xref: /titanic_52/usr/src/uts/common/inet/ip/ip.c (revision 1e81ac6e0a5d3782b6bdbcc7e2cbda4fda909ab9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>
50 
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>
65 
66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>
74 
75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>
79 
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>
96 
97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>
104 
105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>
108 
109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>
112 
113 #include <sys/pattr.h>
114 #include <inet/ipclassifier.h>
115 #include <inet/sctp_ip.h>
116 #include <inet/sctp/sctp_impl.h>
117 #include <inet/udp_impl.h>
118 #include <inet/rawip_impl.h>
119 #include <inet/rts_impl.h>
120 
121 #include <sys/tsol/label.h>
122 #include <sys/tsol/tnet.h>
123 
124 #include <sys/squeue_impl.h>
125 #include <inet/ip_arp.h>
126 
127 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
128 
129 /*
130  * Values for squeue switch:
131  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
132  * IP_SQUEUE_ENTER: SQ_PROCESS
133  * IP_SQUEUE_FILL: SQ_FILL
134  */
135 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
136 
137 int ip_squeue_flag;
138 
139 /*
140  * Setable in /etc/system
141  */
142 int ip_poll_normal_ms = 100;
143 int ip_poll_normal_ticks = 0;
144 int ip_modclose_ackwait_ms = 3000;
145 
146 /*
147  * It would be nice to have these present only in DEBUG systems, but the
148  * current design of the global symbol checking logic requires them to be
149  * unconditionally present.
150  */
151 uint_t ip_thread_data;			/* TSD key for debug support */
152 krwlock_t ip_thread_rwlock;
153 list_t	ip_thread_list;
154 
155 /*
156  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
157  */
158 
159 struct listptr_s {
160 	mblk_t	*lp_head;	/* pointer to the head of the list */
161 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
162 };
163 
164 typedef struct listptr_s listptr_t;
165 
166 /*
167  * This is used by ip_snmp_get_mib2_ip_route_media and
168  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
169  */
170 typedef struct iproutedata_s {
171 	uint_t		ird_idx;
172 	uint_t		ird_flags;	/* see below */
173 	listptr_t	ird_route;	/* ipRouteEntryTable */
174 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
175 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
176 } iproutedata_t;
177 
178 /* Include ire_testhidden and IRE_IF_CLONE routes */
179 #define	IRD_REPORT_ALL	0x01
180 
181 /*
182  * Cluster specific hooks. These should be NULL when booted as a non-cluster
183  */
184 
185 /*
186  * Hook functions to enable cluster networking
187  * On non-clustered systems these vectors must always be NULL.
188  *
189  * Hook function to Check ip specified ip address is a shared ip address
190  * in the cluster
191  *
192  */
193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
194     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
195 
196 /*
197  * Hook function to generate cluster wide ip fragment identifier
198  */
199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
200     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
201     void *args) = NULL;
202 
203 /*
204  * Hook function to generate cluster wide SPI.
205  */
206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
207     void *) = NULL;
208 
209 /*
210  * Hook function to verify if the SPI is already utlized.
211  */
212 
213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
214 
215 /*
216  * Hook function to delete the SPI from the cluster wide repository.
217  */
218 
219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
220 
221 /*
222  * Hook function to inform the cluster when packet received on an IDLE SA
223  */
224 
225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
226     in6_addr_t, in6_addr_t, void *) = NULL;
227 
228 /*
229  * Synchronization notes:
230  *
231  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
232  * MT level protection given by STREAMS. IP uses a combination of its own
233  * internal serialization mechanism and standard Solaris locking techniques.
234  * The internal serialization is per phyint.  This is used to serialize
235  * plumbing operations, IPMP operations, most set ioctls, etc.
236  *
237  * Plumbing is a long sequence of operations involving message
238  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
239  * involved in plumbing operations. A natural model is to serialize these
240  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
241  * parallel without any interference. But various set ioctls on hme0 are best
242  * serialized, along with IPMP operations and processing of DLPI control
243  * messages received from drivers on a per phyint basis. This serialization is
244  * provided by the ipsq_t and primitives operating on this. Details can
245  * be found in ip_if.c above the core primitives operating on ipsq_t.
246  *
247  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
248  * Simiarly lookup of an ire by a thread also returns a refheld ire.
