 26325 ipha, ipsec_mp, ire, 0, zoneid); 26326 if (ire_need_rele) 26327 ire_refrele(ire); 26328 goto done; 26329 } 26330 26331 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26332 /* 26333 * We are through with IPSEC processing. 26334 * Fragment this and send it on the wire. 26335 */ 26336 if (io->ipsec_out_accelerated) { 26337 /* 26338 * The packet has been accelerated but must 26339 * be fragmented. This should not happen 26340 * since AH and ESP must not accelerate 26341 * packets that need fragmentation, however 26342 * the configuration could have changed 26343 * since the AH or ESP processing. 26344 * Drop packet. 26345 * IPsec KSTATS: bump bean counter here. 26346 */ 26347 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26348 "fragmented accelerated packet!\n")); 26349 freemsg(ipsec_mp); 26350 } else { 26351 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26352 } 26353 if (ire_need_rele) 26354 ire_refrele(ire); 26355 goto done; 26356 } 26357 26358 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26359 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26360 (void *)ire->ire_ipif, (void *)ipif)); 26361 26362 /* 26363 * Multiroute the secured packet, unless IPsec really 26364 * requires the packet to go out only through a particular 26365 * interface. 26366 */ 26367 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26368 ire_t *first_ire; 26369 irb = ire->ire_bucket; 26370 ASSERT(irb != NULL); 26371 /* 26372 * This ire has been looked up as the one that 26373 * goes through the given ipif; 26374 * make sure we do not omit any other multiroute ire 26375 * that may be present in the bucket before this one. 26376 */ 26377 IRB_REFHOLD(irb); 26378 for (first_ire = irb->irb_ire; 26379 first_ire != NULL; 26380 first_ire = first_ire->ire_next) { 26381 if ((first_ire->ire_flags & RTF_MULTIRT) && 26382 (first_ire->ire_addr == ire->ire_addr) && 26383 !(first_ire->ire_marks & 26384 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 26385 break; 26386 } 26387 26388 if ((first_ire != NULL) && (first_ire != ire)) { 26389 /* 26390 * Don't change the ire if the packet must 26391 * be fragmented if sent via this new one. 26392 */ 26393 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26394 IRE_REFHOLD(first_ire); 26395 if (ire_need_rele) 26396 ire_refrele(ire); 26397 else 26398 ire_need_rele = B_TRUE; 26399 ire = first_ire; 26400 } 26401 } 26402 IRB_REFRELE(irb); 26403 26404 multirt_send = B_TRUE; 26405 max_frag = ire->ire_max_frag; 26406 } else { 26407 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26408 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26409 "flag, attach_if %d\n", attach_if)); 26410 } 26411 } 26412 26413 /* 26414 * In most cases, the emission loop below is entered only once. 26415 * Only in the case where the ire holds the RTF_MULTIRT 26416 * flag, we loop to process all RTF_MULTIRT ires in the 26417 * bucket, and send the packet through all crossed 26418 * RTF_MULTIRT routes. 26419 */ 26420 do { 26421 if (multirt_send) { 26422 /* 26423 * ire1 holds here the next ire to process in the 26424 * bucket. If multirouting is expected, 26425 * any non-RTF_MULTIRT ire that has the 26426 * right destination address is ignored. 26427 */ 26428 ASSERT(irb != NULL); 26429 IRB_REFHOLD(irb); 26430 for (ire1 = ire->ire_next; 26431 ire1 != NULL; 26432 ire1 = ire1->ire_next) { 26433 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26434 continue; 26435 if (ire1->ire_addr != ire->ire_addr) 26436 continue; 26437 if (ire1->ire_marks & 26438 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26439 continue; 26440 /* No loopback here */ 26441 if (ire1->ire_stq == NULL) 26442 continue; 26443 /* 26444 * Ensure we do not exceed the MTU 26445 * of the next route. 26446 */ 26447 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26448 ip_multirt_bad_mtu(ire1, max_frag); 26449 continue; 26450 } 26451 26452 IRE_REFHOLD(ire1); 26453 break; 26454 } 26455 IRB_REFRELE(irb); 26456 if (ire1 != NULL) { 26457 /* 26458 * We are in a multiple send case, need to 26459 * make a copy of the packet. 26460 */ 26461 next_mp = copymsg(ipsec_mp); 26462 if (next_mp == NULL) { 26463 ire_refrele(ire1); 26464 ire1 = NULL; 26465 } 26466 } 26467 } 26468 /* 26469 * Everything is done. Send it out on the wire 26470 * 26471 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26472 * either send it on the wire or, in the case of 26473 * HW acceleration, call ipsec_hw_putnext. 26474 */ 26475 if (ire->ire_nce && 26476 ire->ire_nce->nce_state != ND_REACHABLE) { 26477 DTRACE_PROBE2(ip__wput__ipsec__bail, 26478 (ire_t *), ire, (mblk_t *), ipsec_mp); 26479 /* 26480 * If ire's link-layer is unresolved (this 26481 * would only happen if the incomplete ire 26482 * was added to cachetable via forwarding path) 26483 * don't bother going to ip_xmit_v4. Just drop the 26484 * packet. 26485 * There is a slight risk here, in that, if we 26486 * have the forwarding path create an incomplete 26487 * IRE, then until the IRE is completed, any 26488 * transmitted IPSEC packets will be dropped 26489 * instead of being queued waiting for resolution. 26490 * 26491 * But the likelihood of a forwarding packet and a wput 26492 * packet sending to the same dst at the same time 26493 * and there not yet be an ARP entry for it is small. 26494 * Furthermore, if this actually happens, it might 26495 * be likely that wput would generate multiple 26496 * packets (and forwarding would also have a train 26497 * of packets) for that destination. If this is 26498 * the case, some of them would have been dropped 26499 * anyway, since ARP only queues a few packets while 26500 * waiting for resolution 26501 * 26502 * NOTE: We should really call ip_xmit_v4, 26503 * and let it queue the packet and send the 26504 * ARP query and have ARP come back thus: 26505 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26506 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26507 * hw accel work. But it's too complex to get 26508 * the IPsec hw acceleration approach to fit 26509 * well with ip_xmit_v4 doing ARP without 26510 * doing IPSEC simplification. For now, we just 26511 * poke ip_xmit_v4 to trigger the arp resolve, so 26512 * that we can continue with the send on the next 26513 * attempt. 26514 * 26515 * XXX THis should be revisited, when 26516 * the IPsec/IP interaction is cleaned up 26517 */ 26518 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26519 " - dropping packet\n")); 26520 freemsg(ipsec_mp); 26521 /* 26522 * Call ip_xmit_v4() to trigger ARP query 26523 * in case the nce_state is ND_INITIAL 26524 */ 26525 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26526 goto drop_pkt; 26527 } 26528 26529 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26530 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26531 mblk_t *, mp); 26532 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26533 ipst->ips_ipv4firewall_physical_out, 26534 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst); 26535 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26536 if (mp == NULL) 26537 goto drop_pkt; 26538 26539 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26540 pktxmit_state = ip_xmit_v4(mp, ire, 26541 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26542 26543 if ((pktxmit_state == SEND_FAILED) || 26544 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26545 26546 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26547 drop_pkt: 26548 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26549 ipIfStatsOutDiscards); 26550 if (ire_need_rele) 26551 ire_refrele(ire); 26552 if (ire1 != NULL) { 26553 ire_refrele(ire1); 26554 freemsg(next_mp); 26555 } 26556 goto done; 26557 } 26558 26559 freeb(ipsec_mp); 26560 if (ire_need_rele) 26561 ire_refrele(ire); 26562 26563 if (ire1 != NULL) { 26564 ire = ire1; 26565 ire_need_rele = B_TRUE; 26566 ASSERT(next_mp); 26567 ipsec_mp = next_mp; 26568 mp = ipsec_mp->b_cont; 26569 ire1 = NULL; 26570 next_mp = NULL; 26571 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26572 } else { 26573 multirt_send = B_FALSE; 26574 } 26575 } while (multirt_send); 26576 done: 26577 if (ill != NULL && ill_need_rele) 26578 ill_refrele(ill); 26579 if (ipif != NULL) 26580 ipif_refrele(ipif); 26581 } 26582 26583 /* 26584 * Get the ill corresponding to the specified ire, and compare its 26585 * capabilities with the protocol and algorithms specified by the 26586 * the SA obtained from ipsec_out. If they match, annotate the 26587 * ipsec_out structure to indicate that the packet needs acceleration. 26588 * 26589 * 26590 * A packet is eligible for outbound hardware acceleration if the 26591 * following conditions are satisfied: 26592 * 26593 * 1. the packet will not be fragmented 26594 * 2. the provider supports the algorithm 26595 * 3. there is no pending control message being exchanged 26596 * 4. snoop is not attached 26597 * 5. the destination address is not a broadcast or multicast address. 26598 * 26599 * Rationale: 26600 * - Hardware drivers do not support fragmentation with 26601 * the current interface. 26602 * - snoop, multicast, and broadcast may result in exposure of 26603 * a cleartext datagram. 26604 * We check all five of these conditions here. 26605 * 26606 * XXX would like to nuke "ire_t *" parameter here; problem is that 26607 * IRE is only way to figure out if a v4 address is a broadcast and 26608 * thus ineligible for acceleration... 26609 */ 26610 static void 26611 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26612 { 26613 ipsec_out_t *io; 26614 mblk_t *data_mp; 26615 uint_t plen, overhead; 26616 ip_stack_t *ipst; 26617 26618 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26619 return; 26620 26621 if (ill == NULL) 26622 return; 26623 ipst = ill->ill_ipst; 26624 /* 26625 * Destination address is a broadcast or multicast. Punt. 26626 */ 26627 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26628 IRE_LOCAL))) 26629 return; 26630 26631 data_mp = ipsec_mp->b_cont; 26632 26633 if (ill->ill_isv6) { 26634 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26635 26636 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26637 return; 26638 26639 plen = ip6h->ip6_plen; 26640 } else { 26641 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26642 26643 if (CLASSD(ipha->ipha_dst)) 26644 return; 26645 26646 plen = ipha->ipha_length; 26647 } 26648 /* 26649 * Is there a pending DLPI control message being exchanged 26650 * between IP/IPsec and the DLS Provider? If there is, it 26651 * could be a SADB update, and the state of the DLS Provider 26652 * SADB might not be in sync with the SADB maintained by 26653 * IPsec. To avoid dropping packets or using the wrong keying 26654 * material, we do not accelerate this packet. 26655 */ 26656 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26657 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26658 "ill_dlpi_pending! don't accelerate packet\n")); 26659 return; 26660 } 26661 26662 /* 26663 * Is the Provider in promiscous mode? If it does, we don't 26664 * accelerate the packet since it will bounce back up to the 26665 * listeners in the clear. 26666 */ 26667 if (ill->ill_promisc_on_phys) { 26668 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26669 "ill in promiscous mode, don't accelerate packet\n")); 26670 return; 26671 } 26672 26673 /* 26674 * Will the packet require fragmentation? 26675 */ 26676 26677 /* 26678 * IPsec ESP note: this is a pessimistic estimate, but the same 26679 * as is used elsewhere. 26680 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26681 * + 2-byte trailer 26682 */ 26683 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26684 IPSEC_BASE_ESP_HDR_SIZE(sa); 26685 26686 if ((plen + overhead) > ill->ill_max_mtu) 26687 return; 26688 26689 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26690 26691 /* 26692 * Can the ill accelerate this IPsec protocol and algorithm 26693 * specified by the SA? 26694 */ 26695 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26696 ill->ill_isv6, sa, ipst->ips_netstack)) { 26697 return; 26698 } 26699 26700 /* 26701 * Tell AH or ESP that the outbound ill is capable of 26702 * accelerating this packet. 26703 */ 26704 io->ipsec_out_is_capab_ill = B_TRUE; 26705 } 26706 26707 /* 26708 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26709 * 26710 * If this function returns B_TRUE, the requested SA's have been filled 26711 * into the ipsec_out_*_sa pointers. 26712 * 26713 * If the function returns B_FALSE, the packet has been "consumed", most 26714 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26715 * 26716 * The SA references created by the protocol-specific "select" 26717 * function will be released when the ipsec_mp is freed, thanks to the 26718 * ipsec_out_free destructor -- see spd.c. 26719 */ 26720 static boolean_t 26721 ipsec_out_select_sa(mblk_t *ipsec_mp) 26722 { 26723 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26724 ipsec_out_t *io; 26725 ipsec_policy_t *pp; 26726 ipsec_action_t *ap; 26727 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26728 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26729 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26730 26731 if (!io->ipsec_out_secure) { 26732 /* 26733 * We came here by mistake. 26734 * Don't bother with ipsec processing 26735 * We should "discourage" this path in the future. 26736 */ 26737 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26738 return (B_FALSE); 26739 } 26740 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26741 ASSERT((io->ipsec_out_policy != NULL) || 26742 (io->ipsec_out_act != NULL)); 26743 26744 ASSERT(io->ipsec_out_failed == B_FALSE); 26745 26746 /* 26747 * IPSEC processing has started. 26748 */ 26749 io->ipsec_out_proc_begin = B_TRUE; 26750 ap = io->ipsec_out_act; 26751 if (ap == NULL) { 26752 pp = io->ipsec_out_policy; 26753 ASSERT(pp != NULL); 26754 ap = pp->ipsp_act; 26755 ASSERT(ap != NULL); 26756 } 26757 26758 /* 26759 * We have an action. now, let's select SA's. 26760 * (In the future, we can cache this in the conn_t..) 26761 */ 26762 if (ap->ipa_want_esp) { 26763 if (io->ipsec_out_esp_sa == NULL) { 26764 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26765 IPPROTO_ESP); 26766 } 26767 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26768 } 26769 26770 if (ap->ipa_want_ah) { 26771 if (io->ipsec_out_ah_sa == NULL) { 26772 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26773 IPPROTO_AH); 26774 } 26775 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26776 /* 26777 * The ESP and AH processing order needs to be preserved 26778 * when both protocols are required (ESP should be applied 26779 * before AH for an outbound packet). Force an ESP ACQUIRE 26780 * when both ESP and AH are required, and an AH ACQUIRE 26781 * is needed. 26782 */ 26783 if (ap->ipa_want_esp && need_ah_acquire) 26784 need_esp_acquire = B_TRUE; 26785 } 26786 26787 /* 26788 * Send an ACQUIRE (extended, regular, or both) if we need one. 26789 * Release SAs that got referenced, but will not be used until we 26790 * acquire _all_ of the SAs we need. 26791 */ 26792 if (need_ah_acquire || need_esp_acquire) { 26793 if (io->ipsec_out_ah_sa != NULL) { 26794 IPSA_REFRELE(io->ipsec_out_ah_sa); 26795 io->ipsec_out_ah_sa = NULL; 26796 } 26797 if (io->ipsec_out_esp_sa != NULL) { 26798 IPSA_REFRELE(io->ipsec_out_esp_sa); 26799 io->ipsec_out_esp_sa = NULL; 26800 } 26801 26802 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26803 return (B_FALSE); 26804 } 26805 26806 return (B_TRUE); 26807 } 26808 26809 /* 26810 * Process an IPSEC_OUT message and see what you can 26811 * do with it. 26812 * IPQoS Notes: 26813 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26814 * IPSec. 