1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1758 break; 1759 case ICMP_ADDRESS_MASK_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1761 break; 1762 default: 1763 interested = B_TRUE; /* Pass up to transport */ 1764 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1765 break; 1766 } 1767 /* See if there is an ICMP client. */ 1768 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1769 /* If there is an ICMP client and we want one too, copy it. */ 1770 mblk_t *first_mp1; 1771 1772 if (!interested) { 1773 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1774 ip_policy, recv_ill, zoneid); 1775 return; 1776 } 1777 first_mp1 = ip_copymsg(first_mp); 1778 if (first_mp1 != NULL) { 1779 ip_fanout_proto(q, first_mp1, ill, ipha, 1780 0, mctl_present, ip_policy, recv_ill, zoneid); 1781 } 1782 } else if (!interested) { 1783 freemsg(first_mp); 1784 return; 1785 } else { 1786 /* 1787 * Initiate policy processing for this packet if ip_policy 1788 * is true. 1789 */ 1790 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1791 ill_index = ill->ill_phyint->phyint_ifindex; 1792 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1793 if (mp == NULL) { 1794 if (mctl_present) { 1795 freeb(first_mp); 1796 } 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1798 return; 1799 } 1800 } 1801 } 1802 /* We want to do something with it. */ 1803 /* Check db_ref to make sure we can modify the packet. */ 1804 if (mp->b_datap->db_ref > 1) { 1805 mblk_t *first_mp1; 1806 1807 first_mp1 = ip_copymsg(first_mp); 1808 freemsg(first_mp); 1809 if (!first_mp1) { 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1811 return; 1812 } 1813 first_mp = first_mp1; 1814 if (mctl_present) { 1815 mp = first_mp->b_cont; 1816 ASSERT(mp != NULL); 1817 } else { 1818 mp = first_mp; 1819 } 1820 ipha = (ipha_t *)mp->b_rptr; 1821 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1822 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1823 } 1824 switch (icmph->icmph_type) { 1825 case ICMP_ADDRESS_MASK_REQUEST: 1826 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1827 if (ipif == NULL) { 1828 freemsg(first_mp); 1829 return; 1830 } 1831 /* 1832 * outging interface must be IPv4 1833 */ 1834 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1835 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1836 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1837 ipif_refrele(ipif); 1838 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1839 break; 1840 case ICMP_ECHO_REQUEST: 1841 icmph->icmph_type = ICMP_ECHO_REPLY; 1842 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1843 break; 1844 case ICMP_TIME_STAMP_REQUEST: { 1845 uint32_t *tsp; 1846 1847 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1848 tsp = (uint32_t *)wptr; 1849 tsp++; /* Skip past 'originate time' */ 1850 /* Compute # of milliseconds since midnight */ 1851 gethrestime(&now); 1852 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1853 now.tv_nsec / (NANOSEC / MILLISEC); 1854 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1855 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1857 break; 1858 } 1859 default: 1860 ipha = (ipha_t *)&icmph[1]; 1861 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1862 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1864 freemsg(first_mp); 1865 return; 1866 } 1867 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1868 ipha = (ipha_t *)&icmph[1]; 1869 } 1870 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 hdr_length = IPH_HDR_LENGTH(ipha); 1876 if (hdr_length < sizeof (ipha_t)) { 1877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1882 if (!pullupmsg(mp, 1883 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1889 ipha = (ipha_t *)&icmph[1]; 1890 } 1891 switch (icmph->icmph_type) { 1892 case ICMP_REDIRECT: 1893 /* 1894 * As there is no upper client to deliver, we don't 1895 * need the first_mp any more. 1896 */ 1897 if (mctl_present) { 1898 freeb(first_mp); 1899 } 1900 icmp_redirect(ill, mp); 1901 return; 1902 case ICMP_DEST_UNREACHABLE: 1903 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1904 if (!icmp_inbound_too_big(icmph, ipha, ill, 1905 zoneid, mp, iph_hdr_length, ipst)) { 1906 freemsg(first_mp); 1907 return; 1908 } 1909 /* 1910 * icmp_inbound_too_big() may alter mp. 1911 * Resynch ipha and icmph accordingly. 1912 */ 1913 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1914 ipha = (ipha_t *)&icmph[1]; 1915 } 1916 /* FALLTHRU */ 1917 default : 1918 /* 1919 * IPQoS notes: Since we have already done IPQoS 1920 * processing we don't want to do it again in 1921 * the fanout routines called by 1922 * icmp_inbound_error_fanout, hence the last 1923 * argument, ip_policy, is B_FALSE. 1924 */ 1925 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1926 ipha, iph_hdr_length, hdr_length, mctl_present, 1927 B_FALSE, recv_ill, zoneid); 1928 } 1929 return; 1930 } 1931 /* Send out an ICMP packet */ 1932 icmph->icmph_checksum = 0; 1933 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1934 if (broadcast || CLASSD(ipha->ipha_dst)) { 1935 ipif_t *ipif_chosen; 1936 /* 1937 * Make it look like it was directed to us, so we don't look 1938 * like a fool with a broadcast or multicast source address. 1939 */ 1940 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1941 /* 1942 * Make sure that we haven't grabbed an interface that's DOWN. 1943 */ 1944 if (ipif != NULL) { 1945 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1946 ipha->ipha_src, zoneid); 1947 if (ipif_chosen != NULL) { 1948 ipif_refrele(ipif); 1949 ipif = ipif_chosen; 1950 } 1951 } 1952 if (ipif == NULL) { 1953 ip0dbg(("icmp_inbound: " 1954 "No source for broadcast/multicast:\n" 1955 "\tsrc 0x%x dst 0x%x ill %p " 1956 "ipif_lcl_addr 0x%x\n", 1957 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1958 (void *)ill, 1959 ill->ill_ipif->ipif_lcl_addr)); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1964 ipha->ipha_dst = ipif->ipif_src_addr; 1965 ipif_refrele(ipif); 1966 } 1967 /* Reset time to live. */ 1968 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1969 { 1970 /* Swap source and destination addresses */ 1971 ipaddr_t tmp; 1972 1973 tmp = ipha->ipha_src; 1974 ipha->ipha_src = ipha->ipha_dst; 1975 ipha->ipha_dst = tmp; 1976 } 1977 ipha->ipha_ident = 0; 1978 if (!IS_SIMPLE_IPH(ipha)) 1979 icmp_options_update(ipha); 1980 1981 /* 1982 * ICMP echo replies should go out on the same interface 1983 * the request came on as probes used by in.mpathd for detecting 1984 * NIC failures are ECHO packets. We turn-off load spreading 1985 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1986 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1987 * function. This is in turn handled by ip_wput and ip_newroute 1988 * to make sure that the packet goes out on the interface it came 1989 * in on. If we don't turnoff load spreading, the packets might get 1990 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1991 * to go out and in.mpathd would wrongly detect a failure or 1992 * mis-detect a NIC failure for link failure. As load spreading 1993 * can happen only if ill_group is not NULL, we do only for 1994 * that case and this does not affect the normal case. 1995 * 1996 * We turn off load spreading only on echo packets that came from 1997 * on-link hosts. If the interface route has been deleted, this will 1998 * not be enforced as we can't do much. For off-link hosts, as the 1999 * default routes in IPv4 does not typically have an ire_ipif 2000 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2001 * Moreover, expecting a default route through this interface may 2002 * not be correct. We use ipha_dst because of the swap above. 2003 */ 2004 onlink = B_FALSE; 2005 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2006 /* 2007 * First, we need to make sure that it is not one of our 2008 * local addresses. If we set onlink when it is one of 2009 * our local addresses, we will end up creating IRE_CACHES 2010 * for one of our local addresses. Then, we will never 2011 * accept packets for them afterwards. 2012 */ 2013 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2014 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2015 if (src_ire == NULL) { 2016 ipif = ipif_get_next_ipif(NULL, ill); 2017 if (ipif == NULL) { 2018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2019 freemsg(mp); 2020 return; 2021 } 2022 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2023 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2024 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2025 ipif_refrele(ipif); 2026 if (src_ire != NULL) { 2027 onlink = B_TRUE; 2028 ire_refrele(src_ire); 2029 } 2030 } else { 2031 ire_refrele(src_ire); 2032 } 2033 } 2034 if (!mctl_present) { 2035 /* 2036 * This packet should go out the same way as it 2037 * came in i.e in clear. To make sure that global 2038 * policy will not be applied to this in ip_wput_ire, 2039 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2040 */ 2041 ASSERT(first_mp == mp); 2042 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2043 if (first_mp == NULL) { 2044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2045 freemsg(mp); 2046 return; 2047 } 2048 ii = (ipsec_in_t *)first_mp->b_rptr; 2049 2050 /* This is not a secure packet */ 2051 ii->ipsec_in_secure = B_FALSE; 2052 if (onlink) { 2053 ii->ipsec_in_attach_if = B_TRUE; 2054 ii->ipsec_in_ill_index = 2055 ill->ill_phyint->phyint_ifindex; 2056 ii->ipsec_in_rill_index = 2057 recv_ill->ill_phyint->phyint_ifindex; 2058 } 2059 first_mp->b_cont = mp; 2060 } else if (onlink) { 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } else { 2067 ii = (ipsec_in_t *)first_mp->b_rptr; 2068 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2069 } 2070 ii->ipsec_in_zoneid = zoneid; 2071 ASSERT(zoneid != ALL_ZONES); 2072 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2074 return; 2075 } 2076 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2077 put(WR(q), first_mp); 2078 } 2079 2080 static ipaddr_t 2081 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2082 { 2083 conn_t *connp; 2084 connf_t *connfp; 2085 ipaddr_t nexthop_addr = INADDR_ANY; 2086 int hdr_length = IPH_HDR_LENGTH(ipha); 2087 uint16_t *up; 2088 uint32_t ports; 2089 ip_stack_t *ipst = ill->ill_ipst; 2090 2091 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2092 switch (ipha->ipha_protocol) { 2093 case IPPROTO_TCP: 2094 { 2095 tcph_t *tcph; 2096 2097 /* do a reverse lookup */ 2098 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2099 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2100 TCPS_LISTEN, ipst); 2101 break; 2102 } 2103 case IPPROTO_UDP: 2104 { 2105 uint32_t dstport, srcport; 2106 2107 ((uint16_t *)&ports)[0] = up[1]; 2108 ((uint16_t *)&ports)[1] = up[0]; 2109 2110 /* Extract ports in net byte order */ 2111 dstport = htons(ntohl(ports) & 0xFFFF); 2112 srcport = htons(ntohl(ports) >> 16); 2113 2114 connfp = &ipst->ips_ipcl_udp_fanout[ 2115 IPCL_UDP_HASH(dstport, ipst)]; 2116 mutex_enter(&connfp->connf_lock); 2117 connp = connfp->connf_head; 2118 2119 /* do a reverse lookup */ 2120 while ((connp != NULL) && 2121 (!IPCL_UDP_MATCH(connp, dstport, 2122 ipha->ipha_src, srcport, ipha->ipha_dst) || 2123 !IPCL_ZONE_MATCH(connp, zoneid))) { 2124 connp = connp->conn_next; 2125 } 2126 if (connp != NULL) 2127 CONN_INC_REF(connp); 2128 mutex_exit(&connfp->connf_lock); 2129 break; 2130 } 2131 case IPPROTO_SCTP: 2132 { 2133 in6_addr_t map_src, map_dst; 2134 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2136 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2137 ((uint16_t *)&ports)[0] = up[1]; 2138 ((uint16_t *)&ports)[1] = up[0]; 2139 2140 connp = sctp_find_conn(&map_src, &map_dst, ports, 2141 zoneid, ipst->ips_netstack->netstack_sctp); 2142 if (connp == NULL) { 2143 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2144 zoneid, ports, ipha, ipst); 2145 } else { 2146 CONN_INC_REF(connp); 2147 SCTP_REFRELE(CONN2SCTP(connp)); 2148 } 2149 break; 2150 } 2151 default: 2152 { 2153 ipha_t ripha; 2154 2155 ripha.ipha_src = ipha->ipha_dst; 2156 ripha.ipha_dst = ipha->ipha_src; 2157 ripha.ipha_protocol = ipha->ipha_protocol; 2158 2159 connfp = &ipst->ips_ipcl_proto_fanout[ 2160 ipha->ipha_protocol]; 2161 mutex_enter(&connfp->connf_lock); 2162 connp = connfp->connf_head; 2163 for (connp = connfp->connf_head; connp != NULL; 2164 connp = connp->conn_next) { 2165 if (IPCL_PROTO_MATCH(connp, 2166 ipha->ipha_protocol, &ripha, ill, 2167 0, zoneid)) { 2168 CONN_INC_REF(connp); 2169 break; 2170 } 2171 } 2172 mutex_exit(&connfp->connf_lock); 2173 } 2174 } 2175 if (connp != NULL) { 2176 if (connp->conn_nexthop_set) 2177 nexthop_addr = connp->conn_nexthop_v4; 2178 CONN_DEC_REF(connp); 2179 } 2180 return (nexthop_addr); 2181 } 2182 2183 /* Table from RFC 1191 */ 2184 static int icmp_frag_size_table[] = 2185 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2186 2187 /* 2188 * Process received ICMP Packet too big. 2189 * After updating any IRE it does the fanout to any matching transport streams. 2190 * Assumes the message has been pulled up till the IP header that caused 2191 * the error. 2192 * 2193 * Returns B_FALSE on failure and B_TRUE on success. 2194 */ 2195 static boolean_t 2196 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2197 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2198 ip_stack_t *ipst) 2199 { 2200 ire_t *ire, *first_ire; 2201 int mtu; 2202 int hdr_length; 2203 ipaddr_t nexthop_addr; 2204 2205 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2206 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2207 ASSERT(ill != NULL); 2208 2209 hdr_length = IPH_HDR_LENGTH(ipha); 2210 2211 /* Drop if the original packet contained a source route */ 2212 if (ip_source_route_included(ipha)) { 2213 return (B_FALSE); 2214 } 2215 /* 2216 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2217 * header. 2218 */ 2219 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2220 mp->b_wptr) { 2221 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2222 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2224 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2225 return (B_FALSE); 2226 } 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 } 2230 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2231 if (nexthop_addr != INADDR_ANY) { 2232 /* nexthop set */ 2233 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2234 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2235 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2236 } else { 2237 /* nexthop not set */ 2238 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2239 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2240 } 2241 2242 if (!first_ire) { 2243 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2244 ntohl(ipha->ipha_dst))); 2245 return (B_FALSE); 2246 } 2247 /* Check for MTU discovery advice as described in RFC 1191 */ 2248 mtu = ntohs(icmph->icmph_du_mtu); 2249 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2250 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2251 ire = ire->ire_next) { 2252 /* 2253 * Look for the connection to which this ICMP message is 2254 * directed. If it has the IP_NEXTHOP option set, then the 2255 * search is limited to IREs with the MATCH_IRE_PRIVATE 2256 * option. Else the search is limited to regular IREs. 2257 */ 2258 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2259 (nexthop_addr != ire->ire_gateway_addr)) || 2260 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != INADDR_ANY))) 2262 continue; 2263 2264 mutex_enter(&ire->ire_lock); 2265 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2266 /* Reduce the IRE max frag value as advised. */ 2267 ip1dbg(("Received mtu from router: %d (was %d)\n", 2268 mtu, ire->ire_max_frag)); 2269 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2270 } else { 2271 uint32_t length; 2272 int i; 2273 2274 /* 2275 * Use the table from RFC 1191 to figure out 2276 * the next "plateau" based on the length in 2277 * the original IP packet. 2278 */ 2279 length = ntohs(ipha->ipha_length); 2280 if (ire->ire_max_frag <= length && 2281 ire->ire_max_frag >= length - hdr_length) { 2282 /* 2283 * Handle broken BSD 4.2 systems that 2284 * return the wrong iph_length in ICMP 2285 * errors. 2286 */ 2287 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2288 length, ire->ire_max_frag)); 2289 length -= hdr_length; 2290 } 2291 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2292 if (length > icmp_frag_size_table[i]) 2293 break; 2294 } 2295 if (i == A_CNT(icmp_frag_size_table)) { 2296 /* Smaller than 68! */ 2297 ip1dbg(("Too big for packet size %d\n", 2298 length)); 2299 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2300 ire->ire_frag_flag = 0; 2301 } else { 2302 mtu = icmp_frag_size_table[i]; 2303 ip1dbg(("Calculated mtu %d, packet size %d, " 2304 "before %d", mtu, length, 2305 ire->ire_max_frag)); 2306 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2307 ip1dbg((", after %d\n", ire->ire_max_frag)); 2308 } 2309 /* Record the new max frag size for the ULP. */ 2310 icmph->icmph_du_zero = 0; 2311 icmph->icmph_du_mtu = 2312 htons((uint16_t)ire->ire_max_frag); 2313 } 2314 mutex_exit(&ire->ire_lock); 2315 } 2316 rw_exit(&first_ire->ire_bucket->irb_lock); 2317 ire_refrele(first_ire); 2318 return (B_TRUE); 2319 } 2320 2321 /* 2322 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2323 * calls this function. 2324 */ 2325 static mblk_t * 2326 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2327 { 2328 ipha_t *ipha; 2329 icmph_t *icmph; 2330 ipha_t *in_ipha; 2331 int length; 2332 2333 ASSERT(mp->b_datap->db_type == M_DATA); 2334 2335 /* 2336 * For Self-encapsulated packets, we added an extra IP header 2337 * without the options. Inner IP header is the one from which 2338 * the outer IP header was formed. Thus, we need to remove the 2339 * outer IP header. To do this, we pullup the whole message 2340 * and overlay whatever follows the outer IP header over the 2341 * outer IP header. 2342 */ 2343 2344 if (!pullupmsg(mp, -1)) 2345 return (NULL); 2346 2347 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2348 ipha = (ipha_t *)&icmph[1]; 2349 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2350 2351 /* 2352 * The length that we want to overlay is following the inner 2353 * IP header. Subtracting the IP header + icmp header + outer 2354 * IP header's length should give us the length that we want to 2355 * overlay. 2356 */ 2357 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2358 hdr_length; 2359 /* 2360 * Overlay whatever follows the inner header over the 2361 * outer header. 2362 */ 2363 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2364 2365 /* Set the wptr to account for the outer header */ 2366 mp->b_wptr -= hdr_length; 2367 return (mp); 2368 } 2369 2370 /* 2371 * Try to pass the ICMP message upstream in case the ULP cares. 2372 * 2373 * If the packet that caused the ICMP error is secure, we send 2374 * it to AH/ESP to make sure that the attached packet has a 2375 * valid association. ipha in the code below points to the 2376 * IP header of the packet that caused the error. 2377 * 2378 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2379 * in the context of IPSEC. Normally we tell the upper layer 2380 * whenever we send the ire (including ip_bind), the IPSEC header 2381 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2382 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2383 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2384 * same thing. As TCP has the IPSEC options size that needs to be 2385 * adjusted, we just pass the MTU unchanged. 2386 * 2387 * IFN could have been generated locally or by some router. 2388 * 2389 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2390 * This happens because IP adjusted its value of MTU on an 2391 * earlier IFN message and could not tell the upper layer, 2392 * the new adjusted value of MTU e.g. Packet was encrypted 2393 * or there was not enough information to fanout to upper 2394 * layers. Thus on the next outbound datagram, ip_wput_ire 2395 * generates the IFN, where IPSEC processing has *not* been 2396 * done. 2397 * 2398 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2399 * could have generated this. This happens because ire_max_frag 2400 * value in IP was set to a new value, while the IPSEC processing 2401 * was being done and after we made the fragmentation check in 2402 * ip_wput_ire. Thus on return from IPSEC processing, 2403 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2404 * and generates the IFN. As IPSEC processing is over, we fanout 2405 * to AH/ESP to remove the header. 2406 * 2407 * In both these cases, ipsec_in_loopback will be set indicating 2408 * that IFN was generated locally. 2409 * 2410 * ROUTER : IFN could be secure or non-secure. 2411 * 2412 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2413 * packet in error has AH/ESP headers to validate the AH/ESP 2414 * headers. AH/ESP will verify whether there is a valid SA or 2415 * not and send it back. We will fanout again if we have more 2416 * data in the packet. 2417 * 2418 * If the packet in error does not have AH/ESP, we handle it 2419 * like any other case. 2420 * 2421 * * NON_SECURE : If the packet in error has AH/ESP headers, 2422 * we attach a dummy ipsec_in and send it up to AH/ESP 2423 * for validation. AH/ESP will verify whether there is a 2424 * valid SA or not and send it back. We will fanout again if 2425 * we have more data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 */ 2430 static void 2431 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2432 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2434 zoneid_t zoneid) 2435 { 2436 uint16_t *up; /* Pointer to ports in ULP header */ 2437 uint32_t ports; /* reversed ports for fanout */ 2438 ipha_t ripha; /* With reversed addresses */ 2439 mblk_t *first_mp; 2440 ipsec_in_t *ii; 2441 tcph_t *tcph; 2442 conn_t *connp; 2443 ip_stack_t *ipst; 2444 2445 ASSERT(ill != NULL); 2446 2447 ASSERT(recv_ill != NULL); 2448 ipst = recv_ill->ill_ipst; 2449 2450 first_mp = mp; 2451 if (mctl_present) { 2452 mp = first_mp->b_cont; 2453 ASSERT(mp != NULL); 2454 2455 ii = (ipsec_in_t *)first_mp->b_rptr; 2456 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2457 } else { 2458 ii = NULL; 2459 } 2460 2461 switch (ipha->ipha_protocol) { 2462 case IPPROTO_UDP: 2463 /* 2464 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2465 * transport header. 2466 */ 2467 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2468 mp->b_wptr) { 2469 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2470 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2471 goto discard_pkt; 2472 } 2473 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2474 ipha = (ipha_t *)&icmph[1]; 2475 } 2476 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2477 2478 /* 2479 * Attempt to find a client stream based on port. 2480 * Note that we do a reverse lookup since the header is 2481 * in the form we sent it out. 2482 * The ripha header is only used for the IP_UDP_MATCH and we 2483 * only set the src and dst addresses and protocol. 2484 */ 2485 ripha.ipha_src = ipha->ipha_dst; 2486 ripha.ipha_dst = ipha->ipha_src; 2487 ripha.ipha_protocol = ipha->ipha_protocol; 2488 ((uint16_t *)&ports)[0] = up[1]; 2489 ((uint16_t *)&ports)[1] = up[0]; 2490 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2491 ntohl(ipha->ipha_src), ntohs(up[0]), 2492 ntohl(ipha->ipha_dst), ntohs(up[1]), 2493 icmph->icmph_type, icmph->icmph_code)); 2494 2495 /* Have to change db_type after any pullupmsg */ 2496 DB_TYPE(mp) = M_CTL; 2497 2498 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2499 mctl_present, ip_policy, recv_ill, zoneid); 2500 return; 2501 2502 case IPPROTO_TCP: 2503 /* 2504 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2505 * transport header. 2506 */ 2507 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2508 mp->b_wptr) { 2509 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2510 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2511 goto discard_pkt; 2512 } 2513 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2514 ipha = (ipha_t *)&icmph[1]; 2515 } 2516 /* 2517 * Find a TCP client stream for this packet. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 */ 2521 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2522 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2523 ipst); 2524 if (connp == NULL) 2525 goto discard_pkt; 2526 2527 /* Have to change db_type after any pullupmsg */ 2528 DB_TYPE(mp) = M_CTL; 2529 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2530 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2531 return; 2532 2533 case IPPROTO_SCTP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 goto discard_pkt; 2543 } 2544 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2545 ipha = (ipha_t *)&icmph[1]; 2546 } 2547 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2548 /* 2549 * Find a SCTP client stream for this packet. 2550 * Note that we do a reverse lookup since the header is 2551 * in the form we sent it out. 2552 * The ripha header is only used for the matching and we 2553 * only set the src and dst addresses, protocol, and version. 2554 */ 2555 ripha.ipha_src = ipha->ipha_dst; 2556 ripha.ipha_dst = ipha->ipha_src; 2557 ripha.ipha_protocol = ipha->ipha_protocol; 2558 ripha.ipha_version_and_hdr_length = 2559 ipha->ipha_version_and_hdr_length; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 2563 /* Have to change db_type after any pullupmsg */ 2564 DB_TYPE(mp) = M_CTL; 2565 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2566 mctl_present, ip_policy, zoneid); 2567 return; 2568 2569 case IPPROTO_ESP: 2570 case IPPROTO_AH: { 2571 int ipsec_rc; 2572 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2573 2574 /* 2575 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2576 * We will re-use the IPSEC_IN if it is already present as 2577 * AH/ESP will not affect any fields in the IPSEC_IN for 2578 * ICMP errors. If there is no IPSEC_IN, allocate a new 2579 * one and attach it in the front. 2580 */ 2581 if (ii != NULL) { 2582 /* 2583 * ip_fanout_proto_again converts the ICMP errors 2584 * that come back from AH/ESP to M_DATA so that 2585 * if it is non-AH/ESP and we do a pullupmsg in 2586 * this function, it would work. Convert it back 2587 * to M_CTL before we send up as this is a ICMP 2588 * error. This could have been generated locally or 2589 * by some router. Validate the inner IPSEC 2590 * headers. 2591 * 2592 * NOTE : ill_index is used by ip_fanout_proto_again 2593 * to locate the ill. 2594 */ 2595 ASSERT(ill != NULL); 2596 ii->ipsec_in_ill_index = 2597 ill->ill_phyint->phyint_ifindex; 2598 ii->ipsec_in_rill_index = 2599 recv_ill->ill_phyint->phyint_ifindex; 2600 DB_TYPE(first_mp->b_cont) = M_CTL; 2601 } else { 2602 /* 2603 * IPSEC_IN is not present. We attach a ipsec_in 2604 * message and send up to IPSEC for validating 2605 * and removing the IPSEC headers. Clear 2606 * ipsec_in_secure so that when we return 2607 * from IPSEC, we don't mistakenly think that this 2608 * is a secure packet came from the network. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(first_mp == mp); 2614 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2615 if (first_mp == NULL) { 2616 freemsg(mp); 2617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2618 return; 2619 } 2620 ii = (ipsec_in_t *)first_mp->b_rptr; 2621 2622 /* This is not a secure packet */ 2623 ii->ipsec_in_secure = B_FALSE; 2624 first_mp->b_cont = mp; 2625 DB_TYPE(mp) = M_CTL; 2626 ASSERT(ill != NULL); 2627 ii->ipsec_in_ill_index = 2628 ill->ill_phyint->phyint_ifindex; 2629 ii->ipsec_in_rill_index = 2630 recv_ill->ill_phyint->phyint_ifindex; 2631 } 2632 ip2dbg(("icmp_inbound_error: ipsec\n")); 2633 2634 if (!ipsec_loaded(ipss)) { 2635 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2636 return; 2637 } 2638 2639 if (ipha->ipha_protocol == IPPROTO_ESP) 2640 ipsec_rc = ipsecesp_icmp_error(first_mp); 2641 else 2642 ipsec_rc = ipsecah_icmp_error(first_mp); 2643 if (ipsec_rc == IPSEC_STATUS_FAILED) 2644 return; 2645 2646 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2647 return; 2648 } 2649 default: 2650 /* 2651 * The ripha header is only used for the lookup and we 2652 * only set the src and dst addresses and protocol. 2653 */ 2654 ripha.ipha_src = ipha->ipha_dst; 2655 ripha.ipha_dst = ipha->ipha_src; 2656 ripha.ipha_protocol = ipha->ipha_protocol; 2657 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2658 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2659 ntohl(ipha->ipha_dst), 2660 icmph->icmph_type, icmph->icmph_code)); 2661 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2662 ipha_t *in_ipha; 2663 2664 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2665 mp->b_wptr) { 2666 if (!pullupmsg(mp, (uchar_t *)ipha + 2667 hdr_length + sizeof (ipha_t) - 2668 mp->b_rptr)) { 2669 goto discard_pkt; 2670 } 2671 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2672 ipha = (ipha_t *)&icmph[1]; 2673 } 2674 /* 2675 * Caller has verified that length has to be 2676 * at least the size of IP header. 2677 */ 2678 ASSERT(hdr_length >= sizeof (ipha_t)); 2679 /* 2680 * Check the sanity of the inner IP header like 2681 * we did for the outer header. 2682 */ 2683 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2684 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2685 goto discard_pkt; 2686 } 2687 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2688 goto discard_pkt; 2689 } 2690 /* Check for Self-encapsulated tunnels */ 2691 if (in_ipha->ipha_src == ipha->ipha_src && 2692 in_ipha->ipha_dst == ipha->ipha_dst) { 2693 2694 mp = icmp_inbound_self_encap_error(mp, 2695 iph_hdr_length, hdr_length); 2696 if (mp == NULL) 2697 goto discard_pkt; 2698 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2699 ipha = (ipha_t *)&icmph[1]; 2700 hdr_length = IPH_HDR_LENGTH(ipha); 2701 /* 2702 * The packet in error is self-encapsualted. 2703 * And we are finding it further encapsulated 2704 * which we could not have possibly generated. 2705 */ 2706 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2707 goto discard_pkt; 2708 } 2709 icmp_inbound_error_fanout(q, ill, first_mp, 2710 icmph, ipha, iph_hdr_length, hdr_length, 2711 mctl_present, ip_policy, recv_ill, zoneid); 2712 return; 2713 } 2714 } 2715 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2716 ipha->ipha_protocol == IPPROTO_IPV6) && 2717 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2718 ii != NULL && 2719 ii->ipsec_in_loopback && 2720 ii->ipsec_in_secure) { 2721 /* 2722 * For IP tunnels that get a looped-back 2723 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2724 * reported new MTU to take into account the IPsec 2725 * headers protecting this configured tunnel. 2726 * 2727 * This allows the tunnel module (tun.c) to blindly 2728 * accept the MTU reported in an ICMP "too big" 2729 * message. 2730 * 2731 * Non-looped back ICMP messages will just be 2732 * handled by the security protocols (if needed), 2733 * and the first subsequent packet will hit this 2734 * path. 2735 */ 2736 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2737 ipsec_in_extra_length(first_mp)); 2738 } 2739 /* Have to change db_type after any pullupmsg */ 2740 DB_TYPE(mp) = M_CTL; 2741 2742 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2743 ip_policy, recv_ill, zoneid); 2744 return; 2745 } 2746 /* NOTREACHED */ 2747 discard_pkt: 2748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2749 drop_pkt:; 2750 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2751 freemsg(first_mp); 2752 } 2753 2754 /* 2755 * Common IP options parser. 2756 * 2757 * Setup routine: fill in *optp with options-parsing state, then 2758 * tail-call ipoptp_next to return the first option. 2759 */ 2760 uint8_t 2761 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2762 { 2763 uint32_t totallen; /* total length of all options */ 2764 2765 totallen = ipha->ipha_version_and_hdr_length - 2766 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2767 totallen <<= 2; 2768 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2769 optp->ipoptp_end = optp->ipoptp_next + totallen; 2770 optp->ipoptp_flags = 0; 2771 return (ipoptp_next(optp)); 2772 } 2773 2774 /* 2775 * Common IP options parser: extract next option. 2776 */ 2777 uint8_t 2778 ipoptp_next(ipoptp_t *optp) 2779 { 2780 uint8_t *end = optp->ipoptp_end; 2781 uint8_t *cur = optp->ipoptp_next; 2782 uint8_t opt, len, pointer; 2783 2784 /* 2785 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2786 * has been corrupted. 2787 */ 2788 ASSERT(cur <= end); 2789 2790 if (cur == end) 2791 return (IPOPT_EOL); 2792 2793 opt = cur[IPOPT_OPTVAL]; 2794 2795 /* 2796 * Skip any NOP options. 2797 */ 2798 while (opt == IPOPT_NOP) { 2799 cur++; 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 opt = cur[IPOPT_OPTVAL]; 2803 } 2804 2805 if (opt == IPOPT_EOL) 2806 return (IPOPT_EOL); 2807 2808 /* 2809 * Option requiring a length. 2810 */ 2811 if ((cur + 1) >= end) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (IPOPT_EOL); 2814 } 2815 len = cur[IPOPT_OLEN]; 2816 if (len < 2) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (IPOPT_EOL); 2819 } 2820 optp->ipoptp_cur = cur; 2821 optp->ipoptp_len = len; 2822 optp->ipoptp_next = cur + len; 2823 if (cur + len > end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 2828 /* 2829 * For the options which require a pointer field, make sure 2830 * its there, and make sure it points to either something 2831 * inside this option, or the end of the option. 2832 */ 2833 switch (opt) { 2834 case IPOPT_RR: 2835 case IPOPT_TS: 2836 case IPOPT_LSRR: 2837 case IPOPT_SSRR: 2838 if (len <= IPOPT_OFFSET) { 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 return (opt); 2841 } 2842 pointer = cur[IPOPT_OFFSET]; 2843 if (pointer - 1 > len) { 2844 optp->ipoptp_flags |= IPOPTP_ERROR; 2845 return (opt); 2846 } 2847 break; 2848 } 2849 2850 /* 2851 * Sanity check the pointer field based on the type of the 2852 * option. 2853 */ 2854 switch (opt) { 2855 case IPOPT_RR: 2856 case IPOPT_SSRR: 2857 case IPOPT_LSRR: 2858 if (pointer < IPOPT_MINOFF_SR) 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 break; 2861 case IPOPT_TS: 2862 if (pointer < IPOPT_MINOFF_IT) 2863 optp->ipoptp_flags |= IPOPTP_ERROR; 2864 /* 2865 * Note that the Internet Timestamp option also 2866 * contains two four bit fields (the Overflow field, 2867 * and the Flag field), which follow the pointer 2868 * field. We don't need to check that these fields 2869 * fall within the length of the option because this 2870 * was implicitely done above. We've checked that the 2871 * pointer value is at least IPOPT_MINOFF_IT, and that 2872 * it falls within the option. Since IPOPT_MINOFF_IT > 2873 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2874 */ 2875 ASSERT(len > IPOPT_POS_OV_FLG); 2876 break; 2877 } 2878 2879 return (opt); 2880 } 2881 2882 /* 2883 * Use the outgoing IP header to create an IP_OPTIONS option the way 2884 * it was passed down from the application. 2885 */ 2886 int 2887 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2888 { 2889 ipoptp_t opts; 2890 const uchar_t *opt; 2891 uint8_t optval; 2892 uint8_t optlen; 2893 uint32_t len = 0; 2894 uchar_t *buf1 = buf; 2895 2896 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2897 len += IP_ADDR_LEN; 2898 bzero(buf1, IP_ADDR_LEN); 2899 2900 /* 2901 * OK to cast away const here, as we don't store through the returned 2902 * opts.ipoptp_cur pointer. 2903 */ 2904 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2905 optval != IPOPT_EOL; 2906 optval = ipoptp_next(&opts)) { 2907 int off; 2908 2909 opt = opts.ipoptp_cur; 2910 optlen = opts.ipoptp_len; 2911 switch (optval) { 2912 case IPOPT_SSRR: 2913 case IPOPT_LSRR: 2914 2915 /* 2916 * Insert ipha_dst as the first entry in the source 2917 * route and move down the entries on step. 2918 * The last entry gets placed at buf1. 2919 */ 2920 buf[IPOPT_OPTVAL] = optval; 2921 buf[IPOPT_OLEN] = optlen; 2922 buf[IPOPT_OFFSET] = optlen; 2923 2924 off = optlen - IP_ADDR_LEN; 2925 if (off < 0) { 2926 /* No entries in source route */ 2927 break; 2928 } 2929 /* Last entry in source route */ 2930 bcopy(opt + off, buf1, IP_ADDR_LEN); 2931 off -= IP_ADDR_LEN; 2932 2933 while (off > 0) { 2934 bcopy(opt + off, 2935 buf + off + IP_ADDR_LEN, 2936 IP_ADDR_LEN); 2937 off -= IP_ADDR_LEN; 2938 } 2939 /* ipha_dst into first slot */ 2940 bcopy(&ipha->ipha_dst, 2941 buf + off + IP_ADDR_LEN, 2942 IP_ADDR_LEN); 2943 buf += optlen; 2944 len += optlen; 2945 break; 2946 2947 case IPOPT_COMSEC: 2948 case IPOPT_SECURITY: 2949 /* if passing up a label is not ok, then remove */ 2950 if (is_system_labeled()) 2951 break; 2952 /* FALLTHROUGH */ 2953 default: 2954 bcopy(opt, buf, optlen); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 } 2959 } 2960 done: 2961 /* Pad the resulting options */ 2962 while (len & 0x3) { 2963 *buf++ = IPOPT_EOL; 2964 len++; 2965 } 2966 return (len); 2967 } 2968 2969 /* 2970 * Update any record route or timestamp options to include this host. 2971 * Reverse any source route option. 2972 * This routine assumes that the options are well formed i.e. that they 2973 * have already been checked. 2974 */ 2975 static void 2976 icmp_options_update(ipha_t *ipha) 2977 { 2978 ipoptp_t opts; 2979 uchar_t *opt; 2980 uint8_t optval; 2981 ipaddr_t src; /* Our local address */ 2982 ipaddr_t dst; 2983 2984 ip2dbg(("icmp_options_update\n")); 2985 src = ipha->ipha_src; 2986 dst = ipha->ipha_dst; 2987 2988 for (optval = ipoptp_first(&opts, ipha); 2989 optval != IPOPT_EOL; 2990 optval = ipoptp_next(&opts)) { 2991 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2992 opt = opts.ipoptp_cur; 2993 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2994 optval, opts.ipoptp_len)); 2995 switch (optval) { 2996 int off1, off2; 2997 case IPOPT_SSRR: 2998 case IPOPT_LSRR: 2999 /* 3000 * Reverse the source route. The first entry 3001 * should be the next to last one in the current 3002 * source route (the last entry is our address). 3003 * The last entry should be the final destination. 3004 */ 3005 off1 = IPOPT_MINOFF_SR - 1; 3006 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3007 if (off2 < 0) { 3008 /* No entries in source route */ 3009 ip1dbg(( 3010 "icmp_options_update: bad src route\n")); 3011 break; 3012 } 3013 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3014 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3015 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3016 off2 -= IP_ADDR_LEN; 3017 3018 while (off1 < off2) { 3019 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3020 bcopy((char *)opt + off2, (char *)opt + off1, 3021 IP_ADDR_LEN); 3022 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3023 off1 += IP_ADDR_LEN; 3024 off2 -= IP_ADDR_LEN; 3025 } 3026 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3027 break; 3028 } 3029 } 3030 } 3031 3032 /* 3033 * Process received ICMP Redirect messages. 3034 */ 3035 static void 3036 icmp_redirect(ill_t *ill, mblk_t *mp) 3037 { 3038 ipha_t *ipha; 3039 int iph_hdr_length; 3040 icmph_t *icmph; 3041 ipha_t *ipha_err; 3042 ire_t *ire; 3043 ire_t *prev_ire; 3044 ire_t *save_ire; 3045 ipaddr_t src, dst, gateway; 3046 iulp_t ulp_info = { 0 }; 3047 int error; 3048 ip_stack_t *ipst; 3049 3050 ASSERT(ill != NULL); 3051 ipst = ill->ill_ipst; 3052 3053 ipha = (ipha_t *)mp->b_rptr; 3054 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3055 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3056 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3058 freemsg(mp); 3059 return; 3060 } 3061 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3062 ipha_err = (ipha_t *)&icmph[1]; 3063 src = ipha->ipha_src; 3064 dst = ipha_err->ipha_dst; 3065 gateway = icmph->icmph_rd_gateway; 3066 /* Make sure the new gateway is reachable somehow. */ 3067 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3068 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3069 /* 3070 * Make sure we had a route for the dest in question and that 3071 * that route was pointing to the old gateway (the source of the 3072 * redirect packet.) 3073 */ 3074 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3075 NULL, MATCH_IRE_GW, ipst); 3076 /* 3077 * Check that 3078 * the redirect was not from ourselves 3079 * the new gateway and the old gateway are directly reachable 3080 */ 3081 if (!prev_ire || 3082 !ire || 3083 ire->ire_type == IRE_LOCAL) { 3084 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3085 freemsg(mp); 3086 if (ire != NULL) 3087 ire_refrele(ire); 3088 if (prev_ire != NULL) 3089 ire_refrele(prev_ire); 3090 return; 3091 } 3092 3093 /* 3094 * Should we use the old ULP info to create the new gateway? From 3095 * a user's perspective, we should inherit the info so that it 3096 * is a "smooth" transition. If we do not do that, then new 3097 * connections going thru the new gateway will have no route metrics, 3098 * which is counter-intuitive to user. From a network point of 3099 * view, this may or may not make sense even though the new gateway 3100 * is still directly connected to us so the route metrics should not 3101 * change much. 3102 * 3103 * But if the old ire_uinfo is not initialized, we do another 3104 * recursive lookup on the dest using the new gateway. There may 3105 * be a route to that. If so, use it to initialize the redirect 3106 * route. 3107 */ 3108 if (prev_ire->ire_uinfo.iulp_set) { 3109 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3110 } else { 3111 ire_t *tmp_ire; 3112 ire_t *sire; 3113 3114 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3115 ALL_ZONES, 0, NULL, 3116 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3117 ipst); 3118 if (sire != NULL) { 3119 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 /* 3121 * If sire != NULL, ire_ftable_lookup() should not 3122 * return a NULL value. 3123 */ 3124 ASSERT(tmp_ire != NULL); 3125 ire_refrele(tmp_ire); 3126 ire_refrele(sire); 3127 } else if (tmp_ire != NULL) { 3128 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3129 sizeof (iulp_t)); 3130 ire_refrele(tmp_ire); 3131 } 3132 } 3133 if (prev_ire->ire_type == IRE_CACHE) 3134 ire_delete(prev_ire); 3135 ire_refrele(prev_ire); 3136 /* 3137 * TODO: more precise handling for cases 0, 2, 3, the latter two 3138 * require TOS routing 3139 */ 3140 switch (icmph->icmph_code) { 3141 case 0: 3142 case 1: 3143 /* TODO: TOS specificity for cases 2 and 3 */ 3144 case 2: 3145 case 3: 3146 break; 3147 default: 3148 freemsg(mp); 3149 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3150 ire_refrele(ire); 3151 return; 3152 } 3153 /* 3154 * Create a Route Association. This will allow us to remember that 3155 * someone we believe told us to use the particular gateway. 3156 */ 3157 save_ire = ire; 3158 ire = ire_create( 3159 (uchar_t *)&dst, /* dest addr */ 3160 (uchar_t *)&ip_g_all_ones, /* mask */ 3161 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3162 (uchar_t *)&gateway, /* gateway addr */ 3163 NULL, /* no in_srcaddr */ 3164 &save_ire->ire_max_frag, /* max frag */ 3165 NULL, /* Fast Path header */ 3166 NULL, /* no rfq */ 3167 NULL, /* no stq */ 3168 IRE_HOST, 3169 NULL, 3170 NULL, 3171 NULL, 3172 0, 3173 0, 3174 0, 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, 3178 NULL, 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 boolean_t xmit_if_on = B_FALSE; 3268 3269 if (mctl_present) { 3270 /* 3271 * If it is : 3272 * 3273 * 1) a IPSEC_OUT, then this is caused by outbound 3274 * datagram originating on this host. IPSEC processing 3275 * may or may not have been done. Refer to comments above 3276 * icmp_inbound_error_fanout for details. 3277 * 3278 * 2) a IPSEC_IN if we are generating a icmp_message 3279 * for an incoming datagram destined for us i.e called 3280 * from ip_fanout_send_icmp. 3281 */ 3282 ipsec_info_t *in; 3283 ipsec_mp = mp; 3284 mp = ipsec_mp->b_cont; 3285 3286 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3287 ipha = (ipha_t *)mp->b_rptr; 3288 3289 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3290 in->ipsec_info_type == IPSEC_IN); 3291 3292 if (in->ipsec_info_type == IPSEC_IN) { 3293 /* 3294 * Convert the IPSEC_IN to IPSEC_OUT. 3295 */ 3296 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3297 BUMP_MIB(&ipst->ips_ip_mib, 3298 ipIfStatsOutDiscards); 3299 return; 3300 } 3301 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3302 } else { 3303 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3304 io = (ipsec_out_t *)in; 3305 if (io->ipsec_out_xmit_if) 3306 xmit_if_on = B_TRUE; 3307 /* 3308 * Clear out ipsec_out_proc_begin, so we do a fresh 3309 * ire lookup. 3310 */ 3311 io->ipsec_out_proc_begin = B_FALSE; 3312 } 3313 ASSERT(zoneid == io->ipsec_out_zoneid); 3314 ASSERT(zoneid != ALL_ZONES); 3315 } else { 3316 /* 3317 * This is in clear. The icmp message we are building 3318 * here should go out in clear. 3319 * 3320 * Pardon the convolution of it all, but it's easier to 3321 * allocate a "use cleartext" IPSEC_IN message and convert 3322 * it than it is to allocate a new one. 3323 */ 3324 ipsec_in_t *ii; 3325 ASSERT(DB_TYPE(mp) == M_DATA); 3326 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3327 if (ipsec_mp == NULL) { 3328 freemsg(mp); 3329 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3330 return; 3331 } 3332 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3333 3334 /* This is not a secure packet */ 3335 ii->ipsec_in_secure = B_FALSE; 3336 /* 3337 * For trusted extensions using a shared IP address we can 3338 * send using any zoneid. 3339 */ 3340 if (zoneid == ALL_ZONES) 3341 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3342 else 3343 ii->ipsec_in_zoneid = zoneid; 3344 ipsec_mp->b_cont = mp; 3345 ipha = (ipha_t *)mp->b_rptr; 3346 /* 3347 * Convert the IPSEC_IN to IPSEC_OUT. 3348 */ 3349 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3350 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3351 return; 3352 } 3353 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3354 } 3355 3356 /* Remember our eventual destination */ 3357 dst = ipha->ipha_src; 3358 3359 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3360 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3361 if (ire != NULL && 3362 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3363 src = ipha->ipha_dst; 3364 } else if (!xmit_if_on) { 3365 if (ire != NULL) 3366 ire_refrele(ire); 3367 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3368 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3369 ipst); 3370 if (ire == NULL) { 3371 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3372 freemsg(ipsec_mp); 3373 return; 3374 } 3375 src = ire->ire_src_addr; 3376 } else { 3377 ipif_t *ipif = NULL; 3378 ill_t *ill; 3379 /* 3380 * This must be an ICMP error coming from 3381 * ip_mrtun_forward(). The src addr should 3382 * be equal to the IP-addr of the outgoing 3383 * interface. 3384 */ 3385 if (io == NULL) { 3386 /* This is not a IPSEC_OUT type control msg */ 3387 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3392 NULL, NULL, NULL, NULL, ipst); 3393 if (ill != NULL) { 3394 ipif = ipif_get_next_ipif(NULL, ill); 3395 ill_refrele(ill); 3396 } 3397 if (ipif == NULL) { 3398 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 src = ipif->ipif_src_addr; 3403 ipif_refrele(ipif); 3404 } 3405 3406 if (ire != NULL) 3407 ire_refrele(ire); 3408 3409 /* 3410 * Check if we can send back more then 8 bytes in addition to 3411 * the IP header. We try to send 64 bytes of data and the internal 3412 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3413 */ 3414 len_needed = IPH_HDR_LENGTH(ipha); 3415 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3416 ipha->ipha_protocol == IPPROTO_IPV6) { 3417 3418 if (!pullupmsg(mp, -1)) { 3419 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3420 freemsg(ipsec_mp); 3421 return; 3422 } 3423 ipha = (ipha_t *)mp->b_rptr; 3424 3425 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3426 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3427 len_needed)); 3428 } else { 3429 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3430 3431 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3432 len_needed += ip_hdr_length_v6(mp, ip6h); 3433 } 3434 } 3435 len_needed += ipst->ips_ip_icmp_return; 3436 msg_len = msgdsize(mp); 3437 if (msg_len > len_needed) { 3438 (void) adjmsg(mp, len_needed - msg_len); 3439 msg_len = len_needed; 3440 } 3441 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3442 if (mp1 == NULL) { 3443 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3444 freemsg(ipsec_mp); 3445 return; 3446 } 3447 mp1->b_cont = mp; 3448 mp = mp1; 3449 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3450 ipsec_mp->b_rptr == (uint8_t *)io && 3451 io->ipsec_out_type == IPSEC_OUT); 3452 ipsec_mp->b_cont = mp; 3453 3454 /* 3455 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3456 * node generates be accepted in peace by all on-host destinations. 3457 * If we do NOT assume that all on-host destinations trust 3458 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3459 * (Look for ipsec_out_icmp_loopback). 3460 */ 3461 io->ipsec_out_icmp_loopback = B_TRUE; 3462 3463 ipha = (ipha_t *)mp->b_rptr; 3464 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3465 *ipha = icmp_ipha; 3466 ipha->ipha_src = src; 3467 ipha->ipha_dst = dst; 3468 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3469 msg_len += sizeof (icmp_ipha) + len; 3470 if (msg_len > IP_MAXPACKET) { 3471 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3472 msg_len = IP_MAXPACKET; 3473 } 3474 ipha->ipha_length = htons((uint16_t)msg_len); 3475 icmph = (icmph_t *)&ipha[1]; 3476 bcopy(stuff, icmph, len); 3477 icmph->icmph_checksum = 0; 3478 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3479 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3480 put(q, ipsec_mp); 3481 } 3482 3483 /* 3484 * Determine if an ICMP error packet can be sent given the rate limit. 3485 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3486 * in milliseconds) and a burst size. Burst size number of packets can 3487 * be sent arbitrarely closely spaced. 3488 * The state is tracked using two variables to implement an approximate 3489 * token bucket filter: 3490 * icmp_pkt_err_last - lbolt value when the last burst started 3491 * icmp_pkt_err_sent - number of packets sent in current burst 3492 */ 3493 boolean_t 3494 icmp_err_rate_limit(ip_stack_t *ipst) 3495 { 3496 clock_t now = TICK_TO_MSEC(lbolt); 3497 uint_t refilled; /* Number of packets refilled in tbf since last */ 3498 /* Guard against changes by loading into local variable */ 3499 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3500 3501 if (err_interval == 0) 3502 return (B_FALSE); 3503 3504 if (ipst->ips_icmp_pkt_err_last > now) { 3505 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3506 ipst->ips_icmp_pkt_err_last = 0; 3507 ipst->ips_icmp_pkt_err_sent = 0; 3508 } 3509 /* 3510 * If we are in a burst update the token bucket filter. 3511 * Update the "last" time to be close to "now" but make sure 3512 * we don't loose precision. 3513 */ 3514 if (ipst->ips_icmp_pkt_err_sent != 0) { 3515 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3516 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3517 ipst->ips_icmp_pkt_err_sent = 0; 3518 } else { 3519 ipst->ips_icmp_pkt_err_sent -= refilled; 3520 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3521 } 3522 } 3523 if (ipst->ips_icmp_pkt_err_sent == 0) { 3524 /* Start of new burst */ 3525 ipst->ips_icmp_pkt_err_last = now; 3526 } 3527 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3528 ipst->ips_icmp_pkt_err_sent++; 3529 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3530 ipst->ips_icmp_pkt_err_sent)); 3531 return (B_FALSE); 3532 } 3533 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3534 return (B_TRUE); 3535 } 3536 3537 /* 3538 * Check if it is ok to send an IPv4 ICMP error packet in 3539 * response to the IPv4 packet in mp. 3540 * Free the message and return null if no 3541 * ICMP error packet should be sent. 3542 */ 3543 static mblk_t * 3544 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3545 { 3546 icmph_t *icmph; 3547 ipha_t *ipha; 3548 uint_t len_needed; 3549 ire_t *src_ire; 3550 ire_t *dst_ire; 3551 3552 if (!mp) 3553 return (NULL); 3554 ipha = (ipha_t *)mp->b_rptr; 3555 if (ip_csum_hdr(ipha)) { 3556 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3557 freemsg(mp); 3558 return (NULL); 3559 } 3560 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3561 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3562 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3563 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3564 if (src_ire != NULL || dst_ire != NULL || 3565 CLASSD(ipha->ipha_dst) || 3566 CLASSD(ipha->ipha_src) || 3567 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3568 /* Note: only errors to the fragment with offset 0 */ 3569 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3570 freemsg(mp); 3571 if (src_ire != NULL) 3572 ire_refrele(src_ire); 3573 if (dst_ire != NULL) 3574 ire_refrele(dst_ire); 3575 return (NULL); 3576 } 3577 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3578 /* 3579 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3580 * errors in response to any ICMP errors. 3581 */ 3582 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3583 if (mp->b_wptr - mp->b_rptr < len_needed) { 3584 if (!pullupmsg(mp, len_needed)) { 3585 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3586 freemsg(mp); 3587 return (NULL); 3588 } 3589 ipha = (ipha_t *)mp->b_rptr; 3590 } 3591 icmph = (icmph_t *) 3592 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3593 switch (icmph->icmph_type) { 3594 case ICMP_DEST_UNREACHABLE: 3595 case ICMP_SOURCE_QUENCH: 3596 case ICMP_TIME_EXCEEDED: 3597 case ICMP_PARAM_PROBLEM: 3598 case ICMP_REDIRECT: 3599 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3600 freemsg(mp); 3601 return (NULL); 3602 default: 3603 break; 3604 } 3605 } 3606 /* 3607 * If this is a labeled system, then check to see if we're allowed to 3608 * send a response to this particular sender. If not, then just drop. 3609 */ 3610 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3611 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3612 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3613 freemsg(mp); 3614 return (NULL); 3615 } 3616 if (icmp_err_rate_limit(ipst)) { 3617 /* 3618 * Only send ICMP error packets every so often. 3619 * This should be done on a per port/source basis, 3620 * but for now this will suffice. 3621 */ 3622 freemsg(mp); 3623 return (NULL); 3624 } 3625 return (mp); 3626 } 3627 3628 /* 3629 * Generate an ICMP redirect message. 3630 */ 3631 static void 3632 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3633 { 3634 icmph_t icmph; 3635 3636 /* 3637 * We are called from ip_rput where we could 3638 * not have attached an IPSEC_IN. 3639 */ 3640 ASSERT(mp->b_datap->db_type == M_DATA); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 return; 3644 } 3645 3646 bzero(&icmph, sizeof (icmph_t)); 3647 icmph.icmph_type = ICMP_REDIRECT; 3648 icmph.icmph_code = 1; 3649 icmph.icmph_rd_gateway = gateway; 3650 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3651 /* Redirects sent by router, and router is global zone */ 3652 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3653 } 3654 3655 /* 3656 * Generate an ICMP time exceeded message. 3657 */ 3658 void 3659 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3660 ip_stack_t *ipst) 3661 { 3662 icmph_t icmph; 3663 boolean_t mctl_present; 3664 mblk_t *first_mp; 3665 3666 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3667 3668 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3669 if (mctl_present) 3670 freeb(first_mp); 3671 return; 3672 } 3673 3674 bzero(&icmph, sizeof (icmph_t)); 3675 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3676 icmph.icmph_code = code; 3677 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3678 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3679 ipst); 3680 } 3681 3682 /* 3683 * Generate an ICMP unreachable message. 3684 */ 3685 void 3686 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3687 ip_stack_t *ipst) 3688 { 3689 icmph_t icmph; 3690 mblk_t *first_mp; 3691 boolean_t mctl_present; 3692 3693 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3694 3695 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3696 if (mctl_present) 3697 freeb(first_mp); 3698 return; 3699 } 3700 3701 bzero(&icmph, sizeof (icmph_t)); 3702 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3703 icmph.icmph_code = code; 3704 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3705 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3706 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3707 zoneid, ipst); 3708 } 3709 3710 /* 3711 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3712 * duplicate. As long as someone else holds the address, the interface will 3713 * stay down. When that conflict goes away, the interface is brought back up. 3714 * This is done so that accidental shutdowns of addresses aren't made 3715 * permanent. Your server will recover from a failure. 3716 * 3717 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3718 * user space process (dhcpagent). 3719 * 3720 * Recovery completes if ARP reports that the address is now ours (via 3721 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3722 * 3723 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3724 */ 3725 static void 3726 ipif_dup_recovery(void *arg) 3727 { 3728 ipif_t *ipif = arg; 3729 ill_t *ill = ipif->ipif_ill; 3730 mblk_t *arp_add_mp; 3731 mblk_t *arp_del_mp; 3732 area_t *area; 3733 ip_stack_t *ipst = ill->ill_ipst; 3734 3735 ipif->ipif_recovery_id = 0; 3736 3737 /* 3738 * No lock needed for moving or condemned check, as this is just an 3739 * optimization. 3740 */ 3741 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3742 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3743 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3744 /* No reason to try to bring this address back. */ 3745 return; 3746 } 3747 3748 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3749 goto alloc_fail; 3750 3751 if (ipif->ipif_arp_del_mp == NULL) { 3752 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3753 goto alloc_fail; 3754 ipif->ipif_arp_del_mp = arp_del_mp; 3755 } 3756 3757 /* Setting the 'unverified' flag restarts DAD */ 3758 area = (area_t *)arp_add_mp->b_rptr; 3759 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3760 ACE_F_UNVERIFIED; 3761 putnext(ill->ill_rq, arp_add_mp); 3762 return; 3763 3764 alloc_fail: 3765 /* 3766 * On allocation failure, just restart the timer. Note that the ipif 3767 * is down here, so no other thread could be trying to start a recovery 3768 * timer. The ill_lock protects the condemned flag and the recovery 3769 * timer ID. 3770 */ 3771 freemsg(arp_add_mp); 3772 mutex_enter(&ill->ill_lock); 3773 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3774 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3775 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3776 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3777 } 3778 mutex_exit(&ill->ill_lock); 3779 } 3780 3781 /* 3782 * This is for exclusive changes due to ARP. Either tear down an interface due 3783 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3784 */ 3785 /* ARGSUSED */ 3786 static void 3787 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3788 { 3789 ill_t *ill = rq->q_ptr; 3790 arh_t *arh; 3791 ipaddr_t src; 3792 ipif_t *ipif; 3793 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3794 char hbuf[MAC_STR_LEN]; 3795 char sbuf[INET_ADDRSTRLEN]; 3796 const char *failtype; 3797 boolean_t bring_up; 3798 ip_stack_t *ipst = ill->ill_ipst; 3799 3800 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3801 case AR_CN_READY: 3802 failtype = NULL; 3803 bring_up = B_TRUE; 3804 break; 3805 case AR_CN_FAILED: 3806 failtype = "in use"; 3807 bring_up = B_FALSE; 3808 break; 3809 default: 3810 failtype = "claimed"; 3811 bring_up = B_FALSE; 3812 break; 3813 } 3814 3815 arh = (arh_t *)mp->b_cont->b_rptr; 3816 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3817 3818 /* Handle failures due to probes */ 3819 if (src == 0) { 3820 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3821 IP_ADDR_LEN); 3822 } 3823 3824 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3825 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3826 sizeof (hbuf)); 3827 (void) ip_dot_addr(src, sbuf); 3828 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3829 3830 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3831 ipif->ipif_lcl_addr != src) { 3832 continue; 3833 } 3834 3835 /* 3836 * If we failed on a recovery probe, then restart the timer to 3837 * try again later. 3838 */ 3839 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3840 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3841 ill->ill_net_type == IRE_IF_RESOLVER && 3842 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3843 ipst->ips_ip_dup_recovery > 0 && 3844 ipif->ipif_recovery_id == 0) { 3845 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3846 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3847 continue; 3848 } 3849 3850 /* 3851 * If what we're trying to do has already been done, then do 3852 * nothing. 3853 */ 3854 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3855 continue; 3856 3857 if (ipif->ipif_id != 0) { 3858 (void) snprintf(ibuf + ill->ill_name_length - 1, 3859 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3860 ipif->ipif_id); 3861 } 3862 if (failtype == NULL) { 3863 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3864 ibuf); 3865 } else { 3866 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3867 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3868 } 3869 3870 if (bring_up) { 3871 ASSERT(ill->ill_dl_up); 3872 /* 3873 * Free up the ARP delete message so we can allocate 3874 * a fresh one through the normal path. 3875 */ 3876 freemsg(ipif->ipif_arp_del_mp); 3877 ipif->ipif_arp_del_mp = NULL; 3878 if (ipif_resolver_up(ipif, Res_act_initial) != 3879 EINPROGRESS) { 3880 ipif->ipif_addr_ready = 1; 3881 (void) ipif_up_done(ipif); 3882 } 3883 continue; 3884 } 3885 3886 mutex_enter(&ill->ill_lock); 3887 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3888 ipif->ipif_flags |= IPIF_DUPLICATE; 3889 ill->ill_ipif_dup_count++; 3890 mutex_exit(&ill->ill_lock); 3891 /* 3892 * Already exclusive on the ill; no need to handle deferred 3893 * processing here. 3894 */ 3895 (void) ipif_down(ipif, NULL, NULL); 3896 ipif_down_tail(ipif); 3897 mutex_enter(&ill->ill_lock); 3898 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3899 ill->ill_net_type == IRE_IF_RESOLVER && 3900 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3901 ipst->ips_ip_dup_recovery > 0) { 3902 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3903 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3904 } 3905 mutex_exit(&ill->ill_lock); 3906 } 3907 freemsg(mp); 3908 } 3909 3910 /* ARGSUSED */ 3911 static void 3912 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3913 { 3914 ill_t *ill = rq->q_ptr; 3915 arh_t *arh; 3916 ipaddr_t src; 3917 ipif_t *ipif; 3918 3919 arh = (arh_t *)mp->b_cont->b_rptr; 3920 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3921 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3922 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3923 (void) ipif_resolver_up(ipif, Res_act_defend); 3924 } 3925 freemsg(mp); 3926 } 3927 3928 /* 3929 * News from ARP. ARP sends notification of interesting events down 3930 * to its clients using M_CTL messages with the interesting ARP packet 3931 * attached via b_cont. 3932 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3933 * queue as opposed to ARP sending the message to all the clients, i.e. all 3934 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3935 * table if a cache IRE is found to delete all the entries for the address in 3936 * the packet. 3937 */ 3938 static void 3939 ip_arp_news(queue_t *q, mblk_t *mp) 3940 { 3941 arcn_t *arcn; 3942 arh_t *arh; 3943 ire_t *ire = NULL; 3944 char hbuf[MAC_STR_LEN]; 3945 char sbuf[INET_ADDRSTRLEN]; 3946 ipaddr_t src; 3947 in6_addr_t v6src; 3948 boolean_t isv6 = B_FALSE; 3949 ipif_t *ipif; 3950 ill_t *ill; 3951 ip_stack_t *ipst; 3952 3953 if (CONN_Q(q)) { 3954 conn_t *connp = Q_TO_CONN(q); 3955 3956 ipst = connp->conn_netstack->netstack_ip; 3957 } else { 3958 ill_t *ill = (ill_t *)q->q_ptr; 3959 3960 ipst = ill->ill_ipst; 3961 } 3962 3963 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3964 if (q->q_next) { 3965 putnext(q, mp); 3966 } else 3967 freemsg(mp); 3968 return; 3969 } 3970 arh = (arh_t *)mp->b_cont->b_rptr; 3971 /* Is it one we are interested in? */ 3972 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3973 isv6 = B_TRUE; 3974 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3975 IPV6_ADDR_LEN); 3976 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3977 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3978 IP_ADDR_LEN); 3979 } else { 3980 freemsg(mp); 3981 return; 3982 } 3983 3984 ill = q->q_ptr; 3985 3986 arcn = (arcn_t *)mp->b_rptr; 3987 switch (arcn->arcn_code) { 3988 case AR_CN_BOGON: 3989 /* 3990 * Someone is sending ARP packets with a source protocol 3991 * address that we have published and for which we believe our 3992 * entry is authoritative and (when ill_arp_extend is set) 3993 * verified to be unique on the network. 3994 * 3995 * The ARP module internally handles the cases where the sender 3996 * is just probing (for DAD) and where the hardware address of 3997 * a non-authoritative entry has changed. Thus, these are the 3998 * real conflicts, and we have to do resolution. 3999 * 4000 * We back away quickly from the address if it's from DHCP or 4001 * otherwise temporary and hasn't been used recently (or at 4002 * all). We'd like to include "deprecated" addresses here as 4003 * well (as there's no real reason to defend something we're 4004 * discarding), but IPMP "reuses" this flag to mean something 4005 * other than the standard meaning. 4006 * 4007 * If the ARP module above is not extended (meaning that it 4008 * doesn't know how to defend the address), then we just log 4009 * the problem as we always did and continue on. It's not 4010 * right, but there's little else we can do, and those old ATM 4011 * users are going away anyway. 4012 */ 4013 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4014 hbuf, sizeof (hbuf)); 4015 (void) ip_dot_addr(src, sbuf); 4016 if (isv6) { 4017 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4018 ipst); 4019 } else { 4020 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4021 } 4022 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4023 uint32_t now; 4024 uint32_t maxage; 4025 clock_t lused; 4026 uint_t maxdefense; 4027 uint_t defs; 4028 4029 /* 4030 * First, figure out if this address hasn't been used 4031 * in a while. If it hasn't, then it's a better 4032 * candidate for abandoning. 4033 */ 4034 ipif = ire->ire_ipif; 4035 ASSERT(ipif != NULL); 4036 now = gethrestime_sec(); 4037 maxage = now - ire->ire_create_time; 4038 if (maxage > ipst->ips_ip_max_temp_idle) 4039 maxage = ipst->ips_ip_max_temp_idle; 4040 lused = drv_hztousec(ddi_get_lbolt() - 4041 ire->ire_last_used_time) / MICROSEC + 1; 4042 if (lused >= maxage && (ipif->ipif_flags & 4043 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4044 maxdefense = ipst->ips_ip_max_temp_defend; 4045 else 4046 maxdefense = ipst->ips_ip_max_defend; 4047 4048 /* 4049 * Now figure out how many times we've defended 4050 * ourselves. Ignore defenses that happened long in 4051 * the past. 4052 */ 4053 mutex_enter(&ire->ire_lock); 4054 if ((defs = ire->ire_defense_count) > 0 && 4055 now - ire->ire_defense_time > 4056 ipst->ips_ip_defend_interval) { 4057 ire->ire_defense_count = defs = 0; 4058 } 4059 ire->ire_defense_count++; 4060 ire->ire_defense_time = now; 4061 mutex_exit(&ire->ire_lock); 4062 ill_refhold(ill); 4063 ire_refrele(ire); 4064 4065 /* 4066 * If we've defended ourselves too many times already, 4067 * then give up and tear down the interface(s) using 4068 * this address. Otherwise, defend by sending out a 4069 * gratuitous ARP. 4070 */ 4071 if (defs >= maxdefense && ill->ill_arp_extend) { 4072 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4073 B_FALSE); 4074 } else { 4075 cmn_err(CE_WARN, 4076 "node %s is using our IP address %s on %s", 4077 hbuf, sbuf, ill->ill_name); 4078 /* 4079 * If this is an old (ATM) ARP module, then 4080 * don't try to defend the address. Remain 4081 * compatible with the old behavior. Defend 4082 * only with new ARP. 4083 */ 4084 if (ill->ill_arp_extend) { 4085 qwriter_ip(ill, q, mp, ip_arp_defend, 4086 NEW_OP, B_FALSE); 4087 } else { 4088 ill_refrele(ill); 4089 } 4090 } 4091 return; 4092 } 4093 cmn_err(CE_WARN, 4094 "proxy ARP problem? Node '%s' is using %s on %s", 4095 hbuf, sbuf, ill->ill_name); 4096 if (ire != NULL) 4097 ire_refrele(ire); 4098 break; 4099 case AR_CN_ANNOUNCE: 4100 if (isv6) { 4101 /* 4102 * For XRESOLV interfaces. 4103 * Delete the IRE cache entry and NCE for this 4104 * v6 address 4105 */ 4106 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4107 /* 4108 * If v6src is a non-zero, it's a router address 4109 * as below. Do the same sort of thing to clean 4110 * out off-net IRE_CACHE entries that go through 4111 * the router. 4112 */ 4113 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4114 ire_walk_v6(ire_delete_cache_gw_v6, 4115 (char *)&v6src, ALL_ZONES, ipst); 4116 } 4117 } else { 4118 nce_hw_map_t hwm; 4119 4120 /* 4121 * ARP gives us a copy of any packet where it thinks 4122 * the address has changed, so that we can update our 4123 * caches. We're responsible for caching known answers 4124 * in the current design. We check whether the 4125 * hardware address really has changed in all of our 4126 * entries that have cached this mapping, and if so, we 4127 * blow them away. This way we will immediately pick 4128 * up the rare case of a host changing hardware 4129 * address. 4130 */ 4131 if (src == 0) 4132 break; 4133 hwm.hwm_addr = src; 4134 hwm.hwm_hwlen = arh->arh_hlen; 4135 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4136 ndp_walk_common(ipst->ips_ndp4, NULL, 4137 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4138 } 4139 break; 4140 case AR_CN_READY: 4141 /* No external v6 resolver has a contract to use this */ 4142 if (isv6) 4143 break; 4144 /* If the link is down, we'll retry this later */ 4145 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4146 break; 4147 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4148 NULL, NULL, ipst); 4149 if (ipif != NULL) { 4150 /* 4151 * If this is a duplicate recovery, then we now need to 4152 * go exclusive to bring this thing back up. 4153 */ 4154 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4155 IPIF_DUPLICATE) { 4156 ipif_refrele(ipif); 4157 ill_refhold(ill); 4158 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4159 B_FALSE); 4160 return; 4161 } 4162 /* 4163 * If this is the first notice that this address is 4164 * ready, then let the user know now. 4165 */ 4166 if ((ipif->ipif_flags & IPIF_UP) && 4167 !ipif->ipif_addr_ready) { 4168 ipif_mask_reply(ipif); 4169 ip_rts_ifmsg(ipif); 4170 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4171 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4172 } 4173 ipif->ipif_addr_ready = 1; 4174 ipif_refrele(ipif); 4175 } 4176 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4177 if (ire != NULL) { 4178 ire->ire_defense_count = 0; 4179 ire_refrele(ire); 4180 } 4181 break; 4182 case AR_CN_FAILED: 4183 /* No external v6 resolver has a contract to use this */ 4184 if (isv6) 4185 break; 4186 ill_refhold(ill); 4187 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4188 return; 4189 } 4190 freemsg(mp); 4191 } 4192 4193 /* 4194 * Create a mblk suitable for carrying the interface index and/or source link 4195 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4196 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4197 * application. 4198 */ 4199 mblk_t * 4200 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4201 ip_stack_t *ipst) 4202 { 4203 mblk_t *mp; 4204 ip_pktinfo_t *pinfo; 4205 ipha_t *ipha; 4206 struct ether_header *pether; 4207 4208 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4209 if (mp == NULL) { 4210 ip1dbg(("ip_add_info: allocation failure.\n")); 4211 return (data_mp); 4212 } 4213 4214 ipha = (ipha_t *)data_mp->b_rptr; 4215 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4216 bzero(pinfo, sizeof (ip_pktinfo_t)); 4217 pinfo->ip_pkt_flags = (uchar_t)flags; 4218 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4219 4220 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4221 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4222 if (flags & IPF_RECVADDR) { 4223 ipif_t *ipif; 4224 ire_t *ire; 4225 4226 /* 4227 * Only valid for V4 4228 */ 4229 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4230 (IPV4_VERSION << 4)); 4231 4232 ipif = ipif_get_next_ipif(NULL, ill); 4233 if (ipif != NULL) { 4234 /* 4235 * Since a decision has already been made to deliver the 4236 * packet, there is no need to test for SECATTR and 4237 * ZONEONLY. 4238 * When a multicast packet is transmitted 4239 * a cache entry is created for the multicast address. 4240 * When delivering a copy of the packet or when new 4241 * packets are received we do not want to match on the 4242 * cached entry so explicitly match on 4243 * IRE_LOCAL and IRE_LOOPBACK 4244 */ 4245 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4246 IRE_LOCAL | IRE_LOOPBACK, 4247 ipif, zoneid, NULL, 4248 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4249 if (ire == NULL) { 4250 /* 4251 * packet must have come on a different 4252 * interface. 4253 * Since a decision has already been made to 4254 * deliver the packet, there is no need to test 4255 * for SECATTR and ZONEONLY. 4256 * Only match on local and broadcast ire's. 4257 * See detailed comment above. 4258 */ 4259 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4260 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4261 NULL, MATCH_IRE_TYPE, ipst); 4262 } 4263 4264 if (ire == NULL) { 4265 /* 4266 * This is either a multicast packet or 4267 * the address has been removed since 4268 * the packet was received. 4269 * Return INADDR_ANY so that normal source 4270 * selection occurs for the response. 4271 */ 4272 4273 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4274 } else { 4275 pinfo->ip_pkt_match_addr.s_addr = 4276 ire->ire_src_addr; 4277 ire_refrele(ire); 4278 } 4279 ipif_refrele(ipif); 4280 } else { 4281 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4282 } 4283 } 4284 4285 pether = (struct ether_header *)((char *)ipha 4286 - sizeof (struct ether_header)); 4287 /* 4288 * Make sure the interface is an ethernet type, since this option 4289 * is currently supported only on this type of interface. Also make 4290 * sure we are pointing correctly above db_base. 4291 */ 4292 4293 if ((flags & IPF_RECVSLLA) && 4294 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4295 (ill->ill_type == IFT_ETHER) && 4296 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4297 4298 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4299 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4300 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4301 } else { 4302 /* 4303 * Clear the bit. Indicate to upper layer that IP is not 4304 * sending this ancillary info. 4305 */ 4306 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4307 } 4308 4309 mp->b_datap->db_type = M_CTL; 4310 mp->b_wptr += sizeof (ip_pktinfo_t); 4311 mp->b_cont = data_mp; 4312 4313 return (mp); 4314 } 4315 4316 /* 4317 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4318 * part of the bind request. 4319 */ 4320 4321 boolean_t 4322 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4323 { 4324 ipsec_in_t *ii; 4325 4326 ASSERT(policy_mp != NULL); 4327 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4328 4329 ii = (ipsec_in_t *)policy_mp->b_rptr; 4330 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4331 4332 connp->conn_policy = ii->ipsec_in_policy; 4333 ii->ipsec_in_policy = NULL; 4334 4335 if (ii->ipsec_in_action != NULL) { 4336 if (connp->conn_latch == NULL) { 4337 connp->conn_latch = iplatch_create(); 4338 if (connp->conn_latch == NULL) 4339 return (B_FALSE); 4340 } 4341 ipsec_latch_inbound(connp->conn_latch, ii); 4342 } 4343 return (B_TRUE); 4344 } 4345 4346 /* 4347 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4348 * and to arrange for power-fanout assist. The ULP is identified by 4349 * adding a single byte at the end of the original bind message. 4350 * A ULP other than UDP or TCP that wishes to be recognized passes 4351 * down a bind with a zero length address. 4352 * 4353 * The binding works as follows: 4354 * - A zero byte address means just bind to the protocol. 4355 * - A four byte address is treated as a request to validate 4356 * that the address is a valid local address, appropriate for 4357 * an application to bind to. This does not affect any fanout 4358 * information in IP. 4359 * - A sizeof sin_t byte address is used to bind to only the local address 4360 * and port. 4361 * - A sizeof ipa_conn_t byte address contains complete fanout information 4362 * consisting of local and remote addresses and ports. In 4363 * this case, the addresses are both validated as appropriate 4364 * for this operation, and, if so, the information is retained 4365 * for use in the inbound fanout. 4366 * 4367 * The ULP (except in the zero-length bind) can append an 4368 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4369 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4370 * a copy of the source or destination IRE (source for local bind; 4371 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4372 * policy information contained should be copied on to the conn. 4373 * 4374 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4375 */ 4376 mblk_t * 4377 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4378 { 4379 ssize_t len; 4380 struct T_bind_req *tbr; 4381 sin_t *sin; 4382 ipa_conn_t *ac; 4383 uchar_t *ucp; 4384 mblk_t *mp1; 4385 boolean_t ire_requested; 4386 boolean_t ipsec_policy_set = B_FALSE; 4387 int error = 0; 4388 int protocol; 4389 ipa_conn_x_t *acx; 4390 4391 ASSERT(!connp->conn_af_isv6); 4392 connp->conn_pkt_isv6 = B_FALSE; 4393 4394 len = MBLKL(mp); 4395 if (len < (sizeof (*tbr) + 1)) { 4396 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4397 "ip_bind: bogus msg, len %ld", len); 4398 /* XXX: Need to return something better */ 4399 goto bad_addr; 4400 } 4401 /* Back up and extract the protocol identifier. */ 4402 mp->b_wptr--; 4403 protocol = *mp->b_wptr & 0xFF; 4404 tbr = (struct T_bind_req *)mp->b_rptr; 4405 /* Reset the message type in preparation for shipping it back. */ 4406 DB_TYPE(mp) = M_PCPROTO; 4407 4408 connp->conn_ulp = (uint8_t)protocol; 4409 4410 /* 4411 * Check for a zero length address. This is from a protocol that 4412 * wants to register to receive all packets of its type. 4413 */ 4414 if (tbr->ADDR_length == 0) { 4415 /* 4416 * These protocols are now intercepted in ip_bind_v6(). 4417 * Reject protocol-level binds here for now. 4418 * 4419 * For SCTP raw socket, ICMP sends down a bind with sin_t 4420 * so that the protocol type cannot be SCTP. 4421 */ 4422 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4423 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4424 goto bad_addr; 4425 } 4426 4427 /* 4428 * 4429 * The udp module never sends down a zero-length address, 4430 * and allowing this on a labeled system will break MLP 4431 * functionality. 4432 */ 4433 if (is_system_labeled() && protocol == IPPROTO_UDP) 4434 goto bad_addr; 4435 4436 if (connp->conn_mac_exempt) 4437 goto bad_addr; 4438 4439 /* No hash here really. The table is big enough. */ 4440 connp->conn_srcv6 = ipv6_all_zeros; 4441 4442 ipcl_proto_insert(connp, protocol); 4443 4444 tbr->PRIM_type = T_BIND_ACK; 4445 return (mp); 4446 } 4447 4448 /* Extract the address pointer from the message. */ 4449 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4450 tbr->ADDR_length); 4451 if (ucp == NULL) { 4452 ip1dbg(("ip_bind: no address\n")); 4453 goto bad_addr; 4454 } 4455 if (!OK_32PTR(ucp)) { 4456 ip1dbg(("ip_bind: unaligned address\n")); 4457 goto bad_addr; 4458 } 4459 /* 4460 * Check for trailing mps. 4461 */ 4462 4463 mp1 = mp->b_cont; 4464 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4465 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4466 4467 switch (tbr->ADDR_length) { 4468 default: 4469 ip1dbg(("ip_bind: bad address length %d\n", 4470 (int)tbr->ADDR_length)); 4471 goto bad_addr; 4472 4473 case IP_ADDR_LEN: 4474 /* Verification of local address only */ 4475 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4476 ire_requested, ipsec_policy_set, B_FALSE); 4477 break; 4478 4479 case sizeof (sin_t): 4480 sin = (sin_t *)ucp; 4481 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4482 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4483 break; 4484 4485 case sizeof (ipa_conn_t): 4486 ac = (ipa_conn_t *)ucp; 4487 /* For raw socket, the local port is not set. */ 4488 if (ac->ac_lport == 0) 4489 ac->ac_lport = connp->conn_lport; 4490 /* Always verify destination reachability. */ 4491 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4492 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4493 ipsec_policy_set, B_TRUE, B_TRUE); 4494 break; 4495 4496 case sizeof (ipa_conn_x_t): 4497 acx = (ipa_conn_x_t *)ucp; 4498 /* 4499 * Whether or not to verify destination reachability depends 4500 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4501 */ 4502 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4503 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4504 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4505 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4506 break; 4507 } 4508 if (error == EINPROGRESS) 4509 return (NULL); 4510 else if (error != 0) 4511 goto bad_addr; 4512 /* 4513 * Pass the IPSEC headers size in ire_ipsec_overhead. 4514 * We can't do this in ip_bind_insert_ire because the policy 4515 * may not have been inherited at that point in time and hence 4516 * conn_out_enforce_policy may not be set. 4517 */ 4518 mp1 = mp->b_cont; 4519 if (ire_requested && connp->conn_out_enforce_policy && 4520 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4521 ire_t *ire = (ire_t *)mp1->b_rptr; 4522 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4523 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4524 } 4525 4526 /* Send it home. */ 4527 mp->b_datap->db_type = M_PCPROTO; 4528 tbr->PRIM_type = T_BIND_ACK; 4529 return (mp); 4530 4531 bad_addr: 4532 /* 4533 * If error = -1 then we generate a TBADADDR - otherwise error is 4534 * a unix errno. 4535 */ 4536 if (error > 0) 4537 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4538 else 4539 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4540 return (mp); 4541 } 4542 4543 /* 4544 * Here address is verified to be a valid local address. 4545 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4546 * address is also considered a valid local address. 4547 * In the case of a broadcast/multicast address, however, the 4548 * upper protocol is expected to reset the src address 4549 * to 0 if it sees a IRE_BROADCAST type returned so that 4550 * no packets are emitted with broadcast/multicast address as 4551 * source address (that violates hosts requirements RFC1122) 4552 * The addresses valid for bind are: 4553 * (1) - INADDR_ANY (0) 4554 * (2) - IP address of an UP interface 4555 * (3) - IP address of a DOWN interface 4556 * (4) - valid local IP broadcast addresses. In this case 4557 * the conn will only receive packets destined to 4558 * the specified broadcast address. 4559 * (5) - a multicast address. In this case 4560 * the conn will only receive packets destined to 4561 * the specified multicast address. Note: the 4562 * application still has to issue an 4563 * IP_ADD_MEMBERSHIP socket option. 4564 * 4565 * On error, return -1 for TBADADDR otherwise pass the 4566 * errno with TSYSERR reply. 4567 * 4568 * In all the above cases, the bound address must be valid in the current zone. 4569 * When the address is loopback, multicast or broadcast, there might be many 4570 * matching IREs so bind has to look up based on the zone. 4571 * 4572 * Note: lport is in network byte order. 4573 */ 4574 int 4575 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4576 boolean_t ire_requested, boolean_t ipsec_policy_set, 4577 boolean_t fanout_insert) 4578 { 4579 int error = 0; 4580 ire_t *src_ire; 4581 mblk_t *policy_mp; 4582 ipif_t *ipif; 4583 zoneid_t zoneid; 4584 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4585 4586 if (ipsec_policy_set) { 4587 policy_mp = mp->b_cont; 4588 } 4589 4590 /* 4591 * If it was previously connected, conn_fully_bound would have 4592 * been set. 4593 */ 4594 connp->conn_fully_bound = B_FALSE; 4595 4596 src_ire = NULL; 4597 ipif = NULL; 4598 4599 zoneid = IPCL_ZONEID(connp); 4600 4601 if (src_addr) { 4602 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4603 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4604 /* 4605 * If an address other than 0.0.0.0 is requested, 4606 * we verify that it is a valid address for bind 4607 * Note: Following code is in if-else-if form for 4608 * readability compared to a condition check. 4609 */ 4610 /* LINTED - statement has no consequent */ 4611 if (IRE_IS_LOCAL(src_ire)) { 4612 /* 4613 * (2) Bind to address of local UP interface 4614 */ 4615 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4616 /* 4617 * (4) Bind to broadcast address 4618 * Note: permitted only from transports that 4619 * request IRE 4620 */ 4621 if (!ire_requested) 4622 error = EADDRNOTAVAIL; 4623 } else { 4624 /* 4625 * (3) Bind to address of local DOWN interface 4626 * (ipif_lookup_addr() looks up all interfaces 4627 * but we do not get here for UP interfaces 4628 * - case (2) above) 4629 * We put the protocol byte back into the mblk 4630 * since we may come back via ip_wput_nondata() 4631 * later with this mblk if ipif_lookup_addr chooses 4632 * to defer processing. 4633 */ 4634 *mp->b_wptr++ = (char)connp->conn_ulp; 4635 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4636 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4637 &error, ipst)) != NULL) { 4638 ipif_refrele(ipif); 4639 } else if (error == EINPROGRESS) { 4640 if (src_ire != NULL) 4641 ire_refrele(src_ire); 4642 return (EINPROGRESS); 4643 } else if (CLASSD(src_addr)) { 4644 error = 0; 4645 if (src_ire != NULL) 4646 ire_refrele(src_ire); 4647 /* 4648 * (5) bind to multicast address. 4649 * Fake out the IRE returned to upper 4650 * layer to be a broadcast IRE. 4651 */ 4652 src_ire = ire_ctable_lookup( 4653 INADDR_BROADCAST, INADDR_ANY, 4654 IRE_BROADCAST, NULL, zoneid, NULL, 4655 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4656 ipst); 4657 if (src_ire == NULL || !ire_requested) 4658 error = EADDRNOTAVAIL; 4659 } else { 4660 /* 4661 * Not a valid address for bind 4662 */ 4663 error = EADDRNOTAVAIL; 4664 } 4665 /* 4666 * Just to keep it consistent with the processing in 4667 * ip_bind_v4() 4668 */ 4669 mp->b_wptr--; 4670 } 4671 if (error) { 4672 /* Red Alert! Attempting to be a bogon! */ 4673 ip1dbg(("ip_bind: bad src address 0x%x\n", 4674 ntohl(src_addr))); 4675 goto bad_addr; 4676 } 4677 } 4678 4679 /* 4680 * Allow setting new policies. For example, disconnects come 4681 * down as ipa_t bind. As we would have set conn_policy_cached 4682 * to B_TRUE before, we should set it to B_FALSE, so that policy 4683 * can change after the disconnect. 4684 */ 4685 connp->conn_policy_cached = B_FALSE; 4686 4687 /* 4688 * If not fanout_insert this was just an address verification 4689 */ 4690 if (fanout_insert) { 4691 /* 4692 * The addresses have been verified. Time to insert in 4693 * the correct fanout list. 4694 */ 4695 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4696 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4697 connp->conn_lport = lport; 4698 connp->conn_fport = 0; 4699 /* 4700 * Do we need to add a check to reject Multicast packets 4701 * 4702 * We need to make sure that the conn_recv is set to a non-null 4703 * value before we insert the conn into the classifier table. 4704 * This is to avoid a race with an incoming packet which does an 4705 * ipcl_classify(). 4706 */ 4707 if (*mp->b_wptr == IPPROTO_TCP) 4708 connp->conn_recv = tcp_conn_request; 4709 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4710 } 4711 4712 if (error == 0) { 4713 if (ire_requested) { 4714 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4715 error = -1; 4716 /* Falls through to bad_addr */ 4717 } 4718 } else if (ipsec_policy_set) { 4719 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4720 error = -1; 4721 /* Falls through to bad_addr */ 4722 } 4723 } 4724 } else if (connp->conn_ulp == IPPROTO_TCP) { 4725 connp->conn_recv = tcp_input; 4726 } 4727 bad_addr: 4728 if (error != 0) { 4729 if (connp->conn_anon_port) { 4730 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4731 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4732 B_FALSE); 4733 } 4734 connp->conn_mlp_type = mlptSingle; 4735 } 4736 if (src_ire != NULL) 4737 IRE_REFRELE(src_ire); 4738 if (ipsec_policy_set) { 4739 ASSERT(policy_mp == mp->b_cont); 4740 ASSERT(policy_mp != NULL); 4741 freeb(policy_mp); 4742 /* 4743 * As of now assume that nothing else accompanies 4744 * IPSEC_POLICY_SET. 4745 */ 4746 mp->b_cont = NULL; 4747 } 4748 return (error); 4749 } 4750 4751 /* 4752 * Verify that both the source and destination addresses 4753 * are valid. If verify_dst is false, then the destination address may be 4754 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4755 * destination reachability, while tunnels do not. 4756 * Note that we allow connect to broadcast and multicast 4757 * addresses when ire_requested is set. Thus the ULP 4758 * has to check for IRE_BROADCAST and multicast. 4759 * 4760 * Returns zero if ok. 4761 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4762 * (for use with TSYSERR reply). 4763 * 4764 * Note: lport and fport are in network byte order. 4765 */ 4766 int 4767 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4768 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4769 boolean_t ire_requested, boolean_t ipsec_policy_set, 4770 boolean_t fanout_insert, boolean_t verify_dst) 4771 { 4772 ire_t *src_ire; 4773 ire_t *dst_ire; 4774 int error = 0; 4775 int protocol; 4776 mblk_t *policy_mp; 4777 ire_t *sire = NULL; 4778 ire_t *md_dst_ire = NULL; 4779 ire_t *lso_dst_ire = NULL; 4780 ill_t *ill = NULL; 4781 zoneid_t zoneid; 4782 ipaddr_t src_addr = *src_addrp; 4783 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4784 4785 src_ire = dst_ire = NULL; 4786 protocol = *mp->b_wptr & 0xFF; 4787 4788 /* 4789 * If we never got a disconnect before, clear it now. 4790 */ 4791 connp->conn_fully_bound = B_FALSE; 4792 4793 if (ipsec_policy_set) { 4794 policy_mp = mp->b_cont; 4795 } 4796 4797 zoneid = IPCL_ZONEID(connp); 4798 4799 if (CLASSD(dst_addr)) { 4800 /* Pick up an IRE_BROADCAST */ 4801 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4802 NULL, zoneid, MBLK_GETLABEL(mp), 4803 (MATCH_IRE_RECURSIVE | 4804 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4805 MATCH_IRE_SECATTR), ipst); 4806 } else { 4807 /* 4808 * If conn_dontroute is set or if conn_nexthop_set is set, 4809 * and onlink ipif is not found set ENETUNREACH error. 4810 */ 4811 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4812 ipif_t *ipif; 4813 4814 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4815 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4816 if (ipif == NULL) { 4817 error = ENETUNREACH; 4818 goto bad_addr; 4819 } 4820 ipif_refrele(ipif); 4821 } 4822 4823 if (connp->conn_nexthop_set) { 4824 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4825 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4826 MATCH_IRE_SECATTR, ipst); 4827 } else { 4828 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4829 &sire, zoneid, MBLK_GETLABEL(mp), 4830 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4831 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4832 MATCH_IRE_SECATTR), ipst); 4833 } 4834 } 4835 /* 4836 * dst_ire can't be a broadcast when not ire_requested. 4837 * We also prevent ire's with src address INADDR_ANY to 4838 * be used, which are created temporarily for 4839 * sending out packets from endpoints that have 4840 * conn_unspec_src set. If verify_dst is true, the destination must be 4841 * reachable. If verify_dst is false, the destination needn't be 4842 * reachable. 4843 * 4844 * If we match on a reject or black hole, then we've got a 4845 * local failure. May as well fail out the connect() attempt, 4846 * since it's never going to succeed. 4847 */ 4848 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4849 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4850 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4851 /* 4852 * If we're verifying destination reachability, we always want 4853 * to complain here. 4854 * 4855 * If we're not verifying destination reachability but the 4856 * destination has a route, we still want to fail on the 4857 * temporary address and broadcast address tests. 4858 */ 4859 if (verify_dst || (dst_ire != NULL)) { 4860 if (ip_debug > 2) { 4861 pr_addr_dbg("ip_bind_connected: bad connected " 4862 "dst %s\n", AF_INET, &dst_addr); 4863 } 4864 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4865 error = ENETUNREACH; 4866 else 4867 error = EHOSTUNREACH; 4868 goto bad_addr; 4869 } 4870 } 4871 4872 /* 4873 * We now know that routing will allow us to reach the destination. 4874 * Check whether Trusted Solaris policy allows communication with this 4875 * host, and pretend that the destination is unreachable if not. 4876 * 4877 * This is never a problem for TCP, since that transport is known to 4878 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4879 * handling. If the remote is unreachable, it will be detected at that 4880 * point, so there's no reason to check it here. 4881 * 4882 * Note that for sendto (and other datagram-oriented friends), this 4883 * check is done as part of the data path label computation instead. 4884 * The check here is just to make non-TCP connect() report the right 4885 * error. 4886 */ 4887 if (dst_ire != NULL && is_system_labeled() && 4888 !IPCL_IS_TCP(connp) && 4889 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4890 connp->conn_mac_exempt, ipst) != 0) { 4891 error = EHOSTUNREACH; 4892 if (ip_debug > 2) { 4893 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4894 AF_INET, &dst_addr); 4895 } 4896 goto bad_addr; 4897 } 4898 4899 /* 4900 * If the app does a connect(), it means that it will most likely 4901 * send more than 1 packet to the destination. It makes sense 4902 * to clear the temporary flag. 4903 */ 4904 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4905 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4906 irb_t *irb = dst_ire->ire_bucket; 4907 4908 rw_enter(&irb->irb_lock, RW_WRITER); 4909 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4910 irb->irb_tmp_ire_cnt--; 4911 rw_exit(&irb->irb_lock); 4912 } 4913 4914 /* 4915 * See if we should notify ULP about LSO/MDT; we do this whether or not 4916 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4917 * eligibility tests for passive connects are handled separately 4918 * through tcp_adapt_ire(). We do this before the source address 4919 * selection, because dst_ire may change after a call to 4920 * ipif_select_source(). This is a best-effort check, as the 4921 * packet for this connection may not actually go through 4922 * dst_ire->ire_stq, and the exact IRE can only be known after 4923 * calling ip_newroute(). This is why we further check on the 4924 * IRE during LSO/Multidata packet transmission in 4925 * tcp_lsosend()/tcp_multisend(). 4926 */ 4927 if (!ipsec_policy_set && dst_ire != NULL && 4928 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4929 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4930 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4931 lso_dst_ire = dst_ire; 4932 IRE_REFHOLD(lso_dst_ire); 4933 } else if (ipst->ips_ip_multidata_outbound && 4934 ILL_MDT_CAPABLE(ill)) { 4935 md_dst_ire = dst_ire; 4936 IRE_REFHOLD(md_dst_ire); 4937 } 4938 } 4939 4940 if (dst_ire != NULL && 4941 dst_ire->ire_type == IRE_LOCAL && 4942 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4943 /* 4944 * If the IRE belongs to a different zone, look for a matching 4945 * route in the forwarding table and use the source address from 4946 * that route. 4947 */ 4948 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4949 zoneid, 0, NULL, 4950 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4951 MATCH_IRE_RJ_BHOLE, ipst); 4952 if (src_ire == NULL) { 4953 error = EHOSTUNREACH; 4954 goto bad_addr; 4955 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4956 if (!(src_ire->ire_type & IRE_HOST)) 4957 error = ENETUNREACH; 4958 else 4959 error = EHOSTUNREACH; 4960 goto bad_addr; 4961 } 4962 if (src_addr == INADDR_ANY) 4963 src_addr = src_ire->ire_src_addr; 4964 ire_refrele(src_ire); 4965 src_ire = NULL; 4966 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4967 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4968 src_addr = sire->ire_src_addr; 4969 ire_refrele(dst_ire); 4970 dst_ire = sire; 4971 sire = NULL; 4972 } else { 4973 /* 4974 * Pick a source address so that a proper inbound 4975 * load spreading would happen. 4976 */ 4977 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4978 ipif_t *src_ipif = NULL; 4979 ire_t *ipif_ire; 4980 4981 /* 4982 * Supply a local source address such that inbound 4983 * load spreading happens. 4984 * 4985 * Determine the best source address on this ill for 4986 * the destination. 4987 * 4988 * 1) For broadcast, we should return a broadcast ire 4989 * found above so that upper layers know that the 4990 * destination address is a broadcast address. 4991 * 4992 * 2) If this is part of a group, select a better 4993 * source address so that better inbound load 4994 * balancing happens. Do the same if the ipif 4995 * is DEPRECATED. 4996 * 4997 * 3) If the outgoing interface is part of a usesrc 4998 * group, then try selecting a source address from 4999 * the usesrc ILL. 5000 */ 5001 if ((dst_ire->ire_zoneid != zoneid && 5002 dst_ire->ire_zoneid != ALL_ZONES) || 5003 (!(dst_ire->ire_type & IRE_BROADCAST) && 5004 ((dst_ill->ill_group != NULL) || 5005 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5006 (dst_ill->ill_usesrc_ifindex != 0)))) { 5007 /* 5008 * If the destination is reachable via a 5009 * given gateway, the selected source address 5010 * should be in the same subnet as the gateway. 5011 * Otherwise, the destination is not reachable. 5012 * 5013 * If there are no interfaces on the same subnet 5014 * as the destination, ipif_select_source gives 5015 * first non-deprecated interface which might be 5016 * on a different subnet than the gateway. 5017 * This is not desirable. Hence pass the dst_ire 5018 * source address to ipif_select_source. 5019 * It is sure that the destination is reachable 5020 * with the dst_ire source address subnet. 5021 * So passing dst_ire source address to 5022 * ipif_select_source will make sure that the 5023 * selected source will be on the same subnet 5024 * as dst_ire source address. 5025 */ 5026 ipaddr_t saddr = 5027 dst_ire->ire_ipif->ipif_src_addr; 5028 src_ipif = ipif_select_source(dst_ill, 5029 saddr, zoneid); 5030 if (src_ipif != NULL) { 5031 if (IS_VNI(src_ipif->ipif_ill)) { 5032 /* 5033 * For VNI there is no 5034 * interface route 5035 */ 5036 src_addr = 5037 src_ipif->ipif_src_addr; 5038 } else { 5039 ipif_ire = 5040 ipif_to_ire(src_ipif); 5041 if (ipif_ire != NULL) { 5042 IRE_REFRELE(dst_ire); 5043 dst_ire = ipif_ire; 5044 } 5045 src_addr = 5046 dst_ire->ire_src_addr; 5047 } 5048 ipif_refrele(src_ipif); 5049 } else { 5050 src_addr = dst_ire->ire_src_addr; 5051 } 5052 } else { 5053 src_addr = dst_ire->ire_src_addr; 5054 } 5055 } 5056 } 5057 5058 /* 5059 * We do ire_route_lookup() here (and not 5060 * interface lookup as we assert that 5061 * src_addr should only come from an 5062 * UP interface for hard binding. 5063 */ 5064 ASSERT(src_ire == NULL); 5065 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5066 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5067 /* src_ire must be a local|loopback */ 5068 if (!IRE_IS_LOCAL(src_ire)) { 5069 if (ip_debug > 2) { 5070 pr_addr_dbg("ip_bind_connected: bad connected " 5071 "src %s\n", AF_INET, &src_addr); 5072 } 5073 error = EADDRNOTAVAIL; 5074 goto bad_addr; 5075 } 5076 5077 /* 5078 * If the source address is a loopback address, the 5079 * destination had best be local or multicast. 5080 * The transports that can't handle multicast will reject 5081 * those addresses. 5082 */ 5083 if (src_ire->ire_type == IRE_LOOPBACK && 5084 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5085 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5086 error = -1; 5087 goto bad_addr; 5088 } 5089 5090 /* 5091 * Allow setting new policies. For example, disconnects come 5092 * down as ipa_t bind. As we would have set conn_policy_cached 5093 * to B_TRUE before, we should set it to B_FALSE, so that policy 5094 * can change after the disconnect. 5095 */ 5096 connp->conn_policy_cached = B_FALSE; 5097 5098 /* 5099 * Set the conn addresses/ports immediately, so the IPsec policy calls 5100 * can handle their passed-in conn's. 5101 */ 5102 5103 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5104 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5105 connp->conn_lport = lport; 5106 connp->conn_fport = fport; 5107 *src_addrp = src_addr; 5108 5109 ASSERT(!(ipsec_policy_set && ire_requested)); 5110 if (ire_requested) { 5111 iulp_t *ulp_info = NULL; 5112 5113 /* 5114 * Note that sire will not be NULL if this is an off-link 5115 * connection and there is not cache for that dest yet. 5116 * 5117 * XXX Because of an existing bug, if there are multiple 5118 * default routes, the IRE returned now may not be the actual 5119 * default route used (default routes are chosen in a 5120 * round robin fashion). So if the metrics for different 5121 * default routes are different, we may return the wrong 5122 * metrics. This will not be a problem if the existing 5123 * bug is fixed. 5124 */ 5125 if (sire != NULL) { 5126 ulp_info = &(sire->ire_uinfo); 5127 } 5128 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5129 error = -1; 5130 goto bad_addr; 5131 } 5132 } else if (ipsec_policy_set) { 5133 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5134 error = -1; 5135 goto bad_addr; 5136 } 5137 } 5138 5139 /* 5140 * Cache IPsec policy in this conn. If we have per-socket policy, 5141 * we'll cache that. If we don't, we'll inherit global policy. 5142 * 5143 * We can't insert until the conn reflects the policy. Note that 5144 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5145 * connections where we don't have a policy. This is to prevent 5146 * global policy lookups in the inbound path. 5147 * 5148 * If we insert before we set conn_policy_cached, 5149 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5150 * because global policy cound be non-empty. We normally call 5151 * ipsec_check_policy() for conn_policy_cached connections only if 5152 * ipc_in_enforce_policy is set. But in this case, 5153 * conn_policy_cached can get set anytime since we made the 5154 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5155 * called, which will make the above assumption false. Thus, we 5156 * need to insert after we set conn_policy_cached. 5157 */ 5158 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5159 goto bad_addr; 5160 5161 if (fanout_insert) { 5162 /* 5163 * The addresses have been verified. Time to insert in 5164 * the correct fanout list. 5165 * We need to make sure that the conn_recv is set to a non-null 5166 * value before we insert into the classifier table to avoid a 5167 * race with an incoming packet which does an ipcl_classify(). 5168 */ 5169 if (protocol == IPPROTO_TCP) 5170 connp->conn_recv = tcp_input; 5171 error = ipcl_conn_insert(connp, protocol, src_addr, 5172 dst_addr, connp->conn_ports); 5173 } 5174 5175 if (error == 0) { 5176 connp->conn_fully_bound = B_TRUE; 5177 /* 5178 * Our initial checks for LSO/MDT have passed; the IRE is not 5179 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5180 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5181 * ip_xxinfo_return(), which performs further checks 5182 * against them and upon success, returns the LSO/MDT info 5183 * mblk which we will attach to the bind acknowledgment. 5184 */ 5185 if (lso_dst_ire != NULL) { 5186 mblk_t *lsoinfo_mp; 5187 5188 ASSERT(ill->ill_lso_capab != NULL); 5189 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5190 ill->ill_name, ill->ill_lso_capab)) != NULL) 5191 linkb(mp, lsoinfo_mp); 5192 } else if (md_dst_ire != NULL) { 5193 mblk_t *mdinfo_mp; 5194 5195 ASSERT(ill->ill_mdt_capab != NULL); 5196 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5197 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5198 linkb(mp, mdinfo_mp); 5199 } 5200 } 5201 bad_addr: 5202 if (ipsec_policy_set) { 5203 ASSERT(policy_mp == mp->b_cont); 5204 ASSERT(policy_mp != NULL); 5205 freeb(policy_mp); 5206 /* 5207 * As of now assume that nothing else accompanies 5208 * IPSEC_POLICY_SET. 5209 */ 5210 mp->b_cont = NULL; 5211 } 5212 if (src_ire != NULL) 5213 IRE_REFRELE(src_ire); 5214 if (dst_ire != NULL) 5215 IRE_REFRELE(dst_ire); 5216 if (sire != NULL) 5217 IRE_REFRELE(sire); 5218 if (md_dst_ire != NULL) 5219 IRE_REFRELE(md_dst_ire); 5220 if (lso_dst_ire != NULL) 5221 IRE_REFRELE(lso_dst_ire); 5222 return (error); 5223 } 5224 5225 /* 5226 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5227 * Prefers dst_ire over src_ire. 5228 */ 5229 static boolean_t 5230 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5231 { 5232 mblk_t *mp1; 5233 ire_t *ret_ire = NULL; 5234 5235 mp1 = mp->b_cont; 5236 ASSERT(mp1 != NULL); 5237 5238 if (ire != NULL) { 5239 /* 5240 * mp1 initialized above to IRE_DB_REQ_TYPE 5241 * appended mblk. Its <upper protocol>'s 5242 * job to make sure there is room. 5243 */ 5244 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5245 return (0); 5246 5247 mp1->b_datap->db_type = IRE_DB_TYPE; 5248 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5249 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5250 ret_ire = (ire_t *)mp1->b_rptr; 5251 /* 5252 * Pass the latest setting of the ip_path_mtu_discovery and 5253 * copy the ulp info if any. 5254 */ 5255 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5256 IPH_DF : 0; 5257 if (ulp_info != NULL) { 5258 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5259 sizeof (iulp_t)); 5260 } 5261 ret_ire->ire_mp = mp1; 5262 } else { 5263 /* 5264 * No IRE was found. Remove IRE mblk. 5265 */ 5266 mp->b_cont = mp1->b_cont; 5267 freeb(mp1); 5268 } 5269 5270 return (1); 5271 } 5272 5273 /* 5274 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5275 * the final piece where we don't. Return a pointer to the first mblk in the 5276 * result, and update the pointer to the next mblk to chew on. If anything 5277 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5278 * NULL pointer. 5279 */ 5280 mblk_t * 5281 ip_carve_mp(mblk_t **mpp, ssize_t len) 5282 { 5283 mblk_t *mp0; 5284 mblk_t *mp1; 5285 mblk_t *mp2; 5286 5287 if (!len || !mpp || !(mp0 = *mpp)) 5288 return (NULL); 5289 /* If we aren't going to consume the first mblk, we need a dup. */ 5290 if (mp0->b_wptr - mp0->b_rptr > len) { 5291 mp1 = dupb(mp0); 5292 if (mp1) { 5293 /* Partition the data between the two mblks. */ 5294 mp1->b_wptr = mp1->b_rptr + len; 5295 mp0->b_rptr = mp1->b_wptr; 5296 /* 5297 * after adjustments if mblk not consumed is now 5298 * unaligned, try to align it. If this fails free 5299 * all messages and let upper layer recover. 5300 */ 5301 if (!OK_32PTR(mp0->b_rptr)) { 5302 if (!pullupmsg(mp0, -1)) { 5303 freemsg(mp0); 5304 freemsg(mp1); 5305 *mpp = NULL; 5306 return (NULL); 5307 } 5308 } 5309 } 5310 return (mp1); 5311 } 5312 /* Eat through as many mblks as we need to get len bytes. */ 5313 len -= mp0->b_wptr - mp0->b_rptr; 5314 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5315 if (mp2->b_wptr - mp2->b_rptr > len) { 5316 /* 5317 * We won't consume the entire last mblk. Like 5318 * above, dup and partition it. 5319 */ 5320 mp1->b_cont = dupb(mp2); 5321 mp1 = mp1->b_cont; 5322 if (!mp1) { 5323 /* 5324 * Trouble. Rather than go to a lot of 5325 * trouble to clean up, we free the messages. 5326 * This won't be any worse than losing it on 5327 * the wire. 5328 */ 5329 freemsg(mp0); 5330 freemsg(mp2); 5331 *mpp = NULL; 5332 return (NULL); 5333 } 5334 mp1->b_wptr = mp1->b_rptr + len; 5335 mp2->b_rptr = mp1->b_wptr; 5336 /* 5337 * after adjustments if mblk not consumed is now 5338 * unaligned, try to align it. If this fails free 5339 * all messages and let upper layer recover. 5340 */ 5341 if (!OK_32PTR(mp2->b_rptr)) { 5342 if (!pullupmsg(mp2, -1)) { 5343 freemsg(mp0); 5344 freemsg(mp2); 5345 *mpp = NULL; 5346 return (NULL); 5347 } 5348 } 5349 *mpp = mp2; 5350 return (mp0); 5351 } 5352 /* Decrement len by the amount we just got. */ 5353 len -= mp2->b_wptr - mp2->b_rptr; 5354 } 5355 /* 5356 * len should be reduced to zero now. If not our caller has 5357 * screwed up. 5358 */ 5359 if (len) { 5360 /* Shouldn't happen! */ 5361 freemsg(mp0); 5362 *mpp = NULL; 5363 return (NULL); 5364 } 5365 /* 5366 * We consumed up to exactly the end of an mblk. Detach the part 5367 * we are returning from the rest of the chain. 5368 */ 5369 mp1->b_cont = NULL; 5370 *mpp = mp2; 5371 return (mp0); 5372 } 5373 5374 /* The ill stream is being unplumbed. Called from ip_close */ 5375 int 5376 ip_modclose(ill_t *ill) 5377 { 5378 boolean_t success; 5379 ipsq_t *ipsq; 5380 ipif_t *ipif; 5381 queue_t *q = ill->ill_rq; 5382 ip_stack_t *ipst = ill->ill_ipst; 5383 clock_t timeout; 5384 5385 /* 5386 * Wait for the ACKs of all deferred control messages to be processed. 5387 * In particular, we wait for a potential capability reset initiated 5388 * in ip_sioctl_plink() to complete before proceeding. 5389 * 5390 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5391 * in case the driver never replies. 5392 */ 5393 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5394 mutex_enter(&ill->ill_lock); 5395 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5396 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5397 /* Timeout */ 5398 break; 5399 } 5400 } 5401 mutex_exit(&ill->ill_lock); 5402 5403 /* 5404 * Forcibly enter the ipsq after some delay. This is to take 5405 * care of the case when some ioctl does not complete because 5406 * we sent a control message to the driver and it did not 5407 * send us a reply. We want to be able to at least unplumb 5408 * and replumb rather than force the user to reboot the system. 5409 */ 5410 success = ipsq_enter(ill, B_FALSE); 5411 5412 /* 5413 * Open/close/push/pop is guaranteed to be single threaded 5414 * per stream by STREAMS. FS guarantees that all references 5415 * from top are gone before close is called. So there can't 5416 * be another close thread that has set CONDEMNED on this ill. 5417 * and cause ipsq_enter to return failure. 5418 */ 5419 ASSERT(success); 5420 ipsq = ill->ill_phyint->phyint_ipsq; 5421 5422 /* 5423 * Mark it condemned. No new reference will be made to this ill. 5424 * Lookup functions will return an error. Threads that try to 5425 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5426 * that the refcnt will drop down to zero. 5427 */ 5428 mutex_enter(&ill->ill_lock); 5429 ill->ill_state_flags |= ILL_CONDEMNED; 5430 for (ipif = ill->ill_ipif; ipif != NULL; 5431 ipif = ipif->ipif_next) { 5432 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5433 } 5434 /* 5435 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5436 * returns error if ILL_CONDEMNED is set 5437 */ 5438 cv_broadcast(&ill->ill_cv); 5439 mutex_exit(&ill->ill_lock); 5440 5441 /* 5442 * Send all the deferred DLPI messages downstream which came in 5443 * during the small window right before ipsq_enter(). We do this 5444 * without waiting for the ACKs because all the ACKs for M_PROTO 5445 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5446 */ 5447 ill_dlpi_send_deferred(ill); 5448 5449 /* 5450 * Shut down fragmentation reassembly. 