1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * 455 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 456 * cannot be sent down to the driver by IP, because of a canput failure, IP 457 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 458 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 459 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 460 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 461 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 462 * the queued messages, and removes the conn from the drain list, if all 463 * messages were drained. It also qenables the next conn in the drain list to 464 * continue the drain process. 465 * 466 * In reality the drain list is not a single list, but a configurable number 467 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 468 * list. If the ip_wsrv of the next qenabled conn does not run, because the 469 * stream closes, ip_close takes responsibility to qenable the next conn in 470 * the drain list. The directly called ip_wput path always does a putq, if 471 * it cannot putnext. Thus synchronization problems are handled between 472 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 473 * functions that manipulate this drain list. Furthermore conn_drain_insert 474 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 475 * running on a queue at any time. conn_drain_tail can be simultaneously called 476 * from both ip_wsrv and ip_close. 477 * 478 * IPQOS notes: 479 * 480 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 481 * and IPQoS modules. IPPF includes hooks in IP at different control points 482 * (callout positions) which direct packets to IPQoS modules for policy 483 * processing. Policies, if present, are global. 484 * 485 * The callout positions are located in the following paths: 486 * o local_in (packets destined for this host) 487 * o local_out (packets orginating from this host ) 488 * o fwd_in (packets forwarded by this m/c - inbound) 489 * o fwd_out (packets forwarded by this m/c - outbound) 490 * Hooks at these callout points can be enabled/disabled using the ndd variable 491 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 492 * By default all the callout positions are enabled. 493 * 494 * Outbound (local_out) 495 * Hooks are placed in ip_wput_ire and ipsec_out_process. 496 * 497 * Inbound (local_in) 498 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 499 * TCP and UDP fanout routines. 500 * 501 * Forwarding (in and out) 502 * Hooks are placed in ip_rput_forward. 503 * 504 * IP Policy Framework processing (IPPF processing) 505 * Policy processing for a packet is initiated by ip_process, which ascertains 506 * that the classifier (ipgpc) is loaded and configured, failing which the 507 * packet resumes normal processing in IP. If the clasifier is present, the 508 * packet is acted upon by one or more IPQoS modules (action instances), per 509 * filters configured in ipgpc and resumes normal IP processing thereafter. 510 * An action instance can drop a packet in course of its processing. 511 * 512 * A boolean variable, ip_policy, is used in all the fanout routines that can 513 * invoke ip_process for a packet. This variable indicates if the packet should 514 * to be sent for policy processing. The variable is set to B_TRUE by default, 515 * i.e. when the routines are invoked in the normal ip procesing path for a 516 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 517 * ip_policy is set to B_FALSE for all the routines called in these two 518 * functions because, in the former case, we don't process loopback traffic 519 * currently while in the latter, the packets have already been processed in 520 * icmp_inbound. 521 * 522 * Zones notes: 523 * 524 * The partitioning rules for networking are as follows: 525 * 1) Packets coming from a zone must have a source address belonging to that 526 * zone. 527 * 2) Packets coming from a zone can only be sent on a physical interface on 528 * which the zone has an IP address. 529 * 3) Between two zones on the same machine, packet delivery is only allowed if 530 * there's a matching route for the destination and zone in the forwarding 531 * table. 532 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 533 * different zones can bind to the same port with the wildcard address 534 * (INADDR_ANY). 535 * 536 * The granularity of interface partitioning is at the logical interface level. 537 * Therefore, every zone has its own IP addresses, and incoming packets can be 538 * attributed to a zone unambiguously. A logical interface is placed into a zone 539 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 540 * structure. Rule (1) is implemented by modifying the source address selection 541 * algorithm so that the list of eligible addresses is filtered based on the 542 * sending process zone. 543 * 544 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 545 * across all zones, depending on their type. Here is the break-up: 546 * 547 * IRE type Shared/exclusive 548 * -------- ---------------- 549 * IRE_BROADCAST Exclusive 550 * IRE_DEFAULT (default routes) Shared (*) 551 * IRE_LOCAL Exclusive (x) 552 * IRE_LOOPBACK Exclusive 553 * IRE_PREFIX (net routes) Shared (*) 554 * IRE_CACHE Exclusive 555 * IRE_IF_NORESOLVER (interface routes) Exclusive 556 * IRE_IF_RESOLVER (interface routes) Exclusive 557 * IRE_HOST (host routes) Shared (*) 558 * 559 * (*) A zone can only use a default or off-subnet route if the gateway is 560 * directly reachable from the zone, that is, if the gateway's address matches 561 * one of the zone's logical interfaces. 562 * 563 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 564 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 565 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 566 * address of the zone itself (the destination). Since IRE_LOCAL is used 567 * for communication between zones, ip_wput_ire has special logic to set 568 * the right source address when sending using an IRE_LOCAL. 569 * 570 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 571 * ire_cache_lookup restricts loopback using an IRE_LOCAL 572 * between zone to the case when L2 would have conceptually looped the packet 573 * back, i.e. the loopback which is required since neither Ethernet drivers 574 * nor Ethernet hardware loops them back. This is the case when the normal 575 * routes (ignoring IREs with different zoneids) would send out the packet on 576 * the same ill as the ill with which is IRE_LOCAL is associated. 577 * 578 * Multiple zones can share a common broadcast address; typically all zones 579 * share the 255.255.255.255 address. Incoming as well as locally originated 580 * broadcast packets must be dispatched to all the zones on the broadcast 581 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 582 * since some zones may not be on the 10.16.72/24 network. To handle this, each 583 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 584 * sent to every zone that has an IRE_BROADCAST entry for the destination 585 * address on the input ill, see conn_wantpacket(). 586 * 587 * Applications in different zones can join the same multicast group address. 588 * For IPv4, group memberships are per-logical interface, so they're already 589 * inherently part of a zone. For IPv6, group memberships are per-physical 590 * interface, so we distinguish IPv6 group memberships based on group address, 591 * interface and zoneid. In both cases, received multicast packets are sent to 592 * every zone for which a group membership entry exists. On IPv6 we need to 593 * check that the target zone still has an address on the receiving physical 594 * interface; it could have been removed since the application issued the 595 * IPV6_JOIN_GROUP. 596 */ 597 598 /* 599 * Squeue Fanout flags: 600 * 0: No fanout. 601 * 1: Fanout across all squeues 602 */ 603 boolean_t ip_squeue_fanout = 0; 604 605 /* 606 * Maximum dups allowed per packet. 607 */ 608 uint_t ip_max_frag_dups = 10; 609 610 #define IS_SIMPLE_IPH(ipha) \ 611 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 612 613 /* RFC 1122 Conformance */ 614 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 615 616 #define ILL_MAX_NAMELEN LIFNAMSIZ 617 618 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 619 620 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 621 cred_t *credp, boolean_t isv6); 622 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 623 ipha_t **); 624 625 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 626 ip_stack_t *); 627 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 628 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 629 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 630 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 631 mblk_t *, int, ip_stack_t *); 632 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 633 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 634 ill_t *, zoneid_t); 635 static void icmp_options_update(ipha_t *); 636 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 637 ip_stack_t *); 638 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 639 zoneid_t zoneid, ip_stack_t *); 640 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 641 static void icmp_redirect(ill_t *, mblk_t *); 642 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 643 ip_stack_t *); 644 645 static void ip_arp_news(queue_t *, mblk_t *); 646 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 647 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 648 char *ip_dot_addr(ipaddr_t, char *); 649 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 650 int ip_close(queue_t *, int); 651 static char *ip_dot_saddr(uchar_t *, char *); 652 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 653 boolean_t, boolean_t, ill_t *, zoneid_t); 654 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 655 boolean_t, boolean_t, zoneid_t); 656 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 657 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_lrput(queue_t *, mblk_t *); 659 ipaddr_t ip_net_mask(ipaddr_t); 660 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 661 ip_stack_t *); 662 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 663 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 664 char *ip_nv_lookup(nv_t *, int); 665 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 666 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 667 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 668 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 669 ipndp_t *, size_t); 670 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 675 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 676 ip_stack_t *); 677 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 678 ire_t *, ip_stack_t *); 679 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 680 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 681 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 682 ip_stack_t *); 683 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 684 uint32_t *, uint16_t *); 685 int ip_snmp_get(queue_t *, mblk_t *, int); 686 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 687 mib2_ipIfStatsEntry_t *, ip_stack_t *); 688 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 689 ip_stack_t *); 690 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 708 ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 710 ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 712 ip_stack_t *ipst); 713 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 714 ip_stack_t *ipst); 715 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 716 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 717 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 718 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 719 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 720 static boolean_t ip_source_route_included(ipha_t *); 721 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 722 723 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 724 zoneid_t, ip_stack_t *, conn_t *); 725 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 726 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 727 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 728 zoneid_t, ip_stack_t *); 729 730 static void conn_drain_init(ip_stack_t *); 731 static void conn_drain_fini(ip_stack_t *); 732 static void conn_drain_tail(conn_t *connp, boolean_t closing); 733 734 static void conn_walk_drain(ip_stack_t *); 735 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 736 zoneid_t); 737 738 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 739 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 740 static void ip_stack_fini(netstackid_t stackid, void *arg); 741 742 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 743 zoneid_t); 744 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 745 void *dummy_arg); 746 747 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 748 749 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 750 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 751 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 752 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 753 754 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 755 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 756 caddr_t, cred_t *); 757 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 758 cred_t *, boolean_t); 759 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 760 caddr_t cp, cred_t *cr); 761 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 762 cred_t *); 763 static int ip_squeue_switch(int); 764 765 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 766 static void ip_kstat_fini(netstackid_t, kstat_t *); 767 static int ip_kstat_update(kstat_t *kp, int rw); 768 static void *icmp_kstat_init(netstackid_t); 769 static void icmp_kstat_fini(netstackid_t, kstat_t *); 770 static int icmp_kstat_update(kstat_t *kp, int rw); 771 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 772 static void ip_kstat2_fini(netstackid_t, kstat_t *); 773 774 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 775 776 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 777 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 778 779 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 780 ipha_t *, ill_t *, boolean_t, boolean_t); 781 782 static void ipobs_init(ip_stack_t *); 783 static void ipobs_fini(ip_stack_t *); 784 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 785 786 /* How long, in seconds, we allow frags to hang around. */ 787 #define IP_FRAG_TIMEOUT 15 788 789 /* 790 * Threshold which determines whether MDT should be used when 791 * generating IP fragments; payload size must be greater than 792 * this threshold for MDT to take place. 793 */ 794 #define IP_WPUT_FRAG_MDT_MIN 32768 795 796 /* Setable in /etc/system only */ 797 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 798 799 static long ip_rput_pullups; 800 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 801 802 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 803 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 804 805 int ip_debug; 806 807 #ifdef DEBUG 808 uint32_t ipsechw_debug = 0; 809 #endif 810 811 /* 812 * Multirouting/CGTP stuff 813 */ 814 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 815 816 /* 817 * XXX following really should only be in a header. Would need more 818 * header and .c clean up first. 819 */ 820 extern optdb_obj_t ip_opt_obj; 821 822 ulong_t ip_squeue_enter_unbound = 0; 823 824 /* 825 * Named Dispatch Parameter Table. 826 * All of these are alterable, within the min/max values given, at run time. 827 */ 828 static ipparam_t lcl_param_arr[] = { 829 /* min max value name */ 830 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 831 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 832 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 833 { 0, 1, 0, "ip_respond_to_timestamp"}, 834 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 835 { 0, 1, 1, "ip_send_redirects"}, 836 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 837 { 0, 10, 0, "ip_mrtdebug"}, 838 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 839 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 840 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 841 { 1, 255, 255, "ip_def_ttl" }, 842 { 0, 1, 0, "ip_forward_src_routed"}, 843 { 0, 256, 32, "ip_wroff_extra" }, 844 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 845 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 846 { 0, 1, 1, "ip_path_mtu_discovery" }, 847 { 0, 240, 30, "ip_ignore_delete_time" }, 848 { 0, 1, 0, "ip_ignore_redirect" }, 849 { 0, 1, 1, "ip_output_queue" }, 850 { 1, 254, 1, "ip_broadcast_ttl" }, 851 { 0, 99999, 100, "ip_icmp_err_interval" }, 852 { 1, 99999, 10, "ip_icmp_err_burst" }, 853 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 854 { 0, 1, 0, "ip_strict_dst_multihoming" }, 855 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 856 { 0, 1, 0, "ipsec_override_persocket_policy" }, 857 { 0, 1, 1, "icmp_accept_clear_messages" }, 858 { 0, 1, 1, "igmp_accept_clear_messages" }, 859 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 860 "ip_ndp_delay_first_probe_time"}, 861 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 862 "ip_ndp_max_unicast_solicit"}, 863 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 864 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 865 { 0, 1, 0, "ip6_forward_src_routed"}, 866 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 867 { 0, 1, 1, "ip6_send_redirects"}, 868 { 0, 1, 0, "ip6_ignore_redirect" }, 869 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 870 871 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 872 873 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 874 875 { 0, 1, 1, "pim_accept_clear_messages" }, 876 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 877 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 878 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 879 { 0, 15, 0, "ip_policy_mask" }, 880 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 881 { 0, 255, 1, "ip_multirt_ttl" }, 882 { 0, 1, 1, "ip_multidata_outbound" }, 883 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 884 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 885 { 0, 1000, 1, "ip_max_temp_defend" }, 886 { 0, 1000, 3, "ip_max_defend" }, 887 { 0, 999999, 30, "ip_defend_interval" }, 888 { 0, 3600000, 300000, "ip_dup_recovery" }, 889 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 890 { 0, 1, 1, "ip_lso_outbound" }, 891 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 892 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 893 { 68, 65535, 576, "ip_pmtu_min" }, 894 #ifdef DEBUG 895 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 896 #else 897 { 0, 0, 0, "" }, 898 #endif 899 }; 900 901 /* 902 * Extended NDP table 903 * The addresses for the first two are filled in to be ips_ip_g_forward 904 * and ips_ipv6_forward at init time. 905 */ 906 static ipndp_t lcl_ndp_arr[] = { 907 /* getf setf data name */ 908 #define IPNDP_IP_FORWARDING_OFFSET 0 909 { ip_param_generic_get, ip_forward_set, NULL, 910 "ip_forwarding" }, 911 #define IPNDP_IP6_FORWARDING_OFFSET 1 912 { ip_param_generic_get, ip_forward_set, NULL, 913 "ip6_forwarding" }, 914 { ip_ill_report, NULL, NULL, 915 "ip_ill_status" }, 916 { ip_ipif_report, NULL, NULL, 917 "ip_ipif_status" }, 918 { ip_conn_report, NULL, NULL, 919 "ip_conn_status" }, 920 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 921 "ip_rput_pullups" }, 922 { ip_srcid_report, NULL, NULL, 923 "ip_srcid_status" }, 924 { ip_param_generic_get, ip_input_proc_set, 925 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 928 #define IPNDP_CGTP_FILTER_OFFSET 9 929 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 930 "ip_cgtp_filter" }, 931 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 932 "ip_debug" }, 933 }; 934 935 /* 936 * Table of IP ioctls encoding the various properties of the ioctl and 937 * indexed based on the last byte of the ioctl command. Occasionally there 938 * is a clash, and there is more than 1 ioctl with the same last byte. 939 * In such a case 1 ioctl is encoded in the ndx table and the remaining 940 * ioctls are encoded in the misc table. An entry in the ndx table is 941 * retrieved by indexing on the last byte of the ioctl command and comparing 942 * the ioctl command with the value in the ndx table. In the event of a 943 * mismatch the misc table is then searched sequentially for the desired 944 * ioctl command. 945 * 946 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 947 */ 948 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 949 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 960 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 961 MISC_CMD, ip_siocaddrt, NULL }, 962 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 963 MISC_CMD, ip_siocdelrt, NULL }, 964 965 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 967 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 968 IF_CMD, ip_sioctl_get_addr, NULL }, 969 970 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 971 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 972 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 973 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 974 975 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 976 IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 978 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 979 IPI_MODOK | IPI_GET_CMD, 980 IF_CMD, ip_sioctl_get_flags, NULL }, 981 982 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 985 /* copyin size cannot be coded for SIOCGIFCONF */ 986 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 987 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 988 989 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_mtu, NULL }, 991 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 992 IF_CMD, ip_sioctl_get_mtu, NULL }, 993 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 994 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 995 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 996 IF_CMD, ip_sioctl_brdaddr, NULL }, 997 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 998 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 999 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1000 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1001 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1002 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1003 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1004 IF_CMD, ip_sioctl_metric, NULL }, 1005 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 1007 /* See 166-168 below for extended SIOC*XARP ioctls */ 1008 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 1015 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1038 MISC_CMD, if_unitsel, if_unitsel_restart }, 1039 1040 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1060 IPI_PRIV | IPI_WR | IPI_MODOK, 1061 IF_CMD, ip_sioctl_sifname, NULL }, 1062 1063 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1078 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1079 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1080 IF_CMD, ip_sioctl_get_muxid, NULL }, 1081 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1082 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1083 1084 /* Both if and lif variants share same func */ 1085 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1086 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1087 /* Both if and lif variants share same func */ 1088 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1089 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1090 1091 /* copyin size cannot be coded for SIOCGIFCONF */ 1092 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1093 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1094 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1113 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1114 ip_sioctl_removeif_restart }, 1115 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1116 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_addif, NULL }, 1118 #define SIOCLIFADDR_NDX 112 1119 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1120 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1121 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1122 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1123 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1124 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1125 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1126 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1127 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1128 IPI_PRIV | IPI_WR, 1129 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1130 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1131 IPI_GET_CMD | IPI_MODOK, 1132 LIF_CMD, ip_sioctl_get_flags, NULL }, 1133 1134 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 1137 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1138 ip_sioctl_get_lifconf, NULL }, 1139 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1140 LIF_CMD, ip_sioctl_mtu, NULL }, 1141 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1142 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1143 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1144 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1145 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1146 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1147 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1148 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1149 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1151 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1152 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1153 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1154 LIF_CMD, ip_sioctl_metric, NULL }, 1155 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1156 IPI_PRIV | IPI_WR | IPI_MODOK, 1157 LIF_CMD, ip_sioctl_slifname, 1158 ip_sioctl_slifname_restart }, 1159 1160 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1161 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1162 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1163 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1164 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1165 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1166 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1167 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1168 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1169 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1170 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1171 LIF_CMD, ip_sioctl_token, NULL }, 1172 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1173 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1174 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1175 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1176 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1177 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1178 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1179 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1180 1181 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1182 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1183 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1184 LIF_CMD, ip_siocdelndp_v6, NULL }, 1185 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1186 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1187 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1188 LIF_CMD, ip_siocsetndp_v6, NULL }, 1189 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1190 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1191 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1192 MISC_CMD, ip_sioctl_tonlink, NULL }, 1193 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1194 MISC_CMD, ip_sioctl_tmysite, NULL }, 1195 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1196 TUN_CMD, ip_sioctl_tunparam, NULL }, 1197 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1198 IPI_PRIV | IPI_WR, 1199 TUN_CMD, ip_sioctl_tunparam, NULL }, 1200 1201 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1202 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1203 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1204 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1205 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1206 1207 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 1209 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD | 1210 IPI_WR, LIF_CMD, ip_sioctl_get_binding, NULL }, 1211 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1212 IPI_PRIV | IPI_WR, 1213 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1214 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1215 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1216 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1217 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1218 1219 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1220 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 1224 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 1226 /* These are handled in ip_sioctl_copyin_setup itself */ 1227 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1228 MISC_CMD, NULL, NULL }, 1229 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1230 MISC_CMD, NULL, NULL }, 1231 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1232 1233 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1234 ip_sioctl_get_lifconf, NULL }, 1235 1236 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1237 XARP_CMD, ip_sioctl_arp, NULL }, 1238 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1239 XARP_CMD, ip_sioctl_arp, NULL }, 1240 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1241 XARP_CMD, ip_sioctl_arp, NULL }, 1242 1243 /* SIOCPOPSOCKFS is not handled by IP */ 1244 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1245 1246 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1247 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1248 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1249 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1250 ip_sioctl_slifzone_restart }, 1251 /* 172-174 are SCTP ioctls and not handled by IP */ 1252 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1256 IPI_GET_CMD, LIF_CMD, 1257 ip_sioctl_get_lifusesrc, 0 }, 1258 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1259 IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_slifusesrc, 1261 NULL }, 1262 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1263 ip_sioctl_get_lifsrcof, NULL }, 1264 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1265 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1266 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1267 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1268 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1269 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1270 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1271 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1272 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* SIOCSENABLESDP is handled by SDP */ 1274 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1275 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1276 }; 1277 1278 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1279 1280 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1281 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1282 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1283 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1284 TUN_CMD, ip_sioctl_tunparam, NULL }, 1285 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1286 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1287 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1288 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1289 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1290 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1291 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1292 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1293 MISC_CMD, mrt_ioctl}, 1294 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1295 MISC_CMD, mrt_ioctl}, 1296 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1297 MISC_CMD, mrt_ioctl} 1298 }; 1299 1300 int ip_misc_ioctl_count = 1301 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1302 1303 int conn_drain_nthreads; /* Number of drainers reqd. */ 1304 /* Settable in /etc/system */ 1305 /* Defined in ip_ire.c */ 1306 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1307 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1308 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1309 1310 static nv_t ire_nv_arr[] = { 1311 { IRE_BROADCAST, "BROADCAST" }, 1312 { IRE_LOCAL, "LOCAL" }, 1313 { IRE_LOOPBACK, "LOOPBACK" }, 1314 { IRE_CACHE, "CACHE" }, 1315 { IRE_DEFAULT, "DEFAULT" }, 1316 { IRE_PREFIX, "PREFIX" }, 1317 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1318 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1319 { IRE_HOST, "HOST" }, 1320 { 0 } 1321 }; 1322 1323 nv_t *ire_nv_tbl = ire_nv_arr; 1324 1325 /* Simple ICMP IP Header Template */ 1326 static ipha_t icmp_ipha = { 1327 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1328 }; 1329 1330 struct module_info ip_mod_info = { 1331 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1332 IP_MOD_LOWAT 1333 }; 1334 1335 /* 1336 * Duplicate static symbols within a module confuses mdb; so we avoid the 1337 * problem by making the symbols here distinct from those in udp.c. 1338 */ 1339 1340 /* 1341 * Entry points for IP as a device and as a module. 1342 * FIXME: down the road we might want a separate module and driver qinit. 1343 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1344 */ 1345 static struct qinit iprinitv4 = { 1346 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1347 &ip_mod_info 1348 }; 1349 1350 struct qinit iprinitv6 = { 1351 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1352 &ip_mod_info 1353 }; 1354 1355 static struct qinit ipwinitv4 = { 1356 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1357 &ip_mod_info 1358 }; 1359 1360 struct qinit ipwinitv6 = { 1361 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1362 &ip_mod_info 1363 }; 1364 1365 static struct qinit iplrinit = { 1366 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1367 &ip_mod_info 1368 }; 1369 1370 static struct qinit iplwinit = { 1371 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1372 &ip_mod_info 1373 }; 1374 1375 /* For AF_INET aka /dev/ip */ 1376 struct streamtab ipinfov4 = { 1377 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1378 }; 1379 1380 /* For AF_INET6 aka /dev/ip6 */ 1381 struct streamtab ipinfov6 = { 1382 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1383 }; 1384 1385 #ifdef DEBUG 1386 static boolean_t skip_sctp_cksum = B_FALSE; 1387 #endif 1388 1389 /* 1390 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1391 * ip_rput_v6(), ip_output(), etc. If the message 1392 * block already has a M_CTL at the front of it, then simply set the zoneid 1393 * appropriately. 1394 */ 1395 mblk_t * 1396 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1397 { 1398 mblk_t *first_mp; 1399 ipsec_out_t *io; 1400 1401 ASSERT(zoneid != ALL_ZONES); 1402 if (mp->b_datap->db_type == M_CTL) { 1403 io = (ipsec_out_t *)mp->b_rptr; 1404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1405 io->ipsec_out_zoneid = zoneid; 1406 return (mp); 1407 } 1408 1409 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1410 if (first_mp == NULL) 1411 return (NULL); 1412 io = (ipsec_out_t *)first_mp->b_rptr; 1413 /* This is not a secure packet */ 1414 io->ipsec_out_secure = B_FALSE; 1415 io->ipsec_out_zoneid = zoneid; 1416 first_mp->b_cont = mp; 1417 return (first_mp); 1418 } 1419 1420 /* 1421 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1422 */ 1423 mblk_t * 1424 ip_copymsg(mblk_t *mp) 1425 { 1426 mblk_t *nmp; 1427 ipsec_info_t *in; 1428 1429 if (mp->b_datap->db_type != M_CTL) 1430 return (copymsg(mp)); 1431 1432 in = (ipsec_info_t *)mp->b_rptr; 1433 1434 /* 1435 * Note that M_CTL is also used for delivering ICMP error messages 1436 * upstream to transport layers. 1437 */ 1438 if (in->ipsec_info_type != IPSEC_OUT && 1439 in->ipsec_info_type != IPSEC_IN) 1440 return (copymsg(mp)); 1441 1442 nmp = copymsg(mp->b_cont); 1443 1444 if (in->ipsec_info_type == IPSEC_OUT) { 1445 return (ipsec_out_tag(mp, nmp, 1446 ((ipsec_out_t *)in)->ipsec_out_ns)); 1447 } else { 1448 return (ipsec_in_tag(mp, nmp, 1449 ((ipsec_in_t *)in)->ipsec_in_ns)); 1450 } 1451 } 1452 1453 /* Generate an ICMP fragmentation needed message. */ 1454 static void 1455 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1456 ip_stack_t *ipst) 1457 { 1458 icmph_t icmph; 1459 mblk_t *first_mp; 1460 boolean_t mctl_present; 1461 1462 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1463 1464 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1465 if (mctl_present) 1466 freeb(first_mp); 1467 return; 1468 } 1469 1470 bzero(&icmph, sizeof (icmph_t)); 1471 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1472 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1473 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1474 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1476 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1477 ipst); 1478 } 1479 1480 /* 1481 * icmp_inbound deals with ICMP messages in the following ways. 1482 * 1483 * 1) It needs to send a reply back and possibly delivering it 1484 * to the "interested" upper clients. 1485 * 2) It needs to send it to the upper clients only. 1486 * 3) It needs to change some values in IP only. 1487 * 4) It needs to change some values in IP and upper layers e.g TCP. 1488 * 1489 * We need to accomodate icmp messages coming in clear until we get 1490 * everything secure from the wire. If icmp_accept_clear_messages 1491 * is zero we check with the global policy and act accordingly. If 1492 * it is non-zero, we accept the message without any checks. But 1493 * *this does not mean* that this will be delivered to the upper 1494 * clients. By accepting we might send replies back, change our MTU 1495 * value etc. but delivery to the ULP/clients depends on their policy 1496 * dispositions. 1497 * 1498 * We handle the above 4 cases in the context of IPsec in the 1499 * following way : 1500 * 1501 * 1) Send the reply back in the same way as the request came in. 1502 * If it came in encrypted, it goes out encrypted. If it came in 1503 * clear, it goes out in clear. Thus, this will prevent chosen 1504 * plain text attack. 1505 * 2) The client may or may not expect things to come in secure. 1506 * If it comes in secure, the policy constraints are checked 1507 * before delivering it to the upper layers. If it comes in 1508 * clear, ipsec_inbound_accept_clear will decide whether to 1509 * accept this in clear or not. In both the cases, if the returned 1510 * message (IP header + 8 bytes) that caused the icmp message has 1511 * AH/ESP headers, it is sent up to AH/ESP for validation before 1512 * sending up. If there are only 8 bytes of returned message, then 1513 * upper client will not be notified. 1514 * 3) Check with global policy to see whether it matches the constaints. 1515 * But this will be done only if icmp_accept_messages_in_clear is 1516 * zero. 1517 * 4) If we need to change both in IP and ULP, then the decision taken 1518 * while affecting the values in IP and while delivering up to TCP 1519 * should be the same. 1520 * 1521 * There are two cases. 1522 * 1523 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1524 * failed), we will not deliver it to the ULP, even though they 1525 * are *willing* to accept in *clear*. This is fine as our global 1526 * disposition to icmp messages asks us reject the datagram. 1527 * 1528 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1529 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1530 * to deliver it to ULP (policy failed), it can lead to 1531 * consistency problems. The cases known at this time are 1532 * ICMP_DESTINATION_UNREACHABLE messages with following code 1533 * values : 1534 * 1535 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1536 * and Upper layer rejects. Then the communication will 1537 * come to a stop. This is solved by making similar decisions 1538 * at both levels. Currently, when we are unable to deliver 1539 * to the Upper Layer (due to policy failures) while IP has 1540 * adjusted ire_max_frag, the next outbound datagram would 1541 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1542 * will be with the right level of protection. Thus the right 1543 * value will be communicated even if we are not able to 1544 * communicate when we get from the wire initially. But this 1545 * assumes there would be at least one outbound datagram after 1546 * IP has adjusted its ire_max_frag value. To make things 1547 * simpler, we accept in clear after the validation of 1548 * AH/ESP headers. 1549 * 1550 * - Other ICMP ERRORS : We may not be able to deliver it to the 1551 * upper layer depending on the level of protection the upper 1552 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1553 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1554 * should be accepted in clear when the Upper layer expects secure. 1555 * Thus the communication may get aborted by some bad ICMP 1556 * packets. 1557 * 1558 * IPQoS Notes: 1559 * The only instance when a packet is sent for processing is when there 1560 * isn't an ICMP client and if we are interested in it. 1561 * If there is a client, IPPF processing will take place in the 1562 * ip_fanout_proto routine. 1563 * 1564 * Zones notes: 1565 * The packet is only processed in the context of the specified zone: typically 1566 * only this zone will reply to an echo request, and only interested clients in 1567 * this zone will receive a copy of the packet. This means that the caller must 1568 * call icmp_inbound() for each relevant zone. 1569 */ 1570 static void 1571 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1572 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1573 ill_t *recv_ill, zoneid_t zoneid) 1574 { 1575 icmph_t *icmph; 1576 ipha_t *ipha; 1577 int iph_hdr_length; 1578 int hdr_length; 1579 boolean_t interested; 1580 uint32_t ts; 1581 uchar_t *wptr; 1582 ipif_t *ipif; 1583 mblk_t *first_mp; 1584 ipsec_in_t *ii; 1585 timestruc_t now; 1586 uint32_t ill_index; 1587 ip_stack_t *ipst; 1588 1589 ASSERT(ill != NULL); 1590 ipst = ill->ill_ipst; 1591 1592 first_mp = mp; 1593 if (mctl_present) { 1594 mp = first_mp->b_cont; 1595 ASSERT(mp != NULL); 1596 } 1597 1598 ipha = (ipha_t *)mp->b_rptr; 1599 if (ipst->ips_icmp_accept_clear_messages == 0) { 1600 first_mp = ipsec_check_global_policy(first_mp, NULL, 1601 ipha, NULL, mctl_present, ipst->ips_netstack); 1602 if (first_mp == NULL) 1603 return; 1604 } 1605 1606 /* 1607 * On a labeled system, we have to check whether the zone itself is 1608 * permitted to receive raw traffic. 1609 */ 1610 if (is_system_labeled()) { 1611 if (zoneid == ALL_ZONES) 1612 zoneid = tsol_packet_to_zoneid(mp); 1613 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1614 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1615 zoneid)); 1616 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1617 freemsg(first_mp); 1618 return; 1619 } 1620 } 1621 1622 /* 1623 * We have accepted the ICMP message. It means that we will 1624 * respond to the packet if needed. It may not be delivered 1625 * to the upper client depending on the policy constraints 1626 * and the disposition in ipsec_inbound_accept_clear. 1627 */ 1628 1629 ASSERT(ill != NULL); 1630 1631 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1632 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1633 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1634 /* Last chance to get real. */ 1635 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1636 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1637 freemsg(first_mp); 1638 return; 1639 } 1640 /* Refresh iph following the pullup. */ 1641 ipha = (ipha_t *)mp->b_rptr; 1642 } 1643 /* ICMP header checksum, including checksum field, should be zero. */ 1644 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1645 IP_CSUM(mp, iph_hdr_length, 0)) { 1646 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1647 freemsg(first_mp); 1648 return; 1649 } 1650 /* The IP header will always be a multiple of four bytes */ 1651 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1652 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1653 icmph->icmph_code)); 1654 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1655 /* We will set "interested" to "true" if we want a copy */ 1656 interested = B_FALSE; 1657 switch (icmph->icmph_type) { 1658 case ICMP_ECHO_REPLY: 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1660 break; 1661 case ICMP_DEST_UNREACHABLE: 1662 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1663 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1664 interested = B_TRUE; /* Pass up to transport */ 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1666 break; 1667 case ICMP_SOURCE_QUENCH: 1668 interested = B_TRUE; /* Pass up to transport */ 1669 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1670 break; 1671 case ICMP_REDIRECT: 1672 if (!ipst->ips_ip_ignore_redirect) 1673 interested = B_TRUE; 1674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1675 break; 1676 case ICMP_ECHO_REQUEST: 1677 /* 1678 * Whether to respond to echo requests that come in as IP 1679 * broadcasts or as IP multicast is subject to debate 1680 * (what isn't?). We aim to please, you pick it. 1681 * Default is do it. 1682 */ 1683 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1684 /* unicast: always respond */ 1685 interested = B_TRUE; 1686 } else if (CLASSD(ipha->ipha_dst)) { 1687 /* multicast: respond based on tunable */ 1688 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1689 } else if (broadcast) { 1690 /* broadcast: respond based on tunable */ 1691 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1692 } 1693 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1694 break; 1695 case ICMP_ROUTER_ADVERTISEMENT: 1696 case ICMP_ROUTER_SOLICITATION: 1697 break; 1698 case ICMP_TIME_EXCEEDED: 1699 interested = B_TRUE; /* Pass up to transport */ 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1701 break; 1702 case ICMP_PARAM_PROBLEM: 1703 interested = B_TRUE; /* Pass up to transport */ 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1705 break; 1706 case ICMP_TIME_STAMP_REQUEST: 1707 /* Response to Time Stamp Requests is local policy. */ 1708 if (ipst->ips_ip_g_resp_to_timestamp && 1709 /* So is whether to respond if it was an IP broadcast. */ 1710 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1711 int tstamp_len = 3 * sizeof (uint32_t); 1712 1713 if (wptr + tstamp_len > mp->b_wptr) { 1714 if (!pullupmsg(mp, wptr + tstamp_len - 1715 mp->b_rptr)) { 1716 BUMP_MIB(ill->ill_ip_mib, 1717 ipIfStatsInDiscards); 1718 freemsg(first_mp); 1719 return; 1720 } 1721 /* Refresh ipha following the pullup. */ 1722 ipha = (ipha_t *)mp->b_rptr; 1723 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1724 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1725 } 1726 interested = B_TRUE; 1727 } 1728 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1729 break; 1730 case ICMP_TIME_STAMP_REPLY: 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1732 break; 1733 case ICMP_INFO_REQUEST: 1734 /* Per RFC 1122 3.2.2.7, ignore this. */ 1735 case ICMP_INFO_REPLY: 1736 break; 1737 case ICMP_ADDRESS_MASK_REQUEST: 1738 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1739 !broadcast) && 1740 /* TODO m_pullup of complete header? */ 1741 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1742 interested = B_TRUE; 1743 } 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1745 break; 1746 case ICMP_ADDRESS_MASK_REPLY: 1747 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1748 break; 1749 default: 1750 interested = B_TRUE; /* Pass up to transport */ 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1752 break; 1753 } 1754 /* See if there is an ICMP client. */ 1755 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1756 /* If there is an ICMP client and we want one too, copy it. */ 1757 mblk_t *first_mp1; 1758 1759 if (!interested) { 1760 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1761 ip_policy, recv_ill, zoneid); 1762 return; 1763 } 1764 first_mp1 = ip_copymsg(first_mp); 1765 if (first_mp1 != NULL) { 1766 ip_fanout_proto(q, first_mp1, ill, ipha, 1767 0, mctl_present, ip_policy, recv_ill, zoneid); 1768 } 1769 } else if (!interested) { 1770 freemsg(first_mp); 1771 return; 1772 } else { 1773 /* 1774 * Initiate policy processing for this packet if ip_policy 1775 * is true. 1776 */ 1777 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1778 ill_index = ill->ill_phyint->phyint_ifindex; 1779 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1780 if (mp == NULL) { 1781 if (mctl_present) { 1782 freeb(first_mp); 1783 } 1784 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1785 return; 1786 } 1787 } 1788 } 1789 /* We want to do something with it. */ 1790 /* Check db_ref to make sure we can modify the packet. */ 1791 if (mp->b_datap->db_ref > 1) { 1792 mblk_t *first_mp1; 1793 1794 first_mp1 = ip_copymsg(first_mp); 1795 freemsg(first_mp); 1796 if (!first_mp1) { 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1798 return; 1799 } 1800 first_mp = first_mp1; 1801 if (mctl_present) { 1802 mp = first_mp->b_cont; 1803 ASSERT(mp != NULL); 1804 } else { 1805 mp = first_mp; 1806 } 1807 ipha = (ipha_t *)mp->b_rptr; 1808 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1809 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1810 } 1811 switch (icmph->icmph_type) { 1812 case ICMP_ADDRESS_MASK_REQUEST: 1813 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1814 if (ipif == NULL) { 1815 freemsg(first_mp); 1816 return; 1817 } 1818 /* 1819 * outging interface must be IPv4 1820 */ 1821 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1822 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1823 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1824 ipif_refrele(ipif); 1825 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1826 break; 1827 case ICMP_ECHO_REQUEST: 1828 icmph->icmph_type = ICMP_ECHO_REPLY; 1829 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1830 break; 1831 case ICMP_TIME_STAMP_REQUEST: { 1832 uint32_t *tsp; 1833 1834 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1835 tsp = (uint32_t *)wptr; 1836 tsp++; /* Skip past 'originate time' */ 1837 /* Compute # of milliseconds since midnight */ 1838 gethrestime(&now); 1839 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1840 now.tv_nsec / (NANOSEC / MILLISEC); 1841 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1842 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1843 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1844 break; 1845 } 1846 default: 1847 ipha = (ipha_t *)&icmph[1]; 1848 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1849 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1851 freemsg(first_mp); 1852 return; 1853 } 1854 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1855 ipha = (ipha_t *)&icmph[1]; 1856 } 1857 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1859 freemsg(first_mp); 1860 return; 1861 } 1862 hdr_length = IPH_HDR_LENGTH(ipha); 1863 if (hdr_length < sizeof (ipha_t)) { 1864 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1865 freemsg(first_mp); 1866 return; 1867 } 1868 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1869 if (!pullupmsg(mp, 1870 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1876 ipha = (ipha_t *)&icmph[1]; 1877 } 1878 switch (icmph->icmph_type) { 1879 case ICMP_REDIRECT: 1880 /* 1881 * As there is no upper client to deliver, we don't 1882 * need the first_mp any more. 1883 */ 1884 if (mctl_present) { 1885 freeb(first_mp); 1886 } 1887 icmp_redirect(ill, mp); 1888 return; 1889 case ICMP_DEST_UNREACHABLE: 1890 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1891 if (!icmp_inbound_too_big(icmph, ipha, ill, 1892 zoneid, mp, iph_hdr_length, ipst)) { 1893 freemsg(first_mp); 1894 return; 1895 } 1896 /* 1897 * icmp_inbound_too_big() may alter mp. 1898 * Resynch ipha and icmph accordingly. 1899 */ 1900 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1901 ipha = (ipha_t *)&icmph[1]; 1902 } 1903 /* FALLTHRU */ 1904 default : 1905 /* 1906 * IPQoS notes: Since we have already done IPQoS 1907 * processing we don't want to do it again in 1908 * the fanout routines called by 1909 * icmp_inbound_error_fanout, hence the last 1910 * argument, ip_policy, is B_FALSE. 1911 */ 1912 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1913 ipha, iph_hdr_length, hdr_length, mctl_present, 1914 B_FALSE, recv_ill, zoneid); 1915 } 1916 return; 1917 } 1918 /* Send out an ICMP packet */ 1919 icmph->icmph_checksum = 0; 1920 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1921 if (broadcast || CLASSD(ipha->ipha_dst)) { 1922 ipif_t *ipif_chosen; 1923 /* 1924 * Make it look like it was directed to us, so we don't look 1925 * like a fool with a broadcast or multicast source address. 1926 */ 1927 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1928 /* 1929 * Make sure that we haven't grabbed an interface that's DOWN. 1930 */ 1931 if (ipif != NULL) { 1932 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1933 ipha->ipha_src, zoneid); 1934 if (ipif_chosen != NULL) { 1935 ipif_refrele(ipif); 1936 ipif = ipif_chosen; 1937 } 1938 } 1939 if (ipif == NULL) { 1940 ip0dbg(("icmp_inbound: " 1941 "No source for broadcast/multicast:\n" 1942 "\tsrc 0x%x dst 0x%x ill %p " 1943 "ipif_lcl_addr 0x%x\n", 1944 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1945 (void *)ill, 1946 ill->ill_ipif->ipif_lcl_addr)); 1947 freemsg(first_mp); 1948 return; 1949 } 1950 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1951 ipha->ipha_dst = ipif->ipif_src_addr; 1952 ipif_refrele(ipif); 1953 } 1954 /* Reset time to live. */ 1955 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1956 { 1957 /* Swap source and destination addresses */ 1958 ipaddr_t tmp; 1959 1960 tmp = ipha->ipha_src; 1961 ipha->ipha_src = ipha->ipha_dst; 1962 ipha->ipha_dst = tmp; 1963 } 1964 ipha->ipha_ident = 0; 1965 if (!IS_SIMPLE_IPH(ipha)) 1966 icmp_options_update(ipha); 1967 1968 if (!mctl_present) { 1969 /* 1970 * This packet should go out the same way as it 1971 * came in i.e in clear. To make sure that global 1972 * policy will not be applied to this in ip_wput_ire, 1973 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 1974 */ 1975 ASSERT(first_mp == mp); 1976 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 1977 if (first_mp == NULL) { 1978 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1979 freemsg(mp); 1980 return; 1981 } 1982 ii = (ipsec_in_t *)first_mp->b_rptr; 1983 1984 /* This is not a secure packet */ 1985 ii->ipsec_in_secure = B_FALSE; 1986 first_mp->b_cont = mp; 1987 } else { 1988 ii = (ipsec_in_t *)first_mp->b_rptr; 1989 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 1990 } 1991 ii->ipsec_in_zoneid = zoneid; 1992 ASSERT(zoneid != ALL_ZONES); 1993 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 1994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1995 return; 1996 } 1997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1998 put(WR(q), first_mp); 1999 } 2000 2001 static ipaddr_t 2002 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2003 { 2004 conn_t *connp; 2005 connf_t *connfp; 2006 ipaddr_t nexthop_addr = INADDR_ANY; 2007 int hdr_length = IPH_HDR_LENGTH(ipha); 2008 uint16_t *up; 2009 uint32_t ports; 2010 ip_stack_t *ipst = ill->ill_ipst; 2011 2012 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2013 switch (ipha->ipha_protocol) { 2014 case IPPROTO_TCP: 2015 { 2016 tcph_t *tcph; 2017 2018 /* do a reverse lookup */ 2019 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2020 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2021 TCPS_LISTEN, ipst); 2022 break; 2023 } 2024 case IPPROTO_UDP: 2025 { 2026 uint32_t dstport, srcport; 2027 2028 ((uint16_t *)&ports)[0] = up[1]; 2029 ((uint16_t *)&ports)[1] = up[0]; 2030 2031 /* Extract ports in net byte order */ 2032 dstport = htons(ntohl(ports) & 0xFFFF); 2033 srcport = htons(ntohl(ports) >> 16); 2034 2035 connfp = &ipst->ips_ipcl_udp_fanout[ 2036 IPCL_UDP_HASH(dstport, ipst)]; 2037 mutex_enter(&connfp->connf_lock); 2038 connp = connfp->connf_head; 2039 2040 /* do a reverse lookup */ 2041 while ((connp != NULL) && 2042 (!IPCL_UDP_MATCH(connp, dstport, 2043 ipha->ipha_src, srcport, ipha->ipha_dst) || 2044 !IPCL_ZONE_MATCH(connp, zoneid))) { 2045 connp = connp->conn_next; 2046 } 2047 if (connp != NULL) 2048 CONN_INC_REF(connp); 2049 mutex_exit(&connfp->connf_lock); 2050 break; 2051 } 2052 case IPPROTO_SCTP: 2053 { 2054 in6_addr_t map_src, map_dst; 2055 2056 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2057 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2058 ((uint16_t *)&ports)[0] = up[1]; 2059 ((uint16_t *)&ports)[1] = up[0]; 2060 2061 connp = sctp_find_conn(&map_src, &map_dst, ports, 2062 zoneid, ipst->ips_netstack->netstack_sctp); 2063 if (connp == NULL) { 2064 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2065 zoneid, ports, ipha, ipst); 2066 } else { 2067 CONN_INC_REF(connp); 2068 SCTP_REFRELE(CONN2SCTP(connp)); 2069 } 2070 break; 2071 } 2072 default: 2073 { 2074 ipha_t ripha; 2075 2076 ripha.ipha_src = ipha->ipha_dst; 2077 ripha.ipha_dst = ipha->ipha_src; 2078 ripha.ipha_protocol = ipha->ipha_protocol; 2079 2080 connfp = &ipst->ips_ipcl_proto_fanout[ 2081 ipha->ipha_protocol]; 2082 mutex_enter(&connfp->connf_lock); 2083 connp = connfp->connf_head; 2084 for (connp = connfp->connf_head; connp != NULL; 2085 connp = connp->conn_next) { 2086 if (IPCL_PROTO_MATCH(connp, 2087 ipha->ipha_protocol, &ripha, ill, 2088 0, zoneid)) { 2089 CONN_INC_REF(connp); 2090 break; 2091 } 2092 } 2093 mutex_exit(&connfp->connf_lock); 2094 } 2095 } 2096 if (connp != NULL) { 2097 if (connp->conn_nexthop_set) 2098 nexthop_addr = connp->conn_nexthop_v4; 2099 CONN_DEC_REF(connp); 2100 } 2101 return (nexthop_addr); 2102 } 2103 2104 /* Table from RFC 1191 */ 2105 static int icmp_frag_size_table[] = 2106 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2107 2108 /* 2109 * Process received ICMP Packet too big. 2110 * After updating any IRE it does the fanout to any matching transport streams. 2111 * Assumes the message has been pulled up till the IP header that caused 2112 * the error. 2113 * 2114 * Returns B_FALSE on failure and B_TRUE on success. 2115 */ 2116 static boolean_t 2117 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2118 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2119 ip_stack_t *ipst) 2120 { 2121 ire_t *ire, *first_ire; 2122 int mtu, orig_mtu; 2123 int hdr_length; 2124 ipaddr_t nexthop_addr; 2125 boolean_t disable_pmtud; 2126 2127 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2128 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2129 ASSERT(ill != NULL); 2130 2131 hdr_length = IPH_HDR_LENGTH(ipha); 2132 2133 /* Drop if the original packet contained a source route */ 2134 if (ip_source_route_included(ipha)) { 2135 return (B_FALSE); 2136 } 2137 /* 2138 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2139 * header. 2140 */ 2141 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2142 mp->b_wptr) { 2143 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2144 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2146 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2147 return (B_FALSE); 2148 } 2149 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2150 ipha = (ipha_t *)&icmph[1]; 2151 } 2152 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2153 if (nexthop_addr != INADDR_ANY) { 2154 /* nexthop set */ 2155 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2156 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2157 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2158 } else { 2159 /* nexthop not set */ 2160 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2161 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2162 } 2163 2164 if (!first_ire) { 2165 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2166 ntohl(ipha->ipha_dst))); 2167 return (B_FALSE); 2168 } 2169 2170 /* Check for MTU discovery advice as described in RFC 1191 */ 2171 mtu = ntohs(icmph->icmph_du_mtu); 2172 orig_mtu = mtu; 2173 disable_pmtud = B_FALSE; 2174 2175 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2176 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2177 ire = ire->ire_next) { 2178 /* 2179 * Look for the connection to which this ICMP message is 2180 * directed. If it has the IP_NEXTHOP option set, then the 2181 * search is limited to IREs with the MATCH_IRE_PRIVATE 2182 * option. Else the search is limited to regular IREs. 2183 */ 2184 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2185 (nexthop_addr != ire->ire_gateway_addr)) || 2186 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2187 (nexthop_addr != INADDR_ANY))) 2188 continue; 2189 2190 mutex_enter(&ire->ire_lock); 2191 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2192 uint32_t length; 2193 int i; 2194 2195 /* 2196 * Use the table from RFC 1191 to figure out 2197 * the next "plateau" based on the length in 2198 * the original IP packet. 2199 */ 2200 length = ntohs(ipha->ipha_length); 2201 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2202 uint32_t, length); 2203 if (ire->ire_max_frag <= length && 2204 ire->ire_max_frag >= length - hdr_length) { 2205 /* 2206 * Handle broken BSD 4.2 systems that 2207 * return the wrong iph_length in ICMP 2208 * errors. 2209 */ 2210 length -= hdr_length; 2211 } 2212 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2213 if (length > icmp_frag_size_table[i]) 2214 break; 2215 } 2216 if (i == A_CNT(icmp_frag_size_table)) { 2217 /* Smaller than 68! */ 2218 disable_pmtud = B_TRUE; 2219 mtu = ipst->ips_ip_pmtu_min; 2220 } else { 2221 mtu = icmp_frag_size_table[i]; 2222 if (mtu < ipst->ips_ip_pmtu_min) { 2223 mtu = ipst->ips_ip_pmtu_min; 2224 disable_pmtud = B_TRUE; 2225 } 2226 } 2227 /* Fool the ULP into believing our guessed PMTU. */ 2228 icmph->icmph_du_zero = 0; 2229 icmph->icmph_du_mtu = htons(mtu); 2230 } 2231 if (disable_pmtud) 2232 ire->ire_frag_flag = 0; 2233 /* Reduce the IRE max frag value as advised. */ 2234 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2235 mutex_exit(&ire->ire_lock); 2236 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2237 ire, int, orig_mtu, int, mtu); 2238 } 2239 rw_exit(&first_ire->ire_bucket->irb_lock); 2240 ire_refrele(first_ire); 2241 return (B_TRUE); 2242 } 2243 2244 /* 2245 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2246 * calls this function. 2247 */ 2248 static mblk_t * 2249 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2250 { 2251 ipha_t *ipha; 2252 icmph_t *icmph; 2253 ipha_t *in_ipha; 2254 int length; 2255 2256 ASSERT(mp->b_datap->db_type == M_DATA); 2257 2258 /* 2259 * For Self-encapsulated packets, we added an extra IP header 2260 * without the options. Inner IP header is the one from which 2261 * the outer IP header was formed. Thus, we need to remove the 2262 * outer IP header. To do this, we pullup the whole message 2263 * and overlay whatever follows the outer IP header over the 2264 * outer IP header. 2265 */ 2266 2267 if (!pullupmsg(mp, -1)) 2268 return (NULL); 2269 2270 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2271 ipha = (ipha_t *)&icmph[1]; 2272 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2273 2274 /* 2275 * The length that we want to overlay is following the inner 2276 * IP header. Subtracting the IP header + icmp header + outer 2277 * IP header's length should give us the length that we want to 2278 * overlay. 2279 */ 2280 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2281 hdr_length; 2282 /* 2283 * Overlay whatever follows the inner header over the 2284 * outer header. 2285 */ 2286 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2287 2288 /* Set the wptr to account for the outer header */ 2289 mp->b_wptr -= hdr_length; 2290 return (mp); 2291 } 2292 2293 /* 2294 * Try to pass the ICMP message upstream in case the ULP cares. 2295 * 2296 * If the packet that caused the ICMP error is secure, we send 2297 * it to AH/ESP to make sure that the attached packet has a 2298 * valid association. ipha in the code below points to the 2299 * IP header of the packet that caused the error. 2300 * 2301 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2302 * in the context of IPsec. Normally we tell the upper layer 2303 * whenever we send the ire (including ip_bind), the IPsec header 2304 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2305 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2306 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2307 * same thing. As TCP has the IPsec options size that needs to be 2308 * adjusted, we just pass the MTU unchanged. 2309 * 2310 * IFN could have been generated locally or by some router. 2311 * 2312 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2313 * This happens because IP adjusted its value of MTU on an 2314 * earlier IFN message and could not tell the upper layer, 2315 * the new adjusted value of MTU e.g. Packet was encrypted 2316 * or there was not enough information to fanout to upper 2317 * layers. Thus on the next outbound datagram, ip_wput_ire 2318 * generates the IFN, where IPsec processing has *not* been 2319 * done. 2320 * 2321 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2322 * could have generated this. This happens because ire_max_frag 2323 * value in IP was set to a new value, while the IPsec processing 2324 * was being done and after we made the fragmentation check in 2325 * ip_wput_ire. Thus on return from IPsec processing, 2326 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2327 * and generates the IFN. As IPsec processing is over, we fanout 2328 * to AH/ESP to remove the header. 2329 * 2330 * In both these cases, ipsec_in_loopback will be set indicating 2331 * that IFN was generated locally. 2332 * 2333 * ROUTER : IFN could be secure or non-secure. 2334 * 2335 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2336 * packet in error has AH/ESP headers to validate the AH/ESP 2337 * headers. AH/ESP will verify whether there is a valid SA or 2338 * not and send it back. We will fanout again if we have more 2339 * data in the packet. 2340 * 2341 * If the packet in error does not have AH/ESP, we handle it 2342 * like any other case. 2343 * 2344 * * NON_SECURE : If the packet in error has AH/ESP headers, 2345 * we attach a dummy ipsec_in and send it up to AH/ESP 2346 * for validation. AH/ESP will verify whether there is a 2347 * valid SA or not and send it back. We will fanout again if 2348 * we have more data in the packet. 2349 * 2350 * If the packet in error does not have AH/ESP, we handle it 2351 * like any other case. 2352 */ 2353 static void 2354 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2355 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2356 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2357 zoneid_t zoneid) 2358 { 2359 uint16_t *up; /* Pointer to ports in ULP header */ 2360 uint32_t ports; /* reversed ports for fanout */ 2361 ipha_t ripha; /* With reversed addresses */ 2362 mblk_t *first_mp; 2363 ipsec_in_t *ii; 2364 tcph_t *tcph; 2365 conn_t *connp; 2366 ip_stack_t *ipst; 2367 2368 ASSERT(ill != NULL); 2369 2370 ASSERT(recv_ill != NULL); 2371 ipst = recv_ill->ill_ipst; 2372 2373 first_mp = mp; 2374 if (mctl_present) { 2375 mp = first_mp->b_cont; 2376 ASSERT(mp != NULL); 2377 2378 ii = (ipsec_in_t *)first_mp->b_rptr; 2379 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2380 } else { 2381 ii = NULL; 2382 } 2383 2384 switch (ipha->ipha_protocol) { 2385 case IPPROTO_UDP: 2386 /* 2387 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2388 * transport header. 2389 */ 2390 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2391 mp->b_wptr) { 2392 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2393 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2394 goto discard_pkt; 2395 } 2396 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2397 ipha = (ipha_t *)&icmph[1]; 2398 } 2399 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2400 2401 /* 2402 * Attempt to find a client stream based on port. 2403 * Note that we do a reverse lookup since the header is 2404 * in the form we sent it out. 2405 * The ripha header is only used for the IP_UDP_MATCH and we 2406 * only set the src and dst addresses and protocol. 2407 */ 2408 ripha.ipha_src = ipha->ipha_dst; 2409 ripha.ipha_dst = ipha->ipha_src; 2410 ripha.ipha_protocol = ipha->ipha_protocol; 2411 ((uint16_t *)&ports)[0] = up[1]; 2412 ((uint16_t *)&ports)[1] = up[0]; 2413 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2414 ntohl(ipha->ipha_src), ntohs(up[0]), 2415 ntohl(ipha->ipha_dst), ntohs(up[1]), 2416 icmph->icmph_type, icmph->icmph_code)); 2417 2418 /* Have to change db_type after any pullupmsg */ 2419 DB_TYPE(mp) = M_CTL; 2420 2421 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2422 mctl_present, ip_policy, recv_ill, zoneid); 2423 return; 2424 2425 case IPPROTO_TCP: 2426 /* 2427 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2428 * transport header. 2429 */ 2430 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2431 mp->b_wptr) { 2432 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2433 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2434 goto discard_pkt; 2435 } 2436 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2437 ipha = (ipha_t *)&icmph[1]; 2438 } 2439 /* 2440 * Find a TCP client stream for this packet. 2441 * Note that we do a reverse lookup since the header is 2442 * in the form we sent it out. 2443 */ 2444 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2445 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2446 ipst); 2447 if (connp == NULL) 2448 goto discard_pkt; 2449 2450 /* Have to change db_type after any pullupmsg */ 2451 DB_TYPE(mp) = M_CTL; 2452 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2453 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2454 return; 2455 2456 case IPPROTO_SCTP: 2457 /* 2458 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2459 * transport header. 2460 */ 2461 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2462 mp->b_wptr) { 2463 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2464 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2465 goto discard_pkt; 2466 } 2467 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2468 ipha = (ipha_t *)&icmph[1]; 2469 } 2470 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2471 /* 2472 * Find a SCTP client stream for this packet. 2473 * Note that we do a reverse lookup since the header is 2474 * in the form we sent it out. 2475 * The ripha header is only used for the matching and we 2476 * only set the src and dst addresses, protocol, and version. 2477 */ 2478 ripha.ipha_src = ipha->ipha_dst; 2479 ripha.ipha_dst = ipha->ipha_src; 2480 ripha.ipha_protocol = ipha->ipha_protocol; 2481 ripha.ipha_version_and_hdr_length = 2482 ipha->ipha_version_and_hdr_length; 2483 ((uint16_t *)&ports)[0] = up[1]; 2484 ((uint16_t *)&ports)[1] = up[0]; 2485 2486 /* Have to change db_type after any pullupmsg */ 2487 DB_TYPE(mp) = M_CTL; 2488 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2489 mctl_present, ip_policy, zoneid); 2490 return; 2491 2492 case IPPROTO_ESP: 2493 case IPPROTO_AH: { 2494 int ipsec_rc; 2495 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2496 2497 /* 2498 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2499 * We will re-use the IPSEC_IN if it is already present as 2500 * AH/ESP will not affect any fields in the IPSEC_IN for 2501 * ICMP errors. If there is no IPSEC_IN, allocate a new 2502 * one and attach it in the front. 2503 */ 2504 if (ii != NULL) { 2505 /* 2506 * ip_fanout_proto_again converts the ICMP errors 2507 * that come back from AH/ESP to M_DATA so that 2508 * if it is non-AH/ESP and we do a pullupmsg in 2509 * this function, it would work. Convert it back 2510 * to M_CTL before we send up as this is a ICMP 2511 * error. This could have been generated locally or 2512 * by some router. Validate the inner IPsec 2513 * headers. 2514 * 2515 * NOTE : ill_index is used by ip_fanout_proto_again 2516 * to locate the ill. 2517 */ 2518 ASSERT(ill != NULL); 2519 ii->ipsec_in_ill_index = 2520 ill->ill_phyint->phyint_ifindex; 2521 ii->ipsec_in_rill_index = 2522 recv_ill->ill_phyint->phyint_ifindex; 2523 DB_TYPE(first_mp->b_cont) = M_CTL; 2524 } else { 2525 /* 2526 * IPSEC_IN is not present. We attach a ipsec_in 2527 * message and send up to IPsec for validating 2528 * and removing the IPsec headers. Clear 2529 * ipsec_in_secure so that when we return 2530 * from IPsec, we don't mistakenly think that this 2531 * is a secure packet came from the network. 2532 * 2533 * NOTE : ill_index is used by ip_fanout_proto_again 2534 * to locate the ill. 2535 */ 2536 ASSERT(first_mp == mp); 2537 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2538 if (first_mp == NULL) { 2539 freemsg(mp); 2540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2541 return; 2542 } 2543 ii = (ipsec_in_t *)first_mp->b_rptr; 2544 2545 /* This is not a secure packet */ 2546 ii->ipsec_in_secure = B_FALSE; 2547 first_mp->b_cont = mp; 2548 DB_TYPE(mp) = M_CTL; 2549 ASSERT(ill != NULL); 2550 ii->ipsec_in_ill_index = 2551 ill->ill_phyint->phyint_ifindex; 2552 ii->ipsec_in_rill_index = 2553 recv_ill->ill_phyint->phyint_ifindex; 2554 } 2555 ip2dbg(("icmp_inbound_error: ipsec\n")); 2556 2557 if (!ipsec_loaded(ipss)) { 2558 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2559 return; 2560 } 2561 2562 if (ipha->ipha_protocol == IPPROTO_ESP) 2563 ipsec_rc = ipsecesp_icmp_error(first_mp); 2564 else 2565 ipsec_rc = ipsecah_icmp_error(first_mp); 2566 if (ipsec_rc == IPSEC_STATUS_FAILED) 2567 return; 2568 2569 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2570 return; 2571 } 2572 default: 2573 /* 2574 * The ripha header is only used for the lookup and we 2575 * only set the src and dst addresses and protocol. 2576 */ 2577 ripha.ipha_src = ipha->ipha_dst; 2578 ripha.ipha_dst = ipha->ipha_src; 2579 ripha.ipha_protocol = ipha->ipha_protocol; 2580 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2581 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2582 ntohl(ipha->ipha_dst), 2583 icmph->icmph_type, icmph->icmph_code)); 2584 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2585 ipha_t *in_ipha; 2586 2587 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2588 mp->b_wptr) { 2589 if (!pullupmsg(mp, (uchar_t *)ipha + 2590 hdr_length + sizeof (ipha_t) - 2591 mp->b_rptr)) { 2592 goto discard_pkt; 2593 } 2594 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2595 ipha = (ipha_t *)&icmph[1]; 2596 } 2597 /* 2598 * Caller has verified that length has to be 2599 * at least the size of IP header. 2600 */ 2601 ASSERT(hdr_length >= sizeof (ipha_t)); 2602 /* 2603 * Check the sanity of the inner IP header like 2604 * we did for the outer header. 2605 */ 2606 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2607 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2608 goto discard_pkt; 2609 } 2610 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2611 goto discard_pkt; 2612 } 2613 /* Check for Self-encapsulated tunnels */ 2614 if (in_ipha->ipha_src == ipha->ipha_src && 2615 in_ipha->ipha_dst == ipha->ipha_dst) { 2616 2617 mp = icmp_inbound_self_encap_error(mp, 2618 iph_hdr_length, hdr_length); 2619 if (mp == NULL) 2620 goto discard_pkt; 2621 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2622 ipha = (ipha_t *)&icmph[1]; 2623 hdr_length = IPH_HDR_LENGTH(ipha); 2624 /* 2625 * The packet in error is self-encapsualted. 2626 * And we are finding it further encapsulated 2627 * which we could not have possibly generated. 2628 */ 2629 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2630 goto discard_pkt; 2631 } 2632 icmp_inbound_error_fanout(q, ill, first_mp, 2633 icmph, ipha, iph_hdr_length, hdr_length, 2634 mctl_present, ip_policy, recv_ill, zoneid); 2635 return; 2636 } 2637 } 2638 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2639 ipha->ipha_protocol == IPPROTO_IPV6) && 2640 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2641 ii != NULL && 2642 ii->ipsec_in_loopback && 2643 ii->ipsec_in_secure) { 2644 /* 2645 * For IP tunnels that get a looped-back 2646 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2647 * reported new MTU to take into account the IPsec 2648 * headers protecting this configured tunnel. 2649 * 2650 * This allows the tunnel module (tun.c) to blindly 2651 * accept the MTU reported in an ICMP "too big" 2652 * message. 2653 * 2654 * Non-looped back ICMP messages will just be 2655 * handled by the security protocols (if needed), 2656 * and the first subsequent packet will hit this 2657 * path. 2658 */ 2659 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2660 ipsec_in_extra_length(first_mp)); 2661 } 2662 /* Have to change db_type after any pullupmsg */ 2663 DB_TYPE(mp) = M_CTL; 2664 2665 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2666 ip_policy, recv_ill, zoneid); 2667 return; 2668 } 2669 /* NOTREACHED */ 2670 discard_pkt: 2671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2672 drop_pkt:; 2673 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2674 freemsg(first_mp); 2675 } 2676 2677 /* 2678 * Common IP options parser. 2679 * 2680 * Setup routine: fill in *optp with options-parsing state, then 2681 * tail-call ipoptp_next to return the first option. 2682 */ 2683 uint8_t 2684 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2685 { 2686 uint32_t totallen; /* total length of all options */ 2687 2688 totallen = ipha->ipha_version_and_hdr_length - 2689 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2690 totallen <<= 2; 2691 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2692 optp->ipoptp_end = optp->ipoptp_next + totallen; 2693 optp->ipoptp_flags = 0; 2694 return (ipoptp_next(optp)); 2695 } 2696 2697 /* 2698 * Common IP options parser: extract next option. 2699 */ 2700 uint8_t 2701 ipoptp_next(ipoptp_t *optp) 2702 { 2703 uint8_t *end = optp->ipoptp_end; 2704 uint8_t *cur = optp->ipoptp_next; 2705 uint8_t opt, len, pointer; 2706 2707 /* 2708 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2709 * has been corrupted. 2710 */ 2711 ASSERT(cur <= end); 2712 2713 if (cur == end) 2714 return (IPOPT_EOL); 2715 2716 opt = cur[IPOPT_OPTVAL]; 2717 2718 /* 2719 * Skip any NOP options. 2720 */ 2721 while (opt == IPOPT_NOP) { 2722 cur++; 2723 if (cur == end) 2724 return (IPOPT_EOL); 2725 opt = cur[IPOPT_OPTVAL]; 2726 } 2727 2728 if (opt == IPOPT_EOL) 2729 return (IPOPT_EOL); 2730 2731 /* 2732 * Option requiring a length. 2733 */ 2734 if ((cur + 1) >= end) { 2735 optp->ipoptp_flags |= IPOPTP_ERROR; 2736 return (IPOPT_EOL); 2737 } 2738 len = cur[IPOPT_OLEN]; 2739 if (len < 2) { 2740 optp->ipoptp_flags |= IPOPTP_ERROR; 2741 return (IPOPT_EOL); 2742 } 2743 optp->ipoptp_cur = cur; 2744 optp->ipoptp_len = len; 2745 optp->ipoptp_next = cur + len; 2746 if (cur + len > end) { 2747 optp->ipoptp_flags |= IPOPTP_ERROR; 2748 return (IPOPT_EOL); 2749 } 2750 2751 /* 2752 * For the options which require a pointer field, make sure 2753 * its there, and make sure it points to either something 2754 * inside this option, or the end of the option. 2755 */ 2756 switch (opt) { 2757 case IPOPT_RR: 2758 case IPOPT_TS: 2759 case IPOPT_LSRR: 2760 case IPOPT_SSRR: 2761 if (len <= IPOPT_OFFSET) { 2762 optp->ipoptp_flags |= IPOPTP_ERROR; 2763 return (opt); 2764 } 2765 pointer = cur[IPOPT_OFFSET]; 2766 if (pointer - 1 > len) { 2767 optp->ipoptp_flags |= IPOPTP_ERROR; 2768 return (opt); 2769 } 2770 break; 2771 } 2772 2773 /* 2774 * Sanity check the pointer field based on the type of the 2775 * option. 2776 */ 2777 switch (opt) { 2778 case IPOPT_RR: 2779 case IPOPT_SSRR: 2780 case IPOPT_LSRR: 2781 if (pointer < IPOPT_MINOFF_SR) 2782 optp->ipoptp_flags |= IPOPTP_ERROR; 2783 break; 2784 case IPOPT_TS: 2785 if (pointer < IPOPT_MINOFF_IT) 2786 optp->ipoptp_flags |= IPOPTP_ERROR; 2787 /* 2788 * Note that the Internet Timestamp option also 2789 * contains two four bit fields (the Overflow field, 2790 * and the Flag field), which follow the pointer 2791 * field. We don't need to check that these fields 2792 * fall within the length of the option because this 2793 * was implicitely done above. We've checked that the 2794 * pointer value is at least IPOPT_MINOFF_IT, and that 2795 * it falls within the option. Since IPOPT_MINOFF_IT > 2796 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2797 */ 2798 ASSERT(len > IPOPT_POS_OV_FLG); 2799 break; 2800 } 2801 2802 return (opt); 2803 } 2804 2805 /* 2806 * Use the outgoing IP header to create an IP_OPTIONS option the way 2807 * it was passed down from the application. 2808 */ 2809 int 2810 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2811 { 2812 ipoptp_t opts; 2813 const uchar_t *opt; 2814 uint8_t optval; 2815 uint8_t optlen; 2816 uint32_t len = 0; 2817 uchar_t *buf1 = buf; 2818 2819 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2820 len += IP_ADDR_LEN; 2821 bzero(buf1, IP_ADDR_LEN); 2822 2823 /* 2824 * OK to cast away const here, as we don't store through the returned 2825 * opts.ipoptp_cur pointer. 2826 */ 2827 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2828 optval != IPOPT_EOL; 2829 optval = ipoptp_next(&opts)) { 2830 int off; 2831 2832 opt = opts.ipoptp_cur; 2833 optlen = opts.ipoptp_len; 2834 switch (optval) { 2835 case IPOPT_SSRR: 2836 case IPOPT_LSRR: 2837 2838 /* 2839 * Insert ipha_dst as the first entry in the source 2840 * route and move down the entries on step. 2841 * The last entry gets placed at buf1. 2842 */ 2843 buf[IPOPT_OPTVAL] = optval; 2844 buf[IPOPT_OLEN] = optlen; 2845 buf[IPOPT_OFFSET] = optlen; 2846 2847 off = optlen - IP_ADDR_LEN; 2848 if (off < 0) { 2849 /* No entries in source route */ 2850 break; 2851 } 2852 /* Last entry in source route */ 2853 bcopy(opt + off, buf1, IP_ADDR_LEN); 2854 off -= IP_ADDR_LEN; 2855 2856 while (off > 0) { 2857 bcopy(opt + off, 2858 buf + off + IP_ADDR_LEN, 2859 IP_ADDR_LEN); 2860 off -= IP_ADDR_LEN; 2861 } 2862 /* ipha_dst into first slot */ 2863 bcopy(&ipha->ipha_dst, 2864 buf + off + IP_ADDR_LEN, 2865 IP_ADDR_LEN); 2866 buf += optlen; 2867 len += optlen; 2868 break; 2869 2870 case IPOPT_COMSEC: 2871 case IPOPT_SECURITY: 2872 /* if passing up a label is not ok, then remove */ 2873 if (is_system_labeled()) 2874 break; 2875 /* FALLTHROUGH */ 2876 default: 2877 bcopy(opt, buf, optlen); 2878 buf += optlen; 2879 len += optlen; 2880 break; 2881 } 2882 } 2883 done: 2884 /* Pad the resulting options */ 2885 while (len & 0x3) { 2886 *buf++ = IPOPT_EOL; 2887 len++; 2888 } 2889 return (len); 2890 } 2891 2892 /* 2893 * Update any record route or timestamp options to include this host. 2894 * Reverse any source route option. 2895 * This routine assumes that the options are well formed i.e. that they 2896 * have already been checked. 2897 */ 2898 static void 2899 icmp_options_update(ipha_t *ipha) 2900 { 2901 ipoptp_t opts; 2902 uchar_t *opt; 2903 uint8_t optval; 2904 ipaddr_t src; /* Our local address */ 2905 ipaddr_t dst; 2906 2907 ip2dbg(("icmp_options_update\n")); 2908 src = ipha->ipha_src; 2909 dst = ipha->ipha_dst; 2910 2911 for (optval = ipoptp_first(&opts, ipha); 2912 optval != IPOPT_EOL; 2913 optval = ipoptp_next(&opts)) { 2914 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2915 opt = opts.ipoptp_cur; 2916 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2917 optval, opts.ipoptp_len)); 2918 switch (optval) { 2919 int off1, off2; 2920 case IPOPT_SSRR: 2921 case IPOPT_LSRR: 2922 /* 2923 * Reverse the source route. The first entry 2924 * should be the next to last one in the current 2925 * source route (the last entry is our address). 2926 * The last entry should be the final destination. 2927 */ 2928 off1 = IPOPT_MINOFF_SR - 1; 2929 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2930 if (off2 < 0) { 2931 /* No entries in source route */ 2932 ip1dbg(( 2933 "icmp_options_update: bad src route\n")); 2934 break; 2935 } 2936 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2937 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2938 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2939 off2 -= IP_ADDR_LEN; 2940 2941 while (off1 < off2) { 2942 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2943 bcopy((char *)opt + off2, (char *)opt + off1, 2944 IP_ADDR_LEN); 2945 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2946 off1 += IP_ADDR_LEN; 2947 off2 -= IP_ADDR_LEN; 2948 } 2949 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2950 break; 2951 } 2952 } 2953 } 2954 2955 /* 2956 * Process received ICMP Redirect messages. 2957 */ 2958 static void 2959 icmp_redirect(ill_t *ill, mblk_t *mp) 2960 { 2961 ipha_t *ipha; 2962 int iph_hdr_length; 2963 icmph_t *icmph; 2964 ipha_t *ipha_err; 2965 ire_t *ire; 2966 ire_t *prev_ire; 2967 ire_t *save_ire; 2968 ipaddr_t src, dst, gateway; 2969 iulp_t ulp_info = { 0 }; 2970 int error; 2971 ip_stack_t *ipst; 2972 2973 ASSERT(ill != NULL); 2974 ipst = ill->ill_ipst; 2975 2976 ipha = (ipha_t *)mp->b_rptr; 2977 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2978 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2979 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2980 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 2981 freemsg(mp); 2982 return; 2983 } 2984 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2985 ipha_err = (ipha_t *)&icmph[1]; 2986 src = ipha->ipha_src; 2987 dst = ipha_err->ipha_dst; 2988 gateway = icmph->icmph_rd_gateway; 2989 /* Make sure the new gateway is reachable somehow. */ 2990 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2991 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2992 /* 2993 * Make sure we had a route for the dest in question and that 2994 * that route was pointing to the old gateway (the source of the 2995 * redirect packet.) 2996 */ 2997 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2998 NULL, MATCH_IRE_GW, ipst); 2999 /* 3000 * Check that 3001 * the redirect was not from ourselves 3002 * the new gateway and the old gateway are directly reachable 3003 */ 3004 if (!prev_ire || 3005 !ire || 3006 ire->ire_type == IRE_LOCAL) { 3007 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3008 freemsg(mp); 3009 if (ire != NULL) 3010 ire_refrele(ire); 3011 if (prev_ire != NULL) 3012 ire_refrele(prev_ire); 3013 return; 3014 } 3015 3016 /* 3017 * Should we use the old ULP info to create the new gateway? From 3018 * a user's perspective, we should inherit the info so that it 3019 * is a "smooth" transition. If we do not do that, then new 3020 * connections going thru the new gateway will have no route metrics, 3021 * which is counter-intuitive to user. From a network point of 3022 * view, this may or may not make sense even though the new gateway 3023 * is still directly connected to us so the route metrics should not 3024 * change much. 3025 * 3026 * But if the old ire_uinfo is not initialized, we do another 3027 * recursive lookup on the dest using the new gateway. There may 3028 * be a route to that. If so, use it to initialize the redirect 3029 * route. 3030 */ 3031 if (prev_ire->ire_uinfo.iulp_set) { 3032 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3033 } else { 3034 ire_t *tmp_ire; 3035 ire_t *sire; 3036 3037 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3038 ALL_ZONES, 0, NULL, 3039 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3040 ipst); 3041 if (sire != NULL) { 3042 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3043 /* 3044 * If sire != NULL, ire_ftable_lookup() should not 3045 * return a NULL value. 3046 */ 3047 ASSERT(tmp_ire != NULL); 3048 ire_refrele(tmp_ire); 3049 ire_refrele(sire); 3050 } else if (tmp_ire != NULL) { 3051 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3052 sizeof (iulp_t)); 3053 ire_refrele(tmp_ire); 3054 } 3055 } 3056 if (prev_ire->ire_type == IRE_CACHE) 3057 ire_delete(prev_ire); 3058 ire_refrele(prev_ire); 3059 /* 3060 * TODO: more precise handling for cases 0, 2, 3, the latter two 3061 * require TOS routing 3062 */ 3063 switch (icmph->icmph_code) { 3064 case 0: 3065 case 1: 3066 /* TODO: TOS specificity for cases 2 and 3 */ 3067 case 2: 3068 case 3: 3069 break; 3070 default: 3071 freemsg(mp); 3072 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3073 ire_refrele(ire); 3074 return; 3075 } 3076 /* 3077 * Create a Route Association. This will allow us to remember that 3078 * someone we believe told us to use the particular gateway. 3079 */ 3080 save_ire = ire; 3081 ire = ire_create( 3082 (uchar_t *)&dst, /* dest addr */ 3083 (uchar_t *)&ip_g_all_ones, /* mask */ 3084 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3085 (uchar_t *)&gateway, /* gateway addr */ 3086 &save_ire->ire_max_frag, /* max frag */ 3087 NULL, /* no src nce */ 3088 NULL, /* no rfq */ 3089 NULL, /* no stq */ 3090 IRE_HOST, 3091 NULL, /* ipif */ 3092 0, /* cmask */ 3093 0, /* phandle */ 3094 0, /* ihandle */ 3095 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3096 &ulp_info, 3097 NULL, /* tsol_gc_t */ 3098 NULL, /* gcgrp */ 3099 ipst); 3100 3101 if (ire == NULL) { 3102 freemsg(mp); 3103 ire_refrele(save_ire); 3104 return; 3105 } 3106 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3107 ire_refrele(save_ire); 3108 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3109 3110 if (error == 0) { 3111 ire_refrele(ire); /* Held in ire_add_v4 */ 3112 /* tell routing sockets that we received a redirect */ 3113 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3114 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3115 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3116 } 3117 3118 /* 3119 * Delete any existing IRE_HOST type redirect ires for this destination. 3120 * This together with the added IRE has the effect of 3121 * modifying an existing redirect. 3122 */ 3123 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3124 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3125 if (prev_ire != NULL) { 3126 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3127 ire_delete(prev_ire); 3128 ire_refrele(prev_ire); 3129 } 3130 3131 freemsg(mp); 3132 } 3133 3134 /* 3135 * Generate an ICMP parameter problem message. 3136 */ 3137 static void 3138 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3139 ip_stack_t *ipst) 3140 { 3141 icmph_t icmph; 3142 boolean_t mctl_present; 3143 mblk_t *first_mp; 3144 3145 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3146 3147 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3148 if (mctl_present) 3149 freeb(first_mp); 3150 return; 3151 } 3152 3153 bzero(&icmph, sizeof (icmph_t)); 3154 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3155 icmph.icmph_pp_ptr = ptr; 3156 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3157 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3158 ipst); 3159 } 3160 3161 /* 3162 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3163 * the ICMP header pointed to by "stuff". (May be called as writer.) 3164 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3165 * an icmp error packet can be sent. 3166 * Assigns an appropriate source address to the packet. If ipha_dst is 3167 * one of our addresses use it for source. Otherwise pick a source based 3168 * on a route lookup back to ipha_src. 3169 * Note that ipha_src must be set here since the 3170 * packet is likely to arrive on an ill queue in ip_wput() which will 3171 * not set a source address. 3172 */ 3173 static void 3174 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3175 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3176 { 3177 ipaddr_t dst; 3178 icmph_t *icmph; 3179 ipha_t *ipha; 3180 uint_t len_needed; 3181 size_t msg_len; 3182 mblk_t *mp1; 3183 ipaddr_t src; 3184 ire_t *ire; 3185 mblk_t *ipsec_mp; 3186 ipsec_out_t *io = NULL; 3187 3188 if (mctl_present) { 3189 /* 3190 * If it is : 3191 * 3192 * 1) a IPSEC_OUT, then this is caused by outbound 3193 * datagram originating on this host. IPsec processing 3194 * may or may not have been done. Refer to comments above 3195 * icmp_inbound_error_fanout for details. 3196 * 3197 * 2) a IPSEC_IN if we are generating a icmp_message 3198 * for an incoming datagram destined for us i.e called 3199 * from ip_fanout_send_icmp. 3200 */ 3201 ipsec_info_t *in; 3202 ipsec_mp = mp; 3203 mp = ipsec_mp->b_cont; 3204 3205 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3206 ipha = (ipha_t *)mp->b_rptr; 3207 3208 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3209 in->ipsec_info_type == IPSEC_IN); 3210 3211 if (in->ipsec_info_type == IPSEC_IN) { 3212 /* 3213 * Convert the IPSEC_IN to IPSEC_OUT. 3214 */ 3215 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3216 BUMP_MIB(&ipst->ips_ip_mib, 3217 ipIfStatsOutDiscards); 3218 return; 3219 } 3220 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3221 } else { 3222 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3223 io = (ipsec_out_t *)in; 3224 /* 3225 * Clear out ipsec_out_proc_begin, so we do a fresh 3226 * ire lookup. 3227 */ 3228 io->ipsec_out_proc_begin = B_FALSE; 3229 } 3230 ASSERT(zoneid == io->ipsec_out_zoneid); 3231 ASSERT(zoneid != ALL_ZONES); 3232 } else { 3233 /* 3234 * This is in clear. The icmp message we are building 3235 * here should go out in clear. 3236 * 3237 * Pardon the convolution of it all, but it's easier to 3238 * allocate a "use cleartext" IPSEC_IN message and convert 3239 * it than it is to allocate a new one. 3240 */ 3241 ipsec_in_t *ii; 3242 ASSERT(DB_TYPE(mp) == M_DATA); 3243 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3244 if (ipsec_mp == NULL) { 3245 freemsg(mp); 3246 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3247 return; 3248 } 3249 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3250 3251 /* This is not a secure packet */ 3252 ii->ipsec_in_secure = B_FALSE; 3253 /* 3254 * For trusted extensions using a shared IP address we can 3255 * send using any zoneid. 3256 */ 3257 if (zoneid == ALL_ZONES) 3258 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3259 else 3260 ii->ipsec_in_zoneid = zoneid; 3261 ipsec_mp->b_cont = mp; 3262 ipha = (ipha_t *)mp->b_rptr; 3263 /* 3264 * Convert the IPSEC_IN to IPSEC_OUT. 3265 */ 3266 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3267 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3268 return; 3269 } 3270 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3271 } 3272 3273 /* Remember our eventual destination */ 3274 dst = ipha->ipha_src; 3275 3276 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3277 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3278 if (ire != NULL && 3279 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3280 src = ipha->ipha_dst; 3281 } else { 3282 if (ire != NULL) 3283 ire_refrele(ire); 3284 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3285 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3286 ipst); 3287 if (ire == NULL) { 3288 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3289 freemsg(ipsec_mp); 3290 return; 3291 } 3292 src = ire->ire_src_addr; 3293 } 3294 3295 if (ire != NULL) 3296 ire_refrele(ire); 3297 3298 /* 3299 * Check if we can send back more then 8 bytes in addition to 3300 * the IP header. We try to send 64 bytes of data and the internal 3301 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3302 */ 3303 len_needed = IPH_HDR_LENGTH(ipha); 3304 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3305 ipha->ipha_protocol == IPPROTO_IPV6) { 3306 3307 if (!pullupmsg(mp, -1)) { 3308 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3309 freemsg(ipsec_mp); 3310 return; 3311 } 3312 ipha = (ipha_t *)mp->b_rptr; 3313 3314 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3315 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3316 len_needed)); 3317 } else { 3318 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3319 3320 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3321 len_needed += ip_hdr_length_v6(mp, ip6h); 3322 } 3323 } 3324 len_needed += ipst->ips_ip_icmp_return; 3325 msg_len = msgdsize(mp); 3326 if (msg_len > len_needed) { 3327 (void) adjmsg(mp, len_needed - msg_len); 3328 msg_len = len_needed; 3329 } 3330 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3331 if (mp1 == NULL) { 3332 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3333 freemsg(ipsec_mp); 3334 return; 3335 } 3336 mp1->b_cont = mp; 3337 mp = mp1; 3338 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3339 ipsec_mp->b_rptr == (uint8_t *)io && 3340 io->ipsec_out_type == IPSEC_OUT); 3341 ipsec_mp->b_cont = mp; 3342 3343 /* 3344 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3345 * node generates be accepted in peace by all on-host destinations. 3346 * If we do NOT assume that all on-host destinations trust 3347 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3348 * (Look for ipsec_out_icmp_loopback). 3349 */ 3350 io->ipsec_out_icmp_loopback = B_TRUE; 3351 3352 ipha = (ipha_t *)mp->b_rptr; 3353 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3354 *ipha = icmp_ipha; 3355 ipha->ipha_src = src; 3356 ipha->ipha_dst = dst; 3357 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3358 msg_len += sizeof (icmp_ipha) + len; 3359 if (msg_len > IP_MAXPACKET) { 3360 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3361 msg_len = IP_MAXPACKET; 3362 } 3363 ipha->ipha_length = htons((uint16_t)msg_len); 3364 icmph = (icmph_t *)&ipha[1]; 3365 bcopy(stuff, icmph, len); 3366 icmph->icmph_checksum = 0; 3367 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3368 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3369 put(q, ipsec_mp); 3370 } 3371 3372 /* 3373 * Determine if an ICMP error packet can be sent given the rate limit. 3374 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3375 * in milliseconds) and a burst size. Burst size number of packets can 3376 * be sent arbitrarely closely spaced. 3377 * The state is tracked using two variables to implement an approximate 3378 * token bucket filter: 3379 * icmp_pkt_err_last - lbolt value when the last burst started 3380 * icmp_pkt_err_sent - number of packets sent in current burst 3381 */ 3382 boolean_t 3383 icmp_err_rate_limit(ip_stack_t *ipst) 3384 { 3385 clock_t now = TICK_TO_MSEC(lbolt); 3386 uint_t refilled; /* Number of packets refilled in tbf since last */ 3387 /* Guard against changes by loading into local variable */ 3388 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3389 3390 if (err_interval == 0) 3391 return (B_FALSE); 3392 3393 if (ipst->ips_icmp_pkt_err_last > now) { 3394 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3395 ipst->ips_icmp_pkt_err_last = 0; 3396 ipst->ips_icmp_pkt_err_sent = 0; 3397 } 3398 /* 3399 * If we are in a burst update the token bucket filter. 3400 * Update the "last" time to be close to "now" but make sure 3401 * we don't loose precision. 3402 */ 3403 if (ipst->ips_icmp_pkt_err_sent != 0) { 3404 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3405 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3406 ipst->ips_icmp_pkt_err_sent = 0; 3407 } else { 3408 ipst->ips_icmp_pkt_err_sent -= refilled; 3409 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3410 } 3411 } 3412 if (ipst->ips_icmp_pkt_err_sent == 0) { 3413 /* Start of new burst */ 3414 ipst->ips_icmp_pkt_err_last = now; 3415 } 3416 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3417 ipst->ips_icmp_pkt_err_sent++; 3418 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3419 ipst->ips_icmp_pkt_err_sent)); 3420 return (B_FALSE); 3421 } 3422 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3423 return (B_TRUE); 3424 } 3425 3426 /* 3427 * Check if it is ok to send an IPv4 ICMP error packet in 3428 * response to the IPv4 packet in mp. 3429 * Free the message and return null if no 3430 * ICMP error packet should be sent. 3431 */ 3432 static mblk_t * 3433 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3434 { 3435 icmph_t *icmph; 3436 ipha_t *ipha; 3437 uint_t len_needed; 3438 ire_t *src_ire; 3439 ire_t *dst_ire; 3440 3441 if (!mp) 3442 return (NULL); 3443 ipha = (ipha_t *)mp->b_rptr; 3444 if (ip_csum_hdr(ipha)) { 3445 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3446 freemsg(mp); 3447 return (NULL); 3448 } 3449 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3450 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3451 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3452 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3453 if (src_ire != NULL || dst_ire != NULL || 3454 CLASSD(ipha->ipha_dst) || 3455 CLASSD(ipha->ipha_src) || 3456 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3457 /* Note: only errors to the fragment with offset 0 */ 3458 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3459 freemsg(mp); 3460 if (src_ire != NULL) 3461 ire_refrele(src_ire); 3462 if (dst_ire != NULL) 3463 ire_refrele(dst_ire); 3464 return (NULL); 3465 } 3466 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3467 /* 3468 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3469 * errors in response to any ICMP errors. 3470 */ 3471 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3472 if (mp->b_wptr - mp->b_rptr < len_needed) { 3473 if (!pullupmsg(mp, len_needed)) { 3474 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3475 freemsg(mp); 3476 return (NULL); 3477 } 3478 ipha = (ipha_t *)mp->b_rptr; 3479 } 3480 icmph = (icmph_t *) 3481 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3482 switch (icmph->icmph_type) { 3483 case ICMP_DEST_UNREACHABLE: 3484 case ICMP_SOURCE_QUENCH: 3485 case ICMP_TIME_EXCEEDED: 3486 case ICMP_PARAM_PROBLEM: 3487 case ICMP_REDIRECT: 3488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3489 freemsg(mp); 3490 return (NULL); 3491 default: 3492 break; 3493 } 3494 } 3495 /* 3496 * If this is a labeled system, then check to see if we're allowed to 3497 * send a response to this particular sender. If not, then just drop. 3498 */ 3499 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3500 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3502 freemsg(mp); 3503 return (NULL); 3504 } 3505 if (icmp_err_rate_limit(ipst)) { 3506 /* 3507 * Only send ICMP error packets every so often. 3508 * This should be done on a per port/source basis, 3509 * but for now this will suffice. 3510 */ 3511 freemsg(mp); 3512 return (NULL); 3513 } 3514 return (mp); 3515 } 3516 3517 /* 3518 * Generate an ICMP redirect message. 3519 */ 3520 static void 3521 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3522 { 3523 icmph_t icmph; 3524 3525 /* 3526 * We are called from ip_rput where we could 3527 * not have attached an IPSEC_IN. 3528 */ 3529 ASSERT(mp->b_datap->db_type == M_DATA); 3530 3531 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3532 return; 3533 } 3534 3535 bzero(&icmph, sizeof (icmph_t)); 3536 icmph.icmph_type = ICMP_REDIRECT; 3537 icmph.icmph_code = 1; 3538 icmph.icmph_rd_gateway = gateway; 3539 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3540 /* Redirects sent by router, and router is global zone */ 3541 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3542 } 3543 3544 /* 3545 * Generate an ICMP time exceeded message. 3546 */ 3547 void 3548 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3549 ip_stack_t *ipst) 3550 { 3551 icmph_t icmph; 3552 boolean_t mctl_present; 3553 mblk_t *first_mp; 3554 3555 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3556 3557 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3558 if (mctl_present) 3559 freeb(first_mp); 3560 return; 3561 } 3562 3563 bzero(&icmph, sizeof (icmph_t)); 3564 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3565 icmph.icmph_code = code; 3566 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3567 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3568 ipst); 3569 } 3570 3571 /* 3572 * Generate an ICMP unreachable message. 3573 */ 3574 void 3575 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3576 ip_stack_t *ipst) 3577 { 3578 icmph_t icmph; 3579 mblk_t *first_mp; 3580 boolean_t mctl_present; 3581 3582 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3583 3584 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3585 if (mctl_present) 3586 freeb(first_mp); 3587 return; 3588 } 3589 3590 bzero(&icmph, sizeof (icmph_t)); 3591 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3592 icmph.icmph_code = code; 3593 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3594 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3595 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3596 zoneid, ipst); 3597 } 3598 3599 /* 3600 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3601 * duplicate. As long as someone else holds the address, the interface will 3602 * stay down. When that conflict goes away, the interface is brought back up. 3603 * This is done so that accidental shutdowns of addresses aren't made 3604 * permanent. Your server will recover from a failure. 3605 * 3606 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3607 * user space process (dhcpagent). 3608 * 3609 * Recovery completes if ARP reports that the address is now ours (via 3610 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3611 * 3612 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3613 */ 3614 static void 3615 ipif_dup_recovery(void *arg) 3616 { 3617 ipif_t *ipif = arg; 3618 ill_t *ill = ipif->ipif_ill; 3619 mblk_t *arp_add_mp; 3620 mblk_t *arp_del_mp; 3621 ip_stack_t *ipst = ill->ill_ipst; 3622 3623 ipif->ipif_recovery_id = 0; 3624 3625 /* 3626 * No lock needed for moving or condemned check, as this is just an 3627 * optimization. 3628 */ 3629 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3630 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3631 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3632 /* No reason to try to bring this address back. */ 3633 return; 3634 } 3635 3636 /* ACE_F_UNVERIFIED restarts DAD */ 3637 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3638 goto alloc_fail; 3639 3640 if (ipif->ipif_arp_del_mp == NULL) { 3641 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3642 goto alloc_fail; 3643 ipif->ipif_arp_del_mp = arp_del_mp; 3644 } 3645 3646 putnext(ill->ill_rq, arp_add_mp); 3647 return; 3648 3649 alloc_fail: 3650 /* 3651 * On allocation failure, just restart the timer. Note that the ipif 3652 * is down here, so no other thread could be trying to start a recovery 3653 * timer. The ill_lock protects the condemned flag and the recovery 3654 * timer ID. 3655 */ 3656 freemsg(arp_add_mp); 3657 mutex_enter(&ill->ill_lock); 3658 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3659 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3660 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3661 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3662 } 3663 mutex_exit(&ill->ill_lock); 3664 } 3665 3666 /* 3667 * This is for exclusive changes due to ARP. Either tear down an interface due 3668 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3669 */ 3670 /* ARGSUSED */ 3671 static void 3672 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3673 { 3674 ill_t *ill = rq->q_ptr; 3675 arh_t *arh; 3676 ipaddr_t src; 3677 ipif_t *ipif; 3678 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3679 char hbuf[MAC_STR_LEN]; 3680 char sbuf[INET_ADDRSTRLEN]; 3681 const char *failtype; 3682 boolean_t bring_up; 3683 ip_stack_t *ipst = ill->ill_ipst; 3684 3685 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3686 case AR_CN_READY: 3687 failtype = NULL; 3688 bring_up = B_TRUE; 3689 break; 3690 case AR_CN_FAILED: 3691 failtype = "in use"; 3692 bring_up = B_FALSE; 3693 break; 3694 default: 3695 failtype = "claimed"; 3696 bring_up = B_FALSE; 3697 break; 3698 } 3699 3700 arh = (arh_t *)mp->b_cont->b_rptr; 3701 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3702 3703 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3704 sizeof (hbuf)); 3705 (void) ip_dot_addr(src, sbuf); 3706 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3707 3708 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3709 ipif->ipif_lcl_addr != src) { 3710 continue; 3711 } 3712 3713 /* 3714 * If we failed on a recovery probe, then restart the timer to 3715 * try again later. 3716 */ 3717 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3718 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3719 ill->ill_net_type == IRE_IF_RESOLVER && 3720 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3721 ipst->ips_ip_dup_recovery > 0 && 3722 ipif->ipif_recovery_id == 0) { 3723 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3724 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3725 continue; 3726 } 3727 3728 /* 3729 * If what we're trying to do has already been done, then do 3730 * nothing. 3731 */ 3732 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3733 continue; 3734 3735 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3736 3737 if (failtype == NULL) { 3738 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3739 ibuf); 3740 } else { 3741 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3742 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3743 } 3744 3745 if (bring_up) { 3746 ASSERT(ill->ill_dl_up); 3747 /* 3748 * Free up the ARP delete message so we can allocate 3749 * a fresh one through the normal path. 3750 */ 3751 freemsg(ipif->ipif_arp_del_mp); 3752 ipif->ipif_arp_del_mp = NULL; 3753 if (ipif_resolver_up(ipif, Res_act_initial) != 3754 EINPROGRESS) { 3755 ipif->ipif_addr_ready = 1; 3756 (void) ipif_up_done(ipif); 3757 ASSERT(ill->ill_move_ipif == NULL); 3758 } 3759 continue; 3760 } 3761 3762 mutex_enter(&ill->ill_lock); 3763 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3764 ipif->ipif_flags |= IPIF_DUPLICATE; 3765 ill->ill_ipif_dup_count++; 3766 mutex_exit(&ill->ill_lock); 3767 /* 3768 * Already exclusive on the ill; no need to handle deferred 3769 * processing here. 3770 */ 3771 (void) ipif_down(ipif, NULL, NULL); 3772 ipif_down_tail(ipif); 3773 mutex_enter(&ill->ill_lock); 3774 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3775 ill->ill_net_type == IRE_IF_RESOLVER && 3776 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3777 ipst->ips_ip_dup_recovery > 0) { 3778 ASSERT(ipif->ipif_recovery_id == 0); 3779 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3780 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3781 } 3782 mutex_exit(&ill->ill_lock); 3783 } 3784 freemsg(mp); 3785 } 3786 3787 /* ARGSUSED */ 3788 static void 3789 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3790 { 3791 ill_t *ill = rq->q_ptr; 3792 arh_t *arh; 3793 ipaddr_t src; 3794 ipif_t *ipif; 3795 3796 arh = (arh_t *)mp->b_cont->b_rptr; 3797 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3799 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3800 (void) ipif_resolver_up(ipif, Res_act_defend); 3801 } 3802 freemsg(mp); 3803 } 3804 3805 /* 3806 * News from ARP. ARP sends notification of interesting events down 3807 * to its clients using M_CTL messages with the interesting ARP packet 3808 * attached via b_cont. 3809 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3810 * queue as opposed to ARP sending the message to all the clients, i.e. all 3811 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3812 * table if a cache IRE is found to delete all the entries for the address in 3813 * the packet. 3814 */ 3815 static void 3816 ip_arp_news(queue_t *q, mblk_t *mp) 3817 { 3818 arcn_t *arcn; 3819 arh_t *arh; 3820 ire_t *ire = NULL; 3821 char hbuf[MAC_STR_LEN]; 3822 char sbuf[INET_ADDRSTRLEN]; 3823 ipaddr_t src; 3824 in6_addr_t v6src; 3825 boolean_t isv6 = B_FALSE; 3826 ipif_t *ipif; 3827 ill_t *ill; 3828 ip_stack_t *ipst; 3829 3830 if (CONN_Q(q)) { 3831 conn_t *connp = Q_TO_CONN(q); 3832 3833 ipst = connp->conn_netstack->netstack_ip; 3834 } else { 3835 ill_t *ill = (ill_t *)q->q_ptr; 3836 3837 ipst = ill->ill_ipst; 3838 } 3839 3840 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3841 if (q->q_next) { 3842 putnext(q, mp); 3843 } else 3844 freemsg(mp); 3845 return; 3846 } 3847 arh = (arh_t *)mp->b_cont->b_rptr; 3848 /* Is it one we are interested in? */ 3849 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3850 isv6 = B_TRUE; 3851 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3852 IPV6_ADDR_LEN); 3853 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3854 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3855 IP_ADDR_LEN); 3856 } else { 3857 freemsg(mp); 3858 return; 3859 } 3860 3861 ill = q->q_ptr; 3862 3863 arcn = (arcn_t *)mp->b_rptr; 3864 switch (arcn->arcn_code) { 3865 case AR_CN_BOGON: 3866 /* 3867 * Someone is sending ARP packets with a source protocol 3868 * address that we have published and for which we believe our 3869 * entry is authoritative and (when ill_arp_extend is set) 3870 * verified to be unique on the network. 3871 * 3872 * The ARP module internally handles the cases where the sender 3873 * is just probing (for DAD) and where the hardware address of 3874 * a non-authoritative entry has changed. Thus, these are the 3875 * real conflicts, and we have to do resolution. 3876 * 3877 * We back away quickly from the address if it's from DHCP or 3878 * otherwise temporary and hasn't been used recently (or at 3879 * all). We'd like to include "deprecated" addresses here as 3880 * well (as there's no real reason to defend something we're 3881 * discarding), but IPMP "reuses" this flag to mean something 3882 * other than the standard meaning. 3883 * 3884 * If the ARP module above is not extended (meaning that it 3885 * doesn't know how to defend the address), then we just log 3886 * the problem as we always did and continue on. It's not 3887 * right, but there's little else we can do, and those old ATM 3888 * users are going away anyway. 3889 */ 3890 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3891 hbuf, sizeof (hbuf)); 3892 (void) ip_dot_addr(src, sbuf); 3893 if (isv6) { 3894 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3895 ipst); 3896 } else { 3897 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3898 } 3899 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3900 uint32_t now; 3901 uint32_t maxage; 3902 clock_t lused; 3903 uint_t maxdefense; 3904 uint_t defs; 3905 3906 /* 3907 * First, figure out if this address hasn't been used 3908 * in a while. If it hasn't, then it's a better 3909 * candidate for abandoning. 3910 */ 3911 ipif = ire->ire_ipif; 3912 ASSERT(ipif != NULL); 3913 now = gethrestime_sec(); 3914 maxage = now - ire->ire_create_time; 3915 if (maxage > ipst->ips_ip_max_temp_idle) 3916 maxage = ipst->ips_ip_max_temp_idle; 3917 lused = drv_hztousec(ddi_get_lbolt() - 3918 ire->ire_last_used_time) / MICROSEC + 1; 3919 if (lused >= maxage && (ipif->ipif_flags & 3920 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3921 maxdefense = ipst->ips_ip_max_temp_defend; 3922 else 3923 maxdefense = ipst->ips_ip_max_defend; 3924 3925 /* 3926 * Now figure out how many times we've defended 3927 * ourselves. Ignore defenses that happened long in 3928 * the past. 3929 */ 3930 mutex_enter(&ire->ire_lock); 3931 if ((defs = ire->ire_defense_count) > 0 && 3932 now - ire->ire_defense_time > 3933 ipst->ips_ip_defend_interval) { 3934 ire->ire_defense_count = defs = 0; 3935 } 3936 ire->ire_defense_count++; 3937 ire->ire_defense_time = now; 3938 mutex_exit(&ire->ire_lock); 3939 ill_refhold(ill); 3940 ire_refrele(ire); 3941 3942 /* 3943 * If we've defended ourselves too many times already, 3944 * then give up and tear down the interface(s) using 3945 * this address. Otherwise, defend by sending out a 3946 * gratuitous ARP. 3947 */ 3948 if (defs >= maxdefense && ill->ill_arp_extend) { 3949 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 3950 B_FALSE); 3951 } else { 3952 cmn_err(CE_WARN, 3953 "node %s is using our IP address %s on %s", 3954 hbuf, sbuf, ill->ill_name); 3955 /* 3956 * If this is an old (ATM) ARP module, then 3957 * don't try to defend the address. Remain 3958 * compatible with the old behavior. Defend 3959 * only with new ARP. 3960 */ 3961 if (ill->ill_arp_extend) { 3962 qwriter_ip(ill, q, mp, ip_arp_defend, 3963 NEW_OP, B_FALSE); 3964 } else { 3965 ill_refrele(ill); 3966 } 3967 } 3968 return; 3969 } 3970 cmn_err(CE_WARN, 3971 "proxy ARP problem? Node '%s' is using %s on %s", 3972 hbuf, sbuf, ill->ill_name); 3973 if (ire != NULL) 3974 ire_refrele(ire); 3975 break; 3976 case AR_CN_ANNOUNCE: 3977 if (isv6) { 3978 /* 3979 * For XRESOLV interfaces. 