26815 * XXX would like to nuke ire_t. 26816 * XXX ill_index better be "real" 26817 */ 26818 void 26819 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26820 { 26821 ipsec_out_t *io; 26822 ipsec_policy_t *pp; 26823 ipsec_action_t *ap; 26824 ipha_t *ipha; 26825 ip6_t *ip6h; 26826 mblk_t *mp; 26827 ill_t *ill; 26828 zoneid_t zoneid; 26829 ipsec_status_t ipsec_rc; 26830 boolean_t ill_need_rele = B_FALSE; 26831 ip_stack_t *ipst; 26832 ipsec_stack_t *ipss; 26833 26834 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26835 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26836 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26837 ipst = io->ipsec_out_ns->netstack_ip; 26838 mp = ipsec_mp->b_cont; 26839 26840 /* 26841 * Initiate IPPF processing. We do it here to account for packets 26842 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26843 * We can check for ipsec_out_proc_begin even for such packets, as 26844 * they will always be false (asserted below). 26845 */ 26846 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26847 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26848 io->ipsec_out_ill_index : ill_index); 26849 if (mp == NULL) { 26850 ip2dbg(("ipsec_out_process: packet dropped "\ 26851 "during IPPF processing\n")); 26852 freeb(ipsec_mp); 26853 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26854 return; 26855 } 26856 } 26857 26858 if (!io->ipsec_out_secure) { 26859 /* 26860 * We came here by mistake. 26861 * Don't bother with ipsec processing 26862 * Should "discourage" this path in the future. 26863 */ 26864 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26865 goto done; 26866 } 26867 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26868 ASSERT((io->ipsec_out_policy != NULL) || 26869 (io->ipsec_out_act != NULL)); 26870 ASSERT(io->ipsec_out_failed == B_FALSE); 26871 26872 ipss = ipst->ips_netstack->netstack_ipsec; 26873 if (!ipsec_loaded(ipss)) { 26874 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26875 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26876 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26877 } else { 26878 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26879 } 26880 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26881 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26882 &ipss->ipsec_dropper); 26883 return; 26884 } 26885 26886 /* 26887 * IPSEC processing has started. 26888 */ 26889 io->ipsec_out_proc_begin = B_TRUE; 26890 ap = io->ipsec_out_act; 26891 if (ap == NULL) { 26892 pp = io->ipsec_out_policy; 26893 ASSERT(pp != NULL); 26894 ap = pp->ipsp_act; 26895 ASSERT(ap != NULL); 26896 } 26897 26898 /* 26899 * Save the outbound ill index. When the packet comes back 26900 * from IPsec, we make sure the ill hasn't changed or disappeared 26901 * before sending it the accelerated packet. 26902 */ 26903 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26904 int ifindex; 26905 ill = ire_to_ill(ire); 26906 ifindex = ill->ill_phyint->phyint_ifindex; 26907 io->ipsec_out_capab_ill_index = ifindex; 26908 } 26909 26910 /* 26911 * The order of processing is first insert a IP header if needed. 26912 * Then insert the ESP header and then the AH header. 26913 */ 26914 if ((io->ipsec_out_se_done == B_FALSE) && 26915 (ap->ipa_want_se)) { 26916 /* 26917 * First get the outer IP header before sending 26918 * it to ESP. 26919 */ 26920 ipha_t *oipha, *iipha; 26921 mblk_t *outer_mp, *inner_mp; 26922 26923 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26924 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26925 "ipsec_out_process: " 26926 "Self-Encapsulation failed: Out of memory\n"); 26927 freemsg(ipsec_mp); 26928 if (ill != NULL) { 26929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26930 } else { 26931 BUMP_MIB(&ipst->ips_ip_mib, 26932 ipIfStatsOutDiscards); 26933 } 26934 return; 26935 } 26936 inner_mp = ipsec_mp->b_cont; 26937 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26938 oipha = (ipha_t *)outer_mp->b_rptr; 26939 iipha = (ipha_t *)inner_mp->b_rptr; 26940 *oipha = *iipha; 26941 outer_mp->b_wptr += sizeof (ipha_t); 26942 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26943 sizeof (ipha_t)); 26944 oipha->ipha_protocol = IPPROTO_ENCAP; 26945 oipha->ipha_version_and_hdr_length = 26946 IP_SIMPLE_HDR_VERSION; 26947 oipha->ipha_hdr_checksum = 0; 26948 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26949 outer_mp->b_cont = inner_mp; 26950 ipsec_mp->b_cont = outer_mp; 26951 26952 io->ipsec_out_se_done = B_TRUE; 26953 io->ipsec_out_tunnel = B_TRUE; 26954 } 26955 26956 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26957 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26958 !ipsec_out_select_sa(ipsec_mp)) 26959 return; 26960 26961 /* 26962 * By now, we know what SA's to use. Toss over to ESP & AH 26963 * to do the heavy lifting. 26964 */ 26965 zoneid = io->ipsec_out_zoneid; 26966 ASSERT(zoneid != ALL_ZONES); 26967 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26968 ASSERT(io->ipsec_out_esp_sa != NULL); 26969 io->ipsec_out_esp_done = B_TRUE; 26970 /* 26971 * Note that since hw accel can only apply one transform, 26972 * not two, we skip hw accel for ESP if we also have AH 26973 * This is an design limitation of the interface 26974 * which should be revisited. 26975 */ 26976 ASSERT(ire != NULL); 26977 if (io->ipsec_out_ah_sa == NULL) { 26978 ill = (ill_t *)ire->ire_stq->q_ptr; 26979 ipsec_out_is_accelerated(ipsec_mp, 26980 io->ipsec_out_esp_sa, ill, ire); 26981 } 26982 26983 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26984 switch (ipsec_rc) { 26985 case IPSEC_STATUS_SUCCESS: 26986 break; 26987 case IPSEC_STATUS_FAILED: 26988 if (ill != NULL) { 26989 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26990 } else { 26991 BUMP_MIB(&ipst->ips_ip_mib, 26992 ipIfStatsOutDiscards); 26993 } 26994 /* FALLTHRU */ 26995 case IPSEC_STATUS_PENDING: 26996 return; 26997 } 26998 } 26999 27000 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27001 ASSERT(io->ipsec_out_ah_sa != NULL); 27002 io->ipsec_out_ah_done = B_TRUE; 27003 if (ire == NULL) { 27004 int idx = io->ipsec_out_capab_ill_index; 27005 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27006 NULL, NULL, NULL, NULL, ipst); 27007 ill_need_rele = B_TRUE; 27008 } else { 27009 ill = (ill_t *)ire->ire_stq->q_ptr; 27010 } 27011 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27012 ire); 27013 27014 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27015 switch (ipsec_rc) { 27016 case IPSEC_STATUS_SUCCESS: 27017 break; 27018 case IPSEC_STATUS_FAILED: 27019 if (ill != NULL) { 27020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27021 } else { 27022 BUMP_MIB(&ipst->ips_ip_mib, 27023 ipIfStatsOutDiscards); 27024 } 27025 /* FALLTHRU */ 27026 case IPSEC_STATUS_PENDING: 27027 if (ill != NULL && ill_need_rele) 27028 ill_refrele(ill); 27029 return; 27030 } 27031 } 27032 /* 27033 * We are done with IPSEC processing. Send it over 27034 * the wire. 27035 */ 27036 done: 27037 mp = ipsec_mp->b_cont; 27038 ipha = (ipha_t *)mp->b_rptr; 27039 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27040 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27041 } else { 27042 ip6h = (ip6_t *)ipha; 27043 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27044 } 27045 if (ill != NULL && ill_need_rele) 27046 ill_refrele(ill); 27047 } 27048 27049 /* ARGSUSED */ 27050 void 27051 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27052 { 27053 opt_restart_t *or; 27054 int err; 27055 conn_t *connp; 27056 27057 ASSERT(CONN_Q(q)); 27058 connp = Q_TO_CONN(q); 27059 27060 ASSERT(first_mp->b_datap->db_type == M_CTL); 27061 or = (opt_restart_t *)first_mp->b_rptr; 27062 /* 27063 * We don't need to pass any credentials here since this is just 27064 * a restart. The credentials are passed in when svr4_optcom_req 27065 * is called the first time (from ip_wput_nondata). 27066 */ 27067 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27068 err = svr4_optcom_req(q, first_mp, NULL, 27069 &ip_opt_obj); 27070 } else { 27071 ASSERT(or->or_type == T_OPTMGMT_REQ); 27072 err = tpi_optcom_req(q, first_mp, NULL, 27073 &ip_opt_obj); 27074 } 27075 if (err != EINPROGRESS) { 27076 /* operation is done */ 27077 CONN_OPER_PENDING_DONE(connp); 27078 } 27079 } 27080 27081 /* 27082 * ioctls that go through a down/up sequence may need to wait for the down 27083 * to complete. This involves waiting for the ire and ipif refcnts to go down 27084 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27085 */ 27086 /* ARGSUSED */ 27087 void 27088 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27089 { 27090 struct iocblk *iocp; 27091 mblk_t *mp1; 27092 ip_ioctl_cmd_t *ipip; 27093 int err; 27094 sin_t *sin; 27095 struct lifreq *lifr; 27096 struct ifreq *ifr; 27097 27098 iocp = (struct iocblk *)mp->b_rptr; 27099 ASSERT(ipsq != NULL); 27100 /* Existence of mp1 verified in ip_wput_nondata */ 27101 mp1 = mp->b_cont->b_cont; 27102 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27103 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27104 /* 27105 * Special case where ipsq_current_ipif is not set: 27106 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27107 * ill could also have become part of a ipmp group in the 27108 * process, we are here as were not able to complete the 27109 * operation in ipif_set_values because we could not become 27110 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27111 * will not be set so we need to set it. 27112 */ 27113 ill_t *ill = q->q_ptr; 27114 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27115 } 27116 ASSERT(ipsq->ipsq_current_ipif != NULL); 27117 27118 if (ipip->ipi_cmd_type == IF_CMD) { 27119 /* This a old style SIOC[GS]IF* command */ 27120 ifr = (struct ifreq *)mp1->b_rptr; 27121 sin = (sin_t *)&ifr->ifr_addr; 27122 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27123 /* This a new style SIOC[GS]LIF* command */ 27124 lifr = (struct lifreq *)mp1->b_rptr; 27125 sin = (sin_t *)&lifr->lifr_addr; 27126 } else { 27127 sin = NULL; 27128 } 27129 27130 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27131 ipip, mp1->b_rptr); 27132 27133 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27134 } 27135 27136 /* 27137 * ioctl processing 27138 * 27139 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27140 * the ioctl command in the ioctl tables and determines the copyin data size 27141 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27142 * size. 27143 * 27144 * ioctl processing then continues when the M_IOCDATA makes its way down. 27145 * Now the ioctl is looked up again in the ioctl table, and its properties are 27146 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27147 * and the general ioctl processing function ip_process_ioctl is called. 27148 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27149 * so goes thru the serialization primitive ipsq_try_enter. Then the 27150 * appropriate function to handle the ioctl is called based on the entry in 27151 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27152 * which also refreleases the 'conn' that was refheld at the start of the 27153 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27154 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27155 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27156 * 27157 * Many exclusive ioctls go thru an internal down up sequence as part of 27158 * the operation. For example an attempt to change the IP address of an 27159 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27160 * does all the cleanup such as deleting all ires that use this address. 27161 * Then we need to wait till all references to the interface go away. 27162 */ 27163 void 27164 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27165 { 27166 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27167 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27168 cmd_info_t ci; 27169 int err; 27170 boolean_t entered_ipsq = B_FALSE; 27171 27172 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27173 27174 if (ipip == NULL) 27175 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27176 27177 /* 27178 * SIOCLIFADDIF needs to go thru a special path since the 27179 * ill may not exist yet. This happens in the case of lo0 27180 * which is created using this ioctl. 27181 */ 27182 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27183 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27184 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27185 return; 27186 } 27187 27188 ci.ci_ipif = NULL; 27189 switch (ipip->ipi_cmd_type) { 27190 case IF_CMD: 27191 case LIF_CMD: 27192 /* 27193 * ioctls that pass in a [l]ifreq appear here. 27194 * ip_extract_lifreq_cmn returns a refheld ipif in 27195 * ci.ci_ipif 27196 */ 27197 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27198 ipip->ipi_flags, &ci, ip_process_ioctl); 27199 if (err != 0) { 27200 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27201 return; 27202 } 27203 ASSERT(ci.ci_ipif != NULL); 27204 break; 27205 27206 case TUN_CMD: 27207 /* 27208 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27209 * a refheld ipif in ci.ci_ipif 27210 */ 27211 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27212 if (err != 0) { 27213 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27214 return; 27215 } 27216 ASSERT(ci.ci_ipif != NULL); 27217 break; 27218 27219 case MISC_CMD: 27220 /* 27221 * ioctls that neither pass in [l]ifreq or iftun_req come here 27222 * For eg. SIOCGLIFCONF will appear here. 27223 */ 27224 switch (ipip->ipi_cmd) { 27225 case IF_UNITSEL: 27226 /* ioctl comes down the ill */ 27227 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27228 ipif_refhold(ci.ci_ipif); 27229 break; 27230 case SIOCGMSFILTER: 27231 case SIOCSMSFILTER: 27232 case SIOCGIPMSFILTER: 27233 case SIOCSIPMSFILTER: 27234 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27235 ip_process_ioctl); 27236 if (err != 0) { 27237 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27238 NULL); 27239 } 27240 break; 27241 } 27242 err = 0; 27243 ci.ci_sin = NULL; 27244 ci.ci_sin6 = NULL; 27245 ci.ci_lifr = NULL; 27246 break; 27247 } 27248 27249 /* 27250 * If ipsq is non-null, we are already being called exclusively 27251 */ 27252 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27253 if (!(ipip->ipi_flags & IPI_WR)) { 27254 /* 27255 * A return value of EINPROGRESS means the ioctl is 27256 * either queued and waiting for some reason or has 27257 * already completed. 27258 */ 27259 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27260 ci.ci_lifr); 27261 if (ci.ci_ipif != NULL) 27262 ipif_refrele(ci.ci_ipif); 27263 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27264 return; 27265 } 27266 27267 ASSERT(ci.ci_ipif != NULL); 27268 27269 if (ipsq == NULL) { 27270 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27271 ip_process_ioctl, NEW_OP, B_TRUE); 27272 entered_ipsq = B_TRUE; 27273 } 27274 /* 27275 * Release the ipif so that ipif_down and friends that wait for 27276 * references to go away are not misled about the current ipif_refcnt 27277 * values. We are writer so we can access the ipif even after releasing 27278 * the ipif. 27279 */ 27280 ipif_refrele(ci.ci_ipif); 27281 if (ipsq == NULL) 27282 return; 27283 27284 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27285 27286 /* 27287 * For most set ioctls that come here, this serves as a single point 27288 * where we set the IPIF_CHANGING flag. This ensures that there won't 27289 * be any new references to the ipif. This helps functions that go 27290 * through this path and end up trying to wait for the refcnts 27291 * associated with the ipif to go down to zero. Some exceptions are 27292 * Failover, Failback, and Groupname commands that operate on more than 27293 * just the ci.ci_ipif. These commands internally determine the 27294 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27295 * flags on that set. Another exception is the Removeif command that 27296 * sets the IPIF_CONDEMNED flag internally after identifying the right 27297 * ipif to operate on. 27298 */ 27299 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27300 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27301 ipip->ipi_cmd != SIOCLIFFAILOVER && 27302 ipip->ipi_cmd != SIOCLIFFAILBACK && 27303 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27304 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27305 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27306 27307 /* 27308 * A return value of EINPROGRESS means the ioctl is 27309 * either queued and waiting for some reason or has 27310 * already completed. 