5451 * ill_frag_timer won't start a timer again. 5452 * Now cancel any existing timer 5453 */ 5454 (void) untimeout(ill->ill_frag_timer_id); 5455 (void) ill_frag_timeout(ill, 0); 5456 5457 /* 5458 * If MOVE was in progress, clear the 5459 * move_in_progress fields also. 5460 */ 5461 if (ill->ill_move_in_progress) { 5462 ILL_CLEAR_MOVE(ill); 5463 } 5464 5465 /* 5466 * Call ill_delete to bring down the ipifs, ilms and ill on 5467 * this ill. Then wait for the refcnts to drop to zero. 5468 * ill_is_quiescent checks whether the ill is really quiescent. 5469 * Then make sure that threads that are waiting to enter the 5470 * ipsq have seen the error returned by ipsq_enter and have 5471 * gone away. Then we call ill_delete_tail which does the 5472 * DL_UNBIND_REQ with the driver and then qprocsoff. 5473 */ 5474 ill_delete(ill); 5475 mutex_enter(&ill->ill_lock); 5476 while (!ill_is_quiescent(ill)) 5477 cv_wait(&ill->ill_cv, &ill->ill_lock); 5478 while (ill->ill_waiters) 5479 cv_wait(&ill->ill_cv, &ill->ill_lock); 5480 5481 mutex_exit(&ill->ill_lock); 5482 5483 /* 5484 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5485 * it held until the end of the function since the cleanup 5486 * below needs to be able to use the ip_stack_t. 5487 */ 5488 netstack_hold(ipst->ips_netstack); 5489 5490 /* qprocsoff is called in ill_delete_tail */ 5491 ill_delete_tail(ill); 5492 ASSERT(ill->ill_ipst == NULL); 5493 5494 /* 5495 * Walk through all upper (conn) streams and qenable 5496 * those that have queued data. 5497 * close synchronization needs this to 5498 * be done to ensure that all upper layers blocked 5499 * due to flow control to the closing device 5500 * get unblocked. 5501 */ 5502 ip1dbg(("ip_wsrv: walking\n")); 5503 conn_walk_drain(ipst); 5504 5505 mutex_enter(&ipst->ips_ip_mi_lock); 5506 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5507 mutex_exit(&ipst->ips_ip_mi_lock); 5508 5509 /* 5510 * credp could be null if the open didn't succeed and ip_modopen 5511 * itself calls ip_close. 5512 */ 5513 if (ill->ill_credp != NULL) 5514 crfree(ill->ill_credp); 5515 5516 mutex_enter(&ill->ill_lock); 5517 ill_nic_info_dispatch(ill); 5518 mutex_exit(&ill->ill_lock); 5519 5520 /* 5521 * Now we are done with the module close pieces that 5522 * need the netstack_t. 5523 */ 5524 netstack_rele(ipst->ips_netstack); 5525 5526 mi_close_free((IDP)ill); 5527 q->q_ptr = WR(q)->q_ptr = NULL; 5528 5529 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5530 5531 return (0); 5532 } 5533 5534 /* 5535 * This is called as part of close() for both IP and UDP 5536 * in order to quiesce the conn. 5537 */ 5538 void 5539 ip_quiesce_conn(conn_t *connp) 5540 { 5541 boolean_t drain_cleanup_reqd = B_FALSE; 5542 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5543 boolean_t ilg_cleanup_reqd = B_FALSE; 5544 ip_stack_t *ipst; 5545 5546 ASSERT(!IPCL_IS_TCP(connp)); 5547 ipst = connp->conn_netstack->netstack_ip; 5548 5549 /* 5550 * Mark the conn as closing, and this conn must not be 5551 * inserted in future into any list. Eg. conn_drain_insert(), 5552 * won't insert this conn into the conn_drain_list. 5553 * Similarly ill_pending_mp_add() will not add any mp to 5554 * the pending mp list, after this conn has started closing. 5555 * 5556 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5557 * cannot get set henceforth. 5558 */ 5559 mutex_enter(&connp->conn_lock); 5560 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5561 connp->conn_state_flags |= CONN_CLOSING; 5562 if (connp->conn_idl != NULL) 5563 drain_cleanup_reqd = B_TRUE; 5564 if (connp->conn_oper_pending_ill != NULL) 5565 conn_ioctl_cleanup_reqd = B_TRUE; 5566 if (connp->conn_ilg_inuse != 0) 5567 ilg_cleanup_reqd = B_TRUE; 5568 mutex_exit(&connp->conn_lock); 5569 5570 if (IPCL_IS_UDP(connp)) 5571 udp_quiesce_conn(connp); 5572 5573 if (conn_ioctl_cleanup_reqd) 5574 conn_ioctl_cleanup(connp); 5575 5576 if (is_system_labeled() && connp->conn_anon_port) { 5577 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5578 connp->conn_mlp_type, connp->conn_ulp, 5579 ntohs(connp->conn_lport), B_FALSE); 5580 connp->conn_anon_port = 0; 5581 } 5582 connp->conn_mlp_type = mlptSingle; 5583 5584 /* 5585 * Remove this conn from any fanout list it is on. 5586 * and then wait for any threads currently operating 5587 * on this endpoint to finish 5588 */ 5589 ipcl_hash_remove(connp); 5590 5591 /* 5592 * Remove this conn from the drain list, and do 5593 * any other cleanup that may be required. 5594 * (Only non-tcp streams may have a non-null conn_idl. 5595 * TCP streams are never flow controlled, and 5596 * conn_idl will be null) 5597 */ 5598 if (drain_cleanup_reqd) 5599 conn_drain_tail(connp, B_TRUE); 5600 5601 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5602 connp->conn_wq == ipst->ips_ip_g_mrouter) 5603 (void) ip_mrouter_done(NULL, ipst); 5604 5605 if (ilg_cleanup_reqd) 5606 ilg_delete_all(connp); 5607 5608 conn_delete_ire(connp, NULL); 5609 5610 /* 5611 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5612 * callers from write side can't be there now because close 5613 * is in progress. The only other caller is ipcl_walk 5614 * which checks for the condemned flag. 5615 */ 5616 mutex_enter(&connp->conn_lock); 5617 connp->conn_state_flags |= CONN_CONDEMNED; 5618 while (connp->conn_ref != 1) 5619 cv_wait(&connp->conn_cv, &connp->conn_lock); 5620 connp->conn_state_flags |= CONN_QUIESCED; 5621 mutex_exit(&connp->conn_lock); 5622 } 5623 5624 /* ARGSUSED */ 5625 int 5626 ip_close(queue_t *q, int flags) 5627 { 5628 conn_t *connp; 5629 5630 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5631 5632 /* 5633 * Call the appropriate delete routine depending on whether this is 5634 * a module or device. 5635 */ 5636 if (WR(q)->q_next != NULL) { 5637 /* This is a module close */ 5638 return (ip_modclose((ill_t *)q->q_ptr)); 5639 } 5640 5641 connp = q->q_ptr; 5642 ip_quiesce_conn(connp); 5643 5644 qprocsoff(q); 5645 5646 /* 5647 * Now we are truly single threaded on this stream, and can 5648 * delete the things hanging off the connp, and finally the connp. 5649 * We removed this connp from the fanout list, it cannot be 5650 * accessed thru the fanouts, and we already waited for the 5651 * conn_ref to drop to 0. We are already in close, so 5652 * there cannot be any other thread from the top. qprocsoff 5653 * has completed, and service has completed or won't run in 5654 * future. 5655 */ 5656 ASSERT(connp->conn_ref == 1); 5657 5658 /* 5659 * A conn which was previously marked as IPCL_UDP cannot 5660 * retain the flag because it would have been cleared by 5661 * udp_close(). 5662 */ 5663 ASSERT(!IPCL_IS_UDP(connp)); 5664 5665 if (connp->conn_latch != NULL) { 5666 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5667 connp->conn_latch = NULL; 5668 } 5669 if (connp->conn_policy != NULL) { 5670 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5671 connp->conn_policy = NULL; 5672 } 5673 if (connp->conn_ipsec_opt_mp != NULL) { 5674 freemsg(connp->conn_ipsec_opt_mp); 5675 connp->conn_ipsec_opt_mp = NULL; 5676 } 5677 5678 inet_minor_free(ip_minor_arena, connp->conn_dev); 5679 5680 connp->conn_ref--; 5681 ipcl_conn_destroy(connp); 5682 5683 q->q_ptr = WR(q)->q_ptr = NULL; 5684 return (0); 5685 } 5686 5687 int 5688 ip_snmpmod_close(queue_t *q) 5689 { 5690 conn_t *connp = Q_TO_CONN(q); 5691 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5692 5693 qprocsoff(q); 5694 5695 if (connp->conn_flags & IPCL_UDPMOD) 5696 udp_close_free(connp); 5697 5698 if (connp->conn_cred != NULL) { 5699 crfree(connp->conn_cred); 5700 connp->conn_cred = NULL; 5701 } 5702 CONN_DEC_REF(connp); 5703 q->q_ptr = WR(q)->q_ptr = NULL; 5704 return (0); 5705 } 5706 5707 /* 5708 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5709 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5710 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5711 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5712 * queues as we never enqueue messages there and we don't handle any ioctls. 5713 * Everything else is freed. 5714 */ 5715 void 5716 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5717 { 5718 conn_t *connp = q->q_ptr; 5719 pfi_t setfn; 5720 pfi_t getfn; 5721 5722 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5723 5724 switch (DB_TYPE(mp)) { 5725 case M_PROTO: 5726 case M_PCPROTO: 5727 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5728 ((((union T_primitives *)mp->b_rptr)->type == 5729 T_SVR4_OPTMGMT_REQ) || 5730 (((union T_primitives *)mp->b_rptr)->type == 5731 T_OPTMGMT_REQ))) { 5732 /* 5733 * This is the only TPI primitive supported. Its 5734 * handling does not require tcp_t, but it does require 5735 * conn_t to check permissions. 5736 */ 5737 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5738 5739 if (connp->conn_flags & IPCL_TCPMOD) { 5740 setfn = tcp_snmp_set; 5741 getfn = tcp_snmp_get; 5742 } else { 5743 setfn = udp_snmp_set; 5744 getfn = udp_snmp_get; 5745 } 5746 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5747 freemsg(mp); 5748 return; 5749 } 5750 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5751 != NULL) 5752 qreply(q, mp); 5753 break; 5754 case M_FLUSH: 5755 case M_IOCTL: 5756 putnext(q, mp); 5757 break; 5758 default: 5759 freemsg(mp); 5760 break; 5761 } 5762 } 5763 5764 /* Return the IP checksum for the IP header at "iph". */ 5765 uint16_t 5766 ip_csum_hdr(ipha_t *ipha) 5767 { 5768 uint16_t *uph; 5769 uint32_t sum; 5770 int opt_len; 5771 5772 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5773 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5774 uph = (uint16_t *)ipha; 5775 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5776 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5777 if (opt_len > 0) { 5778 do { 5779 sum += uph[10]; 5780 sum += uph[11]; 5781 uph += 2; 5782 } while (--opt_len); 5783 } 5784 sum = (sum & 0xFFFF) + (sum >> 16); 5785 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5786 if (sum == 0xffff) 5787 sum = 0; 5788 return ((uint16_t)sum); 5789 } 5790 5791 /* 5792 * Called when the module is about to be unloaded 5793 */ 5794 void 5795 ip_ddi_destroy(void) 5796 { 5797 tnet_fini(); 5798 5799 sctp_ddi_g_destroy(); 5800 tcp_ddi_g_destroy(); 5801 ipsec_policy_g_destroy(); 5802 ipcl_g_destroy(); 5803 ip_net_g_destroy(); 5804 ip_ire_g_fini(); 5805 inet_minor_destroy(ip_minor_arena); 5806 5807 netstack_unregister(NS_IP); 5808 } 5809 5810 /* 5811 * First step in cleanup. 5812 */ 5813 /* ARGSUSED */ 5814 static void 5815 ip_stack_shutdown(netstackid_t stackid, void *arg) 5816 { 5817 ip_stack_t *ipst = (ip_stack_t *)arg; 5818 5819 #ifdef NS_DEBUG 5820 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5821 #endif 5822 5823 /* Get rid of loopback interfaces and their IREs */ 5824 ip_loopback_cleanup(ipst); 5825 } 5826 5827 /* 5828 * Free the IP stack instance. 5829 */ 5830 static void 5831 ip_stack_fini(netstackid_t stackid, void *arg) 5832 { 5833 ip_stack_t *ipst = (ip_stack_t *)arg; 5834 int ret; 5835 5836 #ifdef NS_DEBUG 5837 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5838 #endif 5839 ipv4_hook_destroy(ipst); 5840 ipv6_hook_destroy(ipst); 5841 ip_net_destroy(ipst); 5842 5843 rw_destroy(&ipst->ips_srcid_lock); 5844 5845 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5846 ipst->ips_ip_mibkp = NULL; 5847 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5848 ipst->ips_icmp_mibkp = NULL; 5849 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5850 ipst->ips_ip_kstat = NULL; 5851 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5852 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5853 ipst->ips_ip6_kstat = NULL; 5854 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5855 5856 nd_free(&ipst->ips_ip_g_nd); 5857 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5858 ipst->ips_param_arr = NULL; 5859 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5860 ipst->ips_ndp_arr = NULL; 5861 5862 ip_mrouter_stack_destroy(ipst); 5863 5864 mutex_destroy(&ipst->ips_ip_mi_lock); 5865 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5866 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5867 rw_destroy(&ipst->ips_ip_g_nd_lock); 5868 5869 ret = untimeout(ipst->ips_igmp_timeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_igmp_timeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_igmp_timeout_id != 0); 5874 ipst->ips_igmp_timeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5881 ipst->ips_igmp_slowtimeout_id = 0; 5882 } 5883 ret = untimeout(ipst->ips_mld_timeout_id); 5884 if (ret == -1) { 5885 ASSERT(ipst->ips_mld_timeout_id == 0); 5886 } else { 5887 ASSERT(ipst->ips_mld_timeout_id != 0); 5888 ipst->ips_mld_timeout_id = 0; 5889 } 5890 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5891 if (ret == -1) { 5892 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5893 } else { 5894 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5895 ipst->ips_mld_slowtimeout_id = 0; 5896 } 5897 ret = untimeout(ipst->ips_ip_ire_expire_id); 5898 if (ret == -1) { 5899 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5900 } else { 5901 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5902 ipst->ips_ip_ire_expire_id = 0; 5903 } 5904 5905 mutex_destroy(&ipst->ips_igmp_timer_lock); 5906 mutex_destroy(&ipst->ips_mld_timer_lock); 5907 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5908 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5909 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5910 rw_destroy(&ipst->ips_ill_g_lock); 5911 5912 ip_ire_fini(ipst); 5913 ip6_asp_free(ipst); 5914 conn_drain_fini(ipst); 5915 ipcl_destroy(ipst); 5916 5917 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5918 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5919 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5920 ipst->ips_ndp4 = NULL; 5921 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5922 ipst->ips_ndp6 = NULL; 5923 5924 if (ipst->ips_loopback_ksp != NULL) { 5925 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5926 ipst->ips_loopback_ksp = NULL; 5927 } 5928 5929 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5930 ipst->ips_phyint_g_list = NULL; 5931 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5932 ipst->ips_ill_g_heads = NULL; 5933 5934 kmem_free(ipst, sizeof (*ipst)); 5935 } 5936 5937 /* 5938 * Called when the IP kernel module is loaded into the kernel 5939 */ 5940 void 5941 ip_ddi_init(void) 5942 { 5943 TCP6_MAJ = ddi_name_to_major(TCP6); 5944 TCP_MAJ = ddi_name_to_major(TCP); 5945 SCTP_MAJ = ddi_name_to_major(SCTP); 5946 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5947 5948 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5949 5950 /* 5951 * For IP and TCP the minor numbers should start from 2 since we have 4 5952 * initial devices: ip, ip6, tcp, tcp6. 5953 */ 5954 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5955 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5956 cmn_err(CE_PANIC, 5957 "ip_ddi_init: ip_minor_arena creation failed\n"); 5958 } 5959 5960 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5961 5962 ipcl_g_init(); 5963 ip_ire_g_init(); 5964 ip_net_g_init(); 5965 5966 #ifdef ILL_DEBUG 5967 /* Default cleanup function */ 5968 ip_cleanup_func = ip_thread_exit; 5969 #endif 5970 5971 /* 5972 * We want to be informed each time a stack is created or 5973 * destroyed in the kernel, so we can maintain the 5974 * set of udp_stack_t's. 5975 */ 5976 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5977 ip_stack_fini); 5978 5979 ipsec_policy_g_init(); 5980 tcp_ddi_g_init(); 5981 sctp_ddi_g_init(); 5982 5983 tnet_init(); 5984 } 5985 5986 /* 5987 * Initialize the IP stack instance. 5988 */ 5989 static void * 5990 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5991 { 5992 ip_stack_t *ipst; 5993 ipparam_t *pa; 5994 ipndp_t *na; 5995 5996 #ifdef NS_DEBUG 5997 printf("ip_stack_init(stack %d)\n", stackid); 5998 #endif 5999 6000 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6001 ipst->ips_netstack = ns; 6002 6003 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6004 KM_SLEEP); 6005 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6006 KM_SLEEP); 6007 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6008 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6009 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6010 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6011 6012 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6013 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6014 ipst->ips_igmp_deferred_next = INFINITY; 6015 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6016 ipst->ips_mld_deferred_next = INFINITY; 6017 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6018 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6019 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6020 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6021 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6022 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6023 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6024 6025 ipcl_init(ipst); 6026 ip_ire_init(ipst); 6027 ip6_asp_init(ipst); 6028 ipif_init(ipst); 6029 conn_drain_init(ipst); 6030 ip_mrouter_stack_init(ipst); 6031 6032 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6033 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6034 6035 ipst->ips_ip_multirt_log_interval = 1000; 6036 6037 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6038 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6039 ipst->ips_ill_index = 1; 6040 6041 ipst->ips_saved_ip_g_forward = -1; 6042 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6043 6044 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6045 ipst->ips_param_arr = pa; 6046 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6047 6048 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6049 ipst->ips_ndp_arr = na; 6050 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6051 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6052 (caddr_t)&ipst->ips_ip_g_forward; 6053 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6054 (caddr_t)&ipst->ips_ipv6_forward; 6055 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6056 "ip_cgtp_filter") == 0); 6057 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6058 (caddr_t)&ip_cgtp_filter; 6059 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6060 "ipmp_hook_emulation") == 0); 6061 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6062 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6063 6064 (void) ip_param_register(&ipst->ips_ip_g_nd, 6065 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6066 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6067 6068 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6069 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6070 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6071 ipst->ips_ip6_kstat = 6072 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6073 6074 ipst->ips_ipmp_enable_failback = B_TRUE; 6075 6076 ipst->ips_ip_src_id = 1; 6077 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6078 6079 ip_net_init(ipst, ns); 6080 ipv4_hook_init(ipst); 6081 ipv6_hook_init(ipst); 6082 6083 return (ipst); 6084 } 6085 6086 /* 6087 * Allocate and initialize a DLPI template of the specified length. (May be 6088 * called as writer.) 6089 */ 6090 mblk_t * 6091 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6092 { 6093 mblk_t *mp; 6094 6095 mp = allocb(len, BPRI_MED); 6096 if (!mp) 6097 return (NULL); 6098 6099 /* 6100 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6101 * of which we don't seem to use) are sent with M_PCPROTO, and 6102 * that other DLPI are M_PROTO. 6103 */ 6104 if (prim == DL_INFO_REQ) { 6105 mp->b_datap->db_type = M_PCPROTO; 6106 } else { 6107 mp->b_datap->db_type = M_PROTO; 6108 } 6109 6110 mp->b_wptr = mp->b_rptr + len; 6111 bzero(mp->b_rptr, len); 6112 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6113 return (mp); 6114 } 6115 6116 const char * 6117 dlpi_prim_str(int prim) 6118 { 6119 switch (prim) { 6120 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6121 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6122 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6123 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6124 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6125 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6126 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6127 case DL_OK_ACK: return ("DL_OK_ACK"); 6128 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6129 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6130 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6131 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6132 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6133 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6134 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6135 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6136 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6137 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6138 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6139 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6140 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6141 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6142 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6143 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6144 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6145 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6146 default: return ("<unknown primitive>"); 6147 } 6148 } 6149 6150 const char * 6151 dlpi_err_str(int err) 6152 { 6153 switch (err) { 6154 case DL_ACCESS: return ("DL_ACCESS"); 6155 case DL_BADADDR: return ("DL_BADADDR"); 6156 case DL_BADCORR: return ("DL_BADCORR"); 6157 case DL_BADDATA: return ("DL_BADDATA"); 6158 case DL_BADPPA: return ("DL_BADPPA"); 6159 case DL_BADPRIM: return ("DL_BADPRIM"); 6160 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6161 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6162 case DL_BADSAP: return ("DL_BADSAP"); 6163 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6164 case DL_BOUND: return ("DL_BOUND"); 6165 case DL_INITFAILED: return ("DL_INITFAILED"); 6166 case DL_NOADDR: return ("DL_NOADDR"); 6167 case DL_NOTINIT: return ("DL_NOTINIT"); 6168 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6169 case DL_SYSERR: return ("DL_SYSERR"); 6170 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6171 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6172 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6173 case DL_TOOMANY: return ("DL_TOOMANY"); 6174 case DL_NOTENAB: return ("DL_NOTENAB"); 6175 case DL_BUSY: return ("DL_BUSY"); 6176 case DL_NOAUTO: return ("DL_NOAUTO"); 6177 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6178 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6179 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6180 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6181 case DL_PENDING: return ("DL_PENDING"); 6182 default: return ("<unknown error>"); 6183 } 6184 } 6185 6186 /* 6187 * Debug formatting routine. Returns a character string representation of the 6188 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6189 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6190 * 6191 * Once the ndd table-printing interfaces are removed, this can be changed to 6192 * standard dotted-decimal form. 6193 */ 6194 char * 6195 ip_dot_addr(ipaddr_t addr, char *buf) 6196 { 6197 uint8_t *ap = (uint8_t *)&addr; 6198 6199 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6200 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6201 return (buf); 6202 } 6203 6204 /* 6205 * Write the given MAC address as a printable string in the usual colon- 6206 * separated format. 6207 */ 6208 const char * 6209 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6210 { 6211 char *bp; 6212 6213 if (alen == 0 || buflen < 4) 6214 return ("?"); 6215 bp = buf; 6216 for (;;) { 6217 /* 6218 * If there are more MAC address bytes available, but we won't 6219 * have any room to print them, then add "..." to the string 6220 * instead. See below for the 'magic number' explanation. 6221 */ 6222 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6223 (void) strcpy(bp, "..."); 6224 break; 6225 } 6226 (void) sprintf(bp, "%02x", *addr++); 6227 bp += 2; 6228 if (--alen == 0) 6229 break; 6230 *bp++ = ':'; 6231 buflen -= 3; 6232 /* 6233 * At this point, based on the first 'if' statement above, 6234 * either alen == 1 and buflen >= 3, or alen > 1 and 6235 * buflen >= 4. The first case leaves room for the final "xx" 6236 * number and trailing NUL byte. The second leaves room for at 6237 * least "...". Thus the apparently 'magic' numbers chosen for 6238 * that statement. 6239 */ 6240 } 6241 return (buf); 6242 } 6243 6244 /* 6245 * Send an ICMP error after patching up the packet appropriately. Returns 6246 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6247 */ 6248 static boolean_t 6249 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6250 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6251 zoneid_t zoneid, ip_stack_t *ipst) 6252 { 6253 ipha_t *ipha; 6254 mblk_t *first_mp; 6255 boolean_t secure; 6256 unsigned char db_type; 6257 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6258 6259 first_mp = mp; 6260 if (mctl_present) { 6261 mp = mp->b_cont; 6262 secure = ipsec_in_is_secure(first_mp); 6263 ASSERT(mp != NULL); 6264 } else { 6265 /* 6266 * If this is an ICMP error being reported - which goes 6267 * up as M_CTLs, we need to convert them to M_DATA till 6268 * we finish checking with global policy because 6269 * ipsec_check_global_policy() assumes M_DATA as clear 6270 * and M_CTL as secure. 6271 */ 6272 db_type = DB_TYPE(mp); 6273 DB_TYPE(mp) = M_DATA; 6274 secure = B_FALSE; 6275 } 6276 /* 6277 * We are generating an icmp error for some inbound packet. 6278 * Called from all ip_fanout_(udp, tcp, proto) functions. 6279 * Before we generate an error, check with global policy 6280 * to see whether this is allowed to enter the system. As 6281 * there is no "conn", we are checking with global policy. 6282 */ 6283 ipha = (ipha_t *)mp->b_rptr; 6284 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6285 first_mp = ipsec_check_global_policy(first_mp, NULL, 6286 ipha, NULL, mctl_present, ipst->ips_netstack); 6287 if (first_mp == NULL) 6288 return (B_FALSE); 6289 } 6290 6291 if (!mctl_present) 6292 DB_TYPE(mp) = db_type; 6293 6294 if (flags & IP_FF_SEND_ICMP) { 6295 if (flags & IP_FF_HDR_COMPLETE) { 6296 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6297 freemsg(first_mp); 6298 return (B_TRUE); 6299 } 6300 } 6301 if (flags & IP_FF_CKSUM) { 6302 /* 6303 * Have to correct checksum since 6304 * the packet might have been 6305 * fragmented and the reassembly code in ip_rput 6306 * does not restore the IP checksum. 6307 */ 6308 ipha->ipha_hdr_checksum = 0; 6309 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6310 } 6311 switch (icmp_type) { 6312 case ICMP_DEST_UNREACHABLE: 6313 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6314 ipst); 6315 break; 6316 default: 6317 freemsg(first_mp); 6318 break; 6319 } 6320 } else { 6321 freemsg(first_mp); 6322 return (B_FALSE); 6323 } 6324 6325 return (B_TRUE); 6326 } 6327 6328 /* 6329 * Used to send an ICMP error message when a packet is received for 6330 * a protocol that is not supported. The mblk passed as argument 6331 * is consumed by this function. 6332 */ 6333 void 6334 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6335 ip_stack_t *ipst) 6336 { 6337 mblk_t *mp; 6338 ipha_t *ipha; 6339 ill_t *ill; 6340 ipsec_in_t *ii; 6341 6342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6343 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6344 6345 mp = ipsec_mp->b_cont; 6346 ipsec_mp->b_cont = NULL; 6347 ipha = (ipha_t *)mp->b_rptr; 6348 /* Get ill from index in ipsec_in_t. */ 6349 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6350 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6351 ipst); 6352 if (ill != NULL) { 6353 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6354 if (ip_fanout_send_icmp(q, mp, flags, 6355 ICMP_DEST_UNREACHABLE, 6356 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6357 BUMP_MIB(ill->ill_ip_mib, 6358 ipIfStatsInUnknownProtos); 6359 } 6360 } else { 6361 if (ip_fanout_send_icmp_v6(q, mp, flags, 6362 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6363 0, B_FALSE, zoneid, ipst)) { 6364 BUMP_MIB(ill->ill_ip_mib, 6365 ipIfStatsInUnknownProtos); 6366 } 6367 } 6368 ill_refrele(ill); 6369 } else { /* re-link for the freemsg() below. */ 6370 ipsec_mp->b_cont = mp; 6371 } 6372 6373 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6374 freemsg(ipsec_mp); 6375 } 6376 6377 /* 6378 * See if the inbound datagram has had IPsec processing applied to it. 6379 */ 6380 boolean_t 6381 ipsec_in_is_secure(mblk_t *ipsec_mp) 6382 { 6383 ipsec_in_t *ii; 6384 6385 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6386 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6387 6388 if (ii->ipsec_in_loopback) { 6389 return (ii->ipsec_in_secure); 6390 } else { 6391 return (ii->ipsec_in_ah_sa != NULL || 6392 ii->ipsec_in_esp_sa != NULL || 6393 ii->ipsec_in_decaps); 6394 } 6395 } 6396 6397 /* 6398 * Handle protocols with which IP is less intimate. There 6399 * can be more than one stream bound to a particular 6400 * protocol. When this is the case, normally each one gets a copy 6401 * of any incoming packets. 6402 * 6403 * IPSEC NOTE : 6404 * 6405 * Don't allow a secure packet going up a non-secure connection. 6406 * We don't allow this because 6407 * 6408 * 1) Reply might go out in clear which will be dropped at 6409 * the sending side. 6410 * 2) If the reply goes out in clear it will give the 6411 * adversary enough information for getting the key in 6412 * most of the cases. 6413 * 6414 * Moreover getting a secure packet when we expect clear 6415 * implies that SA's were added without checking for 6416 * policy on both ends. This should not happen once ISAKMP 6417 * is used to negotiate SAs as SAs will be added only after 6418 * verifying the policy. 6419 * 6420 * NOTE : If the packet was tunneled and not multicast we only send 6421 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6422 * back to delivering packets to AF_INET6 raw sockets. 6423 * 6424 * IPQoS Notes: 6425 * Once we have determined the client, invoke IPPF processing. 6426 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6427 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6428 * ip_policy will be false. 6429 * 6430 * Zones notes: 6431 * Currently only applications in the global zone can create raw sockets for 6432 * protocols other than ICMP. So unlike the broadcast / multicast case of 6433 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6434 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6435 */ 6436 static void 6437 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6438 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6439 zoneid_t zoneid) 6440 { 6441 queue_t *rq; 6442 mblk_t *mp1, *first_mp1; 6443 uint_t protocol = ipha->ipha_protocol; 6444 ipaddr_t dst; 6445 boolean_t one_only; 6446 mblk_t *first_mp = mp; 6447 boolean_t secure; 6448 uint32_t ill_index; 6449 conn_t *connp, *first_connp, *next_connp; 6450 connf_t *connfp; 6451 boolean_t shared_addr; 6452 mib2_ipIfStatsEntry_t *mibptr; 6453 ip_stack_t *ipst = recv_ill->ill_ipst; 6454 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6455 6456 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6457 if (mctl_present) { 6458 mp = first_mp->b_cont; 6459 secure = ipsec_in_is_secure(first_mp); 6460 ASSERT(mp != NULL); 6461 } else { 6462 secure = B_FALSE; 6463 } 6464 dst = ipha->ipha_dst; 6465 /* 6466 * If the packet was tunneled and not multicast we only send to it 6467 * the first match. 6468 */ 6469 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6470 !CLASSD(dst)); 6471 6472 shared_addr = (zoneid == ALL_ZONES); 6473 if (shared_addr) { 6474 /* 6475 * We don't allow multilevel ports for raw IP, so no need to 6476 * check for that here. 6477 */ 6478 zoneid = tsol_packet_to_zoneid(mp); 6479 } 6480 6481 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6482 mutex_enter(&connfp->connf_lock); 6483 connp = connfp->connf_head; 6484 for (connp = connfp->connf_head; connp != NULL; 6485 connp = connp->conn_next) { 6486 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6487 zoneid) && 6488 (!is_system_labeled() || 6489 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6490 connp))) { 6491 break; 6492 } 6493 } 6494 6495 if (connp == NULL || connp->conn_upq == NULL) { 6496 /* 6497 * No one bound to these addresses. Is 6498 * there a client that wants all 6499 * unclaimed datagrams? 6500 */ 6501 mutex_exit(&connfp->connf_lock); 6502 /* 6503 * Check for IPPROTO_ENCAP... 6504 */ 6505 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6506 /* 6507 * If an IPsec mblk is here on a multicast 6508 * tunnel (using ip_mroute stuff), check policy here, 6509 * THEN ship off to ip_mroute_decap(). 6510 * 6511 * BTW, If I match a configured IP-in-IP 6512 * tunnel, this path will not be reached, and 6513 * ip_mroute_decap will never be called. 6514 */ 6515 first_mp = ipsec_check_global_policy(first_mp, connp, 6516 ipha, NULL, mctl_present, ipst->ips_netstack); 6517 if (first_mp != NULL) { 6518 if (mctl_present) 6519 freeb(first_mp); 6520 ip_mroute_decap(q, mp, ill); 6521 } /* Else we already freed everything! */ 6522 } else { 6523 /* 6524 * Otherwise send an ICMP protocol unreachable. 6525 */ 6526 if (ip_fanout_send_icmp(q, first_mp, flags, 6527 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6528 mctl_present, zoneid, ipst)) { 6529 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6530 } 6531 } 6532 return; 6533 } 6534 CONN_INC_REF(connp); 6535 first_connp = connp; 6536 6537 /* 6538 * Only send message to one tunnel driver by immediately 6539 * terminating the loop. 6540 */ 6541 connp = one_only ? NULL : connp->conn_next; 6542 6543 for (;;) { 6544 while (connp != NULL) { 6545 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6546 flags, zoneid) && 6547 (!is_system_labeled() || 6548 tsol_receive_local(mp, &dst, IPV4_VERSION, 6549 shared_addr, connp))) 6550 break; 6551 connp = connp->conn_next; 6552 } 6553 6554 /* 6555 * Copy the packet. 6556 */ 6557 if (connp == NULL || connp->conn_upq == NULL || 6558 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6559 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6560 /* 6561 * No more interested clients or memory 6562 * allocation failed 6563 */ 6564 connp = first_connp; 6565 break; 6566 } 6567 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6568 CONN_INC_REF(connp); 6569 mutex_exit(&connfp->connf_lock); 6570 rq = connp->conn_rq; 6571 if (!canputnext(rq)) { 6572 if (flags & IP_FF_RAWIP) { 6573 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6574 } else { 6575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6576 } 6577 6578 freemsg(first_mp1); 6579 } else { 6580 /* 6581 * Don't enforce here if we're an actual tunnel - 6582 * let "tun" do it instead. 6583 */ 6584 if (!IPCL_IS_IPTUN(connp) && 6585 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6586 secure)) { 6587 first_mp1 = ipsec_check_inbound_policy 6588 (first_mp1, connp, ipha, NULL, 6589 mctl_present); 6590 } 6591 if (first_mp1 != NULL) { 6592 int in_flags = 0; 6593 /* 6594 * ip_fanout_proto also gets called from 6595 * icmp_inbound_error_fanout, in which case 6596 * the msg type is M_CTL. Don't add info 6597 * in this case for the time being. In future 6598 * when there is a need for knowing the 6599 * inbound iface index for ICMP error msgs, 6600 * then this can be changed. 6601 */ 6602 if (connp->conn_recvif) 6603 in_flags = IPF_RECVIF; 6604 /* 6605 * The ULP may support IP_RECVPKTINFO for both 6606 * IP v4 and v6 so pass the appropriate argument 6607 * based on conn IP version. 6608 */ 6609 if (connp->conn_ip_recvpktinfo) { 6610 if (connp->conn_af_isv6) { 6611 /* 6612 * V6 only needs index 6613 */ 6614 in_flags |= IPF_RECVIF; 6615 } else { 6616 /* 6617 * V4 needs index + 6618 * matching address. 6619 */ 6620 in_flags |= IPF_RECVADDR; 6621 } 6622 } 6623 if ((in_flags != 0) && 6624 (mp->b_datap->db_type != M_CTL)) { 6625 /* 6626 * the actual data will be 6627 * contained in b_cont upon 6628 * successful return of the 6629 * following call else 6630 * original mblk is returned 6631 */ 6632 ASSERT(recv_ill != NULL); 6633 mp1 = ip_add_info(mp1, recv_ill, 6634 in_flags, IPCL_ZONEID(connp), ipst); 6635 } 6636 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6637 if (mctl_present) 6638 freeb(first_mp1); 6639 putnext(rq, mp1); 6640 } 6641 } 6642 mutex_enter(&connfp->connf_lock); 6643 /* Follow the next pointer before releasing the conn. */ 6644 next_connp = connp->conn_next; 6645 CONN_DEC_REF(connp); 6646 connp = next_connp; 6647 } 6648 6649 /* Last one. Send it upstream. */ 6650 mutex_exit(&connfp->connf_lock); 6651 6652 /* 6653 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6654 * will be set to false. 6655 */ 6656 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6657 ill_index = ill->ill_phyint->phyint_ifindex; 6658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6659 if (mp == NULL) { 6660 CONN_DEC_REF(connp); 6661 if (mctl_present) { 6662 freeb(first_mp); 6663 } 6664 return; 6665 } 6666 } 6667 6668 rq = connp->conn_rq; 6669 if (!canputnext(rq)) { 6670 if (flags & IP_FF_RAWIP) { 6671 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6672 } else { 6673 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6674 } 6675 6676 freemsg(first_mp); 6677 } else { 6678 if (IPCL_IS_IPTUN(connp)) { 6679 /* 6680 * Tunneled packet. We enforce policy in the tunnel 6681 * module itself. 6682 * 6683 * Send the WHOLE packet up (incl. IPSEC_IN) without 6684 * a policy check. 6685 */ 6686 putnext(rq, first_mp); 6687 CONN_DEC_REF(connp); 6688 return; 6689 } 6690 6691 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6692 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6693 ipha, NULL, mctl_present); 6694 } 6695 6696 if (first_mp != NULL) { 6697 int in_flags = 0; 6698 6699 /* 6700 * ip_fanout_proto also gets called 6701 * from icmp_inbound_error_fanout, in 6702 * which case the msg type is M_CTL. 6703 * Don't add info in this case for time 6704 * being. In future when there is a 6705 * need for knowing the inbound iface 6706 * index for ICMP error msgs, then this 6707 * can be changed 6708 */ 6709 if (connp->conn_recvif) 6710 in_flags = IPF_RECVIF; 6711 if (connp->conn_ip_recvpktinfo) { 6712 if (connp->conn_af_isv6) { 6713 /* 6714 * V6 only needs index 6715 */ 6716 in_flags |= IPF_RECVIF; 6717 } else { 6718 /* 6719 * V4 needs index + 6720 * matching address. 6721 */ 6722 in_flags |= IPF_RECVADDR; 6723 } 6724 } 6725 if ((in_flags != 0) && 6726 (mp->b_datap->db_type != M_CTL)) { 6727 6728 /* 6729 * the actual data will be contained in 6730 * b_cont upon successful return 6731 * of the following call else original 6732 * mblk is returned 6733 */ 6734 ASSERT(recv_ill != NULL); 6735 mp = ip_add_info(mp, recv_ill, 6736 in_flags, IPCL_ZONEID(connp), ipst); 6737 } 6738 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6739 putnext(rq, mp); 6740 if (mctl_present) 6741 freeb(first_mp); 6742 } 6743 } 6744 CONN_DEC_REF(connp); 6745 } 6746 6747 /* 6748 * Fanout for TCP packets 6749 * The caller puts <fport, lport> in the ports parameter. 6750 * 6751 * IPQoS Notes 6752 * Before sending it to the client, invoke IPPF processing. 6753 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6754 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6755 * ip_policy is false. 6756 */ 6757 static void 6758 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6759 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6760 { 6761 mblk_t *first_mp; 6762 boolean_t secure; 6763 uint32_t ill_index; 6764 int ip_hdr_len; 6765 tcph_t *tcph; 6766 boolean_t syn_present = B_FALSE; 6767 conn_t *connp; 6768 ip_stack_t *ipst = recv_ill->ill_ipst; 6769 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6770 6771 ASSERT(recv_ill != NULL); 6772 6773 first_mp = mp; 6774 if (mctl_present) { 6775 ASSERT(first_mp->b_datap->db_type == M_CTL); 6776 mp = first_mp->b_cont; 6777 secure = ipsec_in_is_secure(first_mp); 6778 ASSERT(mp != NULL); 6779 } else { 6780 secure = B_FALSE; 6781 } 6782 6783 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6784 6785 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6786 zoneid, ipst)) == NULL) { 6787 /* 6788 * No connected connection or listener. Send a 6789 * TH_RST via tcp_xmit_listeners_reset. 6790 */ 6791 6792 /* Initiate IPPf processing, if needed. */ 6793 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6794 uint32_t ill_index; 6795 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6796 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6797 if (first_mp == NULL) 6798 return; 6799 } 6800 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6801 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6802 zoneid)); 6803 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6804 ipst->ips_netstack->netstack_tcp); 6805 return; 6806 } 6807 6808 /* 6809 * Allocate the SYN for the TCP connection here itself 6810 */ 6811 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6812 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6813 if (IPCL_IS_TCP(connp)) { 6814 squeue_t *sqp; 6815 6816 /* 6817 * For fused tcp loopback, assign the eager's 6818 * squeue to be that of the active connect's. 6819 * Note that we don't check for IP_FF_LOOPBACK 6820 * here since this routine gets called only 6821 * for loopback (unlike the IPv6 counterpart). 6822 */ 6823 ASSERT(Q_TO_CONN(q) != NULL); 6824 if (do_tcp_fusion && 6825 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6826 !secure && 6827 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6828 IPCL_IS_TCP(Q_TO_CONN(q))) { 6829 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6830 sqp = Q_TO_CONN(q)->conn_sqp; 6831 } else { 6832 sqp = IP_SQUEUE_GET(lbolt); 6833 } 6834 6835 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6836 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6837 syn_present = B_TRUE; 6838 } 6839 } 6840 6841 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6842 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6843 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6844 if ((flags & TH_RST) || (flags & TH_URG)) { 6845 CONN_DEC_REF(connp); 6846 freemsg(first_mp); 6847 return; 6848 } 6849 if (flags & TH_ACK) { 6850 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6851 ipst->ips_netstack->netstack_tcp); 6852 CONN_DEC_REF(connp); 6853 return; 6854 } 6855 6856 CONN_DEC_REF(connp); 6857 freemsg(first_mp); 6858 return; 6859 } 6860 6861 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6862 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6863 NULL, mctl_present); 6864 if (first_mp == NULL) { 6865 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6866 CONN_DEC_REF(connp); 6867 return; 6868 } 6869 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6870 ASSERT(syn_present); 6871 if (mctl_present) { 6872 ASSERT(first_mp != mp); 6873 first_mp->b_datap->db_struioflag |= 6874 STRUIO_POLICY; 6875 } else { 6876 ASSERT(first_mp == mp); 6877 mp->b_datap->db_struioflag &= 6878 ~STRUIO_EAGER; 6879 mp->b_datap->db_struioflag |= 6880 STRUIO_POLICY; 6881 } 6882 } else { 6883 /* 6884 * Discard first_mp early since we're dealing with a 6885 * fully-connected conn_t and tcp doesn't do policy in 6886 * this case. 6887 */ 6888 if (mctl_present) { 6889 freeb(first_mp); 6890 mctl_present = B_FALSE; 6891 } 6892 first_mp = mp; 6893 } 6894 } 6895 6896 /* 6897 * Initiate policy processing here if needed. If we get here from 6898 * icmp_inbound_error_fanout, ip_policy is false. 6899 */ 6900 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6901 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6902 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6903 if (mp == NULL) { 6904 CONN_DEC_REF(connp); 6905 if (mctl_present) 6906 freeb(first_mp); 6907 return; 6908 } else if (mctl_present) { 6909 ASSERT(first_mp != mp); 6910 first_mp->b_cont = mp; 6911 } else { 6912 first_mp = mp; 6913 } 6914 } 6915 6916 6917 6918 /* Handle socket options. */ 6919 if (!syn_present && 6920 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6921 /* Add header */ 6922 ASSERT(recv_ill != NULL); 6923 /* 6924 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6925 * IPF_RECVIF. 6926 */ 6927 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6928 ipst); 6929 if (mp == NULL) { 6930 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6931 CONN_DEC_REF(connp); 6932 if (mctl_present) 6933 freeb(first_mp); 6934 return; 6935 } else if (mctl_present) { 6936 /* 6937 * ip_add_info might return a new mp. 6938 */ 6939 ASSERT(first_mp != mp); 6940 first_mp->b_cont = mp; 6941 } else { 6942 first_mp = mp; 6943 } 6944 } 6945 6946 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6947 if (IPCL_IS_TCP(connp)) { 6948 (*ip_input_proc)(connp->conn_sqp, first_mp, 6949 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6950 } else { 6951 putnext(connp->conn_rq, first_mp); 6952 CONN_DEC_REF(connp); 6953 } 6954 } 6955 6956 /* 6957 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6958 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6959 * Caller is responsible for dropping references to the conn, and freeing 6960 * first_mp. 6961 * 6962 * IPQoS Notes 6963 * Before sending it to the client, invoke IPPF processing. Policy processing 6964 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6965 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6966 * ip_wput_local, ip_policy is false. 6967 */ 6968 static void 6969 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6970 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6971 boolean_t ip_policy) 6972 { 6973 boolean_t mctl_present = (first_mp != NULL); 6974 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6975 uint32_t ill_index; 6976 ip_stack_t *ipst = recv_ill->ill_ipst; 6977 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6978 6979 ASSERT(ill != NULL); 6980 6981 if (mctl_present) 6982 first_mp->b_cont = mp; 6983 else 6984 first_mp = mp; 6985 6986 if (CONN_UDP_FLOWCTLD(connp)) { 6987 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6988 freemsg(first_mp); 6989 return; 6990 } 6991 6992 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6993 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6994 NULL, mctl_present); 6995 if (first_mp == NULL) { 6996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6997 return; /* Freed by ipsec_check_inbound_policy(). */ 6998 } 6999 } 7000 if (mctl_present) 7001 freeb(first_mp); 7002 7003 /* Handle options. */ 7004 if (connp->conn_recvif) 7005 in_flags = IPF_RECVIF; 7006 /* 7007 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7008 * passed to ip_add_info is based on IP version of connp. 7009 */ 7010 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7011 if (connp->conn_af_isv6) { 7012 /* 7013 * V6 only needs index 7014 */ 7015 in_flags |= IPF_RECVIF; 7016 } else { 7017 /* 7018 * V4 needs index + matching address. 7019 */ 7020 in_flags |= IPF_RECVADDR; 7021 } 7022 } 7023 7024 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7025 in_flags |= IPF_RECVSLLA; 7026 7027 /* 7028 * Initiate IPPF processing here, if needed. Note first_mp won't be 7029 * freed if the packet is dropped. The caller will do so. 7030 */ 7031 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7032 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7033 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7034 if (mp == NULL) { 7035 return; 7036 } 7037 } 7038 if ((in_flags != 0) && 7039 (mp->b_datap->db_type != M_CTL)) { 7040 /* 7041 * The actual data will be contained in b_cont 7042 * upon successful return of the following call 7043 * else original mblk is returned 7044 */ 7045 ASSERT(recv_ill != NULL); 7046 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7047 ipst); 7048 } 7049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7050 /* Send it upstream */ 7051 CONN_UDP_RECV(connp, mp); 7052 } 7053 7054 /* 7055 * Fanout for UDP packets. 7056 * The caller puts <fport, lport> in the ports parameter. 7057 * 7058 * If SO_REUSEADDR is set all multicast and broadcast packets 7059 * will be delivered to all streams bound to the same port. 7060 * 7061 * Zones notes: 7062 * Multicast and broadcast packets will be distributed to streams in all zones. 7063 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7064 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7065 * packets. To maintain this behavior with multiple zones, the conns are grouped 7066 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7067 * each zone. If unset, all the following conns in the same zone are skipped. 7068 */ 7069 static void 7070 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7071 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7072 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7073 { 7074 uint32_t dstport, srcport; 7075 ipaddr_t dst; 7076 mblk_t *first_mp; 7077 boolean_t secure; 7078 in6_addr_t v6src; 7079 conn_t *connp; 7080 connf_t *connfp; 7081 conn_t *first_connp; 7082 conn_t *next_connp; 7083 mblk_t *mp1, *first_mp1; 7084 ipaddr_t src; 7085 zoneid_t last_zoneid; 7086 boolean_t reuseaddr; 7087 boolean_t shared_addr; 7088 ip_stack_t *ipst; 7089 7090 ASSERT(recv_ill != NULL); 7091 ipst = recv_ill->ill_ipst; 7092 7093 first_mp = mp; 7094 if (mctl_present) { 7095 mp = first_mp->b_cont; 7096 first_mp->b_cont = NULL; 7097 secure = ipsec_in_is_secure(first_mp); 7098 ASSERT(mp != NULL); 7099 } else { 7100 first_mp = NULL; 7101 secure = B_FALSE; 7102 } 7103 7104 /* Extract ports in net byte order */ 7105 dstport = htons(ntohl(ports) & 0xFFFF); 7106 srcport = htons(ntohl(ports) >> 16); 7107 dst = ipha->ipha_dst; 7108 src = ipha->ipha_src; 7109 7110 shared_addr = (zoneid == ALL_ZONES); 7111 if (shared_addr) { 7112 /* 7113 * No need to handle exclusive-stack zones since ALL_ZONES 7114 * only applies to the shared stack. 7115 */ 7116 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7117 if (zoneid == ALL_ZONES) 7118 zoneid = tsol_packet_to_zoneid(mp); 7119 } 7120 7121 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7122 mutex_enter(&connfp->connf_lock); 7123 connp = connfp->connf_head; 7124 if (!broadcast && !CLASSD(dst)) { 7125 /* 7126 * Not broadcast or multicast. Send to the one (first) 7127 * client we find. No need to check conn_wantpacket() 7128 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7129 * IPv4 unicast packets. 7130 */ 7131 while ((connp != NULL) && 7132 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7133 !IPCL_ZONE_MATCH(connp, zoneid))) { 7134 connp = connp->conn_next; 7135 } 7136 7137 if (connp == NULL || connp->conn_upq == NULL) 7138 goto notfound; 7139 7140 if (is_system_labeled() && 7141 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7142 connp)) 7143 goto notfound; 7144 7145 CONN_INC_REF(connp); 7146 mutex_exit(&connfp->connf_lock); 7147 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7148 flags, recv_ill, ip_policy); 7149 IP_STAT(ipst, ip_udp_fannorm); 7150 CONN_DEC_REF(connp); 7151 return; 7152 } 7153 7154 /* 7155 * Broadcast and multicast case 7156 * 7157 * Need to check conn_wantpacket(). 7158 * If SO_REUSEADDR has been set on the first we send the 7159 * packet to all clients that have joined the group and 7160 * match the port. 7161 */ 7162 7163 while (connp != NULL) { 7164 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7165 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7166 (!is_system_labeled() || 7167 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7168 connp))) 7169 break; 7170 connp = connp->conn_next; 7171 } 7172 7173 if (connp == NULL || connp->conn_upq == NULL) 7174 goto notfound; 7175 7176 first_connp = connp; 7177 /* 7178 * When SO_REUSEADDR is not set, send the packet only to the first 7179 * matching connection in its zone by keeping track of the zoneid. 7180 */ 7181 reuseaddr = first_connp->conn_reuseaddr; 7182 last_zoneid = first_connp->conn_zoneid; 7183 7184 CONN_INC_REF(connp); 7185 connp = connp->conn_next; 7186 for (;;) { 7187 while (connp != NULL) { 7188 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7189 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7190 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7191 (!is_system_labeled() || 7192 tsol_receive_local(mp, &dst, IPV4_VERSION, 7193 shared_addr, connp))) 7194 break; 7195 connp = connp->conn_next; 7196 } 7197 /* 7198 * Just copy the data part alone. The mctl part is 7199 * needed just for verifying policy and it is never 7200 * sent up. 7201 */ 7202 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7203 ((mp1 = copymsg(mp)) == NULL))) { 7204 /* 7205 * No more interested clients or memory 7206 * allocation failed 7207 */ 7208 connp = first_connp; 7209 break; 7210 } 7211 if (connp->conn_zoneid != last_zoneid) { 7212 /* 7213 * Update the zoneid so that the packet isn't sent to 7214 * any more conns in the same zone unless SO_REUSEADDR 7215 * is set. 7216 */ 7217 reuseaddr = connp->conn_reuseaddr; 7218 last_zoneid = connp->conn_zoneid; 7219 } 7220 if (first_mp != NULL) { 7221 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7222 ipsec_info_type == IPSEC_IN); 7223 first_mp1 = ipsec_in_tag(first_mp, NULL, 7224 ipst->ips_netstack); 7225 if (first_mp1 == NULL) { 7226 freemsg(mp1); 7227 connp = first_connp; 7228 break; 7229 } 7230 } else { 7231 first_mp1 = NULL; 7232 } 7233 CONN_INC_REF(connp); 7234 mutex_exit(&connfp->connf_lock); 7235 /* 7236 * IPQoS notes: We don't send the packet for policy 7237 * processing here, will do it for the last one (below). 7238 * i.e. we do it per-packet now, but if we do policy 7239 * processing per-conn, then we would need to do it 7240 * here too. 7241 */ 7242 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7243 ipha, flags, recv_ill, B_FALSE); 7244 mutex_enter(&connfp->connf_lock); 7245 /* Follow the next pointer before releasing the conn. */ 7246 next_connp = connp->conn_next; 7247 IP_STAT(ipst, ip_udp_fanmb); 7248 CONN_DEC_REF(connp); 7249 connp = next_connp; 7250 } 7251 7252 /* Last one. Send it upstream. */ 7253 mutex_exit(&connfp->connf_lock); 7254 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7255 recv_ill, ip_policy); 7256 IP_STAT(ipst, ip_udp_fanmb); 7257 CONN_DEC_REF(connp); 7258 return; 7259 7260 notfound: 7261 7262 mutex_exit(&connfp->connf_lock); 7263 IP_STAT(ipst, ip_udp_fanothers); 7264 /* 7265 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7266 * have already been matched above, since they live in the IPv4 7267 * fanout tables. This implies we only need to 7268 * check for IPv6 in6addr_any endpoints here. 7269 * Thus we compare using ipv6_all_zeros instead of the destination 7270 * address, except for the multicast group membership lookup which 7271 * uses the IPv4 destination. 7272 */ 7273 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7274 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7275 mutex_enter(&connfp->connf_lock); 7276 connp = connfp->connf_head; 7277 if (!broadcast && !CLASSD(dst)) { 7278 while (connp != NULL) { 7279 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7280 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7281 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7282 !connp->conn_ipv6_v6only) 7283 break; 7284 connp = connp->conn_next; 7285 } 7286 7287 if (connp != NULL && is_system_labeled() && 7288 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7289 connp)) 7290 connp = NULL; 7291 7292 if (connp == NULL || connp->conn_upq == NULL) { 7293 /* 7294 * No one bound to this port. Is 7295 * there a client that wants all 7296 * unclaimed datagrams? 7297 */ 7298 mutex_exit(&connfp->connf_lock); 7299 7300 if (mctl_present) 7301 first_mp->b_cont = mp; 7302 else 7303 first_mp = mp; 7304 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7305 connf_head != NULL) { 7306 ip_fanout_proto(q, first_mp, ill, ipha, 7307 flags | IP_FF_RAWIP, mctl_present, 7308 ip_policy, recv_ill, zoneid); 7309 } else { 7310 if (ip_fanout_send_icmp(q, first_mp, flags, 7311 ICMP_DEST_UNREACHABLE, 7312 ICMP_PORT_UNREACHABLE, 7313 mctl_present, zoneid, ipst)) { 7314 BUMP_MIB(ill->ill_ip_mib, 7315 udpIfStatsNoPorts); 7316 } 7317 } 7318 return; 7319 } 7320 7321 CONN_INC_REF(connp); 7322 mutex_exit(&connfp->connf_lock); 7323 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7324 flags, recv_ill, ip_policy); 7325 CONN_DEC_REF(connp); 7326 return; 7327 } 7328 /* 7329 * IPv4 multicast packet being delivered to an AF_INET6 7330 * in6addr_any endpoint. 7331 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7332 * and not conn_wantpacket_v6() since any multicast membership is 7333 * for an IPv4-mapped multicast address. 7334 * The packet is sent to all clients in all zones that have joined the 7335 * group and match the port. 7336 */ 7337 while (connp != NULL) { 7338 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7339 srcport, v6src) && 7340 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7341 (!is_system_labeled() || 7342 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7343 connp))) 7344 break; 7345 connp = connp->conn_next; 7346 } 7347 7348 if (connp == NULL || connp->conn_upq == NULL) { 7349 /* 7350 * No one bound to this port. Is 7351 * there a client that wants all 7352 * unclaimed datagrams? 7353 */ 7354 mutex_exit(&connfp->connf_lock); 7355 7356 if (mctl_present) 7357 first_mp->b_cont = mp; 7358 else 7359 first_mp = mp; 7360 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7361 NULL) { 7362 ip_fanout_proto(q, first_mp, ill, ipha, 7363 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7364 recv_ill, zoneid); 7365 } else { 7366 /* 7367 * We used to attempt to send an icmp error here, but 7368 * since this is known to be a multicast packet 7369 * and we don't send icmp errors in response to 7370 * multicast, just drop the packet and give up sooner. 7371 */ 7372 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7373 freemsg(first_mp); 7374 } 7375 return; 7376 } 7377 7378 first_connp = connp; 7379 7380 CONN_INC_REF(connp); 7381 connp = connp->conn_next; 7382 for (;;) { 7383 while (connp != NULL) { 7384 if (IPCL_UDP_MATCH_V6(connp, dstport, 7385 ipv6_all_zeros, srcport, v6src) && 7386 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7387 (!is_system_labeled() || 7388 tsol_receive_local(mp, &dst, IPV4_VERSION, 7389 shared_addr, connp))) 7390 break; 7391 connp = connp->conn_next; 7392 } 7393 /* 7394 * Just copy the data part alone. The mctl part is 7395 * needed just for verifying policy and it is never 7396 * sent up. 7397 */ 7398 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7399 ((mp1 = copymsg(mp)) == NULL))) { 7400 /* 7401 * No more intested clients or memory 7402 * allocation failed 7403 */ 7404 connp = first_connp; 7405 break; 7406 } 7407 if (first_mp != NULL) { 7408 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7409 ipsec_info_type == IPSEC_IN); 7410 first_mp1 = ipsec_in_tag(first_mp, NULL, 7411 ipst->ips_netstack); 7412 if (first_mp1 == NULL) { 7413 freemsg(mp1); 7414 connp = first_connp; 7415 break; 7416 } 7417 } else { 7418 first_mp1 = NULL; 7419 } 7420 CONN_INC_REF(connp); 7421 mutex_exit(&connfp->connf_lock); 7422 /* 7423 * IPQoS notes: We don't send the packet for policy 7424 * processing here, will do it for the last one (below). 7425 * i.e. we do it per-packet now, but if we do policy 7426 * processing per-conn, then we would need to do it 7427 * here too. 7428 */ 7429 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7430 ipha, flags, recv_ill, B_FALSE); 7431 mutex_enter(&connfp->connf_lock); 7432 /* Follow the next pointer before releasing the conn. */ 7433 next_connp = connp->conn_next; 7434 CONN_DEC_REF(connp); 7435 connp = next_connp; 7436 } 7437 7438 /* Last one. Send it upstream. */ 7439 mutex_exit(&connfp->connf_lock); 7440 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7441 recv_ill, ip_policy); 7442 CONN_DEC_REF(connp); 7443 } 7444 7445 /* 7446 * Complete the ip_wput header so that it 7447 * is possible to generate ICMP 7448 * errors. 7449 */ 7450 int 7451 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7452 { 7453 ire_t *ire; 7454 7455 if (ipha->ipha_src == INADDR_ANY) { 7456 ire = ire_lookup_local(zoneid, ipst); 7457 if (ire == NULL) { 7458 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7459 return (1); 7460 } 7461 ipha->ipha_src = ire->ire_addr; 7462 ire_refrele(ire); 7463 } 7464 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7465 ipha->ipha_hdr_checksum = 0; 7466 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7467 return (0); 7468 } 7469 7470 /* 7471 * Nobody should be sending 7472 * packets up this stream 7473 */ 7474 static void 7475 ip_lrput(queue_t *q, mblk_t *mp) 7476 { 7477 mblk_t *mp1; 7478 7479 switch (mp->b_datap->db_type) { 7480 case M_FLUSH: 7481 /* Turn around */ 7482 if (*mp->b_rptr & FLUSHW) { 7483 *mp->b_rptr &= ~FLUSHR; 7484 qreply(q, mp); 7485 return; 7486 } 7487 break; 7488 } 7489 /* Could receive messages that passed through ar_rput */ 7490 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7491 mp1->b_prev = mp1->b_next = NULL; 7492 freemsg(mp); 7493 } 7494 7495 /* Nobody should be sending packets down this stream */ 7496 /* ARGSUSED */ 7497 void 7498 ip_lwput(queue_t *q, mblk_t *mp) 7499 { 7500 freemsg(mp); 7501 } 7502 7503 /* 7504 * Move the first hop in any source route to ipha_dst and remove that part of 7505 * the source route. Called by other protocols. Errors in option formatting 7506 * are ignored - will be handled by ip_wput_options Return the final 7507 * destination (either ipha_dst or the last entry in a source route.) 7508 */ 7509 ipaddr_t 7510 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7511 { 7512 ipoptp_t opts; 7513 uchar_t *opt; 7514 uint8_t optval; 7515 uint8_t optlen; 7516 ipaddr_t dst; 7517 int i; 7518 ire_t *ire; 7519 ip_stack_t *ipst = ns->netstack_ip; 7520 7521 ip2dbg(("ip_massage_options\n")); 7522 dst = ipha->ipha_dst; 7523 for (optval = ipoptp_first(&opts, ipha); 7524 optval != IPOPT_EOL; 7525 optval = ipoptp_next(&opts)) { 7526 opt = opts.ipoptp_cur; 7527 switch (optval) { 7528 uint8_t off; 7529 case IPOPT_SSRR: 7530 case IPOPT_LSRR: 7531 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7532 ip1dbg(("ip_massage_options: bad src route\n")); 7533 break; 7534 } 7535 optlen = opts.ipoptp_len; 7536 off = opt[IPOPT_OFFSET]; 7537 off--; 7538 redo_srr: 7539 if (optlen < IP_ADDR_LEN || 7540 off > optlen - IP_ADDR_LEN) { 7541 /* End of source route */ 7542 ip1dbg(("ip_massage_options: end of SR\n")); 7543 break; 7544 } 7545 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7546 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7547 ntohl(dst))); 7548 /* 7549 * Check if our address is present more than 7550 * once as consecutive hops in source route. 7551 * XXX verify per-interface ip_forwarding 7552 * for source route? 7553 */ 7554 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7555 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7556 if (ire != NULL) { 7557 ire_refrele(ire); 7558 off += IP_ADDR_LEN; 7559 goto redo_srr; 7560 } 7561 if (dst == htonl(INADDR_LOOPBACK)) { 7562 ip1dbg(("ip_massage_options: loopback addr in " 7563 "source route!\n")); 7564 break; 7565 } 7566 /* 7567 * Update ipha_dst to be the first hop and remove the 7568 * first hop from the source route (by overwriting 7569 * part of the option with NOP options). 7570 */ 7571 ipha->ipha_dst = dst; 7572 /* Put the last entry in dst */ 7573 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7574 3; 7575 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7576 7577 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7578 ntohl(dst))); 7579 /* Move down and overwrite */ 7580 opt[IP_ADDR_LEN] = opt[0]; 7581 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7582 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7583 for (i = 0; i < IP_ADDR_LEN; i++) 7584 opt[i] = IPOPT_NOP; 7585 break; 7586 } 7587 } 7588 return (dst); 7589 } 7590 7591 /* 7592 * This function's job is to forward data to the reverse tunnel (FA->HA) 7593 * after doing a few checks. It is assumed that the incoming interface 7594 * of the packet is always different than the outgoing interface and the 7595 * ire_type of the found ire has to be a non-resolver type. 7596 * 7597 * IPQoS notes 7598 * IP policy is invoked twice for a forwarded packet, once on the read side 7599 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7600 * enabled. 7601 */ 7602 static void 7603 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7604 { 7605 ipha_t *ipha; 7606 queue_t *q; 7607 uint32_t pkt_len; 7608 #define rptr ((uchar_t *)ipha) 7609 uint32_t sum; 7610 uint32_t max_frag; 7611 mblk_t *first_mp; 7612 uint32_t ill_index; 7613 ipxmit_state_t pktxmit_state; 7614 ill_t *out_ill; 7615 ip_stack_t *ipst = in_ill->ill_ipst; 7616 7617 ASSERT(ire != NULL); 7618 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7619 ASSERT(ire->ire_stq != NULL); 7620 7621 /* Initiate read side IPPF processing */ 7622 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7623 ill_index = in_ill->ill_phyint->phyint_ifindex; 7624 ip_process(IPP_FWD_IN, &mp, ill_index); 7625 if (mp == NULL) { 7626 ip2dbg(("ip_mrtun_forward: inbound pkt " 7627 "dropped during IPPF processing\n")); 7628 return; 7629 } 7630 } 7631 7632 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7633 ILLF_ROUTER) == 0) || 7634 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7635 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7636 ip0dbg(("ip_mrtun_forward: Can't forward :" 7637 "forwarding is not turned on\n")); 7638 goto drop_pkt; 7639 } 7640 7641 /* 7642 * Don't forward if the interface is down 7643 */ 7644 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7645 goto discard_pkt; 7646 } 7647 7648 ipha = (ipha_t *)mp->b_rptr; 7649 pkt_len = ntohs(ipha->ipha_length); 7650 /* Adjust the checksum to reflect the ttl decrement. */ 7651 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7652 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7653 if (ipha->ipha_ttl-- <= 1) { 7654 if (ip_csum_hdr(ipha)) { 7655 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7656 goto drop_pkt; 7657 } 7658 q = ire->ire_stq; 7659 if ((first_mp = allocb(sizeof (ipsec_info_t), 7660 BPRI_HI)) == NULL) { 7661 goto discard_pkt; 7662 } 7663 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7664 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7665 /* Sent by forwarding path, and router is global zone */ 7666 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7667 GLOBAL_ZONEID, ipst); 7668 return; 7669 } 7670 7671 /* Get the ill_index of the ILL */ 7672 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7673 7674 /* 7675 * This location is chosen for the placement of the forwarding hook 7676 * because at this point we know that we have a path out for the 7677 * packet but haven't yet applied any logic (such as fragmenting) 7678 * that happen as part of transmitting the packet out. 7679 */ 7680 out_ill = ire->ire_ipif->ipif_ill; 7681 7682 DTRACE_PROBE4(ip4__forwarding__start, 7683 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7684 7685 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7686 ipst->ips_ipv4firewall_forwarding, 7687 in_ill, out_ill, ipha, mp, mp, ipst); 7688 7689 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7690 7691 if (mp == NULL) 7692 return; 7693 pkt_len = ntohs(ipha->ipha_length); 7694 7695 /* 7696 * ip_mrtun_forward is only used by foreign agent to reverse 7697 * tunnel the incoming packet. So it does not do any option 7698 * processing for source routing. 7699 */ 7700 max_frag = ire->ire_max_frag; 7701 if (pkt_len > max_frag) { 7702 /* 7703 * It needs fragging on its way out. We haven't 7704 * verified the header checksum yet. Since we 7705 * are going to put a surely good checksum in the 7706 * outgoing header, we have to make sure that it 7707 * was good coming in. 7708 */ 7709 if (ip_csum_hdr(ipha)) { 7710 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7711 goto drop_pkt; 7712 } 7713 7714 /* Initiate write side IPPF processing */ 7715 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7716 ip_process(IPP_FWD_OUT, &mp, ill_index); 7717 if (mp == NULL) { 7718 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7719 "dropped/deferred during ip policy "\ 7720 "processing\n")); 7721 return; 7722 } 7723 } 7724 if ((first_mp = allocb(sizeof (ipsec_info_t), 7725 BPRI_HI)) == NULL) { 7726 goto discard_pkt; 7727 } 7728 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7729 mp = first_mp; 7730 7731 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7732 return; 7733 } 7734 7735 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7736 7737 ASSERT(ire->ire_ipif != NULL); 7738 7739 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7740 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7741 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7742 ipst->ips_ipv4firewall_physical_out, 7743 NULL, out_ill, ipha, mp, mp, ipst); 7744 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7745 if (mp == NULL) 7746 return; 7747 7748 /* Now send the packet to the tunnel interface */ 7749 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7750 q = ire->ire_stq; 7751 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7752 if ((pktxmit_state == SEND_FAILED) || 7753 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7754 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7755 q->q_ptr)); 7756 } 7757 7758 return; 7759 discard_pkt: 7760 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7761 drop_pkt:; 7762 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7763 freemsg(mp); 7764 #undef rptr 7765 } 7766 7767 /* 7768 * Fills the ipsec_out_t data structure with appropriate fields and 7769 * prepends it to mp which contains the IP hdr + data that was meant 7770 * to be forwarded. Please note that ipsec_out_info data structure 7771 * is used here to communicate the outgoing ill path at ip_wput() 7772 * for the ICMP error packet. This has nothing to do with ipsec IP 7773 * security. ipsec_out_t is really used to pass the info to the module 7774 * IP where this information cannot be extracted from conn. 7775 * This functions is called by ip_mrtun_forward(). 7776 */ 7777 void 7778 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7779 { 7780 ipsec_out_t *io; 7781 7782 ASSERT(xmit_ill != NULL); 7783 first_mp->b_datap->db_type = M_CTL; 7784 first_mp->b_wptr += sizeof (ipsec_info_t); 7785 /* 7786 * This is to pass info to ip_wput in absence of conn. 7787 * ipsec_out_secure will be B_FALSE because of this. 7788 * Thus ipsec_out_secure being B_FALSE indicates that 7789 * this is not IPSEC security related information. 7790 */ 7791 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7792 io = (ipsec_out_t *)first_mp->b_rptr; 7793 io->ipsec_out_type = IPSEC_OUT; 7794 io->ipsec_out_len = sizeof (ipsec_out_t); 7795 first_mp->b_cont = mp; 7796 io->ipsec_out_ill_index = 7797 xmit_ill->ill_phyint->phyint_ifindex; 7798 io->ipsec_out_xmit_if = B_TRUE; 7799 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7800 } 7801 7802 /* 7803 * Return the network mask 7804 * associated with the specified address. 7805 */ 7806 ipaddr_t 7807 ip_net_mask(ipaddr_t addr) 7808 { 7809 uchar_t *up = (uchar_t *)&addr; 7810 ipaddr_t mask = 0; 7811 uchar_t *maskp = (uchar_t *)&mask; 7812 7813 #if defined(__i386) || defined(__amd64) 7814 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7815 #endif 7816 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7817 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7818 #endif 7819 if (CLASSD(addr)) { 7820 maskp[0] = 0xF0; 7821 return (mask); 7822 } 7823 if (addr == 0) 7824 return (0); 7825 maskp[0] = 0xFF; 7826 if ((up[0] & 0x80) == 0) 7827 return (mask); 7828 7829 maskp[1] = 0xFF; 7830 if ((up[0] & 0xC0) == 0x80) 7831 return (mask); 7832 7833 maskp[2] = 0xFF; 7834 if ((up[0] & 0xE0) == 0xC0) 7835 return (mask); 7836 7837 /* Must be experimental or multicast, indicate as much */ 7838 return ((ipaddr_t)0); 7839 } 7840 7841 /* 7842 * Select an ill for the packet by considering load spreading across 7843 * a different ill in the group if dst_ill is part of some group. 7844 */ 7845 ill_t * 7846 ip_newroute_get_dst_ill(ill_t *dst_ill) 7847 { 7848 ill_t *ill; 7849 7850 /* 7851 * We schedule irrespective of whether the source address is 7852 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7853 */ 7854 ill = illgrp_scheduler(dst_ill); 7855 if (ill == NULL) 7856 return (NULL); 7857 7858 /* 7859 * For groups with names ip_sioctl_groupname ensures that all 7860 * ills are of same type. For groups without names, ifgrp_insert 7861 * ensures this. 7862 */ 7863 ASSERT(dst_ill->ill_type == ill->ill_type); 7864 7865 return (ill); 7866 } 7867 7868 /* 7869 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7870 */ 7871 ill_t * 7872 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7873 ip_stack_t *ipst) 7874 { 7875 ill_t *ret_ill; 7876 7877 ASSERT(ifindex != 0); 7878 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7879 ipst); 7880 if (ret_ill == NULL || 7881 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7882 if (isv6) { 7883 if (ill != NULL) { 7884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7885 } else { 7886 BUMP_MIB(&ipst->ips_ip6_mib, 7887 ipIfStatsOutDiscards); 7888 } 7889 ip1dbg(("ip_grab_attach_ill (IPv6): " 7890 "bad ifindex %d.\n", ifindex)); 7891 } else { 7892 if (ill != NULL) { 7893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7894 } else { 7895 BUMP_MIB(&ipst->ips_ip_mib, 7896 ipIfStatsOutDiscards); 7897 } 7898 ip1dbg(("ip_grab_attach_ill (IPv4): " 7899 "bad ifindex %d.\n", ifindex)); 7900 } 7901 if (ret_ill != NULL) 7902 ill_refrele(ret_ill); 7903 freemsg(first_mp); 7904 return (NULL); 7905 } 7906 7907 return (ret_ill); 7908 } 7909 7910 /* 7911 * IPv4 - 7912 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7913 * out a packet to a destination address for which we do not have specific 7914 * (or sufficient) routing information. 7915 * 7916 * NOTE : These are the scopes of some of the variables that point at IRE, 7917 * which needs to be followed while making any future modifications 7918 * to avoid memory leaks. 7919 * 7920 * - ire and sire are the entries looked up initially by 7921 * ire_ftable_lookup. 7922 * - ipif_ire is used to hold the interface ire associated with 7923 * the new cache ire. But it's scope is limited, so we always REFRELE 7924 * it before branching out to error paths. 7925 * - save_ire is initialized before ire_create, so that ire returned 7926 * by ire_create will not over-write the ire. We REFRELE save_ire 7927 * before breaking out of the switch. 7928 * 7929 * Thus on failures, we have to REFRELE only ire and sire, if they 7930 * are not NULL. 7931 */ 7932 void 7933 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7934 zoneid_t zoneid, ip_stack_t *ipst) 7935 { 7936 areq_t *areq; 7937 ipaddr_t gw = 0; 7938 ire_t *ire = NULL; 7939 mblk_t *res_mp; 7940 ipaddr_t *addrp; 7941 ipaddr_t nexthop_addr; 7942 ipif_t *src_ipif = NULL; 7943 ill_t *dst_ill = NULL; 7944 ipha_t *ipha; 7945 ire_t *sire = NULL; 7946 mblk_t *first_mp; 7947 ire_t *save_ire; 7948 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7949 ushort_t ire_marks = 0; 7950 boolean_t mctl_present; 7951 ipsec_out_t *io; 7952 mblk_t *saved_mp; 7953 ire_t *first_sire = NULL; 7954 mblk_t *copy_mp = NULL; 7955 mblk_t *xmit_mp = NULL; 7956 ipaddr_t save_dst; 7957 uint32_t multirt_flags = 7958 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7959 boolean_t multirt_is_resolvable; 7960 boolean_t multirt_resolve_next; 7961 boolean_t do_attach_ill = B_FALSE; 7962 boolean_t ip_nexthop = B_FALSE; 7963 tsol_ire_gw_secattr_t *attrp = NULL; 7964 tsol_gcgrp_t *gcgrp = NULL; 7965 tsol_gcgrp_addr_t ga; 7966 7967 if (ip_debug > 2) { 7968 /* ip1dbg */ 7969 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7970 } 7971 7972 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7973 if (mctl_present) { 7974 io = (ipsec_out_t *)first_mp->b_rptr; 7975 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7976 ASSERT(zoneid == io->ipsec_out_zoneid); 7977 ASSERT(zoneid != ALL_ZONES); 7978 } 7979 7980 ipha = (ipha_t *)mp->b_rptr; 7981 7982 /* All multicast lookups come through ip_newroute_ipif() */ 7983 if (CLASSD(dst)) { 7984 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7985 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7986 freemsg(first_mp); 7987 return; 7988 } 7989 7990 if (mctl_present && io->ipsec_out_attach_if) { 7991 /* ip_grab_attach_ill returns a held ill */ 7992 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7993 io->ipsec_out_ill_index, B_FALSE, ipst); 7994 7995 /* Failure case frees things for us. */ 7996 if (attach_ill == NULL) 7997 return; 7998 7999 /* 8000 * Check if we need an ire that will not be 8001 * looked up by anybody else i.e. HIDDEN. 8002 */ 8003 if (ill_is_probeonly(attach_ill)) 8004 ire_marks = IRE_MARK_HIDDEN; 8005 } 8006 if (mctl_present && io->ipsec_out_ip_nexthop) { 8007 ip_nexthop = B_TRUE; 8008 nexthop_addr = io->ipsec_out_nexthop_addr; 8009 } 8010 /* 8011 * If this IRE is created for forwarding or it is not for 8012 * traffic for congestion controlled protocols, mark it as temporary. 8013 */ 8014 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 8015 ire_marks |= IRE_MARK_TEMPORARY; 8016 8017 /* 8018 * Get what we can from ire_ftable_lookup which will follow an IRE 8019 * chain until it gets the most specific information available. 8020 * For example, we know that there is no IRE_CACHE for this dest, 8021 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8022 * ire_ftable_lookup will look up the gateway, etc. 8023 * Check if in_ill != NULL. If it is true, the packet must be 8024 * from an incoming interface where RTA_SRCIFP is set. 8025 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8026 * to the destination, of equal netmask length in the forward table, 8027 * will be recursively explored. If no information is available 8028 * for the final gateway of that route, we force the returned ire 8029 * to be equal to sire using MATCH_IRE_PARENT. 8030 * At least, in this case we have a starting point (in the buckets) 8031 * to look for other routes to the destination in the forward table. 8032 * This is actually used only for multirouting, where a list 8033 * of routes has to be processed in sequence. 8034 * 8035 * In the process of coming up with the most specific information, 8036 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8037 * for the gateway (i.e., one for which the ire_nce->nce_state is 8038 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8039 * Two caveats when handling incomplete ire's in ip_newroute: 8040 * - we should be careful when accessing its ire_nce (specifically 8041 * the nce_res_mp) ast it might change underneath our feet, and, 8042 * - not all legacy code path callers are prepared to handle 8043 * incomplete ire's, so we should not create/add incomplete 8044 * ire_cache entries here. (See discussion about temporary solution 8045 * further below). 8046 * 8047 * In order to minimize packet dropping, and to preserve existing 8048 * behavior, we treat this case as if there were no IRE_CACHE for the 8049 * gateway, and instead use the IF_RESOLVER ire to send out 8050 * another request to ARP (this is achieved by passing the 8051 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8052 * arp response comes back in ip_wput_nondata, we will create 8053 * a per-dst ire_cache that has an ND_COMPLETE ire. 8054 * 8055 * Note that this is a temporary solution; the correct solution is 8056 * to create an incomplete per-dst ire_cache entry, and send the 8057 * packet out when the gw's nce is resolved. In order to achieve this, 8058 * all packet processing must have been completed prior to calling 8059 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8060 * to be modified to accomodate this solution. 8061 */ 8062 if (in_ill != NULL) { 8063 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8064 in_ill, MATCH_IRE_TYPE); 8065 } else if (ip_nexthop) { 8066 /* 8067 * The first time we come here, we look for an IRE_INTERFACE 8068 * entry for the specified nexthop, set the dst to be the 8069 * nexthop address and create an IRE_CACHE entry for the 8070 * nexthop. The next time around, we are able to find an 8071 * IRE_CACHE entry for the nexthop, set the gateway to be the 8072 * nexthop address and create an IRE_CACHE entry for the 8073 * destination address via the specified nexthop. 8074 */ 8075 ire = ire_cache_lookup(nexthop_addr, zoneid, 8076 MBLK_GETLABEL(mp), ipst); 8077 if (ire != NULL) { 8078 gw = nexthop_addr; 8079 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8080 } else { 8081 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8082 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8083 MBLK_GETLABEL(mp), 8084 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8085 ipst); 8086 if (ire != NULL) { 8087 dst = nexthop_addr; 8088 } 8089 } 8090 } else if (attach_ill == NULL) { 8091 ire = ire_ftable_lookup(dst, 0, 0, 0, 8092 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8093 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8094 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8095 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8096 ipst); 8097 } else { 8098 /* 8099 * attach_ill is set only for communicating with 8100 * on-link hosts. So, don't look for DEFAULT. 8101 */ 8102 ipif_t *attach_ipif; 8103 8104 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8105 if (attach_ipif == NULL) { 8106 ill_refrele(attach_ill); 8107 goto icmp_err_ret; 8108 } 8109 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8110 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8111 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8112 MATCH_IRE_SECATTR, ipst); 8113 ipif_refrele(attach_ipif); 8114 } 8115 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8116 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8117 8118 /* 8119 * This loop is run only once in most cases. 8120 * We loop to resolve further routes only when the destination 8121 * can be reached through multiple RTF_MULTIRT-flagged ires. 8122 */ 8123 do { 8124 /* Clear the previous iteration's values */ 8125 if (src_ipif != NULL) { 8126 ipif_refrele(src_ipif); 8127 src_ipif = NULL; 8128 } 8129 if (dst_ill != NULL) { 8130 ill_refrele(dst_ill); 8131 dst_ill = NULL; 8132 } 8133 8134 multirt_resolve_next = B_FALSE; 8135 /* 8136 * We check if packets have to be multirouted. 8137 * In this case, given the current <ire, sire> couple, 8138 * we look for the next suitable <ire, sire>. 8139 * This check is done in ire_multirt_lookup(), 8140 * which applies various criteria to find the next route 8141 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8142 * unchanged if it detects it has not been tried yet. 8143 */ 8144 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8145 ip3dbg(("ip_newroute: starting next_resolution " 8146 "with first_mp %p, tag %d\n", 8147 (void *)first_mp, 8148 MULTIRT_DEBUG_TAGGED(first_mp))); 8149 8150 ASSERT(sire != NULL); 8151 multirt_is_resolvable = 8152 ire_multirt_lookup(&ire, &sire, multirt_flags, 8153 MBLK_GETLABEL(mp), ipst); 8154 8155 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8156 "ire %p, sire %p\n", 8157 multirt_is_resolvable, 8158 (void *)ire, (void *)sire)); 8159 8160 if (!multirt_is_resolvable) { 8161 /* 8162 * No more multirt route to resolve; give up 8163 * (all routes resolved or no more 8164 * resolvable routes). 8165 */ 8166 if (ire != NULL) { 8167 ire_refrele(ire); 8168 ire = NULL; 8169 } 8170 } else { 8171 ASSERT(sire != NULL); 8172 ASSERT(ire != NULL); 8173 /* 8174 * We simply use first_sire as a flag that 8175 * indicates if a resolvable multirt route 8176 * has already been found. 8177 * If it is not the case, we may have to send 8178 * an ICMP error to report that the 8179 * destination is unreachable. 8180 * We do not IRE_REFHOLD first_sire. 8181 */ 8182 if (first_sire == NULL) { 8183 first_sire = sire; 8184 } 8185 } 8186 } 8187 if (ire == NULL) { 8188 if (ip_debug > 3) { 8189 /* ip2dbg */ 8190 pr_addr_dbg("ip_newroute: " 8191 "can't resolve %s\n", AF_INET, &dst); 8192 } 8193 ip3dbg(("ip_newroute: " 8194 "ire %p, sire %p, first_sire %p\n", 8195 (void *)ire, (void *)sire, (void *)first_sire)); 8196 8197 if (sire != NULL) { 8198 ire_refrele(sire); 8199 sire = NULL; 8200 } 8201 8202 if (first_sire != NULL) { 8203 /* 8204 * At least one multirt route has been found 8205 * in the same call to ip_newroute(); 8206 * there is no need to report an ICMP error. 8207 * first_sire was not IRE_REFHOLDed. 8208 */ 8209 MULTIRT_DEBUG_UNTAG(first_mp); 8210 freemsg(first_mp); 8211 return; 8212 } 8213 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8214 RTA_DST, ipst); 8215 if (attach_ill != NULL) 8216 ill_refrele(attach_ill); 8217 goto icmp_err_ret; 8218 } 8219 8220 /* 8221 * When RTA_SRCIFP is used to add a route, then an interface 8222 * route is added in the source interface's routing table. 8223 * If the outgoing interface of this route is of type 8224 * IRE_IF_RESOLVER, then upon creation of the ire, 8225 * ire_nce->nce_res_mp is set to NULL. 8226 * Later, when this route is first used for forwarding 8227 * a packet, ip_newroute() is called 8228 * to resolve the hardware address of the outgoing ipif. 8229 * We do not come here for IRE_IF_NORESOLVER entries in the 8230 * source interface based table. We only come here if the 8231 * outgoing interface is a resolver interface and we don't 8232 * have the ire_nce->nce_res_mp information yet. 8233 * If in_ill is not null that means it is called from 8234 * ip_rput. 8235 */ 8236 8237 ASSERT(ire->ire_in_ill == NULL || 8238 (ire->ire_type == IRE_IF_RESOLVER && 8239 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8240 8241 /* 8242 * Verify that the returned IRE does not have either 8243 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8244 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8245 */ 8246 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8247 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8248 if (attach_ill != NULL) 8249 ill_refrele(attach_ill); 8250 goto icmp_err_ret; 8251 } 8252 /* 8253 * Increment the ire_ob_pkt_count field for ire if it is an 8254 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8255 * increment the same for the parent IRE, sire, if it is some 8256 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8257 */ 8258 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8259 UPDATE_OB_PKT_COUNT(ire); 8260 ire->ire_last_used_time = lbolt; 8261 } 8262 8263 if (sire != NULL) { 8264 gw = sire->ire_gateway_addr; 8265 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8266 IRE_INTERFACE)) == 0); 8267 UPDATE_OB_PKT_COUNT(sire); 8268 sire->ire_last_used_time = lbolt; 8269 } 8270 /* 8271 * We have a route to reach the destination. 8272 * 8273 * 1) If the interface is part of ill group, try to get a new 8274 * ill taking load spreading into account. 8275 * 8276 * 2) After selecting the ill, get a source address that 8277 * might create good inbound load spreading. 8278 * ipif_select_source does this for us. 8279 * 8280 * If the application specified the ill (ifindex), we still 8281 * load spread. Only if the packets needs to go out 8282 * specifically on a given ill e.g. binding to 8283 * IPIF_NOFAILOVER address, then we don't try to use a 8284 * different ill for load spreading. 8285 */ 8286 if (attach_ill == NULL) { 8287 /* 8288 * Don't perform outbound load spreading in the 8289 * case of an RTF_MULTIRT route, as we actually 8290 * typically want to replicate outgoing packets 8291 * through particular interfaces. 8292 */ 8293 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8294 dst_ill = ire->ire_ipif->ipif_ill; 8295 /* for uniformity */ 8296 ill_refhold(dst_ill); 8297 } else { 8298 /* 8299 * If we are here trying to create an IRE_CACHE 8300 * for an offlink destination and have the 8301 * IRE_CACHE for the next hop and the latter is 8302 * using virtual IP source address selection i.e 8303 * it's ire->ire_ipif is pointing to a virtual 8304 * network interface (vni) then 8305 * ip_newroute_get_dst_ll() will return the vni 8306 * interface as the dst_ill. Since the vni is 8307 * virtual i.e not associated with any physical 8308 * interface, it cannot be the dst_ill, hence 8309 * in such a case call ip_newroute_get_dst_ll() 8310 * with the stq_ill instead of the ire_ipif ILL. 8311 * The function returns a refheld ill. 8312 */ 8313 if ((ire->ire_type == IRE_CACHE) && 8314 IS_VNI(ire->ire_ipif->ipif_ill)) 8315 dst_ill = ip_newroute_get_dst_ill( 8316 ire->ire_stq->q_ptr); 8317 else 8318 dst_ill = ip_newroute_get_dst_ill( 8319 ire->ire_ipif->ipif_ill); 8320 } 8321 if (dst_ill == NULL) { 8322 if (ip_debug > 2) { 8323 pr_addr_dbg("ip_newroute: " 8324 "no dst ill for dst" 8325 " %s\n", AF_INET, &dst); 8326 } 8327 goto icmp_err_ret; 8328 } 8329 } else { 8330 dst_ill = ire->ire_ipif->ipif_ill; 8331 /* for uniformity */ 8332 ill_refhold(dst_ill); 8333 /* 8334 * We should have found a route matching ill as we 8335 * called ire_ftable_lookup with MATCH_IRE_ILL. 8336 * Rather than asserting, when there is a mismatch, 8337 * we just drop the packet. 8338 */ 8339 if (dst_ill != attach_ill) { 8340 ip0dbg(("ip_newroute: Packet dropped as " 8341 "IPIF_NOFAILOVER ill is %s, " 8342 "ire->ire_ipif->ipif_ill is %s\n", 8343 attach_ill->ill_name, 8344 dst_ill->ill_name)); 8345 ill_refrele(attach_ill); 8346 goto icmp_err_ret; 8347 } 8348 } 8349 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8350 if (attach_ill != NULL) { 8351 ill_refrele(attach_ill); 8352 attach_ill = NULL; 8353 do_attach_ill = B_TRUE; 8354 } 8355 ASSERT(dst_ill != NULL); 8356 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8357 8358 /* 8359 * Pick the best source address from dst_ill. 8360 * 8361 * 1) If it is part of a multipathing group, we would 8362 * like to spread the inbound packets across different 8363 * interfaces. ipif_select_source picks a random source 8364 * across the different ills in the group. 8365 * 8366 * 2) If it is not part of a multipathing group, we try 8367 * to pick the source address from the destination 8368 * route. Clustering assumes that when we have multiple 8369 * prefixes hosted on an interface, the prefix of the 8370 * source address matches the prefix of the destination 8371 * route. We do this only if the address is not 8372 * DEPRECATED. 8373 * 8374 * 3) If the conn is in a different zone than the ire, we 8375 * need to pick a source address from the right zone. 8376 * 8377 * NOTE : If we hit case (1) above, the prefix of the source 8378 * address picked may not match the prefix of the 8379 * destination routes prefix as ipif_select_source 8380 * does not look at "dst" while picking a source 8381 * address. 8382 * If we want the same behavior as (2), we will need 8383 * to change the behavior of ipif_select_source. 8384 */ 8385 ASSERT(src_ipif == NULL); 8386 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8387 /* 8388 * The RTF_SETSRC flag is set in the parent ire (sire). 8389 * Check that the ipif matching the requested source 8390 * address still exists. 8391 */ 8392 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8393 zoneid, NULL, NULL, NULL, NULL, ipst); 8394 } 8395 if (src_ipif == NULL) { 8396 ire_marks |= IRE_MARK_USESRC_CHECK; 8397 if ((dst_ill->ill_group != NULL) || 8398 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8399 (connp != NULL && ire->ire_zoneid != zoneid && 8400 ire->ire_zoneid != ALL_ZONES) || 8401 (dst_ill->ill_usesrc_ifindex != 0)) { 8402 /* 8403 * If the destination is reachable via a 8404 * given gateway, the selected source address 8405 * should be in the same subnet as the gateway. 8406 * Otherwise, the destination is not reachable. 8407 * 8408 * If there are no interfaces on the same subnet 8409 * as the destination, ipif_select_source gives 8410 * first non-deprecated interface which might be 8411 * on a different subnet than the gateway. 8412 * This is not desirable. Hence pass the dst_ire 8413 * source address to ipif_select_source. 8414 * It is sure that the destination is reachable 8415 * with the dst_ire source address subnet. 8416 * So passing dst_ire source address to 8417 * ipif_select_source will make sure that the 8418 * selected source will be on the same subnet 8419 * as dst_ire source address. 8420 */ 8421 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8422 src_ipif = ipif_select_source(dst_ill, saddr, 8423 zoneid); 8424 if (src_ipif == NULL) { 8425 if (ip_debug > 2) { 8426 pr_addr_dbg("ip_newroute: " 8427 "no src for dst %s ", 8428 AF_INET, &dst); 8429 printf("through interface %s\n", 8430 dst_ill->ill_name); 8431 } 8432 goto icmp_err_ret; 8433 } 8434 } else { 8435 src_ipif = ire->ire_ipif; 8436 ASSERT(src_ipif != NULL); 8437 /* hold src_ipif for uniformity */ 8438 ipif_refhold(src_ipif); 8439 } 8440 } 8441 8442 /* 8443 * Assign a source address while we have the conn. 8444 * We can't have ip_wput_ire pick a source address when the 8445 * packet returns from arp since we need to look at 8446 * conn_unspec_src and conn_zoneid, and we lose the conn when 8447 * going through arp. 8448 * 8449 * NOTE : ip_newroute_v6 does not have this piece of code as 8450 * it uses ip6i to store this information. 8451 */ 8452 if (ipha->ipha_src == INADDR_ANY && 8453 (connp == NULL || !connp->conn_unspec_src)) { 8454 ipha->ipha_src = src_ipif->ipif_src_addr; 8455 } 8456 if (ip_debug > 3) { 8457 /* ip2dbg */ 8458 pr_addr_dbg("ip_newroute: first hop %s\n", 8459 AF_INET, &gw); 8460 } 8461 ip2dbg(("\tire type %s (%d)\n", 8462 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8463 8464 /* 8465 * The TTL of multirouted packets is bounded by the 8466 * ip_multirt_ttl ndd variable. 8467 */ 8468 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8469 /* Force TTL of multirouted packets */ 8470 if ((ipst->ips_ip_multirt_ttl > 0) && 8471 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8472 ip2dbg(("ip_newroute: forcing multirt TTL " 8473 "to %d (was %d), dst 0x%08x\n", 8474 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8475 ntohl(sire->ire_addr))); 8476 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8477 } 8478 } 8479 /* 8480 * At this point in ip_newroute(), ire is either the 8481 * IRE_CACHE of the next-hop gateway for an off-subnet 8482 * destination or an IRE_INTERFACE type that should be used 8483 * to resolve an on-subnet destination or an on-subnet 8484 * next-hop gateway. 8485 * 8486 * In the IRE_CACHE case, we have the following : 8487 * 8488 * 1) src_ipif - used for getting a source address. 8489 * 8490 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8491 * means packets using this IRE_CACHE will go out on 8492 * dst_ill. 8493 * 8494 * 3) The IRE sire will point to the prefix that is the 8495 * longest matching route for the destination. These 8496 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8497 * 8498 * The newly created IRE_CACHE entry for the off-subnet 8499 * destination is tied to both the prefix route and the 8500 * interface route used to resolve the next-hop gateway 8501 * via the ire_phandle and ire_ihandle fields, 8502 * respectively. 8503 * 8504 * In the IRE_INTERFACE case, we have the following : 8505 * 8506 * 1) src_ipif - used for getting a source address. 8507 * 8508 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8509 * means packets using the IRE_CACHE that we will build 8510 * here will go out on dst_ill. 8511 * 8512 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8513 * to be created will only be tied to the IRE_INTERFACE 8514 * that was derived from the ire_ihandle field. 8515 * 8516 * If sire is non-NULL, it means the destination is 8517 * off-link and we will first create the IRE_CACHE for the 8518 * gateway. Next time through ip_newroute, we will create 8519 * the IRE_CACHE for the final destination as described 8520 * above. 8521 * 8522 * In both cases, after the current resolution has been 8523 * completed (or possibly initialised, in the IRE_INTERFACE 8524 * case), the loop may be re-entered to attempt the resolution 8525 * of another RTF_MULTIRT route. 8526 * 8527 * When an IRE_CACHE entry for the off-subnet destination is 8528 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8529 * for further processing in emission loops. 8530 */ 8531 save_ire = ire; 8532 switch (ire->ire_type) { 8533 case IRE_CACHE: { 8534 ire_t *ipif_ire; 8535 mblk_t *ire_fp_mp; 8536 8537 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8538 if (gw == 0) 8539 gw = ire->ire_gateway_addr; 8540 /* 8541 * We need 3 ire's to create a new cache ire for an 8542 * off-link destination from the cache ire of the 8543 * gateway. 8544 * 8545 * 1. The prefix ire 'sire' (Note that this does 8546 * not apply to the conn_nexthop_set case) 8547 * 2. The cache ire of the gateway 'ire' 8548 * 3. The interface ire 'ipif_ire' 8549 * 8550 * We have (1) and (2). We lookup (3) below. 8551 * 8552 * If there is no interface route to the gateway, 8553 * it is a race condition, where we found the cache 8554 * but the interface route has been deleted. 8555 */ 8556 if (ip_nexthop) { 8557 ipif_ire = ire_ihandle_lookup_onlink(ire); 8558 } else { 8559 ipif_ire = 8560 ire_ihandle_lookup_offlink(ire, sire); 8561 } 8562 if (ipif_ire == NULL) { 8563 ip1dbg(("ip_newroute: " 8564 "ire_ihandle_lookup_offlink failed\n")); 8565 goto icmp_err_ret; 8566 } 8567 /* 8568 * XXX We are using the same res_mp 8569 * (DL_UNITDATA_REQ) though the save_ire is not 8570 * pointing at the same ill. 8571 * This is incorrect. We need to send it up to the 8572 * resolver to get the right res_mp. For ethernets 8573 * this may be okay (ill_type == DL_ETHER). 8574 */ 8575 res_mp = save_ire->ire_nce->nce_res_mp; 8576 ire_fp_mp = NULL; 8577 8578 /* 8579 * Check cached gateway IRE for any security 8580 * attributes; if found, associate the gateway 8581 * credentials group to the destination IRE. 8582 */ 8583 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8584 mutex_enter(&attrp->igsa_lock); 8585 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8586 GCGRP_REFHOLD(gcgrp); 8587 mutex_exit(&attrp->igsa_lock); 8588 } 8589 8590 ire = ire_create( 8591 (uchar_t *)&dst, /* dest address */ 8592 (uchar_t *)&ip_g_all_ones, /* mask */ 8593 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8594 (uchar_t *)&gw, /* gateway address */ 8595 NULL, 8596 &save_ire->ire_max_frag, 8597 ire_fp_mp, /* Fast Path header */ 8598 dst_ill->ill_rq, /* recv-from queue */ 8599 dst_ill->ill_wq, /* send-to queue */ 8600 IRE_CACHE, /* IRE type */ 8601 res_mp, 8602 src_ipif, 8603 in_ill, /* incoming ill */ 8604 (sire != NULL) ? 8605 sire->ire_mask : 0, /* Parent mask */ 8606 (sire != NULL) ? 8607 sire->ire_phandle : 0, /* Parent handle */ 8608 ipif_ire->ire_ihandle, /* Interface handle */ 8609 (sire != NULL) ? (sire->ire_flags & 8610 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8611 (sire != NULL) ? 8612 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8613 NULL, 8614 gcgrp, 8615 ipst); 8616 8617 if (ire == NULL) { 8618 if (gcgrp != NULL) { 8619 GCGRP_REFRELE(gcgrp); 8620 gcgrp = NULL; 8621 } 8622 ire_refrele(ipif_ire); 8623 ire_refrele(save_ire); 8624 break; 8625 } 8626 8627 /* reference now held by IRE */ 8628 gcgrp = NULL; 8629 8630 ire->ire_marks |= ire_marks; 8631 8632 /* 8633 * Prevent sire and ipif_ire from getting deleted. 8634 * The newly created ire is tied to both of them via 8635 * the phandle and ihandle respectively. 8636 */ 8637 if (sire != NULL) { 8638 IRB_REFHOLD(sire->ire_bucket); 8639 /* Has it been removed already ? */ 8640 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8641 IRB_REFRELE(sire->ire_bucket); 8642 ire_refrele(ipif_ire); 8643 ire_refrele(save_ire); 8644 break; 8645 } 8646 } 8647 8648 IRB_REFHOLD(ipif_ire->ire_bucket); 8649 /* Has it been removed already ? */ 8650 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8651 IRB_REFRELE(ipif_ire->ire_bucket); 8652 if (sire != NULL) 8653 IRB_REFRELE(sire->ire_bucket); 8654 ire_refrele(ipif_ire); 8655 ire_refrele(save_ire); 8656 break; 8657 } 8658 8659 xmit_mp = first_mp; 8660 /* 8661 * In the case of multirouting, a copy 8662 * of the packet is done before its sending. 8663 * The copy is used to attempt another 8664 * route resolution, in a next loop. 8665 */ 8666 if (ire->ire_flags & RTF_MULTIRT) { 8667 copy_mp = copymsg(first_mp); 8668 if (copy_mp != NULL) { 8669 xmit_mp = copy_mp; 8670 MULTIRT_DEBUG_TAG(first_mp); 8671 } 8672 } 8673 ire_add_then_send(q, ire, xmit_mp); 8674 ire_refrele(save_ire); 8675 8676 /* Assert that sire is not deleted yet. */ 8677 if (sire != NULL) { 8678 ASSERT(sire->ire_ptpn != NULL); 8679 IRB_REFRELE(sire->ire_bucket); 8680 } 8681 8682 /* Assert that ipif_ire is not deleted yet. */ 8683 ASSERT(ipif_ire->ire_ptpn != NULL); 8684 IRB_REFRELE(ipif_ire->ire_bucket); 8685 ire_refrele(ipif_ire); 8686 8687 /* 8688 * If copy_mp is not NULL, multirouting was 8689 * requested. We loop to initiate a next 8690 * route resolution attempt, starting from sire. 8691 */ 8692 if (copy_mp != NULL) { 8693 /* 8694 * Search for the next unresolved 8695 * multirt route. 8696 */ 8697 copy_mp = NULL; 8698 ipif_ire = NULL; 8699 ire = NULL; 8700 multirt_resolve_next = B_TRUE; 8701 continue; 8702 } 8703 if (sire != NULL) 8704 ire_refrele(sire); 8705 ipif_refrele(src_ipif); 8706 ill_refrele(dst_ill); 8707 return; 8708 } 8709 case IRE_IF_NORESOLVER: { 8710 /* 8711 * We have what we need to build an IRE_CACHE. 8712 * 8713 * Create a new res_mp with the IP gateway address 8714 * in destination address in the DLPI hdr if the 8715 * physical length is exactly 4 bytes. 8716 */ 8717 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8718 uchar_t *addr; 8719 8720 if (gw) 8721 addr = (uchar_t *)&gw; 8722 else 8723 addr = (uchar_t *)&dst; 8724 8725 res_mp = ill_dlur_gen(addr, 8726 dst_ill->ill_phys_addr_length, 8727 dst_ill->ill_sap, 8728 dst_ill->ill_sap_length); 8729 8730 if (res_mp == NULL) { 8731 ip1dbg(("ip_newroute: res_mp NULL\n")); 8732 break; 8733 } 8734 } else if (dst_ill->ill_resolver_mp == NULL) { 8735 ip1dbg(("ip_newroute: dst_ill %p " 8736 "for IF_NORESOLV ire %p has " 8737 "no ill_resolver_mp\n", 8738 (void *)dst_ill, (void *)ire)); 8739 break; 8740 } else { 8741 res_mp = NULL; 8742 } 8743 8744 /* 8745 * TSol note: We are creating the ire cache for the 8746 * destination 'dst'. If 'dst' is offlink, going 8747 * through the first hop 'gw', the security attributes 8748 * of 'dst' must be set to point to the gateway 8749 * credentials of gateway 'gw'. If 'dst' is onlink, it 8750 * is possible that 'dst' is a potential gateway that is 8751 * referenced by some route that has some security 8752 * attributes. Thus in the former case, we need to do a 8753 * gcgrp_lookup of 'gw' while in the latter case we 8754 * need to do gcgrp_lookup of 'dst' itself. 8755 */ 8756 ga.ga_af = AF_INET; 8757 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8758 &ga.ga_addr); 8759 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8760 8761 ire = ire_create( 8762 (uchar_t *)&dst, /* dest address */ 8763 (uchar_t *)&ip_g_all_ones, /* mask */ 8764 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8765 (uchar_t *)&gw, /* gateway address */ 8766 NULL, 8767 &save_ire->ire_max_frag, 8768 NULL, /* Fast Path header */ 8769 dst_ill->ill_rq, /* recv-from queue */ 8770 dst_ill->ill_wq, /* send-to queue */ 8771 IRE_CACHE, 8772 res_mp, 8773 src_ipif, 8774 in_ill, /* Incoming ill */ 8775 save_ire->ire_mask, /* Parent mask */ 8776 (sire != NULL) ? /* Parent handle */ 8777 sire->ire_phandle : 0, 8778 save_ire->ire_ihandle, /* Interface handle */ 8779 (sire != NULL) ? sire->ire_flags & 8780 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8781 &(save_ire->ire_uinfo), 8782 NULL, 8783 gcgrp, 8784 ipst); 8785 8786 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8787 freeb(res_mp); 8788 8789 if (ire == NULL) { 8790 if (gcgrp != NULL) { 8791 GCGRP_REFRELE(gcgrp); 8792 gcgrp = NULL; 8793 } 8794 ire_refrele(save_ire); 8795 break; 8796 } 8797 8798 /* reference now held by IRE */ 8799 gcgrp = NULL; 8800 8801 ire->ire_marks |= ire_marks; 8802 8803 /* Prevent save_ire from getting deleted */ 8804 IRB_REFHOLD(save_ire->ire_bucket); 8805 /* Has it been removed already ? */ 8806 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8807 IRB_REFRELE(save_ire->ire_bucket); 8808 ire_refrele(save_ire); 8809 break; 8810 } 8811 8812 /* 8813 * In the case of multirouting, a copy 8814 * of the packet is made before it is sent. 8815 * The copy is used in the next 8816 * loop to attempt another resolution. 8817 */ 8818 xmit_mp = first_mp; 8819 if ((sire != NULL) && 8820 (sire->ire_flags & RTF_MULTIRT)) { 8821 copy_mp = copymsg(first_mp); 8822 if (copy_mp != NULL) { 8823 xmit_mp = copy_mp; 8824 MULTIRT_DEBUG_TAG(first_mp); 8825 } 8826 } 8827 ire_add_then_send(q, ire, xmit_mp); 8828 8829 /* Assert that it is not deleted yet. */ 8830 ASSERT(save_ire->ire_ptpn != NULL); 8831 IRB_REFRELE(save_ire->ire_bucket); 8832 ire_refrele(save_ire); 8833 8834 if (copy_mp != NULL) { 8835 /* 8836 * If we found a (no)resolver, we ignore any 8837 * trailing top priority IRE_CACHE in further 8838 * loops. This ensures that we do not omit any 8839 * (no)resolver. 8840 * This IRE_CACHE, if any, will be processed 8841 * by another thread entering ip_newroute(). 8842 * IRE_CACHE entries, if any, will be processed 8843 * by another thread entering ip_newroute(), 8844 * (upon resolver response, for instance). 8845 * This aims to force parallel multirt 8846 * resolutions as soon as a packet must be sent. 8847 * In the best case, after the tx of only one 8848 * packet, all reachable routes are resolved. 8849 * Otherwise, the resolution of all RTF_MULTIRT 8850 * routes would require several emissions. 8851 */ 8852 multirt_flags &= ~MULTIRT_CACHEGW; 8853 8854 /* 8855 * Search for the next unresolved multirt 8856 * route. 8857 */ 8858 copy_mp = NULL; 8859 save_ire = NULL; 8860 ire = NULL; 8861 multirt_resolve_next = B_TRUE; 8862 continue; 8863 } 8864 8865 /* 8866 * Don't need sire anymore 8867 */ 8868 if (sire != NULL) 8869 ire_refrele(sire); 8870 8871 ipif_refrele(src_ipif); 8872 ill_refrele(dst_ill); 8873 return; 8874 } 8875 case IRE_IF_RESOLVER: 8876 /* 8877 * We can't build an IRE_CACHE yet, but at least we 8878 * found a resolver that can help. 8879 */ 8880 res_mp = dst_ill->ill_resolver_mp; 8881 if (!OK_RESOLVER_MP(res_mp)) 8882 break; 8883 8884 /* 8885 * To be at this point in the code with a non-zero gw 8886 * means that dst is reachable through a gateway that 8887 * we have never resolved. By changing dst to the gw 8888 * addr we resolve the gateway first. 8889 * When ire_add_then_send() tries to put the IP dg 8890 * to dst, it will reenter ip_newroute() at which 8891 * time we will find the IRE_CACHE for the gw and 8892 * create another IRE_CACHE in case IRE_CACHE above. 8893 */ 8894 if (gw != INADDR_ANY) { 8895 /* 8896 * The source ipif that was determined above was 8897 * relative to the destination address, not the 8898 * gateway's. If src_ipif was not taken out of 8899 * the IRE_IF_RESOLVER entry, we'll need to call 8900 * ipif_select_source() again. 8901 */ 8902 if (src_ipif != ire->ire_ipif) { 8903 ipif_refrele(src_ipif); 8904 src_ipif = ipif_select_source(dst_ill, 8905 gw, zoneid); 8906 if (src_ipif == NULL) { 8907 if (ip_debug > 2) { 8908 pr_addr_dbg( 8909 "ip_newroute: no " 8910 "src for gw %s ", 8911 AF_INET, &gw); 8912 printf("through " 8913 "interface %s\n", 8914 dst_ill->ill_name); 8915 } 8916 goto icmp_err_ret; 8917 } 8918 } 8919 save_dst = dst; 8920 dst = gw; 8921 gw = INADDR_ANY; 8922 } 8923 8924 /* 8925 * We obtain a partial IRE_CACHE which we will pass 8926 * along with the resolver query. When the response 8927 * comes back it will be there ready for us to add. 8928 * The ire_max_frag is atomically set under the 8929 * irebucket lock in ire_add_v[46]. 8930 */ 8931 8932 ire = ire_create_mp( 8933 (uchar_t *)&dst, /* dest address */ 8934 (uchar_t *)&ip_g_all_ones, /* mask */ 8935 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8936 (uchar_t *)&gw, /* gateway address */ 8937 NULL, /* no in_src_addr */ 8938 NULL, /* ire_max_frag */ 8939 NULL, /* Fast Path header */ 8940 dst_ill->ill_rq, /* recv-from queue */ 8941 dst_ill->ill_wq, /* send-to queue */ 8942 IRE_CACHE, 8943 NULL, 8944 src_ipif, /* Interface ipif */ 8945 in_ill, /* Incoming ILL */ 8946 save_ire->ire_mask, /* Parent mask */ 8947 0, 8948 save_ire->ire_ihandle, /* Interface handle */ 8949 0, /* flags if any */ 8950 &(save_ire->ire_uinfo), 8951 NULL, 8952 NULL, 8953 ipst); 8954 8955 if (ire == NULL) { 8956 ire_refrele(save_ire); 8957 break; 8958 } 8959 8960 if ((sire != NULL) && 8961 (sire->ire_flags & RTF_MULTIRT)) { 8962 copy_mp = copymsg(first_mp); 8963 if (copy_mp != NULL) 8964 MULTIRT_DEBUG_TAG(copy_mp); 8965 } 8966 8967 ire->ire_marks |= ire_marks; 8968 8969 /* 8970 * Construct message chain for the resolver 8971 * of the form: 8972 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8973 * Packet could contain a IPSEC_OUT mp. 8974 * 8975 * NOTE : ire will be added later when the response 8976 * comes back from ARP. If the response does not 8977 * come back, ARP frees the packet. For this reason, 8978 * we can't REFHOLD the bucket of save_ire to prevent 8979 * deletions. We may not be able to REFRELE the bucket 8980 * if the response never comes back. Thus, before 8981 * adding the ire, ire_add_v4 will make sure that the 8982 * interface route does not get deleted. This is the 8983 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8984 * where we can always prevent deletions because of 8985 * the synchronous nature of adding IRES i.e 8986 * ire_add_then_send is called after creating the IRE. 8987 */ 8988 ASSERT(ire->ire_mp != NULL); 8989 ire->ire_mp->b_cont = first_mp; 8990 /* Have saved_mp handy, for cleanup if canput fails */ 8991 saved_mp = mp; 8992 mp = copyb(res_mp); 8993 if (mp == NULL) { 8994 /* Prepare for cleanup */ 8995 mp = saved_mp; /* pkt */ 8996 ire_delete(ire); /* ire_mp */ 8997 ire = NULL; 8998 ire_refrele(save_ire); 8999 if (copy_mp != NULL) { 9000 MULTIRT_DEBUG_UNTAG(copy_mp); 9001 freemsg(copy_mp); 9002 copy_mp = NULL; 9003 } 9004 break; 9005 } 9006 linkb(mp, ire->ire_mp); 9007 9008 /* 9009 * Fill in the source and dest addrs for the resolver. 9010 * NOTE: this depends on memory layouts imposed by 9011 * ill_init(). 9012 */ 9013 areq = (areq_t *)mp->b_rptr; 9014 addrp = (ipaddr_t *)((char *)areq + 9015 areq->areq_sender_addr_offset); 9016 if (do_attach_ill) { 9017 /* 9018 * This is bind to no failover case. 9019 * arp packet also must go out on attach_ill. 9020 */ 9021 ASSERT(ipha->ipha_src != NULL); 9022 *addrp = ipha->ipha_src; 9023 } else { 9024 *addrp = save_ire->ire_src_addr; 9025 } 9026 9027 ire_refrele(save_ire); 9028 addrp = (ipaddr_t *)((char *)areq + 9029 areq->areq_target_addr_offset); 9030 *addrp = dst; 9031 /* Up to the resolver. */ 9032 if (canputnext(dst_ill->ill_rq) && 9033 !(dst_ill->ill_arp_closing)) { 9034 putnext(dst_ill->ill_rq, mp); 9035 ire = NULL; 9036 if (copy_mp != NULL) { 9037 /* 9038 * If we found a resolver, we ignore 9039 * any trailing top priority IRE_CACHE 9040 * in the further loops. This ensures 9041 * that we do not omit any resolver. 9042 * IRE_CACHE entries, if any, will be 9043 * processed next time we enter 9044 * ip_newroute(). 9045 */ 9046 multirt_flags &= ~MULTIRT_CACHEGW; 9047 /* 9048 * Search for the next unresolved 9049 * multirt route. 