3980 * Delete the IRE cache entry and NCE for this 3981 * v6 address 3982 */ 3983 ip_ire_clookup_and_delete_v6(&v6src, ipst); 3984 /* 3985 * If v6src is a non-zero, it's a router address 3986 * as below. Do the same sort of thing to clean 3987 * out off-net IRE_CACHE entries that go through 3988 * the router. 3989 */ 3990 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3991 ire_walk_v6(ire_delete_cache_gw_v6, 3992 (char *)&v6src, ALL_ZONES, ipst); 3993 } 3994 } else { 3995 nce_hw_map_t hwm; 3996 3997 /* 3998 * ARP gives us a copy of any packet where it thinks 3999 * the address has changed, so that we can update our 4000 * caches. We're responsible for caching known answers 4001 * in the current design. We check whether the 4002 * hardware address really has changed in all of our 4003 * entries that have cached this mapping, and if so, we 4004 * blow them away. This way we will immediately pick 4005 * up the rare case of a host changing hardware 4006 * address. 4007 */ 4008 if (src == 0) 4009 break; 4010 hwm.hwm_addr = src; 4011 hwm.hwm_hwlen = arh->arh_hlen; 4012 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4013 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4014 ndp_walk_common(ipst->ips_ndp4, NULL, 4015 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4016 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4017 } 4018 break; 4019 case AR_CN_READY: 4020 /* No external v6 resolver has a contract to use this */ 4021 if (isv6) 4022 break; 4023 /* If the link is down, we'll retry this later */ 4024 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4025 break; 4026 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4027 NULL, NULL, ipst); 4028 if (ipif != NULL) { 4029 /* 4030 * If this is a duplicate recovery, then we now need to 4031 * go exclusive to bring this thing back up. 4032 */ 4033 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4034 IPIF_DUPLICATE) { 4035 ipif_refrele(ipif); 4036 ill_refhold(ill); 4037 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4038 B_FALSE); 4039 return; 4040 } 4041 /* 4042 * If this is the first notice that this address is 4043 * ready, then let the user know now. 4044 */ 4045 if ((ipif->ipif_flags & IPIF_UP) && 4046 !ipif->ipif_addr_ready) { 4047 ipif_mask_reply(ipif); 4048 ipif_up_notify(ipif); 4049 } 4050 ipif->ipif_addr_ready = 1; 4051 ipif_refrele(ipif); 4052 } 4053 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4054 if (ire != NULL) { 4055 ire->ire_defense_count = 0; 4056 ire_refrele(ire); 4057 } 4058 break; 4059 case AR_CN_FAILED: 4060 /* No external v6 resolver has a contract to use this */ 4061 if (isv6) 4062 break; 4063 ill_refhold(ill); 4064 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4065 return; 4066 } 4067 freemsg(mp); 4068 } 4069 4070 /* 4071 * Create a mblk suitable for carrying the interface index and/or source link 4072 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4073 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4074 * application. 4075 */ 4076 mblk_t * 4077 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4078 ip_stack_t *ipst) 4079 { 4080 mblk_t *mp; 4081 ip_pktinfo_t *pinfo; 4082 ipha_t *ipha; 4083 struct ether_header *pether; 4084 boolean_t ipmp_ill_held = B_FALSE; 4085 4086 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4087 if (mp == NULL) { 4088 ip1dbg(("ip_add_info: allocation failure.\n")); 4089 return (data_mp); 4090 } 4091 4092 ipha = (ipha_t *)data_mp->b_rptr; 4093 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4094 bzero(pinfo, sizeof (ip_pktinfo_t)); 4095 pinfo->ip_pkt_flags = (uchar_t)flags; 4096 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4097 4098 pether = (struct ether_header *)((char *)ipha 4099 - sizeof (struct ether_header)); 4100 4101 /* 4102 * Make sure the interface is an ethernet type, since this option 4103 * is currently supported only on this type of interface. Also make 4104 * sure we are pointing correctly above db_base. 4105 */ 4106 if ((flags & IPF_RECVSLLA) && 4107 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4108 (ill->ill_type == IFT_ETHER) && 4109 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4110 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4111 bcopy(pether->ether_shost.ether_addr_octet, 4112 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4113 } else { 4114 /* 4115 * Clear the bit. Indicate to upper layer that IP is not 4116 * sending this ancillary info. 4117 */ 4118 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4119 } 4120 4121 /* 4122 * If `ill' is in an IPMP group, use the IPMP ill to determine 4123 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4124 * IPF_RECVADDR support on test addresses is not needed.) 4125 * 4126 * Note that `ill' may already be an IPMP ill if e.g. we're 4127 * processing a packet looped back to an IPMP data address 4128 * (since those IRE_LOCALs are tied to IPMP ills). 4129 */ 4130 if (IS_UNDER_IPMP(ill)) { 4131 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4132 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4133 freemsg(mp); 4134 return (data_mp); 4135 } 4136 ipmp_ill_held = B_TRUE; 4137 } 4138 4139 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4140 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4141 if (flags & IPF_RECVADDR) { 4142 ipif_t *ipif; 4143 ire_t *ire; 4144 4145 /* 4146 * Only valid for V4 4147 */ 4148 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4149 (IPV4_VERSION << 4)); 4150 4151 ipif = ipif_get_next_ipif(NULL, ill); 4152 if (ipif != NULL) { 4153 /* 4154 * Since a decision has already been made to deliver the 4155 * packet, there is no need to test for SECATTR and 4156 * ZONEONLY. 4157 * When a multicast packet is transmitted 4158 * a cache entry is created for the multicast address. 4159 * When delivering a copy of the packet or when new 4160 * packets are received we do not want to match on the 4161 * cached entry so explicitly match on 4162 * IRE_LOCAL and IRE_LOOPBACK 4163 */ 4164 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4165 IRE_LOCAL | IRE_LOOPBACK, 4166 ipif, zoneid, NULL, 4167 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4168 if (ire == NULL) { 4169 /* 4170 * packet must have come on a different 4171 * interface. 4172 * Since a decision has already been made to 4173 * deliver the packet, there is no need to test 4174 * for SECATTR and ZONEONLY. 4175 * Only match on local and broadcast ire's. 4176 * See detailed comment above. 4177 */ 4178 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4179 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4180 NULL, MATCH_IRE_TYPE, ipst); 4181 } 4182 4183 if (ire == NULL) { 4184 /* 4185 * This is either a multicast packet or 4186 * the address has been removed since 4187 * the packet was received. 4188 * Return INADDR_ANY so that normal source 4189 * selection occurs for the response. 4190 */ 4191 4192 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4193 } else { 4194 pinfo->ip_pkt_match_addr.s_addr = 4195 ire->ire_src_addr; 4196 ire_refrele(ire); 4197 } 4198 ipif_refrele(ipif); 4199 } else { 4200 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4201 } 4202 } 4203 4204 if (ipmp_ill_held) 4205 ill_refrele(ill); 4206 4207 mp->b_datap->db_type = M_CTL; 4208 mp->b_wptr += sizeof (ip_pktinfo_t); 4209 mp->b_cont = data_mp; 4210 4211 return (mp); 4212 } 4213 4214 /* 4215 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4216 * part of the bind request. 4217 */ 4218 4219 boolean_t 4220 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4221 { 4222 ipsec_in_t *ii; 4223 4224 ASSERT(policy_mp != NULL); 4225 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4226 4227 ii = (ipsec_in_t *)policy_mp->b_rptr; 4228 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4229 4230 connp->conn_policy = ii->ipsec_in_policy; 4231 ii->ipsec_in_policy = NULL; 4232 4233 if (ii->ipsec_in_action != NULL) { 4234 if (connp->conn_latch == NULL) { 4235 connp->conn_latch = iplatch_create(); 4236 if (connp->conn_latch == NULL) 4237 return (B_FALSE); 4238 } 4239 ipsec_latch_inbound(connp->conn_latch, ii); 4240 } 4241 return (B_TRUE); 4242 } 4243 4244 static void 4245 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4246 { 4247 /* 4248 * Pass the IPsec headers size in ire_ipsec_overhead. 4249 * We can't do this in ip_bind_get_ire because the policy 4250 * may not have been inherited at that point in time and hence 4251 * conn_out_enforce_policy may not be set. 4252 */ 4253 if (ire_requested && connp->conn_out_enforce_policy && 4254 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4255 ire_t *ire = (ire_t *)mp->b_rptr; 4256 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4257 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4258 } 4259 } 4260 4261 /* 4262 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4263 * and to arrange for power-fanout assist. The ULP is identified by 4264 * adding a single byte at the end of the original bind message. 4265 * A ULP other than UDP or TCP that wishes to be recognized passes 4266 * down a bind with a zero length address. 4267 * 4268 * The binding works as follows: 4269 * - A zero byte address means just bind to the protocol. 4270 * - A four byte address is treated as a request to validate 4271 * that the address is a valid local address, appropriate for 4272 * an application to bind to. This does not affect any fanout 4273 * information in IP. 4274 * - A sizeof sin_t byte address is used to bind to only the local address 4275 * and port. 4276 * - A sizeof ipa_conn_t byte address contains complete fanout information 4277 * consisting of local and remote addresses and ports. In 4278 * this case, the addresses are both validated as appropriate 4279 * for this operation, and, if so, the information is retained 4280 * for use in the inbound fanout. 4281 * 4282 * The ULP (except in the zero-length bind) can append an 4283 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4284 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4285 * a copy of the source or destination IRE (source for local bind; 4286 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4287 * policy information contained should be copied on to the conn. 4288 * 4289 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4290 */ 4291 mblk_t * 4292 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4293 { 4294 ssize_t len; 4295 struct T_bind_req *tbr; 4296 sin_t *sin; 4297 ipa_conn_t *ac; 4298 uchar_t *ucp; 4299 mblk_t *mp1; 4300 boolean_t ire_requested; 4301 int error = 0; 4302 int protocol; 4303 ipa_conn_x_t *acx; 4304 4305 ASSERT(!connp->conn_af_isv6); 4306 connp->conn_pkt_isv6 = B_FALSE; 4307 4308 len = MBLKL(mp); 4309 if (len < (sizeof (*tbr) + 1)) { 4310 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4311 "ip_bind: bogus msg, len %ld", len); 4312 /* XXX: Need to return something better */ 4313 goto bad_addr; 4314 } 4315 /* Back up and extract the protocol identifier. */ 4316 mp->b_wptr--; 4317 protocol = *mp->b_wptr & 0xFF; 4318 tbr = (struct T_bind_req *)mp->b_rptr; 4319 /* Reset the message type in preparation for shipping it back. */ 4320 DB_TYPE(mp) = M_PCPROTO; 4321 4322 connp->conn_ulp = (uint8_t)protocol; 4323 4324 /* 4325 * Check for a zero length address. This is from a protocol that 4326 * wants to register to receive all packets of its type. 4327 */ 4328 if (tbr->ADDR_length == 0) { 4329 /* 4330 * These protocols are now intercepted in ip_bind_v6(). 4331 * Reject protocol-level binds here for now. 4332 * 4333 * For SCTP raw socket, ICMP sends down a bind with sin_t 4334 * so that the protocol type cannot be SCTP. 4335 */ 4336 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4337 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4338 goto bad_addr; 4339 } 4340 4341 /* 4342 * 4343 * The udp module never sends down a zero-length address, 4344 * and allowing this on a labeled system will break MLP 4345 * functionality. 4346 */ 4347 if (is_system_labeled() && protocol == IPPROTO_UDP) 4348 goto bad_addr; 4349 4350 if (connp->conn_mac_exempt) 4351 goto bad_addr; 4352 4353 /* No hash here really. The table is big enough. */ 4354 connp->conn_srcv6 = ipv6_all_zeros; 4355 4356 ipcl_proto_insert(connp, protocol); 4357 4358 tbr->PRIM_type = T_BIND_ACK; 4359 return (mp); 4360 } 4361 4362 /* Extract the address pointer from the message. */ 4363 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4364 tbr->ADDR_length); 4365 if (ucp == NULL) { 4366 ip1dbg(("ip_bind: no address\n")); 4367 goto bad_addr; 4368 } 4369 if (!OK_32PTR(ucp)) { 4370 ip1dbg(("ip_bind: unaligned address\n")); 4371 goto bad_addr; 4372 } 4373 /* 4374 * Check for trailing mps. 4375 */ 4376 4377 mp1 = mp->b_cont; 4378 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4379 4380 switch (tbr->ADDR_length) { 4381 default: 4382 ip1dbg(("ip_bind: bad address length %d\n", 4383 (int)tbr->ADDR_length)); 4384 goto bad_addr; 4385 4386 case IP_ADDR_LEN: 4387 /* Verification of local address only */ 4388 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4389 *(ipaddr_t *)ucp, 0, B_FALSE); 4390 break; 4391 4392 case sizeof (sin_t): 4393 sin = (sin_t *)ucp; 4394 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4395 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4396 break; 4397 4398 case sizeof (ipa_conn_t): 4399 ac = (ipa_conn_t *)ucp; 4400 /* For raw socket, the local port is not set. */ 4401 if (ac->ac_lport == 0) 4402 ac->ac_lport = connp->conn_lport; 4403 /* Always verify destination reachability. */ 4404 error = ip_bind_connected_v4(connp, &mp1, protocol, 4405 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4406 B_TRUE, B_TRUE); 4407 break; 4408 4409 case sizeof (ipa_conn_x_t): 4410 acx = (ipa_conn_x_t *)ucp; 4411 /* 4412 * Whether or not to verify destination reachability depends 4413 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4414 */ 4415 error = ip_bind_connected_v4(connp, &mp1, protocol, 4416 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4417 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4418 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4419 break; 4420 } 4421 ASSERT(error != EINPROGRESS); 4422 if (error != 0) 4423 goto bad_addr; 4424 4425 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4426 4427 /* Send it home. */ 4428 mp->b_datap->db_type = M_PCPROTO; 4429 tbr->PRIM_type = T_BIND_ACK; 4430 return (mp); 4431 4432 bad_addr: 4433 /* 4434 * If error = -1 then we generate a TBADADDR - otherwise error is 4435 * a unix errno. 4436 */ 4437 if (error > 0) 4438 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4439 else 4440 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4441 return (mp); 4442 } 4443 4444 /* 4445 * Here address is verified to be a valid local address. 4446 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4447 * address is also considered a valid local address. 4448 * In the case of a broadcast/multicast address, however, the 4449 * upper protocol is expected to reset the src address 4450 * to 0 if it sees a IRE_BROADCAST type returned so that 4451 * no packets are emitted with broadcast/multicast address as 4452 * source address (that violates hosts requirements RFC 1122) 4453 * The addresses valid for bind are: 4454 * (1) - INADDR_ANY (0) 4455 * (2) - IP address of an UP interface 4456 * (3) - IP address of a DOWN interface 4457 * (4) - valid local IP broadcast addresses. In this case 4458 * the conn will only receive packets destined to 4459 * the specified broadcast address. 4460 * (5) - a multicast address. In this case 4461 * the conn will only receive packets destined to 4462 * the specified multicast address. Note: the 4463 * application still has to issue an 4464 * IP_ADD_MEMBERSHIP socket option. 4465 * 4466 * On error, return -1 for TBADADDR otherwise pass the 4467 * errno with TSYSERR reply. 4468 * 4469 * In all the above cases, the bound address must be valid in the current zone. 4470 * When the address is loopback, multicast or broadcast, there might be many 4471 * matching IREs so bind has to look up based on the zone. 4472 * 4473 * Note: lport is in network byte order. 4474 * 4475 */ 4476 int 4477 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4478 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4479 { 4480 int error = 0; 4481 ire_t *src_ire; 4482 zoneid_t zoneid; 4483 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4484 mblk_t *mp = NULL; 4485 boolean_t ire_requested = B_FALSE; 4486 boolean_t ipsec_policy_set = B_FALSE; 4487 4488 if (mpp) 4489 mp = *mpp; 4490 4491 if (mp != NULL) { 4492 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4493 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4494 } 4495 4496 /* 4497 * If it was previously connected, conn_fully_bound would have 4498 * been set. 4499 */ 4500 connp->conn_fully_bound = B_FALSE; 4501 4502 src_ire = NULL; 4503 4504 zoneid = IPCL_ZONEID(connp); 4505 4506 if (src_addr) { 4507 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4508 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4509 /* 4510 * If an address other than 0.0.0.0 is requested, 4511 * we verify that it is a valid address for bind 4512 * Note: Following code is in if-else-if form for 4513 * readability compared to a condition check. 4514 */ 4515 /* LINTED - statement has no consequence */ 4516 if (IRE_IS_LOCAL(src_ire)) { 4517 /* 4518 * (2) Bind to address of local UP interface 4519 */ 4520 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4521 /* 4522 * (4) Bind to broadcast address 4523 * Note: permitted only from transports that 4524 * request IRE 4525 */ 4526 if (!ire_requested) 4527 error = EADDRNOTAVAIL; 4528 } else { 4529 /* 4530 * (3) Bind to address of local DOWN interface 4531 * (ipif_lookup_addr() looks up all interfaces 4532 * but we do not get here for UP interfaces 4533 * - case (2) above) 4534 */ 4535 /* LINTED - statement has no consequent */ 4536 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4537 /* The address exists */ 4538 } else if (CLASSD(src_addr)) { 4539 error = 0; 4540 if (src_ire != NULL) 4541 ire_refrele(src_ire); 4542 /* 4543 * (5) bind to multicast address. 4544 * Fake out the IRE returned to upper 4545 * layer to be a broadcast IRE. 4546 */ 4547 src_ire = ire_ctable_lookup( 4548 INADDR_BROADCAST, INADDR_ANY, 4549 IRE_BROADCAST, NULL, zoneid, NULL, 4550 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4551 ipst); 4552 if (src_ire == NULL || !ire_requested) 4553 error = EADDRNOTAVAIL; 4554 } else { 4555 /* 4556 * Not a valid address for bind 4557 */ 4558 error = EADDRNOTAVAIL; 4559 } 4560 } 4561 if (error) { 4562 /* Red Alert! Attempting to be a bogon! */ 4563 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4564 ntohl(src_addr))); 4565 goto bad_addr; 4566 } 4567 } 4568 4569 /* 4570 * Allow setting new policies. For example, disconnects come 4571 * down as ipa_t bind. As we would have set conn_policy_cached 4572 * to B_TRUE before, we should set it to B_FALSE, so that policy 4573 * can change after the disconnect. 4574 */ 4575 connp->conn_policy_cached = B_FALSE; 4576 4577 /* 4578 * If not fanout_insert this was just an address verification 4579 */ 4580 if (fanout_insert) { 4581 /* 4582 * The addresses have been verified. Time to insert in 4583 * the correct fanout list. 4584 */ 4585 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4586 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4587 connp->conn_lport = lport; 4588 connp->conn_fport = 0; 4589 /* 4590 * Do we need to add a check to reject Multicast packets 4591 */ 4592 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4593 } 4594 4595 if (error == 0) { 4596 if (ire_requested) { 4597 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4598 error = -1; 4599 /* Falls through to bad_addr */ 4600 } 4601 } else if (ipsec_policy_set) { 4602 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4603 error = -1; 4604 /* Falls through to bad_addr */ 4605 } 4606 } 4607 } 4608 bad_addr: 4609 if (error != 0) { 4610 if (connp->conn_anon_port) { 4611 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4612 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4613 B_FALSE); 4614 } 4615 connp->conn_mlp_type = mlptSingle; 4616 } 4617 if (src_ire != NULL) 4618 IRE_REFRELE(src_ire); 4619 return (error); 4620 } 4621 4622 int 4623 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4624 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4625 { 4626 int error; 4627 mblk_t *mp = NULL; 4628 boolean_t ire_requested; 4629 4630 if (ire_mpp) 4631 mp = *ire_mpp; 4632 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4633 4634 ASSERT(!connp->conn_af_isv6); 4635 connp->conn_pkt_isv6 = B_FALSE; 4636 connp->conn_ulp = protocol; 4637 4638 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4639 fanout_insert); 4640 if (error == 0) { 4641 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4642 ire_requested); 4643 } else if (error < 0) { 4644 error = -TBADADDR; 4645 } 4646 return (error); 4647 } 4648 4649 /* 4650 * Verify that both the source and destination addresses 4651 * are valid. If verify_dst is false, then the destination address may be 4652 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4653 * destination reachability, while tunnels do not. 4654 * Note that we allow connect to broadcast and multicast 4655 * addresses when ire_requested is set. Thus the ULP 4656 * has to check for IRE_BROADCAST and multicast. 4657 * 4658 * Returns zero if ok. 4659 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4660 * (for use with TSYSERR reply). 4661 * 4662 * Note: lport and fport are in network byte order. 4663 */ 4664 int 4665 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4666 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4667 boolean_t fanout_insert, boolean_t verify_dst) 4668 { 4669 4670 ire_t *src_ire; 4671 ire_t *dst_ire; 4672 int error = 0; 4673 ire_t *sire = NULL; 4674 ire_t *md_dst_ire = NULL; 4675 ire_t *lso_dst_ire = NULL; 4676 ill_t *ill = NULL; 4677 zoneid_t zoneid; 4678 ipaddr_t src_addr = *src_addrp; 4679 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4680 mblk_t *mp = NULL; 4681 boolean_t ire_requested = B_FALSE; 4682 boolean_t ipsec_policy_set = B_FALSE; 4683 ts_label_t *tsl = NULL; 4684 4685 if (mpp) 4686 mp = *mpp; 4687 4688 if (mp != NULL) { 4689 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4690 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4691 tsl = MBLK_GETLABEL(mp); 4692 } 4693 4694 src_ire = dst_ire = NULL; 4695 4696 /* 4697 * If we never got a disconnect before, clear it now. 4698 */ 4699 connp->conn_fully_bound = B_FALSE; 4700 4701 zoneid = IPCL_ZONEID(connp); 4702 4703 if (CLASSD(dst_addr)) { 4704 /* Pick up an IRE_BROADCAST */ 4705 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4706 NULL, zoneid, tsl, 4707 (MATCH_IRE_RECURSIVE | 4708 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4709 MATCH_IRE_SECATTR), ipst); 4710 } else { 4711 /* 4712 * If conn_dontroute is set or if conn_nexthop_set is set, 4713 * and onlink ipif is not found set ENETUNREACH error. 4714 */ 4715 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4716 ipif_t *ipif; 4717 4718 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4719 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4720 if (ipif == NULL) { 4721 error = ENETUNREACH; 4722 goto bad_addr; 4723 } 4724 ipif_refrele(ipif); 4725 } 4726 4727 if (connp->conn_nexthop_set) { 4728 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4729 0, 0, NULL, NULL, zoneid, tsl, 4730 MATCH_IRE_SECATTR, ipst); 4731 } else { 4732 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4733 &sire, zoneid, tsl, 4734 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4735 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4736 MATCH_IRE_SECATTR), ipst); 4737 } 4738 } 4739 /* 4740 * dst_ire can't be a broadcast when not ire_requested. 4741 * We also prevent ire's with src address INADDR_ANY to 4742 * be used, which are created temporarily for 4743 * sending out packets from endpoints that have 4744 * conn_unspec_src set. If verify_dst is true, the destination must be 4745 * reachable. If verify_dst is false, the destination needn't be 4746 * reachable. 4747 * 4748 * If we match on a reject or black hole, then we've got a 4749 * local failure. May as well fail out the connect() attempt, 4750 * since it's never going to succeed. 4751 */ 4752 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4753 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4754 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4755 /* 4756 * If we're verifying destination reachability, we always want 4757 * to complain here. 4758 * 4759 * If we're not verifying destination reachability but the 4760 * destination has a route, we still want to fail on the 4761 * temporary address and broadcast address tests. 4762 */ 4763 if (verify_dst || (dst_ire != NULL)) { 4764 if (ip_debug > 2) { 4765 pr_addr_dbg("ip_bind_connected_v4:" 4766 "bad connected dst %s\n", 4767 AF_INET, &dst_addr); 4768 } 4769 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4770 error = ENETUNREACH; 4771 else 4772 error = EHOSTUNREACH; 4773 goto bad_addr; 4774 } 4775 } 4776 4777 /* 4778 * We now know that routing will allow us to reach the destination. 4779 * Check whether Trusted Solaris policy allows communication with this 4780 * host, and pretend that the destination is unreachable if not. 4781 * 4782 * This is never a problem for TCP, since that transport is known to 4783 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4784 * handling. If the remote is unreachable, it will be detected at that 4785 * point, so there's no reason to check it here. 4786 * 4787 * Note that for sendto (and other datagram-oriented friends), this 4788 * check is done as part of the data path label computation instead. 4789 * The check here is just to make non-TCP connect() report the right 4790 * error. 4791 */ 4792 if (dst_ire != NULL && is_system_labeled() && 4793 !IPCL_IS_TCP(connp) && 4794 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4795 connp->conn_mac_exempt, ipst) != 0) { 4796 error = EHOSTUNREACH; 4797 if (ip_debug > 2) { 4798 pr_addr_dbg("ip_bind_connected_v4:" 4799 " no label for dst %s\n", 4800 AF_INET, &dst_addr); 4801 } 4802 goto bad_addr; 4803 } 4804 4805 /* 4806 * If the app does a connect(), it means that it will most likely 4807 * send more than 1 packet to the destination. It makes sense 4808 * to clear the temporary flag. 4809 */ 4810 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4811 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4812 irb_t *irb = dst_ire->ire_bucket; 4813 4814 rw_enter(&irb->irb_lock, RW_WRITER); 4815 /* 4816 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4817 * the lock to guarantee irb_tmp_ire_cnt. 4818 */ 4819 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4820 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4821 irb->irb_tmp_ire_cnt--; 4822 } 4823 rw_exit(&irb->irb_lock); 4824 } 4825 4826 /* 4827 * See if we should notify ULP about LSO/MDT; we do this whether or not 4828 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4829 * eligibility tests for passive connects are handled separately 4830 * through tcp_adapt_ire(). We do this before the source address 4831 * selection, because dst_ire may change after a call to 4832 * ipif_select_source(). This is a best-effort check, as the 4833 * packet for this connection may not actually go through 4834 * dst_ire->ire_stq, and the exact IRE can only be known after 4835 * calling ip_newroute(). This is why we further check on the 4836 * IRE during LSO/Multidata packet transmission in 4837 * tcp_lsosend()/tcp_multisend(). 4838 */ 4839 if (!ipsec_policy_set && dst_ire != NULL && 4840 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4841 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4842 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4843 lso_dst_ire = dst_ire; 4844 IRE_REFHOLD(lso_dst_ire); 4845 } else if (ipst->ips_ip_multidata_outbound && 4846 ILL_MDT_CAPABLE(ill)) { 4847 md_dst_ire = dst_ire; 4848 IRE_REFHOLD(md_dst_ire); 4849 } 4850 } 4851 4852 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4853 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4854 /* 4855 * If the IRE belongs to a different zone, look for a matching 4856 * route in the forwarding table and use the source address from 4857 * that route. 4858 */ 4859 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4860 zoneid, 0, NULL, 4861 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4862 MATCH_IRE_RJ_BHOLE, ipst); 4863 if (src_ire == NULL) { 4864 error = EHOSTUNREACH; 4865 goto bad_addr; 4866 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4867 if (!(src_ire->ire_type & IRE_HOST)) 4868 error = ENETUNREACH; 4869 else 4870 error = EHOSTUNREACH; 4871 goto bad_addr; 4872 } 4873 if (src_addr == INADDR_ANY) 4874 src_addr = src_ire->ire_src_addr; 4875 ire_refrele(src_ire); 4876 src_ire = NULL; 4877 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4878 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4879 src_addr = sire->ire_src_addr; 4880 ire_refrele(dst_ire); 4881 dst_ire = sire; 4882 sire = NULL; 4883 } else { 4884 /* 4885 * Pick a source address so that a proper inbound 4886 * load spreading would happen. 4887 */ 4888 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4889 ipif_t *src_ipif = NULL; 4890 ire_t *ipif_ire; 4891 4892 /* 4893 * Supply a local source address such that inbound 4894 * load spreading happens. 4895 * 4896 * Determine the best source address on this ill for 4897 * the destination. 4898 * 4899 * 1) For broadcast, we should return a broadcast ire 4900 * found above so that upper layers know that the 4901 * destination address is a broadcast address. 4902 * 4903 * 2) If the ipif is DEPRECATED, select a better 4904 * source address. Similarly, if the ipif is on 4905 * the IPMP meta-interface, pick a source address 4906 * at random to improve inbound load spreading. 4907 * 4908 * 3) If the outgoing interface is part of a usesrc 4909 * group, then try selecting a source address from 4910 * the usesrc ILL. 4911 */ 4912 if ((dst_ire->ire_zoneid != zoneid && 4913 dst_ire->ire_zoneid != ALL_ZONES) || 4914 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4915 (!(dst_ire->ire_type & IRE_BROADCAST) && 4916 (IS_IPMP(ire_ill) || 4917 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4918 (ire_ill->ill_usesrc_ifindex != 0)))) { 4919 /* 4920 * If the destination is reachable via a 4921 * given gateway, the selected source address 4922 * should be in the same subnet as the gateway. 4923 * Otherwise, the destination is not reachable. 4924 * 4925 * If there are no interfaces on the same subnet 4926 * as the destination, ipif_select_source gives 4927 * first non-deprecated interface which might be 4928 * on a different subnet than the gateway. 4929 * This is not desirable. Hence pass the dst_ire 4930 * source address to ipif_select_source. 4931 * It is sure that the destination is reachable 4932 * with the dst_ire source address subnet. 4933 * So passing dst_ire source address to 4934 * ipif_select_source will make sure that the 4935 * selected source will be on the same subnet 4936 * as dst_ire source address. 4937 */ 4938 ipaddr_t saddr = 4939 dst_ire->ire_ipif->ipif_src_addr; 4940 src_ipif = ipif_select_source(ire_ill, 4941 saddr, zoneid); 4942 if (src_ipif != NULL) { 4943 if (IS_VNI(src_ipif->ipif_ill)) { 4944 /* 4945 * For VNI there is no 4946 * interface route 4947 */ 4948 src_addr = 4949 src_ipif->ipif_src_addr; 4950 } else { 4951 ipif_ire = 4952 ipif_to_ire(src_ipif); 4953 if (ipif_ire != NULL) { 4954 IRE_REFRELE(dst_ire); 4955 dst_ire = ipif_ire; 4956 } 4957 src_addr = 4958 dst_ire->ire_src_addr; 4959 } 4960 ipif_refrele(src_ipif); 4961 } else { 4962 src_addr = dst_ire->ire_src_addr; 4963 } 4964 } else { 4965 src_addr = dst_ire->ire_src_addr; 4966 } 4967 } 4968 } 4969 4970 /* 4971 * We do ire_route_lookup() here (and not 4972 * interface lookup as we assert that 4973 * src_addr should only come from an 4974 * UP interface for hard binding. 4975 */ 4976 ASSERT(src_ire == NULL); 4977 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4978 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4979 /* src_ire must be a local|loopback */ 4980 if (!IRE_IS_LOCAL(src_ire)) { 4981 if (ip_debug > 2) { 4982 pr_addr_dbg("ip_bind_connected_v4: bad connected " 4983 "src %s\n", AF_INET, &src_addr); 4984 } 4985 error = EADDRNOTAVAIL; 4986 goto bad_addr; 4987 } 4988 4989 /* 4990 * If the source address is a loopback address, the 4991 * destination had best be local or multicast. 4992 * The transports that can't handle multicast will reject 4993 * those addresses. 4994 */ 4995 if (src_ire->ire_type == IRE_LOOPBACK && 4996 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4997 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 4998 error = -1; 4999 goto bad_addr; 5000 } 5001 5002 /* 5003 * Allow setting new policies. For example, disconnects come 5004 * down as ipa_t bind. As we would have set conn_policy_cached 5005 * to B_TRUE before, we should set it to B_FALSE, so that policy 5006 * can change after the disconnect. 5007 */ 5008 connp->conn_policy_cached = B_FALSE; 5009 5010 /* 5011 * Set the conn addresses/ports immediately, so the IPsec policy calls 5012 * can handle their passed-in conn's. 5013 */ 5014 5015 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5016 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5017 connp->conn_lport = lport; 5018 connp->conn_fport = fport; 5019 *src_addrp = src_addr; 5020 5021 ASSERT(!(ipsec_policy_set && ire_requested)); 5022 if (ire_requested) { 5023 iulp_t *ulp_info = NULL; 5024 5025 /* 5026 * Note that sire will not be NULL if this is an off-link 5027 * connection and there is not cache for that dest yet. 5028 * 5029 * XXX Because of an existing bug, if there are multiple 5030 * default routes, the IRE returned now may not be the actual 5031 * default route used (default routes are chosen in a 5032 * round robin fashion). So if the metrics for different 5033 * default routes are different, we may return the wrong 5034 * metrics. This will not be a problem if the existing 5035 * bug is fixed. 5036 */ 5037 if (sire != NULL) { 5038 ulp_info = &(sire->ire_uinfo); 5039 } 5040 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5041 error = -1; 5042 goto bad_addr; 5043 } 5044 mp = *mpp; 5045 } else if (ipsec_policy_set) { 5046 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5047 error = -1; 5048 goto bad_addr; 5049 } 5050 } 5051 5052 /* 5053 * Cache IPsec policy in this conn. If we have per-socket policy, 5054 * we'll cache that. If we don't, we'll inherit global policy. 5055 * 5056 * We can't insert until the conn reflects the policy. Note that 5057 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5058 * connections where we don't have a policy. This is to prevent 5059 * global policy lookups in the inbound path. 5060 * 5061 * If we insert before we set conn_policy_cached, 5062 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5063 * because global policy cound be non-empty. We normally call 5064 * ipsec_check_policy() for conn_policy_cached connections only if 5065 * ipc_in_enforce_policy is set. But in this case, 5066 * conn_policy_cached can get set anytime since we made the 5067 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5068 * called, which will make the above assumption false. Thus, we 5069 * need to insert after we set conn_policy_cached. 5070 */ 5071 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5072 goto bad_addr; 5073 5074 if (fanout_insert) { 5075 /* 5076 * The addresses have been verified. Time to insert in 5077 * the correct fanout list. 5078 */ 5079 error = ipcl_conn_insert(connp, protocol, src_addr, 5080 dst_addr, connp->conn_ports); 5081 } 5082 5083 if (error == 0) { 5084 connp->conn_fully_bound = B_TRUE; 5085 /* 5086 * Our initial checks for LSO/MDT have passed; the IRE is not 5087 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5088 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5089 * ip_xxinfo_return(), which performs further checks 5090 * against them and upon success, returns the LSO/MDT info 5091 * mblk which we will attach to the bind acknowledgment. 5092 */ 5093 if (lso_dst_ire != NULL) { 5094 mblk_t *lsoinfo_mp; 5095 5096 ASSERT(ill->ill_lso_capab != NULL); 5097 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5098 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5099 if (mp == NULL) { 5100 *mpp = lsoinfo_mp; 5101 } else { 5102 linkb(mp, lsoinfo_mp); 5103 } 5104 } 5105 } else if (md_dst_ire != NULL) { 5106 mblk_t *mdinfo_mp; 5107 5108 ASSERT(ill->ill_mdt_capab != NULL); 5109 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5110 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5111 if (mp == NULL) { 5112 *mpp = mdinfo_mp; 5113 } else { 5114 linkb(mp, mdinfo_mp); 5115 } 5116 } 5117 } 5118 } 5119 bad_addr: 5120 if (ipsec_policy_set) { 5121 ASSERT(mp != NULL); 5122 freeb(mp); 5123 /* 5124 * As of now assume that nothing else accompanies 5125 * IPSEC_POLICY_SET. 5126 */ 5127 *mpp = NULL; 5128 } 5129 if (src_ire != NULL) 5130 IRE_REFRELE(src_ire); 5131 if (dst_ire != NULL) 5132 IRE_REFRELE(dst_ire); 5133 if (sire != NULL) 5134 IRE_REFRELE(sire); 5135 if (md_dst_ire != NULL) 5136 IRE_REFRELE(md_dst_ire); 5137 if (lso_dst_ire != NULL) 5138 IRE_REFRELE(lso_dst_ire); 5139 return (error); 5140 } 5141 5142 int 5143 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5144 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5145 boolean_t fanout_insert, boolean_t verify_dst) 5146 { 5147 int error; 5148 mblk_t *mp = NULL; 5149 boolean_t ire_requested; 5150 5151 if (ire_mpp) 5152 mp = *ire_mpp; 5153 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5154 5155 ASSERT(!connp->conn_af_isv6); 5156 connp->conn_pkt_isv6 = B_FALSE; 5157 connp->conn_ulp = protocol; 5158 5159 /* For raw socket, the local port is not set. */ 5160 if (lport == 0) 5161 lport = connp->conn_lport; 5162 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5163 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst); 5164 if (error == 0) { 5165 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5166 ire_requested); 5167 } else if (error < 0) { 5168 error = -TBADADDR; 5169 } 5170 return (error); 5171 } 5172 5173 /* 5174 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5175 * Prefers dst_ire over src_ire. 5176 */ 5177 static boolean_t 5178 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5179 { 5180 mblk_t *mp = *mpp; 5181 ire_t *ret_ire; 5182 5183 ASSERT(mp != NULL); 5184 5185 if (ire != NULL) { 5186 /* 5187 * mp initialized above to IRE_DB_REQ_TYPE 5188 * appended mblk. Its <upper protocol>'s 5189 * job to make sure there is room. 5190 */ 5191 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5192 return (B_FALSE); 5193 5194 mp->b_datap->db_type = IRE_DB_TYPE; 5195 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5196 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5197 ret_ire = (ire_t *)mp->b_rptr; 5198 /* 5199 * Pass the latest setting of the ip_path_mtu_discovery and 5200 * copy the ulp info if any. 5201 */ 5202 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5203 IPH_DF : 0; 5204 if (ulp_info != NULL) { 5205 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5206 sizeof (iulp_t)); 5207 } 5208 ret_ire->ire_mp = mp; 5209 } else { 5210 /* 5211 * No IRE was found. Remove IRE mblk. 5212 */ 5213 *mpp = mp->b_cont; 5214 freeb(mp); 5215 } 5216 return (B_TRUE); 5217 } 5218 5219 /* 5220 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5221 * the final piece where we don't. Return a pointer to the first mblk in the 5222 * result, and update the pointer to the next mblk to chew on. If anything 5223 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5224 * NULL pointer. 5225 */ 5226 mblk_t * 5227 ip_carve_mp(mblk_t **mpp, ssize_t len) 5228 { 5229 mblk_t *mp0; 5230 mblk_t *mp1; 5231 mblk_t *mp2; 5232 5233 if (!len || !mpp || !(mp0 = *mpp)) 5234 return (NULL); 5235 /* If we aren't going to consume the first mblk, we need a dup. */ 5236 if (mp0->b_wptr - mp0->b_rptr > len) { 5237 mp1 = dupb(mp0); 5238 if (mp1) { 5239 /* Partition the data between the two mblks. */ 5240 mp1->b_wptr = mp1->b_rptr + len; 5241 mp0->b_rptr = mp1->b_wptr; 5242 /* 5243 * after adjustments if mblk not consumed is now 5244 * unaligned, try to align it. If this fails free 5245 * all messages and let upper layer recover. 5246 */ 5247 if (!OK_32PTR(mp0->b_rptr)) { 5248 if (!pullupmsg(mp0, -1)) { 5249 freemsg(mp0); 5250 freemsg(mp1); 5251 *mpp = NULL; 5252 return (NULL); 5253 } 5254 } 5255 } 5256 return (mp1); 5257 } 5258 /* Eat through as many mblks as we need to get len bytes. */ 5259 len -= mp0->b_wptr - mp0->b_rptr; 5260 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5261 if (mp2->b_wptr - mp2->b_rptr > len) { 5262 /* 5263 * We won't consume the entire last mblk. Like 5264 * above, dup and partition it. 5265 */ 5266 mp1->b_cont = dupb(mp2); 5267 mp1 = mp1->b_cont; 5268 if (!mp1) { 5269 /* 5270 * Trouble. Rather than go to a lot of 5271 * trouble to clean up, we free the messages. 5272 * This won't be any worse than losing it on 5273 * the wire. 5274 */ 5275 freemsg(mp0); 5276 freemsg(mp2); 5277 *mpp = NULL; 5278 return (NULL); 5279 } 5280 mp1->b_wptr = mp1->b_rptr + len; 5281 mp2->b_rptr = mp1->b_wptr; 5282 /* 5283 * after adjustments if mblk not consumed is now 5284 * unaligned, try to align it. If this fails free 5285 * all messages and let upper layer recover. 5286 */ 5287 if (!OK_32PTR(mp2->b_rptr)) { 5288 if (!pullupmsg(mp2, -1)) { 5289 freemsg(mp0); 5290 freemsg(mp2); 5291 *mpp = NULL; 5292 return (NULL); 5293 } 5294 } 5295 *mpp = mp2; 5296 return (mp0); 5297 } 5298 /* Decrement len by the amount we just got. */ 5299 len -= mp2->b_wptr - mp2->b_rptr; 5300 } 5301 /* 5302 * len should be reduced to zero now. If not our caller has 5303 * screwed up. 5304 */ 5305 if (len) { 5306 /* Shouldn't happen! */ 5307 freemsg(mp0); 5308 *mpp = NULL; 5309 return (NULL); 5310 } 5311 /* 5312 * We consumed up to exactly the end of an mblk. Detach the part 5313 * we are returning from the rest of the chain. 5314 */ 5315 mp1->b_cont = NULL; 5316 *mpp = mp2; 5317 return (mp0); 5318 } 5319 5320 /* The ill stream is being unplumbed. Called from ip_close */ 5321 int 5322 ip_modclose(ill_t *ill) 5323 { 5324 boolean_t success; 5325 ipsq_t *ipsq; 5326 ipif_t *ipif; 5327 queue_t *q = ill->ill_rq; 5328 ip_stack_t *ipst = ill->ill_ipst; 5329 5330 /* 5331 * The punlink prior to this may have initiated a capability 5332 * negotiation. But ipsq_enter will block until that finishes or 5333 * times out. 5334 */ 5335 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5336 5337 /* 5338 * Open/close/push/pop is guaranteed to be single threaded 5339 * per stream by STREAMS. FS guarantees that all references 5340 * from top are gone before close is called. So there can't 5341 * be another close thread that has set CONDEMNED on this ill. 5342 * and cause ipsq_enter to return failure. 5343 */ 5344 ASSERT(success); 5345 ipsq = ill->ill_phyint->phyint_ipsq; 5346 5347 /* 5348 * Mark it condemned. No new reference will be made to this ill. 5349 * Lookup functions will return an error. Threads that try to 5350 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5351 * that the refcnt will drop down to zero. 5352 */ 5353 mutex_enter(&ill->ill_lock); 5354 ill->ill_state_flags |= ILL_CONDEMNED; 5355 for (ipif = ill->ill_ipif; ipif != NULL; 5356 ipif = ipif->ipif_next) { 5357 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5358 } 5359 /* 5360 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5361 * returns error if ILL_CONDEMNED is set 5362 */ 5363 cv_broadcast(&ill->ill_cv); 5364 mutex_exit(&ill->ill_lock); 5365 5366 /* 5367 * Send all the deferred DLPI messages downstream which came in 5368 * during the small window right before ipsq_enter(). We do this 5369 * without waiting for the ACKs because all the ACKs for M_PROTO 5370 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5371 */ 5372 ill_dlpi_send_deferred(ill); 5373 5374 /* 5375 * Shut down fragmentation reassembly. 5376 * ill_frag_timer won't start a timer again. 5377 * Now cancel any existing timer 5378 */ 5379 (void) untimeout(ill->ill_frag_timer_id); 5380 (void) ill_frag_timeout(ill, 0); 5381 5382 /* 5383 * Call ill_delete to bring down the ipifs, ilms and ill on 5384 * this ill. Then wait for the refcnts to drop to zero. 5385 * ill_is_freeable checks whether the ill is really quiescent. 5386 * Then make sure that threads that are waiting to enter the 5387 * ipsq have seen the error returned by ipsq_enter and have 5388 * gone away. Then we call ill_delete_tail which does the 5389 * DL_UNBIND_REQ with the driver and then qprocsoff. 5390 */ 5391 ill_delete(ill); 5392 mutex_enter(&ill->ill_lock); 5393 while (!ill_is_freeable(ill)) 5394 cv_wait(&ill->ill_cv, &ill->ill_lock); 5395 while (ill->ill_waiters) 5396 cv_wait(&ill->ill_cv, &ill->ill_lock); 5397 5398 mutex_exit(&ill->ill_lock); 5399 5400 /* 5401 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5402 * it held until the end of the function since the cleanup 5403 * below needs to be able to use the ip_stack_t. 5404 */ 5405 netstack_hold(ipst->ips_netstack); 5406 5407 /* qprocsoff is done via ill_delete_tail */ 5408 ill_delete_tail(ill); 5409 ASSERT(ill->ill_ipst == NULL); 5410 5411 /* 5412 * Walk through all upper (conn) streams and qenable 5413 * those that have queued data. 5414 * close synchronization needs this to 5415 * be done to ensure that all upper layers blocked 5416 * due to flow control to the closing device 5417 * get unblocked. 5418 */ 5419 ip1dbg(("ip_wsrv: walking\n")); 5420 conn_walk_drain(ipst); 5421 5422 mutex_enter(&ipst->ips_ip_mi_lock); 5423 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5424 mutex_exit(&ipst->ips_ip_mi_lock); 5425 5426 /* 5427 * credp could be null if the open didn't succeed and ip_modopen 5428 * itself calls ip_close. 5429 */ 5430 if (ill->ill_credp != NULL) 5431 crfree(ill->ill_credp); 5432 5433 /* 5434 * Now we are done with the module close pieces that 5435 * need the netstack_t. 5436 */ 5437 netstack_rele(ipst->ips_netstack); 5438 5439 mi_close_free((IDP)ill); 5440 q->q_ptr = WR(q)->q_ptr = NULL; 5441 5442 ipsq_exit(ipsq); 5443 5444 return (0); 5445 } 5446 5447 /* 5448 * This is called as part of close() for IP, UDP, ICMP, and RTS 5449 * in order to quiesce the conn. 5450 */ 5451 void 5452 ip_quiesce_conn(conn_t *connp) 5453 { 5454 boolean_t drain_cleanup_reqd = B_FALSE; 5455 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5456 boolean_t ilg_cleanup_reqd = B_FALSE; 5457 ip_stack_t *ipst; 5458 5459 ASSERT(!IPCL_IS_TCP(connp)); 5460 ipst = connp->conn_netstack->netstack_ip; 5461 5462 /* 5463 * Mark the conn as closing, and this conn must not be 5464 * inserted in future into any list. Eg. conn_drain_insert(), 5465 * won't insert this conn into the conn_drain_list. 5466 * Similarly ill_pending_mp_add() will not add any mp to 5467 * the pending mp list, after this conn has started closing. 5468 * 5469 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5470 * cannot get set henceforth. 5471 */ 5472 mutex_enter(&connp->conn_lock); 5473 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5474 connp->conn_state_flags |= CONN_CLOSING; 5475 if (connp->conn_idl != NULL) 5476 drain_cleanup_reqd = B_TRUE; 5477 if (connp->conn_oper_pending_ill != NULL) 5478 conn_ioctl_cleanup_reqd = B_TRUE; 5479 if (connp->conn_dhcpinit_ill != NULL) { 5480 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5481 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5482 connp->conn_dhcpinit_ill = NULL; 5483 } 5484 if (connp->conn_ilg_inuse != 0) 5485 ilg_cleanup_reqd = B_TRUE; 5486 mutex_exit(&connp->conn_lock); 5487 5488 if (conn_ioctl_cleanup_reqd) 5489 conn_ioctl_cleanup(connp); 5490 5491 if (is_system_labeled() && connp->conn_anon_port) { 5492 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5493 connp->conn_mlp_type, connp->conn_ulp, 5494 ntohs(connp->conn_lport), B_FALSE); 5495 connp->conn_anon_port = 0; 5496 } 5497 connp->conn_mlp_type = mlptSingle; 5498 5499 /* 5500 * Remove this conn from any fanout list it is on. 5501 * and then wait for any threads currently operating 5502 * on this endpoint to finish 5503 */ 5504 ipcl_hash_remove(connp); 5505 5506 /* 5507 * Remove this conn from the drain list, and do 5508 * any other cleanup that may be required. 5509 * (Only non-tcp streams may have a non-null conn_idl. 5510 * TCP streams are never flow controlled, and 5511 * conn_idl will be null) 5512 */ 5513 if (drain_cleanup_reqd) 5514 conn_drain_tail(connp, B_TRUE); 5515 5516 if (connp == ipst->ips_ip_g_mrouter) 5517 (void) ip_mrouter_done(NULL, ipst); 5518 5519 if (ilg_cleanup_reqd) 5520 ilg_delete_all(connp); 5521 5522 conn_delete_ire(connp, NULL); 5523 5524 /* 5525 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5526 * callers from write side can't be there now because close 5527 * is in progress. The only other caller is ipcl_walk 5528 * which checks for the condemned flag. 5529 */ 5530 mutex_enter(&connp->conn_lock); 5531 connp->conn_state_flags |= CONN_CONDEMNED; 5532 while (connp->conn_ref != 1) 5533 cv_wait(&connp->conn_cv, &connp->conn_lock); 5534 connp->conn_state_flags |= CONN_QUIESCED; 5535 mutex_exit(&connp->conn_lock); 5536 } 5537 5538 /* ARGSUSED */ 5539 int 5540 ip_close(queue_t *q, int flags) 5541 { 5542 conn_t *connp; 5543 5544 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5545 5546 /* 5547 * Call the appropriate delete routine depending on whether this is 5548 * a module or device. 5549 */ 5550 if (WR(q)->q_next != NULL) { 5551 /* This is a module close */ 5552 return (ip_modclose((ill_t *)q->q_ptr)); 5553 } 5554 5555 connp = q->q_ptr; 5556 ip_quiesce_conn(connp); 5557 5558 qprocsoff(q); 5559 5560 /* 5561 * Now we are truly single threaded on this stream, and can 5562 * delete the things hanging off the connp, and finally the connp. 5563 * We removed this connp from the fanout list, it cannot be 5564 * accessed thru the fanouts, and we already waited for the 5565 * conn_ref to drop to 0. We are already in close, so 5566 * there cannot be any other thread from the top. qprocsoff 5567 * has completed, and service has completed or won't run in 5568 * future. 5569 */ 5570 ASSERT(connp->conn_ref == 1); 5571 5572 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5573 5574 connp->conn_ref--; 5575 ipcl_conn_destroy(connp); 5576 5577 q->q_ptr = WR(q)->q_ptr = NULL; 5578 return (0); 5579 } 5580 5581 /* 5582 * Wapper around putnext() so that ip_rts_request can merely use 5583 * conn_recv. 5584 */ 5585 /*ARGSUSED2*/ 5586 static void 5587 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5588 { 5589 conn_t *connp = (conn_t *)arg1; 5590 5591 putnext(connp->conn_rq, mp); 5592 } 5593 5594 /* 5595 * Called when the module is about to be unloaded 5596 */ 5597 void 5598 ip_ddi_destroy(void) 5599 { 5600 tnet_fini(); 5601 5602 icmp_ddi_g_destroy(); 5603 rts_ddi_g_destroy(); 5604 udp_ddi_g_destroy(); 5605 sctp_ddi_g_destroy(); 5606 tcp_ddi_g_destroy(); 5607 ipsec_policy_g_destroy(); 5608 ipcl_g_destroy(); 5609 ip_net_g_destroy(); 5610 ip_ire_g_fini(); 5611 inet_minor_destroy(ip_minor_arena_sa); 5612 #if defined(_LP64) 5613 inet_minor_destroy(ip_minor_arena_la); 5614 #endif 5615 5616 #ifdef DEBUG 5617 list_destroy(&ip_thread_list); 5618 rw_destroy(&ip_thread_rwlock); 5619 tsd_destroy(&ip_thread_data); 5620 #endif 5621 5622 netstack_unregister(NS_IP); 5623 } 5624 5625 /* 5626 * First step in cleanup. 5627 */ 5628 /* ARGSUSED */ 5629 static void 5630 ip_stack_shutdown(netstackid_t stackid, void *arg) 5631 { 5632 ip_stack_t *ipst = (ip_stack_t *)arg; 5633 5634 #ifdef NS_DEBUG 5635 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5636 #endif 5637 5638 /* Get rid of loopback interfaces and their IREs */ 5639 ip_loopback_cleanup(ipst); 5640 5641 /* 5642 * The *_hook_shutdown()s start the process of notifying any 5643 * consumers that things are going away.... nothing is destroyed. 5644 */ 5645 ipv4_hook_shutdown(ipst); 5646 ipv6_hook_shutdown(ipst); 5647 5648 mutex_enter(&ipst->ips_capab_taskq_lock); 5649 ipst->ips_capab_taskq_quit = B_TRUE; 5650 cv_signal(&ipst->ips_capab_taskq_cv); 5651 mutex_exit(&ipst->ips_capab_taskq_lock); 5652 5653 mutex_enter(&ipst->ips_mrt_lock); 5654 ipst->ips_mrt_flags |= IP_MRT_STOP; 5655 cv_signal(&ipst->ips_mrt_cv); 5656 mutex_exit(&ipst->ips_mrt_lock); 5657 } 5658 5659 /* 5660 * Free the IP stack instance. 5661 */ 5662 static void 5663 ip_stack_fini(netstackid_t stackid, void *arg) 5664 { 5665 ip_stack_t *ipst = (ip_stack_t *)arg; 5666 int ret; 5667 5668 #ifdef NS_DEBUG 5669 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5670 #endif 5671 /* 5672 * At this point, all of the notifications that the events and 5673 * protocols are going away have been run, meaning that we can 5674 * now set about starting to clean things up. 5675 */ 5676 ipv4_hook_destroy(ipst); 5677 ipv6_hook_destroy(ipst); 5678 ip_net_destroy(ipst); 5679 5680 mutex_destroy(&ipst->ips_capab_taskq_lock); 5681 cv_destroy(&ipst->ips_capab_taskq_cv); 5682 list_destroy(&ipst->ips_capab_taskq_list); 5683 5684 mutex_enter(&ipst->ips_mrt_lock); 5685 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5686 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5687 mutex_destroy(&ipst->ips_mrt_lock); 5688 cv_destroy(&ipst->ips_mrt_cv); 5689 cv_destroy(&ipst->ips_mrt_done_cv); 5690 5691 ipmp_destroy(ipst); 5692 rw_destroy(&ipst->ips_srcid_lock); 5693 5694 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5695 ipst->ips_ip_mibkp = NULL; 5696 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5697 ipst->ips_icmp_mibkp = NULL; 5698 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5699 ipst->ips_ip_kstat = NULL; 5700 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5701 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5702 ipst->ips_ip6_kstat = NULL; 5703 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5704 5705 nd_free(&ipst->ips_ip_g_nd); 5706 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5707 ipst->ips_param_arr = NULL; 5708 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5709 ipst->ips_ndp_arr = NULL; 5710 5711 ip_mrouter_stack_destroy(ipst); 5712 5713 mutex_destroy(&ipst->ips_ip_mi_lock); 5714 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5715 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5716 rw_destroy(&ipst->ips_ip_g_nd_lock); 5717 5718 ret = untimeout(ipst->ips_igmp_timeout_id); 5719 if (ret == -1) { 5720 ASSERT(ipst->ips_igmp_timeout_id == 0); 5721 } else { 5722 ASSERT(ipst->ips_igmp_timeout_id != 0); 5723 ipst->ips_igmp_timeout_id = 0; 5724 } 5725 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5726 if (ret == -1) { 5727 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5728 } else { 5729 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5730 ipst->ips_igmp_slowtimeout_id = 0; 5731 } 5732 ret = untimeout(ipst->ips_mld_timeout_id); 5733 if (ret == -1) { 5734 ASSERT(ipst->ips_mld_timeout_id == 0); 5735 } else { 5736 ASSERT(ipst->ips_mld_timeout_id != 0); 5737 ipst->ips_mld_timeout_id = 0; 5738 } 5739 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5740 if (ret == -1) { 5741 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5742 } else { 5743 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5744 ipst->ips_mld_slowtimeout_id = 0; 5745 } 5746 ret = untimeout(ipst->ips_ip_ire_expire_id); 5747 if (ret == -1) { 5748 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5749 } else { 5750 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5751 ipst->ips_ip_ire_expire_id = 0; 5752 } 5753 5754 mutex_destroy(&ipst->ips_igmp_timer_lock); 5755 mutex_destroy(&ipst->ips_mld_timer_lock); 5756 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5757 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5758 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5759 rw_destroy(&ipst->ips_ill_g_lock); 5760 5761 ipobs_fini(ipst); 5762 ip_ire_fini(ipst); 5763 ip6_asp_free(ipst); 5764 conn_drain_fini(ipst); 5765 ipcl_destroy(ipst); 5766 5767 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5768 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5769 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5770 ipst->ips_ndp4 = NULL; 5771 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5772 ipst->ips_ndp6 = NULL; 5773 5774 if (ipst->ips_loopback_ksp != NULL) { 5775 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5776 ipst->ips_loopback_ksp = NULL; 5777 } 5778 5779 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5780 ipst->ips_phyint_g_list = NULL; 5781 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5782 ipst->ips_ill_g_heads = NULL; 5783 5784 ldi_ident_release(ipst->ips_ldi_ident); 5785 kmem_free(ipst, sizeof (*ipst)); 5786 } 5787 5788 /* 5789 * This function is called from the TSD destructor, and is used to debug 5790 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5791 * details. 5792 */ 5793 static void 5794 ip_thread_exit(void *phash) 5795 { 5796 th_hash_t *thh = phash; 5797 5798 rw_enter(&ip_thread_rwlock, RW_WRITER); 5799 list_remove(&ip_thread_list, thh); 5800 rw_exit(&ip_thread_rwlock); 5801 mod_hash_destroy_hash(thh->thh_hash); 5802 kmem_free(thh, sizeof (*thh)); 5803 } 5804 5805 /* 5806 * Called when the IP kernel module is loaded into the kernel 5807 */ 5808 void 5809 ip_ddi_init(void) 5810 { 5811 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5812 5813 /* 5814 * For IP and TCP the minor numbers should start from 2 since we have 4 5815 * initial devices: ip, ip6, tcp, tcp6. 5816 */ 5817 /* 5818 * If this is a 64-bit kernel, then create two separate arenas - 5819 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5820 * other for socket apps in the range 2^^18 through 2^^32-1. 5821 */ 5822 ip_minor_arena_la = NULL; 5823 ip_minor_arena_sa = NULL; 5824 #if defined(_LP64) 5825 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5826 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5827 cmn_err(CE_PANIC, 5828 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5829 } 5830 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5831 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5832 cmn_err(CE_PANIC, 5833 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5834 } 5835 #else 5836 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5837 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5838 cmn_err(CE_PANIC, 5839 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5840 } 5841 #endif 5842 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5843 5844 ipcl_g_init(); 5845 ip_ire_g_init(); 5846 ip_net_g_init(); 5847 5848 #ifdef DEBUG 5849 tsd_create(&ip_thread_data, ip_thread_exit); 5850 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5851 list_create(&ip_thread_list, sizeof (th_hash_t), 5852 offsetof(th_hash_t, thh_link)); 5853 #endif 5854 5855 /* 5856 * We want to be informed each time a stack is created or 5857 * destroyed in the kernel, so we can maintain the 5858 * set of udp_stack_t's. 5859 */ 5860 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5861 ip_stack_fini); 5862 5863 ipsec_policy_g_init(); 5864 tcp_ddi_g_init(); 5865 sctp_ddi_g_init(); 5866 5867 tnet_init(); 5868 5869 udp_ddi_g_init(); 5870 rts_ddi_g_init(); 5871 icmp_ddi_g_init(); 5872 } 5873 5874 /* 5875 * Initialize the IP stack instance. 5876 */ 5877 static void * 5878 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5879 { 5880 ip_stack_t *ipst; 5881 ipparam_t *pa; 5882 ipndp_t *na; 5883 major_t major; 5884 5885 #ifdef NS_DEBUG 5886 printf("ip_stack_init(stack %d)\n", stackid); 5887 #endif 5888 5889 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5890 ipst->ips_netstack = ns; 5891 5892 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5893 KM_SLEEP); 5894 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5895 KM_SLEEP); 5896 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5897 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5898 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5899 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5900 5901 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5902 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5903 ipst->ips_igmp_deferred_next = INFINITY; 5904 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5905 ipst->ips_mld_deferred_next = INFINITY; 5906 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5907 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5908 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5909 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5910 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5911 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5912 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5913 5914 ipcl_init(ipst); 5915 ip_ire_init(ipst); 5916 ip6_asp_init(ipst); 5917 ipif_init(ipst); 5918 conn_drain_init(ipst); 5919 ip_mrouter_stack_init(ipst); 5920 5921 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5922 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5923 5924 ipst->ips_ip_multirt_log_interval = 1000; 5925 5926 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5927 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5928 ipst->ips_ill_index = 1; 5929 5930 ipst->ips_saved_ip_g_forward = -1; 5931 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5932 5933 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5934 ipst->ips_param_arr = pa; 5935 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5936 5937 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5938 ipst->ips_ndp_arr = na; 5939 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5940 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5941 (caddr_t)&ipst->ips_ip_g_forward; 5942 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5943 (caddr_t)&ipst->ips_ipv6_forward; 5944 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5945 "ip_cgtp_filter") == 0); 5946 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5947 (caddr_t)&ipst->ips_ip_cgtp_filter; 5948 5949 (void) ip_param_register(&ipst->ips_ip_g_nd, 5950 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5951 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5952 5953 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5954 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5955 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5956 ipst->ips_ip6_kstat = 5957 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5958 5959 ipst->ips_ip_src_id = 1; 5960 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5961 5962 ipobs_init(ipst); 5963 ip_net_init(ipst, ns); 5964 ipv4_hook_init(ipst); 5965 ipv6_hook_init(ipst); 5966 ipmp_init(ipst); 5967 5968 /* 5969 * Create the taskq dispatcher thread and initialize related stuff. 5970 */ 5971 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 5972 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 5973 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 5974 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 5975 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 5976 offsetof(mblk_t, b_next)); 5977 5978 /* 5979 * Create the mcast_restart_timers_thread() worker thread. 5980 */ 5981 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 5982 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 5983 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 5984 ipst->ips_mrt_thread = thread_create(NULL, 0, 5985 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 5986 5987 major = mod_name_to_major(INET_NAME); 5988 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 5989 return (ipst); 5990 } 5991 5992 /* 5993 * Allocate and initialize a DLPI template of the specified length. (May be 5994 * called as writer.) 5995 */ 5996 mblk_t * 5997 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5998 { 5999 mblk_t *mp; 6000 6001 mp = allocb(len, BPRI_MED); 6002 if (!mp) 6003 return (NULL); 6004 6005 /* 6006 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6007 * of which we don't seem to use) are sent with M_PCPROTO, and 6008 * that other DLPI are M_PROTO. 6009 */ 6010 if (prim == DL_INFO_REQ) { 6011 mp->b_datap->db_type = M_PCPROTO; 6012 } else { 6013 mp->b_datap->db_type = M_PROTO; 6014 } 6015 6016 mp->b_wptr = mp->b_rptr + len; 6017 bzero(mp->b_rptr, len); 6018 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6019 return (mp); 6020 } 6021 6022 /* 6023 * Allocate and initialize a DLPI notification. (May be called as writer.) 6024 */ 6025 mblk_t * 6026 ip_dlnotify_alloc(uint_t notification, uint_t data) 6027 { 6028 dl_notify_ind_t *notifyp; 6029 mblk_t *mp; 6030 6031 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6032 return (NULL); 6033 6034 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6035 notifyp->dl_notification = notification; 6036 notifyp->dl_data = data; 6037 return (mp); 6038 } 6039 6040 /* 6041 * Debug formatting routine. Returns a character string representation of the 6042 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6043 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6044 * 6045 * Once the ndd table-printing interfaces are removed, this can be changed to 6046 * standard dotted-decimal form. 6047 */ 6048 char * 6049 ip_dot_addr(ipaddr_t addr, char *buf) 6050 { 6051 uint8_t *ap = (uint8_t *)&addr; 6052 6053 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6054 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6055 return (buf); 6056 } 6057 6058 /* 6059 * Write the given MAC address as a printable string in the usual colon- 6060 * separated format. 6061 */ 6062 const char * 6063 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6064 { 6065 char *bp; 6066 6067 if (alen == 0 || buflen < 4) 6068 return ("?"); 6069 bp = buf; 6070 for (;;) { 6071 /* 6072 * If there are more MAC address bytes available, but we won't 6073 * have any room to print them, then add "..." to the string 6074 * instead. See below for the 'magic number' explanation. 6075 */ 6076 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6077 (void) strcpy(bp, "..."); 6078 break; 6079 } 6080 (void) sprintf(bp, "%02x", *addr++); 6081 bp += 2; 6082 if (--alen == 0) 6083 break; 6084 *bp++ = ':'; 6085 buflen -= 3; 6086 /* 6087 * At this point, based on the first 'if' statement above, 6088 * either alen == 1 and buflen >= 3, or alen > 1 and 6089 * buflen >= 4. The first case leaves room for the final "xx" 6090 * number and trailing NUL byte. The second leaves room for at 6091 * least "...". Thus the apparently 'magic' numbers chosen for 6092 * that statement. 6093 */ 6094 } 6095 return (buf); 6096 } 6097 6098 /* 6099 * Send an ICMP error after patching up the packet appropriately. Returns 6100 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6101 */ 6102 static boolean_t 6103 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6104 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6105 zoneid_t zoneid, ip_stack_t *ipst) 6106 { 6107 ipha_t *ipha; 6108 mblk_t *first_mp; 6109 boolean_t secure; 6110 unsigned char db_type; 6111 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6112 6113 first_mp = mp; 6114 if (mctl_present) { 6115 mp = mp->b_cont; 6116 secure = ipsec_in_is_secure(first_mp); 6117 ASSERT(mp != NULL); 6118 } else { 6119 /* 6120 * If this is an ICMP error being reported - which goes 6121 * up as M_CTLs, we need to convert them to M_DATA till 6122 * we finish checking with global policy because 6123 * ipsec_check_global_policy() assumes M_DATA as clear 6124 * and M_CTL as secure. 6125 */ 6126 db_type = DB_TYPE(mp); 6127 DB_TYPE(mp) = M_DATA; 6128 secure = B_FALSE; 6129 } 6130 /* 6131 * We are generating an icmp error for some inbound packet. 6132 * Called from all ip_fanout_(udp, tcp, proto) functions. 6133 * Before we generate an error, check with global policy 6134 * to see whether this is allowed to enter the system. As 6135 * there is no "conn", we are checking with global policy. 6136 */ 6137 ipha = (ipha_t *)mp->b_rptr; 6138 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6139 first_mp = ipsec_check_global_policy(first_mp, NULL, 6140 ipha, NULL, mctl_present, ipst->ips_netstack); 6141 if (first_mp == NULL) 6142 return (B_FALSE); 6143 } 6144 6145 if (!mctl_present) 6146 DB_TYPE(mp) = db_type; 6147 6148 if (flags & IP_FF_SEND_ICMP) { 6149 if (flags & IP_FF_HDR_COMPLETE) { 6150 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6151 freemsg(first_mp); 6152 return (B_TRUE); 6153 } 6154 } 6155 if (flags & IP_FF_CKSUM) { 6156 /* 6157 * Have to correct checksum since 6158 * the packet might have been 6159 * fragmented and the reassembly code in ip_rput 6160 * does not restore the IP checksum. 6161 */ 6162 ipha->ipha_hdr_checksum = 0; 6163 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6164 } 6165 switch (icmp_type) { 6166 case ICMP_DEST_UNREACHABLE: 6167 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6168 ipst); 6169 break; 6170 default: 6171 freemsg(first_mp); 6172 break; 6173 } 6174 } else { 6175 freemsg(first_mp); 6176 return (B_FALSE); 6177 } 6178 6179 return (B_TRUE); 6180 } 6181 6182 /* 6183 * Used to send an ICMP error message when a packet is received for 6184 * a protocol that is not supported. The mblk passed as argument 6185 * is consumed by this function. 6186 */ 6187 void 6188 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6189 ip_stack_t *ipst) 6190 { 6191 mblk_t *mp; 6192 ipha_t *ipha; 6193 ill_t *ill; 6194 ipsec_in_t *ii; 6195 6196 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6197 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6198 6199 mp = ipsec_mp->b_cont; 6200 ipsec_mp->b_cont = NULL; 6201 ipha = (ipha_t *)mp->b_rptr; 6202 /* Get ill from index in ipsec_in_t. */ 6203 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6204 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6205 ipst); 6206 if (ill != NULL) { 6207 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6208 if (ip_fanout_send_icmp(q, mp, flags, 6209 ICMP_DEST_UNREACHABLE, 6210 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6211 BUMP_MIB(ill->ill_ip_mib, 6212 ipIfStatsInUnknownProtos); 6213 } 6214 } else { 6215 if (ip_fanout_send_icmp_v6(q, mp, flags, 6216 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6217 0, B_FALSE, zoneid, ipst)) { 6218 BUMP_MIB(ill->ill_ip_mib, 6219 ipIfStatsInUnknownProtos); 6220 } 6221 } 6222 ill_refrele(ill); 6223 } else { /* re-link for the freemsg() below. */ 6224 ipsec_mp->b_cont = mp; 6225 } 6226 6227 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6228 freemsg(ipsec_mp); 6229 } 6230 6231 /* 6232 * See if the inbound datagram has had IPsec processing applied to it. 6233 */ 6234 boolean_t 6235 ipsec_in_is_secure(mblk_t *ipsec_mp) 6236 { 6237 ipsec_in_t *ii; 6238 6239 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6240 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6241 6242 if (ii->ipsec_in_loopback) { 6243 return (ii->ipsec_in_secure); 6244 } else { 6245 return (ii->ipsec_in_ah_sa != NULL || 6246 ii->ipsec_in_esp_sa != NULL || 6247 ii->ipsec_in_decaps); 6248 } 6249 } 6250 6251 /* 6252 * Handle protocols with which IP is less intimate. There 6253 * can be more than one stream bound to a particular 6254 * protocol. When this is the case, normally each one gets a copy 6255 * of any incoming packets. 6256 * 6257 * IPsec NOTE : 6258 * 6259 * Don't allow a secure packet going up a non-secure connection. 6260 * We don't allow this because 6261 * 6262 * 1) Reply might go out in clear which will be dropped at 6263 * the sending side. 6264 * 2) If the reply goes out in clear it will give the 6265 * adversary enough information for getting the key in 6266 * most of the cases. 6267 * 6268 * Moreover getting a secure packet when we expect clear 6269 * implies that SA's were added without checking for 6270 * policy on both ends. This should not happen once ISAKMP 6271 * is used to negotiate SAs as SAs will be added only after 6272 * verifying the policy. 6273 * 6274 * NOTE : If the packet was tunneled and not multicast we only send 6275 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6276 * back to delivering packets to AF_INET6 raw sockets. 6277 * 6278 * IPQoS Notes: 6279 * Once we have determined the client, invoke IPPF processing. 6280 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6281 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6282 * ip_policy will be false. 6283 * 6284 * Zones notes: 6285 * Currently only applications in the global zone can create raw sockets for 6286 * protocols other than ICMP. So unlike the broadcast / multicast case of 6287 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6288 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6289 */ 6290 static void 6291 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6292 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6293 zoneid_t zoneid) 6294 { 6295 queue_t *rq; 6296 mblk_t *mp1, *first_mp1; 6297 uint_t protocol = ipha->ipha_protocol; 6298 ipaddr_t dst; 6299 boolean_t one_only; 6300 mblk_t *first_mp = mp; 6301 boolean_t secure; 6302 uint32_t ill_index; 6303 conn_t *connp, *first_connp, *next_connp; 6304 connf_t *connfp; 6305 boolean_t shared_addr; 6306 mib2_ipIfStatsEntry_t *mibptr; 6307 ip_stack_t *ipst = recv_ill->ill_ipst; 6308 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6309 6310 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6311 if (mctl_present) { 6312 mp = first_mp->b_cont; 6313 secure = ipsec_in_is_secure(first_mp); 6314 ASSERT(mp != NULL); 6315 } else { 6316 secure = B_FALSE; 6317 } 6318 dst = ipha->ipha_dst; 6319 /* 6320 * If the packet was tunneled and not multicast we only send to it 6321 * the first match. 6322 */ 6323 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6324 !CLASSD(dst)); 6325 6326 shared_addr = (zoneid == ALL_ZONES); 6327 if (shared_addr) { 6328 /* 6329 * We don't allow multilevel ports for raw IP, so no need to 6330 * check for that here. 6331 */ 6332 zoneid = tsol_packet_to_zoneid(mp); 6333 } 6334 6335 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6336 mutex_enter(&connfp->connf_lock); 6337 connp = connfp->connf_head; 6338 for (connp = connfp->connf_head; connp != NULL; 6339 connp = connp->conn_next) { 6340 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6341 zoneid) && 6342 (!is_system_labeled() || 6343 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6344 connp))) { 6345 break; 6346 } 6347 } 6348 6349 if (connp == NULL) { 6350 /* 6351 * No one bound to these addresses. Is 6352 * there a client that wants all 6353 * unclaimed datagrams? 6354 */ 6355 mutex_exit(&connfp->connf_lock); 6356 /* 6357 * Check for IPPROTO_ENCAP... 6358 */ 6359 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6360 /* 6361 * If an IPsec mblk is here on a multicast 6362 * tunnel (using ip_mroute stuff), check policy here, 6363 * THEN ship off to ip_mroute_decap(). 6364 * 6365 * BTW, If I match a configured IP-in-IP 6366 * tunnel, this path will not be reached, and 6367 * ip_mroute_decap will never be called. 6368 */ 6369 first_mp = ipsec_check_global_policy(first_mp, connp, 6370 ipha, NULL, mctl_present, ipst->ips_netstack); 6371 if (first_mp != NULL) { 6372 if (mctl_present) 6373 freeb(first_mp); 6374 ip_mroute_decap(q, mp, ill); 6375 } /* Else we already freed everything! */ 6376 } else { 6377 /* 6378 * Otherwise send an ICMP protocol unreachable. 6379 */ 6380 if (ip_fanout_send_icmp(q, first_mp, flags, 6381 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6382 mctl_present, zoneid, ipst)) { 6383 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6384 } 6385 } 6386 return; 6387 } 6388 6389 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6390 6391 CONN_INC_REF(connp); 6392 first_connp = connp; 6393 6394 /* 6395 * Only send message to one tunnel driver by immediately 6396 * terminating the loop. 6397 */ 6398 connp = one_only ? NULL : connp->conn_next; 6399 6400 for (;;) { 6401 while (connp != NULL) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6403 flags, zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, 6406 shared_addr, connp))) 6407 break; 6408 connp = connp->conn_next; 6409 } 6410 6411 /* 6412 * Copy the packet. 6413 */ 6414 if (connp == NULL || 6415 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6416 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6417 /* 6418 * No more interested clients or memory 6419 * allocation failed 6420 */ 6421 connp = first_connp; 6422 break; 6423 } 6424 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6425 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6426 CONN_INC_REF(connp); 6427 mutex_exit(&connfp->connf_lock); 6428 rq = connp->conn_rq; 6429 6430 /* 6431 * Check flow control 6432 */ 6433 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6434 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6435 if (flags & IP_FF_RAWIP) { 6436 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6437 } else { 6438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6439 } 6440 6441 freemsg(first_mp1); 6442 } else { 6443 /* 6444 * Don't enforce here if we're an actual tunnel - 6445 * let "tun" do it instead. 6446 */ 6447 if (!IPCL_IS_IPTUN(connp) && 6448 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6449 secure)) { 6450 first_mp1 = ipsec_check_inbound_policy 6451 (first_mp1, connp, ipha, NULL, 6452 mctl_present); 6453 } 6454 if (first_mp1 != NULL) { 6455 int in_flags = 0; 6456 /* 6457 * ip_fanout_proto also gets called from 6458 * icmp_inbound_error_fanout, in which case 6459 * the msg type is M_CTL. Don't add info 6460 * in this case for the time being. In future 6461 * when there is a need for knowing the 6462 * inbound iface index for ICMP error msgs, 6463 * then this can be changed. 6464 */ 6465 if (connp->conn_recvif) 6466 in_flags = IPF_RECVIF; 6467 /* 6468 * The ULP may support IP_RECVPKTINFO for both 6469 * IP v4 and v6 so pass the appropriate argument 6470 * based on conn IP version. 6471 */ 6472 if (connp->conn_ip_recvpktinfo) { 6473 if (connp->conn_af_isv6) { 6474 /* 6475 * V6 only needs index 6476 */ 6477 in_flags |= IPF_RECVIF; 6478 } else { 6479 /* 6480 * V4 needs index + 6481 * matching address. 6482 */ 6483 in_flags |= IPF_RECVADDR; 6484 } 6485 } 6486 if ((in_flags != 0) && 6487 (mp->b_datap->db_type != M_CTL)) { 6488 /* 6489 * the actual data will be 6490 * contained in b_cont upon 6491 * successful return of the 6492 * following call else 6493 * original mblk is returned 6494 */ 6495 ASSERT(recv_ill != NULL); 6496 mp1 = ip_add_info(mp1, recv_ill, 6497 in_flags, IPCL_ZONEID(connp), ipst); 6498 } 6499 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6500 if (mctl_present) 6501 freeb(first_mp1); 6502 (connp->conn_recv)(connp, mp1, NULL); 6503 } 6504 } 6505 mutex_enter(&connfp->connf_lock); 6506 /* Follow the next pointer before releasing the conn. */ 6507 next_connp = connp->conn_next; 6508 CONN_DEC_REF(connp); 6509 connp = next_connp; 6510 } 6511 6512 /* Last one. Send it upstream. */ 6513 mutex_exit(&connfp->connf_lock); 6514 6515 /* 6516 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6517 * will be set to false. 6518 */ 6519 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6520 ill_index = ill->ill_phyint->phyint_ifindex; 6521 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6522 if (mp == NULL) { 6523 CONN_DEC_REF(connp); 6524 if (mctl_present) { 6525 freeb(first_mp); 6526 } 6527 return; 6528 } 6529 } 6530 6531 rq = connp->conn_rq; 6532 /* 6533 * Check flow control 6534 */ 6535 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6536 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6537 if (flags & IP_FF_RAWIP) { 6538 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6539 } else { 6540 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6541 } 6542 6543 freemsg(first_mp); 6544 } else { 6545 if (IPCL_IS_IPTUN(connp)) { 6546 /* 6547 * Tunneled packet. We enforce policy in the tunnel 6548 * module itself. 6549 * 6550 * Send the WHOLE packet up (incl. IPSEC_IN) without 6551 * a policy check. 6552 * FIXME to use conn_recv for tun later. 6553 */ 6554 putnext(rq, first_mp); 6555 CONN_DEC_REF(connp); 6556 return; 6557 } 6558 6559 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6560 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6561 ipha, NULL, mctl_present); 6562 } 6563 6564 if (first_mp != NULL) { 6565 int in_flags = 0; 6566 6567 /* 6568 * ip_fanout_proto also gets called 6569 * from icmp_inbound_error_fanout, in 6570 * which case the msg type is M_CTL. 6571 * Don't add info in this case for time 6572 * being. In future when there is a 6573 * need for knowing the inbound iface 6574 * index for ICMP error msgs, then this 6575 * can be changed 6576 */ 6577 if (connp->conn_recvif) 6578 in_flags = IPF_RECVIF; 6579 if (connp->conn_ip_recvpktinfo) { 6580 if (connp->conn_af_isv6) { 6581 /* 6582 * V6 only needs index 6583 */ 6584 in_flags |= IPF_RECVIF; 6585 } else { 6586 /* 6587 * V4 needs index + 6588 * matching address. 6589 */ 6590 in_flags |= IPF_RECVADDR; 6591 } 6592 } 6593 if ((in_flags != 0) && 6594 (mp->b_datap->db_type != M_CTL)) { 6595 6596 /* 6597 * the actual data will be contained in 6598 * b_cont upon successful return 6599 * of the following call else original 6600 * mblk is returned 6601 */ 6602 ASSERT(recv_ill != NULL); 6603 mp = ip_add_info(mp, recv_ill, 6604 in_flags, IPCL_ZONEID(connp), ipst); 6605 } 6606 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6607 (connp->conn_recv)(connp, mp, NULL); 6608 if (mctl_present) 6609 freeb(first_mp); 6610 } 6611 } 6612 CONN_DEC_REF(connp); 6613 } 6614 6615 /* 6616 * Fanout for TCP packets 6617 * The caller puts <fport, lport> in the ports parameter. 6618 * 6619 * IPQoS Notes 6620 * Before sending it to the client, invoke IPPF processing. 6621 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6622 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6623 * ip_policy is false. 6624 */ 6625 static void 6626 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6627 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6628 { 6629 mblk_t *first_mp; 6630 boolean_t secure; 6631 uint32_t ill_index; 6632 int ip_hdr_len; 6633 tcph_t *tcph; 6634 boolean_t syn_present = B_FALSE; 6635 conn_t *connp; 6636 ip_stack_t *ipst = recv_ill->ill_ipst; 6637 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6638 6639 ASSERT(recv_ill != NULL); 6640 6641 first_mp = mp; 6642 if (mctl_present) { 6643 ASSERT(first_mp->b_datap->db_type == M_CTL); 6644 mp = first_mp->b_cont; 6645 secure = ipsec_in_is_secure(first_mp); 6646 ASSERT(mp != NULL); 6647 } else { 6648 secure = B_FALSE; 6649 } 6650 6651 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6652 6653 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6654 zoneid, ipst)) == NULL) { 6655 /* 6656 * No connected connection or listener. Send a 6657 * TH_RST via tcp_xmit_listeners_reset. 6658 */ 6659 6660 /* Initiate IPPf processing, if needed. */ 6661 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6662 uint32_t ill_index; 6663 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6664 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6665 if (first_mp == NULL) 6666 return; 6667 } 6668 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6669 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6670 zoneid)); 6671 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6672 ipst->ips_netstack->netstack_tcp, NULL); 6673 return; 6674 } 6675 6676 /* 6677 * Allocate the SYN for the TCP connection here itself 6678 */ 6679 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6680 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6681 if (IPCL_IS_TCP(connp)) { 6682 squeue_t *sqp; 6683 6684 /* 6685 * For fused tcp loopback, assign the eager's 6686 * squeue to be that of the active connect's. 6687 * Note that we don't check for IP_FF_LOOPBACK 6688 * here since this routine gets called only 6689 * for loopback (unlike the IPv6 counterpart). 6690 */ 6691 ASSERT(Q_TO_CONN(q) != NULL); 6692 if (do_tcp_fusion && 6693 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6694 !secure && 6695 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6696 IPCL_IS_TCP(Q_TO_CONN(q))) { 6697 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6698 sqp = Q_TO_CONN(q)->conn_sqp; 6699 } else { 6700 sqp = IP_SQUEUE_GET(lbolt); 6701 } 6702 6703 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6704 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6705 syn_present = B_TRUE; 6706 } 6707 } 6708 6709 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6710 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6711 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6712 if ((flags & TH_RST) || (flags & TH_URG)) { 6713 CONN_DEC_REF(connp); 6714 freemsg(first_mp); 6715 return; 6716 } 6717 if (flags & TH_ACK) { 6718 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6719 ipst->ips_netstack->netstack_tcp, connp); 6720 CONN_DEC_REF(connp); 6721 return; 6722 } 6723 6724 CONN_DEC_REF(connp); 6725 freemsg(first_mp); 6726 return; 6727 } 6728 6729 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6730 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6731 NULL, mctl_present); 6732 if (first_mp == NULL) { 6733 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6734 CONN_DEC_REF(connp); 6735 return; 6736 } 6737 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6738 ASSERT(syn_present); 6739 if (mctl_present) { 6740 ASSERT(first_mp != mp); 6741 first_mp->b_datap->db_struioflag |= 6742 STRUIO_POLICY; 6743 } else { 6744 ASSERT(first_mp == mp); 6745 mp->b_datap->db_struioflag &= 6746 ~STRUIO_EAGER; 6747 mp->b_datap->db_struioflag |= 6748 STRUIO_POLICY; 6749 } 6750 } else { 6751 /* 6752 * Discard first_mp early since we're dealing with a 6753 * fully-connected conn_t and tcp doesn't do policy in 6754 * this case. 6755 */ 6756 if (mctl_present) { 6757 freeb(first_mp); 6758 mctl_present = B_FALSE; 6759 } 6760 first_mp = mp; 6761 } 6762 } 6763 6764 /* 6765 * Initiate policy processing here if needed. If we get here from 6766 * icmp_inbound_error_fanout, ip_policy is false. 6767 */ 6768 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6769 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6770 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6771 if (mp == NULL) { 6772 CONN_DEC_REF(connp); 6773 if (mctl_present) 6774 freeb(first_mp); 6775 return; 6776 } else if (mctl_present) { 6777 ASSERT(first_mp != mp); 6778 first_mp->b_cont = mp; 6779 } else { 6780 first_mp = mp; 6781 } 6782 } 6783 6784 /* Handle socket options. */ 6785 if (!syn_present && 6786 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6787 /* Add header */ 6788 ASSERT(recv_ill != NULL); 6789 /* 6790 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6791 * IPF_RECVIF. 6792 */ 6793 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6794 ipst); 6795 if (mp == NULL) { 6796 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6797 CONN_DEC_REF(connp); 6798 if (mctl_present) 6799 freeb(first_mp); 6800 return; 6801 } else if (mctl_present) { 6802 /* 6803 * ip_add_info might return a new mp. 6804 */ 6805 ASSERT(first_mp != mp); 6806 first_mp->b_cont = mp; 6807 } else { 6808 first_mp = mp; 6809 } 6810 } 6811 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6812 if (IPCL_IS_TCP(connp)) { 6813 /* do not drain, certain use cases can blow the stack */ 6814 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6815 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6816 } else { 6817 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6818 (connp->conn_recv)(connp, first_mp, NULL); 6819 CONN_DEC_REF(connp); 6820 } 6821 } 6822 6823 /* 6824 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6825 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6826 * is not consumed. 6827 * 6828 * One of four things can happen, all of which affect the passed-in mblk: 6829 * 6830 * 1.) ICMP messages that go through here just get returned TRUE. 6831 * 6832 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6833 * 6834 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6835 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6836 * 6837 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6838 */ 6839 static boolean_t 6840 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6841 ipsec_stack_t *ipss) 6842 { 6843 int shift, plen, iph_len; 6844 ipha_t *ipha; 6845 udpha_t *udpha; 6846 uint32_t *spi; 6847 uint32_t esp_ports; 6848 uint8_t *orptr; 6849 boolean_t free_ire; 6850 6851 if (DB_TYPE(mp) == M_CTL) { 6852 /* 6853 * ICMP message with UDP inside. Don't bother stripping, just 6854 * send it up. 6855 * 6856 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6857 * to ignore errors set by ICMP anyway ('cause they might be 6858 * forged), but that's the app's decision, not ours. 6859 */ 6860 6861 /* Bunch of reality checks for DEBUG kernels... */ 6862 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6863 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6864 6865 return (B_TRUE); 6866 } 6867 6868 ipha = (ipha_t *)mp->b_rptr; 6869 iph_len = IPH_HDR_LENGTH(ipha); 6870 plen = ntohs(ipha->ipha_length); 6871 6872 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6873 /* 6874 * Most likely a keepalive for the benefit of an intervening 6875 * NAT. These aren't for us, per se, so drop it. 6876 * 6877 * RFC 3947/8 doesn't say for sure what to do for 2-3 6878 * byte packets (keepalives are 1-byte), but we'll drop them 6879 * also. 6880 */ 6881 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6882 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6883 return (B_FALSE); 6884 } 6885 6886 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6887 /* might as well pull it all up - it might be ESP. */ 6888 if (!pullupmsg(mp, -1)) { 6889 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6890 DROPPER(ipss, ipds_esp_nomem), 6891 &ipss->ipsec_dropper); 6892 return (B_FALSE); 6893 } 6894 6895 ipha = (ipha_t *)mp->b_rptr; 6896 } 6897 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6898 if (*spi == 0) { 6899 /* UDP packet - remove 0-spi. */ 6900 shift = sizeof (uint32_t); 6901 } else { 6902 /* ESP-in-UDP packet - reduce to ESP. */ 6903 ipha->ipha_protocol = IPPROTO_ESP; 6904 shift = sizeof (udpha_t); 6905 } 6906 6907 /* Fix IP header */ 6908 ipha->ipha_length = htons(plen - shift); 6909 ipha->ipha_hdr_checksum = 0; 6910 6911 orptr = mp->b_rptr; 6912 mp->b_rptr += shift; 6913 6914 udpha = (udpha_t *)(orptr + iph_len); 6915 if (*spi == 0) { 6916 ASSERT((uint8_t *)ipha == orptr); 6917 udpha->uha_length = htons(plen - shift - iph_len); 6918 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6919 esp_ports = 0; 6920 } else { 6921 esp_ports = *((uint32_t *)udpha); 6922 ASSERT(esp_ports != 0); 6923 } 6924 ovbcopy(orptr, orptr + shift, iph_len); 6925 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6926 ipha = (ipha_t *)(orptr + shift); 6927 6928 free_ire = (ire == NULL); 6929 if (free_ire) { 6930 /* Re-acquire ire. */ 6931 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6932 ipss->ipsec_netstack->netstack_ip); 6933 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6934 if (ire != NULL) 6935 ire_refrele(ire); 6936 /* 6937 * Do a regular freemsg(), as this is an IP 6938 * error (no local route) not an IPsec one. 6939 */ 6940 freemsg(mp); 6941 } 6942 } 6943 6944 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6945 if (free_ire) 6946 ire_refrele(ire); 6947 } 6948 6949 return (esp_ports == 0); 6950 } 6951 6952 /* 6953 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6954 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6955 * Caller is responsible for dropping references to the conn, and freeing 6956 * first_mp. 6957 * 6958 * IPQoS Notes 6959 * Before sending it to the client, invoke IPPF processing. Policy processing 6960 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6961 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6962 * ip_wput_local, ip_policy is false. 6963 */ 6964 static void 6965 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6966 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6967 boolean_t ip_policy) 6968 { 6969 boolean_t mctl_present = (first_mp != NULL); 6970 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6971 uint32_t ill_index; 6972 ip_stack_t *ipst = recv_ill->ill_ipst; 6973 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6974 6975 ASSERT(ill != NULL); 6976 6977 if (mctl_present) 6978 first_mp->b_cont = mp; 6979 else 6980 first_mp = mp; 6981 6982 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6983 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 6984 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6985 freemsg(first_mp); 6986 return; 6987 } 6988 6989 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6990 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6991 NULL, mctl_present); 6992 /* Freed by ipsec_check_inbound_policy(). */ 6993 if (first_mp == NULL) { 6994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6995 return; 6996 } 6997 } 6998 if (mctl_present) 6999 freeb(first_mp); 7000 7001 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7002 if (connp->conn_udp->udp_nat_t_endpoint) { 7003 if (mctl_present) { 7004 /* mctl_present *shouldn't* happen. */ 7005 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7006 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7007 &ipss->ipsec_dropper); 7008 return; 7009 } 7010 7011 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7012 return; 7013 } 7014 7015 /* Handle options. */ 7016 if (connp->conn_recvif) 7017 in_flags = IPF_RECVIF; 7018 /* 7019 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7020 * passed to ip_add_info is based on IP version of connp. 7021 */ 7022 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7023 if (connp->conn_af_isv6) { 7024 /* 7025 * V6 only needs index 7026 */ 7027 in_flags |= IPF_RECVIF; 7028 } else { 7029 /* 7030 * V4 needs index + matching address. 7031 */ 7032 in_flags |= IPF_RECVADDR; 7033 } 7034 } 7035 7036 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7037 in_flags |= IPF_RECVSLLA; 7038 7039 /* 7040 * Initiate IPPF processing here, if needed. Note first_mp won't be 7041 * freed if the packet is dropped. The caller will do so. 7042 */ 7043 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7044 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7045 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7046 if (mp == NULL) { 7047 return; 7048 } 7049 } 7050 if ((in_flags != 0) && 7051 (mp->b_datap->db_type != M_CTL)) { 7052 /* 7053 * The actual data will be contained in b_cont 7054 * upon successful return of the following call 7055 * else original mblk is returned 7056 */ 7057 ASSERT(recv_ill != NULL); 7058 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7059 ipst); 7060 } 7061 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7062 /* Send it upstream */ 7063 (connp->conn_recv)(connp, mp, NULL); 7064 } 7065 7066 /* 7067 * Fanout for UDP packets. 7068 * The caller puts <fport, lport> in the ports parameter. 7069 * 7070 * If SO_REUSEADDR is set all multicast and broadcast packets 7071 * will be delivered to all streams bound to the same port. 7072 * 7073 * Zones notes: 7074 * Multicast and broadcast packets will be distributed to streams in all zones. 7075 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7076 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7077 * packets. To maintain this behavior with multiple zones, the conns are grouped 7078 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7079 * each zone. If unset, all the following conns in the same zone are skipped. 7080 */ 7081 static void 7082 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7083 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7084 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7085 { 7086 uint32_t dstport, srcport; 7087 ipaddr_t dst; 7088 mblk_t *first_mp; 7089 boolean_t secure; 7090 in6_addr_t v6src; 7091 conn_t *connp; 7092 connf_t *connfp; 7093 conn_t *first_connp; 7094 conn_t *next_connp; 7095 mblk_t *mp1, *first_mp1; 7096 ipaddr_t src; 7097 zoneid_t last_zoneid; 7098 boolean_t reuseaddr; 7099 boolean_t shared_addr; 7100 boolean_t unlabeled; 7101 ip_stack_t *ipst; 7102 7103 ASSERT(recv_ill != NULL); 7104 ipst = recv_ill->ill_ipst; 7105 7106 first_mp = mp; 7107 if (mctl_present) { 7108 mp = first_mp->b_cont; 7109 first_mp->b_cont = NULL; 7110 secure = ipsec_in_is_secure(first_mp); 7111 ASSERT(mp != NULL); 7112 } else { 7113 first_mp = NULL; 7114 secure = B_FALSE; 7115 } 7116 7117 /* Extract ports in net byte order */ 7118 dstport = htons(ntohl(ports) & 0xFFFF); 7119 srcport = htons(ntohl(ports) >> 16); 7120 dst = ipha->ipha_dst; 7121 src = ipha->ipha_src; 7122 7123 unlabeled = B_FALSE; 7124 if (is_system_labeled()) 7125 /* Cred cannot be null on IPv4 */ 7126 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7127 TSLF_UNLABELED) != 0; 7128 shared_addr = (zoneid == ALL_ZONES); 7129 if (shared_addr) { 7130 /* 7131 * No need to handle exclusive-stack zones since ALL_ZONES 7132 * only applies to the shared stack. 7133 */ 7134 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7135 /* 7136 * If no shared MLP is found, tsol_mlp_findzone returns 7137 * ALL_ZONES. In that case, we assume it's SLP, and 7138 * search for the zone based on the packet label. 7139 * 7140 * If there is such a zone, we prefer to find a 7141 * connection in it. Otherwise, we look for a 7142 * MAC-exempt connection in any zone whose label 7143 * dominates the default label on the packet. 7144 */ 7145 if (zoneid == ALL_ZONES) 7146 zoneid = tsol_packet_to_zoneid(mp); 7147 else 7148 unlabeled = B_FALSE; 7149 } 7150 7151 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7152 mutex_enter(&connfp->connf_lock); 7153 connp = connfp->connf_head; 7154 if (!broadcast && !CLASSD(dst)) { 7155 /* 7156 * Not broadcast or multicast. Send to the one (first) 7157 * client we find. No need to check conn_wantpacket() 7158 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7159 * IPv4 unicast packets. 7160 */ 7161 while ((connp != NULL) && 7162 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7163 (!IPCL_ZONE_MATCH(connp, zoneid) && 7164 !(unlabeled && connp->conn_mac_exempt)))) { 7165 /* 7166 * We keep searching since the conn did not match, 7167 * or its zone did not match and it is not either 7168 * an allzones conn or a mac exempt conn (if the 7169 * sender is unlabeled.) 7170 */ 7171 connp = connp->conn_next; 7172 } 7173 7174 if (connp == NULL || 7175 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7176 goto notfound; 7177 7178 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7179 7180 if (is_system_labeled() && 7181 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7182 connp)) 7183 goto notfound; 7184 7185 CONN_INC_REF(connp); 7186 mutex_exit(&connfp->connf_lock); 7187 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7188 flags, recv_ill, ip_policy); 7189 IP_STAT(ipst, ip_udp_fannorm); 7190 CONN_DEC_REF(connp); 7191 return; 7192 } 7193 7194 /* 7195 * Broadcast and multicast case 7196 * 7197 * Need to check conn_wantpacket(). 7198 * If SO_REUSEADDR has been set on the first we send the 7199 * packet to all clients that have joined the group and 7200 * match the port. 7201 */ 7202 7203 while (connp != NULL) { 7204 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7205 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7206 (!is_system_labeled() || 7207 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7208 connp))) 7209 break; 7210 connp = connp->conn_next; 7211 } 7212 7213 if (connp == NULL || 7214 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7215 goto notfound; 7216 7217 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7218 7219 first_connp = connp; 7220 /* 7221 * When SO_REUSEADDR is not set, send the packet only to the first 7222 * matching connection in its zone by keeping track of the zoneid. 7223 */ 7224 reuseaddr = first_connp->conn_reuseaddr; 7225 last_zoneid = first_connp->conn_zoneid; 7226 7227 CONN_INC_REF(connp); 7228 connp = connp->conn_next; 7229 for (;;) { 7230 while (connp != NULL) { 7231 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7232 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7233 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7234 (!is_system_labeled() || 7235 tsol_receive_local(mp, &dst, IPV4_VERSION, 7236 shared_addr, connp))) 7237 break; 7238 connp = connp->conn_next; 7239 } 7240 /* 7241 * Just copy the data part alone. The mctl part is 7242 * needed just for verifying policy and it is never 7243 * sent up. 7244 */ 7245 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7246 ((mp1 = copymsg(mp)) == NULL))) { 7247 /* 7248 * No more interested clients or memory 7249 * allocation failed 7250 */ 7251 connp = first_connp; 7252 break; 7253 } 7254 if (connp->conn_zoneid != last_zoneid) { 7255 /* 7256 * Update the zoneid so that the packet isn't sent to 7257 * any more conns in the same zone unless SO_REUSEADDR 7258 * is set. 7259 */ 7260 reuseaddr = connp->conn_reuseaddr; 7261 last_zoneid = connp->conn_zoneid; 7262 } 7263 if (first_mp != NULL) { 7264 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7265 ipsec_info_type == IPSEC_IN); 7266 first_mp1 = ipsec_in_tag(first_mp, NULL, 7267 ipst->ips_netstack); 7268 if (first_mp1 == NULL) { 7269 freemsg(mp1); 7270 connp = first_connp; 7271 break; 7272 } 7273 } else { 7274 first_mp1 = NULL; 7275 } 7276 CONN_INC_REF(connp); 7277 mutex_exit(&connfp->connf_lock); 7278 /* 7279 * IPQoS notes: We don't send the packet for policy 7280 * processing here, will do it for the last one (below). 7281 * i.e. we do it per-packet now, but if we do policy 7282 * processing per-conn, then we would need to do it 7283 * here too. 7284 */ 7285 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7286 ipha, flags, recv_ill, B_FALSE); 7287 mutex_enter(&connfp->connf_lock); 7288 /* Follow the next pointer before releasing the conn. */ 7289 next_connp = connp->conn_next; 7290 IP_STAT(ipst, ip_udp_fanmb); 7291 CONN_DEC_REF(connp); 7292 connp = next_connp; 7293 } 7294 7295 /* Last one. Send it upstream. */ 7296 mutex_exit(&connfp->connf_lock); 7297 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7298 recv_ill, ip_policy); 7299 IP_STAT(ipst, ip_udp_fanmb); 7300 CONN_DEC_REF(connp); 7301 return; 7302 7303 notfound: 7304 7305 mutex_exit(&connfp->connf_lock); 7306 IP_STAT(ipst, ip_udp_fanothers); 7307 /* 7308 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7309 * have already been matched above, since they live in the IPv4 7310 * fanout tables. This implies we only need to 7311 * check for IPv6 in6addr_any endpoints here. 7312 * Thus we compare using ipv6_all_zeros instead of the destination 7313 * address, except for the multicast group membership lookup which 7314 * uses the IPv4 destination. 7315 */ 7316 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7317 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7318 mutex_enter(&connfp->connf_lock); 7319 connp = connfp->connf_head; 7320 if (!broadcast && !CLASSD(dst)) { 7321 while (connp != NULL) { 7322 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7323 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7324 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7325 !connp->conn_ipv6_v6only) 7326 break; 7327 connp = connp->conn_next; 7328 } 7329 7330 if (connp != NULL && is_system_labeled() && 7331 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7332 connp)) 7333 connp = NULL; 7334 7335 if (connp == NULL || 7336 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7337 /* 7338 * No one bound to this port. Is 7339 * there a client that wants all 7340 * unclaimed datagrams? 7341 */ 7342 mutex_exit(&connfp->connf_lock); 7343 7344 if (mctl_present) 7345 first_mp->b_cont = mp; 7346 else 7347 first_mp = mp; 7348 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7349 connf_head != NULL) { 7350 ip_fanout_proto(q, first_mp, ill, ipha, 7351 flags | IP_FF_RAWIP, mctl_present, 7352 ip_policy, recv_ill, zoneid); 7353 } else { 7354 if (ip_fanout_send_icmp(q, first_mp, flags, 7355 ICMP_DEST_UNREACHABLE, 7356 ICMP_PORT_UNREACHABLE, 7357 mctl_present, zoneid, ipst)) { 7358 BUMP_MIB(ill->ill_ip_mib, 7359 udpIfStatsNoPorts); 7360 } 7361 } 7362 return; 7363 } 7364 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7365 7366 CONN_INC_REF(connp); 7367 mutex_exit(&connfp->connf_lock); 7368 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7369 flags, recv_ill, ip_policy); 7370 CONN_DEC_REF(connp); 7371 return; 7372 } 7373 /* 7374 * IPv4 multicast packet being delivered to an AF_INET6 7375 * in6addr_any endpoint. 7376 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7377 * and not conn_wantpacket_v6() since any multicast membership is 7378 * for an IPv4-mapped multicast address. 7379 * The packet is sent to all clients in all zones that have joined the 7380 * group and match the port. 7381 */ 7382 while (connp != NULL) { 7383 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7384 srcport, v6src) && 7385 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7386 (!is_system_labeled() || 7387 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7388 connp))) 7389 break; 7390 connp = connp->conn_next; 7391 } 7392 7393 if (connp == NULL || 7394 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7395 /* 7396 * No one bound to this port. Is 7397 * there a client that wants all 7398 * unclaimed datagrams? 7399 */ 7400 mutex_exit(&connfp->connf_lock); 7401 7402 if (mctl_present) 7403 first_mp->b_cont = mp; 7404 else 7405 first_mp = mp; 7406 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7407 NULL) { 7408 ip_fanout_proto(q, first_mp, ill, ipha, 7409 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7410 recv_ill, zoneid); 7411 } else { 7412 /* 7413 * We used to attempt to send an icmp error here, but 7414 * since this is known to be a multicast packet 7415 * and we don't send icmp errors in response to 7416 * multicast, just drop the packet and give up sooner. 7417 */ 7418 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7419 freemsg(first_mp); 7420 } 7421 return; 7422 } 7423 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7424 7425 first_connp = connp; 7426 7427 CONN_INC_REF(connp); 7428 connp = connp->conn_next; 7429 for (;;) { 7430 while (connp != NULL) { 7431 if (IPCL_UDP_MATCH_V6(connp, dstport, 7432 ipv6_all_zeros, srcport, v6src) && 7433 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7434 (!is_system_labeled() || 7435 tsol_receive_local(mp, &dst, IPV4_VERSION, 7436 shared_addr, connp))) 7437 break; 7438 connp = connp->conn_next; 7439 } 7440 /* 7441 * Just copy the data part alone. The mctl part is 7442 * needed just for verifying policy and it is never 7443 * sent up. 7444 */ 7445 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7446 ((mp1 = copymsg(mp)) == NULL))) { 7447 /* 7448 * No more intested clients or memory 7449 * allocation failed 7450 */ 7451 connp = first_connp; 7452 break; 7453 } 7454 if (first_mp != NULL) { 7455 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7456 ipsec_info_type == IPSEC_IN); 7457 first_mp1 = ipsec_in_tag(first_mp, NULL, 7458 ipst->ips_netstack); 7459 if (first_mp1 == NULL) { 7460 freemsg(mp1); 7461 connp = first_connp; 7462 break; 7463 } 7464 } else { 7465 first_mp1 = NULL; 7466 } 7467 CONN_INC_REF(connp); 7468 mutex_exit(&connfp->connf_lock); 7469 /* 7470 * IPQoS notes: We don't send the packet for policy 7471 * processing here, will do it for the last one (below). 7472 * i.e. we do it per-packet now, but if we do policy 7473 * processing per-conn, then we would need to do it 7474 * here too. 7475 */ 7476 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7477 ipha, flags, recv_ill, B_FALSE); 7478 mutex_enter(&connfp->connf_lock); 7479 /* Follow the next pointer before releasing the conn. */ 7480 next_connp = connp->conn_next; 7481 CONN_DEC_REF(connp); 7482 connp = next_connp; 7483 } 7484 7485 /* Last one. Send it upstream. */ 7486 mutex_exit(&connfp->connf_lock); 7487 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7488 recv_ill, ip_policy); 7489 CONN_DEC_REF(connp); 7490 } 7491 7492 /* 7493 * Complete the ip_wput header so that it 7494 * is possible to generate ICMP 7495 * errors. 7496 */ 7497 int 7498 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7499 { 7500 ire_t *ire; 7501 7502 if (ipha->ipha_src == INADDR_ANY) { 7503 ire = ire_lookup_local(zoneid, ipst); 7504 if (ire == NULL) { 7505 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7506 return (1); 7507 } 7508 ipha->ipha_src = ire->ire_addr; 7509 ire_refrele(ire); 7510 } 7511 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7512 ipha->ipha_hdr_checksum = 0; 7513 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7514 return (0); 7515 } 7516 7517 /* 7518 * Nobody should be sending 7519 * packets up this stream 7520 */ 7521 static void 7522 ip_lrput(queue_t *q, mblk_t *mp) 7523 { 7524 mblk_t *mp1; 7525 7526 switch (mp->b_datap->db_type) { 7527 case M_FLUSH: 7528 /* Turn around */ 7529 if (*mp->b_rptr & FLUSHW) { 7530 *mp->b_rptr &= ~FLUSHR; 7531 qreply(q, mp); 7532 return; 7533 } 7534 break; 7535 } 7536 /* Could receive messages that passed through ar_rput */ 7537 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7538 mp1->b_prev = mp1->b_next = NULL; 7539 freemsg(mp); 7540 } 7541 7542 /* Nobody should be sending packets down this stream */ 7543 /* ARGSUSED */ 7544 void 7545 ip_lwput(queue_t *q, mblk_t *mp) 7546 { 7547 freemsg(mp); 7548 } 7549 7550 /* 7551 * Move the first hop in any source route to ipha_dst and remove that part of 7552 * the source route. Called by other protocols. Errors in option formatting 7553 * are ignored - will be handled by ip_wput_options Return the final 7554 * destination (either ipha_dst or the last entry in a source route.) 7555 */ 7556 ipaddr_t 7557 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7558 { 7559 ipoptp_t opts; 7560 uchar_t *opt; 7561 uint8_t optval; 7562 uint8_t optlen; 7563 ipaddr_t dst; 7564 int i; 7565 ire_t *ire; 7566 ip_stack_t *ipst = ns->netstack_ip; 7567 7568 ip2dbg(("ip_massage_options\n")); 7569 dst = ipha->ipha_dst; 7570 for (optval = ipoptp_first(&opts, ipha); 7571 optval != IPOPT_EOL; 7572 optval = ipoptp_next(&opts)) { 7573 opt = opts.ipoptp_cur; 7574 switch (optval) { 7575 uint8_t off; 7576 case IPOPT_SSRR: 7577 case IPOPT_LSRR: 7578 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7579 ip1dbg(("ip_massage_options: bad src route\n")); 7580 break; 7581 } 7582 optlen = opts.ipoptp_len; 7583 off = opt[IPOPT_OFFSET]; 7584 off--; 7585 redo_srr: 7586 if (optlen < IP_ADDR_LEN || 7587 off > optlen - IP_ADDR_LEN) { 7588 /* End of source route */ 7589 ip1dbg(("ip_massage_options: end of SR\n")); 7590 break; 7591 } 7592 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7593 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7594 ntohl(dst))); 7595 /* 7596 * Check if our address is present more than 7597 * once as consecutive hops in source route. 7598 * XXX verify per-interface ip_forwarding 7599 * for source route? 7600 */ 7601 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7602 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7603 if (ire != NULL) { 7604 ire_refrele(ire); 7605 off += IP_ADDR_LEN; 7606 goto redo_srr; 7607 } 7608 if (dst == htonl(INADDR_LOOPBACK)) { 7609 ip1dbg(("ip_massage_options: loopback addr in " 7610 "source route!\n")); 7611 break; 7612 } 7613 /* 7614 * Update ipha_dst to be the first hop and remove the 7615 * first hop from the source route (by overwriting 7616 * part of the option with NOP options). 7617 */ 7618 ipha->ipha_dst = dst; 7619 /* Put the last entry in dst */ 7620 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7621 3; 7622 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7623 7624 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7625 ntohl(dst))); 7626 /* Move down and overwrite */ 7627 opt[IP_ADDR_LEN] = opt[0]; 7628 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7629 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7630 for (i = 0; i < IP_ADDR_LEN; i++) 7631 opt[i] = IPOPT_NOP; 7632 break; 7633 } 7634 } 7635 return (dst); 7636 } 7637 7638 /* 7639 * Return the network mask 7640 * associated with the specified address. 7641 */ 7642 ipaddr_t 7643 ip_net_mask(ipaddr_t addr) 7644 { 7645 uchar_t *up = (uchar_t *)&addr; 7646 ipaddr_t mask = 0; 7647 uchar_t *maskp = (uchar_t *)&mask; 7648 7649 #if defined(__i386) || defined(__amd64) 7650 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7651 #endif 7652 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7653 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7654 #endif 7655 if (CLASSD(addr)) { 7656 maskp[0] = 0xF0; 7657 return (mask); 7658 } 7659 7660 /* We assume Class E default netmask to be 32 */ 7661 if (CLASSE(addr)) 7662 return (0xffffffffU); 7663 7664 if (addr == 0) 7665 return (0); 7666 maskp[0] = 0xFF; 7667 if ((up[0] & 0x80) == 0) 7668 return (mask); 7669 7670 maskp[1] = 0xFF; 7671 if ((up[0] & 0xC0) == 0x80) 7672 return (mask); 7673 7674 maskp[2] = 0xFF; 7675 if ((up[0] & 0xE0) == 0xC0) 7676 return (mask); 7677 7678 /* Otherwise return no mask */ 7679 return ((ipaddr_t)0); 7680 } 7681 7682 /* 7683 * Helper ill lookup function used by IPsec. 7684 */ 7685 ill_t * 7686 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7687 { 7688 ill_t *ret_ill; 7689 7690 ASSERT(ifindex != 0); 7691 7692 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7693 ipst); 7694 if (ret_ill == NULL) { 7695 if (isv6) { 7696 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7697 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7698 ifindex)); 7699 } else { 7700 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7701 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7702 ifindex)); 7703 } 7704 freemsg(first_mp); 7705 return (NULL); 7706 } 7707 return (ret_ill); 7708 } 7709 7710 /* 7711 * IPv4 - 7712 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7713 * out a packet to a destination address for which we do not have specific 7714 * (or sufficient) routing information. 7715 * 7716 * NOTE : These are the scopes of some of the variables that point at IRE, 7717 * which needs to be followed while making any future modifications 7718 * to avoid memory leaks. 7719 * 7720 * - ire and sire are the entries looked up initially by 7721 * ire_ftable_lookup. 7722 * - ipif_ire is used to hold the interface ire associated with 7723 * the new cache ire. But it's scope is limited, so we always REFRELE 7724 * it before branching out to error paths. 7725 * - save_ire is initialized before ire_create, so that ire returned 7726 * by ire_create will not over-write the ire. We REFRELE save_ire 7727 * before breaking out of the switch. 7728 * 7729 * Thus on failures, we have to REFRELE only ire and sire, if they 7730 * are not NULL. 7731 */ 7732 void 7733 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7734 zoneid_t zoneid, ip_stack_t *ipst) 7735 { 7736 areq_t *areq; 7737 ipaddr_t gw = 0; 7738 ire_t *ire = NULL; 7739 mblk_t *res_mp; 7740 ipaddr_t *addrp; 7741 ipaddr_t nexthop_addr; 7742 ipif_t *src_ipif = NULL; 7743 ill_t *dst_ill = NULL; 7744 ipha_t *ipha; 7745 ire_t *sire = NULL; 7746 mblk_t *first_mp; 7747 ire_t *save_ire; 7748 ushort_t ire_marks = 0; 7749 boolean_t mctl_present; 7750 ipsec_out_t *io; 7751 mblk_t *saved_mp; 7752 ire_t *first_sire = NULL; 7753 mblk_t *copy_mp = NULL; 7754 mblk_t *xmit_mp = NULL; 7755 ipaddr_t save_dst; 7756 uint32_t multirt_flags = 7757 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7758 boolean_t multirt_is_resolvable; 7759 boolean_t multirt_resolve_next; 7760 boolean_t unspec_src; 7761 boolean_t ip_nexthop = B_FALSE; 7762 tsol_ire_gw_secattr_t *attrp = NULL; 7763 tsol_gcgrp_t *gcgrp = NULL; 7764 tsol_gcgrp_addr_t ga; 7765 7766 if (ip_debug > 2) { 7767 /* ip1dbg */ 7768 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7769 } 7770 7771 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7772 if (mctl_present) { 7773 io = (ipsec_out_t *)first_mp->b_rptr; 7774 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7775 ASSERT(zoneid == io->ipsec_out_zoneid); 7776 ASSERT(zoneid != ALL_ZONES); 7777 } 7778 7779 ipha = (ipha_t *)mp->b_rptr; 7780 7781 /* All multicast lookups come through ip_newroute_ipif() */ 7782 if (CLASSD(dst)) { 7783 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7784 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7785 freemsg(first_mp); 7786 return; 7787 } 7788 7789 if (mctl_present && io->ipsec_out_ip_nexthop) { 7790 ip_nexthop = B_TRUE; 7791 nexthop_addr = io->ipsec_out_nexthop_addr; 7792 } 7793 /* 7794 * If this IRE is created for forwarding or it is not for 7795 * traffic for congestion controlled protocols, mark it as temporary. 