27311 */ 27312 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27313 27314 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27315 27316 if (entered_ipsq) 27317 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27318 } 27319 27320 /* 27321 * Complete the ioctl. Typically ioctls use the mi package and need to 27322 * do mi_copyout/mi_copy_done. 27323 */ 27324 void 27325 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27326 { 27327 conn_t *connp = NULL; 27328 27329 if (err == EINPROGRESS) 27330 return; 27331 27332 if (CONN_Q(q)) { 27333 connp = Q_TO_CONN(q); 27334 ASSERT(connp->conn_ref >= 2); 27335 } 27336 27337 switch (mode) { 27338 case COPYOUT: 27339 if (err == 0) 27340 mi_copyout(q, mp); 27341 else 27342 mi_copy_done(q, mp, err); 27343 break; 27344 27345 case NO_COPYOUT: 27346 mi_copy_done(q, mp, err); 27347 break; 27348 27349 default: 27350 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27351 break; 27352 } 27353 27354 /* 27355 * The refhold placed at the start of the ioctl is released here. 27356 */ 27357 if (connp != NULL) 27358 CONN_OPER_PENDING_DONE(connp); 27359 27360 if (ipsq != NULL) 27361 ipsq_current_finish(ipsq); 27362 } 27363 27364 /* 27365 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27366 */ 27367 /* ARGSUSED */ 27368 void 27369 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27370 { 27371 conn_t *connp = arg; 27372 tcp_t *tcp; 27373 27374 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27375 tcp = connp->conn_tcp; 27376 27377 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27378 freemsg(mp); 27379 else 27380 tcp_rput_other(tcp, mp); 27381 CONN_OPER_PENDING_DONE(connp); 27382 } 27383 27384 /* Called from ip_wput for all non data messages */ 27385 /* ARGSUSED */ 27386 void 27387 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27388 { 27389 mblk_t *mp1; 27390 ire_t *ire, *fake_ire; 27391 ill_t *ill; 27392 struct iocblk *iocp; 27393 ip_ioctl_cmd_t *ipip; 27394 cred_t *cr; 27395 conn_t *connp; 27396 int cmd, err; 27397 nce_t *nce; 27398 ipif_t *ipif; 27399 ip_stack_t *ipst; 27400 char *proto_str; 27401 27402 if (CONN_Q(q)) { 27403 connp = Q_TO_CONN(q); 27404 ipst = connp->conn_netstack->netstack_ip; 27405 } else { 27406 connp = NULL; 27407 ipst = ILLQ_TO_IPST(q); 27408 } 27409 27410 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27411 27412 /* Check if it is a queue to /dev/sctp. */ 27413 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27414 connp->conn_rq == NULL) { 27415 sctp_wput(q, mp); 27416 return; 27417 } 27418 27419 switch (DB_TYPE(mp)) { 27420 case M_IOCTL: 27421 /* 27422 * IOCTL processing begins in ip_sioctl_copyin_setup which 27423 * will arrange to copy in associated control structures. 27424 */ 27425 ip_sioctl_copyin_setup(q, mp); 27426 return; 27427 case M_IOCDATA: 27428 /* 27429 * Ensure that this is associated with one of our trans- 27430 * parent ioctls. If it's not ours, discard it if we're 27431 * running as a driver, or pass it on if we're a module. 27432 */ 27433 iocp = (struct iocblk *)mp->b_rptr; 27434 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27435 if (ipip == NULL) { 27436 if (q->q_next == NULL) { 27437 goto nak; 27438 } else { 27439 putnext(q, mp); 27440 } 27441 return; 27442 } else if ((q->q_next != NULL) && 27443 !(ipip->ipi_flags & IPI_MODOK)) { 27444 /* 27445 * the ioctl is one we recognise, but is not 27446 * consumed by IP as a module, pass M_IOCDATA 27447 * for processing downstream, but only for 27448 * common Streams ioctls. 27449 */ 27450 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27451 putnext(q, mp); 27452 return; 27453 } else { 27454 goto nak; 27455 } 27456 } 27457 27458 /* IOCTL continuation following copyin or copyout. */ 27459 if (mi_copy_state(q, mp, NULL) == -1) { 27460 /* 27461 * The copy operation failed. mi_copy_state already 27462 * cleaned up, so we're out of here. 27463 */ 27464 return; 27465 } 27466 /* 27467 * If we just completed a copy in, we become writer and 27468 * continue processing in ip_sioctl_copyin_done. If it 27469 * was a copy out, we call mi_copyout again. If there is 27470 * nothing more to copy out, it will complete the IOCTL. 27471 */ 27472 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27473 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27474 mi_copy_done(q, mp, EPROTO); 27475 return; 27476 } 27477 /* 27478 * Check for cases that need more copying. A return 27479 * value of 0 means a second copyin has been started, 27480 * so we return; a return value of 1 means no more 27481 * copying is needed, so we continue. 27482 */ 27483 cmd = iocp->ioc_cmd; 27484 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27485 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27486 MI_COPY_COUNT(mp) == 1) { 27487 if (ip_copyin_msfilter(q, mp) == 0) 27488 return; 27489 } 27490 /* 27491 * Refhold the conn, till the ioctl completes. This is 27492 * needed in case the ioctl ends up in the pending mp 27493 * list. Every mp in the ill_pending_mp list and 27494 * the ipsq_pending_mp must have a refhold on the conn 27495 * to resume processing. The refhold is released when 27496 * the ioctl completes. (normally or abnormally) 27497 * In all cases ip_ioctl_finish is called to finish 27498 * the ioctl. 27499 */ 27500 if (connp != NULL) { 27501 /* This is not a reentry */ 27502 ASSERT(ipsq == NULL); 27503 CONN_INC_REF(connp); 27504 } else { 27505 if (!(ipip->ipi_flags & IPI_MODOK)) { 27506 mi_copy_done(q, mp, EINVAL); 27507 return; 27508 } 27509 } 27510 27511 ip_process_ioctl(ipsq, q, mp, ipip); 27512 27513 } else { 27514 mi_copyout(q, mp); 27515 } 27516 return; 27517 nak: 27518 iocp->ioc_error = EINVAL; 27519 mp->b_datap->db_type = M_IOCNAK; 27520 iocp->ioc_count = 0; 27521 qreply(q, mp); 27522 return; 27523 27524 case M_IOCNAK: 27525 /* 27526 * The only way we could get here is if a resolver didn't like 27527 * an IOCTL we sent it. This shouldn't happen. 27528 */ 27529 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27530 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27531 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27532 freemsg(mp); 27533 return; 27534 case M_IOCACK: 27535 /* /dev/ip shouldn't see this */ 27536 if (CONN_Q(q)) 27537 goto nak; 27538 27539 /* Finish socket ioctls passed through to ARP. */ 27540 ip_sioctl_iocack(q, mp); 27541 return; 27542 case M_FLUSH: 27543 if (*mp->b_rptr & FLUSHW) 27544 flushq(q, FLUSHALL); 27545 if (q->q_next) { 27546 /* 27547 * M_FLUSH is sent up to IP by some drivers during 27548 * unbind. ip_rput has already replied to it. We are 27549 * here for the M_FLUSH that we originated in IP 27550 * before sending the unbind request to the driver. 27551 * Just free it as we don't queue packets in IP 27552 * on the write side of the device instance. 27553 */ 27554 freemsg(mp); 27555 return; 27556 } 27557 if (*mp->b_rptr & FLUSHR) { 27558 *mp->b_rptr &= ~FLUSHW; 27559 qreply(q, mp); 27560 return; 27561 } 27562 freemsg(mp); 27563 return; 27564 case IRE_DB_REQ_TYPE: 27565 if (connp == NULL) { 27566 proto_str = "IRE_DB_REQ_TYPE"; 27567 goto protonak; 27568 } 27569 /* An Upper Level Protocol wants a copy of an IRE. */ 27570 ip_ire_req(q, mp); 27571 return; 27572 case M_CTL: 27573 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27574 break; 27575 27576 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27577 TUN_HELLO) { 27578 ASSERT(connp != NULL); 27579 connp->conn_flags |= IPCL_IPTUN; 27580 freeb(mp); 27581 return; 27582 } 27583 27584 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27585 IP_ULP_OUT_LABELED) { 27586 out_labeled_t *olp; 27587 27588 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27589 break; 27590 olp = (out_labeled_t *)mp->b_rptr; 27591 connp->conn_ulp_labeled = olp->out_qnext == q; 27592 freemsg(mp); 27593 return; 27594 } 27595 27596 /* M_CTL messages are used by ARP to tell us things. */ 27597 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27598 break; 27599 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27600 case AR_ENTRY_SQUERY: 27601 ip_wput_ctl(q, mp); 27602 return; 27603 case AR_CLIENT_NOTIFY: 27604 ip_arp_news(q, mp); 27605 return; 27606 case AR_DLPIOP_DONE: 27607 ASSERT(q->q_next != NULL); 27608 ill = (ill_t *)q->q_ptr; 27609 /* qwriter_ip releases the refhold */ 27610 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27611 ill_refhold(ill); 27612 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27613 CUR_OP, B_FALSE); 27614 return; 27615 case AR_ARP_CLOSING: 27616 /* 27617 * ARP (above us) is closing. If no ARP bringup is 27618 * currently pending, ack the message so that ARP 27619 * can complete its close. Also mark ill_arp_closing 27620 * so that new ARP bringups will fail. If any 27621 * ARP bringup is currently in progress, we will 27622 * ack this when the current ARP bringup completes. 27623 */ 27624 ASSERT(q->q_next != NULL); 27625 ill = (ill_t *)q->q_ptr; 27626 mutex_enter(&ill->ill_lock); 27627 ill->ill_arp_closing = 1; 27628 if (!ill->ill_arp_bringup_pending) { 27629 mutex_exit(&ill->ill_lock); 27630 qreply(q, mp); 27631 } else { 27632 mutex_exit(&ill->ill_lock); 27633 freemsg(mp); 27634 } 27635 return; 27636 case AR_ARP_EXTEND: 27637 /* 27638 * The ARP module above us is capable of duplicate 27639 * address detection. Old ATM drivers will not send 27640 * this message. 27641 */ 27642 ASSERT(q->q_next != NULL); 27643 ill = (ill_t *)q->q_ptr; 27644 ill->ill_arp_extend = B_TRUE; 27645 freemsg(mp); 27646 return; 27647 default: 27648 break; 27649 } 27650 break; 27651 case M_PROTO: 27652 case M_PCPROTO: 27653 /* 27654 * The only PROTO messages we expect are ULP binds and 27655 * copies of option negotiation acknowledgements. 27656 */ 27657 switch (((union T_primitives *)mp->b_rptr)->type) { 27658 case O_T_BIND_REQ: 27659 case T_BIND_REQ: { 27660 /* Request can get queued in bind */ 27661 if (connp == NULL) { 27662 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27663 goto protonak; 27664 } 27665 /* 27666 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27667 * instead of going through this path. We only get 27668 * here in the following cases: 27669 * 27670 * a. Bind retries, where ipsq is non-NULL. 27671 * b. T_BIND_REQ is issued from non TCP/UDP 27672 * transport, e.g. icmp for raw socket, 27673 * in which case ipsq will be NULL. 27674 */ 27675 ASSERT(ipsq != NULL || 27676 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27677 27678 /* Don't increment refcnt if this is a re-entry */ 27679 if (ipsq == NULL) 27680 CONN_INC_REF(connp); 27681 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27682 connp, NULL) : ip_bind_v4(q, mp, connp); 27683 if (mp == NULL) 27684 return; 27685 if (IPCL_IS_TCP(connp)) { 27686 /* 27687 * In the case of TCP endpoint we 27688 * come here only for bind retries 27689 */ 27690 ASSERT(ipsq != NULL); 27691 CONN_INC_REF(connp); 27692 squeue_fill(connp->conn_sqp, mp, 27693 ip_resume_tcp_bind, connp, 27694 SQTAG_BIND_RETRY); 27695 return; 27696 } else if (IPCL_IS_UDP(connp)) { 27697 /* 27698 * In the case of UDP endpoint we 27699 * come here only for bind retries 27700 */ 27701 ASSERT(ipsq != NULL); 27702 udp_resume_bind(connp, mp); 27703 return; 27704 } 27705 qreply(q, mp); 27706 CONN_OPER_PENDING_DONE(connp); 27707 return; 27708 } 27709 case T_SVR4_OPTMGMT_REQ: 27710 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27711 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27712 27713 if (connp == NULL) { 27714 proto_str = "T_SVR4_OPTMGMT_REQ"; 27715 goto protonak; 27716 } 27717 27718 if (!snmpcom_req(q, mp, ip_snmp_set, 27719 ip_snmp_get, cr)) { 27720 /* 27721 * Call svr4_optcom_req so that it can 27722 * generate the ack. We don't come here 27723 * if this operation is being restarted. 27724 * ip_restart_optmgmt will drop the conn ref. 27725 * In the case of ipsec option after the ipsec 27726 * load is complete conn_restart_ipsec_waiter 27727 * drops the conn ref. 27728 */ 27729 ASSERT(ipsq == NULL); 27730 CONN_INC_REF(connp); 27731 if (ip_check_for_ipsec_opt(q, mp)) 27732 return; 27733 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27734 if (err != EINPROGRESS) { 27735 /* Operation is done */ 27736 CONN_OPER_PENDING_DONE(connp); 27737 } 27738 } 27739 return; 27740 case T_OPTMGMT_REQ: 27741 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27742 /* 27743 * Note: No snmpcom_req support through new 27744 * T_OPTMGMT_REQ. 27745 * Call tpi_optcom_req so that it can 27746 * generate the ack. 27747 */ 27748 if (connp == NULL) { 27749 proto_str = "T_OPTMGMT_REQ"; 27750 goto protonak; 27751 } 27752 27753 ASSERT(ipsq == NULL); 27754 /* 27755 * We don't come here for restart. ip_restart_optmgmt 27756 * will drop the conn ref. In the case of ipsec option 27757 * after the ipsec load is complete 27758 * conn_restart_ipsec_waiter drops the conn ref. 27759 */ 27760 CONN_INC_REF(connp); 27761 if (ip_check_for_ipsec_opt(q, mp)) 27762 return; 27763 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27764 if (err != EINPROGRESS) { 27765 /* Operation is done */ 27766 CONN_OPER_PENDING_DONE(connp); 27767 } 27768 return; 27769 case T_UNBIND_REQ: 27770 if (connp == NULL) { 27771 proto_str = "T_UNBIND_REQ"; 27772 goto protonak; 27773 } 27774 mp = ip_unbind(q, mp); 27775 qreply(q, mp); 27776 return; 27777 default: 27778 /* 27779 * Have to drop any DLPI messages coming down from 27780 * arp (such as an info_req which would cause ip 27781 * to receive an extra info_ack if it was passed 27782 * through. 27783 */ 27784 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27785 (int)*(uint_t *)mp->b_rptr)); 27786 freemsg(mp); 27787 return; 27788 } 27789 /* NOTREACHED */ 27790 case IRE_DB_TYPE: { 27791 nce_t *nce; 27792 ill_t *ill; 27793 in6_addr_t gw_addr_v6; 27794 27795 27796 /* 27797 * This is a response back from a resolver. It 27798 * consists of a message chain containing: 27799 * IRE_MBLK-->LL_HDR_MBLK->pkt 27800 * The IRE_MBLK is the one we allocated in ip_newroute. 27801 * The LL_HDR_MBLK is the DLPI header to use to get 27802 * the attached packet, and subsequent ones for the 27803 * same destination, transmitted. 27804 */ 27805 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27806 break; 27807 /* 27808 * First, check to make sure the resolution succeeded. 27809 * If it failed, the second mblk will be empty. 27810 * If it is, free the chain, dropping the packet. 27811 * (We must ire_delete the ire; that frees the ire mblk) 27812 * We're doing this now to support PVCs for ATM; it's 27813 * a partial xresolv implementation. When we fully implement 27814 * xresolv interfaces, instead of freeing everything here 27815 * we'll initiate neighbor discovery. 27816 * 27817 * For v4 (ARP and other external resolvers) the resolver 27818 * frees the message, so no check is needed. This check 27819 * is required, though, for a full xresolve implementation. 27820 * Including this code here now both shows how external 27821 * resolvers can NACK a resolution request using an 27822 * existing design that has no specific provisions for NACKs, 27823 * and also takes into account that the current non-ARP 27824 * external resolver has been coded to use this method of 27825 * NACKing for all IPv6 (xresolv) cases, 27826 * whether our xresolv implementation is complete or not. 27827 * 27828 */ 27829 ire = (ire_t *)mp->b_rptr; 27830 ill = ire_to_ill(ire); 27831 mp1 = mp->b_cont; /* dl_unitdata_req */ 27832 if (mp1->b_rptr == mp1->b_wptr) { 27833 if (ire->ire_ipversion == IPV6_VERSION) { 27834 /* 27835 * XRESOLV interface. 