9050 */ 9051 first_mp = copy_mp; 9052 copy_mp = NULL; 9053 /* Prepare the next resolution loop. */ 9054 mp = first_mp; 9055 EXTRACT_PKT_MP(mp, first_mp, 9056 mctl_present); 9057 if (mctl_present) 9058 io = (ipsec_out_t *) 9059 first_mp->b_rptr; 9060 ipha = (ipha_t *)mp->b_rptr; 9061 9062 ASSERT(sire != NULL); 9063 9064 dst = save_dst; 9065 multirt_resolve_next = B_TRUE; 9066 continue; 9067 } 9068 9069 if (sire != NULL) 9070 ire_refrele(sire); 9071 9072 /* 9073 * The response will come back in ip_wput 9074 * with db_type IRE_DB_TYPE. 9075 */ 9076 ipif_refrele(src_ipif); 9077 ill_refrele(dst_ill); 9078 return; 9079 } else { 9080 /* Prepare for cleanup */ 9081 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9082 mp); 9083 mp->b_cont = NULL; 9084 freeb(mp); /* areq */ 9085 /* 9086 * this is an ire that is not added to the 9087 * cache. ire_freemblk will handle the release 9088 * of any resources associated with the ire. 9089 */ 9090 ire_delete(ire); /* ire_mp */ 9091 mp = saved_mp; /* pkt */ 9092 ire = NULL; 9093 if (copy_mp != NULL) { 9094 MULTIRT_DEBUG_UNTAG(copy_mp); 9095 freemsg(copy_mp); 9096 copy_mp = NULL; 9097 } 9098 break; 9099 } 9100 default: 9101 break; 9102 } 9103 } while (multirt_resolve_next); 9104 9105 ip1dbg(("ip_newroute: dropped\n")); 9106 /* Did this packet originate externally? */ 9107 if (mp->b_prev) { 9108 mp->b_next = NULL; 9109 mp->b_prev = NULL; 9110 if (in_ill != NULL) { 9111 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9112 } else { 9113 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9114 } 9115 } else { 9116 if (dst_ill != NULL) { 9117 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9118 } else { 9119 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9120 } 9121 } 9122 ASSERT(copy_mp == NULL); 9123 MULTIRT_DEBUG_UNTAG(first_mp); 9124 freemsg(first_mp); 9125 if (ire != NULL) 9126 ire_refrele(ire); 9127 if (sire != NULL) 9128 ire_refrele(sire); 9129 if (src_ipif != NULL) 9130 ipif_refrele(src_ipif); 9131 if (dst_ill != NULL) 9132 ill_refrele(dst_ill); 9133 return; 9134 9135 icmp_err_ret: 9136 ip1dbg(("ip_newroute: no route\n")); 9137 if (src_ipif != NULL) 9138 ipif_refrele(src_ipif); 9139 if (dst_ill != NULL) 9140 ill_refrele(dst_ill); 9141 if (sire != NULL) 9142 ire_refrele(sire); 9143 /* Did this packet originate externally? */ 9144 if (mp->b_prev) { 9145 mp->b_next = NULL; 9146 mp->b_prev = NULL; 9147 if (in_ill != NULL) { 9148 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9149 } else { 9150 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9151 } 9152 q = WR(q); 9153 } else { 9154 /* 9155 * There is no outgoing ill, so just increment the 9156 * system MIB. 9157 */ 9158 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9159 /* 9160 * Since ip_wput() isn't close to finished, we fill 9161 * in enough of the header for credible error reporting. 9162 */ 9163 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9164 /* Failed */ 9165 MULTIRT_DEBUG_UNTAG(first_mp); 9166 freemsg(first_mp); 9167 if (ire != NULL) 9168 ire_refrele(ire); 9169 return; 9170 } 9171 } 9172 9173 /* 9174 * At this point we will have ire only if RTF_BLACKHOLE 9175 * or RTF_REJECT flags are set on the IRE. It will not 9176 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9177 */ 9178 if (ire != NULL) { 9179 if (ire->ire_flags & RTF_BLACKHOLE) { 9180 ire_refrele(ire); 9181 MULTIRT_DEBUG_UNTAG(first_mp); 9182 freemsg(first_mp); 9183 return; 9184 } 9185 ire_refrele(ire); 9186 } 9187 if (ip_source_routed(ipha, ipst)) { 9188 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9189 zoneid, ipst); 9190 return; 9191 } 9192 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9193 } 9194 9195 ip_opt_info_t zero_info; 9196 9197 /* 9198 * IPv4 - 9199 * ip_newroute_ipif is called by ip_wput_multicast and 9200 * ip_rput_forward_multicast whenever we need to send 9201 * out a packet to a destination address for which we do not have specific 9202 * routing information. It is used when the packet will be sent out 9203 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9204 * socket option is set or icmp error message wants to go out on a particular 9205 * interface for a unicast packet. 9206 * 9207 * In most cases, the destination address is resolved thanks to the ipif 9208 * intrinsic resolver. However, there are some cases where the call to 9209 * ip_newroute_ipif must take into account the potential presence of 9210 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9211 * that uses the interface. This is specified through flags, 9212 * which can be a combination of: 9213 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9214 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9215 * and flags. Additionally, the packet source address has to be set to 9216 * the specified address. The caller is thus expected to set this flag 9217 * if the packet has no specific source address yet. 9218 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9219 * flag, the resulting ire will inherit the flag. All unresolved routes 9220 * to the destination must be explored in the same call to 9221 * ip_newroute_ipif(). 9222 */ 9223 static void 9224 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9225 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9226 { 9227 areq_t *areq; 9228 ire_t *ire = NULL; 9229 mblk_t *res_mp; 9230 ipaddr_t *addrp; 9231 mblk_t *first_mp; 9232 ire_t *save_ire = NULL; 9233 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9234 ipif_t *src_ipif = NULL; 9235 ushort_t ire_marks = 0; 9236 ill_t *dst_ill = NULL; 9237 boolean_t mctl_present; 9238 ipsec_out_t *io; 9239 ipha_t *ipha; 9240 int ihandle = 0; 9241 mblk_t *saved_mp; 9242 ire_t *fire = NULL; 9243 mblk_t *copy_mp = NULL; 9244 boolean_t multirt_resolve_next; 9245 ipaddr_t ipha_dst; 9246 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9247 9248 /* 9249 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9250 * here for uniformity 9251 */ 9252 ipif_refhold(ipif); 9253 9254 /* 9255 * This loop is run only once in most cases. 9256 * We loop to resolve further routes only when the destination 9257 * can be reached through multiple RTF_MULTIRT-flagged ires. 9258 */ 9259 do { 9260 if (dst_ill != NULL) { 9261 ill_refrele(dst_ill); 9262 dst_ill = NULL; 9263 } 9264 if (src_ipif != NULL) { 9265 ipif_refrele(src_ipif); 9266 src_ipif = NULL; 9267 } 9268 multirt_resolve_next = B_FALSE; 9269 9270 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9271 ipif->ipif_ill->ill_name)); 9272 9273 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9274 if (mctl_present) 9275 io = (ipsec_out_t *)first_mp->b_rptr; 9276 9277 ipha = (ipha_t *)mp->b_rptr; 9278 9279 /* 9280 * Save the packet destination address, we may need it after 9281 * the packet has been consumed. 9282 */ 9283 ipha_dst = ipha->ipha_dst; 9284 9285 /* 9286 * If the interface is a pt-pt interface we look for an 9287 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9288 * local_address and the pt-pt destination address. Otherwise 9289 * we just match the local address. 9290 * NOTE: dst could be different than ipha->ipha_dst in case 9291 * of sending igmp multicast packets over a point-to-point 9292 * connection. 9293 * Thus we must be careful enough to check ipha_dst to be a 9294 * multicast address, otherwise it will take xmit_if path for 9295 * multicast packets resulting into kernel stack overflow by 9296 * repeated calls to ip_newroute_ipif from ire_send(). 9297 */ 9298 if (CLASSD(ipha_dst) && 9299 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9300 goto err_ret; 9301 } 9302 9303 /* 9304 * We check if an IRE_OFFSUBNET for the addr that goes through 9305 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9306 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9307 * propagate its flags to the new ire. 9308 */ 9309 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9310 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9311 ip2dbg(("ip_newroute_ipif: " 9312 "ipif_lookup_multi_ire(" 9313 "ipif %p, dst %08x) = fire %p\n", 9314 (void *)ipif, ntohl(dst), (void *)fire)); 9315 } 9316 9317 if (mctl_present && io->ipsec_out_attach_if) { 9318 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9319 io->ipsec_out_ill_index, B_FALSE, ipst); 9320 9321 /* Failure case frees things for us. */ 9322 if (attach_ill == NULL) { 9323 ipif_refrele(ipif); 9324 if (fire != NULL) 9325 ire_refrele(fire); 9326 return; 9327 } 9328 9329 /* 9330 * Check if we need an ire that will not be 9331 * looked up by anybody else i.e. HIDDEN. 9332 */ 9333 if (ill_is_probeonly(attach_ill)) { 9334 ire_marks = IRE_MARK_HIDDEN; 9335 } 9336 /* 9337 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9338 * case. 9339 */ 9340 dst_ill = ipif->ipif_ill; 9341 /* attach_ill has been refheld by ip_grab_attach_ill */ 9342 ASSERT(dst_ill == attach_ill); 9343 } else { 9344 /* 9345 * If this is set by IP_XMIT_IF, then make sure that 9346 * ipif is pointing to the same ill as the IP_XMIT_IF 9347 * specified ill. 9348 */ 9349 ASSERT((connp == NULL) || 9350 (connp->conn_xmit_if_ill == NULL) || 9351 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9352 /* 9353 * If the interface belongs to an interface group, 9354 * make sure the next possible interface in the group 9355 * is used. This encourages load spreading among 9356 * peers in an interface group. 9357 * Note: load spreading is disabled for RTF_MULTIRT 9358 * routes. 9359 */ 9360 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9361 (fire->ire_flags & RTF_MULTIRT)) { 9362 /* 9363 * Don't perform outbound load spreading 9364 * in the case of an RTF_MULTIRT issued route, 9365 * we actually typically want to replicate 9366 * outgoing packets through particular 9367 * interfaces. 9368 */ 9369 dst_ill = ipif->ipif_ill; 9370 ill_refhold(dst_ill); 9371 } else { 9372 dst_ill = ip_newroute_get_dst_ill( 9373 ipif->ipif_ill); 9374 } 9375 if (dst_ill == NULL) { 9376 if (ip_debug > 2) { 9377 pr_addr_dbg("ip_newroute_ipif: " 9378 "no dst ill for dst %s\n", 9379 AF_INET, &dst); 9380 } 9381 goto err_ret; 9382 } 9383 } 9384 9385 /* 9386 * Pick a source address preferring non-deprecated ones. 9387 * Unlike ip_newroute, we don't do any source address 9388 * selection here since for multicast it really does not help 9389 * in inbound load spreading as in the unicast case. 9390 */ 9391 if ((flags & RTF_SETSRC) && (fire != NULL) && 9392 (fire->ire_flags & RTF_SETSRC)) { 9393 /* 9394 * As requested by flags, an IRE_OFFSUBNET was looked up 9395 * on that interface. This ire has RTF_SETSRC flag, so 9396 * the source address of the packet must be changed. 9397 * Check that the ipif matching the requested source 9398 * address still exists. 9399 */ 9400 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9401 zoneid, NULL, NULL, NULL, NULL, ipst); 9402 } 9403 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9404 (connp != NULL && ipif->ipif_zoneid != zoneid && 9405 ipif->ipif_zoneid != ALL_ZONES)) && 9406 (src_ipif == NULL)) { 9407 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9408 if (src_ipif == NULL) { 9409 if (ip_debug > 2) { 9410 /* ip1dbg */ 9411 pr_addr_dbg("ip_newroute_ipif: " 9412 "no src for dst %s", 9413 AF_INET, &dst); 9414 } 9415 ip1dbg((" through interface %s\n", 9416 dst_ill->ill_name)); 9417 goto err_ret; 9418 } 9419 ipif_refrele(ipif); 9420 ipif = src_ipif; 9421 ipif_refhold(ipif); 9422 } 9423 if (src_ipif == NULL) { 9424 src_ipif = ipif; 9425 ipif_refhold(src_ipif); 9426 } 9427 9428 /* 9429 * Assign a source address while we have the conn. 9430 * We can't have ip_wput_ire pick a source address when the 9431 * packet returns from arp since conn_unspec_src might be set 9432 * and we loose the conn when going through arp. 9433 */ 9434 if (ipha->ipha_src == INADDR_ANY && 9435 (connp == NULL || !connp->conn_unspec_src)) { 9436 ipha->ipha_src = src_ipif->ipif_src_addr; 9437 } 9438 9439 /* 9440 * In case of IP_XMIT_IF, it is possible that the outgoing 9441 * interface does not have an interface ire. 9442 * Example: Thousands of mobileip PPP interfaces to mobile 9443 * nodes. We don't want to create interface ires because 9444 * packets from other mobile nodes must not take the route 9445 * via interface ires to the visiting mobile node without 9446 * going through the home agent, in absence of mobileip 9447 * route optimization. 9448 */ 9449 if (CLASSD(ipha_dst) && (connp == NULL || 9450 connp->conn_xmit_if_ill == NULL) && 9451 infop->ip_opt_ill_index == 0) { 9452 /* ipif_to_ire returns an held ire */ 9453 ire = ipif_to_ire(ipif); 9454 if (ire == NULL) 9455 goto err_ret; 9456 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9457 goto err_ret; 9458 /* 9459 * ihandle is needed when the ire is added to 9460 * cache table. 9461 */ 9462 save_ire = ire; 9463 ihandle = save_ire->ire_ihandle; 9464 9465 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9466 "flags %04x\n", 9467 (void *)ire, (void *)ipif, flags)); 9468 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9469 (fire->ire_flags & RTF_MULTIRT)) { 9470 /* 9471 * As requested by flags, an IRE_OFFSUBNET was 9472 * looked up on that interface. This ire has 9473 * RTF_MULTIRT flag, so the resolution loop will 9474 * be re-entered to resolve additional routes on 9475 * other interfaces. For that purpose, a copy of 9476 * the packet is performed at this point. 9477 */ 9478 fire->ire_last_used_time = lbolt; 9479 copy_mp = copymsg(first_mp); 9480 if (copy_mp) { 9481 MULTIRT_DEBUG_TAG(copy_mp); 9482 } 9483 } 9484 if ((flags & RTF_SETSRC) && (fire != NULL) && 9485 (fire->ire_flags & RTF_SETSRC)) { 9486 /* 9487 * As requested by flags, an IRE_OFFSUBET was 9488 * looked up on that interface. This ire has 9489 * RTF_SETSRC flag, so the source address of the 9490 * packet must be changed. 9491 */ 9492 ipha->ipha_src = fire->ire_src_addr; 9493 } 9494 } else { 9495 ASSERT((connp == NULL) || 9496 (connp->conn_xmit_if_ill != NULL) || 9497 (connp->conn_dontroute) || 9498 infop->ip_opt_ill_index != 0); 9499 /* 9500 * The only ways we can come here are: 9501 * 1) IP_XMIT_IF socket option is set 9502 * 2) ICMP error message generated from 9503 * ip_mrtun_forward() routine and it needs 9504 * to go through the specified ill. 9505 * 3) SO_DONTROUTE socket option is set 9506 * 4) IP_PKTINFO option is passed in as ancillary data. 9507 * In all cases, the new ire will not be added 9508 * into cache table. 9509 */ 9510 ire_marks |= IRE_MARK_NOADD; 9511 } 9512 9513 switch (ipif->ipif_net_type) { 9514 case IRE_IF_NORESOLVER: { 9515 /* We have what we need to build an IRE_CACHE. */ 9516 mblk_t *res_mp; 9517 9518 /* 9519 * Create a new res_mp with the 9520 * IP gateway address as destination address in the 9521 * DLPI hdr if the physical length is exactly 4 bytes. 9522 */ 9523 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9524 res_mp = ill_dlur_gen((uchar_t *)&dst, 9525 dst_ill->ill_phys_addr_length, 9526 dst_ill->ill_sap, 9527 dst_ill->ill_sap_length); 9528 } else if (dst_ill->ill_resolver_mp == NULL) { 9529 ip1dbg(("ip_newroute: dst_ill %p " 9530 "for IF_NORESOLV ire %p has " 9531 "no ill_resolver_mp\n", 9532 (void *)dst_ill, (void *)ire)); 9533 break; 9534 } else { 9535 /* use the value set in ip_ll_subnet_defaults */ 9536 res_mp = ill_dlur_gen(NULL, 9537 dst_ill->ill_phys_addr_length, 9538 dst_ill->ill_sap, 9539 dst_ill->ill_sap_length); 9540 } 9541 9542 if (res_mp == NULL) 9543 break; 9544 /* 9545 * The new ire inherits the IRE_OFFSUBNET flags 9546 * and source address, if this was requested. 9547 */ 9548 ire = ire_create( 9549 (uchar_t *)&dst, /* dest address */ 9550 (uchar_t *)&ip_g_all_ones, /* mask */ 9551 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9552 NULL, /* gateway address */ 9553 NULL, 9554 &ipif->ipif_mtu, 9555 NULL, /* Fast Path header */ 9556 dst_ill->ill_rq, /* recv-from queue */ 9557 dst_ill->ill_wq, /* send-to queue */ 9558 IRE_CACHE, 9559 res_mp, 9560 src_ipif, 9561 NULL, 9562 (save_ire != NULL ? save_ire->ire_mask : 0), 9563 (fire != NULL) ? /* Parent handle */ 9564 fire->ire_phandle : 0, 9565 ihandle, /* Interface handle */ 9566 (fire != NULL) ? 9567 (fire->ire_flags & 9568 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9569 (save_ire == NULL ? &ire_uinfo_null : 9570 &save_ire->ire_uinfo), 9571 NULL, 9572 NULL, 9573 ipst); 9574 9575 freeb(res_mp); 9576 9577 if (ire == NULL) { 9578 if (save_ire != NULL) 9579 ire_refrele(save_ire); 9580 break; 9581 } 9582 9583 ire->ire_marks |= ire_marks; 9584 9585 /* 9586 * If IRE_MARK_NOADD is set then we need to convert 9587 * the max_fragp to a useable value now. This is 9588 * normally done in ire_add_v[46]. We also need to 9589 * associate the ire with an nce (normally would be 9590 * done in ip_wput_nondata()). 9591 * 9592 * Note that IRE_MARK_NOADD packets created here 9593 * do not have a non-null ire_mp pointer. The null 9594 * value of ire_bucket indicates that they were 9595 * never added. 9596 */ 9597 if (ire->ire_marks & IRE_MARK_NOADD) { 9598 uint_t max_frag; 9599 9600 max_frag = *ire->ire_max_fragp; 9601 ire->ire_max_fragp = NULL; 9602 ire->ire_max_frag = max_frag; 9603 9604 if ((ire->ire_nce = ndp_lookup_v4( 9605 ire_to_ill(ire), 9606 (ire->ire_gateway_addr != INADDR_ANY ? 9607 &ire->ire_gateway_addr : &ire->ire_addr), 9608 B_FALSE)) == NULL) { 9609 if (save_ire != NULL) 9610 ire_refrele(save_ire); 9611 break; 9612 } 9613 ASSERT(ire->ire_nce->nce_state == 9614 ND_REACHABLE); 9615 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9616 } 9617 9618 /* Prevent save_ire from getting deleted */ 9619 if (save_ire != NULL) { 9620 IRB_REFHOLD(save_ire->ire_bucket); 9621 /* Has it been removed already ? */ 9622 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9623 IRB_REFRELE(save_ire->ire_bucket); 9624 ire_refrele(save_ire); 9625 break; 9626 } 9627 } 9628 9629 ire_add_then_send(q, ire, first_mp); 9630 9631 /* Assert that save_ire is not deleted yet. */ 9632 if (save_ire != NULL) { 9633 ASSERT(save_ire->ire_ptpn != NULL); 9634 IRB_REFRELE(save_ire->ire_bucket); 9635 ire_refrele(save_ire); 9636 save_ire = NULL; 9637 } 9638 if (fire != NULL) { 9639 ire_refrele(fire); 9640 fire = NULL; 9641 } 9642 9643 /* 9644 * the resolution loop is re-entered if this 9645 * was requested through flags and if we 9646 * actually are in a multirouting case. 9647 */ 9648 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9649 boolean_t need_resolve = 9650 ire_multirt_need_resolve(ipha_dst, 9651 MBLK_GETLABEL(copy_mp), ipst); 9652 if (!need_resolve) { 9653 MULTIRT_DEBUG_UNTAG(copy_mp); 9654 freemsg(copy_mp); 9655 copy_mp = NULL; 9656 } else { 9657 /* 9658 * ipif_lookup_group() calls 9659 * ire_lookup_multi() that uses 9660 * ire_ftable_lookup() to find 9661 * an IRE_INTERFACE for the group. 9662 * In the multirt case, 9663 * ire_lookup_multi() then invokes 9664 * ire_multirt_lookup() to find 9665 * the next resolvable ire. 9666 * As a result, we obtain an new 9667 * interface, derived from the 9668 * next ire. 9669 */ 9670 ipif_refrele(ipif); 9671 ipif = ipif_lookup_group(ipha_dst, 9672 zoneid, ipst); 9673 ip2dbg(("ip_newroute_ipif: " 9674 "multirt dst %08x, ipif %p\n", 9675 htonl(dst), (void *)ipif)); 9676 if (ipif != NULL) { 9677 mp = copy_mp; 9678 copy_mp = NULL; 9679 multirt_resolve_next = B_TRUE; 9680 continue; 9681 } else { 9682 freemsg(copy_mp); 9683 } 9684 } 9685 } 9686 if (ipif != NULL) 9687 ipif_refrele(ipif); 9688 ill_refrele(dst_ill); 9689 ipif_refrele(src_ipif); 9690 return; 9691 } 9692 case IRE_IF_RESOLVER: 9693 /* 9694 * We can't build an IRE_CACHE yet, but at least 9695 * we found a resolver that can help. 9696 */ 9697 res_mp = dst_ill->ill_resolver_mp; 9698 if (!OK_RESOLVER_MP(res_mp)) 9699 break; 9700 9701 /* 9702 * We obtain a partial IRE_CACHE which we will pass 9703 * along with the resolver query. When the response 9704 * comes back it will be there ready for us to add. 9705 * The new ire inherits the IRE_OFFSUBNET flags 9706 * and source address, if this was requested. 9707 * The ire_max_frag is atomically set under the 9708 * irebucket lock in ire_add_v[46]. Only in the 9709 * case of IRE_MARK_NOADD, we set it here itself. 9710 */ 9711 ire = ire_create_mp( 9712 (uchar_t *)&dst, /* dest address */ 9713 (uchar_t *)&ip_g_all_ones, /* mask */ 9714 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9715 NULL, /* gateway address */ 9716 NULL, /* no in_src_addr */ 9717 (ire_marks & IRE_MARK_NOADD) ? 9718 ipif->ipif_mtu : 0, /* max_frag */ 9719 NULL, /* Fast path header */ 9720 dst_ill->ill_rq, /* recv-from queue */ 9721 dst_ill->ill_wq, /* send-to queue */ 9722 IRE_CACHE, 9723 NULL, /* let ire_nce_init figure res_mp out */ 9724 src_ipif, 9725 NULL, 9726 (save_ire != NULL ? save_ire->ire_mask : 0), 9727 (fire != NULL) ? /* Parent handle */ 9728 fire->ire_phandle : 0, 9729 ihandle, /* Interface handle */ 9730 (fire != NULL) ? /* flags if any */ 9731 (fire->ire_flags & 9732 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9733 (save_ire == NULL ? &ire_uinfo_null : 9734 &save_ire->ire_uinfo), 9735 NULL, 9736 NULL, 9737 ipst); 9738 9739 if (save_ire != NULL) { 9740 ire_refrele(save_ire); 9741 save_ire = NULL; 9742 } 9743 if (ire == NULL) 9744 break; 9745 9746 ire->ire_marks |= ire_marks; 9747 /* 9748 * Construct message chain for the resolver of the 9749 * form: 9750 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9751 * 9752 * NOTE : ire will be added later when the response 9753 * comes back from ARP. If the response does not 9754 * come back, ARP frees the packet. For this reason, 9755 * we can't REFHOLD the bucket of save_ire to prevent 9756 * deletions. We may not be able to REFRELE the 9757 * bucket if the response never comes back. 9758 * Thus, before adding the ire, ire_add_v4 will make 9759 * sure that the interface route does not get deleted. 9760 * This is the only case unlike ip_newroute_v6, 9761 * ip_newroute_ipif_v6 where we can always prevent 9762 * deletions because ire_add_then_send is called after 9763 * creating the IRE. 9764 * If IRE_MARK_NOADD is set, then ire_add_then_send 9765 * does not add this IRE into the IRE CACHE. 9766 */ 9767 ASSERT(ire->ire_mp != NULL); 9768 ire->ire_mp->b_cont = first_mp; 9769 /* Have saved_mp handy, for cleanup if canput fails */ 9770 saved_mp = mp; 9771 mp = copyb(res_mp); 9772 if (mp == NULL) { 9773 /* Prepare for cleanup */ 9774 mp = saved_mp; /* pkt */ 9775 ire_delete(ire); /* ire_mp */ 9776 ire = NULL; 9777 if (copy_mp != NULL) { 9778 MULTIRT_DEBUG_UNTAG(copy_mp); 9779 freemsg(copy_mp); 9780 copy_mp = NULL; 9781 } 9782 break; 9783 } 9784 linkb(mp, ire->ire_mp); 9785 9786 /* 9787 * Fill in the source and dest addrs for the resolver. 9788 * NOTE: this depends on memory layouts imposed by 9789 * ill_init(). 9790 */ 9791 areq = (areq_t *)mp->b_rptr; 9792 addrp = (ipaddr_t *)((char *)areq + 9793 areq->areq_sender_addr_offset); 9794 *addrp = ire->ire_src_addr; 9795 addrp = (ipaddr_t *)((char *)areq + 9796 areq->areq_target_addr_offset); 9797 *addrp = dst; 9798 /* Up to the resolver. */ 9799 if (canputnext(dst_ill->ill_rq) && 9800 !(dst_ill->ill_arp_closing)) { 9801 putnext(dst_ill->ill_rq, mp); 9802 /* 9803 * The response will come back in ip_wput 9804 * with db_type IRE_DB_TYPE. 9805 */ 9806 } else { 9807 mp->b_cont = NULL; 9808 freeb(mp); /* areq */ 9809 ire_delete(ire); /* ire_mp */ 9810 saved_mp->b_next = NULL; 9811 saved_mp->b_prev = NULL; 9812 freemsg(first_mp); /* pkt */ 9813 ip2dbg(("ip_newroute_ipif: dropped\n")); 9814 } 9815 9816 if (fire != NULL) { 9817 ire_refrele(fire); 9818 fire = NULL; 9819 } 9820 9821 9822 /* 9823 * The resolution loop is re-entered if this was 9824 * requested through flags and we actually are 9825 * in a multirouting case. 9826 */ 9827 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9828 boolean_t need_resolve = 9829 ire_multirt_need_resolve(ipha_dst, 9830 MBLK_GETLABEL(copy_mp), ipst); 9831 if (!need_resolve) { 9832 MULTIRT_DEBUG_UNTAG(copy_mp); 9833 freemsg(copy_mp); 9834 copy_mp = NULL; 9835 } else { 9836 /* 9837 * ipif_lookup_group() calls 9838 * ire_lookup_multi() that uses 9839 * ire_ftable_lookup() to find 9840 * an IRE_INTERFACE for the group. 9841 * In the multirt case, 9842 * ire_lookup_multi() then invokes 9843 * ire_multirt_lookup() to find 9844 * the next resolvable ire. 9845 * As a result, we obtain an new 9846 * interface, derived from the 9847 * next ire. 9848 */ 9849 ipif_refrele(ipif); 9850 ipif = ipif_lookup_group(ipha_dst, 9851 zoneid, ipst); 9852 if (ipif != NULL) { 9853 mp = copy_mp; 9854 copy_mp = NULL; 9855 multirt_resolve_next = B_TRUE; 9856 continue; 9857 } else { 9858 freemsg(copy_mp); 9859 } 9860 } 9861 } 9862 if (ipif != NULL) 9863 ipif_refrele(ipif); 9864 ill_refrele(dst_ill); 9865 ipif_refrele(src_ipif); 9866 return; 9867 default: 9868 break; 9869 } 9870 } while (multirt_resolve_next); 9871 9872 err_ret: 9873 ip2dbg(("ip_newroute_ipif: dropped\n")); 9874 if (fire != NULL) 9875 ire_refrele(fire); 9876 ipif_refrele(ipif); 9877 /* Did this packet originate externally? */ 9878 if (dst_ill != NULL) 9879 ill_refrele(dst_ill); 9880 if (src_ipif != NULL) 9881 ipif_refrele(src_ipif); 9882 if (mp->b_prev || mp->b_next) { 9883 mp->b_next = NULL; 9884 mp->b_prev = NULL; 9885 } else { 9886 /* 9887 * Since ip_wput() isn't close to finished, we fill 9888 * in enough of the header for credible error reporting. 9889 */ 9890 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9891 /* Failed */ 9892 freemsg(first_mp); 9893 if (ire != NULL) 9894 ire_refrele(ire); 9895 return; 9896 } 9897 } 9898 /* 9899 * At this point we will have ire only if RTF_BLACKHOLE 9900 * or RTF_REJECT flags are set on the IRE. It will not 9901 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9902 */ 9903 if (ire != NULL) { 9904 if (ire->ire_flags & RTF_BLACKHOLE) { 9905 ire_refrele(ire); 9906 freemsg(first_mp); 9907 return; 9908 } 9909 ire_refrele(ire); 9910 } 9911 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9912 } 9913 9914 /* Name/Value Table Lookup Routine */ 9915 char * 9916 ip_nv_lookup(nv_t *nv, int value) 9917 { 9918 if (!nv) 9919 return (NULL); 9920 for (; nv->nv_name; nv++) { 9921 if (nv->nv_value == value) 9922 return (nv->nv_name); 9923 } 9924 return ("unknown"); 9925 } 9926 9927 /* 9928 * This is a module open, i.e. this is a control stream for access 9929 * to a DLPI device. We allocate an ill_t as the instance data in 9930 * this case. 9931 */ 9932 int 9933 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9934 { 9935 ill_t *ill; 9936 int err; 9937 zoneid_t zoneid; 9938 netstack_t *ns; 9939 ip_stack_t *ipst; 9940 9941 /* 9942 * Prevent unprivileged processes from pushing IP so that 9943 * they can't send raw IP. 9944 */ 9945 if (secpolicy_net_rawaccess(credp) != 0) 9946 return (EPERM); 9947 9948 ns = netstack_find_by_cred(credp); 9949 ASSERT(ns != NULL); 9950 ipst = ns->netstack_ip; 9951 ASSERT(ipst != NULL); 9952 9953 /* 9954 * For exclusive stacks we set the zoneid to zero 9955 * to make IP operate as if in the global zone. 9956 */ 9957 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9958 zoneid = GLOBAL_ZONEID; 9959 else 9960 zoneid = crgetzoneid(credp); 9961 9962 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9963 q->q_ptr = WR(q)->q_ptr = ill; 9964 ill->ill_ipst = ipst; 9965 ill->ill_zoneid = zoneid; 9966 9967 /* 9968 * ill_init initializes the ill fields and then sends down 9969 * down a DL_INFO_REQ after calling qprocson. 9970 */ 9971 err = ill_init(q, ill); 9972 if (err != 0) { 9973 mi_free(ill); 9974 netstack_rele(ipst->ips_netstack); 9975 q->q_ptr = NULL; 9976 WR(q)->q_ptr = NULL; 9977 return (err); 9978 } 9979 9980 /* ill_init initializes the ipsq marking this thread as writer */ 9981 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9982 /* Wait for the DL_INFO_ACK */ 9983 mutex_enter(&ill->ill_lock); 9984 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9985 /* 9986 * Return value of 0 indicates a pending signal. 9987 */ 9988 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9989 if (err == 0) { 9990 mutex_exit(&ill->ill_lock); 9991 (void) ip_close(q, 0); 9992 return (EINTR); 9993 } 9994 } 9995 mutex_exit(&ill->ill_lock); 9996 9997 /* 9998 * ip_rput_other could have set an error in ill_error on 9999 * receipt of M_ERROR. 10000 */ 10001 10002 err = ill->ill_error; 10003 if (err != 0) { 10004 (void) ip_close(q, 0); 10005 return (err); 10006 } 10007 10008 ill->ill_credp = credp; 10009 crhold(credp); 10010 10011 mutex_enter(&ipst->ips_ip_mi_lock); 10012 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 10013 credp); 10014 mutex_exit(&ipst->ips_ip_mi_lock); 10015 if (err) { 10016 (void) ip_close(q, 0); 10017 return (err); 10018 } 10019 return (0); 10020 } 10021 10022 /* IP open routine. */ 10023 int 10024 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10025 { 10026 conn_t *connp; 10027 major_t maj; 10028 zoneid_t zoneid; 10029 netstack_t *ns; 10030 ip_stack_t *ipst; 10031 10032 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10033 10034 /* Allow reopen. */ 10035 if (q->q_ptr != NULL) 10036 return (0); 10037 10038 if (sflag & MODOPEN) { 10039 /* This is a module open */ 10040 return (ip_modopen(q, devp, flag, sflag, credp)); 10041 } 10042 10043 ns = netstack_find_by_cred(credp); 10044 ASSERT(ns != NULL); 10045 ipst = ns->netstack_ip; 10046 ASSERT(ipst != NULL); 10047 10048 /* 10049 * For exclusive stacks we set the zoneid to zero 10050 * to make IP operate as if in the global zone. 10051 */ 10052 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10053 zoneid = GLOBAL_ZONEID; 10054 else 10055 zoneid = crgetzoneid(credp); 10056 10057 /* 10058 * We are opening as a device. This is an IP client stream, and we 10059 * allocate an conn_t as the instance data. 10060 */ 10061 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10062 10063 /* 10064 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10065 * done by netstack_find_by_cred() 10066 */ 10067 netstack_rele(ipst->ips_netstack); 10068 10069 connp->conn_zoneid = zoneid; 10070 10071 connp->conn_upq = q; 10072 q->q_ptr = WR(q)->q_ptr = connp; 10073 10074 if (flag & SO_SOCKSTR) 10075 connp->conn_flags |= IPCL_SOCKET; 10076 10077 /* Minor tells us which /dev entry was opened */ 10078 if (geteminor(*devp) == IPV6_MINOR) { 10079 connp->conn_flags |= IPCL_ISV6; 10080 connp->conn_af_isv6 = B_TRUE; 10081 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10082 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10083 } else { 10084 connp->conn_af_isv6 = B_FALSE; 10085 connp->conn_pkt_isv6 = B_FALSE; 10086 } 10087 10088 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10089 /* CONN_DEC_REF takes care of netstack_rele() */ 10090 q->q_ptr = WR(q)->q_ptr = NULL; 10091 CONN_DEC_REF(connp); 10092 return (EBUSY); 10093 } 10094 10095 maj = getemajor(*devp); 10096 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10097 10098 /* 10099 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10100 */ 10101 connp->conn_cred = credp; 10102 crhold(connp->conn_cred); 10103 10104 /* 10105 * If the caller has the process-wide flag set, then default to MAC 10106 * exempt mode. This allows read-down to unlabeled hosts. 10107 */ 10108 if (getpflags(NET_MAC_AWARE, credp) != 0) 10109 connp->conn_mac_exempt = B_TRUE; 10110 10111 /* 10112 * This should only happen for ndd, netstat, raw socket or other SCTP 10113 * administrative ops. In these cases, we just need a normal conn_t 10114 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10115 * an error will be returned. 10116 */ 10117 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10118 connp->conn_rq = q; 10119 connp->conn_wq = WR(q); 10120 } else { 10121 connp->conn_ulp = IPPROTO_SCTP; 10122 connp->conn_rq = connp->conn_wq = NULL; 10123 } 10124 /* Non-zero default values */ 10125 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10126 10127 /* 10128 * Make the conn globally visible to walkers 10129 */ 10130 mutex_enter(&connp->conn_lock); 10131 connp->conn_state_flags &= ~CONN_INCIPIENT; 10132 mutex_exit(&connp->conn_lock); 10133 ASSERT(connp->conn_ref == 1); 10134 10135 qprocson(q); 10136 10137 return (0); 10138 } 10139 10140 /* 10141 * Change q_qinfo based on the value of isv6. 10142 * This can not called on an ill queue. 10143 * Note that there is no race since either q_qinfo works for conn queues - it 10144 * is just an optimization to enter the best wput routine directly. 10145 */ 10146 void 10147 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10148 { 10149 ASSERT(q->q_flag & QREADR); 10150 ASSERT(WR(q)->q_next == NULL); 10151 ASSERT(q->q_ptr != NULL); 10152 10153 if (minor == IPV6_MINOR) { 10154 if (bump_mib) { 10155 BUMP_MIB(&ipst->ips_ip6_mib, 10156 ipIfStatsOutSwitchIPVersion); 10157 } 10158 q->q_qinfo = &rinit_ipv6; 10159 WR(q)->q_qinfo = &winit_ipv6; 10160 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10161 } else { 10162 if (bump_mib) { 10163 BUMP_MIB(&ipst->ips_ip_mib, 10164 ipIfStatsOutSwitchIPVersion); 10165 } 10166 q->q_qinfo = &iprinit; 10167 WR(q)->q_qinfo = &ipwinit; 10168 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10169 } 10170 10171 } 10172 10173 /* 10174 * See if IPsec needs loading because of the options in mp. 10175 */ 10176 static boolean_t 10177 ipsec_opt_present(mblk_t *mp) 10178 { 10179 uint8_t *optcp, *next_optcp, *opt_endcp; 10180 struct opthdr *opt; 10181 struct T_opthdr *topt; 10182 int opthdr_len; 10183 t_uscalar_t optname, optlevel; 10184 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10185 ipsec_req_t *ipsr; 10186 10187 /* 10188 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10189 * return TRUE. 10190 */ 10191 10192 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10193 opt_endcp = optcp + tor->OPT_length; 10194 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10195 opthdr_len = sizeof (struct T_opthdr); 10196 } else { /* O_OPTMGMT_REQ */ 10197 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10198 opthdr_len = sizeof (struct opthdr); 10199 } 10200 for (; optcp < opt_endcp; optcp = next_optcp) { 10201 if (optcp + opthdr_len > opt_endcp) 10202 return (B_FALSE); /* Not enough option header. */ 10203 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10204 topt = (struct T_opthdr *)optcp; 10205 optlevel = topt->level; 10206 optname = topt->name; 10207 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10208 } else { 10209 opt = (struct opthdr *)optcp; 10210 optlevel = opt->level; 10211 optname = opt->name; 10212 next_optcp = optcp + opthdr_len + 10213 _TPI_ALIGN_OPT(opt->len); 10214 } 10215 if ((next_optcp < optcp) || /* wraparound pointer space */ 10216 ((next_optcp >= opt_endcp) && /* last option bad len */ 10217 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10218 return (B_FALSE); /* bad option buffer */ 10219 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10220 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10221 /* 10222 * Check to see if it's an all-bypass or all-zeroes 10223 * IPsec request. Don't bother loading IPsec if 10224 * the socket doesn't want to use it. (A good example 10225 * is a bypass request.) 10226 * 10227 * Basically, if any of the non-NEVER bits are set, 10228 * load IPsec. 10229 */ 10230 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10231 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10232 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10233 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10234 != 0) 10235 return (B_TRUE); 10236 } 10237 } 10238 return (B_FALSE); 10239 } 10240 10241 /* 10242 * If conn is is waiting for ipsec to finish loading, kick it. 10243 */ 10244 /* ARGSUSED */ 10245 static void 10246 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10247 { 10248 t_scalar_t optreq_prim; 10249 mblk_t *mp; 10250 cred_t *cr; 10251 int err = 0; 10252 10253 /* 10254 * This function is called, after ipsec loading is complete. 10255 * Since IP checks exclusively and atomically (i.e it prevents 10256 * ipsec load from completing until ip_optcom_req completes) 10257 * whether ipsec load is complete, there cannot be a race with IP 10258 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10259 */ 10260 mutex_enter(&connp->conn_lock); 10261 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10262 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10263 mp = connp->conn_ipsec_opt_mp; 10264 connp->conn_ipsec_opt_mp = NULL; 10265 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10266 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10267 mutex_exit(&connp->conn_lock); 10268 10269 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10270 10271 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10272 if (optreq_prim == T_OPTMGMT_REQ) { 10273 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10274 &ip_opt_obj); 10275 } else { 10276 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10277 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10278 &ip_opt_obj); 10279 } 10280 if (err != EINPROGRESS) 10281 CONN_OPER_PENDING_DONE(connp); 10282 return; 10283 } 10284 mutex_exit(&connp->conn_lock); 10285 } 10286 10287 /* 10288 * Called from the ipsec_loader thread, outside any perimeter, to tell 10289 * ip qenable any of the queues waiting for the ipsec loader to 10290 * complete. 10291 */ 10292 void 10293 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10294 { 10295 netstack_t *ns = ipss->ipsec_netstack; 10296 10297 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10298 } 10299 10300 /* 10301 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10302 * determines the grp on which it has to become exclusive, queues the mp 10303 * and sq draining restarts the optmgmt 10304 */ 10305 static boolean_t 10306 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10307 { 10308 conn_t *connp = Q_TO_CONN(q); 10309 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10310 10311 /* 10312 * Take IPsec requests and treat them special. 10313 */ 10314 if (ipsec_opt_present(mp)) { 10315 /* First check if IPsec is loaded. */ 10316 mutex_enter(&ipss->ipsec_loader_lock); 10317 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10318 mutex_exit(&ipss->ipsec_loader_lock); 10319 return (B_FALSE); 10320 } 10321 mutex_enter(&connp->conn_lock); 10322 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10323 10324 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10325 connp->conn_ipsec_opt_mp = mp; 10326 mutex_exit(&connp->conn_lock); 10327 mutex_exit(&ipss->ipsec_loader_lock); 10328 10329 ipsec_loader_loadnow(ipss); 10330 return (B_TRUE); 10331 } 10332 return (B_FALSE); 10333 } 10334 10335 /* 10336 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10337 * all of them are copied to the conn_t. If the req is "zero", the policy is 10338 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10339 * fields. 10340 * We keep only the latest setting of the policy and thus policy setting 10341 * is not incremental/cumulative. 10342 * 10343 * Requests to set policies with multiple alternative actions will 10344 * go through a different API. 10345 */ 10346 int 10347 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10348 { 10349 uint_t ah_req = 0; 10350 uint_t esp_req = 0; 10351 uint_t se_req = 0; 10352 ipsec_selkey_t sel; 10353 ipsec_act_t *actp = NULL; 10354 uint_t nact; 10355 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10356 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10357 ipsec_policy_root_t *pr; 10358 ipsec_policy_head_t *ph; 10359 int fam; 10360 boolean_t is_pol_reset; 10361 int error = 0; 10362 netstack_t *ns = connp->conn_netstack; 10363 ip_stack_t *ipst = ns->netstack_ip; 10364 ipsec_stack_t *ipss = ns->netstack_ipsec; 10365 10366 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10367 10368 /* 10369 * The IP_SEC_OPT option does not allow variable length parameters, 10370 * hence a request cannot be NULL. 10371 */ 10372 if (req == NULL) 10373 return (EINVAL); 10374 10375 ah_req = req->ipsr_ah_req; 10376 esp_req = req->ipsr_esp_req; 10377 se_req = req->ipsr_self_encap_req; 10378 10379 /* 10380 * Are we dealing with a request to reset the policy (i.e. 10381 * zero requests). 10382 */ 10383 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10384 (esp_req & REQ_MASK) == 0 && 10385 (se_req & REQ_MASK) == 0); 10386 10387 if (!is_pol_reset) { 10388 /* 10389 * If we couldn't load IPsec, fail with "protocol 10390 * not supported". 10391 * IPsec may not have been loaded for a request with zero 10392 * policies, so we don't fail in this case. 10393 */ 10394 mutex_enter(&ipss->ipsec_loader_lock); 10395 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10396 mutex_exit(&ipss->ipsec_loader_lock); 10397 return (EPROTONOSUPPORT); 10398 } 10399 mutex_exit(&ipss->ipsec_loader_lock); 10400 10401 /* 10402 * Test for valid requests. Invalid algorithms 10403 * need to be tested by IPSEC code because new 10404 * algorithms can be added dynamically. 10405 */ 10406 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10407 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10408 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10409 return (EINVAL); 10410 } 10411 10412 /* 10413 * Only privileged users can issue these 10414 * requests. 10415 */ 10416 if (((ah_req & IPSEC_PREF_NEVER) || 10417 (esp_req & IPSEC_PREF_NEVER) || 10418 (se_req & IPSEC_PREF_NEVER)) && 10419 secpolicy_ip_config(cr, B_FALSE) != 0) { 10420 return (EPERM); 10421 } 10422 10423 /* 10424 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10425 * are mutually exclusive. 10426 */ 10427 if (((ah_req & REQ_MASK) == REQ_MASK) || 10428 ((esp_req & REQ_MASK) == REQ_MASK) || 10429 ((se_req & REQ_MASK) == REQ_MASK)) { 10430 /* Both of them are set */ 10431 return (EINVAL); 10432 } 10433 } 10434 10435 mutex_enter(&connp->conn_lock); 10436 10437 /* 10438 * If we have already cached policies in ip_bind_connected*(), don't 10439 * let them change now. We cache policies for connections 10440 * whose src,dst [addr, port] is known. 10441 */ 10442 if (connp->conn_policy_cached) { 10443 mutex_exit(&connp->conn_lock); 10444 return (EINVAL); 10445 } 10446 10447 /* 10448 * We have a zero policies, reset the connection policy if already 10449 * set. This will cause the connection to inherit the 10450 * global policy, if any. 10451 */ 10452 if (is_pol_reset) { 10453 if (connp->conn_policy != NULL) { 10454 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10455 connp->conn_policy = NULL; 10456 } 10457 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10458 connp->conn_in_enforce_policy = B_FALSE; 10459 connp->conn_out_enforce_policy = B_FALSE; 10460 mutex_exit(&connp->conn_lock); 10461 return (0); 10462 } 10463 10464 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10465 ipst->ips_netstack); 10466 if (ph == NULL) 10467 goto enomem; 10468 10469 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10470 if (actp == NULL) 10471 goto enomem; 10472 10473 /* 10474 * Always allocate IPv4 policy entries, since they can also 10475 * apply to ipv6 sockets being used in ipv4-compat mode. 10476 */ 10477 bzero(&sel, sizeof (sel)); 10478 sel.ipsl_valid = IPSL_IPV4; 10479 10480 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10481 ipst->ips_netstack); 10482 if (pin4 == NULL) 10483 goto enomem; 10484 10485 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10486 ipst->ips_netstack); 10487 if (pout4 == NULL) 10488 goto enomem; 10489 10490 if (connp->conn_pkt_isv6) { 10491 /* 10492 * We're looking at a v6 socket, also allocate the 10493 * v6-specific entries... 10494 */ 10495 sel.ipsl_valid = IPSL_IPV6; 10496 pin6 = ipsec_policy_create(&sel, actp, nact, 10497 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10498 if (pin6 == NULL) 10499 goto enomem; 10500 10501 pout6 = ipsec_policy_create(&sel, actp, nact, 10502 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10503 if (pout6 == NULL) 10504 goto enomem; 10505 10506 /* 10507 * .. and file them away in the right place. 10508 */ 10509 fam = IPSEC_AF_V6; 10510 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10511 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10512 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10513 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10514 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10515 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10516 } 10517 10518 ipsec_actvec_free(actp, nact); 10519 10520 /* 10521 * File the v4 policies. 10522 */ 10523 fam = IPSEC_AF_V4; 10524 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10525 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10526 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10527 10528 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10529 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10530 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10531 10532 /* 10533 * If the requests need security, set enforce_policy. 10534 * If the requests are IPSEC_PREF_NEVER, one should 10535 * still set conn_out_enforce_policy so that an ipsec_out 10536 * gets attached in ip_wput. This is needed so that 10537 * for connections that we don't cache policy in ip_bind, 10538 * if global policy matches in ip_wput_attach_policy, we 10539 * don't wrongly inherit global policy. Similarly, we need 10540 * to set conn_in_enforce_policy also so that we don't verify 10541 * policy wrongly. 10542 */ 10543 if ((ah_req & REQ_MASK) != 0 || 10544 (esp_req & REQ_MASK) != 0 || 10545 (se_req & REQ_MASK) != 0) { 10546 connp->conn_in_enforce_policy = B_TRUE; 10547 connp->conn_out_enforce_policy = B_TRUE; 10548 connp->conn_flags |= IPCL_CHECK_POLICY; 10549 } 10550 10551 mutex_exit(&connp->conn_lock); 10552 return (error); 10553 #undef REQ_MASK 10554 10555 /* 10556 * Common memory-allocation-failure exit path. 10557 */ 10558 enomem: 10559 mutex_exit(&connp->conn_lock); 10560 if (actp != NULL) 10561 ipsec_actvec_free(actp, nact); 10562 if (pin4 != NULL) 10563 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10564 if (pout4 != NULL) 10565 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10566 if (pin6 != NULL) 10567 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10568 if (pout6 != NULL) 10569 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10570 return (ENOMEM); 10571 } 10572 10573 /* 10574 * Only for options that pass in an IP addr. Currently only V4 options 10575 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10576 * So this function assumes level is IPPROTO_IP 10577 */ 10578 int 10579 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10580 mblk_t *first_mp) 10581 { 10582 ipif_t *ipif = NULL; 10583 int error; 10584 ill_t *ill; 10585 int zoneid; 10586 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10587 10588 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10589 10590 if (addr != INADDR_ANY || checkonly) { 10591 ASSERT(connp != NULL); 10592 zoneid = IPCL_ZONEID(connp); 10593 if (option == IP_NEXTHOP) { 10594 ipif = ipif_lookup_onlink_addr(addr, 10595 connp->conn_zoneid, ipst); 10596 } else { 10597 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10598 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10599 &error, ipst); 10600 } 10601 if (ipif == NULL) { 10602 if (error == EINPROGRESS) 10603 return (error); 10604 else if ((option == IP_MULTICAST_IF) || 10605 (option == IP_NEXTHOP)) 10606 return (EHOSTUNREACH); 10607 else 10608 return (EINVAL); 10609 } else if (checkonly) { 10610 if (option == IP_MULTICAST_IF) { 10611 ill = ipif->ipif_ill; 10612 /* not supported by the virtual network iface */ 10613 if (IS_VNI(ill)) { 10614 ipif_refrele(ipif); 10615 return (EINVAL); 10616 } 10617 } 10618 ipif_refrele(ipif); 10619 return (0); 10620 } 10621 ill = ipif->ipif_ill; 10622 mutex_enter(&connp->conn_lock); 10623 mutex_enter(&ill->ill_lock); 10624 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10625 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10626 mutex_exit(&ill->ill_lock); 10627 mutex_exit(&connp->conn_lock); 10628 ipif_refrele(ipif); 10629 return (option == IP_MULTICAST_IF ? 10630 EHOSTUNREACH : EINVAL); 10631 } 10632 } else { 10633 mutex_enter(&connp->conn_lock); 10634 } 10635 10636 /* None of the options below are supported on the VNI */ 10637 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10638 mutex_exit(&ill->ill_lock); 10639 mutex_exit(&connp->conn_lock); 10640 ipif_refrele(ipif); 10641 return (EINVAL); 10642 } 10643 10644 switch (option) { 10645 case IP_DONTFAILOVER_IF: 10646 /* 10647 * This option is used by in.mpathd to ensure 10648 * that IPMP probe packets only go out on the 10649 * test interfaces. in.mpathd sets this option 10650 * on the non-failover interfaces. 10651 * For backward compatibility, this option 10652 * implicitly sets IP_MULTICAST_IF, as used 10653 * be done in bind(), so that ip_wput gets 10654 * this ipif to send mcast packets. 10655 */ 10656 if (ipif != NULL) { 10657 ASSERT(addr != INADDR_ANY); 10658 connp->conn_nofailover_ill = ipif->ipif_ill; 10659 connp->conn_multicast_ipif = ipif; 10660 } else { 10661 ASSERT(addr == INADDR_ANY); 10662 connp->conn_nofailover_ill = NULL; 10663 connp->conn_multicast_ipif = NULL; 10664 } 10665 break; 10666 10667 case IP_MULTICAST_IF: 10668 connp->conn_multicast_ipif = ipif; 10669 break; 10670 case IP_NEXTHOP: 10671 connp->conn_nexthop_v4 = addr; 10672 connp->conn_nexthop_set = B_TRUE; 10673 break; 10674 } 10675 10676 if (ipif != NULL) { 10677 mutex_exit(&ill->ill_lock); 10678 mutex_exit(&connp->conn_lock); 10679 ipif_refrele(ipif); 10680 return (0); 10681 } 10682 mutex_exit(&connp->conn_lock); 10683 /* We succeded in cleared the option */ 10684 return (0); 10685 } 10686 10687 /* 10688 * For options that pass in an ifindex specifying the ill. V6 options always 10689 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10690 */ 10691 int 10692 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10693 int level, int option, mblk_t *first_mp) 10694 { 10695 ill_t *ill = NULL; 10696 int error = 0; 10697 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10698 10699 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10700 if (ifindex != 0) { 10701 ASSERT(connp != NULL); 10702 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10703 first_mp, ip_restart_optmgmt, &error, ipst); 10704 if (ill != NULL) { 10705 if (checkonly) { 10706 /* not supported by the virtual network iface */ 10707 if (IS_VNI(ill)) { 10708 ill_refrele(ill); 10709 return (EINVAL); 10710 } 10711 ill_refrele(ill); 10712 return (0); 10713 } 10714 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10715 0, NULL)) { 10716 ill_refrele(ill); 10717 ill = NULL; 10718 mutex_enter(&connp->conn_lock); 10719 goto setit; 10720 } 10721 mutex_enter(&connp->conn_lock); 10722 mutex_enter(&ill->ill_lock); 10723 if (ill->ill_state_flags & ILL_CONDEMNED) { 10724 mutex_exit(&ill->ill_lock); 10725 mutex_exit(&connp->conn_lock); 10726 ill_refrele(ill); 10727 ill = NULL; 10728 mutex_enter(&connp->conn_lock); 10729 } 10730 goto setit; 10731 } else if (error == EINPROGRESS) { 10732 return (error); 10733 } else { 10734 error = 0; 10735 } 10736 } 10737 mutex_enter(&connp->conn_lock); 10738 setit: 10739 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10740 10741 /* 10742 * The options below assume that the ILL (if any) transmits and/or 10743 * receives traffic. Neither of which is true for the virtual network 10744 * interface, so fail setting these on a VNI. 10745 */ 10746 if (IS_VNI(ill)) { 10747 ASSERT(ill != NULL); 10748 mutex_exit(&ill->ill_lock); 10749 mutex_exit(&connp->conn_lock); 10750 ill_refrele(ill); 10751 return (EINVAL); 10752 } 10753 10754 if (level == IPPROTO_IP) { 10755 switch (option) { 10756 case IP_BOUND_IF: 10757 connp->conn_incoming_ill = ill; 10758 connp->conn_outgoing_ill = ill; 10759 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10760 0 : ifindex; 10761 break; 10762 10763 case IP_XMIT_IF: 10764 /* 10765 * Similar to IP_BOUND_IF, but this only 10766 * determines the outgoing interface for 10767 * unicast packets. Also no IRE_CACHE entry 10768 * is added for the destination of the 10769 * outgoing packets. This feature is needed 10770 * for mobile IP. 10771 */ 10772 connp->conn_xmit_if_ill = ill; 10773 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10774 0 : ifindex; 10775 break; 10776 10777 case IP_MULTICAST_IF: 10778 /* 10779 * This option is an internal special. The socket 10780 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10781 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10782 * specifies an ifindex and we try first on V6 ill's. 10783 * If we don't find one, we they try using on v4 ill's 10784 * intenally and we come here. 10785 */ 10786 if (!checkonly && ill != NULL) { 10787 ipif_t *ipif; 10788 ipif = ill->ill_ipif; 10789 10790 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10791 mutex_exit(&ill->ill_lock); 10792 mutex_exit(&connp->conn_lock); 10793 ill_refrele(ill); 10794 ill = NULL; 10795 mutex_enter(&connp->conn_lock); 10796 } else { 10797 connp->conn_multicast_ipif = ipif; 10798 } 10799 } 10800 break; 10801 } 10802 } else { 10803 switch (option) { 10804 case IPV6_BOUND_IF: 10805 connp->conn_incoming_ill = ill; 10806 connp->conn_outgoing_ill = ill; 10807 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10808 0 : ifindex; 10809 break; 10810 10811 case IPV6_BOUND_PIF: 10812 /* 10813 * Limit all transmit to this ill. 10814 * Unlike IPV6_BOUND_IF, using this option 10815 * prevents load spreading and failover from 10816 * happening when the interface is part of the 10817 * group. That's why we don't need to remember 10818 * the ifindex in orig_bound_ifindex as in 10819 * IPV6_BOUND_IF. 10820 */ 10821 connp->conn_outgoing_pill = ill; 10822 break; 10823 10824 case IPV6_DONTFAILOVER_IF: 10825 /* 10826 * This option is used by in.mpathd to ensure 10827 * that IPMP probe packets only go out on the 10828 * test interfaces. in.mpathd sets this option 10829 * on the non-failover interfaces. 10830 */ 10831 connp->conn_nofailover_ill = ill; 10832 /* 10833 * For backward compatibility, this option 10834 * implicitly sets ip_multicast_ill as used in 10835 * IP_MULTICAST_IF so that ip_wput gets 10836 * this ipif to send mcast packets. 10837 */ 10838 connp->conn_multicast_ill = ill; 10839 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10840 0 : ifindex; 10841 break; 10842 10843 case IPV6_MULTICAST_IF: 10844 /* 10845 * Set conn_multicast_ill to be the IPv6 ill. 10846 * Set conn_multicast_ipif to be an IPv4 ipif 10847 * for ifindex to make IPv4 mapped addresses 10848 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10849 * Even if no IPv6 ill exists for the ifindex 10850 * we need to check for an IPv4 ifindex in order 10851 * for this to work with mapped addresses. In that 10852 * case only set conn_multicast_ipif. 10853 */ 10854 if (!checkonly) { 10855 if (ifindex == 0) { 10856 connp->conn_multicast_ill = NULL; 10857 connp->conn_orig_multicast_ifindex = 0; 10858 connp->conn_multicast_ipif = NULL; 10859 } else if (ill != NULL) { 10860 connp->conn_multicast_ill = ill; 10861 connp->conn_orig_multicast_ifindex = 10862 ifindex; 10863 } 10864 } 10865 break; 10866 } 10867 } 10868 10869 if (ill != NULL) { 10870 mutex_exit(&ill->ill_lock); 10871 mutex_exit(&connp->conn_lock); 10872 ill_refrele(ill); 10873 return (0); 10874 } 10875 mutex_exit(&connp->conn_lock); 10876 /* 10877 * We succeeded in clearing the option (ifindex == 0) or failed to 10878 * locate the ill and could not set the option (ifindex != 0) 10879 */ 10880 return (ifindex == 0 ? 0 : EINVAL); 10881 } 10882 10883 /* This routine sets socket options. */ 10884 /* ARGSUSED */ 10885 int 10886 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10887 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10888 void *dummy, cred_t *cr, mblk_t *first_mp) 10889 { 10890 int *i1 = (int *)invalp; 10891 conn_t *connp = Q_TO_CONN(q); 10892 int error = 0; 10893 boolean_t checkonly; 10894 ire_t *ire; 10895 boolean_t found; 10896 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10897 10898 switch (optset_context) { 10899 10900 case SETFN_OPTCOM_CHECKONLY: 10901 checkonly = B_TRUE; 10902 /* 10903 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10904 * inlen != 0 implies value supplied and 10905 * we have to "pretend" to set it. 10906 * inlen == 0 implies that there is no 10907 * value part in T_CHECK request and just validation 10908 * done elsewhere should be enough, we just return here. 10909 */ 10910 if (inlen == 0) { 10911 *outlenp = 0; 10912 return (0); 10913 } 10914 break; 10915 case SETFN_OPTCOM_NEGOTIATE: 10916 case SETFN_UD_NEGOTIATE: 10917 case SETFN_CONN_NEGOTIATE: 10918 checkonly = B_FALSE; 10919 break; 10920 default: 10921 /* 10922 * We should never get here 10923 */ 10924 *outlenp = 0; 10925 return (EINVAL); 10926 } 10927 10928 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10929 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10930 10931 /* 10932 * For fixed length options, no sanity check 10933 * of passed in length is done. It is assumed *_optcom_req() 10934 * routines do the right thing. 10935 */ 10936 10937 switch (level) { 10938 case SOL_SOCKET: 10939 /* 10940 * conn_lock protects the bitfields, and is used to 10941 * set the fields atomically. 10942 */ 10943 switch (name) { 10944 case SO_BROADCAST: 10945 if (!checkonly) { 10946 /* TODO: use value someplace? */ 10947 mutex_enter(&connp->conn_lock); 10948 connp->conn_broadcast = *i1 ? 1 : 0; 10949 mutex_exit(&connp->conn_lock); 10950 } 10951 break; /* goto sizeof (int) option return */ 10952 case SO_USELOOPBACK: 10953 if (!checkonly) { 10954 /* TODO: use value someplace? */ 10955 mutex_enter(&connp->conn_lock); 10956 connp->conn_loopback = *i1 ? 1 : 0; 10957 mutex_exit(&connp->conn_lock); 10958 } 10959 break; /* goto sizeof (int) option return */ 10960 case SO_DONTROUTE: 10961 if (!checkonly) { 10962 mutex_enter(&connp->conn_lock); 10963 connp->conn_dontroute = *i1 ? 1 : 0; 10964 mutex_exit(&connp->conn_lock); 10965 } 10966 break; /* goto sizeof (int) option return */ 10967 case SO_REUSEADDR: 10968 if (!checkonly) { 10969 mutex_enter(&connp->conn_lock); 10970 connp->conn_reuseaddr = *i1 ? 1 : 0; 10971 mutex_exit(&connp->conn_lock); 10972 } 10973 break; /* goto sizeof (int) option return */ 10974 case SO_PROTOTYPE: 10975 if (!checkonly) { 10976 mutex_enter(&connp->conn_lock); 10977 connp->conn_proto = *i1; 10978 mutex_exit(&connp->conn_lock); 10979 } 10980 break; /* goto sizeof (int) option return */ 10981 case SO_ALLZONES: 10982 if (!checkonly) { 10983 mutex_enter(&connp->conn_lock); 10984 if (IPCL_IS_BOUND(connp)) { 10985 mutex_exit(&connp->conn_lock); 10986 return (EINVAL); 10987 } 10988 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10989 mutex_exit(&connp->conn_lock); 10990 } 10991 break; /* goto sizeof (int) option return */ 10992 case SO_ANON_MLP: 10993 if (!checkonly) { 10994 mutex_enter(&connp->conn_lock); 10995 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10996 mutex_exit(&connp->conn_lock); 10997 } 10998 break; /* goto sizeof (int) option return */ 10999 case SO_MAC_EXEMPT: 11000 if (secpolicy_net_mac_aware(cr) != 0 || 11001 IPCL_IS_BOUND(connp)) 11002 return (EACCES); 11003 if (!checkonly) { 11004 mutex_enter(&connp->conn_lock); 11005 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 11006 mutex_exit(&connp->conn_lock); 11007 } 11008 break; /* goto sizeof (int) option return */ 11009 default: 11010 /* 11011 * "soft" error (negative) 11012 * option not handled at this level 11013 * Note: Do not modify *outlenp 11014 */ 11015 return (-EINVAL); 11016 } 11017 break; 11018 case IPPROTO_IP: 11019 switch (name) { 11020 case IP_NEXTHOP: 11021 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11022 return (EPERM); 11023 /* FALLTHRU */ 11024 case IP_MULTICAST_IF: 11025 case IP_DONTFAILOVER_IF: { 11026 ipaddr_t addr = *i1; 11027 11028 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11029 first_mp); 11030 if (error != 0) 11031 return (error); 11032 break; /* goto sizeof (int) option return */ 11033 } 11034 11035 case IP_MULTICAST_TTL: 11036 /* Recorded in transport above IP */ 11037 *outvalp = *invalp; 11038 *outlenp = sizeof (uchar_t); 11039 return (0); 11040 case IP_MULTICAST_LOOP: 11041 if (!checkonly) { 11042 mutex_enter(&connp->conn_lock); 11043 connp->conn_multicast_loop = *invalp ? 1 : 0; 11044 mutex_exit(&connp->conn_lock); 11045 } 11046 *outvalp = *invalp; 11047 *outlenp = sizeof (uchar_t); 11048 return (0); 11049 case IP_ADD_MEMBERSHIP: 11050 case MCAST_JOIN_GROUP: 11051 case IP_DROP_MEMBERSHIP: 11052 case MCAST_LEAVE_GROUP: { 11053 struct ip_mreq *mreqp; 11054 struct group_req *greqp; 11055 ire_t *ire; 11056 boolean_t done = B_FALSE; 11057 ipaddr_t group, ifaddr; 11058 struct sockaddr_in *sin; 11059 uint32_t *ifindexp; 11060 boolean_t mcast_opt = B_TRUE; 11061 mcast_record_t fmode; 11062 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11063 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11064 11065 switch (name) { 11066 case IP_ADD_MEMBERSHIP: 11067 mcast_opt = B_FALSE; 11068 /* FALLTHRU */ 11069 case MCAST_JOIN_GROUP: 11070 fmode = MODE_IS_EXCLUDE; 11071 optfn = ip_opt_add_group; 11072 break; 11073 11074 case IP_DROP_MEMBERSHIP: 11075 mcast_opt = B_FALSE; 11076 /* FALLTHRU */ 11077 case MCAST_LEAVE_GROUP: 11078 fmode = MODE_IS_INCLUDE; 11079 optfn = ip_opt_delete_group; 11080 break; 11081 } 11082 11083 if (mcast_opt) { 11084 greqp = (struct group_req *)i1; 11085 sin = (struct sockaddr_in *)&greqp->gr_group; 11086 if (sin->sin_family != AF_INET) { 11087 *outlenp = 0; 11088 return (ENOPROTOOPT); 11089 } 11090 group = (ipaddr_t)sin->sin_addr.s_addr; 11091 ifaddr = INADDR_ANY; 11092 ifindexp = &greqp->gr_interface; 11093 } else { 11094 mreqp = (struct ip_mreq *)i1; 11095 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11096 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11097 ifindexp = NULL; 11098 } 11099 11100 /* 11101 * In the multirouting case, we need to replicate 11102 * the request on all interfaces that will take part 11103 * in replication. We do so because multirouting is 11104 * reflective, thus we will probably receive multi- 11105 * casts on those interfaces. 11106 * The ip_multirt_apply_membership() succeeds if the 11107 * operation succeeds on at least one interface. 11108 */ 11109 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11110 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11111 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11112 if (ire != NULL) { 11113 if (ire->ire_flags & RTF_MULTIRT) { 11114 error = ip_multirt_apply_membership( 11115 optfn, ire, connp, checkonly, group, 11116 fmode, INADDR_ANY, first_mp); 11117 done = B_TRUE; 11118 } 11119 ire_refrele(ire); 11120 } 11121 if (!done) { 11122 error = optfn(connp, checkonly, group, ifaddr, 11123 ifindexp, fmode, INADDR_ANY, first_mp); 11124 } 11125 if (error) { 11126 /* 11127 * EINPROGRESS is a soft error, needs retry 11128 * so don't make *outlenp zero. 11129 */ 11130 if (error != EINPROGRESS) 11131 *outlenp = 0; 11132 return (error); 11133 } 11134 /* OK return - copy input buffer into output buffer */ 11135 if (invalp != outvalp) { 11136 /* don't trust bcopy for identical src/dst */ 11137 bcopy(invalp, outvalp, inlen); 11138 } 11139 *outlenp = inlen; 11140 return (0); 11141 } 11142 case IP_BLOCK_SOURCE: 11143 case IP_UNBLOCK_SOURCE: 11144 case IP_ADD_SOURCE_MEMBERSHIP: 11145 case IP_DROP_SOURCE_MEMBERSHIP: 11146 case MCAST_BLOCK_SOURCE: 11147 case MCAST_UNBLOCK_SOURCE: 11148 case MCAST_JOIN_SOURCE_GROUP: 11149 case MCAST_LEAVE_SOURCE_GROUP: { 11150 struct ip_mreq_source *imreqp; 11151 struct group_source_req *gsreqp; 11152 in_addr_t grp, src, ifaddr = INADDR_ANY; 11153 uint32_t ifindex = 0; 11154 mcast_record_t fmode; 11155 struct sockaddr_in *sin; 11156 ire_t *ire; 11157 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11158 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11159 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11160 11161 switch (name) { 11162 case IP_BLOCK_SOURCE: 11163 mcast_opt = B_FALSE; 11164 /* FALLTHRU */ 11165 case MCAST_BLOCK_SOURCE: 11166 fmode = MODE_IS_EXCLUDE; 11167 optfn = ip_opt_add_group; 11168 break; 11169 11170 case IP_UNBLOCK_SOURCE: 11171 mcast_opt = B_FALSE; 11172 /* FALLTHRU */ 11173 case MCAST_UNBLOCK_SOURCE: 11174 fmode = MODE_IS_EXCLUDE; 11175 optfn = ip_opt_delete_group; 11176 break; 11177 11178 case IP_ADD_SOURCE_MEMBERSHIP: 11179 mcast_opt = B_FALSE; 11180 /* FALLTHRU */ 11181 case MCAST_JOIN_SOURCE_GROUP: 11182 fmode = MODE_IS_INCLUDE; 11183 optfn = ip_opt_add_group; 11184 break; 11185 11186 case IP_DROP_SOURCE_MEMBERSHIP: 11187 mcast_opt = B_FALSE; 11188 /* FALLTHRU */ 11189 case MCAST_LEAVE_SOURCE_GROUP: 11190 fmode = MODE_IS_INCLUDE; 11191 optfn = ip_opt_delete_group; 11192 break; 11193 } 11194 11195 if (mcast_opt) { 11196 gsreqp = (struct group_source_req *)i1; 11197 if (gsreqp->gsr_group.ss_family != AF_INET) { 11198 *outlenp = 0; 11199 return (ENOPROTOOPT); 11200 } 11201 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11202 grp = (ipaddr_t)sin->sin_addr.s_addr; 11203 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11204 src = (ipaddr_t)sin->sin_addr.s_addr; 11205 ifindex = gsreqp->gsr_interface; 11206 } else { 11207 imreqp = (struct ip_mreq_source *)i1; 11208 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11209 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11210 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11211 } 11212 11213 /* 11214 * In the multirouting case, we need to replicate 11215 * the request as noted in the mcast cases above. 11216 */ 11217 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11218 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11219 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11220 if (ire != NULL) { 11221 if (ire->ire_flags & RTF_MULTIRT) { 11222 error = ip_multirt_apply_membership( 11223 optfn, ire, connp, checkonly, grp, 11224 fmode, src, first_mp); 11225 done = B_TRUE; 11226 } 11227 ire_refrele(ire); 11228 } 11229 if (!done) { 11230 error = optfn(connp, checkonly, grp, ifaddr, 11231 &ifindex, fmode, src, first_mp); 11232 } 11233 if (error != 0) { 11234 /* 11235 * EINPROGRESS is a soft error, needs retry 11236 * so don't make *outlenp zero. 11237 */ 11238 if (error != EINPROGRESS) 11239 *outlenp = 0; 11240 return (error); 11241 } 11242 /* OK return - copy input buffer into output buffer */ 11243 if (invalp != outvalp) { 11244 bcopy(invalp, outvalp, inlen); 11245 } 11246 *outlenp = inlen; 11247 return (0); 11248 } 11249 case IP_SEC_OPT: 11250 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11251 if (error != 0) { 11252 *outlenp = 0; 11253 return (error); 11254 } 11255 break; 11256 case IP_HDRINCL: 11257 case IP_OPTIONS: 11258 case T_IP_OPTIONS: 11259 case IP_TOS: 11260 case T_IP_TOS: 11261 case IP_TTL: 11262 case IP_RECVDSTADDR: 11263 case IP_RECVOPTS: 11264 /* OK return - copy input buffer into output buffer */ 11265 if (invalp != outvalp) { 11266 /* don't trust bcopy for identical src/dst */ 11267 bcopy(invalp, outvalp, inlen); 11268 } 11269 *outlenp = inlen; 11270 return (0); 11271 case IP_RECVIF: 11272 /* Retrieve the inbound interface index */ 11273 if (!checkonly) { 11274 mutex_enter(&connp->conn_lock); 11275 connp->conn_recvif = *i1 ? 1 : 0; 11276 mutex_exit(&connp->conn_lock); 11277 } 11278 break; /* goto sizeof (int) option return */ 11279 case IP_RECVPKTINFO: 11280 if (!checkonly) { 11281 mutex_enter(&connp->conn_lock); 11282 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11283 mutex_exit(&connp->conn_lock); 11284 } 11285 break; /* goto sizeof (int) option return */ 11286 case IP_RECVSLLA: 11287 /* Retrieve the source link layer address */ 11288 if (!checkonly) { 11289 mutex_enter(&connp->conn_lock); 11290 connp->conn_recvslla = *i1 ? 1 : 0; 11291 mutex_exit(&connp->conn_lock); 11292 } 11293 break; /* goto sizeof (int) option return */ 11294 case MRT_INIT: 11295 case MRT_DONE: 11296 case MRT_ADD_VIF: 11297 case MRT_DEL_VIF: 11298 case MRT_ADD_MFC: 11299 case MRT_DEL_MFC: 11300 case MRT_ASSERT: 11301 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11302 *outlenp = 0; 11303 return (error); 11304 } 11305 error = ip_mrouter_set((int)name, q, checkonly, 11306 (uchar_t *)invalp, inlen, first_mp); 11307 if (error) { 11308 *outlenp = 0; 11309 return (error); 11310 } 11311 /* OK return - copy input buffer into output buffer */ 11312 if (invalp != outvalp) { 11313 /* don't trust bcopy for identical src/dst */ 11314 bcopy(invalp, outvalp, inlen); 11315 } 11316 *outlenp = inlen; 11317 return (0); 11318 case IP_BOUND_IF: 11319 case IP_XMIT_IF: 11320 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11321 level, name, first_mp); 11322 if (error != 0) 11323 return (error); 11324 break; /* goto sizeof (int) option return */ 11325 11326 case IP_UNSPEC_SRC: 11327 /* Allow sending with a zero source address */ 11328 if (!checkonly) { 11329 mutex_enter(&connp->conn_lock); 11330 connp->conn_unspec_src = *i1 ? 1 : 0; 11331 mutex_exit(&connp->conn_lock); 11332 } 11333 break; /* goto sizeof (int) option return */ 11334 default: 11335 /* 11336 * "soft" error (negative) 11337 * option not handled at this level 11338 * Note: Do not modify *outlenp 11339 */ 11340 return (-EINVAL); 11341 } 11342 break; 11343 case IPPROTO_IPV6: 11344 switch (name) { 11345 case IPV6_BOUND_IF: 11346 case IPV6_BOUND_PIF: 11347 case IPV6_DONTFAILOVER_IF: 11348 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11349 level, name, first_mp); 11350 if (error != 0) 11351 return (error); 11352 break; /* goto sizeof (int) option return */ 11353 11354 case IPV6_MULTICAST_IF: 11355 /* 11356 * The only possible errors are EINPROGRESS and 11357 * EINVAL. EINPROGRESS will be restarted and is not 11358 * a hard error. We call this option on both V4 and V6 11359 * If both return EINVAL, then this call returns 11360 * EINVAL. If at least one of them succeeds we 11361 * return success. 11362 */ 11363 found = B_FALSE; 11364 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11365 level, name, first_mp); 11366 if (error == EINPROGRESS) 11367 return (error); 11368 if (error == 0) 11369 found = B_TRUE; 11370 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11371 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11372 if (error == 0) 11373 found = B_TRUE; 11374 if (!found) 11375 return (error); 11376 break; /* goto sizeof (int) option return */ 11377 11378 case IPV6_MULTICAST_HOPS: 11379 /* Recorded in transport above IP */ 11380 break; /* goto sizeof (int) option return */ 11381 case IPV6_MULTICAST_LOOP: 11382 if (!checkonly) { 11383 mutex_enter(&connp->conn_lock); 11384 connp->conn_multicast_loop = *i1; 11385 mutex_exit(&connp->conn_lock); 11386 } 11387 break; /* goto sizeof (int) option return */ 11388 case IPV6_JOIN_GROUP: 11389 case MCAST_JOIN_GROUP: 11390 case IPV6_LEAVE_GROUP: 11391 case MCAST_LEAVE_GROUP: { 11392 struct ipv6_mreq *ip_mreqp; 11393 struct group_req *greqp; 11394 ire_t *ire; 11395 boolean_t done = B_FALSE; 11396 in6_addr_t groupv6; 11397 uint32_t ifindex; 11398 boolean_t mcast_opt = B_TRUE; 11399 mcast_record_t fmode; 11400 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11401 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11402 11403 switch (name) { 11404 case IPV6_JOIN_GROUP: 11405 mcast_opt = B_FALSE; 11406 /* FALLTHRU */ 11407 case MCAST_JOIN_GROUP: 11408 fmode = MODE_IS_EXCLUDE; 11409 optfn = ip_opt_add_group_v6; 11410 break; 11411 11412 case IPV6_LEAVE_GROUP: 11413 mcast_opt = B_FALSE; 11414 /* FALLTHRU */ 11415 case MCAST_LEAVE_GROUP: 11416 fmode = MODE_IS_INCLUDE; 11417 optfn = ip_opt_delete_group_v6; 11418 break; 11419 } 11420 11421 if (mcast_opt) { 11422 struct sockaddr_in *sin; 11423 struct sockaddr_in6 *sin6; 11424 greqp = (struct group_req *)i1; 11425 if (greqp->gr_group.ss_family == AF_INET) { 11426 sin = (struct sockaddr_in *) 11427 &(greqp->gr_group); 11428 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11429 &groupv6); 11430 } else { 11431 sin6 = (struct sockaddr_in6 *) 11432 &(greqp->gr_group); 11433 groupv6 = sin6->sin6_addr; 11434 } 11435 ifindex = greqp->gr_interface; 11436 } else { 11437 ip_mreqp = (struct ipv6_mreq *)i1; 11438 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11439 ifindex = ip_mreqp->ipv6mr_interface; 11440 } 11441 /* 11442 * In the multirouting case, we need to replicate 11443 * the request on all interfaces that will take part 11444 * in replication. We do so because multirouting is 11445 * reflective, thus we will probably receive multi- 11446 * casts on those interfaces. 11447 * The ip_multirt_apply_membership_v6() succeeds if 11448 * the operation succeeds on at least one interface. 11449 */ 11450 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11451 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11452 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11453 if (ire != NULL) { 11454 if (ire->ire_flags & RTF_MULTIRT) { 11455 error = ip_multirt_apply_membership_v6( 11456 optfn, ire, connp, checkonly, 11457 &groupv6, fmode, &ipv6_all_zeros, 11458 first_mp); 11459 done = B_TRUE; 11460 } 11461 ire_refrele(ire); 11462 } 11463 if (!done) { 11464 error = optfn(connp, checkonly, &groupv6, 11465 ifindex, fmode, &ipv6_all_zeros, first_mp); 11466 } 11467 if (error) { 11468 /* 11469 * EINPROGRESS is a soft error, needs retry 11470 * so don't make *outlenp zero. 11471 */ 11472 if (error != EINPROGRESS) 11473 *outlenp = 0; 11474 return (error); 11475 } 11476 /* OK return - copy input buffer into output buffer */ 11477 if (invalp != outvalp) { 11478 /* don't trust bcopy for identical src/dst */ 11479 bcopy(invalp, outvalp, inlen); 11480 } 11481 *outlenp = inlen; 11482 return (0); 11483 } 11484 case MCAST_BLOCK_SOURCE: 11485 case MCAST_UNBLOCK_SOURCE: 11486 case MCAST_JOIN_SOURCE_GROUP: 11487 case MCAST_LEAVE_SOURCE_GROUP: { 11488 struct group_source_req *gsreqp; 11489 in6_addr_t v6grp, v6src; 11490 uint32_t ifindex; 11491 mcast_record_t fmode; 11492 ire_t *ire; 11493 boolean_t done = B_FALSE; 11494 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11495 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11496 11497 switch (name) { 11498 case MCAST_BLOCK_SOURCE: 11499 fmode = MODE_IS_EXCLUDE; 11500 optfn = ip_opt_add_group_v6; 11501 break; 11502 case MCAST_UNBLOCK_SOURCE: 11503 fmode = MODE_IS_EXCLUDE; 11504 optfn = ip_opt_delete_group_v6; 11505 break; 11506 case MCAST_JOIN_SOURCE_GROUP: 11507 fmode = MODE_IS_INCLUDE; 11508 optfn = ip_opt_add_group_v6; 11509 break; 11510 case MCAST_LEAVE_SOURCE_GROUP: 11511 fmode = MODE_IS_INCLUDE; 11512 optfn = ip_opt_delete_group_v6; 11513 break; 11514 } 11515 11516 gsreqp = (struct group_source_req *)i1; 11517 ifindex = gsreqp->gsr_interface; 11518 if (gsreqp->gsr_group.ss_family == AF_INET) { 11519 struct sockaddr_in *s; 11520 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11521 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11522 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11523 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11524 } else { 11525 struct sockaddr_in6 *s6; 11526 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11527 v6grp = s6->sin6_addr; 11528 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11529 v6src = s6->sin6_addr; 11530 } 11531 11532 /* 11533 * In the multirouting case, we need to replicate 11534 * the request as noted in the mcast cases above. 11535 */ 11536 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11537 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11538 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11539 if (ire != NULL) { 11540 if (ire->ire_flags & RTF_MULTIRT) { 11541 error = ip_multirt_apply_membership_v6( 11542 optfn, ire, connp, checkonly, 11543 &v6grp, fmode, &v6src, first_mp); 11544 done = B_TRUE; 11545 } 11546 ire_refrele(ire); 11547 } 11548 if (!done) { 11549 error = optfn(connp, checkonly, &v6grp, 11550 ifindex, fmode, &v6src, first_mp); 11551 } 11552 if (error != 0) { 11553 /* 11554 * EINPROGRESS is a soft error, needs retry 11555 * so don't make *outlenp zero. 11556 */ 11557 if (error != EINPROGRESS) 11558 *outlenp = 0; 11559 return (error); 11560 } 11561 /* OK return - copy input buffer into output buffer */ 11562 if (invalp != outvalp) { 11563 bcopy(invalp, outvalp, inlen); 11564 } 11565 *outlenp = inlen; 11566 return (0); 11567 } 11568 case IPV6_UNICAST_HOPS: 11569 /* Recorded in transport above IP */ 11570 break; /* goto sizeof (int) option return */ 11571 case IPV6_UNSPEC_SRC: 11572 /* Allow sending with a zero source address */ 11573 if (!checkonly) { 11574 mutex_enter(&connp->conn_lock); 11575 connp->conn_unspec_src = *i1 ? 1 : 0; 11576 mutex_exit(&connp->conn_lock); 11577 } 11578 break; /* goto sizeof (int) option return */ 11579 case IPV6_RECVPKTINFO: 11580 if (!checkonly) { 11581 mutex_enter(&connp->conn_lock); 11582 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11583 mutex_exit(&connp->conn_lock); 11584 } 11585 break; /* goto sizeof (int) option return */ 11586 case IPV6_RECVTCLASS: 11587 if (!checkonly) { 11588 if (*i1 < 0 || *i1 > 1) { 11589 return (EINVAL); 11590 } 11591 mutex_enter(&connp->conn_lock); 11592 connp->conn_ipv6_recvtclass = *i1; 11593 mutex_exit(&connp->conn_lock); 11594 } 11595 break; 11596 case IPV6_RECVPATHMTU: 11597 if (!checkonly) { 11598 if (*i1 < 0 || *i1 > 1) { 11599 return (EINVAL); 11600 } 11601 mutex_enter(&connp->conn_lock); 11602 connp->conn_ipv6_recvpathmtu = *i1; 11603 mutex_exit(&connp->conn_lock); 11604 } 11605 break; 11606 case IPV6_RECVHOPLIMIT: 11607 if (!checkonly) { 11608 mutex_enter(&connp->conn_lock); 11609 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11610 mutex_exit(&connp->conn_lock); 11611 } 11612 break; /* goto sizeof (int) option return */ 11613 case IPV6_RECVHOPOPTS: 11614 if (!checkonly) { 11615 mutex_enter(&connp->conn_lock); 11616 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11617 mutex_exit(&connp->conn_lock); 11618 } 11619 break; /* goto sizeof (int) option return */ 11620 case IPV6_RECVDSTOPTS: 11621 if (!checkonly) { 11622 mutex_enter(&connp->conn_lock); 11623 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11624 mutex_exit(&connp->conn_lock); 11625 } 11626 break; /* goto sizeof (int) option return */ 11627 case IPV6_RECVRTHDR: 11628 if (!checkonly) { 11629 mutex_enter(&connp->conn_lock); 11630 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11631 mutex_exit(&connp->conn_lock); 11632 } 11633 break; /* goto sizeof (int) option return */ 11634 case IPV6_RECVRTHDRDSTOPTS: 11635 if (!checkonly) { 11636 mutex_enter(&connp->conn_lock); 11637 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11638 mutex_exit(&connp->conn_lock); 11639 } 11640 break; /* goto sizeof (int) option return */ 11641 case IPV6_PKTINFO: 11642 if (inlen == 0) 11643 return (-EINVAL); /* clearing option */ 11644 error = ip6_set_pktinfo(cr, connp, 11645 (struct in6_pktinfo *)invalp, first_mp); 11646 if (error != 0) 11647 *outlenp = 0; 11648 else 11649 *outlenp = inlen; 11650 return (error); 11651 case IPV6_NEXTHOP: { 11652 struct sockaddr_in6 *sin6; 11653 11654 /* Verify that the nexthop is reachable */ 11655 if (inlen == 0) 11656 return (-EINVAL); /* clearing option */ 11657 11658 sin6 = (struct sockaddr_in6 *)invalp; 11659 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11660 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11661 NULL, MATCH_IRE_DEFAULT, ipst); 11662 11663 if (ire == NULL) { 11664 *outlenp = 0; 11665 return (EHOSTUNREACH); 11666 } 11667 ire_refrele(ire); 11668 return (-EINVAL); 11669 } 11670 case IPV6_SEC_OPT: 11671 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11672 if (error != 0) { 11673 *outlenp = 0; 11674 return (error); 11675 } 11676 break; 11677 case IPV6_SRC_PREFERENCES: { 11678 /* 11679 * This is implemented strictly in the ip module 11680 * (here and in tcp_opt_*() to accomodate tcp 11681 * sockets). Modules above ip pass this option 11682 * down here since ip is the only one that needs to 11683 * be aware of source address preferences. 11684 * 11685 * This socket option only affects connected 11686 * sockets that haven't already bound to a specific 11687 * IPv6 address. In other words, sockets that 11688 * don't call bind() with an address other than the 11689 * unspecified address and that call connect(). 11690 * ip_bind_connected_v6() passes these preferences 11691 * to the ipif_select_source_v6() function. 11692 */ 11693 if (inlen != sizeof (uint32_t)) 11694 return (EINVAL); 11695 error = ip6_set_src_preferences(connp, 11696 *(uint32_t *)invalp); 11697 if (error != 0) { 11698 *outlenp = 0; 11699 return (error); 11700 } else { 11701 *outlenp = sizeof (uint32_t); 11702 } 11703 break; 11704 } 11705 case IPV6_V6ONLY: 11706 if (*i1 < 0 || *i1 > 1) { 11707 return (EINVAL); 11708 } 11709 mutex_enter(&connp->conn_lock); 11710 connp->conn_ipv6_v6only = *i1; 11711 mutex_exit(&connp->conn_lock); 11712 break; 11713 default: 11714 return (-EINVAL); 11715 } 11716 break; 11717 default: 11718 /* 11719 * "soft" error (negative) 11720 * option not handled at this level 11721 * Note: Do not modify *outlenp 11722 */ 11723 return (-EINVAL); 11724 } 11725 /* 11726 * Common case of return from an option that is sizeof (int) 11727 */ 11728 *(int *)outvalp = *i1; 11729 *outlenp = sizeof (int); 11730 return (0); 11731 } 11732 11733 /* 11734 * This routine gets default values of certain options whose default 11735 * values are maintained by protocol specific code 11736 */ 11737 /* ARGSUSED */ 11738 int 11739 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11740 { 11741 int *i1 = (int *)ptr; 11742 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11743 11744 switch (level) { 11745 case IPPROTO_IP: 11746 switch (name) { 11747 case IP_MULTICAST_TTL: 11748 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11749 return (sizeof (uchar_t)); 11750 case IP_MULTICAST_LOOP: 11751 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11752 return (sizeof (uchar_t)); 11753 default: 11754 return (-1); 11755 } 11756 case IPPROTO_IPV6: 11757 switch (name) { 11758 case IPV6_UNICAST_HOPS: 11759 *i1 = ipst->ips_ipv6_def_hops; 11760 return (sizeof (int)); 11761 case IPV6_MULTICAST_HOPS: 11762 *i1 = IP_DEFAULT_MULTICAST_TTL; 11763 return (sizeof (int)); 11764 case IPV6_MULTICAST_LOOP: 11765 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11766 return (sizeof (int)); 11767 case IPV6_V6ONLY: 11768 *i1 = 1; 11769 return (sizeof (int)); 11770 default: 11771 return (-1); 11772 } 11773 default: 11774 return (-1); 11775 } 11776 /* NOTREACHED */ 11777 } 11778 11779 /* 11780 * Given a destination address and a pointer to where to put the information 11781 * this routine fills in the mtuinfo. 11782 */ 11783 int 11784 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11785 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11786 { 11787 ire_t *ire; 11788 ip_stack_t *ipst = ns->netstack_ip; 11789 11790 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11791 return (-1); 11792 11793 bzero(mtuinfo, sizeof (*mtuinfo)); 11794 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11795 mtuinfo->ip6m_addr.sin6_port = port; 11796 mtuinfo->ip6m_addr.sin6_addr = *in6; 11797 11798 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11799 if (ire != NULL) { 11800 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11801 ire_refrele(ire); 11802 } else { 11803 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11804 } 11805 return (sizeof (struct ip6_mtuinfo)); 11806 } 11807 11808 /* 11809 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11810 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11811 * isn't. This doesn't matter as the error checking is done properly for the 11812 * other MRT options coming in through ip_opt_set. 11813 */ 11814 int 11815 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11816 { 11817 conn_t *connp = Q_TO_CONN(q); 11818 ipsec_req_t *req = (ipsec_req_t *)ptr; 11819 11820 switch (level) { 11821 case IPPROTO_IP: 11822 switch (name) { 11823 case MRT_VERSION: 11824 case MRT_ASSERT: 11825 (void) ip_mrouter_get(name, q, ptr); 11826 return (sizeof (int)); 11827 case IP_SEC_OPT: 11828 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11829 case IP_NEXTHOP: 11830 if (connp->conn_nexthop_set) { 11831 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11832 return (sizeof (ipaddr_t)); 11833 } else 11834 return (0); 11835 case IP_RECVPKTINFO: 11836 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11837 return (sizeof (int)); 11838 default: 11839 break; 11840 } 11841 break; 11842 case IPPROTO_IPV6: 11843 switch (name) { 11844 case IPV6_SEC_OPT: 11845 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11846 case IPV6_SRC_PREFERENCES: { 11847 return (ip6_get_src_preferences(connp, 11848 (uint32_t *)ptr)); 11849 } 11850 case IPV6_V6ONLY: 11851 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11852 return (sizeof (int)); 11853 case IPV6_PATHMTU: 11854 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11855 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11856 default: 11857 break; 11858 } 11859 break; 11860 default: 11861 break; 11862 } 11863 return (-1); 11864 } 11865 11866 /* Named Dispatch routine to get a current value out of our parameter table. */ 11867 /* ARGSUSED */ 11868 static int 11869 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11870 { 11871 ipparam_t *ippa = (ipparam_t *)cp; 11872 11873 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11874 return (0); 11875 } 11876 11877 /* ARGSUSED */ 11878 static int 11879 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11880 { 11881 11882 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11883 return (0); 11884 } 11885 11886 /* 11887 * Set ip{,6}_forwarding values. This means walking through all of the 11888 * ill's and toggling their forwarding values. 11889 */ 11890 /* ARGSUSED */ 11891 static int 11892 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11893 { 11894 long new_value; 11895 int *forwarding_value = (int *)cp; 11896 ill_t *ill; 11897 boolean_t isv6; 11898 ill_walk_context_t ctx; 11899 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11900 11901 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11902 11903 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11904 new_value < 0 || new_value > 1) { 11905 return (EINVAL); 11906 } 11907 11908 *forwarding_value = new_value; 11909 11910 /* 11911 * Regardless of the current value of ip_forwarding, set all per-ill 11912 * values of ip_forwarding to the value being set. 11913 * 11914 * Bring all the ill's up to date with the new global value. 11915 */ 11916 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11917 11918 if (isv6) 11919 ill = ILL_START_WALK_V6(&ctx, ipst); 11920 else 11921 ill = ILL_START_WALK_V4(&ctx, ipst); 11922 11923 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11924 (void) ill_forward_set(ill, new_value != 0); 11925 11926 rw_exit(&ipst->ips_ill_g_lock); 11927 return (0); 11928 } 11929 11930 /* 11931 * Walk through the param array specified registering each element with the 11932 * Named Dispatch handler. This is called only during init. So it is ok 11933 * not to acquire any locks 11934 */ 11935 static boolean_t 11936 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11937 ipndp_t *ipnd, size_t ipnd_cnt) 11938 { 11939 for (; ippa_cnt-- > 0; ippa++) { 11940 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11941 if (!nd_load(ndp, ippa->ip_param_name, 11942 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11943 nd_free(ndp); 11944 return (B_FALSE); 11945 } 11946 } 11947 } 11948 11949 for (; ipnd_cnt-- > 0; ipnd++) { 11950 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11951 if (!nd_load(ndp, ipnd->ip_ndp_name, 11952 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11953 ipnd->ip_ndp_data)) { 11954 nd_free(ndp); 11955 return (B_FALSE); 11956 } 11957 } 11958 } 11959 11960 return (B_TRUE); 11961 } 11962 11963 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11964 /* ARGSUSED */ 11965 static int 11966 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11967 { 11968 long new_value; 11969 ipparam_t *ippa = (ipparam_t *)cp; 11970 11971 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11972 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11973 return (EINVAL); 11974 } 11975 ippa->ip_param_value = new_value; 11976 return (0); 11977 } 11978 11979 /* 11980 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11981 * When an ipf is passed here for the first time, if 11982 * we already have in-order fragments on the queue, we convert from the fast- 11983 * path reassembly scheme to the hard-case scheme. From then on, additional 11984 * fragments are reassembled here. We keep track of the start and end offsets 11985 * of each piece, and the number of holes in the chain. When the hole count 11986 * goes to zero, we are done! 11987 * 11988 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11989 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11990 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11991 * after the call to ip_reassemble(). 11992 */ 11993 int 11994 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11995 size_t msg_len) 11996 { 11997 uint_t end; 11998 mblk_t *next_mp; 11999 mblk_t *mp1; 12000 uint_t offset; 12001 boolean_t incr_dups = B_TRUE; 12002 boolean_t offset_zero_seen = B_FALSE; 12003 boolean_t pkt_boundary_checked = B_FALSE; 12004 12005 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 12006 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 12007 12008 /* Add in byte count */ 12009 ipf->ipf_count += msg_len; 12010 if (ipf->ipf_end) { 12011 /* 12012 * We were part way through in-order reassembly, but now there 12013 * is a hole. We walk through messages already queued, and 12014 * mark them for hard case reassembly. We know that up till 12015 * now they were in order starting from offset zero. 12016 */ 12017 offset = 0; 12018 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12019 IP_REASS_SET_START(mp1, offset); 12020 if (offset == 0) { 12021 ASSERT(ipf->ipf_nf_hdr_len != 0); 12022 offset = -ipf->ipf_nf_hdr_len; 12023 } 12024 offset += mp1->b_wptr - mp1->b_rptr; 12025 IP_REASS_SET_END(mp1, offset); 12026 } 12027 /* One hole at the end. */ 12028 ipf->ipf_hole_cnt = 1; 12029 /* Brand it as a hard case, forever. */ 12030 ipf->ipf_end = 0; 12031 } 12032 /* Walk through all the new pieces. */ 12033 do { 12034 end = start + (mp->b_wptr - mp->b_rptr); 12035 /* 12036 * If start is 0, decrease 'end' only for the first mblk of 12037 * the fragment. Otherwise 'end' can get wrong value in the 12038 * second pass of the loop if first mblk is exactly the 12039 * size of ipf_nf_hdr_len. 12040 */ 12041 if (start == 0 && !offset_zero_seen) { 12042 /* First segment */ 12043 ASSERT(ipf->ipf_nf_hdr_len != 0); 12044 end -= ipf->ipf_nf_hdr_len; 12045 offset_zero_seen = B_TRUE; 12046 } 12047 next_mp = mp->b_cont; 12048 /* 12049 * We are checking to see if there is any interesing data 12050 * to process. If there isn't and the mblk isn't the 12051 * one which carries the unfragmentable header then we 12052 * drop it. It's possible to have just the unfragmentable 12053 * header come through without any data. That needs to be 12054 * saved. 12055 * 12056 * If the assert at the top of this function holds then the 12057 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12058 * is infrequently traveled enough that the test is left in 12059 * to protect against future code changes which break that 12060 * invariant. 12061 */ 12062 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12063 /* Empty. Blast it. */ 12064 IP_REASS_SET_START(mp, 0); 12065 IP_REASS_SET_END(mp, 0); 12066 /* 12067 * If the ipf points to the mblk we are about to free, 12068 * update ipf to point to the next mblk (or NULL 12069 * if none). 12070 */ 12071 if (ipf->ipf_mp->b_cont == mp) 12072 ipf->ipf_mp->b_cont = next_mp; 12073 freeb(mp); 12074 continue; 12075 } 12076 mp->b_cont = NULL; 12077 IP_REASS_SET_START(mp, start); 12078 IP_REASS_SET_END(mp, end); 12079 if (!ipf->ipf_tail_mp) { 12080 ipf->ipf_tail_mp = mp; 12081 ipf->ipf_mp->b_cont = mp; 12082 if (start == 0 || !more) { 12083 ipf->ipf_hole_cnt = 1; 12084 /* 12085 * if the first fragment comes in more than one 12086 * mblk, this loop will be executed for each 12087 * mblk. Need to adjust hole count so exiting 12088 * this routine will leave hole count at 1. 12089 */ 12090 if (next_mp) 12091 ipf->ipf_hole_cnt++; 12092 } else 12093 ipf->ipf_hole_cnt = 2; 12094 continue; 12095 } else if (ipf->ipf_last_frag_seen && !more && 12096 !pkt_boundary_checked) { 12097 /* 12098 * We check datagram boundary only if this fragment 12099 * claims to be the last fragment and we have seen a 12100 * last fragment in the past too. We do this only 12101 * once for a given fragment. 12102 * 12103 * start cannot be 0 here as fragments with start=0 12104 * and MF=0 gets handled as a complete packet. These 12105 * fragments should not reach here. 12106 */ 12107 12108 if (start + msgdsize(mp) != 12109 IP_REASS_END(ipf->ipf_tail_mp)) { 12110 /* 12111 * We have two fragments both of which claim 12112 * to be the last fragment but gives conflicting 12113 * information about the whole datagram size. 12114 * Something fishy is going on. Drop the 12115 * fragment and free up the reassembly list. 12116 */ 12117 return (IP_REASS_FAILED); 12118 } 12119 12120 /* 12121 * We shouldn't come to this code block again for this 12122 * particular fragment. 12123 */ 12124 pkt_boundary_checked = B_TRUE; 12125 } 12126 12127 /* New stuff at or beyond tail? */ 12128 offset = IP_REASS_END(ipf->ipf_tail_mp); 12129 if (start >= offset) { 12130 if (ipf->ipf_last_frag_seen) { 12131 /* current fragment is beyond last fragment */ 12132 return (IP_REASS_FAILED); 12133 } 12134 /* Link it on end. */ 12135 ipf->ipf_tail_mp->b_cont = mp; 12136 ipf->ipf_tail_mp = mp; 12137 if (more) { 12138 if (start != offset) 12139 ipf->ipf_hole_cnt++; 12140 } else if (start == offset && next_mp == NULL) 12141 ipf->ipf_hole_cnt--; 12142 continue; 12143 } 12144 mp1 = ipf->ipf_mp->b_cont; 12145 offset = IP_REASS_START(mp1); 12146 /* New stuff at the front? */ 12147 if (start < offset) { 12148 if (start == 0) { 12149 if (end >= offset) { 12150 /* Nailed the hole at the begining. */ 12151 ipf->ipf_hole_cnt--; 12152 } 12153 } else if (end < offset) { 12154 /* 12155 * A hole, stuff, and a hole where there used 12156 * to be just a hole. 12157 */ 12158 ipf->ipf_hole_cnt++; 12159 } 12160 mp->b_cont = mp1; 12161 /* Check for overlap. */ 12162 while (end > offset) { 12163 if (end < IP_REASS_END(mp1)) { 12164 mp->b_wptr -= end - offset; 12165 IP_REASS_SET_END(mp, offset); 12166 BUMP_MIB(ill->ill_ip_mib, 12167 ipIfStatsReasmPartDups); 12168 break; 12169 } 12170 /* Did we cover another hole? */ 12171 if ((mp1->b_cont && 12172 IP_REASS_END(mp1) != 12173 IP_REASS_START(mp1->b_cont) && 12174 end >= IP_REASS_START(mp1->b_cont)) || 12175 (!ipf->ipf_last_frag_seen && !more)) { 12176 ipf->ipf_hole_cnt--; 12177 } 12178 /* Clip out mp1. */ 12179 if ((mp->b_cont = mp1->b_cont) == NULL) { 12180 /* 12181 * After clipping out mp1, this guy 12182 * is now hanging off the end. 12183 */ 12184 ipf->ipf_tail_mp = mp; 12185 } 12186 IP_REASS_SET_START(mp1, 0); 12187 IP_REASS_SET_END(mp1, 0); 12188 /* Subtract byte count */ 12189 ipf->ipf_count -= mp1->b_datap->db_lim - 12190 mp1->b_datap->db_base; 12191 freeb(mp1); 12192 BUMP_MIB(ill->ill_ip_mib, 12193 ipIfStatsReasmPartDups); 12194 mp1 = mp->b_cont; 12195 if (!mp1) 12196 break; 12197 offset = IP_REASS_START(mp1); 12198 } 12199 ipf->ipf_mp->b_cont = mp; 12200 continue; 12201 } 12202 /* 12203 * The new piece starts somewhere between the start of the head 12204 * and before the end of the tail. 12205 */ 12206 for (; mp1; mp1 = mp1->b_cont) { 12207 offset = IP_REASS_END(mp1); 12208 if (start < offset) { 12209 if (end <= offset) { 12210 /* Nothing new. */ 12211 IP_REASS_SET_START(mp, 0); 12212 IP_REASS_SET_END(mp, 0); 12213 /* Subtract byte count */ 12214 ipf->ipf_count -= mp->b_datap->db_lim - 12215 mp->b_datap->db_base; 12216 if (incr_dups) { 12217 ipf->ipf_num_dups++; 12218 incr_dups = B_FALSE; 12219 } 12220 freeb(mp); 12221 BUMP_MIB(ill->ill_ip_mib, 12222 ipIfStatsReasmDuplicates); 12223 break; 12224 } 12225 /* 12226 * Trim redundant stuff off beginning of new 12227 * piece. 12228 */ 12229 IP_REASS_SET_START(mp, offset); 12230 mp->b_rptr += offset - start; 12231 BUMP_MIB(ill->ill_ip_mib, 12232 ipIfStatsReasmPartDups); 12233 start = offset; 12234 if (!mp1->b_cont) { 12235 /* 12236 * After trimming, this guy is now 12237 * hanging off the end. 12238 */ 12239 mp1->b_cont = mp; 12240 ipf->ipf_tail_mp = mp; 12241 if (!more) { 12242 ipf->ipf_hole_cnt--; 12243 } 12244 break; 12245 } 12246 } 12247 if (start >= IP_REASS_START(mp1->b_cont)) 12248 continue; 12249 /* Fill a hole */ 12250 if (start > offset) 12251 ipf->ipf_hole_cnt++; 12252 mp->b_cont = mp1->b_cont; 12253 mp1->b_cont = mp; 12254 mp1 = mp->b_cont; 12255 offset = IP_REASS_START(mp1); 12256 if (end >= offset) { 12257 ipf->ipf_hole_cnt--; 12258 /* Check for overlap. */ 12259 while (end > offset) { 12260 if (end < IP_REASS_END(mp1)) { 12261 mp->b_wptr -= end - offset; 12262 IP_REASS_SET_END(mp, offset); 12263 /* 12264 * TODO we might bump 12265 * this up twice if there is 12266 * overlap at both ends. 12267 */ 12268 BUMP_MIB(ill->ill_ip_mib, 12269 ipIfStatsReasmPartDups); 12270 break; 12271 } 12272 /* Did we cover another hole? */ 12273 if ((mp1->b_cont && 12274 IP_REASS_END(mp1) 12275 != IP_REASS_START(mp1->b_cont) && 12276 end >= 12277 IP_REASS_START(mp1->b_cont)) || 12278 (!ipf->ipf_last_frag_seen && 12279 !more)) { 12280 ipf->ipf_hole_cnt--; 12281 } 12282 /* Clip out mp1. */ 12283 if ((mp->b_cont = mp1->b_cont) == 12284 NULL) { 12285 /* 12286 * After clipping out mp1, 12287 * this guy is now hanging 12288 * off the end. 12289 */ 12290 ipf->ipf_tail_mp = mp; 12291 } 12292 IP_REASS_SET_START(mp1, 0); 12293 IP_REASS_SET_END(mp1, 0); 12294 /* Subtract byte count */ 12295 ipf->ipf_count -= 12296 mp1->b_datap->db_lim - 12297 mp1->b_datap->db_base; 12298 freeb(mp1); 12299 BUMP_MIB(ill->ill_ip_mib, 12300 ipIfStatsReasmPartDups); 12301 mp1 = mp->b_cont; 12302 if (!mp1) 12303 break; 12304 offset = IP_REASS_START(mp1); 12305 } 12306 } 12307 break; 12308 } 12309 } while (start = end, mp = next_mp); 12310 12311 /* Fragment just processed could be the last one. Remember this fact */ 12312 if (!more) 12313 ipf->ipf_last_frag_seen = B_TRUE; 12314 12315 /* Still got holes? */ 12316 if (ipf->ipf_hole_cnt) 12317 return (IP_REASS_PARTIAL); 12318 /* Clean up overloaded fields to avoid upstream disasters. */ 12319 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12320 IP_REASS_SET_START(mp1, 0); 12321 IP_REASS_SET_END(mp1, 0); 12322 } 12323 return (IP_REASS_COMPLETE); 12324 } 12325 12326 /* 12327 * ipsec processing for the fast path, used for input UDP Packets 12328 */ 12329 static boolean_t 12330 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12331 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12332 { 12333 uint32_t ill_index; 12334 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12335 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12336 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12337 12338 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12339 /* The ill_index of the incoming ILL */ 12340 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12341 12342 /* pass packet up to the transport */ 12343 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12344 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12345 NULL, mctl_present); 12346 if (*first_mpp == NULL) { 12347 return (B_FALSE); 12348 } 12349 } 12350 12351 /* Initiate IPPF processing for fastpath UDP */ 12352 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12353 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12354 if (*mpp == NULL) { 12355 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12356 "deferred/dropped during IPPF processing\n")); 12357 return (B_FALSE); 12358 } 12359 } 12360 /* 12361 * We make the checks as below since we are in the fast path 12362 * and want to minimize the number of checks if the IP_RECVIF and/or 12363 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12364 */ 12365 if (connp->conn_recvif || connp->conn_recvslla || 12366 connp->conn_ip_recvpktinfo) { 12367 if (connp->conn_recvif) { 12368 in_flags = IPF_RECVIF; 12369 } 12370 /* 12371 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12372 * so the flag passed to ip_add_info is based on IP version 12373 * of connp. 12374 */ 12375 if (connp->conn_ip_recvpktinfo) { 12376 if (connp->conn_af_isv6) { 12377 /* 12378 * V6 only needs index 12379 */ 12380 in_flags |= IPF_RECVIF; 12381 } else { 12382 /* 12383 * V4 needs index + matching address. 12384 */ 12385 in_flags |= IPF_RECVADDR; 12386 } 12387 } 12388 if (connp->conn_recvslla) { 12389 in_flags |= IPF_RECVSLLA; 12390 } 12391 /* 12392 * since in_flags are being set ill will be 12393 * referenced in ip_add_info, so it better not 12394 * be NULL. 12395 */ 12396 /* 12397 * the actual data will be contained in b_cont 12398 * upon successful return of the following call. 12399 * If the call fails then the original mblk is 12400 * returned. 12401 */ 12402 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12403 ipst); 12404 } 12405 12406 return (B_TRUE); 12407 } 12408 12409 /* 12410 * Fragmentation reassembly. Each ILL has a hash table for 12411 * queuing packets undergoing reassembly for all IPIFs 12412 * associated with the ILL. The hash is based on the packet 12413 * IP ident field. The ILL frag hash table was allocated 12414 * as a timer block at the time the ILL was created. Whenever 12415 * there is anything on the reassembly queue, the timer will 12416 * be running. Returns B_TRUE if successful else B_FALSE; 12417 * frees mp on failure. 12418 */ 12419 static boolean_t 12420 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12421 uint32_t *cksum_val, uint16_t *cksum_flags) 12422 { 12423 uint32_t frag_offset_flags; 12424 ill_t *ill = (ill_t *)q->q_ptr; 12425 mblk_t *mp = *mpp; 12426 mblk_t *t_mp; 12427 ipaddr_t dst; 12428 uint8_t proto = ipha->ipha_protocol; 12429 uint32_t sum_val; 12430 uint16_t sum_flags; 12431 ipf_t *ipf; 12432 ipf_t **ipfp; 12433 ipfb_t *ipfb; 12434 uint16_t ident; 12435 uint32_t offset; 12436 ipaddr_t src; 12437 uint_t hdr_length; 12438 uint32_t end; 12439 mblk_t *mp1; 12440 mblk_t *tail_mp; 12441 size_t count; 12442 size_t msg_len; 12443 uint8_t ecn_info = 0; 12444 uint32_t packet_size; 12445 boolean_t pruned = B_FALSE; 12446 ip_stack_t *ipst = ill->ill_ipst; 12447 12448 if (cksum_val != NULL) 12449 *cksum_val = 0; 12450 if (cksum_flags != NULL) 12451 *cksum_flags = 0; 12452 12453 /* 12454 * Drop the fragmented as early as possible, if 12455 * we don't have resource(s) to re-assemble. 12456 */ 12457 if (ipst->ips_ip_reass_queue_bytes == 0) { 12458 freemsg(mp); 12459 return (B_FALSE); 12460 } 12461 12462 /* Check for fragmentation offset; return if there's none */ 12463 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12464 (IPH_MF | IPH_OFFSET)) == 0) 12465 return (B_TRUE); 12466 12467 /* 12468 * We utilize hardware computed checksum info only for UDP since 12469 * IP fragmentation is a normal occurence for the protocol. In 12470 * addition, checksum offload support for IP fragments carrying 12471 * UDP payload is commonly implemented across network adapters. 12472 */ 12473 ASSERT(ill != NULL); 12474 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12475 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12476 mblk_t *mp1 = mp->b_cont; 12477 int32_t len; 12478 12479 /* Record checksum information from the packet */ 12480 sum_val = (uint32_t)DB_CKSUM16(mp); 12481 sum_flags = DB_CKSUMFLAGS(mp); 12482 12483 /* IP payload offset from beginning of mblk */ 12484 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12485 12486 if ((sum_flags & HCK_PARTIALCKSUM) && 12487 (mp1 == NULL || mp1->b_cont == NULL) && 12488 offset >= DB_CKSUMSTART(mp) && 12489 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12490 uint32_t adj; 12491 /* 12492 * Partial checksum has been calculated by hardware 12493 * and attached to the packet; in addition, any 12494 * prepended extraneous data is even byte aligned. 12495 * If any such data exists, we adjust the checksum; 12496 * this would also handle any postpended data. 12497 */ 12498 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12499 mp, mp1, len, adj); 12500 12501 /* One's complement subtract extraneous checksum */ 12502 if (adj >= sum_val) 12503 sum_val = ~(adj - sum_val) & 0xFFFF; 12504 else 12505 sum_val -= adj; 12506 } 12507 } else { 12508 sum_val = 0; 12509 sum_flags = 0; 12510 } 12511 12512 /* Clear hardware checksumming flag */ 12513 DB_CKSUMFLAGS(mp) = 0; 12514 12515 ident = ipha->ipha_ident; 12516 offset = (frag_offset_flags << 3) & 0xFFFF; 12517 src = ipha->ipha_src; 12518 dst = ipha->ipha_dst; 12519 hdr_length = IPH_HDR_LENGTH(ipha); 12520 end = ntohs(ipha->ipha_length) - hdr_length; 12521 12522 /* If end == 0 then we have a packet with no data, so just free it */ 12523 if (end == 0) { 12524 freemsg(mp); 12525 return (B_FALSE); 12526 } 12527 12528 /* Record the ECN field info. */ 12529 ecn_info = (ipha->ipha_type_of_service & 0x3); 12530 if (offset != 0) { 12531 /* 12532 * If this isn't the first piece, strip the header, and 12533 * add the offset to the end value. 12534 */ 12535 mp->b_rptr += hdr_length; 12536 end += offset; 12537 } 12538 12539 msg_len = MBLKSIZE(mp); 12540 tail_mp = mp; 12541 while (tail_mp->b_cont != NULL) { 12542 tail_mp = tail_mp->b_cont; 12543 msg_len += MBLKSIZE(tail_mp); 12544 } 12545 12546 /* If the reassembly list for this ILL will get too big, prune it */ 12547 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12548 ipst->ips_ip_reass_queue_bytes) { 12549 ill_frag_prune(ill, 12550 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12551 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12552 pruned = B_TRUE; 12553 } 12554 12555 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12556 mutex_enter(&ipfb->ipfb_lock); 12557 12558 ipfp = &ipfb->ipfb_ipf; 12559 /* Try to find an existing fragment queue for this packet. */ 12560 for (;;) { 12561 ipf = ipfp[0]; 12562 if (ipf != NULL) { 12563 /* 12564 * It has to match on ident and src/dst address. 12565 */ 12566 if (ipf->ipf_ident == ident && 12567 ipf->ipf_src == src && 12568 ipf->ipf_dst == dst && 12569 ipf->ipf_protocol == proto) { 12570 /* 12571 * If we have received too many 12572 * duplicate fragments for this packet 12573 * free it. 12574 */ 12575 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12576 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12577 freemsg(mp); 12578 mutex_exit(&ipfb->ipfb_lock); 12579 return (B_FALSE); 12580 } 12581 /* Found it. */ 12582 break; 12583 } 12584 ipfp = &ipf->ipf_hash_next; 12585 continue; 12586 } 12587 12588 /* 12589 * If we pruned the list, do we want to store this new 12590 * fragment?. We apply an optimization here based on the 12591 * fact that most fragments will be received in order. 12592 * So if the offset of this incoming fragment is zero, 12593 * it is the first fragment of a new packet. We will 12594 * keep it. Otherwise drop the fragment, as we have 12595 * probably pruned the packet already (since the 12596 * packet cannot be found). 12597 */ 12598 if (pruned && offset != 0) { 12599 mutex_exit(&ipfb->ipfb_lock); 12600 freemsg(mp); 12601 return (B_FALSE); 12602 } 12603 12604 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12605 /* 12606 * Too many fragmented packets in this hash 12607 * bucket. Free the oldest. 12608 */ 12609 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12610 } 12611 12612 /* New guy. Allocate a frag message. */ 12613 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12614 if (mp1 == NULL) { 12615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12616 freemsg(mp); 12617 reass_done: 12618 mutex_exit(&ipfb->ipfb_lock); 12619 return (B_FALSE); 12620 } 12621 12622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12623 mp1->b_cont = mp; 12624 12625 /* Initialize the fragment header. */ 12626 ipf = (ipf_t *)mp1->b_rptr; 12627 ipf->ipf_mp = mp1; 12628 ipf->ipf_ptphn = ipfp; 12629 ipfp[0] = ipf; 12630 ipf->ipf_hash_next = NULL; 12631 ipf->ipf_ident = ident; 12632 ipf->ipf_protocol = proto; 12633 ipf->ipf_src = src; 12634 ipf->ipf_dst = dst; 12635 ipf->ipf_nf_hdr_len = 0; 12636 /* Record reassembly start time. */ 12637 ipf->ipf_timestamp = gethrestime_sec(); 12638 /* Record ipf generation and account for frag header */ 12639 ipf->ipf_gen = ill->ill_ipf_gen++; 12640 ipf->ipf_count = MBLKSIZE(mp1); 12641 ipf->ipf_last_frag_seen = B_FALSE; 12642 ipf->ipf_ecn = ecn_info; 12643 ipf->ipf_num_dups = 0; 12644 ipfb->ipfb_frag_pkts++; 12645 ipf->ipf_checksum = 0; 12646 ipf->ipf_checksum_flags = 0; 12647 12648 /* Store checksum value in fragment header */ 12649 if (sum_flags != 0) { 12650 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12651 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12652 ipf->ipf_checksum = sum_val; 12653 ipf->ipf_checksum_flags = sum_flags; 12654 } 12655 12656 /* 12657 * We handle reassembly two ways. In the easy case, 12658 * where all the fragments show up in order, we do 12659 * minimal bookkeeping, and just clip new pieces on 12660 * the end. If we ever see a hole, then we go off 12661 * to ip_reassemble which has to mark the pieces and 12662 * keep track of the number of holes, etc. Obviously, 12663 * the point of having both mechanisms is so we can 12664 * handle the easy case as efficiently as possible. 12665 */ 12666 if (offset == 0) { 12667 /* Easy case, in-order reassembly so far. */ 12668 ipf->ipf_count += msg_len; 12669 ipf->ipf_tail_mp = tail_mp; 12670 /* 12671 * Keep track of next expected offset in 12672 * ipf_end. 12673 */ 12674 ipf->ipf_end = end; 12675 ipf->ipf_nf_hdr_len = hdr_length; 12676 } else { 12677 /* Hard case, hole at the beginning. */ 12678 ipf->ipf_tail_mp = NULL; 12679 /* 12680 * ipf_end == 0 means that we have given up 12681 * on easy reassembly. 12682 */ 12683 ipf->ipf_end = 0; 12684 12685 /* Forget checksum offload from now on */ 12686 ipf->ipf_checksum_flags = 0; 12687 12688 /* 12689 * ipf_hole_cnt is set by ip_reassemble. 12690 * ipf_count is updated by ip_reassemble. 12691 * No need to check for return value here 12692 * as we don't expect reassembly to complete 12693 * or fail for the first fragment itself. 12694 */ 12695 (void) ip_reassemble(mp, ipf, 12696 (frag_offset_flags & IPH_OFFSET) << 3, 12697 (frag_offset_flags & IPH_MF), ill, msg_len); 12698 } 12699 /* Update per ipfb and ill byte counts */ 12700 ipfb->ipfb_count += ipf->ipf_count; 12701 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12702 ill->ill_frag_count += ipf->ipf_count; 12703 /* If the frag timer wasn't already going, start it. */ 12704 mutex_enter(&ill->ill_lock); 12705 ill_frag_timer_start(ill); 12706 mutex_exit(&ill->ill_lock); 12707 goto reass_done; 12708 } 12709 12710 /* 12711 * If the packet's flag has changed (it could be coming up 12712 * from an interface different than the previous, therefore 12713 * possibly different checksum capability), then forget about 12714 * any stored checksum states. Otherwise add the value to 12715 * the existing one stored in the fragment header. 12716 */ 12717 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12718 sum_val += ipf->ipf_checksum; 12719 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12720 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12721 ipf->ipf_checksum = sum_val; 12722 } else if (ipf->ipf_checksum_flags != 0) { 12723 /* Forget checksum offload from now on */ 12724 ipf->ipf_checksum_flags = 0; 12725 } 12726 12727 /* 12728 * We have a new piece of a datagram which is already being 12729 * reassembled. Update the ECN info if all IP fragments 12730 * are ECN capable. If there is one which is not, clear 12731 * all the info. If there is at least one which has CE 12732 * code point, IP needs to report that up to transport. 