7796 */ 7797 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7798 ire_marks |= IRE_MARK_TEMPORARY; 7799 7800 /* 7801 * Get what we can from ire_ftable_lookup which will follow an IRE 7802 * chain until it gets the most specific information available. 7803 * For example, we know that there is no IRE_CACHE for this dest, 7804 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7805 * ire_ftable_lookup will look up the gateway, etc. 7806 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7807 * to the destination, of equal netmask length in the forward table, 7808 * will be recursively explored. If no information is available 7809 * for the final gateway of that route, we force the returned ire 7810 * to be equal to sire using MATCH_IRE_PARENT. 7811 * At least, in this case we have a starting point (in the buckets) 7812 * to look for other routes to the destination in the forward table. 7813 * This is actually used only for multirouting, where a list 7814 * of routes has to be processed in sequence. 7815 * 7816 * In the process of coming up with the most specific information, 7817 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7818 * for the gateway (i.e., one for which the ire_nce->nce_state is 7819 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7820 * Two caveats when handling incomplete ire's in ip_newroute: 7821 * - we should be careful when accessing its ire_nce (specifically 7822 * the nce_res_mp) ast it might change underneath our feet, and, 7823 * - not all legacy code path callers are prepared to handle 7824 * incomplete ire's, so we should not create/add incomplete 7825 * ire_cache entries here. (See discussion about temporary solution 7826 * further below). 7827 * 7828 * In order to minimize packet dropping, and to preserve existing 7829 * behavior, we treat this case as if there were no IRE_CACHE for the 7830 * gateway, and instead use the IF_RESOLVER ire to send out 7831 * another request to ARP (this is achieved by passing the 7832 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7833 * arp response comes back in ip_wput_nondata, we will create 7834 * a per-dst ire_cache that has an ND_COMPLETE ire. 7835 * 7836 * Note that this is a temporary solution; the correct solution is 7837 * to create an incomplete per-dst ire_cache entry, and send the 7838 * packet out when the gw's nce is resolved. In order to achieve this, 7839 * all packet processing must have been completed prior to calling 7840 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7841 * to be modified to accomodate this solution. 7842 */ 7843 if (ip_nexthop) { 7844 /* 7845 * The first time we come here, we look for an IRE_INTERFACE 7846 * entry for the specified nexthop, set the dst to be the 7847 * nexthop address and create an IRE_CACHE entry for the 7848 * nexthop. The next time around, we are able to find an 7849 * IRE_CACHE entry for the nexthop, set the gateway to be the 7850 * nexthop address and create an IRE_CACHE entry for the 7851 * destination address via the specified nexthop. 7852 */ 7853 ire = ire_cache_lookup(nexthop_addr, zoneid, 7854 MBLK_GETLABEL(mp), ipst); 7855 if (ire != NULL) { 7856 gw = nexthop_addr; 7857 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7858 } else { 7859 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7860 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7861 MBLK_GETLABEL(mp), 7862 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7863 ipst); 7864 if (ire != NULL) { 7865 dst = nexthop_addr; 7866 } 7867 } 7868 } else { 7869 ire = ire_ftable_lookup(dst, 0, 0, 0, 7870 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7871 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7872 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7873 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7874 ipst); 7875 } 7876 7877 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7878 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7879 7880 /* 7881 * This loop is run only once in most cases. 7882 * We loop to resolve further routes only when the destination 7883 * can be reached through multiple RTF_MULTIRT-flagged ires. 7884 */ 7885 do { 7886 /* Clear the previous iteration's values */ 7887 if (src_ipif != NULL) { 7888 ipif_refrele(src_ipif); 7889 src_ipif = NULL; 7890 } 7891 if (dst_ill != NULL) { 7892 ill_refrele(dst_ill); 7893 dst_ill = NULL; 7894 } 7895 7896 multirt_resolve_next = B_FALSE; 7897 /* 7898 * We check if packets have to be multirouted. 7899 * In this case, given the current <ire, sire> couple, 7900 * we look for the next suitable <ire, sire>. 7901 * This check is done in ire_multirt_lookup(), 7902 * which applies various criteria to find the next route 7903 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7904 * unchanged if it detects it has not been tried yet. 7905 */ 7906 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7907 ip3dbg(("ip_newroute: starting next_resolution " 7908 "with first_mp %p, tag %d\n", 7909 (void *)first_mp, 7910 MULTIRT_DEBUG_TAGGED(first_mp))); 7911 7912 ASSERT(sire != NULL); 7913 multirt_is_resolvable = 7914 ire_multirt_lookup(&ire, &sire, multirt_flags, 7915 MBLK_GETLABEL(mp), ipst); 7916 7917 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7918 "ire %p, sire %p\n", 7919 multirt_is_resolvable, 7920 (void *)ire, (void *)sire)); 7921 7922 if (!multirt_is_resolvable) { 7923 /* 7924 * No more multirt route to resolve; give up 7925 * (all routes resolved or no more 7926 * resolvable routes). 7927 */ 7928 if (ire != NULL) { 7929 ire_refrele(ire); 7930 ire = NULL; 7931 } 7932 } else { 7933 ASSERT(sire != NULL); 7934 ASSERT(ire != NULL); 7935 /* 7936 * We simply use first_sire as a flag that 7937 * indicates if a resolvable multirt route 7938 * has already been found. 7939 * If it is not the case, we may have to send 7940 * an ICMP error to report that the 7941 * destination is unreachable. 7942 * We do not IRE_REFHOLD first_sire. 7943 */ 7944 if (first_sire == NULL) { 7945 first_sire = sire; 7946 } 7947 } 7948 } 7949 if (ire == NULL) { 7950 if (ip_debug > 3) { 7951 /* ip2dbg */ 7952 pr_addr_dbg("ip_newroute: " 7953 "can't resolve %s\n", AF_INET, &dst); 7954 } 7955 ip3dbg(("ip_newroute: " 7956 "ire %p, sire %p, first_sire %p\n", 7957 (void *)ire, (void *)sire, (void *)first_sire)); 7958 7959 if (sire != NULL) { 7960 ire_refrele(sire); 7961 sire = NULL; 7962 } 7963 7964 if (first_sire != NULL) { 7965 /* 7966 * At least one multirt route has been found 7967 * in the same call to ip_newroute(); 7968 * there is no need to report an ICMP error. 7969 * first_sire was not IRE_REFHOLDed. 7970 */ 7971 MULTIRT_DEBUG_UNTAG(first_mp); 7972 freemsg(first_mp); 7973 return; 7974 } 7975 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7976 RTA_DST, ipst); 7977 goto icmp_err_ret; 7978 } 7979 7980 /* 7981 * Verify that the returned IRE does not have either 7982 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7983 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7984 */ 7985 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7986 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7987 goto icmp_err_ret; 7988 } 7989 /* 7990 * Increment the ire_ob_pkt_count field for ire if it is an 7991 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7992 * increment the same for the parent IRE, sire, if it is some 7993 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 7994 */ 7995 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7996 UPDATE_OB_PKT_COUNT(ire); 7997 ire->ire_last_used_time = lbolt; 7998 } 7999 8000 if (sire != NULL) { 8001 gw = sire->ire_gateway_addr; 8002 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8003 IRE_INTERFACE)) == 0); 8004 UPDATE_OB_PKT_COUNT(sire); 8005 sire->ire_last_used_time = lbolt; 8006 } 8007 /* 8008 * We have a route to reach the destination. Find the 8009 * appropriate ill, then get a source address using 8010 * ipif_select_source(). 8011 * 8012 * If we are here trying to create an IRE_CACHE for an offlink 8013 * destination and have an IRE_CACHE entry for VNI, then use 8014 * ire_stq instead since VNI's queue is a black hole. 8015 */ 8016 if ((ire->ire_type == IRE_CACHE) && 8017 IS_VNI(ire->ire_ipif->ipif_ill)) { 8018 dst_ill = ire->ire_stq->q_ptr; 8019 ill_refhold(dst_ill); 8020 } else { 8021 ill_t *ill = ire->ire_ipif->ipif_ill; 8022 8023 if (IS_IPMP(ill)) { 8024 dst_ill = 8025 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8026 } else { 8027 dst_ill = ill; 8028 ill_refhold(dst_ill); 8029 } 8030 } 8031 8032 if (dst_ill == NULL) { 8033 if (ip_debug > 2) { 8034 pr_addr_dbg("ip_newroute: no dst " 8035 "ill for dst %s\n", AF_INET, &dst); 8036 } 8037 goto icmp_err_ret; 8038 } 8039 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8040 8041 /* 8042 * Pick the best source address from dst_ill. 8043 * 8044 * 1) Try to pick the source address from the destination 8045 * route. Clustering assumes that when we have multiple 8046 * prefixes hosted on an interface, the prefix of the 8047 * source address matches the prefix of the destination 8048 * route. We do this only if the address is not 8049 * DEPRECATED. 8050 * 8051 * 2) If the conn is in a different zone than the ire, we 8052 * need to pick a source address from the right zone. 8053 */ 8054 ASSERT(src_ipif == NULL); 8055 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8056 /* 8057 * The RTF_SETSRC flag is set in the parent ire (sire). 8058 * Check that the ipif matching the requested source 8059 * address still exists. 8060 */ 8061 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8062 zoneid, NULL, NULL, NULL, NULL, ipst); 8063 } 8064 8065 unspec_src = (connp != NULL && connp->conn_unspec_src); 8066 8067 if (src_ipif == NULL && 8068 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8069 ire_marks |= IRE_MARK_USESRC_CHECK; 8070 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8071 IS_IPMP(ire->ire_ipif->ipif_ill) || 8072 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8073 (connp != NULL && ire->ire_zoneid != zoneid && 8074 ire->ire_zoneid != ALL_ZONES) || 8075 (dst_ill->ill_usesrc_ifindex != 0)) { 8076 /* 8077 * If the destination is reachable via a 8078 * given gateway, the selected source address 8079 * should be in the same subnet as the gateway. 8080 * Otherwise, the destination is not reachable. 8081 * 8082 * If there are no interfaces on the same subnet 8083 * as the destination, ipif_select_source gives 8084 * first non-deprecated interface which might be 8085 * on a different subnet than the gateway. 8086 * This is not desirable. Hence pass the dst_ire 8087 * source address to ipif_select_source. 8088 * It is sure that the destination is reachable 8089 * with the dst_ire source address subnet. 8090 * So passing dst_ire source address to 8091 * ipif_select_source will make sure that the 8092 * selected source will be on the same subnet 8093 * as dst_ire source address. 8094 */ 8095 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8096 8097 src_ipif = ipif_select_source(dst_ill, saddr, 8098 zoneid); 8099 if (src_ipif == NULL) { 8100 if (ip_debug > 2) { 8101 pr_addr_dbg("ip_newroute: " 8102 "no src for dst %s ", 8103 AF_INET, &dst); 8104 printf("on interface %s\n", 8105 dst_ill->ill_name); 8106 } 8107 goto icmp_err_ret; 8108 } 8109 } else { 8110 src_ipif = ire->ire_ipif; 8111 ASSERT(src_ipif != NULL); 8112 /* hold src_ipif for uniformity */ 8113 ipif_refhold(src_ipif); 8114 } 8115 } 8116 8117 /* 8118 * Assign a source address while we have the conn. 8119 * We can't have ip_wput_ire pick a source address when the 8120 * packet returns from arp since we need to look at 8121 * conn_unspec_src and conn_zoneid, and we lose the conn when 8122 * going through arp. 8123 * 8124 * NOTE : ip_newroute_v6 does not have this piece of code as 8125 * it uses ip6i to store this information. 8126 */ 8127 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8128 ipha->ipha_src = src_ipif->ipif_src_addr; 8129 8130 if (ip_debug > 3) { 8131 /* ip2dbg */ 8132 pr_addr_dbg("ip_newroute: first hop %s\n", 8133 AF_INET, &gw); 8134 } 8135 ip2dbg(("\tire type %s (%d)\n", 8136 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8137 8138 /* 8139 * The TTL of multirouted packets is bounded by the 8140 * ip_multirt_ttl ndd variable. 8141 */ 8142 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8143 /* Force TTL of multirouted packets */ 8144 if ((ipst->ips_ip_multirt_ttl > 0) && 8145 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8146 ip2dbg(("ip_newroute: forcing multirt TTL " 8147 "to %d (was %d), dst 0x%08x\n", 8148 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8149 ntohl(sire->ire_addr))); 8150 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8151 } 8152 } 8153 /* 8154 * At this point in ip_newroute(), ire is either the 8155 * IRE_CACHE of the next-hop gateway for an off-subnet 8156 * destination or an IRE_INTERFACE type that should be used 8157 * to resolve an on-subnet destination or an on-subnet 8158 * next-hop gateway. 8159 * 8160 * In the IRE_CACHE case, we have the following : 8161 * 8162 * 1) src_ipif - used for getting a source address. 8163 * 8164 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8165 * means packets using this IRE_CACHE will go out on 8166 * dst_ill. 8167 * 8168 * 3) The IRE sire will point to the prefix that is the 8169 * longest matching route for the destination. These 8170 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8171 * 8172 * The newly created IRE_CACHE entry for the off-subnet 8173 * destination is tied to both the prefix route and the 8174 * interface route used to resolve the next-hop gateway 8175 * via the ire_phandle and ire_ihandle fields, 8176 * respectively. 8177 * 8178 * In the IRE_INTERFACE case, we have the following : 8179 * 8180 * 1) src_ipif - used for getting a source address. 8181 * 8182 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8183 * means packets using the IRE_CACHE that we will build 8184 * here will go out on dst_ill. 8185 * 8186 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8187 * to be created will only be tied to the IRE_INTERFACE 8188 * that was derived from the ire_ihandle field. 8189 * 8190 * If sire is non-NULL, it means the destination is 8191 * off-link and we will first create the IRE_CACHE for the 8192 * gateway. Next time through ip_newroute, we will create 8193 * the IRE_CACHE for the final destination as described 8194 * above. 8195 * 8196 * In both cases, after the current resolution has been 8197 * completed (or possibly initialised, in the IRE_INTERFACE 8198 * case), the loop may be re-entered to attempt the resolution 8199 * of another RTF_MULTIRT route. 8200 * 8201 * When an IRE_CACHE entry for the off-subnet destination is 8202 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8203 * for further processing in emission loops. 8204 */ 8205 save_ire = ire; 8206 switch (ire->ire_type) { 8207 case IRE_CACHE: { 8208 ire_t *ipif_ire; 8209 8210 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8211 if (gw == 0) 8212 gw = ire->ire_gateway_addr; 8213 /* 8214 * We need 3 ire's to create a new cache ire for an 8215 * off-link destination from the cache ire of the 8216 * gateway. 8217 * 8218 * 1. The prefix ire 'sire' (Note that this does 8219 * not apply to the conn_nexthop_set case) 8220 * 2. The cache ire of the gateway 'ire' 8221 * 3. The interface ire 'ipif_ire' 8222 * 8223 * We have (1) and (2). We lookup (3) below. 8224 * 8225 * If there is no interface route to the gateway, 8226 * it is a race condition, where we found the cache 8227 * but the interface route has been deleted. 8228 */ 8229 if (ip_nexthop) { 8230 ipif_ire = ire_ihandle_lookup_onlink(ire); 8231 } else { 8232 ipif_ire = 8233 ire_ihandle_lookup_offlink(ire, sire); 8234 } 8235 if (ipif_ire == NULL) { 8236 ip1dbg(("ip_newroute: " 8237 "ire_ihandle_lookup_offlink failed\n")); 8238 goto icmp_err_ret; 8239 } 8240 8241 /* 8242 * Check cached gateway IRE for any security 8243 * attributes; if found, associate the gateway 8244 * credentials group to the destination IRE. 8245 */ 8246 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8247 mutex_enter(&attrp->igsa_lock); 8248 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8249 GCGRP_REFHOLD(gcgrp); 8250 mutex_exit(&attrp->igsa_lock); 8251 } 8252 8253 /* 8254 * XXX For the source of the resolver mp, 8255 * we are using the same DL_UNITDATA_REQ 8256 * (from save_ire->ire_nce->nce_res_mp) 8257 * though the save_ire is not pointing at the same ill. 8258 * This is incorrect. We need to send it up to the 8259 * resolver to get the right res_mp. For ethernets 8260 * this may be okay (ill_type == DL_ETHER). 8261 */ 8262 8263 ire = ire_create( 8264 (uchar_t *)&dst, /* dest address */ 8265 (uchar_t *)&ip_g_all_ones, /* mask */ 8266 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8267 (uchar_t *)&gw, /* gateway address */ 8268 &save_ire->ire_max_frag, 8269 save_ire->ire_nce, /* src nce */ 8270 dst_ill->ill_rq, /* recv-from queue */ 8271 dst_ill->ill_wq, /* send-to queue */ 8272 IRE_CACHE, /* IRE type */ 8273 src_ipif, 8274 (sire != NULL) ? 8275 sire->ire_mask : 0, /* Parent mask */ 8276 (sire != NULL) ? 8277 sire->ire_phandle : 0, /* Parent handle */ 8278 ipif_ire->ire_ihandle, /* Interface handle */ 8279 (sire != NULL) ? (sire->ire_flags & 8280 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8281 (sire != NULL) ? 8282 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8283 NULL, 8284 gcgrp, 8285 ipst); 8286 8287 if (ire == NULL) { 8288 if (gcgrp != NULL) { 8289 GCGRP_REFRELE(gcgrp); 8290 gcgrp = NULL; 8291 } 8292 ire_refrele(ipif_ire); 8293 ire_refrele(save_ire); 8294 break; 8295 } 8296 8297 /* reference now held by IRE */ 8298 gcgrp = NULL; 8299 8300 ire->ire_marks |= ire_marks; 8301 8302 /* 8303 * Prevent sire and ipif_ire from getting deleted. 8304 * The newly created ire is tied to both of them via 8305 * the phandle and ihandle respectively. 8306 */ 8307 if (sire != NULL) { 8308 IRB_REFHOLD(sire->ire_bucket); 8309 /* Has it been removed already ? */ 8310 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8311 IRB_REFRELE(sire->ire_bucket); 8312 ire_refrele(ipif_ire); 8313 ire_refrele(save_ire); 8314 break; 8315 } 8316 } 8317 8318 IRB_REFHOLD(ipif_ire->ire_bucket); 8319 /* Has it been removed already ? */ 8320 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8321 IRB_REFRELE(ipif_ire->ire_bucket); 8322 if (sire != NULL) 8323 IRB_REFRELE(sire->ire_bucket); 8324 ire_refrele(ipif_ire); 8325 ire_refrele(save_ire); 8326 break; 8327 } 8328 8329 xmit_mp = first_mp; 8330 /* 8331 * In the case of multirouting, a copy 8332 * of the packet is done before its sending. 8333 * The copy is used to attempt another 8334 * route resolution, in a next loop. 8335 */ 8336 if (ire->ire_flags & RTF_MULTIRT) { 8337 copy_mp = copymsg(first_mp); 8338 if (copy_mp != NULL) { 8339 xmit_mp = copy_mp; 8340 MULTIRT_DEBUG_TAG(first_mp); 8341 } 8342 } 8343 8344 ire_add_then_send(q, ire, xmit_mp); 8345 ire_refrele(save_ire); 8346 8347 /* Assert that sire is not deleted yet. */ 8348 if (sire != NULL) { 8349 ASSERT(sire->ire_ptpn != NULL); 8350 IRB_REFRELE(sire->ire_bucket); 8351 } 8352 8353 /* Assert that ipif_ire is not deleted yet. */ 8354 ASSERT(ipif_ire->ire_ptpn != NULL); 8355 IRB_REFRELE(ipif_ire->ire_bucket); 8356 ire_refrele(ipif_ire); 8357 8358 /* 8359 * If copy_mp is not NULL, multirouting was 8360 * requested. We loop to initiate a next 8361 * route resolution attempt, starting from sire. 8362 */ 8363 if (copy_mp != NULL) { 8364 /* 8365 * Search for the next unresolved 8366 * multirt route. 8367 */ 8368 copy_mp = NULL; 8369 ipif_ire = NULL; 8370 ire = NULL; 8371 multirt_resolve_next = B_TRUE; 8372 continue; 8373 } 8374 if (sire != NULL) 8375 ire_refrele(sire); 8376 ipif_refrele(src_ipif); 8377 ill_refrele(dst_ill); 8378 return; 8379 } 8380 case IRE_IF_NORESOLVER: { 8381 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8382 dst_ill->ill_resolver_mp == NULL) { 8383 ip1dbg(("ip_newroute: dst_ill %p " 8384 "for IRE_IF_NORESOLVER ire %p has " 8385 "no ill_resolver_mp\n", 8386 (void *)dst_ill, (void *)ire)); 8387 break; 8388 } 8389 8390 /* 8391 * TSol note: We are creating the ire cache for the 8392 * destination 'dst'. If 'dst' is offlink, going 8393 * through the first hop 'gw', the security attributes 8394 * of 'dst' must be set to point to the gateway 8395 * credentials of gateway 'gw'. If 'dst' is onlink, it 8396 * is possible that 'dst' is a potential gateway that is 8397 * referenced by some route that has some security 8398 * attributes. Thus in the former case, we need to do a 8399 * gcgrp_lookup of 'gw' while in the latter case we 8400 * need to do gcgrp_lookup of 'dst' itself. 8401 */ 8402 ga.ga_af = AF_INET; 8403 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8404 &ga.ga_addr); 8405 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8406 8407 ire = ire_create( 8408 (uchar_t *)&dst, /* dest address */ 8409 (uchar_t *)&ip_g_all_ones, /* mask */ 8410 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8411 (uchar_t *)&gw, /* gateway address */ 8412 &save_ire->ire_max_frag, 8413 NULL, /* no src nce */ 8414 dst_ill->ill_rq, /* recv-from queue */ 8415 dst_ill->ill_wq, /* send-to queue */ 8416 IRE_CACHE, 8417 src_ipif, 8418 save_ire->ire_mask, /* Parent mask */ 8419 (sire != NULL) ? /* Parent handle */ 8420 sire->ire_phandle : 0, 8421 save_ire->ire_ihandle, /* Interface handle */ 8422 (sire != NULL) ? sire->ire_flags & 8423 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8424 &(save_ire->ire_uinfo), 8425 NULL, 8426 gcgrp, 8427 ipst); 8428 8429 if (ire == NULL) { 8430 if (gcgrp != NULL) { 8431 GCGRP_REFRELE(gcgrp); 8432 gcgrp = NULL; 8433 } 8434 ire_refrele(save_ire); 8435 break; 8436 } 8437 8438 /* reference now held by IRE */ 8439 gcgrp = NULL; 8440 8441 ire->ire_marks |= ire_marks; 8442 8443 /* Prevent save_ire from getting deleted */ 8444 IRB_REFHOLD(save_ire->ire_bucket); 8445 /* Has it been removed already ? */ 8446 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8447 IRB_REFRELE(save_ire->ire_bucket); 8448 ire_refrele(save_ire); 8449 break; 8450 } 8451 8452 /* 8453 * In the case of multirouting, a copy 8454 * of the packet is made before it is sent. 8455 * The copy is used in the next 8456 * loop to attempt another resolution. 8457 */ 8458 xmit_mp = first_mp; 8459 if ((sire != NULL) && 8460 (sire->ire_flags & RTF_MULTIRT)) { 8461 copy_mp = copymsg(first_mp); 8462 if (copy_mp != NULL) { 8463 xmit_mp = copy_mp; 8464 MULTIRT_DEBUG_TAG(first_mp); 8465 } 8466 } 8467 ire_add_then_send(q, ire, xmit_mp); 8468 8469 /* Assert that it is not deleted yet. */ 8470 ASSERT(save_ire->ire_ptpn != NULL); 8471 IRB_REFRELE(save_ire->ire_bucket); 8472 ire_refrele(save_ire); 8473 8474 if (copy_mp != NULL) { 8475 /* 8476 * If we found a (no)resolver, we ignore any 8477 * trailing top priority IRE_CACHE in further 8478 * loops. This ensures that we do not omit any 8479 * (no)resolver. 8480 * This IRE_CACHE, if any, will be processed 8481 * by another thread entering ip_newroute(). 8482 * IRE_CACHE entries, if any, will be processed 8483 * by another thread entering ip_newroute(), 8484 * (upon resolver response, for instance). 8485 * This aims to force parallel multirt 8486 * resolutions as soon as a packet must be sent. 8487 * In the best case, after the tx of only one 8488 * packet, all reachable routes are resolved. 8489 * Otherwise, the resolution of all RTF_MULTIRT 8490 * routes would require several emissions. 8491 */ 8492 multirt_flags &= ~MULTIRT_CACHEGW; 8493 8494 /* 8495 * Search for the next unresolved multirt 8496 * route. 8497 */ 8498 copy_mp = NULL; 8499 save_ire = NULL; 8500 ire = NULL; 8501 multirt_resolve_next = B_TRUE; 8502 continue; 8503 } 8504 8505 /* 8506 * Don't need sire anymore 8507 */ 8508 if (sire != NULL) 8509 ire_refrele(sire); 8510 8511 ipif_refrele(src_ipif); 8512 ill_refrele(dst_ill); 8513 return; 8514 } 8515 case IRE_IF_RESOLVER: 8516 /* 8517 * We can't build an IRE_CACHE yet, but at least we 8518 * found a resolver that can help. 8519 */ 8520 res_mp = dst_ill->ill_resolver_mp; 8521 if (!OK_RESOLVER_MP(res_mp)) 8522 break; 8523 8524 /* 8525 * To be at this point in the code with a non-zero gw 8526 * means that dst is reachable through a gateway that 8527 * we have never resolved. By changing dst to the gw 8528 * addr we resolve the gateway first. 8529 * When ire_add_then_send() tries to put the IP dg 8530 * to dst, it will reenter ip_newroute() at which 8531 * time we will find the IRE_CACHE for the gw and 8532 * create another IRE_CACHE in case IRE_CACHE above. 8533 */ 8534 if (gw != INADDR_ANY) { 8535 /* 8536 * The source ipif that was determined above was 8537 * relative to the destination address, not the 8538 * gateway's. If src_ipif was not taken out of 8539 * the IRE_IF_RESOLVER entry, we'll need to call 8540 * ipif_select_source() again. 8541 */ 8542 if (src_ipif != ire->ire_ipif) { 8543 ipif_refrele(src_ipif); 8544 src_ipif = ipif_select_source(dst_ill, 8545 gw, zoneid); 8546 if (src_ipif == NULL) { 8547 if (ip_debug > 2) { 8548 pr_addr_dbg( 8549 "ip_newroute: no " 8550 "src for gw %s ", 8551 AF_INET, &gw); 8552 printf("on " 8553 "interface %s\n", 8554 dst_ill->ill_name); 8555 } 8556 goto icmp_err_ret; 8557 } 8558 } 8559 save_dst = dst; 8560 dst = gw; 8561 gw = INADDR_ANY; 8562 } 8563 8564 /* 8565 * We obtain a partial IRE_CACHE which we will pass 8566 * along with the resolver query. When the response 8567 * comes back it will be there ready for us to add. 8568 * The ire_max_frag is atomically set under the 8569 * irebucket lock in ire_add_v[46]. 8570 */ 8571 8572 ire = ire_create_mp( 8573 (uchar_t *)&dst, /* dest address */ 8574 (uchar_t *)&ip_g_all_ones, /* mask */ 8575 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8576 (uchar_t *)&gw, /* gateway address */ 8577 NULL, /* ire_max_frag */ 8578 NULL, /* no src nce */ 8579 dst_ill->ill_rq, /* recv-from queue */ 8580 dst_ill->ill_wq, /* send-to queue */ 8581 IRE_CACHE, 8582 src_ipif, /* Interface ipif */ 8583 save_ire->ire_mask, /* Parent mask */ 8584 0, 8585 save_ire->ire_ihandle, /* Interface handle */ 8586 0, /* flags if any */ 8587 &(save_ire->ire_uinfo), 8588 NULL, 8589 NULL, 8590 ipst); 8591 8592 if (ire == NULL) { 8593 ire_refrele(save_ire); 8594 break; 8595 } 8596 8597 if ((sire != NULL) && 8598 (sire->ire_flags & RTF_MULTIRT)) { 8599 copy_mp = copymsg(first_mp); 8600 if (copy_mp != NULL) 8601 MULTIRT_DEBUG_TAG(copy_mp); 8602 } 8603 8604 ire->ire_marks |= ire_marks; 8605 8606 /* 8607 * Construct message chain for the resolver 8608 * of the form: 8609 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8610 * Packet could contain a IPSEC_OUT mp. 8611 * 8612 * NOTE : ire will be added later when the response 8613 * comes back from ARP. If the response does not 8614 * come back, ARP frees the packet. For this reason, 8615 * we can't REFHOLD the bucket of save_ire to prevent 8616 * deletions. We may not be able to REFRELE the bucket 8617 * if the response never comes back. Thus, before 8618 * adding the ire, ire_add_v4 will make sure that the 8619 * interface route does not get deleted. This is the 8620 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8621 * where we can always prevent deletions because of 8622 * the synchronous nature of adding IRES i.e 8623 * ire_add_then_send is called after creating the IRE. 8624 */ 8625 ASSERT(ire->ire_mp != NULL); 8626 ire->ire_mp->b_cont = first_mp; 8627 /* Have saved_mp handy, for cleanup if canput fails */ 8628 saved_mp = mp; 8629 mp = copyb(res_mp); 8630 if (mp == NULL) { 8631 /* Prepare for cleanup */ 8632 mp = saved_mp; /* pkt */ 8633 ire_delete(ire); /* ire_mp */ 8634 ire = NULL; 8635 ire_refrele(save_ire); 8636 if (copy_mp != NULL) { 8637 MULTIRT_DEBUG_UNTAG(copy_mp); 8638 freemsg(copy_mp); 8639 copy_mp = NULL; 8640 } 8641 break; 8642 } 8643 linkb(mp, ire->ire_mp); 8644 8645 /* 8646 * Fill in the source and dest addrs for the resolver. 8647 * NOTE: this depends on memory layouts imposed by 8648 * ill_init(). 8649 */ 8650 areq = (areq_t *)mp->b_rptr; 8651 addrp = (ipaddr_t *)((char *)areq + 8652 areq->areq_sender_addr_offset); 8653 *addrp = save_ire->ire_src_addr; 8654 8655 ire_refrele(save_ire); 8656 addrp = (ipaddr_t *)((char *)areq + 8657 areq->areq_target_addr_offset); 8658 *addrp = dst; 8659 /* Up to the resolver. */ 8660 if (canputnext(dst_ill->ill_rq) && 8661 !(dst_ill->ill_arp_closing)) { 8662 putnext(dst_ill->ill_rq, mp); 8663 ire = NULL; 8664 if (copy_mp != NULL) { 8665 /* 8666 * If we found a resolver, we ignore 8667 * any trailing top priority IRE_CACHE 8668 * in the further loops. This ensures 8669 * that we do not omit any resolver. 8670 * IRE_CACHE entries, if any, will be 8671 * processed next time we enter 8672 * ip_newroute(). 8673 */ 8674 multirt_flags &= ~MULTIRT_CACHEGW; 8675 /* 8676 * Search for the next unresolved 8677 * multirt route. 8678 */ 8679 first_mp = copy_mp; 8680 copy_mp = NULL; 8681 /* Prepare the next resolution loop. */ 8682 mp = first_mp; 8683 EXTRACT_PKT_MP(mp, first_mp, 8684 mctl_present); 8685 if (mctl_present) 8686 io = (ipsec_out_t *) 8687 first_mp->b_rptr; 8688 ipha = (ipha_t *)mp->b_rptr; 8689 8690 ASSERT(sire != NULL); 8691 8692 dst = save_dst; 8693 multirt_resolve_next = B_TRUE; 8694 continue; 8695 } 8696 8697 if (sire != NULL) 8698 ire_refrele(sire); 8699 8700 /* 8701 * The response will come back in ip_wput 8702 * with db_type IRE_DB_TYPE. 8703 */ 8704 ipif_refrele(src_ipif); 8705 ill_refrele(dst_ill); 8706 return; 8707 } else { 8708 /* Prepare for cleanup */ 8709 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8710 mp); 8711 mp->b_cont = NULL; 8712 freeb(mp); /* areq */ 8713 /* 8714 * this is an ire that is not added to the 8715 * cache. ire_freemblk will handle the release 8716 * of any resources associated with the ire. 8717 */ 8718 ire_delete(ire); /* ire_mp */ 8719 mp = saved_mp; /* pkt */ 8720 ire = NULL; 8721 if (copy_mp != NULL) { 8722 MULTIRT_DEBUG_UNTAG(copy_mp); 8723 freemsg(copy_mp); 8724 copy_mp = NULL; 8725 } 8726 break; 8727 } 8728 default: 8729 break; 8730 } 8731 } while (multirt_resolve_next); 8732 8733 ip1dbg(("ip_newroute: dropped\n")); 8734 /* Did this packet originate externally? */ 8735 if (mp->b_prev) { 8736 mp->b_next = NULL; 8737 mp->b_prev = NULL; 8738 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8739 } else { 8740 if (dst_ill != NULL) { 8741 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8742 } else { 8743 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8744 } 8745 } 8746 ASSERT(copy_mp == NULL); 8747 MULTIRT_DEBUG_UNTAG(first_mp); 8748 freemsg(first_mp); 8749 if (ire != NULL) 8750 ire_refrele(ire); 8751 if (sire != NULL) 8752 ire_refrele(sire); 8753 if (src_ipif != NULL) 8754 ipif_refrele(src_ipif); 8755 if (dst_ill != NULL) 8756 ill_refrele(dst_ill); 8757 return; 8758 8759 icmp_err_ret: 8760 ip1dbg(("ip_newroute: no route\n")); 8761 if (src_ipif != NULL) 8762 ipif_refrele(src_ipif); 8763 if (dst_ill != NULL) 8764 ill_refrele(dst_ill); 8765 if (sire != NULL) 8766 ire_refrele(sire); 8767 /* Did this packet originate externally? */ 8768 if (mp->b_prev) { 8769 mp->b_next = NULL; 8770 mp->b_prev = NULL; 8771 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8772 q = WR(q); 8773 } else { 8774 /* 8775 * There is no outgoing ill, so just increment the 8776 * system MIB. 8777 */ 8778 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8779 /* 8780 * Since ip_wput() isn't close to finished, we fill 8781 * in enough of the header for credible error reporting. 8782 */ 8783 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8784 /* Failed */ 8785 MULTIRT_DEBUG_UNTAG(first_mp); 8786 freemsg(first_mp); 8787 if (ire != NULL) 8788 ire_refrele(ire); 8789 return; 8790 } 8791 } 8792 8793 /* 8794 * At this point we will have ire only if RTF_BLACKHOLE 8795 * or RTF_REJECT flags are set on the IRE. It will not 8796 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8797 */ 8798 if (ire != NULL) { 8799 if (ire->ire_flags & RTF_BLACKHOLE) { 8800 ire_refrele(ire); 8801 MULTIRT_DEBUG_UNTAG(first_mp); 8802 freemsg(first_mp); 8803 return; 8804 } 8805 ire_refrele(ire); 8806 } 8807 if (ip_source_routed(ipha, ipst)) { 8808 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8809 zoneid, ipst); 8810 return; 8811 } 8812 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8813 } 8814 8815 ip_opt_info_t zero_info; 8816 8817 /* 8818 * IPv4 - 8819 * ip_newroute_ipif is called by ip_wput_multicast and 8820 * ip_rput_forward_multicast whenever we need to send 8821 * out a packet to a destination address for which we do not have specific 8822 * routing information. It is used when the packet will be sent out 8823 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8824 * socket option is set or icmp error message wants to go out on a particular 8825 * interface for a unicast packet. 8826 * 8827 * In most cases, the destination address is resolved thanks to the ipif 8828 * intrinsic resolver. However, there are some cases where the call to 8829 * ip_newroute_ipif must take into account the potential presence of 8830 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8831 * that uses the interface. This is specified through flags, 8832 * which can be a combination of: 8833 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8834 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8835 * and flags. Additionally, the packet source address has to be set to 8836 * the specified address. The caller is thus expected to set this flag 8837 * if the packet has no specific source address yet. 8838 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8839 * flag, the resulting ire will inherit the flag. All unresolved routes 8840 * to the destination must be explored in the same call to 8841 * ip_newroute_ipif(). 8842 */ 8843 static void 8844 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8845 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8846 { 8847 areq_t *areq; 8848 ire_t *ire = NULL; 8849 mblk_t *res_mp; 8850 ipaddr_t *addrp; 8851 mblk_t *first_mp; 8852 ire_t *save_ire = NULL; 8853 ipif_t *src_ipif = NULL; 8854 ushort_t ire_marks = 0; 8855 ill_t *dst_ill = NULL; 8856 ipha_t *ipha; 8857 mblk_t *saved_mp; 8858 ire_t *fire = NULL; 8859 mblk_t *copy_mp = NULL; 8860 boolean_t multirt_resolve_next; 8861 boolean_t unspec_src; 8862 ipaddr_t ipha_dst; 8863 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8864 8865 /* 8866 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8867 * here for uniformity 8868 */ 8869 ipif_refhold(ipif); 8870 8871 /* 8872 * This loop is run only once in most cases. 8873 * We loop to resolve further routes only when the destination 8874 * can be reached through multiple RTF_MULTIRT-flagged ires. 8875 */ 8876 do { 8877 if (dst_ill != NULL) { 8878 ill_refrele(dst_ill); 8879 dst_ill = NULL; 8880 } 8881 if (src_ipif != NULL) { 8882 ipif_refrele(src_ipif); 8883 src_ipif = NULL; 8884 } 8885 multirt_resolve_next = B_FALSE; 8886 8887 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8888 ipif->ipif_ill->ill_name)); 8889 8890 first_mp = mp; 8891 if (DB_TYPE(mp) == M_CTL) 8892 mp = mp->b_cont; 8893 ipha = (ipha_t *)mp->b_rptr; 8894 8895 /* 8896 * Save the packet destination address, we may need it after 8897 * the packet has been consumed. 8898 */ 8899 ipha_dst = ipha->ipha_dst; 8900 8901 /* 8902 * If the interface is a pt-pt interface we look for an 8903 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8904 * local_address and the pt-pt destination address. Otherwise 8905 * we just match the local address. 8906 * NOTE: dst could be different than ipha->ipha_dst in case 8907 * of sending igmp multicast packets over a point-to-point 8908 * connection. 8909 * Thus we must be careful enough to check ipha_dst to be a 8910 * multicast address, otherwise it will take xmit_if path for 8911 * multicast packets resulting into kernel stack overflow by 8912 * repeated calls to ip_newroute_ipif from ire_send(). 8913 */ 8914 if (CLASSD(ipha_dst) && 8915 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8916 goto err_ret; 8917 } 8918 8919 /* 8920 * We check if an IRE_OFFSUBNET for the addr that goes through 8921 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8922 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8923 * propagate its flags to the new ire. 8924 */ 8925 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8926 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8927 ip2dbg(("ip_newroute_ipif: " 8928 "ipif_lookup_multi_ire(" 8929 "ipif %p, dst %08x) = fire %p\n", 8930 (void *)ipif, ntohl(dst), (void *)fire)); 8931 } 8932 8933 /* 8934 * Note: While we pick a dst_ill we are really only 8935 * interested in the ill for load spreading. The source 8936 * ipif is determined by source address selection below. 8937 */ 8938 if (IS_IPMP(ipif->ipif_ill)) { 8939 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 8940 8941 if (CLASSD(ipha_dst)) 8942 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 8943 else 8944 dst_ill = ipmp_illgrp_hold_next_ill(illg); 8945 } else { 8946 dst_ill = ipif->ipif_ill; 8947 ill_refhold(dst_ill); 8948 } 8949 8950 if (dst_ill == NULL) { 8951 if (ip_debug > 2) { 8952 pr_addr_dbg("ip_newroute_ipif: no dst ill " 8953 "for dst %s\n", AF_INET, &dst); 8954 } 8955 goto err_ret; 8956 } 8957 8958 /* 8959 * Pick a source address preferring non-deprecated ones. 8960 * Unlike ip_newroute, we don't do any source address 8961 * selection here since for multicast it really does not help 8962 * in inbound load spreading as in the unicast case. 8963 */ 8964 if ((flags & RTF_SETSRC) && (fire != NULL) && 8965 (fire->ire_flags & RTF_SETSRC)) { 8966 /* 8967 * As requested by flags, an IRE_OFFSUBNET was looked up 8968 * on that interface. This ire has RTF_SETSRC flag, so 8969 * the source address of the packet must be changed. 8970 * Check that the ipif matching the requested source 8971 * address still exists. 8972 */ 8973 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8974 zoneid, NULL, NULL, NULL, NULL, ipst); 8975 } 8976 8977 unspec_src = (connp != NULL && connp->conn_unspec_src); 8978 8979 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 8980 (IS_IPMP(ipif->ipif_ill) || 8981 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 8982 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 8983 (connp != NULL && ipif->ipif_zoneid != zoneid && 8984 ipif->ipif_zoneid != ALL_ZONES)) && 8985 (src_ipif == NULL) && 8986 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8987 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8988 if (src_ipif == NULL) { 8989 if (ip_debug > 2) { 8990 /* ip1dbg */ 8991 pr_addr_dbg("ip_newroute_ipif: " 8992 "no src for dst %s", 8993 AF_INET, &dst); 8994 } 8995 ip1dbg((" on interface %s\n", 8996 dst_ill->ill_name)); 8997 goto err_ret; 8998 } 8999 ipif_refrele(ipif); 9000 ipif = src_ipif; 9001 ipif_refhold(ipif); 9002 } 9003 if (src_ipif == NULL) { 9004 src_ipif = ipif; 9005 ipif_refhold(src_ipif); 9006 } 9007 9008 /* 9009 * Assign a source address while we have the conn. 9010 * We can't have ip_wput_ire pick a source address when the 9011 * packet returns from arp since conn_unspec_src might be set 9012 * and we lose the conn when going through arp. 9013 */ 9014 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9015 ipha->ipha_src = src_ipif->ipif_src_addr; 9016 9017 /* 9018 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9019 * that the outgoing interface does not have an interface ire. 9020 */ 9021 if (CLASSD(ipha_dst) && (connp == NULL || 9022 connp->conn_outgoing_ill == NULL) && 9023 infop->ip_opt_ill_index == 0) { 9024 /* ipif_to_ire returns an held ire */ 9025 ire = ipif_to_ire(ipif); 9026 if (ire == NULL) 9027 goto err_ret; 9028 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9029 goto err_ret; 9030 save_ire = ire; 9031 9032 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9033 "flags %04x\n", 9034 (void *)ire, (void *)ipif, flags)); 9035 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9036 (fire->ire_flags & RTF_MULTIRT)) { 9037 /* 9038 * As requested by flags, an IRE_OFFSUBNET was 9039 * looked up on that interface. This ire has 9040 * RTF_MULTIRT flag, so the resolution loop will 9041 * be re-entered to resolve additional routes on 9042 * other interfaces. For that purpose, a copy of 9043 * the packet is performed at this point. 9044 */ 9045 fire->ire_last_used_time = lbolt; 9046 copy_mp = copymsg(first_mp); 9047 if (copy_mp) { 9048 MULTIRT_DEBUG_TAG(copy_mp); 9049 } 9050 } 9051 if ((flags & RTF_SETSRC) && (fire != NULL) && 9052 (fire->ire_flags & RTF_SETSRC)) { 9053 /* 9054 * As requested by flags, an IRE_OFFSUBET was 9055 * looked up on that interface. This ire has 9056 * RTF_SETSRC flag, so the source address of the 9057 * packet must be changed. 9058 */ 9059 ipha->ipha_src = fire->ire_src_addr; 9060 } 9061 } else { 9062 /* 9063 * The only ways we can come here are: 9064 * 1) IP_BOUND_IF socket option is set 9065 * 2) SO_DONTROUTE socket option is set 9066 * 3) IP_PKTINFO option is passed in as ancillary data. 9067 * In all cases, the new ire will not be added 9068 * into cache table. 9069 */ 9070 ASSERT(connp == NULL || connp->conn_dontroute || 9071 connp->conn_outgoing_ill != NULL || 9072 infop->ip_opt_ill_index != 0); 9073 ire_marks |= IRE_MARK_NOADD; 9074 } 9075 9076 switch (ipif->ipif_net_type) { 9077 case IRE_IF_NORESOLVER: { 9078 /* We have what we need to build an IRE_CACHE. */ 9079 9080 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9081 (dst_ill->ill_resolver_mp == NULL)) { 9082 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9083 "for IRE_IF_NORESOLVER ire %p has " 9084 "no ill_resolver_mp\n", 9085 (void *)dst_ill, (void *)ire)); 9086 break; 9087 } 9088 9089 /* 9090 * The new ire inherits the IRE_OFFSUBNET flags 9091 * and source address, if this was requested. 9092 */ 9093 ire = ire_create( 9094 (uchar_t *)&dst, /* dest address */ 9095 (uchar_t *)&ip_g_all_ones, /* mask */ 9096 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9097 NULL, /* gateway address */ 9098 &ipif->ipif_mtu, 9099 NULL, /* no src nce */ 9100 dst_ill->ill_rq, /* recv-from queue */ 9101 dst_ill->ill_wq, /* send-to queue */ 9102 IRE_CACHE, 9103 src_ipif, 9104 (save_ire != NULL ? save_ire->ire_mask : 0), 9105 (fire != NULL) ? /* Parent handle */ 9106 fire->ire_phandle : 0, 9107 (save_ire != NULL) ? /* Interface handle */ 9108 save_ire->ire_ihandle : 0, 9109 (fire != NULL) ? 9110 (fire->ire_flags & 9111 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9112 (save_ire == NULL ? &ire_uinfo_null : 9113 &save_ire->ire_uinfo), 9114 NULL, 9115 NULL, 9116 ipst); 9117 9118 if (ire == NULL) { 9119 if (save_ire != NULL) 9120 ire_refrele(save_ire); 9121 break; 9122 } 9123 9124 ire->ire_marks |= ire_marks; 9125 9126 /* 9127 * If IRE_MARK_NOADD is set then we need to convert 9128 * the max_fragp to a useable value now. This is 9129 * normally done in ire_add_v[46]. We also need to 9130 * associate the ire with an nce (normally would be 9131 * done in ip_wput_nondata()). 9132 * 9133 * Note that IRE_MARK_NOADD packets created here 9134 * do not have a non-null ire_mp pointer. The null 9135 * value of ire_bucket indicates that they were 9136 * never added. 9137 */ 9138 if (ire->ire_marks & IRE_MARK_NOADD) { 9139 uint_t max_frag; 9140 9141 max_frag = *ire->ire_max_fragp; 9142 ire->ire_max_fragp = NULL; 9143 ire->ire_max_frag = max_frag; 9144 9145 if ((ire->ire_nce = ndp_lookup_v4( 9146 ire_to_ill(ire), 9147 (ire->ire_gateway_addr != INADDR_ANY ? 9148 &ire->ire_gateway_addr : &ire->ire_addr), 9149 B_FALSE)) == NULL) { 9150 if (save_ire != NULL) 9151 ire_refrele(save_ire); 9152 break; 9153 } 9154 ASSERT(ire->ire_nce->nce_state == 9155 ND_REACHABLE); 9156 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9157 } 9158 9159 /* Prevent save_ire from getting deleted */ 9160 if (save_ire != NULL) { 9161 IRB_REFHOLD(save_ire->ire_bucket); 9162 /* Has it been removed already ? */ 9163 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9164 IRB_REFRELE(save_ire->ire_bucket); 9165 ire_refrele(save_ire); 9166 break; 9167 } 9168 } 9169 9170 ire_add_then_send(q, ire, first_mp); 9171 9172 /* Assert that save_ire is not deleted yet. */ 9173 if (save_ire != NULL) { 9174 ASSERT(save_ire->ire_ptpn != NULL); 9175 IRB_REFRELE(save_ire->ire_bucket); 9176 ire_refrele(save_ire); 9177 save_ire = NULL; 9178 } 9179 if (fire != NULL) { 9180 ire_refrele(fire); 9181 fire = NULL; 9182 } 9183 9184 /* 9185 * the resolution loop is re-entered if this 9186 * was requested through flags and if we 9187 * actually are in a multirouting case. 9188 */ 9189 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9190 boolean_t need_resolve = 9191 ire_multirt_need_resolve(ipha_dst, 9192 MBLK_GETLABEL(copy_mp), ipst); 9193 if (!need_resolve) { 9194 MULTIRT_DEBUG_UNTAG(copy_mp); 9195 freemsg(copy_mp); 9196 copy_mp = NULL; 9197 } else { 9198 /* 9199 * ipif_lookup_group() calls 9200 * ire_lookup_multi() that uses 9201 * ire_ftable_lookup() to find 9202 * an IRE_INTERFACE for the group. 9203 * In the multirt case, 9204 * ire_lookup_multi() then invokes 9205 * ire_multirt_lookup() to find 9206 * the next resolvable ire. 9207 * As a result, we obtain an new 9208 * interface, derived from the 9209 * next ire. 9210 */ 9211 ipif_refrele(ipif); 9212 ipif = ipif_lookup_group(ipha_dst, 9213 zoneid, ipst); 9214 ip2dbg(("ip_newroute_ipif: " 9215 "multirt dst %08x, ipif %p\n", 9216 htonl(dst), (void *)ipif)); 9217 if (ipif != NULL) { 9218 mp = copy_mp; 9219 copy_mp = NULL; 9220 multirt_resolve_next = B_TRUE; 9221 continue; 9222 } else { 9223 freemsg(copy_mp); 9224 } 9225 } 9226 } 9227 if (ipif != NULL) 9228 ipif_refrele(ipif); 9229 ill_refrele(dst_ill); 9230 ipif_refrele(src_ipif); 9231 return; 9232 } 9233 case IRE_IF_RESOLVER: 9234 /* 9235 * We can't build an IRE_CACHE yet, but at least 9236 * we found a resolver that can help. 9237 */ 9238 res_mp = dst_ill->ill_resolver_mp; 9239 if (!OK_RESOLVER_MP(res_mp)) 9240 break; 9241 9242 /* 9243 * We obtain a partial IRE_CACHE which we will pass 9244 * along with the resolver query. When the response 9245 * comes back it will be there ready for us to add. 9246 * The new ire inherits the IRE_OFFSUBNET flags 9247 * and source address, if this was requested. 9248 * The ire_max_frag is atomically set under the 9249 * irebucket lock in ire_add_v[46]. Only in the 9250 * case of IRE_MARK_NOADD, we set it here itself. 9251 */ 9252 ire = ire_create_mp( 9253 (uchar_t *)&dst, /* dest address */ 9254 (uchar_t *)&ip_g_all_ones, /* mask */ 9255 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9256 NULL, /* gateway address */ 9257 (ire_marks & IRE_MARK_NOADD) ? 9258 ipif->ipif_mtu : 0, /* max_frag */ 9259 NULL, /* no src nce */ 9260 dst_ill->ill_rq, /* recv-from queue */ 9261 dst_ill->ill_wq, /* send-to queue */ 9262 IRE_CACHE, 9263 src_ipif, 9264 (save_ire != NULL ? save_ire->ire_mask : 0), 9265 (fire != NULL) ? /* Parent handle */ 9266 fire->ire_phandle : 0, 9267 (save_ire != NULL) ? /* Interface handle */ 9268 save_ire->ire_ihandle : 0, 9269 (fire != NULL) ? /* flags if any */ 9270 (fire->ire_flags & 9271 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9272 (save_ire == NULL ? &ire_uinfo_null : 9273 &save_ire->ire_uinfo), 9274 NULL, 9275 NULL, 9276 ipst); 9277 9278 if (save_ire != NULL) { 9279 ire_refrele(save_ire); 9280 save_ire = NULL; 9281 } 9282 if (ire == NULL) 9283 break; 9284 9285 ire->ire_marks |= ire_marks; 9286 /* 9287 * Construct message chain for the resolver of the 9288 * form: 9289 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9290 * 9291 * NOTE : ire will be added later when the response 9292 * comes back from ARP. If the response does not 9293 * come back, ARP frees the packet. For this reason, 9294 * we can't REFHOLD the bucket of save_ire to prevent 9295 * deletions. We may not be able to REFRELE the 9296 * bucket if the response never comes back. 9297 * Thus, before adding the ire, ire_add_v4 will make 9298 * sure that the interface route does not get deleted. 9299 * This is the only case unlike ip_newroute_v6, 9300 * ip_newroute_ipif_v6 where we can always prevent 9301 * deletions because ire_add_then_send is called after 9302 * creating the IRE. 9303 * If IRE_MARK_NOADD is set, then ire_add_then_send 9304 * does not add this IRE into the IRE CACHE. 9305 */ 9306 ASSERT(ire->ire_mp != NULL); 9307 ire->ire_mp->b_cont = first_mp; 9308 /* Have saved_mp handy, for cleanup if canput fails */ 9309 saved_mp = mp; 9310 mp = copyb(res_mp); 9311 if (mp == NULL) { 9312 /* Prepare for cleanup */ 9313 mp = saved_mp; /* pkt */ 9314 ire_delete(ire); /* ire_mp */ 9315 ire = NULL; 9316 if (copy_mp != NULL) { 9317 MULTIRT_DEBUG_UNTAG(copy_mp); 9318 freemsg(copy_mp); 9319 copy_mp = NULL; 9320 } 9321 break; 9322 } 9323 linkb(mp, ire->ire_mp); 9324 9325 /* 9326 * Fill in the source and dest addrs for the resolver. 9327 * NOTE: this depends on memory layouts imposed by 9328 * ill_init(). There are corner cases above where we 9329 * might've created the IRE with an INADDR_ANY source 9330 * address (e.g., if the zeroth ipif on an underlying 9331 * ill in an IPMP group is 0.0.0.0, but another ipif 9332 * on the ill has a usable test address). If so, tell 9333 * ARP to use ipha_src as its sender address. 9334 */ 9335 areq = (areq_t *)mp->b_rptr; 9336 addrp = (ipaddr_t *)((char *)areq + 9337 areq->areq_sender_addr_offset); 9338 if (ire->ire_src_addr != INADDR_ANY) 9339 *addrp = ire->ire_src_addr; 9340 else 9341 *addrp = ipha->ipha_src; 9342 addrp = (ipaddr_t *)((char *)areq + 9343 areq->areq_target_addr_offset); 9344 *addrp = dst; 9345 /* Up to the resolver. */ 9346 if (canputnext(dst_ill->ill_rq) && 9347 !(dst_ill->ill_arp_closing)) { 9348 putnext(dst_ill->ill_rq, mp); 9349 /* 9350 * The response will come back in ip_wput 9351 * with db_type IRE_DB_TYPE. 9352 */ 9353 } else { 9354 mp->b_cont = NULL; 9355 freeb(mp); /* areq */ 9356 ire_delete(ire); /* ire_mp */ 9357 saved_mp->b_next = NULL; 9358 saved_mp->b_prev = NULL; 9359 freemsg(first_mp); /* pkt */ 9360 ip2dbg(("ip_newroute_ipif: dropped\n")); 9361 } 9362 9363 if (fire != NULL) { 9364 ire_refrele(fire); 9365 fire = NULL; 9366 } 9367 9368 /* 9369 * The resolution loop is re-entered if this was 9370 * requested through flags and we actually are 9371 * in a multirouting case. 9372 */ 9373 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9374 boolean_t need_resolve = 9375 ire_multirt_need_resolve(ipha_dst, 9376 MBLK_GETLABEL(copy_mp), ipst); 9377 if (!need_resolve) { 9378 MULTIRT_DEBUG_UNTAG(copy_mp); 9379 freemsg(copy_mp); 9380 copy_mp = NULL; 9381 } else { 9382 /* 9383 * ipif_lookup_group() calls 9384 * ire_lookup_multi() that uses 9385 * ire_ftable_lookup() to find 9386 * an IRE_INTERFACE for the group. 9387 * In the multirt case, 9388 * ire_lookup_multi() then invokes 9389 * ire_multirt_lookup() to find 9390 * the next resolvable ire. 9391 * As a result, we obtain an new 9392 * interface, derived from the 9393 * next ire. 9394 */ 9395 ipif_refrele(ipif); 9396 ipif = ipif_lookup_group(ipha_dst, 9397 zoneid, ipst); 9398 if (ipif != NULL) { 9399 mp = copy_mp; 9400 copy_mp = NULL; 9401 multirt_resolve_next = B_TRUE; 9402 continue; 9403 } else { 9404 freemsg(copy_mp); 9405 } 9406 } 9407 } 9408 if (ipif != NULL) 9409 ipif_refrele(ipif); 9410 ill_refrele(dst_ill); 9411 ipif_refrele(src_ipif); 9412 return; 9413 default: 9414 break; 9415 } 9416 } while (multirt_resolve_next); 9417 9418 err_ret: 9419 ip2dbg(("ip_newroute_ipif: dropped\n")); 9420 if (fire != NULL) 9421 ire_refrele(fire); 9422 ipif_refrele(ipif); 9423 /* Did this packet originate externally? */ 9424 if (dst_ill != NULL) 9425 ill_refrele(dst_ill); 9426 if (src_ipif != NULL) 9427 ipif_refrele(src_ipif); 9428 if (mp->b_prev || mp->b_next) { 9429 mp->b_next = NULL; 9430 mp->b_prev = NULL; 9431 } else { 9432 /* 9433 * Since ip_wput() isn't close to finished, we fill 9434 * in enough of the header for credible error reporting. 9435 */ 9436 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9437 /* Failed */ 9438 freemsg(first_mp); 9439 if (ire != NULL) 9440 ire_refrele(ire); 9441 return; 9442 } 9443 } 9444 /* 9445 * At this point we will have ire only if RTF_BLACKHOLE 9446 * or RTF_REJECT flags are set on the IRE. It will not 9447 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9448 */ 9449 if (ire != NULL) { 9450 if (ire->ire_flags & RTF_BLACKHOLE) { 9451 ire_refrele(ire); 9452 freemsg(first_mp); 9453 return; 9454 } 9455 ire_refrele(ire); 9456 } 9457 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9458 } 9459 9460 /* Name/Value Table Lookup Routine */ 9461 char * 9462 ip_nv_lookup(nv_t *nv, int value) 9463 { 9464 if (!nv) 9465 return (NULL); 9466 for (; nv->nv_name; nv++) { 9467 if (nv->nv_value == value) 9468 return (nv->nv_name); 9469 } 9470 return ("unknown"); 9471 } 9472 9473 /* 9474 * This is a module open, i.e. this is a control stream for access 9475 * to a DLPI device. We allocate an ill_t as the instance data in 9476 * this case. 9477 */ 9478 int 9479 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9480 { 9481 ill_t *ill; 9482 int err; 9483 zoneid_t zoneid; 9484 netstack_t *ns; 9485 ip_stack_t *ipst; 9486 9487 /* 9488 * Prevent unprivileged processes from pushing IP so that 9489 * they can't send raw IP. 9490 */ 9491 if (secpolicy_net_rawaccess(credp) != 0) 9492 return (EPERM); 9493 9494 ns = netstack_find_by_cred(credp); 9495 ASSERT(ns != NULL); 9496 ipst = ns->netstack_ip; 9497 ASSERT(ipst != NULL); 9498 9499 /* 9500 * For exclusive stacks we set the zoneid to zero 9501 * to make IP operate as if in the global zone. 9502 */ 9503 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9504 zoneid = GLOBAL_ZONEID; 9505 else 9506 zoneid = crgetzoneid(credp); 9507 9508 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9509 q->q_ptr = WR(q)->q_ptr = ill; 9510 ill->ill_ipst = ipst; 9511 ill->ill_zoneid = zoneid; 9512 9513 /* 9514 * ill_init initializes the ill fields and then sends down 9515 * down a DL_INFO_REQ after calling qprocson. 9516 */ 9517 err = ill_init(q, ill); 9518 if (err != 0) { 9519 mi_free(ill); 9520 netstack_rele(ipst->ips_netstack); 9521 q->q_ptr = NULL; 9522 WR(q)->q_ptr = NULL; 9523 return (err); 9524 } 9525 9526 /* ill_init initializes the ipsq marking this thread as writer */ 9527 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9528 /* Wait for the DL_INFO_ACK */ 9529 mutex_enter(&ill->ill_lock); 9530 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9531 /* 9532 * Return value of 0 indicates a pending signal. 9533 */ 9534 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9535 if (err == 0) { 9536 mutex_exit(&ill->ill_lock); 9537 (void) ip_close(q, 0); 9538 return (EINTR); 9539 } 9540 } 9541 mutex_exit(&ill->ill_lock); 9542 9543 /* 9544 * ip_rput_other could have set an error in ill_error on 9545 * receipt of M_ERROR. 9546 */ 9547 9548 err = ill->ill_error; 9549 if (err != 0) { 9550 (void) ip_close(q, 0); 9551 return (err); 9552 } 9553 9554 ill->ill_credp = credp; 9555 crhold(credp); 9556 9557 mutex_enter(&ipst->ips_ip_mi_lock); 9558 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9559 credp); 9560 mutex_exit(&ipst->ips_ip_mi_lock); 9561 if (err) { 9562 (void) ip_close(q, 0); 9563 return (err); 9564 } 9565 return (0); 9566 } 9567 9568 /* For /dev/ip aka AF_INET open */ 9569 int 9570 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9571 { 9572 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9573 } 9574 9575 /* For /dev/ip6 aka AF_INET6 open */ 9576 int 9577 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9578 { 9579 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9580 } 9581 9582 /* IP open routine. */ 9583 int 9584 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9585 boolean_t isv6) 9586 { 9587 conn_t *connp; 9588 major_t maj; 9589 zoneid_t zoneid; 9590 netstack_t *ns; 9591 ip_stack_t *ipst; 9592 9593 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9594 9595 /* Allow reopen. */ 9596 if (q->q_ptr != NULL) 9597 return (0); 9598 9599 if (sflag & MODOPEN) { 9600 /* This is a module open */ 9601 return (ip_modopen(q, devp, flag, sflag, credp)); 9602 } 9603 9604 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9605 /* 9606 * Non streams based socket looking for a stream 9607 * to access IP 9608 */ 9609 return (ip_helper_stream_setup(q, devp, flag, sflag, 9610 credp, isv6)); 9611 } 9612 9613 ns = netstack_find_by_cred(credp); 9614 ASSERT(ns != NULL); 9615 ipst = ns->netstack_ip; 9616 ASSERT(ipst != NULL); 9617 9618 /* 9619 * For exclusive stacks we set the zoneid to zero 9620 * to make IP operate as if in the global zone. 9621 */ 9622 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9623 zoneid = GLOBAL_ZONEID; 9624 else 9625 zoneid = crgetzoneid(credp); 9626 9627 /* 9628 * We are opening as a device. This is an IP client stream, and we 9629 * allocate an conn_t as the instance data. 9630 */ 9631 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9632 9633 /* 9634 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9635 * done by netstack_find_by_cred() 9636 */ 9637 netstack_rele(ipst->ips_netstack); 9638 9639 connp->conn_zoneid = zoneid; 9640 connp->conn_sqp = NULL; 9641 connp->conn_initial_sqp = NULL; 9642 connp->conn_final_sqp = NULL; 9643 9644 connp->conn_upq = q; 9645 q->q_ptr = WR(q)->q_ptr = connp; 9646 9647 if (flag & SO_SOCKSTR) 9648 connp->conn_flags |= IPCL_SOCKET; 9649 9650 /* Minor tells us which /dev entry was opened */ 9651 if (isv6) { 9652 connp->conn_flags |= IPCL_ISV6; 9653 connp->conn_af_isv6 = B_TRUE; 9654 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9655 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9656 } else { 9657 connp->conn_af_isv6 = B_FALSE; 9658 connp->conn_pkt_isv6 = B_FALSE; 9659 } 9660 9661 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9662 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9663 connp->conn_minor_arena = ip_minor_arena_la; 9664 } else { 9665 /* 9666 * Either minor numbers in the large arena were exhausted 9667 * or a non socket application is doing the open. 9668 * Try to allocate from the small arena. 9669 */ 9670 if ((connp->conn_dev = 9671 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9672 /* CONN_DEC_REF takes care of netstack_rele() */ 9673 q->q_ptr = WR(q)->q_ptr = NULL; 9674 CONN_DEC_REF(connp); 9675 return (EBUSY); 9676 } 9677 connp->conn_minor_arena = ip_minor_arena_sa; 9678 } 9679 9680 maj = getemajor(*devp); 9681 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9682 9683 /* 9684 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9685 */ 9686 connp->conn_cred = credp; 9687 9688 /* 9689 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9690 */ 9691 connp->conn_recv = ip_conn_input; 9692 9693 crhold(connp->conn_cred); 9694 9695 /* 9696 * If the caller has the process-wide flag set, then default to MAC 9697 * exempt mode. This allows read-down to unlabeled hosts. 9698 */ 9699 if (getpflags(NET_MAC_AWARE, credp) != 0) 9700 connp->conn_mac_exempt = B_TRUE; 9701 9702 connp->conn_rq = q; 9703 connp->conn_wq = WR(q); 9704 9705 /* Non-zero default values */ 9706 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9707 9708 /* 9709 * Make the conn globally visible to walkers 9710 */ 9711 ASSERT(connp->conn_ref == 1); 9712 mutex_enter(&connp->conn_lock); 9713 connp->conn_state_flags &= ~CONN_INCIPIENT; 9714 mutex_exit(&connp->conn_lock); 9715 9716 qprocson(q); 9717 9718 return (0); 9719 } 9720 9721 /* 9722 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9723 * Note that there is no race since either ip_output function works - it 9724 * is just an optimization to enter the best ip_output routine directly. 9725 */ 9726 void 9727 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9728 ip_stack_t *ipst) 9729 { 9730 if (isv6) { 9731 if (bump_mib) { 9732 BUMP_MIB(&ipst->ips_ip6_mib, 9733 ipIfStatsOutSwitchIPVersion); 9734 } 9735 connp->conn_send = ip_output_v6; 9736 connp->conn_pkt_isv6 = B_TRUE; 9737 } else { 9738 if (bump_mib) { 9739 BUMP_MIB(&ipst->ips_ip_mib, 9740 ipIfStatsOutSwitchIPVersion); 9741 } 9742 connp->conn_send = ip_output; 9743 connp->conn_pkt_isv6 = B_FALSE; 9744 } 9745 9746 } 9747 9748 /* 9749 * See if IPsec needs loading because of the options in mp. 9750 */ 9751 static boolean_t 9752 ipsec_opt_present(mblk_t *mp) 9753 { 9754 uint8_t *optcp, *next_optcp, *opt_endcp; 9755 struct opthdr *opt; 9756 struct T_opthdr *topt; 9757 int opthdr_len; 9758 t_uscalar_t optname, optlevel; 9759 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9760 ipsec_req_t *ipsr; 9761 9762 /* 9763 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9764 * return TRUE. 9765 */ 9766 9767 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9768 opt_endcp = optcp + tor->OPT_length; 9769 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9770 opthdr_len = sizeof (struct T_opthdr); 9771 } else { /* O_OPTMGMT_REQ */ 9772 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9773 opthdr_len = sizeof (struct opthdr); 9774 } 9775 for (; optcp < opt_endcp; optcp = next_optcp) { 9776 if (optcp + opthdr_len > opt_endcp) 9777 return (B_FALSE); /* Not enough option header. */ 9778 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9779 topt = (struct T_opthdr *)optcp; 9780 optlevel = topt->level; 9781 optname = topt->name; 9782 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9783 } else { 9784 opt = (struct opthdr *)optcp; 9785 optlevel = opt->level; 9786 optname = opt->name; 9787 next_optcp = optcp + opthdr_len + 9788 _TPI_ALIGN_OPT(opt->len); 9789 } 9790 if ((next_optcp < optcp) || /* wraparound pointer space */ 9791 ((next_optcp >= opt_endcp) && /* last option bad len */ 9792 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9793 return (B_FALSE); /* bad option buffer */ 9794 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9795 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9796 /* 9797 * Check to see if it's an all-bypass or all-zeroes 9798 * IPsec request. Don't bother loading IPsec if 9799 * the socket doesn't want to use it. (A good example 9800 * is a bypass request.) 9801 * 9802 * Basically, if any of the non-NEVER bits are set, 9803 * load IPsec. 9804 */ 9805 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9806 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9807 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9808 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9809 != 0) 9810 return (B_TRUE); 9811 } 9812 } 9813 return (B_FALSE); 9814 } 9815 9816 /* 9817 * If conn is is waiting for ipsec to finish loading, kick it. 9818 */ 9819 /* ARGSUSED */ 9820 static void 9821 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9822 { 9823 t_scalar_t optreq_prim; 9824 mblk_t *mp; 9825 cred_t *cr; 9826 int err = 0; 9827 9828 /* 9829 * This function is called, after ipsec loading is complete. 9830 * Since IP checks exclusively and atomically (i.e it prevents 9831 * ipsec load from completing until ip_optcom_req completes) 9832 * whether ipsec load is complete, there cannot be a race with IP 9833 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9834 */ 9835 mutex_enter(&connp->conn_lock); 9836 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9837 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9838 mp = connp->conn_ipsec_opt_mp; 9839 connp->conn_ipsec_opt_mp = NULL; 9840 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9841 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9842 mutex_exit(&connp->conn_lock); 9843 9844 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9845 9846 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9847 if (optreq_prim == T_OPTMGMT_REQ) { 9848 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9849 &ip_opt_obj, B_FALSE); 9850 } else { 9851 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9852 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9853 &ip_opt_obj, B_FALSE); 9854 } 9855 if (err != EINPROGRESS) 9856 CONN_OPER_PENDING_DONE(connp); 9857 return; 9858 } 9859 mutex_exit(&connp->conn_lock); 9860 } 9861 9862 /* 9863 * Called from the ipsec_loader thread, outside any perimeter, to tell 9864 * ip qenable any of the queues waiting for the ipsec loader to 9865 * complete. 9866 */ 9867 void 9868 ip_ipsec_load_complete(ipsec_stack_t *ipss) 9869 { 9870 netstack_t *ns = ipss->ipsec_netstack; 9871 9872 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 9873 } 9874 9875 /* 9876 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9877 * determines the grp on which it has to become exclusive, queues the mp 9878 * and IPSQ draining restarts the optmgmt 9879 */ 9880 static boolean_t 9881 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9882 { 9883 conn_t *connp = Q_TO_CONN(q); 9884 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 9885 9886 /* 9887 * Take IPsec requests and treat them special. 9888 */ 9889 if (ipsec_opt_present(mp)) { 9890 /* First check if IPsec is loaded. */ 9891 mutex_enter(&ipss->ipsec_loader_lock); 9892 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 9893 mutex_exit(&ipss->ipsec_loader_lock); 9894 return (B_FALSE); 9895 } 9896 mutex_enter(&connp->conn_lock); 9897 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9898 9899 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9900 connp->conn_ipsec_opt_mp = mp; 9901 mutex_exit(&connp->conn_lock); 9902 mutex_exit(&ipss->ipsec_loader_lock); 9903 9904 ipsec_loader_loadnow(ipss); 9905 return (B_TRUE); 9906 } 9907 return (B_FALSE); 9908 } 9909 9910 /* 9911 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9912 * all of them are copied to the conn_t. If the req is "zero", the policy is 9913 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9914 * fields. 9915 * We keep only the latest setting of the policy and thus policy setting 9916 * is not incremental/cumulative. 9917 * 9918 * Requests to set policies with multiple alternative actions will 9919 * go through a different API. 9920 */ 9921 int 9922 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9923 { 9924 uint_t ah_req = 0; 9925 uint_t esp_req = 0; 9926 uint_t se_req = 0; 9927 ipsec_selkey_t sel; 9928 ipsec_act_t *actp = NULL; 9929 uint_t nact; 9930 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9931 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9932 ipsec_policy_root_t *pr; 9933 ipsec_policy_head_t *ph; 9934 int fam; 9935 boolean_t is_pol_reset; 9936 int error = 0; 9937 netstack_t *ns = connp->conn_netstack; 9938 ip_stack_t *ipst = ns->netstack_ip; 9939 ipsec_stack_t *ipss = ns->netstack_ipsec; 9940 9941 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9942 9943 /* 9944 * The IP_SEC_OPT option does not allow variable length parameters, 9945 * hence a request cannot be NULL. 9946 */ 9947 if (req == NULL) 9948 return (EINVAL); 9949 9950 ah_req = req->ipsr_ah_req; 9951 esp_req = req->ipsr_esp_req; 9952 se_req = req->ipsr_self_encap_req; 9953 9954 /* Don't allow setting self-encap without one or more of AH/ESP. */ 9955 if (se_req != 0 && esp_req == 0 && ah_req == 0) 9956 return (EINVAL); 9957 9958 /* 9959 * Are we dealing with a request to reset the policy (i.e. 9960 * zero requests). 9961 */ 9962 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9963 (esp_req & REQ_MASK) == 0 && 9964 (se_req & REQ_MASK) == 0); 9965 9966 if (!is_pol_reset) { 9967 /* 9968 * If we couldn't load IPsec, fail with "protocol 9969 * not supported". 9970 * IPsec may not have been loaded for a request with zero 9971 * policies, so we don't fail in this case. 9972 */ 9973 mutex_enter(&ipss->ipsec_loader_lock); 9974 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9975 mutex_exit(&ipss->ipsec_loader_lock); 9976 return (EPROTONOSUPPORT); 9977 } 9978 mutex_exit(&ipss->ipsec_loader_lock); 9979 9980 /* 9981 * Test for valid requests. Invalid algorithms 9982 * need to be tested by IPsec code because new 9983 * algorithms can be added dynamically. 9984 */ 9985 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9986 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9987 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9988 return (EINVAL); 9989 } 9990 9991 /* 9992 * Only privileged users can issue these 9993 * requests. 9994 */ 9995 if (((ah_req & IPSEC_PREF_NEVER) || 9996 (esp_req & IPSEC_PREF_NEVER) || 9997 (se_req & IPSEC_PREF_NEVER)) && 9998 secpolicy_ip_config(cr, B_FALSE) != 0) { 9999 return (EPERM); 10000 } 10001 10002 /* 10003 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10004 * are mutually exclusive. 10005 */ 10006 if (((ah_req & REQ_MASK) == REQ_MASK) || 10007 ((esp_req & REQ_MASK) == REQ_MASK) || 10008 ((se_req & REQ_MASK) == REQ_MASK)) { 10009 /* Both of them are set */ 10010 return (EINVAL); 10011 } 10012 } 10013 10014 mutex_enter(&connp->conn_lock); 10015 10016 /* 10017 * If we have already cached policies in ip_bind_connected*(), don't 10018 * let them change now. We cache policies for connections 10019 * whose src,dst [addr, port] is known. 10020 */ 10021 if (connp->conn_policy_cached) { 10022 mutex_exit(&connp->conn_lock); 10023 return (EINVAL); 10024 } 10025 10026 /* 10027 * We have a zero policies, reset the connection policy if already 10028 * set. This will cause the connection to inherit the 10029 * global policy, if any. 10030 */ 10031 if (is_pol_reset) { 10032 if (connp->conn_policy != NULL) { 10033 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10034 connp->conn_policy = NULL; 10035 } 10036 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10037 connp->conn_in_enforce_policy = B_FALSE; 10038 connp->conn_out_enforce_policy = B_FALSE; 10039 mutex_exit(&connp->conn_lock); 10040 return (0); 10041 } 10042 10043 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10044 ipst->ips_netstack); 10045 if (ph == NULL) 10046 goto enomem; 10047 10048 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10049 if (actp == NULL) 10050 goto enomem; 10051 10052 /* 10053 * Always allocate IPv4 policy entries, since they can also 10054 * apply to ipv6 sockets being used in ipv4-compat mode. 10055 */ 10056 bzero(&sel, sizeof (sel)); 10057 sel.ipsl_valid = IPSL_IPV4; 10058 10059 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10060 ipst->ips_netstack); 10061 if (pin4 == NULL) 10062 goto enomem; 10063 10064 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10065 ipst->ips_netstack); 10066 if (pout4 == NULL) 10067 goto enomem; 10068 10069 if (connp->conn_af_isv6) { 10070 /* 10071 * We're looking at a v6 socket, also allocate the 10072 * v6-specific entries... 10073 */ 10074 sel.ipsl_valid = IPSL_IPV6; 10075 pin6 = ipsec_policy_create(&sel, actp, nact, 10076 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10077 if (pin6 == NULL) 10078 goto enomem; 10079 10080 pout6 = ipsec_policy_create(&sel, actp, nact, 10081 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10082 if (pout6 == NULL) 10083 goto enomem; 10084 10085 /* 10086 * .. and file them away in the right place. 10087 */ 10088 fam = IPSEC_AF_V6; 10089 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10090 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10091 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10092 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10093 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10094 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10095 } 10096 10097 ipsec_actvec_free(actp, nact); 10098 10099 /* 10100 * File the v4 policies. 10101 */ 10102 fam = IPSEC_AF_V4; 10103 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10104 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10105 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10106 10107 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10108 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10109 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10110 10111 /* 10112 * If the requests need security, set enforce_policy. 10113 * If the requests are IPSEC_PREF_NEVER, one should 10114 * still set conn_out_enforce_policy so that an ipsec_out 10115 * gets attached in ip_wput. This is needed so that 10116 * for connections that we don't cache policy in ip_bind, 10117 * if global policy matches in ip_wput_attach_policy, we 10118 * don't wrongly inherit global policy. Similarly, we need 10119 * to set conn_in_enforce_policy also so that we don't verify 10120 * policy wrongly. 10121 */ 10122 if ((ah_req & REQ_MASK) != 0 || 10123 (esp_req & REQ_MASK) != 0 || 10124 (se_req & REQ_MASK) != 0) { 10125 connp->conn_in_enforce_policy = B_TRUE; 10126 connp->conn_out_enforce_policy = B_TRUE; 10127 connp->conn_flags |= IPCL_CHECK_POLICY; 10128 } 10129 10130 mutex_exit(&connp->conn_lock); 10131 return (error); 10132 #undef REQ_MASK 10133 10134 /* 10135 * Common memory-allocation-failure exit path. 10136 */ 10137 enomem: 10138 mutex_exit(&connp->conn_lock); 10139 if (actp != NULL) 10140 ipsec_actvec_free(actp, nact); 10141 if (pin4 != NULL) 10142 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10143 if (pout4 != NULL) 10144 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10145 if (pin6 != NULL) 10146 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10147 if (pout6 != NULL) 10148 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10149 return (ENOMEM); 10150 } 10151 10152 /* 10153 * Only for options that pass in an IP addr. Currently only V4 options 10154 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10155 * So this function assumes level is IPPROTO_IP 10156 */ 10157 int 10158 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10159 mblk_t *first_mp) 10160 { 10161 ipif_t *ipif = NULL; 10162 int error; 10163 ill_t *ill; 10164 int zoneid; 10165 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10166 10167 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10168 10169 if (addr != INADDR_ANY || checkonly) { 10170 ASSERT(connp != NULL); 10171 zoneid = IPCL_ZONEID(connp); 10172 if (option == IP_NEXTHOP) { 10173 ipif = ipif_lookup_onlink_addr(addr, 10174 connp->conn_zoneid, ipst); 10175 } else { 10176 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10177 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10178 &error, ipst); 10179 } 10180 if (ipif == NULL) { 10181 if (error == EINPROGRESS) 10182 return (error); 10183 if ((option == IP_MULTICAST_IF) || 10184 (option == IP_NEXTHOP)) 10185 return (EHOSTUNREACH); 10186 else 10187 return (EINVAL); 10188 } else if (checkonly) { 10189 if (option == IP_MULTICAST_IF) { 10190 ill = ipif->ipif_ill; 10191 /* not supported by the virtual network iface */ 10192 if (IS_VNI(ill)) { 10193 ipif_refrele(ipif); 10194 return (EINVAL); 10195 } 10196 } 10197 ipif_refrele(ipif); 10198 return (0); 10199 } 10200 ill = ipif->ipif_ill; 10201 mutex_enter(&connp->conn_lock); 10202 mutex_enter(&ill->ill_lock); 10203 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10204 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10205 mutex_exit(&ill->ill_lock); 10206 mutex_exit(&connp->conn_lock); 10207 ipif_refrele(ipif); 10208 return (option == IP_MULTICAST_IF ? 10209 EHOSTUNREACH : EINVAL); 10210 } 10211 } else { 10212 mutex_enter(&connp->conn_lock); 10213 } 10214 10215 /* None of the options below are supported on the VNI */ 10216 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10217 mutex_exit(&ill->ill_lock); 10218 mutex_exit(&connp->conn_lock); 10219 ipif_refrele(ipif); 10220 return (EINVAL); 10221 } 10222 10223 switch (option) { 10224 case IP_MULTICAST_IF: 10225 connp->conn_multicast_ipif = ipif; 10226 break; 10227 case IP_NEXTHOP: 10228 connp->conn_nexthop_v4 = addr; 10229 connp->conn_nexthop_set = B_TRUE; 10230 break; 10231 } 10232 10233 if (ipif != NULL) { 10234 mutex_exit(&ill->ill_lock); 10235 mutex_exit(&connp->conn_lock); 10236 ipif_refrele(ipif); 10237 return (0); 10238 } 10239 mutex_exit(&connp->conn_lock); 10240 /* We succeded in cleared the option */ 10241 return (0); 10242 } 10243 10244 /* 10245 * For options that pass in an ifindex specifying the ill. V6 options always 10246 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10247 */ 10248 int 10249 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10250 int level, int option, mblk_t *first_mp) 10251 { 10252 ill_t *ill = NULL; 10253 int error = 0; 10254 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10255 10256 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10257 if (ifindex != 0) { 10258 ASSERT(connp != NULL); 10259 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10260 first_mp, ip_restart_optmgmt, &error, ipst); 10261 if (ill != NULL) { 10262 if (checkonly) { 10263 /* not supported by the virtual network iface */ 10264 if (IS_VNI(ill)) { 10265 ill_refrele(ill); 10266 return (EINVAL); 10267 } 10268 ill_refrele(ill); 10269 return (0); 10270 } 10271 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10272 0, NULL)) { 10273 ill_refrele(ill); 10274 ill = NULL; 10275 mutex_enter(&connp->conn_lock); 10276 goto setit; 10277 } 10278 mutex_enter(&connp->conn_lock); 10279 mutex_enter(&ill->ill_lock); 10280 if (ill->ill_state_flags & ILL_CONDEMNED) { 10281 mutex_exit(&ill->ill_lock); 10282 mutex_exit(&connp->conn_lock); 10283 ill_refrele(ill); 10284 ill = NULL; 10285 mutex_enter(&connp->conn_lock); 10286 } 10287 goto setit; 10288 } else if (error == EINPROGRESS) { 10289 return (error); 10290 } else { 10291 error = 0; 10292 } 10293 } 10294 mutex_enter(&connp->conn_lock); 10295 setit: 10296 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10297 10298 /* 10299 * The options below assume that the ILL (if any) transmits and/or 10300 * receives traffic. Neither of which is true for the virtual network 10301 * interface, so fail setting these on a VNI. 10302 */ 10303 if (IS_VNI(ill)) { 10304 ASSERT(ill != NULL); 10305 mutex_exit(&ill->ill_lock); 10306 mutex_exit(&connp->conn_lock); 10307 ill_refrele(ill); 10308 return (EINVAL); 10309 } 10310 10311 if (level == IPPROTO_IP) { 10312 switch (option) { 10313 case IP_BOUND_IF: 10314 connp->conn_incoming_ill = ill; 10315 connp->conn_outgoing_ill = ill; 10316 break; 10317 10318 case IP_MULTICAST_IF: 10319 /* 10320 * This option is an internal special. The socket 10321 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10322 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10323 * specifies an ifindex and we try first on V6 ill's. 10324 * If we don't find one, we they try using on v4 ill's 10325 * intenally and we come here. 10326 */ 10327 if (!checkonly && ill != NULL) { 10328 ipif_t *ipif; 10329 ipif = ill->ill_ipif; 10330 10331 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10332 mutex_exit(&ill->ill_lock); 10333 mutex_exit(&connp->conn_lock); 10334 ill_refrele(ill); 10335 ill = NULL; 10336 mutex_enter(&connp->conn_lock); 10337 } else { 10338 connp->conn_multicast_ipif = ipif; 10339 } 10340 } 10341 break; 10342 10343 case IP_DHCPINIT_IF: 10344 if (connp->conn_dhcpinit_ill != NULL) { 10345 /* 10346 * We've locked the conn so conn_cleanup_ill() 10347 * cannot clear conn_dhcpinit_ill -- so it's 10348 * safe to access the ill. 10349 */ 10350 ill_t *oill = connp->conn_dhcpinit_ill; 10351 10352 ASSERT(oill->ill_dhcpinit != 0); 10353 atomic_dec_32(&oill->ill_dhcpinit); 10354 connp->conn_dhcpinit_ill = NULL; 10355 } 10356 10357 if (ill != NULL) { 10358 connp->conn_dhcpinit_ill = ill; 10359 atomic_inc_32(&ill->ill_dhcpinit); 10360 } 10361 break; 10362 } 10363 } else { 10364 switch (option) { 10365 case IPV6_BOUND_IF: 10366 connp->conn_incoming_ill = ill; 10367 connp->conn_outgoing_ill = ill; 10368 break; 10369 10370 case IPV6_MULTICAST_IF: 10371 /* 10372 * Set conn_multicast_ill to be the IPv6 ill. 10373 * Set conn_multicast_ipif to be an IPv4 ipif 10374 * for ifindex to make IPv4 mapped addresses 10375 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10376 * Even if no IPv6 ill exists for the ifindex 10377 * we need to check for an IPv4 ifindex in order 10378 * for this to work with mapped addresses. In that 10379 * case only set conn_multicast_ipif. 10380 */ 10381 if (!checkonly) { 10382 if (ifindex == 0) { 10383 connp->conn_multicast_ill = NULL; 10384 connp->conn_multicast_ipif = NULL; 10385 } else if (ill != NULL) { 10386 connp->conn_multicast_ill = ill; 10387 } 10388 } 10389 break; 10390 } 10391 } 10392 10393 if (ill != NULL) { 10394 mutex_exit(&ill->ill_lock); 10395 mutex_exit(&connp->conn_lock); 10396 ill_refrele(ill); 10397 return (0); 10398 } 10399 mutex_exit(&connp->conn_lock); 10400 /* 10401 * We succeeded in clearing the option (ifindex == 0) or failed to 10402 * locate the ill and could not set the option (ifindex != 0) 10403 */ 10404 return (ifindex == 0 ? 0 : EINVAL); 10405 } 10406 10407 /* This routine sets socket options. */ 10408 /* ARGSUSED */ 10409 int 10410 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10411 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10412 void *dummy, cred_t *cr, mblk_t *first_mp) 10413 { 10414 int *i1 = (int *)invalp; 10415 conn_t *connp = Q_TO_CONN(q); 10416 int error = 0; 10417 boolean_t checkonly; 10418 ire_t *ire; 10419 boolean_t found; 10420 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10421 10422 switch (optset_context) { 10423 10424 case SETFN_OPTCOM_CHECKONLY: 10425 checkonly = B_TRUE; 10426 /* 10427 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10428 * inlen != 0 implies value supplied and 10429 * we have to "pretend" to set it. 10430 * inlen == 0 implies that there is no 10431 * value part in T_CHECK request and just validation 10432 * done elsewhere should be enough, we just return here. 10433 */ 10434 if (inlen == 0) { 10435 *outlenp = 0; 10436 return (0); 10437 } 10438 break; 10439 case SETFN_OPTCOM_NEGOTIATE: 10440 case SETFN_UD_NEGOTIATE: 10441 case SETFN_CONN_NEGOTIATE: 10442 checkonly = B_FALSE; 10443 break; 10444 default: 10445 /* 10446 * We should never get here 10447 */ 10448 *outlenp = 0; 10449 return (EINVAL); 10450 } 10451 10452 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10453 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10454 10455 /* 10456 * For fixed length options, no sanity check 10457 * of passed in length is done. It is assumed *_optcom_req() 10458 * routines do the right thing. 10459 */ 10460 10461 switch (level) { 10462 case SOL_SOCKET: 10463 /* 10464 * conn_lock protects the bitfields, and is used to 10465 * set the fields atomically. 10466 */ 10467 switch (name) { 10468 case SO_BROADCAST: 10469 if (!checkonly) { 10470 /* TODO: use value someplace? */ 10471 mutex_enter(&connp->conn_lock); 10472 connp->conn_broadcast = *i1 ? 1 : 0; 10473 mutex_exit(&connp->conn_lock); 10474 } 10475 break; /* goto sizeof (int) option return */ 10476 case SO_USELOOPBACK: 10477 if (!checkonly) { 10478 /* TODO: use value someplace? */ 10479 mutex_enter(&connp->conn_lock); 10480 connp->conn_loopback = *i1 ? 1 : 0; 10481 mutex_exit(&connp->conn_lock); 10482 } 10483 break; /* goto sizeof (int) option return */ 10484 case SO_DONTROUTE: 10485 if (!checkonly) { 10486 mutex_enter(&connp->conn_lock); 10487 connp->conn_dontroute = *i1 ? 1 : 0; 10488 mutex_exit(&connp->conn_lock); 10489 } 10490 break; /* goto sizeof (int) option return */ 10491 case SO_REUSEADDR: 10492 if (!checkonly) { 10493 mutex_enter(&connp->conn_lock); 10494 connp->conn_reuseaddr = *i1 ? 1 : 0; 10495 mutex_exit(&connp->conn_lock); 10496 } 10497 break; /* goto sizeof (int) option return */ 10498 case SO_PROTOTYPE: 10499 if (!checkonly) { 10500 mutex_enter(&connp->conn_lock); 10501 connp->conn_proto = *i1; 10502 mutex_exit(&connp->conn_lock); 10503 } 10504 break; /* goto sizeof (int) option return */ 10505 case SO_ALLZONES: 10506 if (!checkonly) { 10507 mutex_enter(&connp->conn_lock); 10508 if (IPCL_IS_BOUND(connp)) { 10509 mutex_exit(&connp->conn_lock); 10510 return (EINVAL); 10511 } 10512 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10513 mutex_exit(&connp->conn_lock); 10514 } 10515 break; /* goto sizeof (int) option return */ 10516 case SO_ANON_MLP: 10517 if (!checkonly) { 10518 mutex_enter(&connp->conn_lock); 10519 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10520 mutex_exit(&connp->conn_lock); 10521 } 10522 break; /* goto sizeof (int) option return */ 10523 case SO_MAC_EXEMPT: 10524 if (secpolicy_net_mac_aware(cr) != 0 || 10525 IPCL_IS_BOUND(connp)) 10526 return (EACCES); 10527 if (!checkonly) { 10528 mutex_enter(&connp->conn_lock); 10529 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10530 mutex_exit(&connp->conn_lock); 10531 } 10532 break; /* goto sizeof (int) option return */ 10533 default: 10534 /* 10535 * "soft" error (negative) 10536 * option not handled at this level 10537 * Note: Do not modify *outlenp 10538 */ 10539 return (-EINVAL); 10540 } 10541 break; 10542 case IPPROTO_IP: 10543 switch (name) { 10544 case IP_NEXTHOP: 10545 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10546 return (EPERM); 10547 /* FALLTHRU */ 10548 case IP_MULTICAST_IF: { 10549 ipaddr_t addr = *i1; 10550 10551 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10552 first_mp); 10553 if (error != 0) 10554 return (error); 10555 break; /* goto sizeof (int) option return */ 10556 } 10557 10558 case IP_MULTICAST_TTL: 10559 /* Recorded in transport above IP */ 10560 *outvalp = *invalp; 10561 *outlenp = sizeof (uchar_t); 10562 return (0); 10563 case IP_MULTICAST_LOOP: 10564 if (!checkonly) { 10565 mutex_enter(&connp->conn_lock); 10566 connp->conn_multicast_loop = *invalp ? 1 : 0; 10567 mutex_exit(&connp->conn_lock); 10568 } 10569 *outvalp = *invalp; 10570 *outlenp = sizeof (uchar_t); 10571 return (0); 10572 case IP_ADD_MEMBERSHIP: 10573 case MCAST_JOIN_GROUP: 10574 case IP_DROP_MEMBERSHIP: 10575 case MCAST_LEAVE_GROUP: { 10576 struct ip_mreq *mreqp; 10577 struct group_req *greqp; 10578 ire_t *ire; 10579 boolean_t done = B_FALSE; 10580 ipaddr_t group, ifaddr; 10581 struct sockaddr_in *sin; 10582 uint32_t *ifindexp; 10583 boolean_t mcast_opt = B_TRUE; 10584 mcast_record_t fmode; 10585 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10586 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10587 10588 switch (name) { 10589 case IP_ADD_MEMBERSHIP: 10590 mcast_opt = B_FALSE; 10591 /* FALLTHRU */ 10592 case MCAST_JOIN_GROUP: 10593 fmode = MODE_IS_EXCLUDE; 10594 optfn = ip_opt_add_group; 10595 break; 10596 10597 case IP_DROP_MEMBERSHIP: 10598 mcast_opt = B_FALSE; 10599 /* FALLTHRU */ 10600 case MCAST_LEAVE_GROUP: 10601 fmode = MODE_IS_INCLUDE; 10602 optfn = ip_opt_delete_group; 10603 break; 10604 } 10605 10606 if (mcast_opt) { 10607 greqp = (struct group_req *)i1; 10608 sin = (struct sockaddr_in *)&greqp->gr_group; 10609 if (sin->sin_family != AF_INET) { 10610 *outlenp = 0; 10611 return (ENOPROTOOPT); 10612 } 10613 group = (ipaddr_t)sin->sin_addr.s_addr; 10614 ifaddr = INADDR_ANY; 10615 ifindexp = &greqp->gr_interface; 10616 } else { 10617 mreqp = (struct ip_mreq *)i1; 10618 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10619 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10620 ifindexp = NULL; 10621 } 10622 10623 /* 10624 * In the multirouting case, we need to replicate 10625 * the request on all interfaces that will take part 10626 * in replication. We do so because multirouting is 10627 * reflective, thus we will probably receive multi- 10628 * casts on those interfaces. 10629 * The ip_multirt_apply_membership() succeeds if the 10630 * operation succeeds on at least one interface. 10631 */ 10632 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10633 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10634 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10635 if (ire != NULL) { 10636 if (ire->ire_flags & RTF_MULTIRT) { 10637 error = ip_multirt_apply_membership( 10638 optfn, ire, connp, checkonly, group, 10639 fmode, INADDR_ANY, first_mp); 10640 done = B_TRUE; 10641 } 10642 ire_refrele(ire); 10643 } 10644 if (!done) { 10645 error = optfn(connp, checkonly, group, ifaddr, 10646 ifindexp, fmode, INADDR_ANY, first_mp); 10647 } 10648 if (error) { 10649 /* 10650 * EINPROGRESS is a soft error, needs retry 10651 * so don't make *outlenp zero. 10652 */ 10653 if (error != EINPROGRESS) 10654 *outlenp = 0; 10655 return (error); 10656 } 10657 /* OK return - copy input buffer into output buffer */ 10658 if (invalp != outvalp) { 10659 /* don't trust bcopy for identical src/dst */ 10660 bcopy(invalp, outvalp, inlen); 10661 } 10662 *outlenp = inlen; 10663 return (0); 10664 } 10665 case IP_BLOCK_SOURCE: 10666 case IP_UNBLOCK_SOURCE: 10667 case IP_ADD_SOURCE_MEMBERSHIP: 10668 case IP_DROP_SOURCE_MEMBERSHIP: 10669 case MCAST_BLOCK_SOURCE: 10670 case MCAST_UNBLOCK_SOURCE: 10671 case MCAST_JOIN_SOURCE_GROUP: 10672 case MCAST_LEAVE_SOURCE_GROUP: { 10673 struct ip_mreq_source *imreqp; 10674 struct group_source_req *gsreqp; 10675 in_addr_t grp, src, ifaddr = INADDR_ANY; 10676 uint32_t ifindex = 0; 10677 mcast_record_t fmode; 10678 struct sockaddr_in *sin; 10679 ire_t *ire; 10680 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10681 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10682 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10683 10684 switch (name) { 10685 case IP_BLOCK_SOURCE: 10686 mcast_opt = B_FALSE; 10687 /* FALLTHRU */ 10688 case MCAST_BLOCK_SOURCE: 10689 fmode = MODE_IS_EXCLUDE; 10690 optfn = ip_opt_add_group; 10691 break; 10692 10693 case IP_UNBLOCK_SOURCE: 10694 mcast_opt = B_FALSE; 10695 /* FALLTHRU */ 10696 case MCAST_UNBLOCK_SOURCE: 10697 fmode = MODE_IS_EXCLUDE; 10698 optfn = ip_opt_delete_group; 10699 break; 10700 10701 case IP_ADD_SOURCE_MEMBERSHIP: 10702 mcast_opt = B_FALSE; 10703 /* FALLTHRU */ 10704 case MCAST_JOIN_SOURCE_GROUP: 10705 fmode = MODE_IS_INCLUDE; 10706 optfn = ip_opt_add_group; 10707 break; 10708 10709 case IP_DROP_SOURCE_MEMBERSHIP: 10710 mcast_opt = B_FALSE; 10711 /* FALLTHRU */ 10712 case MCAST_LEAVE_SOURCE_GROUP: 10713 fmode = MODE_IS_INCLUDE; 10714 optfn = ip_opt_delete_group; 10715 break; 10716 } 10717 10718 if (mcast_opt) { 10719 gsreqp = (struct group_source_req *)i1; 10720 if (gsreqp->gsr_group.ss_family != AF_INET) { 10721 *outlenp = 0; 10722 return (ENOPROTOOPT); 10723 } 10724 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10725 grp = (ipaddr_t)sin->sin_addr.s_addr; 10726 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10727 src = (ipaddr_t)sin->sin_addr.s_addr; 10728 ifindex = gsreqp->gsr_interface; 10729 } else { 10730 imreqp = (struct ip_mreq_source *)i1; 10731 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10732 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10733 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10734 } 10735 10736 /* 10737 * In the multirouting case, we need to replicate 10738 * the request as noted in the mcast cases above. 10739 */ 10740 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10741 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10742 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10743 if (ire != NULL) { 10744 if (ire->ire_flags & RTF_MULTIRT) { 10745 error = ip_multirt_apply_membership( 10746 optfn, ire, connp, checkonly, grp, 10747 fmode, src, first_mp); 10748 done = B_TRUE; 10749 } 10750 ire_refrele(ire); 10751 } 10752 if (!done) { 10753 error = optfn(connp, checkonly, grp, ifaddr, 10754 &ifindex, fmode, src, first_mp); 10755 } 10756 if (error != 0) { 10757 /* 10758 * EINPROGRESS is a soft error, needs retry 10759 * so don't make *outlenp zero. 10760 */ 10761 if (error != EINPROGRESS) 10762 *outlenp = 0; 10763 return (error); 10764 } 10765 /* OK return - copy input buffer into output buffer */ 10766 if (invalp != outvalp) { 10767 bcopy(invalp, outvalp, inlen); 10768 } 10769 *outlenp = inlen; 10770 return (0); 10771 } 10772 case IP_SEC_OPT: 10773 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10774 if (error != 0) { 10775 *outlenp = 0; 10776 return (error); 10777 } 10778 break; 10779 case IP_HDRINCL: 10780 case IP_OPTIONS: 10781 case T_IP_OPTIONS: 10782 case IP_TOS: 10783 case T_IP_TOS: 10784 case IP_TTL: 10785 case IP_RECVDSTADDR: 10786 case IP_RECVOPTS: 10787 /* OK return - copy input buffer into output buffer */ 10788 if (invalp != outvalp) { 10789 /* don't trust bcopy for identical src/dst */ 10790 bcopy(invalp, outvalp, inlen); 10791 } 10792 *outlenp = inlen; 10793 return (0); 10794 case IP_RECVIF: 10795 /* Retrieve the inbound interface index */ 10796 if (!checkonly) { 10797 mutex_enter(&connp->conn_lock); 10798 connp->conn_recvif = *i1 ? 1 : 0; 10799 mutex_exit(&connp->conn_lock); 10800 } 10801 break; /* goto sizeof (int) option return */ 10802 case IP_RECVPKTINFO: 10803 if (!checkonly) { 10804 mutex_enter(&connp->conn_lock); 10805 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10806 mutex_exit(&connp->conn_lock); 10807 } 10808 break; /* goto sizeof (int) option return */ 10809 case IP_RECVSLLA: 10810 /* Retrieve the source link layer address */ 10811 if (!checkonly) { 10812 mutex_enter(&connp->conn_lock); 10813 connp->conn_recvslla = *i1 ? 1 : 0; 10814 mutex_exit(&connp->conn_lock); 10815 } 10816 break; /* goto sizeof (int) option return */ 10817 case MRT_INIT: 10818 case MRT_DONE: 10819 case MRT_ADD_VIF: 10820 case MRT_DEL_VIF: 10821 case MRT_ADD_MFC: 10822 case MRT_DEL_MFC: 10823 case MRT_ASSERT: 10824 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10825 *outlenp = 0; 10826 return (error); 10827 } 10828 error = ip_mrouter_set((int)name, q, checkonly, 10829 (uchar_t *)invalp, inlen, first_mp); 10830 if (error) { 10831 *outlenp = 0; 10832 return (error); 10833 } 10834 /* OK return - copy input buffer into output buffer */ 10835 if (invalp != outvalp) { 10836 /* don't trust bcopy for identical src/dst */ 10837 bcopy(invalp, outvalp, inlen); 10838 } 10839 *outlenp = inlen; 10840 return (0); 10841 case IP_BOUND_IF: 10842 case IP_DHCPINIT_IF: 10843 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10844 level, name, first_mp); 10845 if (error != 0) 10846 return (error); 10847 break; /* goto sizeof (int) option return */ 10848 10849 case IP_UNSPEC_SRC: 10850 /* Allow sending with a zero source address */ 10851 if (!checkonly) { 10852 mutex_enter(&connp->conn_lock); 10853 connp->conn_unspec_src = *i1 ? 1 : 0; 10854 mutex_exit(&connp->conn_lock); 10855 } 10856 break; /* goto sizeof (int) option return */ 10857 default: 10858 /* 10859 * "soft" error (negative) 10860 * option not handled at this level 10861 * Note: Do not modify *outlenp 10862 */ 10863 return (-EINVAL); 10864 } 10865 break; 10866 case IPPROTO_IPV6: 10867 switch (name) { 10868 case IPV6_BOUND_IF: 10869 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10870 level, name, first_mp); 10871 if (error != 0) 10872 return (error); 10873 break; /* goto sizeof (int) option return */ 10874 10875 case IPV6_MULTICAST_IF: 10876 /* 10877 * The only possible errors are EINPROGRESS and 10878 * EINVAL. EINPROGRESS will be restarted and is not 10879 * a hard error. We call this option on both V4 and V6 10880 * If both return EINVAL, then this call returns 10881 * EINVAL. If at least one of them succeeds we 10882 * return success. 10883 */ 10884 found = B_FALSE; 10885 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10886 level, name, first_mp); 10887 if (error == EINPROGRESS) 10888 return (error); 10889 if (error == 0) 10890 found = B_TRUE; 10891 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10892 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10893 if (error == 0) 10894 found = B_TRUE; 10895 if (!found) 10896 return (error); 10897 break; /* goto sizeof (int) option return */ 10898 10899 case IPV6_MULTICAST_HOPS: 10900 /* Recorded in transport above IP */ 10901 break; /* goto sizeof (int) option return */ 10902 case IPV6_MULTICAST_LOOP: 10903 if (!checkonly) { 10904 mutex_enter(&connp->conn_lock); 10905 connp->conn_multicast_loop = *i1; 10906 mutex_exit(&connp->conn_lock); 10907 } 10908 break; /* goto sizeof (int) option return */ 10909 case IPV6_JOIN_GROUP: 10910 case MCAST_JOIN_GROUP: 10911 case IPV6_LEAVE_GROUP: 10912 case MCAST_LEAVE_GROUP: { 10913 struct ipv6_mreq *ip_mreqp; 10914 struct group_req *greqp; 10915 ire_t *ire; 10916 boolean_t done = B_FALSE; 10917 in6_addr_t groupv6; 10918 uint32_t ifindex; 10919 boolean_t mcast_opt = B_TRUE; 10920 mcast_record_t fmode; 10921 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10922 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10923 10924 switch (name) { 10925 case IPV6_JOIN_GROUP: 10926 mcast_opt = B_FALSE; 10927 /* FALLTHRU */ 10928 case MCAST_JOIN_GROUP: 10929 fmode = MODE_IS_EXCLUDE; 10930 optfn = ip_opt_add_group_v6; 10931 break; 10932 10933 case IPV6_LEAVE_GROUP: 10934 mcast_opt = B_FALSE; 10935 /* FALLTHRU */ 10936 case MCAST_LEAVE_GROUP: 10937 fmode = MODE_IS_INCLUDE; 10938 optfn = ip_opt_delete_group_v6; 10939 break; 10940 } 10941 10942 if (mcast_opt) { 10943 struct sockaddr_in *sin; 10944 struct sockaddr_in6 *sin6; 10945 greqp = (struct group_req *)i1; 10946 if (greqp->gr_group.ss_family == AF_INET) { 10947 sin = (struct sockaddr_in *) 10948 &(greqp->gr_group); 10949 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10950 &groupv6); 10951 } else { 10952 sin6 = (struct sockaddr_in6 *) 10953 &(greqp->gr_group); 10954 groupv6 = sin6->sin6_addr; 10955 } 10956 ifindex = greqp->gr_interface; 10957 } else { 10958 ip_mreqp = (struct ipv6_mreq *)i1; 10959 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10960 ifindex = ip_mreqp->ipv6mr_interface; 10961 } 10962 /* 10963 * In the multirouting case, we need to replicate 10964 * the request on all interfaces that will take part 10965 * in replication. We do so because multirouting is 10966 * reflective, thus we will probably receive multi- 10967 * casts on those interfaces. 10968 * The ip_multirt_apply_membership_v6() succeeds if 10969 * the operation succeeds on at least one interface. 10970 */ 10971 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10972 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10973 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10974 if (ire != NULL) { 10975 if (ire->ire_flags & RTF_MULTIRT) { 10976 error = ip_multirt_apply_membership_v6( 10977 optfn, ire, connp, checkonly, 10978 &groupv6, fmode, &ipv6_all_zeros, 10979 first_mp); 10980 done = B_TRUE; 10981 } 10982 ire_refrele(ire); 10983 } 10984 if (!done) { 10985 error = optfn(connp, checkonly, &groupv6, 10986 ifindex, fmode, &ipv6_all_zeros, first_mp); 10987 } 10988 if (error) { 10989 /* 10990 * EINPROGRESS is a soft error, needs retry 10991 * so don't make *outlenp zero. 10992 */ 10993 if (error != EINPROGRESS) 10994 *outlenp = 0; 10995 return (error); 10996 } 10997 /* OK return - copy input buffer into output buffer */ 10998 if (invalp != outvalp) { 10999 /* don't trust bcopy for identical src/dst */ 11000 bcopy(invalp, outvalp, inlen); 11001 } 11002 *outlenp = inlen; 11003 return (0); 11004 } 11005 case MCAST_BLOCK_SOURCE: 11006 case MCAST_UNBLOCK_SOURCE: 11007 case MCAST_JOIN_SOURCE_GROUP: 11008 case MCAST_LEAVE_SOURCE_GROUP: { 11009 struct group_source_req *gsreqp; 11010 in6_addr_t v6grp, v6src; 11011 uint32_t ifindex; 11012 mcast_record_t fmode; 11013 ire_t *ire; 11014 boolean_t done = B_FALSE; 11015 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11016 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11017 11018 switch (name) { 11019 case MCAST_BLOCK_SOURCE: 11020 fmode = MODE_IS_EXCLUDE; 11021 optfn = ip_opt_add_group_v6; 11022 break; 11023 case MCAST_UNBLOCK_SOURCE: 11024 fmode = MODE_IS_EXCLUDE; 11025 optfn = ip_opt_delete_group_v6; 11026 break; 11027 case MCAST_JOIN_SOURCE_GROUP: 11028 fmode = MODE_IS_INCLUDE; 11029 optfn = ip_opt_add_group_v6; 11030 break; 11031 case MCAST_LEAVE_SOURCE_GROUP: 11032 fmode = MODE_IS_INCLUDE; 11033 optfn = ip_opt_delete_group_v6; 11034 break; 11035 } 11036 11037 gsreqp = (struct group_source_req *)i1; 11038 ifindex = gsreqp->gsr_interface; 11039 if (gsreqp->gsr_group.ss_family == AF_INET) { 11040 struct sockaddr_in *s; 11041 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11042 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11043 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11044 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11045 } else { 11046 struct sockaddr_in6 *s6; 11047 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11048 v6grp = s6->sin6_addr; 11049 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11050 v6src = s6->sin6_addr; 11051 } 11052 11053 /* 11054 * In the multirouting case, we need to replicate 11055 * the request as noted in the mcast cases above. 11056 */ 11057 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11058 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11059 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11060 if (ire != NULL) { 11061 if (ire->ire_flags & RTF_MULTIRT) { 11062 error = ip_multirt_apply_membership_v6( 11063 optfn, ire, connp, checkonly, 11064 &v6grp, fmode, &v6src, first_mp); 11065 done = B_TRUE; 11066 } 11067 ire_refrele(ire); 11068 } 11069 if (!done) { 11070 error = optfn(connp, checkonly, &v6grp, 11071 ifindex, fmode, &v6src, first_mp); 11072 } 11073 if (error != 0) { 11074 /* 11075 * EINPROGRESS is a soft error, needs retry 11076 * so don't make *outlenp zero. 11077 */ 11078 if (error != EINPROGRESS) 11079 *outlenp = 0; 11080 return (error); 11081 } 11082 /* OK return - copy input buffer into output buffer */ 11083 if (invalp != outvalp) { 11084 bcopy(invalp, outvalp, inlen); 11085 } 11086 *outlenp = inlen; 11087 return (0); 11088 } 11089 case IPV6_UNICAST_HOPS: 11090 /* Recorded in transport above IP */ 11091 break; /* goto sizeof (int) option return */ 11092 case IPV6_UNSPEC_SRC: 11093 /* Allow sending with a zero source address */ 11094 if (!checkonly) { 11095 mutex_enter(&connp->conn_lock); 11096 connp->conn_unspec_src = *i1 ? 1 : 0; 11097 mutex_exit(&connp->conn_lock); 11098 } 11099 break; /* goto sizeof (int) option return */ 11100 case IPV6_RECVPKTINFO: 11101 if (!checkonly) { 11102 mutex_enter(&connp->conn_lock); 11103 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11104 mutex_exit(&connp->conn_lock); 11105 } 11106 break; /* goto sizeof (int) option return */ 11107 case IPV6_RECVTCLASS: 11108 if (!checkonly) { 11109 if (*i1 < 0 || *i1 > 1) { 11110 return (EINVAL); 11111 } 11112 mutex_enter(&connp->conn_lock); 11113 connp->conn_ipv6_recvtclass = *i1; 11114 mutex_exit(&connp->conn_lock); 11115 } 11116 break; 11117 case IPV6_RECVPATHMTU: 11118 if (!checkonly) { 11119 if (*i1 < 0 || *i1 > 1) { 11120 return (EINVAL); 11121 } 11122 mutex_enter(&connp->conn_lock); 11123 connp->conn_ipv6_recvpathmtu = *i1; 11124 mutex_exit(&connp->conn_lock); 11125 } 11126 break; 11127 case IPV6_RECVHOPLIMIT: 11128 if (!checkonly) { 11129 mutex_enter(&connp->conn_lock); 11130 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11131 mutex_exit(&connp->conn_lock); 11132 } 11133 break; /* goto sizeof (int) option return */ 11134 case IPV6_RECVHOPOPTS: 11135 if (!checkonly) { 11136 mutex_enter(&connp->conn_lock); 11137 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11138 mutex_exit(&connp->conn_lock); 11139 } 11140 break; /* goto sizeof (int) option return */ 11141 case IPV6_RECVDSTOPTS: 11142 if (!checkonly) { 11143 mutex_enter(&connp->conn_lock); 11144 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11145 mutex_exit(&connp->conn_lock); 11146 } 11147 break; /* goto sizeof (int) option return */ 11148 case IPV6_RECVRTHDR: 11149 if (!checkonly) { 11150 mutex_enter(&connp->conn_lock); 11151 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11152 mutex_exit(&connp->conn_lock); 11153 } 11154 break; /* goto sizeof (int) option return */ 11155 case IPV6_RECVRTHDRDSTOPTS: 11156 if (!checkonly) { 11157 mutex_enter(&connp->conn_lock); 11158 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11159 mutex_exit(&connp->conn_lock); 11160 } 11161 break; /* goto sizeof (int) option return */ 11162 case IPV6_PKTINFO: 11163 if (inlen == 0) 11164 return (-EINVAL); /* clearing option */ 11165 error = ip6_set_pktinfo(cr, connp, 11166 (struct in6_pktinfo *)invalp); 11167 if (error != 0) 11168 *outlenp = 0; 11169 else 11170 *outlenp = inlen; 11171 return (error); 11172 case IPV6_NEXTHOP: { 11173 struct sockaddr_in6 *sin6; 11174 11175 /* Verify that the nexthop is reachable */ 11176 if (inlen == 0) 11177 return (-EINVAL); /* clearing option */ 11178 11179 sin6 = (struct sockaddr_in6 *)invalp; 11180 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11181 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11182 NULL, MATCH_IRE_DEFAULT, ipst); 11183 11184 if (ire == NULL) { 11185 *outlenp = 0; 11186 return (EHOSTUNREACH); 11187 } 11188 ire_refrele(ire); 11189 return (-EINVAL); 11190 } 11191 case IPV6_SEC_OPT: 11192 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11193 if (error != 0) { 11194 *outlenp = 0; 11195 return (error); 11196 } 11197 break; 11198 case IPV6_SRC_PREFERENCES: { 11199 /* 11200 * This is implemented strictly in the ip module 11201 * (here and in tcp_opt_*() to accomodate tcp 11202 * sockets). Modules above ip pass this option 11203 * down here since ip is the only one that needs to 11204 * be aware of source address preferences. 11205 * 11206 * This socket option only affects connected 11207 * sockets that haven't already bound to a specific 11208 * IPv6 address. In other words, sockets that 11209 * don't call bind() with an address other than the 11210 * unspecified address and that call connect(). 11211 * ip_bind_connected_v6() passes these preferences 11212 * to the ipif_select_source_v6() function. 11213 */ 11214 if (inlen != sizeof (uint32_t)) 11215 return (EINVAL); 11216 error = ip6_set_src_preferences(connp, 11217 *(uint32_t *)invalp); 11218 if (error != 0) { 11219 *outlenp = 0; 11220 return (error); 11221 } else { 11222 *outlenp = sizeof (uint32_t); 11223 } 11224 break; 11225 } 11226 case IPV6_V6ONLY: 11227 if (*i1 < 0 || *i1 > 1) { 11228 return (EINVAL); 11229 } 11230 mutex_enter(&connp->conn_lock); 11231 connp->conn_ipv6_v6only = *i1; 11232 mutex_exit(&connp->conn_lock); 11233 break; 11234 default: 11235 return (-EINVAL); 11236 } 11237 break; 11238 default: 11239 /* 11240 * "soft" error (negative) 11241 * option not handled at this level 11242 * Note: Do not modify *outlenp 11243 */ 11244 return (-EINVAL); 11245 } 11246 /* 11247 * Common case of return from an option that is sizeof (int) 11248 */ 11249 *(int *)outvalp = *i1; 11250 *outlenp = sizeof (int); 11251 return (0); 11252 } 11253 11254 /* 11255 * This routine gets default values of certain options whose default 11256 * values are maintained by protocol specific code 11257 */ 11258 /* ARGSUSED */ 11259 int 11260 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11261 { 11262 int *i1 = (int *)ptr; 11263 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11264 11265 switch (level) { 11266 case IPPROTO_IP: 11267 switch (name) { 11268 case IP_MULTICAST_TTL: 11269 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11270 return (sizeof (uchar_t)); 11271 case IP_MULTICAST_LOOP: 11272 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11273 return (sizeof (uchar_t)); 11274 default: 11275 return (-1); 11276 } 11277 case IPPROTO_IPV6: 11278 switch (name) { 11279 case IPV6_UNICAST_HOPS: 11280 *i1 = ipst->ips_ipv6_def_hops; 11281 return (sizeof (int)); 11282 case IPV6_MULTICAST_HOPS: 11283 *i1 = IP_DEFAULT_MULTICAST_TTL; 11284 return (sizeof (int)); 11285 case IPV6_MULTICAST_LOOP: 11286 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11287 return (sizeof (int)); 11288 case IPV6_V6ONLY: 11289 *i1 = 1; 11290 return (sizeof (int)); 11291 default: 11292 return (-1); 11293 } 11294 default: 11295 return (-1); 11296 } 11297 /* NOTREACHED */ 11298 } 11299 11300 /* 11301 * Given a destination address and a pointer to where to put the information 11302 * this routine fills in the mtuinfo. 11303 */ 11304 int 11305 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11306 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11307 { 11308 ire_t *ire; 11309 ip_stack_t *ipst = ns->netstack_ip; 11310 11311 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11312 return (-1); 11313 11314 bzero(mtuinfo, sizeof (*mtuinfo)); 11315 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11316 mtuinfo->ip6m_addr.sin6_port = port; 11317 mtuinfo->ip6m_addr.sin6_addr = *in6; 11318 11319 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11320 if (ire != NULL) { 11321 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11322 ire_refrele(ire); 11323 } else { 11324 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11325 } 11326 return (sizeof (struct ip6_mtuinfo)); 11327 } 11328 11329 /* 11330 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11331 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11332 * isn't. This doesn't matter as the error checking is done properly for the 11333 * other MRT options coming in through ip_opt_set. 11334 */ 11335 int 11336 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11337 { 11338 conn_t *connp = Q_TO_CONN(q); 11339 ipsec_req_t *req = (ipsec_req_t *)ptr; 11340 11341 switch (level) { 11342 case IPPROTO_IP: 11343 switch (name) { 11344 case MRT_VERSION: 11345 case MRT_ASSERT: 11346 (void) ip_mrouter_get(name, q, ptr); 11347 return (sizeof (int)); 11348 case IP_SEC_OPT: 11349 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11350 case IP_NEXTHOP: 11351 if (connp->conn_nexthop_set) { 11352 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11353 return (sizeof (ipaddr_t)); 11354 } else 11355 return (0); 11356 case IP_RECVPKTINFO: 11357 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11358 return (sizeof (int)); 11359 default: 11360 break; 11361 } 11362 break; 11363 case IPPROTO_IPV6: 11364 switch (name) { 11365 case IPV6_SEC_OPT: 11366 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11367 case IPV6_SRC_PREFERENCES: { 11368 return (ip6_get_src_preferences(connp, 11369 (uint32_t *)ptr)); 11370 } 11371 case IPV6_V6ONLY: 11372 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11373 return (sizeof (int)); 11374 case IPV6_PATHMTU: 11375 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11376 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11377 default: 11378 break; 11379 } 11380 break; 11381 default: 11382 break; 11383 } 11384 return (-1); 11385 } 11386 /* Named Dispatch routine to get a current value out of our parameter table. */ 11387 /* ARGSUSED */ 11388 static int 11389 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11390 { 11391 ipparam_t *ippa = (ipparam_t *)cp; 11392 11393 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11394 return (0); 11395 } 11396 11397 /* ARGSUSED */ 11398 static int 11399 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11400 { 11401 11402 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11403 return (0); 11404 } 11405 11406 /* 11407 * Set ip{,6}_forwarding values. This means walking through all of the 11408 * ill's and toggling their forwarding values. 11409 */ 11410 /* ARGSUSED */ 11411 static int 11412 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11413 { 11414 long new_value; 11415 int *forwarding_value = (int *)cp; 11416 ill_t *ill; 11417 boolean_t isv6; 11418 ill_walk_context_t ctx; 11419 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11420 11421 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11422 11423 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11424 new_value < 0 || new_value > 1) { 11425 return (EINVAL); 11426 } 11427 11428 *forwarding_value = new_value; 11429 11430 /* 11431 * Regardless of the current value of ip_forwarding, set all per-ill 11432 * values of ip_forwarding to the value being set. 11433 * 11434 * Bring all the ill's up to date with the new global value. 11435 */ 11436 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11437 11438 if (isv6) 11439 ill = ILL_START_WALK_V6(&ctx, ipst); 11440 else 11441 ill = ILL_START_WALK_V4(&ctx, ipst); 11442 11443 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11444 (void) ill_forward_set(ill, new_value != 0); 11445 11446 rw_exit(&ipst->ips_ill_g_lock); 11447 return (0); 11448 } 11449 11450 /* 11451 * Walk through the param array specified registering each element with the 11452 * Named Dispatch handler. This is called only during init. So it is ok 11453 * not to acquire any locks 11454 */ 11455 static boolean_t 11456 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11457 ipndp_t *ipnd, size_t ipnd_cnt) 11458 { 11459 for (; ippa_cnt-- > 0; ippa++) { 11460 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11461 if (!nd_load(ndp, ippa->ip_param_name, 11462 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11463 nd_free(ndp); 11464 return (B_FALSE); 11465 } 11466 } 11467 } 11468 11469 for (; ipnd_cnt-- > 0; ipnd++) { 11470 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11471 if (!nd_load(ndp, ipnd->ip_ndp_name, 11472 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11473 ipnd->ip_ndp_data)) { 11474 nd_free(ndp); 11475 return (B_FALSE); 11476 } 11477 } 11478 } 11479 11480 return (B_TRUE); 11481 } 11482 11483 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11484 /* ARGSUSED */ 11485 static int 11486 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11487 { 11488 long new_value; 11489 ipparam_t *ippa = (ipparam_t *)cp; 11490 11491 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11492 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11493 return (EINVAL); 11494 } 11495 ippa->ip_param_value = new_value; 11496 return (0); 11497 } 11498 11499 /* 11500 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11501 * When an ipf is passed here for the first time, if 11502 * we already have in-order fragments on the queue, we convert from the fast- 11503 * path reassembly scheme to the hard-case scheme. From then on, additional 11504 * fragments are reassembled here. We keep track of the start and end offsets 11505 * of each piece, and the number of holes in the chain. When the hole count 11506 * goes to zero, we are done! 11507 * 11508 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11509 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11510 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11511 * after the call to ip_reassemble(). 11512 */ 11513 int 11514 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11515 size_t msg_len) 11516 { 11517 uint_t end; 11518 mblk_t *next_mp; 11519 mblk_t *mp1; 11520 uint_t offset; 11521 boolean_t incr_dups = B_TRUE; 11522 boolean_t offset_zero_seen = B_FALSE; 11523 boolean_t pkt_boundary_checked = B_FALSE; 11524 11525 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11526 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11527 11528 /* Add in byte count */ 11529 ipf->ipf_count += msg_len; 11530 if (ipf->ipf_end) { 11531 /* 11532 * We were part way through in-order reassembly, but now there 11533 * is a hole. We walk through messages already queued, and 11534 * mark them for hard case reassembly. We know that up till 11535 * now they were in order starting from offset zero. 11536 */ 11537 offset = 0; 11538 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11539 IP_REASS_SET_START(mp1, offset); 11540 if (offset == 0) { 11541 ASSERT(ipf->ipf_nf_hdr_len != 0); 11542 offset = -ipf->ipf_nf_hdr_len; 11543 } 11544 offset += mp1->b_wptr - mp1->b_rptr; 11545 IP_REASS_SET_END(mp1, offset); 11546 } 11547 /* One hole at the end. */ 11548 ipf->ipf_hole_cnt = 1; 11549 /* Brand it as a hard case, forever. */ 11550 ipf->ipf_end = 0; 11551 } 11552 /* Walk through all the new pieces. */ 11553 do { 11554 end = start + (mp->b_wptr - mp->b_rptr); 11555 /* 11556 * If start is 0, decrease 'end' only for the first mblk of 11557 * the fragment. Otherwise 'end' can get wrong value in the 11558 * second pass of the loop if first mblk is exactly the 11559 * size of ipf_nf_hdr_len. 11560 */ 11561 if (start == 0 && !offset_zero_seen) { 11562 /* First segment */ 11563 ASSERT(ipf->ipf_nf_hdr_len != 0); 11564 end -= ipf->ipf_nf_hdr_len; 11565 offset_zero_seen = B_TRUE; 11566 } 11567 next_mp = mp->b_cont; 11568 /* 11569 * We are checking to see if there is any interesing data 11570 * to process. If there isn't and the mblk isn't the 11571 * one which carries the unfragmentable header then we 11572 * drop it. It's possible to have just the unfragmentable 11573 * header come through without any data. That needs to be 11574 * saved. 11575 * 11576 * If the assert at the top of this function holds then the 11577 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11578 * is infrequently traveled enough that the test is left in 11579 * to protect against future code changes which break that 11580 * invariant. 11581 */ 11582 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11583 /* Empty. Blast it. */ 11584 IP_REASS_SET_START(mp, 0); 11585 IP_REASS_SET_END(mp, 0); 11586 /* 11587 * If the ipf points to the mblk we are about to free, 11588 * update ipf to point to the next mblk (or NULL 11589 * if none). 