27836 */ 27837 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27838 mutex_enter(&ire->ire_lock); 27839 gw_addr_v6 = ire->ire_gateway_addr_v6; 27840 mutex_exit(&ire->ire_lock); 27841 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27842 nce = ndp_lookup_v6(ill, 27843 &ire->ire_addr_v6, B_FALSE); 27844 } else { 27845 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27846 B_FALSE); 27847 } 27848 if (nce != NULL) { 27849 nce_resolv_failed(nce); 27850 ndp_delete(nce); 27851 NCE_REFRELE(nce); 27852 } 27853 } 27854 mp->b_cont = NULL; 27855 freemsg(mp1); /* frees the pkt as well */ 27856 ASSERT(ire->ire_nce == NULL); 27857 ire_delete((ire_t *)mp->b_rptr); 27858 return; 27859 } 27860 27861 /* 27862 * Split them into IRE_MBLK and pkt and feed it into 27863 * ire_add_then_send. Then in ire_add_then_send 27864 * the IRE will be added, and then the packet will be 27865 * run back through ip_wput. This time it will make 27866 * it to the wire. 27867 */ 27868 mp->b_cont = NULL; 27869 mp = mp1->b_cont; /* now, mp points to pkt */ 27870 mp1->b_cont = NULL; 27871 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27872 if (ire->ire_ipversion == IPV6_VERSION) { 27873 /* 27874 * XRESOLV interface. Find the nce and put a copy 27875 * of the dl_unitdata_req in nce_res_mp 27876 */ 27877 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27878 mutex_enter(&ire->ire_lock); 27879 gw_addr_v6 = ire->ire_gateway_addr_v6; 27880 mutex_exit(&ire->ire_lock); 27881 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27882 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27883 B_FALSE); 27884 } else { 27885 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27886 } 27887 if (nce != NULL) { 27888 /* 27889 * We have to protect nce_res_mp here 27890 * from being accessed by other threads 27891 * while we change the mblk pointer. 27892 * Other functions will also lock the nce when 27893 * accessing nce_res_mp. 27894 * 27895 * The reason we change the mblk pointer 27896 * here rather than copying the resolved address 27897 * into the template is that, unlike with 27898 * ethernet, we have no guarantee that the 27899 * resolved address length will be 27900 * smaller than or equal to the lla length 27901 * with which the template was allocated, 27902 * (for ethernet, they're equal) 27903 * so we have to use the actual resolved 27904 * address mblk - which holds the real 27905 * dl_unitdata_req with the resolved address. 27906 * 27907 * Doing this is the same behavior as was 27908 * previously used in the v4 ARP case. 27909 */ 27910 mutex_enter(&nce->nce_lock); 27911 if (nce->nce_res_mp != NULL) 27912 freemsg(nce->nce_res_mp); 27913 nce->nce_res_mp = mp1; 27914 mutex_exit(&nce->nce_lock); 27915 /* 27916 * We do a fastpath probe here because 27917 * we have resolved the address without 27918 * using Neighbor Discovery. 27919 * In the non-XRESOLV v6 case, the fastpath 27920 * probe is done right after neighbor 27921 * discovery completes. 27922 */ 27923 if (nce->nce_res_mp != NULL) { 27924 int res; 27925 nce_fastpath_list_add(nce); 27926 res = ill_fastpath_probe(ill, 27927 nce->nce_res_mp); 27928 if (res != 0 && res != EAGAIN) 27929 nce_fastpath_list_delete(nce); 27930 } 27931 27932 ire_add_then_send(q, ire, mp); 27933 /* 27934 * Now we have to clean out any packets 27935 * that may have been queued on the nce 27936 * while it was waiting for address resolution 27937 * to complete. 27938 */ 27939 mutex_enter(&nce->nce_lock); 27940 mp1 = nce->nce_qd_mp; 27941 nce->nce_qd_mp = NULL; 27942 mutex_exit(&nce->nce_lock); 27943 while (mp1 != NULL) { 27944 mblk_t *nxt_mp; 27945 queue_t *fwdq = NULL; 27946 ill_t *inbound_ill; 27947 uint_t ifindex; 27948 27949 nxt_mp = mp1->b_next; 27950 mp1->b_next = NULL; 27951 /* 27952 * Retrieve ifindex stored in 27953 * ip_rput_data_v6() 27954 */ 27955 ifindex = 27956 (uint_t)(uintptr_t)mp1->b_prev; 27957 inbound_ill = 27958 ill_lookup_on_ifindex(ifindex, 27959 B_TRUE, NULL, NULL, NULL, 27960 NULL, ipst); 27961 mp1->b_prev = NULL; 27962 if (inbound_ill != NULL) 27963 fwdq = inbound_ill->ill_rq; 27964 27965 if (fwdq != NULL) { 27966 put(fwdq, mp1); 27967 ill_refrele(inbound_ill); 27968 } else 27969 put(WR(ill->ill_rq), mp1); 27970 mp1 = nxt_mp; 27971 } 27972 NCE_REFRELE(nce); 27973 } else { /* nce is NULL; clean up */ 27974 ire_delete(ire); 27975 freemsg(mp); 27976 freemsg(mp1); 27977 return; 27978 } 27979 } else { 27980 nce_t *arpce; 27981 /* 27982 * Link layer resolution succeeded. Recompute the 27983 * ire_nce. 27984 */ 27985 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27986 if ((arpce = ndp_lookup_v4(ill, 27987 (ire->ire_gateway_addr != INADDR_ANY ? 27988 &ire->ire_gateway_addr : &ire->ire_addr), 27989 B_FALSE)) == NULL) { 27990 freeb(ire->ire_mp); 27991 freeb(mp1); 27992 freemsg(mp); 27993 return; 27994 } 27995 mutex_enter(&arpce->nce_lock); 27996 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27997 if (arpce->nce_state == ND_REACHABLE) { 27998 /* 27999 * Someone resolved this before us; 28000 * cleanup the res_mp. Since ire has 28001 * not been added yet, the call to ire_add_v4 28002 * from ire_add_then_send (when a dup is 28003 * detected) will clean up the ire. 28004 */ 28005 freeb(mp1); 28006 } else { 28007 if (arpce->nce_res_mp != NULL) 28008 freemsg(arpce->nce_res_mp); 28009 arpce->nce_res_mp = mp1; 28010 arpce->nce_state = ND_REACHABLE; 28011 } 28012 mutex_exit(&arpce->nce_lock); 28013 if (ire->ire_marks & IRE_MARK_NOADD) { 28014 /* 28015 * this ire will not be added to the ire 28016 * cache table, so we can set the ire_nce 28017 * here, as there are no atomicity constraints. 28018 */ 28019 ire->ire_nce = arpce; 28020 /* 28021 * We are associating this nce with the ire 28022 * so change the nce ref taken in 28023 * ndp_lookup_v4() from 28024 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28025 */ 28026 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28027 } else { 28028 NCE_REFRELE(arpce); 28029 } 28030 ire_add_then_send(q, ire, mp); 28031 } 28032 return; /* All is well, the packet has been sent. */ 28033 } 28034 case IRE_ARPRESOLVE_TYPE: { 28035 28036 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28037 break; 28038 mp1 = mp->b_cont; /* dl_unitdata_req */ 28039 mp->b_cont = NULL; 28040 /* 28041 * First, check to make sure the resolution succeeded. 28042 * If it failed, the second mblk will be empty. 28043 */ 28044 if (mp1->b_rptr == mp1->b_wptr) { 28045 /* cleanup the incomplete ire, free queued packets */ 28046 freemsg(mp); /* fake ire */ 28047 freeb(mp1); /* dl_unitdata response */ 28048 return; 28049 } 28050 28051 /* 28052 * update any incomplete nce_t found. we lookup the ctable 28053 * and find the nce from the ire->ire_nce because we need 28054 * to pass the ire to ip_xmit_v4 later, and can find both 28055 * ire and nce in one lookup from the ctable. 28056 */ 28057 fake_ire = (ire_t *)mp->b_rptr; 28058 /* 28059 * By the time we come back here from ARP 28060 * the logical outgoing interface of the incomplete ire 28061 * we added in ire_forward could have disappeared, 28062 * causing the incomplete ire to also have 28063 * dissapeared. So we need to retreive the 28064 * proper ipif for the ire before looking 28065 * in ctable; do the ctablelookup based on ire_ipif_seqid 28066 */ 28067 ill = q->q_ptr; 28068 28069 /* Get the outgoing ipif */ 28070 mutex_enter(&ill->ill_lock); 28071 if (ill->ill_state_flags & ILL_CONDEMNED) { 28072 mutex_exit(&ill->ill_lock); 28073 freemsg(mp); /* fake ire */ 28074 freeb(mp1); /* dl_unitdata response */ 28075 return; 28076 } 28077 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28078 28079 if (ipif == NULL) { 28080 mutex_exit(&ill->ill_lock); 28081 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28082 freemsg(mp); 28083 freeb(mp1); 28084 return; 28085 } 28086 ipif_refhold_locked(ipif); 28087 mutex_exit(&ill->ill_lock); 28088 ire = ire_ctable_lookup(fake_ire->ire_addr, 28089 fake_ire->ire_gateway_addr, IRE_CACHE, 28090 ipif, fake_ire->ire_zoneid, NULL, 28091 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28092 ipif_refrele(ipif); 28093 if (ire == NULL) { 28094 /* 28095 * no ire was found; check if there is an nce 28096 * for this lookup; if it has no ire's pointing at it 28097 * cleanup. 28098 */ 28099 if ((nce = ndp_lookup_v4(ill, 28100 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28101 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28102 B_FALSE)) != NULL) { 28103 /* 28104 * cleanup: 28105 * We check for refcnt 2 (one for the nce 28106 * hash list + 1 for the ref taken by 28107 * ndp_lookup_v4) to check that there are 28108 * no ire's pointing at the nce. 28109 */ 28110 if (nce->nce_refcnt == 2) 28111 ndp_delete(nce); 28112 NCE_REFRELE(nce); 28113 } 28114 freeb(mp1); /* dl_unitdata response */ 28115 freemsg(mp); /* fake ire */ 28116 return; 28117 } 28118 nce = ire->ire_nce; 28119 DTRACE_PROBE2(ire__arpresolve__type, 28120 ire_t *, ire, nce_t *, nce); 28121 ASSERT(nce->nce_state != ND_INITIAL); 28122 mutex_enter(&nce->nce_lock); 28123 nce->nce_last = TICK_TO_MSEC(lbolt64); 28124 if (nce->nce_state == ND_REACHABLE) { 28125 /* 28126 * Someone resolved this before us; 28127 * our response is not needed any more. 28128 */ 28129 mutex_exit(&nce->nce_lock); 28130 freeb(mp1); /* dl_unitdata response */ 28131 } else { 28132 if (nce->nce_res_mp != NULL) { 28133 freemsg(nce->nce_res_mp); 28134 /* existing dl_unitdata template */ 28135 } 28136 nce->nce_res_mp = mp1; 28137 nce->nce_state = ND_REACHABLE; 28138 mutex_exit(&nce->nce_lock); 28139 nce_fastpath(nce); 28140 } 28141 /* 28142 * The cached nce_t has been updated to be reachable; 28143 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28144 */ 28145 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28146 freemsg(mp); 28147 /* 28148 * send out queued packets. 28149 */ 28150 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28151 28152 IRE_REFRELE(ire); 28153 return; 28154 } 28155 default: 28156 break; 28157 } 28158 if (q->q_next) { 28159 putnext(q, mp); 28160 } else 28161 freemsg(mp); 28162 return; 28163 28164 protonak: 28165 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28166 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28167 qreply(q, mp); 28168 } 28169 28170 /* 28171 * Process IP options in an outbound packet. Modify the destination if there 28172 * is a source route option. 28173 * Returns non-zero if something fails in which case an ICMP error has been 28174 * sent and mp freed. 28175 */ 28176 static int 28177 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28178 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28179 { 28180 ipoptp_t opts; 28181 uchar_t *opt; 28182 uint8_t optval; 28183 uint8_t optlen; 28184 ipaddr_t dst; 28185 intptr_t code = 0; 28186 mblk_t *mp; 28187 ire_t *ire = NULL; 28188 28189 ip2dbg(("ip_wput_options\n")); 28190 mp = ipsec_mp; 28191 if (mctl_present) { 28192 mp = ipsec_mp->b_cont; 28193 } 28194 28195 dst = ipha->ipha_dst; 28196 for (optval = ipoptp_first(&opts, ipha); 28197 optval != IPOPT_EOL; 28198 optval = ipoptp_next(&opts)) { 28199 opt = opts.ipoptp_cur; 28200 optlen = opts.ipoptp_len; 28201 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28202 optval, optlen)); 28203 switch (optval) { 28204 uint32_t off; 28205 case IPOPT_SSRR: 28206 case IPOPT_LSRR: 28207 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28208 ip1dbg(( 28209 "ip_wput_options: bad option offset\n")); 28210 code = (char *)&opt[IPOPT_OLEN] - 28211 (char *)ipha; 28212 goto param_prob; 28213 } 28214 off = opt[IPOPT_OFFSET]; 28215 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28216 ntohl(dst))); 28217 /* 28218 * For strict: verify that dst is directly 28219 * reachable. 28220 */ 28221 if (optval == IPOPT_SSRR) { 28222 ire = ire_ftable_lookup(dst, 0, 0, 28223 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28224 MBLK_GETLABEL(mp), 28225 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28226 if (ire == NULL) { 28227 ip1dbg(("ip_wput_options: SSRR not" 28228 " directly reachable: 0x%x\n", 28229 ntohl(dst))); 28230 goto bad_src_route; 28231 } 28232 ire_refrele(ire); 28233 } 28234 break; 28235 case IPOPT_RR: 28236 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28237 ip1dbg(( 28238 "ip_wput_options: bad option offset\n")); 28239 code = (char *)&opt[IPOPT_OLEN] - 28240 (char *)ipha; 28241 goto param_prob; 28242 } 28243 break; 28244 case IPOPT_TS: 28245 /* 28246 * Verify that length >=5 and that there is either 28247 * room for another timestamp or that the overflow 28248 * counter is not maxed out. 28249 */ 28250 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28251 if (optlen < IPOPT_MINLEN_IT) { 28252 goto param_prob; 28253 } 28254 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28255 ip1dbg(( 28256 "ip_wput_options: bad option offset\n")); 28257 code = (char *)&opt[IPOPT_OFFSET] - 28258 (char *)ipha; 28259 goto param_prob; 28260 } 28261 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28262 case IPOPT_TS_TSONLY: 28263 off = IPOPT_TS_TIMELEN; 28264 break; 28265 case IPOPT_TS_TSANDADDR: 28266 case IPOPT_TS_PRESPEC: 28267 case IPOPT_TS_PRESPEC_RFC791: 28268 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28269 break; 28270 default: 28271 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28272 (char *)ipha; 28273 goto param_prob; 28274 } 28275 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28276 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28277 /* 28278 * No room and the overflow counter is 15 28279 * already. 28280 */ 28281 goto param_prob; 28282 } 28283 break; 28284 } 28285 } 28286 28287 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28288 return (0); 28289 28290 ip1dbg(("ip_wput_options: error processing IP options.")); 28291 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28292 28293 param_prob: 28294 /* 28295 * Since ip_wput() isn't close to finished, we fill 28296 * in enough of the header for credible error reporting. 28297 */ 28298 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28299 /* Failed */ 28300 freemsg(ipsec_mp); 28301 return (-1); 28302 } 28303 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28304 return (-1); 28305 28306 bad_src_route: 28307 /* 28308 * Since ip_wput() isn't close to finished, we fill 28309 * in enough of the header for credible error reporting. 28310 */ 28311 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28312 /* Failed */ 28313 freemsg(ipsec_mp); 28314 return (-1); 28315 } 28316 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28317 return (-1); 28318 } 28319 28320 /* 28321 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28322 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28323 * thru /etc/system. 28324 */ 28325 #define CONN_MAXDRAINCNT 64 28326 28327 static void 28328 conn_drain_init(ip_stack_t *ipst) 28329 { 28330 int i; 28331 28332 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28333 28334 if ((ipst->ips_conn_drain_list_cnt == 0) || 28335 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28336 /* 28337 * Default value of the number of drainers is the 28338 * number of cpus, subject to maximum of 8 drainers. 28339 */ 28340 if (boot_max_ncpus != -1) 28341 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28342 else 28343 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28344 } 28345 28346 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28347 sizeof (idl_t), KM_SLEEP); 28348 28349 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28350 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28351 MUTEX_DEFAULT, NULL); 28352 } 28353 } 28354 28355 static void 28356 conn_drain_fini(ip_stack_t *ipst) 28357 { 28358 int i; 28359 28360 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28361 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28362 kmem_free(ipst->ips_conn_drain_list, 28363 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28364 ipst->ips_conn_drain_list = NULL; 28365 } 28366 28367 /* 28368 * Note: For an overview of how flowcontrol is handled in IP please see the 28369 * IP Flowcontrol notes at the top of this file. 28370 * 28371 * Flow control has blocked us from proceeding. Insert the given conn in one 28372 * of the conn drain lists. These conn wq's will be qenabled later on when 28373 * STREAMS flow control does a backenable. conn_walk_drain will enable 28374 * the first conn in each of these drain lists. Each of these qenabled conns 28375 * in turn enables the next in the list, after it runs, or when it closes, 28376 * thus sustaining the drain process. 