12733 */ 12734 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12735 if (ecn_info == IPH_ECN_CE) 12736 ipf->ipf_ecn = IPH_ECN_CE; 12737 } else { 12738 ipf->ipf_ecn = IPH_ECN_NECT; 12739 } 12740 if (offset && ipf->ipf_end == offset) { 12741 /* The new fragment fits at the end */ 12742 ipf->ipf_tail_mp->b_cont = mp; 12743 /* Update the byte count */ 12744 ipf->ipf_count += msg_len; 12745 /* Update per ipfb and ill byte counts */ 12746 ipfb->ipfb_count += msg_len; 12747 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12748 ill->ill_frag_count += msg_len; 12749 if (frag_offset_flags & IPH_MF) { 12750 /* More to come. */ 12751 ipf->ipf_end = end; 12752 ipf->ipf_tail_mp = tail_mp; 12753 goto reass_done; 12754 } 12755 } else { 12756 /* Go do the hard cases. */ 12757 int ret; 12758 12759 if (offset == 0) 12760 ipf->ipf_nf_hdr_len = hdr_length; 12761 12762 /* Save current byte count */ 12763 count = ipf->ipf_count; 12764 ret = ip_reassemble(mp, ipf, 12765 (frag_offset_flags & IPH_OFFSET) << 3, 12766 (frag_offset_flags & IPH_MF), ill, msg_len); 12767 /* Count of bytes added and subtracted (freeb()ed) */ 12768 count = ipf->ipf_count - count; 12769 if (count) { 12770 /* Update per ipfb and ill byte counts */ 12771 ipfb->ipfb_count += count; 12772 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12773 ill->ill_frag_count += count; 12774 } 12775 if (ret == IP_REASS_PARTIAL) { 12776 goto reass_done; 12777 } else if (ret == IP_REASS_FAILED) { 12778 /* Reassembly failed. Free up all resources */ 12779 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12780 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12781 IP_REASS_SET_START(t_mp, 0); 12782 IP_REASS_SET_END(t_mp, 0); 12783 } 12784 freemsg(mp); 12785 goto reass_done; 12786 } 12787 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12788 } 12789 /* 12790 * We have completed reassembly. Unhook the frag header from 12791 * the reassembly list. 12792 * 12793 * Before we free the frag header, record the ECN info 12794 * to report back to the transport. 12795 */ 12796 ecn_info = ipf->ipf_ecn; 12797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12798 ipfp = ipf->ipf_ptphn; 12799 12800 /* We need to supply these to caller */ 12801 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12802 sum_val = ipf->ipf_checksum; 12803 else 12804 sum_val = 0; 12805 12806 mp1 = ipf->ipf_mp; 12807 count = ipf->ipf_count; 12808 ipf = ipf->ipf_hash_next; 12809 if (ipf != NULL) 12810 ipf->ipf_ptphn = ipfp; 12811 ipfp[0] = ipf; 12812 ill->ill_frag_count -= count; 12813 ASSERT(ipfb->ipfb_count >= count); 12814 ipfb->ipfb_count -= count; 12815 ipfb->ipfb_frag_pkts--; 12816 mutex_exit(&ipfb->ipfb_lock); 12817 /* Ditch the frag header. */ 12818 mp = mp1->b_cont; 12819 12820 freeb(mp1); 12821 12822 /* Restore original IP length in header. */ 12823 packet_size = (uint32_t)msgdsize(mp); 12824 if (packet_size > IP_MAXPACKET) { 12825 freemsg(mp); 12826 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12827 return (B_FALSE); 12828 } 12829 12830 if (DB_REF(mp) > 1) { 12831 mblk_t *mp2 = copymsg(mp); 12832 12833 freemsg(mp); 12834 if (mp2 == NULL) { 12835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12836 return (B_FALSE); 12837 } 12838 mp = mp2; 12839 } 12840 ipha = (ipha_t *)mp->b_rptr; 12841 12842 ipha->ipha_length = htons((uint16_t)packet_size); 12843 /* We're now complete, zip the frag state */ 12844 ipha->ipha_fragment_offset_and_flags = 0; 12845 /* Record the ECN info. */ 12846 ipha->ipha_type_of_service &= 0xFC; 12847 ipha->ipha_type_of_service |= ecn_info; 12848 *mpp = mp; 12849 12850 /* Reassembly is successful; return checksum information if needed */ 12851 if (cksum_val != NULL) 12852 *cksum_val = sum_val; 12853 if (cksum_flags != NULL) 12854 *cksum_flags = sum_flags; 12855 12856 return (B_TRUE); 12857 } 12858 12859 /* 12860 * Perform ip header check sum update local options. 12861 * return B_TRUE if all is well, else return B_FALSE and release 12862 * the mp. caller is responsible for decrementing ire ref cnt. 12863 */ 12864 static boolean_t 12865 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12866 ip_stack_t *ipst) 12867 { 12868 mblk_t *first_mp; 12869 boolean_t mctl_present; 12870 uint16_t sum; 12871 12872 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12873 /* 12874 * Don't do the checksum if it has gone through AH/ESP 12875 * processing. 12876 */ 12877 if (!mctl_present) { 12878 sum = ip_csum_hdr(ipha); 12879 if (sum != 0) { 12880 if (ill != NULL) { 12881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12882 } else { 12883 BUMP_MIB(&ipst->ips_ip_mib, 12884 ipIfStatsInCksumErrs); 12885 } 12886 freemsg(first_mp); 12887 return (B_FALSE); 12888 } 12889 } 12890 12891 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12892 if (mctl_present) 12893 freeb(first_mp); 12894 return (B_FALSE); 12895 } 12896 12897 return (B_TRUE); 12898 } 12899 12900 /* 12901 * All udp packet are delivered to the local host via this routine. 12902 */ 12903 void 12904 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12905 ill_t *recv_ill) 12906 { 12907 uint32_t sum; 12908 uint32_t u1; 12909 boolean_t mctl_present; 12910 conn_t *connp; 12911 mblk_t *first_mp; 12912 uint16_t *up; 12913 ill_t *ill = (ill_t *)q->q_ptr; 12914 uint16_t reass_hck_flags = 0; 12915 ip_stack_t *ipst; 12916 12917 ASSERT(recv_ill != NULL); 12918 ipst = recv_ill->ill_ipst; 12919 12920 #define rptr ((uchar_t *)ipha) 12921 12922 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12923 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12924 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12925 ASSERT(ill != NULL); 12926 12927 /* 12928 * FAST PATH for udp packets 12929 */ 12930 12931 /* u1 is # words of IP options */ 12932 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12933 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12934 12935 /* IP options present */ 12936 if (u1 != 0) 12937 goto ipoptions; 12938 12939 /* Check the IP header checksum. */ 12940 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12941 /* Clear the IP header h/w cksum flag */ 12942 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12943 } else { 12944 #define uph ((uint16_t *)ipha) 12945 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12946 uph[6] + uph[7] + uph[8] + uph[9]; 12947 #undef uph 12948 /* finish doing IP checksum */ 12949 sum = (sum & 0xFFFF) + (sum >> 16); 12950 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12951 /* 12952 * Don't verify header checksum if this packet is coming 12953 * back from AH/ESP as we already did it. 12954 */ 12955 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12957 freemsg(first_mp); 12958 return; 12959 } 12960 } 12961 12962 /* 12963 * Count for SNMP of inbound packets for ire. 12964 * if mctl is present this might be a secure packet and 12965 * has already been counted for in ip_proto_input(). 12966 */ 12967 if (!mctl_present) { 12968 UPDATE_IB_PKT_COUNT(ire); 12969 ire->ire_last_used_time = lbolt; 12970 } 12971 12972 /* packet part of fragmented IP packet? */ 12973 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12974 if (u1 & (IPH_MF | IPH_OFFSET)) { 12975 goto fragmented; 12976 } 12977 12978 /* u1 = IP header length (20 bytes) */ 12979 u1 = IP_SIMPLE_HDR_LENGTH; 12980 12981 /* packet does not contain complete IP & UDP headers */ 12982 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12983 goto udppullup; 12984 12985 /* up points to UDP header */ 12986 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12987 #define iphs ((uint16_t *)ipha) 12988 12989 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12990 if (up[3] != 0) { 12991 mblk_t *mp1 = mp->b_cont; 12992 boolean_t cksum_err; 12993 uint16_t hck_flags = 0; 12994 12995 /* Pseudo-header checksum */ 12996 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12997 iphs[9] + up[2]; 12998 12999 /* 13000 * Revert to software checksum calculation if the interface 13001 * isn't capable of checksum offload or if IPsec is present. 13002 */ 13003 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13004 hck_flags = DB_CKSUMFLAGS(mp); 13005 13006 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13007 IP_STAT(ipst, ip_in_sw_cksum); 13008 13009 IP_CKSUM_RECV(hck_flags, u1, 13010 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13011 (int32_t)((uchar_t *)up - rptr), 13012 mp, mp1, cksum_err); 13013 13014 if (cksum_err) { 13015 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13016 if (hck_flags & HCK_FULLCKSUM) 13017 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13018 else if (hck_flags & HCK_PARTIALCKSUM) 13019 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13020 else 13021 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13022 13023 freemsg(first_mp); 13024 return; 13025 } 13026 } 13027 13028 /* Non-fragmented broadcast or multicast packet? */ 13029 if (ire->ire_type == IRE_BROADCAST) 13030 goto udpslowpath; 13031 13032 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13033 ire->ire_zoneid, ipst)) != NULL) { 13034 ASSERT(connp->conn_upq != NULL); 13035 IP_STAT(ipst, ip_udp_fast_path); 13036 13037 if (CONN_UDP_FLOWCTLD(connp)) { 13038 freemsg(mp); 13039 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13040 } else { 13041 if (!mctl_present) { 13042 BUMP_MIB(ill->ill_ip_mib, 13043 ipIfStatsHCInDelivers); 13044 } 13045 /* 13046 * mp and first_mp can change. 13047 */ 13048 if (ip_udp_check(q, connp, recv_ill, 13049 ipha, &mp, &first_mp, mctl_present)) { 13050 /* Send it upstream */ 13051 CONN_UDP_RECV(connp, mp); 13052 } 13053 } 13054 /* 13055 * freeb() cannot deal with null mblk being passed 13056 * in and first_mp can be set to null in the call 13057 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13058 */ 13059 if (mctl_present && first_mp != NULL) { 13060 freeb(first_mp); 13061 } 13062 CONN_DEC_REF(connp); 13063 return; 13064 } 13065 13066 /* 13067 * if we got here we know the packet is not fragmented and 13068 * has no options. The classifier could not find a conn_t and 13069 * most likely its an icmp packet so send it through slow path. 13070 */ 13071 13072 goto udpslowpath; 13073 13074 ipoptions: 13075 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13076 goto slow_done; 13077 } 13078 13079 UPDATE_IB_PKT_COUNT(ire); 13080 ire->ire_last_used_time = lbolt; 13081 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13082 if (u1 & (IPH_MF | IPH_OFFSET)) { 13083 fragmented: 13084 /* 13085 * "sum" and "reass_hck_flags" are non-zero if the 13086 * reassembled packet has a valid hardware computed 13087 * checksum information associated with it. 13088 */ 13089 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13090 goto slow_done; 13091 /* 13092 * Make sure that first_mp points back to mp as 13093 * the mp we came in with could have changed in 13094 * ip_rput_fragment(). 13095 */ 13096 ASSERT(!mctl_present); 13097 ipha = (ipha_t *)mp->b_rptr; 13098 first_mp = mp; 13099 } 13100 13101 /* Now we have a complete datagram, destined for this machine. */ 13102 u1 = IPH_HDR_LENGTH(ipha); 13103 /* Pull up the UDP header, if necessary. */ 13104 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13105 udppullup: 13106 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13108 freemsg(first_mp); 13109 goto slow_done; 13110 } 13111 ipha = (ipha_t *)mp->b_rptr; 13112 } 13113 13114 /* 13115 * Validate the checksum for the reassembled packet; for the 13116 * pullup case we calculate the payload checksum in software. 13117 */ 13118 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13119 if (up[3] != 0) { 13120 boolean_t cksum_err; 13121 13122 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13123 IP_STAT(ipst, ip_in_sw_cksum); 13124 13125 IP_CKSUM_RECV_REASS(reass_hck_flags, 13126 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13127 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13128 iphs[9] + up[2], sum, cksum_err); 13129 13130 if (cksum_err) { 13131 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13132 13133 if (reass_hck_flags & HCK_FULLCKSUM) 13134 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13135 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13136 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13137 else 13138 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13139 13140 freemsg(first_mp); 13141 goto slow_done; 13142 } 13143 } 13144 udpslowpath: 13145 13146 /* Clear hardware checksum flag to be safe */ 13147 DB_CKSUMFLAGS(mp) = 0; 13148 13149 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13150 (ire->ire_type == IRE_BROADCAST), 13151 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13152 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13153 13154 slow_done: 13155 IP_STAT(ipst, ip_udp_slow_path); 13156 return; 13157 13158 #undef iphs 13159 #undef rptr 13160 } 13161 13162 /* ARGSUSED */ 13163 static mblk_t * 13164 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13165 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13166 ill_rx_ring_t *ill_ring) 13167 { 13168 conn_t *connp; 13169 uint32_t sum; 13170 uint32_t u1; 13171 uint16_t *up; 13172 int offset; 13173 ssize_t len; 13174 mblk_t *mp1; 13175 boolean_t syn_present = B_FALSE; 13176 tcph_t *tcph; 13177 uint_t ip_hdr_len; 13178 ill_t *ill = (ill_t *)q->q_ptr; 13179 zoneid_t zoneid = ire->ire_zoneid; 13180 boolean_t cksum_err; 13181 uint16_t hck_flags = 0; 13182 ip_stack_t *ipst = recv_ill->ill_ipst; 13183 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13184 13185 #define rptr ((uchar_t *)ipha) 13186 13187 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13188 ASSERT(ill != NULL); 13189 13190 /* 13191 * FAST PATH for tcp packets 13192 */ 13193 13194 /* u1 is # words of IP options */ 13195 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13196 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13197 13198 /* IP options present */ 13199 if (u1) { 13200 goto ipoptions; 13201 } else { 13202 /* Check the IP header checksum. */ 13203 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13204 /* Clear the IP header h/w cksum flag */ 13205 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13206 } else { 13207 #define uph ((uint16_t *)ipha) 13208 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13209 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13210 #undef uph 13211 /* finish doing IP checksum */ 13212 sum = (sum & 0xFFFF) + (sum >> 16); 13213 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13214 /* 13215 * Don't verify header checksum if this packet 13216 * is coming back from AH/ESP as we already did it. 13217 */ 13218 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13219 BUMP_MIB(ill->ill_ip_mib, 13220 ipIfStatsInCksumErrs); 13221 goto error; 13222 } 13223 } 13224 } 13225 13226 if (!mctl_present) { 13227 UPDATE_IB_PKT_COUNT(ire); 13228 ire->ire_last_used_time = lbolt; 13229 } 13230 13231 /* packet part of fragmented IP packet? */ 13232 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13233 if (u1 & (IPH_MF | IPH_OFFSET)) { 13234 goto fragmented; 13235 } 13236 13237 /* u1 = IP header length (20 bytes) */ 13238 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13239 13240 /* does packet contain IP+TCP headers? */ 13241 len = mp->b_wptr - rptr; 13242 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13243 IP_STAT(ipst, ip_tcppullup); 13244 goto tcppullup; 13245 } 13246 13247 /* TCP options present? */ 13248 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13249 13250 /* 13251 * If options need to be pulled up, then goto tcpoptions. 13252 * otherwise we are still in the fast path 13253 */ 13254 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13255 IP_STAT(ipst, ip_tcpoptions); 13256 goto tcpoptions; 13257 } 13258 13259 /* multiple mblks of tcp data? */ 13260 if ((mp1 = mp->b_cont) != NULL) { 13261 /* more then two? */ 13262 if (mp1->b_cont != NULL) { 13263 IP_STAT(ipst, ip_multipkttcp); 13264 goto multipkttcp; 13265 } 13266 len += mp1->b_wptr - mp1->b_rptr; 13267 } 13268 13269 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13270 13271 /* part of pseudo checksum */ 13272 13273 /* TCP datagram length */ 13274 u1 = len - IP_SIMPLE_HDR_LENGTH; 13275 13276 #define iphs ((uint16_t *)ipha) 13277 13278 #ifdef _BIG_ENDIAN 13279 u1 += IPPROTO_TCP; 13280 #else 13281 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13282 #endif 13283 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13284 13285 /* 13286 * Revert to software checksum calculation if the interface 13287 * isn't capable of checksum offload or if IPsec is present. 13288 */ 13289 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13290 hck_flags = DB_CKSUMFLAGS(mp); 13291 13292 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13293 IP_STAT(ipst, ip_in_sw_cksum); 13294 13295 IP_CKSUM_RECV(hck_flags, u1, 13296 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13297 (int32_t)((uchar_t *)up - rptr), 13298 mp, mp1, cksum_err); 13299 13300 if (cksum_err) { 13301 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13302 13303 if (hck_flags & HCK_FULLCKSUM) 13304 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13305 else if (hck_flags & HCK_PARTIALCKSUM) 13306 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13307 else 13308 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13309 13310 goto error; 13311 } 13312 13313 try_again: 13314 13315 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13316 zoneid, ipst)) == NULL) { 13317 /* Send the TH_RST */ 13318 goto no_conn; 13319 } 13320 13321 /* 13322 * TCP FAST PATH for AF_INET socket. 13323 * 13324 * TCP fast path to avoid extra work. An AF_INET socket type 13325 * does not have facility to receive extra information via 13326 * ip_process or ip_add_info. Also, when the connection was 13327 * established, we made a check if this connection is impacted 13328 * by any global IPSec policy or per connection policy (a 13329 * policy that comes in effect later will not apply to this 13330 * connection). Since all this can be determined at the 13331 * connection establishment time, a quick check of flags 13332 * can avoid extra work. 13333 */ 13334 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13335 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13336 ASSERT(first_mp == mp); 13337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13338 SET_SQUEUE(mp, tcp_rput_data, connp); 13339 return (mp); 13340 } 13341 13342 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13343 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13344 if (IPCL_IS_TCP(connp)) { 13345 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13346 DB_CKSUMSTART(mp) = 13347 (intptr_t)ip_squeue_get(ill_ring); 13348 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13349 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13350 BUMP_MIB(ill->ill_ip_mib, 13351 ipIfStatsHCInDelivers); 13352 SET_SQUEUE(mp, connp->conn_recv, connp); 13353 return (mp); 13354 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13355 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13356 BUMP_MIB(ill->ill_ip_mib, 13357 ipIfStatsHCInDelivers); 13358 ip_squeue_enter_unbound++; 13359 SET_SQUEUE(mp, tcp_conn_request_unbound, 13360 connp); 13361 return (mp); 13362 } 13363 syn_present = B_TRUE; 13364 } 13365 13366 } 13367 13368 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13369 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13370 13371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13372 /* No need to send this packet to TCP */ 13373 if ((flags & TH_RST) || (flags & TH_URG)) { 13374 CONN_DEC_REF(connp); 13375 freemsg(first_mp); 13376 return (NULL); 13377 } 13378 if (flags & TH_ACK) { 13379 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13380 ipst->ips_netstack->netstack_tcp); 13381 CONN_DEC_REF(connp); 13382 return (NULL); 13383 } 13384 13385 CONN_DEC_REF(connp); 13386 freemsg(first_mp); 13387 return (NULL); 13388 } 13389 13390 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13391 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13392 ipha, NULL, mctl_present); 13393 if (first_mp == NULL) { 13394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13395 CONN_DEC_REF(connp); 13396 return (NULL); 13397 } 13398 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13399 ASSERT(syn_present); 13400 if (mctl_present) { 13401 ASSERT(first_mp != mp); 13402 first_mp->b_datap->db_struioflag |= 13403 STRUIO_POLICY; 13404 } else { 13405 ASSERT(first_mp == mp); 13406 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13407 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13408 } 13409 } else { 13410 /* 13411 * Discard first_mp early since we're dealing with a 13412 * fully-connected conn_t and tcp doesn't do policy in 13413 * this case. 13414 */ 13415 if (mctl_present) { 13416 freeb(first_mp); 13417 mctl_present = B_FALSE; 13418 } 13419 first_mp = mp; 13420 } 13421 } 13422 13423 /* Initiate IPPF processing for fastpath */ 13424 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13425 uint32_t ill_index; 13426 13427 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13428 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13429 if (mp == NULL) { 13430 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13431 "deferred/dropped during IPPF processing\n")); 13432 CONN_DEC_REF(connp); 13433 if (mctl_present) 13434 freeb(first_mp); 13435 return (NULL); 13436 } else if (mctl_present) { 13437 /* 13438 * ip_process might return a new mp. 13439 */ 13440 ASSERT(first_mp != mp); 13441 first_mp->b_cont = mp; 13442 } else { 13443 first_mp = mp; 13444 } 13445 13446 } 13447 13448 if (!syn_present && connp->conn_ip_recvpktinfo) { 13449 /* 13450 * TCP does not support IP_RECVPKTINFO for v4 so lets 13451 * make sure IPF_RECVIF is passed to ip_add_info. 13452 */ 13453 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13454 IPCL_ZONEID(connp), ipst); 13455 if (mp == NULL) { 13456 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13457 CONN_DEC_REF(connp); 13458 if (mctl_present) 13459 freeb(first_mp); 13460 return (NULL); 13461 } else if (mctl_present) { 13462 /* 13463 * ip_add_info might return a new mp. 13464 */ 13465 ASSERT(first_mp != mp); 13466 first_mp->b_cont = mp; 13467 } else { 13468 first_mp = mp; 13469 } 13470 } 13471 13472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13473 if (IPCL_IS_TCP(connp)) { 13474 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13475 return (first_mp); 13476 } else { 13477 putnext(connp->conn_rq, first_mp); 13478 CONN_DEC_REF(connp); 13479 return (NULL); 13480 } 13481 13482 no_conn: 13483 /* Initiate IPPf processing, if needed. */ 13484 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13485 uint32_t ill_index; 13486 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13487 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13488 if (first_mp == NULL) { 13489 return (NULL); 13490 } 13491 } 13492 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13493 13494 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13495 ipst->ips_netstack->netstack_tcp); 13496 return (NULL); 13497 ipoptions: 13498 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13499 goto slow_done; 13500 } 13501 13502 UPDATE_IB_PKT_COUNT(ire); 13503 ire->ire_last_used_time = lbolt; 13504 13505 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13506 if (u1 & (IPH_MF | IPH_OFFSET)) { 13507 fragmented: 13508 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13509 if (mctl_present) 13510 freeb(first_mp); 13511 goto slow_done; 13512 } 13513 /* 13514 * Make sure that first_mp points back to mp as 13515 * the mp we came in with could have changed in 13516 * ip_rput_fragment(). 13517 */ 13518 ASSERT(!mctl_present); 13519 ipha = (ipha_t *)mp->b_rptr; 13520 first_mp = mp; 13521 } 13522 13523 /* Now we have a complete datagram, destined for this machine. */ 13524 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13525 13526 len = mp->b_wptr - mp->b_rptr; 13527 /* Pull up a minimal TCP header, if necessary. */ 13528 if (len < (u1 + 20)) { 13529 tcppullup: 13530 if (!pullupmsg(mp, u1 + 20)) { 13531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13532 goto error; 13533 } 13534 ipha = (ipha_t *)mp->b_rptr; 13535 len = mp->b_wptr - mp->b_rptr; 13536 } 13537 13538 /* 13539 * Extract the offset field from the TCP header. As usual, we 13540 * try to help the compiler more than the reader. 13541 */ 13542 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13543 if (offset != 5) { 13544 tcpoptions: 13545 if (offset < 5) { 13546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13547 goto error; 13548 } 13549 /* 13550 * There must be TCP options. 13551 * Make sure we can grab them. 13552 */ 13553 offset <<= 2; 13554 offset += u1; 13555 if (len < offset) { 13556 if (!pullupmsg(mp, offset)) { 13557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13558 goto error; 13559 } 13560 ipha = (ipha_t *)mp->b_rptr; 13561 len = mp->b_wptr - rptr; 13562 } 13563 } 13564 13565 /* Get the total packet length in len, including headers. */ 13566 if (mp->b_cont) { 13567 multipkttcp: 13568 len = msgdsize(mp); 13569 } 13570 13571 /* 13572 * Check the TCP checksum by pulling together the pseudo- 13573 * header checksum, and passing it to ip_csum to be added in 13574 * with the TCP datagram. 13575 * 13576 * Since we are not using the hwcksum if available we must 13577 * clear the flag. We may come here via tcppullup or tcpoptions. 13578 * If either of these fails along the way the mblk is freed. 13579 * If this logic ever changes and mblk is reused to say send 13580 * ICMP's back, then this flag may need to be cleared in 13581 * other places as well. 13582 */ 13583 DB_CKSUMFLAGS(mp) = 0; 13584 13585 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13586 13587 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13588 #ifdef _BIG_ENDIAN 13589 u1 += IPPROTO_TCP; 13590 #else 13591 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13592 #endif 13593 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13594 /* 13595 * Not M_DATA mblk or its a dup, so do the checksum now. 13596 */ 13597 IP_STAT(ipst, ip_in_sw_cksum); 13598 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13599 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13600 goto error; 13601 } 13602 13603 IP_STAT(ipst, ip_tcp_slow_path); 13604 goto try_again; 13605 #undef iphs 13606 #undef rptr 13607 13608 error: 13609 freemsg(first_mp); 13610 slow_done: 13611 return (NULL); 13612 } 13613 13614 /* ARGSUSED */ 13615 static void 13616 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13617 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13618 { 13619 conn_t *connp; 13620 uint32_t sum; 13621 uint32_t u1; 13622 ssize_t len; 13623 sctp_hdr_t *sctph; 13624 zoneid_t zoneid = ire->ire_zoneid; 13625 uint32_t pktsum; 13626 uint32_t calcsum; 13627 uint32_t ports; 13628 in6_addr_t map_src, map_dst; 13629 ill_t *ill = (ill_t *)q->q_ptr; 13630 ip_stack_t *ipst; 13631 sctp_stack_t *sctps; 13632 13633 ASSERT(recv_ill != NULL); 13634 ipst = recv_ill->ill_ipst; 13635 sctps = ipst->ips_netstack->netstack_sctp; 13636 13637 #define rptr ((uchar_t *)ipha) 13638 13639 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13640 ASSERT(ill != NULL); 13641 13642 /* u1 is # words of IP options */ 13643 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13644 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13645 13646 /* IP options present */ 13647 if (u1 > 0) { 13648 goto ipoptions; 13649 } else { 13650 /* Check the IP header checksum. */ 13651 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13652 #define uph ((uint16_t *)ipha) 13653 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13654 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13655 #undef uph 13656 /* finish doing IP checksum */ 13657 sum = (sum & 0xFFFF) + (sum >> 16); 13658 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13659 /* 13660 * Don't verify header checksum if this packet 13661 * is coming back from AH/ESP as we already did it. 13662 */ 13663 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13664 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13665 goto error; 13666 } 13667 } 13668 /* 13669 * Since there is no SCTP h/w cksum support yet, just 13670 * clear the flag. 13671 */ 13672 DB_CKSUMFLAGS(mp) = 0; 13673 } 13674 13675 /* 13676 * Don't verify header checksum if this packet is coming 13677 * back from AH/ESP as we already did it. 13678 */ 13679 if (!mctl_present) { 13680 UPDATE_IB_PKT_COUNT(ire); 13681 ire->ire_last_used_time = lbolt; 13682 } 13683 13684 /* packet part of fragmented IP packet? */ 13685 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13686 if (u1 & (IPH_MF | IPH_OFFSET)) 13687 goto fragmented; 13688 13689 /* u1 = IP header length (20 bytes) */ 13690 u1 = IP_SIMPLE_HDR_LENGTH; 13691 13692 find_sctp_client: 13693 /* Pullup if we don't have the sctp common header. */ 13694 len = MBLKL(mp); 13695 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13696 if (mp->b_cont == NULL || 13697 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13699 goto error; 13700 } 13701 ipha = (ipha_t *)mp->b_rptr; 13702 len = MBLKL(mp); 13703 } 13704 13705 sctph = (sctp_hdr_t *)(rptr + u1); 13706 #ifdef DEBUG 13707 if (!skip_sctp_cksum) { 13708 #endif 13709 pktsum = sctph->sh_chksum; 13710 sctph->sh_chksum = 0; 13711 calcsum = sctp_cksum(mp, u1); 13712 if (calcsum != pktsum) { 13713 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13714 goto error; 13715 } 13716 sctph->sh_chksum = pktsum; 13717 #ifdef DEBUG /* skip_sctp_cksum */ 13718 } 13719 #endif 13720 /* get the ports */ 13721 ports = *(uint32_t *)&sctph->sh_sport; 13722 13723 IRE_REFRELE(ire); 13724 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13725 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13726 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13727 sctps)) == NULL) { 13728 /* Check for raw socket or OOTB handling */ 13729 goto no_conn; 13730 } 13731 13732 /* Found a client; up it goes */ 13733 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13734 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13735 return; 13736 13737 no_conn: 13738 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13739 ports, mctl_present, flags, B_TRUE, zoneid); 13740 return; 13741 13742 ipoptions: 13743 DB_CKSUMFLAGS(mp) = 0; 13744 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13745 goto slow_done; 13746 13747 UPDATE_IB_PKT_COUNT(ire); 13748 ire->ire_last_used_time = lbolt; 13749 13750 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13751 if (u1 & (IPH_MF | IPH_OFFSET)) { 13752 fragmented: 13753 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13754 goto slow_done; 13755 /* 13756 * Make sure that first_mp points back to mp as 13757 * the mp we came in with could have changed in 13758 * ip_rput_fragment(). 13759 */ 13760 ASSERT(!mctl_present); 13761 ipha = (ipha_t *)mp->b_rptr; 13762 first_mp = mp; 13763 } 13764 13765 /* Now we have a complete datagram, destined for this machine. */ 13766 u1 = IPH_HDR_LENGTH(ipha); 13767 goto find_sctp_client; 13768 #undef iphs 13769 #undef rptr 13770 13771 error: 13772 freemsg(first_mp); 13773 slow_done: 13774 IRE_REFRELE(ire); 13775 } 13776 13777 #define VER_BITS 0xF0 13778 #define VERSION_6 0x60 13779 13780 static boolean_t 13781 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13782 ipaddr_t *dstp, ip_stack_t *ipst) 13783 { 13784 uint_t opt_len; 13785 ipha_t *ipha; 13786 ssize_t len; 13787 uint_t pkt_len; 13788 13789 ASSERT(ill != NULL); 13790 IP_STAT(ipst, ip_ipoptions); 13791 ipha = *iphapp; 13792 13793 #define rptr ((uchar_t *)ipha) 13794 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13795 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13797 freemsg(mp); 13798 return (B_FALSE); 13799 } 13800 13801 /* multiple mblk or too short */ 13802 pkt_len = ntohs(ipha->ipha_length); 13803 13804 /* Get the number of words of IP options in the IP header. */ 13805 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13806 if (opt_len) { 13807 /* IP Options present! Validate and process. */ 13808 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13809 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13810 goto done; 13811 } 13812 /* 13813 * Recompute complete header length and make sure we 13814 * have access to all of it. 13815 */ 13816 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13817 if (len > (mp->b_wptr - rptr)) { 13818 if (len > pkt_len) { 13819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13820 goto done; 13821 } 13822 if (!pullupmsg(mp, len)) { 13823 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13824 goto done; 13825 } 13826 ipha = (ipha_t *)mp->b_rptr; 13827 } 13828 /* 13829 * Go off to ip_rput_options which returns the next hop 13830 * destination address, which may have been affected 13831 * by source routing. 13832 */ 13833 IP_STAT(ipst, ip_opt); 13834 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13836 return (B_FALSE); 13837 } 13838 } 13839 *iphapp = ipha; 13840 return (B_TRUE); 13841 done: 13842 /* clear b_prev - used by ip_mroute_decap */ 13843 mp->b_prev = NULL; 13844 freemsg(mp); 13845 return (B_FALSE); 13846 #undef rptr 13847 } 13848 13849 /* 13850 * Deal with the fact that there is no ire for the destination. 13851 * The incoming ill (in_ill) is passed in to ip_newroute only 13852 * in the case of packets coming from mobile ip forward tunnel. 13853 * It must be null otherwise. 13854 */ 13855 static ire_t * 13856 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13857 ipaddr_t dst) 13858 { 13859 ipha_t *ipha; 13860 ill_t *ill; 13861 ire_t *ire; 13862 boolean_t check_multirt = B_FALSE; 13863 ip_stack_t *ipst; 13864 13865 ipha = (ipha_t *)mp->b_rptr; 13866 ill = (ill_t *)q->q_ptr; 13867 13868 ASSERT(ill != NULL); 13869 ipst = ill->ill_ipst; 13870 13871 /* 13872 * No IRE for this destination, so it can't be for us. 13873 * Unless we are forwarding, drop the packet. 13874 * We have to let source routed packets through 13875 * since we don't yet know if they are 'ping -l' 13876 * packets i.e. if they will go out over the 13877 * same interface as they came in on. 13878 */ 13879 if (ll_multicast) { 13880 freemsg(mp); 13881 return (NULL); 13882 } 13883 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13885 freemsg(mp); 13886 return (NULL); 13887 } 13888 13889 /* 13890 * Mark this packet as having originated externally. 13891 * 13892 * For non-forwarding code path, ire_send later double 13893 * checks this interface to see if it is still exists 13894 * post-ARP resolution. 13895 * 13896 * Also, IPQOS uses this to differentiate between 13897 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13898 * QOS packet processing in ip_wput_attach_llhdr(). 13899 * The QoS module can mark the b_band for a fastpath message 13900 * or the dl_priority field in a unitdata_req header for 13901 * CoS marking. This info can only be found in 13902 * ip_wput_attach_llhdr(). 13903 */ 13904 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13905 /* 13906 * Clear the indication that this may have a hardware checksum 13907 * as we are not using it 13908 */ 13909 DB_CKSUMFLAGS(mp) = 0; 13910 13911 if (in_ill != NULL) { 13912 /* 13913 * Now hand the packet to ip_newroute. 13914 */ 13915 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13916 return (NULL); 13917 } 13918 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13919 MBLK_GETLABEL(mp), ipst); 13920 13921 if (ire == NULL && check_multirt) { 13922 /* Let ip_newroute handle CGTP */ 13923 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13924 return (NULL); 13925 } 13926 13927 if (ire != NULL) 13928 return (ire); 13929 13930 mp->b_prev = mp->b_next = 0; 13931 /* send icmp unreachable */ 13932 q = WR(q); 13933 /* Sent by forwarding path, and router is global zone */ 13934 if (ip_source_routed(ipha, ipst)) { 13935 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13936 GLOBAL_ZONEID, ipst); 13937 } else { 13938 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13939 ipst); 13940 } 13941 13942 return (NULL); 13943 13944 } 13945 13946 /* 13947 * check ip header length and align it. 13948 */ 13949 static boolean_t 13950 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13951 { 13952 ssize_t len; 13953 ill_t *ill; 13954 ipha_t *ipha; 13955 13956 len = MBLKL(mp); 13957 13958 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13959 ill = (ill_t *)q->q_ptr; 13960 13961 if (!OK_32PTR(mp->b_rptr)) 13962 IP_STAT(ipst, ip_notaligned1); 13963 else 13964 IP_STAT(ipst, ip_notaligned2); 13965 /* Guard against bogus device drivers */ 13966 if (len < 0) { 13967 /* clear b_prev - used by ip_mroute_decap */ 13968 mp->b_prev = NULL; 13969 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13970 freemsg(mp); 13971 return (B_FALSE); 13972 } 13973 13974 if (ip_rput_pullups++ == 0) { 13975 ipha = (ipha_t *)mp->b_rptr; 13976 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13977 "ip_check_and_align_header: %s forced us to " 13978 " pullup pkt, hdr len %ld, hdr addr %p", 13979 ill->ill_name, len, ipha); 13980 } 13981 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13982 /* clear b_prev - used by ip_mroute_decap */ 13983 mp->b_prev = NULL; 13984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13985 freemsg(mp); 13986 return (B_FALSE); 13987 } 13988 } 13989 return (B_TRUE); 13990 } 13991 13992 ire_t * 13993 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13994 { 13995 ire_t *new_ire; 13996 ill_t *ire_ill; 13997 uint_t ifindex; 13998 ip_stack_t *ipst = ill->ill_ipst; 13999 boolean_t strict_check = B_FALSE; 14000 14001 /* 14002 * This packet came in on an interface other than the one associated 14003 * with the first ire we found for the destination address. We do 14004 * another ire lookup here, using the ingress ill, to see if the 14005 * interface is in an interface group. 14006 * As long as the ills belong to the same group, we don't consider 14007 * them to be arriving on the wrong interface. Thus, if the switch 14008 * is doing inbound load spreading, we won't drop packets when the 14009 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 14010 * for 'usesrc groups' where the destination address may belong to 14011 * another interface to allow multipathing to happen. 14012 * We also need to check for IPIF_UNNUMBERED point2point interfaces 14013 * where the local address may not be unique. In this case we were 14014 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 14015 * actually returned. The new lookup, which is more specific, should 14016 * only find the IRE_LOCAL associated with the ingress ill if one 14017 * exists. 14018 */ 14019 14020 if (ire->ire_ipversion == IPV4_VERSION) { 14021 if (ipst->ips_ip_strict_dst_multihoming) 14022 strict_check = B_TRUE; 14023 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14024 ill->ill_ipif, ALL_ZONES, NULL, 14025 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14026 } else { 14027 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14028 if (ipst->ips_ipv6_strict_dst_multihoming) 14029 strict_check = B_TRUE; 14030 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14031 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14032 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14033 } 14034 /* 14035 * If the same ire that was returned in ip_input() is found then this 14036 * is an indication that interface groups are in use. The packet 14037 * arrived on a different ill in the group than the one associated with 14038 * the destination address. If a different ire was found then the same 14039 * IP address must be hosted on multiple ills. This is possible with 14040 * unnumbered point2point interfaces. We switch to use this new ire in 14041 * order to have accurate interface statistics. 14042 */ 14043 if (new_ire != NULL) { 14044 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14045 ire_refrele(ire); 14046 ire = new_ire; 14047 } else { 14048 ire_refrele(new_ire); 14049 } 14050 return (ire); 14051 } else if ((ire->ire_rfq == NULL) && 14052 (ire->ire_ipversion == IPV4_VERSION)) { 14053 /* 14054 * The best match could have been the original ire which 14055 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14056 * the strict multihoming checks are irrelevant as we consider 14057 * local addresses hosted on lo0 to be interface agnostic. We 14058 * only expect a null ire_rfq on IREs which are associated with 14059 * lo0 hence we can return now. 14060 */ 14061 return (ire); 14062 } 14063 14064 /* 14065 * Chase pointers once and store locally. 14066 */ 14067 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14068 (ill_t *)(ire->ire_rfq->q_ptr); 14069 ifindex = ill->ill_usesrc_ifindex; 14070 14071 /* 14072 * Check if it's a legal address on the 'usesrc' interface. 14073 */ 14074 if ((ifindex != 0) && (ire_ill != NULL) && 14075 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14076 return (ire); 14077 } 14078 14079 /* 14080 * If the ip*_strict_dst_multihoming switch is on then we can 14081 * only accept this packet if the interface is marked as routing. 14082 */ 14083 if (!(strict_check)) 14084 return (ire); 14085 14086 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14087 ILLF_ROUTER) != 0) { 14088 return (ire); 14089 } 14090 14091 ire_refrele(ire); 14092 return (NULL); 14093 } 14094 14095 ire_t * 14096 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14097 { 14098 ipha_t *ipha; 14099 ipaddr_t ip_dst, ip_src; 14100 ire_t *src_ire = NULL; 14101 ill_t *stq_ill; 14102 uint_t hlen; 14103 uint_t pkt_len; 14104 uint32_t sum; 14105 queue_t *dev_q; 14106 boolean_t check_multirt = B_FALSE; 14107 ip_stack_t *ipst = ill->ill_ipst; 14108 14109 ipha = (ipha_t *)mp->b_rptr; 14110 14111 /* 14112 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14113 * The loopback address check for both src and dst has already 14114 * been checked in ip_input 14115 */ 14116 ip_dst = ntohl(dst); 14117 ip_src = ntohl(ipha->ipha_src); 14118 14119 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14120 IN_CLASSD(ip_src)) { 14121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14122 goto drop; 14123 } 14124 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14125 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14126 14127 if (src_ire != NULL) { 14128 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14129 goto drop; 14130 } 14131 14132 14133 /* No ire cache of nexthop. So first create one */ 14134 if (ire == NULL) { 14135 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14136 /* 14137 * We only come to ip_fast_forward if ip_cgtp_filter is 14138 * is not set. So upon return from ire_forward 14139 * check_multirt should remain as false. 14140 */ 14141 ASSERT(!check_multirt); 14142 if (ire == NULL) { 14143 /* An attempt was made to forward the packet */ 14144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14146 mp->b_prev = mp->b_next = 0; 14147 /* send icmp unreachable */ 14148 /* Sent by forwarding path, and router is global zone */ 14149 if (ip_source_routed(ipha, ipst)) { 14150 icmp_unreachable(ill->ill_wq, mp, 14151 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14152 ipst); 14153 } else { 14154 icmp_unreachable(ill->ill_wq, mp, 14155 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14156 ipst); 14157 } 14158 return (ire); 14159 } 14160 } 14161 14162 /* 14163 * Forwarding fastpath exception case: 14164 * If either of the follwoing case is true, we take 14165 * the slowpath 14166 * o forwarding is not enabled 14167 * o incoming and outgoing interface are the same, or the same 14168 * IPMP group 14169 * o corresponding ire is in incomplete state 14170 * o packet needs fragmentation 14171 * 14172 * The codeflow from here on is thus: 14173 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14174 */ 14175 pkt_len = ntohs(ipha->ipha_length); 14176 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14177 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14178 !(ill->ill_flags & ILLF_ROUTER) || 14179 (ill == stq_ill) || 14180 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14181 (ire->ire_nce == NULL) || 14182 (ire->ire_nce->nce_state != ND_REACHABLE) || 14183 (pkt_len > ire->ire_max_frag) || 14184 ipha->ipha_ttl <= 1) { 14185 ip_rput_process_forward(ill->ill_rq, mp, ire, 14186 ipha, ill, B_FALSE); 14187 return (ire); 14188 } 14189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14190 14191 DTRACE_PROBE4(ip4__forwarding__start, 14192 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14193 14194 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14195 ipst->ips_ipv4firewall_forwarding, 14196 ill, stq_ill, ipha, mp, mp, ipst); 14197 14198 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14199 14200 if (mp == NULL) 14201 goto drop; 14202 14203 mp->b_datap->db_struioun.cksum.flags = 0; 14204 /* Adjust the checksum to reflect the ttl decrement. */ 14205 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14206 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14207 ipha->ipha_ttl--; 14208 14209 dev_q = ire->ire_stq->q_next; 14210 if ((dev_q->q_next != NULL || 14211 dev_q->q_first != NULL) && !canput(dev_q)) { 14212 goto indiscard; 14213 } 14214 14215 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14216 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14217 14218 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14219 mblk_t *mpip = mp; 14220 14221 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14222 if (mp != NULL) { 14223 DTRACE_PROBE4(ip4__physical__out__start, 14224 ill_t *, NULL, ill_t *, stq_ill, 14225 ipha_t *, ipha, mblk_t *, mp); 14226 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14227 ipst->ips_ipv4firewall_physical_out, 14228 NULL, stq_ill, ipha, mp, mpip, ipst); 14229 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14230 mp); 14231 if (mp == NULL) 14232 goto drop; 14233 14234 UPDATE_IB_PKT_COUNT(ire); 14235 ire->ire_last_used_time = lbolt; 14236 BUMP_MIB(stq_ill->ill_ip_mib, 14237 ipIfStatsHCOutForwDatagrams); 14238 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14239 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14240 pkt_len); 14241 putnext(ire->ire_stq, mp); 14242 return (ire); 14243 } 14244 } 14245 14246 indiscard: 14247 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14248 drop: 14249 if (mp != NULL) 14250 freemsg(mp); 14251 if (src_ire != NULL) 14252 ire_refrele(src_ire); 14253 return (ire); 14254 14255 } 14256 14257 /* 14258 * This function is called in the forwarding slowpath, when 14259 * either the ire lacks the link-layer address, or the packet needs 14260 * further processing(eg. fragmentation), before transmission. 14261 */ 14262 14263 static void 14264 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14265 ill_t *ill, boolean_t ll_multicast) 14266 { 14267 ill_group_t *ill_group; 14268 ill_group_t *ire_group; 14269 queue_t *dev_q; 14270 ire_t *src_ire; 14271 ip_stack_t *ipst = ill->ill_ipst; 14272 14273 ASSERT(ire->ire_stq != NULL); 14274 14275 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14276 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14277 14278 if (ll_multicast != 0) { 14279 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14280 goto drop_pkt; 14281 } 14282 14283 /* 14284 * check if ipha_src is a broadcast address. Note that this 14285 * check is redundant when we get here from ip_fast_forward() 14286 * which has already done this check. However, since we can 14287 * also get here from ip_rput_process_broadcast() or, for 14288 * for the slow path through ip_fast_forward(), we perform 14289 * the check again for code-reusability 14290 */ 14291 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14292 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14293 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14294 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14295 if (src_ire != NULL) 14296 ire_refrele(src_ire); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14298 ip2dbg(("ip_rput_process_forward: Received packet with" 14299 " bad src/dst address on %s\n", ill->ill_name)); 14300 goto drop_pkt; 14301 } 14302 14303 ill_group = ill->ill_group; 14304 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14305 /* 14306 * Check if we want to forward this one at this time. 14307 * We allow source routed packets on a host provided that 14308 * they go out the same interface or same interface group 14309 * as they came in on. 14310 * 14311 * XXX To be quicker, we may wish to not chase pointers to 14312 * get the ILLF_ROUTER flag and instead store the 14313 * forwarding policy in the ire. An unfortunate 14314 * side-effect of that would be requiring an ire flush 14315 * whenever the ILLF_ROUTER flag changes. 14316 */ 14317 if (((ill->ill_flags & 14318 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14319 ILLF_ROUTER) == 0) && 14320 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14321 (ill_group != NULL && ill_group == ire_group)))) { 14322 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14323 if (ip_source_routed(ipha, ipst)) { 14324 q = WR(q); 14325 /* 14326 * Clear the indication that this may have 14327 * hardware checksum as we are not using it. 14328 */ 14329 DB_CKSUMFLAGS(mp) = 0; 14330 /* Sent by forwarding path, and router is global zone */ 14331 icmp_unreachable(q, mp, 14332 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14333 return; 14334 } 14335 goto drop_pkt; 14336 } 14337 14338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14339 14340 /* Packet is being forwarded. Turning off hwcksum flag. */ 14341 DB_CKSUMFLAGS(mp) = 0; 14342 if (ipst->ips_ip_g_send_redirects) { 14343 /* 14344 * Check whether the incoming interface and outgoing 14345 * interface is part of the same group. If so, 14346 * send redirects. 14347 * 14348 * Check the source address to see if it originated 14349 * on the same logical subnet it is going back out on. 14350 * If so, we should be able to send it a redirect. 14351 * Avoid sending a redirect if the destination 14352 * is directly connected (i.e., ipha_dst is the same 14353 * as ire_gateway_addr or the ire_addr of the 14354 * nexthop IRE_CACHE ), or if the packet was source 14355 * routed out this interface. 14356 */ 14357 ipaddr_t src, nhop; 14358 mblk_t *mp1; 14359 ire_t *nhop_ire = NULL; 14360 14361 /* 14362 * Check whether ire_rfq and q are from the same ill 14363 * or if they are not same, they at least belong 14364 * to the same group. If so, send redirects. 14365 */ 14366 if ((ire->ire_rfq == q || 14367 (ill_group != NULL && ill_group == ire_group)) && 14368 !ip_source_routed(ipha, ipst)) { 14369 14370 nhop = (ire->ire_gateway_addr != 0 ? 14371 ire->ire_gateway_addr : ire->ire_addr); 14372 14373 if (ipha->ipha_dst == nhop) { 14374 /* 14375 * We avoid sending a redirect if the 14376 * destination is directly connected 14377 * because it is possible that multiple 14378 * IP subnets may have been configured on 14379 * the link, and the source may not 14380 * be on the same subnet as ip destination, 14381 * even though they are on the same 14382 * physical link. 14383 */ 14384 goto sendit; 14385 } 14386 14387 src = ipha->ipha_src; 14388 14389 /* 14390 * We look up the interface ire for the nexthop, 14391 * to see if ipha_src is in the same subnet 14392 * as the nexthop. 14393 * 14394 * Note that, if, in the future, IRE_CACHE entries 14395 * are obsoleted, this lookup will not be needed, 14396 * as the ire passed to this function will be the 14397 * same as the nhop_ire computed below. 14398 */ 14399 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14400 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14401 0, NULL, MATCH_IRE_TYPE, ipst); 14402 14403 if (nhop_ire != NULL) { 14404 if ((src & nhop_ire->ire_mask) == 14405 (nhop & nhop_ire->ire_mask)) { 14406 /* 14407 * The source is directly connected. 14408 * Just copy the ip header (which is 14409 * in the first mblk) 14410 */ 14411 mp1 = copyb(mp); 14412 if (mp1 != NULL) { 14413 icmp_send_redirect(WR(q), mp1, 14414 nhop, ipst); 14415 } 14416 } 14417 ire_refrele(nhop_ire); 14418 } 14419 } 14420 } 14421 sendit: 14422 dev_q = ire->ire_stq->q_next; 14423 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14424 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14425 freemsg(mp); 14426 return; 14427 } 14428 14429 ip_rput_forward(ire, ipha, mp, ill); 14430 return; 14431 14432 drop_pkt: 14433 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14434 freemsg(mp); 14435 } 14436 14437 ire_t * 14438 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14439 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14440 { 14441 queue_t *q; 14442 uint16_t hcksumflags; 14443 ip_stack_t *ipst = ill->ill_ipst; 14444 14445 q = *qp; 14446 14447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14448 14449 /* 14450 * Clear the indication that this may have hardware 14451 * checksum as we are not using it for forwarding. 14452 */ 14453 hcksumflags = DB_CKSUMFLAGS(mp); 14454 DB_CKSUMFLAGS(mp) = 0; 14455 14456 /* 14457 * Directed broadcast forwarding: if the packet came in over a 14458 * different interface then it is routed out over we can forward it. 14459 */ 14460 if (ipha->ipha_protocol == IPPROTO_TCP) { 14461 ire_refrele(ire); 14462 freemsg(mp); 14463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14464 return (NULL); 14465 } 14466 /* 14467 * For multicast we have set dst to be INADDR_BROADCAST 14468 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14469 * only for broadcast packets. 14470 */ 14471 if (!CLASSD(ipha->ipha_dst)) { 14472 ire_t *new_ire; 14473 ipif_t *ipif; 14474 /* 14475 * For ill groups, as the switch duplicates broadcasts 14476 * across all the ports, we need to filter out and 14477 * send up only one copy. There is one copy for every 14478 * broadcast address on each ill. Thus, we look for a 14479 * specific IRE on this ill and look at IRE_MARK_NORECV 14480 * later to see whether this ill is eligible to receive 14481 * them or not. ill_nominate_bcast_rcv() nominates only 14482 * one set of IREs for receiving. 14483 */ 14484 14485 ipif = ipif_get_next_ipif(NULL, ill); 14486 if (ipif == NULL) { 14487 ire_refrele(ire); 14488 freemsg(mp); 14489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14490 return (NULL); 14491 } 14492 new_ire = ire_ctable_lookup(dst, 0, 0, 14493 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14494 ipif_refrele(ipif); 14495 14496 if (new_ire != NULL) { 14497 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14498 ire_refrele(ire); 14499 ire_refrele(new_ire); 14500 freemsg(mp); 14501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14502 return (NULL); 14503 } 14504 /* 14505 * In the special case of multirouted broadcast 14506 * packets, we unconditionally need to "gateway" 14507 * them to the appropriate interface here. 14508 * In the normal case, this cannot happen, because 14509 * there is no broadcast IRE tagged with the 14510 * RTF_MULTIRT flag. 14511 */ 14512 if (new_ire->ire_flags & RTF_MULTIRT) { 14513 ire_refrele(new_ire); 14514 if (ire->ire_rfq != NULL) { 14515 q = ire->ire_rfq; 14516 *qp = q; 14517 } 14518 } else { 14519 ire_refrele(ire); 14520 ire = new_ire; 14521 } 14522 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14523 if (!ipst->ips_ip_g_forward_directed_bcast) { 14524 /* 14525 * Free the message if 14526 * ip_g_forward_directed_bcast is turned 14527 * off for non-local broadcast. 14528 */ 14529 ire_refrele(ire); 14530 freemsg(mp); 14531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14532 return (NULL); 14533 } 14534 } else { 14535 /* 14536 * This CGTP packet successfully passed the 14537 * CGTP filter, but the related CGTP 14538 * broadcast IRE has not been found, 14539 * meaning that the redundant ipif is 14540 * probably down. However, if we discarded 14541 * this packet, its duplicate would be 14542 * filtered out by the CGTP filter so none 14543 * of them would get through. So we keep 14544 * going with this one. 14545 */ 14546 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14547 if (ire->ire_rfq != NULL) { 14548 q = ire->ire_rfq; 14549 *qp = q; 14550 } 14551 } 14552 } 14553 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14554 /* 14555 * Verify that there are not more then one 14556 * IRE_BROADCAST with this broadcast address which 14557 * has ire_stq set. 14558 * TODO: simplify, loop over all IRE's 14559 */ 14560 ire_t *ire1; 14561 int num_stq = 0; 14562 mblk_t *mp1; 14563 14564 /* Find the first one with ire_stq set */ 14565 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14566 for (ire1 = ire; ire1 && 14567 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14568 ire1 = ire1->ire_next) 14569 ; 14570 if (ire1) { 14571 ire_refrele(ire); 14572 ire = ire1; 14573 IRE_REFHOLD(ire); 14574 } 14575 14576 /* Check if there are additional ones with stq set */ 14577 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14578 if (ire->ire_addr != ire1->ire_addr) 14579 break; 14580 if (ire1->ire_stq) { 14581 num_stq++; 14582 break; 14583 } 14584 } 14585 rw_exit(&ire->ire_bucket->irb_lock); 14586 if (num_stq == 1 && ire->ire_stq != NULL) { 14587 ip1dbg(("ip_rput_process_broadcast: directed " 14588 "broadcast to 0x%x\n", 14589 ntohl(ire->ire_addr))); 14590 mp1 = copymsg(mp); 14591 if (mp1) { 14592 switch (ipha->ipha_protocol) { 14593 case IPPROTO_UDP: 14594 ip_udp_input(q, mp1, ipha, ire, ill); 14595 break; 14596 default: 14597 ip_proto_input(q, mp1, ipha, ire, ill); 14598 break; 14599 } 14600 } 14601 /* 14602 * Adjust ttl to 2 (1+1 - the forward engine 14603 * will decrement it by one. 14604 */ 14605 if (ip_csum_hdr(ipha)) { 14606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14607 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14608 freemsg(mp); 14609 ire_refrele(ire); 14610 return (NULL); 14611 } 14612 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14613 ipha->ipha_hdr_checksum = 0; 14614 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14615 ip_rput_process_forward(q, mp, ire, ipha, 14616 ill, ll_multicast); 14617 ire_refrele(ire); 14618 return (NULL); 14619 } 14620 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14621 ntohl(ire->ire_addr))); 14622 } 14623 14624 14625 /* Restore any hardware checksum flags */ 14626 DB_CKSUMFLAGS(mp) = hcksumflags; 14627 return (ire); 14628 } 14629 14630 /* ARGSUSED */ 14631 static boolean_t 14632 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14633 int *ll_multicast, ipaddr_t *dstp) 14634 { 14635 ip_stack_t *ipst = ill->ill_ipst; 14636 14637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14638 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14639 ntohs(ipha->ipha_length)); 14640 14641 /* 14642 * Forward packets only if we have joined the allmulti 14643 * group on this interface. 14644 */ 14645 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14646 int retval; 14647 14648 /* 14649 * Clear the indication that this may have hardware 14650 * checksum as we are not using it. 14651 */ 14652 DB_CKSUMFLAGS(mp) = 0; 14653 retval = ip_mforward(ill, ipha, mp); 14654 /* ip_mforward updates mib variables if needed */ 14655 /* clear b_prev - used by ip_mroute_decap */ 14656 mp->b_prev = NULL; 14657 14658 switch (retval) { 14659 case 0: 14660 /* 14661 * pkt is okay and arrived on phyint. 14662 * 14663 * If we are running as a multicast router 14664 * we need to see all IGMP and/or PIM packets. 14665 */ 14666 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14667 (ipha->ipha_protocol == IPPROTO_PIM)) { 14668 goto done; 14669 } 14670 break; 14671 case -1: 14672 /* pkt is mal-formed, toss it */ 14673 goto drop_pkt; 14674 case 1: 14675 /* pkt is okay and arrived on a tunnel */ 14676 /* 14677 * If we are running a multicast router 14678 * we need to see all igmp packets. 14679 */ 14680 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14681 *dstp = INADDR_BROADCAST; 14682 *ll_multicast = 1; 14683 return (B_FALSE); 14684 } 14685 14686 goto drop_pkt; 14687 } 14688 } 14689 14690 ILM_WALKER_HOLD(ill); 14691 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14692 /* 14693 * This might just be caused by the fact that 14694 * multiple IP Multicast addresses map to the same 14695 * link layer multicast - no need to increment counter! 14696 */ 14697 ILM_WALKER_RELE(ill); 14698 freemsg(mp); 14699 return (B_TRUE); 14700 } 14701 ILM_WALKER_RELE(ill); 14702 done: 14703 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14704 /* 14705 * This assumes the we deliver to all streams for multicast 14706 * and broadcast packets. 14707 */ 14708 *dstp = INADDR_BROADCAST; 14709 *ll_multicast = 1; 14710 return (B_FALSE); 14711 drop_pkt: 14712 ip2dbg(("ip_rput: drop pkt\n")); 14713 freemsg(mp); 14714 return (B_TRUE); 14715 } 14716 14717 static boolean_t 14718 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14719 int *ll_multicast, mblk_t **mpp) 14720 { 14721 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14722 boolean_t must_copy = B_FALSE; 14723 struct iocblk *iocp; 14724 ipha_t *ipha; 14725 ip_stack_t *ipst = ill->ill_ipst; 14726 14727 #define rptr ((uchar_t *)ipha) 14728 14729 first_mp = *first_mpp; 14730 mp = *mpp; 14731 14732 ASSERT(first_mp == mp); 14733 14734 /* 14735 * if db_ref > 1 then copymsg and free original. Packet may be 14736 * changed and do not want other entity who has a reference to this 14737 * message to trip over the changes. This is a blind change because 14738 * trying to catch all places that might change packet is too 14739 * difficult (since it may be a module above this one) 14740 * 14741 * This corresponds to the non-fast path case. We walk down the full 14742 * chain in this case, and check the db_ref count of all the dblks, 14743 * and do a copymsg if required. It is possible that the db_ref counts 14744 * of the data blocks in the mblk chain can be different. 14745 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14746 * count of 1, followed by a M_DATA block with a ref count of 2, if 14747 * 'snoop' is running. 14748 */ 14749 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14750 if (mp1->b_datap->db_ref > 1) { 14751 must_copy = B_TRUE; 14752 break; 14753 } 14754 } 14755 14756 if (must_copy) { 14757 mp1 = copymsg(mp); 14758 if (mp1 == NULL) { 14759 for (mp1 = mp; mp1 != NULL; 14760 mp1 = mp1->b_cont) { 14761 mp1->b_next = NULL; 14762 mp1->b_prev = NULL; 14763 } 14764 freemsg(mp); 14765 if (ill != NULL) { 14766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14767 } else { 14768 BUMP_MIB(&ipst->ips_ip_mib, 14769 ipIfStatsInDiscards); 14770 } 14771 return (B_TRUE); 14772 } 14773 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14774 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14775 /* Copy b_prev - used by ip_mroute_decap */ 14776 to_mp->b_prev = from_mp->b_prev; 14777 from_mp->b_prev = NULL; 14778 } 14779 *first_mpp = first_mp = mp1; 14780 freemsg(mp); 14781 mp = mp1; 14782 *mpp = mp1; 14783 } 14784 14785 ipha = (ipha_t *)mp->b_rptr; 14786 14787 /* 14788 * previous code has a case for M_DATA. 14789 * We want to check how that happens. 14790 */ 14791 ASSERT(first_mp->b_datap->db_type != M_DATA); 14792 switch (first_mp->b_datap->db_type) { 14793 case M_PROTO: 14794 case M_PCPROTO: 14795 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14796 DL_UNITDATA_IND) { 14797 /* Go handle anything other than data elsewhere. */ 14798 ip_rput_dlpi(q, mp); 14799 return (B_TRUE); 14800 } 14801 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14802 /* Ditch the DLPI header. */ 14803 mp1 = mp->b_cont; 14804 ASSERT(first_mp == mp); 14805 *first_mpp = mp1; 14806 freeb(mp); 14807 *mpp = mp1; 14808 return (B_FALSE); 14809 case M_IOCACK: 14810 ip1dbg(("got iocack ")); 14811 iocp = (struct iocblk *)mp->b_rptr; 14812 switch (iocp->ioc_cmd) { 14813 case DL_IOC_HDR_INFO: 14814 ill = (ill_t *)q->q_ptr; 14815 ill_fastpath_ack(ill, mp); 14816 return (B_TRUE); 14817 case SIOCSTUNPARAM: 14818 case OSIOCSTUNPARAM: 14819 /* Go through qwriter_ip */ 14820 break; 14821 case SIOCGTUNPARAM: 14822 case OSIOCGTUNPARAM: 14823 ip_rput_other(NULL, q, mp, NULL); 14824 return (B_TRUE); 14825 default: 14826 putnext(q, mp); 14827 return (B_TRUE); 14828 } 14829 /* FALLTHRU */ 14830 case M_ERROR: 14831 case M_HANGUP: 14832 /* 14833 * Since this is on the ill stream we unconditionally 14834 * bump up the refcount 14835 */ 14836 ill_refhold(ill); 14837 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14838 return (B_TRUE); 14839 case M_CTL: 14840 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14841 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14842 IPHADA_M_CTL)) { 14843 /* 14844 * It's an IPsec accelerated packet. 14845 * Make sure that the ill from which we received the 14846 * packet has enabled IPsec hardware acceleration. 14847 */ 14848 if (!(ill->ill_capabilities & 14849 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14850 /* IPsec kstats: bean counter */ 14851 freemsg(mp); 14852 return (B_TRUE); 14853 } 14854 14855 /* 14856 * Make mp point to the mblk following the M_CTL, 14857 * then process according to type of mp. 14858 * After this processing, first_mp will point to 14859 * the data-attributes and mp to the pkt following 14860 * the M_CTL. 14861 */ 14862 mp = first_mp->b_cont; 14863 if (mp == NULL) { 14864 freemsg(first_mp); 14865 return (B_TRUE); 14866 } 14867 /* 14868 * A Hardware Accelerated packet can only be M_DATA 14869 * ESP or AH packet. 14870 */ 14871 if (mp->b_datap->db_type != M_DATA) { 14872 /* non-M_DATA IPsec accelerated packet */ 14873 IPSECHW_DEBUG(IPSECHW_PKT, 14874 ("non-M_DATA IPsec accelerated pkt\n")); 14875 freemsg(first_mp); 14876 return (B_TRUE); 14877 } 14878 ipha = (ipha_t *)mp->b_rptr; 14879 if (ipha->ipha_protocol != IPPROTO_AH && 14880 ipha->ipha_protocol != IPPROTO_ESP) { 14881 IPSECHW_DEBUG(IPSECHW_PKT, 14882 ("non-M_DATA IPsec accelerated pkt\n")); 14883 freemsg(first_mp); 14884 return (B_TRUE); 14885 } 14886 *mpp = mp; 14887 return (B_FALSE); 14888 } 14889 putnext(q, mp); 14890 return (B_TRUE); 14891 case M_IOCNAK: 14892 ip1dbg(("got iocnak ")); 14893 iocp = (struct iocblk *)mp->b_rptr; 14894 switch (iocp->ioc_cmd) { 14895 case SIOCSTUNPARAM: 14896 case OSIOCSTUNPARAM: 14897 /* 14898 * Since this is on the ill stream we unconditionally 14899 * bump up the refcount 14900 */ 14901 ill_refhold(ill); 14902 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14903 return (B_TRUE); 14904 case DL_IOC_HDR_INFO: 14905 case SIOCGTUNPARAM: 14906 case OSIOCGTUNPARAM: 14907 ip_rput_other(NULL, q, mp, NULL); 14908 return (B_TRUE); 14909 default: 14910 break; 14911 } 14912 /* FALLTHRU */ 14913 default: 14914 putnext(q, mp); 14915 return (B_TRUE); 14916 } 14917 } 14918 14919 /* Read side put procedure. Packets coming from the wire arrive here. */ 14920 void 14921 ip_rput(queue_t *q, mblk_t *mp) 14922 { 14923 ill_t *ill = (ill_t *)q->q_ptr; 14924 ip_stack_t *ipst = ill->ill_ipst; 14925 union DL_primitives *dl; 14926 14927 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14928 14929 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14930 /* 14931 * If things are opening or closing, only accept high-priority 14932 * DLPI messages. (On open ill->ill_ipif has not yet been 14933 * created; on close, things hanging off the ill may have been 14934 * freed already.) 14935 */ 14936 dl = (union DL_primitives *)mp->b_rptr; 14937 if (DB_TYPE(mp) != M_PCPROTO || 14938 dl->dl_primitive == DL_UNITDATA_IND) { 14939 /* 14940 * SIOC[GS]TUNPARAM ioctls can come here. 14941 */ 14942 inet_freemsg(mp); 14943 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14944 "ip_rput_end: q %p (%S)", q, "uninit"); 14945 return; 14946 } 14947 } 14948 14949 /* 14950 * if db_ref > 1 then copymsg and free original. Packet may be 14951 * changed and we do not want the other entity who has a reference to 14952 * this message to trip over the changes. This is a blind change because 14953 * trying to catch all places that might change the packet is too 14954 * difficult. 14955 * 14956 * This corresponds to the fast path case, where we have a chain of 14957 * M_DATA mblks. We check the db_ref count of only the 1st data block 14958 * in the mblk chain. There doesn't seem to be a reason why a device 14959 * driver would send up data with varying db_ref counts in the mblk 14960 * chain. In any case the Fast path is a private interface, and our 14961 * drivers don't do such a thing. Given the above assumption, there is 14962 * no need to walk down the entire mblk chain (which could have a 14963 * potential performance problem) 14964 */ 14965 if (mp->b_datap->db_ref > 1) { 14966 mblk_t *mp1; 14967 boolean_t adjusted = B_FALSE; 14968 IP_STAT(ipst, ip_db_ref); 14969 14970 /* 14971 * The IP_RECVSLLA option depends on having the link layer 14972 * header. First check that: 14973 * a> the underlying device is of type ether, since this 14974 * option is currently supported only over ethernet. 14975 * b> there is enough room to copy over the link layer header. 14976 * 14977 * Once the checks are done, adjust rptr so that the link layer 14978 * header will be copied via copymsg. Note that, IFT_ETHER may 14979 * be returned by some non-ethernet drivers but in this case the 14980 * second check will fail. 14981 */ 14982 if (ill->ill_type == IFT_ETHER && 14983 (mp->b_rptr - mp->b_datap->db_base) >= 14984 sizeof (struct ether_header)) { 14985 mp->b_rptr -= sizeof (struct ether_header); 14986 adjusted = B_TRUE; 14987 } 14988 mp1 = copymsg(mp); 14989 if (mp1 == NULL) { 14990 mp->b_next = NULL; 14991 /* clear b_prev - used by ip_mroute_decap */ 14992 mp->b_prev = NULL; 14993 freemsg(mp); 14994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14995 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14996 "ip_rput_end: q %p (%S)", q, "copymsg"); 14997 return; 14998 } 14999 if (adjusted) { 15000 /* 15001 * Copy is done. Restore the pointer in the _new_ mblk 15002 */ 15003 mp1->b_rptr += sizeof (struct ether_header); 15004 } 15005 /* Copy b_prev - used by ip_mroute_decap */ 15006 mp1->b_prev = mp->b_prev; 15007 mp->b_prev = NULL; 15008 freemsg(mp); 15009 mp = mp1; 15010 } 15011 15012 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15013 "ip_rput_end: q %p (%S)", q, "end"); 15014 15015 ip_input(ill, NULL, mp, NULL); 15016 } 15017 15018 /* 15019 * Direct read side procedure capable of dealing with chains. GLDv3 based 15020 * drivers call this function directly with mblk chains while STREAMS 15021 * read side procedure ip_rput() calls this for single packet with ip_ring 15022 * set to NULL to process one packet at a time. 15023 * 15024 * The ill will always be valid if this function is called directly from 15025 * the driver. 15026 * 15027 * If ip_input() is called from GLDv3: 15028 * 15029 * - This must be a non-VLAN IP stream. 15030 * - 'mp' is either an untagged or a special priority-tagged packet. 15031 * - Any VLAN tag that was in the MAC header has been stripped. 15032 * 15033 * If the IP header in packet is not 32-bit aligned, every message in the 15034 * chain will be aligned before further operations. This is required on SPARC 15035 * platform. 15036 */ 15037 /* ARGSUSED */ 15038 void 15039 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15040 struct mac_header_info_s *mhip) 15041 { 15042 ipaddr_t dst = NULL; 15043 ipaddr_t prev_dst; 15044 ire_t *ire = NULL; 15045 ipha_t *ipha; 15046 uint_t pkt_len; 15047 ssize_t len; 15048 uint_t opt_len; 15049 int ll_multicast; 15050 int cgtp_flt_pkt; 15051 queue_t *q = ill->ill_rq; 15052 squeue_t *curr_sqp = NULL; 15053 mblk_t *head = NULL; 15054 mblk_t *tail = NULL; 15055 mblk_t *first_mp; 15056 mblk_t *mp; 15057 mblk_t *dmp; 15058 int cnt = 0; 15059 ip_stack_t *ipst = ill->ill_ipst; 15060 15061 ASSERT(mp_chain != NULL); 15062 ASSERT(ill != NULL); 15063 15064 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15065 15066 #define rptr ((uchar_t *)ipha) 15067 15068 while (mp_chain != NULL) { 15069 first_mp = mp = mp_chain; 15070 mp_chain = mp_chain->b_next; 15071 mp->b_next = NULL; 15072 ll_multicast = 0; 15073 15074 /* 15075 * We do ire caching from one iteration to 15076 * another. In the event the packet chain contains 15077 * all packets from the same dst, this caching saves 15078 * an ire_cache_lookup for each of the succeeding 15079 * packets in a packet chain. 15080 */ 15081 prev_dst = dst; 15082 15083 /* 15084 * Check and align the IP header. 15085 */ 15086 if (DB_TYPE(mp) == M_DATA) { 15087 dmp = mp; 15088 } else if (DB_TYPE(mp) == M_PROTO && 15089 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15090 dmp = mp->b_cont; 15091 } else { 15092 dmp = NULL; 15093 } 15094 if (dmp != NULL) { 15095 /* 15096 * IP header ptr not aligned? 15097 * OR IP header not complete in first mblk 15098 */ 15099 if (!OK_32PTR(dmp->b_rptr) || 15100 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15101 if (!ip_check_and_align_header(q, dmp, ipst)) 15102 continue; 15103 } 15104 } 15105 15106 /* 15107 * ip_input fast path 15108 */ 15109 15110 /* mblk type is not M_DATA */ 15111 if (DB_TYPE(mp) != M_DATA) { 15112 if (ip_rput_process_notdata(q, &first_mp, ill, 15113 &ll_multicast, &mp)) 15114 continue; 15115 } 15116 15117 /* Make sure its an M_DATA and that its aligned */ 15118 ASSERT(DB_TYPE(mp) == M_DATA); 15119 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15120 15121 ipha = (ipha_t *)mp->b_rptr; 15122 len = mp->b_wptr - rptr; 15123 pkt_len = ntohs(ipha->ipha_length); 15124 15125 /* 15126 * We must count all incoming packets, even if they end 15127 * up being dropped later on. 15128 */ 15129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15130 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15131 15132 /* multiple mblk or too short */ 15133 len -= pkt_len; 15134 if (len != 0) { 15135 /* 15136 * Make sure we have data length consistent 15137 * with the IP header. 15138 */ 15139 if (mp->b_cont == NULL) { 15140 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15141 BUMP_MIB(ill->ill_ip_mib, 15142 ipIfStatsInHdrErrors); 15143 ip2dbg(("ip_input: drop pkt\n")); 15144 freemsg(mp); 15145 continue; 15146 } 15147 mp->b_wptr = rptr + pkt_len; 15148 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15149 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15150 BUMP_MIB(ill->ill_ip_mib, 15151 ipIfStatsInHdrErrors); 15152 ip2dbg(("ip_input: drop pkt\n")); 15153 freemsg(mp); 15154 continue; 15155 } 15156 (void) adjmsg(mp, -len); 15157 IP_STAT(ipst, ip_multimblk3); 15158 } 15159 } 15160 15161 /* Obtain the dst of the current packet */ 15162 dst = ipha->ipha_dst; 15163 15164 if (IP_LOOPBACK_ADDR(dst) || 15165 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15166 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15167 cmn_err(CE_CONT, "dst %X src %X\n", 15168 dst, ipha->ipha_src); 15169 freemsg(mp); 15170 continue; 15171 } 15172 15173 /* 15174 * The event for packets being received from a 'physical' 15175 * interface is placed after validation of the source and/or 15176 * destination address as being local so that packets can be 15177 * redirected to loopback addresses using ipnat. 15178 */ 15179 DTRACE_PROBE4(ip4__physical__in__start, 15180 ill_t *, ill, ill_t *, NULL, 15181 ipha_t *, ipha, mblk_t *, first_mp); 15182 15183 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15184 ipst->ips_ipv4firewall_physical_in, 15185 ill, NULL, ipha, first_mp, mp, ipst); 15186 15187 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15188 15189 if (first_mp == NULL) { 15190 continue; 15191 } 15192 dst = ipha->ipha_dst; 15193 15194 /* 15195 * Attach any necessary label information to 15196 * this packet 15197 */ 15198 if (is_system_labeled() && 15199 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15201 freemsg(mp); 15202 continue; 15203 } 15204 15205 /* 15206 * Reuse the cached ire only if the ipha_dst of the previous 15207 * packet is the same as the current packet AND it is not 15208 * INADDR_ANY. 15209 */ 15210 if (!(dst == prev_dst && dst != INADDR_ANY) && 15211 (ire != NULL)) { 15212 ire_refrele(ire); 15213 ire = NULL; 15214 } 15215 opt_len = ipha->ipha_version_and_hdr_length - 15216 IP_SIMPLE_HDR_VERSION; 15217 15218 /* 15219 * Check to see if we can take the fastpath. 15220 * That is possible if the following conditions are met 15221 * o Tsol disabled 15222 * o CGTP disabled 15223 * o ipp_action_count is 0 15224 * o Mobile IP not running 15225 * o no options in the packet 15226 * o not a RSVP packet 15227 * o not a multicast packet 15228 */ 15229 if (!is_system_labeled() && 15230 !ip_cgtp_filter && ipp_action_count == 0 && 15231 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15232 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15233 !ll_multicast && !CLASSD(dst)) { 15234 if (ire == NULL) 15235 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15236 ipst); 15237 15238 /* incoming packet is for forwarding */ 15239 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15240 ire = ip_fast_forward(ire, dst, ill, mp); 15241 continue; 15242 } 15243 /* incoming packet is for local consumption */ 15244 if (ire->ire_type & IRE_LOCAL) 15245 goto local; 15246 } 15247 15248 /* 15249 * Disable ire caching for anything more complex 15250 * than the simple fast path case we checked for above. 15251 */ 15252 if (ire != NULL) { 15253 ire_refrele(ire); 15254 ire = NULL; 15255 } 15256 15257 /* Full-blown slow path */ 15258 if (opt_len != 0) { 15259 if (len != 0) 15260 IP_STAT(ipst, ip_multimblk4); 15261 else 15262 IP_STAT(ipst, ip_ipoptions); 15263 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15264 &dst, ipst)) 15265 continue; 15266 } 15267 15268 /* 15269 * Invoke the CGTP (multirouting) filtering module to process 15270 * the incoming packet. Packets identified as duplicates 15271 * must be discarded. Filtering is active only if the 15272 * the ip_cgtp_filter ndd variable is non-zero. 15273 * 15274 * Only applies to the shared stack since the filter_ops 15275 * do not carry an ip_stack_t or zoneid. 15276 */ 15277 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15278 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15279 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15280 cgtp_flt_pkt = 15281 ip_cgtp_filter_ops->cfo_filter(q, mp); 15282 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15283 freemsg(first_mp); 15284 continue; 15285 } 15286 } 15287 15288 /* 15289 * If rsvpd is running, let RSVP daemon handle its processing 15290 * and forwarding of RSVP multicast/unicast packets. 15291 * If rsvpd is not running but mrouted is running, RSVP 15292 * multicast packets are forwarded as multicast traffic 15293 * and RSVP unicast packets are forwarded by unicast router. 15294 * If neither rsvpd nor mrouted is running, RSVP multicast 15295 * packets are not forwarded, but the unicast packets are 15296 * forwarded like unicast traffic. 15297 */ 15298 if (ipha->ipha_protocol == IPPROTO_RSVP && 15299 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15300 NULL) { 15301 /* RSVP packet and rsvpd running. Treat as ours */ 15302 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15303 /* 15304 * This assumes that we deliver to all streams for 15305 * multicast and broadcast packets. 15306 * We have to force ll_multicast to 1 to handle the 15307 * M_DATA messages passed in from ip_mroute_decap. 15308 */ 15309 dst = INADDR_BROADCAST; 15310 ll_multicast = 1; 15311 } else if (CLASSD(dst)) { 15312 /* packet is multicast */ 15313 mp->b_next = NULL; 15314 if (ip_rput_process_multicast(q, mp, ill, ipha, 15315 &ll_multicast, &dst)) 15316 continue; 15317 } 15318 15319 15320 /* 15321 * Check if the packet is coming from the Mobile IP 15322 * forward tunnel interface 15323 */ 15324 if (ill->ill_srcif_refcnt > 0) { 15325 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15326 NULL, ill, MATCH_IRE_TYPE); 15327 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15328 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15329 15330 /* We need to resolve the link layer info */ 15331 ire_refrele(ire); 15332 ire = NULL; 15333 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15334 ll_multicast, dst); 15335 continue; 15336 } 15337 } 15338 15339 if (ire == NULL) { 15340 ire = ire_cache_lookup(dst, ALL_ZONES, 15341 MBLK_GETLABEL(mp), ipst); 15342 } 15343 15344 /* 15345 * If mipagent is running and reverse tunnel is created as per 15346 * mobile node request, then any packet coming through the 15347 * incoming interface from the mobile-node, should be reverse 15348 * tunneled to it's home agent except those that are destined 15349 * to foreign agent only. 15350 * This needs source address based ire lookup. The routing 15351 * entries for source address based lookup are only created by 15352 * mipagent program only when a reverse tunnel is created. 15353 * Reference : RFC2002, RFC2344 15354 */ 15355 if (ill->ill_mrtun_refcnt > 0) { 15356 ipaddr_t srcaddr; 15357 ire_t *tmp_ire; 15358 15359 tmp_ire = ire; /* Save, we might need it later */ 15360 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15361 ire->ire_type != IRE_BROADCAST)) { 15362 srcaddr = ipha->ipha_src; 15363 ire = ire_mrtun_lookup(srcaddr, ill); 15364 if (ire != NULL) { 15365 /* 15366 * Should not be getting iphada packet 15367 * here. we should only get those for 15368 * IRE_LOCAL traffic, excluded above. 15369 * Fail-safe (drop packet) in the event 15370 * hardware is misbehaving. 15371 */ 15372 if (first_mp != mp) { 15373 /* IPsec KSTATS: beancount me */ 15374 freemsg(first_mp); 15375 } else { 15376 /* 15377 * This packet must be forwarded 15378 * to Reverse Tunnel 15379 */ 15380 ip_mrtun_forward(ire, ill, mp); 15381 } 15382 ire_refrele(ire); 15383 ire = NULL; 15384 if (tmp_ire != NULL) { 15385 ire_refrele(tmp_ire); 15386 tmp_ire = NULL; 15387 } 15388 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15389 "ip_input_end: q %p (%S)", 15390 q, "uninit"); 15391 continue; 15392 } 15393 } 15394 /* 15395 * If this packet is from a non-mobilenode or a 15396 * mobile-node which does not request reverse 15397 * tunnel service 15398 */ 15399 ire = tmp_ire; 15400 } 15401 15402 15403 /* 15404 * If we reach here that means the incoming packet satisfies 15405 * one of the following conditions: 15406 * - packet is from a mobile node which does not request 15407 * reverse tunnel 15408 * - packet is from a non-mobile node, which is the most 15409 * common case 15410 * - packet is from a reverse tunnel enabled mobile node 15411 * and destined to foreign agent only 15412 */ 15413 15414 if (ire == NULL) { 15415 /* 15416 * No IRE for this destination, so it can't be for us. 15417 * Unless we are forwarding, drop the packet. 15418 * We have to let source routed packets through 15419 * since we don't yet know if they are 'ping -l' 15420 * packets i.e. if they will go out over the 15421 * same interface as they came in on. 15422 */ 15423 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15424 if (ire == NULL) 15425 continue; 15426 } 15427 15428 /* 15429 * Broadcast IRE may indicate either broadcast or 15430 * multicast packet 15431 */ 15432 if (ire->ire_type == IRE_BROADCAST) { 15433 /* 15434 * Skip broadcast checks if packet is UDP multicast; 15435 * we'd rather not enter ip_rput_process_broadcast() 15436 * unless the packet is broadcast for real, since 15437 * that routine is a no-op for multicast. 15438 */ 15439 if (ipha->ipha_protocol != IPPROTO_UDP || 15440 !CLASSD(ipha->ipha_dst)) { 15441 ire = ip_rput_process_broadcast(&q, mp, 15442 ire, ipha, ill, dst, cgtp_flt_pkt, 15443 ll_multicast); 15444 if (ire == NULL) 15445 continue; 15446 } 15447 } else if (ire->ire_stq != NULL) { 15448 /* fowarding? */ 15449 ip_rput_process_forward(q, mp, ire, ipha, ill, 15450 ll_multicast); 15451 /* ip_rput_process_forward consumed the packet */ 15452 continue; 15453 } 15454 15455 local: 15456 /* 15457 * If the queue in the ire is different to the ingress queue 15458 * then we need to check to see if we can accept the packet. 15459 * Note that for multicast packets and broadcast packets sent 15460 * to a broadcast address which is shared between multiple 15461 * interfaces we should not do this since we just got a random 15462 * broadcast ire. 15463 */ 15464 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15465 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15466 ill)) == NULL) { 15467 /* Drop packet */ 15468 BUMP_MIB(ill->ill_ip_mib, 15469 ipIfStatsForwProhibits); 15470 freemsg(mp); 15471 continue; 15472 } 15473 if (ire->ire_rfq != NULL) 15474 q = ire->ire_rfq; 15475 } 15476 15477 switch (ipha->ipha_protocol) { 15478 case IPPROTO_TCP: 15479 ASSERT(first_mp == mp); 15480 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15481 mp, 0, q, ip_ring)) != NULL) { 15482 if (curr_sqp == NULL) { 15483 curr_sqp = GET_SQUEUE(mp); 15484 ASSERT(cnt == 0); 15485 cnt++; 15486 head = tail = mp; 15487 } else if (curr_sqp == GET_SQUEUE(mp)) { 15488 ASSERT(tail != NULL); 15489 cnt++; 15490 tail->b_next = mp; 15491 tail = mp; 15492 } else { 15493 /* 15494 * A different squeue. Send the 15495 * chain for the previous squeue on 15496 * its way. This shouldn't happen 15497 * often unless interrupt binding 15498 * changes. 15499 */ 15500 IP_STAT(ipst, ip_input_multi_squeue); 15501 squeue_enter_chain(curr_sqp, head, 15502 tail, cnt, SQTAG_IP_INPUT); 15503 curr_sqp = GET_SQUEUE(mp); 15504 head = mp; 15505 tail = mp; 15506 cnt = 1; 15507 } 15508 } 15509 continue; 15510 case IPPROTO_UDP: 15511 ASSERT(first_mp == mp); 15512 ip_udp_input(q, mp, ipha, ire, ill); 15513 continue; 15514 case IPPROTO_SCTP: 15515 ASSERT(first_mp == mp); 15516 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15517 q, dst); 15518 /* ire has been released by ip_sctp_input */ 15519 ire = NULL; 15520 continue; 15521 default: 15522 ip_proto_input(q, first_mp, ipha, ire, ill); 15523 continue; 15524 } 15525 } 15526 15527 if (ire != NULL) 15528 ire_refrele(ire); 15529 15530 if (head != NULL) 15531 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15532 15533 /* 15534 * This code is there just to make netperf/ttcp look good. 15535 * 15536 * Its possible that after being in polling mode (and having cleared 15537 * the backlog), squeues have turned the interrupt frequency higher 15538 * to improve latency at the expense of more CPU utilization (less 15539 * packets per interrupts or more number of interrupts). Workloads 15540 * like ttcp/netperf do manage to tickle polling once in a while 15541 * but for the remaining time, stay in higher interrupt mode since 15542 * their packet arrival rate is pretty uniform and this shows up 15543 * as higher CPU utilization. Since people care about CPU utilization 15544 * while running netperf/ttcp, turn the interrupt frequency back to 15545 * normal/default if polling has not been used in ip_poll_normal_ticks. 15546 */ 15547 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15548 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15549 ip_ring->rr_poll_state &= ~ILL_POLLING; 15550 ip_ring->rr_blank(ip_ring->rr_handle, 15551 ip_ring->rr_normal_blank_time, 15552 ip_ring->rr_normal_pkt_cnt); 15553 } 15554 } 15555 15556 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15557 "ip_input_end: q %p (%S)", q, "end"); 15558 #undef rptr 15559 } 15560 15561 static void 15562 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15563 t_uscalar_t err) 15564 { 15565 if (dl_err == DL_SYSERR) { 15566 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15567 "%s: %s failed: DL_SYSERR (errno %u)\n", 15568 ill->ill_name, dlpi_prim_str(prim), err); 15569 return; 15570 } 15571 15572 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15573 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15574 dlpi_err_str(dl_err)); 15575 } 15576 15577 /* 15578 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15579 * than DL_UNITDATA_IND messages. If we need to process this message 15580 * exclusively, we call qwriter_ip, in which case we also need to call 15581 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15582 */ 15583 void 15584 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15585 { 15586 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15587 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15588 ill_t *ill = (ill_t *)q->q_ptr; 15589 boolean_t pending; 15590 15591 ip1dbg(("ip_rput_dlpi")); 15592 if (dloa->dl_primitive == DL_ERROR_ACK) { 15593 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15594 "%s (0x%x), unix %u\n", ill->ill_name, 15595 dlpi_prim_str(dlea->dl_error_primitive), 15596 dlea->dl_error_primitive, 15597 dlpi_err_str(dlea->dl_errno), 15598 dlea->dl_errno, 15599 dlea->dl_unix_errno)); 15600 } 15601 15602 /* 15603 * If we received an ACK but didn't send a request for it, then it 15604 * can't be part of any pending operation; discard up-front. 15605 */ 15606 switch (dloa->dl_primitive) { 15607 case DL_NOTIFY_IND: 15608 pending = B_TRUE; 15609 break; 15610 case DL_ERROR_ACK: 15611 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15612 break; 15613 case DL_OK_ACK: 15614 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15615 break; 15616 case DL_INFO_ACK: 15617 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15618 break; 15619 case DL_BIND_ACK: 15620 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15621 break; 15622 case DL_PHYS_ADDR_ACK: 15623 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15624 break; 15625 case DL_NOTIFY_ACK: 15626 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15627 break; 15628 case DL_CONTROL_ACK: 15629 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15630 break; 15631 case DL_CAPABILITY_ACK: 15632 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15633 break; 15634 default: 15635 /* Not a DLPI message we support or were expecting */ 15636 freemsg(mp); 15637 return; 15638 } 15639 15640 if (!pending) { 15641 freemsg(mp); 15642 return; 15643 } 15644 15645 switch (dloa->dl_primitive) { 15646 case DL_ERROR_ACK: 15647 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15648 mutex_enter(&ill->ill_lock); 15649 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15650 cv_signal(&ill->ill_cv); 15651 mutex_exit(&ill->ill_lock); 15652 } 15653 break; 15654 15655 case DL_OK_ACK: 15656 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15657 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15658 switch (dloa->dl_correct_primitive) { 15659 case DL_UNBIND_REQ: 15660 mutex_enter(&ill->ill_lock); 15661 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15662 cv_signal(&ill->ill_cv); 15663 mutex_exit(&ill->ill_lock); 15664 break; 15665 15666 case DL_ENABMULTI_REQ: 15667 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15668 ill->ill_dlpi_multicast_state = IDS_OK; 15669 break; 15670 } 15671 break; 15672 default: 15673 break; 15674 } 15675 15676 /* 15677 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15678 * and we need to become writer to continue to process it. If it's not 15679 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15680 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15681 * some work as part of the current exclusive operation that actually 15682 * is not part of it -- which is wrong, but better than the 15683 * alternative of deadlock (if NEW_OP is always used). Someday, we 15684 * should track which DLPI requests have ACKs that we wait on 15685 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15686 * 15687 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15688 * Since this is on the ill stream we unconditionally bump up the 15689 * refcount without doing ILL_CAN_LOOKUP(). 15690 */ 15691 ill_refhold(ill); 15692 if (dloa->dl_primitive == DL_NOTIFY_IND) 15693 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15694 else 15695 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15696 } 15697 15698 /* 15699 * Handling of DLPI messages that require exclusive access to the ipsq. 15700 * 15701 * Need to do ill_pending_mp_release on ioctl completion, which could 15702 * happen here. (along with mi_copy_done) 15703 */ 15704 /* ARGSUSED */ 15705 static void 15706 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15707 { 15708 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15709 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15710 int err = 0; 15711 ill_t *ill; 15712 ipif_t *ipif = NULL; 15713 mblk_t *mp1 = NULL; 15714 conn_t *connp = NULL; 15715 t_uscalar_t paddrreq; 15716 mblk_t *mp_hw; 15717 boolean_t success; 15718 boolean_t ioctl_aborted = B_FALSE; 15719 boolean_t log = B_TRUE; 15720 hook_nic_event_t *info; 15721 ip_stack_t *ipst; 15722 15723 ip1dbg(("ip_rput_dlpi_writer ..")); 15724 ill = (ill_t *)q->q_ptr; 15725 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15726 15727 ASSERT(IAM_WRITER_ILL(ill)); 15728 15729 ipst = ill->ill_ipst; 15730 15731 /* 15732 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15733 * both are null or non-null. However we can assert that only 15734 * after grabbing the ipsq_lock. So we don't make any assertion 15735 * here and in other places in the code. 15736 */ 15737 ipif = ipsq->ipsq_pending_ipif; 15738 /* 15739 * The current ioctl could have been aborted by the user and a new 15740 * ioctl to bring up another ill could have started. We could still 15741 * get a response from the driver later. 15742 */ 15743 if (ipif != NULL && ipif->ipif_ill != ill) 15744 ioctl_aborted = B_TRUE; 15745 15746 switch (dloa->dl_primitive) { 15747 case DL_ERROR_ACK: 15748 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15749 dlpi_prim_str(dlea->dl_error_primitive))); 15750 15751 switch (dlea->dl_error_primitive) { 15752 case DL_PROMISCON_REQ: 15753 case DL_PROMISCOFF_REQ: 15754 case DL_DISABMULTI_REQ: 15755 case DL_UNBIND_REQ: 15756 case DL_ATTACH_REQ: 15757 case DL_INFO_REQ: 15758 ill_dlpi_done(ill, dlea->dl_error_primitive); 15759 break; 15760 case DL_NOTIFY_REQ: 15761 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15762 log = B_FALSE; 15763 break; 15764 case DL_PHYS_ADDR_REQ: 15765 /* 15766 * For IPv6 only, there are two additional 15767 * phys_addr_req's sent to the driver to get the 15768 * IPv6 token and lla. This allows IP to acquire 15769 * the hardware address format for a given interface 15770 * without having built in knowledge of the hardware 15771 * address. ill_phys_addr_pend keeps track of the last 15772 * DL_PAR sent so we know which response we are 15773 * dealing with. ill_dlpi_done will update 15774 * ill_phys_addr_pend when it sends the next req. 15775 * We don't complete the IOCTL until all three DL_PARs 15776 * have been attempted, so set *_len to 0 and break. 15777 */ 15778 paddrreq = ill->ill_phys_addr_pend; 15779 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15780 if (paddrreq == DL_IPV6_TOKEN) { 15781 ill->ill_token_length = 0; 15782 log = B_FALSE; 15783 break; 15784 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15785 ill->ill_nd_lla_len = 0; 15786 log = B_FALSE; 15787 break; 15788 } 15789 /* 15790 * Something went wrong with the DL_PHYS_ADDR_REQ. 15791 * We presumably have an IOCTL hanging out waiting 15792 * for completion. Find it and complete the IOCTL 15793 * with the error noted. 15794 * However, ill_dl_phys was called on an ill queue 15795 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15796 * set. But the ioctl is known to be pending on ill_wq. 15797 */ 15798 if (!ill->ill_ifname_pending) 15799 break; 15800 ill->ill_ifname_pending = 0; 15801 if (!ioctl_aborted) 15802 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15803 if (mp1 != NULL) { 15804 /* 15805 * This operation (SIOCSLIFNAME) must have 15806 * happened on the ill. Assert there is no conn 15807 */ 15808 ASSERT(connp == NULL); 15809 q = ill->ill_wq; 15810 } 15811 break; 15812 case DL_BIND_REQ: 15813 ill_dlpi_done(ill, DL_BIND_REQ); 15814 if (ill->ill_ifname_pending) 15815 break; 15816 /* 15817 * Something went wrong with the bind. We presumably 15818 * have an IOCTL hanging out waiting for completion. 15819 * Find it, take down the interface that was coming 15820 * up, and complete the IOCTL with the error noted. 15821 */ 15822 if (!ioctl_aborted) 15823 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15824 if (mp1 != NULL) { 15825 /* 15826 * This operation (SIOCSLIFFLAGS) must have 15827 * happened from a conn. 15828 */ 15829 ASSERT(connp != NULL); 15830 q = CONNP_TO_WQ(connp); 15831 if (ill->ill_move_in_progress) { 15832 ILL_CLEAR_MOVE(ill); 15833 } 15834 (void) ipif_down(ipif, NULL, NULL); 15835 /* error is set below the switch */ 15836 } 15837 break; 15838 case DL_ENABMULTI_REQ: 15839 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15840 15841 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15842 ill->ill_dlpi_multicast_state = IDS_FAILED; 15843 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15844 ipif_t *ipif; 15845 15846 printf("ip: joining multicasts failed (%d)" 15847 " on %s - will use link layer " 15848 "broadcasts for multicast\n", 15849 dlea->dl_errno, ill->ill_name); 15850 15851 /* 15852 * Set up the multicast mapping alone. 15853 * writer, so ok to access ill->ill_ipif 15854 * without any lock. 15855 */ 15856 ipif = ill->ill_ipif; 15857 mutex_enter(&ill->ill_phyint->phyint_lock); 15858 ill->ill_phyint->phyint_flags |= 15859 PHYI_MULTI_BCAST; 15860 mutex_exit(&ill->ill_phyint->phyint_lock); 15861 15862 if (!ill->ill_isv6) { 15863 (void) ipif_arp_setup_multicast(ipif, 15864 NULL); 15865 } else { 15866 (void) ipif_ndp_setup_multicast(ipif, 15867 NULL); 15868 } 15869 } 15870 freemsg(mp); /* Don't want to pass this up */ 15871 return; 15872 15873 case DL_CAPABILITY_REQ: 15874 case DL_CONTROL_REQ: 15875 ill_dlpi_done(ill, dlea->dl_error_primitive); 15876 ill->ill_dlpi_capab_state = IDS_FAILED; 15877 freemsg(mp); 15878 return; 15879 } 15880 /* 15881 * Note the error for IOCTL completion (mp1 is set when 15882 * ready to complete ioctl). If ill_ifname_pending_err is 15883 * set, an error occured during plumbing (ill_ifname_pending), 15884 * so we want to report that error. 15885 * 15886 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15887 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15888 * expected to get errack'd if the driver doesn't support 15889 * these flags (e.g. ethernet). log will be set to B_FALSE 15890 * if these error conditions are encountered. 15891 */ 15892 if (mp1 != NULL) { 15893 if (ill->ill_ifname_pending_err != 0) { 15894 err = ill->ill_ifname_pending_err; 15895 ill->ill_ifname_pending_err = 0; 15896 } else { 15897 err = dlea->dl_unix_errno ? 15898 dlea->dl_unix_errno : ENXIO; 15899 } 15900 /* 15901 * If we're plumbing an interface and an error hasn't already 15902 * been saved, set ill_ifname_pending_err to the error passed 15903 * up. Ignore the error if log is B_FALSE (see comment above). 15904 */ 15905 } else if (log && ill->ill_ifname_pending && 15906 ill->ill_ifname_pending_err == 0) { 15907 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15908 dlea->dl_unix_errno : ENXIO; 15909 } 15910 15911 if (log) 15912 ip_dlpi_error(ill, dlea->dl_error_primitive, 15913 dlea->dl_errno, dlea->dl_unix_errno); 15914 break; 15915 case DL_CAPABILITY_ACK: { 15916 boolean_t reneg_flag = B_FALSE; 15917 /* Call a routine to handle this one. */ 15918 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15919 /* 15920 * Check if the ACK is due to renegotiation case since we 15921 * will need to send a new CAPABILITY_REQ later. 15922 */ 15923 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15924 /* This is the ack for a renogiation case */ 15925 reneg_flag = B_TRUE; 15926 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15927 } 15928 ill_capability_ack(ill, mp); 15929 if (reneg_flag) 15930 ill_capability_probe(ill); 15931 break; 15932 } 15933 case DL_CONTROL_ACK: 15934 /* We treat all of these as "fire and forget" */ 15935 ill_dlpi_done(ill, DL_CONTROL_REQ); 15936 break; 15937 case DL_INFO_ACK: 15938 /* Call a routine to handle this one. */ 15939 ill_dlpi_done(ill, DL_INFO_REQ); 15940 ip_ll_subnet_defaults(ill, mp); 15941 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15942 return; 15943 case DL_BIND_ACK: 15944 /* 15945 * We should have an IOCTL waiting on this unless 15946 * sent by ill_dl_phys, in which case just return 15947 */ 15948 ill_dlpi_done(ill, DL_BIND_REQ); 15949 if (ill->ill_ifname_pending) 15950 break; 15951 15952 if (!ioctl_aborted) 15953 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15954 if (mp1 == NULL) 15955 break; 15956 /* 15957 * Because mp1 was added by ill_dl_up(), and it always 15958 * passes a valid connp, connp must be valid here. 15959 */ 15960 ASSERT(connp != NULL); 15961 q = CONNP_TO_WQ(connp); 15962 15963 /* 15964 * We are exclusive. So nothing can change even after 15965 * we get the pending mp. If need be we can put it back 15966 * and restart, as in calling ipif_arp_up() below. 15967 */ 15968 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15969 15970 mutex_enter(&ill->ill_lock); 15971 15972 ill->ill_dl_up = 1; 15973 15974 if ((info = ill->ill_nic_event_info) != NULL) { 15975 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15976 "attached for %s\n", info->hne_event, 15977 ill->ill_name)); 15978 if (info->hne_data != NULL) 15979 kmem_free(info->hne_data, info->hne_datalen); 15980 kmem_free(info, sizeof (hook_nic_event_t)); 15981 } 15982 15983 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15984 if (info != NULL) { 15985 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15986 info->hne_lif = 0; 15987 info->hne_event = NE_UP; 15988 info->hne_data = NULL; 15989 info->hne_datalen = 0; 15990 info->hne_family = ill->ill_isv6 ? 15991 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15992 } else 15993 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15994 "event information for %s (ENOMEM)\n", 15995 ill->ill_name)); 15996 15997 ill->ill_nic_event_info = info; 15998 15999 mutex_exit(&ill->ill_lock); 16000 16001 /* 16002 * Now bring up the resolver; when that is complete, we'll 16003 * create IREs. Note that we intentionally mirror what 16004 * ipif_up() would have done, because we got here by way of 16005 * ill_dl_up(), which stopped ipif_up()'s processing. 16006 */ 16007 if (ill->ill_isv6) { 16008 /* 16009 * v6 interfaces. 16010 * Unlike ARP which has to do another bind 16011 * and attach, once we get here we are 16012 * done with NDP. Except in the case of 16013 * ILLF_XRESOLV, in which case we send an 16014 * AR_INTERFACE_UP to the external resolver. 16015 * If all goes well, the ioctl will complete 16016 * in ip_rput(). If there's an error, we 16017 * complete it here. 16018 */ 16019 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16020 if (err == 0) { 16021 if (ill->ill_flags & ILLF_XRESOLV) { 16022 mutex_enter(&connp->conn_lock); 16023 mutex_enter(&ill->ill_lock); 16024 success = ipsq_pending_mp_add( 16025 connp, ipif, q, mp1, 0); 16026 mutex_exit(&ill->ill_lock); 16027 mutex_exit(&connp->conn_lock); 16028 if (success) { 16029 err = ipif_resolver_up(ipif, 16030 Res_act_initial); 16031 if (err == EINPROGRESS) { 16032 freemsg(mp); 16033 return; 16034 } 16035 ASSERT(err != 0); 16036 mp1 = ipsq_pending_mp_get(ipsq, 16037 &connp); 16038 ASSERT(mp1 != NULL); 16039 } else { 16040 /* conn has started closing */ 16041 err = EINTR; 16042 } 16043 } else { /* Non XRESOLV interface */ 16044 (void) ipif_resolver_up(ipif, 16045 Res_act_initial); 16046 err = ipif_up_done_v6(ipif); 16047 } 16048 } 16049 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16050 /* 16051 * ARP and other v4 external resolvers. 16052 * Leave the pending mblk intact so that 16053 * the ioctl completes in ip_rput(). 16054 */ 16055 mutex_enter(&connp->conn_lock); 16056 mutex_enter(&ill->ill_lock); 16057 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16058 mutex_exit(&ill->ill_lock); 16059 mutex_exit(&connp->conn_lock); 16060 if (success) { 16061 err = ipif_resolver_up(ipif, Res_act_initial); 16062 if (err == EINPROGRESS) { 16063 freemsg(mp); 16064 return; 16065 } 16066 ASSERT(err != 0); 16067 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16068 } else { 16069 /* The conn has started closing */ 16070 err = EINTR; 16071 } 16072 } else { 16073 /* 16074 * This one is complete. Reply to pending ioctl. 16075 */ 16076 (void) ipif_resolver_up(ipif, Res_act_initial); 16077 err = ipif_up_done(ipif); 16078 } 16079 16080 if ((err == 0) && (ill->ill_up_ipifs)) { 16081 err = ill_up_ipifs(ill, q, mp1); 16082 if (err == EINPROGRESS) { 16083 freemsg(mp); 16084 return; 16085 } 16086 } 16087 16088 if (ill->ill_up_ipifs) { 16089 ill_group_cleanup(ill); 16090 } 16091 16092 break; 16093 case DL_NOTIFY_IND: { 16094 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16095 ire_t *ire; 16096 boolean_t need_ire_walk_v4 = B_FALSE; 16097 boolean_t need_ire_walk_v6 = B_FALSE; 16098 16099 switch (notify->dl_notification) { 16100 case DL_NOTE_PHYS_ADDR: 16101 err = ill_set_phys_addr(ill, mp); 16102 break; 16103 16104 case DL_NOTE_FASTPATH_FLUSH: 16105 ill_fastpath_flush(ill); 16106 break; 16107 16108 case DL_NOTE_SDU_SIZE: 16109 /* 16110 * Change the MTU size of the interface, of all 16111 * attached ipif's, and of all relevant ire's. The 16112 * new value's a uint32_t at notify->dl_data. 16113 * Mtu change Vs. new ire creation - protocol below. 16114 * 16115 * a Mark the ipif as IPIF_CHANGING. 16116 * b Set the new mtu in the ipif. 16117 * c Change the ire_max_frag on all affected ires 16118 * d Unmark the IPIF_CHANGING 16119 * 16120 * To see how the protocol works, assume an interface 16121 * route is also being added simultaneously by 16122 * ip_rt_add and let 'ipif' be the ipif referenced by 16123 * the ire. If the ire is created before step a, 16124 * it will be cleaned up by step c. If the ire is 16125 * created after step d, it will see the new value of 16126 * ipif_mtu. Any attempt to create the ire between 16127 * steps a to d will fail because of the IPIF_CHANGING 16128 * flag. Note that ire_create() is passed a pointer to 16129 * the ipif_mtu, and not the value. During ire_add 16130 * under the bucket lock, the ire_max_frag of the 16131 * new ire being created is set from the ipif/ire from 16132 * which it is being derived. 16133 */ 16134 mutex_enter(&ill->ill_lock); 16135 ill->ill_max_frag = (uint_t)notify->dl_data; 16136 16137 /* 16138 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16139 * leave it alone 16140 */ 16141 if (ill->ill_mtu_userspecified) { 16142 mutex_exit(&ill->ill_lock); 16143 break; 16144 } 16145 ill->ill_max_mtu = ill->ill_max_frag; 16146 if (ill->ill_isv6) { 16147 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16148 ill->ill_max_mtu = IPV6_MIN_MTU; 16149 } else { 16150 if (ill->ill_max_mtu < IP_MIN_MTU) 16151 ill->ill_max_mtu = IP_MIN_MTU; 16152 } 16153 for (ipif = ill->ill_ipif; ipif != NULL; 16154 ipif = ipif->ipif_next) { 16155 /* 16156 * Don't override the mtu if the user 16157 * has explicitly set it. 16158 */ 16159 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16160 continue; 16161 ipif->ipif_mtu = (uint_t)notify->dl_data; 16162 if (ipif->ipif_isv6) 16163 ire = ipif_to_ire_v6(ipif); 16164 else 16165 ire = ipif_to_ire(ipif); 16166 if (ire != NULL) { 16167 ire->ire_max_frag = ipif->ipif_mtu; 16168 ire_refrele(ire); 16169 } 16170 if (ipif->ipif_flags & IPIF_UP) { 16171 if (ill->ill_isv6) 16172 need_ire_walk_v6 = B_TRUE; 16173 else 16174 need_ire_walk_v4 = B_TRUE; 16175 } 16176 } 16177 mutex_exit(&ill->ill_lock); 16178 if (need_ire_walk_v4) 16179 ire_walk_v4(ill_mtu_change, (char *)ill, 16180 ALL_ZONES, ipst); 16181 if (need_ire_walk_v6) 16182 ire_walk_v6(ill_mtu_change, (char *)ill, 16183 ALL_ZONES, ipst); 16184 break; 16185 case DL_NOTE_LINK_UP: 16186 case DL_NOTE_LINK_DOWN: { 16187 /* 16188 * We are writer. ill / phyint / ipsq assocs stable. 16189 * The RUNNING flag reflects the state of the link. 16190 */ 16191 phyint_t *phyint = ill->ill_phyint; 16192 uint64_t new_phyint_flags; 16193 boolean_t changed = B_FALSE; 16194 boolean_t went_up; 16195 16196 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16197 mutex_enter(&phyint->phyint_lock); 16198 new_phyint_flags = went_up ? 16199 phyint->phyint_flags | PHYI_RUNNING : 16200 phyint->phyint_flags & ~PHYI_RUNNING; 16201 if (new_phyint_flags != phyint->phyint_flags) { 16202 phyint->phyint_flags = new_phyint_flags; 16203 changed = B_TRUE; 16204 } 16205 mutex_exit(&phyint->phyint_lock); 16206 /* 16207 * ill_restart_dad handles the DAD restart and routing 16208 * socket notification logic. 16209 */ 16210 if (changed) { 16211 ill_restart_dad(phyint->phyint_illv4, went_up); 16212 ill_restart_dad(phyint->phyint_illv6, went_up); 16213 } 16214 break; 16215 } 16216 case DL_NOTE_PROMISC_ON_PHYS: 16217 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16218 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16219 mutex_enter(&ill->ill_lock); 16220 ill->ill_promisc_on_phys = B_TRUE; 16221 mutex_exit(&ill->ill_lock); 16222 break; 16223 case DL_NOTE_PROMISC_OFF_PHYS: 16224 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16225 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16226 mutex_enter(&ill->ill_lock); 16227 ill->ill_promisc_on_phys = B_FALSE; 16228 mutex_exit(&ill->ill_lock); 16229 break; 16230 case DL_NOTE_CAPAB_RENEG: 16231 /* 16232 * Something changed on the driver side. 16233 * It wants us to renegotiate the capabilities 16234 * on this ill. The most likely cause is the 16235 * aggregation interface under us where a 16236 * port got added or went away. 16237 * 16238 * We reset the capabilities and set the 16239 * state to IDS_RENG so that when the ack 16240 * comes back, we can start the 16241 * renegotiation process. 16242 */ 16243 ill_capability_reset(ill); 16244 ill->ill_dlpi_capab_state = IDS_RENEG; 16245 break; 16246 default: 16247 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16248 "type 0x%x for DL_NOTIFY_IND\n", 16249 notify->dl_notification)); 16250 break; 16251 } 16252 16253 /* 16254 * As this is an asynchronous operation, we 16255 * should not call ill_dlpi_done 16256 */ 16257 break; 16258 } 16259 case DL_NOTIFY_ACK: { 16260 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16261 16262 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16263 ill->ill_note_link = 1; 16264 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16265 break; 16266 } 16267 case DL_PHYS_ADDR_ACK: { 16268 /* 16269 * As part of plumbing the interface via SIOCSLIFNAME, 16270 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16271 * whose answers we receive here. As each answer is received, 16272 * we call ill_dlpi_done() to dispatch the next request as 16273 * we're processing the current one. Once all answers have 16274 * been received, we use ipsq_pending_mp_get() to dequeue the 16275 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16276 * is invoked from an ill queue, conn_oper_pending_ill is not 16277 * available, but we know the ioctl is pending on ill_wq.) 16278 */ 16279 uint_t paddrlen, paddroff; 16280 16281 paddrreq = ill->ill_phys_addr_pend; 16282 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16283 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16284 16285 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16286 if (paddrreq == DL_IPV6_TOKEN) { 16287 /* 16288 * bcopy to low-order bits of ill_token 16289 * 16290 * XXX Temporary hack - currently, all known tokens 16291 * are 64 bits, so I'll cheat for the moment. 16292 */ 16293 bcopy(mp->b_rptr + paddroff, 16294 &ill->ill_token.s6_addr32[2], paddrlen); 16295 ill->ill_token_length = paddrlen; 16296 break; 16297 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16298 ASSERT(ill->ill_nd_lla_mp == NULL); 16299 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16300 mp = NULL; 16301 break; 16302 } 16303 16304 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16305 ASSERT(ill->ill_phys_addr_mp == NULL); 16306 if (!ill->ill_ifname_pending) 16307 break; 16308 ill->ill_ifname_pending = 0; 16309 if (!ioctl_aborted) 16310 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16311 if (mp1 != NULL) { 16312 ASSERT(connp == NULL); 16313 q = ill->ill_wq; 16314 } 16315 /* 16316 * If any error acks received during the plumbing sequence, 16317 * ill_ifname_pending_err will be set. Break out and send up 16318 * the error to the pending ioctl. 