11590 */ 11591 if (ipf->ipf_mp->b_cont == mp) 11592 ipf->ipf_mp->b_cont = next_mp; 11593 freeb(mp); 11594 continue; 11595 } 11596 mp->b_cont = NULL; 11597 IP_REASS_SET_START(mp, start); 11598 IP_REASS_SET_END(mp, end); 11599 if (!ipf->ipf_tail_mp) { 11600 ipf->ipf_tail_mp = mp; 11601 ipf->ipf_mp->b_cont = mp; 11602 if (start == 0 || !more) { 11603 ipf->ipf_hole_cnt = 1; 11604 /* 11605 * if the first fragment comes in more than one 11606 * mblk, this loop will be executed for each 11607 * mblk. Need to adjust hole count so exiting 11608 * this routine will leave hole count at 1. 11609 */ 11610 if (next_mp) 11611 ipf->ipf_hole_cnt++; 11612 } else 11613 ipf->ipf_hole_cnt = 2; 11614 continue; 11615 } else if (ipf->ipf_last_frag_seen && !more && 11616 !pkt_boundary_checked) { 11617 /* 11618 * We check datagram boundary only if this fragment 11619 * claims to be the last fragment and we have seen a 11620 * last fragment in the past too. We do this only 11621 * once for a given fragment. 11622 * 11623 * start cannot be 0 here as fragments with start=0 11624 * and MF=0 gets handled as a complete packet. These 11625 * fragments should not reach here. 11626 */ 11627 11628 if (start + msgdsize(mp) != 11629 IP_REASS_END(ipf->ipf_tail_mp)) { 11630 /* 11631 * We have two fragments both of which claim 11632 * to be the last fragment but gives conflicting 11633 * information about the whole datagram size. 11634 * Something fishy is going on. Drop the 11635 * fragment and free up the reassembly list. 11636 */ 11637 return (IP_REASS_FAILED); 11638 } 11639 11640 /* 11641 * We shouldn't come to this code block again for this 11642 * particular fragment. 11643 */ 11644 pkt_boundary_checked = B_TRUE; 11645 } 11646 11647 /* New stuff at or beyond tail? */ 11648 offset = IP_REASS_END(ipf->ipf_tail_mp); 11649 if (start >= offset) { 11650 if (ipf->ipf_last_frag_seen) { 11651 /* current fragment is beyond last fragment */ 11652 return (IP_REASS_FAILED); 11653 } 11654 /* Link it on end. */ 11655 ipf->ipf_tail_mp->b_cont = mp; 11656 ipf->ipf_tail_mp = mp; 11657 if (more) { 11658 if (start != offset) 11659 ipf->ipf_hole_cnt++; 11660 } else if (start == offset && next_mp == NULL) 11661 ipf->ipf_hole_cnt--; 11662 continue; 11663 } 11664 mp1 = ipf->ipf_mp->b_cont; 11665 offset = IP_REASS_START(mp1); 11666 /* New stuff at the front? */ 11667 if (start < offset) { 11668 if (start == 0) { 11669 if (end >= offset) { 11670 /* Nailed the hole at the begining. */ 11671 ipf->ipf_hole_cnt--; 11672 } 11673 } else if (end < offset) { 11674 /* 11675 * A hole, stuff, and a hole where there used 11676 * to be just a hole. 11677 */ 11678 ipf->ipf_hole_cnt++; 11679 } 11680 mp->b_cont = mp1; 11681 /* Check for overlap. */ 11682 while (end > offset) { 11683 if (end < IP_REASS_END(mp1)) { 11684 mp->b_wptr -= end - offset; 11685 IP_REASS_SET_END(mp, offset); 11686 BUMP_MIB(ill->ill_ip_mib, 11687 ipIfStatsReasmPartDups); 11688 break; 11689 } 11690 /* Did we cover another hole? */ 11691 if ((mp1->b_cont && 11692 IP_REASS_END(mp1) != 11693 IP_REASS_START(mp1->b_cont) && 11694 end >= IP_REASS_START(mp1->b_cont)) || 11695 (!ipf->ipf_last_frag_seen && !more)) { 11696 ipf->ipf_hole_cnt--; 11697 } 11698 /* Clip out mp1. */ 11699 if ((mp->b_cont = mp1->b_cont) == NULL) { 11700 /* 11701 * After clipping out mp1, this guy 11702 * is now hanging off the end. 11703 */ 11704 ipf->ipf_tail_mp = mp; 11705 } 11706 IP_REASS_SET_START(mp1, 0); 11707 IP_REASS_SET_END(mp1, 0); 11708 /* Subtract byte count */ 11709 ipf->ipf_count -= mp1->b_datap->db_lim - 11710 mp1->b_datap->db_base; 11711 freeb(mp1); 11712 BUMP_MIB(ill->ill_ip_mib, 11713 ipIfStatsReasmPartDups); 11714 mp1 = mp->b_cont; 11715 if (!mp1) 11716 break; 11717 offset = IP_REASS_START(mp1); 11718 } 11719 ipf->ipf_mp->b_cont = mp; 11720 continue; 11721 } 11722 /* 11723 * The new piece starts somewhere between the start of the head 11724 * and before the end of the tail. 11725 */ 11726 for (; mp1; mp1 = mp1->b_cont) { 11727 offset = IP_REASS_END(mp1); 11728 if (start < offset) { 11729 if (end <= offset) { 11730 /* Nothing new. */ 11731 IP_REASS_SET_START(mp, 0); 11732 IP_REASS_SET_END(mp, 0); 11733 /* Subtract byte count */ 11734 ipf->ipf_count -= mp->b_datap->db_lim - 11735 mp->b_datap->db_base; 11736 if (incr_dups) { 11737 ipf->ipf_num_dups++; 11738 incr_dups = B_FALSE; 11739 } 11740 freeb(mp); 11741 BUMP_MIB(ill->ill_ip_mib, 11742 ipIfStatsReasmDuplicates); 11743 break; 11744 } 11745 /* 11746 * Trim redundant stuff off beginning of new 11747 * piece. 11748 */ 11749 IP_REASS_SET_START(mp, offset); 11750 mp->b_rptr += offset - start; 11751 BUMP_MIB(ill->ill_ip_mib, 11752 ipIfStatsReasmPartDups); 11753 start = offset; 11754 if (!mp1->b_cont) { 11755 /* 11756 * After trimming, this guy is now 11757 * hanging off the end. 11758 */ 11759 mp1->b_cont = mp; 11760 ipf->ipf_tail_mp = mp; 11761 if (!more) { 11762 ipf->ipf_hole_cnt--; 11763 } 11764 break; 11765 } 11766 } 11767 if (start >= IP_REASS_START(mp1->b_cont)) 11768 continue; 11769 /* Fill a hole */ 11770 if (start > offset) 11771 ipf->ipf_hole_cnt++; 11772 mp->b_cont = mp1->b_cont; 11773 mp1->b_cont = mp; 11774 mp1 = mp->b_cont; 11775 offset = IP_REASS_START(mp1); 11776 if (end >= offset) { 11777 ipf->ipf_hole_cnt--; 11778 /* Check for overlap. */ 11779 while (end > offset) { 11780 if (end < IP_REASS_END(mp1)) { 11781 mp->b_wptr -= end - offset; 11782 IP_REASS_SET_END(mp, offset); 11783 /* 11784 * TODO we might bump 11785 * this up twice if there is 11786 * overlap at both ends. 11787 */ 11788 BUMP_MIB(ill->ill_ip_mib, 11789 ipIfStatsReasmPartDups); 11790 break; 11791 } 11792 /* Did we cover another hole? */ 11793 if ((mp1->b_cont && 11794 IP_REASS_END(mp1) 11795 != IP_REASS_START(mp1->b_cont) && 11796 end >= 11797 IP_REASS_START(mp1->b_cont)) || 11798 (!ipf->ipf_last_frag_seen && 11799 !more)) { 11800 ipf->ipf_hole_cnt--; 11801 } 11802 /* Clip out mp1. */ 11803 if ((mp->b_cont = mp1->b_cont) == 11804 NULL) { 11805 /* 11806 * After clipping out mp1, 11807 * this guy is now hanging 11808 * off the end. 11809 */ 11810 ipf->ipf_tail_mp = mp; 11811 } 11812 IP_REASS_SET_START(mp1, 0); 11813 IP_REASS_SET_END(mp1, 0); 11814 /* Subtract byte count */ 11815 ipf->ipf_count -= 11816 mp1->b_datap->db_lim - 11817 mp1->b_datap->db_base; 11818 freeb(mp1); 11819 BUMP_MIB(ill->ill_ip_mib, 11820 ipIfStatsReasmPartDups); 11821 mp1 = mp->b_cont; 11822 if (!mp1) 11823 break; 11824 offset = IP_REASS_START(mp1); 11825 } 11826 } 11827 break; 11828 } 11829 } while (start = end, mp = next_mp); 11830 11831 /* Fragment just processed could be the last one. Remember this fact */ 11832 if (!more) 11833 ipf->ipf_last_frag_seen = B_TRUE; 11834 11835 /* Still got holes? */ 11836 if (ipf->ipf_hole_cnt) 11837 return (IP_REASS_PARTIAL); 11838 /* Clean up overloaded fields to avoid upstream disasters. */ 11839 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11840 IP_REASS_SET_START(mp1, 0); 11841 IP_REASS_SET_END(mp1, 0); 11842 } 11843 return (IP_REASS_COMPLETE); 11844 } 11845 11846 /* 11847 * ipsec processing for the fast path, used for input UDP Packets 11848 * Returns true if ready for passup to UDP. 11849 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11850 * was an ESP-in-UDP packet, etc.). 11851 */ 11852 static boolean_t 11853 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11854 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11855 { 11856 uint32_t ill_index; 11857 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11858 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11859 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11860 udp_t *udp = connp->conn_udp; 11861 11862 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11863 /* The ill_index of the incoming ILL */ 11864 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11865 11866 /* pass packet up to the transport */ 11867 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11868 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11869 NULL, mctl_present); 11870 if (*first_mpp == NULL) { 11871 return (B_FALSE); 11872 } 11873 } 11874 11875 /* Initiate IPPF processing for fastpath UDP */ 11876 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11877 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11878 if (*mpp == NULL) { 11879 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11880 "deferred/dropped during IPPF processing\n")); 11881 return (B_FALSE); 11882 } 11883 } 11884 /* 11885 * Remove 0-spi if it's 0, or move everything behind 11886 * the UDP header over it and forward to ESP via 11887 * ip_proto_input(). 11888 */ 11889 if (udp->udp_nat_t_endpoint) { 11890 if (mctl_present) { 11891 /* mctl_present *shouldn't* happen. */ 11892 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11893 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11894 &ipss->ipsec_dropper); 11895 *first_mpp = NULL; 11896 return (B_FALSE); 11897 } 11898 11899 /* "ill" is "recv_ill" in actuality. */ 11900 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 11901 return (B_FALSE); 11902 11903 /* Else continue like a normal UDP packet. */ 11904 } 11905 11906 /* 11907 * We make the checks as below since we are in the fast path 11908 * and want to minimize the number of checks if the IP_RECVIF and/or 11909 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11910 */ 11911 if (connp->conn_recvif || connp->conn_recvslla || 11912 connp->conn_ip_recvpktinfo) { 11913 if (connp->conn_recvif) { 11914 in_flags = IPF_RECVIF; 11915 } 11916 /* 11917 * UDP supports IP_RECVPKTINFO option for both v4 and v6 11918 * so the flag passed to ip_add_info is based on IP version 11919 * of connp. 11920 */ 11921 if (connp->conn_ip_recvpktinfo) { 11922 if (connp->conn_af_isv6) { 11923 /* 11924 * V6 only needs index 11925 */ 11926 in_flags |= IPF_RECVIF; 11927 } else { 11928 /* 11929 * V4 needs index + matching address. 11930 */ 11931 in_flags |= IPF_RECVADDR; 11932 } 11933 } 11934 if (connp->conn_recvslla) { 11935 in_flags |= IPF_RECVSLLA; 11936 } 11937 /* 11938 * since in_flags are being set ill will be 11939 * referenced in ip_add_info, so it better not 11940 * be NULL. 11941 */ 11942 /* 11943 * the actual data will be contained in b_cont 11944 * upon successful return of the following call. 11945 * If the call fails then the original mblk is 11946 * returned. 11947 */ 11948 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 11949 ipst); 11950 } 11951 11952 return (B_TRUE); 11953 } 11954 11955 /* 11956 * Fragmentation reassembly. Each ILL has a hash table for 11957 * queuing packets undergoing reassembly for all IPIFs 11958 * associated with the ILL. The hash is based on the packet 11959 * IP ident field. The ILL frag hash table was allocated 11960 * as a timer block at the time the ILL was created. Whenever 11961 * there is anything on the reassembly queue, the timer will 11962 * be running. Returns B_TRUE if successful else B_FALSE; 11963 * frees mp on failure. 11964 */ 11965 static boolean_t 11966 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 11967 uint32_t *cksum_val, uint16_t *cksum_flags) 11968 { 11969 uint32_t frag_offset_flags; 11970 mblk_t *mp = *mpp; 11971 mblk_t *t_mp; 11972 ipaddr_t dst; 11973 uint8_t proto = ipha->ipha_protocol; 11974 uint32_t sum_val; 11975 uint16_t sum_flags; 11976 ipf_t *ipf; 11977 ipf_t **ipfp; 11978 ipfb_t *ipfb; 11979 uint16_t ident; 11980 uint32_t offset; 11981 ipaddr_t src; 11982 uint_t hdr_length; 11983 uint32_t end; 11984 mblk_t *mp1; 11985 mblk_t *tail_mp; 11986 size_t count; 11987 size_t msg_len; 11988 uint8_t ecn_info = 0; 11989 uint32_t packet_size; 11990 boolean_t pruned = B_FALSE; 11991 ip_stack_t *ipst = ill->ill_ipst; 11992 11993 if (cksum_val != NULL) 11994 *cksum_val = 0; 11995 if (cksum_flags != NULL) 11996 *cksum_flags = 0; 11997 11998 /* 11999 * Drop the fragmented as early as possible, if 12000 * we don't have resource(s) to re-assemble. 12001 */ 12002 if (ipst->ips_ip_reass_queue_bytes == 0) { 12003 freemsg(mp); 12004 return (B_FALSE); 12005 } 12006 12007 /* Check for fragmentation offset; return if there's none */ 12008 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12009 (IPH_MF | IPH_OFFSET)) == 0) 12010 return (B_TRUE); 12011 12012 /* 12013 * We utilize hardware computed checksum info only for UDP since 12014 * IP fragmentation is a normal occurrence for the protocol. In 12015 * addition, checksum offload support for IP fragments carrying 12016 * UDP payload is commonly implemented across network adapters. 12017 */ 12018 ASSERT(recv_ill != NULL); 12019 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12020 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12021 mblk_t *mp1 = mp->b_cont; 12022 int32_t len; 12023 12024 /* Record checksum information from the packet */ 12025 sum_val = (uint32_t)DB_CKSUM16(mp); 12026 sum_flags = DB_CKSUMFLAGS(mp); 12027 12028 /* IP payload offset from beginning of mblk */ 12029 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12030 12031 if ((sum_flags & HCK_PARTIALCKSUM) && 12032 (mp1 == NULL || mp1->b_cont == NULL) && 12033 offset >= DB_CKSUMSTART(mp) && 12034 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12035 uint32_t adj; 12036 /* 12037 * Partial checksum has been calculated by hardware 12038 * and attached to the packet; in addition, any 12039 * prepended extraneous data is even byte aligned. 12040 * If any such data exists, we adjust the checksum; 12041 * this would also handle any postpended data. 12042 */ 12043 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12044 mp, mp1, len, adj); 12045 12046 /* One's complement subtract extraneous checksum */ 12047 if (adj >= sum_val) 12048 sum_val = ~(adj - sum_val) & 0xFFFF; 12049 else 12050 sum_val -= adj; 12051 } 12052 } else { 12053 sum_val = 0; 12054 sum_flags = 0; 12055 } 12056 12057 /* Clear hardware checksumming flag */ 12058 DB_CKSUMFLAGS(mp) = 0; 12059 12060 ident = ipha->ipha_ident; 12061 offset = (frag_offset_flags << 3) & 0xFFFF; 12062 src = ipha->ipha_src; 12063 dst = ipha->ipha_dst; 12064 hdr_length = IPH_HDR_LENGTH(ipha); 12065 end = ntohs(ipha->ipha_length) - hdr_length; 12066 12067 /* If end == 0 then we have a packet with no data, so just free it */ 12068 if (end == 0) { 12069 freemsg(mp); 12070 return (B_FALSE); 12071 } 12072 12073 /* Record the ECN field info. */ 12074 ecn_info = (ipha->ipha_type_of_service & 0x3); 12075 if (offset != 0) { 12076 /* 12077 * If this isn't the first piece, strip the header, and 12078 * add the offset to the end value. 12079 */ 12080 mp->b_rptr += hdr_length; 12081 end += offset; 12082 } 12083 12084 msg_len = MBLKSIZE(mp); 12085 tail_mp = mp; 12086 while (tail_mp->b_cont != NULL) { 12087 tail_mp = tail_mp->b_cont; 12088 msg_len += MBLKSIZE(tail_mp); 12089 } 12090 12091 /* If the reassembly list for this ILL will get too big, prune it */ 12092 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12093 ipst->ips_ip_reass_queue_bytes) { 12094 ill_frag_prune(ill, 12095 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12096 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12097 pruned = B_TRUE; 12098 } 12099 12100 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12101 mutex_enter(&ipfb->ipfb_lock); 12102 12103 ipfp = &ipfb->ipfb_ipf; 12104 /* Try to find an existing fragment queue for this packet. */ 12105 for (;;) { 12106 ipf = ipfp[0]; 12107 if (ipf != NULL) { 12108 /* 12109 * It has to match on ident and src/dst address. 12110 */ 12111 if (ipf->ipf_ident == ident && 12112 ipf->ipf_src == src && 12113 ipf->ipf_dst == dst && 12114 ipf->ipf_protocol == proto) { 12115 /* 12116 * If we have received too many 12117 * duplicate fragments for this packet 12118 * free it. 12119 */ 12120 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12121 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12122 freemsg(mp); 12123 mutex_exit(&ipfb->ipfb_lock); 12124 return (B_FALSE); 12125 } 12126 /* Found it. */ 12127 break; 12128 } 12129 ipfp = &ipf->ipf_hash_next; 12130 continue; 12131 } 12132 12133 /* 12134 * If we pruned the list, do we want to store this new 12135 * fragment?. We apply an optimization here based on the 12136 * fact that most fragments will be received in order. 12137 * So if the offset of this incoming fragment is zero, 12138 * it is the first fragment of a new packet. We will 12139 * keep it. Otherwise drop the fragment, as we have 12140 * probably pruned the packet already (since the 12141 * packet cannot be found). 12142 */ 12143 if (pruned && offset != 0) { 12144 mutex_exit(&ipfb->ipfb_lock); 12145 freemsg(mp); 12146 return (B_FALSE); 12147 } 12148 12149 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12150 /* 12151 * Too many fragmented packets in this hash 12152 * bucket. Free the oldest. 12153 */ 12154 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12155 } 12156 12157 /* New guy. Allocate a frag message. */ 12158 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12159 if (mp1 == NULL) { 12160 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12161 freemsg(mp); 12162 reass_done: 12163 mutex_exit(&ipfb->ipfb_lock); 12164 return (B_FALSE); 12165 } 12166 12167 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12168 mp1->b_cont = mp; 12169 12170 /* Initialize the fragment header. */ 12171 ipf = (ipf_t *)mp1->b_rptr; 12172 ipf->ipf_mp = mp1; 12173 ipf->ipf_ptphn = ipfp; 12174 ipfp[0] = ipf; 12175 ipf->ipf_hash_next = NULL; 12176 ipf->ipf_ident = ident; 12177 ipf->ipf_protocol = proto; 12178 ipf->ipf_src = src; 12179 ipf->ipf_dst = dst; 12180 ipf->ipf_nf_hdr_len = 0; 12181 /* Record reassembly start time. */ 12182 ipf->ipf_timestamp = gethrestime_sec(); 12183 /* Record ipf generation and account for frag header */ 12184 ipf->ipf_gen = ill->ill_ipf_gen++; 12185 ipf->ipf_count = MBLKSIZE(mp1); 12186 ipf->ipf_last_frag_seen = B_FALSE; 12187 ipf->ipf_ecn = ecn_info; 12188 ipf->ipf_num_dups = 0; 12189 ipfb->ipfb_frag_pkts++; 12190 ipf->ipf_checksum = 0; 12191 ipf->ipf_checksum_flags = 0; 12192 12193 /* Store checksum value in fragment header */ 12194 if (sum_flags != 0) { 12195 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12196 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12197 ipf->ipf_checksum = sum_val; 12198 ipf->ipf_checksum_flags = sum_flags; 12199 } 12200 12201 /* 12202 * We handle reassembly two ways. In the easy case, 12203 * where all the fragments show up in order, we do 12204 * minimal bookkeeping, and just clip new pieces on 12205 * the end. If we ever see a hole, then we go off 12206 * to ip_reassemble which has to mark the pieces and 12207 * keep track of the number of holes, etc. Obviously, 12208 * the point of having both mechanisms is so we can 12209 * handle the easy case as efficiently as possible. 12210 */ 12211 if (offset == 0) { 12212 /* Easy case, in-order reassembly so far. */ 12213 ipf->ipf_count += msg_len; 12214 ipf->ipf_tail_mp = tail_mp; 12215 /* 12216 * Keep track of next expected offset in 12217 * ipf_end. 12218 */ 12219 ipf->ipf_end = end; 12220 ipf->ipf_nf_hdr_len = hdr_length; 12221 } else { 12222 /* Hard case, hole at the beginning. */ 12223 ipf->ipf_tail_mp = NULL; 12224 /* 12225 * ipf_end == 0 means that we have given up 12226 * on easy reassembly. 12227 */ 12228 ipf->ipf_end = 0; 12229 12230 /* Forget checksum offload from now on */ 12231 ipf->ipf_checksum_flags = 0; 12232 12233 /* 12234 * ipf_hole_cnt is set by ip_reassemble. 12235 * ipf_count is updated by ip_reassemble. 12236 * No need to check for return value here 12237 * as we don't expect reassembly to complete 12238 * or fail for the first fragment itself. 12239 */ 12240 (void) ip_reassemble(mp, ipf, 12241 (frag_offset_flags & IPH_OFFSET) << 3, 12242 (frag_offset_flags & IPH_MF), ill, msg_len); 12243 } 12244 /* Update per ipfb and ill byte counts */ 12245 ipfb->ipfb_count += ipf->ipf_count; 12246 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12247 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12248 /* If the frag timer wasn't already going, start it. */ 12249 mutex_enter(&ill->ill_lock); 12250 ill_frag_timer_start(ill); 12251 mutex_exit(&ill->ill_lock); 12252 goto reass_done; 12253 } 12254 12255 /* 12256 * If the packet's flag has changed (it could be coming up 12257 * from an interface different than the previous, therefore 12258 * possibly different checksum capability), then forget about 12259 * any stored checksum states. Otherwise add the value to 12260 * the existing one stored in the fragment header. 12261 */ 12262 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12263 sum_val += ipf->ipf_checksum; 12264 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12265 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12266 ipf->ipf_checksum = sum_val; 12267 } else if (ipf->ipf_checksum_flags != 0) { 12268 /* Forget checksum offload from now on */ 12269 ipf->ipf_checksum_flags = 0; 12270 } 12271 12272 /* 12273 * We have a new piece of a datagram which is already being 12274 * reassembled. Update the ECN info if all IP fragments 12275 * are ECN capable. If there is one which is not, clear 12276 * all the info. If there is at least one which has CE 12277 * code point, IP needs to report that up to transport. 12278 */ 12279 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12280 if (ecn_info == IPH_ECN_CE) 12281 ipf->ipf_ecn = IPH_ECN_CE; 12282 } else { 12283 ipf->ipf_ecn = IPH_ECN_NECT; 12284 } 12285 if (offset && ipf->ipf_end == offset) { 12286 /* The new fragment fits at the end */ 12287 ipf->ipf_tail_mp->b_cont = mp; 12288 /* Update the byte count */ 12289 ipf->ipf_count += msg_len; 12290 /* Update per ipfb and ill byte counts */ 12291 ipfb->ipfb_count += msg_len; 12292 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12293 atomic_add_32(&ill->ill_frag_count, msg_len); 12294 if (frag_offset_flags & IPH_MF) { 12295 /* More to come. */ 12296 ipf->ipf_end = end; 12297 ipf->ipf_tail_mp = tail_mp; 12298 goto reass_done; 12299 } 12300 } else { 12301 /* Go do the hard cases. */ 12302 int ret; 12303 12304 if (offset == 0) 12305 ipf->ipf_nf_hdr_len = hdr_length; 12306 12307 /* Save current byte count */ 12308 count = ipf->ipf_count; 12309 ret = ip_reassemble(mp, ipf, 12310 (frag_offset_flags & IPH_OFFSET) << 3, 12311 (frag_offset_flags & IPH_MF), ill, msg_len); 12312 /* Count of bytes added and subtracted (freeb()ed) */ 12313 count = ipf->ipf_count - count; 12314 if (count) { 12315 /* Update per ipfb and ill byte counts */ 12316 ipfb->ipfb_count += count; 12317 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12318 atomic_add_32(&ill->ill_frag_count, count); 12319 } 12320 if (ret == IP_REASS_PARTIAL) { 12321 goto reass_done; 12322 } else if (ret == IP_REASS_FAILED) { 12323 /* Reassembly failed. Free up all resources */ 12324 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12325 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12326 IP_REASS_SET_START(t_mp, 0); 12327 IP_REASS_SET_END(t_mp, 0); 12328 } 12329 freemsg(mp); 12330 goto reass_done; 12331 } 12332 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12333 } 12334 /* 12335 * We have completed reassembly. Unhook the frag header from 12336 * the reassembly list. 12337 * 12338 * Before we free the frag header, record the ECN info 12339 * to report back to the transport. 12340 */ 12341 ecn_info = ipf->ipf_ecn; 12342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12343 ipfp = ipf->ipf_ptphn; 12344 12345 /* We need to supply these to caller */ 12346 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12347 sum_val = ipf->ipf_checksum; 12348 else 12349 sum_val = 0; 12350 12351 mp1 = ipf->ipf_mp; 12352 count = ipf->ipf_count; 12353 ipf = ipf->ipf_hash_next; 12354 if (ipf != NULL) 12355 ipf->ipf_ptphn = ipfp; 12356 ipfp[0] = ipf; 12357 atomic_add_32(&ill->ill_frag_count, -count); 12358 ASSERT(ipfb->ipfb_count >= count); 12359 ipfb->ipfb_count -= count; 12360 ipfb->ipfb_frag_pkts--; 12361 mutex_exit(&ipfb->ipfb_lock); 12362 /* Ditch the frag header. */ 12363 mp = mp1->b_cont; 12364 12365 freeb(mp1); 12366 12367 /* Restore original IP length in header. */ 12368 packet_size = (uint32_t)msgdsize(mp); 12369 if (packet_size > IP_MAXPACKET) { 12370 freemsg(mp); 12371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12372 return (B_FALSE); 12373 } 12374 12375 if (DB_REF(mp) > 1) { 12376 mblk_t *mp2 = copymsg(mp); 12377 12378 freemsg(mp); 12379 if (mp2 == NULL) { 12380 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12381 return (B_FALSE); 12382 } 12383 mp = mp2; 12384 } 12385 ipha = (ipha_t *)mp->b_rptr; 12386 12387 ipha->ipha_length = htons((uint16_t)packet_size); 12388 /* We're now complete, zip the frag state */ 12389 ipha->ipha_fragment_offset_and_flags = 0; 12390 /* Record the ECN info. */ 12391 ipha->ipha_type_of_service &= 0xFC; 12392 ipha->ipha_type_of_service |= ecn_info; 12393 *mpp = mp; 12394 12395 /* Reassembly is successful; return checksum information if needed */ 12396 if (cksum_val != NULL) 12397 *cksum_val = sum_val; 12398 if (cksum_flags != NULL) 12399 *cksum_flags = sum_flags; 12400 12401 return (B_TRUE); 12402 } 12403 12404 /* 12405 * Perform ip header check sum update local options. 12406 * return B_TRUE if all is well, else return B_FALSE and release 12407 * the mp. caller is responsible for decrementing ire ref cnt. 12408 */ 12409 static boolean_t 12410 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12411 ip_stack_t *ipst) 12412 { 12413 mblk_t *first_mp; 12414 boolean_t mctl_present; 12415 uint16_t sum; 12416 12417 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12418 /* 12419 * Don't do the checksum if it has gone through AH/ESP 12420 * processing. 12421 */ 12422 if (!mctl_present) { 12423 sum = ip_csum_hdr(ipha); 12424 if (sum != 0) { 12425 if (ill != NULL) { 12426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12427 } else { 12428 BUMP_MIB(&ipst->ips_ip_mib, 12429 ipIfStatsInCksumErrs); 12430 } 12431 freemsg(first_mp); 12432 return (B_FALSE); 12433 } 12434 } 12435 12436 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12437 if (mctl_present) 12438 freeb(first_mp); 12439 return (B_FALSE); 12440 } 12441 12442 return (B_TRUE); 12443 } 12444 12445 /* 12446 * All udp packet are delivered to the local host via this routine. 12447 */ 12448 void 12449 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12450 ill_t *recv_ill) 12451 { 12452 uint32_t sum; 12453 uint32_t u1; 12454 boolean_t mctl_present; 12455 conn_t *connp; 12456 mblk_t *first_mp; 12457 uint16_t *up; 12458 ill_t *ill = (ill_t *)q->q_ptr; 12459 uint16_t reass_hck_flags = 0; 12460 ip_stack_t *ipst; 12461 12462 ASSERT(recv_ill != NULL); 12463 ipst = recv_ill->ill_ipst; 12464 12465 #define rptr ((uchar_t *)ipha) 12466 12467 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12468 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12469 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12470 ASSERT(ill != NULL); 12471 12472 /* 12473 * FAST PATH for udp packets 12474 */ 12475 12476 /* u1 is # words of IP options */ 12477 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12478 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12479 12480 /* IP options present */ 12481 if (u1 != 0) 12482 goto ipoptions; 12483 12484 /* Check the IP header checksum. */ 12485 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12486 /* Clear the IP header h/w cksum flag */ 12487 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12488 } else if (!mctl_present) { 12489 /* 12490 * Don't verify header checksum if this packet is coming 12491 * back from AH/ESP as we already did it. 12492 */ 12493 #define uph ((uint16_t *)ipha) 12494 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12495 uph[6] + uph[7] + uph[8] + uph[9]; 12496 #undef uph 12497 /* finish doing IP checksum */ 12498 sum = (sum & 0xFFFF) + (sum >> 16); 12499 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12500 if (sum != 0 && sum != 0xFFFF) { 12501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12502 freemsg(first_mp); 12503 return; 12504 } 12505 } 12506 12507 /* 12508 * Count for SNMP of inbound packets for ire. 12509 * if mctl is present this might be a secure packet and 12510 * has already been counted for in ip_proto_input(). 12511 */ 12512 if (!mctl_present) { 12513 UPDATE_IB_PKT_COUNT(ire); 12514 ire->ire_last_used_time = lbolt; 12515 } 12516 12517 /* packet part of fragmented IP packet? */ 12518 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12519 if (u1 & (IPH_MF | IPH_OFFSET)) { 12520 goto fragmented; 12521 } 12522 12523 /* u1 = IP header length (20 bytes) */ 12524 u1 = IP_SIMPLE_HDR_LENGTH; 12525 12526 /* packet does not contain complete IP & UDP headers */ 12527 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12528 goto udppullup; 12529 12530 /* up points to UDP header */ 12531 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12532 #define iphs ((uint16_t *)ipha) 12533 12534 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12535 if (up[3] != 0) { 12536 mblk_t *mp1 = mp->b_cont; 12537 boolean_t cksum_err; 12538 uint16_t hck_flags = 0; 12539 12540 /* Pseudo-header checksum */ 12541 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12542 iphs[9] + up[2]; 12543 12544 /* 12545 * Revert to software checksum calculation if the interface 12546 * isn't capable of checksum offload or if IPsec is present. 12547 */ 12548 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12549 hck_flags = DB_CKSUMFLAGS(mp); 12550 12551 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12552 IP_STAT(ipst, ip_in_sw_cksum); 12553 12554 IP_CKSUM_RECV(hck_flags, u1, 12555 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12556 (int32_t)((uchar_t *)up - rptr), 12557 mp, mp1, cksum_err); 12558 12559 if (cksum_err) { 12560 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12561 if (hck_flags & HCK_FULLCKSUM) 12562 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12563 else if (hck_flags & HCK_PARTIALCKSUM) 12564 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12565 else 12566 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12567 12568 freemsg(first_mp); 12569 return; 12570 } 12571 } 12572 12573 /* Non-fragmented broadcast or multicast packet? */ 12574 if (ire->ire_type == IRE_BROADCAST) 12575 goto udpslowpath; 12576 12577 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12578 ire->ire_zoneid, ipst)) != NULL) { 12579 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12580 IP_STAT(ipst, ip_udp_fast_path); 12581 12582 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12583 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12584 freemsg(mp); 12585 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12586 } else { 12587 if (!mctl_present) { 12588 BUMP_MIB(ill->ill_ip_mib, 12589 ipIfStatsHCInDelivers); 12590 } 12591 /* 12592 * mp and first_mp can change. 12593 */ 12594 if (ip_udp_check(q, connp, recv_ill, 12595 ipha, &mp, &first_mp, mctl_present, ire)) { 12596 /* Send it upstream */ 12597 (connp->conn_recv)(connp, mp, NULL); 12598 } 12599 } 12600 /* 12601 * freeb() cannot deal with null mblk being passed 12602 * in and first_mp can be set to null in the call 12603 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12604 */ 12605 if (mctl_present && first_mp != NULL) { 12606 freeb(first_mp); 12607 } 12608 CONN_DEC_REF(connp); 12609 return; 12610 } 12611 12612 /* 12613 * if we got here we know the packet is not fragmented and 12614 * has no options. The classifier could not find a conn_t and 12615 * most likely its an icmp packet so send it through slow path. 12616 */ 12617 12618 goto udpslowpath; 12619 12620 ipoptions: 12621 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12622 goto slow_done; 12623 } 12624 12625 UPDATE_IB_PKT_COUNT(ire); 12626 ire->ire_last_used_time = lbolt; 12627 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12628 if (u1 & (IPH_MF | IPH_OFFSET)) { 12629 fragmented: 12630 /* 12631 * "sum" and "reass_hck_flags" are non-zero if the 12632 * reassembled packet has a valid hardware computed 12633 * checksum information associated with it. 12634 */ 12635 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12636 &reass_hck_flags)) { 12637 goto slow_done; 12638 } 12639 12640 /* 12641 * Make sure that first_mp points back to mp as 12642 * the mp we came in with could have changed in 12643 * ip_rput_fragment(). 12644 */ 12645 ASSERT(!mctl_present); 12646 ipha = (ipha_t *)mp->b_rptr; 12647 first_mp = mp; 12648 } 12649 12650 /* Now we have a complete datagram, destined for this machine. */ 12651 u1 = IPH_HDR_LENGTH(ipha); 12652 /* Pull up the UDP header, if necessary. */ 12653 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12654 udppullup: 12655 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12657 freemsg(first_mp); 12658 goto slow_done; 12659 } 12660 ipha = (ipha_t *)mp->b_rptr; 12661 } 12662 12663 /* 12664 * Validate the checksum for the reassembled packet; for the 12665 * pullup case we calculate the payload checksum in software. 12666 */ 12667 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12668 if (up[3] != 0) { 12669 boolean_t cksum_err; 12670 12671 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12672 IP_STAT(ipst, ip_in_sw_cksum); 12673 12674 IP_CKSUM_RECV_REASS(reass_hck_flags, 12675 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12676 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12677 iphs[9] + up[2], sum, cksum_err); 12678 12679 if (cksum_err) { 12680 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12681 12682 if (reass_hck_flags & HCK_FULLCKSUM) 12683 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12684 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12685 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12686 else 12687 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12688 12689 freemsg(first_mp); 12690 goto slow_done; 12691 } 12692 } 12693 udpslowpath: 12694 12695 /* Clear hardware checksum flag to be safe */ 12696 DB_CKSUMFLAGS(mp) = 0; 12697 12698 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12699 (ire->ire_type == IRE_BROADCAST), 12700 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12701 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12702 12703 slow_done: 12704 IP_STAT(ipst, ip_udp_slow_path); 12705 return; 12706 12707 #undef iphs 12708 #undef rptr 12709 } 12710 12711 /* ARGSUSED */ 12712 static mblk_t * 12713 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12714 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12715 ill_rx_ring_t *ill_ring) 12716 { 12717 conn_t *connp; 12718 uint32_t sum; 12719 uint32_t u1; 12720 uint16_t *up; 12721 int offset; 12722 ssize_t len; 12723 mblk_t *mp1; 12724 boolean_t syn_present = B_FALSE; 12725 tcph_t *tcph; 12726 uint_t tcph_flags; 12727 uint_t ip_hdr_len; 12728 ill_t *ill = (ill_t *)q->q_ptr; 12729 zoneid_t zoneid = ire->ire_zoneid; 12730 boolean_t cksum_err; 12731 uint16_t hck_flags = 0; 12732 ip_stack_t *ipst = recv_ill->ill_ipst; 12733 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12734 12735 #define rptr ((uchar_t *)ipha) 12736 12737 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12738 ASSERT(ill != NULL); 12739 12740 /* 12741 * FAST PATH for tcp packets 12742 */ 12743 12744 /* u1 is # words of IP options */ 12745 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12746 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12747 12748 /* IP options present */ 12749 if (u1) { 12750 goto ipoptions; 12751 } else if (!mctl_present) { 12752 /* Check the IP header checksum. */ 12753 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12754 /* Clear the IP header h/w cksum flag */ 12755 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12756 } else if (!mctl_present) { 12757 /* 12758 * Don't verify header checksum if this packet 12759 * is coming back from AH/ESP as we already did it. 12760 */ 12761 #define uph ((uint16_t *)ipha) 12762 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12763 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12764 #undef uph 12765 /* finish doing IP checksum */ 12766 sum = (sum & 0xFFFF) + (sum >> 16); 12767 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12768 if (sum != 0 && sum != 0xFFFF) { 12769 BUMP_MIB(ill->ill_ip_mib, 12770 ipIfStatsInCksumErrs); 12771 goto error; 12772 } 12773 } 12774 } 12775 12776 if (!mctl_present) { 12777 UPDATE_IB_PKT_COUNT(ire); 12778 ire->ire_last_used_time = lbolt; 12779 } 12780 12781 /* packet part of fragmented IP packet? */ 12782 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12783 if (u1 & (IPH_MF | IPH_OFFSET)) { 12784 goto fragmented; 12785 } 12786 12787 /* u1 = IP header length (20 bytes) */ 12788 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12789 12790 /* does packet contain IP+TCP headers? */ 12791 len = mp->b_wptr - rptr; 12792 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12793 IP_STAT(ipst, ip_tcppullup); 12794 goto tcppullup; 12795 } 12796 12797 /* TCP options present? */ 12798 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12799 12800 /* 12801 * If options need to be pulled up, then goto tcpoptions. 12802 * otherwise we are still in the fast path 12803 */ 12804 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12805 IP_STAT(ipst, ip_tcpoptions); 12806 goto tcpoptions; 12807 } 12808 12809 /* multiple mblks of tcp data? */ 12810 if ((mp1 = mp->b_cont) != NULL) { 12811 /* more then two? */ 12812 if (mp1->b_cont != NULL) { 12813 IP_STAT(ipst, ip_multipkttcp); 12814 goto multipkttcp; 12815 } 12816 len += mp1->b_wptr - mp1->b_rptr; 12817 } 12818 12819 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12820 12821 /* part of pseudo checksum */ 12822 12823 /* TCP datagram length */ 12824 u1 = len - IP_SIMPLE_HDR_LENGTH; 12825 12826 #define iphs ((uint16_t *)ipha) 12827 12828 #ifdef _BIG_ENDIAN 12829 u1 += IPPROTO_TCP; 12830 #else 12831 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12832 #endif 12833 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12834 12835 /* 12836 * Revert to software checksum calculation if the interface 12837 * isn't capable of checksum offload or if IPsec is present. 12838 */ 12839 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12840 hck_flags = DB_CKSUMFLAGS(mp); 12841 12842 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12843 IP_STAT(ipst, ip_in_sw_cksum); 12844 12845 IP_CKSUM_RECV(hck_flags, u1, 12846 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12847 (int32_t)((uchar_t *)up - rptr), 12848 mp, mp1, cksum_err); 12849 12850 if (cksum_err) { 12851 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12852 12853 if (hck_flags & HCK_FULLCKSUM) 12854 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12855 else if (hck_flags & HCK_PARTIALCKSUM) 12856 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12857 else 12858 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12859 12860 goto error; 12861 } 12862 12863 try_again: 12864 12865 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12866 zoneid, ipst)) == NULL) { 12867 /* Send the TH_RST */ 12868 goto no_conn; 12869 } 12870 12871 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12872 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12873 12874 /* 12875 * TCP FAST PATH for AF_INET socket. 12876 * 12877 * TCP fast path to avoid extra work. An AF_INET socket type 12878 * does not have facility to receive extra information via 12879 * ip_process or ip_add_info. Also, when the connection was 12880 * established, we made a check if this connection is impacted 12881 * by any global IPsec policy or per connection policy (a 12882 * policy that comes in effect later will not apply to this 12883 * connection). Since all this can be determined at the 12884 * connection establishment time, a quick check of flags 12885 * can avoid extra work. 12886 */ 12887 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12888 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12889 ASSERT(first_mp == mp); 12890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12891 if (tcph_flags != (TH_SYN | TH_ACK)) { 12892 SET_SQUEUE(mp, tcp_rput_data, connp); 12893 return (mp); 12894 } 12895 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 12896 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 12897 SET_SQUEUE(mp, tcp_input, connp); 12898 return (mp); 12899 } 12900 12901 if (tcph_flags == TH_SYN) { 12902 if (IPCL_IS_TCP(connp)) { 12903 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12904 DB_CKSUMSTART(mp) = 12905 (intptr_t)ip_squeue_get(ill_ring); 12906 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12907 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12908 BUMP_MIB(ill->ill_ip_mib, 12909 ipIfStatsHCInDelivers); 12910 SET_SQUEUE(mp, connp->conn_recv, connp); 12911 return (mp); 12912 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12913 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12914 BUMP_MIB(ill->ill_ip_mib, 12915 ipIfStatsHCInDelivers); 12916 ip_squeue_enter_unbound++; 12917 SET_SQUEUE(mp, tcp_conn_request_unbound, 12918 connp); 12919 return (mp); 12920 } 12921 syn_present = B_TRUE; 12922 } 12923 } 12924 12925 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12926 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12927 12928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12929 /* No need to send this packet to TCP */ 12930 if ((flags & TH_RST) || (flags & TH_URG)) { 12931 CONN_DEC_REF(connp); 12932 freemsg(first_mp); 12933 return (NULL); 12934 } 12935 if (flags & TH_ACK) { 12936 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 12937 ipst->ips_netstack->netstack_tcp, connp); 12938 CONN_DEC_REF(connp); 12939 return (NULL); 12940 } 12941 12942 CONN_DEC_REF(connp); 12943 freemsg(first_mp); 12944 return (NULL); 12945 } 12946 12947 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12948 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12949 ipha, NULL, mctl_present); 12950 if (first_mp == NULL) { 12951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12952 CONN_DEC_REF(connp); 12953 return (NULL); 12954 } 12955 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12956 ASSERT(syn_present); 12957 if (mctl_present) { 12958 ASSERT(first_mp != mp); 12959 first_mp->b_datap->db_struioflag |= 12960 STRUIO_POLICY; 12961 } else { 12962 ASSERT(first_mp == mp); 12963 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12964 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12965 } 12966 } else { 12967 /* 12968 * Discard first_mp early since we're dealing with a 12969 * fully-connected conn_t and tcp doesn't do policy in 12970 * this case. 12971 */ 12972 if (mctl_present) { 12973 freeb(first_mp); 12974 mctl_present = B_FALSE; 12975 } 12976 first_mp = mp; 12977 } 12978 } 12979 12980 /* Initiate IPPF processing for fastpath */ 12981 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12982 uint32_t ill_index; 12983 12984 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12985 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12986 if (mp == NULL) { 12987 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12988 "deferred/dropped during IPPF processing\n")); 12989 CONN_DEC_REF(connp); 12990 if (mctl_present) 12991 freeb(first_mp); 12992 return (NULL); 12993 } else if (mctl_present) { 12994 /* 12995 * ip_process might return a new mp. 12996 */ 12997 ASSERT(first_mp != mp); 12998 first_mp->b_cont = mp; 12999 } else { 13000 first_mp = mp; 13001 } 13002 13003 } 13004 13005 if (!syn_present && connp->conn_ip_recvpktinfo) { 13006 /* 13007 * TCP does not support IP_RECVPKTINFO for v4 so lets 13008 * make sure IPF_RECVIF is passed to ip_add_info. 13009 */ 13010 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13011 IPCL_ZONEID(connp), ipst); 13012 if (mp == NULL) { 13013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13014 CONN_DEC_REF(connp); 13015 if (mctl_present) 13016 freeb(first_mp); 13017 return (NULL); 13018 } else if (mctl_present) { 13019 /* 13020 * ip_add_info might return a new mp. 13021 */ 13022 ASSERT(first_mp != mp); 13023 first_mp->b_cont = mp; 13024 } else { 13025 first_mp = mp; 13026 } 13027 } 13028 13029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13030 if (IPCL_IS_TCP(connp)) { 13031 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13032 return (first_mp); 13033 } else { 13034 /* SOCK_RAW, IPPROTO_TCP case */ 13035 (connp->conn_recv)(connp, first_mp, NULL); 13036 CONN_DEC_REF(connp); 13037 return (NULL); 13038 } 13039 13040 no_conn: 13041 /* Initiate IPPf processing, if needed. */ 13042 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13043 uint32_t ill_index; 13044 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13045 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13046 if (first_mp == NULL) { 13047 return (NULL); 13048 } 13049 } 13050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13051 13052 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13053 ipst->ips_netstack->netstack_tcp, NULL); 13054 return (NULL); 13055 ipoptions: 13056 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13057 goto slow_done; 13058 } 13059 13060 UPDATE_IB_PKT_COUNT(ire); 13061 ire->ire_last_used_time = lbolt; 13062 13063 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13064 if (u1 & (IPH_MF | IPH_OFFSET)) { 13065 fragmented: 13066 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13067 if (mctl_present) 13068 freeb(first_mp); 13069 goto slow_done; 13070 } 13071 /* 13072 * Make sure that first_mp points back to mp as 13073 * the mp we came in with could have changed in 13074 * ip_rput_fragment(). 13075 */ 13076 ASSERT(!mctl_present); 13077 ipha = (ipha_t *)mp->b_rptr; 13078 first_mp = mp; 13079 } 13080 13081 /* Now we have a complete datagram, destined for this machine. */ 13082 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13083 13084 len = mp->b_wptr - mp->b_rptr; 13085 /* Pull up a minimal TCP header, if necessary. */ 13086 if (len < (u1 + 20)) { 13087 tcppullup: 13088 if (!pullupmsg(mp, u1 + 20)) { 13089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13090 goto error; 13091 } 13092 ipha = (ipha_t *)mp->b_rptr; 13093 len = mp->b_wptr - mp->b_rptr; 13094 } 13095 13096 /* 13097 * Extract the offset field from the TCP header. As usual, we 13098 * try to help the compiler more than the reader. 13099 */ 13100 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13101 if (offset != 5) { 13102 tcpoptions: 13103 if (offset < 5) { 13104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13105 goto error; 13106 } 13107 /* 13108 * There must be TCP options. 13109 * Make sure we can grab them. 13110 */ 13111 offset <<= 2; 13112 offset += u1; 13113 if (len < offset) { 13114 if (!pullupmsg(mp, offset)) { 13115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13116 goto error; 13117 } 13118 ipha = (ipha_t *)mp->b_rptr; 13119 len = mp->b_wptr - rptr; 13120 } 13121 } 13122 13123 /* Get the total packet length in len, including headers. */ 13124 if (mp->b_cont) { 13125 multipkttcp: 13126 len = msgdsize(mp); 13127 } 13128 13129 /* 13130 * Check the TCP checksum by pulling together the pseudo- 13131 * header checksum, and passing it to ip_csum to be added in 13132 * with the TCP datagram. 13133 * 13134 * Since we are not using the hwcksum if available we must 13135 * clear the flag. We may come here via tcppullup or tcpoptions. 13136 * If either of these fails along the way the mblk is freed. 13137 * If this logic ever changes and mblk is reused to say send 13138 * ICMP's back, then this flag may need to be cleared in 13139 * other places as well. 13140 */ 13141 DB_CKSUMFLAGS(mp) = 0; 13142 13143 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13144 13145 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13146 #ifdef _BIG_ENDIAN 13147 u1 += IPPROTO_TCP; 13148 #else 13149 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13150 #endif 13151 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13152 /* 13153 * Not M_DATA mblk or its a dup, so do the checksum now. 13154 */ 13155 IP_STAT(ipst, ip_in_sw_cksum); 13156 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13157 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13158 goto error; 13159 } 13160 13161 IP_STAT(ipst, ip_tcp_slow_path); 13162 goto try_again; 13163 #undef iphs 13164 #undef rptr 13165 13166 error: 13167 freemsg(first_mp); 13168 slow_done: 13169 return (NULL); 13170 } 13171 13172 /* ARGSUSED */ 13173 static void 13174 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13175 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13176 { 13177 conn_t *connp; 13178 uint32_t sum; 13179 uint32_t u1; 13180 ssize_t len; 13181 sctp_hdr_t *sctph; 13182 zoneid_t zoneid = ire->ire_zoneid; 13183 uint32_t pktsum; 13184 uint32_t calcsum; 13185 uint32_t ports; 13186 in6_addr_t map_src, map_dst; 13187 ill_t *ill = (ill_t *)q->q_ptr; 13188 ip_stack_t *ipst; 13189 sctp_stack_t *sctps; 13190 boolean_t sctp_csum_err = B_FALSE; 13191 13192 ASSERT(recv_ill != NULL); 13193 ipst = recv_ill->ill_ipst; 13194 sctps = ipst->ips_netstack->netstack_sctp; 13195 13196 #define rptr ((uchar_t *)ipha) 13197 13198 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13199 ASSERT(ill != NULL); 13200 13201 /* u1 is # words of IP options */ 13202 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13203 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13204 13205 /* IP options present */ 13206 if (u1 > 0) { 13207 goto ipoptions; 13208 } else { 13209 /* Check the IP header checksum. */ 13210 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13211 !mctl_present) { 13212 #define uph ((uint16_t *)ipha) 13213 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13214 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13215 #undef uph 13216 /* finish doing IP checksum */ 13217 sum = (sum & 0xFFFF) + (sum >> 16); 13218 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13219 /* 13220 * Don't verify header checksum if this packet 13221 * is coming back from AH/ESP as we already did it. 13222 */ 13223 if (sum != 0 && sum != 0xFFFF) { 13224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13225 goto error; 13226 } 13227 } 13228 /* 13229 * Since there is no SCTP h/w cksum support yet, just 13230 * clear the flag. 13231 */ 13232 DB_CKSUMFLAGS(mp) = 0; 13233 } 13234 13235 /* 13236 * Don't verify header checksum if this packet is coming 13237 * back from AH/ESP as we already did it. 13238 */ 13239 if (!mctl_present) { 13240 UPDATE_IB_PKT_COUNT(ire); 13241 ire->ire_last_used_time = lbolt; 13242 } 13243 13244 /* packet part of fragmented IP packet? */ 13245 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13246 if (u1 & (IPH_MF | IPH_OFFSET)) 13247 goto fragmented; 13248 13249 /* u1 = IP header length (20 bytes) */ 13250 u1 = IP_SIMPLE_HDR_LENGTH; 13251 13252 find_sctp_client: 13253 /* Pullup if we don't have the sctp common header. */ 13254 len = MBLKL(mp); 13255 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13256 if (mp->b_cont == NULL || 13257 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13259 goto error; 13260 } 13261 ipha = (ipha_t *)mp->b_rptr; 13262 len = MBLKL(mp); 13263 } 13264 13265 sctph = (sctp_hdr_t *)(rptr + u1); 13266 #ifdef DEBUG 13267 if (!skip_sctp_cksum) { 13268 #endif 13269 pktsum = sctph->sh_chksum; 13270 sctph->sh_chksum = 0; 13271 calcsum = sctp_cksum(mp, u1); 13272 sctph->sh_chksum = pktsum; 13273 if (calcsum != pktsum) 13274 sctp_csum_err = B_TRUE; 13275 #ifdef DEBUG /* skip_sctp_cksum */ 13276 } 13277 #endif 13278 /* get the ports */ 13279 ports = *(uint32_t *)&sctph->sh_sport; 13280 13281 IRE_REFRELE(ire); 13282 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13283 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13284 if (sctp_csum_err) { 13285 /* 13286 * No potential sctp checksum errors go to the Sun 13287 * sctp stack however they might be Adler-32 summed 13288 * packets a userland stack bound to a raw IP socket 13289 * could reasonably use. Note though that Adler-32 is 13290 * a long deprecated algorithm and customer sctp 13291 * networks should eventually migrate to CRC-32 at 13292 * which time this facility should be removed. 13293 */ 13294 flags |= IP_FF_SCTP_CSUM_ERR; 13295 goto no_conn; 13296 } 13297 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13298 sctps)) == NULL) { 13299 /* Check for raw socket or OOTB handling */ 13300 goto no_conn; 13301 } 13302 13303 /* Found a client; up it goes */ 13304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13305 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13306 return; 13307 13308 no_conn: 13309 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13310 ports, mctl_present, flags, B_TRUE, zoneid); 13311 return; 13312 13313 ipoptions: 13314 DB_CKSUMFLAGS(mp) = 0; 13315 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13316 goto slow_done; 13317 13318 UPDATE_IB_PKT_COUNT(ire); 13319 ire->ire_last_used_time = lbolt; 13320 13321 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13322 if (u1 & (IPH_MF | IPH_OFFSET)) { 13323 fragmented: 13324 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13325 goto slow_done; 13326 /* 13327 * Make sure that first_mp points back to mp as 13328 * the mp we came in with could have changed in 13329 * ip_rput_fragment(). 13330 */ 13331 ASSERT(!mctl_present); 13332 ipha = (ipha_t *)mp->b_rptr; 13333 first_mp = mp; 13334 } 13335 13336 /* Now we have a complete datagram, destined for this machine. */ 13337 u1 = IPH_HDR_LENGTH(ipha); 13338 goto find_sctp_client; 13339 #undef iphs 13340 #undef rptr 13341 13342 error: 13343 freemsg(first_mp); 13344 slow_done: 13345 IRE_REFRELE(ire); 13346 } 13347 13348 #define VER_BITS 0xF0 13349 #define VERSION_6 0x60 13350 13351 static boolean_t 13352 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13353 ipaddr_t *dstp, ip_stack_t *ipst) 13354 { 13355 uint_t opt_len; 13356 ipha_t *ipha; 13357 ssize_t len; 13358 uint_t pkt_len; 13359 13360 ASSERT(ill != NULL); 13361 IP_STAT(ipst, ip_ipoptions); 13362 ipha = *iphapp; 13363 13364 #define rptr ((uchar_t *)ipha) 13365 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13366 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13367 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13368 freemsg(mp); 13369 return (B_FALSE); 13370 } 13371 13372 /* multiple mblk or too short */ 13373 pkt_len = ntohs(ipha->ipha_length); 13374 13375 /* Get the number of words of IP options in the IP header. */ 13376 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13377 if (opt_len) { 13378 /* IP Options present! Validate and process. */ 13379 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13380 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13381 goto done; 13382 } 13383 /* 13384 * Recompute complete header length and make sure we 13385 * have access to all of it. 13386 */ 13387 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13388 if (len > (mp->b_wptr - rptr)) { 13389 if (len > pkt_len) { 13390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13391 goto done; 13392 } 13393 if (!pullupmsg(mp, len)) { 13394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13395 goto done; 13396 } 13397 ipha = (ipha_t *)mp->b_rptr; 13398 } 13399 /* 13400 * Go off to ip_rput_options which returns the next hop 13401 * destination address, which may have been affected 13402 * by source routing. 13403 */ 13404 IP_STAT(ipst, ip_opt); 13405 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13407 return (B_FALSE); 13408 } 13409 } 13410 *iphapp = ipha; 13411 return (B_TRUE); 13412 done: 13413 /* clear b_prev - used by ip_mroute_decap */ 13414 mp->b_prev = NULL; 13415 freemsg(mp); 13416 return (B_FALSE); 13417 #undef rptr 13418 } 13419 13420 /* 13421 * Deal with the fact that there is no ire for the destination. 13422 */ 13423 static ire_t * 13424 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13425 { 13426 ipha_t *ipha; 13427 ill_t *ill; 13428 ire_t *ire; 13429 ip_stack_t *ipst; 13430 enum ire_forward_action ret_action; 13431 13432 ipha = (ipha_t *)mp->b_rptr; 13433 ill = (ill_t *)q->q_ptr; 13434 13435 ASSERT(ill != NULL); 13436 ipst = ill->ill_ipst; 13437 13438 /* 13439 * No IRE for this destination, so it can't be for us. 13440 * Unless we are forwarding, drop the packet. 13441 * We have to let source routed packets through 13442 * since we don't yet know if they are 'ping -l' 13443 * packets i.e. if they will go out over the 13444 * same interface as they came in on. 13445 */ 13446 if (ll_multicast) { 13447 freemsg(mp); 13448 return (NULL); 13449 } 13450 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13452 freemsg(mp); 13453 return (NULL); 13454 } 13455 13456 /* 13457 * Mark this packet as having originated externally. 13458 * 13459 * For non-forwarding code path, ire_send later double 13460 * checks this interface to see if it is still exists 13461 * post-ARP resolution. 13462 * 13463 * Also, IPQOS uses this to differentiate between 13464 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13465 * QOS packet processing in ip_wput_attach_llhdr(). 13466 * The QoS module can mark the b_band for a fastpath message 13467 * or the dl_priority field in a unitdata_req header for 13468 * CoS marking. This info can only be found in 13469 * ip_wput_attach_llhdr(). 13470 */ 13471 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13472 /* 13473 * Clear the indication that this may have a hardware checksum 13474 * as we are not using it 13475 */ 13476 DB_CKSUMFLAGS(mp) = 0; 13477 13478 ire = ire_forward(dst, &ret_action, NULL, NULL, 13479 MBLK_GETLABEL(mp), ipst); 13480 13481 if (ire == NULL && ret_action == Forward_check_multirt) { 13482 /* Let ip_newroute handle CGTP */ 13483 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13484 return (NULL); 13485 } 13486 13487 if (ire != NULL) 13488 return (ire); 13489 13490 mp->b_prev = mp->b_next = 0; 13491 13492 if (ret_action == Forward_blackhole) { 13493 freemsg(mp); 13494 return (NULL); 13495 } 13496 /* send icmp unreachable */ 13497 q = WR(q); 13498 /* Sent by forwarding path, and router is global zone */ 13499 if (ip_source_routed(ipha, ipst)) { 13500 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13501 GLOBAL_ZONEID, ipst); 13502 } else { 13503 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13504 ipst); 13505 } 13506 13507 return (NULL); 13508 13509 } 13510 13511 /* 13512 * check ip header length and align it. 13513 */ 13514 static boolean_t 13515 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13516 { 13517 ssize_t len; 13518 ill_t *ill; 13519 ipha_t *ipha; 13520 13521 len = MBLKL(mp); 13522 13523 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13524 ill = (ill_t *)q->q_ptr; 13525 13526 if (!OK_32PTR(mp->b_rptr)) 13527 IP_STAT(ipst, ip_notaligned1); 13528 else 13529 IP_STAT(ipst, ip_notaligned2); 13530 /* Guard against bogus device drivers */ 13531 if (len < 0) { 13532 /* clear b_prev - used by ip_mroute_decap */ 13533 mp->b_prev = NULL; 13534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13535 freemsg(mp); 13536 return (B_FALSE); 13537 } 13538 13539 if (ip_rput_pullups++ == 0) { 13540 ipha = (ipha_t *)mp->b_rptr; 13541 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13542 "ip_check_and_align_header: %s forced us to " 13543 " pullup pkt, hdr len %ld, hdr addr %p", 13544 ill->ill_name, len, (void *)ipha); 13545 } 13546 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13547 /* clear b_prev - used by ip_mroute_decap */ 13548 mp->b_prev = NULL; 13549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13550 freemsg(mp); 13551 return (B_FALSE); 13552 } 13553 } 13554 return (B_TRUE); 13555 } 13556 13557 /* 13558 * Handle the situation where a packet came in on `ill' but matched an IRE 13559 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13560 * for interface statistics. 13561 */ 13562 ire_t * 13563 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13564 { 13565 ire_t *new_ire; 13566 ill_t *ire_ill; 13567 uint_t ifindex; 13568 ip_stack_t *ipst = ill->ill_ipst; 13569 boolean_t strict_check = B_FALSE; 13570 13571 /* 13572 * IPMP common case: if IRE and ILL are in the same group, there's no 13573 * issue (e.g. packet received on an underlying interface matched an 13574 * IRE_LOCAL on its associated group interface). 13575 */ 13576 if (ire->ire_rfq != NULL && 13577 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13578 return (ire); 13579 } 13580 13581 /* 13582 * Do another ire lookup here, using the ingress ill, to see if the 13583 * interface is in a usesrc group. 13584 * As long as the ills belong to the same group, we don't consider 13585 * them to be arriving on the wrong interface. Thus, if the switch 13586 * is doing inbound load spreading, we won't drop packets when the 13587 * ip*_strict_dst_multihoming switch is on. 13588 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13589 * where the local address may not be unique. In this case we were 13590 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13591 * actually returned. The new lookup, which is more specific, should 13592 * only find the IRE_LOCAL associated with the ingress ill if one 13593 * exists. 13594 */ 13595 13596 if (ire->ire_ipversion == IPV4_VERSION) { 13597 if (ipst->ips_ip_strict_dst_multihoming) 13598 strict_check = B_TRUE; 13599 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13600 ill->ill_ipif, ALL_ZONES, NULL, 13601 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13602 } else { 13603 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13604 if (ipst->ips_ipv6_strict_dst_multihoming) 13605 strict_check = B_TRUE; 13606 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13607 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13608 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13609 } 13610 /* 13611 * If the same ire that was returned in ip_input() is found then this 13612 * is an indication that usesrc groups are in use. The packet 13613 * arrived on a different ill in the group than the one associated with 13614 * the destination address. If a different ire was found then the same 13615 * IP address must be hosted on multiple ills. This is possible with 13616 * unnumbered point2point interfaces. We switch to use this new ire in 13617 * order to have accurate interface statistics. 13618 */ 13619 if (new_ire != NULL) { 13620 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13621 ire_refrele(ire); 13622 ire = new_ire; 13623 } else { 13624 ire_refrele(new_ire); 13625 } 13626 return (ire); 13627 } else if ((ire->ire_rfq == NULL) && 13628 (ire->ire_ipversion == IPV4_VERSION)) { 13629 /* 13630 * The best match could have been the original ire which 13631 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13632 * the strict multihoming checks are irrelevant as we consider 13633 * local addresses hosted on lo0 to be interface agnostic. We 13634 * only expect a null ire_rfq on IREs which are associated with 13635 * lo0 hence we can return now. 13636 */ 13637 return (ire); 13638 } 13639 13640 /* 13641 * Chase pointers once and store locally. 13642 */ 13643 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13644 (ill_t *)(ire->ire_rfq->q_ptr); 13645 ifindex = ill->ill_usesrc_ifindex; 13646 13647 /* 13648 * Check if it's a legal address on the 'usesrc' interface. 13649 */ 13650 if ((ifindex != 0) && (ire_ill != NULL) && 13651 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13652 return (ire); 13653 } 13654 13655 /* 13656 * If the ip*_strict_dst_multihoming switch is on then we can 13657 * only accept this packet if the interface is marked as routing. 13658 */ 13659 if (!(strict_check)) 13660 return (ire); 13661 13662 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13663 ILLF_ROUTER) != 0) { 13664 return (ire); 13665 } 13666 13667 ire_refrele(ire); 13668 return (NULL); 13669 } 13670 13671 /* 13672 * 13673 * This is the fast forward path. If we are here, we dont need to 13674 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13675 * needed to find the nexthop in this case is much simpler 13676 */ 13677 ire_t * 13678 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13679 { 13680 ipha_t *ipha; 13681 ire_t *src_ire; 13682 ill_t *stq_ill; 13683 uint_t hlen; 13684 uint_t pkt_len; 13685 uint32_t sum; 13686 queue_t *dev_q; 13687 ip_stack_t *ipst = ill->ill_ipst; 13688 mblk_t *fpmp; 13689 enum ire_forward_action ret_action; 13690 13691 ipha = (ipha_t *)mp->b_rptr; 13692 13693 if (ire != NULL && 13694 ire->ire_zoneid != GLOBAL_ZONEID && 13695 ire->ire_zoneid != ALL_ZONES) { 13696 /* 13697 * Should only use IREs that are visible to the global 13698 * zone for forwarding. 13699 */ 13700 ire_refrele(ire); 13701 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13702 /* 13703 * ire_cache_lookup() can return ire of IRE_LOCAL in 13704 * transient cases. In such case, just drop the packet 13705 */ 13706 if (ire->ire_type != IRE_CACHE) 13707 goto drop; 13708 } 13709 13710 /* 13711 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13712 * The loopback address check for both src and dst has already 13713 * been checked in ip_input 13714 */ 13715 13716 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13718 goto drop; 13719 } 13720 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13721 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13722 13723 if (src_ire != NULL) { 13724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13725 ire_refrele(src_ire); 13726 goto drop; 13727 } 13728 13729 /* No ire cache of nexthop. So first create one */ 13730 if (ire == NULL) { 13731 13732 ire = ire_forward_simple(dst, &ret_action, ipst); 13733 13734 /* 13735 * We only come to ip_fast_forward if ip_cgtp_filter 13736 * is not set. So ire_forward() should not return with 13737 * Forward_check_multirt as the next action. 13738 */ 13739 ASSERT(ret_action != Forward_check_multirt); 13740 if (ire == NULL) { 13741 /* An attempt was made to forward the packet */ 13742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13744 mp->b_prev = mp->b_next = 0; 13745 /* send icmp unreachable */ 13746 /* Sent by forwarding path, and router is global zone */ 13747 if (ret_action == Forward_ret_icmp_err) { 13748 if (ip_source_routed(ipha, ipst)) { 13749 icmp_unreachable(ill->ill_wq, mp, 13750 ICMP_SOURCE_ROUTE_FAILED, 13751 GLOBAL_ZONEID, ipst); 13752 } else { 13753 icmp_unreachable(ill->ill_wq, mp, 13754 ICMP_HOST_UNREACHABLE, 13755 GLOBAL_ZONEID, ipst); 13756 } 13757 } else { 13758 freemsg(mp); 13759 } 13760 return (NULL); 13761 } 13762 } 13763 13764 /* 13765 * Forwarding fastpath exception case: 13766 * If any of the following are true, we take the slowpath: 13767 * o forwarding is not enabled 13768 * o incoming and outgoing interface are the same, or in the same 13769 * IPMP group. 13770 * o corresponding ire is in incomplete state 13771 * o packet needs fragmentation 13772 * o ARP cache is not resolved 13773 * 13774 * The codeflow from here on is thus: 13775 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13776 */ 13777 pkt_len = ntohs(ipha->ipha_length); 13778 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13779 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13780 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13781 (ire->ire_nce == NULL) || 13782 (pkt_len > ire->ire_max_frag) || 13783 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13784 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13785 ipha->ipha_ttl <= 1) { 13786 ip_rput_process_forward(ill->ill_rq, mp, ire, 13787 ipha, ill, B_FALSE, B_TRUE); 13788 return (ire); 13789 } 13790 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13791 13792 DTRACE_PROBE4(ip4__forwarding__start, 13793 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13794 13795 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13796 ipst->ips_ipv4firewall_forwarding, 13797 ill, stq_ill, ipha, mp, mp, 0, ipst); 13798 13799 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13800 13801 if (mp == NULL) 13802 goto drop; 13803 13804 mp->b_datap->db_struioun.cksum.flags = 0; 13805 /* Adjust the checksum to reflect the ttl decrement. */ 13806 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13807 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13808 ipha->ipha_ttl--; 13809 13810 /* 13811 * Write the link layer header. We can do this safely here, 13812 * because we have already tested to make sure that the IP 13813 * policy is not set, and that we have a fast path destination 13814 * header. 13815 */ 13816 mp->b_rptr -= hlen; 13817 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13818 13819 UPDATE_IB_PKT_COUNT(ire); 13820 ire->ire_last_used_time = lbolt; 13821 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13822 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13823 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13824 13825 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13826 dev_q = ire->ire_stq->q_next; 13827 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13828 goto indiscard; 13829 } 13830 13831 DTRACE_PROBE4(ip4__physical__out__start, 13832 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13833 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13834 ipst->ips_ipv4firewall_physical_out, 13835 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13836 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13837 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13838 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13839 ip6_t *, NULL, int, 0); 13840 13841 if (mp != NULL) { 13842 if (ipst->ips_ipobs_enabled) { 13843 zoneid_t szone; 13844 13845 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13846 ipst, ALL_ZONES); 13847 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13848 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 13849 } 13850 13851 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 13852 } 13853 return (ire); 13854 13855 indiscard: 13856 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13857 drop: 13858 if (mp != NULL) 13859 freemsg(mp); 13860 return (ire); 13861 13862 } 13863 13864 /* 13865 * This function is called in the forwarding slowpath, when 13866 * either the ire lacks the link-layer address, or the packet needs 13867 * further processing(eg. fragmentation), before transmission. 13868 */ 13869 13870 static void 13871 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13872 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13873 { 13874 queue_t *dev_q; 13875 ire_t *src_ire; 13876 ip_stack_t *ipst = ill->ill_ipst; 13877 boolean_t same_illgrp = B_FALSE; 13878 13879 ASSERT(ire->ire_stq != NULL); 13880 13881 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13882 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13883 13884 /* 13885 * If the caller of this function is ip_fast_forward() skip the 13886 * next three checks as it does not apply. 13887 */ 13888 if (from_ip_fast_forward) 13889 goto skip; 13890 13891 if (ll_multicast != 0) { 13892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13893 goto drop_pkt; 13894 } 13895 13896 /* 13897 * check if ipha_src is a broadcast address. Note that this 13898 * check is redundant when we get here from ip_fast_forward() 13899 * which has already done this check. However, since we can 13900 * also get here from ip_rput_process_broadcast() or, for 13901 * for the slow path through ip_fast_forward(), we perform 13902 * the check again for code-reusability 13903 */ 13904 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13905 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13906 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 13907 if (src_ire != NULL) 13908 ire_refrele(src_ire); 13909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13910 ip2dbg(("ip_rput_process_forward: Received packet with" 13911 " bad src/dst address on %s\n", ill->ill_name)); 13912 goto drop_pkt; 13913 } 13914 13915 /* 13916 * Check if we want to forward this one at this time. 13917 * We allow source routed packets on a host provided that 13918 * they go out the same ill or illgrp as they came in on. 13919 * 13920 * XXX To be quicker, we may wish to not chase pointers to 13921 * get the ILLF_ROUTER flag and instead store the 13922 * forwarding policy in the ire. An unfortunate 13923 * side-effect of that would be requiring an ire flush 13924 * whenever the ILLF_ROUTER flag changes. 13925 */ 13926 skip: 13927 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 13928 13929 if (((ill->ill_flags & 13930 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 13931 !(ip_source_routed(ipha, ipst) && 13932 (ire->ire_rfq == q || same_illgrp))) { 13933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13934 if (ip_source_routed(ipha, ipst)) { 13935 q = WR(q); 13936 /* 13937 * Clear the indication that this may have 13938 * hardware checksum as we are not using it. 13939 */ 13940 DB_CKSUMFLAGS(mp) = 0; 13941 /* Sent by forwarding path, and router is global zone */ 13942 icmp_unreachable(q, mp, 13943 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 13944 return; 13945 } 13946 goto drop_pkt; 13947 } 13948 13949 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13950 13951 /* Packet is being forwarded. Turning off hwcksum flag. */ 13952 DB_CKSUMFLAGS(mp) = 0; 13953 if (ipst->ips_ip_g_send_redirects) { 13954 /* 13955 * Check whether the incoming interface and outgoing 13956 * interface is part of the same group. If so, 13957 * send redirects. 13958 * 13959 * Check the source address to see if it originated 13960 * on the same logical subnet it is going back out on. 13961 * If so, we should be able to send it a redirect. 13962 * Avoid sending a redirect if the destination 13963 * is directly connected (i.e., ipha_dst is the same 13964 * as ire_gateway_addr or the ire_addr of the 13965 * nexthop IRE_CACHE ), or if the packet was source 13966 * routed out this interface. 13967 */ 13968 ipaddr_t src, nhop; 13969 mblk_t *mp1; 13970 ire_t *nhop_ire = NULL; 13971 13972 /* 13973 * Check whether ire_rfq and q are from the same ill or illgrp. 13974 * If so, send redirects. 13975 */ 13976 if ((ire->ire_rfq == q || same_illgrp) && 13977 !ip_source_routed(ipha, ipst)) { 13978 13979 nhop = (ire->ire_gateway_addr != 0 ? 13980 ire->ire_gateway_addr : ire->ire_addr); 13981 13982 if (ipha->ipha_dst == nhop) { 13983 /* 13984 * We avoid sending a redirect if the 13985 * destination is directly connected 13986 * because it is possible that multiple 13987 * IP subnets may have been configured on 13988 * the link, and the source may not 13989 * be on the same subnet as ip destination, 13990 * even though they are on the same 13991 * physical link. 13992 */ 13993 goto sendit; 13994 } 13995 13996 src = ipha->ipha_src; 13997 13998 /* 13999 * We look up the interface ire for the nexthop, 14000 * to see if ipha_src is in the same subnet 14001 * as the nexthop. 14002 * 14003 * Note that, if, in the future, IRE_CACHE entries 14004 * are obsoleted, this lookup will not be needed, 14005 * as the ire passed to this function will be the 14006 * same as the nhop_ire computed below. 14007 */ 14008 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14009 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14010 0, NULL, MATCH_IRE_TYPE, ipst); 14011 14012 if (nhop_ire != NULL) { 14013 if ((src & nhop_ire->ire_mask) == 14014 (nhop & nhop_ire->ire_mask)) { 14015 /* 14016 * The source is directly connected. 14017 * Just copy the ip header (which is 14018 * in the first mblk) 14019 */ 14020 mp1 = copyb(mp); 14021 if (mp1 != NULL) { 14022 icmp_send_redirect(WR(q), mp1, 14023 nhop, ipst); 14024 } 14025 } 14026 ire_refrele(nhop_ire); 14027 } 14028 } 14029 } 14030 sendit: 14031 dev_q = ire->ire_stq->q_next; 14032 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14034 freemsg(mp); 14035 return; 14036 } 14037 14038 ip_rput_forward(ire, ipha, mp, ill); 14039 return; 14040 14041 drop_pkt: 14042 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14043 freemsg(mp); 14044 } 14045 14046 ire_t * 14047 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14048 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14049 { 14050 queue_t *q; 14051 uint16_t hcksumflags; 14052 ip_stack_t *ipst = ill->ill_ipst; 14053 14054 q = *qp; 14055 14056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14057 14058 /* 14059 * Clear the indication that this may have hardware 14060 * checksum as we are not using it for forwarding. 14061 */ 14062 hcksumflags = DB_CKSUMFLAGS(mp); 14063 DB_CKSUMFLAGS(mp) = 0; 14064 14065 /* 14066 * Directed broadcast forwarding: if the packet came in over a 14067 * different interface then it is routed out over we can forward it. 14068 */ 14069 if (ipha->ipha_protocol == IPPROTO_TCP) { 14070 ire_refrele(ire); 14071 freemsg(mp); 14072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14073 return (NULL); 14074 } 14075 /* 14076 * For multicast we have set dst to be INADDR_BROADCAST 14077 * for delivering to all STREAMS. 14078 */ 14079 if (!CLASSD(ipha->ipha_dst)) { 14080 ire_t *new_ire; 14081 ipif_t *ipif; 14082 14083 ipif = ipif_get_next_ipif(NULL, ill); 14084 if (ipif == NULL) { 14085 discard: ire_refrele(ire); 14086 freemsg(mp); 14087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14088 return (NULL); 14089 } 14090 new_ire = ire_ctable_lookup(dst, 0, 0, 14091 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14092 ipif_refrele(ipif); 14093 14094 if (new_ire != NULL) { 14095 /* 14096 * If the matching IRE_BROADCAST is part of an IPMP 14097 * group, then drop the packet unless our ill has been 14098 * nominated to receive for the group. 14099 */ 14100 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14101 new_ire->ire_rfq != q) { 14102 ire_refrele(new_ire); 14103 goto discard; 14104 } 14105 14106 /* 14107 * In the special case of multirouted broadcast 14108 * packets, we unconditionally need to "gateway" 14109 * them to the appropriate interface here. 14110 * In the normal case, this cannot happen, because 14111 * there is no broadcast IRE tagged with the 14112 * RTF_MULTIRT flag. 14113 */ 14114 if (new_ire->ire_flags & RTF_MULTIRT) { 14115 ire_refrele(new_ire); 14116 if (ire->ire_rfq != NULL) { 14117 q = ire->ire_rfq; 14118 *qp = q; 14119 } 14120 } else { 14121 ire_refrele(ire); 14122 ire = new_ire; 14123 } 14124 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14125 if (!ipst->ips_ip_g_forward_directed_bcast) { 14126 /* 14127 * Free the message if 14128 * ip_g_forward_directed_bcast is turned 14129 * off for non-local broadcast. 14130 */ 14131 ire_refrele(ire); 14132 freemsg(mp); 14133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14134 return (NULL); 14135 } 14136 } else { 14137 /* 14138 * This CGTP packet successfully passed the 14139 * CGTP filter, but the related CGTP 14140 * broadcast IRE has not been found, 14141 * meaning that the redundant ipif is 14142 * probably down. However, if we discarded 14143 * this packet, its duplicate would be 14144 * filtered out by the CGTP filter so none 14145 * of them would get through. So we keep 14146 * going with this one. 14147 */ 14148 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14149 if (ire->ire_rfq != NULL) { 14150 q = ire->ire_rfq; 14151 *qp = q; 14152 } 14153 } 14154 } 14155 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14156 /* 14157 * Verify that there are not more then one 14158 * IRE_BROADCAST with this broadcast address which 14159 * has ire_stq set. 14160 * TODO: simplify, loop over all IRE's 14161 */ 14162 ire_t *ire1; 14163 int num_stq = 0; 14164 mblk_t *mp1; 14165 14166 /* Find the first one with ire_stq set */ 14167 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14168 for (ire1 = ire; ire1 && 14169 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14170 ire1 = ire1->ire_next) 14171 ; 14172 if (ire1) { 14173 ire_refrele(ire); 14174 ire = ire1; 14175 IRE_REFHOLD(ire); 14176 } 14177 14178 /* Check if there are additional ones with stq set */ 14179 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14180 if (ire->ire_addr != ire1->ire_addr) 14181 break; 14182 if (ire1->ire_stq) { 14183 num_stq++; 14184 break; 14185 } 14186 } 14187 rw_exit(&ire->ire_bucket->irb_lock); 14188 if (num_stq == 1 && ire->ire_stq != NULL) { 14189 ip1dbg(("ip_rput_process_broadcast: directed " 14190 "broadcast to 0x%x\n", 14191 ntohl(ire->ire_addr))); 14192 mp1 = copymsg(mp); 14193 if (mp1) { 14194 switch (ipha->ipha_protocol) { 14195 case IPPROTO_UDP: 14196 ip_udp_input(q, mp1, ipha, ire, ill); 14197 break; 14198 default: 14199 ip_proto_input(q, mp1, ipha, ire, ill, 14200 0); 14201 break; 14202 } 14203 } 14204 /* 14205 * Adjust ttl to 2 (1+1 - the forward engine 14206 * will decrement it by one. 14207 */ 14208 if (ip_csum_hdr(ipha)) { 14209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14210 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14211 freemsg(mp); 14212 ire_refrele(ire); 14213 return (NULL); 14214 } 14215 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14216 ipha->ipha_hdr_checksum = 0; 14217 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14218 ip_rput_process_forward(q, mp, ire, ipha, 14219 ill, ll_multicast, B_FALSE); 14220 ire_refrele(ire); 14221 return (NULL); 14222 } 14223 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14224 ntohl(ire->ire_addr))); 14225 } 14226 14227 /* Restore any hardware checksum flags */ 14228 DB_CKSUMFLAGS(mp) = hcksumflags; 14229 return (ire); 14230 } 14231 14232 /* ARGSUSED */ 14233 static boolean_t 14234 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14235 int *ll_multicast, ipaddr_t *dstp) 14236 { 14237 ip_stack_t *ipst = ill->ill_ipst; 14238 14239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14240 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14241 ntohs(ipha->ipha_length)); 14242 14243 /* 14244 * So that we don't end up with dups, only one ill an IPMP group is 14245 * nominated to receive multicast traffic. 14246 */ 14247 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14248 goto drop_pkt; 14249 14250 /* 14251 * Forward packets only if we have joined the allmulti 14252 * group on this interface. 14253 */ 14254 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14255 int retval; 14256 14257 /* 14258 * Clear the indication that this may have hardware 14259 * checksum as we are not using it. 14260 */ 14261 DB_CKSUMFLAGS(mp) = 0; 14262 retval = ip_mforward(ill, ipha, mp); 14263 /* ip_mforward updates mib variables if needed */ 14264 /* clear b_prev - used by ip_mroute_decap */ 14265 mp->b_prev = NULL; 14266 14267 switch (retval) { 14268 case 0: 14269 /* 14270 * pkt is okay and arrived on phyint. 14271 * 14272 * If we are running as a multicast router 14273 * we need to see all IGMP and/or PIM packets. 14274 */ 14275 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14276 (ipha->ipha_protocol == IPPROTO_PIM)) { 14277 goto done; 14278 } 14279 break; 14280 case -1: 14281 /* pkt is mal-formed, toss it */ 14282 goto drop_pkt; 14283 case 1: 14284 /* pkt is okay and arrived on a tunnel */ 14285 /* 14286 * If we are running a multicast router 14287 * we need to see all igmp packets. 14288 */ 14289 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14290 *dstp = INADDR_BROADCAST; 14291 *ll_multicast = 1; 14292 return (B_FALSE); 14293 } 14294 14295 goto drop_pkt; 14296 } 14297 } 14298 14299 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14300 /* 14301 * This might just be caused by the fact that 14302 * multiple IP Multicast addresses map to the same 14303 * link layer multicast - no need to increment counter! 14304 */ 14305 freemsg(mp); 14306 return (B_TRUE); 14307 } 14308 done: 14309 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14310 /* 14311 * This assumes the we deliver to all streams for multicast 14312 * and broadcast packets. 14313 */ 14314 *dstp = INADDR_BROADCAST; 14315 *ll_multicast = 1; 14316 return (B_FALSE); 14317 drop_pkt: 14318 ip2dbg(("ip_rput: drop pkt\n")); 14319 freemsg(mp); 14320 return (B_TRUE); 14321 } 14322 14323 /* 14324 * This function is used to both return an indication of whether or not 14325 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14326 * and in doing so, determine whether or not it is broadcast vs multicast. 14327 * For it to be a broadcast packet, we must have the appropriate mblk_t 14328 * hanging off the ill_t. If this is either not present or doesn't match 14329 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14330 * to be multicast. Thus NICs that have no broadcast address (or no 14331 * capability for one, such as point to point links) cannot return as 14332 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14333 * the return values simplifies the current use of the return value of this 14334 * function, which is to pass through the multicast/broadcast characteristic 14335 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14336 * changing the return value to some other symbol demands the appropriate 14337 * "translation" when hpe_flags is set prior to calling hook_run() for 14338 * packet events. 14339 */ 14340 int 14341 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14342 { 14343 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14344 mblk_t *bmp; 14345 14346 if (ind->dl_group_address) { 14347 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14348 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14349 MBLKL(mb) && 14350 (bmp = ill->ill_bcast_mp) != NULL) { 14351 dl_unitdata_req_t *dlur; 14352 uint8_t *bphys_addr; 14353 14354 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14355 if (ill->ill_sap_length < 0) 14356 bphys_addr = (uchar_t *)dlur + 14357 dlur->dl_dest_addr_offset; 14358 else 14359 bphys_addr = (uchar_t *)dlur + 14360 dlur->dl_dest_addr_offset + 14361 ill->ill_sap_length; 14362 14363 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14364 bphys_addr, ind->dl_dest_addr_length) == 0) { 14365 return (HPE_BROADCAST); 14366 } 14367 return (HPE_MULTICAST); 14368 } 14369 return (HPE_MULTICAST); 14370 } 14371 return (0); 14372 } 14373 14374 static boolean_t 14375 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14376 int *ll_multicast, mblk_t **mpp) 14377 { 14378 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14379 boolean_t must_copy = B_FALSE; 14380 struct iocblk *iocp; 14381 ipha_t *ipha; 14382 ip_stack_t *ipst = ill->ill_ipst; 14383 14384 #define rptr ((uchar_t *)ipha) 14385 14386 first_mp = *first_mpp; 14387 mp = *mpp; 14388 14389 ASSERT(first_mp == mp); 14390 14391 /* 14392 * if db_ref > 1 then copymsg and free original. Packet may be 14393 * changed and do not want other entity who has a reference to this 14394 * message to trip over the changes. This is a blind change because 14395 * trying to catch all places that might change packet is too 14396 * difficult (since it may be a module above this one) 14397 * 14398 * This corresponds to the non-fast path case. We walk down the full 14399 * chain in this case, and check the db_ref count of all the dblks, 14400 * and do a copymsg if required. It is possible that the db_ref counts 14401 * of the data blocks in the mblk chain can be different. 14402 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14403 * count of 1, followed by a M_DATA block with a ref count of 2, if 14404 * 'snoop' is running. 14405 */ 14406 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14407 if (mp1->b_datap->db_ref > 1) { 14408 must_copy = B_TRUE; 14409 break; 14410 } 14411 } 14412 14413 if (must_copy) { 14414 mp1 = copymsg(mp); 14415 if (mp1 == NULL) { 14416 for (mp1 = mp; mp1 != NULL; 14417 mp1 = mp1->b_cont) { 14418 mp1->b_next = NULL; 14419 mp1->b_prev = NULL; 14420 } 14421 freemsg(mp); 14422 if (ill != NULL) { 14423 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14424 } else { 14425 BUMP_MIB(&ipst->ips_ip_mib, 14426 ipIfStatsInDiscards); 14427 } 14428 return (B_TRUE); 14429 } 14430 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14431 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14432 /* Copy b_prev - used by ip_mroute_decap */ 14433 to_mp->b_prev = from_mp->b_prev; 14434 from_mp->b_prev = NULL; 14435 } 14436 *first_mpp = first_mp = mp1; 14437 freemsg(mp); 14438 mp = mp1; 14439 *mpp = mp1; 14440 } 14441 14442 ipha = (ipha_t *)mp->b_rptr; 14443 14444 /* 14445 * previous code has a case for M_DATA. 14446 * We want to check how that happens. 14447 */ 14448 ASSERT(first_mp->b_datap->db_type != M_DATA); 14449 switch (first_mp->b_datap->db_type) { 14450 case M_PROTO: 14451 case M_PCPROTO: 14452 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14453 DL_UNITDATA_IND) { 14454 /* Go handle anything other than data elsewhere. */ 14455 ip_rput_dlpi(q, mp); 14456 return (B_TRUE); 14457 } 14458 14459 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14460 /* Ditch the DLPI header. */ 14461 mp1 = mp->b_cont; 14462 ASSERT(first_mp == mp); 14463 *first_mpp = mp1; 14464 freeb(mp); 14465 *mpp = mp1; 14466 return (B_FALSE); 14467 case M_IOCACK: 14468 ip1dbg(("got iocack ")); 14469 iocp = (struct iocblk *)mp->b_rptr; 14470 switch (iocp->ioc_cmd) { 14471 case DL_IOC_HDR_INFO: 14472 ill = (ill_t *)q->q_ptr; 14473 ill_fastpath_ack(ill, mp); 14474 return (B_TRUE); 14475 case SIOCSTUNPARAM: 14476 case OSIOCSTUNPARAM: 14477 /* Go through qwriter_ip */ 14478 break; 14479 case SIOCGTUNPARAM: 14480 case OSIOCGTUNPARAM: 14481 ip_rput_other(NULL, q, mp, NULL); 14482 return (B_TRUE); 14483 default: 14484 putnext(q, mp); 14485 return (B_TRUE); 14486 } 14487 /* FALLTHRU */ 14488 case M_ERROR: 14489 case M_HANGUP: 14490 /* 14491 * Since this is on the ill stream we unconditionally 14492 * bump up the refcount 14493 */ 14494 ill_refhold(ill); 14495 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14496 return (B_TRUE); 14497 case M_CTL: 14498 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14499 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14500 IPHADA_M_CTL)) { 14501 /* 14502 * It's an IPsec accelerated packet. 14503 * Make sure that the ill from which we received the 14504 * packet has enabled IPsec hardware acceleration. 14505 */ 14506 if (!(ill->ill_capabilities & 14507 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14508 /* IPsec kstats: bean counter */ 14509 freemsg(mp); 14510 return (B_TRUE); 14511 } 14512 14513 /* 14514 * Make mp point to the mblk following the M_CTL, 14515 * then process according to type of mp. 14516 * After this processing, first_mp will point to 14517 * the data-attributes and mp to the pkt following 14518 * the M_CTL. 14519 */ 14520 mp = first_mp->b_cont; 14521 if (mp == NULL) { 14522 freemsg(first_mp); 14523 return (B_TRUE); 14524 } 14525 /* 14526 * A Hardware Accelerated packet can only be M_DATA 14527 * ESP or AH packet. 14528 */ 14529 if (mp->b_datap->db_type != M_DATA) { 14530 /* non-M_DATA IPsec accelerated packet */ 14531 IPSECHW_DEBUG(IPSECHW_PKT, 14532 ("non-M_DATA IPsec accelerated pkt\n")); 14533 freemsg(first_mp); 14534 return (B_TRUE); 14535 } 14536 ipha = (ipha_t *)mp->b_rptr; 14537 if (ipha->ipha_protocol != IPPROTO_AH && 14538 ipha->ipha_protocol != IPPROTO_ESP) { 14539 IPSECHW_DEBUG(IPSECHW_PKT, 14540 ("non-M_DATA IPsec accelerated pkt\n")); 14541 freemsg(first_mp); 14542 return (B_TRUE); 14543 } 14544 *mpp = mp; 14545 return (B_FALSE); 14546 } 14547 putnext(q, mp); 14548 return (B_TRUE); 14549 case M_IOCNAK: 14550 ip1dbg(("got iocnak ")); 14551 iocp = (struct iocblk *)mp->b_rptr; 14552 switch (iocp->ioc_cmd) { 14553 case SIOCSTUNPARAM: 14554 case OSIOCSTUNPARAM: 14555 /* 14556 * Since this is on the ill stream we unconditionally 14557 * bump up the refcount 14558 */ 14559 ill_refhold(ill); 14560 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14561 return (B_TRUE); 14562 case DL_IOC_HDR_INFO: 14563 case SIOCGTUNPARAM: 14564 case OSIOCGTUNPARAM: 14565 ip_rput_other(NULL, q, mp, NULL); 14566 return (B_TRUE); 14567 default: 14568 break; 14569 } 14570 /* FALLTHRU */ 14571 default: 14572 putnext(q, mp); 14573 return (B_TRUE); 14574 } 14575 } 14576 14577 /* Read side put procedure. Packets coming from the wire arrive here. */ 14578 void 14579 ip_rput(queue_t *q, mblk_t *mp) 14580 { 14581 ill_t *ill; 14582 union DL_primitives *dl; 14583 14584 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14585 14586 ill = (ill_t *)q->q_ptr; 14587 14588 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14589 /* 14590 * If things are opening or closing, only accept high-priority 14591 * DLPI messages. (On open ill->ill_ipif has not yet been 14592 * created; on close, things hanging off the ill may have been 14593 * freed already.) 14594 */ 14595 dl = (union DL_primitives *)mp->b_rptr; 14596 if (DB_TYPE(mp) != M_PCPROTO || 14597 dl->dl_primitive == DL_UNITDATA_IND) { 14598 /* 14599 * SIOC[GS]TUNPARAM ioctls can come here. 14600 */ 14601 inet_freemsg(mp); 14602 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14603 "ip_rput_end: q %p (%S)", q, "uninit"); 14604 return; 14605 } 14606 } 14607 14608 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14609 "ip_rput_end: q %p (%S)", q, "end"); 14610 14611 ip_input(ill, NULL, mp, NULL); 14612 } 14613 14614 static mblk_t * 14615 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14616 { 14617 mblk_t *mp1; 14618 boolean_t adjusted = B_FALSE; 14619 ip_stack_t *ipst = ill->ill_ipst; 14620 14621 IP_STAT(ipst, ip_db_ref); 14622 /* 14623 * The IP_RECVSLLA option depends on having the 14624 * link layer header. First check that: 14625 * a> the underlying device is of type ether, 14626 * since this option is currently supported only 14627 * over ethernet. 14628 * b> there is enough room to copy over the link 14629 * layer header. 14630 * 14631 * Once the checks are done, adjust rptr so that 14632 * the link layer header will be copied via 14633 * copymsg. Note that, IFT_ETHER may be returned 14634 * by some non-ethernet drivers but in this case 14635 * the second check will fail. 14636 */ 14637 if (ill->ill_type == IFT_ETHER && 14638 (mp->b_rptr - mp->b_datap->db_base) >= 14639 sizeof (struct ether_header)) { 14640 mp->b_rptr -= sizeof (struct ether_header); 14641 adjusted = B_TRUE; 14642 } 14643 mp1 = copymsg(mp); 14644 14645 if (mp1 == NULL) { 14646 mp->b_next = NULL; 14647 /* clear b_prev - used by ip_mroute_decap */ 14648 mp->b_prev = NULL; 14649 freemsg(mp); 14650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14651 return (NULL); 14652 } 14653 14654 if (adjusted) { 14655 /* 14656 * Copy is done. Restore the pointer in 14657 * the _new_ mblk 14658 */ 14659 mp1->b_rptr += sizeof (struct ether_header); 14660 } 14661 14662 /* Copy b_prev - used by ip_mroute_decap */ 14663 mp1->b_prev = mp->b_prev; 14664 mp->b_prev = NULL; 14665 14666 /* preserve the hardware checksum flags and data, if present */ 14667 if (DB_CKSUMFLAGS(mp) != 0) { 14668 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14669 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14670 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14671 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14672 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14673 } 14674 14675 freemsg(mp); 14676 return (mp1); 14677 } 14678 14679 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14680 if (tail != NULL) \ 14681 tail->b_next = mp; \ 14682 else \ 14683 head = mp; \ 14684 tail = mp; \ 14685 cnt++; \ 14686 } 14687 14688 /* 14689 * Direct read side procedure capable of dealing with chains. GLDv3 based 14690 * drivers call this function directly with mblk chains while STREAMS 14691 * read side procedure ip_rput() calls this for single packet with ip_ring 14692 * set to NULL to process one packet at a time. 14693 * 14694 * The ill will always be valid if this function is called directly from 14695 * the driver. 14696 * 14697 * If ip_input() is called from GLDv3: 14698 * 14699 * - This must be a non-VLAN IP stream. 14700 * - 'mp' is either an untagged or a special priority-tagged packet. 14701 * - Any VLAN tag that was in the MAC header has been stripped. 14702 * 14703 * If the IP header in packet is not 32-bit aligned, every message in the 14704 * chain will be aligned before further operations. This is required on SPARC 14705 * platform. 14706 */ 14707 /* ARGSUSED */ 14708 void 14709 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14710 struct mac_header_info_s *mhip) 14711 { 14712 ipaddr_t dst = NULL; 14713 ipaddr_t prev_dst; 14714 ire_t *ire = NULL; 14715 ipha_t *ipha; 14716 uint_t pkt_len; 14717 ssize_t len; 14718 uint_t opt_len; 14719 int ll_multicast; 14720 int cgtp_flt_pkt; 14721 queue_t *q = ill->ill_rq; 14722 squeue_t *curr_sqp = NULL; 14723 mblk_t *head = NULL; 14724 mblk_t *tail = NULL; 14725 mblk_t *first_mp; 14726 int cnt = 0; 14727 ip_stack_t *ipst = ill->ill_ipst; 14728 mblk_t *mp; 14729 mblk_t *dmp; 14730 uint8_t tag; 14731 14732 ASSERT(mp_chain != NULL); 14733 ASSERT(ill != NULL); 14734 14735 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14736 14737 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14738 14739 #define rptr ((uchar_t *)ipha) 14740 14741 while (mp_chain != NULL) { 14742 mp = mp_chain; 14743 mp_chain = mp_chain->b_next; 14744 mp->b_next = NULL; 14745 ll_multicast = 0; 14746 14747 /* 14748 * We do ire caching from one iteration to 14749 * another. In the event the packet chain contains 14750 * all packets from the same dst, this caching saves 14751 * an ire_cache_lookup for each of the succeeding 14752 * packets in a packet chain. 14753 */ 14754 prev_dst = dst; 14755 14756 /* 14757 * if db_ref > 1 then copymsg and free original. Packet 14758 * may be changed and we do not want the other entity 14759 * who has a reference to this message to trip over the 14760 * changes. This is a blind change because trying to 14761 * catch all places that might change the packet is too 14762 * difficult. 14763 * 14764 * This corresponds to the fast path case, where we have 14765 * a chain of M_DATA mblks. We check the db_ref count 14766 * of only the 1st data block in the mblk chain. There 14767 * doesn't seem to be a reason why a device driver would 14768 * send up data with varying db_ref counts in the mblk 14769 * chain. In any case the Fast path is a private 14770 * interface, and our drivers don't do such a thing. 14771 * Given the above assumption, there is no need to walk 14772 * down the entire mblk chain (which could have a 14773 * potential performance problem) 14774 * 14775 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14776 * to here because of exclusive ip stacks and vnics. 14777 * Packets transmitted from exclusive stack over vnic 14778 * can have db_ref > 1 and when it gets looped back to 14779 * another vnic in a different zone, you have ip_input() 14780 * getting dblks with db_ref > 1. So if someone 14781 * complains of TCP performance under this scenario, 14782 * take a serious look here on the impact of copymsg(). 14783 */ 14784 14785 if (DB_REF(mp) > 1) { 14786 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14787 continue; 14788 } 14789 14790 /* 14791 * Check and align the IP header. 14792 */ 14793 first_mp = mp; 14794 if (DB_TYPE(mp) == M_DATA) { 14795 dmp = mp; 14796 } else if (DB_TYPE(mp) == M_PROTO && 14797 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14798 dmp = mp->b_cont; 14799 } else { 14800 dmp = NULL; 14801 } 14802 if (dmp != NULL) { 14803 /* 14804 * IP header ptr not aligned? 14805 * OR IP header not complete in first mblk 14806 */ 14807 if (!OK_32PTR(dmp->b_rptr) || 14808 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14809 if (!ip_check_and_align_header(q, dmp, ipst)) 14810 continue; 14811 } 14812 } 14813 14814 /* 14815 * ip_input fast path 14816 */ 14817 14818 /* mblk type is not M_DATA */ 14819 if (DB_TYPE(mp) != M_DATA) { 14820 if (ip_rput_process_notdata(q, &first_mp, ill, 14821 &ll_multicast, &mp)) 14822 continue; 14823 14824 /* 14825 * The only way we can get here is if we had a 14826 * packet that was either a DL_UNITDATA_IND or 14827 * an M_CTL for an IPsec accelerated packet. 14828 * 14829 * In either case, the first_mp will point to 14830 * the leading M_PROTO or M_CTL. 14831 */ 14832 ASSERT(first_mp != NULL); 14833 } else if (mhip != NULL) { 14834 /* 14835 * ll_multicast is set here so that it is ready 14836 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14837 * manipulates ll_multicast in the same fashion when 14838 * called from ip_rput_process_notdata. 14839 */ 14840 switch (mhip->mhi_dsttype) { 14841 case MAC_ADDRTYPE_MULTICAST : 14842 ll_multicast = HPE_MULTICAST; 14843 break; 14844 case MAC_ADDRTYPE_BROADCAST : 14845 ll_multicast = HPE_BROADCAST; 14846 break; 14847 default : 14848 break; 14849 } 14850 } 14851 14852 /* Only M_DATA can come here and it is always aligned */ 14853 ASSERT(DB_TYPE(mp) == M_DATA); 14854 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14855 14856 ipha = (ipha_t *)mp->b_rptr; 14857 len = mp->b_wptr - rptr; 14858 pkt_len = ntohs(ipha->ipha_length); 14859 14860 /* 14861 * We must count all incoming packets, even if they end 14862 * up being dropped later on. 14863 */ 14864 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14865 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14866 14867 /* multiple mblk or too short */ 14868 len -= pkt_len; 14869 if (len != 0) { 14870 /* 14871 * Make sure we have data length consistent 14872 * with the IP header. 14873 */ 14874 if (mp->b_cont == NULL) { 14875 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14876 BUMP_MIB(ill->ill_ip_mib, 14877 ipIfStatsInHdrErrors); 14878 ip2dbg(("ip_input: drop pkt\n")); 14879 freemsg(mp); 14880 continue; 14881 } 14882 mp->b_wptr = rptr + pkt_len; 14883 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14884 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14885 BUMP_MIB(ill->ill_ip_mib, 14886 ipIfStatsInHdrErrors); 14887 ip2dbg(("ip_input: drop pkt\n")); 14888 freemsg(mp); 14889 continue; 14890 } 14891 (void) adjmsg(mp, -len); 14892 IP_STAT(ipst, ip_multimblk3); 14893 } 14894 } 14895 14896 /* Obtain the dst of the current packet */ 14897 dst = ipha->ipha_dst; 14898 14899 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 14900 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 14901 ipha, ip6_t *, NULL, int, 0); 14902 14903 /* 14904 * The following test for loopback is faster than 14905 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 14906 * operations. 14907 * Note that these addresses are always in network byte order 14908 */ 14909 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 14910 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 14911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14912 freemsg(mp); 14913 continue; 14914 } 14915 14916 /* 14917 * The event for packets being received from a 'physical' 14918 * interface is placed after validation of the source and/or 14919 * destination address as being local so that packets can be 14920 * redirected to loopback addresses using ipnat. 14921 */ 14922 DTRACE_PROBE4(ip4__physical__in__start, 14923 ill_t *, ill, ill_t *, NULL, 14924 ipha_t *, ipha, mblk_t *, first_mp); 14925 14926 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14927 ipst->ips_ipv4firewall_physical_in, 14928 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 14929 14930 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14931 14932 if (first_mp == NULL) { 14933 continue; 14934 } 14935 dst = ipha->ipha_dst; 14936 /* 14937 * Attach any necessary label information to 14938 * this packet 14939 */ 14940 if (is_system_labeled() && 14941 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14942 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14943 freemsg(mp); 14944 continue; 14945 } 14946 14947 if (ipst->ips_ipobs_enabled) { 14948 zoneid_t dzone; 14949 14950 /* 14951 * On the inbound path the src zone will be unknown as 14952 * this packet has come from the wire. 14953 */ 14954 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 14955 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 14956 ill, IPV4_VERSION, 0, ipst); 14957 } 14958 14959 /* 14960 * Reuse the cached ire only if the ipha_dst of the previous 14961 * packet is the same as the current packet AND it is not 14962 * INADDR_ANY. 14963 */ 14964 if (!(dst == prev_dst && dst != INADDR_ANY) && 14965 (ire != NULL)) { 14966 ire_refrele(ire); 14967 ire = NULL; 14968 } 14969 14970 opt_len = ipha->ipha_version_and_hdr_length - 14971 IP_SIMPLE_HDR_VERSION; 14972 14973 /* 14974 * Check to see if we can take the fastpath. 14975 * That is possible if the following conditions are met 14976 * o Tsol disabled 14977 * o CGTP disabled 14978 * o ipp_action_count is 0 14979 * o no options in the packet 14980 * o not a RSVP packet 14981 * o not a multicast packet 14982 * o ill not in IP_DHCPINIT_IF mode 14983 */ 14984 if (!is_system_labeled() && 14985 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 14986 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14987 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 14988 if (ire == NULL) 14989 ire = ire_cache_lookup_simple(dst, ipst); 14990 /* 14991 * Unless forwarding is enabled, dont call 14992 * ip_fast_forward(). Incoming packet is for forwarding 14993 */ 14994 if ((ill->ill_flags & ILLF_ROUTER) && 14995 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 14996 ire = ip_fast_forward(ire, dst, ill, mp); 14997 continue; 14998 } 14999 /* incoming packet is for local consumption */ 15000 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15001 goto local; 15002 } 15003 15004 /* 15005 * Disable ire caching for anything more complex 15006 * than the simple fast path case we checked for above. 15007 */ 15008 if (ire != NULL) { 15009 ire_refrele(ire); 15010 ire = NULL; 15011 } 15012 15013 /* 15014 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15015 * server to unicast DHCP packets to a DHCP client using the 15016 * IP address it is offering to the client. This can be 15017 * disabled through the "broadcast bit", but not all DHCP 15018 * servers honor that bit. Therefore, to interoperate with as 15019 * many DHCP servers as possible, the DHCP client allows the 15020 * server to unicast, but we treat those packets as broadcast 15021 * here. Note that we don't rewrite the packet itself since 15022 * (a) that would mess up the checksums and (b) the DHCP 15023 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15024 * hand it the packet regardless. 15025 */ 15026 if (ill->ill_dhcpinit != 0 && 15027 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15028 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15029 udpha_t *udpha; 15030 15031 /* 15032 * Reload ipha since pullupmsg() can change b_rptr. 15033 */ 15034 ipha = (ipha_t *)mp->b_rptr; 15035 udpha = (udpha_t *)&ipha[1]; 15036 15037 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15038 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15039 mblk_t *, mp); 15040 dst = INADDR_BROADCAST; 15041 } 15042 } 15043 15044 /* Full-blown slow path */ 15045 if (opt_len != 0) { 15046 if (len != 0) 15047 IP_STAT(ipst, ip_multimblk4); 15048 else 15049 IP_STAT(ipst, ip_ipoptions); 15050 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15051 &dst, ipst)) 15052 continue; 15053 } 15054 15055 /* 15056 * Invoke the CGTP (multirouting) filtering module to process 15057 * the incoming packet. Packets identified as duplicates 15058 * must be discarded. Filtering is active only if the 15059 * the ip_cgtp_filter ndd variable is non-zero. 15060 */ 15061 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15062 if (ipst->ips_ip_cgtp_filter && 15063 ipst->ips_ip_cgtp_filter_ops != NULL) { 15064 netstackid_t stackid; 15065 15066 stackid = ipst->ips_netstack->netstack_stackid; 15067 cgtp_flt_pkt = 15068 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15069 ill->ill_phyint->phyint_ifindex, mp); 15070 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15071 freemsg(first_mp); 15072 continue; 15073 } 15074 } 15075 15076 /* 15077 * If rsvpd is running, let RSVP daemon handle its processing 15078 * and forwarding of RSVP multicast/unicast packets. 15079 * If rsvpd is not running but mrouted is running, RSVP 15080 * multicast packets are forwarded as multicast traffic 15081 * and RSVP unicast packets are forwarded by unicast router. 15082 * If neither rsvpd nor mrouted is running, RSVP multicast 15083 * packets are not forwarded, but the unicast packets are 15084 * forwarded like unicast traffic. 15085 */ 15086 if (ipha->ipha_protocol == IPPROTO_RSVP && 15087 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15088 NULL) { 15089 /* RSVP packet and rsvpd running. Treat as ours */ 15090 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15091 /* 15092 * This assumes that we deliver to all streams for 15093 * multicast and broadcast packets. 15094 * We have to force ll_multicast to 1 to handle the 15095 * M_DATA messages passed in from ip_mroute_decap. 15096 */ 15097 dst = INADDR_BROADCAST; 15098 ll_multicast = 1; 15099 } else if (CLASSD(dst)) { 15100 /* packet is multicast */ 15101 mp->b_next = NULL; 15102 if (ip_rput_process_multicast(q, mp, ill, ipha, 15103 &ll_multicast, &dst)) 15104 continue; 15105 } 15106 15107 if (ire == NULL) { 15108 ire = ire_cache_lookup(dst, ALL_ZONES, 15109 MBLK_GETLABEL(mp), ipst); 15110 } 15111 15112 if (ire != NULL && ire->ire_stq != NULL && 15113 ire->ire_zoneid != GLOBAL_ZONEID && 15114 ire->ire_zoneid != ALL_ZONES) { 15115 /* 15116 * Should only use IREs that are visible from the 15117 * global zone for forwarding. 15118 */ 15119 ire_refrele(ire); 15120 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15121 MBLK_GETLABEL(mp), ipst); 15122 } 15123 15124 if (ire == NULL) { 15125 /* 15126 * No IRE for this destination, so it can't be for us. 15127 * Unless we are forwarding, drop the packet. 15128 * We have to let source routed packets through 15129 * since we don't yet know if they are 'ping -l' 15130 * packets i.e. if they will go out over the 15131 * same interface as they came in on. 15132 */ 15133 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15134 if (ire == NULL) 15135 continue; 15136 } 15137 15138 /* 15139 * Broadcast IRE may indicate either broadcast or 15140 * multicast packet 15141 */ 15142 if (ire->ire_type == IRE_BROADCAST) { 15143 /* 15144 * Skip broadcast checks if packet is UDP multicast; 15145 * we'd rather not enter ip_rput_process_broadcast() 15146 * unless the packet is broadcast for real, since 15147 * that routine is a no-op for multicast. 15148 */ 15149 if (ipha->ipha_protocol != IPPROTO_UDP || 15150 !CLASSD(ipha->ipha_dst)) { 15151 ire = ip_rput_process_broadcast(&q, mp, 15152 ire, ipha, ill, dst, cgtp_flt_pkt, 15153 ll_multicast); 15154 if (ire == NULL) 15155 continue; 15156 } 15157 } else if (ire->ire_stq != NULL) { 15158 /* fowarding? */ 15159 ip_rput_process_forward(q, mp, ire, ipha, ill, 15160 ll_multicast, B_FALSE); 15161 /* ip_rput_process_forward consumed the packet */ 15162 continue; 15163 } 15164 15165 local: 15166 /* 15167 * If the queue in the ire is different to the ingress queue 15168 * then we need to check to see if we can accept the packet. 15169 * Note that for multicast packets and broadcast packets sent 15170 * to a broadcast address which is shared between multiple 15171 * interfaces we should not do this since we just got a random 15172 * broadcast ire. 15173 */ 15174 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15175 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15176 if (ire == NULL) { 15177 /* Drop packet */ 15178 BUMP_MIB(ill->ill_ip_mib, 15179 ipIfStatsForwProhibits); 15180 freemsg(mp); 15181 continue; 15182 } 15183 if (ire->ire_rfq != NULL) 15184 q = ire->ire_rfq; 15185 } 15186 15187 switch (ipha->ipha_protocol) { 15188 case IPPROTO_TCP: 15189 ASSERT(first_mp == mp); 15190 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15191 mp, 0, q, ip_ring)) != NULL) { 15192 if (curr_sqp == NULL) { 15193 curr_sqp = GET_SQUEUE(mp); 15194 ASSERT(cnt == 0); 15195 cnt++; 15196 head = tail = mp; 15197 } else if (curr_sqp == GET_SQUEUE(mp)) { 15198 ASSERT(tail != NULL); 15199 cnt++; 15200 tail->b_next = mp; 15201 tail = mp; 15202 } else { 15203 /* 15204 * A different squeue. Send the 15205 * chain for the previous squeue on 15206 * its way. This shouldn't happen 15207 * often unless interrupt binding 15208 * changes. 15209 */ 15210 IP_STAT(ipst, ip_input_multi_squeue); 15211 SQUEUE_ENTER(curr_sqp, head, 15212 tail, cnt, SQ_PROCESS, tag); 15213 curr_sqp = GET_SQUEUE(mp); 15214 head = mp; 15215 tail = mp; 15216 cnt = 1; 15217 } 15218 } 15219 continue; 15220 case IPPROTO_UDP: 15221 ASSERT(first_mp == mp); 15222 ip_udp_input(q, mp, ipha, ire, ill); 15223 continue; 15224 case IPPROTO_SCTP: 15225 ASSERT(first_mp == mp); 15226 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15227 q, dst); 15228 /* ire has been released by ip_sctp_input */ 15229 ire = NULL; 15230 continue; 15231 default: 15232 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15233 continue; 15234 } 15235 } 15236 15237 if (ire != NULL) 15238 ire_refrele(ire); 15239 15240 if (head != NULL) 15241 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15242 15243 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15244 "ip_input_end: q %p (%S)", q, "end"); 15245 #undef rptr 15246 } 15247 15248 /* 15249 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15250 * a chain of packets in the poll mode. The packets have gone through the 15251 * data link processing but not IP processing. For performance and latency 15252 * reasons, the squeue wants to process the chain in line instead of feeding 15253 * it back via ip_input path. 15254 * 15255 * So this is a light weight function which checks to see if the packets 15256 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15257 * but we still do the paranoid check) meant for local machine and we don't 15258 * have labels etc enabled. Packets that meet the criterion are returned to 15259 * the squeue and processed inline while the rest go via ip_input path. 15260 */ 15261 /*ARGSUSED*/ 15262 mblk_t * 15263 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15264 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15265 { 15266 mblk_t *mp; 15267 ipaddr_t dst = NULL; 15268 ipaddr_t prev_dst; 15269 ire_t *ire = NULL; 15270 ipha_t *ipha; 15271 uint_t pkt_len; 15272 ssize_t len; 15273 uint_t opt_len; 15274 queue_t *q = ill->ill_rq; 15275 squeue_t *curr_sqp; 15276 mblk_t *ahead = NULL; /* Accepted head */ 15277 mblk_t *atail = NULL; /* Accepted tail */ 15278 uint_t acnt = 0; /* Accepted count */ 15279 mblk_t *utail = NULL; /* Unaccepted head */ 15280 mblk_t *uhead = NULL; /* Unaccepted tail */ 15281 uint_t ucnt = 0; /* Unaccepted cnt */ 15282 ip_stack_t *ipst = ill->ill_ipst; 15283 15284 *cnt = 0; 15285 15286 ASSERT(ill != NULL); 15287 ASSERT(ip_ring != NULL); 15288 15289 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15290 15291 #define rptr ((uchar_t *)ipha) 15292 15293 while (mp_chain != NULL) { 15294 mp = mp_chain; 15295 mp_chain = mp_chain->b_next; 15296 mp->b_next = NULL; 15297 15298 /* 15299 * We do ire caching from one iteration to 15300 * another. In the event the packet chain contains 15301 * all packets from the same dst, this caching saves 15302 * an ire_cache_lookup for each of the succeeding 15303 * packets in a packet chain. 15304 */ 15305 prev_dst = dst; 15306 15307 ipha = (ipha_t *)mp->b_rptr; 15308 len = mp->b_wptr - rptr; 15309 15310 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15311 15312 /* 15313 * If it is a non TCP packet, or doesn't have H/W cksum, 15314 * or doesn't have min len, reject. 15315 */ 15316 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15317 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15318 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15319 continue; 15320 } 15321 15322 pkt_len = ntohs(ipha->ipha_length); 15323 if (len != pkt_len) { 15324 if (len > pkt_len) { 15325 mp->b_wptr = rptr + pkt_len; 15326 } else { 15327 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15328 continue; 15329 } 15330 } 15331 15332 opt_len = ipha->ipha_version_and_hdr_length - 15333 IP_SIMPLE_HDR_VERSION; 15334 dst = ipha->ipha_dst; 15335 15336 /* IP version bad or there are IP options */ 15337 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15338 mp, &ipha, &dst, ipst))) 15339 continue; 15340 15341 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15342 (ipst->ips_ip_cgtp_filter && 15343 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15344 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15345 continue; 15346 } 15347 15348 /* 15349 * Reuse the cached ire only if the ipha_dst of the previous 15350 * packet is the same as the current packet AND it is not 15351 * INADDR_ANY. 15352 */ 15353 if (!(dst == prev_dst && dst != INADDR_ANY) && 15354 (ire != NULL)) { 15355 ire_refrele(ire); 15356 ire = NULL; 15357 } 15358 15359 if (ire == NULL) 15360 ire = ire_cache_lookup_simple(dst, ipst); 15361 15362 /* 15363 * Unless forwarding is enabled, dont call 15364 * ip_fast_forward(). Incoming packet is for forwarding 15365 */ 15366 if ((ill->ill_flags & ILLF_ROUTER) && 15367 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15368 15369 DTRACE_PROBE4(ip4__physical__in__start, 15370 ill_t *, ill, ill_t *, NULL, 15371 ipha_t *, ipha, mblk_t *, mp); 15372 15373 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15374 ipst->ips_ipv4firewall_physical_in, 15375 ill, NULL, ipha, mp, mp, 0, ipst); 15376 15377 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15378 15379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15380 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15381 pkt_len); 15382 15383 ire = ip_fast_forward(ire, dst, ill, mp); 15384 continue; 15385 } 15386 15387 /* incoming packet is for local consumption */ 15388 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15389 goto local_accept; 15390 15391 /* 15392 * Disable ire caching for anything more complex 15393 * than the simple fast path case we checked for above. 