1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 823 zoneid_t); 824 static void conn_setqfull(conn_t *); 825 static void conn_clrqfull(conn_t *); 826 827 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 828 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 829 static void ip_stack_fini(netstackid_t stackid, void *arg); 830 831 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 832 zoneid_t); 833 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 834 void *dummy_arg); 835 836 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 837 838 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 839 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 840 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 841 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 842 843 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 844 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 845 caddr_t, cred_t *); 846 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 847 cred_t *, boolean_t); 848 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 849 caddr_t cp, cred_t *cr); 850 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 851 cred_t *); 852 static int ip_squeue_switch(int); 853 854 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 855 static void ip_kstat_fini(netstackid_t, kstat_t *); 856 static int ip_kstat_update(kstat_t *kp, int rw); 857 static void *icmp_kstat_init(netstackid_t); 858 static void icmp_kstat_fini(netstackid_t, kstat_t *); 859 static int icmp_kstat_update(kstat_t *kp, int rw); 860 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 861 static void ip_kstat2_fini(netstackid_t, kstat_t *); 862 863 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 864 865 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 866 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 867 868 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 869 ipha_t *, ill_t *, boolean_t, boolean_t); 870 871 static void ipobs_init(ip_stack_t *); 872 static void ipobs_fini(ip_stack_t *); 873 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 874 875 /* How long, in seconds, we allow frags to hang around. */ 876 #define IP_FRAG_TIMEOUT 15 877 878 /* 879 * Threshold which determines whether MDT should be used when 880 * generating IP fragments; payload size must be greater than 881 * this threshold for MDT to take place. 882 */ 883 #define IP_WPUT_FRAG_MDT_MIN 32768 884 885 /* Setable in /etc/system only */ 886 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 887 888 static long ip_rput_pullups; 889 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 890 891 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 892 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 893 894 int ip_debug; 895 896 #ifdef DEBUG 897 uint32_t ipsechw_debug = 0; 898 #endif 899 900 /* 901 * Multirouting/CGTP stuff 902 */ 903 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 904 905 /* 906 * XXX following really should only be in a header. Would need more 907 * header and .c clean up first. 908 */ 909 extern optdb_obj_t ip_opt_obj; 910 911 ulong_t ip_squeue_enter_unbound = 0; 912 913 /* 914 * Named Dispatch Parameter Table. 915 * All of these are alterable, within the min/max values given, at run time. 916 */ 917 static ipparam_t lcl_param_arr[] = { 918 /* min max value name */ 919 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 920 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 921 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 922 { 0, 1, 0, "ip_respond_to_timestamp"}, 923 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 924 { 0, 1, 1, "ip_send_redirects"}, 925 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 926 { 0, 10, 0, "ip_mrtdebug"}, 927 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 928 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 929 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 930 { 1, 255, 255, "ip_def_ttl" }, 931 { 0, 1, 0, "ip_forward_src_routed"}, 932 { 0, 256, 32, "ip_wroff_extra" }, 933 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 934 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 935 { 0, 1, 1, "ip_path_mtu_discovery" }, 936 { 0, 240, 30, "ip_ignore_delete_time" }, 937 { 0, 1, 0, "ip_ignore_redirect" }, 938 { 0, 1, 1, "ip_output_queue" }, 939 { 1, 254, 1, "ip_broadcast_ttl" }, 940 { 0, 99999, 100, "ip_icmp_err_interval" }, 941 { 1, 99999, 10, "ip_icmp_err_burst" }, 942 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 943 { 0, 1, 0, "ip_strict_dst_multihoming" }, 944 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 945 { 0, 1, 0, "ipsec_override_persocket_policy" }, 946 { 0, 1, 1, "icmp_accept_clear_messages" }, 947 { 0, 1, 1, "igmp_accept_clear_messages" }, 948 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 949 "ip_ndp_delay_first_probe_time"}, 950 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 951 "ip_ndp_max_unicast_solicit"}, 952 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 953 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 954 { 0, 1, 0, "ip6_forward_src_routed"}, 955 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 956 { 0, 1, 1, "ip6_send_redirects"}, 957 { 0, 1, 0, "ip6_ignore_redirect" }, 958 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 959 960 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 961 962 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 963 964 { 0, 1, 1, "pim_accept_clear_messages" }, 965 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 966 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 967 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 968 { 0, 15, 0, "ip_policy_mask" }, 969 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 970 { 0, 255, 1, "ip_multirt_ttl" }, 971 { 0, 1, 1, "ip_multidata_outbound" }, 972 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 973 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 974 { 0, 1000, 1, "ip_max_temp_defend" }, 975 { 0, 1000, 3, "ip_max_defend" }, 976 { 0, 999999, 30, "ip_defend_interval" }, 977 { 0, 3600000, 300000, "ip_dup_recovery" }, 978 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 979 { 0, 1, 1, "ip_lso_outbound" }, 980 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 981 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 982 { 68, 65535, 576, "ip_pmtu_min" }, 983 #ifdef DEBUG 984 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 985 #else 986 { 0, 0, 0, "" }, 987 #endif 988 }; 989 990 /* 991 * Extended NDP table 992 * The addresses for the first two are filled in to be ips_ip_g_forward 993 * and ips_ipv6_forward at init time. 994 */ 995 static ipndp_t lcl_ndp_arr[] = { 996 /* getf setf data name */ 997 #define IPNDP_IP_FORWARDING_OFFSET 0 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip_forwarding" }, 1000 #define IPNDP_IP6_FORWARDING_OFFSET 1 1001 { ip_param_generic_get, ip_forward_set, NULL, 1002 "ip6_forwarding" }, 1003 { ip_ill_report, NULL, NULL, 1004 "ip_ill_status" }, 1005 { ip_ipif_report, NULL, NULL, 1006 "ip_ipif_status" }, 1007 { ip_conn_report, NULL, NULL, 1008 "ip_conn_status" }, 1009 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1010 "ip_rput_pullups" }, 1011 { ip_srcid_report, NULL, NULL, 1012 "ip_srcid_status" }, 1013 { ip_param_generic_get, ip_input_proc_set, 1014 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1015 { ip_param_generic_get, ip_int_set, 1016 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1017 #define IPNDP_CGTP_FILTER_OFFSET 9 1018 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1019 "ip_cgtp_filter" }, 1020 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1021 "ip_debug" }, 1022 }; 1023 1024 /* 1025 * Table of IP ioctls encoding the various properties of the ioctl and 1026 * indexed based on the last byte of the ioctl command. Occasionally there 1027 * is a clash, and there is more than 1 ioctl with the same last byte. 1028 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1029 * ioctls are encoded in the misc table. An entry in the ndx table is 1030 * retrieved by indexing on the last byte of the ioctl command and comparing 1031 * the ioctl command with the value in the ndx table. In the event of a 1032 * mismatch the misc table is then searched sequentially for the desired 1033 * ioctl command. 1034 * 1035 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1036 */ 1037 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1038 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1050 MISC_CMD, ip_siocaddrt, NULL }, 1051 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1052 MISC_CMD, ip_siocdelrt, NULL }, 1053 1054 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1055 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1056 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1057 IF_CMD, ip_sioctl_get_addr, NULL }, 1058 1059 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1060 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1061 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1062 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1063 1064 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1065 IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1067 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1068 IPI_MODOK | IPI_GET_CMD, 1069 IF_CMD, ip_sioctl_get_flags, NULL }, 1070 1071 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 1074 /* copyin size cannot be coded for SIOCGIFCONF */ 1075 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1076 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1077 1078 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1079 IF_CMD, ip_sioctl_mtu, NULL }, 1080 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1081 IF_CMD, ip_sioctl_get_mtu, NULL }, 1082 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1083 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1084 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_brdaddr, NULL }, 1086 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1087 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1088 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1090 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1091 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1092 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1093 IF_CMD, ip_sioctl_metric, NULL }, 1094 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 1096 /* See 166-168 below for extended SIOC*XARP ioctls */ 1097 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1098 ARP_CMD, ip_sioctl_arp, NULL }, 1099 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1100 ARP_CMD, ip_sioctl_arp, NULL }, 1101 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1102 ARP_CMD, ip_sioctl_arp, NULL }, 1103 1104 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 1126 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1127 MISC_CMD, if_unitsel, if_unitsel_restart }, 1128 1129 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 1148 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1149 IPI_PRIV | IPI_WR | IPI_MODOK, 1150 IF_CMD, ip_sioctl_sifname, NULL }, 1151 1152 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 1166 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1167 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1168 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1169 IF_CMD, ip_sioctl_get_muxid, NULL }, 1170 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1171 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1172 1173 /* Both if and lif variants share same func */ 1174 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1175 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1176 /* Both if and lif variants share same func */ 1177 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1179 1180 /* copyin size cannot be coded for SIOCGIFCONF */ 1181 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1182 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1183 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 1201 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1202 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1203 ip_sioctl_removeif_restart }, 1204 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1205 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1206 LIF_CMD, ip_sioctl_addif, NULL }, 1207 #define SIOCLIFADDR_NDX 112 1208 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1209 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1210 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1211 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1212 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1213 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1214 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1215 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1216 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1217 IPI_PRIV | IPI_WR, 1218 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1219 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1220 IPI_GET_CMD | IPI_MODOK, 1221 LIF_CMD, ip_sioctl_get_flags, NULL }, 1222 1223 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 1226 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1227 ip_sioctl_get_lifconf, NULL }, 1228 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_mtu, NULL }, 1230 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1231 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1232 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1233 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1234 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1235 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1236 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1237 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1238 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1239 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1240 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1241 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1242 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_metric, NULL }, 1244 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR | IPI_MODOK, 1246 LIF_CMD, ip_sioctl_slifname, 1247 ip_sioctl_slifname_restart }, 1248 1249 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1250 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1251 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1252 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1253 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1255 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1256 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1257 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1258 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1259 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_token, NULL }, 1261 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1262 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1263 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1264 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1265 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1266 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1267 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1268 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1269 1270 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1271 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1272 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1273 LIF_CMD, ip_siocdelndp_v6, NULL }, 1274 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1275 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1276 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1277 LIF_CMD, ip_siocsetndp_v6, NULL }, 1278 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1280 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1281 MISC_CMD, ip_sioctl_tonlink, NULL }, 1282 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1283 MISC_CMD, ip_sioctl_tmysite, NULL }, 1284 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1287 IPI_PRIV | IPI_WR, 1288 TUN_CMD, ip_sioctl_tunparam, NULL }, 1289 1290 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1291 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1294 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1295 1296 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1299 LIF_CMD, ip_sioctl_get_binding, NULL }, 1300 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR, 1302 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1303 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1304 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1305 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1306 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1307 1308 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1309 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1310 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1311 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1312 1313 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 1315 /* These are handled in ip_sioctl_copyin_setup itself */ 1316 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1317 MISC_CMD, NULL, NULL }, 1318 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1319 MISC_CMD, NULL, NULL }, 1320 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1321 1322 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1323 ip_sioctl_get_lifconf, NULL }, 1324 1325 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1326 XARP_CMD, ip_sioctl_arp, NULL }, 1327 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1328 XARP_CMD, ip_sioctl_arp, NULL }, 1329 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1330 XARP_CMD, ip_sioctl_arp, NULL }, 1331 1332 /* SIOCPOPSOCKFS is not handled by IP */ 1333 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1334 1335 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1336 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1337 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1338 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1339 ip_sioctl_slifzone_restart }, 1340 /* 172-174 are SCTP ioctls and not handled by IP */ 1341 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1342 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1343 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1344 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1345 IPI_GET_CMD, LIF_CMD, 1346 ip_sioctl_get_lifusesrc, 0 }, 1347 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1348 IPI_PRIV | IPI_WR, 1349 LIF_CMD, ip_sioctl_slifusesrc, 1350 NULL }, 1351 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1352 ip_sioctl_get_lifsrcof, NULL }, 1353 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1354 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1355 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1356 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1357 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1358 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1359 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1360 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1361 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* SIOCSENABLESDP is handled by SDP */ 1363 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1364 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1365 }; 1366 1367 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1368 1369 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1370 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1371 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1372 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1373 TUN_CMD, ip_sioctl_tunparam, NULL }, 1374 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1375 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1376 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1377 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1381 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1382 MISC_CMD, mrt_ioctl}, 1383 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1384 MISC_CMD, mrt_ioctl}, 1385 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1386 MISC_CMD, mrt_ioctl} 1387 }; 1388 1389 int ip_misc_ioctl_count = 1390 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1391 1392 int conn_drain_nthreads; /* Number of drainers reqd. */ 1393 /* Settable in /etc/system */ 1394 /* Defined in ip_ire.c */ 1395 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1396 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1397 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1398 1399 static nv_t ire_nv_arr[] = { 1400 { IRE_BROADCAST, "BROADCAST" }, 1401 { IRE_LOCAL, "LOCAL" }, 1402 { IRE_LOOPBACK, "LOOPBACK" }, 1403 { IRE_CACHE, "CACHE" }, 1404 { IRE_DEFAULT, "DEFAULT" }, 1405 { IRE_PREFIX, "PREFIX" }, 1406 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1407 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1408 { IRE_HOST, "HOST" }, 1409 { 0 } 1410 }; 1411 1412 nv_t *ire_nv_tbl = ire_nv_arr; 1413 1414 /* Simple ICMP IP Header Template */ 1415 static ipha_t icmp_ipha = { 1416 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1417 }; 1418 1419 struct module_info ip_mod_info = { 1420 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1421 IP_MOD_LOWAT 1422 }; 1423 1424 /* 1425 * Duplicate static symbols within a module confuses mdb; so we avoid the 1426 * problem by making the symbols here distinct from those in udp.c. 1427 */ 1428 1429 /* 1430 * Entry points for IP as a device and as a module. 1431 * FIXME: down the road we might want a separate module and driver qinit. 1432 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1433 */ 1434 static struct qinit iprinitv4 = { 1435 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1436 &ip_mod_info 1437 }; 1438 1439 struct qinit iprinitv6 = { 1440 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1441 &ip_mod_info 1442 }; 1443 1444 static struct qinit ipwinitv4 = { 1445 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1446 &ip_mod_info 1447 }; 1448 1449 struct qinit ipwinitv6 = { 1450 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1451 &ip_mod_info 1452 }; 1453 1454 static struct qinit iplrinit = { 1455 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1456 &ip_mod_info 1457 }; 1458 1459 static struct qinit iplwinit = { 1460 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1461 &ip_mod_info 1462 }; 1463 1464 /* For AF_INET aka /dev/ip */ 1465 struct streamtab ipinfov4 = { 1466 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1467 }; 1468 1469 /* For AF_INET6 aka /dev/ip6 */ 1470 struct streamtab ipinfov6 = { 1471 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1472 }; 1473 1474 #ifdef DEBUG 1475 static boolean_t skip_sctp_cksum = B_FALSE; 1476 #endif 1477 1478 /* 1479 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1480 * ip_rput_v6(), ip_output(), etc. If the message 1481 * block already has a M_CTL at the front of it, then simply set the zoneid 1482 * appropriately. 1483 */ 1484 mblk_t * 1485 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1486 { 1487 mblk_t *first_mp; 1488 ipsec_out_t *io; 1489 1490 ASSERT(zoneid != ALL_ZONES); 1491 if (mp->b_datap->db_type == M_CTL) { 1492 io = (ipsec_out_t *)mp->b_rptr; 1493 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1494 io->ipsec_out_zoneid = zoneid; 1495 return (mp); 1496 } 1497 1498 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1499 if (first_mp == NULL) 1500 return (NULL); 1501 io = (ipsec_out_t *)first_mp->b_rptr; 1502 /* This is not a secure packet */ 1503 io->ipsec_out_secure = B_FALSE; 1504 io->ipsec_out_zoneid = zoneid; 1505 first_mp->b_cont = mp; 1506 return (first_mp); 1507 } 1508 1509 /* 1510 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1511 */ 1512 mblk_t * 1513 ip_copymsg(mblk_t *mp) 1514 { 1515 mblk_t *nmp; 1516 ipsec_info_t *in; 1517 1518 if (mp->b_datap->db_type != M_CTL) 1519 return (copymsg(mp)); 1520 1521 in = (ipsec_info_t *)mp->b_rptr; 1522 1523 /* 1524 * Note that M_CTL is also used for delivering ICMP error messages 1525 * upstream to transport layers. 1526 */ 1527 if (in->ipsec_info_type != IPSEC_OUT && 1528 in->ipsec_info_type != IPSEC_IN) 1529 return (copymsg(mp)); 1530 1531 nmp = copymsg(mp->b_cont); 1532 1533 if (in->ipsec_info_type == IPSEC_OUT) { 1534 return (ipsec_out_tag(mp, nmp, 1535 ((ipsec_out_t *)in)->ipsec_out_ns)); 1536 } else { 1537 return (ipsec_in_tag(mp, nmp, 1538 ((ipsec_in_t *)in)->ipsec_in_ns)); 1539 } 1540 } 1541 1542 /* Generate an ICMP fragmentation needed message. */ 1543 static void 1544 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1545 ip_stack_t *ipst) 1546 { 1547 icmph_t icmph; 1548 mblk_t *first_mp; 1549 boolean_t mctl_present; 1550 1551 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1552 1553 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1554 if (mctl_present) 1555 freeb(first_mp); 1556 return; 1557 } 1558 1559 bzero(&icmph, sizeof (icmph_t)); 1560 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1561 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1562 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1563 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1564 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1565 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1566 ipst); 1567 } 1568 1569 /* 1570 * icmp_inbound deals with ICMP messages in the following ways. 1571 * 1572 * 1) It needs to send a reply back and possibly delivering it 1573 * to the "interested" upper clients. 1574 * 2) It needs to send it to the upper clients only. 1575 * 3) It needs to change some values in IP only. 1576 * 4) It needs to change some values in IP and upper layers e.g TCP. 1577 * 1578 * We need to accomodate icmp messages coming in clear until we get 1579 * everything secure from the wire. If icmp_accept_clear_messages 1580 * is zero we check with the global policy and act accordingly. If 1581 * it is non-zero, we accept the message without any checks. But 1582 * *this does not mean* that this will be delivered to the upper 1583 * clients. By accepting we might send replies back, change our MTU 1584 * value etc. but delivery to the ULP/clients depends on their policy 1585 * dispositions. 1586 * 1587 * We handle the above 4 cases in the context of IPsec in the 1588 * following way : 1589 * 1590 * 1) Send the reply back in the same way as the request came in. 1591 * If it came in encrypted, it goes out encrypted. If it came in 1592 * clear, it goes out in clear. Thus, this will prevent chosen 1593 * plain text attack. 1594 * 2) The client may or may not expect things to come in secure. 1595 * If it comes in secure, the policy constraints are checked 1596 * before delivering it to the upper layers. If it comes in 1597 * clear, ipsec_inbound_accept_clear will decide whether to 1598 * accept this in clear or not. In both the cases, if the returned 1599 * message (IP header + 8 bytes) that caused the icmp message has 1600 * AH/ESP headers, it is sent up to AH/ESP for validation before 1601 * sending up. If there are only 8 bytes of returned message, then 1602 * upper client will not be notified. 1603 * 3) Check with global policy to see whether it matches the constaints. 1604 * But this will be done only if icmp_accept_messages_in_clear is 1605 * zero. 1606 * 4) If we need to change both in IP and ULP, then the decision taken 1607 * while affecting the values in IP and while delivering up to TCP 1608 * should be the same. 1609 * 1610 * There are two cases. 1611 * 1612 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1613 * failed), we will not deliver it to the ULP, even though they 1614 * are *willing* to accept in *clear*. This is fine as our global 1615 * disposition to icmp messages asks us reject the datagram. 1616 * 1617 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1618 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1619 * to deliver it to ULP (policy failed), it can lead to 1620 * consistency problems. The cases known at this time are 1621 * ICMP_DESTINATION_UNREACHABLE messages with following code 1622 * values : 1623 * 1624 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1625 * and Upper layer rejects. Then the communication will 1626 * come to a stop. This is solved by making similar decisions 1627 * at both levels. Currently, when we are unable to deliver 1628 * to the Upper Layer (due to policy failures) while IP has 1629 * adjusted ire_max_frag, the next outbound datagram would 1630 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1631 * will be with the right level of protection. Thus the right 1632 * value will be communicated even if we are not able to 1633 * communicate when we get from the wire initially. But this 1634 * assumes there would be at least one outbound datagram after 1635 * IP has adjusted its ire_max_frag value. To make things 1636 * simpler, we accept in clear after the validation of 1637 * AH/ESP headers. 1638 * 1639 * - Other ICMP ERRORS : We may not be able to deliver it to the 1640 * upper layer depending on the level of protection the upper 1641 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1642 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1643 * should be accepted in clear when the Upper layer expects secure. 1644 * Thus the communication may get aborted by some bad ICMP 1645 * packets. 1646 * 1647 * IPQoS Notes: 1648 * The only instance when a packet is sent for processing is when there 1649 * isn't an ICMP client and if we are interested in it. 1650 * If there is a client, IPPF processing will take place in the 1651 * ip_fanout_proto routine. 1652 * 1653 * Zones notes: 1654 * The packet is only processed in the context of the specified zone: typically 1655 * only this zone will reply to an echo request, and only interested clients in 1656 * this zone will receive a copy of the packet. This means that the caller must 1657 * call icmp_inbound() for each relevant zone. 1658 */ 1659 static void 1660 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1661 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1662 ill_t *recv_ill, zoneid_t zoneid) 1663 { 1664 icmph_t *icmph; 1665 ipha_t *ipha; 1666 int iph_hdr_length; 1667 int hdr_length; 1668 boolean_t interested; 1669 uint32_t ts; 1670 uchar_t *wptr; 1671 ipif_t *ipif; 1672 mblk_t *first_mp; 1673 ipsec_in_t *ii; 1674 timestruc_t now; 1675 uint32_t ill_index; 1676 ip_stack_t *ipst; 1677 1678 ASSERT(ill != NULL); 1679 ipst = ill->ill_ipst; 1680 1681 first_mp = mp; 1682 if (mctl_present) { 1683 mp = first_mp->b_cont; 1684 ASSERT(mp != NULL); 1685 } 1686 1687 ipha = (ipha_t *)mp->b_rptr; 1688 if (ipst->ips_icmp_accept_clear_messages == 0) { 1689 first_mp = ipsec_check_global_policy(first_mp, NULL, 1690 ipha, NULL, mctl_present, ipst->ips_netstack); 1691 if (first_mp == NULL) 1692 return; 1693 } 1694 1695 /* 1696 * On a labeled system, we have to check whether the zone itself is 1697 * permitted to receive raw traffic. 1698 */ 1699 if (is_system_labeled()) { 1700 if (zoneid == ALL_ZONES) 1701 zoneid = tsol_packet_to_zoneid(mp); 1702 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1703 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1704 zoneid)); 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1706 freemsg(first_mp); 1707 return; 1708 } 1709 } 1710 1711 /* 1712 * We have accepted the ICMP message. It means that we will 1713 * respond to the packet if needed. It may not be delivered 1714 * to the upper client depending on the policy constraints 1715 * and the disposition in ipsec_inbound_accept_clear. 1716 */ 1717 1718 ASSERT(ill != NULL); 1719 1720 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1721 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1722 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1723 /* Last chance to get real. */ 1724 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1725 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1726 freemsg(first_mp); 1727 return; 1728 } 1729 /* Refresh iph following the pullup. */ 1730 ipha = (ipha_t *)mp->b_rptr; 1731 } 1732 /* ICMP header checksum, including checksum field, should be zero. */ 1733 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1734 IP_CSUM(mp, iph_hdr_length, 0)) { 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1736 freemsg(first_mp); 1737 return; 1738 } 1739 /* The IP header will always be a multiple of four bytes */ 1740 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1741 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1742 icmph->icmph_code)); 1743 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1744 /* We will set "interested" to "true" if we want a copy */ 1745 interested = B_FALSE; 1746 switch (icmph->icmph_type) { 1747 case ICMP_ECHO_REPLY: 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1749 break; 1750 case ICMP_DEST_UNREACHABLE: 1751 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1753 interested = B_TRUE; /* Pass up to transport */ 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1755 break; 1756 case ICMP_SOURCE_QUENCH: 1757 interested = B_TRUE; /* Pass up to transport */ 1758 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1759 break; 1760 case ICMP_REDIRECT: 1761 if (!ipst->ips_ip_ignore_redirect) 1762 interested = B_TRUE; 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1764 break; 1765 case ICMP_ECHO_REQUEST: 1766 /* 1767 * Whether to respond to echo requests that come in as IP 1768 * broadcasts or as IP multicast is subject to debate 1769 * (what isn't?). We aim to please, you pick it. 1770 * Default is do it. 1771 */ 1772 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1773 /* unicast: always respond */ 1774 interested = B_TRUE; 1775 } else if (CLASSD(ipha->ipha_dst)) { 1776 /* multicast: respond based on tunable */ 1777 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1778 } else if (broadcast) { 1779 /* broadcast: respond based on tunable */ 1780 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1781 } 1782 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1783 break; 1784 case ICMP_ROUTER_ADVERTISEMENT: 1785 case ICMP_ROUTER_SOLICITATION: 1786 break; 1787 case ICMP_TIME_EXCEEDED: 1788 interested = B_TRUE; /* Pass up to transport */ 1789 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1790 break; 1791 case ICMP_PARAM_PROBLEM: 1792 interested = B_TRUE; /* Pass up to transport */ 1793 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1794 break; 1795 case ICMP_TIME_STAMP_REQUEST: 1796 /* Response to Time Stamp Requests is local policy. */ 1797 if (ipst->ips_ip_g_resp_to_timestamp && 1798 /* So is whether to respond if it was an IP broadcast. */ 1799 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1800 int tstamp_len = 3 * sizeof (uint32_t); 1801 1802 if (wptr + tstamp_len > mp->b_wptr) { 1803 if (!pullupmsg(mp, wptr + tstamp_len - 1804 mp->b_rptr)) { 1805 BUMP_MIB(ill->ill_ip_mib, 1806 ipIfStatsInDiscards); 1807 freemsg(first_mp); 1808 return; 1809 } 1810 /* Refresh ipha following the pullup. */ 1811 ipha = (ipha_t *)mp->b_rptr; 1812 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1813 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1814 } 1815 interested = B_TRUE; 1816 } 1817 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1818 break; 1819 case ICMP_TIME_STAMP_REPLY: 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1821 break; 1822 case ICMP_INFO_REQUEST: 1823 /* Per RFC 1122 3.2.2.7, ignore this. */ 1824 case ICMP_INFO_REPLY: 1825 break; 1826 case ICMP_ADDRESS_MASK_REQUEST: 1827 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1828 !broadcast) && 1829 /* TODO m_pullup of complete header? */ 1830 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1831 interested = B_TRUE; 1832 } 1833 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1834 break; 1835 case ICMP_ADDRESS_MASK_REPLY: 1836 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1837 break; 1838 default: 1839 interested = B_TRUE; /* Pass up to transport */ 1840 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1841 break; 1842 } 1843 /* See if there is an ICMP client. */ 1844 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1845 /* If there is an ICMP client and we want one too, copy it. */ 1846 mblk_t *first_mp1; 1847 1848 if (!interested) { 1849 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1850 ip_policy, recv_ill, zoneid); 1851 return; 1852 } 1853 first_mp1 = ip_copymsg(first_mp); 1854 if (first_mp1 != NULL) { 1855 ip_fanout_proto(q, first_mp1, ill, ipha, 1856 0, mctl_present, ip_policy, recv_ill, zoneid); 1857 } 1858 } else if (!interested) { 1859 freemsg(first_mp); 1860 return; 1861 } else { 1862 /* 1863 * Initiate policy processing for this packet if ip_policy 1864 * is true. 1865 */ 1866 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1867 ill_index = ill->ill_phyint->phyint_ifindex; 1868 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1869 if (mp == NULL) { 1870 if (mctl_present) { 1871 freeb(first_mp); 1872 } 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1874 return; 1875 } 1876 } 1877 } 1878 /* We want to do something with it. */ 1879 /* Check db_ref to make sure we can modify the packet. */ 1880 if (mp->b_datap->db_ref > 1) { 1881 mblk_t *first_mp1; 1882 1883 first_mp1 = ip_copymsg(first_mp); 1884 freemsg(first_mp); 1885 if (!first_mp1) { 1886 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1887 return; 1888 } 1889 first_mp = first_mp1; 1890 if (mctl_present) { 1891 mp = first_mp->b_cont; 1892 ASSERT(mp != NULL); 1893 } else { 1894 mp = first_mp; 1895 } 1896 ipha = (ipha_t *)mp->b_rptr; 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1899 } 1900 switch (icmph->icmph_type) { 1901 case ICMP_ADDRESS_MASK_REQUEST: 1902 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1903 if (ipif == NULL) { 1904 freemsg(first_mp); 1905 return; 1906 } 1907 /* 1908 * outging interface must be IPv4 1909 */ 1910 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1911 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1912 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1913 ipif_refrele(ipif); 1914 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1915 break; 1916 case ICMP_ECHO_REQUEST: 1917 icmph->icmph_type = ICMP_ECHO_REPLY; 1918 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1919 break; 1920 case ICMP_TIME_STAMP_REQUEST: { 1921 uint32_t *tsp; 1922 1923 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1924 tsp = (uint32_t *)wptr; 1925 tsp++; /* Skip past 'originate time' */ 1926 /* Compute # of milliseconds since midnight */ 1927 gethrestime(&now); 1928 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1929 now.tv_nsec / (NANOSEC / MILLISEC); 1930 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1931 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1932 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1933 break; 1934 } 1935 default: 1936 ipha = (ipha_t *)&icmph[1]; 1937 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1938 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 hdr_length = IPH_HDR_LENGTH(ipha); 1952 if (hdr_length < sizeof (ipha_t)) { 1953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1958 if (!pullupmsg(mp, 1959 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1961 freemsg(first_mp); 1962 return; 1963 } 1964 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1965 ipha = (ipha_t *)&icmph[1]; 1966 } 1967 switch (icmph->icmph_type) { 1968 case ICMP_REDIRECT: 1969 /* 1970 * As there is no upper client to deliver, we don't 1971 * need the first_mp any more. 1972 */ 1973 if (mctl_present) { 1974 freeb(first_mp); 1975 } 1976 icmp_redirect(ill, mp); 1977 return; 1978 case ICMP_DEST_UNREACHABLE: 1979 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1980 if (!icmp_inbound_too_big(icmph, ipha, ill, 1981 zoneid, mp, iph_hdr_length, ipst)) { 1982 freemsg(first_mp); 1983 return; 1984 } 1985 /* 1986 * icmp_inbound_too_big() may alter mp. 1987 * Resynch ipha and icmph accordingly. 1988 */ 1989 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1990 ipha = (ipha_t *)&icmph[1]; 1991 } 1992 /* FALLTHRU */ 1993 default : 1994 /* 1995 * IPQoS notes: Since we have already done IPQoS 1996 * processing we don't want to do it again in 1997 * the fanout routines called by 1998 * icmp_inbound_error_fanout, hence the last 1999 * argument, ip_policy, is B_FALSE. 2000 */ 2001 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2002 ipha, iph_hdr_length, hdr_length, mctl_present, 2003 B_FALSE, recv_ill, zoneid); 2004 } 2005 return; 2006 } 2007 /* Send out an ICMP packet */ 2008 icmph->icmph_checksum = 0; 2009 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2010 if (broadcast || CLASSD(ipha->ipha_dst)) { 2011 ipif_t *ipif_chosen; 2012 /* 2013 * Make it look like it was directed to us, so we don't look 2014 * like a fool with a broadcast or multicast source address. 2015 */ 2016 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2017 /* 2018 * Make sure that we haven't grabbed an interface that's DOWN. 2019 */ 2020 if (ipif != NULL) { 2021 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2022 ipha->ipha_src, zoneid); 2023 if (ipif_chosen != NULL) { 2024 ipif_refrele(ipif); 2025 ipif = ipif_chosen; 2026 } 2027 } 2028 if (ipif == NULL) { 2029 ip0dbg(("icmp_inbound: " 2030 "No source for broadcast/multicast:\n" 2031 "\tsrc 0x%x dst 0x%x ill %p " 2032 "ipif_lcl_addr 0x%x\n", 2033 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2034 (void *)ill, 2035 ill->ill_ipif->ipif_lcl_addr)); 2036 freemsg(first_mp); 2037 return; 2038 } 2039 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2040 ipha->ipha_dst = ipif->ipif_src_addr; 2041 ipif_refrele(ipif); 2042 } 2043 /* Reset time to live. */ 2044 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2045 { 2046 /* Swap source and destination addresses */ 2047 ipaddr_t tmp; 2048 2049 tmp = ipha->ipha_src; 2050 ipha->ipha_src = ipha->ipha_dst; 2051 ipha->ipha_dst = tmp; 2052 } 2053 ipha->ipha_ident = 0; 2054 if (!IS_SIMPLE_IPH(ipha)) 2055 icmp_options_update(ipha); 2056 2057 if (!mctl_present) { 2058 /* 2059 * This packet should go out the same way as it 2060 * came in i.e in clear. To make sure that global 2061 * policy will not be applied to this in ip_wput_ire, 2062 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2063 */ 2064 ASSERT(first_mp == mp); 2065 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2066 if (first_mp == NULL) { 2067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2068 freemsg(mp); 2069 return; 2070 } 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 2073 /* This is not a secure packet */ 2074 ii->ipsec_in_secure = B_FALSE; 2075 first_mp->b_cont = mp; 2076 } else { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } 2080 ii->ipsec_in_zoneid = zoneid; 2081 ASSERT(zoneid != ALL_ZONES); 2082 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2084 return; 2085 } 2086 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2087 put(WR(q), first_mp); 2088 } 2089 2090 static ipaddr_t 2091 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2092 { 2093 conn_t *connp; 2094 connf_t *connfp; 2095 ipaddr_t nexthop_addr = INADDR_ANY; 2096 int hdr_length = IPH_HDR_LENGTH(ipha); 2097 uint16_t *up; 2098 uint32_t ports; 2099 ip_stack_t *ipst = ill->ill_ipst; 2100 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_TCP: 2104 { 2105 tcph_t *tcph; 2106 2107 /* do a reverse lookup */ 2108 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2109 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2110 TCPS_LISTEN, ipst); 2111 break; 2112 } 2113 case IPPROTO_UDP: 2114 { 2115 uint32_t dstport, srcport; 2116 2117 ((uint16_t *)&ports)[0] = up[1]; 2118 ((uint16_t *)&ports)[1] = up[0]; 2119 2120 /* Extract ports in net byte order */ 2121 dstport = htons(ntohl(ports) & 0xFFFF); 2122 srcport = htons(ntohl(ports) >> 16); 2123 2124 connfp = &ipst->ips_ipcl_udp_fanout[ 2125 IPCL_UDP_HASH(dstport, ipst)]; 2126 mutex_enter(&connfp->connf_lock); 2127 connp = connfp->connf_head; 2128 2129 /* do a reverse lookup */ 2130 while ((connp != NULL) && 2131 (!IPCL_UDP_MATCH(connp, dstport, 2132 ipha->ipha_src, srcport, ipha->ipha_dst) || 2133 !IPCL_ZONE_MATCH(connp, zoneid))) { 2134 connp = connp->conn_next; 2135 } 2136 if (connp != NULL) 2137 CONN_INC_REF(connp); 2138 mutex_exit(&connfp->connf_lock); 2139 break; 2140 } 2141 case IPPROTO_SCTP: 2142 { 2143 in6_addr_t map_src, map_dst; 2144 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2147 ((uint16_t *)&ports)[0] = up[1]; 2148 ((uint16_t *)&ports)[1] = up[0]; 2149 2150 connp = sctp_find_conn(&map_src, &map_dst, ports, 2151 zoneid, ipst->ips_netstack->netstack_sctp); 2152 if (connp == NULL) { 2153 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2154 zoneid, ports, ipha, ipst); 2155 } else { 2156 CONN_INC_REF(connp); 2157 SCTP_REFRELE(CONN2SCTP(connp)); 2158 } 2159 break; 2160 } 2161 default: 2162 { 2163 ipha_t ripha; 2164 2165 ripha.ipha_src = ipha->ipha_dst; 2166 ripha.ipha_dst = ipha->ipha_src; 2167 ripha.ipha_protocol = ipha->ipha_protocol; 2168 2169 connfp = &ipst->ips_ipcl_proto_fanout[ 2170 ipha->ipha_protocol]; 2171 mutex_enter(&connfp->connf_lock); 2172 connp = connfp->connf_head; 2173 for (connp = connfp->connf_head; connp != NULL; 2174 connp = connp->conn_next) { 2175 if (IPCL_PROTO_MATCH(connp, 2176 ipha->ipha_protocol, &ripha, ill, 2177 0, zoneid)) { 2178 CONN_INC_REF(connp); 2179 break; 2180 } 2181 } 2182 mutex_exit(&connfp->connf_lock); 2183 } 2184 } 2185 if (connp != NULL) { 2186 if (connp->conn_nexthop_set) 2187 nexthop_addr = connp->conn_nexthop_v4; 2188 CONN_DEC_REF(connp); 2189 } 2190 return (nexthop_addr); 2191 } 2192 2193 /* Table from RFC 1191 */ 2194 static int icmp_frag_size_table[] = 2195 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2196 2197 /* 2198 * Process received ICMP Packet too big. 2199 * After updating any IRE it does the fanout to any matching transport streams. 2200 * Assumes the message has been pulled up till the IP header that caused 2201 * the error. 2202 * 2203 * Returns B_FALSE on failure and B_TRUE on success. 2204 */ 2205 static boolean_t 2206 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2207 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2208 ip_stack_t *ipst) 2209 { 2210 ire_t *ire, *first_ire; 2211 int mtu, orig_mtu; 2212 int hdr_length; 2213 ipaddr_t nexthop_addr; 2214 boolean_t disable_pmtud; 2215 2216 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2217 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2218 ASSERT(ill != NULL); 2219 2220 hdr_length = IPH_HDR_LENGTH(ipha); 2221 2222 /* Drop if the original packet contained a source route */ 2223 if (ip_source_route_included(ipha)) { 2224 return (B_FALSE); 2225 } 2226 /* 2227 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2228 * header. 2229 */ 2230 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2231 mp->b_wptr) { 2232 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2233 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2234 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2235 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2236 return (B_FALSE); 2237 } 2238 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2239 ipha = (ipha_t *)&icmph[1]; 2240 } 2241 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2242 if (nexthop_addr != INADDR_ANY) { 2243 /* nexthop set */ 2244 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2245 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2246 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2247 } else { 2248 /* nexthop not set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2250 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2251 } 2252 2253 if (!first_ire) { 2254 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2255 ntohl(ipha->ipha_dst))); 2256 return (B_FALSE); 2257 } 2258 2259 /* Check for MTU discovery advice as described in RFC 1191 */ 2260 mtu = ntohs(icmph->icmph_du_mtu); 2261 orig_mtu = mtu; 2262 disable_pmtud = B_FALSE; 2263 2264 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2265 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2266 ire = ire->ire_next) { 2267 /* 2268 * Look for the connection to which this ICMP message is 2269 * directed. If it has the IP_NEXTHOP option set, then the 2270 * search is limited to IREs with the MATCH_IRE_PRIVATE 2271 * option. Else the search is limited to regular IREs. 2272 */ 2273 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2274 (nexthop_addr != ire->ire_gateway_addr)) || 2275 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2276 (nexthop_addr != INADDR_ANY))) 2277 continue; 2278 2279 mutex_enter(&ire->ire_lock); 2280 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2281 uint32_t length; 2282 int i; 2283 2284 /* 2285 * Use the table from RFC 1191 to figure out 2286 * the next "plateau" based on the length in 2287 * the original IP packet. 2288 */ 2289 length = ntohs(ipha->ipha_length); 2290 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2291 uint32_t, length); 2292 if (ire->ire_max_frag <= length && 2293 ire->ire_max_frag >= length - hdr_length) { 2294 /* 2295 * Handle broken BSD 4.2 systems that 2296 * return the wrong iph_length in ICMP 2297 * errors. 2298 */ 2299 length -= hdr_length; 2300 } 2301 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2302 if (length > icmp_frag_size_table[i]) 2303 break; 2304 } 2305 if (i == A_CNT(icmp_frag_size_table)) { 2306 /* Smaller than 68! */ 2307 disable_pmtud = B_TRUE; 2308 mtu = ipst->ips_ip_pmtu_min; 2309 } else { 2310 mtu = icmp_frag_size_table[i]; 2311 if (mtu < ipst->ips_ip_pmtu_min) { 2312 mtu = ipst->ips_ip_pmtu_min; 2313 disable_pmtud = B_TRUE; 2314 } 2315 } 2316 /* Fool the ULP into believing our guessed PMTU. */ 2317 icmph->icmph_du_zero = 0; 2318 icmph->icmph_du_mtu = htons(mtu); 2319 } 2320 if (disable_pmtud) 2321 ire->ire_frag_flag = 0; 2322 /* Reduce the IRE max frag value as advised. */ 2323 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2324 mutex_exit(&ire->ire_lock); 2325 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2326 ire, int, orig_mtu, int, mtu); 2327 } 2328 rw_exit(&first_ire->ire_bucket->irb_lock); 2329 ire_refrele(first_ire); 2330 return (B_TRUE); 2331 } 2332 2333 /* 2334 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2335 * calls this function. 2336 */ 2337 static mblk_t * 2338 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2339 { 2340 ipha_t *ipha; 2341 icmph_t *icmph; 2342 ipha_t *in_ipha; 2343 int length; 2344 2345 ASSERT(mp->b_datap->db_type == M_DATA); 2346 2347 /* 2348 * For Self-encapsulated packets, we added an extra IP header 2349 * without the options. Inner IP header is the one from which 2350 * the outer IP header was formed. Thus, we need to remove the 2351 * outer IP header. To do this, we pullup the whole message 2352 * and overlay whatever follows the outer IP header over the 2353 * outer IP header. 2354 */ 2355 2356 if (!pullupmsg(mp, -1)) 2357 return (NULL); 2358 2359 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2360 ipha = (ipha_t *)&icmph[1]; 2361 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2362 2363 /* 2364 * The length that we want to overlay is following the inner 2365 * IP header. Subtracting the IP header + icmp header + outer 2366 * IP header's length should give us the length that we want to 2367 * overlay. 2368 */ 2369 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2370 hdr_length; 2371 /* 2372 * Overlay whatever follows the inner header over the 2373 * outer header. 2374 */ 2375 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2376 2377 /* Set the wptr to account for the outer header */ 2378 mp->b_wptr -= hdr_length; 2379 return (mp); 2380 } 2381 2382 /* 2383 * Try to pass the ICMP message upstream in case the ULP cares. 2384 * 2385 * If the packet that caused the ICMP error is secure, we send 2386 * it to AH/ESP to make sure that the attached packet has a 2387 * valid association. ipha in the code below points to the 2388 * IP header of the packet that caused the error. 2389 * 2390 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2391 * in the context of IPsec. Normally we tell the upper layer 2392 * whenever we send the ire (including ip_bind), the IPsec header 2393 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2394 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2395 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2396 * same thing. As TCP has the IPsec options size that needs to be 2397 * adjusted, we just pass the MTU unchanged. 2398 * 2399 * IFN could have been generated locally or by some router. 2400 * 2401 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2402 * This happens because IP adjusted its value of MTU on an 2403 * earlier IFN message and could not tell the upper layer, 2404 * the new adjusted value of MTU e.g. Packet was encrypted 2405 * or there was not enough information to fanout to upper 2406 * layers. Thus on the next outbound datagram, ip_wput_ire 2407 * generates the IFN, where IPsec processing has *not* been 2408 * done. 2409 * 2410 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2411 * could have generated this. This happens because ire_max_frag 2412 * value in IP was set to a new value, while the IPsec processing 2413 * was being done and after we made the fragmentation check in 2414 * ip_wput_ire. Thus on return from IPsec processing, 2415 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2416 * and generates the IFN. As IPsec processing is over, we fanout 2417 * to AH/ESP to remove the header. 2418 * 2419 * In both these cases, ipsec_in_loopback will be set indicating 2420 * that IFN was generated locally. 2421 * 2422 * ROUTER : IFN could be secure or non-secure. 2423 * 2424 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2425 * packet in error has AH/ESP headers to validate the AH/ESP 2426 * headers. AH/ESP will verify whether there is a valid SA or 2427 * not and send it back. We will fanout again if we have more 2428 * data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 * 2433 * * NON_SECURE : If the packet in error has AH/ESP headers, 2434 * we attach a dummy ipsec_in and send it up to AH/ESP 2435 * for validation. AH/ESP will verify whether there is a 2436 * valid SA or not and send it back. We will fanout again if 2437 * we have more data in the packet. 2438 * 2439 * If the packet in error does not have AH/ESP, we handle it 2440 * like any other case. 2441 */ 2442 static void 2443 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2444 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2445 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2446 zoneid_t zoneid) 2447 { 2448 uint16_t *up; /* Pointer to ports in ULP header */ 2449 uint32_t ports; /* reversed ports for fanout */ 2450 ipha_t ripha; /* With reversed addresses */ 2451 mblk_t *first_mp; 2452 ipsec_in_t *ii; 2453 tcph_t *tcph; 2454 conn_t *connp; 2455 ip_stack_t *ipst; 2456 2457 ASSERT(ill != NULL); 2458 2459 ASSERT(recv_ill != NULL); 2460 ipst = recv_ill->ill_ipst; 2461 2462 first_mp = mp; 2463 if (mctl_present) { 2464 mp = first_mp->b_cont; 2465 ASSERT(mp != NULL); 2466 2467 ii = (ipsec_in_t *)first_mp->b_rptr; 2468 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2469 } else { 2470 ii = NULL; 2471 } 2472 2473 switch (ipha->ipha_protocol) { 2474 case IPPROTO_UDP: 2475 /* 2476 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2477 * transport header. 2478 */ 2479 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2480 mp->b_wptr) { 2481 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2482 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2483 goto discard_pkt; 2484 } 2485 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2486 ipha = (ipha_t *)&icmph[1]; 2487 } 2488 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2489 2490 /* 2491 * Attempt to find a client stream based on port. 2492 * Note that we do a reverse lookup since the header is 2493 * in the form we sent it out. 2494 * The ripha header is only used for the IP_UDP_MATCH and we 2495 * only set the src and dst addresses and protocol. 2496 */ 2497 ripha.ipha_src = ipha->ipha_dst; 2498 ripha.ipha_dst = ipha->ipha_src; 2499 ripha.ipha_protocol = ipha->ipha_protocol; 2500 ((uint16_t *)&ports)[0] = up[1]; 2501 ((uint16_t *)&ports)[1] = up[0]; 2502 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2503 ntohl(ipha->ipha_src), ntohs(up[0]), 2504 ntohl(ipha->ipha_dst), ntohs(up[1]), 2505 icmph->icmph_type, icmph->icmph_code)); 2506 2507 /* Have to change db_type after any pullupmsg */ 2508 DB_TYPE(mp) = M_CTL; 2509 2510 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2511 mctl_present, ip_policy, recv_ill, zoneid); 2512 return; 2513 2514 case IPPROTO_TCP: 2515 /* 2516 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2517 * transport header. 2518 */ 2519 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2520 mp->b_wptr) { 2521 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2522 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2523 goto discard_pkt; 2524 } 2525 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2526 ipha = (ipha_t *)&icmph[1]; 2527 } 2528 /* 2529 * Find a TCP client stream for this packet. 2530 * Note that we do a reverse lookup since the header is 2531 * in the form we sent it out. 2532 */ 2533 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2534 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2535 ipst); 2536 if (connp == NULL) 2537 goto discard_pkt; 2538 2539 /* Have to change db_type after any pullupmsg */ 2540 DB_TYPE(mp) = M_CTL; 2541 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2542 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2543 return; 2544 2545 case IPPROTO_SCTP: 2546 /* 2547 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2548 * transport header. 2549 */ 2550 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2551 mp->b_wptr) { 2552 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2553 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2554 goto discard_pkt; 2555 } 2556 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2557 ipha = (ipha_t *)&icmph[1]; 2558 } 2559 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2560 /* 2561 * Find a SCTP client stream for this packet. 2562 * Note that we do a reverse lookup since the header is 2563 * in the form we sent it out. 2564 * The ripha header is only used for the matching and we 2565 * only set the src and dst addresses, protocol, and version. 2566 */ 2567 ripha.ipha_src = ipha->ipha_dst; 2568 ripha.ipha_dst = ipha->ipha_src; 2569 ripha.ipha_protocol = ipha->ipha_protocol; 2570 ripha.ipha_version_and_hdr_length = 2571 ipha->ipha_version_and_hdr_length; 2572 ((uint16_t *)&ports)[0] = up[1]; 2573 ((uint16_t *)&ports)[1] = up[0]; 2574 2575 /* Have to change db_type after any pullupmsg */ 2576 DB_TYPE(mp) = M_CTL; 2577 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2578 mctl_present, ip_policy, zoneid); 2579 return; 2580 2581 case IPPROTO_ESP: 2582 case IPPROTO_AH: { 2583 int ipsec_rc; 2584 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2585 2586 /* 2587 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2588 * We will re-use the IPSEC_IN if it is already present as 2589 * AH/ESP will not affect any fields in the IPSEC_IN for 2590 * ICMP errors. If there is no IPSEC_IN, allocate a new 2591 * one and attach it in the front. 2592 */ 2593 if (ii != NULL) { 2594 /* 2595 * ip_fanout_proto_again converts the ICMP errors 2596 * that come back from AH/ESP to M_DATA so that 2597 * if it is non-AH/ESP and we do a pullupmsg in 2598 * this function, it would work. Convert it back 2599 * to M_CTL before we send up as this is a ICMP 2600 * error. This could have been generated locally or 2601 * by some router. Validate the inner IPsec 2602 * headers. 2603 * 2604 * NOTE : ill_index is used by ip_fanout_proto_again 2605 * to locate the ill. 2606 */ 2607 ASSERT(ill != NULL); 2608 ii->ipsec_in_ill_index = 2609 ill->ill_phyint->phyint_ifindex; 2610 ii->ipsec_in_rill_index = 2611 recv_ill->ill_phyint->phyint_ifindex; 2612 DB_TYPE(first_mp->b_cont) = M_CTL; 2613 } else { 2614 /* 2615 * IPSEC_IN is not present. We attach a ipsec_in 2616 * message and send up to IPsec for validating 2617 * and removing the IPsec headers. Clear 2618 * ipsec_in_secure so that when we return 2619 * from IPsec, we don't mistakenly think that this 2620 * is a secure packet came from the network. 2621 * 2622 * NOTE : ill_index is used by ip_fanout_proto_again 2623 * to locate the ill. 2624 */ 2625 ASSERT(first_mp == mp); 2626 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2627 if (first_mp == NULL) { 2628 freemsg(mp); 2629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2630 return; 2631 } 2632 ii = (ipsec_in_t *)first_mp->b_rptr; 2633 2634 /* This is not a secure packet */ 2635 ii->ipsec_in_secure = B_FALSE; 2636 first_mp->b_cont = mp; 2637 DB_TYPE(mp) = M_CTL; 2638 ASSERT(ill != NULL); 2639 ii->ipsec_in_ill_index = 2640 ill->ill_phyint->phyint_ifindex; 2641 ii->ipsec_in_rill_index = 2642 recv_ill->ill_phyint->phyint_ifindex; 2643 } 2644 ip2dbg(("icmp_inbound_error: ipsec\n")); 2645 2646 if (!ipsec_loaded(ipss)) { 2647 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2648 return; 2649 } 2650 2651 if (ipha->ipha_protocol == IPPROTO_ESP) 2652 ipsec_rc = ipsecesp_icmp_error(first_mp); 2653 else 2654 ipsec_rc = ipsecah_icmp_error(first_mp); 2655 if (ipsec_rc == IPSEC_STATUS_FAILED) 2656 return; 2657 2658 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2659 return; 2660 } 2661 default: 2662 /* 2663 * The ripha header is only used for the lookup and we 2664 * only set the src and dst addresses and protocol. 2665 */ 2666 ripha.ipha_src = ipha->ipha_dst; 2667 ripha.ipha_dst = ipha->ipha_src; 2668 ripha.ipha_protocol = ipha->ipha_protocol; 2669 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2670 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2671 ntohl(ipha->ipha_dst), 2672 icmph->icmph_type, icmph->icmph_code)); 2673 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2674 ipha_t *in_ipha; 2675 2676 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2677 mp->b_wptr) { 2678 if (!pullupmsg(mp, (uchar_t *)ipha + 2679 hdr_length + sizeof (ipha_t) - 2680 mp->b_rptr)) { 2681 goto discard_pkt; 2682 } 2683 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2684 ipha = (ipha_t *)&icmph[1]; 2685 } 2686 /* 2687 * Caller has verified that length has to be 2688 * at least the size of IP header. 2689 */ 2690 ASSERT(hdr_length >= sizeof (ipha_t)); 2691 /* 2692 * Check the sanity of the inner IP header like 2693 * we did for the outer header. 2694 */ 2695 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2696 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2697 goto discard_pkt; 2698 } 2699 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2700 goto discard_pkt; 2701 } 2702 /* Check for Self-encapsulated tunnels */ 2703 if (in_ipha->ipha_src == ipha->ipha_src && 2704 in_ipha->ipha_dst == ipha->ipha_dst) { 2705 2706 mp = icmp_inbound_self_encap_error(mp, 2707 iph_hdr_length, hdr_length); 2708 if (mp == NULL) 2709 goto discard_pkt; 2710 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2711 ipha = (ipha_t *)&icmph[1]; 2712 hdr_length = IPH_HDR_LENGTH(ipha); 2713 /* 2714 * The packet in error is self-encapsualted. 2715 * And we are finding it further encapsulated 2716 * which we could not have possibly generated. 2717 */ 2718 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2719 goto discard_pkt; 2720 } 2721 icmp_inbound_error_fanout(q, ill, first_mp, 2722 icmph, ipha, iph_hdr_length, hdr_length, 2723 mctl_present, ip_policy, recv_ill, zoneid); 2724 return; 2725 } 2726 } 2727 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2728 ipha->ipha_protocol == IPPROTO_IPV6) && 2729 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2730 ii != NULL && 2731 ii->ipsec_in_loopback && 2732 ii->ipsec_in_secure) { 2733 /* 2734 * For IP tunnels that get a looped-back 2735 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2736 * reported new MTU to take into account the IPsec 2737 * headers protecting this configured tunnel. 2738 * 2739 * This allows the tunnel module (tun.c) to blindly 2740 * accept the MTU reported in an ICMP "too big" 2741 * message. 2742 * 2743 * Non-looped back ICMP messages will just be 2744 * handled by the security protocols (if needed), 2745 * and the first subsequent packet will hit this 2746 * path. 2747 */ 2748 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2749 ipsec_in_extra_length(first_mp)); 2750 } 2751 /* Have to change db_type after any pullupmsg */ 2752 DB_TYPE(mp) = M_CTL; 2753 2754 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2755 ip_policy, recv_ill, zoneid); 2756 return; 2757 } 2758 /* NOTREACHED */ 2759 discard_pkt: 2760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2761 drop_pkt:; 2762 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2763 freemsg(first_mp); 2764 } 2765 2766 /* 2767 * Common IP options parser. 2768 * 2769 * Setup routine: fill in *optp with options-parsing state, then 2770 * tail-call ipoptp_next to return the first option. 2771 */ 2772 uint8_t 2773 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2774 { 2775 uint32_t totallen; /* total length of all options */ 2776 2777 totallen = ipha->ipha_version_and_hdr_length - 2778 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2779 totallen <<= 2; 2780 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2781 optp->ipoptp_end = optp->ipoptp_next + totallen; 2782 optp->ipoptp_flags = 0; 2783 return (ipoptp_next(optp)); 2784 } 2785 2786 /* 2787 * Common IP options parser: extract next option. 2788 */ 2789 uint8_t 2790 ipoptp_next(ipoptp_t *optp) 2791 { 2792 uint8_t *end = optp->ipoptp_end; 2793 uint8_t *cur = optp->ipoptp_next; 2794 uint8_t opt, len, pointer; 2795 2796 /* 2797 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2798 * has been corrupted. 2799 */ 2800 ASSERT(cur <= end); 2801 2802 if (cur == end) 2803 return (IPOPT_EOL); 2804 2805 opt = cur[IPOPT_OPTVAL]; 2806 2807 /* 2808 * Skip any NOP options. 2809 */ 2810 while (opt == IPOPT_NOP) { 2811 cur++; 2812 if (cur == end) 2813 return (IPOPT_EOL); 2814 opt = cur[IPOPT_OPTVAL]; 2815 } 2816 2817 if (opt == IPOPT_EOL) 2818 return (IPOPT_EOL); 2819 2820 /* 2821 * Option requiring a length. 2822 */ 2823 if ((cur + 1) >= end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 len = cur[IPOPT_OLEN]; 2828 if (len < 2) { 2829 optp->ipoptp_flags |= IPOPTP_ERROR; 2830 return (IPOPT_EOL); 2831 } 2832 optp->ipoptp_cur = cur; 2833 optp->ipoptp_len = len; 2834 optp->ipoptp_next = cur + len; 2835 if (cur + len > end) { 2836 optp->ipoptp_flags |= IPOPTP_ERROR; 2837 return (IPOPT_EOL); 2838 } 2839 2840 /* 2841 * For the options which require a pointer field, make sure 2842 * its there, and make sure it points to either something 2843 * inside this option, or the end of the option. 2844 */ 2845 switch (opt) { 2846 case IPOPT_RR: 2847 case IPOPT_TS: 2848 case IPOPT_LSRR: 2849 case IPOPT_SSRR: 2850 if (len <= IPOPT_OFFSET) { 2851 optp->ipoptp_flags |= IPOPTP_ERROR; 2852 return (opt); 2853 } 2854 pointer = cur[IPOPT_OFFSET]; 2855 if (pointer - 1 > len) { 2856 optp->ipoptp_flags |= IPOPTP_ERROR; 2857 return (opt); 2858 } 2859 break; 2860 } 2861 2862 /* 2863 * Sanity check the pointer field based on the type of the 2864 * option. 2865 */ 2866 switch (opt) { 2867 case IPOPT_RR: 2868 case IPOPT_SSRR: 2869 case IPOPT_LSRR: 2870 if (pointer < IPOPT_MINOFF_SR) 2871 optp->ipoptp_flags |= IPOPTP_ERROR; 2872 break; 2873 case IPOPT_TS: 2874 if (pointer < IPOPT_MINOFF_IT) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 /* 2877 * Note that the Internet Timestamp option also 2878 * contains two four bit fields (the Overflow field, 2879 * and the Flag field), which follow the pointer 2880 * field. We don't need to check that these fields 2881 * fall within the length of the option because this 2882 * was implicitely done above. We've checked that the 2883 * pointer value is at least IPOPT_MINOFF_IT, and that 2884 * it falls within the option. Since IPOPT_MINOFF_IT > 2885 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2886 */ 2887 ASSERT(len > IPOPT_POS_OV_FLG); 2888 break; 2889 } 2890 2891 return (opt); 2892 } 2893 2894 /* 2895 * Use the outgoing IP header to create an IP_OPTIONS option the way 2896 * it was passed down from the application. 2897 */ 2898 int 2899 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2900 { 2901 ipoptp_t opts; 2902 const uchar_t *opt; 2903 uint8_t optval; 2904 uint8_t optlen; 2905 uint32_t len = 0; 2906 uchar_t *buf1 = buf; 2907 2908 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2909 len += IP_ADDR_LEN; 2910 bzero(buf1, IP_ADDR_LEN); 2911 2912 /* 2913 * OK to cast away const here, as we don't store through the returned 2914 * opts.ipoptp_cur pointer. 2915 */ 2916 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2917 optval != IPOPT_EOL; 2918 optval = ipoptp_next(&opts)) { 2919 int off; 2920 2921 opt = opts.ipoptp_cur; 2922 optlen = opts.ipoptp_len; 2923 switch (optval) { 2924 case IPOPT_SSRR: 2925 case IPOPT_LSRR: 2926 2927 /* 2928 * Insert ipha_dst as the first entry in the source 2929 * route and move down the entries on step. 2930 * The last entry gets placed at buf1. 2931 */ 2932 buf[IPOPT_OPTVAL] = optval; 2933 buf[IPOPT_OLEN] = optlen; 2934 buf[IPOPT_OFFSET] = optlen; 2935 2936 off = optlen - IP_ADDR_LEN; 2937 if (off < 0) { 2938 /* No entries in source route */ 2939 break; 2940 } 2941 /* Last entry in source route */ 2942 bcopy(opt + off, buf1, IP_ADDR_LEN); 2943 off -= IP_ADDR_LEN; 2944 2945 while (off > 0) { 2946 bcopy(opt + off, 2947 buf + off + IP_ADDR_LEN, 2948 IP_ADDR_LEN); 2949 off -= IP_ADDR_LEN; 2950 } 2951 /* ipha_dst into first slot */ 2952 bcopy(&ipha->ipha_dst, 2953 buf + off + IP_ADDR_LEN, 2954 IP_ADDR_LEN); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 2959 case IPOPT_COMSEC: 2960 case IPOPT_SECURITY: 2961 /* if passing up a label is not ok, then remove */ 2962 if (is_system_labeled()) 2963 break; 2964 /* FALLTHROUGH */ 2965 default: 2966 bcopy(opt, buf, optlen); 2967 buf += optlen; 2968 len += optlen; 2969 break; 2970 } 2971 } 2972 done: 2973 /* Pad the resulting options */ 2974 while (len & 0x3) { 2975 *buf++ = IPOPT_EOL; 2976 len++; 2977 } 2978 return (len); 2979 } 2980 2981 /* 2982 * Update any record route or timestamp options to include this host. 2983 * Reverse any source route option. 2984 * This routine assumes that the options are well formed i.e. that they 2985 * have already been checked. 2986 */ 2987 static void 2988 icmp_options_update(ipha_t *ipha) 2989 { 2990 ipoptp_t opts; 2991 uchar_t *opt; 2992 uint8_t optval; 2993 ipaddr_t src; /* Our local address */ 2994 ipaddr_t dst; 2995 2996 ip2dbg(("icmp_options_update\n")); 2997 src = ipha->ipha_src; 2998 dst = ipha->ipha_dst; 2999 3000 for (optval = ipoptp_first(&opts, ipha); 3001 optval != IPOPT_EOL; 3002 optval = ipoptp_next(&opts)) { 3003 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3004 opt = opts.ipoptp_cur; 3005 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3006 optval, opts.ipoptp_len)); 3007 switch (optval) { 3008 int off1, off2; 3009 case IPOPT_SSRR: 3010 case IPOPT_LSRR: 3011 /* 3012 * Reverse the source route. The first entry 3013 * should be the next to last one in the current 3014 * source route (the last entry is our address). 3015 * The last entry should be the final destination. 3016 */ 3017 off1 = IPOPT_MINOFF_SR - 1; 3018 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3019 if (off2 < 0) { 3020 /* No entries in source route */ 3021 ip1dbg(( 3022 "icmp_options_update: bad src route\n")); 3023 break; 3024 } 3025 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3026 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3027 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3028 off2 -= IP_ADDR_LEN; 3029 3030 while (off1 < off2) { 3031 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3032 bcopy((char *)opt + off2, (char *)opt + off1, 3033 IP_ADDR_LEN); 3034 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3035 off1 += IP_ADDR_LEN; 3036 off2 -= IP_ADDR_LEN; 3037 } 3038 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3039 break; 3040 } 3041 } 3042 } 3043 3044 /* 3045 * Process received ICMP Redirect messages. 3046 */ 3047 static void 3048 icmp_redirect(ill_t *ill, mblk_t *mp) 3049 { 3050 ipha_t *ipha; 3051 int iph_hdr_length; 3052 icmph_t *icmph; 3053 ipha_t *ipha_err; 3054 ire_t *ire; 3055 ire_t *prev_ire; 3056 ire_t *save_ire; 3057 ipaddr_t src, dst, gateway; 3058 iulp_t ulp_info = { 0 }; 3059 int error; 3060 ip_stack_t *ipst; 3061 3062 ASSERT(ill != NULL); 3063 ipst = ill->ill_ipst; 3064 3065 ipha = (ipha_t *)mp->b_rptr; 3066 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3067 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3068 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3069 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3070 freemsg(mp); 3071 return; 3072 } 3073 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3074 ipha_err = (ipha_t *)&icmph[1]; 3075 src = ipha->ipha_src; 3076 dst = ipha_err->ipha_dst; 3077 gateway = icmph->icmph_rd_gateway; 3078 /* Make sure the new gateway is reachable somehow. */ 3079 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3080 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3081 /* 3082 * Make sure we had a route for the dest in question and that 3083 * that route was pointing to the old gateway (the source of the 3084 * redirect packet.) 3085 */ 3086 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3087 NULL, MATCH_IRE_GW, ipst); 3088 /* 3089 * Check that 3090 * the redirect was not from ourselves 3091 * the new gateway and the old gateway are directly reachable 3092 */ 3093 if (!prev_ire || 3094 !ire || 3095 ire->ire_type == IRE_LOCAL) { 3096 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3097 freemsg(mp); 3098 if (ire != NULL) 3099 ire_refrele(ire); 3100 if (prev_ire != NULL) 3101 ire_refrele(prev_ire); 3102 return; 3103 } 3104 3105 /* 3106 * Should we use the old ULP info to create the new gateway? From 3107 * a user's perspective, we should inherit the info so that it 3108 * is a "smooth" transition. If we do not do that, then new 3109 * connections going thru the new gateway will have no route metrics, 3110 * which is counter-intuitive to user. From a network point of 3111 * view, this may or may not make sense even though the new gateway 3112 * is still directly connected to us so the route metrics should not 3113 * change much. 3114 * 3115 * But if the old ire_uinfo is not initialized, we do another 3116 * recursive lookup on the dest using the new gateway. There may 3117 * be a route to that. If so, use it to initialize the redirect 3118 * route. 3119 */ 3120 if (prev_ire->ire_uinfo.iulp_set) { 3121 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3122 } else { 3123 ire_t *tmp_ire; 3124 ire_t *sire; 3125 3126 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3127 ALL_ZONES, 0, NULL, 3128 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3129 ipst); 3130 if (sire != NULL) { 3131 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3132 /* 3133 * If sire != NULL, ire_ftable_lookup() should not 3134 * return a NULL value. 3135 */ 3136 ASSERT(tmp_ire != NULL); 3137 ire_refrele(tmp_ire); 3138 ire_refrele(sire); 3139 } else if (tmp_ire != NULL) { 3140 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3141 sizeof (iulp_t)); 3142 ire_refrele(tmp_ire); 3143 } 3144 } 3145 if (prev_ire->ire_type == IRE_CACHE) 3146 ire_delete(prev_ire); 3147 ire_refrele(prev_ire); 3148 /* 3149 * TODO: more precise handling for cases 0, 2, 3, the latter two 3150 * require TOS routing 3151 */ 3152 switch (icmph->icmph_code) { 3153 case 0: 3154 case 1: 3155 /* TODO: TOS specificity for cases 2 and 3 */ 3156 case 2: 3157 case 3: 3158 break; 3159 default: 3160 freemsg(mp); 3161 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3162 ire_refrele(ire); 3163 return; 3164 } 3165 /* 3166 * Create a Route Association. This will allow us to remember that 3167 * someone we believe told us to use the particular gateway. 3168 */ 3169 save_ire = ire; 3170 ire = ire_create( 3171 (uchar_t *)&dst, /* dest addr */ 3172 (uchar_t *)&ip_g_all_ones, /* mask */ 3173 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3174 (uchar_t *)&gateway, /* gateway addr */ 3175 &save_ire->ire_max_frag, /* max frag */ 3176 NULL, /* no src nce */ 3177 NULL, /* no rfq */ 3178 NULL, /* no stq */ 3179 IRE_HOST, 3180 NULL, /* ipif */ 3181 0, /* cmask */ 3182 0, /* phandle */ 3183 0, /* ihandle */ 3184 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3185 &ulp_info, 3186 NULL, /* tsol_gc_t */ 3187 NULL, /* gcgrp */ 3188 ipst); 3189 3190 if (ire == NULL) { 3191 freemsg(mp); 3192 ire_refrele(save_ire); 3193 return; 3194 } 3195 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3196 ire_refrele(save_ire); 3197 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3198 3199 if (error == 0) { 3200 ire_refrele(ire); /* Held in ire_add_v4 */ 3201 /* tell routing sockets that we received a redirect */ 3202 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3203 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3204 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3205 } 3206 3207 /* 3208 * Delete any existing IRE_HOST type redirect ires for this destination. 3209 * This together with the added IRE has the effect of 3210 * modifying an existing redirect. 3211 */ 3212 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3213 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3214 if (prev_ire != NULL) { 3215 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3216 ire_delete(prev_ire); 3217 ire_refrele(prev_ire); 3218 } 3219 3220 freemsg(mp); 3221 } 3222 3223 /* 3224 * Generate an ICMP parameter problem message. 3225 */ 3226 static void 3227 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3228 ip_stack_t *ipst) 3229 { 3230 icmph_t icmph; 3231 boolean_t mctl_present; 3232 mblk_t *first_mp; 3233 3234 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3235 3236 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3237 if (mctl_present) 3238 freeb(first_mp); 3239 return; 3240 } 3241 3242 bzero(&icmph, sizeof (icmph_t)); 3243 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3244 icmph.icmph_pp_ptr = ptr; 3245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3246 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3247 ipst); 3248 } 3249 3250 /* 3251 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3252 * the ICMP header pointed to by "stuff". (May be called as writer.) 3253 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3254 * an icmp error packet can be sent. 3255 * Assigns an appropriate source address to the packet. If ipha_dst is 3256 * one of our addresses use it for source. Otherwise pick a source based 3257 * on a route lookup back to ipha_src. 3258 * Note that ipha_src must be set here since the 3259 * packet is likely to arrive on an ill queue in ip_wput() which will 3260 * not set a source address. 3261 */ 3262 static void 3263 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3264 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3265 { 3266 ipaddr_t dst; 3267 icmph_t *icmph; 3268 ipha_t *ipha; 3269 uint_t len_needed; 3270 size_t msg_len; 3271 mblk_t *mp1; 3272 ipaddr_t src; 3273 ire_t *ire; 3274 mblk_t *ipsec_mp; 3275 ipsec_out_t *io = NULL; 3276 3277 if (mctl_present) { 3278 /* 3279 * If it is : 3280 * 3281 * 1) a IPSEC_OUT, then this is caused by outbound 3282 * datagram originating on this host. IPsec processing 3283 * may or may not have been done. Refer to comments above 3284 * icmp_inbound_error_fanout for details. 3285 * 3286 * 2) a IPSEC_IN if we are generating a icmp_message 3287 * for an incoming datagram destined for us i.e called 3288 * from ip_fanout_send_icmp. 3289 */ 3290 ipsec_info_t *in; 3291 ipsec_mp = mp; 3292 mp = ipsec_mp->b_cont; 3293 3294 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3295 ipha = (ipha_t *)mp->b_rptr; 3296 3297 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3298 in->ipsec_info_type == IPSEC_IN); 3299 3300 if (in->ipsec_info_type == IPSEC_IN) { 3301 /* 3302 * Convert the IPSEC_IN to IPSEC_OUT. 3303 */ 3304 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3305 BUMP_MIB(&ipst->ips_ip_mib, 3306 ipIfStatsOutDiscards); 3307 return; 3308 } 3309 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3310 } else { 3311 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3312 io = (ipsec_out_t *)in; 3313 /* 3314 * Clear out ipsec_out_proc_begin, so we do a fresh 3315 * ire lookup. 3316 */ 3317 io->ipsec_out_proc_begin = B_FALSE; 3318 } 3319 ASSERT(zoneid == io->ipsec_out_zoneid); 3320 ASSERT(zoneid != ALL_ZONES); 3321 } else { 3322 /* 3323 * This is in clear. The icmp message we are building 3324 * here should go out in clear. 3325 * 3326 * Pardon the convolution of it all, but it's easier to 3327 * allocate a "use cleartext" IPSEC_IN message and convert 3328 * it than it is to allocate a new one. 3329 */ 3330 ipsec_in_t *ii; 3331 ASSERT(DB_TYPE(mp) == M_DATA); 3332 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3333 if (ipsec_mp == NULL) { 3334 freemsg(mp); 3335 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3336 return; 3337 } 3338 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3339 3340 /* This is not a secure packet */ 3341 ii->ipsec_in_secure = B_FALSE; 3342 /* 3343 * For trusted extensions using a shared IP address we can 3344 * send using any zoneid. 3345 */ 3346 if (zoneid == ALL_ZONES) 3347 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3348 else 3349 ii->ipsec_in_zoneid = zoneid; 3350 ipsec_mp->b_cont = mp; 3351 ipha = (ipha_t *)mp->b_rptr; 3352 /* 3353 * Convert the IPSEC_IN to IPSEC_OUT. 3354 */ 3355 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3356 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3357 return; 3358 } 3359 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3360 } 3361 3362 /* Remember our eventual destination */ 3363 dst = ipha->ipha_src; 3364 3365 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3366 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3367 if (ire != NULL && 3368 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3369 src = ipha->ipha_dst; 3370 } else { 3371 if (ire != NULL) 3372 ire_refrele(ire); 3373 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3374 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3375 ipst); 3376 if (ire == NULL) { 3377 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3378 freemsg(ipsec_mp); 3379 return; 3380 } 3381 src = ire->ire_src_addr; 3382 } 3383 3384 if (ire != NULL) 3385 ire_refrele(ire); 3386 3387 /* 3388 * Check if we can send back more then 8 bytes in addition to 3389 * the IP header. We try to send 64 bytes of data and the internal 3390 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3391 */ 3392 len_needed = IPH_HDR_LENGTH(ipha); 3393 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3394 ipha->ipha_protocol == IPPROTO_IPV6) { 3395 3396 if (!pullupmsg(mp, -1)) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 ipha = (ipha_t *)mp->b_rptr; 3402 3403 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3404 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3405 len_needed)); 3406 } else { 3407 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3408 3409 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3410 len_needed += ip_hdr_length_v6(mp, ip6h); 3411 } 3412 } 3413 len_needed += ipst->ips_ip_icmp_return; 3414 msg_len = msgdsize(mp); 3415 if (msg_len > len_needed) { 3416 (void) adjmsg(mp, len_needed - msg_len); 3417 msg_len = len_needed; 3418 } 3419 /* Make sure we propagate the cred/label for TX */ 3420 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3421 if (mp1 == NULL) { 3422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3423 freemsg(ipsec_mp); 3424 return; 3425 } 3426 mp1->b_cont = mp; 3427 mp = mp1; 3428 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3429 ipsec_mp->b_rptr == (uint8_t *)io && 3430 io->ipsec_out_type == IPSEC_OUT); 3431 ipsec_mp->b_cont = mp; 3432 3433 /* 3434 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3435 * node generates be accepted in peace by all on-host destinations. 3436 * If we do NOT assume that all on-host destinations trust 3437 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3438 * (Look for ipsec_out_icmp_loopback). 3439 */ 3440 io->ipsec_out_icmp_loopback = B_TRUE; 3441 3442 ipha = (ipha_t *)mp->b_rptr; 3443 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3444 *ipha = icmp_ipha; 3445 ipha->ipha_src = src; 3446 ipha->ipha_dst = dst; 3447 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3448 msg_len += sizeof (icmp_ipha) + len; 3449 if (msg_len > IP_MAXPACKET) { 3450 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3451 msg_len = IP_MAXPACKET; 3452 } 3453 ipha->ipha_length = htons((uint16_t)msg_len); 3454 icmph = (icmph_t *)&ipha[1]; 3455 bcopy(stuff, icmph, len); 3456 icmph->icmph_checksum = 0; 3457 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3458 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3459 put(q, ipsec_mp); 3460 } 3461 3462 /* 3463 * Determine if an ICMP error packet can be sent given the rate limit. 3464 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3465 * in milliseconds) and a burst size. Burst size number of packets can 3466 * be sent arbitrarely closely spaced. 3467 * The state is tracked using two variables to implement an approximate 3468 * token bucket filter: 3469 * icmp_pkt_err_last - lbolt value when the last burst started 3470 * icmp_pkt_err_sent - number of packets sent in current burst 3471 */ 3472 boolean_t 3473 icmp_err_rate_limit(ip_stack_t *ipst) 3474 { 3475 clock_t now = TICK_TO_MSEC(lbolt); 3476 uint_t refilled; /* Number of packets refilled in tbf since last */ 3477 /* Guard against changes by loading into local variable */ 3478 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3479 3480 if (err_interval == 0) 3481 return (B_FALSE); 3482 3483 if (ipst->ips_icmp_pkt_err_last > now) { 3484 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3485 ipst->ips_icmp_pkt_err_last = 0; 3486 ipst->ips_icmp_pkt_err_sent = 0; 3487 } 3488 /* 3489 * If we are in a burst update the token bucket filter. 3490 * Update the "last" time to be close to "now" but make sure 3491 * we don't loose precision. 3492 */ 3493 if (ipst->ips_icmp_pkt_err_sent != 0) { 3494 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3495 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } else { 3498 ipst->ips_icmp_pkt_err_sent -= refilled; 3499 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3500 } 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent == 0) { 3503 /* Start of new burst */ 3504 ipst->ips_icmp_pkt_err_last = now; 3505 } 3506 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3507 ipst->ips_icmp_pkt_err_sent++; 3508 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3509 ipst->ips_icmp_pkt_err_sent)); 3510 return (B_FALSE); 3511 } 3512 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3513 return (B_TRUE); 3514 } 3515 3516 /* 3517 * Check if it is ok to send an IPv4 ICMP error packet in 3518 * response to the IPv4 packet in mp. 3519 * Free the message and return null if no 3520 * ICMP error packet should be sent. 3521 */ 3522 static mblk_t * 3523 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3524 { 3525 icmph_t *icmph; 3526 ipha_t *ipha; 3527 uint_t len_needed; 3528 ire_t *src_ire; 3529 ire_t *dst_ire; 3530 3531 if (!mp) 3532 return (NULL); 3533 ipha = (ipha_t *)mp->b_rptr; 3534 if (ip_csum_hdr(ipha)) { 3535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3536 freemsg(mp); 3537 return (NULL); 3538 } 3539 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3540 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3541 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3542 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3543 if (src_ire != NULL || dst_ire != NULL || 3544 CLASSD(ipha->ipha_dst) || 3545 CLASSD(ipha->ipha_src) || 3546 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3547 /* Note: only errors to the fragment with offset 0 */ 3548 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3549 freemsg(mp); 3550 if (src_ire != NULL) 3551 ire_refrele(src_ire); 3552 if (dst_ire != NULL) 3553 ire_refrele(dst_ire); 3554 return (NULL); 3555 } 3556 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3557 /* 3558 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3559 * errors in response to any ICMP errors. 3560 */ 3561 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3562 if (mp->b_wptr - mp->b_rptr < len_needed) { 3563 if (!pullupmsg(mp, len_needed)) { 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3565 freemsg(mp); 3566 return (NULL); 3567 } 3568 ipha = (ipha_t *)mp->b_rptr; 3569 } 3570 icmph = (icmph_t *) 3571 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3572 switch (icmph->icmph_type) { 3573 case ICMP_DEST_UNREACHABLE: 3574 case ICMP_SOURCE_QUENCH: 3575 case ICMP_TIME_EXCEEDED: 3576 case ICMP_PARAM_PROBLEM: 3577 case ICMP_REDIRECT: 3578 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3579 freemsg(mp); 3580 return (NULL); 3581 default: 3582 break; 3583 } 3584 } 3585 /* 3586 * If this is a labeled system, then check to see if we're allowed to 3587 * send a response to this particular sender. If not, then just drop. 3588 */ 3589 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3590 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3591 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3592 freemsg(mp); 3593 return (NULL); 3594 } 3595 if (icmp_err_rate_limit(ipst)) { 3596 /* 3597 * Only send ICMP error packets every so often. 3598 * This should be done on a per port/source basis, 3599 * but for now this will suffice. 3600 */ 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 return (mp); 3605 } 3606 3607 /* 3608 * Generate an ICMP redirect message. 3609 */ 3610 static void 3611 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3612 { 3613 icmph_t icmph; 3614 3615 /* 3616 * We are called from ip_rput where we could 3617 * not have attached an IPSEC_IN. 3618 */ 3619 ASSERT(mp->b_datap->db_type == M_DATA); 3620 3621 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3622 return; 3623 } 3624 3625 bzero(&icmph, sizeof (icmph_t)); 3626 icmph.icmph_type = ICMP_REDIRECT; 3627 icmph.icmph_code = 1; 3628 icmph.icmph_rd_gateway = gateway; 3629 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3630 /* Redirects sent by router, and router is global zone */ 3631 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3632 } 3633 3634 /* 3635 * Generate an ICMP time exceeded message. 3636 */ 3637 void 3638 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3639 ip_stack_t *ipst) 3640 { 3641 icmph_t icmph; 3642 boolean_t mctl_present; 3643 mblk_t *first_mp; 3644 3645 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3646 3647 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3648 if (mctl_present) 3649 freeb(first_mp); 3650 return; 3651 } 3652 3653 bzero(&icmph, sizeof (icmph_t)); 3654 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3655 icmph.icmph_code = code; 3656 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3657 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3658 ipst); 3659 } 3660 3661 /* 3662 * Generate an ICMP unreachable message. 3663 */ 3664 void 3665 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3666 ip_stack_t *ipst) 3667 { 3668 icmph_t icmph; 3669 mblk_t *first_mp; 3670 boolean_t mctl_present; 3671 3672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3673 3674 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3675 if (mctl_present) 3676 freeb(first_mp); 3677 return; 3678 } 3679 3680 bzero(&icmph, sizeof (icmph_t)); 3681 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3682 icmph.icmph_code = code; 3683 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3684 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3685 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3686 zoneid, ipst); 3687 } 3688 3689 /* 3690 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3691 * duplicate. As long as someone else holds the address, the interface will 3692 * stay down. When that conflict goes away, the interface is brought back up. 3693 * This is done so that accidental shutdowns of addresses aren't made 3694 * permanent. Your server will recover from a failure. 3695 * 3696 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3697 * user space process (dhcpagent). 3698 * 3699 * Recovery completes if ARP reports that the address is now ours (via 3700 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3701 * 3702 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3703 */ 3704 static void 3705 ipif_dup_recovery(void *arg) 3706 { 3707 ipif_t *ipif = arg; 3708 ill_t *ill = ipif->ipif_ill; 3709 mblk_t *arp_add_mp; 3710 mblk_t *arp_del_mp; 3711 ip_stack_t *ipst = ill->ill_ipst; 3712 3713 ipif->ipif_recovery_id = 0; 3714 3715 /* 3716 * No lock needed for moving or condemned check, as this is just an 3717 * optimization. 3718 */ 3719 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3720 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3721 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3722 /* No reason to try to bring this address back. */ 3723 return; 3724 } 3725 3726 /* ACE_F_UNVERIFIED restarts DAD */ 3727 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3728 goto alloc_fail; 3729 3730 if (ipif->ipif_arp_del_mp == NULL) { 3731 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3732 goto alloc_fail; 3733 ipif->ipif_arp_del_mp = arp_del_mp; 3734 } 3735 3736 putnext(ill->ill_rq, arp_add_mp); 3737 return; 3738 3739 alloc_fail: 3740 /* 3741 * On allocation failure, just restart the timer. Note that the ipif 3742 * is down here, so no other thread could be trying to start a recovery 3743 * timer. The ill_lock protects the condemned flag and the recovery 3744 * timer ID. 3745 */ 3746 freemsg(arp_add_mp); 3747 mutex_enter(&ill->ill_lock); 3748 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3750 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3751 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3752 } 3753 mutex_exit(&ill->ill_lock); 3754 } 3755 3756 /* 3757 * This is for exclusive changes due to ARP. Either tear down an interface due 3758 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3759 */ 3760 /* ARGSUSED */ 3761 static void 3762 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3763 { 3764 ill_t *ill = rq->q_ptr; 3765 arh_t *arh; 3766 ipaddr_t src; 3767 ipif_t *ipif; 3768 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3769 char hbuf[MAC_STR_LEN]; 3770 char sbuf[INET_ADDRSTRLEN]; 3771 const char *failtype; 3772 boolean_t bring_up; 3773 ip_stack_t *ipst = ill->ill_ipst; 3774 3775 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3776 case AR_CN_READY: 3777 failtype = NULL; 3778 bring_up = B_TRUE; 3779 break; 3780 case AR_CN_FAILED: 3781 failtype = "in use"; 3782 bring_up = B_FALSE; 3783 break; 3784 default: 3785 failtype = "claimed"; 3786 bring_up = B_FALSE; 3787 break; 3788 } 3789 3790 arh = (arh_t *)mp->b_cont->b_rptr; 3791 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3792 3793 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3794 sizeof (hbuf)); 3795 (void) ip_dot_addr(src, sbuf); 3796 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3797 3798 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3799 ipif->ipif_lcl_addr != src) { 3800 continue; 3801 } 3802 3803 /* 3804 * If we failed on a recovery probe, then restart the timer to 3805 * try again later. 3806 */ 3807 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3808 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3809 ill->ill_net_type == IRE_IF_RESOLVER && 3810 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3811 ipst->ips_ip_dup_recovery > 0 && 3812 ipif->ipif_recovery_id == 0) { 3813 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3814 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3815 continue; 3816 } 3817 3818 /* 3819 * If what we're trying to do has already been done, then do 3820 * nothing. 3821 */ 3822 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3823 continue; 3824 3825 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3826 3827 if (failtype == NULL) { 3828 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3829 ibuf); 3830 } else { 3831 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3832 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3833 } 3834 3835 if (bring_up) { 3836 ASSERT(ill->ill_dl_up); 3837 /* 3838 * Free up the ARP delete message so we can allocate 3839 * a fresh one through the normal path. 3840 */ 3841 freemsg(ipif->ipif_arp_del_mp); 3842 ipif->ipif_arp_del_mp = NULL; 3843 if (ipif_resolver_up(ipif, Res_act_initial) != 3844 EINPROGRESS) { 3845 ipif->ipif_addr_ready = 1; 3846 (void) ipif_up_done(ipif); 3847 ASSERT(ill->ill_move_ipif == NULL); 3848 } 3849 continue; 3850 } 3851 3852 mutex_enter(&ill->ill_lock); 3853 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3854 ipif->ipif_flags |= IPIF_DUPLICATE; 3855 ill->ill_ipif_dup_count++; 3856 mutex_exit(&ill->ill_lock); 3857 /* 3858 * Already exclusive on the ill; no need to handle deferred 3859 * processing here. 3860 */ 3861 (void) ipif_down(ipif, NULL, NULL); 3862 ipif_down_tail(ipif); 3863 mutex_enter(&ill->ill_lock); 3864 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3865 ill->ill_net_type == IRE_IF_RESOLVER && 3866 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3867 ipst->ips_ip_dup_recovery > 0) { 3868 ASSERT(ipif->ipif_recovery_id == 0); 3869 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3870 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3871 } 3872 mutex_exit(&ill->ill_lock); 3873 } 3874 freemsg(mp); 3875 } 3876 3877 /* ARGSUSED */ 3878 static void 3879 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3880 { 3881 ill_t *ill = rq->q_ptr; 3882 arh_t *arh; 3883 ipaddr_t src; 3884 ipif_t *ipif; 3885 3886 arh = (arh_t *)mp->b_cont->b_rptr; 3887 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3888 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3889 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3890 (void) ipif_resolver_up(ipif, Res_act_defend); 3891 } 3892 freemsg(mp); 3893 } 3894 3895 /* 3896 * News from ARP. ARP sends notification of interesting events down 3897 * to its clients using M_CTL messages with the interesting ARP packet 3898 * attached via b_cont. 3899 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3900 * queue as opposed to ARP sending the message to all the clients, i.e. all 3901 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3902 * table if a cache IRE is found to delete all the entries for the address in 3903 * the packet. 3904 */ 3905 static void 3906 ip_arp_news(queue_t *q, mblk_t *mp) 3907 { 3908 arcn_t *arcn; 3909 arh_t *arh; 3910 ire_t *ire = NULL; 3911 char hbuf[MAC_STR_LEN]; 3912 char sbuf[INET_ADDRSTRLEN]; 3913 ipaddr_t src; 3914 in6_addr_t v6src; 3915 boolean_t isv6 = B_FALSE; 3916 ipif_t *ipif; 3917 ill_t *ill; 3918 ip_stack_t *ipst; 3919 3920 if (CONN_Q(q)) { 3921 conn_t *connp = Q_TO_CONN(q); 3922 3923 ipst = connp->conn_netstack->netstack_ip; 3924 } else { 3925 ill_t *ill = (ill_t *)q->q_ptr; 3926 3927 ipst = ill->ill_ipst; 3928 } 3929 3930 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3931 if (q->q_next) { 3932 putnext(q, mp); 3933 } else 3934 freemsg(mp); 3935 return; 3936 } 3937 arh = (arh_t *)mp->b_cont->b_rptr; 3938 /* Is it one we are interested in? */ 3939 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3940 isv6 = B_TRUE; 3941 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3942 IPV6_ADDR_LEN); 3943 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3944 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3945 IP_ADDR_LEN); 3946 } else { 3947 freemsg(mp); 3948 return; 3949 } 3950 3951 ill = q->q_ptr; 3952 3953 arcn = (arcn_t *)mp->b_rptr; 3954 switch (arcn->arcn_code) { 3955 case AR_CN_BOGON: 3956 /* 3957 * Someone is sending ARP packets with a source protocol 3958 * address that we have published and for which we believe our 3959 * entry is authoritative and (when ill_arp_extend is set) 3960 * verified to be unique on the network. 3961 * 3962 * The ARP module internally handles the cases where the sender 3963 * is just probing (for DAD) and where the hardware address of 3964 * a non-authoritative entry has changed. Thus, these are the 3965 * real conflicts, and we have to do resolution. 3966 * 3967 * We back away quickly from the address if it's from DHCP or 3968 * otherwise temporary and hasn't been used recently (or at 3969 * all). We'd like to include "deprecated" addresses here as 3970 * well (as there's no real reason to defend something we're 3971 * discarding), but IPMP "reuses" this flag to mean something 3972 * other than the standard meaning. 3973 * 3974 * If the ARP module above is not extended (meaning that it 3975 * doesn't know how to defend the address), then we just log 3976 * the problem as we always did and continue on. It's not 3977 * right, but there's little else we can do, and those old ATM 3978 * users are going away anyway. 3979 */ 3980 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3981 hbuf, sizeof (hbuf)); 3982 (void) ip_dot_addr(src, sbuf); 3983 if (isv6) { 3984 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3985 ipst); 3986 } else { 3987 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3988 } 3989 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3990 uint32_t now; 3991 uint32_t maxage; 3992 clock_t lused; 3993 uint_t maxdefense; 3994 uint_t defs; 3995 3996 /* 3997 * First, figure out if this address hasn't been used 3998 * in a while. If it hasn't, then it's a better 3999 * candidate for abandoning. 4000 */ 4001 ipif = ire->ire_ipif; 4002 ASSERT(ipif != NULL); 4003 now = gethrestime_sec(); 4004 maxage = now - ire->ire_create_time; 4005 if (maxage > ipst->ips_ip_max_temp_idle) 4006 maxage = ipst->ips_ip_max_temp_idle; 4007 lused = drv_hztousec(ddi_get_lbolt() - 4008 ire->ire_last_used_time) / MICROSEC + 1; 4009 if (lused >= maxage && (ipif->ipif_flags & 4010 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4011 maxdefense = ipst->ips_ip_max_temp_defend; 4012 else 4013 maxdefense = ipst->ips_ip_max_defend; 4014 4015 /* 4016 * Now figure out how many times we've defended 4017 * ourselves. Ignore defenses that happened long in 4018 * the past. 4019 */ 4020 mutex_enter(&ire->ire_lock); 4021 if ((defs = ire->ire_defense_count) > 0 && 4022 now - ire->ire_defense_time > 4023 ipst->ips_ip_defend_interval) { 4024 ire->ire_defense_count = defs = 0; 4025 } 4026 ire->ire_defense_count++; 4027 ire->ire_defense_time = now; 4028 mutex_exit(&ire->ire_lock); 4029 ill_refhold(ill); 4030 ire_refrele(ire); 4031 4032 /* 4033 * If we've defended ourselves too many times already, 4034 * then give up and tear down the interface(s) using 4035 * this address. Otherwise, defend by sending out a 4036 * gratuitous ARP. 4037 */ 4038 if (defs >= maxdefense && ill->ill_arp_extend) { 4039 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4040 B_FALSE); 4041 } else { 4042 cmn_err(CE_WARN, 4043 "node %s is using our IP address %s on %s", 4044 hbuf, sbuf, ill->ill_name); 4045 /* 4046 * If this is an old (ATM) ARP module, then 4047 * don't try to defend the address. Remain 4048 * compatible with the old behavior. Defend 4049 * only with new ARP. 4050 */ 4051 if (ill->ill_arp_extend) { 4052 qwriter_ip(ill, q, mp, ip_arp_defend, 4053 NEW_OP, B_FALSE); 4054 } else { 4055 ill_refrele(ill); 4056 } 4057 } 4058 return; 4059 } 4060 cmn_err(CE_WARN, 4061 "proxy ARP problem? Node '%s' is using %s on %s", 4062 hbuf, sbuf, ill->ill_name); 4063 if (ire != NULL) 4064 ire_refrele(ire); 4065 break; 4066 case AR_CN_ANNOUNCE: 4067 if (isv6) { 4068 /* 4069 * For XRESOLV interfaces. 4070 * Delete the IRE cache entry and NCE for this 4071 * v6 address 4072 */ 4073 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4074 /* 4075 * If v6src is a non-zero, it's a router address 4076 * as below. Do the same sort of thing to clean 4077 * out off-net IRE_CACHE entries that go through 4078 * the router. 4079 */ 4080 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4081 ire_walk_v6(ire_delete_cache_gw_v6, 4082 (char *)&v6src, ALL_ZONES, ipst); 4083 } 4084 } else { 4085 nce_hw_map_t hwm; 4086 4087 /* 4088 * ARP gives us a copy of any packet where it thinks 4089 * the address has changed, so that we can update our 4090 * caches. We're responsible for caching known answers 4091 * in the current design. We check whether the 4092 * hardware address really has changed in all of our 4093 * entries that have cached this mapping, and if so, we 4094 * blow them away. This way we will immediately pick 4095 * up the rare case of a host changing hardware 4096 * address. 4097 */ 4098 if (src == 0) 4099 break; 4100 hwm.hwm_addr = src; 4101 hwm.hwm_hwlen = arh->arh_hlen; 4102 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4103 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4104 ndp_walk_common(ipst->ips_ndp4, NULL, 4105 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4106 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4107 } 4108 break; 4109 case AR_CN_READY: 4110 /* No external v6 resolver has a contract to use this */ 4111 if (isv6) 4112 break; 4113 /* If the link is down, we'll retry this later */ 4114 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4115 break; 4116 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4117 NULL, NULL, ipst); 4118 if (ipif != NULL) { 4119 /* 4120 * If this is a duplicate recovery, then we now need to 4121 * go exclusive to bring this thing back up. 4122 */ 4123 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4124 IPIF_DUPLICATE) { 4125 ipif_refrele(ipif); 4126 ill_refhold(ill); 4127 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4128 B_FALSE); 4129 return; 4130 } 4131 /* 4132 * If this is the first notice that this address is 4133 * ready, then let the user know now. 4134 */ 4135 if ((ipif->ipif_flags & IPIF_UP) && 4136 !ipif->ipif_addr_ready) { 4137 ipif_mask_reply(ipif); 4138 ipif_up_notify(ipif); 4139 } 4140 ipif->ipif_addr_ready = 1; 4141 ipif_refrele(ipif); 4142 } 4143 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4144 if (ire != NULL) { 4145 ire->ire_defense_count = 0; 4146 ire_refrele(ire); 4147 } 4148 break; 4149 case AR_CN_FAILED: 4150 /* No external v6 resolver has a contract to use this */ 4151 if (isv6) 4152 break; 4153 if (!ill->ill_arp_extend) { 4154 (void) mac_colon_addr((uint8_t *)(arh + 1), 4155 arh->arh_hlen, hbuf, sizeof (hbuf)); 4156 (void) ip_dot_addr(src, sbuf); 4157 4158 cmn_err(CE_WARN, 4159 "node %s is using our IP address %s on %s", 4160 hbuf, sbuf, ill->ill_name); 4161 break; 4162 } 4163 ill_refhold(ill); 4164 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4165 return; 4166 } 4167 freemsg(mp); 4168 } 4169 4170 /* 4171 * Create a mblk suitable for carrying the interface index and/or source link 4172 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4173 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4174 * application. 4175 */ 4176 mblk_t * 4177 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4178 ip_stack_t *ipst) 4179 { 4180 mblk_t *mp; 4181 ip_pktinfo_t *pinfo; 4182 ipha_t *ipha; 4183 struct ether_header *pether; 4184 boolean_t ipmp_ill_held = B_FALSE; 4185 4186 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4187 if (mp == NULL) { 4188 ip1dbg(("ip_add_info: allocation failure.\n")); 4189 return (data_mp); 4190 } 4191 4192 ipha = (ipha_t *)data_mp->b_rptr; 4193 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4194 bzero(pinfo, sizeof (ip_pktinfo_t)); 4195 pinfo->ip_pkt_flags = (uchar_t)flags; 4196 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4197 4198 pether = (struct ether_header *)((char *)ipha 4199 - sizeof (struct ether_header)); 4200 4201 /* 4202 * Make sure the interface is an ethernet type, since this option 4203 * is currently supported only on this type of interface. Also make 4204 * sure we are pointing correctly above db_base. 4205 */ 4206 if ((flags & IPF_RECVSLLA) && 4207 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4208 (ill->ill_type == IFT_ETHER) && 4209 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4210 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4211 bcopy(pether->ether_shost.ether_addr_octet, 4212 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4213 } else { 4214 /* 4215 * Clear the bit. Indicate to upper layer that IP is not 4216 * sending this ancillary info. 4217 */ 4218 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4219 } 4220 4221 /* 4222 * If `ill' is in an IPMP group, use the IPMP ill to determine 4223 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4224 * IPF_RECVADDR support on test addresses is not needed.) 4225 * 4226 * Note that `ill' may already be an IPMP ill if e.g. we're 4227 * processing a packet looped back to an IPMP data address 4228 * (since those IRE_LOCALs are tied to IPMP ills). 4229 */ 4230 if (IS_UNDER_IPMP(ill)) { 4231 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4232 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4233 freemsg(mp); 4234 return (data_mp); 4235 } 4236 ipmp_ill_held = B_TRUE; 4237 } 4238 4239 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4240 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4241 if (flags & IPF_RECVADDR) { 4242 ipif_t *ipif; 4243 ire_t *ire; 4244 4245 /* 4246 * Only valid for V4 4247 */ 4248 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4249 (IPV4_VERSION << 4)); 4250 4251 ipif = ipif_get_next_ipif(NULL, ill); 4252 if (ipif != NULL) { 4253 /* 4254 * Since a decision has already been made to deliver the 4255 * packet, there is no need to test for SECATTR and 4256 * ZONEONLY. 4257 * When a multicast packet is transmitted 4258 * a cache entry is created for the multicast address. 4259 * When delivering a copy of the packet or when new 4260 * packets are received we do not want to match on the 4261 * cached entry so explicitly match on 4262 * IRE_LOCAL and IRE_LOOPBACK 4263 */ 4264 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4265 IRE_LOCAL | IRE_LOOPBACK, 4266 ipif, zoneid, NULL, 4267 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4268 if (ire == NULL) { 4269 /* 4270 * packet must have come on a different 4271 * interface. 4272 * Since a decision has already been made to 4273 * deliver the packet, there is no need to test 4274 * for SECATTR and ZONEONLY. 4275 * Only match on local and broadcast ire's. 4276 * See detailed comment above. 4277 */ 4278 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4279 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4280 NULL, MATCH_IRE_TYPE, ipst); 4281 } 4282 4283 if (ire == NULL) { 4284 /* 4285 * This is either a multicast packet or 4286 * the address has been removed since 4287 * the packet was received. 4288 * Return INADDR_ANY so that normal source 4289 * selection occurs for the response. 4290 */ 4291 4292 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4293 } else { 4294 pinfo->ip_pkt_match_addr.s_addr = 4295 ire->ire_src_addr; 4296 ire_refrele(ire); 4297 } 4298 ipif_refrele(ipif); 4299 } else { 4300 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4301 } 4302 } 4303 4304 if (ipmp_ill_held) 4305 ill_refrele(ill); 4306 4307 mp->b_datap->db_type = M_CTL; 4308 mp->b_wptr += sizeof (ip_pktinfo_t); 4309 mp->b_cont = data_mp; 4310 4311 return (mp); 4312 } 4313 4314 /* 4315 * Used to determine the most accurate cred_t to use for TX. 4316 * First priority is SCM_UCRED having set the label in the message, 4317 * which is used for MLP on UDP. Second priority is the peers label (aka 4318 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4319 * open credentials. 4320 */ 4321 cred_t * 4322 ip_best_cred(mblk_t *mp, conn_t *connp) 4323 { 4324 cred_t *cr; 4325 4326 cr = msg_getcred(mp, NULL); 4327 if (cr != NULL && crgetlabel(cr) != NULL) 4328 return (cr); 4329 return (CONN_CRED(connp)); 4330 } 4331 4332 /* 4333 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4334 * part of the bind request. 4335 */ 4336 4337 boolean_t 4338 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4339 { 4340 ipsec_in_t *ii; 4341 4342 ASSERT(policy_mp != NULL); 4343 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4344 4345 ii = (ipsec_in_t *)policy_mp->b_rptr; 4346 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4347 4348 connp->conn_policy = ii->ipsec_in_policy; 4349 ii->ipsec_in_policy = NULL; 4350 4351 if (ii->ipsec_in_action != NULL) { 4352 if (connp->conn_latch == NULL) { 4353 connp->conn_latch = iplatch_create(); 4354 if (connp->conn_latch == NULL) 4355 return (B_FALSE); 4356 } 4357 ipsec_latch_inbound(connp->conn_latch, ii); 4358 } 4359 return (B_TRUE); 4360 } 4361 4362 static void 4363 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4364 { 4365 /* 4366 * Pass the IPsec headers size in ire_ipsec_overhead. 4367 * We can't do this in ip_bind_get_ire because the policy 4368 * may not have been inherited at that point in time and hence 4369 * conn_out_enforce_policy may not be set. 4370 */ 4371 if (ire_requested && connp->conn_out_enforce_policy && 4372 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4373 ire_t *ire = (ire_t *)mp->b_rptr; 4374 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4375 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4376 } 4377 } 4378 4379 /* 4380 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4381 * and to arrange for power-fanout assist. The ULP is identified by 4382 * adding a single byte at the end of the original bind message. 4383 * A ULP other than UDP or TCP that wishes to be recognized passes 4384 * down a bind with a zero length address. 4385 * 4386 * The binding works as follows: 4387 * - A zero byte address means just bind to the protocol. 4388 * - A four byte address is treated as a request to validate 4389 * that the address is a valid local address, appropriate for 4390 * an application to bind to. This does not affect any fanout 4391 * information in IP. 4392 * - A sizeof sin_t byte address is used to bind to only the local address 4393 * and port. 4394 * - A sizeof ipa_conn_t byte address contains complete fanout information 4395 * consisting of local and remote addresses and ports. In 4396 * this case, the addresses are both validated as appropriate 4397 * for this operation, and, if so, the information is retained 4398 * for use in the inbound fanout. 4399 * 4400 * The ULP (except in the zero-length bind) can append an 4401 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4402 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4403 * a copy of the source or destination IRE (source for local bind; 4404 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4405 * policy information contained should be copied on to the conn. 4406 * 4407 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4408 */ 4409 mblk_t * 4410 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4411 { 4412 ssize_t len; 4413 struct T_bind_req *tbr; 4414 sin_t *sin; 4415 ipa_conn_t *ac; 4416 uchar_t *ucp; 4417 mblk_t *mp1; 4418 boolean_t ire_requested; 4419 int error = 0; 4420 int protocol; 4421 ipa_conn_x_t *acx; 4422 cred_t *cr; 4423 4424 /* 4425 * All Solaris components should pass a db_credp 4426 * for this TPI message, hence we ASSERT. 4427 * But in case there is some other M_PROTO that looks 4428 * like a TPI message sent by some other kernel 4429 * component, we check and return an error. 