16319 */ 16320 if (ill->ill_ifname_pending_err != 0) { 16321 err = ill->ill_ifname_pending_err; 16322 ill->ill_ifname_pending_err = 0; 16323 break; 16324 } 16325 16326 ill->ill_phys_addr_mp = mp; 16327 ill->ill_phys_addr = mp->b_rptr + paddroff; 16328 mp = NULL; 16329 16330 /* 16331 * If paddrlen is zero, the DLPI provider doesn't support 16332 * physical addresses. The other two tests were historical 16333 * workarounds for bugs in our former PPP implementation, but 16334 * now other things have grown dependencies on them -- e.g., 16335 * the tun module specifies a dl_addr_length of zero in its 16336 * DL_BIND_ACK, but then specifies an incorrect value in its 16337 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16338 * but only after careful testing ensures that all dependent 16339 * broken DLPI providers have been fixed. 16340 */ 16341 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16342 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16343 ill->ill_phys_addr = NULL; 16344 } else if (paddrlen != ill->ill_phys_addr_length) { 16345 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16346 paddrlen, ill->ill_phys_addr_length)); 16347 err = EINVAL; 16348 break; 16349 } 16350 16351 if (ill->ill_nd_lla_mp == NULL) { 16352 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16353 err = ENOMEM; 16354 break; 16355 } 16356 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16357 } 16358 16359 /* 16360 * Set the interface token. If the zeroth interface address 16361 * is unspecified, then set it to the link local address. 16362 */ 16363 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16364 (void) ill_setdefaulttoken(ill); 16365 16366 ASSERT(ill->ill_ipif->ipif_id == 0); 16367 if (ipif != NULL && 16368 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16369 (void) ipif_setlinklocal(ipif); 16370 } 16371 break; 16372 } 16373 case DL_OK_ACK: 16374 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16375 dlpi_prim_str((int)dloa->dl_correct_primitive), 16376 dloa->dl_correct_primitive)); 16377 switch (dloa->dl_correct_primitive) { 16378 case DL_PROMISCON_REQ: 16379 case DL_PROMISCOFF_REQ: 16380 case DL_ENABMULTI_REQ: 16381 case DL_DISABMULTI_REQ: 16382 case DL_UNBIND_REQ: 16383 case DL_ATTACH_REQ: 16384 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16385 break; 16386 } 16387 break; 16388 default: 16389 break; 16390 } 16391 16392 freemsg(mp); 16393 if (mp1 != NULL) { 16394 /* 16395 * The operation must complete without EINPROGRESS 16396 * since ipsq_pending_mp_get() has removed the mblk 16397 * from ipsq_pending_mp. Otherwise, the operation 16398 * will be stuck forever in the ipsq. 16399 */ 16400 ASSERT(err != EINPROGRESS); 16401 16402 switch (ipsq->ipsq_current_ioctl) { 16403 case 0: 16404 ipsq_current_finish(ipsq); 16405 break; 16406 16407 case SIOCLIFADDIF: 16408 case SIOCSLIFNAME: 16409 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16410 break; 16411 16412 default: 16413 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16414 break; 16415 } 16416 } 16417 } 16418 16419 /* 16420 * ip_rput_other is called by ip_rput to handle messages modifying the global 16421 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16422 */ 16423 /* ARGSUSED */ 16424 void 16425 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16426 { 16427 ill_t *ill; 16428 struct iocblk *iocp; 16429 mblk_t *mp1; 16430 conn_t *connp = NULL; 16431 16432 ip1dbg(("ip_rput_other ")); 16433 ill = (ill_t *)q->q_ptr; 16434 /* 16435 * This routine is not a writer in the case of SIOCGTUNPARAM 16436 * in which case ipsq is NULL. 16437 */ 16438 if (ipsq != NULL) { 16439 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16440 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16441 } 16442 16443 switch (mp->b_datap->db_type) { 16444 case M_ERROR: 16445 case M_HANGUP: 16446 /* 16447 * The device has a problem. We force the ILL down. It can 16448 * be brought up again manually using SIOCSIFFLAGS (via 16449 * ifconfig or equivalent). 16450 */ 16451 ASSERT(ipsq != NULL); 16452 if (mp->b_rptr < mp->b_wptr) 16453 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16454 if (ill->ill_error == 0) 16455 ill->ill_error = ENXIO; 16456 if (!ill_down_start(q, mp)) 16457 return; 16458 ipif_all_down_tail(ipsq, q, mp, NULL); 16459 break; 16460 case M_IOCACK: 16461 iocp = (struct iocblk *)mp->b_rptr; 16462 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16463 switch (iocp->ioc_cmd) { 16464 case SIOCSTUNPARAM: 16465 case OSIOCSTUNPARAM: 16466 ASSERT(ipsq != NULL); 16467 /* 16468 * Finish socket ioctl passed through to tun. 16469 * We should have an IOCTL waiting on this. 16470 */ 16471 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16472 if (ill->ill_isv6) { 16473 struct iftun_req *ta; 16474 16475 /* 16476 * if a source or destination is 16477 * being set, try and set the link 16478 * local address for the tunnel 16479 */ 16480 ta = (struct iftun_req *)mp->b_cont-> 16481 b_cont->b_rptr; 16482 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16483 ipif_set_tun_llink(ill, ta); 16484 } 16485 16486 } 16487 if (mp1 != NULL) { 16488 /* 16489 * Now copy back the b_next/b_prev used by 16490 * mi code for the mi_copy* functions. 16491 * See ip_sioctl_tunparam() for the reason. 16492 * Also protect against missing b_cont. 16493 */ 16494 if (mp->b_cont != NULL) { 16495 mp->b_cont->b_next = 16496 mp1->b_cont->b_next; 16497 mp->b_cont->b_prev = 16498 mp1->b_cont->b_prev; 16499 } 16500 inet_freemsg(mp1); 16501 ASSERT(connp != NULL); 16502 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16503 iocp->ioc_error, NO_COPYOUT, ipsq); 16504 } else { 16505 ASSERT(connp == NULL); 16506 putnext(q, mp); 16507 } 16508 break; 16509 case SIOCGTUNPARAM: 16510 case OSIOCGTUNPARAM: 16511 /* 16512 * This is really M_IOCDATA from the tunnel driver. 16513 * convert back and complete the ioctl. 16514 * We should have an IOCTL waiting on this. 16515 */ 16516 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16517 if (mp1) { 16518 /* 16519 * Now copy back the b_next/b_prev used by 16520 * mi code for the mi_copy* functions. 16521 * See ip_sioctl_tunparam() for the reason. 16522 * Also protect against missing b_cont. 16523 */ 16524 if (mp->b_cont != NULL) { 16525 mp->b_cont->b_next = 16526 mp1->b_cont->b_next; 16527 mp->b_cont->b_prev = 16528 mp1->b_cont->b_prev; 16529 } 16530 inet_freemsg(mp1); 16531 if (iocp->ioc_error == 0) 16532 mp->b_datap->db_type = M_IOCDATA; 16533 ASSERT(connp != NULL); 16534 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16535 iocp->ioc_error, COPYOUT, NULL); 16536 } else { 16537 ASSERT(connp == NULL); 16538 putnext(q, mp); 16539 } 16540 break; 16541 default: 16542 break; 16543 } 16544 break; 16545 case M_IOCNAK: 16546 iocp = (struct iocblk *)mp->b_rptr; 16547 16548 switch (iocp->ioc_cmd) { 16549 int mode; 16550 16551 case DL_IOC_HDR_INFO: 16552 /* 16553 * If this was the first attempt turn of the 16554 * fastpath probing. 16555 */ 16556 mutex_enter(&ill->ill_lock); 16557 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16558 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16559 mutex_exit(&ill->ill_lock); 16560 ill_fastpath_nack(ill); 16561 ip1dbg(("ip_rput: DLPI fastpath off on " 16562 "interface %s\n", 16563 ill->ill_name)); 16564 } else { 16565 mutex_exit(&ill->ill_lock); 16566 } 16567 freemsg(mp); 16568 break; 16569 case SIOCSTUNPARAM: 16570 case OSIOCSTUNPARAM: 16571 ASSERT(ipsq != NULL); 16572 /* 16573 * Finish socket ioctl passed through to tun 16574 * We should have an IOCTL waiting on this. 16575 */ 16576 /* FALLTHRU */ 16577 case SIOCGTUNPARAM: 16578 case OSIOCGTUNPARAM: 16579 /* 16580 * This is really M_IOCDATA from the tunnel driver. 16581 * convert back and complete the ioctl. 16582 * We should have an IOCTL waiting on this. 16583 */ 16584 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16585 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16586 mp1 = ill_pending_mp_get(ill, &connp, 16587 iocp->ioc_id); 16588 mode = COPYOUT; 16589 ipsq = NULL; 16590 } else { 16591 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16592 mode = NO_COPYOUT; 16593 } 16594 if (mp1 != NULL) { 16595 /* 16596 * Now copy back the b_next/b_prev used by 16597 * mi code for the mi_copy* functions. 16598 * See ip_sioctl_tunparam() for the reason. 16599 * Also protect against missing b_cont. 16600 */ 16601 if (mp->b_cont != NULL) { 16602 mp->b_cont->b_next = 16603 mp1->b_cont->b_next; 16604 mp->b_cont->b_prev = 16605 mp1->b_cont->b_prev; 16606 } 16607 inet_freemsg(mp1); 16608 if (iocp->ioc_error == 0) 16609 iocp->ioc_error = EINVAL; 16610 ASSERT(connp != NULL); 16611 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16612 iocp->ioc_error, mode, ipsq); 16613 } else { 16614 ASSERT(connp == NULL); 16615 putnext(q, mp); 16616 } 16617 break; 16618 default: 16619 break; 16620 } 16621 default: 16622 break; 16623 } 16624 } 16625 16626 /* 16627 * NOTE : This function does not ire_refrele the ire argument passed in. 16628 * 16629 * IPQoS notes 16630 * IP policy is invoked twice for a forwarded packet, once on the read side 16631 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16632 * enabled. An additional parameter, in_ill, has been added for this purpose. 16633 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16634 * because ip_mroute drops this information. 16635 * 16636 */ 16637 void 16638 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16639 { 16640 uint32_t old_pkt_len; 16641 uint32_t pkt_len; 16642 queue_t *q; 16643 uint32_t sum; 16644 #define rptr ((uchar_t *)ipha) 16645 uint32_t max_frag; 16646 uint32_t ill_index; 16647 ill_t *out_ill; 16648 mib2_ipIfStatsEntry_t *mibptr; 16649 ip_stack_t *ipst = in_ill->ill_ipst; 16650 16651 /* Get the ill_index of the incoming ILL */ 16652 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16653 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16654 16655 /* Initiate Read side IPPF processing */ 16656 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16657 ip_process(IPP_FWD_IN, &mp, ill_index); 16658 if (mp == NULL) { 16659 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16660 "during IPPF processing\n")); 16661 return; 16662 } 16663 } 16664 16665 /* Adjust the checksum to reflect the ttl decrement. */ 16666 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16667 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16668 16669 if (ipha->ipha_ttl-- <= 1) { 16670 if (ip_csum_hdr(ipha)) { 16671 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16672 goto drop_pkt; 16673 } 16674 /* 16675 * Note: ire_stq this will be NULL for multicast 16676 * datagrams using the long path through arp (the IRE 16677 * is not an IRE_CACHE). This should not cause 16678 * problems since we don't generate ICMP errors for 16679 * multicast packets. 16680 */ 16681 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16682 q = ire->ire_stq; 16683 if (q != NULL) { 16684 /* Sent by forwarding path, and router is global zone */ 16685 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16686 GLOBAL_ZONEID, ipst); 16687 } else 16688 freemsg(mp); 16689 return; 16690 } 16691 16692 /* 16693 * Don't forward if the interface is down 16694 */ 16695 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16696 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16697 ip2dbg(("ip_rput_forward:interface is down\n")); 16698 goto drop_pkt; 16699 } 16700 16701 /* Get the ill_index of the outgoing ILL */ 16702 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16703 16704 out_ill = ire->ire_ipif->ipif_ill; 16705 16706 DTRACE_PROBE4(ip4__forwarding__start, 16707 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16708 16709 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16710 ipst->ips_ipv4firewall_forwarding, 16711 in_ill, out_ill, ipha, mp, mp, ipst); 16712 16713 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16714 16715 if (mp == NULL) 16716 return; 16717 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16718 16719 if (is_system_labeled()) { 16720 mblk_t *mp1; 16721 16722 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16723 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16724 goto drop_pkt; 16725 } 16726 /* Size may have changed */ 16727 mp = mp1; 16728 ipha = (ipha_t *)mp->b_rptr; 16729 pkt_len = ntohs(ipha->ipha_length); 16730 } 16731 16732 /* Check if there are options to update */ 16733 if (!IS_SIMPLE_IPH(ipha)) { 16734 if (ip_csum_hdr(ipha)) { 16735 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16736 goto drop_pkt; 16737 } 16738 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16739 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16740 return; 16741 } 16742 16743 ipha->ipha_hdr_checksum = 0; 16744 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16745 } 16746 max_frag = ire->ire_max_frag; 16747 if (pkt_len > max_frag) { 16748 /* 16749 * It needs fragging on its way out. We haven't 16750 * verified the header checksum yet. Since we 16751 * are going to put a surely good checksum in the 16752 * outgoing header, we have to make sure that it 16753 * was good coming in. 16754 */ 16755 if (ip_csum_hdr(ipha)) { 16756 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16757 goto drop_pkt; 16758 } 16759 /* Initiate Write side IPPF processing */ 16760 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16761 ip_process(IPP_FWD_OUT, &mp, ill_index); 16762 if (mp == NULL) { 16763 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16764 " during IPPF processing\n")); 16765 return; 16766 } 16767 } 16768 /* 16769 * Handle labeled packet resizing. 16770 * 16771 * If we have added a label, inform ip_wput_frag() of its 16772 * effect on the MTU for ICMP messages. 16773 */ 16774 if (pkt_len > old_pkt_len) { 16775 uint32_t secopt_size; 16776 16777 secopt_size = pkt_len - old_pkt_len; 16778 if (secopt_size < max_frag) 16779 max_frag -= secopt_size; 16780 } 16781 16782 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16783 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16784 return; 16785 } 16786 16787 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16788 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16789 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16790 ipst->ips_ipv4firewall_physical_out, 16791 NULL, out_ill, ipha, mp, mp, ipst); 16792 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16793 if (mp == NULL) 16794 return; 16795 16796 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16797 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16798 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16799 /* ip_xmit_v4 always consumes the packet */ 16800 return; 16801 16802 drop_pkt:; 16803 ip1dbg(("ip_rput_forward: drop pkt\n")); 16804 freemsg(mp); 16805 #undef rptr 16806 } 16807 16808 void 16809 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16810 { 16811 ire_t *ire; 16812 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16813 16814 ASSERT(!ipif->ipif_isv6); 16815 /* 16816 * Find an IRE which matches the destination and the outgoing 16817 * queue in the cache table. All we need is an IRE_CACHE which 16818 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16819 * then it is enough to have some IRE_CACHE in the group. 16820 */ 16821 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16822 dst = ipif->ipif_pp_dst_addr; 16823 16824 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16825 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16826 if (ire == NULL) { 16827 /* 16828 * Mark this packet to make it be delivered to 16829 * ip_rput_forward after the new ire has been 16830 * created. 16831 */ 16832 mp->b_prev = NULL; 16833 mp->b_next = mp; 16834 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16835 NULL, 0, GLOBAL_ZONEID, &zero_info); 16836 } else { 16837 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16838 IRE_REFRELE(ire); 16839 } 16840 } 16841 16842 /* Update any source route, record route or timestamp options */ 16843 static int 16844 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16845 { 16846 ipoptp_t opts; 16847 uchar_t *opt; 16848 uint8_t optval; 16849 uint8_t optlen; 16850 ipaddr_t dst; 16851 uint32_t ts; 16852 ire_t *dst_ire = NULL; 16853 ire_t *tmp_ire = NULL; 16854 timestruc_t now; 16855 16856 ip2dbg(("ip_rput_forward_options\n")); 16857 dst = ipha->ipha_dst; 16858 for (optval = ipoptp_first(&opts, ipha); 16859 optval != IPOPT_EOL; 16860 optval = ipoptp_next(&opts)) { 16861 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16862 opt = opts.ipoptp_cur; 16863 optlen = opts.ipoptp_len; 16864 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16865 optval, opts.ipoptp_len)); 16866 switch (optval) { 16867 uint32_t off; 16868 case IPOPT_SSRR: 16869 case IPOPT_LSRR: 16870 /* Check if adminstratively disabled */ 16871 if (!ipst->ips_ip_forward_src_routed) { 16872 if (ire->ire_stq != NULL) { 16873 /* 16874 * Sent by forwarding path, and router 16875 * is global zone 16876 */ 16877 icmp_unreachable(ire->ire_stq, mp, 16878 ICMP_SOURCE_ROUTE_FAILED, 16879 GLOBAL_ZONEID, ipst); 16880 } else { 16881 ip0dbg(("ip_rput_forward_options: " 16882 "unable to send unreach\n")); 16883 freemsg(mp); 16884 } 16885 return (-1); 16886 } 16887 16888 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16889 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16890 if (dst_ire == NULL) { 16891 /* 16892 * Must be partial since ip_rput_options 16893 * checked for strict. 16894 */ 16895 break; 16896 } 16897 off = opt[IPOPT_OFFSET]; 16898 off--; 16899 redo_srr: 16900 if (optlen < IP_ADDR_LEN || 16901 off > optlen - IP_ADDR_LEN) { 16902 /* End of source route */ 16903 ip1dbg(( 16904 "ip_rput_forward_options: end of SR\n")); 16905 ire_refrele(dst_ire); 16906 break; 16907 } 16908 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16909 bcopy(&ire->ire_src_addr, (char *)opt + off, 16910 IP_ADDR_LEN); 16911 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16912 ntohl(dst))); 16913 16914 /* 16915 * Check if our address is present more than 16916 * once as consecutive hops in source route. 16917 */ 16918 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16919 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16920 if (tmp_ire != NULL) { 16921 ire_refrele(tmp_ire); 16922 off += IP_ADDR_LEN; 16923 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16924 goto redo_srr; 16925 } 16926 ipha->ipha_dst = dst; 16927 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16928 ire_refrele(dst_ire); 16929 break; 16930 case IPOPT_RR: 16931 off = opt[IPOPT_OFFSET]; 16932 off--; 16933 if (optlen < IP_ADDR_LEN || 16934 off > optlen - IP_ADDR_LEN) { 16935 /* No more room - ignore */ 16936 ip1dbg(( 16937 "ip_rput_forward_options: end of RR\n")); 16938 break; 16939 } 16940 bcopy(&ire->ire_src_addr, (char *)opt + off, 16941 IP_ADDR_LEN); 16942 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16943 break; 16944 case IPOPT_TS: 16945 /* Insert timestamp if there is room */ 16946 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16947 case IPOPT_TS_TSONLY: 16948 off = IPOPT_TS_TIMELEN; 16949 break; 16950 case IPOPT_TS_PRESPEC: 16951 case IPOPT_TS_PRESPEC_RFC791: 16952 /* Verify that the address matched */ 16953 off = opt[IPOPT_OFFSET] - 1; 16954 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16955 dst_ire = ire_ctable_lookup(dst, 0, 16956 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16957 MATCH_IRE_TYPE, ipst); 16958 if (dst_ire == NULL) { 16959 /* Not for us */ 16960 break; 16961 } 16962 ire_refrele(dst_ire); 16963 /* FALLTHRU */ 16964 case IPOPT_TS_TSANDADDR: 16965 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16966 break; 16967 default: 16968 /* 16969 * ip_*put_options should have already 16970 * dropped this packet. 16971 */ 16972 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16973 "unknown IT - bug in ip_rput_options?\n"); 16974 return (0); /* Keep "lint" happy */ 16975 } 16976 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16977 /* Increase overflow counter */ 16978 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16979 opt[IPOPT_POS_OV_FLG] = 16980 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16981 (off << 4)); 16982 break; 16983 } 16984 off = opt[IPOPT_OFFSET] - 1; 16985 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16986 case IPOPT_TS_PRESPEC: 16987 case IPOPT_TS_PRESPEC_RFC791: 16988 case IPOPT_TS_TSANDADDR: 16989 bcopy(&ire->ire_src_addr, 16990 (char *)opt + off, IP_ADDR_LEN); 16991 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16992 /* FALLTHRU */ 16993 case IPOPT_TS_TSONLY: 16994 off = opt[IPOPT_OFFSET] - 1; 16995 /* Compute # of milliseconds since midnight */ 16996 gethrestime(&now); 16997 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16998 now.tv_nsec / (NANOSEC / MILLISEC); 16999 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17000 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17001 break; 17002 } 17003 break; 17004 } 17005 } 17006 return (0); 17007 } 17008 17009 /* 17010 * This is called after processing at least one of AH/ESP headers. 17011 * 17012 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17013 * the actual, physical interface on which the packet was received, 17014 * but, when ip_strict_dst_multihoming is set to 1, could be the 17015 * interface which had the ipha_dst configured when the packet went 17016 * through ip_rput. The ill_index corresponding to the recv_ill 17017 * is saved in ipsec_in_rill_index 17018 * 17019 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17020 * cannot assume "ire" points to valid data for any IPv6 cases. 17021 */ 17022 void 17023 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17024 { 17025 mblk_t *mp; 17026 ipaddr_t dst; 17027 in6_addr_t *v6dstp; 17028 ipha_t *ipha; 17029 ip6_t *ip6h; 17030 ipsec_in_t *ii; 17031 boolean_t ill_need_rele = B_FALSE; 17032 boolean_t rill_need_rele = B_FALSE; 17033 boolean_t ire_need_rele = B_FALSE; 17034 netstack_t *ns; 17035 ip_stack_t *ipst; 17036 17037 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17038 ASSERT(ii->ipsec_in_ill_index != 0); 17039 ns = ii->ipsec_in_ns; 17040 ASSERT(ii->ipsec_in_ns != NULL); 17041 ipst = ns->netstack_ip; 17042 17043 mp = ipsec_mp->b_cont; 17044 ASSERT(mp != NULL); 17045 17046 17047 if (ill == NULL) { 17048 ASSERT(recv_ill == NULL); 17049 /* 17050 * We need to get the original queue on which ip_rput_local 17051 * or ip_rput_data_v6 was called. 17052 */ 17053 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17054 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17055 ill_need_rele = B_TRUE; 17056 17057 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17058 recv_ill = ill_lookup_on_ifindex( 17059 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17060 NULL, NULL, NULL, NULL, ipst); 17061 rill_need_rele = B_TRUE; 17062 } else { 17063 recv_ill = ill; 17064 } 17065 17066 if ((ill == NULL) || (recv_ill == NULL)) { 17067 ip0dbg(("ip_fanout_proto_again: interface " 17068 "disappeared\n")); 17069 if (ill != NULL) 17070 ill_refrele(ill); 17071 if (recv_ill != NULL) 17072 ill_refrele(recv_ill); 17073 freemsg(ipsec_mp); 17074 return; 17075 } 17076 } 17077 17078 ASSERT(ill != NULL && recv_ill != NULL); 17079 17080 if (mp->b_datap->db_type == M_CTL) { 17081 /* 17082 * AH/ESP is returning the ICMP message after 17083 * removing their headers. Fanout again till 17084 * it gets to the right protocol. 17085 */ 17086 if (ii->ipsec_in_v4) { 17087 icmph_t *icmph; 17088 int iph_hdr_length; 17089 int hdr_length; 17090 17091 ipha = (ipha_t *)mp->b_rptr; 17092 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17093 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17094 ipha = (ipha_t *)&icmph[1]; 17095 hdr_length = IPH_HDR_LENGTH(ipha); 17096 /* 17097 * icmp_inbound_error_fanout may need to do pullupmsg. 17098 * Reset the type to M_DATA. 17099 */ 17100 mp->b_datap->db_type = M_DATA; 17101 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17102 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17103 B_FALSE, ill, ii->ipsec_in_zoneid); 17104 } else { 17105 icmp6_t *icmp6; 17106 int hdr_length; 17107 17108 ip6h = (ip6_t *)mp->b_rptr; 17109 /* Don't call hdr_length_v6() unless you have to. */ 17110 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17111 hdr_length = ip_hdr_length_v6(mp, ip6h); 17112 else 17113 hdr_length = IPV6_HDR_LEN; 17114 17115 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17116 /* 17117 * icmp_inbound_error_fanout_v6 may need to do 17118 * pullupmsg. Reset the type to M_DATA. 17119 */ 17120 mp->b_datap->db_type = M_DATA; 17121 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17122 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17123 } 17124 if (ill_need_rele) 17125 ill_refrele(ill); 17126 if (rill_need_rele) 17127 ill_refrele(recv_ill); 17128 return; 17129 } 17130 17131 if (ii->ipsec_in_v4) { 17132 ipha = (ipha_t *)mp->b_rptr; 17133 dst = ipha->ipha_dst; 17134 if (CLASSD(dst)) { 17135 /* 17136 * Multicast has to be delivered to all streams. 17137 */ 17138 dst = INADDR_BROADCAST; 17139 } 17140 17141 if (ire == NULL) { 17142 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17143 MBLK_GETLABEL(mp), ipst); 17144 if (ire == NULL) { 17145 if (ill_need_rele) 17146 ill_refrele(ill); 17147 if (rill_need_rele) 17148 ill_refrele(recv_ill); 17149 ip1dbg(("ip_fanout_proto_again: " 17150 "IRE not found")); 17151 freemsg(ipsec_mp); 17152 return; 17153 } 17154 ire_need_rele = B_TRUE; 17155 } 17156 17157 switch (ipha->ipha_protocol) { 17158 case IPPROTO_UDP: 17159 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17160 recv_ill); 17161 if (ire_need_rele) 17162 ire_refrele(ire); 17163 break; 17164 case IPPROTO_TCP: 17165 if (!ire_need_rele) 17166 IRE_REFHOLD(ire); 17167 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17168 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17169 IRE_REFRELE(ire); 17170 if (mp != NULL) 17171 squeue_enter_chain(GET_SQUEUE(mp), mp, 17172 mp, 1, SQTAG_IP_PROTO_AGAIN); 17173 break; 17174 case IPPROTO_SCTP: 17175 if (!ire_need_rele) 17176 IRE_REFHOLD(ire); 17177 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17178 ipsec_mp, 0, ill->ill_rq, dst); 17179 break; 17180 default: 17181 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17182 recv_ill); 17183 if (ire_need_rele) 17184 ire_refrele(ire); 17185 break; 17186 } 17187 } else { 17188 uint32_t rput_flags = 0; 17189 17190 ip6h = (ip6_t *)mp->b_rptr; 17191 v6dstp = &ip6h->ip6_dst; 17192 /* 17193 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17194 * address. 17195 * 17196 * Currently, we don't store that state in the IPSEC_IN 17197 * message, and we may need to. 17198 */ 17199 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17200 IP6_IN_LLMCAST : 0); 17201 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17202 NULL, NULL); 17203 } 17204 if (ill_need_rele) 17205 ill_refrele(ill); 17206 if (rill_need_rele) 17207 ill_refrele(recv_ill); 17208 } 17209 17210 /* 17211 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17212 * returns 'true' if there are still fragments left on the queue, in 17213 * which case we restart the timer. 17214 */ 17215 void 17216 ill_frag_timer(void *arg) 17217 { 17218 ill_t *ill = (ill_t *)arg; 17219 boolean_t frag_pending; 17220 ip_stack_t *ipst = ill->ill_ipst; 17221 17222 mutex_enter(&ill->ill_lock); 17223 ASSERT(!ill->ill_fragtimer_executing); 17224 if (ill->ill_state_flags & ILL_CONDEMNED) { 17225 ill->ill_frag_timer_id = 0; 17226 mutex_exit(&ill->ill_lock); 17227 return; 17228 } 17229 ill->ill_fragtimer_executing = 1; 17230 mutex_exit(&ill->ill_lock); 17231 17232 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17233 17234 /* 17235 * Restart the timer, if we have fragments pending or if someone 17236 * wanted us to be scheduled again. 17237 */ 17238 mutex_enter(&ill->ill_lock); 17239 ill->ill_fragtimer_executing = 0; 17240 ill->ill_frag_timer_id = 0; 17241 if (frag_pending || ill->ill_fragtimer_needrestart) 17242 ill_frag_timer_start(ill); 17243 mutex_exit(&ill->ill_lock); 17244 } 17245 17246 void 17247 ill_frag_timer_start(ill_t *ill) 17248 { 17249 ip_stack_t *ipst = ill->ill_ipst; 17250 17251 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17252 17253 /* If the ill is closing or opening don't proceed */ 17254 if (ill->ill_state_flags & ILL_CONDEMNED) 17255 return; 17256 17257 if (ill->ill_fragtimer_executing) { 17258 /* 17259 * ill_frag_timer is currently executing. Just record the 17260 * the fact that we want the timer to be restarted. 17261 * ill_frag_timer will post a timeout before it returns, 17262 * ensuring it will be called again. 17263 */ 17264 ill->ill_fragtimer_needrestart = 1; 17265 return; 17266 } 17267 17268 if (ill->ill_frag_timer_id == 0) { 17269 /* 17270 * The timer is neither running nor is the timeout handler 17271 * executing. Post a timeout so that ill_frag_timer will be 17272 * called 17273 */ 17274 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17275 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17276 ill->ill_fragtimer_needrestart = 0; 17277 } 17278 } 17279 17280 /* 17281 * This routine is needed for loopback when forwarding multicasts. 17282 * 17283 * IPQoS Notes: 17284 * IPPF processing is done in fanout routines. 17285 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17286 * processing for IPSec packets is done when it comes back in clear. 17287 * NOTE : The callers of this function need to do the ire_refrele for the 17288 * ire that is being passed in. 17289 */ 17290 void 17291 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17292 ill_t *recv_ill) 17293 { 17294 ill_t *ill = (ill_t *)q->q_ptr; 17295 uint32_t sum; 17296 uint32_t u1; 17297 uint32_t u2; 17298 int hdr_length; 17299 boolean_t mctl_present; 17300 mblk_t *first_mp = mp; 17301 mblk_t *hada_mp = NULL; 17302 ipha_t *inner_ipha; 17303 ip_stack_t *ipst; 17304 17305 ASSERT(recv_ill != NULL); 17306 ipst = recv_ill->ill_ipst; 17307 17308 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17309 "ip_rput_locl_start: q %p", q); 17310 17311 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17312 ASSERT(ill != NULL); 17313 17314 17315 #define rptr ((uchar_t *)ipha) 17316 #define iphs ((uint16_t *)ipha) 17317 17318 /* 17319 * no UDP or TCP packet should come here anymore. 17320 */ 17321 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17322 (ipha->ipha_protocol != IPPROTO_UDP)); 17323 17324 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17325 if (mctl_present && 17326 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17327 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17328 17329 /* 17330 * It's an IPsec accelerated packet. 17331 * Keep a pointer to the data attributes around until 17332 * we allocate the ipsec_info_t. 17333 */ 17334 IPSECHW_DEBUG(IPSECHW_PKT, 17335 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17336 hada_mp = first_mp; 17337 hada_mp->b_cont = NULL; 17338 /* 17339 * Since it is accelerated, it comes directly from 17340 * the ill and the data attributes is followed by 17341 * the packet data. 17342 */ 17343 ASSERT(mp->b_datap->db_type != M_CTL); 17344 first_mp = mp; 17345 mctl_present = B_FALSE; 17346 } 17347 17348 /* 17349 * IF M_CTL is not present, then ipsec_in_is_secure 17350 * should return B_TRUE. There is a case where loopback 17351 * packets has an M_CTL in the front with all the 17352 * IPSEC options set to IPSEC_PREF_NEVER - which means 17353 * ipsec_in_is_secure will return B_FALSE. As loopback 17354 * packets never comes here, it is safe to ASSERT the 17355 * following. 17356 */ 17357 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17358 17359 17360 /* u1 is # words of IP options */ 17361 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17362 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17363 17364 if (u1) { 17365 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17366 if (hada_mp != NULL) 17367 freemsg(hada_mp); 17368 return; 17369 } 17370 } else { 17371 /* Check the IP header checksum. */ 17372 #define uph ((uint16_t *)ipha) 17373 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17374 uph[6] + uph[7] + uph[8] + uph[9]; 17375 #undef uph 17376 /* finish doing IP checksum */ 17377 sum = (sum & 0xFFFF) + (sum >> 16); 17378 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17379 /* 17380 * Don't verify header checksum if this packet is coming 17381 * back from AH/ESP as we already did it. 17382 */ 17383 if (!mctl_present && (sum && sum != 0xFFFF)) { 17384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17385 goto drop_pkt; 17386 } 17387 } 17388 17389 /* 17390 * Count for SNMP of inbound packets for ire. As ip_proto_input 17391 * might be called more than once for secure packets, count only 17392 * the first time. 17393 */ 17394 if (!mctl_present) { 17395 UPDATE_IB_PKT_COUNT(ire); 17396 ire->ire_last_used_time = lbolt; 17397 } 17398 17399 /* Check for fragmentation offset. */ 17400 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17401 u1 = u2 & (IPH_MF | IPH_OFFSET); 17402 if (u1) { 17403 /* 17404 * We re-assemble fragments before we do the AH/ESP 17405 * processing. Thus, M_CTL should not be present 17406 * while we are re-assembling. 17407 */ 17408 ASSERT(!mctl_present); 17409 ASSERT(first_mp == mp); 17410 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17411 return; 17412 } 17413 /* 17414 * Make sure that first_mp points back to mp as 17415 * the mp we came in with could have changed in 17416 * ip_rput_fragment(). 17417 */ 17418 ipha = (ipha_t *)mp->b_rptr; 17419 first_mp = mp; 17420 } 17421 17422 /* 17423 * Clear hardware checksumming flag as it is currently only 17424 * used by TCP and UDP. 17425 */ 17426 DB_CKSUMFLAGS(mp) = 0; 17427 17428 /* Now we have a complete datagram, destined for this machine. */ 17429 u1 = IPH_HDR_LENGTH(ipha); 17430 switch (ipha->ipha_protocol) { 17431 case IPPROTO_ICMP: { 17432 ire_t *ire_zone; 17433 ilm_t *ilm; 17434 mblk_t *mp1; 17435 zoneid_t last_zoneid; 17436 17437 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17438 ASSERT(ire->ire_type == IRE_BROADCAST); 17439 /* 17440 * In the multicast case, applications may have joined 17441 * the group from different zones, so we need to deliver 17442 * the packet to each of them. Loop through the 17443 * multicast memberships structures (ilm) on the receive 17444 * ill and send a copy of the packet up each matching 17445 * one. However, we don't do this for multicasts sent on 17446 * the loopback interface (PHYI_LOOPBACK flag set) as 17447 * they must stay in the sender's zone. 17448 * 17449 * ilm_add_v6() ensures that ilms in the same zone are 17450 * contiguous in the ill_ilm list. We use this property 17451 * to avoid sending duplicates needed when two 17452 * applications in the same zone join the same group on 17453 * different logical interfaces: we ignore the ilm if 17454 * its zoneid is the same as the last matching one. 17455 * In addition, the sending of the packet for 17456 * ire_zoneid is delayed until all of the other ilms 17457 * have been exhausted. 17458 */ 17459 last_zoneid = -1; 17460 ILM_WALKER_HOLD(recv_ill); 17461 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17462 ilm = ilm->ilm_next) { 17463 if ((ilm->ilm_flags & ILM_DELETED) || 17464 ipha->ipha_dst != ilm->ilm_addr || 17465 ilm->ilm_zoneid == last_zoneid || 17466 ilm->ilm_zoneid == ire->ire_zoneid || 17467 ilm->ilm_zoneid == ALL_ZONES || 17468 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17469 continue; 17470 mp1 = ip_copymsg(first_mp); 17471 if (mp1 == NULL) 17472 continue; 17473 icmp_inbound(q, mp1, B_TRUE, ill, 17474 0, sum, mctl_present, B_TRUE, 17475 recv_ill, ilm->ilm_zoneid); 17476 last_zoneid = ilm->ilm_zoneid; 17477 } 17478 ILM_WALKER_RELE(recv_ill); 17479 } else if (ire->ire_type == IRE_BROADCAST) { 17480 /* 17481 * In the broadcast case, there may be many zones 17482 * which need a copy of the packet delivered to them. 17483 * There is one IRE_BROADCAST per broadcast address 17484 * and per zone; we walk those using a helper function. 17485 * In addition, the sending of the packet for ire is 17486 * delayed until all of the other ires have been 17487 * processed. 17488 */ 17489 IRB_REFHOLD(ire->ire_bucket); 17490 ire_zone = NULL; 17491 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17492 ire)) != NULL) { 17493 mp1 = ip_copymsg(first_mp); 17494 if (mp1 == NULL) 17495 continue; 17496 17497 UPDATE_IB_PKT_COUNT(ire_zone); 17498 ire_zone->ire_last_used_time = lbolt; 17499 icmp_inbound(q, mp1, B_TRUE, ill, 17500 0, sum, mctl_present, B_TRUE, 17501 recv_ill, ire_zone->ire_zoneid); 17502 } 17503 IRB_REFRELE(ire->ire_bucket); 17504 } 17505 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17506 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17507 ire->ire_zoneid); 17508 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17509 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17510 return; 17511 } 17512 case IPPROTO_IGMP: 17513 /* 17514 * If we are not willing to accept IGMP packets in clear, 17515 * then check with global policy. 17516 */ 17517 if (ipst->ips_igmp_accept_clear_messages == 0) { 17518 first_mp = ipsec_check_global_policy(first_mp, NULL, 17519 ipha, NULL, mctl_present, ipst->ips_netstack); 17520 if (first_mp == NULL) 17521 return; 17522 } 17523 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17524 freemsg(first_mp); 17525 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17527 return; 17528 } 17529 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17530 /* Bad packet - discarded by igmp_input */ 17531 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17532 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17533 if (mctl_present) 17534 freeb(first_mp); 17535 return; 17536 } 17537 /* 17538 * igmp_input() may have returned the pulled up message. 17539 * So first_mp and ipha need to be reinitialized. 17540 */ 17541 ipha = (ipha_t *)mp->b_rptr; 17542 if (mctl_present) 17543 first_mp->b_cont = mp; 17544 else 17545 first_mp = mp; 17546 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17547 connf_head != NULL) { 17548 /* No user-level listener for IGMP packets */ 17549 goto drop_pkt; 17550 } 17551 /* deliver to local raw users */ 17552 break; 17553 case IPPROTO_PIM: 17554 /* 17555 * If we are not willing to accept PIM packets in clear, 17556 * then check with global policy. 17557 */ 17558 if (ipst->ips_pim_accept_clear_messages == 0) { 17559 first_mp = ipsec_check_global_policy(first_mp, NULL, 17560 ipha, NULL, mctl_present, ipst->ips_netstack); 17561 if (first_mp == NULL) 17562 return; 17563 } 17564 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17565 freemsg(first_mp); 17566 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17568 return; 17569 } 17570 if (pim_input(q, mp, ill) != 0) { 17571 /* Bad packet - discarded by pim_input */ 17572 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17573 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17574 if (mctl_present) 17575 freeb(first_mp); 17576 return; 17577 } 17578 17579 /* 17580 * pim_input() may have pulled up the message so ipha needs to 17581 * be reinitialized. 17582 */ 17583 ipha = (ipha_t *)mp->b_rptr; 17584 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17585 connf_head != NULL) { 17586 /* No user-level listener for PIM packets */ 17587 goto drop_pkt; 17588 } 17589 /* deliver to local raw users */ 17590 break; 17591 case IPPROTO_ENCAP: 17592 /* 17593 * Handle self-encapsulated packets (IP-in-IP where 17594 * the inner addresses == the outer addresses). 17595 */ 17596 hdr_length = IPH_HDR_LENGTH(ipha); 17597 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17598 mp->b_wptr) { 17599 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17600 sizeof (ipha_t) - mp->b_rptr)) { 17601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17602 freemsg(first_mp); 17603 return; 17604 } 17605 ipha = (ipha_t *)mp->b_rptr; 17606 } 17607 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17608 /* 17609 * Check the sanity of the inner IP header. 17610 */ 17611 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17613 freemsg(first_mp); 17614 return; 17615 } 17616 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17618 freemsg(first_mp); 17619 return; 17620 } 17621 if (inner_ipha->ipha_src == ipha->ipha_src && 17622 inner_ipha->ipha_dst == ipha->ipha_dst) { 17623 ipsec_in_t *ii; 17624 17625 /* 17626 * Self-encapsulated tunnel packet. Remove 17627 * the outer IP header and fanout again. 17628 * We also need to make sure that the inner 17629 * header is pulled up until options. 17630 */ 17631 mp->b_rptr = (uchar_t *)inner_ipha; 17632 ipha = inner_ipha; 17633 hdr_length = IPH_HDR_LENGTH(ipha); 17634 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17635 if (!pullupmsg(mp, (uchar_t *)ipha + 17636 + hdr_length - mp->b_rptr)) { 17637 freemsg(first_mp); 17638 return; 17639 } 17640 ipha = (ipha_t *)mp->b_rptr; 17641 } 17642 if (!mctl_present) { 17643 ASSERT(first_mp == mp); 17644 /* 17645 * This means that somebody is sending 17646 * Self-encapsualted packets without AH/ESP. 17647 * If AH/ESP was present, we would have already 17648 * allocated the first_mp. 17649 */ 17650 first_mp = ipsec_in_alloc(B_TRUE, 17651 ipst->ips_netstack); 17652 if (first_mp == NULL) { 17653 ip1dbg(("ip_proto_input: IPSEC_IN " 17654 "allocation failure.\n")); 17655 BUMP_MIB(ill->ill_ip_mib, 17656 ipIfStatsInDiscards); 17657 freemsg(mp); 17658 return; 17659 } 17660 first_mp->b_cont = mp; 17661 } 17662 /* 17663 * We generally store the ill_index if we need to 17664 * do IPSEC processing as we lose the ill queue when 17665 * we come back. But in this case, we never should 17666 * have to store the ill_index here as it should have 17667 * been stored previously when we processed the 17668 * AH/ESP header in this routine or for non-ipsec 17669 * cases, we still have the queue. But for some bad 17670 * packets from the wire, we can get to IPSEC after 17671 * this and we better store the index for that case. 17672 */ 17673 ill = (ill_t *)q->q_ptr; 17674 ii = (ipsec_in_t *)first_mp->b_rptr; 17675 ii->ipsec_in_ill_index = 17676 ill->ill_phyint->phyint_ifindex; 17677 ii->ipsec_in_rill_index = 17678 recv_ill->ill_phyint->phyint_ifindex; 17679 if (ii->ipsec_in_decaps) { 17680 /* 17681 * This packet is self-encapsulated multiple 17682 * times. We don't want to recurse infinitely. 17683 * To keep it simple, drop the packet. 17684 */ 17685 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17686 freemsg(first_mp); 17687 return; 17688 } 17689 ii->ipsec_in_decaps = B_TRUE; 17690 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17691 ire); 17692 return; 17693 } 17694 break; 17695 case IPPROTO_AH: 17696 case IPPROTO_ESP: { 17697 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17698 17699 /* 17700 * Fast path for AH/ESP. If this is the first time 17701 * we are sending a datagram to AH/ESP, allocate 17702 * a IPSEC_IN message and prepend it. Otherwise, 17703 * just fanout. 17704 */ 17705 17706 int ipsec_rc; 17707 ipsec_in_t *ii; 17708 netstack_t *ns = ipst->ips_netstack; 17709 17710 IP_STAT(ipst, ipsec_proto_ahesp); 17711 if (!mctl_present) { 17712 ASSERT(first_mp == mp); 17713 first_mp = ipsec_in_alloc(B_TRUE, ns); 17714 if (first_mp == NULL) { 17715 ip1dbg(("ip_proto_input: IPSEC_IN " 17716 "allocation failure.\n")); 17717 freemsg(hada_mp); /* okay ifnull */ 17718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17719 freemsg(mp); 17720 return; 17721 } 17722 /* 17723 * Store the ill_index so that when we come back 17724 * from IPSEC we ride on the same queue. 17725 */ 17726 ill = (ill_t *)q->q_ptr; 17727 ii = (ipsec_in_t *)first_mp->b_rptr; 17728 ii->ipsec_in_ill_index = 17729 ill->ill_phyint->phyint_ifindex; 17730 ii->ipsec_in_rill_index = 17731 recv_ill->ill_phyint->phyint_ifindex; 17732 first_mp->b_cont = mp; 17733 /* 17734 * Cache hardware acceleration info. 17735 */ 17736 if (hada_mp != NULL) { 17737 IPSECHW_DEBUG(IPSECHW_PKT, 17738 ("ip_rput_local: caching data attr.\n")); 17739 ii->ipsec_in_accelerated = B_TRUE; 17740 ii->ipsec_in_da = hada_mp; 17741 hada_mp = NULL; 17742 } 17743 } else { 17744 ii = (ipsec_in_t *)first_mp->b_rptr; 17745 } 17746 17747 if (!ipsec_loaded(ipss)) { 17748 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17749 ire->ire_zoneid, ipst); 17750 return; 17751 } 17752 17753 ns = ipst->ips_netstack; 17754 /* select inbound SA and have IPsec process the pkt */ 17755 if (ipha->ipha_protocol == IPPROTO_ESP) { 17756 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17757 if (esph == NULL) 17758 return; 17759 ASSERT(ii->ipsec_in_esp_sa != NULL); 17760 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17761 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17762 first_mp, esph); 17763 } else { 17764 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17765 if (ah == NULL) 17766 return; 17767 ASSERT(ii->ipsec_in_ah_sa != NULL); 17768 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17769 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17770 first_mp, ah); 17771 } 17772 17773 switch (ipsec_rc) { 17774 case IPSEC_STATUS_SUCCESS: 17775 break; 17776 case IPSEC_STATUS_FAILED: 17777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17778 /* FALLTHRU */ 17779 case IPSEC_STATUS_PENDING: 17780 return; 17781 } 17782 /* we're done with IPsec processing, send it up */ 17783 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17784 return; 17785 } 17786 default: 17787 break; 17788 } 17789 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17790 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17791 ire->ire_zoneid)); 17792 goto drop_pkt; 17793 } 17794 /* 17795 * Handle protocols with which IP is less intimate. There 17796 * can be more than one stream bound to a particular 17797 * protocol. When this is the case, each one gets a copy 17798 * of any incoming packets. 17799 */ 17800 ip_fanout_proto(q, first_mp, ill, ipha, 17801 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17802 B_TRUE, recv_ill, ire->ire_zoneid); 17803 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17804 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17805 return; 17806 17807 drop_pkt: 17808 freemsg(first_mp); 17809 if (hada_mp != NULL) 17810 freeb(hada_mp); 17811 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17812 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17813 #undef rptr 17814 #undef iphs 17815 17816 } 17817 17818 /* 17819 * Update any source route, record route or timestamp options. 17820 * Check that we are at end of strict source route. 17821 * The options have already been checked for sanity in ip_rput_options(). 17822 */ 17823 static boolean_t 17824 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17825 ip_stack_t *ipst) 17826 { 17827 ipoptp_t opts; 17828 uchar_t *opt; 17829 uint8_t optval; 17830 uint8_t optlen; 17831 ipaddr_t dst; 17832 uint32_t ts; 17833 ire_t *dst_ire; 17834 timestruc_t now; 17835 zoneid_t zoneid; 17836 ill_t *ill; 17837 17838 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17839 17840 ip2dbg(("ip_rput_local_options\n")); 17841 17842 for (optval = ipoptp_first(&opts, ipha); 17843 optval != IPOPT_EOL; 17844 optval = ipoptp_next(&opts)) { 17845 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17846 opt = opts.ipoptp_cur; 17847 optlen = opts.ipoptp_len; 17848 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17849 optval, optlen)); 17850 switch (optval) { 17851 uint32_t off; 17852 case IPOPT_SSRR: 17853 case IPOPT_LSRR: 17854 off = opt[IPOPT_OFFSET]; 17855 off--; 17856 if (optlen < IP_ADDR_LEN || 17857 off > optlen - IP_ADDR_LEN) { 17858 /* End of source route */ 17859 ip1dbg(("ip_rput_local_options: end of SR\n")); 17860 break; 17861 } 17862 /* 17863 * This will only happen if two consecutive entries 17864 * in the source route contains our address or if 17865 * it is a packet with a loose source route which 17866 * reaches us before consuming the whole source route 17867 */ 17868 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17869 if (optval == IPOPT_SSRR) { 17870 goto bad_src_route; 17871 } 17872 /* 17873 * Hack: instead of dropping the packet truncate the 17874 * source route to what has been used by filling the 17875 * rest with IPOPT_NOP. 17876 */ 17877 opt[IPOPT_OLEN] = (uint8_t)off; 17878 while (off < optlen) { 17879 opt[off++] = IPOPT_NOP; 17880 } 17881 break; 17882 case IPOPT_RR: 17883 off = opt[IPOPT_OFFSET]; 17884 off--; 17885 if (optlen < IP_ADDR_LEN || 17886 off > optlen - IP_ADDR_LEN) { 17887 /* No more room - ignore */ 17888 ip1dbg(( 17889 "ip_rput_local_options: end of RR\n")); 17890 break; 17891 } 17892 bcopy(&ire->ire_src_addr, (char *)opt + off, 17893 IP_ADDR_LEN); 17894 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17895 break; 17896 case IPOPT_TS: 17897 /* Insert timestamp if there is romm */ 17898 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17899 case IPOPT_TS_TSONLY: 17900 off = IPOPT_TS_TIMELEN; 17901 break; 17902 case IPOPT_TS_PRESPEC: 17903 case IPOPT_TS_PRESPEC_RFC791: 17904 /* Verify that the address matched */ 17905 off = opt[IPOPT_OFFSET] - 1; 17906 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17907 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17908 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17909 ipst); 17910 if (dst_ire == NULL) { 17911 /* Not for us */ 17912 break; 17913 } 17914 ire_refrele(dst_ire); 17915 /* FALLTHRU */ 17916 case IPOPT_TS_TSANDADDR: 17917 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17918 break; 17919 default: 17920 /* 17921 * ip_*put_options should have already 17922 * dropped this packet. 17923 */ 17924 cmn_err(CE_PANIC, "ip_rput_local_options: " 17925 "unknown IT - bug in ip_rput_options?\n"); 17926 return (B_TRUE); /* Keep "lint" happy */ 17927 } 17928 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17929 /* Increase overflow counter */ 17930 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17931 opt[IPOPT_POS_OV_FLG] = 17932 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17933 (off << 4)); 17934 break; 17935 } 17936 off = opt[IPOPT_OFFSET] - 1; 17937 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17938 case IPOPT_TS_PRESPEC: 17939 case IPOPT_TS_PRESPEC_RFC791: 17940 case IPOPT_TS_TSANDADDR: 17941 bcopy(&ire->ire_src_addr, (char *)opt + off, 17942 IP_ADDR_LEN); 17943 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17944 /* FALLTHRU */ 17945 case IPOPT_TS_TSONLY: 17946 off = opt[IPOPT_OFFSET] - 1; 17947 /* Compute # of milliseconds since midnight */ 17948 gethrestime(&now); 17949 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17950 now.tv_nsec / (NANOSEC / MILLISEC); 17951 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17952 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17953 break; 17954 } 17955 break; 17956 } 17957 } 17958 return (B_TRUE); 17959 17960 bad_src_route: 17961 q = WR(q); 17962 if (q->q_next != NULL) 17963 ill = q->q_ptr; 17964 else 17965 ill = NULL; 17966 17967 /* make sure we clear any indication of a hardware checksum */ 17968 DB_CKSUMFLAGS(mp) = 0; 17969 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17970 if (zoneid == ALL_ZONES) 17971 freemsg(mp); 17972 else 17973 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17974 return (B_FALSE); 17975 17976 } 17977 17978 /* 17979 * Process IP options in an inbound packet. If an option affects the 17980 * effective destination address, return the next hop address via dstp. 17981 * Returns -1 if something fails in which case an ICMP error has been sent 17982 * and mp freed. 17983 */ 17984 static int 17985 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17986 ip_stack_t *ipst) 17987 { 17988 ipoptp_t opts; 17989 uchar_t *opt; 17990 uint8_t optval; 17991 uint8_t optlen; 17992 ipaddr_t dst; 17993 intptr_t code = 0; 17994 ire_t *ire = NULL; 17995 zoneid_t zoneid; 17996 ill_t *ill; 17997 17998 ip2dbg(("ip_rput_options\n")); 17999 dst = ipha->ipha_dst; 18000 for (optval = ipoptp_first(&opts, ipha); 18001 optval != IPOPT_EOL; 18002 optval = ipoptp_next(&opts)) { 18003 opt = opts.ipoptp_cur; 18004 optlen = opts.ipoptp_len; 18005 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18006 optval, optlen)); 18007 /* 18008 * Note: we need to verify the checksum before we 18009 * modify anything thus this routine only extracts the next 18010 * hop dst from any source route. 18011 */ 18012 switch (optval) { 18013 uint32_t off; 18014 case IPOPT_SSRR: 18015 case IPOPT_LSRR: 18016 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18017 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18018 if (ire == NULL) { 18019 if (optval == IPOPT_SSRR) { 18020 ip1dbg(("ip_rput_options: not next" 18021 " strict source route 0x%x\n", 18022 ntohl(dst))); 18023 code = (char *)&ipha->ipha_dst - 18024 (char *)ipha; 18025 goto param_prob; /* RouterReq's */ 18026 } 18027 ip2dbg(("ip_rput_options: " 18028 "not next source route 0x%x\n", 18029 ntohl(dst))); 18030 break; 18031 } 18032 ire_refrele(ire); 18033 18034 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18035 ip1dbg(( 18036 "ip_rput_options: bad option offset\n")); 18037 code = (char *)&opt[IPOPT_OLEN] - 18038 (char *)ipha; 18039 goto param_prob; 18040 } 18041 off = opt[IPOPT_OFFSET]; 18042 off--; 18043 redo_srr: 18044 if (optlen < IP_ADDR_LEN || 18045 off > optlen - IP_ADDR_LEN) { 18046 /* End of source route */ 18047 ip1dbg(("ip_rput_options: end of SR\n")); 18048 break; 18049 } 18050 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18051 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18052 ntohl(dst))); 18053 18054 /* 18055 * Check if our address is present more than 18056 * once as consecutive hops in source route. 18057 * XXX verify per-interface ip_forwarding 18058 * for source route? 18059 */ 18060 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18061 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18062 18063 if (ire != NULL) { 18064 ire_refrele(ire); 18065 off += IP_ADDR_LEN; 18066 goto redo_srr; 18067 } 18068 18069 if (dst == htonl(INADDR_LOOPBACK)) { 18070 ip1dbg(("ip_rput_options: loopback addr in " 18071 "source route!\n")); 18072 goto bad_src_route; 18073 } 18074 /* 18075 * For strict: verify that dst is directly 18076 * reachable. 18077 */ 18078 if (optval == IPOPT_SSRR) { 18079 ire = ire_ftable_lookup(dst, 0, 0, 18080 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18081 MBLK_GETLABEL(mp), 18082 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18083 if (ire == NULL) { 18084 ip1dbg(("ip_rput_options: SSRR not " 18085 "directly reachable: 0x%x\n", 18086 ntohl(dst))); 18087 goto bad_src_route; 18088 } 18089 ire_refrele(ire); 18090 } 18091 /* 18092 * Defer update of the offset and the record route 18093 * until the packet is forwarded. 18094 */ 18095 break; 18096 case IPOPT_RR: 18097 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18098 ip1dbg(( 18099 "ip_rput_options: bad option offset\n")); 18100 code = (char *)&opt[IPOPT_OLEN] - 18101 (char *)ipha; 18102 goto param_prob; 18103 } 18104 break; 18105 case IPOPT_TS: 18106 /* 18107 * Verify that length >= 5 and that there is either 18108 * room for another timestamp or that the overflow 18109 * counter is not maxed out. 18110 */ 18111 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18112 if (optlen < IPOPT_MINLEN_IT) { 18113 goto param_prob; 18114 } 18115 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18116 ip1dbg(( 18117 "ip_rput_options: bad option offset\n")); 18118 code = (char *)&opt[IPOPT_OFFSET] - 18119 (char *)ipha; 18120 goto param_prob; 18121 } 18122 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18123 case IPOPT_TS_TSONLY: 18124 off = IPOPT_TS_TIMELEN; 18125 break; 18126 case IPOPT_TS_TSANDADDR: 18127 case IPOPT_TS_PRESPEC: 18128 case IPOPT_TS_PRESPEC_RFC791: 18129 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18130 break; 18131 default: 18132 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18133 (char *)ipha; 18134 goto param_prob; 18135 } 18136 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18137 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18138 /* 18139 * No room and the overflow counter is 15 18140 * already. 18141 */ 18142 goto param_prob; 18143 } 18144 break; 18145 } 18146 } 18147 18148 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18149 *dstp = dst; 18150 return (0); 18151 } 18152 18153 ip1dbg(("ip_rput_options: error processing IP options.")); 18154 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18155 18156 param_prob: 18157 q = WR(q); 18158 if (q->q_next != NULL) 18159 ill = q->q_ptr; 18160 else 18161 ill = NULL; 18162 18163 /* make sure we clear any indication of a hardware checksum */ 18164 DB_CKSUMFLAGS(mp) = 0; 18165 /* Don't know whether this is for non-global or global/forwarding */ 18166 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18167 if (zoneid == ALL_ZONES) 18168 freemsg(mp); 18169 else 18170 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18171 return (-1); 18172 18173 bad_src_route: 18174 q = WR(q); 18175 if (q->q_next != NULL) 18176 ill = q->q_ptr; 18177 else 18178 ill = NULL; 18179 18180 /* make sure we clear any indication of a hardware checksum */ 18181 DB_CKSUMFLAGS(mp) = 0; 18182 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18183 if (zoneid == ALL_ZONES) 18184 freemsg(mp); 18185 else 18186 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18187 return (-1); 18188 } 18189 18190 /* 18191 * IP & ICMP info in >=14 msg's ... 18192 * - ip fixed part (mib2_ip_t) 18193 * - icmp fixed part (mib2_icmp_t) 18194 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18195 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18196 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18197 * - ipRouteAttributeTable (ip 102) labeled routes 18198 * - ip multicast membership (ip_member_t) 18199 * - ip multicast source filtering (ip_grpsrc_t) 18200 * - igmp fixed part (struct igmpstat) 18201 * - multicast routing stats (struct mrtstat) 18202 * - multicast routing vifs (array of struct vifctl) 18203 * - multicast routing routes (array of struct mfcctl) 18204 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18205 * One per ill plus one generic 18206 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18207 * One per ill plus one generic 18208 * - ipv6RouteEntry all IPv6 IREs 18209 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18210 * - ipv6NetToMediaEntry all Neighbor Cache entries 18211 * - ipv6AddrEntry all IPv6 ipifs 18212 * - ipv6 multicast membership (ipv6_member_t) 18213 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18214 * 18215 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18216 * 18217 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18218 * already filled in by the caller. 18219 * Return value of 0 indicates that no messages were sent and caller 18220 * should free mpctl. 18221 */ 18222 int 18223 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18224 { 18225 ip_stack_t *ipst; 18226 sctp_stack_t *sctps; 18227 18228 18229 if (q->q_next != NULL) { 18230 ipst = ILLQ_TO_IPST(q); 18231 } else { 18232 ipst = CONNQ_TO_IPST(q); 18233 } 18234 ASSERT(ipst != NULL); 18235 sctps = ipst->ips_netstack->netstack_sctp; 18236 18237 if (mpctl == NULL || mpctl->b_cont == NULL) { 18238 return (0); 18239 } 18240 18241 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18242 ipst)) == NULL) { 18243 return (1); 18244 } 18245 18246 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18247 return (1); 18248 } 18249 18250 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18251 return (1); 18252 } 18253 18254 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18255 return (1); 18256 } 18257 18258 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18259 return (1); 18260 } 18261 18262 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18263 return (1); 18264 } 18265 18266 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18267 return (1); 18268 } 18269 18270 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18271 return (1); 18272 } 18273 18274 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18275 return (1); 18276 } 18277 18278 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18279 return (1); 18280 } 18281 18282 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18283 return (1); 18284 } 18285 18286 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18287 return (1); 18288 } 18289 18290 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18291 return (1); 18292 } 18293 18294 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18295 return (1); 18296 } 18297 18298 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18299 return (1); 18300 } 18301 18302 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18303 if (mpctl == NULL) { 18304 return (1); 18305 } 18306 18307 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18308 return (1); 18309 } 18310 freemsg(mpctl); 18311 return (1); 18312 } 18313 18314 18315 /* Get global (legacy) IPv4 statistics */ 18316 static mblk_t * 18317 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18318 ip_stack_t *ipst) 18319 { 18320 mib2_ip_t old_ip_mib; 18321 struct opthdr *optp; 18322 mblk_t *mp2ctl; 18323 18324 /* 18325 * make a copy of the original message 18326 */ 18327 mp2ctl = copymsg(mpctl); 18328 18329 /* fixed length IP structure... */ 18330 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18331 optp->level = MIB2_IP; 18332 optp->name = 0; 18333 SET_MIB(old_ip_mib.ipForwarding, 18334 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18335 SET_MIB(old_ip_mib.ipDefaultTTL, 18336 (uint32_t)ipst->ips_ip_def_ttl); 18337 SET_MIB(old_ip_mib.ipReasmTimeout, 18338 ipst->ips_ip_g_frag_timeout); 18339 SET_MIB(old_ip_mib.ipAddrEntrySize, 18340 sizeof (mib2_ipAddrEntry_t)); 18341 SET_MIB(old_ip_mib.ipRouteEntrySize, 18342 sizeof (mib2_ipRouteEntry_t)); 18343 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18344 sizeof (mib2_ipNetToMediaEntry_t)); 18345 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18346 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18347 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18348 sizeof (mib2_ipAttributeEntry_t)); 18349 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18350 18351 /* 18352 * Grab the statistics from the new IP MIB 18353 */ 18354 SET_MIB(old_ip_mib.ipInReceives, 18355 (uint32_t)ipmib->ipIfStatsHCInReceives); 18356 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18357 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18358 SET_MIB(old_ip_mib.ipForwDatagrams, 18359 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18360 SET_MIB(old_ip_mib.ipInUnknownProtos, 18361 ipmib->ipIfStatsInUnknownProtos); 18362 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18363 SET_MIB(old_ip_mib.ipInDelivers, 18364 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18365 SET_MIB(old_ip_mib.ipOutRequests, 18366 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18367 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18368 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18369 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18370 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18371 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18372 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18373 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18374 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18375 18376 /* ipRoutingDiscards is not being used */ 18377 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18378 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18379 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18380 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18381 SET_MIB(old_ip_mib.ipReasmDuplicates, 18382 ipmib->ipIfStatsReasmDuplicates); 18383 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18384 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18385 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18386 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18387 SET_MIB(old_ip_mib.rawipInOverflows, 18388 ipmib->rawipIfStatsInOverflows); 18389 18390 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18391 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18392 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18393 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18394 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18395 ipmib->ipIfStatsOutSwitchIPVersion); 18396 18397 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18398 (int)sizeof (old_ip_mib))) { 18399 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18400 (uint_t)sizeof (old_ip_mib))); 18401 } 18402 18403 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18404 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18405 (int)optp->level, (int)optp->name, (int)optp->len)); 18406 qreply(q, mpctl); 18407 return (mp2ctl); 18408 } 18409 18410 /* Per interface IPv4 statistics */ 18411 static mblk_t * 18412 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18413 { 18414 struct opthdr *optp; 18415 mblk_t *mp2ctl; 18416 ill_t *ill; 18417 ill_walk_context_t ctx; 18418 mblk_t *mp_tail = NULL; 18419 mib2_ipIfStatsEntry_t global_ip_mib; 18420 18421 /* 18422 * Make a copy of the original message 18423 */ 18424 mp2ctl = copymsg(mpctl); 18425 18426 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18427 optp->level = MIB2_IP; 18428 optp->name = MIB2_IP_TRAFFIC_STATS; 18429 /* Include "unknown interface" ip_mib */ 18430 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18431 ipst->ips_ip_mib.ipIfStatsIfIndex = 18432 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18433 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18434 (ipst->ips_ip_g_forward ? 1 : 2)); 18435 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18436 (uint32_t)ipst->ips_ip_def_ttl); 18437 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18438 sizeof (mib2_ipIfStatsEntry_t)); 18439 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18440 sizeof (mib2_ipAddrEntry_t)); 18441 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18442 sizeof (mib2_ipRouteEntry_t)); 18443 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18444 sizeof (mib2_ipNetToMediaEntry_t)); 18445 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18446 sizeof (ip_member_t)); 18447 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18448 sizeof (ip_grpsrc_t)); 18449 18450 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18451 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18452 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18453 "failed to allocate %u bytes\n", 18454 (uint_t)sizeof (ipst->ips_ip_mib))); 18455 } 18456 18457 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18458 18459 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18460 ill = ILL_START_WALK_V4(&ctx, ipst); 18461 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18462 ill->ill_ip_mib->ipIfStatsIfIndex = 18463 ill->ill_phyint->phyint_ifindex; 18464 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18465 (ipst->ips_ip_g_forward ? 1 : 2)); 18466 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18467 (uint32_t)ipst->ips_ip_def_ttl); 18468 18469 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18470 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18471 (char *)ill->ill_ip_mib, 18472 (int)sizeof (*ill->ill_ip_mib))) { 18473 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18474 "failed to allocate %u bytes\n", 18475 (uint_t)sizeof (*ill->ill_ip_mib))); 18476 } 18477 } 18478 rw_exit(&ipst->ips_ill_g_lock); 18479 18480 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18481 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18482 "level %d, name %d, len %d\n", 18483 (int)optp->level, (int)optp->name, (int)optp->len)); 18484 qreply(q, mpctl); 18485 18486 if (mp2ctl == NULL) 18487 return (NULL); 18488 18489 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18490 } 18491 18492 /* Global IPv4 ICMP statistics */ 18493 static mblk_t * 18494 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18495 { 18496 struct opthdr *optp; 18497 mblk_t *mp2ctl; 18498 18499 /* 18500 * Make a copy of the original message 18501 */ 18502 mp2ctl = copymsg(mpctl); 18503 18504 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18505 optp->level = MIB2_ICMP; 18506 optp->name = 0; 18507 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18508 (int)sizeof (ipst->ips_icmp_mib))) { 18509 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18510 (uint_t)sizeof (ipst->ips_icmp_mib))); 18511 } 18512 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18513 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18514 (int)optp->level, (int)optp->name, (int)optp->len)); 18515 qreply(q, mpctl); 18516 return (mp2ctl); 18517 } 18518 18519 /* Global IPv4 IGMP statistics */ 18520 static mblk_t * 18521 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18522 { 18523 struct opthdr *optp; 18524 mblk_t *mp2ctl; 18525 18526 /* 18527 * make a copy of the original message 18528 */ 18529 mp2ctl = copymsg(mpctl); 18530 18531 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18532 optp->level = EXPER_IGMP; 18533 optp->name = 0; 18534 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18535 (int)sizeof (ipst->ips_igmpstat))) { 18536 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18537 (uint_t)sizeof (ipst->ips_igmpstat))); 18538 } 18539 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18540 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18541 (int)optp->level, (int)optp->name, (int)optp->len)); 18542 qreply(q, mpctl); 18543 return (mp2ctl); 18544 } 18545 18546 /* Global IPv4 Multicast Routing statistics */ 18547 static mblk_t * 18548 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18549 { 18550 struct opthdr *optp; 18551 mblk_t *mp2ctl; 18552 18553 /* 18554 * make a copy of the original message 18555 */ 18556 mp2ctl = copymsg(mpctl); 18557 18558 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18559 optp->level = EXPER_DVMRP; 18560 optp->name = 0; 18561 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18562 ip0dbg(("ip_mroute_stats: failed\n")); 18563 } 18564 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18565 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18566 (int)optp->level, (int)optp->name, (int)optp->len)); 18567 qreply(q, mpctl); 18568 return (mp2ctl); 18569 } 18570 18571 /* IPv4 address information */ 18572 static mblk_t * 18573 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18574 { 18575 struct opthdr *optp; 18576 mblk_t *mp2ctl; 18577 mblk_t *mp_tail = NULL; 18578 ill_t *ill; 18579 ipif_t *ipif; 18580 uint_t bitval; 18581 mib2_ipAddrEntry_t mae; 18582 zoneid_t zoneid; 18583 ill_walk_context_t ctx; 18584 18585 /* 18586 * make a copy of the original message 18587 */ 18588 mp2ctl = copymsg(mpctl); 18589 18590 /* ipAddrEntryTable */ 18591 18592 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18593 optp->level = MIB2_IP; 18594 optp->name = MIB2_IP_ADDR; 18595 zoneid = Q_TO_CONN(q)->conn_zoneid; 18596 18597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18598 ill = ILL_START_WALK_V4(&ctx, ipst); 18599 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18600 for (ipif = ill->ill_ipif; ipif != NULL; 18601 ipif = ipif->ipif_next) { 18602 if (ipif->ipif_zoneid != zoneid && 18603 ipif->ipif_zoneid != ALL_ZONES) 18604 continue; 18605 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18606 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18607 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18608 18609 (void) ipif_get_name(ipif, 18610 mae.ipAdEntIfIndex.o_bytes, 18611 OCTET_LENGTH); 18612 mae.ipAdEntIfIndex.o_length = 18613 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18614 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18615 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18616 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18617 mae.ipAdEntInfo.ae_subnet_len = 18618 ip_mask_to_plen(ipif->ipif_net_mask); 18619 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18620 for (bitval = 1; 18621 bitval && 18622 !(bitval & ipif->ipif_brd_addr); 18623 bitval <<= 1) 18624 noop; 18625 mae.ipAdEntBcastAddr = bitval; 18626 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18627 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18628 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18629 mae.ipAdEntInfo.ae_broadcast_addr = 18630 ipif->ipif_brd_addr; 18631 mae.ipAdEntInfo.ae_pp_dst_addr = 18632 ipif->ipif_pp_dst_addr; 18633 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18634 ill->ill_flags | ill->ill_phyint->phyint_flags; 18635 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18636 18637 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18638 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18639 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18640 "allocate %u bytes\n", 18641 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18642 } 18643 } 18644 } 18645 rw_exit(&ipst->ips_ill_g_lock); 18646 18647 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18648 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18649 (int)optp->level, (int)optp->name, (int)optp->len)); 18650 qreply(q, mpctl); 18651 return (mp2ctl); 18652 } 18653 18654 /* IPv6 address information */ 18655 static mblk_t * 18656 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18657 { 18658 struct opthdr *optp; 18659 mblk_t *mp2ctl; 18660 mblk_t *mp_tail = NULL; 18661 ill_t *ill; 18662 ipif_t *ipif; 18663 mib2_ipv6AddrEntry_t mae6; 18664 zoneid_t zoneid; 18665 ill_walk_context_t ctx; 18666 18667 /* 18668 * make a copy of the original message 18669 */ 18670 mp2ctl = copymsg(mpctl); 18671 18672 /* ipv6AddrEntryTable */ 18673 18674 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18675 optp->level = MIB2_IP6; 18676 optp->name = MIB2_IP6_ADDR; 18677 zoneid = Q_TO_CONN(q)->conn_zoneid; 18678 18679 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18680 ill = ILL_START_WALK_V6(&ctx, ipst); 18681 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18682 for (ipif = ill->ill_ipif; ipif != NULL; 18683 ipif = ipif->ipif_next) { 18684 if (ipif->ipif_zoneid != zoneid && 18685 ipif->ipif_zoneid != ALL_ZONES) 18686 continue; 18687 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18688 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18689 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18690 18691 (void) ipif_get_name(ipif, 18692 mae6.ipv6AddrIfIndex.o_bytes, 18693 OCTET_LENGTH); 18694 mae6.ipv6AddrIfIndex.o_length = 18695 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18696 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18697 mae6.ipv6AddrPfxLength = 18698 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18699 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18700 mae6.ipv6AddrInfo.ae_subnet_len = 18701 mae6.ipv6AddrPfxLength; 18702 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18703 18704 /* Type: stateless(1), stateful(2), unknown(3) */ 18705 if (ipif->ipif_flags & IPIF_ADDRCONF) 18706 mae6.ipv6AddrType = 1; 18707 else 18708 mae6.ipv6AddrType = 2; 18709 /* Anycast: true(1), false(2) */ 18710 if (ipif->ipif_flags & IPIF_ANYCAST) 18711 mae6.ipv6AddrAnycastFlag = 1; 18712 else 18713 mae6.ipv6AddrAnycastFlag = 2; 18714 18715 /* 18716 * Address status: preferred(1), deprecated(2), 18717 * invalid(3), inaccessible(4), unknown(5) 18718 */ 18719 if (ipif->ipif_flags & IPIF_NOLOCAL) 18720 mae6.ipv6AddrStatus = 3; 18721 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18722 mae6.ipv6AddrStatus = 2; 18723 else 18724 mae6.ipv6AddrStatus = 1; 18725 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18726 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18727 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18728 ipif->ipif_v6pp_dst_addr; 18729 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18730 ill->ill_flags | ill->ill_phyint->phyint_flags; 18731 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18732 mae6.ipv6AddrIdentifier = ill->ill_token; 18733 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18734 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18735 mae6.ipv6AddrRetransmitTime = 18736 ill->ill_reachable_retrans_time; 18737 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18738 (char *)&mae6, 18739 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18740 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18741 "allocate %u bytes\n", 18742 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18743 } 18744 } 18745 } 18746 rw_exit(&ipst->ips_ill_g_lock); 18747 18748 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18749 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18750 (int)optp->level, (int)optp->name, (int)optp->len)); 18751 qreply(q, mpctl); 18752 return (mp2ctl); 18753 } 18754 18755 /* IPv4 multicast group membership. */ 18756 static mblk_t * 18757 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18758 { 18759 struct opthdr *optp; 18760 mblk_t *mp2ctl; 18761 ill_t *ill; 18762 ipif_t *ipif; 18763 ilm_t *ilm; 18764 ip_member_t ipm; 18765 mblk_t *mp_tail = NULL; 18766 ill_walk_context_t ctx; 18767 zoneid_t zoneid; 18768 18769 /* 18770 * make a copy of the original message 18771 */ 18772 mp2ctl = copymsg(mpctl); 18773 zoneid = Q_TO_CONN(q)->conn_zoneid; 18774 18775 /* ipGroupMember table */ 18776 optp = (struct opthdr *)&mpctl->b_rptr[ 18777 sizeof (struct T_optmgmt_ack)]; 18778 optp->level = MIB2_IP; 18779 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18780 18781 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18782 ill = ILL_START_WALK_V4(&ctx, ipst); 18783 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18784 ILM_WALKER_HOLD(ill); 18785 for (ipif = ill->ill_ipif; ipif != NULL; 18786 ipif = ipif->ipif_next) { 18787 if (ipif->ipif_zoneid != zoneid && 18788 ipif->ipif_zoneid != ALL_ZONES) 18789 continue; /* not this zone */ 18790 (void) ipif_get_name(ipif, 18791 ipm.ipGroupMemberIfIndex.o_bytes, 18792 OCTET_LENGTH); 18793 ipm.ipGroupMemberIfIndex.o_length = 18794 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18795 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18796 ASSERT(ilm->ilm_ipif != NULL); 18797 ASSERT(ilm->ilm_ill == NULL); 18798 if (ilm->ilm_ipif != ipif) 18799 continue; 18800 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18801 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18802 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18803 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18804 (char *)&ipm, (int)sizeof (ipm))) { 18805 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18806 "failed to allocate %u bytes\n", 18807 (uint_t)sizeof (ipm))); 18808 } 18809 } 18810 } 18811 ILM_WALKER_RELE(ill); 18812 } 18813 rw_exit(&ipst->ips_ill_g_lock); 18814 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18815 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18816 (int)optp->level, (int)optp->name, (int)optp->len)); 18817 qreply(q, mpctl); 18818 return (mp2ctl); 18819 } 18820 18821 /* IPv6 multicast group membership. */ 18822 static mblk_t * 18823 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18824 { 18825 struct opthdr *optp; 18826 mblk_t *mp2ctl; 18827 ill_t *ill; 18828 ilm_t *ilm; 18829 ipv6_member_t ipm6; 18830 mblk_t *mp_tail = NULL; 18831 ill_walk_context_t ctx; 18832 zoneid_t zoneid; 18833 18834 /* 18835 * make a copy of the original message 18836 */ 18837 mp2ctl = copymsg(mpctl); 18838 zoneid = Q_TO_CONN(q)->conn_zoneid; 18839 18840 /* ip6GroupMember table */ 18841 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18842 optp->level = MIB2_IP6; 18843 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18844 18845 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18846 ill = ILL_START_WALK_V6(&ctx, ipst); 18847 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18848 ILM_WALKER_HOLD(ill); 18849 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18850 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18851 ASSERT(ilm->ilm_ipif == NULL); 18852 ASSERT(ilm->ilm_ill != NULL); 18853 if (ilm->ilm_zoneid != zoneid) 18854 continue; /* not this zone */ 18855 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18856 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18857 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18858 if (!snmp_append_data2(mpctl->b_cont, 18859 &mp_tail, 18860 (char *)&ipm6, (int)sizeof (ipm6))) { 18861 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18862 "failed to allocate %u bytes\n", 18863 (uint_t)sizeof (ipm6))); 18864 } 18865 } 18866 ILM_WALKER_RELE(ill); 18867 } 18868 rw_exit(&ipst->ips_ill_g_lock); 18869 18870 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18871 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18872 (int)optp->level, (int)optp->name, (int)optp->len)); 18873 qreply(q, mpctl); 18874 return (mp2ctl); 18875 } 18876 18877 /* IP multicast filtered sources */ 18878 static mblk_t * 18879 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18880 { 18881 struct opthdr *optp; 18882 mblk_t *mp2ctl; 18883 ill_t *ill; 18884 ipif_t *ipif; 18885 ilm_t *ilm; 18886 ip_grpsrc_t ips; 18887 mblk_t *mp_tail = NULL; 18888 ill_walk_context_t ctx; 18889 zoneid_t zoneid; 18890 int i; 18891 slist_t *sl; 18892 18893 /* 18894 * make a copy of the original message 18895 */ 18896 mp2ctl = copymsg(mpctl); 18897 zoneid = Q_TO_CONN(q)->conn_zoneid; 18898 18899 /* ipGroupSource table */ 18900 optp = (struct opthdr *)&mpctl->b_rptr[ 18901 sizeof (struct T_optmgmt_ack)]; 18902 optp->level = MIB2_IP; 18903 optp->name = EXPER_IP_GROUP_SOURCES; 18904 18905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18906 ill = ILL_START_WALK_V4(&ctx, ipst); 18907 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18908 ILM_WALKER_HOLD(ill); 18909 for (ipif = ill->ill_ipif; ipif != NULL; 18910 ipif = ipif->ipif_next) { 18911 if (ipif->ipif_zoneid != zoneid) 18912 continue; /* not this zone */ 18913 (void) ipif_get_name(ipif, 18914 ips.ipGroupSourceIfIndex.o_bytes, 18915 OCTET_LENGTH); 18916 ips.ipGroupSourceIfIndex.o_length = 18917 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18918 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18919 ASSERT(ilm->ilm_ipif != NULL); 18920 ASSERT(ilm->ilm_ill == NULL); 18921 sl = ilm->ilm_filter; 18922 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18923 continue; 18924 ips.ipGroupSourceGroup = ilm->ilm_addr; 18925 for (i = 0; i < sl->sl_numsrc; i++) { 18926 if (!IN6_IS_ADDR_V4MAPPED( 18927 &sl->sl_addr[i])) 18928 continue; 18929 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18930 ips.ipGroupSourceAddress); 18931 if (snmp_append_data2(mpctl->b_cont, 18932 &mp_tail, (char *)&ips, 18933 (int)sizeof (ips)) == 0) { 18934 ip1dbg(("ip_snmp_get_mib2_" 18935 "ip_group_src: failed to " 18936 "allocate %u bytes\n", 18937 (uint_t)sizeof (ips))); 18938 } 18939 } 18940 } 18941 } 18942 ILM_WALKER_RELE(ill); 18943 } 18944 rw_exit(&ipst->ips_ill_g_lock); 18945 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18946 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18947 (int)optp->level, (int)optp->name, (int)optp->len)); 18948 qreply(q, mpctl); 18949 return (mp2ctl); 18950 } 18951 18952 /* IPv6 multicast filtered sources. */ 18953 static mblk_t * 18954 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18955 { 18956 struct opthdr *optp; 18957 mblk_t *mp2ctl; 18958 ill_t *ill; 18959 ilm_t *ilm; 18960 ipv6_grpsrc_t ips6; 18961 mblk_t *mp_tail = NULL; 18962 ill_walk_context_t ctx; 18963 zoneid_t zoneid; 18964 int i; 18965 slist_t *sl; 18966 18967 /* 18968 * make a copy of the original message 18969 */ 18970 mp2ctl = copymsg(mpctl); 18971 zoneid = Q_TO_CONN(q)->conn_zoneid; 18972 18973 /* ip6GroupMember table */ 18974 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18975 optp->level = MIB2_IP6; 18976 optp->name = EXPER_IP6_GROUP_SOURCES; 18977 18978 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18979 ill = ILL_START_WALK_V6(&ctx, ipst); 18980 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18981 ILM_WALKER_HOLD(ill); 18982 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18983 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18984 ASSERT(ilm->ilm_ipif == NULL); 18985 ASSERT(ilm->ilm_ill != NULL); 18986 sl = ilm->ilm_filter; 18987 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18988 continue; 18989 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18990 for (i = 0; i < sl->sl_numsrc; i++) { 18991 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18992 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18993 (char *)&ips6, (int)sizeof (ips6))) { 18994 ip1dbg(("ip_snmp_get_mib2_ip6_" 18995 "group_src: failed to allocate " 18996 "%u bytes\n", 18997 (uint_t)sizeof (ips6))); 18998 } 18999 } 19000 } 19001 ILM_WALKER_RELE(ill); 19002 } 19003 rw_exit(&ipst->ips_ill_g_lock); 19004 19005 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19006 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19007 (int)optp->level, (int)optp->name, (int)optp->len)); 19008 qreply(q, mpctl); 19009 return (mp2ctl); 19010 } 19011 19012 /* Multicast routing virtual interface table. */ 19013 static mblk_t * 19014 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19015 { 19016 struct opthdr *optp; 19017 mblk_t *mp2ctl; 19018 19019 /* 19020 * make a copy of the original message 19021 */ 19022 mp2ctl = copymsg(mpctl); 19023 19024 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19025 optp->level = EXPER_DVMRP; 19026 optp->name = EXPER_DVMRP_VIF; 19027 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19028 ip0dbg(("ip_mroute_vif: failed\n")); 19029 } 19030 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19031 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19032 (int)optp->level, (int)optp->name, (int)optp->len)); 19033 qreply(q, mpctl); 19034 return (mp2ctl); 19035 } 19036 19037 /* Multicast routing table. */ 19038 static mblk_t * 19039 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19040 { 19041 struct opthdr *optp; 19042 mblk_t *mp2ctl; 19043 19044 /* 19045 * make a copy of the original message 19046 */ 19047 mp2ctl = copymsg(mpctl); 19048 19049 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19050 optp->level = EXPER_DVMRP; 19051 optp->name = EXPER_DVMRP_MRT; 19052 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19053 ip0dbg(("ip_mroute_mrt: failed\n")); 19054 } 19055 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19056 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19057 (int)optp->level, (int)optp->name, (int)optp->len)); 19058 qreply(q, mpctl); 19059 return (mp2ctl); 19060 } 19061 19062 /* 19063 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19064 * in one IRE walk. 19065 */ 19066 static mblk_t * 19067 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19068 { 19069 struct opthdr *optp; 19070 mblk_t *mp2ctl; /* Returned */ 19071 mblk_t *mp3ctl; /* nettomedia */ 19072 mblk_t *mp4ctl; /* routeattrs */ 19073 iproutedata_t ird; 19074 zoneid_t zoneid; 19075 19076 /* 19077 * make copies of the original message 19078 * - mp2ctl is returned unchanged to the caller for his use 19079 * - mpctl is sent upstream as ipRouteEntryTable 19080 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19081 * - mp4ctl is sent upstream as ipRouteAttributeTable 19082 */ 19083 mp2ctl = copymsg(mpctl); 19084 mp3ctl = copymsg(mpctl); 19085 mp4ctl = copymsg(mpctl); 19086 if (mp3ctl == NULL || mp4ctl == NULL) { 19087 freemsg(mp4ctl); 19088 freemsg(mp3ctl); 19089 freemsg(mp2ctl); 19090 freemsg(mpctl); 19091 return (NULL); 19092 } 19093 19094 bzero(&ird, sizeof (ird)); 19095 19096 ird.ird_route.lp_head = mpctl->b_cont; 19097 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19098 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19099 19100 zoneid = Q_TO_CONN(q)->conn_zoneid; 19101 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19102 if (zoneid == GLOBAL_ZONEID) { 19103 /* 19104 * Those IREs are used by Mobile-IP; since mipagent(1M) 19105 * requires the sys_net_config or sys_ip_config privilege, 19106 * it can only run in the global zone or an exclusive-IP zone, 19107 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19108 */ 19109 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19110 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19111 } 19112 19113 /* ipRouteEntryTable in mpctl */ 19114 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19115 optp->level = MIB2_IP; 19116 optp->name = MIB2_IP_ROUTE; 19117 optp->len = msgdsize(ird.ird_route.lp_head); 19118 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19119 (int)optp->level, (int)optp->name, (int)optp->len)); 19120 qreply(q, mpctl); 19121 19122 /* ipNetToMediaEntryTable in mp3ctl */ 19123 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19124 optp->level = MIB2_IP; 19125 optp->name = MIB2_IP_MEDIA; 19126 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19127 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19128 (int)optp->level, (int)optp->name, (int)optp->len)); 19129 qreply(q, mp3ctl); 19130 19131 /* ipRouteAttributeTable in mp4ctl */ 19132 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19133 optp->level = MIB2_IP; 19134 optp->name = EXPER_IP_RTATTR; 19135 optp->len = msgdsize(ird.ird_attrs.lp_head); 19136 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19137 (int)optp->level, (int)optp->name, (int)optp->len)); 19138 if (optp->len == 0) 19139 freemsg(mp4ctl); 19140 else 19141 qreply(q, mp4ctl); 19142 19143 return (mp2ctl); 19144 } 19145 19146 /* 19147 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19148 * ipv6NetToMediaEntryTable in an NDP walk. 19149 */ 19150 static mblk_t * 19151 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19152 { 19153 struct opthdr *optp; 19154 mblk_t *mp2ctl; /* Returned */ 19155 mblk_t *mp3ctl; /* nettomedia */ 19156 mblk_t *mp4ctl; /* routeattrs */ 19157 iproutedata_t ird; 19158 zoneid_t zoneid; 19159 19160 /* 19161 * make copies of the original message 19162 * - mp2ctl is returned unchanged to the caller for his use 19163 * - mpctl is sent upstream as ipv6RouteEntryTable 19164 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19165 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19166 */ 19167 mp2ctl = copymsg(mpctl); 19168 mp3ctl = copymsg(mpctl); 19169 mp4ctl = copymsg(mpctl); 19170 if (mp3ctl == NULL || mp4ctl == NULL) { 19171 freemsg(mp4ctl); 19172 freemsg(mp3ctl); 19173 freemsg(mp2ctl); 19174 freemsg(mpctl); 19175 return (NULL); 19176 } 19177 19178 bzero(&ird, sizeof (ird)); 19179 19180 ird.ird_route.lp_head = mpctl->b_cont; 19181 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19182 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19183 19184 zoneid = Q_TO_CONN(q)->conn_zoneid; 19185 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19186 19187 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19188 optp->level = MIB2_IP6; 19189 optp->name = MIB2_IP6_ROUTE; 19190 optp->len = msgdsize(ird.ird_route.lp_head); 19191 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19192 (int)optp->level, (int)optp->name, (int)optp->len)); 19193 qreply(q, mpctl); 19194 19195 /* ipv6NetToMediaEntryTable in mp3ctl */ 19196 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19197 19198 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19199 optp->level = MIB2_IP6; 19200 optp->name = MIB2_IP6_MEDIA; 19201 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19202 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19203 (int)optp->level, (int)optp->name, (int)optp->len)); 19204 qreply(q, mp3ctl); 19205 19206 /* ipv6RouteAttributeTable in mp4ctl */ 19207 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19208 optp->level = MIB2_IP6; 19209 optp->name = EXPER_IP_RTATTR; 19210 optp->len = msgdsize(ird.ird_attrs.lp_head); 19211 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19212 (int)optp->level, (int)optp->name, (int)optp->len)); 19213 if (optp->len == 0) 19214 freemsg(mp4ctl); 19215 else 19216 qreply(q, mp4ctl); 19217 19218 return (mp2ctl); 19219 } 19220 19221 /* 19222 * IPv6 mib: One per ill 19223 */ 19224 static mblk_t * 19225 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19226 { 19227 struct opthdr *optp; 19228 mblk_t *mp2ctl; 19229 ill_t *ill; 19230 ill_walk_context_t ctx; 19231 mblk_t *mp_tail = NULL; 19232 19233 /* 19234 * Make a copy of the original message 19235 */ 19236 mp2ctl = copymsg(mpctl); 19237 19238 /* fixed length IPv6 structure ... */ 19239 19240 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19241 optp->level = MIB2_IP6; 19242 optp->name = 0; 19243 /* Include "unknown interface" ip6_mib */ 19244 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19245 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19246 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19247 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19248 ipst->ips_ipv6_forward ? 1 : 2); 19249 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19250 ipst->ips_ipv6_def_hops); 19251 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19252 sizeof (mib2_ipIfStatsEntry_t)); 19253 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19254 sizeof (mib2_ipv6AddrEntry_t)); 19255 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19256 sizeof (mib2_ipv6RouteEntry_t)); 19257 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19258 sizeof (mib2_ipv6NetToMediaEntry_t)); 19259 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19260 sizeof (ipv6_member_t)); 19261 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19262 sizeof (ipv6_grpsrc_t)); 19263 19264 /* 19265 * Synchronize 64- and 32-bit counters 19266 */ 19267 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19268 ipIfStatsHCInReceives); 19269 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19270 ipIfStatsHCInDelivers); 19271 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19272 ipIfStatsHCOutRequests); 19273 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19274 ipIfStatsHCOutForwDatagrams); 19275 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19276 ipIfStatsHCOutMcastPkts); 19277 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19278 ipIfStatsHCInMcastPkts); 19279 19280 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19281 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19282 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19283 (uint_t)sizeof (ipst->ips_ip6_mib))); 19284 } 19285 19286 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19287 ill = ILL_START_WALK_V6(&ctx, ipst); 19288 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19289 ill->ill_ip_mib->ipIfStatsIfIndex = 19290 ill->ill_phyint->phyint_ifindex; 19291 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19292 ipst->ips_ipv6_forward ? 1 : 2); 19293 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19294 ill->ill_max_hops); 19295 19296 /* 19297 * Synchronize 64- and 32-bit counters 19298 */ 19299 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19300 ipIfStatsHCInReceives); 19301 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19302 ipIfStatsHCInDelivers); 19303 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19304 ipIfStatsHCOutRequests); 19305 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19306 ipIfStatsHCOutForwDatagrams); 19307 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19308 ipIfStatsHCOutMcastPkts); 19309 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19310 ipIfStatsHCInMcastPkts); 19311 19312 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19313 (char *)ill->ill_ip_mib, 19314 (int)sizeof (*ill->ill_ip_mib))) { 19315 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19316 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19317 } 19318 } 19319 rw_exit(&ipst->ips_ill_g_lock); 19320 19321 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19322 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19323 (int)optp->level, (int)optp->name, (int)optp->len)); 19324 qreply(q, mpctl); 19325 return (mp2ctl); 19326 } 19327 19328 /* 19329 * ICMPv6 mib: One per ill 19330 */ 19331 static mblk_t * 19332 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19333 { 19334 struct opthdr *optp; 19335 mblk_t *mp2ctl; 19336 ill_t *ill; 19337 ill_walk_context_t ctx; 19338 mblk_t *mp_tail = NULL; 19339 /* 19340 * Make a copy of the original message 19341 */ 19342 mp2ctl = copymsg(mpctl); 19343 19344 /* fixed length ICMPv6 structure ... */ 19345 19346 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19347 optp->level = MIB2_ICMP6; 19348 optp->name = 0; 19349 /* Include "unknown interface" icmp6_mib */ 19350 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19351 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19352 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19353 sizeof (mib2_ipv6IfIcmpEntry_t); 19354 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19355 (char *)&ipst->ips_icmp6_mib, 19356 (int)sizeof (ipst->ips_icmp6_mib))) { 19357 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19358 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19359 } 19360 19361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19362 ill = ILL_START_WALK_V6(&ctx, ipst); 19363 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19364 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19365 ill->ill_phyint->phyint_ifindex; 19366 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19367 (char *)ill->ill_icmp6_mib, 19368 (int)sizeof (*ill->ill_icmp6_mib))) { 19369 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19370 "%u bytes\n", 19371 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19372 } 19373 } 19374 rw_exit(&ipst->ips_ill_g_lock); 19375 19376 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19377 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19378 (int)optp->level, (int)optp->name, (int)optp->len)); 19379 qreply(q, mpctl); 19380 return (mp2ctl); 19381 } 19382 19383 /* 19384 * ire_walk routine to create both ipRouteEntryTable and 19385 * ipRouteAttributeTable in one IRE walk 19386 */ 19387 static void 19388 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19389 { 19390 ill_t *ill; 19391 ipif_t *ipif; 19392 mib2_ipRouteEntry_t *re; 19393 mib2_ipAttributeEntry_t *iae, *iaeptr; 19394 ipaddr_t gw_addr; 19395 tsol_ire_gw_secattr_t *attrp; 19396 tsol_gc_t *gc = NULL; 19397 tsol_gcgrp_t *gcgrp = NULL; 19398 uint_t sacnt = 0; 19399 int i; 19400 19401 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19402 19403 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19404 return; 19405 19406 if ((attrp = ire->ire_gw_secattr) != NULL) { 19407 mutex_enter(&attrp->igsa_lock); 19408 if ((gc = attrp->igsa_gc) != NULL) { 19409 gcgrp = gc->gc_grp; 19410 ASSERT(gcgrp != NULL); 19411 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19412 sacnt = 1; 19413 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19414 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19415 gc = gcgrp->gcgrp_head; 19416 sacnt = gcgrp->gcgrp_count; 19417 } 19418 mutex_exit(&attrp->igsa_lock); 19419 19420 /* do nothing if there's no gc to report */ 19421 if (gc == NULL) { 19422 ASSERT(sacnt == 0); 19423 if (gcgrp != NULL) { 19424 /* we might as well drop the lock now */ 19425 rw_exit(&gcgrp->gcgrp_rwlock); 19426 gcgrp = NULL; 19427 } 19428 attrp = NULL; 19429 } 19430 19431 ASSERT(gc == NULL || (gcgrp != NULL && 19432 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19433 } 19434 ASSERT(sacnt == 0 || gc != NULL); 19435 19436 if (sacnt != 0 && 19437 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19438 kmem_free(re, sizeof (*re)); 19439 rw_exit(&gcgrp->gcgrp_rwlock); 19440 return; 19441 } 19442 19443 /* 19444 * Return all IRE types for route table... let caller pick and choose 19445 */ 19446 re->ipRouteDest = ire->ire_addr; 19447 ipif = ire->ire_ipif; 19448 re->ipRouteIfIndex.o_length = 0; 19449 if (ire->ire_type == IRE_CACHE) { 19450 ill = (ill_t *)ire->ire_stq->q_ptr; 19451 re->ipRouteIfIndex.o_length = 19452 ill->ill_name_length == 0 ? 0 : 19453 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19454 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19455 re->ipRouteIfIndex.o_length); 19456 } else if (ipif != NULL) { 19457 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19458 OCTET_LENGTH); 19459 re->ipRouteIfIndex.o_length = 19460 mi_strlen(re->ipRouteIfIndex.o_bytes); 19461 } 19462 re->ipRouteMetric1 = -1; 19463 re->ipRouteMetric2 = -1; 19464 re->ipRouteMetric3 = -1; 19465 re->ipRouteMetric4 = -1; 19466 19467 gw_addr = ire->ire_gateway_addr; 19468 19469 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19470 re->ipRouteNextHop = ire->ire_src_addr; 19471 else 19472 re->ipRouteNextHop = gw_addr; 19473 /* indirect(4), direct(3), or invalid(2) */ 19474 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19475 re->ipRouteType = 2; 19476 else 19477 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19478 re->ipRouteProto = -1; 19479 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19480 re->ipRouteMask = ire->ire_mask; 19481 re->ipRouteMetric5 = -1; 19482 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19483 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19484 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19485 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19486 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19487 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19488 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19489 re->ipRouteInfo.re_flags = ire->ire_flags; 19490 re->ipRouteInfo.re_in_ill.o_length = 0; 19491 19492 if (ire->ire_flags & RTF_DYNAMIC) { 19493 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19494 } else { 19495 re->ipRouteInfo.re_ire_type = ire->ire_type; 19496 } 19497 19498 if (ire->ire_in_ill != NULL) { 19499 re->ipRouteInfo.re_in_ill.o_length = 19500 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19501 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19502 bcopy(ire->ire_in_ill->ill_name, 19503 re->ipRouteInfo.re_in_ill.o_bytes, 19504 re->ipRouteInfo.re_in_ill.o_length); 19505 } 19506 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19507 19508 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19509 (char *)re, (int)sizeof (*re))) { 19510 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19511 (uint_t)sizeof (*re))); 19512 } 19513 19514 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19515 iaeptr->iae_routeidx = ird->ird_idx; 19516 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19517 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19518 } 19519 19520 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19521 (char *)iae, sacnt * sizeof (*iae))) { 19522 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19523 (unsigned)(sacnt * sizeof (*iae)))); 19524 } 19525 19526 /* bump route index for next pass */ 19527 ird->ird_idx++; 19528 19529 kmem_free(re, sizeof (*re)); 19530 if (sacnt != 0) 19531 kmem_free(iae, sacnt * sizeof (*iae)); 19532 19533 if (gcgrp != NULL) 19534 rw_exit(&gcgrp->gcgrp_rwlock); 19535 } 19536 19537 /* 19538 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19539 */ 19540 static void 19541 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19542 { 19543 ill_t *ill; 19544 ipif_t *ipif; 19545 mib2_ipv6RouteEntry_t *re; 19546 mib2_ipAttributeEntry_t *iae, *iaeptr; 19547 in6_addr_t gw_addr_v6; 19548 tsol_ire_gw_secattr_t *attrp; 19549 tsol_gc_t *gc = NULL; 19550 tsol_gcgrp_t *gcgrp = NULL; 19551 uint_t sacnt = 0; 19552 int i; 19553 19554 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19555 19556 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19557 return; 19558 19559 if ((attrp = ire->ire_gw_secattr) != NULL) { 19560 mutex_enter(&attrp->igsa_lock); 19561 if ((gc = attrp->igsa_gc) != NULL) { 19562 gcgrp = gc->gc_grp; 19563 ASSERT(gcgrp != NULL); 19564 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19565 sacnt = 1; 19566 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19567 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19568 gc = gcgrp->gcgrp_head; 19569 sacnt = gcgrp->gcgrp_count; 19570 } 19571 mutex_exit(&attrp->igsa_lock); 19572 19573 /* do nothing if there's no gc to report */ 19574 if (gc == NULL) { 19575 ASSERT(sacnt == 0); 19576 if (gcgrp != NULL) { 19577 /* we might as well drop the lock now */ 19578 rw_exit(&gcgrp->gcgrp_rwlock); 19579 gcgrp = NULL; 19580 } 19581 attrp = NULL; 19582 } 19583 19584 ASSERT(gc == NULL || (gcgrp != NULL && 19585 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19586 } 19587 ASSERT(sacnt == 0 || gc != NULL); 19588 19589 if (sacnt != 0 && 19590 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19591 kmem_free(re, sizeof (*re)); 19592 rw_exit(&gcgrp->gcgrp_rwlock); 19593 return; 19594 } 19595 19596 /* 19597 * Return all IRE types for route table... let caller pick and choose 19598 */ 19599 re->ipv6RouteDest = ire->ire_addr_v6; 19600 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19601 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19602 re->ipv6RouteIfIndex.o_length = 0; 19603 ipif = ire->ire_ipif; 19604 if (ire->ire_type == IRE_CACHE) { 19605 ill = (ill_t *)ire->ire_stq->q_ptr; 19606 re->ipv6RouteIfIndex.o_length = 19607 ill->ill_name_length == 0 ? 0 : 19608 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19609 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19610 re->ipv6RouteIfIndex.o_length); 19611 } else if (ipif != NULL) { 19612 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19613 OCTET_LENGTH); 19614 re->ipv6RouteIfIndex.o_length = 19615 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19616 } 19617 19618 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19619 19620 mutex_enter(&ire->ire_lock); 19621 gw_addr_v6 = ire->ire_gateway_addr_v6; 19622 mutex_exit(&ire->ire_lock); 19623 19624 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19625 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19626 else 19627 re->ipv6RouteNextHop = gw_addr_v6; 19628 19629 /* remote(4), local(3), or discard(2) */ 19630 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19631 re->ipv6RouteType = 2; 19632 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19633 re->ipv6RouteType = 3; 19634 else 19635 re->ipv6RouteType = 4; 19636 19637 re->ipv6RouteProtocol = -1; 19638 re->ipv6RoutePolicy = 0; 19639 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19640 re->ipv6RouteNextHopRDI = 0; 19641 re->ipv6RouteWeight = 0; 19642 re->ipv6RouteMetric = 0; 19643 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19644 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19645 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19646 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19647 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19648 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19649 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19650 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19651 19652 if (ire->ire_flags & RTF_DYNAMIC) { 19653 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19654 } else { 19655 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19656 } 19657 19658 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19659 (char *)re, (int)sizeof (*re))) { 19660 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19661 (uint_t)sizeof (*re))); 19662 } 19663 19664 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19665 iaeptr->iae_routeidx = ird->ird_idx; 19666 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19667 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19668 } 19669 19670 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19671 (char *)iae, sacnt * sizeof (*iae))) { 19672 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19673 (unsigned)(sacnt * sizeof (*iae)))); 19674 } 19675 19676 /* bump route index for next pass */ 19677 ird->ird_idx++; 19678 19679 kmem_free(re, sizeof (*re)); 19680 if (sacnt != 0) 19681 kmem_free(iae, sacnt * sizeof (*iae)); 19682 19683 if (gcgrp != NULL) 19684 rw_exit(&gcgrp->gcgrp_rwlock); 19685 } 19686 19687 /* 19688 * ndp_walk routine to create ipv6NetToMediaEntryTable 19689 */ 19690 static int 19691 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19692 { 19693 ill_t *ill; 19694 mib2_ipv6NetToMediaEntry_t ntme; 19695 dl_unitdata_req_t *dl; 19696 19697 ill = nce->nce_ill; 19698 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19699 return (0); 19700 19701 /* 19702 * Neighbor cache entry attached to IRE with on-link 19703 * destination. 19704 */ 19705 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19706 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19707 if ((ill->ill_flags & ILLF_XRESOLV) && 19708 (nce->nce_res_mp != NULL)) { 19709 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19710 ntme.ipv6NetToMediaPhysAddress.o_length = 19711 dl->dl_dest_addr_length; 19712 } else { 19713 ntme.ipv6NetToMediaPhysAddress.o_length = 19714 ill->ill_phys_addr_length; 19715 } 19716 if (nce->nce_res_mp != NULL) { 19717 bcopy((char *)nce->nce_res_mp->b_rptr + 19718 NCE_LL_ADDR_OFFSET(ill), 19719 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19720 ntme.ipv6NetToMediaPhysAddress.o_length); 19721 } else { 19722 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19723 ill->ill_phys_addr_length); 19724 } 19725 /* 19726 * Note: Returns ND_* states. Should be: 19727 * reachable(1), stale(2), delay(3), probe(4), 19728 * invalid(5), unknown(6) 19729 */ 19730 ntme.ipv6NetToMediaState = nce->nce_state; 19731 ntme.ipv6NetToMediaLastUpdated = 0; 19732 19733 /* other(1), dynamic(2), static(3), local(4) */ 19734 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19735 ntme.ipv6NetToMediaType = 4; 19736 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19737 ntme.ipv6NetToMediaType = 1; 19738 } else { 19739 ntme.ipv6NetToMediaType = 2; 19740 } 19741 19742 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19743 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19744 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19745 (uint_t)sizeof (ntme))); 19746 } 19747 return (0); 19748 } 19749 19750 /* 19751 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19752 */ 19753 /* ARGSUSED */ 19754 int 19755 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19756 { 19757 switch (level) { 19758 case MIB2_IP: 19759 case MIB2_ICMP: 19760 switch (name) { 19761 default: 19762 break; 19763 } 19764 return (1); 19765 default: 19766 return (1); 19767 } 19768 } 19769 19770 /* 19771 * When there exists both a 64- and 32-bit counter of a particular type 19772 * (i.e., InReceives), only the 64-bit counters are added. 