249  * In addition ipif's and ill's referenced by the ire are also indirectly
250  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
251  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
252  * address of an ipif has to go through the ipsq_t. This ensures that only
253  * one such exclusive operation proceeds at any time on the ipif. It then
254  * waits for all refcnts
255  * associated with this ipif to come down to zero. The address is changed
256  * only after the ipif has been quiesced. Then the ipif is brought up again.
257  * More details are described above the comment in ip_sioctl_flags.
258  *
259  * Packet processing is based mostly on IREs and are fully multi-threaded
260  * using standard Solaris MT techniques.
261  *
262  * There are explicit locks in IP to handle:
263  * - The ip_g_head list maintained by mi_open_link() and friends.
264  *
265  * - The reassembly data structures (one lock per hash bucket)
266  *
267  * - conn_lock is meant to protect conn_t fields. The fields actually
268  *   protected by conn_lock are documented in the conn_t definition.
269  *
270  * - ire_lock to protect some of the fields of the ire, IRE tables
271  *   (one lock per hash bucket). Refer to ip_ire.c for details.
272  *
273  * - ndp_g_lock and ncec_lock for protecting NCEs.
274  *
275  * - ill_lock protects fields of the ill and ipif. Details in ip.h
276  *
277  * - ill_g_lock: This is a global reader/writer lock. Protects the following
278  *	* The AVL tree based global multi list of all ills.
279  *	* The linked list of all ipifs of an ill
280  *	* The <ipsq-xop> mapping
281  *	* <ill-phyint> association
282  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
283  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
284  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
285  *   writer for the actual duration of the insertion/deletion/change.
286  *
287  * - ill_lock:  This is a per ill mutex.
288  *   It protects some members of the ill_t struct; see ip.h for details.
289  *   It also protects the <ill-phyint> assoc.
290  *   It also protects the list of ipifs hanging off the ill.
291  *
292  * - ipsq_lock: This is a per ipsq_t mutex lock.
293  *   This protects some members of the ipsq_t struct; see ip.h for details.
294  *   It also protects the <ipsq-ipxop> mapping
295  *
296  * - ipx_lock: This is a per ipxop_t mutex lock.
297  *   This protects some members of the ipxop_t struct; see ip.h for details.
298  *
299  * - phyint_lock: This is a per phyint mutex lock. Protects just the
300  *   phyint_flags
301  *
302  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
303  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
304  *   uniqueness check also done atomically.
305  *
306  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
307  *   group list linked by ill_usesrc_grp_next. It also protects the
308  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
309  *   group is being added or deleted.  This lock is taken as a reader when
310  *   walking the list/group(eg: to get the number of members in a usesrc group).
311  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
312  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
313  *   example, it is not necessary to take this lock in the initial portion
314  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
315  *   operations are executed exclusively and that ensures that the "usesrc
316  *   group state" cannot change. The "usesrc group state" change can happen
317  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
318  *
319  * Changing <ill-phyint>, <ipsq-xop> assocications:
320  *
321  * To change the <ill-phyint> association, the ill_g_lock must be held
322  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
323  * must be held.
324  *
325  * To change the <ipsq-xop> association, the ill_g_lock must be held as
326  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
327  * This is only done when ills are added or removed from IPMP groups.
328  *
329  * To add or delete an ipif from the list of ipifs hanging off the ill,
330  * ill_g_lock (writer) and ill_lock must be held and the thread must be
331  * a writer on the associated ipsq.
332  *
333  * To add or delete an ill to the system, the ill_g_lock must be held as
334  * writer and the thread must be a writer on the associated ipsq.
335  *
336  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
337  * must be a writer on the associated ipsq.
338  *
339  * Lock hierarchy
340  *
341  * Some lock hierarchy scenarios are listed below.
342  *
343  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
344  * ill_g_lock -> ill_lock(s) -> phyint_lock
345  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
346  * ill_g_lock -> ip_addr_avail_lock
347  * conn_lock -> irb_lock -> ill_lock -> ire_lock
348  * ill_g_lock -> ip_g_nd_lock
349  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
350  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
351  * arl_lock -> ill_lock
352  * ips_ire_dep_lock -> irb_lock
353  *
354  * When more than 1 ill lock is needed to be held, all ill lock addresses
355  * are sorted on address and locked starting from highest addressed lock
356  * downward.