4430 */ 4431 cr = msg_getcred(mp, NULL); 4432 ASSERT(cr != NULL); 4433 if (cr == NULL) { 4434 error = EINVAL; 4435 goto bad_addr; 4436 } 4437 4438 ASSERT(!connp->conn_af_isv6); 4439 connp->conn_pkt_isv6 = B_FALSE; 4440 4441 len = MBLKL(mp); 4442 if (len < (sizeof (*tbr) + 1)) { 4443 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4444 "ip_bind: bogus msg, len %ld", len); 4445 /* XXX: Need to return something better */ 4446 goto bad_addr; 4447 } 4448 /* Back up and extract the protocol identifier. */ 4449 mp->b_wptr--; 4450 protocol = *mp->b_wptr & 0xFF; 4451 tbr = (struct T_bind_req *)mp->b_rptr; 4452 /* Reset the message type in preparation for shipping it back. */ 4453 DB_TYPE(mp) = M_PCPROTO; 4454 4455 connp->conn_ulp = (uint8_t)protocol; 4456 4457 /* 4458 * Check for a zero length address. This is from a protocol that 4459 * wants to register to receive all packets of its type. 4460 */ 4461 if (tbr->ADDR_length == 0) { 4462 /* 4463 * These protocols are now intercepted in ip_bind_v6(). 4464 * Reject protocol-level binds here for now. 4465 * 4466 * For SCTP raw socket, ICMP sends down a bind with sin_t 4467 * so that the protocol type cannot be SCTP. 4468 */ 4469 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4470 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4471 goto bad_addr; 4472 } 4473 4474 /* 4475 * 4476 * The udp module never sends down a zero-length address, 4477 * and allowing this on a labeled system will break MLP 4478 * functionality. 4479 */ 4480 if (is_system_labeled() && protocol == IPPROTO_UDP) 4481 goto bad_addr; 4482 4483 if (connp->conn_mac_exempt) 4484 goto bad_addr; 4485 4486 /* No hash here really. The table is big enough. */ 4487 connp->conn_srcv6 = ipv6_all_zeros; 4488 4489 ipcl_proto_insert(connp, protocol); 4490 4491 tbr->PRIM_type = T_BIND_ACK; 4492 return (mp); 4493 } 4494 4495 /* Extract the address pointer from the message. */ 4496 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4497 tbr->ADDR_length); 4498 if (ucp == NULL) { 4499 ip1dbg(("ip_bind: no address\n")); 4500 goto bad_addr; 4501 } 4502 if (!OK_32PTR(ucp)) { 4503 ip1dbg(("ip_bind: unaligned address\n")); 4504 goto bad_addr; 4505 } 4506 /* 4507 * Check for trailing mps. 4508 */ 4509 4510 mp1 = mp->b_cont; 4511 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4512 4513 switch (tbr->ADDR_length) { 4514 default: 4515 ip1dbg(("ip_bind: bad address length %d\n", 4516 (int)tbr->ADDR_length)); 4517 goto bad_addr; 4518 4519 case IP_ADDR_LEN: 4520 /* Verification of local address only */ 4521 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4522 *(ipaddr_t *)ucp, 0, B_FALSE); 4523 break; 4524 4525 case sizeof (sin_t): 4526 sin = (sin_t *)ucp; 4527 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4528 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4529 break; 4530 4531 case sizeof (ipa_conn_t): 4532 ac = (ipa_conn_t *)ucp; 4533 /* For raw socket, the local port is not set. */ 4534 if (ac->ac_lport == 0) 4535 ac->ac_lport = connp->conn_lport; 4536 /* Always verify destination reachability. */ 4537 error = ip_bind_connected_v4(connp, &mp1, protocol, 4538 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4539 B_TRUE, B_TRUE, cr); 4540 break; 4541 4542 case sizeof (ipa_conn_x_t): 4543 acx = (ipa_conn_x_t *)ucp; 4544 /* 4545 * Whether or not to verify destination reachability depends 4546 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4547 */ 4548 error = ip_bind_connected_v4(connp, &mp1, protocol, 4549 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4550 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4551 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4552 break; 4553 } 4554 ASSERT(error != EINPROGRESS); 4555 if (error != 0) 4556 goto bad_addr; 4557 4558 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4559 4560 /* Send it home. */ 4561 mp->b_datap->db_type = M_PCPROTO; 4562 tbr->PRIM_type = T_BIND_ACK; 4563 return (mp); 4564 4565 bad_addr: 4566 /* 4567 * If error = -1 then we generate a TBADADDR - otherwise error is 4568 * a unix errno. 4569 */ 4570 if (error > 0) 4571 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4572 else 4573 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4574 return (mp); 4575 } 4576 4577 /* 4578 * Here address is verified to be a valid local address. 4579 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4580 * address is also considered a valid local address. 4581 * In the case of a broadcast/multicast address, however, the 4582 * upper protocol is expected to reset the src address 4583 * to 0 if it sees a IRE_BROADCAST type returned so that 4584 * no packets are emitted with broadcast/multicast address as 4585 * source address (that violates hosts requirements RFC 1122) 4586 * The addresses valid for bind are: 4587 * (1) - INADDR_ANY (0) 4588 * (2) - IP address of an UP interface 4589 * (3) - IP address of a DOWN interface 4590 * (4) - valid local IP broadcast addresses. In this case 4591 * the conn will only receive packets destined to 4592 * the specified broadcast address. 4593 * (5) - a multicast address. In this case 4594 * the conn will only receive packets destined to 4595 * the specified multicast address. Note: the 4596 * application still has to issue an 4597 * IP_ADD_MEMBERSHIP socket option. 4598 * 4599 * On error, return -1 for TBADADDR otherwise pass the 4600 * errno with TSYSERR reply. 4601 * 4602 * In all the above cases, the bound address must be valid in the current zone. 4603 * When the address is loopback, multicast or broadcast, there might be many 4604 * matching IREs so bind has to look up based on the zone. 4605 * 4606 * Note: lport is in network byte order. 4607 * 4608 */ 4609 int 4610 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4611 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4612 { 4613 int error = 0; 4614 ire_t *src_ire; 4615 zoneid_t zoneid; 4616 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4617 mblk_t *mp = NULL; 4618 boolean_t ire_requested = B_FALSE; 4619 boolean_t ipsec_policy_set = B_FALSE; 4620 4621 if (mpp) 4622 mp = *mpp; 4623 4624 if (mp != NULL) { 4625 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4626 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4627 } 4628 4629 /* 4630 * If it was previously connected, conn_fully_bound would have 4631 * been set. 4632 */ 4633 connp->conn_fully_bound = B_FALSE; 4634 4635 src_ire = NULL; 4636 4637 zoneid = IPCL_ZONEID(connp); 4638 4639 if (src_addr) { 4640 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4641 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4642 /* 4643 * If an address other than 0.0.0.0 is requested, 4644 * we verify that it is a valid address for bind 4645 * Note: Following code is in if-else-if form for 4646 * readability compared to a condition check. 4647 */ 4648 /* LINTED - statement has no consequence */ 4649 if (IRE_IS_LOCAL(src_ire)) { 4650 /* 4651 * (2) Bind to address of local UP interface 4652 */ 4653 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4654 /* 4655 * (4) Bind to broadcast address 4656 * Note: permitted only from transports that 4657 * request IRE 4658 */ 4659 if (!ire_requested) 4660 error = EADDRNOTAVAIL; 4661 } else { 4662 /* 4663 * (3) Bind to address of local DOWN interface 4664 * (ipif_lookup_addr() looks up all interfaces 4665 * but we do not get here for UP interfaces 4666 * - case (2) above) 4667 */ 4668 /* LINTED - statement has no consequent */ 4669 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4670 /* The address exists */ 4671 } else if (CLASSD(src_addr)) { 4672 error = 0; 4673 if (src_ire != NULL) 4674 ire_refrele(src_ire); 4675 /* 4676 * (5) bind to multicast address. 4677 * Fake out the IRE returned to upper 4678 * layer to be a broadcast IRE. 4679 */ 4680 src_ire = ire_ctable_lookup( 4681 INADDR_BROADCAST, INADDR_ANY, 4682 IRE_BROADCAST, NULL, zoneid, NULL, 4683 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4684 ipst); 4685 if (src_ire == NULL || !ire_requested) 4686 error = EADDRNOTAVAIL; 4687 } else { 4688 /* 4689 * Not a valid address for bind 4690 */ 4691 error = EADDRNOTAVAIL; 4692 } 4693 } 4694 if (error) { 4695 /* Red Alert! Attempting to be a bogon! */ 4696 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4697 ntohl(src_addr))); 4698 goto bad_addr; 4699 } 4700 } 4701 4702 /* 4703 * Allow setting new policies. For example, disconnects come 4704 * down as ipa_t bind. As we would have set conn_policy_cached 4705 * to B_TRUE before, we should set it to B_FALSE, so that policy 4706 * can change after the disconnect. 4707 */ 4708 connp->conn_policy_cached = B_FALSE; 4709 4710 /* 4711 * If not fanout_insert this was just an address verification 4712 */ 4713 if (fanout_insert) { 4714 /* 4715 * The addresses have been verified. Time to insert in 4716 * the correct fanout list. 4717 */ 4718 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4719 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4720 connp->conn_lport = lport; 4721 connp->conn_fport = 0; 4722 /* 4723 * Do we need to add a check to reject Multicast packets 4724 */ 4725 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4726 } 4727 4728 if (error == 0) { 4729 if (ire_requested) { 4730 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4731 error = -1; 4732 /* Falls through to bad_addr */ 4733 } 4734 } else if (ipsec_policy_set) { 4735 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4736 error = -1; 4737 /* Falls through to bad_addr */ 4738 } 4739 } 4740 } 4741 bad_addr: 4742 if (error != 0) { 4743 if (connp->conn_anon_port) { 4744 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4745 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4746 B_FALSE); 4747 } 4748 connp->conn_mlp_type = mlptSingle; 4749 } 4750 if (src_ire != NULL) 4751 IRE_REFRELE(src_ire); 4752 return (error); 4753 } 4754 4755 int 4756 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4757 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4758 { 4759 int error; 4760 mblk_t *mp = NULL; 4761 boolean_t ire_requested; 4762 4763 if (ire_mpp) 4764 mp = *ire_mpp; 4765 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4766 4767 ASSERT(!connp->conn_af_isv6); 4768 connp->conn_pkt_isv6 = B_FALSE; 4769 connp->conn_ulp = protocol; 4770 4771 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4772 fanout_insert); 4773 if (error == 0) { 4774 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4775 ire_requested); 4776 } else if (error < 0) { 4777 error = -TBADADDR; 4778 } 4779 return (error); 4780 } 4781 4782 /* 4783 * Verify that both the source and destination addresses 4784 * are valid. If verify_dst is false, then the destination address may be 4785 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4786 * destination reachability, while tunnels do not. 4787 * Note that we allow connect to broadcast and multicast 4788 * addresses when ire_requested is set. Thus the ULP 4789 * has to check for IRE_BROADCAST and multicast. 4790 * 4791 * Returns zero if ok. 4792 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4793 * (for use with TSYSERR reply). 4794 * 4795 * Note: lport and fport are in network byte order. 4796 */ 4797 int 4798 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4799 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4800 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4801 { 4802 4803 ire_t *src_ire; 4804 ire_t *dst_ire; 4805 int error = 0; 4806 ire_t *sire = NULL; 4807 ire_t *md_dst_ire = NULL; 4808 ire_t *lso_dst_ire = NULL; 4809 ill_t *ill = NULL; 4810 zoneid_t zoneid; 4811 ipaddr_t src_addr = *src_addrp; 4812 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4813 mblk_t *mp = NULL; 4814 boolean_t ire_requested = B_FALSE; 4815 boolean_t ipsec_policy_set = B_FALSE; 4816 ts_label_t *tsl = NULL; 4817 4818 if (mpp) 4819 mp = *mpp; 4820 4821 if (mp != NULL) { 4822 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4823 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4824 } 4825 if (cr != NULL) 4826 tsl = crgetlabel(cr); 4827 4828 src_ire = dst_ire = NULL; 4829 4830 /* 4831 * If we never got a disconnect before, clear it now. 4832 */ 4833 connp->conn_fully_bound = B_FALSE; 4834 4835 zoneid = IPCL_ZONEID(connp); 4836 4837 if (CLASSD(dst_addr)) { 4838 /* Pick up an IRE_BROADCAST */ 4839 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4840 NULL, zoneid, tsl, 4841 (MATCH_IRE_RECURSIVE | 4842 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4843 MATCH_IRE_SECATTR), ipst); 4844 } else { 4845 /* 4846 * If conn_dontroute is set or if conn_nexthop_set is set, 4847 * and onlink ipif is not found set ENETUNREACH error. 4848 */ 4849 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4850 ipif_t *ipif; 4851 4852 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4853 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4854 if (ipif == NULL) { 4855 error = ENETUNREACH; 4856 goto bad_addr; 4857 } 4858 ipif_refrele(ipif); 4859 } 4860 4861 if (connp->conn_nexthop_set) { 4862 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4863 0, 0, NULL, NULL, zoneid, tsl, 4864 MATCH_IRE_SECATTR, ipst); 4865 } else { 4866 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4867 &sire, zoneid, tsl, 4868 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4869 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4870 MATCH_IRE_SECATTR), ipst); 4871 } 4872 } 4873 /* 4874 * dst_ire can't be a broadcast when not ire_requested. 4875 * We also prevent ire's with src address INADDR_ANY to 4876 * be used, which are created temporarily for 4877 * sending out packets from endpoints that have 4878 * conn_unspec_src set. If verify_dst is true, the destination must be 4879 * reachable. If verify_dst is false, the destination needn't be 4880 * reachable. 4881 * 4882 * If we match on a reject or black hole, then we've got a 4883 * local failure. May as well fail out the connect() attempt, 4884 * since it's never going to succeed. 4885 */ 4886 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4887 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4888 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4889 /* 4890 * If we're verifying destination reachability, we always want 4891 * to complain here. 4892 * 4893 * If we're not verifying destination reachability but the 4894 * destination has a route, we still want to fail on the 4895 * temporary address and broadcast address tests. 4896 */ 4897 if (verify_dst || (dst_ire != NULL)) { 4898 if (ip_debug > 2) { 4899 pr_addr_dbg("ip_bind_connected_v4:" 4900 "bad connected dst %s\n", 4901 AF_INET, &dst_addr); 4902 } 4903 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4904 error = ENETUNREACH; 4905 else 4906 error = EHOSTUNREACH; 4907 goto bad_addr; 4908 } 4909 } 4910 4911 /* 4912 * We now know that routing will allow us to reach the destination. 4913 * Check whether Trusted Solaris policy allows communication with this 4914 * host, and pretend that the destination is unreachable if not. 4915 * 4916 * This is never a problem for TCP, since that transport is known to 4917 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4918 * handling. If the remote is unreachable, it will be detected at that 4919 * point, so there's no reason to check it here. 4920 * 4921 * Note that for sendto (and other datagram-oriented friends), this 4922 * check is done as part of the data path label computation instead. 4923 * The check here is just to make non-TCP connect() report the right 4924 * error. 4925 */ 4926 if (dst_ire != NULL && is_system_labeled() && 4927 !IPCL_IS_TCP(connp) && 4928 tsol_compute_label(cr, dst_addr, NULL, 4929 connp->conn_mac_exempt, ipst) != 0) { 4930 error = EHOSTUNREACH; 4931 if (ip_debug > 2) { 4932 pr_addr_dbg("ip_bind_connected_v4:" 4933 " no label for dst %s\n", 4934 AF_INET, &dst_addr); 4935 } 4936 goto bad_addr; 4937 } 4938 4939 /* 4940 * If the app does a connect(), it means that it will most likely 4941 * send more than 1 packet to the destination. It makes sense 4942 * to clear the temporary flag. 4943 */ 4944 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4945 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4946 irb_t *irb = dst_ire->ire_bucket; 4947 4948 rw_enter(&irb->irb_lock, RW_WRITER); 4949 /* 4950 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4951 * the lock to guarantee irb_tmp_ire_cnt. 4952 */ 4953 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4954 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4955 irb->irb_tmp_ire_cnt--; 4956 } 4957 rw_exit(&irb->irb_lock); 4958 } 4959 4960 /* 4961 * See if we should notify ULP about LSO/MDT; we do this whether or not 4962 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4963 * eligibility tests for passive connects are handled separately 4964 * through tcp_adapt_ire(). We do this before the source address 4965 * selection, because dst_ire may change after a call to 4966 * ipif_select_source(). This is a best-effort check, as the 4967 * packet for this connection may not actually go through 4968 * dst_ire->ire_stq, and the exact IRE can only be known after 4969 * calling ip_newroute(). This is why we further check on the 4970 * IRE during LSO/Multidata packet transmission in 4971 * tcp_lsosend()/tcp_multisend(). 4972 */ 4973 if (!ipsec_policy_set && dst_ire != NULL && 4974 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4975 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4976 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4977 lso_dst_ire = dst_ire; 4978 IRE_REFHOLD(lso_dst_ire); 4979 } else if (ipst->ips_ip_multidata_outbound && 4980 ILL_MDT_CAPABLE(ill)) { 4981 md_dst_ire = dst_ire; 4982 IRE_REFHOLD(md_dst_ire); 4983 } 4984 } 4985 4986 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4987 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4988 /* 4989 * If the IRE belongs to a different zone, look for a matching 4990 * route in the forwarding table and use the source address from 4991 * that route. 4992 */ 4993 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4994 zoneid, 0, NULL, 4995 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4996 MATCH_IRE_RJ_BHOLE, ipst); 4997 if (src_ire == NULL) { 4998 error = EHOSTUNREACH; 4999 goto bad_addr; 5000 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5001 if (!(src_ire->ire_type & IRE_HOST)) 5002 error = ENETUNREACH; 5003 else 5004 error = EHOSTUNREACH; 5005 goto bad_addr; 5006 } 5007 if (src_addr == INADDR_ANY) 5008 src_addr = src_ire->ire_src_addr; 5009 ire_refrele(src_ire); 5010 src_ire = NULL; 5011 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5012 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5013 src_addr = sire->ire_src_addr; 5014 ire_refrele(dst_ire); 5015 dst_ire = sire; 5016 sire = NULL; 5017 } else { 5018 /* 5019 * Pick a source address so that a proper inbound 5020 * load spreading would happen. 5021 */ 5022 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5023 ipif_t *src_ipif = NULL; 5024 ire_t *ipif_ire; 5025 5026 /* 5027 * Supply a local source address such that inbound 5028 * load spreading happens. 5029 * 5030 * Determine the best source address on this ill for 5031 * the destination. 5032 * 5033 * 1) For broadcast, we should return a broadcast ire 5034 * found above so that upper layers know that the 5035 * destination address is a broadcast address. 5036 * 5037 * 2) If the ipif is DEPRECATED, select a better 5038 * source address. Similarly, if the ipif is on 5039 * the IPMP meta-interface, pick a source address 5040 * at random to improve inbound load spreading. 5041 * 5042 * 3) If the outgoing interface is part of a usesrc 5043 * group, then try selecting a source address from 5044 * the usesrc ILL. 5045 */ 5046 if ((dst_ire->ire_zoneid != zoneid && 5047 dst_ire->ire_zoneid != ALL_ZONES) || 5048 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5049 (!(dst_ire->ire_type & IRE_BROADCAST) && 5050 (IS_IPMP(ire_ill) || 5051 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5052 (ire_ill->ill_usesrc_ifindex != 0)))) { 5053 /* 5054 * If the destination is reachable via a 5055 * given gateway, the selected source address 5056 * should be in the same subnet as the gateway. 5057 * Otherwise, the destination is not reachable. 5058 * 5059 * If there are no interfaces on the same subnet 5060 * as the destination, ipif_select_source gives 5061 * first non-deprecated interface which might be 5062 * on a different subnet than the gateway. 5063 * This is not desirable. Hence pass the dst_ire 5064 * source address to ipif_select_source. 5065 * It is sure that the destination is reachable 5066 * with the dst_ire source address subnet. 5067 * So passing dst_ire source address to 5068 * ipif_select_source will make sure that the 5069 * selected source will be on the same subnet 5070 * as dst_ire source address. 5071 */ 5072 ipaddr_t saddr = 5073 dst_ire->ire_ipif->ipif_src_addr; 5074 src_ipif = ipif_select_source(ire_ill, 5075 saddr, zoneid); 5076 if (src_ipif != NULL) { 5077 if (IS_VNI(src_ipif->ipif_ill)) { 5078 /* 5079 * For VNI there is no 5080 * interface route 5081 */ 5082 src_addr = 5083 src_ipif->ipif_src_addr; 5084 } else { 5085 ipif_ire = 5086 ipif_to_ire(src_ipif); 5087 if (ipif_ire != NULL) { 5088 IRE_REFRELE(dst_ire); 5089 dst_ire = ipif_ire; 5090 } 5091 src_addr = 5092 dst_ire->ire_src_addr; 5093 } 5094 ipif_refrele(src_ipif); 5095 } else { 5096 src_addr = dst_ire->ire_src_addr; 5097 } 5098 } else { 5099 src_addr = dst_ire->ire_src_addr; 5100 } 5101 } 5102 } 5103 5104 /* 5105 * We do ire_route_lookup() here (and not 5106 * interface lookup as we assert that 5107 * src_addr should only come from an 5108 * UP interface for hard binding. 5109 */ 5110 ASSERT(src_ire == NULL); 5111 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5112 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5113 /* src_ire must be a local|loopback */ 5114 if (!IRE_IS_LOCAL(src_ire)) { 5115 if (ip_debug > 2) { 5116 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5117 "src %s\n", AF_INET, &src_addr); 5118 } 5119 error = EADDRNOTAVAIL; 5120 goto bad_addr; 5121 } 5122 5123 /* 5124 * If the source address is a loopback address, the 5125 * destination had best be local or multicast. 5126 * The transports that can't handle multicast will reject 5127 * those addresses. 5128 */ 5129 if (src_ire->ire_type == IRE_LOOPBACK && 5130 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5131 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5132 error = -1; 5133 goto bad_addr; 5134 } 5135 5136 /* 5137 * Allow setting new policies. For example, disconnects come 5138 * down as ipa_t bind. As we would have set conn_policy_cached 5139 * to B_TRUE before, we should set it to B_FALSE, so that policy 5140 * can change after the disconnect. 5141 */ 5142 connp->conn_policy_cached = B_FALSE; 5143 5144 /* 5145 * Set the conn addresses/ports immediately, so the IPsec policy calls 5146 * can handle their passed-in conn's. 5147 */ 5148 5149 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5150 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5151 connp->conn_lport = lport; 5152 connp->conn_fport = fport; 5153 *src_addrp = src_addr; 5154 5155 ASSERT(!(ipsec_policy_set && ire_requested)); 5156 if (ire_requested) { 5157 iulp_t *ulp_info = NULL; 5158 5159 /* 5160 * Note that sire will not be NULL if this is an off-link 5161 * connection and there is not cache for that dest yet. 5162 * 5163 * XXX Because of an existing bug, if there are multiple 5164 * default routes, the IRE returned now may not be the actual 5165 * default route used (default routes are chosen in a 5166 * round robin fashion). So if the metrics for different 5167 * default routes are different, we may return the wrong 5168 * metrics. This will not be a problem if the existing 5169 * bug is fixed. 5170 */ 5171 if (sire != NULL) { 5172 ulp_info = &(sire->ire_uinfo); 5173 } 5174 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5175 error = -1; 5176 goto bad_addr; 5177 } 5178 mp = *mpp; 5179 } else if (ipsec_policy_set) { 5180 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5181 error = -1; 5182 goto bad_addr; 5183 } 5184 } 5185 5186 /* 5187 * Cache IPsec policy in this conn. If we have per-socket policy, 5188 * we'll cache that. If we don't, we'll inherit global policy. 5189 * 5190 * We can't insert until the conn reflects the policy. Note that 5191 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5192 * connections where we don't have a policy. This is to prevent 5193 * global policy lookups in the inbound path. 5194 * 5195 * If we insert before we set conn_policy_cached, 5196 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5197 * because global policy cound be non-empty. We normally call 5198 * ipsec_check_policy() for conn_policy_cached connections only if 5199 * ipc_in_enforce_policy is set. But in this case, 5200 * conn_policy_cached can get set anytime since we made the 5201 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5202 * called, which will make the above assumption false. Thus, we 5203 * need to insert after we set conn_policy_cached. 5204 */ 5205 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5206 goto bad_addr; 5207 5208 if (fanout_insert) { 5209 /* 5210 * The addresses have been verified. Time to insert in 5211 * the correct fanout list. 5212 */ 5213 error = ipcl_conn_insert(connp, protocol, src_addr, 5214 dst_addr, connp->conn_ports); 5215 } 5216 5217 if (error == 0) { 5218 connp->conn_fully_bound = B_TRUE; 5219 /* 5220 * Our initial checks for LSO/MDT have passed; the IRE is not 5221 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5222 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5223 * ip_xxinfo_return(), which performs further checks 5224 * against them and upon success, returns the LSO/MDT info 5225 * mblk which we will attach to the bind acknowledgment. 5226 */ 5227 if (lso_dst_ire != NULL) { 5228 mblk_t *lsoinfo_mp; 5229 5230 ASSERT(ill->ill_lso_capab != NULL); 5231 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5232 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5233 if (mp == NULL) { 5234 *mpp = lsoinfo_mp; 5235 } else { 5236 linkb(mp, lsoinfo_mp); 5237 } 5238 } 5239 } else if (md_dst_ire != NULL) { 5240 mblk_t *mdinfo_mp; 5241 5242 ASSERT(ill->ill_mdt_capab != NULL); 5243 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5244 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5245 if (mp == NULL) { 5246 *mpp = mdinfo_mp; 5247 } else { 5248 linkb(mp, mdinfo_mp); 5249 } 5250 } 5251 } 5252 } 5253 bad_addr: 5254 if (ipsec_policy_set) { 5255 ASSERT(mp != NULL); 5256 freeb(mp); 5257 /* 5258 * As of now assume that nothing else accompanies 5259 * IPSEC_POLICY_SET. 5260 */ 5261 *mpp = NULL; 5262 } 5263 if (src_ire != NULL) 5264 IRE_REFRELE(src_ire); 5265 if (dst_ire != NULL) 5266 IRE_REFRELE(dst_ire); 5267 if (sire != NULL) 5268 IRE_REFRELE(sire); 5269 if (md_dst_ire != NULL) 5270 IRE_REFRELE(md_dst_ire); 5271 if (lso_dst_ire != NULL) 5272 IRE_REFRELE(lso_dst_ire); 5273 return (error); 5274 } 5275 5276 int 5277 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5278 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5279 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5280 { 5281 int error; 5282 mblk_t *mp = NULL; 5283 boolean_t ire_requested; 5284 5285 if (ire_mpp) 5286 mp = *ire_mpp; 5287 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5288 5289 ASSERT(!connp->conn_af_isv6); 5290 connp->conn_pkt_isv6 = B_FALSE; 5291 connp->conn_ulp = protocol; 5292 5293 /* For raw socket, the local port is not set. */ 5294 if (lport == 0) 5295 lport = connp->conn_lport; 5296 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5297 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5298 if (error == 0) { 5299 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5300 ire_requested); 5301 } else if (error < 0) { 5302 error = -TBADADDR; 5303 } 5304 return (error); 5305 } 5306 5307 /* 5308 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5309 * Prefers dst_ire over src_ire. 5310 */ 5311 static boolean_t 5312 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5313 { 5314 mblk_t *mp = *mpp; 5315 ire_t *ret_ire; 5316 5317 ASSERT(mp != NULL); 5318 5319 if (ire != NULL) { 5320 /* 5321 * mp initialized above to IRE_DB_REQ_TYPE 5322 * appended mblk. Its <upper protocol>'s 5323 * job to make sure there is room. 5324 */ 5325 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5326 return (B_FALSE); 5327 5328 mp->b_datap->db_type = IRE_DB_TYPE; 5329 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5330 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5331 ret_ire = (ire_t *)mp->b_rptr; 5332 /* 5333 * Pass the latest setting of the ip_path_mtu_discovery and 5334 * copy the ulp info if any. 5335 */ 5336 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5337 IPH_DF : 0; 5338 if (ulp_info != NULL) { 5339 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5340 sizeof (iulp_t)); 5341 } 5342 ret_ire->ire_mp = mp; 5343 } else { 5344 /* 5345 * No IRE was found. Remove IRE mblk. 5346 */ 5347 *mpp = mp->b_cont; 5348 freeb(mp); 5349 } 5350 return (B_TRUE); 5351 } 5352 5353 /* 5354 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5355 * the final piece where we don't. Return a pointer to the first mblk in the 5356 * result, and update the pointer to the next mblk to chew on. If anything 5357 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5358 * NULL pointer. 5359 */ 5360 mblk_t * 5361 ip_carve_mp(mblk_t **mpp, ssize_t len) 5362 { 5363 mblk_t *mp0; 5364 mblk_t *mp1; 5365 mblk_t *mp2; 5366 5367 if (!len || !mpp || !(mp0 = *mpp)) 5368 return (NULL); 5369 /* If we aren't going to consume the first mblk, we need a dup. */ 5370 if (mp0->b_wptr - mp0->b_rptr > len) { 5371 mp1 = dupb(mp0); 5372 if (mp1) { 5373 /* Partition the data between the two mblks. */ 5374 mp1->b_wptr = mp1->b_rptr + len; 5375 mp0->b_rptr = mp1->b_wptr; 5376 /* 5377 * after adjustments if mblk not consumed is now 5378 * unaligned, try to align it. If this fails free 5379 * all messages and let upper layer recover. 5380 */ 5381 if (!OK_32PTR(mp0->b_rptr)) { 5382 if (!pullupmsg(mp0, -1)) { 5383 freemsg(mp0); 5384 freemsg(mp1); 5385 *mpp = NULL; 5386 return (NULL); 5387 } 5388 } 5389 } 5390 return (mp1); 5391 } 5392 /* Eat through as many mblks as we need to get len bytes. */ 5393 len -= mp0->b_wptr - mp0->b_rptr; 5394 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5395 if (mp2->b_wptr - mp2->b_rptr > len) { 5396 /* 5397 * We won't consume the entire last mblk. Like 5398 * above, dup and partition it. 5399 */ 5400 mp1->b_cont = dupb(mp2); 5401 mp1 = mp1->b_cont; 5402 if (!mp1) { 5403 /* 5404 * Trouble. Rather than go to a lot of 5405 * trouble to clean up, we free the messages. 5406 * This won't be any worse than losing it on 5407 * the wire. 5408 */ 5409 freemsg(mp0); 5410 freemsg(mp2); 5411 *mpp = NULL; 5412 return (NULL); 5413 } 5414 mp1->b_wptr = mp1->b_rptr + len; 5415 mp2->b_rptr = mp1->b_wptr; 5416 /* 5417 * after adjustments if mblk not consumed is now 5418 * unaligned, try to align it. If this fails free 5419 * all messages and let upper layer recover. 5420 */ 5421 if (!OK_32PTR(mp2->b_rptr)) { 5422 if (!pullupmsg(mp2, -1)) { 5423 freemsg(mp0); 5424 freemsg(mp2); 5425 *mpp = NULL; 5426 return (NULL); 5427 } 5428 } 5429 *mpp = mp2; 5430 return (mp0); 5431 } 5432 /* Decrement len by the amount we just got. */ 5433 len -= mp2->b_wptr - mp2->b_rptr; 5434 } 5435 /* 5436 * len should be reduced to zero now. If not our caller has 5437 * screwed up. 5438 */ 5439 if (len) { 5440 /* Shouldn't happen! */ 5441 freemsg(mp0); 5442 *mpp = NULL; 5443 return (NULL); 5444 } 5445 /* 5446 * We consumed up to exactly the end of an mblk. Detach the part 5447 * we are returning from the rest of the chain. 5448 */ 5449 mp1->b_cont = NULL; 5450 *mpp = mp2; 5451 return (mp0); 5452 } 5453 5454 /* The ill stream is being unplumbed. Called from ip_close */ 5455 int 5456 ip_modclose(ill_t *ill) 5457 { 5458 boolean_t success; 5459 ipsq_t *ipsq; 5460 ipif_t *ipif; 5461 queue_t *q = ill->ill_rq; 5462 ip_stack_t *ipst = ill->ill_ipst; 5463 int i; 5464 5465 /* 5466 * The punlink prior to this may have initiated a capability 5467 * negotiation. But ipsq_enter will block until that finishes or 5468 * times out. 5469 */ 5470 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5471 5472 /* 5473 * Open/close/push/pop is guaranteed to be single threaded 5474 * per stream by STREAMS. FS guarantees that all references 5475 * from top are gone before close is called. So there can't 5476 * be another close thread that has set CONDEMNED on this ill. 5477 * and cause ipsq_enter to return failure. 5478 */ 5479 ASSERT(success); 5480 ipsq = ill->ill_phyint->phyint_ipsq; 5481 5482 /* 5483 * Mark it condemned. No new reference will be made to this ill. 5484 * Lookup functions will return an error. Threads that try to 5485 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5486 * that the refcnt will drop down to zero. 5487 */ 5488 mutex_enter(&ill->ill_lock); 5489 ill->ill_state_flags |= ILL_CONDEMNED; 5490 for (ipif = ill->ill_ipif; ipif != NULL; 5491 ipif = ipif->ipif_next) { 5492 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5493 } 5494 /* 5495 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5496 * returns error if ILL_CONDEMNED is set 5497 */ 5498 cv_broadcast(&ill->ill_cv); 5499 mutex_exit(&ill->ill_lock); 5500 5501 /* 5502 * Send all the deferred DLPI messages downstream which came in 5503 * during the small window right before ipsq_enter(). We do this 5504 * without waiting for the ACKs because all the ACKs for M_PROTO 5505 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5506 */ 5507 ill_dlpi_send_deferred(ill); 5508 5509 /* 5510 * Shut down fragmentation reassembly. 5511 * ill_frag_timer won't start a timer again. 5512 * Now cancel any existing timer 5513 */ 5514 (void) untimeout(ill->ill_frag_timer_id); 5515 (void) ill_frag_timeout(ill, 0); 5516 5517 /* 5518 * Call ill_delete to bring down the ipifs, ilms and ill on 5519 * this ill. Then wait for the refcnts to drop to zero. 5520 * ill_is_freeable checks whether the ill is really quiescent. 5521 * Then make sure that threads that are waiting to enter the 5522 * ipsq have seen the error returned by ipsq_enter and have 5523 * gone away. Then we call ill_delete_tail which does the 5524 * DL_UNBIND_REQ with the driver and then qprocsoff. 5525 */ 5526 ill_delete(ill); 5527 mutex_enter(&ill->ill_lock); 5528 while (!ill_is_freeable(ill)) 5529 cv_wait(&ill->ill_cv, &ill->ill_lock); 5530 while (ill->ill_waiters) 5531 cv_wait(&ill->ill_cv, &ill->ill_lock); 5532 5533 mutex_exit(&ill->ill_lock); 5534 5535 /* 5536 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5537 * it held until the end of the function since the cleanup 5538 * below needs to be able to use the ip_stack_t. 5539 */ 5540 netstack_hold(ipst->ips_netstack); 5541 5542 /* qprocsoff is done via ill_delete_tail */ 5543 ill_delete_tail(ill); 5544 ASSERT(ill->ill_ipst == NULL); 5545 5546 /* 5547 * Walk through all upper (conn) streams and qenable 5548 * those that have queued data. 5549 * close synchronization needs this to 5550 * be done to ensure that all upper layers blocked 5551 * due to flow control to the closing device 5552 * get unblocked. 5553 */ 5554 ip1dbg(("ip_wsrv: walking\n")); 5555 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5556 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5557 } 5558 5559 mutex_enter(&ipst->ips_ip_mi_lock); 5560 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5561 mutex_exit(&ipst->ips_ip_mi_lock); 5562 5563 /* 5564 * credp could be null if the open didn't succeed and ip_modopen 5565 * itself calls ip_close. 5566 */ 5567 if (ill->ill_credp != NULL) 5568 crfree(ill->ill_credp); 5569 5570 /* 5571 * Now we are done with the module close pieces that 5572 * need the netstack_t. 5573 */ 5574 netstack_rele(ipst->ips_netstack); 5575 5576 mi_close_free((IDP)ill); 5577 q->q_ptr = WR(q)->q_ptr = NULL; 5578 5579 ipsq_exit(ipsq); 5580 5581 return (0); 5582 } 5583 5584 /* 5585 * This is called as part of close() for IP, UDP, ICMP, and RTS 5586 * in order to quiesce the conn. 5587 */ 5588 void 5589 ip_quiesce_conn(conn_t *connp) 5590 { 5591 boolean_t drain_cleanup_reqd = B_FALSE; 5592 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5593 boolean_t ilg_cleanup_reqd = B_FALSE; 5594 ip_stack_t *ipst; 5595 5596 ASSERT(!IPCL_IS_TCP(connp)); 5597 ipst = connp->conn_netstack->netstack_ip; 5598 5599 /* 5600 * Mark the conn as closing, and this conn must not be 5601 * inserted in future into any list. Eg. conn_drain_insert(), 5602 * won't insert this conn into the conn_drain_list. 5603 * Similarly ill_pending_mp_add() will not add any mp to 5604 * the pending mp list, after this conn has started closing. 5605 * 5606 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5607 * cannot get set henceforth. 5608 */ 5609 mutex_enter(&connp->conn_lock); 5610 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5611 connp->conn_state_flags |= CONN_CLOSING; 5612 if (connp->conn_idl != NULL) 5613 drain_cleanup_reqd = B_TRUE; 5614 if (connp->conn_oper_pending_ill != NULL) 5615 conn_ioctl_cleanup_reqd = B_TRUE; 5616 if (connp->conn_dhcpinit_ill != NULL) { 5617 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5618 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5619 connp->conn_dhcpinit_ill = NULL; 5620 } 5621 if (connp->conn_ilg_inuse != 0) 5622 ilg_cleanup_reqd = B_TRUE; 5623 mutex_exit(&connp->conn_lock); 5624 5625 if (conn_ioctl_cleanup_reqd) 5626 conn_ioctl_cleanup(connp); 5627 5628 if (is_system_labeled() && connp->conn_anon_port) { 5629 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5630 connp->conn_mlp_type, connp->conn_ulp, 5631 ntohs(connp->conn_lport), B_FALSE); 5632 connp->conn_anon_port = 0; 5633 } 5634 connp->conn_mlp_type = mlptSingle; 5635 5636 /* 5637 * Remove this conn from any fanout list it is on. 5638 * and then wait for any threads currently operating 5639 * on this endpoint to finish 5640 */ 5641 ipcl_hash_remove(connp); 5642 5643 /* 5644 * Remove this conn from the drain list, and do 5645 * any other cleanup that may be required. 5646 * (Only non-tcp streams may have a non-null conn_idl. 5647 * TCP streams are never flow controlled, and 5648 * conn_idl will be null) 5649 */ 5650 if (drain_cleanup_reqd) 5651 conn_drain_tail(connp, B_TRUE); 5652 5653 if (connp == ipst->ips_ip_g_mrouter) 5654 (void) ip_mrouter_done(NULL, ipst); 5655 5656 if (ilg_cleanup_reqd) 5657 ilg_delete_all(connp); 5658 5659 conn_delete_ire(connp, NULL); 5660 5661 /* 5662 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5663 * callers from write side can't be there now because close 5664 * is in progress. The only other caller is ipcl_walk 5665 * which checks for the condemned flag. 5666 */ 5667 mutex_enter(&connp->conn_lock); 5668 connp->conn_state_flags |= CONN_CONDEMNED; 5669 while (connp->conn_ref != 1) 5670 cv_wait(&connp->conn_cv, &connp->conn_lock); 5671 connp->conn_state_flags |= CONN_QUIESCED; 5672 mutex_exit(&connp->conn_lock); 5673 } 5674 5675 /* ARGSUSED */ 5676 int 5677 ip_close(queue_t *q, int flags) 5678 { 5679 conn_t *connp; 5680 5681 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5682 5683 /* 5684 * Call the appropriate delete routine depending on whether this is 5685 * a module or device. 5686 */ 5687 if (WR(q)->q_next != NULL) { 5688 /* This is a module close */ 5689 return (ip_modclose((ill_t *)q->q_ptr)); 5690 } 5691 5692 connp = q->q_ptr; 5693 ip_quiesce_conn(connp); 5694 5695 qprocsoff(q); 5696 5697 /* 5698 * Now we are truly single threaded on this stream, and can 5699 * delete the things hanging off the connp, and finally the connp. 5700 * We removed this connp from the fanout list, it cannot be 5701 * accessed thru the fanouts, and we already waited for the 5702 * conn_ref to drop to 0. We are already in close, so 5703 * there cannot be any other thread from the top. qprocsoff 5704 * has completed, and service has completed or won't run in 5705 * future. 5706 */ 5707 ASSERT(connp->conn_ref == 1); 5708 5709 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5710 5711 connp->conn_ref--; 5712 ipcl_conn_destroy(connp); 5713 5714 q->q_ptr = WR(q)->q_ptr = NULL; 5715 return (0); 5716 } 5717 5718 /* 5719 * Wapper around putnext() so that ip_rts_request can merely use 5720 * conn_recv. 5721 */ 5722 /*ARGSUSED2*/ 5723 static void 5724 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5725 { 5726 conn_t *connp = (conn_t *)arg1; 5727 5728 putnext(connp->conn_rq, mp); 5729 } 5730 5731 /* 5732 * Called when the module is about to be unloaded 5733 */ 5734 void 5735 ip_ddi_destroy(void) 5736 { 5737 tnet_fini(); 5738 5739 icmp_ddi_g_destroy(); 5740 rts_ddi_g_destroy(); 5741 udp_ddi_g_destroy(); 5742 sctp_ddi_g_destroy(); 5743 tcp_ddi_g_destroy(); 5744 ipsec_policy_g_destroy(); 5745 ipcl_g_destroy(); 5746 ip_net_g_destroy(); 5747 ip_ire_g_fini(); 5748 inet_minor_destroy(ip_minor_arena_sa); 5749 #if defined(_LP64) 5750 inet_minor_destroy(ip_minor_arena_la); 5751 #endif 5752 5753 #ifdef DEBUG 5754 list_destroy(&ip_thread_list); 5755 rw_destroy(&ip_thread_rwlock); 5756 tsd_destroy(&ip_thread_data); 5757 #endif 5758 5759 netstack_unregister(NS_IP); 5760 } 5761 5762 /* 5763 * First step in cleanup. 5764 */ 5765 /* ARGSUSED */ 5766 static void 5767 ip_stack_shutdown(netstackid_t stackid, void *arg) 5768 { 5769 ip_stack_t *ipst = (ip_stack_t *)arg; 5770 5771 #ifdef NS_DEBUG 5772 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5773 #endif 5774 5775 /* Get rid of loopback interfaces and their IREs */ 5776 ip_loopback_cleanup(ipst); 5777 5778 /* 5779 * The *_hook_shutdown()s start the process of notifying any 5780 * consumers that things are going away.... nothing is destroyed. 5781 */ 5782 ipv4_hook_shutdown(ipst); 5783 ipv6_hook_shutdown(ipst); 5784 5785 mutex_enter(&ipst->ips_capab_taskq_lock); 5786 ipst->ips_capab_taskq_quit = B_TRUE; 5787 cv_signal(&ipst->ips_capab_taskq_cv); 5788 mutex_exit(&ipst->ips_capab_taskq_lock); 5789 5790 mutex_enter(&ipst->ips_mrt_lock); 5791 ipst->ips_mrt_flags |= IP_MRT_STOP; 5792 cv_signal(&ipst->ips_mrt_cv); 5793 mutex_exit(&ipst->ips_mrt_lock); 5794 } 5795 5796 /* 5797 * Free the IP stack instance. 5798 */ 5799 static void 5800 ip_stack_fini(netstackid_t stackid, void *arg) 5801 { 5802 ip_stack_t *ipst = (ip_stack_t *)arg; 5803 int ret; 5804 5805 #ifdef NS_DEBUG 5806 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5807 #endif 5808 /* 5809 * At this point, all of the notifications that the events and 5810 * protocols are going away have been run, meaning that we can 5811 * now set about starting to clean things up. 5812 */ 5813 ipv4_hook_destroy(ipst); 5814 ipv6_hook_destroy(ipst); 5815 ip_net_destroy(ipst); 5816 5817 mutex_destroy(&ipst->ips_capab_taskq_lock); 5818 cv_destroy(&ipst->ips_capab_taskq_cv); 5819 list_destroy(&ipst->ips_capab_taskq_list); 5820 5821 mutex_enter(&ipst->ips_mrt_lock); 5822 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5823 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5824 mutex_destroy(&ipst->ips_mrt_lock); 5825 cv_destroy(&ipst->ips_mrt_cv); 5826 cv_destroy(&ipst->ips_mrt_done_cv); 5827 5828 ipmp_destroy(ipst); 5829 rw_destroy(&ipst->ips_srcid_lock); 5830 5831 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5832 ipst->ips_ip_mibkp = NULL; 5833 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5834 ipst->ips_icmp_mibkp = NULL; 5835 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5836 ipst->ips_ip_kstat = NULL; 5837 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5838 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5839 ipst->ips_ip6_kstat = NULL; 5840 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5841 5842 nd_free(&ipst->ips_ip_g_nd); 5843 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5844 ipst->ips_param_arr = NULL; 5845 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5846 ipst->ips_ndp_arr = NULL; 5847 5848 ip_mrouter_stack_destroy(ipst); 5849 5850 mutex_destroy(&ipst->ips_ip_mi_lock); 5851 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5852 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5853 rw_destroy(&ipst->ips_ip_g_nd_lock); 5854 5855 ret = untimeout(ipst->ips_igmp_timeout_id); 5856 if (ret == -1) { 5857 ASSERT(ipst->ips_igmp_timeout_id == 0); 5858 } else { 5859 ASSERT(ipst->ips_igmp_timeout_id != 0); 5860 ipst->ips_igmp_timeout_id = 0; 5861 } 5862 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5867 ipst->ips_igmp_slowtimeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_mld_timeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_mld_timeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_mld_timeout_id != 0); 5874 ipst->ips_mld_timeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5881 ipst->ips_mld_slowtimeout_id = 0; 5882 } 5883 ret = untimeout(ipst->ips_ip_ire_expire_id); 5884 if (ret == -1) { 5885 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5886 } else { 5887 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5888 ipst->ips_ip_ire_expire_id = 0; 5889 } 5890 5891 mutex_destroy(&ipst->ips_igmp_timer_lock); 5892 mutex_destroy(&ipst->ips_mld_timer_lock); 5893 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5894 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5895 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5896 rw_destroy(&ipst->ips_ill_g_lock); 5897 5898 ipobs_fini(ipst); 5899 ip_ire_fini(ipst); 5900 ip6_asp_free(ipst); 5901 conn_drain_fini(ipst); 5902 ipcl_destroy(ipst); 5903 5904 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5905 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5906 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5907 ipst->ips_ndp4 = NULL; 5908 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5909 ipst->ips_ndp6 = NULL; 5910 5911 if (ipst->ips_loopback_ksp != NULL) { 5912 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5913 ipst->ips_loopback_ksp = NULL; 5914 } 5915 5916 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5917 ipst->ips_phyint_g_list = NULL; 5918 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5919 ipst->ips_ill_g_heads = NULL; 5920 5921 ldi_ident_release(ipst->ips_ldi_ident); 5922 kmem_free(ipst, sizeof (*ipst)); 5923 } 5924 5925 /* 5926 * This function is called from the TSD destructor, and is used to debug 5927 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5928 * details. 5929 */ 5930 static void 5931 ip_thread_exit(void *phash) 5932 { 5933 th_hash_t *thh = phash; 5934 5935 rw_enter(&ip_thread_rwlock, RW_WRITER); 5936 list_remove(&ip_thread_list, thh); 5937 rw_exit(&ip_thread_rwlock); 5938 mod_hash_destroy_hash(thh->thh_hash); 5939 kmem_free(thh, sizeof (*thh)); 5940 } 5941 5942 /* 5943 * Called when the IP kernel module is loaded into the kernel 5944 */ 5945 void 5946 ip_ddi_init(void) 5947 { 5948 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5949 5950 /* 5951 * For IP and TCP the minor numbers should start from 2 since we have 4 5952 * initial devices: ip, ip6, tcp, tcp6. 5953 */ 5954 /* 5955 * If this is a 64-bit kernel, then create two separate arenas - 5956 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5957 * other for socket apps in the range 2^^18 through 2^^32-1. 5958 */ 5959 ip_minor_arena_la = NULL; 5960 ip_minor_arena_sa = NULL; 5961 #if defined(_LP64) 5962 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5963 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5964 cmn_err(CE_PANIC, 5965 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5966 } 5967 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5968 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5969 cmn_err(CE_PANIC, 5970 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5971 } 5972 #else 5973 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5974 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5975 cmn_err(CE_PANIC, 5976 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5977 } 5978 #endif 5979 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5980 5981 ipcl_g_init(); 5982 ip_ire_g_init(); 5983 ip_net_g_init(); 5984 5985 #ifdef DEBUG 5986 tsd_create(&ip_thread_data, ip_thread_exit); 5987 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5988 list_create(&ip_thread_list, sizeof (th_hash_t), 5989 offsetof(th_hash_t, thh_link)); 5990 #endif 5991 5992 /* 5993 * We want to be informed each time a stack is created or 5994 * destroyed in the kernel, so we can maintain the 5995 * set of udp_stack_t's. 5996 */ 5997 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5998 ip_stack_fini); 5999 6000 ipsec_policy_g_init(); 6001 tcp_ddi_g_init(); 6002 sctp_ddi_g_init(); 6003 6004 tnet_init(); 6005 6006 udp_ddi_g_init(); 6007 rts_ddi_g_init(); 6008 icmp_ddi_g_init(); 6009 } 6010 6011 /* 6012 * Initialize the IP stack instance. 6013 */ 6014 static void * 6015 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6016 { 6017 ip_stack_t *ipst; 6018 ipparam_t *pa; 6019 ipndp_t *na; 6020 major_t major; 6021 6022 #ifdef NS_DEBUG 6023 printf("ip_stack_init(stack %d)\n", stackid); 6024 #endif 6025 6026 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6027 ipst->ips_netstack = ns; 6028 6029 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6030 KM_SLEEP); 6031 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6032 KM_SLEEP); 6033 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6034 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6035 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6036 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6037 6038 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6039 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6040 ipst->ips_igmp_deferred_next = INFINITY; 6041 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6042 ipst->ips_mld_deferred_next = INFINITY; 6043 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6044 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6045 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6046 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6047 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6048 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6049 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6050 6051 ipcl_init(ipst); 6052 ip_ire_init(ipst); 6053 ip6_asp_init(ipst); 6054 ipif_init(ipst); 6055 conn_drain_init(ipst); 6056 ip_mrouter_stack_init(ipst); 6057 6058 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6059 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6060 6061 ipst->ips_ip_multirt_log_interval = 1000; 6062 6063 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6064 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6065 ipst->ips_ill_index = 1; 6066 6067 ipst->ips_saved_ip_g_forward = -1; 6068 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6069 6070 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6071 ipst->ips_param_arr = pa; 6072 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6073 6074 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6075 ipst->ips_ndp_arr = na; 6076 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6077 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6078 (caddr_t)&ipst->ips_ip_g_forward; 6079 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6080 (caddr_t)&ipst->ips_ipv6_forward; 6081 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6082 "ip_cgtp_filter") == 0); 6083 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6084 (caddr_t)&ipst->ips_ip_cgtp_filter; 6085 6086 (void) ip_param_register(&ipst->ips_ip_g_nd, 6087 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6088 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6089 6090 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6091 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6092 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6093 ipst->ips_ip6_kstat = 6094 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6095 6096 ipst->ips_ip_src_id = 1; 6097 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6098 6099 ipobs_init(ipst); 6100 ip_net_init(ipst, ns); 6101 ipv4_hook_init(ipst); 6102 ipv6_hook_init(ipst); 6103 ipmp_init(ipst); 6104 6105 /* 6106 * Create the taskq dispatcher thread and initialize related stuff. 6107 */ 6108 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6109 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6110 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6111 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6112 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6113 offsetof(mblk_t, b_next)); 6114 6115 /* 6116 * Create the mcast_restart_timers_thread() worker thread. 6117 */ 6118 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6119 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6120 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6121 ipst->ips_mrt_thread = thread_create(NULL, 0, 6122 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6123 6124 major = mod_name_to_major(INET_NAME); 6125 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6126 return (ipst); 6127 } 6128 6129 /* 6130 * Allocate and initialize a DLPI template of the specified length. (May be 6131 * called as writer.) 6132 */ 6133 mblk_t * 6134 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6135 { 6136 mblk_t *mp; 6137 6138 mp = allocb(len, BPRI_MED); 6139 if (!mp) 6140 return (NULL); 6141 6142 /* 6143 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6144 * of which we don't seem to use) are sent with M_PCPROTO, and 6145 * that other DLPI are M_PROTO. 6146 */ 6147 if (prim == DL_INFO_REQ) { 6148 mp->b_datap->db_type = M_PCPROTO; 6149 } else { 6150 mp->b_datap->db_type = M_PROTO; 6151 } 6152 6153 mp->b_wptr = mp->b_rptr + len; 6154 bzero(mp->b_rptr, len); 6155 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6156 return (mp); 6157 } 6158 6159 /* 6160 * Allocate and initialize a DLPI notification. (May be called as writer.) 6161 */ 6162 mblk_t * 6163 ip_dlnotify_alloc(uint_t notification, uint_t data) 6164 { 6165 dl_notify_ind_t *notifyp; 6166 mblk_t *mp; 6167 6168 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6169 return (NULL); 6170 6171 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6172 notifyp->dl_notification = notification; 6173 notifyp->dl_data = data; 6174 return (mp); 6175 } 6176 6177 /* 6178 * Debug formatting routine. Returns a character string representation of the 6179 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6180 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6181 * 6182 * Once the ndd table-printing interfaces are removed, this can be changed to 6183 * standard dotted-decimal form. 6184 */ 6185 char * 6186 ip_dot_addr(ipaddr_t addr, char *buf) 6187 { 6188 uint8_t *ap = (uint8_t *)&addr; 6189 6190 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6191 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6192 return (buf); 6193 } 6194 6195 /* 6196 * Write the given MAC address as a printable string in the usual colon- 6197 * separated format. 6198 */ 6199 const char * 6200 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6201 { 6202 char *bp; 6203 6204 if (alen == 0 || buflen < 4) 6205 return ("?"); 6206 bp = buf; 6207 for (;;) { 6208 /* 6209 * If there are more MAC address bytes available, but we won't 6210 * have any room to print them, then add "..." to the string 6211 * instead. See below for the 'magic number' explanation. 6212 */ 6213 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6214 (void) strcpy(bp, "..."); 6215 break; 6216 } 6217 (void) sprintf(bp, "%02x", *addr++); 6218 bp += 2; 6219 if (--alen == 0) 6220 break; 6221 *bp++ = ':'; 6222 buflen -= 3; 6223 /* 6224 * At this point, based on the first 'if' statement above, 6225 * either alen == 1 and buflen >= 3, or alen > 1 and 6226 * buflen >= 4. The first case leaves room for the final "xx" 6227 * number and trailing NUL byte. The second leaves room for at 6228 * least "...". Thus the apparently 'magic' numbers chosen for 6229 * that statement. 6230 */ 6231 } 6232 return (buf); 6233 } 6234 6235 /* 6236 * Send an ICMP error after patching up the packet appropriately. Returns 6237 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6238 */ 6239 static boolean_t 6240 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6241 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6242 zoneid_t zoneid, ip_stack_t *ipst) 6243 { 6244 ipha_t *ipha; 6245 mblk_t *first_mp; 6246 boolean_t secure; 6247 unsigned char db_type; 6248 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6249 6250 first_mp = mp; 6251 if (mctl_present) { 6252 mp = mp->b_cont; 6253 secure = ipsec_in_is_secure(first_mp); 6254 ASSERT(mp != NULL); 6255 } else { 6256 /* 6257 * If this is an ICMP error being reported - which goes 6258 * up as M_CTLs, we need to convert them to M_DATA till 6259 * we finish checking with global policy because 6260 * ipsec_check_global_policy() assumes M_DATA as clear 6261 * and M_CTL as secure. 6262 */ 6263 db_type = DB_TYPE(mp); 6264 DB_TYPE(mp) = M_DATA; 6265 secure = B_FALSE; 6266 } 6267 /* 6268 * We are generating an icmp error for some inbound packet. 6269 * Called from all ip_fanout_(udp, tcp, proto) functions. 6270 * Before we generate an error, check with global policy 6271 * to see whether this is allowed to enter the system. As 6272 * there is no "conn", we are checking with global policy. 6273 */ 6274 ipha = (ipha_t *)mp->b_rptr; 6275 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6276 first_mp = ipsec_check_global_policy(first_mp, NULL, 6277 ipha, NULL, mctl_present, ipst->ips_netstack); 6278 if (first_mp == NULL) 6279 return (B_FALSE); 6280 } 6281 6282 if (!mctl_present) 6283 DB_TYPE(mp) = db_type; 6284 6285 if (flags & IP_FF_SEND_ICMP) { 6286 if (flags & IP_FF_HDR_COMPLETE) { 6287 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6288 freemsg(first_mp); 6289 return (B_TRUE); 6290 } 6291 } 6292 if (flags & IP_FF_CKSUM) { 6293 /* 6294 * Have to correct checksum since 6295 * the packet might have been 6296 * fragmented and the reassembly code in ip_rput 6297 * does not restore the IP checksum. 6298 */ 6299 ipha->ipha_hdr_checksum = 0; 6300 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6301 } 6302 switch (icmp_type) { 6303 case ICMP_DEST_UNREACHABLE: 6304 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6305 ipst); 6306 break; 6307 default: 6308 freemsg(first_mp); 6309 break; 6310 } 6311 } else { 6312 freemsg(first_mp); 6313 return (B_FALSE); 6314 } 6315 6316 return (B_TRUE); 6317 } 6318 6319 /* 6320 * Used to send an ICMP error message when a packet is received for 6321 * a protocol that is not supported. The mblk passed as argument 6322 * is consumed by this function. 6323 */ 6324 void 6325 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6326 ip_stack_t *ipst) 6327 { 6328 mblk_t *mp; 6329 ipha_t *ipha; 6330 ill_t *ill; 6331 ipsec_in_t *ii; 6332 6333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6334 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6335 6336 mp = ipsec_mp->b_cont; 6337 ipsec_mp->b_cont = NULL; 6338 ipha = (ipha_t *)mp->b_rptr; 6339 /* Get ill from index in ipsec_in_t. */ 6340 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6341 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6342 ipst); 6343 if (ill != NULL) { 6344 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6345 if (ip_fanout_send_icmp(q, mp, flags, 6346 ICMP_DEST_UNREACHABLE, 6347 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6348 BUMP_MIB(ill->ill_ip_mib, 6349 ipIfStatsInUnknownProtos); 6350 } 6351 } else { 6352 if (ip_fanout_send_icmp_v6(q, mp, flags, 6353 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6354 0, B_FALSE, zoneid, ipst)) { 6355 BUMP_MIB(ill->ill_ip_mib, 6356 ipIfStatsInUnknownProtos); 6357 } 6358 } 6359 ill_refrele(ill); 6360 } else { /* re-link for the freemsg() below. */ 6361 ipsec_mp->b_cont = mp; 6362 } 6363 6364 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6365 freemsg(ipsec_mp); 6366 } 6367 6368 /* 6369 * See if the inbound datagram has had IPsec processing applied to it. 6370 */ 6371 boolean_t 6372 ipsec_in_is_secure(mblk_t *ipsec_mp) 6373 { 6374 ipsec_in_t *ii; 6375 6376 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6377 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6378 6379 if (ii->ipsec_in_loopback) { 6380 return (ii->ipsec_in_secure); 6381 } else { 6382 return (ii->ipsec_in_ah_sa != NULL || 6383 ii->ipsec_in_esp_sa != NULL || 6384 ii->ipsec_in_decaps); 6385 } 6386 } 6387 6388 /* 6389 * Handle protocols with which IP is less intimate. There 6390 * can be more than one stream bound to a particular 6391 * protocol. When this is the case, normally each one gets a copy 6392 * of any incoming packets. 6393 * 6394 * IPsec NOTE : 6395 * 6396 * Don't allow a secure packet going up a non-secure connection. 6397 * We don't allow this because 6398 * 6399 * 1) Reply might go out in clear which will be dropped at 6400 * the sending side. 6401 * 2) If the reply goes out in clear it will give the 6402 * adversary enough information for getting the key in 6403 * most of the cases. 6404 * 6405 * Moreover getting a secure packet when we expect clear 6406 * implies that SA's were added without checking for 6407 * policy on both ends. This should not happen once ISAKMP 6408 * is used to negotiate SAs as SAs will be added only after 6409 * verifying the policy. 6410 * 6411 * NOTE : If the packet was tunneled and not multicast we only send 6412 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6413 * back to delivering packets to AF_INET6 raw sockets. 6414 * 6415 * IPQoS Notes: 6416 * Once we have determined the client, invoke IPPF processing. 6417 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6418 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6419 * ip_policy will be false. 6420 * 6421 * Zones notes: 6422 * Currently only applications in the global zone can create raw sockets for 6423 * protocols other than ICMP. So unlike the broadcast / multicast case of 6424 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6425 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6426 */ 6427 static void 6428 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6429 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6430 zoneid_t zoneid) 6431 { 6432 queue_t *rq; 6433 mblk_t *mp1, *first_mp1; 6434 uint_t protocol = ipha->ipha_protocol; 6435 ipaddr_t dst; 6436 boolean_t one_only; 6437 mblk_t *first_mp = mp; 6438 boolean_t secure; 6439 uint32_t ill_index; 6440 conn_t *connp, *first_connp, *next_connp; 6441 connf_t *connfp; 6442 boolean_t shared_addr; 6443 mib2_ipIfStatsEntry_t *mibptr; 6444 ip_stack_t *ipst = recv_ill->ill_ipst; 6445 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6446 6447 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6448 if (mctl_present) { 6449 mp = first_mp->b_cont; 6450 secure = ipsec_in_is_secure(first_mp); 6451 ASSERT(mp != NULL); 6452 } else { 6453 secure = B_FALSE; 6454 } 6455 dst = ipha->ipha_dst; 6456 /* 6457 * If the packet was tunneled and not multicast we only send to it 6458 * the first match. 6459 */ 6460 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6461 !CLASSD(dst)); 6462 6463 shared_addr = (zoneid == ALL_ZONES); 6464 if (shared_addr) { 6465 /* 6466 * We don't allow multilevel ports for raw IP, so no need to 6467 * check for that here. 6468 */ 6469 zoneid = tsol_packet_to_zoneid(mp); 6470 } 6471 6472 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6473 mutex_enter(&connfp->connf_lock); 6474 connp = connfp->connf_head; 6475 for (connp = connfp->connf_head; connp != NULL; 6476 connp = connp->conn_next) { 6477 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6478 zoneid) && 6479 (!is_system_labeled() || 6480 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6481 connp))) { 6482 break; 6483 } 6484 } 6485 6486 if (connp == NULL) { 6487 /* 6488 * No one bound to these addresses. Is 6489 * there a client that wants all 6490 * unclaimed datagrams? 6491 */ 6492 mutex_exit(&connfp->connf_lock); 6493 /* 6494 * Check for IPPROTO_ENCAP... 6495 */ 6496 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6497 /* 6498 * If an IPsec mblk is here on a multicast 6499 * tunnel (using ip_mroute stuff), check policy here, 6500 * THEN ship off to ip_mroute_decap(). 6501 * 6502 * BTW, If I match a configured IP-in-IP 6503 * tunnel, this path will not be reached, and 6504 * ip_mroute_decap will never be called. 6505 */ 6506 first_mp = ipsec_check_global_policy(first_mp, connp, 6507 ipha, NULL, mctl_present, ipst->ips_netstack); 6508 if (first_mp != NULL) { 6509 if (mctl_present) 6510 freeb(first_mp); 6511 ip_mroute_decap(q, mp, ill); 6512 } /* Else we already freed everything! */ 6513 } else { 6514 /* 6515 * Otherwise send an ICMP protocol unreachable. 6516 */ 6517 if (ip_fanout_send_icmp(q, first_mp, flags, 6518 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6519 mctl_present, zoneid, ipst)) { 6520 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6521 } 6522 } 6523 return; 6524 } 6525 6526 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6527 6528 CONN_INC_REF(connp); 6529 first_connp = connp; 6530 6531 /* 6532 * Only send message to one tunnel driver by immediately 6533 * terminating the loop. 6534 */ 6535 connp = one_only ? NULL : connp->conn_next; 6536 6537 for (;;) { 6538 while (connp != NULL) { 6539 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6540 flags, zoneid) && 6541 (!is_system_labeled() || 6542 tsol_receive_local(mp, &dst, IPV4_VERSION, 6543 shared_addr, connp))) 6544 break; 6545 connp = connp->conn_next; 6546 } 6547 6548 /* 6549 * Copy the packet. 6550 */ 6551 if (connp == NULL || 6552 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6553 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6554 /* 6555 * No more interested clients or memory 6556 * allocation failed 6557 */ 6558 connp = first_connp; 6559 break; 6560 } 6561 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6562 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6563 CONN_INC_REF(connp); 6564 mutex_exit(&connfp->connf_lock); 6565 rq = connp->conn_rq; 6566 6567 /* 6568 * Check flow control 6569 */ 6570 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6571 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6572 if (flags & IP_FF_RAWIP) { 6573 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6574 } else { 6575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6576 } 6577 6578 freemsg(first_mp1); 6579 } else { 6580 /* 6581 * Don't enforce here if we're an actual tunnel - 6582 * let "tun" do it instead. 6583 */ 6584 if (!IPCL_IS_IPTUN(connp) && 6585 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6586 secure)) { 6587 first_mp1 = ipsec_check_inbound_policy 6588 (first_mp1, connp, ipha, NULL, 6589 mctl_present); 6590 } 6591 if (first_mp1 != NULL) { 6592 int in_flags = 0; 6593 /* 6594 * ip_fanout_proto also gets called from 6595 * icmp_inbound_error_fanout, in which case 6596 * the msg type is M_CTL. Don't add info 6597 * in this case for the time being. In future 6598 * when there is a need for knowing the 6599 * inbound iface index for ICMP error msgs, 6600 * then this can be changed. 6601 */ 6602 if (connp->conn_recvif) 6603 in_flags = IPF_RECVIF; 6604 /* 6605 * The ULP may support IP_RECVPKTINFO for both 6606 * IP v4 and v6 so pass the appropriate argument 6607 * based on conn IP version. 6608 */ 6609 if (connp->conn_ip_recvpktinfo) { 6610 if (connp->conn_af_isv6) { 6611 /* 6612 * V6 only needs index 6613 */ 6614 in_flags |= IPF_RECVIF; 6615 } else { 6616 /* 6617 * V4 needs index + 6618 * matching address. 6619 */ 6620 in_flags |= IPF_RECVADDR; 6621 } 6622 } 6623 if ((in_flags != 0) && 6624 (mp->b_datap->db_type != M_CTL)) { 6625 /* 6626 * the actual data will be 6627 * contained in b_cont upon 6628 * successful return of the 6629 * following call else 6630 * original mblk is returned 6631 */ 6632 ASSERT(recv_ill != NULL); 6633 mp1 = ip_add_info(mp1, recv_ill, 6634 in_flags, IPCL_ZONEID(connp), ipst); 6635 } 6636 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6637 if (mctl_present) 6638 freeb(first_mp1); 6639 (connp->conn_recv)(connp, mp1, NULL); 6640 } 6641 } 6642 mutex_enter(&connfp->connf_lock); 6643 /* Follow the next pointer before releasing the conn. */ 6644 next_connp = connp->conn_next; 6645 CONN_DEC_REF(connp); 6646 connp = next_connp; 6647 } 6648 6649 /* Last one. Send it upstream. */ 6650 mutex_exit(&connfp->connf_lock); 6651 6652 /* 6653 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6654 * will be set to false. 6655 */ 6656 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6657 ill_index = ill->ill_phyint->phyint_ifindex; 6658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6659 if (mp == NULL) { 6660 CONN_DEC_REF(connp); 6661 if (mctl_present) { 6662 freeb(first_mp); 6663 } 6664 return; 6665 } 6666 } 6667 6668 rq = connp->conn_rq; 6669 /* 6670 * Check flow control 6671 */ 6672 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6673 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6674 if (flags & IP_FF_RAWIP) { 6675 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6676 } else { 6677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6678 } 6679 6680 freemsg(first_mp); 6681 } else { 6682 if (IPCL_IS_IPTUN(connp)) { 6683 /* 6684 * Tunneled packet. We enforce policy in the tunnel 6685 * module itself. 6686 * 6687 * Send the WHOLE packet up (incl. IPSEC_IN) without 6688 * a policy check. 6689 * FIXME to use conn_recv for tun later. 6690 */ 6691 putnext(rq, first_mp); 6692 CONN_DEC_REF(connp); 6693 return; 6694 } 6695 6696 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6697 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6698 ipha, NULL, mctl_present); 6699 } 6700 6701 if (first_mp != NULL) { 6702 int in_flags = 0; 6703 6704 /* 6705 * ip_fanout_proto also gets called 6706 * from icmp_inbound_error_fanout, in 6707 * which case the msg type is M_CTL. 6708 * Don't add info in this case for time 6709 * being. In future when there is a 6710 * need for knowing the inbound iface 6711 * index for ICMP error msgs, then this 6712 * can be changed 6713 */ 6714 if (connp->conn_recvif) 6715 in_flags = IPF_RECVIF; 6716 if (connp->conn_ip_recvpktinfo) { 6717 if (connp->conn_af_isv6) { 6718 /* 6719 * V6 only needs index 6720 */ 6721 in_flags |= IPF_RECVIF; 6722 } else { 6723 /* 6724 * V4 needs index + 6725 * matching address. 6726 */ 6727 in_flags |= IPF_RECVADDR; 6728 } 6729 } 6730 if ((in_flags != 0) && 6731 (mp->b_datap->db_type != M_CTL)) { 6732 6733 /* 6734 * the actual data will be contained in 6735 * b_cont upon successful return 6736 * of the following call else original 6737 * mblk is returned 6738 */ 6739 ASSERT(recv_ill != NULL); 6740 mp = ip_add_info(mp, recv_ill, 6741 in_flags, IPCL_ZONEID(connp), ipst); 6742 } 6743 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6744 (connp->conn_recv)(connp, mp, NULL); 6745 if (mctl_present) 6746 freeb(first_mp); 6747 } 6748 } 6749 CONN_DEC_REF(connp); 6750 } 6751 6752 /* 6753 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6754 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6755 * the correct squeue, in this case the same squeue as a valid listener with 6756 * no current connection state for the packet we are processing. The function 6757 * is called for synchronizing both IPv4 and IPv6. 6758 */ 6759 void 6760 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6761 tcp_stack_t *tcps, conn_t *connp) 6762 { 6763 mblk_t *rst_mp; 6764 tcp_xmit_reset_event_t *eventp; 6765 6766 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6767 6768 if (rst_mp == NULL) { 6769 freemsg(mp); 6770 return; 6771 } 6772 6773 rst_mp->b_datap->db_type = M_PROTO; 6774 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6775 6776 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6777 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6778 eventp->tcp_xre_iphdrlen = hdrlen; 6779 eventp->tcp_xre_zoneid = zoneid; 6780 eventp->tcp_xre_tcps = tcps; 6781 6782 rst_mp->b_cont = mp; 6783 mp = rst_mp; 6784 6785 /* 6786 * Increment the connref, this ref will be released by the squeue 6787 * framework. 6788 */ 6789 CONN_INC_REF(connp); 6790 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6791 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6792 } 6793 6794 /* 6795 * Fanout for TCP packets 6796 * The caller puts <fport, lport> in the ports parameter. 6797 * 6798 * IPQoS Notes 6799 * Before sending it to the client, invoke IPPF processing. 6800 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6801 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6802 * ip_policy is false. 6803 */ 6804 static void 6805 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6806 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6807 { 6808 mblk_t *first_mp; 6809 boolean_t secure; 6810 uint32_t ill_index; 6811 int ip_hdr_len; 6812 tcph_t *tcph; 6813 boolean_t syn_present = B_FALSE; 6814 conn_t *connp; 6815 ip_stack_t *ipst = recv_ill->ill_ipst; 6816 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6817 6818 ASSERT(recv_ill != NULL); 6819 6820 first_mp = mp; 6821 if (mctl_present) { 6822 ASSERT(first_mp->b_datap->db_type == M_CTL); 6823 mp = first_mp->b_cont; 6824 secure = ipsec_in_is_secure(first_mp); 6825 ASSERT(mp != NULL); 6826 } else { 6827 secure = B_FALSE; 6828 } 6829 6830 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6831 6832 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6833 zoneid, ipst)) == NULL) { 6834 /* 6835 * No connected connection or listener. Send a 6836 * TH_RST via tcp_xmit_listeners_reset. 6837 */ 6838 6839 /* Initiate IPPf processing, if needed. */ 6840 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6841 uint32_t ill_index; 6842 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6843 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6844 if (first_mp == NULL) 6845 return; 6846 } 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6848 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6849 zoneid)); 6850 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6851 ipst->ips_netstack->netstack_tcp, NULL); 6852 return; 6853 } 6854 6855 /* 6856 * Allocate the SYN for the TCP connection here itself 6857 */ 6858 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6859 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6860 if (IPCL_IS_TCP(connp)) { 6861 squeue_t *sqp; 6862 6863 /* 6864 * For fused tcp loopback, assign the eager's 6865 * squeue to be that of the active connect's. 6866 * Note that we don't check for IP_FF_LOOPBACK 6867 * here since this routine gets called only 6868 * for loopback (unlike the IPv6 counterpart). 6869 */ 6870 ASSERT(Q_TO_CONN(q) != NULL); 6871 if (do_tcp_fusion && 6872 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6873 !secure && 6874 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6875 IPCL_IS_TCP(Q_TO_CONN(q))) { 6876 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6877 sqp = Q_TO_CONN(q)->conn_sqp; 6878 } else { 6879 sqp = IP_SQUEUE_GET(lbolt); 6880 } 6881 6882 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6883 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6884 syn_present = B_TRUE; 6885 } 6886 } 6887 6888 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6889 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6890 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6891 if ((flags & TH_RST) || (flags & TH_URG)) { 6892 CONN_DEC_REF(connp); 6893 freemsg(first_mp); 6894 return; 6895 } 6896 if (flags & TH_ACK) { 6897 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6898 ipst->ips_netstack->netstack_tcp, connp); 6899 CONN_DEC_REF(connp); 6900 return; 6901 } 6902 6903 CONN_DEC_REF(connp); 6904 freemsg(first_mp); 6905 return; 6906 } 6907 6908 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6909 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6910 NULL, mctl_present); 6911 if (first_mp == NULL) { 6912 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6913 CONN_DEC_REF(connp); 6914 return; 6915 } 6916 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6917 ASSERT(syn_present); 6918 if (mctl_present) { 6919 ASSERT(first_mp != mp); 6920 first_mp->b_datap->db_struioflag |= 6921 STRUIO_POLICY; 6922 } else { 6923 ASSERT(first_mp == mp); 6924 mp->b_datap->db_struioflag &= 6925 ~STRUIO_EAGER; 6926 mp->b_datap->db_struioflag |= 6927 STRUIO_POLICY; 6928 } 6929 } else { 6930 /* 6931 * Discard first_mp early since we're dealing with a 6932 * fully-connected conn_t and tcp doesn't do policy in 6933 * this case. 6934 */ 6935 if (mctl_present) { 6936 freeb(first_mp); 6937 mctl_present = B_FALSE; 6938 } 6939 first_mp = mp; 6940 } 6941 } 6942 6943 /* 6944 * Initiate policy processing here if needed. If we get here from 6945 * icmp_inbound_error_fanout, ip_policy is false. 6946 */ 6947 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6948 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6949 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6950 if (mp == NULL) { 6951 CONN_DEC_REF(connp); 6952 if (mctl_present) 6953 freeb(first_mp); 6954 return; 6955 } else if (mctl_present) { 6956 ASSERT(first_mp != mp); 6957 first_mp->b_cont = mp; 6958 } else { 6959 first_mp = mp; 6960 } 6961 } 6962 6963 /* Handle socket options. */ 6964 if (!syn_present && 6965 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6966 /* Add header */ 6967 ASSERT(recv_ill != NULL); 6968 /* 6969 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6970 * IPF_RECVIF. 6971 */ 6972 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6973 ipst); 6974 if (mp == NULL) { 6975 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6976 CONN_DEC_REF(connp); 6977 if (mctl_present) 6978 freeb(first_mp); 6979 return; 6980 } else if (mctl_present) { 6981 /* 6982 * ip_add_info might return a new mp. 6983 */ 6984 ASSERT(first_mp != mp); 6985 first_mp->b_cont = mp; 6986 } else { 6987 first_mp = mp; 6988 } 6989 } 6990 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6991 if (IPCL_IS_TCP(connp)) { 6992 /* do not drain, certain use cases can blow the stack */ 6993 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6994 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6995 } else { 6996 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6997 (connp->conn_recv)(connp, first_mp, NULL); 6998 CONN_DEC_REF(connp); 6999 } 7000 } 7001 7002 /* 7003 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 7004 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 7005 * is not consumed. 7006 * 7007 * One of four things can happen, all of which affect the passed-in mblk: 7008 * 7009 * 1.) ICMP messages that go through here just get returned TRUE. 7010 * 7011 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7012 * 7013 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7014 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7015 * 7016 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7017 */ 7018 static boolean_t 7019 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7020 ipsec_stack_t *ipss) 7021 { 7022 int shift, plen, iph_len; 7023 ipha_t *ipha; 7024 udpha_t *udpha; 7025 uint32_t *spi; 7026 uint32_t esp_ports; 7027 uint8_t *orptr; 7028 boolean_t free_ire; 7029 7030 if (DB_TYPE(mp) == M_CTL) { 7031 /* 7032 * ICMP message with UDP inside. Don't bother stripping, just 7033 * send it up. 7034 * 7035 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7036 * to ignore errors set by ICMP anyway ('cause they might be 7037 * forged), but that's the app's decision, not ours. 7038 */ 7039 7040 /* Bunch of reality checks for DEBUG kernels... */ 7041 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7042 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7043 7044 return (B_TRUE); 7045 } 7046 7047 ipha = (ipha_t *)mp->b_rptr; 7048 iph_len = IPH_HDR_LENGTH(ipha); 7049 plen = ntohs(ipha->ipha_length); 7050 7051 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7052 /* 7053 * Most likely a keepalive for the benefit of an intervening 7054 * NAT. These aren't for us, per se, so drop it. 7055 * 7056 * RFC 3947/8 doesn't say for sure what to do for 2-3 7057 * byte packets (keepalives are 1-byte), but we'll drop them 7058 * also. 7059 */ 7060 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7061 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7062 return (B_FALSE); 7063 } 7064 7065 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7066 /* might as well pull it all up - it might be ESP. */ 7067 if (!pullupmsg(mp, -1)) { 7068 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7069 DROPPER(ipss, ipds_esp_nomem), 7070 &ipss->ipsec_dropper); 7071 return (B_FALSE); 7072 } 7073 7074 ipha = (ipha_t *)mp->b_rptr; 7075 } 7076 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7077 if (*spi == 0) { 7078 /* UDP packet - remove 0-spi. */ 7079 shift = sizeof (uint32_t); 7080 } else { 7081 /* ESP-in-UDP packet - reduce to ESP. */ 7082 ipha->ipha_protocol = IPPROTO_ESP; 7083 shift = sizeof (udpha_t); 7084 } 7085 7086 /* Fix IP header */ 7087 ipha->ipha_length = htons(plen - shift); 7088 ipha->ipha_hdr_checksum = 0; 7089 7090 orptr = mp->b_rptr; 7091 mp->b_rptr += shift; 7092 7093 udpha = (udpha_t *)(orptr + iph_len); 7094 if (*spi == 0) { 7095 ASSERT((uint8_t *)ipha == orptr); 7096 udpha->uha_length = htons(plen - shift - iph_len); 7097 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7098 esp_ports = 0; 7099 } else { 7100 esp_ports = *((uint32_t *)udpha); 7101 ASSERT(esp_ports != 0); 7102 } 7103 ovbcopy(orptr, orptr + shift, iph_len); 7104 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7105 ipha = (ipha_t *)(orptr + shift); 7106 7107 free_ire = (ire == NULL); 7108 if (free_ire) { 7109 /* Re-acquire ire. */ 7110 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7111 ipss->ipsec_netstack->netstack_ip); 7112 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7113 if (ire != NULL) 7114 ire_refrele(ire); 7115 /* 7116 * Do a regular freemsg(), as this is an IP 7117 * error (no local route) not an IPsec one. 7118 */ 7119 freemsg(mp); 7120 } 7121 } 7122 7123 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7124 if (free_ire) 7125 ire_refrele(ire); 7126 } 7127 7128 return (esp_ports == 0); 7129 } 7130 7131 /* 7132 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7133 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7134 * Caller is responsible for dropping references to the conn, and freeing 7135 * first_mp. 7136 * 7137 * IPQoS Notes 7138 * Before sending it to the client, invoke IPPF processing. Policy processing 7139 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7140 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7141 * ip_wput_local, ip_policy is false. 7142 */ 7143 static void 7144 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7145 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7146 boolean_t ip_policy) 7147 { 7148 boolean_t mctl_present = (first_mp != NULL); 7149 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7150 uint32_t ill_index; 7151 ip_stack_t *ipst = recv_ill->ill_ipst; 7152 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7153 7154 ASSERT(ill != NULL); 7155 7156 if (mctl_present) 7157 first_mp->b_cont = mp; 7158 else 7159 first_mp = mp; 7160 7161 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7162 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7163 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7164 freemsg(first_mp); 7165 return; 7166 } 7167 7168 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7169 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7170 NULL, mctl_present); 7171 /* Freed by ipsec_check_inbound_policy(). */ 7172 if (first_mp == NULL) { 7173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7174 return; 7175 } 7176 } 7177 if (mctl_present) 7178 freeb(first_mp); 7179 7180 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7181 if (connp->conn_udp->udp_nat_t_endpoint) { 7182 if (mctl_present) { 7183 /* mctl_present *shouldn't* happen. */ 7184 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7185 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7186 &ipss->ipsec_dropper); 7187 return; 7188 } 7189 7190 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7191 return; 7192 } 7193 7194 /* Handle options. */ 7195 if (connp->conn_recvif) 7196 in_flags = IPF_RECVIF; 7197 /* 7198 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7199 * passed to ip_add_info is based on IP version of connp. 7200 */ 7201 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7202 if (connp->conn_af_isv6) { 7203 /* 7204 * V6 only needs index 7205 */ 7206 in_flags |= IPF_RECVIF; 7207 } else { 7208 /* 7209 * V4 needs index + matching address. 7210 */ 7211 in_flags |= IPF_RECVADDR; 7212 } 7213 } 7214 7215 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7216 in_flags |= IPF_RECVSLLA; 7217 7218 /* 7219 * Initiate IPPF processing here, if needed. Note first_mp won't be 7220 * freed if the packet is dropped. The caller will do so. 7221 */ 7222 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7223 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7224 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7225 if (mp == NULL) { 7226 return; 7227 } 7228 } 7229 if ((in_flags != 0) && 7230 (mp->b_datap->db_type != M_CTL)) { 7231 /* 7232 * The actual data will be contained in b_cont 7233 * upon successful return of the following call 7234 * else original mblk is returned 7235 */ 7236 ASSERT(recv_ill != NULL); 7237 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7238 ipst); 7239 } 7240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7241 /* Send it upstream */ 7242 (connp->conn_recv)(connp, mp, NULL); 7243 } 7244 7245 /* 7246 * Fanout for UDP packets. 7247 * The caller puts <fport, lport> in the ports parameter. 7248 * 7249 * If SO_REUSEADDR is set all multicast and broadcast packets 7250 * will be delivered to all streams bound to the same port. 7251 * 7252 * Zones notes: 7253 * Multicast and broadcast packets will be distributed to streams in all zones. 7254 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7255 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7256 * packets. To maintain this behavior with multiple zones, the conns are grouped 7257 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7258 * each zone. If unset, all the following conns in the same zone are skipped. 7259 */ 7260 static void 7261 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7262 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7263 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7264 { 7265 uint32_t dstport, srcport; 7266 ipaddr_t dst; 7267 mblk_t *first_mp; 7268 boolean_t secure; 7269 in6_addr_t v6src; 7270 conn_t *connp; 7271 connf_t *connfp; 7272 conn_t *first_connp; 7273 conn_t *next_connp; 7274 mblk_t *mp1, *first_mp1; 7275 ipaddr_t src; 7276 zoneid_t last_zoneid; 7277 boolean_t reuseaddr; 7278 boolean_t shared_addr; 7279 boolean_t unlabeled; 7280 ip_stack_t *ipst; 7281 7282 ASSERT(recv_ill != NULL); 7283 ipst = recv_ill->ill_ipst; 7284 7285 first_mp = mp; 7286 if (mctl_present) { 7287 mp = first_mp->b_cont; 7288 first_mp->b_cont = NULL; 7289 secure = ipsec_in_is_secure(first_mp); 7290 ASSERT(mp != NULL); 7291 } else { 7292 first_mp = NULL; 7293 secure = B_FALSE; 7294 } 7295 7296 /* Extract ports in net byte order */ 7297 dstport = htons(ntohl(ports) & 0xFFFF); 7298 srcport = htons(ntohl(ports) >> 16); 7299 dst = ipha->ipha_dst; 7300 src = ipha->ipha_src; 7301 7302 unlabeled = B_FALSE; 7303 if (is_system_labeled()) 7304 /* Cred cannot be null on IPv4 */ 7305 unlabeled = (msg_getlabel(mp)->tsl_flags & 7306 TSLF_UNLABELED) != 0; 7307 shared_addr = (zoneid == ALL_ZONES); 7308 if (shared_addr) { 7309 /* 7310 * No need to handle exclusive-stack zones since ALL_ZONES 7311 * only applies to the shared stack. 7312 */ 7313 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7314 /* 7315 * If no shared MLP is found, tsol_mlp_findzone returns 7316 * ALL_ZONES. In that case, we assume it's SLP, and 7317 * search for the zone based on the packet label. 7318 * 7319 * If there is such a zone, we prefer to find a 7320 * connection in it. Otherwise, we look for a 7321 * MAC-exempt connection in any zone whose label 7322 * dominates the default label on the packet. 7323 */ 7324 if (zoneid == ALL_ZONES) 7325 zoneid = tsol_packet_to_zoneid(mp); 7326 else 7327 unlabeled = B_FALSE; 7328 } 7329 7330 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7331 mutex_enter(&connfp->connf_lock); 7332 connp = connfp->connf_head; 7333 if (!broadcast && !CLASSD(dst)) { 7334 /* 7335 * Not broadcast or multicast. Send to the one (first) 7336 * client we find. No need to check conn_wantpacket() 7337 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7338 * IPv4 unicast packets. 7339 */ 7340 while ((connp != NULL) && 7341 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7342 (!IPCL_ZONE_MATCH(connp, zoneid) && 7343 !(unlabeled && connp->conn_mac_exempt)))) { 7344 /* 7345 * We keep searching since the conn did not match, 7346 * or its zone did not match and it is not either 7347 * an allzones conn or a mac exempt conn (if the 7348 * sender is unlabeled.) 7349 */ 7350 connp = connp->conn_next; 7351 } 7352 7353 if (connp == NULL || 7354 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7355 goto notfound; 7356 7357 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7358 7359 if (is_system_labeled() && 7360 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7361 connp)) 7362 goto notfound; 7363 7364 CONN_INC_REF(connp); 7365 mutex_exit(&connfp->connf_lock); 7366 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7367 flags, recv_ill, ip_policy); 7368 IP_STAT(ipst, ip_udp_fannorm); 7369 CONN_DEC_REF(connp); 7370 return; 7371 } 7372 7373 /* 7374 * Broadcast and multicast case 7375 * 7376 * Need to check conn_wantpacket(). 7377 * If SO_REUSEADDR has been set on the first we send the 7378 * packet to all clients that have joined the group and 7379 * match the port. 7380 */ 7381 7382 while (connp != NULL) { 7383 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7384 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7385 (!is_system_labeled() || 7386 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7387 connp))) 7388 break; 7389 connp = connp->conn_next; 7390 } 7391 7392 if (connp == NULL || 7393 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7394 goto notfound; 7395 7396 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7397 7398 first_connp = connp; 7399 /* 7400 * When SO_REUSEADDR is not set, send the packet only to the first 7401 * matching connection in its zone by keeping track of the zoneid. 7402 */ 7403 reuseaddr = first_connp->conn_reuseaddr; 7404 last_zoneid = first_connp->conn_zoneid; 7405 7406 CONN_INC_REF(connp); 7407 connp = connp->conn_next; 7408 for (;;) { 7409 while (connp != NULL) { 7410 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7411 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7412 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7413 (!is_system_labeled() || 7414 tsol_receive_local(mp, &dst, IPV4_VERSION, 7415 shared_addr, connp))) 7416 break; 7417 connp = connp->conn_next; 7418 } 7419 /* 7420 * Just copy the data part alone. The mctl part is 7421 * needed just for verifying policy and it is never 7422 * sent up. 7423 */ 7424 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7425 ((mp1 = copymsg(mp)) == NULL))) { 7426 /* 7427 * No more interested clients or memory 7428 * allocation failed 7429 */ 7430 connp = first_connp; 7431 break; 7432 } 7433 if (connp->conn_zoneid != last_zoneid) { 7434 /* 7435 * Update the zoneid so that the packet isn't sent to 7436 * any more conns in the same zone unless SO_REUSEADDR 7437 * is set. 7438 */ 7439 reuseaddr = connp->conn_reuseaddr; 7440 last_zoneid = connp->conn_zoneid; 7441 } 7442 if (first_mp != NULL) { 7443 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7444 ipsec_info_type == IPSEC_IN); 7445 first_mp1 = ipsec_in_tag(first_mp, NULL, 7446 ipst->ips_netstack); 7447 if (first_mp1 == NULL) { 7448 freemsg(mp1); 7449 connp = first_connp; 7450 break; 7451 } 7452 } else { 7453 first_mp1 = NULL; 7454 } 7455 CONN_INC_REF(connp); 7456 mutex_exit(&connfp->connf_lock); 7457 /* 7458 * IPQoS notes: We don't send the packet for policy 7459 * processing here, will do it for the last one (below). 7460 * i.e. we do it per-packet now, but if we do policy 7461 * processing per-conn, then we would need to do it 7462 * here too. 7463 */ 7464 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7465 ipha, flags, recv_ill, B_FALSE); 7466 mutex_enter(&connfp->connf_lock); 7467 /* Follow the next pointer before releasing the conn. */ 7468 next_connp = connp->conn_next; 7469 IP_STAT(ipst, ip_udp_fanmb); 7470 CONN_DEC_REF(connp); 7471 connp = next_connp; 7472 } 7473 7474 /* Last one. Send it upstream. */ 7475 mutex_exit(&connfp->connf_lock); 7476 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7477 recv_ill, ip_policy); 7478 IP_STAT(ipst, ip_udp_fanmb); 7479 CONN_DEC_REF(connp); 7480 return; 7481 7482 notfound: 7483 7484 mutex_exit(&connfp->connf_lock); 7485 IP_STAT(ipst, ip_udp_fanothers); 7486 /* 7487 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7488 * have already been matched above, since they live in the IPv4 7489 * fanout tables. This implies we only need to 7490 * check for IPv6 in6addr_any endpoints here. 7491 * Thus we compare using ipv6_all_zeros instead of the destination 7492 * address, except for the multicast group membership lookup which 7493 * uses the IPv4 destination. 7494 */ 7495 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7496 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7497 mutex_enter(&connfp->connf_lock); 7498 connp = connfp->connf_head; 7499 if (!broadcast && !CLASSD(dst)) { 7500 while (connp != NULL) { 7501 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7502 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7503 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7504 !connp->conn_ipv6_v6only) 7505 break; 7506 connp = connp->conn_next; 7507 } 7508 7509 if (connp != NULL && is_system_labeled() && 7510 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7511 connp)) 7512 connp = NULL; 7513 7514 if (connp == NULL || 7515 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7516 /* 7517 * No one bound to this port. Is 7518 * there a client that wants all 7519 * unclaimed datagrams? 7520 */ 7521 mutex_exit(&connfp->connf_lock); 7522 7523 if (mctl_present) 7524 first_mp->b_cont = mp; 7525 else 7526 first_mp = mp; 7527 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7528 connf_head != NULL) { 7529 ip_fanout_proto(q, first_mp, ill, ipha, 7530 flags | IP_FF_RAWIP, mctl_present, 7531 ip_policy, recv_ill, zoneid); 7532 } else { 7533 if (ip_fanout_send_icmp(q, first_mp, flags, 7534 ICMP_DEST_UNREACHABLE, 7535 ICMP_PORT_UNREACHABLE, 7536 mctl_present, zoneid, ipst)) { 7537 BUMP_MIB(ill->ill_ip_mib, 7538 udpIfStatsNoPorts); 7539 } 7540 } 7541 return; 7542 } 7543 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7544 7545 CONN_INC_REF(connp); 7546 mutex_exit(&connfp->connf_lock); 7547 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7548 flags, recv_ill, ip_policy); 7549 CONN_DEC_REF(connp); 7550 return; 7551 } 7552 /* 7553 * IPv4 multicast packet being delivered to an AF_INET6 7554 * in6addr_any endpoint. 7555 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7556 * and not conn_wantpacket_v6() since any multicast membership is 7557 * for an IPv4-mapped multicast address. 7558 * The packet is sent to all clients in all zones that have joined the 7559 * group and match the port. 7560 */ 7561 while (connp != NULL) { 7562 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7563 srcport, v6src) && 7564 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7565 (!is_system_labeled() || 7566 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7567 connp))) 7568 break; 7569 connp = connp->conn_next; 7570 } 7571 7572 if (connp == NULL || 7573 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7574 /* 7575 * No one bound to this port. Is 7576 * there a client that wants all 7577 * unclaimed datagrams? 7578 */ 7579 mutex_exit(&connfp->connf_lock); 7580 7581 if (mctl_present) 7582 first_mp->b_cont = mp; 7583 else 7584 first_mp = mp; 7585 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7586 NULL) { 7587 ip_fanout_proto(q, first_mp, ill, ipha, 7588 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7589 recv_ill, zoneid); 7590 } else { 7591 /* 7592 * We used to attempt to send an icmp error here, but 7593 * since this is known to be a multicast packet 7594 * and we don't send icmp errors in response to 7595 * multicast, just drop the packet and give up sooner. 7596 */ 7597 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7598 freemsg(first_mp); 7599 } 7600 return; 7601 } 7602 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7603 7604 first_connp = connp; 7605 7606 CONN_INC_REF(connp); 7607 connp = connp->conn_next; 7608 for (;;) { 7609 while (connp != NULL) { 7610 if (IPCL_UDP_MATCH_V6(connp, dstport, 7611 ipv6_all_zeros, srcport, v6src) && 7612 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7613 (!is_system_labeled() || 7614 tsol_receive_local(mp, &dst, IPV4_VERSION, 7615 shared_addr, connp))) 7616 break; 7617 connp = connp->conn_next; 7618 } 7619 /* 7620 * Just copy the data part alone. The mctl part is 7621 * needed just for verifying policy and it is never 7622 * sent up. 7623 */ 7624 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7625 ((mp1 = copymsg(mp)) == NULL))) { 7626 /* 7627 * No more intested clients or memory 7628 * allocation failed 7629 */ 7630 connp = first_connp; 7631 break; 7632 } 7633 if (first_mp != NULL) { 7634 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7635 ipsec_info_type == IPSEC_IN); 7636 first_mp1 = ipsec_in_tag(first_mp, NULL, 7637 ipst->ips_netstack); 7638 if (first_mp1 == NULL) { 7639 freemsg(mp1); 7640 connp = first_connp; 7641 break; 7642 } 7643 } else { 7644 first_mp1 = NULL; 7645 } 7646 CONN_INC_REF(connp); 7647 mutex_exit(&connfp->connf_lock); 7648 /* 7649 * IPQoS notes: We don't send the packet for policy 7650 * processing here, will do it for the last one (below). 7651 * i.e. we do it per-packet now, but if we do policy 7652 * processing per-conn, then we would need to do it 7653 * here too. 7654 */ 7655 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7656 ipha, flags, recv_ill, B_FALSE); 7657 mutex_enter(&connfp->connf_lock); 7658 /* Follow the next pointer before releasing the conn. */ 7659 next_connp = connp->conn_next; 7660 CONN_DEC_REF(connp); 7661 connp = next_connp; 7662 } 7663 7664 /* Last one. Send it upstream. */ 7665 mutex_exit(&connfp->connf_lock); 7666 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7667 recv_ill, ip_policy); 7668 CONN_DEC_REF(connp); 7669 } 7670 7671 /* 7672 * Complete the ip_wput header so that it 7673 * is possible to generate ICMP 7674 * errors. 7675 */ 7676 int 7677 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7678 { 7679 ire_t *ire; 7680 7681 if (ipha->ipha_src == INADDR_ANY) { 7682 ire = ire_lookup_local(zoneid, ipst); 7683 if (ire == NULL) { 7684 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7685 return (1); 7686 } 7687 ipha->ipha_src = ire->ire_addr; 7688 ire_refrele(ire); 7689 } 7690 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7691 ipha->ipha_hdr_checksum = 0; 7692 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7693 return (0); 7694 } 7695 7696 /* 7697 * Nobody should be sending 7698 * packets up this stream 7699 */ 7700 static void 7701 ip_lrput(queue_t *q, mblk_t *mp) 7702 { 7703 mblk_t *mp1; 7704 7705 switch (mp->b_datap->db_type) { 7706 case M_FLUSH: 7707 /* Turn around */ 7708 if (*mp->b_rptr & FLUSHW) { 7709 *mp->b_rptr &= ~FLUSHR; 7710 qreply(q, mp); 7711 return; 7712 } 7713 break; 7714 } 7715 /* Could receive messages that passed through ar_rput */ 7716 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7717 mp1->b_prev = mp1->b_next = NULL; 7718 freemsg(mp); 7719 } 7720 7721 /* Nobody should be sending packets down this stream */ 7722 /* ARGSUSED */ 7723 void 7724 ip_lwput(queue_t *q, mblk_t *mp) 7725 { 7726 freemsg(mp); 7727 } 7728 7729 /* 7730 * Move the first hop in any source route to ipha_dst and remove that part of 7731 * the source route. Called by other protocols. Errors in option formatting 7732 * are ignored - will be handled by ip_wput_options Return the final 7733 * destination (either ipha_dst or the last entry in a source route.) 7734 */ 7735 ipaddr_t 7736 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7737 { 7738 ipoptp_t opts; 7739 uchar_t *opt; 7740 uint8_t optval; 7741 uint8_t optlen; 7742 ipaddr_t dst; 7743 int i; 7744 ire_t *ire; 7745 ip_stack_t *ipst = ns->netstack_ip; 7746 7747 ip2dbg(("ip_massage_options\n")); 7748 dst = ipha->ipha_dst; 7749 for (optval = ipoptp_first(&opts, ipha); 7750 optval != IPOPT_EOL; 7751 optval = ipoptp_next(&opts)) { 7752 opt = opts.ipoptp_cur; 7753 switch (optval) { 7754 uint8_t off; 7755 case IPOPT_SSRR: 7756 case IPOPT_LSRR: 7757 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7758 ip1dbg(("ip_massage_options: bad src route\n")); 7759 break; 7760 } 7761 optlen = opts.ipoptp_len; 7762 off = opt[IPOPT_OFFSET]; 7763 off--; 7764 redo_srr: 7765 if (optlen < IP_ADDR_LEN || 7766 off > optlen - IP_ADDR_LEN) { 7767 /* End of source route */ 7768 ip1dbg(("ip_massage_options: end of SR\n")); 7769 break; 7770 } 7771 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7772 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7773 ntohl(dst))); 7774 /* 7775 * Check if our address is present more than 7776 * once as consecutive hops in source route. 7777 * XXX verify per-interface ip_forwarding 7778 * for source route? 7779 */ 7780 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7781 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7782 if (ire != NULL) { 7783 ire_refrele(ire); 7784 off += IP_ADDR_LEN; 7785 goto redo_srr; 7786 } 7787 if (dst == htonl(INADDR_LOOPBACK)) { 7788 ip1dbg(("ip_massage_options: loopback addr in " 7789 "source route!\n")); 7790 break; 7791 } 7792 /* 7793 * Update ipha_dst to be the first hop and remove the 7794 * first hop from the source route (by overwriting 7795 * part of the option with NOP options). 7796 */ 7797 ipha->ipha_dst = dst; 7798 /* Put the last entry in dst */ 7799 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7800 3; 7801 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7802 7803 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7804 ntohl(dst))); 7805 /* Move down and overwrite */ 7806 opt[IP_ADDR_LEN] = opt[0]; 7807 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7808 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7809 for (i = 0; i < IP_ADDR_LEN; i++) 7810 opt[i] = IPOPT_NOP; 7811 break; 7812 } 7813 } 7814 return (dst); 7815 } 7816 7817 /* 7818 * Return the network mask 7819 * associated with the specified address. 7820 */ 7821 ipaddr_t 7822 ip_net_mask(ipaddr_t addr) 7823 { 7824 uchar_t *up = (uchar_t *)&addr; 7825 ipaddr_t mask = 0; 7826 uchar_t *maskp = (uchar_t *)&mask; 7827 7828 #if defined(__i386) || defined(__amd64) 7829 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7830 #endif 7831 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7832 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7833 #endif 7834 if (CLASSD(addr)) { 7835 maskp[0] = 0xF0; 7836 return (mask); 7837 } 7838 7839 /* We assume Class E default netmask to be 32 */ 7840 if (CLASSE(addr)) 7841 return (0xffffffffU); 7842 7843 if (addr == 0) 7844 return (0); 7845 maskp[0] = 0xFF; 7846 if ((up[0] & 0x80) == 0) 7847 return (mask); 7848 7849 maskp[1] = 0xFF; 7850 if ((up[0] & 0xC0) == 0x80) 7851 return (mask); 7852 7853 maskp[2] = 0xFF; 7854 if ((up[0] & 0xE0) == 0xC0) 7855 return (mask); 7856 7857 /* Otherwise return no mask */ 7858 return ((ipaddr_t)0); 7859 } 7860 7861 /* 7862 * Helper ill lookup function used by IPsec. 7863 */ 7864 ill_t * 7865 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7866 { 7867 ill_t *ret_ill; 7868 7869 ASSERT(ifindex != 0); 7870 7871 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7872 ipst); 7873 if (ret_ill == NULL) { 7874 if (isv6) { 7875 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7876 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7877 ifindex)); 7878 } else { 7879 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7880 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7881 ifindex)); 7882 } 7883 freemsg(first_mp); 7884 return (NULL); 7885 } 7886 return (ret_ill); 7887 } 7888 7889 /* 7890 * IPv4 - 7891 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7892 * out a packet to a destination address for which we do not have specific 7893 * (or sufficient) routing information. 7894 * 7895 * NOTE : These are the scopes of some of the variables that point at IRE, 7896 * which needs to be followed while making any future modifications 7897 * to avoid memory leaks. 7898 * 7899 * - ire and sire are the entries looked up initially by 7900 * ire_ftable_lookup. 7901 * - ipif_ire is used to hold the interface ire associated with 7902 * the new cache ire. But it's scope is limited, so we always REFRELE 7903 * it before branching out to error paths. 7904 * - save_ire is initialized before ire_create, so that ire returned 7905 * by ire_create will not over-write the ire. We REFRELE save_ire 7906 * before breaking out of the switch. 7907 * 7908 * Thus on failures, we have to REFRELE only ire and sire, if they 7909 * are not NULL. 7910 */ 7911 void 7912 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7913 zoneid_t zoneid, ip_stack_t *ipst) 7914 { 7915 areq_t *areq; 7916 ipaddr_t gw = 0; 7917 ire_t *ire = NULL; 7918 mblk_t *res_mp; 7919 ipaddr_t *addrp; 7920 ipaddr_t nexthop_addr; 7921 ipif_t *src_ipif = NULL; 7922 ill_t *dst_ill = NULL; 7923 ipha_t *ipha; 7924 ire_t *sire = NULL; 7925 mblk_t *first_mp; 7926 ire_t *save_ire; 7927 ushort_t ire_marks = 0; 7928 boolean_t mctl_present; 7929 ipsec_out_t *io; 7930 mblk_t *saved_mp; 7931 ire_t *first_sire = NULL; 7932 mblk_t *copy_mp = NULL; 7933 mblk_t *xmit_mp = NULL; 7934 ipaddr_t save_dst; 7935 uint32_t multirt_flags = 7936 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7937 boolean_t multirt_is_resolvable; 7938 boolean_t multirt_resolve_next; 7939 boolean_t unspec_src; 7940 boolean_t ip_nexthop = B_FALSE; 7941 tsol_ire_gw_secattr_t *attrp = NULL; 7942 tsol_gcgrp_t *gcgrp = NULL; 7943 tsol_gcgrp_addr_t ga; 7944 7945 if (ip_debug > 2) { 7946 /* ip1dbg */ 7947 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7948 } 7949 7950 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7951 if (mctl_present) { 7952 io = (ipsec_out_t *)first_mp->b_rptr; 7953 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7954 ASSERT(zoneid == io->ipsec_out_zoneid); 7955 ASSERT(zoneid != ALL_ZONES); 7956 } 7957 7958 ipha = (ipha_t *)mp->b_rptr; 7959 7960 /* All multicast lookups come through ip_newroute_ipif() */ 7961 if (CLASSD(dst)) { 7962 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7963 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7964 freemsg(first_mp); 7965 return; 7966 } 7967 7968 if (mctl_present && io->ipsec_out_ip_nexthop) { 7969 ip_nexthop = B_TRUE; 7970 nexthop_addr = io->ipsec_out_nexthop_addr; 7971 } 7972 /* 7973 * If this IRE is created for forwarding or it is not for 7974 * traffic for congestion controlled protocols, mark it as temporary. 7975 */ 7976 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7977 ire_marks |= IRE_MARK_TEMPORARY; 7978 7979 /* 7980 * Get what we can from ire_ftable_lookup which will follow an IRE 7981 * chain until it gets the most specific information available. 7982 * For example, we know that there is no IRE_CACHE for this dest, 7983 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7984 * ire_ftable_lookup will look up the gateway, etc. 7985 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7986 * to the destination, of equal netmask length in the forward table, 7987 * will be recursively explored. If no information is available 7988 * for the final gateway of that route, we force the returned ire 7989 * to be equal to sire using MATCH_IRE_PARENT. 7990 * At least, in this case we have a starting point (in the buckets) 7991 * to look for other routes to the destination in the forward table. 7992 * This is actually used only for multirouting, where a list 7993 * of routes has to be processed in sequence. 7994 * 7995 * In the process of coming up with the most specific information, 7996 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7997 * for the gateway (i.e., one for which the ire_nce->nce_state is 7998 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7999 * Two caveats when handling incomplete ire's in ip_newroute: 8000 * - we should be careful when accessing its ire_nce (specifically 8001 * the nce_res_mp) ast it might change underneath our feet, and, 8002 * - not all legacy code path callers are prepared to handle 8003 * incomplete ire's, so we should not create/add incomplete 8004 * ire_cache entries here. (See discussion about temporary solution 8005 * further below). 8006 * 8007 * In order to minimize packet dropping, and to preserve existing 8008 * behavior, we treat this case as if there were no IRE_CACHE for the 8009 * gateway, and instead use the IF_RESOLVER ire to send out 8010 * another request to ARP (this is achieved by passing the 8011 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8012 * arp response comes back in ip_wput_nondata, we will create 8013 * a per-dst ire_cache that has an ND_COMPLETE ire. 8014 * 8015 * Note that this is a temporary solution; the correct solution is 8016 * to create an incomplete per-dst ire_cache entry, and send the 8017 * packet out when the gw's nce is resolved. In order to achieve this, 8018 * all packet processing must have been completed prior to calling 8019 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8020 * to be modified to accomodate this solution. 8021 */ 8022 if (ip_nexthop) { 8023 /* 8024 * The first time we come here, we look for an IRE_INTERFACE 8025 * entry for the specified nexthop, set the dst to be the 8026 * nexthop address and create an IRE_CACHE entry for the 8027 * nexthop. The next time around, we are able to find an 8028 * IRE_CACHE entry for the nexthop, set the gateway to be the 8029 * nexthop address and create an IRE_CACHE entry for the 8030 * destination address via the specified nexthop. 8031 */ 8032 ire = ire_cache_lookup(nexthop_addr, zoneid, 8033 msg_getlabel(mp), ipst); 8034 if (ire != NULL) { 8035 gw = nexthop_addr; 8036 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8037 } else { 8038 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8039 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8040 msg_getlabel(mp), 8041 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8042 ipst); 8043 if (ire != NULL) { 8044 dst = nexthop_addr; 8045 } 8046 } 8047 } else { 8048 ire = ire_ftable_lookup(dst, 0, 0, 0, 8049 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8050 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8051 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8052 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8053 ipst); 8054 } 8055 8056 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8057 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8058 8059 /* 8060 * This loop is run only once in most cases. 8061 * We loop to resolve further routes only when the destination 8062 * can be reached through multiple RTF_MULTIRT-flagged ires. 8063 */ 8064 do { 8065 /* Clear the previous iteration's values */ 8066 if (src_ipif != NULL) { 8067 ipif_refrele(src_ipif); 8068 src_ipif = NULL; 8069 } 8070 if (dst_ill != NULL) { 8071 ill_refrele(dst_ill); 8072 dst_ill = NULL; 8073 } 8074 8075 multirt_resolve_next = B_FALSE; 8076 /* 8077 * We check if packets have to be multirouted. 8078 * In this case, given the current <ire, sire> couple, 8079 * we look for the next suitable <ire, sire>. 8080 * This check is done in ire_multirt_lookup(), 8081 * which applies various criteria to find the next route 8082 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8083 * unchanged if it detects it has not been tried yet. 8084 */ 8085 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8086 ip3dbg(("ip_newroute: starting next_resolution " 8087 "with first_mp %p, tag %d\n", 8088 (void *)first_mp, 8089 MULTIRT_DEBUG_TAGGED(first_mp))); 8090 8091 ASSERT(sire != NULL); 8092 multirt_is_resolvable = 8093 ire_multirt_lookup(&ire, &sire, multirt_flags, 8094 msg_getlabel(mp), ipst); 8095 8096 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8097 "ire %p, sire %p\n", 8098 multirt_is_resolvable, 8099 (void *)ire, (void *)sire)); 8100 8101 if (!multirt_is_resolvable) { 8102 /* 8103 * No more multirt route to resolve; give up 8104 * (all routes resolved or no more 8105 * resolvable routes). 8106 */ 8107 if (ire != NULL) { 8108 ire_refrele(ire); 8109 ire = NULL; 8110 } 8111 } else { 8112 ASSERT(sire != NULL); 8113 ASSERT(ire != NULL); 8114 /* 8115 * We simply use first_sire as a flag that 8116 * indicates if a resolvable multirt route 8117 * has already been found. 8118 * If it is not the case, we may have to send 8119 * an ICMP error to report that the 8120 * destination is unreachable. 8121 * We do not IRE_REFHOLD first_sire. 8122 */ 8123 if (first_sire == NULL) { 8124 first_sire = sire; 8125 } 8126 } 8127 } 8128 if (ire == NULL) { 8129 if (ip_debug > 3) { 8130 /* ip2dbg */ 8131 pr_addr_dbg("ip_newroute: " 8132 "can't resolve %s\n", AF_INET, &dst); 8133 } 8134 ip3dbg(("ip_newroute: " 8135 "ire %p, sire %p, first_sire %p\n", 8136 (void *)ire, (void *)sire, (void *)first_sire)); 8137 8138 if (sire != NULL) { 8139 ire_refrele(sire); 8140 sire = NULL; 8141 } 8142 8143 if (first_sire != NULL) { 8144 /* 8145 * At least one multirt route has been found 8146 * in the same call to ip_newroute(); 8147 * there is no need to report an ICMP error. 8148 * first_sire was not IRE_REFHOLDed. 8149 */ 8150 MULTIRT_DEBUG_UNTAG(first_mp); 8151 freemsg(first_mp); 8152 return; 8153 } 8154 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8155 RTA_DST, ipst); 8156 goto icmp_err_ret; 8157 } 8158 8159 /* 8160 * Verify that the returned IRE does not have either 8161 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8162 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8163 */ 8164 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8165 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8166 goto icmp_err_ret; 8167 } 8168 /* 8169 * Increment the ire_ob_pkt_count field for ire if it is an 8170 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8171 * increment the same for the parent IRE, sire, if it is some 8172 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8173 */ 8174 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8175 UPDATE_OB_PKT_COUNT(ire); 8176 ire->ire_last_used_time = lbolt; 8177 } 8178 8179 if (sire != NULL) { 8180 gw = sire->ire_gateway_addr; 8181 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8182 IRE_INTERFACE)) == 0); 8183 UPDATE_OB_PKT_COUNT(sire); 8184 sire->ire_last_used_time = lbolt; 8185 } 8186 /* 8187 * We have a route to reach the destination. Find the 8188 * appropriate ill, then get a source address using 8189 * ipif_select_source(). 8190 * 8191 * If we are here trying to create an IRE_CACHE for an offlink 8192 * destination and have an IRE_CACHE entry for VNI, then use 8193 * ire_stq instead since VNI's queue is a black hole. 8194 */ 8195 if ((ire->ire_type == IRE_CACHE) && 8196 IS_VNI(ire->ire_ipif->ipif_ill)) { 8197 dst_ill = ire->ire_stq->q_ptr; 8198 ill_refhold(dst_ill); 8199 } else { 8200 ill_t *ill = ire->ire_ipif->ipif_ill; 8201 8202 if (IS_IPMP(ill)) { 8203 dst_ill = 8204 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8205 } else { 8206 dst_ill = ill; 8207 ill_refhold(dst_ill); 8208 } 8209 } 8210 8211 if (dst_ill == NULL) { 8212 if (ip_debug > 2) { 8213 pr_addr_dbg("ip_newroute: no dst " 8214 "ill for dst %s\n", AF_INET, &dst); 8215 } 8216 goto icmp_err_ret; 8217 } 8218 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8219 8220 /* 8221 * Pick the best source address from dst_ill. 8222 * 8223 * 1) Try to pick the source address from the destination 8224 * route. Clustering assumes that when we have multiple 8225 * prefixes hosted on an interface, the prefix of the 8226 * source address matches the prefix of the destination 8227 * route. We do this only if the address is not 8228 * DEPRECATED. 