15394 */ 15395 if (ire != NULL) { 15396 ire_refrele(ire); 15397 ire = NULL; 15398 } 15399 15400 ire = ire_cache_lookup(dst, ALL_ZONES, MBLK_GETLABEL(mp), 15401 ipst); 15402 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15403 ire->ire_stq != NULL) { 15404 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15405 if (ire != NULL) { 15406 ire_refrele(ire); 15407 ire = NULL; 15408 } 15409 continue; 15410 } 15411 15412 local_accept: 15413 15414 if (ire->ire_rfq != q) { 15415 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15416 if (ire != NULL) { 15417 ire_refrele(ire); 15418 ire = NULL; 15419 } 15420 continue; 15421 } 15422 15423 /* 15424 * The event for packets being received from a 'physical' 15425 * interface is placed after validation of the source and/or 15426 * destination address as being local so that packets can be 15427 * redirected to loopback addresses using ipnat. 15428 */ 15429 DTRACE_PROBE4(ip4__physical__in__start, 15430 ill_t *, ill, ill_t *, NULL, 15431 ipha_t *, ipha, mblk_t *, mp); 15432 15433 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15434 ipst->ips_ipv4firewall_physical_in, 15435 ill, NULL, ipha, mp, mp, 0, ipst); 15436 15437 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15438 15439 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15440 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15441 15442 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15443 0, q, ip_ring)) != NULL) { 15444 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15445 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15446 } else { 15447 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15448 SQ_FILL, SQTAG_IP_INPUT); 15449 } 15450 } 15451 } 15452 15453 if (ire != NULL) 15454 ire_refrele(ire); 15455 15456 if (uhead != NULL) 15457 ip_input(ill, ip_ring, uhead, NULL); 15458 15459 if (ahead != NULL) { 15460 *last = atail; 15461 *cnt = acnt; 15462 return (ahead); 15463 } 15464 15465 return (NULL); 15466 #undef rptr 15467 } 15468 15469 static void 15470 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15471 t_uscalar_t err) 15472 { 15473 if (dl_err == DL_SYSERR) { 15474 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15475 "%s: %s failed: DL_SYSERR (errno %u)\n", 15476 ill->ill_name, dl_primstr(prim), err); 15477 return; 15478 } 15479 15480 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15481 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15482 dl_errstr(dl_err)); 15483 } 15484 15485 /* 15486 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15487 * than DL_UNITDATA_IND messages. If we need to process this message 15488 * exclusively, we call qwriter_ip, in which case we also need to call 15489 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15490 */ 15491 void 15492 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15493 { 15494 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15495 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15496 ill_t *ill = q->q_ptr; 15497 t_uscalar_t prim = dloa->dl_primitive; 15498 t_uscalar_t reqprim = DL_PRIM_INVAL; 15499 15500 ip1dbg(("ip_rput_dlpi")); 15501 15502 /* 15503 * If we received an ACK but didn't send a request for it, then it 15504 * can't be part of any pending operation; discard up-front. 15505 */ 15506 switch (prim) { 15507 case DL_ERROR_ACK: 15508 reqprim = dlea->dl_error_primitive; 15509 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15510 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15511 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15512 dlea->dl_unix_errno)); 15513 break; 15514 case DL_OK_ACK: 15515 reqprim = dloa->dl_correct_primitive; 15516 break; 15517 case DL_INFO_ACK: 15518 reqprim = DL_INFO_REQ; 15519 break; 15520 case DL_BIND_ACK: 15521 reqprim = DL_BIND_REQ; 15522 break; 15523 case DL_PHYS_ADDR_ACK: 15524 reqprim = DL_PHYS_ADDR_REQ; 15525 break; 15526 case DL_NOTIFY_ACK: 15527 reqprim = DL_NOTIFY_REQ; 15528 break; 15529 case DL_CONTROL_ACK: 15530 reqprim = DL_CONTROL_REQ; 15531 break; 15532 case DL_CAPABILITY_ACK: 15533 reqprim = DL_CAPABILITY_REQ; 15534 break; 15535 } 15536 15537 if (prim != DL_NOTIFY_IND) { 15538 if (reqprim == DL_PRIM_INVAL || 15539 !ill_dlpi_pending(ill, reqprim)) { 15540 /* Not a DLPI message we support or expected */ 15541 freemsg(mp); 15542 return; 15543 } 15544 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15545 dl_primstr(reqprim))); 15546 } 15547 15548 switch (reqprim) { 15549 case DL_UNBIND_REQ: 15550 /* 15551 * NOTE: we mark the unbind as complete even if we got a 15552 * DL_ERROR_ACK, since there's not much else we can do. 15553 */ 15554 mutex_enter(&ill->ill_lock); 15555 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15556 cv_signal(&ill->ill_cv); 15557 mutex_exit(&ill->ill_lock); 15558 break; 15559 15560 case DL_ENABMULTI_REQ: 15561 if (prim == DL_OK_ACK) { 15562 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15563 ill->ill_dlpi_multicast_state = IDS_OK; 15564 } 15565 break; 15566 } 15567 15568 /* 15569 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15570 * need to become writer to continue to process it. Because an 15571 * exclusive operation doesn't complete until replies to all queued 15572 * DLPI messages have been received, we know we're in the middle of an 15573 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15574 * 15575 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15576 * Since this is on the ill stream we unconditionally bump up the 15577 * refcount without doing ILL_CAN_LOOKUP(). 15578 */ 15579 ill_refhold(ill); 15580 if (prim == DL_NOTIFY_IND) 15581 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15582 else 15583 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15584 } 15585 15586 /* 15587 * Handling of DLPI messages that require exclusive access to the ipsq. 15588 * 15589 * Need to do ill_pending_mp_release on ioctl completion, which could 15590 * happen here. (along with mi_copy_done) 15591 */ 15592 /* ARGSUSED */ 15593 static void 15594 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15595 { 15596 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15597 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15598 int err = 0; 15599 ill_t *ill; 15600 ipif_t *ipif = NULL; 15601 mblk_t *mp1 = NULL; 15602 conn_t *connp = NULL; 15603 t_uscalar_t paddrreq; 15604 mblk_t *mp_hw; 15605 boolean_t success; 15606 boolean_t ioctl_aborted = B_FALSE; 15607 boolean_t log = B_TRUE; 15608 ip_stack_t *ipst; 15609 15610 ip1dbg(("ip_rput_dlpi_writer ..")); 15611 ill = (ill_t *)q->q_ptr; 15612 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15613 ASSERT(IAM_WRITER_ILL(ill)); 15614 15615 ipst = ill->ill_ipst; 15616 15617 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15618 /* 15619 * The current ioctl could have been aborted by the user and a new 15620 * ioctl to bring up another ill could have started. We could still 15621 * get a response from the driver later. 15622 */ 15623 if (ipif != NULL && ipif->ipif_ill != ill) 15624 ioctl_aborted = B_TRUE; 15625 15626 switch (dloa->dl_primitive) { 15627 case DL_ERROR_ACK: 15628 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15629 dl_primstr(dlea->dl_error_primitive))); 15630 15631 switch (dlea->dl_error_primitive) { 15632 case DL_DISABMULTI_REQ: 15633 if (!ill->ill_isv6) 15634 ipsq_current_finish(ipsq); 15635 ill_dlpi_done(ill, dlea->dl_error_primitive); 15636 break; 15637 case DL_PROMISCON_REQ: 15638 case DL_PROMISCOFF_REQ: 15639 case DL_UNBIND_REQ: 15640 case DL_ATTACH_REQ: 15641 case DL_INFO_REQ: 15642 ill_dlpi_done(ill, dlea->dl_error_primitive); 15643 break; 15644 case DL_NOTIFY_REQ: 15645 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15646 log = B_FALSE; 15647 break; 15648 case DL_PHYS_ADDR_REQ: 15649 /* 15650 * For IPv6 only, there are two additional 15651 * phys_addr_req's sent to the driver to get the 15652 * IPv6 token and lla. This allows IP to acquire 15653 * the hardware address format for a given interface 15654 * without having built in knowledge of the hardware 15655 * address. ill_phys_addr_pend keeps track of the last 15656 * DL_PAR sent so we know which response we are 15657 * dealing with. ill_dlpi_done will update 15658 * ill_phys_addr_pend when it sends the next req. 15659 * We don't complete the IOCTL until all three DL_PARs 15660 * have been attempted, so set *_len to 0 and break. 15661 */ 15662 paddrreq = ill->ill_phys_addr_pend; 15663 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15664 if (paddrreq == DL_IPV6_TOKEN) { 15665 ill->ill_token_length = 0; 15666 log = B_FALSE; 15667 break; 15668 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15669 ill->ill_nd_lla_len = 0; 15670 log = B_FALSE; 15671 break; 15672 } 15673 /* 15674 * Something went wrong with the DL_PHYS_ADDR_REQ. 15675 * We presumably have an IOCTL hanging out waiting 15676 * for completion. Find it and complete the IOCTL 15677 * with the error noted. 15678 * However, ill_dl_phys was called on an ill queue 15679 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15680 * set. But the ioctl is known to be pending on ill_wq. 15681 */ 15682 if (!ill->ill_ifname_pending) 15683 break; 15684 ill->ill_ifname_pending = 0; 15685 if (!ioctl_aborted) 15686 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15687 if (mp1 != NULL) { 15688 /* 15689 * This operation (SIOCSLIFNAME) must have 15690 * happened on the ill. Assert there is no conn 15691 */ 15692 ASSERT(connp == NULL); 15693 q = ill->ill_wq; 15694 } 15695 break; 15696 case DL_BIND_REQ: 15697 ill_dlpi_done(ill, DL_BIND_REQ); 15698 if (ill->ill_ifname_pending) 15699 break; 15700 /* 15701 * Something went wrong with the bind. We presumably 15702 * have an IOCTL hanging out waiting for completion. 15703 * Find it, take down the interface that was coming 15704 * up, and complete the IOCTL with the error noted. 15705 */ 15706 if (!ioctl_aborted) 15707 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15708 if (mp1 != NULL) { 15709 /* 15710 * This operation (SIOCSLIFFLAGS) must have 15711 * happened from a conn. 15712 */ 15713 ASSERT(connp != NULL); 15714 q = CONNP_TO_WQ(connp); 15715 (void) ipif_down(ipif, NULL, NULL); 15716 /* error is set below the switch */ 15717 } 15718 break; 15719 case DL_ENABMULTI_REQ: 15720 if (!ill->ill_isv6) 15721 ipsq_current_finish(ipsq); 15722 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15723 15724 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15725 ill->ill_dlpi_multicast_state = IDS_FAILED; 15726 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15727 ipif_t *ipif; 15728 15729 printf("ip: joining multicasts failed (%d)" 15730 " on %s - will use link layer " 15731 "broadcasts for multicast\n", 15732 dlea->dl_errno, ill->ill_name); 15733 15734 /* 15735 * Set up the multicast mapping alone. 15736 * writer, so ok to access ill->ill_ipif 15737 * without any lock. 15738 */ 15739 ipif = ill->ill_ipif; 15740 mutex_enter(&ill->ill_phyint->phyint_lock); 15741 ill->ill_phyint->phyint_flags |= 15742 PHYI_MULTI_BCAST; 15743 mutex_exit(&ill->ill_phyint->phyint_lock); 15744 15745 if (!ill->ill_isv6) { 15746 (void) ipif_arp_setup_multicast(ipif, 15747 NULL); 15748 } else { 15749 (void) ipif_ndp_setup_multicast(ipif, 15750 NULL); 15751 } 15752 } 15753 freemsg(mp); /* Don't want to pass this up */ 15754 return; 15755 case DL_CONTROL_REQ: 15756 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15757 "DL_CONTROL_REQ\n")); 15758 ill_dlpi_done(ill, dlea->dl_error_primitive); 15759 freemsg(mp); 15760 return; 15761 case DL_CAPABILITY_REQ: 15762 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15763 "DL_CAPABILITY REQ\n")); 15764 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15765 ill->ill_dlpi_capab_state = IDCS_FAILED; 15766 ill_capability_done(ill); 15767 freemsg(mp); 15768 return; 15769 } 15770 /* 15771 * Note the error for IOCTL completion (mp1 is set when 15772 * ready to complete ioctl). If ill_ifname_pending_err is 15773 * set, an error occured during plumbing (ill_ifname_pending), 15774 * so we want to report that error. 15775 * 15776 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15777 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15778 * expected to get errack'd if the driver doesn't support 15779 * these flags (e.g. ethernet). log will be set to B_FALSE 15780 * if these error conditions are encountered. 15781 */ 15782 if (mp1 != NULL) { 15783 if (ill->ill_ifname_pending_err != 0) { 15784 err = ill->ill_ifname_pending_err; 15785 ill->ill_ifname_pending_err = 0; 15786 } else { 15787 err = dlea->dl_unix_errno ? 15788 dlea->dl_unix_errno : ENXIO; 15789 } 15790 /* 15791 * If we're plumbing an interface and an error hasn't already 15792 * been saved, set ill_ifname_pending_err to the error passed 15793 * up. Ignore the error if log is B_FALSE (see comment above). 15794 */ 15795 } else if (log && ill->ill_ifname_pending && 15796 ill->ill_ifname_pending_err == 0) { 15797 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15798 dlea->dl_unix_errno : ENXIO; 15799 } 15800 15801 if (log) 15802 ip_dlpi_error(ill, dlea->dl_error_primitive, 15803 dlea->dl_errno, dlea->dl_unix_errno); 15804 break; 15805 case DL_CAPABILITY_ACK: 15806 ill_capability_ack(ill, mp); 15807 /* 15808 * The message has been handed off to ill_capability_ack 15809 * and must not be freed below 15810 */ 15811 mp = NULL; 15812 break; 15813 15814 case DL_CONTROL_ACK: 15815 /* We treat all of these as "fire and forget" */ 15816 ill_dlpi_done(ill, DL_CONTROL_REQ); 15817 break; 15818 case DL_INFO_ACK: 15819 /* Call a routine to handle this one. */ 15820 ill_dlpi_done(ill, DL_INFO_REQ); 15821 ip_ll_subnet_defaults(ill, mp); 15822 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15823 return; 15824 case DL_BIND_ACK: 15825 /* 15826 * We should have an IOCTL waiting on this unless 15827 * sent by ill_dl_phys, in which case just return 15828 */ 15829 ill_dlpi_done(ill, DL_BIND_REQ); 15830 if (ill->ill_ifname_pending) 15831 break; 15832 15833 if (!ioctl_aborted) 15834 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15835 if (mp1 == NULL) 15836 break; 15837 /* 15838 * Because mp1 was added by ill_dl_up(), and it always 15839 * passes a valid connp, connp must be valid here. 15840 */ 15841 ASSERT(connp != NULL); 15842 q = CONNP_TO_WQ(connp); 15843 15844 /* 15845 * We are exclusive. So nothing can change even after 15846 * we get the pending mp. If need be we can put it back 15847 * and restart, as in calling ipif_arp_up() below. 15848 */ 15849 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15850 15851 mutex_enter(&ill->ill_lock); 15852 ill->ill_dl_up = 1; 15853 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15854 mutex_exit(&ill->ill_lock); 15855 15856 /* 15857 * Now bring up the resolver; when that is complete, we'll 15858 * create IREs. Note that we intentionally mirror what 15859 * ipif_up() would have done, because we got here by way of 15860 * ill_dl_up(), which stopped ipif_up()'s processing. 15861 */ 15862 if (ill->ill_isv6) { 15863 if (ill->ill_flags & ILLF_XRESOLV) { 15864 mutex_enter(&connp->conn_lock); 15865 mutex_enter(&ill->ill_lock); 15866 success = ipsq_pending_mp_add(connp, ipif, q, 15867 mp1, 0); 15868 mutex_exit(&ill->ill_lock); 15869 mutex_exit(&connp->conn_lock); 15870 if (success) { 15871 err = ipif_resolver_up(ipif, 15872 Res_act_initial); 15873 if (err == EINPROGRESS) { 15874 freemsg(mp); 15875 return; 15876 } 15877 ASSERT(err != 0); 15878 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15879 ASSERT(mp1 != NULL); 15880 } else { 15881 /* conn has started closing */ 15882 err = EINTR; 15883 } 15884 } else { /* Non XRESOLV interface */ 15885 (void) ipif_resolver_up(ipif, Res_act_initial); 15886 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 15887 err = ipif_up_done_v6(ipif); 15888 } 15889 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15890 /* 15891 * ARP and other v4 external resolvers. 15892 * Leave the pending mblk intact so that 15893 * the ioctl completes in ip_rput(). 15894 */ 15895 mutex_enter(&connp->conn_lock); 15896 mutex_enter(&ill->ill_lock); 15897 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15898 mutex_exit(&ill->ill_lock); 15899 mutex_exit(&connp->conn_lock); 15900 if (success) { 15901 err = ipif_resolver_up(ipif, Res_act_initial); 15902 if (err == EINPROGRESS) { 15903 freemsg(mp); 15904 return; 15905 } 15906 ASSERT(err != 0); 15907 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15908 } else { 15909 /* The conn has started closing */ 15910 err = EINTR; 15911 } 15912 } else { 15913 /* 15914 * This one is complete. Reply to pending ioctl. 15915 */ 15916 (void) ipif_resolver_up(ipif, Res_act_initial); 15917 err = ipif_up_done(ipif); 15918 } 15919 15920 if ((err == 0) && (ill->ill_up_ipifs)) { 15921 err = ill_up_ipifs(ill, q, mp1); 15922 if (err == EINPROGRESS) { 15923 freemsg(mp); 15924 return; 15925 } 15926 } 15927 15928 /* 15929 * If we have a moved ipif to bring up, and everything has 15930 * succeeded to this point, bring it up on the IPMP ill. 15931 * Otherwise, leave it down -- the admin can try to bring it 15932 * up by hand if need be. 15933 */ 15934 if (ill->ill_move_ipif != NULL) { 15935 if (err != 0) { 15936 ill->ill_move_ipif = NULL; 15937 } else { 15938 ipif = ill->ill_move_ipif; 15939 ill->ill_move_ipif = NULL; 15940 err = ipif_up(ipif, q, mp1); 15941 if (err == EINPROGRESS) { 15942 freemsg(mp); 15943 return; 15944 } 15945 } 15946 } 15947 break; 15948 15949 case DL_NOTIFY_IND: { 15950 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15951 ire_t *ire; 15952 uint_t orig_mtu; 15953 boolean_t need_ire_walk_v4 = B_FALSE; 15954 boolean_t need_ire_walk_v6 = B_FALSE; 15955 15956 switch (notify->dl_notification) { 15957 case DL_NOTE_PHYS_ADDR: 15958 err = ill_set_phys_addr(ill, mp); 15959 break; 15960 15961 case DL_NOTE_FASTPATH_FLUSH: 15962 ill_fastpath_flush(ill); 15963 break; 15964 15965 case DL_NOTE_SDU_SIZE: 15966 /* 15967 * Change the MTU size of the interface, of all 15968 * attached ipif's, and of all relevant ire's. The 15969 * new value's a uint32_t at notify->dl_data. 15970 * Mtu change Vs. new ire creation - protocol below. 15971 * 15972 * a Mark the ipif as IPIF_CHANGING. 15973 * b Set the new mtu in the ipif. 15974 * c Change the ire_max_frag on all affected ires 15975 * d Unmark the IPIF_CHANGING 15976 * 15977 * To see how the protocol works, assume an interface 15978 * route is also being added simultaneously by 15979 * ip_rt_add and let 'ipif' be the ipif referenced by 15980 * the ire. If the ire is created before step a, 15981 * it will be cleaned up by step c. If the ire is 15982 * created after step d, it will see the new value of 15983 * ipif_mtu. Any attempt to create the ire between 15984 * steps a to d will fail because of the IPIF_CHANGING 15985 * flag. Note that ire_create() is passed a pointer to 15986 * the ipif_mtu, and not the value. During ire_add 15987 * under the bucket lock, the ire_max_frag of the 15988 * new ire being created is set from the ipif/ire from 15989 * which it is being derived. 15990 */ 15991 mutex_enter(&ill->ill_lock); 15992 15993 orig_mtu = ill->ill_max_mtu; 15994 ill->ill_max_frag = (uint_t)notify->dl_data; 15995 ill->ill_max_mtu = (uint_t)notify->dl_data; 15996 15997 /* 15998 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 15999 * clamp ill_max_mtu at it. 16000 */ 16001 if (ill->ill_user_mtu != 0 && 16002 ill->ill_user_mtu < ill->ill_max_mtu) 16003 ill->ill_max_mtu = ill->ill_user_mtu; 16004 16005 /* 16006 * If the MTU is unchanged, we're done. 16007 */ 16008 if (orig_mtu == ill->ill_max_mtu) { 16009 mutex_exit(&ill->ill_lock); 16010 break; 16011 } 16012 16013 if (ill->ill_isv6) { 16014 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16015 ill->ill_max_mtu = IPV6_MIN_MTU; 16016 } else { 16017 if (ill->ill_max_mtu < IP_MIN_MTU) 16018 ill->ill_max_mtu = IP_MIN_MTU; 16019 } 16020 for (ipif = ill->ill_ipif; ipif != NULL; 16021 ipif = ipif->ipif_next) { 16022 /* 16023 * Don't override the mtu if the user 16024 * has explicitly set it. 16025 */ 16026 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16027 continue; 16028 ipif->ipif_mtu = (uint_t)notify->dl_data; 16029 if (ipif->ipif_isv6) 16030 ire = ipif_to_ire_v6(ipif); 16031 else 16032 ire = ipif_to_ire(ipif); 16033 if (ire != NULL) { 16034 ire->ire_max_frag = ipif->ipif_mtu; 16035 ire_refrele(ire); 16036 } 16037 if (ipif->ipif_flags & IPIF_UP) { 16038 if (ill->ill_isv6) 16039 need_ire_walk_v6 = B_TRUE; 16040 else 16041 need_ire_walk_v4 = B_TRUE; 16042 } 16043 } 16044 mutex_exit(&ill->ill_lock); 16045 if (need_ire_walk_v4) 16046 ire_walk_v4(ill_mtu_change, (char *)ill, 16047 ALL_ZONES, ipst); 16048 if (need_ire_walk_v6) 16049 ire_walk_v6(ill_mtu_change, (char *)ill, 16050 ALL_ZONES, ipst); 16051 16052 /* 16053 * Refresh IPMP meta-interface MTU if necessary. 16054 */ 16055 if (IS_UNDER_IPMP(ill)) 16056 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16057 break; 16058 16059 case DL_NOTE_LINK_UP: 16060 case DL_NOTE_LINK_DOWN: { 16061 /* 16062 * We are writer. ill / phyint / ipsq assocs stable. 16063 * The RUNNING flag reflects the state of the link. 16064 */ 16065 phyint_t *phyint = ill->ill_phyint; 16066 uint64_t new_phyint_flags; 16067 boolean_t changed = B_FALSE; 16068 boolean_t went_up; 16069 16070 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16071 mutex_enter(&phyint->phyint_lock); 16072 16073 new_phyint_flags = went_up ? 16074 phyint->phyint_flags | PHYI_RUNNING : 16075 phyint->phyint_flags & ~PHYI_RUNNING; 16076 16077 if (IS_IPMP(ill)) { 16078 new_phyint_flags = went_up ? 16079 new_phyint_flags & ~PHYI_FAILED : 16080 new_phyint_flags | PHYI_FAILED; 16081 } 16082 16083 if (new_phyint_flags != phyint->phyint_flags) { 16084 phyint->phyint_flags = new_phyint_flags; 16085 changed = B_TRUE; 16086 } 16087 mutex_exit(&phyint->phyint_lock); 16088 /* 16089 * ill_restart_dad handles the DAD restart and routing 16090 * socket notification logic. 16091 */ 16092 if (changed) { 16093 ill_restart_dad(phyint->phyint_illv4, went_up); 16094 ill_restart_dad(phyint->phyint_illv6, went_up); 16095 } 16096 break; 16097 } 16098 case DL_NOTE_PROMISC_ON_PHYS: 16099 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16100 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16101 mutex_enter(&ill->ill_lock); 16102 ill->ill_promisc_on_phys = B_TRUE; 16103 mutex_exit(&ill->ill_lock); 16104 break; 16105 case DL_NOTE_PROMISC_OFF_PHYS: 16106 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16107 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16108 mutex_enter(&ill->ill_lock); 16109 ill->ill_promisc_on_phys = B_FALSE; 16110 mutex_exit(&ill->ill_lock); 16111 break; 16112 case DL_NOTE_CAPAB_RENEG: 16113 /* 16114 * Something changed on the driver side. 16115 * It wants us to renegotiate the capabilities 16116 * on this ill. One possible cause is the aggregation 16117 * interface under us where a port got added or 16118 * went away. 16119 * 16120 * If the capability negotiation is already done 16121 * or is in progress, reset the capabilities and 16122 * mark the ill's ill_capab_reneg to be B_TRUE, 16123 * so that when the ack comes back, we can start 16124 * the renegotiation process. 16125 * 16126 * Note that if ill_capab_reneg is already B_TRUE 16127 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16128 * the capability resetting request has been sent 16129 * and the renegotiation has not been started yet; 16130 * nothing needs to be done in this case. 16131 */ 16132 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16133 ill_capability_reset(ill, B_TRUE); 16134 ipsq_current_finish(ipsq); 16135 break; 16136 default: 16137 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16138 "type 0x%x for DL_NOTIFY_IND\n", 16139 notify->dl_notification)); 16140 break; 16141 } 16142 16143 /* 16144 * As this is an asynchronous operation, we 16145 * should not call ill_dlpi_done 16146 */ 16147 break; 16148 } 16149 case DL_NOTIFY_ACK: { 16150 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16151 16152 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16153 ill->ill_note_link = 1; 16154 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16155 break; 16156 } 16157 case DL_PHYS_ADDR_ACK: { 16158 /* 16159 * As part of plumbing the interface via SIOCSLIFNAME, 16160 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16161 * whose answers we receive here. As each answer is received, 16162 * we call ill_dlpi_done() to dispatch the next request as 16163 * we're processing the current one. Once all answers have 16164 * been received, we use ipsq_pending_mp_get() to dequeue the 16165 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16166 * is invoked from an ill queue, conn_oper_pending_ill is not 16167 * available, but we know the ioctl is pending on ill_wq.) 16168 */ 16169 uint_t paddrlen, paddroff; 16170 16171 paddrreq = ill->ill_phys_addr_pend; 16172 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16173 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16174 16175 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16176 if (paddrreq == DL_IPV6_TOKEN) { 16177 /* 16178 * bcopy to low-order bits of ill_token 16179 * 16180 * XXX Temporary hack - currently, all known tokens 16181 * are 64 bits, so I'll cheat for the moment. 16182 */ 16183 bcopy(mp->b_rptr + paddroff, 16184 &ill->ill_token.s6_addr32[2], paddrlen); 16185 ill->ill_token_length = paddrlen; 16186 break; 16187 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16188 ASSERT(ill->ill_nd_lla_mp == NULL); 16189 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16190 mp = NULL; 16191 break; 16192 } 16193 16194 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16195 ASSERT(ill->ill_phys_addr_mp == NULL); 16196 if (!ill->ill_ifname_pending) 16197 break; 16198 ill->ill_ifname_pending = 0; 16199 if (!ioctl_aborted) 16200 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16201 if (mp1 != NULL) { 16202 ASSERT(connp == NULL); 16203 q = ill->ill_wq; 16204 } 16205 /* 16206 * If any error acks received during the plumbing sequence, 16207 * ill_ifname_pending_err will be set. Break out and send up 16208 * the error to the pending ioctl. 16209 */ 16210 if (ill->ill_ifname_pending_err != 0) { 16211 err = ill->ill_ifname_pending_err; 16212 ill->ill_ifname_pending_err = 0; 16213 break; 16214 } 16215 16216 ill->ill_phys_addr_mp = mp; 16217 ill->ill_phys_addr = mp->b_rptr + paddroff; 16218 mp = NULL; 16219 16220 /* 16221 * If paddrlen is zero, the DLPI provider doesn't support 16222 * physical addresses. The other two tests were historical 16223 * workarounds for bugs in our former PPP implementation, but 16224 * now other things have grown dependencies on them -- e.g., 16225 * the tun module specifies a dl_addr_length of zero in its 16226 * DL_BIND_ACK, but then specifies an incorrect value in its 16227 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16228 * but only after careful testing ensures that all dependent 16229 * broken DLPI providers have been fixed. 16230 */ 16231 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16232 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16233 ill->ill_phys_addr = NULL; 16234 } else if (paddrlen != ill->ill_phys_addr_length) { 16235 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16236 paddrlen, ill->ill_phys_addr_length)); 16237 err = EINVAL; 16238 break; 16239 } 16240 16241 if (ill->ill_nd_lla_mp == NULL) { 16242 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16243 err = ENOMEM; 16244 break; 16245 } 16246 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16247 } 16248 16249 /* 16250 * Set the interface token. If the zeroth interface address 16251 * is unspecified, then set it to the link local address. 16252 */ 16253 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16254 (void) ill_setdefaulttoken(ill); 16255 16256 ASSERT(ill->ill_ipif->ipif_id == 0); 16257 if (ipif != NULL && 16258 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16259 (void) ipif_setlinklocal(ipif); 16260 } 16261 break; 16262 } 16263 case DL_OK_ACK: 16264 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16265 dl_primstr((int)dloa->dl_correct_primitive), 16266 dloa->dl_correct_primitive)); 16267 switch (dloa->dl_correct_primitive) { 16268 case DL_ENABMULTI_REQ: 16269 case DL_DISABMULTI_REQ: 16270 if (!ill->ill_isv6) 16271 ipsq_current_finish(ipsq); 16272 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16273 break; 16274 case DL_PROMISCON_REQ: 16275 case DL_PROMISCOFF_REQ: 16276 case DL_UNBIND_REQ: 16277 case DL_ATTACH_REQ: 16278 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16279 break; 16280 } 16281 break; 16282 default: 16283 break; 16284 } 16285 16286 freemsg(mp); 16287 if (mp1 == NULL) 16288 return; 16289 16290 /* 16291 * The operation must complete without EINPROGRESS since 16292 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16293 * the operation will be stuck forever inside the IPSQ. 16294 */ 16295 ASSERT(err != EINPROGRESS); 16296 16297 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16298 case 0: 16299 ipsq_current_finish(ipsq); 16300 break; 16301 16302 case SIOCSLIFNAME: 16303 case IF_UNITSEL: { 16304 ill_t *ill_other = ILL_OTHER(ill); 16305 16306 /* 16307 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16308 * ill has a peer which is in an IPMP group, then place ill 16309 * into the same group. One catch: although ifconfig plumbs 16310 * the appropriate IPMP meta-interface prior to plumbing this 16311 * ill, it is possible for multiple ifconfig applications to 16312 * race (or for another application to adjust plumbing), in 16313 * which case the IPMP meta-interface we need will be missing. 16314 * If so, kick the phyint out of the group. 16315 */ 16316 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16317 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16318 ipmp_illgrp_t *illg; 16319 16320 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16321 if (illg == NULL) 16322 ipmp_phyint_leave_grp(ill->ill_phyint); 16323 else 16324 ipmp_ill_join_illgrp(ill, illg); 16325 } 16326 16327 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16328 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16329 else 16330 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16331 break; 16332 } 16333 case SIOCLIFADDIF: 16334 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16335 break; 16336 16337 default: 16338 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16339 break; 16340 } 16341 } 16342 16343 /* 16344 * ip_rput_other is called by ip_rput to handle messages modifying the global 16345 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16346 */ 16347 /* ARGSUSED */ 16348 void 16349 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16350 { 16351 ill_t *ill = q->q_ptr; 16352 struct iocblk *iocp; 16353 mblk_t *mp1; 16354 conn_t *connp = NULL; 16355 16356 ip1dbg(("ip_rput_other ")); 16357 if (ipsq != NULL) { 16358 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16359 ASSERT(ipsq->ipsq_xop == 16360 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16361 } 16362 16363 switch (mp->b_datap->db_type) { 16364 case M_ERROR: 16365 case M_HANGUP: 16366 /* 16367 * The device has a problem. We force the ILL down. It can 16368 * be brought up again manually using SIOCSIFFLAGS (via 16369 * ifconfig or equivalent). 16370 */ 16371 ASSERT(ipsq != NULL); 16372 if (mp->b_rptr < mp->b_wptr) 16373 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16374 if (ill->ill_error == 0) 16375 ill->ill_error = ENXIO; 16376 if (!ill_down_start(q, mp)) 16377 return; 16378 ipif_all_down_tail(ipsq, q, mp, NULL); 16379 break; 16380 case M_IOCACK: 16381 iocp = (struct iocblk *)mp->b_rptr; 16382 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16383 switch (iocp->ioc_cmd) { 16384 case SIOCSTUNPARAM: 16385 case OSIOCSTUNPARAM: 16386 ASSERT(ipsq != NULL); 16387 /* 16388 * Finish socket ioctl passed through to tun. 16389 * We should have an IOCTL waiting on this. 16390 */ 16391 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16392 if (ill->ill_isv6) { 16393 struct iftun_req *ta; 16394 16395 /* 16396 * if a source or destination is 16397 * being set, try and set the link 16398 * local address for the tunnel 16399 */ 16400 ta = (struct iftun_req *)mp->b_cont-> 16401 b_cont->b_rptr; 16402 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16403 ipif_set_tun_llink(ill, ta); 16404 } 16405 16406 } 16407 if (mp1 != NULL) { 16408 /* 16409 * Now copy back the b_next/b_prev used by 16410 * mi code for the mi_copy* functions. 16411 * See ip_sioctl_tunparam() for the reason. 16412 * Also protect against missing b_cont. 16413 */ 16414 if (mp->b_cont != NULL) { 16415 mp->b_cont->b_next = 16416 mp1->b_cont->b_next; 16417 mp->b_cont->b_prev = 16418 mp1->b_cont->b_prev; 16419 } 16420 inet_freemsg(mp1); 16421 ASSERT(connp != NULL); 16422 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16423 iocp->ioc_error, NO_COPYOUT, ipsq); 16424 } else { 16425 ASSERT(connp == NULL); 16426 putnext(q, mp); 16427 } 16428 break; 16429 case SIOCGTUNPARAM: 16430 case OSIOCGTUNPARAM: 16431 /* 16432 * This is really M_IOCDATA from the tunnel driver. 16433 * convert back and complete the ioctl. 16434 * We should have an IOCTL waiting on this. 16435 */ 16436 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16437 if (mp1) { 16438 /* 16439 * Now copy back the b_next/b_prev used by 16440 * mi code for the mi_copy* functions. 16441 * See ip_sioctl_tunparam() for the reason. 16442 * Also protect against missing b_cont. 16443 */ 16444 if (mp->b_cont != NULL) { 16445 mp->b_cont->b_next = 16446 mp1->b_cont->b_next; 16447 mp->b_cont->b_prev = 16448 mp1->b_cont->b_prev; 16449 } 16450 inet_freemsg(mp1); 16451 if (iocp->ioc_error == 0) 16452 mp->b_datap->db_type = M_IOCDATA; 16453 ASSERT(connp != NULL); 16454 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16455 iocp->ioc_error, COPYOUT, NULL); 16456 } else { 16457 ASSERT(connp == NULL); 16458 putnext(q, mp); 16459 } 16460 break; 16461 default: 16462 break; 16463 } 16464 break; 16465 case M_IOCNAK: 16466 iocp = (struct iocblk *)mp->b_rptr; 16467 16468 switch (iocp->ioc_cmd) { 16469 int mode; 16470 16471 case DL_IOC_HDR_INFO: 16472 /* 16473 * If this was the first attempt, turn off the 16474 * fastpath probing. 16475 */ 16476 mutex_enter(&ill->ill_lock); 16477 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16478 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16479 mutex_exit(&ill->ill_lock); 16480 ill_fastpath_nack(ill); 16481 ip1dbg(("ip_rput: DLPI fastpath off on " 16482 "interface %s\n", 16483 ill->ill_name)); 16484 } else { 16485 mutex_exit(&ill->ill_lock); 16486 } 16487 freemsg(mp); 16488 break; 16489 case SIOCSTUNPARAM: 16490 case OSIOCSTUNPARAM: 16491 ASSERT(ipsq != NULL); 16492 /* 16493 * Finish socket ioctl passed through to tun 16494 * We should have an IOCTL waiting on this. 16495 */ 16496 /* FALLTHRU */ 16497 case SIOCGTUNPARAM: 16498 case OSIOCGTUNPARAM: 16499 /* 16500 * This is really M_IOCDATA from the tunnel driver. 16501 * convert back and complete the ioctl. 16502 * We should have an IOCTL waiting on this. 16503 */ 16504 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16505 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16506 mp1 = ill_pending_mp_get(ill, &connp, 16507 iocp->ioc_id); 16508 mode = COPYOUT; 16509 ipsq = NULL; 16510 } else { 16511 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16512 mode = NO_COPYOUT; 16513 } 16514 if (mp1 != NULL) { 16515 /* 16516 * Now copy back the b_next/b_prev used by 16517 * mi code for the mi_copy* functions. 16518 * See ip_sioctl_tunparam() for the reason. 16519 * Also protect against missing b_cont. 16520 */ 16521 if (mp->b_cont != NULL) { 16522 mp->b_cont->b_next = 16523 mp1->b_cont->b_next; 16524 mp->b_cont->b_prev = 16525 mp1->b_cont->b_prev; 16526 } 16527 inet_freemsg(mp1); 16528 if (iocp->ioc_error == 0) 16529 iocp->ioc_error = EINVAL; 16530 ASSERT(connp != NULL); 16531 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16532 iocp->ioc_error, mode, ipsq); 16533 } else { 16534 ASSERT(connp == NULL); 16535 putnext(q, mp); 16536 } 16537 break; 16538 default: 16539 break; 16540 } 16541 default: 16542 break; 16543 } 16544 } 16545 16546 /* 16547 * NOTE : This function does not ire_refrele the ire argument passed in. 16548 * 16549 * IPQoS notes 16550 * IP policy is invoked twice for a forwarded packet, once on the read side 16551 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16552 * enabled. An additional parameter, in_ill, has been added for this purpose. 16553 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16554 * because ip_mroute drops this information. 16555 * 16556 */ 16557 void 16558 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16559 { 16560 uint32_t old_pkt_len; 16561 uint32_t pkt_len; 16562 queue_t *q; 16563 uint32_t sum; 16564 #define rptr ((uchar_t *)ipha) 16565 uint32_t max_frag; 16566 uint32_t ill_index; 16567 ill_t *out_ill; 16568 mib2_ipIfStatsEntry_t *mibptr; 16569 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16570 16571 /* Get the ill_index of the incoming ILL */ 16572 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16573 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16574 16575 /* Initiate Read side IPPF processing */ 16576 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16577 ip_process(IPP_FWD_IN, &mp, ill_index); 16578 if (mp == NULL) { 16579 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16580 "during IPPF processing\n")); 16581 return; 16582 } 16583 } 16584 16585 /* Adjust the checksum to reflect the ttl decrement. */ 16586 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16587 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16588 16589 if (ipha->ipha_ttl-- <= 1) { 16590 if (ip_csum_hdr(ipha)) { 16591 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16592 goto drop_pkt; 16593 } 16594 /* 16595 * Note: ire_stq this will be NULL for multicast 16596 * datagrams using the long path through arp (the IRE 16597 * is not an IRE_CACHE). This should not cause 16598 * problems since we don't generate ICMP errors for 16599 * multicast packets. 16600 */ 16601 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16602 q = ire->ire_stq; 16603 if (q != NULL) { 16604 /* Sent by forwarding path, and router is global zone */ 16605 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16606 GLOBAL_ZONEID, ipst); 16607 } else 16608 freemsg(mp); 16609 return; 16610 } 16611 16612 /* 16613 * Don't forward if the interface is down 16614 */ 16615 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16616 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16617 ip2dbg(("ip_rput_forward:interface is down\n")); 16618 goto drop_pkt; 16619 } 16620 16621 /* Get the ill_index of the outgoing ILL */ 16622 out_ill = ire_to_ill(ire); 16623 ill_index = out_ill->ill_phyint->phyint_ifindex; 16624 16625 DTRACE_PROBE4(ip4__forwarding__start, 16626 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16627 16628 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16629 ipst->ips_ipv4firewall_forwarding, 16630 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16631 16632 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16633 16634 if (mp == NULL) 16635 return; 16636 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16637 16638 if (is_system_labeled()) { 16639 mblk_t *mp1; 16640 16641 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16642 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16643 goto drop_pkt; 16644 } 16645 /* Size may have changed */ 16646 mp = mp1; 16647 ipha = (ipha_t *)mp->b_rptr; 16648 pkt_len = ntohs(ipha->ipha_length); 16649 } 16650 16651 /* Check if there are options to update */ 16652 if (!IS_SIMPLE_IPH(ipha)) { 16653 if (ip_csum_hdr(ipha)) { 16654 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16655 goto drop_pkt; 16656 } 16657 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16658 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16659 return; 16660 } 16661 16662 ipha->ipha_hdr_checksum = 0; 16663 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16664 } 16665 max_frag = ire->ire_max_frag; 16666 if (pkt_len > max_frag) { 16667 /* 16668 * It needs fragging on its way out. We haven't 16669 * verified the header checksum yet. Since we 16670 * are going to put a surely good checksum in the 16671 * outgoing header, we have to make sure that it 16672 * was good coming in. 16673 */ 16674 if (ip_csum_hdr(ipha)) { 16675 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16676 goto drop_pkt; 16677 } 16678 /* Initiate Write side IPPF processing */ 16679 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16680 ip_process(IPP_FWD_OUT, &mp, ill_index); 16681 if (mp == NULL) { 16682 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16683 " during IPPF processing\n")); 16684 return; 16685 } 16686 } 16687 /* 16688 * Handle labeled packet resizing. 16689 * 16690 * If we have added a label, inform ip_wput_frag() of its 16691 * effect on the MTU for ICMP messages. 16692 */ 16693 if (pkt_len > old_pkt_len) { 16694 uint32_t secopt_size; 16695 16696 secopt_size = pkt_len - old_pkt_len; 16697 if (secopt_size < max_frag) 16698 max_frag -= secopt_size; 16699 } 16700 16701 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16702 GLOBAL_ZONEID, ipst, NULL); 16703 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16704 return; 16705 } 16706 16707 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16708 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16709 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16710 ipst->ips_ipv4firewall_physical_out, 16711 NULL, out_ill, ipha, mp, mp, 0, ipst); 16712 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16713 if (mp == NULL) 16714 return; 16715 16716 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16717 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16718 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16719 /* ip_xmit_v4 always consumes the packet */ 16720 return; 16721 16722 drop_pkt:; 16723 ip1dbg(("ip_rput_forward: drop pkt\n")); 16724 freemsg(mp); 16725 #undef rptr 16726 } 16727 16728 void 16729 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16730 { 16731 ire_t *ire; 16732 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16733 16734 ASSERT(!ipif->ipif_isv6); 16735 /* 16736 * Find an IRE which matches the destination and the outgoing 16737 * queue in the cache table. All we need is an IRE_CACHE which 16738 * is pointing at ipif->ipif_ill. 16739 */ 16740 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16741 dst = ipif->ipif_pp_dst_addr; 16742 16743 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16744 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16745 if (ire == NULL) { 16746 /* 16747 * Mark this packet to make it be delivered to 16748 * ip_rput_forward after the new ire has been 16749 * created. 16750 */ 16751 mp->b_prev = NULL; 16752 mp->b_next = mp; 16753 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16754 NULL, 0, GLOBAL_ZONEID, &zero_info); 16755 } else { 16756 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16757 IRE_REFRELE(ire); 16758 } 16759 } 16760 16761 /* Update any source route, record route or timestamp options */ 16762 static int 16763 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16764 { 16765 ipoptp_t opts; 16766 uchar_t *opt; 16767 uint8_t optval; 16768 uint8_t optlen; 16769 ipaddr_t dst; 16770 uint32_t ts; 16771 ire_t *dst_ire = NULL; 16772 ire_t *tmp_ire = NULL; 16773 timestruc_t now; 16774 16775 ip2dbg(("ip_rput_forward_options\n")); 16776 dst = ipha->ipha_dst; 16777 for (optval = ipoptp_first(&opts, ipha); 16778 optval != IPOPT_EOL; 16779 optval = ipoptp_next(&opts)) { 16780 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16781 opt = opts.ipoptp_cur; 16782 optlen = opts.ipoptp_len; 16783 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16784 optval, opts.ipoptp_len)); 16785 switch (optval) { 16786 uint32_t off; 16787 case IPOPT_SSRR: 16788 case IPOPT_LSRR: 16789 /* Check if adminstratively disabled */ 16790 if (!ipst->ips_ip_forward_src_routed) { 16791 if (ire->ire_stq != NULL) { 16792 /* 16793 * Sent by forwarding path, and router 16794 * is global zone 16795 */ 16796 icmp_unreachable(ire->ire_stq, mp, 16797 ICMP_SOURCE_ROUTE_FAILED, 16798 GLOBAL_ZONEID, ipst); 16799 } else { 16800 ip0dbg(("ip_rput_forward_options: " 16801 "unable to send unreach\n")); 16802 freemsg(mp); 16803 } 16804 return (-1); 16805 } 16806 16807 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16808 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16809 if (dst_ire == NULL) { 16810 /* 16811 * Must be partial since ip_rput_options 16812 * checked for strict. 16813 */ 16814 break; 16815 } 16816 off = opt[IPOPT_OFFSET]; 16817 off--; 16818 redo_srr: 16819 if (optlen < IP_ADDR_LEN || 16820 off > optlen - IP_ADDR_LEN) { 16821 /* End of source route */ 16822 ip1dbg(( 16823 "ip_rput_forward_options: end of SR\n")); 16824 ire_refrele(dst_ire); 16825 break; 16826 } 16827 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16828 bcopy(&ire->ire_src_addr, (char *)opt + off, 16829 IP_ADDR_LEN); 16830 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16831 ntohl(dst))); 16832 16833 /* 16834 * Check if our address is present more than 16835 * once as consecutive hops in source route. 16836 */ 16837 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16838 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16839 if (tmp_ire != NULL) { 16840 ire_refrele(tmp_ire); 16841 off += IP_ADDR_LEN; 16842 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16843 goto redo_srr; 16844 } 16845 ipha->ipha_dst = dst; 16846 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16847 ire_refrele(dst_ire); 16848 break; 16849 case IPOPT_RR: 16850 off = opt[IPOPT_OFFSET]; 16851 off--; 16852 if (optlen < IP_ADDR_LEN || 16853 off > optlen - IP_ADDR_LEN) { 16854 /* No more room - ignore */ 16855 ip1dbg(( 16856 "ip_rput_forward_options: end of RR\n")); 16857 break; 16858 } 16859 bcopy(&ire->ire_src_addr, (char *)opt + off, 16860 IP_ADDR_LEN); 16861 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16862 break; 16863 case IPOPT_TS: 16864 /* Insert timestamp if there is room */ 16865 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16866 case IPOPT_TS_TSONLY: 16867 off = IPOPT_TS_TIMELEN; 16868 break; 16869 case IPOPT_TS_PRESPEC: 16870 case IPOPT_TS_PRESPEC_RFC791: 16871 /* Verify that the address matched */ 16872 off = opt[IPOPT_OFFSET] - 1; 16873 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16874 dst_ire = ire_ctable_lookup(dst, 0, 16875 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16876 MATCH_IRE_TYPE, ipst); 16877 if (dst_ire == NULL) { 16878 /* Not for us */ 16879 break; 16880 } 16881 ire_refrele(dst_ire); 16882 /* FALLTHRU */ 16883 case IPOPT_TS_TSANDADDR: 16884 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16885 break; 16886 default: 16887 /* 16888 * ip_*put_options should have already 16889 * dropped this packet. 16890 */ 16891 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16892 "unknown IT - bug in ip_rput_options?\n"); 16893 return (0); /* Keep "lint" happy */ 16894 } 16895 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16896 /* Increase overflow counter */ 16897 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16898 opt[IPOPT_POS_OV_FLG] = 16899 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16900 (off << 4)); 16901 break; 16902 } 16903 off = opt[IPOPT_OFFSET] - 1; 16904 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16905 case IPOPT_TS_PRESPEC: 16906 case IPOPT_TS_PRESPEC_RFC791: 16907 case IPOPT_TS_TSANDADDR: 16908 bcopy(&ire->ire_src_addr, 16909 (char *)opt + off, IP_ADDR_LEN); 16910 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16911 /* FALLTHRU */ 16912 case IPOPT_TS_TSONLY: 16913 off = opt[IPOPT_OFFSET] - 1; 16914 /* Compute # of milliseconds since midnight */ 16915 gethrestime(&now); 16916 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16917 now.tv_nsec / (NANOSEC / MILLISEC); 16918 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16919 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16920 break; 16921 } 16922 break; 16923 } 16924 } 16925 return (0); 16926 } 16927 16928 /* 16929 * This is called after processing at least one of AH/ESP headers. 16930 * 16931 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16932 * the actual, physical interface on which the packet was received, 16933 * but, when ip_strict_dst_multihoming is set to 1, could be the 16934 * interface which had the ipha_dst configured when the packet went 16935 * through ip_rput. The ill_index corresponding to the recv_ill 16936 * is saved in ipsec_in_rill_index 16937 * 16938 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16939 * cannot assume "ire" points to valid data for any IPv6 cases. 16940 */ 16941 void 16942 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16943 { 16944 mblk_t *mp; 16945 ipaddr_t dst; 16946 in6_addr_t *v6dstp; 16947 ipha_t *ipha; 16948 ip6_t *ip6h; 16949 ipsec_in_t *ii; 16950 boolean_t ill_need_rele = B_FALSE; 16951 boolean_t rill_need_rele = B_FALSE; 16952 boolean_t ire_need_rele = B_FALSE; 16953 netstack_t *ns; 16954 ip_stack_t *ipst; 16955 16956 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16957 ASSERT(ii->ipsec_in_ill_index != 0); 16958 ns = ii->ipsec_in_ns; 16959 ASSERT(ii->ipsec_in_ns != NULL); 16960 ipst = ns->netstack_ip; 16961 16962 mp = ipsec_mp->b_cont; 16963 ASSERT(mp != NULL); 16964 16965 if (ill == NULL) { 16966 ASSERT(recv_ill == NULL); 16967 /* 16968 * We need to get the original queue on which ip_rput_local 16969 * or ip_rput_data_v6 was called. 16970 */ 16971 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16972 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16973 ill_need_rele = B_TRUE; 16974 16975 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16976 recv_ill = ill_lookup_on_ifindex( 16977 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16978 NULL, NULL, NULL, NULL, ipst); 16979 rill_need_rele = B_TRUE; 16980 } else { 16981 recv_ill = ill; 16982 } 16983 16984 if ((ill == NULL) || (recv_ill == NULL)) { 16985 ip0dbg(("ip_fanout_proto_again: interface " 16986 "disappeared\n")); 16987 if (ill != NULL) 16988 ill_refrele(ill); 16989 if (recv_ill != NULL) 16990 ill_refrele(recv_ill); 16991 freemsg(ipsec_mp); 16992 return; 16993 } 16994 } 16995 16996 ASSERT(ill != NULL && recv_ill != NULL); 16997 16998 if (mp->b_datap->db_type == M_CTL) { 16999 /* 17000 * AH/ESP is returning the ICMP message after 17001 * removing their headers. Fanout again till 17002 * it gets to the right protocol. 17003 */ 17004 if (ii->ipsec_in_v4) { 17005 icmph_t *icmph; 17006 int iph_hdr_length; 17007 int hdr_length; 17008 17009 ipha = (ipha_t *)mp->b_rptr; 17010 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17011 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17012 ipha = (ipha_t *)&icmph[1]; 17013 hdr_length = IPH_HDR_LENGTH(ipha); 17014 /* 17015 * icmp_inbound_error_fanout may need to do pullupmsg. 17016 * Reset the type to M_DATA. 17017 */ 17018 mp->b_datap->db_type = M_DATA; 17019 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17020 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17021 B_FALSE, ill, ii->ipsec_in_zoneid); 17022 } else { 17023 icmp6_t *icmp6; 17024 int hdr_length; 17025 17026 ip6h = (ip6_t *)mp->b_rptr; 17027 /* Don't call hdr_length_v6() unless you have to. */ 17028 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17029 hdr_length = ip_hdr_length_v6(mp, ip6h); 17030 else 17031 hdr_length = IPV6_HDR_LEN; 17032 17033 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17034 /* 17035 * icmp_inbound_error_fanout_v6 may need to do 17036 * pullupmsg. Reset the type to M_DATA. 17037 */ 17038 mp->b_datap->db_type = M_DATA; 17039 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17040 ip6h, icmp6, ill, recv_ill, B_TRUE, 17041 ii->ipsec_in_zoneid); 17042 } 17043 if (ill_need_rele) 17044 ill_refrele(ill); 17045 if (rill_need_rele) 17046 ill_refrele(recv_ill); 17047 return; 17048 } 17049 17050 if (ii->ipsec_in_v4) { 17051 ipha = (ipha_t *)mp->b_rptr; 17052 dst = ipha->ipha_dst; 17053 if (CLASSD(dst)) { 17054 /* 17055 * Multicast has to be delivered to all streams. 17056 */ 17057 dst = INADDR_BROADCAST; 17058 } 17059 17060 if (ire == NULL) { 17061 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17062 MBLK_GETLABEL(mp), ipst); 17063 if (ire == NULL) { 17064 if (ill_need_rele) 17065 ill_refrele(ill); 17066 if (rill_need_rele) 17067 ill_refrele(recv_ill); 17068 ip1dbg(("ip_fanout_proto_again: " 17069 "IRE not found")); 17070 freemsg(ipsec_mp); 17071 return; 17072 } 17073 ire_need_rele = B_TRUE; 17074 } 17075 17076 switch (ipha->ipha_protocol) { 17077 case IPPROTO_UDP: 17078 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17079 recv_ill); 17080 if (ire_need_rele) 17081 ire_refrele(ire); 17082 break; 17083 case IPPROTO_TCP: 17084 if (!ire_need_rele) 17085 IRE_REFHOLD(ire); 17086 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17087 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17088 IRE_REFRELE(ire); 17089 if (mp != NULL) { 17090 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17091 mp, 1, SQ_PROCESS, 17092 SQTAG_IP_PROTO_AGAIN); 17093 } 17094 break; 17095 case IPPROTO_SCTP: 17096 if (!ire_need_rele) 17097 IRE_REFHOLD(ire); 17098 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17099 ipsec_mp, 0, ill->ill_rq, dst); 17100 break; 17101 default: 17102 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17103 recv_ill, 0); 17104 if (ire_need_rele) 17105 ire_refrele(ire); 17106 break; 17107 } 17108 } else { 17109 uint32_t rput_flags = 0; 17110 17111 ip6h = (ip6_t *)mp->b_rptr; 17112 v6dstp = &ip6h->ip6_dst; 17113 /* 17114 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17115 * address. 17116 * 17117 * Currently, we don't store that state in the IPSEC_IN 17118 * message, and we may need to. 17119 */ 17120 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17121 IP6_IN_LLMCAST : 0); 17122 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17123 NULL, NULL); 17124 } 17125 if (ill_need_rele) 17126 ill_refrele(ill); 17127 if (rill_need_rele) 17128 ill_refrele(recv_ill); 17129 } 17130 17131 /* 17132 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17133 * returns 'true' if there are still fragments left on the queue, in 17134 * which case we restart the timer. 17135 */ 17136 void 17137 ill_frag_timer(void *arg) 17138 { 17139 ill_t *ill = (ill_t *)arg; 17140 boolean_t frag_pending; 17141 ip_stack_t *ipst = ill->ill_ipst; 17142 17143 mutex_enter(&ill->ill_lock); 17144 ASSERT(!ill->ill_fragtimer_executing); 17145 if (ill->ill_state_flags & ILL_CONDEMNED) { 17146 ill->ill_frag_timer_id = 0; 17147 mutex_exit(&ill->ill_lock); 17148 return; 17149 } 17150 ill->ill_fragtimer_executing = 1; 17151 mutex_exit(&ill->ill_lock); 17152 17153 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17154 17155 /* 17156 * Restart the timer, if we have fragments pending or if someone 17157 * wanted us to be scheduled again. 17158 */ 17159 mutex_enter(&ill->ill_lock); 17160 ill->ill_fragtimer_executing = 0; 17161 ill->ill_frag_timer_id = 0; 17162 if (frag_pending || ill->ill_fragtimer_needrestart) 17163 ill_frag_timer_start(ill); 17164 mutex_exit(&ill->ill_lock); 17165 } 17166 17167 void 17168 ill_frag_timer_start(ill_t *ill) 17169 { 17170 ip_stack_t *ipst = ill->ill_ipst; 17171 17172 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17173 17174 /* If the ill is closing or opening don't proceed */ 17175 if (ill->ill_state_flags & ILL_CONDEMNED) 17176 return; 17177 17178 if (ill->ill_fragtimer_executing) { 17179 /* 17180 * ill_frag_timer is currently executing. Just record the 17181 * the fact that we want the timer to be restarted. 17182 * ill_frag_timer will post a timeout before it returns, 17183 * ensuring it will be called again. 17184 */ 17185 ill->ill_fragtimer_needrestart = 1; 17186 return; 17187 } 17188 17189 if (ill->ill_frag_timer_id == 0) { 17190 /* 17191 * The timer is neither running nor is the timeout handler 17192 * executing. Post a timeout so that ill_frag_timer will be 17193 * called 17194 */ 17195 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17196 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17197 ill->ill_fragtimer_needrestart = 0; 17198 } 17199 } 17200 17201 /* 17202 * This routine is needed for loopback when forwarding multicasts. 17203 * 17204 * IPQoS Notes: 17205 * IPPF processing is done in fanout routines. 17206 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17207 * processing for IPsec packets is done when it comes back in clear. 17208 * NOTE : The callers of this function need to do the ire_refrele for the 17209 * ire that is being passed in. 17210 */ 17211 void 17212 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17213 ill_t *recv_ill, uint32_t esp_udp_ports) 17214 { 17215 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17216 ill_t *ill = (ill_t *)q->q_ptr; 17217 uint32_t sum; 17218 uint32_t u1; 17219 uint32_t u2; 17220 int hdr_length; 17221 boolean_t mctl_present; 17222 mblk_t *first_mp = mp; 17223 mblk_t *hada_mp = NULL; 17224 ipha_t *inner_ipha; 17225 ip_stack_t *ipst; 17226 17227 ASSERT(recv_ill != NULL); 17228 ipst = recv_ill->ill_ipst; 17229 17230 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17231 "ip_rput_locl_start: q %p", q); 17232 17233 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17234 ASSERT(ill != NULL); 17235 17236 #define rptr ((uchar_t *)ipha) 17237 #define iphs ((uint16_t *)ipha) 17238 17239 /* 17240 * no UDP or TCP packet should come here anymore. 17241 */ 17242 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17243 ipha->ipha_protocol != IPPROTO_UDP); 17244 17245 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17246 if (mctl_present && 17247 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17248 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17249 17250 /* 17251 * It's an IPsec accelerated packet. 17252 * Keep a pointer to the data attributes around until 17253 * we allocate the ipsec_info_t. 17254 */ 17255 IPSECHW_DEBUG(IPSECHW_PKT, 17256 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17257 hada_mp = first_mp; 17258 hada_mp->b_cont = NULL; 17259 /* 17260 * Since it is accelerated, it comes directly from 17261 * the ill and the data attributes is followed by 17262 * the packet data. 17263 */ 17264 ASSERT(mp->b_datap->db_type != M_CTL); 17265 first_mp = mp; 17266 mctl_present = B_FALSE; 17267 } 17268 17269 /* 17270 * IF M_CTL is not present, then ipsec_in_is_secure 17271 * should return B_TRUE. There is a case where loopback 17272 * packets has an M_CTL in the front with all the 17273 * IPsec options set to IPSEC_PREF_NEVER - which means 17274 * ipsec_in_is_secure will return B_FALSE. As loopback 17275 * packets never comes here, it is safe to ASSERT the 17276 * following. 17277 */ 17278 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17279 17280 /* 17281 * Also, we should never have an mctl_present if this is an 17282 * ESP-in-UDP packet. 17283 */ 17284 ASSERT(!mctl_present || !esp_in_udp_packet); 17285 17286 /* u1 is # words of IP options */ 17287 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17288 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17289 17290 /* 17291 * Don't verify header checksum if we just removed UDP header or 17292 * packet is coming back from AH/ESP. 17293 */ 17294 if (!esp_in_udp_packet && !mctl_present) { 17295 if (u1) { 17296 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17297 if (hada_mp != NULL) 17298 freemsg(hada_mp); 17299 return; 17300 } 17301 } else { 17302 /* Check the IP header checksum. */ 17303 #define uph ((uint16_t *)ipha) 17304 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17305 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17306 #undef uph 17307 /* finish doing IP checksum */ 17308 sum = (sum & 0xFFFF) + (sum >> 16); 17309 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17310 if (sum && sum != 0xFFFF) { 17311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17312 goto drop_pkt; 17313 } 17314 } 17315 } 17316 17317 /* 17318 * Count for SNMP of inbound packets for ire. As ip_proto_input 17319 * might be called more than once for secure packets, count only 17320 * the first time. 17321 */ 17322 if (!mctl_present) { 17323 UPDATE_IB_PKT_COUNT(ire); 17324 ire->ire_last_used_time = lbolt; 17325 } 17326 17327 /* Check for fragmentation offset. */ 17328 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17329 u1 = u2 & (IPH_MF | IPH_OFFSET); 17330 if (u1) { 17331 /* 17332 * We re-assemble fragments before we do the AH/ESP 17333 * processing. Thus, M_CTL should not be present 17334 * while we are re-assembling. 17335 */ 17336 ASSERT(!mctl_present); 17337 ASSERT(first_mp == mp); 17338 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17339 return; 17340 17341 /* 17342 * Make sure that first_mp points back to mp as 17343 * the mp we came in with could have changed in 17344 * ip_rput_fragment(). 17345 */ 17346 ipha = (ipha_t *)mp->b_rptr; 17347 first_mp = mp; 17348 } 17349 17350 /* 17351 * Clear hardware checksumming flag as it is currently only 17352 * used by TCP and UDP. 17353 */ 17354 DB_CKSUMFLAGS(mp) = 0; 17355 17356 /* Now we have a complete datagram, destined for this machine. */ 17357 u1 = IPH_HDR_LENGTH(ipha); 17358 switch (ipha->ipha_protocol) { 17359 case IPPROTO_ICMP: { 17360 ire_t *ire_zone; 17361 ilm_t *ilm; 17362 mblk_t *mp1; 17363 zoneid_t last_zoneid; 17364 ilm_walker_t ilw; 17365 17366 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17367 ASSERT(ire->ire_type == IRE_BROADCAST); 17368 17369 /* 17370 * In the multicast case, applications may have joined 17371 * the group from different zones, so we need to deliver 17372 * the packet to each of them. Loop through the 17373 * multicast memberships structures (ilm) on the receive 17374 * ill and send a copy of the packet up each matching 17375 * one. However, we don't do this for multicasts sent on 17376 * the loopback interface (PHYI_LOOPBACK flag set) as 17377 * they must stay in the sender's zone. 17378 * 17379 * ilm_add_v6() ensures that ilms in the same zone are 17380 * contiguous in the ill_ilm list. We use this property 17381 * to avoid sending duplicates needed when two 17382 * applications in the same zone join the same group on 17383 * different logical interfaces: we ignore the ilm if 17384 * its zoneid is the same as the last matching one. 17385 * In addition, the sending of the packet for 17386 * ire_zoneid is delayed until all of the other ilms 17387 * have been exhausted. 17388 */ 17389 last_zoneid = -1; 17390 ilm = ilm_walker_start(&ilw, recv_ill); 17391 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17392 if (ipha->ipha_dst != ilm->ilm_addr || 17393 ilm->ilm_zoneid == last_zoneid || 17394 ilm->ilm_zoneid == ire->ire_zoneid || 17395 ilm->ilm_zoneid == ALL_ZONES || 17396 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17397 continue; 17398 mp1 = ip_copymsg(first_mp); 17399 if (mp1 == NULL) 17400 continue; 17401 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17402 0, sum, mctl_present, B_TRUE, 17403 recv_ill, ilm->ilm_zoneid); 17404 last_zoneid = ilm->ilm_zoneid; 17405 } 17406 ilm_walker_finish(&ilw); 17407 } else if (ire->ire_type == IRE_BROADCAST) { 17408 /* 17409 * In the broadcast case, there may be many zones 17410 * which need a copy of the packet delivered to them. 17411 * There is one IRE_BROADCAST per broadcast address 17412 * and per zone; we walk those using a helper function. 17413 * In addition, the sending of the packet for ire is 17414 * delayed until all of the other ires have been 17415 * processed. 17416 */ 17417 IRB_REFHOLD(ire->ire_bucket); 17418 ire_zone = NULL; 17419 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17420 ire)) != NULL) { 17421 mp1 = ip_copymsg(first_mp); 17422 if (mp1 == NULL) 17423 continue; 17424 17425 UPDATE_IB_PKT_COUNT(ire_zone); 17426 ire_zone->ire_last_used_time = lbolt; 17427 icmp_inbound(q, mp1, B_TRUE, ill, 17428 0, sum, mctl_present, B_TRUE, 17429 recv_ill, ire_zone->ire_zoneid); 17430 } 17431 IRB_REFRELE(ire->ire_bucket); 17432 } 17433 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17434 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17435 ire->ire_zoneid); 17436 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17437 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17438 return; 17439 } 17440 case IPPROTO_IGMP: 17441 /* 17442 * If we are not willing to accept IGMP packets in clear, 17443 * then check with global policy. 17444 */ 17445 if (ipst->ips_igmp_accept_clear_messages == 0) { 17446 first_mp = ipsec_check_global_policy(first_mp, NULL, 17447 ipha, NULL, mctl_present, ipst->ips_netstack); 17448 if (first_mp == NULL) 17449 return; 17450 } 17451 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17452 freemsg(first_mp); 17453 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17454 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17455 return; 17456 } 17457 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17458 /* Bad packet - discarded by igmp_input */ 17459 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17460 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17461 if (mctl_present) 17462 freeb(first_mp); 17463 return; 17464 } 17465 /* 17466 * igmp_input() may have returned the pulled up message. 17467 * So first_mp and ipha need to be reinitialized. 17468 */ 17469 ipha = (ipha_t *)mp->b_rptr; 17470 if (mctl_present) 17471 first_mp->b_cont = mp; 17472 else 17473 first_mp = mp; 17474 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17475 connf_head != NULL) { 17476 /* No user-level listener for IGMP packets */ 17477 goto drop_pkt; 17478 } 17479 /* deliver to local raw users */ 17480 break; 17481 case IPPROTO_PIM: 17482 /* 17483 * If we are not willing to accept PIM packets in clear, 17484 * then check with global policy. 17485 */ 17486 if (ipst->ips_pim_accept_clear_messages == 0) { 17487 first_mp = ipsec_check_global_policy(first_mp, NULL, 17488 ipha, NULL, mctl_present, ipst->ips_netstack); 17489 if (first_mp == NULL) 17490 return; 17491 } 17492 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17493 freemsg(first_mp); 17494 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17495 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17496 return; 17497 } 17498 if (pim_input(q, mp, ill) != 0) { 17499 /* Bad packet - discarded by pim_input */ 17500 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17501 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17502 if (mctl_present) 17503 freeb(first_mp); 17504 return; 17505 } 17506 17507 /* 17508 * pim_input() may have pulled up the message so ipha needs to 17509 * be reinitialized. 17510 */ 17511 ipha = (ipha_t *)mp->b_rptr; 17512 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17513 connf_head != NULL) { 17514 /* No user-level listener for PIM packets */ 17515 goto drop_pkt; 17516 } 17517 /* deliver to local raw users */ 17518 break; 17519 case IPPROTO_ENCAP: 17520 /* 17521 * Handle self-encapsulated packets (IP-in-IP where 17522 * the inner addresses == the outer addresses). 17523 */ 17524 hdr_length = IPH_HDR_LENGTH(ipha); 17525 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17526 mp->b_wptr) { 17527 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17528 sizeof (ipha_t) - mp->b_rptr)) { 17529 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17530 freemsg(first_mp); 17531 return; 17532 } 17533 ipha = (ipha_t *)mp->b_rptr; 17534 } 17535 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17536 /* 17537 * Check the sanity of the inner IP header. 17538 */ 17539 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17541 freemsg(first_mp); 17542 return; 17543 } 17544 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17545 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17546 freemsg(first_mp); 17547 return; 17548 } 17549 if (inner_ipha->ipha_src == ipha->ipha_src && 17550 inner_ipha->ipha_dst == ipha->ipha_dst) { 17551 ipsec_in_t *ii; 17552 17553 /* 17554 * Self-encapsulated tunnel packet. Remove 17555 * the outer IP header and fanout again. 17556 * We also need to make sure that the inner 17557 * header is pulled up until options. 17558 */ 17559 mp->b_rptr = (uchar_t *)inner_ipha; 17560 ipha = inner_ipha; 17561 hdr_length = IPH_HDR_LENGTH(ipha); 17562 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17563 if (!pullupmsg(mp, (uchar_t *)ipha + 17564 + hdr_length - mp->b_rptr)) { 17565 freemsg(first_mp); 17566 return; 17567 } 17568 ipha = (ipha_t *)mp->b_rptr; 17569 } 17570 if (hdr_length > sizeof (ipha_t)) { 17571 /* We got options on the inner packet. */ 17572 ipaddr_t dst = ipha->ipha_dst; 17573 17574 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17575 -1) { 17576 /* Bad options! */ 17577 return; 17578 } 17579 if (dst != ipha->ipha_dst) { 17580 /* 17581 * Someone put a source-route in 17582 * the inside header of a self- 17583 * encapsulated packet. Drop it 17584 * with extreme prejudice and let 17585 * the sender know. 17586 */ 17587 icmp_unreachable(q, first_mp, 17588 ICMP_SOURCE_ROUTE_FAILED, 17589 recv_ill->ill_zoneid, ipst); 17590 return; 17591 } 17592 } 17593 if (!mctl_present) { 17594 ASSERT(first_mp == mp); 17595 /* 17596 * This means that somebody is sending 17597 * Self-encapsualted packets without AH/ESP. 17598 * If AH/ESP was present, we would have already 17599 * allocated the first_mp. 17600 * 17601 * Send this packet to find a tunnel endpoint. 17602 * if I can't find one, an ICMP 17603 * PROTOCOL_UNREACHABLE will get sent. 17604 */ 17605 goto fanout; 17606 } 17607 /* 17608 * We generally store the ill_index if we need to 17609 * do IPsec processing as we lose the ill queue when 17610 * we come back. But in this case, we never should 17611 * have to store the ill_index here as it should have 17612 * been stored previously when we processed the 17613 * AH/ESP header in this routine or for non-ipsec 17614 * cases, we still have the queue. But for some bad 17615 * packets from the wire, we can get to IPsec after 17616 * this and we better store the index for that case. 17617 */ 17618 ill = (ill_t *)q->q_ptr; 17619 ii = (ipsec_in_t *)first_mp->b_rptr; 17620 ii->ipsec_in_ill_index = 17621 ill->ill_phyint->phyint_ifindex; 17622 ii->ipsec_in_rill_index = 17623 recv_ill->ill_phyint->phyint_ifindex; 17624 if (ii->ipsec_in_decaps) { 17625 /* 17626 * This packet is self-encapsulated multiple 17627 * times. We don't want to recurse infinitely. 17628 * To keep it simple, drop the packet. 17629 */ 17630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17631 freemsg(first_mp); 17632 return; 17633 } 17634 ii->ipsec_in_decaps = B_TRUE; 17635 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17636 ire); 17637 return; 17638 } 17639 break; 17640 case IPPROTO_AH: 17641 case IPPROTO_ESP: { 17642 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17643 17644 /* 17645 * Fast path for AH/ESP. If this is the first time 17646 * we are sending a datagram to AH/ESP, allocate 17647 * a IPSEC_IN message and prepend it. Otherwise, 17648 * just fanout. 17649 */ 17650 17651 int ipsec_rc; 17652 ipsec_in_t *ii; 17653 netstack_t *ns = ipst->ips_netstack; 17654 17655 IP_STAT(ipst, ipsec_proto_ahesp); 17656 if (!mctl_present) { 17657 ASSERT(first_mp == mp); 17658 first_mp = ipsec_in_alloc(B_TRUE, ns); 17659 if (first_mp == NULL) { 17660 ip1dbg(("ip_proto_input: IPSEC_IN " 17661 "allocation failure.\n")); 17662 freemsg(hada_mp); /* okay ifnull */ 17663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17664 freemsg(mp); 17665 return; 17666 } 17667 /* 17668 * Store the ill_index so that when we come back 17669 * from IPsec we ride on the same queue. 17670 */ 17671 ill = (ill_t *)q->q_ptr; 17672 ii = (ipsec_in_t *)first_mp->b_rptr; 17673 ii->ipsec_in_ill_index = 17674 ill->ill_phyint->phyint_ifindex; 17675 ii->ipsec_in_rill_index = 17676 recv_ill->ill_phyint->phyint_ifindex; 17677 first_mp->b_cont = mp; 17678 /* 17679 * Cache hardware acceleration info. 17680 */ 17681 if (hada_mp != NULL) { 17682 IPSECHW_DEBUG(IPSECHW_PKT, 17683 ("ip_rput_local: caching data attr.\n")); 17684 ii->ipsec_in_accelerated = B_TRUE; 17685 ii->ipsec_in_da = hada_mp; 17686 hada_mp = NULL; 17687 } 17688 } else { 17689 ii = (ipsec_in_t *)first_mp->b_rptr; 17690 } 17691 17692 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17693 17694 if (!ipsec_loaded(ipss)) { 17695 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17696 ire->ire_zoneid, ipst); 17697 return; 17698 } 17699 17700 ns = ipst->ips_netstack; 17701 /* select inbound SA and have IPsec process the pkt */ 17702 if (ipha->ipha_protocol == IPPROTO_ESP) { 17703 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17704 boolean_t esp_in_udp_sa; 17705 if (esph == NULL) 17706 return; 17707 ASSERT(ii->ipsec_in_esp_sa != NULL); 17708 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17709 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17710 IPSA_F_NATT) != 0); 17711 /* 17712 * The following is a fancy, but quick, way of saying: 17713 * ESP-in-UDP SA and Raw ESP packet --> drop 17714 * OR 17715 * ESP SA and ESP-in-UDP packet --> drop 17716 */ 17717 if (esp_in_udp_sa != esp_in_udp_packet) { 17718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17719 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17720 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17721 &ns->netstack_ipsec->ipsec_dropper); 17722 return; 17723 } 17724 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17725 first_mp, esph); 17726 } else { 17727 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17728 if (ah == NULL) 17729 return; 17730 ASSERT(ii->ipsec_in_ah_sa != NULL); 17731 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17732 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17733 first_mp, ah); 17734 } 17735 17736 switch (ipsec_rc) { 17737 case IPSEC_STATUS_SUCCESS: 17738 break; 17739 case IPSEC_STATUS_FAILED: 17740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17741 /* FALLTHRU */ 17742 case IPSEC_STATUS_PENDING: 17743 return; 17744 } 17745 /* we're done with IPsec processing, send it up */ 17746 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17747 return; 17748 } 17749 default: 17750 break; 17751 } 17752 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17753 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17754 ire->ire_zoneid)); 17755 goto drop_pkt; 17756 } 17757 /* 17758 * Handle protocols with which IP is less intimate. There 17759 * can be more than one stream bound to a particular 17760 * protocol. When this is the case, each one gets a copy 17761 * of any incoming packets. 17762 */ 17763 fanout: 17764 ip_fanout_proto(q, first_mp, ill, ipha, 17765 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17766 B_TRUE, recv_ill, ire->ire_zoneid); 17767 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17768 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17769 return; 17770 17771 drop_pkt: 17772 freemsg(first_mp); 17773 if (hada_mp != NULL) 17774 freeb(hada_mp); 17775 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17776 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17777 #undef rptr 17778 #undef iphs 17779 17780 } 17781 17782 /* 17783 * Update any source route, record route or timestamp options. 17784 * Check that we are at end of strict source route. 17785 * The options have already been checked for sanity in ip_rput_options(). 17786 */ 17787 static boolean_t 17788 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17789 ip_stack_t *ipst) 17790 { 17791 ipoptp_t opts; 17792 uchar_t *opt; 17793 uint8_t optval; 17794 uint8_t optlen; 17795 ipaddr_t dst; 17796 uint32_t ts; 17797 ire_t *dst_ire; 17798 timestruc_t now; 17799 zoneid_t zoneid; 17800 ill_t *ill; 17801 17802 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17803 17804 ip2dbg(("ip_rput_local_options\n")); 17805 17806 for (optval = ipoptp_first(&opts, ipha); 17807 optval != IPOPT_EOL; 17808 optval = ipoptp_next(&opts)) { 17809 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17810 opt = opts.ipoptp_cur; 17811 optlen = opts.ipoptp_len; 17812 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17813 optval, optlen)); 17814 switch (optval) { 17815 uint32_t off; 17816 case IPOPT_SSRR: 17817 case IPOPT_LSRR: 17818 off = opt[IPOPT_OFFSET]; 17819 off--; 17820 if (optlen < IP_ADDR_LEN || 17821 off > optlen - IP_ADDR_LEN) { 17822 /* End of source route */ 17823 ip1dbg(("ip_rput_local_options: end of SR\n")); 17824 break; 17825 } 17826 /* 17827 * This will only happen if two consecutive entries 17828 * in the source route contains our address or if 17829 * it is a packet with a loose source route which 17830 * reaches us before consuming the whole source route 17831 */ 17832 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17833 if (optval == IPOPT_SSRR) { 17834 goto bad_src_route; 17835 } 17836 /* 17837 * Hack: instead of dropping the packet truncate the 17838 * source route to what has been used by filling the 17839 * rest with IPOPT_NOP. 17840 */ 17841 opt[IPOPT_OLEN] = (uint8_t)off; 17842 while (off < optlen) { 17843 opt[off++] = IPOPT_NOP; 17844 } 17845 break; 17846 case IPOPT_RR: 17847 off = opt[IPOPT_OFFSET]; 17848 off--; 17849 if (optlen < IP_ADDR_LEN || 17850 off > optlen - IP_ADDR_LEN) { 17851 /* No more room - ignore */ 17852 ip1dbg(( 17853 "ip_rput_local_options: end of RR\n")); 17854 break; 17855 } 17856 bcopy(&ire->ire_src_addr, (char *)opt + off, 17857 IP_ADDR_LEN); 17858 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17859 break; 17860 case IPOPT_TS: 17861 /* Insert timestamp if there is romm */ 17862 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17863 case IPOPT_TS_TSONLY: 17864 off = IPOPT_TS_TIMELEN; 17865 break; 17866 case IPOPT_TS_PRESPEC: 17867 case IPOPT_TS_PRESPEC_RFC791: 17868 /* Verify that the address matched */ 17869 off = opt[IPOPT_OFFSET] - 1; 17870 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17871 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17872 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17873 ipst); 17874 if (dst_ire == NULL) { 17875 /* Not for us */ 17876 break; 17877 } 17878 ire_refrele(dst_ire); 17879 /* FALLTHRU */ 17880 case IPOPT_TS_TSANDADDR: 17881 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17882 break; 17883 default: 17884 /* 17885 * ip_*put_options should have already 17886 * dropped this packet. 17887 */ 17888 cmn_err(CE_PANIC, "ip_rput_local_options: " 17889 "unknown IT - bug in ip_rput_options?\n"); 17890 return (B_TRUE); /* Keep "lint" happy */ 17891 } 17892 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17893 /* Increase overflow counter */ 17894 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17895 opt[IPOPT_POS_OV_FLG] = 17896 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17897 (off << 4)); 17898 break; 17899 } 17900 off = opt[IPOPT_OFFSET] - 1; 17901 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17902 case IPOPT_TS_PRESPEC: 17903 case IPOPT_TS_PRESPEC_RFC791: 17904 case IPOPT_TS_TSANDADDR: 17905 bcopy(&ire->ire_src_addr, (char *)opt + off, 17906 IP_ADDR_LEN); 17907 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17908 /* FALLTHRU */ 17909 case IPOPT_TS_TSONLY: 17910 off = opt[IPOPT_OFFSET] - 1; 17911 /* Compute # of milliseconds since midnight */ 17912 gethrestime(&now); 17913 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17914 now.tv_nsec / (NANOSEC / MILLISEC); 17915 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17916 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17917 break; 17918 } 17919 break; 17920 } 17921 } 17922 return (B_TRUE); 17923 17924 bad_src_route: 17925 q = WR(q); 17926 if (q->q_next != NULL) 17927 ill = q->q_ptr; 17928 else 17929 ill = NULL; 17930 17931 /* make sure we clear any indication of a hardware checksum */ 17932 DB_CKSUMFLAGS(mp) = 0; 17933 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17934 if (zoneid == ALL_ZONES) 17935 freemsg(mp); 17936 else 17937 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17938 return (B_FALSE); 17939 17940 } 17941 17942 /* 17943 * Process IP options in an inbound packet. If an option affects the 17944 * effective destination address, return the next hop address via dstp. 17945 * Returns -1 if something fails in which case an ICMP error has been sent 17946 * and mp freed. 17947 */ 17948 static int 17949 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17950 ip_stack_t *ipst) 17951 { 17952 ipoptp_t opts; 17953 uchar_t *opt; 17954 uint8_t optval; 17955 uint8_t optlen; 17956 ipaddr_t dst; 17957 intptr_t code = 0; 17958 ire_t *ire = NULL; 17959 zoneid_t zoneid; 17960 ill_t *ill; 17961 17962 ip2dbg(("ip_rput_options\n")); 17963 dst = ipha->ipha_dst; 17964 for (optval = ipoptp_first(&opts, ipha); 17965 optval != IPOPT_EOL; 17966 optval = ipoptp_next(&opts)) { 17967 opt = opts.ipoptp_cur; 17968 optlen = opts.ipoptp_len; 17969 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17970 optval, optlen)); 17971 /* 17972 * Note: we need to verify the checksum before we 17973 * modify anything thus this routine only extracts the next 17974 * hop dst from any source route. 17975 */ 17976 switch (optval) { 17977 uint32_t off; 17978 case IPOPT_SSRR: 17979 case IPOPT_LSRR: 17980 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17981 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17982 if (ire == NULL) { 17983 if (optval == IPOPT_SSRR) { 17984 ip1dbg(("ip_rput_options: not next" 17985 " strict source route 0x%x\n", 17986 ntohl(dst))); 17987 code = (char *)&ipha->ipha_dst - 17988 (char *)ipha; 17989 goto param_prob; /* RouterReq's */ 17990 } 17991 ip2dbg(("ip_rput_options: " 17992 "not next source route 0x%x\n", 17993 ntohl(dst))); 17994 break; 17995 } 17996 ire_refrele(ire); 17997 17998 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17999 ip1dbg(( 18000 "ip_rput_options: bad option offset\n")); 18001 code = (char *)&opt[IPOPT_OLEN] - 18002 (char *)ipha; 18003 goto param_prob; 18004 } 18005 off = opt[IPOPT_OFFSET]; 18006 off--; 18007 redo_srr: 18008 if (optlen < IP_ADDR_LEN || 18009 off > optlen - IP_ADDR_LEN) { 18010 /* End of source route */ 18011 ip1dbg(("ip_rput_options: end of SR\n")); 18012 break; 18013 } 18014 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18015 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18016 ntohl(dst))); 18017 18018 /* 18019 * Check if our address is present more than 18020 * once as consecutive hops in source route. 18021 * XXX verify per-interface ip_forwarding 18022 * for source route? 18023 */ 18024 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18025 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18026 18027 if (ire != NULL) { 18028 ire_refrele(ire); 18029 off += IP_ADDR_LEN; 18030 goto redo_srr; 18031 } 18032 18033 if (dst == htonl(INADDR_LOOPBACK)) { 18034 ip1dbg(("ip_rput_options: loopback addr in " 18035 "source route!\n")); 18036 goto bad_src_route; 18037 } 18038 /* 18039 * For strict: verify that dst is directly 18040 * reachable. 18041 */ 18042 if (optval == IPOPT_SSRR) { 18043 ire = ire_ftable_lookup(dst, 0, 0, 18044 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18045 MBLK_GETLABEL(mp), 18046 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18047 if (ire == NULL) { 18048 ip1dbg(("ip_rput_options: SSRR not " 18049 "directly reachable: 0x%x\n", 18050 ntohl(dst))); 18051 goto bad_src_route; 18052 } 18053 ire_refrele(ire); 18054 } 18055 /* 18056 * Defer update of the offset and the record route 18057 * until the packet is forwarded. 18058 */ 18059 break; 18060 case IPOPT_RR: 18061 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18062 ip1dbg(( 18063 "ip_rput_options: bad option offset\n")); 18064 code = (char *)&opt[IPOPT_OLEN] - 18065 (char *)ipha; 18066 goto param_prob; 18067 } 18068 break; 18069 case IPOPT_TS: 18070 /* 18071 * Verify that length >= 5 and that there is either 18072 * room for another timestamp or that the overflow 18073 * counter is not maxed out. 18074 */ 18075 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18076 if (optlen < IPOPT_MINLEN_IT) { 18077 goto param_prob; 18078 } 18079 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18080 ip1dbg(( 18081 "ip_rput_options: bad option offset\n")); 18082 code = (char *)&opt[IPOPT_OFFSET] - 18083 (char *)ipha; 18084 goto param_prob; 18085 } 18086 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18087 case IPOPT_TS_TSONLY: 18088 off = IPOPT_TS_TIMELEN; 18089 break; 18090 case IPOPT_TS_TSANDADDR: 18091 case IPOPT_TS_PRESPEC: 18092 case IPOPT_TS_PRESPEC_RFC791: 18093 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18094 break; 18095 default: 18096 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18097 (char *)ipha; 18098 goto param_prob; 18099 } 18100 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18101 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18102 /* 18103 * No room and the overflow counter is 15 18104 * already. 18105 */ 18106 goto param_prob; 18107 } 18108 break; 18109 } 18110 } 18111 18112 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18113 *dstp = dst; 18114 return (0); 18115 } 18116 18117 ip1dbg(("ip_rput_options: error processing IP options.")); 18118 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18119 18120 param_prob: 18121 q = WR(q); 18122 if (q->q_next != NULL) 18123 ill = q->q_ptr; 18124 else 18125 ill = NULL; 18126 18127 /* make sure we clear any indication of a hardware checksum */ 18128 DB_CKSUMFLAGS(mp) = 0; 18129 /* Don't know whether this is for non-global or global/forwarding */ 18130 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18131 if (zoneid == ALL_ZONES) 18132 freemsg(mp); 18133 else 18134 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18135 return (-1); 18136 18137 bad_src_route: 18138 q = WR(q); 18139 if (q->q_next != NULL) 18140 ill = q->q_ptr; 18141 else 18142 ill = NULL; 18143 18144 /* make sure we clear any indication of a hardware checksum */ 18145 DB_CKSUMFLAGS(mp) = 0; 18146 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18147 if (zoneid == ALL_ZONES) 18148 freemsg(mp); 18149 else 18150 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18151 return (-1); 18152 } 18153 18154 /* 18155 * IP & ICMP info in >=14 msg's ... 18156 * - ip fixed part (mib2_ip_t) 18157 * - icmp fixed part (mib2_icmp_t) 18158 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18159 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18160 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18161 * - ipRouteAttributeTable (ip 102) labeled routes 18162 * - ip multicast membership (ip_member_t) 18163 * - ip multicast source filtering (ip_grpsrc_t) 18164 * - igmp fixed part (struct igmpstat) 18165 * - multicast routing stats (struct mrtstat) 18166 * - multicast routing vifs (array of struct vifctl) 18167 * - multicast routing routes (array of struct mfcctl) 18168 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18169 * One per ill plus one generic 18170 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18171 * One per ill plus one generic 18172 * - ipv6RouteEntry all IPv6 IREs 18173 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18174 * - ipv6NetToMediaEntry all Neighbor Cache entries 18175 * - ipv6AddrEntry all IPv6 ipifs 18176 * - ipv6 multicast membership (ipv6_member_t) 18177 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18178 * 18179 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18180 * 18181 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18182 * already filled in by the caller. 18183 * Return value of 0 indicates that no messages were sent and caller 18184 * should free mpctl. 18185 */ 18186 int 18187 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18188 { 18189 ip_stack_t *ipst; 18190 sctp_stack_t *sctps; 18191 18192 if (q->q_next != NULL) { 18193 ipst = ILLQ_TO_IPST(q); 18194 } else { 18195 ipst = CONNQ_TO_IPST(q); 18196 } 18197 ASSERT(ipst != NULL); 18198 sctps = ipst->ips_netstack->netstack_sctp; 18199 18200 if (mpctl == NULL || mpctl->b_cont == NULL) { 18201 return (0); 18202 } 18203 18204 /* 18205 * For the purposes of the (broken) packet shell use 18206 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18207 * to make TCP and UDP appear first in the list of mib items. 18208 * TBD: We could expand this and use it in netstat so that 18209 * the kernel doesn't have to produce large tables (connections, 18210 * routes, etc) when netstat only wants the statistics or a particular 18211 * table. 18212 */ 18213 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18214 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18215 return (1); 18216 } 18217 } 18218 18219 if (level != MIB2_TCP) { 18220 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18221 return (1); 18222 } 18223 } 18224 18225 if (level != MIB2_UDP) { 18226 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18227 return (1); 18228 } 18229 } 18230 18231 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18232 ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18265 return (1); 18266 } 18267 18268 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18269 return (1); 18270 } 18271 18272 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18273 return (1); 18274 } 18275 18276 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18277 return (1); 18278 } 18279 18280 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18281 return (1); 18282 } 18283 18284 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18285 return (1); 18286 } 18287 18288 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18289 if (mpctl == NULL) 18290 return (1); 18291 18292 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18293 if (mpctl == NULL) 18294 return (1); 18295 18296 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18297 return (1); 18298 } 18299 freemsg(mpctl); 18300 return (1); 18301 } 18302 18303 /* Get global (legacy) IPv4 statistics */ 18304 static mblk_t * 18305 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18306 ip_stack_t *ipst) 18307 { 18308 mib2_ip_t old_ip_mib; 18309 struct opthdr *optp; 18310 mblk_t *mp2ctl; 18311 18312 /* 18313 * make a copy of the original message 18314 */ 18315 mp2ctl = copymsg(mpctl); 18316 18317 /* fixed length IP structure... */ 18318 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18319 optp->level = MIB2_IP; 18320 optp->name = 0; 18321 SET_MIB(old_ip_mib.ipForwarding, 18322 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18323 SET_MIB(old_ip_mib.ipDefaultTTL, 18324 (uint32_t)ipst->ips_ip_def_ttl); 18325 SET_MIB(old_ip_mib.ipReasmTimeout, 18326 ipst->ips_ip_g_frag_timeout); 18327 SET_MIB(old_ip_mib.ipAddrEntrySize, 18328 sizeof (mib2_ipAddrEntry_t)); 18329 SET_MIB(old_ip_mib.ipRouteEntrySize, 18330 sizeof (mib2_ipRouteEntry_t)); 18331 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18332 sizeof (mib2_ipNetToMediaEntry_t)); 18333 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18334 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18335 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18336 sizeof (mib2_ipAttributeEntry_t)); 18337 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18338 18339 /* 18340 * Grab the statistics from the new IP MIB 18341 */ 18342 SET_MIB(old_ip_mib.ipInReceives, 18343 (uint32_t)ipmib->ipIfStatsHCInReceives); 18344 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18345 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18346 SET_MIB(old_ip_mib.ipForwDatagrams, 18347 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18348 SET_MIB(old_ip_mib.ipInUnknownProtos, 18349 ipmib->ipIfStatsInUnknownProtos); 18350 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18351 SET_MIB(old_ip_mib.ipInDelivers, 18352 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18353 SET_MIB(old_ip_mib.ipOutRequests, 18354 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18355 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18356 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18357 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18358 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18359 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18360 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18361 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18362 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18363 18364 /* ipRoutingDiscards is not being used */ 18365 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18366 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18367 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18368 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18369 SET_MIB(old_ip_mib.ipReasmDuplicates, 18370 ipmib->ipIfStatsReasmDuplicates); 18371 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18372 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18373 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18374 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18375 SET_MIB(old_ip_mib.rawipInOverflows, 18376 ipmib->rawipIfStatsInOverflows); 18377 18378 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18379 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18380 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18381 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18382 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18383 ipmib->ipIfStatsOutSwitchIPVersion); 18384 18385 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18386 (int)sizeof (old_ip_mib))) { 18387 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18388 (uint_t)sizeof (old_ip_mib))); 18389 } 18390 18391 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18392 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18393 (int)optp->level, (int)optp->name, (int)optp->len)); 18394 qreply(q, mpctl); 18395 return (mp2ctl); 18396 } 18397 18398 /* Per interface IPv4 statistics */ 18399 static mblk_t * 18400 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18401 { 18402 struct opthdr *optp; 18403 mblk_t *mp2ctl; 18404 ill_t *ill; 18405 ill_walk_context_t ctx; 18406 mblk_t *mp_tail = NULL; 18407 mib2_ipIfStatsEntry_t global_ip_mib; 18408 18409 /* 18410 * Make a copy of the original message 18411 */ 18412 mp2ctl = copymsg(mpctl); 18413 18414 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18415 optp->level = MIB2_IP; 18416 optp->name = MIB2_IP_TRAFFIC_STATS; 18417 /* Include "unknown interface" ip_mib */ 18418 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18419 ipst->ips_ip_mib.ipIfStatsIfIndex = 18420 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18421 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18422 (ipst->ips_ip_g_forward ? 1 : 2)); 18423 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18424 (uint32_t)ipst->ips_ip_def_ttl); 18425 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18426 sizeof (mib2_ipIfStatsEntry_t)); 18427 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18428 sizeof (mib2_ipAddrEntry_t)); 18429 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18430 sizeof (mib2_ipRouteEntry_t)); 18431 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18432 sizeof (mib2_ipNetToMediaEntry_t)); 18433 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18434 sizeof (ip_member_t)); 18435 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18436 sizeof (ip_grpsrc_t)); 18437 18438 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18439 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18440 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18441 "failed to allocate %u bytes\n", 18442 (uint_t)sizeof (ipst->ips_ip_mib))); 18443 } 18444 18445 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18446 18447 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18448 ill = ILL_START_WALK_V4(&ctx, ipst); 18449 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18450 ill->ill_ip_mib->ipIfStatsIfIndex = 18451 ill->ill_phyint->phyint_ifindex; 18452 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18453 (ipst->ips_ip_g_forward ? 1 : 2)); 18454 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18455 (uint32_t)ipst->ips_ip_def_ttl); 18456 18457 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18458 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18459 (char *)ill->ill_ip_mib, 18460 (int)sizeof (*ill->ill_ip_mib))) { 18461 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18462 "failed to allocate %u bytes\n", 18463 (uint_t)sizeof (*ill->ill_ip_mib))); 18464 } 18465 } 18466 rw_exit(&ipst->ips_ill_g_lock); 18467 18468 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18469 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18470 "level %d, name %d, len %d\n", 18471 (int)optp->level, (int)optp->name, (int)optp->len)); 18472 qreply(q, mpctl); 18473 18474 if (mp2ctl == NULL) 18475 return (NULL); 18476 18477 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18478 } 18479 18480 /* Global IPv4 ICMP statistics */ 18481 static mblk_t * 18482 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18483 { 18484 struct opthdr *optp; 18485 mblk_t *mp2ctl; 18486 18487 /* 18488 * Make a copy of the original message 18489 */ 18490 mp2ctl = copymsg(mpctl); 18491 18492 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18493 optp->level = MIB2_ICMP; 18494 optp->name = 0; 18495 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18496 (int)sizeof (ipst->ips_icmp_mib))) { 18497 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18498 (uint_t)sizeof (ipst->ips_icmp_mib))); 18499 } 18500 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18501 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18502 (int)optp->level, (int)optp->name, (int)optp->len)); 18503 qreply(q, mpctl); 18504 return (mp2ctl); 18505 } 18506 18507 /* Global IPv4 IGMP statistics */ 18508 static mblk_t * 18509 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18510 { 18511 struct opthdr *optp; 18512 mblk_t *mp2ctl; 18513 18514 /* 18515 * make a copy of the original message 18516 */ 18517 mp2ctl = copymsg(mpctl); 18518 18519 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18520 optp->level = EXPER_IGMP; 18521 optp->name = 0; 18522 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18523 (int)sizeof (ipst->ips_igmpstat))) { 18524 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18525 (uint_t)sizeof (ipst->ips_igmpstat))); 18526 } 18527 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18528 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18529 (int)optp->level, (int)optp->name, (int)optp->len)); 18530 qreply(q, mpctl); 18531 return (mp2ctl); 18532 } 18533 18534 /* Global IPv4 Multicast Routing statistics */ 18535 static mblk_t * 18536 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18537 { 18538 struct opthdr *optp; 18539 mblk_t *mp2ctl; 18540 18541 /* 18542 * make a copy of the original message 18543 */ 18544 mp2ctl = copymsg(mpctl); 18545 18546 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18547 optp->level = EXPER_DVMRP; 18548 optp->name = 0; 18549 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18550 ip0dbg(("ip_mroute_stats: failed\n")); 18551 } 18552 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18553 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18554 (int)optp->level, (int)optp->name, (int)optp->len)); 18555 qreply(q, mpctl); 18556 return (mp2ctl); 18557 } 18558 18559 /* IPv4 address information */ 18560 static mblk_t * 18561 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18562 { 18563 struct opthdr *optp; 18564 mblk_t *mp2ctl; 18565 mblk_t *mp_tail = NULL; 18566 ill_t *ill; 18567 ipif_t *ipif; 18568 uint_t bitval; 18569 mib2_ipAddrEntry_t mae; 18570 zoneid_t zoneid; 18571 ill_walk_context_t ctx; 18572 18573 /* 18574 * make a copy of the original message 18575 */ 18576 mp2ctl = copymsg(mpctl); 18577 18578 /* ipAddrEntryTable */ 18579 18580 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18581 optp->level = MIB2_IP; 18582 optp->name = MIB2_IP_ADDR; 18583 zoneid = Q_TO_CONN(q)->conn_zoneid; 18584 18585 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18586 ill = ILL_START_WALK_V4(&ctx, ipst); 18587 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18588 for (ipif = ill->ill_ipif; ipif != NULL; 18589 ipif = ipif->ipif_next) { 18590 if (ipif->ipif_zoneid != zoneid && 18591 ipif->ipif_zoneid != ALL_ZONES) 18592 continue; 18593 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18594 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18595 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18596 18597 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18598 OCTET_LENGTH); 18599 mae.ipAdEntIfIndex.o_length = 18600 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18601 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18602 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18603 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18604 mae.ipAdEntInfo.ae_subnet_len = 18605 ip_mask_to_plen(ipif->ipif_net_mask); 18606 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18607 for (bitval = 1; 18608 bitval && 18609 !(bitval & ipif->ipif_brd_addr); 18610 bitval <<= 1) 18611 noop; 18612 mae.ipAdEntBcastAddr = bitval; 18613 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18614 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18615 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18616 mae.ipAdEntInfo.ae_broadcast_addr = 18617 ipif->ipif_brd_addr; 18618 mae.ipAdEntInfo.ae_pp_dst_addr = 18619 ipif->ipif_pp_dst_addr; 18620 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18621 ill->ill_flags | ill->ill_phyint->phyint_flags; 18622 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18623 18624 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18625 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18626 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18627 "allocate %u bytes\n", 18628 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18629 } 18630 } 18631 } 18632 rw_exit(&ipst->ips_ill_g_lock); 18633 18634 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18635 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18636 (int)optp->level, (int)optp->name, (int)optp->len)); 18637 qreply(q, mpctl); 18638 return (mp2ctl); 18639 } 18640 18641 /* IPv6 address information */ 18642 static mblk_t * 18643 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18644 { 18645 struct opthdr *optp; 18646 mblk_t *mp2ctl; 18647 mblk_t *mp_tail = NULL; 18648 ill_t *ill; 18649 ipif_t *ipif; 18650 mib2_ipv6AddrEntry_t mae6; 18651 zoneid_t zoneid; 18652 ill_walk_context_t ctx; 18653 18654 /* 18655 * make a copy of the original message 18656 */ 18657 mp2ctl = copymsg(mpctl); 18658 18659 /* ipv6AddrEntryTable */ 18660 18661 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18662 optp->level = MIB2_IP6; 18663 optp->name = MIB2_IP6_ADDR; 18664 zoneid = Q_TO_CONN(q)->conn_zoneid; 18665 18666 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18667 ill = ILL_START_WALK_V6(&ctx, ipst); 18668 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18669 for (ipif = ill->ill_ipif; ipif != NULL; 18670 ipif = ipif->ipif_next) { 18671 if (ipif->ipif_zoneid != zoneid && 18672 ipif->ipif_zoneid != ALL_ZONES) 18673 continue; 18674 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18675 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18676 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18677 18678 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18679 OCTET_LENGTH); 18680 mae6.ipv6AddrIfIndex.o_length = 18681 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18682 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18683 mae6.ipv6AddrPfxLength = 18684 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18685 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18686 mae6.ipv6AddrInfo.ae_subnet_len = 18687 mae6.ipv6AddrPfxLength; 18688 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18689 18690 /* Type: stateless(1), stateful(2), unknown(3) */ 18691 if (ipif->ipif_flags & IPIF_ADDRCONF) 18692 mae6.ipv6AddrType = 1; 18693 else 18694 mae6.ipv6AddrType = 2; 18695 /* Anycast: true(1), false(2) */ 18696 if (ipif->ipif_flags & IPIF_ANYCAST) 18697 mae6.ipv6AddrAnycastFlag = 1; 18698 else 18699 mae6.ipv6AddrAnycastFlag = 2; 18700 18701 /* 18702 * Address status: preferred(1), deprecated(2), 18703 * invalid(3), inaccessible(4), unknown(5) 18704 */ 18705 if (ipif->ipif_flags & IPIF_NOLOCAL) 18706 mae6.ipv6AddrStatus = 3; 18707 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18708 mae6.ipv6AddrStatus = 2; 18709 else 18710 mae6.ipv6AddrStatus = 1; 18711 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18712 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18713 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18714 ipif->ipif_v6pp_dst_addr; 18715 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18716 ill->ill_flags | ill->ill_phyint->phyint_flags; 18717 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18718 mae6.ipv6AddrIdentifier = ill->ill_token; 18719 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18720 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18721 mae6.ipv6AddrRetransmitTime = 18722 ill->ill_reachable_retrans_time; 18723 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18724 (char *)&mae6, 18725 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18726 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18727 "allocate %u bytes\n", 18728 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18729 } 18730 } 18731 } 18732 rw_exit(&ipst->ips_ill_g_lock); 18733 18734 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18735 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18736 (int)optp->level, (int)optp->name, (int)optp->len)); 18737 qreply(q, mpctl); 18738 return (mp2ctl); 18739 } 18740 18741 /* IPv4 multicast group membership. */ 18742 static mblk_t * 18743 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18744 { 18745 struct opthdr *optp; 18746 mblk_t *mp2ctl; 18747 ill_t *ill; 18748 ipif_t *ipif; 18749 ilm_t *ilm; 18750 ip_member_t ipm; 18751 mblk_t *mp_tail = NULL; 18752 ill_walk_context_t ctx; 18753 zoneid_t zoneid; 18754 ilm_walker_t ilw; 18755 18756 /* 18757 * make a copy of the original message 18758 */ 18759 mp2ctl = copymsg(mpctl); 18760 zoneid = Q_TO_CONN(q)->conn_zoneid; 18761 18762 /* ipGroupMember table */ 18763 optp = (struct opthdr *)&mpctl->b_rptr[ 18764 sizeof (struct T_optmgmt_ack)]; 18765 optp->level = MIB2_IP; 18766 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18767 18768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18769 ill = ILL_START_WALK_V4(&ctx, ipst); 18770 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18771 if (IS_UNDER_IPMP(ill)) 18772 continue; 18773 18774 ilm = ilm_walker_start(&ilw, ill); 18775 for (ipif = ill->ill_ipif; ipif != NULL; 18776 ipif = ipif->ipif_next) { 18777 if (ipif->ipif_zoneid != zoneid && 18778 ipif->ipif_zoneid != ALL_ZONES) 18779 continue; /* not this zone */ 18780 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18781 OCTET_LENGTH); 18782 ipm.ipGroupMemberIfIndex.o_length = 18783 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18784 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18785 ASSERT(ilm->ilm_ipif != NULL); 18786 ASSERT(ilm->ilm_ill == NULL); 18787 if (ilm->ilm_ipif != ipif) 18788 continue; 18789 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18790 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18791 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18792 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18793 (char *)&ipm, (int)sizeof (ipm))) { 18794 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18795 "failed to allocate %u bytes\n", 18796 (uint_t)sizeof (ipm))); 18797 } 18798 } 18799 } 18800 ilm_walker_finish(&ilw); 18801 } 18802 rw_exit(&ipst->ips_ill_g_lock); 18803 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18804 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18805 (int)optp->level, (int)optp->name, (int)optp->len)); 18806 qreply(q, mpctl); 18807 return (mp2ctl); 18808 } 18809 18810 /* IPv6 multicast group membership. */ 18811 static mblk_t * 18812 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18813 { 18814 struct opthdr *optp; 18815 mblk_t *mp2ctl; 18816 ill_t *ill; 18817 ilm_t *ilm; 18818 ipv6_member_t ipm6; 18819 mblk_t *mp_tail = NULL; 18820 ill_walk_context_t ctx; 18821 zoneid_t zoneid; 18822 ilm_walker_t ilw; 18823 18824 /* 18825 * make a copy of the original message 18826 */ 18827 mp2ctl = copymsg(mpctl); 18828 zoneid = Q_TO_CONN(q)->conn_zoneid; 18829 18830 /* ip6GroupMember table */ 18831 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18832 optp->level = MIB2_IP6; 18833 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18834 18835 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18836 ill = ILL_START_WALK_V6(&ctx, ipst); 18837 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18838 if (IS_UNDER_IPMP(ill)) 18839 continue; 18840 18841 ilm = ilm_walker_start(&ilw, ill); 18842 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18843 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18844 ASSERT(ilm->ilm_ipif == NULL); 18845 ASSERT(ilm->ilm_ill != NULL); 18846 if (ilm->ilm_zoneid != zoneid) 18847 continue; /* not this zone */ 18848 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18849 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18850 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18851 if (!snmp_append_data2(mpctl->b_cont, 18852 &mp_tail, 18853 (char *)&ipm6, (int)sizeof (ipm6))) { 18854 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18855 "failed to allocate %u bytes\n", 18856 (uint_t)sizeof (ipm6))); 18857 } 18858 } 18859 ilm_walker_finish(&ilw); 18860 } 18861 rw_exit(&ipst->ips_ill_g_lock); 18862 18863 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18864 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18865 (int)optp->level, (int)optp->name, (int)optp->len)); 18866 qreply(q, mpctl); 18867 return (mp2ctl); 18868 } 18869 18870 /* IP multicast filtered sources */ 18871 static mblk_t * 18872 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18873 { 18874 struct opthdr *optp; 18875 mblk_t *mp2ctl; 18876 ill_t *ill; 18877 ipif_t *ipif; 18878 ilm_t *ilm; 18879 ip_grpsrc_t ips; 18880 mblk_t *mp_tail = NULL; 18881 ill_walk_context_t ctx; 18882 zoneid_t zoneid; 18883 int i; 18884 slist_t *sl; 18885 ilm_walker_t ilw; 18886 18887 /* 18888 * make a copy of the original message 18889 */ 18890 mp2ctl = copymsg(mpctl); 18891 zoneid = Q_TO_CONN(q)->conn_zoneid; 18892 18893 /* ipGroupSource table */ 18894 optp = (struct opthdr *)&mpctl->b_rptr[ 18895 sizeof (struct T_optmgmt_ack)]; 18896 optp->level = MIB2_IP; 18897 optp->name = EXPER_IP_GROUP_SOURCES; 18898 18899 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18900 ill = ILL_START_WALK_V4(&ctx, ipst); 18901 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18902 if (IS_UNDER_IPMP(ill)) 18903 continue; 18904 18905 ilm = ilm_walker_start(&ilw, ill); 18906 for (ipif = ill->ill_ipif; ipif != NULL; 18907 ipif = ipif->ipif_next) { 18908 if (ipif->ipif_zoneid != zoneid) 18909 continue; /* not this zone */ 18910 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18911 OCTET_LENGTH); 18912 ips.ipGroupSourceIfIndex.o_length = 18913 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18914 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18915 ASSERT(ilm->ilm_ipif != NULL); 18916 ASSERT(ilm->ilm_ill == NULL); 18917 sl = ilm->ilm_filter; 18918 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18919 continue; 18920 ips.ipGroupSourceGroup = ilm->ilm_addr; 18921 for (i = 0; i < sl->sl_numsrc; i++) { 18922 if (!IN6_IS_ADDR_V4MAPPED( 18923 &sl->sl_addr[i])) 18924 continue; 18925 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18926 ips.ipGroupSourceAddress); 18927 if (snmp_append_data2(mpctl->b_cont, 18928 &mp_tail, (char *)&ips, 18929 (int)sizeof (ips)) == 0) { 18930 ip1dbg(("ip_snmp_get_mib2_" 18931 "ip_group_src: failed to " 18932 "allocate %u bytes\n", 18933 (uint_t)sizeof (ips))); 18934 } 18935 } 18936 } 18937 } 18938 ilm_walker_finish(&ilw); 18939 } 18940 rw_exit(&ipst->ips_ill_g_lock); 18941 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18942 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18943 (int)optp->level, (int)optp->name, (int)optp->len)); 18944 qreply(q, mpctl); 18945 return (mp2ctl); 18946 } 18947 18948 /* IPv6 multicast filtered sources. */ 18949 static mblk_t * 18950 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18951 { 18952 struct opthdr *optp; 18953 mblk_t *mp2ctl; 18954 ill_t *ill; 18955 ilm_t *ilm; 18956 ipv6_grpsrc_t ips6; 18957 mblk_t *mp_tail = NULL; 18958 ill_walk_context_t ctx; 18959 zoneid_t zoneid; 18960 int i; 18961 slist_t *sl; 18962 ilm_walker_t ilw; 18963 18964 /* 18965 * make a copy of the original message 18966 */ 18967 mp2ctl = copymsg(mpctl); 18968 zoneid = Q_TO_CONN(q)->conn_zoneid; 18969 18970 /* ip6GroupMember table */ 18971 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18972 optp->level = MIB2_IP6; 18973 optp->name = EXPER_IP6_GROUP_SOURCES; 18974 18975 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18976 ill = ILL_START_WALK_V6(&ctx, ipst); 18977 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18978 if (IS_UNDER_IPMP(ill)) 18979 continue; 18980 18981 ilm = ilm_walker_start(&ilw, ill); 18982 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18983 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18984 ASSERT(ilm->ilm_ipif == NULL); 18985 ASSERT(ilm->ilm_ill != NULL); 18986 sl = ilm->ilm_filter; 18987 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18988 continue; 18989 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18990 for (i = 0; i < sl->sl_numsrc; i++) { 18991 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18992 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18993 (char *)&ips6, (int)sizeof (ips6))) { 18994 ip1dbg(("ip_snmp_get_mib2_ip6_" 18995 "group_src: failed to allocate " 18996 "%u bytes\n", 18997 (uint_t)sizeof (ips6))); 18998 } 18999 } 19000 } 19001 ilm_walker_finish(&ilw); 19002 } 19003 rw_exit(&ipst->ips_ill_g_lock); 19004 19005 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19006 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19007 (int)optp->level, (int)optp->name, (int)optp->len)); 19008 qreply(q, mpctl); 19009 return (mp2ctl); 19010 } 19011 19012 /* Multicast routing virtual interface table. */ 19013 static mblk_t * 19014 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19015 { 19016 struct opthdr *optp; 19017 mblk_t *mp2ctl; 19018 19019 /* 19020 * make a copy of the original message 19021 */ 19022 mp2ctl = copymsg(mpctl); 19023 19024 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19025 optp->level = EXPER_DVMRP; 19026 optp->name = EXPER_DVMRP_VIF; 19027 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19028 ip0dbg(("ip_mroute_vif: failed\n")); 19029 } 19030 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19031 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19032 (int)optp->level, (int)optp->name, (int)optp->len)); 19033 qreply(q, mpctl); 19034 return (mp2ctl); 19035 } 19036 19037 /* Multicast routing table. */ 19038 static mblk_t * 19039 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19040 { 19041 struct opthdr *optp; 19042 mblk_t *mp2ctl; 19043 19044 /* 19045 * make a copy of the original message 19046 */ 19047 mp2ctl = copymsg(mpctl); 19048 19049 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19050 optp->level = EXPER_DVMRP; 19051 optp->name = EXPER_DVMRP_MRT; 19052 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19053 ip0dbg(("ip_mroute_mrt: failed\n")); 19054 } 19055 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19056 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19057 (int)optp->level, (int)optp->name, (int)optp->len)); 19058 qreply(q, mpctl); 19059 return (mp2ctl); 19060 } 19061 19062 /* 19063 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19064 * in one IRE walk. 19065 */ 19066 static mblk_t * 19067 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19068 ip_stack_t *ipst) 19069 { 19070 struct opthdr *optp; 19071 mblk_t *mp2ctl; /* Returned */ 19072 mblk_t *mp3ctl; /* nettomedia */ 19073 mblk_t *mp4ctl; /* routeattrs */ 19074 iproutedata_t ird; 19075 zoneid_t zoneid; 19076 19077 /* 19078 * make copies of the original message 19079 * - mp2ctl is returned unchanged to the caller for his use 19080 * - mpctl is sent upstream as ipRouteEntryTable 19081 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19082 * - mp4ctl is sent upstream as ipRouteAttributeTable 19083 */ 19084 mp2ctl = copymsg(mpctl); 19085 mp3ctl = copymsg(mpctl); 19086 mp4ctl = copymsg(mpctl); 19087 if (mp3ctl == NULL || mp4ctl == NULL) { 19088 freemsg(mp4ctl); 19089 freemsg(mp3ctl); 19090 freemsg(mp2ctl); 19091 freemsg(mpctl); 19092 return (NULL); 19093 } 19094 19095 bzero(&ird, sizeof (ird)); 19096 19097 ird.ird_route.lp_head = mpctl->b_cont; 19098 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19099 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19100 /* 19101 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19102 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19103 * intended a temporary solution until a proper MIB API is provided 19104 * that provides complete filtering/caller-opt-in. 19105 */ 19106 if (level == EXPER_IP_AND_TESTHIDDEN) 19107 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19108 19109 zoneid = Q_TO_CONN(q)->conn_zoneid; 19110 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19111 19112 /* ipRouteEntryTable in mpctl */ 19113 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19114 optp->level = MIB2_IP; 19115 optp->name = MIB2_IP_ROUTE; 19116 optp->len = msgdsize(ird.ird_route.lp_head); 19117 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19118 (int)optp->level, (int)optp->name, (int)optp->len)); 19119 qreply(q, mpctl); 19120 19121 /* ipNetToMediaEntryTable in mp3ctl */ 19122 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19123 optp->level = MIB2_IP; 19124 optp->name = MIB2_IP_MEDIA; 19125 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19126 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19127 (int)optp->level, (int)optp->name, (int)optp->len)); 19128 qreply(q, mp3ctl); 19129 19130 /* ipRouteAttributeTable in mp4ctl */ 19131 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19132 optp->level = MIB2_IP; 19133 optp->name = EXPER_IP_RTATTR; 19134 optp->len = msgdsize(ird.ird_attrs.lp_head); 19135 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19136 (int)optp->level, (int)optp->name, (int)optp->len)); 19137 if (optp->len == 0) 19138 freemsg(mp4ctl); 19139 else 19140 qreply(q, mp4ctl); 19141 19142 return (mp2ctl); 19143 } 19144 19145 /* 19146 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19147 * ipv6NetToMediaEntryTable in an NDP walk. 19148 */ 19149 static mblk_t * 19150 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19151 ip_stack_t *ipst) 19152 { 19153 struct opthdr *optp; 19154 mblk_t *mp2ctl; /* Returned */ 19155 mblk_t *mp3ctl; /* nettomedia */ 19156 mblk_t *mp4ctl; /* routeattrs */ 19157 iproutedata_t ird; 19158 zoneid_t zoneid; 19159 19160 /* 19161 * make copies of the original message 19162 * - mp2ctl is returned unchanged to the caller for his use 19163 * - mpctl is sent upstream as ipv6RouteEntryTable 19164 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19165 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19166 */ 19167 mp2ctl = copymsg(mpctl); 19168 mp3ctl = copymsg(mpctl); 19169 mp4ctl = copymsg(mpctl); 19170 if (mp3ctl == NULL || mp4ctl == NULL) { 19171 freemsg(mp4ctl); 19172 freemsg(mp3ctl); 19173 freemsg(mp2ctl); 19174 freemsg(mpctl); 19175 return (NULL); 19176 } 19177 19178 bzero(&ird, sizeof (ird)); 19179 19180 ird.ird_route.lp_head = mpctl->b_cont; 19181 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19182 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19183 /* 19184 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19185 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19186 * intended a temporary solution until a proper MIB API is provided 19187 * that provides complete filtering/caller-opt-in. 19188 */ 19189 if (level == EXPER_IP_AND_TESTHIDDEN) 19190 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19191 19192 zoneid = Q_TO_CONN(q)->conn_zoneid; 19193 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19194 19195 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19196 optp->level = MIB2_IP6; 19197 optp->name = MIB2_IP6_ROUTE; 19198 optp->len = msgdsize(ird.ird_route.lp_head); 19199 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19200 (int)optp->level, (int)optp->name, (int)optp->len)); 19201 qreply(q, mpctl); 19202 19203 /* ipv6NetToMediaEntryTable in mp3ctl */ 19204 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19205 19206 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19207 optp->level = MIB2_IP6; 19208 optp->name = MIB2_IP6_MEDIA; 19209 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19210 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19211 (int)optp->level, (int)optp->name, (int)optp->len)); 19212 qreply(q, mp3ctl); 19213 19214 /* ipv6RouteAttributeTable in mp4ctl */ 19215 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19216 optp->level = MIB2_IP6; 19217 optp->name = EXPER_IP_RTATTR; 19218 optp->len = msgdsize(ird.ird_attrs.lp_head); 19219 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19220 (int)optp->level, (int)optp->name, (int)optp->len)); 19221 if (optp->len == 0) 19222 freemsg(mp4ctl); 19223 else 19224 qreply(q, mp4ctl); 19225 19226 return (mp2ctl); 19227 } 19228 19229 /* 19230 * IPv6 mib: One per ill 19231 */ 19232 static mblk_t * 19233 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19234 { 19235 struct opthdr *optp; 19236 mblk_t *mp2ctl; 19237 ill_t *ill; 19238 ill_walk_context_t ctx; 19239 mblk_t *mp_tail = NULL; 19240 19241 /* 19242 * Make a copy of the original message 19243 */ 19244 mp2ctl = copymsg(mpctl); 19245 19246 /* fixed length IPv6 structure ... */ 19247 19248 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19249 optp->level = MIB2_IP6; 19250 optp->name = 0; 19251 /* Include "unknown interface" ip6_mib */ 19252 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19253 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19254 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19255 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19256 ipst->ips_ipv6_forward ? 