357  *
358  * Multicast scenarios
359  * ips_ill_g_lock -> ill_mcast_lock
360  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
361  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
362  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
363  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
365  *
366  * IPsec scenarios
367  *
368  * ipsa_lock -> ill_g_lock -> ill_lock
369  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
370  *
371  * Trusted Solaris scenarios
372  *
373  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
374  * igsa_lock -> gcdb_lock
375  * gcgrp_rwlock -> ire_lock
376  * gcgrp_rwlock -> gcdb_lock
377  *
378  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
379  *
380  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
381  * sq_lock -> conn_lock -> QLOCK(q)
382  * ill_lock -> ft_lock -> fe_lock
383  *
384  * Routing/forwarding table locking notes:
385  *
386  * Lock acquisition order: Radix tree lock, irb_lock.
387  * Requirements:
388  * i.  Walker must not hold any locks during the walker callback.
389  * ii  Walker must not see a truncated tree during the walk because of any node
390  *     deletion.
391  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
392  *     in many places in the code to walk the irb list. Thus even if all the
393  *     ires in a bucket have been deleted, we still can't free the radix node
394  *     until the ires have actually been inactive'd (freed).
395  *
396  * Tree traversal - Need to hold the global tree lock in read mode.
397  * Before dropping the global tree lock, need to either increment the ire_refcnt
398  * to ensure that the radix node can't be deleted.
399  *
400  * Tree add - Need to hold the global tree lock in write mode to add a
401  * radix node. To prevent the node from being deleted, increment the
402  * irb_refcnt, after the node is added to the tree. The ire itself is
403  * added later while holding the irb_lock, but not the tree lock.
404  *
405  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
406  * All associated ires must be inactive (i.e. freed), and irb_refcnt
407  * must be zero.
408  *
409  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
410  * global tree lock (read mode) for traversal.
411  *
412  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
413  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
414  *
415  * IPsec notes :
416  *
417  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
418  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
419  * ip_xmit_attr_t has the
420  * information used by the IPsec code for applying the right level of
421  * protection. The information initialized by IP in the ip_xmit_attr_t
422  * is determined by the per-socket policy or global policy in the system.
423  * For inbound datagrams, the ip_recv_attr_t
424  * starts out with nothing in it. It gets filled
425  * with the right information if it goes through the AH/ESP code, which
426  * happens if the incoming packet is secure. The information initialized
427  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
428  * the policy requirements needed by per-socket policy or global policy
429  * is met or not.
430  *
431  * For fully connected sockets i.e dst, src [addr, port] is known,
432  * conn_policy_cached is set indicating that policy has been cached.
433  * conn_in_enforce_policy may or may not be set depending on whether
434  * there is a global policy match or per-socket policy match.
435  * Policy inheriting happpens in ip_policy_set once the destination is known.
436  * Once the right policy is set on the conn_t, policy cannot change for
437  * this socket. This makes life simpler for TCP (UDP ?) where
438  * re-transmissions go out with the same policy. For symmetry, policy
439  * is cached for fully connected UDP sockets also. Thus if policy is cached,
440  * it also implies that policy is latched i.e policy cannot change
441  * on these sockets. As we have the right policy on the conn, we don't
442  * have to lookup global policy for every outbound and inbound datagram
443  * and thus serving as an optimization. Note that a global policy change
444  * does not affect fully connected sockets if they have policy. If fully
445  * connected sockets did not have any policy associated with it, global
446  * policy change may affect them.
447  *
448  * IP Flow control notes:
449  * ---------------------
450  * Non-TCP streams are flow controlled by IP. The way this is accomplished
451  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
452  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
453  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
454  * functions.
455  *
456  * Per Tx ring udp flow control:
457  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
458  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
459  *
460  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
461  * To achieve best performance, outgoing traffic need to be fanned out among
462  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
463  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
464  * the address of connp as fanout hint to mac_tx(). Under flow controlled
465  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
466  * cookie points to a specific Tx ring that is blocked. The cookie is used to
467  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
468  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
469  * connp's. The drain list is not a single list but a configurable number of
470  * lists.
471  *
472  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
473  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
474  * which is equal to 128. This array in turn contains a pointer to idl_t[],
475  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
476  * list will point to the list of connp's that are flow controlled.
477  *
478  *                      ---------------   -------   -------   -------
479  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
480  *                   |  ---------------   -------   -------   -------
481  *                   |  ---------------   -------   -------   -------
482  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
483  * ----------------  |  ---------------   -------   -------   -------
484  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
485  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
486  *                   |  ---------------   -------   -------   -------
487  *                   .        .              .         .         .