8229 * 8230 * 2) If the conn is in a different zone than the ire, we 8231 * need to pick a source address from the right zone. 8232 */ 8233 ASSERT(src_ipif == NULL); 8234 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8235 /* 8236 * The RTF_SETSRC flag is set in the parent ire (sire). 8237 * Check that the ipif matching the requested source 8238 * address still exists. 8239 */ 8240 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8241 zoneid, NULL, NULL, NULL, NULL, ipst); 8242 } 8243 8244 unspec_src = (connp != NULL && connp->conn_unspec_src); 8245 8246 if (src_ipif == NULL && 8247 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8248 ire_marks |= IRE_MARK_USESRC_CHECK; 8249 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8250 IS_IPMP(ire->ire_ipif->ipif_ill) || 8251 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8252 (connp != NULL && ire->ire_zoneid != zoneid && 8253 ire->ire_zoneid != ALL_ZONES) || 8254 (dst_ill->ill_usesrc_ifindex != 0)) { 8255 /* 8256 * If the destination is reachable via a 8257 * given gateway, the selected source address 8258 * should be in the same subnet as the gateway. 8259 * Otherwise, the destination is not reachable. 8260 * 8261 * If there are no interfaces on the same subnet 8262 * as the destination, ipif_select_source gives 8263 * first non-deprecated interface which might be 8264 * on a different subnet than the gateway. 8265 * This is not desirable. Hence pass the dst_ire 8266 * source address to ipif_select_source. 8267 * It is sure that the destination is reachable 8268 * with the dst_ire source address subnet. 8269 * So passing dst_ire source address to 8270 * ipif_select_source will make sure that the 8271 * selected source will be on the same subnet 8272 * as dst_ire source address. 8273 */ 8274 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8275 8276 src_ipif = ipif_select_source(dst_ill, saddr, 8277 zoneid); 8278 if (src_ipif == NULL) { 8279 if (ip_debug > 2) { 8280 pr_addr_dbg("ip_newroute: " 8281 "no src for dst %s ", 8282 AF_INET, &dst); 8283 printf("on interface %s\n", 8284 dst_ill->ill_name); 8285 } 8286 goto icmp_err_ret; 8287 } 8288 } else { 8289 src_ipif = ire->ire_ipif; 8290 ASSERT(src_ipif != NULL); 8291 /* hold src_ipif for uniformity */ 8292 ipif_refhold(src_ipif); 8293 } 8294 } 8295 8296 /* 8297 * Assign a source address while we have the conn. 8298 * We can't have ip_wput_ire pick a source address when the 8299 * packet returns from arp since we need to look at 8300 * conn_unspec_src and conn_zoneid, and we lose the conn when 8301 * going through arp. 8302 * 8303 * NOTE : ip_newroute_v6 does not have this piece of code as 8304 * it uses ip6i to store this information. 8305 */ 8306 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8307 ipha->ipha_src = src_ipif->ipif_src_addr; 8308 8309 if (ip_debug > 3) { 8310 /* ip2dbg */ 8311 pr_addr_dbg("ip_newroute: first hop %s\n", 8312 AF_INET, &gw); 8313 } 8314 ip2dbg(("\tire type %s (%d)\n", 8315 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8316 8317 /* 8318 * The TTL of multirouted packets is bounded by the 8319 * ip_multirt_ttl ndd variable. 8320 */ 8321 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8322 /* Force TTL of multirouted packets */ 8323 if ((ipst->ips_ip_multirt_ttl > 0) && 8324 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8325 ip2dbg(("ip_newroute: forcing multirt TTL " 8326 "to %d (was %d), dst 0x%08x\n", 8327 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8328 ntohl(sire->ire_addr))); 8329 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8330 } 8331 } 8332 /* 8333 * At this point in ip_newroute(), ire is either the 8334 * IRE_CACHE of the next-hop gateway for an off-subnet 8335 * destination or an IRE_INTERFACE type that should be used 8336 * to resolve an on-subnet destination or an on-subnet 8337 * next-hop gateway. 8338 * 8339 * In the IRE_CACHE case, we have the following : 8340 * 8341 * 1) src_ipif - used for getting a source address. 8342 * 8343 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8344 * means packets using this IRE_CACHE will go out on 8345 * dst_ill. 8346 * 8347 * 3) The IRE sire will point to the prefix that is the 8348 * longest matching route for the destination. These 8349 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8350 * 8351 * The newly created IRE_CACHE entry for the off-subnet 8352 * destination is tied to both the prefix route and the 8353 * interface route used to resolve the next-hop gateway 8354 * via the ire_phandle and ire_ihandle fields, 8355 * respectively. 8356 * 8357 * In the IRE_INTERFACE case, we have the following : 8358 * 8359 * 1) src_ipif - used for getting a source address. 8360 * 8361 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8362 * means packets using the IRE_CACHE that we will build 8363 * here will go out on dst_ill. 8364 * 8365 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8366 * to be created will only be tied to the IRE_INTERFACE 8367 * that was derived from the ire_ihandle field. 8368 * 8369 * If sire is non-NULL, it means the destination is 8370 * off-link and we will first create the IRE_CACHE for the 8371 * gateway. Next time through ip_newroute, we will create 8372 * the IRE_CACHE for the final destination as described 8373 * above. 8374 * 8375 * In both cases, after the current resolution has been 8376 * completed (or possibly initialised, in the IRE_INTERFACE 8377 * case), the loop may be re-entered to attempt the resolution 8378 * of another RTF_MULTIRT route. 8379 * 8380 * When an IRE_CACHE entry for the off-subnet destination is 8381 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8382 * for further processing in emission loops. 8383 */ 8384 save_ire = ire; 8385 switch (ire->ire_type) { 8386 case IRE_CACHE: { 8387 ire_t *ipif_ire; 8388 8389 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8390 if (gw == 0) 8391 gw = ire->ire_gateway_addr; 8392 /* 8393 * We need 3 ire's to create a new cache ire for an 8394 * off-link destination from the cache ire of the 8395 * gateway. 8396 * 8397 * 1. The prefix ire 'sire' (Note that this does 8398 * not apply to the conn_nexthop_set case) 8399 * 2. The cache ire of the gateway 'ire' 8400 * 3. The interface ire 'ipif_ire' 8401 * 8402 * We have (1) and (2). We lookup (3) below. 8403 * 8404 * If there is no interface route to the gateway, 8405 * it is a race condition, where we found the cache 8406 * but the interface route has been deleted. 8407 */ 8408 if (ip_nexthop) { 8409 ipif_ire = ire_ihandle_lookup_onlink(ire); 8410 } else { 8411 ipif_ire = 8412 ire_ihandle_lookup_offlink(ire, sire); 8413 } 8414 if (ipif_ire == NULL) { 8415 ip1dbg(("ip_newroute: " 8416 "ire_ihandle_lookup_offlink failed\n")); 8417 goto icmp_err_ret; 8418 } 8419 8420 /* 8421 * Check cached gateway IRE for any security 8422 * attributes; if found, associate the gateway 8423 * credentials group to the destination IRE. 8424 */ 8425 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8426 mutex_enter(&attrp->igsa_lock); 8427 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8428 GCGRP_REFHOLD(gcgrp); 8429 mutex_exit(&attrp->igsa_lock); 8430 } 8431 8432 /* 8433 * XXX For the source of the resolver mp, 8434 * we are using the same DL_UNITDATA_REQ 8435 * (from save_ire->ire_nce->nce_res_mp) 8436 * though the save_ire is not pointing at the same ill. 8437 * This is incorrect. We need to send it up to the 8438 * resolver to get the right res_mp. For ethernets 8439 * this may be okay (ill_type == DL_ETHER). 8440 */ 8441 8442 ire = ire_create( 8443 (uchar_t *)&dst, /* dest address */ 8444 (uchar_t *)&ip_g_all_ones, /* mask */ 8445 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8446 (uchar_t *)&gw, /* gateway address */ 8447 &save_ire->ire_max_frag, 8448 save_ire->ire_nce, /* src nce */ 8449 dst_ill->ill_rq, /* recv-from queue */ 8450 dst_ill->ill_wq, /* send-to queue */ 8451 IRE_CACHE, /* IRE type */ 8452 src_ipif, 8453 (sire != NULL) ? 8454 sire->ire_mask : 0, /* Parent mask */ 8455 (sire != NULL) ? 8456 sire->ire_phandle : 0, /* Parent handle */ 8457 ipif_ire->ire_ihandle, /* Interface handle */ 8458 (sire != NULL) ? (sire->ire_flags & 8459 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8460 (sire != NULL) ? 8461 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8462 NULL, 8463 gcgrp, 8464 ipst); 8465 8466 if (ire == NULL) { 8467 if (gcgrp != NULL) { 8468 GCGRP_REFRELE(gcgrp); 8469 gcgrp = NULL; 8470 } 8471 ire_refrele(ipif_ire); 8472 ire_refrele(save_ire); 8473 break; 8474 } 8475 8476 /* reference now held by IRE */ 8477 gcgrp = NULL; 8478 8479 ire->ire_marks |= ire_marks; 8480 8481 /* 8482 * Prevent sire and ipif_ire from getting deleted. 8483 * The newly created ire is tied to both of them via 8484 * the phandle and ihandle respectively. 8485 */ 8486 if (sire != NULL) { 8487 IRB_REFHOLD(sire->ire_bucket); 8488 /* Has it been removed already ? */ 8489 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8490 IRB_REFRELE(sire->ire_bucket); 8491 ire_refrele(ipif_ire); 8492 ire_refrele(save_ire); 8493 break; 8494 } 8495 } 8496 8497 IRB_REFHOLD(ipif_ire->ire_bucket); 8498 /* Has it been removed already ? */ 8499 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8500 IRB_REFRELE(ipif_ire->ire_bucket); 8501 if (sire != NULL) 8502 IRB_REFRELE(sire->ire_bucket); 8503 ire_refrele(ipif_ire); 8504 ire_refrele(save_ire); 8505 break; 8506 } 8507 8508 xmit_mp = first_mp; 8509 /* 8510 * In the case of multirouting, a copy 8511 * of the packet is done before its sending. 8512 * The copy is used to attempt another 8513 * route resolution, in a next loop. 8514 */ 8515 if (ire->ire_flags & RTF_MULTIRT) { 8516 copy_mp = copymsg(first_mp); 8517 if (copy_mp != NULL) { 8518 xmit_mp = copy_mp; 8519 MULTIRT_DEBUG_TAG(first_mp); 8520 } 8521 } 8522 8523 ire_add_then_send(q, ire, xmit_mp); 8524 ire_refrele(save_ire); 8525 8526 /* Assert that sire is not deleted yet. */ 8527 if (sire != NULL) { 8528 ASSERT(sire->ire_ptpn != NULL); 8529 IRB_REFRELE(sire->ire_bucket); 8530 } 8531 8532 /* Assert that ipif_ire is not deleted yet. */ 8533 ASSERT(ipif_ire->ire_ptpn != NULL); 8534 IRB_REFRELE(ipif_ire->ire_bucket); 8535 ire_refrele(ipif_ire); 8536 8537 /* 8538 * If copy_mp is not NULL, multirouting was 8539 * requested. We loop to initiate a next 8540 * route resolution attempt, starting from sire. 8541 */ 8542 if (copy_mp != NULL) { 8543 /* 8544 * Search for the next unresolved 8545 * multirt route. 8546 */ 8547 copy_mp = NULL; 8548 ipif_ire = NULL; 8549 ire = NULL; 8550 multirt_resolve_next = B_TRUE; 8551 continue; 8552 } 8553 if (sire != NULL) 8554 ire_refrele(sire); 8555 ipif_refrele(src_ipif); 8556 ill_refrele(dst_ill); 8557 return; 8558 } 8559 case IRE_IF_NORESOLVER: { 8560 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8561 dst_ill->ill_resolver_mp == NULL) { 8562 ip1dbg(("ip_newroute: dst_ill %p " 8563 "for IRE_IF_NORESOLVER ire %p has " 8564 "no ill_resolver_mp\n", 8565 (void *)dst_ill, (void *)ire)); 8566 break; 8567 } 8568 8569 /* 8570 * TSol note: We are creating the ire cache for the 8571 * destination 'dst'. If 'dst' is offlink, going 8572 * through the first hop 'gw', the security attributes 8573 * of 'dst' must be set to point to the gateway 8574 * credentials of gateway 'gw'. If 'dst' is onlink, it 8575 * is possible that 'dst' is a potential gateway that is 8576 * referenced by some route that has some security 8577 * attributes. Thus in the former case, we need to do a 8578 * gcgrp_lookup of 'gw' while in the latter case we 8579 * need to do gcgrp_lookup of 'dst' itself. 8580 */ 8581 ga.ga_af = AF_INET; 8582 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8583 &ga.ga_addr); 8584 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8585 8586 ire = ire_create( 8587 (uchar_t *)&dst, /* dest address */ 8588 (uchar_t *)&ip_g_all_ones, /* mask */ 8589 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8590 (uchar_t *)&gw, /* gateway address */ 8591 &save_ire->ire_max_frag, 8592 NULL, /* no src nce */ 8593 dst_ill->ill_rq, /* recv-from queue */ 8594 dst_ill->ill_wq, /* send-to queue */ 8595 IRE_CACHE, 8596 src_ipif, 8597 save_ire->ire_mask, /* Parent mask */ 8598 (sire != NULL) ? /* Parent handle */ 8599 sire->ire_phandle : 0, 8600 save_ire->ire_ihandle, /* Interface handle */ 8601 (sire != NULL) ? sire->ire_flags & 8602 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8603 &(save_ire->ire_uinfo), 8604 NULL, 8605 gcgrp, 8606 ipst); 8607 8608 if (ire == NULL) { 8609 if (gcgrp != NULL) { 8610 GCGRP_REFRELE(gcgrp); 8611 gcgrp = NULL; 8612 } 8613 ire_refrele(save_ire); 8614 break; 8615 } 8616 8617 /* reference now held by IRE */ 8618 gcgrp = NULL; 8619 8620 ire->ire_marks |= ire_marks; 8621 8622 /* Prevent save_ire from getting deleted */ 8623 IRB_REFHOLD(save_ire->ire_bucket); 8624 /* Has it been removed already ? */ 8625 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8626 IRB_REFRELE(save_ire->ire_bucket); 8627 ire_refrele(save_ire); 8628 break; 8629 } 8630 8631 /* 8632 * In the case of multirouting, a copy 8633 * of the packet is made before it is sent. 8634 * The copy is used in the next 8635 * loop to attempt another resolution. 8636 */ 8637 xmit_mp = first_mp; 8638 if ((sire != NULL) && 8639 (sire->ire_flags & RTF_MULTIRT)) { 8640 copy_mp = copymsg(first_mp); 8641 if (copy_mp != NULL) { 8642 xmit_mp = copy_mp; 8643 MULTIRT_DEBUG_TAG(first_mp); 8644 } 8645 } 8646 ire_add_then_send(q, ire, xmit_mp); 8647 8648 /* Assert that it is not deleted yet. */ 8649 ASSERT(save_ire->ire_ptpn != NULL); 8650 IRB_REFRELE(save_ire->ire_bucket); 8651 ire_refrele(save_ire); 8652 8653 if (copy_mp != NULL) { 8654 /* 8655 * If we found a (no)resolver, we ignore any 8656 * trailing top priority IRE_CACHE in further 8657 * loops. This ensures that we do not omit any 8658 * (no)resolver. 8659 * This IRE_CACHE, if any, will be processed 8660 * by another thread entering ip_newroute(). 8661 * IRE_CACHE entries, if any, will be processed 8662 * by another thread entering ip_newroute(), 8663 * (upon resolver response, for instance). 8664 * This aims to force parallel multirt 8665 * resolutions as soon as a packet must be sent. 8666 * In the best case, after the tx of only one 8667 * packet, all reachable routes are resolved. 8668 * Otherwise, the resolution of all RTF_MULTIRT 8669 * routes would require several emissions. 8670 */ 8671 multirt_flags &= ~MULTIRT_CACHEGW; 8672 8673 /* 8674 * Search for the next unresolved multirt 8675 * route. 8676 */ 8677 copy_mp = NULL; 8678 save_ire = NULL; 8679 ire = NULL; 8680 multirt_resolve_next = B_TRUE; 8681 continue; 8682 } 8683 8684 /* 8685 * Don't need sire anymore 8686 */ 8687 if (sire != NULL) 8688 ire_refrele(sire); 8689 8690 ipif_refrele(src_ipif); 8691 ill_refrele(dst_ill); 8692 return; 8693 } 8694 case IRE_IF_RESOLVER: 8695 /* 8696 * We can't build an IRE_CACHE yet, but at least we 8697 * found a resolver that can help. 8698 */ 8699 res_mp = dst_ill->ill_resolver_mp; 8700 if (!OK_RESOLVER_MP(res_mp)) 8701 break; 8702 8703 /* 8704 * To be at this point in the code with a non-zero gw 8705 * means that dst is reachable through a gateway that 8706 * we have never resolved. By changing dst to the gw 8707 * addr we resolve the gateway first. 8708 * When ire_add_then_send() tries to put the IP dg 8709 * to dst, it will reenter ip_newroute() at which 8710 * time we will find the IRE_CACHE for the gw and 8711 * create another IRE_CACHE in case IRE_CACHE above. 8712 */ 8713 if (gw != INADDR_ANY) { 8714 /* 8715 * The source ipif that was determined above was 8716 * relative to the destination address, not the 8717 * gateway's. If src_ipif was not taken out of 8718 * the IRE_IF_RESOLVER entry, we'll need to call 8719 * ipif_select_source() again. 8720 */ 8721 if (src_ipif != ire->ire_ipif) { 8722 ipif_refrele(src_ipif); 8723 src_ipif = ipif_select_source(dst_ill, 8724 gw, zoneid); 8725 if (src_ipif == NULL) { 8726 if (ip_debug > 2) { 8727 pr_addr_dbg( 8728 "ip_newroute: no " 8729 "src for gw %s ", 8730 AF_INET, &gw); 8731 printf("on " 8732 "interface %s\n", 8733 dst_ill->ill_name); 8734 } 8735 goto icmp_err_ret; 8736 } 8737 } 8738 save_dst = dst; 8739 dst = gw; 8740 gw = INADDR_ANY; 8741 } 8742 8743 /* 8744 * We obtain a partial IRE_CACHE which we will pass 8745 * along with the resolver query. When the response 8746 * comes back it will be there ready for us to add. 8747 * The ire_max_frag is atomically set under the 8748 * irebucket lock in ire_add_v[46]. 8749 */ 8750 8751 ire = ire_create_mp( 8752 (uchar_t *)&dst, /* dest address */ 8753 (uchar_t *)&ip_g_all_ones, /* mask */ 8754 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8755 (uchar_t *)&gw, /* gateway address */ 8756 NULL, /* ire_max_frag */ 8757 NULL, /* no src nce */ 8758 dst_ill->ill_rq, /* recv-from queue */ 8759 dst_ill->ill_wq, /* send-to queue */ 8760 IRE_CACHE, 8761 src_ipif, /* Interface ipif */ 8762 save_ire->ire_mask, /* Parent mask */ 8763 0, 8764 save_ire->ire_ihandle, /* Interface handle */ 8765 0, /* flags if any */ 8766 &(save_ire->ire_uinfo), 8767 NULL, 8768 NULL, 8769 ipst); 8770 8771 if (ire == NULL) { 8772 ire_refrele(save_ire); 8773 break; 8774 } 8775 8776 if ((sire != NULL) && 8777 (sire->ire_flags & RTF_MULTIRT)) { 8778 copy_mp = copymsg(first_mp); 8779 if (copy_mp != NULL) 8780 MULTIRT_DEBUG_TAG(copy_mp); 8781 } 8782 8783 ire->ire_marks |= ire_marks; 8784 8785 /* 8786 * Construct message chain for the resolver 8787 * of the form: 8788 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8789 * Packet could contain a IPSEC_OUT mp. 8790 * 8791 * NOTE : ire will be added later when the response 8792 * comes back from ARP. If the response does not 8793 * come back, ARP frees the packet. For this reason, 8794 * we can't REFHOLD the bucket of save_ire to prevent 8795 * deletions. We may not be able to REFRELE the bucket 8796 * if the response never comes back. Thus, before 8797 * adding the ire, ire_add_v4 will make sure that the 8798 * interface route does not get deleted. This is the 8799 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8800 * where we can always prevent deletions because of 8801 * the synchronous nature of adding IRES i.e 8802 * ire_add_then_send is called after creating the IRE. 8803 */ 8804 ASSERT(ire->ire_mp != NULL); 8805 ire->ire_mp->b_cont = first_mp; 8806 /* Have saved_mp handy, for cleanup if canput fails */ 8807 saved_mp = mp; 8808 mp = copyb(res_mp); 8809 if (mp == NULL) { 8810 /* Prepare for cleanup */ 8811 mp = saved_mp; /* pkt */ 8812 ire_delete(ire); /* ire_mp */ 8813 ire = NULL; 8814 ire_refrele(save_ire); 8815 if (copy_mp != NULL) { 8816 MULTIRT_DEBUG_UNTAG(copy_mp); 8817 freemsg(copy_mp); 8818 copy_mp = NULL; 8819 } 8820 break; 8821 } 8822 linkb(mp, ire->ire_mp); 8823 8824 /* 8825 * Fill in the source and dest addrs for the resolver. 8826 * NOTE: this depends on memory layouts imposed by 8827 * ill_init(). 8828 */ 8829 areq = (areq_t *)mp->b_rptr; 8830 addrp = (ipaddr_t *)((char *)areq + 8831 areq->areq_sender_addr_offset); 8832 *addrp = save_ire->ire_src_addr; 8833 8834 ire_refrele(save_ire); 8835 addrp = (ipaddr_t *)((char *)areq + 8836 areq->areq_target_addr_offset); 8837 *addrp = dst; 8838 /* Up to the resolver. */ 8839 if (canputnext(dst_ill->ill_rq) && 8840 !(dst_ill->ill_arp_closing)) { 8841 putnext(dst_ill->ill_rq, mp); 8842 ire = NULL; 8843 if (copy_mp != NULL) { 8844 /* 8845 * If we found a resolver, we ignore 8846 * any trailing top priority IRE_CACHE 8847 * in the further loops. This ensures 8848 * that we do not omit any resolver. 8849 * IRE_CACHE entries, if any, will be 8850 * processed next time we enter 8851 * ip_newroute(). 8852 */ 8853 multirt_flags &= ~MULTIRT_CACHEGW; 8854 /* 8855 * Search for the next unresolved 8856 * multirt route. 8857 */ 8858 first_mp = copy_mp; 8859 copy_mp = NULL; 8860 /* Prepare the next resolution loop. */ 8861 mp = first_mp; 8862 EXTRACT_PKT_MP(mp, first_mp, 8863 mctl_present); 8864 if (mctl_present) 8865 io = (ipsec_out_t *) 8866 first_mp->b_rptr; 8867 ipha = (ipha_t *)mp->b_rptr; 8868 8869 ASSERT(sire != NULL); 8870 8871 dst = save_dst; 8872 multirt_resolve_next = B_TRUE; 8873 continue; 8874 } 8875 8876 if (sire != NULL) 8877 ire_refrele(sire); 8878 8879 /* 8880 * The response will come back in ip_wput 8881 * with db_type IRE_DB_TYPE. 8882 */ 8883 ipif_refrele(src_ipif); 8884 ill_refrele(dst_ill); 8885 return; 8886 } else { 8887 /* Prepare for cleanup */ 8888 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8889 mp); 8890 mp->b_cont = NULL; 8891 freeb(mp); /* areq */ 8892 /* 8893 * this is an ire that is not added to the 8894 * cache. ire_freemblk will handle the release 8895 * of any resources associated with the ire. 8896 */ 8897 ire_delete(ire); /* ire_mp */ 8898 mp = saved_mp; /* pkt */ 8899 ire = NULL; 8900 if (copy_mp != NULL) { 8901 MULTIRT_DEBUG_UNTAG(copy_mp); 8902 freemsg(copy_mp); 8903 copy_mp = NULL; 8904 } 8905 break; 8906 } 8907 default: 8908 break; 8909 } 8910 } while (multirt_resolve_next); 8911 8912 ip1dbg(("ip_newroute: dropped\n")); 8913 /* Did this packet originate externally? */ 8914 if (mp->b_prev) { 8915 mp->b_next = NULL; 8916 mp->b_prev = NULL; 8917 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8918 } else { 8919 if (dst_ill != NULL) { 8920 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8921 } else { 8922 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8923 } 8924 } 8925 ASSERT(copy_mp == NULL); 8926 MULTIRT_DEBUG_UNTAG(first_mp); 8927 freemsg(first_mp); 8928 if (ire != NULL) 8929 ire_refrele(ire); 8930 if (sire != NULL) 8931 ire_refrele(sire); 8932 if (src_ipif != NULL) 8933 ipif_refrele(src_ipif); 8934 if (dst_ill != NULL) 8935 ill_refrele(dst_ill); 8936 return; 8937 8938 icmp_err_ret: 8939 ip1dbg(("ip_newroute: no route\n")); 8940 if (src_ipif != NULL) 8941 ipif_refrele(src_ipif); 8942 if (dst_ill != NULL) 8943 ill_refrele(dst_ill); 8944 if (sire != NULL) 8945 ire_refrele(sire); 8946 /* Did this packet originate externally? */ 8947 if (mp->b_prev) { 8948 mp->b_next = NULL; 8949 mp->b_prev = NULL; 8950 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8951 q = WR(q); 8952 } else { 8953 /* 8954 * There is no outgoing ill, so just increment the 8955 * system MIB. 8956 */ 8957 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8958 /* 8959 * Since ip_wput() isn't close to finished, we fill 8960 * in enough of the header for credible error reporting. 8961 */ 8962 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8963 /* Failed */ 8964 MULTIRT_DEBUG_UNTAG(first_mp); 8965 freemsg(first_mp); 8966 if (ire != NULL) 8967 ire_refrele(ire); 8968 return; 8969 } 8970 } 8971 8972 /* 8973 * At this point we will have ire only if RTF_BLACKHOLE 8974 * or RTF_REJECT flags are set on the IRE. It will not 8975 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8976 */ 8977 if (ire != NULL) { 8978 if (ire->ire_flags & RTF_BLACKHOLE) { 8979 ire_refrele(ire); 8980 MULTIRT_DEBUG_UNTAG(first_mp); 8981 freemsg(first_mp); 8982 return; 8983 } 8984 ire_refrele(ire); 8985 } 8986 if (ip_source_routed(ipha, ipst)) { 8987 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8988 zoneid, ipst); 8989 return; 8990 } 8991 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8992 } 8993 8994 ip_opt_info_t zero_info; 8995 8996 /* 8997 * IPv4 - 8998 * ip_newroute_ipif is called by ip_wput_multicast and 8999 * ip_rput_forward_multicast whenever we need to send 9000 * out a packet to a destination address for which we do not have specific 9001 * routing information. It is used when the packet will be sent out 9002 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9003 * socket option is set or icmp error message wants to go out on a particular 9004 * interface for a unicast packet. 9005 * 9006 * In most cases, the destination address is resolved thanks to the ipif 9007 * intrinsic resolver. However, there are some cases where the call to 9008 * ip_newroute_ipif must take into account the potential presence of 9009 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9010 * that uses the interface. This is specified through flags, 9011 * which can be a combination of: 9012 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9013 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9014 * and flags. Additionally, the packet source address has to be set to 9015 * the specified address. The caller is thus expected to set this flag 9016 * if the packet has no specific source address yet. 9017 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9018 * flag, the resulting ire will inherit the flag. All unresolved routes 9019 * to the destination must be explored in the same call to 9020 * ip_newroute_ipif(). 9021 */ 9022 static void 9023 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9024 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9025 { 9026 areq_t *areq; 9027 ire_t *ire = NULL; 9028 mblk_t *res_mp; 9029 ipaddr_t *addrp; 9030 mblk_t *first_mp; 9031 ire_t *save_ire = NULL; 9032 ipif_t *src_ipif = NULL; 9033 ushort_t ire_marks = 0; 9034 ill_t *dst_ill = NULL; 9035 ipha_t *ipha; 9036 mblk_t *saved_mp; 9037 ire_t *fire = NULL; 9038 mblk_t *copy_mp = NULL; 9039 boolean_t multirt_resolve_next; 9040 boolean_t unspec_src; 9041 ipaddr_t ipha_dst; 9042 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9043 9044 /* 9045 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9046 * here for uniformity 9047 */ 9048 ipif_refhold(ipif); 9049 9050 /* 9051 * This loop is run only once in most cases. 9052 * We loop to resolve further routes only when the destination 9053 * can be reached through multiple RTF_MULTIRT-flagged ires. 9054 */ 9055 do { 9056 if (dst_ill != NULL) { 9057 ill_refrele(dst_ill); 9058 dst_ill = NULL; 9059 } 9060 if (src_ipif != NULL) { 9061 ipif_refrele(src_ipif); 9062 src_ipif = NULL; 9063 } 9064 multirt_resolve_next = B_FALSE; 9065 9066 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9067 ipif->ipif_ill->ill_name)); 9068 9069 first_mp = mp; 9070 if (DB_TYPE(mp) == M_CTL) 9071 mp = mp->b_cont; 9072 ipha = (ipha_t *)mp->b_rptr; 9073 9074 /* 9075 * Save the packet destination address, we may need it after 9076 * the packet has been consumed. 9077 */ 9078 ipha_dst = ipha->ipha_dst; 9079 9080 /* 9081 * If the interface is a pt-pt interface we look for an 9082 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9083 * local_address and the pt-pt destination address. Otherwise 9084 * we just match the local address. 9085 * NOTE: dst could be different than ipha->ipha_dst in case 9086 * of sending igmp multicast packets over a point-to-point 9087 * connection. 9088 * Thus we must be careful enough to check ipha_dst to be a 9089 * multicast address, otherwise it will take xmit_if path for 9090 * multicast packets resulting into kernel stack overflow by 9091 * repeated calls to ip_newroute_ipif from ire_send(). 9092 */ 9093 if (CLASSD(ipha_dst) && 9094 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9095 goto err_ret; 9096 } 9097 9098 /* 9099 * We check if an IRE_OFFSUBNET for the addr that goes through 9100 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9101 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9102 * propagate its flags to the new ire. 9103 */ 9104 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9105 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9106 ip2dbg(("ip_newroute_ipif: " 9107 "ipif_lookup_multi_ire(" 9108 "ipif %p, dst %08x) = fire %p\n", 9109 (void *)ipif, ntohl(dst), (void *)fire)); 9110 } 9111 9112 /* 9113 * Note: While we pick a dst_ill we are really only 9114 * interested in the ill for load spreading. The source 9115 * ipif is determined by source address selection below. 9116 */ 9117 if (IS_IPMP(ipif->ipif_ill)) { 9118 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9119 9120 if (CLASSD(ipha_dst)) 9121 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9122 else 9123 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9124 } else { 9125 dst_ill = ipif->ipif_ill; 9126 ill_refhold(dst_ill); 9127 } 9128 9129 if (dst_ill == NULL) { 9130 if (ip_debug > 2) { 9131 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9132 "for dst %s\n", AF_INET, &dst); 9133 } 9134 goto err_ret; 9135 } 9136 9137 /* 9138 * Pick a source address preferring non-deprecated ones. 9139 * Unlike ip_newroute, we don't do any source address 9140 * selection here since for multicast it really does not help 9141 * in inbound load spreading as in the unicast case. 9142 */ 9143 if ((flags & RTF_SETSRC) && (fire != NULL) && 9144 (fire->ire_flags & RTF_SETSRC)) { 9145 /* 9146 * As requested by flags, an IRE_OFFSUBNET was looked up 9147 * on that interface. This ire has RTF_SETSRC flag, so 9148 * the source address of the packet must be changed. 9149 * Check that the ipif matching the requested source 9150 * address still exists. 9151 */ 9152 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9153 zoneid, NULL, NULL, NULL, NULL, ipst); 9154 } 9155 9156 unspec_src = (connp != NULL && connp->conn_unspec_src); 9157 9158 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9159 (IS_IPMP(ipif->ipif_ill) || 9160 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9161 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9162 (connp != NULL && ipif->ipif_zoneid != zoneid && 9163 ipif->ipif_zoneid != ALL_ZONES)) && 9164 (src_ipif == NULL) && 9165 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9166 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9167 if (src_ipif == NULL) { 9168 if (ip_debug > 2) { 9169 /* ip1dbg */ 9170 pr_addr_dbg("ip_newroute_ipif: " 9171 "no src for dst %s", 9172 AF_INET, &dst); 9173 } 9174 ip1dbg((" on interface %s\n", 9175 dst_ill->ill_name)); 9176 goto err_ret; 9177 } 9178 ipif_refrele(ipif); 9179 ipif = src_ipif; 9180 ipif_refhold(ipif); 9181 } 9182 if (src_ipif == NULL) { 9183 src_ipif = ipif; 9184 ipif_refhold(src_ipif); 9185 } 9186 9187 /* 9188 * Assign a source address while we have the conn. 9189 * We can't have ip_wput_ire pick a source address when the 9190 * packet returns from arp since conn_unspec_src might be set 9191 * and we lose the conn when going through arp. 9192 */ 9193 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9194 ipha->ipha_src = src_ipif->ipif_src_addr; 9195 9196 /* 9197 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9198 * that the outgoing interface does not have an interface ire. 9199 */ 9200 if (CLASSD(ipha_dst) && (connp == NULL || 9201 connp->conn_outgoing_ill == NULL) && 9202 infop->ip_opt_ill_index == 0) { 9203 /* ipif_to_ire returns an held ire */ 9204 ire = ipif_to_ire(ipif); 9205 if (ire == NULL) 9206 goto err_ret; 9207 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9208 goto err_ret; 9209 save_ire = ire; 9210 9211 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9212 "flags %04x\n", 9213 (void *)ire, (void *)ipif, flags)); 9214 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9215 (fire->ire_flags & RTF_MULTIRT)) { 9216 /* 9217 * As requested by flags, an IRE_OFFSUBNET was 9218 * looked up on that interface. This ire has 9219 * RTF_MULTIRT flag, so the resolution loop will 9220 * be re-entered to resolve additional routes on 9221 * other interfaces. For that purpose, a copy of 9222 * the packet is performed at this point. 9223 */ 9224 fire->ire_last_used_time = lbolt; 9225 copy_mp = copymsg(first_mp); 9226 if (copy_mp) { 9227 MULTIRT_DEBUG_TAG(copy_mp); 9228 } 9229 } 9230 if ((flags & RTF_SETSRC) && (fire != NULL) && 9231 (fire->ire_flags & RTF_SETSRC)) { 9232 /* 9233 * As requested by flags, an IRE_OFFSUBET was 9234 * looked up on that interface. This ire has 9235 * RTF_SETSRC flag, so the source address of the 9236 * packet must be changed. 9237 */ 9238 ipha->ipha_src = fire->ire_src_addr; 9239 } 9240 } else { 9241 /* 9242 * The only ways we can come here are: 9243 * 1) IP_BOUND_IF socket option is set 9244 * 2) SO_DONTROUTE socket option is set 9245 * 3) IP_PKTINFO option is passed in as ancillary data. 9246 * In all cases, the new ire will not be added 9247 * into cache table. 9248 */ 9249 ASSERT(connp == NULL || connp->conn_dontroute || 9250 connp->conn_outgoing_ill != NULL || 9251 infop->ip_opt_ill_index != 0); 9252 ire_marks |= IRE_MARK_NOADD; 9253 } 9254 9255 switch (ipif->ipif_net_type) { 9256 case IRE_IF_NORESOLVER: { 9257 /* We have what we need to build an IRE_CACHE. */ 9258 9259 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9260 (dst_ill->ill_resolver_mp == NULL)) { 9261 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9262 "for IRE_IF_NORESOLVER ire %p has " 9263 "no ill_resolver_mp\n", 9264 (void *)dst_ill, (void *)ire)); 9265 break; 9266 } 9267 9268 /* 9269 * The new ire inherits the IRE_OFFSUBNET flags 9270 * and source address, if this was requested. 9271 */ 9272 ire = ire_create( 9273 (uchar_t *)&dst, /* dest address */ 9274 (uchar_t *)&ip_g_all_ones, /* mask */ 9275 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9276 NULL, /* gateway address */ 9277 &ipif->ipif_mtu, 9278 NULL, /* no src nce */ 9279 dst_ill->ill_rq, /* recv-from queue */ 9280 dst_ill->ill_wq, /* send-to queue */ 9281 IRE_CACHE, 9282 src_ipif, 9283 (save_ire != NULL ? save_ire->ire_mask : 0), 9284 (fire != NULL) ? /* Parent handle */ 9285 fire->ire_phandle : 0, 9286 (save_ire != NULL) ? /* Interface handle */ 9287 save_ire->ire_ihandle : 0, 9288 (fire != NULL) ? 9289 (fire->ire_flags & 9290 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9291 (save_ire == NULL ? &ire_uinfo_null : 9292 &save_ire->ire_uinfo), 9293 NULL, 9294 NULL, 9295 ipst); 9296 9297 if (ire == NULL) { 9298 if (save_ire != NULL) 9299 ire_refrele(save_ire); 9300 break; 9301 } 9302 9303 ire->ire_marks |= ire_marks; 9304 9305 /* 9306 * If IRE_MARK_NOADD is set then we need to convert 9307 * the max_fragp to a useable value now. This is 9308 * normally done in ire_add_v[46]. We also need to 9309 * associate the ire with an nce (normally would be 9310 * done in ip_wput_nondata()). 9311 * 9312 * Note that IRE_MARK_NOADD packets created here 9313 * do not have a non-null ire_mp pointer. The null 9314 * value of ire_bucket indicates that they were 9315 * never added. 9316 */ 9317 if (ire->ire_marks & IRE_MARK_NOADD) { 9318 uint_t max_frag; 9319 9320 max_frag = *ire->ire_max_fragp; 9321 ire->ire_max_fragp = NULL; 9322 ire->ire_max_frag = max_frag; 9323 9324 if ((ire->ire_nce = ndp_lookup_v4( 9325 ire_to_ill(ire), 9326 (ire->ire_gateway_addr != INADDR_ANY ? 9327 &ire->ire_gateway_addr : &ire->ire_addr), 9328 B_FALSE)) == NULL) { 9329 if (save_ire != NULL) 9330 ire_refrele(save_ire); 9331 break; 9332 } 9333 ASSERT(ire->ire_nce->nce_state == 9334 ND_REACHABLE); 9335 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9336 } 9337 9338 /* Prevent save_ire from getting deleted */ 9339 if (save_ire != NULL) { 9340 IRB_REFHOLD(save_ire->ire_bucket); 9341 /* Has it been removed already ? */ 9342 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9343 IRB_REFRELE(save_ire->ire_bucket); 9344 ire_refrele(save_ire); 9345 break; 9346 } 9347 } 9348 9349 ire_add_then_send(q, ire, first_mp); 9350 9351 /* Assert that save_ire is not deleted yet. */ 9352 if (save_ire != NULL) { 9353 ASSERT(save_ire->ire_ptpn != NULL); 9354 IRB_REFRELE(save_ire->ire_bucket); 9355 ire_refrele(save_ire); 9356 save_ire = NULL; 9357 } 9358 if (fire != NULL) { 9359 ire_refrele(fire); 9360 fire = NULL; 9361 } 9362 9363 /* 9364 * the resolution loop is re-entered if this 9365 * was requested through flags and if we 9366 * actually are in a multirouting case. 9367 */ 9368 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9369 boolean_t need_resolve = 9370 ire_multirt_need_resolve(ipha_dst, 9371 msg_getlabel(copy_mp), ipst); 9372 if (!need_resolve) { 9373 MULTIRT_DEBUG_UNTAG(copy_mp); 9374 freemsg(copy_mp); 9375 copy_mp = NULL; 9376 } else { 9377 /* 9378 * ipif_lookup_group() calls 9379 * ire_lookup_multi() that uses 9380 * ire_ftable_lookup() to find 9381 * an IRE_INTERFACE for the group. 9382 * In the multirt case, 9383 * ire_lookup_multi() then invokes 9384 * ire_multirt_lookup() to find 9385 * the next resolvable ire. 9386 * As a result, we obtain an new 9387 * interface, derived from the 9388 * next ire. 9389 */ 9390 ipif_refrele(ipif); 9391 ipif = ipif_lookup_group(ipha_dst, 9392 zoneid, ipst); 9393 ip2dbg(("ip_newroute_ipif: " 9394 "multirt dst %08x, ipif %p\n", 9395 htonl(dst), (void *)ipif)); 9396 if (ipif != NULL) { 9397 mp = copy_mp; 9398 copy_mp = NULL; 9399 multirt_resolve_next = B_TRUE; 9400 continue; 9401 } else { 9402 freemsg(copy_mp); 9403 } 9404 } 9405 } 9406 if (ipif != NULL) 9407 ipif_refrele(ipif); 9408 ill_refrele(dst_ill); 9409 ipif_refrele(src_ipif); 9410 return; 9411 } 9412 case IRE_IF_RESOLVER: 9413 /* 9414 * We can't build an IRE_CACHE yet, but at least 9415 * we found a resolver that can help. 9416 */ 9417 res_mp = dst_ill->ill_resolver_mp; 9418 if (!OK_RESOLVER_MP(res_mp)) 9419 break; 9420 9421 /* 9422 * We obtain a partial IRE_CACHE which we will pass 9423 * along with the resolver query. When the response 9424 * comes back it will be there ready for us to add. 9425 * The new ire inherits the IRE_OFFSUBNET flags 9426 * and source address, if this was requested. 9427 * The ire_max_frag is atomically set under the 9428 * irebucket lock in ire_add_v[46]. Only in the 9429 * case of IRE_MARK_NOADD, we set it here itself. 9430 */ 9431 ire = ire_create_mp( 9432 (uchar_t *)&dst, /* dest address */ 9433 (uchar_t *)&ip_g_all_ones, /* mask */ 9434 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9435 NULL, /* gateway address */ 9436 (ire_marks & IRE_MARK_NOADD) ? 9437 ipif->ipif_mtu : 0, /* max_frag */ 9438 NULL, /* no src nce */ 9439 dst_ill->ill_rq, /* recv-from queue */ 9440 dst_ill->ill_wq, /* send-to queue */ 9441 IRE_CACHE, 9442 src_ipif, 9443 (save_ire != NULL ? save_ire->ire_mask : 0), 9444 (fire != NULL) ? /* Parent handle */ 9445 fire->ire_phandle : 0, 9446 (save_ire != NULL) ? /* Interface handle */ 9447 save_ire->ire_ihandle : 0, 9448 (fire != NULL) ? /* flags if any */ 9449 (fire->ire_flags & 9450 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9451 (save_ire == NULL ? &ire_uinfo_null : 9452 &save_ire->ire_uinfo), 9453 NULL, 9454 NULL, 9455 ipst); 9456 9457 if (save_ire != NULL) { 9458 ire_refrele(save_ire); 9459 save_ire = NULL; 9460 } 9461 if (ire == NULL) 9462 break; 9463 9464 ire->ire_marks |= ire_marks; 9465 /* 9466 * Construct message chain for the resolver of the 9467 * form: 9468 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9469 * 9470 * NOTE : ire will be added later when the response 9471 * comes back from ARP. If the response does not 9472 * come back, ARP frees the packet. For this reason, 9473 * we can't REFHOLD the bucket of save_ire to prevent 9474 * deletions. We may not be able to REFRELE the 9475 * bucket if the response never comes back. 9476 * Thus, before adding the ire, ire_add_v4 will make 9477 * sure that the interface route does not get deleted. 9478 * This is the only case unlike ip_newroute_v6, 9479 * ip_newroute_ipif_v6 where we can always prevent 9480 * deletions because ire_add_then_send is called after 9481 * creating the IRE. 9482 * If IRE_MARK_NOADD is set, then ire_add_then_send 9483 * does not add this IRE into the IRE CACHE. 9484 */ 9485 ASSERT(ire->ire_mp != NULL); 9486 ire->ire_mp->b_cont = first_mp; 9487 /* Have saved_mp handy, for cleanup if canput fails */ 9488 saved_mp = mp; 9489 mp = copyb(res_mp); 9490 if (mp == NULL) { 9491 /* Prepare for cleanup */ 9492 mp = saved_mp; /* pkt */ 9493 ire_delete(ire); /* ire_mp */ 9494 ire = NULL; 9495 if (copy_mp != NULL) { 9496 MULTIRT_DEBUG_UNTAG(copy_mp); 9497 freemsg(copy_mp); 9498 copy_mp = NULL; 9499 } 9500 break; 9501 } 9502 linkb(mp, ire->ire_mp); 9503 9504 /* 9505 * Fill in the source and dest addrs for the resolver. 9506 * NOTE: this depends on memory layouts imposed by 9507 * ill_init(). There are corner cases above where we 9508 * might've created the IRE with an INADDR_ANY source 9509 * address (e.g., if the zeroth ipif on an underlying 9510 * ill in an IPMP group is 0.0.0.0, but another ipif 9511 * on the ill has a usable test address). If so, tell 9512 * ARP to use ipha_src as its sender address. 9513 */ 9514 areq = (areq_t *)mp->b_rptr; 9515 addrp = (ipaddr_t *)((char *)areq + 9516 areq->areq_sender_addr_offset); 9517 if (ire->ire_src_addr != INADDR_ANY) 9518 *addrp = ire->ire_src_addr; 9519 else 9520 *addrp = ipha->ipha_src; 9521 addrp = (ipaddr_t *)((char *)areq + 9522 areq->areq_target_addr_offset); 9523 *addrp = dst; 9524 /* Up to the resolver. */ 9525 if (canputnext(dst_ill->ill_rq) && 9526 !(dst_ill->ill_arp_closing)) { 9527 putnext(dst_ill->ill_rq, mp); 9528 /* 9529 * The response will come back in ip_wput 9530 * with db_type IRE_DB_TYPE. 9531 */ 9532 } else { 9533 mp->b_cont = NULL; 9534 freeb(mp); /* areq */ 9535 ire_delete(ire); /* ire_mp */ 9536 saved_mp->b_next = NULL; 9537 saved_mp->b_prev = NULL; 9538 freemsg(first_mp); /* pkt */ 9539 ip2dbg(("ip_newroute_ipif: dropped\n")); 9540 } 9541 9542 if (fire != NULL) { 9543 ire_refrele(fire); 9544 fire = NULL; 9545 } 9546 9547 /* 9548 * The resolution loop is re-entered if this was 9549 * requested through flags and we actually are 9550 * in a multirouting case. 9551 */ 9552 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9553 boolean_t need_resolve = 9554 ire_multirt_need_resolve(ipha_dst, 9555 msg_getlabel(copy_mp), ipst); 9556 if (!need_resolve) { 9557 MULTIRT_DEBUG_UNTAG(copy_mp); 9558 freemsg(copy_mp); 9559 copy_mp = NULL; 9560 } else { 9561 /* 9562 * ipif_lookup_group() calls 9563 * ire_lookup_multi() that uses 9564 * ire_ftable_lookup() to find 9565 * an IRE_INTERFACE for the group. 9566 * In the multirt case, 9567 * ire_lookup_multi() then invokes 9568 * ire_multirt_lookup() to find 9569 * the next resolvable ire. 9570 * As a result, we obtain an new 9571 * interface, derived from the 9572 * next ire. 9573 */ 9574 ipif_refrele(ipif); 9575 ipif = ipif_lookup_group(ipha_dst, 9576 zoneid, ipst); 9577 if (ipif != NULL) { 9578 mp = copy_mp; 9579 copy_mp = NULL; 9580 multirt_resolve_next = B_TRUE; 9581 continue; 9582 } else { 9583 freemsg(copy_mp); 9584 } 9585 } 9586 } 9587 if (ipif != NULL) 9588 ipif_refrele(ipif); 9589 ill_refrele(dst_ill); 9590 ipif_refrele(src_ipif); 9591 return; 9592 default: 9593 break; 9594 } 9595 } while (multirt_resolve_next); 9596 9597 err_ret: 9598 ip2dbg(("ip_newroute_ipif: dropped\n")); 9599 if (fire != NULL) 9600 ire_refrele(fire); 9601 ipif_refrele(ipif); 9602 /* Did this packet originate externally? */ 9603 if (dst_ill != NULL) 9604 ill_refrele(dst_ill); 9605 if (src_ipif != NULL) 9606 ipif_refrele(src_ipif); 9607 if (mp->b_prev || mp->b_next) { 9608 mp->b_next = NULL; 9609 mp->b_prev = NULL; 9610 } else { 9611 /* 9612 * Since ip_wput() isn't close to finished, we fill 9613 * in enough of the header for credible error reporting. 9614 */ 9615 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9616 /* Failed */ 9617 freemsg(first_mp); 9618 if (ire != NULL) 9619 ire_refrele(ire); 9620 return; 9621 } 9622 } 9623 /* 9624 * At this point we will have ire only if RTF_BLACKHOLE 9625 * or RTF_REJECT flags are set on the IRE. It will not 9626 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9627 */ 9628 if (ire != NULL) { 9629 if (ire->ire_flags & RTF_BLACKHOLE) { 9630 ire_refrele(ire); 9631 freemsg(first_mp); 9632 return; 9633 } 9634 ire_refrele(ire); 9635 } 9636 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9637 } 9638 9639 /* Name/Value Table Lookup Routine */ 9640 char * 9641 ip_nv_lookup(nv_t *nv, int value) 9642 { 9643 if (!nv) 9644 return (NULL); 9645 for (; nv->nv_name; nv++) { 9646 if (nv->nv_value == value) 9647 return (nv->nv_name); 9648 } 9649 return ("unknown"); 9650 } 9651 9652 /* 9653 * This is a module open, i.e. this is a control stream for access 9654 * to a DLPI device. We allocate an ill_t as the instance data in 9655 * this case. 9656 */ 9657 int 9658 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9659 { 9660 ill_t *ill; 9661 int err; 9662 zoneid_t zoneid; 9663 netstack_t *ns; 9664 ip_stack_t *ipst; 9665 9666 /* 9667 * Prevent unprivileged processes from pushing IP so that 9668 * they can't send raw IP. 9669 */ 9670 if (secpolicy_net_rawaccess(credp) != 0) 9671 return (EPERM); 9672 9673 ns = netstack_find_by_cred(credp); 9674 ASSERT(ns != NULL); 9675 ipst = ns->netstack_ip; 9676 ASSERT(ipst != NULL); 9677 9678 /* 9679 * For exclusive stacks we set the zoneid to zero 9680 * to make IP operate as if in the global zone. 9681 */ 9682 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9683 zoneid = GLOBAL_ZONEID; 9684 else 9685 zoneid = crgetzoneid(credp); 9686 9687 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9688 q->q_ptr = WR(q)->q_ptr = ill; 9689 ill->ill_ipst = ipst; 9690 ill->ill_zoneid = zoneid; 9691 9692 /* 9693 * ill_init initializes the ill fields and then sends down 9694 * down a DL_INFO_REQ after calling qprocson. 9695 */ 9696 err = ill_init(q, ill); 9697 if (err != 0) { 9698 mi_free(ill); 9699 netstack_rele(ipst->ips_netstack); 9700 q->q_ptr = NULL; 9701 WR(q)->q_ptr = NULL; 9702 return (err); 9703 } 9704 9705 /* ill_init initializes the ipsq marking this thread as writer */ 9706 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9707 /* Wait for the DL_INFO_ACK */ 9708 mutex_enter(&ill->ill_lock); 9709 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9710 /* 9711 * Return value of 0 indicates a pending signal. 9712 */ 9713 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9714 if (err == 0) { 9715 mutex_exit(&ill->ill_lock); 9716 (void) ip_close(q, 0); 9717 return (EINTR); 9718 } 9719 } 9720 mutex_exit(&ill->ill_lock); 9721 9722 /* 9723 * ip_rput_other could have set an error in ill_error on 9724 * receipt of M_ERROR. 9725 */ 9726 9727 err = ill->ill_error; 9728 if (err != 0) { 9729 (void) ip_close(q, 0); 9730 return (err); 9731 } 9732 9733 ill->ill_credp = credp; 9734 crhold(credp); 9735 9736 mutex_enter(&ipst->ips_ip_mi_lock); 9737 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9738 credp); 9739 mutex_exit(&ipst->ips_ip_mi_lock); 9740 if (err) { 9741 (void) ip_close(q, 0); 9742 return (err); 9743 } 9744 return (0); 9745 } 9746 9747 /* For /dev/ip aka AF_INET open */ 9748 int 9749 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9750 { 9751 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9752 } 9753 9754 /* For /dev/ip6 aka AF_INET6 open */ 9755 int 9756 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9757 { 9758 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9759 } 9760 9761 /* IP open routine. */ 9762 int 9763 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9764 boolean_t isv6) 9765 { 9766 conn_t *connp; 9767 major_t maj; 9768 zoneid_t zoneid; 9769 netstack_t *ns; 9770 ip_stack_t *ipst; 9771 9772 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9773 9774 /* Allow reopen. */ 9775 if (q->q_ptr != NULL) 9776 return (0); 9777 9778 if (sflag & MODOPEN) { 9779 /* This is a module open */ 9780 return (ip_modopen(q, devp, flag, sflag, credp)); 9781 } 9782 9783 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9784 /* 9785 * Non streams based socket looking for a stream 9786 * to access IP 9787 */ 9788 return (ip_helper_stream_setup(q, devp, flag, sflag, 9789 credp, isv6)); 9790 } 9791 9792 ns = netstack_find_by_cred(credp); 9793 ASSERT(ns != NULL); 9794 ipst = ns->netstack_ip; 9795 ASSERT(ipst != NULL); 9796 9797 /* 9798 * For exclusive stacks we set the zoneid to zero 9799 * to make IP operate as if in the global zone. 9800 */ 9801 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9802 zoneid = GLOBAL_ZONEID; 9803 else 9804 zoneid = crgetzoneid(credp); 9805 9806 /* 9807 * We are opening as a device. This is an IP client stream, and we 9808 * allocate an conn_t as the instance data. 9809 */ 9810 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9811 9812 /* 9813 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9814 * done by netstack_find_by_cred() 9815 */ 9816 netstack_rele(ipst->ips_netstack); 9817 9818 connp->conn_zoneid = zoneid; 9819 connp->conn_sqp = NULL; 9820 connp->conn_initial_sqp = NULL; 9821 connp->conn_final_sqp = NULL; 9822 9823 connp->conn_upq = q; 9824 q->q_ptr = WR(q)->q_ptr = connp; 9825 9826 if (flag & SO_SOCKSTR) 9827 connp->conn_flags |= IPCL_SOCKET; 9828 9829 /* Minor tells us which /dev entry was opened */ 9830 if (isv6) { 9831 connp->conn_flags |= IPCL_ISV6; 9832 connp->conn_af_isv6 = B_TRUE; 9833 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9834 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9835 } else { 9836 connp->conn_af_isv6 = B_FALSE; 9837 connp->conn_pkt_isv6 = B_FALSE; 9838 } 9839 9840 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9841 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9842 connp->conn_minor_arena = ip_minor_arena_la; 9843 } else { 9844 /* 9845 * Either minor numbers in the large arena were exhausted 9846 * or a non socket application is doing the open. 9847 * Try to allocate from the small arena. 9848 */ 9849 if ((connp->conn_dev = 9850 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9851 /* CONN_DEC_REF takes care of netstack_rele() */ 9852 q->q_ptr = WR(q)->q_ptr = NULL; 9853 CONN_DEC_REF(connp); 9854 return (EBUSY); 9855 } 9856 connp->conn_minor_arena = ip_minor_arena_sa; 9857 } 9858 9859 maj = getemajor(*devp); 9860 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9861 9862 /* 9863 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9864 */ 9865 connp->conn_cred = credp; 9866 9867 /* 9868 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9869 */ 9870 connp->conn_recv = ip_conn_input; 9871 9872 crhold(connp->conn_cred); 9873 9874 /* 9875 * If the caller has the process-wide flag set, then default to MAC 9876 * exempt mode. This allows read-down to unlabeled hosts. 9877 */ 9878 if (getpflags(NET_MAC_AWARE, credp) != 0) 9879 connp->conn_mac_exempt = B_TRUE; 9880 9881 connp->conn_rq = q; 9882 connp->conn_wq = WR(q); 9883 9884 /* Non-zero default values */ 9885 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9886 9887 /* 9888 * Make the conn globally visible to walkers 9889 */ 9890 ASSERT(connp->conn_ref == 1); 9891 mutex_enter(&connp->conn_lock); 9892 connp->conn_state_flags &= ~CONN_INCIPIENT; 9893 mutex_exit(&connp->conn_lock); 9894 9895 qprocson(q); 9896 9897 return (0); 9898 } 9899 9900 /* 9901 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9902 * Note that there is no race since either ip_output function works - it 9903 * is just an optimization to enter the best ip_output routine directly. 9904 */ 9905 void 9906 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9907 ip_stack_t *ipst) 9908 { 9909 if (isv6) { 9910 if (bump_mib) { 9911 BUMP_MIB(&ipst->ips_ip6_mib, 9912 ipIfStatsOutSwitchIPVersion); 9913 } 9914 connp->conn_send = ip_output_v6; 9915 connp->conn_pkt_isv6 = B_TRUE; 9916 } else { 9917 if (bump_mib) { 9918 BUMP_MIB(&ipst->ips_ip_mib, 9919 ipIfStatsOutSwitchIPVersion); 9920 } 9921 connp->conn_send = ip_output; 9922 connp->conn_pkt_isv6 = B_FALSE; 9923 } 9924 9925 } 9926 9927 /* 9928 * See if IPsec needs loading because of the options in mp. 9929 */ 9930 static boolean_t 9931 ipsec_opt_present(mblk_t *mp) 9932 { 9933 uint8_t *optcp, *next_optcp, *opt_endcp; 9934 struct opthdr *opt; 9935 struct T_opthdr *topt; 9936 int opthdr_len; 9937 t_uscalar_t optname, optlevel; 9938 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9939 ipsec_req_t *ipsr; 9940 9941 /* 9942 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9943 * return TRUE. 9944 */ 9945 9946 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9947 opt_endcp = optcp + tor->OPT_length; 9948 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9949 opthdr_len = sizeof (struct T_opthdr); 9950 } else { /* O_OPTMGMT_REQ */ 9951 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9952 opthdr_len = sizeof (struct opthdr); 9953 } 9954 for (; optcp < opt_endcp; optcp = next_optcp) { 9955 if (optcp + opthdr_len > opt_endcp) 9956 return (B_FALSE); /* Not enough option header. */ 9957 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9958 topt = (struct T_opthdr *)optcp; 9959 optlevel = topt->level; 9960 optname = topt->name; 9961 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9962 } else { 9963 opt = (struct opthdr *)optcp; 9964 optlevel = opt->level; 9965 optname = opt->name; 9966 next_optcp = optcp + opthdr_len + 9967 _TPI_ALIGN_OPT(opt->len); 9968 } 9969 if ((next_optcp < optcp) || /* wraparound pointer space */ 9970 ((next_optcp >= opt_endcp) && /* last option bad len */ 9971 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9972 return (B_FALSE); /* bad option buffer */ 9973 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9974 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9975 /* 9976 * Check to see if it's an all-bypass or all-zeroes 9977 * IPsec request. Don't bother loading IPsec if 9978 * the socket doesn't want to use it. (A good example 9979 * is a bypass request.) 9980 * 9981 * Basically, if any of the non-NEVER bits are set, 9982 * load IPsec. 9983 */ 9984 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9985 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9986 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9987 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9988 != 0) 9989 return (B_TRUE); 9990 } 9991 } 9992 return (B_FALSE); 9993 } 9994 9995 /* 9996 * If conn is is waiting for ipsec to finish loading, kick it. 9997 */ 9998 /* ARGSUSED */ 9999 static void 10000 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10001 { 10002 t_scalar_t optreq_prim; 10003 mblk_t *mp; 10004 cred_t *cr; 10005 int err = 0; 10006 10007 /* 10008 * This function is called, after ipsec loading is complete. 10009 * Since IP checks exclusively and atomically (i.e it prevents 10010 * ipsec load from completing until ip_optcom_req completes) 10011 * whether ipsec load is complete, there cannot be a race with IP 10012 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10013 */ 10014 mutex_enter(&connp->conn_lock); 10015 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10016 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10017 mp = connp->conn_ipsec_opt_mp; 10018 connp->conn_ipsec_opt_mp = NULL; 10019 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10020 mutex_exit(&connp->conn_lock); 10021 10022 /* 10023 * All Solaris components should pass a db_credp 10024 * for this TPI message, hence we ASSERT. 10025 * But in case there is some other M_PROTO that looks 10026 * like a TPI message sent by some other kernel 10027 * component, we check and return an error. 10028 */ 10029 cr = msg_getcred(mp, NULL); 10030 ASSERT(cr != NULL); 10031 if (cr == NULL) { 10032 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10033 if (mp != NULL) 10034 qreply(connp->conn_wq, mp); 10035 return; 10036 } 10037 10038 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10039 10040 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10041 if (optreq_prim == T_OPTMGMT_REQ) { 10042 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10043 &ip_opt_obj, B_FALSE); 10044 } else { 10045 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10046 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10047 &ip_opt_obj, B_FALSE); 10048 } 10049 if (err != EINPROGRESS) 10050 CONN_OPER_PENDING_DONE(connp); 10051 return; 10052 } 10053 mutex_exit(&connp->conn_lock); 10054 } 10055 10056 /* 10057 * Called from the ipsec_loader thread, outside any perimeter, to tell 10058 * ip qenable any of the queues waiting for the ipsec loader to 10059 * complete. 10060 */ 10061 void 10062 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10063 { 10064 netstack_t *ns = ipss->ipsec_netstack; 10065 10066 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10067 } 10068 10069 /* 10070 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10071 * determines the grp on which it has to become exclusive, queues the mp 10072 * and IPSQ draining restarts the optmgmt 10073 */ 10074 static boolean_t 10075 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10076 { 10077 conn_t *connp = Q_TO_CONN(q); 10078 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10079 10080 /* 10081 * Take IPsec requests and treat them special. 10082 */ 10083 if (ipsec_opt_present(mp)) { 10084 /* First check if IPsec is loaded. */ 10085 mutex_enter(&ipss->ipsec_loader_lock); 10086 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10087 mutex_exit(&ipss->ipsec_loader_lock); 10088 return (B_FALSE); 10089 } 10090 mutex_enter(&connp->conn_lock); 10091 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10092 10093 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10094 connp->conn_ipsec_opt_mp = mp; 10095 mutex_exit(&connp->conn_lock); 10096 mutex_exit(&ipss->ipsec_loader_lock); 10097 10098 ipsec_loader_loadnow(ipss); 10099 return (B_TRUE); 10100 } 10101 return (B_FALSE); 10102 } 10103 10104 /* 10105 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10106 * all of them are copied to the conn_t. If the req is "zero", the policy is 10107 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10108 * fields. 10109 * We keep only the latest setting of the policy and thus policy setting 10110 * is not incremental/cumulative. 10111 * 10112 * Requests to set policies with multiple alternative actions will 10113 * go through a different API. 10114 */ 10115 int 10116 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10117 { 10118 uint_t ah_req = 0; 10119 uint_t esp_req = 0; 10120 uint_t se_req = 0; 10121 ipsec_selkey_t sel; 10122 ipsec_act_t *actp = NULL; 10123 uint_t nact; 10124 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10125 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10126 ipsec_policy_root_t *pr; 10127 ipsec_policy_head_t *ph; 10128 int fam; 10129 boolean_t is_pol_reset; 10130 int error = 0; 10131 netstack_t *ns = connp->conn_netstack; 10132 ip_stack_t *ipst = ns->netstack_ip; 10133 ipsec_stack_t *ipss = ns->netstack_ipsec; 10134 10135 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10136 10137 /* 10138 * The IP_SEC_OPT option does not allow variable length parameters, 10139 * hence a request cannot be NULL. 10140 */ 10141 if (req == NULL) 10142 return (EINVAL); 10143 10144 ah_req = req->ipsr_ah_req; 10145 esp_req = req->ipsr_esp_req; 10146 se_req = req->ipsr_self_encap_req; 10147 10148 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10149 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10150 return (EINVAL); 10151 10152 /* 10153 * Are we dealing with a request to reset the policy (i.e. 10154 * zero requests). 10155 */ 10156 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10157 (esp_req & REQ_MASK) == 0 && 10158 (se_req & REQ_MASK) == 0); 10159 10160 if (!is_pol_reset) { 10161 /* 10162 * If we couldn't load IPsec, fail with "protocol 10163 * not supported". 10164 * IPsec may not have been loaded for a request with zero 10165 * policies, so we don't fail in this case. 10166 */ 10167 mutex_enter(&ipss->ipsec_loader_lock); 10168 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10169 mutex_exit(&ipss->ipsec_loader_lock); 10170 return (EPROTONOSUPPORT); 10171 } 10172 mutex_exit(&ipss->ipsec_loader_lock); 10173 10174 /* 10175 * Test for valid requests. Invalid algorithms 10176 * need to be tested by IPsec code because new 10177 * algorithms can be added dynamically. 10178 */ 10179 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10180 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10181 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10182 return (EINVAL); 10183 } 10184 10185 /* 10186 * Only privileged users can issue these 10187 * requests. 10188 */ 10189 if (((ah_req & IPSEC_PREF_NEVER) || 10190 (esp_req & IPSEC_PREF_NEVER) || 10191 (se_req & IPSEC_PREF_NEVER)) && 10192 secpolicy_ip_config(cr, B_FALSE) != 0) { 10193 return (EPERM); 10194 } 10195 10196 /* 10197 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10198 * are mutually exclusive. 10199 */ 10200 if (((ah_req & REQ_MASK) == REQ_MASK) || 10201 ((esp_req & REQ_MASK) == REQ_MASK) || 10202 ((se_req & REQ_MASK) == REQ_MASK)) { 10203 /* Both of them are set */ 10204 return (EINVAL); 10205 } 10206 } 10207 10208 mutex_enter(&connp->conn_lock); 10209 10210 /* 10211 * If we have already cached policies in ip_bind_connected*(), don't 10212 * let them change now. We cache policies for connections 10213 * whose src,dst [addr, port] is known. 10214 */ 10215 if (connp->conn_policy_cached) { 10216 mutex_exit(&connp->conn_lock); 10217 return (EINVAL); 10218 } 10219 10220 /* 10221 * We have a zero policies, reset the connection policy if already 10222 * set. This will cause the connection to inherit the 10223 * global policy, if any. 10224 */ 10225 if (is_pol_reset) { 10226 if (connp->conn_policy != NULL) { 10227 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10228 connp->conn_policy = NULL; 10229 } 10230 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10231 connp->conn_in_enforce_policy = B_FALSE; 10232 connp->conn_out_enforce_policy = B_FALSE; 10233 mutex_exit(&connp->conn_lock); 10234 return (0); 10235 } 10236 10237 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10238 ipst->ips_netstack); 10239 if (ph == NULL) 10240 goto enomem; 10241 10242 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10243 if (actp == NULL) 10244 goto enomem; 10245 10246 /* 10247 * Always allocate IPv4 policy entries, since they can also 10248 * apply to ipv6 sockets being used in ipv4-compat mode. 10249 */ 10250 bzero(&sel, sizeof (sel)); 10251 sel.ipsl_valid = IPSL_IPV4; 10252 10253 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10254 ipst->ips_netstack); 10255 if (pin4 == NULL) 10256 goto enomem; 10257 10258 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10259 ipst->ips_netstack); 10260 if (pout4 == NULL) 10261 goto enomem; 10262 10263 if (connp->conn_af_isv6) { 10264 /* 10265 * We're looking at a v6 socket, also allocate the 10266 * v6-specific entries... 10267 */ 10268 sel.ipsl_valid = IPSL_IPV6; 10269 pin6 = ipsec_policy_create(&sel, actp, nact, 10270 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10271 if (pin6 == NULL) 10272 goto enomem; 10273 10274 pout6 = ipsec_policy_create(&sel, actp, nact, 10275 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10276 if (pout6 == NULL) 10277 goto enomem; 10278 10279 /* 10280 * .. and file them away in the right place. 10281 */ 10282 fam = IPSEC_AF_V6; 10283 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10284 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10285 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10286 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10287 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10288 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10289 } 10290 10291 ipsec_actvec_free(actp, nact); 10292 10293 /* 10294 * File the v4 policies. 10295 */ 10296 fam = IPSEC_AF_V4; 10297 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10298 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10299 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10300 10301 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10302 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10303 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10304 10305 /* 10306 * If the requests need security, set enforce_policy. 10307 * If the requests are IPSEC_PREF_NEVER, one should 10308 * still set conn_out_enforce_policy so that an ipsec_out 10309 * gets attached in ip_wput. This is needed so that 10310 * for connections that we don't cache policy in ip_bind, 10311 * if global policy matches in ip_wput_attach_policy, we 10312 * don't wrongly inherit global policy. Similarly, we need 10313 * to set conn_in_enforce_policy also so that we don't verify 10314 * policy wrongly. 10315 */ 10316 if ((ah_req & REQ_MASK) != 0 || 10317 (esp_req & REQ_MASK) != 0 || 10318 (se_req & REQ_MASK) != 0) { 10319 connp->conn_in_enforce_policy = B_TRUE; 10320 connp->conn_out_enforce_policy = B_TRUE; 10321 connp->conn_flags |= IPCL_CHECK_POLICY; 10322 } 10323 10324 mutex_exit(&connp->conn_lock); 10325 return (error); 10326 #undef REQ_MASK 10327 10328 /* 10329 * Common memory-allocation-failure exit path. 10330 */ 10331 enomem: 10332 mutex_exit(&connp->conn_lock); 10333 if (actp != NULL) 10334 ipsec_actvec_free(actp, nact); 10335 if (pin4 != NULL) 10336 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10337 if (pout4 != NULL) 10338 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10339 if (pin6 != NULL) 10340 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10341 if (pout6 != NULL) 10342 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10343 return (ENOMEM); 10344 } 10345 10346 /* 10347 * Only for options that pass in an IP addr. Currently only V4 options 10348 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10349 * So this function assumes level is IPPROTO_IP 10350 */ 10351 int 10352 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10353 mblk_t *first_mp) 10354 { 10355 ipif_t *ipif = NULL; 10356 int error; 10357 ill_t *ill; 10358 int zoneid; 10359 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10360 10361 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10362 10363 if (addr != INADDR_ANY || checkonly) { 10364 ASSERT(connp != NULL); 10365 zoneid = IPCL_ZONEID(connp); 10366 if (option == IP_NEXTHOP) { 10367 ipif = ipif_lookup_onlink_addr(addr, 10368 connp->conn_zoneid, ipst); 10369 } else { 10370 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10371 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10372 &error, ipst); 10373 } 10374 if (ipif == NULL) { 10375 if (error == EINPROGRESS) 10376 return (error); 10377 if ((option == IP_MULTICAST_IF) || 10378 (option == IP_NEXTHOP)) 10379 return (EHOSTUNREACH); 10380 else 10381 return (EINVAL); 10382 } else if (checkonly) { 10383 if (option == IP_MULTICAST_IF) { 10384 ill = ipif->ipif_ill; 10385 /* not supported by the virtual network iface */ 10386 if (IS_VNI(ill)) { 10387 ipif_refrele(ipif); 10388 return (EINVAL); 10389 } 10390 } 10391 ipif_refrele(ipif); 10392 return (0); 10393 } 10394 ill = ipif->ipif_ill; 10395 mutex_enter(&connp->conn_lock); 10396 mutex_enter(&ill->ill_lock); 10397 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10398 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10399 mutex_exit(&ill->ill_lock); 10400 mutex_exit(&connp->conn_lock); 10401 ipif_refrele(ipif); 10402 return (option == IP_MULTICAST_IF ? 10403 EHOSTUNREACH : EINVAL); 10404 } 10405 } else { 10406 mutex_enter(&connp->conn_lock); 10407 } 10408 10409 /* None of the options below are supported on the VNI */ 10410 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10411 mutex_exit(&ill->ill_lock); 10412 mutex_exit(&connp->conn_lock); 10413 ipif_refrele(ipif); 10414 return (EINVAL); 10415 } 10416 10417 switch (option) { 10418 case IP_MULTICAST_IF: 10419 connp->conn_multicast_ipif = ipif; 10420 break; 10421 case IP_NEXTHOP: 10422 connp->conn_nexthop_v4 = addr; 10423 connp->conn_nexthop_set = B_TRUE; 10424 break; 10425 } 10426 10427 if (ipif != NULL) { 10428 mutex_exit(&ill->ill_lock); 10429 mutex_exit(&connp->conn_lock); 10430 ipif_refrele(ipif); 10431 return (0); 10432 } 10433 mutex_exit(&connp->conn_lock); 10434 /* We succeded in cleared the option */ 10435 return (0); 10436 } 10437 10438 /* 10439 * For options that pass in an ifindex specifying the ill. V6 options always 10440 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10441 */ 10442 int 10443 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10444 int level, int option, mblk_t *first_mp) 10445 { 10446 ill_t *ill = NULL; 10447 int error = 0; 10448 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10449 10450 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10451 if (ifindex != 0) { 10452 ASSERT(connp != NULL); 10453 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10454 first_mp, ip_restart_optmgmt, &error, ipst); 10455 if (ill != NULL) { 10456 if (checkonly) { 10457 /* not supported by the virtual network iface */ 10458 if (IS_VNI(ill)) { 10459 ill_refrele(ill); 10460 return (EINVAL); 10461 } 10462 ill_refrele(ill); 10463 return (0); 10464 } 10465 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10466 0, NULL)) { 10467 ill_refrele(ill); 10468 ill = NULL; 10469 mutex_enter(&connp->conn_lock); 10470 goto setit; 10471 } 10472 mutex_enter(&connp->conn_lock); 10473 mutex_enter(&ill->ill_lock); 10474 if (ill->ill_state_flags & ILL_CONDEMNED) { 10475 mutex_exit(&ill->ill_lock); 10476 mutex_exit(&connp->conn_lock); 10477 ill_refrele(ill); 10478 ill = NULL; 10479 mutex_enter(&connp->conn_lock); 10480 } 10481 goto setit; 10482 } else if (error == EINPROGRESS) { 10483 return (error); 10484 } else { 10485 error = 0; 10486 } 10487 } 10488 mutex_enter(&connp->conn_lock); 10489 setit: 10490 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10491 10492 /* 10493 * The options below assume that the ILL (if any) transmits and/or 10494 * receives traffic. Neither of which is true for the virtual network 10495 * interface, so fail setting these on a VNI. 10496 */ 10497 if (IS_VNI(ill)) { 10498 ASSERT(ill != NULL); 10499 mutex_exit(&ill->ill_lock); 10500 mutex_exit(&connp->conn_lock); 10501 ill_refrele(ill); 10502 return (EINVAL); 10503 } 10504 10505 if (level == IPPROTO_IP) { 10506 switch (option) { 10507 case IP_BOUND_IF: 10508 connp->conn_incoming_ill = ill; 10509 connp->conn_outgoing_ill = ill; 10510 break; 10511 10512 case IP_MULTICAST_IF: 10513 /* 10514 * This option is an internal special. The socket 10515 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10516 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10517 * specifies an ifindex and we try first on V6 ill's. 10518 * If we don't find one, we they try using on v4 ill's 10519 * intenally and we come here. 10520 */ 10521 if (!checkonly && ill != NULL) { 10522 ipif_t *ipif; 10523 ipif = ill->ill_ipif; 10524 10525 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10526 mutex_exit(&ill->ill_lock); 10527 mutex_exit(&connp->conn_lock); 10528 ill_refrele(ill); 10529 ill = NULL; 10530 mutex_enter(&connp->conn_lock); 10531 } else { 10532 connp->conn_multicast_ipif = ipif; 10533 } 10534 } 10535 break; 10536 10537 case IP_DHCPINIT_IF: 10538 if (connp->conn_dhcpinit_ill != NULL) { 10539 /* 10540 * We've locked the conn so conn_cleanup_ill() 10541 * cannot clear conn_dhcpinit_ill -- so it's 10542 * safe to access the ill. 10543 */ 10544 ill_t *oill = connp->conn_dhcpinit_ill; 10545 10546 ASSERT(oill->ill_dhcpinit != 0); 10547 atomic_dec_32(&oill->ill_dhcpinit); 10548 connp->conn_dhcpinit_ill = NULL; 10549 } 10550 10551 if (ill != NULL) { 10552 connp->conn_dhcpinit_ill = ill; 10553 atomic_inc_32(&ill->ill_dhcpinit); 10554 } 10555 break; 10556 } 10557 } else { 10558 switch (option) { 10559 case IPV6_BOUND_IF: 10560 connp->conn_incoming_ill = ill; 10561 connp->conn_outgoing_ill = ill; 10562 break; 10563 10564 case IPV6_MULTICAST_IF: 10565 /* 10566 * Set conn_multicast_ill to be the IPv6 ill. 10567 * Set conn_multicast_ipif to be an IPv4 ipif 10568 * for ifindex to make IPv4 mapped addresses 10569 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10570 * Even if no IPv6 ill exists for the ifindex 10571 * we need to check for an IPv4 ifindex in order 10572 * for this to work with mapped addresses. In that 10573 * case only set conn_multicast_ipif. 10574 */ 10575 if (!checkonly) { 10576 if (ifindex == 0) { 10577 connp->conn_multicast_ill = NULL; 10578 connp->conn_multicast_ipif = NULL; 10579 } else if (ill != NULL) { 10580 connp->conn_multicast_ill = ill; 10581 } 10582 } 10583 break; 10584 } 10585 } 10586 10587 if (ill != NULL) { 10588 mutex_exit(&ill->ill_lock); 10589 mutex_exit(&connp->conn_lock); 10590 ill_refrele(ill); 10591 return (0); 10592 } 10593 mutex_exit(&connp->conn_lock); 10594 /* 10595 * We succeeded in clearing the option (ifindex == 0) or failed to 10596 * locate the ill and could not set the option (ifindex != 0) 10597 */ 10598 return (ifindex == 0 ? 0 : EINVAL); 10599 } 10600 10601 /* This routine sets socket options. */ 10602 /* ARGSUSED */ 10603 int 10604 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10605 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10606 void *dummy, cred_t *cr, mblk_t *first_mp) 10607 { 10608 int *i1 = (int *)invalp; 10609 conn_t *connp = Q_TO_CONN(q); 10610 int error = 0; 10611 boolean_t checkonly; 10612 ire_t *ire; 10613 boolean_t found; 10614 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10615 10616 switch (optset_context) { 10617 10618 case SETFN_OPTCOM_CHECKONLY: 10619 checkonly = B_TRUE; 10620 /* 10621 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10622 * inlen != 0 implies value supplied and 10623 * we have to "pretend" to set it. 10624 * inlen == 0 implies that there is no 10625 * value part in T_CHECK request and just validation 10626 * done elsewhere should be enough, we just return here. 10627 */ 10628 if (inlen == 0) { 10629 *outlenp = 0; 10630 return (0); 10631 } 10632 break; 10633 case SETFN_OPTCOM_NEGOTIATE: 10634 case SETFN_UD_NEGOTIATE: 10635 case SETFN_CONN_NEGOTIATE: 10636 checkonly = B_FALSE; 10637 break; 10638 default: 10639 /* 10640 * We should never get here 10641 */ 10642 *outlenp = 0; 10643 return (EINVAL); 10644 } 10645 10646 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10647 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10648 10649 /* 10650 * For fixed length options, no sanity check 10651 * of passed in length is done. It is assumed *_optcom_req() 10652 * routines do the right thing. 10653 */ 10654 10655 switch (level) { 10656 case SOL_SOCKET: 10657 /* 10658 * conn_lock protects the bitfields, and is used to 10659 * set the fields atomically. 10660 */ 10661 switch (name) { 10662 case SO_BROADCAST: 10663 if (!checkonly) { 10664 /* TODO: use value someplace? */ 10665 mutex_enter(&connp->conn_lock); 10666 connp->conn_broadcast = *i1 ? 1 : 0; 10667 mutex_exit(&connp->conn_lock); 10668 } 10669 break; /* goto sizeof (int) option return */ 10670 case SO_USELOOPBACK: 10671 if (!checkonly) { 10672 /* TODO: use value someplace? */ 10673 mutex_enter(&connp->conn_lock); 10674 connp->conn_loopback = *i1 ? 1 : 0; 10675 mutex_exit(&connp->conn_lock); 10676 } 10677 break; /* goto sizeof (int) option return */ 10678 case SO_DONTROUTE: 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_dontroute = *i1 ? 1 : 0; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 break; /* goto sizeof (int) option return */ 10685 case SO_REUSEADDR: 10686 if (!checkonly) { 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_reuseaddr = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case SO_PROTOTYPE: 10693 if (!checkonly) { 10694 mutex_enter(&connp->conn_lock); 10695 connp->conn_proto = *i1; 10696 mutex_exit(&connp->conn_lock); 10697 } 10698 break; /* goto sizeof (int) option return */ 10699 case SO_ALLZONES: 10700 if (!checkonly) { 10701 mutex_enter(&connp->conn_lock); 10702 if (IPCL_IS_BOUND(connp)) { 10703 mutex_exit(&connp->conn_lock); 10704 return (EINVAL); 10705 } 10706 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10707 mutex_exit(&connp->conn_lock); 10708 } 10709 break; /* goto sizeof (int) option return */ 10710 case SO_ANON_MLP: 10711 if (!checkonly) { 10712 mutex_enter(&connp->conn_lock); 10713 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10714 mutex_exit(&connp->conn_lock); 10715 } 10716 break; /* goto sizeof (int) option return */ 10717 case SO_MAC_EXEMPT: 10718 if (secpolicy_net_mac_aware(cr) != 0 || 10719 IPCL_IS_BOUND(connp)) 10720 return (EACCES); 10721 if (!checkonly) { 10722 mutex_enter(&connp->conn_lock); 10723 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10724 mutex_exit(&connp->conn_lock); 10725 } 10726 break; /* goto sizeof (int) option return */ 10727 default: 10728 /* 10729 * "soft" error (negative) 10730 * option not handled at this level 10731 * Note: Do not modify *outlenp 10732 */ 10733 return (-EINVAL); 10734 } 10735 break; 10736 case IPPROTO_IP: 10737 switch (name) { 10738 case IP_NEXTHOP: 10739 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10740 return (EPERM); 10741 /* FALLTHRU */ 10742 case IP_MULTICAST_IF: { 10743 ipaddr_t addr = *i1; 10744 10745 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10746 first_mp); 10747 if (error != 0) 10748 return (error); 10749 break; /* goto sizeof (int) option return */ 10750 } 10751 10752 case IP_MULTICAST_TTL: 10753 /* Recorded in transport above IP */ 10754 *outvalp = *invalp; 10755 *outlenp = sizeof (uchar_t); 10756 return (0); 10757 case IP_MULTICAST_LOOP: 10758 if (!checkonly) { 10759 mutex_enter(&connp->conn_lock); 10760 connp->conn_multicast_loop = *invalp ? 1 : 0; 10761 mutex_exit(&connp->conn_lock); 10762 } 10763 *outvalp = *invalp; 10764 *outlenp = sizeof (uchar_t); 10765 return (0); 10766 case IP_ADD_MEMBERSHIP: 10767 case MCAST_JOIN_GROUP: 10768 case IP_DROP_MEMBERSHIP: 10769 case MCAST_LEAVE_GROUP: { 10770 struct ip_mreq *mreqp; 10771 struct group_req *greqp; 10772 ire_t *ire; 10773 boolean_t done = B_FALSE; 10774 ipaddr_t group, ifaddr; 10775 struct sockaddr_in *sin; 10776 uint32_t *ifindexp; 10777 boolean_t mcast_opt = B_TRUE; 10778 mcast_record_t fmode; 10779 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10780 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10781 10782 switch (name) { 10783 case IP_ADD_MEMBERSHIP: 10784 mcast_opt = B_FALSE; 10785 /* FALLTHRU */ 10786 case MCAST_JOIN_GROUP: 10787 fmode = MODE_IS_EXCLUDE; 10788 optfn = ip_opt_add_group; 10789 break; 10790 10791 case IP_DROP_MEMBERSHIP: 10792 mcast_opt = B_FALSE; 10793 /* FALLTHRU */ 10794 case MCAST_LEAVE_GROUP: 10795 fmode = MODE_IS_INCLUDE; 10796 optfn = ip_opt_delete_group; 10797 break; 10798 } 10799 10800 if (mcast_opt) { 10801 greqp = (struct group_req *)i1; 10802 sin = (struct sockaddr_in *)&greqp->gr_group; 10803 if (sin->sin_family != AF_INET) { 10804 *outlenp = 0; 10805 return (ENOPROTOOPT); 10806 } 10807 group = (ipaddr_t)sin->sin_addr.s_addr; 10808 ifaddr = INADDR_ANY; 10809 ifindexp = &greqp->gr_interface; 10810 } else { 10811 mreqp = (struct ip_mreq *)i1; 10812 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10813 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10814 ifindexp = NULL; 10815 } 10816 10817 /* 10818 * In the multirouting case, we need to replicate 10819 * the request on all interfaces that will take part 10820 * in replication. We do so because multirouting is 10821 * reflective, thus we will probably receive multi- 10822 * casts on those interfaces. 10823 * The ip_multirt_apply_membership() succeeds if the 10824 * operation succeeds on at least one interface. 10825 */ 10826 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10827 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10828 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10829 if (ire != NULL) { 10830 if (ire->ire_flags & RTF_MULTIRT) { 10831 error = ip_multirt_apply_membership( 10832 optfn, ire, connp, checkonly, group, 10833 fmode, INADDR_ANY, first_mp); 10834 done = B_TRUE; 10835 } 10836 ire_refrele(ire); 10837 } 10838 if (!done) { 10839 error = optfn(connp, checkonly, group, ifaddr, 10840 ifindexp, fmode, INADDR_ANY, first_mp); 10841 } 10842 if (error) { 10843 /* 10844 * EINPROGRESS is a soft error, needs retry 10845 * so don't make *outlenp zero. 10846 */ 10847 if (error != EINPROGRESS) 10848 *outlenp = 0; 10849 return (error); 10850 } 10851 /* OK return - copy input buffer into output buffer */ 10852 if (invalp != outvalp) { 10853 /* don't trust bcopy for identical src/dst */ 10854 bcopy(invalp, outvalp, inlen); 10855 } 10856 *outlenp = inlen; 10857 return (0); 10858 } 10859 case IP_BLOCK_SOURCE: 10860 case IP_UNBLOCK_SOURCE: 10861 case IP_ADD_SOURCE_MEMBERSHIP: 10862 case IP_DROP_SOURCE_MEMBERSHIP: 10863 case MCAST_BLOCK_SOURCE: 10864 case MCAST_UNBLOCK_SOURCE: 10865 case MCAST_JOIN_SOURCE_GROUP: 10866 case MCAST_LEAVE_SOURCE_GROUP: { 10867 struct ip_mreq_source *imreqp; 10868 struct group_source_req *gsreqp; 10869 in_addr_t grp, src, ifaddr = INADDR_ANY; 10870 uint32_t ifindex = 0; 10871 mcast_record_t fmode; 10872 struct sockaddr_in *sin; 10873 ire_t *ire; 10874 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10875 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10876 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10877 10878 switch (name) { 10879 case IP_BLOCK_SOURCE: 10880 mcast_opt = B_FALSE; 10881 /* FALLTHRU */ 10882 case MCAST_BLOCK_SOURCE: 10883 fmode = MODE_IS_EXCLUDE; 10884 optfn = ip_opt_add_group; 10885 break; 10886 10887 case IP_UNBLOCK_SOURCE: 10888 mcast_opt = B_FALSE; 10889 /* FALLTHRU */ 10890 case MCAST_UNBLOCK_SOURCE: 10891 fmode = MODE_IS_EXCLUDE; 10892 optfn = ip_opt_delete_group; 10893 break; 10894 10895 case IP_ADD_SOURCE_MEMBERSHIP: 10896 mcast_opt = B_FALSE; 10897 /* FALLTHRU */ 10898 case MCAST_JOIN_SOURCE_GROUP: 10899 fmode = MODE_IS_INCLUDE; 10900 optfn = ip_opt_add_group; 10901 break; 10902 10903 case IP_DROP_SOURCE_MEMBERSHIP: 10904 mcast_opt = B_FALSE; 10905 /* FALLTHRU */ 10906 case MCAST_LEAVE_SOURCE_GROUP: 10907 fmode = MODE_IS_INCLUDE; 10908 optfn = ip_opt_delete_group; 10909 break; 10910 } 10911 10912 if (mcast_opt) { 10913 gsreqp = (struct group_source_req *)i1; 10914 if (gsreqp->gsr_group.ss_family != AF_INET) { 10915 *outlenp = 0; 10916 return (ENOPROTOOPT); 10917 } 10918 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10919 grp = (ipaddr_t)sin->sin_addr.s_addr; 10920 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10921 src = (ipaddr_t)sin->sin_addr.s_addr; 10922 ifindex = gsreqp->gsr_interface; 10923 } else { 10924 imreqp = (struct ip_mreq_source *)i1; 10925 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10926 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10927 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10928 } 10929 10930 /* 10931 * In the multirouting case, we need to replicate 10932 * the request as noted in the mcast cases above. 10933 */ 10934 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10935 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10936 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10937 if (ire != NULL) { 10938 if (ire->ire_flags & RTF_MULTIRT) { 10939 error = ip_multirt_apply_membership( 10940 optfn, ire, connp, checkonly, grp, 10941 fmode, src, first_mp); 10942 done = B_TRUE; 10943 } 10944 ire_refrele(ire); 10945 } 10946 if (!done) { 10947 error = optfn(connp, checkonly, grp, ifaddr, 10948 &ifindex, fmode, src, first_mp); 10949 } 10950 if (error != 0) { 10951 /* 10952 * EINPROGRESS is a soft error, needs retry 10953 * so don't make *outlenp zero. 10954 */ 10955 if (error != EINPROGRESS) 10956 *outlenp = 0; 10957 return (error); 10958 } 10959 /* OK return - copy input buffer into output buffer */ 10960 if (invalp != outvalp) { 10961 bcopy(invalp, outvalp, inlen); 10962 } 10963 *outlenp = inlen; 10964 return (0); 10965 } 10966 case IP_SEC_OPT: 10967 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10968 if (error != 0) { 10969 *outlenp = 0; 10970 return (error); 10971 } 10972 break; 10973 case IP_HDRINCL: 10974 case IP_OPTIONS: 10975 case T_IP_OPTIONS: 10976 case IP_TOS: 10977 case T_IP_TOS: 10978 case IP_TTL: 10979 case IP_RECVDSTADDR: 10980 case IP_RECVOPTS: 10981 /* OK return - copy input buffer into output buffer */ 10982 if (invalp != outvalp) { 10983 /* don't trust bcopy for identical src/dst */ 10984 bcopy(invalp, outvalp, inlen); 10985 } 10986 *outlenp = inlen; 10987 return (0); 10988 case IP_RECVIF: 10989 /* Retrieve the inbound interface index */ 10990 if (!checkonly) { 10991 mutex_enter(&connp->conn_lock); 10992 connp->conn_recvif = *i1 ? 1 : 0; 10993 mutex_exit(&connp->conn_lock); 10994 } 10995 break; /* goto sizeof (int) option return */ 10996 case IP_RECVPKTINFO: 10997 if (!checkonly) { 10998 mutex_enter(&connp->conn_lock); 10999 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11000 mutex_exit(&connp->conn_lock); 11001 } 11002 break; /* goto sizeof (int) option return */ 11003 case IP_RECVSLLA: 11004 /* Retrieve the source link layer address */ 11005 if (!checkonly) { 11006 mutex_enter(&connp->conn_lock); 11007 connp->conn_recvslla = *i1 ? 1 : 0; 11008 mutex_exit(&connp->conn_lock); 11009 } 11010 break; /* goto sizeof (int) option return */ 11011 case MRT_INIT: 11012 case MRT_DONE: 11013 case MRT_ADD_VIF: 11014 case MRT_DEL_VIF: 11015 case MRT_ADD_MFC: 11016 case MRT_DEL_MFC: 11017 case MRT_ASSERT: 11018 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11019 *outlenp = 0; 11020 return (error); 11021 } 11022 error = ip_mrouter_set((int)name, q, checkonly, 11023 (uchar_t *)invalp, inlen, first_mp); 11024 if (error) { 11025 *outlenp = 0; 11026 return (error); 11027 } 11028 /* OK return - copy input buffer into output buffer */ 11029 if (invalp != outvalp) { 11030 /* don't trust bcopy for identical src/dst */ 11031 bcopy(invalp, outvalp, inlen); 11032 } 11033 *outlenp = inlen; 11034 return (0); 11035 case IP_BOUND_IF: 11036 case IP_DHCPINIT_IF: 11037 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11038 level, name, first_mp); 11039 if (error != 0) 11040 return (error); 11041 break; /* goto sizeof (int) option return */ 11042 11043 case IP_UNSPEC_SRC: 11044 /* Allow sending with a zero source address */ 11045 if (!checkonly) { 11046 mutex_enter(&connp->conn_lock); 11047 connp->conn_unspec_src = *i1 ? 1 : 0; 11048 mutex_exit(&connp->conn_lock); 11049 } 11050 break; /* goto sizeof (int) option return */ 11051 default: 11052 /* 11053 * "soft" error (negative) 11054 * option not handled at this level 11055 * Note: Do not modify *outlenp 11056 */ 11057 return (-EINVAL); 11058 } 11059 break; 11060 case IPPROTO_IPV6: 11061 switch (name) { 11062 case IPV6_BOUND_IF: 11063 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11064 level, name, first_mp); 11065 if (error != 0) 11066 return (error); 11067 break; /* goto sizeof (int) option return */ 11068 11069 case IPV6_MULTICAST_IF: 11070 /* 11071 * The only possible errors are EINPROGRESS and 11072 * EINVAL. EINPROGRESS will be restarted and is not 11073 * a hard error. We call this option on both V4 and V6 11074 * If both return EINVAL, then this call returns 11075 * EINVAL. If at least one of them succeeds we 11076 * return success. 11077 */ 11078 found = B_FALSE; 11079 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11080 level, name, first_mp); 11081 if (error == EINPROGRESS) 11082 return (error); 11083 if (error == 0) 11084 found = B_TRUE; 11085 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11086 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11087 if (error == 0) 11088 found = B_TRUE; 11089 if (!found) 11090 return (error); 11091 break; /* goto sizeof (int) option return */ 11092 11093 case IPV6_MULTICAST_HOPS: 11094 /* Recorded in transport above IP */ 11095 break; /* goto sizeof (int) option return */ 11096 case IPV6_MULTICAST_LOOP: 11097 if (!checkonly) { 11098 mutex_enter(&connp->conn_lock); 11099 connp->conn_multicast_loop = *i1; 11100 mutex_exit(&connp->conn_lock); 11101 } 11102 break; /* goto sizeof (int) option return */ 11103 case IPV6_JOIN_GROUP: 11104 case MCAST_JOIN_GROUP: 11105 case IPV6_LEAVE_GROUP: 11106 case MCAST_LEAVE_GROUP: { 11107 struct ipv6_mreq *ip_mreqp; 11108 struct group_req *greqp; 11109 ire_t *ire; 11110 boolean_t done = B_FALSE; 11111 in6_addr_t groupv6; 11112 uint32_t ifindex; 11113 boolean_t mcast_opt = B_TRUE; 11114 mcast_record_t fmode; 11115 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11116 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11117 11118 switch (name) { 11119 case IPV6_JOIN_GROUP: 11120 mcast_opt = B_FALSE; 11121 /* FALLTHRU */ 11122 case MCAST_JOIN_GROUP: 11123 fmode = MODE_IS_EXCLUDE; 11124 optfn = ip_opt_add_group_v6; 11125 break; 11126 11127 case IPV6_LEAVE_GROUP: 11128 mcast_opt = B_FALSE; 11129 /* FALLTHRU */ 11130 case MCAST_LEAVE_GROUP: 11131 fmode = MODE_IS_INCLUDE; 11132 optfn = ip_opt_delete_group_v6; 11133 break; 11134 } 11135 11136 if (mcast_opt) { 11137 struct sockaddr_in *sin; 11138 struct sockaddr_in6 *sin6; 11139 greqp = (struct group_req *)i1; 11140 if (greqp->gr_group.ss_family == AF_INET) { 11141 sin = (struct sockaddr_in *) 11142 &(greqp->gr_group); 11143 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11144 &groupv6); 11145 } else { 11146 sin6 = (struct sockaddr_in6 *) 11147 &(greqp->gr_group); 11148 groupv6 = sin6->sin6_addr; 11149 } 11150 ifindex = greqp->gr_interface; 11151 } else { 11152 ip_mreqp = (struct ipv6_mreq *)i1; 11153 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11154 ifindex = ip_mreqp->ipv6mr_interface; 11155 } 11156 /* 11157 * In the multirouting case, we need to replicate 11158 * the request on all interfaces that will take part 11159 * in replication. We do so because multirouting is 11160 * reflective, thus we will probably receive multi- 11161 * casts on those interfaces. 11162 * The ip_multirt_apply_membership_v6() succeeds if 11163 * the operation succeeds on at least one interface. 11164 */ 11165 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11166 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11167 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11168 if (ire != NULL) { 11169 if (ire->ire_flags & RTF_MULTIRT) { 11170 error = ip_multirt_apply_membership_v6( 11171 optfn, ire, connp, checkonly, 11172 &groupv6, fmode, &ipv6_all_zeros, 11173 first_mp); 11174 done = B_TRUE; 11175 } 11176 ire_refrele(ire); 11177 } 11178 if (!done) { 11179 error = optfn(connp, checkonly, &groupv6, 11180 ifindex, fmode, &ipv6_all_zeros, first_mp); 11181 } 11182 if (error) { 11183 /* 11184 * EINPROGRESS is a soft error, needs retry 11185 * so don't make *outlenp zero. 11186 */ 11187 if (error != EINPROGRESS) 11188 *outlenp = 0; 11189 return (error); 11190 } 11191 /* OK return - copy input buffer into output buffer */ 11192 if (invalp != outvalp) { 11193 /* don't trust bcopy for identical src/dst */ 11194 bcopy(invalp, outvalp, inlen); 11195 } 11196 *outlenp = inlen; 11197 return (0); 11198 } 11199 case MCAST_BLOCK_SOURCE: 11200 case MCAST_UNBLOCK_SOURCE: 11201 case MCAST_JOIN_SOURCE_GROUP: 11202 case MCAST_LEAVE_SOURCE_GROUP: { 11203 struct group_source_req *gsreqp; 11204 in6_addr_t v6grp, v6src; 11205 uint32_t ifindex; 11206 mcast_record_t fmode; 11207 ire_t *ire; 11208 boolean_t done = B_FALSE; 11209 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11210 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11211 11212 switch (name) { 11213 case MCAST_BLOCK_SOURCE: 11214 fmode = MODE_IS_EXCLUDE; 11215 optfn = ip_opt_add_group_v6; 11216 break; 11217 case MCAST_UNBLOCK_SOURCE: 11218 fmode = MODE_IS_EXCLUDE; 11219 optfn = ip_opt_delete_group_v6; 11220 break; 11221 case MCAST_JOIN_SOURCE_GROUP: 11222 fmode = MODE_IS_INCLUDE; 11223 optfn = ip_opt_add_group_v6; 11224 break; 11225 case MCAST_LEAVE_SOURCE_GROUP: 11226 fmode = MODE_IS_INCLUDE; 11227 optfn = ip_opt_delete_group_v6; 11228 break; 11229 } 11230 11231 gsreqp = (struct group_source_req *)i1; 11232 ifindex = gsreqp->gsr_interface; 11233 if (gsreqp->gsr_group.ss_family == AF_INET) { 11234 struct sockaddr_in *s; 11235 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11236 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11237 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11238 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11239 } else { 11240 struct sockaddr_in6 *s6; 11241 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11242 v6grp = s6->sin6_addr; 11243 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11244 v6src = s6->sin6_addr; 11245 } 11246 11247 /* 11248 * In the multirouting case, we need to replicate 11249 * the request as noted in the mcast cases above. 11250 */ 11251 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11252 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11253 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11254 if (ire != NULL) { 11255 if (ire->ire_flags & RTF_MULTIRT) { 11256 error = ip_multirt_apply_membership_v6( 11257 optfn, ire, connp, checkonly, 11258 &v6grp, fmode, &v6src, first_mp); 11259 done = B_TRUE; 11260 } 11261 ire_refrele(ire); 11262 } 11263 if (!done) { 11264 error = optfn(connp, checkonly, &v6grp, 11265 ifindex, fmode, &v6src, first_mp); 11266 } 11267 if (error != 0) { 11268 /* 11269 * EINPROGRESS is a soft error, needs retry 11270 * so don't make *outlenp zero. 11271 */ 11272 if (error != EINPROGRESS) 11273 *outlenp = 0; 11274 return (error); 11275 } 11276 /* OK return - copy input buffer into output buffer */ 11277 if (invalp != outvalp) { 11278 bcopy(invalp, outvalp, inlen); 11279 } 11280 *outlenp = inlen; 11281 return (0); 11282 } 11283 case IPV6_UNICAST_HOPS: 11284 /* Recorded in transport above IP */ 11285 break; /* goto sizeof (int) option return */ 11286 case IPV6_UNSPEC_SRC: 11287 /* Allow sending with a zero source address */ 11288 if (!checkonly) { 11289 mutex_enter(&connp->conn_lock); 11290 connp->conn_unspec_src = *i1 ? 1 : 0; 11291 mutex_exit(&connp->conn_lock); 11292 } 11293 break; /* goto sizeof (int) option return */ 11294 case IPV6_RECVPKTINFO: 11295 if (!checkonly) { 11296 mutex_enter(&connp->conn_lock); 11297 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11298 mutex_exit(&connp->conn_lock); 11299 } 11300 break; /* goto sizeof (int) option return */ 11301 case IPV6_RECVTCLASS: 11302 if (!checkonly) { 11303 if (*i1 < 0 || *i1 > 1) { 11304 return (EINVAL); 11305 } 11306 mutex_enter(&connp->conn_lock); 11307 connp->conn_ipv6_recvtclass = *i1; 11308 mutex_exit(&connp->conn_lock); 11309 } 11310 break; 11311 case IPV6_RECVPATHMTU: 11312 if (!checkonly) { 11313 if (*i1 < 0 || *i1 > 1) { 11314 return (EINVAL); 11315 } 11316 mutex_enter(&connp->conn_lock); 11317 connp->conn_ipv6_recvpathmtu = *i1; 11318 mutex_exit(&connp->conn_lock); 11319 } 11320 break; 11321 case IPV6_RECVHOPLIMIT: 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVHOPOPTS: 11329 if (!checkonly) { 11330 mutex_enter(&connp->conn_lock); 11331 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11332 mutex_exit(&connp->conn_lock); 11333 } 11334 break; /* goto sizeof (int) option return */ 11335 case IPV6_RECVDSTOPTS: 11336 if (!checkonly) { 11337 mutex_enter(&connp->conn_lock); 11338 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11339 mutex_exit(&connp->conn_lock); 11340 } 11341 break; /* goto sizeof (int) option return */ 11342 case IPV6_RECVRTHDR: 11343 if (!checkonly) { 11344 mutex_enter(&connp->conn_lock); 11345 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11346 mutex_exit(&connp->conn_lock); 11347 } 11348 break; /* goto sizeof (int) option return */ 11349 case IPV6_RECVRTHDRDSTOPTS: 11350 if (!checkonly) { 11351 mutex_enter(&connp->conn_lock); 11352 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11353 mutex_exit(&connp->conn_lock); 11354 } 11355 break; /* goto sizeof (int) option return */ 11356 case IPV6_PKTINFO: 11357 if (inlen == 0) 11358 return (-EINVAL); /* clearing option */ 11359 error = ip6_set_pktinfo(cr, connp, 11360 (struct in6_pktinfo *)invalp); 11361 if (error != 0) 11362 *outlenp = 0; 11363 else 11364 *outlenp = inlen; 11365 return (error); 11366 case IPV6_NEXTHOP: { 11367 struct sockaddr_in6 *sin6; 11368 11369 /* Verify that the nexthop is reachable */ 11370 if (inlen == 0) 11371 return (-EINVAL); /* clearing option */ 11372 11373 sin6 = (struct sockaddr_in6 *)invalp; 11374 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11375 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11376 NULL, MATCH_IRE_DEFAULT, ipst); 11377 11378 if (ire == NULL) { 11379 *outlenp = 0; 11380 return (EHOSTUNREACH); 11381 } 11382 ire_refrele(ire); 11383 return (-EINVAL); 11384 } 11385 case IPV6_SEC_OPT: 11386 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11387 if (error != 0) { 11388 *outlenp = 0; 11389 return (error); 11390 } 11391 break; 11392 case IPV6_SRC_PREFERENCES: { 11393 /* 11394 * This is implemented strictly in the ip module 11395 * (here and in tcp_opt_*() to accomodate tcp 11396 * sockets). Modules above ip pass this option 11397 * down here since ip is the only one that needs to 11398 * be aware of source address preferences. 11399 * 11400 * This socket option only affects connected 11401 * sockets that haven't already bound to a specific 11402 * IPv6 address. In other words, sockets that 11403 * don't call bind() with an address other than the 11404 * unspecified address and that call connect(). 11405 * ip_bind_connected_v6() passes these preferences 11406 * to the ipif_select_source_v6() function. 11407 */ 11408 if (inlen != sizeof (uint32_t)) 11409 return (EINVAL); 11410 error = ip6_set_src_preferences(connp, 11411 *(uint32_t *)invalp); 11412 if (error != 0) { 11413 *outlenp = 0; 11414 return (error); 11415 } else { 11416 *outlenp = sizeof (uint32_t); 11417 } 11418 break; 11419 } 11420 case IPV6_V6ONLY: 11421 if (*i1 < 0 || *i1 > 1) { 11422 return (EINVAL); 11423 } 11424 mutex_enter(&connp->conn_lock); 11425 connp->conn_ipv6_v6only = *i1; 11426 mutex_exit(&connp->conn_lock); 11427 break; 11428 default: 11429 return (-EINVAL); 11430 } 11431 break; 11432 default: 11433 /* 11434 * "soft" error (negative) 11435 * option not handled at this level 11436 * Note: Do not modify *outlenp 11437 */ 11438 return (-EINVAL); 11439 } 11440 /* 11441 * Common case of return from an option that is sizeof (int) 11442 */ 11443 *(int *)outvalp = *i1; 11444 *outlenp = sizeof (int); 11445 return (0); 11446 } 11447 11448 /* 11449 * This routine gets default values of certain options whose default 11450 * values are maintained by protocol specific code 11451 */ 11452 /* ARGSUSED */ 11453 int 11454 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11455 { 11456 int *i1 = (int *)ptr; 11457 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11458 11459 switch (level) { 11460 case IPPROTO_IP: 11461 switch (name) { 11462 case IP_MULTICAST_TTL: 11463 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11464 return (sizeof (uchar_t)); 11465 case IP_MULTICAST_LOOP: 11466 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11467 return (sizeof (uchar_t)); 11468 default: 11469 return (-1); 11470 } 11471 case IPPROTO_IPV6: 11472 switch (name) { 11473 case IPV6_UNICAST_HOPS: 11474 *i1 = ipst->ips_ipv6_def_hops; 11475 return (sizeof (int)); 11476 case IPV6_MULTICAST_HOPS: 11477 *i1 = IP_DEFAULT_MULTICAST_TTL; 11478 return (sizeof (int)); 11479 case IPV6_MULTICAST_LOOP: 11480 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11481 return (sizeof (int)); 11482 case IPV6_V6ONLY: 11483 *i1 = 1; 11484 return (sizeof (int)); 11485 default: 11486 return (-1); 11487 } 11488 default: 11489 return (-1); 11490 } 11491 /* NOTREACHED */ 11492 } 11493 11494 /* 11495 * Given a destination address and a pointer to where to put the information 11496 * this routine fills in the mtuinfo. 11497 */ 11498 int 11499 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11500 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11501 { 11502 ire_t *ire; 11503 ip_stack_t *ipst = ns->netstack_ip; 11504 11505 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11506 return (-1); 11507 11508 bzero(mtuinfo, sizeof (*mtuinfo)); 11509 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11510 mtuinfo->ip6m_addr.sin6_port = port; 11511 mtuinfo->ip6m_addr.sin6_addr = *in6; 11512 11513 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11514 if (ire != NULL) { 11515 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11516 ire_refrele(ire); 11517 } else { 11518 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11519 } 11520 return (sizeof (struct ip6_mtuinfo)); 11521 } 11522 11523 /* 11524 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11525 * checking of cred and that ip_g_mrouter is set should be done and 11526 * isn't. This doesn't matter as the error checking is done properly for the 11527 * other MRT options coming in through ip_opt_set. 11528 */ 11529 int 11530 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11531 { 11532 conn_t *connp = Q_TO_CONN(q); 11533 ipsec_req_t *req = (ipsec_req_t *)ptr; 11534 11535 switch (level) { 11536 case IPPROTO_IP: 11537 switch (name) { 11538 case MRT_VERSION: 11539 case MRT_ASSERT: 11540 (void) ip_mrouter_get(name, q, ptr); 11541 return (sizeof (int)); 11542 case IP_SEC_OPT: 11543 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11544 case IP_NEXTHOP: 11545 if (connp->conn_nexthop_set) { 11546 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11547 return (sizeof (ipaddr_t)); 11548 } else 11549 return (0); 11550 case IP_RECVPKTINFO: 11551 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11552 return (sizeof (int)); 11553 default: 11554 break; 11555 } 11556 break; 11557 case IPPROTO_IPV6: 11558 switch (name) { 11559 case IPV6_SEC_OPT: 11560 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11561 case IPV6_SRC_PREFERENCES: { 11562 return (ip6_get_src_preferences(connp, 11563 (uint32_t *)ptr)); 11564 } 11565 case IPV6_V6ONLY: 11566 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11567 return (sizeof (int)); 11568 case IPV6_PATHMTU: 11569 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11570 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11571 default: 11572 break; 11573 } 11574 break; 11575 default: 11576 break; 11577 } 11578 return (-1); 11579 } 11580 /* Named Dispatch routine to get a current value out of our parameter table. */ 11581 /* ARGSUSED */ 11582 static int 11583 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11584 { 11585 ipparam_t *ippa = (ipparam_t *)cp; 11586 11587 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11588 return (0); 11589 } 11590 11591 /* ARGSUSED */ 11592 static int 11593 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11594 { 11595 11596 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11597 return (0); 11598 } 11599 11600 /* 11601 * Set ip{,6}_forwarding values. This means walking through all of the 11602 * ill's and toggling their forwarding values. 11603 */ 11604 /* ARGSUSED */ 11605 static int 11606 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11607 { 11608 long new_value; 11609 int *forwarding_value = (int *)cp; 11610 ill_t *ill; 11611 boolean_t isv6; 11612 ill_walk_context_t ctx; 11613 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11614 11615 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11616 11617 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11618 new_value < 0 || new_value > 1) { 11619 return (EINVAL); 11620 } 11621 11622 *forwarding_value = new_value; 11623 11624 /* 11625 * Regardless of the current value of ip_forwarding, set all per-ill 11626 * values of ip_forwarding to the value being set. 11627 * 11628 * Bring all the ill's up to date with the new global value. 11629 */ 11630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11631 11632 if (isv6) 11633 ill = ILL_START_WALK_V6(&ctx, ipst); 11634 else 11635 ill = ILL_START_WALK_V4(&ctx, ipst); 11636 11637 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11638 (void) ill_forward_set(ill, new_value != 0); 11639 11640 rw_exit(&ipst->ips_ill_g_lock); 11641 return (0); 11642 } 11643 11644 /* 11645 * Walk through the param array specified registering each element with the 11646 * Named Dispatch handler. This is called only during init. So it is ok 11647 * not to acquire any locks 11648 */ 11649 static boolean_t 11650 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11651 ipndp_t *ipnd, size_t ipnd_cnt) 11652 { 11653 for (; ippa_cnt-- > 0; ippa++) { 11654 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11655 if (!nd_load(ndp, ippa->ip_param_name, 11656 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11657 nd_free(ndp); 11658 return (B_FALSE); 11659 } 11660 } 11661 } 11662 11663 for (; ipnd_cnt-- > 0; ipnd++) { 11664 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11665 if (!nd_load(ndp, ipnd->ip_ndp_name, 11666 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11667 ipnd->ip_ndp_data)) { 11668 nd_free(ndp); 11669 return (B_FALSE); 11670 } 11671 } 11672 } 11673 11674 return (B_TRUE); 11675 } 11676 11677 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11678 /* ARGSUSED */ 11679 static int 11680 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11681 { 11682 long new_value; 11683 ipparam_t *ippa = (ipparam_t *)cp; 11684 11685 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11686 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11687 return (EINVAL); 11688 } 11689 ippa->ip_param_value = new_value; 11690 return (0); 11691 } 11692 11693 /* 11694 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11695 * When an ipf is passed here for the first time, if 11696 * we already have in-order fragments on the queue, we convert from the fast- 11697 * path reassembly scheme to the hard-case scheme. From then on, additional 11698 * fragments are reassembled here. We keep track of the start and end offsets 11699 * of each piece, and the number of holes in the chain. When the hole count 11700 * goes to zero, we are done! 11701 * 11702 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11703 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11704 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11705 * after the call to ip_reassemble(). 11706 */ 11707 int 11708 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11709 size_t msg_len) 11710 { 11711 uint_t end; 11712 mblk_t *next_mp; 11713 mblk_t *mp1; 11714 uint_t offset; 11715 boolean_t incr_dups = B_TRUE; 11716 boolean_t offset_zero_seen = B_FALSE; 11717 boolean_t pkt_boundary_checked = B_FALSE; 11718 11719 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11720 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11721 11722 /* Add in byte count */ 11723 ipf->ipf_count += msg_len; 11724 if (ipf->ipf_end) { 11725 /* 11726 * We were part way through in-order reassembly, but now there 11727 * is a hole. We walk through messages already queued, and 11728 * mark them for hard case reassembly. We know that up till 11729 * now they were in order starting from offset zero. 11730 */ 11731 offset = 0; 11732 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11733 IP_REASS_SET_START(mp1, offset); 11734 if (offset == 0) { 11735 ASSERT(ipf->ipf_nf_hdr_len != 0); 11736 offset = -ipf->ipf_nf_hdr_len; 11737 } 11738 offset += mp1->b_wptr - mp1->b_rptr; 11739 IP_REASS_SET_END(mp1, offset); 11740 } 11741 /* One hole at the end. */ 11742 ipf->ipf_hole_cnt = 1; 11743 /* Brand it as a hard case, forever. */ 11744 ipf->ipf_end = 0; 11745 } 11746 /* Walk through all the new pieces. */ 11747 do { 11748 end = start + (mp->b_wptr - mp->b_rptr); 11749 /* 11750 * If start is 0, decrease 'end' only for the first mblk of 11751 * the fragment. Otherwise 'end' can get wrong value in the 11752 * second pass of the loop if first mblk is exactly the 11753 * size of ipf_nf_hdr_len. 11754 */ 11755 if (start == 0 && !offset_zero_seen) { 11756 /* First segment */ 11757 ASSERT(ipf->ipf_nf_hdr_len != 0); 11758 end -= ipf->ipf_nf_hdr_len; 11759 offset_zero_seen = B_TRUE; 11760 } 11761 next_mp = mp->b_cont; 11762 /* 11763 * We are checking to see if there is any interesing data 11764 * to process. If there isn't and the mblk isn't the 11765 * one which carries the unfragmentable header then we 11766 * drop it. It's possible to have just the unfragmentable 11767 * header come through without any data. That needs to be 11768 * saved. 11769 * 11770 * If the assert at the top of this function holds then the 11771 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11772 * is infrequently traveled enough that the test is left in 11773 * to protect against future code changes which break that 11774 * invariant. 11775 */ 11776 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11777 /* Empty. Blast it. */ 11778 IP_REASS_SET_START(mp, 0); 11779 IP_REASS_SET_END(mp, 0); 11780 /* 11781 * If the ipf points to the mblk we are about to free, 11782 * update ipf to point to the next mblk (or NULL 11783 * if none). 11784 */ 11785 if (ipf->ipf_mp->b_cont == mp) 11786 ipf->ipf_mp->b_cont = next_mp; 11787 freeb(mp); 11788 continue; 11789 } 11790 mp->b_cont = NULL; 11791 IP_REASS_SET_START(mp, start); 11792 IP_REASS_SET_END(mp, end); 11793 if (!ipf->ipf_tail_mp) { 11794 ipf->ipf_tail_mp = mp; 11795 ipf->ipf_mp->b_cont = mp; 11796 if (start == 0 || !more) { 11797 ipf->ipf_hole_cnt = 1; 11798 /* 11799 * if the first fragment comes in more than one 11800 * mblk, this loop will be executed for each 11801 * mblk. Need to adjust hole count so exiting 11802 * this routine will leave hole count at 1. 11803 */ 11804 if (next_mp) 11805 ipf->ipf_hole_cnt++; 11806 } else 11807 ipf->ipf_hole_cnt = 2; 11808 continue; 11809 } else if (ipf->ipf_last_frag_seen && !more && 11810 !pkt_boundary_checked) { 11811 /* 11812 * We check datagram boundary only if this fragment 11813 * claims to be the last fragment and we have seen a 11814 * last fragment in the past too. We do this only 11815 * once for a given fragment. 11816 * 11817 * start cannot be 0 here as fragments with start=0 11818 * and MF=0 gets handled as a complete packet. These 11819 * fragments should not reach here. 11820 */ 11821 11822 if (start + msgdsize(mp) != 11823 IP_REASS_END(ipf->ipf_tail_mp)) { 11824 /* 11825 * We have two fragments both of which claim 11826 * to be the last fragment but gives conflicting 11827 * information about the whole datagram size. 11828 * Something fishy is going on. Drop the 11829 * fragment and free up the reassembly list. 11830 */ 11831 return (IP_REASS_FAILED); 11832 } 11833 11834 /* 11835 * We shouldn't come to this code block again for this 11836 * particular fragment. 11837 */ 11838 pkt_boundary_checked = B_TRUE; 11839 } 11840 11841 /* New stuff at or beyond tail? */ 11842 offset = IP_REASS_END(ipf->ipf_tail_mp); 11843 if (start >= offset) { 11844 if (ipf->ipf_last_frag_seen) { 11845 /* current fragment is beyond last fragment */ 11846 return (IP_REASS_FAILED); 11847 } 11848 /* Link it on end. */ 11849 ipf->ipf_tail_mp->b_cont = mp; 11850 ipf->ipf_tail_mp = mp; 11851 if (more) { 11852 if (start != offset) 11853 ipf->ipf_hole_cnt++; 11854 } else if (start == offset && next_mp == NULL) 11855 ipf->ipf_hole_cnt--; 11856 continue; 11857 } 11858 mp1 = ipf->ipf_mp->b_cont; 11859 offset = IP_REASS_START(mp1); 11860 /* New stuff at the front? */ 11861 if (start < offset) { 11862 if (start == 0) { 11863 if (end >= offset) { 11864 /* Nailed the hole at the begining. */ 11865 ipf->ipf_hole_cnt--; 11866 } 11867 } else if (end < offset) { 11868 /* 11869 * A hole, stuff, and a hole where there used 11870 * to be just a hole. 11871 */ 11872 ipf->ipf_hole_cnt++; 11873 } 11874 mp->b_cont = mp1; 11875 /* Check for overlap. */ 11876 while (end > offset) { 11877 if (end < IP_REASS_END(mp1)) { 11878 mp->b_wptr -= end - offset; 11879 IP_REASS_SET_END(mp, offset); 11880 BUMP_MIB(ill->ill_ip_mib, 11881 ipIfStatsReasmPartDups); 11882 break; 11883 } 11884 /* Did we cover another hole? */ 11885 if ((mp1->b_cont && 11886 IP_REASS_END(mp1) != 11887 IP_REASS_START(mp1->b_cont) && 11888 end >= IP_REASS_START(mp1->b_cont)) || 11889 (!ipf->ipf_last_frag_seen && !more)) { 11890 ipf->ipf_hole_cnt--; 11891 } 11892 /* Clip out mp1. */ 11893 if ((mp->b_cont = mp1->b_cont) == NULL) { 11894 /* 11895 * After clipping out mp1, this guy 11896 * is now hanging off the end. 11897 */ 11898 ipf->ipf_tail_mp = mp; 11899 } 11900 IP_REASS_SET_START(mp1, 0); 11901 IP_REASS_SET_END(mp1, 0); 11902 /* Subtract byte count */ 11903 ipf->ipf_count -= mp1->b_datap->db_lim - 11904 mp1->b_datap->db_base; 11905 freeb(mp1); 11906 BUMP_MIB(ill->ill_ip_mib, 11907 ipIfStatsReasmPartDups); 11908 mp1 = mp->b_cont; 11909 if (!mp1) 11910 break; 11911 offset = IP_REASS_START(mp1); 11912 } 11913 ipf->ipf_mp->b_cont = mp; 11914 continue; 11915 } 11916 /* 11917 * The new piece starts somewhere between the start of the head 11918 * and before the end of the tail. 11919 */ 11920 for (; mp1; mp1 = mp1->b_cont) { 11921 offset = IP_REASS_END(mp1); 11922 if (start < offset) { 11923 if (end <= offset) { 11924 /* Nothing new. */ 11925 IP_REASS_SET_START(mp, 0); 11926 IP_REASS_SET_END(mp, 0); 11927 /* Subtract byte count */ 11928 ipf->ipf_count -= mp->b_datap->db_lim - 11929 mp->b_datap->db_base; 11930 if (incr_dups) { 11931 ipf->ipf_num_dups++; 11932 incr_dups = B_FALSE; 11933 } 11934 freeb(mp); 11935 BUMP_MIB(ill->ill_ip_mib, 11936 ipIfStatsReasmDuplicates); 11937 break; 11938 } 11939 /* 11940 * Trim redundant stuff off beginning of new 11941 * piece. 11942 */ 11943 IP_REASS_SET_START(mp, offset); 11944 mp->b_rptr += offset - start; 11945 BUMP_MIB(ill->ill_ip_mib, 11946 ipIfStatsReasmPartDups); 11947 start = offset; 11948 if (!mp1->b_cont) { 11949 /* 11950 * After trimming, this guy is now 11951 * hanging off the end. 11952 */ 11953 mp1->b_cont = mp; 11954 ipf->ipf_tail_mp = mp; 11955 if (!more) { 11956 ipf->ipf_hole_cnt--; 11957 } 11958 break; 11959 } 11960 } 11961 if (start >= IP_REASS_START(mp1->b_cont)) 11962 continue; 11963 /* Fill a hole */ 11964 if (start > offset) 11965 ipf->ipf_hole_cnt++; 11966 mp->b_cont = mp1->b_cont; 11967 mp1->b_cont = mp; 11968 mp1 = mp->b_cont; 11969 offset = IP_REASS_START(mp1); 11970 if (end >= offset) { 11971 ipf->ipf_hole_cnt--; 11972 /* Check for overlap. */ 11973 while (end > offset) { 11974 if (end < IP_REASS_END(mp1)) { 11975 mp->b_wptr -= end - offset; 11976 IP_REASS_SET_END(mp, offset); 11977 /* 11978 * TODO we might bump 11979 * this up twice if there is 11980 * overlap at both ends. 11981 */ 11982 BUMP_MIB(ill->ill_ip_mib, 11983 ipIfStatsReasmPartDups); 11984 break; 11985 } 11986 /* Did we cover another hole? */ 11987 if ((mp1->b_cont && 11988 IP_REASS_END(mp1) 11989 != IP_REASS_START(mp1->b_cont) && 11990 end >= 11991 IP_REASS_START(mp1->b_cont)) || 11992 (!ipf->ipf_last_frag_seen && 11993 !more)) { 11994 ipf->ipf_hole_cnt--; 11995 } 11996 /* Clip out mp1. */ 11997 if ((mp->b_cont = mp1->b_cont) == 11998 NULL) { 11999 /* 12000 * After clipping out mp1, 12001 * this guy is now hanging 12002 * off the end. 12003 */ 12004 ipf->ipf_tail_mp = mp; 12005 } 12006 IP_REASS_SET_START(mp1, 0); 12007 IP_REASS_SET_END(mp1, 0); 12008 /* Subtract byte count */ 12009 ipf->ipf_count -= 12010 mp1->b_datap->db_lim - 12011 mp1->b_datap->db_base; 12012 freeb(mp1); 12013 BUMP_MIB(ill->ill_ip_mib, 12014 ipIfStatsReasmPartDups); 12015 mp1 = mp->b_cont; 12016 if (!mp1) 12017 break; 12018 offset = IP_REASS_START(mp1); 12019 } 12020 } 12021 break; 12022 } 12023 } while (start = end, mp = next_mp); 12024 12025 /* Fragment just processed could be the last one. Remember this fact */ 12026 if (!more) 12027 ipf->ipf_last_frag_seen = B_TRUE; 12028 12029 /* Still got holes? */ 12030 if (ipf->ipf_hole_cnt) 12031 return (IP_REASS_PARTIAL); 12032 /* Clean up overloaded fields to avoid upstream disasters. */ 12033 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12034 IP_REASS_SET_START(mp1, 0); 12035 IP_REASS_SET_END(mp1, 0); 12036 } 12037 return (IP_REASS_COMPLETE); 12038 } 12039 12040 /* 12041 * ipsec processing for the fast path, used for input UDP Packets 12042 * Returns true if ready for passup to UDP. 12043 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12044 * was an ESP-in-UDP packet, etc.). 