28377 * 28378 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28379 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28380 * running at any time, on a given conn, since there can be only 1 service proc 28381 * running on a queue at any time. 28382 */ 28383 void 28384 conn_drain_insert(conn_t *connp) 28385 { 28386 idl_t *idl; 28387 uint_t index; 28388 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28389 28390 mutex_enter(&connp->conn_lock); 28391 if (connp->conn_state_flags & CONN_CLOSING) { 28392 /* 28393 * The conn is closing as a result of which CONN_CLOSING 28394 * is set. Return. 28395 */ 28396 mutex_exit(&connp->conn_lock); 28397 return; 28398 } else if (connp->conn_idl == NULL) { 28399 /* 28400 * Assign the next drain list round robin. We dont' use 28401 * a lock, and thus it may not be strictly round robin. 28402 * Atomicity of load/stores is enough to make sure that 28403 * conn_drain_list_index is always within bounds. 28404 */ 28405 index = ipst->ips_conn_drain_list_index; 28406 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28407 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28408 index++; 28409 if (index == ipst->ips_conn_drain_list_cnt) 28410 index = 0; 28411 ipst->ips_conn_drain_list_index = index; 28412 } 28413 mutex_exit(&connp->conn_lock); 28414 28415 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28416 if ((connp->conn_drain_prev != NULL) || 28417 (connp->conn_state_flags & CONN_CLOSING)) { 28418 /* 28419 * The conn is already in the drain list, OR 28420 * the conn is closing. We need to check again for 28421 * the closing case again since close can happen 28422 * after we drop the conn_lock, and before we 28423 * acquire the CONN_DRAIN_LIST_LOCK. 28424 */ 28425 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28426 return; 28427 } else { 28428 idl = connp->conn_idl; 28429 } 28430 28431 /* 28432 * The conn is not in the drain list. Insert it at the 28433 * tail of the drain list. The drain list is circular 28434 * and doubly linked. idl_conn points to the 1st element 28435 * in the list. 28436 */ 28437 if (idl->idl_conn == NULL) { 28438 idl->idl_conn = connp; 28439 connp->conn_drain_next = connp; 28440 connp->conn_drain_prev = connp; 28441 } else { 28442 conn_t *head = idl->idl_conn; 28443 28444 connp->conn_drain_next = head; 28445 connp->conn_drain_prev = head->conn_drain_prev; 28446 head->conn_drain_prev->conn_drain_next = connp; 28447 head->conn_drain_prev = connp; 28448 } 28449 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28450 } 28451 28452 /* 28453 * This conn is closing, and we are called from ip_close. OR 28454 * This conn has been serviced by ip_wsrv, and we need to do the tail 28455 * processing. 28456 * If this conn is part of the drain list, we may need to sustain the drain 28457 * process by qenabling the next conn in the drain list. We may also need to 28458 * remove this conn from the list, if it is done. 28459 */ 28460 static void 28461 conn_drain_tail(conn_t *connp, boolean_t closing) 28462 { 28463 idl_t *idl; 28464 28465 /* 28466 * connp->conn_idl is stable at this point, and no lock is needed 28467 * to check it. If we are called from ip_close, close has already 28468 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28469 * called us only because conn_idl is non-null. If we are called thru 28470 * service, conn_idl could be null, but it cannot change because 28471 * service is single-threaded per queue, and there cannot be another 28472 * instance of service trying to call conn_drain_insert on this conn 28473 * now. 28474 */ 28475 ASSERT(!closing || (connp->conn_idl != NULL)); 28476 28477 /* 28478 * If connp->conn_idl is null, the conn has not been inserted into any 28479 * drain list even once since creation of the conn. Just return. 28480 */ 28481 if (connp->conn_idl == NULL) 28482 return; 28483 28484 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28485 28486 if (connp->conn_drain_prev == NULL) { 28487 /* This conn is currently not in the drain list. */ 28488 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28489 return; 28490 } 28491 idl = connp->conn_idl; 28492 if (idl->idl_conn_draining == connp) { 28493 /* 28494 * This conn is the current drainer. If this is the last conn 28495 * in the drain list, we need to do more checks, in the 'if' 28496 * below. Otherwwise we need to just qenable the next conn, 28497 * to sustain the draining, and is handled in the 'else' 28498 * below. 28499 */ 28500 if (connp->conn_drain_next == idl->idl_conn) { 28501 /* 28502 * This conn is the last in this list. This round 28503 * of draining is complete. If idl_repeat is set, 28504 * it means another flow enabling has happened from 28505 * the driver/streams and we need to another round 28506 * of draining. 28507 * If there are more than 2 conns in the drain list, 28508 * do a left rotate by 1, so that all conns except the 28509 * conn at the head move towards the head by 1, and the 28510 * the conn at the head goes to the tail. This attempts 28511 * a more even share for all queues that are being 28512 * drained. 28513 */ 28514 if ((connp->conn_drain_next != connp) && 28515 (idl->idl_conn->conn_drain_next != connp)) { 28516 idl->idl_conn = idl->idl_conn->conn_drain_next; 28517 } 28518 if (idl->idl_repeat) { 28519 qenable(idl->idl_conn->conn_wq); 28520 idl->idl_conn_draining = idl->idl_conn; 28521 idl->idl_repeat = 0; 28522 } else { 28523 idl->idl_conn_draining = NULL; 28524 } 28525 } else { 28526 /* 28527 * If the next queue that we are now qenable'ing, 28528 * is closing, it will remove itself from this list 28529 * and qenable the subsequent queue in ip_close(). 28530 * Serialization is acheived thru idl_lock. 28531 */ 28532 qenable(connp->conn_drain_next->conn_wq); 28533 idl->idl_conn_draining = connp->conn_drain_next; 28534 } 28535 } 28536 if (!connp->conn_did_putbq || closing) { 28537 /* 28538 * Remove ourself from the drain list, if we did not do 28539 * a putbq, or if the conn is closing. 28540 * Note: It is possible that q->q_first is non-null. It means 28541 * that these messages landed after we did a enableok() in 28542 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28543 * service them. 28544 */ 28545 if (connp->conn_drain_next == connp) { 28546 /* Singleton in the list */ 28547 ASSERT(connp->conn_drain_prev == connp); 28548 idl->idl_conn = NULL; 28549 idl->idl_conn_draining = NULL; 28550 } else { 28551 connp->conn_drain_prev->conn_drain_next = 28552 connp->conn_drain_next; 28553 connp->conn_drain_next->conn_drain_prev = 28554 connp->conn_drain_prev; 28555 if (idl->idl_conn == connp) 28556 idl->idl_conn = connp->conn_drain_next; 28557 ASSERT(idl->idl_conn_draining != connp); 28558 28559 } 28560 connp->conn_drain_next = NULL; 28561 connp->conn_drain_prev = NULL; 28562 } 28563 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28564 } 28565 28566 /* 28567 * Write service routine. Shared perimeter entry point. 28568 * ip_wsrv can be called in any of the following ways. 28569 * 1. The device queue's messages has fallen below the low water mark 28570 * and STREAMS has backenabled the ill_wq. We walk thru all the 28571 * the drain lists and backenable the first conn in each list. 28572 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28573 * qenabled non-tcp upper layers. We start dequeing messages and call 28574 * ip_wput for each message. 28575 */ 28576 28577 void 28578 ip_wsrv(queue_t *q) 28579 { 28580 conn_t *connp; 28581 ill_t *ill; 28582 mblk_t *mp; 28583 28584 if (q->q_next) { 28585 ill = (ill_t *)q->q_ptr; 28586 if (ill->ill_state_flags == 0) { 28587 /* 28588 * The device flow control has opened up. 28589 * Walk through conn drain lists and qenable the 28590 * first conn in each list. This makes sense only 28591 * if the stream is fully plumbed and setup. 28592 * Hence the if check above. 28593 */ 28594 ip1dbg(("ip_wsrv: walking\n")); 28595 conn_walk_drain(ill->ill_ipst); 28596 } 28597 return; 28598 } 28599 28600 connp = Q_TO_CONN(q); 28601 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28602 28603 /* 28604 * 1. Set conn_draining flag to signal that service is active. 28605 * 28606 * 2. ip_output determines whether it has been called from service, 28607 * based on the last parameter. If it is IP_WSRV it concludes it 28608 * has been called from service. 28609 * 28610 * 3. Message ordering is preserved by the following logic. 28611 * i. A directly called ip_output (i.e. not thru service) will queue 28612 * the message at the tail, if conn_draining is set (i.e. service 28613 * is running) or if q->q_first is non-null. 28614 * 28615 * ii. If ip_output is called from service, and if ip_output cannot 28616 * putnext due to flow control, it does a putbq. 28617 * 28618 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28619 * (causing an infinite loop). 28620 */ 28621 ASSERT(!connp->conn_did_putbq); 28622 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28623 connp->conn_draining = 1; 28624 noenable(q); 28625 while ((mp = getq(q)) != NULL) { 28626 ASSERT(CONN_Q(q)); 28627 28628 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28629 if (connp->conn_did_putbq) { 28630 /* ip_wput did a putbq */ 28631 break; 28632 } 28633 } 28634 /* 28635 * At this point, a thread coming down from top, calling 28636 * ip_wput, may end up queueing the message. We have not yet 28637 * enabled the queue, so ip_wsrv won't be called again. 28638 * To avoid this race, check q->q_first again (in the loop) 28639 * If the other thread queued the message before we call 28640 * enableok(), we will catch it in the q->q_first check. 28641 * If the other thread queues the message after we call 28642 * enableok(), ip_wsrv will be called again by STREAMS. 28643 */ 28644 connp->conn_draining = 0; 28645 enableok(q); 28646 } 28647 28648 /* Enable the next conn for draining */ 28649 conn_drain_tail(connp, B_FALSE); 28650 28651 connp->conn_did_putbq = 0; 28652 } 28653 28654 /* 28655 * Walk the list of all conn's calling the function provided with the 28656 * specified argument for each. Note that this only walks conn's that 28657 * have been bound. 28658 * Applies to both IPv4 and IPv6. 28659 */ 28660 static void 28661 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28662 { 28663 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28664 ipst->ips_ipcl_udp_fanout_size, 28665 func, arg, zoneid); 28666 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28667 ipst->ips_ipcl_conn_fanout_size, 28668 func, arg, zoneid); 28669 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28670 ipst->ips_ipcl_bind_fanout_size, 28671 func, arg, zoneid); 28672 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28673 IPPROTO_MAX, func, arg, zoneid); 28674 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28675 IPPROTO_MAX, func, arg, zoneid); 28676 } 28677 28678 /* 28679 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28680 * of conns that need to be drained, check if drain is already in progress. 28681 * If so set the idl_repeat bit, indicating that the last conn in the list 28682 * needs to reinitiate the drain once again, for the list. If drain is not 28683 * in progress for the list, initiate the draining, by qenabling the 1st 28684 * conn in the list. The drain is self-sustaining, each qenabled conn will 28685 * in turn qenable the next conn, when it is done/blocked/closing. 28686 */ 28687 static void 28688 conn_walk_drain(ip_stack_t *ipst) 28689 { 28690 int i; 28691 idl_t *idl; 28692 28693 IP_STAT(ipst, ip_conn_walk_drain); 28694 28695 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28696 idl = &ipst->ips_conn_drain_list[i]; 28697 mutex_enter(&idl->idl_lock); 28698 if (idl->idl_conn == NULL) { 28699 mutex_exit(&idl->idl_lock); 28700 continue; 28701 } 28702 /* 28703 * If this list is not being drained currently by 28704 * an ip_wsrv thread, start the process. 28705 */ 28706 if (idl->idl_conn_draining == NULL) { 28707 ASSERT(idl->idl_repeat == 0); 28708 qenable(idl->idl_conn->conn_wq); 28709 idl->idl_conn_draining = idl->idl_conn; 28710 } else { 28711 idl->idl_repeat = 1; 28712 } 28713 mutex_exit(&idl->idl_lock); 28714 } 28715 } 28716 28717 /* 28718 * Walk an conn hash table of `count' buckets, calling func for each entry. 28719 */ 28720 static void 28721 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28722 zoneid_t zoneid) 28723 { 28724 conn_t *connp; 28725 28726 while (count-- > 0) { 28727 mutex_enter(&connfp->connf_lock); 28728 for (connp = connfp->connf_head; connp != NULL; 28729 connp = connp->conn_next) { 28730 if (zoneid == GLOBAL_ZONEID || 28731 zoneid == connp->conn_zoneid) { 28732 CONN_INC_REF(connp); 28733 mutex_exit(&connfp->connf_lock); 28734 (*func)(connp, arg); 28735 mutex_enter(&connfp->connf_lock); 28736 CONN_DEC_REF(connp); 28737 } 28738 } 28739 mutex_exit(&connfp->connf_lock); 28740 connfp++; 28741 } 28742 } 28743 28744 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28745 static void 28746 conn_report1(conn_t *connp, void *mp) 28747 { 28748 char buf1[INET6_ADDRSTRLEN]; 28749 char buf2[INET6_ADDRSTRLEN]; 28750 uint_t print_len, buf_len; 28751 28752 ASSERT(connp != NULL); 28753 28754 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28755 if (buf_len <= 0) 28756 return; 28757 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28758 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28759 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28760 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28761 "%5d %s/%05d %s/%05d\n", 28762 (void *)connp, (void *)CONNP_TO_RQ(connp), 28763 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28764 buf1, connp->conn_lport, 28765 buf2, connp->conn_fport); 28766 if (print_len < buf_len) { 28767 ((mblk_t *)mp)->b_wptr += print_len; 28768 } else { 28769 ((mblk_t *)mp)->b_wptr += buf_len; 28770 } 28771 } 28772 28773 /* 28774 * Named Dispatch routine to produce a formatted report on all conns 28775 * that are listed in one of the fanout tables. 28776 * This report is accessed by using the ndd utility to "get" ND variable 28777 * "ip_conn_status". 28778 */ 28779 /* ARGSUSED */ 28780 static int 28781 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28782 { 28783 conn_t *connp = Q_TO_CONN(q); 28784 28785 (void) mi_mpprintf(mp, 28786 "CONN " MI_COL_HDRPAD_STR 28787 "rfq " MI_COL_HDRPAD_STR 28788 "stq " MI_COL_HDRPAD_STR 28789 " zone local remote"); 28790 28791 /* 28792 * Because of the ndd constraint, at most we can have 64K buffer 28793 * to put in all conn info. So to be more efficient, just 28794 * allocate a 64K buffer here, assuming we need that large buffer. 28795 * This should be OK as only privileged processes can do ndd /dev/ip. 28796 */ 28797 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28798 /* The following may work even if we cannot get a large buf. */ 28799 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28800 return (0); 28801 } 28802 28803 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28804 connp->conn_netstack->netstack_ip); 28805 return (0); 28806 } 28807 28808 /* 28809 * Determine if the ill and multicast aspects of that packets 28810 * "matches" the conn. 28811 */ 28812 boolean_t 28813 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28814 zoneid_t zoneid) 28815 { 28816 ill_t *in_ill; 28817 boolean_t found; 28818 ipif_t *ipif; 28819 ire_t *ire; 28820 ipaddr_t dst, src; 28821 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28822 28823 dst = ipha->ipha_dst; 28824 src = ipha->ipha_src; 28825 28826 /* 28827 * conn_incoming_ill is set by IP_BOUND_IF which limits 28828 * unicast, broadcast and multicast reception to 28829 * conn_incoming_ill. conn_wantpacket itself is called 28830 * only for BROADCAST and multicast. 