488  *                   |  ---------------   -------   -------   -------
489  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
490  *                      ---------------   -------   -------   -------
491  *                      ---------------   -------   -------   -------
492  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
493  *                   |  ---------------   -------   -------   -------
494  *                   |  ---------------   -------   -------   -------
495  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
496  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
497  * ----------------  |        .              .         .         .
498  *                   |  ---------------   -------   -------   -------
499  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
500  *                      ---------------   -------   -------   -------
501  *     .....
502  * ----------------
503  * |idl_tx_list[n]|-> ...
504  * ----------------
505  *
506  * When mac_tx() returns a cookie, the cookie is used to hash into a
507  * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is
508  * called passing idl_tx_list. The connp gets inserted in a drain list
509  * pointed to by idl_tx_list. conn_drain_list() asserts flow control for
510  * the sockets (non stream based) and sets QFULL condition on the conn_wq
511  * of streams sockets, or the su_txqfull for non-streams sockets.
512  * connp->conn_direct_blocked will be set to indicate the blocked
513  * condition.
514  *
515  * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved.
516  * A cookie is passed in the call to ill_flow_enable() that identifies the
517  * blocked Tx ring. This cookie is used to get to the idl_tx_list that
518  * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t
519  * and goes through each conn in the drain list and calls conn_idl_remove
520  * for the conn to clear the qfull condition for the conn, as well as to
521  * remove the conn from the idl list. In addition, streams based sockets
522  * will have the conn_wq enabled, causing ip_wsrv to run for the
523  * conn. ip_wsrv drains the queued messages, and removes the conn from the
524  * drain list, if all messages were drained. It also notifies the
525  * conn_upcalls for the conn to signal that flow-control has opened up.
526  *
527  * In reality the drain list is not a single list, but a configurable number
528  * of lists. conn_walk_drain() in the IP module, notifies the conn_upcalls for
529  * each conn in the list. conn_drain_insert and conn_drain_tail are the only
530  * functions that manipulate this drain list. conn_drain_insert is called in
531  * from the protocol layer when conn_ip_output returns EWOULDBLOCK.
532  * (as opposed to from ip_wsrv context for STREAMS
533  * case -- see below). The synchronization between drain insertion and flow
534  * control wakeup is handled by using idl_txl->txl_lock.
535  *
536  * Flow control using STREAMS:
537  * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism
538  * is used. On the send side, if the packet cannot be sent down to the
539  * driver by IP, because of a canput failure, ip_xmit drops the packet
540  * and returns EWOULDBLOCK to the caller, who may then invoke
541  * ixa_check_drain_insert to insert the conn on the 0'th drain list.
542  * When ip_wsrv runs on the ill_wq because flow control has been relieved, the
543  * blocked conns in the * 0'th drain list is drained as with the
544  * non-STREAMS case.
545  *
546  * In both the STREAMS and non-STREAMS case, the sockfs upcall to set
547  * qfull is done when the conn is inserted into the drain list
548  * (conn_drain_insert()) and cleared when the conn is removed from the drain
549  * list (conn_idl_remove()).
550  *
551  * IPQOS notes:
552  *
553  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
554  * and IPQoS modules. IPPF includes hooks in IP at different control points
555  * (callout positions) which direct packets to IPQoS modules for policy
556  * processing. Policies, if present, are global.
557  *
558  * The callout positions are located in the following paths:
559  *		o local_in (packets destined for this host)
560  *		o local_out (packets orginating from this host )
561  *		o fwd_in  (packets forwarded by this m/c - inbound)
562  *		o fwd_out (packets forwarded by this m/c - outbound)
563  * Hooks at these callout points can be enabled/disabled using the ndd variable
564  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
565  * By default all the callout positions are enabled.
566  *
567  * Outbound (local_out)
568  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
569  *
570  * Inbound (local_in)
571  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
572  *
573  * Forwarding (in and out)
574  * Hooks are placed in ire_recv_forward_v4/v6.
575  *
576  * IP Policy Framework processing (IPPF processing)
577  * Policy processing for a packet is initiated by ip_process, which ascertains
578  * that the classifier (ipgpc) is loaded and configured, failing which the
579  * packet resumes normal processing in IP. If the clasifier is present, the
580  * packet is acted upon by one or more IPQoS modules (action instances), per
581  * filters configured in ipgpc and resumes normal IP processing thereafter.