19773 */ 19774 void 19775 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19776 { 19777 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19778 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19779 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19780 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19781 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19782 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19783 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19784 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19785 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19786 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19787 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19788 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19789 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19790 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19791 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19792 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19793 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19794 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19795 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19796 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19797 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19798 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19799 o2->ipIfStatsInWrongIPVersion); 19800 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19801 o2->ipIfStatsInWrongIPVersion); 19802 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19803 o2->ipIfStatsOutSwitchIPVersion); 19804 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19805 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19806 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19807 o2->ipIfStatsHCInForwDatagrams); 19808 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19809 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19810 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19811 o2->ipIfStatsHCOutForwDatagrams); 19812 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19813 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19814 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19815 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19816 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19817 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19818 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19819 o2->ipIfStatsHCOutMcastOctets); 19820 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19821 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19822 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19823 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19824 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19825 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19826 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19827 } 19828 19829 void 19830 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19831 { 19832 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19833 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19834 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19835 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19836 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19837 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19838 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19839 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19840 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19841 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19842 o2->ipv6IfIcmpInRouterSolicits); 19843 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19844 o2->ipv6IfIcmpInRouterAdvertisements); 19845 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19846 o2->ipv6IfIcmpInNeighborSolicits); 19847 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19848 o2->ipv6IfIcmpInNeighborAdvertisements); 19849 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19850 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19851 o2->ipv6IfIcmpInGroupMembQueries); 19852 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19853 o2->ipv6IfIcmpInGroupMembResponses); 19854 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19855 o2->ipv6IfIcmpInGroupMembReductions); 19856 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19857 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19858 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19859 o2->ipv6IfIcmpOutDestUnreachs); 19860 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19861 o2->ipv6IfIcmpOutAdminProhibs); 19862 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19863 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19864 o2->ipv6IfIcmpOutParmProblems); 19865 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19866 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19867 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19868 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19869 o2->ipv6IfIcmpOutRouterSolicits); 19870 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19871 o2->ipv6IfIcmpOutRouterAdvertisements); 19872 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19873 o2->ipv6IfIcmpOutNeighborSolicits); 19874 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19875 o2->ipv6IfIcmpOutNeighborAdvertisements); 19876 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19877 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19878 o2->ipv6IfIcmpOutGroupMembQueries); 19879 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19880 o2->ipv6IfIcmpOutGroupMembResponses); 19881 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19882 o2->ipv6IfIcmpOutGroupMembReductions); 19883 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19884 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19885 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19886 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19887 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19888 o2->ipv6IfIcmpInBadNeighborSolicitations); 19889 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19890 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19891 o2->ipv6IfIcmpInGroupMembTotal); 19892 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19893 o2->ipv6IfIcmpInGroupMembBadQueries); 19894 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19895 o2->ipv6IfIcmpInGroupMembBadReports); 19896 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19897 o2->ipv6IfIcmpInGroupMembOurReports); 19898 } 19899 19900 /* 19901 * Called before the options are updated to check if this packet will 19902 * be source routed from here. 19903 * This routine assumes that the options are well formed i.e. that they 19904 * have already been checked. 19905 */ 19906 static boolean_t 19907 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19908 { 19909 ipoptp_t opts; 19910 uchar_t *opt; 19911 uint8_t optval; 19912 uint8_t optlen; 19913 ipaddr_t dst; 19914 ire_t *ire; 19915 19916 if (IS_SIMPLE_IPH(ipha)) { 19917 ip2dbg(("not source routed\n")); 19918 return (B_FALSE); 19919 } 19920 dst = ipha->ipha_dst; 19921 for (optval = ipoptp_first(&opts, ipha); 19922 optval != IPOPT_EOL; 19923 optval = ipoptp_next(&opts)) { 19924 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19925 opt = opts.ipoptp_cur; 19926 optlen = opts.ipoptp_len; 19927 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19928 optval, optlen)); 19929 switch (optval) { 19930 uint32_t off; 19931 case IPOPT_SSRR: 19932 case IPOPT_LSRR: 19933 /* 19934 * If dst is one of our addresses and there are some 19935 * entries left in the source route return (true). 19936 */ 19937 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19938 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19939 if (ire == NULL) { 19940 ip2dbg(("ip_source_routed: not next" 19941 " source route 0x%x\n", 19942 ntohl(dst))); 19943 return (B_FALSE); 19944 } 19945 ire_refrele(ire); 19946 off = opt[IPOPT_OFFSET]; 19947 off--; 19948 if (optlen < IP_ADDR_LEN || 19949 off > optlen - IP_ADDR_LEN) { 19950 /* End of source route */ 19951 ip1dbg(("ip_source_routed: end of SR\n")); 19952 return (B_FALSE); 19953 } 19954 return (B_TRUE); 19955 } 19956 } 19957 ip2dbg(("not source routed\n")); 19958 return (B_FALSE); 19959 } 19960 19961 /* 19962 * Check if the packet contains any source route. 19963 */ 19964 static boolean_t 19965 ip_source_route_included(ipha_t *ipha) 19966 { 19967 ipoptp_t opts; 19968 uint8_t optval; 19969 19970 if (IS_SIMPLE_IPH(ipha)) 19971 return (B_FALSE); 19972 for (optval = ipoptp_first(&opts, ipha); 19973 optval != IPOPT_EOL; 19974 optval = ipoptp_next(&opts)) { 19975 switch (optval) { 19976 case IPOPT_SSRR: 19977 case IPOPT_LSRR: 19978 return (B_TRUE); 19979 } 19980 } 19981 return (B_FALSE); 19982 } 19983 19984 /* 19985 * Called when the IRE expiration timer fires. 19986 */ 19987 void 19988 ip_trash_timer_expire(void *args) 19989 { 19990 int flush_flag = 0; 19991 ire_expire_arg_t iea; 19992 ip_stack_t *ipst = (ip_stack_t *)args; 19993 19994 iea.iea_ipst = ipst; /* No netstack_hold */ 19995 19996 /* 19997 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19998 * This lock makes sure that a new invocation of this function 19999 * that occurs due to an almost immediate timer firing will not 20000 * progress beyond this point until the current invocation is done 20001 */ 20002 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20003 ipst->ips_ip_ire_expire_id = 0; 20004 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20005 20006 /* Periodic timer */ 20007 if (ipst->ips_ip_ire_arp_time_elapsed >= 20008 ipst->ips_ip_ire_arp_interval) { 20009 /* 20010 * Remove all IRE_CACHE entries since they might 20011 * contain arp information. 20012 */ 20013 flush_flag |= FLUSH_ARP_TIME; 20014 ipst->ips_ip_ire_arp_time_elapsed = 0; 20015 IP_STAT(ipst, ip_ire_arp_timer_expired); 20016 } 20017 if (ipst->ips_ip_ire_rd_time_elapsed >= 20018 ipst->ips_ip_ire_redir_interval) { 20019 /* Remove all redirects */ 20020 flush_flag |= FLUSH_REDIRECT_TIME; 20021 ipst->ips_ip_ire_rd_time_elapsed = 0; 20022 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20023 } 20024 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20025 ipst->ips_ip_ire_pathmtu_interval) { 20026 /* Increase path mtu */ 20027 flush_flag |= FLUSH_MTU_TIME; 20028 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20029 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20030 } 20031 20032 /* 20033 * Optimize for the case when there are no redirects in the 20034 * ftable, that is, no need to walk the ftable in that case. 20035 */ 20036 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20037 iea.iea_flush_flag = flush_flag; 20038 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20039 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20040 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20041 NULL, ALL_ZONES, ipst); 20042 } 20043 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20044 ipst->ips_ip_redirect_cnt > 0) { 20045 iea.iea_flush_flag = flush_flag; 20046 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20047 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20048 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20049 } 20050 if (flush_flag & FLUSH_MTU_TIME) { 20051 /* 20052 * Walk all IPv6 IRE's and update them 20053 * Note that ARP and redirect timers are not 20054 * needed since NUD handles stale entries. 20055 */ 20056 flush_flag = FLUSH_MTU_TIME; 20057 iea.iea_flush_flag = flush_flag; 20058 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20059 ALL_ZONES, ipst); 20060 } 20061 20062 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20063 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20064 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20065 20066 /* 20067 * Hold the lock to serialize timeout calls and prevent 20068 * stale values in ip_ire_expire_id. Otherwise it is possible 20069 * for the timer to fire and a new invocation of this function 20070 * to start before the return value of timeout has been stored 20071 * in ip_ire_expire_id by the current invocation. 20072 */ 20073 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20074 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20075 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20076 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20077 } 20078 20079 /* 20080 * Called by the memory allocator subsystem directly, when the system 20081 * is running low on memory. 20082 */ 20083 /* ARGSUSED */ 20084 void 20085 ip_trash_ire_reclaim(void *args) 20086 { 20087 netstack_handle_t nh; 20088 netstack_t *ns; 20089 20090 netstack_next_init(&nh); 20091 while ((ns = netstack_next(&nh)) != NULL) { 20092 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20093 netstack_rele(ns); 20094 } 20095 netstack_next_fini(&nh); 20096 } 20097 20098 static void 20099 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20100 { 20101 ire_cache_count_t icc; 20102 ire_cache_reclaim_t icr; 20103 ncc_cache_count_t ncc; 20104 nce_cache_reclaim_t ncr; 20105 uint_t delete_cnt; 20106 /* 20107 * Memory reclaim call back. 20108 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20109 * Then, with a target of freeing 1/Nth of IRE_CACHE 20110 * entries, determine what fraction to free for 20111 * each category of IRE_CACHE entries giving absolute priority 20112 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20113 * entry will be freed unless all offlink entries are freed). 20114 */ 20115 icc.icc_total = 0; 20116 icc.icc_unused = 0; 20117 icc.icc_offlink = 0; 20118 icc.icc_pmtu = 0; 20119 icc.icc_onlink = 0; 20120 ire_walk(ire_cache_count, (char *)&icc, ipst); 20121 20122 /* 20123 * Free NCEs for IPv6 like the onlink ires. 20124 */ 20125 ncc.ncc_total = 0; 20126 ncc.ncc_host = 0; 20127 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20128 20129 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20130 icc.icc_pmtu + icc.icc_onlink); 20131 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20132 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20133 if (delete_cnt == 0) 20134 return; 20135 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20136 /* Always delete all unused offlink entries */ 20137 icr.icr_ipst = ipst; 20138 icr.icr_unused = 1; 20139 if (delete_cnt <= icc.icc_unused) { 20140 /* 20141 * Only need to free unused entries. In other words, 20142 * there are enough unused entries to free to meet our 20143 * target number of freed ire cache entries. 20144 */ 20145 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20146 ncr.ncr_host = 0; 20147 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20148 /* 20149 * Only need to free unused entries, plus a fraction of offlink 20150 * entries. It follows from the first if statement that 20151 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20152 */ 20153 delete_cnt -= icc.icc_unused; 20154 /* Round up # deleted by truncating fraction */ 20155 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20156 icr.icr_pmtu = icr.icr_onlink = 0; 20157 ncr.ncr_host = 0; 20158 } else if (delete_cnt <= 20159 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20160 /* 20161 * Free all unused and offlink entries, plus a fraction of 20162 * pmtu entries. It follows from the previous if statement 20163 * that icc_pmtu is non-zero, and that 20164 * delete_cnt != icc_unused + icc_offlink. 20165 */ 20166 icr.icr_offlink = 1; 20167 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20168 /* Round up # deleted by truncating fraction */ 20169 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20170 icr.icr_onlink = 0; 20171 ncr.ncr_host = 0; 20172 } else { 20173 /* 20174 * Free all unused, offlink, and pmtu entries, plus a fraction 20175 * of onlink entries. If we're here, then we know that 20176 * icc_onlink is non-zero, and that 20177 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20178 */ 20179 icr.icr_offlink = icr.icr_pmtu = 1; 20180 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20181 icc.icc_pmtu; 20182 /* Round up # deleted by truncating fraction */ 20183 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20184 /* Using the same delete fraction as for onlink IREs */ 20185 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20186 } 20187 #ifdef DEBUG 20188 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20189 "fractions %d/%d/%d/%d\n", 20190 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20191 icc.icc_unused, icc.icc_offlink, 20192 icc.icc_pmtu, icc.icc_onlink, 20193 icr.icr_unused, icr.icr_offlink, 20194 icr.icr_pmtu, icr.icr_onlink)); 20195 #endif 20196 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20197 if (ncr.ncr_host != 0) 20198 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20199 (uchar_t *)&ncr, ipst); 20200 #ifdef DEBUG 20201 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20202 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20203 ire_walk(ire_cache_count, (char *)&icc, ipst); 20204 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20205 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20206 icc.icc_pmtu, icc.icc_onlink)); 20207 #endif 20208 } 20209 20210 /* 20211 * ip_unbind is called when a copy of an unbind request is received from the 20212 * upper level protocol. We remove this conn from any fanout hash list it is 20213 * on, and zero out the bind information. No reply is expected up above. 20214 */ 20215 mblk_t * 20216 ip_unbind(queue_t *q, mblk_t *mp) 20217 { 20218 conn_t *connp = Q_TO_CONN(q); 20219 20220 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20221 20222 if (is_system_labeled() && connp->conn_anon_port) { 20223 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20224 connp->conn_mlp_type, connp->conn_ulp, 20225 ntohs(connp->conn_lport), B_FALSE); 20226 connp->conn_anon_port = 0; 20227 } 20228 connp->conn_mlp_type = mlptSingle; 20229 20230 ipcl_hash_remove(connp); 20231 20232 ASSERT(mp->b_cont == NULL); 20233 /* 20234 * Convert mp into a T_OK_ACK 20235 */ 20236 mp = mi_tpi_ok_ack_alloc(mp); 20237 20238 /* 20239 * should not happen in practice... T_OK_ACK is smaller than the 20240 * original message. 20241 */ 20242 if (mp == NULL) 20243 return (NULL); 20244 20245 /* 20246 * Don't bzero the ports if its TCP since TCP still needs the 20247 * lport to remove it from its own bind hash. TCP will do the 20248 * cleanup. 20249 */ 20250 if (!IPCL_IS_TCP(connp)) 20251 bzero(&connp->u_port, sizeof (connp->u_port)); 20252 20253 return (mp); 20254 } 20255 20256 /* 20257 * Write side put procedure. Outbound data, IOCTLs, responses from 20258 * resolvers, etc, come down through here. 20259 * 20260 * arg2 is always a queue_t *. 20261 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20262 * the zoneid. 20263 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20264 */ 20265 void 20266 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20267 { 20268 ip_output_options(arg, mp, arg2, caller, &zero_info); 20269 } 20270 20271 void 20272 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20273 ip_opt_info_t *infop) 20274 { 20275 conn_t *connp = NULL; 20276 queue_t *q = (queue_t *)arg2; 20277 ipha_t *ipha; 20278 #define rptr ((uchar_t *)ipha) 20279 ire_t *ire = NULL; 20280 ire_t *sctp_ire = NULL; 20281 uint32_t v_hlen_tos_len; 20282 ipaddr_t dst; 20283 mblk_t *first_mp = NULL; 20284 boolean_t mctl_present; 20285 ipsec_out_t *io; 20286 int match_flags; 20287 ill_t *attach_ill = NULL; 20288 /* Bind to IPIF_NOFAILOVER ill etc. */ 20289 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20290 ipif_t *dst_ipif; 20291 boolean_t multirt_need_resolve = B_FALSE; 20292 mblk_t *copy_mp = NULL; 20293 int err; 20294 zoneid_t zoneid; 20295 int adjust; 20296 uint16_t iplen; 20297 boolean_t need_decref = B_FALSE; 20298 boolean_t ignore_dontroute = B_FALSE; 20299 boolean_t ignore_nexthop = B_FALSE; 20300 boolean_t ip_nexthop = B_FALSE; 20301 ipaddr_t nexthop_addr; 20302 ip_stack_t *ipst; 20303 20304 #ifdef _BIG_ENDIAN 20305 #define V_HLEN (v_hlen_tos_len >> 24) 20306 #else 20307 #define V_HLEN (v_hlen_tos_len & 0xFF) 20308 #endif 20309 20310 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20311 "ip_wput_start: q %p", q); 20312 20313 /* 20314 * ip_wput fast path 20315 */ 20316 20317 /* is packet from ARP ? */ 20318 if (q->q_next != NULL) { 20319 zoneid = (zoneid_t)(uintptr_t)arg; 20320 goto qnext; 20321 } 20322 20323 connp = (conn_t *)arg; 20324 ASSERT(connp != NULL); 20325 zoneid = connp->conn_zoneid; 20326 ipst = connp->conn_netstack->netstack_ip; 20327 20328 /* is queue flow controlled? */ 20329 if ((q->q_first != NULL || connp->conn_draining) && 20330 (caller == IP_WPUT)) { 20331 ASSERT(!need_decref); 20332 (void) putq(q, mp); 20333 return; 20334 } 20335 20336 /* Multidata transmit? */ 20337 if (DB_TYPE(mp) == M_MULTIDATA) { 20338 /* 20339 * We should never get here, since all Multidata messages 20340 * originating from tcp should have been directed over to 20341 * tcp_multisend() in the first place. 20342 */ 20343 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20344 freemsg(mp); 20345 return; 20346 } else if (DB_TYPE(mp) != M_DATA) 20347 goto notdata; 20348 20349 if (mp->b_flag & MSGHASREF) { 20350 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20351 mp->b_flag &= ~MSGHASREF; 20352 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20353 need_decref = B_TRUE; 20354 } 20355 ipha = (ipha_t *)mp->b_rptr; 20356 20357 /* is IP header non-aligned or mblk smaller than basic IP header */ 20358 #ifndef SAFETY_BEFORE_SPEED 20359 if (!OK_32PTR(rptr) || 20360 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20361 goto hdrtoosmall; 20362 #endif 20363 20364 ASSERT(OK_32PTR(ipha)); 20365 20366 /* 20367 * This function assumes that mp points to an IPv4 packet. If it's the 20368 * wrong version, we'll catch it again in ip_output_v6. 20369 * 20370 * Note that this is *only* locally-generated output here, and never 20371 * forwarded data, and that we need to deal only with transports that 20372 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20373 * label.) 20374 */ 20375 if (is_system_labeled() && 20376 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20377 !connp->conn_ulp_labeled) { 20378 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20379 connp->conn_mac_exempt, ipst); 20380 ipha = (ipha_t *)mp->b_rptr; 20381 if (err != 0) { 20382 first_mp = mp; 20383 if (err == EINVAL) 20384 goto icmp_parameter_problem; 20385 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20386 goto discard_pkt; 20387 } 20388 iplen = ntohs(ipha->ipha_length) + adjust; 20389 ipha->ipha_length = htons(iplen); 20390 } 20391 20392 ASSERT(infop != NULL); 20393 20394 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20395 /* 20396 * IP_PKTINFO ancillary option is present. 20397 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20398 * allows using address of any zone as the source address. 20399 */ 20400 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20401 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20402 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20403 if (ire == NULL) 20404 goto drop_pkt; 20405 ire_refrele(ire); 20406 ire = NULL; 20407 } 20408 20409 /* 20410 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20411 * ill index passed in IP_PKTINFO. 20412 */ 20413 if (infop->ip_opt_ill_index != 0 && 20414 connp->conn_xmit_if_ill == NULL && 20415 connp->conn_nofailover_ill == NULL) { 20416 20417 xmit_ill = ill_lookup_on_ifindex( 20418 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20419 ipst); 20420 20421 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20422 goto drop_pkt; 20423 /* 20424 * check that there is an ipif belonging 20425 * to our zone. IPCL_ZONEID is not used because 20426 * IP_ALLZONES option is valid only when the ill is 20427 * accessible from all zones i.e has a valid ipif in 20428 * all zones. 20429 */ 20430 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20431 goto drop_pkt; 20432 } 20433 } 20434 20435 /* 20436 * If there is a policy, try to attach an ipsec_out in 20437 * the front. At the end, first_mp either points to a 20438 * M_DATA message or IPSEC_OUT message linked to a 20439 * M_DATA message. We have to do it now as we might 20440 * lose the "conn" if we go through ip_newroute. 20441 */ 20442 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20443 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20444 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20445 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20446 if (need_decref) 20447 CONN_DEC_REF(connp); 20448 return; 20449 } else { 20450 ASSERT(mp->b_datap->db_type == M_CTL); 20451 first_mp = mp; 20452 mp = mp->b_cont; 20453 mctl_present = B_TRUE; 20454 } 20455 } else { 20456 first_mp = mp; 20457 mctl_present = B_FALSE; 20458 } 20459 20460 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20461 20462 /* is wrong version or IP options present */ 20463 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20464 goto version_hdrlen_check; 20465 dst = ipha->ipha_dst; 20466 20467 if (connp->conn_nofailover_ill != NULL) { 20468 attach_ill = conn_get_held_ill(connp, 20469 &connp->conn_nofailover_ill, &err); 20470 if (err == ILL_LOOKUP_FAILED) { 20471 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20472 if (need_decref) 20473 CONN_DEC_REF(connp); 20474 freemsg(first_mp); 20475 return; 20476 } 20477 } 20478 20479 20480 /* is packet multicast? */ 20481 if (CLASSD(dst)) 20482 goto multicast; 20483 20484 /* 20485 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20486 * takes precedence over conn_dontroute and conn_nexthop_set 20487 */ 20488 if (xmit_ill != NULL) { 20489 goto send_from_ill; 20490 } 20491 20492 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20493 (connp->conn_nexthop_set)) { 20494 /* 20495 * If the destination is a broadcast or a loopback 20496 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20497 * through the standard path. But in the case of local 20498 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20499 * the standard path not IP_XMIT_IF. 20500 */ 20501 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20502 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20503 (ire->ire_type != IRE_LOOPBACK))) { 20504 if ((connp->conn_dontroute || 20505 connp->conn_nexthop_set) && (ire != NULL) && 20506 (ire->ire_type == IRE_LOCAL)) 20507 goto standard_path; 20508 20509 if (ire != NULL) { 20510 ire_refrele(ire); 20511 /* No more access to ire */ 20512 ire = NULL; 20513 } 20514 /* 20515 * bypass routing checks and go directly to 20516 * interface. 20517 */ 20518 if (connp->conn_dontroute) { 20519 goto dontroute; 20520 } else if (connp->conn_nexthop_set) { 20521 ip_nexthop = B_TRUE; 20522 nexthop_addr = connp->conn_nexthop_v4; 20523 goto send_from_ill; 20524 } 20525 20526 /* 20527 * If IP_XMIT_IF socket option is set, 20528 * then we allow unicast and multicast 20529 * packets to go through the ill. It is 20530 * quite possible that the destination 20531 * is not in the ire cache table and we 20532 * do not want to go to ip_newroute() 20533 * instead we call ip_newroute_ipif. 20534 */ 20535 xmit_ill = conn_get_held_ill(connp, 20536 &connp->conn_xmit_if_ill, &err); 20537 if (err == ILL_LOOKUP_FAILED) { 20538 BUMP_MIB(&ipst->ips_ip_mib, 20539 ipIfStatsOutDiscards); 20540 if (attach_ill != NULL) 20541 ill_refrele(attach_ill); 20542 if (need_decref) 20543 CONN_DEC_REF(connp); 20544 freemsg(first_mp); 20545 return; 20546 } 20547 goto send_from_ill; 20548 } 20549 standard_path: 20550 /* Must be a broadcast, a loopback or a local ire */ 20551 if (ire != NULL) { 20552 ire_refrele(ire); 20553 /* No more access to ire */ 20554 ire = NULL; 20555 } 20556 } 20557 20558 if (attach_ill != NULL) 20559 goto send_from_ill; 20560 20561 /* 20562 * We cache IRE_CACHEs to avoid lookups. We don't do 20563 * this for the tcp global queue and listen end point 20564 * as it does not really have a real destination to 20565 * talk to. This is also true for SCTP. 20566 */ 20567 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20568 !connp->conn_fully_bound) { 20569 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20570 if (ire == NULL) 20571 goto noirefound; 20572 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20573 "ip_wput_end: q %p (%S)", q, "end"); 20574 20575 /* 20576 * Check if the ire has the RTF_MULTIRT flag, inherited 20577 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20578 */ 20579 if (ire->ire_flags & RTF_MULTIRT) { 20580 20581 /* 20582 * Force the TTL of multirouted packets if required. 20583 * The TTL of such packets is bounded by the 20584 * ip_multirt_ttl ndd variable. 20585 */ 20586 if ((ipst->ips_ip_multirt_ttl > 0) && 20587 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20588 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20589 "(was %d), dst 0x%08x\n", 20590 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20591 ntohl(ire->ire_addr))); 20592 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20593 } 20594 /* 20595 * We look at this point if there are pending 20596 * unresolved routes. ire_multirt_resolvable() 20597 * checks in O(n) that all IRE_OFFSUBNET ire 20598 * entries for the packet's destination and 20599 * flagged RTF_MULTIRT are currently resolved. 20600 * If some remain unresolved, we make a copy 20601 * of the current message. It will be used 20602 * to initiate additional route resolutions. 20603 */ 20604 multirt_need_resolve = 20605 ire_multirt_need_resolve(ire->ire_addr, 20606 MBLK_GETLABEL(first_mp), ipst); 20607 ip2dbg(("ip_wput[TCP]: ire %p, " 20608 "multirt_need_resolve %d, first_mp %p\n", 20609 (void *)ire, multirt_need_resolve, 20610 (void *)first_mp)); 20611 if (multirt_need_resolve) { 20612 copy_mp = copymsg(first_mp); 20613 if (copy_mp != NULL) { 20614 MULTIRT_DEBUG_TAG(copy_mp); 20615 } 20616 } 20617 } 20618 20619 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20620 20621 /* 20622 * Try to resolve another multiroute if 20623 * ire_multirt_need_resolve() deemed it necessary. 20624 */ 20625 if (copy_mp != NULL) { 20626 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20627 } 20628 if (need_decref) 20629 CONN_DEC_REF(connp); 20630 return; 20631 } 20632 20633 /* 20634 * Access to conn_ire_cache. (protected by conn_lock) 20635 * 20636 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20637 * the ire bucket lock here to check for CONDEMNED as it is okay to 20638 * send a packet or two with the IRE_CACHE that is going away. 20639 * Access to the ire requires an ire refhold on the ire prior to 20640 * its use since an interface unplumb thread may delete the cached 20641 * ire and release the refhold at any time. 20642 * 20643 * Caching an ire in the conn_ire_cache 20644 * 20645 * o Caching an ire pointer in the conn requires a strict check for 20646 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20647 * ires before cleaning up the conns. So the caching of an ire pointer 20648 * in the conn is done after making sure under the bucket lock that the 20649 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20650 * caching an ire after the unplumb thread has cleaned up the conn. 20651 * If the conn does not send a packet subsequently the unplumb thread 20652 * will be hanging waiting for the ire count to drop to zero. 20653 * 20654 * o We also need to atomically test for a null conn_ire_cache and 20655 * set the conn_ire_cache under the the protection of the conn_lock 20656 * to avoid races among concurrent threads trying to simultaneously 20657 * cache an ire in the conn_ire_cache. 20658 */ 20659 mutex_enter(&connp->conn_lock); 20660 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20661 20662 if (ire != NULL && ire->ire_addr == dst && 20663 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20664 20665 IRE_REFHOLD(ire); 20666 mutex_exit(&connp->conn_lock); 20667 20668 } else { 20669 boolean_t cached = B_FALSE; 20670 connp->conn_ire_cache = NULL; 20671 mutex_exit(&connp->conn_lock); 20672 /* Release the old ire */ 20673 if (ire != NULL && sctp_ire == NULL) 20674 IRE_REFRELE_NOTR(ire); 20675 20676 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20677 if (ire == NULL) 20678 goto noirefound; 20679 IRE_REFHOLD_NOTR(ire); 20680 20681 mutex_enter(&connp->conn_lock); 20682 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20683 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20684 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20685 if (connp->conn_ulp == IPPROTO_TCP) 20686 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20687 connp->conn_ire_cache = ire; 20688 cached = B_TRUE; 20689 } 20690 rw_exit(&ire->ire_bucket->irb_lock); 20691 } 20692 mutex_exit(&connp->conn_lock); 20693 20694 /* 20695 * We can continue to use the ire but since it was 20696 * not cached, we should drop the extra reference. 20697 */ 20698 if (!cached) 20699 IRE_REFRELE_NOTR(ire); 20700 } 20701 20702 20703 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20704 "ip_wput_end: q %p (%S)", q, "end"); 20705 20706 /* 20707 * Check if the ire has the RTF_MULTIRT flag, inherited 20708 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20709 */ 20710 if (ire->ire_flags & RTF_MULTIRT) { 20711 20712 /* 20713 * Force the TTL of multirouted packets if required. 20714 * The TTL of such packets is bounded by the 20715 * ip_multirt_ttl ndd variable. 20716 */ 20717 if ((ipst->ips_ip_multirt_ttl > 0) && 20718 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20719 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20720 "(was %d), dst 0x%08x\n", 20721 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20722 ntohl(ire->ire_addr))); 20723 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20724 } 20725 20726 /* 20727 * At this point, we check to see if there are any pending 20728 * unresolved routes. ire_multirt_resolvable() 20729 * checks in O(n) that all IRE_OFFSUBNET ire 20730 * entries for the packet's destination and 20731 * flagged RTF_MULTIRT are currently resolved. 20732 * If some remain unresolved, we make a copy 20733 * of the current message. It will be used 20734 * to initiate additional route resolutions. 20735 */ 20736 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20737 MBLK_GETLABEL(first_mp), ipst); 20738 ip2dbg(("ip_wput[not TCP]: ire %p, " 20739 "multirt_need_resolve %d, first_mp %p\n", 20740 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20741 if (multirt_need_resolve) { 20742 copy_mp = copymsg(first_mp); 20743 if (copy_mp != NULL) { 20744 MULTIRT_DEBUG_TAG(copy_mp); 20745 } 20746 } 20747 } 20748 20749 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20750 20751 /* 20752 * Try to resolve another multiroute if 20753 * ire_multirt_resolvable() deemed it necessary 20754 */ 20755 if (copy_mp != NULL) { 20756 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20757 } 20758 if (need_decref) 20759 CONN_DEC_REF(connp); 20760 return; 20761 20762 qnext: 20763 /* 20764 * Upper Level Protocols pass down complete IP datagrams 20765 * as M_DATA messages. Everything else is a sideshow. 20766 * 20767 * 1) We could be re-entering ip_wput because of ip_neworute 20768 * in which case we could have a IPSEC_OUT message. We 20769 * need to pass through ip_wput like other datagrams and 20770 * hence cannot branch to ip_wput_nondata. 20771 * 20772 * 2) ARP, AH, ESP, and other clients who are on the module 20773 * instance of IP stream, give us something to deal with. 20774 * We will handle AH and ESP here and rest in ip_wput_nondata. 20775 * 20776 * 3) ICMP replies also could come here. 20777 */ 20778 ipst = ILLQ_TO_IPST(q); 20779 20780 if (DB_TYPE(mp) != M_DATA) { 20781 notdata: 20782 if (DB_TYPE(mp) == M_CTL) { 20783 /* 20784 * M_CTL messages are used by ARP, AH and ESP to 20785 * communicate with IP. We deal with IPSEC_IN and 20786 * IPSEC_OUT here. ip_wput_nondata handles other 20787 * cases. 20788 */ 20789 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20790 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20791 first_mp = mp->b_cont; 20792 first_mp->b_flag &= ~MSGHASREF; 20793 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20794 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20795 CONN_DEC_REF(connp); 20796 connp = NULL; 20797 } 20798 if (ii->ipsec_info_type == IPSEC_IN) { 20799 /* 20800 * Either this message goes back to 20801 * IPSEC for further processing or to 20802 * ULP after policy checks. 20803 */ 20804 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20805 return; 20806 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20807 io = (ipsec_out_t *)ii; 20808 if (io->ipsec_out_proc_begin) { 20809 /* 20810 * IPSEC processing has already started. 20811 * Complete it. 20812 * IPQoS notes: We don't care what is 20813 * in ipsec_out_ill_index since this 20814 * won't be processed for IPQoS policies 20815 * in ipsec_out_process. 20816 */ 20817 ipsec_out_process(q, mp, NULL, 20818 io->ipsec_out_ill_index); 20819 return; 20820 } else { 20821 connp = (q->q_next != NULL) ? 20822 NULL : Q_TO_CONN(q); 20823 first_mp = mp; 20824 mp = mp->b_cont; 20825 mctl_present = B_TRUE; 20826 } 20827 zoneid = io->ipsec_out_zoneid; 20828 ASSERT(zoneid != ALL_ZONES); 20829 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20830 /* 20831 * It's an IPsec control message requesting 20832 * an SADB update to be sent to the IPsec 20833 * hardware acceleration capable ills. 20834 */ 20835 ipsec_ctl_t *ipsec_ctl = 20836 (ipsec_ctl_t *)mp->b_rptr; 20837 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20838 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20839 mblk_t *cmp = mp->b_cont; 20840 20841 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20842 ASSERT(cmp != NULL); 20843 20844 freeb(mp); 20845 ill_ipsec_capab_send_all(satype, cmp, sa, 20846 ipst->ips_netstack); 20847 return; 20848 } else { 20849 /* 20850 * This must be ARP or special TSOL signaling. 20851 */ 20852 ip_wput_nondata(NULL, q, mp, NULL); 20853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20854 "ip_wput_end: q %p (%S)", q, "nondata"); 20855 return; 20856 } 20857 } else { 20858 /* 20859 * This must be non-(ARP/AH/ESP) messages. 20860 */ 20861 ASSERT(!need_decref); 20862 ip_wput_nondata(NULL, q, mp, NULL); 20863 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20864 "ip_wput_end: q %p (%S)", q, "nondata"); 20865 return; 20866 } 20867 } else { 20868 first_mp = mp; 20869 mctl_present = B_FALSE; 20870 } 20871 20872 ASSERT(first_mp != NULL); 20873 /* 20874 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20875 * to make sure that this packet goes out on the same interface it 20876 * came in. We handle that here. 20877 */ 20878 if (mctl_present) { 20879 uint_t ifindex; 20880 20881 io = (ipsec_out_t *)first_mp->b_rptr; 20882 if (io->ipsec_out_attach_if || 20883 io->ipsec_out_xmit_if || 20884 io->ipsec_out_ip_nexthop) { 20885 ill_t *ill; 20886 20887 /* 20888 * We may have lost the conn context if we are 20889 * coming here from ip_newroute(). Copy the 20890 * nexthop information. 20891 */ 20892 if (io->ipsec_out_ip_nexthop) { 20893 ip_nexthop = B_TRUE; 20894 nexthop_addr = io->ipsec_out_nexthop_addr; 20895 20896 ipha = (ipha_t *)mp->b_rptr; 20897 dst = ipha->ipha_dst; 20898 goto send_from_ill; 20899 } else { 20900 ASSERT(io->ipsec_out_ill_index != 0); 20901 ifindex = io->ipsec_out_ill_index; 20902 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20903 NULL, NULL, NULL, NULL, ipst); 20904 /* 20905 * ipsec_out_xmit_if bit is used to tell 20906 * ip_wput to use the ill to send outgoing data 20907 * as we have no conn when data comes from ICMP 20908 * error msg routines. Currently this feature is 20909 * only used by ip_mrtun_forward routine. 20910 */ 20911 if (io->ipsec_out_xmit_if) { 20912 xmit_ill = ill; 20913 if (xmit_ill == NULL) { 20914 ip1dbg(("ip_output:bad ifindex " 20915 "for xmit_ill %d\n", 20916 ifindex)); 20917 freemsg(first_mp); 20918 BUMP_MIB(&ipst->ips_ip_mib, 20919 ipIfStatsOutDiscards); 20920 ASSERT(!need_decref); 20921 return; 20922 } 20923 /* Free up the ipsec_out_t mblk */ 20924 ASSERT(first_mp->b_cont == mp); 20925 first_mp->b_cont = NULL; 20926 freeb(first_mp); 20927 /* Just send the IP header+ICMP+data */ 20928 first_mp = mp; 20929 ipha = (ipha_t *)mp->b_rptr; 20930 dst = ipha->ipha_dst; 20931 goto send_from_ill; 20932 } else { 20933 attach_ill = ill; 20934 } 20935 20936 if (attach_ill == NULL) { 20937 ASSERT(xmit_ill == NULL); 20938 ip1dbg(("ip_output: bad ifindex for " 20939 "(BIND TO IPIF_NOFAILOVER) %d\n", 20940 ifindex)); 20941 freemsg(first_mp); 20942 BUMP_MIB(&ipst->ips_ip_mib, 20943 ipIfStatsOutDiscards); 20944 ASSERT(!need_decref); 20945 return; 20946 } 20947 } 20948 } 20949 } 20950 20951 ASSERT(xmit_ill == NULL); 20952 20953 /* We have a complete IP datagram heading outbound. */ 20954 ipha = (ipha_t *)mp->b_rptr; 20955 20956 #ifndef SPEED_BEFORE_SAFETY 20957 /* 20958 * Make sure we have a full-word aligned message and that at least 20959 * a simple IP header is accessible in the first message. If not, 20960 * try a pullup. 20961 */ 20962 if (!OK_32PTR(rptr) || 20963 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20964 hdrtoosmall: 20965 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20966 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20967 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20968 if (first_mp == NULL) 20969 first_mp = mp; 20970 goto discard_pkt; 20971 } 20972 20973 /* This function assumes that mp points to an IPv4 packet. */ 20974 if (is_system_labeled() && q->q_next == NULL && 20975 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20976 !connp->conn_ulp_labeled) { 20977 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20978 &adjust, connp->conn_mac_exempt, ipst); 20979 ipha = (ipha_t *)mp->b_rptr; 20980 if (first_mp != NULL) 20981 first_mp->b_cont = mp; 20982 if (err != 0) { 20983 if (first_mp == NULL) 20984 first_mp = mp; 20985 if (err == EINVAL) 20986 goto icmp_parameter_problem; 20987 ip2dbg(("ip_wput: label check failed (%d)\n", 20988 err)); 20989 goto discard_pkt; 20990 } 20991 iplen = ntohs(ipha->ipha_length) + adjust; 20992 ipha->ipha_length = htons(iplen); 20993 } 20994 20995 ipha = (ipha_t *)mp->b_rptr; 20996 if (first_mp == NULL) { 20997 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20998 /* 20999 * If we got here because of "goto hdrtoosmall" 21000 * We need to attach a IPSEC_OUT. 21001 */ 21002 if (connp->conn_out_enforce_policy) { 21003 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21004 NULL, ipha->ipha_protocol, 21005 ipst->ips_netstack)) == NULL)) { 21006 BUMP_MIB(&ipst->ips_ip_mib, 21007 ipIfStatsOutDiscards); 21008 if (need_decref) 21009 CONN_DEC_REF(connp); 21010 return; 21011 } else { 21012 ASSERT(mp->b_datap->db_type == M_CTL); 21013 first_mp = mp; 21014 mp = mp->b_cont; 21015 mctl_present = B_TRUE; 21016 } 21017 } else { 21018 first_mp = mp; 21019 mctl_present = B_FALSE; 21020 } 21021 } 21022 } 21023 #endif 21024 21025 /* Most of the code below is written for speed, not readability */ 21026 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21027 21028 /* 21029 * If ip_newroute() fails, we're going to need a full 21030 * header for the icmp wraparound. 21031 */ 21032 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21033 uint_t v_hlen; 21034 version_hdrlen_check: 21035 ASSERT(first_mp != NULL); 21036 v_hlen = V_HLEN; 21037 /* 21038 * siphon off IPv6 packets coming down from transport 21039 * layer modules here. 21040 * Note: high-order bit carries NUD reachability confirmation 21041 */ 21042 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21043 /* 21044 * XXX implement a IPv4 and IPv6 packet counter per 21045 * conn and switch when ratio exceeds e.g. 10:1 21046 */ 21047 #ifdef notyet 21048 if (q->q_next == NULL) /* Avoid ill queue */ 21049 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21050 #endif 21051 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21052 ASSERT(xmit_ill == NULL); 21053 if (attach_ill != NULL) 21054 ill_refrele(attach_ill); 21055 if (need_decref) 21056 mp->b_flag |= MSGHASREF; 21057 (void) ip_output_v6(arg, first_mp, arg2, caller); 21058 return; 21059 } 21060 21061 if ((v_hlen >> 4) != IP_VERSION) { 21062 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21063 "ip_wput_end: q %p (%S)", q, "badvers"); 21064 goto discard_pkt; 21065 } 21066 /* 21067 * Is the header length at least 20 bytes? 21068 * 21069 * Are there enough bytes accessible in the header? If 21070 * not, try a pullup. 21071 */ 21072 v_hlen &= 0xF; 21073 v_hlen <<= 2; 21074 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21075 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21076 "ip_wput_end: q %p (%S)", q, "badlen"); 21077 goto discard_pkt; 21078 } 21079 if (v_hlen > (mp->b_wptr - rptr)) { 21080 if (!pullupmsg(mp, v_hlen)) { 21081 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21082 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21083 goto discard_pkt; 21084 } 21085 ipha = (ipha_t *)mp->b_rptr; 21086 } 21087 /* 21088 * Move first entry from any source route into ipha_dst and 21089 * verify the options 21090 */ 21091 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21092 zoneid, ipst)) { 21093 ASSERT(xmit_ill == NULL); 21094 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21095 if (attach_ill != NULL) 21096 ill_refrele(attach_ill); 21097 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21098 "ip_wput_end: q %p (%S)", q, "badopts"); 21099 if (need_decref) 21100 CONN_DEC_REF(connp); 21101 return; 21102 } 21103 } 21104 dst = ipha->ipha_dst; 21105 21106 /* 21107 * Try to get an IRE_CACHE for the destination address. If we can't, 21108 * we have to run the packet through ip_newroute which will take 21109 * the appropriate action to arrange for an IRE_CACHE, such as querying 21110 * a resolver, or assigning a default gateway, etc. 21111 */ 21112 if (CLASSD(dst)) { 21113 ipif_t *ipif; 21114 uint32_t setsrc = 0; 21115 21116 multicast: 21117 ASSERT(first_mp != NULL); 21118 ip2dbg(("ip_wput: CLASSD\n")); 21119 if (connp == NULL) { 21120 /* 21121 * Use the first good ipif on the ill. 21122 * XXX Should this ever happen? (Appears 21123 * to show up with just ppp and no ethernet due 21124 * to in.rdisc.) 21125 * However, ire_send should be able to 21126 * call ip_wput_ire directly. 21127 * 21128 * XXX Also, this can happen for ICMP and other packets 21129 * with multicast source addresses. Perhaps we should 21130 * fix things so that we drop the packet in question, 21131 * but for now, just run with it. 21132 */ 21133 ill_t *ill = (ill_t *)q->q_ptr; 21134 21135 /* 21136 * Don't honor attach_if for this case. If ill 21137 * is part of the group, ipif could belong to 21138 * any ill and we cannot maintain attach_ill 21139 * and ipif_ill same anymore and the assert 21140 * below would fail. 21141 */ 21142 if (mctl_present && io->ipsec_out_attach_if) { 21143 io->ipsec_out_ill_index = 0; 21144 io->ipsec_out_attach_if = B_FALSE; 21145 ASSERT(attach_ill != NULL); 21146 ill_refrele(attach_ill); 21147 attach_ill = NULL; 21148 } 21149 21150 ASSERT(attach_ill == NULL); 21151 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21152 if (ipif == NULL) { 21153 if (need_decref) 21154 CONN_DEC_REF(connp); 21155 freemsg(first_mp); 21156 return; 21157 } 21158 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21159 ntohl(dst), ill->ill_name)); 21160 } else { 21161 /* 21162 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21163 * and IP_MULTICAST_IF. 21164 * Block comment above this function explains the 21165 * locking mechanism used here 21166 */ 21167 if (xmit_ill == NULL) { 21168 xmit_ill = conn_get_held_ill(connp, 21169 &connp->conn_xmit_if_ill, &err); 21170 if (err == ILL_LOOKUP_FAILED) { 21171 ip1dbg(("ip_wput: No ill for " 21172 "IP_XMIT_IF\n")); 21173 BUMP_MIB(&ipst->ips_ip_mib, 21174 ipIfStatsOutNoRoutes); 21175 goto drop_pkt; 21176 } 21177 } 21178 21179 if (xmit_ill == NULL) { 21180 ipif = conn_get_held_ipif(connp, 21181 &connp->conn_multicast_ipif, &err); 21182 if (err == IPIF_LOOKUP_FAILED) { 21183 ip1dbg(("ip_wput: No ipif for " 21184 "multicast\n")); 21185 BUMP_MIB(&ipst->ips_ip_mib, 21186 ipIfStatsOutNoRoutes); 21187 goto drop_pkt; 21188 } 21189 } 21190 if (xmit_ill != NULL) { 21191 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21192 if (ipif == NULL) { 21193 ip1dbg(("ip_wput: No ipif for " 21194 "IP_XMIT_IF\n")); 21195 BUMP_MIB(&ipst->ips_ip_mib, 21196 ipIfStatsOutNoRoutes); 21197 goto drop_pkt; 21198 } 21199 } else if (ipif == NULL || ipif->ipif_isv6) { 21200 /* 21201 * We must do this ipif determination here 21202 * else we could pass through ip_newroute 21203 * and come back here without the conn context. 21204 * 21205 * Note: we do late binding i.e. we bind to 21206 * the interface when the first packet is sent. 21207 * For performance reasons we do not rebind on 21208 * each packet but keep the binding until the 21209 * next IP_MULTICAST_IF option. 21210 * 21211 * conn_multicast_{ipif,ill} are shared between 21212 * IPv4 and IPv6 and AF_INET6 sockets can 21213 * send both IPv4 and IPv6 packets. Hence 21214 * we have to check that "isv6" matches above. 21215 */ 21216 if (ipif != NULL) 21217 ipif_refrele(ipif); 21218 ipif = ipif_lookup_group(dst, zoneid, ipst); 21219 if (ipif == NULL) { 21220 ip1dbg(("ip_wput: No ipif for " 21221 "multicast\n")); 21222 BUMP_MIB(&ipst->ips_ip_mib, 21223 ipIfStatsOutNoRoutes); 21224 goto drop_pkt; 21225 } 21226 err = conn_set_held_ipif(connp, 21227 &connp->conn_multicast_ipif, ipif); 21228 if (err == IPIF_LOOKUP_FAILED) { 21229 ipif_refrele(ipif); 21230 ip1dbg(("ip_wput: No ipif for " 21231 "multicast\n")); 21232 BUMP_MIB(&ipst->ips_ip_mib, 21233 ipIfStatsOutNoRoutes); 21234 goto drop_pkt; 21235 } 21236 } 21237 } 21238 ASSERT(!ipif->ipif_isv6); 21239 /* 21240 * As we may lose the conn by the time we reach ip_wput_ire, 21241 * we copy conn_multicast_loop and conn_dontroute on to an 21242 * ipsec_out. In case if this datagram goes out secure, 21243 * we need the ill_index also. Copy that also into the 21244 * ipsec_out. 21245 */ 21246 if (mctl_present) { 21247 io = (ipsec_out_t *)first_mp->b_rptr; 21248 ASSERT(first_mp->b_datap->db_type == M_CTL); 21249 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21250 } else { 21251 ASSERT(mp == first_mp); 21252 if ((first_mp = allocb(sizeof (ipsec_info_t), 21253 BPRI_HI)) == NULL) { 21254 ipif_refrele(ipif); 21255 first_mp = mp; 21256 goto discard_pkt; 21257 } 21258 first_mp->b_datap->db_type = M_CTL; 21259 first_mp->b_wptr += sizeof (ipsec_info_t); 21260 /* ipsec_out_secure is B_FALSE now */ 21261 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21262 io = (ipsec_out_t *)first_mp->b_rptr; 21263 io->ipsec_out_type = IPSEC_OUT; 21264 io->ipsec_out_len = sizeof (ipsec_out_t); 21265 io->ipsec_out_use_global_policy = B_TRUE; 21266 io->ipsec_out_ns = ipst->ips_netstack; 21267 first_mp->b_cont = mp; 21268 mctl_present = B_TRUE; 21269 } 21270 if (attach_ill != NULL) { 21271 ASSERT(attach_ill == ipif->ipif_ill); 21272 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21273 21274 /* 21275 * Check if we need an ire that will not be 21276 * looked up by anybody else i.e. HIDDEN. 21277 */ 21278 if (ill_is_probeonly(attach_ill)) { 21279 match_flags |= MATCH_IRE_MARK_HIDDEN; 21280 } 21281 io->ipsec_out_ill_index = 21282 attach_ill->ill_phyint->phyint_ifindex; 21283 io->ipsec_out_attach_if = B_TRUE; 21284 } else { 21285 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21286 io->ipsec_out_ill_index = 21287 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21288 } 21289 if (connp != NULL) { 21290 io->ipsec_out_multicast_loop = 21291 connp->conn_multicast_loop; 21292 io->ipsec_out_dontroute = connp->conn_dontroute; 21293 io->ipsec_out_zoneid = connp->conn_zoneid; 21294 } 21295 /* 21296 * If the application uses IP_MULTICAST_IF with 21297 * different logical addresses of the same ILL, we 21298 * need to make sure that the soruce address of 21299 * the packet matches the logical IP address used 21300 * in the option. We do it by initializing ipha_src 21301 * here. This should keep IPSEC also happy as 21302 * when we return from IPSEC processing, we don't 21303 * have to worry about getting the right address on 21304 * the packet. Thus it is sufficient to look for 21305 * IRE_CACHE using MATCH_IRE_ILL rathen than 21306 * MATCH_IRE_IPIF. 21307 * 21308 * NOTE : We need to do it for non-secure case also as 21309 * this might go out secure if there is a global policy 21310 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21311 * address, the source should be initialized already and 21312 * hence we won't be initializing here. 21313 * 21314 * As we do not have the ire yet, it is possible that 21315 * we set the source address here and then later discover 21316 * that the ire implies the source address to be assigned 21317 * through the RTF_SETSRC flag. 21318 * In that case, the setsrc variable will remind us 21319 * that overwritting the source address by the one 21320 * of the RTF_SETSRC-flagged ire is allowed. 21321 */ 21322 if (ipha->ipha_src == INADDR_ANY && 21323 (connp == NULL || !connp->conn_unspec_src)) { 21324 ipha->ipha_src = ipif->ipif_src_addr; 21325 setsrc = RTF_SETSRC; 21326 } 21327 /* 21328 * Find an IRE which matches the destination and the outgoing 21329 * queue (i.e. the outgoing interface.) 21330 * For loopback use a unicast IP address for 21331 * the ire lookup. 21332 */ 21333 if (IS_LOOPBACK(ipif->ipif_ill)) 21334 dst = ipif->ipif_lcl_addr; 21335 21336 /* 21337 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21338 * We don't need to lookup ire in ctable as the packet 21339 * needs to be sent to the destination through the specified 21340 * ill irrespective of ires in the cache table. 21341 */ 21342 ire = NULL; 21343 if (xmit_ill == NULL) { 21344 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21345 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21346 } 21347 21348 /* 21349 * refrele attach_ill as its not needed anymore. 21350 */ 21351 if (attach_ill != NULL) { 21352 ill_refrele(attach_ill); 21353 attach_ill = NULL; 21354 } 21355 21356 if (ire == NULL) { 21357 /* 21358 * Multicast loopback and multicast forwarding is 21359 * done in ip_wput_ire. 21360 * 21361 * Mark this packet to make it be delivered to 21362 * ip_wput_ire after the new ire has been 21363 * created. 21364 * 21365 * The call to ip_newroute_ipif takes into account 21366 * the setsrc reminder. In any case, we take care 21367 * of the RTF_MULTIRT flag. 21368 */ 21369 mp->b_prev = mp->b_next = NULL; 21370 if (xmit_ill == NULL || 21371 xmit_ill->ill_ipif_up_count > 0) { 21372 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21373 setsrc | RTF_MULTIRT, zoneid, infop); 21374 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21375 "ip_wput_end: q %p (%S)", q, "noire"); 21376 } else { 21377 freemsg(first_mp); 21378 } 21379 ipif_refrele(ipif); 21380 if (xmit_ill != NULL) 21381 ill_refrele(xmit_ill); 21382 if (need_decref) 21383 CONN_DEC_REF(connp); 21384 return; 21385 } 21386 21387 ipif_refrele(ipif); 21388 ipif = NULL; 21389 ASSERT(xmit_ill == NULL); 21390 21391 /* 21392 * Honor the RTF_SETSRC flag for multicast packets, 21393 * if allowed by the setsrc reminder. 21394 */ 21395 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21396 ipha->ipha_src = ire->ire_src_addr; 21397 } 21398 21399 /* 21400 * Unconditionally force the TTL to 1 for 21401 * multirouted multicast packets: 21402 * multirouted multicast should not cross 21403 * multicast routers. 21404 */ 21405 if (ire->ire_flags & RTF_MULTIRT) { 21406 if (ipha->ipha_ttl > 1) { 21407 ip2dbg(("ip_wput: forcing multicast " 21408 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21409 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21410 ipha->ipha_ttl = 1; 21411 } 21412 } 21413 } else { 21414 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21415 if ((ire != NULL) && (ire->ire_type & 21416 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21417 ignore_dontroute = B_TRUE; 21418 ignore_nexthop = B_TRUE; 21419 } 21420 if (ire != NULL) { 21421 ire_refrele(ire); 21422 ire = NULL; 21423 } 21424 /* 21425 * Guard against coming in from arp in which case conn is NULL. 21426 * Also guard against non M_DATA with dontroute set but 21427 * destined to local, loopback or broadcast addresses. 21428 */ 21429 if (connp != NULL && connp->conn_dontroute && 21430 !ignore_dontroute) { 21431 dontroute: 21432 /* 21433 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21434 * routing protocols from seeing false direct 21435 * connectivity. 21436 */ 21437 ipha->ipha_ttl = 1; 21438 /* 21439 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21440 * along with SO_DONTROUTE, higher precedence is 21441 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21442 */ 21443 if (connp->conn_xmit_if_ill == NULL) { 21444 /* If suitable ipif not found, drop packet */ 21445 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21446 ipst); 21447 if (dst_ipif == NULL) { 21448 ip1dbg(("ip_wput: no route for " 21449 "dst using SO_DONTROUTE\n")); 21450 BUMP_MIB(&ipst->ips_ip_mib, 21451 ipIfStatsOutNoRoutes); 21452 mp->b_prev = mp->b_next = NULL; 21453 if (first_mp == NULL) 21454 first_mp = mp; 21455 goto drop_pkt; 21456 } else { 21457 /* 21458 * If suitable ipif has been found, set 21459 * xmit_ill to the corresponding 21460 * ipif_ill because we'll be following 21461 * the IP_XMIT_IF logic. 21462 */ 21463 ASSERT(xmit_ill == NULL); 21464 xmit_ill = dst_ipif->ipif_ill; 21465 mutex_enter(&xmit_ill->ill_lock); 21466 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21467 mutex_exit(&xmit_ill->ill_lock); 21468 xmit_ill = NULL; 21469 ipif_refrele(dst_ipif); 21470 ip1dbg(("ip_wput: no route for" 21471 " dst using" 21472 " SO_DONTROUTE\n")); 21473 BUMP_MIB(&ipst->ips_ip_mib, 21474 ipIfStatsOutNoRoutes); 21475 mp->b_prev = mp->b_next = NULL; 21476 if (first_mp == NULL) 21477 first_mp = mp; 21478 goto drop_pkt; 21479 } 21480 ill_refhold_locked(xmit_ill); 21481 mutex_exit(&xmit_ill->ill_lock); 21482 ipif_refrele(dst_ipif); 21483 } 21484 } 21485 21486 } 21487 /* 21488 * If we are bound to IPIF_NOFAILOVER address, look for 21489 * an IRE_CACHE matching the ill. 21490 */ 21491 send_from_ill: 21492 if (attach_ill != NULL) { 21493 ipif_t *attach_ipif; 21494 21495 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21496 21497 /* 21498 * Check if we need an ire that will not be 21499 * looked up by anybody else i.e. HIDDEN. 21500 */ 21501 if (ill_is_probeonly(attach_ill)) { 21502 match_flags |= MATCH_IRE_MARK_HIDDEN; 21503 } 21504 21505 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21506 if (attach_ipif == NULL) { 21507 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21508 goto discard_pkt; 21509 } 21510 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21511 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21512 ipif_refrele(attach_ipif); 21513 } else if (xmit_ill != NULL || (connp != NULL && 21514 connp->conn_xmit_if_ill != NULL)) { 21515 /* 21516 * Mark this packet as originated locally 21517 */ 21518 mp->b_prev = mp->b_next = NULL; 21519 /* 21520 * xmit_ill could be NULL if SO_DONTROUTE 21521 * is also set. 21522 */ 21523 if (xmit_ill == NULL) { 21524 xmit_ill = conn_get_held_ill(connp, 21525 &connp->conn_xmit_if_ill, &err); 21526 if (err == ILL_LOOKUP_FAILED) { 21527 BUMP_MIB(&ipst->ips_ip_mib, 21528 ipIfStatsOutDiscards); 21529 if (need_decref) 21530 CONN_DEC_REF(connp); 21531 freemsg(first_mp); 21532 return; 21533 } 21534 if (xmit_ill == NULL) { 21535 if (connp->conn_dontroute) 21536 goto dontroute; 21537 goto send_from_ill; 21538 } 21539 } 21540 /* 21541 * Could be SO_DONTROUTE case also. 21542 * check at least one interface is UP as 21543 * specified by this ILL 21544 */ 21545 if (xmit_ill->ill_ipif_up_count > 0) { 21546 ipif_t *ipif; 21547 21548 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21549 if (ipif == NULL) { 21550 ip1dbg(("ip_output: " 21551 "xmit_ill NULL ipif\n")); 21552 goto drop_pkt; 21553 } 21554 /* 21555 * Look for a ire that is part of the group, 21556 * if found use it else call ip_newroute_ipif. 21557 * IPCL_ZONEID is not used for matching because 21558 * IP_ALLZONES option is valid only when the 21559 * ill is accessible from all zones i.e has a 21560 * valid ipif in all zones. 21561 */ 21562 match_flags = MATCH_IRE_ILL_GROUP | 21563 MATCH_IRE_SECATTR; 21564 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21565 MBLK_GETLABEL(mp), match_flags, ipst); 21566 /* 21567 * If an ire exists use it or else create 21568 * an ire but don't add it to the cache. 21569 * Adding an ire may cause issues with 21570 * asymmetric routing. 21571 * In case of multiroute always act as if 21572 * ire does not exist. 21573 */ 21574 if (ire == NULL || 21575 ire->ire_flags & RTF_MULTIRT) { 21576 if (ire != NULL) 21577 ire_refrele(ire); 21578 ip_newroute_ipif(q, first_mp, ipif, 21579 dst, connp, 0, zoneid, infop); 21580 ipif_refrele(ipif); 21581 ip1dbg(("ip_wput: ip_unicast_if\n")); 21582 ill_refrele(xmit_ill); 21583 if (need_decref) 21584 CONN_DEC_REF(connp); 21585 return; 21586 } 21587 ipif_refrele(ipif); 21588 } else { 21589 goto drop_pkt; 21590 } 21591 } else if (ip_nexthop || (connp != NULL && 21592 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21593 if (!ip_nexthop) { 21594 ip_nexthop = B_TRUE; 21595 nexthop_addr = connp->conn_nexthop_v4; 21596 } 21597 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21598 MATCH_IRE_GW; 21599 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21600 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21601 } else { 21602 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21603 ipst); 21604 } 21605 if (!ire) { 21606 /* 21607 * Make sure we don't load spread if this 21608 * is IPIF_NOFAILOVER case. 21609 */ 21610 if ((attach_ill != NULL) || 21611 (ip_nexthop && !ignore_nexthop)) { 21612 if (mctl_present) { 21613 io = (ipsec_out_t *)first_mp->b_rptr; 21614 ASSERT(first_mp->b_datap->db_type == 21615 M_CTL); 21616 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21617 } else { 21618 ASSERT(mp == first_mp); 21619 first_mp = allocb( 21620 sizeof (ipsec_info_t), BPRI_HI); 21621 if (first_mp == NULL) { 21622 first_mp = mp; 21623 goto discard_pkt; 21624 } 21625 first_mp->b_datap->db_type = M_CTL; 21626 first_mp->b_wptr += 21627 sizeof (ipsec_info_t); 21628 /* ipsec_out_secure is B_FALSE now */ 21629 bzero(first_mp->b_rptr, 21630 sizeof (ipsec_info_t)); 21631 io = (ipsec_out_t *)first_mp->b_rptr; 21632 io->ipsec_out_type = IPSEC_OUT; 21633 io->ipsec_out_len = 21634 sizeof (ipsec_out_t); 21635 io->ipsec_out_use_global_policy = 21636 B_TRUE; 21637 io->ipsec_out_ns = ipst->ips_netstack; 21638 first_mp->b_cont = mp; 21639 mctl_present = B_TRUE; 21640 } 21641 if (attach_ill != NULL) { 21642 io->ipsec_out_ill_index = attach_ill-> 21643 ill_phyint->phyint_ifindex; 21644 io->ipsec_out_attach_if = B_TRUE; 21645 } else { 21646 io->ipsec_out_ip_nexthop = ip_nexthop; 21647 io->ipsec_out_nexthop_addr = 21648 nexthop_addr; 21649 } 21650 } 21651 noirefound: 21652 /* 21653 * Mark this packet as having originated on 21654 * this machine. This will be noted in 21655 * ire_add_then_send, which needs to know 21656 * whether to run it back through ip_wput or 21657 * ip_rput following successful resolution. 21658 */ 21659 mp->b_prev = NULL; 21660 mp->b_next = NULL; 21661 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21662 ipst); 21663 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21664 "ip_wput_end: q %p (%S)", q, "newroute"); 21665 if (attach_ill != NULL) 21666 ill_refrele(attach_ill); 21667 if (xmit_ill != NULL) 21668 ill_refrele(xmit_ill); 21669 if (need_decref) 21670 CONN_DEC_REF(connp); 21671 return; 21672 } 21673 } 21674 21675 /* We now know where we are going with it. */ 21676 21677 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21678 "ip_wput_end: q %p (%S)", q, "end"); 21679 21680 /* 21681 * Check if the ire has the RTF_MULTIRT flag, inherited 21682 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21683 */ 21684 if (ire->ire_flags & RTF_MULTIRT) { 21685 /* 21686 * Force the TTL of multirouted packets if required. 21687 * The TTL of such packets is bounded by the 21688 * ip_multirt_ttl ndd variable. 21689 */ 21690 if ((ipst->ips_ip_multirt_ttl > 0) && 21691 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21692 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21693 "(was %d), dst 0x%08x\n", 21694 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21695 ntohl(ire->ire_addr))); 21696 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21697 } 21698 /* 21699 * At this point, we check to see if there are any pending 21700 * unresolved routes. ire_multirt_resolvable() 21701 * checks in O(n) that all IRE_OFFSUBNET ire 21702 * entries for the packet's destination and 21703 * flagged RTF_MULTIRT are currently resolved. 21704 * If some remain unresolved, we make a copy 21705 * of the current message. It will be used 21706 * to initiate additional route resolutions. 21707 */ 21708 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21709 MBLK_GETLABEL(first_mp), ipst); 21710 ip2dbg(("ip_wput[noirefound]: ire %p, " 21711 "multirt_need_resolve %d, first_mp %p\n", 21712 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21713 if (multirt_need_resolve) { 21714 copy_mp = copymsg(first_mp); 21715 if (copy_mp != NULL) { 21716 MULTIRT_DEBUG_TAG(copy_mp); 21717 } 21718 } 21719 } 21720 21721 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21722 /* 21723 * Try to resolve another multiroute if 21724 * ire_multirt_resolvable() deemed it necessary. 21725 * At this point, we need to distinguish 21726 * multicasts from other packets. For multicasts, 21727 * we call ip_newroute_ipif() and request that both 21728 * multirouting and setsrc flags are checked. 21729 */ 21730 if (copy_mp != NULL) { 21731 if (CLASSD(dst)) { 21732 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21733 if (ipif) { 21734 ASSERT(infop->ip_opt_ill_index == 0); 21735 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21736 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21737 ipif_refrele(ipif); 21738 } else { 21739 MULTIRT_DEBUG_UNTAG(copy_mp); 21740 freemsg(copy_mp); 21741 copy_mp = NULL; 21742 } 21743 } else { 21744 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21745 } 21746 } 21747 if (attach_ill != NULL) 21748 ill_refrele(attach_ill); 21749 if (xmit_ill != NULL) 21750 ill_refrele(xmit_ill); 21751 if (need_decref) 21752 CONN_DEC_REF(connp); 21753 return; 21754 21755 icmp_parameter_problem: 21756 /* could not have originated externally */ 21757 ASSERT(mp->b_prev == NULL); 21758 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21759 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21760 /* it's the IP header length that's in trouble */ 21761 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21762 first_mp = NULL; 21763 } 21764 21765 discard_pkt: 21766 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21767 drop_pkt: 21768 ip1dbg(("ip_wput: dropped packet\n")); 21769 if (ire != NULL) 21770 ire_refrele(ire); 21771 if (need_decref) 21772 CONN_DEC_REF(connp); 21773 freemsg(first_mp); 21774 if (attach_ill != NULL) 21775 ill_refrele(attach_ill); 21776 if (xmit_ill != NULL) 21777 ill_refrele(xmit_ill); 21778 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21779 "ip_wput_end: q %p (%S)", q, "droppkt"); 21780 } 21781 21782 /* 21783 * If this is a conn_t queue, then we pass in the conn. This includes the 21784 * zoneid. 21785 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21786 * in which case we use the global zoneid since those are all part of 21787 * the global zone. 21788 */ 21789 void 21790 ip_wput(queue_t *q, mblk_t *mp) 21791 { 21792 if (CONN_Q(q)) 21793 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21794 else 21795 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21796 } 21797 21798 /* 21799 * 21800 * The following rules must be observed when accessing any ipif or ill 21801 * that has been cached in the conn. Typically conn_nofailover_ill, 21802 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21803 * 21804 * Access: The ipif or ill pointed to from the conn can be accessed under 21805 * the protection of the conn_lock or after it has been refheld under the 21806 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21807 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21808 * The reason for this is that a concurrent unplumb could actually be 21809 * cleaning up these cached pointers by walking the conns and might have 21810 * finished cleaning up the conn in question. The macros check that an 21811 * unplumb has not yet started on the ipif or ill. 21812 * 21813 * Caching: An ipif or ill pointer may be cached in the conn only after 21814 * making sure that an unplumb has not started. So the caching is done 21815 * while holding both the conn_lock and the ill_lock and after using the 21816 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21817 * flag before starting the cleanup of conns. 21818 * 21819 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21820 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21821 * or a reference to the ipif or a reference to an ire that references the 21822 * ipif. An ipif does not change its ill except for failover/failback. Since 21823 * failover/failback happens only after bringing down the ipif and making sure 21824 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21825 * the above holds. 21826 */ 21827 ipif_t * 21828 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21829 { 21830 ipif_t *ipif; 21831 ill_t *ill; 21832 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21833 21834 *err = 0; 21835 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21836 mutex_enter(&connp->conn_lock); 21837 ipif = *ipifp; 21838 if (ipif != NULL) { 21839 ill = ipif->ipif_ill; 21840 mutex_enter(&ill->ill_lock); 21841 if (IPIF_CAN_LOOKUP(ipif)) { 21842 ipif_refhold_locked(ipif); 21843 mutex_exit(&ill->ill_lock); 21844 mutex_exit(&connp->conn_lock); 21845 rw_exit(&ipst->ips_ill_g_lock); 21846 return (ipif); 21847 } else { 21848 *err = IPIF_LOOKUP_FAILED; 21849 } 21850 mutex_exit(&ill->ill_lock); 21851 } 21852 mutex_exit(&connp->conn_lock); 21853 rw_exit(&ipst->ips_ill_g_lock); 21854 return (NULL); 21855 } 21856 21857 ill_t * 21858 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21859 { 21860 ill_t *ill; 21861 21862 *err = 0; 21863 mutex_enter(&connp->conn_lock); 21864 ill = *illp; 21865 if (ill != NULL) { 21866 mutex_enter(&ill->ill_lock); 21867 if (ILL_CAN_LOOKUP(ill)) { 21868 ill_refhold_locked(ill); 21869 mutex_exit(&ill->ill_lock); 21870 mutex_exit(&connp->conn_lock); 21871 return (ill); 21872 } else { 21873 *err = ILL_LOOKUP_FAILED; 21874 } 21875 mutex_exit(&ill->ill_lock); 21876 } 21877 mutex_exit(&connp->conn_lock); 21878 return (NULL); 21879 } 21880 21881 static int 21882 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21883 { 21884 ill_t *ill; 21885 21886 ill = ipif->ipif_ill; 21887 mutex_enter(&connp->conn_lock); 21888 mutex_enter(&ill->ill_lock); 21889 if (IPIF_CAN_LOOKUP(ipif)) { 21890 *ipifp = ipif; 21891 mutex_exit(&ill->ill_lock); 21892 mutex_exit(&connp->conn_lock); 21893 return (0); 21894 } 21895 mutex_exit(&ill->ill_lock); 21896 mutex_exit(&connp->conn_lock); 21897 return (IPIF_LOOKUP_FAILED); 21898 } 21899 21900 /* 21901 * This is called if the outbound datagram needs fragmentation. 21902 * 21903 * NOTE : This function does not ire_refrele the ire argument passed in. 21904 */ 21905 static void 21906 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21907 ip_stack_t *ipst) 21908 { 21909 ipha_t *ipha; 21910 mblk_t *mp; 21911 uint32_t v_hlen_tos_len; 21912 uint32_t max_frag; 21913 uint32_t frag_flag; 21914 boolean_t dont_use; 21915 21916 if (ipsec_mp->b_datap->db_type == M_CTL) { 21917 mp = ipsec_mp->b_cont; 21918 } else { 21919 mp = ipsec_mp; 21920 } 21921 21922 ipha = (ipha_t *)mp->b_rptr; 21923 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21924 21925 #ifdef _BIG_ENDIAN 21926 #define V_HLEN (v_hlen_tos_len >> 24) 21927 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21928 #else 21929 #define V_HLEN (v_hlen_tos_len & 0xFF) 21930 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21931 #endif 21932 21933 #ifndef SPEED_BEFORE_SAFETY 21934 /* 21935 * Check that ipha_length is consistent with 21936 * the mblk length 21937 */ 21938 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21939 ip0dbg(("Packet length mismatch: %d, %ld\n", 21940 LENGTH, msgdsize(mp))); 21941 freemsg(ipsec_mp); 21942 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21943 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21944 "packet length mismatch"); 21945 return; 21946 } 21947 #endif 21948 /* 21949 * Don't use frag_flag if pre-built packet or source 21950 * routed or if multicast (since multicast packets do not solicit 21951 * ICMP "packet too big" messages). Get the values of 21952 * max_frag and frag_flag atomically by acquiring the 21953 * ire_lock. 21954 */ 21955 mutex_enter(&ire->ire_lock); 21956 max_frag = ire->ire_max_frag; 21957 frag_flag = ire->ire_frag_flag; 21958 mutex_exit(&ire->ire_lock); 21959 21960 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21961 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21962 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21963 21964 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21965 (dont_use ? 0 : frag_flag), zoneid, ipst); 21966 } 21967 21968 /* 21969 * Used for deciding the MSS size for the upper layer. Thus 21970 * we need to check the outbound policy values in the conn. 21971 */ 21972 int 21973 conn_ipsec_length(conn_t *connp) 21974 { 21975 ipsec_latch_t *ipl; 21976 21977 ipl = connp->conn_latch; 21978 if (ipl == NULL) 21979 return (0); 21980 21981 if (ipl->ipl_out_policy == NULL) 21982 return (0); 21983 21984 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21985 } 21986 21987 /* 21988 * Returns an estimate of the IPSEC headers size. This is used if 21989 * we don't want to call into IPSEC to get the exact size. 21990 */ 21991 int 21992 ipsec_out_extra_length(mblk_t *ipsec_mp) 21993 { 21994 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21995 ipsec_action_t *a; 21996 21997 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21998 if (!io->ipsec_out_secure) 21999 return (0); 22000 22001 a = io->ipsec_out_act; 22002 22003 if (a == NULL) { 22004 ASSERT(io->ipsec_out_policy != NULL); 22005 a = io->ipsec_out_policy->ipsp_act; 22006 } 22007 ASSERT(a != NULL); 22008 22009 return (a->ipa_ovhd); 22010 } 22011 22012 /* 22013 * Returns an estimate of the IPSEC headers size. This is used if 22014 * we don't want to call into IPSEC to get the exact size. 22015 */ 22016 int 22017 ipsec_in_extra_length(mblk_t *ipsec_mp) 22018 { 22019 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22020 ipsec_action_t *a; 22021 22022 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22023 22024 a = ii->ipsec_in_action; 22025 return (a == NULL ? 0 : a->ipa_ovhd); 22026 } 22027 22028 /* 22029 * If there are any source route options, return the true final 22030 * destination. Otherwise, return the destination. 22031 */ 22032 ipaddr_t 22033 ip_get_dst(ipha_t *ipha) 22034 { 22035 ipoptp_t opts; 22036 uchar_t *opt; 22037 uint8_t optval; 22038 uint8_t optlen; 22039 ipaddr_t dst; 22040 uint32_t off; 22041 22042 dst = ipha->ipha_dst; 22043 22044 if (IS_SIMPLE_IPH(ipha)) 22045 return (dst); 22046 22047 for (optval = ipoptp_first(&opts, ipha); 22048 optval != IPOPT_EOL; 22049 optval = ipoptp_next(&opts)) { 22050 opt = opts.ipoptp_cur; 22051 optlen = opts.ipoptp_len; 22052 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22053 switch (optval) { 22054 case IPOPT_SSRR: 22055 case IPOPT_LSRR: 22056 off = opt[IPOPT_OFFSET]; 22057 /* 22058 * If one of the conditions is true, it means 22059 * end of options and dst already has the right 22060 * value. 22061 */ 22062 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22063 off = optlen - IP_ADDR_LEN; 22064 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22065 } 22066 return (dst); 22067 default: 22068 break; 22069 } 22070 } 22071 22072 return (dst); 22073 } 22074 22075 mblk_t * 22076 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22077 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22078 { 22079 ipsec_out_t *io; 22080 mblk_t *first_mp; 22081 boolean_t policy_present; 22082 ip_stack_t *ipst; 22083 ipsec_stack_t *ipss; 22084 22085 ASSERT(ire != NULL); 22086 ipst = ire->ire_ipst; 22087 ipss = ipst->ips_netstack->netstack_ipsec; 22088 22089 first_mp = mp; 22090 if (mp->b_datap->db_type == M_CTL) { 22091 io = (ipsec_out_t *)first_mp->b_rptr; 22092 /* 22093 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22094 * 22095 * 1) There is per-socket policy (including cached global 22096 * policy) or a policy on the IP-in-IP tunnel. 22097 * 2) There is no per-socket policy, but it is 22098 * a multicast packet that needs to go out 22099 * on a specific interface. This is the case 22100 * where (ip_wput and ip_wput_multicast) attaches 22101 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22102 * 22103 * In case (2) we check with global policy to 22104 * see if there is a match and set the ill_index 22105 * appropriately so that we can lookup the ire 22106 * properly in ip_wput_ipsec_out. 22107 */ 22108 22109 /* 22110 * ipsec_out_use_global_policy is set to B_FALSE 22111 * in ipsec_in_to_out(). Refer to that function for 22112 * details. 22113 */ 22114 if ((io->ipsec_out_latch == NULL) && 22115 (io->ipsec_out_use_global_policy)) { 22116 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22117 ire, connp, unspec_src, zoneid)); 22118 } 22119 if (!io->ipsec_out_secure) { 22120 /* 22121 * If this is not a secure packet, drop 22122 * the IPSEC_OUT mp and treat it as a clear 22123 * packet. This happens when we are sending 22124 * a ICMP reply back to a clear packet. See 22125 * ipsec_in_to_out() for details. 22126 */ 22127 mp = first_mp->b_cont; 22128 freeb(first_mp); 22129 } 22130 return (mp); 22131 } 22132 /* 22133 * See whether we need to attach a global policy here. We 22134 * don't depend on the conn (as it could be null) for deciding 22135 * what policy this datagram should go through because it 22136 * should have happened in ip_wput if there was some 22137 * policy. This normally happens for connections which are not 22138 * fully bound preventing us from caching policies in 22139 * ip_bind. Packets coming from the TCP listener/global queue 22140 * - which are non-hard_bound - could also be affected by 22141 * applying policy here. 22142 * 22143 * If this packet is coming from tcp global queue or listener, 22144 * we will be applying policy here. This may not be *right* 22145 * if these packets are coming from the detached connection as 22146 * it could have gone in clear before. This happens only if a 22147 * TCP connection started when there is no policy and somebody 22148 * added policy before it became detached. Thus packets of the 22149 * detached connection could go out secure and the other end 22150 * would drop it because it will be expecting in clear. The 22151 * converse is not true i.e if somebody starts a TCP 22152 * connection and deletes the policy, all the packets will 22153 * still go out with the policy that existed before deleting 22154 * because ip_unbind sends up policy information which is used 22155 * by TCP on subsequent ip_wputs. The right solution is to fix 22156 * TCP to attach a dummy IPSEC_OUT and set 22157 * ipsec_out_use_global_policy to B_FALSE. As this might 22158 * affect performance for normal cases, we are not doing it. 22159 * Thus, set policy before starting any TCP connections. 22160 * 22161 * NOTE - We might apply policy even for a hard bound connection 22162 * - for which we cached policy in ip_bind - if somebody added 22163 * global policy after we inherited the policy in ip_bind. 22164 * This means that the packets that were going out in clear 22165 * previously would start going secure and hence get dropped 22166 * on the other side. To fix this, TCP attaches a dummy 22167 * ipsec_out and make sure that we don't apply global policy. 22168 */ 22169 if (ipha != NULL) 22170 policy_present = ipss->ipsec_outbound_v4_policy_present; 22171 else 22172 policy_present = ipss->ipsec_outbound_v6_policy_present; 22173 if (!policy_present) 22174 return (mp); 22175 22176 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22177 zoneid)); 22178 } 22179 22180 ire_t * 22181 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22182 { 22183 ipaddr_t addr; 22184 ire_t *save_ire; 22185 irb_t *irb; 22186 ill_group_t *illgrp; 22187 int err; 22188 22189 save_ire = ire; 22190 addr = ire->ire_addr; 22191 22192 ASSERT(ire->ire_type == IRE_BROADCAST); 22193 22194 illgrp = connp->conn_outgoing_ill->ill_group; 22195 if (illgrp == NULL) { 22196 *conn_outgoing_ill = conn_get_held_ill(connp, 22197 &connp->conn_outgoing_ill, &err); 22198 if (err == ILL_LOOKUP_FAILED) { 22199 ire_refrele(save_ire); 22200 return (NULL); 22201 } 22202 return (save_ire); 22203 } 22204 /* 22205 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22206 * If it is part of the group, we need to send on the ire 22207 * that has been cleared of IRE_MARK_NORECV and that belongs 22208 * to this group. This is okay as IP_BOUND_IF really means 22209 * any ill in the group. We depend on the fact that the 22210 * first ire in the group is always cleared of IRE_MARK_NORECV 22211 * if such an ire exists. This is possible only if you have 22212 * at least one ill in the group that has not failed. 22213 * 22214 * First get to the ire that matches the address and group. 22215 * 22216 * We don't look for an ire with a matching zoneid because a given zone 22217 * won't always have broadcast ires on all ills in the group. 22218 */ 22219 irb = ire->ire_bucket; 22220 rw_enter(&irb->irb_lock, RW_READER); 22221 if (ire->ire_marks & IRE_MARK_NORECV) { 22222 /* 22223 * If the current zone only has an ire broadcast for this 22224 * address marked NORECV, the ire we want is ahead in the 22225 * bucket, so we look it up deliberately ignoring the zoneid. 22226 */ 22227 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22228 if (ire->ire_addr != addr) 22229 continue; 22230 /* skip over deleted ires */ 22231 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22232 continue; 22233 } 22234 } 22235 while (ire != NULL) { 22236 /* 22237 * If a new interface is coming up, we could end up 22238 * seeing the loopback ire and the non-loopback ire 22239 * may not have been added yet. So check for ire_stq 22240 */ 22241 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22242 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22243 break; 22244 } 22245 ire = ire->ire_next; 22246 } 22247 if (ire != NULL && ire->ire_addr == addr && 22248 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22249 IRE_REFHOLD(ire); 22250 rw_exit(&irb->irb_lock); 22251 ire_refrele(save_ire); 22252 *conn_outgoing_ill = ire_to_ill(ire); 22253 /* 22254 * Refhold the ill to make the conn_outgoing_ill 22255 * independent of the ire. ip_wput_ire goes in a loop 22256 * and may refrele the ire. Since we have an ire at this 22257 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22258 */ 22259 ill_refhold(*conn_outgoing_ill); 22260 return (ire); 22261 } 22262 rw_exit(&irb->irb_lock); 22263 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22264 /* 22265 * If we can't find a suitable ire, return the original ire. 22266 */ 22267 return (save_ire); 22268 } 22269 22270 /* 22271 * This function does the ire_refrele of the ire passed in as the 22272 * argument. As this function looks up more ires i.e broadcast ires, 22273 * it needs to REFRELE them. Currently, for simplicity we don't 22274 * differentiate the one passed in and looked up here. We always 22275 * REFRELE. 22276 * IPQoS Notes: 22277 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22278 * IPSec packets are done in ipsec_out_process. 22279 * 22280 */ 22281 void 22282 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22283 zoneid_t zoneid) 22284 { 22285 ipha_t *ipha; 22286 #define rptr ((uchar_t *)ipha) 22287 queue_t *stq; 22288 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22289 uint32_t v_hlen_tos_len; 22290 uint32_t ttl_protocol; 22291 ipaddr_t src; 22292 ipaddr_t dst; 22293 uint32_t cksum; 22294 ipaddr_t orig_src; 22295 ire_t *ire1; 22296 mblk_t *next_mp; 22297 uint_t hlen; 22298 uint16_t *up; 22299 uint32_t max_frag = ire->ire_max_frag; 22300 ill_t *ill = ire_to_ill(ire); 22301 int clusterwide; 22302 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22303 int ipsec_len; 22304 mblk_t *first_mp; 22305 ipsec_out_t *io; 22306 boolean_t conn_dontroute; /* conn value for multicast */ 22307 boolean_t conn_multicast_loop; /* conn value for multicast */ 22308 boolean_t multicast_forward; /* Should we forward ? */ 22309 boolean_t unspec_src; 22310 ill_t *conn_outgoing_ill = NULL; 22311 ill_t *ire_ill; 22312 ill_t *ire1_ill; 22313 ill_t *out_ill; 22314 uint32_t ill_index = 0; 22315 boolean_t multirt_send = B_FALSE; 22316 int err; 22317 ipxmit_state_t pktxmit_state; 22318 ip_stack_t *ipst = ire->ire_ipst; 22319 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22320 22321 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22322 "ip_wput_ire_start: q %p", q); 22323 22324 multicast_forward = B_FALSE; 22325 unspec_src = (connp != NULL && connp->conn_unspec_src); 22326 22327 if (ire->ire_flags & RTF_MULTIRT) { 22328 /* 22329 * Multirouting case. The bucket where ire is stored 22330 * probably holds other RTF_MULTIRT flagged ire 22331 * to the destination. In this call to ip_wput_ire, 22332 * we attempt to send the packet through all 22333 * those ires. Thus, we first ensure that ire is the 22334 * first RTF_MULTIRT ire in the bucket, 22335 * before walking the ire list. 22336 */ 22337 ire_t *first_ire; 22338 irb_t *irb = ire->ire_bucket; 22339 ASSERT(irb != NULL); 22340 22341 /* Make sure we do not omit any multiroute ire. */ 22342 IRB_REFHOLD(irb); 22343 for (first_ire = irb->irb_ire; 22344 first_ire != NULL; 22345 first_ire = first_ire->ire_next) { 22346 if ((first_ire->ire_flags & RTF_MULTIRT) && 22347 (first_ire->ire_addr == ire->ire_addr) && 22348 !(first_ire->ire_marks & 22349 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22350 break; 22351 } 22352 } 22353 22354 if ((first_ire != NULL) && (first_ire != ire)) { 22355 IRE_REFHOLD(first_ire); 22356 ire_refrele(ire); 22357 ire = first_ire; 22358 ill = ire_to_ill(ire); 22359 } 22360 IRB_REFRELE(irb); 22361 } 22362 22363 /* 22364 * conn_outgoing_ill is used only in the broadcast loop. 22365 * for performance we don't grab the mutexs in the fastpath 22366 */ 22367 if ((connp != NULL) && 22368 (connp->conn_xmit_if_ill == NULL) && 22369 (ire->ire_type == IRE_BROADCAST) && 22370 ((connp->conn_nofailover_ill != NULL) || 22371 (connp->conn_outgoing_ill != NULL))) { 22372 /* 22373 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22374 * option. So, see if this endpoint is bound to a 22375 * IPIF_NOFAILOVER address. If so, honor it. This implies 22376 * that if the interface is failed, we will still send 22377 * the packet on the same ill which is what we want. 22378 */ 22379 conn_outgoing_ill = conn_get_held_ill(connp, 22380 &connp->conn_nofailover_ill, &err); 22381 if (err == ILL_LOOKUP_FAILED) { 22382 ire_refrele(ire); 22383 freemsg(mp); 22384 return; 22385 } 22386 if (conn_outgoing_ill == NULL) { 22387 /* 22388 * Choose a good ill in the group to send the 22389 * packets on. 22390 */ 22391 ire = conn_set_outgoing_ill(connp, ire, 22392 &conn_outgoing_ill); 22393 if (ire == NULL) { 22394 freemsg(mp); 22395 return; 22396 } 22397 } 22398 } 22399 22400 if (mp->b_datap->db_type != M_CTL) { 22401 ipha = (ipha_t *)mp->b_rptr; 22402 } else { 22403 io = (ipsec_out_t *)mp->b_rptr; 22404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22405 ASSERT(zoneid == io->ipsec_out_zoneid); 22406 ASSERT(zoneid != ALL_ZONES); 22407 ipha = (ipha_t *)mp->b_cont->b_rptr; 22408 dst = ipha->ipha_dst; 22409 /* 22410 * For the multicast case, ipsec_out carries conn_dontroute and 22411 * conn_multicast_loop as conn may not be available here. We 22412 * need this for multicast loopback and forwarding which is done 22413 * later in the code. 22414 */ 22415 if (CLASSD(dst)) { 22416 conn_dontroute = io->ipsec_out_dontroute; 22417 conn_multicast_loop = io->ipsec_out_multicast_loop; 22418 /* 22419 * If conn_dontroute is not set or conn_multicast_loop 22420 * is set, we need to do forwarding/loopback. For 22421 * datagrams from ip_wput_multicast, conn_dontroute is 22422 * set to B_TRUE and conn_multicast_loop is set to 22423 * B_FALSE so that we neither do forwarding nor 22424 * loopback. 22425 */ 22426 if (!conn_dontroute || conn_multicast_loop) 22427 multicast_forward = B_TRUE; 22428 } 22429 } 22430 22431 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22432 ire->ire_zoneid != ALL_ZONES) { 22433 /* 22434 * When a zone sends a packet to another zone, we try to deliver 22435 * the packet under the same conditions as if the destination 22436 * was a real node on the network. To do so, we look for a 22437 * matching route in the forwarding table. 22438 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22439 * ip_newroute() does. 22440 * Note that IRE_LOCAL are special, since they are used 22441 * when the zoneid doesn't match in some cases. This means that 22442 * we need to handle ipha_src differently since ire_src_addr 22443 * belongs to the receiving zone instead of the sending zone. 22444 * When ip_restrict_interzone_loopback is set, then 22445 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22446 * for loopback between zones when the logical "Ethernet" would 22447 * have looped them back. 22448 */ 22449 ire_t *src_ire; 22450 22451 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22452 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22453 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22454 if (src_ire != NULL && 22455 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22456 (!ipst->ips_ip_restrict_interzone_loopback || 22457 ire_local_same_ill_group(ire, src_ire))) { 22458 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22459 ipha->ipha_src = src_ire->ire_src_addr; 22460 ire_refrele(src_ire); 22461 } else { 22462 ire_refrele(ire); 22463 if (conn_outgoing_ill != NULL) 22464 ill_refrele(conn_outgoing_ill); 22465 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22466 if (src_ire != NULL) { 22467 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22468 ire_refrele(src_ire); 22469 freemsg(mp); 22470 return; 22471 } 22472 ire_refrele(src_ire); 22473 } 22474 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22475 /* Failed */ 22476 freemsg(mp); 22477 return; 22478 } 22479 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22480 ipst); 22481 return; 22482 } 22483 } 22484 22485 if (mp->b_datap->db_type == M_CTL || 22486 ipss->ipsec_outbound_v4_policy_present) { 22487 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22488 unspec_src, zoneid); 22489 if (mp == NULL) { 22490 ire_refrele(ire); 22491 if (conn_outgoing_ill != NULL) 22492 ill_refrele(conn_outgoing_ill); 22493 return; 22494 } 22495 } 22496 22497 first_mp = mp; 22498 ipsec_len = 0; 22499 22500 if (first_mp->b_datap->db_type == M_CTL) { 22501 io = (ipsec_out_t *)first_mp->b_rptr; 22502 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22503 mp = first_mp->b_cont; 22504 ipsec_len = ipsec_out_extra_length(first_mp); 22505 ASSERT(ipsec_len >= 0); 22506 /* We already picked up the zoneid from the M_CTL above */ 22507 ASSERT(zoneid == io->ipsec_out_zoneid); 22508 ASSERT(zoneid != ALL_ZONES); 22509 22510 /* 22511 * Drop M_CTL here if IPsec processing is not needed. 22512 * (Non-IPsec use of M_CTL extracted any information it 22513 * needed above). 22514 */ 22515 if (ipsec_len == 0) { 22516 freeb(first_mp); 22517 first_mp = mp; 22518 } 22519 } 22520 22521 /* 22522 * Fast path for ip_wput_ire 22523 */ 22524 22525 ipha = (ipha_t *)mp->b_rptr; 22526 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22527 dst = ipha->ipha_dst; 22528 22529 /* 22530 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22531 * if the socket is a SOCK_RAW type. The transport checksum should 22532 * be provided in the pre-built packet, so we don't need to compute it. 22533 * Also, other application set flags, like DF, should not be altered. 22534 * Other transport MUST pass down zero. 22535 */ 22536 ip_hdr_included = ipha->ipha_ident; 22537 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22538 22539 if (CLASSD(dst)) { 22540 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22541 ntohl(dst), 22542 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22543 ntohl(ire->ire_addr))); 22544 } 22545 22546 /* Macros to extract header fields from data already in registers */ 22547 #ifdef _BIG_ENDIAN 22548 #define V_HLEN (v_hlen_tos_len >> 24) 22549 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22550 #define PROTO (ttl_protocol & 0xFF) 22551 #else 22552 #define V_HLEN (v_hlen_tos_len & 0xFF) 22553 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22554 #define PROTO (ttl_protocol >> 8) 22555 #endif 22556 22557 22558 orig_src = src = ipha->ipha_src; 22559 /* (The loop back to "another" is explained down below.) */ 22560 another:; 22561 /* 22562 * Assign an ident value for this packet. We assign idents on 22563 * a per destination basis out of the IRE. There could be 22564 * other threads targeting the same destination, so we have to 22565 * arrange for a atomic increment. Note that we use a 32-bit 22566 * atomic add because it has better performance than its 22567 * 16-bit sibling. 22568 * 22569 * If running in cluster mode and if the source address 22570 * belongs to a replicated service then vector through 22571 * cl_inet_ipident vector to allocate ip identifier 22572 * NOTE: This is a contract private interface with the 22573 * clustering group. 22574 */ 22575 clusterwide = 0; 22576 if (cl_inet_ipident) { 22577 ASSERT(cl_inet_isclusterwide); 22578 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22579 AF_INET, (uint8_t *)(uintptr_t)src)) { 22580 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22581 AF_INET, (uint8_t *)(uintptr_t)src, 22582 (uint8_t *)(uintptr_t)dst); 22583 clusterwide = 1; 22584 } 22585 } 22586 if (!clusterwide) { 22587 ipha->ipha_ident = 22588 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22589 } 22590 22591 #ifndef _BIG_ENDIAN 22592 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22593 #endif 22594 22595 /* 22596 * Set source address unless sent on an ill or conn_unspec_src is set. 22597 * This is needed to obey conn_unspec_src when packets go through 22598 * ip_newroute + arp. 22599 * Assumes ip_newroute{,_multi} sets the source address as well. 22600 */ 22601 if (src == INADDR_ANY && !unspec_src) { 22602 /* 22603 * Assign the appropriate source address from the IRE if none 22604 * was specified. 22605 */ 22606 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22607 22608 /* 22609 * With IP multipathing, broadcast packets are sent on the ire 22610 * that has been cleared of IRE_MARK_NORECV and that belongs to 22611 * the group. However, this ire might not be in the same zone so 22612 * we can't always use its source address. We look for a 22613 * broadcast ire in the same group and in the right zone. 22614 */ 22615 if (ire->ire_type == IRE_BROADCAST && 22616 ire->ire_zoneid != zoneid) { 22617 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22618 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22619 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22620 if (src_ire != NULL) { 22621 src = src_ire->ire_src_addr; 22622 ire_refrele(src_ire); 22623 } else { 22624 ire_refrele(ire); 22625 if (conn_outgoing_ill != NULL) 22626 ill_refrele(conn_outgoing_ill); 22627 freemsg(first_mp); 22628 if (ill != NULL) { 22629 BUMP_MIB(ill->ill_ip_mib, 22630 ipIfStatsOutDiscards); 22631 } else { 22632 BUMP_MIB(&ipst->ips_ip_mib, 22633 ipIfStatsOutDiscards); 22634 } 22635 return; 22636 } 22637 } else { 22638 src = ire->ire_src_addr; 22639 } 22640 22641 if (connp == NULL) { 22642 ip1dbg(("ip_wput_ire: no connp and no src " 22643 "address for dst 0x%x, using src 0x%x\n", 22644 ntohl(dst), 22645 ntohl(src))); 22646 } 22647 ipha->ipha_src = src; 22648 } 22649 stq = ire->ire_stq; 22650 22651 /* 22652 * We only allow ire chains for broadcasts since there will 22653 * be multiple IRE_CACHE entries for the same multicast 22654 * address (one per ipif). 22655 */ 22656 next_mp = NULL; 22657 22658 /* broadcast packet */ 22659 if (ire->ire_type == IRE_BROADCAST) 22660 goto broadcast; 22661 22662 /* loopback ? */ 22663 if (stq == NULL) 22664 goto nullstq; 22665 22666 /* The ill_index for outbound ILL */ 22667 ill_index = Q_TO_INDEX(stq); 22668 22669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22670 ttl_protocol = ((uint16_t *)ipha)[4]; 22671 22672 /* pseudo checksum (do it in parts for IP header checksum) */ 22673 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22674 22675 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22676 queue_t *dev_q = stq->q_next; 22677 22678 /* flow controlled */ 22679 if ((dev_q->q_next || dev_q->q_first) && 22680 !canput(dev_q)) 22681 goto blocked; 22682 if ((PROTO == IPPROTO_UDP) && 22683 (ip_hdr_included != IP_HDR_INCLUDED)) { 22684 hlen = (V_HLEN & 0xF) << 2; 22685 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22686 if (*up != 0) { 22687 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22688 hlen, LENGTH, max_frag, ipsec_len, cksum); 22689 /* Software checksum? */ 22690 if (DB_CKSUMFLAGS(mp) == 0) { 22691 IP_STAT(ipst, ip_out_sw_cksum); 22692 IP_STAT_UPDATE(ipst, 22693 ip_udp_out_sw_cksum_bytes, 22694 LENGTH - hlen); 22695 } 22696 } 22697 } 22698 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22699 hlen = (V_HLEN & 0xF) << 2; 22700 if (PROTO == IPPROTO_TCP) { 22701 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22702 /* 22703 * The packet header is processed once and for all, even 22704 * in the multirouting case. We disable hardware 22705 * checksum if the packet is multirouted, as it will be 22706 * replicated via several interfaces, and not all of 22707 * them may have this capability. 22708 */ 22709 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22710 LENGTH, max_frag, ipsec_len, cksum); 22711 /* Software checksum? */ 22712 if (DB_CKSUMFLAGS(mp) == 0) { 22713 IP_STAT(ipst, ip_out_sw_cksum); 22714 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22715 LENGTH - hlen); 22716 } 22717 } else { 22718 sctp_hdr_t *sctph; 22719 22720 ASSERT(PROTO == IPPROTO_SCTP); 22721 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22722 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22723 /* 22724 * Zero out the checksum field to ensure proper 22725 * checksum calculation. 22726 */ 22727 sctph->sh_chksum = 0; 22728 #ifdef DEBUG 22729 if (!skip_sctp_cksum) 22730 #endif 22731 sctph->sh_chksum = sctp_cksum(mp, hlen); 22732 } 22733 } 22734 22735 /* 22736 * If this is a multicast packet and originated from ip_wput 22737 * we need to do loopback and forwarding checks. If it comes 22738 * from ip_wput_multicast, we SHOULD not do this. 22739 */ 22740 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22741 22742 /* checksum */ 22743 cksum += ttl_protocol; 22744 22745 /* fragment the packet */ 22746 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22747 goto fragmentit; 22748 /* 22749 * Don't use frag_flag if packet is pre-built or source 22750 * routed or if multicast (since multicast packets do 22751 * not solicit ICMP "packet too big" messages). 22752 */ 22753 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22754 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22755 !ip_source_route_included(ipha)) && 22756 !CLASSD(ipha->ipha_dst)) 22757 ipha->ipha_fragment_offset_and_flags |= 22758 htons(ire->ire_frag_flag); 22759 22760 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22761 /* calculate IP header checksum */ 22762 cksum += ipha->ipha_ident; 22763 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22764 cksum += ipha->ipha_fragment_offset_and_flags; 22765 22766 /* IP options present */ 22767 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22768 if (hlen) 22769 goto checksumoptions; 22770 22771 /* calculate hdr checksum */ 22772 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22773 cksum = ~(cksum + (cksum >> 16)); 22774 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22775 } 22776 if (ipsec_len != 0) { 22777 /* 22778 * We will do the rest of the processing after 22779 * we come back from IPSEC in ip_wput_ipsec_out(). 22780 */ 22781 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22782 22783 io = (ipsec_out_t *)first_mp->b_rptr; 22784 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22785 ill_phyint->phyint_ifindex; 22786 22787 ipsec_out_process(q, first_mp, ire, ill_index); 22788 ire_refrele(ire); 22789 if (conn_outgoing_ill != NULL) 22790 ill_refrele(conn_outgoing_ill); 22791 return; 22792 } 22793 22794 /* 22795 * In most cases, the emission loop below is entered only 22796 * once. Only in the case where the ire holds the 22797 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22798 * flagged ires in the bucket, and send the packet 22799 * through all crossed RTF_MULTIRT routes. 22800 */ 22801 if (ire->ire_flags & RTF_MULTIRT) { 22802 multirt_send = B_TRUE; 22803 } 22804 do { 22805 if (multirt_send) { 22806 irb_t *irb; 22807 /* 22808 * We are in a multiple send case, need to get 22809 * the next ire and make a duplicate of the packet. 22810 * ire1 holds here the next ire to process in the 22811 * bucket. If multirouting is expected, 22812 * any non-RTF_MULTIRT ire that has the 22813 * right destination address is ignored. 22814 */ 22815 irb = ire->ire_bucket; 22816 ASSERT(irb != NULL); 22817 22818 IRB_REFHOLD(irb); 22819 for (ire1 = ire->ire_next; 22820 ire1 != NULL; 22821 ire1 = ire1->ire_next) { 22822 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22823 continue; 22824 if (ire1->ire_addr != ire->ire_addr) 22825 continue; 22826 if (ire1->ire_marks & 22827 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22828 continue; 22829 22830 /* Got one */ 22831 IRE_REFHOLD(ire1); 22832 break; 22833 } 22834 IRB_REFRELE(irb); 22835 22836 if (ire1 != NULL) { 22837 next_mp = copyb(mp); 22838 if ((next_mp == NULL) || 22839 ((mp->b_cont != NULL) && 22840 ((next_mp->b_cont = 22841 dupmsg(mp->b_cont)) == NULL))) { 22842 freemsg(next_mp); 22843 next_mp = NULL; 22844 ire_refrele(ire1); 22845 ire1 = NULL; 22846 } 22847 } 22848 22849 /* Last multiroute ire; don't loop anymore. */ 22850 if (ire1 == NULL) { 22851 multirt_send = B_FALSE; 22852 } 22853 } 22854 22855 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22856 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22857 mblk_t *, mp); 22858 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22859 ipst->ips_ipv4firewall_physical_out, 22860 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22861 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22862 if (mp == NULL) 22863 goto release_ire_and_ill; 22864 22865 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22866 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22867 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22868 if ((pktxmit_state == SEND_FAILED) || 22869 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22870 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22871 "- packet dropped\n")); 22872 release_ire_and_ill: 22873 ire_refrele(ire); 22874 if (next_mp != NULL) { 22875 freemsg(next_mp); 22876 ire_refrele(ire1); 22877 } 22878 if (conn_outgoing_ill != NULL) 22879 ill_refrele(conn_outgoing_ill); 22880 return; 22881 } 22882 22883 if (CLASSD(dst)) { 22884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22885 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22886 LENGTH); 22887 } 22888 22889 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22890 "ip_wput_ire_end: q %p (%S)", 22891 q, "last copy out"); 22892 IRE_REFRELE(ire); 22893 22894 if (multirt_send) { 22895 ASSERT(ire1); 22896 /* 22897 * Proceed with the next RTF_MULTIRT ire, 22898 * Also set up the send-to queue accordingly. 22899 */ 22900 ire = ire1; 22901 ire1 = NULL; 22902 stq = ire->ire_stq; 22903 mp = next_mp; 22904 next_mp = NULL; 22905 ipha = (ipha_t *)mp->b_rptr; 22906 ill_index = Q_TO_INDEX(stq); 22907 ill = (ill_t *)stq->q_ptr; 22908 } 22909 } while (multirt_send); 22910 if (conn_outgoing_ill != NULL) 22911 ill_refrele(conn_outgoing_ill); 22912 return; 22913 22914 /* 22915 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22916 */ 22917 broadcast: 22918 { 22919 /* 22920 * Avoid broadcast storms by setting the ttl to 1 22921 * for broadcasts. This parameter can be set 22922 * via ndd, so make sure that for the SO_DONTROUTE 22923 * case that ipha_ttl is always set to 1. 22924 * In the event that we are replying to incoming 22925 * ICMP packets, conn could be NULL. 22926 */ 22927 if ((connp != NULL) && connp->conn_dontroute) 22928 ipha->ipha_ttl = 1; 22929 else 22930 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22931 22932 /* 22933 * Note that we are not doing a IRB_REFHOLD here. 22934 * Actually we don't care if the list changes i.e 22935 * if somebody deletes an IRE from the list while 22936 * we drop the lock, the next time we come around 22937 * ire_next will be NULL and hence we won't send 22938 * out multiple copies which is fine. 22939 */ 22940 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22941 ire1 = ire->ire_next; 22942 if (conn_outgoing_ill != NULL) { 22943 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22944 ASSERT(ire1 == ire->ire_next); 22945 if (ire1 != NULL && ire1->ire_addr == dst) { 22946 ire_refrele(ire); 22947 ire = ire1; 22948 IRE_REFHOLD(ire); 22949 ire1 = ire->ire_next; 22950 continue; 22951 } 22952 rw_exit(&ire->ire_bucket->irb_lock); 22953 /* Did not find a matching ill */ 22954 ip1dbg(("ip_wput_ire: broadcast with no " 22955 "matching IP_BOUND_IF ill %s\n", 22956 conn_outgoing_ill->ill_name)); 22957 freemsg(first_mp); 22958 if (ire != NULL) 22959 ire_refrele(ire); 22960 ill_refrele(conn_outgoing_ill); 22961 return; 22962 } 22963 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22964 /* 22965 * If the next IRE has the same address and is not one 22966 * of the two copies that we need to send, try to see 22967 * whether this copy should be sent at all. This 22968 * assumes that we insert loopbacks first and then 22969 * non-loopbacks. This is acheived by inserting the 22970 * loopback always before non-loopback. 22971 * This is used to send a single copy of a broadcast 22972 * packet out all physical interfaces that have an 22973 * matching IRE_BROADCAST while also looping 22974 * back one copy (to ip_wput_local) for each 22975 * matching physical interface. However, we avoid 22976 * sending packets out different logical that match by 22977 * having ipif_up/ipif_down supress duplicate 22978 * IRE_BROADCASTS. 22979 * 22980 * This feature is currently used to get broadcasts 22981 * sent to multiple interfaces, when the broadcast 22982 * address being used applies to multiple interfaces. 22983 * For example, a whole net broadcast will be 22984 * replicated on every connected subnet of 22985 * the target net. 22986 * 22987 * Each zone has its own set of IRE_BROADCASTs, so that 22988 * we're able to distribute inbound packets to multiple 22989 * zones who share a broadcast address. We avoid looping 22990 * back outbound packets in different zones but on the 22991 * same ill, as the application would see duplicates. 22992 * 22993 * If the interfaces are part of the same group, 22994 * we would want to send only one copy out for 22995 * whole group. 22996 * 22997 * This logic assumes that ire_add_v4() groups the 22998 * IRE_BROADCAST entries so that those with the same 22999 * ire_addr and ill_group are kept together. 23000 */ 23001 ire_ill = ire->ire_ipif->ipif_ill; 23002 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 23003 if (ire_ill->ill_group != NULL && 23004 (ire->ire_marks & IRE_MARK_NORECV)) { 23005 /* 23006 * If the current zone only has an ire 23007 * broadcast for this address marked 23008 * NORECV, the ire we want is ahead in 23009 * the bucket, so we look it up 23010 * deliberately ignoring the zoneid. 23011 */ 23012 for (ire1 = ire->ire_bucket->irb_ire; 23013 ire1 != NULL; 23014 ire1 = ire1->ire_next) { 23015 ire1_ill = 23016 ire1->ire_ipif->ipif_ill; 23017 if (ire1->ire_addr != dst) 23018 continue; 23019 /* skip over the current ire */ 23020 if (ire1 == ire) 23021 continue; 23022 /* skip over deleted ires */ 23023 if (ire1->ire_marks & 23024 IRE_MARK_CONDEMNED) 23025 continue; 23026 /* 23027 * non-loopback ire in our 23028 * group: use it for the next 23029 * pass in the loop 23030 */ 23031 if (ire1->ire_stq != NULL && 23032 ire1_ill->ill_group == 23033 ire_ill->ill_group) 23034 break; 23035 } 23036 } 23037 } else { 23038 while (ire1 != NULL && ire1->ire_addr == dst) { 23039 ire1_ill = ire1->ire_ipif->ipif_ill; 23040 /* 23041 * We can have two broadcast ires on the 23042 * same ill in different zones; here 23043 * we'll send a copy of the packet on 23044 * each ill and the fanout code will 23045 * call conn_wantpacket() to check that 23046 * the zone has the broadcast address 23047 * configured on the ill. If the two 23048 * ires are in the same group we only 23049 * send one copy up. 23050 */ 23051 if (ire1_ill != ire_ill && 23052 (ire1_ill->ill_group == NULL || 23053 ire_ill->ill_group == NULL || 23054 ire1_ill->ill_group != 23055 ire_ill->ill_group)) { 23056 break; 23057 } 23058 ire1 = ire1->ire_next; 23059 } 23060 } 23061 } 23062 ASSERT(multirt_send == B_FALSE); 23063 if (ire1 != NULL && ire1->ire_addr == dst) { 23064 if ((ire->ire_flags & RTF_MULTIRT) && 23065 (ire1->ire_flags & RTF_MULTIRT)) { 23066 /* 23067 * We are in the multirouting case. 23068 * The message must be sent at least 23069 * on both ires. These ires have been 23070 * inserted AFTER the standard ones 23071 * in ip_rt_add(). There are thus no 23072 * other ire entries for the destination 23073 * address in the rest of the bucket 23074 * that do not have the RTF_MULTIRT 23075 * flag. We don't process a copy 23076 * of the message here. This will be 23077 * done in the final sending loop. 23078 */ 23079 multirt_send = B_TRUE; 23080 } else { 23081 next_mp = ip_copymsg(first_mp); 23082 if (next_mp != NULL) 23083 IRE_REFHOLD(ire1); 23084 } 23085 } 23086 rw_exit(&ire->ire_bucket->irb_lock); 23087 } 23088 23089 if (stq) { 23090 /* 23091 * A non-NULL send-to queue means this packet is going 23092 * out of this machine. 23093 */ 23094 out_ill = (ill_t *)stq->q_ptr; 23095 23096 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23097 ttl_protocol = ((uint16_t *)ipha)[4]; 23098 /* 23099 * We accumulate the pseudo header checksum in cksum. 23100 * This is pretty hairy code, so watch close. One 23101 * thing to keep in mind is that UDP and TCP have 23102 * stored their respective datagram lengths in their 23103 * checksum fields. This lines things up real nice. 23104 */ 23105 cksum = (dst >> 16) + (dst & 0xFFFF) + 23106 (src >> 16) + (src & 0xFFFF); 23107 /* 23108 * We assume the udp checksum field contains the 23109 * length, so to compute the pseudo header checksum, 23110 * all we need is the protocol number and src/dst. 23111 */ 23112 /* Provide the checksums for UDP and TCP. */ 23113 if ((PROTO == IPPROTO_TCP) && 23114 (ip_hdr_included != IP_HDR_INCLUDED)) { 23115 /* hlen gets the number of uchar_ts in the IP header */ 23116 hlen = (V_HLEN & 0xF) << 2; 23117 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23118 IP_STAT(ipst, ip_out_sw_cksum); 23119 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23120 LENGTH - hlen); 23121 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23122 } else if (PROTO == IPPROTO_SCTP && 23123 (ip_hdr_included != IP_HDR_INCLUDED)) { 23124 sctp_hdr_t *sctph; 23125 23126 hlen = (V_HLEN & 0xF) << 2; 23127 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23128 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23129 sctph->sh_chksum = 0; 23130 #ifdef DEBUG 23131 if (!skip_sctp_cksum) 23132 #endif 23133 sctph->sh_chksum = sctp_cksum(mp, hlen); 23134 } else { 23135 queue_t *dev_q = stq->q_next; 23136 23137 if ((dev_q->q_next || dev_q->q_first) && 23138 !canput(dev_q)) { 23139 blocked: 23140 ipha->ipha_ident = ip_hdr_included; 23141 /* 23142 * If we don't have a conn to apply 23143 * backpressure, free the message. 23144 * In the ire_send path, we don't know 23145 * the position to requeue the packet. Rather 23146 * than reorder packets, we just drop this 23147 * packet. 23148 */ 23149 if (ipst->ips_ip_output_queue && 23150 connp != NULL && 23151 caller != IRE_SEND) { 23152 if (caller == IP_WSRV) { 23153 connp->conn_did_putbq = 1; 23154 (void) putbq(connp->conn_wq, 23155 first_mp); 23156 conn_drain_insert(connp); 23157 /* 23158 * This is the service thread, 23159 * and the queue is already 23160 * noenabled. The check for 23161 * canput and the putbq is not 23162 * atomic. So we need to check 23163 * again. 23164 */ 23165 if (canput(stq->q_next)) 23166 connp->conn_did_putbq 23167 = 0; 23168 IP_STAT(ipst, ip_conn_flputbq); 23169 } else { 23170 /* 23171 * We are not the service proc. 23172 * ip_wsrv will be scheduled or 23173 * is already running. 23174 */ 23175 (void) putq(connp->conn_wq, 23176 first_mp); 23177 } 23178 } else { 23179 out_ill = (ill_t *)stq->q_ptr; 23180 BUMP_MIB(out_ill->ill_ip_mib, 23181 ipIfStatsOutDiscards); 23182 freemsg(first_mp); 23183 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23184 "ip_wput_ire_end: q %p (%S)", 23185 q, "discard"); 23186 } 23187 ire_refrele(ire); 23188 if (next_mp) { 23189 ire_refrele(ire1); 23190 freemsg(next_mp); 23191 } 23192 if (conn_outgoing_ill != NULL) 23193 ill_refrele(conn_outgoing_ill); 23194 return; 23195 } 23196 if ((PROTO == IPPROTO_UDP) && 23197 (ip_hdr_included != IP_HDR_INCLUDED)) { 23198 /* 23199 * hlen gets the number of uchar_ts in the 23200 * IP header 23201 */ 23202 hlen = (V_HLEN & 0xF) << 2; 23203 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23204 max_frag = ire->ire_max_frag; 23205 if (*up != 0) { 23206 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23207 up, PROTO, hlen, LENGTH, max_frag, 23208 ipsec_len, cksum); 23209 /* Software checksum? */ 23210 if (DB_CKSUMFLAGS(mp) == 0) { 23211 IP_STAT(ipst, ip_out_sw_cksum); 23212 IP_STAT_UPDATE(ipst, 23213 ip_udp_out_sw_cksum_bytes, 23214 LENGTH - hlen); 23215 } 23216 } 23217 } 23218 } 23219 /* 23220 * Need to do this even when fragmenting. The local 23221 * loopback can be done without computing checksums 23222 * but forwarding out other interface must be done 23223 * after the IP checksum (and ULP checksums) have been 23224 * computed. 