1 : 2); 19257 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19258 ipst->ips_ipv6_def_hops); 19259 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19260 sizeof (mib2_ipIfStatsEntry_t)); 19261 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19262 sizeof (mib2_ipv6AddrEntry_t)); 19263 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19264 sizeof (mib2_ipv6RouteEntry_t)); 19265 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19266 sizeof (mib2_ipv6NetToMediaEntry_t)); 19267 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19268 sizeof (ipv6_member_t)); 19269 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19270 sizeof (ipv6_grpsrc_t)); 19271 19272 /* 19273 * Synchronize 64- and 32-bit counters 19274 */ 19275 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19276 ipIfStatsHCInReceives); 19277 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19278 ipIfStatsHCInDelivers); 19279 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19280 ipIfStatsHCOutRequests); 19281 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19282 ipIfStatsHCOutForwDatagrams); 19283 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19284 ipIfStatsHCOutMcastPkts); 19285 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19286 ipIfStatsHCInMcastPkts); 19287 19288 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19289 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19290 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19291 (uint_t)sizeof (ipst->ips_ip6_mib))); 19292 } 19293 19294 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19295 ill = ILL_START_WALK_V6(&ctx, ipst); 19296 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19297 ill->ill_ip_mib->ipIfStatsIfIndex = 19298 ill->ill_phyint->phyint_ifindex; 19299 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19300 ipst->ips_ipv6_forward ? 1 : 2); 19301 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19302 ill->ill_max_hops); 19303 19304 /* 19305 * Synchronize 64- and 32-bit counters 19306 */ 19307 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19308 ipIfStatsHCInReceives); 19309 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19310 ipIfStatsHCInDelivers); 19311 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19312 ipIfStatsHCOutRequests); 19313 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19314 ipIfStatsHCOutForwDatagrams); 19315 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19316 ipIfStatsHCOutMcastPkts); 19317 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19318 ipIfStatsHCInMcastPkts); 19319 19320 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19321 (char *)ill->ill_ip_mib, 19322 (int)sizeof (*ill->ill_ip_mib))) { 19323 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19324 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19325 } 19326 } 19327 rw_exit(&ipst->ips_ill_g_lock); 19328 19329 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19330 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19331 (int)optp->level, (int)optp->name, (int)optp->len)); 19332 qreply(q, mpctl); 19333 return (mp2ctl); 19334 } 19335 19336 /* 19337 * ICMPv6 mib: One per ill 19338 */ 19339 static mblk_t * 19340 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19341 { 19342 struct opthdr *optp; 19343 mblk_t *mp2ctl; 19344 ill_t *ill; 19345 ill_walk_context_t ctx; 19346 mblk_t *mp_tail = NULL; 19347 /* 19348 * Make a copy of the original message 19349 */ 19350 mp2ctl = copymsg(mpctl); 19351 19352 /* fixed length ICMPv6 structure ... */ 19353 19354 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19355 optp->level = MIB2_ICMP6; 19356 optp->name = 0; 19357 /* Include "unknown interface" icmp6_mib */ 19358 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19359 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19360 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19361 sizeof (mib2_ipv6IfIcmpEntry_t); 19362 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19363 (char *)&ipst->ips_icmp6_mib, 19364 (int)sizeof (ipst->ips_icmp6_mib))) { 19365 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19366 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19367 } 19368 19369 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19370 ill = ILL_START_WALK_V6(&ctx, ipst); 19371 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19372 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19373 ill->ill_phyint->phyint_ifindex; 19374 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19375 (char *)ill->ill_icmp6_mib, 19376 (int)sizeof (*ill->ill_icmp6_mib))) { 19377 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19378 "%u bytes\n", 19379 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19380 } 19381 } 19382 rw_exit(&ipst->ips_ill_g_lock); 19383 19384 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19385 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19386 (int)optp->level, (int)optp->name, (int)optp->len)); 19387 qreply(q, mpctl); 19388 return (mp2ctl); 19389 } 19390 19391 /* 19392 * ire_walk routine to create both ipRouteEntryTable and 19393 * ipRouteAttributeTable in one IRE walk 19394 */ 19395 static void 19396 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19397 { 19398 ill_t *ill; 19399 ipif_t *ipif; 19400 mib2_ipRouteEntry_t *re; 19401 mib2_ipAttributeEntry_t *iae, *iaeptr; 19402 ipaddr_t gw_addr; 19403 tsol_ire_gw_secattr_t *attrp; 19404 tsol_gc_t *gc = NULL; 19405 tsol_gcgrp_t *gcgrp = NULL; 19406 uint_t sacnt = 0; 19407 int i; 19408 19409 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19410 19411 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19412 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19413 return; 19414 } 19415 19416 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19417 return; 19418 19419 if ((attrp = ire->ire_gw_secattr) != NULL) { 19420 mutex_enter(&attrp->igsa_lock); 19421 if ((gc = attrp->igsa_gc) != NULL) { 19422 gcgrp = gc->gc_grp; 19423 ASSERT(gcgrp != NULL); 19424 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19425 sacnt = 1; 19426 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19427 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19428 gc = gcgrp->gcgrp_head; 19429 sacnt = gcgrp->gcgrp_count; 19430 } 19431 mutex_exit(&attrp->igsa_lock); 19432 19433 /* do nothing if there's no gc to report */ 19434 if (gc == NULL) { 19435 ASSERT(sacnt == 0); 19436 if (gcgrp != NULL) { 19437 /* we might as well drop the lock now */ 19438 rw_exit(&gcgrp->gcgrp_rwlock); 19439 gcgrp = NULL; 19440 } 19441 attrp = NULL; 19442 } 19443 19444 ASSERT(gc == NULL || (gcgrp != NULL && 19445 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19446 } 19447 ASSERT(sacnt == 0 || gc != NULL); 19448 19449 if (sacnt != 0 && 19450 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19451 kmem_free(re, sizeof (*re)); 19452 rw_exit(&gcgrp->gcgrp_rwlock); 19453 return; 19454 } 19455 19456 /* 19457 * Return all IRE types for route table... let caller pick and choose 19458 */ 19459 re->ipRouteDest = ire->ire_addr; 19460 ipif = ire->ire_ipif; 19461 re->ipRouteIfIndex.o_length = 0; 19462 if (ire->ire_type == IRE_CACHE) { 19463 ill = (ill_t *)ire->ire_stq->q_ptr; 19464 re->ipRouteIfIndex.o_length = 19465 ill->ill_name_length == 0 ? 0 : 19466 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19467 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19468 re->ipRouteIfIndex.o_length); 19469 } else if (ipif != NULL) { 19470 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19471 re->ipRouteIfIndex.o_length = 19472 mi_strlen(re->ipRouteIfIndex.o_bytes); 19473 } 19474 re->ipRouteMetric1 = -1; 19475 re->ipRouteMetric2 = -1; 19476 re->ipRouteMetric3 = -1; 19477 re->ipRouteMetric4 = -1; 19478 19479 gw_addr = ire->ire_gateway_addr; 19480 19481 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19482 re->ipRouteNextHop = ire->ire_src_addr; 19483 else 19484 re->ipRouteNextHop = gw_addr; 19485 /* indirect(4), direct(3), or invalid(2) */ 19486 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19487 re->ipRouteType = 2; 19488 else 19489 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19490 re->ipRouteProto = -1; 19491 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19492 re->ipRouteMask = ire->ire_mask; 19493 re->ipRouteMetric5 = -1; 19494 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19495 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19496 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19497 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19498 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19499 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19500 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19501 re->ipRouteInfo.re_flags = ire->ire_flags; 19502 19503 if (ire->ire_flags & RTF_DYNAMIC) { 19504 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19505 } else { 19506 re->ipRouteInfo.re_ire_type = ire->ire_type; 19507 } 19508 19509 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19510 (char *)re, (int)sizeof (*re))) { 19511 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19512 (uint_t)sizeof (*re))); 19513 } 19514 19515 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19516 iaeptr->iae_routeidx = ird->ird_idx; 19517 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19518 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19519 } 19520 19521 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19522 (char *)iae, sacnt * sizeof (*iae))) { 19523 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19524 (unsigned)(sacnt * sizeof (*iae)))); 19525 } 19526 19527 /* bump route index for next pass */ 19528 ird->ird_idx++; 19529 19530 kmem_free(re, sizeof (*re)); 19531 if (sacnt != 0) 19532 kmem_free(iae, sacnt * sizeof (*iae)); 19533 19534 if (gcgrp != NULL) 19535 rw_exit(&gcgrp->gcgrp_rwlock); 19536 } 19537 19538 /* 19539 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19540 */ 19541 static void 19542 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19543 { 19544 ill_t *ill; 19545 ipif_t *ipif; 19546 mib2_ipv6RouteEntry_t *re; 19547 mib2_ipAttributeEntry_t *iae, *iaeptr; 19548 in6_addr_t gw_addr_v6; 19549 tsol_ire_gw_secattr_t *attrp; 19550 tsol_gc_t *gc = NULL; 19551 tsol_gcgrp_t *gcgrp = NULL; 19552 uint_t sacnt = 0; 19553 int i; 19554 19555 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19556 19557 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19558 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19559 return; 19560 } 19561 19562 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19563 return; 19564 19565 if ((attrp = ire->ire_gw_secattr) != NULL) { 19566 mutex_enter(&attrp->igsa_lock); 19567 if ((gc = attrp->igsa_gc) != NULL) { 19568 gcgrp = gc->gc_grp; 19569 ASSERT(gcgrp != NULL); 19570 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19571 sacnt = 1; 19572 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19573 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19574 gc = gcgrp->gcgrp_head; 19575 sacnt = gcgrp->gcgrp_count; 19576 } 19577 mutex_exit(&attrp->igsa_lock); 19578 19579 /* do nothing if there's no gc to report */ 19580 if (gc == NULL) { 19581 ASSERT(sacnt == 0); 19582 if (gcgrp != NULL) { 19583 /* we might as well drop the lock now */ 19584 rw_exit(&gcgrp->gcgrp_rwlock); 19585 gcgrp = NULL; 19586 } 19587 attrp = NULL; 19588 } 19589 19590 ASSERT(gc == NULL || (gcgrp != NULL && 19591 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19592 } 19593 ASSERT(sacnt == 0 || gc != NULL); 19594 19595 if (sacnt != 0 && 19596 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19597 kmem_free(re, sizeof (*re)); 19598 rw_exit(&gcgrp->gcgrp_rwlock); 19599 return; 19600 } 19601 19602 /* 19603 * Return all IRE types for route table... let caller pick and choose 19604 */ 19605 re->ipv6RouteDest = ire->ire_addr_v6; 19606 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19607 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19608 re->ipv6RouteIfIndex.o_length = 0; 19609 ipif = ire->ire_ipif; 19610 if (ire->ire_type == IRE_CACHE) { 19611 ill = (ill_t *)ire->ire_stq->q_ptr; 19612 re->ipv6RouteIfIndex.o_length = 19613 ill->ill_name_length == 0 ? 0 : 19614 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19615 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19616 re->ipv6RouteIfIndex.o_length); 19617 } else if (ipif != NULL) { 19618 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19619 re->ipv6RouteIfIndex.o_length = 19620 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19621 } 19622 19623 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19624 19625 mutex_enter(&ire->ire_lock); 19626 gw_addr_v6 = ire->ire_gateway_addr_v6; 19627 mutex_exit(&ire->ire_lock); 19628 19629 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19630 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19631 else 19632 re->ipv6RouteNextHop = gw_addr_v6; 19633 19634 /* remote(4), local(3), or discard(2) */ 19635 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19636 re->ipv6RouteType = 2; 19637 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19638 re->ipv6RouteType = 3; 19639 else 19640 re->ipv6RouteType = 4; 19641 19642 re->ipv6RouteProtocol = -1; 19643 re->ipv6RoutePolicy = 0; 19644 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19645 re->ipv6RouteNextHopRDI = 0; 19646 re->ipv6RouteWeight = 0; 19647 re->ipv6RouteMetric = 0; 19648 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19649 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19650 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19651 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19652 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19653 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19654 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19655 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19656 19657 if (ire->ire_flags & RTF_DYNAMIC) { 19658 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19659 } else { 19660 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19661 } 19662 19663 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19664 (char *)re, (int)sizeof (*re))) { 19665 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19666 (uint_t)sizeof (*re))); 19667 } 19668 19669 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19670 iaeptr->iae_routeidx = ird->ird_idx; 19671 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19672 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19673 } 19674 19675 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19676 (char *)iae, sacnt * sizeof (*iae))) { 19677 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19678 (unsigned)(sacnt * sizeof (*iae)))); 19679 } 19680 19681 /* bump route index for next pass */ 19682 ird->ird_idx++; 19683 19684 kmem_free(re, sizeof (*re)); 19685 if (sacnt != 0) 19686 kmem_free(iae, sacnt * sizeof (*iae)); 19687 19688 if (gcgrp != NULL) 19689 rw_exit(&gcgrp->gcgrp_rwlock); 19690 } 19691 19692 /* 19693 * ndp_walk routine to create ipv6NetToMediaEntryTable 19694 */ 19695 static int 19696 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19697 { 19698 ill_t *ill; 19699 mib2_ipv6NetToMediaEntry_t ntme; 19700 dl_unitdata_req_t *dl; 19701 19702 ill = nce->nce_ill; 19703 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19704 return (0); 19705 19706 /* 19707 * Neighbor cache entry attached to IRE with on-link 19708 * destination. 19709 */ 19710 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19711 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19712 if ((ill->ill_flags & ILLF_XRESOLV) && 19713 (nce->nce_res_mp != NULL)) { 19714 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19715 ntme.ipv6NetToMediaPhysAddress.o_length = 19716 dl->dl_dest_addr_length; 19717 } else { 19718 ntme.ipv6NetToMediaPhysAddress.o_length = 19719 ill->ill_phys_addr_length; 19720 } 19721 if (nce->nce_res_mp != NULL) { 19722 bcopy((char *)nce->nce_res_mp->b_rptr + 19723 NCE_LL_ADDR_OFFSET(ill), 19724 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19725 ntme.ipv6NetToMediaPhysAddress.o_length); 19726 } else { 19727 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19728 ill->ill_phys_addr_length); 19729 } 19730 /* 19731 * Note: Returns ND_* states. Should be: 19732 * reachable(1), stale(2), delay(3), probe(4), 19733 * invalid(5), unknown(6) 19734 */ 19735 ntme.ipv6NetToMediaState = nce->nce_state; 19736 ntme.ipv6NetToMediaLastUpdated = 0; 19737 19738 /* other(1), dynamic(2), static(3), local(4) */ 19739 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19740 ntme.ipv6NetToMediaType = 4; 19741 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19742 ntme.ipv6NetToMediaType = 1; 19743 } else { 19744 ntme.ipv6NetToMediaType = 2; 19745 } 19746 19747 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19748 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19749 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19750 (uint_t)sizeof (ntme))); 19751 } 19752 return (0); 19753 } 19754 19755 /* 19756 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19757 */ 19758 /* ARGSUSED */ 19759 int 19760 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19761 { 19762 switch (level) { 19763 case MIB2_IP: 19764 case MIB2_ICMP: 19765 switch (name) { 19766 default: 19767 break; 19768 } 19769 return (1); 19770 default: 19771 return (1); 19772 } 19773 } 19774 19775 /* 19776 * When there exists both a 64- and 32-bit counter of a particular type 19777 * (i.e., InReceives), only the 64-bit counters are added. 19778 */ 19779 void 19780 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19781 { 19782 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19783 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19784 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19785 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19786 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19787 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19788 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19789 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19790 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19791 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19792 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19793 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19794 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19795 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19796 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19797 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19798 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19799 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19800 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19801 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19802 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19803 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19804 o2->ipIfStatsInWrongIPVersion); 19805 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19806 o2->ipIfStatsInWrongIPVersion); 19807 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19808 o2->ipIfStatsOutSwitchIPVersion); 19809 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19810 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19811 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19812 o2->ipIfStatsHCInForwDatagrams); 19813 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19814 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19815 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19816 o2->ipIfStatsHCOutForwDatagrams); 19817 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19818 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19819 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19820 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19821 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19822 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19823 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19824 o2->ipIfStatsHCOutMcastOctets); 19825 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19826 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19827 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19828 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19829 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19830 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19831 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19832 } 19833 19834 void 19835 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19836 { 19837 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19838 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19839 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19840 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19841 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19842 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19843 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19844 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19845 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19846 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19847 o2->ipv6IfIcmpInRouterSolicits); 19848 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19849 o2->ipv6IfIcmpInRouterAdvertisements); 19850 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19851 o2->ipv6IfIcmpInNeighborSolicits); 19852 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19853 o2->ipv6IfIcmpInNeighborAdvertisements); 19854 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19855 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19856 o2->ipv6IfIcmpInGroupMembQueries); 19857 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19858 o2->ipv6IfIcmpInGroupMembResponses); 19859 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19860 o2->ipv6IfIcmpInGroupMembReductions); 19861 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19862 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19863 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19864 o2->ipv6IfIcmpOutDestUnreachs); 19865 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19866 o2->ipv6IfIcmpOutAdminProhibs); 19867 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19868 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19869 o2->ipv6IfIcmpOutParmProblems); 19870 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19871 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19872 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19873 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19874 o2->ipv6IfIcmpOutRouterSolicits); 19875 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19876 o2->ipv6IfIcmpOutRouterAdvertisements); 19877 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19878 o2->ipv6IfIcmpOutNeighborSolicits); 19879 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19880 o2->ipv6IfIcmpOutNeighborAdvertisements); 19881 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19882 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19883 o2->ipv6IfIcmpOutGroupMembQueries); 19884 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19885 o2->ipv6IfIcmpOutGroupMembResponses); 19886 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19887 o2->ipv6IfIcmpOutGroupMembReductions); 19888 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19889 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19890 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19891 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19892 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19893 o2->ipv6IfIcmpInBadNeighborSolicitations); 19894 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19895 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19896 o2->ipv6IfIcmpInGroupMembTotal); 19897 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19898 o2->ipv6IfIcmpInGroupMembBadQueries); 19899 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19900 o2->ipv6IfIcmpInGroupMembBadReports); 19901 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19902 o2->ipv6IfIcmpInGroupMembOurReports); 19903 } 19904 19905 /* 19906 * Called before the options are updated to check if this packet will 19907 * be source routed from here. 19908 * This routine assumes that the options are well formed i.e. that they 19909 * have already been checked. 19910 */ 19911 static boolean_t 19912 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19913 { 19914 ipoptp_t opts; 19915 uchar_t *opt; 19916 uint8_t optval; 19917 uint8_t optlen; 19918 ipaddr_t dst; 19919 ire_t *ire; 19920 19921 if (IS_SIMPLE_IPH(ipha)) { 19922 ip2dbg(("not source routed\n")); 19923 return (B_FALSE); 19924 } 19925 dst = ipha->ipha_dst; 19926 for (optval = ipoptp_first(&opts, ipha); 19927 optval != IPOPT_EOL; 19928 optval = ipoptp_next(&opts)) { 19929 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19930 opt = opts.ipoptp_cur; 19931 optlen = opts.ipoptp_len; 19932 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19933 optval, optlen)); 19934 switch (optval) { 19935 uint32_t off; 19936 case IPOPT_SSRR: 19937 case IPOPT_LSRR: 19938 /* 19939 * If dst is one of our addresses and there are some 19940 * entries left in the source route return (true). 19941 */ 19942 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19943 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19944 if (ire == NULL) { 19945 ip2dbg(("ip_source_routed: not next" 19946 " source route 0x%x\n", 19947 ntohl(dst))); 19948 return (B_FALSE); 19949 } 19950 ire_refrele(ire); 19951 off = opt[IPOPT_OFFSET]; 19952 off--; 19953 if (optlen < IP_ADDR_LEN || 19954 off > optlen - IP_ADDR_LEN) { 19955 /* End of source route */ 19956 ip1dbg(("ip_source_routed: end of SR\n")); 19957 return (B_FALSE); 19958 } 19959 return (B_TRUE); 19960 } 19961 } 19962 ip2dbg(("not source routed\n")); 19963 return (B_FALSE); 19964 } 19965 19966 /* 19967 * Check if the packet contains any source route. 19968 */ 19969 static boolean_t 19970 ip_source_route_included(ipha_t *ipha) 19971 { 19972 ipoptp_t opts; 19973 uint8_t optval; 19974 19975 if (IS_SIMPLE_IPH(ipha)) 19976 return (B_FALSE); 19977 for (optval = ipoptp_first(&opts, ipha); 19978 optval != IPOPT_EOL; 19979 optval = ipoptp_next(&opts)) { 19980 switch (optval) { 19981 case IPOPT_SSRR: 19982 case IPOPT_LSRR: 19983 return (B_TRUE); 19984 } 19985 } 19986 return (B_FALSE); 19987 } 19988 19989 /* 19990 * Called when the IRE expiration timer fires. 19991 */ 19992 void 19993 ip_trash_timer_expire(void *args) 19994 { 19995 int flush_flag = 0; 19996 ire_expire_arg_t iea; 19997 ip_stack_t *ipst = (ip_stack_t *)args; 19998 19999 iea.iea_ipst = ipst; /* No netstack_hold */ 20000 20001 /* 20002 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20003 * This lock makes sure that a new invocation of this function 20004 * that occurs due to an almost immediate timer firing will not 20005 * progress beyond this point until the current invocation is done 20006 */ 20007 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20008 ipst->ips_ip_ire_expire_id = 0; 20009 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20010 20011 /* Periodic timer */ 20012 if (ipst->ips_ip_ire_arp_time_elapsed >= 20013 ipst->ips_ip_ire_arp_interval) { 20014 /* 20015 * Remove all IRE_CACHE entries since they might 20016 * contain arp information. 20017 */ 20018 flush_flag |= FLUSH_ARP_TIME; 20019 ipst->ips_ip_ire_arp_time_elapsed = 0; 20020 IP_STAT(ipst, ip_ire_arp_timer_expired); 20021 } 20022 if (ipst->ips_ip_ire_rd_time_elapsed >= 20023 ipst->ips_ip_ire_redir_interval) { 20024 /* Remove all redirects */ 20025 flush_flag |= FLUSH_REDIRECT_TIME; 20026 ipst->ips_ip_ire_rd_time_elapsed = 0; 20027 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20028 } 20029 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20030 ipst->ips_ip_ire_pathmtu_interval) { 20031 /* Increase path mtu */ 20032 flush_flag |= FLUSH_MTU_TIME; 20033 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20034 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20035 } 20036 20037 /* 20038 * Optimize for the case when there are no redirects in the 20039 * ftable, that is, no need to walk the ftable in that case. 20040 */ 20041 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20042 iea.iea_flush_flag = flush_flag; 20043 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20044 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20045 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20046 NULL, ALL_ZONES, ipst); 20047 } 20048 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20049 ipst->ips_ip_redirect_cnt > 0) { 20050 iea.iea_flush_flag = flush_flag; 20051 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20052 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20053 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20054 } 20055 if (flush_flag & FLUSH_MTU_TIME) { 20056 /* 20057 * Walk all IPv6 IRE's and update them 20058 * Note that ARP and redirect timers are not 20059 * needed since NUD handles stale entries. 20060 */ 20061 flush_flag = FLUSH_MTU_TIME; 20062 iea.iea_flush_flag = flush_flag; 20063 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20064 ALL_ZONES, ipst); 20065 } 20066 20067 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20068 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20069 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20070 20071 /* 20072 * Hold the lock to serialize timeout calls and prevent 20073 * stale values in ip_ire_expire_id. Otherwise it is possible 20074 * for the timer to fire and a new invocation of this function 20075 * to start before the return value of timeout has been stored 20076 * in ip_ire_expire_id by the current invocation. 20077 */ 20078 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20079 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20080 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20081 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20082 } 20083 20084 /* 20085 * Called by the memory allocator subsystem directly, when the system 20086 * is running low on memory. 20087 */ 20088 /* ARGSUSED */ 20089 void 20090 ip_trash_ire_reclaim(void *args) 20091 { 20092 netstack_handle_t nh; 20093 netstack_t *ns; 20094 20095 netstack_next_init(&nh); 20096 while ((ns = netstack_next(&nh)) != NULL) { 20097 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20098 netstack_rele(ns); 20099 } 20100 netstack_next_fini(&nh); 20101 } 20102 20103 static void 20104 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20105 { 20106 ire_cache_count_t icc; 20107 ire_cache_reclaim_t icr; 20108 ncc_cache_count_t ncc; 20109 nce_cache_reclaim_t ncr; 20110 uint_t delete_cnt; 20111 /* 20112 * Memory reclaim call back. 20113 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20114 * Then, with a target of freeing 1/Nth of IRE_CACHE 20115 * entries, determine what fraction to free for 20116 * each category of IRE_CACHE entries giving absolute priority 20117 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20118 * entry will be freed unless all offlink entries are freed). 20119 */ 20120 icc.icc_total = 0; 20121 icc.icc_unused = 0; 20122 icc.icc_offlink = 0; 20123 icc.icc_pmtu = 0; 20124 icc.icc_onlink = 0; 20125 ire_walk(ire_cache_count, (char *)&icc, ipst); 20126 20127 /* 20128 * Free NCEs for IPv6 like the onlink ires. 20129 */ 20130 ncc.ncc_total = 0; 20131 ncc.ncc_host = 0; 20132 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20133 20134 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20135 icc.icc_pmtu + icc.icc_onlink); 20136 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20137 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20138 if (delete_cnt == 0) 20139 return; 20140 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20141 /* Always delete all unused offlink entries */ 20142 icr.icr_ipst = ipst; 20143 icr.icr_unused = 1; 20144 if (delete_cnt <= icc.icc_unused) { 20145 /* 20146 * Only need to free unused entries. In other words, 20147 * there are enough unused entries to free to meet our 20148 * target number of freed ire cache entries. 20149 */ 20150 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20151 ncr.ncr_host = 0; 20152 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20153 /* 20154 * Only need to free unused entries, plus a fraction of offlink 20155 * entries. It follows from the first if statement that 20156 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20157 */ 20158 delete_cnt -= icc.icc_unused; 20159 /* Round up # deleted by truncating fraction */ 20160 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20161 icr.icr_pmtu = icr.icr_onlink = 0; 20162 ncr.ncr_host = 0; 20163 } else if (delete_cnt <= 20164 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20165 /* 20166 * Free all unused and offlink entries, plus a fraction of 20167 * pmtu entries. It follows from the previous if statement 20168 * that icc_pmtu is non-zero, and that 20169 * delete_cnt != icc_unused + icc_offlink. 20170 */ 20171 icr.icr_offlink = 1; 20172 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20173 /* Round up # deleted by truncating fraction */ 20174 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20175 icr.icr_onlink = 0; 20176 ncr.ncr_host = 0; 20177 } else { 20178 /* 20179 * Free all unused, offlink, and pmtu entries, plus a fraction 20180 * of onlink entries. If we're here, then we know that 20181 * icc_onlink is non-zero, and that 20182 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20183 */ 20184 icr.icr_offlink = icr.icr_pmtu = 1; 20185 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20186 icc.icc_pmtu; 20187 /* Round up # deleted by truncating fraction */ 20188 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20189 /* Using the same delete fraction as for onlink IREs */ 20190 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20191 } 20192 #ifdef DEBUG 20193 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20194 "fractions %d/%d/%d/%d\n", 20195 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20196 icc.icc_unused, icc.icc_offlink, 20197 icc.icc_pmtu, icc.icc_onlink, 20198 icr.icr_unused, icr.icr_offlink, 20199 icr.icr_pmtu, icr.icr_onlink)); 20200 #endif 20201 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20202 if (ncr.ncr_host != 0) 20203 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20204 (uchar_t *)&ncr, ipst); 20205 #ifdef DEBUG 20206 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20207 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20208 ire_walk(ire_cache_count, (char *)&icc, ipst); 20209 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20210 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20211 icc.icc_pmtu, icc.icc_onlink)); 20212 #endif 20213 } 20214 20215 /* 20216 * ip_unbind is called when a copy of an unbind request is received from the 20217 * upper level protocol. We remove this conn from any fanout hash list it is 20218 * on, and zero out the bind information. No reply is expected up above. 20219 */ 20220 void 20221 ip_unbind(conn_t *connp) 20222 { 20223 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20224 20225 if (is_system_labeled() && connp->conn_anon_port) { 20226 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20227 connp->conn_mlp_type, connp->conn_ulp, 20228 ntohs(connp->conn_lport), B_FALSE); 20229 connp->conn_anon_port = 0; 20230 } 20231 connp->conn_mlp_type = mlptSingle; 20232 20233 ipcl_hash_remove(connp); 20234 20235 } 20236 20237 /* 20238 * Write side put procedure. Outbound data, IOCTLs, responses from 20239 * resolvers, etc, come down through here. 20240 * 20241 * arg2 is always a queue_t *. 20242 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20243 * the zoneid. 20244 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20245 */ 20246 void 20247 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20248 { 20249 ip_output_options(arg, mp, arg2, caller, &zero_info); 20250 } 20251 20252 void 20253 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20254 ip_opt_info_t *infop) 20255 { 20256 conn_t *connp = NULL; 20257 queue_t *q = (queue_t *)arg2; 20258 ipha_t *ipha; 20259 #define rptr ((uchar_t *)ipha) 20260 ire_t *ire = NULL; 20261 ire_t *sctp_ire = NULL; 20262 uint32_t v_hlen_tos_len; 20263 ipaddr_t dst; 20264 mblk_t *first_mp = NULL; 20265 boolean_t mctl_present; 20266 ipsec_out_t *io; 20267 int match_flags; 20268 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20269 ipif_t *dst_ipif; 20270 boolean_t multirt_need_resolve = B_FALSE; 20271 mblk_t *copy_mp = NULL; 20272 int err; 20273 zoneid_t zoneid; 20274 boolean_t need_decref = B_FALSE; 20275 boolean_t ignore_dontroute = B_FALSE; 20276 boolean_t ignore_nexthop = B_FALSE; 20277 boolean_t ip_nexthop = B_FALSE; 20278 ipaddr_t nexthop_addr; 20279 ip_stack_t *ipst; 20280 20281 #ifdef _BIG_ENDIAN 20282 #define V_HLEN (v_hlen_tos_len >> 24) 20283 #else 20284 #define V_HLEN (v_hlen_tos_len & 0xFF) 20285 #endif 20286 20287 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20288 "ip_wput_start: q %p", q); 20289 20290 /* 20291 * ip_wput fast path 20292 */ 20293 20294 /* is packet from ARP ? */ 20295 if (q->q_next != NULL) { 20296 zoneid = (zoneid_t)(uintptr_t)arg; 20297 goto qnext; 20298 } 20299 20300 connp = (conn_t *)arg; 20301 ASSERT(connp != NULL); 20302 zoneid = connp->conn_zoneid; 20303 ipst = connp->conn_netstack->netstack_ip; 20304 ASSERT(ipst != NULL); 20305 20306 /* is queue flow controlled? */ 20307 if ((q->q_first != NULL || connp->conn_draining) && 20308 (caller == IP_WPUT)) { 20309 ASSERT(!need_decref); 20310 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20311 (void) putq(q, mp); 20312 return; 20313 } 20314 20315 /* Multidata transmit? */ 20316 if (DB_TYPE(mp) == M_MULTIDATA) { 20317 /* 20318 * We should never get here, since all Multidata messages 20319 * originating from tcp should have been directed over to 20320 * tcp_multisend() in the first place. 20321 */ 20322 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20323 freemsg(mp); 20324 return; 20325 } else if (DB_TYPE(mp) != M_DATA) 20326 goto notdata; 20327 20328 if (mp->b_flag & MSGHASREF) { 20329 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20330 mp->b_flag &= ~MSGHASREF; 20331 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20332 need_decref = B_TRUE; 20333 } 20334 ipha = (ipha_t *)mp->b_rptr; 20335 20336 /* is IP header non-aligned or mblk smaller than basic IP header */ 20337 #ifndef SAFETY_BEFORE_SPEED 20338 if (!OK_32PTR(rptr) || 20339 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20340 goto hdrtoosmall; 20341 #endif 20342 20343 ASSERT(OK_32PTR(ipha)); 20344 20345 /* 20346 * This function assumes that mp points to an IPv4 packet. If it's the 20347 * wrong version, we'll catch it again in ip_output_v6. 20348 * 20349 * Note that this is *only* locally-generated output here, and never 20350 * forwarded data, and that we need to deal only with transports that 20351 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20352 * label.) 20353 */ 20354 if (is_system_labeled() && 20355 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20356 !connp->conn_ulp_labeled) { 20357 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20358 connp->conn_mac_exempt, ipst); 20359 ipha = (ipha_t *)mp->b_rptr; 20360 if (err != 0) { 20361 first_mp = mp; 20362 if (err == EINVAL) 20363 goto icmp_parameter_problem; 20364 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20365 goto discard_pkt; 20366 } 20367 } 20368 20369 ASSERT(infop != NULL); 20370 20371 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20372 /* 20373 * IP_PKTINFO ancillary option is present. 20374 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20375 * allows using address of any zone as the source address. 20376 */ 20377 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20378 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20379 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20380 if (ire == NULL) 20381 goto drop_pkt; 20382 ire_refrele(ire); 20383 ire = NULL; 20384 } 20385 20386 /* 20387 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20388 */ 20389 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20390 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20391 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20392 20393 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20394 goto drop_pkt; 20395 /* 20396 * check that there is an ipif belonging 20397 * to our zone. IPCL_ZONEID is not used because 20398 * IP_ALLZONES option is valid only when the ill is 20399 * accessible from all zones i.e has a valid ipif in 20400 * all zones. 20401 */ 20402 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20403 goto drop_pkt; 20404 } 20405 } 20406 20407 /* 20408 * If there is a policy, try to attach an ipsec_out in 20409 * the front. At the end, first_mp either points to a 20410 * M_DATA message or IPSEC_OUT message linked to a 20411 * M_DATA message. We have to do it now as we might 20412 * lose the "conn" if we go through ip_newroute. 20413 */ 20414 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20415 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20416 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20417 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20418 if (need_decref) 20419 CONN_DEC_REF(connp); 20420 return; 20421 } else { 20422 ASSERT(mp->b_datap->db_type == M_CTL); 20423 first_mp = mp; 20424 mp = mp->b_cont; 20425 mctl_present = B_TRUE; 20426 } 20427 } else { 20428 first_mp = mp; 20429 mctl_present = B_FALSE; 20430 } 20431 20432 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20433 20434 /* is wrong version or IP options present */ 20435 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20436 goto version_hdrlen_check; 20437 dst = ipha->ipha_dst; 20438 20439 /* If IP_BOUND_IF has been set, use that ill. */ 20440 if (connp->conn_outgoing_ill != NULL) { 20441 xmit_ill = conn_get_held_ill(connp, 20442 &connp->conn_outgoing_ill, &err); 20443 if (err == ILL_LOOKUP_FAILED) 20444 goto drop_pkt; 20445 20446 goto send_from_ill; 20447 } 20448 20449 /* is packet multicast? */ 20450 if (CLASSD(dst)) 20451 goto multicast; 20452 20453 /* 20454 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20455 * takes precedence over conn_dontroute and conn_nexthop_set 20456 */ 20457 if (xmit_ill != NULL) 20458 goto send_from_ill; 20459 20460 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20461 /* 20462 * If the destination is a broadcast, local, or loopback 20463 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20464 * standard path. 20465 */ 20466 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20467 if ((ire == NULL) || (ire->ire_type & 20468 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20469 if (ire != NULL) { 20470 ire_refrele(ire); 20471 /* No more access to ire */ 20472 ire = NULL; 20473 } 20474 /* 20475 * bypass routing checks and go directly to interface. 20476 */ 20477 if (connp->conn_dontroute) 20478 goto dontroute; 20479 20480 ASSERT(connp->conn_nexthop_set); 20481 ip_nexthop = B_TRUE; 20482 nexthop_addr = connp->conn_nexthop_v4; 20483 goto send_from_ill; 20484 } 20485 20486 /* Must be a broadcast, a loopback or a local ire */ 20487 ire_refrele(ire); 20488 /* No more access to ire */ 20489 ire = NULL; 20490 } 20491 20492 /* 20493 * We cache IRE_CACHEs to avoid lookups. We don't do 20494 * this for the tcp global queue and listen end point 20495 * as it does not really have a real destination to 20496 * talk to. This is also true for SCTP. 20497 */ 20498 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20499 !connp->conn_fully_bound) { 20500 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20501 if (ire == NULL) 20502 goto noirefound; 20503 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20504 "ip_wput_end: q %p (%S)", q, "end"); 20505 20506 /* 20507 * Check if the ire has the RTF_MULTIRT flag, inherited 20508 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20509 */ 20510 if (ire->ire_flags & RTF_MULTIRT) { 20511 20512 /* 20513 * Force the TTL of multirouted packets if required. 20514 * The TTL of such packets is bounded by the 20515 * ip_multirt_ttl ndd variable. 20516 */ 20517 if ((ipst->ips_ip_multirt_ttl > 0) && 20518 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20519 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20520 "(was %d), dst 0x%08x\n", 20521 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20522 ntohl(ire->ire_addr))); 20523 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20524 } 20525 /* 20526 * We look at this point if there are pending 20527 * unresolved routes. ire_multirt_resolvable() 20528 * checks in O(n) that all IRE_OFFSUBNET ire 20529 * entries for the packet's destination and 20530 * flagged RTF_MULTIRT are currently resolved. 20531 * If some remain unresolved, we make a copy 20532 * of the current message. It will be used 20533 * to initiate additional route resolutions. 20534 */ 20535 multirt_need_resolve = 20536 ire_multirt_need_resolve(ire->ire_addr, 20537 MBLK_GETLABEL(first_mp), ipst); 20538 ip2dbg(("ip_wput[TCP]: ire %p, " 20539 "multirt_need_resolve %d, first_mp %p\n", 20540 (void *)ire, multirt_need_resolve, 20541 (void *)first_mp)); 20542 if (multirt_need_resolve) { 20543 copy_mp = copymsg(first_mp); 20544 if (copy_mp != NULL) { 20545 MULTIRT_DEBUG_TAG(copy_mp); 20546 } 20547 } 20548 } 20549 20550 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20551 20552 /* 20553 * Try to resolve another multiroute if 20554 * ire_multirt_need_resolve() deemed it necessary. 20555 */ 20556 if (copy_mp != NULL) 20557 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20558 if (need_decref) 20559 CONN_DEC_REF(connp); 20560 return; 20561 } 20562 20563 /* 20564 * Access to conn_ire_cache. (protected by conn_lock) 20565 * 20566 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20567 * the ire bucket lock here to check for CONDEMNED as it is okay to 20568 * send a packet or two with the IRE_CACHE that is going away. 20569 * Access to the ire requires an ire refhold on the ire prior to 20570 * its use since an interface unplumb thread may delete the cached 20571 * ire and release the refhold at any time. 20572 * 20573 * Caching an ire in the conn_ire_cache 20574 * 20575 * o Caching an ire pointer in the conn requires a strict check for 20576 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20577 * ires before cleaning up the conns. So the caching of an ire pointer 20578 * in the conn is done after making sure under the bucket lock that the 20579 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20580 * caching an ire after the unplumb thread has cleaned up the conn. 20581 * If the conn does not send a packet subsequently the unplumb thread 20582 * will be hanging waiting for the ire count to drop to zero. 20583 * 20584 * o We also need to atomically test for a null conn_ire_cache and 20585 * set the conn_ire_cache under the the protection of the conn_lock 20586 * to avoid races among concurrent threads trying to simultaneously 20587 * cache an ire in the conn_ire_cache. 20588 */ 20589 mutex_enter(&connp->conn_lock); 20590 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20591 20592 if (ire != NULL && ire->ire_addr == dst && 20593 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20594 20595 IRE_REFHOLD(ire); 20596 mutex_exit(&connp->conn_lock); 20597 20598 } else { 20599 boolean_t cached = B_FALSE; 20600 connp->conn_ire_cache = NULL; 20601 mutex_exit(&connp->conn_lock); 20602 /* Release the old ire */ 20603 if (ire != NULL && sctp_ire == NULL) 20604 IRE_REFRELE_NOTR(ire); 20605 20606 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20607 if (ire == NULL) 20608 goto noirefound; 20609 IRE_REFHOLD_NOTR(ire); 20610 20611 mutex_enter(&connp->conn_lock); 20612 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20613 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20614 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20615 if (connp->conn_ulp == IPPROTO_TCP) 20616 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20617 connp->conn_ire_cache = ire; 20618 cached = B_TRUE; 20619 } 20620 rw_exit(&ire->ire_bucket->irb_lock); 20621 } 20622 mutex_exit(&connp->conn_lock); 20623 20624 /* 20625 * We can continue to use the ire but since it was 20626 * not cached, we should drop the extra reference. 20627 */ 20628 if (!cached) 20629 IRE_REFRELE_NOTR(ire); 20630 } 20631 20632 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20633 "ip_wput_end: q %p (%S)", q, "end"); 20634 20635 /* 20636 * Check if the ire has the RTF_MULTIRT flag, inherited 20637 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20638 */ 20639 if (ire->ire_flags & RTF_MULTIRT) { 20640 /* 20641 * Force the TTL of multirouted packets if required. 20642 * The TTL of such packets is bounded by the 20643 * ip_multirt_ttl ndd variable. 20644 */ 20645 if ((ipst->ips_ip_multirt_ttl > 0) && 20646 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20647 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20648 "(was %d), dst 0x%08x\n", 20649 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20650 ntohl(ire->ire_addr))); 20651 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20652 } 20653 20654 /* 20655 * At this point, we check to see if there are any pending 20656 * unresolved routes. ire_multirt_resolvable() 20657 * checks in O(n) that all IRE_OFFSUBNET ire 20658 * entries for the packet's destination and 20659 * flagged RTF_MULTIRT are currently resolved. 20660 * If some remain unresolved, we make a copy 20661 * of the current message. It will be used 20662 * to initiate additional route resolutions. 20663 */ 20664 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20665 MBLK_GETLABEL(first_mp), ipst); 20666 ip2dbg(("ip_wput[not TCP]: ire %p, " 20667 "multirt_need_resolve %d, first_mp %p\n", 20668 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20669 if (multirt_need_resolve) { 20670 copy_mp = copymsg(first_mp); 20671 if (copy_mp != NULL) { 20672 MULTIRT_DEBUG_TAG(copy_mp); 20673 } 20674 } 20675 } 20676 20677 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20678 20679 /* 20680 * Try to resolve another multiroute if 20681 * ire_multirt_resolvable() deemed it necessary 20682 */ 20683 if (copy_mp != NULL) 20684 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20685 if (need_decref) 20686 CONN_DEC_REF(connp); 20687 return; 20688 20689 qnext: 20690 /* 20691 * Upper Level Protocols pass down complete IP datagrams 20692 * as M_DATA messages. Everything else is a sideshow. 20693 * 20694 * 1) We could be re-entering ip_wput because of ip_neworute 20695 * in which case we could have a IPSEC_OUT message. We 20696 * need to pass through ip_wput like other datagrams and 20697 * hence cannot branch to ip_wput_nondata. 20698 * 20699 * 2) ARP, AH, ESP, and other clients who are on the module 20700 * instance of IP stream, give us something to deal with. 20701 * We will handle AH and ESP here and rest in ip_wput_nondata. 20702 * 20703 * 3) ICMP replies also could come here. 20704 */ 20705 ipst = ILLQ_TO_IPST(q); 20706 20707 if (DB_TYPE(mp) != M_DATA) { 20708 notdata: 20709 if (DB_TYPE(mp) == M_CTL) { 20710 /* 20711 * M_CTL messages are used by ARP, AH and ESP to 20712 * communicate with IP. We deal with IPSEC_IN and 20713 * IPSEC_OUT here. ip_wput_nondata handles other 20714 * cases. 20715 */ 20716 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20717 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20718 first_mp = mp->b_cont; 20719 first_mp->b_flag &= ~MSGHASREF; 20720 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20721 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20722 CONN_DEC_REF(connp); 20723 connp = NULL; 20724 } 20725 if (ii->ipsec_info_type == IPSEC_IN) { 20726 /* 20727 * Either this message goes back to 20728 * IPsec for further processing or to 20729 * ULP after policy checks. 20730 */ 20731 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20732 return; 20733 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20734 io = (ipsec_out_t *)ii; 20735 if (io->ipsec_out_proc_begin) { 20736 /* 20737 * IPsec processing has already started. 20738 * Complete it. 20739 * IPQoS notes: We don't care what is 20740 * in ipsec_out_ill_index since this 20741 * won't be processed for IPQoS policies 20742 * in ipsec_out_process. 20743 */ 20744 ipsec_out_process(q, mp, NULL, 20745 io->ipsec_out_ill_index); 20746 return; 20747 } else { 20748 connp = (q->q_next != NULL) ? 20749 NULL : Q_TO_CONN(q); 20750 first_mp = mp; 20751 mp = mp->b_cont; 20752 mctl_present = B_TRUE; 20753 } 20754 zoneid = io->ipsec_out_zoneid; 20755 ASSERT(zoneid != ALL_ZONES); 20756 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20757 /* 20758 * It's an IPsec control message requesting 20759 * an SADB update to be sent to the IPsec 20760 * hardware acceleration capable ills. 20761 */ 20762 ipsec_ctl_t *ipsec_ctl = 20763 (ipsec_ctl_t *)mp->b_rptr; 20764 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20765 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20766 mblk_t *cmp = mp->b_cont; 20767 20768 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20769 ASSERT(cmp != NULL); 20770 20771 freeb(mp); 20772 ill_ipsec_capab_send_all(satype, cmp, sa, 20773 ipst->ips_netstack); 20774 return; 20775 } else { 20776 /* 20777 * This must be ARP or special TSOL signaling. 20778 */ 20779 ip_wput_nondata(NULL, q, mp, NULL); 20780 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20781 "ip_wput_end: q %p (%S)", q, "nondata"); 20782 return; 20783 } 20784 } else { 20785 /* 20786 * This must be non-(ARP/AH/ESP) messages. 20787 */ 20788 ASSERT(!need_decref); 20789 ip_wput_nondata(NULL, q, mp, NULL); 20790 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20791 "ip_wput_end: q %p (%S)", q, "nondata"); 20792 return; 20793 } 20794 } else { 20795 first_mp = mp; 20796 mctl_present = B_FALSE; 20797 } 20798 20799 ASSERT(first_mp != NULL); 20800 20801 if (mctl_present) { 20802 io = (ipsec_out_t *)first_mp->b_rptr; 20803 if (io->ipsec_out_ip_nexthop) { 20804 /* 20805 * We may have lost the conn context if we are 20806 * coming here from ip_newroute(). Copy the 20807 * nexthop information. 20808 */ 20809 ip_nexthop = B_TRUE; 20810 nexthop_addr = io->ipsec_out_nexthop_addr; 20811 20812 ipha = (ipha_t *)mp->b_rptr; 20813 dst = ipha->ipha_dst; 20814 goto send_from_ill; 20815 } 20816 } 20817 20818 ASSERT(xmit_ill == NULL); 20819 20820 /* We have a complete IP datagram heading outbound. */ 20821 ipha = (ipha_t *)mp->b_rptr; 20822 20823 #ifndef SPEED_BEFORE_SAFETY 20824 /* 20825 * Make sure we have a full-word aligned message and that at least 20826 * a simple IP header is accessible in the first message. If not, 20827 * try a pullup. For labeled systems we need to always take this 20828 * path as M_CTLs are "notdata" but have trailing data to process. 20829 */ 20830 if (!OK_32PTR(rptr) || 20831 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20832 hdrtoosmall: 20833 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20834 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20835 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20836 if (first_mp == NULL) 20837 first_mp = mp; 20838 goto discard_pkt; 20839 } 20840 20841 /* This function assumes that mp points to an IPv4 packet. */ 20842 if (is_system_labeled() && q->q_next == NULL && 20843 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20844 !connp->conn_ulp_labeled) { 20845 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20846 connp->conn_mac_exempt, ipst); 20847 ipha = (ipha_t *)mp->b_rptr; 20848 if (first_mp != NULL) 20849 first_mp->b_cont = mp; 20850 if (err != 0) { 20851 if (first_mp == NULL) 20852 first_mp = mp; 20853 if (err == EINVAL) 20854 goto icmp_parameter_problem; 20855 ip2dbg(("ip_wput: label check failed (%d)\n", 20856 err)); 20857 goto discard_pkt; 20858 } 20859 } 20860 20861 ipha = (ipha_t *)mp->b_rptr; 20862 if (first_mp == NULL) { 20863 ASSERT(xmit_ill == NULL); 20864 /* 20865 * If we got here because of "goto hdrtoosmall" 20866 * We need to attach a IPSEC_OUT. 20867 */ 20868 if (connp->conn_out_enforce_policy) { 20869 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20870 NULL, ipha->ipha_protocol, 20871 ipst->ips_netstack)) == NULL)) { 20872 BUMP_MIB(&ipst->ips_ip_mib, 20873 ipIfStatsOutDiscards); 20874 if (need_decref) 20875 CONN_DEC_REF(connp); 20876 return; 20877 } else { 20878 ASSERT(mp->b_datap->db_type == M_CTL); 20879 first_mp = mp; 20880 mp = mp->b_cont; 20881 mctl_present = B_TRUE; 20882 } 20883 } else { 20884 first_mp = mp; 20885 mctl_present = B_FALSE; 20886 } 20887 } 20888 } 20889 #endif 20890 20891 /* Most of the code below is written for speed, not readability */ 20892 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20893 20894 /* 20895 * If ip_newroute() fails, we're going to need a full 20896 * header for the icmp wraparound. 20897 */ 20898 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20899 uint_t v_hlen; 20900 version_hdrlen_check: 20901 ASSERT(first_mp != NULL); 20902 v_hlen = V_HLEN; 20903 /* 20904 * siphon off IPv6 packets coming down from transport 20905 * layer modules here. 20906 * Note: high-order bit carries NUD reachability confirmation 20907 */ 20908 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20909 /* 20910 * FIXME: assume that callers of ip_output* call 20911 * the right version? 20912 */ 20913 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20914 ASSERT(xmit_ill == NULL); 20915 if (need_decref) 20916 mp->b_flag |= MSGHASREF; 20917 (void) ip_output_v6(arg, first_mp, arg2, caller); 20918 return; 20919 } 20920 20921 if ((v_hlen >> 4) != IP_VERSION) { 20922 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20923 "ip_wput_end: q %p (%S)", q, "badvers"); 20924 goto discard_pkt; 20925 } 20926 /* 20927 * Is the header length at least 20 bytes? 20928 * 20929 * Are there enough bytes accessible in the header? If 20930 * not, try a pullup. 20931 */ 20932 v_hlen &= 0xF; 20933 v_hlen <<= 2; 20934 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20935 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20936 "ip_wput_end: q %p (%S)", q, "badlen"); 20937 goto discard_pkt; 20938 } 20939 if (v_hlen > (mp->b_wptr - rptr)) { 20940 if (!pullupmsg(mp, v_hlen)) { 20941 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20942 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20943 goto discard_pkt; 20944 } 20945 ipha = (ipha_t *)mp->b_rptr; 20946 } 20947 /* 20948 * Move first entry from any source route into ipha_dst and 20949 * verify the options 20950 */ 20951 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20952 zoneid, ipst)) { 20953 ASSERT(xmit_ill == NULL); 20954 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20955 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20956 "ip_wput_end: q %p (%S)", q, "badopts"); 20957 if (need_decref) 20958 CONN_DEC_REF(connp); 20959 return; 20960 } 20961 } 20962 dst = ipha->ipha_dst; 20963 20964 /* 20965 * Try to get an IRE_CACHE for the destination address. If we can't, 20966 * we have to run the packet through ip_newroute which will take 20967 * the appropriate action to arrange for an IRE_CACHE, such as querying 20968 * a resolver, or assigning a default gateway, etc. 20969 */ 20970 if (CLASSD(dst)) { 20971 ipif_t *ipif; 20972 uint32_t setsrc = 0; 20973 20974 multicast: 20975 ASSERT(first_mp != NULL); 20976 ip2dbg(("ip_wput: CLASSD\n")); 20977 if (connp == NULL) { 20978 /* 20979 * Use the first good ipif on the ill. 20980 * XXX Should this ever happen? (Appears 20981 * to show up with just ppp and no ethernet due 20982 * to in.rdisc.) 20983 * However, ire_send should be able to 20984 * call ip_wput_ire directly. 20985 * 20986 * XXX Also, this can happen for ICMP and other packets 20987 * with multicast source addresses. Perhaps we should 20988 * fix things so that we drop the packet in question, 20989 * but for now, just run with it. 20990 */ 20991 ill_t *ill = (ill_t *)q->q_ptr; 20992 20993 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20994 if (ipif == NULL) { 20995 if (need_decref) 20996 CONN_DEC_REF(connp); 20997 freemsg(first_mp); 20998 return; 20999 } 21000 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21001 ntohl(dst), ill->ill_name)); 21002 } else { 21003 /* 21004 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21005 * and IP_MULTICAST_IF. The block comment above this 21006 * function explains the locking mechanism used here. 21007 */ 21008 if (xmit_ill == NULL) { 21009 xmit_ill = conn_get_held_ill(connp, 21010 &connp->conn_outgoing_ill, &err); 21011 if (err == ILL_LOOKUP_FAILED) { 21012 ip1dbg(("ip_wput: No ill for " 21013 "IP_BOUND_IF\n")); 21014 BUMP_MIB(&ipst->ips_ip_mib, 21015 ipIfStatsOutNoRoutes); 21016 goto drop_pkt; 21017 } 21018 } 21019 21020 if (xmit_ill == NULL) { 21021 ipif = conn_get_held_ipif(connp, 21022 &connp->conn_multicast_ipif, &err); 21023 if (err == IPIF_LOOKUP_FAILED) { 21024 ip1dbg(("ip_wput: No ipif for " 21025 "multicast\n")); 21026 BUMP_MIB(&ipst->ips_ip_mib, 21027 ipIfStatsOutNoRoutes); 21028 goto drop_pkt; 21029 } 21030 } 21031 if (xmit_ill != NULL) { 21032 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21033 if (ipif == NULL) { 21034 ip1dbg(("ip_wput: No ipif for " 21035 "xmit_ill\n")); 21036 BUMP_MIB(&ipst->ips_ip_mib, 21037 ipIfStatsOutNoRoutes); 21038 goto drop_pkt; 21039 } 21040 } else if (ipif == NULL || ipif->ipif_isv6) { 21041 /* 21042 * We must do this ipif determination here 21043 * else we could pass through ip_newroute 21044 * and come back here without the conn context. 21045 * 21046 * Note: we do late binding i.e. we bind to 21047 * the interface when the first packet is sent. 21048 * For performance reasons we do not rebind on 21049 * each packet but keep the binding until the 21050 * next IP_MULTICAST_IF option. 21051 * 21052 * conn_multicast_{ipif,ill} are shared between 21053 * IPv4 and IPv6 and AF_INET6 sockets can 21054 * send both IPv4 and IPv6 packets. Hence 21055 * we have to check that "isv6" matches above. 21056 */ 21057 if (ipif != NULL) 21058 ipif_refrele(ipif); 21059 ipif = ipif_lookup_group(dst, zoneid, ipst); 21060 if (ipif == NULL) { 21061 ip1dbg(("ip_wput: No ipif for " 21062 "multicast\n")); 21063 BUMP_MIB(&ipst->ips_ip_mib, 21064 ipIfStatsOutNoRoutes); 21065 goto drop_pkt; 21066 } 21067 err = conn_set_held_ipif(connp, 21068 &connp->conn_multicast_ipif, ipif); 21069 if (err == IPIF_LOOKUP_FAILED) { 21070 ipif_refrele(ipif); 21071 ip1dbg(("ip_wput: No ipif for " 21072 "multicast\n")); 21073 BUMP_MIB(&ipst->ips_ip_mib, 21074 ipIfStatsOutNoRoutes); 21075 goto drop_pkt; 21076 } 21077 } 21078 } 21079 ASSERT(!ipif->ipif_isv6); 21080 /* 21081 * As we may lose the conn by the time we reach ip_wput_ire, 21082 * we copy conn_multicast_loop and conn_dontroute on to an 21083 * ipsec_out. In case if this datagram goes out secure, 21084 * we need the ill_index also. Copy that also into the 21085 * ipsec_out. 21086 */ 21087 if (mctl_present) { 21088 io = (ipsec_out_t *)first_mp->b_rptr; 21089 ASSERT(first_mp->b_datap->db_type == M_CTL); 21090 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21091 } else { 21092 ASSERT(mp == first_mp); 21093 if ((first_mp = allocb(sizeof (ipsec_info_t), 21094 BPRI_HI)) == NULL) { 21095 ipif_refrele(ipif); 21096 first_mp = mp; 21097 goto discard_pkt; 21098 } 21099 first_mp->b_datap->db_type = M_CTL; 21100 first_mp->b_wptr += sizeof (ipsec_info_t); 21101 /* ipsec_out_secure is B_FALSE now */ 21102 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21103 io = (ipsec_out_t *)first_mp->b_rptr; 21104 io->ipsec_out_type = IPSEC_OUT; 21105 io->ipsec_out_len = sizeof (ipsec_out_t); 21106 io->ipsec_out_use_global_policy = B_TRUE; 21107 io->ipsec_out_ns = ipst->ips_netstack; 21108 first_mp->b_cont = mp; 21109 mctl_present = B_TRUE; 21110 } 21111 21112 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21113 io->ipsec_out_ill_index = 21114 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21115 21116 if (connp != NULL) { 21117 io->ipsec_out_multicast_loop = 21118 connp->conn_multicast_loop; 21119 io->ipsec_out_dontroute = connp->conn_dontroute; 21120 io->ipsec_out_zoneid = connp->conn_zoneid; 21121 } 21122 /* 21123 * If the application uses IP_MULTICAST_IF with 21124 * different logical addresses of the same ILL, we 21125 * need to make sure that the soruce address of 21126 * the packet matches the logical IP address used 21127 * in the option. We do it by initializing ipha_src 21128 * here. This should keep IPsec also happy as 21129 * when we return from IPsec processing, we don't 21130 * have to worry about getting the right address on 21131 * the packet. Thus it is sufficient to look for 21132 * IRE_CACHE using MATCH_IRE_ILL rathen than 21133 * MATCH_IRE_IPIF. 21134 * 21135 * NOTE : We need to do it for non-secure case also as 21136 * this might go out secure if there is a global policy 21137 * match in ip_wput_ire. 21138 * 21139 * As we do not have the ire yet, it is possible that 21140 * we set the source address here and then later discover 21141 * that the ire implies the source address to be assigned 21142 * through the RTF_SETSRC flag. 21143 * In that case, the setsrc variable will remind us 21144 * that overwritting the source address by the one 21145 * of the RTF_SETSRC-flagged ire is allowed. 21146 */ 21147 if (ipha->ipha_src == INADDR_ANY && 21148 (connp == NULL || !connp->conn_unspec_src)) { 21149 ipha->ipha_src = ipif->ipif_src_addr; 21150 setsrc = RTF_SETSRC; 21151 } 21152 /* 21153 * Find an IRE which matches the destination and the outgoing 21154 * queue (i.e. the outgoing interface.) 21155 * For loopback use a unicast IP address for 21156 * the ire lookup. 21157 */ 21158 if (IS_LOOPBACK(ipif->ipif_ill)) 21159 dst = ipif->ipif_lcl_addr; 21160 21161 /* 21162 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21163 * We don't need to lookup ire in ctable as the packet 21164 * needs to be sent to the destination through the specified 21165 * ill irrespective of ires in the cache table. 21166 */ 21167 ire = NULL; 21168 if (xmit_ill == NULL) { 21169 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21170 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21171 } 21172 21173 if (ire == NULL) { 21174 /* 21175 * Multicast loopback and multicast forwarding is 21176 * done in ip_wput_ire. 21177 * 21178 * Mark this packet to make it be delivered to 21179 * ip_wput_ire after the new ire has been 21180 * created. 21181 * 21182 * The call to ip_newroute_ipif takes into account 21183 * the setsrc reminder. In any case, we take care 21184 * of the RTF_MULTIRT flag. 21185 */ 21186 mp->b_prev = mp->b_next = NULL; 21187 if (xmit_ill == NULL || 21188 xmit_ill->ill_ipif_up_count > 0) { 21189 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21190 setsrc | RTF_MULTIRT, zoneid, infop); 21191 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21192 "ip_wput_end: q %p (%S)", q, "noire"); 21193 } else { 21194 freemsg(first_mp); 21195 } 21196 ipif_refrele(ipif); 21197 if (xmit_ill != NULL) 21198 ill_refrele(xmit_ill); 21199 if (need_decref) 21200 CONN_DEC_REF(connp); 21201 return; 21202 } 21203 21204 ipif_refrele(ipif); 21205 ipif = NULL; 21206 ASSERT(xmit_ill == NULL); 21207 21208 /* 21209 * Honor the RTF_SETSRC flag for multicast packets, 21210 * if allowed by the setsrc reminder. 21211 */ 21212 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21213 ipha->ipha_src = ire->ire_src_addr; 21214 } 21215 21216 /* 21217 * Unconditionally force the TTL to 1 for 21218 * multirouted multicast packets: 21219 * multirouted multicast should not cross 21220 * multicast routers. 21221 */ 21222 if (ire->ire_flags & RTF_MULTIRT) { 21223 if (ipha->ipha_ttl > 1) { 21224 ip2dbg(("ip_wput: forcing multicast " 21225 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21226 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21227 ipha->ipha_ttl = 1; 21228 } 21229 } 21230 } else { 21231 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21232 if ((ire != NULL) && (ire->ire_type & 21233 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21234 ignore_dontroute = B_TRUE; 21235 ignore_nexthop = B_TRUE; 21236 } 21237 if (ire != NULL) { 21238 ire_refrele(ire); 21239 ire = NULL; 21240 } 21241 /* 21242 * Guard against coming in from arp in which case conn is NULL. 21243 * Also guard against non M_DATA with dontroute set but 21244 * destined to local, loopback or broadcast addresses. 21245 */ 21246 if (connp != NULL && connp->conn_dontroute && 21247 !ignore_dontroute) { 21248 dontroute: 21249 /* 21250 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21251 * routing protocols from seeing false direct 21252 * connectivity. 21253 */ 21254 ipha->ipha_ttl = 1; 21255 /* If suitable ipif not found, drop packet */ 21256 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21257 if (dst_ipif == NULL) { 21258 noroute: 21259 ip1dbg(("ip_wput: no route for dst using" 21260 " SO_DONTROUTE\n")); 21261 BUMP_MIB(&ipst->ips_ip_mib, 21262 ipIfStatsOutNoRoutes); 21263 mp->b_prev = mp->b_next = NULL; 21264 if (first_mp == NULL) 21265 first_mp = mp; 21266 goto drop_pkt; 21267 } else { 21268 /* 21269 * If suitable ipif has been found, set 21270 * xmit_ill to the corresponding 21271 * ipif_ill because we'll be using the 21272 * send_from_ill logic below. 21273 */ 21274 ASSERT(xmit_ill == NULL); 21275 xmit_ill = dst_ipif->ipif_ill; 21276 mutex_enter(&xmit_ill->ill_lock); 21277 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21278 mutex_exit(&xmit_ill->ill_lock); 21279 xmit_ill = NULL; 21280 ipif_refrele(dst_ipif); 21281 goto noroute; 21282 } 21283 ill_refhold_locked(xmit_ill); 21284 mutex_exit(&xmit_ill->ill_lock); 21285 ipif_refrele(dst_ipif); 21286 } 21287 } 21288 21289 send_from_ill: 21290 if (xmit_ill != NULL) { 21291 ipif_t *ipif; 21292 21293 /* 21294 * Mark this packet as originated locally 21295 */ 21296 mp->b_prev = mp->b_next = NULL; 21297 21298 /* 21299 * Could be SO_DONTROUTE case also. 21300 * Verify that at least one ipif is up on the ill. 21301 */ 21302 if (xmit_ill->ill_ipif_up_count == 0) { 21303 ip1dbg(("ip_output: xmit_ill %s is down\n", 21304 xmit_ill->ill_name)); 21305 goto drop_pkt; 21306 } 21307 21308 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21309 if (ipif == NULL) { 21310 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21311 xmit_ill->ill_name)); 21312 goto drop_pkt; 21313 } 21314 21315 match_flags = 0; 21316 if (IS_UNDER_IPMP(xmit_ill)) 21317 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21318 21319 /* 21320 * Look for a ire that is part of the group, 21321 * if found use it else call ip_newroute_ipif. 21322 * IPCL_ZONEID is not used for matching because 21323 * IP_ALLZONES option is valid only when the 21324 * ill is accessible from all zones i.e has a 21325 * valid ipif in all zones. 21326 */ 21327 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21328 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21329 MBLK_GETLABEL(mp), match_flags, ipst); 21330 /* 21331 * If an ire exists use it or else create 21332 * an ire but don't add it to the cache. 21333 * Adding an ire may cause issues with 21334 * asymmetric routing. 21335 * In case of multiroute always act as if 21336 * ire does not exist. 21337 */ 21338 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21339 if (ire != NULL) 21340 ire_refrele(ire); 21341 ip_newroute_ipif(q, first_mp, ipif, 21342 dst, connp, 0, zoneid, infop); 21343 ipif_refrele(ipif); 21344 ip1dbg(("ip_output: xmit_ill via %s\n", 21345 xmit_ill->ill_name)); 21346 ill_refrele(xmit_ill); 21347 if (need_decref) 21348 CONN_DEC_REF(connp); 21349 return; 21350 } 21351 ipif_refrele(ipif); 21352 } else if (ip_nexthop || (connp != NULL && 21353 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21354 if (!ip_nexthop) { 21355 ip_nexthop = B_TRUE; 21356 nexthop_addr = connp->conn_nexthop_v4; 21357 } 21358 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21359 MATCH_IRE_GW; 21360 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21361 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21362 } else { 21363 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21364 ipst); 21365 } 21366 if (!ire) { 21367 if (ip_nexthop && !ignore_nexthop) { 21368 if (mctl_present) { 21369 io = (ipsec_out_t *)first_mp->b_rptr; 21370 ASSERT(first_mp->b_datap->db_type == 21371 M_CTL); 21372 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21373 } else { 21374 ASSERT(mp == first_mp); 21375 first_mp = allocb( 21376 sizeof (ipsec_info_t), BPRI_HI); 21377 if (first_mp == NULL) { 21378 first_mp = mp; 21379 goto discard_pkt; 21380 } 21381 first_mp->b_datap->db_type = M_CTL; 21382 first_mp->b_wptr += 21383 sizeof (ipsec_info_t); 21384 /* ipsec_out_secure is B_FALSE now */ 21385 bzero(first_mp->b_rptr, 21386 sizeof (ipsec_info_t)); 21387 io = (ipsec_out_t *)first_mp->b_rptr; 21388 io->ipsec_out_type = IPSEC_OUT; 21389 io->ipsec_out_len = 21390 sizeof (ipsec_out_t); 21391 io->ipsec_out_use_global_policy = 21392 B_TRUE; 21393 io->ipsec_out_ns = ipst->ips_netstack; 21394 first_mp->b_cont = mp; 21395 mctl_present = B_TRUE; 21396 } 21397 io->ipsec_out_ip_nexthop = ip_nexthop; 21398 io->ipsec_out_nexthop_addr = nexthop_addr; 21399 } 21400 noirefound: 21401 /* 21402 * Mark this packet as having originated on 21403 * this machine. This will be noted in 21404 * ire_add_then_send, which needs to know 21405 * whether to run it back through ip_wput or 21406 * ip_rput following successful resolution. 21407 */ 21408 mp->b_prev = NULL; 21409 mp->b_next = NULL; 21410 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21411 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21412 "ip_wput_end: q %p (%S)", q, "newroute"); 21413 if (xmit_ill != NULL) 21414 ill_refrele(xmit_ill); 21415 if (need_decref) 21416 CONN_DEC_REF(connp); 21417 return; 21418 } 21419 } 21420 21421 /* We now know where we are going with it. */ 21422 21423 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21424 "ip_wput_end: q %p (%S)", q, "end"); 21425 21426 /* 21427 * Check if the ire has the RTF_MULTIRT flag, inherited 21428 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21429 */ 21430 if (ire->ire_flags & RTF_MULTIRT) { 21431 /* 21432 * Force the TTL of multirouted packets if required. 21433 * The TTL of such packets is bounded by the 21434 * ip_multirt_ttl ndd variable. 21435 */ 21436 if ((ipst->ips_ip_multirt_ttl > 0) && 21437 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21438 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21439 "(was %d), dst 0x%08x\n", 21440 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21441 ntohl(ire->ire_addr))); 21442 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21443 } 21444 /* 21445 * At this point, we check to see if there are any pending 21446 * unresolved routes. ire_multirt_resolvable() 21447 * checks in O(n) that all IRE_OFFSUBNET ire 21448 * entries for the packet's destination and 21449 * flagged RTF_MULTIRT are currently resolved. 21450 * If some remain unresolved, we make a copy 21451 * of the current message. It will be used 21452 * to initiate additional route resolutions. 21453 */ 21454 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21455 MBLK_GETLABEL(first_mp), ipst); 21456 ip2dbg(("ip_wput[noirefound]: ire %p, " 21457 "multirt_need_resolve %d, first_mp %p\n", 21458 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21459 if (multirt_need_resolve) { 21460 copy_mp = copymsg(first_mp); 21461 if (copy_mp != NULL) { 21462 MULTIRT_DEBUG_TAG(copy_mp); 21463 } 21464 } 21465 } 21466 21467 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21468 /* 21469 * Try to resolve another multiroute if 21470 * ire_multirt_resolvable() deemed it necessary. 21471 * At this point, we need to distinguish 21472 * multicasts from other packets. For multicasts, 21473 * we call ip_newroute_ipif() and request that both 21474 * multirouting and setsrc flags are checked. 21475 */ 21476 if (copy_mp != NULL) { 21477 if (CLASSD(dst)) { 21478 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21479 if (ipif) { 21480 ASSERT(infop->ip_opt_ill_index == 0); 21481 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21482 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21483 ipif_refrele(ipif); 21484 } else { 21485 MULTIRT_DEBUG_UNTAG(copy_mp); 21486 freemsg(copy_mp); 21487 copy_mp = NULL; 21488 } 21489 } else { 21490 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21491 } 21492 } 21493 if (xmit_ill != NULL) 21494 ill_refrele(xmit_ill); 21495 if (need_decref) 21496 CONN_DEC_REF(connp); 21497 return; 21498 21499 icmp_parameter_problem: 21500 /* could not have originated externally */ 21501 ASSERT(mp->b_prev == NULL); 21502 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21503 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21504 /* it's the IP header length that's in trouble */ 21505 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21506 first_mp = NULL; 21507 } 21508 21509 discard_pkt: 21510 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21511 drop_pkt: 21512 ip1dbg(("ip_wput: dropped packet\n")); 21513 if (ire != NULL) 21514 ire_refrele(ire); 21515 if (need_decref) 21516 CONN_DEC_REF(connp); 21517 freemsg(first_mp); 21518 if (xmit_ill != NULL) 21519 ill_refrele(xmit_ill); 21520 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21521 "ip_wput_end: q %p (%S)", q, "droppkt"); 21522 } 21523 21524 /* 21525 * If this is a conn_t queue, then we pass in the conn. This includes the 21526 * zoneid. 21527 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21528 * in which case we use the global zoneid since those are all part of 21529 * the global zone. 21530 */ 21531 void 21532 ip_wput(queue_t *q, mblk_t *mp) 21533 { 21534 if (CONN_Q(q)) 21535 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21536 else 21537 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21538 } 21539 21540 /* 21541 * 21542 * The following rules must be observed when accessing any ipif or ill 21543 * that has been cached in the conn. Typically conn_outgoing_ill, 21544 * conn_multicast_ipif and conn_multicast_ill. 21545 * 21546 * Access: The ipif or ill pointed to from the conn can be accessed under 21547 * the protection of the conn_lock or after it has been refheld under the 21548 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21549 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21550 * The reason for this is that a concurrent unplumb could actually be 21551 * cleaning up these cached pointers by walking the conns and might have 21552 * finished cleaning up the conn in question. The macros check that an 21553 * unplumb has not yet started on the ipif or ill. 21554 * 21555 * Caching: An ipif or ill pointer may be cached in the conn only after 21556 * making sure that an unplumb has not started. So the caching is done 21557 * while holding both the conn_lock and the ill_lock and after using the 21558 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21559 * flag before starting the cleanup of conns. 21560 * 21561 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21562 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21563 * or a reference to the ipif or a reference to an ire that references the 21564 * ipif. An ipif only changes its ill when migrating from an underlying ill 21565 * to an IPMP ill in ipif_up(). 21566 */ 21567 ipif_t * 21568 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21569 { 21570 ipif_t *ipif; 21571 ill_t *ill; 21572 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21573 21574 *err = 0; 21575 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21576 mutex_enter(&connp->conn_lock); 21577 ipif = *ipifp; 21578 if (ipif != NULL) { 21579 ill = ipif->ipif_ill; 21580 mutex_enter(&ill->ill_lock); 21581 if (IPIF_CAN_LOOKUP(ipif)) { 21582 ipif_refhold_locked(ipif); 21583 mutex_exit(&ill->ill_lock); 21584 mutex_exit(&connp->conn_lock); 21585 rw_exit(&ipst->ips_ill_g_lock); 21586 return (ipif); 21587 } else { 21588 *err = IPIF_LOOKUP_FAILED; 21589 } 21590 mutex_exit(&ill->ill_lock); 21591 } 21592 mutex_exit(&connp->conn_lock); 21593 rw_exit(&ipst->ips_ill_g_lock); 21594 return (NULL); 21595 } 21596 21597 ill_t * 21598 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21599 { 21600 ill_t *ill; 21601 21602 *err = 0; 21603 mutex_enter(&connp->conn_lock); 21604 ill = *illp; 21605 if (ill != NULL) { 21606 mutex_enter(&ill->ill_lock); 21607 if (ILL_CAN_LOOKUP(ill)) { 21608 ill_refhold_locked(ill); 21609 mutex_exit(&ill->ill_lock); 21610 mutex_exit(&connp->conn_lock); 21611 return (ill); 21612 } else { 21613 *err = ILL_LOOKUP_FAILED; 21614 } 21615 mutex_exit(&ill->ill_lock); 21616 } 21617 mutex_exit(&connp->conn_lock); 21618 return (NULL); 21619 } 21620 21621 static int 21622 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21623 { 21624 ill_t *ill; 21625 21626 ill = ipif->ipif_ill; 21627 mutex_enter(&connp->conn_lock); 21628 mutex_enter(&ill->ill_lock); 21629 if (IPIF_CAN_LOOKUP(ipif)) { 21630 *ipifp = ipif; 21631 mutex_exit(&ill->ill_lock); 21632 mutex_exit(&connp->conn_lock); 21633 return (0); 21634 } 21635 mutex_exit(&ill->ill_lock); 21636 mutex_exit(&connp->conn_lock); 21637 return (IPIF_LOOKUP_FAILED); 21638 } 21639 21640 /* 21641 * This is called if the outbound datagram needs fragmentation. 21642 * 21643 * NOTE : This function does not ire_refrele the ire argument passed in. 21644 */ 21645 static void 21646 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21647 ip_stack_t *ipst, conn_t *connp) 21648 { 21649 ipha_t *ipha; 21650 mblk_t *mp; 21651 uint32_t v_hlen_tos_len; 21652 uint32_t max_frag; 21653 uint32_t frag_flag; 21654 boolean_t dont_use; 21655 21656 if (ipsec_mp->b_datap->db_type == M_CTL) { 21657 mp = ipsec_mp->b_cont; 21658 } else { 21659 mp = ipsec_mp; 21660 } 21661 21662 ipha = (ipha_t *)mp->b_rptr; 21663 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21664 21665 #ifdef _BIG_ENDIAN 21666 #define V_HLEN (v_hlen_tos_len >> 24) 21667 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21668 #else 21669 #define V_HLEN (v_hlen_tos_len & 0xFF) 21670 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21671 #endif 21672 21673 #ifndef SPEED_BEFORE_SAFETY 21674 /* 21675 * Check that ipha_length is consistent with 21676 * the mblk length 21677 */ 21678 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21679 ip0dbg(("Packet length mismatch: %d, %ld\n", 21680 LENGTH, msgdsize(mp))); 21681 freemsg(ipsec_mp); 21682 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21683 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21684 "packet length mismatch"); 21685 return; 21686 } 21687 #endif 21688 /* 21689 * Don't use frag_flag if pre-built packet or source 21690 * routed or if multicast (since multicast packets do not solicit 21691 * ICMP "packet too big" messages). Get the values of 21692 * max_frag and frag_flag atomically by acquiring the 21693 * ire_lock. 21694 */ 21695 mutex_enter(&ire->ire_lock); 21696 max_frag = ire->ire_max_frag; 21697 frag_flag = ire->ire_frag_flag; 21698 mutex_exit(&ire->ire_lock); 21699 21700 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21701 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21702 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21703 21704 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21705 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21706 } 21707 21708 /* 21709 * Used for deciding the MSS size for the upper layer. Thus 21710 * we need to check the outbound policy values in the conn. 21711 */ 21712 int 21713 conn_ipsec_length(conn_t *connp) 21714 { 21715 ipsec_latch_t *ipl; 21716 21717 ipl = connp->conn_latch; 21718 if (ipl == NULL) 21719 return (0); 21720 21721 if (ipl->ipl_out_policy == NULL) 21722 return (0); 21723 21724 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21725 } 21726 21727 /* 21728 * Returns an estimate of the IPsec headers size. This is used if 21729 * we don't want to call into IPsec to get the exact size. 21730 */ 21731 int 21732 ipsec_out_extra_length(mblk_t *ipsec_mp) 21733 { 21734 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21735 ipsec_action_t *a; 21736 21737 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21738 if (!io->ipsec_out_secure) 21739 return (0); 21740 21741 a = io->ipsec_out_act; 21742 21743 if (a == NULL) { 21744 ASSERT(io->ipsec_out_policy != NULL); 21745 a = io->ipsec_out_policy->ipsp_act; 21746 } 21747 ASSERT(a != NULL); 21748 21749 return (a->ipa_ovhd); 21750 } 21751 21752 /* 21753 * Returns an estimate of the IPsec headers size. This is used if 21754 * we don't want to call into IPsec to get the exact size. 21755 */ 21756 int 21757 ipsec_in_extra_length(mblk_t *ipsec_mp) 21758 { 21759 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21760 ipsec_action_t *a; 21761 21762 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21763 21764 a = ii->ipsec_in_action; 21765 return (a == NULL ? 0 : a->ipa_ovhd); 21766 } 21767 21768 /* 21769 * If there are any source route options, return the true final 21770 * destination. Otherwise, return the destination. 21771 */ 21772 ipaddr_t 21773 ip_get_dst(ipha_t *ipha) 21774 { 21775 ipoptp_t opts; 21776 uchar_t *opt; 21777 uint8_t optval; 21778 uint8_t optlen; 21779 ipaddr_t dst; 21780 uint32_t off; 21781 21782 dst = ipha->ipha_dst; 21783 21784 if (IS_SIMPLE_IPH(ipha)) 21785 return (dst); 21786 21787 for (optval = ipoptp_first(&opts, ipha); 21788 optval != IPOPT_EOL; 21789 optval = ipoptp_next(&opts)) { 21790 opt = opts.ipoptp_cur; 21791 optlen = opts.ipoptp_len; 21792 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21793 switch (optval) { 21794 case IPOPT_SSRR: 21795 case IPOPT_LSRR: 21796 off = opt[IPOPT_OFFSET]; 21797 /* 21798 * If one of the conditions is true, it means 21799 * end of options and dst already has the right 21800 * value. 21801 */ 21802 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21803 off = optlen - IP_ADDR_LEN; 21804 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21805 } 21806 return (dst); 21807 default: 21808 break; 21809 } 21810 } 21811 21812 return (dst); 21813 } 21814 21815 mblk_t * 21816 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21817 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21818 { 21819 ipsec_out_t *io; 21820 mblk_t *first_mp; 21821 boolean_t policy_present; 21822 ip_stack_t *ipst; 21823 ipsec_stack_t *ipss; 21824 21825 ASSERT(ire != NULL); 21826 ipst = ire->ire_ipst; 21827 ipss = ipst->ips_netstack->netstack_ipsec; 21828 21829 first_mp = mp; 21830 if (mp->b_datap->db_type == M_CTL) { 21831 io = (ipsec_out_t *)first_mp->b_rptr; 21832 /* 21833 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21834 * 21835 * 1) There is per-socket policy (including cached global 21836 * policy) or a policy on the IP-in-IP tunnel. 21837 * 2) There is no per-socket policy, but it is 21838 * a multicast packet that needs to go out 21839 * on a specific interface. This is the case 21840 * where (ip_wput and ip_wput_multicast) attaches 21841 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21842 * 21843 * In case (2) we check with global policy to 21844 * see if there is a match and set the ill_index 21845 * appropriately so that we can lookup the ire 21846 * properly in ip_wput_ipsec_out. 21847 */ 21848 21849 /* 21850 * ipsec_out_use_global_policy is set to B_FALSE 21851 * in ipsec_in_to_out(). Refer to that function for 21852 * details. 21853 */ 21854 if ((io->ipsec_out_latch == NULL) && 21855 (io->ipsec_out_use_global_policy)) { 21856 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21857 ire, connp, unspec_src, zoneid)); 21858 } 21859 if (!io->ipsec_out_secure) { 21860 /* 21861 * If this is not a secure packet, drop 21862 * the IPSEC_OUT mp and treat it as a clear 21863 * packet. This happens when we are sending 21864 * a ICMP reply back to a clear packet. See 21865 * ipsec_in_to_out() for details. 21866 */ 21867 mp = first_mp->b_cont; 21868 freeb(first_mp); 21869 } 21870 return (mp); 21871 } 21872 /* 21873 * See whether we need to attach a global policy here. We 21874 * don't depend on the conn (as it could be null) for deciding 21875 * what policy this datagram should go through because it 21876 * should have happened in ip_wput if there was some 21877 * policy. This normally happens for connections which are not 21878 * fully bound preventing us from caching policies in 21879 * ip_bind. Packets coming from the TCP listener/global queue 21880 * - which are non-hard_bound - could also be affected by 21881 * applying policy here. 21882 * 21883 * If this packet is coming from tcp global queue or listener, 21884 * we will be applying policy here. This may not be *right* 21885 * if these packets are coming from the detached connection as 21886 * it could have gone in clear before. This happens only if a 21887 * TCP connection started when there is no policy and somebody 21888 * added policy before it became detached. Thus packets of the 21889 * detached connection could go out secure and the other end 21890 * would drop it because it will be expecting in clear. The 21891 * converse is not true i.e if somebody starts a TCP 21892 * connection and deletes the policy, all the packets will 21893 * still go out with the policy that existed before deleting 21894 * because ip_unbind sends up policy information which is used 21895 * by TCP on subsequent ip_wputs. The right solution is to fix 21896 * TCP to attach a dummy IPSEC_OUT and set 21897 * ipsec_out_use_global_policy to B_FALSE. As this might 21898 * affect performance for normal cases, we are not doing it. 21899 * Thus, set policy before starting any TCP connections. 21900 * 21901 * NOTE - We might apply policy even for a hard bound connection 21902 * - for which we cached policy in ip_bind - if somebody added 21903 * global policy after we inherited the policy in ip_bind. 21904 * This means that the packets that were going out in clear 21905 * previously would start going secure and hence get dropped 21906 * on the other side. To fix this, TCP attaches a dummy 21907 * ipsec_out and make sure that we don't apply global policy. 21908 */ 21909 if (ipha != NULL) 21910 policy_present = ipss->ipsec_outbound_v4_policy_present; 21911 else 21912 policy_present = ipss->ipsec_outbound_v6_policy_present; 21913 if (!policy_present) 21914 return (mp); 21915 21916 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21917 zoneid)); 21918 } 21919 21920 /* 21921 * This function does the ire_refrele of the ire passed in as the 21922 * argument. As this function looks up more ires i.e broadcast ires, 21923 * it needs to REFRELE them. Currently, for simplicity we don't 21924 * differentiate the one passed in and looked up here. We always 21925 * REFRELE. 21926 * IPQoS Notes: 21927 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21928 * IPsec packets are done in ipsec_out_process. 21929 */ 21930 void 21931 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21932 zoneid_t zoneid) 21933 { 21934 ipha_t *ipha; 21935 #define rptr ((uchar_t *)ipha) 21936 queue_t *stq; 21937 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21938 uint32_t v_hlen_tos_len; 21939 uint32_t ttl_protocol; 21940 ipaddr_t src; 21941 ipaddr_t dst; 21942 uint32_t cksum; 21943 ipaddr_t orig_src; 21944 ire_t *ire1; 21945 mblk_t *next_mp; 21946 uint_t hlen; 21947 uint16_t *up; 21948 uint32_t max_frag = ire->ire_max_frag; 21949 ill_t *ill = ire_to_ill(ire); 21950 int clusterwide; 21951 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21952 int ipsec_len; 21953 mblk_t *first_mp; 21954 ipsec_out_t *io; 21955 boolean_t conn_dontroute; /* conn value for multicast */ 21956 boolean_t conn_multicast_loop; /* conn value for multicast */ 21957 boolean_t multicast_forward; /* Should we forward ? */ 21958 boolean_t unspec_src; 21959 ill_t *conn_outgoing_ill = NULL; 21960 ill_t *ire_ill; 21961 ill_t *ire1_ill; 21962 ill_t *out_ill; 21963 uint32_t ill_index = 0; 21964 boolean_t multirt_send = B_FALSE; 21965 int err; 21966 ipxmit_state_t pktxmit_state; 21967 ip_stack_t *ipst = ire->ire_ipst; 21968 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21969 21970 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21971 "ip_wput_ire_start: q %p", q); 21972 21973 multicast_forward = B_FALSE; 21974 unspec_src = (connp != NULL && connp->conn_unspec_src); 21975 21976 if (ire->ire_flags & RTF_MULTIRT) { 21977 /* 21978 * Multirouting case. The bucket where ire is stored 21979 * probably holds other RTF_MULTIRT flagged ire 21980 * to the destination. In this call to ip_wput_ire, 21981 * we attempt to send the packet through all 21982 * those ires. Thus, we first ensure that ire is the 21983 * first RTF_MULTIRT ire in the bucket, 21984 * before walking the ire list. 21985 */ 21986 ire_t *first_ire; 21987 irb_t *irb = ire->ire_bucket; 21988 ASSERT(irb != NULL); 21989 21990 /* Make sure we do not omit any multiroute ire. */ 21991 IRB_REFHOLD(irb); 21992 for (first_ire = irb->irb_ire; 21993 first_ire != NULL; 21994 first_ire = first_ire->ire_next) { 21995 if ((first_ire->ire_flags & RTF_MULTIRT) && 21996 (first_ire->ire_addr == ire->ire_addr) && 21997 !(first_ire->ire_marks & 21998 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 21999 break; 22000 } 22001 22002 if ((first_ire != NULL) && (first_ire != ire)) { 22003 IRE_REFHOLD(first_ire); 22004 ire_refrele(ire); 22005 ire = first_ire; 22006 ill = ire_to_ill(ire); 22007 } 22008 IRB_REFRELE(irb); 22009 } 22010 22011 /* 22012 * conn_outgoing_ill variable is used only in the broadcast loop. 22013 * for performance we don't grab the mutexs in the fastpath 22014 */ 22015 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22016 connp->conn_outgoing_ill != NULL) { 22017 conn_outgoing_ill = conn_get_held_ill(connp, 22018 &connp->conn_outgoing_ill, &err); 22019 if (err == ILL_LOOKUP_FAILED) { 22020 ire_refrele(ire); 22021 freemsg(mp); 22022 return; 22023 } 22024 } 22025 22026 if (mp->b_datap->db_type != M_CTL) { 22027 ipha = (ipha_t *)mp->b_rptr; 22028 } else { 22029 io = (ipsec_out_t *)mp->b_rptr; 22030 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22031 ASSERT(zoneid == io->ipsec_out_zoneid); 22032 ASSERT(zoneid != ALL_ZONES); 22033 ipha = (ipha_t *)mp->b_cont->b_rptr; 22034 dst = ipha->ipha_dst; 22035 /* 22036 * For the multicast case, ipsec_out carries conn_dontroute and 22037 * conn_multicast_loop as conn may not be available here. We 22038 * need this for multicast loopback and forwarding which is done 22039 * later in the code. 22040 */ 22041 if (CLASSD(dst)) { 22042 conn_dontroute = io->ipsec_out_dontroute; 22043 conn_multicast_loop = io->ipsec_out_multicast_loop; 22044 /* 22045 * If conn_dontroute is not set or conn_multicast_loop 22046 * is set, we need to do forwarding/loopback. For 22047 * datagrams from ip_wput_multicast, conn_dontroute is 22048 * set to B_TRUE and conn_multicast_loop is set to 22049 * B_FALSE so that we neither do forwarding nor 22050 * loopback. 22051 */ 22052 if (!conn_dontroute || conn_multicast_loop) 22053 multicast_forward = B_TRUE; 22054 } 22055 } 22056 22057 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22058 ire->ire_zoneid != ALL_ZONES) { 22059 /* 22060 * When a zone sends a packet to another zone, we try to deliver 22061 * the packet under the same conditions as if the destination 22062 * was a real node on the network. To do so, we look for a 22063 * matching route in the forwarding table. 22064 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22065 * ip_newroute() does. 22066 * Note that IRE_LOCAL are special, since they are used 22067 * when the zoneid doesn't match in some cases. This means that 22068 * we need to handle ipha_src differently since ire_src_addr 22069 * belongs to the receiving zone instead of the sending zone. 22070 * When ip_restrict_interzone_loopback is set, then 22071 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22072 * for loopback between zones when the logical "Ethernet" would 22073 * have looped them back. 22074 */ 22075 ire_t *src_ire; 22076 22077 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22078 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22079 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22080 if (src_ire != NULL && 22081 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22082 (!ipst->ips_ip_restrict_interzone_loopback || 22083 ire_local_same_lan(ire, src_ire))) { 22084 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22085 ipha->ipha_src = src_ire->ire_src_addr; 22086 ire_refrele(src_ire); 22087 } else { 22088 ire_refrele(ire); 22089 if (conn_outgoing_ill != NULL) 22090 ill_refrele(conn_outgoing_ill); 22091 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22092 if (src_ire != NULL) { 22093 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22094 ire_refrele(src_ire); 22095 freemsg(mp); 22096 return; 22097 } 22098 ire_refrele(src_ire); 22099 } 22100 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22101 /* Failed */ 22102 freemsg(mp); 22103 return; 22104 } 22105 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22106 ipst); 22107 return; 22108 } 22109 } 22110 22111 if (mp->b_datap->db_type == M_CTL || 22112 ipss->ipsec_outbound_v4_policy_present) { 22113 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22114 unspec_src, zoneid); 22115 if (mp == NULL) { 22116 ire_refrele(ire); 22117 if (conn_outgoing_ill != NULL) 22118 ill_refrele(conn_outgoing_ill); 22119 return; 22120 } 22121 /* 22122 * Trusted Extensions supports all-zones interfaces, so 22123 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22124 * the global zone. 22125 */ 22126 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22127 io = (ipsec_out_t *)mp->b_rptr; 22128 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22129 zoneid = io->ipsec_out_zoneid; 22130 } 22131 } 22132 22133 first_mp = mp; 22134 ipsec_len = 0; 22135 22136 if (first_mp->b_datap->db_type == M_CTL) { 22137 io = (ipsec_out_t *)first_mp->b_rptr; 22138 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22139 mp = first_mp->b_cont; 22140 ipsec_len = ipsec_out_extra_length(first_mp); 22141 ASSERT(ipsec_len >= 0); 22142 /* We already picked up the zoneid from the M_CTL above */ 22143 ASSERT(zoneid == io->ipsec_out_zoneid); 22144 ASSERT(zoneid != ALL_ZONES); 22145 22146 /* 22147 * Drop M_CTL here if IPsec processing is not needed. 22148 * (Non-IPsec use of M_CTL extracted any information it 22149 * needed above). 22150 */ 22151 if (ipsec_len == 0) { 22152 freeb(first_mp); 22153 first_mp = mp; 22154 } 22155 } 22156 22157 /* 22158 * Fast path for ip_wput_ire 22159 */ 22160 22161 ipha = (ipha_t *)mp->b_rptr; 22162 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22163 dst = ipha->ipha_dst; 22164 22165 /* 22166 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22167 * if the socket is a SOCK_RAW type. The transport checksum should 22168 * be provided in the pre-built packet, so we don't need to compute it. 22169 * Also, other application set flags, like DF, should not be altered. 22170 * Other transport MUST pass down zero. 22171 */ 22172 ip_hdr_included = ipha->ipha_ident; 22173 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22174 22175 if (CLASSD(dst)) { 22176 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22177 ntohl(dst), 22178 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22179 ntohl(ire->ire_addr))); 22180 } 22181 22182 /* Macros to extract header fields from data already in registers */ 22183 #ifdef _BIG_ENDIAN 22184 #define V_HLEN (v_hlen_tos_len >> 24) 22185 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22186 #define PROTO (ttl_protocol & 0xFF) 22187 #else 22188 #define V_HLEN (v_hlen_tos_len & 0xFF) 22189 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22190 #define PROTO (ttl_protocol >> 8) 22191 #endif 22192 22193 orig_src = src = ipha->ipha_src; 22194 /* (The loop back to "another" is explained down below.) */ 22195 another:; 22196 /* 22197 * Assign an ident value for this packet. We assign idents on 22198 * a per destination basis out of the IRE. There could be 22199 * other threads targeting the same destination, so we have to 22200 * arrange for a atomic increment. Note that we use a 32-bit 22201 * atomic add because it has better performance than its 22202 * 16-bit sibling. 22203 * 22204 * If running in cluster mode and if the source address 22205 * belongs to a replicated service then vector through 22206 * cl_inet_ipident vector to allocate ip identifier 22207 * NOTE: This is a contract private interface with the 22208 * clustering group. 22209 */ 22210 clusterwide = 0; 22211 if (cl_inet_ipident) { 22212 ASSERT(cl_inet_isclusterwide); 22213 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22214 22215 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22216 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22217 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22218 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22219 (uint8_t *)(uintptr_t)dst, NULL); 22220 clusterwide = 1; 22221 } 22222 } 22223 if (!clusterwide) { 22224 ipha->ipha_ident = 22225 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22226 } 22227 22228 #ifndef _BIG_ENDIAN 22229 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22230 #endif 22231 22232 /* 22233 * Set source address unless sent on an ill or conn_unspec_src is set. 22234 * This is needed to obey conn_unspec_src when packets go through 22235 * ip_newroute + arp. 22236 * Assumes ip_newroute{,_multi} sets the source address as well. 22237 */ 22238 if (src == INADDR_ANY && !unspec_src) { 22239 /* 22240 * Assign the appropriate source address from the IRE if none 22241 * was specified. 22242 */ 22243 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22244 22245 src = ire->ire_src_addr; 22246 if (connp == NULL) { 22247 ip1dbg(("ip_wput_ire: no connp and no src " 22248 "address for dst 0x%x, using src 0x%x\n", 22249 ntohl(dst), 22250 ntohl(src))); 22251 } 22252 ipha->ipha_src = src; 22253 } 22254 stq = ire->ire_stq; 22255 22256 /* 22257 * We only allow ire chains for broadcasts since there will 22258 * be multiple IRE_CACHE entries for the same multicast 22259 * address (one per ipif). 22260 */ 22261 next_mp = NULL; 22262 22263 /* broadcast packet */ 22264 if (ire->ire_type == IRE_BROADCAST) 22265 goto broadcast; 22266 22267 /* loopback ? */ 22268 if (stq == NULL) 22269 goto nullstq; 22270 22271 /* The ill_index for outbound ILL */ 22272 ill_index = Q_TO_INDEX(stq); 22273 22274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22275 ttl_protocol = ((uint16_t *)ipha)[4]; 22276 22277 /* pseudo checksum (do it in parts for IP header checksum) */ 22278 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22279 22280 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22281 queue_t *dev_q = stq->q_next; 22282 22283 /* flow controlled */ 22284 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22285 goto blocked; 22286 22287 if ((PROTO == IPPROTO_UDP) && 22288 (ip_hdr_included != IP_HDR_INCLUDED)) { 22289 hlen = (V_HLEN & 0xF) << 2; 22290 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22291 if (*up != 0) { 22292 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22293 hlen, LENGTH, max_frag, ipsec_len, cksum); 22294 /* Software checksum? */ 22295 if (DB_CKSUMFLAGS(mp) == 0) { 22296 IP_STAT(ipst, ip_out_sw_cksum); 22297 IP_STAT_UPDATE(ipst, 22298 ip_udp_out_sw_cksum_bytes, 22299 LENGTH - hlen); 22300 } 22301 } 22302 } 22303 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22304 hlen = (V_HLEN & 0xF) << 2; 22305 if (PROTO == IPPROTO_TCP) { 22306 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22307 /* 22308 * The packet header is processed once and for all, even 22309 * in the multirouting case. We disable hardware 22310 * checksum if the packet is multirouted, as it will be 22311 * replicated via several interfaces, and not all of 22312 * them may have this capability. 22313 */ 22314 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22315 LENGTH, max_frag, ipsec_len, cksum); 22316 /* Software checksum? */ 22317 if (DB_CKSUMFLAGS(mp) == 0) { 22318 IP_STAT(ipst, ip_out_sw_cksum); 22319 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22320 LENGTH - hlen); 22321 } 22322 } else { 22323 sctp_hdr_t *sctph; 22324 22325 ASSERT(PROTO == IPPROTO_SCTP); 22326 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22327 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22328 /* 22329 * Zero out the checksum field to ensure proper 22330 * checksum calculation. 22331 */ 22332 sctph->sh_chksum = 0; 22333 #ifdef DEBUG 22334 if (!skip_sctp_cksum) 22335 #endif 22336 sctph->sh_chksum = sctp_cksum(mp, hlen); 22337 } 22338 } 22339 22340 /* 22341 * If this is a multicast packet and originated from ip_wput 22342 * we need to do loopback and forwarding checks. If it comes 22343 * from ip_wput_multicast, we SHOULD not do this. 22344 */ 22345 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22346 22347 /* checksum */ 22348 cksum += ttl_protocol; 22349 22350 /* fragment the packet */ 22351 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22352 goto fragmentit; 22353 /* 22354 * Don't use frag_flag if packet is pre-built or source 22355 * routed or if multicast (since multicast packets do 22356 * not solicit ICMP "packet too big" messages). 22357 */ 22358 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22359 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22360 !ip_source_route_included(ipha)) && 22361 !CLASSD(ipha->ipha_dst)) 22362 ipha->ipha_fragment_offset_and_flags |= 22363 htons(ire->ire_frag_flag); 22364 22365 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22366 /* calculate IP header checksum */ 22367 cksum += ipha->ipha_ident; 22368 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22369 cksum += ipha->ipha_fragment_offset_and_flags; 22370 22371 /* IP options present */ 22372 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22373 if (hlen) 22374 goto checksumoptions; 22375 22376 /* calculate hdr checksum */ 22377 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22378 cksum = ~(cksum + (cksum >> 16)); 22379 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22380 } 22381 if (ipsec_len != 0) { 22382 /* 22383 * We will do the rest of the processing after 22384 * we come back from IPsec in ip_wput_ipsec_out(). 22385 */ 22386 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22387 22388 io = (ipsec_out_t *)first_mp->b_rptr; 22389 io->ipsec_out_ill_index = 22390 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22391 ipsec_out_process(q, first_mp, ire, 0); 22392 ire_refrele(ire); 22393 if (conn_outgoing_ill != NULL) 22394 ill_refrele(conn_outgoing_ill); 22395 return; 22396 } 22397 22398 /* 22399 * In most cases, the emission loop below is entered only 22400 * once. Only in the case where the ire holds the 22401 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22402 * flagged ires in the bucket, and send the packet 22403 * through all crossed RTF_MULTIRT routes. 22404 */ 22405 if (ire->ire_flags & RTF_MULTIRT) { 22406 multirt_send = B_TRUE; 22407 } 22408 do { 22409 if (multirt_send) { 22410 irb_t *irb; 22411 /* 22412 * We are in a multiple send case, need to get 22413 * the next ire and make a duplicate of the packet. 22414 * ire1 holds here the next ire to process in the 22415 * bucket. If multirouting is expected, 22416 * any non-RTF_MULTIRT ire that has the 22417 * right destination address is ignored. 22418 */ 22419 irb = ire->ire_bucket; 22420 ASSERT(irb != NULL); 22421 22422 IRB_REFHOLD(irb); 22423 for (ire1 = ire->ire_next; 22424 ire1 != NULL; 22425 ire1 = ire1->ire_next) { 22426 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22427 continue; 22428 if (ire1->ire_addr != ire->ire_addr) 22429 continue; 22430 if (ire1->ire_marks & 22431 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22432 continue; 22433 22434 /* Got one */ 22435 IRE_REFHOLD(ire1); 22436 break; 22437 } 22438 IRB_REFRELE(irb); 22439 22440 if (ire1 != NULL) { 22441 next_mp = copyb(mp); 22442 if ((next_mp == NULL) || 22443 ((mp->b_cont != NULL) && 22444 ((next_mp->b_cont = 22445 dupmsg(mp->b_cont)) == NULL))) { 22446 freemsg(next_mp); 22447 next_mp = NULL; 22448 ire_refrele(ire1); 22449 ire1 = NULL; 22450 } 22451 } 22452 22453 /* Last multiroute ire; don't loop anymore. */ 22454 if (ire1 == NULL) { 22455 multirt_send = B_FALSE; 22456 } 22457 } 22458 22459 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22460 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22461 mblk_t *, mp); 22462 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22463 ipst->ips_ipv4firewall_physical_out, 22464 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22465 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22466 22467 if (mp == NULL) 22468 goto release_ire_and_ill; 22469 22470 if (ipst->ips_ipobs_enabled) { 22471 zoneid_t szone; 22472 22473 /* 22474 * On the outbound path the destination zone will be 22475 * unknown as we're sending this packet out on the 22476 * wire. 22477 */ 22478 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22479 ALL_ZONES); 22480 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22481 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22482 } 22483 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22484 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22485 22486 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22487 22488 if ((pktxmit_state == SEND_FAILED) || 22489 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22490 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22491 "- packet dropped\n")); 22492 release_ire_and_ill: 22493 ire_refrele(ire); 22494 if (next_mp != NULL) { 22495 freemsg(next_mp); 22496 ire_refrele(ire1); 22497 } 22498 if (conn_outgoing_ill != NULL) 22499 ill_refrele(conn_outgoing_ill); 22500 return; 22501 } 22502 22503 if (CLASSD(dst)) { 22504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22505 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22506 LENGTH); 22507 } 22508 22509 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22510 "ip_wput_ire_end: q %p (%S)", 22511 q, "last copy out"); 22512 IRE_REFRELE(ire); 22513 22514 if (multirt_send) { 22515 ASSERT(ire1); 22516 /* 22517 * Proceed with the next RTF_MULTIRT ire, 22518 * Also set up the send-to queue accordingly. 22519 */ 22520 ire = ire1; 22521 ire1 = NULL; 22522 stq = ire->ire_stq; 22523 mp = next_mp; 22524 next_mp = NULL; 22525 ipha = (ipha_t *)mp->b_rptr; 22526 ill_index = Q_TO_INDEX(stq); 22527 ill = (ill_t *)stq->q_ptr; 22528 } 22529 } while (multirt_send); 22530 if (conn_outgoing_ill != NULL) 22531 ill_refrele(conn_outgoing_ill); 22532 return; 22533 22534 /* 22535 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22536 */ 22537 broadcast: 22538 { 22539 /* 22540 * To avoid broadcast storms, we usually set the TTL to 1 for 22541 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22542 * can be overridden stack-wide through the ip_broadcast_ttl 22543 * ndd tunable, or on a per-connection basis through the 22544 * IP_BROADCAST_TTL socket option. 