582  * An action instance can drop a packet in course of its processing.
583  *
584  * Zones notes:
585  *
586  * The partitioning rules for networking are as follows:
587  * 1) Packets coming from a zone must have a source address belonging to that
588  * zone.
589  * 2) Packets coming from a zone can only be sent on a physical interface on
590  * which the zone has an IP address.
591  * 3) Between two zones on the same machine, packet delivery is only allowed if
592  * there's a matching route for the destination and zone in the forwarding
593  * table.
594  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
595  * different zones can bind to the same port with the wildcard address
596  * (INADDR_ANY).
597  *
598  * The granularity of interface partitioning is at the logical interface level.
599  * Therefore, every zone has its own IP addresses, and incoming packets can be
600  * attributed to a zone unambiguously. A logical interface is placed into a zone
601  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
602  * structure. Rule (1) is implemented by modifying the source address selection
603  * algorithm so that the list of eligible addresses is filtered based on the
604  * sending process zone.
605  *
606  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
607  * across all zones, depending on their type. Here is the break-up:
608  *
609  * IRE type				Shared/exclusive
610  * --------				----------------
611  * IRE_BROADCAST			Exclusive
612  * IRE_DEFAULT (default routes)		Shared (*)
613  * IRE_LOCAL				Exclusive (x)
614  * IRE_LOOPBACK				Exclusive
615  * IRE_PREFIX (net routes)		Shared (*)
616  * IRE_IF_NORESOLVER (interface routes)	Exclusive
617  * IRE_IF_RESOLVER (interface routes)	Exclusive
618  * IRE_IF_CLONE (interface routes)	Exclusive
619  * IRE_HOST (host routes)		Shared (*)
620  *
621  * (*) A zone can only use a default or off-subnet route if the gateway is
622  * directly reachable from the zone, that is, if the gateway's address matches
623  * one of the zone's logical interfaces.
624  *
625  * (x) IRE_LOCAL are handled a bit differently.
626  * When ip_restrict_interzone_loopback is set (the default),
627  * ire_route_recursive restricts loopback using an IRE_LOCAL
628  * between zone to the case when L2 would have conceptually looped the packet
629  * back, i.e. the loopback which is required since neither Ethernet drivers
630  * nor Ethernet hardware loops them back. This is the case when the normal
631  * routes (ignoring IREs with different zoneids) would send out the packet on
632  * the same ill as the ill with which is IRE_LOCAL is associated.
633  *
634  * Multiple zones can share a common broadcast address; typically all zones
635  * share the 255.255.255.255 address. Incoming as well as locally originated
636  * broadcast packets must be dispatched to all the zones on the broadcast
637  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
638  * since some zones may not be on the 10.16.72/24 network. To handle this, each
639  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
640  * sent to every zone that has an IRE_BROADCAST entry for the destination
641  * address on the input ill, see ip_input_broadcast().
642  *
643  * Applications in different zones can join the same multicast group address.
644  * The same logic applies for multicast as for broadcast. ip_input_multicast
645  * dispatches packets to all zones that have members on the physical interface.
646  */
647 
648 /*
649  * Squeue Fanout flags:
650  *	0: No fanout.
651  *	1: Fanout across all squeues
652  */
653 boolean_t	ip_squeue_fanout = 0;
654 
655 /*
656  * Maximum dups allowed per packet.