23225 * 23226 * NOTE : multicast_forward is set only if this packet 23227 * originated from ip_wput. For packets originating from 23228 * ip_wput_multicast, it is not set. 23229 */ 23230 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23231 multi_loopback: 23232 ip2dbg(("ip_wput: multicast, loop %d\n", 23233 conn_multicast_loop)); 23234 23235 /* Forget header checksum offload */ 23236 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23237 23238 /* 23239 * Local loopback of multicasts? Check the 23240 * ill. 23241 * 23242 * Note that the loopback function will not come 23243 * in through ip_rput - it will only do the 23244 * client fanout thus we need to do an mforward 23245 * as well. The is different from the BSD 23246 * logic. 23247 */ 23248 if (ill != NULL) { 23249 ilm_t *ilm; 23250 23251 ILM_WALKER_HOLD(ill); 23252 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23253 ALL_ZONES); 23254 ILM_WALKER_RELE(ill); 23255 if (ilm != NULL) { 23256 /* 23257 * Pass along the virtual output q. 23258 * ip_wput_local() will distribute the 23259 * packet to all the matching zones, 23260 * except the sending zone when 23261 * IP_MULTICAST_LOOP is false. 23262 */ 23263 ip_multicast_loopback(q, ill, first_mp, 23264 conn_multicast_loop ? 0 : 23265 IP_FF_NO_MCAST_LOOP, zoneid); 23266 } 23267 } 23268 if (ipha->ipha_ttl == 0) { 23269 /* 23270 * 0 => only to this host i.e. we are 23271 * done. We are also done if this was the 23272 * loopback interface since it is sufficient 23273 * to loopback one copy of a multicast packet. 23274 */ 23275 freemsg(first_mp); 23276 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23277 "ip_wput_ire_end: q %p (%S)", 23278 q, "loopback"); 23279 ire_refrele(ire); 23280 if (conn_outgoing_ill != NULL) 23281 ill_refrele(conn_outgoing_ill); 23282 return; 23283 } 23284 /* 23285 * ILLF_MULTICAST is checked in ip_newroute 23286 * i.e. we don't need to check it here since 23287 * all IRE_CACHEs come from ip_newroute. 23288 * For multicast traffic, SO_DONTROUTE is interpreted 23289 * to mean only send the packet out the interface 23290 * (optionally specified with IP_MULTICAST_IF) 23291 * and do not forward it out additional interfaces. 23292 * RSVP and the rsvp daemon is an example of a 23293 * protocol and user level process that 23294 * handles it's own routing. Hence, it uses the 23295 * SO_DONTROUTE option to accomplish this. 23296 */ 23297 23298 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23299 ill != NULL) { 23300 /* Unconditionally redo the checksum */ 23301 ipha->ipha_hdr_checksum = 0; 23302 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23303 23304 /* 23305 * If this needs to go out secure, we need 23306 * to wait till we finish the IPSEC 23307 * processing. 23308 */ 23309 if (ipsec_len == 0 && 23310 ip_mforward(ill, ipha, mp)) { 23311 freemsg(first_mp); 23312 ip1dbg(("ip_wput: mforward failed\n")); 23313 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23314 "ip_wput_ire_end: q %p (%S)", 23315 q, "mforward failed"); 23316 ire_refrele(ire); 23317 if (conn_outgoing_ill != NULL) 23318 ill_refrele(conn_outgoing_ill); 23319 return; 23320 } 23321 } 23322 } 23323 max_frag = ire->ire_max_frag; 23324 cksum += ttl_protocol; 23325 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23326 /* No fragmentation required for this one. */ 23327 /* 23328 * Don't use frag_flag if packet is pre-built or source 23329 * routed or if multicast (since multicast packets do 23330 * not solicit ICMP "packet too big" messages). 23331 */ 23332 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23333 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23334 !ip_source_route_included(ipha)) && 23335 !CLASSD(ipha->ipha_dst)) 23336 ipha->ipha_fragment_offset_and_flags |= 23337 htons(ire->ire_frag_flag); 23338 23339 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23340 /* Complete the IP header checksum. */ 23341 cksum += ipha->ipha_ident; 23342 cksum += (v_hlen_tos_len >> 16)+ 23343 (v_hlen_tos_len & 0xFFFF); 23344 cksum += ipha->ipha_fragment_offset_and_flags; 23345 hlen = (V_HLEN & 0xF) - 23346 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23347 if (hlen) { 23348 checksumoptions: 23349 /* 23350 * Account for the IP Options in the IP 23351 * header checksum. 23352 */ 23353 up = (uint16_t *)(rptr+ 23354 IP_SIMPLE_HDR_LENGTH); 23355 do { 23356 cksum += up[0]; 23357 cksum += up[1]; 23358 up += 2; 23359 } while (--hlen); 23360 } 23361 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23362 cksum = ~(cksum + (cksum >> 16)); 23363 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23364 } 23365 if (ipsec_len != 0) { 23366 ipsec_out_process(q, first_mp, ire, ill_index); 23367 if (!next_mp) { 23368 ire_refrele(ire); 23369 if (conn_outgoing_ill != NULL) 23370 ill_refrele(conn_outgoing_ill); 23371 return; 23372 } 23373 goto next; 23374 } 23375 23376 /* 23377 * multirt_send has already been handled 23378 * for broadcast, but not yet for multicast 23379 * or IP options. 23380 */ 23381 if (next_mp == NULL) { 23382 if (ire->ire_flags & RTF_MULTIRT) { 23383 multirt_send = B_TRUE; 23384 } 23385 } 23386 23387 /* 23388 * In most cases, the emission loop below is 23389 * entered only once. Only in the case where 23390 * the ire holds the RTF_MULTIRT flag, do we loop 23391 * to process all RTF_MULTIRT ires in the bucket, 23392 * and send the packet through all crossed 23393 * RTF_MULTIRT routes. 23394 */ 23395 do { 23396 if (multirt_send) { 23397 irb_t *irb; 23398 23399 irb = ire->ire_bucket; 23400 ASSERT(irb != NULL); 23401 /* 23402 * We are in a multiple send case, 23403 * need to get the next IRE and make 23404 * a duplicate of the packet. 23405 */ 23406 IRB_REFHOLD(irb); 23407 for (ire1 = ire->ire_next; 23408 ire1 != NULL; 23409 ire1 = ire1->ire_next) { 23410 if (!(ire1->ire_flags & 23411 RTF_MULTIRT)) { 23412 continue; 23413 } 23414 if (ire1->ire_addr != 23415 ire->ire_addr) { 23416 continue; 23417 } 23418 if (ire1->ire_marks & 23419 (IRE_MARK_CONDEMNED| 23420 IRE_MARK_HIDDEN)) { 23421 continue; 23422 } 23423 23424 /* Got one */ 23425 IRE_REFHOLD(ire1); 23426 break; 23427 } 23428 IRB_REFRELE(irb); 23429 23430 if (ire1 != NULL) { 23431 next_mp = copyb(mp); 23432 if ((next_mp == NULL) || 23433 ((mp->b_cont != NULL) && 23434 ((next_mp->b_cont = 23435 dupmsg(mp->b_cont)) 23436 == NULL))) { 23437 freemsg(next_mp); 23438 next_mp = NULL; 23439 ire_refrele(ire1); 23440 ire1 = NULL; 23441 } 23442 } 23443 23444 /* 23445 * Last multiroute ire; don't loop 23446 * anymore. The emission is over 23447 * and next_mp is NULL. 23448 */ 23449 if (ire1 == NULL) { 23450 multirt_send = B_FALSE; 23451 } 23452 } 23453 23454 out_ill = ire->ire_ipif->ipif_ill; 23455 DTRACE_PROBE4(ip4__physical__out__start, 23456 ill_t *, NULL, 23457 ill_t *, out_ill, 23458 ipha_t *, ipha, mblk_t *, mp); 23459 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23460 ipst->ips_ipv4firewall_physical_out, 23461 NULL, out_ill, ipha, mp, mp, ipst); 23462 DTRACE_PROBE1(ip4__physical__out__end, 23463 mblk_t *, mp); 23464 if (mp == NULL) 23465 goto release_ire_and_ill_2; 23466 23467 ASSERT(ipsec_len == 0); 23468 mp->b_prev = 23469 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23470 DTRACE_PROBE2(ip__xmit__2, 23471 mblk_t *, mp, ire_t *, ire); 23472 pktxmit_state = ip_xmit_v4(mp, ire, 23473 NULL, B_TRUE); 23474 if ((pktxmit_state == SEND_FAILED) || 23475 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23476 release_ire_and_ill_2: 23477 if (next_mp) { 23478 freemsg(next_mp); 23479 ire_refrele(ire1); 23480 } 23481 ire_refrele(ire); 23482 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23483 "ip_wput_ire_end: q %p (%S)", 23484 q, "discard MDATA"); 23485 if (conn_outgoing_ill != NULL) 23486 ill_refrele(conn_outgoing_ill); 23487 return; 23488 } 23489 23490 if (CLASSD(dst)) { 23491 BUMP_MIB(out_ill->ill_ip_mib, 23492 ipIfStatsHCOutMcastPkts); 23493 UPDATE_MIB(out_ill->ill_ip_mib, 23494 ipIfStatsHCOutMcastOctets, 23495 LENGTH); 23496 } else if (ire->ire_type == IRE_BROADCAST) { 23497 BUMP_MIB(out_ill->ill_ip_mib, 23498 ipIfStatsHCOutBcastPkts); 23499 } 23500 23501 if (multirt_send) { 23502 /* 23503 * We are in a multiple send case, 23504 * need to re-enter the sending loop 23505 * using the next ire. 23506 */ 23507 ire_refrele(ire); 23508 ire = ire1; 23509 stq = ire->ire_stq; 23510 mp = next_mp; 23511 next_mp = NULL; 23512 ipha = (ipha_t *)mp->b_rptr; 23513 ill_index = Q_TO_INDEX(stq); 23514 } 23515 } while (multirt_send); 23516 23517 if (!next_mp) { 23518 /* 23519 * Last copy going out (the ultra-common 23520 * case). Note that we intentionally replicate 23521 * the putnext rather than calling it before 23522 * the next_mp check in hopes of a little 23523 * tail-call action out of the compiler. 23524 */ 23525 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23526 "ip_wput_ire_end: q %p (%S)", 23527 q, "last copy out(1)"); 23528 ire_refrele(ire); 23529 if (conn_outgoing_ill != NULL) 23530 ill_refrele(conn_outgoing_ill); 23531 return; 23532 } 23533 /* More copies going out below. */ 23534 } else { 23535 int offset; 23536 fragmentit: 23537 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23538 /* 23539 * If this would generate a icmp_frag_needed message, 23540 * we need to handle it before we do the IPSEC 23541 * processing. Otherwise, we need to strip the IPSEC 23542 * headers before we send up the message to the ULPs 23543 * which becomes messy and difficult. 23544 */ 23545 if (ipsec_len != 0) { 23546 if ((max_frag < (unsigned int)(LENGTH + 23547 ipsec_len)) && (offset & IPH_DF)) { 23548 out_ill = (ill_t *)stq->q_ptr; 23549 BUMP_MIB(out_ill->ill_ip_mib, 23550 ipIfStatsOutFragFails); 23551 BUMP_MIB(out_ill->ill_ip_mib, 23552 ipIfStatsOutFragReqds); 23553 ipha->ipha_hdr_checksum = 0; 23554 ipha->ipha_hdr_checksum = 23555 (uint16_t)ip_csum_hdr(ipha); 23556 icmp_frag_needed(ire->ire_stq, first_mp, 23557 max_frag, zoneid, ipst); 23558 if (!next_mp) { 23559 ire_refrele(ire); 23560 if (conn_outgoing_ill != NULL) { 23561 ill_refrele( 23562 conn_outgoing_ill); 23563 } 23564 return; 23565 } 23566 } else { 23567 /* 23568 * This won't cause a icmp_frag_needed 23569 * message. to be generated. Send it on 23570 * the wire. Note that this could still 23571 * cause fragmentation and all we 23572 * do is the generation of the message 23573 * to the ULP if needed before IPSEC. 23574 */ 23575 if (!next_mp) { 23576 ipsec_out_process(q, first_mp, 23577 ire, ill_index); 23578 TRACE_2(TR_FAC_IP, 23579 TR_IP_WPUT_IRE_END, 23580 "ip_wput_ire_end: q %p " 23581 "(%S)", q, 23582 "last ipsec_out_process"); 23583 ire_refrele(ire); 23584 if (conn_outgoing_ill != NULL) { 23585 ill_refrele( 23586 conn_outgoing_ill); 23587 } 23588 return; 23589 } 23590 ipsec_out_process(q, first_mp, 23591 ire, ill_index); 23592 } 23593 } else { 23594 /* 23595 * Initiate IPPF processing. For 23596 * fragmentable packets we finish 23597 * all QOS packet processing before 23598 * calling: 23599 * ip_wput_ire_fragmentit->ip_wput_frag 23600 */ 23601 23602 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23603 ip_process(IPP_LOCAL_OUT, &mp, 23604 ill_index); 23605 if (mp == NULL) { 23606 out_ill = (ill_t *)stq->q_ptr; 23607 BUMP_MIB(out_ill->ill_ip_mib, 23608 ipIfStatsOutDiscards); 23609 if (next_mp != NULL) { 23610 freemsg(next_mp); 23611 ire_refrele(ire1); 23612 } 23613 ire_refrele(ire); 23614 TRACE_2(TR_FAC_IP, 23615 TR_IP_WPUT_IRE_END, 23616 "ip_wput_ire: q %p (%S)", 23617 q, "discard MDATA"); 23618 if (conn_outgoing_ill != NULL) { 23619 ill_refrele( 23620 conn_outgoing_ill); 23621 } 23622 return; 23623 } 23624 } 23625 if (!next_mp) { 23626 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23627 "ip_wput_ire_end: q %p (%S)", 23628 q, "last fragmentation"); 23629 ip_wput_ire_fragmentit(mp, ire, 23630 zoneid, ipst); 23631 ire_refrele(ire); 23632 if (conn_outgoing_ill != NULL) 23633 ill_refrele(conn_outgoing_ill); 23634 return; 23635 } 23636 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23637 } 23638 } 23639 } else { 23640 nullstq: 23641 /* A NULL stq means the destination address is local. */ 23642 UPDATE_OB_PKT_COUNT(ire); 23643 ire->ire_last_used_time = lbolt; 23644 ASSERT(ire->ire_ipif != NULL); 23645 if (!next_mp) { 23646 /* 23647 * Is there an "in" and "out" for traffic local 23648 * to a host (loopback)? The code in Solaris doesn't 23649 * explicitly draw a line in its code for in vs out, 23650 * so we've had to draw a line in the sand: ip_wput_ire 23651 * is considered to be the "output" side and 23652 * ip_wput_local to be the "input" side. 23653 */ 23654 out_ill = ire->ire_ipif->ipif_ill; 23655 23656 DTRACE_PROBE4(ip4__loopback__out__start, 23657 ill_t *, NULL, ill_t *, out_ill, 23658 ipha_t *, ipha, mblk_t *, first_mp); 23659 23660 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23661 ipst->ips_ipv4firewall_loopback_out, 23662 NULL, out_ill, ipha, first_mp, mp, ipst); 23663 23664 DTRACE_PROBE1(ip4__loopback__out_end, 23665 mblk_t *, first_mp); 23666 23667 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23668 "ip_wput_ire_end: q %p (%S)", 23669 q, "local address"); 23670 23671 if (first_mp != NULL) 23672 ip_wput_local(q, out_ill, ipha, 23673 first_mp, ire, 0, ire->ire_zoneid); 23674 ire_refrele(ire); 23675 if (conn_outgoing_ill != NULL) 23676 ill_refrele(conn_outgoing_ill); 23677 return; 23678 } 23679 23680 out_ill = ire->ire_ipif->ipif_ill; 23681 23682 DTRACE_PROBE4(ip4__loopback__out__start, 23683 ill_t *, NULL, ill_t *, out_ill, 23684 ipha_t *, ipha, mblk_t *, first_mp); 23685 23686 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23687 ipst->ips_ipv4firewall_loopback_out, 23688 NULL, out_ill, ipha, first_mp, mp, ipst); 23689 23690 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23691 23692 if (first_mp != NULL) 23693 ip_wput_local(q, out_ill, ipha, 23694 first_mp, ire, 0, ire->ire_zoneid); 23695 } 23696 next: 23697 /* 23698 * More copies going out to additional interfaces. 23699 * ire1 has already been held. We don't need the 23700 * "ire" anymore. 23701 */ 23702 ire_refrele(ire); 23703 ire = ire1; 23704 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23705 mp = next_mp; 23706 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23707 ill = ire_to_ill(ire); 23708 first_mp = mp; 23709 if (ipsec_len != 0) { 23710 ASSERT(first_mp->b_datap->db_type == M_CTL); 23711 mp = mp->b_cont; 23712 } 23713 dst = ire->ire_addr; 23714 ipha = (ipha_t *)mp->b_rptr; 23715 /* 23716 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23717 * Restore ipha_ident "no checksum" flag. 23718 */ 23719 src = orig_src; 23720 ipha->ipha_ident = ip_hdr_included; 23721 goto another; 23722 23723 #undef rptr 23724 #undef Q_TO_INDEX 23725 } 23726 23727 /* 23728 * Routine to allocate a message that is used to notify the ULP about MDT. 23729 * The caller may provide a pointer to the link-layer MDT capabilities, 23730 * or NULL if MDT is to be disabled on the stream. 23731 */ 23732 mblk_t * 23733 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23734 { 23735 mblk_t *mp; 23736 ip_mdt_info_t *mdti; 23737 ill_mdt_capab_t *idst; 23738 23739 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23740 DB_TYPE(mp) = M_CTL; 23741 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23742 mdti = (ip_mdt_info_t *)mp->b_rptr; 23743 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23744 idst = &(mdti->mdt_capab); 23745 23746 /* 23747 * If the caller provides us with the capability, copy 23748 * it over into our notification message; otherwise 23749 * we zero out the capability portion. 23750 */ 23751 if (isrc != NULL) 23752 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23753 else 23754 bzero((caddr_t)idst, sizeof (*idst)); 23755 } 23756 return (mp); 23757 } 23758 23759 /* 23760 * Routine which determines whether MDT can be enabled on the destination 23761 * IRE and IPC combination, and if so, allocates and returns the MDT 23762 * notification mblk that may be used by ULP. We also check if we need to 23763 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23764 * MDT usage in the past have been lifted. This gets called during IP 23765 * and ULP binding. 23766 */ 23767 mblk_t * 23768 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23769 ill_mdt_capab_t *mdt_cap) 23770 { 23771 mblk_t *mp; 23772 boolean_t rc = B_FALSE; 23773 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23774 23775 ASSERT(dst_ire != NULL); 23776 ASSERT(connp != NULL); 23777 ASSERT(mdt_cap != NULL); 23778 23779 /* 23780 * Currently, we only support simple TCP/{IPv4,IPv6} with 23781 * Multidata, which is handled in tcp_multisend(). This 23782 * is the reason why we do all these checks here, to ensure 23783 * that we don't enable Multidata for the cases which we 23784 * can't handle at the moment. 23785 */ 23786 do { 23787 /* Only do TCP at the moment */ 23788 if (connp->conn_ulp != IPPROTO_TCP) 23789 break; 23790 23791 /* 23792 * IPSEC outbound policy present? Note that we get here 23793 * after calling ipsec_conn_cache_policy() where the global 23794 * policy checking is performed. conn_latch will be 23795 * non-NULL as long as there's a policy defined, 23796 * i.e. conn_out_enforce_policy may be NULL in such case 23797 * when the connection is non-secure, and hence we check 23798 * further if the latch refers to an outbound policy. 23799 */ 23800 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23801 break; 23802 23803 /* CGTP (multiroute) is enabled? */ 23804 if (dst_ire->ire_flags & RTF_MULTIRT) 23805 break; 23806 23807 /* Outbound IPQoS enabled? */ 23808 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23809 /* 23810 * In this case, we disable MDT for this and all 23811 * future connections going over the interface. 23812 */ 23813 mdt_cap->ill_mdt_on = 0; 23814 break; 23815 } 23816 23817 /* socket option(s) present? */ 23818 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23819 break; 23820 23821 rc = B_TRUE; 23822 /* CONSTCOND */ 23823 } while (0); 23824 23825 /* Remember the result */ 23826 connp->conn_mdt_ok = rc; 23827 23828 if (!rc) 23829 return (NULL); 23830 else if (!mdt_cap->ill_mdt_on) { 23831 /* 23832 * If MDT has been previously turned off in the past, and we 23833 * currently can do MDT (due to IPQoS policy removal, etc.) 23834 * then enable it for this interface. 23835 */ 23836 mdt_cap->ill_mdt_on = 1; 23837 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23838 "interface %s\n", ill_name)); 23839 } 23840 23841 /* Allocate the MDT info mblk */ 23842 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23843 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23844 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23845 return (NULL); 23846 } 23847 return (mp); 23848 } 23849 23850 /* 23851 * Routine to allocate a message that is used to notify the ULP about LSO. 23852 * The caller may provide a pointer to the link-layer LSO capabilities, 23853 * or NULL if LSO is to be disabled on the stream. 23854 */ 23855 mblk_t * 23856 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23857 { 23858 mblk_t *mp; 23859 ip_lso_info_t *lsoi; 23860 ill_lso_capab_t *idst; 23861 23862 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23863 DB_TYPE(mp) = M_CTL; 23864 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23865 lsoi = (ip_lso_info_t *)mp->b_rptr; 23866 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23867 idst = &(lsoi->lso_capab); 23868 23869 /* 23870 * If the caller provides us with the capability, copy 23871 * it over into our notification message; otherwise 23872 * we zero out the capability portion. 23873 */ 23874 if (isrc != NULL) 23875 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23876 else 23877 bzero((caddr_t)idst, sizeof (*idst)); 23878 } 23879 return (mp); 23880 } 23881 23882 /* 23883 * Routine which determines whether LSO can be enabled on the destination 23884 * IRE and IPC combination, and if so, allocates and returns the LSO 23885 * notification mblk that may be used by ULP. We also check if we need to 23886 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23887 * LSO usage in the past have been lifted. This gets called during IP 23888 * and ULP binding. 23889 */ 23890 mblk_t * 23891 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23892 ill_lso_capab_t *lso_cap) 23893 { 23894 mblk_t *mp; 23895 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23896 23897 ASSERT(dst_ire != NULL); 23898 ASSERT(connp != NULL); 23899 ASSERT(lso_cap != NULL); 23900 23901 connp->conn_lso_ok = B_TRUE; 23902 23903 if ((connp->conn_ulp != IPPROTO_TCP) || 23904 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23905 (dst_ire->ire_flags & RTF_MULTIRT) || 23906 !CONN_IS_LSO_MD_FASTPATH(connp) || 23907 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23908 connp->conn_lso_ok = B_FALSE; 23909 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23910 /* 23911 * Disable LSO for this and all future connections going 23912 * over the interface. 23913 */ 23914 lso_cap->ill_lso_on = 0; 23915 } 23916 } 23917 23918 if (!connp->conn_lso_ok) 23919 return (NULL); 23920 else if (!lso_cap->ill_lso_on) { 23921 /* 23922 * If LSO has been previously turned off in the past, and we 23923 * currently can do LSO (due to IPQoS policy removal, etc.) 23924 * then enable it for this interface. 23925 */ 23926 lso_cap->ill_lso_on = 1; 23927 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23928 ill_name)); 23929 } 23930 23931 /* Allocate the LSO info mblk */ 23932 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23933 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23934 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23935 23936 return (mp); 23937 } 23938 23939 /* 23940 * Create destination address attribute, and fill it with the physical 23941 * destination address and SAP taken from the template DL_UNITDATA_REQ 23942 * message block. 23943 */ 23944 boolean_t 23945 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23946 { 23947 dl_unitdata_req_t *dlurp; 23948 pattr_t *pa; 23949 pattrinfo_t pa_info; 23950 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23951 uint_t das_len, das_off; 23952 23953 ASSERT(dlmp != NULL); 23954 23955 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23956 das_len = dlurp->dl_dest_addr_length; 23957 das_off = dlurp->dl_dest_addr_offset; 23958 23959 pa_info.type = PATTR_DSTADDRSAP; 23960 pa_info.len = sizeof (**das) + das_len - 1; 23961 23962 /* create and associate the attribute */ 23963 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23964 if (pa != NULL) { 23965 ASSERT(*das != NULL); 23966 (*das)->addr_is_group = 0; 23967 (*das)->addr_len = (uint8_t)das_len; 23968 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23969 } 23970 23971 return (pa != NULL); 23972 } 23973 23974 /* 23975 * Create hardware checksum attribute and fill it with the values passed. 23976 */ 23977 boolean_t 23978 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23979 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23980 { 23981 pattr_t *pa; 23982 pattrinfo_t pa_info; 23983 23984 ASSERT(mmd != NULL); 23985 23986 pa_info.type = PATTR_HCKSUM; 23987 pa_info.len = sizeof (pattr_hcksum_t); 23988 23989 /* create and associate the attribute */ 23990 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23991 if (pa != NULL) { 23992 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23993 23994 hck->hcksum_start_offset = start_offset; 23995 hck->hcksum_stuff_offset = stuff_offset; 23996 hck->hcksum_end_offset = end_offset; 23997 hck->hcksum_flags = flags; 23998 } 23999 return (pa != NULL); 24000 } 24001 24002 /* 24003 * Create zerocopy attribute and fill it with the specified flags 24004 */ 24005 boolean_t 24006 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 24007 { 24008 pattr_t *pa; 24009 pattrinfo_t pa_info; 24010 24011 ASSERT(mmd != NULL); 24012 pa_info.type = PATTR_ZCOPY; 24013 pa_info.len = sizeof (pattr_zcopy_t); 24014 24015 /* create and associate the attribute */ 24016 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24017 if (pa != NULL) { 24018 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 24019 24020 zcopy->zcopy_flags = flags; 24021 } 24022 return (pa != NULL); 24023 } 24024 24025 /* 24026 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24027 * block chain. We could rewrite to handle arbitrary message block chains but 24028 * that would make the code complicated and slow. Right now there three 24029 * restrictions: 24030 * 24031 * 1. The first message block must contain the complete IP header and 24032 * at least 1 byte of payload data. 24033 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24034 * so that we can use a single Multidata message. 24035 * 3. No frag must be distributed over two or more message blocks so 24036 * that we don't need more than two packet descriptors per frag. 24037 * 24038 * The above restrictions allow us to support userland applications (which 24039 * will send down a single message block) and NFS over UDP (which will 24040 * send down a chain of at most three message blocks). 24041 * 24042 * We also don't use MDT for payloads with less than or equal to 24043 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24044 */ 24045 boolean_t 24046 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24047 { 24048 int blocks; 24049 ssize_t total, missing, size; 24050 24051 ASSERT(mp != NULL); 24052 ASSERT(hdr_len > 0); 24053 24054 size = MBLKL(mp) - hdr_len; 24055 if (size <= 0) 24056 return (B_FALSE); 24057 24058 /* The first mblk contains the header and some payload. */ 24059 blocks = 1; 24060 total = size; 24061 size %= len; 24062 missing = (size == 0) ? 0 : (len - size); 24063 mp = mp->b_cont; 24064 24065 while (mp != NULL) { 24066 /* 24067 * Give up if we encounter a zero length message block. 24068 * In practice, this should rarely happen and therefore 24069 * not worth the trouble of freeing and re-linking the 24070 * mblk from the chain to handle such case. 24071 */ 24072 if ((size = MBLKL(mp)) == 0) 24073 return (B_FALSE); 24074 24075 /* Too many payload buffers for a single Multidata message? */ 24076 if (++blocks > MULTIDATA_MAX_PBUFS) 24077 return (B_FALSE); 24078 24079 total += size; 24080 /* Is a frag distributed over two or more message blocks? */ 24081 if (missing > size) 24082 return (B_FALSE); 24083 size -= missing; 24084 24085 size %= len; 24086 missing = (size == 0) ? 0 : (len - size); 24087 24088 mp = mp->b_cont; 24089 } 24090 24091 return (total > ip_wput_frag_mdt_min); 24092 } 24093 24094 /* 24095 * Outbound IPv4 fragmentation routine using MDT. 24096 */ 24097 static void 24098 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24099 uint32_t frag_flag, int offset) 24100 { 24101 ipha_t *ipha_orig; 24102 int i1, ip_data_end; 24103 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24104 mblk_t *hdr_mp, *md_mp = NULL; 24105 unsigned char *hdr_ptr, *pld_ptr; 24106 multidata_t *mmd; 24107 ip_pdescinfo_t pdi; 24108 ill_t *ill; 24109 ip_stack_t *ipst = ire->ire_ipst; 24110 24111 ASSERT(DB_TYPE(mp) == M_DATA); 24112 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24113 24114 ill = ire_to_ill(ire); 24115 ASSERT(ill != NULL); 24116 24117 ipha_orig = (ipha_t *)mp->b_rptr; 24118 mp->b_rptr += sizeof (ipha_t); 24119 24120 /* Calculate how many packets we will send out */ 24121 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24122 pkts = (i1 + len - 1) / len; 24123 ASSERT(pkts > 1); 24124 24125 /* Allocate a message block which will hold all the IP Headers. */ 24126 wroff = ipst->ips_ip_wroff_extra; 24127 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24128 24129 i1 = pkts * hdr_chunk_len; 24130 /* 24131 * Create the header buffer, Multidata and destination address 24132 * and SAP attribute that should be associated with it. 24133 */ 24134 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24135 ((hdr_mp->b_wptr += i1), 24136 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24137 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24138 freemsg(mp); 24139 if (md_mp == NULL) { 24140 freemsg(hdr_mp); 24141 } else { 24142 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24143 freemsg(md_mp); 24144 } 24145 IP_STAT(ipst, ip_frag_mdt_allocfail); 24146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24147 return; 24148 } 24149 IP_STAT(ipst, ip_frag_mdt_allocd); 24150 24151 /* 24152 * Add a payload buffer to the Multidata; this operation must not 24153 * fail, or otherwise our logic in this routine is broken. There 24154 * is no memory allocation done by the routine, so any returned 24155 * failure simply tells us that we've done something wrong. 24156 * 24157 * A failure tells us that either we're adding the same payload 24158 * buffer more than once, or we're trying to add more buffers than 24159 * allowed. None of the above cases should happen, and we panic 24160 * because either there's horrible heap corruption, and/or 24161 * programming mistake. 24162 */ 24163 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24164 goto pbuf_panic; 24165 24166 hdr_ptr = hdr_mp->b_rptr; 24167 pld_ptr = mp->b_rptr; 24168 24169 /* Establish the ending byte offset, based on the starting offset. */ 24170 offset <<= 3; 24171 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24172 IP_SIMPLE_HDR_LENGTH; 24173 24174 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24175 24176 while (pld_ptr < mp->b_wptr) { 24177 ipha_t *ipha; 24178 uint16_t offset_and_flags; 24179 uint16_t ip_len; 24180 int error; 24181 24182 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24183 ipha = (ipha_t *)(hdr_ptr + wroff); 24184 ASSERT(OK_32PTR(ipha)); 24185 *ipha = *ipha_orig; 24186 24187 if (ip_data_end - offset > len) { 24188 offset_and_flags = IPH_MF; 24189 } else { 24190 /* 24191 * Last frag. Set len to the length of this last piece. 24192 */ 24193 len = ip_data_end - offset; 24194 /* A frag of a frag might have IPH_MF non-zero */ 24195 offset_and_flags = 24196 ntohs(ipha->ipha_fragment_offset_and_flags) & 24197 IPH_MF; 24198 } 24199 offset_and_flags |= (uint16_t)(offset >> 3); 24200 offset_and_flags |= (uint16_t)frag_flag; 24201 /* Store the offset and flags in the IP header. */ 24202 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24203 24204 /* Store the length in the IP header. */ 24205 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24206 ipha->ipha_length = htons(ip_len); 24207 24208 /* 24209 * Set the IP header checksum. Note that mp is just 24210 * the header, so this is easy to pass to ip_csum. 24211 */ 24212 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24213 24214 /* 24215 * Record offset and size of header and data of the next packet 24216 * in the multidata message. 24217 */ 24218 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24219 PDESC_PLD_INIT(&pdi); 24220 i1 = MIN(mp->b_wptr - pld_ptr, len); 24221 ASSERT(i1 > 0); 24222 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24223 if (i1 == len) { 24224 pld_ptr += len; 24225 } else { 24226 i1 = len - i1; 24227 mp = mp->b_cont; 24228 ASSERT(mp != NULL); 24229 ASSERT(MBLKL(mp) >= i1); 24230 /* 24231 * Attach the next payload message block to the 24232 * multidata message. 24233 */ 24234 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24235 goto pbuf_panic; 24236 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24237 pld_ptr = mp->b_rptr + i1; 24238 } 24239 24240 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24241 KM_NOSLEEP)) == NULL) { 24242 /* 24243 * Any failure other than ENOMEM indicates that we 24244 * have passed in invalid pdesc info or parameters 24245 * to mmd_addpdesc, which must not happen. 24246 * 24247 * EINVAL is a result of failure on boundary checks 24248 * against the pdesc info contents. It should not 24249 * happen, and we panic because either there's 24250 * horrible heap corruption, and/or programming 24251 * mistake. 24252 */ 24253 if (error != ENOMEM) { 24254 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24255 "pdesc logic error detected for " 24256 "mmd %p pinfo %p (%d)\n", 24257 (void *)mmd, (void *)&pdi, error); 24258 /* NOTREACHED */ 24259 } 24260 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24261 /* Free unattached payload message blocks as well */ 24262 md_mp->b_cont = mp->b_cont; 24263 goto free_mmd; 24264 } 24265 24266 /* Advance fragment offset. */ 24267 offset += len; 24268 24269 /* Advance to location for next header in the buffer. */ 24270 hdr_ptr += hdr_chunk_len; 24271 24272 /* Did we reach the next payload message block? */ 24273 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24274 mp = mp->b_cont; 24275 /* 24276 * Attach the next message block with payload 24277 * data to the multidata message. 24278 */ 24279 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24280 goto pbuf_panic; 24281 pld_ptr = mp->b_rptr; 24282 } 24283 } 24284 24285 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24286 ASSERT(mp->b_wptr == pld_ptr); 24287 24288 /* Update IP statistics */ 24289 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24290 24291 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24292 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24293 24294 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24295 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24296 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24297 24298 if (pkt_type == OB_PKT) { 24299 ire->ire_ob_pkt_count += pkts; 24300 if (ire->ire_ipif != NULL) 24301 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24302 } else { 24303 /* 24304 * The type is IB_PKT in the forwarding path and in 24305 * the mobile IP case when the packet is being reverse- 24306 * tunneled to the home agent. 24307 */ 24308 ire->ire_ib_pkt_count += pkts; 24309 ASSERT(!IRE_IS_LOCAL(ire)); 24310 if (ire->ire_type & IRE_BROADCAST) { 24311 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24312 } else { 24313 UPDATE_MIB(ill->ill_ip_mib, 24314 ipIfStatsHCOutForwDatagrams, pkts); 24315 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24316 } 24317 } 24318 ire->ire_last_used_time = lbolt; 24319 /* Send it down */ 24320 putnext(ire->ire_stq, md_mp); 24321 return; 24322 24323 pbuf_panic: 24324 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24325 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24326 pbuf_idx); 24327 /* NOTREACHED */ 24328 } 24329 24330 /* 24331 * Outbound IP fragmentation routine. 24332 * 24333 * NOTE : This routine does not ire_refrele the ire that is passed in 24334 * as the argument. 24335 */ 24336 static void 24337 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24338 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24339 { 24340 int i1; 24341 mblk_t *ll_hdr_mp; 24342 int ll_hdr_len; 24343 int hdr_len; 24344 mblk_t *hdr_mp; 24345 ipha_t *ipha; 24346 int ip_data_end; 24347 int len; 24348 mblk_t *mp = mp_orig, *mp1; 24349 int offset; 24350 queue_t *q; 24351 uint32_t v_hlen_tos_len; 24352 mblk_t *first_mp; 24353 boolean_t mctl_present; 24354 ill_t *ill; 24355 ill_t *out_ill; 24356 mblk_t *xmit_mp; 24357 mblk_t *carve_mp; 24358 ire_t *ire1 = NULL; 24359 ire_t *save_ire = NULL; 24360 mblk_t *next_mp = NULL; 24361 boolean_t last_frag = B_FALSE; 24362 boolean_t multirt_send = B_FALSE; 24363 ire_t *first_ire = NULL; 24364 irb_t *irb = NULL; 24365 mib2_ipIfStatsEntry_t *mibptr = NULL; 24366 24367 ill = ire_to_ill(ire); 24368 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24369 24370 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24371 24372 if (max_frag == 0) { 24373 ip1dbg(("ip_wput_frag: ire frag size is 0" 24374 " - dropping packet\n")); 24375 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24376 freemsg(mp); 24377 return; 24378 } 24379 24380 /* 24381 * IPSEC does not allow hw accelerated packets to be fragmented 24382 * This check is made in ip_wput_ipsec_out prior to coming here 24383 * via ip_wput_ire_fragmentit. 24384 * 24385 * If at this point we have an ire whose ARP request has not 24386 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24387 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24388 * This packet and all fragmentable packets for this ire will 24389 * continue to get dropped while ire_nce->nce_state remains in 24390 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24391 * ND_REACHABLE, all subsquent large packets for this ire will 24392 * get fragemented and sent out by this function. 24393 */ 24394 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24395 /* If nce_state is ND_INITIAL, trigger ARP query */ 24396 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24397 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24398 " - dropping packet\n")); 24399 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24400 freemsg(mp); 24401 return; 24402 } 24403 24404 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24405 "ip_wput_frag_start:"); 24406 24407 if (mp->b_datap->db_type == M_CTL) { 24408 first_mp = mp; 24409 mp_orig = mp = mp->b_cont; 24410 mctl_present = B_TRUE; 24411 } else { 24412 first_mp = mp; 24413 mctl_present = B_FALSE; 24414 } 24415 24416 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24417 ipha = (ipha_t *)mp->b_rptr; 24418 24419 /* 24420 * If the Don't Fragment flag is on, generate an ICMP destination 24421 * unreachable, fragmentation needed. 24422 */ 24423 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24424 if (offset & IPH_DF) { 24425 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24426 if (is_system_labeled()) { 24427 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24428 ire->ire_max_frag - max_frag, AF_INET); 24429 } 24430 /* 24431 * Need to compute hdr checksum if called from ip_wput_ire. 24432 * Note that ip_rput_forward verifies the checksum before 24433 * calling this routine so in that case this is a noop. 24434 */ 24435 ipha->ipha_hdr_checksum = 0; 24436 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24437 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24438 ipst); 24439 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24440 "ip_wput_frag_end:(%S)", 24441 "don't fragment"); 24442 return; 24443 } 24444 /* 24445 * Labeled systems adjust max_frag if they add a label 24446 * to send the correct path mtu. We need the real mtu since we 24447 * are fragmenting the packet after label adjustment. 24448 */ 24449 if (is_system_labeled()) 24450 max_frag = ire->ire_max_frag; 24451 if (mctl_present) 24452 freeb(first_mp); 24453 /* 24454 * Establish the starting offset. May not be zero if we are fragging 24455 * a fragment that is being forwarded. 24456 */ 24457 offset = offset & IPH_OFFSET; 24458 24459 /* TODO why is this test needed? */ 24460 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24461 if (((max_frag - LENGTH) & ~7) < 8) { 24462 /* TODO: notify ulp somehow */ 24463 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24464 freemsg(mp); 24465 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24466 "ip_wput_frag_end:(%S)", 24467 "len < 8"); 24468 return; 24469 } 24470 24471 hdr_len = (V_HLEN & 0xF) << 2; 24472 24473 ipha->ipha_hdr_checksum = 0; 24474 24475 /* 24476 * Establish the number of bytes maximum per frag, after putting 24477 * in the header. 24478 */ 24479 len = (max_frag - hdr_len) & ~7; 24480 24481 /* Check if we can use MDT to send out the frags. */ 24482 ASSERT(!IRE_IS_LOCAL(ire)); 24483 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24484 ipst->ips_ip_multidata_outbound && 24485 !(ire->ire_flags & RTF_MULTIRT) && 24486 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24487 ill != NULL && ILL_MDT_CAPABLE(ill) && 24488 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24489 ASSERT(ill->ill_mdt_capab != NULL); 24490 if (!ill->ill_mdt_capab->ill_mdt_on) { 24491 /* 24492 * If MDT has been previously turned off in the past, 24493 * and we currently can do MDT (due to IPQoS policy 24494 * removal, etc.) then enable it for this interface. 24495 */ 24496 ill->ill_mdt_capab->ill_mdt_on = 1; 24497 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24498 ill->ill_name)); 24499 } 24500 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24501 offset); 24502 return; 24503 } 24504 24505 /* Get a copy of the header for the trailing frags */ 24506 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24507 if (!hdr_mp) { 24508 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24509 freemsg(mp); 24510 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24511 "ip_wput_frag_end:(%S)", 24512 "couldn't copy hdr"); 24513 return; 24514 } 24515 if (DB_CRED(mp) != NULL) 24516 mblk_setcred(hdr_mp, DB_CRED(mp)); 24517 24518 /* Store the starting offset, with the MoreFrags flag. */ 24519 i1 = offset | IPH_MF | frag_flag; 24520 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24521 24522 /* Establish the ending byte offset, based on the starting offset. */ 24523 offset <<= 3; 24524 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24525 24526 /* Store the length of the first fragment in the IP header. */ 24527 i1 = len + hdr_len; 24528 ASSERT(i1 <= IP_MAXPACKET); 24529 ipha->ipha_length = htons((uint16_t)i1); 24530 24531 /* 24532 * Compute the IP header checksum for the first frag. We have to 24533 * watch out that we stop at the end of the header. 24534 */ 24535 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24536 24537 /* 24538 * Now carve off the first frag. Note that this will include the 24539 * original IP header. 24540 */ 24541 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24542 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24543 freeb(hdr_mp); 24544 freemsg(mp_orig); 24545 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24546 "ip_wput_frag_end:(%S)", 24547 "couldn't carve first"); 24548 return; 24549 } 24550 24551 /* 24552 * Multirouting case. Each fragment is replicated 24553 * via all non-condemned RTF_MULTIRT routes 24554 * currently resolved. 24555 * We ensure that first_ire is the first RTF_MULTIRT 24556 * ire in the bucket. 24557 */ 24558 if (ire->ire_flags & RTF_MULTIRT) { 24559 irb = ire->ire_bucket; 24560 ASSERT(irb != NULL); 24561 24562 multirt_send = B_TRUE; 24563 24564 /* Make sure we do not omit any multiroute ire. */ 24565 IRB_REFHOLD(irb); 24566 for (first_ire = irb->irb_ire; 24567 first_ire != NULL; 24568 first_ire = first_ire->ire_next) { 24569 if ((first_ire->ire_flags & RTF_MULTIRT) && 24570 (first_ire->ire_addr == ire->ire_addr) && 24571 !(first_ire->ire_marks & 24572 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24573 break; 24574 } 24575 } 24576 24577 if (first_ire != NULL) { 24578 if (first_ire != ire) { 24579 IRE_REFHOLD(first_ire); 24580 /* 24581 * Do not release the ire passed in 24582 * as the argument. 24583 */ 24584 ire = first_ire; 24585 } else { 24586 first_ire = NULL; 24587 } 24588 } 24589 IRB_REFRELE(irb); 24590 24591 /* 24592 * Save the first ire; we will need to restore it 24593 * for the trailing frags. 24594 * We REFHOLD save_ire, as each iterated ire will be 24595 * REFRELEd. 24596 */ 24597 save_ire = ire; 24598 IRE_REFHOLD(save_ire); 24599 } 24600 24601 /* 24602 * First fragment emission loop. 24603 * In most cases, the emission loop below is entered only 24604 * once. Only in the case where the ire holds the RTF_MULTIRT 24605 * flag, do we loop to process all RTF_MULTIRT ires in the 24606 * bucket, and send the fragment through all crossed 24607 * RTF_MULTIRT routes. 24608 */ 24609 do { 24610 if (ire->ire_flags & RTF_MULTIRT) { 24611 /* 24612 * We are in a multiple send case, need to get 24613 * the next ire and make a copy of the packet. 24614 * ire1 holds here the next ire to process in the 24615 * bucket. If multirouting is expected, 24616 * any non-RTF_MULTIRT ire that has the 24617 * right destination address is ignored. 24618 * 24619 * We have to take into account the MTU of 24620 * each walked ire. max_frag is set by the 24621 * the caller and generally refers to 24622 * the primary ire entry. Here we ensure that 24623 * no route with a lower MTU will be used, as 24624 * fragments are carved once for all ires, 24625 * then replicated. 24626 */ 24627 ASSERT(irb != NULL); 24628 IRB_REFHOLD(irb); 24629 for (ire1 = ire->ire_next; 24630 ire1 != NULL; 24631 ire1 = ire1->ire_next) { 24632 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24633 continue; 24634 if (ire1->ire_addr != ire->ire_addr) 24635 continue; 24636 if (ire1->ire_marks & 24637 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24638 continue; 24639 /* 24640 * Ensure we do not exceed the MTU 24641 * of the next route. 24642 */ 24643 if (ire1->ire_max_frag < max_frag) { 24644 ip_multirt_bad_mtu(ire1, max_frag); 24645 continue; 24646 } 24647 24648 /* Got one. */ 24649 IRE_REFHOLD(ire1); 24650 break; 24651 } 24652 IRB_REFRELE(irb); 24653 24654 if (ire1 != NULL) { 24655 next_mp = copyb(mp); 24656 if ((next_mp == NULL) || 24657 ((mp->b_cont != NULL) && 24658 ((next_mp->b_cont = 24659 dupmsg(mp->b_cont)) == NULL))) { 24660 freemsg(next_mp); 24661 next_mp = NULL; 24662 ire_refrele(ire1); 24663 ire1 = NULL; 24664 } 24665 } 24666 24667 /* Last multiroute ire; don't loop anymore. */ 24668 if (ire1 == NULL) { 24669 multirt_send = B_FALSE; 24670 } 24671 } 24672 24673 ll_hdr_len = 0; 24674 LOCK_IRE_FP_MP(ire); 24675 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24676 if (ll_hdr_mp != NULL) { 24677 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24678 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24679 } else { 24680 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24681 } 24682 24683 /* If there is a transmit header, get a copy for this frag. */ 24684 /* 24685 * TODO: should check db_ref before calling ip_carve_mp since 24686 * it might give us a dup. 24687 */ 24688 if (!ll_hdr_mp) { 24689 /* No xmit header. */ 24690 xmit_mp = mp; 24691 24692 /* We have a link-layer header that can fit in our mblk. */ 24693 } else if (mp->b_datap->db_ref == 1 && 24694 ll_hdr_len != 0 && 24695 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24696 /* M_DATA fastpath */ 24697 mp->b_rptr -= ll_hdr_len; 24698 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24699 xmit_mp = mp; 24700 24701 /* Corner case if copyb has failed */ 24702 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24703 UNLOCK_IRE_FP_MP(ire); 24704 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24705 freeb(hdr_mp); 24706 freemsg(mp); 24707 freemsg(mp_orig); 24708 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24709 "ip_wput_frag_end:(%S)", 24710 "discard"); 24711 24712 if (multirt_send) { 24713 ASSERT(ire1); 24714 ASSERT(next_mp); 24715 24716 freemsg(next_mp); 24717 ire_refrele(ire1); 24718 } 24719 if (save_ire != NULL) 24720 IRE_REFRELE(save_ire); 24721 24722 if (first_ire != NULL) 24723 ire_refrele(first_ire); 24724 return; 24725 24726 /* 24727 * Case of res_mp OR the fastpath mp can't fit 24728 * in the mblk 24729 */ 24730 } else { 24731 xmit_mp->b_cont = mp; 24732 if (DB_CRED(mp) != NULL) 24733 mblk_setcred(xmit_mp, DB_CRED(mp)); 24734 /* 24735 * Get priority marking, if any. 24736 * We propagate the CoS marking from the 24737 * original packet that went to QoS processing 24738 * in ip_wput_ire to the newly carved mp. 24739 */ 24740 if (DB_TYPE(xmit_mp) == M_DATA) 24741 xmit_mp->b_band = mp->b_band; 24742 } 24743 UNLOCK_IRE_FP_MP(ire); 24744 24745 q = ire->ire_stq; 24746 out_ill = (ill_t *)q->q_ptr; 24747 24748 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24749 24750 DTRACE_PROBE4(ip4__physical__out__start, 24751 ill_t *, NULL, ill_t *, out_ill, 24752 ipha_t *, ipha, mblk_t *, xmit_mp); 24753 24754 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24755 ipst->ips_ipv4firewall_physical_out, 24756 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24757 24758 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24759 24760 if (xmit_mp != NULL) { 24761 putnext(q, xmit_mp); 24762 24763 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24764 UPDATE_MIB(out_ill->ill_ip_mib, 24765 ipIfStatsHCOutOctets, i1); 24766 24767 if (pkt_type != OB_PKT) { 24768 /* 24769 * Update the packet count and MIB stats 24770 * of trailing RTF_MULTIRT ires. 24771 */ 24772 UPDATE_OB_PKT_COUNT(ire); 24773 BUMP_MIB(out_ill->ill_ip_mib, 24774 ipIfStatsOutFragReqds); 24775 } 24776 } 24777 24778 if (multirt_send) { 24779 /* 24780 * We are in a multiple send case; look for 24781 * the next ire and re-enter the loop. 24782 */ 24783 ASSERT(ire1); 24784 ASSERT(next_mp); 24785 /* REFRELE the current ire before looping */ 24786 ire_refrele(ire); 24787 ire = ire1; 24788 ire1 = NULL; 24789 mp = next_mp; 24790 next_mp = NULL; 24791 } 24792 } while (multirt_send); 24793 24794 ASSERT(ire1 == NULL); 24795 24796 /* Restore the original ire; we need it for the trailing frags */ 24797 if (save_ire != NULL) { 24798 /* REFRELE the last iterated ire */ 24799 ire_refrele(ire); 24800 /* save_ire has been REFHOLDed */ 24801 ire = save_ire; 24802 save_ire = NULL; 24803 q = ire->ire_stq; 24804 } 24805 24806 if (pkt_type == OB_PKT) { 24807 UPDATE_OB_PKT_COUNT(ire); 24808 } else { 24809 out_ill = (ill_t *)q->q_ptr; 24810 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24811 UPDATE_IB_PKT_COUNT(ire); 24812 } 24813 24814 /* Advance the offset to the second frag starting point. */ 24815 offset += len; 24816 /* 24817 * Update hdr_len from the copied header - there might be less options 24818 * in the later fragments. 24819 */ 24820 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24821 /* Loop until done. */ 24822 for (;;) { 24823 uint16_t offset_and_flags; 24824 uint16_t ip_len; 24825 24826 if (ip_data_end - offset > len) { 24827 /* 24828 * Carve off the appropriate amount from the original 24829 * datagram. 24830 */ 24831 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24832 mp = NULL; 24833 break; 24834 } 24835 /* 24836 * More frags after this one. Get another copy 24837 * of the header. 24838 */ 24839 if (carve_mp->b_datap->db_ref == 1 && 24840 hdr_mp->b_wptr - hdr_mp->b_rptr < 24841 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24842 /* Inline IP header */ 24843 carve_mp->b_rptr -= hdr_mp->b_wptr - 24844 hdr_mp->b_rptr; 24845 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24846 hdr_mp->b_wptr - hdr_mp->b_rptr); 24847 mp = carve_mp; 24848 } else { 24849 if (!(mp = copyb(hdr_mp))) { 24850 freemsg(carve_mp); 24851 break; 24852 } 24853 /* Get priority marking, if any. */ 24854 mp->b_band = carve_mp->b_band; 24855 mp->b_cont = carve_mp; 24856 } 24857 ipha = (ipha_t *)mp->b_rptr; 24858 offset_and_flags = IPH_MF; 24859 } else { 24860 /* 24861 * Last frag. Consume the header. Set len to 24862 * the length of this last piece. 24863 */ 24864 len = ip_data_end - offset; 24865 24866 /* 24867 * Carve off the appropriate amount from the original 24868 * datagram. 24869 */ 24870 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24871 mp = NULL; 24872 break; 24873 } 24874 if (carve_mp->b_datap->db_ref == 1 && 24875 hdr_mp->b_wptr - hdr_mp->b_rptr < 24876 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24877 /* Inline IP header */ 24878 carve_mp->b_rptr -= hdr_mp->b_wptr - 24879 hdr_mp->b_rptr; 24880 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24881 hdr_mp->b_wptr - hdr_mp->b_rptr); 24882 mp = carve_mp; 24883 freeb(hdr_mp); 24884 hdr_mp = mp; 24885 } else { 24886 mp = hdr_mp; 24887 /* Get priority marking, if any. */ 24888 mp->b_band = carve_mp->b_band; 24889 mp->b_cont = carve_mp; 24890 } 24891 ipha = (ipha_t *)mp->b_rptr; 24892 /* A frag of a frag might have IPH_MF non-zero */ 24893 offset_and_flags = 24894 ntohs(ipha->ipha_fragment_offset_and_flags) & 24895 IPH_MF; 24896 } 24897 offset_and_flags |= (uint16_t)(offset >> 3); 24898 offset_and_flags |= (uint16_t)frag_flag; 24899 /* Store the offset and flags in the IP header. */ 24900 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24901 24902 /* Store the length in the IP header. */ 24903 ip_len = (uint16_t)(len + hdr_len); 24904 ipha->ipha_length = htons(ip_len); 24905 24906 /* 24907 * Set the IP header checksum. Note that mp is just 24908 * the header, so this is easy to pass to ip_csum. 24909 */ 24910 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24911 24912 /* Attach a transmit header, if any, and ship it. */ 24913 if (pkt_type == OB_PKT) { 24914 UPDATE_OB_PKT_COUNT(ire); 24915 } else { 24916 out_ill = (ill_t *)q->q_ptr; 24917 BUMP_MIB(out_ill->ill_ip_mib, 24918 ipIfStatsHCOutForwDatagrams); 24919 UPDATE_IB_PKT_COUNT(ire); 24920 } 24921 24922 if (ire->ire_flags & RTF_MULTIRT) { 24923 irb = ire->ire_bucket; 24924 ASSERT(irb != NULL); 24925 24926 multirt_send = B_TRUE; 24927 24928 /* 24929 * Save the original ire; we will need to restore it 24930 * for the tailing frags. 24931 */ 24932 save_ire = ire; 24933 IRE_REFHOLD(save_ire); 24934 } 24935 /* 24936 * Emission loop for this fragment, similar 24937 * to what is done for the first fragment. 24938 */ 24939 do { 24940 if (multirt_send) { 24941 /* 24942 * We are in a multiple send case, need to get 24943 * the next ire and make a copy of the packet. 24944 */ 24945 ASSERT(irb != NULL); 24946 IRB_REFHOLD(irb); 24947 for (ire1 = ire->ire_next; 24948 ire1 != NULL; 24949 ire1 = ire1->ire_next) { 24950 if (!(ire1->ire_flags & RTF_MULTIRT)) 24951 continue; 24952 if (ire1->ire_addr != ire->ire_addr) 24953 continue; 24954 if (ire1->ire_marks & 24955 (IRE_MARK_CONDEMNED| 24956 IRE_MARK_HIDDEN)) { 24957 continue; 24958 } 24959 /* 24960 * Ensure we do not exceed the MTU 24961 * of the next route. 24962 */ 24963 if (ire1->ire_max_frag < max_frag) { 24964 ip_multirt_bad_mtu(ire1, 24965 max_frag); 24966 continue; 24967 } 24968 24969 /* Got one. */ 24970 IRE_REFHOLD(ire1); 24971 break; 24972 } 24973 IRB_REFRELE(irb); 24974 24975 if (ire1 != NULL) { 24976 next_mp = copyb(mp); 24977 if ((next_mp == NULL) || 24978 ((mp->b_cont != NULL) && 24979 ((next_mp->b_cont = 24980 dupmsg(mp->b_cont)) == NULL))) { 24981 freemsg(next_mp); 24982 next_mp = NULL; 24983 ire_refrele(ire1); 24984 ire1 = NULL; 24985 } 24986 } 24987 24988 /* Last multiroute ire; don't loop anymore. */ 24989 if (ire1 == NULL) { 24990 multirt_send = B_FALSE; 24991 } 24992 } 24993 24994 /* Update transmit header */ 24995 ll_hdr_len = 0; 24996 LOCK_IRE_FP_MP(ire); 24997 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24998 if (ll_hdr_mp != NULL) { 24999 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 25000 ll_hdr_len = MBLKL(ll_hdr_mp); 25001 } else { 25002 ll_hdr_mp = ire->ire_nce->nce_res_mp; 25003 } 25004 25005 if (!ll_hdr_mp) { 25006 xmit_mp = mp; 25007 25008 /* 25009 * We have link-layer header that can fit in 25010 * our mblk. 25011 */ 25012 } else if (mp->b_datap->db_ref == 1 && 25013 ll_hdr_len != 0 && 25014 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 25015 /* M_DATA fastpath */ 25016 mp->b_rptr -= ll_hdr_len; 25017 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 25018 ll_hdr_len); 25019 xmit_mp = mp; 25020 25021 /* 25022 * Case of res_mp OR the fastpath mp can't fit 25023 * in the mblk 25024 */ 25025 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 25026 xmit_mp->b_cont = mp; 25027 if (DB_CRED(mp) != NULL) 25028 mblk_setcred(xmit_mp, DB_CRED(mp)); 25029 /* Get priority marking, if any. */ 25030 if (DB_TYPE(xmit_mp) == M_DATA) 25031 xmit_mp->b_band = mp->b_band; 25032 25033 /* Corner case if copyb failed */ 25034 } else { 25035 /* 25036 * Exit both the replication and 25037 * fragmentation loops. 25038 */ 25039 UNLOCK_IRE_FP_MP(ire); 25040 goto drop_pkt; 25041 } 25042 UNLOCK_IRE_FP_MP(ire); 25043 25044 mp1 = mp; 25045 out_ill = (ill_t *)q->q_ptr; 25046 25047 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25048 25049 DTRACE_PROBE4(ip4__physical__out__start, 25050 ill_t *, NULL, ill_t *, out_ill, 25051 ipha_t *, ipha, mblk_t *, xmit_mp); 25052 25053 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25054 ipst->ips_ipv4firewall_physical_out, 25055 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25056 25057 DTRACE_PROBE1(ip4__physical__out__end, 25058 mblk_t *, xmit_mp); 25059 25060 if (mp != mp1 && hdr_mp == mp1) 25061 hdr_mp = mp; 25062 if (mp != mp1 && mp_orig == mp1) 25063 mp_orig = mp; 25064 25065 if (xmit_mp != NULL) { 25066 putnext(q, xmit_mp); 25067 25068 BUMP_MIB(out_ill->ill_ip_mib, 25069 ipIfStatsHCOutTransmits); 25070 UPDATE_MIB(out_ill->ill_ip_mib, 25071 ipIfStatsHCOutOctets, ip_len); 25072 25073 if (pkt_type != OB_PKT) { 25074 /* 25075 * Update the packet count of trailing 25076 * RTF_MULTIRT ires. 25077 */ 25078 UPDATE_OB_PKT_COUNT(ire); 25079 } 25080 } 25081 25082 /* All done if we just consumed the hdr_mp. */ 25083 if (mp == hdr_mp) { 25084 last_frag = B_TRUE; 25085 BUMP_MIB(out_ill->ill_ip_mib, 25086 ipIfStatsOutFragOKs); 25087 } 25088 25089 if (multirt_send) { 25090 /* 25091 * We are in a multiple send case; look for 25092 * the next ire and re-enter the loop. 25093 */ 25094 ASSERT(ire1); 25095 ASSERT(next_mp); 25096 /* REFRELE the current ire before looping */ 25097 ire_refrele(ire); 25098 ire = ire1; 25099 ire1 = NULL; 25100 q = ire->ire_stq; 25101 mp = next_mp; 25102 next_mp = NULL; 25103 } 25104 } while (multirt_send); 25105 /* 25106 * Restore the original ire; we need it for the 25107 * trailing frags 25108 */ 25109 if (save_ire != NULL) { 25110 ASSERT(ire1 == NULL); 25111 /* REFRELE the last iterated ire */ 25112 ire_refrele(ire); 25113 /* save_ire has been REFHOLDed */ 25114 ire = save_ire; 25115 q = ire->ire_stq; 25116 save_ire = NULL; 25117 } 25118 25119 if (last_frag) { 25120 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25121 "ip_wput_frag_end:(%S)", 25122 "consumed hdr_mp"); 25123 25124 if (first_ire != NULL) 25125 ire_refrele(first_ire); 25126 return; 25127 } 25128 /* Otherwise, advance and loop. */ 25129 offset += len; 25130 } 25131 25132 drop_pkt: 25133 /* Clean up following allocation failure. */ 25134 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25135 freemsg(mp); 25136 if (mp != hdr_mp) 25137 freeb(hdr_mp); 25138 if (mp != mp_orig) 25139 freemsg(mp_orig); 25140 25141 if (save_ire != NULL) 25142 IRE_REFRELE(save_ire); 25143 if (first_ire != NULL) 25144 ire_refrele(first_ire); 25145 25146 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25147 "ip_wput_frag_end:(%S)", 25148 "end--alloc failure"); 25149 } 25150 25151 /* 25152 * Copy the header plus those options which have the copy bit set 25153 */ 25154 static mblk_t * 25155 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25156 { 25157 mblk_t *mp; 25158 uchar_t *up; 25159 25160 /* 25161 * Quick check if we need to look for options without the copy bit 25162 * set 25163 */ 25164 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25165 if (!mp) 25166 return (mp); 25167 mp->b_rptr += ipst->ips_ip_wroff_extra; 25168 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25169 bcopy(rptr, mp->b_rptr, hdr_len); 25170 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25171 return (mp); 25172 } 25173 up = mp->b_rptr; 25174 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25175 up += IP_SIMPLE_HDR_LENGTH; 25176 rptr += IP_SIMPLE_HDR_LENGTH; 25177 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25178 while (hdr_len > 0) { 25179 uint32_t optval; 25180 uint32_t optlen; 25181 25182 optval = *rptr; 25183 if (optval == IPOPT_EOL) 25184 break; 25185 if (optval == IPOPT_NOP) 25186 optlen = 1; 25187 else 25188 optlen = rptr[1]; 25189 if (optval & IPOPT_COPY) { 25190 bcopy(rptr, up, optlen); 25191 up += optlen; 25192 } 25193 rptr += optlen; 25194 hdr_len -= optlen; 25195 } 25196 /* 25197 * Make sure that we drop an even number of words by filling 25198 * with EOL to the next word boundary. 25199 */ 25200 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25201 hdr_len & 0x3; hdr_len++) 25202 *up++ = IPOPT_EOL; 25203 mp->b_wptr = up; 25204 /* Update header length */ 25205 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25206 return (mp); 25207 } 25208 25209 /* 25210 * Delivery to local recipients including fanout to multiple recipients. 25211 * Does not do checksumming of UDP/TCP. 25212 * Note: q should be the read side queue for either the ill or conn. 25213 * Note: rq should be the read side q for the lower (ill) stream. 25214 * We don't send packets to IPPF processing, thus the last argument 25215 * to all the fanout calls are B_FALSE. 25216 */ 25217 void 25218 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25219 int fanout_flags, zoneid_t zoneid) 25220 { 25221 uint32_t protocol; 25222 mblk_t *first_mp; 25223 boolean_t mctl_present; 25224 int ire_type; 25225 #define rptr ((uchar_t *)ipha) 25226 ip_stack_t *ipst = ill->ill_ipst; 25227 25228 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25229 "ip_wput_local_start: q %p", q); 25230 25231 if (ire != NULL) { 25232 ire_type = ire->ire_type; 25233 } else { 25234 /* 25235 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25236 * packet is not multicast, we can't tell the ire type. 25237 */ 25238 ASSERT(CLASSD(ipha->ipha_dst)); 25239 ire_type = IRE_BROADCAST; 25240 } 25241 25242 first_mp = mp; 25243 if (first_mp->b_datap->db_type == M_CTL) { 25244 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25245 if (!io->ipsec_out_secure) { 25246 /* 25247 * This ipsec_out_t was allocated in ip_wput 25248 * for multicast packets to store the ill_index. 25249 * As this is being delivered locally, we don't 25250 * need this anymore. 25251 */ 25252 mp = first_mp->b_cont; 25253 freeb(first_mp); 25254 first_mp = mp; 25255 mctl_present = B_FALSE; 25256 } else { 25257 /* 25258 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25259 * security properties for the looped-back packet. 25260 */ 25261 mctl_present = B_TRUE; 25262 mp = first_mp->b_cont; 25263 ASSERT(mp != NULL); 25264 ipsec_out_to_in(first_mp); 25265 } 25266 } else { 25267 mctl_present = B_FALSE; 25268 } 25269 25270 DTRACE_PROBE4(ip4__loopback__in__start, 25271 ill_t *, ill, ill_t *, NULL, 25272 ipha_t *, ipha, mblk_t *, first_mp); 25273 25274 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25275 ipst->ips_ipv4firewall_loopback_in, 25276 ill, NULL, ipha, first_mp, mp, ipst); 25277 25278 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25279 25280 if (first_mp == NULL) 25281 return; 25282 25283 ipst->ips_loopback_packets++; 25284 25285 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25286 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25287 if (!IS_SIMPLE_IPH(ipha)) { 25288 ip_wput_local_options(ipha, ipst); 25289 } 25290 25291 protocol = ipha->ipha_protocol; 25292 switch (protocol) { 25293 case IPPROTO_ICMP: { 25294 ire_t *ire_zone; 25295 ilm_t *ilm; 25296 mblk_t *mp1; 25297 zoneid_t last_zoneid; 25298 25299 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25300 ASSERT(ire_type == IRE_BROADCAST); 25301 /* 25302 * In the multicast case, applications may have joined 25303 * the group from different zones, so we need to deliver 25304 * the packet to each of them. Loop through the 25305 * multicast memberships structures (ilm) on the receive 25306 * ill and send a copy of the packet up each matching 25307 * one. However, we don't do this for multicasts sent on 25308 * the loopback interface (PHYI_LOOPBACK flag set) as 25309 * they must stay in the sender's zone. 25310 * 25311 * ilm_add_v6() ensures that ilms in the same zone are 25312 * contiguous in the ill_ilm list. We use this property 25313 * to avoid sending duplicates needed when two 25314 * applications in the same zone join the same group on 25315 * different logical interfaces: we ignore the ilm if 25316 * it's zoneid is the same as the last matching one. 25317 * In addition, the sending of the packet for 25318 * ire_zoneid is delayed until all of the other ilms 25319 * have been exhausted. 25320 */ 25321 last_zoneid = -1; 25322 ILM_WALKER_HOLD(ill); 25323 for (ilm = ill->ill_ilm; ilm != NULL; 25324 ilm = ilm->ilm_next) { 25325 if ((ilm->ilm_flags & ILM_DELETED) || 25326 ipha->ipha_dst != ilm->ilm_addr || 25327 ilm->ilm_zoneid == last_zoneid || 25328 ilm->ilm_zoneid == zoneid || 25329 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25330 continue; 25331 mp1 = ip_copymsg(first_mp); 25332 if (mp1 == NULL) 25333 continue; 25334 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25335 mctl_present, B_FALSE, ill, 25336 ilm->ilm_zoneid); 25337 last_zoneid = ilm->ilm_zoneid; 25338 } 25339 ILM_WALKER_RELE(ill); 25340 /* 25341 * Loopback case: the sending endpoint has 25342 * IP_MULTICAST_LOOP disabled, therefore we don't 25343 * dispatch the multicast packet to the sending zone. 25344 */ 25345 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25346 freemsg(first_mp); 25347 return; 25348 } 25349 } else if (ire_type == IRE_BROADCAST) { 25350 /* 25351 * In the broadcast case, there may be many zones 25352 * which need a copy of the packet delivered to them. 25353 * There is one IRE_BROADCAST per broadcast address 25354 * and per zone; we walk those using a helper function. 25355 * In addition, the sending of the packet for zoneid is 25356 * delayed until all of the other ires have been 25357 * processed. 25358 */ 25359 IRB_REFHOLD(ire->ire_bucket); 25360 ire_zone = NULL; 25361 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25362 ire)) != NULL) { 25363 mp1 = ip_copymsg(first_mp); 25364 if (mp1 == NULL) 25365 continue; 25366 25367 UPDATE_IB_PKT_COUNT(ire_zone); 25368 ire_zone->ire_last_used_time = lbolt; 25369 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25370 mctl_present, B_FALSE, ill, 25371 ire_zone->ire_zoneid); 25372 } 25373 IRB_REFRELE(ire->ire_bucket); 25374 } 25375 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25376 0, mctl_present, B_FALSE, ill, zoneid); 25377 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25378 "ip_wput_local_end: q %p (%S)", 25379 q, "icmp"); 25380 return; 25381 } 25382 case IPPROTO_IGMP: 25383 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25384 /* Bad packet - discarded by igmp_input */ 25385 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25386 "ip_wput_local_end: q %p (%S)", 25387 q, "igmp_input--bad packet"); 25388 if (mctl_present) 25389 freeb(first_mp); 25390 return; 25391 } 25392 /* 25393 * igmp_input() may have returned the pulled up message. 25394 * So first_mp and ipha need to be reinitialized. 25395 */ 25396 ipha = (ipha_t *)mp->b_rptr; 25397 if (mctl_present) 25398 first_mp->b_cont = mp; 25399 else 25400 first_mp = mp; 25401 /* deliver to local raw users */ 25402 break; 25403 case IPPROTO_ENCAP: 25404 /* 25405 * This case is covered by either ip_fanout_proto, or by 25406 * the above security processing for self-tunneled packets. 25407 */ 25408 break; 25409 case IPPROTO_UDP: { 25410 uint16_t *up; 25411 uint32_t ports; 25412 25413 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25414 UDP_PORTS_OFFSET); 25415 /* Force a 'valid' checksum. */ 25416 up[3] = 0; 25417 25418 ports = *(uint32_t *)up; 25419 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25420 (ire_type == IRE_BROADCAST), 25421 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25422 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25423 ill, zoneid); 25424 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25425 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25426 return; 25427 } 25428 case IPPROTO_TCP: { 25429 25430 /* 25431 * For TCP, discard broadcast packets. 25432 */ 25433 if ((ushort_t)ire_type == IRE_BROADCAST) { 25434 freemsg(first_mp); 25435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25436 ip2dbg(("ip_wput_local: discard broadcast\n")); 25437 return; 25438 } 25439 25440 if (mp->b_datap->db_type == M_DATA) { 25441 /* 25442 * M_DATA mblk, so init mblk (chain) for no struio(). 25443 */ 25444 mblk_t *mp1 = mp; 25445 25446 do { 25447 mp1->b_datap->db_struioflag = 0; 25448 } while ((mp1 = mp1->b_cont) != NULL); 25449 } 25450 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25451 <= mp->b_wptr); 25452 ip_fanout_tcp(q, first_mp, ill, ipha, 25453 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25454 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25455 mctl_present, B_FALSE, zoneid); 25456 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25457 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25458 return; 25459 } 25460 case IPPROTO_SCTP: 25461 { 25462 uint32_t ports; 25463 25464 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25465 ip_fanout_sctp(first_mp, ill, ipha, ports, 25466 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25467 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25468 return; 25469 } 25470 25471 default: 25472 break; 25473 } 25474 /* 25475 * Find a client for some other protocol. We give 25476 * copies to multiple clients, if more than one is 25477 * bound. 25478 */ 25479 ip_fanout_proto(q, first_mp, ill, ipha, 25480 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25481 mctl_present, B_FALSE, ill, zoneid); 25482 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25483 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25484 #undef rptr 25485 } 25486 25487 /* 25488 * Update any source route, record route, or timestamp options. 25489 * Check that we are at end of strict source route. 25490 * The options have been sanity checked by ip_wput_options(). 25491 */ 25492 static void 25493 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25494 { 25495 ipoptp_t opts; 25496 uchar_t *opt; 25497 uint8_t optval; 25498 uint8_t optlen; 25499 ipaddr_t dst; 25500 uint32_t ts; 25501 ire_t *ire; 25502 timestruc_t now; 25503 25504 ip2dbg(("ip_wput_local_options\n")); 25505 for (optval = ipoptp_first(&opts, ipha); 25506 optval != IPOPT_EOL; 25507 optval = ipoptp_next(&opts)) { 25508 opt = opts.ipoptp_cur; 25509 optlen = opts.ipoptp_len; 25510 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25511 switch (optval) { 25512 uint32_t off; 25513 case IPOPT_SSRR: 25514 case IPOPT_LSRR: 25515 off = opt[IPOPT_OFFSET]; 25516 off--; 25517 if (optlen < IP_ADDR_LEN || 25518 off > optlen - IP_ADDR_LEN) { 25519 /* End of source route */ 25520 break; 25521 } 25522 /* 25523 * This will only happen if two consecutive entries 25524 * in the source route contains our address or if 25525 * it is a packet with a loose source route which 25526 * reaches us before consuming the whole source route 25527 */ 25528 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25529 if (optval == IPOPT_SSRR) { 25530 return; 25531 } 25532 /* 25533 * Hack: instead of dropping the packet truncate the 25534 * source route to what has been used by filling the 25535 * rest with IPOPT_NOP. 25536 */ 25537 opt[IPOPT_OLEN] = (uint8_t)off; 25538 while (off < optlen) { 25539 opt[off++] = IPOPT_NOP; 25540 } 25541 break; 25542 case IPOPT_RR: 25543 off = opt[IPOPT_OFFSET]; 25544 off--; 25545 if (optlen < IP_ADDR_LEN || 25546 off > optlen - IP_ADDR_LEN) { 25547 /* No more room - ignore */ 25548 ip1dbg(( 25549 "ip_wput_forward_options: end of RR\n")); 25550 break; 25551 } 25552 dst = htonl(INADDR_LOOPBACK); 25553 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25554 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25555 break; 25556 case IPOPT_TS: 25557 /* Insert timestamp if there is romm */ 25558 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25559 case IPOPT_TS_TSONLY: 25560 off = IPOPT_TS_TIMELEN; 25561 break; 25562 case IPOPT_TS_PRESPEC: 25563 case IPOPT_TS_PRESPEC_RFC791: 25564 /* Verify that the address matched */ 25565 off = opt[IPOPT_OFFSET] - 1; 25566 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25567 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25568 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25569 ipst); 25570 if (ire == NULL) { 25571 /* Not for us */ 25572 break; 25573 } 25574 ire_refrele(ire); 25575 /* FALLTHRU */ 25576 case IPOPT_TS_TSANDADDR: 25577 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25578 break; 25579 default: 25580 /* 25581 * ip_*put_options should have already 25582 * dropped this packet. 25583 */ 25584 cmn_err(CE_PANIC, "ip_wput_local_options: " 25585 "unknown IT - bug in ip_wput_options?\n"); 25586 return; /* Keep "lint" happy */ 25587 } 25588 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25589 /* Increase overflow counter */ 25590 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25591 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25592 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25593 (off << 4); 25594 break; 25595 } 25596 off = opt[IPOPT_OFFSET] - 1; 25597 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25598 case IPOPT_TS_PRESPEC: 25599 case IPOPT_TS_PRESPEC_RFC791: 25600 case IPOPT_TS_TSANDADDR: 25601 dst = htonl(INADDR_LOOPBACK); 25602 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25603 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25604 /* FALLTHRU */ 25605 case IPOPT_TS_TSONLY: 25606 off = opt[IPOPT_OFFSET] - 1; 25607 /* Compute # of milliseconds since midnight */ 25608 gethrestime(&now); 25609 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25610 now.tv_nsec / (NANOSEC / MILLISEC); 25611 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25612 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25613 break; 25614 } 25615 break; 25616 } 25617 } 25618 } 25619 25620 /* 25621 * Send out a multicast packet on interface ipif. 25622 * The sender does not have an conn. 25623 * Caller verifies that this isn't a PHYI_LOOPBACK. 25624 */ 25625 void 25626 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25627 { 25628 ipha_t *ipha; 25629 ire_t *ire; 25630 ipaddr_t dst; 25631 mblk_t *first_mp; 25632 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25633 25634 /* igmp_sendpkt always allocates a ipsec_out_t */ 25635 ASSERT(mp->b_datap->db_type == M_CTL); 25636 ASSERT(!ipif->ipif_isv6); 25637 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25638 25639 first_mp = mp; 25640 mp = first_mp->b_cont; 25641 ASSERT(mp->b_datap->db_type == M_DATA); 25642 ipha = (ipha_t *)mp->b_rptr; 25643 25644 /* 25645 * Find an IRE which matches the destination and the outgoing 25646 * queue (i.e. the outgoing interface.) 25647 */ 25648 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25649 dst = ipif->ipif_pp_dst_addr; 25650 else 25651 dst = ipha->ipha_dst; 25652 /* 25653 * The source address has already been initialized by the 25654 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25655 * be sufficient rather than MATCH_IRE_IPIF. 25656 * 25657 * This function is used for sending IGMP packets. We need 25658 * to make sure that we send the packet out of the interface 25659 * (ipif->ipif_ill) where we joined the group. This is to 25660 * prevent from switches doing IGMP snooping to send us multicast 25661 * packets for a given group on the interface we have joined. 25662 * If we can't find an ire, igmp_sendpkt has already initialized 25663 * ipsec_out_attach_if so that this will not be load spread in 25664 * ip_newroute_ipif. 25665 */ 25666 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25667 MATCH_IRE_ILL, ipst); 25668 if (!ire) { 25669 /* 25670 * Mark this packet to make it be delivered to 25671 * ip_wput_ire after the new ire has been 25672 * created. 25673 */ 25674 mp->b_prev = NULL; 25675 mp->b_next = NULL; 25676 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25677 zoneid, &zero_info); 25678 return; 25679 } 25680 25681 /* 25682 * Honor the RTF_SETSRC flag; this is the only case 25683 * where we force this addr whatever the current src addr is, 25684 * because this address is set by igmp_sendpkt(), and 25685 * cannot be specified by any user. 25686 */ 25687 if (ire->ire_flags & RTF_SETSRC) { 25688 ipha->ipha_src = ire->ire_src_addr; 25689 } 25690 25691 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25692 } 25693 25694 /* 25695 * NOTE : This function does not ire_refrele the ire argument passed in. 25696 * 25697 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25698 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25699 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25700 * the ire_lock to access the nce_fp_mp in this case. 25701 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25702 * prepending a fastpath message IPQoS processing must precede it, we also set 25703 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25704 * (IPQoS might have set the b_band for CoS marking). 25705 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25706 * must follow it so that IPQoS can mark the dl_priority field for CoS 25707 * marking, if needed. 25708 */ 25709 static mblk_t * 25710 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25711 { 25712 uint_t hlen; 25713 ipha_t *ipha; 25714 mblk_t *mp1; 25715 boolean_t qos_done = B_FALSE; 25716 uchar_t *ll_hdr; 25717 ip_stack_t *ipst = ire->ire_ipst; 25718 25719 #define rptr ((uchar_t *)ipha) 25720 25721 ipha = (ipha_t *)mp->b_rptr; 25722 hlen = 0; 25723 LOCK_IRE_FP_MP(ire); 25724 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25725 ASSERT(DB_TYPE(mp1) == M_DATA); 25726 /* Initiate IPPF processing */ 25727 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25728 UNLOCK_IRE_FP_MP(ire); 25729 ip_process(proc, &mp, ill_index); 25730 if (mp == NULL) 25731 return (NULL); 25732 25733 ipha = (ipha_t *)mp->b_rptr; 25734 LOCK_IRE_FP_MP(ire); 25735 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25736 qos_done = B_TRUE; 25737 goto no_fp_mp; 25738 } 25739 ASSERT(DB_TYPE(mp1) == M_DATA); 25740 } 25741 hlen = MBLKL(mp1); 25742 /* 25743 * Check if we have enough room to prepend fastpath 25744 * header 25745 */ 25746 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25747 ll_hdr = rptr - hlen; 25748 bcopy(mp1->b_rptr, ll_hdr, hlen); 25749 /* 25750 * Set the b_rptr to the start of the link layer 25751 * header 25752 */ 25753 mp->b_rptr = ll_hdr; 25754 mp1 = mp; 25755 } else { 25756 mp1 = copyb(mp1); 25757 if (mp1 == NULL) 25758 goto unlock_err; 25759 mp1->b_band = mp->b_band; 25760 mp1->b_cont = mp; 25761 /* 25762 * certain system generated traffic may not 25763 * have cred/label in ip header block. This 25764 * is true even for a labeled system. But for 25765 * labeled traffic, inherit the label in the 25766 * new header. 25767 */ 25768 if (DB_CRED(mp) != NULL) 25769 mblk_setcred(mp1, DB_CRED(mp)); 25770 /* 25771 * XXX disable ICK_VALID and compute checksum 25772 * here; can happen if nce_fp_mp changes and 25773 * it can't be copied now due to insufficient 25774 * space. (unlikely, fp mp can change, but it 25775 * does not increase in length) 25776 */ 25777 } 25778 UNLOCK_IRE_FP_MP(ire); 25779 } else { 25780 no_fp_mp: 25781 mp1 = copyb(ire->ire_nce->nce_res_mp); 25782 if (mp1 == NULL) { 25783 unlock_err: 25784 UNLOCK_IRE_FP_MP(ire); 25785 freemsg(mp); 25786 return (NULL); 25787 } 25788 UNLOCK_IRE_FP_MP(ire); 25789 mp1->b_cont = mp; 25790 /* 25791 * certain system generated traffic may not 25792 * have cred/label in ip header block. This 25793 * is true even for a labeled system. But for 25794 * labeled traffic, inherit the label in the 25795 * new header. 25796 */ 25797 if (DB_CRED(mp) != NULL) 25798 mblk_setcred(mp1, DB_CRED(mp)); 25799 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25800 ip_process(proc, &mp1, ill_index); 25801 if (mp1 == NULL) 25802 return (NULL); 25803 } 25804 } 25805 return (mp1); 25806 #undef rptr 25807 } 25808 25809 /* 25810 * Finish the outbound IPsec processing for an IPv6 packet. This function 25811 * is called from ipsec_out_process() if the IPsec packet was processed 25812 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25813 * asynchronously. 25814 */ 25815 void 25816 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25817 ire_t *ire_arg) 25818 { 25819 in6_addr_t *v6dstp; 25820 ire_t *ire; 25821 mblk_t *mp; 25822 ip6_t *ip6h1; 25823 uint_t ill_index; 25824 ipsec_out_t *io; 25825 boolean_t attach_if, hwaccel; 25826 uint32_t flags = IP6_NO_IPPOLICY; 25827 int match_flags; 25828 zoneid_t zoneid; 25829 boolean_t ill_need_rele = B_FALSE; 25830 boolean_t ire_need_rele = B_FALSE; 25831 ip_stack_t *ipst; 25832 25833 mp = ipsec_mp->b_cont; 25834 ip6h1 = (ip6_t *)mp->b_rptr; 25835 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25836 ASSERT(io->ipsec_out_ns != NULL); 25837 ipst = io->ipsec_out_ns->netstack_ip; 25838 ill_index = io->ipsec_out_ill_index; 25839 if (io->ipsec_out_reachable) { 25840 flags |= IPV6_REACHABILITY_CONFIRMATION; 25841 } 25842 attach_if = io->ipsec_out_attach_if; 25843 hwaccel = io->ipsec_out_accelerated; 25844 zoneid = io->ipsec_out_zoneid; 25845 ASSERT(zoneid != ALL_ZONES); 25846 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25847 /* Multicast addresses should have non-zero ill_index. */ 25848 v6dstp = &ip6h->ip6_dst; 25849 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25850 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25851 ASSERT(!attach_if || ill_index != 0); 25852 if (ill_index != 0) { 25853 if (ill == NULL) { 25854 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25855 B_TRUE, ipst); 25856 25857 /* Failure case frees things for us. */ 25858 if (ill == NULL) 25859 return; 25860 25861 ill_need_rele = B_TRUE; 25862 } 25863 /* 25864 * If this packet needs to go out on a particular interface 25865 * honor it. 25866 */ 25867 if (attach_if) { 25868 match_flags = MATCH_IRE_ILL; 25869 25870 /* 25871 * Check if we need an ire that will not be 25872 * looked up by anybody else i.e. HIDDEN. 25873 */ 25874 if (ill_is_probeonly(ill)) { 25875 match_flags |= MATCH_IRE_MARK_HIDDEN; 25876 } 25877 } 25878 } 25879 ASSERT(mp != NULL); 25880 25881 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25882 boolean_t unspec_src; 25883 ipif_t *ipif; 25884 25885 /* 25886 * Use the ill_index to get the right ill. 25887 */ 25888 unspec_src = io->ipsec_out_unspec_src; 25889 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25890 if (ipif == NULL) { 25891 if (ill_need_rele) 25892 ill_refrele(ill); 25893 freemsg(ipsec_mp); 25894 return; 25895 } 25896 25897 if (ire_arg != NULL) { 25898 ire = ire_arg; 25899 } else { 25900 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25901 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25902 ire_need_rele = B_TRUE; 25903 } 25904 if (ire != NULL) { 25905 ipif_refrele(ipif); 25906 /* 25907 * XXX Do the multicast forwarding now, as the IPSEC 25908 * processing has been done. 25909 */ 25910 goto send; 25911 } 25912 25913 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25914 mp->b_prev = NULL; 25915 mp->b_next = NULL; 25916 25917 /* 25918 * If the IPsec packet was processed asynchronously, 25919 * drop it now. 25920 */ 25921 if (q == NULL) { 25922 if (ill_need_rele) 25923 ill_refrele(ill); 25924 freemsg(ipsec_mp); 25925 return; 25926 } 25927 25928 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25929 unspec_src, zoneid); 25930 ipif_refrele(ipif); 25931 } else { 25932 if (attach_if) { 25933 ipif_t *ipif; 25934 25935 ipif = ipif_get_next_ipif(NULL, ill); 25936 if (ipif == NULL) { 25937 if (ill_need_rele) 25938 ill_refrele(ill); 25939 freemsg(ipsec_mp); 25940 return; 25941 } 25942 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25943 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25944 ire_need_rele = B_TRUE; 25945 ipif_refrele(ipif); 25946 } else { 25947 if (ire_arg != NULL) { 25948 ire = ire_arg; 25949 } else { 25950 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25951 ipst); 25952 ire_need_rele = B_TRUE; 25953 } 25954 } 25955 if (ire != NULL) 25956 goto send; 25957 /* 25958 * ire disappeared underneath. 25959 * 25960 * What we need to do here is the ip_newroute 25961 * logic to get the ire without doing the IPSEC 25962 * processing. Follow the same old path. But this 25963 * time, ip_wput or ire_add_then_send will call us 25964 * directly as all the IPSEC operations are done. 25965 */ 25966 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25967 mp->b_prev = NULL; 25968 mp->b_next = NULL; 25969 25970 /* 25971 * If the IPsec packet was processed asynchronously, 25972 * drop it now. 25973 */ 25974 if (q == NULL) { 25975 if (ill_need_rele) 25976 ill_refrele(ill); 25977 freemsg(ipsec_mp); 25978 return; 25979 } 25980 25981 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25982 zoneid, ipst); 25983 } 25984 if (ill != NULL && ill_need_rele) 25985 ill_refrele(ill); 25986 return; 25987 send: 25988 if (ill != NULL && ill_need_rele) 25989 ill_refrele(ill); 25990 25991 /* Local delivery */ 25992 if (ire->ire_stq == NULL) { 25993 ill_t *out_ill; 25994 ASSERT(q != NULL); 25995 25996 /* PFHooks: LOOPBACK_OUT */ 25997 out_ill = ire->ire_ipif->ipif_ill; 25998 25999 DTRACE_PROBE4(ip6__loopback__out__start, 26000 ill_t *, NULL, ill_t *, out_ill, 26001 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 26002 26003 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 26004 ipst->ips_ipv6firewall_loopback_out, 26005 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 26006 26007 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 26008 26009 if (ipsec_mp != NULL) 26010 ip_wput_local_v6(RD(q), out_ill, 26011 ip6h, ipsec_mp, ire, 0); 26012 if (ire_need_rele) 26013 ire_refrele(ire); 26014 return; 26015 } 26016 /* 26017 * Everything is done. Send it out on the wire. 26018 * We force the insertion of a fragment header using the 26019 * IPH_FRAG_HDR flag in two cases: 26020 * - after reception of an ICMPv6 "packet too big" message 26021 * with a MTU < 1280 (cf. RFC 2460 section 5) 26022 * - for multirouted IPv6 packets, so that the receiver can 26023 * discard duplicates according to their fragment identifier 26024 */ 26025 /* XXX fix flow control problems. */ 26026 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 26027 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 26028 if (hwaccel) { 26029 /* 26030 * hardware acceleration does not handle these 26031 * "slow path" cases. 26032 */ 26033 /* IPsec KSTATS: should bump bean counter here. */ 26034 if (ire_need_rele) 26035 ire_refrele(ire); 26036 freemsg(ipsec_mp); 26037 return; 26038 } 26039 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26040 (mp->b_cont ? msgdsize(mp) : 26041 mp->b_wptr - (uchar_t *)ip6h)) { 26042 /* IPsec KSTATS: should bump bean counter here. */ 26043 ip0dbg(("Packet length mismatch: %d, %ld\n", 26044 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26045 msgdsize(mp))); 26046 if (ire_need_rele) 26047 ire_refrele(ire); 26048 freemsg(ipsec_mp); 26049 return; 26050 } 26051 ASSERT(mp->b_prev == NULL); 26052 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26053 ntohs(ip6h->ip6_plen) + 26054 IPV6_HDR_LEN, ire->ire_max_frag)); 26055 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26056 ire->ire_max_frag); 26057 } else { 26058 UPDATE_OB_PKT_COUNT(ire); 26059 ire->ire_last_used_time = lbolt; 26060 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26061 } 26062 if (ire_need_rele) 26063 ire_refrele(ire); 26064 freeb(ipsec_mp); 26065 } 26066 26067 void 26068 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26069 { 26070 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26071 da_ipsec_t *hada; /* data attributes */ 26072 ill_t *ill = (ill_t *)q->q_ptr; 26073 26074 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26075 26076 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26077 /* IPsec KSTATS: Bump lose counter here! */ 26078 freemsg(mp); 26079 return; 26080 } 26081 26082 /* 26083 * It's an IPsec packet that must be 26084 * accelerated by the Provider, and the 26085 * outbound ill is IPsec acceleration capable. 26086 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26087 * to the ill. 26088 * IPsec KSTATS: should bump packet counter here. 26089 */ 26090 26091 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26092 if (hada_mp == NULL) { 26093 /* IPsec KSTATS: should bump packet counter here. */ 26094 freemsg(mp); 26095 return; 26096 } 26097 26098 hada_mp->b_datap->db_type = M_CTL; 26099 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26100 hada_mp->b_cont = mp; 26101 26102 hada = (da_ipsec_t *)hada_mp->b_rptr; 26103 bzero(hada, sizeof (da_ipsec_t)); 26104 hada->da_type = IPHADA_M_CTL; 26105 26106 putnext(q, hada_mp); 26107 } 26108 26109 /* 26110 * Finish the outbound IPsec processing. This function is called from 26111 * ipsec_out_process() if the IPsec packet was processed 26112 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26113 * asynchronously. 26114 */ 26115 void 26116 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26117 ire_t *ire_arg) 26118 { 26119 uint32_t v_hlen_tos_len; 26120 ipaddr_t dst; 26121 ipif_t *ipif = NULL; 26122 ire_t *ire; 26123 ire_t *ire1 = NULL; 26124 mblk_t *next_mp = NULL; 26125 uint32_t max_frag; 26126 boolean_t multirt_send = B_FALSE; 26127 mblk_t *mp; 26128 mblk_t *mp1; 26129 ipha_t *ipha1; 26130 uint_t ill_index; 26131 ipsec_out_t *io; 26132 boolean_t attach_if; 26133 int match_flags, offset; 26134 irb_t *irb = NULL; 26135 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26136 zoneid_t zoneid; 26137 uint32_t cksum; 26138 uint16_t *up; 26139 ipxmit_state_t pktxmit_state; 26140 ip_stack_t *ipst; 26141 26142 #ifdef _BIG_ENDIAN 26143 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26144 #else 26145 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26146 #endif 26147 26148 mp = ipsec_mp->b_cont; 26149 ipha1 = (ipha_t *)mp->b_rptr; 26150 ASSERT(mp != NULL); 26151 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26152 dst = ipha->ipha_dst; 26153 26154 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26155 ill_index = io->ipsec_out_ill_index; 26156 attach_if = io->ipsec_out_attach_if; 26157 zoneid = io->ipsec_out_zoneid; 26158 ASSERT(zoneid != ALL_ZONES); 26159 ipst = io->ipsec_out_ns->netstack_ip; 26160 ASSERT(io->ipsec_out_ns != NULL); 26161 26162 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26163 if (ill_index != 0) { 26164 if (ill == NULL) { 26165 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26166 ill_index, B_FALSE, ipst); 26167 26168 /* Failure case frees things for us. */ 26169 if (ill == NULL) 26170 return; 26171 26172 ill_need_rele = B_TRUE; 26173 } 26174 /* 26175 * If this packet needs to go out on a particular interface 26176 * honor it. 26177 */ 26178 if (attach_if) { 26179 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26180 26181 /* 26182 * Check if we need an ire that will not be 26183 * looked up by anybody else i.e. HIDDEN. 26184 */ 26185 if (ill_is_probeonly(ill)) { 26186 match_flags |= MATCH_IRE_MARK_HIDDEN; 26187 } 26188 } 26189 } 26190 26191 if (CLASSD(dst)) { 26192 boolean_t conn_dontroute; 26193 /* 26194 * Use the ill_index to get the right ipif. 26195 */ 26196 conn_dontroute = io->ipsec_out_dontroute; 26197 if (ill_index == 0) 26198 ipif = ipif_lookup_group(dst, zoneid, ipst); 26199 else 26200 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26201 if (ipif == NULL) { 26202 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26203 " multicast\n")); 26204 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26205 freemsg(ipsec_mp); 26206 goto done; 26207 } 26208 /* 26209 * ipha_src has already been intialized with the 26210 * value of the ipif in ip_wput. All we need now is 26211 * an ire to send this downstream. 26212 */ 26213 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26214 MBLK_GETLABEL(mp), match_flags, ipst); 26215 if (ire != NULL) { 26216 ill_t *ill1; 26217 /* 26218 * Do the multicast forwarding now, as the IPSEC 26219 * processing has been done. 26220 */ 26221 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26222 (ill1 = ire_to_ill(ire))) { 26223 if (ip_mforward(ill1, ipha, mp)) { 26224 freemsg(ipsec_mp); 26225 ip1dbg(("ip_wput_ipsec_out: mforward " 26226 "failed\n")); 26227 ire_refrele(ire); 26228 goto done; 26229 } 26230 } 26231 goto send; 26232 } 26233 26234 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26235 mp->b_prev = NULL; 26236 mp->b_next = NULL; 26237 26238 /* 26239 * If the IPsec packet was processed asynchronously, 26240 * drop it now. 26241 */ 26242 if (q == NULL) { 26243 freemsg(ipsec_mp); 26244 goto done; 26245 } 26246 26247 /* 26248 * We may be using a wrong ipif to create the ire. 26249 * But it is okay as the source address is assigned 26250 * for the packet already. Next outbound packet would 26251 * create the IRE with the right IPIF in ip_wput. 26252 * 26253 * Also handle RTF_MULTIRT routes. 26254 */ 26255 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26256 zoneid, &zero_info); 26257 } else { 26258 if (attach_if) { 26259 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26260 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26261 } else { 26262 if (ire_arg != NULL) { 26263 ire = ire_arg; 26264 ire_need_rele = B_FALSE; 26265 } else { 26266 ire = ire_cache_lookup(dst, zoneid, 26267 MBLK_GETLABEL(mp), ipst); 26268 } 26269 } 26270 if (ire != NULL) { 26271 goto send; 26272 } 26273 26274 /* 26275 * ire disappeared underneath. 26276 * 26277 * What we need to do here is the ip_newroute 26278 * logic to get the ire without doing the IPSEC 26279 * processing. Follow the same old path. But this 26280 * time, ip_wput or ire_add_then_put will call us 26281 * directly as all the IPSEC operations are done. 26282 */ 26283 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26284 mp->b_prev = NULL; 26285 mp->b_next = NULL; 26286 26287 /* 26288 * If the IPsec packet was processed asynchronously, 26289 * drop it now. 26290 */ 26291 if (q == NULL) { 26292 freemsg(ipsec_mp); 26293 goto done; 26294 } 26295 26296 /* 26297 * Since we're going through ip_newroute() again, we 26298 * need to make sure we don't: 26299 * 26300 * 1.) Trigger the ASSERT() with the ipha_ident 26301 * overloading. 26302 * 2.) Redo transport-layer checksumming, since we've 26303 * already done all that to get this far. 26304 * 26305 * The easiest way not do either of the above is to set 26306 * the ipha_ident field to IP_HDR_INCLUDED. 26307 */ 26308 ipha->ipha_ident = IP_HDR_INCLUDED; 26309 ip_newroute(q, ipsec_mp, dst, NULL, 26310 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26311 } 26312 goto done; 26313 send: 26314 if (ipha->ipha_protocol == IPPROTO_UDP && 26315 udp_compute_checksum(ipst->ips_netstack)) { 26316 /* 26317 * ESP NAT-Traversal packet. 26318 * 26319 * Just do software checksum for now. 26320 */ 26321 26322 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26323 IP_STAT(ipst, ip_out_sw_cksum); 26324 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26325 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26326 #define iphs ((uint16_t *)ipha) 26327 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26328 iphs[9] + ntohs(htons(ipha->ipha_length) - 26329 IP_SIMPLE_HDR_LENGTH); 26330 #undef iphs 26331 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26332 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26333 if (mp1->b_wptr - mp1->b_rptr >= 26334 offset + sizeof (uint16_t)) { 26335 up = (uint16_t *)(mp1->b_rptr + offset); 26336 *up = cksum; 26337 break; /* out of for loop */ 26338 } else { 26339 offset -= (mp->b_wptr - mp->b_rptr); 26340 } 26341 } /* Otherwise, just keep the all-zero checksum. */ 26342 26343 if (ire->ire_stq == NULL) { 26344 ill_t *out_ill; 26345 /* 26346 * Loopbacks go through ip_wput_local except for one case. 26347 * We come here if we generate a icmp_frag_needed message 26348 * after IPSEC processing is over. When this function calls 26349 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26350 * icmp_frag_needed. The message generated comes back here 26351 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26352 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26353 * source address as it is usually set in ip_wput_ire. As 26354 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26355 * and we end up here. We can't enter ip_wput_ire once the 26356 * IPSEC processing is over and hence we need to do it here. 26357 */ 26358 ASSERT(q != NULL); 26359 UPDATE_OB_PKT_COUNT(ire); 26360 ire->ire_last_used_time = lbolt; 26361 if (ipha->ipha_src == 0) 26362 ipha->ipha_src = ire->ire_src_addr; 26363 26364 /* PFHooks: LOOPBACK_OUT */ 26365 out_ill = ire->ire_ipif->ipif_ill; 26366 26367 DTRACE_PROBE4(ip4__loopback__out__start, 26368 ill_t *, NULL, ill_t *, out_ill, 26369 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26370 26371 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26372 ipst->ips_ipv4firewall_loopback_out, 26373 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26374 26375 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26376 26377 if (ipsec_mp != NULL) 26378 ip_wput_local(RD(q), out_ill, 26379 ipha, ipsec_mp, ire, 0, zoneid); 26380 if (ire_need_rele) 26381 ire_refrele(ire); 26382 goto done; 26383 } 26384 26385 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26386 /* 26387 * We are through with IPSEC processing. 26388 * Fragment this and send it on the wire. 26389 */ 26390 if (io->ipsec_out_accelerated) { 26391 /* 26392 * The packet has been accelerated but must 26393 * be fragmented. This should not happen 26394 * since AH and ESP must not accelerate 26395 * packets that need fragmentation, however 26396 * the configuration could have changed 26397 * since the AH or ESP processing. 26398 * Drop packet. 26399 * IPsec KSTATS: bump bean counter here. 26400 */ 26401 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26402 "fragmented accelerated packet!\n")); 26403 freemsg(ipsec_mp); 26404 } else { 26405 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26406 } 26407 if (ire_need_rele) 26408 ire_refrele(ire); 26409 goto done; 26410 } 26411 26412 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26413 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26414 (void *)ire->ire_ipif, (void *)ipif)); 26415 26416 /* 26417 * Multiroute the secured packet, unless IPsec really 26418 * requires the packet to go out only through a particular 26419 * interface. 26420 */ 26421 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26422 ire_t *first_ire; 26423 irb = ire->ire_bucket; 26424 ASSERT(irb != NULL); 26425 /* 26426 * This ire has been looked up as the one that 26427 * goes through the given ipif; 26428 * make sure we do not omit any other multiroute ire 26429 * that may be present in the bucket before this one. 26430 */ 26431 IRB_REFHOLD(irb); 26432 for (first_ire = irb->irb_ire; 26433 first_ire != NULL; 26434 first_ire = first_ire->ire_next) { 26435 if ((first_ire->ire_flags & RTF_MULTIRT) && 26436 (first_ire->ire_addr == ire->ire_addr) && 26437 !(first_ire->ire_marks & 26438 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26439 break; 26440 } 26441 } 26442 26443 if ((first_ire != NULL) && (first_ire != ire)) { 26444 /* 26445 * Don't change the ire if the packet must 26446 * be fragmented if sent via this new one. 26447 */ 26448 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26449 IRE_REFHOLD(first_ire); 26450 if (ire_need_rele) 26451 ire_refrele(ire); 26452 else 26453 ire_need_rele = B_TRUE; 26454 ire = first_ire; 26455 } 26456 } 26457 IRB_REFRELE(irb); 26458 26459 multirt_send = B_TRUE; 26460 max_frag = ire->ire_max_frag; 26461 } else { 26462 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26463 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26464 "flag, attach_if %d\n", attach_if)); 26465 } 26466 } 26467 26468 /* 26469 * In most cases, the emission loop below is entered only once. 26470 * Only in the case where the ire holds the RTF_MULTIRT 26471 * flag, we loop to process all RTF_MULTIRT ires in the 26472 * bucket, and send the packet through all crossed 26473 * RTF_MULTIRT routes. 26474 */ 26475 do { 26476 if (multirt_send) { 26477 /* 26478 * ire1 holds here the next ire to process in the 26479 * bucket. If multirouting is expected, 26480 * any non-RTF_MULTIRT ire that has the 26481 * right destination address is ignored. 26482 */ 26483 ASSERT(irb != NULL); 26484 IRB_REFHOLD(irb); 26485 for (ire1 = ire->ire_next; 26486 ire1 != NULL; 26487 ire1 = ire1->ire_next) { 26488 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26489 continue; 26490 if (ire1->ire_addr != ire->ire_addr) 26491 continue; 26492 if (ire1->ire_marks & 26493 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26494 continue; 26495 /* No loopback here */ 26496 if (ire1->ire_stq == NULL) 26497 continue; 26498 /* 26499 * Ensure we do not exceed the MTU 26500 * of the next route. 26501 */ 26502 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26503 ip_multirt_bad_mtu(ire1, max_frag); 26504 continue; 26505 } 26506 26507 IRE_REFHOLD(ire1); 26508 break; 26509 } 26510 IRB_REFRELE(irb); 26511 if (ire1 != NULL) { 26512 /* 26513 * We are in a multiple send case, need to 26514 * make a copy of the packet. 26515 */ 26516 next_mp = copymsg(ipsec_mp); 26517 if (next_mp == NULL) { 26518 ire_refrele(ire1); 26519 ire1 = NULL; 26520 } 26521 } 26522 } 26523 /* 26524 * Everything is done. Send it out on the wire 26525 * 26526 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26527 * either send it on the wire or, in the case of 26528 * HW acceleration, call ipsec_hw_putnext. 26529 */ 26530 if (ire->ire_nce && 26531 ire->ire_nce->nce_state != ND_REACHABLE) { 26532 DTRACE_PROBE2(ip__wput__ipsec__bail, 26533 (ire_t *), ire, (mblk_t *), ipsec_mp); 26534 /* 26535 * If ire's link-layer is unresolved (this 26536 * would only happen if the incomplete ire 26537 * was added to cachetable via forwarding path) 26538 * don't bother going to ip_xmit_v4. Just drop the 26539 * packet. 26540 * There is a slight risk here, in that, if we 26541 * have the forwarding path create an incomplete 26542 * IRE, then until the IRE is completed, any 26543 * transmitted IPSEC packets will be dropped 26544 * instead of being queued waiting for resolution. 26545 * 26546 * But the likelihood of a forwarding packet and a wput 26547 * packet sending to the same dst at the same time 26548 * and there not yet be an ARP entry for it is small. 26549 * Furthermore, if this actually happens, it might 26550 * be likely that wput would generate multiple 26551 * packets (and forwarding would also have a train 26552 * of packets) for that destination. If this is 26553 * the case, some of them would have been dropped 26554 * anyway, since ARP only queues a few packets while 26555 * waiting for resolution 26556 * 26557 * NOTE: We should really call ip_xmit_v4, 26558 * and let it queue the packet and send the 26559 * ARP query and have ARP come back thus: 26560 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26561 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26562 * hw accel work. But it's too complex to get 26563 * the IPsec hw acceleration approach to fit 26564 * well with ip_xmit_v4 doing ARP without 26565 * doing IPSEC simplification. For now, we just 26566 * poke ip_xmit_v4 to trigger the arp resolve, so 26567 * that we can continue with the send on the next 26568 * attempt. 26569 * 26570 * XXX THis should be revisited, when 26571 * the IPsec/IP interaction is cleaned up 26572 */ 26573 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26574 " - dropping packet\n")); 26575 freemsg(ipsec_mp); 26576 /* 26577 * Call ip_xmit_v4() to trigger ARP query 26578 * in case the nce_state is ND_INITIAL 26579 */ 26580 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26581 goto drop_pkt; 26582 } 26583 26584 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26585 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26586 mblk_t *, ipsec_mp); 26587 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26588 ipst->ips_ipv4firewall_physical_out, 26589 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26590 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26591 if (ipsec_mp == NULL) 26592 goto drop_pkt; 26593 26594 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26595 pktxmit_state = ip_xmit_v4(mp, ire, 26596 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26597 26598 if ((pktxmit_state == SEND_FAILED) || 26599 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26600 26601 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26602 drop_pkt: 26603 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26604 ipIfStatsOutDiscards); 26605 if (ire_need_rele) 26606 ire_refrele(ire); 26607 if (ire1 != NULL) { 26608 ire_refrele(ire1); 26609 freemsg(next_mp); 26610 } 26611 goto done; 26612 } 26613 26614 freeb(ipsec_mp); 26615 if (ire_need_rele) 26616 ire_refrele(ire); 26617 26618 if (ire1 != NULL) { 26619 ire = ire1; 26620 ire_need_rele = B_TRUE; 26621 ASSERT(next_mp); 26622 ipsec_mp = next_mp; 26623 mp = ipsec_mp->b_cont; 26624 ire1 = NULL; 26625 next_mp = NULL; 26626 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26627 } else { 26628 multirt_send = B_FALSE; 26629 } 26630 } while (multirt_send); 26631 done: 26632 if (ill != NULL && ill_need_rele) 26633 ill_refrele(ill); 26634 if (ipif != NULL) 26635 ipif_refrele(ipif); 26636 } 26637 26638 /* 26639 * Get the ill corresponding to the specified ire, and compare its 26640 * capabilities with the protocol and algorithms specified by the 26641 * the SA obtained from ipsec_out. If they match, annotate the 26642 * ipsec_out structure to indicate that the packet needs acceleration. 26643 * 26644 * 26645 * A packet is eligible for outbound hardware acceleration if the 26646 * following conditions are satisfied: 26647 * 26648 * 1. the packet will not be fragmented 26649 * 2. the provider supports the algorithm 26650 * 3. there is no pending control message being exchanged 26651 * 4. snoop is not attached 26652 * 5. the destination address is not a broadcast or multicast address. 26653 * 26654 * Rationale: 26655 * - Hardware drivers do not support fragmentation with 26656 * the current interface. 26657 * - snoop, multicast, and broadcast may result in exposure of 26658 * a cleartext datagram. 26659 * We check all five of these conditions here. 26660 * 26661 * XXX would like to nuke "ire_t *" parameter here; problem is that 26662 * IRE is only way to figure out if a v4 address is a broadcast and 26663 * thus ineligible for acceleration... 26664 */ 26665 static void 26666 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26667 { 26668 ipsec_out_t *io; 26669 mblk_t *data_mp; 26670 uint_t plen, overhead; 26671 ip_stack_t *ipst; 26672 26673 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26674 return; 26675 26676 if (ill == NULL) 26677 return; 26678 ipst = ill->ill_ipst; 26679 /* 26680 * Destination address is a broadcast or multicast. Punt. 26681 */ 26682 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26683 IRE_LOCAL))) 26684 return; 26685 26686 data_mp = ipsec_mp->b_cont; 26687 26688 if (ill->ill_isv6) { 26689 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26690 26691 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26692 return; 26693 26694 plen = ip6h->ip6_plen; 26695 } else { 26696 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26697 26698 if (CLASSD(ipha->ipha_dst)) 26699 return; 26700 26701 plen = ipha->ipha_length; 26702 } 26703 /* 26704 * Is there a pending DLPI control message being exchanged 26705 * between IP/IPsec and the DLS Provider? If there is, it 26706 * could be a SADB update, and the state of the DLS Provider 26707 * SADB might not be in sync with the SADB maintained by 26708 * IPsec. To avoid dropping packets or using the wrong keying 26709 * material, we do not accelerate this packet. 26710 */ 26711 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26712 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26713 "ill_dlpi_pending! don't accelerate packet\n")); 26714 return; 26715 } 26716 26717 /* 26718 * Is the Provider in promiscous mode? If it does, we don't 26719 * accelerate the packet since it will bounce back up to the 26720 * listeners in the clear. 26721 */ 26722 if (ill->ill_promisc_on_phys) { 26723 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26724 "ill in promiscous mode, don't accelerate packet\n")); 26725 return; 26726 } 26727 26728 /* 26729 * Will the packet require fragmentation? 26730 */ 26731 26732 /* 26733 * IPsec ESP note: this is a pessimistic estimate, but the same 26734 * as is used elsewhere. 26735 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26736 * + 2-byte trailer 26737 */ 26738 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26739 IPSEC_BASE_ESP_HDR_SIZE(sa); 26740 26741 if ((plen + overhead) > ill->ill_max_mtu) 26742 return; 26743 26744 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26745 26746 /* 26747 * Can the ill accelerate this IPsec protocol and algorithm 26748 * specified by the SA? 26749 */ 26750 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26751 ill->ill_isv6, sa, ipst->ips_netstack)) { 26752 return; 26753 } 26754 26755 /* 26756 * Tell AH or ESP that the outbound ill is capable of 26757 * accelerating this packet. 26758 */ 26759 io->ipsec_out_is_capab_ill = B_TRUE; 26760 } 26761 26762 /* 26763 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26764 * 26765 * If this function returns B_TRUE, the requested SA's have been filled 26766 * into the ipsec_out_*_sa pointers. 26767 * 26768 * If the function returns B_FALSE, the packet has been "consumed", most 26769 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26770 * 26771 * The SA references created by the protocol-specific "select" 26772 * function will be released when the ipsec_mp is freed, thanks to the 26773 * ipsec_out_free destructor -- see spd.c. 26774 */ 26775 static boolean_t 26776 ipsec_out_select_sa(mblk_t *ipsec_mp) 26777 { 26778 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26779 ipsec_out_t *io; 26780 ipsec_policy_t *pp; 26781 ipsec_action_t *ap; 26782 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26783 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26784 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26785 26786 if (!io->ipsec_out_secure) { 26787 /* 26788 * We came here by mistake. 26789 * Don't bother with ipsec processing 26790 * We should "discourage" this path in the future. 26791 */ 26792 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26793 return (B_FALSE); 26794 } 26795 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26796 ASSERT((io->ipsec_out_policy != NULL) || 26797 (io->ipsec_out_act != NULL)); 26798 26799 ASSERT(io->ipsec_out_failed == B_FALSE); 26800 26801 /* 26802 * IPSEC processing has started. 26803 */ 26804 io->ipsec_out_proc_begin = B_TRUE; 26805 ap = io->ipsec_out_act; 26806 if (ap == NULL) { 26807 pp = io->ipsec_out_policy; 26808 ASSERT(pp != NULL); 26809 ap = pp->ipsp_act; 26810 ASSERT(ap != NULL); 26811 } 26812 26813 /* 26814 * We have an action. now, let's select SA's. 26815 * (In the future, we can cache this in the conn_t..) 26816 */ 26817 if (ap->ipa_want_esp) { 26818 if (io->ipsec_out_esp_sa == NULL) { 26819 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26820 IPPROTO_ESP); 26821 } 26822 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26823 } 26824 26825 if (ap->ipa_want_ah) { 26826 if (io->ipsec_out_ah_sa == NULL) { 26827 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26828 IPPROTO_AH); 26829 } 26830 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26831 /* 26832 * The ESP and AH processing order needs to be preserved 26833 * when both protocols are required (ESP should be applied 26834 * before AH for an outbound packet). Force an ESP ACQUIRE 26835 * when both ESP and AH are required, and an AH ACQUIRE 26836 * is needed. 26837 */ 26838 if (ap->ipa_want_esp && need_ah_acquire) 26839 need_esp_acquire = B_TRUE; 26840 } 26841 26842 /* 26843 * Send an ACQUIRE (extended, regular, or both) if we need one. 26844 * Release SAs that got referenced, but will not be used until we 26845 * acquire _all_ of the SAs we need. 26846 */ 26847 if (need_ah_acquire || need_esp_acquire) { 26848 if (io->ipsec_out_ah_sa != NULL) { 26849 IPSA_REFRELE(io->ipsec_out_ah_sa); 26850 io->ipsec_out_ah_sa = NULL; 26851 } 26852 if (io->ipsec_out_esp_sa != NULL) { 26853 IPSA_REFRELE(io->ipsec_out_esp_sa); 26854 io->ipsec_out_esp_sa = NULL; 26855 } 26856 26857 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26858 return (B_FALSE); 26859 } 26860 26861 return (B_TRUE); 26862 } 26863 26864 /* 26865 * Process an IPSEC_OUT message and see what you can 26866 * do with it. 26867 * IPQoS Notes: 26868 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26869 * IPSec. 