12045 */ 12046 static boolean_t 12047 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12048 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12049 { 12050 uint32_t ill_index; 12051 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12052 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12053 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12054 udp_t *udp = connp->conn_udp; 12055 12056 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12057 /* The ill_index of the incoming ILL */ 12058 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12059 12060 /* pass packet up to the transport */ 12061 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12062 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12063 NULL, mctl_present); 12064 if (*first_mpp == NULL) { 12065 return (B_FALSE); 12066 } 12067 } 12068 12069 /* Initiate IPPF processing for fastpath UDP */ 12070 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12071 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12072 if (*mpp == NULL) { 12073 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12074 "deferred/dropped during IPPF processing\n")); 12075 return (B_FALSE); 12076 } 12077 } 12078 /* 12079 * Remove 0-spi if it's 0, or move everything behind 12080 * the UDP header over it and forward to ESP via 12081 * ip_proto_input(). 12082 */ 12083 if (udp->udp_nat_t_endpoint) { 12084 if (mctl_present) { 12085 /* mctl_present *shouldn't* happen. */ 12086 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12087 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12088 &ipss->ipsec_dropper); 12089 *first_mpp = NULL; 12090 return (B_FALSE); 12091 } 12092 12093 /* "ill" is "recv_ill" in actuality. */ 12094 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12095 return (B_FALSE); 12096 12097 /* Else continue like a normal UDP packet. */ 12098 } 12099 12100 /* 12101 * We make the checks as below since we are in the fast path 12102 * and want to minimize the number of checks if the IP_RECVIF and/or 12103 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12104 */ 12105 if (connp->conn_recvif || connp->conn_recvslla || 12106 connp->conn_ip_recvpktinfo) { 12107 if (connp->conn_recvif) { 12108 in_flags = IPF_RECVIF; 12109 } 12110 /* 12111 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12112 * so the flag passed to ip_add_info is based on IP version 12113 * of connp. 12114 */ 12115 if (connp->conn_ip_recvpktinfo) { 12116 if (connp->conn_af_isv6) { 12117 /* 12118 * V6 only needs index 12119 */ 12120 in_flags |= IPF_RECVIF; 12121 } else { 12122 /* 12123 * V4 needs index + matching address. 12124 */ 12125 in_flags |= IPF_RECVADDR; 12126 } 12127 } 12128 if (connp->conn_recvslla) { 12129 in_flags |= IPF_RECVSLLA; 12130 } 12131 /* 12132 * since in_flags are being set ill will be 12133 * referenced in ip_add_info, so it better not 12134 * be NULL. 12135 */ 12136 /* 12137 * the actual data will be contained in b_cont 12138 * upon successful return of the following call. 12139 * If the call fails then the original mblk is 12140 * returned. 12141 */ 12142 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12143 ipst); 12144 } 12145 12146 return (B_TRUE); 12147 } 12148 12149 /* 12150 * Fragmentation reassembly. Each ILL has a hash table for 12151 * queuing packets undergoing reassembly for all IPIFs 12152 * associated with the ILL. The hash is based on the packet 12153 * IP ident field. The ILL frag hash table was allocated 12154 * as a timer block at the time the ILL was created. Whenever 12155 * there is anything on the reassembly queue, the timer will 12156 * be running. Returns B_TRUE if successful else B_FALSE; 12157 * frees mp on failure. 12158 */ 12159 static boolean_t 12160 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12161 uint32_t *cksum_val, uint16_t *cksum_flags) 12162 { 12163 uint32_t frag_offset_flags; 12164 mblk_t *mp = *mpp; 12165 mblk_t *t_mp; 12166 ipaddr_t dst; 12167 uint8_t proto = ipha->ipha_protocol; 12168 uint32_t sum_val; 12169 uint16_t sum_flags; 12170 ipf_t *ipf; 12171 ipf_t **ipfp; 12172 ipfb_t *ipfb; 12173 uint16_t ident; 12174 uint32_t offset; 12175 ipaddr_t src; 12176 uint_t hdr_length; 12177 uint32_t end; 12178 mblk_t *mp1; 12179 mblk_t *tail_mp; 12180 size_t count; 12181 size_t msg_len; 12182 uint8_t ecn_info = 0; 12183 uint32_t packet_size; 12184 boolean_t pruned = B_FALSE; 12185 ip_stack_t *ipst = ill->ill_ipst; 12186 12187 if (cksum_val != NULL) 12188 *cksum_val = 0; 12189 if (cksum_flags != NULL) 12190 *cksum_flags = 0; 12191 12192 /* 12193 * Drop the fragmented as early as possible, if 12194 * we don't have resource(s) to re-assemble. 12195 */ 12196 if (ipst->ips_ip_reass_queue_bytes == 0) { 12197 freemsg(mp); 12198 return (B_FALSE); 12199 } 12200 12201 /* Check for fragmentation offset; return if there's none */ 12202 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12203 (IPH_MF | IPH_OFFSET)) == 0) 12204 return (B_TRUE); 12205 12206 /* 12207 * We utilize hardware computed checksum info only for UDP since 12208 * IP fragmentation is a normal occurrence for the protocol. In 12209 * addition, checksum offload support for IP fragments carrying 12210 * UDP payload is commonly implemented across network adapters. 12211 */ 12212 ASSERT(recv_ill != NULL); 12213 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12214 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12215 mblk_t *mp1 = mp->b_cont; 12216 int32_t len; 12217 12218 /* Record checksum information from the packet */ 12219 sum_val = (uint32_t)DB_CKSUM16(mp); 12220 sum_flags = DB_CKSUMFLAGS(mp); 12221 12222 /* IP payload offset from beginning of mblk */ 12223 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12224 12225 if ((sum_flags & HCK_PARTIALCKSUM) && 12226 (mp1 == NULL || mp1->b_cont == NULL) && 12227 offset >= DB_CKSUMSTART(mp) && 12228 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12229 uint32_t adj; 12230 /* 12231 * Partial checksum has been calculated by hardware 12232 * and attached to the packet; in addition, any 12233 * prepended extraneous data is even byte aligned. 12234 * If any such data exists, we adjust the checksum; 12235 * this would also handle any postpended data. 12236 */ 12237 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12238 mp, mp1, len, adj); 12239 12240 /* One's complement subtract extraneous checksum */ 12241 if (adj >= sum_val) 12242 sum_val = ~(adj - sum_val) & 0xFFFF; 12243 else 12244 sum_val -= adj; 12245 } 12246 } else { 12247 sum_val = 0; 12248 sum_flags = 0; 12249 } 12250 12251 /* Clear hardware checksumming flag */ 12252 DB_CKSUMFLAGS(mp) = 0; 12253 12254 ident = ipha->ipha_ident; 12255 offset = (frag_offset_flags << 3) & 0xFFFF; 12256 src = ipha->ipha_src; 12257 dst = ipha->ipha_dst; 12258 hdr_length = IPH_HDR_LENGTH(ipha); 12259 end = ntohs(ipha->ipha_length) - hdr_length; 12260 12261 /* If end == 0 then we have a packet with no data, so just free it */ 12262 if (end == 0) { 12263 freemsg(mp); 12264 return (B_FALSE); 12265 } 12266 12267 /* Record the ECN field info. */ 12268 ecn_info = (ipha->ipha_type_of_service & 0x3); 12269 if (offset != 0) { 12270 /* 12271 * If this isn't the first piece, strip the header, and 12272 * add the offset to the end value. 12273 */ 12274 mp->b_rptr += hdr_length; 12275 end += offset; 12276 } 12277 12278 msg_len = MBLKSIZE(mp); 12279 tail_mp = mp; 12280 while (tail_mp->b_cont != NULL) { 12281 tail_mp = tail_mp->b_cont; 12282 msg_len += MBLKSIZE(tail_mp); 12283 } 12284 12285 /* If the reassembly list for this ILL will get too big, prune it */ 12286 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12287 ipst->ips_ip_reass_queue_bytes) { 12288 ill_frag_prune(ill, 12289 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12290 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12291 pruned = B_TRUE; 12292 } 12293 12294 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12295 mutex_enter(&ipfb->ipfb_lock); 12296 12297 ipfp = &ipfb->ipfb_ipf; 12298 /* Try to find an existing fragment queue for this packet. */ 12299 for (;;) { 12300 ipf = ipfp[0]; 12301 if (ipf != NULL) { 12302 /* 12303 * It has to match on ident and src/dst address. 12304 */ 12305 if (ipf->ipf_ident == ident && 12306 ipf->ipf_src == src && 12307 ipf->ipf_dst == dst && 12308 ipf->ipf_protocol == proto) { 12309 /* 12310 * If we have received too many 12311 * duplicate fragments for this packet 12312 * free it. 12313 */ 12314 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12315 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12316 freemsg(mp); 12317 mutex_exit(&ipfb->ipfb_lock); 12318 return (B_FALSE); 12319 } 12320 /* Found it. */ 12321 break; 12322 } 12323 ipfp = &ipf->ipf_hash_next; 12324 continue; 12325 } 12326 12327 /* 12328 * If we pruned the list, do we want to store this new 12329 * fragment?. We apply an optimization here based on the 12330 * fact that most fragments will be received in order. 12331 * So if the offset of this incoming fragment is zero, 12332 * it is the first fragment of a new packet. We will 12333 * keep it. Otherwise drop the fragment, as we have 12334 * probably pruned the packet already (since the 12335 * packet cannot be found). 12336 */ 12337 if (pruned && offset != 0) { 12338 mutex_exit(&ipfb->ipfb_lock); 12339 freemsg(mp); 12340 return (B_FALSE); 12341 } 12342 12343 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12344 /* 12345 * Too many fragmented packets in this hash 12346 * bucket. Free the oldest. 12347 */ 12348 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12349 } 12350 12351 /* New guy. Allocate a frag message. */ 12352 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12353 if (mp1 == NULL) { 12354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12355 freemsg(mp); 12356 reass_done: 12357 mutex_exit(&ipfb->ipfb_lock); 12358 return (B_FALSE); 12359 } 12360 12361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12362 mp1->b_cont = mp; 12363 12364 /* Initialize the fragment header. */ 12365 ipf = (ipf_t *)mp1->b_rptr; 12366 ipf->ipf_mp = mp1; 12367 ipf->ipf_ptphn = ipfp; 12368 ipfp[0] = ipf; 12369 ipf->ipf_hash_next = NULL; 12370 ipf->ipf_ident = ident; 12371 ipf->ipf_protocol = proto; 12372 ipf->ipf_src = src; 12373 ipf->ipf_dst = dst; 12374 ipf->ipf_nf_hdr_len = 0; 12375 /* Record reassembly start time. */ 12376 ipf->ipf_timestamp = gethrestime_sec(); 12377 /* Record ipf generation and account for frag header */ 12378 ipf->ipf_gen = ill->ill_ipf_gen++; 12379 ipf->ipf_count = MBLKSIZE(mp1); 12380 ipf->ipf_last_frag_seen = B_FALSE; 12381 ipf->ipf_ecn = ecn_info; 12382 ipf->ipf_num_dups = 0; 12383 ipfb->ipfb_frag_pkts++; 12384 ipf->ipf_checksum = 0; 12385 ipf->ipf_checksum_flags = 0; 12386 12387 /* Store checksum value in fragment header */ 12388 if (sum_flags != 0) { 12389 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12390 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12391 ipf->ipf_checksum = sum_val; 12392 ipf->ipf_checksum_flags = sum_flags; 12393 } 12394 12395 /* 12396 * We handle reassembly two ways. In the easy case, 12397 * where all the fragments show up in order, we do 12398 * minimal bookkeeping, and just clip new pieces on 12399 * the end. If we ever see a hole, then we go off 12400 * to ip_reassemble which has to mark the pieces and 12401 * keep track of the number of holes, etc. Obviously, 12402 * the point of having both mechanisms is so we can 12403 * handle the easy case as efficiently as possible. 12404 */ 12405 if (offset == 0) { 12406 /* Easy case, in-order reassembly so far. */ 12407 ipf->ipf_count += msg_len; 12408 ipf->ipf_tail_mp = tail_mp; 12409 /* 12410 * Keep track of next expected offset in 12411 * ipf_end. 12412 */ 12413 ipf->ipf_end = end; 12414 ipf->ipf_nf_hdr_len = hdr_length; 12415 } else { 12416 /* Hard case, hole at the beginning. */ 12417 ipf->ipf_tail_mp = NULL; 12418 /* 12419 * ipf_end == 0 means that we have given up 12420 * on easy reassembly. 12421 */ 12422 ipf->ipf_end = 0; 12423 12424 /* Forget checksum offload from now on */ 12425 ipf->ipf_checksum_flags = 0; 12426 12427 /* 12428 * ipf_hole_cnt is set by ip_reassemble. 12429 * ipf_count is updated by ip_reassemble. 12430 * No need to check for return value here 12431 * as we don't expect reassembly to complete 12432 * or fail for the first fragment itself. 12433 */ 12434 (void) ip_reassemble(mp, ipf, 12435 (frag_offset_flags & IPH_OFFSET) << 3, 12436 (frag_offset_flags & IPH_MF), ill, msg_len); 12437 } 12438 /* Update per ipfb and ill byte counts */ 12439 ipfb->ipfb_count += ipf->ipf_count; 12440 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12441 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12442 /* If the frag timer wasn't already going, start it. */ 12443 mutex_enter(&ill->ill_lock); 12444 ill_frag_timer_start(ill); 12445 mutex_exit(&ill->ill_lock); 12446 goto reass_done; 12447 } 12448 12449 /* 12450 * If the packet's flag has changed (it could be coming up 12451 * from an interface different than the previous, therefore 12452 * possibly different checksum capability), then forget about 12453 * any stored checksum states. Otherwise add the value to 12454 * the existing one stored in the fragment header. 12455 */ 12456 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12457 sum_val += ipf->ipf_checksum; 12458 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12459 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12460 ipf->ipf_checksum = sum_val; 12461 } else if (ipf->ipf_checksum_flags != 0) { 12462 /* Forget checksum offload from now on */ 12463 ipf->ipf_checksum_flags = 0; 12464 } 12465 12466 /* 12467 * We have a new piece of a datagram which is already being 12468 * reassembled. Update the ECN info if all IP fragments 12469 * are ECN capable. If there is one which is not, clear 12470 * all the info. If there is at least one which has CE 12471 * code point, IP needs to report that up to transport. 12472 */ 12473 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12474 if (ecn_info == IPH_ECN_CE) 12475 ipf->ipf_ecn = IPH_ECN_CE; 12476 } else { 12477 ipf->ipf_ecn = IPH_ECN_NECT; 12478 } 12479 if (offset && ipf->ipf_end == offset) { 12480 /* The new fragment fits at the end */ 12481 ipf->ipf_tail_mp->b_cont = mp; 12482 /* Update the byte count */ 12483 ipf->ipf_count += msg_len; 12484 /* Update per ipfb and ill byte counts */ 12485 ipfb->ipfb_count += msg_len; 12486 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12487 atomic_add_32(&ill->ill_frag_count, msg_len); 12488 if (frag_offset_flags & IPH_MF) { 12489 /* More to come. */ 12490 ipf->ipf_end = end; 12491 ipf->ipf_tail_mp = tail_mp; 12492 goto reass_done; 12493 } 12494 } else { 12495 /* Go do the hard cases. */ 12496 int ret; 12497 12498 if (offset == 0) 12499 ipf->ipf_nf_hdr_len = hdr_length; 12500 12501 /* Save current byte count */ 12502 count = ipf->ipf_count; 12503 ret = ip_reassemble(mp, ipf, 12504 (frag_offset_flags & IPH_OFFSET) << 3, 12505 (frag_offset_flags & IPH_MF), ill, msg_len); 12506 /* Count of bytes added and subtracted (freeb()ed) */ 12507 count = ipf->ipf_count - count; 12508 if (count) { 12509 /* Update per ipfb and ill byte counts */ 12510 ipfb->ipfb_count += count; 12511 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12512 atomic_add_32(&ill->ill_frag_count, count); 12513 } 12514 if (ret == IP_REASS_PARTIAL) { 12515 goto reass_done; 12516 } else if (ret == IP_REASS_FAILED) { 12517 /* Reassembly failed. Free up all resources */ 12518 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12519 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12520 IP_REASS_SET_START(t_mp, 0); 12521 IP_REASS_SET_END(t_mp, 0); 12522 } 12523 freemsg(mp); 12524 goto reass_done; 12525 } 12526 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12527 } 12528 /* 12529 * We have completed reassembly. Unhook the frag header from 12530 * the reassembly list. 12531 * 12532 * Before we free the frag header, record the ECN info 12533 * to report back to the transport. 12534 */ 12535 ecn_info = ipf->ipf_ecn; 12536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12537 ipfp = ipf->ipf_ptphn; 12538 12539 /* We need to supply these to caller */ 12540 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12541 sum_val = ipf->ipf_checksum; 12542 else 12543 sum_val = 0; 12544 12545 mp1 = ipf->ipf_mp; 12546 count = ipf->ipf_count; 12547 ipf = ipf->ipf_hash_next; 12548 if (ipf != NULL) 12549 ipf->ipf_ptphn = ipfp; 12550 ipfp[0] = ipf; 12551 atomic_add_32(&ill->ill_frag_count, -count); 12552 ASSERT(ipfb->ipfb_count >= count); 12553 ipfb->ipfb_count -= count; 12554 ipfb->ipfb_frag_pkts--; 12555 mutex_exit(&ipfb->ipfb_lock); 12556 /* Ditch the frag header. */ 12557 mp = mp1->b_cont; 12558 12559 freeb(mp1); 12560 12561 /* Restore original IP length in header. */ 12562 packet_size = (uint32_t)msgdsize(mp); 12563 if (packet_size > IP_MAXPACKET) { 12564 freemsg(mp); 12565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12566 return (B_FALSE); 12567 } 12568 12569 if (DB_REF(mp) > 1) { 12570 mblk_t *mp2 = copymsg(mp); 12571 12572 freemsg(mp); 12573 if (mp2 == NULL) { 12574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12575 return (B_FALSE); 12576 } 12577 mp = mp2; 12578 } 12579 ipha = (ipha_t *)mp->b_rptr; 12580 12581 ipha->ipha_length = htons((uint16_t)packet_size); 12582 /* We're now complete, zip the frag state */ 12583 ipha->ipha_fragment_offset_and_flags = 0; 12584 /* Record the ECN info. */ 12585 ipha->ipha_type_of_service &= 0xFC; 12586 ipha->ipha_type_of_service |= ecn_info; 12587 *mpp = mp; 12588 12589 /* Reassembly is successful; return checksum information if needed */ 12590 if (cksum_val != NULL) 12591 *cksum_val = sum_val; 12592 if (cksum_flags != NULL) 12593 *cksum_flags = sum_flags; 12594 12595 return (B_TRUE); 12596 } 12597 12598 /* 12599 * Perform ip header check sum update local options. 12600 * return B_TRUE if all is well, else return B_FALSE and release 12601 * the mp. caller is responsible for decrementing ire ref cnt. 12602 */ 12603 static boolean_t 12604 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12605 ip_stack_t *ipst) 12606 { 12607 mblk_t *first_mp; 12608 boolean_t mctl_present; 12609 uint16_t sum; 12610 12611 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12612 /* 12613 * Don't do the checksum if it has gone through AH/ESP 12614 * processing. 12615 */ 12616 if (!mctl_present) { 12617 sum = ip_csum_hdr(ipha); 12618 if (sum != 0) { 12619 if (ill != NULL) { 12620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12621 } else { 12622 BUMP_MIB(&ipst->ips_ip_mib, 12623 ipIfStatsInCksumErrs); 12624 } 12625 freemsg(first_mp); 12626 return (B_FALSE); 12627 } 12628 } 12629 12630 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12631 if (mctl_present) 12632 freeb(first_mp); 12633 return (B_FALSE); 12634 } 12635 12636 return (B_TRUE); 12637 } 12638 12639 /* 12640 * All udp packet are delivered to the local host via this routine. 12641 */ 12642 void 12643 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12644 ill_t *recv_ill) 12645 { 12646 uint32_t sum; 12647 uint32_t u1; 12648 boolean_t mctl_present; 12649 conn_t *connp; 12650 mblk_t *first_mp; 12651 uint16_t *up; 12652 ill_t *ill = (ill_t *)q->q_ptr; 12653 uint16_t reass_hck_flags = 0; 12654 ip_stack_t *ipst; 12655 12656 ASSERT(recv_ill != NULL); 12657 ipst = recv_ill->ill_ipst; 12658 12659 #define rptr ((uchar_t *)ipha) 12660 12661 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12662 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12663 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12664 ASSERT(ill != NULL); 12665 12666 /* 12667 * FAST PATH for udp packets 12668 */ 12669 12670 /* u1 is # words of IP options */ 12671 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12672 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12673 12674 /* IP options present */ 12675 if (u1 != 0) 12676 goto ipoptions; 12677 12678 /* Check the IP header checksum. */ 12679 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12680 /* Clear the IP header h/w cksum flag */ 12681 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12682 } else if (!mctl_present) { 12683 /* 12684 * Don't verify header checksum if this packet is coming 12685 * back from AH/ESP as we already did it. 12686 */ 12687 #define uph ((uint16_t *)ipha) 12688 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12689 uph[6] + uph[7] + uph[8] + uph[9]; 12690 #undef uph 12691 /* finish doing IP checksum */ 12692 sum = (sum & 0xFFFF) + (sum >> 16); 12693 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12694 if (sum != 0 && sum != 0xFFFF) { 12695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12696 freemsg(first_mp); 12697 return; 12698 } 12699 } 12700 12701 /* 12702 * Count for SNMP of inbound packets for ire. 12703 * if mctl is present this might be a secure packet and 12704 * has already been counted for in ip_proto_input(). 12705 */ 12706 if (!mctl_present) { 12707 UPDATE_IB_PKT_COUNT(ire); 12708 ire->ire_last_used_time = lbolt; 12709 } 12710 12711 /* packet part of fragmented IP packet? */ 12712 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12713 if (u1 & (IPH_MF | IPH_OFFSET)) { 12714 goto fragmented; 12715 } 12716 12717 /* u1 = IP header length (20 bytes) */ 12718 u1 = IP_SIMPLE_HDR_LENGTH; 12719 12720 /* packet does not contain complete IP & UDP headers */ 12721 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12722 goto udppullup; 12723 12724 /* up points to UDP header */ 12725 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12726 #define iphs ((uint16_t *)ipha) 12727 12728 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12729 if (up[3] != 0) { 12730 mblk_t *mp1 = mp->b_cont; 12731 boolean_t cksum_err; 12732 uint16_t hck_flags = 0; 12733 12734 /* Pseudo-header checksum */ 12735 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12736 iphs[9] + up[2]; 12737 12738 /* 12739 * Revert to software checksum calculation if the interface 12740 * isn't capable of checksum offload or if IPsec is present. 12741 */ 12742 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12743 hck_flags = DB_CKSUMFLAGS(mp); 12744 12745 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12746 IP_STAT(ipst, ip_in_sw_cksum); 12747 12748 IP_CKSUM_RECV(hck_flags, u1, 12749 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12750 (int32_t)((uchar_t *)up - rptr), 12751 mp, mp1, cksum_err); 12752 12753 if (cksum_err) { 12754 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12755 if (hck_flags & HCK_FULLCKSUM) 12756 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12757 else if (hck_flags & HCK_PARTIALCKSUM) 12758 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12759 else 12760 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12761 12762 freemsg(first_mp); 12763 return; 12764 } 12765 } 12766 12767 /* Non-fragmented broadcast or multicast packet? */ 12768 if (ire->ire_type == IRE_BROADCAST) 12769 goto udpslowpath; 12770 12771 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12772 ire->ire_zoneid, ipst)) != NULL) { 12773 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12774 IP_STAT(ipst, ip_udp_fast_path); 12775 12776 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12777 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12778 freemsg(mp); 12779 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12780 } else { 12781 if (!mctl_present) { 12782 BUMP_MIB(ill->ill_ip_mib, 12783 ipIfStatsHCInDelivers); 12784 } 12785 /* 12786 * mp and first_mp can change. 12787 */ 12788 if (ip_udp_check(q, connp, recv_ill, 12789 ipha, &mp, &first_mp, mctl_present, ire)) { 12790 /* Send it upstream */ 12791 (connp->conn_recv)(connp, mp, NULL); 12792 } 12793 } 12794 /* 12795 * freeb() cannot deal with null mblk being passed 12796 * in and first_mp can be set to null in the call 12797 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12798 */ 12799 if (mctl_present && first_mp != NULL) { 12800 freeb(first_mp); 12801 } 12802 CONN_DEC_REF(connp); 12803 return; 12804 } 12805 12806 /* 12807 * if we got here we know the packet is not fragmented and 12808 * has no options. The classifier could not find a conn_t and 12809 * most likely its an icmp packet so send it through slow path. 12810 */ 12811 12812 goto udpslowpath; 12813 12814 ipoptions: 12815 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12816 goto slow_done; 12817 } 12818 12819 UPDATE_IB_PKT_COUNT(ire); 12820 ire->ire_last_used_time = lbolt; 12821 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12822 if (u1 & (IPH_MF | IPH_OFFSET)) { 12823 fragmented: 12824 /* 12825 * "sum" and "reass_hck_flags" are non-zero if the 12826 * reassembled packet has a valid hardware computed 12827 * checksum information associated with it. 12828 */ 12829 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12830 &reass_hck_flags)) { 12831 goto slow_done; 12832 } 12833 12834 /* 12835 * Make sure that first_mp points back to mp as 12836 * the mp we came in with could have changed in 12837 * ip_rput_fragment(). 12838 */ 12839 ASSERT(!mctl_present); 12840 ipha = (ipha_t *)mp->b_rptr; 12841 first_mp = mp; 12842 } 12843 12844 /* Now we have a complete datagram, destined for this machine. */ 12845 u1 = IPH_HDR_LENGTH(ipha); 12846 /* Pull up the UDP header, if necessary. */ 12847 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12848 udppullup: 12849 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12851 freemsg(first_mp); 12852 goto slow_done; 12853 } 12854 ipha = (ipha_t *)mp->b_rptr; 12855 } 12856 12857 /* 12858 * Validate the checksum for the reassembled packet; for the 12859 * pullup case we calculate the payload checksum in software. 12860 */ 12861 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12862 if (up[3] != 0) { 12863 boolean_t cksum_err; 12864 12865 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12866 IP_STAT(ipst, ip_in_sw_cksum); 12867 12868 IP_CKSUM_RECV_REASS(reass_hck_flags, 12869 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12870 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12871 iphs[9] + up[2], sum, cksum_err); 12872 12873 if (cksum_err) { 12874 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12875 12876 if (reass_hck_flags & HCK_FULLCKSUM) 12877 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12878 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12879 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12880 else 12881 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12882 12883 freemsg(first_mp); 12884 goto slow_done; 12885 } 12886 } 12887 udpslowpath: 12888 12889 /* Clear hardware checksum flag to be safe */ 12890 DB_CKSUMFLAGS(mp) = 0; 12891 12892 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12893 (ire->ire_type == IRE_BROADCAST), 12894 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12895 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12896 12897 slow_done: 12898 IP_STAT(ipst, ip_udp_slow_path); 12899 return; 12900 12901 #undef iphs 12902 #undef rptr 12903 } 12904 12905 /* ARGSUSED */ 12906 static mblk_t * 12907 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12908 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12909 ill_rx_ring_t *ill_ring) 12910 { 12911 conn_t *connp; 12912 uint32_t sum; 12913 uint32_t u1; 12914 uint16_t *up; 12915 int offset; 12916 ssize_t len; 12917 mblk_t *mp1; 12918 boolean_t syn_present = B_FALSE; 12919 tcph_t *tcph; 12920 uint_t tcph_flags; 12921 uint_t ip_hdr_len; 12922 ill_t *ill = (ill_t *)q->q_ptr; 12923 zoneid_t zoneid = ire->ire_zoneid; 12924 boolean_t cksum_err; 12925 uint16_t hck_flags = 0; 12926 ip_stack_t *ipst = recv_ill->ill_ipst; 12927 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12928 12929 #define rptr ((uchar_t *)ipha) 12930 12931 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12932 ASSERT(ill != NULL); 12933 12934 /* 12935 * FAST PATH for tcp packets 12936 */ 12937 12938 /* u1 is # words of IP options */ 12939 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12940 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12941 12942 /* IP options present */ 12943 if (u1) { 12944 goto ipoptions; 12945 } else if (!mctl_present) { 12946 /* Check the IP header checksum. */ 12947 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12948 /* Clear the IP header h/w cksum flag */ 12949 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12950 } else if (!mctl_present) { 12951 /* 12952 * Don't verify header checksum if this packet 12953 * is coming back from AH/ESP as we already did it. 12954 */ 12955 #define uph ((uint16_t *)ipha) 12956 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12957 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12958 #undef uph 12959 /* finish doing IP checksum */ 12960 sum = (sum & 0xFFFF) + (sum >> 16); 12961 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12962 if (sum != 0 && sum != 0xFFFF) { 12963 BUMP_MIB(ill->ill_ip_mib, 12964 ipIfStatsInCksumErrs); 12965 goto error; 12966 } 12967 } 12968 } 12969 12970 if (!mctl_present) { 12971 UPDATE_IB_PKT_COUNT(ire); 12972 ire->ire_last_used_time = lbolt; 12973 } 12974 12975 /* packet part of fragmented IP packet? */ 12976 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12977 if (u1 & (IPH_MF | IPH_OFFSET)) { 12978 goto fragmented; 12979 } 12980 12981 /* u1 = IP header length (20 bytes) */ 12982 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12983 12984 /* does packet contain IP+TCP headers? */ 12985 len = mp->b_wptr - rptr; 12986 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12987 IP_STAT(ipst, ip_tcppullup); 12988 goto tcppullup; 12989 } 12990 12991 /* TCP options present? */ 12992 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12993 12994 /* 12995 * If options need to be pulled up, then goto tcpoptions. 12996 * otherwise we are still in the fast path 12997 */ 12998 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12999 IP_STAT(ipst, ip_tcpoptions); 13000 goto tcpoptions; 13001 } 13002 13003 /* multiple mblks of tcp data? */ 13004 if ((mp1 = mp->b_cont) != NULL) { 13005 /* more then two? */ 13006 if (mp1->b_cont != NULL) { 13007 IP_STAT(ipst, ip_multipkttcp); 13008 goto multipkttcp; 13009 } 13010 len += mp1->b_wptr - mp1->b_rptr; 13011 } 13012 13013 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13014 13015 /* part of pseudo checksum */ 13016 13017 /* TCP datagram length */ 13018 u1 = len - IP_SIMPLE_HDR_LENGTH; 13019 13020 #define iphs ((uint16_t *)ipha) 13021 13022 #ifdef _BIG_ENDIAN 13023 u1 += IPPROTO_TCP; 13024 #else 13025 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13026 #endif 13027 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13028 13029 /* 13030 * Revert to software checksum calculation if the interface 13031 * isn't capable of checksum offload or if IPsec is present. 13032 */ 13033 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13034 hck_flags = DB_CKSUMFLAGS(mp); 13035 13036 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13037 IP_STAT(ipst, ip_in_sw_cksum); 13038 13039 IP_CKSUM_RECV(hck_flags, u1, 13040 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13041 (int32_t)((uchar_t *)up - rptr), 13042 mp, mp1, cksum_err); 13043 13044 if (cksum_err) { 13045 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13046 13047 if (hck_flags & HCK_FULLCKSUM) 13048 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13049 else if (hck_flags & HCK_PARTIALCKSUM) 13050 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13051 else 13052 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13053 13054 goto error; 13055 } 13056 13057 try_again: 13058 13059 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13060 zoneid, ipst)) == NULL) { 13061 /* Send the TH_RST */ 13062 goto no_conn; 13063 } 13064 13065 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13066 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13067 13068 /* 13069 * TCP FAST PATH for AF_INET socket. 13070 * 13071 * TCP fast path to avoid extra work. An AF_INET socket type 13072 * does not have facility to receive extra information via 13073 * ip_process or ip_add_info. Also, when the connection was 13074 * established, we made a check if this connection is impacted 13075 * by any global IPsec policy or per connection policy (a 13076 * policy that comes in effect later will not apply to this 13077 * connection). Since all this can be determined at the 13078 * connection establishment time, a quick check of flags 13079 * can avoid extra work. 13080 */ 13081 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13082 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13083 ASSERT(first_mp == mp); 13084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13085 if (tcph_flags != (TH_SYN | TH_ACK)) { 13086 SET_SQUEUE(mp, tcp_rput_data, connp); 13087 return (mp); 13088 } 13089 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13090 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13091 SET_SQUEUE(mp, tcp_input, connp); 13092 return (mp); 13093 } 13094 13095 if (tcph_flags == TH_SYN) { 13096 if (IPCL_IS_TCP(connp)) { 13097 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13098 DB_CKSUMSTART(mp) = 13099 (intptr_t)ip_squeue_get(ill_ring); 13100 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13101 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13102 BUMP_MIB(ill->ill_ip_mib, 13103 ipIfStatsHCInDelivers); 13104 SET_SQUEUE(mp, connp->conn_recv, connp); 13105 return (mp); 13106 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13107 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13108 BUMP_MIB(ill->ill_ip_mib, 13109 ipIfStatsHCInDelivers); 13110 ip_squeue_enter_unbound++; 13111 SET_SQUEUE(mp, tcp_conn_request_unbound, 13112 connp); 13113 return (mp); 13114 } 13115 syn_present = B_TRUE; 13116 } 13117 } 13118 13119 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13120 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13121 13122 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13123 /* No need to send this packet to TCP */ 13124 if ((flags & TH_RST) || (flags & TH_URG)) { 13125 CONN_DEC_REF(connp); 13126 freemsg(first_mp); 13127 return (NULL); 13128 } 13129 if (flags & TH_ACK) { 13130 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13131 ipst->ips_netstack->netstack_tcp, connp); 13132 CONN_DEC_REF(connp); 13133 return (NULL); 13134 } 13135 13136 CONN_DEC_REF(connp); 13137 freemsg(first_mp); 13138 return (NULL); 13139 } 13140 13141 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13142 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13143 ipha, NULL, mctl_present); 13144 if (first_mp == NULL) { 13145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13146 CONN_DEC_REF(connp); 13147 return (NULL); 13148 } 13149 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13150 ASSERT(syn_present); 13151 if (mctl_present) { 13152 ASSERT(first_mp != mp); 13153 first_mp->b_datap->db_struioflag |= 13154 STRUIO_POLICY; 13155 } else { 13156 ASSERT(first_mp == mp); 13157 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13158 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13159 } 13160 } else { 13161 /* 13162 * Discard first_mp early since we're dealing with a 13163 * fully-connected conn_t and tcp doesn't do policy in 13164 * this case. 13165 */ 13166 if (mctl_present) { 13167 freeb(first_mp); 13168 mctl_present = B_FALSE; 13169 } 13170 first_mp = mp; 13171 } 13172 } 13173 13174 /* Initiate IPPF processing for fastpath */ 13175 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13176 uint32_t ill_index; 13177 13178 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13179 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13180 if (mp == NULL) { 13181 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13182 "deferred/dropped during IPPF processing\n")); 13183 CONN_DEC_REF(connp); 13184 if (mctl_present) 13185 freeb(first_mp); 13186 return (NULL); 13187 } else if (mctl_present) { 13188 /* 13189 * ip_process might return a new mp. 13190 */ 13191 ASSERT(first_mp != mp); 13192 first_mp->b_cont = mp; 13193 } else { 13194 first_mp = mp; 13195 } 13196 13197 } 13198 13199 if (!syn_present && connp->conn_ip_recvpktinfo) { 13200 /* 13201 * TCP does not support IP_RECVPKTINFO for v4 so lets 13202 * make sure IPF_RECVIF is passed to ip_add_info. 13203 */ 13204 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13205 IPCL_ZONEID(connp), ipst); 13206 if (mp == NULL) { 13207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13208 CONN_DEC_REF(connp); 13209 if (mctl_present) 13210 freeb(first_mp); 13211 return (NULL); 13212 } else if (mctl_present) { 13213 /* 13214 * ip_add_info might return a new mp. 13215 */ 13216 ASSERT(first_mp != mp); 13217 first_mp->b_cont = mp; 13218 } else { 13219 first_mp = mp; 13220 } 13221 } 13222 13223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13224 if (IPCL_IS_TCP(connp)) { 13225 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13226 return (first_mp); 13227 } else { 13228 /* SOCK_RAW, IPPROTO_TCP case */ 13229 (connp->conn_recv)(connp, first_mp, NULL); 13230 CONN_DEC_REF(connp); 13231 return (NULL); 13232 } 13233 13234 no_conn: 13235 /* Initiate IPPf processing, if needed. */ 13236 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13237 uint32_t ill_index; 13238 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13239 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13240 if (first_mp == NULL) { 13241 return (NULL); 13242 } 13243 } 13244 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13245 13246 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13247 ipst->ips_netstack->netstack_tcp, NULL); 13248 return (NULL); 13249 ipoptions: 13250 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13251 goto slow_done; 13252 } 13253 13254 UPDATE_IB_PKT_COUNT(ire); 13255 ire->ire_last_used_time = lbolt; 13256 13257 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13258 if (u1 & (IPH_MF | IPH_OFFSET)) { 13259 fragmented: 13260 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13261 if (mctl_present) 13262 freeb(first_mp); 13263 goto slow_done; 13264 } 13265 /* 13266 * Make sure that first_mp points back to mp as 13267 * the mp we came in with could have changed in 13268 * ip_rput_fragment(). 13269 */ 13270 ASSERT(!mctl_present); 13271 ipha = (ipha_t *)mp->b_rptr; 13272 first_mp = mp; 13273 } 13274 13275 /* Now we have a complete datagram, destined for this machine. */ 13276 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13277 13278 len = mp->b_wptr - mp->b_rptr; 13279 /* Pull up a minimal TCP header, if necessary. */ 13280 if (len < (u1 + 20)) { 13281 tcppullup: 13282 if (!pullupmsg(mp, u1 + 20)) { 13283 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13284 goto error; 13285 } 13286 ipha = (ipha_t *)mp->b_rptr; 13287 len = mp->b_wptr - mp->b_rptr; 13288 } 13289 13290 /* 13291 * Extract the offset field from the TCP header. As usual, we 13292 * try to help the compiler more than the reader. 13293 */ 13294 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13295 if (offset != 5) { 13296 tcpoptions: 13297 if (offset < 5) { 13298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13299 goto error; 13300 } 13301 /* 13302 * There must be TCP options. 13303 * Make sure we can grab them. 13304 */ 13305 offset <<= 2; 13306 offset += u1; 13307 if (len < offset) { 13308 if (!pullupmsg(mp, offset)) { 13309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13310 goto error; 13311 } 13312 ipha = (ipha_t *)mp->b_rptr; 13313 len = mp->b_wptr - rptr; 13314 } 13315 } 13316 13317 /* Get the total packet length in len, including headers. */ 13318 if (mp->b_cont) { 13319 multipkttcp: 13320 len = msgdsize(mp); 13321 } 13322 13323 /* 13324 * Check the TCP checksum by pulling together the pseudo- 13325 * header checksum, and passing it to ip_csum to be added in 13326 * with the TCP datagram. 13327 * 13328 * Since we are not using the hwcksum if available we must 13329 * clear the flag. We may come here via tcppullup or tcpoptions. 13330 * If either of these fails along the way the mblk is freed. 13331 * If this logic ever changes and mblk is reused to say send 13332 * ICMP's back, then this flag may need to be cleared in 13333 * other places as well. 13334 */ 13335 DB_CKSUMFLAGS(mp) = 0; 13336 13337 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13338 13339 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13340 #ifdef _BIG_ENDIAN 13341 u1 += IPPROTO_TCP; 13342 #else 13343 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13344 #endif 13345 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13346 /* 13347 * Not M_DATA mblk or its a dup, so do the checksum now. 13348 */ 13349 IP_STAT(ipst, ip_in_sw_cksum); 13350 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13351 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13352 goto error; 13353 } 13354 13355 IP_STAT(ipst, ip_tcp_slow_path); 13356 goto try_again; 13357 #undef iphs 13358 #undef rptr 13359 13360 error: 13361 freemsg(first_mp); 13362 slow_done: 13363 return (NULL); 13364 } 13365 13366 /* ARGSUSED */ 13367 static void 13368 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13369 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13370 { 13371 conn_t *connp; 13372 uint32_t sum; 13373 uint32_t u1; 13374 ssize_t len; 13375 sctp_hdr_t *sctph; 13376 zoneid_t zoneid = ire->ire_zoneid; 13377 uint32_t pktsum; 13378 uint32_t calcsum; 13379 uint32_t ports; 13380 in6_addr_t map_src, map_dst; 13381 ill_t *ill = (ill_t *)q->q_ptr; 13382 ip_stack_t *ipst; 13383 sctp_stack_t *sctps; 13384 boolean_t sctp_csum_err = B_FALSE; 13385 13386 ASSERT(recv_ill != NULL); 13387 ipst = recv_ill->ill_ipst; 13388 sctps = ipst->ips_netstack->netstack_sctp; 13389 13390 #define rptr ((uchar_t *)ipha) 13391 13392 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13393 ASSERT(ill != NULL); 13394 13395 /* u1 is # words of IP options */ 13396 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13397 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13398 13399 /* IP options present */ 13400 if (u1 > 0) { 13401 goto ipoptions; 13402 } else { 13403 /* Check the IP header checksum. */ 13404 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13405 !mctl_present) { 13406 #define uph ((uint16_t *)ipha) 13407 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13408 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13409 #undef uph 13410 /* finish doing IP checksum */ 13411 sum = (sum & 0xFFFF) + (sum >> 16); 13412 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13413 /* 13414 * Don't verify header checksum if this packet 13415 * is coming back from AH/ESP as we already did it. 13416 */ 13417 if (sum != 0 && sum != 0xFFFF) { 13418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13419 goto error; 13420 } 13421 } 13422 /* 13423 * Since there is no SCTP h/w cksum support yet, just 13424 * clear the flag. 13425 */ 13426 DB_CKSUMFLAGS(mp) = 0; 13427 } 13428 13429 /* 13430 * Don't verify header checksum if this packet is coming 13431 * back from AH/ESP as we already did it. 13432 */ 13433 if (!mctl_present) { 13434 UPDATE_IB_PKT_COUNT(ire); 13435 ire->ire_last_used_time = lbolt; 13436 } 13437 13438 /* packet part of fragmented IP packet? */ 13439 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13440 if (u1 & (IPH_MF | IPH_OFFSET)) 13441 goto fragmented; 13442 13443 /* u1 = IP header length (20 bytes) */ 13444 u1 = IP_SIMPLE_HDR_LENGTH; 13445 13446 find_sctp_client: 13447 /* Pullup if we don't have the sctp common header. */ 13448 len = MBLKL(mp); 13449 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13450 if (mp->b_cont == NULL || 13451 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13453 goto error; 13454 } 13455 ipha = (ipha_t *)mp->b_rptr; 13456 len = MBLKL(mp); 13457 } 13458 13459 sctph = (sctp_hdr_t *)(rptr + u1); 13460 #ifdef DEBUG 13461 if (!skip_sctp_cksum) { 13462 #endif 13463 pktsum = sctph->sh_chksum; 13464 sctph->sh_chksum = 0; 13465 calcsum = sctp_cksum(mp, u1); 13466 sctph->sh_chksum = pktsum; 13467 if (calcsum != pktsum) 13468 sctp_csum_err = B_TRUE; 13469 #ifdef DEBUG /* skip_sctp_cksum */ 13470 } 13471 #endif 13472 /* get the ports */ 13473 ports = *(uint32_t *)&sctph->sh_sport; 13474 13475 IRE_REFRELE(ire); 13476 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13477 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13478 if (sctp_csum_err) { 13479 /* 13480 * No potential sctp checksum errors go to the Sun 13481 * sctp stack however they might be Adler-32 summed 13482 * packets a userland stack bound to a raw IP socket 13483 * could reasonably use. Note though that Adler-32 is 13484 * a long deprecated algorithm and customer sctp 13485 * networks should eventually migrate to CRC-32 at 13486 * which time this facility should be removed. 13487 */ 13488 flags |= IP_FF_SCTP_CSUM_ERR; 13489 goto no_conn; 13490 } 13491 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13492 sctps)) == NULL) { 13493 /* Check for raw socket or OOTB handling */ 13494 goto no_conn; 13495 } 13496 13497 /* Found a client; up it goes */ 13498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13499 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13500 return; 13501 13502 no_conn: 13503 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13504 ports, mctl_present, flags, B_TRUE, zoneid); 13505 return; 13506 13507 ipoptions: 13508 DB_CKSUMFLAGS(mp) = 0; 13509 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13510 goto slow_done; 13511 13512 UPDATE_IB_PKT_COUNT(ire); 13513 ire->ire_last_used_time = lbolt; 13514 13515 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13516 if (u1 & (IPH_MF | IPH_OFFSET)) { 13517 fragmented: 13518 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13519 goto slow_done; 13520 /* 13521 * Make sure that first_mp points back to mp as 13522 * the mp we came in with could have changed in 13523 * ip_rput_fragment(). 13524 */ 13525 ASSERT(!mctl_present); 13526 ipha = (ipha_t *)mp->b_rptr; 13527 first_mp = mp; 13528 } 13529 13530 /* Now we have a complete datagram, destined for this machine. */ 13531 u1 = IPH_HDR_LENGTH(ipha); 13532 goto find_sctp_client; 13533 #undef iphs 13534 #undef rptr 13535 13536 error: 13537 freemsg(first_mp); 13538 slow_done: 13539 IRE_REFRELE(ire); 13540 } 13541 13542 #define VER_BITS 0xF0 13543 #define VERSION_6 0x60 13544 13545 static boolean_t 13546 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13547 ipaddr_t *dstp, ip_stack_t *ipst) 13548 { 13549 uint_t opt_len; 13550 ipha_t *ipha; 13551 ssize_t len; 13552 uint_t pkt_len; 13553 13554 ASSERT(ill != NULL); 13555 IP_STAT(ipst, ip_ipoptions); 13556 ipha = *iphapp; 13557 13558 #define rptr ((uchar_t *)ipha) 13559 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13560 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13562 freemsg(mp); 13563 return (B_FALSE); 13564 } 13565 13566 /* multiple mblk or too short */ 13567 pkt_len = ntohs(ipha->ipha_length); 13568 13569 /* Get the number of words of IP options in the IP header. */ 13570 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13571 if (opt_len) { 13572 /* IP Options present! Validate and process. */ 13573 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13575 goto done; 13576 } 13577 /* 13578 * Recompute complete header length and make sure we 13579 * have access to all of it. 13580 */ 13581 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13582 if (len > (mp->b_wptr - rptr)) { 13583 if (len > pkt_len) { 13584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13585 goto done; 13586 } 13587 if (!pullupmsg(mp, len)) { 13588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13589 goto done; 13590 } 13591 ipha = (ipha_t *)mp->b_rptr; 13592 } 13593 /* 13594 * Go off to ip_rput_options which returns the next hop 13595 * destination address, which may have been affected 13596 * by source routing. 13597 */ 13598 IP_STAT(ipst, ip_opt); 13599 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13601 return (B_FALSE); 13602 } 13603 } 13604 *iphapp = ipha; 13605 return (B_TRUE); 13606 done: 13607 /* clear b_prev - used by ip_mroute_decap */ 13608 mp->b_prev = NULL; 13609 freemsg(mp); 13610 return (B_FALSE); 13611 #undef rptr 13612 } 13613 13614 /* 13615 * Deal with the fact that there is no ire for the destination. 13616 */ 13617 static ire_t * 13618 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13619 { 13620 ipha_t *ipha; 13621 ill_t *ill; 13622 ire_t *ire; 13623 ip_stack_t *ipst; 13624 enum ire_forward_action ret_action; 13625 13626 ipha = (ipha_t *)mp->b_rptr; 13627 ill = (ill_t *)q->q_ptr; 13628 13629 ASSERT(ill != NULL); 13630 ipst = ill->ill_ipst; 13631 13632 /* 13633 * No IRE for this destination, so it can't be for us. 13634 * Unless we are forwarding, drop the packet. 13635 * We have to let source routed packets through 13636 * since we don't yet know if they are 'ping -l' 13637 * packets i.e. if they will go out over the 13638 * same interface as they came in on. 13639 */ 13640 if (ll_multicast) { 13641 freemsg(mp); 13642 return (NULL); 13643 } 13644 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13646 freemsg(mp); 13647 return (NULL); 13648 } 13649 13650 /* 13651 * Mark this packet as having originated externally. 13652 * 13653 * For non-forwarding code path, ire_send later double 13654 * checks this interface to see if it is still exists 13655 * post-ARP resolution. 13656 * 13657 * Also, IPQOS uses this to differentiate between 13658 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13659 * QOS packet processing in ip_wput_attach_llhdr(). 13660 * The QoS module can mark the b_band for a fastpath message 13661 * or the dl_priority field in a unitdata_req header for 13662 * CoS marking. This info can only be found in 13663 * ip_wput_attach_llhdr(). 13664 */ 13665 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13666 /* 13667 * Clear the indication that this may have a hardware checksum 13668 * as we are not using it 13669 */ 13670 DB_CKSUMFLAGS(mp) = 0; 13671 13672 ire = ire_forward(dst, &ret_action, NULL, NULL, 13673 msg_getlabel(mp), ipst); 13674 13675 if (ire == NULL && ret_action == Forward_check_multirt) { 13676 /* Let ip_newroute handle CGTP */ 13677 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13678 return (NULL); 13679 } 13680 13681 if (ire != NULL) 13682 return (ire); 13683 13684 mp->b_prev = mp->b_next = 0; 13685 13686 if (ret_action == Forward_blackhole) { 13687 freemsg(mp); 13688 return (NULL); 13689 } 13690 /* send icmp unreachable */ 13691 q = WR(q); 13692 /* Sent by forwarding path, and router is global zone */ 13693 if (ip_source_routed(ipha, ipst)) { 13694 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13695 GLOBAL_ZONEID, ipst); 13696 } else { 13697 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13698 ipst); 13699 } 13700 13701 return (NULL); 13702 13703 } 13704 13705 /* 13706 * check ip header length and align it. 13707 */ 13708 static boolean_t 13709 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13710 { 13711 ssize_t len; 13712 ill_t *ill; 13713 ipha_t *ipha; 13714 13715 len = MBLKL(mp); 13716 13717 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13718 ill = (ill_t *)q->q_ptr; 13719 13720 if (!OK_32PTR(mp->b_rptr)) 13721 IP_STAT(ipst, ip_notaligned1); 13722 else 13723 IP_STAT(ipst, ip_notaligned2); 13724 /* Guard against bogus device drivers */ 13725 if (len < 0) { 13726 /* clear b_prev - used by ip_mroute_decap */ 13727 mp->b_prev = NULL; 13728 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13729 freemsg(mp); 13730 return (B_FALSE); 13731 } 13732 13733 if (ip_rput_pullups++ == 0) { 13734 ipha = (ipha_t *)mp->b_rptr; 13735 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13736 "ip_check_and_align_header: %s forced us to " 13737 " pullup pkt, hdr len %ld, hdr addr %p", 13738 ill->ill_name, len, (void *)ipha); 13739 } 13740 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13741 /* clear b_prev - used by ip_mroute_decap */ 13742 mp->b_prev = NULL; 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13744 freemsg(mp); 13745 return (B_FALSE); 13746 } 13747 } 13748 return (B_TRUE); 13749 } 13750 13751 /* 13752 * Handle the situation where a packet came in on `ill' but matched an IRE 13753 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13754 * for interface statistics. 13755 */ 13756 ire_t * 13757 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13758 { 13759 ire_t *new_ire; 13760 ill_t *ire_ill; 13761 uint_t ifindex; 13762 ip_stack_t *ipst = ill->ill_ipst; 13763 boolean_t strict_check = B_FALSE; 13764 13765 /* 13766 * IPMP common case: if IRE and ILL are in the same group, there's no 13767 * issue (e.g. packet received on an underlying interface matched an 13768 * IRE_LOCAL on its associated group interface). 13769 */ 13770 if (ire->ire_rfq != NULL && 13771 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13772 return (ire); 13773 } 13774 13775 /* 13776 * Do another ire lookup here, using the ingress ill, to see if the 13777 * interface is in a usesrc group. 13778 * As long as the ills belong to the same group, we don't consider 13779 * them to be arriving on the wrong interface. Thus, if the switch 13780 * is doing inbound load spreading, we won't drop packets when the 13781 * ip*_strict_dst_multihoming switch is on. 13782 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13783 * where the local address may not be unique. In this case we were 13784 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13785 * actually returned. The new lookup, which is more specific, should 13786 * only find the IRE_LOCAL associated with the ingress ill if one 13787 * exists. 13788 */ 13789 13790 if (ire->ire_ipversion == IPV4_VERSION) { 13791 if (ipst->ips_ip_strict_dst_multihoming) 13792 strict_check = B_TRUE; 13793 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13794 ill->ill_ipif, ALL_ZONES, NULL, 13795 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13796 } else { 13797 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13798 if (ipst->ips_ipv6_strict_dst_multihoming) 13799 strict_check = B_TRUE; 13800 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13801 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13802 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13803 } 13804 /* 13805 * If the same ire that was returned in ip_input() is found then this 13806 * is an indication that usesrc groups are in use. The packet 13807 * arrived on a different ill in the group than the one associated with 13808 * the destination address. If a different ire was found then the same 13809 * IP address must be hosted on multiple ills. This is possible with 13810 * unnumbered point2point interfaces. We switch to use this new ire in 13811 * order to have accurate interface statistics. 13812 */ 13813 if (new_ire != NULL) { 13814 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13815 ire_refrele(ire); 13816 ire = new_ire; 13817 } else { 13818 ire_refrele(new_ire); 13819 } 13820 return (ire); 13821 } else if ((ire->ire_rfq == NULL) && 13822 (ire->ire_ipversion == IPV4_VERSION)) { 13823 /* 13824 * The best match could have been the original ire which 13825 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13826 * the strict multihoming checks are irrelevant as we consider 13827 * local addresses hosted on lo0 to be interface agnostic. We 13828 * only expect a null ire_rfq on IREs which are associated with 13829 * lo0 hence we can return now. 13830 */ 13831 return (ire); 13832 } 13833 13834 /* 13835 * Chase pointers once and store locally. 13836 */ 13837 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13838 (ill_t *)(ire->ire_rfq->q_ptr); 13839 ifindex = ill->ill_usesrc_ifindex; 13840 13841 /* 13842 * Check if it's a legal address on the 'usesrc' interface. 13843 */ 13844 if ((ifindex != 0) && (ire_ill != NULL) && 13845 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13846 return (ire); 13847 } 13848 13849 /* 13850 * If the ip*_strict_dst_multihoming switch is on then we can 13851 * only accept this packet if the interface is marked as routing. 13852 */ 13853 if (!(strict_check)) 13854 return (ire); 13855 13856 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13857 ILLF_ROUTER) != 0) { 13858 return (ire); 13859 } 13860 13861 ire_refrele(ire); 13862 return (NULL); 13863 } 13864 13865 /* 13866 * 13867 * This is the fast forward path. If we are here, we dont need to 13868 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13869 * needed to find the nexthop in this case is much simpler 13870 */ 13871 ire_t * 13872 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13873 { 13874 ipha_t *ipha; 13875 ire_t *src_ire; 13876 ill_t *stq_ill; 13877 uint_t hlen; 13878 uint_t pkt_len; 13879 uint32_t sum; 13880 queue_t *dev_q; 13881 ip_stack_t *ipst = ill->ill_ipst; 13882 mblk_t *fpmp; 13883 enum ire_forward_action ret_action; 13884 13885 ipha = (ipha_t *)mp->b_rptr; 13886 13887 if (ire != NULL && 13888 ire->ire_zoneid != GLOBAL_ZONEID && 13889 ire->ire_zoneid != ALL_ZONES) { 13890 /* 13891 * Should only use IREs that are visible to the global 13892 * zone for forwarding. 13893 */ 13894 ire_refrele(ire); 13895 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13896 /* 13897 * ire_cache_lookup() can return ire of IRE_LOCAL in 13898 * transient cases. In such case, just drop the packet 13899 */ 13900 if (ire->ire_type != IRE_CACHE) 13901 goto drop; 13902 } 13903 13904 /* 13905 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13906 * The loopback address check for both src and dst has already 13907 * been checked in ip_input 13908 */ 13909 13910 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13912 goto drop; 13913 } 13914 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13915 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13916 13917 if (src_ire != NULL) { 13918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13919 ire_refrele(src_ire); 13920 goto drop; 13921 } 13922 13923 /* No ire cache of nexthop. So first create one */ 13924 if (ire == NULL) { 13925 13926 ire = ire_forward_simple(dst, &ret_action, ipst); 13927 13928 /* 13929 * We only come to ip_fast_forward if ip_cgtp_filter 13930 * is not set. So ire_forward() should not return with 13931 * Forward_check_multirt as the next action. 13932 */ 13933 ASSERT(ret_action != Forward_check_multirt); 13934 if (ire == NULL) { 13935 /* An attempt was made to forward the packet */ 13936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13938 mp->b_prev = mp->b_next = 0; 13939 /* send icmp unreachable */ 13940 /* Sent by forwarding path, and router is global zone */ 13941 if (ret_action == Forward_ret_icmp_err) { 13942 if (ip_source_routed(ipha, ipst)) { 13943 icmp_unreachable(ill->ill_wq, mp, 13944 ICMP_SOURCE_ROUTE_FAILED, 13945 GLOBAL_ZONEID, ipst); 13946 } else { 13947 icmp_unreachable(ill->ill_wq, mp, 13948 ICMP_HOST_UNREACHABLE, 13949 GLOBAL_ZONEID, ipst); 13950 } 13951 } else { 13952 freemsg(mp); 13953 } 13954 return (NULL); 13955 } 13956 } 13957 13958 /* 13959 * Forwarding fastpath exception case: 13960 * If any of the following are true, we take the slowpath: 13961 * o forwarding is not enabled 13962 * o incoming and outgoing interface are the same, or in the same 13963 * IPMP group. 13964 * o corresponding ire is in incomplete state 13965 * o packet needs fragmentation 13966 * o ARP cache is not resolved 13967 * 13968 * The codeflow from here on is thus: 13969 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13970 */ 13971 pkt_len = ntohs(ipha->ipha_length); 13972 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13973 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13974 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13975 (ire->ire_nce == NULL) || 13976 (pkt_len > ire->ire_max_frag) || 13977 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13978 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13979 ipha->ipha_ttl <= 1) { 13980 ip_rput_process_forward(ill->ill_rq, mp, ire, 13981 ipha, ill, B_FALSE, B_TRUE); 13982 return (ire); 13983 } 13984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13985 13986 DTRACE_PROBE4(ip4__forwarding__start, 13987 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13988 13989 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13990 ipst->ips_ipv4firewall_forwarding, 13991 ill, stq_ill, ipha, mp, mp, 0, ipst); 13992 13993 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13994 13995 if (mp == NULL) 13996 goto drop; 13997 13998 mp->b_datap->db_struioun.cksum.flags = 0; 13999 /* Adjust the checksum to reflect the ttl decrement. */ 14000 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14001 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14002 ipha->ipha_ttl--; 14003 14004 /* 14005 * Write the link layer header. We can do this safely here, 14006 * because we have already tested to make sure that the IP 14007 * policy is not set, and that we have a fast path destination 14008 * header. 14009 */ 14010 mp->b_rptr -= hlen; 14011 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14012 14013 UPDATE_IB_PKT_COUNT(ire); 14014 ire->ire_last_used_time = lbolt; 14015 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14016 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14017 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14018 14019 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14020 dev_q = ire->ire_stq->q_next; 14021 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14022 goto indiscard; 14023 } 14024 14025 DTRACE_PROBE4(ip4__physical__out__start, 14026 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14027 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14028 ipst->ips_ipv4firewall_physical_out, 14029 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14030 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14031 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14032 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14033 ip6_t *, NULL, int, 0); 14034 14035 if (mp != NULL) { 14036 if (ipst->ips_ipobs_enabled) { 14037 zoneid_t szone; 14038 14039 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14040 ipst, ALL_ZONES); 14041 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14042 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14043 } 14044 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14045 } 14046 return (ire); 14047 14048 indiscard: 14049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14050 drop: 14051 if (mp != NULL) 14052 freemsg(mp); 14053 return (ire); 14054 14055 } 14056 14057 /* 14058 * This function is called in the forwarding slowpath, when 14059 * either the ire lacks the link-layer address, or the packet needs 14060 * further processing(eg. fragmentation), before transmission. 14061 */ 14062 14063 static void 14064 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14065 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14066 { 14067 queue_t *dev_q; 14068 ire_t *src_ire; 14069 ip_stack_t *ipst = ill->ill_ipst; 14070 boolean_t same_illgrp = B_FALSE; 14071 14072 ASSERT(ire->ire_stq != NULL); 14073 14074 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14075 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14076 14077 /* 14078 * If the caller of this function is ip_fast_forward() skip the 14079 * next three checks as it does not apply. 14080 */ 14081 if (from_ip_fast_forward) 14082 goto skip; 14083 14084 if (ll_multicast != 0) { 14085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14086 goto drop_pkt; 14087 } 14088 14089 /* 14090 * check if ipha_src is a broadcast address. Note that this 14091 * check is redundant when we get here from ip_fast_forward() 14092 * which has already done this check. However, since we can 14093 * also get here from ip_rput_process_broadcast() or, for 14094 * for the slow path through ip_fast_forward(), we perform 14095 * the check again for code-reusability 14096 */ 14097 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14098 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14099 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14100 if (src_ire != NULL) 14101 ire_refrele(src_ire); 14102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14103 ip2dbg(("ip_rput_process_forward: Received packet with" 14104 " bad src/dst address on %s\n", ill->ill_name)); 14105 goto drop_pkt; 14106 } 14107 14108 /* 14109 * Check if we want to forward this one at this time. 14110 * We allow source routed packets on a host provided that 14111 * they go out the same ill or illgrp as they came in on. 14112 * 14113 * XXX To be quicker, we may wish to not chase pointers to 14114 * get the ILLF_ROUTER flag and instead store the 14115 * forwarding policy in the ire. An unfortunate 14116 * side-effect of that would be requiring an ire flush 14117 * whenever the ILLF_ROUTER flag changes. 14118 */ 14119 skip: 14120 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14121 14122 if (((ill->ill_flags & 14123 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14124 !(ip_source_routed(ipha, ipst) && 14125 (ire->ire_rfq == q || same_illgrp))) { 14126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14127 if (ip_source_routed(ipha, ipst)) { 14128 q = WR(q); 14129 /* 14130 * Clear the indication that this may have 14131 * hardware checksum as we are not using it. 14132 */ 14133 DB_CKSUMFLAGS(mp) = 0; 14134 /* Sent by forwarding path, and router is global zone */ 14135 icmp_unreachable(q, mp, 14136 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14137 return; 14138 } 14139 goto drop_pkt; 14140 } 14141 14142 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14143 14144 /* Packet is being forwarded. Turning off hwcksum flag. */ 14145 DB_CKSUMFLAGS(mp) = 0; 14146 if (ipst->ips_ip_g_send_redirects) { 14147 /* 14148 * Check whether the incoming interface and outgoing 14149 * interface is part of the same group. If so, 14150 * send redirects. 14151 * 14152 * Check the source address to see if it originated 14153 * on the same logical subnet it is going back out on. 14154 * If so, we should be able to send it a redirect. 14155 * Avoid sending a redirect if the destination 14156 * is directly connected (i.e., ipha_dst is the same 14157 * as ire_gateway_addr or the ire_addr of the 14158 * nexthop IRE_CACHE ), or if the packet was source 14159 * routed out this interface. 14160 */ 14161 ipaddr_t src, nhop; 14162 mblk_t *mp1; 14163 ire_t *nhop_ire = NULL; 14164 14165 /* 14166 * Check whether ire_rfq and q are from the same ill or illgrp. 14167 * If so, send redirects. 14168 */ 14169 if ((ire->ire_rfq == q || same_illgrp) && 14170 !ip_source_routed(ipha, ipst)) { 14171 14172 nhop = (ire->ire_gateway_addr != 0 ? 14173 ire->ire_gateway_addr : ire->ire_addr); 14174 14175 if (ipha->ipha_dst == nhop) { 14176 /* 14177 * We avoid sending a redirect if the 14178 * destination is directly connected 14179 * because it is possible that multiple 14180 * IP subnets may have been configured on 14181 * the link, and the source may not 14182 * be on the same subnet as ip destination, 14183 * even though they are on the same 14184 * physical link. 14185 */ 14186 goto sendit; 14187 } 14188 14189 src = ipha->ipha_src; 14190 14191 /* 14192 * We look up the interface ire for the nexthop, 14193 * to see if ipha_src is in the same subnet 14194 * as the nexthop. 14195 * 14196 * Note that, if, in the future, IRE_CACHE entries 14197 * are obsoleted, this lookup will not be needed, 14198 * as the ire passed to this function will be the 14199 * same as the nhop_ire computed below. 14200 */ 14201 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14202 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14203 0, NULL, MATCH_IRE_TYPE, ipst); 14204 14205 if (nhop_ire != NULL) { 14206 if ((src & nhop_ire->ire_mask) == 14207 (nhop & nhop_ire->ire_mask)) { 14208 /* 14209 * The source is directly connected. 14210 * Just copy the ip header (which is 14211 * in the first mblk) 14212 */ 14213 mp1 = copyb(mp); 14214 if (mp1 != NULL) { 14215 icmp_send_redirect(WR(q), mp1, 14216 nhop, ipst); 14217 } 14218 } 14219 ire_refrele(nhop_ire); 14220 } 14221 } 14222 } 14223 sendit: 14224 dev_q = ire->ire_stq->q_next; 14225 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14227 freemsg(mp); 14228 return; 14229 } 14230 14231 ip_rput_forward(ire, ipha, mp, ill); 14232 return; 14233 14234 drop_pkt: 14235 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14236 freemsg(mp); 14237 } 14238 14239 ire_t * 14240 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14241 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14242 { 14243 queue_t *q; 14244 uint16_t hcksumflags; 14245 ip_stack_t *ipst = ill->ill_ipst; 14246 14247 q = *qp; 14248 14249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14250 14251 /* 14252 * Clear the indication that this may have hardware 14253 * checksum as we are not using it for forwarding. 14254 */ 14255 hcksumflags = DB_CKSUMFLAGS(mp); 14256 DB_CKSUMFLAGS(mp) = 0; 14257 14258 /* 14259 * Directed broadcast forwarding: if the packet came in over a 14260 * different interface then it is routed out over we can forward it. 14261 */ 14262 if (ipha->ipha_protocol == IPPROTO_TCP) { 14263 ire_refrele(ire); 14264 freemsg(mp); 14265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14266 return (NULL); 14267 } 14268 /* 14269 * For multicast we have set dst to be INADDR_BROADCAST 14270 * for delivering to all STREAMS. 14271 */ 14272 if (!CLASSD(ipha->ipha_dst)) { 14273 ire_t *new_ire; 14274 ipif_t *ipif; 14275 14276 ipif = ipif_get_next_ipif(NULL, ill); 14277 if (ipif == NULL) { 14278 discard: ire_refrele(ire); 14279 freemsg(mp); 14280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14281 return (NULL); 14282 } 14283 new_ire = ire_ctable_lookup(dst, 0, 0, 14284 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14285 ipif_refrele(ipif); 14286 14287 if (new_ire != NULL) { 14288 /* 14289 * If the matching IRE_BROADCAST is part of an IPMP 14290 * group, then drop the packet unless our ill has been 14291 * nominated to receive for the group. 14292 */ 14293 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14294 new_ire->ire_rfq != q) { 14295 ire_refrele(new_ire); 14296 goto discard; 14297 } 14298 14299 /* 14300 * In the special case of multirouted broadcast 14301 * packets, we unconditionally need to "gateway" 14302 * them to the appropriate interface here. 14303 * In the normal case, this cannot happen, because 14304 * there is no broadcast IRE tagged with the 14305 * RTF_MULTIRT flag. 14306 */ 14307 if (new_ire->ire_flags & RTF_MULTIRT) { 14308 ire_refrele(new_ire); 14309 if (ire->ire_rfq != NULL) { 14310 q = ire->ire_rfq; 14311 *qp = q; 14312 } 14313 } else { 14314 ire_refrele(ire); 14315 ire = new_ire; 14316 } 14317 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14318 if (!ipst->ips_ip_g_forward_directed_bcast) { 14319 /* 14320 * Free the message if 14321 * ip_g_forward_directed_bcast is turned 14322 * off for non-local broadcast. 14323 */ 14324 ire_refrele(ire); 14325 freemsg(mp); 14326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14327 return (NULL); 14328 } 14329 } else { 14330 /* 14331 * This CGTP packet successfully passed the 14332 * CGTP filter, but the related CGTP 14333 * broadcast IRE has not been found, 14334 * meaning that the redundant ipif is 14335 * probably down. However, if we discarded 14336 * this packet, its duplicate would be 14337 * filtered out by the CGTP filter so none 14338 * of them would get through. So we keep 14339 * going with this one. 14340 */ 14341 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14342 if (ire->ire_rfq != NULL) { 14343 q = ire->ire_rfq; 14344 *qp = q; 14345 } 14346 } 14347 } 14348 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14349 /* 14350 * Verify that there are not more then one 14351 * IRE_BROADCAST with this broadcast address which 14352 * has ire_stq set. 14353 * TODO: simplify, loop over all IRE's 14354 */ 14355 ire_t *ire1; 14356 int num_stq = 0; 14357 mblk_t *mp1; 14358 14359 /* Find the first one with ire_stq set */ 14360 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14361 for (ire1 = ire; ire1 && 14362 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14363 ire1 = ire1->ire_next) 14364 ; 14365 if (ire1) { 14366 ire_refrele(ire); 14367 ire = ire1; 14368 IRE_REFHOLD(ire); 14369 } 14370 14371 /* Check if there are additional ones with stq set */ 14372 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14373 if (ire->ire_addr != ire1->ire_addr) 14374 break; 14375 if (ire1->ire_stq) { 14376 num_stq++; 14377 break; 14378 } 14379 } 14380 rw_exit(&ire->ire_bucket->irb_lock); 14381 if (num_stq == 1 && ire->ire_stq != NULL) { 14382 ip1dbg(("ip_rput_process_broadcast: directed " 14383 "broadcast to 0x%x\n", 14384 ntohl(ire->ire_addr))); 14385 mp1 = copymsg(mp); 14386 if (mp1) { 14387 switch (ipha->ipha_protocol) { 14388 case IPPROTO_UDP: 14389 ip_udp_input(q, mp1, ipha, ire, ill); 14390 break; 14391 default: 14392 ip_proto_input(q, mp1, ipha, ire, ill, 14393 0); 14394 break; 14395 } 14396 } 14397 /* 14398 * Adjust ttl to 2 (1+1 - the forward engine 14399 * will decrement it by one. 14400 */ 14401 if (ip_csum_hdr(ipha)) { 14402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14403 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14404 freemsg(mp); 14405 ire_refrele(ire); 14406 return (NULL); 14407 } 14408 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14409 ipha->ipha_hdr_checksum = 0; 14410 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14411 ip_rput_process_forward(q, mp, ire, ipha, 14412 ill, ll_multicast, B_FALSE); 14413 ire_refrele(ire); 14414 return (NULL); 14415 } 14416 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14417 ntohl(ire->ire_addr))); 14418 } 14419 14420 /* Restore any hardware checksum flags */ 14421 DB_CKSUMFLAGS(mp) = hcksumflags; 14422 return (ire); 14423 } 14424 14425 /* ARGSUSED */ 14426 static boolean_t 14427 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14428 int *ll_multicast, ipaddr_t *dstp) 14429 { 14430 ip_stack_t *ipst = ill->ill_ipst; 14431 14432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14433 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14434 ntohs(ipha->ipha_length)); 14435 14436 /* 14437 * So that we don't end up with dups, only one ill in an IPMP group is 14438 * nominated to receive multicast traffic. 14439 */ 14440 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14441 goto drop_pkt; 14442 14443 /* 14444 * Forward packets only if we have joined the allmulti 14445 * group on this interface. 14446 */ 14447 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14448 int retval; 14449 14450 /* 14451 * Clear the indication that this may have hardware 14452 * checksum as we are not using it. 14453 */ 14454 DB_CKSUMFLAGS(mp) = 0; 14455 retval = ip_mforward(ill, ipha, mp); 14456 /* ip_mforward updates mib variables if needed */ 14457 /* clear b_prev - used by ip_mroute_decap */ 14458 mp->b_prev = NULL; 14459 14460 switch (retval) { 14461 case 0: 14462 /* 14463 * pkt is okay and arrived on phyint. 14464 * 14465 * If we are running as a multicast router 14466 * we need to see all IGMP and/or PIM packets. 14467 */ 14468 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14469 (ipha->ipha_protocol == IPPROTO_PIM)) { 14470 goto done; 14471 } 14472 break; 14473 case -1: 14474 /* pkt is mal-formed, toss it */ 14475 goto drop_pkt; 14476 case 1: 14477 /* pkt is okay and arrived on a tunnel */ 14478 /* 14479 * If we are running a multicast router 14480 * we need to see all igmp packets. 14481 */ 14482 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14483 *dstp = INADDR_BROADCAST; 14484 *ll_multicast = 1; 14485 return (B_FALSE); 14486 } 14487 14488 goto drop_pkt; 14489 } 14490 } 14491 14492 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14493 /* 14494 * This might just be caused by the fact that 14495 * multiple IP Multicast addresses map to the same 14496 * link layer multicast - no need to increment counter! 14497 */ 14498 freemsg(mp); 14499 return (B_TRUE); 14500 } 14501 done: 14502 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14503 /* 14504 * This assumes the we deliver to all streams for multicast 14505 * and broadcast packets. 14506 */ 14507 *dstp = INADDR_BROADCAST; 14508 *ll_multicast = 1; 14509 return (B_FALSE); 14510 drop_pkt: 14511 ip2dbg(("ip_rput: drop pkt\n")); 14512 freemsg(mp); 14513 return (B_TRUE); 14514 } 14515 14516 /* 14517 * This function is used to both return an indication of whether or not 14518 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14519 * and in doing so, determine whether or not it is broadcast vs multicast. 14520 * For it to be a broadcast packet, we must have the appropriate mblk_t 14521 * hanging off the ill_t. If this is either not present or doesn't match 14522 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14523 * to be multicast. Thus NICs that have no broadcast address (or no 14524 * capability for one, such as point to point links) cannot return as 14525 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14526 * the return values simplifies the current use of the return value of this 14527 * function, which is to pass through the multicast/broadcast characteristic 14528 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14529 * changing the return value to some other symbol demands the appropriate 14530 * "translation" when hpe_flags is set prior to calling hook_run() for 14531 * packet events. 14532 */ 14533 int 14534 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14535 { 14536 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14537 mblk_t *bmp; 14538 14539 if (ind->dl_group_address) { 14540 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14541 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14542 MBLKL(mb) && 14543 (bmp = ill->ill_bcast_mp) != NULL) { 14544 dl_unitdata_req_t *dlur; 14545 uint8_t *bphys_addr; 14546 14547 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14548 if (ill->ill_sap_length < 0) 14549 bphys_addr = (uchar_t *)dlur + 14550 dlur->dl_dest_addr_offset; 14551 else 14552 bphys_addr = (uchar_t *)dlur + 14553 dlur->dl_dest_addr_offset + 14554 ill->ill_sap_length; 14555 14556 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14557 bphys_addr, ind->dl_dest_addr_length) == 0) { 14558 return (HPE_BROADCAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (HPE_MULTICAST); 14563 } 14564 return (0); 14565 } 14566 14567 static boolean_t 14568 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14569 int *ll_multicast, mblk_t **mpp) 14570 { 14571 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14572 boolean_t must_copy = B_FALSE; 14573 struct iocblk *iocp; 14574 ipha_t *ipha; 14575 ip_stack_t *ipst = ill->ill_ipst; 14576 14577 #define rptr ((uchar_t *)ipha) 14578 14579 first_mp = *first_mpp; 14580 mp = *mpp; 14581 14582 ASSERT(first_mp == mp); 14583 14584 /* 14585 * if db_ref > 1 then copymsg and free original. Packet may be 14586 * changed and do not want other entity who has a reference to this 14587 * message to trip over the changes. This is a blind change because 14588 * trying to catch all places that might change packet is too 14589 * difficult (since it may be a module above this one) 14590 * 14591 * This corresponds to the non-fast path case. We walk down the full 14592 * chain in this case, and check the db_ref count of all the dblks, 14593 * and do a copymsg if required. It is possible that the db_ref counts 14594 * of the data blocks in the mblk chain can be different. 14595 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14596 * count of 1, followed by a M_DATA block with a ref count of 2, if 14597 * 'snoop' is running. 14598 */ 14599 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14600 if (mp1->b_datap->db_ref > 1) { 14601 must_copy = B_TRUE; 14602 break; 14603 } 14604 } 14605 14606 if (must_copy) { 14607 mp1 = copymsg(mp); 14608 if (mp1 == NULL) { 14609 for (mp1 = mp; mp1 != NULL; 14610 mp1 = mp1->b_cont) { 14611 mp1->b_next = NULL; 14612 mp1->b_prev = NULL; 14613 } 14614 freemsg(mp); 14615 if (ill != NULL) { 14616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14617 } else { 14618 BUMP_MIB(&ipst->ips_ip_mib, 14619 ipIfStatsInDiscards); 14620 } 14621 return (B_TRUE); 14622 } 14623 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14624 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14625 /* Copy b_prev - used by ip_mroute_decap */ 14626 to_mp->b_prev = from_mp->b_prev; 14627 from_mp->b_prev = NULL; 14628 } 14629 *first_mpp = first_mp = mp1; 14630 freemsg(mp); 14631 mp = mp1; 14632 *mpp = mp1; 14633 } 14634 14635 ipha = (ipha_t *)mp->b_rptr; 14636 14637 /* 14638 * previous code has a case for M_DATA. 14639 * We want to check how that happens. 14640 */ 14641 ASSERT(first_mp->b_datap->db_type != M_DATA); 14642 switch (first_mp->b_datap->db_type) { 14643 case M_PROTO: 14644 case M_PCPROTO: 14645 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14646 DL_UNITDATA_IND) { 14647 /* Go handle anything other than data elsewhere. */ 14648 ip_rput_dlpi(q, mp); 14649 return (B_TRUE); 14650 } 14651 14652 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14653 /* Ditch the DLPI header. */ 14654 mp1 = mp->b_cont; 14655 ASSERT(first_mp == mp); 14656 *first_mpp = mp1; 14657 freeb(mp); 14658 *mpp = mp1; 14659 return (B_FALSE); 14660 case M_IOCACK: 14661 ip1dbg(("got iocack ")); 14662 iocp = (struct iocblk *)mp->b_rptr; 14663 switch (iocp->ioc_cmd) { 14664 case DL_IOC_HDR_INFO: 14665 ill = (ill_t *)q->q_ptr; 14666 ill_fastpath_ack(ill, mp); 14667 return (B_TRUE); 14668 case SIOCSTUNPARAM: 14669 case OSIOCSTUNPARAM: 14670 /* Go through qwriter_ip */ 14671 break; 14672 case SIOCGTUNPARAM: 14673 case OSIOCGTUNPARAM: 14674 ip_rput_other(NULL, q, mp, NULL); 14675 return (B_TRUE); 14676 default: 14677 putnext(q, mp); 14678 return (B_TRUE); 14679 } 14680 /* FALLTHRU */ 14681 case M_ERROR: 14682 case M_HANGUP: 14683 /* 14684 * Since this is on the ill stream we unconditionally 14685 * bump up the refcount 14686 */ 14687 ill_refhold(ill); 14688 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14689 return (B_TRUE); 14690 case M_CTL: 14691 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14692 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14693 IPHADA_M_CTL)) { 14694 /* 14695 * It's an IPsec accelerated packet. 14696 * Make sure that the ill from which we received the 14697 * packet has enabled IPsec hardware acceleration. 14698 */ 14699 if (!(ill->ill_capabilities & 14700 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14701 /* IPsec kstats: bean counter */ 14702 freemsg(mp); 14703 return (B_TRUE); 14704 } 14705 14706 /* 14707 * Make mp point to the mblk following the M_CTL, 14708 * then process according to type of mp. 14709 * After this processing, first_mp will point to 14710 * the data-attributes and mp to the pkt following 14711 * the M_CTL. 14712 */ 14713 mp = first_mp->b_cont; 14714 if (mp == NULL) { 14715 freemsg(first_mp); 14716 return (B_TRUE); 14717 } 14718 /* 14719 * A Hardware Accelerated packet can only be M_DATA 14720 * ESP or AH packet. 14721 */ 14722 if (mp->b_datap->db_type != M_DATA) { 14723 /* non-M_DATA IPsec accelerated packet */ 14724 IPSECHW_DEBUG(IPSECHW_PKT, 14725 ("non-M_DATA IPsec accelerated pkt\n")); 14726 freemsg(first_mp); 14727 return (B_TRUE); 14728 } 14729 ipha = (ipha_t *)mp->b_rptr; 14730 if (ipha->ipha_protocol != IPPROTO_AH && 14731 ipha->ipha_protocol != IPPROTO_ESP) { 14732 IPSECHW_DEBUG(IPSECHW_PKT, 14733 ("non-M_DATA IPsec accelerated pkt\n")); 14734 freemsg(first_mp); 14735 return (B_TRUE); 14736 } 14737 *mpp = mp; 14738 return (B_FALSE); 14739 } 14740 putnext(q, mp); 14741 return (B_TRUE); 14742 case M_IOCNAK: 14743 ip1dbg(("got iocnak ")); 14744 iocp = (struct iocblk *)mp->b_rptr; 14745 switch (iocp->ioc_cmd) { 14746 case SIOCSTUNPARAM: 14747 case OSIOCSTUNPARAM: 14748 /* 14749 * Since this is on the ill stream we unconditionally 14750 * bump up the refcount 14751 */ 14752 ill_refhold(ill); 14753 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14754 return (B_TRUE); 14755 case DL_IOC_HDR_INFO: 14756 case SIOCGTUNPARAM: 14757 case OSIOCGTUNPARAM: 14758 ip_rput_other(NULL, q, mp, NULL); 14759 return (B_TRUE); 14760 default: 14761 break; 14762 } 14763 /* FALLTHRU */ 14764 default: 14765 putnext(q, mp); 14766 return (B_TRUE); 14767 } 14768 } 14769 14770 /* Read side put procedure. Packets coming from the wire arrive here. */ 14771 void 14772 ip_rput(queue_t *q, mblk_t *mp) 14773 { 14774 ill_t *ill; 14775 union DL_primitives *dl; 14776 14777 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14778 14779 ill = (ill_t *)q->q_ptr; 14780 14781 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14782 /* 14783 * If things are opening or closing, only accept high-priority 14784 * DLPI messages. (On open ill->ill_ipif has not yet been 14785 * created; on close, things hanging off the ill may have been 14786 * freed already.) 14787 */ 14788 dl = (union DL_primitives *)mp->b_rptr; 14789 if (DB_TYPE(mp) != M_PCPROTO || 14790 dl->dl_primitive == DL_UNITDATA_IND) { 14791 /* 14792 * SIOC[GS]TUNPARAM ioctls can come here. 14793 */ 14794 inet_freemsg(mp); 14795 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14796 "ip_rput_end: q %p (%S)", q, "uninit"); 14797 return; 14798 } 14799 } 14800 14801 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14802 "ip_rput_end: q %p (%S)", q, "end"); 14803 14804 ip_input(ill, NULL, mp, NULL); 14805 } 14806 14807 static mblk_t * 14808 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14809 { 14810 mblk_t *mp1; 14811 boolean_t adjusted = B_FALSE; 14812 ip_stack_t *ipst = ill->ill_ipst; 14813 14814 IP_STAT(ipst, ip_db_ref); 14815 /* 14816 * The IP_RECVSLLA option depends on having the 14817 * link layer header. First check that: 14818 * a> the underlying device is of type ether, 14819 * since this option is currently supported only 14820 * over ethernet. 14821 * b> there is enough room to copy over the link 14822 * layer header. 14823 * 14824 * Once the checks are done, adjust rptr so that 14825 * the link layer header will be copied via 14826 * copymsg. Note that, IFT_ETHER may be returned 14827 * by some non-ethernet drivers but in this case 14828 * the second check will fail. 14829 */ 14830 if (ill->ill_type == IFT_ETHER && 14831 (mp->b_rptr - mp->b_datap->db_base) >= 14832 sizeof (struct ether_header)) { 14833 mp->b_rptr -= sizeof (struct ether_header); 14834 adjusted = B_TRUE; 14835 } 14836 mp1 = copymsg(mp); 14837 14838 if (mp1 == NULL) { 14839 mp->b_next = NULL; 14840 /* clear b_prev - used by ip_mroute_decap */ 14841 mp->b_prev = NULL; 14842 freemsg(mp); 14843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14844 return (NULL); 14845 } 14846 14847 if (adjusted) { 14848 /* 14849 * Copy is done. Restore the pointer in 14850 * the _new_ mblk 14851 */ 14852 mp1->b_rptr += sizeof (struct ether_header); 14853 } 14854 14855 /* Copy b_prev - used by ip_mroute_decap */ 14856 mp1->b_prev = mp->b_prev; 14857 mp->b_prev = NULL; 14858 14859 /* preserve the hardware checksum flags and data, if present */ 14860 if (DB_CKSUMFLAGS(mp) != 0) { 14861 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14862 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14863 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14864 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14865 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14866 } 14867 14868 freemsg(mp); 14869 return (mp1); 14870 } 14871 14872 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14873 if (tail != NULL) \ 14874 tail->b_next = mp; \ 14875 else \ 14876 head = mp; \ 14877 tail = mp; \ 14878 cnt++; \ 14879 } 14880 14881 /* 14882 * Direct read side procedure capable of dealing with chains. GLDv3 based 14883 * drivers call this function directly with mblk chains while STREAMS 14884 * read side procedure ip_rput() calls this for single packet with ip_ring 14885 * set to NULL to process one packet at a time. 14886 * 14887 * The ill will always be valid if this function is called directly from 14888 * the driver. 14889 * 14890 * If ip_input() is called from GLDv3: 14891 * 14892 * - This must be a non-VLAN IP stream. 14893 * - 'mp' is either an untagged or a special priority-tagged packet. 14894 * - Any VLAN tag that was in the MAC header has been stripped. 14895 * 14896 * If the IP header in packet is not 32-bit aligned, every message in the 14897 * chain will be aligned before further operations. This is required on SPARC 14898 * platform. 14899 */ 14900 /* ARGSUSED */ 14901 void 14902 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14903 struct mac_header_info_s *mhip) 14904 { 14905 ipaddr_t dst = NULL; 14906 ipaddr_t prev_dst; 14907 ire_t *ire = NULL; 14908 ipha_t *ipha; 14909 uint_t pkt_len; 14910 ssize_t len; 14911 uint_t opt_len; 14912 int ll_multicast; 14913 int cgtp_flt_pkt; 14914 queue_t *q = ill->ill_rq; 14915 squeue_t *curr_sqp = NULL; 14916 mblk_t *head = NULL; 14917 mblk_t *tail = NULL; 14918 mblk_t *first_mp; 14919 int cnt = 0; 14920 ip_stack_t *ipst = ill->ill_ipst; 14921 mblk_t *mp; 14922 mblk_t *dmp; 14923 uint8_t tag; 14924 14925 ASSERT(mp_chain != NULL); 14926 ASSERT(ill != NULL); 14927 14928 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14929 14930 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14931 14932 #define rptr ((uchar_t *)ipha) 14933 14934 while (mp_chain != NULL) { 14935 mp = mp_chain; 14936 mp_chain = mp_chain->b_next; 14937 mp->b_next = NULL; 14938 ll_multicast = 0; 14939 14940 /* 14941 * We do ire caching from one iteration to 14942 * another. In the event the packet chain contains 14943 * all packets from the same dst, this caching saves 14944 * an ire_cache_lookup for each of the succeeding 14945 * packets in a packet chain. 14946 */ 14947 prev_dst = dst; 14948 14949 /* 14950 * if db_ref > 1 then copymsg and free original. Packet 14951 * may be changed and we do not want the other entity 14952 * who has a reference to this message to trip over the 14953 * changes. This is a blind change because trying to 14954 * catch all places that might change the packet is too 14955 * difficult. 14956 * 14957 * This corresponds to the fast path case, where we have 14958 * a chain of M_DATA mblks. We check the db_ref count 14959 * of only the 1st data block in the mblk chain. There 14960 * doesn't seem to be a reason why a device driver would 14961 * send up data with varying db_ref counts in the mblk 14962 * chain. In any case the Fast path is a private 14963 * interface, and our drivers don't do such a thing. 14964 * Given the above assumption, there is no need to walk 14965 * down the entire mblk chain (which could have a 14966 * potential performance problem) 14967 * 14968 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14969 * to here because of exclusive ip stacks and vnics. 14970 * Packets transmitted from exclusive stack over vnic 14971 * can have db_ref > 1 and when it gets looped back to 14972 * another vnic in a different zone, you have ip_input() 14973 * getting dblks with db_ref > 1. So if someone 14974 * complains of TCP performance under this scenario, 14975 * take a serious look here on the impact of copymsg(). 14976 */ 14977 14978 if (DB_REF(mp) > 1) { 14979 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14980 continue; 14981 } 14982 14983 /* 14984 * Check and align the IP header. 14985 */ 14986 first_mp = mp; 14987 if (DB_TYPE(mp) == M_DATA) { 14988 dmp = mp; 14989 } else if (DB_TYPE(mp) == M_PROTO && 14990 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14991 dmp = mp->b_cont; 14992 } else { 14993 dmp = NULL; 14994 } 14995 if (dmp != NULL) { 14996 /* 14997 * IP header ptr not aligned? 14998 * OR IP header not complete in first mblk 14999 */ 15000 if (!OK_32PTR(dmp->b_rptr) || 15001 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15002 if (!ip_check_and_align_header(q, dmp, ipst)) 15003 continue; 15004 } 15005 } 15006 15007 /* 15008 * ip_input fast path 15009 */ 15010 15011 /* mblk type is not M_DATA */ 15012 if (DB_TYPE(mp) != M_DATA) { 15013 if (ip_rput_process_notdata(q, &first_mp, ill, 15014 &ll_multicast, &mp)) 15015 continue; 15016 15017 /* 15018 * The only way we can get here is if we had a 15019 * packet that was either a DL_UNITDATA_IND or 15020 * an M_CTL for an IPsec accelerated packet. 15021 * 15022 * In either case, the first_mp will point to 15023 * the leading M_PROTO or M_CTL. 15024 */ 15025 ASSERT(first_mp != NULL); 15026 } else if (mhip != NULL) { 15027 /* 15028 * ll_multicast is set here so that it is ready 15029 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15030 * manipulates ll_multicast in the same fashion when 15031 * called from ip_rput_process_notdata. 15032 */ 15033 switch (mhip->mhi_dsttype) { 15034 case MAC_ADDRTYPE_MULTICAST : 15035 ll_multicast = HPE_MULTICAST; 15036 break; 15037 case MAC_ADDRTYPE_BROADCAST : 15038 ll_multicast = HPE_BROADCAST; 15039 break; 15040 default : 15041 break; 15042 } 15043 } 15044 15045 /* Only M_DATA can come here and it is always aligned */ 15046 ASSERT(DB_TYPE(mp) == M_DATA); 15047 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15048 15049 ipha = (ipha_t *)mp->b_rptr; 15050 len = mp->b_wptr - rptr; 15051 pkt_len = ntohs(ipha->ipha_length); 15052 15053 /* 15054 * We must count all incoming packets, even if they end 15055 * up being dropped later on. 15056 */ 15057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15058 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15059 15060 /* multiple mblk or too short */ 15061 len -= pkt_len; 15062 if (len != 0) { 15063 /* 15064 * Make sure we have data length consistent 15065 * with the IP header. 15066 */ 15067 if (mp->b_cont == NULL) { 15068 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15069 BUMP_MIB(ill->ill_ip_mib, 15070 ipIfStatsInHdrErrors); 15071 ip2dbg(("ip_input: drop pkt\n")); 15072 freemsg(mp); 15073 continue; 15074 } 15075 mp->b_wptr = rptr + pkt_len; 15076 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15077 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15078 BUMP_MIB(ill->ill_ip_mib, 15079 ipIfStatsInHdrErrors); 15080 ip2dbg(("ip_input: drop pkt\n")); 15081 freemsg(mp); 15082 continue; 15083 } 15084 (void) adjmsg(mp, -len); 15085 IP_STAT(ipst, ip_multimblk3); 15086 } 15087 } 15088 15089 /* Obtain the dst of the current packet */ 15090 dst = ipha->ipha_dst; 15091 15092 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15093 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15094 ipha, ip6_t *, NULL, int, 0); 15095 15096 /* 15097 * The following test for loopback is faster than 15098 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15099 * operations. 15100 * Note that these addresses are always in network byte order 15101 */ 15102 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15103 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15105 freemsg(mp); 15106 continue; 15107 } 15108 15109 /* 15110 * The event for packets being received from a 'physical' 15111 * interface is placed after validation of the source and/or 15112 * destination address as being local so that packets can be 15113 * redirected to loopback addresses using ipnat. 15114 */ 15115 DTRACE_PROBE4(ip4__physical__in__start, 15116 ill_t *, ill, ill_t *, NULL, 15117 ipha_t *, ipha, mblk_t *, first_mp); 15118 15119 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15120 ipst->ips_ipv4firewall_physical_in, 15121 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15122 15123 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15124 15125 if (first_mp == NULL) { 15126 continue; 15127 } 15128 dst = ipha->ipha_dst; 15129 /* 15130 * Attach any necessary label information to 15131 * this packet 15132 */ 15133 if (is_system_labeled() && 15134 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15136 freemsg(mp); 15137 continue; 15138 } 15139 15140 if (ipst->ips_ipobs_enabled) { 15141 zoneid_t dzone; 15142 15143 /* 15144 * On the inbound path the src zone will be unknown as 15145 * this packet has come from the wire. 15146 */ 15147 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15148 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15149 ill, IPV4_VERSION, 0, ipst); 15150 } 15151 15152 /* 15153 * Reuse the cached ire only if the ipha_dst of the previous 15154 * packet is the same as the current packet AND it is not 15155 * INADDR_ANY. 15156 */ 15157 if (!(dst == prev_dst && dst != INADDR_ANY) && 15158 (ire != NULL)) { 15159 ire_refrele(ire); 15160 ire = NULL; 15161 } 15162 15163 opt_len = ipha->ipha_version_and_hdr_length - 15164 IP_SIMPLE_HDR_VERSION; 15165 15166 /* 15167 * Check to see if we can take the fastpath. 15168 * That is possible if the following conditions are met 15169 * o Tsol disabled 15170 * o CGTP disabled 15171 * o ipp_action_count is 0 15172 * o no options in the packet 15173 * o not a RSVP packet 15174 * o not a multicast packet 15175 * o ill not in IP_DHCPINIT_IF mode 15176 */ 15177 if (!is_system_labeled() && 15178 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15179 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15180 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15181 if (ire == NULL) 15182 ire = ire_cache_lookup_simple(dst, ipst); 15183 /* 15184 * Unless forwarding is enabled, dont call 15185 * ip_fast_forward(). Incoming packet is for forwarding 15186 */ 15187 if ((ill->ill_flags & ILLF_ROUTER) && 15188 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15189 ire = ip_fast_forward(ire, dst, ill, mp); 15190 continue; 15191 } 15192 /* incoming packet is for local consumption */ 15193 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15194 goto local; 15195 } 15196 15197 /* 15198 * Disable ire caching for anything more complex 15199 * than the simple fast path case we checked for above. 15200 */ 15201 if (ire != NULL) { 15202 ire_refrele(ire); 15203 ire = NULL; 15204 } 15205 15206 /* 15207 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15208 * server to unicast DHCP packets to a DHCP client using the 15209 * IP address it is offering to the client. This can be 15210 * disabled through the "broadcast bit", but not all DHCP 15211 * servers honor that bit. Therefore, to interoperate with as 15212 * many DHCP servers as possible, the DHCP client allows the 15213 * server to unicast, but we treat those packets as broadcast 15214 * here. Note that we don't rewrite the packet itself since 15215 * (a) that would mess up the checksums and (b) the DHCP 15216 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15217 * hand it the packet regardless. 15218 */ 15219 if (ill->ill_dhcpinit != 0 && 15220 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15221 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15222 udpha_t *udpha; 15223 15224 /* 15225 * Reload ipha since pullupmsg() can change b_rptr. 15226 */ 15227 ipha = (ipha_t *)mp->b_rptr; 15228 udpha = (udpha_t *)&ipha[1]; 15229 15230 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15231 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15232 mblk_t *, mp); 15233 dst = INADDR_BROADCAST; 15234 } 15235 } 15236 15237 /* Full-blown slow path */ 15238 if (opt_len != 0) { 15239 if (len != 0) 15240 IP_STAT(ipst, ip_multimblk4); 15241 else 15242 IP_STAT(ipst, ip_ipoptions); 15243 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15244 &dst, ipst)) 15245 continue; 15246 } 15247 15248 /* 15249 * Invoke the CGTP (multirouting) filtering module to process 15250 * the incoming packet. Packets identified as duplicates 15251 * must be discarded. Filtering is active only if the 15252 * the ip_cgtp_filter ndd variable is non-zero. 15253 */ 15254 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15255 if (ipst->ips_ip_cgtp_filter && 15256 ipst->ips_ip_cgtp_filter_ops != NULL) { 15257 netstackid_t stackid; 15258 15259 stackid = ipst->ips_netstack->netstack_stackid; 15260 cgtp_flt_pkt = 15261 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15262 ill->ill_phyint->phyint_ifindex, mp); 15263 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15264 freemsg(first_mp); 15265 continue; 15266 } 15267 } 15268 15269 /* 15270 * If rsvpd is running, let RSVP daemon handle its processing 15271 * and forwarding of RSVP multicast/unicast packets. 15272 * If rsvpd is not running but mrouted is running, RSVP 15273 * multicast packets are forwarded as multicast traffic 15274 * and RSVP unicast packets are forwarded by unicast router. 15275 * If neither rsvpd nor mrouted is running, RSVP multicast 15276 * packets are not forwarded, but the unicast packets are 15277 * forwarded like unicast traffic. 15278 */ 15279 if (ipha->ipha_protocol == IPPROTO_RSVP && 15280 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15281 NULL) { 15282 /* RSVP packet and rsvpd running. Treat as ours */ 15283 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15284 /* 15285 * This assumes that we deliver to all streams for 15286 * multicast and broadcast packets. 15287 * We have to force ll_multicast to 1 to handle the 15288 * M_DATA messages passed in from ip_mroute_decap. 15289 */ 15290 dst = INADDR_BROADCAST; 15291 ll_multicast = 1; 15292 } else if (CLASSD(dst)) { 15293 /* packet is multicast */ 15294 mp->b_next = NULL; 15295 if (ip_rput_process_multicast(q, mp, ill, ipha, 15296 &ll_multicast, &dst)) 15297 continue; 15298 } 15299 15300 if (ire == NULL) { 15301 ire = ire_cache_lookup(dst, ALL_ZONES, 15302 msg_getlabel(mp), ipst); 15303 } 15304 15305 if (ire != NULL && ire->ire_stq != NULL && 15306 ire->ire_zoneid != GLOBAL_ZONEID && 15307 ire->ire_zoneid != ALL_ZONES) { 15308 /* 15309 * Should only use IREs that are visible from the 15310 * global zone for forwarding. 15311 */ 15312 ire_refrele(ire); 15313 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15314 msg_getlabel(mp), ipst); 15315 } 15316 15317 if (ire == NULL) { 15318 /* 15319 * No IRE for this destination, so it can't be for us. 15320 * Unless we are forwarding, drop the packet. 15321 * We have to let source routed packets through 15322 * since we don't yet know if they are 'ping -l' 15323 * packets i.e. if they will go out over the 15324 * same interface as they came in on. 15325 */ 15326 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15327 if (ire == NULL) 15328 continue; 15329 } 15330 15331 /* 15332 * Broadcast IRE may indicate either broadcast or 15333 * multicast packet 15334 */ 15335 if (ire->ire_type == IRE_BROADCAST) { 15336 /* 15337 * Skip broadcast checks if packet is UDP multicast; 15338 * we'd rather not enter ip_rput_process_broadcast() 15339 * unless the packet is broadcast for real, since 15340 * that routine is a no-op for multicast. 15341 */ 15342 if (ipha->ipha_protocol != IPPROTO_UDP || 15343 !CLASSD(ipha->ipha_dst)) { 15344 ire = ip_rput_process_broadcast(&q, mp, 15345 ire, ipha, ill, dst, cgtp_flt_pkt, 15346 ll_multicast); 15347 if (ire == NULL) 15348 continue; 15349 } 15350 } else if (ire->ire_stq != NULL) { 15351 /* fowarding? */ 15352 ip_rput_process_forward(q, mp, ire, ipha, ill, 15353 ll_multicast, B_FALSE); 15354 /* ip_rput_process_forward consumed the packet */ 15355 continue; 15356 } 15357 15358 local: 15359 /* 15360 * If the queue in the ire is different to the ingress queue 15361 * then we need to check to see if we can accept the packet. 15362 * Note that for multicast packets and broadcast packets sent 15363 * to a broadcast address which is shared between multiple 15364 * interfaces we should not do this since we just got a random 15365 * broadcast ire. 15366 */ 15367 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15368 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15369 if (ire == NULL) { 15370 /* Drop packet */ 15371 BUMP_MIB(ill->ill_ip_mib, 15372 ipIfStatsForwProhibits); 15373 freemsg(mp); 15374 continue; 15375 } 15376 if (ire->ire_rfq != NULL) 15377 q = ire->ire_rfq; 15378 } 15379 15380 switch (ipha->ipha_protocol) { 15381 case IPPROTO_TCP: 15382 ASSERT(first_mp == mp); 15383 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15384 mp, 0, q, ip_ring)) != NULL) { 15385 if (curr_sqp == NULL) { 15386 curr_sqp = GET_SQUEUE(mp); 15387 ASSERT(cnt == 0); 15388 cnt++; 15389 head = tail = mp; 15390 } else if (curr_sqp == GET_SQUEUE(mp)) { 15391 ASSERT(tail != NULL); 15392 cnt++; 15393 tail->b_next = mp; 15394 tail = mp; 15395 } else { 15396 /* 15397 * A different squeue. Send the 15398 * chain for the previous squeue on 15399 * its way. This shouldn't happen 15400 * often unless interrupt binding 15401 * changes. 15402 */ 15403 IP_STAT(ipst, ip_input_multi_squeue); 15404 SQUEUE_ENTER(curr_sqp, head, 15405 tail, cnt, SQ_PROCESS, tag); 15406 curr_sqp = GET_SQUEUE(mp); 15407 head = mp; 15408 tail = mp; 15409 cnt = 1; 15410 } 15411 } 15412 continue; 15413 case IPPROTO_UDP: 15414 ASSERT(first_mp == mp); 15415 ip_udp_input(q, mp, ipha, ire, ill); 15416 continue; 15417 case IPPROTO_SCTP: 15418 ASSERT(first_mp == mp); 15419 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15420 q, dst); 15421 /* ire has been released by ip_sctp_input */ 15422 ire = NULL; 15423 continue; 15424 default: 15425 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15426 continue; 15427 } 15428 } 15429 15430 if (ire != NULL) 15431 ire_refrele(ire); 15432 15433 if (head != NULL) 15434 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15435 15436 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15437 "ip_input_end: q %p (%S)", q, "end"); 15438 #undef rptr 15439 } 15440 15441 /* 15442 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15443 * a chain of packets in the poll mode. The packets have gone through the 15444 * data link processing but not IP processing. For performance and latency 15445 * reasons, the squeue wants to process the chain in line instead of feeding 15446 * it back via ip_input path. 15447 * 15448 * So this is a light weight function which checks to see if the packets 15449 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15450 * but we still do the paranoid check) meant for local machine and we don't 15451 * have labels etc enabled. Packets that meet the criterion are returned to 15452 * the squeue and processed inline while the rest go via ip_input path. 15453 */ 15454 /*ARGSUSED*/ 15455 mblk_t * 15456 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15457 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15458 { 15459 mblk_t *mp; 15460 ipaddr_t dst = NULL; 15461 ipaddr_t prev_dst; 15462 ire_t *ire = NULL; 15463 ipha_t *ipha; 15464 uint_t pkt_len; 15465 ssize_t len; 15466 uint_t opt_len; 15467 queue_t *q = ill->ill_rq; 15468 squeue_t *curr_sqp; 15469 mblk_t *ahead = NULL; /* Accepted head */ 15470 mblk_t *atail = NULL; /* Accepted tail */ 15471 uint_t acnt = 0; /* Accepted count */ 15472 mblk_t *utail = NULL; /* Unaccepted head */ 15473 mblk_t *uhead = NULL; /* Unaccepted tail */ 15474 uint_t ucnt = 0; /* Unaccepted cnt */ 15475 ip_stack_t *ipst = ill->ill_ipst; 15476 15477 *cnt = 0; 15478 15479 ASSERT(ill != NULL); 15480 ASSERT(ip_ring != NULL); 15481 15482 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15483 15484 #define rptr ((uchar_t *)ipha) 15485 15486 while (mp_chain != NULL) { 15487 mp = mp_chain; 15488 mp_chain = mp_chain->b_next; 15489 mp->b_next = NULL; 15490 15491 /* 15492 * We do ire caching from one iteration to 15493 * another. In the event the packet chain contains 15494 * all packets from the same dst, this caching saves 15495 * an ire_cache_lookup for each of the succeeding 15496 * packets in a packet chain. 15497 */ 15498 prev_dst = dst; 15499 15500 ipha = (ipha_t *)mp->b_rptr; 15501 len = mp->b_wptr - rptr; 15502 15503 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15504 15505 /* 15506 * If it is a non TCP packet, or doesn't have H/W cksum, 15507 * or doesn't have min len, reject. 15508 */ 15509 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15510 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15511 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15512 continue; 15513 } 15514 15515 pkt_len = ntohs(ipha->ipha_length); 15516 if (len != pkt_len) { 15517 if (len > pkt_len) { 15518 mp->b_wptr = rptr + pkt_len; 15519 } else { 15520 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15521 continue; 15522 } 15523 } 15524 15525 opt_len = ipha->ipha_version_and_hdr_length - 15526 IP_SIMPLE_HDR_VERSION; 15527 dst = ipha->ipha_dst; 15528 15529 /* IP version bad or there are IP options */ 15530 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15531 mp, &ipha, &dst, ipst))) 15532 continue; 15533 15534 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15535 (ipst->ips_ip_cgtp_filter && 15536 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15537 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15538 continue; 15539 } 15540 15541 /* 15542 * Reuse the cached ire only if the ipha_dst of the previous 15543 * packet is the same as the current packet AND it is not 15544 * INADDR_ANY. 15545 */ 15546 if (!(dst == prev_dst && dst != INADDR_ANY) && 15547 (ire != NULL)) { 15548 ire_refrele(ire); 15549 ire = NULL; 15550 } 15551 15552 if (ire == NULL) 15553 ire = ire_cache_lookup_simple(dst, ipst); 15554 15555 /* 15556 * Unless forwarding is enabled, dont call 15557 * ip_fast_forward(). Incoming packet is for forwarding 15558 */ 15559 if ((ill->ill_flags & ILLF_ROUTER) && 15560 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15561 15562 DTRACE_PROBE4(ip4__physical__in__start, 15563 ill_t *, ill, ill_t *, NULL, 15564 ipha_t *, ipha, mblk_t *, mp); 15565 15566 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15567 ipst->ips_ipv4firewall_physical_in, 15568 ill, NULL, ipha, mp, mp, 0, ipst); 15569 15570 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15571 15572 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15573 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15574 pkt_len); 15575 15576 if (mp != NULL) 15577 ire = ip_fast_forward(ire, dst, ill, mp); 15578 continue; 15579 } 15580 15581 /* incoming packet is for local consumption */ 15582 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15583 goto local_accept; 15584 15585 /* 15586 * Disable ire caching for anything more complex 15587 * than the simple fast path case we checked for above. 15588 */ 15589 if (ire != NULL) { 15590 ire_refrele(ire); 15591 ire = NULL; 15592 } 15593 15594 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15595 ipst); 15596 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15597 ire->ire_stq != NULL) { 15598 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15599 if (ire != NULL) { 15600 ire_refrele(ire); 15601 ire = NULL; 15602 } 15603 continue; 15604 } 15605 15606 local_accept: 15607 15608 if (ire->ire_rfq != q) { 15609 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15610 if (ire != NULL) { 15611 ire_refrele(ire); 15612 ire = NULL; 15613 } 15614 continue; 15615 } 15616 15617 /* 15618 * The event for packets being received from a 'physical' 15619 * interface is placed after validation of the source and/or 15620 * destination address as being local so that packets can be 15621 * redirected to loopback addresses using ipnat. 15622 */ 15623 DTRACE_PROBE4(ip4__physical__in__start, 15624 ill_t *, ill, ill_t *, NULL, 15625 ipha_t *, ipha, mblk_t *, mp); 15626 15627 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15628 ipst->ips_ipv4firewall_physical_in, 15629 ill, NULL, ipha, mp, mp, 0, ipst); 15630 15631 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15632 15633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15634 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15635 15636 if (mp != NULL && 15637 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15638 0, q, ip_ring)) != NULL) { 15639 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15640 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15641 } else { 15642 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15643 SQ_FILL, SQTAG_IP_INPUT); 15644 } 15645 } 15646 } 15647 15648 if (ire != NULL) 15649 ire_refrele(ire); 15650 15651 if (uhead != NULL) 15652 ip_input(ill, ip_ring, uhead, NULL); 15653 15654 if (ahead != NULL) { 15655 *last = atail; 15656 *cnt = acnt; 15657 return (ahead); 15658 } 15659 15660 return (NULL); 15661 #undef rptr 15662 } 15663 15664 static void 15665 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15666 t_uscalar_t err) 15667 { 15668 if (dl_err == DL_SYSERR) { 15669 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15670 "%s: %s failed: DL_SYSERR (errno %u)\n", 15671 ill->ill_name, dl_primstr(prim), err); 15672 return; 15673 } 15674 15675 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15676 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15677 dl_errstr(dl_err)); 15678 } 15679 15680 /* 15681 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15682 * than DL_UNITDATA_IND messages. If we need to process this message 15683 * exclusively, we call qwriter_ip, in which case we also need to call 15684 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15685 */ 15686 void 15687 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15688 { 15689 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15690 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15691 ill_t *ill = q->q_ptr; 15692 t_uscalar_t prim = dloa->dl_primitive; 15693 t_uscalar_t reqprim = DL_PRIM_INVAL; 15694 15695 ip1dbg(("ip_rput_dlpi")); 15696 15697 /* 15698 * If we received an ACK but didn't send a request for it, then it 15699 * can't be part of any pending operation; discard up-front. 15700 */ 15701 switch (prim) { 15702 case DL_ERROR_ACK: 15703 reqprim = dlea->dl_error_primitive; 15704 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15705 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15706 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15707 dlea->dl_unix_errno)); 15708 break; 15709 case DL_OK_ACK: 15710 reqprim = dloa->dl_correct_primitive; 15711 break; 15712 case DL_INFO_ACK: 15713 reqprim = DL_INFO_REQ; 15714 break; 15715 case DL_BIND_ACK: 15716 reqprim = DL_BIND_REQ; 15717 break; 15718 case DL_PHYS_ADDR_ACK: 15719 reqprim = DL_PHYS_ADDR_REQ; 15720 break; 15721 case DL_NOTIFY_ACK: 15722 reqprim = DL_NOTIFY_REQ; 15723 break; 15724 case DL_CONTROL_ACK: 15725 reqprim = DL_CONTROL_REQ; 15726 break; 15727 case DL_CAPABILITY_ACK: 15728 reqprim = DL_CAPABILITY_REQ; 15729 break; 15730 } 15731 15732 if (prim != DL_NOTIFY_IND) { 15733 if (reqprim == DL_PRIM_INVAL || 15734 !ill_dlpi_pending(ill, reqprim)) { 15735 /* Not a DLPI message we support or expected */ 15736 freemsg(mp); 15737 return; 15738 } 15739 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15740 dl_primstr(reqprim))); 15741 } 15742 15743 switch (reqprim) { 15744 case DL_UNBIND_REQ: 15745 /* 15746 * NOTE: we mark the unbind as complete even if we got a 15747 * DL_ERROR_ACK, since there's not much else we can do. 15748 */ 15749 mutex_enter(&ill->ill_lock); 15750 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15751 cv_signal(&ill->ill_cv); 15752 mutex_exit(&ill->ill_lock); 15753 break; 15754 15755 case DL_ENABMULTI_REQ: 15756 if (prim == DL_OK_ACK) { 15757 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15758 ill->ill_dlpi_multicast_state = IDS_OK; 15759 } 15760 break; 15761 } 15762 15763 /* 15764 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15765 * need to become writer to continue to process it. Because an 15766 * exclusive operation doesn't complete until replies to all queued 15767 * DLPI messages have been received, we know we're in the middle of an 15768 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15769 * 15770 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15771 * Since this is on the ill stream we unconditionally bump up the 15772 * refcount without doing ILL_CAN_LOOKUP(). 15773 */ 15774 ill_refhold(ill); 15775 if (prim == DL_NOTIFY_IND) 15776 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15777 else 15778 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15779 } 15780 15781 /* 15782 * Handling of DLPI messages that require exclusive access to the ipsq. 15783 * 15784 * Need to do ill_pending_mp_release on ioctl completion, which could 15785 * happen here. (along with mi_copy_done) 15786 */ 15787 /* ARGSUSED */ 15788 static void 15789 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15790 { 15791 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15792 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15793 int err = 0; 15794 ill_t *ill; 15795 ipif_t *ipif = NULL; 15796 mblk_t *mp1 = NULL; 15797 conn_t *connp = NULL; 15798 t_uscalar_t paddrreq; 15799 mblk_t *mp_hw; 15800 boolean_t success; 15801 boolean_t ioctl_aborted = B_FALSE; 15802 boolean_t log = B_TRUE; 15803 ip_stack_t *ipst; 15804 15805 ip1dbg(("ip_rput_dlpi_writer ..")); 15806 ill = (ill_t *)q->q_ptr; 15807 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15808 ASSERT(IAM_WRITER_ILL(ill)); 15809 15810 ipst = ill->ill_ipst; 15811 15812 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15813 /* 15814 * The current ioctl could have been aborted by the user and a new 15815 * ioctl to bring up another ill could have started. We could still 15816 * get a response from the driver later. 