657  */
658 uint_t ip_max_frag_dups = 10;
659 
660 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
661 		    cred_t *credp, boolean_t isv6);
662 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
663 
664 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
665 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
666 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
667     ip_recv_attr_t *);
668 static void	icmp_options_update(ipha_t *);
669 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
670 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
671 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
672 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
673     ip_recv_attr_t *);
674 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
675 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
676     ip_recv_attr_t *);
677 
678 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
679 char		*ip_dot_addr(ipaddr_t, char *);
680 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
681 int		ip_close(queue_t *, int);
682 static char	*ip_dot_saddr(uchar_t *, char *);
683 static void	ip_lrput(queue_t *, mblk_t *);
684 ipaddr_t	ip_net_mask(ipaddr_t);
685 char		*ip_nv_lookup(nv_t *, int);
686 void	ip_rput(queue_t *, mblk_t *);
687 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
688 		    void *dummy_arg);
689 int		ip_snmp_get(queue_t *, mblk_t *, int);
690 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
691 		    mib2_ipIfStatsEntry_t *, ip_stack_t *);
692 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
693 		    ip_stack_t *);
694 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *);
695 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
697 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
699 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
700 		    ip_stack_t *ipst);
701 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
702 		    ip_stack_t *ipst);
703 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
704 		    ip_stack_t *ipst);
705 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
706 		    ip_stack_t *ipst);
707 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
708 		    ip_stack_t *ipst);
709 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
710 		    ip_stack_t *ipst);
711 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
712 		    ip_stack_t *ipst);
713 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
714 		    ip_stack_t *ipst);
715 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
716 		    ip_stack_t *ipst);
717 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
718 		    ip_stack_t *ipst);
719 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
720 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
721 static int	ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
722 static int	ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
723 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
724 
725 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
726 		    mblk_t *);
727 
728 static void	conn_drain_init(ip_stack_t *);
729 static void	conn_drain_fini(ip_stack_t *);
730 static void	conn_drain_tail(conn_t *connp, boolean_t closing);
731 
732 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
733 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
734 
735 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
736 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
737 static void	ip_stack_fini(netstackid_t stackid, void *arg);
738 
739 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
740     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
741     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
742     const in6_addr_t *);
743 
744 static int	ip_squeue_switch(int);
745 
746 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
747 static void	ip_kstat_fini(netstackid_t, kstat_t *);
748 static int	ip_kstat_update(kstat_t *kp, int rw);
749 static void	*icmp_kstat_init(netstackid_t);
750 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
751 static int	icmp_kstat_update(kstat_t *kp, int rw);
752 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
753 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
754 
755 static void	ipobs_init(ip_stack_t *);
756 static void	ipobs_fini(ip_stack_t *);
757 
758 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
759 
760 static long ip_rput_pullups;
761 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
762 
763 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
764 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
765 
766 int	ip_debug;
767 
768 /*
769  * Multirouting/CGTP stuff
770  */
771 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
772 
773 /*
774  * IP tunables related declarations. Definitions are in ip_tunables.c
775  */
776 extern mod_prop_info_t ip_propinfo_tbl[];
777 extern int ip_propinfo_count;
778 
779 /*
780  * Table of IP ioctls encoding the various properties of the ioctl and
781  * indexed based on the last byte of the ioctl command. Occasionally there
782  * is a clash, and there is more than 1 ioctl with the same last byte.
783  * In such a case 1 ioctl is encoded in the ndx table and the remaining
784  * ioctls are encoded in the misc table. An entry in the ndx table is
785  * retrieved by indexing on the last byte of the ioctl command and comparing
786  * the ioctl command with the value in the ndx table. In the event of a
787  * mismatch the misc table is then searched sequentially for the desired
788  * ioctl command.
789  *
790  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
791  */
792 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
793 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
795 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
796 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
797 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
798 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
799 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
800 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
801 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
802 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
803 
804 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
805 			MISC_CMD, ip_siocaddrt, NULL },
806 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
807 			MISC_CMD, ip_siocdelrt, NULL },
808 
809 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
810 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
811 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
812 			IF_CMD, ip_sioctl_get_addr, NULL },
813 
814 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
815 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
816 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
817 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
818 
819 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
820 			IPI_PRIV | IPI_WR,
821 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
822 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
823 			IPI_MODOK | IPI_GET_CMD,
824 			IF_CMD, ip_sioctl_get_flags, NULL },
825 
826 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
827 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
828 
829 	/* copyin size cannot be coded for SIOCGIFCONF */
830 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
831 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
832 
833 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
834 			IF_CMD, ip_sioctl_mtu, NULL },
835 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
836 			IF_CMD, ip_sioctl_get_mtu, NULL },
837 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
838 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
839 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
840 			IF_CMD, ip_sioctl_brdaddr, NULL },
841 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
842 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
843 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
844 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
845 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