22545 * 22546 * In the event that we are replying to incoming ICMP packets, 22547 * connp could be NULL. 22548 */ 22549 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22550 if (connp != NULL) { 22551 if (connp->conn_dontroute) 22552 ipha->ipha_ttl = 1; 22553 else if (connp->conn_broadcast_ttl != 0) 22554 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22555 } 22556 22557 /* 22558 * Note that we are not doing a IRB_REFHOLD here. 22559 * Actually we don't care if the list changes i.e 22560 * if somebody deletes an IRE from the list while 22561 * we drop the lock, the next time we come around 22562 * ire_next will be NULL and hence we won't send 22563 * out multiple copies which is fine. 22564 */ 22565 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22566 ire1 = ire->ire_next; 22567 if (conn_outgoing_ill != NULL) { 22568 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22569 ASSERT(ire1 == ire->ire_next); 22570 if (ire1 != NULL && ire1->ire_addr == dst) { 22571 ire_refrele(ire); 22572 ire = ire1; 22573 IRE_REFHOLD(ire); 22574 ire1 = ire->ire_next; 22575 continue; 22576 } 22577 rw_exit(&ire->ire_bucket->irb_lock); 22578 /* Did not find a matching ill */ 22579 ip1dbg(("ip_wput_ire: broadcast with no " 22580 "matching IP_BOUND_IF ill %s dst %x\n", 22581 conn_outgoing_ill->ill_name, dst)); 22582 freemsg(first_mp); 22583 if (ire != NULL) 22584 ire_refrele(ire); 22585 ill_refrele(conn_outgoing_ill); 22586 return; 22587 } 22588 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22589 /* 22590 * If the next IRE has the same address and is not one 22591 * of the two copies that we need to send, try to see 22592 * whether this copy should be sent at all. This 22593 * assumes that we insert loopbacks first and then 22594 * non-loopbacks. This is acheived by inserting the 22595 * loopback always before non-loopback. 22596 * This is used to send a single copy of a broadcast 22597 * packet out all physical interfaces that have an 22598 * matching IRE_BROADCAST while also looping 22599 * back one copy (to ip_wput_local) for each 22600 * matching physical interface. However, we avoid 22601 * sending packets out different logical that match by 22602 * having ipif_up/ipif_down supress duplicate 22603 * IRE_BROADCASTS. 22604 * 22605 * This feature is currently used to get broadcasts 22606 * sent to multiple interfaces, when the broadcast 22607 * address being used applies to multiple interfaces. 22608 * For example, a whole net broadcast will be 22609 * replicated on every connected subnet of 22610 * the target net. 22611 * 22612 * Each zone has its own set of IRE_BROADCASTs, so that 22613 * we're able to distribute inbound packets to multiple 22614 * zones who share a broadcast address. We avoid looping 22615 * back outbound packets in different zones but on the 22616 * same ill, as the application would see duplicates. 22617 * 22618 * This logic assumes that ire_add_v4() groups the 22619 * IRE_BROADCAST entries so that those with the same 22620 * ire_addr are kept together. 22621 */ 22622 ire_ill = ire->ire_ipif->ipif_ill; 22623 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22624 while (ire1 != NULL && ire1->ire_addr == dst) { 22625 ire1_ill = ire1->ire_ipif->ipif_ill; 22626 if (ire1_ill != ire_ill) 22627 break; 22628 ire1 = ire1->ire_next; 22629 } 22630 } 22631 } 22632 ASSERT(multirt_send == B_FALSE); 22633 if (ire1 != NULL && ire1->ire_addr == dst) { 22634 if ((ire->ire_flags & RTF_MULTIRT) && 22635 (ire1->ire_flags & RTF_MULTIRT)) { 22636 /* 22637 * We are in the multirouting case. 22638 * The message must be sent at least 22639 * on both ires. These ires have been 22640 * inserted AFTER the standard ones 22641 * in ip_rt_add(). There are thus no 22642 * other ire entries for the destination 22643 * address in the rest of the bucket 22644 * that do not have the RTF_MULTIRT 22645 * flag. We don't process a copy 22646 * of the message here. This will be 22647 * done in the final sending loop. 22648 */ 22649 multirt_send = B_TRUE; 22650 } else { 22651 next_mp = ip_copymsg(first_mp); 22652 if (next_mp != NULL) 22653 IRE_REFHOLD(ire1); 22654 } 22655 } 22656 rw_exit(&ire->ire_bucket->irb_lock); 22657 } 22658 22659 if (stq) { 22660 /* 22661 * A non-NULL send-to queue means this packet is going 22662 * out of this machine. 22663 */ 22664 out_ill = (ill_t *)stq->q_ptr; 22665 22666 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22667 ttl_protocol = ((uint16_t *)ipha)[4]; 22668 /* 22669 * We accumulate the pseudo header checksum in cksum. 22670 * This is pretty hairy code, so watch close. One 22671 * thing to keep in mind is that UDP and TCP have 22672 * stored their respective datagram lengths in their 22673 * checksum fields. This lines things up real nice. 22674 */ 22675 cksum = (dst >> 16) + (dst & 0xFFFF) + 22676 (src >> 16) + (src & 0xFFFF); 22677 /* 22678 * We assume the udp checksum field contains the 22679 * length, so to compute the pseudo header checksum, 22680 * all we need is the protocol number and src/dst. 22681 */ 22682 /* Provide the checksums for UDP and TCP. */ 22683 if ((PROTO == IPPROTO_TCP) && 22684 (ip_hdr_included != IP_HDR_INCLUDED)) { 22685 /* hlen gets the number of uchar_ts in the IP header */ 22686 hlen = (V_HLEN & 0xF) << 2; 22687 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22688 IP_STAT(ipst, ip_out_sw_cksum); 22689 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22690 LENGTH - hlen); 22691 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22692 } else if (PROTO == IPPROTO_SCTP && 22693 (ip_hdr_included != IP_HDR_INCLUDED)) { 22694 sctp_hdr_t *sctph; 22695 22696 hlen = (V_HLEN & 0xF) << 2; 22697 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22698 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22699 sctph->sh_chksum = 0; 22700 #ifdef DEBUG 22701 if (!skip_sctp_cksum) 22702 #endif 22703 sctph->sh_chksum = sctp_cksum(mp, hlen); 22704 } else { 22705 queue_t *dev_q = stq->q_next; 22706 22707 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 22708 blocked: 22709 ipha->ipha_ident = ip_hdr_included; 22710 /* 22711 * If we don't have a conn to apply 22712 * backpressure, free the message. 22713 * In the ire_send path, we don't know 22714 * the position to requeue the packet. Rather 22715 * than reorder packets, we just drop this 22716 * packet. 22717 */ 22718 if (ipst->ips_ip_output_queue && 22719 connp != NULL && 22720 caller != IRE_SEND) { 22721 if (caller == IP_WSRV) { 22722 connp->conn_did_putbq = 1; 22723 (void) putbq(connp->conn_wq, 22724 first_mp); 22725 conn_drain_insert(connp); 22726 /* 22727 * This is the service thread, 22728 * and the queue is already 22729 * noenabled. The check for 22730 * canput and the putbq is not 22731 * atomic. So we need to check 22732 * again. 22733 */ 22734 if (canput(stq->q_next)) 22735 connp->conn_did_putbq 22736 = 0; 22737 IP_STAT(ipst, ip_conn_flputbq); 22738 } else { 22739 /* 22740 * We are not the service proc. 22741 * ip_wsrv will be scheduled or 22742 * is already running. 22743 */ 22744 22745 (void) putq(connp->conn_wq, 22746 first_mp); 22747 } 22748 } else { 22749 out_ill = (ill_t *)stq->q_ptr; 22750 BUMP_MIB(out_ill->ill_ip_mib, 22751 ipIfStatsOutDiscards); 22752 freemsg(first_mp); 22753 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22754 "ip_wput_ire_end: q %p (%S)", 22755 q, "discard"); 22756 } 22757 ire_refrele(ire); 22758 if (next_mp) { 22759 ire_refrele(ire1); 22760 freemsg(next_mp); 22761 } 22762 if (conn_outgoing_ill != NULL) 22763 ill_refrele(conn_outgoing_ill); 22764 return; 22765 } 22766 if ((PROTO == IPPROTO_UDP) && 22767 (ip_hdr_included != IP_HDR_INCLUDED)) { 22768 /* 22769 * hlen gets the number of uchar_ts in the 22770 * IP header 22771 */ 22772 hlen = (V_HLEN & 0xF) << 2; 22773 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22774 max_frag = ire->ire_max_frag; 22775 if (*up != 0) { 22776 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22777 up, PROTO, hlen, LENGTH, max_frag, 22778 ipsec_len, cksum); 22779 /* Software checksum? */ 22780 if (DB_CKSUMFLAGS(mp) == 0) { 22781 IP_STAT(ipst, ip_out_sw_cksum); 22782 IP_STAT_UPDATE(ipst, 22783 ip_udp_out_sw_cksum_bytes, 22784 LENGTH - hlen); 22785 } 22786 } 22787 } 22788 } 22789 /* 22790 * Need to do this even when fragmenting. The local 22791 * loopback can be done without computing checksums 22792 * but forwarding out other interface must be done 22793 * after the IP checksum (and ULP checksums) have been 22794 * computed. 22795 * 22796 * NOTE : multicast_forward is set only if this packet 22797 * originated from ip_wput. For packets originating from 22798 * ip_wput_multicast, it is not set. 22799 */ 22800 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22801 multi_loopback: 22802 ip2dbg(("ip_wput: multicast, loop %d\n", 22803 conn_multicast_loop)); 22804 22805 /* Forget header checksum offload */ 22806 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22807 22808 /* 22809 * Local loopback of multicasts? Check the 22810 * ill. 22811 * 22812 * Note that the loopback function will not come 22813 * in through ip_rput - it will only do the 22814 * client fanout thus we need to do an mforward 22815 * as well. The is different from the BSD 22816 * logic. 22817 */ 22818 if (ill != NULL) { 22819 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22820 ALL_ZONES) != NULL) { 22821 /* 22822 * Pass along the virtual output q. 22823 * ip_wput_local() will distribute the 22824 * packet to all the matching zones, 22825 * except the sending zone when 22826 * IP_MULTICAST_LOOP is false. 22827 */ 22828 ip_multicast_loopback(q, ill, first_mp, 22829 conn_multicast_loop ? 0 : 22830 IP_FF_NO_MCAST_LOOP, zoneid); 22831 } 22832 } 22833 if (ipha->ipha_ttl == 0) { 22834 /* 22835 * 0 => only to this host i.e. we are 22836 * done. We are also done if this was the 22837 * loopback interface since it is sufficient 22838 * to loopback one copy of a multicast packet. 22839 */ 22840 freemsg(first_mp); 22841 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22842 "ip_wput_ire_end: q %p (%S)", 22843 q, "loopback"); 22844 ire_refrele(ire); 22845 if (conn_outgoing_ill != NULL) 22846 ill_refrele(conn_outgoing_ill); 22847 return; 22848 } 22849 /* 22850 * ILLF_MULTICAST is checked in ip_newroute 22851 * i.e. we don't need to check it here since 22852 * all IRE_CACHEs come from ip_newroute. 22853 * For multicast traffic, SO_DONTROUTE is interpreted 22854 * to mean only send the packet out the interface 22855 * (optionally specified with IP_MULTICAST_IF) 22856 * and do not forward it out additional interfaces. 22857 * RSVP and the rsvp daemon is an example of a 22858 * protocol and user level process that 22859 * handles it's own routing. Hence, it uses the 22860 * SO_DONTROUTE option to accomplish this. 22861 */ 22862 22863 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22864 ill != NULL) { 22865 /* Unconditionally redo the checksum */ 22866 ipha->ipha_hdr_checksum = 0; 22867 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22868 22869 /* 22870 * If this needs to go out secure, we need 22871 * to wait till we finish the IPsec 22872 * processing. 22873 */ 22874 if (ipsec_len == 0 && 22875 ip_mforward(ill, ipha, mp)) { 22876 freemsg(first_mp); 22877 ip1dbg(("ip_wput: mforward failed\n")); 22878 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22879 "ip_wput_ire_end: q %p (%S)", 22880 q, "mforward failed"); 22881 ire_refrele(ire); 22882 if (conn_outgoing_ill != NULL) 22883 ill_refrele(conn_outgoing_ill); 22884 return; 22885 } 22886 } 22887 } 22888 max_frag = ire->ire_max_frag; 22889 cksum += ttl_protocol; 22890 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22891 /* No fragmentation required for this one. */ 22892 /* 22893 * Don't use frag_flag if packet is pre-built or source 22894 * routed or if multicast (since multicast packets do 22895 * not solicit ICMP "packet too big" messages). 22896 */ 22897 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22898 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22899 !ip_source_route_included(ipha)) && 22900 !CLASSD(ipha->ipha_dst)) 22901 ipha->ipha_fragment_offset_and_flags |= 22902 htons(ire->ire_frag_flag); 22903 22904 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22905 /* Complete the IP header checksum. */ 22906 cksum += ipha->ipha_ident; 22907 cksum += (v_hlen_tos_len >> 16)+ 22908 (v_hlen_tos_len & 0xFFFF); 22909 cksum += ipha->ipha_fragment_offset_and_flags; 22910 hlen = (V_HLEN & 0xF) - 22911 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22912 if (hlen) { 22913 checksumoptions: 22914 /* 22915 * Account for the IP Options in the IP 22916 * header checksum. 22917 */ 22918 up = (uint16_t *)(rptr+ 22919 IP_SIMPLE_HDR_LENGTH); 22920 do { 22921 cksum += up[0]; 22922 cksum += up[1]; 22923 up += 2; 22924 } while (--hlen); 22925 } 22926 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22927 cksum = ~(cksum + (cksum >> 16)); 22928 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22929 } 22930 if (ipsec_len != 0) { 22931 ipsec_out_process(q, first_mp, ire, ill_index); 22932 if (!next_mp) { 22933 ire_refrele(ire); 22934 if (conn_outgoing_ill != NULL) 22935 ill_refrele(conn_outgoing_ill); 22936 return; 22937 } 22938 goto next; 22939 } 22940 22941 /* 22942 * multirt_send has already been handled 22943 * for broadcast, but not yet for multicast 22944 * or IP options. 22945 */ 22946 if (next_mp == NULL) { 22947 if (ire->ire_flags & RTF_MULTIRT) { 22948 multirt_send = B_TRUE; 22949 } 22950 } 22951 22952 /* 22953 * In most cases, the emission loop below is 22954 * entered only once. Only in the case where 22955 * the ire holds the RTF_MULTIRT flag, do we loop 22956 * to process all RTF_MULTIRT ires in the bucket, 22957 * and send the packet through all crossed 22958 * RTF_MULTIRT routes. 22959 */ 22960 do { 22961 if (multirt_send) { 22962 irb_t *irb; 22963 22964 irb = ire->ire_bucket; 22965 ASSERT(irb != NULL); 22966 /* 22967 * We are in a multiple send case, 22968 * need to get the next IRE and make 22969 * a duplicate of the packet. 22970 */ 22971 IRB_REFHOLD(irb); 22972 for (ire1 = ire->ire_next; 22973 ire1 != NULL; 22974 ire1 = ire1->ire_next) { 22975 if (!(ire1->ire_flags & 22976 RTF_MULTIRT)) 22977 continue; 22978 22979 if (ire1->ire_addr != 22980 ire->ire_addr) 22981 continue; 22982 22983 if (ire1->ire_marks & 22984 (IRE_MARK_CONDEMNED | 22985 IRE_MARK_TESTHIDDEN)) 22986 continue; 22987 22988 /* Got one */ 22989 IRE_REFHOLD(ire1); 22990 break; 22991 } 22992 IRB_REFRELE(irb); 22993 22994 if (ire1 != NULL) { 22995 next_mp = copyb(mp); 22996 if ((next_mp == NULL) || 22997 ((mp->b_cont != NULL) && 22998 ((next_mp->b_cont = 22999 dupmsg(mp->b_cont)) 23000 == NULL))) { 23001 freemsg(next_mp); 23002 next_mp = NULL; 23003 ire_refrele(ire1); 23004 ire1 = NULL; 23005 } 23006 } 23007 23008 /* 23009 * Last multiroute ire; don't loop 23010 * anymore. The emission is over 23011 * and next_mp is NULL. 23012 */ 23013 if (ire1 == NULL) { 23014 multirt_send = B_FALSE; 23015 } 23016 } 23017 23018 out_ill = ire_to_ill(ire); 23019 DTRACE_PROBE4(ip4__physical__out__start, 23020 ill_t *, NULL, 23021 ill_t *, out_ill, 23022 ipha_t *, ipha, mblk_t *, mp); 23023 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23024 ipst->ips_ipv4firewall_physical_out, 23025 NULL, out_ill, ipha, mp, mp, 0, ipst); 23026 DTRACE_PROBE1(ip4__physical__out__end, 23027 mblk_t *, mp); 23028 if (mp == NULL) 23029 goto release_ire_and_ill_2; 23030 23031 ASSERT(ipsec_len == 0); 23032 mp->b_prev = 23033 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23034 DTRACE_PROBE2(ip__xmit__2, 23035 mblk_t *, mp, ire_t *, ire); 23036 pktxmit_state = ip_xmit_v4(mp, ire, 23037 NULL, B_TRUE, connp); 23038 if ((pktxmit_state == SEND_FAILED) || 23039 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23040 release_ire_and_ill_2: 23041 if (next_mp) { 23042 freemsg(next_mp); 23043 ire_refrele(ire1); 23044 } 23045 ire_refrele(ire); 23046 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23047 "ip_wput_ire_end: q %p (%S)", 23048 q, "discard MDATA"); 23049 if (conn_outgoing_ill != NULL) 23050 ill_refrele(conn_outgoing_ill); 23051 return; 23052 } 23053 23054 if (CLASSD(dst)) { 23055 BUMP_MIB(out_ill->ill_ip_mib, 23056 ipIfStatsHCOutMcastPkts); 23057 UPDATE_MIB(out_ill->ill_ip_mib, 23058 ipIfStatsHCOutMcastOctets, 23059 LENGTH); 23060 } else if (ire->ire_type == IRE_BROADCAST) { 23061 BUMP_MIB(out_ill->ill_ip_mib, 23062 ipIfStatsHCOutBcastPkts); 23063 } 23064 23065 if (multirt_send) { 23066 /* 23067 * We are in a multiple send case, 23068 * need to re-enter the sending loop 23069 * using the next ire. 23070 */ 23071 ire_refrele(ire); 23072 ire = ire1; 23073 stq = ire->ire_stq; 23074 mp = next_mp; 23075 next_mp = NULL; 23076 ipha = (ipha_t *)mp->b_rptr; 23077 ill_index = Q_TO_INDEX(stq); 23078 } 23079 } while (multirt_send); 23080 23081 if (!next_mp) { 23082 /* 23083 * Last copy going out (the ultra-common 23084 * case). Note that we intentionally replicate 23085 * the putnext rather than calling it before 23086 * the next_mp check in hopes of a little 23087 * tail-call action out of the compiler. 23088 */ 23089 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23090 "ip_wput_ire_end: q %p (%S)", 23091 q, "last copy out(1)"); 23092 ire_refrele(ire); 23093 if (conn_outgoing_ill != NULL) 23094 ill_refrele(conn_outgoing_ill); 23095 return; 23096 } 23097 /* More copies going out below. */ 23098 } else { 23099 int offset; 23100 fragmentit: 23101 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23102 /* 23103 * If this would generate a icmp_frag_needed message, 23104 * we need to handle it before we do the IPsec 23105 * processing. Otherwise, we need to strip the IPsec 23106 * headers before we send up the message to the ULPs 23107 * which becomes messy and difficult. 23108 */ 23109 if (ipsec_len != 0) { 23110 if ((max_frag < (unsigned int)(LENGTH + 23111 ipsec_len)) && (offset & IPH_DF)) { 23112 out_ill = (ill_t *)stq->q_ptr; 23113 BUMP_MIB(out_ill->ill_ip_mib, 23114 ipIfStatsOutFragFails); 23115 BUMP_MIB(out_ill->ill_ip_mib, 23116 ipIfStatsOutFragReqds); 23117 ipha->ipha_hdr_checksum = 0; 23118 ipha->ipha_hdr_checksum = 23119 (uint16_t)ip_csum_hdr(ipha); 23120 icmp_frag_needed(ire->ire_stq, first_mp, 23121 max_frag, zoneid, ipst); 23122 if (!next_mp) { 23123 ire_refrele(ire); 23124 if (conn_outgoing_ill != NULL) { 23125 ill_refrele( 23126 conn_outgoing_ill); 23127 } 23128 return; 23129 } 23130 } else { 23131 /* 23132 * This won't cause a icmp_frag_needed 23133 * message. to be generated. Send it on 23134 * the wire. Note that this could still 23135 * cause fragmentation and all we 23136 * do is the generation of the message 23137 * to the ULP if needed before IPsec. 23138 */ 23139 if (!next_mp) { 23140 ipsec_out_process(q, first_mp, 23141 ire, ill_index); 23142 TRACE_2(TR_FAC_IP, 23143 TR_IP_WPUT_IRE_END, 23144 "ip_wput_ire_end: q %p " 23145 "(%S)", q, 23146 "last ipsec_out_process"); 23147 ire_refrele(ire); 23148 if (conn_outgoing_ill != NULL) { 23149 ill_refrele( 23150 conn_outgoing_ill); 23151 } 23152 return; 23153 } 23154 ipsec_out_process(q, first_mp, 23155 ire, ill_index); 23156 } 23157 } else { 23158 /* 23159 * Initiate IPPF processing. For 23160 * fragmentable packets we finish 23161 * all QOS packet processing before 23162 * calling: 23163 * ip_wput_ire_fragmentit->ip_wput_frag 23164 */ 23165 23166 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23167 ip_process(IPP_LOCAL_OUT, &mp, 23168 ill_index); 23169 if (mp == NULL) { 23170 out_ill = (ill_t *)stq->q_ptr; 23171 BUMP_MIB(out_ill->ill_ip_mib, 23172 ipIfStatsOutDiscards); 23173 if (next_mp != NULL) { 23174 freemsg(next_mp); 23175 ire_refrele(ire1); 23176 } 23177 ire_refrele(ire); 23178 TRACE_2(TR_FAC_IP, 23179 TR_IP_WPUT_IRE_END, 23180 "ip_wput_ire: q %p (%S)", 23181 q, "discard MDATA"); 23182 if (conn_outgoing_ill != NULL) { 23183 ill_refrele( 23184 conn_outgoing_ill); 23185 } 23186 return; 23187 } 23188 } 23189 if (!next_mp) { 23190 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23191 "ip_wput_ire_end: q %p (%S)", 23192 q, "last fragmentation"); 23193 ip_wput_ire_fragmentit(mp, ire, 23194 zoneid, ipst, connp); 23195 ire_refrele(ire); 23196 if (conn_outgoing_ill != NULL) 23197 ill_refrele(conn_outgoing_ill); 23198 return; 23199 } 23200 ip_wput_ire_fragmentit(mp, ire, 23201 zoneid, ipst, connp); 23202 } 23203 } 23204 } else { 23205 nullstq: 23206 /* A NULL stq means the destination address is local. */ 23207 UPDATE_OB_PKT_COUNT(ire); 23208 ire->ire_last_used_time = lbolt; 23209 ASSERT(ire->ire_ipif != NULL); 23210 if (!next_mp) { 23211 /* 23212 * Is there an "in" and "out" for traffic local 23213 * to a host (loopback)? The code in Solaris doesn't 23214 * explicitly draw a line in its code for in vs out, 23215 * so we've had to draw a line in the sand: ip_wput_ire 23216 * is considered to be the "output" side and 23217 * ip_wput_local to be the "input" side. 23218 */ 23219 out_ill = ire_to_ill(ire); 23220 23221 /* 23222 * DTrace this as ip:::send. A blocked packet will 23223 * fire the send probe, but not the receive probe. 23224 */ 23225 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23226 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23227 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23228 23229 DTRACE_PROBE4(ip4__loopback__out__start, 23230 ill_t *, NULL, ill_t *, out_ill, 23231 ipha_t *, ipha, mblk_t *, first_mp); 23232 23233 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23234 ipst->ips_ipv4firewall_loopback_out, 23235 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23236 23237 DTRACE_PROBE1(ip4__loopback__out_end, 23238 mblk_t *, first_mp); 23239 23240 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23241 "ip_wput_ire_end: q %p (%S)", 23242 q, "local address"); 23243 23244 if (first_mp != NULL) 23245 ip_wput_local(q, out_ill, ipha, 23246 first_mp, ire, 0, ire->ire_zoneid); 23247 ire_refrele(ire); 23248 if (conn_outgoing_ill != NULL) 23249 ill_refrele(conn_outgoing_ill); 23250 return; 23251 } 23252 23253 out_ill = ire_to_ill(ire); 23254 23255 /* 23256 * DTrace this as ip:::send. A blocked packet will fire the 23257 * send probe, but not the receive probe. 23258 */ 23259 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23260 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23261 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23262 23263 DTRACE_PROBE4(ip4__loopback__out__start, 23264 ill_t *, NULL, ill_t *, out_ill, 23265 ipha_t *, ipha, mblk_t *, first_mp); 23266 23267 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23268 ipst->ips_ipv4firewall_loopback_out, 23269 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23270 23271 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23272 23273 if (first_mp != NULL) 23274 ip_wput_local(q, out_ill, ipha, 23275 first_mp, ire, 0, ire->ire_zoneid); 23276 } 23277 next: 23278 /* 23279 * More copies going out to additional interfaces. 23280 * ire1 has already been held. We don't need the 23281 * "ire" anymore. 23282 */ 23283 ire_refrele(ire); 23284 ire = ire1; 23285 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23286 mp = next_mp; 23287 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23288 ill = ire_to_ill(ire); 23289 first_mp = mp; 23290 if (ipsec_len != 0) { 23291 ASSERT(first_mp->b_datap->db_type == M_CTL); 23292 mp = mp->b_cont; 23293 } 23294 dst = ire->ire_addr; 23295 ipha = (ipha_t *)mp->b_rptr; 23296 /* 23297 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23298 * Restore ipha_ident "no checksum" flag. 23299 */ 23300 src = orig_src; 23301 ipha->ipha_ident = ip_hdr_included; 23302 goto another; 23303 23304 #undef rptr 23305 #undef Q_TO_INDEX 23306 } 23307 23308 /* 23309 * Routine to allocate a message that is used to notify the ULP about MDT. 23310 * The caller may provide a pointer to the link-layer MDT capabilities, 23311 * or NULL if MDT is to be disabled on the stream. 23312 */ 23313 mblk_t * 23314 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23315 { 23316 mblk_t *mp; 23317 ip_mdt_info_t *mdti; 23318 ill_mdt_capab_t *idst; 23319 23320 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23321 DB_TYPE(mp) = M_CTL; 23322 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23323 mdti = (ip_mdt_info_t *)mp->b_rptr; 23324 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23325 idst = &(mdti->mdt_capab); 23326 23327 /* 23328 * If the caller provides us with the capability, copy 23329 * it over into our notification message; otherwise 23330 * we zero out the capability portion. 23331 */ 23332 if (isrc != NULL) 23333 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23334 else 23335 bzero((caddr_t)idst, sizeof (*idst)); 23336 } 23337 return (mp); 23338 } 23339 23340 /* 23341 * Routine which determines whether MDT can be enabled on the destination 23342 * IRE and IPC combination, and if so, allocates and returns the MDT 23343 * notification mblk that may be used by ULP. We also check if we need to 23344 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23345 * MDT usage in the past have been lifted. This gets called during IP 23346 * and ULP binding. 23347 */ 23348 mblk_t * 23349 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23350 ill_mdt_capab_t *mdt_cap) 23351 { 23352 mblk_t *mp; 23353 boolean_t rc = B_FALSE; 23354 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23355 23356 ASSERT(dst_ire != NULL); 23357 ASSERT(connp != NULL); 23358 ASSERT(mdt_cap != NULL); 23359 23360 /* 23361 * Currently, we only support simple TCP/{IPv4,IPv6} with 23362 * Multidata, which is handled in tcp_multisend(). This 23363 * is the reason why we do all these checks here, to ensure 23364 * that we don't enable Multidata for the cases which we 23365 * can't handle at the moment. 23366 */ 23367 do { 23368 /* Only do TCP at the moment */ 23369 if (connp->conn_ulp != IPPROTO_TCP) 23370 break; 23371 23372 /* 23373 * IPsec outbound policy present? Note that we get here 23374 * after calling ipsec_conn_cache_policy() where the global 23375 * policy checking is performed. conn_latch will be 23376 * non-NULL as long as there's a policy defined, 23377 * i.e. conn_out_enforce_policy may be NULL in such case 23378 * when the connection is non-secure, and hence we check 23379 * further if the latch refers to an outbound policy. 23380 */ 23381 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23382 break; 23383 23384 /* CGTP (multiroute) is enabled? */ 23385 if (dst_ire->ire_flags & RTF_MULTIRT) 23386 break; 23387 23388 /* Outbound IPQoS enabled? */ 23389 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23390 /* 23391 * In this case, we disable MDT for this and all 23392 * future connections going over the interface. 23393 */ 23394 mdt_cap->ill_mdt_on = 0; 23395 break; 23396 } 23397 23398 /* socket option(s) present? */ 23399 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23400 break; 23401 23402 rc = B_TRUE; 23403 /* CONSTCOND */ 23404 } while (0); 23405 23406 /* Remember the result */ 23407 connp->conn_mdt_ok = rc; 23408 23409 if (!rc) 23410 return (NULL); 23411 else if (!mdt_cap->ill_mdt_on) { 23412 /* 23413 * If MDT has been previously turned off in the past, and we 23414 * currently can do MDT (due to IPQoS policy removal, etc.) 23415 * then enable it for this interface. 23416 */ 23417 mdt_cap->ill_mdt_on = 1; 23418 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23419 "interface %s\n", ill_name)); 23420 } 23421 23422 /* Allocate the MDT info mblk */ 23423 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23424 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23425 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23426 return (NULL); 23427 } 23428 return (mp); 23429 } 23430 23431 /* 23432 * Routine to allocate a message that is used to notify the ULP about LSO. 23433 * The caller may provide a pointer to the link-layer LSO capabilities, 23434 * or NULL if LSO is to be disabled on the stream. 23435 */ 23436 mblk_t * 23437 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23438 { 23439 mblk_t *mp; 23440 ip_lso_info_t *lsoi; 23441 ill_lso_capab_t *idst; 23442 23443 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23444 DB_TYPE(mp) = M_CTL; 23445 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23446 lsoi = (ip_lso_info_t *)mp->b_rptr; 23447 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23448 idst = &(lsoi->lso_capab); 23449 23450 /* 23451 * If the caller provides us with the capability, copy 23452 * it over into our notification message; otherwise 23453 * we zero out the capability portion. 23454 */ 23455 if (isrc != NULL) 23456 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23457 else 23458 bzero((caddr_t)idst, sizeof (*idst)); 23459 } 23460 return (mp); 23461 } 23462 23463 /* 23464 * Routine which determines whether LSO can be enabled on the destination 23465 * IRE and IPC combination, and if so, allocates and returns the LSO 23466 * notification mblk that may be used by ULP. We also check if we need to 23467 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23468 * LSO usage in the past have been lifted. This gets called during IP 23469 * and ULP binding. 23470 */ 23471 mblk_t * 23472 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23473 ill_lso_capab_t *lso_cap) 23474 { 23475 mblk_t *mp; 23476 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23477 23478 ASSERT(dst_ire != NULL); 23479 ASSERT(connp != NULL); 23480 ASSERT(lso_cap != NULL); 23481 23482 connp->conn_lso_ok = B_TRUE; 23483 23484 if ((connp->conn_ulp != IPPROTO_TCP) || 23485 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23486 (dst_ire->ire_flags & RTF_MULTIRT) || 23487 !CONN_IS_LSO_MD_FASTPATH(connp) || 23488 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23489 connp->conn_lso_ok = B_FALSE; 23490 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23491 /* 23492 * Disable LSO for this and all future connections going 23493 * over the interface. 23494 */ 23495 lso_cap->ill_lso_on = 0; 23496 } 23497 } 23498 23499 if (!connp->conn_lso_ok) 23500 return (NULL); 23501 else if (!lso_cap->ill_lso_on) { 23502 /* 23503 * If LSO has been previously turned off in the past, and we 23504 * currently can do LSO (due to IPQoS policy removal, etc.) 23505 * then enable it for this interface. 23506 */ 23507 lso_cap->ill_lso_on = 1; 23508 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23509 ill_name)); 23510 } 23511 23512 /* Allocate the LSO info mblk */ 23513 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23514 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23515 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23516 23517 return (mp); 23518 } 23519 23520 /* 23521 * Create destination address attribute, and fill it with the physical 23522 * destination address and SAP taken from the template DL_UNITDATA_REQ 23523 * message block. 23524 */ 23525 boolean_t 23526 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23527 { 23528 dl_unitdata_req_t *dlurp; 23529 pattr_t *pa; 23530 pattrinfo_t pa_info; 23531 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23532 uint_t das_len, das_off; 23533 23534 ASSERT(dlmp != NULL); 23535 23536 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23537 das_len = dlurp->dl_dest_addr_length; 23538 das_off = dlurp->dl_dest_addr_offset; 23539 23540 pa_info.type = PATTR_DSTADDRSAP; 23541 pa_info.len = sizeof (**das) + das_len - 1; 23542 23543 /* create and associate the attribute */ 23544 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23545 if (pa != NULL) { 23546 ASSERT(*das != NULL); 23547 (*das)->addr_is_group = 0; 23548 (*das)->addr_len = (uint8_t)das_len; 23549 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23550 } 23551 23552 return (pa != NULL); 23553 } 23554 23555 /* 23556 * Create hardware checksum attribute and fill it with the values passed. 23557 */ 23558 boolean_t 23559 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23560 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23561 { 23562 pattr_t *pa; 23563 pattrinfo_t pa_info; 23564 23565 ASSERT(mmd != NULL); 23566 23567 pa_info.type = PATTR_HCKSUM; 23568 pa_info.len = sizeof (pattr_hcksum_t); 23569 23570 /* create and associate the attribute */ 23571 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23572 if (pa != NULL) { 23573 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23574 23575 hck->hcksum_start_offset = start_offset; 23576 hck->hcksum_stuff_offset = stuff_offset; 23577 hck->hcksum_end_offset = end_offset; 23578 hck->hcksum_flags = flags; 23579 } 23580 return (pa != NULL); 23581 } 23582 23583 /* 23584 * Create zerocopy attribute and fill it with the specified flags 23585 */ 23586 boolean_t 23587 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23588 { 23589 pattr_t *pa; 23590 pattrinfo_t pa_info; 23591 23592 ASSERT(mmd != NULL); 23593 pa_info.type = PATTR_ZCOPY; 23594 pa_info.len = sizeof (pattr_zcopy_t); 23595 23596 /* create and associate the attribute */ 23597 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23598 if (pa != NULL) { 23599 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23600 23601 zcopy->zcopy_flags = flags; 23602 } 23603 return (pa != NULL); 23604 } 23605 23606 /* 23607 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23608 * block chain. We could rewrite to handle arbitrary message block chains but 23609 * that would make the code complicated and slow. Right now there three 23610 * restrictions: 23611 * 23612 * 1. The first message block must contain the complete IP header and 23613 * at least 1 byte of payload data. 23614 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23615 * so that we can use a single Multidata message. 23616 * 3. No frag must be distributed over two or more message blocks so 23617 * that we don't need more than two packet descriptors per frag. 23618 * 23619 * The above restrictions allow us to support userland applications (which 23620 * will send down a single message block) and NFS over UDP (which will 23621 * send down a chain of at most three message blocks). 23622 * 23623 * We also don't use MDT for payloads with less than or equal to 23624 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23625 */ 23626 boolean_t 23627 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23628 { 23629 int blocks; 23630 ssize_t total, missing, size; 23631 23632 ASSERT(mp != NULL); 23633 ASSERT(hdr_len > 0); 23634 23635 size = MBLKL(mp) - hdr_len; 23636 if (size <= 0) 23637 return (B_FALSE); 23638 23639 /* The first mblk contains the header and some payload. */ 23640 blocks = 1; 23641 total = size; 23642 size %= len; 23643 missing = (size == 0) ? 0 : (len - size); 23644 mp = mp->b_cont; 23645 23646 while (mp != NULL) { 23647 /* 23648 * Give up if we encounter a zero length message block. 23649 * In practice, this should rarely happen and therefore 23650 * not worth the trouble of freeing and re-linking the 23651 * mblk from the chain to handle such case. 23652 */ 23653 if ((size = MBLKL(mp)) == 0) 23654 return (B_FALSE); 23655 23656 /* Too many payload buffers for a single Multidata message? */ 23657 if (++blocks > MULTIDATA_MAX_PBUFS) 23658 return (B_FALSE); 23659 23660 total += size; 23661 /* Is a frag distributed over two or more message blocks? */ 23662 if (missing > size) 23663 return (B_FALSE); 23664 size -= missing; 23665 23666 size %= len; 23667 missing = (size == 0) ? 0 : (len - size); 23668 23669 mp = mp->b_cont; 23670 } 23671 23672 return (total > ip_wput_frag_mdt_min); 23673 } 23674 23675 /* 23676 * Outbound IPv4 fragmentation routine using MDT. 23677 */ 23678 static void 23679 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23680 uint32_t frag_flag, int offset) 23681 { 23682 ipha_t *ipha_orig; 23683 int i1, ip_data_end; 23684 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23685 mblk_t *hdr_mp, *md_mp = NULL; 23686 unsigned char *hdr_ptr, *pld_ptr; 23687 multidata_t *mmd; 23688 ip_pdescinfo_t pdi; 23689 ill_t *ill; 23690 ip_stack_t *ipst = ire->ire_ipst; 23691 23692 ASSERT(DB_TYPE(mp) == M_DATA); 23693 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23694 23695 ill = ire_to_ill(ire); 23696 ASSERT(ill != NULL); 23697 23698 ipha_orig = (ipha_t *)mp->b_rptr; 23699 mp->b_rptr += sizeof (ipha_t); 23700 23701 /* Calculate how many packets we will send out */ 23702 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23703 pkts = (i1 + len - 1) / len; 23704 ASSERT(pkts > 1); 23705 23706 /* Allocate a message block which will hold all the IP Headers. */ 23707 wroff = ipst->ips_ip_wroff_extra; 23708 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23709 23710 i1 = pkts * hdr_chunk_len; 23711 /* 23712 * Create the header buffer, Multidata and destination address 23713 * and SAP attribute that should be associated with it. 23714 */ 23715 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23716 ((hdr_mp->b_wptr += i1), 23717 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23718 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23719 freemsg(mp); 23720 if (md_mp == NULL) { 23721 freemsg(hdr_mp); 23722 } else { 23723 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23724 freemsg(md_mp); 23725 } 23726 IP_STAT(ipst, ip_frag_mdt_allocfail); 23727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23728 return; 23729 } 23730 IP_STAT(ipst, ip_frag_mdt_allocd); 23731 23732 /* 23733 * Add a payload buffer to the Multidata; this operation must not 23734 * fail, or otherwise our logic in this routine is broken. There 23735 * is no memory allocation done by the routine, so any returned 23736 * failure simply tells us that we've done something wrong. 23737 * 23738 * A failure tells us that either we're adding the same payload 23739 * buffer more than once, or we're trying to add more buffers than 23740 * allowed. None of the above cases should happen, and we panic 23741 * because either there's horrible heap corruption, and/or 23742 * programming mistake. 23743 */ 23744 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23745 goto pbuf_panic; 23746 23747 hdr_ptr = hdr_mp->b_rptr; 23748 pld_ptr = mp->b_rptr; 23749 23750 /* Establish the ending byte offset, based on the starting offset. */ 23751 offset <<= 3; 23752 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23753 IP_SIMPLE_HDR_LENGTH; 23754 23755 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23756 23757 while (pld_ptr < mp->b_wptr) { 23758 ipha_t *ipha; 23759 uint16_t offset_and_flags; 23760 uint16_t ip_len; 23761 int error; 23762 23763 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23764 ipha = (ipha_t *)(hdr_ptr + wroff); 23765 ASSERT(OK_32PTR(ipha)); 23766 *ipha = *ipha_orig; 23767 23768 if (ip_data_end - offset > len) { 23769 offset_and_flags = IPH_MF; 23770 } else { 23771 /* 23772 * Last frag. Set len to the length of this last piece. 23773 */ 23774 len = ip_data_end - offset; 23775 /* A frag of a frag might have IPH_MF non-zero */ 23776 offset_and_flags = 23777 ntohs(ipha->ipha_fragment_offset_and_flags) & 23778 IPH_MF; 23779 } 23780 offset_and_flags |= (uint16_t)(offset >> 3); 23781 offset_and_flags |= (uint16_t)frag_flag; 23782 /* Store the offset and flags in the IP header. */ 23783 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23784 23785 /* Store the length in the IP header. */ 23786 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23787 ipha->ipha_length = htons(ip_len); 23788 23789 /* 23790 * Set the IP header checksum. Note that mp is just 23791 * the header, so this is easy to pass to ip_csum. 23792 */ 23793 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23794 23795 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23796 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23797 NULL, int, 0); 23798 23799 /* 23800 * Record offset and size of header and data of the next packet 23801 * in the multidata message. 23802 */ 23803 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23804 PDESC_PLD_INIT(&pdi); 23805 i1 = MIN(mp->b_wptr - pld_ptr, len); 23806 ASSERT(i1 > 0); 23807 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23808 if (i1 == len) { 23809 pld_ptr += len; 23810 } else { 23811 i1 = len - i1; 23812 mp = mp->b_cont; 23813 ASSERT(mp != NULL); 23814 ASSERT(MBLKL(mp) >= i1); 23815 /* 23816 * Attach the next payload message block to the 23817 * multidata message. 23818 */ 23819 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23820 goto pbuf_panic; 23821 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23822 pld_ptr = mp->b_rptr + i1; 23823 } 23824 23825 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23826 KM_NOSLEEP)) == NULL) { 23827 /* 23828 * Any failure other than ENOMEM indicates that we 23829 * have passed in invalid pdesc info or parameters 23830 * to mmd_addpdesc, which must not happen. 23831 * 23832 * EINVAL is a result of failure on boundary checks 23833 * against the pdesc info contents. It should not 23834 * happen, and we panic because either there's 23835 * horrible heap corruption, and/or programming 23836 * mistake. 23837 */ 23838 if (error != ENOMEM) { 23839 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23840 "pdesc logic error detected for " 23841 "mmd %p pinfo %p (%d)\n", 23842 (void *)mmd, (void *)&pdi, error); 23843 /* NOTREACHED */ 23844 } 23845 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23846 /* Free unattached payload message blocks as well */ 23847 md_mp->b_cont = mp->b_cont; 23848 goto free_mmd; 23849 } 23850 23851 /* Advance fragment offset. */ 23852 offset += len; 23853 23854 /* Advance to location for next header in the buffer. */ 23855 hdr_ptr += hdr_chunk_len; 23856 23857 /* Did we reach the next payload message block? */ 23858 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23859 mp = mp->b_cont; 23860 /* 23861 * Attach the next message block with payload 23862 * data to the multidata message. 23863 */ 23864 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23865 goto pbuf_panic; 23866 pld_ptr = mp->b_rptr; 23867 } 23868 } 23869 23870 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23871 ASSERT(mp->b_wptr == pld_ptr); 23872 23873 /* Update IP statistics */ 23874 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23875 23876 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23878 23879 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23880 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23881 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23882 23883 if (pkt_type == OB_PKT) { 23884 ire->ire_ob_pkt_count += pkts; 23885 if (ire->ire_ipif != NULL) 23886 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23887 } else { 23888 /* The type is IB_PKT in the forwarding path. */ 23889 ire->ire_ib_pkt_count += pkts; 23890 ASSERT(!IRE_IS_LOCAL(ire)); 23891 if (ire->ire_type & IRE_BROADCAST) { 23892 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23893 } else { 23894 UPDATE_MIB(ill->ill_ip_mib, 23895 ipIfStatsHCOutForwDatagrams, pkts); 23896 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23897 } 23898 } 23899 ire->ire_last_used_time = lbolt; 23900 /* Send it down */ 23901 putnext(ire->ire_stq, md_mp); 23902 return; 23903 23904 pbuf_panic: 23905 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23906 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23907 pbuf_idx); 23908 /* NOTREACHED */ 23909 } 23910 23911 /* 23912 * Outbound IP fragmentation routine. 23913 * 23914 * NOTE : This routine does not ire_refrele the ire that is passed in 23915 * as the argument. 23916 */ 23917 static void 23918 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23919 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23920 { 23921 int i1; 23922 mblk_t *ll_hdr_mp; 23923 int ll_hdr_len; 23924 int hdr_len; 23925 mblk_t *hdr_mp; 23926 ipha_t *ipha; 23927 int ip_data_end; 23928 int len; 23929 mblk_t *mp = mp_orig, *mp1; 23930 int offset; 23931 queue_t *q; 23932 uint32_t v_hlen_tos_len; 23933 mblk_t *first_mp; 23934 boolean_t mctl_present; 23935 ill_t *ill; 23936 ill_t *out_ill; 23937 mblk_t *xmit_mp; 23938 mblk_t *carve_mp; 23939 ire_t *ire1 = NULL; 23940 ire_t *save_ire = NULL; 23941 mblk_t *next_mp = NULL; 23942 boolean_t last_frag = B_FALSE; 23943 boolean_t multirt_send = B_FALSE; 23944 ire_t *first_ire = NULL; 23945 irb_t *irb = NULL; 23946 mib2_ipIfStatsEntry_t *mibptr = NULL; 23947 23948 ill = ire_to_ill(ire); 23949 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23950 23951 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23952 23953 if (max_frag == 0) { 23954 ip1dbg(("ip_wput_frag: ire frag size is 0" 23955 " - dropping packet\n")); 23956 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23957 freemsg(mp); 23958 return; 23959 } 23960 23961 /* 23962 * IPsec does not allow hw accelerated packets to be fragmented 23963 * This check is made in ip_wput_ipsec_out prior to coming here 23964 * via ip_wput_ire_fragmentit. 23965 * 23966 * If at this point we have an ire whose ARP request has not 23967 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23968 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23969 * This packet and all fragmentable packets for this ire will 23970 * continue to get dropped while ire_nce->nce_state remains in 23971 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23972 * ND_REACHABLE, all subsquent large packets for this ire will 23973 * get fragemented and sent out by this function. 23974 */ 23975 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23976 /* If nce_state is ND_INITIAL, trigger ARP query */ 23977 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 23978 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23979 " - dropping packet\n")); 23980 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23981 freemsg(mp); 23982 return; 23983 } 23984 23985 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23986 "ip_wput_frag_start:"); 23987 23988 if (mp->b_datap->db_type == M_CTL) { 23989 first_mp = mp; 23990 mp_orig = mp = mp->b_cont; 23991 mctl_present = B_TRUE; 23992 } else { 23993 first_mp = mp; 23994 mctl_present = B_FALSE; 23995 } 23996 23997 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23998 ipha = (ipha_t *)mp->b_rptr; 23999 24000 /* 24001 * If the Don't Fragment flag is on, generate an ICMP destination 24002 * unreachable, fragmentation needed. 24003 */ 24004 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24005 if (offset & IPH_DF) { 24006 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24007 if (is_system_labeled()) { 24008 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24009 ire->ire_max_frag - max_frag, AF_INET); 24010 } 24011 /* 24012 * Need to compute hdr checksum if called from ip_wput_ire. 24013 * Note that ip_rput_forward verifies the checksum before 24014 * calling this routine so in that case this is a noop. 24015 */ 24016 ipha->ipha_hdr_checksum = 0; 24017 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24018 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24019 ipst); 24020 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24021 "ip_wput_frag_end:(%S)", 24022 "don't fragment"); 24023 return; 24024 } 24025 /* 24026 * Labeled systems adjust max_frag if they add a label 24027 * to send the correct path mtu. We need the real mtu since we 24028 * are fragmenting the packet after label adjustment. 24029 */ 24030 if (is_system_labeled()) 24031 max_frag = ire->ire_max_frag; 24032 if (mctl_present) 24033 freeb(first_mp); 24034 /* 24035 * Establish the starting offset. May not be zero if we are fragging 24036 * a fragment that is being forwarded. 24037 */ 24038 offset = offset & IPH_OFFSET; 24039 24040 /* TODO why is this test needed? */ 24041 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24042 if (((max_frag - LENGTH) & ~7) < 8) { 24043 /* TODO: notify ulp somehow */ 24044 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24045 freemsg(mp); 24046 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24047 "ip_wput_frag_end:(%S)", 24048 "len < 8"); 24049 return; 24050 } 24051 24052 hdr_len = (V_HLEN & 0xF) << 2; 24053 24054 ipha->ipha_hdr_checksum = 0; 24055 24056 /* 24057 * Establish the number of bytes maximum per frag, after putting 24058 * in the header. 24059 */ 24060 len = (max_frag - hdr_len) & ~7; 24061 24062 /* Check if we can use MDT to send out the frags. */ 24063 ASSERT(!IRE_IS_LOCAL(ire)); 24064 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24065 ipst->ips_ip_multidata_outbound && 24066 !(ire->ire_flags & RTF_MULTIRT) && 24067 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24068 ill != NULL && ILL_MDT_CAPABLE(ill) && 24069 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24070 ASSERT(ill->ill_mdt_capab != NULL); 24071 if (!ill->ill_mdt_capab->ill_mdt_on) { 24072 /* 24073 * If MDT has been previously turned off in the past, 24074 * and we currently can do MDT (due to IPQoS policy 24075 * removal, etc.) then enable it for this interface. 24076 */ 24077 ill->ill_mdt_capab->ill_mdt_on = 1; 24078 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24079 ill->ill_name)); 24080 } 24081 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24082 offset); 24083 return; 24084 } 24085 24086 /* Get a copy of the header for the trailing frags */ 24087 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24088 if (!hdr_mp) { 24089 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24090 freemsg(mp); 24091 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24092 "ip_wput_frag_end:(%S)", 24093 "couldn't copy hdr"); 24094 return; 24095 } 24096 if (DB_CRED(mp) != NULL) 24097 mblk_setcred(hdr_mp, DB_CRED(mp)); 24098 24099 /* Store the starting offset, with the MoreFrags flag. */ 24100 i1 = offset | IPH_MF | frag_flag; 24101 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24102 24103 /* Establish the ending byte offset, based on the starting offset. */ 24104 offset <<= 3; 24105 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24106 24107 /* Store the length of the first fragment in the IP header. */ 24108 i1 = len + hdr_len; 24109 ASSERT(i1 <= IP_MAXPACKET); 24110 ipha->ipha_length = htons((uint16_t)i1); 24111 24112 /* 24113 * Compute the IP header checksum for the first frag. We have to 24114 * watch out that we stop at the end of the header. 24115 */ 24116 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24117 24118 /* 24119 * Now carve off the first frag. Note that this will include the 24120 * original IP header. 24121 */ 24122 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24123 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24124 freeb(hdr_mp); 24125 freemsg(mp_orig); 24126 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24127 "ip_wput_frag_end:(%S)", 24128 "couldn't carve first"); 24129 return; 24130 } 24131 24132 /* 24133 * Multirouting case. Each fragment is replicated 24134 * via all non-condemned RTF_MULTIRT routes 24135 * currently resolved. 24136 * We ensure that first_ire is the first RTF_MULTIRT 24137 * ire in the bucket. 24138 */ 24139 if (ire->ire_flags & RTF_MULTIRT) { 24140 irb = ire->ire_bucket; 24141 ASSERT(irb != NULL); 24142 24143 multirt_send = B_TRUE; 24144 24145 /* Make sure we do not omit any multiroute ire. */ 24146 IRB_REFHOLD(irb); 24147 for (first_ire = irb->irb_ire; 24148 first_ire != NULL; 24149 first_ire = first_ire->ire_next) { 24150 if ((first_ire->ire_flags & RTF_MULTIRT) && 24151 (first_ire->ire_addr == ire->ire_addr) && 24152 !(first_ire->ire_marks & 24153 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24154 break; 24155 } 24156 24157 if (first_ire != NULL) { 24158 if (first_ire != ire) { 24159 IRE_REFHOLD(first_ire); 24160 /* 24161 * Do not release the ire passed in 24162 * as the argument. 24163 */ 24164 ire = first_ire; 24165 } else { 24166 first_ire = NULL; 24167 } 24168 } 24169 IRB_REFRELE(irb); 24170 24171 /* 24172 * Save the first ire; we will need to restore it 24173 * for the trailing frags. 24174 * We REFHOLD save_ire, as each iterated ire will be 24175 * REFRELEd. 24176 */ 24177 save_ire = ire; 24178 IRE_REFHOLD(save_ire); 24179 } 24180 24181 /* 24182 * First fragment emission loop. 24183 * In most cases, the emission loop below is entered only 24184 * once. Only in the case where the ire holds the RTF_MULTIRT 24185 * flag, do we loop to process all RTF_MULTIRT ires in the 24186 * bucket, and send the fragment through all crossed 24187 * RTF_MULTIRT routes. 24188 */ 24189 do { 24190 if (ire->ire_flags & RTF_MULTIRT) { 24191 /* 24192 * We are in a multiple send case, need to get 24193 * the next ire and make a copy of the packet. 24194 * ire1 holds here the next ire to process in the 24195 * bucket. If multirouting is expected, 24196 * any non-RTF_MULTIRT ire that has the 24197 * right destination address is ignored. 24198 * 24199 * We have to take into account the MTU of 24200 * each walked ire. max_frag is set by the 24201 * the caller and generally refers to 24202 * the primary ire entry. Here we ensure that 24203 * no route with a lower MTU will be used, as 24204 * fragments are carved once for all ires, 24205 * then replicated. 24206 */ 24207 ASSERT(irb != NULL); 24208 IRB_REFHOLD(irb); 24209 for (ire1 = ire->ire_next; 24210 ire1 != NULL; 24211 ire1 = ire1->ire_next) { 24212 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24213 continue; 24214 if (ire1->ire_addr != ire->ire_addr) 24215 continue; 24216 if (ire1->ire_marks & 24217 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24218 continue; 24219 /* 24220 * Ensure we do not exceed the MTU 24221 * of the next route. 24222 */ 24223 if (ire1->ire_max_frag < max_frag) { 24224 ip_multirt_bad_mtu(ire1, max_frag); 24225 continue; 24226 } 24227 24228 /* Got one. */ 24229 IRE_REFHOLD(ire1); 24230 break; 24231 } 24232 IRB_REFRELE(irb); 24233 24234 if (ire1 != NULL) { 24235 next_mp = copyb(mp); 24236 if ((next_mp == NULL) || 24237 ((mp->b_cont != NULL) && 24238 ((next_mp->b_cont = 24239 dupmsg(mp->b_cont)) == NULL))) { 24240 freemsg(next_mp); 24241 next_mp = NULL; 24242 ire_refrele(ire1); 24243 ire1 = NULL; 24244 } 24245 } 24246 24247 /* Last multiroute ire; don't loop anymore. */ 24248 if (ire1 == NULL) { 24249 multirt_send = B_FALSE; 24250 } 24251 } 24252 24253 ll_hdr_len = 0; 24254 LOCK_IRE_FP_MP(ire); 24255 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24256 if (ll_hdr_mp != NULL) { 24257 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24258 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24259 } else { 24260 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24261 } 24262 24263 /* If there is a transmit header, get a copy for this frag. */ 24264 /* 24265 * TODO: should check db_ref before calling ip_carve_mp since 24266 * it might give us a dup. 24267 */ 24268 if (!ll_hdr_mp) { 24269 /* No xmit header. */ 24270 xmit_mp = mp; 24271 24272 /* We have a link-layer header that can fit in our mblk. */ 24273 } else if (mp->b_datap->db_ref == 1 && 24274 ll_hdr_len != 0 && 24275 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24276 /* M_DATA fastpath */ 24277 mp->b_rptr -= ll_hdr_len; 24278 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24279 xmit_mp = mp; 24280 24281 /* Corner case if copyb has failed */ 24282 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24283 UNLOCK_IRE_FP_MP(ire); 24284 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24285 freeb(hdr_mp); 24286 freemsg(mp); 24287 freemsg(mp_orig); 24288 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24289 "ip_wput_frag_end:(%S)", 24290 "discard"); 24291 24292 if (multirt_send) { 24293 ASSERT(ire1); 24294 ASSERT(next_mp); 24295 24296 freemsg(next_mp); 24297 ire_refrele(ire1); 24298 } 24299 if (save_ire != NULL) 24300 IRE_REFRELE(save_ire); 24301 24302 if (first_ire != NULL) 24303 ire_refrele(first_ire); 24304 return; 24305 24306 /* 24307 * Case of res_mp OR the fastpath mp can't fit 24308 * in the mblk 24309 */ 24310 } else { 24311 xmit_mp->b_cont = mp; 24312 if (DB_CRED(mp) != NULL) 24313 mblk_setcred(xmit_mp, DB_CRED(mp)); 24314 /* 24315 * Get priority marking, if any. 24316 * We propagate the CoS marking from the 24317 * original packet that went to QoS processing 24318 * in ip_wput_ire to the newly carved mp. 24319 */ 24320 if (DB_TYPE(xmit_mp) == M_DATA) 24321 xmit_mp->b_band = mp->b_band; 24322 } 24323 UNLOCK_IRE_FP_MP(ire); 24324 24325 q = ire->ire_stq; 24326 out_ill = (ill_t *)q->q_ptr; 24327 24328 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24329 24330 DTRACE_PROBE4(ip4__physical__out__start, 24331 ill_t *, NULL, ill_t *, out_ill, 24332 ipha_t *, ipha, mblk_t *, xmit_mp); 24333 24334 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24335 ipst->ips_ipv4firewall_physical_out, 24336 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24337 24338 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24339 24340 if (xmit_mp != NULL) { 24341 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24342 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24343 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24344 24345 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24346 24347 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24348 UPDATE_MIB(out_ill->ill_ip_mib, 24349 ipIfStatsHCOutOctets, i1); 24350 24351 if (pkt_type != OB_PKT) { 24352 /* 24353 * Update the packet count and MIB stats 24354 * of trailing RTF_MULTIRT ires. 24355 */ 24356 UPDATE_OB_PKT_COUNT(ire); 24357 BUMP_MIB(out_ill->ill_ip_mib, 24358 ipIfStatsOutFragReqds); 24359 } 24360 } 24361 24362 if (multirt_send) { 24363 /* 24364 * We are in a multiple send case; look for 24365 * the next ire and re-enter the loop. 24366 */ 24367 ASSERT(ire1); 24368 ASSERT(next_mp); 24369 /* REFRELE the current ire before looping */ 24370 ire_refrele(ire); 24371 ire = ire1; 24372 ire1 = NULL; 24373 mp = next_mp; 24374 next_mp = NULL; 24375 } 24376 } while (multirt_send); 24377 24378 ASSERT(ire1 == NULL); 24379 24380 /* Restore the original ire; we need it for the trailing frags */ 24381 if (save_ire != NULL) { 24382 /* REFRELE the last iterated ire */ 24383 ire_refrele(ire); 24384 /* save_ire has been REFHOLDed */ 24385 ire = save_ire; 24386 save_ire = NULL; 24387 q = ire->ire_stq; 24388 } 24389 24390 if (pkt_type == OB_PKT) { 24391 UPDATE_OB_PKT_COUNT(ire); 24392 } else { 24393 out_ill = (ill_t *)q->q_ptr; 24394 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24395 UPDATE_IB_PKT_COUNT(ire); 24396 } 24397 24398 /* Advance the offset to the second frag starting point. */ 24399 offset += len; 24400 /* 24401 * Update hdr_len from the copied header - there might be less options 24402 * in the later fragments. 24403 */ 24404 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24405 /* Loop until done. */ 24406 for (;;) { 24407 uint16_t offset_and_flags; 24408 uint16_t ip_len; 24409 24410 if (ip_data_end - offset > len) { 24411 /* 24412 * Carve off the appropriate amount from the original 24413 * datagram. 24414 */ 24415 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24416 mp = NULL; 24417 break; 24418 } 24419 /* 24420 * More frags after this one. Get another copy 24421 * of the header. 24422 */ 24423 if (carve_mp->b_datap->db_ref == 1 && 24424 hdr_mp->b_wptr - hdr_mp->b_rptr < 24425 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24426 /* Inline IP header */ 24427 carve_mp->b_rptr -= hdr_mp->b_wptr - 24428 hdr_mp->b_rptr; 24429 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24430 hdr_mp->b_wptr - hdr_mp->b_rptr); 24431 mp = carve_mp; 24432 } else { 24433 if (!(mp = copyb(hdr_mp))) { 24434 freemsg(carve_mp); 24435 break; 24436 } 24437 /* Get priority marking, if any. */ 24438 mp->b_band = carve_mp->b_band; 24439 mp->b_cont = carve_mp; 24440 } 24441 ipha = (ipha_t *)mp->b_rptr; 24442 offset_and_flags = IPH_MF; 24443 } else { 24444 /* 24445 * Last frag. Consume the header. Set len to 24446 * the length of this last piece. 24447 */ 24448 len = ip_data_end - offset; 24449 24450 /* 24451 * Carve off the appropriate amount from the original 24452 * datagram. 24453 */ 24454 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24455 mp = NULL; 24456 break; 24457 } 24458 if (carve_mp->b_datap->db_ref == 1 && 24459 hdr_mp->b_wptr - hdr_mp->b_rptr < 24460 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24461 /* Inline IP header */ 24462 carve_mp->b_rptr -= hdr_mp->b_wptr - 24463 hdr_mp->b_rptr; 24464 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24465 hdr_mp->b_wptr - hdr_mp->b_rptr); 24466 mp = carve_mp; 24467 freeb(hdr_mp); 24468 hdr_mp = mp; 24469 } else { 24470 mp = hdr_mp; 24471 /* Get priority marking, if any. */ 24472 mp->b_band = carve_mp->b_band; 24473 mp->b_cont = carve_mp; 24474 } 24475 ipha = (ipha_t *)mp->b_rptr; 24476 /* A frag of a frag might have IPH_MF non-zero */ 24477 offset_and_flags = 24478 ntohs(ipha->ipha_fragment_offset_and_flags) & 24479 IPH_MF; 24480 } 24481 offset_and_flags |= (uint16_t)(offset >> 3); 24482 offset_and_flags |= (uint16_t)frag_flag; 24483 /* Store the offset and flags in the IP header. */ 24484 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24485 24486 /* Store the length in the IP header. */ 24487 ip_len = (uint16_t)(len + hdr_len); 24488 ipha->ipha_length = htons(ip_len); 24489 24490 /* 24491 * Set the IP header checksum. Note that mp is just 24492 * the header, so this is easy to pass to ip_csum. 24493 */ 24494 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24495 24496 /* Attach a transmit header, if any, and ship it. */ 24497 if (pkt_type == OB_PKT) { 24498 UPDATE_OB_PKT_COUNT(ire); 24499 } else { 24500 out_ill = (ill_t *)q->q_ptr; 24501 BUMP_MIB(out_ill->ill_ip_mib, 24502 ipIfStatsHCOutForwDatagrams); 24503 UPDATE_IB_PKT_COUNT(ire); 24504 } 24505 24506 if (ire->ire_flags & RTF_MULTIRT) { 24507 irb = ire->ire_bucket; 24508 ASSERT(irb != NULL); 24509 24510 multirt_send = B_TRUE; 24511 24512 /* 24513 * Save the original ire; we will need to restore it 24514 * for the tailing frags. 24515 */ 24516 save_ire = ire; 24517 IRE_REFHOLD(save_ire); 24518 } 24519 /* 24520 * Emission loop for this fragment, similar 24521 * to what is done for the first fragment. 24522 */ 24523 do { 24524 if (multirt_send) { 24525 /* 24526 * We are in a multiple send case, need to get 24527 * the next ire and make a copy of the packet. 24528 */ 24529 ASSERT(irb != NULL); 24530 IRB_REFHOLD(irb); 24531 for (ire1 = ire->ire_next; 24532 ire1 != NULL; 24533 ire1 = ire1->ire_next) { 24534 if (!(ire1->ire_flags & RTF_MULTIRT)) 24535 continue; 24536 if (ire1->ire_addr != ire->ire_addr) 24537 continue; 24538 if (ire1->ire_marks & 24539 (IRE_MARK_CONDEMNED | 24540 IRE_MARK_TESTHIDDEN)) 24541 continue; 24542 /* 24543 * Ensure we do not exceed the MTU 24544 * of the next route. 24545 */ 24546 if (ire1->ire_max_frag < max_frag) { 24547 ip_multirt_bad_mtu(ire1, 24548 max_frag); 24549 continue; 24550 } 24551 24552 /* Got one. */ 24553 IRE_REFHOLD(ire1); 24554 break; 24555 } 24556 IRB_REFRELE(irb); 24557 24558 if (ire1 != NULL) { 24559 next_mp = copyb(mp); 24560 if ((next_mp == NULL) || 24561 ((mp->b_cont != NULL) && 24562 ((next_mp->b_cont = 24563 dupmsg(mp->b_cont)) == NULL))) { 24564 freemsg(next_mp); 24565 next_mp = NULL; 24566 ire_refrele(ire1); 24567 ire1 = NULL; 24568 } 24569 } 24570 24571 /* Last multiroute ire; don't loop anymore. */ 24572 if (ire1 == NULL) { 24573 multirt_send = B_FALSE; 24574 } 24575 } 24576 24577 /* Update transmit header */ 24578 ll_hdr_len = 0; 24579 LOCK_IRE_FP_MP(ire); 24580 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24581 if (ll_hdr_mp != NULL) { 24582 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24583 ll_hdr_len = MBLKL(ll_hdr_mp); 24584 } else { 24585 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24586 } 24587 24588 if (!ll_hdr_mp) { 24589 xmit_mp = mp; 24590 24591 /* 24592 * We have link-layer header that can fit in 24593 * our mblk. 24594 */ 24595 } else if (mp->b_datap->db_ref == 1 && 24596 ll_hdr_len != 0 && 24597 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24598 /* M_DATA fastpath */ 24599 mp->b_rptr -= ll_hdr_len; 24600 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24601 ll_hdr_len); 24602 xmit_mp = mp; 24603 24604 /* 24605 * Case of res_mp OR the fastpath mp can't fit 24606 * in the mblk 24607 */ 24608 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24609 xmit_mp->b_cont = mp; 24610 if (DB_CRED(mp) != NULL) 24611 mblk_setcred(xmit_mp, DB_CRED(mp)); 24612 /* Get priority marking, if any. */ 24613 if (DB_TYPE(xmit_mp) == M_DATA) 24614 xmit_mp->b_band = mp->b_band; 24615 24616 /* Corner case if copyb failed */ 24617 } else { 24618 /* 24619 * Exit both the replication and 24620 * fragmentation loops. 24621 */ 24622 UNLOCK_IRE_FP_MP(ire); 24623 goto drop_pkt; 24624 } 24625 UNLOCK_IRE_FP_MP(ire); 24626 24627 mp1 = mp; 24628 out_ill = (ill_t *)q->q_ptr; 24629 24630 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24631 24632 DTRACE_PROBE4(ip4__physical__out__start, 24633 ill_t *, NULL, ill_t *, out_ill, 24634 ipha_t *, ipha, mblk_t *, xmit_mp); 24635 24636 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24637 ipst->ips_ipv4firewall_physical_out, 24638 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24639 24640 DTRACE_PROBE1(ip4__physical__out__end, 24641 mblk_t *, xmit_mp); 24642 24643 if (mp != mp1 && hdr_mp == mp1) 24644 hdr_mp = mp; 24645 if (mp != mp1 && mp_orig == mp1) 24646 mp_orig = mp; 24647 24648 if (xmit_mp != NULL) { 24649 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24650 NULL, void_ip_t *, ipha, 24651 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24652 ipha, ip6_t *, NULL, int, 0); 24653 24654 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24655 24656 BUMP_MIB(out_ill->ill_ip_mib, 24657 ipIfStatsHCOutTransmits); 24658 UPDATE_MIB(out_ill->ill_ip_mib, 24659 ipIfStatsHCOutOctets, ip_len); 24660 24661 if (pkt_type != OB_PKT) { 24662 /* 24663 * Update the packet count of trailing 24664 * RTF_MULTIRT ires. 24665 */ 24666 UPDATE_OB_PKT_COUNT(ire); 24667 } 24668 } 24669 24670 /* All done if we just consumed the hdr_mp. */ 24671 if (mp == hdr_mp) { 24672 last_frag = B_TRUE; 24673 BUMP_MIB(out_ill->ill_ip_mib, 24674 ipIfStatsOutFragOKs); 24675 } 24676 24677 if (multirt_send) { 24678 /* 24679 * We are in a multiple send case; look for 24680 * the next ire and re-enter the loop. 24681 */ 24682 ASSERT(ire1); 24683 ASSERT(next_mp); 24684 /* REFRELE the current ire before looping */ 24685 ire_refrele(ire); 24686 ire = ire1; 24687 ire1 = NULL; 24688 q = ire->ire_stq; 24689 mp = next_mp; 24690 next_mp = NULL; 24691 } 24692 } while (multirt_send); 24693 /* 24694 * Restore the original ire; we need it for the 24695 * trailing frags 24696 */ 24697 if (save_ire != NULL) { 24698 ASSERT(ire1 == NULL); 24699 /* REFRELE the last iterated ire */ 24700 ire_refrele(ire); 24701 /* save_ire has been REFHOLDed */ 24702 ire = save_ire; 24703 q = ire->ire_stq; 24704 save_ire = NULL; 24705 } 24706 24707 if (last_frag) { 24708 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24709 "ip_wput_frag_end:(%S)", 24710 "consumed hdr_mp"); 24711 24712 if (first_ire != NULL) 24713 ire_refrele(first_ire); 24714 return; 24715 } 24716 /* Otherwise, advance and loop. */ 24717 offset += len; 24718 } 24719 24720 drop_pkt: 24721 /* Clean up following allocation failure. */ 24722 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24723 freemsg(mp); 24724 if (mp != hdr_mp) 24725 freeb(hdr_mp); 24726 if (mp != mp_orig) 24727 freemsg(mp_orig); 24728 24729 if (save_ire != NULL) 24730 IRE_REFRELE(save_ire); 24731 if (first_ire != NULL) 24732 ire_refrele(first_ire); 24733 24734 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24735 "ip_wput_frag_end:(%S)", 24736 "end--alloc failure"); 24737 } 24738 24739 /* 24740 * Copy the header plus those options which have the copy bit set 24741 */ 24742 static mblk_t * 24743 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24744 { 24745 mblk_t *mp; 24746 uchar_t *up; 24747 24748 /* 24749 * Quick check if we need to look for options without the copy bit 24750 * set 24751 */ 24752 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24753 if (!mp) 24754 return (mp); 24755 mp->b_rptr += ipst->ips_ip_wroff_extra; 24756 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24757 bcopy(rptr, mp->b_rptr, hdr_len); 24758 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24759 return (mp); 24760 } 24761 up = mp->b_rptr; 24762 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24763 up += IP_SIMPLE_HDR_LENGTH; 24764 rptr += IP_SIMPLE_HDR_LENGTH; 24765 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24766 while (hdr_len > 0) { 24767 uint32_t optval; 24768 uint32_t optlen; 24769 24770 optval = *rptr; 24771 if (optval == IPOPT_EOL) 24772 break; 24773 if (optval == IPOPT_NOP) 24774 optlen = 1; 24775 else 24776 optlen = rptr[1]; 24777 if (optval & IPOPT_COPY) { 24778 bcopy(rptr, up, optlen); 24779 up += optlen; 24780 } 24781 rptr += optlen; 24782 hdr_len -= optlen; 24783 } 24784 /* 24785 * Make sure that we drop an even number of words by filling 24786 * with EOL to the next word boundary. 24787 */ 24788 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24789 hdr_len & 0x3; hdr_len++) 24790 *up++ = IPOPT_EOL; 24791 mp->b_wptr = up; 24792 /* Update header length */ 24793 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24794 return (mp); 24795 } 24796 24797 /* 24798 * Delivery to local recipients including fanout to multiple recipients. 24799 * Does not do checksumming of UDP/TCP. 24800 * Note: q should be the read side queue for either the ill or conn. 24801 * Note: rq should be the read side q for the lower (ill) stream. 24802 * We don't send packets to IPPF processing, thus the last argument 24803 * to all the fanout calls are B_FALSE. 24804 */ 24805 void 24806 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24807 int fanout_flags, zoneid_t zoneid) 24808 { 24809 uint32_t protocol; 24810 mblk_t *first_mp; 24811 boolean_t mctl_present; 24812 int ire_type; 24813 #define rptr ((uchar_t *)ipha) 24814 ip_stack_t *ipst = ill->ill_ipst; 24815 24816 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24817 "ip_wput_local_start: q %p", q); 24818 24819 if (ire != NULL) { 24820 ire_type = ire->ire_type; 24821 } else { 24822 /* 24823 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24824 * packet is not multicast, we can't tell the ire type. 24825 */ 24826 ASSERT(CLASSD(ipha->ipha_dst)); 24827 ire_type = IRE_BROADCAST; 24828 } 24829 24830 first_mp = mp; 24831 if (first_mp->b_datap->db_type == M_CTL) { 24832 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24833 if (!io->ipsec_out_secure) { 24834 /* 24835 * This ipsec_out_t was allocated in ip_wput 24836 * for multicast packets to store the ill_index. 24837 * As this is being delivered locally, we don't 24838 * need this anymore. 24839 */ 24840 mp = first_mp->b_cont; 24841 freeb(first_mp); 24842 first_mp = mp; 24843 mctl_present = B_FALSE; 24844 } else { 24845 /* 24846 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24847 * security properties for the looped-back packet. 24848 */ 24849 mctl_present = B_TRUE; 24850 mp = first_mp->b_cont; 24851 ASSERT(mp != NULL); 24852 ipsec_out_to_in(first_mp); 24853 } 24854 } else { 24855 mctl_present = B_FALSE; 24856 } 24857 24858 DTRACE_PROBE4(ip4__loopback__in__start, 24859 ill_t *, ill, ill_t *, NULL, 24860 ipha_t *, ipha, mblk_t *, first_mp); 24861 24862 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24863 ipst->ips_ipv4firewall_loopback_in, 24864 ill, NULL, ipha, first_mp, mp, 0, ipst); 24865 24866 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24867 24868 if (first_mp == NULL) 24869 return; 24870 24871 if (ipst->ips_ipobs_enabled) { 24872 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24873 zoneid_t stackzoneid = netstackid_to_zoneid( 24874 ipst->ips_netstack->netstack_stackid); 24875 24876 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24877 /* 24878 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24879 * address. Restrict the lookup below to the destination zone. 24880 */ 24881 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24882 lookup_zoneid = zoneid; 24883 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24884 lookup_zoneid); 24885 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 24886 IPV4_VERSION, 0, ipst); 24887 } 24888 24889 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24890 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24891 int, 1); 24892 24893 ipst->ips_loopback_packets++; 24894 24895 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24896 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24897 if (!IS_SIMPLE_IPH(ipha)) { 24898 ip_wput_local_options(ipha, ipst); 24899 } 24900 24901 protocol = ipha->ipha_protocol; 24902 switch (protocol) { 24903 case IPPROTO_ICMP: { 24904 ire_t *ire_zone; 24905 ilm_t *ilm; 24906 mblk_t *mp1; 24907 zoneid_t last_zoneid; 24908 ilm_walker_t ilw; 24909 24910 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24911 ASSERT(ire_type == IRE_BROADCAST); 24912 /* 24913 * In the multicast case, applications may have joined 24914 * the group from different zones, so we need to deliver 24915 * the packet to each of them. Loop through the 24916 * multicast memberships structures (ilm) on the receive 24917 * ill and send a copy of the packet up each matching 24918 * one. However, we don't do this for multicasts sent on 24919 * the loopback interface (PHYI_LOOPBACK flag set) as 24920 * they must stay in the sender's zone. 24921 * 24922 * ilm_add_v6() ensures that ilms in the same zone are 24923 * contiguous in the ill_ilm list. We use this property 24924 * to avoid sending duplicates needed when two 24925 * applications in the same zone join the same group on 24926 * different logical interfaces: we ignore the ilm if 24927 * it's zoneid is the same as the last matching one. 24928 * In addition, the sending of the packet for 24929 * ire_zoneid is delayed until all of the other ilms 24930 * have been exhausted. 24931 */ 24932 last_zoneid = -1; 24933 ilm = ilm_walker_start(&ilw, ill); 24934 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24935 if (ipha->ipha_dst != ilm->ilm_addr || 24936 ilm->ilm_zoneid == last_zoneid || 24937 ilm->ilm_zoneid == zoneid || 24938 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24939 continue; 24940 mp1 = ip_copymsg(first_mp); 24941 if (mp1 == NULL) 24942 continue; 24943 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24944 0, 0, mctl_present, B_FALSE, ill, 24945 ilm->ilm_zoneid); 24946 last_zoneid = ilm->ilm_zoneid; 24947 } 24948 ilm_walker_finish(&ilw); 24949 /* 24950 * Loopback case: the sending endpoint has 24951 * IP_MULTICAST_LOOP disabled, therefore we don't 24952 * dispatch the multicast packet to the sending zone. 24953 */ 24954 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24955 freemsg(first_mp); 24956 return; 24957 } 24958 } else if (ire_type == IRE_BROADCAST) { 24959 /* 24960 * In the broadcast case, there may be many zones 24961 * which need a copy of the packet delivered to them. 24962 * There is one IRE_BROADCAST per broadcast address 24963 * and per zone; we walk those using a helper function. 24964 * In addition, the sending of the packet for zoneid is 24965 * delayed until all of the other ires have been 24966 * processed. 24967 */ 24968 IRB_REFHOLD(ire->ire_bucket); 24969 ire_zone = NULL; 24970 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24971 ire)) != NULL) { 24972 mp1 = ip_copymsg(first_mp); 24973 if (mp1 == NULL) 24974 continue; 24975 24976 UPDATE_IB_PKT_COUNT(ire_zone); 24977 ire_zone->ire_last_used_time = lbolt; 24978 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24979 mctl_present, B_FALSE, ill, 24980 ire_zone->ire_zoneid); 24981 } 24982 IRB_REFRELE(ire->ire_bucket); 24983 } 24984 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24985 0, mctl_present, B_FALSE, ill, zoneid); 24986 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24987 "ip_wput_local_end: q %p (%S)", 24988 q, "icmp"); 24989 return; 24990 } 24991 case IPPROTO_IGMP: 24992 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24993 /* Bad packet - discarded by igmp_input */ 24994 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24995 "ip_wput_local_end: q %p (%S)", 24996 q, "igmp_input--bad packet"); 24997 if (mctl_present) 24998 freeb(first_mp); 24999 return; 25000 } 25001 /* 25002 * igmp_input() may have returned the pulled up message. 25003 * So first_mp and ipha need to be reinitialized. 25004 */ 25005 ipha = (ipha_t *)mp->b_rptr; 25006 if (mctl_present) 25007 first_mp->b_cont = mp; 25008 else 25009 first_mp = mp; 25010 /* deliver to local raw users */ 25011 break; 25012 case IPPROTO_ENCAP: 25013 /* 25014 * This case is covered by either ip_fanout_proto, or by 25015 * the above security processing for self-tunneled packets. 25016 */ 25017 break; 25018 case IPPROTO_UDP: { 25019 uint16_t *up; 25020 uint32_t ports; 25021 25022 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25023 UDP_PORTS_OFFSET); 25024 /* Force a 'valid' checksum. */ 25025 up[3] = 0; 25026 25027 ports = *(uint32_t *)up; 25028 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25029 (ire_type == IRE_BROADCAST), 25030 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25031 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25032 ill, zoneid); 25033 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25034 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25035 return; 25036 } 25037 case IPPROTO_TCP: { 25038 25039 /* 25040 * For TCP, discard broadcast packets. 25041 */ 25042 if ((ushort_t)ire_type == IRE_BROADCAST) { 25043 freemsg(first_mp); 25044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25045 ip2dbg(("ip_wput_local: discard broadcast\n")); 25046 return; 25047 } 25048 25049 if (mp->b_datap->db_type == M_DATA) { 25050 /* 25051 * M_DATA mblk, so init mblk (chain) for no struio(). 25052 */ 25053 mblk_t *mp1 = mp; 25054 25055 do { 25056 mp1->b_datap->db_struioflag = 0; 25057 } while ((mp1 = mp1->b_cont) != NULL); 25058 } 25059 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25060 <= mp->b_wptr); 25061 ip_fanout_tcp(q, first_mp, ill, ipha, 25062 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25063 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25064 mctl_present, B_FALSE, zoneid); 25065 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25066 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25067 return; 25068 } 25069 case IPPROTO_SCTP: 25070 { 25071 uint32_t ports; 25072 25073 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25074 ip_fanout_sctp(first_mp, ill, ipha, ports, 25075 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25076 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25077 return; 25078 } 25079 25080 default: 25081 break; 25082 } 25083 /* 25084 * Find a client for some other protocol. We give 25085 * copies to multiple clients, if more than one is 25086 * bound. 25087 */ 25088 ip_fanout_proto(q, first_mp, ill, ipha, 25089 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25090 mctl_present, B_FALSE, ill, zoneid); 25091 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25092 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25093 #undef rptr 25094 } 25095 25096 /* 25097 * Update any source route, record route, or timestamp options. 25098 * Check that we are at end of strict source route. 25099 * The options have been sanity checked by ip_wput_options(). 25100 */ 25101 static void 25102 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25103 { 25104 ipoptp_t opts; 25105 uchar_t *opt; 25106 uint8_t optval; 25107 uint8_t optlen; 25108 ipaddr_t dst; 25109 uint32_t ts; 25110 ire_t *ire; 25111 timestruc_t now; 25112 25113 ip2dbg(("ip_wput_local_options\n")); 25114 for (optval = ipoptp_first(&opts, ipha); 25115 optval != IPOPT_EOL; 25116 optval = ipoptp_next(&opts)) { 25117 opt = opts.ipoptp_cur; 25118 optlen = opts.ipoptp_len; 25119 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25120 switch (optval) { 25121 uint32_t off; 25122 case IPOPT_SSRR: 25123 case IPOPT_LSRR: 25124 off = opt[IPOPT_OFFSET]; 25125 off--; 25126 if (optlen < IP_ADDR_LEN || 25127 off > optlen - IP_ADDR_LEN) { 25128 /* End of source route */ 25129 break; 25130 } 25131 /* 25132 * This will only happen if two consecutive entries 25133 * in the source route contains our address or if 25134 * it is a packet with a loose source route which 25135 * reaches us before consuming the whole source route 25136 */ 25137 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25138 if (optval == IPOPT_SSRR) { 25139 return; 25140 } 25141 /* 25142 * Hack: instead of dropping the packet truncate the 25143 * source route to what has been used by filling the 25144 * rest with IPOPT_NOP. 25145 */ 25146 opt[IPOPT_OLEN] = (uint8_t)off; 25147 while (off < optlen) { 25148 opt[off++] = IPOPT_NOP; 25149 } 25150 break; 25151 case IPOPT_RR: 25152 off = opt[IPOPT_OFFSET]; 25153 off--; 25154 if (optlen < IP_ADDR_LEN || 25155 off > optlen - IP_ADDR_LEN) { 25156 /* No more room - ignore */ 25157 ip1dbg(( 25158 "ip_wput_forward_options: end of RR\n")); 25159 break; 25160 } 25161 dst = htonl(INADDR_LOOPBACK); 25162 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25163 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25164 break; 25165 case IPOPT_TS: 25166 /* Insert timestamp if there is romm */ 25167 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25168 case IPOPT_TS_TSONLY: 25169 off = IPOPT_TS_TIMELEN; 25170 break; 25171 case IPOPT_TS_PRESPEC: 25172 case IPOPT_TS_PRESPEC_RFC791: 25173 /* Verify that the address matched */ 25174 off = opt[IPOPT_OFFSET] - 1; 25175 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25176 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25177 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25178 ipst); 25179 if (ire == NULL) { 25180 /* Not for us */ 25181 break; 25182 } 25183 ire_refrele(ire); 25184 /* FALLTHRU */ 25185 case IPOPT_TS_TSANDADDR: 25186 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25187 break; 25188 default: 25189 /* 25190 * ip_*put_options should have already 25191 * dropped this packet. 25192 */ 25193 cmn_err(CE_PANIC, "ip_wput_local_options: " 25194 "unknown IT - bug in ip_wput_options?\n"); 25195 return; /* Keep "lint" happy */ 25196 } 25197 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25198 /* Increase overflow counter */ 25199 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25200 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25201 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25202 (off << 4); 25203 break; 25204 } 25205 off = opt[IPOPT_OFFSET] - 1; 25206 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25207 case IPOPT_TS_PRESPEC: 25208 case IPOPT_TS_PRESPEC_RFC791: 25209 case IPOPT_TS_TSANDADDR: 25210 dst = htonl(INADDR_LOOPBACK); 25211 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25212 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25213 /* FALLTHRU */ 25214 case IPOPT_TS_TSONLY: 25215 off = opt[IPOPT_OFFSET] - 1; 25216 /* Compute # of milliseconds since midnight */ 25217 gethrestime(&now); 25218 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25219 now.tv_nsec / (NANOSEC / MILLISEC); 25220 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25221 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25222 break; 25223 } 25224 break; 25225 } 25226 } 25227 } 25228 25229 /* 25230 * Send out a multicast packet on interface ipif. 25231 * The sender does not have an conn. 25232 * Caller verifies that this isn't a PHYI_LOOPBACK. 25233 */ 25234 void 25235 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25236 { 25237 ipha_t *ipha; 25238 ire_t *ire; 25239 ipaddr_t dst; 25240 mblk_t *first_mp; 25241 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25242 25243 /* igmp_sendpkt always allocates a ipsec_out_t */ 25244 ASSERT(mp->b_datap->db_type == M_CTL); 25245 ASSERT(!ipif->ipif_isv6); 25246 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25247 25248 first_mp = mp; 25249 mp = first_mp->b_cont; 25250 ASSERT(mp->b_datap->db_type == M_DATA); 25251 ipha = (ipha_t *)mp->b_rptr; 25252 25253 /* 25254 * Find an IRE which matches the destination and the outgoing 25255 * queue (i.e. the outgoing interface.) 25256 */ 25257 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25258 dst = ipif->ipif_pp_dst_addr; 25259 else 25260 dst = ipha->ipha_dst; 25261 /* 25262 * The source address has already been initialized by the 25263 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25264 * be sufficient rather than MATCH_IRE_IPIF. 25265 * 25266 * This function is used for sending IGMP packets. For IPMP, 25267 * we sidestep IGMP snooping issues by sending all multicast 25268 * traffic on a single interface in the IPMP group. 25269 */ 25270 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25271 MATCH_IRE_ILL, ipst); 25272 if (!ire) { 25273 /* 25274 * Mark this packet to make it be delivered to 25275 * ip_wput_ire after the new ire has been 25276 * created. 25277 */ 25278 mp->b_prev = NULL; 25279 mp->b_next = NULL; 25280 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25281 zoneid, &zero_info); 25282 return; 25283 } 25284 25285 /* 25286 * Honor the RTF_SETSRC flag; this is the only case 25287 * where we force this addr whatever the current src addr is, 25288 * because this address is set by igmp_sendpkt(), and 25289 * cannot be specified by any user. 25290 */ 25291 if (ire->ire_flags & RTF_SETSRC) { 25292 ipha->ipha_src = ire->ire_src_addr; 25293 } 25294 25295 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25296 } 25297 25298 /* 25299 * NOTE : This function does not ire_refrele the ire argument passed in. 25300 * 25301 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25302 * failure. The nce_fp_mp can vanish any time in the case of 25303 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25304 * the ire_lock to access the nce_fp_mp in this case. 25305 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25306 * prepending a fastpath message IPQoS processing must precede it, we also set 25307 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25308 * (IPQoS might have set the b_band for CoS marking). 25309 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25310 * must follow it so that IPQoS can mark the dl_priority field for CoS 25311 * marking, if needed. 25312 */ 25313 static mblk_t * 25314 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25315 uint32_t ill_index, ipha_t **iphap) 25316 { 25317 uint_t hlen; 25318 ipha_t *ipha; 25319 mblk_t *mp1; 25320 boolean_t qos_done = B_FALSE; 25321 uchar_t *ll_hdr; 25322 ip_stack_t *ipst = ire->ire_ipst; 25323 25324 #define rptr ((uchar_t *)ipha) 25325 25326 ipha = (ipha_t *)mp->b_rptr; 25327 hlen = 0; 25328 LOCK_IRE_FP_MP(ire); 25329 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25330 ASSERT(DB_TYPE(mp1) == M_DATA); 25331 /* Initiate IPPF processing */ 25332 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25333 UNLOCK_IRE_FP_MP(ire); 25334 ip_process(proc, &mp, ill_index); 25335 if (mp == NULL) 25336 return (NULL); 25337 25338 ipha = (ipha_t *)mp->b_rptr; 25339 LOCK_IRE_FP_MP(ire); 25340 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25341 qos_done = B_TRUE; 25342 goto no_fp_mp; 25343 } 25344 ASSERT(DB_TYPE(mp1) == M_DATA); 25345 } 25346 hlen = MBLKL(mp1); 25347 /* 25348 * Check if we have enough room to prepend fastpath 25349 * header 25350 */ 25351 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25352 ll_hdr = rptr - hlen; 25353 bcopy(mp1->b_rptr, ll_hdr, hlen); 25354 /* 25355 * Set the b_rptr to the start of the link layer 25356 * header 25357 */ 25358 mp->b_rptr = ll_hdr; 25359 mp1 = mp; 25360 } else { 25361 mp1 = copyb(mp1); 25362 if (mp1 == NULL) 25363 goto unlock_err; 25364 mp1->b_band = mp->b_band; 25365 mp1->b_cont = mp; 25366 /* 25367 * certain system generated traffic may not 25368 * have cred/label in ip header block. This 25369 * is true even for a labeled system. But for 25370 * labeled traffic, inherit the label in the 25371 * new header. 25372 */ 25373 if (DB_CRED(mp) != NULL) 25374 mblk_setcred(mp1, DB_CRED(mp)); 25375 /* 25376 * XXX disable ICK_VALID and compute checksum 25377 * here; can happen if nce_fp_mp changes and 25378 * it can't be copied now due to insufficient 25379 * space. (unlikely, fp mp can change, but it 25380 * does not increase in length) 25381 */ 25382 } 25383 UNLOCK_IRE_FP_MP(ire); 25384 } else { 25385 no_fp_mp: 25386 mp1 = copyb(ire->ire_nce->nce_res_mp); 25387 if (mp1 == NULL) { 25388 unlock_err: 25389 UNLOCK_IRE_FP_MP(ire); 25390 freemsg(mp); 25391 return (NULL); 25392 } 25393 UNLOCK_IRE_FP_MP(ire); 25394 mp1->b_cont = mp; 25395 /* 25396 * certain system generated traffic may not 25397 * have cred/label in ip header block. This 25398 * is true even for a labeled system. But for 25399 * labeled traffic, inherit the label in the 25400 * new header. 25401 */ 25402 if (DB_CRED(mp) != NULL) 25403 mblk_setcred(mp1, DB_CRED(mp)); 25404 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25405 ip_process(proc, &mp1, ill_index); 25406 if (mp1 == NULL) 25407 return (NULL); 25408 25409 if (mp1->b_cont == NULL) 25410 ipha = NULL; 25411 else 25412 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25413 } 25414 } 25415 25416 *iphap = ipha; 25417 return (mp1); 25418 #undef rptr 25419 } 25420 25421 /* 25422 * Finish the outbound IPsec processing for an IPv6 packet. This function 25423 * is called from ipsec_out_process() if the IPsec packet was processed 25424 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25425 * asynchronously. 25426 */ 25427 void 25428 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25429 ire_t *ire_arg) 25430 { 25431 in6_addr_t *v6dstp; 25432 ire_t *ire; 25433 mblk_t *mp; 25434 ip6_t *ip6h1; 25435 uint_t ill_index; 25436 ipsec_out_t *io; 25437 boolean_t hwaccel; 25438 uint32_t flags = IP6_NO_IPPOLICY; 25439 int match_flags; 25440 zoneid_t zoneid; 25441 boolean_t ill_need_rele = B_FALSE; 25442 boolean_t ire_need_rele = B_FALSE; 25443 ip_stack_t *ipst; 25444 25445 mp = ipsec_mp->b_cont; 25446 ip6h1 = (ip6_t *)mp->b_rptr; 25447 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25448 ASSERT(io->ipsec_out_ns != NULL); 25449 ipst = io->ipsec_out_ns->netstack_ip; 25450 ill_index = io->ipsec_out_ill_index; 25451 if (io->ipsec_out_reachable) { 25452 flags |= IPV6_REACHABILITY_CONFIRMATION; 25453 } 25454 hwaccel = io->ipsec_out_accelerated; 25455 zoneid = io->ipsec_out_zoneid; 25456 ASSERT(zoneid != ALL_ZONES); 25457 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25458 /* Multicast addresses should have non-zero ill_index. */ 25459 v6dstp = &ip6h->ip6_dst; 25460 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25461 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25462 25463 if (ill == NULL && ill_index != 0) { 25464 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25465 /* Failure case frees things for us. */ 25466 if (ill == NULL) 25467 return; 25468 25469 ill_need_rele = B_TRUE; 25470 } 25471 ASSERT(mp != NULL); 25472 25473 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25474 boolean_t unspec_src; 25475 ipif_t *ipif; 25476 25477 /* 25478 * Use the ill_index to get the right ill. 25479 */ 25480 unspec_src = io->ipsec_out_unspec_src; 25481 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25482 if (ipif == NULL) { 25483 if (ill_need_rele) 25484 ill_refrele(ill); 25485 freemsg(ipsec_mp); 25486 return; 25487 } 25488 25489 if (ire_arg != NULL) { 25490 ire = ire_arg; 25491 } else { 25492 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25493 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25494 ire_need_rele = B_TRUE; 25495 } 25496 if (ire != NULL) { 25497 ipif_refrele(ipif); 25498 /* 25499 * XXX Do the multicast forwarding now, as the IPsec 25500 * processing has been done. 25501 */ 25502 goto send; 25503 } 25504 25505 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25506 mp->b_prev = NULL; 25507 mp->b_next = NULL; 25508 25509 /* 25510 * If the IPsec packet was processed asynchronously, 25511 * drop it now. 25512 */ 25513 if (q == NULL) { 25514 if (ill_need_rele) 25515 ill_refrele(ill); 25516 freemsg(ipsec_mp); 25517 return; 25518 } 25519 25520 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25521 unspec_src, zoneid); 25522 ipif_refrele(ipif); 25523 } else { 25524 if (ire_arg != NULL) { 25525 ire = ire_arg; 25526 } else { 25527 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25528 ire_need_rele = B_TRUE; 25529 } 25530 if (ire != NULL) 25531 goto send; 25532 /* 25533 * ire disappeared underneath. 25534 * 25535 * What we need to do here is the ip_newroute 25536 * logic to get the ire without doing the IPsec 25537 * processing. Follow the same old path. But this 25538 * time, ip_wput or ire_add_then_send will call us 25539 * directly as all the IPsec operations are done. 25540 */ 25541 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25542 mp->b_prev = NULL; 25543 mp->b_next = NULL; 25544 25545 /* 25546 * If the IPsec packet was processed asynchronously, 25547 * drop it now. 25548 */ 25549 if (q == NULL) { 25550 if (ill_need_rele) 25551 ill_refrele(ill); 25552 freemsg(ipsec_mp); 25553 return; 25554 } 25555 25556 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25557 zoneid, ipst); 25558 } 25559 if (ill != NULL && ill_need_rele) 25560 ill_refrele(ill); 25561 return; 25562 send: 25563 if (ill != NULL && ill_need_rele) 25564 ill_refrele(ill); 25565 25566 /* Local delivery */ 25567 if (ire->ire_stq == NULL) { 25568 ill_t *out_ill; 25569 ASSERT(q != NULL); 25570 25571 /* PFHooks: LOOPBACK_OUT */ 25572 out_ill = ire_to_ill(ire); 25573 25574 /* 25575 * DTrace this as ip:::send. A blocked packet will fire the 25576 * send probe, but not the receive probe. 25577 */ 25578 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25579 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25580 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25581 25582 DTRACE_PROBE4(ip6__loopback__out__start, 25583 ill_t *, NULL, ill_t *, out_ill, 25584 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25585 25586 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25587 ipst->ips_ipv6firewall_loopback_out, 25588 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25589 25590 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25591 25592 if (ipsec_mp != NULL) { 25593 ip_wput_local_v6(RD(q), out_ill, 25594 ip6h, ipsec_mp, ire, 0, zoneid); 25595 } 25596 if (ire_need_rele) 25597 ire_refrele(ire); 25598 return; 25599 } 25600 /* 25601 * Everything is done. Send it out on the wire. 25602 * We force the insertion of a fragment header using the 25603 * IPH_FRAG_HDR flag in two cases: 25604 * - after reception of an ICMPv6 "packet too big" message 25605 * with a MTU < 1280 (cf. RFC 2460 section 5) 25606 * - for multirouted IPv6 packets, so that the receiver can 25607 * discard duplicates according to their fragment identifier 25608 */ 25609 /* XXX fix flow control problems. */ 25610 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25611 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25612 if (hwaccel) { 25613 /* 25614 * hardware acceleration does not handle these 25615 * "slow path" cases. 25616 */ 25617 /* IPsec KSTATS: should bump bean counter here. */ 25618 if (ire_need_rele) 25619 ire_refrele(ire); 25620 freemsg(ipsec_mp); 25621 return; 25622 } 25623 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25624 (mp->b_cont ? msgdsize(mp) : 25625 mp->b_wptr - (uchar_t *)ip6h)) { 25626 /* IPsec KSTATS: should bump bean counter here. */ 25627 ip0dbg(("Packet length mismatch: %d, %ld\n", 25628 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25629 msgdsize(mp))); 25630 if (ire_need_rele) 25631 ire_refrele(ire); 25632 freemsg(ipsec_mp); 25633 return; 25634 } 25635 ASSERT(mp->b_prev == NULL); 25636 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25637 ntohs(ip6h->ip6_plen) + 25638 IPV6_HDR_LEN, ire->ire_max_frag)); 25639 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25640 ire->ire_max_frag); 25641 } else { 25642 UPDATE_OB_PKT_COUNT(ire); 25643 ire->ire_last_used_time = lbolt; 25644 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25645 } 25646 if (ire_need_rele) 25647 ire_refrele(ire); 25648 freeb(ipsec_mp); 25649 } 25650 25651 void 25652 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25653 { 25654 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25655 da_ipsec_t *hada; /* data attributes */ 25656 ill_t *ill = (ill_t *)q->q_ptr; 25657 25658 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25659 25660 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25661 /* IPsec KSTATS: Bump lose counter here! */ 25662 freemsg(mp); 25663 return; 25664 } 25665 25666 /* 25667 * It's an IPsec packet that must be 25668 * accelerated by the Provider, and the 25669 * outbound ill is IPsec acceleration capable. 25670 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25671 * to the ill. 25672 * IPsec KSTATS: should bump packet counter here. 25673 */ 25674 25675 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25676 if (hada_mp == NULL) { 25677 /* IPsec KSTATS: should bump packet counter here. */ 25678 freemsg(mp); 25679 return; 25680 } 25681 25682 hada_mp->b_datap->db_type = M_CTL; 25683 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25684 hada_mp->b_cont = mp; 25685 25686 hada = (da_ipsec_t *)hada_mp->b_rptr; 25687 bzero(hada, sizeof (da_ipsec_t)); 25688 hada->da_type = IPHADA_M_CTL; 25689 25690 putnext(q, hada_mp); 25691 } 25692 25693 /* 25694 * Finish the outbound IPsec processing. This function is called from 25695 * ipsec_out_process() if the IPsec packet was processed 25696 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25697 * asynchronously. 25698 */ 25699 void 25700 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25701 ire_t *ire_arg) 25702 { 25703 uint32_t v_hlen_tos_len; 25704 ipaddr_t dst; 25705 ipif_t *ipif = NULL; 25706 ire_t *ire; 25707 ire_t *ire1 = NULL; 25708 mblk_t *next_mp = NULL; 25709 uint32_t max_frag; 25710 boolean_t multirt_send = B_FALSE; 25711 mblk_t *mp; 25712 ipha_t *ipha1; 25713 uint_t ill_index; 25714 ipsec_out_t *io; 25715 int match_flags; 25716 irb_t *irb = NULL; 25717 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25718 zoneid_t zoneid; 25719 ipxmit_state_t pktxmit_state; 25720 ip_stack_t *ipst; 25721 25722 #ifdef _BIG_ENDIAN 25723 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25724 #else 25725 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25726 #endif 25727 25728 mp = ipsec_mp->b_cont; 25729 ipha1 = (ipha_t *)mp->b_rptr; 25730 ASSERT(mp != NULL); 25731 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25732 dst = ipha->ipha_dst; 25733 25734 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25735 ill_index = io->ipsec_out_ill_index; 25736 zoneid = io->ipsec_out_zoneid; 25737 ASSERT(zoneid != ALL_ZONES); 25738 ipst = io->ipsec_out_ns->netstack_ip; 25739 ASSERT(io->ipsec_out_ns != NULL); 25740 25741 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25742 if (ill == NULL && ill_index != 0) { 25743 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25744 /* Failure case frees things for us. */ 25745 if (ill == NULL) 25746 return; 25747 25748 ill_need_rele = B_TRUE; 25749 } 25750 25751 if (CLASSD(dst)) { 25752 boolean_t conn_dontroute; 25753 /* 25754 * Use the ill_index to get the right ipif. 25755 */ 25756 conn_dontroute = io->ipsec_out_dontroute; 25757 if (ill_index == 0) 25758 ipif = ipif_lookup_group(dst, zoneid, ipst); 25759 else 25760 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25761 if (ipif == NULL) { 25762 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25763 " multicast\n")); 25764 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25765 freemsg(ipsec_mp); 25766 goto done; 25767 } 25768 /* 25769 * ipha_src has already been intialized with the 25770 * value of the ipif in ip_wput. All we need now is 25771 * an ire to send this downstream. 25772 */ 25773 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25774 MBLK_GETLABEL(mp), match_flags, ipst); 25775 if (ire != NULL) { 25776 ill_t *ill1; 25777 /* 25778 * Do the multicast forwarding now, as the IPsec 25779 * processing has been done. 25780 */ 25781 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25782 (ill1 = ire_to_ill(ire))) { 25783 if (ip_mforward(ill1, ipha, mp)) { 25784 freemsg(ipsec_mp); 25785 ip1dbg(("ip_wput_ipsec_out: mforward " 25786 "failed\n")); 25787 ire_refrele(ire); 25788 goto done; 25789 } 25790 } 25791 goto send; 25792 } 25793 25794 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25795 mp->b_prev = NULL; 25796 mp->b_next = NULL; 25797 25798 /* 25799 * If the IPsec packet was processed asynchronously, 25800 * drop it now. 25801 */ 25802 if (q == NULL) { 25803 freemsg(ipsec_mp); 25804 goto done; 25805 } 25806 25807 /* 25808 * We may be using a wrong ipif to create the ire. 25809 * But it is okay as the source address is assigned 25810 * for the packet already. Next outbound packet would 25811 * create the IRE with the right IPIF in ip_wput. 25812 * 25813 * Also handle RTF_MULTIRT routes. 25814 */ 25815 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25816 zoneid, &zero_info); 25817 } else { 25818 if (ire_arg != NULL) { 25819 ire = ire_arg; 25820 ire_need_rele = B_FALSE; 25821 } else { 25822 ire = ire_cache_lookup(dst, zoneid, 25823 MBLK_GETLABEL(mp), ipst); 25824 } 25825 if (ire != NULL) { 25826 goto send; 25827 } 25828 25829 /* 25830 * ire disappeared underneath. 25831 * 25832 * What we need to do here is the ip_newroute 25833 * logic to get the ire without doing the IPsec 25834 * processing. Follow the same old path. But this 25835 * time, ip_wput or ire_add_then_put will call us 25836 * directly as all the IPsec operations are done. 25837 */ 25838 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25839 mp->b_prev = NULL; 25840 mp->b_next = NULL; 25841 25842 /* 25843 * If the IPsec packet was processed asynchronously, 25844 * drop it now. 25845 */ 25846 if (q == NULL) { 25847 freemsg(ipsec_mp); 25848 goto done; 25849 } 25850 25851 /* 25852 * Since we're going through ip_newroute() again, we 25853 * need to make sure we don't: 25854 * 25855 * 1.) Trigger the ASSERT() with the ipha_ident 25856 * overloading. 25857 * 2.) Redo transport-layer checksumming, since we've 25858 * already done all that to get this far. 25859 * 25860 * The easiest way not do either of the above is to set 25861 * the ipha_ident field to IP_HDR_INCLUDED. 25862 */ 25863 ipha->ipha_ident = IP_HDR_INCLUDED; 25864 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25865 zoneid, ipst); 25866 } 25867 goto done; 25868 send: 25869 if (ire->ire_stq == NULL) { 25870 ill_t *out_ill; 25871 /* 25872 * Loopbacks go through ip_wput_local except for one case. 25873 * We come here if we generate a icmp_frag_needed message 25874 * after IPsec processing is over. When this function calls 25875 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25876 * icmp_frag_needed. The message generated comes back here 25877 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25878 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25879 * source address as it is usually set in ip_wput_ire. As 25880 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25881 * and we end up here. We can't enter ip_wput_ire once the 25882 * IPsec processing is over and hence we need to do it here. 25883 */ 25884 ASSERT(q != NULL); 25885 UPDATE_OB_PKT_COUNT(ire); 25886 ire->ire_last_used_time = lbolt; 25887 if (ipha->ipha_src == 0) 25888 ipha->ipha_src = ire->ire_src_addr; 25889 25890 /* PFHooks: LOOPBACK_OUT */ 25891 out_ill = ire_to_ill(ire); 25892 25893 /* 25894 * DTrace this as ip:::send. A blocked packet will fire the 25895 * send probe, but not the receive probe. 25896 */ 25897 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25898 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25899 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25900 25901 DTRACE_PROBE4(ip4__loopback__out__start, 25902 ill_t *, NULL, ill_t *, out_ill, 25903 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25904 25905 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25906 ipst->ips_ipv4firewall_loopback_out, 25907 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25908 25909 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25910 25911 if (ipsec_mp != NULL) 25912 ip_wput_local(RD(q), out_ill, 25913 ipha, ipsec_mp, ire, 0, zoneid); 25914 if (ire_need_rele) 25915 ire_refrele(ire); 25916 goto done; 25917 } 25918 25919 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25920 /* 25921 * We are through with IPsec processing. 25922 * Fragment this and send it on the wire. 25923 */ 25924 if (io->ipsec_out_accelerated) { 25925 /* 25926 * The packet has been accelerated but must 25927 * be fragmented. This should not happen 25928 * since AH and ESP must not accelerate 25929 * packets that need fragmentation, however 25930 * the configuration could have changed 25931 * since the AH or ESP processing. 25932 * Drop packet. 25933 * IPsec KSTATS: bump bean counter here. 25934 */ 25935 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25936 "fragmented accelerated packet!\n")); 25937 freemsg(ipsec_mp); 25938 } else { 25939 ip_wput_ire_fragmentit(ipsec_mp, ire, 25940 zoneid, ipst, NULL); 25941 } 25942 if (ire_need_rele) 25943 ire_refrele(ire); 25944 goto done; 25945 } 25946 25947 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25948 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25949 (void *)ire->ire_ipif, (void *)ipif)); 25950 25951 /* 25952 * Multiroute the secured packet. 25953 */ 25954 if (ire->ire_flags & RTF_MULTIRT) { 25955 ire_t *first_ire; 25956 irb = ire->ire_bucket; 25957 ASSERT(irb != NULL); 25958 /* 25959 * This ire has been looked up as the one that 25960 * goes through the given ipif; 25961 * make sure we do not omit any other multiroute ire 25962 * that may be present in the bucket before this one. 25963 */ 25964 IRB_REFHOLD(irb); 25965 for (first_ire = irb->irb_ire; 25966 first_ire != NULL; 25967 first_ire = first_ire->ire_next) { 25968 if ((first_ire->ire_flags & RTF_MULTIRT) && 25969 (first_ire->ire_addr == ire->ire_addr) && 25970 !(first_ire->ire_marks & 25971 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25972 break; 25973 } 25974 25975 if ((first_ire != NULL) && (first_ire != ire)) { 25976 /* 25977 * Don't change the ire if the packet must 25978 * be fragmented if sent via this new one. 25979 */ 25980 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25981 IRE_REFHOLD(first_ire); 25982 if (ire_need_rele) 25983 ire_refrele(ire); 25984 else 25985 ire_need_rele = B_TRUE; 25986 ire = first_ire; 25987 } 25988 } 25989 IRB_REFRELE(irb); 25990 25991 multirt_send = B_TRUE; 25992 max_frag = ire->ire_max_frag; 25993 } 25994 25995 /* 25996 * In most cases, the emission loop below is entered only once. 25997 * Only in the case where the ire holds the RTF_MULTIRT 25998 * flag, we loop to process all RTF_MULTIRT ires in the 25999 * bucket, and send the packet through all crossed 26000 * RTF_MULTIRT routes. 26001 */ 26002 do { 26003 if (multirt_send) { 26004 /* 26005 * ire1 holds here the next ire to process in the 26006 * bucket. If multirouting is expected, 26007 * any non-RTF_MULTIRT ire that has the 26008 * right destination address is ignored. 26009 */ 26010 ASSERT(irb != NULL); 26011 IRB_REFHOLD(irb); 26012 for (ire1 = ire->ire_next; 26013 ire1 != NULL; 26014 ire1 = ire1->ire_next) { 26015 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26016 continue; 26017 if (ire1->ire_addr != ire->ire_addr) 26018 continue; 26019 if (ire1->ire_marks & 26020 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26021 continue; 26022 /* No loopback here */ 26023 if (ire1->ire_stq == NULL) 26024 continue; 26025 /* 26026 * Ensure we do not exceed the MTU 26027 * of the next route. 26028 */ 26029 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26030 ip_multirt_bad_mtu(ire1, max_frag); 26031 continue; 26032 } 26033 26034 IRE_REFHOLD(ire1); 26035 break; 26036 } 26037 IRB_REFRELE(irb); 26038 if (ire1 != NULL) { 26039 /* 26040 * We are in a multiple send case, need to 26041 * make a copy of the packet. 26042 */ 26043 next_mp = copymsg(ipsec_mp); 26044 if (next_mp == NULL) { 26045 ire_refrele(ire1); 26046 ire1 = NULL; 26047 } 26048 } 26049 } 26050 /* 26051 * Everything is done. Send it out on the wire 26052 * 26053 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26054 * either send it on the wire or, in the case of 26055 * HW acceleration, call ipsec_hw_putnext. 26056 */ 26057 if (ire->ire_nce && 26058 ire->ire_nce->nce_state != ND_REACHABLE) { 26059 DTRACE_PROBE2(ip__wput__ipsec__bail, 26060 (ire_t *), ire, (mblk_t *), ipsec_mp); 26061 /* 26062 * If ire's link-layer is unresolved (this 26063 * would only happen if the incomplete ire 26064 * was added to cachetable via forwarding path) 26065 * don't bother going to ip_xmit_v4. Just drop the 26066 * packet. 26067 * There is a slight risk here, in that, if we 26068 * have the forwarding path create an incomplete 26069 * IRE, then until the IRE is completed, any 26070 * transmitted IPsec packets will be dropped 26071 * instead of being queued waiting for resolution. 26072 * 26073 * But the likelihood of a forwarding packet and a wput 26074 * packet sending to the same dst at the same time 26075 * and there not yet be an ARP entry for it is small. 26076 * Furthermore, if this actually happens, it might 26077 * be likely that wput would generate multiple 26078 * packets (and forwarding would also have a train 26079 * of packets) for that destination. If this is 26080 * the case, some of them would have been dropped 26081 * anyway, since ARP only queues a few packets while 26082 * waiting for resolution 26083 * 26084 * NOTE: We should really call ip_xmit_v4, 26085 * and let it queue the packet and send the 26086 * ARP query and have ARP come back thus: 26087 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26088 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26089 * hw accel work. But it's too complex to get 26090 * the IPsec hw acceleration approach to fit 26091 * well with ip_xmit_v4 doing ARP without 26092 * doing IPsec simplification. For now, we just 26093 * poke ip_xmit_v4 to trigger the arp resolve, so 26094 * that we can continue with the send on the next 26095 * attempt. 26096 * 26097 * XXX THis should be revisited, when 26098 * the IPsec/IP interaction is cleaned up 26099 */ 26100 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26101 " - dropping packet\n")); 26102 freemsg(ipsec_mp); 26103 /* 26104 * Call ip_xmit_v4() to trigger ARP query 26105 * in case the nce_state is ND_INITIAL 26106 */ 26107 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26108 goto drop_pkt; 26109 } 26110 26111 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26112 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26113 mblk_t *, ipsec_mp); 26114 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26115 ipst->ips_ipv4firewall_physical_out, NULL, 26116 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26117 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26118 if (ipsec_mp == NULL) 26119 goto drop_pkt; 26120 26121 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26122 pktxmit_state = ip_xmit_v4(mp, ire, 26123 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26124 26125 if ((pktxmit_state == SEND_FAILED) || 26126 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26127 26128 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26129 drop_pkt: 26130 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26131 ipIfStatsOutDiscards); 26132 if (ire_need_rele) 26133 ire_refrele(ire); 26134 if (ire1 != NULL) { 26135 ire_refrele(ire1); 26136 freemsg(next_mp); 26137 } 26138 goto done; 26139 } 26140 26141 freeb(ipsec_mp); 26142 if (ire_need_rele) 26143 ire_refrele(ire); 26144 26145 if (ire1 != NULL) { 26146 ire = ire1; 26147 ire_need_rele = B_TRUE; 26148 ASSERT(next_mp); 26149 ipsec_mp = next_mp; 26150 mp = ipsec_mp->b_cont; 26151 ire1 = NULL; 26152 next_mp = NULL; 26153 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26154 } else { 26155 multirt_send = B_FALSE; 26156 } 26157 } while (multirt_send); 26158 done: 26159 if (ill != NULL && ill_need_rele) 26160 ill_refrele(ill); 26161 if (ipif != NULL) 26162 ipif_refrele(ipif); 26163 } 26164 26165 /* 26166 * Get the ill corresponding to the specified ire, and compare its 26167 * capabilities with the protocol and algorithms specified by the 26168 * the SA obtained from ipsec_out. If they match, annotate the 26169 * ipsec_out structure to indicate that the packet needs acceleration. 26170 * 26171 * 26172 * A packet is eligible for outbound hardware acceleration if the 26173 * following conditions are satisfied: 26174 * 26175 * 1. the packet will not be fragmented 26176 * 2. the provider supports the algorithm 26177 * 3. there is no pending control message being exchanged 26178 * 4. snoop is not attached 26179 * 5. the destination address is not a broadcast or multicast address. 26180 * 26181 * Rationale: 26182 * - Hardware drivers do not support fragmentation with 26183 * the current interface. 26184 * - snoop, multicast, and broadcast may result in exposure of 26185 * a cleartext datagram. 26186 * We check all five of these conditions here. 26187 * 26188 * XXX would like to nuke "ire_t *" parameter here; problem is that 26189 * IRE is only way to figure out if a v4 address is a broadcast and 26190 * thus ineligible for acceleration... 26191 */ 26192 static void 26193 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26194 { 26195 ipsec_out_t *io; 26196 mblk_t *data_mp; 26197 uint_t plen, overhead; 26198 ip_stack_t *ipst; 26199 26200 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26201 return; 26202 26203 if (ill == NULL) 26204 return; 26205 ipst = ill->ill_ipst; 26206 /* 26207 * Destination address is a broadcast or multicast. Punt. 26208 */ 26209 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26210 IRE_LOCAL))) 26211 return; 26212 26213 data_mp = ipsec_mp->b_cont; 26214 26215 if (ill->ill_isv6) { 26216 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26217 26218 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26219 return; 26220 26221 plen = ip6h->ip6_plen; 26222 } else { 26223 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26224 26225 if (CLASSD(ipha->ipha_dst)) 26226 return; 26227 26228 plen = ipha->ipha_length; 26229 } 26230 /* 26231 * Is there a pending DLPI control message being exchanged 26232 * between IP/IPsec and the DLS Provider? If there is, it 26233 * could be a SADB update, and the state of the DLS Provider 26234 * SADB might not be in sync with the SADB maintained by 26235 * IPsec. To avoid dropping packets or using the wrong keying 26236 * material, we do not accelerate this packet. 26237 */ 26238 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26239 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26240 "ill_dlpi_pending! don't accelerate packet\n")); 26241 return; 26242 } 26243 26244 /* 26245 * Is the Provider in promiscous mode? If it does, we don't 26246 * accelerate the packet since it will bounce back up to the 26247 * listeners in the clear. 26248 */ 26249 if (ill->ill_promisc_on_phys) { 26250 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26251 "ill in promiscous mode, don't accelerate packet\n")); 26252 return; 26253 } 26254 26255 /* 26256 * Will the packet require fragmentation? 26257 */ 26258 26259 /* 26260 * IPsec ESP note: this is a pessimistic estimate, but the same 26261 * as is used elsewhere. 26262 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26263 * + 2-byte trailer 26264 */ 26265 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26266 IPSEC_BASE_ESP_HDR_SIZE(sa); 26267 26268 if ((plen + overhead) > ill->ill_max_mtu) 26269 return; 26270 26271 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26272 26273 /* 26274 * Can the ill accelerate this IPsec protocol and algorithm 26275 * specified by the SA? 26276 */ 26277 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26278 ill->ill_isv6, sa, ipst->ips_netstack)) { 26279 return; 26280 } 26281 26282 /* 26283 * Tell AH or ESP that the outbound ill is capable of 26284 * accelerating this packet. 26285 */ 26286 io->ipsec_out_is_capab_ill = B_TRUE; 26287 } 26288 26289 /* 26290 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26291 * 26292 * If this function returns B_TRUE, the requested SA's have been filled 26293 * into the ipsec_out_*_sa pointers. 