15817 */ 15818 if (ipif != NULL && ipif->ipif_ill != ill) 15819 ioctl_aborted = B_TRUE; 15820 15821 switch (dloa->dl_primitive) { 15822 case DL_ERROR_ACK: 15823 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15824 dl_primstr(dlea->dl_error_primitive))); 15825 15826 switch (dlea->dl_error_primitive) { 15827 case DL_DISABMULTI_REQ: 15828 if (!ill->ill_isv6) 15829 ipsq_current_finish(ipsq); 15830 ill_dlpi_done(ill, dlea->dl_error_primitive); 15831 break; 15832 case DL_PROMISCON_REQ: 15833 case DL_PROMISCOFF_REQ: 15834 case DL_UNBIND_REQ: 15835 case DL_ATTACH_REQ: 15836 case DL_INFO_REQ: 15837 ill_dlpi_done(ill, dlea->dl_error_primitive); 15838 break; 15839 case DL_NOTIFY_REQ: 15840 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15841 log = B_FALSE; 15842 break; 15843 case DL_PHYS_ADDR_REQ: 15844 /* 15845 * For IPv6 only, there are two additional 15846 * phys_addr_req's sent to the driver to get the 15847 * IPv6 token and lla. This allows IP to acquire 15848 * the hardware address format for a given interface 15849 * without having built in knowledge of the hardware 15850 * address. ill_phys_addr_pend keeps track of the last 15851 * DL_PAR sent so we know which response we are 15852 * dealing with. ill_dlpi_done will update 15853 * ill_phys_addr_pend when it sends the next req. 15854 * We don't complete the IOCTL until all three DL_PARs 15855 * have been attempted, so set *_len to 0 and break. 15856 */ 15857 paddrreq = ill->ill_phys_addr_pend; 15858 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15859 if (paddrreq == DL_IPV6_TOKEN) { 15860 ill->ill_token_length = 0; 15861 log = B_FALSE; 15862 break; 15863 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15864 ill->ill_nd_lla_len = 0; 15865 log = B_FALSE; 15866 break; 15867 } 15868 /* 15869 * Something went wrong with the DL_PHYS_ADDR_REQ. 15870 * We presumably have an IOCTL hanging out waiting 15871 * for completion. Find it and complete the IOCTL 15872 * with the error noted. 15873 * However, ill_dl_phys was called on an ill queue 15874 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15875 * set. But the ioctl is known to be pending on ill_wq. 15876 */ 15877 if (!ill->ill_ifname_pending) 15878 break; 15879 ill->ill_ifname_pending = 0; 15880 if (!ioctl_aborted) 15881 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15882 if (mp1 != NULL) { 15883 /* 15884 * This operation (SIOCSLIFNAME) must have 15885 * happened on the ill. Assert there is no conn 15886 */ 15887 ASSERT(connp == NULL); 15888 q = ill->ill_wq; 15889 } 15890 break; 15891 case DL_BIND_REQ: 15892 ill_dlpi_done(ill, DL_BIND_REQ); 15893 if (ill->ill_ifname_pending) 15894 break; 15895 /* 15896 * Something went wrong with the bind. We presumably 15897 * have an IOCTL hanging out waiting for completion. 15898 * Find it, take down the interface that was coming 15899 * up, and complete the IOCTL with the error noted. 15900 */ 15901 if (!ioctl_aborted) 15902 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15903 if (mp1 != NULL) { 15904 /* 15905 * This operation (SIOCSLIFFLAGS) must have 15906 * happened from a conn. 15907 */ 15908 ASSERT(connp != NULL); 15909 q = CONNP_TO_WQ(connp); 15910 (void) ipif_down(ipif, NULL, NULL); 15911 /* error is set below the switch */ 15912 } 15913 break; 15914 case DL_ENABMULTI_REQ: 15915 if (!ill->ill_isv6) 15916 ipsq_current_finish(ipsq); 15917 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15918 15919 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15920 ill->ill_dlpi_multicast_state = IDS_FAILED; 15921 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15922 ipif_t *ipif; 15923 15924 printf("ip: joining multicasts failed (%d)" 15925 " on %s - will use link layer " 15926 "broadcasts for multicast\n", 15927 dlea->dl_errno, ill->ill_name); 15928 15929 /* 15930 * Set up the multicast mapping alone. 15931 * writer, so ok to access ill->ill_ipif 15932 * without any lock. 15933 */ 15934 ipif = ill->ill_ipif; 15935 mutex_enter(&ill->ill_phyint->phyint_lock); 15936 ill->ill_phyint->phyint_flags |= 15937 PHYI_MULTI_BCAST; 15938 mutex_exit(&ill->ill_phyint->phyint_lock); 15939 15940 if (!ill->ill_isv6) { 15941 (void) ipif_arp_setup_multicast(ipif, 15942 NULL); 15943 } else { 15944 (void) ipif_ndp_setup_multicast(ipif, 15945 NULL); 15946 } 15947 } 15948 freemsg(mp); /* Don't want to pass this up */ 15949 return; 15950 case DL_CONTROL_REQ: 15951 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15952 "DL_CONTROL_REQ\n")); 15953 ill_dlpi_done(ill, dlea->dl_error_primitive); 15954 freemsg(mp); 15955 return; 15956 case DL_CAPABILITY_REQ: 15957 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15958 "DL_CAPABILITY REQ\n")); 15959 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15960 ill->ill_dlpi_capab_state = IDCS_FAILED; 15961 ill_capability_done(ill); 15962 freemsg(mp); 15963 return; 15964 } 15965 /* 15966 * Note the error for IOCTL completion (mp1 is set when 15967 * ready to complete ioctl). If ill_ifname_pending_err is 15968 * set, an error occured during plumbing (ill_ifname_pending), 15969 * so we want to report that error. 15970 * 15971 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15972 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15973 * expected to get errack'd if the driver doesn't support 15974 * these flags (e.g. ethernet). log will be set to B_FALSE 15975 * if these error conditions are encountered. 15976 */ 15977 if (mp1 != NULL) { 15978 if (ill->ill_ifname_pending_err != 0) { 15979 err = ill->ill_ifname_pending_err; 15980 ill->ill_ifname_pending_err = 0; 15981 } else { 15982 err = dlea->dl_unix_errno ? 15983 dlea->dl_unix_errno : ENXIO; 15984 } 15985 /* 15986 * If we're plumbing an interface and an error hasn't already 15987 * been saved, set ill_ifname_pending_err to the error passed 15988 * up. Ignore the error if log is B_FALSE (see comment above). 15989 */ 15990 } else if (log && ill->ill_ifname_pending && 15991 ill->ill_ifname_pending_err == 0) { 15992 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15993 dlea->dl_unix_errno : ENXIO; 15994 } 15995 15996 if (log) 15997 ip_dlpi_error(ill, dlea->dl_error_primitive, 15998 dlea->dl_errno, dlea->dl_unix_errno); 15999 break; 16000 case DL_CAPABILITY_ACK: 16001 ill_capability_ack(ill, mp); 16002 /* 16003 * The message has been handed off to ill_capability_ack 16004 * and must not be freed below 16005 */ 16006 mp = NULL; 16007 break; 16008 16009 case DL_CONTROL_ACK: 16010 /* We treat all of these as "fire and forget" */ 16011 ill_dlpi_done(ill, DL_CONTROL_REQ); 16012 break; 16013 case DL_INFO_ACK: 16014 /* Call a routine to handle this one. */ 16015 ill_dlpi_done(ill, DL_INFO_REQ); 16016 ip_ll_subnet_defaults(ill, mp); 16017 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16018 return; 16019 case DL_BIND_ACK: 16020 /* 16021 * We should have an IOCTL waiting on this unless 16022 * sent by ill_dl_phys, in which case just return 16023 */ 16024 ill_dlpi_done(ill, DL_BIND_REQ); 16025 if (ill->ill_ifname_pending) 16026 break; 16027 16028 if (!ioctl_aborted) 16029 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16030 if (mp1 == NULL) 16031 break; 16032 /* 16033 * Because mp1 was added by ill_dl_up(), and it always 16034 * passes a valid connp, connp must be valid here. 16035 */ 16036 ASSERT(connp != NULL); 16037 q = CONNP_TO_WQ(connp); 16038 16039 /* 16040 * We are exclusive. So nothing can change even after 16041 * we get the pending mp. If need be we can put it back 16042 * and restart, as in calling ipif_arp_up() below. 16043 */ 16044 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16045 16046 mutex_enter(&ill->ill_lock); 16047 ill->ill_dl_up = 1; 16048 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16049 mutex_exit(&ill->ill_lock); 16050 16051 /* 16052 * Now bring up the resolver; when that is complete, we'll 16053 * create IREs. Note that we intentionally mirror what 16054 * ipif_up() would have done, because we got here by way of 16055 * ill_dl_up(), which stopped ipif_up()'s processing. 16056 */ 16057 if (ill->ill_isv6) { 16058 if (ill->ill_flags & ILLF_XRESOLV) { 16059 mutex_enter(&connp->conn_lock); 16060 mutex_enter(&ill->ill_lock); 16061 success = ipsq_pending_mp_add(connp, ipif, q, 16062 mp1, 0); 16063 mutex_exit(&ill->ill_lock); 16064 mutex_exit(&connp->conn_lock); 16065 if (success) { 16066 err = ipif_resolver_up(ipif, 16067 Res_act_initial); 16068 if (err == EINPROGRESS) { 16069 freemsg(mp); 16070 return; 16071 } 16072 ASSERT(err != 0); 16073 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16074 ASSERT(mp1 != NULL); 16075 } else { 16076 /* conn has started closing */ 16077 err = EINTR; 16078 } 16079 } else { /* Non XRESOLV interface */ 16080 (void) ipif_resolver_up(ipif, Res_act_initial); 16081 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16082 err = ipif_up_done_v6(ipif); 16083 } 16084 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16085 /* 16086 * ARP and other v4 external resolvers. 16087 * Leave the pending mblk intact so that 16088 * the ioctl completes in ip_rput(). 16089 */ 16090 mutex_enter(&connp->conn_lock); 16091 mutex_enter(&ill->ill_lock); 16092 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16093 mutex_exit(&ill->ill_lock); 16094 mutex_exit(&connp->conn_lock); 16095 if (success) { 16096 err = ipif_resolver_up(ipif, Res_act_initial); 16097 if (err == EINPROGRESS) { 16098 freemsg(mp); 16099 return; 16100 } 16101 ASSERT(err != 0); 16102 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16103 } else { 16104 /* The conn has started closing */ 16105 err = EINTR; 16106 } 16107 } else { 16108 /* 16109 * This one is complete. Reply to pending ioctl. 16110 */ 16111 (void) ipif_resolver_up(ipif, Res_act_initial); 16112 err = ipif_up_done(ipif); 16113 } 16114 16115 if ((err == 0) && (ill->ill_up_ipifs)) { 16116 err = ill_up_ipifs(ill, q, mp1); 16117 if (err == EINPROGRESS) { 16118 freemsg(mp); 16119 return; 16120 } 16121 } 16122 16123 /* 16124 * If we have a moved ipif to bring up, and everything has 16125 * succeeded to this point, bring it up on the IPMP ill. 16126 * Otherwise, leave it down -- the admin can try to bring it 16127 * up by hand if need be. 16128 */ 16129 if (ill->ill_move_ipif != NULL) { 16130 if (err != 0) { 16131 ill->ill_move_ipif = NULL; 16132 } else { 16133 ipif = ill->ill_move_ipif; 16134 ill->ill_move_ipif = NULL; 16135 err = ipif_up(ipif, q, mp1); 16136 if (err == EINPROGRESS) { 16137 freemsg(mp); 16138 return; 16139 } 16140 } 16141 } 16142 break; 16143 16144 case DL_NOTIFY_IND: { 16145 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16146 ire_t *ire; 16147 uint_t orig_mtu; 16148 boolean_t need_ire_walk_v4 = B_FALSE; 16149 boolean_t need_ire_walk_v6 = B_FALSE; 16150 16151 switch (notify->dl_notification) { 16152 case DL_NOTE_PHYS_ADDR: 16153 err = ill_set_phys_addr(ill, mp); 16154 break; 16155 16156 case DL_NOTE_FASTPATH_FLUSH: 16157 ill_fastpath_flush(ill); 16158 break; 16159 16160 case DL_NOTE_SDU_SIZE: 16161 /* 16162 * Change the MTU size of the interface, of all 16163 * attached ipif's, and of all relevant ire's. The 16164 * new value's a uint32_t at notify->dl_data. 16165 * Mtu change Vs. new ire creation - protocol below. 16166 * 16167 * a Mark the ipif as IPIF_CHANGING. 16168 * b Set the new mtu in the ipif. 16169 * c Change the ire_max_frag on all affected ires 16170 * d Unmark the IPIF_CHANGING 16171 * 16172 * To see how the protocol works, assume an interface 16173 * route is also being added simultaneously by 16174 * ip_rt_add and let 'ipif' be the ipif referenced by 16175 * the ire. If the ire is created before step a, 16176 * it will be cleaned up by step c. If the ire is 16177 * created after step d, it will see the new value of 16178 * ipif_mtu. Any attempt to create the ire between 16179 * steps a to d will fail because of the IPIF_CHANGING 16180 * flag. Note that ire_create() is passed a pointer to 16181 * the ipif_mtu, and not the value. During ire_add 16182 * under the bucket lock, the ire_max_frag of the 16183 * new ire being created is set from the ipif/ire from 16184 * which it is being derived. 16185 */ 16186 mutex_enter(&ill->ill_lock); 16187 16188 orig_mtu = ill->ill_max_mtu; 16189 ill->ill_max_frag = (uint_t)notify->dl_data; 16190 ill->ill_max_mtu = (uint_t)notify->dl_data; 16191 16192 /* 16193 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16194 * clamp ill_max_mtu at it. 16195 */ 16196 if (ill->ill_user_mtu != 0 && 16197 ill->ill_user_mtu < ill->ill_max_mtu) 16198 ill->ill_max_mtu = ill->ill_user_mtu; 16199 16200 /* 16201 * If the MTU is unchanged, we're done. 16202 */ 16203 if (orig_mtu == ill->ill_max_mtu) { 16204 mutex_exit(&ill->ill_lock); 16205 break; 16206 } 16207 16208 if (ill->ill_isv6) { 16209 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16210 ill->ill_max_mtu = IPV6_MIN_MTU; 16211 } else { 16212 if (ill->ill_max_mtu < IP_MIN_MTU) 16213 ill->ill_max_mtu = IP_MIN_MTU; 16214 } 16215 for (ipif = ill->ill_ipif; ipif != NULL; 16216 ipif = ipif->ipif_next) { 16217 /* 16218 * Don't override the mtu if the user 16219 * has explicitly set it. 16220 */ 16221 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16222 continue; 16223 ipif->ipif_mtu = (uint_t)notify->dl_data; 16224 if (ipif->ipif_isv6) 16225 ire = ipif_to_ire_v6(ipif); 16226 else 16227 ire = ipif_to_ire(ipif); 16228 if (ire != NULL) { 16229 ire->ire_max_frag = ipif->ipif_mtu; 16230 ire_refrele(ire); 16231 } 16232 if (ipif->ipif_flags & IPIF_UP) { 16233 if (ill->ill_isv6) 16234 need_ire_walk_v6 = B_TRUE; 16235 else 16236 need_ire_walk_v4 = B_TRUE; 16237 } 16238 } 16239 mutex_exit(&ill->ill_lock); 16240 if (need_ire_walk_v4) 16241 ire_walk_v4(ill_mtu_change, (char *)ill, 16242 ALL_ZONES, ipst); 16243 if (need_ire_walk_v6) 16244 ire_walk_v6(ill_mtu_change, (char *)ill, 16245 ALL_ZONES, ipst); 16246 16247 /* 16248 * Refresh IPMP meta-interface MTU if necessary. 16249 */ 16250 if (IS_UNDER_IPMP(ill)) 16251 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16252 break; 16253 16254 case DL_NOTE_LINK_UP: 16255 case DL_NOTE_LINK_DOWN: { 16256 /* 16257 * We are writer. ill / phyint / ipsq assocs stable. 16258 * The RUNNING flag reflects the state of the link. 16259 */ 16260 phyint_t *phyint = ill->ill_phyint; 16261 uint64_t new_phyint_flags; 16262 boolean_t changed = B_FALSE; 16263 boolean_t went_up; 16264 16265 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16266 mutex_enter(&phyint->phyint_lock); 16267 16268 new_phyint_flags = went_up ? 16269 phyint->phyint_flags | PHYI_RUNNING : 16270 phyint->phyint_flags & ~PHYI_RUNNING; 16271 16272 if (IS_IPMP(ill)) { 16273 new_phyint_flags = went_up ? 16274 new_phyint_flags & ~PHYI_FAILED : 16275 new_phyint_flags | PHYI_FAILED; 16276 } 16277 16278 if (new_phyint_flags != phyint->phyint_flags) { 16279 phyint->phyint_flags = new_phyint_flags; 16280 changed = B_TRUE; 16281 } 16282 mutex_exit(&phyint->phyint_lock); 16283 /* 16284 * ill_restart_dad handles the DAD restart and routing 16285 * socket notification logic. 16286 */ 16287 if (changed) { 16288 ill_restart_dad(phyint->phyint_illv4, went_up); 16289 ill_restart_dad(phyint->phyint_illv6, went_up); 16290 } 16291 break; 16292 } 16293 case DL_NOTE_PROMISC_ON_PHYS: 16294 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16295 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16296 mutex_enter(&ill->ill_lock); 16297 ill->ill_promisc_on_phys = B_TRUE; 16298 mutex_exit(&ill->ill_lock); 16299 break; 16300 case DL_NOTE_PROMISC_OFF_PHYS: 16301 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16302 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16303 mutex_enter(&ill->ill_lock); 16304 ill->ill_promisc_on_phys = B_FALSE; 16305 mutex_exit(&ill->ill_lock); 16306 break; 16307 case DL_NOTE_CAPAB_RENEG: 16308 /* 16309 * Something changed on the driver side. 16310 * It wants us to renegotiate the capabilities 16311 * on this ill. One possible cause is the aggregation 16312 * interface under us where a port got added or 16313 * went away. 16314 * 16315 * If the capability negotiation is already done 16316 * or is in progress, reset the capabilities and 16317 * mark the ill's ill_capab_reneg to be B_TRUE, 16318 * so that when the ack comes back, we can start 16319 * the renegotiation process. 16320 * 16321 * Note that if ill_capab_reneg is already B_TRUE 16322 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16323 * the capability resetting request has been sent 16324 * and the renegotiation has not been started yet; 16325 * nothing needs to be done in this case. 16326 */ 16327 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16328 ill_capability_reset(ill, B_TRUE); 16329 ipsq_current_finish(ipsq); 16330 break; 16331 default: 16332 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16333 "type 0x%x for DL_NOTIFY_IND\n", 16334 notify->dl_notification)); 16335 break; 16336 } 16337 16338 /* 16339 * As this is an asynchronous operation, we 16340 * should not call ill_dlpi_done 16341 */ 16342 break; 16343 } 16344 case DL_NOTIFY_ACK: { 16345 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16346 16347 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16348 ill->ill_note_link = 1; 16349 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16350 break; 16351 } 16352 case DL_PHYS_ADDR_ACK: { 16353 /* 16354 * As part of plumbing the interface via SIOCSLIFNAME, 16355 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16356 * whose answers we receive here. As each answer is received, 16357 * we call ill_dlpi_done() to dispatch the next request as 16358 * we're processing the current one. Once all answers have 16359 * been received, we use ipsq_pending_mp_get() to dequeue the 16360 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16361 * is invoked from an ill queue, conn_oper_pending_ill is not 16362 * available, but we know the ioctl is pending on ill_wq.) 16363 */ 16364 uint_t paddrlen, paddroff; 16365 16366 paddrreq = ill->ill_phys_addr_pend; 16367 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16368 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16369 16370 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16371 if (paddrreq == DL_IPV6_TOKEN) { 16372 /* 16373 * bcopy to low-order bits of ill_token 16374 * 16375 * XXX Temporary hack - currently, all known tokens 16376 * are 64 bits, so I'll cheat for the moment. 16377 */ 16378 bcopy(mp->b_rptr + paddroff, 16379 &ill->ill_token.s6_addr32[2], paddrlen); 16380 ill->ill_token_length = paddrlen; 16381 break; 16382 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16383 ASSERT(ill->ill_nd_lla_mp == NULL); 16384 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16385 mp = NULL; 16386 break; 16387 } 16388 16389 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16390 ASSERT(ill->ill_phys_addr_mp == NULL); 16391 if (!ill->ill_ifname_pending) 16392 break; 16393 ill->ill_ifname_pending = 0; 16394 if (!ioctl_aborted) 16395 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16396 if (mp1 != NULL) { 16397 ASSERT(connp == NULL); 16398 q = ill->ill_wq; 16399 } 16400 /* 16401 * If any error acks received during the plumbing sequence, 16402 * ill_ifname_pending_err will be set. Break out and send up 16403 * the error to the pending ioctl. 16404 */ 16405 if (ill->ill_ifname_pending_err != 0) { 16406 err = ill->ill_ifname_pending_err; 16407 ill->ill_ifname_pending_err = 0; 16408 break; 16409 } 16410 16411 ill->ill_phys_addr_mp = mp; 16412 ill->ill_phys_addr = mp->b_rptr + paddroff; 16413 mp = NULL; 16414 16415 /* 16416 * If paddrlen is zero, the DLPI provider doesn't support 16417 * physical addresses. The other two tests were historical 16418 * workarounds for bugs in our former PPP implementation, but 16419 * now other things have grown dependencies on them -- e.g., 16420 * the tun module specifies a dl_addr_length of zero in its 16421 * DL_BIND_ACK, but then specifies an incorrect value in its 16422 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16423 * but only after careful testing ensures that all dependent 16424 * broken DLPI providers have been fixed. 16425 */ 16426 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16427 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16428 ill->ill_phys_addr = NULL; 16429 } else if (paddrlen != ill->ill_phys_addr_length) { 16430 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16431 paddrlen, ill->ill_phys_addr_length)); 16432 err = EINVAL; 16433 break; 16434 } 16435 16436 if (ill->ill_nd_lla_mp == NULL) { 16437 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16438 err = ENOMEM; 16439 break; 16440 } 16441 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16442 } 16443 16444 /* 16445 * Set the interface token. If the zeroth interface address 16446 * is unspecified, then set it to the link local address. 16447 */ 16448 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16449 (void) ill_setdefaulttoken(ill); 16450 16451 ASSERT(ill->ill_ipif->ipif_id == 0); 16452 if (ipif != NULL && 16453 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16454 (void) ipif_setlinklocal(ipif); 16455 } 16456 break; 16457 } 16458 case DL_OK_ACK: 16459 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16460 dl_primstr((int)dloa->dl_correct_primitive), 16461 dloa->dl_correct_primitive)); 16462 switch (dloa->dl_correct_primitive) { 16463 case DL_ENABMULTI_REQ: 16464 case DL_DISABMULTI_REQ: 16465 if (!ill->ill_isv6) 16466 ipsq_current_finish(ipsq); 16467 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16468 break; 16469 case DL_PROMISCON_REQ: 16470 case DL_PROMISCOFF_REQ: 16471 case DL_UNBIND_REQ: 16472 case DL_ATTACH_REQ: 16473 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16474 break; 16475 } 16476 break; 16477 default: 16478 break; 16479 } 16480 16481 freemsg(mp); 16482 if (mp1 == NULL) 16483 return; 16484 16485 /* 16486 * The operation must complete without EINPROGRESS since 16487 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16488 * the operation will be stuck forever inside the IPSQ. 16489 */ 16490 ASSERT(err != EINPROGRESS); 16491 16492 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16493 case 0: 16494 ipsq_current_finish(ipsq); 16495 break; 16496 16497 case SIOCSLIFNAME: 16498 case IF_UNITSEL: { 16499 ill_t *ill_other = ILL_OTHER(ill); 16500 16501 /* 16502 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16503 * ill has a peer which is in an IPMP group, then place ill 16504 * into the same group. One catch: although ifconfig plumbs 16505 * the appropriate IPMP meta-interface prior to plumbing this 16506 * ill, it is possible for multiple ifconfig applications to 16507 * race (or for another application to adjust plumbing), in 16508 * which case the IPMP meta-interface we need will be missing. 16509 * If so, kick the phyint out of the group. 16510 */ 16511 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16512 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16513 ipmp_illgrp_t *illg; 16514 16515 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16516 if (illg == NULL) 16517 ipmp_phyint_leave_grp(ill->ill_phyint); 16518 else 16519 ipmp_ill_join_illgrp(ill, illg); 16520 } 16521 16522 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16523 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16524 else 16525 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16526 break; 16527 } 16528 case SIOCLIFADDIF: 16529 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16530 break; 16531 16532 default: 16533 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16534 break; 16535 } 16536 } 16537 16538 /* 16539 * ip_rput_other is called by ip_rput to handle messages modifying the global 16540 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16541 */ 16542 /* ARGSUSED */ 16543 void 16544 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16545 { 16546 ill_t *ill = q->q_ptr; 16547 struct iocblk *iocp; 16548 mblk_t *mp1; 16549 conn_t *connp = NULL; 16550 16551 ip1dbg(("ip_rput_other ")); 16552 if (ipsq != NULL) { 16553 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16554 ASSERT(ipsq->ipsq_xop == 16555 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16556 } 16557 16558 switch (mp->b_datap->db_type) { 16559 case M_ERROR: 16560 case M_HANGUP: 16561 /* 16562 * The device has a problem. We force the ILL down. It can 16563 * be brought up again manually using SIOCSIFFLAGS (via 16564 * ifconfig or equivalent). 16565 */ 16566 ASSERT(ipsq != NULL); 16567 if (mp->b_rptr < mp->b_wptr) 16568 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16569 if (ill->ill_error == 0) 16570 ill->ill_error = ENXIO; 16571 if (!ill_down_start(q, mp)) 16572 return; 16573 ipif_all_down_tail(ipsq, q, mp, NULL); 16574 break; 16575 case M_IOCACK: 16576 iocp = (struct iocblk *)mp->b_rptr; 16577 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16578 switch (iocp->ioc_cmd) { 16579 case SIOCSTUNPARAM: 16580 case OSIOCSTUNPARAM: 16581 ASSERT(ipsq != NULL); 16582 /* 16583 * Finish socket ioctl passed through to tun. 16584 * We should have an IOCTL waiting on this. 16585 */ 16586 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16587 if (ill->ill_isv6) { 16588 struct iftun_req *ta; 16589 16590 /* 16591 * if a source or destination is 16592 * being set, try and set the link 16593 * local address for the tunnel 16594 */ 16595 ta = (struct iftun_req *)mp->b_cont-> 16596 b_cont->b_rptr; 16597 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16598 ipif_set_tun_llink(ill, ta); 16599 } 16600 16601 } 16602 if (mp1 != NULL) { 16603 /* 16604 * Now copy back the b_next/b_prev used by 16605 * mi code for the mi_copy* functions. 16606 * See ip_sioctl_tunparam() for the reason. 16607 * Also protect against missing b_cont. 16608 */ 16609 if (mp->b_cont != NULL) { 16610 mp->b_cont->b_next = 16611 mp1->b_cont->b_next; 16612 mp->b_cont->b_prev = 16613 mp1->b_cont->b_prev; 16614 } 16615 inet_freemsg(mp1); 16616 ASSERT(connp != NULL); 16617 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16618 iocp->ioc_error, NO_COPYOUT, ipsq); 16619 } else { 16620 ASSERT(connp == NULL); 16621 putnext(q, mp); 16622 } 16623 break; 16624 case SIOCGTUNPARAM: 16625 case OSIOCGTUNPARAM: 16626 /* 16627 * This is really M_IOCDATA from the tunnel driver. 16628 * convert back and complete the ioctl. 16629 * We should have an IOCTL waiting on this. 16630 */ 16631 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16632 if (mp1) { 16633 /* 16634 * Now copy back the b_next/b_prev used by 16635 * mi code for the mi_copy* functions. 16636 * See ip_sioctl_tunparam() for the reason. 16637 * Also protect against missing b_cont. 16638 */ 16639 if (mp->b_cont != NULL) { 16640 mp->b_cont->b_next = 16641 mp1->b_cont->b_next; 16642 mp->b_cont->b_prev = 16643 mp1->b_cont->b_prev; 16644 } 16645 inet_freemsg(mp1); 16646 if (iocp->ioc_error == 0) 16647 mp->b_datap->db_type = M_IOCDATA; 16648 ASSERT(connp != NULL); 16649 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16650 iocp->ioc_error, COPYOUT, NULL); 16651 } else { 16652 ASSERT(connp == NULL); 16653 putnext(q, mp); 16654 } 16655 break; 16656 default: 16657 break; 16658 } 16659 break; 16660 case M_IOCNAK: 16661 iocp = (struct iocblk *)mp->b_rptr; 16662 16663 switch (iocp->ioc_cmd) { 16664 int mode; 16665 16666 case DL_IOC_HDR_INFO: 16667 /* 16668 * If this was the first attempt, turn off the 16669 * fastpath probing. 16670 */ 16671 mutex_enter(&ill->ill_lock); 16672 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16673 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16674 mutex_exit(&ill->ill_lock); 16675 ill_fastpath_nack(ill); 16676 ip1dbg(("ip_rput: DLPI fastpath off on " 16677 "interface %s\n", 16678 ill->ill_name)); 16679 } else { 16680 mutex_exit(&ill->ill_lock); 16681 } 16682 freemsg(mp); 16683 break; 16684 case SIOCSTUNPARAM: 16685 case OSIOCSTUNPARAM: 16686 ASSERT(ipsq != NULL); 16687 /* 16688 * Finish socket ioctl passed through to tun 16689 * We should have an IOCTL waiting on this. 16690 */ 16691 /* FALLTHRU */ 16692 case SIOCGTUNPARAM: 16693 case OSIOCGTUNPARAM: 16694 /* 16695 * This is really M_IOCDATA from the tunnel driver. 16696 * convert back and complete the ioctl. 16697 * We should have an IOCTL waiting on this. 16698 */ 16699 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16700 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16701 mp1 = ill_pending_mp_get(ill, &connp, 16702 iocp->ioc_id); 16703 mode = COPYOUT; 16704 ipsq = NULL; 16705 } else { 16706 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16707 mode = NO_COPYOUT; 16708 } 16709 if (mp1 != NULL) { 16710 /* 16711 * Now copy back the b_next/b_prev used by 16712 * mi code for the mi_copy* functions. 16713 * See ip_sioctl_tunparam() for the reason. 16714 * Also protect against missing b_cont. 16715 */ 16716 if (mp->b_cont != NULL) { 16717 mp->b_cont->b_next = 16718 mp1->b_cont->b_next; 16719 mp->b_cont->b_prev = 16720 mp1->b_cont->b_prev; 16721 } 16722 inet_freemsg(mp1); 16723 if (iocp->ioc_error == 0) 16724 iocp->ioc_error = EINVAL; 16725 ASSERT(connp != NULL); 16726 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16727 iocp->ioc_error, mode, ipsq); 16728 } else { 16729 ASSERT(connp == NULL); 16730 putnext(q, mp); 16731 } 16732 break; 16733 default: 16734 break; 16735 } 16736 default: 16737 break; 16738 } 16739 } 16740 16741 /* 16742 * NOTE : This function does not ire_refrele the ire argument passed in. 16743 * 16744 * IPQoS notes 16745 * IP policy is invoked twice for a forwarded packet, once on the read side 16746 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16747 * enabled. An additional parameter, in_ill, has been added for this purpose. 16748 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16749 * because ip_mroute drops this information. 16750 * 16751 */ 16752 void 16753 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16754 { 16755 uint32_t old_pkt_len; 16756 uint32_t pkt_len; 16757 queue_t *q; 16758 uint32_t sum; 16759 #define rptr ((uchar_t *)ipha) 16760 uint32_t max_frag; 16761 uint32_t ill_index; 16762 ill_t *out_ill; 16763 mib2_ipIfStatsEntry_t *mibptr; 16764 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16765 16766 /* Get the ill_index of the incoming ILL */ 16767 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16768 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16769 16770 /* Initiate Read side IPPF processing */ 16771 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16772 ip_process(IPP_FWD_IN, &mp, ill_index); 16773 if (mp == NULL) { 16774 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16775 "during IPPF processing\n")); 16776 return; 16777 } 16778 } 16779 16780 /* Adjust the checksum to reflect the ttl decrement. */ 16781 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16782 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16783 16784 if (ipha->ipha_ttl-- <= 1) { 16785 if (ip_csum_hdr(ipha)) { 16786 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16787 goto drop_pkt; 16788 } 16789 /* 16790 * Note: ire_stq this will be NULL for multicast 16791 * datagrams using the long path through arp (the IRE 16792 * is not an IRE_CACHE). This should not cause 16793 * problems since we don't generate ICMP errors for 16794 * multicast packets. 16795 */ 16796 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16797 q = ire->ire_stq; 16798 if (q != NULL) { 16799 /* Sent by forwarding path, and router is global zone */ 16800 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16801 GLOBAL_ZONEID, ipst); 16802 } else 16803 freemsg(mp); 16804 return; 16805 } 16806 16807 /* 16808 * Don't forward if the interface is down 16809 */ 16810 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16811 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16812 ip2dbg(("ip_rput_forward:interface is down\n")); 16813 goto drop_pkt; 16814 } 16815 16816 /* Get the ill_index of the outgoing ILL */ 16817 out_ill = ire_to_ill(ire); 16818 ill_index = out_ill->ill_phyint->phyint_ifindex; 16819 16820 DTRACE_PROBE4(ip4__forwarding__start, 16821 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16822 16823 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16824 ipst->ips_ipv4firewall_forwarding, 16825 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16826 16827 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16828 16829 if (mp == NULL) 16830 return; 16831 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16832 16833 if (is_system_labeled()) { 16834 mblk_t *mp1; 16835 16836 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16837 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16838 goto drop_pkt; 16839 } 16840 /* Size may have changed */ 16841 mp = mp1; 16842 ipha = (ipha_t *)mp->b_rptr; 16843 pkt_len = ntohs(ipha->ipha_length); 16844 } 16845 16846 /* Check if there are options to update */ 16847 if (!IS_SIMPLE_IPH(ipha)) { 16848 if (ip_csum_hdr(ipha)) { 16849 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16850 goto drop_pkt; 16851 } 16852 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16853 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16854 return; 16855 } 16856 16857 ipha->ipha_hdr_checksum = 0; 16858 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16859 } 16860 max_frag = ire->ire_max_frag; 16861 if (pkt_len > max_frag) { 16862 /* 16863 * It needs fragging on its way out. We haven't 16864 * verified the header checksum yet. Since we 16865 * are going to put a surely good checksum in the 16866 * outgoing header, we have to make sure that it 16867 * was good coming in. 16868 */ 16869 if (ip_csum_hdr(ipha)) { 16870 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16871 goto drop_pkt; 16872 } 16873 /* Initiate Write side IPPF processing */ 16874 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16875 ip_process(IPP_FWD_OUT, &mp, ill_index); 16876 if (mp == NULL) { 16877 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16878 " during IPPF processing\n")); 16879 return; 16880 } 16881 } 16882 /* 16883 * Handle labeled packet resizing. 16884 * 16885 * If we have added a label, inform ip_wput_frag() of its 16886 * effect on the MTU for ICMP messages. 16887 */ 16888 if (pkt_len > old_pkt_len) { 16889 uint32_t secopt_size; 16890 16891 secopt_size = pkt_len - old_pkt_len; 16892 if (secopt_size < max_frag) 16893 max_frag -= secopt_size; 16894 } 16895 16896 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16897 GLOBAL_ZONEID, ipst, NULL); 16898 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16899 return; 16900 } 16901 16902 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16903 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16904 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16905 ipst->ips_ipv4firewall_physical_out, 16906 NULL, out_ill, ipha, mp, mp, 0, ipst); 16907 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16908 if (mp == NULL) 16909 return; 16910 16911 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16912 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16913 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16914 /* ip_xmit_v4 always consumes the packet */ 16915 return; 16916 16917 drop_pkt:; 16918 ip1dbg(("ip_rput_forward: drop pkt\n")); 16919 freemsg(mp); 16920 #undef rptr 16921 } 16922 16923 void 16924 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16925 { 16926 ire_t *ire; 16927 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16928 16929 ASSERT(!ipif->ipif_isv6); 16930 /* 16931 * Find an IRE which matches the destination and the outgoing 16932 * queue in the cache table. All we need is an IRE_CACHE which 16933 * is pointing at ipif->ipif_ill. 16934 */ 16935 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16936 dst = ipif->ipif_pp_dst_addr; 16937 16938 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16939 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16940 if (ire == NULL) { 16941 /* 16942 * Mark this packet to make it be delivered to 16943 * ip_rput_forward after the new ire has been 16944 * created. 16945 */ 16946 mp->b_prev = NULL; 16947 mp->b_next = mp; 16948 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16949 NULL, 0, GLOBAL_ZONEID, &zero_info); 16950 } else { 16951 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16952 IRE_REFRELE(ire); 16953 } 16954 } 16955 16956 /* Update any source route, record route or timestamp options */ 16957 static int 16958 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16959 { 16960 ipoptp_t opts; 16961 uchar_t *opt; 16962 uint8_t optval; 16963 uint8_t optlen; 16964 ipaddr_t dst; 16965 uint32_t ts; 16966 ire_t *dst_ire = NULL; 16967 ire_t *tmp_ire = NULL; 16968 timestruc_t now; 16969 16970 ip2dbg(("ip_rput_forward_options\n")); 16971 dst = ipha->ipha_dst; 16972 for (optval = ipoptp_first(&opts, ipha); 16973 optval != IPOPT_EOL; 16974 optval = ipoptp_next(&opts)) { 16975 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16976 opt = opts.ipoptp_cur; 16977 optlen = opts.ipoptp_len; 16978 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16979 optval, opts.ipoptp_len)); 16980 switch (optval) { 16981 uint32_t off; 16982 case IPOPT_SSRR: 16983 case IPOPT_LSRR: 16984 /* Check if adminstratively disabled */ 16985 if (!ipst->ips_ip_forward_src_routed) { 16986 if (ire->ire_stq != NULL) { 16987 /* 16988 * Sent by forwarding path, and router 16989 * is global zone 16990 */ 16991 icmp_unreachable(ire->ire_stq, mp, 16992 ICMP_SOURCE_ROUTE_FAILED, 16993 GLOBAL_ZONEID, ipst); 16994 } else { 16995 ip0dbg(("ip_rput_forward_options: " 16996 "unable to send unreach\n")); 16997 freemsg(mp); 16998 } 16999 return (-1); 17000 } 17001 17002 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17003 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17004 if (dst_ire == NULL) { 17005 /* 17006 * Must be partial since ip_rput_options 17007 * checked for strict. 17008 */ 17009 break; 17010 } 17011 off = opt[IPOPT_OFFSET]; 17012 off--; 17013 redo_srr: 17014 if (optlen < IP_ADDR_LEN || 17015 off > optlen - IP_ADDR_LEN) { 17016 /* End of source route */ 17017 ip1dbg(( 17018 "ip_rput_forward_options: end of SR\n")); 17019 ire_refrele(dst_ire); 17020 break; 17021 } 17022 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17023 bcopy(&ire->ire_src_addr, (char *)opt + off, 17024 IP_ADDR_LEN); 17025 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17026 ntohl(dst))); 17027 17028 /* 17029 * Check if our address is present more than 17030 * once as consecutive hops in source route. 17031 */ 17032 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17033 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17034 if (tmp_ire != NULL) { 17035 ire_refrele(tmp_ire); 17036 off += IP_ADDR_LEN; 17037 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17038 goto redo_srr; 17039 } 17040 ipha->ipha_dst = dst; 17041 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17042 ire_refrele(dst_ire); 17043 break; 17044 case IPOPT_RR: 17045 off = opt[IPOPT_OFFSET]; 17046 off--; 17047 if (optlen < IP_ADDR_LEN || 17048 off > optlen - IP_ADDR_LEN) { 17049 /* No more room - ignore */ 17050 ip1dbg(( 17051 "ip_rput_forward_options: end of RR\n")); 17052 break; 17053 } 17054 bcopy(&ire->ire_src_addr, (char *)opt + off, 17055 IP_ADDR_LEN); 17056 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17057 break; 17058 case IPOPT_TS: 17059 /* Insert timestamp if there is room */ 17060 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17061 case IPOPT_TS_TSONLY: 17062 off = IPOPT_TS_TIMELEN; 17063 break; 17064 case IPOPT_TS_PRESPEC: 17065 case IPOPT_TS_PRESPEC_RFC791: 17066 /* Verify that the address matched */ 17067 off = opt[IPOPT_OFFSET] - 1; 17068 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17069 dst_ire = ire_ctable_lookup(dst, 0, 17070 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17071 MATCH_IRE_TYPE, ipst); 17072 if (dst_ire == NULL) { 17073 /* Not for us */ 17074 break; 17075 } 17076 ire_refrele(dst_ire); 17077 /* FALLTHRU */ 17078 case IPOPT_TS_TSANDADDR: 17079 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17080 break; 17081 default: 17082 /* 17083 * ip_*put_options should have already 17084 * dropped this packet. 17085 */ 17086 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17087 "unknown IT - bug in ip_rput_options?\n"); 17088 return (0); /* Keep "lint" happy */ 17089 } 17090 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17091 /* Increase overflow counter */ 17092 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17093 opt[IPOPT_POS_OV_FLG] = 17094 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17095 (off << 4)); 17096 break; 17097 } 17098 off = opt[IPOPT_OFFSET] - 1; 17099 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17100 case IPOPT_TS_PRESPEC: 17101 case IPOPT_TS_PRESPEC_RFC791: 17102 case IPOPT_TS_TSANDADDR: 17103 bcopy(&ire->ire_src_addr, 17104 (char *)opt + off, IP_ADDR_LEN); 17105 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17106 /* FALLTHRU */ 17107 case IPOPT_TS_TSONLY: 17108 off = opt[IPOPT_OFFSET] - 1; 17109 /* Compute # of milliseconds since midnight */ 17110 gethrestime(&now); 17111 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17112 now.tv_nsec / (NANOSEC / MILLISEC); 17113 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17114 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17115 break; 17116 } 17117 break; 17118 } 17119 } 17120 return (0); 17121 } 17122 17123 /* 17124 * This is called after processing at least one of AH/ESP headers. 17125 * 17126 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17127 * the actual, physical interface on which the packet was received, 17128 * but, when ip_strict_dst_multihoming is set to 1, could be the 17129 * interface which had the ipha_dst configured when the packet went 17130 * through ip_rput. The ill_index corresponding to the recv_ill 17131 * is saved in ipsec_in_rill_index 17132 * 17133 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17134 * cannot assume "ire" points to valid data for any IPv6 cases. 17135 */ 17136 void 17137 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17138 { 17139 mblk_t *mp; 17140 ipaddr_t dst; 17141 in6_addr_t *v6dstp; 17142 ipha_t *ipha; 17143 ip6_t *ip6h; 17144 ipsec_in_t *ii; 17145 boolean_t ill_need_rele = B_FALSE; 17146 boolean_t rill_need_rele = B_FALSE; 17147 boolean_t ire_need_rele = B_FALSE; 17148 netstack_t *ns; 17149 ip_stack_t *ipst; 17150 17151 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17152 ASSERT(ii->ipsec_in_ill_index != 0); 17153 ns = ii->ipsec_in_ns; 17154 ASSERT(ii->ipsec_in_ns != NULL); 17155 ipst = ns->netstack_ip; 17156 17157 mp = ipsec_mp->b_cont; 17158 ASSERT(mp != NULL); 17159 17160 if (ill == NULL) { 17161 ASSERT(recv_ill == NULL); 17162 /* 17163 * We need to get the original queue on which ip_rput_local 17164 * or ip_rput_data_v6 was called. 17165 */ 17166 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17167 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17168 ill_need_rele = B_TRUE; 17169 17170 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17171 recv_ill = ill_lookup_on_ifindex( 17172 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17173 NULL, NULL, NULL, NULL, ipst); 17174 rill_need_rele = B_TRUE; 17175 } else { 17176 recv_ill = ill; 17177 } 17178 17179 if ((ill == NULL) || (recv_ill == NULL)) { 17180 ip0dbg(("ip_fanout_proto_again: interface " 17181 "disappeared\n")); 17182 if (ill != NULL) 17183 ill_refrele(ill); 17184 if (recv_ill != NULL) 17185 ill_refrele(recv_ill); 17186 freemsg(ipsec_mp); 17187 return; 17188 } 17189 } 17190 17191 ASSERT(ill != NULL && recv_ill != NULL); 17192 17193 if (mp->b_datap->db_type == M_CTL) { 17194 /* 17195 * AH/ESP is returning the ICMP message after 17196 * removing their headers. Fanout again till 17197 * it gets to the right protocol. 17198 */ 17199 if (ii->ipsec_in_v4) { 17200 icmph_t *icmph; 17201 int iph_hdr_length; 17202 int hdr_length; 17203 17204 ipha = (ipha_t *)mp->b_rptr; 17205 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17206 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17207 ipha = (ipha_t *)&icmph[1]; 17208 hdr_length = IPH_HDR_LENGTH(ipha); 17209 /* 17210 * icmp_inbound_error_fanout may need to do pullupmsg. 17211 * Reset the type to M_DATA. 17212 */ 17213 mp->b_datap->db_type = M_DATA; 17214 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17215 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17216 B_FALSE, ill, ii->ipsec_in_zoneid); 17217 } else { 17218 icmp6_t *icmp6; 17219 int hdr_length; 17220 17221 ip6h = (ip6_t *)mp->b_rptr; 17222 /* Don't call hdr_length_v6() unless you have to. */ 17223 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17224 hdr_length = ip_hdr_length_v6(mp, ip6h); 17225 else 17226 hdr_length = IPV6_HDR_LEN; 17227 17228 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17229 /* 17230 * icmp_inbound_error_fanout_v6 may need to do 17231 * pullupmsg. Reset the type to M_DATA. 17232 */ 17233 mp->b_datap->db_type = M_DATA; 17234 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17235 ip6h, icmp6, ill, recv_ill, B_TRUE, 17236 ii->ipsec_in_zoneid); 17237 } 17238 if (ill_need_rele) 17239 ill_refrele(ill); 17240 if (rill_need_rele) 17241 ill_refrele(recv_ill); 17242 return; 17243 } 17244 17245 if (ii->ipsec_in_v4) { 17246 ipha = (ipha_t *)mp->b_rptr; 17247 dst = ipha->ipha_dst; 17248 if (CLASSD(dst)) { 17249 /* 17250 * Multicast has to be delivered to all streams. 17251 */ 17252 dst = INADDR_BROADCAST; 17253 } 17254 17255 if (ire == NULL) { 17256 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17257 msg_getlabel(mp), ipst); 17258 if (ire == NULL) { 17259 if (ill_need_rele) 17260 ill_refrele(ill); 17261 if (rill_need_rele) 17262 ill_refrele(recv_ill); 17263 ip1dbg(("ip_fanout_proto_again: " 17264 "IRE not found")); 17265 freemsg(ipsec_mp); 17266 return; 17267 } 17268 ire_need_rele = B_TRUE; 17269 } 17270 17271 switch (ipha->ipha_protocol) { 17272 case IPPROTO_UDP: 17273 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17274 recv_ill); 17275 if (ire_need_rele) 17276 ire_refrele(ire); 17277 break; 17278 case IPPROTO_TCP: 17279 if (!ire_need_rele) 17280 IRE_REFHOLD(ire); 17281 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17282 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17283 IRE_REFRELE(ire); 17284 if (mp != NULL) { 17285 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17286 mp, 1, SQ_PROCESS, 17287 SQTAG_IP_PROTO_AGAIN); 17288 } 17289 break; 17290 case IPPROTO_SCTP: 17291 if (!ire_need_rele) 17292 IRE_REFHOLD(ire); 17293 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17294 ipsec_mp, 0, ill->ill_rq, dst); 17295 break; 17296 default: 17297 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17298 recv_ill, 0); 17299 if (ire_need_rele) 17300 ire_refrele(ire); 17301 break; 17302 } 17303 } else { 17304 uint32_t rput_flags = 0; 17305 17306 ip6h = (ip6_t *)mp->b_rptr; 17307 v6dstp = &ip6h->ip6_dst; 17308 /* 17309 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17310 * address. 17311 * 17312 * Currently, we don't store that state in the IPSEC_IN 17313 * message, and we may need to. 17314 */ 17315 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17316 IP6_IN_LLMCAST : 0); 17317 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17318 NULL, NULL); 17319 } 17320 if (ill_need_rele) 17321 ill_refrele(ill); 17322 if (rill_need_rele) 17323 ill_refrele(recv_ill); 17324 } 17325 17326 /* 17327 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17328 * returns 'true' if there are still fragments left on the queue, in 17329 * which case we restart the timer. 17330 */ 17331 void 17332 ill_frag_timer(void *arg) 17333 { 17334 ill_t *ill = (ill_t *)arg; 17335 boolean_t frag_pending; 17336 ip_stack_t *ipst = ill->ill_ipst; 17337 17338 mutex_enter(&ill->ill_lock); 17339 ASSERT(!ill->ill_fragtimer_executing); 17340 if (ill->ill_state_flags & ILL_CONDEMNED) { 17341 ill->ill_frag_timer_id = 0; 17342 mutex_exit(&ill->ill_lock); 17343 return; 17344 } 17345 ill->ill_fragtimer_executing = 1; 17346 mutex_exit(&ill->ill_lock); 17347 17348 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17349 17350 /* 17351 * Restart the timer, if we have fragments pending or if someone 17352 * wanted us to be scheduled again. 17353 */ 17354 mutex_enter(&ill->ill_lock); 17355 ill->ill_fragtimer_executing = 0; 17356 ill->ill_frag_timer_id = 0; 17357 if (frag_pending || ill->ill_fragtimer_needrestart) 17358 ill_frag_timer_start(ill); 17359 mutex_exit(&ill->ill_lock); 17360 } 17361 17362 void 17363 ill_frag_timer_start(ill_t *ill) 17364 { 17365 ip_stack_t *ipst = ill->ill_ipst; 17366 17367 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17368 17369 /* If the ill is closing or opening don't proceed */ 17370 if (ill->ill_state_flags & ILL_CONDEMNED) 17371 return; 17372 17373 if (ill->ill_fragtimer_executing) { 17374 /* 17375 * ill_frag_timer is currently executing. Just record the 17376 * the fact that we want the timer to be restarted. 17377 * ill_frag_timer will post a timeout before it returns, 17378 * ensuring it will be called again. 17379 */ 17380 ill->ill_fragtimer_needrestart = 1; 17381 return; 17382 } 17383 17384 if (ill->ill_frag_timer_id == 0) { 17385 /* 17386 * The timer is neither running nor is the timeout handler 17387 * executing. Post a timeout so that ill_frag_timer will be 17388 * called 17389 */ 17390 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17391 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17392 ill->ill_fragtimer_needrestart = 0; 17393 } 17394 } 17395 17396 /* 17397 * This routine is needed for loopback when forwarding multicasts. 17398 * 17399 * IPQoS Notes: 17400 * IPPF processing is done in fanout routines. 17401 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17402 * processing for IPsec packets is done when it comes back in clear. 17403 * NOTE : The callers of this function need to do the ire_refrele for the 17404 * ire that is being passed in. 17405 */ 17406 void 17407 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17408 ill_t *recv_ill, uint32_t esp_udp_ports) 17409 { 17410 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17411 ill_t *ill = (ill_t *)q->q_ptr; 17412 uint32_t sum; 17413 uint32_t u1; 17414 uint32_t u2; 17415 int hdr_length; 17416 boolean_t mctl_present; 17417 mblk_t *first_mp = mp; 17418 mblk_t *hada_mp = NULL; 17419 ipha_t *inner_ipha; 17420 ip_stack_t *ipst; 17421 17422 ASSERT(recv_ill != NULL); 17423 ipst = recv_ill->ill_ipst; 17424 17425 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17426 "ip_rput_locl_start: q %p", q); 17427 17428 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17429 ASSERT(ill != NULL); 17430 17431 #define rptr ((uchar_t *)ipha) 17432 #define iphs ((uint16_t *)ipha) 17433 17434 /* 17435 * no UDP or TCP packet should come here anymore. 17436 */ 17437 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17438 ipha->ipha_protocol != IPPROTO_UDP); 17439 17440 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17441 if (mctl_present && 17442 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17443 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17444 17445 /* 17446 * It's an IPsec accelerated packet. 17447 * Keep a pointer to the data attributes around until 17448 * we allocate the ipsec_info_t. 17449 */ 17450 IPSECHW_DEBUG(IPSECHW_PKT, 17451 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17452 hada_mp = first_mp; 17453 hada_mp->b_cont = NULL; 17454 /* 17455 * Since it is accelerated, it comes directly from 17456 * the ill and the data attributes is followed by 17457 * the packet data. 17458 */ 17459 ASSERT(mp->b_datap->db_type != M_CTL); 17460 first_mp = mp; 17461 mctl_present = B_FALSE; 17462 } 17463 17464 /* 17465 * IF M_CTL is not present, then ipsec_in_is_secure 17466 * should return B_TRUE. There is a case where loopback 17467 * packets has an M_CTL in the front with all the 17468 * IPsec options set to IPSEC_PREF_NEVER - which means 17469 * ipsec_in_is_secure will return B_FALSE. As loopback 17470 * packets never comes here, it is safe to ASSERT the 17471 * following. 17472 */ 17473 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17474 17475 /* 17476 * Also, we should never have an mctl_present if this is an 17477 * ESP-in-UDP packet. 17478 */ 17479 ASSERT(!mctl_present || !esp_in_udp_packet); 17480 17481 /* u1 is # words of IP options */ 17482 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17483 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17484 17485 /* 17486 * Don't verify header checksum if we just removed UDP header or 17487 * packet is coming back from AH/ESP. 17488 */ 17489 if (!esp_in_udp_packet && !mctl_present) { 17490 if (u1) { 17491 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17492 if (hada_mp != NULL) 17493 freemsg(hada_mp); 17494 return; 17495 } 17496 } else { 17497 /* Check the IP header checksum. */ 17498 #define uph ((uint16_t *)ipha) 17499 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17500 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17501 #undef uph 17502 /* finish doing IP checksum */ 17503 sum = (sum & 0xFFFF) + (sum >> 16); 17504 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17505 if (sum && sum != 0xFFFF) { 17506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17507 goto drop_pkt; 17508 } 17509 } 17510 } 17511 17512 /* 17513 * Count for SNMP of inbound packets for ire. As ip_proto_input 17514 * might be called more than once for secure packets, count only 17515 * the first time. 17516 */ 17517 if (!mctl_present) { 17518 UPDATE_IB_PKT_COUNT(ire); 17519 ire->ire_last_used_time = lbolt; 17520 } 17521 17522 /* Check for fragmentation offset. */ 17523 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17524 u1 = u2 & (IPH_MF | IPH_OFFSET); 17525 if (u1) { 17526 /* 17527 * We re-assemble fragments before we do the AH/ESP 17528 * processing. Thus, M_CTL should not be present 17529 * while we are re-assembling. 17530 */ 17531 ASSERT(!mctl_present); 17532 ASSERT(first_mp == mp); 17533 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17534 return; 17535 17536 /* 17537 * Make sure that first_mp points back to mp as 17538 * the mp we came in with could have changed in 17539 * ip_rput_fragment(). 17540 */ 17541 ipha = (ipha_t *)mp->b_rptr; 17542 first_mp = mp; 17543 } 17544 17545 /* 17546 * Clear hardware checksumming flag as it is currently only 17547 * used by TCP and UDP. 17548 */ 17549 DB_CKSUMFLAGS(mp) = 0; 17550 17551 /* Now we have a complete datagram, destined for this machine. */ 17552 u1 = IPH_HDR_LENGTH(ipha); 17553 switch (ipha->ipha_protocol) { 17554 case IPPROTO_ICMP: { 17555 ire_t *ire_zone; 17556 ilm_t *ilm; 17557 mblk_t *mp1; 17558 zoneid_t last_zoneid; 17559 ilm_walker_t ilw; 17560 17561 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17562 ASSERT(ire->ire_type == IRE_BROADCAST); 17563 17564 /* 17565 * In the multicast case, applications may have joined 17566 * the group from different zones, so we need to deliver 17567 * the packet to each of them. Loop through the 17568 * multicast memberships structures (ilm) on the receive 17569 * ill and send a copy of the packet up each matching 17570 * one. However, we don't do this for multicasts sent on 17571 * the loopback interface (PHYI_LOOPBACK flag set) as 17572 * they must stay in the sender's zone. 17573 * 17574 * ilm_add_v6() ensures that ilms in the same zone are 17575 * contiguous in the ill_ilm list. We use this property 17576 * to avoid sending duplicates needed when two 17577 * applications in the same zone join the same group on 17578 * different logical interfaces: we ignore the ilm if 17579 * its zoneid is the same as the last matching one. 17580 * In addition, the sending of the packet for 17581 * ire_zoneid is delayed until all of the other ilms 17582 * have been exhausted. 17583 */ 17584 last_zoneid = -1; 17585 ilm = ilm_walker_start(&ilw, recv_ill); 17586 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17587 if (ipha->ipha_dst != ilm->ilm_addr || 17588 ilm->ilm_zoneid == last_zoneid || 17589 ilm->ilm_zoneid == ire->ire_zoneid || 17590 ilm->ilm_zoneid == ALL_ZONES || 17591 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17592 continue; 17593 mp1 = ip_copymsg(first_mp); 17594 if (mp1 == NULL) 17595 continue; 17596 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17597 0, sum, mctl_present, B_TRUE, 17598 recv_ill, ilm->ilm_zoneid); 17599 last_zoneid = ilm->ilm_zoneid; 17600 } 17601 ilm_walker_finish(&ilw); 17602 } else if (ire->ire_type == IRE_BROADCAST) { 17603 /* 17604 * In the broadcast case, there may be many zones 17605 * which need a copy of the packet delivered to them. 17606 * There is one IRE_BROADCAST per broadcast address 17607 * and per zone; we walk those using a helper function. 17608 * In addition, the sending of the packet for ire is 17609 * delayed until all of the other ires have been 17610 * processed. 17611 */ 17612 IRB_REFHOLD(ire->ire_bucket); 17613 ire_zone = NULL; 17614 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17615 ire)) != NULL) { 17616 mp1 = ip_copymsg(first_mp); 17617 if (mp1 == NULL) 17618 continue; 17619 17620 UPDATE_IB_PKT_COUNT(ire_zone); 17621 ire_zone->ire_last_used_time = lbolt; 17622 icmp_inbound(q, mp1, B_TRUE, ill, 17623 0, sum, mctl_present, B_TRUE, 17624 recv_ill, ire_zone->ire_zoneid); 17625 } 17626 IRB_REFRELE(ire->ire_bucket); 17627 } 17628 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17629 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17630 ire->ire_zoneid); 17631 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17632 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17633 return; 17634 } 17635 case IPPROTO_IGMP: 17636 /* 17637 * If we are not willing to accept IGMP packets in clear, 17638 * then check with global policy. 17639 */ 17640 if (ipst->ips_igmp_accept_clear_messages == 0) { 17641 first_mp = ipsec_check_global_policy(first_mp, NULL, 17642 ipha, NULL, mctl_present, ipst->ips_netstack); 17643 if (first_mp == NULL) 17644 return; 17645 } 17646 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17647 freemsg(first_mp); 17648 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17650 return; 17651 } 17652 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17653 /* Bad packet - discarded by igmp_input */ 17654 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17655 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17656 if (mctl_present) 17657 freeb(first_mp); 17658 return; 17659 } 17660 /* 17661 * igmp_input() may have returned the pulled up message. 17662 * So first_mp and ipha need to be reinitialized. 17663 */ 17664 ipha = (ipha_t *)mp->b_rptr; 17665 if (mctl_present) 17666 first_mp->b_cont = mp; 17667 else 17668 first_mp = mp; 17669 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17670 connf_head != NULL) { 17671 /* No user-level listener for IGMP packets */ 17672 goto drop_pkt; 17673 } 17674 /* deliver to local raw users */ 17675 break; 17676 case IPPROTO_PIM: 17677 /* 17678 * If we are not willing to accept PIM packets in clear, 17679 * then check with global policy. 17680 */ 17681 if (ipst->ips_pim_accept_clear_messages == 0) { 17682 first_mp = ipsec_check_global_policy(first_mp, NULL, 17683 ipha, NULL, mctl_present, ipst->ips_netstack); 17684 if (first_mp == NULL) 17685 return; 17686 } 17687 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17688 freemsg(first_mp); 17689 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17691 return; 17692 } 17693 if (pim_input(q, mp, ill) != 0) { 17694 /* Bad packet - discarded by pim_input */ 17695 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17696 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17697 if (mctl_present) 17698 freeb(first_mp); 17699 return; 17700 } 17701 17702 /* 17703 * pim_input() may have pulled up the message so ipha needs to 17704 * be reinitialized. 17705 */ 17706 ipha = (ipha_t *)mp->b_rptr; 17707 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17708 connf_head != NULL) { 17709 /* No user-level listener for PIM packets */ 17710 goto drop_pkt; 17711 } 17712 /* deliver to local raw users */ 17713 break; 17714 case IPPROTO_ENCAP: 17715 /* 17716 * Handle self-encapsulated packets (IP-in-IP where 17717 * the inner addresses == the outer addresses). 17718 */ 17719 hdr_length = IPH_HDR_LENGTH(ipha); 17720 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17721 mp->b_wptr) { 17722 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17723 sizeof (ipha_t) - mp->b_rptr)) { 17724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17725 freemsg(first_mp); 17726 return; 17727 } 17728 ipha = (ipha_t *)mp->b_rptr; 17729 } 17730 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17731 /* 17732 * Check the sanity of the inner IP header. 17733 */ 17734 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17736 freemsg(first_mp); 17737 return; 17738 } 17739 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17741 freemsg(first_mp); 17742 return; 17743 } 17744 if (inner_ipha->ipha_src == ipha->ipha_src && 17745 inner_ipha->ipha_dst == ipha->ipha_dst) { 17746 ipsec_in_t *ii; 17747 17748 /* 17749 * Self-encapsulated tunnel packet. Remove 17750 * the outer IP header and fanout again. 17751 * We also need to make sure that the inner 17752 * header is pulled up until options. 17753 */ 17754 mp->b_rptr = (uchar_t *)inner_ipha; 17755 ipha = inner_ipha; 17756 hdr_length = IPH_HDR_LENGTH(ipha); 17757 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17758 if (!pullupmsg(mp, (uchar_t *)ipha + 17759 + hdr_length - mp->b_rptr)) { 17760 freemsg(first_mp); 17761 return; 17762 } 17763 ipha = (ipha_t *)mp->b_rptr; 17764 } 17765 if (hdr_length > sizeof (ipha_t)) { 17766 /* We got options on the inner packet. */ 17767 ipaddr_t dst = ipha->ipha_dst; 17768 17769 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17770 -1) { 17771 /* Bad options! */ 17772 return; 17773 } 17774 if (dst != ipha->ipha_dst) { 17775 /* 17776 * Someone put a source-route in 17777 * the inside header of a self- 17778 * encapsulated packet. Drop it 17779 * with extreme prejudice and let 17780 * the sender know. 17781 */ 17782 icmp_unreachable(q, first_mp, 17783 ICMP_SOURCE_ROUTE_FAILED, 17784 recv_ill->ill_zoneid, ipst); 17785 return; 17786 } 17787 } 17788 if (!mctl_present) { 17789 ASSERT(first_mp == mp); 17790 /* 17791 * This means that somebody is sending 17792 * Self-encapsualted packets without AH/ESP. 17793 * If AH/ESP was present, we would have already 17794 * allocated the first_mp. 17795 * 17796 * Send this packet to find a tunnel endpoint. 17797 * if I can't find one, an ICMP 17798 * PROTOCOL_UNREACHABLE will get sent. 17799 */ 17800 goto fanout; 17801 } 17802 /* 17803 * We generally store the ill_index if we need to 17804 * do IPsec processing as we lose the ill queue when 17805 * we come back. But in this case, we never should 17806 * have to store the ill_index here as it should have 17807 * been stored previously when we processed the 17808 * AH/ESP header in this routine or for non-ipsec 17809 * cases, we still have the queue. But for some bad 17810 * packets from the wire, we can get to IPsec after 17811 * this and we better store the index for that case. 17812 */ 17813 ill = (ill_t *)q->q_ptr; 17814 ii = (ipsec_in_t *)first_mp->b_rptr; 17815 ii->ipsec_in_ill_index = 17816 ill->ill_phyint->phyint_ifindex; 17817 ii->ipsec_in_rill_index = 17818 recv_ill->ill_phyint->phyint_ifindex; 17819 if (ii->ipsec_in_decaps) { 17820 /* 17821 * This packet is self-encapsulated multiple 17822 * times. We don't want to recurse infinitely. 17823 * To keep it simple, drop the packet. 17824 */ 17825 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17826 freemsg(first_mp); 17827 return; 17828 } 17829 ii->ipsec_in_decaps = B_TRUE; 17830 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17831 ire); 17832 return; 17833 } 17834 break; 17835 case IPPROTO_AH: 17836 case IPPROTO_ESP: { 17837 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17838 17839 /* 17840 * Fast path for AH/ESP. If this is the first time 17841 * we are sending a datagram to AH/ESP, allocate 17842 * a IPSEC_IN message and prepend it. Otherwise, 17843 * just fanout. 17844 */ 17845 17846 int ipsec_rc; 17847 ipsec_in_t *ii; 17848 netstack_t *ns = ipst->ips_netstack; 17849 17850 IP_STAT(ipst, ipsec_proto_ahesp); 17851 if (!mctl_present) { 17852 ASSERT(first_mp == mp); 17853 first_mp = ipsec_in_alloc(B_TRUE, ns); 17854 if (first_mp == NULL) { 17855 ip1dbg(("ip_proto_input: IPSEC_IN " 17856 "allocation failure.\n")); 17857 freemsg(hada_mp); /* okay ifnull */ 17858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17859 freemsg(mp); 17860 return; 17861 } 17862 /* 17863 * Store the ill_index so that when we come back 17864 * from IPsec we ride on the same queue. 17865 */ 17866 ill = (ill_t *)q->q_ptr; 17867 ii = (ipsec_in_t *)first_mp->b_rptr; 17868 ii->ipsec_in_ill_index = 17869 ill->ill_phyint->phyint_ifindex; 17870 ii->ipsec_in_rill_index = 17871 recv_ill->ill_phyint->phyint_ifindex; 17872 first_mp->b_cont = mp; 17873 /* 17874 * Cache hardware acceleration info. 17875 */ 17876 if (hada_mp != NULL) { 17877 IPSECHW_DEBUG(IPSECHW_PKT, 17878 ("ip_rput_local: caching data attr.\n")); 17879 ii->ipsec_in_accelerated = B_TRUE; 17880 ii->ipsec_in_da = hada_mp; 17881 hada_mp = NULL; 17882 } 17883 } else { 17884 ii = (ipsec_in_t *)first_mp->b_rptr; 17885 } 17886 17887 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17888 17889 if (!ipsec_loaded(ipss)) { 17890 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17891 ire->ire_zoneid, ipst); 17892 return; 17893 } 17894 17895 ns = ipst->ips_netstack; 17896 /* select inbound SA and have IPsec process the pkt */ 17897 if (ipha->ipha_protocol == IPPROTO_ESP) { 17898 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17899 boolean_t esp_in_udp_sa; 17900 if (esph == NULL) 17901 return; 17902 ASSERT(ii->ipsec_in_esp_sa != NULL); 17903 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17904 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17905 IPSA_F_NATT) != 0); 17906 /* 17907 * The following is a fancy, but quick, way of saying: 17908 * ESP-in-UDP SA and Raw ESP packet --> drop 17909 * OR 17910 * ESP SA and ESP-in-UDP packet --> drop 17911 */ 17912 if (esp_in_udp_sa != esp_in_udp_packet) { 17913 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17914 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17915 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17916 &ns->netstack_ipsec->ipsec_dropper); 17917 return; 17918 } 17919 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17920 first_mp, esph); 17921 } else { 17922 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17923 if (ah == NULL) 17924 return; 17925 ASSERT(ii->ipsec_in_ah_sa != NULL); 17926 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17927 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17928 first_mp, ah); 17929 } 17930 17931 switch (ipsec_rc) { 17932 case IPSEC_STATUS_SUCCESS: 17933 break; 17934 case IPSEC_STATUS_FAILED: 17935 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17936 /* FALLTHRU */ 17937 case IPSEC_STATUS_PENDING: 17938 return; 17939 } 17940 /* we're done with IPsec processing, send it up */ 17941 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17942 return; 17943 } 17944 default: 17945 break; 17946 } 17947 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17948 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17949 ire->ire_zoneid)); 17950 goto drop_pkt; 17951 } 17952 /* 17953 * Handle protocols with which IP is less intimate. There 17954 * can be more than one stream bound to a particular 17955 * protocol. When this is the case, each one gets a copy 17956 * of any incoming packets. 17957 */ 17958 fanout: 17959 ip_fanout_proto(q, first_mp, ill, ipha, 17960 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17961 B_TRUE, recv_ill, ire->ire_zoneid); 17962 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17963 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17964 return; 17965 17966 drop_pkt: 17967 freemsg(first_mp); 17968 if (hada_mp != NULL) 17969 freeb(hada_mp); 17970 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17971 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17972 #undef rptr 17973 #undef iphs 17974 17975 } 17976 17977 /* 17978 * Update any source route, record route or timestamp options. 17979 * Check that we are at end of strict source route. 17980 * The options have already been checked for sanity in ip_rput_options(). 17981 */ 17982 static boolean_t 17983 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17984 ip_stack_t *ipst) 17985 { 17986 ipoptp_t opts; 17987 uchar_t *opt; 17988 uint8_t optval; 17989 uint8_t optlen; 17990 ipaddr_t dst; 17991 uint32_t ts; 17992 ire_t *dst_ire; 17993 timestruc_t now; 17994 zoneid_t zoneid; 17995 ill_t *ill; 17996 17997 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17998 17999 ip2dbg(("ip_rput_local_options\n")); 18000 18001 for (optval = ipoptp_first(&opts, ipha); 18002 optval != IPOPT_EOL; 18003 optval = ipoptp_next(&opts)) { 18004 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18005 opt = opts.ipoptp_cur; 18006 optlen = opts.ipoptp_len; 18007 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18008 optval, optlen)); 18009 switch (optval) { 18010 uint32_t off; 18011 case IPOPT_SSRR: 18012 case IPOPT_LSRR: 18013 off = opt[IPOPT_OFFSET]; 18014 off--; 18015 if (optlen < IP_ADDR_LEN || 18016 off > optlen - IP_ADDR_LEN) { 18017 /* End of source route */ 18018 ip1dbg(("ip_rput_local_options: end of SR\n")); 18019 break; 18020 } 18021 /* 18022 * This will only happen if two consecutive entries 18023 * in the source route contains our address or if 18024 * it is a packet with a loose source route which 18025 * reaches us before consuming the whole source route 18026 */ 18027 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18028 if (optval == IPOPT_SSRR) { 18029 goto bad_src_route; 18030 } 18031 /* 18032 * Hack: instead of dropping the packet truncate the 18033 * source route to what has been used by filling the 18034 * rest with IPOPT_NOP. 18035 */ 18036 opt[IPOPT_OLEN] = (uint8_t)off; 18037 while (off < optlen) { 18038 opt[off++] = IPOPT_NOP; 18039 } 18040 break; 18041 case IPOPT_RR: 18042 off = opt[IPOPT_OFFSET]; 18043 off--; 18044 if (optlen < IP_ADDR_LEN || 18045 off > optlen - IP_ADDR_LEN) { 18046 /* No more room - ignore */ 18047 ip1dbg(( 18048 "ip_rput_local_options: end of RR\n")); 18049 break; 18050 } 18051 bcopy(&ire->ire_src_addr, (char *)opt + off, 18052 IP_ADDR_LEN); 18053 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18054 break; 18055 case IPOPT_TS: 18056 /* Insert timestamp if there is romm */ 18057 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18058 case IPOPT_TS_TSONLY: 18059 off = IPOPT_TS_TIMELEN; 18060 break; 18061 case IPOPT_TS_PRESPEC: 18062 case IPOPT_TS_PRESPEC_RFC791: 18063 /* Verify that the address matched */ 18064 off = opt[IPOPT_OFFSET] - 1; 18065 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18066 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18067 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18068 ipst); 18069 if (dst_ire == NULL) { 18070 /* Not for us */ 18071 break; 18072 } 18073 ire_refrele(dst_ire); 18074 /* FALLTHRU */ 18075 case IPOPT_TS_TSANDADDR: 18076 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18077 break; 18078 default: 18079 /* 18080 * ip_*put_options should have already 18081 * dropped this packet. 18082 */ 18083 cmn_err(CE_PANIC, "ip_rput_local_options: " 18084 "unknown IT - bug in ip_rput_options?\n"); 18085 return (B_TRUE); /* Keep "lint" happy */ 18086 } 18087 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18088 /* Increase overflow counter */ 18089 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18090 opt[IPOPT_POS_OV_FLG] = 18091 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18092 (off << 4)); 18093 break; 18094 } 18095 off = opt[IPOPT_OFFSET] - 1; 18096 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18097 case IPOPT_TS_PRESPEC: 18098 case IPOPT_TS_PRESPEC_RFC791: 18099 case IPOPT_TS_TSANDADDR: 18100 bcopy(&ire->ire_src_addr, (char *)opt + off, 18101 IP_ADDR_LEN); 18102 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18103 /* FALLTHRU */ 18104 case IPOPT_TS_TSONLY: 18105 off = opt[IPOPT_OFFSET] - 1; 18106 /* Compute # of milliseconds since midnight */ 18107 gethrestime(&now); 18108 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18109 now.tv_nsec / (NANOSEC / MILLISEC); 18110 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18111 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18112 break; 18113 } 18114 break; 18115 } 18116 } 18117 return (B_TRUE); 18118 18119 bad_src_route: 18120 q = WR(q); 18121 if (q->q_next != NULL) 18122 ill = q->q_ptr; 18123 else 18124 ill = NULL; 18125 18126 /* make sure we clear any indication of a hardware checksum */ 18127 DB_CKSUMFLAGS(mp) = 0; 18128 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18129 if (zoneid == ALL_ZONES) 18130 freemsg(mp); 18131 else 18132 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18133 return (B_FALSE); 18134 18135 } 18136 18137 /* 18138 * Process IP options in an inbound packet. If an option affects the 18139 * effective destination address, return the next hop address via dstp. 18140 * Returns -1 if something fails in which case an ICMP error has been sent 18141 * and mp freed. 18142 */ 18143 static int 18144 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18145 ip_stack_t *ipst) 18146 { 18147 ipoptp_t opts; 18148 uchar_t *opt; 18149 uint8_t optval; 18150 uint8_t optlen; 18151 ipaddr_t dst; 18152 intptr_t code = 0; 18153 ire_t *ire = NULL; 18154 zoneid_t zoneid; 18155 ill_t *ill; 18156 18157 ip2dbg(("ip_rput_options\n")); 18158 dst = ipha->ipha_dst; 18159 for (optval = ipoptp_first(&opts, ipha); 18160 optval != IPOPT_EOL; 18161 optval = ipoptp_next(&opts)) { 18162 opt = opts.ipoptp_cur; 18163 optlen = opts.ipoptp_len; 18164 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18165 optval, optlen)); 18166 /* 18167 * Note: we need to verify the checksum before we 18168 * modify anything thus this routine only extracts the next 18169 * hop dst from any source route. 18170 */ 18171 switch (optval) { 18172 uint32_t off; 18173 case IPOPT_SSRR: 18174 case IPOPT_LSRR: 18175 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18176 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18177 if (ire == NULL) { 18178 if (optval == IPOPT_SSRR) { 18179 ip1dbg(("ip_rput_options: not next" 18180 " strict source route 0x%x\n", 18181 ntohl(dst))); 18182 code = (char *)&ipha->ipha_dst - 18183 (char *)ipha; 18184 goto param_prob; /* RouterReq's */ 18185 } 18186 ip2dbg(("ip_rput_options: " 18187 "not next source route 0x%x\n", 18188 ntohl(dst))); 18189 break; 18190 } 18191 ire_refrele(ire); 18192 18193 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18194 ip1dbg(( 18195 "ip_rput_options: bad option offset\n")); 18196 code = (char *)&opt[IPOPT_OLEN] - 18197 (char *)ipha; 18198 goto param_prob; 18199 } 18200 off = opt[IPOPT_OFFSET]; 18201 off--; 18202 redo_srr: 18203 if (optlen < IP_ADDR_LEN || 18204 off > optlen - IP_ADDR_LEN) { 18205 /* End of source route */ 18206 ip1dbg(("ip_rput_options: end of SR\n")); 18207 break; 18208 } 18209 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18210 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18211 ntohl(dst))); 18212 18213 /* 18214 * Check if our address is present more than 18215 * once as consecutive hops in source route. 18216 * XXX verify per-interface ip_forwarding 18217 * for source route? 18218 */ 18219 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18220 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18221 18222 if (ire != NULL) { 18223 ire_refrele(ire); 18224 off += IP_ADDR_LEN; 18225 goto redo_srr; 18226 } 18227 18228 if (dst == htonl(INADDR_LOOPBACK)) { 18229 ip1dbg(("ip_rput_options: loopback addr in " 18230 "source route!\n")); 18231 goto bad_src_route; 18232 } 18233 /* 18234 * For strict: verify that dst is directly 18235 * reachable. 18236 */ 18237 if (optval == IPOPT_SSRR) { 18238 ire = ire_ftable_lookup(dst, 0, 0, 18239 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18240 msg_getlabel(mp), 18241 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18242 if (ire == NULL) { 18243 ip1dbg(("ip_rput_options: SSRR not " 18244 "directly reachable: 0x%x\n", 18245 ntohl(dst))); 18246 goto bad_src_route; 18247 } 18248 ire_refrele(ire); 18249 } 18250 /* 18251 * Defer update of the offset and the record route 18252 * until the packet is forwarded. 18253 */ 18254 break; 18255 case IPOPT_RR: 18256 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18257 ip1dbg(( 18258 "ip_rput_options: bad option offset\n")); 18259 code = (char *)&opt[IPOPT_OLEN] - 18260 (char *)ipha; 18261 goto param_prob; 18262 } 18263 break; 18264 case IPOPT_TS: 18265 /* 18266 * Verify that length >= 5 and that there is either 18267 * room for another timestamp or that the overflow 18268 * counter is not maxed out. 18269 */ 18270 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18271 if (optlen < IPOPT_MINLEN_IT) { 18272 goto param_prob; 18273 } 18274 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18275 ip1dbg(( 18276 "ip_rput_options: bad option offset\n")); 18277 code = (char *)&opt[IPOPT_OFFSET] - 18278 (char *)ipha; 18279 goto param_prob; 18280 } 18281 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18282 case IPOPT_TS_TSONLY: 18283 off = IPOPT_TS_TIMELEN; 18284 break; 18285 case IPOPT_TS_TSANDADDR: 18286 case IPOPT_TS_PRESPEC: 18287 case IPOPT_TS_PRESPEC_RFC791: 18288 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18289 break; 18290 default: 18291 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18292 (char *)ipha; 18293 goto param_prob; 18294 } 18295 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18296 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18297 /* 18298 * No room and the overflow counter is 15 18299 * already. 18300 */ 18301 goto param_prob; 18302 } 18303 break; 18304 } 18305 } 18306 18307 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18308 *dstp = dst; 18309 return (0); 18310 } 18311 18312 ip1dbg(("ip_rput_options: error processing IP options.")); 18313 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18314 18315 param_prob: 18316 q = WR(q); 18317 if (q->q_next != NULL) 18318 ill = q->q_ptr; 18319 else 18320 ill = NULL; 18321 18322 /* make sure we clear any indication of a hardware checksum */ 18323 DB_CKSUMFLAGS(mp) = 0; 18324 /* Don't know whether this is for non-global or global/forwarding */ 18325 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18326 if (zoneid == ALL_ZONES) 18327 freemsg(mp); 18328 else 18329 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18330 return (-1); 18331 18332 bad_src_route: 18333 q = WR(q); 18334 if (q->q_next != NULL) 18335 ill = q->q_ptr; 18336 else 18337 ill = NULL; 18338 18339 /* make sure we clear any indication of a hardware checksum */ 18340 DB_CKSUMFLAGS(mp) = 0; 18341 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18342 if (zoneid == ALL_ZONES) 18343 freemsg(mp); 18344 else 18345 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18346 return (-1); 18347 } 18348 18349 /* 18350 * IP & ICMP info in >=14 msg's ... 18351 * - ip fixed part (mib2_ip_t) 18352 * - icmp fixed part (mib2_icmp_t) 18353 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18354 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18355 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18356 * - ipRouteAttributeTable (ip 102) labeled routes 18357 * - ip multicast membership (ip_member_t) 18358 * - ip multicast source filtering (ip_grpsrc_t) 18359 * - igmp fixed part (struct igmpstat) 18360 * - multicast routing stats (struct mrtstat) 18361 * - multicast routing vifs (array of struct vifctl) 18362 * - multicast routing routes (array of struct mfcctl) 18363 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18364 * One per ill plus one generic 18365 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18366 * One per ill plus one generic 18367 * - ipv6RouteEntry all IPv6 IREs 18368 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18369 * - ipv6NetToMediaEntry all Neighbor Cache entries 18370 * - ipv6AddrEntry all IPv6 ipifs 18371 * - ipv6 multicast membership (ipv6_member_t) 18372 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18373 * 18374 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18375 * 18376 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18377 * already filled in by the caller. 18378 * Return value of 0 indicates that no messages were sent and caller 18379 * should free mpctl. 18380 */ 18381 int 18382 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18383 { 18384 ip_stack_t *ipst; 18385 sctp_stack_t *sctps; 18386 18387 if (q->q_next != NULL) { 18388 ipst = ILLQ_TO_IPST(q); 18389 } else { 18390 ipst = CONNQ_TO_IPST(q); 18391 } 18392 ASSERT(ipst != NULL); 18393 sctps = ipst->ips_netstack->netstack_sctp; 18394 18395 if (mpctl == NULL || mpctl->b_cont == NULL) { 18396 return (0); 18397 } 18398 18399 /* 18400 * For the purposes of the (broken) packet shell use 18401 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18402 * to make TCP and UDP appear first in the list of mib items. 18403 * TBD: We could expand this and use it in netstat so that 18404 * the kernel doesn't have to produce large tables (connections, 18405 * routes, etc) when netstat only wants the statistics or a particular 18406 * table. 18407 */ 18408 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18409 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18410 return (1); 18411 } 18412 } 18413 18414 if (level != MIB2_TCP) { 18415 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18416 return (1); 18417 } 18418 } 18419 18420 if (level != MIB2_UDP) { 18421 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18422 return (1); 18423 } 18424 } 18425 18426 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18427 ipst)) == NULL) { 18428 return (1); 18429 } 18430 18431 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18432 return (1); 18433 } 18434 18435 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18436 return (1); 18437 } 18438 18439 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18440 return (1); 18441 } 18442 18443 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18444 return (1); 18445 } 18446 18447 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18448 return (1); 18449 } 18450 18451 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18452 return (1); 18453 } 18454 18455 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18456 return (1); 18457 } 18458 18459 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18460 return (1); 18461 } 18462 18463 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18464 return (1); 18465 } 18466 18467 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18468 return (1); 18469 } 18470 18471 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18472 return (1); 18473 } 18474 18475 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18476 return (1); 18477 } 18478 18479 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18480 return (1); 18481 } 18482 18483 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18484 if (mpctl == NULL) 18485 return (1); 18486 18487 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18488 if (mpctl == NULL) 18489 return (1); 18490 18491 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18492 return (1); 18493 } 18494 freemsg(mpctl); 18495 return (1); 18496 } 18497 18498 /* Get global (legacy) IPv4 statistics */ 18499 static mblk_t * 18500 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18501 ip_stack_t *ipst) 18502 { 18503 mib2_ip_t old_ip_mib; 18504 struct opthdr *optp; 18505 mblk_t *mp2ctl; 18506 18507 /* 18508 * make a copy of the original message 18509 */ 18510 mp2ctl = copymsg(mpctl); 18511 18512 /* fixed length IP structure... */ 18513 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18514 optp->level = MIB2_IP; 18515 optp->name = 0; 18516 SET_MIB(old_ip_mib.ipForwarding, 18517 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18518 SET_MIB(old_ip_mib.ipDefaultTTL, 18519 (uint32_t)ipst->ips_ip_def_ttl); 18520 SET_MIB(old_ip_mib.ipReasmTimeout, 18521 ipst->ips_ip_g_frag_timeout); 18522 SET_MIB(old_ip_mib.ipAddrEntrySize, 18523 sizeof (mib2_ipAddrEntry_t)); 18524 SET_MIB(old_ip_mib.ipRouteEntrySize, 18525 sizeof (mib2_ipRouteEntry_t)); 18526 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18527 sizeof (mib2_ipNetToMediaEntry_t)); 18528 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18529 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18530 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18531 sizeof (mib2_ipAttributeEntry_t)); 18532 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18533 18534 /* 18535 * Grab the statistics from the new IP MIB 18536 */ 18537 SET_MIB(old_ip_mib.ipInReceives, 18538 (uint32_t)ipmib->ipIfStatsHCInReceives); 18539 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18540 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18541 SET_MIB(old_ip_mib.ipForwDatagrams, 18542 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18543 SET_MIB(old_ip_mib.ipInUnknownProtos, 18544 ipmib->ipIfStatsInUnknownProtos); 18545 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18546 SET_MIB(old_ip_mib.ipInDelivers, 18547 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18548 SET_MIB(old_ip_mib.ipOutRequests, 18549 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18550 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18551 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18552 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18553 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18554 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18555 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18556 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18557 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18558 18559 /* ipRoutingDiscards is not being used */ 18560 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18561 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18562 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18563 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18564 SET_MIB(old_ip_mib.ipReasmDuplicates, 18565 ipmib->ipIfStatsReasmDuplicates); 18566 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18567 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18568 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18569 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18570 SET_MIB(old_ip_mib.rawipInOverflows, 18571 ipmib->rawipIfStatsInOverflows); 18572 18573 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18574 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18575 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18576 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18577 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18578 ipmib->ipIfStatsOutSwitchIPVersion); 18579 18580 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18581 (int)sizeof (old_ip_mib))) { 18582 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18583 (uint_t)sizeof (old_ip_mib))); 18584 } 18585 18586 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18587 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18588 (int)optp->level, (int)optp->name, (int)optp->len)); 18589 qreply(q, mpctl); 18590 return (mp2ctl); 18591 } 18592 18593 /* Per interface IPv4 statistics */ 18594 static mblk_t * 18595 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18596 { 18597 struct opthdr *optp; 18598 mblk_t *mp2ctl; 18599 ill_t *ill; 18600 ill_walk_context_t ctx; 18601 mblk_t *mp_tail = NULL; 18602 mib2_ipIfStatsEntry_t global_ip_mib; 18603 18604 /* 18605 * Make a copy of the original message 18606 */ 18607 mp2ctl = copymsg(mpctl); 18608 18609 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18610 optp->level = MIB2_IP; 18611 optp->name = MIB2_IP_TRAFFIC_STATS; 18612 /* Include "unknown interface" ip_mib */ 18613 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18614 ipst->ips_ip_mib.ipIfStatsIfIndex = 18615 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18616 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18617 (ipst->ips_ip_g_forward ? 1 : 2)); 18618 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18619 (uint32_t)ipst->ips_ip_def_ttl); 18620 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18621 sizeof (mib2_ipIfStatsEntry_t)); 18622 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18623 sizeof (mib2_ipAddrEntry_t)); 18624 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18625 sizeof (mib2_ipRouteEntry_t)); 18626 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18627 sizeof (mib2_ipNetToMediaEntry_t)); 18628 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18629 sizeof (ip_member_t)); 18630 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18631 sizeof (ip_grpsrc_t)); 18632 18633 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18634 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18635 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18636 "failed to allocate %u bytes\n", 18637 (uint_t)sizeof (ipst->ips_ip_mib))); 18638 } 18639 18640 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18641 18642 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18643 ill = ILL_START_WALK_V4(&ctx, ipst); 18644 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18645 ill->ill_ip_mib->ipIfStatsIfIndex = 18646 ill->ill_phyint->phyint_ifindex; 18647 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18648 (ipst->ips_ip_g_forward ? 1 : 2)); 18649 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18650 (uint32_t)ipst->ips_ip_def_ttl); 18651 18652 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18653 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18654 (char *)ill->ill_ip_mib, 18655 (int)sizeof (*ill->ill_ip_mib))) { 18656 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18657 "failed to allocate %u bytes\n", 18658 (uint_t)sizeof (*ill->ill_ip_mib))); 18659 } 18660 } 18661 rw_exit(&ipst->ips_ill_g_lock); 18662 18663 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18664 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18665 "level %d, name %d, len %d\n", 18666 (int)optp->level, (int)optp->name, (int)optp->len)); 18667 qreply(q, mpctl); 18668 18669 if (mp2ctl == NULL) 18670 return (NULL); 18671 18672 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18673 } 18674 18675 /* Global IPv4 ICMP statistics */ 18676 static mblk_t * 18677 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18678 { 18679 struct opthdr *optp; 18680 mblk_t *mp2ctl; 18681 18682 /* 18683 * Make a copy of the original message 18684 */ 18685 mp2ctl = copymsg(mpctl); 18686 18687 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18688 optp->level = MIB2_ICMP; 18689 optp->name = 0; 18690 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18691 (int)sizeof (ipst->ips_icmp_mib))) { 18692 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18693 (uint_t)sizeof (ipst->ips_icmp_mib))); 18694 } 18695 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18696 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18697 (int)optp->level, (int)optp->name, (int)optp->len)); 18698 qreply(q, mpctl); 18699 return (mp2ctl); 18700 } 18701 18702 /* Global IPv4 IGMP statistics */ 18703 static mblk_t * 18704 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18705 { 18706 struct opthdr *optp; 18707 mblk_t *mp2ctl; 18708 18709 /* 18710 * make a copy of the original message 18711 */ 18712 mp2ctl = copymsg(mpctl); 18713 18714 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18715 optp->level = EXPER_IGMP; 18716 optp->name = 0; 18717 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18718 (int)sizeof (ipst->ips_igmpstat))) { 18719 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18720 (uint_t)sizeof (ipst->ips_igmpstat))); 18721 } 18722 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18723 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18724 (int)optp->level, (int)optp->name, (int)optp->len)); 18725 qreply(q, mpctl); 18726 return (mp2ctl); 18727 } 18728 18729 /* Global IPv4 Multicast Routing statistics */ 18730 static mblk_t * 18731 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18732 { 18733 struct opthdr *optp; 18734 mblk_t *mp2ctl; 18735 18736 /* 18737 * make a copy of the original message 18738 */ 18739 mp2ctl = copymsg(mpctl); 18740 18741 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18742 optp->level = EXPER_DVMRP; 18743 optp->name = 0; 18744 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18745 ip0dbg(("ip_mroute_stats: failed\n")); 18746 } 18747 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18748 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18749 (int)optp->level, (int)optp->name, (int)optp->len)); 18750 qreply(q, mpctl); 18751 return (mp2ctl); 18752 } 18753 18754 /* IPv4 address information */ 18755 static mblk_t * 18756 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18757 { 18758 struct opthdr *optp; 18759 mblk_t *mp2ctl; 18760 mblk_t *mp_tail = NULL; 18761 ill_t *ill; 18762 ipif_t *ipif; 18763 uint_t bitval; 18764 mib2_ipAddrEntry_t mae; 18765 zoneid_t zoneid; 18766 ill_walk_context_t ctx; 18767 18768 /* 18769 * make a copy of the original message 18770 */ 18771 mp2ctl = copymsg(mpctl); 18772 18773 /* ipAddrEntryTable */ 18774 18775 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18776 optp->level = MIB2_IP; 18777 optp->name = MIB2_IP_ADDR; 18778 zoneid = Q_TO_CONN(q)->conn_zoneid; 18779 18780 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18781 ill = ILL_START_WALK_V4(&ctx, ipst); 18782 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18783 for (ipif = ill->ill_ipif; ipif != NULL; 18784 ipif = ipif->ipif_next) { 18785 if (ipif->ipif_zoneid != zoneid && 18786 ipif->ipif_zoneid != ALL_ZONES) 18787 continue; 18788 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18789 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18790 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18791 18792 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18793 OCTET_LENGTH); 18794 mae.ipAdEntIfIndex.o_length = 18795 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18796 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18797 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18798 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18799 mae.ipAdEntInfo.ae_subnet_len = 18800 ip_mask_to_plen(ipif->ipif_net_mask); 18801 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18802 for (bitval = 1; 18803 bitval && 18804 !(bitval & ipif->ipif_brd_addr); 18805 bitval <<= 1) 18806 noop; 18807 mae.ipAdEntBcastAddr = bitval; 18808 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18809 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18810 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18811 mae.ipAdEntInfo.ae_broadcast_addr = 18812 ipif->ipif_brd_addr; 18813 mae.ipAdEntInfo.ae_pp_dst_addr = 18814 ipif->ipif_pp_dst_addr; 18815 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18816 ill->ill_flags | ill->ill_phyint->phyint_flags; 18817 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18818 18819 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18820 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18821 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18822 "allocate %u bytes\n", 18823 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18824 } 18825 } 18826 } 18827 rw_exit(&ipst->ips_ill_g_lock); 18828 18829 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18830 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18831 (int)optp->level, (int)optp->name, (int)optp->len)); 18832 qreply(q, mpctl); 18833 return (mp2ctl); 18834 } 18835 18836 /* IPv6 address information */ 18837 static mblk_t * 18838 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18839 { 18840 struct opthdr *optp; 18841 mblk_t *mp2ctl; 18842 mblk_t *mp_tail = NULL; 18843 ill_t *ill; 18844 ipif_t *ipif; 18845 mib2_ipv6AddrEntry_t mae6; 18846 zoneid_t zoneid; 18847 ill_walk_context_t ctx; 18848 18849 /* 18850 * make a copy of the original message 18851 */ 18852 mp2ctl = copymsg(mpctl); 18853 18854 /* ipv6AddrEntryTable */ 18855 18856 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18857 optp->level = MIB2_IP6; 18858 optp->name = MIB2_IP6_ADDR; 18859 zoneid = Q_TO_CONN(q)->conn_zoneid; 18860 18861 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18862 ill = ILL_START_WALK_V6(&ctx, ipst); 18863 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18864 for (ipif = ill->ill_ipif; ipif != NULL; 18865 ipif = ipif->ipif_next) { 18866 if (ipif->ipif_zoneid != zoneid && 18867 ipif->ipif_zoneid != ALL_ZONES) 18868 continue; 18869 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18870 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18871 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18872 18873 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18874 OCTET_LENGTH); 18875 mae6.ipv6AddrIfIndex.o_length = 18876 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18877 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18878 mae6.ipv6AddrPfxLength = 18879 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18880 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18881 mae6.ipv6AddrInfo.ae_subnet_len = 18882 mae6.ipv6AddrPfxLength; 18883 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18884 18885 /* Type: stateless(1), stateful(2), unknown(3) */ 18886 if (ipif->ipif_flags & IPIF_ADDRCONF) 18887 mae6.ipv6AddrType = 1; 18888 else 18889 mae6.ipv6AddrType = 2; 18890 /* Anycast: true(1), false(2) */ 18891 if (ipif->ipif_flags & IPIF_ANYCAST) 18892 mae6.ipv6AddrAnycastFlag = 1; 18893 else 18894 mae6.ipv6AddrAnycastFlag = 2; 18895 18896 /* 18897 * Address status: preferred(1), deprecated(2), 18898 * invalid(3), inaccessible(4), unknown(5) 18899 */ 18900 if (ipif->ipif_flags & IPIF_NOLOCAL) 18901 mae6.ipv6AddrStatus = 3; 18902 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18903 mae6.ipv6AddrStatus = 2; 18904 else 18905 mae6.ipv6AddrStatus = 1; 18906 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18907 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18908 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18909 ipif->ipif_v6pp_dst_addr; 18910 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18911 ill->ill_flags | ill->ill_phyint->phyint_flags; 18912 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18913 mae6.ipv6AddrIdentifier = ill->ill_token; 18914 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18915 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18916 mae6.ipv6AddrRetransmitTime = 18917 ill->ill_reachable_retrans_time; 18918 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18919 (char *)&mae6, 18920 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18921 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18922 "allocate %u bytes\n", 18923 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18924 } 18925 } 18926 } 18927 rw_exit(&ipst->ips_ill_g_lock); 18928 18929 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18930 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18931 (int)optp->level, (int)optp->name, (int)optp->len)); 18932 qreply(q, mpctl); 18933 return (mp2ctl); 18934 } 18935 18936 /* IPv4 multicast group membership. */ 18937 static mblk_t * 18938 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18939 { 18940 struct opthdr *optp; 18941 mblk_t *mp2ctl; 18942 ill_t *ill; 18943 ipif_t *ipif; 18944 ilm_t *ilm; 18945 ip_member_t ipm; 18946 mblk_t *mp_tail = NULL; 18947 ill_walk_context_t ctx; 18948 zoneid_t zoneid; 18949 ilm_walker_t ilw; 18950 18951 /* 18952 * make a copy of the original message 18953 */ 18954 mp2ctl = copymsg(mpctl); 18955 zoneid = Q_TO_CONN(q)->conn_zoneid; 18956 18957 /* ipGroupMember table */ 18958 optp = (struct opthdr *)&mpctl->b_rptr[ 18959 sizeof (struct T_optmgmt_ack)]; 18960 optp->level = MIB2_IP; 18961 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18962 18963 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18964 ill = ILL_START_WALK_V4(&ctx, ipst); 18965 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18966 if (IS_UNDER_IPMP(ill)) 18967 continue; 18968 18969 ilm = ilm_walker_start(&ilw, ill); 18970 for (ipif = ill->ill_ipif; ipif != NULL; 18971 ipif = ipif->ipif_next) { 18972 if (ipif->ipif_zoneid != zoneid && 18973 ipif->ipif_zoneid != ALL_ZONES) 18974 continue; /* not this zone */ 18975 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18976 OCTET_LENGTH); 18977 ipm.ipGroupMemberIfIndex.o_length = 18978 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18979 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18980 ASSERT(ilm->ilm_ipif != NULL); 18981 ASSERT(ilm->ilm_ill == NULL); 18982 if (ilm->ilm_ipif != ipif) 18983 continue; 18984 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18985 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18986 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18987 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18988 (char *)&ipm, (int)sizeof (ipm))) { 18989 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18990 "failed to allocate %u bytes\n", 18991 (uint_t)sizeof (ipm))); 18992 } 18993 } 18994 } 18995 ilm_walker_finish(&ilw); 18996 } 18997 rw_exit(&ipst->ips_ill_g_lock); 18998 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18999 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19000 (int)optp->level, (int)optp->name, (int)optp->len)); 19001 qreply(q, mpctl); 19002 return (mp2ctl); 19003 } 19004 19005 /* IPv6 multicast group membership. */ 19006 static mblk_t * 19007 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19008 { 19009 struct opthdr *optp; 19010 mblk_t *mp2ctl; 19011 ill_t *ill; 19012 ilm_t *ilm; 19013 ipv6_member_t ipm6; 19014 mblk_t *mp_tail = NULL; 19015 ill_walk_context_t ctx; 19016 zoneid_t zoneid; 19017 ilm_walker_t ilw; 19018 19019 /* 19020 * make a copy of the original message 19021 */ 19022 mp2ctl = copymsg(mpctl); 19023 zoneid = Q_TO_CONN(q)->conn_zoneid; 19024 19025 /* ip6GroupMember table */ 19026 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19027 optp->level = MIB2_IP6; 19028 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19029 19030 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19031 ill = ILL_START_WALK_V6(&ctx, ipst); 19032 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19033 if (IS_UNDER_IPMP(ill)) 19034 continue; 19035 19036 ilm = ilm_walker_start(&ilw, ill); 19037 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19038 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19039 ASSERT(ilm->ilm_ipif == NULL); 19040 ASSERT(ilm->ilm_ill != NULL); 19041 if (ilm->ilm_zoneid != zoneid) 19042 continue; /* not this zone */ 19043 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19044 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19045 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19046 if (!snmp_append_data2(mpctl->b_cont, 19047 &mp_tail, 19048 (char *)&ipm6, (int)sizeof (ipm6))) { 19049 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19050 "failed to allocate %u bytes\n", 19051 (uint_t)sizeof (ipm6))); 19052 } 19053 } 19054 ilm_walker_finish(&ilw); 19055 } 19056 rw_exit(&ipst->ips_ill_g_lock); 19057 19058 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19059 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19060 (int)optp->level, (int)optp->name, (int)optp->len)); 19061 qreply(q, mpctl); 19062 return (mp2ctl); 19063 } 19064 19065 /* IP multicast filtered sources */ 19066 static mblk_t * 19067 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19068 { 19069 struct opthdr *optp; 19070 mblk_t *mp2ctl; 19071 ill_t *ill; 19072 ipif_t *ipif; 19073 ilm_t *ilm; 19074 ip_grpsrc_t ips; 19075 mblk_t *mp_tail = NULL; 19076 ill_walk_context_t ctx; 19077 zoneid_t zoneid; 19078 int i; 19079 slist_t *sl; 19080 ilm_walker_t ilw; 19081 19082 /* 19083 * make a copy of the original message 19084 */ 19085 mp2ctl = copymsg(mpctl); 19086 zoneid = Q_TO_CONN(q)->conn_zoneid; 19087 19088 /* ipGroupSource table */ 19089 optp = (struct opthdr *)&mpctl->b_rptr[ 19090 sizeof (struct T_optmgmt_ack)]; 19091 optp->level = MIB2_IP; 19092 optp->name = EXPER_IP_GROUP_SOURCES; 19093 19094 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19095 ill = ILL_START_WALK_V4(&ctx, ipst); 19096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19097 if (IS_UNDER_IPMP(ill)) 19098 continue; 19099 19100 ilm = ilm_walker_start(&ilw, ill); 19101 for (ipif = ill->ill_ipif; ipif != NULL; 19102 ipif = ipif->ipif_next) { 19103 if (ipif->ipif_zoneid != zoneid) 19104 continue; /* not this zone */ 19105 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19106 OCTET_LENGTH); 19107 ips.ipGroupSourceIfIndex.o_length = 19108 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19109 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19110 ASSERT(ilm->ilm_ipif != NULL); 19111 ASSERT(ilm->ilm_ill == NULL); 19112 sl = ilm->ilm_filter; 19113 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19114 continue; 19115 ips.ipGroupSourceGroup = ilm->ilm_addr; 19116 for (i = 0; i < sl->sl_numsrc; i++) { 19117 if (!IN6_IS_ADDR_V4MAPPED( 19118 &sl->sl_addr[i])) 19119 continue; 19120 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19121 ips.ipGroupSourceAddress); 19122 if (snmp_append_data2(mpctl->b_cont, 19123 &mp_tail, (char *)&ips, 19124 (int)sizeof (ips)) == 0) { 19125 ip1dbg(("ip_snmp_get_mib2_" 19126 "ip_group_src: failed to " 19127 "allocate %u bytes\n", 19128 (uint_t)sizeof (ips))); 19129 } 19130 } 19131 } 19132 } 19133 ilm_walker_finish(&ilw); 19134 } 19135 rw_exit(&ipst->ips_ill_g_lock); 19136 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19137 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19138 (int)optp->level, (int)optp->name, (int)optp->len)); 19139 qreply(q, mpctl); 19140 return (mp2ctl); 19141 } 19142 19143 /* IPv6 multicast filtered sources. */ 19144 static mblk_t * 19145 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19146 { 19147 struct opthdr *optp; 19148 mblk_t *mp2ctl; 19149 ill_t *ill; 19150 ilm_t *ilm; 19151 ipv6_grpsrc_t ips6; 19152 mblk_t *mp_tail = NULL; 19153 ill_walk_context_t ctx; 19154 zoneid_t zoneid; 19155 int i; 19156 slist_t *sl; 19157 ilm_walker_t ilw; 19158 19159 /* 19160 * make a copy of the original message 19161 */ 19162 mp2ctl = copymsg(mpctl); 19163 zoneid = Q_TO_CONN(q)->conn_zoneid; 19164 19165 /* ip6GroupMember table */ 19166 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19167 optp->level = MIB2_IP6; 19168 optp->name = EXPER_IP6_GROUP_SOURCES; 19169 19170 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19171 ill = ILL_START_WALK_V6(&ctx, ipst); 19172 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19173 if (IS_UNDER_IPMP(ill)) 19174 continue; 19175 19176 ilm = ilm_walker_start(&ilw, ill); 19177 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19178 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19179 ASSERT(ilm->ilm_ipif == NULL); 19180 ASSERT(ilm->ilm_ill != NULL); 19181 sl = ilm->ilm_filter; 19182 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19183 continue; 19184 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19185 for (i = 0; i < sl->sl_numsrc; i++) { 19186 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19187 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19188 (char *)&ips6, (int)sizeof (ips6))) { 19189 ip1dbg(("ip_snmp_get_mib2_ip6_" 19190 "group_src: failed to allocate " 19191 "%u bytes\n", 19192 (uint_t)sizeof (ips6))); 19193 } 19194 } 19195 } 19196 ilm_walker_finish(&ilw); 19197 } 19198 rw_exit(&ipst->ips_ill_g_lock); 19199 19200 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19201 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19202 (int)optp->level, (int)optp->name, (int)optp->len)); 19203 qreply(q, mpctl); 19204 return (mp2ctl); 19205 } 19206 19207 /* Multicast routing virtual interface table. */ 19208 static mblk_t * 19209 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19210 { 19211 struct opthdr *optp; 19212 mblk_t *mp2ctl; 19213 19214 /* 19215 * make a copy of the original message 19216 */ 19217 mp2ctl = copymsg(mpctl); 19218 19219 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19220 optp->level = EXPER_DVMRP; 19221 optp->name = EXPER_DVMRP_VIF; 19222 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19223 ip0dbg(("ip_mroute_vif: failed\n")); 19224 } 19225 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19226 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19227 (int)optp->level, (int)optp->name, (int)optp->len)); 19228 qreply(q, mpctl); 19229 return (mp2ctl); 19230 } 19231 19232 /* Multicast routing table. */ 19233 static mblk_t * 19234 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19235 { 19236 struct opthdr *optp; 19237 mblk_t *mp2ctl; 19238 19239 /* 19240 * make a copy of the original message 19241 */ 19242 mp2ctl = copymsg(mpctl); 19243 19244 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19245 optp->level = EXPER_DVMRP; 19246 optp->name = EXPER_DVMRP_MRT; 19247 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19248 ip0dbg(("ip_mroute_mrt: failed\n")); 19249 } 19250 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19251 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19252 (int)optp->level, (int)optp->name, (int)optp->len)); 19253 qreply(q, mpctl); 19254 return (mp2ctl); 19255 } 19256 19257 /* 19258 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19259 * in one IRE walk. 19260 */ 19261 static mblk_t * 19262 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19263 ip_stack_t *ipst) 19264 { 19265 struct opthdr *optp; 19266 mblk_t *mp2ctl; /* Returned */ 19267 mblk_t *mp3ctl; /* nettomedia */ 19268 mblk_t *mp4ctl; /* routeattrs */ 19269 iproutedata_t ird; 19270 zoneid_t zoneid; 19271 19272 /* 19273 * make copies of the original message 19274 * - mp2ctl is returned unchanged to the caller for his use 19275 * - mpctl is sent upstream as ipRouteEntryTable 19276 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19277 * - mp4ctl is sent upstream as ipRouteAttributeTable 19278 */ 19279 mp2ctl = copymsg(mpctl); 19280 mp3ctl = copymsg(mpctl); 19281 mp4ctl = copymsg(mpctl); 19282 if (mp3ctl == NULL || mp4ctl == NULL) { 19283 freemsg(mp4ctl); 19284 freemsg(mp3ctl); 19285 freemsg(mp2ctl); 19286 freemsg(mpctl); 19287 return (NULL); 19288 } 19289 19290 bzero(&ird, sizeof (ird)); 19291 19292 ird.ird_route.lp_head = mpctl->b_cont; 19293 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19294 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19295 /* 19296 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19297 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19298 * intended a temporary solution until a proper MIB API is provided 19299 * that provides complete filtering/caller-opt-in. 19300 */ 19301 if (level == EXPER_IP_AND_TESTHIDDEN) 19302 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19303 19304 zoneid = Q_TO_CONN(q)->conn_zoneid; 19305 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19306 19307 /* ipRouteEntryTable in mpctl */ 19308 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19309 optp->level = MIB2_IP; 19310 optp->name = MIB2_IP_ROUTE; 19311 optp->len = msgdsize(ird.ird_route.lp_head); 19312 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19313 (int)optp->level, (int)optp->name, (int)optp->len)); 19314 qreply(q, mpctl); 19315 19316 /* ipNetToMediaEntryTable in mp3ctl */ 19317 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19318 optp->level = MIB2_IP; 19319 optp->name = MIB2_IP_MEDIA; 19320 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19321 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19322 (int)optp->level, (int)optp->name, (int)optp->len)); 19323 qreply(q, mp3ctl); 19324 19325 /* ipRouteAttributeTable in mp4ctl */ 19326 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19327 optp->level = MIB2_IP; 19328 optp->name = EXPER_IP_RTATTR; 19329 optp->len = msgdsize(ird.ird_attrs.lp_head); 19330 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19331 (int)optp->level, (int)optp->name, (int)optp->len)); 19332 if (optp->len == 0) 19333 freemsg(mp4ctl); 19334 else 19335 qreply(q, mp4ctl); 19336 19337 return (mp2ctl); 19338 } 19339 19340 /* 19341 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19342 * ipv6NetToMediaEntryTable in an NDP walk. 19343 */ 19344 static mblk_t * 19345 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19346 ip_stack_t *ipst) 19347 { 19348 struct opthdr *optp; 19349 mblk_t *mp2ctl; /* Returned */ 19350 mblk_t *mp3ctl; /* nettomedia */ 19351 mblk_t *mp4ctl; /* routeattrs */ 19352 iproutedata_t ird; 19353 zoneid_t zoneid; 19354 19355 /* 19356 * make copies of the original message 19357 * - mp2ctl is returned unchanged to the caller for his use 19358 * - mpctl is sent upstream as ipv6RouteEntryTable 19359 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19360 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19361 */ 19362 mp2ctl = copymsg(mpctl); 19363 mp3ctl = copymsg(mpctl); 19364 mp4ctl = copymsg(mpctl); 19365 if (mp3ctl == NULL || mp4ctl == NULL) { 19366 freemsg(mp4ctl); 19367 freemsg(mp3ctl); 19368 freemsg(mp2ctl); 19369 freemsg(mpctl); 19370 return (NULL); 19371 } 19372 19373 bzero(&ird, sizeof (ird)); 19374 19375 ird.ird_route.lp_head = mpctl->b_cont; 19376 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19377 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19378 /* 19379 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19380 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19381 * intended a temporary solution until a proper MIB API is provided 19382 * that provides complete filtering/caller-opt-in. 19383 */ 19384 if (level == EXPER_IP_AND_TESTHIDDEN) 19385 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19386 19387 zoneid = Q_TO_CONN(q)->conn_zoneid; 19388 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19389 19390 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19391 optp->level = MIB2_IP6; 19392 optp->name = MIB2_IP6_ROUTE; 19393 optp->len = msgdsize(ird.ird_route.lp_head); 19394 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19395 (int)optp->level, (int)optp->name, (int)optp->len)); 19396 qreply(q, mpctl); 19397 19398 /* ipv6NetToMediaEntryTable in mp3ctl */ 19399 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19400 19401 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19402 optp->level = MIB2_IP6; 19403 optp->name = MIB2_IP6_MEDIA; 19404 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19405 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19406 (int)optp->level, (int)optp->name, (int)optp->len)); 19407 qreply(q, mp3ctl); 19408 19409 /* ipv6RouteAttributeTable in mp4ctl */ 19410 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19411 optp->level = MIB2_IP6; 19412 optp->name = EXPER_IP_RTATTR; 19413 optp->len = msgdsize(ird.ird_attrs.lp_head); 19414 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19415 (int)optp->level, (int)optp->name, (int)optp->len)); 19416 if (optp->len == 0) 19417 freemsg(mp4ctl); 19418 else 19419 qreply(q, mp4ctl); 19420 19421 return (mp2ctl); 19422 } 19423 19424 /* 19425 * IPv6 mib: One per ill 19426 */ 19427 static mblk_t * 19428 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19429 { 19430 struct opthdr *optp; 19431 mblk_t *mp2ctl; 19432 ill_t *ill; 19433 ill_walk_context_t ctx; 19434 mblk_t *mp_tail = NULL; 19435 19436 /* 19437 * Make a copy of the original message 19438 */ 19439 mp2ctl = copymsg(mpctl); 19440 19441 /* fixed length IPv6 structure ... */ 19442 19443 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19444 optp->level = MIB2_IP6; 19445 optp->name = 0; 19446 /* Include "unknown interface" ip6_mib */ 19447 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19448 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19449 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19450 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19451 ipst->ips_ipv6_forward ? 