26870 * XXX would like to nuke ire_t. 26871 * XXX ill_index better be "real" 26872 */ 26873 void 26874 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26875 { 26876 ipsec_out_t *io; 26877 ipsec_policy_t *pp; 26878 ipsec_action_t *ap; 26879 ipha_t *ipha; 26880 ip6_t *ip6h; 26881 mblk_t *mp; 26882 ill_t *ill; 26883 zoneid_t zoneid; 26884 ipsec_status_t ipsec_rc; 26885 boolean_t ill_need_rele = B_FALSE; 26886 ip_stack_t *ipst; 26887 ipsec_stack_t *ipss; 26888 26889 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26890 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26891 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26892 ipst = io->ipsec_out_ns->netstack_ip; 26893 mp = ipsec_mp->b_cont; 26894 26895 /* 26896 * Initiate IPPF processing. We do it here to account for packets 26897 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26898 * We can check for ipsec_out_proc_begin even for such packets, as 26899 * they will always be false (asserted below). 26900 */ 26901 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26902 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26903 io->ipsec_out_ill_index : ill_index); 26904 if (mp == NULL) { 26905 ip2dbg(("ipsec_out_process: packet dropped "\ 26906 "during IPPF processing\n")); 26907 freeb(ipsec_mp); 26908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26909 return; 26910 } 26911 } 26912 26913 if (!io->ipsec_out_secure) { 26914 /* 26915 * We came here by mistake. 26916 * Don't bother with ipsec processing 26917 * Should "discourage" this path in the future. 26918 */ 26919 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26920 goto done; 26921 } 26922 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26923 ASSERT((io->ipsec_out_policy != NULL) || 26924 (io->ipsec_out_act != NULL)); 26925 ASSERT(io->ipsec_out_failed == B_FALSE); 26926 26927 ipss = ipst->ips_netstack->netstack_ipsec; 26928 if (!ipsec_loaded(ipss)) { 26929 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26930 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26931 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26932 } else { 26933 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26934 } 26935 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26936 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26937 &ipss->ipsec_dropper); 26938 return; 26939 } 26940 26941 /* 26942 * IPSEC processing has started. 26943 */ 26944 io->ipsec_out_proc_begin = B_TRUE; 26945 ap = io->ipsec_out_act; 26946 if (ap == NULL) { 26947 pp = io->ipsec_out_policy; 26948 ASSERT(pp != NULL); 26949 ap = pp->ipsp_act; 26950 ASSERT(ap != NULL); 26951 } 26952 26953 /* 26954 * Save the outbound ill index. When the packet comes back 26955 * from IPsec, we make sure the ill hasn't changed or disappeared 26956 * before sending it the accelerated packet. 26957 */ 26958 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26959 int ifindex; 26960 ill = ire_to_ill(ire); 26961 ifindex = ill->ill_phyint->phyint_ifindex; 26962 io->ipsec_out_capab_ill_index = ifindex; 26963 } 26964 26965 /* 26966 * The order of processing is first insert a IP header if needed. 26967 * Then insert the ESP header and then the AH header. 26968 */ 26969 if ((io->ipsec_out_se_done == B_FALSE) && 26970 (ap->ipa_want_se)) { 26971 /* 26972 * First get the outer IP header before sending 26973 * it to ESP. 26974 */ 26975 ipha_t *oipha, *iipha; 26976 mblk_t *outer_mp, *inner_mp; 26977 26978 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26979 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26980 "ipsec_out_process: " 26981 "Self-Encapsulation failed: Out of memory\n"); 26982 freemsg(ipsec_mp); 26983 if (ill != NULL) { 26984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26985 } else { 26986 BUMP_MIB(&ipst->ips_ip_mib, 26987 ipIfStatsOutDiscards); 26988 } 26989 return; 26990 } 26991 inner_mp = ipsec_mp->b_cont; 26992 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26993 oipha = (ipha_t *)outer_mp->b_rptr; 26994 iipha = (ipha_t *)inner_mp->b_rptr; 26995 *oipha = *iipha; 26996 outer_mp->b_wptr += sizeof (ipha_t); 26997 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26998 sizeof (ipha_t)); 26999 oipha->ipha_protocol = IPPROTO_ENCAP; 27000 oipha->ipha_version_and_hdr_length = 27001 IP_SIMPLE_HDR_VERSION; 27002 oipha->ipha_hdr_checksum = 0; 27003 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 27004 outer_mp->b_cont = inner_mp; 27005 ipsec_mp->b_cont = outer_mp; 27006 27007 io->ipsec_out_se_done = B_TRUE; 27008 io->ipsec_out_tunnel = B_TRUE; 27009 } 27010 27011 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 27012 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 27013 !ipsec_out_select_sa(ipsec_mp)) 27014 return; 27015 27016 /* 27017 * By now, we know what SA's to use. Toss over to ESP & AH 27018 * to do the heavy lifting. 27019 */ 27020 zoneid = io->ipsec_out_zoneid; 27021 ASSERT(zoneid != ALL_ZONES); 27022 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 27023 ASSERT(io->ipsec_out_esp_sa != NULL); 27024 io->ipsec_out_esp_done = B_TRUE; 27025 /* 27026 * Note that since hw accel can only apply one transform, 27027 * not two, we skip hw accel for ESP if we also have AH 27028 * This is an design limitation of the interface 27029 * which should be revisited. 27030 */ 27031 ASSERT(ire != NULL); 27032 if (io->ipsec_out_ah_sa == NULL) { 27033 ill = (ill_t *)ire->ire_stq->q_ptr; 27034 ipsec_out_is_accelerated(ipsec_mp, 27035 io->ipsec_out_esp_sa, ill, ire); 27036 } 27037 27038 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27039 switch (ipsec_rc) { 27040 case IPSEC_STATUS_SUCCESS: 27041 break; 27042 case IPSEC_STATUS_FAILED: 27043 if (ill != NULL) { 27044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27045 } else { 27046 BUMP_MIB(&ipst->ips_ip_mib, 27047 ipIfStatsOutDiscards); 27048 } 27049 /* FALLTHRU */ 27050 case IPSEC_STATUS_PENDING: 27051 return; 27052 } 27053 } 27054 27055 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27056 ASSERT(io->ipsec_out_ah_sa != NULL); 27057 io->ipsec_out_ah_done = B_TRUE; 27058 if (ire == NULL) { 27059 int idx = io->ipsec_out_capab_ill_index; 27060 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27061 NULL, NULL, NULL, NULL, ipst); 27062 ill_need_rele = B_TRUE; 27063 } else { 27064 ill = (ill_t *)ire->ire_stq->q_ptr; 27065 } 27066 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27067 ire); 27068 27069 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27070 switch (ipsec_rc) { 27071 case IPSEC_STATUS_SUCCESS: 27072 break; 27073 case IPSEC_STATUS_FAILED: 27074 if (ill != NULL) { 27075 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27076 } else { 27077 BUMP_MIB(&ipst->ips_ip_mib, 27078 ipIfStatsOutDiscards); 27079 } 27080 /* FALLTHRU */ 27081 case IPSEC_STATUS_PENDING: 27082 if (ill != NULL && ill_need_rele) 27083 ill_refrele(ill); 27084 return; 27085 } 27086 } 27087 /* 27088 * We are done with IPSEC processing. Send it over 27089 * the wire. 27090 */ 27091 done: 27092 mp = ipsec_mp->b_cont; 27093 ipha = (ipha_t *)mp->b_rptr; 27094 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27095 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27096 } else { 27097 ip6h = (ip6_t *)ipha; 27098 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27099 } 27100 if (ill != NULL && ill_need_rele) 27101 ill_refrele(ill); 27102 } 27103 27104 /* ARGSUSED */ 27105 void 27106 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27107 { 27108 opt_restart_t *or; 27109 int err; 27110 conn_t *connp; 27111 27112 ASSERT(CONN_Q(q)); 27113 connp = Q_TO_CONN(q); 27114 27115 ASSERT(first_mp->b_datap->db_type == M_CTL); 27116 or = (opt_restart_t *)first_mp->b_rptr; 27117 /* 27118 * We don't need to pass any credentials here since this is just 27119 * a restart. The credentials are passed in when svr4_optcom_req 27120 * is called the first time (from ip_wput_nondata). 27121 */ 27122 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27123 err = svr4_optcom_req(q, first_mp, NULL, 27124 &ip_opt_obj); 27125 } else { 27126 ASSERT(or->or_type == T_OPTMGMT_REQ); 27127 err = tpi_optcom_req(q, first_mp, NULL, 27128 &ip_opt_obj); 27129 } 27130 if (err != EINPROGRESS) { 27131 /* operation is done */ 27132 CONN_OPER_PENDING_DONE(connp); 27133 } 27134 } 27135 27136 /* 27137 * ioctls that go through a down/up sequence may need to wait for the down 27138 * to complete. This involves waiting for the ire and ipif refcnts to go down 27139 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27140 */ 27141 /* ARGSUSED */ 27142 void 27143 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27144 { 27145 struct iocblk *iocp; 27146 mblk_t *mp1; 27147 ip_ioctl_cmd_t *ipip; 27148 int err; 27149 sin_t *sin; 27150 struct lifreq *lifr; 27151 struct ifreq *ifr; 27152 27153 iocp = (struct iocblk *)mp->b_rptr; 27154 ASSERT(ipsq != NULL); 27155 /* Existence of mp1 verified in ip_wput_nondata */ 27156 mp1 = mp->b_cont->b_cont; 27157 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27158 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27159 /* 27160 * Special case where ipsq_current_ipif is not set: 27161 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27162 * ill could also have become part of a ipmp group in the 27163 * process, we are here as were not able to complete the 27164 * operation in ipif_set_values because we could not become 27165 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27166 * will not be set so we need to set it. 27167 */ 27168 ill_t *ill = q->q_ptr; 27169 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27170 } 27171 ASSERT(ipsq->ipsq_current_ipif != NULL); 27172 27173 if (ipip->ipi_cmd_type == IF_CMD) { 27174 /* This a old style SIOC[GS]IF* command */ 27175 ifr = (struct ifreq *)mp1->b_rptr; 27176 sin = (sin_t *)&ifr->ifr_addr; 27177 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27178 /* This a new style SIOC[GS]LIF* command */ 27179 lifr = (struct lifreq *)mp1->b_rptr; 27180 sin = (sin_t *)&lifr->lifr_addr; 27181 } else { 27182 sin = NULL; 27183 } 27184 27185 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27186 ipip, mp1->b_rptr); 27187 27188 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27189 } 27190 27191 /* 27192 * ioctl processing 27193 * 27194 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27195 * the ioctl command in the ioctl tables and determines the copyin data size 27196 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27197 * size. 27198 * 27199 * ioctl processing then continues when the M_IOCDATA makes its way down. 27200 * Now the ioctl is looked up again in the ioctl table, and its properties are 27201 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27202 * and the general ioctl processing function ip_process_ioctl is called. 27203 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27204 * so goes thru the serialization primitive ipsq_try_enter. Then the 27205 * appropriate function to handle the ioctl is called based on the entry in 27206 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27207 * which also refreleases the 'conn' that was refheld at the start of the 27208 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27209 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27210 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27211 * 27212 * Many exclusive ioctls go thru an internal down up sequence as part of 27213 * the operation. For example an attempt to change the IP address of an 27214 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27215 * does all the cleanup such as deleting all ires that use this address. 27216 * Then we need to wait till all references to the interface go away. 27217 */ 27218 void 27219 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27220 { 27221 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27222 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27223 cmd_info_t ci; 27224 int err; 27225 boolean_t entered_ipsq = B_FALSE; 27226 27227 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27228 27229 if (ipip == NULL) 27230 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27231 27232 /* 27233 * SIOCLIFADDIF needs to go thru a special path since the 27234 * ill may not exist yet. This happens in the case of lo0 27235 * which is created using this ioctl. 27236 */ 27237 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27238 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27239 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27240 return; 27241 } 27242 27243 ci.ci_ipif = NULL; 27244 switch (ipip->ipi_cmd_type) { 27245 case IF_CMD: 27246 case LIF_CMD: 27247 /* 27248 * ioctls that pass in a [l]ifreq appear here. 27249 * ip_extract_lifreq_cmn returns a refheld ipif in 27250 * ci.ci_ipif 27251 */ 27252 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27253 ipip->ipi_flags, &ci, ip_process_ioctl); 27254 if (err != 0) { 27255 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27256 return; 27257 } 27258 ASSERT(ci.ci_ipif != NULL); 27259 break; 27260 27261 case TUN_CMD: 27262 /* 27263 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27264 * a refheld ipif in ci.ci_ipif 27265 */ 27266 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27267 if (err != 0) { 27268 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27269 return; 27270 } 27271 ASSERT(ci.ci_ipif != NULL); 27272 break; 27273 27274 case MISC_CMD: 27275 /* 27276 * ioctls that neither pass in [l]ifreq or iftun_req come here 27277 * For eg. SIOCGLIFCONF will appear here. 27278 */ 27279 switch (ipip->ipi_cmd) { 27280 case IF_UNITSEL: 27281 /* ioctl comes down the ill */ 27282 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27283 ipif_refhold(ci.ci_ipif); 27284 break; 27285 case SIOCGMSFILTER: 27286 case SIOCSMSFILTER: 27287 case SIOCGIPMSFILTER: 27288 case SIOCSIPMSFILTER: 27289 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27290 ip_process_ioctl); 27291 if (err != 0) { 27292 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27293 NULL); 27294 } 27295 break; 27296 } 27297 err = 0; 27298 ci.ci_sin = NULL; 27299 ci.ci_sin6 = NULL; 27300 ci.ci_lifr = NULL; 27301 break; 27302 } 27303 27304 /* 27305 * If ipsq is non-null, we are already being called exclusively 27306 */ 27307 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27308 if (!(ipip->ipi_flags & IPI_WR)) { 27309 /* 27310 * A return value of EINPROGRESS means the ioctl is 27311 * either queued and waiting for some reason or has 27312 * already completed. 27313 */ 27314 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27315 ci.ci_lifr); 27316 if (ci.ci_ipif != NULL) 27317 ipif_refrele(ci.ci_ipif); 27318 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27319 return; 27320 } 27321 27322 ASSERT(ci.ci_ipif != NULL); 27323 27324 if (ipsq == NULL) { 27325 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27326 ip_process_ioctl, NEW_OP, B_TRUE); 27327 entered_ipsq = B_TRUE; 27328 } 27329 /* 27330 * Release the ipif so that ipif_down and friends that wait for 27331 * references to go away are not misled about the current ipif_refcnt 27332 * values. We are writer so we can access the ipif even after releasing 27333 * the ipif. 27334 */ 27335 ipif_refrele(ci.ci_ipif); 27336 if (ipsq == NULL) 27337 return; 27338 27339 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27340 27341 /* 27342 * For most set ioctls that come here, this serves as a single point 27343 * where we set the IPIF_CHANGING flag. This ensures that there won't 27344 * be any new references to the ipif. This helps functions that go 27345 * through this path and end up trying to wait for the refcnts 27346 * associated with the ipif to go down to zero. Some exceptions are 27347 * Failover, Failback, and Groupname commands that operate on more than 27348 * just the ci.ci_ipif. These commands internally determine the 27349 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27350 * flags on that set. Another exception is the Removeif command that 27351 * sets the IPIF_CONDEMNED flag internally after identifying the right 27352 * ipif to operate on. 27353 */ 27354 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27355 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27356 ipip->ipi_cmd != SIOCLIFFAILOVER && 27357 ipip->ipi_cmd != SIOCLIFFAILBACK && 27358 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27359 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27360 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27361 27362 /* 27363 * A return value of EINPROGRESS means the ioctl is 27364 * either queued and waiting for some reason or has 27365 * already completed. 27366 */ 27367 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27368 27369 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27370 27371 if (entered_ipsq) 27372 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27373 } 27374 27375 /* 27376 * Complete the ioctl. Typically ioctls use the mi package and need to 27377 * do mi_copyout/mi_copy_done. 27378 */ 27379 void 27380 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27381 { 27382 conn_t *connp = NULL; 27383 27384 if (err == EINPROGRESS) 27385 return; 27386 27387 if (CONN_Q(q)) { 27388 connp = Q_TO_CONN(q); 27389 ASSERT(connp->conn_ref >= 2); 27390 } 27391 27392 switch (mode) { 27393 case COPYOUT: 27394 if (err == 0) 27395 mi_copyout(q, mp); 27396 else 27397 mi_copy_done(q, mp, err); 27398 break; 27399 27400 case NO_COPYOUT: 27401 mi_copy_done(q, mp, err); 27402 break; 27403 27404 default: 27405 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27406 break; 27407 } 27408 27409 /* 27410 * The refhold placed at the start of the ioctl is released here. 27411 */ 27412 if (connp != NULL) 27413 CONN_OPER_PENDING_DONE(connp); 27414 27415 if (ipsq != NULL) 27416 ipsq_current_finish(ipsq); 27417 } 27418 27419 /* 27420 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27421 */ 27422 /* ARGSUSED */ 27423 void 27424 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27425 { 27426 conn_t *connp = arg; 27427 tcp_t *tcp; 27428 27429 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27430 tcp = connp->conn_tcp; 27431 27432 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27433 freemsg(mp); 27434 else 27435 tcp_rput_other(tcp, mp); 27436 CONN_OPER_PENDING_DONE(connp); 27437 } 27438 27439 /* Called from ip_wput for all non data messages */ 27440 /* ARGSUSED */ 27441 void 27442 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27443 { 27444 mblk_t *mp1; 27445 ire_t *ire, *fake_ire; 27446 ill_t *ill; 27447 struct iocblk *iocp; 27448 ip_ioctl_cmd_t *ipip; 27449 cred_t *cr; 27450 conn_t *connp; 27451 int cmd, err; 27452 nce_t *nce; 27453 ipif_t *ipif; 27454 ip_stack_t *ipst; 27455 char *proto_str; 27456 27457 if (CONN_Q(q)) { 27458 connp = Q_TO_CONN(q); 27459 ipst = connp->conn_netstack->netstack_ip; 27460 } else { 27461 connp = NULL; 27462 ipst = ILLQ_TO_IPST(q); 27463 } 27464 27465 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27466 27467 /* Check if it is a queue to /dev/sctp. */ 27468 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27469 connp->conn_rq == NULL) { 27470 sctp_wput(q, mp); 27471 return; 27472 } 27473 27474 switch (DB_TYPE(mp)) { 27475 case M_IOCTL: 27476 /* 27477 * IOCTL processing begins in ip_sioctl_copyin_setup which 27478 * will arrange to copy in associated control structures. 27479 */ 27480 ip_sioctl_copyin_setup(q, mp); 27481 return; 27482 case M_IOCDATA: 27483 /* 27484 * Ensure that this is associated with one of our trans- 27485 * parent ioctls. If it's not ours, discard it if we're 27486 * running as a driver, or pass it on if we're a module. 27487 */ 27488 iocp = (struct iocblk *)mp->b_rptr; 27489 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27490 if (ipip == NULL) { 27491 if (q->q_next == NULL) { 27492 goto nak; 27493 } else { 27494 putnext(q, mp); 27495 } 27496 return; 27497 } else if ((q->q_next != NULL) && 27498 !(ipip->ipi_flags & IPI_MODOK)) { 27499 /* 27500 * the ioctl is one we recognise, but is not 27501 * consumed by IP as a module, pass M_IOCDATA 27502 * for processing downstream, but only for 27503 * common Streams ioctls. 27504 */ 27505 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27506 putnext(q, mp); 27507 return; 27508 } else { 27509 goto nak; 27510 } 27511 } 27512 27513 /* IOCTL continuation following copyin or copyout. */ 27514 if (mi_copy_state(q, mp, NULL) == -1) { 27515 /* 27516 * The copy operation failed. mi_copy_state already 27517 * cleaned up, so we're out of here. 27518 */ 27519 return; 27520 } 27521 /* 27522 * If we just completed a copy in, we become writer and 27523 * continue processing in ip_sioctl_copyin_done. If it 27524 * was a copy out, we call mi_copyout again. If there is 27525 * nothing more to copy out, it will complete the IOCTL. 27526 */ 27527 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27528 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27529 mi_copy_done(q, mp, EPROTO); 27530 return; 27531 } 27532 /* 27533 * Check for cases that need more copying. A return 27534 * value of 0 means a second copyin has been started, 27535 * so we return; a return value of 1 means no more 27536 * copying is needed, so we continue. 27537 */ 27538 cmd = iocp->ioc_cmd; 27539 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27540 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27541 MI_COPY_COUNT(mp) == 1) { 27542 if (ip_copyin_msfilter(q, mp) == 0) 27543 return; 27544 } 27545 /* 27546 * Refhold the conn, till the ioctl completes. This is 27547 * needed in case the ioctl ends up in the pending mp 27548 * list. Every mp in the ill_pending_mp list and 27549 * the ipsq_pending_mp must have a refhold on the conn 27550 * to resume processing. The refhold is released when 27551 * the ioctl completes. (normally or abnormally) 27552 * In all cases ip_ioctl_finish is called to finish 27553 * the ioctl. 27554 */ 27555 if (connp != NULL) { 27556 /* This is not a reentry */ 27557 ASSERT(ipsq == NULL); 27558 CONN_INC_REF(connp); 27559 } else { 27560 if (!(ipip->ipi_flags & IPI_MODOK)) { 27561 mi_copy_done(q, mp, EINVAL); 27562 return; 27563 } 27564 } 27565 27566 ip_process_ioctl(ipsq, q, mp, ipip); 27567 27568 } else { 27569 mi_copyout(q, mp); 27570 } 27571 return; 27572 nak: 27573 iocp->ioc_error = EINVAL; 27574 mp->b_datap->db_type = M_IOCNAK; 27575 iocp->ioc_count = 0; 27576 qreply(q, mp); 27577 return; 27578 27579 case M_IOCNAK: 27580 /* 27581 * The only way we could get here is if a resolver didn't like 27582 * an IOCTL we sent it. This shouldn't happen. 27583 */ 27584 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27585 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27586 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27587 freemsg(mp); 27588 return; 27589 case M_IOCACK: 27590 /* /dev/ip shouldn't see this */ 27591 if (CONN_Q(q)) 27592 goto nak; 27593 27594 /* Finish socket ioctls passed through to ARP. */ 27595 ip_sioctl_iocack(q, mp); 27596 return; 27597 case M_FLUSH: 27598 if (*mp->b_rptr & FLUSHW) 27599 flushq(q, FLUSHALL); 27600 if (q->q_next) { 27601 putnext(q, mp); 27602 return; 27603 } 27604 if (*mp->b_rptr & FLUSHR) { 27605 *mp->b_rptr &= ~FLUSHW; 27606 qreply(q, mp); 27607 return; 27608 } 27609 freemsg(mp); 27610 return; 27611 case IRE_DB_REQ_TYPE: 27612 if (connp == NULL) { 27613 proto_str = "IRE_DB_REQ_TYPE"; 27614 goto protonak; 27615 } 27616 /* An Upper Level Protocol wants a copy of an IRE. */ 27617 ip_ire_req(q, mp); 27618 return; 27619 case M_CTL: 27620 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27621 break; 27622 27623 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27624 TUN_HELLO) { 27625 ASSERT(connp != NULL); 27626 connp->conn_flags |= IPCL_IPTUN; 27627 freeb(mp); 27628 return; 27629 } 27630 27631 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27632 IP_ULP_OUT_LABELED) { 27633 out_labeled_t *olp; 27634 27635 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27636 break; 27637 olp = (out_labeled_t *)mp->b_rptr; 27638 connp->conn_ulp_labeled = olp->out_qnext == q; 27639 freemsg(mp); 27640 return; 27641 } 27642 27643 /* M_CTL messages are used by ARP to tell us things. */ 27644 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27645 break; 27646 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27647 case AR_ENTRY_SQUERY: 27648 ip_wput_ctl(q, mp); 27649 return; 27650 case AR_CLIENT_NOTIFY: 27651 ip_arp_news(q, mp); 27652 return; 27653 case AR_DLPIOP_DONE: 27654 ASSERT(q->q_next != NULL); 27655 ill = (ill_t *)q->q_ptr; 27656 /* qwriter_ip releases the refhold */ 27657 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27658 ill_refhold(ill); 27659 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27660 return; 27661 case AR_ARP_CLOSING: 27662 /* 27663 * ARP (above us) is closing. If no ARP bringup is 27664 * currently pending, ack the message so that ARP 27665 * can complete its close. Also mark ill_arp_closing 27666 * so that new ARP bringups will fail. If any 27667 * ARP bringup is currently in progress, we will 27668 * ack this when the current ARP bringup completes. 27669 */ 27670 ASSERT(q->q_next != NULL); 27671 ill = (ill_t *)q->q_ptr; 27672 mutex_enter(&ill->ill_lock); 27673 ill->ill_arp_closing = 1; 27674 if (!ill->ill_arp_bringup_pending) { 27675 mutex_exit(&ill->ill_lock); 27676 qreply(q, mp); 27677 } else { 27678 mutex_exit(&ill->ill_lock); 27679 freemsg(mp); 27680 } 27681 return; 27682 case AR_ARP_EXTEND: 27683 /* 27684 * The ARP module above us is capable of duplicate 27685 * address detection. Old ATM drivers will not send 27686 * this message. 27687 */ 27688 ASSERT(q->q_next != NULL); 27689 ill = (ill_t *)q->q_ptr; 27690 ill->ill_arp_extend = B_TRUE; 27691 freemsg(mp); 27692 return; 27693 default: 27694 break; 27695 } 27696 break; 27697 case M_PROTO: 27698 case M_PCPROTO: 27699 /* 27700 * The only PROTO messages we expect are ULP binds and 27701 * copies of option negotiation acknowledgements. 27702 */ 27703 switch (((union T_primitives *)mp->b_rptr)->type) { 27704 case O_T_BIND_REQ: 27705 case T_BIND_REQ: { 27706 /* Request can get queued in bind */ 27707 if (connp == NULL) { 27708 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27709 goto protonak; 27710 } 27711 /* 27712 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27713 * instead of going through this path. We only get 27714 * here in the following cases: 27715 * 27716 * a. Bind retries, where ipsq is non-NULL. 27717 * b. T_BIND_REQ is issued from non TCP/UDP 27718 * transport, e.g. icmp for raw socket, 27719 * in which case ipsq will be NULL. 27720 */ 27721 ASSERT(ipsq != NULL || 27722 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27723 27724 /* Don't increment refcnt if this is a re-entry */ 27725 if (ipsq == NULL) 27726 CONN_INC_REF(connp); 27727 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27728 connp, NULL) : ip_bind_v4(q, mp, connp); 27729 if (mp == NULL) 27730 return; 27731 if (IPCL_IS_TCP(connp)) { 27732 /* 27733 * In the case of TCP endpoint we 27734 * come here only for bind retries 27735 */ 27736 ASSERT(ipsq != NULL); 27737 CONN_INC_REF(connp); 27738 squeue_fill(connp->conn_sqp, mp, 27739 ip_resume_tcp_bind, connp, 27740 SQTAG_BIND_RETRY); 27741 return; 27742 } else if (IPCL_IS_UDP(connp)) { 27743 /* 27744 * In the case of UDP endpoint we 27745 * come here only for bind retries 27746 */ 27747 ASSERT(ipsq != NULL); 27748 udp_resume_bind(connp, mp); 27749 return; 27750 } 27751 qreply(q, mp); 27752 CONN_OPER_PENDING_DONE(connp); 27753 return; 27754 } 27755 case T_SVR4_OPTMGMT_REQ: 27756 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27757 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27758 27759 if (connp == NULL) { 27760 proto_str = "T_SVR4_OPTMGMT_REQ"; 27761 goto protonak; 27762 } 27763 27764 if (!snmpcom_req(q, mp, ip_snmp_set, 27765 ip_snmp_get, cr)) { 27766 /* 27767 * Call svr4_optcom_req so that it can 27768 * generate the ack. We don't come here 27769 * if this operation is being restarted. 27770 * ip_restart_optmgmt will drop the conn ref. 27771 * In the case of ipsec option after the ipsec 27772 * load is complete conn_restart_ipsec_waiter 27773 * drops the conn ref. 27774 */ 27775 ASSERT(ipsq == NULL); 27776 CONN_INC_REF(connp); 27777 if (ip_check_for_ipsec_opt(q, mp)) 27778 return; 27779 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27780 if (err != EINPROGRESS) { 27781 /* Operation is done */ 27782 CONN_OPER_PENDING_DONE(connp); 27783 } 27784 } 27785 return; 27786 case T_OPTMGMT_REQ: 27787 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27788 /* 27789 * Note: No snmpcom_req support through new 27790 * T_OPTMGMT_REQ. 27791 * Call tpi_optcom_req so that it can 27792 * generate the ack. 27793 */ 27794 if (connp == NULL) { 27795 proto_str = "T_OPTMGMT_REQ"; 27796 goto protonak; 27797 } 27798 27799 ASSERT(ipsq == NULL); 27800 /* 27801 * We don't come here for restart. ip_restart_optmgmt 27802 * will drop the conn ref. In the case of ipsec option 27803 * after the ipsec load is complete 27804 * conn_restart_ipsec_waiter drops the conn ref. 27805 */ 27806 CONN_INC_REF(connp); 27807 if (ip_check_for_ipsec_opt(q, mp)) 27808 return; 27809 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27810 if (err != EINPROGRESS) { 27811 /* Operation is done */ 27812 CONN_OPER_PENDING_DONE(connp); 27813 } 27814 return; 27815 case T_UNBIND_REQ: 27816 if (connp == NULL) { 27817 proto_str = "T_UNBIND_REQ"; 27818 goto protonak; 27819 } 27820 mp = ip_unbind(q, mp); 27821 qreply(q, mp); 27822 return; 27823 default: 27824 /* 27825 * Have to drop any DLPI messages coming down from 27826 * arp (such as an info_req which would cause ip 27827 * to receive an extra info_ack if it was passed 27828 * through. 27829 */ 27830 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27831 (int)*(uint_t *)mp->b_rptr)); 27832 freemsg(mp); 27833 return; 27834 } 27835 /* NOTREACHED */ 27836 case IRE_DB_TYPE: { 27837 nce_t *nce; 27838 ill_t *ill; 27839 in6_addr_t gw_addr_v6; 27840 27841 27842 /* 27843 * This is a response back from a resolver. It 27844 * consists of a message chain containing: 27845 * IRE_MBLK-->LL_HDR_MBLK->pkt 27846 * The IRE_MBLK is the one we allocated in ip_newroute. 27847 * The LL_HDR_MBLK is the DLPI header to use to get 27848 * the attached packet, and subsequent ones for the 27849 * same destination, transmitted. 27850 */ 27851 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27852 break; 27853 /* 27854 * First, check to make sure the resolution succeeded. 27855 * If it failed, the second mblk will be empty. 27856 * If it is, free the chain, dropping the packet. 27857 * (We must ire_delete the ire; that frees the ire mblk) 27858 * We're doing this now to support PVCs for ATM; it's 27859 * a partial xresolv implementation. When we fully implement 27860 * xresolv interfaces, instead of freeing everything here 27861 * we'll initiate neighbor discovery. 27862 * 27863 * For v4 (ARP and other external resolvers) the resolver 27864 * frees the message, so no check is needed. This check 27865 * is required, though, for a full xresolve implementation. 27866 * Including this code here now both shows how external 27867 * resolvers can NACK a resolution request using an 27868 * existing design that has no specific provisions for NACKs, 27869 * and also takes into account that the current non-ARP 27870 * external resolver has been coded to use this method of 27871 * NACKing for all IPv6 (xresolv) cases, 27872 * whether our xresolv implementation is complete or not. 27873 * 27874 */ 27875 ire = (ire_t *)mp->b_rptr; 27876 ill = ire_to_ill(ire); 27877 mp1 = mp->b_cont; /* dl_unitdata_req */ 27878 if (mp1->b_rptr == mp1->b_wptr) { 27879 if (ire->ire_ipversion == IPV6_VERSION) { 27880 /* 27881 * XRESOLV interface. 27882 */ 27883 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27884 mutex_enter(&ire->ire_lock); 27885 gw_addr_v6 = ire->ire_gateway_addr_v6; 27886 mutex_exit(&ire->ire_lock); 27887 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27888 nce = ndp_lookup_v6(ill, 27889 &ire->ire_addr_v6, B_FALSE); 27890 } else { 27891 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27892 B_FALSE); 27893 } 27894 if (nce != NULL) { 27895 nce_resolv_failed(nce); 27896 ndp_delete(nce); 27897 NCE_REFRELE(nce); 27898 } 27899 } 27900 mp->b_cont = NULL; 27901 freemsg(mp1); /* frees the pkt as well */ 27902 ASSERT(ire->ire_nce == NULL); 27903 ire_delete((ire_t *)mp->b_rptr); 27904 return; 27905 } 27906 27907 /* 27908 * Split them into IRE_MBLK and pkt and feed it into 27909 * ire_add_then_send. Then in ire_add_then_send 27910 * the IRE will be added, and then the packet will be 27911 * run back through ip_wput. This time it will make 27912 * it to the wire. 27913 */ 27914 mp->b_cont = NULL; 27915 mp = mp1->b_cont; /* now, mp points to pkt */ 27916 mp1->b_cont = NULL; 27917 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27918 if (ire->ire_ipversion == IPV6_VERSION) { 27919 /* 27920 * XRESOLV interface. Find the nce and put a copy 27921 * of the dl_unitdata_req in nce_res_mp 27922 */ 27923 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27924 mutex_enter(&ire->ire_lock); 27925 gw_addr_v6 = ire->ire_gateway_addr_v6; 27926 mutex_exit(&ire->ire_lock); 27927 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27928 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27929 B_FALSE); 27930 } else { 27931 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27932 } 27933 if (nce != NULL) { 27934 /* 27935 * We have to protect nce_res_mp here 27936 * from being accessed by other threads 27937 * while we change the mblk pointer. 27938 * Other functions will also lock the nce when 27939 * accessing nce_res_mp. 27940 * 27941 * The reason we change the mblk pointer 27942 * here rather than copying the resolved address 27943 * into the template is that, unlike with 27944 * ethernet, we have no guarantee that the 27945 * resolved address length will be 27946 * smaller than or equal to the lla length 27947 * with which the template was allocated, 27948 * (for ethernet, they're equal) 27949 * so we have to use the actual resolved 27950 * address mblk - which holds the real 27951 * dl_unitdata_req with the resolved address. 27952 * 27953 * Doing this is the same behavior as was 27954 * previously used in the v4 ARP case. 27955 */ 27956 mutex_enter(&nce->nce_lock); 27957 if (nce->nce_res_mp != NULL) 27958 freemsg(nce->nce_res_mp); 27959 nce->nce_res_mp = mp1; 27960 mutex_exit(&nce->nce_lock); 27961 /* 27962 * We do a fastpath probe here because 27963 * we have resolved the address without 27964 * using Neighbor Discovery. 27965 * In the non-XRESOLV v6 case, the fastpath 27966 * probe is done right after neighbor 27967 * discovery completes. 27968 */ 27969 if (nce->nce_res_mp != NULL) { 27970 int res; 27971 nce_fastpath_list_add(nce); 27972 res = ill_fastpath_probe(ill, 27973 nce->nce_res_mp); 27974 if (res != 0 && res != EAGAIN) 27975 nce_fastpath_list_delete(nce); 27976 } 27977 27978 ire_add_then_send(q, ire, mp); 27979 /* 27980 * Now we have to clean out any packets 27981 * that may have been queued on the nce 27982 * while it was waiting for address resolution 27983 * to complete. 27984 */ 27985 mutex_enter(&nce->nce_lock); 27986 mp1 = nce->nce_qd_mp; 27987 nce->nce_qd_mp = NULL; 27988 mutex_exit(&nce->nce_lock); 27989 while (mp1 != NULL) { 27990 mblk_t *nxt_mp; 27991 queue_t *fwdq = NULL; 27992 ill_t *inbound_ill; 27993 uint_t ifindex; 27994 27995 nxt_mp = mp1->b_next; 27996 mp1->b_next = NULL; 27997 /* 27998 * Retrieve ifindex stored in 27999 * ip_rput_data_v6() 28000 */ 28001 ifindex = 28002 (uint_t)(uintptr_t)mp1->b_prev; 28003 inbound_ill = 28004 ill_lookup_on_ifindex(ifindex, 28005 B_TRUE, NULL, NULL, NULL, 28006 NULL, ipst); 28007 mp1->b_prev = NULL; 28008 if (inbound_ill != NULL) 28009 fwdq = inbound_ill->ill_rq; 28010 28011 if (fwdq != NULL) { 28012 put(fwdq, mp1); 28013 ill_refrele(inbound_ill); 28014 } else 28015 put(WR(ill->ill_rq), mp1); 28016 mp1 = nxt_mp; 28017 } 28018 NCE_REFRELE(nce); 28019 } else { /* nce is NULL; clean up */ 28020 ire_delete(ire); 28021 freemsg(mp); 28022 freemsg(mp1); 28023 return; 28024 } 28025 } else { 28026 nce_t *arpce; 28027 /* 28028 * Link layer resolution succeeded. Recompute the 28029 * ire_nce. 28030 */ 28031 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 28032 if ((arpce = ndp_lookup_v4(ill, 28033 (ire->ire_gateway_addr != INADDR_ANY ? 28034 &ire->ire_gateway_addr : &ire->ire_addr), 28035 B_FALSE)) == NULL) { 28036 freeb(ire->ire_mp); 28037 freeb(mp1); 28038 freemsg(mp); 28039 return; 28040 } 28041 mutex_enter(&arpce->nce_lock); 28042 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28043 if (arpce->nce_state == ND_REACHABLE) { 28044 /* 28045 * Someone resolved this before us; 28046 * cleanup the res_mp. Since ire has 28047 * not been added yet, the call to ire_add_v4 28048 * from ire_add_then_send (when a dup is 28049 * detected) will clean up the ire. 28050 */ 28051 freeb(mp1); 28052 } else { 28053 if (arpce->nce_res_mp != NULL) 28054 freemsg(arpce->nce_res_mp); 28055 arpce->nce_res_mp = mp1; 28056 arpce->nce_state = ND_REACHABLE; 28057 } 28058 mutex_exit(&arpce->nce_lock); 28059 if (ire->ire_marks & IRE_MARK_NOADD) { 28060 /* 28061 * this ire will not be added to the ire 28062 * cache table, so we can set the ire_nce 28063 * here, as there are no atomicity constraints. 28064 */ 28065 ire->ire_nce = arpce; 28066 /* 28067 * We are associating this nce with the ire 28068 * so change the nce ref taken in 28069 * ndp_lookup_v4() from 28070 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28071 */ 28072 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28073 } else { 28074 NCE_REFRELE(arpce); 28075 } 28076 ire_add_then_send(q, ire, mp); 28077 } 28078 return; /* All is well, the packet has been sent. */ 28079 } 28080 case IRE_ARPRESOLVE_TYPE: { 28081 28082 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28083 break; 28084 mp1 = mp->b_cont; /* dl_unitdata_req */ 28085 mp->b_cont = NULL; 28086 /* 28087 * First, check to make sure the resolution succeeded. 28088 * If it failed, the second mblk will be empty. 28089 */ 28090 if (mp1->b_rptr == mp1->b_wptr) { 28091 /* cleanup the incomplete ire, free queued packets */ 28092 freemsg(mp); /* fake ire */ 28093 freeb(mp1); /* dl_unitdata response */ 28094 return; 28095 } 28096 28097 /* 28098 * update any incomplete nce_t found. we lookup the ctable 28099 * and find the nce from the ire->ire_nce because we need 28100 * to pass the ire to ip_xmit_v4 later, and can find both 28101 * ire and nce in one lookup from the ctable. 28102 */ 28103 fake_ire = (ire_t *)mp->b_rptr; 28104 /* 28105 * By the time we come back here from ARP 28106 * the logical outgoing interface of the incomplete ire 28107 * we added in ire_forward could have disappeared, 28108 * causing the incomplete ire to also have 28109 * dissapeared. So we need to retreive the 28110 * proper ipif for the ire before looking 28111 * in ctable; do the ctablelookup based on ire_ipif_seqid 28112 */ 28113 ill = q->q_ptr; 28114 28115 /* Get the outgoing ipif */ 28116 mutex_enter(&ill->ill_lock); 28117 if (ill->ill_state_flags & ILL_CONDEMNED) { 28118 mutex_exit(&ill->ill_lock); 28119 freemsg(mp); /* fake ire */ 28120 freeb(mp1); /* dl_unitdata response */ 28121 return; 28122 } 28123 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28124 28125 if (ipif == NULL) { 28126 mutex_exit(&ill->ill_lock); 28127 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28128 freemsg(mp); 28129 freeb(mp1); 28130 return; 28131 } 28132 ipif_refhold_locked(ipif); 28133 mutex_exit(&ill->ill_lock); 28134 ire = ire_ctable_lookup(fake_ire->ire_addr, 28135 fake_ire->ire_gateway_addr, IRE_CACHE, 28136 ipif, fake_ire->ire_zoneid, NULL, 28137 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28138 ipif_refrele(ipif); 28139 if (ire == NULL) { 28140 /* 28141 * no ire was found; check if there is an nce 28142 * for this lookup; if it has no ire's pointing at it 28143 * cleanup. 28144 */ 28145 if ((nce = ndp_lookup_v4(ill, 28146 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28147 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28148 B_FALSE)) != NULL) { 28149 /* 28150 * cleanup: 28151 * We check for refcnt 2 (one for the nce 28152 * hash list + 1 for the ref taken by 28153 * ndp_lookup_v4) to check that there are 28154 * no ire's pointing at the nce. 28155 */ 28156 if (nce->nce_refcnt == 2) 28157 ndp_delete(nce); 28158 NCE_REFRELE(nce); 28159 } 28160 freeb(mp1); /* dl_unitdata response */ 28161 freemsg(mp); /* fake ire */ 28162 return; 28163 } 28164 nce = ire->ire_nce; 28165 DTRACE_PROBE2(ire__arpresolve__type, 28166 ire_t *, ire, nce_t *, nce); 28167 ASSERT(nce->nce_state != ND_INITIAL); 28168 mutex_enter(&nce->nce_lock); 28169 nce->nce_last = TICK_TO_MSEC(lbolt64); 28170 if (nce->nce_state == ND_REACHABLE) { 28171 /* 28172 * Someone resolved this before us; 28173 * our response is not needed any more. 28174 */ 28175 mutex_exit(&nce->nce_lock); 28176 freeb(mp1); /* dl_unitdata response */ 28177 } else { 28178 if (nce->nce_res_mp != NULL) { 28179 freemsg(nce->nce_res_mp); 28180 /* existing dl_unitdata template */ 28181 } 28182 nce->nce_res_mp = mp1; 28183 nce->nce_state = ND_REACHABLE; 28184 mutex_exit(&nce->nce_lock); 28185 nce_fastpath(nce); 28186 } 28187 /* 28188 * The cached nce_t has been updated to be reachable; 28189 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28190 */ 28191 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28192 freemsg(mp); 28193 /* 28194 * send out queued packets. 28195 */ 28196 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28197 28198 IRE_REFRELE(ire); 28199 return; 28200 } 28201 default: 28202 break; 28203 } 28204 if (q->q_next) { 28205 putnext(q, mp); 28206 } else 28207 freemsg(mp); 28208 return; 28209 28210 protonak: 28211 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28212 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28213 qreply(q, mp); 28214 } 28215 28216 /* 28217 * Process IP options in an outbound packet. Modify the destination if there 28218 * is a source route option. 28219 * Returns non-zero if something fails in which case an ICMP error has been 28220 * sent and mp freed. 28221 */ 28222 static int 28223 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28224 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28225 { 28226 ipoptp_t opts; 28227 uchar_t *opt; 28228 uint8_t optval; 28229 uint8_t optlen; 28230 ipaddr_t dst; 28231 intptr_t code = 0; 28232 mblk_t *mp; 28233 ire_t *ire = NULL; 28234 28235 ip2dbg(("ip_wput_options\n")); 28236 mp = ipsec_mp; 28237 if (mctl_present) { 28238 mp = ipsec_mp->b_cont; 28239 } 28240 28241 dst = ipha->ipha_dst; 28242 for (optval = ipoptp_first(&opts, ipha); 28243 optval != IPOPT_EOL; 28244 optval = ipoptp_next(&opts)) { 28245 opt = opts.ipoptp_cur; 28246 optlen = opts.ipoptp_len; 28247 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28248 optval, optlen)); 28249 switch (optval) { 28250 uint32_t off; 28251 case IPOPT_SSRR: 28252 case IPOPT_LSRR: 28253 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28254 ip1dbg(( 28255 "ip_wput_options: bad option offset\n")); 28256 code = (char *)&opt[IPOPT_OLEN] - 28257 (char *)ipha; 28258 goto param_prob; 28259 } 28260 off = opt[IPOPT_OFFSET]; 28261 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28262 ntohl(dst))); 28263 /* 28264 * For strict: verify that dst is directly 28265 * reachable. 28266 */ 28267 if (optval == IPOPT_SSRR) { 28268 ire = ire_ftable_lookup(dst, 0, 0, 28269 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28270 MBLK_GETLABEL(mp), 28271 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28272 if (ire == NULL) { 28273 ip1dbg(("ip_wput_options: SSRR not" 28274 " directly reachable: 0x%x\n", 28275 ntohl(dst))); 28276 goto bad_src_route; 28277 } 28278 ire_refrele(ire); 28279 } 28280 break; 28281 case IPOPT_RR: 28282 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28283 ip1dbg(( 28284 "ip_wput_options: bad option offset\n")); 28285 code = (char *)&opt[IPOPT_OLEN] - 28286 (char *)ipha; 28287 goto param_prob; 28288 } 28289 break; 28290 case IPOPT_TS: 28291 /* 28292 * Verify that length >=5 and that there is either 28293 * room for another timestamp or that the overflow 28294 * counter is not maxed out. 28295 */ 28296 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28297 if (optlen < IPOPT_MINLEN_IT) { 28298 goto param_prob; 28299 } 28300 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28301 ip1dbg(( 28302 "ip_wput_options: bad option offset\n")); 28303 code = (char *)&opt[IPOPT_OFFSET] - 28304 (char *)ipha; 28305 goto param_prob; 28306 } 28307 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28308 case IPOPT_TS_TSONLY: 28309 off = IPOPT_TS_TIMELEN; 28310 break; 28311 case IPOPT_TS_TSANDADDR: 28312 case IPOPT_TS_PRESPEC: 28313 case IPOPT_TS_PRESPEC_RFC791: 28314 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28315 break; 28316 default: 28317 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28318 (char *)ipha; 28319 goto param_prob; 28320 } 28321 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28322 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28323 /* 28324 * No room and the overflow counter is 15 28325 * already. 28326 */ 28327 goto param_prob; 28328 } 28329 break; 28330 } 28331 } 28332 28333 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28334 return (0); 28335 28336 ip1dbg(("ip_wput_options: error processing IP options.")); 28337 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28338 28339 param_prob: 28340 /* 28341 * Since ip_wput() isn't close to finished, we fill 28342 * in enough of the header for credible error reporting. 28343 */ 28344 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28345 /* Failed */ 28346 freemsg(ipsec_mp); 28347 return (-1); 28348 } 28349 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28350 return (-1); 28351 28352 bad_src_route: 28353 /* 28354 * Since ip_wput() isn't close to finished, we fill 28355 * in enough of the header for credible error reporting. 28356 */ 28357 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28358 /* Failed */ 28359 freemsg(ipsec_mp); 28360 return (-1); 28361 } 28362 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28363 return (-1); 28364 } 28365 28366 /* 28367 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28368 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28369 * thru /etc/system. 28370 */ 28371 #define CONN_MAXDRAINCNT 64 28372 28373 static void 28374 conn_drain_init(ip_stack_t *ipst) 28375 { 28376 int i; 28377 28378 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28379 28380 if ((ipst->ips_conn_drain_list_cnt == 0) || 28381 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28382 /* 28383 * Default value of the number of drainers is the 28384 * number of cpus, subject to maximum of 8 drainers. 28385 */ 28386 if (boot_max_ncpus != -1) 28387 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28388 else 28389 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28390 } 28391 28392 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28393 sizeof (idl_t), KM_SLEEP); 28394 28395 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28396 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28397 MUTEX_DEFAULT, NULL); 28398 } 28399 } 28400 28401 static void 28402 conn_drain_fini(ip_stack_t *ipst) 28403 { 28404 int i; 28405 28406 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28407 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28408 kmem_free(ipst->ips_conn_drain_list, 28409 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28410 ipst->ips_conn_drain_list = NULL; 28411 } 28412 28413 /* 28414 * Note: For an overview of how flowcontrol is handled in IP please see the 28415 * IP Flowcontrol notes at the top of this file. 28416 * 28417 * Flow control has blocked us from proceeding. Insert the given conn in one 28418 * of the conn drain lists. These conn wq's will be qenabled later on when 28419 * STREAMS flow control does a backenable. conn_walk_drain will enable 28420 * the first conn in each of these drain lists. Each of these qenabled conns 28421 * in turn enables the next in the list, after it runs, or when it closes, 28422 * thus sustaining the drain process. 28423 * 28424 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28425 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28426 * running at any time, on a given conn, since there can be only 1 service proc 28427 * running on a queue at any time. 28428 */ 28429 void 28430 conn_drain_insert(conn_t *connp) 28431 { 28432 idl_t *idl; 28433 uint_t index; 28434 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28435 28436 mutex_enter(&connp->conn_lock); 28437 if (connp->conn_state_flags & CONN_CLOSING) { 28438 /* 28439 * The conn is closing as a result of which CONN_CLOSING 28440 * is set. Return. 28441 */ 28442 mutex_exit(&connp->conn_lock); 28443 return; 28444 } else if (connp->conn_idl == NULL) { 28445 /* 28446 * Assign the next drain list round robin. We dont' use 28447 * a lock, and thus it may not be strictly round robin. 28448 * Atomicity of load/stores is enough to make sure that 28449 * conn_drain_list_index is always within bounds. 28450 */ 28451 index = ipst->ips_conn_drain_list_index; 28452 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28453 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28454 index++; 28455 if (index == ipst->ips_conn_drain_list_cnt) 28456 index = 0; 28457 ipst->ips_conn_drain_list_index = index; 28458 } 28459 mutex_exit(&connp->conn_lock); 28460 28461 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28462 if ((connp->conn_drain_prev != NULL) || 28463 (connp->conn_state_flags & CONN_CLOSING)) { 28464 /* 28465 * The conn is already in the drain list, OR 28466 * the conn is closing. We need to check again for 28467 * the closing case again since close can happen 28468 * after we drop the conn_lock, and before we 28469 * acquire the CONN_DRAIN_LIST_LOCK. 28470 */ 28471 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28472 return; 28473 } else { 28474 idl = connp->conn_idl; 28475 } 28476 28477 /* 28478 * The conn is not in the drain list. Insert it at the 28479 * tail of the drain list. The drain list is circular 28480 * and doubly linked. idl_conn points to the 1st element 28481 * in the list. 28482 */ 28483 if (idl->idl_conn == NULL) { 28484 idl->idl_conn = connp; 28485 connp->conn_drain_next = connp; 28486 connp->conn_drain_prev = connp; 28487 } else { 28488 conn_t *head = idl->idl_conn; 28489 28490 connp->conn_drain_next = head; 28491 connp->conn_drain_prev = head->conn_drain_prev; 28492 head->conn_drain_prev->conn_drain_next = connp; 28493 head->conn_drain_prev = connp; 28494 } 28495 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28496 } 28497 28498 /* 28499 * This conn is closing, and we are called from ip_close. OR 28500 * This conn has been serviced by ip_wsrv, and we need to do the tail 28501 * processing. 28502 * If this conn is part of the drain list, we may need to sustain the drain 28503 * process by qenabling the next conn in the drain list. We may also need to 28504 * remove this conn from the list, if it is done. 28505 */ 28506 static void 28507 conn_drain_tail(conn_t *connp, boolean_t closing) 28508 { 28509 idl_t *idl; 28510 28511 /* 28512 * connp->conn_idl is stable at this point, and no lock is needed 28513 * to check it. If we are called from ip_close, close has already 28514 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28515 * called us only because conn_idl is non-null. If we are called thru 28516 * service, conn_idl could be null, but it cannot change because 28517 * service is single-threaded per queue, and there cannot be another 28518 * instance of service trying to call conn_drain_insert on this conn 28519 * now. 28520 */ 28521 ASSERT(!closing || (connp->conn_idl != NULL)); 28522 28523 /* 28524 * If connp->conn_idl is null, the conn has not been inserted into any 28525 * drain list even once since creation of the conn. Just return. 28526 */ 28527 if (connp->conn_idl == NULL) 28528 return; 28529 28530 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28531 28532 if (connp->conn_drain_prev == NULL) { 28533 /* This conn is currently not in the drain list. */ 28534 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28535 return; 28536 } 28537 idl = connp->conn_idl; 28538 if (idl->idl_conn_draining == connp) { 28539 /* 28540 * This conn is the current drainer. If this is the last conn 28541 * in the drain list, we need to do more checks, in the 'if' 28542 * below. Otherwwise we need to just qenable the next conn, 28543 * to sustain the draining, and is handled in the 'else' 28544 * below. 28545 */ 28546 if (connp->conn_drain_next == idl->idl_conn) { 28547 /* 28548 * This conn is the last in this list. This round 28549 * of draining is complete. If idl_repeat is set, 28550 * it means another flow enabling has happened from 28551 * the driver/streams and we need to another round 28552 * of draining. 28553 * If there are more than 2 conns in the drain list, 28554 * do a left rotate by 1, so that all conns except the 28555 * conn at the head move towards the head by 1, and the 28556 * the conn at the head goes to the tail. This attempts 28557 * a more even share for all queues that are being 28558 * drained. 28559 */ 28560 if ((connp->conn_drain_next != connp) && 28561 (idl->idl_conn->conn_drain_next != connp)) { 28562 idl->idl_conn = idl->idl_conn->conn_drain_next; 28563 } 28564 if (idl->idl_repeat) { 28565 qenable(idl->idl_conn->conn_wq); 28566 idl->idl_conn_draining = idl->idl_conn; 28567 idl->idl_repeat = 0; 28568 } else { 28569 idl->idl_conn_draining = NULL; 28570 } 28571 } else { 28572 /* 28573 * If the next queue that we are now qenable'ing, 28574 * is closing, it will remove itself from this list 28575 * and qenable the subsequent queue in ip_close(). 28576 * Serialization is acheived thru idl_lock. 28577 */ 28578 qenable(connp->conn_drain_next->conn_wq); 28579 idl->idl_conn_draining = connp->conn_drain_next; 28580 } 28581 } 28582 if (!connp->conn_did_putbq || closing) { 28583 /* 28584 * Remove ourself from the drain list, if we did not do 28585 * a putbq, or if the conn is closing. 28586 * Note: It is possible that q->q_first is non-null. It means 28587 * that these messages landed after we did a enableok() in 28588 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28589 * service them. 28590 */ 28591 if (connp->conn_drain_next == connp) { 28592 /* Singleton in the list */ 28593 ASSERT(connp->conn_drain_prev == connp); 28594 idl->idl_conn = NULL; 28595 idl->idl_conn_draining = NULL; 28596 } else { 28597 connp->conn_drain_prev->conn_drain_next = 28598 connp->conn_drain_next; 28599 connp->conn_drain_next->conn_drain_prev = 28600 connp->conn_drain_prev; 28601 if (idl->idl_conn == connp) 28602 idl->idl_conn = connp->conn_drain_next; 28603 ASSERT(idl->idl_conn_draining != connp); 28604 28605 } 28606 connp->conn_drain_next = NULL; 28607 connp->conn_drain_prev = NULL; 28608 } 28609 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28610 } 28611 28612 /* 28613 * Write service routine. Shared perimeter entry point. 28614 * ip_wsrv can be called in any of the following ways. 28615 * 1. The device queue's messages has fallen below the low water mark 28616 * and STREAMS has backenabled the ill_wq. We walk thru all the 28617 * the drain lists and backenable the first conn in each list. 28618 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28619 * qenabled non-tcp upper layers. We start dequeing messages and call 28620 * ip_wput for each message. 28621 */ 28622 28623 void 28624 ip_wsrv(queue_t *q) 28625 { 28626 conn_t *connp; 28627 ill_t *ill; 28628 mblk_t *mp; 28629 28630 if (q->q_next) { 28631 ill = (ill_t *)q->q_ptr; 28632 if (ill->ill_state_flags == 0) { 28633 /* 28634 * The device flow control has opened up. 28635 * Walk through conn drain lists and qenable the 28636 * first conn in each list. This makes sense only 28637 * if the stream is fully plumbed and setup. 28638 * Hence the if check above. 28639 */ 28640 ip1dbg(("ip_wsrv: walking\n")); 28641 conn_walk_drain(ill->ill_ipst); 28642 } 28643 return; 28644 } 28645 28646 connp = Q_TO_CONN(q); 28647 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28648 28649 /* 28650 * 1. Set conn_draining flag to signal that service is active. 28651 * 28652 * 2. ip_output determines whether it has been called from service, 28653 * based on the last parameter. If it is IP_WSRV it concludes it 28654 * has been called from service. 28655 * 28656 * 3. Message ordering is preserved by the following logic. 28657 * i. A directly called ip_output (i.e. not thru service) will queue 28658 * the message at the tail, if conn_draining is set (i.e. service 28659 * is running) or if q->q_first is non-null. 28660 * 28661 * ii. If ip_output is called from service, and if ip_output cannot 28662 * putnext due to flow control, it does a putbq. 28663 * 28664 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28665 * (causing an infinite loop). 28666 */ 28667 ASSERT(!connp->conn_did_putbq); 28668 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28669 connp->conn_draining = 1; 28670 noenable(q); 28671 while ((mp = getq(q)) != NULL) { 28672 ASSERT(CONN_Q(q)); 28673 28674 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28675 if (connp->conn_did_putbq) { 28676 /* ip_wput did a putbq */ 28677 break; 28678 } 28679 } 28680 /* 28681 * At this point, a thread coming down from top, calling 28682 * ip_wput, may end up queueing the message. We have not yet 28683 * enabled the queue, so ip_wsrv won't be called again. 28684 * To avoid this race, check q->q_first again (in the loop) 28685 * If the other thread queued the message before we call 28686 * enableok(), we will catch it in the q->q_first check. 28687 * If the other thread queues the message after we call 28688 * enableok(), ip_wsrv will be called again by STREAMS. 28689 */ 28690 connp->conn_draining = 0; 28691 enableok(q); 28692 } 28693 28694 /* Enable the next conn for draining */ 28695 conn_drain_tail(connp, B_FALSE); 28696 28697 connp->conn_did_putbq = 0; 28698 } 28699 28700 /* 28701 * Walk the list of all conn's calling the function provided with the 28702 * specified argument for each. Note that this only walks conn's that 28703 * have been bound. 28704 * Applies to both IPv4 and IPv6. 28705 */ 28706 static void 28707 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28708 { 28709 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28710 ipst->ips_ipcl_udp_fanout_size, 28711 func, arg, zoneid); 28712 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28713 ipst->ips_ipcl_conn_fanout_size, 28714 func, arg, zoneid); 28715 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28716 ipst->ips_ipcl_bind_fanout_size, 28717 func, arg, zoneid); 28718 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28719 IPPROTO_MAX, func, arg, zoneid); 28720 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28721 IPPROTO_MAX, func, arg, zoneid); 28722 } 28723 28724 /* 28725 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28726 * of conns that need to be drained, check if drain is already in progress. 28727 * If so set the idl_repeat bit, indicating that the last conn in the list 28728 * needs to reinitiate the drain once again, for the list. If drain is not 28729 * in progress for the list, initiate the draining, by qenabling the 1st 28730 * conn in the list. The drain is self-sustaining, each qenabled conn will 28731 * in turn qenable the next conn, when it is done/blocked/closing. 28732 */ 28733 static void 28734 conn_walk_drain(ip_stack_t *ipst) 28735 { 28736 int i; 28737 idl_t *idl; 28738 28739 IP_STAT(ipst, ip_conn_walk_drain); 28740 28741 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28742 idl = &ipst->ips_conn_drain_list[i]; 28743 mutex_enter(&idl->idl_lock); 28744 if (idl->idl_conn == NULL) { 28745 mutex_exit(&idl->idl_lock); 28746 continue; 28747 } 28748 /* 28749 * If this list is not being drained currently by 28750 * an ip_wsrv thread, start the process. 28751 */ 28752 if (idl->idl_conn_draining == NULL) { 28753 ASSERT(idl->idl_repeat == 0); 28754 qenable(idl->idl_conn->conn_wq); 28755 idl->idl_conn_draining = idl->idl_conn; 28756 } else { 28757 idl->idl_repeat = 1; 28758 } 28759 mutex_exit(&idl->idl_lock); 28760 } 28761 } 28762 28763 /* 28764 * Walk an conn hash table of `count' buckets, calling func for each entry. 28765 */ 28766 static void 28767 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28768 zoneid_t zoneid) 28769 { 28770 conn_t *connp; 28771 28772 while (count-- > 0) { 28773 mutex_enter(&connfp->connf_lock); 28774 for (connp = connfp->connf_head; connp != NULL; 28775 connp = connp->conn_next) { 28776 if (zoneid == GLOBAL_ZONEID || 28777 zoneid == connp->conn_zoneid) { 28778 CONN_INC_REF(connp); 28779 mutex_exit(&connfp->connf_lock); 28780 (*func)(connp, arg); 28781 mutex_enter(&connfp->connf_lock); 28782 CONN_DEC_REF(connp); 28783 } 28784 } 28785 mutex_exit(&connfp->connf_lock); 28786 connfp++; 28787 } 28788 } 28789 28790 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28791 static void 28792 conn_report1(conn_t *connp, void *mp) 28793 { 28794 char buf1[INET6_ADDRSTRLEN]; 28795 char buf2[INET6_ADDRSTRLEN]; 28796 uint_t print_len, buf_len; 28797 28798 ASSERT(connp != NULL); 28799 28800 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28801 if (buf_len <= 0) 28802 return; 28803 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28804 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28805 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28806 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28807 "%5d %s/%05d %s/%05d\n", 28808 (void *)connp, (void *)CONNP_TO_RQ(connp), 28809 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28810 buf1, connp->conn_lport, 28811 buf2, connp->conn_fport); 28812 if (print_len < buf_len) { 28813 ((mblk_t *)mp)->b_wptr += print_len; 28814 } else { 28815 ((mblk_t *)mp)->b_wptr += buf_len; 28816 } 28817 } 28818 28819 /* 28820 * Named Dispatch routine to produce a formatted report on all conns 28821 * that are listed in one of the fanout tables. 28822 * This report is accessed by using the ndd utility to "get" ND variable 28823 * "ip_conn_status". 28824 */ 28825 /* ARGSUSED */ 28826 static int 28827 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28828 { 28829 conn_t *connp = Q_TO_CONN(q); 28830 28831 (void) mi_mpprintf(mp, 28832 "CONN " MI_COL_HDRPAD_STR 28833 "rfq " MI_COL_HDRPAD_STR 28834 "stq " MI_COL_HDRPAD_STR 28835 " zone local remote"); 28836 28837 /* 28838 * Because of the ndd constraint, at most we can have 64K buffer 28839 * to put in all conn info. So to be more efficient, just 28840 * allocate a 64K buffer here, assuming we need that large buffer. 28841 * This should be OK as only privileged processes can do ndd /dev/ip. 28842 */ 28843 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28844 /* The following may work even if we cannot get a large buf. */ 28845 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28846 return (0); 28847 } 28848 28849 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28850 connp->conn_netstack->netstack_ip); 28851 return (0); 28852 } 28853 28854 /* 28855 * Determine if the ill and multicast aspects of that packets 28856 * "matches" the conn. 28857 */ 28858 boolean_t 28859 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28860 zoneid_t zoneid) 28861 { 28862 ill_t *in_ill; 28863 boolean_t found; 28864 ipif_t *ipif; 28865 ire_t *ire; 28866 ipaddr_t dst, src; 28867 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28868 28869 dst = ipha->ipha_dst; 28870 src = ipha->ipha_src; 28871 28872 /* 28873 * conn_incoming_ill is set by IP_BOUND_IF which limits 28874 * unicast, broadcast and multicast reception to 28875 * conn_incoming_ill. conn_wantpacket itself is called 28876 * only for BROADCAST and multicast. 28877 * 28878 * 1) ip_rput supresses duplicate broadcasts if the ill 28879 * is part of a group. Hence, we should be receiving 28880 * just one copy of broadcast for the whole group. 28881 * Thus, if it is part of the group the packet could 28882 * come on any ill of the group and hence we need a 28883 * match on the group. Otherwise, match on ill should 28884 * be sufficient. 28885 * 28886 * 2) ip_rput does not suppress duplicate multicast packets. 28887 * If there are two interfaces in a ill group and we have 28888 * 2 applications (conns) joined a multicast group G on 28889 * both the interfaces, ilm_lookup_ill filter in ip_rput 28890 * will give us two packets because we join G on both the 28891 * interfaces rather than nominating just one interface 28892 * for receiving multicast like broadcast above. So, 28893 * we have to call ilg_lookup_ill to filter out duplicate 28894 * copies, if ill is part of a group. 28895 */ 28896 in_ill = connp->conn_incoming_ill; 28897 if (in_ill != NULL) { 28898 if (in_ill->ill_group == NULL) { 28899 if (in_ill != ill) 28900 return (B_FALSE); 28901 } else if (in_ill->ill_group != ill->ill_group) { 28902 return (B_FALSE); 28903 } 28904 } 28905 28906 if (!CLASSD(dst)) { 28907 if (IPCL_ZONE_MATCH(connp, zoneid)) 28908 return (B_TRUE); 28909 /* 28910 * The conn is in a different zone; we need to check that this 28911 * broadcast address is configured in the application's zone and 28912 * on one ill in the group. 28913 */ 28914 ipif = ipif_get_next_ipif(NULL, ill); 28915 if (ipif == NULL) 28916 return (B_FALSE); 28917 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28918 connp->conn_zoneid, NULL, 28919 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28920 ipif_refrele(ipif); 28921 if (ire != NULL) { 28922 ire_refrele(ire); 28923 return (B_TRUE); 28924 } else { 28925 return (B_FALSE); 28926 } 28927 } 28928 28929 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28930 connp->conn_zoneid == zoneid) { 28931 /* 28932 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28933 * disabled, therefore we don't dispatch the multicast packet to 28934 * the sending zone. 28935 */ 28936 return (B_FALSE); 28937 } 28938 28939 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28940 /* 28941 * Multicast packet on the loopback interface: we only match 28942 * conns who joined the group in the specified zone. 28943 */ 28944 return (B_FALSE); 28945 } 28946 28947 if (connp->conn_multi_router) { 28948 /* multicast packet and multicast router socket: send up */ 28949 return (B_TRUE); 28950 } 28951 28952 mutex_enter(&connp->conn_lock); 28953 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28954 mutex_exit(&connp->conn_lock); 28955 return (found); 28956 } 28957 28958 /* 28959 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28960 */ 28961 /* ARGSUSED */ 28962 static void 28963 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28964 { 28965 ill_t *ill = (ill_t *)q->q_ptr; 28966 mblk_t *mp1, *mp2; 28967 ipif_t *ipif; 28968 int err = 0; 28969 conn_t *connp = NULL; 28970 ipsq_t *ipsq; 28971 arc_t *arc; 28972 28973 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28974 28975 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28976 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28977 28978 ASSERT(IAM_WRITER_ILL(ill)); 28979 mp2 = mp->b_cont; 28980 mp->b_cont = NULL; 28981 28982 /* 28983 * We have now received the arp bringup completion message 28984 * from ARP. Mark the arp bringup as done. Also if the arp 28985 * stream has already started closing, send up the AR_ARP_CLOSING 28986 * ack now since ARP is waiting in close for this ack. 28987 */ 28988 mutex_enter(&ill->ill_lock); 28989 ill->ill_arp_bringup_pending = 0; 28990 if (ill->ill_arp_closing) { 28991 mutex_exit(&ill->ill_lock); 28992 /* Let's reuse the mp for sending the ack */ 28993 arc = (arc_t *)mp->b_rptr; 28994 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28995 arc->arc_cmd = AR_ARP_CLOSING; 28996 qreply(q, mp); 28997 } else { 28998 mutex_exit(&ill->ill_lock); 28999 freeb(mp); 29000 } 29001 29002 ipsq = ill->ill_phyint->phyint_ipsq; 29003 ipif = ipsq->ipsq_pending_ipif; 29004 mp1 = ipsq_pending_mp_get(ipsq, &connp); 29005 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 29006 if (mp1 == NULL) { 29007 /* bringup was aborted by the user */ 29008 freemsg(mp2); 29009 return; 29010 } 29011 29012 /* 29013 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 29014 * must have an associated conn_t. Otherwise, we're bringing this 29015 * interface back up as part of handling an asynchronous event (e.g., 29016 * physical address change). 29017 */ 29018 if (ipsq->ipsq_current_ioctl != 0) { 29019 ASSERT(connp != NULL); 29020 q = CONNP_TO_WQ(connp); 29021 } else { 29022 ASSERT(connp == NULL); 29023 q = ill->ill_rq; 29024 } 29025 29026 /* 29027 * If the DL_BIND_REQ fails, it is noted 29028 * in arc_name_offset. 29029 */ 29030 err = *((int *)mp2->b_rptr); 29031 if (err == 0) { 29032 if (ipif->ipif_isv6) { 29033 if ((err = ipif_up_done_v6(ipif)) != 0) 29034 ip0dbg(("ip_arp_done: init failed\n")); 29035 } else { 29036 if ((err = ipif_up_done(ipif)) != 0) 29037 ip0dbg(("ip_arp_done: init failed\n")); 29038 } 29039 } else { 29040 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29041 } 29042 29043 freemsg(mp2); 29044 29045 if ((err == 0) && (ill->ill_up_ipifs)) { 29046 err = ill_up_ipifs(ill, q, mp1); 29047 if (err == EINPROGRESS) 29048 return; 29049 } 29050 29051 if (ill->ill_up_ipifs) 29052 ill_group_cleanup(ill); 29053 29054 /* 29055 * The operation must complete without EINPROGRESS since 29056 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29057 * Otherwise, the operation will be stuck forever in the ipsq. 29058 */ 29059 ASSERT(err != EINPROGRESS); 29060 if (ipsq->ipsq_current_ioctl != 0) 29061 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29062 else 29063 ipsq_current_finish(ipsq); 29064 } 29065 29066 /* Allocate the private structure */ 29067 static int 29068 ip_priv_alloc(void **bufp) 29069 { 29070 void *buf; 29071 29072 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29073 return (ENOMEM); 29074 29075 *bufp = buf; 29076 return (0); 29077 } 29078 29079 /* Function to delete the private structure */ 29080 void 29081 ip_priv_free(void *buf) 29082 { 29083 ASSERT(buf != NULL); 29084 kmem_free(buf, sizeof (ip_priv_t)); 29085 } 29086 29087 /* 29088 * The entry point for IPPF processing. 29089 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29090 * routine just returns. 29091 * 29092 * When called, ip_process generates an ipp_packet_t structure 29093 * which holds the state information for this packet and invokes the 29094 * the classifier (via ipp_packet_process). The classification, depending on 29095 * configured filters, results in a list of actions for this packet. Invoking 29096 * an action may cause the packet to be dropped, in which case the resulting 29097 * mblk (*mpp) is NULL. proc indicates the callout position for 29098 * this packet and ill_index is the interface this packet on or will leave 29099 * on (inbound and outbound resp.). 29100 */ 29101 void 29102 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29103 { 29104 mblk_t *mp; 29105 ip_priv_t *priv; 29106 ipp_action_id_t aid; 29107 int rc = 0; 29108 ipp_packet_t *pp; 29109 #define IP_CLASS "ip" 29110 29111 /* If the classifier is not loaded, return */ 29112 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29113 return; 29114 } 29115 29116 mp = *mpp; 29117 ASSERT(mp != NULL); 29118 29119 /* Allocate the packet structure */ 29120 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29121 if (rc != 0) { 29122 *mpp = NULL; 29123 freemsg(mp); 29124 return; 29125 } 29126 29127 /* Allocate the private structure */ 29128 rc = ip_priv_alloc((void **)&priv); 29129 if (rc != 0) { 29130 *mpp = NULL; 29131 freemsg(mp); 29132 ipp_packet_free(pp); 29133 return; 29134 } 29135 priv->proc = proc; 29136 priv->ill_index = ill_index; 29137 ipp_packet_set_private(pp, priv, ip_priv_free); 29138 ipp_packet_set_data(pp, mp); 29139 29140 /* Invoke the classifier */ 29141 rc = ipp_packet_process(&pp); 29142 if (pp != NULL) { 29143 mp = ipp_packet_get_data(pp); 29144 ipp_packet_free(pp); 29145 if (rc != 0) { 29146 freemsg(mp); 29147 *mpp = NULL; 29148 } 29149 } else { 29150 *mpp = NULL; 29151 } 29152 #undef IP_CLASS 29153 } 29154 29155 /* 29156 * Propagate a multicast group membership operation (add/drop) on 29157 * all the interfaces crossed by the related multirt routes. 29158 * The call is considered successful if the operation succeeds 29159 * on at least one interface. 29160 */ 29161 static int 29162 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29163 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29164 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29165 mblk_t *first_mp) 29166 { 29167 ire_t *ire_gw; 29168 irb_t *irb; 29169 int error = 0; 29170 opt_restart_t *or; 29171 ip_stack_t *ipst = ire->ire_ipst; 29172 29173 irb = ire->ire_bucket; 29174 ASSERT(irb != NULL); 29175 29176 ASSERT(DB_TYPE(first_mp) == M_CTL); 29177 29178 or = (opt_restart_t *)first_mp->b_rptr; 29179 IRB_REFHOLD(irb); 29180 for (; ire != NULL; ire = ire->ire_next) { 29181 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29182 continue; 29183 if (ire->ire_addr != group) 29184 continue; 29185 29186 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29187 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29188 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29189 /* No resolver exists for the gateway; skip this ire. */ 29190 if (ire_gw == NULL) 29191 continue; 29192 29193 /* 29194 * This function can return EINPROGRESS. If so the operation 29195 * will be restarted from ip_restart_optmgmt which will 29196 * call ip_opt_set and option processing will restart for 29197 * this option. So we may end up calling 'fn' more than once. 29198 * This requires that 'fn' is idempotent except for the 29199 * return value. The operation is considered a success if 29200 * it succeeds at least once on any one interface. 29201 */ 29202 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29203 NULL, fmode, src, first_mp); 29204 if (error == 0) 29205 or->or_private = CGTP_MCAST_SUCCESS; 29206 29207 if (ip_debug > 0) { 29208 ulong_t off; 29209 char *ksym; 29210 ksym = kobj_getsymname((uintptr_t)fn, &off); 29211 ip2dbg(("ip_multirt_apply_membership: " 29212 "called %s, multirt group 0x%08x via itf 0x%08x, " 29213 "error %d [success %u]\n", 29214 ksym ? ksym : "?", 29215 ntohl(group), ntohl(ire_gw->ire_src_addr), 29216 error, or->or_private)); 29217 } 29218 29219 ire_refrele(ire_gw); 29220 if (error == EINPROGRESS) { 29221 IRB_REFRELE(irb); 29222 return (error); 29223 } 29224 } 29225 IRB_REFRELE(irb); 29226 /* 29227 * Consider the call as successful if we succeeded on at least 29228 * one interface. Otherwise, return the last encountered error. 29229 */ 29230 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29231 } 29232 29233 29234 /* 29235 * Issue a warning regarding a route crossing an interface with an 29236 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29237 * amount of time is logged. 29238 */ 29239 static void 29240 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29241 { 29242 hrtime_t current = gethrtime(); 29243 char buf[INET_ADDRSTRLEN]; 29244 ip_stack_t *ipst = ire->ire_ipst; 29245 29246 /* Convert interval in ms to hrtime in ns */ 29247 if (ipst->ips_multirt_bad_mtu_last_time + 29248 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29249 current) { 29250 cmn_err(CE_WARN, "ip: ignoring multiroute " 29251 "to %s, incorrect MTU %u (expected %u)\n", 29252 ip_dot_addr(ire->ire_addr, buf), 29253 ire->ire_max_frag, max_frag); 29254 29255 ipst->ips_multirt_bad_mtu_last_time = current; 29256 } 29257 } 29258 29259 29260 /* 29261 * Get the CGTP (multirouting) filtering status. 29262 * If 0, the CGTP hooks are transparent. 29263 */ 29264 /* ARGSUSED */ 29265 static int 29266 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29267 { 29268 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29269 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29270 29271 /* 29272 * Only applies to the shared stack since the filter_ops 29273 * do not carry an ip_stack_t or zoneid. 29274 */ 29275 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29276 return (ENOTSUP); 29277 29278 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29279 return (0); 29280 } 29281 29282 29283 /* 29284 * Set the CGTP (multirouting) filtering status. 29285 * If the status is changed from active to transparent 29286 * or from transparent to active, forward the new status 29287 * to the filtering module (if loaded). 29288 */ 29289 /* ARGSUSED */ 29290 static int 29291 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29292 cred_t *ioc_cr) 29293 { 29294 long new_value; 29295 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29296 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29297 29298 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29299 return (EPERM); 29300 29301 /* 29302 * Only applies to the shared stack since the filter_ops 29303 * do not carry an ip_stack_t or zoneid. 29304 */ 29305 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29306 return (ENOTSUP); 29307 29308 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29309 new_value < 0 || new_value > 1) { 29310 return (EINVAL); 29311 } 29312 29313 /* 29314 * Do not enable CGTP filtering - thus preventing the hooks 29315 * from being invoked - if the version number of the 29316 * filtering module hooks does not match. 29317 */ 29318 if ((ip_cgtp_filter_ops != NULL) && 29319 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29320 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29321 "(module hooks version %d, expecting %d)\n", 29322 ip_cgtp_filter_ops->cfo_filter_rev, 29323 CGTP_FILTER_REV); 29324 return (ENOTSUP); 29325 } 29326 29327 if ((!*ip_cgtp_filter_value) && new_value) { 29328 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29329 ip_cgtp_filter_ops == NULL ? 29330 " (module not loaded)" : ""); 29331 } 29332 if (*ip_cgtp_filter_value && (!new_value)) { 29333 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29334 ip_cgtp_filter_ops == NULL ? 29335 " (module not loaded)" : ""); 29336 } 29337 29338 if (ip_cgtp_filter_ops != NULL) { 29339 int res; 29340 29341 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29342 if (res) 29343 return (res); 29344 } 29345 29346 *ip_cgtp_filter_value = (boolean_t)new_value; 29347 29348 return (0); 29349 } 29350 29351 29352 /* 29353 * Return the expected CGTP hooks version number. 29354 */ 29355 int 29356 ip_cgtp_filter_supported(void) 29357 { 29358 ip_stack_t *ipst; 29359 int ret; 29360 29361 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29362 if (ipst == NULL) 29363 return (-1); 29364 ret = ip_cgtp_filter_rev; 29365 netstack_rele(ipst->ips_netstack); 29366 return (ret); 29367 } 29368 29369 29370 /* 29371 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29372 * or by invoking this function. In the first case, the version number 29373 * of the registered structure is checked at hooks activation time 29374 * in ip_cgtp_filter_set(). 29375 * 29376 * Only applies to the shared stack since the filter_ops 29377 * do not carry an ip_stack_t or zoneid. 29378 */ 29379 int 29380 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29381 { 29382 ip_stack_t *ipst; 29383 29384 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29385 return (ENOTSUP); 29386 29387 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29388 if (ipst == NULL) 29389 return (EINVAL); 29390 29391 ip_cgtp_filter_ops = ops; 29392 netstack_rele(ipst->ips_netstack); 29393 return (0); 29394 } 29395 29396 static squeue_func_t 29397 ip_squeue_switch(int val) 29398 { 29399 squeue_func_t rval = squeue_fill; 29400 29401 switch (val) { 29402 case IP_SQUEUE_ENTER_NODRAIN: 29403 rval = squeue_enter_nodrain; 29404 break; 29405 case IP_SQUEUE_ENTER: 29406 rval = squeue_enter; 29407 break; 29408 default: 29409 break; 29410 } 29411 return (rval); 29412 } 29413 29414 /* ARGSUSED */ 29415 static int 29416 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29417 caddr_t addr, cred_t *cr) 29418 { 29419 int *v = (int *)addr; 29420 long new_value; 29421 29422 if (secpolicy_net_config(cr, B_FALSE) != 0) 29423 return (EPERM); 29424 29425 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29426 return (EINVAL); 29427 29428 ip_input_proc = ip_squeue_switch(new_value); 29429 *v = new_value; 29430 return (0); 29431 } 29432 29433 /* ARGSUSED */ 29434 static int 29435 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29436 caddr_t addr, cred_t *cr) 29437 { 29438 int *v = (int *)addr; 29439 long new_value; 29440 29441 if (secpolicy_net_config(cr, B_FALSE) != 0) 29442 return (EPERM); 29443 29444 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29445 return (EINVAL); 29446 29447 *v = new_value; 29448 return (0); 29449 } 29450 29451 /* 29452 * Handle changes to ipmp_hook_emulation ndd variable. 29453 * Need to update phyint_hook_ifindex. 29454 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29455 */ 29456 static void 29457 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29458 { 29459 phyint_t *phyi; 29460 phyint_t *phyi_tmp; 29461 char *groupname; 29462 int namelen; 29463 ill_t *ill; 29464 boolean_t new_group; 29465 29466 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29467 /* 29468 * Group indicies are stored in the phyint - a common structure 29469 * to both IPv4 and IPv6. 29470 */ 29471 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29472 for (; phyi != NULL; 29473 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29474 phyi, AVL_AFTER)) { 29475 /* Ignore the ones that do not have a group */ 29476 if (phyi->phyint_groupname_len == 0) 29477 continue; 29478 29479 /* 29480 * Look for other phyint in group. 29481 * Clear name/namelen so the lookup doesn't find ourselves. 29482 */ 29483 namelen = phyi->phyint_groupname_len; 29484 groupname = phyi->phyint_groupname; 29485 phyi->phyint_groupname_len = 0; 29486 phyi->phyint_groupname = NULL; 29487 29488 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29489 /* Restore */ 29490 phyi->phyint_groupname_len = namelen; 29491 phyi->phyint_groupname = groupname; 29492 29493 new_group = B_FALSE; 29494 if (ipst->ips_ipmp_hook_emulation) { 29495 /* 29496 * If the group already exists and has already 29497 * been assigned a group ifindex, we use the existing 29498 * group_ifindex, otherwise we pick a new group_ifindex 29499 * here. 29500 */ 29501 if (phyi_tmp != NULL && 29502 phyi_tmp->phyint_group_ifindex != 0) { 29503 phyi->phyint_group_ifindex = 29504 phyi_tmp->phyint_group_ifindex; 29505 } else { 29506 /* XXX We need a recovery strategy here. */ 29507 if (!ip_assign_ifindex( 29508 &phyi->phyint_group_ifindex, ipst)) 29509 cmn_err(CE_PANIC, 29510 "ip_assign_ifindex() failed"); 29511 new_group = B_TRUE; 29512 } 29513 } else { 29514 phyi->phyint_group_ifindex = 0; 29515 } 29516 if (ipst->ips_ipmp_hook_emulation) 29517 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29518 else 29519 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29520 29521 /* 29522 * For IP Filter to find out the relationship between 29523 * names and interface indicies, we need to generate 29524 * a NE_PLUMB event when a new group can appear. 29525 * We always generate events when a new interface appears 29526 * (even when ipmp_hook_emulation is set) so there 29527 * is no need to generate NE_PLUMB events when 29528 * ipmp_hook_emulation is turned off. 29529 * And since it isn't critical for IP Filter to get 29530 * the NE_UNPLUMB events we skip those here. 29531 */ 29532 if (new_group) { 29533 /* 29534 * First phyint in group - generate group PLUMB event. 29535 * Since we are not running inside the ipsq we do 29536 * the dispatch immediately. 29537 */ 29538 if (phyi->phyint_illv4 != NULL) 29539 ill = phyi->phyint_illv4; 29540 else 29541 ill = phyi->phyint_illv6; 29542 29543 if (ill != NULL) { 29544 mutex_enter(&ill->ill_lock); 29545 ill_nic_info_plumb(ill, B_TRUE); 29546 ill_nic_info_dispatch(ill); 29547 mutex_exit(&ill->ill_lock); 29548 } 29549 } 29550 } 29551 rw_exit(&ipst->ips_ill_g_lock); 29552 } 29553 29554 /* ARGSUSED */ 29555 static int 29556 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29557 caddr_t addr, cred_t *cr) 29558 { 29559 int *v = (int *)addr; 29560 long new_value; 29561 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29562 29563 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29564 return (EINVAL); 29565 29566 if (*v != new_value) { 29567 *v = new_value; 29568 ipmp_hook_emulation_changed(ipst); 29569 } 29570 return (0); 29571 } 29572 29573 static void * 29574 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29575 { 29576 kstat_t *ksp; 29577 29578 ip_stat_t template = { 29579 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29580 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29581 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29582 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29583 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29584 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29585 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29586 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29587 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29588 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29589 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29590 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29591 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29592 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29593 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29594 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29595 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29596 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29597 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29598 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29599 { "ip_opt", KSTAT_DATA_UINT64 }, 29600 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29601 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29602 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29603 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29604 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29605 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29606 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29607 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29608 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29609 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29610 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29611 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29612 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29613 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29614 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29615 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29616 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29617 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29618 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29619 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29620 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29621 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29622 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29623 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29624 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29625 }; 29626 29627 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29628 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29629 KSTAT_FLAG_VIRTUAL, stackid); 29630 29631 if (ksp == NULL) 29632 return (NULL); 29633 29634 bcopy(&template, ip_statisticsp, sizeof (template)); 29635 ksp->ks_data = (void *)ip_statisticsp; 29636 ksp->ks_private = (void *)(uintptr_t)stackid; 29637 29638 kstat_install(ksp); 29639 return (ksp); 29640 } 29641 29642 static void 29643 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29644 { 29645 if (ksp != NULL) { 29646 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29647 kstat_delete_netstack(ksp, stackid); 29648 } 29649 } 29650 29651 static void * 29652 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29653 { 29654 kstat_t *ksp; 29655 29656 ip_named_kstat_t template = { 29657 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29658 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29659 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29660 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29661 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29662 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29663 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29664 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29665 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29666 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29667 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29668 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29669 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29670 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29671 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29672 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29673 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29674 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29675 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29676 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29677 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29678 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29679 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29680 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29681 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29682 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29683 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29684 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29685 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29686 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29687 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29688 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29689 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29690 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29691 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29692 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29693 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29694 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29695 }; 29696 29697 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29698 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29699 if (ksp == NULL || ksp->ks_data == NULL) 29700 return (NULL); 29701 29702 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29703 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29704 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29705 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29706 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29707 29708 template.netToMediaEntrySize.value.i32 = 29709 sizeof (mib2_ipNetToMediaEntry_t); 29710 29711 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29712 29713 bcopy(&template, ksp->ks_data, sizeof (template)); 29714 ksp->ks_update = ip_kstat_update; 29715 ksp->ks_private = (void *)(uintptr_t)stackid; 29716 29717 kstat_install(ksp); 29718 return (ksp); 29719 } 29720 29721 static void 29722 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29723 { 29724 if (ksp != NULL) { 29725 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29726 kstat_delete_netstack(ksp, stackid); 29727 } 29728 } 29729 29730 static int 29731 ip_kstat_update(kstat_t *kp, int rw) 29732 { 29733 ip_named_kstat_t *ipkp; 29734 mib2_ipIfStatsEntry_t ipmib; 29735 ill_walk_context_t ctx; 29736 ill_t *ill; 29737 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29738 netstack_t *ns; 29739 ip_stack_t *ipst; 29740 29741 if (kp == NULL || kp->ks_data == NULL) 29742 return (EIO); 29743 29744 if (rw == KSTAT_WRITE) 29745 return (EACCES); 29746 29747 ns = netstack_find_by_stackid(stackid); 29748 if (ns == NULL) 29749 return (-1); 29750 ipst = ns->netstack_ip; 29751 if (ipst == NULL) { 29752 netstack_rele(ns); 29753 return (-1); 29754 } 29755 ipkp = (ip_named_kstat_t *)kp->ks_data; 29756 29757 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29758 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29759 ill = ILL_START_WALK_V4(&ctx, ipst); 29760 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29761 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29762 rw_exit(&ipst->ips_ill_g_lock); 29763 29764 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29765 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29766 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29767 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29768 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29769 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29770 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29771 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29772 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29773 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29774 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29775 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29776 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29777 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29778 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29779 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29780 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29781 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29782 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29783 29784 ipkp->routingDiscards.value.ui32 = 0; 29785 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29786 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29787 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29788 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29789 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29790 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29791 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29792 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29793 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29794 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29795 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29796 29797 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29798 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29799 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29800 29801 netstack_rele(ns); 29802 29803 return (0); 29804 } 29805 29806 static void * 29807 icmp_kstat_init(netstackid_t stackid) 29808 { 29809 kstat_t *ksp; 29810 29811 icmp_named_kstat_t template = { 29812 { "inMsgs", KSTAT_DATA_UINT32 }, 29813 { "inErrors", KSTAT_DATA_UINT32 }, 29814 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29815 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29816 { "inParmProbs", KSTAT_DATA_UINT32 }, 29817 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29818 { "inRedirects", KSTAT_DATA_UINT32 }, 29819 { "inEchos", KSTAT_DATA_UINT32 }, 29820 { "inEchoReps", KSTAT_DATA_UINT32 }, 29821 { "inTimestamps", KSTAT_DATA_UINT32 }, 29822 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29823 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29824 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29825 { "outMsgs", KSTAT_DATA_UINT32 }, 29826 { "outErrors", KSTAT_DATA_UINT32 }, 29827 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29828 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29829 { "outParmProbs", KSTAT_DATA_UINT32 }, 29830 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29831 { "outRedirects", KSTAT_DATA_UINT32 }, 29832 { "outEchos", KSTAT_DATA_UINT32 }, 29833 { "outEchoReps", KSTAT_DATA_UINT32 }, 29834 { "outTimestamps", KSTAT_DATA_UINT32 }, 29835 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29836 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29837 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29838 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29839 { "inUnknowns", KSTAT_DATA_UINT32 }, 29840 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29841 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29842 { "outDrops", KSTAT_DATA_UINT32 }, 29843 { "inOverFlows", KSTAT_DATA_UINT32 }, 29844 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29845 }; 29846 29847 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29848 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29849 if (ksp == NULL || ksp->ks_data == NULL) 29850 return (NULL); 29851 29852 bcopy(&template, ksp->ks_data, sizeof (template)); 29853 29854 ksp->ks_update = icmp_kstat_update; 29855 ksp->ks_private = (void *)(uintptr_t)stackid; 29856 29857 kstat_install(ksp); 29858 return (ksp); 29859 } 29860 29861 static void 29862 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29863 { 29864 if (ksp != NULL) { 29865 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29866 kstat_delete_netstack(ksp, stackid); 29867 } 29868 } 29869 29870 static int 29871 icmp_kstat_update(kstat_t *kp, int rw) 29872 { 29873 icmp_named_kstat_t *icmpkp; 29874 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29875 netstack_t *ns; 29876 ip_stack_t *ipst; 29877 29878 if ((kp == NULL) || (kp->ks_data == NULL)) 29879 return (EIO); 29880 29881 if (rw == KSTAT_WRITE) 29882 return (EACCES); 29883 29884 ns = netstack_find_by_stackid(stackid); 29885 if (ns == NULL) 29886 return (-1); 29887 ipst = ns->netstack_ip; 29888 if (ipst == NULL) { 29889 netstack_rele(ns); 29890 return (-1); 29891 } 29892 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29893 29894 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29895 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29896 icmpkp->inDestUnreachs.value.ui32 = 29897 ipst->ips_icmp_mib.icmpInDestUnreachs; 29898 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29899 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29900 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29901 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29902 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29903 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29904 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29905 icmpkp->inTimestampReps.value.ui32 = 29906 ipst->ips_icmp_mib.icmpInTimestampReps; 29907 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29908 icmpkp->inAddrMaskReps.value.ui32 = 29909 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29910 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29911 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29912 icmpkp->outDestUnreachs.value.ui32 = 29913 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29914 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29915 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29916 icmpkp->outSrcQuenchs.value.ui32 = 29917 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29918 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29919 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29920 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29921 icmpkp->outTimestamps.value.ui32 = 29922 ipst->ips_icmp_mib.icmpOutTimestamps; 29923 icmpkp->outTimestampReps.value.ui32 = 29924 ipst->ips_icmp_mib.icmpOutTimestampReps; 29925 icmpkp->outAddrMasks.value.ui32 = 29926 ipst->ips_icmp_mib.icmpOutAddrMasks; 29927 icmpkp->outAddrMaskReps.value.ui32 = 29928 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29929 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29930 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29931 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29932 icmpkp->outFragNeeded.value.ui32 = 29933 ipst->ips_icmp_mib.icmpOutFragNeeded; 29934 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29935 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29936 icmpkp->inBadRedirects.value.ui32 = 29937 ipst->ips_icmp_mib.icmpInBadRedirects; 29938 29939 netstack_rele(ns); 29940 return (0); 29941 } 29942 29943 /* 29944 * This is the fanout function for raw socket opened for SCTP. Note 29945 * that it is called after SCTP checks that there is no socket which 29946 * wants a packet. Then before SCTP handles this out of the blue packet, 29947 * this function is called to see if there is any raw socket for SCTP. 29948 * If there is and it is bound to the correct address, the packet will 29949 * be sent to that socket. Note that only one raw socket can be bound to 29950 * a port. This is assured in ipcl_sctp_hash_insert(); 29951 */ 29952 void 29953 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29954 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29955 zoneid_t zoneid) 29956 { 29957 conn_t *connp; 29958 queue_t *rq; 29959 mblk_t *first_mp; 29960 boolean_t secure; 29961 ip6_t *ip6h; 29962 ip_stack_t *ipst = recv_ill->ill_ipst; 29963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29964 29965 first_mp = mp; 29966 if (mctl_present) { 29967 mp = first_mp->b_cont; 29968 secure = ipsec_in_is_secure(first_mp); 29969 ASSERT(mp != NULL); 29970 } else { 29971 secure = B_FALSE; 29972 } 29973 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29974 29975 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29976 if (connp == NULL) { 29977 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29978 return; 29979 } 29980 rq = connp->conn_rq; 29981 if (!canputnext(rq)) { 29982 CONN_DEC_REF(connp); 29983 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29984 freemsg(first_mp); 29985 return; 29986 } 29987 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29988 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29989 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29990 (isv4 ? ipha : NULL), ip6h, mctl_present); 29991 if (first_mp == NULL) { 29992 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29993 CONN_DEC_REF(connp); 29994 return; 29995 } 29996 } 29997 /* 29998 * We probably should not send M_CTL message up to 29999 * raw socket. 30000 */ 30001 if (mctl_present) 30002 freeb(first_mp); 30003 30004 /* Initiate IPPF processing here if needed. */ 30005 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 30006 (!isv4 && IP6_IN_IPP(flags, ipst))) { 30007 ip_process(IPP_LOCAL_IN, &mp, 30008 recv_ill->ill_phyint->phyint_ifindex); 30009 if (mp == NULL) { 30010 CONN_DEC_REF(connp); 30011 return; 30012 } 30013 } 30014 30015 if (connp->conn_recvif || connp->conn_recvslla || 30016 ((connp->conn_ip_recvpktinfo || 30017 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 30018 (flags & IP_FF_IPINFO))) { 30019 int in_flags = 0; 30020 30021 /* 30022 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 30023 * IPF_RECVIF. 30024 */ 30025 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 30026 in_flags = IPF_RECVIF; 30027 } 30028 if (connp->conn_recvslla) { 30029 in_flags |= IPF_RECVSLLA; 30030 } 30031 if (isv4) { 30032 mp = ip_add_info(mp, recv_ill, in_flags, 30033 IPCL_ZONEID(connp), ipst); 30034 } else { 30035 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30036 if (mp == NULL) { 30037 BUMP_MIB(recv_ill->ill_ip_mib, 30038 ipIfStatsInDiscards); 30039 CONN_DEC_REF(connp); 30040 return; 30041 } 30042 } 30043 } 30044 30045 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30046 /* 30047 * We are sending the IPSEC_IN message also up. Refer 30048 * to comments above this function. 30049 */ 30050 putnext(rq, mp); 30051 CONN_DEC_REF(connp); 30052 } 30053 30054 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30055 { \ 30056 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30057 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30058 } 30059 /* 30060 * This function should be called only if all packet processing 30061 * including fragmentation is complete. Callers of this function 30062 * must set mp->b_prev to one of these values: 30063 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30064 * prior to handing over the mp as first argument to this function. 30065 * 30066 * If the ire passed by caller is incomplete, this function 30067 * queues the packet and if necessary, sends ARP request and bails. 30068 * If the ire passed is fully resolved, we simply prepend 30069 * the link-layer header to the packet, do ipsec hw acceleration 30070 * work if necessary, and send the packet out on the wire. 30071 * 30072 * NOTE: IPSEC will only call this function with fully resolved 30073 * ires if hw acceleration is involved. 30074 * TODO list : 30075 * a Handle M_MULTIDATA so that 30076 * tcp_multisend->tcp_multisend_data can 30077 * call ip_xmit_v4 directly 30078 * b Handle post-ARP work for fragments so that 30079 * ip_wput_frag can call this function. 30080 */ 30081 ipxmit_state_t 30082 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30083 { 30084 nce_t *arpce; 30085 queue_t *q; 30086 int ill_index; 30087 mblk_t *nxt_mp, *first_mp; 30088 boolean_t xmit_drop = B_FALSE; 30089 ip_proc_t proc; 30090 ill_t *out_ill; 30091 int pkt_len; 30092 30093 arpce = ire->ire_nce; 30094 ASSERT(arpce != NULL); 30095 30096 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30097 30098 mutex_enter(&arpce->nce_lock); 30099 switch (arpce->nce_state) { 30100 case ND_REACHABLE: 30101 /* If there are other queued packets, queue this packet */ 30102 if (arpce->nce_qd_mp != NULL) { 30103 if (mp != NULL) 30104 nce_queue_mp_common(arpce, mp, B_FALSE); 30105 mp = arpce->nce_qd_mp; 30106 } 30107 arpce->nce_qd_mp = NULL; 30108 mutex_exit(&arpce->nce_lock); 30109 30110 /* 30111 * Flush the queue. In the common case, where the 30112 * ARP is already resolved, it will go through the 30113 * while loop only once. 30114 */ 30115 while (mp != NULL) { 30116 30117 nxt_mp = mp->b_next; 30118 mp->b_next = NULL; 30119 ASSERT(mp->b_datap->db_type != M_CTL); 30120 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30121 /* 30122 * This info is needed for IPQOS to do COS marking 30123 * in ip_wput_attach_llhdr->ip_process. 30124 */ 30125 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30126 mp->b_prev = NULL; 30127 30128 /* set up ill index for outbound qos processing */ 30129 out_ill = ire->ire_ipif->ipif_ill; 30130 ill_index = out_ill->ill_phyint->phyint_ifindex; 30131 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30132 ill_index); 30133 if (first_mp == NULL) { 30134 xmit_drop = B_TRUE; 30135 BUMP_MIB(out_ill->ill_ip_mib, 30136 ipIfStatsOutDiscards); 30137 goto next_mp; 30138 } 30139 /* non-ipsec hw accel case */ 30140 if (io == NULL || !io->ipsec_out_accelerated) { 30141 /* send it */ 30142 q = ire->ire_stq; 30143 if (proc == IPP_FWD_OUT) { 30144 UPDATE_IB_PKT_COUNT(ire); 30145 } else { 30146 UPDATE_OB_PKT_COUNT(ire); 30147 } 30148 ire->ire_last_used_time = lbolt; 30149 30150 if (flow_ctl_enabled || canputnext(q)) { 30151 if (proc == IPP_FWD_OUT) { 30152 30153 BUMP_MIB(out_ill->ill_ip_mib, 30154 ipIfStatsHCOutForwDatagrams); 30155 30156 } 30157 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30158 pkt_len); 30159 30160 putnext(q, first_mp); 30161 } else { 30162 BUMP_MIB(out_ill->ill_ip_mib, 30163 ipIfStatsOutDiscards); 30164 xmit_drop = B_TRUE; 30165 freemsg(first_mp); 30166 } 30167 } else { 30168 /* 30169 * Safety Pup says: make sure this 30170 * is going to the right interface! 30171 */ 30172 ill_t *ill1 = 30173 (ill_t *)ire->ire_stq->q_ptr; 30174 int ifindex = 30175 ill1->ill_phyint->phyint_ifindex; 30176 if (ifindex != 30177 io->ipsec_out_capab_ill_index) { 30178 xmit_drop = B_TRUE; 30179 freemsg(mp); 30180 } else { 30181 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30182 pkt_len); 30183 ipsec_hw_putnext(ire->ire_stq, mp); 30184 } 30185 } 30186 next_mp: 30187 mp = nxt_mp; 30188 } /* while (mp != NULL) */ 30189 if (xmit_drop) 30190 return (SEND_FAILED); 30191 else 30192 return (SEND_PASSED); 30193 30194 case ND_INITIAL: 30195 case ND_INCOMPLETE: 30196 30197 /* 30198 * While we do send off packets to dests that 30199 * use fully-resolved CGTP routes, we do not 30200 * handle unresolved CGTP routes. 30201 */ 30202 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30203 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30204 30205 if (mp != NULL) { 30206 /* queue the packet */ 30207 nce_queue_mp_common(arpce, mp, B_FALSE); 30208 } 30209 30210 if (arpce->nce_state == ND_INCOMPLETE) { 30211 mutex_exit(&arpce->nce_lock); 30212 DTRACE_PROBE3(ip__xmit__incomplete, 30213 (ire_t *), ire, (mblk_t *), mp, 30214 (ipsec_out_t *), io); 30215 return (LOOKUP_IN_PROGRESS); 30216 } 30217 30218 arpce->nce_state = ND_INCOMPLETE; 30219 mutex_exit(&arpce->nce_lock); 30220 /* 30221 * Note that ire_add() (called from ire_forward()) 30222 * holds a ref on the ire until ARP is completed. 30223 */ 30224 30225 ire_arpresolve(ire, ire_to_ill(ire)); 30226 return (LOOKUP_IN_PROGRESS); 30227 default: 30228 ASSERT(0); 30229 mutex_exit(&arpce->nce_lock); 30230 return (LLHDR_RESLV_FAILED); 30231 } 30232 } 30233 30234 #undef UPDATE_IP_MIB_OB_COUNTERS 30235 30236 /* 30237 * Return B_TRUE if the buffers differ in length or content. 30238 * This is used for comparing extension header buffers. 30239 * Note that an extension header would be declared different 30240 * even if all that changed was the next header value in that header i.e. 30241 * what really changed is the next extension header. 30242 */ 30243 boolean_t 30244 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30245 uint_t blen) 30246 { 30247 if (!b_valid) 30248 blen = 0; 30249 30250 if (alen != blen) 30251 return (B_TRUE); 30252 if (alen == 0) 30253 return (B_FALSE); /* Both zero length */ 30254 return (bcmp(abuf, bbuf, alen)); 30255 } 30256 30257 /* 30258 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30259 * Return B_FALSE if memory allocation fails - don't change any state! 30260 */ 30261 boolean_t 30262 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30263 const void *src, uint_t srclen) 30264 { 30265 void *dst; 30266 30267 if (!src_valid) 30268 srclen = 0; 30269 30270 ASSERT(*dstlenp == 0); 30271 if (src != NULL && srclen != 0) { 30272 dst = mi_alloc(srclen, BPRI_MED); 30273 if (dst == NULL) 30274 return (B_FALSE); 30275 } else { 30276 dst = NULL; 30277 } 30278 if (*dstp != NULL) 30279 mi_free(*dstp); 30280 *dstp = dst; 30281 *dstlenp = dst == NULL ? 0 : srclen; 30282 return (B_TRUE); 30283 } 30284 30285 /* 30286 * Replace what is in *dst, *dstlen with the source. 30287 * Assumes ip_allocbuf has already been called. 30288 */ 30289 void 30290 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30291 const void *src, uint_t srclen) 30292 { 30293 if (!src_valid) 30294 srclen = 0; 30295 30296 ASSERT(*dstlenp == srclen); 30297 if (src != NULL && srclen != 0) 30298 bcopy(src, *dstp, srclen); 30299 } 30300 30301 /* 30302 * Free the storage pointed to by the members of an ip6_pkt_t. 30303 */ 30304 void 30305 ip6_pkt_free(ip6_pkt_t *ipp) 30306 { 30307 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30308 30309 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30310 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30311 ipp->ipp_hopopts = NULL; 30312 ipp->ipp_hopoptslen = 0; 30313 } 30314 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30315 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30316 ipp->ipp_rtdstopts = NULL; 30317 ipp->ipp_rtdstoptslen = 0; 30318 } 30319 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30320 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30321 ipp->ipp_dstopts = NULL; 30322 ipp->ipp_dstoptslen = 0; 30323 } 30324 if (ipp->ipp_fields & IPPF_RTHDR) { 30325 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30326 ipp->ipp_rthdr = NULL; 30327 ipp->ipp_rthdrlen = 0; 30328 } 30329 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30330 IPPF_RTHDR); 30331 } 30332