846 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
847 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
848 			IF_CMD, ip_sioctl_metric, NULL },
849 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 
851 	/* See 166-168 below for extended SIOC*XARP ioctls */
852 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
853 			ARP_CMD, ip_sioctl_arp, NULL },
854 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
855 			ARP_CMD, ip_sioctl_arp, NULL },
856 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
857 			ARP_CMD, ip_sioctl_arp, NULL },
858 
859 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
872 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
873 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
874 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 
881 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
882 			MISC_CMD, if_unitsel, if_unitsel_restart },
883 
884 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
894 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
895 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
896 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
897 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 
903 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
904 			IPI_PRIV | IPI_WR | IPI_MODOK,
905 			IF_CMD, ip_sioctl_sifname, NULL },
906 
907 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
912 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
913 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
914 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
915 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
916 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
917 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
918 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
919 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
920 
921 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
922 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
923 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
924 			IF_CMD, ip_sioctl_get_muxid, NULL },
925 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
926 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
927 
928 	/* Both if and lif variants share same func */
929 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
930 			IF_CMD, ip_sioctl_get_lifindex, NULL },
931 	/* Both if and lif variants share same func */
932 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
933 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
934 
935 	/* copyin size cannot be coded for SIOCGIFCONF */
936 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
937 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
938 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
947 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
948 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
949 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
950 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
951 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
952 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
953 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
954 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
955 
956 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
957 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
958 			ip_sioctl_removeif_restart },
959 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
960 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
961 			LIF_CMD, ip_sioctl_addif, NULL },
962 #define	SIOCLIFADDR_NDX 112
963 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
964 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
965 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
966 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
967 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
968 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
969 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
970 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
971 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
972 			IPI_PRIV | IPI_WR,
973 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
974 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
975 			IPI_GET_CMD | IPI_MODOK,
976 			LIF_CMD, ip_sioctl_get_flags, NULL },
977 
978 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
979 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
980 
981 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
982 			ip_sioctl_get_lifconf, NULL },
983 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
984 			LIF_CMD, ip_sioctl_mtu, NULL },
985 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
986 			LIF_CMD, ip_sioctl_get_mtu, NULL },
987 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
988 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
989 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
990 			LIF_CMD, ip_sioctl_brdaddr, NULL },
991 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
992 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
993 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
994 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
995 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
996 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
997 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
998 			LIF_CMD, ip_sioctl_metric, NULL },
999 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
1000 			IPI_PRIV | IPI_WR | IPI_MODOK,
1001 			LIF_CMD, ip_sioctl_slifname,
1002 			ip_sioctl_slifname_restart },
1003 
1004 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
1005 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
1006 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
1007 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
1008 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1009 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1010 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1011 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1012 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1013 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1014 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1015 			LIF_CMD, ip_sioctl_token, NULL },
1016 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1017 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1018 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1019 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1020 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1021 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1022 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1023 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1024 
1025 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1026 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1027 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1028 			LIF_CMD, ip_siocdelndp_v6, NULL },
1029 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1030 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1031 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1032 			LIF_CMD, ip_siocsetndp_v6, NULL },
1033 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1034 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1035 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1036 			MISC_CMD, ip_sioctl_tonlink, NULL },
1037 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1038 			MISC_CMD, ip_sioctl_tmysite, NULL },
1039 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1041 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1042 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1043 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1044 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1045 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1046 
1047 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1048 
1049 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1050 			LIF_CMD, ip_sioctl_get_binding, NULL },
1051 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1052 			IPI_PRIV | IPI_WR,