1 : 2); 19452 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19453 ipst->ips_ipv6_def_hops); 19454 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19455 sizeof (mib2_ipIfStatsEntry_t)); 19456 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19457 sizeof (mib2_ipv6AddrEntry_t)); 19458 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19459 sizeof (mib2_ipv6RouteEntry_t)); 19460 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19461 sizeof (mib2_ipv6NetToMediaEntry_t)); 19462 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19463 sizeof (ipv6_member_t)); 19464 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19465 sizeof (ipv6_grpsrc_t)); 19466 19467 /* 19468 * Synchronize 64- and 32-bit counters 19469 */ 19470 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19471 ipIfStatsHCInReceives); 19472 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19473 ipIfStatsHCInDelivers); 19474 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19475 ipIfStatsHCOutRequests); 19476 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19477 ipIfStatsHCOutForwDatagrams); 19478 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19479 ipIfStatsHCOutMcastPkts); 19480 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19481 ipIfStatsHCInMcastPkts); 19482 19483 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19484 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19485 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19486 (uint_t)sizeof (ipst->ips_ip6_mib))); 19487 } 19488 19489 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19490 ill = ILL_START_WALK_V6(&ctx, ipst); 19491 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19492 ill->ill_ip_mib->ipIfStatsIfIndex = 19493 ill->ill_phyint->phyint_ifindex; 19494 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19495 ipst->ips_ipv6_forward ? 1 : 2); 19496 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19497 ill->ill_max_hops); 19498 19499 /* 19500 * Synchronize 64- and 32-bit counters 19501 */ 19502 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19503 ipIfStatsHCInReceives); 19504 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19505 ipIfStatsHCInDelivers); 19506 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19507 ipIfStatsHCOutRequests); 19508 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19509 ipIfStatsHCOutForwDatagrams); 19510 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19511 ipIfStatsHCOutMcastPkts); 19512 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19513 ipIfStatsHCInMcastPkts); 19514 19515 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19516 (char *)ill->ill_ip_mib, 19517 (int)sizeof (*ill->ill_ip_mib))) { 19518 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19519 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19520 } 19521 } 19522 rw_exit(&ipst->ips_ill_g_lock); 19523 19524 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19525 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19526 (int)optp->level, (int)optp->name, (int)optp->len)); 19527 qreply(q, mpctl); 19528 return (mp2ctl); 19529 } 19530 19531 /* 19532 * ICMPv6 mib: One per ill 19533 */ 19534 static mblk_t * 19535 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19536 { 19537 struct opthdr *optp; 19538 mblk_t *mp2ctl; 19539 ill_t *ill; 19540 ill_walk_context_t ctx; 19541 mblk_t *mp_tail = NULL; 19542 /* 19543 * Make a copy of the original message 19544 */ 19545 mp2ctl = copymsg(mpctl); 19546 19547 /* fixed length ICMPv6 structure ... */ 19548 19549 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19550 optp->level = MIB2_ICMP6; 19551 optp->name = 0; 19552 /* Include "unknown interface" icmp6_mib */ 19553 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19554 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19555 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19556 sizeof (mib2_ipv6IfIcmpEntry_t); 19557 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19558 (char *)&ipst->ips_icmp6_mib, 19559 (int)sizeof (ipst->ips_icmp6_mib))) { 19560 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19561 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19562 } 19563 19564 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19565 ill = ILL_START_WALK_V6(&ctx, ipst); 19566 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19567 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19568 ill->ill_phyint->phyint_ifindex; 19569 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19570 (char *)ill->ill_icmp6_mib, 19571 (int)sizeof (*ill->ill_icmp6_mib))) { 19572 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19573 "%u bytes\n", 19574 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19575 } 19576 } 19577 rw_exit(&ipst->ips_ill_g_lock); 19578 19579 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19580 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19581 (int)optp->level, (int)optp->name, (int)optp->len)); 19582 qreply(q, mpctl); 19583 return (mp2ctl); 19584 } 19585 19586 /* 19587 * ire_walk routine to create both ipRouteEntryTable and 19588 * ipRouteAttributeTable in one IRE walk 19589 */ 19590 static void 19591 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19592 { 19593 ill_t *ill; 19594 ipif_t *ipif; 19595 mib2_ipRouteEntry_t *re; 19596 mib2_ipAttributeEntry_t *iae, *iaeptr; 19597 ipaddr_t gw_addr; 19598 tsol_ire_gw_secattr_t *attrp; 19599 tsol_gc_t *gc = NULL; 19600 tsol_gcgrp_t *gcgrp = NULL; 19601 uint_t sacnt = 0; 19602 int i; 19603 19604 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19605 19606 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19607 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19608 return; 19609 } 19610 19611 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19612 return; 19613 19614 if ((attrp = ire->ire_gw_secattr) != NULL) { 19615 mutex_enter(&attrp->igsa_lock); 19616 if ((gc = attrp->igsa_gc) != NULL) { 19617 gcgrp = gc->gc_grp; 19618 ASSERT(gcgrp != NULL); 19619 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19620 sacnt = 1; 19621 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19622 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19623 gc = gcgrp->gcgrp_head; 19624 sacnt = gcgrp->gcgrp_count; 19625 } 19626 mutex_exit(&attrp->igsa_lock); 19627 19628 /* do nothing if there's no gc to report */ 19629 if (gc == NULL) { 19630 ASSERT(sacnt == 0); 19631 if (gcgrp != NULL) { 19632 /* we might as well drop the lock now */ 19633 rw_exit(&gcgrp->gcgrp_rwlock); 19634 gcgrp = NULL; 19635 } 19636 attrp = NULL; 19637 } 19638 19639 ASSERT(gc == NULL || (gcgrp != NULL && 19640 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19641 } 19642 ASSERT(sacnt == 0 || gc != NULL); 19643 19644 if (sacnt != 0 && 19645 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19646 kmem_free(re, sizeof (*re)); 19647 rw_exit(&gcgrp->gcgrp_rwlock); 19648 return; 19649 } 19650 19651 /* 19652 * Return all IRE types for route table... let caller pick and choose 19653 */ 19654 re->ipRouteDest = ire->ire_addr; 19655 ipif = ire->ire_ipif; 19656 re->ipRouteIfIndex.o_length = 0; 19657 if (ire->ire_type == IRE_CACHE) { 19658 ill = (ill_t *)ire->ire_stq->q_ptr; 19659 re->ipRouteIfIndex.o_length = 19660 ill->ill_name_length == 0 ? 0 : 19661 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19662 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19663 re->ipRouteIfIndex.o_length); 19664 } else if (ipif != NULL) { 19665 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19666 re->ipRouteIfIndex.o_length = 19667 mi_strlen(re->ipRouteIfIndex.o_bytes); 19668 } 19669 re->ipRouteMetric1 = -1; 19670 re->ipRouteMetric2 = -1; 19671 re->ipRouteMetric3 = -1; 19672 re->ipRouteMetric4 = -1; 19673 19674 gw_addr = ire->ire_gateway_addr; 19675 19676 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19677 re->ipRouteNextHop = ire->ire_src_addr; 19678 else 19679 re->ipRouteNextHop = gw_addr; 19680 /* indirect(4), direct(3), or invalid(2) */ 19681 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19682 re->ipRouteType = 2; 19683 else 19684 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19685 re->ipRouteProto = -1; 19686 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19687 re->ipRouteMask = ire->ire_mask; 19688 re->ipRouteMetric5 = -1; 19689 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19690 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19691 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19692 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19693 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19694 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19695 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19696 re->ipRouteInfo.re_flags = ire->ire_flags; 19697 19698 if (ire->ire_flags & RTF_DYNAMIC) { 19699 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19700 } else { 19701 re->ipRouteInfo.re_ire_type = ire->ire_type; 19702 } 19703 19704 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19705 (char *)re, (int)sizeof (*re))) { 19706 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19707 (uint_t)sizeof (*re))); 19708 } 19709 19710 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19711 iaeptr->iae_routeidx = ird->ird_idx; 19712 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19713 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19714 } 19715 19716 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19717 (char *)iae, sacnt * sizeof (*iae))) { 19718 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19719 (unsigned)(sacnt * sizeof (*iae)))); 19720 } 19721 19722 /* bump route index for next pass */ 19723 ird->ird_idx++; 19724 19725 kmem_free(re, sizeof (*re)); 19726 if (sacnt != 0) 19727 kmem_free(iae, sacnt * sizeof (*iae)); 19728 19729 if (gcgrp != NULL) 19730 rw_exit(&gcgrp->gcgrp_rwlock); 19731 } 19732 19733 /* 19734 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19735 */ 19736 static void 19737 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19738 { 19739 ill_t *ill; 19740 ipif_t *ipif; 19741 mib2_ipv6RouteEntry_t *re; 19742 mib2_ipAttributeEntry_t *iae, *iaeptr; 19743 in6_addr_t gw_addr_v6; 19744 tsol_ire_gw_secattr_t *attrp; 19745 tsol_gc_t *gc = NULL; 19746 tsol_gcgrp_t *gcgrp = NULL; 19747 uint_t sacnt = 0; 19748 int i; 19749 19750 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19751 19752 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19753 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19754 return; 19755 } 19756 19757 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19758 return; 19759 19760 if ((attrp = ire->ire_gw_secattr) != NULL) { 19761 mutex_enter(&attrp->igsa_lock); 19762 if ((gc = attrp->igsa_gc) != NULL) { 19763 gcgrp = gc->gc_grp; 19764 ASSERT(gcgrp != NULL); 19765 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19766 sacnt = 1; 19767 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19768 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19769 gc = gcgrp->gcgrp_head; 19770 sacnt = gcgrp->gcgrp_count; 19771 } 19772 mutex_exit(&attrp->igsa_lock); 19773 19774 /* do nothing if there's no gc to report */ 19775 if (gc == NULL) { 19776 ASSERT(sacnt == 0); 19777 if (gcgrp != NULL) { 19778 /* we might as well drop the lock now */ 19779 rw_exit(&gcgrp->gcgrp_rwlock); 19780 gcgrp = NULL; 19781 } 19782 attrp = NULL; 19783 } 19784 19785 ASSERT(gc == NULL || (gcgrp != NULL && 19786 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19787 } 19788 ASSERT(sacnt == 0 || gc != NULL); 19789 19790 if (sacnt != 0 && 19791 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19792 kmem_free(re, sizeof (*re)); 19793 rw_exit(&gcgrp->gcgrp_rwlock); 19794 return; 19795 } 19796 19797 /* 19798 * Return all IRE types for route table... let caller pick and choose 19799 */ 19800 re->ipv6RouteDest = ire->ire_addr_v6; 19801 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19802 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19803 re->ipv6RouteIfIndex.o_length = 0; 19804 ipif = ire->ire_ipif; 19805 if (ire->ire_type == IRE_CACHE) { 19806 ill = (ill_t *)ire->ire_stq->q_ptr; 19807 re->ipv6RouteIfIndex.o_length = 19808 ill->ill_name_length == 0 ? 0 : 19809 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19810 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19811 re->ipv6RouteIfIndex.o_length); 19812 } else if (ipif != NULL) { 19813 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19814 re->ipv6RouteIfIndex.o_length = 19815 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19816 } 19817 19818 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19819 19820 mutex_enter(&ire->ire_lock); 19821 gw_addr_v6 = ire->ire_gateway_addr_v6; 19822 mutex_exit(&ire->ire_lock); 19823 19824 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19825 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19826 else 19827 re->ipv6RouteNextHop = gw_addr_v6; 19828 19829 /* remote(4), local(3), or discard(2) */ 19830 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19831 re->ipv6RouteType = 2; 19832 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19833 re->ipv6RouteType = 3; 19834 else 19835 re->ipv6RouteType = 4; 19836 19837 re->ipv6RouteProtocol = -1; 19838 re->ipv6RoutePolicy = 0; 19839 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19840 re->ipv6RouteNextHopRDI = 0; 19841 re->ipv6RouteWeight = 0; 19842 re->ipv6RouteMetric = 0; 19843 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19844 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19845 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19846 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19847 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19848 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19849 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19850 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19851 19852 if (ire->ire_flags & RTF_DYNAMIC) { 19853 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19854 } else { 19855 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19856 } 19857 19858 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19859 (char *)re, (int)sizeof (*re))) { 19860 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19861 (uint_t)sizeof (*re))); 19862 } 19863 19864 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19865 iaeptr->iae_routeidx = ird->ird_idx; 19866 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19867 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19868 } 19869 19870 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19871 (char *)iae, sacnt * sizeof (*iae))) { 19872 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19873 (unsigned)(sacnt * sizeof (*iae)))); 19874 } 19875 19876 /* bump route index for next pass */ 19877 ird->ird_idx++; 19878 19879 kmem_free(re, sizeof (*re)); 19880 if (sacnt != 0) 19881 kmem_free(iae, sacnt * sizeof (*iae)); 19882 19883 if (gcgrp != NULL) 19884 rw_exit(&gcgrp->gcgrp_rwlock); 19885 } 19886 19887 /* 19888 * ndp_walk routine to create ipv6NetToMediaEntryTable 19889 */ 19890 static int 19891 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19892 { 19893 ill_t *ill; 19894 mib2_ipv6NetToMediaEntry_t ntme; 19895 dl_unitdata_req_t *dl; 19896 19897 ill = nce->nce_ill; 19898 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19899 return (0); 19900 19901 /* 19902 * Neighbor cache entry attached to IRE with on-link 19903 * destination. 19904 */ 19905 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19906 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19907 if ((ill->ill_flags & ILLF_XRESOLV) && 19908 (nce->nce_res_mp != NULL)) { 19909 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19910 ntme.ipv6NetToMediaPhysAddress.o_length = 19911 dl->dl_dest_addr_length; 19912 } else { 19913 ntme.ipv6NetToMediaPhysAddress.o_length = 19914 ill->ill_phys_addr_length; 19915 } 19916 if (nce->nce_res_mp != NULL) { 19917 bcopy((char *)nce->nce_res_mp->b_rptr + 19918 NCE_LL_ADDR_OFFSET(ill), 19919 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19920 ntme.ipv6NetToMediaPhysAddress.o_length); 19921 } else { 19922 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19923 ill->ill_phys_addr_length); 19924 } 19925 /* 19926 * Note: Returns ND_* states. Should be: 19927 * reachable(1), stale(2), delay(3), probe(4), 19928 * invalid(5), unknown(6) 19929 */ 19930 ntme.ipv6NetToMediaState = nce->nce_state; 19931 ntme.ipv6NetToMediaLastUpdated = 0; 19932 19933 /* other(1), dynamic(2), static(3), local(4) */ 19934 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19935 ntme.ipv6NetToMediaType = 4; 19936 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19937 ntme.ipv6NetToMediaType = 1; 19938 } else { 19939 ntme.ipv6NetToMediaType = 2; 19940 } 19941 19942 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19943 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19944 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19945 (uint_t)sizeof (ntme))); 19946 } 19947 return (0); 19948 } 19949 19950 /* 19951 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19952 */ 19953 /* ARGSUSED */ 19954 int 19955 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19956 { 19957 switch (level) { 19958 case MIB2_IP: 19959 case MIB2_ICMP: 19960 switch (name) { 19961 default: 19962 break; 19963 } 19964 return (1); 19965 default: 19966 return (1); 19967 } 19968 } 19969 19970 /* 19971 * When there exists both a 64- and 32-bit counter of a particular type 19972 * (i.e., InReceives), only the 64-bit counters are added. 19973 */ 19974 void 19975 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19976 { 19977 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19978 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19979 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19980 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19981 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19982 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19983 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19984 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19985 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19986 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19987 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19988 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19989 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19990 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19991 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19992 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19993 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19994 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19995 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19996 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19997 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19998 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19999 o2->ipIfStatsInWrongIPVersion); 20000 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20001 o2->ipIfStatsInWrongIPVersion); 20002 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20003 o2->ipIfStatsOutSwitchIPVersion); 20004 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20005 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20006 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20007 o2->ipIfStatsHCInForwDatagrams); 20008 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20009 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20010 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20011 o2->ipIfStatsHCOutForwDatagrams); 20012 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20013 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20014 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20015 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20016 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20017 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20018 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20019 o2->ipIfStatsHCOutMcastOctets); 20020 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20021 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20022 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20023 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20024 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20025 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20026 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20027 } 20028 20029 void 20030 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20031 { 20032 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20033 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20034 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20035 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20036 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20037 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20038 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20039 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20040 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20041 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20042 o2->ipv6IfIcmpInRouterSolicits); 20043 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20044 o2->ipv6IfIcmpInRouterAdvertisements); 20045 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20046 o2->ipv6IfIcmpInNeighborSolicits); 20047 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20048 o2->ipv6IfIcmpInNeighborAdvertisements); 20049 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20050 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20051 o2->ipv6IfIcmpInGroupMembQueries); 20052 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20053 o2->ipv6IfIcmpInGroupMembResponses); 20054 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20055 o2->ipv6IfIcmpInGroupMembReductions); 20056 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20057 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20058 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20059 o2->ipv6IfIcmpOutDestUnreachs); 20060 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20061 o2->ipv6IfIcmpOutAdminProhibs); 20062 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20063 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20064 o2->ipv6IfIcmpOutParmProblems); 20065 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20066 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20067 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20068 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20069 o2->ipv6IfIcmpOutRouterSolicits); 20070 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20071 o2->ipv6IfIcmpOutRouterAdvertisements); 20072 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20073 o2->ipv6IfIcmpOutNeighborSolicits); 20074 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20075 o2->ipv6IfIcmpOutNeighborAdvertisements); 20076 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20077 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20078 o2->ipv6IfIcmpOutGroupMembQueries); 20079 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20080 o2->ipv6IfIcmpOutGroupMembResponses); 20081 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20082 o2->ipv6IfIcmpOutGroupMembReductions); 20083 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20084 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20085 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20086 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20087 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20088 o2->ipv6IfIcmpInBadNeighborSolicitations); 20089 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20090 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20091 o2->ipv6IfIcmpInGroupMembTotal); 20092 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20093 o2->ipv6IfIcmpInGroupMembBadQueries); 20094 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20095 o2->ipv6IfIcmpInGroupMembBadReports); 20096 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20097 o2->ipv6IfIcmpInGroupMembOurReports); 20098 } 20099 20100 /* 20101 * Called before the options are updated to check if this packet will 20102 * be source routed from here. 20103 * This routine assumes that the options are well formed i.e. that they 20104 * have already been checked. 20105 */ 20106 static boolean_t 20107 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20108 { 20109 ipoptp_t opts; 20110 uchar_t *opt; 20111 uint8_t optval; 20112 uint8_t optlen; 20113 ipaddr_t dst; 20114 ire_t *ire; 20115 20116 if (IS_SIMPLE_IPH(ipha)) { 20117 ip2dbg(("not source routed\n")); 20118 return (B_FALSE); 20119 } 20120 dst = ipha->ipha_dst; 20121 for (optval = ipoptp_first(&opts, ipha); 20122 optval != IPOPT_EOL; 20123 optval = ipoptp_next(&opts)) { 20124 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20125 opt = opts.ipoptp_cur; 20126 optlen = opts.ipoptp_len; 20127 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20128 optval, optlen)); 20129 switch (optval) { 20130 uint32_t off; 20131 case IPOPT_SSRR: 20132 case IPOPT_LSRR: 20133 /* 20134 * If dst is one of our addresses and there are some 20135 * entries left in the source route return (true). 20136 */ 20137 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20138 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20139 if (ire == NULL) { 20140 ip2dbg(("ip_source_routed: not next" 20141 " source route 0x%x\n", 20142 ntohl(dst))); 20143 return (B_FALSE); 20144 } 20145 ire_refrele(ire); 20146 off = opt[IPOPT_OFFSET]; 20147 off--; 20148 if (optlen < IP_ADDR_LEN || 20149 off > optlen - IP_ADDR_LEN) { 20150 /* End of source route */ 20151 ip1dbg(("ip_source_routed: end of SR\n")); 20152 return (B_FALSE); 20153 } 20154 return (B_TRUE); 20155 } 20156 } 20157 ip2dbg(("not source routed\n")); 20158 return (B_FALSE); 20159 } 20160 20161 /* 20162 * Check if the packet contains any source route. 20163 */ 20164 static boolean_t 20165 ip_source_route_included(ipha_t *ipha) 20166 { 20167 ipoptp_t opts; 20168 uint8_t optval; 20169 20170 if (IS_SIMPLE_IPH(ipha)) 20171 return (B_FALSE); 20172 for (optval = ipoptp_first(&opts, ipha); 20173 optval != IPOPT_EOL; 20174 optval = ipoptp_next(&opts)) { 20175 switch (optval) { 20176 case IPOPT_SSRR: 20177 case IPOPT_LSRR: 20178 return (B_TRUE); 20179 } 20180 } 20181 return (B_FALSE); 20182 } 20183 20184 /* 20185 * Called when the IRE expiration timer fires. 20186 */ 20187 void 20188 ip_trash_timer_expire(void *args) 20189 { 20190 int flush_flag = 0; 20191 ire_expire_arg_t iea; 20192 ip_stack_t *ipst = (ip_stack_t *)args; 20193 20194 iea.iea_ipst = ipst; /* No netstack_hold */ 20195 20196 /* 20197 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20198 * This lock makes sure that a new invocation of this function 20199 * that occurs due to an almost immediate timer firing will not 20200 * progress beyond this point until the current invocation is done 20201 */ 20202 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20203 ipst->ips_ip_ire_expire_id = 0; 20204 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20205 20206 /* Periodic timer */ 20207 if (ipst->ips_ip_ire_arp_time_elapsed >= 20208 ipst->ips_ip_ire_arp_interval) { 20209 /* 20210 * Remove all IRE_CACHE entries since they might 20211 * contain arp information. 20212 */ 20213 flush_flag |= FLUSH_ARP_TIME; 20214 ipst->ips_ip_ire_arp_time_elapsed = 0; 20215 IP_STAT(ipst, ip_ire_arp_timer_expired); 20216 } 20217 if (ipst->ips_ip_ire_rd_time_elapsed >= 20218 ipst->ips_ip_ire_redir_interval) { 20219 /* Remove all redirects */ 20220 flush_flag |= FLUSH_REDIRECT_TIME; 20221 ipst->ips_ip_ire_rd_time_elapsed = 0; 20222 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20223 } 20224 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20225 ipst->ips_ip_ire_pathmtu_interval) { 20226 /* Increase path mtu */ 20227 flush_flag |= FLUSH_MTU_TIME; 20228 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20229 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20230 } 20231 20232 /* 20233 * Optimize for the case when there are no redirects in the 20234 * ftable, that is, no need to walk the ftable in that case. 20235 */ 20236 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20237 iea.iea_flush_flag = flush_flag; 20238 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20239 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20240 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20241 NULL, ALL_ZONES, ipst); 20242 } 20243 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20244 ipst->ips_ip_redirect_cnt > 0) { 20245 iea.iea_flush_flag = flush_flag; 20246 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20247 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20248 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20249 } 20250 if (flush_flag & FLUSH_MTU_TIME) { 20251 /* 20252 * Walk all IPv6 IRE's and update them 20253 * Note that ARP and redirect timers are not 20254 * needed since NUD handles stale entries. 20255 */ 20256 flush_flag = FLUSH_MTU_TIME; 20257 iea.iea_flush_flag = flush_flag; 20258 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20259 ALL_ZONES, ipst); 20260 } 20261 20262 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20263 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20264 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20265 20266 /* 20267 * Hold the lock to serialize timeout calls and prevent 20268 * stale values in ip_ire_expire_id. Otherwise it is possible 20269 * for the timer to fire and a new invocation of this function 20270 * to start before the return value of timeout has been stored 20271 * in ip_ire_expire_id by the current invocation. 20272 */ 20273 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20274 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20275 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20276 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20277 } 20278 20279 /* 20280 * Called by the memory allocator subsystem directly, when the system 20281 * is running low on memory. 20282 */ 20283 /* ARGSUSED */ 20284 void 20285 ip_trash_ire_reclaim(void *args) 20286 { 20287 netstack_handle_t nh; 20288 netstack_t *ns; 20289 20290 netstack_next_init(&nh); 20291 while ((ns = netstack_next(&nh)) != NULL) { 20292 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20293 netstack_rele(ns); 20294 } 20295 netstack_next_fini(&nh); 20296 } 20297 20298 static void 20299 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20300 { 20301 ire_cache_count_t icc; 20302 ire_cache_reclaim_t icr; 20303 ncc_cache_count_t ncc; 20304 nce_cache_reclaim_t ncr; 20305 uint_t delete_cnt; 20306 /* 20307 * Memory reclaim call back. 20308 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20309 * Then, with a target of freeing 1/Nth of IRE_CACHE 20310 * entries, determine what fraction to free for 20311 * each category of IRE_CACHE entries giving absolute priority 20312 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20313 * entry will be freed unless all offlink entries are freed). 20314 */ 20315 icc.icc_total = 0; 20316 icc.icc_unused = 0; 20317 icc.icc_offlink = 0; 20318 icc.icc_pmtu = 0; 20319 icc.icc_onlink = 0; 20320 ire_walk(ire_cache_count, (char *)&icc, ipst); 20321 20322 /* 20323 * Free NCEs for IPv6 like the onlink ires. 20324 */ 20325 ncc.ncc_total = 0; 20326 ncc.ncc_host = 0; 20327 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20328 20329 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20330 icc.icc_pmtu + icc.icc_onlink); 20331 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20332 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20333 if (delete_cnt == 0) 20334 return; 20335 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20336 /* Always delete all unused offlink entries */ 20337 icr.icr_ipst = ipst; 20338 icr.icr_unused = 1; 20339 if (delete_cnt <= icc.icc_unused) { 20340 /* 20341 * Only need to free unused entries. In other words, 20342 * there are enough unused entries to free to meet our 20343 * target number of freed ire cache entries. 20344 */ 20345 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20346 ncr.ncr_host = 0; 20347 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20348 /* 20349 * Only need to free unused entries, plus a fraction of offlink 20350 * entries. It follows from the first if statement that 20351 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20352 */ 20353 delete_cnt -= icc.icc_unused; 20354 /* Round up # deleted by truncating fraction */ 20355 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20356 icr.icr_pmtu = icr.icr_onlink = 0; 20357 ncr.ncr_host = 0; 20358 } else if (delete_cnt <= 20359 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20360 /* 20361 * Free all unused and offlink entries, plus a fraction of 20362 * pmtu entries. It follows from the previous if statement 20363 * that icc_pmtu is non-zero, and that 20364 * delete_cnt != icc_unused + icc_offlink. 20365 */ 20366 icr.icr_offlink = 1; 20367 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20368 /* Round up # deleted by truncating fraction */ 20369 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20370 icr.icr_onlink = 0; 20371 ncr.ncr_host = 0; 20372 } else { 20373 /* 20374 * Free all unused, offlink, and pmtu entries, plus a fraction 20375 * of onlink entries. If we're here, then we know that 20376 * icc_onlink is non-zero, and that 20377 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20378 */ 20379 icr.icr_offlink = icr.icr_pmtu = 1; 20380 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20381 icc.icc_pmtu; 20382 /* Round up # deleted by truncating fraction */ 20383 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20384 /* Using the same delete fraction as for onlink IREs */ 20385 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20386 } 20387 #ifdef DEBUG 20388 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20389 "fractions %d/%d/%d/%d\n", 20390 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20391 icc.icc_unused, icc.icc_offlink, 20392 icc.icc_pmtu, icc.icc_onlink, 20393 icr.icr_unused, icr.icr_offlink, 20394 icr.icr_pmtu, icr.icr_onlink)); 20395 #endif 20396 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20397 if (ncr.ncr_host != 0) 20398 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20399 (uchar_t *)&ncr, ipst); 20400 #ifdef DEBUG 20401 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20402 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20403 ire_walk(ire_cache_count, (char *)&icc, ipst); 20404 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20405 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20406 icc.icc_pmtu, icc.icc_onlink)); 20407 #endif 20408 } 20409 20410 /* 20411 * ip_unbind is called when a copy of an unbind request is received from the 20412 * upper level protocol. We remove this conn from any fanout hash list it is 20413 * on, and zero out the bind information. No reply is expected up above. 20414 */ 20415 void 20416 ip_unbind(conn_t *connp) 20417 { 20418 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20419 20420 if (is_system_labeled() && connp->conn_anon_port) { 20421 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20422 connp->conn_mlp_type, connp->conn_ulp, 20423 ntohs(connp->conn_lport), B_FALSE); 20424 connp->conn_anon_port = 0; 20425 } 20426 connp->conn_mlp_type = mlptSingle; 20427 20428 ipcl_hash_remove(connp); 20429 20430 } 20431 20432 /* 20433 * Write side put procedure. Outbound data, IOCTLs, responses from 20434 * resolvers, etc, come down through here. 20435 * 20436 * arg2 is always a queue_t *. 20437 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20438 * the zoneid. 20439 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20440 */ 20441 void 20442 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20443 { 20444 ip_output_options(arg, mp, arg2, caller, &zero_info); 20445 } 20446 20447 void 20448 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20449 ip_opt_info_t *infop) 20450 { 20451 conn_t *connp = NULL; 20452 queue_t *q = (queue_t *)arg2; 20453 ipha_t *ipha; 20454 #define rptr ((uchar_t *)ipha) 20455 ire_t *ire = NULL; 20456 ire_t *sctp_ire = NULL; 20457 uint32_t v_hlen_tos_len; 20458 ipaddr_t dst; 20459 mblk_t *first_mp = NULL; 20460 boolean_t mctl_present; 20461 ipsec_out_t *io; 20462 int match_flags; 20463 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20464 ipif_t *dst_ipif; 20465 boolean_t multirt_need_resolve = B_FALSE; 20466 mblk_t *copy_mp = NULL; 20467 int err; 20468 zoneid_t zoneid; 20469 boolean_t need_decref = B_FALSE; 20470 boolean_t ignore_dontroute = B_FALSE; 20471 boolean_t ignore_nexthop = B_FALSE; 20472 boolean_t ip_nexthop = B_FALSE; 20473 ipaddr_t nexthop_addr; 20474 ip_stack_t *ipst; 20475 20476 #ifdef _BIG_ENDIAN 20477 #define V_HLEN (v_hlen_tos_len >> 24) 20478 #else 20479 #define V_HLEN (v_hlen_tos_len & 0xFF) 20480 #endif 20481 20482 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20483 "ip_wput_start: q %p", q); 20484 20485 /* 20486 * ip_wput fast path 20487 */ 20488 20489 /* is packet from ARP ? */ 20490 if (q->q_next != NULL) { 20491 zoneid = (zoneid_t)(uintptr_t)arg; 20492 goto qnext; 20493 } 20494 20495 connp = (conn_t *)arg; 20496 ASSERT(connp != NULL); 20497 zoneid = connp->conn_zoneid; 20498 ipst = connp->conn_netstack->netstack_ip; 20499 ASSERT(ipst != NULL); 20500 20501 /* is queue flow controlled? */ 20502 if ((q->q_first != NULL || connp->conn_draining) && 20503 (caller == IP_WPUT)) { 20504 ASSERT(!need_decref); 20505 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20506 (void) putq(q, mp); 20507 return; 20508 } 20509 20510 /* Multidata transmit? */ 20511 if (DB_TYPE(mp) == M_MULTIDATA) { 20512 /* 20513 * We should never get here, since all Multidata messages 20514 * originating from tcp should have been directed over to 20515 * tcp_multisend() in the first place. 20516 */ 20517 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20518 freemsg(mp); 20519 return; 20520 } else if (DB_TYPE(mp) != M_DATA) 20521 goto notdata; 20522 20523 if (mp->b_flag & MSGHASREF) { 20524 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20525 mp->b_flag &= ~MSGHASREF; 20526 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20527 need_decref = B_TRUE; 20528 } 20529 ipha = (ipha_t *)mp->b_rptr; 20530 20531 /* is IP header non-aligned or mblk smaller than basic IP header */ 20532 #ifndef SAFETY_BEFORE_SPEED 20533 if (!OK_32PTR(rptr) || 20534 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20535 goto hdrtoosmall; 20536 #endif 20537 20538 ASSERT(OK_32PTR(ipha)); 20539 20540 /* 20541 * This function assumes that mp points to an IPv4 packet. If it's the 20542 * wrong version, we'll catch it again in ip_output_v6. 20543 * 20544 * Note that this is *only* locally-generated output here, and never 20545 * forwarded data, and that we need to deal only with transports that 20546 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20547 * label.) 20548 */ 20549 if (is_system_labeled() && 20550 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20551 !connp->conn_ulp_labeled) { 20552 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20553 connp->conn_mac_exempt, ipst); 20554 ipha = (ipha_t *)mp->b_rptr; 20555 if (err != 0) { 20556 first_mp = mp; 20557 if (err == EINVAL) 20558 goto icmp_parameter_problem; 20559 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20560 goto discard_pkt; 20561 } 20562 } 20563 20564 ASSERT(infop != NULL); 20565 20566 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20567 /* 20568 * IP_PKTINFO ancillary option is present. 20569 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20570 * allows using address of any zone as the source address. 20571 */ 20572 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20573 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20574 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20575 if (ire == NULL) 20576 goto drop_pkt; 20577 ire_refrele(ire); 20578 ire = NULL; 20579 } 20580 20581 /* 20582 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20583 */ 20584 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20585 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20586 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20587 20588 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20589 goto drop_pkt; 20590 /* 20591 * check that there is an ipif belonging 20592 * to our zone. IPCL_ZONEID is not used because 20593 * IP_ALLZONES option is valid only when the ill is 20594 * accessible from all zones i.e has a valid ipif in 20595 * all zones. 20596 */ 20597 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20598 goto drop_pkt; 20599 } 20600 } 20601 20602 /* 20603 * If there is a policy, try to attach an ipsec_out in 20604 * the front. At the end, first_mp either points to a 20605 * M_DATA message or IPSEC_OUT message linked to a 20606 * M_DATA message. We have to do it now as we might 20607 * lose the "conn" if we go through ip_newroute. 20608 */ 20609 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20610 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20611 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20612 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20613 if (need_decref) 20614 CONN_DEC_REF(connp); 20615 return; 20616 } else { 20617 ASSERT(mp->b_datap->db_type == M_CTL); 20618 first_mp = mp; 20619 mp = mp->b_cont; 20620 mctl_present = B_TRUE; 20621 } 20622 } else { 20623 first_mp = mp; 20624 mctl_present = B_FALSE; 20625 } 20626 20627 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20628 20629 /* is wrong version or IP options present */ 20630 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20631 goto version_hdrlen_check; 20632 dst = ipha->ipha_dst; 20633 20634 /* If IP_BOUND_IF has been set, use that ill. */ 20635 if (connp->conn_outgoing_ill != NULL) { 20636 xmit_ill = conn_get_held_ill(connp, 20637 &connp->conn_outgoing_ill, &err); 20638 if (err == ILL_LOOKUP_FAILED) 20639 goto drop_pkt; 20640 20641 goto send_from_ill; 20642 } 20643 20644 /* is packet multicast? */ 20645 if (CLASSD(dst)) 20646 goto multicast; 20647 20648 /* 20649 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20650 * takes precedence over conn_dontroute and conn_nexthop_set 20651 */ 20652 if (xmit_ill != NULL) 20653 goto send_from_ill; 20654 20655 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20656 /* 20657 * If the destination is a broadcast, local, or loopback 20658 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20659 * standard path. 20660 */ 20661 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20662 if ((ire == NULL) || (ire->ire_type & 20663 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20664 if (ire != NULL) { 20665 ire_refrele(ire); 20666 /* No more access to ire */ 20667 ire = NULL; 20668 } 20669 /* 20670 * bypass routing checks and go directly to interface. 20671 */ 20672 if (connp->conn_dontroute) 20673 goto dontroute; 20674 20675 ASSERT(connp->conn_nexthop_set); 20676 ip_nexthop = B_TRUE; 20677 nexthop_addr = connp->conn_nexthop_v4; 20678 goto send_from_ill; 20679 } 20680 20681 /* Must be a broadcast, a loopback or a local ire */ 20682 ire_refrele(ire); 20683 /* No more access to ire */ 20684 ire = NULL; 20685 } 20686 20687 /* 20688 * We cache IRE_CACHEs to avoid lookups. We don't do 20689 * this for the tcp global queue and listen end point 20690 * as it does not really have a real destination to 20691 * talk to. This is also true for SCTP. 20692 */ 20693 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20694 !connp->conn_fully_bound) { 20695 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20696 if (ire == NULL) 20697 goto noirefound; 20698 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20699 "ip_wput_end: q %p (%S)", q, "end"); 20700 20701 /* 20702 * Check if the ire has the RTF_MULTIRT flag, inherited 20703 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20704 */ 20705 if (ire->ire_flags & RTF_MULTIRT) { 20706 20707 /* 20708 * Force the TTL of multirouted packets if required. 20709 * The TTL of such packets is bounded by the 20710 * ip_multirt_ttl ndd variable. 20711 */ 20712 if ((ipst->ips_ip_multirt_ttl > 0) && 20713 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20714 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20715 "(was %d), dst 0x%08x\n", 20716 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20717 ntohl(ire->ire_addr))); 20718 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20719 } 20720 /* 20721 * We look at this point if there are pending 20722 * unresolved routes. ire_multirt_resolvable() 20723 * checks in O(n) that all IRE_OFFSUBNET ire 20724 * entries for the packet's destination and 20725 * flagged RTF_MULTIRT are currently resolved. 20726 * If some remain unresolved, we make a copy 20727 * of the current message. It will be used 20728 * to initiate additional route resolutions. 20729 */ 20730 multirt_need_resolve = 20731 ire_multirt_need_resolve(ire->ire_addr, 20732 msg_getlabel(first_mp), ipst); 20733 ip2dbg(("ip_wput[TCP]: ire %p, " 20734 "multirt_need_resolve %d, first_mp %p\n", 20735 (void *)ire, multirt_need_resolve, 20736 (void *)first_mp)); 20737 if (multirt_need_resolve) { 20738 copy_mp = copymsg(first_mp); 20739 if (copy_mp != NULL) { 20740 MULTIRT_DEBUG_TAG(copy_mp); 20741 } 20742 } 20743 } 20744 20745 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20746 20747 /* 20748 * Try to resolve another multiroute if 20749 * ire_multirt_need_resolve() deemed it necessary. 20750 */ 20751 if (copy_mp != NULL) 20752 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20753 if (need_decref) 20754 CONN_DEC_REF(connp); 20755 return; 20756 } 20757 20758 /* 20759 * Access to conn_ire_cache. (protected by conn_lock) 20760 * 20761 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20762 * the ire bucket lock here to check for CONDEMNED as it is okay to 20763 * send a packet or two with the IRE_CACHE that is going away. 20764 * Access to the ire requires an ire refhold on the ire prior to 20765 * its use since an interface unplumb thread may delete the cached 20766 * ire and release the refhold at any time. 20767 * 20768 * Caching an ire in the conn_ire_cache 20769 * 20770 * o Caching an ire pointer in the conn requires a strict check for 20771 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20772 * ires before cleaning up the conns. So the caching of an ire pointer 20773 * in the conn is done after making sure under the bucket lock that the 20774 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20775 * caching an ire after the unplumb thread has cleaned up the conn. 20776 * If the conn does not send a packet subsequently the unplumb thread 20777 * will be hanging waiting for the ire count to drop to zero. 20778 * 20779 * o We also need to atomically test for a null conn_ire_cache and 20780 * set the conn_ire_cache under the the protection of the conn_lock 20781 * to avoid races among concurrent threads trying to simultaneously 20782 * cache an ire in the conn_ire_cache. 20783 */ 20784 mutex_enter(&connp->conn_lock); 20785 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20786 20787 if (ire != NULL && ire->ire_addr == dst && 20788 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20789 20790 IRE_REFHOLD(ire); 20791 mutex_exit(&connp->conn_lock); 20792 20793 } else { 20794 boolean_t cached = B_FALSE; 20795 connp->conn_ire_cache = NULL; 20796 mutex_exit(&connp->conn_lock); 20797 /* Release the old ire */ 20798 if (ire != NULL && sctp_ire == NULL) 20799 IRE_REFRELE_NOTR(ire); 20800 20801 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20802 if (ire == NULL) 20803 goto noirefound; 20804 IRE_REFHOLD_NOTR(ire); 20805 20806 mutex_enter(&connp->conn_lock); 20807 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20808 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20809 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20810 if (connp->conn_ulp == IPPROTO_TCP) 20811 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20812 connp->conn_ire_cache = ire; 20813 cached = B_TRUE; 20814 } 20815 rw_exit(&ire->ire_bucket->irb_lock); 20816 } 20817 mutex_exit(&connp->conn_lock); 20818 20819 /* 20820 * We can continue to use the ire but since it was 20821 * not cached, we should drop the extra reference. 20822 */ 20823 if (!cached) 20824 IRE_REFRELE_NOTR(ire); 20825 } 20826 20827 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20828 "ip_wput_end: q %p (%S)", q, "end"); 20829 20830 /* 20831 * Check if the ire has the RTF_MULTIRT flag, inherited 20832 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20833 */ 20834 if (ire->ire_flags & RTF_MULTIRT) { 20835 /* 20836 * Force the TTL of multirouted packets if required. 20837 * The TTL of such packets is bounded by the 20838 * ip_multirt_ttl ndd variable. 20839 */ 20840 if ((ipst->ips_ip_multirt_ttl > 0) && 20841 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20842 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20843 "(was %d), dst 0x%08x\n", 20844 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20845 ntohl(ire->ire_addr))); 20846 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20847 } 20848 20849 /* 20850 * At this point, we check to see if there are any pending 20851 * unresolved routes. ire_multirt_resolvable() 20852 * checks in O(n) that all IRE_OFFSUBNET ire 20853 * entries for the packet's destination and 20854 * flagged RTF_MULTIRT are currently resolved. 20855 * If some remain unresolved, we make a copy 20856 * of the current message. It will be used 20857 * to initiate additional route resolutions. 20858 */ 20859 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20860 msg_getlabel(first_mp), ipst); 20861 ip2dbg(("ip_wput[not TCP]: ire %p, " 20862 "multirt_need_resolve %d, first_mp %p\n", 20863 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20864 if (multirt_need_resolve) { 20865 copy_mp = copymsg(first_mp); 20866 if (copy_mp != NULL) { 20867 MULTIRT_DEBUG_TAG(copy_mp); 20868 } 20869 } 20870 } 20871 20872 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20873 20874 /* 20875 * Try to resolve another multiroute if 20876 * ire_multirt_resolvable() deemed it necessary 20877 */ 20878 if (copy_mp != NULL) 20879 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20880 if (need_decref) 20881 CONN_DEC_REF(connp); 20882 return; 20883 20884 qnext: 20885 /* 20886 * Upper Level Protocols pass down complete IP datagrams 20887 * as M_DATA messages. Everything else is a sideshow. 20888 * 20889 * 1) We could be re-entering ip_wput because of ip_neworute 20890 * in which case we could have a IPSEC_OUT message. We 20891 * need to pass through ip_wput like other datagrams and 20892 * hence cannot branch to ip_wput_nondata. 20893 * 20894 * 2) ARP, AH, ESP, and other clients who are on the module 20895 * instance of IP stream, give us something to deal with. 20896 * We will handle AH and ESP here and rest in ip_wput_nondata. 20897 * 20898 * 3) ICMP replies also could come here. 20899 */ 20900 ipst = ILLQ_TO_IPST(q); 20901 20902 if (DB_TYPE(mp) != M_DATA) { 20903 notdata: 20904 if (DB_TYPE(mp) == M_CTL) { 20905 /* 20906 * M_CTL messages are used by ARP, AH and ESP to 20907 * communicate with IP. We deal with IPSEC_IN and 20908 * IPSEC_OUT here. ip_wput_nondata handles other 20909 * cases. 20910 */ 20911 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20912 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20913 first_mp = mp->b_cont; 20914 first_mp->b_flag &= ~MSGHASREF; 20915 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20916 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20917 CONN_DEC_REF(connp); 20918 connp = NULL; 20919 } 20920 if (ii->ipsec_info_type == IPSEC_IN) { 20921 /* 20922 * Either this message goes back to 20923 * IPsec for further processing or to 20924 * ULP after policy checks. 20925 */ 20926 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20927 return; 20928 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20929 io = (ipsec_out_t *)ii; 20930 if (io->ipsec_out_proc_begin) { 20931 /* 20932 * IPsec processing has already started. 20933 * Complete it. 20934 * IPQoS notes: We don't care what is 20935 * in ipsec_out_ill_index since this 20936 * won't be processed for IPQoS policies 20937 * in ipsec_out_process. 20938 */ 20939 ipsec_out_process(q, mp, NULL, 20940 io->ipsec_out_ill_index); 20941 return; 20942 } else { 20943 connp = (q->q_next != NULL) ? 20944 NULL : Q_TO_CONN(q); 20945 first_mp = mp; 20946 mp = mp->b_cont; 20947 mctl_present = B_TRUE; 20948 } 20949 zoneid = io->ipsec_out_zoneid; 20950 ASSERT(zoneid != ALL_ZONES); 20951 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20952 /* 20953 * It's an IPsec control message requesting 20954 * an SADB update to be sent to the IPsec 20955 * hardware acceleration capable ills. 20956 */ 20957 ipsec_ctl_t *ipsec_ctl = 20958 (ipsec_ctl_t *)mp->b_rptr; 20959 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20960 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20961 mblk_t *cmp = mp->b_cont; 20962 20963 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20964 ASSERT(cmp != NULL); 20965 20966 freeb(mp); 20967 ill_ipsec_capab_send_all(satype, cmp, sa, 20968 ipst->ips_netstack); 20969 return; 20970 } else { 20971 /* 20972 * This must be ARP or special TSOL signaling. 20973 */ 20974 ip_wput_nondata(NULL, q, mp, NULL); 20975 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20976 "ip_wput_end: q %p (%S)", q, "nondata"); 20977 return; 20978 } 20979 } else { 20980 /* 20981 * This must be non-(ARP/AH/ESP) messages. 20982 */ 20983 ASSERT(!need_decref); 20984 ip_wput_nondata(NULL, q, mp, NULL); 20985 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20986 "ip_wput_end: q %p (%S)", q, "nondata"); 20987 return; 20988 } 20989 } else { 20990 first_mp = mp; 20991 mctl_present = B_FALSE; 20992 } 20993 20994 ASSERT(first_mp != NULL); 20995 20996 if (mctl_present) { 20997 io = (ipsec_out_t *)first_mp->b_rptr; 20998 if (io->ipsec_out_ip_nexthop) { 20999 /* 21000 * We may have lost the conn context if we are 21001 * coming here from ip_newroute(). Copy the 21002 * nexthop information. 21003 */ 21004 ip_nexthop = B_TRUE; 21005 nexthop_addr = io->ipsec_out_nexthop_addr; 21006 21007 ipha = (ipha_t *)mp->b_rptr; 21008 dst = ipha->ipha_dst; 21009 goto send_from_ill; 21010 } 21011 } 21012 21013 ASSERT(xmit_ill == NULL); 21014 21015 /* We have a complete IP datagram heading outbound. */ 21016 ipha = (ipha_t *)mp->b_rptr; 21017 21018 #ifndef SPEED_BEFORE_SAFETY 21019 /* 21020 * Make sure we have a full-word aligned message and that at least 21021 * a simple IP header is accessible in the first message. If not, 21022 * try a pullup. For labeled systems we need to always take this 21023 * path as M_CTLs are "notdata" but have trailing data to process. 21024 */ 21025 if (!OK_32PTR(rptr) || 21026 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21027 hdrtoosmall: 21028 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21029 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21030 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21031 if (first_mp == NULL) 21032 first_mp = mp; 21033 goto discard_pkt; 21034 } 21035 21036 /* This function assumes that mp points to an IPv4 packet. */ 21037 if (is_system_labeled() && q->q_next == NULL && 21038 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21039 !connp->conn_ulp_labeled) { 21040 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21041 connp->conn_mac_exempt, ipst); 21042 ipha = (ipha_t *)mp->b_rptr; 21043 if (first_mp != NULL) 21044 first_mp->b_cont = mp; 21045 if (err != 0) { 21046 if (first_mp == NULL) 21047 first_mp = mp; 21048 if (err == EINVAL) 21049 goto icmp_parameter_problem; 21050 ip2dbg(("ip_wput: label check failed (%d)\n", 21051 err)); 21052 goto discard_pkt; 21053 } 21054 } 21055 21056 ipha = (ipha_t *)mp->b_rptr; 21057 if (first_mp == NULL) { 21058 ASSERT(xmit_ill == NULL); 21059 /* 21060 * If we got here because of "goto hdrtoosmall" 21061 * We need to attach a IPSEC_OUT. 21062 */ 21063 if (connp->conn_out_enforce_policy) { 21064 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21065 NULL, ipha->ipha_protocol, 21066 ipst->ips_netstack)) == NULL)) { 21067 BUMP_MIB(&ipst->ips_ip_mib, 21068 ipIfStatsOutDiscards); 21069 if (need_decref) 21070 CONN_DEC_REF(connp); 21071 return; 21072 } else { 21073 ASSERT(mp->b_datap->db_type == M_CTL); 21074 first_mp = mp; 21075 mp = mp->b_cont; 21076 mctl_present = B_TRUE; 21077 } 21078 } else { 21079 first_mp = mp; 21080 mctl_present = B_FALSE; 21081 } 21082 } 21083 } 21084 #endif 21085 21086 /* Most of the code below is written for speed, not readability */ 21087 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21088 21089 /* 21090 * If ip_newroute() fails, we're going to need a full 21091 * header for the icmp wraparound. 21092 */ 21093 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21094 uint_t v_hlen; 21095 version_hdrlen_check: 21096 ASSERT(first_mp != NULL); 21097 v_hlen = V_HLEN; 21098 /* 21099 * siphon off IPv6 packets coming down from transport 21100 * layer modules here. 21101 * Note: high-order bit carries NUD reachability confirmation 21102 */ 21103 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21104 /* 21105 * FIXME: assume that callers of ip_output* call 21106 * the right version? 21107 */ 21108 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21109 ASSERT(xmit_ill == NULL); 21110 if (need_decref) 21111 mp->b_flag |= MSGHASREF; 21112 (void) ip_output_v6(arg, first_mp, arg2, caller); 21113 return; 21114 } 21115 21116 if ((v_hlen >> 4) != IP_VERSION) { 21117 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21118 "ip_wput_end: q %p (%S)", q, "badvers"); 21119 goto discard_pkt; 21120 } 21121 /* 21122 * Is the header length at least 20 bytes? 21123 * 21124 * Are there enough bytes accessible in the header? If 21125 * not, try a pullup. 21126 */ 21127 v_hlen &= 0xF; 21128 v_hlen <<= 2; 21129 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21130 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21131 "ip_wput_end: q %p (%S)", q, "badlen"); 21132 goto discard_pkt; 21133 } 21134 if (v_hlen > (mp->b_wptr - rptr)) { 21135 if (!pullupmsg(mp, v_hlen)) { 21136 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21137 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21138 goto discard_pkt; 21139 } 21140 ipha = (ipha_t *)mp->b_rptr; 21141 } 21142 /* 21143 * Move first entry from any source route into ipha_dst and 21144 * verify the options 21145 */ 21146 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21147 zoneid, ipst)) { 21148 ASSERT(xmit_ill == NULL); 21149 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21150 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21151 "ip_wput_end: q %p (%S)", q, "badopts"); 21152 if (need_decref) 21153 CONN_DEC_REF(connp); 21154 return; 21155 } 21156 } 21157 dst = ipha->ipha_dst; 21158 21159 /* 21160 * Try to get an IRE_CACHE for the destination address. If we can't, 21161 * we have to run the packet through ip_newroute which will take 21162 * the appropriate action to arrange for an IRE_CACHE, such as querying 21163 * a resolver, or assigning a default gateway, etc. 21164 */ 21165 if (CLASSD(dst)) { 21166 ipif_t *ipif; 21167 uint32_t setsrc = 0; 21168 21169 multicast: 21170 ASSERT(first_mp != NULL); 21171 ip2dbg(("ip_wput: CLASSD\n")); 21172 if (connp == NULL) { 21173 /* 21174 * Use the first good ipif on the ill. 21175 * XXX Should this ever happen? (Appears 21176 * to show up with just ppp and no ethernet due 21177 * to in.rdisc.) 21178 * However, ire_send should be able to 21179 * call ip_wput_ire directly. 21180 * 21181 * XXX Also, this can happen for ICMP and other packets 21182 * with multicast source addresses. Perhaps we should 21183 * fix things so that we drop the packet in question, 21184 * but for now, just run with it. 21185 */ 21186 ill_t *ill = (ill_t *)q->q_ptr; 21187 21188 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21189 if (ipif == NULL) { 21190 if (need_decref) 21191 CONN_DEC_REF(connp); 21192 freemsg(first_mp); 21193 return; 21194 } 21195 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21196 ntohl(dst), ill->ill_name)); 21197 } else { 21198 /* 21199 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21200 * and IP_MULTICAST_IF. The block comment above this 21201 * function explains the locking mechanism used here. 21202 */ 21203 if (xmit_ill == NULL) { 21204 xmit_ill = conn_get_held_ill(connp, 21205 &connp->conn_outgoing_ill, &err); 21206 if (err == ILL_LOOKUP_FAILED) { 21207 ip1dbg(("ip_wput: No ill for " 21208 "IP_BOUND_IF\n")); 21209 BUMP_MIB(&ipst->ips_ip_mib, 21210 ipIfStatsOutNoRoutes); 21211 goto drop_pkt; 21212 } 21213 } 21214 21215 if (xmit_ill == NULL) { 21216 ipif = conn_get_held_ipif(connp, 21217 &connp->conn_multicast_ipif, &err); 21218 if (err == IPIF_LOOKUP_FAILED) { 21219 ip1dbg(("ip_wput: No ipif for " 21220 "multicast\n")); 21221 BUMP_MIB(&ipst->ips_ip_mib, 21222 ipIfStatsOutNoRoutes); 21223 goto drop_pkt; 21224 } 21225 } 21226 if (xmit_ill != NULL) { 21227 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21228 if (ipif == NULL) { 21229 ip1dbg(("ip_wput: No ipif for " 21230 "xmit_ill\n")); 21231 BUMP_MIB(&ipst->ips_ip_mib, 21232 ipIfStatsOutNoRoutes); 21233 goto drop_pkt; 21234 } 21235 } else if (ipif == NULL || ipif->ipif_isv6) { 21236 /* 21237 * We must do this ipif determination here 21238 * else we could pass through ip_newroute 21239 * and come back here without the conn context. 21240 * 21241 * Note: we do late binding i.e. we bind to 21242 * the interface when the first packet is sent. 21243 * For performance reasons we do not rebind on 21244 * each packet but keep the binding until the 21245 * next IP_MULTICAST_IF option. 21246 * 21247 * conn_multicast_{ipif,ill} are shared between 21248 * IPv4 and IPv6 and AF_INET6 sockets can 21249 * send both IPv4 and IPv6 packets. Hence 21250 * we have to check that "isv6" matches above. 21251 */ 21252 if (ipif != NULL) 21253 ipif_refrele(ipif); 21254 ipif = ipif_lookup_group(dst, zoneid, ipst); 21255 if (ipif == NULL) { 21256 ip1dbg(("ip_wput: No ipif for " 21257 "multicast\n")); 21258 BUMP_MIB(&ipst->ips_ip_mib, 21259 ipIfStatsOutNoRoutes); 21260 goto drop_pkt; 21261 } 21262 err = conn_set_held_ipif(connp, 21263 &connp->conn_multicast_ipif, ipif); 21264 if (err == IPIF_LOOKUP_FAILED) { 21265 ipif_refrele(ipif); 21266 ip1dbg(("ip_wput: No ipif for " 21267 "multicast\n")); 21268 BUMP_MIB(&ipst->ips_ip_mib, 21269 ipIfStatsOutNoRoutes); 21270 goto drop_pkt; 21271 } 21272 } 21273 } 21274 ASSERT(!ipif->ipif_isv6); 21275 /* 21276 * As we may lose the conn by the time we reach ip_wput_ire, 21277 * we copy conn_multicast_loop and conn_dontroute on to an 21278 * ipsec_out. In case if this datagram goes out secure, 21279 * we need the ill_index also. Copy that also into the 21280 * ipsec_out. 21281 */ 21282 if (mctl_present) { 21283 io = (ipsec_out_t *)first_mp->b_rptr; 21284 ASSERT(first_mp->b_datap->db_type == M_CTL); 21285 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21286 } else { 21287 ASSERT(mp == first_mp); 21288 if ((first_mp = allocb(sizeof (ipsec_info_t), 21289 BPRI_HI)) == NULL) { 21290 ipif_refrele(ipif); 21291 first_mp = mp; 21292 goto discard_pkt; 21293 } 21294 first_mp->b_datap->db_type = M_CTL; 21295 first_mp->b_wptr += sizeof (ipsec_info_t); 21296 /* ipsec_out_secure is B_FALSE now */ 21297 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21298 io = (ipsec_out_t *)first_mp->b_rptr; 21299 io->ipsec_out_type = IPSEC_OUT; 21300 io->ipsec_out_len = sizeof (ipsec_out_t); 21301 io->ipsec_out_use_global_policy = B_TRUE; 21302 io->ipsec_out_ns = ipst->ips_netstack; 21303 first_mp->b_cont = mp; 21304 mctl_present = B_TRUE; 21305 } 21306 21307 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21308 io->ipsec_out_ill_index = 21309 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21310 21311 if (connp != NULL) { 21312 io->ipsec_out_multicast_loop = 21313 connp->conn_multicast_loop; 21314 io->ipsec_out_dontroute = connp->conn_dontroute; 21315 io->ipsec_out_zoneid = connp->conn_zoneid; 21316 } 21317 /* 21318 * If the application uses IP_MULTICAST_IF with 21319 * different logical addresses of the same ILL, we 21320 * need to make sure that the soruce address of 21321 * the packet matches the logical IP address used 21322 * in the option. We do it by initializing ipha_src 21323 * here. This should keep IPsec also happy as 21324 * when we return from IPsec processing, we don't 21325 * have to worry about getting the right address on 21326 * the packet. Thus it is sufficient to look for 21327 * IRE_CACHE using MATCH_IRE_ILL rathen than 21328 * MATCH_IRE_IPIF. 21329 * 21330 * NOTE : We need to do it for non-secure case also as 21331 * this might go out secure if there is a global policy 21332 * match in ip_wput_ire. 21333 * 21334 * As we do not have the ire yet, it is possible that 21335 * we set the source address here and then later discover 21336 * that the ire implies the source address to be assigned 21337 * through the RTF_SETSRC flag. 21338 * In that case, the setsrc variable will remind us 21339 * that overwritting the source address by the one 21340 * of the RTF_SETSRC-flagged ire is allowed. 21341 */ 21342 if (ipha->ipha_src == INADDR_ANY && 21343 (connp == NULL || !connp->conn_unspec_src)) { 21344 ipha->ipha_src = ipif->ipif_src_addr; 21345 setsrc = RTF_SETSRC; 21346 } 21347 /* 21348 * Find an IRE which matches the destination and the outgoing 21349 * queue (i.e. the outgoing interface.) 21350 * For loopback use a unicast IP address for 21351 * the ire lookup. 21352 */ 21353 if (IS_LOOPBACK(ipif->ipif_ill)) 21354 dst = ipif->ipif_lcl_addr; 21355 21356 /* 21357 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21358 * We don't need to lookup ire in ctable as the packet 21359 * needs to be sent to the destination through the specified 21360 * ill irrespective of ires in the cache table. 21361 */ 21362 ire = NULL; 21363 if (xmit_ill == NULL) { 21364 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21365 zoneid, msg_getlabel(mp), match_flags, ipst); 21366 } 21367 21368 if (ire == NULL) { 21369 /* 21370 * Multicast loopback and multicast forwarding is 21371 * done in ip_wput_ire. 21372 * 21373 * Mark this packet to make it be delivered to 21374 * ip_wput_ire after the new ire has been 21375 * created. 21376 * 21377 * The call to ip_newroute_ipif takes into account 21378 * the setsrc reminder. In any case, we take care 21379 * of the RTF_MULTIRT flag. 21380 */ 21381 mp->b_prev = mp->b_next = NULL; 21382 if (xmit_ill == NULL || 21383 xmit_ill->ill_ipif_up_count > 0) { 21384 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21385 setsrc | RTF_MULTIRT, zoneid, infop); 21386 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21387 "ip_wput_end: q %p (%S)", q, "noire"); 21388 } else { 21389 freemsg(first_mp); 21390 } 21391 ipif_refrele(ipif); 21392 if (xmit_ill != NULL) 21393 ill_refrele(xmit_ill); 21394 if (need_decref) 21395 CONN_DEC_REF(connp); 21396 return; 21397 } 21398 21399 ipif_refrele(ipif); 21400 ipif = NULL; 21401 ASSERT(xmit_ill == NULL); 21402 21403 /* 21404 * Honor the RTF_SETSRC flag for multicast packets, 21405 * if allowed by the setsrc reminder. 21406 */ 21407 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21408 ipha->ipha_src = ire->ire_src_addr; 21409 } 21410 21411 /* 21412 * Unconditionally force the TTL to 1 for 21413 * multirouted multicast packets: 21414 * multirouted multicast should not cross 21415 * multicast routers. 21416 */ 21417 if (ire->ire_flags & RTF_MULTIRT) { 21418 if (ipha->ipha_ttl > 1) { 21419 ip2dbg(("ip_wput: forcing multicast " 21420 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21421 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21422 ipha->ipha_ttl = 1; 21423 } 21424 } 21425 } else { 21426 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21427 if ((ire != NULL) && (ire->ire_type & 21428 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21429 ignore_dontroute = B_TRUE; 21430 ignore_nexthop = B_TRUE; 21431 } 21432 if (ire != NULL) { 21433 ire_refrele(ire); 21434 ire = NULL; 21435 } 21436 /* 21437 * Guard against coming in from arp in which case conn is NULL. 21438 * Also guard against non M_DATA with dontroute set but 21439 * destined to local, loopback or broadcast addresses. 21440 */ 21441 if (connp != NULL && connp->conn_dontroute && 21442 !ignore_dontroute) { 21443 dontroute: 21444 /* 21445 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21446 * routing protocols from seeing false direct 21447 * connectivity. 21448 */ 21449 ipha->ipha_ttl = 1; 21450 /* If suitable ipif not found, drop packet */ 21451 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21452 if (dst_ipif == NULL) { 21453 noroute: 21454 ip1dbg(("ip_wput: no route for dst using" 21455 " SO_DONTROUTE\n")); 21456 BUMP_MIB(&ipst->ips_ip_mib, 21457 ipIfStatsOutNoRoutes); 21458 mp->b_prev = mp->b_next = NULL; 21459 if (first_mp == NULL) 21460 first_mp = mp; 21461 goto drop_pkt; 21462 } else { 21463 /* 21464 * If suitable ipif has been found, set 21465 * xmit_ill to the corresponding 21466 * ipif_ill because we'll be using the 21467 * send_from_ill logic below. 21468 */ 21469 ASSERT(xmit_ill == NULL); 21470 xmit_ill = dst_ipif->ipif_ill; 21471 mutex_enter(&xmit_ill->ill_lock); 21472 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21473 mutex_exit(&xmit_ill->ill_lock); 21474 xmit_ill = NULL; 21475 ipif_refrele(dst_ipif); 21476 goto noroute; 21477 } 21478 ill_refhold_locked(xmit_ill); 21479 mutex_exit(&xmit_ill->ill_lock); 21480 ipif_refrele(dst_ipif); 21481 } 21482 } 21483 21484 send_from_ill: 21485 if (xmit_ill != NULL) { 21486 ipif_t *ipif; 21487 21488 /* 21489 * Mark this packet as originated locally 21490 */ 21491 mp->b_prev = mp->b_next = NULL; 21492 21493 /* 21494 * Could be SO_DONTROUTE case also. 21495 * Verify that at least one ipif is up on the ill. 21496 */ 21497 if (xmit_ill->ill_ipif_up_count == 0) { 21498 ip1dbg(("ip_output: xmit_ill %s is down\n", 21499 xmit_ill->ill_name)); 21500 goto drop_pkt; 21501 } 21502 21503 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21504 if (ipif == NULL) { 21505 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21506 xmit_ill->ill_name)); 21507 goto drop_pkt; 21508 } 21509 21510 match_flags = 0; 21511 if (IS_UNDER_IPMP(xmit_ill)) 21512 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21513 21514 /* 21515 * Look for a ire that is part of the group, 21516 * if found use it else call ip_newroute_ipif. 21517 * IPCL_ZONEID is not used for matching because 21518 * IP_ALLZONES option is valid only when the 21519 * ill is accessible from all zones i.e has a 21520 * valid ipif in all zones. 21521 */ 21522 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21523 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21524 msg_getlabel(mp), match_flags, ipst); 21525 /* 21526 * If an ire exists use it or else create 21527 * an ire but don't add it to the cache. 21528 * Adding an ire may cause issues with 21529 * asymmetric routing. 21530 * In case of multiroute always act as if 21531 * ire does not exist. 21532 */ 21533 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21534 if (ire != NULL) 21535 ire_refrele(ire); 21536 ip_newroute_ipif(q, first_mp, ipif, 21537 dst, connp, 0, zoneid, infop); 21538 ipif_refrele(ipif); 21539 ip1dbg(("ip_output: xmit_ill via %s\n", 21540 xmit_ill->ill_name)); 21541 ill_refrele(xmit_ill); 21542 if (need_decref) 21543 CONN_DEC_REF(connp); 21544 return; 21545 } 21546 ipif_refrele(ipif); 21547 } else if (ip_nexthop || (connp != NULL && 21548 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21549 if (!ip_nexthop) { 21550 ip_nexthop = B_TRUE; 21551 nexthop_addr = connp->conn_nexthop_v4; 21552 } 21553 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21554 MATCH_IRE_GW; 21555 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21556 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21557 } else { 21558 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21559 ipst); 21560 } 21561 if (!ire) { 21562 if (ip_nexthop && !ignore_nexthop) { 21563 if (mctl_present) { 21564 io = (ipsec_out_t *)first_mp->b_rptr; 21565 ASSERT(first_mp->b_datap->db_type == 21566 M_CTL); 21567 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21568 } else { 21569 ASSERT(mp == first_mp); 21570 first_mp = allocb( 21571 sizeof (ipsec_info_t), BPRI_HI); 21572 if (first_mp == NULL) { 21573 first_mp = mp; 21574 goto discard_pkt; 21575 } 21576 first_mp->b_datap->db_type = M_CTL; 21577 first_mp->b_wptr += 21578 sizeof (ipsec_info_t); 21579 /* ipsec_out_secure is B_FALSE now */ 21580 bzero(first_mp->b_rptr, 21581 sizeof (ipsec_info_t)); 21582 io = (ipsec_out_t *)first_mp->b_rptr; 21583 io->ipsec_out_type = IPSEC_OUT; 21584 io->ipsec_out_len = 21585 sizeof (ipsec_out_t); 21586 io->ipsec_out_use_global_policy = 21587 B_TRUE; 21588 io->ipsec_out_ns = ipst->ips_netstack; 21589 first_mp->b_cont = mp; 21590 mctl_present = B_TRUE; 21591 } 21592 io->ipsec_out_ip_nexthop = ip_nexthop; 21593 io->ipsec_out_nexthop_addr = nexthop_addr; 21594 } 21595 noirefound: 21596 /* 21597 * Mark this packet as having originated on 21598 * this machine. This will be noted in 21599 * ire_add_then_send, which needs to know 21600 * whether to run it back through ip_wput or 21601 * ip_rput following successful resolution. 21602 */ 21603 mp->b_prev = NULL; 21604 mp->b_next = NULL; 21605 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21606 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21607 "ip_wput_end: q %p (%S)", q, "newroute"); 21608 if (xmit_ill != NULL) 21609 ill_refrele(xmit_ill); 21610 if (need_decref) 21611 CONN_DEC_REF(connp); 21612 return; 21613 } 21614 } 21615 21616 /* We now know where we are going with it. */ 21617 21618 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21619 "ip_wput_end: q %p (%S)", q, "end"); 21620 21621 /* 21622 * Check if the ire has the RTF_MULTIRT flag, inherited 21623 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21624 */ 21625 if (ire->ire_flags & RTF_MULTIRT) { 21626 /* 21627 * Force the TTL of multirouted packets if required. 21628 * The TTL of such packets is bounded by the 21629 * ip_multirt_ttl ndd variable. 21630 */ 21631 if ((ipst->ips_ip_multirt_ttl > 0) && 21632 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21633 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21634 "(was %d), dst 0x%08x\n", 21635 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21636 ntohl(ire->ire_addr))); 21637 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21638 } 21639 /* 21640 * At this point, we check to see if there are any pending 21641 * unresolved routes. ire_multirt_resolvable() 21642 * checks in O(n) that all IRE_OFFSUBNET ire 21643 * entries for the packet's destination and 21644 * flagged RTF_MULTIRT are currently resolved. 21645 * If some remain unresolved, we make a copy 21646 * of the current message. It will be used 21647 * to initiate additional route resolutions. 21648 */ 21649 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21650 msg_getlabel(first_mp), ipst); 21651 ip2dbg(("ip_wput[noirefound]: ire %p, " 21652 "multirt_need_resolve %d, first_mp %p\n", 21653 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21654 if (multirt_need_resolve) { 21655 copy_mp = copymsg(first_mp); 21656 if (copy_mp != NULL) { 21657 MULTIRT_DEBUG_TAG(copy_mp); 21658 } 21659 } 21660 } 21661 21662 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21663 /* 21664 * Try to resolve another multiroute if 21665 * ire_multirt_resolvable() deemed it necessary. 21666 * At this point, we need to distinguish 21667 * multicasts from other packets. For multicasts, 21668 * we call ip_newroute_ipif() and request that both 21669 * multirouting and setsrc flags are checked. 21670 */ 21671 if (copy_mp != NULL) { 21672 if (CLASSD(dst)) { 21673 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21674 if (ipif) { 21675 ASSERT(infop->ip_opt_ill_index == 0); 21676 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21677 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21678 ipif_refrele(ipif); 21679 } else { 21680 MULTIRT_DEBUG_UNTAG(copy_mp); 21681 freemsg(copy_mp); 21682 copy_mp = NULL; 21683 } 21684 } else { 21685 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21686 } 21687 } 21688 if (xmit_ill != NULL) 21689 ill_refrele(xmit_ill); 21690 if (need_decref) 21691 CONN_DEC_REF(connp); 21692 return; 21693 21694 icmp_parameter_problem: 21695 /* could not have originated externally */ 21696 ASSERT(mp->b_prev == NULL); 21697 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21698 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21699 /* it's the IP header length that's in trouble */ 21700 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21701 first_mp = NULL; 21702 } 21703 21704 discard_pkt: 21705 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21706 drop_pkt: 21707 ip1dbg(("ip_wput: dropped packet\n")); 21708 if (ire != NULL) 21709 ire_refrele(ire); 21710 if (need_decref) 21711 CONN_DEC_REF(connp); 21712 freemsg(first_mp); 21713 if (xmit_ill != NULL) 21714 ill_refrele(xmit_ill); 21715 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21716 "ip_wput_end: q %p (%S)", q, "droppkt"); 21717 } 21718 21719 /* 21720 * If this is a conn_t queue, then we pass in the conn. This includes the 21721 * zoneid. 21722 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21723 * in which case we use the global zoneid since those are all part of 21724 * the global zone. 21725 */ 21726 void 21727 ip_wput(queue_t *q, mblk_t *mp) 21728 { 21729 if (CONN_Q(q)) 21730 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21731 else 21732 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21733 } 21734 21735 /* 21736 * 21737 * The following rules must be observed when accessing any ipif or ill 21738 * that has been cached in the conn. Typically conn_outgoing_ill, 21739 * conn_multicast_ipif and conn_multicast_ill. 21740 * 21741 * Access: The ipif or ill pointed to from the conn can be accessed under 21742 * the protection of the conn_lock or after it has been refheld under the 21743 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21744 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21745 * The reason for this is that a concurrent unplumb could actually be 21746 * cleaning up these cached pointers by walking the conns and might have 21747 * finished cleaning up the conn in question. The macros check that an 21748 * unplumb has not yet started on the ipif or ill. 21749 * 21750 * Caching: An ipif or ill pointer may be cached in the conn only after 21751 * making sure that an unplumb has not started. So the caching is done 21752 * while holding both the conn_lock and the ill_lock and after using the 21753 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21754 * flag before starting the cleanup of conns. 21755 * 21756 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21757 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21758 * or a reference to the ipif or a reference to an ire that references the 21759 * ipif. An ipif only changes its ill when migrating from an underlying ill 21760 * to an IPMP ill in ipif_up(). 21761 */ 21762 ipif_t * 21763 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21764 { 21765 ipif_t *ipif; 21766 ill_t *ill; 21767 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21768 21769 *err = 0; 21770 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21771 mutex_enter(&connp->conn_lock); 21772 ipif = *ipifp; 21773 if (ipif != NULL) { 21774 ill = ipif->ipif_ill; 21775 mutex_enter(&ill->ill_lock); 21776 if (IPIF_CAN_LOOKUP(ipif)) { 21777 ipif_refhold_locked(ipif); 21778 mutex_exit(&ill->ill_lock); 21779 mutex_exit(&connp->conn_lock); 21780 rw_exit(&ipst->ips_ill_g_lock); 21781 return (ipif); 21782 } else { 21783 *err = IPIF_LOOKUP_FAILED; 21784 } 21785 mutex_exit(&ill->ill_lock); 21786 } 21787 mutex_exit(&connp->conn_lock); 21788 rw_exit(&ipst->ips_ill_g_lock); 21789 return (NULL); 21790 } 21791 21792 ill_t * 21793 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21794 { 21795 ill_t *ill; 21796 21797 *err = 0; 21798 mutex_enter(&connp->conn_lock); 21799 ill = *illp; 21800 if (ill != NULL) { 21801 mutex_enter(&ill->ill_lock); 21802 if (ILL_CAN_LOOKUP(ill)) { 21803 ill_refhold_locked(ill); 21804 mutex_exit(&ill->ill_lock); 21805 mutex_exit(&connp->conn_lock); 21806 return (ill); 21807 } else { 21808 *err = ILL_LOOKUP_FAILED; 21809 } 21810 mutex_exit(&ill->ill_lock); 21811 } 21812 mutex_exit(&connp->conn_lock); 21813 return (NULL); 21814 } 21815 21816 static int 21817 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21818 { 21819 ill_t *ill; 21820 21821 ill = ipif->ipif_ill; 21822 mutex_enter(&connp->conn_lock); 21823 mutex_enter(&ill->ill_lock); 21824 if (IPIF_CAN_LOOKUP(ipif)) { 21825 *ipifp = ipif; 21826 mutex_exit(&ill->ill_lock); 21827 mutex_exit(&connp->conn_lock); 21828 return (0); 21829 } 21830 mutex_exit(&ill->ill_lock); 21831 mutex_exit(&connp->conn_lock); 21832 return (IPIF_LOOKUP_FAILED); 21833 } 21834 21835 /* 21836 * This is called if the outbound datagram needs fragmentation. 21837 * 21838 * NOTE : This function does not ire_refrele the ire argument passed in. 21839 */ 21840 static void 21841 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21842 ip_stack_t *ipst, conn_t *connp) 21843 { 21844 ipha_t *ipha; 21845 mblk_t *mp; 21846 uint32_t v_hlen_tos_len; 21847 uint32_t max_frag; 21848 uint32_t frag_flag; 21849 boolean_t dont_use; 21850 21851 if (ipsec_mp->b_datap->db_type == M_CTL) { 21852 mp = ipsec_mp->b_cont; 21853 } else { 21854 mp = ipsec_mp; 21855 } 21856 21857 ipha = (ipha_t *)mp->b_rptr; 21858 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21859 21860 #ifdef _BIG_ENDIAN 21861 #define V_HLEN (v_hlen_tos_len >> 24) 21862 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21863 #else 21864 #define V_HLEN (v_hlen_tos_len & 0xFF) 21865 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21866 #endif 21867 21868 #ifndef SPEED_BEFORE_SAFETY 21869 /* 21870 * Check that ipha_length is consistent with 21871 * the mblk length 21872 */ 21873 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21874 ip0dbg(("Packet length mismatch: %d, %ld\n", 21875 LENGTH, msgdsize(mp))); 21876 freemsg(ipsec_mp); 21877 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21878 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21879 "packet length mismatch"); 21880 return; 21881 } 21882 #endif 21883 /* 21884 * Don't use frag_flag if pre-built packet or source 21885 * routed or if multicast (since multicast packets do not solicit 21886 * ICMP "packet too big" messages). Get the values of 21887 * max_frag and frag_flag atomically by acquiring the 21888 * ire_lock. 21889 */ 21890 mutex_enter(&ire->ire_lock); 21891 max_frag = ire->ire_max_frag; 21892 frag_flag = ire->ire_frag_flag; 21893 mutex_exit(&ire->ire_lock); 21894 21895 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21896 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21897 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21898 21899 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21900 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21901 } 21902 21903 /* 21904 * Used for deciding the MSS size for the upper layer. Thus 21905 * we need to check the outbound policy values in the conn. 21906 */ 21907 int 21908 conn_ipsec_length(conn_t *connp) 21909 { 21910 ipsec_latch_t *ipl; 21911 21912 ipl = connp->conn_latch; 21913 if (ipl == NULL) 21914 return (0); 21915 21916 if (ipl->ipl_out_policy == NULL) 21917 return (0); 21918 21919 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21920 } 21921 21922 /* 21923 * Returns an estimate of the IPsec headers size. This is used if 21924 * we don't want to call into IPsec to get the exact size. 21925 */ 21926 int 21927 ipsec_out_extra_length(mblk_t *ipsec_mp) 21928 { 21929 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21930 ipsec_action_t *a; 21931 21932 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21933 if (!io->ipsec_out_secure) 21934 return (0); 21935 21936 a = io->ipsec_out_act; 21937 21938 if (a == NULL) { 21939 ASSERT(io->ipsec_out_policy != NULL); 21940 a = io->ipsec_out_policy->ipsp_act; 21941 } 21942 ASSERT(a != NULL); 21943 21944 return (a->ipa_ovhd); 21945 } 21946 21947 /* 21948 * Returns an estimate of the IPsec headers size. This is used if 21949 * we don't want to call into IPsec to get the exact size. 21950 */ 21951 int 21952 ipsec_in_extra_length(mblk_t *ipsec_mp) 21953 { 21954 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21955 ipsec_action_t *a; 21956 21957 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21958 21959 a = ii->ipsec_in_action; 21960 return (a == NULL ? 0 : a->ipa_ovhd); 21961 } 21962 21963 /* 21964 * If there are any source route options, return the true final 21965 * destination. Otherwise, return the destination. 21966 */ 21967 ipaddr_t 21968 ip_get_dst(ipha_t *ipha) 21969 { 21970 ipoptp_t opts; 21971 uchar_t *opt; 21972 uint8_t optval; 21973 uint8_t optlen; 21974 ipaddr_t dst; 21975 uint32_t off; 21976 21977 dst = ipha->ipha_dst; 21978 21979 if (IS_SIMPLE_IPH(ipha)) 21980 return (dst); 21981 21982 for (optval = ipoptp_first(&opts, ipha); 21983 optval != IPOPT_EOL; 21984 optval = ipoptp_next(&opts)) { 21985 opt = opts.ipoptp_cur; 21986 optlen = opts.ipoptp_len; 21987 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21988 switch (optval) { 21989 case IPOPT_SSRR: 21990 case IPOPT_LSRR: 21991 off = opt[IPOPT_OFFSET]; 21992 /* 21993 * If one of the conditions is true, it means 21994 * end of options and dst already has the right 21995 * value. 21996 */ 21997 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21998 off = optlen - IP_ADDR_LEN; 21999 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22000 } 22001 return (dst); 22002 default: 22003 break; 22004 } 22005 } 22006 22007 return (dst); 22008 } 22009 22010 mblk_t * 22011 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22012 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22013 { 22014 ipsec_out_t *io; 22015 mblk_t *first_mp; 22016 boolean_t policy_present; 22017 ip_stack_t *ipst; 22018 ipsec_stack_t *ipss; 22019 22020 ASSERT(ire != NULL); 22021 ipst = ire->ire_ipst; 22022 ipss = ipst->ips_netstack->netstack_ipsec; 22023 22024 first_mp = mp; 22025 if (mp->b_datap->db_type == M_CTL) { 22026 io = (ipsec_out_t *)first_mp->b_rptr; 22027 /* 22028 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22029 * 22030 * 1) There is per-socket policy (including cached global 22031 * policy) or a policy on the IP-in-IP tunnel. 22032 * 2) There is no per-socket policy, but it is 22033 * a multicast packet that needs to go out 22034 * on a specific interface. This is the case 22035 * where (ip_wput and ip_wput_multicast) attaches 22036 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22037 * 22038 * In case (2) we check with global policy to 22039 * see if there is a match and set the ill_index 22040 * appropriately so that we can lookup the ire 22041 * properly in ip_wput_ipsec_out. 22042 */ 22043 22044 /* 22045 * ipsec_out_use_global_policy is set to B_FALSE 22046 * in ipsec_in_to_out(). Refer to that function for 22047 * details. 22048 */ 22049 if ((io->ipsec_out_latch == NULL) && 22050 (io->ipsec_out_use_global_policy)) { 22051 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22052 ire, connp, unspec_src, zoneid)); 22053 } 22054 if (!io->ipsec_out_secure) { 22055 /* 22056 * If this is not a secure packet, drop 22057 * the IPSEC_OUT mp and treat it as a clear 22058 * packet. This happens when we are sending 22059 * a ICMP reply back to a clear packet. See 22060 * ipsec_in_to_out() for details. 22061 */ 22062 mp = first_mp->b_cont; 22063 freeb(first_mp); 22064 } 22065 return (mp); 22066 } 22067 /* 22068 * See whether we need to attach a global policy here. We 22069 * don't depend on the conn (as it could be null) for deciding 22070 * what policy this datagram should go through because it 22071 * should have happened in ip_wput if there was some 22072 * policy. This normally happens for connections which are not 22073 * fully bound preventing us from caching policies in 22074 * ip_bind. Packets coming from the TCP listener/global queue 22075 * - which are non-hard_bound - could also be affected by 22076 * applying policy here. 22077 * 22078 * If this packet is coming from tcp global queue or listener, 22079 * we will be applying policy here. This may not be *right* 22080 * if these packets are coming from the detached connection as 22081 * it could have gone in clear before. This happens only if a 22082 * TCP connection started when there is no policy and somebody 22083 * added policy before it became detached. Thus packets of the 22084 * detached connection could go out secure and the other end 22085 * would drop it because it will be expecting in clear. The 22086 * converse is not true i.e if somebody starts a TCP 22087 * connection and deletes the policy, all the packets will 22088 * still go out with the policy that existed before deleting 22089 * because ip_unbind sends up policy information which is used 22090 * by TCP on subsequent ip_wputs. The right solution is to fix 22091 * TCP to attach a dummy IPSEC_OUT and set 22092 * ipsec_out_use_global_policy to B_FALSE. As this might 22093 * affect performance for normal cases, we are not doing it. 22094 * Thus, set policy before starting any TCP connections. 22095 * 22096 * NOTE - We might apply policy even for a hard bound connection 22097 * - for which we cached policy in ip_bind - if somebody added 22098 * global policy after we inherited the policy in ip_bind. 22099 * This means that the packets that were going out in clear 22100 * previously would start going secure and hence get dropped 22101 * on the other side. To fix this, TCP attaches a dummy 22102 * ipsec_out and make sure that we don't apply global policy. 22103 */ 22104 if (ipha != NULL) 22105 policy_present = ipss->ipsec_outbound_v4_policy_present; 22106 else 22107 policy_present = ipss->ipsec_outbound_v6_policy_present; 22108 if (!policy_present) 22109 return (mp); 22110 22111 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22112 zoneid)); 22113 } 22114 22115 /* 22116 * This function does the ire_refrele of the ire passed in as the 22117 * argument. As this function looks up more ires i.e broadcast ires, 22118 * it needs to REFRELE them. Currently, for simplicity we don't 22119 * differentiate the one passed in and looked up here. We always 22120 * REFRELE. 22121 * IPQoS Notes: 22122 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22123 * IPsec packets are done in ipsec_out_process. 22124 */ 22125 void 22126 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22127 zoneid_t zoneid) 22128 { 22129 ipha_t *ipha; 22130 #define rptr ((uchar_t *)ipha) 22131 queue_t *stq; 22132 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22133 uint32_t v_hlen_tos_len; 22134 uint32_t ttl_protocol; 22135 ipaddr_t src; 22136 ipaddr_t dst; 22137 uint32_t cksum; 22138 ipaddr_t orig_src; 22139 ire_t *ire1; 22140 mblk_t *next_mp; 22141 uint_t hlen; 22142 uint16_t *up; 22143 uint32_t max_frag = ire->ire_max_frag; 22144 ill_t *ill = ire_to_ill(ire); 22145 int clusterwide; 22146 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22147 int ipsec_len; 22148 mblk_t *first_mp; 22149 ipsec_out_t *io; 22150 boolean_t conn_dontroute; /* conn value for multicast */ 22151 boolean_t conn_multicast_loop; /* conn value for multicast */ 22152 boolean_t multicast_forward; /* Should we forward ? */ 22153 boolean_t unspec_src; 22154 ill_t *conn_outgoing_ill = NULL; 22155 ill_t *ire_ill; 22156 ill_t *ire1_ill; 22157 ill_t *out_ill; 22158 uint32_t ill_index = 0; 22159 boolean_t multirt_send = B_FALSE; 22160 int err; 22161 ipxmit_state_t pktxmit_state; 22162 ip_stack_t *ipst = ire->ire_ipst; 22163 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22164 22165 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22166 "ip_wput_ire_start: q %p", q); 22167 22168 multicast_forward = B_FALSE; 22169 unspec_src = (connp != NULL && connp->conn_unspec_src); 22170 22171 if (ire->ire_flags & RTF_MULTIRT) { 22172 /* 22173 * Multirouting case. The bucket where ire is stored 22174 * probably holds other RTF_MULTIRT flagged ire 22175 * to the destination. In this call to ip_wput_ire, 22176 * we attempt to send the packet through all 22177 * those ires. Thus, we first ensure that ire is the 22178 * first RTF_MULTIRT ire in the bucket, 22179 * before walking the ire list. 22180 */ 22181 ire_t *first_ire; 22182 irb_t *irb = ire->ire_bucket; 22183 ASSERT(irb != NULL); 22184 22185 /* Make sure we do not omit any multiroute ire. */ 22186 IRB_REFHOLD(irb); 22187 for (first_ire = irb->irb_ire; 22188 first_ire != NULL; 22189 first_ire = first_ire->ire_next) { 22190 if ((first_ire->ire_flags & RTF_MULTIRT) && 22191 (first_ire->ire_addr == ire->ire_addr) && 22192 !(first_ire->ire_marks & 22193 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22194 break; 22195 } 22196 22197 if ((first_ire != NULL) && (first_ire != ire)) { 22198 IRE_REFHOLD(first_ire); 22199 ire_refrele(ire); 22200 ire = first_ire; 22201 ill = ire_to_ill(ire); 22202 } 22203 IRB_REFRELE(irb); 22204 } 22205 22206 /* 22207 * conn_outgoing_ill variable is used only in the broadcast loop. 22208 * for performance we don't grab the mutexs in the fastpath 22209 */ 22210 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22211 connp->conn_outgoing_ill != NULL) { 22212 conn_outgoing_ill = conn_get_held_ill(connp, 22213 &connp->conn_outgoing_ill, &err); 22214 if (err == ILL_LOOKUP_FAILED) { 22215 ire_refrele(ire); 22216 freemsg(mp); 22217 return; 22218 } 22219 } 22220 22221 if (mp->b_datap->db_type != M_CTL) { 22222 ipha = (ipha_t *)mp->b_rptr; 22223 } else { 22224 io = (ipsec_out_t *)mp->b_rptr; 22225 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22226 ASSERT(zoneid == io->ipsec_out_zoneid); 22227 ASSERT(zoneid != ALL_ZONES); 22228 ipha = (ipha_t *)mp->b_cont->b_rptr; 22229 dst = ipha->ipha_dst; 22230 /* 22231 * For the multicast case, ipsec_out carries conn_dontroute and 22232 * conn_multicast_loop as conn may not be available here. We 22233 * need this for multicast loopback and forwarding which is done 22234 * later in the code. 22235 */ 22236 if (CLASSD(dst)) { 22237 conn_dontroute = io->ipsec_out_dontroute; 22238 conn_multicast_loop = io->ipsec_out_multicast_loop; 22239 /* 22240 * If conn_dontroute is not set or conn_multicast_loop 22241 * is set, we need to do forwarding/loopback. For 22242 * datagrams from ip_wput_multicast, conn_dontroute is 22243 * set to B_TRUE and conn_multicast_loop is set to 22244 * B_FALSE so that we neither do forwarding nor 22245 * loopback. 22246 */ 22247 if (!conn_dontroute || conn_multicast_loop) 22248 multicast_forward = B_TRUE; 22249 } 22250 } 22251 22252 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22253 ire->ire_zoneid != ALL_ZONES) { 22254 /* 22255 * When a zone sends a packet to another zone, we try to deliver 22256 * the packet under the same conditions as if the destination 22257 * was a real node on the network. To do so, we look for a 22258 * matching route in the forwarding table. 22259 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22260 * ip_newroute() does. 22261 * Note that IRE_LOCAL are special, since they are used 22262 * when the zoneid doesn't match in some cases. This means that 22263 * we need to handle ipha_src differently since ire_src_addr 22264 * belongs to the receiving zone instead of the sending zone. 22265 * When ip_restrict_interzone_loopback is set, then 22266 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22267 * for loopback between zones when the logical "Ethernet" would 22268 * have looped them back. 22269 */ 22270 ire_t *src_ire; 22271 22272 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22273 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22274 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22275 if (src_ire != NULL && 22276 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22277 (!ipst->ips_ip_restrict_interzone_loopback || 22278 ire_local_same_lan(ire, src_ire))) { 22279 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22280 ipha->ipha_src = src_ire->ire_src_addr; 22281 ire_refrele(src_ire); 22282 } else { 22283 ire_refrele(ire); 22284 if (conn_outgoing_ill != NULL) 22285 ill_refrele(conn_outgoing_ill); 22286 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22287 if (src_ire != NULL) { 22288 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22289 ire_refrele(src_ire); 22290 freemsg(mp); 22291 return; 22292 } 22293 ire_refrele(src_ire); 22294 } 22295 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22296 /* Failed */ 22297 freemsg(mp); 22298 return; 22299 } 22300 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22301 ipst); 22302 return; 22303 } 22304 } 22305 22306 if (mp->b_datap->db_type == M_CTL || 22307 ipss->ipsec_outbound_v4_policy_present) { 22308 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22309 unspec_src, zoneid); 22310 if (mp == NULL) { 22311 ire_refrele(ire); 22312 if (conn_outgoing_ill != NULL) 22313 ill_refrele(conn_outgoing_ill); 22314 return; 22315 } 22316 /* 22317 * Trusted Extensions supports all-zones interfaces, so 22318 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22319 * the global zone. 22320 */ 22321 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22322 io = (ipsec_out_t *)mp->b_rptr; 22323 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22324 zoneid = io->ipsec_out_zoneid; 22325 } 22326 } 22327 22328 first_mp = mp; 22329 ipsec_len = 0; 22330 22331 if (first_mp->b_datap->db_type == M_CTL) { 22332 io = (ipsec_out_t *)first_mp->b_rptr; 22333 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22334 mp = first_mp->b_cont; 22335 ipsec_len = ipsec_out_extra_length(first_mp); 22336 ASSERT(ipsec_len >= 0); 22337 /* We already picked up the zoneid from the M_CTL above */ 22338 ASSERT(zoneid == io->ipsec_out_zoneid); 22339 ASSERT(zoneid != ALL_ZONES); 22340 22341 /* 22342 * Drop M_CTL here if IPsec processing is not needed. 22343 * (Non-IPsec use of M_CTL extracted any information it 22344 * needed above). 22345 */ 22346 if (ipsec_len == 0) { 22347 freeb(first_mp); 22348 first_mp = mp; 22349 } 22350 } 22351 22352 /* 22353 * Fast path for ip_wput_ire 22354 */ 22355 22356 ipha = (ipha_t *)mp->b_rptr; 22357 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22358 dst = ipha->ipha_dst; 22359 22360 /* 22361 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22362 * if the socket is a SOCK_RAW type. The transport checksum should 22363 * be provided in the pre-built packet, so we don't need to compute it. 22364 * Also, other application set flags, like DF, should not be altered. 22365 * Other transport MUST pass down zero. 22366 */ 22367 ip_hdr_included = ipha->ipha_ident; 22368 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22369 22370 if (CLASSD(dst)) { 22371 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22372 ntohl(dst), 22373 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22374 ntohl(ire->ire_addr))); 22375 } 22376 22377 /* Macros to extract header fields from data already in registers */ 22378 #ifdef _BIG_ENDIAN 22379 #define V_HLEN (v_hlen_tos_len >> 24) 22380 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22381 #define PROTO (ttl_protocol & 0xFF) 22382 #else 22383 #define V_HLEN (v_hlen_tos_len & 0xFF) 22384 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22385 #define PROTO (ttl_protocol >> 8) 22386 #endif 22387 22388 orig_src = src = ipha->ipha_src; 22389 /* (The loop back to "another" is explained down below.) */ 22390 another:; 22391 /* 22392 * Assign an ident value for this packet. We assign idents on 22393 * a per destination basis out of the IRE. There could be 22394 * other threads targeting the same destination, so we have to 22395 * arrange for a atomic increment. Note that we use a 32-bit 22396 * atomic add because it has better performance than its 22397 * 16-bit sibling. 22398 * 22399 * If running in cluster mode and if the source address 22400 * belongs to a replicated service then vector through 22401 * cl_inet_ipident vector to allocate ip identifier 22402 * NOTE: This is a contract private interface with the 22403 * clustering group. 22404 */ 22405 clusterwide = 0; 22406 if (cl_inet_ipident) { 22407 ASSERT(cl_inet_isclusterwide); 22408 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22409 22410 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22411 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22412 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22413 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22414 (uint8_t *)(uintptr_t)dst, NULL); 22415 clusterwide = 1; 22416 } 22417 } 22418 if (!clusterwide) { 22419 ipha->ipha_ident = 22420 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22421 } 22422 22423 #ifndef _BIG_ENDIAN 22424 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22425 #endif 22426 22427 /* 22428 * Set source address unless sent on an ill or conn_unspec_src is set. 22429 * This is needed to obey conn_unspec_src when packets go through 22430 * ip_newroute + arp. 22431 * Assumes ip_newroute{,_multi} sets the source address as well. 22432 */ 22433 if (src == INADDR_ANY && !unspec_src) { 22434 /* 22435 * Assign the appropriate source address from the IRE if none 22436 * was specified. 22437 */ 22438 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22439 22440 src = ire->ire_src_addr; 22441 if (connp == NULL) { 22442 ip1dbg(("ip_wput_ire: no connp and no src " 22443 "address for dst 0x%x, using src 0x%x\n", 22444 ntohl(dst), 22445 ntohl(src))); 22446 } 22447 ipha->ipha_src = src; 22448 } 22449 stq = ire->ire_stq; 22450 22451 /* 22452 * We only allow ire chains for broadcasts since there will 22453 * be multiple IRE_CACHE entries for the same multicast 22454 * address (one per ipif). 22455 */ 22456 next_mp = NULL; 22457 22458 /* broadcast packet */ 22459 if (ire->ire_type == IRE_BROADCAST) 22460 goto broadcast; 22461 22462 /* loopback ? */ 22463 if (stq == NULL) 22464 goto nullstq; 22465 22466 /* The ill_index for outbound ILL */ 22467 ill_index = Q_TO_INDEX(stq); 22468 22469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22470 ttl_protocol = ((uint16_t *)ipha)[4]; 22471 22472 /* pseudo checksum (do it in parts for IP header checksum) */ 22473 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22474 22475 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22476 queue_t *dev_q = stq->q_next; 22477 22478 /* 22479 * For DIRECT_CAPABLE, we do flow control at 22480 * the time of sending the packet. See 22481 * ILL_SEND_TX(). 22482 */ 22483 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22484 (DEV_Q_FLOW_BLOCKED(dev_q))) 22485 goto blocked; 22486 22487 if ((PROTO == IPPROTO_UDP) && 22488 (ip_hdr_included != IP_HDR_INCLUDED)) { 22489 hlen = (V_HLEN & 0xF) << 2; 22490 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22491 if (*up != 0) { 22492 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22493 hlen, LENGTH, max_frag, ipsec_len, cksum); 22494 /* Software checksum? */ 22495 if (DB_CKSUMFLAGS(mp) == 0) { 22496 IP_STAT(ipst, ip_out_sw_cksum); 22497 IP_STAT_UPDATE(ipst, 22498 ip_udp_out_sw_cksum_bytes, 22499 LENGTH - hlen); 22500 } 22501 } 22502 } 22503 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22504 hlen = (V_HLEN & 0xF) << 2; 22505 if (PROTO == IPPROTO_TCP) { 22506 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22507 /* 22508 * The packet header is processed once and for all, even 22509 * in the multirouting case. We disable hardware 22510 * checksum if the packet is multirouted, as it will be 22511 * replicated via several interfaces, and not all of 22512 * them may have this capability. 22513 */ 22514 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22515 LENGTH, max_frag, ipsec_len, cksum); 22516 /* Software checksum? */ 22517 if (DB_CKSUMFLAGS(mp) == 0) { 22518 IP_STAT(ipst, ip_out_sw_cksum); 22519 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22520 LENGTH - hlen); 22521 } 22522 } else { 22523 sctp_hdr_t *sctph; 22524 22525 ASSERT(PROTO == IPPROTO_SCTP); 22526 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22527 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22528 /* 22529 * Zero out the checksum field to ensure proper 22530 * checksum calculation. 22531 */ 22532 sctph->sh_chksum = 0; 22533 #ifdef DEBUG 22534 if (!skip_sctp_cksum) 22535 #endif 22536 sctph->sh_chksum = sctp_cksum(mp, hlen); 22537 } 22538 } 22539 22540 /* 22541 * If this is a multicast packet and originated from ip_wput 22542 * we need to do loopback and forwarding checks. If it comes 22543 * from ip_wput_multicast, we SHOULD not do this. 22544 */ 22545 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22546 22547 /* checksum */ 22548 cksum += ttl_protocol; 22549 22550 /* fragment the packet */ 22551 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22552 goto fragmentit; 22553 /* 22554 * Don't use frag_flag if packet is pre-built or source 22555 * routed or if multicast (since multicast packets do 22556 * not solicit ICMP "packet too big" messages). 22557 */ 22558 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22559 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22560 !ip_source_route_included(ipha)) && 22561 !CLASSD(ipha->ipha_dst)) 22562 ipha->ipha_fragment_offset_and_flags |= 22563 htons(ire->ire_frag_flag); 22564 22565 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22566 /* calculate IP header checksum */ 22567 cksum += ipha->ipha_ident; 22568 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22569 cksum += ipha->ipha_fragment_offset_and_flags; 22570 22571 /* IP options present */ 22572 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22573 if (hlen) 22574 goto checksumoptions; 22575 22576 /* calculate hdr checksum */ 22577 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22578 cksum = ~(cksum + (cksum >> 16)); 22579 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22580 } 22581 if (ipsec_len != 0) { 22582 /* 22583 * We will do the rest of the processing after 22584 * we come back from IPsec in ip_wput_ipsec_out(). 22585 */ 22586 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22587 22588 io = (ipsec_out_t *)first_mp->b_rptr; 22589 io->ipsec_out_ill_index = 22590 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22591 ipsec_out_process(q, first_mp, ire, 0); 22592 ire_refrele(ire); 22593 if (conn_outgoing_ill != NULL) 22594 ill_refrele(conn_outgoing_ill); 22595 return; 22596 } 22597 22598 /* 22599 * In most cases, the emission loop below is entered only 22600 * once. Only in the case where the ire holds the 22601 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22602 * flagged ires in the bucket, and send the packet 22603 * through all crossed RTF_MULTIRT routes. 22604 */ 22605 if (ire->ire_flags & RTF_MULTIRT) { 22606 multirt_send = B_TRUE; 22607 } 22608 do { 22609 if (multirt_send) { 22610 irb_t *irb; 22611 /* 22612 * We are in a multiple send case, need to get 22613 * the next ire and make a duplicate of the packet. 22614 * ire1 holds here the next ire to process in the 22615 * bucket. If multirouting is expected, 22616 * any non-RTF_MULTIRT ire that has the 22617 * right destination address is ignored. 22618 */ 22619 irb = ire->ire_bucket; 22620 ASSERT(irb != NULL); 22621 22622 IRB_REFHOLD(irb); 22623 for (ire1 = ire->ire_next; 22624 ire1 != NULL; 22625 ire1 = ire1->ire_next) { 22626 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22627 continue; 22628 if (ire1->ire_addr != ire->ire_addr) 22629 continue; 22630 if (ire1->ire_marks & 22631 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22632 continue; 22633 22634 /* Got one */ 22635 IRE_REFHOLD(ire1); 22636 break; 22637 } 22638 IRB_REFRELE(irb); 22639 22640 if (ire1 != NULL) { 22641 next_mp = copyb(mp); 22642 if ((next_mp == NULL) || 22643 ((mp->b_cont != NULL) && 22644 ((next_mp->b_cont = 22645 dupmsg(mp->b_cont)) == NULL))) { 22646 freemsg(next_mp); 22647 next_mp = NULL; 22648 ire_refrele(ire1); 22649 ire1 = NULL; 22650 } 22651 } 22652 22653 /* Last multiroute ire; don't loop anymore. */ 22654 if (ire1 == NULL) { 22655 multirt_send = B_FALSE; 22656 } 22657 } 22658 22659 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22660 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22661 mblk_t *, mp); 22662 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22663 ipst->ips_ipv4firewall_physical_out, 22664 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22665 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22666 22667 if (mp == NULL) 22668 goto release_ire_and_ill; 22669 22670 if (ipst->ips_ipobs_enabled) { 22671 zoneid_t szone; 22672 22673 /* 22674 * On the outbound path the destination zone will be 22675 * unknown as we're sending this packet out on the 22676 * wire. 22677 */ 22678 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22679 ALL_ZONES); 22680 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22681 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22682 } 22683 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22684 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22685 22686 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22687 22688 if ((pktxmit_state == SEND_FAILED) || 22689 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22690 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22691 "- packet dropped\n")); 22692 release_ire_and_ill: 22693 ire_refrele(ire); 22694 if (next_mp != NULL) { 22695 freemsg(next_mp); 22696 ire_refrele(ire1); 22697 } 22698 if (conn_outgoing_ill != NULL) 22699 ill_refrele(conn_outgoing_ill); 22700 return; 22701 } 22702 22703 if (CLASSD(dst)) { 22704 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22705 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22706 LENGTH); 22707 } 22708 22709 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22710 "ip_wput_ire_end: q %p (%S)", 22711 q, "last copy out"); 22712 IRE_REFRELE(ire); 22713 22714 if (multirt_send) { 22715 ASSERT(ire1); 22716 /* 22717 * Proceed with the next RTF_MULTIRT ire, 22718 * Also set up the send-to queue accordingly. 22719 */ 22720 ire = ire1; 22721 ire1 = NULL; 22722 stq = ire->ire_stq; 22723 mp = next_mp; 22724 next_mp = NULL; 22725 ipha = (ipha_t *)mp->b_rptr; 22726 ill_index = Q_TO_INDEX(stq); 22727 ill = (ill_t *)stq->q_ptr; 22728 } 22729 } while (multirt_send); 22730 if (conn_outgoing_ill != NULL) 22731 ill_refrele(conn_outgoing_ill); 22732 return; 22733 22734 /* 22735 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22736 */ 22737 broadcast: 22738 { 22739 /* 22740 * To avoid broadcast storms, we usually set the TTL to 1 for 22741 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22742 * can be overridden stack-wide through the ip_broadcast_ttl 22743 * ndd tunable, or on a per-connection basis through the 22744 * IP_BROADCAST_TTL socket option. 22745 * 22746 * In the event that we are replying to incoming ICMP packets, 22747 * connp could be NULL. 22748 */ 22749 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22750 if (connp != NULL) { 22751 if (connp->conn_dontroute) 22752 ipha->ipha_ttl = 1; 22753 else if (connp->conn_broadcast_ttl != 0) 22754 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22755 } 22756 22757 /* 22758 * Note that we are not doing a IRB_REFHOLD here. 22759 * Actually we don't care if the list changes i.e 22760 * if somebody deletes an IRE from the list while 22761 * we drop the lock, the next time we come around 22762 * ire_next will be NULL and hence we won't send 22763 * out multiple copies which is fine. 22764 */ 22765 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22766 ire1 = ire->ire_next; 22767 if (conn_outgoing_ill != NULL) { 22768 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22769 ASSERT(ire1 == ire->ire_next); 22770 if (ire1 != NULL && ire1->ire_addr == dst) { 22771 ire_refrele(ire); 22772 ire = ire1; 22773 IRE_REFHOLD(ire); 22774 ire1 = ire->ire_next; 22775 continue; 22776 } 22777 rw_exit(&ire->ire_bucket->irb_lock); 22778 /* Did not find a matching ill */ 22779 ip1dbg(("ip_wput_ire: broadcast with no " 22780 "matching IP_BOUND_IF ill %s dst %x\n", 22781 conn_outgoing_ill->ill_name, dst)); 22782 freemsg(first_mp); 22783 if (ire != NULL) 22784 ire_refrele(ire); 22785 ill_refrele(conn_outgoing_ill); 22786 return; 22787 } 22788 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22789 /* 22790 * If the next IRE has the same address and is not one 22791 * of the two copies that we need to send, try to see 22792 * whether this copy should be sent at all. This 22793 * assumes that we insert loopbacks first and then 22794 * non-loopbacks. This is acheived by inserting the 22795 * loopback always before non-loopback. 22796 * This is used to send a single copy of a broadcast 22797 * packet out all physical interfaces that have an 22798 * matching IRE_BROADCAST while also looping 22799 * back one copy (to ip_wput_local) for each 22800 * matching physical interface. However, we avoid 22801 * sending packets out different logical that match by 22802 * having ipif_up/ipif_down supress duplicate 22803 * IRE_BROADCASTS. 22804 * 22805 * This feature is currently used to get broadcasts 22806 * sent to multiple interfaces, when the broadcast 22807 * address being used applies to multiple interfaces. 22808 * For example, a whole net broadcast will be 22809 * replicated on every connected subnet of 22810 * the target net. 22811 * 22812 * Each zone has its own set of IRE_BROADCASTs, so that 22813 * we're able to distribute inbound packets to multiple 22814 * zones who share a broadcast address. We avoid looping 22815 * back outbound packets in different zones but on the 22816 * same ill, as the application would see duplicates. 22817 * 22818 * This logic assumes that ire_add_v4() groups the 22819 * IRE_BROADCAST entries so that those with the same 22820 * ire_addr are kept together. 22821 */ 22822 ire_ill = ire->ire_ipif->ipif_ill; 22823 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22824 while (ire1 != NULL && ire1->ire_addr == dst) { 22825 ire1_ill = ire1->ire_ipif->ipif_ill; 22826 if (ire1_ill != ire_ill) 22827 break; 22828 ire1 = ire1->ire_next; 22829 } 22830 } 22831 } 22832 ASSERT(multirt_send == B_FALSE); 22833 if (ire1 != NULL && ire1->ire_addr == dst) { 22834 if ((ire->ire_flags & RTF_MULTIRT) && 22835 (ire1->ire_flags & RTF_MULTIRT)) { 22836 /* 22837 * We are in the multirouting case. 22838 * The message must be sent at least 22839 * on both ires. These ires have been 22840 * inserted AFTER the standard ones 22841 * in ip_rt_add(). There are thus no 22842 * other ire entries for the destination 22843 * address in the rest of the bucket 22844 * that do not have the RTF_MULTIRT 22845 * flag. We don't process a copy 22846 * of the message here. This will be 22847 * done in the final sending loop. 22848 */ 22849 multirt_send = B_TRUE; 22850 } else { 22851 next_mp = ip_copymsg(first_mp); 22852 if (next_mp != NULL) 22853 IRE_REFHOLD(ire1); 22854 } 22855 } 22856 rw_exit(&ire->ire_bucket->irb_lock); 22857 } 22858 22859 if (stq) { 22860 /* 22861 * A non-NULL send-to queue means this packet is going 22862 * out of this machine. 