28831 * 28832 * 1) ip_rput supresses duplicate broadcasts if the ill 28833 * is part of a group. Hence, we should be receiving 28834 * just one copy of broadcast for the whole group. 28835 * Thus, if it is part of the group the packet could 28836 * come on any ill of the group and hence we need a 28837 * match on the group. Otherwise, match on ill should 28838 * be sufficient. 28839 * 28840 * 2) ip_rput does not suppress duplicate multicast packets. 28841 * If there are two interfaces in a ill group and we have 28842 * 2 applications (conns) joined a multicast group G on 28843 * both the interfaces, ilm_lookup_ill filter in ip_rput 28844 * will give us two packets because we join G on both the 28845 * interfaces rather than nominating just one interface 28846 * for receiving multicast like broadcast above. So, 28847 * we have to call ilg_lookup_ill to filter out duplicate 28848 * copies, if ill is part of a group. 28849 */ 28850 in_ill = connp->conn_incoming_ill; 28851 if (in_ill != NULL) { 28852 if (in_ill->ill_group == NULL) { 28853 if (in_ill != ill) 28854 return (B_FALSE); 28855 } else if (in_ill->ill_group != ill->ill_group) { 28856 return (B_FALSE); 28857 } 28858 } 28859 28860 if (!CLASSD(dst)) { 28861 if (IPCL_ZONE_MATCH(connp, zoneid)) 28862 return (B_TRUE); 28863 /* 28864 * The conn is in a different zone; we need to check that this 28865 * broadcast address is configured in the application's zone and 28866 * on one ill in the group. 28867 */ 28868 ipif = ipif_get_next_ipif(NULL, ill); 28869 if (ipif == NULL) 28870 return (B_FALSE); 28871 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28872 connp->conn_zoneid, NULL, 28873 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28874 ipif_refrele(ipif); 28875 if (ire != NULL) { 28876 ire_refrele(ire); 28877 return (B_TRUE); 28878 } else { 28879 return (B_FALSE); 28880 } 28881 } 28882 28883 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28884 connp->conn_zoneid == zoneid) { 28885 /* 28886 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28887 * disabled, therefore we don't dispatch the multicast packet to 28888 * the sending zone. 28889 */ 28890 return (B_FALSE); 28891 } 28892 28893 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28894 connp->conn_zoneid != zoneid) { 28895 /* 28896 * Multicast packet on the loopback interface: we only match 28897 * conns who joined the group in the specified zone. 28898 */ 28899 return (B_FALSE); 28900 } 28901 28902 if (connp->conn_multi_router) { 28903 /* multicast packet and multicast router socket: send up */ 28904 return (B_TRUE); 28905 } 28906 28907 mutex_enter(&connp->conn_lock); 28908 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28909 mutex_exit(&connp->conn_lock); 28910 return (found); 28911 } 28912 28913 /* 28914 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28915 */ 28916 /* ARGSUSED */ 28917 static void 28918 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28919 { 28920 ill_t *ill = (ill_t *)q->q_ptr; 28921 mblk_t *mp1, *mp2; 28922 ipif_t *ipif; 28923 int err = 0; 28924 conn_t *connp = NULL; 28925 ipsq_t *ipsq; 28926 arc_t *arc; 28927 28928 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28929 28930 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28931 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28932 28933 ASSERT(IAM_WRITER_ILL(ill)); 28934 mp2 = mp->b_cont; 28935 mp->b_cont = NULL; 28936 28937 /* 28938 * We have now received the arp bringup completion message 28939 * from ARP. Mark the arp bringup as done. Also if the arp 28940 * stream has already started closing, send up the AR_ARP_CLOSING 28941 * ack now since ARP is waiting in close for this ack. 28942 */ 28943 mutex_enter(&ill->ill_lock); 28944 ill->ill_arp_bringup_pending = 0; 28945 if (ill->ill_arp_closing) { 28946 mutex_exit(&ill->ill_lock); 28947 /* Let's reuse the mp for sending the ack */ 28948 arc = (arc_t *)mp->b_rptr; 28949 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28950 arc->arc_cmd = AR_ARP_CLOSING; 28951 qreply(q, mp); 28952 } else { 28953 mutex_exit(&ill->ill_lock); 28954 freeb(mp); 28955 } 28956 28957 ipsq = ill->ill_phyint->phyint_ipsq; 28958 ipif = ipsq->ipsq_pending_ipif; 28959 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28960 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28961 if (mp1 == NULL) { 28962 /* bringup was aborted by the user */ 28963 freemsg(mp2); 28964 return; 28965 } 28966 28967 /* 28968 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28969 * must have an associated conn_t. Otherwise, we're bringing this 28970 * interface back up as part of handling an asynchronous event (e.g., 28971 * physical address change). 28972 */ 28973 if (ipsq->ipsq_current_ioctl != 0) { 28974 ASSERT(connp != NULL); 28975 q = CONNP_TO_WQ(connp); 28976 } else { 28977 ASSERT(connp == NULL); 28978 q = ill->ill_rq; 28979 } 28980 28981 /* 28982 * If the DL_BIND_REQ fails, it is noted 28983 * in arc_name_offset. 28984 */ 28985 err = *((int *)mp2->b_rptr); 28986 if (err == 0) { 28987 if (ipif->ipif_isv6) { 28988 if ((err = ipif_up_done_v6(ipif)) != 0) 28989 ip0dbg(("ip_arp_done: init failed\n")); 28990 } else { 28991 if ((err = ipif_up_done(ipif)) != 0) 28992 ip0dbg(("ip_arp_done: init failed\n")); 28993 } 28994 } else { 28995 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28996 } 28997 28998 freemsg(mp2); 28999 29000 if ((err == 0) && (ill->ill_up_ipifs)) { 29001 err = ill_up_ipifs(ill, q, mp1); 29002 if (err == EINPROGRESS) 29003 return; 29004 } 29005 29006 if (ill->ill_up_ipifs) 29007 ill_group_cleanup(ill); 29008 29009 /* 29010 * The operation must complete without EINPROGRESS since 29011 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29012 * Otherwise, the operation will be stuck forever in the ipsq. 29013 */ 29014 ASSERT(err != EINPROGRESS); 29015 if (ipsq->ipsq_current_ioctl != 0) 29016 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29017 else 29018 ipsq_current_finish(ipsq); 29019 } 29020 29021 /* Allocate the private structure */ 29022 static int 29023 ip_priv_alloc(void **bufp) 29024 { 29025 void *buf; 29026 29027 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29028 return (ENOMEM); 29029 29030 *bufp = buf; 29031 return (0); 29032 } 29033 29034 /* Function to delete the private structure */ 29035 void 29036 ip_priv_free(void *buf) 29037 { 29038 ASSERT(buf != NULL); 29039 kmem_free(buf, sizeof (ip_priv_t)); 29040 } 29041 29042 /* 29043 * The entry point for IPPF processing. 29044 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29045 * routine just returns. 29046 * 29047 * When called, ip_process generates an ipp_packet_t structure 29048 * which holds the state information for this packet and invokes the 29049 * the classifier (via ipp_packet_process). The classification, depending on 29050 * configured filters, results in a list of actions for this packet. Invoking 29051 * an action may cause the packet to be dropped, in which case the resulting 29052 * mblk (*mpp) is NULL. proc indicates the callout position for 29053 * this packet and ill_index is the interface this packet on or will leave 29054 * on (inbound and outbound resp.). 29055 */ 29056 void 29057 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29058 { 29059 mblk_t *mp; 29060 ip_priv_t *priv; 29061 ipp_action_id_t aid; 29062 int rc = 0; 29063 ipp_packet_t *pp; 29064 #define IP_CLASS "ip" 29065 29066 /* If the classifier is not loaded, return */ 29067 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29068 return; 29069 } 29070 29071 mp = *mpp; 29072 ASSERT(mp != NULL); 29073 29074 /* Allocate the packet structure */ 29075 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29076 if (rc != 0) { 29077 *mpp = NULL; 29078 freemsg(mp); 29079 return; 29080 } 29081 29082 /* Allocate the private structure */ 29083 rc = ip_priv_alloc((void **)&priv); 29084 if (rc != 0) { 29085 *mpp = NULL; 29086 freemsg(mp); 29087 ipp_packet_free(pp); 29088 return; 29089 } 29090 priv->proc = proc; 29091 priv->ill_index = ill_index; 29092 ipp_packet_set_private(pp, priv, ip_priv_free); 29093 ipp_packet_set_data(pp, mp); 29094 29095 /* Invoke the classifier */ 29096 rc = ipp_packet_process(&pp); 29097 if (pp != NULL) { 29098 mp = ipp_packet_get_data(pp); 29099 ipp_packet_free(pp); 29100 if (rc != 0) { 29101 freemsg(mp); 29102 *mpp = NULL; 29103 } 29104 } else { 29105 *mpp = NULL; 29106 } 29107 #undef IP_CLASS 29108 } 29109 29110 /* 29111 * Propagate a multicast group membership operation (add/drop) on 29112 * all the interfaces crossed by the related multirt routes. 29113 * The call is considered successful if the operation succeeds 29114 * on at least one interface. 29115 */ 29116 static int 29117 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29118 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29119 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29120 mblk_t *first_mp) 29121 { 29122 ire_t *ire_gw; 29123 irb_t *irb; 29124 int error = 0; 29125 opt_restart_t *or; 29126 ip_stack_t *ipst = ire->ire_ipst; 29127 29128 irb = ire->ire_bucket; 29129 ASSERT(irb != NULL); 29130 29131 ASSERT(DB_TYPE(first_mp) == M_CTL); 29132 29133 or = (opt_restart_t *)first_mp->b_rptr; 29134 IRB_REFHOLD(irb); 29135 for (; ire != NULL; ire = ire->ire_next) { 29136 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29137 continue; 29138 if (ire->ire_addr != group) 29139 continue; 29140 29141 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29142 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29143 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29144 /* No resolver exists for the gateway; skip this ire. */ 29145 if (ire_gw == NULL) 29146 continue; 29147 29148 /* 29149 * This function can return EINPROGRESS. If so the operation 29150 * will be restarted from ip_restart_optmgmt which will 29151 * call ip_opt_set and option processing will restart for 29152 * this option. So we may end up calling 'fn' more than once. 29153 * This requires that 'fn' is idempotent except for the 29154 * return value. The operation is considered a success if 29155 * it succeeds at least once on any one interface. 29156 */ 29157 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29158 NULL, fmode, src, first_mp); 29159 if (error == 0) 29160 or->or_private = CGTP_MCAST_SUCCESS; 29161 29162 if (ip_debug > 0) { 29163 ulong_t off; 29164 char *ksym; 29165 ksym = kobj_getsymname((uintptr_t)fn, &off); 29166 ip2dbg(("ip_multirt_apply_membership: " 29167 "called %s, multirt group 0x%08x via itf 0x%08x, " 29168 "error %d [success %u]\n", 29169 ksym ? ksym : "?", 29170 ntohl(group), ntohl(ire_gw->ire_src_addr), 29171 error, or->or_private)); 29172 } 29173 29174 ire_refrele(ire_gw); 29175 if (error == EINPROGRESS) { 29176 IRB_REFRELE(irb); 29177 return (error); 29178 } 29179 } 29180 IRB_REFRELE(irb); 29181 /* 29182 * Consider the call as successful if we succeeded on at least 29183 * one interface. Otherwise, return the last encountered error. 29184 */ 29185 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29186 } 29187 29188 29189 /* 29190 * Issue a warning regarding a route crossing an interface with an 29191 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29192 * amount of time is logged. 29193 */ 29194 static void 29195 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29196 { 29197 hrtime_t current = gethrtime(); 29198 char buf[INET_ADDRSTRLEN]; 29199 ip_stack_t *ipst = ire->ire_ipst; 29200 29201 /* Convert interval in ms to hrtime in ns */ 29202 if (ipst->ips_multirt_bad_mtu_last_time + 29203 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29204 current) { 29205 cmn_err(CE_WARN, "ip: ignoring multiroute " 29206 "to %s, incorrect MTU %u (expected %u)\n", 29207 ip_dot_addr(ire->ire_addr, buf), 29208 ire->ire_max_frag, max_frag); 29209 29210 ipst->ips_multirt_bad_mtu_last_time = current; 29211 } 29212 } 29213 29214 29215 /* 29216 * Get the CGTP (multirouting) filtering status. 29217 * If 0, the CGTP hooks are transparent. 29218 */ 29219 /* ARGSUSED */ 29220 static int 29221 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29222 { 29223 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29224 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29225 29226 /* 29227 * Only applies to the shared stack since the filter_ops 29228 * do not carry an ip_stack_t or zoneid. 29229 */ 29230 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29231 return (ENOTSUP); 29232 29233 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29234 return (0); 29235 } 29236 29237 29238 /* 29239 * Set the CGTP (multirouting) filtering status. 29240 * If the status is changed from active to transparent 29241 * or from transparent to active, forward the new status 29242 * to the filtering module (if loaded). 29243 */ 29244 /* ARGSUSED */ 29245 static int 29246 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29247 cred_t *ioc_cr) 29248 { 29249 long new_value; 29250 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29251 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29252 29253 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29254 return (EPERM); 29255 29256 /* 29257 * Only applies to the shared stack since the filter_ops 29258 * do not carry an ip_stack_t or zoneid. 29259 */ 29260 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29261 return (ENOTSUP); 29262 29263 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29264 new_value < 0 || new_value > 1) { 29265 return (EINVAL); 29266 } 29267 29268 /* 29269 * Do not enable CGTP filtering - thus preventing the hooks 29270 * from being invoked - if the version number of the 29271 * filtering module hooks does not match. 29272 */ 29273 if ((ip_cgtp_filter_ops != NULL) && 29274 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29275 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29276 "(module hooks version %d, expecting %d)\n", 29277 ip_cgtp_filter_ops->cfo_filter_rev, 29278 CGTP_FILTER_REV); 29279 return (ENOTSUP); 29280 } 29281 29282 if ((!*ip_cgtp_filter_value) && new_value) { 29283 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29284 ip_cgtp_filter_ops == NULL ? 29285 " (module not loaded)" : ""); 29286 } 29287 if (*ip_cgtp_filter_value && (!new_value)) { 29288 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29289 ip_cgtp_filter_ops == NULL ? 29290 " (module not loaded)" : ""); 29291 } 29292 29293 if (ip_cgtp_filter_ops != NULL) { 29294 int res; 29295 29296 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29297 if (res) 29298 return (res); 29299 } 29300 29301 *ip_cgtp_filter_value = (boolean_t)new_value; 29302 29303 return (0); 29304 } 29305 29306 29307 /* 29308 * Return the expected CGTP hooks version number. 29309 */ 29310 int 29311 ip_cgtp_filter_supported(void) 29312 { 29313 ip_stack_t *ipst; 29314 int ret; 29315 29316 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29317 if (ipst == NULL) 29318 return (-1); 29319 ret = ip_cgtp_filter_rev; 29320 netstack_rele(ipst->ips_netstack); 29321 return (ret); 29322 } 29323 29324 29325 /* 29326 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29327 * or by invoking this function. In the first case, the version number 29328 * of the registered structure is checked at hooks activation time 29329 * in ip_cgtp_filter_set(). 29330 * 29331 * Only applies to the shared stack since the filter_ops 29332 * do not carry an ip_stack_t or zoneid. 