26294 * 26295 * If the function returns B_FALSE, the packet has been "consumed", most 26296 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26297 * 26298 * The SA references created by the protocol-specific "select" 26299 * function will be released when the ipsec_mp is freed, thanks to the 26300 * ipsec_out_free destructor -- see spd.c. 26301 */ 26302 static boolean_t 26303 ipsec_out_select_sa(mblk_t *ipsec_mp) 26304 { 26305 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26306 ipsec_out_t *io; 26307 ipsec_policy_t *pp; 26308 ipsec_action_t *ap; 26309 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26310 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26311 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26312 26313 if (!io->ipsec_out_secure) { 26314 /* 26315 * We came here by mistake. 26316 * Don't bother with ipsec processing 26317 * We should "discourage" this path in the future. 26318 */ 26319 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26320 return (B_FALSE); 26321 } 26322 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26323 ASSERT((io->ipsec_out_policy != NULL) || 26324 (io->ipsec_out_act != NULL)); 26325 26326 ASSERT(io->ipsec_out_failed == B_FALSE); 26327 26328 /* 26329 * IPsec processing has started. 26330 */ 26331 io->ipsec_out_proc_begin = B_TRUE; 26332 ap = io->ipsec_out_act; 26333 if (ap == NULL) { 26334 pp = io->ipsec_out_policy; 26335 ASSERT(pp != NULL); 26336 ap = pp->ipsp_act; 26337 ASSERT(ap != NULL); 26338 } 26339 26340 /* 26341 * We have an action. now, let's select SA's. 26342 * (In the future, we can cache this in the conn_t..) 26343 */ 26344 if (ap->ipa_want_esp) { 26345 if (io->ipsec_out_esp_sa == NULL) { 26346 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26347 IPPROTO_ESP); 26348 } 26349 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26350 } 26351 26352 if (ap->ipa_want_ah) { 26353 if (io->ipsec_out_ah_sa == NULL) { 26354 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26355 IPPROTO_AH); 26356 } 26357 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26358 /* 26359 * The ESP and AH processing order needs to be preserved 26360 * when both protocols are required (ESP should be applied 26361 * before AH for an outbound packet). Force an ESP ACQUIRE 26362 * when both ESP and AH are required, and an AH ACQUIRE 26363 * is needed. 26364 */ 26365 if (ap->ipa_want_esp && need_ah_acquire) 26366 need_esp_acquire = B_TRUE; 26367 } 26368 26369 /* 26370 * Send an ACQUIRE (extended, regular, or both) if we need one. 26371 * Release SAs that got referenced, but will not be used until we 26372 * acquire _all_ of the SAs we need. 26373 */ 26374 if (need_ah_acquire || need_esp_acquire) { 26375 if (io->ipsec_out_ah_sa != NULL) { 26376 IPSA_REFRELE(io->ipsec_out_ah_sa); 26377 io->ipsec_out_ah_sa = NULL; 26378 } 26379 if (io->ipsec_out_esp_sa != NULL) { 26380 IPSA_REFRELE(io->ipsec_out_esp_sa); 26381 io->ipsec_out_esp_sa = NULL; 26382 } 26383 26384 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26385 return (B_FALSE); 26386 } 26387 26388 return (B_TRUE); 26389 } 26390 26391 /* 26392 * Process an IPSEC_OUT message and see what you can 26393 * do with it. 26394 * IPQoS Notes: 26395 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26396 * IPsec. 26397 * XXX would like to nuke ire_t. 26398 * XXX ill_index better be "real" 26399 */ 26400 void 26401 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26402 { 26403 ipsec_out_t *io; 26404 ipsec_policy_t *pp; 26405 ipsec_action_t *ap; 26406 ipha_t *ipha; 26407 ip6_t *ip6h; 26408 mblk_t *mp; 26409 ill_t *ill; 26410 zoneid_t zoneid; 26411 ipsec_status_t ipsec_rc; 26412 boolean_t ill_need_rele = B_FALSE; 26413 ip_stack_t *ipst; 26414 ipsec_stack_t *ipss; 26415 26416 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26417 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26418 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26419 ipst = io->ipsec_out_ns->netstack_ip; 26420 mp = ipsec_mp->b_cont; 26421 26422 /* 26423 * Initiate IPPF processing. We do it here to account for packets 26424 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26425 * We can check for ipsec_out_proc_begin even for such packets, as 26426 * they will always be false (asserted below). 26427 */ 26428 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26429 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26430 io->ipsec_out_ill_index : ill_index); 26431 if (mp == NULL) { 26432 ip2dbg(("ipsec_out_process: packet dropped "\ 26433 "during IPPF processing\n")); 26434 freeb(ipsec_mp); 26435 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26436 return; 26437 } 26438 } 26439 26440 if (!io->ipsec_out_secure) { 26441 /* 26442 * We came here by mistake. 26443 * Don't bother with ipsec processing 26444 * Should "discourage" this path in the future. 26445 */ 26446 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26447 goto done; 26448 } 26449 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26450 ASSERT((io->ipsec_out_policy != NULL) || 26451 (io->ipsec_out_act != NULL)); 26452 ASSERT(io->ipsec_out_failed == B_FALSE); 26453 26454 ipss = ipst->ips_netstack->netstack_ipsec; 26455 if (!ipsec_loaded(ipss)) { 26456 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26457 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26458 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26459 } else { 26460 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26461 } 26462 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26463 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26464 &ipss->ipsec_dropper); 26465 return; 26466 } 26467 26468 /* 26469 * IPsec processing has started. 26470 */ 26471 io->ipsec_out_proc_begin = B_TRUE; 26472 ap = io->ipsec_out_act; 26473 if (ap == NULL) { 26474 pp = io->ipsec_out_policy; 26475 ASSERT(pp != NULL); 26476 ap = pp->ipsp_act; 26477 ASSERT(ap != NULL); 26478 } 26479 26480 /* 26481 * Save the outbound ill index. When the packet comes back 26482 * from IPsec, we make sure the ill hasn't changed or disappeared 26483 * before sending it the accelerated packet. 26484 */ 26485 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26486 ill = ire_to_ill(ire); 26487 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26488 } 26489 26490 /* 26491 * The order of processing is first insert a IP header if needed. 26492 * Then insert the ESP header and then the AH header. 26493 */ 26494 if ((io->ipsec_out_se_done == B_FALSE) && 26495 (ap->ipa_want_se)) { 26496 /* 26497 * First get the outer IP header before sending 26498 * it to ESP. 26499 */ 26500 ipha_t *oipha, *iipha; 26501 mblk_t *outer_mp, *inner_mp; 26502 26503 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26504 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26505 "ipsec_out_process: " 26506 "Self-Encapsulation failed: Out of memory\n"); 26507 freemsg(ipsec_mp); 26508 if (ill != NULL) { 26509 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26510 } else { 26511 BUMP_MIB(&ipst->ips_ip_mib, 26512 ipIfStatsOutDiscards); 26513 } 26514 return; 26515 } 26516 inner_mp = ipsec_mp->b_cont; 26517 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26518 oipha = (ipha_t *)outer_mp->b_rptr; 26519 iipha = (ipha_t *)inner_mp->b_rptr; 26520 *oipha = *iipha; 26521 outer_mp->b_wptr += sizeof (ipha_t); 26522 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26523 sizeof (ipha_t)); 26524 oipha->ipha_protocol = IPPROTO_ENCAP; 26525 oipha->ipha_version_and_hdr_length = 26526 IP_SIMPLE_HDR_VERSION; 26527 oipha->ipha_hdr_checksum = 0; 26528 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26529 outer_mp->b_cont = inner_mp; 26530 ipsec_mp->b_cont = outer_mp; 26531 26532 io->ipsec_out_se_done = B_TRUE; 26533 io->ipsec_out_tunnel = B_TRUE; 26534 } 26535 26536 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26537 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26538 !ipsec_out_select_sa(ipsec_mp)) 26539 return; 26540 26541 /* 26542 * By now, we know what SA's to use. Toss over to ESP & AH 26543 * to do the heavy lifting. 26544 */ 26545 zoneid = io->ipsec_out_zoneid; 26546 ASSERT(zoneid != ALL_ZONES); 26547 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26548 ASSERT(io->ipsec_out_esp_sa != NULL); 26549 io->ipsec_out_esp_done = B_TRUE; 26550 /* 26551 * Note that since hw accel can only apply one transform, 26552 * not two, we skip hw accel for ESP if we also have AH 26553 * This is an design limitation of the interface 26554 * which should be revisited. 26555 */ 26556 ASSERT(ire != NULL); 26557 if (io->ipsec_out_ah_sa == NULL) { 26558 ill = (ill_t *)ire->ire_stq->q_ptr; 26559 ipsec_out_is_accelerated(ipsec_mp, 26560 io->ipsec_out_esp_sa, ill, ire); 26561 } 26562 26563 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26564 switch (ipsec_rc) { 26565 case IPSEC_STATUS_SUCCESS: 26566 break; 26567 case IPSEC_STATUS_FAILED: 26568 if (ill != NULL) { 26569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26570 } else { 26571 BUMP_MIB(&ipst->ips_ip_mib, 26572 ipIfStatsOutDiscards); 26573 } 26574 /* FALLTHRU */ 26575 case IPSEC_STATUS_PENDING: 26576 return; 26577 } 26578 } 26579 26580 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26581 ASSERT(io->ipsec_out_ah_sa != NULL); 26582 io->ipsec_out_ah_done = B_TRUE; 26583 if (ire == NULL) { 26584 int idx = io->ipsec_out_capab_ill_index; 26585 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26586 NULL, NULL, NULL, NULL, ipst); 26587 ill_need_rele = B_TRUE; 26588 } else { 26589 ill = (ill_t *)ire->ire_stq->q_ptr; 26590 } 26591 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26592 ire); 26593 26594 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26595 switch (ipsec_rc) { 26596 case IPSEC_STATUS_SUCCESS: 26597 break; 26598 case IPSEC_STATUS_FAILED: 26599 if (ill != NULL) { 26600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26601 } else { 26602 BUMP_MIB(&ipst->ips_ip_mib, 26603 ipIfStatsOutDiscards); 26604 } 26605 /* FALLTHRU */ 26606 case IPSEC_STATUS_PENDING: 26607 if (ill != NULL && ill_need_rele) 26608 ill_refrele(ill); 26609 return; 26610 } 26611 } 26612 /* 26613 * We are done with IPsec processing. Send it over the wire. 26614 */ 26615 done: 26616 mp = ipsec_mp->b_cont; 26617 ipha = (ipha_t *)mp->b_rptr; 26618 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26619 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26620 ire); 26621 } else { 26622 ip6h = (ip6_t *)ipha; 26623 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26624 ire); 26625 } 26626 if (ill != NULL && ill_need_rele) 26627 ill_refrele(ill); 26628 } 26629 26630 /* ARGSUSED */ 26631 void 26632 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26633 { 26634 opt_restart_t *or; 26635 int err; 26636 conn_t *connp; 26637 26638 ASSERT(CONN_Q(q)); 26639 connp = Q_TO_CONN(q); 26640 26641 ASSERT(first_mp->b_datap->db_type == M_CTL); 26642 or = (opt_restart_t *)first_mp->b_rptr; 26643 /* 26644 * We don't need to pass any credentials here since this is just 26645 * a restart. The credentials are passed in when svr4_optcom_req 26646 * is called the first time (from ip_wput_nondata). 26647 */ 26648 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26649 err = svr4_optcom_req(q, first_mp, NULL, 26650 &ip_opt_obj, B_FALSE); 26651 } else { 26652 ASSERT(or->or_type == T_OPTMGMT_REQ); 26653 err = tpi_optcom_req(q, first_mp, NULL, 26654 &ip_opt_obj, B_FALSE); 26655 } 26656 if (err != EINPROGRESS) { 26657 /* operation is done */ 26658 CONN_OPER_PENDING_DONE(connp); 26659 } 26660 } 26661 26662 /* 26663 * ioctls that go through a down/up sequence may need to wait for the down 26664 * to complete. This involves waiting for the ire and ipif refcnts to go down 26665 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26666 */ 26667 /* ARGSUSED */ 26668 void 26669 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26670 { 26671 struct iocblk *iocp; 26672 mblk_t *mp1; 26673 ip_ioctl_cmd_t *ipip; 26674 int err; 26675 sin_t *sin; 26676 struct lifreq *lifr; 26677 struct ifreq *ifr; 26678 26679 iocp = (struct iocblk *)mp->b_rptr; 26680 ASSERT(ipsq != NULL); 26681 /* Existence of mp1 verified in ip_wput_nondata */ 26682 mp1 = mp->b_cont->b_cont; 26683 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26684 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26685 /* 26686 * Special case where ipx_current_ipif is not set: 26687 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26688 * We are here as were not able to complete the operation in 26689 * ipif_set_values because we could not become exclusive on 26690 * the new ipsq. 26691 */ 26692 ill_t *ill = q->q_ptr; 26693 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26694 } 26695 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26696 26697 if (ipip->ipi_cmd_type == IF_CMD) { 26698 /* This a old style SIOC[GS]IF* command */ 26699 ifr = (struct ifreq *)mp1->b_rptr; 26700 sin = (sin_t *)&ifr->ifr_addr; 26701 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26702 /* This a new style SIOC[GS]LIF* command */ 26703 lifr = (struct lifreq *)mp1->b_rptr; 26704 sin = (sin_t *)&lifr->lifr_addr; 26705 } else { 26706 sin = NULL; 26707 } 26708 26709 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26710 q, mp, ipip, mp1->b_rptr); 26711 26712 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26713 } 26714 26715 /* 26716 * ioctl processing 26717 * 26718 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26719 * the ioctl command in the ioctl tables, determines the copyin data size 26720 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26721 * 26722 * ioctl processing then continues when the M_IOCDATA makes its way down to 26723 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26724 * associated 'conn' is refheld till the end of the ioctl and the general 26725 * ioctl processing function ip_process_ioctl() is called to extract the 26726 * arguments and process the ioctl. To simplify extraction, ioctl commands 26727 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26728 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26729 * is used to extract the ioctl's arguments. 26730 * 26731 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26732 * so goes thru the serialization primitive ipsq_try_enter. Then the 26733 * appropriate function to handle the ioctl is called based on the entry in 26734 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26735 * which also refreleases the 'conn' that was refheld at the start of the 26736 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26737 * 26738 * Many exclusive ioctls go thru an internal down up sequence as part of 26739 * the operation. For example an attempt to change the IP address of an 26740 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26741 * does all the cleanup such as deleting all ires that use this address. 26742 * Then we need to wait till all references to the interface go away. 26743 */ 26744 void 26745 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26746 { 26747 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26748 ip_ioctl_cmd_t *ipip = arg; 26749 ip_extract_func_t *extract_funcp; 26750 cmd_info_t ci; 26751 int err; 26752 boolean_t entered_ipsq = B_FALSE; 26753 26754 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26755 26756 if (ipip == NULL) 26757 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26758 26759 /* 26760 * SIOCLIFADDIF needs to go thru a special path since the 26761 * ill may not exist yet. This happens in the case of lo0 26762 * which is created using this ioctl. 26763 */ 26764 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26765 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26766 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26767 return; 26768 } 26769 26770 ci.ci_ipif = NULL; 26771 if (ipip->ipi_cmd_type == MISC_CMD) { 26772 /* 26773 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26774 */ 26775 if (ipip->ipi_cmd == IF_UNITSEL) { 26776 /* ioctl comes down the ill */ 26777 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26778 ipif_refhold(ci.ci_ipif); 26779 } 26780 err = 0; 26781 ci.ci_sin = NULL; 26782 ci.ci_sin6 = NULL; 26783 ci.ci_lifr = NULL; 26784 } else { 26785 switch (ipip->ipi_cmd_type) { 26786 case IF_CMD: 26787 case LIF_CMD: 26788 extract_funcp = ip_extract_lifreq; 26789 break; 26790 26791 case ARP_CMD: 26792 case XARP_CMD: 26793 extract_funcp = ip_extract_arpreq; 26794 break; 26795 26796 case TUN_CMD: 26797 extract_funcp = ip_extract_tunreq; 26798 break; 26799 26800 case MSFILT_CMD: 26801 extract_funcp = ip_extract_msfilter; 26802 break; 26803 26804 default: 26805 ASSERT(0); 26806 } 26807 26808 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26809 if (err != 0) { 26810 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26811 return; 26812 } 26813 26814 /* 26815 * All of the extraction functions return a refheld ipif. 26816 */ 26817 ASSERT(ci.ci_ipif != NULL); 26818 } 26819 26820 if (!(ipip->ipi_flags & IPI_WR)) { 26821 /* 26822 * A return value of EINPROGRESS means the ioctl is 26823 * either queued and waiting for some reason or has 26824 * already completed. 26825 */ 26826 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26827 ci.ci_lifr); 26828 if (ci.ci_ipif != NULL) 26829 ipif_refrele(ci.ci_ipif); 26830 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26831 return; 26832 } 26833 26834 ASSERT(ci.ci_ipif != NULL); 26835 26836 /* 26837 * If ipsq is non-NULL, we are already being called exclusively. 26838 */ 26839 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26840 if (ipsq == NULL) { 26841 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26842 NEW_OP, B_TRUE); 26843 if (ipsq == NULL) { 26844 ipif_refrele(ci.ci_ipif); 26845 return; 26846 } 26847 entered_ipsq = B_TRUE; 26848 } 26849 26850 /* 26851 * Release the ipif so that ipif_down and friends that wait for 26852 * references to go away are not misled about the current ipif_refcnt 26853 * values. We are writer so we can access the ipif even after releasing 26854 * the ipif. 26855 */ 26856 ipif_refrele(ci.ci_ipif); 26857 26858 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26859 26860 /* 26861 * For most set ioctls that come here, this serves as a single point 26862 * where we set the IPIF_CHANGING flag. This ensures that there won't 26863 * be any new references to the ipif. This helps functions that go 26864 * through this path and end up trying to wait for the refcnts 26865 * associated with the ipif to go down to zero. The exception is 26866 * SIOCSLIFREMOVEIF, which sets IPIF_CONDEMNED internally after 26867 * identifying the right ipif to operate on. 26868 */ 26869 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26870 if (ipip->ipi_cmd != SIOCLIFREMOVEIF) 26871 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26872 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26873 26874 /* 26875 * A return value of EINPROGRESS means the ioctl is 26876 * either queued and waiting for some reason or has 26877 * already completed. 26878 */ 26879 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26880 26881 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26882 26883 if (entered_ipsq) 26884 ipsq_exit(ipsq); 26885 } 26886 26887 /* 26888 * Complete the ioctl. Typically ioctls use the mi package and need to 26889 * do mi_copyout/mi_copy_done. 26890 */ 26891 void 26892 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26893 { 26894 conn_t *connp = NULL; 26895 26896 if (err == EINPROGRESS) 26897 return; 26898 26899 if (CONN_Q(q)) { 26900 connp = Q_TO_CONN(q); 26901 ASSERT(connp->conn_ref >= 2); 26902 } 26903 26904 switch (mode) { 26905 case COPYOUT: 26906 if (err == 0) 26907 mi_copyout(q, mp); 26908 else 26909 mi_copy_done(q, mp, err); 26910 break; 26911 26912 case NO_COPYOUT: 26913 mi_copy_done(q, mp, err); 26914 break; 26915 26916 default: 26917 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26918 break; 26919 } 26920 26921 /* 26922 * The refhold placed at the start of the ioctl is released here. 26923 */ 26924 if (connp != NULL) 26925 CONN_OPER_PENDING_DONE(connp); 26926 26927 if (ipsq != NULL) 26928 ipsq_current_finish(ipsq); 26929 } 26930 26931 /* Called from ip_wput for all non data messages */ 26932 /* ARGSUSED */ 26933 void 26934 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26935 { 26936 mblk_t *mp1; 26937 ire_t *ire, *fake_ire; 26938 ill_t *ill; 26939 struct iocblk *iocp; 26940 ip_ioctl_cmd_t *ipip; 26941 cred_t *cr; 26942 conn_t *connp; 26943 int err; 26944 nce_t *nce; 26945 ipif_t *ipif; 26946 ip_stack_t *ipst; 26947 char *proto_str; 26948 26949 if (CONN_Q(q)) { 26950 connp = Q_TO_CONN(q); 26951 ipst = connp->conn_netstack->netstack_ip; 26952 } else { 26953 connp = NULL; 26954 ipst = ILLQ_TO_IPST(q); 26955 } 26956 26957 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26958 26959 switch (DB_TYPE(mp)) { 26960 case M_IOCTL: 26961 /* 26962 * IOCTL processing begins in ip_sioctl_copyin_setup which 26963 * will arrange to copy in associated control structures. 26964 */ 26965 ip_sioctl_copyin_setup(q, mp); 26966 return; 26967 case M_IOCDATA: 26968 /* 26969 * Ensure that this is associated with one of our trans- 26970 * parent ioctls. If it's not ours, discard it if we're 26971 * running as a driver, or pass it on if we're a module. 26972 */ 26973 iocp = (struct iocblk *)mp->b_rptr; 26974 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26975 if (ipip == NULL) { 26976 if (q->q_next == NULL) { 26977 goto nak; 26978 } else { 26979 putnext(q, mp); 26980 } 26981 return; 26982 } 26983 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26984 /* 26985 * the ioctl is one we recognise, but is not 26986 * consumed by IP as a module, pass M_IOCDATA 26987 * for processing downstream, but only for 26988 * common Streams ioctls. 26989 */ 26990 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26991 putnext(q, mp); 26992 return; 26993 } else { 26994 goto nak; 26995 } 26996 } 26997 26998 /* IOCTL continuation following copyin or copyout. */ 26999 if (mi_copy_state(q, mp, NULL) == -1) { 27000 /* 27001 * The copy operation failed. mi_copy_state already 27002 * cleaned up, so we're out of here. 27003 */ 27004 return; 27005 } 27006 /* 27007 * If we just completed a copy in, we become writer and 27008 * continue processing in ip_sioctl_copyin_done. If it 27009 * was a copy out, we call mi_copyout again. If there is 27010 * nothing more to copy out, it will complete the IOCTL. 27011 */ 27012 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27013 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27014 mi_copy_done(q, mp, EPROTO); 27015 return; 27016 } 27017 /* 27018 * Check for cases that need more copying. A return 27019 * value of 0 means a second copyin has been started, 27020 * so we return; a return value of 1 means no more 27021 * copying is needed, so we continue. 27022 */ 27023 if (ipip->ipi_cmd_type == MSFILT_CMD && 27024 MI_COPY_COUNT(mp) == 1) { 27025 if (ip_copyin_msfilter(q, mp) == 0) 27026 return; 27027 } 27028 /* 27029 * Refhold the conn, till the ioctl completes. This is 27030 * needed in case the ioctl ends up in the pending mp 27031 * list. Every mp in the ill_pending_mp list and 27032 * the ipx_pending_mp must have a refhold on the conn 27033 * to resume processing. The refhold is released when 27034 * the ioctl completes. (normally or abnormally) 27035 * In all cases ip_ioctl_finish is called to finish 27036 * the ioctl. 27037 */ 27038 if (connp != NULL) { 27039 /* This is not a reentry */ 27040 ASSERT(ipsq == NULL); 27041 CONN_INC_REF(connp); 27042 } else { 27043 if (!(ipip->ipi_flags & IPI_MODOK)) { 27044 mi_copy_done(q, mp, EINVAL); 27045 return; 27046 } 27047 } 27048 27049 ip_process_ioctl(ipsq, q, mp, ipip); 27050 27051 } else { 27052 mi_copyout(q, mp); 27053 } 27054 return; 27055 nak: 27056 iocp->ioc_error = EINVAL; 27057 mp->b_datap->db_type = M_IOCNAK; 27058 iocp->ioc_count = 0; 27059 qreply(q, mp); 27060 return; 27061 27062 case M_IOCNAK: 27063 /* 27064 * The only way we could get here is if a resolver didn't like 27065 * an IOCTL we sent it. This shouldn't happen. 27066 */ 27067 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27068 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27069 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27070 freemsg(mp); 27071 return; 27072 case M_IOCACK: 27073 /* /dev/ip shouldn't see this */ 27074 if (CONN_Q(q)) 27075 goto nak; 27076 27077 /* 27078 * Finish socket ioctls passed through to ARP. We use the 27079 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27080 * we need to become writer before calling ip_sioctl_iocack(). 27081 * Note that qwriter_ip() will release the refhold, and that a 27082 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27083 * ill stream. 27084 */ 27085 iocp = (struct iocblk *)mp->b_rptr; 27086 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27087 ip_sioctl_iocack(NULL, q, mp, NULL); 27088 return; 27089 } 27090 27091 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27092 iocp->ioc_cmd == AR_ENTRY_ADD); 27093 ill = q->q_ptr; 27094 ill_refhold(ill); 27095 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27096 return; 27097 case M_FLUSH: 27098 if (*mp->b_rptr & FLUSHW) 27099 flushq(q, FLUSHALL); 27100 if (q->q_next) { 27101 putnext(q, mp); 27102 return; 27103 } 27104 if (*mp->b_rptr & FLUSHR) { 27105 *mp->b_rptr &= ~FLUSHW; 27106 qreply(q, mp); 27107 return; 27108 } 27109 freemsg(mp); 27110 return; 27111 case IRE_DB_REQ_TYPE: 27112 if (connp == NULL) { 27113 proto_str = "IRE_DB_REQ_TYPE"; 27114 goto protonak; 27115 } 27116 /* An Upper Level Protocol wants a copy of an IRE. */ 27117 ip_ire_req(q, mp); 27118 return; 27119 case M_CTL: 27120 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27121 break; 27122 27123 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27124 TUN_HELLO) { 27125 ASSERT(connp != NULL); 27126 connp->conn_flags |= IPCL_IPTUN; 27127 freeb(mp); 27128 return; 27129 } 27130 27131 /* M_CTL messages are used by ARP to tell us things. */ 27132 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27133 break; 27134 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27135 case AR_ENTRY_SQUERY: 27136 ip_wput_ctl(q, mp); 27137 return; 27138 case AR_CLIENT_NOTIFY: 27139 ip_arp_news(q, mp); 27140 return; 27141 case AR_DLPIOP_DONE: 27142 ASSERT(q->q_next != NULL); 27143 ill = (ill_t *)q->q_ptr; 27144 /* qwriter_ip releases the refhold */ 27145 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27146 ill_refhold(ill); 27147 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27148 return; 27149 case AR_ARP_CLOSING: 27150 /* 27151 * ARP (above us) is closing. If no ARP bringup is 27152 * currently pending, ack the message so that ARP 27153 * can complete its close. Also mark ill_arp_closing 27154 * so that new ARP bringups will fail. If any 27155 * ARP bringup is currently in progress, we will 27156 * ack this when the current ARP bringup completes. 27157 */ 27158 ASSERT(q->q_next != NULL); 27159 ill = (ill_t *)q->q_ptr; 27160 mutex_enter(&ill->ill_lock); 27161 ill->ill_arp_closing = 1; 27162 if (!ill->ill_arp_bringup_pending) { 27163 mutex_exit(&ill->ill_lock); 27164 qreply(q, mp); 27165 } else { 27166 mutex_exit(&ill->ill_lock); 27167 freemsg(mp); 27168 } 27169 return; 27170 case AR_ARP_EXTEND: 27171 /* 27172 * The ARP module above us is capable of duplicate 27173 * address detection. Old ATM drivers will not send 27174 * this message. 27175 */ 27176 ASSERT(q->q_next != NULL); 27177 ill = (ill_t *)q->q_ptr; 27178 ill->ill_arp_extend = B_TRUE; 27179 freemsg(mp); 27180 return; 27181 default: 27182 break; 27183 } 27184 break; 27185 case M_PROTO: 27186 case M_PCPROTO: 27187 /* 27188 * The only PROTO messages we expect are copies of option 27189 * negotiation acknowledgements, AH and ESP bind requests 27190 * are also expected. 27191 */ 27192 switch (((union T_primitives *)mp->b_rptr)->type) { 27193 case O_T_BIND_REQ: 27194 case T_BIND_REQ: { 27195 /* Request can get queued in bind */ 27196 if (connp == NULL) { 27197 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27198 goto protonak; 27199 } 27200 /* 27201 * The transports except SCTP call ip_bind_{v4,v6}() 27202 * directly instead of a a putnext. SCTP doesn't 27203 * generate any T_BIND_REQ since it has its own 27204 * fanout data structures. However, ESP and AH 27205 * come in for regular binds; all other cases are 27206 * bind retries. 27207 */ 27208 ASSERT(!IPCL_IS_SCTP(connp)); 27209 27210 /* Don't increment refcnt if this is a re-entry */ 27211 if (ipsq == NULL) 27212 CONN_INC_REF(connp); 27213 27214 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27215 connp, NULL) : ip_bind_v4(q, mp, connp); 27216 ASSERT(mp != NULL); 27217 27218 ASSERT(!IPCL_IS_TCP(connp)); 27219 ASSERT(!IPCL_IS_UDP(connp)); 27220 ASSERT(!IPCL_IS_RAWIP(connp)); 27221 27222 /* The case of AH and ESP */ 27223 qreply(q, mp); 27224 CONN_OPER_PENDING_DONE(connp); 27225 return; 27226 } 27227 case T_SVR4_OPTMGMT_REQ: 27228 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27229 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27230 27231 if (connp == NULL) { 27232 proto_str = "T_SVR4_OPTMGMT_REQ"; 27233 goto protonak; 27234 } 27235 27236 if (!snmpcom_req(q, mp, ip_snmp_set, 27237 ip_snmp_get, cr)) { 27238 /* 27239 * Call svr4_optcom_req so that it can 27240 * generate the ack. We don't come here 27241 * if this operation is being restarted. 27242 * ip_restart_optmgmt will drop the conn ref. 27243 * In the case of ipsec option after the ipsec 27244 * load is complete conn_restart_ipsec_waiter 27245 * drops the conn ref. 27246 */ 27247 ASSERT(ipsq == NULL); 27248 CONN_INC_REF(connp); 27249 if (ip_check_for_ipsec_opt(q, mp)) 27250 return; 27251 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27252 B_FALSE); 27253 if (err != EINPROGRESS) { 27254 /* Operation is done */ 27255 CONN_OPER_PENDING_DONE(connp); 27256 } 27257 } 27258 return; 27259 case T_OPTMGMT_REQ: 27260 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27261 /* 27262 * Note: No snmpcom_req support through new 27263 * T_OPTMGMT_REQ. 27264 * Call tpi_optcom_req so that it can 27265 * generate the ack. 27266 */ 27267 if (connp == NULL) { 27268 proto_str = "T_OPTMGMT_REQ"; 27269 goto protonak; 27270 } 27271 27272 ASSERT(ipsq == NULL); 27273 /* 27274 * We don't come here for restart. ip_restart_optmgmt 27275 * will drop the conn ref. In the case of ipsec option 27276 * after the ipsec load is complete 27277 * conn_restart_ipsec_waiter drops the conn ref. 27278 */ 27279 CONN_INC_REF(connp); 27280 if (ip_check_for_ipsec_opt(q, mp)) 27281 return; 27282 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27283 if (err != EINPROGRESS) { 27284 /* Operation is done */ 27285 CONN_OPER_PENDING_DONE(connp); 27286 } 27287 return; 27288 case T_UNBIND_REQ: 27289 if (connp == NULL) { 27290 proto_str = "T_UNBIND_REQ"; 27291 goto protonak; 27292 } 27293 ip_unbind(Q_TO_CONN(q)); 27294 mp = mi_tpi_ok_ack_alloc(mp); 27295 qreply(q, mp); 27296 return; 27297 default: 27298 /* 27299 * Have to drop any DLPI messages coming down from 27300 * arp (such as an info_req which would cause ip 27301 * to receive an extra info_ack if it was passed 27302 * through. 27303 */ 27304 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27305 (int)*(uint_t *)mp->b_rptr)); 27306 freemsg(mp); 27307 return; 27308 } 27309 /* NOTREACHED */ 27310 case IRE_DB_TYPE: { 27311 nce_t *nce; 27312 ill_t *ill; 27313 in6_addr_t gw_addr_v6; 27314 27315 /* 27316 * This is a response back from a resolver. It 27317 * consists of a message chain containing: 27318 * IRE_MBLK-->LL_HDR_MBLK->pkt 27319 * The IRE_MBLK is the one we allocated in ip_newroute. 27320 * The LL_HDR_MBLK is the DLPI header to use to get 27321 * the attached packet, and subsequent ones for the 27322 * same destination, transmitted. 27323 */ 27324 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27325 break; 27326 /* 27327 * First, check to make sure the resolution succeeded. 27328 * If it failed, the second mblk will be empty. 27329 * If it is, free the chain, dropping the packet. 27330 * (We must ire_delete the ire; that frees the ire mblk) 27331 * We're doing this now to support PVCs for ATM; it's 27332 * a partial xresolv implementation. When we fully implement 27333 * xresolv interfaces, instead of freeing everything here 27334 * we'll initiate neighbor discovery. 27335 * 27336 * For v4 (ARP and other external resolvers) the resolver 27337 * frees the message, so no check is needed. This check 27338 * is required, though, for a full xresolve implementation. 27339 * Including this code here now both shows how external 27340 * resolvers can NACK a resolution request using an 27341 * existing design that has no specific provisions for NACKs, 27342 * and also takes into account that the current non-ARP 27343 * external resolver has been coded to use this method of 27344 * NACKing for all IPv6 (xresolv) cases, 27345 * whether our xresolv implementation is complete or not. 27346 * 27347 */ 27348 ire = (ire_t *)mp->b_rptr; 27349 ill = ire_to_ill(ire); 27350 mp1 = mp->b_cont; /* dl_unitdata_req */ 27351 if (mp1->b_rptr == mp1->b_wptr) { 27352 if (ire->ire_ipversion == IPV6_VERSION) { 27353 /* 27354 * XRESOLV interface. 27355 */ 27356 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27357 mutex_enter(&ire->ire_lock); 27358 gw_addr_v6 = ire->ire_gateway_addr_v6; 27359 mutex_exit(&ire->ire_lock); 27360 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27361 nce = ndp_lookup_v6(ill, B_FALSE, 27362 &ire->ire_addr_v6, B_FALSE); 27363 } else { 27364 nce = ndp_lookup_v6(ill, B_FALSE, 27365 &gw_addr_v6, B_FALSE); 27366 } 27367 if (nce != NULL) { 27368 nce_resolv_failed(nce); 27369 ndp_delete(nce); 27370 NCE_REFRELE(nce); 27371 } 27372 } 27373 mp->b_cont = NULL; 27374 freemsg(mp1); /* frees the pkt as well */ 27375 ASSERT(ire->ire_nce == NULL); 27376 ire_delete((ire_t *)mp->b_rptr); 27377 return; 27378 } 27379 27380 /* 27381 * Split them into IRE_MBLK and pkt and feed it into 27382 * ire_add_then_send. Then in ire_add_then_send 27383 * the IRE will be added, and then the packet will be 27384 * run back through ip_wput. This time it will make 27385 * it to the wire. 27386 */ 27387 mp->b_cont = NULL; 27388 mp = mp1->b_cont; /* now, mp points to pkt */ 27389 mp1->b_cont = NULL; 27390 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27391 if (ire->ire_ipversion == IPV6_VERSION) { 27392 /* 27393 * XRESOLV interface. Find the nce and put a copy 27394 * of the dl_unitdata_req in nce_res_mp 27395 */ 27396 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27397 mutex_enter(&ire->ire_lock); 27398 gw_addr_v6 = ire->ire_gateway_addr_v6; 27399 mutex_exit(&ire->ire_lock); 27400 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27401 nce = ndp_lookup_v6(ill, B_FALSE, 27402 &ire->ire_addr_v6, B_FALSE); 27403 } else { 27404 nce = ndp_lookup_v6(ill, B_FALSE, 27405 &gw_addr_v6, B_FALSE); 27406 } 27407 if (nce != NULL) { 27408 /* 27409 * We have to protect nce_res_mp here 27410 * from being accessed by other threads 27411 * while we change the mblk pointer. 27412 * Other functions will also lock the nce when 27413 * accessing nce_res_mp. 27414 * 27415 * The reason we change the mblk pointer 27416 * here rather than copying the resolved address 27417 * into the template is that, unlike with 27418 * ethernet, we have no guarantee that the 27419 * resolved address length will be 27420 * smaller than or equal to the lla length 27421 * with which the template was allocated, 27422 * (for ethernet, they're equal) 27423 * so we have to use the actual resolved 27424 * address mblk - which holds the real 27425 * dl_unitdata_req with the resolved address. 27426 * 27427 * Doing this is the same behavior as was 27428 * previously used in the v4 ARP case. 27429 */ 27430 mutex_enter(&nce->nce_lock); 27431 if (nce->nce_res_mp != NULL) 27432 freemsg(nce->nce_res_mp); 27433 nce->nce_res_mp = mp1; 27434 mutex_exit(&nce->nce_lock); 27435 /* 27436 * We do a fastpath probe here because 27437 * we have resolved the address without 27438 * using Neighbor Discovery. 27439 * In the non-XRESOLV v6 case, the fastpath 27440 * probe is done right after neighbor 27441 * discovery completes. 27442 */ 27443 if (nce->nce_res_mp != NULL) { 27444 int res; 27445 nce_fastpath_list_add(nce); 27446 res = ill_fastpath_probe(ill, 27447 nce->nce_res_mp); 27448 if (res != 0 && res != EAGAIN) 27449 nce_fastpath_list_delete(nce); 27450 } 27451 27452 ire_add_then_send(q, ire, mp); 27453 /* 27454 * Now we have to clean out any packets 27455 * that may have been queued on the nce 27456 * while it was waiting for address resolution 27457 * to complete. 27458 */ 27459 mutex_enter(&nce->nce_lock); 27460 mp1 = nce->nce_qd_mp; 27461 nce->nce_qd_mp = NULL; 27462 mutex_exit(&nce->nce_lock); 27463 while (mp1 != NULL) { 27464 mblk_t *nxt_mp; 27465 queue_t *fwdq = NULL; 27466 ill_t *inbound_ill; 27467 uint_t ifindex; 27468 27469 nxt_mp = mp1->b_next; 27470 mp1->b_next = NULL; 27471 /* 27472 * Retrieve ifindex stored in 27473 * ip_rput_data_v6() 27474 */ 27475 ifindex = 27476 (uint_t)(uintptr_t)mp1->b_prev; 27477 inbound_ill = 27478 ill_lookup_on_ifindex(ifindex, 27479 B_TRUE, NULL, NULL, NULL, 27480 NULL, ipst); 27481 mp1->b_prev = NULL; 27482 if (inbound_ill != NULL) 27483 fwdq = inbound_ill->ill_rq; 27484 27485 if (fwdq != NULL) { 27486 put(fwdq, mp1); 27487 ill_refrele(inbound_ill); 27488 } else 27489 put(WR(ill->ill_rq), mp1); 27490 mp1 = nxt_mp; 27491 } 27492 NCE_REFRELE(nce); 27493 } else { /* nce is NULL; clean up */ 27494 ire_delete(ire); 27495 freemsg(mp); 27496 freemsg(mp1); 27497 return; 27498 } 27499 } else { 27500 nce_t *arpce; 27501 /* 27502 * Link layer resolution succeeded. Recompute the 27503 * ire_nce. 27504 */ 27505 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27506 if ((arpce = ndp_lookup_v4(ill, 27507 (ire->ire_gateway_addr != INADDR_ANY ? 27508 &ire->ire_gateway_addr : &ire->ire_addr), 27509 B_FALSE)) == NULL) { 27510 freeb(ire->ire_mp); 27511 freeb(mp1); 27512 freemsg(mp); 27513 return; 27514 } 27515 mutex_enter(&arpce->nce_lock); 27516 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27517 if (arpce->nce_state == ND_REACHABLE) { 27518 /* 27519 * Someone resolved this before us; 27520 * cleanup the res_mp. Since ire has 27521 * not been added yet, the call to ire_add_v4 27522 * from ire_add_then_send (when a dup is 27523 * detected) will clean up the ire. 27524 */ 27525 freeb(mp1); 27526 } else { 27527 ASSERT(arpce->nce_res_mp == NULL); 27528 arpce->nce_res_mp = mp1; 27529 arpce->nce_state = ND_REACHABLE; 27530 } 27531 mutex_exit(&arpce->nce_lock); 27532 if (ire->ire_marks & IRE_MARK_NOADD) { 27533 /* 27534 * this ire will not be added to the ire 27535 * cache table, so we can set the ire_nce 27536 * here, as there are no atomicity constraints. 27537 */ 27538 ire->ire_nce = arpce; 27539 /* 27540 * We are associating this nce with the ire 27541 * so change the nce ref taken in 27542 * ndp_lookup_v4() from 27543 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27544 */ 27545 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27546 } else { 27547 NCE_REFRELE(arpce); 27548 } 27549 ire_add_then_send(q, ire, mp); 27550 } 27551 return; /* All is well, the packet has been sent. */ 27552 } 27553 case IRE_ARPRESOLVE_TYPE: { 27554 27555 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27556 break; 27557 mp1 = mp->b_cont; /* dl_unitdata_req */ 27558 mp->b_cont = NULL; 27559 /* 27560 * First, check to make sure the resolution succeeded. 27561 * If it failed, the second mblk will be empty. 27562 */ 27563 if (mp1->b_rptr == mp1->b_wptr) { 27564 /* cleanup the incomplete ire, free queued packets */ 27565 freemsg(mp); /* fake ire */ 27566 freeb(mp1); /* dl_unitdata response */ 27567 return; 27568 } 27569 27570 /* 27571 * Update any incomplete nce_t found. We search the ctable 27572 * and find the nce from the ire->ire_nce because we need 27573 * to pass the ire to ip_xmit_v4 later, and can find both 27574 * ire and nce in one lookup. 27575 */ 27576 fake_ire = (ire_t *)mp->b_rptr; 27577 27578 /* 27579 * By the time we come back here from ARP the logical outgoing 27580 * interface of the incomplete ire we added in ire_forward() 27581 * could have disappeared, causing the incomplete ire to also 27582 * disappear. So we need to retreive the proper ipif for the 27583 * ire before looking in ctable. In the case of IPMP, the 27584 * ipif may be on the IPMP ill, so look it up based on the 27585 * ire_ipif_ifindex we stashed back in ire_init_common(). 27586 * Then, we can verify that ire_ipif_seqid still exists. 27587 */ 27588 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27589 NULL, NULL, NULL, NULL, ipst); 27590 if (ill == NULL) { 27591 ip1dbg(("ill for incomplete ire vanished\n")); 27592 freemsg(mp); /* fake ire */ 27593 freeb(mp1); /* dl_unitdata response */ 27594 return; 27595 } 27596 27597 /* Get the outgoing ipif */ 27598 mutex_enter(&ill->ill_lock); 27599 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27600 if (ipif == NULL) { 27601 mutex_exit(&ill->ill_lock); 27602 ill_refrele(ill); 27603 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27604 freemsg(mp); /* fake_ire */ 27605 freeb(mp1); /* dl_unitdata response */ 27606 return; 27607 } 27608 27609 ipif_refhold_locked(ipif); 27610 mutex_exit(&ill->ill_lock); 27611 ill_refrele(ill); 27612 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27613 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27614 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27615 ipif_refrele(ipif); 27616 if (ire == NULL) { 27617 /* 27618 * no ire was found; check if there is an nce 27619 * for this lookup; if it has no ire's pointing at it 27620 * cleanup. 27621 */ 27622 if ((nce = ndp_lookup_v4(q->q_ptr, 27623 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27624 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27625 B_FALSE)) != NULL) { 27626 /* 27627 * cleanup: 27628 * We check for refcnt 2 (one for the nce 27629 * hash list + 1 for the ref taken by 27630 * ndp_lookup_v4) to check that there are 27631 * no ire's pointing at the nce. 27632 */ 27633 if (nce->nce_refcnt == 2) 27634 ndp_delete(nce); 27635 NCE_REFRELE(nce); 27636 } 27637 freeb(mp1); /* dl_unitdata response */ 27638 freemsg(mp); /* fake ire */ 27639 return; 27640 } 27641 27642 nce = ire->ire_nce; 27643 DTRACE_PROBE2(ire__arpresolve__type, 27644 ire_t *, ire, nce_t *, nce); 27645 ASSERT(nce->nce_state != ND_INITIAL); 27646 mutex_enter(&nce->nce_lock); 27647 nce->nce_last = TICK_TO_MSEC(lbolt64); 27648 if (nce->nce_state == ND_REACHABLE) { 27649 /* 27650 * Someone resolved this before us; 27651 * our response is not needed any more. 27652 */ 27653 mutex_exit(&nce->nce_lock); 27654 freeb(mp1); /* dl_unitdata response */ 27655 } else { 27656 ASSERT(nce->nce_res_mp == NULL); 27657 nce->nce_res_mp = mp1; 27658 nce->nce_state = ND_REACHABLE; 27659 mutex_exit(&nce->nce_lock); 27660 nce_fastpath(nce); 27661 } 27662 /* 27663 * The cached nce_t has been updated to be reachable; 27664 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27665 */ 27666 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27667 freemsg(mp); 27668 /* 27669 * send out queued packets. 27670 */ 27671 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27672 27673 IRE_REFRELE(ire); 27674 return; 27675 } 27676 default: 27677 break; 27678 } 27679 if (q->q_next) { 27680 putnext(q, mp); 27681 } else 27682 freemsg(mp); 27683 return; 27684 27685 protonak: 27686 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27687 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27688 qreply(q, mp); 27689 } 27690 27691 /* 27692 * Process IP options in an outbound packet. Modify the destination if there 27693 * is a source route option. 27694 * Returns non-zero if something fails in which case an ICMP error has been 27695 * sent and mp freed. 27696 */ 27697 static int 27698 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27699 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27700 { 27701 ipoptp_t opts; 27702 uchar_t *opt; 27703 uint8_t optval; 27704 uint8_t optlen; 27705 ipaddr_t dst; 27706 intptr_t code = 0; 27707 mblk_t *mp; 27708 ire_t *ire = NULL; 27709 27710 ip2dbg(("ip_wput_options\n")); 27711 mp = ipsec_mp; 27712 if (mctl_present) { 27713 mp = ipsec_mp->b_cont; 27714 } 27715 27716 dst = ipha->ipha_dst; 27717 for (optval = ipoptp_first(&opts, ipha); 27718 optval != IPOPT_EOL; 27719 optval = ipoptp_next(&opts)) { 27720 opt = opts.ipoptp_cur; 27721 optlen = opts.ipoptp_len; 27722 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27723 optval, optlen)); 27724 switch (optval) { 27725 uint32_t off; 27726 case IPOPT_SSRR: 27727 case IPOPT_LSRR: 27728 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27729 ip1dbg(( 27730 "ip_wput_options: bad option offset\n")); 27731 code = (char *)&opt[IPOPT_OLEN] - 27732 (char *)ipha; 27733 goto param_prob; 27734 } 27735 off = opt[IPOPT_OFFSET]; 27736 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27737 ntohl(dst))); 27738 /* 27739 * For strict: verify that dst is directly 27740 * reachable. 27741 */ 27742 if (optval == IPOPT_SSRR) { 27743 ire = ire_ftable_lookup(dst, 0, 0, 27744 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27745 MBLK_GETLABEL(mp), 27746 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27747 if (ire == NULL) { 27748 ip1dbg(("ip_wput_options: SSRR not" 27749 " directly reachable: 0x%x\n", 27750 ntohl(dst))); 27751 goto bad_src_route; 27752 } 27753 ire_refrele(ire); 27754 } 27755 break; 27756 case IPOPT_RR: 27757 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27758 ip1dbg(( 27759 "ip_wput_options: bad option offset\n")); 27760 code = (char *)&opt[IPOPT_OLEN] - 27761 (char *)ipha; 27762 goto param_prob; 27763 } 27764 break; 27765 case IPOPT_TS: 27766 /* 27767 * Verify that length >=5 and that there is either 27768 * room for another timestamp or that the overflow 27769 * counter is not maxed out. 27770 */ 27771 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27772 if (optlen < IPOPT_MINLEN_IT) { 27773 goto param_prob; 27774 } 27775 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27776 ip1dbg(( 27777 "ip_wput_options: bad option offset\n")); 27778 code = (char *)&opt[IPOPT_OFFSET] - 27779 (char *)ipha; 27780 goto param_prob; 27781 } 27782 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27783 case IPOPT_TS_TSONLY: 27784 off = IPOPT_TS_TIMELEN; 27785 break; 27786 case IPOPT_TS_TSANDADDR: 27787 case IPOPT_TS_PRESPEC: 27788 case IPOPT_TS_PRESPEC_RFC791: 27789 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27790 break; 27791 default: 27792 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27793 (char *)ipha; 27794 goto param_prob; 27795 } 27796 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27797 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27798 /* 27799 * No room and the overflow counter is 15 27800 * already. 27801 */ 27802 goto param_prob; 27803 } 27804 break; 27805 } 27806 } 27807 27808 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27809 return (0); 27810 27811 ip1dbg(("ip_wput_options: error processing IP options.")); 27812 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27813 27814 param_prob: 27815 /* 27816 * Since ip_wput() isn't close to finished, we fill 27817 * in enough of the header for credible error reporting. 27818 */ 27819 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27820 /* Failed */ 27821 freemsg(ipsec_mp); 27822 return (-1); 27823 } 27824 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27825 return (-1); 27826 27827 bad_src_route: 27828 /* 27829 * Since ip_wput() isn't close to finished, we fill 27830 * in enough of the header for credible error reporting. 27831 */ 27832 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27833 /* Failed */ 27834 freemsg(ipsec_mp); 27835 return (-1); 27836 } 27837 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27838 return (-1); 27839 } 27840 27841 /* 27842 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27843 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27844 * thru /etc/system. 27845 */ 27846 #define CONN_MAXDRAINCNT 64 27847 27848 static void 27849 conn_drain_init(ip_stack_t *ipst) 27850 { 27851 int i; 27852 27853 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27854 27855 if ((ipst->ips_conn_drain_list_cnt == 0) || 27856 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27857 /* 27858 * Default value of the number of drainers is the 27859 * number of cpus, subject to maximum of 8 drainers. 27860 */ 27861 if (boot_max_ncpus != -1) 27862 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27863 else 27864 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27865 } 27866 27867 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27868 sizeof (idl_t), KM_SLEEP); 27869 27870 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27871 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27872 MUTEX_DEFAULT, NULL); 27873 } 27874 } 27875 27876 static void 27877 conn_drain_fini(ip_stack_t *ipst) 27878 { 27879 int i; 27880 27881 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27882 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27883 kmem_free(ipst->ips_conn_drain_list, 27884 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27885 ipst->ips_conn_drain_list = NULL; 27886 } 27887 27888 /* 27889 * Note: For an overview of how flowcontrol is handled in IP please see the 27890 * IP Flowcontrol notes at the top of this file. 27891 * 27892 * Flow control has blocked us from proceeding. Insert the given conn in one 27893 * of the conn drain lists. These conn wq's will be qenabled later on when 27894 * STREAMS flow control does a backenable. conn_walk_drain will enable 27895 * the first conn in each of these drain lists. Each of these qenabled conns 27896 * in turn enables the next in the list, after it runs, or when it closes, 27897 * thus sustaining the drain process. 27898 * 27899 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27900 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27901 * running at any time, on a given conn, since there can be only 1 service proc 27902 * running on a queue at any time. 27903 */ 27904 void 27905 conn_drain_insert(conn_t *connp) 27906 { 27907 idl_t *idl; 27908 uint_t index; 27909 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27910 27911 mutex_enter(&connp->conn_lock); 27912 if (connp->conn_state_flags & CONN_CLOSING) { 27913 /* 27914 * The conn is closing as a result of which CONN_CLOSING 27915 * is set. Return. 27916 */ 27917 mutex_exit(&connp->conn_lock); 27918 return; 27919 } else if (connp->conn_idl == NULL) { 27920 /* 27921 * Assign the next drain list round robin. We dont' use 27922 * a lock, and thus it may not be strictly round robin. 27923 * Atomicity of load/stores is enough to make sure that 27924 * conn_drain_list_index is always within bounds. 27925 */ 27926 index = ipst->ips_conn_drain_list_index; 27927 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27928 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 27929 index++; 27930 if (index == ipst->ips_conn_drain_list_cnt) 27931 index = 0; 27932 ipst->ips_conn_drain_list_index = index; 27933 } 27934 mutex_exit(&connp->conn_lock); 27935 27936 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27937 if ((connp->conn_drain_prev != NULL) || 27938 (connp->conn_state_flags & CONN_CLOSING)) { 27939 /* 27940 * The conn is already in the drain list, OR 27941 * the conn is closing. We need to check again for 27942 * the closing case again since close can happen 27943 * after we drop the conn_lock, and before we 27944 * acquire the CONN_DRAIN_LIST_LOCK. 27945 */ 27946 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27947 return; 27948 } else { 27949 idl = connp->conn_idl; 27950 } 27951 27952 /* 27953 * The conn is not in the drain list. Insert it at the 27954 * tail of the drain list. The drain list is circular 27955 * and doubly linked. idl_conn points to the 1st element 27956 * in the list. 27957 */ 27958 if (idl->idl_conn == NULL) { 27959 idl->idl_conn = connp; 27960 connp->conn_drain_next = connp; 27961 connp->conn_drain_prev = connp; 27962 } else { 27963 conn_t *head = idl->idl_conn; 27964 27965 connp->conn_drain_next = head; 27966 connp->conn_drain_prev = head->conn_drain_prev; 27967 head->conn_drain_prev->conn_drain_next = connp; 27968 head->conn_drain_prev = connp; 27969 } 27970 /* 27971 * For non streams based sockets assert flow control. 27972 */ 27973 if (IPCL_IS_NONSTR(connp)) { 27974 (*connp->conn_upcalls->su_txq_full) 27975 (connp->conn_upper_handle, B_TRUE); 27976 } 27977 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27978 } 27979 27980 /* 27981 * This conn is closing, and we are called from ip_close. OR 27982 * This conn has been serviced by ip_wsrv, and we need to do the tail 27983 * processing. 27984 * If this conn is part of the drain list, we may need to sustain the drain 27985 * process by qenabling the next conn in the drain list. We may also need to 27986 * remove this conn from the list, if it is done. 27987 */ 27988 static void 27989 conn_drain_tail(conn_t *connp, boolean_t closing) 27990 { 27991 idl_t *idl; 27992 27993 /* 27994 * connp->conn_idl is stable at this point, and no lock is needed 27995 * to check it. If we are called from ip_close, close has already 27996 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27997 * called us only because conn_idl is non-null. If we are called thru 27998 * service, conn_idl could be null, but it cannot change because 27999 * service is single-threaded per queue, and there cannot be another 28000 * instance of service trying to call conn_drain_insert on this conn 28001 * now. 28002 */ 28003 ASSERT(!closing || (connp->conn_idl != NULL)); 28004 28005 /* 28006 * If connp->conn_idl is null, the conn has not been inserted into any 28007 * drain list even once since creation of the conn. Just return. 28008 */ 28009 if (connp->conn_idl == NULL) 28010 return; 28011 28012 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28013 28014 if (connp->conn_drain_prev == NULL) { 28015 /* This conn is currently not in the drain list. */ 28016 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28017 return; 28018 } 28019 idl = connp->conn_idl; 28020 if (idl->idl_conn_draining == connp) { 28021 /* 28022 * This conn is the current drainer. If this is the last conn 28023 * in the drain list, we need to do more checks, in the 'if' 28024 * below. Otherwwise we need to just qenable the next conn, 28025 * to sustain the draining, and is handled in the 'else' 28026 * below. 28027 */ 28028 if (connp->conn_drain_next == idl->idl_conn) { 28029 /* 28030 * This conn is the last in this list. This round 28031 * of draining is complete. If idl_repeat is set, 28032 * it means another flow enabling has happened from 28033 * the driver/streams and we need to another round 28034 * of draining. 28035 * If there are more than 2 conns in the drain list, 28036 * do a left rotate by 1, so that all conns except the 28037 * conn at the head move towards the head by 1, and the 28038 * the conn at the head goes to the tail. This attempts 28039 * a more even share for all queues that are being 28040 * drained. 28041 */ 28042 if ((connp->conn_drain_next != connp) && 28043 (idl->idl_conn->conn_drain_next != connp)) { 28044 idl->idl_conn = idl->idl_conn->conn_drain_next; 28045 } 28046 if (idl->idl_repeat) { 28047 qenable(idl->idl_conn->conn_wq); 28048 idl->idl_conn_draining = idl->idl_conn; 28049 idl->idl_repeat = 0; 28050 } else { 28051 idl->idl_conn_draining = NULL; 28052 } 28053 } else { 28054 /* 28055 * If the next queue that we are now qenable'ing, 28056 * is closing, it will remove itself from this list 28057 * and qenable the subsequent queue in ip_close(). 28058 * Serialization is acheived thru idl_lock. 28059 */ 28060 qenable(connp->conn_drain_next->conn_wq); 28061 idl->idl_conn_draining = connp->conn_drain_next; 28062 } 28063 } 28064 if (!connp->conn_did_putbq || closing) { 28065 /* 28066 * Remove ourself from the drain list, if we did not do 28067 * a putbq, or if the conn is closing. 28068 * Note: It is possible that q->q_first is non-null. It means 28069 * that these messages landed after we did a enableok() in 28070 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28071 * service them. 28072 */ 28073 if (connp->conn_drain_next == connp) { 28074 /* Singleton in the list */ 28075 ASSERT(connp->conn_drain_prev == connp); 28076 idl->idl_conn = NULL; 28077 idl->idl_conn_draining = NULL; 28078 } else { 28079 connp->conn_drain_prev->conn_drain_next = 28080 connp->conn_drain_next; 28081 connp->conn_drain_next->conn_drain_prev = 28082 connp->conn_drain_prev; 28083 if (idl->idl_conn == connp) 28084 idl->idl_conn = connp->conn_drain_next; 28085 ASSERT(idl->idl_conn_draining != connp); 28086 28087 } 28088 connp->conn_drain_next = NULL; 28089 connp->conn_drain_prev = NULL; 28090 28091 /* 28092 * For non streams based sockets open up flow control. 28093 */ 28094 if (IPCL_IS_NONSTR(connp)) { 28095 (*connp->conn_upcalls->su_txq_full) 28096 (connp->conn_upper_handle, B_FALSE); 28097 } 28098 } 28099 28100 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28101 } 28102 28103 /* 28104 * Write service routine. Shared perimeter entry point. 28105 * ip_wsrv can be called in any of the following ways. 28106 * 1. The device queue's messages has fallen below the low water mark 28107 * and STREAMS has backenabled the ill_wq. We walk thru all the 28108 * the drain lists and backenable the first conn in each list. 28109 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28110 * qenabled non-tcp upper layers. We start dequeing messages and call 28111 * ip_wput for each message. 28112 */ 28113 28114 void 28115 ip_wsrv(queue_t *q) 28116 { 28117 conn_t *connp; 28118 ill_t *ill; 28119 mblk_t *mp; 28120 28121 if (q->q_next) { 28122 ill = (ill_t *)q->q_ptr; 28123 if (ill->ill_state_flags == 0) { 28124 /* 28125 * The device flow control has opened up. 28126 * Walk through conn drain lists and qenable the 28127 * first conn in each list. This makes sense only 28128 * if the stream is fully plumbed and setup. 28129 * Hence the if check above. 28130 */ 28131 ip1dbg(("ip_wsrv: walking\n")); 28132 conn_walk_drain(ill->ill_ipst); 28133 } 28134 return; 28135 } 28136 28137 connp = Q_TO_CONN(q); 28138 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28139 28140 /* 28141 * 1. Set conn_draining flag to signal that service is active. 28142 * 28143 * 2. ip_output determines whether it has been called from service, 28144 * based on the last parameter. If it is IP_WSRV it concludes it 28145 * has been called from service. 28146 * 28147 * 3. Message ordering is preserved by the following logic. 28148 * i. A directly called ip_output (i.e. not thru service) will queue 28149 * the message at the tail, if conn_draining is set (i.e. service 28150 * is running) or if q->q_first is non-null. 28151 * 28152 * ii. If ip_output is called from service, and if ip_output cannot 28153 * putnext due to flow control, it does a putbq. 28154 * 28155 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28156 * (causing an infinite loop). 28157 */ 28158 ASSERT(!connp->conn_did_putbq); 28159 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28160 connp->conn_draining = 1; 28161 noenable(q); 28162 while ((mp = getq(q)) != NULL) { 28163 ASSERT(CONN_Q(q)); 28164 28165 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28166 if (connp->conn_did_putbq) { 28167 /* ip_wput did a putbq */ 28168 break; 28169 } 28170 } 28171 /* 28172 * At this point, a thread coming down from top, calling 28173 * ip_wput, may end up queueing the message. We have not yet 28174 * enabled the queue, so ip_wsrv won't be called again. 28175 * To avoid this race, check q->q_first again (in the loop) 28176 * If the other thread queued the message before we call 28177 * enableok(), we will catch it in the q->q_first check. 28178 * If the other thread queues the message after we call 28179 * enableok(), ip_wsrv will be called again by STREAMS. 28180 */ 28181 connp->conn_draining = 0; 28182 enableok(q); 28183 28184 } 28185 28186 /* Enable the next conn for draining */ 28187 conn_drain_tail(connp, B_FALSE); 28188 28189 connp->conn_did_putbq = 0; 28190 } 28191 28192 /* 28193 * Callback to disable flow control in IP. 28194 * 28195 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28196 * is enabled. 28197 * 28198 * When MAC_TX() is not able to send any more packets, dld sets its queue 28199 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28200 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28201 * function and wakes up corresponding mac worker threads, which in turn 28202 * calls this callback function, and disables flow control. 28203 */ 28204 /* ARGSUSED */ 28205 void 28206 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28207 { 28208 qenable(((ill_t *)ill)->ill_wq); 28209 } 28210 28211 /* 28212 * Walk the list of all conn's calling the function provided with the 28213 * specified argument for each. Note that this only walks conn's that 28214 * have been bound. 28215 * Applies to both IPv4 and IPv6. 28216 */ 28217 static void 28218 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28219 { 28220 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28221 ipst->ips_ipcl_udp_fanout_size, 28222 func, arg, zoneid); 28223 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28224 ipst->ips_ipcl_conn_fanout_size, 28225 func, arg, zoneid); 28226 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28227 ipst->ips_ipcl_bind_fanout_size, 28228 func, arg, zoneid); 28229 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28230 IPPROTO_MAX, func, arg, zoneid); 28231 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28232 IPPROTO_MAX, func, arg, zoneid); 28233 } 28234 28235 /* 28236 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28237 * of conns that need to be drained, check if drain is already in progress. 28238 * If so set the idl_repeat bit, indicating that the last conn in the list 28239 * needs to reinitiate the drain once again, for the list. If drain is not 28240 * in progress for the list, initiate the draining, by qenabling the 1st 28241 * conn in the list. The drain is self-sustaining, each qenabled conn will 28242 * in turn qenable the next conn, when it is done/blocked/closing. 28243 */ 28244 static void 28245 conn_walk_drain(ip_stack_t *ipst) 28246 { 28247 int i; 28248 idl_t *idl; 28249 28250 IP_STAT(ipst, ip_conn_walk_drain); 28251 28252 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28253 idl = &ipst->ips_conn_drain_list[i]; 28254 mutex_enter(&idl->idl_lock); 28255 if (idl->idl_conn == NULL) { 28256 mutex_exit(&idl->idl_lock); 28257 continue; 28258 } 28259 /* 28260 * If this list is not being drained currently by 28261 * an ip_wsrv thread, start the process. 28262 */ 28263 if (idl->idl_conn_draining == NULL) { 28264 ASSERT(idl->idl_repeat == 0); 28265 qenable(idl->idl_conn->conn_wq); 28266 idl->idl_conn_draining = idl->idl_conn; 28267 } else { 28268 idl->idl_repeat = 1; 28269 } 28270 mutex_exit(&idl->idl_lock); 28271 } 28272 } 28273 28274 /* 28275 * Walk an conn hash table of `count' buckets, calling func for each entry. 28276 */ 28277 static void 28278 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28279 zoneid_t zoneid) 28280 { 28281 conn_t *connp; 28282 28283 while (count-- > 0) { 28284 mutex_enter(&connfp->connf_lock); 28285 for (connp = connfp->connf_head; connp != NULL; 28286 connp = connp->conn_next) { 28287 if (zoneid == GLOBAL_ZONEID || 28288 zoneid == connp->conn_zoneid) { 28289 CONN_INC_REF(connp); 28290 mutex_exit(&connfp->connf_lock); 28291 (*func)(connp, arg); 28292 mutex_enter(&connfp->connf_lock); 28293 CONN_DEC_REF(connp); 28294 } 28295 } 28296 mutex_exit(&connfp->connf_lock); 28297 connfp++; 28298 } 28299 } 28300 28301 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28302 static void 28303 conn_report1(conn_t *connp, void *mp) 28304 { 28305 char buf1[INET6_ADDRSTRLEN]; 28306 char buf2[INET6_ADDRSTRLEN]; 28307 uint_t print_len, buf_len; 28308 28309 ASSERT(connp != NULL); 28310 28311 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28312 if (buf_len <= 0) 28313 return; 28314 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28315 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28316 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28317 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28318 "%5d %s/%05d %s/%05d\n", 28319 (void *)connp, (void *)CONNP_TO_RQ(connp), 28320 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28321 buf1, connp->conn_lport, 28322 buf2, connp->conn_fport); 28323 if (print_len < buf_len) { 28324 ((mblk_t *)mp)->b_wptr += print_len; 28325 } else { 28326 ((mblk_t *)mp)->b_wptr += buf_len; 28327 } 28328 } 28329 28330 /* 28331 * Named Dispatch routine to produce a formatted report on all conns 28332 * that are listed in one of the fanout tables. 28333 * This report is accessed by using the ndd utility to "get" ND variable 28334 * "ip_conn_status". 28335 */ 28336 /* ARGSUSED */ 28337 static int 28338 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28339 { 28340 conn_t *connp = Q_TO_CONN(q); 28341 28342 (void) mi_mpprintf(mp, 28343 "CONN " MI_COL_HDRPAD_STR 28344 "rfq " MI_COL_HDRPAD_STR 28345 "stq " MI_COL_HDRPAD_STR 28346 " zone local remote"); 28347 28348 /* 28349 * Because of the ndd constraint, at most we can have 64K buffer 28350 * to put in all conn info. So to be more efficient, just 28351 * allocate a 64K buffer here, assuming we need that large buffer. 28352 * This should be OK as only privileged processes can do ndd /dev/ip. 28353 */ 28354 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28355 /* The following may work even if we cannot get a large buf. */ 28356 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28357 return (0); 28358 } 28359 28360 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28361 connp->conn_netstack->netstack_ip); 28362 return (0); 28363 } 28364 28365 /* 28366 * Determine if the ill and multicast aspects of that packets 28367 * "matches" the conn. 28368 */ 28369 boolean_t 28370 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28371 zoneid_t zoneid) 28372 { 28373 ill_t *bound_ill; 28374 boolean_t found; 28375 ipif_t *ipif; 28376 ire_t *ire; 28377 ipaddr_t dst, src; 28378 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28379 28380 dst = ipha->ipha_dst; 28381 src = ipha->ipha_src; 28382 28383 /* 28384 * conn_incoming_ill is set by IP_BOUND_IF which limits 28385 * unicast, broadcast and multicast reception to 28386 * conn_incoming_ill. conn_wantpacket itself is called 28387 * only for BROADCAST and multicast. 28388 */ 28389 bound_ill = connp->conn_incoming_ill; 28390 if (bound_ill != NULL) { 28391 if (IS_IPMP(bound_ill)) { 28392 if (bound_ill->ill_grp != ill->ill_grp) 28393 return (B_FALSE); 28394 } else { 28395 if (bound_ill != ill) 28396 return (B_FALSE); 28397 } 28398 } 28399 28400 if (!CLASSD(dst)) { 28401 if (IPCL_ZONE_MATCH(connp, zoneid)) 28402 return (B_TRUE); 28403 /* 28404 * The conn is in a different zone; we need to check that this 28405 * broadcast address is configured in the application's zone. 28406 */ 28407 ipif = ipif_get_next_ipif(NULL, ill); 28408 if (ipif == NULL) 28409 return (B_FALSE); 28410 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28411 connp->conn_zoneid, NULL, 28412 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28413 ipif_refrele(ipif); 28414 if (ire != NULL) { 28415 ire_refrele(ire); 28416 return (B_TRUE); 28417 } else { 28418 return (B_FALSE); 28419 } 28420 } 28421 28422 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28423 connp->conn_zoneid == zoneid) { 28424 /* 28425 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28426 * disabled, therefore we don't dispatch the multicast packet to 28427 * the sending zone. 28428 */ 28429 return (B_FALSE); 28430 } 28431 28432 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28433 /* 28434 * Multicast packet on the loopback interface: we only match 28435 * conns who joined the group in the specified zone. 28436 */ 28437 return (B_FALSE); 28438 } 28439 28440 if (connp->conn_multi_router) { 28441 /* multicast packet and multicast router socket: send up */ 28442 return (B_TRUE); 28443 } 28444 28445 mutex_enter(&connp->conn_lock); 28446 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28447 mutex_exit(&connp->conn_lock); 28448 return (found); 28449 } 28450 28451 /* 28452 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28453 */ 28454 /* ARGSUSED */ 28455 static void 28456 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28457 { 28458 ill_t *ill = (ill_t *)q->q_ptr; 28459 mblk_t *mp1, *mp2; 28460 ipif_t *ipif; 28461 int err = 0; 28462 conn_t *connp = NULL; 28463 ipsq_t *ipsq; 28464 arc_t *arc; 28465 28466 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28467 28468 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28469 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28470 28471 ASSERT(IAM_WRITER_ILL(ill)); 28472 mp2 = mp->b_cont; 28473 mp->b_cont = NULL; 28474 28475 /* 28476 * We have now received the arp bringup completion message 28477 * from ARP. Mark the arp bringup as done. Also if the arp 28478 * stream has already started closing, send up the AR_ARP_CLOSING 28479 * ack now since ARP is waiting in close for this ack. 28480 */ 28481 mutex_enter(&ill->ill_lock); 28482 ill->ill_arp_bringup_pending = 0; 28483 if (ill->ill_arp_closing) { 28484 mutex_exit(&ill->ill_lock); 28485 /* Let's reuse the mp for sending the ack */ 28486 arc = (arc_t *)mp->b_rptr; 28487 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28488 arc->arc_cmd = AR_ARP_CLOSING; 28489 qreply(q, mp); 28490 } else { 28491 mutex_exit(&ill->ill_lock); 28492 freeb(mp); 28493 } 28494 28495 ipsq = ill->ill_phyint->phyint_ipsq; 28496 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28497 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28498 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28499 if (mp1 == NULL) { 28500 /* bringup was aborted by the user */ 28501 freemsg(mp2); 28502 return; 28503 } 28504 28505 /* 28506 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28507 * must have an associated conn_t. Otherwise, we're bringing this 28508 * interface back up as part of handling an asynchronous event (e.g., 28509 * physical address change). 28510 */ 28511 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28512 ASSERT(connp != NULL); 28513 q = CONNP_TO_WQ(connp); 28514 } else { 28515 ASSERT(connp == NULL); 28516 q = ill->ill_rq; 28517 } 28518 28519 /* 28520 * If the DL_BIND_REQ fails, it is noted 28521 * in arc_name_offset. 28522 */ 28523 err = *((int *)mp2->b_rptr); 28524 if (err == 0) { 28525 if (ipif->ipif_isv6) { 28526 if ((err = ipif_up_done_v6(ipif)) != 0) 28527 ip0dbg(("ip_arp_done: init failed\n")); 28528 } else { 28529 if ((err = ipif_up_done(ipif)) != 0) 28530 ip0dbg(("ip_arp_done: init failed\n")); 28531 } 28532 } else { 28533 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28534 } 28535 28536 freemsg(mp2); 28537 28538 if ((err == 0) && (ill->ill_up_ipifs)) { 28539 err = ill_up_ipifs(ill, q, mp1); 28540 if (err == EINPROGRESS) 28541 return; 28542 } 28543 28544 /* 28545 * If we have a moved ipif to bring up, and everything has succeeded 28546 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28547 * down -- the admin can try to bring it up by hand if need be. 28548 */ 28549 if (ill->ill_move_ipif != NULL) { 28550 ipif = ill->ill_move_ipif; 28551 ill->ill_move_ipif = NULL; 28552 if (err == 0) { 28553 err = ipif_up(ipif, q, mp1); 28554 if (err == EINPROGRESS) 28555 return; 28556 } 28557 } 28558 28559 /* 28560 * The operation must complete without EINPROGRESS since 28561 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28562 * operation will be stuck forever in the ipsq. 28563 */ 28564 ASSERT(err != EINPROGRESS); 28565 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28566 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28567 else 28568 ipsq_current_finish(ipsq); 28569 } 28570 28571 /* Allocate the private structure */ 28572 static int 28573 ip_priv_alloc(void **bufp) 28574 { 28575 void *buf; 28576 28577 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28578 return (ENOMEM); 28579 28580 *bufp = buf; 28581 return (0); 28582 } 28583 28584 /* Function to delete the private structure */ 28585 void 28586 ip_priv_free(void *buf) 28587 { 28588 ASSERT(buf != NULL); 28589 kmem_free(buf, sizeof (ip_priv_t)); 28590 } 28591 28592 /* 28593 * The entry point for IPPF processing. 28594 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28595 * routine just returns. 28596 * 28597 * When called, ip_process generates an ipp_packet_t structure 28598 * which holds the state information for this packet and invokes the 28599 * the classifier (via ipp_packet_process). The classification, depending on 28600 * configured filters, results in a list of actions for this packet. Invoking 28601 * an action may cause the packet to be dropped, in which case the resulting 28602 * mblk (*mpp) is NULL. proc indicates the callout position for 28603 * this packet and ill_index is the interface this packet on or will leave 28604 * on (inbound and outbound resp.). 28605 */ 28606 void 28607 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28608 { 28609 mblk_t *mp; 28610 ip_priv_t *priv; 28611 ipp_action_id_t aid; 28612 int rc = 0; 28613 ipp_packet_t *pp; 28614 #define IP_CLASS "ip" 28615 28616 /* If the classifier is not loaded, return */ 28617 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28618 return; 28619 } 28620 28621 mp = *mpp; 28622 ASSERT(mp != NULL); 28623 28624 /* Allocate the packet structure */ 28625 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28626 if (rc != 0) { 28627 *mpp = NULL; 28628 freemsg(mp); 28629 return; 28630 } 28631 28632 /* Allocate the private structure */ 28633 rc = ip_priv_alloc((void **)&priv); 28634 if (rc != 0) { 28635 *mpp = NULL; 28636 freemsg(mp); 28637 ipp_packet_free(pp); 28638 return; 28639 } 28640 priv->proc = proc; 28641 priv->ill_index = ill_index; 28642 ipp_packet_set_private(pp, priv, ip_priv_free); 28643 ipp_packet_set_data(pp, mp); 28644 28645 /* Invoke the classifier */ 28646 rc = ipp_packet_process(&pp); 28647 if (pp != NULL) { 28648 mp = ipp_packet_get_data(pp); 28649 ipp_packet_free(pp); 28650 if (rc != 0) { 28651 freemsg(mp); 28652 *mpp = NULL; 28653 } 28654 } else { 28655 *mpp = NULL; 28656 } 28657 #undef IP_CLASS 28658 } 28659 28660 /* 28661 * Propagate a multicast group membership operation (add/drop) on 28662 * all the interfaces crossed by the related multirt routes. 28663 * The call is considered successful if the operation succeeds 28664 * on at least one interface. 28665 */ 28666 static int 28667 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28668 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28669 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28670 mblk_t *first_mp) 28671 { 28672 ire_t *ire_gw; 28673 irb_t *irb; 28674 int error = 0; 28675 opt_restart_t *or; 28676 ip_stack_t *ipst = ire->ire_ipst; 28677 28678 irb = ire->ire_bucket; 28679 ASSERT(irb != NULL); 28680 28681 ASSERT(DB_TYPE(first_mp) == M_CTL); 28682 28683 or = (opt_restart_t *)first_mp->b_rptr; 28684 IRB_REFHOLD(irb); 28685 for (; ire != NULL; ire = ire->ire_next) { 28686 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28687 continue; 28688 if (ire->ire_addr != group) 28689 continue; 28690 28691 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28692 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28693 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28694 /* No resolver exists for the gateway; skip this ire. */ 28695 if (ire_gw == NULL) 28696 continue; 28697 28698 /* 28699 * This function can return EINPROGRESS. If so the operation 28700 * will be restarted from ip_restart_optmgmt which will 28701 * call ip_opt_set and option processing will restart for 28702 * this option. So we may end up calling 'fn' more than once. 28703 * This requires that 'fn' is idempotent except for the 28704 * return value. The operation is considered a success if 28705 * it succeeds at least once on any one interface. 28706 */ 28707 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28708 NULL, fmode, src, first_mp); 28709 if (error == 0) 28710 or->or_private = CGTP_MCAST_SUCCESS; 28711 28712 if (ip_debug > 0) { 28713 ulong_t off; 28714 char *ksym; 28715 ksym = kobj_getsymname((uintptr_t)fn, &off); 28716 ip2dbg(("ip_multirt_apply_membership: " 28717 "called %s, multirt group 0x%08x via itf 0x%08x, " 28718 "error %d [success %u]\n", 28719 ksym ? ksym : "?", 28720 ntohl(group), ntohl(ire_gw->ire_src_addr), 28721 error, or->or_private)); 28722 } 28723 28724 ire_refrele(ire_gw); 28725 if (error == EINPROGRESS) { 28726 IRB_REFRELE(irb); 28727 return (error); 28728 } 28729 } 28730 IRB_REFRELE(irb); 28731 /* 28732 * Consider the call as successful if we succeeded on at least 28733 * one interface. Otherwise, return the last encountered error. 28734 */ 28735 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28736 } 28737 28738 /* 28739 * Issue a warning regarding a route crossing an interface with an 28740 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28741 * amount of time is logged. 28742 */ 28743 static void 28744 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28745 { 28746 hrtime_t current = gethrtime(); 28747 char buf[INET_ADDRSTRLEN]; 28748 ip_stack_t *ipst = ire->ire_ipst; 28749 28750 /* Convert interval in ms to hrtime in ns */ 28751 if (ipst->ips_multirt_bad_mtu_last_time + 28752 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28753 current) { 28754 cmn_err(CE_WARN, "ip: ignoring multiroute " 28755 "to %s, incorrect MTU %u (expected %u)\n", 28756 ip_dot_addr(ire->ire_addr, buf), 28757 ire->ire_max_frag, max_frag); 28758 28759 ipst->ips_multirt_bad_mtu_last_time = current; 28760 } 28761 } 28762 28763 /* 28764 * Get the CGTP (multirouting) filtering status. 28765 * If 0, the CGTP hooks are transparent. 28766 */ 28767 /* ARGSUSED */ 28768 static int 28769 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28770 { 28771 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28772 28773 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28774 return (0); 28775 } 28776 28777 /* 28778 * Set the CGTP (multirouting) filtering status. 28779 * If the status is changed from active to transparent 28780 * or from transparent to active, forward the new status 28781 * to the filtering module (if loaded). 28782 */ 28783 /* ARGSUSED */ 28784 static int 28785 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28786 cred_t *ioc_cr) 28787 { 28788 long new_value; 28789 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28790 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28791 28792 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28793 return (EPERM); 28794 28795 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28796 new_value < 0 || new_value > 1) { 28797 return (EINVAL); 28798 } 28799 28800 if ((!*ip_cgtp_filter_value) && new_value) { 28801 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28802 ipst->ips_ip_cgtp_filter_ops == NULL ? 28803 " (module not loaded)" : ""); 28804 } 28805 if (*ip_cgtp_filter_value && (!new_value)) { 28806 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28807 ipst->ips_ip_cgtp_filter_ops == NULL ? 28808 " (module not loaded)" : ""); 28809 } 28810 28811 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28812 int res; 28813 netstackid_t stackid; 28814 28815 stackid = ipst->ips_netstack->netstack_stackid; 28816 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28817 new_value); 28818 if (res) 28819 return (res); 28820 } 28821 28822 *ip_cgtp_filter_value = (boolean_t)new_value; 28823 28824 return (0); 28825 } 28826 28827 /* 28828 * Return the expected CGTP hooks version number. 28829 */ 28830 int 28831 ip_cgtp_filter_supported(void) 28832 { 28833 return (ip_cgtp_filter_rev); 28834 } 28835 28836 /* 28837 * CGTP hooks can be registered by invoking this function. 28838 * Checks that the version number matches. 28839 */ 28840 int 28841 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28842 { 28843 netstack_t *ns; 28844 ip_stack_t *ipst; 28845 28846 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28847 return (ENOTSUP); 28848 28849 ns = netstack_find_by_stackid(stackid); 28850 if (ns == NULL) 28851 return (EINVAL); 28852 ipst = ns->netstack_ip; 28853 ASSERT(ipst != NULL); 28854 28855 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28856 netstack_rele(ns); 28857 return (EALREADY); 28858 } 28859 28860 ipst->ips_ip_cgtp_filter_ops = ops; 28861 netstack_rele(ns); 28862 return (0); 28863 } 28864 28865 /* 28866 * CGTP hooks can be unregistered by invoking this function. 28867 * Returns ENXIO if there was no registration. 28868 * Returns EBUSY if the ndd variable has not been turned off. 28869 */ 28870 int 28871 ip_cgtp_filter_unregister(netstackid_t stackid) 28872 { 28873 netstack_t *ns; 28874 ip_stack_t *ipst; 28875 28876 ns = netstack_find_by_stackid(stackid); 28877 if (ns == NULL) 28878 return (EINVAL); 28879 ipst = ns->netstack_ip; 28880 ASSERT(ipst != NULL); 28881 28882 if (ipst->ips_ip_cgtp_filter) { 28883 netstack_rele(ns); 28884 return (EBUSY); 28885 } 28886 28887 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28888 netstack_rele(ns); 28889 return (ENXIO); 28890 } 28891 ipst->ips_ip_cgtp_filter_ops = NULL; 28892 netstack_rele(ns); 28893 return (0); 28894 } 28895 28896 /* 28897 * Check whether there is a CGTP filter registration. 28898 * Returns non-zero if there is a registration, otherwise returns zero. 28899 * Note: returns zero if bad stackid. 28900 */ 28901 int 28902 ip_cgtp_filter_is_registered(netstackid_t stackid) 28903 { 28904 netstack_t *ns; 28905 ip_stack_t *ipst; 28906 int ret; 28907 28908 ns = netstack_find_by_stackid(stackid); 28909 if (ns == NULL) 28910 return (0); 28911 ipst = ns->netstack_ip; 28912 ASSERT(ipst != NULL); 28913 28914 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28915 ret = 1; 28916 else 28917 ret = 0; 28918 28919 netstack_rele(ns); 28920 return (ret); 28921 } 28922 28923 static int 28924 ip_squeue_switch(int val) 28925 { 28926 int rval = SQ_FILL; 28927 28928 switch (val) { 28929 case IP_SQUEUE_ENTER_NODRAIN: 28930 rval = SQ_NODRAIN; 28931 break; 28932 case IP_SQUEUE_ENTER: 28933 rval = SQ_PROCESS; 28934 break; 28935 default: 28936 break; 28937 } 28938 return (rval); 28939 } 28940 28941 /* ARGSUSED */ 28942 static int 28943 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28944 caddr_t addr, cred_t *cr) 28945 { 28946 int *v = (int *)addr; 28947 long new_value; 28948 28949 if (secpolicy_net_config(cr, B_FALSE) != 0) 28950 return (EPERM); 28951 28952 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28953 return (EINVAL); 28954 28955 ip_squeue_flag = ip_squeue_switch(new_value); 28956 *v = new_value; 28957 return (0); 28958 } 28959 28960 /* 28961 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28962 * ip_debug. 28963 */ 28964 /* ARGSUSED */ 28965 static int 28966 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28967 caddr_t addr, cred_t *cr) 28968 { 28969 int *v = (int *)addr; 28970 long new_value; 28971 28972 if (secpolicy_net_config(cr, B_FALSE) != 0) 28973 return (EPERM); 28974 28975 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28976 return (EINVAL); 28977 28978 *v = new_value; 28979 return (0); 28980 } 28981 28982 static void * 28983 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 28984 { 28985 kstat_t *ksp; 28986 28987 ip_stat_t template = { 28988 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 28989 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 28990 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 28991 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 28992 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 28993 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 28994 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 28995 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 28996 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 28997 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 28998 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 28999 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29000 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29001 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29002 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29003 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29004 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29005 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29006 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29007 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29008 { "ip_opt", KSTAT_DATA_UINT64 }, 29009 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29010 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29011 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29012 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29013 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29014 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29015 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29016 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29017 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29018 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29019 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29020 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29021 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29022 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29023 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29024 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29025 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29026 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29027 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29028 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29029 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29030 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29031 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29032 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29033 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29034 }; 29035 29036 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29037 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29038 KSTAT_FLAG_VIRTUAL, stackid); 29039 29040 if (ksp == NULL) 29041 return (NULL); 29042 29043 bcopy(&template, ip_statisticsp, sizeof (template)); 29044 ksp->ks_data = (void *)ip_statisticsp; 29045 ksp->ks_private = (void *)(uintptr_t)stackid; 29046 29047 kstat_install(ksp); 29048 return (ksp); 29049 } 29050 29051 static void 29052 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29053 { 29054 if (ksp != NULL) { 29055 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29056 kstat_delete_netstack(ksp, stackid); 29057 } 29058 } 29059 29060 static void * 29061 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29062 { 29063 kstat_t *ksp; 29064 29065 ip_named_kstat_t template = { 29066 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29067 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29068 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29069 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29070 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29071 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29072 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29073 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29074 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29075 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29076 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29077 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29078 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29079 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29080 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29081 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29082 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29083 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29084 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29085 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29086 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29087 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29088 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29089 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29090 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29091 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29092 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29093 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29094 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29095 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29096 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29097 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29098 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29099 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29100 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29101 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29102 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29103 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29104 }; 29105 29106 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29107 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29108 if (ksp == NULL || ksp->ks_data == NULL) 29109 return (NULL); 29110 29111 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29112 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29113 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29114 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29115 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29116 29117 template.netToMediaEntrySize.value.i32 = 29118 sizeof (mib2_ipNetToMediaEntry_t); 29119 29120 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29121 29122 bcopy(&template, ksp->ks_data, sizeof (template)); 29123 ksp->ks_update = ip_kstat_update; 29124 ksp->ks_private = (void *)(uintptr_t)stackid; 29125 29126 kstat_install(ksp); 29127 return (ksp); 29128 } 29129 29130 static void 29131 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29132 { 29133 if (ksp != NULL) { 29134 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29135 kstat_delete_netstack(ksp, stackid); 29136 } 29137 } 29138 29139 static int 29140 ip_kstat_update(kstat_t *kp, int rw) 29141 { 29142 ip_named_kstat_t *ipkp; 29143 mib2_ipIfStatsEntry_t ipmib; 29144 ill_walk_context_t ctx; 29145 ill_t *ill; 29146 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29147 netstack_t *ns; 29148 ip_stack_t *ipst; 29149 29150 if (kp == NULL || kp->ks_data == NULL) 29151 return (EIO); 29152 29153 if (rw == KSTAT_WRITE) 29154 return (EACCES); 29155 29156 ns = netstack_find_by_stackid(stackid); 29157 if (ns == NULL) 29158 return (-1); 29159 ipst = ns->netstack_ip; 29160 if (ipst == NULL) { 29161 netstack_rele(ns); 29162 return (-1); 29163 } 29164 ipkp = (ip_named_kstat_t *)kp->ks_data; 29165 29166 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29167 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29168 ill = ILL_START_WALK_V4(&ctx, ipst); 29169 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29170 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29171 rw_exit(&ipst->ips_ill_g_lock); 29172 29173 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29174 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29175 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29176 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29177 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29178 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29179 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29180 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29181 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29182 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29183 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29184 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29185 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29186 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29187 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29188 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29189 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29190 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29191 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29192 29193 ipkp->routingDiscards.value.ui32 = 0; 29194 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29195 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29196 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29197 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29198 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29199 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29200 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29201 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29202 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29203 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29204 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29205 29206 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29207 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29208 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29209 29210 netstack_rele(ns); 29211 29212 return (0); 29213 } 29214 29215 static void * 29216 icmp_kstat_init(netstackid_t stackid) 29217 { 29218 kstat_t *ksp; 29219 29220 icmp_named_kstat_t template = { 29221 { "inMsgs", KSTAT_DATA_UINT32 }, 29222 { "inErrors", KSTAT_DATA_UINT32 }, 29223 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29224 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29225 { "inParmProbs", KSTAT_DATA_UINT32 }, 29226 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29227 { "inRedirects", KSTAT_DATA_UINT32 }, 29228 { "inEchos", KSTAT_DATA_UINT32 }, 29229 { "inEchoReps", KSTAT_DATA_UINT32 }, 29230 { "inTimestamps", KSTAT_DATA_UINT32 }, 29231 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29232 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29233 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29234 { "outMsgs", KSTAT_DATA_UINT32 }, 29235 { "outErrors", KSTAT_DATA_UINT32 }, 29236 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29237 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29238 { "outParmProbs", KSTAT_DATA_UINT32 }, 29239 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29240 { "outRedirects", KSTAT_DATA_UINT32 }, 29241 { "outEchos", KSTAT_DATA_UINT32 }, 29242 { "outEchoReps", KSTAT_DATA_UINT32 }, 29243 { "outTimestamps", KSTAT_DATA_UINT32 }, 29244 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29245 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29246 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29247 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29248 { "inUnknowns", KSTAT_DATA_UINT32 }, 29249 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29250 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29251 { "outDrops", KSTAT_DATA_UINT32 }, 29252 { "inOverFlows", KSTAT_DATA_UINT32 }, 29253 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29254 }; 29255 29256 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29257 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29258 if (ksp == NULL || ksp->ks_data == NULL) 29259 return (NULL); 29260 29261 bcopy(&template, ksp->ks_data, sizeof (template)); 29262 29263 ksp->ks_update = icmp_kstat_update; 29264 ksp->ks_private = (void *)(uintptr_t)stackid; 29265 29266 kstat_install(ksp); 29267 return (ksp); 29268 } 29269 29270 static void 29271 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29272 { 29273 if (ksp != NULL) { 29274 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29275 kstat_delete_netstack(ksp, stackid); 29276 } 29277 } 29278 29279 static int 29280 icmp_kstat_update(kstat_t *kp, int rw) 29281 { 29282 icmp_named_kstat_t *icmpkp; 29283 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29284 netstack_t *ns; 29285 ip_stack_t *ipst; 29286 29287 if ((kp == NULL) || (kp->ks_data == NULL)) 29288 return (EIO); 29289 29290 if (rw == KSTAT_WRITE) 29291 return (EACCES); 29292 29293 ns = netstack_find_by_stackid(stackid); 29294 if (ns == NULL) 29295 return (-1); 29296 ipst = ns->netstack_ip; 29297 if (ipst == NULL) { 29298 netstack_rele(ns); 29299 return (-1); 29300 } 29301 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29302 29303 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29304 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29305 icmpkp->inDestUnreachs.value.ui32 = 29306 ipst->ips_icmp_mib.icmpInDestUnreachs; 29307 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29308 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29309 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29310 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29311 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29312 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29313 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29314 icmpkp->inTimestampReps.value.ui32 = 29315 ipst->ips_icmp_mib.icmpInTimestampReps; 29316 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29317 icmpkp->inAddrMaskReps.value.ui32 = 29318 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29319 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29320 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29321 icmpkp->outDestUnreachs.value.ui32 = 29322 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29323 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29324 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29325 icmpkp->outSrcQuenchs.value.ui32 = 29326 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29327 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29328 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29329 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29330 icmpkp->outTimestamps.value.ui32 = 29331 ipst->ips_icmp_mib.icmpOutTimestamps; 29332 icmpkp->outTimestampReps.value.ui32 = 29333 ipst->ips_icmp_mib.icmpOutTimestampReps; 29334 icmpkp->outAddrMasks.value.ui32 = 29335 ipst->ips_icmp_mib.icmpOutAddrMasks; 29336 icmpkp->outAddrMaskReps.value.ui32 = 29337 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29338 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29339 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29340 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29341 icmpkp->outFragNeeded.value.ui32 = 29342 ipst->ips_icmp_mib.icmpOutFragNeeded; 29343 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29344 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29345 icmpkp->inBadRedirects.value.ui32 = 29346 ipst->ips_icmp_mib.icmpInBadRedirects; 29347 29348 netstack_rele(ns); 29349 return (0); 29350 } 29351 29352 /* 29353 * This is the fanout function for raw socket opened for SCTP. Note 29354 * that it is called after SCTP checks that there is no socket which 29355 * wants a packet. Then before SCTP handles this out of the blue packet, 29356 * this function is called to see if there is any raw socket for SCTP. 29357 * If there is and it is bound to the correct address, the packet will 29358 * be sent to that socket. Note that only one raw socket can be bound to 29359 * a port. This is assured in ipcl_sctp_hash_insert(); 29360 */ 29361 void 29362 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29363 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29364 zoneid_t zoneid) 29365 { 29366 conn_t *connp; 29367 queue_t *rq; 29368 mblk_t *first_mp; 29369 boolean_t secure; 29370 ip6_t *ip6h; 29371 ip_stack_t *ipst = recv_ill->ill_ipst; 29372 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29373 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29374 boolean_t sctp_csum_err = B_FALSE; 29375 29376 if (flags & IP_FF_SCTP_CSUM_ERR) { 29377 sctp_csum_err = B_TRUE; 29378 flags &= ~IP_FF_SCTP_CSUM_ERR; 29379 } 29380 29381 first_mp = mp; 29382 if (mctl_present) { 29383 mp = first_mp->b_cont; 29384 secure = ipsec_in_is_secure(first_mp); 29385 ASSERT(mp != NULL); 29386 } else { 29387 secure = B_FALSE; 29388 } 29389 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29390 29391 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29392 if (connp == NULL) { 29393 /* 29394 * Although raw sctp is not summed, OOB chunks must be. 29395 * Drop the packet here if the sctp checksum failed. 29396 */ 29397 if (sctp_csum_err) { 29398 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29399 freemsg(first_mp); 29400 return; 29401 } 29402 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29403 return; 29404 } 29405 rq = connp->conn_rq; 29406 if (!canputnext(rq)) { 29407 CONN_DEC_REF(connp); 29408 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29409 freemsg(first_mp); 29410 return; 29411 } 29412 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29413 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29414 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29415 (isv4 ? ipha : NULL), ip6h, mctl_present); 29416 if (first_mp == NULL) { 29417 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29418 CONN_DEC_REF(connp); 29419 return; 29420 } 29421 } 29422 /* 29423 * We probably should not send M_CTL message up to 29424 * raw socket. 29425 */ 29426 if (mctl_present) 29427 freeb(first_mp); 29428 29429 /* Initiate IPPF processing here if needed. */ 29430 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29431 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29432 ip_process(IPP_LOCAL_IN, &mp, 29433 recv_ill->ill_phyint->phyint_ifindex); 29434 if (mp == NULL) { 29435 CONN_DEC_REF(connp); 29436 return; 29437 } 29438 } 29439 29440 if (connp->conn_recvif || connp->conn_recvslla || 29441 ((connp->conn_ip_recvpktinfo || 29442 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29443 (flags & IP_FF_IPINFO))) { 29444 int in_flags = 0; 29445 29446 /* 29447 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29448 * IPF_RECVIF. 29449 */ 29450 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29451 in_flags = IPF_RECVIF; 29452 } 29453 if (connp->conn_recvslla) { 29454 in_flags |= IPF_RECVSLLA; 29455 } 29456 if (isv4) { 29457 mp = ip_add_info(mp, recv_ill, in_flags, 29458 IPCL_ZONEID(connp), ipst); 29459 } else { 29460 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29461 if (mp == NULL) { 29462 BUMP_MIB(recv_ill->ill_ip_mib, 29463 ipIfStatsInDiscards); 29464 CONN_DEC_REF(connp); 29465 return; 29466 } 29467 } 29468 } 29469 29470 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29471 /* 29472 * We are sending the IPSEC_IN message also up. Refer 29473 * to comments above this function. 29474 * This is the SOCK_RAW, IPPROTO_SCTP case. 29475 */ 29476 (connp->conn_recv)(connp, mp, NULL); 29477 CONN_DEC_REF(connp); 29478 } 29479 29480 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29481 { \ 29482 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29483 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29484 } 29485 /* 29486 * This function should be called only if all packet processing 29487 * including fragmentation is complete. Callers of this function 29488 * must set mp->b_prev to one of these values: 29489 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29490 * prior to handing over the mp as first argument to this function. 29491 * 29492 * If the ire passed by caller is incomplete, this function 29493 * queues the packet and if necessary, sends ARP request and bails. 29494 * If the ire passed is fully resolved, we simply prepend 29495 * the link-layer header to the packet, do ipsec hw acceleration 29496 * work if necessary, and send the packet out on the wire. 29497 * 29498 * NOTE: IPsec will only call this function with fully resolved 29499 * ires if hw acceleration is involved. 29500 * TODO list : 29501 * a Handle M_MULTIDATA so that 29502 * tcp_multisend->tcp_multisend_data can 29503 * call ip_xmit_v4 directly 29504 * b Handle post-ARP work for fragments so that 29505 * ip_wput_frag can call this function. 29506 */ 29507 ipxmit_state_t 29508 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29509 boolean_t flow_ctl_enabled, conn_t *connp) 29510 { 29511 nce_t *arpce; 29512 ipha_t *ipha; 29513 queue_t *q; 29514 int ill_index; 29515 mblk_t *nxt_mp, *first_mp; 29516 boolean_t xmit_drop = B_FALSE; 29517 ip_proc_t proc; 29518 ill_t *out_ill; 29519 int pkt_len; 29520 29521 arpce = ire->ire_nce; 29522 ASSERT(arpce != NULL); 29523 29524 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29525 29526 mutex_enter(&arpce->nce_lock); 29527 switch (arpce->nce_state) { 29528 case ND_REACHABLE: 29529 /* If there are other queued packets, queue this packet */ 29530 if (arpce->nce_qd_mp != NULL) { 29531 if (mp != NULL) 29532 nce_queue_mp_common(arpce, mp, B_FALSE); 29533 mp = arpce->nce_qd_mp; 29534 } 29535 arpce->nce_qd_mp = NULL; 29536 mutex_exit(&arpce->nce_lock); 29537 29538 /* 29539 * Flush the queue. In the common case, where the 29540 * ARP is already resolved, it will go through the 29541 * while loop only once. 29542 */ 29543 while (mp != NULL) { 29544 29545 nxt_mp = mp->b_next; 29546 mp->b_next = NULL; 29547 ASSERT(mp->b_datap->db_type != M_CTL); 29548 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29549 /* 29550 * This info is needed for IPQOS to do COS marking 29551 * in ip_wput_attach_llhdr->ip_process. 29552 */ 29553 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29554 mp->b_prev = NULL; 29555 29556 /* set up ill index for outbound qos processing */ 29557 out_ill = ire_to_ill(ire); 29558 ill_index = out_ill->ill_phyint->phyint_ifindex; 29559 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29560 ill_index, &ipha); 29561 if (first_mp == NULL) { 29562 xmit_drop = B_TRUE; 29563 BUMP_MIB(out_ill->ill_ip_mib, 29564 ipIfStatsOutDiscards); 29565 goto next_mp; 29566 } 29567 29568 /* non-ipsec hw accel case */ 29569 if (io == NULL || !io->ipsec_out_accelerated) { 29570 /* send it */ 29571 q = ire->ire_stq; 29572 if (proc == IPP_FWD_OUT) { 29573 UPDATE_IB_PKT_COUNT(ire); 29574 } else { 29575 UPDATE_OB_PKT_COUNT(ire); 29576 } 29577 ire->ire_last_used_time = lbolt; 29578 29579 if (flow_ctl_enabled || canputnext(q)) { 29580 if (proc == IPP_FWD_OUT) { 29581 29582 BUMP_MIB(out_ill->ill_ip_mib, 29583 ipIfStatsHCOutForwDatagrams); 29584 29585 } 29586 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29587 pkt_len); 29588 29589 DTRACE_IP7(send, mblk_t *, first_mp, 29590 conn_t *, NULL, void_ip_t *, ipha, 29591 __dtrace_ipsr_ill_t *, out_ill, 29592 ipha_t *, ipha, ip6_t *, NULL, int, 29593 0); 29594 29595 ILL_SEND_TX(out_ill, 29596 ire, connp, first_mp, 0); 29597 } else { 29598 BUMP_MIB(out_ill->ill_ip_mib, 29599 ipIfStatsOutDiscards); 29600 xmit_drop = B_TRUE; 29601 freemsg(first_mp); 29602 } 29603 } else { 29604 /* 29605 * Safety Pup says: make sure this 29606 * is going to the right interface! 29607 */ 29608 ill_t *ill1 = 29609 (ill_t *)ire->ire_stq->q_ptr; 29610 int ifindex = 29611 ill1->ill_phyint->phyint_ifindex; 29612 if (ifindex != 29613 io->ipsec_out_capab_ill_index) { 29614 xmit_drop = B_TRUE; 29615 freemsg(mp); 29616 } else { 29617 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29618 pkt_len); 29619 29620 DTRACE_IP7(send, mblk_t *, first_mp, 29621 conn_t *, NULL, void_ip_t *, ipha, 29622 __dtrace_ipsr_ill_t *, ill1, 29623 ipha_t *, ipha, ip6_t *, NULL, 29624 int, 0); 29625 29626 ipsec_hw_putnext(ire->ire_stq, mp); 29627 } 29628 } 29629 next_mp: 29630 mp = nxt_mp; 29631 } /* while (mp != NULL) */ 29632 if (xmit_drop) 29633 return (SEND_FAILED); 29634 else 29635 return (SEND_PASSED); 29636 29637 case ND_INITIAL: 29638 case ND_INCOMPLETE: 29639 29640 /* 29641 * While we do send off packets to dests that 29642 * use fully-resolved CGTP routes, we do not 29643 * handle unresolved CGTP routes. 29644 */ 29645 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29646 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29647 29648 if (mp != NULL) { 29649 /* queue the packet */ 29650 nce_queue_mp_common(arpce, mp, B_FALSE); 29651 } 29652 29653 if (arpce->nce_state == ND_INCOMPLETE) { 29654 mutex_exit(&arpce->nce_lock); 29655 DTRACE_PROBE3(ip__xmit__incomplete, 29656 (ire_t *), ire, (mblk_t *), mp, 29657 (ipsec_out_t *), io); 29658 return (LOOKUP_IN_PROGRESS); 29659 } 29660 29661 arpce->nce_state = ND_INCOMPLETE; 29662 mutex_exit(&arpce->nce_lock); 29663 29664 /* 29665 * Note that ire_add() (called from ire_forward()) 29666 * holds a ref on the ire until ARP is completed. 29667 */ 29668 ire_arpresolve(ire); 29669 return (LOOKUP_IN_PROGRESS); 29670 default: 29671 ASSERT(0); 29672 mutex_exit(&arpce->nce_lock); 29673 return (LLHDR_RESLV_FAILED); 29674 } 29675 } 29676 29677 #undef UPDATE_IP_MIB_OB_COUNTERS 29678 29679 /* 29680 * Return B_TRUE if the buffers differ in length or content. 29681 * This is used for comparing extension header buffers. 29682 * Note that an extension header would be declared different 29683 * even if all that changed was the next header value in that header i.e. 29684 * what really changed is the next extension header. 29685 */ 29686 boolean_t 29687 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29688 uint_t blen) 29689 { 29690 if (!b_valid) 29691 blen = 0; 29692 29693 if (alen != blen) 29694 return (B_TRUE); 29695 if (alen == 0) 29696 return (B_FALSE); /* Both zero length */ 29697 return (bcmp(abuf, bbuf, alen)); 29698 } 29699 29700 /* 29701 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29702 * Return B_FALSE if memory allocation fails - don't change any state! 29703 */ 29704 boolean_t 29705 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29706 const void *src, uint_t srclen) 29707 { 29708 void *dst; 29709 29710 if (!src_valid) 29711 srclen = 0; 29712 29713 ASSERT(*dstlenp == 0); 29714 if (src != NULL && srclen != 0) { 29715 dst = mi_alloc(srclen, BPRI_MED); 29716 if (dst == NULL) 29717 return (B_FALSE); 29718 } else { 29719 dst = NULL; 29720 } 29721 if (*dstp != NULL) 29722 mi_free(*dstp); 29723 *dstp = dst; 29724 *dstlenp = dst == NULL ? 0 : srclen; 29725 return (B_TRUE); 29726 } 29727 29728 /* 29729 * Replace what is in *dst, *dstlen with the source. 29730 * Assumes ip_allocbuf has already been called. 29731 */ 29732 void 29733 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29734 const void *src, uint_t srclen) 29735 { 29736 if (!src_valid) 29737 srclen = 0; 29738 29739 ASSERT(*dstlenp == srclen); 29740 if (src != NULL && srclen != 0) 29741 bcopy(src, *dstp, srclen); 29742 } 29743 29744 /* 29745 * Free the storage pointed to by the members of an ip6_pkt_t. 29746 */ 29747 void 29748 ip6_pkt_free(ip6_pkt_t *ipp) 29749 { 29750 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29751 29752 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29753 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29754 ipp->ipp_hopopts = NULL; 29755 ipp->ipp_hopoptslen = 0; 29756 } 29757 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29758 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29759 ipp->ipp_rtdstopts = NULL; 29760 ipp->ipp_rtdstoptslen = 0; 29761 } 29762 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29763 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29764 ipp->ipp_dstopts = NULL; 29765 ipp->ipp_dstoptslen = 0; 29766 } 29767 if (ipp->ipp_fields & IPPF_RTHDR) { 29768 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29769 ipp->ipp_rthdr = NULL; 29770 ipp->ipp_rthdrlen = 0; 29771 } 29772 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29773 IPPF_RTHDR); 29774 } 29775 29776 zoneid_t 29777 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29778 zoneid_t lookup_zoneid) 29779 { 29780 ire_t *ire; 29781 int ire_flags = MATCH_IRE_TYPE; 29782 zoneid_t zoneid = ALL_ZONES; 29783 29784 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29785 return (ALL_ZONES); 29786 29787 if (lookup_zoneid != ALL_ZONES) 29788 ire_flags |= MATCH_IRE_ZONEONLY; 29789 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29790 lookup_zoneid, NULL, ire_flags, ipst); 29791 if (ire != NULL) { 29792 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29793 ire_refrele(ire); 29794 } 29795 return (zoneid); 29796 } 29797 29798 zoneid_t 29799 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29800 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29801 { 29802 ire_t *ire; 29803 int ire_flags = MATCH_IRE_TYPE; 29804 zoneid_t zoneid = ALL_ZONES; 29805 ipif_t *ipif_arg = NULL; 29806 29807 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29808 return (ALL_ZONES); 29809 29810 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29811 ire_flags |= MATCH_IRE_ILL; 29812 ipif_arg = ill->ill_ipif; 29813 } 29814 if (lookup_zoneid != ALL_ZONES) 29815 ire_flags |= MATCH_IRE_ZONEONLY; 29816 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29817 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29818 if (ire != NULL) { 29819 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29820 ire_refrele(ire); 29821 } 29822 return (zoneid); 29823 } 29824 29825 /* 29826 * IP obserability hook support functions. 29827 */ 29828 29829 static void 29830 ipobs_init(ip_stack_t *ipst) 29831 { 29832 ipst->ips_ipobs_enabled = B_FALSE; 29833 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29834 offsetof(ipobs_cb_t, ipobs_cbnext)); 29835 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29836 ipst->ips_ipobs_cb_nwalkers = 0; 29837 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 29838 } 29839 29840 static void 29841 ipobs_fini(ip_stack_t *ipst) 29842 { 29843 ipobs_cb_t *cb; 29844 29845 mutex_enter(&ipst->ips_ipobs_cb_lock); 29846 while (ipst->ips_ipobs_cb_nwalkers != 0) 29847 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29848 29849 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 29850 list_remove(&ipst->ips_ipobs_cb_list, cb); 29851 kmem_free(cb, sizeof (*cb)); 29852 } 29853 list_destroy(&ipst->ips_ipobs_cb_list); 29854 mutex_exit(&ipst->ips_ipobs_cb_lock); 29855 mutex_destroy(&ipst->ips_ipobs_cb_lock); 29856 cv_destroy(&ipst->ips_ipobs_cb_cv); 29857 } 29858 29859 void 29860 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29861 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 29862 { 29863 mblk_t *mp2; 29864 ipobs_cb_t *ipobs_cb; 29865 ipobs_hook_data_t *ihd; 29866 uint64_t grifindex = 0; 29867 29868 ASSERT(DB_TYPE(mp) == M_DATA); 29869 29870 if (IS_UNDER_IPMP(ill)) 29871 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29872 29873 mutex_enter(&ipst->ips_ipobs_cb_lock); 29874 ipst->ips_ipobs_cb_nwalkers++; 29875 mutex_exit(&ipst->ips_ipobs_cb_lock); 29876 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 29877 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 29878 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 29879 if (mp2 != NULL) { 29880 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 29881 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 29882 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 29883 freemsg(mp2); 29884 continue; 29885 } 29886 ihd->ihd_mp->b_rptr += hlen; 29887 ihd->ihd_htype = htype; 29888 ihd->ihd_ipver = ipver; 29889 ihd->ihd_zsrc = zsrc; 29890 ihd->ihd_zdst = zdst; 29891 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 29892 ihd->ihd_grifindex = grifindex; 29893 ihd->ihd_stack = ipst->ips_netstack; 29894 mp2->b_wptr += sizeof (*ihd); 29895 ipobs_cb->ipobs_cbfunc(mp2); 29896 } 29897 } 29898 mutex_enter(&ipst->ips_ipobs_cb_lock); 29899 ipst->ips_ipobs_cb_nwalkers--; 29900 if (ipst->ips_ipobs_cb_nwalkers == 0) 29901 cv_broadcast(&ipst->ips_ipobs_cb_cv); 29902 mutex_exit(&ipst->ips_ipobs_cb_lock); 29903 } 29904 29905 void 29906 ipobs_register_hook(netstack_t *ns, pfv_t func) 29907 { 29908 ipobs_cb_t *cb; 29909 ip_stack_t *ipst = ns->netstack_ip; 29910 29911 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 29912 29913 mutex_enter(&ipst->ips_ipobs_cb_lock); 29914 while (ipst->ips_ipobs_cb_nwalkers != 0) 29915 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29916 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 29917 29918 cb->ipobs_cbfunc = func; 29919 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 29920 ipst->ips_ipobs_enabled = B_TRUE; 29921 mutex_exit(&ipst->ips_ipobs_cb_lock); 29922 } 29923 29924 void 29925 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 29926 { 29927 ipobs_cb_t *curcb; 29928 ip_stack_t *ipst = ns->netstack_ip; 29929 29930 mutex_enter(&ipst->ips_ipobs_cb_lock); 29931 while (ipst->ips_ipobs_cb_nwalkers != 0) 29932 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 29933 29934 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 29935 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 29936 if (func == curcb->ipobs_cbfunc) { 29937 list_remove(&ipst->ips_ipobs_cb_list, curcb); 29938 kmem_free(curcb, sizeof (*curcb)); 29939 break; 29940 } 29941 } 29942 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 29943 ipst->ips_ipobs_enabled = B_FALSE; 29944 mutex_exit(&ipst->ips_ipobs_cb_lock); 29945 } 29946