22863 */ 22864 out_ill = (ill_t *)stq->q_ptr; 22865 22866 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22867 ttl_protocol = ((uint16_t *)ipha)[4]; 22868 /* 22869 * We accumulate the pseudo header checksum in cksum. 22870 * This is pretty hairy code, so watch close. One 22871 * thing to keep in mind is that UDP and TCP have 22872 * stored their respective datagram lengths in their 22873 * checksum fields. This lines things up real nice. 22874 */ 22875 cksum = (dst >> 16) + (dst & 0xFFFF) + 22876 (src >> 16) + (src & 0xFFFF); 22877 /* 22878 * We assume the udp checksum field contains the 22879 * length, so to compute the pseudo header checksum, 22880 * all we need is the protocol number and src/dst. 22881 */ 22882 /* Provide the checksums for UDP and TCP. */ 22883 if ((PROTO == IPPROTO_TCP) && 22884 (ip_hdr_included != IP_HDR_INCLUDED)) { 22885 /* hlen gets the number of uchar_ts in the IP header */ 22886 hlen = (V_HLEN & 0xF) << 2; 22887 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22888 IP_STAT(ipst, ip_out_sw_cksum); 22889 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22890 LENGTH - hlen); 22891 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22892 } else if (PROTO == IPPROTO_SCTP && 22893 (ip_hdr_included != IP_HDR_INCLUDED)) { 22894 sctp_hdr_t *sctph; 22895 22896 hlen = (V_HLEN & 0xF) << 2; 22897 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22898 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22899 sctph->sh_chksum = 0; 22900 #ifdef DEBUG 22901 if (!skip_sctp_cksum) 22902 #endif 22903 sctph->sh_chksum = sctp_cksum(mp, hlen); 22904 } else { 22905 queue_t *dev_q = stq->q_next; 22906 22907 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22908 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22909 blocked: 22910 ipha->ipha_ident = ip_hdr_included; 22911 /* 22912 * If we don't have a conn to apply 22913 * backpressure, free the message. 22914 * In the ire_send path, we don't know 22915 * the position to requeue the packet. Rather 22916 * than reorder packets, we just drop this 22917 * packet. 22918 */ 22919 if (ipst->ips_ip_output_queue && 22920 connp != NULL && 22921 caller != IRE_SEND) { 22922 if (caller == IP_WSRV) { 22923 idl_tx_list_t *idl_txl; 22924 22925 idl_txl = 22926 &ipst->ips_idl_tx_list[0]; 22927 connp->conn_did_putbq = 1; 22928 (void) putbq(connp->conn_wq, 22929 first_mp); 22930 conn_drain_insert(connp, 22931 idl_txl); 22932 /* 22933 * This is the service thread, 22934 * and the queue is already 22935 * noenabled. The check for 22936 * canput and the putbq is not 22937 * atomic. So we need to check 22938 * again. 22939 */ 22940 if (canput(stq->q_next)) 22941 connp->conn_did_putbq 22942 = 0; 22943 IP_STAT(ipst, ip_conn_flputbq); 22944 } else { 22945 /* 22946 * We are not the service proc. 22947 * ip_wsrv will be scheduled or 22948 * is already running. 22949 */ 22950 22951 (void) putq(connp->conn_wq, 22952 first_mp); 22953 } 22954 } else { 22955 out_ill = (ill_t *)stq->q_ptr; 22956 BUMP_MIB(out_ill->ill_ip_mib, 22957 ipIfStatsOutDiscards); 22958 freemsg(first_mp); 22959 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22960 "ip_wput_ire_end: q %p (%S)", 22961 q, "discard"); 22962 } 22963 ire_refrele(ire); 22964 if (next_mp) { 22965 ire_refrele(ire1); 22966 freemsg(next_mp); 22967 } 22968 if (conn_outgoing_ill != NULL) 22969 ill_refrele(conn_outgoing_ill); 22970 return; 22971 } 22972 if ((PROTO == IPPROTO_UDP) && 22973 (ip_hdr_included != IP_HDR_INCLUDED)) { 22974 /* 22975 * hlen gets the number of uchar_ts in the 22976 * IP header 22977 */ 22978 hlen = (V_HLEN & 0xF) << 2; 22979 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22980 max_frag = ire->ire_max_frag; 22981 if (*up != 0) { 22982 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22983 up, PROTO, hlen, LENGTH, max_frag, 22984 ipsec_len, cksum); 22985 /* Software checksum? */ 22986 if (DB_CKSUMFLAGS(mp) == 0) { 22987 IP_STAT(ipst, ip_out_sw_cksum); 22988 IP_STAT_UPDATE(ipst, 22989 ip_udp_out_sw_cksum_bytes, 22990 LENGTH - hlen); 22991 } 22992 } 22993 } 22994 } 22995 /* 22996 * Need to do this even when fragmenting. The local 22997 * loopback can be done without computing checksums 22998 * but forwarding out other interface must be done 22999 * after the IP checksum (and ULP checksums) have been 23000 * computed. 23001 * 23002 * NOTE : multicast_forward is set only if this packet 23003 * originated from ip_wput. For packets originating from 23004 * ip_wput_multicast, it is not set. 23005 */ 23006 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23007 multi_loopback: 23008 ip2dbg(("ip_wput: multicast, loop %d\n", 23009 conn_multicast_loop)); 23010 23011 /* Forget header checksum offload */ 23012 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23013 23014 /* 23015 * Local loopback of multicasts? Check the 23016 * ill. 23017 * 23018 * Note that the loopback function will not come 23019 * in through ip_rput - it will only do the 23020 * client fanout thus we need to do an mforward 23021 * as well. The is different from the BSD 23022 * logic. 23023 */ 23024 if (ill != NULL) { 23025 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23026 ALL_ZONES) != NULL) { 23027 /* 23028 * Pass along the virtual output q. 23029 * ip_wput_local() will distribute the 23030 * packet to all the matching zones, 23031 * except the sending zone when 23032 * IP_MULTICAST_LOOP is false. 23033 */ 23034 ip_multicast_loopback(q, ill, first_mp, 23035 conn_multicast_loop ? 0 : 23036 IP_FF_NO_MCAST_LOOP, zoneid); 23037 } 23038 } 23039 if (ipha->ipha_ttl == 0) { 23040 /* 23041 * 0 => only to this host i.e. we are 23042 * done. We are also done if this was the 23043 * loopback interface since it is sufficient 23044 * to loopback one copy of a multicast packet. 23045 */ 23046 freemsg(first_mp); 23047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23048 "ip_wput_ire_end: q %p (%S)", 23049 q, "loopback"); 23050 ire_refrele(ire); 23051 if (conn_outgoing_ill != NULL) 23052 ill_refrele(conn_outgoing_ill); 23053 return; 23054 } 23055 /* 23056 * ILLF_MULTICAST is checked in ip_newroute 23057 * i.e. we don't need to check it here since 23058 * all IRE_CACHEs come from ip_newroute. 23059 * For multicast traffic, SO_DONTROUTE is interpreted 23060 * to mean only send the packet out the interface 23061 * (optionally specified with IP_MULTICAST_IF) 23062 * and do not forward it out additional interfaces. 23063 * RSVP and the rsvp daemon is an example of a 23064 * protocol and user level process that 23065 * handles it's own routing. Hence, it uses the 23066 * SO_DONTROUTE option to accomplish this. 23067 */ 23068 23069 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23070 ill != NULL) { 23071 /* Unconditionally redo the checksum */ 23072 ipha->ipha_hdr_checksum = 0; 23073 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23074 23075 /* 23076 * If this needs to go out secure, we need 23077 * to wait till we finish the IPsec 23078 * processing. 23079 */ 23080 if (ipsec_len == 0 && 23081 ip_mforward(ill, ipha, mp)) { 23082 freemsg(first_mp); 23083 ip1dbg(("ip_wput: mforward failed\n")); 23084 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23085 "ip_wput_ire_end: q %p (%S)", 23086 q, "mforward failed"); 23087 ire_refrele(ire); 23088 if (conn_outgoing_ill != NULL) 23089 ill_refrele(conn_outgoing_ill); 23090 return; 23091 } 23092 } 23093 } 23094 max_frag = ire->ire_max_frag; 23095 cksum += ttl_protocol; 23096 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23097 /* No fragmentation required for this one. */ 23098 /* 23099 * Don't use frag_flag if packet is pre-built or source 23100 * routed or if multicast (since multicast packets do 23101 * not solicit ICMP "packet too big" messages). 23102 */ 23103 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23104 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23105 !ip_source_route_included(ipha)) && 23106 !CLASSD(ipha->ipha_dst)) 23107 ipha->ipha_fragment_offset_and_flags |= 23108 htons(ire->ire_frag_flag); 23109 23110 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23111 /* Complete the IP header checksum. */ 23112 cksum += ipha->ipha_ident; 23113 cksum += (v_hlen_tos_len >> 16)+ 23114 (v_hlen_tos_len & 0xFFFF); 23115 cksum += ipha->ipha_fragment_offset_and_flags; 23116 hlen = (V_HLEN & 0xF) - 23117 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23118 if (hlen) { 23119 checksumoptions: 23120 /* 23121 * Account for the IP Options in the IP 23122 * header checksum. 23123 */ 23124 up = (uint16_t *)(rptr+ 23125 IP_SIMPLE_HDR_LENGTH); 23126 do { 23127 cksum += up[0]; 23128 cksum += up[1]; 23129 up += 2; 23130 } while (--hlen); 23131 } 23132 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23133 cksum = ~(cksum + (cksum >> 16)); 23134 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23135 } 23136 if (ipsec_len != 0) { 23137 ipsec_out_process(q, first_mp, ire, ill_index); 23138 if (!next_mp) { 23139 ire_refrele(ire); 23140 if (conn_outgoing_ill != NULL) 23141 ill_refrele(conn_outgoing_ill); 23142 return; 23143 } 23144 goto next; 23145 } 23146 23147 /* 23148 * multirt_send has already been handled 23149 * for broadcast, but not yet for multicast 23150 * or IP options. 23151 */ 23152 if (next_mp == NULL) { 23153 if (ire->ire_flags & RTF_MULTIRT) { 23154 multirt_send = B_TRUE; 23155 } 23156 } 23157 23158 /* 23159 * In most cases, the emission loop below is 23160 * entered only once. Only in the case where 23161 * the ire holds the RTF_MULTIRT flag, do we loop 23162 * to process all RTF_MULTIRT ires in the bucket, 23163 * and send the packet through all crossed 23164 * RTF_MULTIRT routes. 23165 */ 23166 do { 23167 if (multirt_send) { 23168 irb_t *irb; 23169 23170 irb = ire->ire_bucket; 23171 ASSERT(irb != NULL); 23172 /* 23173 * We are in a multiple send case, 23174 * need to get the next IRE and make 23175 * a duplicate of the packet. 23176 */ 23177 IRB_REFHOLD(irb); 23178 for (ire1 = ire->ire_next; 23179 ire1 != NULL; 23180 ire1 = ire1->ire_next) { 23181 if (!(ire1->ire_flags & 23182 RTF_MULTIRT)) 23183 continue; 23184 23185 if (ire1->ire_addr != 23186 ire->ire_addr) 23187 continue; 23188 23189 if (ire1->ire_marks & 23190 (IRE_MARK_CONDEMNED | 23191 IRE_MARK_TESTHIDDEN)) 23192 continue; 23193 23194 /* Got one */ 23195 IRE_REFHOLD(ire1); 23196 break; 23197 } 23198 IRB_REFRELE(irb); 23199 23200 if (ire1 != NULL) { 23201 next_mp = copyb(mp); 23202 if ((next_mp == NULL) || 23203 ((mp->b_cont != NULL) && 23204 ((next_mp->b_cont = 23205 dupmsg(mp->b_cont)) 23206 == NULL))) { 23207 freemsg(next_mp); 23208 next_mp = NULL; 23209 ire_refrele(ire1); 23210 ire1 = NULL; 23211 } 23212 } 23213 23214 /* 23215 * Last multiroute ire; don't loop 23216 * anymore. The emission is over 23217 * and next_mp is NULL. 23218 */ 23219 if (ire1 == NULL) { 23220 multirt_send = B_FALSE; 23221 } 23222 } 23223 23224 out_ill = ire_to_ill(ire); 23225 DTRACE_PROBE4(ip4__physical__out__start, 23226 ill_t *, NULL, 23227 ill_t *, out_ill, 23228 ipha_t *, ipha, mblk_t *, mp); 23229 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23230 ipst->ips_ipv4firewall_physical_out, 23231 NULL, out_ill, ipha, mp, mp, 0, ipst); 23232 DTRACE_PROBE1(ip4__physical__out__end, 23233 mblk_t *, mp); 23234 if (mp == NULL) 23235 goto release_ire_and_ill_2; 23236 23237 ASSERT(ipsec_len == 0); 23238 mp->b_prev = 23239 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23240 DTRACE_PROBE2(ip__xmit__2, 23241 mblk_t *, mp, ire_t *, ire); 23242 pktxmit_state = ip_xmit_v4(mp, ire, 23243 NULL, B_TRUE, connp); 23244 if ((pktxmit_state == SEND_FAILED) || 23245 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23246 release_ire_and_ill_2: 23247 if (next_mp) { 23248 freemsg(next_mp); 23249 ire_refrele(ire1); 23250 } 23251 ire_refrele(ire); 23252 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23253 "ip_wput_ire_end: q %p (%S)", 23254 q, "discard MDATA"); 23255 if (conn_outgoing_ill != NULL) 23256 ill_refrele(conn_outgoing_ill); 23257 return; 23258 } 23259 23260 if (CLASSD(dst)) { 23261 BUMP_MIB(out_ill->ill_ip_mib, 23262 ipIfStatsHCOutMcastPkts); 23263 UPDATE_MIB(out_ill->ill_ip_mib, 23264 ipIfStatsHCOutMcastOctets, 23265 LENGTH); 23266 } else if (ire->ire_type == IRE_BROADCAST) { 23267 BUMP_MIB(out_ill->ill_ip_mib, 23268 ipIfStatsHCOutBcastPkts); 23269 } 23270 23271 if (multirt_send) { 23272 /* 23273 * We are in a multiple send case, 23274 * need to re-enter the sending loop 23275 * using the next ire. 23276 */ 23277 ire_refrele(ire); 23278 ire = ire1; 23279 stq = ire->ire_stq; 23280 mp = next_mp; 23281 next_mp = NULL; 23282 ipha = (ipha_t *)mp->b_rptr; 23283 ill_index = Q_TO_INDEX(stq); 23284 } 23285 } while (multirt_send); 23286 23287 if (!next_mp) { 23288 /* 23289 * Last copy going out (the ultra-common 23290 * case). Note that we intentionally replicate 23291 * the putnext rather than calling it before 23292 * the next_mp check in hopes of a little 23293 * tail-call action out of the compiler. 23294 */ 23295 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23296 "ip_wput_ire_end: q %p (%S)", 23297 q, "last copy out(1)"); 23298 ire_refrele(ire); 23299 if (conn_outgoing_ill != NULL) 23300 ill_refrele(conn_outgoing_ill); 23301 return; 23302 } 23303 /* More copies going out below. */ 23304 } else { 23305 int offset; 23306 fragmentit: 23307 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23308 /* 23309 * If this would generate a icmp_frag_needed message, 23310 * we need to handle it before we do the IPsec 23311 * processing. Otherwise, we need to strip the IPsec 23312 * headers before we send up the message to the ULPs 23313 * which becomes messy and difficult. 23314 */ 23315 if (ipsec_len != 0) { 23316 if ((max_frag < (unsigned int)(LENGTH + 23317 ipsec_len)) && (offset & IPH_DF)) { 23318 out_ill = (ill_t *)stq->q_ptr; 23319 BUMP_MIB(out_ill->ill_ip_mib, 23320 ipIfStatsOutFragFails); 23321 BUMP_MIB(out_ill->ill_ip_mib, 23322 ipIfStatsOutFragReqds); 23323 ipha->ipha_hdr_checksum = 0; 23324 ipha->ipha_hdr_checksum = 23325 (uint16_t)ip_csum_hdr(ipha); 23326 icmp_frag_needed(ire->ire_stq, first_mp, 23327 max_frag, zoneid, ipst); 23328 if (!next_mp) { 23329 ire_refrele(ire); 23330 if (conn_outgoing_ill != NULL) { 23331 ill_refrele( 23332 conn_outgoing_ill); 23333 } 23334 return; 23335 } 23336 } else { 23337 /* 23338 * This won't cause a icmp_frag_needed 23339 * message. to be generated. Send it on 23340 * the wire. Note that this could still 23341 * cause fragmentation and all we 23342 * do is the generation of the message 23343 * to the ULP if needed before IPsec. 23344 */ 23345 if (!next_mp) { 23346 ipsec_out_process(q, first_mp, 23347 ire, ill_index); 23348 TRACE_2(TR_FAC_IP, 23349 TR_IP_WPUT_IRE_END, 23350 "ip_wput_ire_end: q %p " 23351 "(%S)", q, 23352 "last ipsec_out_process"); 23353 ire_refrele(ire); 23354 if (conn_outgoing_ill != NULL) { 23355 ill_refrele( 23356 conn_outgoing_ill); 23357 } 23358 return; 23359 } 23360 ipsec_out_process(q, first_mp, 23361 ire, ill_index); 23362 } 23363 } else { 23364 /* 23365 * Initiate IPPF processing. For 23366 * fragmentable packets we finish 23367 * all QOS packet processing before 23368 * calling: 23369 * ip_wput_ire_fragmentit->ip_wput_frag 23370 */ 23371 23372 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23373 ip_process(IPP_LOCAL_OUT, &mp, 23374 ill_index); 23375 if (mp == NULL) { 23376 out_ill = (ill_t *)stq->q_ptr; 23377 BUMP_MIB(out_ill->ill_ip_mib, 23378 ipIfStatsOutDiscards); 23379 if (next_mp != NULL) { 23380 freemsg(next_mp); 23381 ire_refrele(ire1); 23382 } 23383 ire_refrele(ire); 23384 TRACE_2(TR_FAC_IP, 23385 TR_IP_WPUT_IRE_END, 23386 "ip_wput_ire: q %p (%S)", 23387 q, "discard MDATA"); 23388 if (conn_outgoing_ill != NULL) { 23389 ill_refrele( 23390 conn_outgoing_ill); 23391 } 23392 return; 23393 } 23394 } 23395 if (!next_mp) { 23396 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23397 "ip_wput_ire_end: q %p (%S)", 23398 q, "last fragmentation"); 23399 ip_wput_ire_fragmentit(mp, ire, 23400 zoneid, ipst, connp); 23401 ire_refrele(ire); 23402 if (conn_outgoing_ill != NULL) 23403 ill_refrele(conn_outgoing_ill); 23404 return; 23405 } 23406 ip_wput_ire_fragmentit(mp, ire, 23407 zoneid, ipst, connp); 23408 } 23409 } 23410 } else { 23411 nullstq: 23412 /* A NULL stq means the destination address is local. */ 23413 UPDATE_OB_PKT_COUNT(ire); 23414 ire->ire_last_used_time = lbolt; 23415 ASSERT(ire->ire_ipif != NULL); 23416 if (!next_mp) { 23417 /* 23418 * Is there an "in" and "out" for traffic local 23419 * to a host (loopback)? The code in Solaris doesn't 23420 * explicitly draw a line in its code for in vs out, 23421 * so we've had to draw a line in the sand: ip_wput_ire 23422 * is considered to be the "output" side and 23423 * ip_wput_local to be the "input" side. 23424 */ 23425 out_ill = ire_to_ill(ire); 23426 23427 /* 23428 * DTrace this as ip:::send. A blocked packet will 23429 * fire the send probe, but not the receive probe. 23430 */ 23431 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23432 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23433 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23434 23435 DTRACE_PROBE4(ip4__loopback__out__start, 23436 ill_t *, NULL, ill_t *, out_ill, 23437 ipha_t *, ipha, mblk_t *, first_mp); 23438 23439 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23440 ipst->ips_ipv4firewall_loopback_out, 23441 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23442 23443 DTRACE_PROBE1(ip4__loopback__out_end, 23444 mblk_t *, first_mp); 23445 23446 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23447 "ip_wput_ire_end: q %p (%S)", 23448 q, "local address"); 23449 23450 if (first_mp != NULL) 23451 ip_wput_local(q, out_ill, ipha, 23452 first_mp, ire, 0, ire->ire_zoneid); 23453 ire_refrele(ire); 23454 if (conn_outgoing_ill != NULL) 23455 ill_refrele(conn_outgoing_ill); 23456 return; 23457 } 23458 23459 out_ill = ire_to_ill(ire); 23460 23461 /* 23462 * DTrace this as ip:::send. A blocked packet will fire the 23463 * send probe, but not the receive probe. 23464 */ 23465 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23466 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23467 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23468 23469 DTRACE_PROBE4(ip4__loopback__out__start, 23470 ill_t *, NULL, ill_t *, out_ill, 23471 ipha_t *, ipha, mblk_t *, first_mp); 23472 23473 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23474 ipst->ips_ipv4firewall_loopback_out, 23475 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23476 23477 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23478 23479 if (first_mp != NULL) 23480 ip_wput_local(q, out_ill, ipha, 23481 first_mp, ire, 0, ire->ire_zoneid); 23482 } 23483 next: 23484 /* 23485 * More copies going out to additional interfaces. 23486 * ire1 has already been held. We don't need the 23487 * "ire" anymore. 23488 */ 23489 ire_refrele(ire); 23490 ire = ire1; 23491 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23492 mp = next_mp; 23493 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23494 ill = ire_to_ill(ire); 23495 first_mp = mp; 23496 if (ipsec_len != 0) { 23497 ASSERT(first_mp->b_datap->db_type == M_CTL); 23498 mp = mp->b_cont; 23499 } 23500 dst = ire->ire_addr; 23501 ipha = (ipha_t *)mp->b_rptr; 23502 /* 23503 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23504 * Restore ipha_ident "no checksum" flag. 23505 */ 23506 src = orig_src; 23507 ipha->ipha_ident = ip_hdr_included; 23508 goto another; 23509 23510 #undef rptr 23511 #undef Q_TO_INDEX 23512 } 23513 23514 /* 23515 * Routine to allocate a message that is used to notify the ULP about MDT. 23516 * The caller may provide a pointer to the link-layer MDT capabilities, 23517 * or NULL if MDT is to be disabled on the stream. 23518 */ 23519 mblk_t * 23520 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23521 { 23522 mblk_t *mp; 23523 ip_mdt_info_t *mdti; 23524 ill_mdt_capab_t *idst; 23525 23526 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23527 DB_TYPE(mp) = M_CTL; 23528 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23529 mdti = (ip_mdt_info_t *)mp->b_rptr; 23530 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23531 idst = &(mdti->mdt_capab); 23532 23533 /* 23534 * If the caller provides us with the capability, copy 23535 * it over into our notification message; otherwise 23536 * we zero out the capability portion. 23537 */ 23538 if (isrc != NULL) 23539 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23540 else 23541 bzero((caddr_t)idst, sizeof (*idst)); 23542 } 23543 return (mp); 23544 } 23545 23546 /* 23547 * Routine which determines whether MDT can be enabled on the destination 23548 * IRE and IPC combination, and if so, allocates and returns the MDT 23549 * notification mblk that may be used by ULP. We also check if we need to 23550 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23551 * MDT usage in the past have been lifted. This gets called during IP 23552 * and ULP binding. 23553 */ 23554 mblk_t * 23555 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23556 ill_mdt_capab_t *mdt_cap) 23557 { 23558 mblk_t *mp; 23559 boolean_t rc = B_FALSE; 23560 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23561 23562 ASSERT(dst_ire != NULL); 23563 ASSERT(connp != NULL); 23564 ASSERT(mdt_cap != NULL); 23565 23566 /* 23567 * Currently, we only support simple TCP/{IPv4,IPv6} with 23568 * Multidata, which is handled in tcp_multisend(). This 23569 * is the reason why we do all these checks here, to ensure 23570 * that we don't enable Multidata for the cases which we 23571 * can't handle at the moment. 23572 */ 23573 do { 23574 /* Only do TCP at the moment */ 23575 if (connp->conn_ulp != IPPROTO_TCP) 23576 break; 23577 23578 /* 23579 * IPsec outbound policy present? Note that we get here 23580 * after calling ipsec_conn_cache_policy() where the global 23581 * policy checking is performed. conn_latch will be 23582 * non-NULL as long as there's a policy defined, 23583 * i.e. conn_out_enforce_policy may be NULL in such case 23584 * when the connection is non-secure, and hence we check 23585 * further if the latch refers to an outbound policy. 23586 */ 23587 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23588 break; 23589 23590 /* CGTP (multiroute) is enabled? */ 23591 if (dst_ire->ire_flags & RTF_MULTIRT) 23592 break; 23593 23594 /* Outbound IPQoS enabled? */ 23595 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23596 /* 23597 * In this case, we disable MDT for this and all 23598 * future connections going over the interface. 23599 */ 23600 mdt_cap->ill_mdt_on = 0; 23601 break; 23602 } 23603 23604 /* socket option(s) present? */ 23605 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23606 break; 23607 23608 rc = B_TRUE; 23609 /* CONSTCOND */ 23610 } while (0); 23611 23612 /* Remember the result */ 23613 connp->conn_mdt_ok = rc; 23614 23615 if (!rc) 23616 return (NULL); 23617 else if (!mdt_cap->ill_mdt_on) { 23618 /* 23619 * If MDT has been previously turned off in the past, and we 23620 * currently can do MDT (due to IPQoS policy removal, etc.) 23621 * then enable it for this interface. 23622 */ 23623 mdt_cap->ill_mdt_on = 1; 23624 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23625 "interface %s\n", ill_name)); 23626 } 23627 23628 /* Allocate the MDT info mblk */ 23629 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23630 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23631 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23632 return (NULL); 23633 } 23634 return (mp); 23635 } 23636 23637 /* 23638 * Routine to allocate a message that is used to notify the ULP about LSO. 23639 * The caller may provide a pointer to the link-layer LSO capabilities, 23640 * or NULL if LSO is to be disabled on the stream. 23641 */ 23642 mblk_t * 23643 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23644 { 23645 mblk_t *mp; 23646 ip_lso_info_t *lsoi; 23647 ill_lso_capab_t *idst; 23648 23649 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23650 DB_TYPE(mp) = M_CTL; 23651 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23652 lsoi = (ip_lso_info_t *)mp->b_rptr; 23653 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23654 idst = &(lsoi->lso_capab); 23655 23656 /* 23657 * If the caller provides us with the capability, copy 23658 * it over into our notification message; otherwise 23659 * we zero out the capability portion. 23660 */ 23661 if (isrc != NULL) 23662 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23663 else 23664 bzero((caddr_t)idst, sizeof (*idst)); 23665 } 23666 return (mp); 23667 } 23668 23669 /* 23670 * Routine which determines whether LSO can be enabled on the destination 23671 * IRE and IPC combination, and if so, allocates and returns the LSO 23672 * notification mblk that may be used by ULP. We also check if we need to 23673 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23674 * LSO usage in the past have been lifted. This gets called during IP 23675 * and ULP binding. 23676 */ 23677 mblk_t * 23678 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23679 ill_lso_capab_t *lso_cap) 23680 { 23681 mblk_t *mp; 23682 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23683 23684 ASSERT(dst_ire != NULL); 23685 ASSERT(connp != NULL); 23686 ASSERT(lso_cap != NULL); 23687 23688 connp->conn_lso_ok = B_TRUE; 23689 23690 if ((connp->conn_ulp != IPPROTO_TCP) || 23691 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23692 (dst_ire->ire_flags & RTF_MULTIRT) || 23693 !CONN_IS_LSO_MD_FASTPATH(connp) || 23694 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23695 connp->conn_lso_ok = B_FALSE; 23696 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23697 /* 23698 * Disable LSO for this and all future connections going 23699 * over the interface. 23700 */ 23701 lso_cap->ill_lso_on = 0; 23702 } 23703 } 23704 23705 if (!connp->conn_lso_ok) 23706 return (NULL); 23707 else if (!lso_cap->ill_lso_on) { 23708 /* 23709 * If LSO has been previously turned off in the past, and we 23710 * currently can do LSO (due to IPQoS policy removal, etc.) 23711 * then enable it for this interface. 23712 */ 23713 lso_cap->ill_lso_on = 1; 23714 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23715 ill_name)); 23716 } 23717 23718 /* Allocate the LSO info mblk */ 23719 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23720 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23721 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23722 23723 return (mp); 23724 } 23725 23726 /* 23727 * Create destination address attribute, and fill it with the physical 23728 * destination address and SAP taken from the template DL_UNITDATA_REQ 23729 * message block. 23730 */ 23731 boolean_t 23732 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23733 { 23734 dl_unitdata_req_t *dlurp; 23735 pattr_t *pa; 23736 pattrinfo_t pa_info; 23737 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23738 uint_t das_len, das_off; 23739 23740 ASSERT(dlmp != NULL); 23741 23742 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23743 das_len = dlurp->dl_dest_addr_length; 23744 das_off = dlurp->dl_dest_addr_offset; 23745 23746 pa_info.type = PATTR_DSTADDRSAP; 23747 pa_info.len = sizeof (**das) + das_len - 1; 23748 23749 /* create and associate the attribute */ 23750 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23751 if (pa != NULL) { 23752 ASSERT(*das != NULL); 23753 (*das)->addr_is_group = 0; 23754 (*das)->addr_len = (uint8_t)das_len; 23755 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23756 } 23757 23758 return (pa != NULL); 23759 } 23760 23761 /* 23762 * Create hardware checksum attribute and fill it with the values passed. 23763 */ 23764 boolean_t 23765 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23766 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23767 { 23768 pattr_t *pa; 23769 pattrinfo_t pa_info; 23770 23771 ASSERT(mmd != NULL); 23772 23773 pa_info.type = PATTR_HCKSUM; 23774 pa_info.len = sizeof (pattr_hcksum_t); 23775 23776 /* create and associate the attribute */ 23777 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23778 if (pa != NULL) { 23779 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23780 23781 hck->hcksum_start_offset = start_offset; 23782 hck->hcksum_stuff_offset = stuff_offset; 23783 hck->hcksum_end_offset = end_offset; 23784 hck->hcksum_flags = flags; 23785 } 23786 return (pa != NULL); 23787 } 23788 23789 /* 23790 * Create zerocopy attribute and fill it with the specified flags 23791 */ 23792 boolean_t 23793 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23794 { 23795 pattr_t *pa; 23796 pattrinfo_t pa_info; 23797 23798 ASSERT(mmd != NULL); 23799 pa_info.type = PATTR_ZCOPY; 23800 pa_info.len = sizeof (pattr_zcopy_t); 23801 23802 /* create and associate the attribute */ 23803 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23804 if (pa != NULL) { 23805 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23806 23807 zcopy->zcopy_flags = flags; 23808 } 23809 return (pa != NULL); 23810 } 23811 23812 /* 23813 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23814 * block chain. We could rewrite to handle arbitrary message block chains but 23815 * that would make the code complicated and slow. Right now there three 23816 * restrictions: 23817 * 23818 * 1. The first message block must contain the complete IP header and 23819 * at least 1 byte of payload data. 23820 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23821 * so that we can use a single Multidata message. 23822 * 3. No frag must be distributed over two or more message blocks so 23823 * that we don't need more than two packet descriptors per frag. 23824 * 23825 * The above restrictions allow us to support userland applications (which 23826 * will send down a single message block) and NFS over UDP (which will 23827 * send down a chain of at most three message blocks). 23828 * 23829 * We also don't use MDT for payloads with less than or equal to 23830 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23831 */ 23832 boolean_t 23833 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23834 { 23835 int blocks; 23836 ssize_t total, missing, size; 23837 23838 ASSERT(mp != NULL); 23839 ASSERT(hdr_len > 0); 23840 23841 size = MBLKL(mp) - hdr_len; 23842 if (size <= 0) 23843 return (B_FALSE); 23844 23845 /* The first mblk contains the header and some payload. */ 23846 blocks = 1; 23847 total = size; 23848 size %= len; 23849 missing = (size == 0) ? 0 : (len - size); 23850 mp = mp->b_cont; 23851 23852 while (mp != NULL) { 23853 /* 23854 * Give up if we encounter a zero length message block. 23855 * In practice, this should rarely happen and therefore 23856 * not worth the trouble of freeing and re-linking the 23857 * mblk from the chain to handle such case. 23858 */ 23859 if ((size = MBLKL(mp)) == 0) 23860 return (B_FALSE); 23861 23862 /* Too many payload buffers for a single Multidata message? */ 23863 if (++blocks > MULTIDATA_MAX_PBUFS) 23864 return (B_FALSE); 23865 23866 total += size; 23867 /* Is a frag distributed over two or more message blocks? */ 23868 if (missing > size) 23869 return (B_FALSE); 23870 size -= missing; 23871 23872 size %= len; 23873 missing = (size == 0) ? 0 : (len - size); 23874 23875 mp = mp->b_cont; 23876 } 23877 23878 return (total > ip_wput_frag_mdt_min); 23879 } 23880 23881 /* 23882 * Outbound IPv4 fragmentation routine using MDT. 23883 */ 23884 static void 23885 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23886 uint32_t frag_flag, int offset) 23887 { 23888 ipha_t *ipha_orig; 23889 int i1, ip_data_end; 23890 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23891 mblk_t *hdr_mp, *md_mp = NULL; 23892 unsigned char *hdr_ptr, *pld_ptr; 23893 multidata_t *mmd; 23894 ip_pdescinfo_t pdi; 23895 ill_t *ill; 23896 ip_stack_t *ipst = ire->ire_ipst; 23897 23898 ASSERT(DB_TYPE(mp) == M_DATA); 23899 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23900 23901 ill = ire_to_ill(ire); 23902 ASSERT(ill != NULL); 23903 23904 ipha_orig = (ipha_t *)mp->b_rptr; 23905 mp->b_rptr += sizeof (ipha_t); 23906 23907 /* Calculate how many packets we will send out */ 23908 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23909 pkts = (i1 + len - 1) / len; 23910 ASSERT(pkts > 1); 23911 23912 /* Allocate a message block which will hold all the IP Headers. */ 23913 wroff = ipst->ips_ip_wroff_extra; 23914 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23915 23916 i1 = pkts * hdr_chunk_len; 23917 /* 23918 * Create the header buffer, Multidata and destination address 23919 * and SAP attribute that should be associated with it. 23920 */ 23921 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23922 ((hdr_mp->b_wptr += i1), 23923 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23924 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23925 freemsg(mp); 23926 if (md_mp == NULL) { 23927 freemsg(hdr_mp); 23928 } else { 23929 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23930 freemsg(md_mp); 23931 } 23932 IP_STAT(ipst, ip_frag_mdt_allocfail); 23933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23934 return; 23935 } 23936 IP_STAT(ipst, ip_frag_mdt_allocd); 23937 23938 /* 23939 * Add a payload buffer to the Multidata; this operation must not 23940 * fail, or otherwise our logic in this routine is broken. There 23941 * is no memory allocation done by the routine, so any returned 23942 * failure simply tells us that we've done something wrong. 23943 * 23944 * A failure tells us that either we're adding the same payload 23945 * buffer more than once, or we're trying to add more buffers than 23946 * allowed. None of the above cases should happen, and we panic 23947 * because either there's horrible heap corruption, and/or 23948 * programming mistake. 23949 */ 23950 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23951 goto pbuf_panic; 23952 23953 hdr_ptr = hdr_mp->b_rptr; 23954 pld_ptr = mp->b_rptr; 23955 23956 /* Establish the ending byte offset, based on the starting offset. */ 23957 offset <<= 3; 23958 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23959 IP_SIMPLE_HDR_LENGTH; 23960 23961 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23962 23963 while (pld_ptr < mp->b_wptr) { 23964 ipha_t *ipha; 23965 uint16_t offset_and_flags; 23966 uint16_t ip_len; 23967 int error; 23968 23969 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23970 ipha = (ipha_t *)(hdr_ptr + wroff); 23971 ASSERT(OK_32PTR(ipha)); 23972 *ipha = *ipha_orig; 23973 23974 if (ip_data_end - offset > len) { 23975 offset_and_flags = IPH_MF; 23976 } else { 23977 /* 23978 * Last frag. Set len to the length of this last piece. 23979 */ 23980 len = ip_data_end - offset; 23981 /* A frag of a frag might have IPH_MF non-zero */ 23982 offset_and_flags = 23983 ntohs(ipha->ipha_fragment_offset_and_flags) & 23984 IPH_MF; 23985 } 23986 offset_and_flags |= (uint16_t)(offset >> 3); 23987 offset_and_flags |= (uint16_t)frag_flag; 23988 /* Store the offset and flags in the IP header. */ 23989 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23990 23991 /* Store the length in the IP header. */ 23992 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23993 ipha->ipha_length = htons(ip_len); 23994 23995 /* 23996 * Set the IP header checksum. Note that mp is just 23997 * the header, so this is easy to pass to ip_csum. 23998 */ 23999 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24000 24001 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24002 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24003 NULL, int, 0); 24004 24005 /* 24006 * Record offset and size of header and data of the next packet 24007 * in the multidata message. 24008 */ 24009 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24010 PDESC_PLD_INIT(&pdi); 24011 i1 = MIN(mp->b_wptr - pld_ptr, len); 24012 ASSERT(i1 > 0); 24013 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24014 if (i1 == len) { 24015 pld_ptr += len; 24016 } else { 24017 i1 = len - i1; 24018 mp = mp->b_cont; 24019 ASSERT(mp != NULL); 24020 ASSERT(MBLKL(mp) >= i1); 24021 /* 24022 * Attach the next payload message block to the 24023 * multidata message. 24024 */ 24025 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24026 goto pbuf_panic; 24027 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24028 pld_ptr = mp->b_rptr + i1; 24029 } 24030 24031 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24032 KM_NOSLEEP)) == NULL) { 24033 /* 24034 * Any failure other than ENOMEM indicates that we 24035 * have passed in invalid pdesc info or parameters 24036 * to mmd_addpdesc, which must not happen. 24037 * 24038 * EINVAL is a result of failure on boundary checks 24039 * against the pdesc info contents. It should not 24040 * happen, and we panic because either there's 24041 * horrible heap corruption, and/or programming 24042 * mistake. 24043 */ 24044 if (error != ENOMEM) { 24045 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24046 "pdesc logic error detected for " 24047 "mmd %p pinfo %p (%d)\n", 24048 (void *)mmd, (void *)&pdi, error); 24049 /* NOTREACHED */ 24050 } 24051 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24052 /* Free unattached payload message blocks as well */ 24053 md_mp->b_cont = mp->b_cont; 24054 goto free_mmd; 24055 } 24056 24057 /* Advance fragment offset. */ 24058 offset += len; 24059 24060 /* Advance to location for next header in the buffer. */ 24061 hdr_ptr += hdr_chunk_len; 24062 24063 /* Did we reach the next payload message block? */ 24064 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24065 mp = mp->b_cont; 24066 /* 24067 * Attach the next message block with payload 24068 * data to the multidata message. 24069 */ 24070 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24071 goto pbuf_panic; 24072 pld_ptr = mp->b_rptr; 24073 } 24074 } 24075 24076 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24077 ASSERT(mp->b_wptr == pld_ptr); 24078 24079 /* Update IP statistics */ 24080 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24081 24082 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24084 24085 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24086 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24087 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24088 24089 if (pkt_type == OB_PKT) { 24090 ire->ire_ob_pkt_count += pkts; 24091 if (ire->ire_ipif != NULL) 24092 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24093 } else { 24094 /* The type is IB_PKT in the forwarding path. */ 24095 ire->ire_ib_pkt_count += pkts; 24096 ASSERT(!IRE_IS_LOCAL(ire)); 24097 if (ire->ire_type & IRE_BROADCAST) { 24098 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24099 } else { 24100 UPDATE_MIB(ill->ill_ip_mib, 24101 ipIfStatsHCOutForwDatagrams, pkts); 24102 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24103 } 24104 } 24105 ire->ire_last_used_time = lbolt; 24106 /* Send it down */ 24107 putnext(ire->ire_stq, md_mp); 24108 return; 24109 24110 pbuf_panic: 24111 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24112 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24113 pbuf_idx); 24114 /* NOTREACHED */ 24115 } 24116 24117 /* 24118 * Outbound IP fragmentation routine. 24119 * 24120 * NOTE : This routine does not ire_refrele the ire that is passed in 24121 * as the argument. 24122 */ 24123 static void 24124 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24125 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24126 { 24127 int i1; 24128 mblk_t *ll_hdr_mp; 24129 int ll_hdr_len; 24130 int hdr_len; 24131 mblk_t *hdr_mp; 24132 ipha_t *ipha; 24133 int ip_data_end; 24134 int len; 24135 mblk_t *mp = mp_orig, *mp1; 24136 int offset; 24137 queue_t *q; 24138 uint32_t v_hlen_tos_len; 24139 mblk_t *first_mp; 24140 boolean_t mctl_present; 24141 ill_t *ill; 24142 ill_t *out_ill; 24143 mblk_t *xmit_mp; 24144 mblk_t *carve_mp; 24145 ire_t *ire1 = NULL; 24146 ire_t *save_ire = NULL; 24147 mblk_t *next_mp = NULL; 24148 boolean_t last_frag = B_FALSE; 24149 boolean_t multirt_send = B_FALSE; 24150 ire_t *first_ire = NULL; 24151 irb_t *irb = NULL; 24152 mib2_ipIfStatsEntry_t *mibptr = NULL; 24153 24154 ill = ire_to_ill(ire); 24155 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24156 24157 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24158 24159 if (max_frag == 0) { 24160 ip1dbg(("ip_wput_frag: ire frag size is 0" 24161 " - dropping packet\n")); 24162 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24163 freemsg(mp); 24164 return; 24165 } 24166 24167 /* 24168 * IPsec does not allow hw accelerated packets to be fragmented 24169 * This check is made in ip_wput_ipsec_out prior to coming here 24170 * via ip_wput_ire_fragmentit. 24171 * 24172 * If at this point we have an ire whose ARP request has not 24173 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24174 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24175 * This packet and all fragmentable packets for this ire will 24176 * continue to get dropped while ire_nce->nce_state remains in 24177 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24178 * ND_REACHABLE, all subsquent large packets for this ire will 24179 * get fragemented and sent out by this function. 24180 */ 24181 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24182 /* If nce_state is ND_INITIAL, trigger ARP query */ 24183 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24184 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24185 " - dropping packet\n")); 24186 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24187 freemsg(mp); 24188 return; 24189 } 24190 24191 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24192 "ip_wput_frag_start:"); 24193 24194 if (mp->b_datap->db_type == M_CTL) { 24195 first_mp = mp; 24196 mp_orig = mp = mp->b_cont; 24197 mctl_present = B_TRUE; 24198 } else { 24199 first_mp = mp; 24200 mctl_present = B_FALSE; 24201 } 24202 24203 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24204 ipha = (ipha_t *)mp->b_rptr; 24205 24206 /* 24207 * If the Don't Fragment flag is on, generate an ICMP destination 24208 * unreachable, fragmentation needed. 24209 */ 24210 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24211 if (offset & IPH_DF) { 24212 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24213 if (is_system_labeled()) { 24214 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24215 ire->ire_max_frag - max_frag, AF_INET); 24216 } 24217 /* 24218 * Need to compute hdr checksum if called from ip_wput_ire. 24219 * Note that ip_rput_forward verifies the checksum before 24220 * calling this routine so in that case this is a noop. 24221 */ 24222 ipha->ipha_hdr_checksum = 0; 24223 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24224 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24225 ipst); 24226 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24227 "ip_wput_frag_end:(%S)", 24228 "don't fragment"); 24229 return; 24230 } 24231 /* 24232 * Labeled systems adjust max_frag if they add a label 24233 * to send the correct path mtu. We need the real mtu since we 24234 * are fragmenting the packet after label adjustment. 24235 */ 24236 if (is_system_labeled()) 24237 max_frag = ire->ire_max_frag; 24238 if (mctl_present) 24239 freeb(first_mp); 24240 /* 24241 * Establish the starting offset. May not be zero if we are fragging 24242 * a fragment that is being forwarded. 24243 */ 24244 offset = offset & IPH_OFFSET; 24245 24246 /* TODO why is this test needed? */ 24247 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24248 if (((max_frag - LENGTH) & ~7) < 8) { 24249 /* TODO: notify ulp somehow */ 24250 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24251 freemsg(mp); 24252 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24253 "ip_wput_frag_end:(%S)", 24254 "len < 8"); 24255 return; 24256 } 24257 24258 hdr_len = (V_HLEN & 0xF) << 2; 24259 24260 ipha->ipha_hdr_checksum = 0; 24261 24262 /* 24263 * Establish the number of bytes maximum per frag, after putting 24264 * in the header. 24265 */ 24266 len = (max_frag - hdr_len) & ~7; 24267 24268 /* Check if we can use MDT to send out the frags. */ 24269 ASSERT(!IRE_IS_LOCAL(ire)); 24270 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24271 ipst->ips_ip_multidata_outbound && 24272 !(ire->ire_flags & RTF_MULTIRT) && 24273 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24274 ill != NULL && ILL_MDT_CAPABLE(ill) && 24275 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24276 ASSERT(ill->ill_mdt_capab != NULL); 24277 if (!ill->ill_mdt_capab->ill_mdt_on) { 24278 /* 24279 * If MDT has been previously turned off in the past, 24280 * and we currently can do MDT (due to IPQoS policy 24281 * removal, etc.) then enable it for this interface. 24282 */ 24283 ill->ill_mdt_capab->ill_mdt_on = 1; 24284 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24285 ill->ill_name)); 24286 } 24287 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24288 offset); 24289 return; 24290 } 24291 24292 /* Get a copy of the header for the trailing frags */ 24293 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24294 mp); 24295 if (!hdr_mp) { 24296 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24297 freemsg(mp); 24298 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24299 "ip_wput_frag_end:(%S)", 24300 "couldn't copy hdr"); 24301 return; 24302 } 24303 24304 /* Store the starting offset, with the MoreFrags flag. */ 24305 i1 = offset | IPH_MF | frag_flag; 24306 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24307 24308 /* Establish the ending byte offset, based on the starting offset. */ 24309 offset <<= 3; 24310 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24311 24312 /* Store the length of the first fragment in the IP header. */ 24313 i1 = len + hdr_len; 24314 ASSERT(i1 <= IP_MAXPACKET); 24315 ipha->ipha_length = htons((uint16_t)i1); 24316 24317 /* 24318 * Compute the IP header checksum for the first frag. We have to 24319 * watch out that we stop at the end of the header. 24320 */ 24321 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24322 24323 /* 24324 * Now carve off the first frag. Note that this will include the 24325 * original IP header. 24326 */ 24327 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24328 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24329 freeb(hdr_mp); 24330 freemsg(mp_orig); 24331 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24332 "ip_wput_frag_end:(%S)", 24333 "couldn't carve first"); 24334 return; 24335 } 24336 24337 /* 24338 * Multirouting case. Each fragment is replicated 24339 * via all non-condemned RTF_MULTIRT routes 24340 * currently resolved. 24341 * We ensure that first_ire is the first RTF_MULTIRT 24342 * ire in the bucket. 24343 */ 24344 if (ire->ire_flags & RTF_MULTIRT) { 24345 irb = ire->ire_bucket; 24346 ASSERT(irb != NULL); 24347 24348 multirt_send = B_TRUE; 24349 24350 /* Make sure we do not omit any multiroute ire. */ 24351 IRB_REFHOLD(irb); 24352 for (first_ire = irb->irb_ire; 24353 first_ire != NULL; 24354 first_ire = first_ire->ire_next) { 24355 if ((first_ire->ire_flags & RTF_MULTIRT) && 24356 (first_ire->ire_addr == ire->ire_addr) && 24357 !(first_ire->ire_marks & 24358 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24359 break; 24360 } 24361 24362 if (first_ire != NULL) { 24363 if (first_ire != ire) { 24364 IRE_REFHOLD(first_ire); 24365 /* 24366 * Do not release the ire passed in 24367 * as the argument. 24368 */ 24369 ire = first_ire; 24370 } else { 24371 first_ire = NULL; 24372 } 24373 } 24374 IRB_REFRELE(irb); 24375 24376 /* 24377 * Save the first ire; we will need to restore it 24378 * for the trailing frags. 24379 * We REFHOLD save_ire, as each iterated ire will be 24380 * REFRELEd. 24381 */ 24382 save_ire = ire; 24383 IRE_REFHOLD(save_ire); 24384 } 24385 24386 /* 24387 * First fragment emission loop. 24388 * In most cases, the emission loop below is entered only 24389 * once. Only in the case where the ire holds the RTF_MULTIRT 24390 * flag, do we loop to process all RTF_MULTIRT ires in the 24391 * bucket, and send the fragment through all crossed 24392 * RTF_MULTIRT routes. 24393 */ 24394 do { 24395 if (ire->ire_flags & RTF_MULTIRT) { 24396 /* 24397 * We are in a multiple send case, need to get 24398 * the next ire and make a copy of the packet. 24399 * ire1 holds here the next ire to process in the 24400 * bucket. If multirouting is expected, 24401 * any non-RTF_MULTIRT ire that has the 24402 * right destination address is ignored. 24403 * 24404 * We have to take into account the MTU of 24405 * each walked ire. max_frag is set by the 24406 * the caller and generally refers to 24407 * the primary ire entry. Here we ensure that 24408 * no route with a lower MTU will be used, as 24409 * fragments are carved once for all ires, 24410 * then replicated. 24411 */ 24412 ASSERT(irb != NULL); 24413 IRB_REFHOLD(irb); 24414 for (ire1 = ire->ire_next; 24415 ire1 != NULL; 24416 ire1 = ire1->ire_next) { 24417 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24418 continue; 24419 if (ire1->ire_addr != ire->ire_addr) 24420 continue; 24421 if (ire1->ire_marks & 24422 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24423 continue; 24424 /* 24425 * Ensure we do not exceed the MTU 24426 * of the next route. 24427 */ 24428 if (ire1->ire_max_frag < max_frag) { 24429 ip_multirt_bad_mtu(ire1, max_frag); 24430 continue; 24431 } 24432 24433 /* Got one. */ 24434 IRE_REFHOLD(ire1); 24435 break; 24436 } 24437 IRB_REFRELE(irb); 24438 24439 if (ire1 != NULL) { 24440 next_mp = copyb(mp); 24441 if ((next_mp == NULL) || 24442 ((mp->b_cont != NULL) && 24443 ((next_mp->b_cont = 24444 dupmsg(mp->b_cont)) == NULL))) { 24445 freemsg(next_mp); 24446 next_mp = NULL; 24447 ire_refrele(ire1); 24448 ire1 = NULL; 24449 } 24450 } 24451 24452 /* Last multiroute ire; don't loop anymore. */ 24453 if (ire1 == NULL) { 24454 multirt_send = B_FALSE; 24455 } 24456 } 24457 24458 ll_hdr_len = 0; 24459 LOCK_IRE_FP_MP(ire); 24460 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24461 if (ll_hdr_mp != NULL) { 24462 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24463 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24464 } else { 24465 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24466 } 24467 24468 /* If there is a transmit header, get a copy for this frag. */ 24469 /* 24470 * TODO: should check db_ref before calling ip_carve_mp since 24471 * it might give us a dup. 24472 */ 24473 if (!ll_hdr_mp) { 24474 /* No xmit header. */ 24475 xmit_mp = mp; 24476 24477 /* We have a link-layer header that can fit in our mblk. */ 24478 } else if (mp->b_datap->db_ref == 1 && 24479 ll_hdr_len != 0 && 24480 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24481 /* M_DATA fastpath */ 24482 mp->b_rptr -= ll_hdr_len; 24483 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24484 xmit_mp = mp; 24485 24486 /* Corner case if copyb has failed */ 24487 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24488 UNLOCK_IRE_FP_MP(ire); 24489 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24490 freeb(hdr_mp); 24491 freemsg(mp); 24492 freemsg(mp_orig); 24493 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24494 "ip_wput_frag_end:(%S)", 24495 "discard"); 24496 24497 if (multirt_send) { 24498 ASSERT(ire1); 24499 ASSERT(next_mp); 24500 24501 freemsg(next_mp); 24502 ire_refrele(ire1); 24503 } 24504 if (save_ire != NULL) 24505 IRE_REFRELE(save_ire); 24506 24507 if (first_ire != NULL) 24508 ire_refrele(first_ire); 24509 return; 24510 24511 /* 24512 * Case of res_mp OR the fastpath mp can't fit 24513 * in the mblk 24514 */ 24515 } else { 24516 xmit_mp->b_cont = mp; 24517 24518 /* 24519 * Get priority marking, if any. 24520 * We propagate the CoS marking from the 24521 * original packet that went to QoS processing 24522 * in ip_wput_ire to the newly carved mp. 24523 */ 24524 if (DB_TYPE(xmit_mp) == M_DATA) 24525 xmit_mp->b_band = mp->b_band; 24526 } 24527 UNLOCK_IRE_FP_MP(ire); 24528 24529 q = ire->ire_stq; 24530 out_ill = (ill_t *)q->q_ptr; 24531 24532 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24533 24534 DTRACE_PROBE4(ip4__physical__out__start, 24535 ill_t *, NULL, ill_t *, out_ill, 24536 ipha_t *, ipha, mblk_t *, xmit_mp); 24537 24538 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24539 ipst->ips_ipv4firewall_physical_out, 24540 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24541 24542 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24543 24544 if (xmit_mp != NULL) { 24545 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24546 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24547 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24548 24549 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24550 24551 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24552 UPDATE_MIB(out_ill->ill_ip_mib, 24553 ipIfStatsHCOutOctets, i1); 24554 24555 if (pkt_type != OB_PKT) { 24556 /* 24557 * Update the packet count and MIB stats 24558 * of trailing RTF_MULTIRT ires. 24559 */ 24560 UPDATE_OB_PKT_COUNT(ire); 24561 BUMP_MIB(out_ill->ill_ip_mib, 24562 ipIfStatsOutFragReqds); 24563 } 24564 } 24565 24566 if (multirt_send) { 24567 /* 24568 * We are in a multiple send case; look for 24569 * the next ire and re-enter the loop. 24570 */ 24571 ASSERT(ire1); 24572 ASSERT(next_mp); 24573 /* REFRELE the current ire before looping */ 24574 ire_refrele(ire); 24575 ire = ire1; 24576 ire1 = NULL; 24577 mp = next_mp; 24578 next_mp = NULL; 24579 } 24580 } while (multirt_send); 24581 24582 ASSERT(ire1 == NULL); 24583 24584 /* Restore the original ire; we need it for the trailing frags */ 24585 if (save_ire != NULL) { 24586 /* REFRELE the last iterated ire */ 24587 ire_refrele(ire); 24588 /* save_ire has been REFHOLDed */ 24589 ire = save_ire; 24590 save_ire = NULL; 24591 q = ire->ire_stq; 24592 } 24593 24594 if (pkt_type == OB_PKT) { 24595 UPDATE_OB_PKT_COUNT(ire); 24596 } else { 24597 out_ill = (ill_t *)q->q_ptr; 24598 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24599 UPDATE_IB_PKT_COUNT(ire); 24600 } 24601 24602 /* Advance the offset to the second frag starting point. */ 24603 offset += len; 24604 /* 24605 * Update hdr_len from the copied header - there might be less options 24606 * in the later fragments. 24607 */ 24608 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24609 /* Loop until done. */ 24610 for (;;) { 24611 uint16_t offset_and_flags; 24612 uint16_t ip_len; 24613 24614 if (ip_data_end - offset > len) { 24615 /* 24616 * Carve off the appropriate amount from the original 24617 * datagram. 24618 */ 24619 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24620 mp = NULL; 24621 break; 24622 } 24623 /* 24624 * More frags after this one. Get another copy 24625 * of the header. 24626 */ 24627 if (carve_mp->b_datap->db_ref == 1 && 24628 hdr_mp->b_wptr - hdr_mp->b_rptr < 24629 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24630 /* Inline IP header */ 24631 carve_mp->b_rptr -= hdr_mp->b_wptr - 24632 hdr_mp->b_rptr; 24633 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24634 hdr_mp->b_wptr - hdr_mp->b_rptr); 24635 mp = carve_mp; 24636 } else { 24637 if (!(mp = copyb(hdr_mp))) { 24638 freemsg(carve_mp); 24639 break; 24640 } 24641 /* Get priority marking, if any. */ 24642 mp->b_band = carve_mp->b_band; 24643 mp->b_cont = carve_mp; 24644 } 24645 ipha = (ipha_t *)mp->b_rptr; 24646 offset_and_flags = IPH_MF; 24647 } else { 24648 /* 24649 * Last frag. Consume the header. Set len to 24650 * the length of this last piece. 24651 */ 24652 len = ip_data_end - offset; 24653 24654 /* 24655 * Carve off the appropriate amount from the original 24656 * datagram. 24657 */ 24658 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24659 mp = NULL; 24660 break; 24661 } 24662 if (carve_mp->b_datap->db_ref == 1 && 24663 hdr_mp->b_wptr - hdr_mp->b_rptr < 24664 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24665 /* Inline IP header */ 24666 carve_mp->b_rptr -= hdr_mp->b_wptr - 24667 hdr_mp->b_rptr; 24668 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24669 hdr_mp->b_wptr - hdr_mp->b_rptr); 24670 mp = carve_mp; 24671 freeb(hdr_mp); 24672 hdr_mp = mp; 24673 } else { 24674 mp = hdr_mp; 24675 /* Get priority marking, if any. */ 24676 mp->b_band = carve_mp->b_band; 24677 mp->b_cont = carve_mp; 24678 } 24679 ipha = (ipha_t *)mp->b_rptr; 24680 /* A frag of a frag might have IPH_MF non-zero */ 24681 offset_and_flags = 24682 ntohs(ipha->ipha_fragment_offset_and_flags) & 24683 IPH_MF; 24684 } 24685 offset_and_flags |= (uint16_t)(offset >> 3); 24686 offset_and_flags |= (uint16_t)frag_flag; 24687 /* Store the offset and flags in the IP header. */ 24688 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24689 24690 /* Store the length in the IP header. */ 24691 ip_len = (uint16_t)(len + hdr_len); 24692 ipha->ipha_length = htons(ip_len); 24693 24694 /* 24695 * Set the IP header checksum. Note that mp is just 24696 * the header, so this is easy to pass to ip_csum. 24697 */ 24698 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24699 24700 /* Attach a transmit header, if any, and ship it. */ 24701 if (pkt_type == OB_PKT) { 24702 UPDATE_OB_PKT_COUNT(ire); 24703 } else { 24704 out_ill = (ill_t *)q->q_ptr; 24705 BUMP_MIB(out_ill->ill_ip_mib, 24706 ipIfStatsHCOutForwDatagrams); 24707 UPDATE_IB_PKT_COUNT(ire); 24708 } 24709 24710 if (ire->ire_flags & RTF_MULTIRT) { 24711 irb = ire->ire_bucket; 24712 ASSERT(irb != NULL); 24713 24714 multirt_send = B_TRUE; 24715 24716 /* 24717 * Save the original ire; we will need to restore it 24718 * for the tailing frags. 24719 */ 24720 save_ire = ire; 24721 IRE_REFHOLD(save_ire); 24722 } 24723 /* 24724 * Emission loop for this fragment, similar 24725 * to what is done for the first fragment. 24726 */ 24727 do { 24728 if (multirt_send) { 24729 /* 24730 * We are in a multiple send case, need to get 24731 * the next ire and make a copy of the packet. 24732 */ 24733 ASSERT(irb != NULL); 24734 IRB_REFHOLD(irb); 24735 for (ire1 = ire->ire_next; 24736 ire1 != NULL; 24737 ire1 = ire1->ire_next) { 24738 if (!(ire1->ire_flags & RTF_MULTIRT)) 24739 continue; 24740 if (ire1->ire_addr != ire->ire_addr) 24741 continue; 24742 if (ire1->ire_marks & 24743 (IRE_MARK_CONDEMNED | 24744 IRE_MARK_TESTHIDDEN)) 24745 continue; 24746 /* 24747 * Ensure we do not exceed the MTU 24748 * of the next route. 24749 */ 24750 if (ire1->ire_max_frag < max_frag) { 24751 ip_multirt_bad_mtu(ire1, 24752 max_frag); 24753 continue; 24754 } 24755 24756 /* Got one. */ 24757 IRE_REFHOLD(ire1); 24758 break; 24759 } 24760 IRB_REFRELE(irb); 24761 24762 if (ire1 != NULL) { 24763 next_mp = copyb(mp); 24764 if ((next_mp == NULL) || 24765 ((mp->b_cont != NULL) && 24766 ((next_mp->b_cont = 24767 dupmsg(mp->b_cont)) == NULL))) { 24768 freemsg(next_mp); 24769 next_mp = NULL; 24770 ire_refrele(ire1); 24771 ire1 = NULL; 24772 } 24773 } 24774 24775 /* Last multiroute ire; don't loop anymore. */ 24776 if (ire1 == NULL) { 24777 multirt_send = B_FALSE; 24778 } 24779 } 24780 24781 /* Update transmit header */ 24782 ll_hdr_len = 0; 24783 LOCK_IRE_FP_MP(ire); 24784 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24785 if (ll_hdr_mp != NULL) { 24786 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24787 ll_hdr_len = MBLKL(ll_hdr_mp); 24788 } else { 24789 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24790 } 24791 24792 if (!ll_hdr_mp) { 24793 xmit_mp = mp; 24794 24795 /* 24796 * We have link-layer header that can fit in 24797 * our mblk. 24798 */ 24799 } else if (mp->b_datap->db_ref == 1 && 24800 ll_hdr_len != 0 && 24801 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24802 /* M_DATA fastpath */ 24803 mp->b_rptr -= ll_hdr_len; 24804 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24805 ll_hdr_len); 24806 xmit_mp = mp; 24807 24808 /* 24809 * Case of res_mp OR the fastpath mp can't fit 24810 * in the mblk 24811 */ 24812 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24813 xmit_mp->b_cont = mp; 24814 /* Get priority marking, if any. */ 24815 if (DB_TYPE(xmit_mp) == M_DATA) 24816 xmit_mp->b_band = mp->b_band; 24817 24818 /* Corner case if copyb failed */ 24819 } else { 24820 /* 24821 * Exit both the replication and 24822 * fragmentation loops. 24823 */ 24824 UNLOCK_IRE_FP_MP(ire); 24825 goto drop_pkt; 24826 } 24827 UNLOCK_IRE_FP_MP(ire); 24828 24829 mp1 = mp; 24830 out_ill = (ill_t *)q->q_ptr; 24831 24832 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24833 24834 DTRACE_PROBE4(ip4__physical__out__start, 24835 ill_t *, NULL, ill_t *, out_ill, 24836 ipha_t *, ipha, mblk_t *, xmit_mp); 24837 24838 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24839 ipst->ips_ipv4firewall_physical_out, 24840 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24841 24842 DTRACE_PROBE1(ip4__physical__out__end, 24843 mblk_t *, xmit_mp); 24844 24845 if (mp != mp1 && hdr_mp == mp1) 24846 hdr_mp = mp; 24847 if (mp != mp1 && mp_orig == mp1) 24848 mp_orig = mp; 24849 24850 if (xmit_mp != NULL) { 24851 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24852 NULL, void_ip_t *, ipha, 24853 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24854 ipha, ip6_t *, NULL, int, 0); 24855 24856 ILL_SEND_TX(out_ill, ire, connp, 24857 xmit_mp, 0, connp); 24858 24859 BUMP_MIB(out_ill->ill_ip_mib, 24860 ipIfStatsHCOutTransmits); 24861 UPDATE_MIB(out_ill->ill_ip_mib, 24862 ipIfStatsHCOutOctets, ip_len); 24863 24864 if (pkt_type != OB_PKT) { 24865 /* 24866 * Update the packet count of trailing 24867 * RTF_MULTIRT ires. 24868 */ 24869 UPDATE_OB_PKT_COUNT(ire); 24870 } 24871 } 24872 24873 /* All done if we just consumed the hdr_mp. */ 24874 if (mp == hdr_mp) { 24875 last_frag = B_TRUE; 24876 BUMP_MIB(out_ill->ill_ip_mib, 24877 ipIfStatsOutFragOKs); 24878 } 24879 24880 if (multirt_send) { 24881 /* 24882 * We are in a multiple send case; look for 24883 * the next ire and re-enter the loop. 24884 */ 24885 ASSERT(ire1); 24886 ASSERT(next_mp); 24887 /* REFRELE the current ire before looping */ 24888 ire_refrele(ire); 24889 ire = ire1; 24890 ire1 = NULL; 24891 q = ire->ire_stq; 24892 mp = next_mp; 24893 next_mp = NULL; 24894 } 24895 } while (multirt_send); 24896 /* 24897 * Restore the original ire; we need it for the 24898 * trailing frags 24899 */ 24900 if (save_ire != NULL) { 24901 ASSERT(ire1 == NULL); 24902 /* REFRELE the last iterated ire */ 24903 ire_refrele(ire); 24904 /* save_ire has been REFHOLDed */ 24905 ire = save_ire; 24906 q = ire->ire_stq; 24907 save_ire = NULL; 24908 } 24909 24910 if (last_frag) { 24911 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24912 "ip_wput_frag_end:(%S)", 24913 "consumed hdr_mp"); 24914 24915 if (first_ire != NULL) 24916 ire_refrele(first_ire); 24917 return; 24918 } 24919 /* Otherwise, advance and loop. */ 24920 offset += len; 24921 } 24922 24923 drop_pkt: 24924 /* Clean up following allocation failure. */ 24925 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24926 freemsg(mp); 24927 if (mp != hdr_mp) 24928 freeb(hdr_mp); 24929 if (mp != mp_orig) 24930 freemsg(mp_orig); 24931 24932 if (save_ire != NULL) 24933 IRE_REFRELE(save_ire); 24934 if (first_ire != NULL) 24935 ire_refrele(first_ire); 24936 24937 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24938 "ip_wput_frag_end:(%S)", 24939 "end--alloc failure"); 24940 } 24941 24942 /* 24943 * Copy the header plus those options which have the copy bit set 24944 * src is the template to make sure we preserve the cred for TX purposes. 24945 */ 24946 static mblk_t * 24947 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24948 mblk_t *src) 24949 { 24950 mblk_t *mp; 24951 uchar_t *up; 24952 24953 /* 24954 * Quick check if we need to look for options without the copy bit 24955 * set 24956 */ 24957 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24958 if (!mp) 24959 return (mp); 24960 mp->b_rptr += ipst->ips_ip_wroff_extra; 24961 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24962 bcopy(rptr, mp->b_rptr, hdr_len); 24963 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24964 return (mp); 24965 } 24966 up = mp->b_rptr; 24967 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24968 up += IP_SIMPLE_HDR_LENGTH; 24969 rptr += IP_SIMPLE_HDR_LENGTH; 24970 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24971 while (hdr_len > 0) { 24972 uint32_t optval; 24973 uint32_t optlen; 24974 24975 optval = *rptr; 24976 if (optval == IPOPT_EOL) 24977 break; 24978 if (optval == IPOPT_NOP) 24979 optlen = 1; 24980 else 24981 optlen = rptr[1]; 24982 if (optval & IPOPT_COPY) { 24983 bcopy(rptr, up, optlen); 24984 up += optlen; 24985 } 24986 rptr += optlen; 24987 hdr_len -= optlen; 24988 } 24989 /* 24990 * Make sure that we drop an even number of words by filling 24991 * with EOL to the next word boundary. 24992 */ 24993 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24994 hdr_len & 0x3; hdr_len++) 24995 *up++ = IPOPT_EOL; 24996 mp->b_wptr = up; 24997 /* Update header length */ 24998 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24999 return (mp); 25000 } 25001 25002 /* 25003 * Delivery to local recipients including fanout to multiple recipients. 25004 * Does not do checksumming of UDP/TCP. 25005 * Note: q should be the read side queue for either the ill or conn. 25006 * Note: rq should be the read side q for the lower (ill) stream. 25007 * We don't send packets to IPPF processing, thus the last argument 25008 * to all the fanout calls are B_FALSE. 25009 */ 25010 void 25011 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25012 int fanout_flags, zoneid_t zoneid) 25013 { 25014 uint32_t protocol; 25015 mblk_t *first_mp; 25016 boolean_t mctl_present; 25017 int ire_type; 25018 #define rptr ((uchar_t *)ipha) 25019 ip_stack_t *ipst = ill->ill_ipst; 25020 25021 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25022 "ip_wput_local_start: q %p", q); 25023 25024 if (ire != NULL) { 25025 ire_type = ire->ire_type; 25026 } else { 25027 /* 25028 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25029 * packet is not multicast, we can't tell the ire type. 25030 */ 25031 ASSERT(CLASSD(ipha->ipha_dst)); 25032 ire_type = IRE_BROADCAST; 25033 } 25034 25035 first_mp = mp; 25036 if (first_mp->b_datap->db_type == M_CTL) { 25037 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25038 if (!io->ipsec_out_secure) { 25039 /* 25040 * This ipsec_out_t was allocated in ip_wput 25041 * for multicast packets to store the ill_index. 25042 * As this is being delivered locally, we don't 25043 * need this anymore. 25044 */ 25045 mp = first_mp->b_cont; 25046 freeb(first_mp); 25047 first_mp = mp; 25048 mctl_present = B_FALSE; 25049 } else { 25050 /* 25051 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25052 * security properties for the looped-back packet. 25053 */ 25054 mctl_present = B_TRUE; 25055 mp = first_mp->b_cont; 25056 ASSERT(mp != NULL); 25057 ipsec_out_to_in(first_mp); 25058 } 25059 } else { 25060 mctl_present = B_FALSE; 25061 } 25062 25063 DTRACE_PROBE4(ip4__loopback__in__start, 25064 ill_t *, ill, ill_t *, NULL, 25065 ipha_t *, ipha, mblk_t *, first_mp); 25066 25067 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25068 ipst->ips_ipv4firewall_loopback_in, 25069 ill, NULL, ipha, first_mp, mp, 0, ipst); 25070 25071 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25072 25073 if (first_mp == NULL) 25074 return; 25075 25076 if (ipst->ips_ipobs_enabled) { 25077 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25078 zoneid_t stackzoneid = netstackid_to_zoneid( 25079 ipst->ips_netstack->netstack_stackid); 25080 25081 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25082 /* 25083 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25084 * address. Restrict the lookup below to the destination zone. 25085 */ 25086 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25087 lookup_zoneid = zoneid; 25088 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25089 lookup_zoneid); 25090 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25091 IPV4_VERSION, 0, ipst); 25092 } 25093 25094 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25095 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25096 int, 1); 25097 25098 ipst->ips_loopback_packets++; 25099 25100 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25101 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25102 if (!IS_SIMPLE_IPH(ipha)) { 25103 ip_wput_local_options(ipha, ipst); 25104 } 25105 25106 protocol = ipha->ipha_protocol; 25107 switch (protocol) { 25108 case IPPROTO_ICMP: { 25109 ire_t *ire_zone; 25110 ilm_t *ilm; 25111 mblk_t *mp1; 25112 zoneid_t last_zoneid; 25113 ilm_walker_t ilw; 25114 25115 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25116 ASSERT(ire_type == IRE_BROADCAST); 25117 /* 25118 * In the multicast case, applications may have joined 25119 * the group from different zones, so we need to deliver 25120 * the packet to each of them. Loop through the 25121 * multicast memberships structures (ilm) on the receive 25122 * ill and send a copy of the packet up each matching 25123 * one. However, we don't do this for multicasts sent on 25124 * the loopback interface (PHYI_LOOPBACK flag set) as 25125 * they must stay in the sender's zone. 25126 * 25127 * ilm_add_v6() ensures that ilms in the same zone are 25128 * contiguous in the ill_ilm list. We use this property 25129 * to avoid sending duplicates needed when two 25130 * applications in the same zone join the same group on 25131 * different logical interfaces: we ignore the ilm if 25132 * it's zoneid is the same as the last matching one. 25133 * In addition, the sending of the packet for 25134 * ire_zoneid is delayed until all of the other ilms 25135 * have been exhausted. 25136 */ 25137 last_zoneid = -1; 25138 ilm = ilm_walker_start(&ilw, ill); 25139 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25140 if (ipha->ipha_dst != ilm->ilm_addr || 25141 ilm->ilm_zoneid == last_zoneid || 25142 ilm->ilm_zoneid == zoneid || 25143 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25144 continue; 25145 mp1 = ip_copymsg(first_mp); 25146 if (mp1 == NULL) 25147 continue; 25148 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25149 0, 0, mctl_present, B_FALSE, ill, 25150 ilm->ilm_zoneid); 25151 last_zoneid = ilm->ilm_zoneid; 25152 } 25153 ilm_walker_finish(&ilw); 25154 /* 25155 * Loopback case: the sending endpoint has 25156 * IP_MULTICAST_LOOP disabled, therefore we don't 25157 * dispatch the multicast packet to the sending zone. 25158 */ 25159 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25160 freemsg(first_mp); 25161 return; 25162 } 25163 } else if (ire_type == IRE_BROADCAST) { 25164 /* 25165 * In the broadcast case, there may be many zones 25166 * which need a copy of the packet delivered to them. 25167 * There is one IRE_BROADCAST per broadcast address 25168 * and per zone; we walk those using a helper function. 25169 * In addition, the sending of the packet for zoneid is 25170 * delayed until all of the other ires have been 25171 * processed. 25172 */ 25173 IRB_REFHOLD(ire->ire_bucket); 25174 ire_zone = NULL; 25175 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25176 ire)) != NULL) { 25177 mp1 = ip_copymsg(first_mp); 25178 if (mp1 == NULL) 25179 continue; 25180 25181 UPDATE_IB_PKT_COUNT(ire_zone); 25182 ire_zone->ire_last_used_time = lbolt; 25183 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25184 mctl_present, B_FALSE, ill, 25185 ire_zone->ire_zoneid); 25186 } 25187 IRB_REFRELE(ire->ire_bucket); 25188 } 25189 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25190 0, mctl_present, B_FALSE, ill, zoneid); 25191 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25192 "ip_wput_local_end: q %p (%S)", 25193 q, "icmp"); 25194 return; 25195 } 25196 case IPPROTO_IGMP: 25197 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25198 /* Bad packet - discarded by igmp_input */ 25199 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25200 "ip_wput_local_end: q %p (%S)", 25201 q, "igmp_input--bad packet"); 25202 if (mctl_present) 25203 freeb(first_mp); 25204 return; 25205 } 25206 /* 25207 * igmp_input() may have returned the pulled up message. 25208 * So first_mp and ipha need to be reinitialized. 25209 */ 25210 ipha = (ipha_t *)mp->b_rptr; 25211 if (mctl_present) 25212 first_mp->b_cont = mp; 25213 else 25214 first_mp = mp; 25215 /* deliver to local raw users */ 25216 break; 25217 case IPPROTO_ENCAP: 25218 /* 25219 * This case is covered by either ip_fanout_proto, or by 25220 * the above security processing for self-tunneled packets. 25221 */ 25222 break; 25223 case IPPROTO_UDP: { 25224 uint16_t *up; 25225 uint32_t ports; 25226 25227 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25228 UDP_PORTS_OFFSET); 25229 /* Force a 'valid' checksum. */ 25230 up[3] = 0; 25231 25232 ports = *(uint32_t *)up; 25233 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25234 (ire_type == IRE_BROADCAST), 25235 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25236 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25237 ill, zoneid); 25238 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25239 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25240 return; 25241 } 25242 case IPPROTO_TCP: { 25243 25244 /* 25245 * For TCP, discard broadcast packets. 25246 */ 25247 if ((ushort_t)ire_type == IRE_BROADCAST) { 25248 freemsg(first_mp); 25249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25250 ip2dbg(("ip_wput_local: discard broadcast\n")); 25251 return; 25252 } 25253 25254 if (mp->b_datap->db_type == M_DATA) { 25255 /* 25256 * M_DATA mblk, so init mblk (chain) for no struio(). 25257 */ 25258 mblk_t *mp1 = mp; 25259 25260 do { 25261 mp1->b_datap->db_struioflag = 0; 25262 } while ((mp1 = mp1->b_cont) != NULL); 25263 } 25264 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25265 <= mp->b_wptr); 25266 ip_fanout_tcp(q, first_mp, ill, ipha, 25267 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25268 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25269 mctl_present, B_FALSE, zoneid); 25270 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25271 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25272 return; 25273 } 25274 case IPPROTO_SCTP: 25275 { 25276 uint32_t ports; 25277 25278 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25279 ip_fanout_sctp(first_mp, ill, ipha, ports, 25280 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25281 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25282 return; 25283 } 25284 25285 default: 25286 break; 25287 } 25288 /* 25289 * Find a client for some other protocol. We give 25290 * copies to multiple clients, if more than one is 25291 * bound. 25292 */ 25293 ip_fanout_proto(q, first_mp, ill, ipha, 25294 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25295 mctl_present, B_FALSE, ill, zoneid); 25296 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25297 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25298 #undef rptr 25299 } 25300 25301 /* 25302 * Update any source route, record route, or timestamp options. 25303 * Check that we are at end of strict source route. 25304 * The options have been sanity checked by ip_wput_options(). 25305 */ 25306 static void 25307 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25308 { 25309 ipoptp_t opts; 25310 uchar_t *opt; 25311 uint8_t optval; 25312 uint8_t optlen; 25313 ipaddr_t dst; 25314 uint32_t ts; 25315 ire_t *ire; 25316 timestruc_t now; 25317 25318 ip2dbg(("ip_wput_local_options\n")); 25319 for (optval = ipoptp_first(&opts, ipha); 25320 optval != IPOPT_EOL; 25321 optval = ipoptp_next(&opts)) { 25322 opt = opts.ipoptp_cur; 25323 optlen = opts.ipoptp_len; 25324 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25325 switch (optval) { 25326 uint32_t off; 25327 case IPOPT_SSRR: 25328 case IPOPT_LSRR: 25329 off = opt[IPOPT_OFFSET]; 25330 off--; 25331 if (optlen < IP_ADDR_LEN || 25332 off > optlen - IP_ADDR_LEN) { 25333 /* End of source route */ 25334 break; 25335 } 25336 /* 25337 * This will only happen if two consecutive entries 25338 * in the source route contains our address or if 25339 * it is a packet with a loose source route which 25340 * reaches us before consuming the whole source route 25341 */ 25342 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25343 if (optval == IPOPT_SSRR) { 25344 return; 25345 } 25346 /* 25347 * Hack: instead of dropping the packet truncate the 25348 * source route to what has been used by filling the 25349 * rest with IPOPT_NOP. 25350 */ 25351 opt[IPOPT_OLEN] = (uint8_t)off; 25352 while (off < optlen) { 25353 opt[off++] = IPOPT_NOP; 25354 } 25355 break; 25356 case IPOPT_RR: 25357 off = opt[IPOPT_OFFSET]; 25358 off--; 25359 if (optlen < IP_ADDR_LEN || 25360 off > optlen - IP_ADDR_LEN) { 25361 /* No more room - ignore */ 25362 ip1dbg(( 25363 "ip_wput_forward_options: end of RR\n")); 25364 break; 25365 } 25366 dst = htonl(INADDR_LOOPBACK); 25367 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25368 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25369 break; 25370 case IPOPT_TS: 25371 /* Insert timestamp if there is romm */ 25372 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25373 case IPOPT_TS_TSONLY: 25374 off = IPOPT_TS_TIMELEN; 25375 break; 25376 case IPOPT_TS_PRESPEC: 25377 case IPOPT_TS_PRESPEC_RFC791: 25378 /* Verify that the address matched */ 25379 off = opt[IPOPT_OFFSET] - 1; 25380 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25381 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25382 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25383 ipst); 25384 if (ire == NULL) { 25385 /* Not for us */ 25386 break; 25387 } 25388 ire_refrele(ire); 25389 /* FALLTHRU */ 25390 case IPOPT_TS_TSANDADDR: 25391 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25392 break; 25393 default: 25394 /* 25395 * ip_*put_options should have already 25396 * dropped this packet. 25397 */ 25398 cmn_err(CE_PANIC, "ip_wput_local_options: " 25399 "unknown IT - bug in ip_wput_options?\n"); 25400 return; /* Keep "lint" happy */ 25401 } 25402 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25403 /* Increase overflow counter */ 25404 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25405 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25406 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25407 (off << 4); 25408 break; 25409 } 25410 off = opt[IPOPT_OFFSET] - 1; 25411 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25412 case IPOPT_TS_PRESPEC: 25413 case IPOPT_TS_PRESPEC_RFC791: 25414 case IPOPT_TS_TSANDADDR: 25415 dst = htonl(INADDR_LOOPBACK); 25416 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25417 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25418 /* FALLTHRU */ 25419 case IPOPT_TS_TSONLY: 25420 off = opt[IPOPT_OFFSET] - 1; 25421 /* Compute # of milliseconds since midnight */ 25422 gethrestime(&now); 25423 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25424 now.tv_nsec / (NANOSEC / MILLISEC); 25425 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25426 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25427 break; 25428 } 25429 break; 25430 } 25431 } 25432 } 25433 25434 /* 25435 * Send out a multicast packet on interface ipif. 25436 * The sender does not have an conn. 25437 * Caller verifies that this isn't a PHYI_LOOPBACK. 25438 */ 25439 void 25440 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25441 { 25442 ipha_t *ipha; 25443 ire_t *ire; 25444 ipaddr_t dst; 25445 mblk_t *first_mp; 25446 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25447 25448 /* igmp_sendpkt always allocates a ipsec_out_t */ 25449 ASSERT(mp->b_datap->db_type == M_CTL); 25450 ASSERT(!ipif->ipif_isv6); 25451 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25452 25453 first_mp = mp; 25454 mp = first_mp->b_cont; 25455 ASSERT(mp->b_datap->db_type == M_DATA); 25456 ipha = (ipha_t *)mp->b_rptr; 25457 25458 /* 25459 * Find an IRE which matches the destination and the outgoing 25460 * queue (i.e. the outgoing interface.) 25461 */ 25462 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25463 dst = ipif->ipif_pp_dst_addr; 25464 else 25465 dst = ipha->ipha_dst; 25466 /* 25467 * The source address has already been initialized by the 25468 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25469 * be sufficient rather than MATCH_IRE_IPIF. 25470 * 25471 * This function is used for sending IGMP packets. For IPMP, 25472 * we sidestep IGMP snooping issues by sending all multicast 25473 * traffic on a single interface in the IPMP group. 25474 */ 25475 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25476 MATCH_IRE_ILL, ipst); 25477 if (!ire) { 25478 /* 25479 * Mark this packet to make it be delivered to 25480 * ip_wput_ire after the new ire has been 25481 * created. 25482 */ 25483 mp->b_prev = NULL; 25484 mp->b_next = NULL; 25485 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25486 zoneid, &zero_info); 25487 return; 25488 } 25489 25490 /* 25491 * Honor the RTF_SETSRC flag; this is the only case 25492 * where we force this addr whatever the current src addr is, 25493 * because this address is set by igmp_sendpkt(), and 25494 * cannot be specified by any user. 25495 */ 25496 if (ire->ire_flags & RTF_SETSRC) { 25497 ipha->ipha_src = ire->ire_src_addr; 25498 } 25499 25500 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25501 } 25502 25503 /* 25504 * NOTE : This function does not ire_refrele the ire argument passed in. 25505 * 25506 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25507 * failure. The nce_fp_mp can vanish any time in the case of 25508 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25509 * the ire_lock to access the nce_fp_mp in this case. 25510 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25511 * prepending a fastpath message IPQoS processing must precede it, we also set 25512 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25513 * (IPQoS might have set the b_band for CoS marking). 25514 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25515 * must follow it so that IPQoS can mark the dl_priority field for CoS 25516 * marking, if needed. 25517 */ 25518 static mblk_t * 25519 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25520 uint32_t ill_index, ipha_t **iphap) 25521 { 25522 uint_t hlen; 25523 ipha_t *ipha; 25524 mblk_t *mp1; 25525 boolean_t qos_done = B_FALSE; 25526 uchar_t *ll_hdr; 25527 ip_stack_t *ipst = ire->ire_ipst; 25528 25529 #define rptr ((uchar_t *)ipha) 25530 25531 ipha = (ipha_t *)mp->b_rptr; 25532 hlen = 0; 25533 LOCK_IRE_FP_MP(ire); 25534 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25535 ASSERT(DB_TYPE(mp1) == M_DATA); 25536 /* Initiate IPPF processing */ 25537 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25538 UNLOCK_IRE_FP_MP(ire); 25539 ip_process(proc, &mp, ill_index); 25540 if (mp == NULL) 25541 return (NULL); 25542 25543 ipha = (ipha_t *)mp->b_rptr; 25544 LOCK_IRE_FP_MP(ire); 25545 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25546 qos_done = B_TRUE; 25547 goto no_fp_mp; 25548 } 25549 ASSERT(DB_TYPE(mp1) == M_DATA); 25550 } 25551 hlen = MBLKL(mp1); 25552 /* 25553 * Check if we have enough room to prepend fastpath 25554 * header 25555 */ 25556 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25557 ll_hdr = rptr - hlen; 25558 bcopy(mp1->b_rptr, ll_hdr, hlen); 25559 /* 25560 * Set the b_rptr to the start of the link layer 25561 * header 25562 */ 25563 mp->b_rptr = ll_hdr; 25564 mp1 = mp; 25565 } else { 25566 mp1 = copyb(mp1); 25567 if (mp1 == NULL) 25568 goto unlock_err; 25569 mp1->b_band = mp->b_band; 25570 mp1->b_cont = mp; 25571 /* 25572 * XXX disable ICK_VALID and compute checksum 25573 * here; can happen if nce_fp_mp changes and 25574 * it can't be copied now due to insufficient 25575 * space. (unlikely, fp mp can change, but it 25576 * does not increase in length) 25577 */ 25578 } 25579 UNLOCK_IRE_FP_MP(ire); 25580 } else { 25581 no_fp_mp: 25582 mp1 = copyb(ire->ire_nce->nce_res_mp); 25583 if (mp1 == NULL) { 25584 unlock_err: 25585 UNLOCK_IRE_FP_MP(ire); 25586 freemsg(mp); 25587 return (NULL); 25588 } 25589 UNLOCK_IRE_FP_MP(ire); 25590 mp1->b_cont = mp; 25591 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25592 ip_process(proc, &mp1, ill_index); 25593 if (mp1 == NULL) 25594 return (NULL); 25595 25596 if (mp1->b_cont == NULL) 25597 ipha = NULL; 25598 else 25599 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25600 } 25601 } 25602 25603 *iphap = ipha; 25604 return (mp1); 25605 #undef rptr 25606 } 25607 25608 /* 25609 * Finish the outbound IPsec processing for an IPv6 packet. This function 25610 * is called from ipsec_out_process() if the IPsec packet was processed 25611 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25612 * asynchronously. 25613 */ 25614 void 25615 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25616 ire_t *ire_arg) 25617 { 25618 in6_addr_t *v6dstp; 25619 ire_t *ire; 25620 mblk_t *mp; 25621 ip6_t *ip6h1; 25622 uint_t ill_index; 25623 ipsec_out_t *io; 25624 boolean_t hwaccel; 25625 uint32_t flags = IP6_NO_IPPOLICY; 25626 int match_flags; 25627 zoneid_t zoneid; 25628 boolean_t ill_need_rele = B_FALSE; 25629 boolean_t ire_need_rele = B_FALSE; 25630 ip_stack_t *ipst; 25631 25632 mp = ipsec_mp->b_cont; 25633 ip6h1 = (ip6_t *)mp->b_rptr; 25634 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25635 ASSERT(io->ipsec_out_ns != NULL); 25636 ipst = io->ipsec_out_ns->netstack_ip; 25637 ill_index = io->ipsec_out_ill_index; 25638 if (io->ipsec_out_reachable) { 25639 flags |= IPV6_REACHABILITY_CONFIRMATION; 25640 } 25641 hwaccel = io->ipsec_out_accelerated; 25642 zoneid = io->ipsec_out_zoneid; 25643 ASSERT(zoneid != ALL_ZONES); 25644 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25645 /* Multicast addresses should have non-zero ill_index. */ 25646 v6dstp = &ip6h->ip6_dst; 25647 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25648 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25649 25650 if (ill == NULL && ill_index != 0) { 25651 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25652 /* Failure case frees things for us. */ 25653 if (ill == NULL) 25654 return; 25655 25656 ill_need_rele = B_TRUE; 25657 } 25658 ASSERT(mp != NULL); 25659 25660 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25661 boolean_t unspec_src; 25662 ipif_t *ipif; 25663 25664 /* 25665 * Use the ill_index to get the right ill. 25666 */ 25667 unspec_src = io->ipsec_out_unspec_src; 25668 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25669 if (ipif == NULL) { 25670 if (ill_need_rele) 25671 ill_refrele(ill); 25672 freemsg(ipsec_mp); 25673 return; 25674 } 25675 25676 if (ire_arg != NULL) { 25677 ire = ire_arg; 25678 } else { 25679 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25680 zoneid, msg_getlabel(mp), match_flags, ipst); 25681 ire_need_rele = B_TRUE; 25682 } 25683 if (ire != NULL) { 25684 ipif_refrele(ipif); 25685 /* 25686 * XXX Do the multicast forwarding now, as the IPsec 25687 * processing has been done. 25688 */ 25689 goto send; 25690 } 25691 25692 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25693 mp->b_prev = NULL; 25694 mp->b_next = NULL; 25695 25696 /* 25697 * If the IPsec packet was processed asynchronously, 25698 * drop it now. 25699 */ 25700 if (q == NULL) { 25701 if (ill_need_rele) 25702 ill_refrele(ill); 25703 freemsg(ipsec_mp); 25704 return; 25705 } 25706 25707 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25708 unspec_src, zoneid); 25709 ipif_refrele(ipif); 25710 } else { 25711 if (ire_arg != NULL) { 25712 ire = ire_arg; 25713 } else { 25714 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25715 ire_need_rele = B_TRUE; 25716 } 25717 if (ire != NULL) 25718 goto send; 25719 /* 25720 * ire disappeared underneath. 25721 * 25722 * What we need to do here is the ip_newroute 25723 * logic to get the ire without doing the IPsec 25724 * processing. Follow the same old path. But this 25725 * time, ip_wput or ire_add_then_send will call us 25726 * directly as all the IPsec operations are done. 25727 */ 25728 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25729 mp->b_prev = NULL; 25730 mp->b_next = NULL; 25731 25732 /* 25733 * If the IPsec packet was processed asynchronously, 25734 * drop it now. 25735 */ 25736 if (q == NULL) { 25737 if (ill_need_rele) 25738 ill_refrele(ill); 25739 freemsg(ipsec_mp); 25740 return; 25741 } 25742 25743 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25744 zoneid, ipst); 25745 } 25746 if (ill != NULL && ill_need_rele) 25747 ill_refrele(ill); 25748 return; 25749 send: 25750 if (ill != NULL && ill_need_rele) 25751 ill_refrele(ill); 25752 25753 /* Local delivery */ 25754 if (ire->ire_stq == NULL) { 25755 ill_t *out_ill; 25756 ASSERT(q != NULL); 25757 25758 /* PFHooks: LOOPBACK_OUT */ 25759 out_ill = ire_to_ill(ire); 25760 25761 /* 25762 * DTrace this as ip:::send. A blocked packet will fire the 25763 * send probe, but not the receive probe. 25764 */ 25765 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25766 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25767 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25768 25769 DTRACE_PROBE4(ip6__loopback__out__start, 25770 ill_t *, NULL, ill_t *, out_ill, 25771 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25772 25773 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25774 ipst->ips_ipv6firewall_loopback_out, 25775 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25776 25777 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25778 25779 if (ipsec_mp != NULL) { 25780 ip_wput_local_v6(RD(q), out_ill, 25781 ip6h, ipsec_mp, ire, 0, zoneid); 25782 } 25783 if (ire_need_rele) 25784 ire_refrele(ire); 25785 return; 25786 } 25787 /* 25788 * Everything is done. Send it out on the wire. 25789 * We force the insertion of a fragment header using the 25790 * IPH_FRAG_HDR flag in two cases: 25791 * - after reception of an ICMPv6 "packet too big" message 25792 * with a MTU < 1280 (cf. RFC 2460 section 5) 25793 * - for multirouted IPv6 packets, so that the receiver can 25794 * discard duplicates according to their fragment identifier 25795 */ 25796 /* XXX fix flow control problems. */ 25797 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25798 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25799 if (hwaccel) { 25800 /* 25801 * hardware acceleration does not handle these 25802 * "slow path" cases. 25803 */ 25804 /* IPsec KSTATS: should bump bean counter here. */ 25805 if (ire_need_rele) 25806 ire_refrele(ire); 25807 freemsg(ipsec_mp); 25808 return; 25809 } 25810 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25811 (mp->b_cont ? msgdsize(mp) : 25812 mp->b_wptr - (uchar_t *)ip6h)) { 25813 /* IPsec KSTATS: should bump bean counter here. */ 25814 ip0dbg(("Packet length mismatch: %d, %ld\n", 25815 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25816 msgdsize(mp))); 25817 if (ire_need_rele) 25818 ire_refrele(ire); 25819 freemsg(ipsec_mp); 25820 return; 25821 } 25822 ASSERT(mp->b_prev == NULL); 25823 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25824 ntohs(ip6h->ip6_plen) + 25825 IPV6_HDR_LEN, ire->ire_max_frag)); 25826 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25827 ire->ire_max_frag); 25828 } else { 25829 UPDATE_OB_PKT_COUNT(ire); 25830 ire->ire_last_used_time = lbolt; 25831 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25832 } 25833 if (ire_need_rele) 25834 ire_refrele(ire); 25835 freeb(ipsec_mp); 25836 } 25837 25838 void 25839 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25840 { 25841 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25842 da_ipsec_t *hada; /* data attributes */ 25843 ill_t *ill = (ill_t *)q->q_ptr; 25844 25845 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25846 25847 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25848 /* IPsec KSTATS: Bump lose counter here! */ 25849 freemsg(mp); 25850 return; 25851 } 25852 25853 /* 25854 * It's an IPsec packet that must be 25855 * accelerated by the Provider, and the 25856 * outbound ill is IPsec acceleration capable. 25857 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25858 * to the ill. 25859 * IPsec KSTATS: should bump packet counter here. 25860 */ 25861 25862 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25863 if (hada_mp == NULL) { 25864 /* IPsec KSTATS: should bump packet counter here. */ 25865 freemsg(mp); 25866 return; 25867 } 25868 25869 hada_mp->b_datap->db_type = M_CTL; 25870 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25871 hada_mp->b_cont = mp; 25872 25873 hada = (da_ipsec_t *)hada_mp->b_rptr; 25874 bzero(hada, sizeof (da_ipsec_t)); 25875 hada->da_type = IPHADA_M_CTL; 25876 25877 putnext(q, hada_mp); 25878 } 25879 25880 /* 25881 * Finish the outbound IPsec processing. This function is called from 25882 * ipsec_out_process() if the IPsec packet was processed 25883 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25884 * asynchronously. 25885 */ 25886 void 25887 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25888 ire_t *ire_arg) 25889 { 25890 uint32_t v_hlen_tos_len; 25891 ipaddr_t dst; 25892 ipif_t *ipif = NULL; 25893 ire_t *ire; 25894 ire_t *ire1 = NULL; 25895 mblk_t *next_mp = NULL; 25896 uint32_t max_frag; 25897 boolean_t multirt_send = B_FALSE; 25898 mblk_t *mp; 25899 ipha_t *ipha1; 25900 uint_t ill_index; 25901 ipsec_out_t *io; 25902 int match_flags; 25903 irb_t *irb = NULL; 25904 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25905 zoneid_t zoneid; 25906 ipxmit_state_t pktxmit_state; 25907 ip_stack_t *ipst; 25908 25909 #ifdef _BIG_ENDIAN 25910 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25911 #else 25912 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25913 #endif 25914 25915 mp = ipsec_mp->b_cont; 25916 ipha1 = (ipha_t *)mp->b_rptr; 25917 ASSERT(mp != NULL); 25918 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25919 dst = ipha->ipha_dst; 25920 25921 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25922 ill_index = io->ipsec_out_ill_index; 25923 zoneid = io->ipsec_out_zoneid; 25924 ASSERT(zoneid != ALL_ZONES); 25925 ipst = io->ipsec_out_ns->netstack_ip; 25926 ASSERT(io->ipsec_out_ns != NULL); 25927 25928 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25929 if (ill == NULL && ill_index != 0) { 25930 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25931 /* Failure case frees things for us. */ 25932 if (ill == NULL) 25933 return; 25934 25935 ill_need_rele = B_TRUE; 25936 } 25937 25938 if (CLASSD(dst)) { 25939 boolean_t conn_dontroute; 25940 /* 25941 * Use the ill_index to get the right ipif. 25942 */ 25943 conn_dontroute = io->ipsec_out_dontroute; 25944 if (ill_index == 0) 25945 ipif = ipif_lookup_group(dst, zoneid, ipst); 25946 else 25947 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25948 if (ipif == NULL) { 25949 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25950 " multicast\n")); 25951 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25952 freemsg(ipsec_mp); 25953 goto done; 25954 } 25955 /* 25956 * ipha_src has already been intialized with the 25957 * value of the ipif in ip_wput. All we need now is 25958 * an ire to send this downstream. 25959 */ 25960 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25961 msg_getlabel(mp), match_flags, ipst); 25962 if (ire != NULL) { 25963 ill_t *ill1; 25964 /* 25965 * Do the multicast forwarding now, as the IPsec 25966 * processing has been done. 25967 */ 25968 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25969 (ill1 = ire_to_ill(ire))) { 25970 if (ip_mforward(ill1, ipha, mp)) { 25971 freemsg(ipsec_mp); 25972 ip1dbg(("ip_wput_ipsec_out: mforward " 25973 "failed\n")); 25974 ire_refrele(ire); 25975 goto done; 25976 } 25977 } 25978 goto send; 25979 } 25980 25981 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25982 mp->b_prev = NULL; 25983 mp->b_next = NULL; 25984 25985 /* 25986 * If the IPsec packet was processed asynchronously, 25987 * drop it now. 25988 */ 25989 if (q == NULL) { 25990 freemsg(ipsec_mp); 25991 goto done; 25992 } 25993 25994 /* 25995 * We may be using a wrong ipif to create the ire. 25996 * But it is okay as the source address is assigned 25997 * for the packet already. Next outbound packet would 25998 * create the IRE with the right IPIF in ip_wput. 25999 * 26000 * Also handle RTF_MULTIRT routes. 26001 */ 26002 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26003 zoneid, &zero_info); 26004 } else { 26005 if (ire_arg != NULL) { 26006 ire = ire_arg; 26007 ire_need_rele = B_FALSE; 26008 } else { 26009 ire = ire_cache_lookup(dst, zoneid, 26010 msg_getlabel(mp), ipst); 26011 } 26012 if (ire != NULL) { 26013 goto send; 26014 } 26015 26016 /* 26017 * ire disappeared underneath. 26018 * 26019 * What we need to do here is the ip_newroute 26020 * logic to get the ire without doing the IPsec 26021 * processing. Follow the same old path. But this 26022 * time, ip_wput or ire_add_then_put will call us 26023 * directly as all the IPsec operations are done. 26024 */ 26025 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26026 mp->b_prev = NULL; 26027 mp->b_next = NULL; 26028 26029 /* 26030 * If the IPsec packet was processed asynchronously, 26031 * drop it now. 26032 */ 26033 if (q == NULL) { 26034 freemsg(ipsec_mp); 26035 goto done; 26036 } 26037 26038 /* 26039 * Since we're going through ip_newroute() again, we 26040 * need to make sure we don't: 26041 * 26042 * 1.) Trigger the ASSERT() with the ipha_ident 26043 * overloading. 26044 * 2.) Redo transport-layer checksumming, since we've 26045 * already done all that to get this far. 26046 * 26047 * The easiest way not do either of the above is to set 26048 * the ipha_ident field to IP_HDR_INCLUDED. 26049 */ 26050 ipha->ipha_ident = IP_HDR_INCLUDED; 26051 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26052 zoneid, ipst); 26053 } 26054 goto done; 26055 send: 26056 if (ire->ire_stq == NULL) { 26057 ill_t *out_ill; 26058 /* 26059 * Loopbacks go through ip_wput_local except for one case. 26060 * We come here if we generate a icmp_frag_needed message 26061 * after IPsec processing is over. When this function calls 26062 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26063 * icmp_frag_needed. The message generated comes back here 26064 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26065 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26066 * source address as it is usually set in ip_wput_ire. As 26067 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26068 * and we end up here. We can't enter ip_wput_ire once the 26069 * IPsec processing is over and hence we need to do it here. 26070 */ 26071 ASSERT(q != NULL); 26072 UPDATE_OB_PKT_COUNT(ire); 26073 ire->ire_last_used_time = lbolt; 26074 if (ipha->ipha_src == 0) 26075 ipha->ipha_src = ire->ire_src_addr; 26076 26077 /* PFHooks: LOOPBACK_OUT */ 26078 out_ill = ire_to_ill(ire); 26079 26080 /* 26081 * DTrace this as ip:::send. A blocked packet will fire the 26082 * send probe, but not the receive probe. 26083 */ 26084 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26085 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26086 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26087 26088 DTRACE_PROBE4(ip4__loopback__out__start, 26089 ill_t *, NULL, ill_t *, out_ill, 26090 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26091 26092 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26093 ipst->ips_ipv4firewall_loopback_out, 26094 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26095 26096 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26097 26098 if (ipsec_mp != NULL) 26099 ip_wput_local(RD(q), out_ill, 26100 ipha, ipsec_mp, ire, 0, zoneid); 26101 if (ire_need_rele) 26102 ire_refrele(ire); 26103 goto done; 26104 } 26105 26106 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26107 /* 26108 * We are through with IPsec processing. 26109 * Fragment this and send it on the wire. 26110 */ 26111 if (io->ipsec_out_accelerated) { 26112 /* 26113 * The packet has been accelerated but must 26114 * be fragmented. This should not happen 26115 * since AH and ESP must not accelerate 26116 * packets that need fragmentation, however 26117 * the configuration could have changed 26118 * since the AH or ESP processing. 26119 * Drop packet. 26120 * IPsec KSTATS: bump bean counter here. 26121 */ 26122 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26123 "fragmented accelerated packet!\n")); 26124 freemsg(ipsec_mp); 26125 } else { 26126 ip_wput_ire_fragmentit(ipsec_mp, ire, 26127 zoneid, ipst, NULL); 26128 } 26129 if (ire_need_rele) 26130 ire_refrele(ire); 26131 goto done; 26132 } 26133 26134 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26135 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26136 (void *)ire->ire_ipif, (void *)ipif)); 26137 26138 /* 26139 * Multiroute the secured packet. 26140 */ 26141 if (ire->ire_flags & RTF_MULTIRT) { 26142 ire_t *first_ire; 26143 irb = ire->ire_bucket; 26144 ASSERT(irb != NULL); 26145 /* 26146 * This ire has been looked up as the one that 26147 * goes through the given ipif; 26148 * make sure we do not omit any other multiroute ire 26149 * that may be present in the bucket before this one. 26150 */ 26151 IRB_REFHOLD(irb); 26152 for (first_ire = irb->irb_ire; 26153 first_ire != NULL; 26154 first_ire = first_ire->ire_next) { 26155 if ((first_ire->ire_flags & RTF_MULTIRT) && 26156 (first_ire->ire_addr == ire->ire_addr) && 26157 !(first_ire->ire_marks & 26158 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26159 break; 26160 } 26161 26162 if ((first_ire != NULL) && (first_ire != ire)) { 26163 /* 26164 * Don't change the ire if the packet must 26165 * be fragmented if sent via this new one. 26166 */ 26167 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26168 IRE_REFHOLD(first_ire); 26169 if (ire_need_rele) 26170 ire_refrele(ire); 26171 else 26172 ire_need_rele = B_TRUE; 26173 ire = first_ire; 26174 } 26175 } 26176 IRB_REFRELE(irb); 26177 26178 multirt_send = B_TRUE; 26179 max_frag = ire->ire_max_frag; 26180 } 26181 26182 /* 26183 * In most cases, the emission loop below is entered only once. 26184 * Only in the case where the ire holds the RTF_MULTIRT 26185 * flag, we loop to process all RTF_MULTIRT ires in the 26186 * bucket, and send the packet through all crossed 26187 * RTF_MULTIRT routes. 26188 */ 26189 do { 26190 if (multirt_send) { 26191 /* 26192 * ire1 holds here the next ire to process in the 26193 * bucket. If multirouting is expected, 26194 * any non-RTF_MULTIRT ire that has the 26195 * right destination address is ignored. 26196 */ 26197 ASSERT(irb != NULL); 26198 IRB_REFHOLD(irb); 26199 for (ire1 = ire->ire_next; 26200 ire1 != NULL; 26201 ire1 = ire1->ire_next) { 26202 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26203 continue; 26204 if (ire1->ire_addr != ire->ire_addr) 26205 continue; 26206 if (ire1->ire_marks & 26207 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26208 continue; 26209 /* No loopback here */ 26210 if (ire1->ire_stq == NULL) 26211 continue; 26212 /* 26213 * Ensure we do not exceed the MTU 26214 * of the next route. 26215 */ 26216 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26217 ip_multirt_bad_mtu(ire1, max_frag); 26218 continue; 26219 } 26220 26221 IRE_REFHOLD(ire1); 26222 break; 26223 } 26224 IRB_REFRELE(irb); 26225 if (ire1 != NULL) { 26226 /* 26227 * We are in a multiple send case, need to 26228 * make a copy of the packet. 26229 */ 26230 next_mp = copymsg(ipsec_mp); 26231 if (next_mp == NULL) { 26232 ire_refrele(ire1); 26233 ire1 = NULL; 26234 } 26235 } 26236 } 26237 /* 26238 * Everything is done. Send it out on the wire 26239 * 26240 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26241 * either send it on the wire or, in the case of 26242 * HW acceleration, call ipsec_hw_putnext. 26243 */ 26244 if (ire->ire_nce && 26245 ire->ire_nce->nce_state != ND_REACHABLE) { 26246 DTRACE_PROBE2(ip__wput__ipsec__bail, 26247 (ire_t *), ire, (mblk_t *), ipsec_mp); 26248 /* 26249 * If ire's link-layer is unresolved (this 26250 * would only happen if the incomplete ire 26251 * was added to cachetable via forwarding path) 26252 * don't bother going to ip_xmit_v4. Just drop the 26253 * packet. 26254 * There is a slight risk here, in that, if we 26255 * have the forwarding path create an incomplete 26256 * IRE, then until the IRE is completed, any 26257 * transmitted IPsec packets will be dropped 26258 * instead of being queued waiting for resolution. 26259 * 26260 * But the likelihood of a forwarding packet and a wput 26261 * packet sending to the same dst at the same time 26262 * and there not yet be an ARP entry for it is small. 26263 * Furthermore, if this actually happens, it might 26264 * be likely that wput would generate multiple 26265 * packets (and forwarding would also have a train 26266 * of packets) for that destination. If this is 26267 * the case, some of them would have been dropped 26268 * anyway, since ARP only queues a few packets while 26269 * waiting for resolution 26270 * 26271 * NOTE: We should really call ip_xmit_v4, 26272 * and let it queue the packet and send the 26273 * ARP query and have ARP come back thus: 26274 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26275 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26276 * hw accel work. But it's too complex to get 26277 * the IPsec hw acceleration approach to fit 26278 * well with ip_xmit_v4 doing ARP without 26279 * doing IPsec simplification. For now, we just 26280 * poke ip_xmit_v4 to trigger the arp resolve, so 26281 * that we can continue with the send on the next 26282 * attempt. 26283 * 26284 * XXX THis should be revisited, when 26285 * the IPsec/IP interaction is cleaned up 26286 */ 26287 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26288 " - dropping packet\n")); 26289 freemsg(ipsec_mp); 26290 /* 26291 * Call ip_xmit_v4() to trigger ARP query 26292 * in case the nce_state is ND_INITIAL 26293 */ 26294 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26295 goto drop_pkt; 26296 } 26297 26298 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26299 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26300 mblk_t *, ipsec_mp); 26301 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26302 ipst->ips_ipv4firewall_physical_out, NULL, 26303 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26304 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26305 if (ipsec_mp == NULL) 26306 goto drop_pkt; 26307 26308 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26309 pktxmit_state = ip_xmit_v4(mp, ire, 26310 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26311 26312 if ((pktxmit_state == SEND_FAILED) || 26313 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26314 26315 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26316 drop_pkt: 26317 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26318 ipIfStatsOutDiscards); 26319 if (ire_need_rele) 26320 ire_refrele(ire); 26321 if (ire1 != NULL) { 26322 ire_refrele(ire1); 26323 freemsg(next_mp); 26324 } 26325 goto done; 26326 } 26327 26328 freeb(ipsec_mp); 26329 if (ire_need_rele) 26330 ire_refrele(ire); 26331 26332 if (ire1 != NULL) { 26333 ire = ire1; 26334 ire_need_rele = B_TRUE; 26335 ASSERT(next_mp); 26336 ipsec_mp = next_mp; 26337 mp = ipsec_mp->b_cont; 26338 ire1 = NULL; 26339 next_mp = NULL; 26340 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26341 } else { 26342 multirt_send = B_FALSE; 26343 } 26344 } while (multirt_send); 26345 done: 26346 if (ill != NULL && ill_need_rele) 26347 ill_refrele(ill); 26348 if (ipif != NULL) 26349 ipif_refrele(ipif); 26350 } 26351 26352 /* 26353 * Get the ill corresponding to the specified ire, and compare its 26354 * capabilities with the protocol and algorithms specified by the 26355 * the SA obtained from ipsec_out. If they match, annotate the 26356 * ipsec_out structure to indicate that the packet needs acceleration. 26357 * 26358 * 26359 * A packet is eligible for outbound hardware acceleration if the 26360 * following conditions are satisfied: 26361 * 26362 * 1. the packet will not be fragmented 26363 * 2. the provider supports the algorithm 26364 * 3. there is no pending control message being exchanged 26365 * 4. snoop is not attached 26366 * 5. the destination address is not a broadcast or multicast address. 26367 * 26368 * Rationale: 26369 * - Hardware drivers do not support fragmentation with 26370 * the current interface. 26371 * - snoop, multicast, and broadcast may result in exposure of 26372 * a cleartext datagram. 26373 * We check all five of these conditions here. 26374 * 26375 * XXX would like to nuke "ire_t *" parameter here; problem is that 26376 * IRE is only way to figure out if a v4 address is a broadcast and 26377 * thus ineligible for acceleration... 26378 */ 26379 static void 26380 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26381 { 26382 ipsec_out_t *io; 26383 mblk_t *data_mp; 26384 uint_t plen, overhead; 26385 ip_stack_t *ipst; 26386 26387 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26388 return; 26389 26390 if (ill == NULL) 26391 return; 26392 ipst = ill->ill_ipst; 26393 /* 26394 * Destination address is a broadcast or multicast. Punt. 26395 */ 26396 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26397 IRE_LOCAL))) 26398 return; 26399 26400 data_mp = ipsec_mp->b_cont; 26401 26402 if (ill->ill_isv6) { 26403 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26404 26405 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26406 return; 26407 26408 plen = ip6h->ip6_plen; 26409 } else { 26410 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26411 26412 if (CLASSD(ipha->ipha_dst)) 26413 return; 26414 26415 plen = ipha->ipha_length; 26416 } 26417 /* 26418 * Is there a pending DLPI control message being exchanged 26419 * between IP/IPsec and the DLS Provider? If there is, it 26420 * could be a SADB update, and the state of the DLS Provider 26421 * SADB might not be in sync with the SADB maintained by 26422 * IPsec. To avoid dropping packets or using the wrong keying 26423 * material, we do not accelerate this packet. 26424 */ 26425 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26426 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26427 "ill_dlpi_pending! don't accelerate packet\n")); 26428 return; 26429 } 26430 26431 /* 26432 * Is the Provider in promiscous mode? If it does, we don't 26433 * accelerate the packet since it will bounce back up to the 26434 * listeners in the clear. 26435 */ 26436 if (ill->ill_promisc_on_phys) { 26437 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26438 "ill in promiscous mode, don't accelerate packet\n")); 26439 return; 26440 } 26441 26442 /* 26443 * Will the packet require fragmentation? 26444 */ 26445 26446 /* 26447 * IPsec ESP note: this is a pessimistic estimate, but the same 26448 * as is used elsewhere. 26449 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26450 * + 2-byte trailer 26451 */ 26452 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26453 IPSEC_BASE_ESP_HDR_SIZE(sa); 26454 26455 if ((plen + overhead) > ill->ill_max_mtu) 26456 return; 26457 26458 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26459 26460 /* 26461 * Can the ill accelerate this IPsec protocol and algorithm 26462 * specified by the SA? 26463 */ 26464 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26465 ill->ill_isv6, sa, ipst->ips_netstack)) { 26466 return; 26467 } 26468 26469 /* 26470 * Tell AH or ESP that the outbound ill is capable of 26471 * accelerating this packet. 26472 */ 26473 io->ipsec_out_is_capab_ill = B_TRUE; 26474 } 26475 26476 /* 26477 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26478 * 26479 * If this function returns B_TRUE, the requested SA's have been filled 26480 * into the ipsec_out_*_sa pointers. 26481 * 26482 * If the function returns B_FALSE, the packet has been "consumed", most 26483 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26484 * 26485 * The SA references created by the protocol-specific "select" 26486 * function will be released when the ipsec_mp is freed, thanks to the 26487 * ipsec_out_free destructor -- see spd.c. 26488 */ 26489 static boolean_t 26490 ipsec_out_select_sa(mblk_t *ipsec_mp) 26491 { 26492 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26493 ipsec_out_t *io; 26494 ipsec_policy_t *pp; 26495 ipsec_action_t *ap; 26496 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26497 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26498 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26499 26500 if (!io->ipsec_out_secure) { 26501 /* 26502 * We came here by mistake. 26503 * Don't bother with ipsec processing 26504 * We should "discourage" this path in the future. 26505 */ 26506 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26507 return (B_FALSE); 26508 } 26509 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26510 ASSERT((io->ipsec_out_policy != NULL) || 26511 (io->ipsec_out_act != NULL)); 26512 26513 ASSERT(io->ipsec_out_failed == B_FALSE); 26514 26515 /* 26516 * IPsec processing has started. 26517 */ 26518 io->ipsec_out_proc_begin = B_TRUE; 26519 ap = io->ipsec_out_act; 26520 if (ap == NULL) { 26521 pp = io->ipsec_out_policy; 26522 ASSERT(pp != NULL); 26523 ap = pp->ipsp_act; 26524 ASSERT(ap != NULL); 26525 } 26526 26527 /* 26528 * We have an action. now, let's select SA's. 26529 * (In the future, we can cache this in the conn_t..) 26530 */ 26531 if (ap->ipa_want_esp) { 26532 if (io->ipsec_out_esp_sa == NULL) { 26533 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26534 IPPROTO_ESP); 26535 } 26536 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26537 } 26538 26539 if (ap->ipa_want_ah) { 26540 if (io->ipsec_out_ah_sa == NULL) { 26541 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26542 IPPROTO_AH); 26543 } 26544 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26545 /* 26546 * The ESP and AH processing order needs to be preserved 26547 * when both protocols are required (ESP should be applied 26548 * before AH for an outbound packet). Force an ESP ACQUIRE 26549 * when both ESP and AH are required, and an AH ACQUIRE 26550 * is needed. 26551 */ 26552 if (ap->ipa_want_esp && need_ah_acquire) 26553 need_esp_acquire = B_TRUE; 26554 } 26555 26556 /* 26557 * Send an ACQUIRE (extended, regular, or both) if we need one. 26558 * Release SAs that got referenced, but will not be used until we 26559 * acquire _all_ of the SAs we need. 26560 */ 26561 if (need_ah_acquire || need_esp_acquire) { 26562 if (io->ipsec_out_ah_sa != NULL) { 26563 IPSA_REFRELE(io->ipsec_out_ah_sa); 26564 io->ipsec_out_ah_sa = NULL; 26565 } 26566 if (io->ipsec_out_esp_sa != NULL) { 26567 IPSA_REFRELE(io->ipsec_out_esp_sa); 26568 io->ipsec_out_esp_sa = NULL; 26569 } 26570 26571 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26572 return (B_FALSE); 26573 } 26574 26575 return (B_TRUE); 26576 } 26577 26578 /* 26579 * Process an IPSEC_OUT message and see what you can 26580 * do with it. 26581 * IPQoS Notes: 26582 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26583 * IPsec. 26584 * XXX would like to nuke ire_t. 26585 * XXX ill_index better be "real" 26586 */ 26587 void 26588 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26589 { 26590 ipsec_out_t *io; 26591 ipsec_policy_t *pp; 26592 ipsec_action_t *ap; 26593 ipha_t *ipha; 26594 ip6_t *ip6h; 26595 mblk_t *mp; 26596 ill_t *ill; 26597 zoneid_t zoneid; 26598 ipsec_status_t ipsec_rc; 26599 boolean_t ill_need_rele = B_FALSE; 26600 ip_stack_t *ipst; 26601 ipsec_stack_t *ipss; 26602 26603 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26604 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26605 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26606 ipst = io->ipsec_out_ns->netstack_ip; 26607 mp = ipsec_mp->b_cont; 26608 26609 /* 26610 * Initiate IPPF processing. We do it here to account for packets 26611 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26612 * We can check for ipsec_out_proc_begin even for such packets, as 26613 * they will always be false (asserted below). 