29333 */ 29334 int 29335 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29336 { 29337 ip_stack_t *ipst; 29338 29339 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29340 return (ENOTSUP); 29341 29342 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29343 if (ipst == NULL) 29344 return (EINVAL); 29345 29346 ip_cgtp_filter_ops = ops; 29347 netstack_rele(ipst->ips_netstack); 29348 return (0); 29349 } 29350 29351 static squeue_func_t 29352 ip_squeue_switch(int val) 29353 { 29354 squeue_func_t rval = squeue_fill; 29355 29356 switch (val) { 29357 case IP_SQUEUE_ENTER_NODRAIN: 29358 rval = squeue_enter_nodrain; 29359 break; 29360 case IP_SQUEUE_ENTER: 29361 rval = squeue_enter; 29362 break; 29363 default: 29364 break; 29365 } 29366 return (rval); 29367 } 29368 29369 /* ARGSUSED */ 29370 static int 29371 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29372 caddr_t addr, cred_t *cr) 29373 { 29374 int *v = (int *)addr; 29375 long new_value; 29376 29377 if (secpolicy_net_config(cr, B_FALSE) != 0) 29378 return (EPERM); 29379 29380 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29381 return (EINVAL); 29382 29383 ip_input_proc = ip_squeue_switch(new_value); 29384 *v = new_value; 29385 return (0); 29386 } 29387 29388 /* ARGSUSED */ 29389 static int 29390 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29391 caddr_t addr, cred_t *cr) 29392 { 29393 int *v = (int *)addr; 29394 long new_value; 29395 29396 if (secpolicy_net_config(cr, B_FALSE) != 0) 29397 return (EPERM); 29398 29399 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29400 return (EINVAL); 29401 29402 *v = new_value; 29403 return (0); 29404 } 29405 29406 /* 29407 * Handle changes to ipmp_hook_emulation ndd variable. 29408 * Need to update phyint_hook_ifindex. 29409 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29410 */ 29411 static void 29412 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29413 { 29414 phyint_t *phyi; 29415 phyint_t *phyi_tmp; 29416 char *groupname; 29417 int namelen; 29418 ill_t *ill; 29419 boolean_t new_group; 29420 29421 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29422 /* 29423 * Group indicies are stored in the phyint - a common structure 29424 * to both IPv4 and IPv6. 29425 */ 29426 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29427 for (; phyi != NULL; 29428 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29429 phyi, AVL_AFTER)) { 29430 /* Ignore the ones that do not have a group */ 29431 if (phyi->phyint_groupname_len == 0) 29432 continue; 29433 29434 /* 29435 * Look for other phyint in group. 29436 * Clear name/namelen so the lookup doesn't find ourselves. 29437 */ 29438 namelen = phyi->phyint_groupname_len; 29439 groupname = phyi->phyint_groupname; 29440 phyi->phyint_groupname_len = 0; 29441 phyi->phyint_groupname = NULL; 29442 29443 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29444 /* Restore */ 29445 phyi->phyint_groupname_len = namelen; 29446 phyi->phyint_groupname = groupname; 29447 29448 new_group = B_FALSE; 29449 if (ipst->ips_ipmp_hook_emulation) { 29450 /* 29451 * If the group already exists and has already 29452 * been assigned a group ifindex, we use the existing 29453 * group_ifindex, otherwise we pick a new group_ifindex 29454 * here. 29455 */ 29456 if (phyi_tmp != NULL && 29457 phyi_tmp->phyint_group_ifindex != 0) { 29458 phyi->phyint_group_ifindex = 29459 phyi_tmp->phyint_group_ifindex; 29460 } else { 29461 /* XXX We need a recovery strategy here. */ 29462 if (!ip_assign_ifindex( 29463 &phyi->phyint_group_ifindex, ipst)) 29464 cmn_err(CE_PANIC, 29465 "ip_assign_ifindex() failed"); 29466 new_group = B_TRUE; 29467 } 29468 } else { 29469 phyi->phyint_group_ifindex = 0; 29470 } 29471 if (ipst->ips_ipmp_hook_emulation) 29472 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29473 else 29474 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29475 29476 /* 29477 * For IP Filter to find out the relationship between 29478 * names and interface indicies, we need to generate 29479 * a NE_PLUMB event when a new group can appear. 29480 * We always generate events when a new interface appears 29481 * (even when ipmp_hook_emulation is set) so there 29482 * is no need to generate NE_PLUMB events when 29483 * ipmp_hook_emulation is turned off. 29484 * And since it isn't critical for IP Filter to get 29485 * the NE_UNPLUMB events we skip those here. 29486 */ 29487 if (new_group) { 29488 /* 29489 * First phyint in group - generate group PLUMB event. 29490 * Since we are not running inside the ipsq we do 29491 * the dispatch immediately. 29492 */ 29493 if (phyi->phyint_illv4 != NULL) 29494 ill = phyi->phyint_illv4; 29495 else 29496 ill = phyi->phyint_illv6; 29497 29498 if (ill != NULL) { 29499 mutex_enter(&ill->ill_lock); 29500 ill_nic_info_plumb(ill, B_TRUE); 29501 ill_nic_info_dispatch(ill); 29502 mutex_exit(&ill->ill_lock); 29503 } 29504 } 29505 } 29506 rw_exit(&ipst->ips_ill_g_lock); 29507 } 29508 29509 /* ARGSUSED */ 29510 static int 29511 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29512 caddr_t addr, cred_t *cr) 29513 { 29514 int *v = (int *)addr; 29515 long new_value; 29516 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29517 29518 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29519 return (EINVAL); 29520 29521 if (*v != new_value) { 29522 *v = new_value; 29523 ipmp_hook_emulation_changed(ipst); 29524 } 29525 return (0); 29526 } 29527 29528 static void * 29529 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29530 { 29531 kstat_t *ksp; 29532 29533 ip_stat_t template = { 29534 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29535 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29536 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29537 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29538 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29539 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29540 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29541 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29542 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29543 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29544 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29545 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29546 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29547 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29548 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29549 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29550 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29551 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29552 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29553 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29554 { "ip_opt", KSTAT_DATA_UINT64 }, 29555 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29556 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29557 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29558 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29559 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29560 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29561 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29562 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29563 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29564 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29565 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29566 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29567 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29568 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29569 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29570 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29571 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29572 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29573 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29574 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29575 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29576 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29577 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29578 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29579 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29580 }; 29581 29582 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29583 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29584 KSTAT_FLAG_VIRTUAL, stackid); 29585 29586 if (ksp == NULL) 29587 return (NULL); 29588 29589 bcopy(&template, ip_statisticsp, sizeof (template)); 29590 ksp->ks_data = (void *)ip_statisticsp; 29591 ksp->ks_private = (void *)(uintptr_t)stackid; 29592 29593 kstat_install(ksp); 29594 return (ksp); 29595 } 29596 29597 static void 29598 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29599 { 29600 if (ksp != NULL) { 29601 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29602 kstat_delete_netstack(ksp, stackid); 29603 } 29604 } 29605 29606 static void * 29607 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29608 { 29609 kstat_t *ksp; 29610 29611 ip_named_kstat_t template = { 29612 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29613 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29614 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29615 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29616 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29617 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29618 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29619 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29620 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29621 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29622 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29623 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29624 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29625 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29626 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29627 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29628 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29629 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29630 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29631 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29632 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29633 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29634 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29635 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29636 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29637 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29638 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29639 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29640 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29641 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29642 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29643 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29644 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29645 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29646 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29647 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29648 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29649 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29650 }; 29651 29652 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29653 NUM_OF_FIELDS(ip_named_kstat_t), 29654 0, stackid); 29655 if (ksp == NULL || ksp->ks_data == NULL) 29656 return (NULL); 29657 29658 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29659 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29660 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29661 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29662 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29663 29664 template.netToMediaEntrySize.value.i32 = 29665 sizeof (mib2_ipNetToMediaEntry_t); 29666 29667 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29668 29669 bcopy(&template, ksp->ks_data, sizeof (template)); 29670 ksp->ks_update = ip_kstat_update; 29671 ksp->ks_private = (void *)(uintptr_t)stackid; 29672 29673 kstat_install(ksp); 29674 return (ksp); 29675 } 29676 29677 static void 29678 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29679 { 29680 if (ksp != NULL) { 29681 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29682 kstat_delete_netstack(ksp, stackid); 29683 } 29684 } 29685 29686 static int 29687 ip_kstat_update(kstat_t *kp, int rw) 29688 { 29689 ip_named_kstat_t *ipkp; 29690 mib2_ipIfStatsEntry_t ipmib; 29691 ill_walk_context_t ctx; 29692 ill_t *ill; 29693 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29694 netstack_t *ns; 29695 ip_stack_t *ipst; 29696 29697 if (kp == NULL || kp->ks_data == NULL) 29698 return (EIO); 29699 29700 if (rw == KSTAT_WRITE) 29701 return (EACCES); 29702 29703 ns = netstack_find_by_stackid(stackid); 29704 if (ns == NULL) 29705 return (-1); 29706 ipst = ns->netstack_ip; 29707 if (ipst == NULL) { 29708 netstack_rele(ns); 29709 return (-1); 29710 } 29711 ipkp = (ip_named_kstat_t *)kp->ks_data; 29712 29713 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29714 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29715 ill = ILL_START_WALK_V4(&ctx, ipst); 29716 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29717 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29718 rw_exit(&ipst->ips_ill_g_lock); 29719 29720 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29721 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29722 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29723 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29724 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29725 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29726 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29727 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29728 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29729 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29730 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29731 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29732 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29733 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29734 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29735 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29736 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29737 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29738 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29739 29740 ipkp->routingDiscards.value.ui32 = 0; 29741 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29742 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29743 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29744 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29745 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29746 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29747 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29748 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29749 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29750 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29751 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29752 29753 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29754 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29755 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29756 29757 netstack_rele(ns); 29758 29759 return (0); 29760 } 29761 29762 static void * 29763 icmp_kstat_init(netstackid_t stackid) 29764 { 29765 kstat_t *ksp; 29766 29767 icmp_named_kstat_t template = { 29768 { "inMsgs", KSTAT_DATA_UINT32 }, 29769 { "inErrors", KSTAT_DATA_UINT32 }, 29770 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29771 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29772 { "inParmProbs", KSTAT_DATA_UINT32 }, 29773 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29774 { "inRedirects", KSTAT_DATA_UINT32 }, 29775 { "inEchos", KSTAT_DATA_UINT32 }, 29776 { "inEchoReps", KSTAT_DATA_UINT32 }, 29777 { "inTimestamps", KSTAT_DATA_UINT32 }, 29778 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29779 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29780 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29781 { "outMsgs", KSTAT_DATA_UINT32 }, 29782 { "outErrors", KSTAT_DATA_UINT32 }, 29783 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29784 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29785 { "outParmProbs", KSTAT_DATA_UINT32 }, 29786 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29787 { "outRedirects", KSTAT_DATA_UINT32 }, 29788 { "outEchos", KSTAT_DATA_UINT32 }, 29789 { "outEchoReps", KSTAT_DATA_UINT32 }, 29790 { "outTimestamps", KSTAT_DATA_UINT32 }, 29791 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29792 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29793 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29794 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29795 { "inUnknowns", KSTAT_DATA_UINT32 }, 29796 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29797 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29798 { "outDrops", KSTAT_DATA_UINT32 }, 29799 { "inOverFlows", KSTAT_DATA_UINT32 }, 29800 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29801 }; 29802 29803 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29804 NUM_OF_FIELDS(icmp_named_kstat_t), 29805 0, stackid); 29806 if (ksp == NULL || ksp->ks_data == NULL) 29807 return (NULL); 29808 29809 bcopy(&template, ksp->ks_data, sizeof (template)); 29810 29811 ksp->ks_update = icmp_kstat_update; 29812 ksp->ks_private = (void *)(uintptr_t)stackid; 29813 29814 kstat_install(ksp); 29815 return (ksp); 29816 } 29817 29818 static void 29819 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29820 { 29821 if (ksp != NULL) { 29822 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29823 kstat_delete_netstack(ksp, stackid); 29824 } 29825 } 29826 29827 static int 29828 icmp_kstat_update(kstat_t *kp, int rw) 29829 { 29830 icmp_named_kstat_t *icmpkp; 29831 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29832 netstack_t *ns; 29833 ip_stack_t *ipst; 29834 29835 if ((kp == NULL) || (kp->ks_data == NULL)) 29836 return (EIO); 29837 29838 if (rw == KSTAT_WRITE) 29839 return (EACCES); 29840 29841 ns = netstack_find_by_stackid(stackid); 29842 if (ns == NULL) 29843 return (-1); 29844 ipst = ns->netstack_ip; 29845 if (ipst == NULL) { 29846 netstack_rele(ns); 29847 return (-1); 29848 } 29849 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29850 29851 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29852 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29853 icmpkp->inDestUnreachs.value.ui32 = 29854 ipst->ips_icmp_mib.icmpInDestUnreachs; 29855 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29856 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29857 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29858 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29859 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29860 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29861 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29862 icmpkp->inTimestampReps.value.ui32 = 29863 ipst->ips_icmp_mib.icmpInTimestampReps; 29864 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29865 icmpkp->inAddrMaskReps.value.ui32 = 29866 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29867 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29868 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29869 icmpkp->outDestUnreachs.value.ui32 = 29870 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29871 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29872 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29873 icmpkp->outSrcQuenchs.value.ui32 = 29874 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29875 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29876 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29877 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29878 icmpkp->outTimestamps.value.ui32 = 29879 ipst->ips_icmp_mib.icmpOutTimestamps; 29880 icmpkp->outTimestampReps.value.ui32 = 29881 ipst->ips_icmp_mib.icmpOutTimestampReps; 29882 icmpkp->outAddrMasks.value.ui32 = 29883 ipst->ips_icmp_mib.icmpOutAddrMasks; 29884 icmpkp->outAddrMaskReps.value.ui32 = 29885 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29886 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29887 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29888 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29889 icmpkp->outFragNeeded.value.ui32 = 29890 ipst->ips_icmp_mib.icmpOutFragNeeded; 29891 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29892 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29893 icmpkp->inBadRedirects.value.ui32 = 29894 ipst->ips_icmp_mib.icmpInBadRedirects; 29895 29896 netstack_rele(ns); 29897 return (0); 29898 } 29899 29900 /* 29901 * This is the fanout function for raw socket opened for SCTP. Note 29902 * that it is called after SCTP checks that there is no socket which 29903 * wants a packet. Then before SCTP handles this out of the blue packet, 29904 * this function is called to see if there is any raw socket for SCTP. 29905 * If there is and it is bound to the correct address, the packet will 29906 * be sent to that socket. Note that only one raw socket can be bound to 29907 * a port. This is assured in ipcl_sctp_hash_insert(); 29908 */ 29909 void 29910 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29911 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29912 zoneid_t zoneid) 29913 { 29914 conn_t *connp; 29915 queue_t *rq; 29916 mblk_t *first_mp; 29917 boolean_t secure; 29918 ip6_t *ip6h; 29919 ip_stack_t *ipst = recv_ill->ill_ipst; 29920 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29921 29922 first_mp = mp; 29923 if (mctl_present) { 29924 mp = first_mp->b_cont; 29925 secure = ipsec_in_is_secure(first_mp); 29926 ASSERT(mp != NULL); 29927 } else { 29928 secure = B_FALSE; 29929 } 29930 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29931 29932 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29933 if (connp == NULL) { 29934 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29935 return; 29936 } 29937 rq = connp->conn_rq; 29938 if (!canputnext(rq)) { 29939 CONN_DEC_REF(connp); 29940 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29941 freemsg(first_mp); 29942 return; 29943 } 29944 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29945 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29946 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29947 (isv4 ? ipha : NULL), ip6h, mctl_present); 29948 if (first_mp == NULL) { 29949 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29950 CONN_DEC_REF(connp); 29951 return; 29952 } 29953 } 29954 /* 29955 * We probably should not send M_CTL message up to 29956 * raw socket. 29957 */ 29958 if (mctl_present) 29959 freeb(first_mp); 29960 29961 /* Initiate IPPF processing here if needed. */ 29962 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29963 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29964 ip_process(IPP_LOCAL_IN, &mp, 29965 recv_ill->ill_phyint->phyint_ifindex); 29966 if (mp == NULL) { 29967 CONN_DEC_REF(connp); 29968 return; 29969 } 29970 } 29971 29972 if (connp->conn_recvif || connp->conn_recvslla || 29973 ((connp->conn_ip_recvpktinfo || 29974 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29975 (flags & IP_FF_IPINFO))) { 29976 int in_flags = 0; 29977 29978 /* 29979 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29980 * IPF_RECVIF. 29981 */ 29982 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29983 in_flags = IPF_RECVIF; 29984 } 29985 if (connp->conn_recvslla) { 29986 in_flags |= IPF_RECVSLLA; 29987 } 29988 if (isv4) { 29989 mp = ip_add_info(mp, recv_ill, in_flags, 29990 IPCL_ZONEID(connp), ipst); 29991 } else { 29992 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29993 if (mp == NULL) { 29994 BUMP_MIB(recv_ill->ill_ip_mib, 29995 ipIfStatsInDiscards); 29996 CONN_DEC_REF(connp); 29997 return; 29998 } 29999 } 30000 } 30001 30002 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30003 /* 30004 * We are sending the IPSEC_IN message also up. Refer 30005 * to comments above this function. 30006 */ 30007 putnext(rq, mp); 30008 CONN_DEC_REF(connp); 30009 } 30010 30011 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30012 { \ 30013 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30014 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30015 } 30016 /* 30017 * This function should be called only if all packet processing 30018 * including fragmentation is complete. Callers of this function 30019 * must set mp->b_prev to one of these values: 30020 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30021 * prior to handing over the mp as first argument to this function. 30022 * 30023 * If the ire passed by caller is incomplete, this function 30024 * queues the packet and if necessary, sends ARP request and bails. 30025 * If the ire passed is fully resolved, we simply prepend 30026 * the link-layer header to the packet, do ipsec hw acceleration 30027 * work if necessary, and send the packet out on the wire. 30028 * 30029 * NOTE: IPSEC will only call this function with fully resolved 30030 * ires if hw acceleration is involved. 30031 * TODO list : 30032 * a Handle M_MULTIDATA so that 30033 * tcp_multisend->tcp_multisend_data can 30034 * call ip_xmit_v4 directly 30035 * b Handle post-ARP work for fragments so that 30036 * ip_wput_frag can call this function. 30037 */ 30038 ipxmit_state_t 30039 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30040 { 30041 nce_t *arpce; 30042 queue_t *q; 30043 int ill_index; 30044 mblk_t *nxt_mp, *first_mp; 30045 boolean_t xmit_drop = B_FALSE; 30046 ip_proc_t proc; 30047 ill_t *out_ill; 30048 int pkt_len; 30049 30050 arpce = ire->ire_nce; 30051 ASSERT(arpce != NULL); 30052 30053 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30054 30055 mutex_enter(&arpce->nce_lock); 30056 switch (arpce->nce_state) { 30057 case ND_REACHABLE: 30058 /* If there are other queued packets, queue this packet */ 30059 if (arpce->nce_qd_mp != NULL) { 30060 if (mp != NULL) 30061 nce_queue_mp_common(arpce, mp, B_FALSE); 30062 mp = arpce->nce_qd_mp; 30063 } 30064 arpce->nce_qd_mp = NULL; 30065 mutex_exit(&arpce->nce_lock); 30066 30067 /* 30068 * Flush the queue. In the common case, where the 30069 * ARP is already resolved, it will go through the 30070 * while loop only once. 30071 */ 30072 while (mp != NULL) { 30073 30074 nxt_mp = mp->b_next; 30075 mp->b_next = NULL; 30076 ASSERT(mp->b_datap->db_type != M_CTL); 30077 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30078 /* 30079 * This info is needed for IPQOS to do COS marking 30080 * in ip_wput_attach_llhdr->ip_process. 30081 */ 30082 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30083 mp->b_prev = NULL; 30084 30085 /* set up ill index for outbound qos processing */ 30086 out_ill = ire->ire_ipif->ipif_ill; 30087 ill_index = out_ill->ill_phyint->phyint_ifindex; 30088 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30089 ill_index); 30090 if (first_mp == NULL) { 30091 xmit_drop = B_TRUE; 30092 BUMP_MIB(out_ill->ill_ip_mib, 30093 ipIfStatsOutDiscards); 30094 goto next_mp; 30095 } 30096 /* non-ipsec hw accel case */ 30097 if (io == NULL || !io->ipsec_out_accelerated) { 30098 /* send it */ 30099 q = ire->ire_stq; 30100 if (proc == IPP_FWD_OUT) { 30101 UPDATE_IB_PKT_COUNT(ire); 30102 } else { 30103 UPDATE_OB_PKT_COUNT(ire); 30104 } 30105 ire->ire_last_used_time = lbolt; 30106 30107 if (flow_ctl_enabled || canputnext(q)) { 30108 if (proc == IPP_FWD_OUT) { 30109 BUMP_MIB(out_ill->ill_ip_mib, 30110 ipIfStatsHCOutForwDatagrams); 30111 } 30112 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30113 pkt_len); 30114 30115 putnext(q, first_mp); 30116 } else { 30117 BUMP_MIB(out_ill->ill_ip_mib, 30118 ipIfStatsOutDiscards); 30119 xmit_drop = B_TRUE; 30120 freemsg(first_mp); 30121 } 30122 } else { 30123 /* 30124 * Safety Pup says: make sure this 30125 * is going to the right interface! 30126 */ 30127 ill_t *ill1 = 30128 (ill_t *)ire->ire_stq->q_ptr; 30129 int ifindex = 30130 ill1->ill_phyint->phyint_ifindex; 30131 if (ifindex != 30132 io->ipsec_out_capab_ill_index) { 30133 xmit_drop = B_TRUE; 30134 freemsg(mp); 30135 } else { 30136 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30137 pkt_len); 30138 ipsec_hw_putnext(ire->ire_stq, mp); 30139 } 30140 } 30141 next_mp: 30142 mp = nxt_mp; 30143 } /* while (mp != NULL) */ 30144 if (xmit_drop) 30145 return (SEND_FAILED); 30146 else 30147 return (SEND_PASSED); 30148 30149 case ND_INITIAL: 30150 case ND_INCOMPLETE: 30151 30152 /* 30153 * While we do send off packets to dests that 30154 * use fully-resolved CGTP routes, we do not 30155 * handle unresolved CGTP routes. 30156 */ 30157 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30158 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30159 30160 if (mp != NULL) { 30161 /* queue the packet */ 30162 nce_queue_mp_common(arpce, mp, B_FALSE); 30163 } 30164 30165 if (arpce->nce_state == ND_INCOMPLETE) { 30166 mutex_exit(&arpce->nce_lock); 30167 DTRACE_PROBE3(ip__xmit__incomplete, 30168 (ire_t *), ire, (mblk_t *), mp, 30169 (ipsec_out_t *), io); 30170 return (LOOKUP_IN_PROGRESS); 30171 } 30172 30173 arpce->nce_state = ND_INCOMPLETE; 30174 mutex_exit(&arpce->nce_lock); 30175 /* 30176 * Note that ire_add() (called from ire_forward()) 30177 * holds a ref on the ire until ARP is completed. 30178 */ 30179 30180 ire_arpresolve(ire, ire_to_ill(ire)); 30181 return (LOOKUP_IN_PROGRESS); 30182 default: 30183 ASSERT(0); 30184 mutex_exit(&arpce->nce_lock); 30185 return (LLHDR_RESLV_FAILED); 30186 } 30187 } 30188 30189 #undef UPDATE_IP_MIB_OB_COUNTERS 30190 30191 /* 30192 * Return B_TRUE if the buffers differ in length or content. 30193 * This is used for comparing extension header buffers. 30194 * Note that an extension header would be declared different 30195 * even if all that changed was the next header value in that header i.e. 30196 * what really changed is the next extension header. 30197 */ 30198 boolean_t 30199 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30200 uint_t blen) 30201 { 30202 if (!b_valid) 30203 blen = 0; 30204 30205 if (alen != blen) 30206 return (B_TRUE); 30207 if (alen == 0) 30208 return (B_FALSE); /* Both zero length */ 30209 return (bcmp(abuf, bbuf, alen)); 30210 } 30211 30212 /* 30213 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30214 * Return B_FALSE if memory allocation fails - don't change any state! 30215 */ 30216 boolean_t 30217 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30218 const void *src, uint_t srclen) 30219 { 30220 void *dst; 30221 30222 if (!src_valid) 30223 srclen = 0; 30224 30225 ASSERT(*dstlenp == 0); 30226 if (src != NULL && srclen != 0) { 30227 dst = mi_alloc(srclen, BPRI_MED); 30228 if (dst == NULL) 30229 return (B_FALSE); 30230 } else { 30231 dst = NULL; 30232 } 30233 if (*dstp != NULL) 30234 mi_free(*dstp); 30235 *dstp = dst; 30236 *dstlenp = dst == NULL ? 0 : srclen; 30237 return (B_TRUE); 30238 } 30239 30240 /* 30241 * Replace what is in *dst, *dstlen with the source. 30242 * Assumes ip_allocbuf has already been called. 30243 */ 30244 void 30245 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30246 const void *src, uint_t srclen) 30247 { 30248 if (!src_valid) 30249 srclen = 0; 30250 30251 ASSERT(*dstlenp == srclen); 30252 if (src != NULL && srclen != 0) 30253 bcopy(src, *dstp, srclen); 30254 } 30255 30256 /* 30257 * Free the storage pointed to by the members of an ip6_pkt_t. 30258 */ 30259 void 30260 ip6_pkt_free(ip6_pkt_t *ipp) 30261 { 30262 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30263 30264 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30265 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30266 ipp->ipp_hopopts = NULL; 30267 ipp->ipp_hopoptslen = 0; 30268 } 30269 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30270 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30271 ipp->ipp_rtdstopts = NULL; 30272 ipp->ipp_rtdstoptslen = 0; 30273 } 30274 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30275 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30276 ipp->ipp_dstopts = NULL; 30277 ipp->ipp_dstoptslen = 0; 30278 } 30279 if (ipp->ipp_fields & IPPF_RTHDR) { 30280 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30281 ipp->ipp_rthdr = NULL; 30282 ipp->ipp_rthdrlen = 0; 30283 } 30284 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30285 IPPF_RTHDR); 30286 } 30287