26614 */ 26615 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26616 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26617 io->ipsec_out_ill_index : ill_index); 26618 if (mp == NULL) { 26619 ip2dbg(("ipsec_out_process: packet dropped "\ 26620 "during IPPF processing\n")); 26621 freeb(ipsec_mp); 26622 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26623 return; 26624 } 26625 } 26626 26627 if (!io->ipsec_out_secure) { 26628 /* 26629 * We came here by mistake. 26630 * Don't bother with ipsec processing 26631 * Should "discourage" this path in the future. 26632 */ 26633 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26634 goto done; 26635 } 26636 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26637 ASSERT((io->ipsec_out_policy != NULL) || 26638 (io->ipsec_out_act != NULL)); 26639 ASSERT(io->ipsec_out_failed == B_FALSE); 26640 26641 ipss = ipst->ips_netstack->netstack_ipsec; 26642 if (!ipsec_loaded(ipss)) { 26643 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26644 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26645 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26646 } else { 26647 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26648 } 26649 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26650 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26651 &ipss->ipsec_dropper); 26652 return; 26653 } 26654 26655 /* 26656 * IPsec processing has started. 26657 */ 26658 io->ipsec_out_proc_begin = B_TRUE; 26659 ap = io->ipsec_out_act; 26660 if (ap == NULL) { 26661 pp = io->ipsec_out_policy; 26662 ASSERT(pp != NULL); 26663 ap = pp->ipsp_act; 26664 ASSERT(ap != NULL); 26665 } 26666 26667 /* 26668 * Save the outbound ill index. When the packet comes back 26669 * from IPsec, we make sure the ill hasn't changed or disappeared 26670 * before sending it the accelerated packet. 26671 */ 26672 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26673 ill = ire_to_ill(ire); 26674 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26675 } 26676 26677 /* 26678 * The order of processing is first insert a IP header if needed. 26679 * Then insert the ESP header and then the AH header. 26680 */ 26681 if ((io->ipsec_out_se_done == B_FALSE) && 26682 (ap->ipa_want_se)) { 26683 /* 26684 * First get the outer IP header before sending 26685 * it to ESP. 26686 */ 26687 ipha_t *oipha, *iipha; 26688 mblk_t *outer_mp, *inner_mp; 26689 26690 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26691 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26692 "ipsec_out_process: " 26693 "Self-Encapsulation failed: Out of memory\n"); 26694 freemsg(ipsec_mp); 26695 if (ill != NULL) { 26696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26697 } else { 26698 BUMP_MIB(&ipst->ips_ip_mib, 26699 ipIfStatsOutDiscards); 26700 } 26701 return; 26702 } 26703 inner_mp = ipsec_mp->b_cont; 26704 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26705 oipha = (ipha_t *)outer_mp->b_rptr; 26706 iipha = (ipha_t *)inner_mp->b_rptr; 26707 *oipha = *iipha; 26708 outer_mp->b_wptr += sizeof (ipha_t); 26709 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26710 sizeof (ipha_t)); 26711 oipha->ipha_protocol = IPPROTO_ENCAP; 26712 oipha->ipha_version_and_hdr_length = 26713 IP_SIMPLE_HDR_VERSION; 26714 oipha->ipha_hdr_checksum = 0; 26715 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26716 outer_mp->b_cont = inner_mp; 26717 ipsec_mp->b_cont = outer_mp; 26718 26719 io->ipsec_out_se_done = B_TRUE; 26720 io->ipsec_out_tunnel = B_TRUE; 26721 } 26722 26723 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26724 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26725 !ipsec_out_select_sa(ipsec_mp)) 26726 return; 26727 26728 /* 26729 * By now, we know what SA's to use. Toss over to ESP & AH 26730 * to do the heavy lifting. 26731 */ 26732 zoneid = io->ipsec_out_zoneid; 26733 ASSERT(zoneid != ALL_ZONES); 26734 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26735 ASSERT(io->ipsec_out_esp_sa != NULL); 26736 io->ipsec_out_esp_done = B_TRUE; 26737 /* 26738 * Note that since hw accel can only apply one transform, 26739 * not two, we skip hw accel for ESP if we also have AH 26740 * This is an design limitation of the interface 26741 * which should be revisited. 26742 */ 26743 ASSERT(ire != NULL); 26744 if (io->ipsec_out_ah_sa == NULL) { 26745 ill = (ill_t *)ire->ire_stq->q_ptr; 26746 ipsec_out_is_accelerated(ipsec_mp, 26747 io->ipsec_out_esp_sa, ill, ire); 26748 } 26749 26750 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26751 switch (ipsec_rc) { 26752 case IPSEC_STATUS_SUCCESS: 26753 break; 26754 case IPSEC_STATUS_FAILED: 26755 if (ill != NULL) { 26756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26757 } else { 26758 BUMP_MIB(&ipst->ips_ip_mib, 26759 ipIfStatsOutDiscards); 26760 } 26761 /* FALLTHRU */ 26762 case IPSEC_STATUS_PENDING: 26763 return; 26764 } 26765 } 26766 26767 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26768 ASSERT(io->ipsec_out_ah_sa != NULL); 26769 io->ipsec_out_ah_done = B_TRUE; 26770 if (ire == NULL) { 26771 int idx = io->ipsec_out_capab_ill_index; 26772 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26773 NULL, NULL, NULL, NULL, ipst); 26774 ill_need_rele = B_TRUE; 26775 } else { 26776 ill = (ill_t *)ire->ire_stq->q_ptr; 26777 } 26778 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26779 ire); 26780 26781 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26782 switch (ipsec_rc) { 26783 case IPSEC_STATUS_SUCCESS: 26784 break; 26785 case IPSEC_STATUS_FAILED: 26786 if (ill != NULL) { 26787 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26788 } else { 26789 BUMP_MIB(&ipst->ips_ip_mib, 26790 ipIfStatsOutDiscards); 26791 } 26792 /* FALLTHRU */ 26793 case IPSEC_STATUS_PENDING: 26794 if (ill != NULL && ill_need_rele) 26795 ill_refrele(ill); 26796 return; 26797 } 26798 } 26799 /* 26800 * We are done with IPsec processing. Send it over the wire. 26801 */ 26802 done: 26803 mp = ipsec_mp->b_cont; 26804 ipha = (ipha_t *)mp->b_rptr; 26805 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26806 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26807 ire); 26808 } else { 26809 ip6h = (ip6_t *)ipha; 26810 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26811 ire); 26812 } 26813 if (ill != NULL && ill_need_rele) 26814 ill_refrele(ill); 26815 } 26816 26817 /* ARGSUSED */ 26818 void 26819 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26820 { 26821 opt_restart_t *or; 26822 int err; 26823 conn_t *connp; 26824 cred_t *cr; 26825 26826 ASSERT(CONN_Q(q)); 26827 connp = Q_TO_CONN(q); 26828 26829 ASSERT(first_mp->b_datap->db_type == M_CTL); 26830 or = (opt_restart_t *)first_mp->b_rptr; 26831 /* 26832 * We checked for a db_credp the first time svr4_optcom_req 26833 * was called (from ip_wput_nondata). So we can just ASSERT here. 26834 */ 26835 cr = msg_getcred(first_mp, NULL); 26836 ASSERT(cr != NULL); 26837 26838 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26839 err = svr4_optcom_req(q, first_mp, cr, 26840 &ip_opt_obj, B_FALSE); 26841 } else { 26842 ASSERT(or->or_type == T_OPTMGMT_REQ); 26843 err = tpi_optcom_req(q, first_mp, cr, 26844 &ip_opt_obj, B_FALSE); 26845 } 26846 if (err != EINPROGRESS) { 26847 /* operation is done */ 26848 CONN_OPER_PENDING_DONE(connp); 26849 } 26850 } 26851 26852 /* 26853 * ioctls that go through a down/up sequence may need to wait for the down 26854 * to complete. This involves waiting for the ire and ipif refcnts to go down 26855 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26856 */ 26857 /* ARGSUSED */ 26858 void 26859 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26860 { 26861 struct iocblk *iocp; 26862 mblk_t *mp1; 26863 ip_ioctl_cmd_t *ipip; 26864 int err; 26865 sin_t *sin; 26866 struct lifreq *lifr; 26867 struct ifreq *ifr; 26868 26869 iocp = (struct iocblk *)mp->b_rptr; 26870 ASSERT(ipsq != NULL); 26871 /* Existence of mp1 verified in ip_wput_nondata */ 26872 mp1 = mp->b_cont->b_cont; 26873 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26874 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26875 /* 26876 * Special case where ipx_current_ipif is not set: 26877 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26878 * We are here as were not able to complete the operation in 26879 * ipif_set_values because we could not become exclusive on 26880 * the new ipsq. 26881 */ 26882 ill_t *ill = q->q_ptr; 26883 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26884 } 26885 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26886 26887 if (ipip->ipi_cmd_type == IF_CMD) { 26888 /* This a old style SIOC[GS]IF* command */ 26889 ifr = (struct ifreq *)mp1->b_rptr; 26890 sin = (sin_t *)&ifr->ifr_addr; 26891 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26892 /* This a new style SIOC[GS]LIF* command */ 26893 lifr = (struct lifreq *)mp1->b_rptr; 26894 sin = (sin_t *)&lifr->lifr_addr; 26895 } else { 26896 sin = NULL; 26897 } 26898 26899 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26900 q, mp, ipip, mp1->b_rptr); 26901 26902 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26903 } 26904 26905 /* 26906 * ioctl processing 26907 * 26908 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26909 * the ioctl command in the ioctl tables, determines the copyin data size 26910 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26911 * 26912 * ioctl processing then continues when the M_IOCDATA makes its way down to 26913 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26914 * associated 'conn' is refheld till the end of the ioctl and the general 26915 * ioctl processing function ip_process_ioctl() is called to extract the 26916 * arguments and process the ioctl. To simplify extraction, ioctl commands 26917 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26918 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26919 * is used to extract the ioctl's arguments. 26920 * 26921 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26922 * so goes thru the serialization primitive ipsq_try_enter. Then the 26923 * appropriate function to handle the ioctl is called based on the entry in 26924 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26925 * which also refreleases the 'conn' that was refheld at the start of the 26926 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26927 * 26928 * Many exclusive ioctls go thru an internal down up sequence as part of 26929 * the operation. For example an attempt to change the IP address of an 26930 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26931 * does all the cleanup such as deleting all ires that use this address. 26932 * Then we need to wait till all references to the interface go away. 26933 */ 26934 void 26935 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26936 { 26937 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26938 ip_ioctl_cmd_t *ipip = arg; 26939 ip_extract_func_t *extract_funcp; 26940 cmd_info_t ci; 26941 int err; 26942 boolean_t entered_ipsq = B_FALSE; 26943 26944 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26945 26946 if (ipip == NULL) 26947 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26948 26949 /* 26950 * SIOCLIFADDIF needs to go thru a special path since the 26951 * ill may not exist yet. This happens in the case of lo0 26952 * which is created using this ioctl. 26953 */ 26954 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26955 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26956 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26957 return; 26958 } 26959 26960 ci.ci_ipif = NULL; 26961 if (ipip->ipi_cmd_type == MISC_CMD) { 26962 /* 26963 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26964 */ 26965 if (ipip->ipi_cmd == IF_UNITSEL) { 26966 /* ioctl comes down the ill */ 26967 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26968 ipif_refhold(ci.ci_ipif); 26969 } 26970 err = 0; 26971 ci.ci_sin = NULL; 26972 ci.ci_sin6 = NULL; 26973 ci.ci_lifr = NULL; 26974 } else { 26975 switch (ipip->ipi_cmd_type) { 26976 case IF_CMD: 26977 case LIF_CMD: 26978 extract_funcp = ip_extract_lifreq; 26979 break; 26980 26981 case ARP_CMD: 26982 case XARP_CMD: 26983 extract_funcp = ip_extract_arpreq; 26984 break; 26985 26986 case TUN_CMD: 26987 extract_funcp = ip_extract_tunreq; 26988 break; 26989 26990 case MSFILT_CMD: 26991 extract_funcp = ip_extract_msfilter; 26992 break; 26993 26994 default: 26995 ASSERT(0); 26996 } 26997 26998 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26999 if (err != 0) { 27000 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27001 return; 27002 } 27003 27004 /* 27005 * All of the extraction functions return a refheld ipif. 27006 */ 27007 ASSERT(ci.ci_ipif != NULL); 27008 } 27009 27010 if (!(ipip->ipi_flags & IPI_WR)) { 27011 /* 27012 * A return value of EINPROGRESS means the ioctl is 27013 * either queued and waiting for some reason or has 27014 * already completed. 27015 */ 27016 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27017 ci.ci_lifr); 27018 if (ci.ci_ipif != NULL) 27019 ipif_refrele(ci.ci_ipif); 27020 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27021 return; 27022 } 27023 27024 ASSERT(ci.ci_ipif != NULL); 27025 27026 /* 27027 * If ipsq is non-NULL, we are already being called exclusively. 27028 */ 27029 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27030 if (ipsq == NULL) { 27031 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27032 NEW_OP, B_TRUE); 27033 if (ipsq == NULL) { 27034 ipif_refrele(ci.ci_ipif); 27035 return; 27036 } 27037 entered_ipsq = B_TRUE; 27038 } 27039 27040 /* 27041 * Release the ipif so that ipif_down and friends that wait for 27042 * references to go away are not misled about the current ipif_refcnt 27043 * values. We are writer so we can access the ipif even after releasing 27044 * the ipif. 27045 */ 27046 ipif_refrele(ci.ci_ipif); 27047 27048 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27049 27050 /* 27051 * For most set ioctls that come here, this serves as a single point 27052 * where we set the IPIF_CHANGING flag. This ensures that there won't 27053 * be any new references to the ipif. This helps functions that go 27054 * through this path and end up trying to wait for the refcnts 27055 * associated with the ipif to go down to zero. The exception is 27056 * SIOCSLIFREMOVEIF, which sets IPIF_CONDEMNED internally after 27057 * identifying the right ipif to operate on. 27058 */ 27059 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27060 if (ipip->ipi_cmd != SIOCLIFREMOVEIF) 27061 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27062 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27063 27064 /* 27065 * A return value of EINPROGRESS means the ioctl is 27066 * either queued and waiting for some reason or has 27067 * already completed. 27068 */ 27069 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27070 27071 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27072 27073 if (entered_ipsq) 27074 ipsq_exit(ipsq); 27075 } 27076 27077 /* 27078 * Complete the ioctl. Typically ioctls use the mi package and need to 27079 * do mi_copyout/mi_copy_done. 27080 */ 27081 void 27082 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27083 { 27084 conn_t *connp = NULL; 27085 27086 if (err == EINPROGRESS) 27087 return; 27088 27089 if (CONN_Q(q)) { 27090 connp = Q_TO_CONN(q); 27091 ASSERT(connp->conn_ref >= 2); 27092 } 27093 27094 switch (mode) { 27095 case COPYOUT: 27096 if (err == 0) 27097 mi_copyout(q, mp); 27098 else 27099 mi_copy_done(q, mp, err); 27100 break; 27101 27102 case NO_COPYOUT: 27103 mi_copy_done(q, mp, err); 27104 break; 27105 27106 default: 27107 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27108 break; 27109 } 27110 27111 /* 27112 * The refhold placed at the start of the ioctl is released here. 27113 */ 27114 if (connp != NULL) 27115 CONN_OPER_PENDING_DONE(connp); 27116 27117 if (ipsq != NULL) 27118 ipsq_current_finish(ipsq); 27119 } 27120 27121 /* Called from ip_wput for all non data messages */ 27122 /* ARGSUSED */ 27123 void 27124 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27125 { 27126 mblk_t *mp1; 27127 ire_t *ire, *fake_ire; 27128 ill_t *ill; 27129 struct iocblk *iocp; 27130 ip_ioctl_cmd_t *ipip; 27131 cred_t *cr; 27132 conn_t *connp; 27133 int err; 27134 nce_t *nce; 27135 ipif_t *ipif; 27136 ip_stack_t *ipst; 27137 char *proto_str; 27138 27139 if (CONN_Q(q)) { 27140 connp = Q_TO_CONN(q); 27141 ipst = connp->conn_netstack->netstack_ip; 27142 } else { 27143 connp = NULL; 27144 ipst = ILLQ_TO_IPST(q); 27145 } 27146 27147 switch (DB_TYPE(mp)) { 27148 case M_IOCTL: 27149 /* 27150 * IOCTL processing begins in ip_sioctl_copyin_setup which 27151 * will arrange to copy in associated control structures. 27152 */ 27153 ip_sioctl_copyin_setup(q, mp); 27154 return; 27155 case M_IOCDATA: 27156 /* 27157 * Ensure that this is associated with one of our trans- 27158 * parent ioctls. If it's not ours, discard it if we're 27159 * running as a driver, or pass it on if we're a module. 27160 */ 27161 iocp = (struct iocblk *)mp->b_rptr; 27162 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27163 if (ipip == NULL) { 27164 if (q->q_next == NULL) { 27165 goto nak; 27166 } else { 27167 putnext(q, mp); 27168 } 27169 return; 27170 } 27171 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27172 /* 27173 * the ioctl is one we recognise, but is not 27174 * consumed by IP as a module, pass M_IOCDATA 27175 * for processing downstream, but only for 27176 * common Streams ioctls. 27177 */ 27178 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27179 putnext(q, mp); 27180 return; 27181 } else { 27182 goto nak; 27183 } 27184 } 27185 27186 /* IOCTL continuation following copyin or copyout. */ 27187 if (mi_copy_state(q, mp, NULL) == -1) { 27188 /* 27189 * The copy operation failed. mi_copy_state already 27190 * cleaned up, so we're out of here. 27191 */ 27192 return; 27193 } 27194 /* 27195 * If we just completed a copy in, we become writer and 27196 * continue processing in ip_sioctl_copyin_done. If it 27197 * was a copy out, we call mi_copyout again. If there is 27198 * nothing more to copy out, it will complete the IOCTL. 27199 */ 27200 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27201 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27202 mi_copy_done(q, mp, EPROTO); 27203 return; 27204 } 27205 /* 27206 * Check for cases that need more copying. A return 27207 * value of 0 means a second copyin has been started, 27208 * so we return; a return value of 1 means no more 27209 * copying is needed, so we continue. 27210 */ 27211 if (ipip->ipi_cmd_type == MSFILT_CMD && 27212 MI_COPY_COUNT(mp) == 1) { 27213 if (ip_copyin_msfilter(q, mp) == 0) 27214 return; 27215 } 27216 /* 27217 * Refhold the conn, till the ioctl completes. This is 27218 * needed in case the ioctl ends up in the pending mp 27219 * list. Every mp in the ill_pending_mp list and 27220 * the ipx_pending_mp must have a refhold on the conn 27221 * to resume processing. The refhold is released when 27222 * the ioctl completes. (normally or abnormally) 27223 * In all cases ip_ioctl_finish is called to finish 27224 * the ioctl. 27225 */ 27226 if (connp != NULL) { 27227 /* This is not a reentry */ 27228 ASSERT(ipsq == NULL); 27229 CONN_INC_REF(connp); 27230 } else { 27231 if (!(ipip->ipi_flags & IPI_MODOK)) { 27232 mi_copy_done(q, mp, EINVAL); 27233 return; 27234 } 27235 } 27236 27237 ip_process_ioctl(ipsq, q, mp, ipip); 27238 27239 } else { 27240 mi_copyout(q, mp); 27241 } 27242 return; 27243 nak: 27244 iocp->ioc_error = EINVAL; 27245 mp->b_datap->db_type = M_IOCNAK; 27246 iocp->ioc_count = 0; 27247 qreply(q, mp); 27248 return; 27249 27250 case M_IOCNAK: 27251 /* 27252 * The only way we could get here is if a resolver didn't like 27253 * an IOCTL we sent it. This shouldn't happen. 27254 */ 27255 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27256 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27257 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27258 freemsg(mp); 27259 return; 27260 case M_IOCACK: 27261 /* /dev/ip shouldn't see this */ 27262 if (CONN_Q(q)) 27263 goto nak; 27264 27265 /* 27266 * Finish socket ioctls passed through to ARP. We use the 27267 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27268 * we need to become writer before calling ip_sioctl_iocack(). 27269 * Note that qwriter_ip() will release the refhold, and that a 27270 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27271 * ill stream. 27272 */ 27273 iocp = (struct iocblk *)mp->b_rptr; 27274 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27275 ip_sioctl_iocack(NULL, q, mp, NULL); 27276 return; 27277 } 27278 27279 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27280 iocp->ioc_cmd == AR_ENTRY_ADD); 27281 ill = q->q_ptr; 27282 ill_refhold(ill); 27283 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27284 return; 27285 case M_FLUSH: 27286 if (*mp->b_rptr & FLUSHW) 27287 flushq(q, FLUSHALL); 27288 if (q->q_next) { 27289 putnext(q, mp); 27290 return; 27291 } 27292 if (*mp->b_rptr & FLUSHR) { 27293 *mp->b_rptr &= ~FLUSHW; 27294 qreply(q, mp); 27295 return; 27296 } 27297 freemsg(mp); 27298 return; 27299 case IRE_DB_REQ_TYPE: 27300 if (connp == NULL) { 27301 proto_str = "IRE_DB_REQ_TYPE"; 27302 goto protonak; 27303 } 27304 /* An Upper Level Protocol wants a copy of an IRE. */ 27305 ip_ire_req(q, mp); 27306 return; 27307 case M_CTL: 27308 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27309 break; 27310 27311 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27312 TUN_HELLO) { 27313 ASSERT(connp != NULL); 27314 connp->conn_flags |= IPCL_IPTUN; 27315 freeb(mp); 27316 return; 27317 } 27318 27319 /* M_CTL messages are used by ARP to tell us things. */ 27320 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27321 break; 27322 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27323 case AR_ENTRY_SQUERY: 27324 ip_wput_ctl(q, mp); 27325 return; 27326 case AR_CLIENT_NOTIFY: 27327 ip_arp_news(q, mp); 27328 return; 27329 case AR_DLPIOP_DONE: 27330 ASSERT(q->q_next != NULL); 27331 ill = (ill_t *)q->q_ptr; 27332 /* qwriter_ip releases the refhold */ 27333 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27334 ill_refhold(ill); 27335 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27336 return; 27337 case AR_ARP_CLOSING: 27338 /* 27339 * ARP (above us) is closing. If no ARP bringup is 27340 * currently pending, ack the message so that ARP 27341 * can complete its close. Also mark ill_arp_closing 27342 * so that new ARP bringups will fail. If any 27343 * ARP bringup is currently in progress, we will 27344 * ack this when the current ARP bringup completes. 27345 */ 27346 ASSERT(q->q_next != NULL); 27347 ill = (ill_t *)q->q_ptr; 27348 mutex_enter(&ill->ill_lock); 27349 ill->ill_arp_closing = 1; 27350 if (!ill->ill_arp_bringup_pending) { 27351 mutex_exit(&ill->ill_lock); 27352 qreply(q, mp); 27353 } else { 27354 mutex_exit(&ill->ill_lock); 27355 freemsg(mp); 27356 } 27357 return; 27358 case AR_ARP_EXTEND: 27359 /* 27360 * The ARP module above us is capable of duplicate 27361 * address detection. Old ATM drivers will not send 27362 * this message. 27363 */ 27364 ASSERT(q->q_next != NULL); 27365 ill = (ill_t *)q->q_ptr; 27366 ill->ill_arp_extend = B_TRUE; 27367 freemsg(mp); 27368 return; 27369 default: 27370 break; 27371 } 27372 break; 27373 case M_PROTO: 27374 case M_PCPROTO: 27375 /* 27376 * The only PROTO messages we expect are copies of option 27377 * negotiation acknowledgements, AH and ESP bind requests 27378 * are also expected. 27379 */ 27380 switch (((union T_primitives *)mp->b_rptr)->type) { 27381 case O_T_BIND_REQ: 27382 case T_BIND_REQ: { 27383 /* Request can get queued in bind */ 27384 if (connp == NULL) { 27385 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27386 goto protonak; 27387 } 27388 /* 27389 * The transports except SCTP call ip_bind_{v4,v6}() 27390 * directly instead of a a putnext. SCTP doesn't 27391 * generate any T_BIND_REQ since it has its own 27392 * fanout data structures. However, ESP and AH 27393 * come in for regular binds; all other cases are 27394 * bind retries. 27395 */ 27396 ASSERT(!IPCL_IS_SCTP(connp)); 27397 27398 /* Don't increment refcnt if this is a re-entry */ 27399 if (ipsq == NULL) 27400 CONN_INC_REF(connp); 27401 27402 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27403 connp, NULL) : ip_bind_v4(q, mp, connp); 27404 ASSERT(mp != NULL); 27405 27406 ASSERT(!IPCL_IS_TCP(connp)); 27407 ASSERT(!IPCL_IS_UDP(connp)); 27408 ASSERT(!IPCL_IS_RAWIP(connp)); 27409 27410 /* The case of AH and ESP */ 27411 qreply(q, mp); 27412 CONN_OPER_PENDING_DONE(connp); 27413 return; 27414 } 27415 case T_SVR4_OPTMGMT_REQ: 27416 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27417 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27418 27419 if (connp == NULL) { 27420 proto_str = "T_SVR4_OPTMGMT_REQ"; 27421 goto protonak; 27422 } 27423 27424 /* 27425 * All Solaris components should pass a db_credp 27426 * for this TPI message, hence we ASSERT. 27427 * But in case there is some other M_PROTO that looks 27428 * like a TPI message sent by some other kernel 27429 * component, we check and return an error. 27430 */ 27431 cr = msg_getcred(mp, NULL); 27432 ASSERT(cr != NULL); 27433 if (cr == NULL) { 27434 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27435 if (mp != NULL) 27436 qreply(q, mp); 27437 return; 27438 } 27439 27440 if (!snmpcom_req(q, mp, ip_snmp_set, 27441 ip_snmp_get, cr)) { 27442 /* 27443 * Call svr4_optcom_req so that it can 27444 * generate the ack. We don't come here 27445 * if this operation is being restarted. 27446 * ip_restart_optmgmt will drop the conn ref. 27447 * In the case of ipsec option after the ipsec 27448 * load is complete conn_restart_ipsec_waiter 27449 * drops the conn ref. 27450 */ 27451 ASSERT(ipsq == NULL); 27452 CONN_INC_REF(connp); 27453 if (ip_check_for_ipsec_opt(q, mp)) 27454 return; 27455 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27456 B_FALSE); 27457 if (err != EINPROGRESS) { 27458 /* Operation is done */ 27459 CONN_OPER_PENDING_DONE(connp); 27460 } 27461 } 27462 return; 27463 case T_OPTMGMT_REQ: 27464 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27465 /* 27466 * Note: No snmpcom_req support through new 27467 * T_OPTMGMT_REQ. 27468 * Call tpi_optcom_req so that it can 27469 * generate the ack. 27470 */ 27471 if (connp == NULL) { 27472 proto_str = "T_OPTMGMT_REQ"; 27473 goto protonak; 27474 } 27475 27476 /* 27477 * All Solaris components should pass a db_credp 27478 * for this TPI message, hence we ASSERT. 27479 * But in case there is some other M_PROTO that looks 27480 * like a TPI message sent by some other kernel 27481 * component, we check and return an error. 27482 */ 27483 cr = msg_getcred(mp, NULL); 27484 ASSERT(cr != NULL); 27485 if (cr == NULL) { 27486 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27487 if (mp != NULL) 27488 qreply(q, mp); 27489 return; 27490 } 27491 ASSERT(ipsq == NULL); 27492 /* 27493 * We don't come here for restart. ip_restart_optmgmt 27494 * will drop the conn ref. In the case of ipsec option 27495 * after the ipsec load is complete 27496 * conn_restart_ipsec_waiter drops the conn ref. 27497 */ 27498 CONN_INC_REF(connp); 27499 if (ip_check_for_ipsec_opt(q, mp)) 27500 return; 27501 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27502 if (err != EINPROGRESS) { 27503 /* Operation is done */ 27504 CONN_OPER_PENDING_DONE(connp); 27505 } 27506 return; 27507 case T_UNBIND_REQ: 27508 if (connp == NULL) { 27509 proto_str = "T_UNBIND_REQ"; 27510 goto protonak; 27511 } 27512 ip_unbind(Q_TO_CONN(q)); 27513 mp = mi_tpi_ok_ack_alloc(mp); 27514 qreply(q, mp); 27515 return; 27516 default: 27517 /* 27518 * Have to drop any DLPI messages coming down from 27519 * arp (such as an info_req which would cause ip 27520 * to receive an extra info_ack if it was passed 27521 * through. 27522 */ 27523 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27524 (int)*(uint_t *)mp->b_rptr)); 27525 freemsg(mp); 27526 return; 27527 } 27528 /* NOTREACHED */ 27529 case IRE_DB_TYPE: { 27530 nce_t *nce; 27531 ill_t *ill; 27532 in6_addr_t gw_addr_v6; 27533 27534 /* 27535 * This is a response back from a resolver. It 27536 * consists of a message chain containing: 27537 * IRE_MBLK-->LL_HDR_MBLK->pkt 27538 * The IRE_MBLK is the one we allocated in ip_newroute. 27539 * The LL_HDR_MBLK is the DLPI header to use to get 27540 * the attached packet, and subsequent ones for the 27541 * same destination, transmitted. 27542 */ 27543 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27544 break; 27545 /* 27546 * First, check to make sure the resolution succeeded. 27547 * If it failed, the second mblk will be empty. 27548 * If it is, free the chain, dropping the packet. 27549 * (We must ire_delete the ire; that frees the ire mblk) 27550 * We're doing this now to support PVCs for ATM; it's 27551 * a partial xresolv implementation. When we fully implement 27552 * xresolv interfaces, instead of freeing everything here 27553 * we'll initiate neighbor discovery. 27554 * 27555 * For v4 (ARP and other external resolvers) the resolver 27556 * frees the message, so no check is needed. This check 27557 * is required, though, for a full xresolve implementation. 27558 * Including this code here now both shows how external 27559 * resolvers can NACK a resolution request using an 27560 * existing design that has no specific provisions for NACKs, 27561 * and also takes into account that the current non-ARP 27562 * external resolver has been coded to use this method of 27563 * NACKing for all IPv6 (xresolv) cases, 27564 * whether our xresolv implementation is complete or not. 27565 * 27566 */ 27567 ire = (ire_t *)mp->b_rptr; 27568 ill = ire_to_ill(ire); 27569 mp1 = mp->b_cont; /* dl_unitdata_req */ 27570 if (mp1->b_rptr == mp1->b_wptr) { 27571 if (ire->ire_ipversion == IPV6_VERSION) { 27572 /* 27573 * XRESOLV interface. 27574 */ 27575 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27576 mutex_enter(&ire->ire_lock); 27577 gw_addr_v6 = ire->ire_gateway_addr_v6; 27578 mutex_exit(&ire->ire_lock); 27579 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27580 nce = ndp_lookup_v6(ill, B_FALSE, 27581 &ire->ire_addr_v6, B_FALSE); 27582 } else { 27583 nce = ndp_lookup_v6(ill, B_FALSE, 27584 &gw_addr_v6, B_FALSE); 27585 } 27586 if (nce != NULL) { 27587 nce_resolv_failed(nce); 27588 ndp_delete(nce); 27589 NCE_REFRELE(nce); 27590 } 27591 } 27592 mp->b_cont = NULL; 27593 freemsg(mp1); /* frees the pkt as well */ 27594 ASSERT(ire->ire_nce == NULL); 27595 ire_delete((ire_t *)mp->b_rptr); 27596 return; 27597 } 27598 27599 /* 27600 * Split them into IRE_MBLK and pkt and feed it into 27601 * ire_add_then_send. Then in ire_add_then_send 27602 * the IRE will be added, and then the packet will be 27603 * run back through ip_wput. This time it will make 27604 * it to the wire. 27605 */ 27606 mp->b_cont = NULL; 27607 mp = mp1->b_cont; /* now, mp points to pkt */ 27608 mp1->b_cont = NULL; 27609 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27610 if (ire->ire_ipversion == IPV6_VERSION) { 27611 /* 27612 * XRESOLV interface. Find the nce and put a copy 27613 * of the dl_unitdata_req in nce_res_mp 27614 */ 27615 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27616 mutex_enter(&ire->ire_lock); 27617 gw_addr_v6 = ire->ire_gateway_addr_v6; 27618 mutex_exit(&ire->ire_lock); 27619 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27620 nce = ndp_lookup_v6(ill, B_FALSE, 27621 &ire->ire_addr_v6, B_FALSE); 27622 } else { 27623 nce = ndp_lookup_v6(ill, B_FALSE, 27624 &gw_addr_v6, B_FALSE); 27625 } 27626 if (nce != NULL) { 27627 /* 27628 * We have to protect nce_res_mp here 27629 * from being accessed by other threads 27630 * while we change the mblk pointer. 27631 * Other functions will also lock the nce when 27632 * accessing nce_res_mp. 27633 * 27634 * The reason we change the mblk pointer 27635 * here rather than copying the resolved address 27636 * into the template is that, unlike with 27637 * ethernet, we have no guarantee that the 27638 * resolved address length will be 27639 * smaller than or equal to the lla length 27640 * with which the template was allocated, 27641 * (for ethernet, they're equal) 27642 * so we have to use the actual resolved 27643 * address mblk - which holds the real 27644 * dl_unitdata_req with the resolved address. 27645 * 27646 * Doing this is the same behavior as was 27647 * previously used in the v4 ARP case. 27648 */ 27649 mutex_enter(&nce->nce_lock); 27650 if (nce->nce_res_mp != NULL) 27651 freemsg(nce->nce_res_mp); 27652 nce->nce_res_mp = mp1; 27653 mutex_exit(&nce->nce_lock); 27654 /* 27655 * We do a fastpath probe here because 27656 * we have resolved the address without 27657 * using Neighbor Discovery. 27658 * In the non-XRESOLV v6 case, the fastpath 27659 * probe is done right after neighbor 27660 * discovery completes. 27661 */ 27662 if (nce->nce_res_mp != NULL) { 27663 int res; 27664 nce_fastpath_list_add(nce); 27665 res = ill_fastpath_probe(ill, 27666 nce->nce_res_mp); 27667 if (res != 0 && res != EAGAIN) 27668 nce_fastpath_list_delete(nce); 27669 } 27670 27671 ire_add_then_send(q, ire, mp); 27672 /* 27673 * Now we have to clean out any packets 27674 * that may have been queued on the nce 27675 * while it was waiting for address resolution 27676 * to complete. 27677 */ 27678 mutex_enter(&nce->nce_lock); 27679 mp1 = nce->nce_qd_mp; 27680 nce->nce_qd_mp = NULL; 27681 mutex_exit(&nce->nce_lock); 27682 while (mp1 != NULL) { 27683 mblk_t *nxt_mp; 27684 queue_t *fwdq = NULL; 27685 ill_t *inbound_ill; 27686 uint_t ifindex; 27687 27688 nxt_mp = mp1->b_next; 27689 mp1->b_next = NULL; 27690 /* 27691 * Retrieve ifindex stored in 27692 * ip_rput_data_v6() 27693 */ 27694 ifindex = 27695 (uint_t)(uintptr_t)mp1->b_prev; 27696 inbound_ill = 27697 ill_lookup_on_ifindex(ifindex, 27698 B_TRUE, NULL, NULL, NULL, 27699 NULL, ipst); 27700 mp1->b_prev = NULL; 27701 if (inbound_ill != NULL) 27702 fwdq = inbound_ill->ill_rq; 27703 27704 if (fwdq != NULL) { 27705 put(fwdq, mp1); 27706 ill_refrele(inbound_ill); 27707 } else 27708 put(WR(ill->ill_rq), mp1); 27709 mp1 = nxt_mp; 27710 } 27711 NCE_REFRELE(nce); 27712 } else { /* nce is NULL; clean up */ 27713 ire_delete(ire); 27714 freemsg(mp); 27715 freemsg(mp1); 27716 return; 27717 } 27718 } else { 27719 nce_t *arpce; 27720 /* 27721 * Link layer resolution succeeded. Recompute the 27722 * ire_nce. 27723 */ 27724 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27725 if ((arpce = ndp_lookup_v4(ill, 27726 (ire->ire_gateway_addr != INADDR_ANY ? 27727 &ire->ire_gateway_addr : &ire->ire_addr), 27728 B_FALSE)) == NULL) { 27729 freeb(ire->ire_mp); 27730 freeb(mp1); 27731 freemsg(mp); 27732 return; 27733 } 27734 mutex_enter(&arpce->nce_lock); 27735 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27736 if (arpce->nce_state == ND_REACHABLE) { 27737 /* 27738 * Someone resolved this before us; 27739 * cleanup the res_mp. Since ire has 27740 * not been added yet, the call to ire_add_v4 27741 * from ire_add_then_send (when a dup is 27742 * detected) will clean up the ire. 27743 */ 27744 freeb(mp1); 27745 } else { 27746 ASSERT(arpce->nce_res_mp == NULL); 27747 arpce->nce_res_mp = mp1; 27748 arpce->nce_state = ND_REACHABLE; 27749 } 27750 mutex_exit(&arpce->nce_lock); 27751 if (ire->ire_marks & IRE_MARK_NOADD) { 27752 /* 27753 * this ire will not be added to the ire 27754 * cache table, so we can set the ire_nce 27755 * here, as there are no atomicity constraints. 27756 */ 27757 ire->ire_nce = arpce; 27758 /* 27759 * We are associating this nce with the ire 27760 * so change the nce ref taken in 27761 * ndp_lookup_v4() from 27762 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27763 */ 27764 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27765 } else { 27766 NCE_REFRELE(arpce); 27767 } 27768 ire_add_then_send(q, ire, mp); 27769 } 27770 return; /* All is well, the packet has been sent. */ 27771 } 27772 case IRE_ARPRESOLVE_TYPE: { 27773 27774 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27775 break; 27776 mp1 = mp->b_cont; /* dl_unitdata_req */ 27777 mp->b_cont = NULL; 27778 /* 27779 * First, check to make sure the resolution succeeded. 27780 * If it failed, the second mblk will be empty. 27781 */ 27782 if (mp1->b_rptr == mp1->b_wptr) { 27783 /* cleanup the incomplete ire, free queued packets */ 27784 freemsg(mp); /* fake ire */ 27785 freeb(mp1); /* dl_unitdata response */ 27786 return; 27787 } 27788 27789 /* 27790 * Update any incomplete nce_t found. We search the ctable 27791 * and find the nce from the ire->ire_nce because we need 27792 * to pass the ire to ip_xmit_v4 later, and can find both 27793 * ire and nce in one lookup. 27794 */ 27795 fake_ire = (ire_t *)mp->b_rptr; 27796 27797 /* 27798 * By the time we come back here from ARP the logical outgoing 27799 * interface of the incomplete ire we added in ire_forward() 27800 * could have disappeared, causing the incomplete ire to also 27801 * disappear. So we need to retreive the proper ipif for the 27802 * ire before looking in ctable. In the case of IPMP, the 27803 * ipif may be on the IPMP ill, so look it up based on the 27804 * ire_ipif_ifindex we stashed back in ire_init_common(). 27805 * Then, we can verify that ire_ipif_seqid still exists. 27806 */ 27807 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27808 NULL, NULL, NULL, NULL, ipst); 27809 if (ill == NULL) { 27810 ip1dbg(("ill for incomplete ire vanished\n")); 27811 freemsg(mp); /* fake ire */ 27812 freeb(mp1); /* dl_unitdata response */ 27813 return; 27814 } 27815 27816 /* Get the outgoing ipif */ 27817 mutex_enter(&ill->ill_lock); 27818 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27819 if (ipif == NULL) { 27820 mutex_exit(&ill->ill_lock); 27821 ill_refrele(ill); 27822 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27823 freemsg(mp); /* fake_ire */ 27824 freeb(mp1); /* dl_unitdata response */ 27825 return; 27826 } 27827 27828 ipif_refhold_locked(ipif); 27829 mutex_exit(&ill->ill_lock); 27830 ill_refrele(ill); 27831 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27832 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27833 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27834 ipif_refrele(ipif); 27835 if (ire == NULL) { 27836 /* 27837 * no ire was found; check if there is an nce 27838 * for this lookup; if it has no ire's pointing at it 27839 * cleanup. 27840 */ 27841 if ((nce = ndp_lookup_v4(q->q_ptr, 27842 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27843 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27844 B_FALSE)) != NULL) { 27845 /* 27846 * cleanup: 27847 * We check for refcnt 2 (one for the nce 27848 * hash list + 1 for the ref taken by 27849 * ndp_lookup_v4) to check that there are 27850 * no ire's pointing at the nce. 27851 */ 27852 if (nce->nce_refcnt == 2) 27853 ndp_delete(nce); 27854 NCE_REFRELE(nce); 27855 } 27856 freeb(mp1); /* dl_unitdata response */ 27857 freemsg(mp); /* fake ire */ 27858 return; 27859 } 27860 27861 nce = ire->ire_nce; 27862 DTRACE_PROBE2(ire__arpresolve__type, 27863 ire_t *, ire, nce_t *, nce); 27864 ASSERT(nce->nce_state != ND_INITIAL); 27865 mutex_enter(&nce->nce_lock); 27866 nce->nce_last = TICK_TO_MSEC(lbolt64); 27867 if (nce->nce_state == ND_REACHABLE) { 27868 /* 27869 * Someone resolved this before us; 27870 * our response is not needed any more. 27871 */ 27872 mutex_exit(&nce->nce_lock); 27873 freeb(mp1); /* dl_unitdata response */ 27874 } else { 27875 ASSERT(nce->nce_res_mp == NULL); 27876 nce->nce_res_mp = mp1; 27877 nce->nce_state = ND_REACHABLE; 27878 mutex_exit(&nce->nce_lock); 27879 nce_fastpath(nce); 27880 } 27881 /* 27882 * The cached nce_t has been updated to be reachable; 27883 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27884 */ 27885 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27886 freemsg(mp); 27887 /* 27888 * send out queued packets. 27889 */ 27890 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27891 27892 IRE_REFRELE(ire); 27893 return; 27894 } 27895 default: 27896 break; 27897 } 27898 if (q->q_next) { 27899 putnext(q, mp); 27900 } else 27901 freemsg(mp); 27902 return; 27903 27904 protonak: 27905 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27906 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27907 qreply(q, mp); 27908 } 27909 27910 /* 27911 * Process IP options in an outbound packet. Modify the destination if there 27912 * is a source route option. 27913 * Returns non-zero if something fails in which case an ICMP error has been 27914 * sent and mp freed. 27915 */ 27916 static int 27917 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27918 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27919 { 27920 ipoptp_t opts; 27921 uchar_t *opt; 27922 uint8_t optval; 27923 uint8_t optlen; 27924 ipaddr_t dst; 27925 intptr_t code = 0; 27926 mblk_t *mp; 27927 ire_t *ire = NULL; 27928 27929 ip2dbg(("ip_wput_options\n")); 27930 mp = ipsec_mp; 27931 if (mctl_present) { 27932 mp = ipsec_mp->b_cont; 27933 } 27934 27935 dst = ipha->ipha_dst; 27936 for (optval = ipoptp_first(&opts, ipha); 27937 optval != IPOPT_EOL; 27938 optval = ipoptp_next(&opts)) { 27939 opt = opts.ipoptp_cur; 27940 optlen = opts.ipoptp_len; 27941 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27942 optval, optlen)); 27943 switch (optval) { 27944 uint32_t off; 27945 case IPOPT_SSRR: 27946 case IPOPT_LSRR: 27947 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27948 ip1dbg(( 27949 "ip_wput_options: bad option offset\n")); 27950 code = (char *)&opt[IPOPT_OLEN] - 27951 (char *)ipha; 27952 goto param_prob; 27953 } 27954 off = opt[IPOPT_OFFSET]; 27955 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27956 ntohl(dst))); 27957 /* 27958 * For strict: verify that dst is directly 27959 * reachable. 27960 */ 27961 if (optval == IPOPT_SSRR) { 27962 ire = ire_ftable_lookup(dst, 0, 0, 27963 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27964 msg_getlabel(mp), 27965 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27966 if (ire == NULL) { 27967 ip1dbg(("ip_wput_options: SSRR not" 27968 " directly reachable: 0x%x\n", 27969 ntohl(dst))); 27970 goto bad_src_route; 27971 } 27972 ire_refrele(ire); 27973 } 27974 break; 27975 case IPOPT_RR: 27976 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27977 ip1dbg(( 27978 "ip_wput_options: bad option offset\n")); 27979 code = (char *)&opt[IPOPT_OLEN] - 27980 (char *)ipha; 27981 goto param_prob; 27982 } 27983 break; 27984 case IPOPT_TS: 27985 /* 27986 * Verify that length >=5 and that there is either 27987 * room for another timestamp or that the overflow 27988 * counter is not maxed out. 27989 */ 27990 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27991 if (optlen < IPOPT_MINLEN_IT) { 27992 goto param_prob; 27993 } 27994 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27995 ip1dbg(( 27996 "ip_wput_options: bad option offset\n")); 27997 code = (char *)&opt[IPOPT_OFFSET] - 27998 (char *)ipha; 27999 goto param_prob; 28000 } 28001 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28002 case IPOPT_TS_TSONLY: 28003 off = IPOPT_TS_TIMELEN; 28004 break; 28005 case IPOPT_TS_TSANDADDR: 28006 case IPOPT_TS_PRESPEC: 28007 case IPOPT_TS_PRESPEC_RFC791: 28008 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28009 break; 28010 default: 28011 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28012 (char *)ipha; 28013 goto param_prob; 28014 } 28015 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28016 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28017 /* 28018 * No room and the overflow counter is 15 28019 * already. 28020 */ 28021 goto param_prob; 28022 } 28023 break; 28024 } 28025 } 28026 28027 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28028 return (0); 28029 28030 ip1dbg(("ip_wput_options: error processing IP options.")); 28031 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28032 28033 param_prob: 28034 /* 28035 * Since ip_wput() isn't close to finished, we fill 28036 * in enough of the header for credible error reporting. 28037 */ 28038 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28039 /* Failed */ 28040 freemsg(ipsec_mp); 28041 return (-1); 28042 } 28043 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28044 return (-1); 28045 28046 bad_src_route: 28047 /* 28048 * Since ip_wput() isn't close to finished, we fill 28049 * in enough of the header for credible error reporting. 28050 */ 28051 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28052 /* Failed */ 28053 freemsg(ipsec_mp); 28054 return (-1); 28055 } 28056 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28057 return (-1); 28058 } 28059 28060 /* 28061 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28062 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28063 * thru /etc/system. 28064 */ 28065 #define CONN_MAXDRAINCNT 64 28066 28067 static void 28068 conn_drain_init(ip_stack_t *ipst) 28069 { 28070 int i, j; 28071 idl_tx_list_t *itl_tx; 28072 28073 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28074 28075 if ((ipst->ips_conn_drain_list_cnt == 0) || 28076 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28077 /* 28078 * Default value of the number of drainers is the 28079 * number of cpus, subject to maximum of 8 drainers. 28080 */ 28081 if (boot_max_ncpus != -1) 28082 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28083 else 28084 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28085 } 28086 28087 ipst->ips_idl_tx_list = 28088 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28089 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28090 itl_tx = &ipst->ips_idl_tx_list[i]; 28091 itl_tx->txl_drain_list = 28092 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28093 sizeof (idl_t), KM_SLEEP); 28094 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28095 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28096 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28097 MUTEX_DEFAULT, NULL); 28098 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28099 } 28100 } 28101 } 28102 28103 static void 28104 conn_drain_fini(ip_stack_t *ipst) 28105 { 28106 int i; 28107 idl_tx_list_t *itl_tx; 28108 28109 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28110 itl_tx = &ipst->ips_idl_tx_list[i]; 28111 kmem_free(itl_tx->txl_drain_list, 28112 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28113 } 28114 kmem_free(ipst->ips_idl_tx_list, 28115 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28116 ipst->ips_idl_tx_list = NULL; 28117 } 28118 28119 /* 28120 * Note: For an overview of how flowcontrol is handled in IP please see the 28121 * IP Flowcontrol notes at the top of this file. 28122 * 28123 * Flow control has blocked us from proceeding. Insert the given conn in one 28124 * of the conn drain lists. These conn wq's will be qenabled later on when 28125 * STREAMS flow control does a backenable. conn_walk_drain will enable 28126 * the first conn in each of these drain lists. Each of these qenabled conns 28127 * in turn enables the next in the list, after it runs, or when it closes, 28128 * thus sustaining the drain process. 28129 */ 28130 void 28131 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28132 { 28133 idl_t *idl = tx_list->txl_drain_list; 28134 uint_t index; 28135 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28136 28137 mutex_enter(&connp->conn_lock); 28138 if (connp->conn_state_flags & CONN_CLOSING) { 28139 /* 28140 * The conn is closing as a result of which CONN_CLOSING 28141 * is set. Return. 28142 */ 28143 mutex_exit(&connp->conn_lock); 28144 return; 28145 } else if (connp->conn_idl == NULL) { 28146 /* 28147 * Assign the next drain list round robin. We dont' use 28148 * a lock, and thus it may not be strictly round robin. 28149 * Atomicity of load/stores is enough to make sure that 28150 * conn_drain_list_index is always within bounds. 28151 */ 28152 index = tx_list->txl_drain_index; 28153 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28154 connp->conn_idl = &tx_list->txl_drain_list[index]; 28155 index++; 28156 if (index == ipst->ips_conn_drain_list_cnt) 28157 index = 0; 28158 tx_list->txl_drain_index = index; 28159 } 28160 mutex_exit(&connp->conn_lock); 28161 28162 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28163 if ((connp->conn_drain_prev != NULL) || 28164 (connp->conn_state_flags & CONN_CLOSING)) { 28165 /* 28166 * The conn is already in the drain list, OR 28167 * the conn is closing. We need to check again for 28168 * the closing case again since close can happen 28169 * after we drop the conn_lock, and before we 28170 * acquire the CONN_DRAIN_LIST_LOCK. 28171 */ 28172 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28173 return; 28174 } else { 28175 idl = connp->conn_idl; 28176 } 28177 28178 /* 28179 * The conn is not in the drain list. Insert it at the 28180 * tail of the drain list. The drain list is circular 28181 * and doubly linked. idl_conn points to the 1st element 28182 * in the list. 28183 */ 28184 if (idl->idl_conn == NULL) { 28185 idl->idl_conn = connp; 28186 connp->conn_drain_next = connp; 28187 connp->conn_drain_prev = connp; 28188 } else { 28189 conn_t *head = idl->idl_conn; 28190 28191 connp->conn_drain_next = head; 28192 connp->conn_drain_prev = head->conn_drain_prev; 28193 head->conn_drain_prev->conn_drain_next = connp; 28194 head->conn_drain_prev = connp; 28195 } 28196 /* 28197 * For non streams based sockets assert flow control. 28198 */ 28199 if (IPCL_IS_NONSTR(connp)) { 28200 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28201 (*connp->conn_upcalls->su_txq_full) 28202 (connp->conn_upper_handle, B_TRUE); 28203 } else { 28204 conn_setqfull(connp); 28205 noenable(connp->conn_wq); 28206 } 28207 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28208 } 28209 28210 /* 28211 * This conn is closing, and we are called from ip_close. OR 28212 * This conn has been serviced by ip_wsrv, and we need to do the tail 28213 * processing. 28214 * If this conn is part of the drain list, we may need to sustain the drain 28215 * process by qenabling the next conn in the drain list. We may also need to 28216 * remove this conn from the list, if it is done. 28217 */ 28218 static void 28219 conn_drain_tail(conn_t *connp, boolean_t closing) 28220 { 28221 idl_t *idl; 28222 28223 /* 28224 * connp->conn_idl is stable at this point, and no lock is needed 28225 * to check it. If we are called from ip_close, close has already 28226 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28227 * called us only because conn_idl is non-null. If we are called thru 28228 * service, conn_idl could be null, but it cannot change because 28229 * service is single-threaded per queue, and there cannot be another 28230 * instance of service trying to call conn_drain_insert on this conn 28231 * now. 28232 */ 28233 ASSERT(!closing || (connp->conn_idl != NULL)); 28234 28235 /* 28236 * If connp->conn_idl is null, the conn has not been inserted into any 28237 * drain list even once since creation of the conn. Just return. 28238 */ 28239 if (connp->conn_idl == NULL) 28240 return; 28241 28242 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28243 28244 if (connp->conn_drain_prev == NULL) { 28245 /* This conn is currently not in the drain list. */ 28246 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28247 return; 28248 } 28249 idl = connp->conn_idl; 28250 if (idl->idl_conn_draining == connp) { 28251 /* 28252 * This conn is the current drainer. If this is the last conn 28253 * in the drain list, we need to do more checks, in the 'if' 28254 * below. Otherwwise we need to just qenable the next conn, 28255 * to sustain the draining, and is handled in the 'else' 28256 * below. 28257 */ 28258 if (connp->conn_drain_next == idl->idl_conn) { 28259 /* 28260 * This conn is the last in this list. This round 28261 * of draining is complete. If idl_repeat is set, 28262 * it means another flow enabling has happened from 28263 * the driver/streams and we need to another round 28264 * of draining. 28265 * If there are more than 2 conns in the drain list, 28266 * do a left rotate by 1, so that all conns except the 28267 * conn at the head move towards the head by 1, and the 28268 * the conn at the head goes to the tail. This attempts 28269 * a more even share for all queues that are being 28270 * drained. 28271 */ 28272 if ((connp->conn_drain_next != connp) && 28273 (idl->idl_conn->conn_drain_next != connp)) { 28274 idl->idl_conn = idl->idl_conn->conn_drain_next; 28275 } 28276 if (idl->idl_repeat) { 28277 qenable(idl->idl_conn->conn_wq); 28278 idl->idl_conn_draining = idl->idl_conn; 28279 idl->idl_repeat = 0; 28280 } else { 28281 idl->idl_conn_draining = NULL; 28282 } 28283 } else { 28284 /* 28285 * If the next queue that we are now qenable'ing, 28286 * is closing, it will remove itself from this list 28287 * and qenable the subsequent queue in ip_close(). 28288 * Serialization is acheived thru idl_lock. 28289 */ 28290 qenable(connp->conn_drain_next->conn_wq); 28291 idl->idl_conn_draining = connp->conn_drain_next; 28292 } 28293 } 28294 if (!connp->conn_did_putbq || closing) { 28295 /* 28296 * Remove ourself from the drain list, if we did not do 28297 * a putbq, or if the conn is closing. 28298 * Note: It is possible that q->q_first is non-null. It means 28299 * that these messages landed after we did a enableok() in 28300 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28301 * service them. 28302 */ 28303 if (connp->conn_drain_next == connp) { 28304 /* Singleton in the list */ 28305 ASSERT(connp->conn_drain_prev == connp); 28306 idl->idl_conn = NULL; 28307 idl->idl_conn_draining = NULL; 28308 } else { 28309 connp->conn_drain_prev->conn_drain_next = 28310 connp->conn_drain_next; 28311 connp->conn_drain_next->conn_drain_prev = 28312 connp->conn_drain_prev; 28313 if (idl->idl_conn == connp) 28314 idl->idl_conn = connp->conn_drain_next; 28315 ASSERT(idl->idl_conn_draining != connp); 28316 28317 } 28318 connp->conn_drain_next = NULL; 28319 connp->conn_drain_prev = NULL; 28320 28321 /* 28322 * For non streams based sockets open up flow control. 28323 */ 28324 if (IPCL_IS_NONSTR(connp)) { 28325 (*connp->conn_upcalls->su_txq_full) 28326 (connp->conn_upper_handle, B_FALSE); 28327 } else { 28328 conn_clrqfull(connp); 28329 enableok(connp->conn_wq); 28330 } 28331 } 28332 28333 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28334 } 28335 28336 /* 28337 * Write service routine. Shared perimeter entry point. 28338 * ip_wsrv can be called in any of the following ways. 28339 * 1. The device queue's messages has fallen below the low water mark 28340 * and STREAMS has backenabled the ill_wq. We walk thru all the 28341 * the drain lists and backenable the first conn in each list. 28342 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28343 * qenabled non-tcp upper layers. We start dequeing messages and call 28344 * ip_wput for each message. 28345 */ 28346 28347 void 28348 ip_wsrv(queue_t *q) 28349 { 28350 conn_t *connp; 28351 ill_t *ill; 28352 mblk_t *mp; 28353 28354 if (q->q_next) { 28355 ill = (ill_t *)q->q_ptr; 28356 if (ill->ill_state_flags == 0) { 28357 ip_stack_t *ipst = ill->ill_ipst; 28358 28359 /* 28360 * The device flow control has opened up. 28361 * Walk through conn drain lists and qenable the 28362 * first conn in each list. This makes sense only 28363 * if the stream is fully plumbed and setup. 28364 * Hence the if check above. 28365 */ 28366 ip1dbg(("ip_wsrv: walking\n")); 28367 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28368 } 28369 return; 28370 } 28371 28372 connp = Q_TO_CONN(q); 28373 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28374 28375 /* 28376 * 1. Set conn_draining flag to signal that service is active. 28377 * 28378 * 2. ip_output determines whether it has been called from service, 28379 * based on the last parameter. If it is IP_WSRV it concludes it 28380 * has been called from service. 28381 * 28382 * 3. Message ordering is preserved by the following logic. 28383 * i. A directly called ip_output (i.e. not thru service) will queue 28384 * the message at the tail, if conn_draining is set (i.e. service 28385 * is running) or if q->q_first is non-null. 28386 * 28387 * ii. If ip_output is called from service, and if ip_output cannot 28388 * putnext due to flow control, it does a putbq. 28389 * 28390 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28391 * (causing an infinite loop). 28392 */ 28393 ASSERT(!connp->conn_did_putbq); 28394 28395 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28396 connp->conn_draining = 1; 28397 noenable(q); 28398 while ((mp = getq(q)) != NULL) { 28399 ASSERT(CONN_Q(q)); 28400 28401 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28402 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28403 if (connp->conn_did_putbq) { 28404 /* ip_wput did a putbq */ 28405 break; 28406 } 28407 } 28408 /* 28409 * At this point, a thread coming down from top, calling 28410 * ip_wput, may end up queueing the message. We have not yet 28411 * enabled the queue, so ip_wsrv won't be called again. 28412 * To avoid this race, check q->q_first again (in the loop) 28413 * If the other thread queued the message before we call 28414 * enableok(), we will catch it in the q->q_first check. 28415 * If the other thread queues the message after we call 28416 * enableok(), ip_wsrv will be called again by STREAMS. 28417 */ 28418 connp->conn_draining = 0; 28419 enableok(q); 28420 } 28421 28422 /* Enable the next conn for draining */ 28423 conn_drain_tail(connp, B_FALSE); 28424 28425 /* 28426 * conn_direct_blocked is used to indicate blocked 28427 * condition for direct path (ILL_DIRECT_CAPABLE()). 28428 * This is the only place where it is set without 28429 * checking for ILL_DIRECT_CAPABLE() and setting it 28430 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28431 */ 28432 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28433 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28434 connp->conn_direct_blocked = B_FALSE; 28435 } 28436 28437 connp->conn_did_putbq = 0; 28438 } 28439 28440 /* 28441 * Callback to disable flow control in IP. 28442 * 28443 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28444 * is enabled. 28445 * 28446 * When MAC_TX() is not able to send any more packets, dld sets its queue 28447 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28448 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28449 * function and wakes up corresponding mac worker threads, which in turn 28450 * calls this callback function, and disables flow control. 28451 */ 28452 void 28453 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28454 { 28455 ill_t *ill = (ill_t *)arg; 28456 ip_stack_t *ipst = ill->ill_ipst; 28457 idl_tx_list_t *idl_txl; 28458 28459 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28460 mutex_enter(&idl_txl->txl_lock); 28461 /* add code to to set a flag to indicate idl_txl is enabled */ 28462 conn_walk_drain(ipst, idl_txl); 28463 mutex_exit(&idl_txl->txl_lock); 28464 } 28465 28466 /* 28467 * Walk the list of all conn's calling the function provided with the 28468 * specified argument for each. Note that this only walks conn's that 28469 * have been bound. 28470 * Applies to both IPv4 and IPv6. 28471 */ 28472 static void 28473 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28474 { 28475 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28476 ipst->ips_ipcl_udp_fanout_size, 28477 func, arg, zoneid); 28478 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28479 ipst->ips_ipcl_conn_fanout_size, 28480 func, arg, zoneid); 28481 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28482 ipst->ips_ipcl_bind_fanout_size, 28483 func, arg, zoneid); 28484 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28485 IPPROTO_MAX, func, arg, zoneid); 28486 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28487 IPPROTO_MAX, func, arg, zoneid); 28488 } 28489 28490 /* 28491 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28492 * of conns that need to be drained, check if drain is already in progress. 28493 * If so set the idl_repeat bit, indicating that the last conn in the list 28494 * needs to reinitiate the drain once again, for the list. If drain is not 28495 * in progress for the list, initiate the draining, by qenabling the 1st 28496 * conn in the list. The drain is self-sustaining, each qenabled conn will 28497 * in turn qenable the next conn, when it is done/blocked/closing. 28498 */ 28499 static void 28500 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28501 { 28502 int i; 28503 idl_t *idl; 28504 28505 IP_STAT(ipst, ip_conn_walk_drain); 28506 28507 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28508 idl = &tx_list->txl_drain_list[i]; 28509 mutex_enter(&idl->idl_lock); 28510 if (idl->idl_conn == NULL) { 28511 mutex_exit(&idl->idl_lock); 28512 continue; 28513 } 28514 /* 28515 * If this list is not being drained currently by 28516 * an ip_wsrv thread, start the process. 28517 */ 28518 if (idl->idl_conn_draining == NULL) { 28519 ASSERT(idl->idl_repeat == 0); 28520 qenable(idl->idl_conn->conn_wq); 28521 idl->idl_conn_draining = idl->idl_conn; 28522 } else { 28523 idl->idl_repeat = 1; 28524 } 28525 mutex_exit(&idl->idl_lock); 28526 } 28527 } 28528 28529 /* 28530 * Walk an conn hash table of `count' buckets, calling func for each entry. 28531 */ 28532 static void 28533 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28534 zoneid_t zoneid) 28535 { 28536 conn_t *connp; 28537 28538 while (count-- > 0) { 28539 mutex_enter(&connfp->connf_lock); 28540 for (connp = connfp->connf_head; connp != NULL; 28541 connp = connp->conn_next) { 28542 if (zoneid == GLOBAL_ZONEID || 28543 zoneid == connp->conn_zoneid) { 28544 CONN_INC_REF(connp); 28545 mutex_exit(&connfp->connf_lock); 28546 (*func)(connp, arg); 28547 mutex_enter(&connfp->connf_lock); 28548 CONN_DEC_REF(connp); 28549 } 28550 } 28551 mutex_exit(&connfp->connf_lock); 28552 connfp++; 28553 } 28554 } 28555 28556 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28557 static void 28558 conn_report1(conn_t *connp, void *mp) 28559 { 28560 char buf1[INET6_ADDRSTRLEN]; 28561 char buf2[INET6_ADDRSTRLEN]; 28562 uint_t print_len, buf_len; 28563 28564 ASSERT(connp != NULL); 28565 28566 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28567 if (buf_len <= 0) 28568 return; 28569 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28570 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28571 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28572 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28573 "%5d %s/%05d %s/%05d\n", 28574 (void *)connp, (void *)CONNP_TO_RQ(connp), 28575 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28576 buf1, connp->conn_lport, 28577 buf2, connp->conn_fport); 28578 if (print_len < buf_len) { 28579 ((mblk_t *)mp)->b_wptr += print_len; 28580 } else { 28581 ((mblk_t *)mp)->b_wptr += buf_len; 28582 } 28583 } 28584 28585 /* 28586 * Named Dispatch routine to produce a formatted report on all conns 28587 * that are listed in one of the fanout tables. 28588 * This report is accessed by using the ndd utility to "get" ND variable 28589 * "ip_conn_status". 28590 */ 28591 /* ARGSUSED */ 28592 static int 28593 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28594 { 28595 conn_t *connp = Q_TO_CONN(q); 28596 28597 (void) mi_mpprintf(mp, 28598 "CONN " MI_COL_HDRPAD_STR 28599 "rfq " MI_COL_HDRPAD_STR 28600 "stq " MI_COL_HDRPAD_STR 28601 " zone local remote"); 28602 28603 /* 28604 * Because of the ndd constraint, at most we can have 64K buffer 28605 * to put in all conn info. So to be more efficient, just 28606 * allocate a 64K buffer here, assuming we need that large buffer. 28607 * This should be OK as only privileged processes can do ndd /dev/ip. 28608 */ 28609 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28610 /* The following may work even if we cannot get a large buf. */ 28611 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28612 return (0); 28613 } 28614 28615 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28616 connp->conn_netstack->netstack_ip); 28617 return (0); 28618 } 28619 28620 /* 28621 * Determine if the ill and multicast aspects of that packets 28622 * "matches" the conn. 28623 */ 28624 boolean_t 28625 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28626 zoneid_t zoneid) 28627 { 28628 ill_t *bound_ill; 28629 boolean_t found; 28630 ipif_t *ipif; 28631 ire_t *ire; 28632 ipaddr_t dst, src; 28633 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28634 28635 dst = ipha->ipha_dst; 28636 src = ipha->ipha_src; 28637 28638 /* 28639 * conn_incoming_ill is set by IP_BOUND_IF which limits 28640 * unicast, broadcast and multicast reception to 28641 * conn_incoming_ill. conn_wantpacket itself is called 28642 * only for BROADCAST and multicast. 28643 */ 28644 bound_ill = connp->conn_incoming_ill; 28645 if (bound_ill != NULL) { 28646 if (IS_IPMP(bound_ill)) { 28647 if (bound_ill->ill_grp != ill->ill_grp) 28648 return (B_FALSE); 28649 } else { 28650 if (bound_ill != ill) 28651 return (B_FALSE); 28652 } 28653 } 28654 28655 if (!CLASSD(dst)) { 28656 if (IPCL_ZONE_MATCH(connp, zoneid)) 28657 return (B_TRUE); 28658 /* 28659 * The conn is in a different zone; we need to check that this 28660 * broadcast address is configured in the application's zone. 28661 */ 28662 ipif = ipif_get_next_ipif(NULL, ill); 28663 if (ipif == NULL) 28664 return (B_FALSE); 28665 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28666 connp->conn_zoneid, NULL, 28667 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28668 ipif_refrele(ipif); 28669 if (ire != NULL) { 28670 ire_refrele(ire); 28671 return (B_TRUE); 28672 } else { 28673 return (B_FALSE); 28674 } 28675 } 28676 28677 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28678 connp->conn_zoneid == zoneid) { 28679 /* 28680 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28681 * disabled, therefore we don't dispatch the multicast packet to 28682 * the sending zone. 28683 */ 28684 return (B_FALSE); 28685 } 28686 28687 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28688 /* 28689 * Multicast packet on the loopback interface: we only match 28690 * conns who joined the group in the specified zone. 28691 */ 28692 return (B_FALSE); 28693 } 28694 28695 if (connp->conn_multi_router) { 28696 /* multicast packet and multicast router socket: send up */ 28697 return (B_TRUE); 28698 } 28699 28700 mutex_enter(&connp->conn_lock); 28701 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28702 mutex_exit(&connp->conn_lock); 28703 return (found); 28704 } 28705 28706 static void 28707 conn_setqfull(conn_t *connp) 28708 { 28709 queue_t *q = connp->conn_wq; 28710 28711 if (!(q->q_flag & QFULL)) { 28712 mutex_enter(QLOCK(q)); 28713 if (!(q->q_flag & QFULL)) { 28714 /* still need to set QFULL */ 28715 q->q_flag |= QFULL; 28716 mutex_exit(QLOCK(q)); 28717 } else { 28718 mutex_exit(QLOCK(q)); 28719 } 28720 } 28721 } 28722 28723 static void 28724 conn_clrqfull(conn_t *connp) 28725 { 28726 queue_t *q = connp->conn_wq; 28727 28728 if (q->q_flag & QFULL) { 28729 mutex_enter(QLOCK(q)); 28730 if (q->q_flag & QFULL) { 28731 q->q_flag &= ~QFULL; 28732 mutex_exit(QLOCK(q)); 28733 if (q->q_flag & QWANTW) 28734 qbackenable(q, 0); 28735 } else { 28736 mutex_exit(QLOCK(q)); 28737 } 28738 } 28739 } 28740 28741 /* 28742 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28743 */ 28744 /* ARGSUSED */ 28745 static void 28746 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28747 { 28748 ill_t *ill = (ill_t *)q->q_ptr; 28749 mblk_t *mp1, *mp2; 28750 ipif_t *ipif; 28751 int err = 0; 28752 conn_t *connp = NULL; 28753 ipsq_t *ipsq; 28754 arc_t *arc; 28755 28756 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28757 28758 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28759 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28760 28761 ASSERT(IAM_WRITER_ILL(ill)); 28762 mp2 = mp->b_cont; 28763 mp->b_cont = NULL; 28764 28765 /* 28766 * We have now received the arp bringup completion message 28767 * from ARP. Mark the arp bringup as done. Also if the arp 28768 * stream has already started closing, send up the AR_ARP_CLOSING 28769 * ack now since ARP is waiting in close for this ack. 28770 */ 28771 mutex_enter(&ill->ill_lock); 28772 ill->ill_arp_bringup_pending = 0; 28773 if (ill->ill_arp_closing) { 28774 mutex_exit(&ill->ill_lock); 28775 /* Let's reuse the mp for sending the ack */ 28776 arc = (arc_t *)mp->b_rptr; 28777 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28778 arc->arc_cmd = AR_ARP_CLOSING; 28779 qreply(q, mp); 28780 } else { 28781 mutex_exit(&ill->ill_lock); 28782 freeb(mp); 28783 } 28784 28785 ipsq = ill->ill_phyint->phyint_ipsq; 28786 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28787 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28788 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28789 if (mp1 == NULL) { 28790 /* bringup was aborted by the user */ 28791 freemsg(mp2); 28792 return; 28793 } 28794 28795 /* 28796 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28797 * must have an associated conn_t. Otherwise, we're bringing this 28798 * interface back up as part of handling an asynchronous event (e.g., 28799 * physical address change). 28800 */ 28801 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28802 ASSERT(connp != NULL); 28803 q = CONNP_TO_WQ(connp); 28804 } else { 28805 ASSERT(connp == NULL); 28806 q = ill->ill_rq; 28807 } 28808 28809 /* 28810 * If the DL_BIND_REQ fails, it is noted 28811 * in arc_name_offset. 28812 */ 28813 err = *((int *)mp2->b_rptr); 28814 if (err == 0) { 28815 if (ipif->ipif_isv6) { 28816 if ((err = ipif_up_done_v6(ipif)) != 0) 28817 ip0dbg(("ip_arp_done: init failed\n")); 28818 } else { 28819 if ((err = ipif_up_done(ipif)) != 0) 28820 ip0dbg(("ip_arp_done: init failed\n")); 28821 } 28822 } else { 28823 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28824 } 28825 28826 freemsg(mp2); 28827 28828 if ((err == 0) && (ill->ill_up_ipifs)) { 28829 err = ill_up_ipifs(ill, q, mp1); 28830 if (err == EINPROGRESS) 28831 return; 28832 } 28833 28834 /* 28835 * If we have a moved ipif to bring up, and everything has succeeded 28836 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28837 * down -- the admin can try to bring it up by hand if need be. 28838 */ 28839 if (ill->ill_move_ipif != NULL) { 28840 ipif = ill->ill_move_ipif; 28841 ill->ill_move_ipif = NULL; 28842 if (err == 0) { 28843 err = ipif_up(ipif, q, mp1); 28844 if (err == EINPROGRESS) 28845 return; 28846 } 28847 } 28848 28849 /* 28850 * The operation must complete without EINPROGRESS since 28851 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28852 * operation will be stuck forever in the ipsq. 28853 */ 28854 ASSERT(err != EINPROGRESS); 28855 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28856 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28857 else 28858 ipsq_current_finish(ipsq); 28859 } 28860 28861 /* Allocate the private structure */ 28862 static int 28863 ip_priv_alloc(void **bufp) 28864 { 28865 void *buf; 28866 28867 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28868 return (ENOMEM); 28869 28870 *bufp = buf; 28871 return (0); 28872 } 28873 28874 /* Function to delete the private structure */ 28875 void 28876 ip_priv_free(void *buf) 28877 { 28878 ASSERT(buf != NULL); 28879 kmem_free(buf, sizeof (ip_priv_t)); 28880 } 28881 28882 /* 28883 * The entry point for IPPF processing. 28884 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28885 * routine just returns. 28886 * 28887 * When called, ip_process generates an ipp_packet_t structure 28888 * which holds the state information for this packet and invokes the 28889 * the classifier (via ipp_packet_process). The classification, depending on 28890 * configured filters, results in a list of actions for this packet. Invoking 28891 * an action may cause the packet to be dropped, in which case the resulting 28892 * mblk (*mpp) is NULL. proc indicates the callout position for 28893 * this packet and ill_index is the interface this packet on or will leave 28894 * on (inbound and outbound resp.). 28895 */ 28896 void 28897 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28898 { 28899 mblk_t *mp; 28900 ip_priv_t *priv; 28901 ipp_action_id_t aid; 28902 int rc = 0; 28903 ipp_packet_t *pp; 28904 #define IP_CLASS "ip" 28905 28906 /* If the classifier is not loaded, return */ 28907 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28908 return; 28909 } 28910 28911 mp = *mpp; 28912 ASSERT(mp != NULL); 28913 28914 /* Allocate the packet structure */ 28915 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28916 if (rc != 0) { 28917 *mpp = NULL; 28918 freemsg(mp); 28919 return; 28920 } 28921 28922 /* Allocate the private structure */ 28923 rc = ip_priv_alloc((void **)&priv); 28924 if (rc != 0) { 28925 *mpp = NULL; 28926 freemsg(mp); 28927 ipp_packet_free(pp); 28928 return; 28929 } 28930 priv->proc = proc; 28931 priv->ill_index = ill_index; 28932 ipp_packet_set_private(pp, priv, ip_priv_free); 28933 ipp_packet_set_data(pp, mp); 28934 28935 /* Invoke the classifier */ 28936 rc = ipp_packet_process(&pp); 28937 if (pp != NULL) { 28938 mp = ipp_packet_get_data(pp); 28939 ipp_packet_free(pp); 28940 if (rc != 0) { 28941 freemsg(mp); 28942 *mpp = NULL; 28943 } 28944 } else { 28945 *mpp = NULL; 28946 } 28947 #undef IP_CLASS 28948 } 28949 28950 /* 28951 * Propagate a multicast group membership operation (add/drop) on 28952 * all the interfaces crossed by the related multirt routes. 28953 * The call is considered successful if the operation succeeds 28954 * on at least one interface. 28955 */ 28956 static int 28957 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28958 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28959 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28960 mblk_t *first_mp) 28961 { 28962 ire_t *ire_gw; 28963 irb_t *irb; 28964 int error = 0; 28965 opt_restart_t *or; 28966 ip_stack_t *ipst = ire->ire_ipst; 28967 28968 irb = ire->ire_bucket; 28969 ASSERT(irb != NULL); 28970 28971 ASSERT(DB_TYPE(first_mp) == M_CTL); 28972 28973 or = (opt_restart_t *)first_mp->b_rptr; 28974 IRB_REFHOLD(irb); 28975 for (; ire != NULL; ire = ire->ire_next) { 28976 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28977 continue; 28978 if (ire->ire_addr != group) 28979 continue; 28980 28981 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28982 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28983 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28984 /* No resolver exists for the gateway; skip this ire. */ 28985 if (ire_gw == NULL) 28986 continue; 28987 28988 /* 28989 * This function can return EINPROGRESS. If so the operation 28990 * will be restarted from ip_restart_optmgmt which will 28991 * call ip_opt_set and option processing will restart for 28992 * this option. So we may end up calling 'fn' more than once. 28993 * This requires that 'fn' is idempotent except for the 28994 * return value. The operation is considered a success if 28995 * it succeeds at least once on any one interface. 28996 */ 28997 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28998 NULL, fmode, src, first_mp); 28999 if (error == 0) 29000 or->or_private = CGTP_MCAST_SUCCESS; 29001 29002 if (ip_debug > 0) { 29003 ulong_t off; 29004 char *ksym; 29005 ksym = kobj_getsymname((uintptr_t)fn, &off); 29006 ip2dbg(("ip_multirt_apply_membership: " 29007 "called %s, multirt group 0x%08x via itf 0x%08x, " 29008 "error %d [success %u]\n", 29009 ksym ? ksym : "?", 29010 ntohl(group), ntohl(ire_gw->ire_src_addr), 29011 error, or->or_private)); 29012 } 29013 29014 ire_refrele(ire_gw); 29015 if (error == EINPROGRESS) { 29016 IRB_REFRELE(irb); 29017 return (error); 29018 } 29019 } 29020 IRB_REFRELE(irb); 29021 /* 29022 * Consider the call as successful if we succeeded on at least 29023 * one interface. Otherwise, return the last encountered error. 29024 */ 29025 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29026 } 29027 29028 /* 29029 * Issue a warning regarding a route crossing an interface with an 29030 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29031 * amount of time is logged. 29032 */ 29033 static void 29034 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29035 { 29036 hrtime_t current = gethrtime(); 29037 char buf[INET_ADDRSTRLEN]; 29038 ip_stack_t *ipst = ire->ire_ipst; 29039 29040 /* Convert interval in ms to hrtime in ns */ 29041 if (ipst->ips_multirt_bad_mtu_last_time + 29042 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29043 current) { 29044 cmn_err(CE_WARN, "ip: ignoring multiroute " 29045 "to %s, incorrect MTU %u (expected %u)\n", 29046 ip_dot_addr(ire->ire_addr, buf), 29047 ire->ire_max_frag, max_frag); 29048 29049 ipst->ips_multirt_bad_mtu_last_time = current; 29050 } 29051 } 29052 29053 /* 29054 * Get the CGTP (multirouting) filtering status. 29055 * If 0, the CGTP hooks are transparent. 29056 */ 29057 /* ARGSUSED */ 29058 static int 29059 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29060 { 29061 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29062 29063 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29064 return (0); 29065 } 29066 29067 /* 29068 * Set the CGTP (multirouting) filtering status. 29069 * If the status is changed from active to transparent 29070 * or from transparent to active, forward the new status 29071 * to the filtering module (if loaded). 29072 */ 29073 /* ARGSUSED */ 29074 static int 29075 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29076 cred_t *ioc_cr) 29077 { 29078 long new_value; 29079 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29080 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29081 29082 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29083 return (EPERM); 29084 29085 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29086 new_value < 0 || new_value > 1) { 29087 return (EINVAL); 29088 } 29089 29090 if ((!*ip_cgtp_filter_value) && new_value) { 29091 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29092 ipst->ips_ip_cgtp_filter_ops == NULL ? 29093 " (module not loaded)" : ""); 29094 } 29095 if (*ip_cgtp_filter_value && (!new_value)) { 29096 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29097 ipst->ips_ip_cgtp_filter_ops == NULL ? 29098 " (module not loaded)" : ""); 29099 } 29100 29101 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29102 int res; 29103 netstackid_t stackid; 29104 29105 stackid = ipst->ips_netstack->netstack_stackid; 29106 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29107 new_value); 29108 if (res) 29109 return (res); 29110 } 29111 29112 *ip_cgtp_filter_value = (boolean_t)new_value; 29113 29114 return (0); 29115 } 29116 29117 /* 29118 * Return the expected CGTP hooks version number. 29119 */ 29120 int 29121 ip_cgtp_filter_supported(void) 29122 { 29123 return (ip_cgtp_filter_rev); 29124 } 29125 29126 /* 29127 * CGTP hooks can be registered by invoking this function. 29128 * Checks that the version number matches. 29129 */ 29130 int 29131 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29132 { 29133 netstack_t *ns; 29134 ip_stack_t *ipst; 29135 29136 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29137 return (ENOTSUP); 29138 29139 ns = netstack_find_by_stackid(stackid); 29140 if (ns == NULL) 29141 return (EINVAL); 29142 ipst = ns->netstack_ip; 29143 ASSERT(ipst != NULL); 29144 29145 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29146 netstack_rele(ns); 29147 return (EALREADY); 29148 } 29149 29150 ipst->ips_ip_cgtp_filter_ops = ops; 29151 netstack_rele(ns); 29152 return (0); 29153 } 29154 29155 /* 29156 * CGTP hooks can be unregistered by invoking this function. 29157 * Returns ENXIO if there was no registration. 29158 * Returns EBUSY if the ndd variable has not been turned off. 29159 */ 29160 int 29161 ip_cgtp_filter_unregister(netstackid_t stackid) 29162 { 29163 netstack_t *ns; 29164 ip_stack_t *ipst; 29165 29166 ns = netstack_find_by_stackid(stackid); 29167 if (ns == NULL) 29168 return (EINVAL); 29169 ipst = ns->netstack_ip; 29170 ASSERT(ipst != NULL); 29171 29172 if (ipst->ips_ip_cgtp_filter) { 29173 netstack_rele(ns); 29174 return (EBUSY); 29175 } 29176 29177 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29178 netstack_rele(ns); 29179 return (ENXIO); 29180 } 29181 ipst->ips_ip_cgtp_filter_ops = NULL; 29182 netstack_rele(ns); 29183 return (0); 29184 } 29185 29186 /* 29187 * Check whether there is a CGTP filter registration. 29188 * Returns non-zero if there is a registration, otherwise returns zero. 29189 * Note: returns zero if bad stackid. 29190 */ 29191 int 29192 ip_cgtp_filter_is_registered(netstackid_t stackid) 29193 { 29194 netstack_t *ns; 29195 ip_stack_t *ipst; 29196 int ret; 29197 29198 ns = netstack_find_by_stackid(stackid); 29199 if (ns == NULL) 29200 return (0); 29201 ipst = ns->netstack_ip; 29202 ASSERT(ipst != NULL); 29203 29204 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29205 ret = 1; 29206 else 29207 ret = 0; 29208 29209 netstack_rele(ns); 29210 return (ret); 29211 } 29212 29213 static int 29214 ip_squeue_switch(int val) 29215 { 29216 int rval = SQ_FILL; 29217 29218 switch (val) { 29219 case IP_SQUEUE_ENTER_NODRAIN: 29220 rval = SQ_NODRAIN; 29221 break; 29222 case IP_SQUEUE_ENTER: 29223 rval = SQ_PROCESS; 29224 break; 29225 default: 29226 break; 29227 } 29228 return (rval); 29229 } 29230 29231 /* ARGSUSED */ 29232 static int 29233 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29234 caddr_t addr, cred_t *cr) 29235 { 29236 int *v = (int *)addr; 29237 long new_value; 29238 29239 if (secpolicy_net_config(cr, B_FALSE) != 0) 29240 return (EPERM); 29241 29242 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29243 return (EINVAL); 29244 29245 ip_squeue_flag = ip_squeue_switch(new_value); 29246 *v = new_value; 29247 return (0); 29248 } 29249 29250 /* 29251 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29252 * ip_debug. 29253 */ 29254 /* ARGSUSED */ 29255 static int 29256 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29257 caddr_t addr, cred_t *cr) 29258 { 29259 int *v = (int *)addr; 29260 long new_value; 29261 29262 if (secpolicy_net_config(cr, B_FALSE) != 0) 29263 return (EPERM); 29264 29265 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29266 return (EINVAL); 29267 29268 *v = new_value; 29269 return (0); 29270 } 29271 29272 static void * 29273 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29274 { 29275 kstat_t *ksp; 29276 29277 ip_stat_t template = { 29278 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29279 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29280 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29281 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29282 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29283 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29284 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29285 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29286 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29287 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29288 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29289 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29290 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29291 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29292 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29293 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29294 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29295 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29296 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29297 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29298 { "ip_opt", KSTAT_DATA_UINT64 }, 29299 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29300 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29301 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29302 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29303 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29304 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29305 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29306 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29307 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29308 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29309 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29310 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29311 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29312 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29313 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29314 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29315 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29316 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29317 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29318 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29319 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29320 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29321 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29322 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29323 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29324 }; 29325 29326 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29327 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29328 KSTAT_FLAG_VIRTUAL, stackid); 29329 29330 if (ksp == NULL) 29331 return (NULL); 29332 29333 bcopy(&template, ip_statisticsp, sizeof (template)); 29334 ksp->ks_data = (void *)ip_statisticsp; 29335 ksp->ks_private = (void *)(uintptr_t)stackid; 29336 29337 kstat_install(ksp); 29338 return (ksp); 29339 } 29340 29341 static void 29342 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29343 { 29344 if (ksp != NULL) { 29345 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29346 kstat_delete_netstack(ksp, stackid); 29347 } 29348 } 29349 29350 static void * 29351 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29352 { 29353 kstat_t *ksp; 29354 29355 ip_named_kstat_t template = { 29356 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29357 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29358 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29359 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29360 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29361 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29362 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29363 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29364 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29365 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29366 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29367 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29368 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29369 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29370 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29371 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29372 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29373 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29374 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29375 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29376 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29377 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29378 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29379 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29380 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29381 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29382 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29383 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29384 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29385 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29386 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29387 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29388 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29389 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29390 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29391 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29392 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29393 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29394 }; 29395 29396 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29397 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29398 if (ksp == NULL || ksp->ks_data == NULL) 29399 return (NULL); 29400 29401 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29402 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29403 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29404 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29405 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29406 29407 template.netToMediaEntrySize.value.i32 = 29408 sizeof (mib2_ipNetToMediaEntry_t); 29409 29410 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29411 29412 bcopy(&template, ksp->ks_data, sizeof (template)); 29413 ksp->ks_update = ip_kstat_update; 29414 ksp->ks_private = (void *)(uintptr_t)stackid; 29415 29416 kstat_install(ksp); 29417 return (ksp); 29418 } 29419 29420 static void 29421 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29422 { 29423 if (ksp != NULL) { 29424 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29425 kstat_delete_netstack(ksp, stackid); 29426 } 29427 } 29428 29429 static int 29430 ip_kstat_update(kstat_t *kp, int rw) 29431 { 29432 ip_named_kstat_t *ipkp; 29433 mib2_ipIfStatsEntry_t ipmib; 29434 ill_walk_context_t ctx; 29435 ill_t *ill; 29436 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29437 netstack_t *ns; 29438 ip_stack_t *ipst; 29439 29440 if (kp == NULL || kp->ks_data == NULL) 29441 return (EIO); 29442 29443 if (rw == KSTAT_WRITE) 29444 return (EACCES); 29445 29446 ns = netstack_find_by_stackid(stackid); 29447 if (ns == NULL) 29448 return (-1); 29449 ipst = ns->netstack_ip; 29450 if (ipst == NULL) { 29451 netstack_rele(ns); 29452 return (-1); 29453 } 29454 ipkp = (ip_named_kstat_t *)kp->ks_data; 29455 29456 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29457 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29458 ill = ILL_START_WALK_V4(&ctx, ipst); 29459 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29460 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29461 rw_exit(&ipst->ips_ill_g_lock); 29462 29463 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29464 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29465 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29466 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29467 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29468 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29469 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29470 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29471 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29472 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29473 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29474 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29475 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29476 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29477 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29478 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29479 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29480 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29481 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29482 29483 ipkp->routingDiscards.value.ui32 = 0; 29484 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29485 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29486 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29487 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29488 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29489 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29490 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29491 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29492 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29493 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29494 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29495 29496 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29497 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29498 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29499 29500 netstack_rele(ns); 29501 29502 return (0); 29503 } 29504 29505 static void * 29506 icmp_kstat_init(netstackid_t stackid) 29507 { 29508 kstat_t *ksp; 29509 29510 icmp_named_kstat_t template = { 29511 { "inMsgs", KSTAT_DATA_UINT32 }, 29512 { "inErrors", KSTAT_DATA_UINT32 }, 29513 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29514 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29515 { "inParmProbs", KSTAT_DATA_UINT32 }, 29516 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29517 { "inRedirects", KSTAT_DATA_UINT32 }, 29518 { "inEchos", KSTAT_DATA_UINT32 }, 29519 { "inEchoReps", KSTAT_DATA_UINT32 }, 29520 { "inTimestamps", KSTAT_DATA_UINT32 }, 29521 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29522 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29523 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29524 { "outMsgs", KSTAT_DATA_UINT32 }, 29525 { "outErrors", KSTAT_DATA_UINT32 }, 29526 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29527 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29528 { "outParmProbs", KSTAT_DATA_UINT32 }, 29529 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29530 { "outRedirects", KSTAT_DATA_UINT32 }, 29531 { "outEchos", KSTAT_DATA_UINT32 }, 29532 { "outEchoReps", KSTAT_DATA_UINT32 }, 29533 { "outTimestamps", KSTAT_DATA_UINT32 }, 29534 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29535 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29536 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29537 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29538 { "inUnknowns", KSTAT_DATA_UINT32 }, 29539 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29540 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29541 { "outDrops", KSTAT_DATA_UINT32 }, 29542 { "inOverFlows", KSTAT_DATA_UINT32 }, 29543 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29544 }; 29545 29546 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29547 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29548 if (ksp == NULL || ksp->ks_data == NULL) 29549 return (NULL); 29550 29551 bcopy(&template, ksp->ks_data, sizeof (template)); 29552 29553 ksp->ks_update = icmp_kstat_update; 29554 ksp->ks_private = (void *)(uintptr_t)stackid; 29555 29556 kstat_install(ksp); 29557 return (ksp); 29558 } 29559 29560 static void 29561 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29562 { 29563 if (ksp != NULL) { 29564 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29565 kstat_delete_netstack(ksp, stackid); 29566 } 29567 } 29568 29569 static int 29570 icmp_kstat_update(kstat_t *kp, int rw) 29571 { 29572 icmp_named_kstat_t *icmpkp; 29573 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29574 netstack_t *ns; 29575 ip_stack_t *ipst; 29576 29577 if ((kp == NULL) || (kp->ks_data == NULL)) 29578 return (EIO); 29579 29580 if (rw == KSTAT_WRITE) 29581 return (EACCES); 29582 29583 ns = netstack_find_by_stackid(stackid); 29584 if (ns == NULL) 29585 return (-1); 29586 ipst = ns->netstack_ip; 29587 if (ipst == NULL) { 29588 netstack_rele(ns); 29589 return (-1); 29590 } 29591 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29592 29593 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29594 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29595 icmpkp->inDestUnreachs.value.ui32 = 29596 ipst->ips_icmp_mib.icmpInDestUnreachs; 29597 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29598 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29599 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29600 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29601 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29602 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29603 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29604 icmpkp->inTimestampReps.value.ui32 = 29605 ipst->ips_icmp_mib.icmpInTimestampReps; 29606 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29607 icmpkp->inAddrMaskReps.value.ui32 = 29608 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29609 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29610 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29611 icmpkp->outDestUnreachs.value.ui32 = 29612 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29613 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29614 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29615 icmpkp->outSrcQuenchs.value.ui32 = 29616 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29617 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29618 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29619 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29620 icmpkp->outTimestamps.value.ui32 = 29621 ipst->ips_icmp_mib.icmpOutTimestamps; 29622 icmpkp->outTimestampReps.value.ui32 = 29623 ipst->ips_icmp_mib.icmpOutTimestampReps; 29624 icmpkp->outAddrMasks.value.ui32 = 29625 ipst->ips_icmp_mib.icmpOutAddrMasks; 29626 icmpkp->outAddrMaskReps.value.ui32 = 29627 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29628 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29629 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29630 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29631 icmpkp->outFragNeeded.value.ui32 = 29632 ipst->ips_icmp_mib.icmpOutFragNeeded; 29633 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29634 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29635 icmpkp->inBadRedirects.value.ui32 = 29636 ipst->ips_icmp_mib.icmpInBadRedirects; 29637 29638 netstack_rele(ns); 29639 return (0); 29640 } 29641 29642 /* 29643 * This is the fanout function for raw socket opened for SCTP. Note 29644 * that it is called after SCTP checks that there is no socket which 29645 * wants a packet. Then before SCTP handles this out of the blue packet, 29646 * this function is called to see if there is any raw socket for SCTP. 29647 * If there is and it is bound to the correct address, the packet will 29648 * be sent to that socket. Note that only one raw socket can be bound to 29649 * a port. This is assured in ipcl_sctp_hash_insert(); 29650 */ 29651 void 29652 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29653 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29654 zoneid_t zoneid) 29655 { 29656 conn_t *connp; 29657 queue_t *rq; 29658 mblk_t *first_mp; 29659 boolean_t secure; 29660 ip6_t *ip6h; 29661 ip_stack_t *ipst = recv_ill->ill_ipst; 29662 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29663 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29664 boolean_t sctp_csum_err = B_FALSE; 29665 29666 if (flags & IP_FF_SCTP_CSUM_ERR) { 29667 sctp_csum_err = B_TRUE; 29668 flags &= ~IP_FF_SCTP_CSUM_ERR; 29669 } 29670 29671 first_mp = mp; 29672 if (mctl_present) { 29673 mp = first_mp->b_cont; 29674 secure = ipsec_in_is_secure(first_mp); 29675 ASSERT(mp != NULL); 29676 } else { 29677 secure = B_FALSE; 29678 } 29679 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29680 29681 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29682 if (connp == NULL) { 29683 /* 29684 * Although raw sctp is not summed, OOB chunks must be. 29685 * Drop the packet here if the sctp checksum failed. 29686 */ 29687 if (sctp_csum_err) { 29688 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29689 freemsg(first_mp); 29690 return; 29691 } 29692 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29693 return; 29694 } 29695 rq = connp->conn_rq; 29696 if (!canputnext(rq)) { 29697 CONN_DEC_REF(connp); 29698 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29699 freemsg(first_mp); 29700 return; 29701 } 29702 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29703 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29704 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29705 (isv4 ? ipha : NULL), ip6h, mctl_present); 29706 if (first_mp == NULL) { 29707 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29708 CONN_DEC_REF(connp); 29709 return; 29710 } 29711 } 29712 /* 29713 * We probably should not send M_CTL message up to 29714 * raw socket. 29715 */ 29716 if (mctl_present) 29717 freeb(first_mp); 29718 29719 /* Initiate IPPF processing here if needed. */ 29720 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29721 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29722 ip_process(IPP_LOCAL_IN, &mp, 29723 recv_ill->ill_phyint->phyint_ifindex); 29724 if (mp == NULL) { 29725 CONN_DEC_REF(connp); 29726 return; 29727 } 29728 } 29729 29730 if (connp->conn_recvif || connp->conn_recvslla || 29731 ((connp->conn_ip_recvpktinfo || 29732 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29733 (flags & IP_FF_IPINFO))) { 29734 int in_flags = 0; 29735 29736 /* 29737 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29738 * IPF_RECVIF. 29739 */ 29740 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29741 in_flags = IPF_RECVIF; 29742 } 29743 if (connp->conn_recvslla) { 29744 in_flags |= IPF_RECVSLLA; 29745 } 29746 if (isv4) { 29747 mp = ip_add_info(mp, recv_ill, in_flags, 29748 IPCL_ZONEID(connp), ipst); 29749 } else { 29750 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29751 if (mp == NULL) { 29752 BUMP_MIB(recv_ill->ill_ip_mib, 29753 ipIfStatsInDiscards); 29754 CONN_DEC_REF(connp); 29755 return; 29756 } 29757 } 29758 } 29759 29760 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29761 /* 29762 * We are sending the IPSEC_IN message also up. Refer 29763 * to comments above this function. 29764 * This is the SOCK_RAW, IPPROTO_SCTP case. 29765 */ 29766 (connp->conn_recv)(connp, mp, NULL); 29767 CONN_DEC_REF(connp); 29768 } 29769 29770 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29771 { \ 29772 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29773 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29774 } 29775 /* 29776 * This function should be called only if all packet processing 29777 * including fragmentation is complete. Callers of this function 29778 * must set mp->b_prev to one of these values: 29779 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29780 * prior to handing over the mp as first argument to this function. 29781 * 29782 * If the ire passed by caller is incomplete, this function 29783 * queues the packet and if necessary, sends ARP request and bails. 29784 * If the ire passed is fully resolved, we simply prepend 29785 * the link-layer header to the packet, do ipsec hw acceleration 29786 * work if necessary, and send the packet out on the wire. 29787 * 29788 * NOTE: IPsec will only call this function with fully resolved 29789 * ires if hw acceleration is involved. 29790 * TODO list : 29791 * a Handle M_MULTIDATA so that 29792 * tcp_multisend->tcp_multisend_data can 29793 * call ip_xmit_v4 directly 29794 * b Handle post-ARP work for fragments so that 29795 * ip_wput_frag can call this function. 29796 */ 29797 ipxmit_state_t 29798 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29799 boolean_t flow_ctl_enabled, conn_t *connp) 29800 { 29801 nce_t *arpce; 29802 ipha_t *ipha; 29803 queue_t *q; 29804 int ill_index; 29805 mblk_t *nxt_mp, *first_mp; 29806 boolean_t xmit_drop = B_FALSE; 29807 ip_proc_t proc; 29808 ill_t *out_ill; 29809 int pkt_len; 29810 29811 arpce = ire->ire_nce; 29812 ASSERT(arpce != NULL); 29813 29814 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29815 29816 mutex_enter(&arpce->nce_lock); 29817 switch (arpce->nce_state) { 29818 case ND_REACHABLE: 29819 /* If there are other queued packets, queue this packet */ 29820 if (arpce->nce_qd_mp != NULL) { 29821 if (mp != NULL) 29822 nce_queue_mp_common(arpce, mp, B_FALSE); 29823 mp = arpce->nce_qd_mp; 29824 } 29825 arpce->nce_qd_mp = NULL; 29826 mutex_exit(&arpce->nce_lock); 29827 29828 /* 29829 * Flush the queue. In the common case, where the 29830 * ARP is already resolved, it will go through the 29831 * while loop only once. 29832 */ 29833 while (mp != NULL) { 29834 29835 nxt_mp = mp->b_next; 29836 mp->b_next = NULL; 29837 ASSERT(mp->b_datap->db_type != M_CTL); 29838 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29839 /* 29840 * This info is needed for IPQOS to do COS marking 29841 * in ip_wput_attach_llhdr->ip_process. 29842 */ 29843 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29844 mp->b_prev = NULL; 29845 29846 /* set up ill index for outbound qos processing */ 29847 out_ill = ire_to_ill(ire); 29848 ill_index = out_ill->ill_phyint->phyint_ifindex; 29849 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29850 ill_index, &ipha); 29851 if (first_mp == NULL) { 29852 xmit_drop = B_TRUE; 29853 BUMP_MIB(out_ill->ill_ip_mib, 29854 ipIfStatsOutDiscards); 29855 goto next_mp; 29856 } 29857 29858 /* non-ipsec hw accel case */ 29859 if (io == NULL || !io->ipsec_out_accelerated) { 29860 /* send it */ 29861 q = ire->ire_stq; 29862 if (proc == IPP_FWD_OUT) { 29863 UPDATE_IB_PKT_COUNT(ire); 29864 } else { 29865 UPDATE_OB_PKT_COUNT(ire); 29866 } 29867 ire->ire_last_used_time = lbolt; 29868 29869 if (flow_ctl_enabled || canputnext(q)) { 29870 if (proc == IPP_FWD_OUT) { 29871 29872 BUMP_MIB(out_ill->ill_ip_mib, 29873 ipIfStatsHCOutForwDatagrams); 29874 29875 } 29876 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29877 pkt_len); 29878 29879 DTRACE_IP7(send, mblk_t *, first_mp, 29880 conn_t *, NULL, void_ip_t *, ipha, 29881 __dtrace_ipsr_ill_t *, out_ill, 29882 ipha_t *, ipha, ip6_t *, NULL, int, 29883 0); 29884 29885 ILL_SEND_TX(out_ill, 29886 ire, connp, first_mp, 0, connp); 29887 } else { 29888 BUMP_MIB(out_ill->ill_ip_mib, 29889 ipIfStatsOutDiscards); 29890 xmit_drop = B_TRUE; 29891 freemsg(first_mp); 29892 } 29893 } else { 29894 /* 29895 * Safety Pup says: make sure this 29896 * is going to the right interface! 29897 */ 29898 ill_t *ill1 = 29899 (ill_t *)ire->ire_stq->q_ptr; 29900 int ifindex = 29901 ill1->ill_phyint->phyint_ifindex; 29902 if (ifindex != 29903 io->ipsec_out_capab_ill_index) { 29904 xmit_drop = B_TRUE; 29905 freemsg(mp); 29906 } else { 29907 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29908 pkt_len); 29909 29910 DTRACE_IP7(send, mblk_t *, first_mp, 29911 conn_t *, NULL, void_ip_t *, ipha, 29912 __dtrace_ipsr_ill_t *, ill1, 29913 ipha_t *, ipha, ip6_t *, NULL, 29914 int, 0); 29915 29916 ipsec_hw_putnext(ire->ire_stq, mp); 29917 } 29918 } 29919 next_mp: 29920 mp = nxt_mp; 29921 } /* while (mp != NULL) */ 29922 if (xmit_drop) 29923 return (SEND_FAILED); 29924 else 29925 return (SEND_PASSED); 29926 29927 case ND_INITIAL: 29928 case ND_INCOMPLETE: 29929 29930 /* 29931 * While we do send off packets to dests that 29932 * use fully-resolved CGTP routes, we do not 29933 * handle unresolved CGTP routes. 29934 */ 29935 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29936 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29937 29938 if (mp != NULL) { 29939 /* queue the packet */ 29940 nce_queue_mp_common(arpce, mp, B_FALSE); 29941 } 29942 29943 if (arpce->nce_state == ND_INCOMPLETE) { 29944 mutex_exit(&arpce->nce_lock); 29945 DTRACE_PROBE3(ip__xmit__incomplete, 29946 (ire_t *), ire, (mblk_t *), mp, 29947 (ipsec_out_t *), io); 29948 return (LOOKUP_IN_PROGRESS); 29949 } 29950 29951 arpce->nce_state = ND_INCOMPLETE; 29952 mutex_exit(&arpce->nce_lock); 29953 29954 /* 29955 * Note that ire_add() (called from ire_forward()) 29956 * holds a ref on the ire until ARP is completed. 29957 */ 29958 ire_arpresolve(ire); 29959 return (LOOKUP_IN_PROGRESS); 29960 default: 29961 ASSERT(0); 29962 mutex_exit(&arpce->nce_lock); 29963 return (LLHDR_RESLV_FAILED); 29964 } 29965 } 29966 29967 #undef UPDATE_IP_MIB_OB_COUNTERS 29968 29969 /* 29970 * Return B_TRUE if the buffers differ in length or content. 29971 * This is used for comparing extension header buffers. 29972 * Note that an extension header would be declared different 29973 * even if all that changed was the next header value in that header i.e. 29974 * what really changed is the next extension header. 29975 */ 29976 boolean_t 29977 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29978 uint_t blen) 29979 { 29980 if (!b_valid) 29981 blen = 0; 29982 29983 if (alen != blen) 29984 return (B_TRUE); 29985 if (alen == 0) 29986 return (B_FALSE); /* Both zero length */ 29987 return (bcmp(abuf, bbuf, alen)); 29988 } 29989 29990 /* 29991 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29992 * Return B_FALSE if memory allocation fails - don't change any state! 29993 */ 29994 boolean_t 29995 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29996 const void *src, uint_t srclen) 29997 { 29998 void *dst; 29999 30000 if (!src_valid) 30001 srclen = 0; 30002 30003 ASSERT(*dstlenp == 0); 30004 if (src != NULL && srclen != 0) { 30005 dst = mi_alloc(srclen, BPRI_MED); 30006 if (dst == NULL) 30007 return (B_FALSE); 30008 } else { 30009 dst = NULL; 30010 } 30011 if (*dstp != NULL) 30012 mi_free(*dstp); 30013 *dstp = dst; 30014 *dstlenp = dst == NULL ? 0 : srclen; 30015 return (B_TRUE); 30016 } 30017 30018 /* 30019 * Replace what is in *dst, *dstlen with the source. 30020 * Assumes ip_allocbuf has already been called. 30021 */ 30022 void 30023 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30024 const void *src, uint_t srclen) 30025 { 30026 if (!src_valid) 30027 srclen = 0; 30028 30029 ASSERT(*dstlenp == srclen); 30030 if (src != NULL && srclen != 0) 30031 bcopy(src, *dstp, srclen); 30032 } 30033 30034 /* 30035 * Free the storage pointed to by the members of an ip6_pkt_t. 30036 */ 30037 void 30038 ip6_pkt_free(ip6_pkt_t *ipp) 30039 { 30040 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30041 30042 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30043 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30044 ipp->ipp_hopopts = NULL; 30045 ipp->ipp_hopoptslen = 0; 30046 } 30047 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30048 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30049 ipp->ipp_rtdstopts = NULL; 30050 ipp->ipp_rtdstoptslen = 0; 30051 } 30052 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30053 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30054 ipp->ipp_dstopts = NULL; 30055 ipp->ipp_dstoptslen = 0; 30056 } 30057 if (ipp->ipp_fields & IPPF_RTHDR) { 30058 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30059 ipp->ipp_rthdr = NULL; 30060 ipp->ipp_rthdrlen = 0; 30061 } 30062 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30063 IPPF_RTHDR); 30064 } 30065 30066 zoneid_t 30067 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30068 zoneid_t lookup_zoneid) 30069 { 30070 ire_t *ire; 30071 int ire_flags = MATCH_IRE_TYPE; 30072 zoneid_t zoneid = ALL_ZONES; 30073 30074 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30075 return (ALL_ZONES); 30076 30077 if (lookup_zoneid != ALL_ZONES) 30078 ire_flags |= MATCH_IRE_ZONEONLY; 30079 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30080 lookup_zoneid, NULL, ire_flags, ipst); 30081 if (ire != NULL) { 30082 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30083 ire_refrele(ire); 30084 } 30085 return (zoneid); 30086 } 30087 30088 zoneid_t 30089 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30090 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30091 { 30092 ire_t *ire; 30093 int ire_flags = MATCH_IRE_TYPE; 30094 zoneid_t zoneid = ALL_ZONES; 30095 ipif_t *ipif_arg = NULL; 30096 30097 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30098 return (ALL_ZONES); 30099 30100 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30101 ire_flags |= MATCH_IRE_ILL; 30102 ipif_arg = ill->ill_ipif; 30103 } 30104 if (lookup_zoneid != ALL_ZONES) 30105 ire_flags |= MATCH_IRE_ZONEONLY; 30106 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30107 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30108 if (ire != NULL) { 30109 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30110 ire_refrele(ire); 30111 } 30112 return (zoneid); 30113 } 30114 30115 /* 30116 * IP obserability hook support functions. 30117 */ 30118 30119 static void 30120 ipobs_init(ip_stack_t *ipst) 30121 { 30122 ipst->ips_ipobs_enabled = B_FALSE; 30123 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30124 offsetof(ipobs_cb_t, ipobs_cbnext)); 30125 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30126 ipst->ips_ipobs_cb_nwalkers = 0; 30127 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30128 } 30129 30130 static void 30131 ipobs_fini(ip_stack_t *ipst) 30132 { 30133 ipobs_cb_t *cb; 30134 30135 mutex_enter(&ipst->ips_ipobs_cb_lock); 30136 while (ipst->ips_ipobs_cb_nwalkers != 0) 30137 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30138 30139 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30140 list_remove(&ipst->ips_ipobs_cb_list, cb); 30141 kmem_free(cb, sizeof (*cb)); 30142 } 30143 list_destroy(&ipst->ips_ipobs_cb_list); 30144 mutex_exit(&ipst->ips_ipobs_cb_lock); 30145 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30146 cv_destroy(&ipst->ips_ipobs_cb_cv); 30147 } 30148 30149 void 30150 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30151 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30152 { 30153 mblk_t *mp2; 30154 ipobs_cb_t *ipobs_cb; 30155 ipobs_hook_data_t *ihd; 30156 uint64_t grifindex = 0; 30157 30158 ASSERT(DB_TYPE(mp) == M_DATA); 30159 30160 if (IS_UNDER_IPMP(ill)) 30161 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30162 30163 mutex_enter(&ipst->ips_ipobs_cb_lock); 30164 ipst->ips_ipobs_cb_nwalkers++; 30165 mutex_exit(&ipst->ips_ipobs_cb_lock); 30166 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30167 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30168 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30169 if (mp2 != NULL) { 30170 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30171 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30172 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30173 freemsg(mp2); 30174 continue; 30175 } 30176 ihd->ihd_mp->b_rptr += hlen; 30177 ihd->ihd_htype = htype; 30178 ihd->ihd_ipver = ipver; 30179 ihd->ihd_zsrc = zsrc; 30180 ihd->ihd_zdst = zdst; 30181 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30182 ihd->ihd_grifindex = grifindex; 30183 ihd->ihd_stack = ipst->ips_netstack; 30184 mp2->b_wptr += sizeof (*ihd); 30185 ipobs_cb->ipobs_cbfunc(mp2); 30186 } 30187 } 30188 mutex_enter(&ipst->ips_ipobs_cb_lock); 30189 ipst->ips_ipobs_cb_nwalkers--; 30190 if (ipst->ips_ipobs_cb_nwalkers == 0) 30191 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30192 mutex_exit(&ipst->ips_ipobs_cb_lock); 30193 } 30194 30195 void 30196 ipobs_register_hook(netstack_t *ns, pfv_t func) 30197 { 30198 ipobs_cb_t *cb; 30199 ip_stack_t *ipst = ns->netstack_ip; 30200 30201 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30202 30203 mutex_enter(&ipst->ips_ipobs_cb_lock); 30204 while (ipst->ips_ipobs_cb_nwalkers != 0) 30205 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30206 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30207 30208 cb->ipobs_cbfunc = func; 30209 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30210 ipst->ips_ipobs_enabled = B_TRUE; 30211 mutex_exit(&ipst->ips_ipobs_cb_lock); 30212 } 30213 30214 void 30215 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30216 { 30217 ipobs_cb_t *curcb; 30218 ip_stack_t *ipst = ns->netstack_ip; 30219 30220 mutex_enter(&ipst->ips_ipobs_cb_lock); 30221 while (ipst->ips_ipobs_cb_nwalkers != 0) 30222 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30223 30224 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30225 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30226 if (func == curcb->ipobs_cbfunc) { 30227 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30228 kmem_free(curcb, sizeof (*curcb)); 30229 break; 30230 } 30231 } 30232 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30233 ipst->ips_ipobs_enabled = B_FALSE; 30234 mutex_exit(&ipst->ips_ipobs_cb_lock); 30235 } 30236