1053 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1054 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1055 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1056 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1057 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1058 
1059 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1060 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1061 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1062 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1063 
1064 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1065 
1066 	/* These are handled in ip_sioctl_copyin_setup itself */
1067 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1068 			MISC_CMD, NULL, NULL },
1069 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1070 			MISC_CMD, NULL, NULL },
1071 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1072 
1073 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1074 			ip_sioctl_get_lifconf, NULL },
1075 
1076 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1077 			XARP_CMD, ip_sioctl_arp, NULL },
1078 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1079 			XARP_CMD, ip_sioctl_arp, NULL },
1080 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1081 			XARP_CMD, ip_sioctl_arp, NULL },
1082 
1083 	/* SIOCPOPSOCKFS is not handled by IP */
1084 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1085 
1086 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1087 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1088 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1089 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1090 			ip_sioctl_slifzone_restart },
1091 	/* 172-174 are SCTP ioctls and not handled by IP */
1092 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1093 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1094 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1095 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1096 			IPI_GET_CMD, LIF_CMD,
1097 			ip_sioctl_get_lifusesrc, 0 },
1098 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1099 			IPI_PRIV | IPI_WR,
1100 			LIF_CMD, ip_sioctl_slifusesrc,
1101 			NULL },
1102 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1103 			ip_sioctl_get_lifsrcof, NULL },
1104 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1105 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1106 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1107 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1108 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1109 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1110 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1111 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1112 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1113 	/* SIOCSENABLESDP is handled by SDP */
1114 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1115 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1116 	/* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL },
1117 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1118 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1119 			ip_sioctl_ilb_cmd, NULL },
1120 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1121 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1122 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1123 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1124 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1125 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }
1126 };
1127 
1128 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1129 
1130 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1131 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1133 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1134 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1135 	{ ND_GET,	0, 0, 0, NULL, NULL },
1136 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1137 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1138 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1139 		MISC_CMD, mrt_ioctl},
1140 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1141 		MISC_CMD, mrt_ioctl},
1142 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1143 		MISC_CMD, mrt_ioctl}
1144 };
1145 
1146 int ip_misc_ioctl_count =
1147     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1148 
1149 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1150 					/* Settable in /etc/system */
1151 /* Defined in ip_ire.c */
1152 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1153 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1154 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1155 
1156 static nv_t	ire_nv_arr[] = {
1157 	{ IRE_BROADCAST, "BROADCAST" },
1158 	{ IRE_LOCAL, "LOCAL" },
1159 	{ IRE_LOOPBACK, "LOOPBACK" },
1160 	{ IRE_DEFAULT, "DEFAULT" },
1161 	{ IRE_PREFIX, "PREFIX" },
1162 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1163 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1164 	{ IRE_IF_CLONE, "IF_CLONE" },
1165 	{ IRE_HOST, "HOST" },
1166 	{ IRE_MULTICAST, "MULTICAST" },
1167 	{ IRE_NOROUTE, "NOROUTE" },
1168 	{ 0 }
1169 };
1170 
1171 nv_t	*ire_nv_tbl = ire_nv_arr;
1172 
1173 /* Simple ICMP IP Header Template */
1174 static ipha_t icmp_ipha = {
1175 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1176 };
1177 
1178 struct module_info ip_mod_info = {
1179 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1180 	IP_MOD_LOWAT
1181 };
1182 
1183 /*
1184  * Duplicate static symbols within a module confuses mdb; so we avoid the
1185  * problem by making the symbols here distinct from those in udp.c.
1186  */
1187 
1188 /*
1189  * Entry points for IP as a device and as a module.
1190  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1191  */
1192 static struct qinit iprinitv4 = {
1193 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1194 	&ip_mod_info
1195 };
1196 
1197 struct qinit iprinitv6 = {
1198 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1199 	&ip_mod_info
1200 };
1201 
1202 static struct qinit ipwinit = {
1203 	(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1204 	&ip_mod_info
1205 };
1206 
1207 static struct qinit iplrinit = {
1208 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1209 	&ip_mod_info
1210 };
1211 
1212 static struct qinit iplwinit = {
1213 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1214 	&ip_mod_info
1215 };
1216 
1217 /* For AF_INET aka /dev/ip */
1218 struct streamtab ipinfov4 = {
1219 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1220 };
1221 
1222 /* For AF_INET6 aka /dev/ip6 */
1223 struct streamtab ipinfov6 = {
1224 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1225 };
1226 
1227 #ifdef	DEBUG
1228 boolean_t skip_sctp_cksum = B_FALSE;
1229 #endif
1230 
1231 /*
1232  * Generate an ICMP fragmentation needed message.
1233  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1234  * constructed by the caller.
1235  */
1236 void
1237 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1238 {
1239 	icmph_t	icmph;
1240 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1241 
1242 	mp = icmp_pkt_err_ok(mp, ira);
1243 	if (mp == NULL)
1244 		return;
1245 
1246 	bzero(&icmph, sizeof (icmph_t));
1247 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1248 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1249 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1250 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1251 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1252 
1253 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1254 }
1255 
1256 /*
1257  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1258  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1259  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1260  * Likewise, if the ICMP error is misformed (too short, etc), then it
1261  * returns NULL. The caller uses this to determine whether or not to send
1262  * to raw sockets.
1263  *
1264  * All error messages are passed to the matching transport stream.
1265  *
1266  * The following cases are handled by icmp_inbound:
1267  * 1) It needs to send a reply back and possibly delivering it
1268  *    to the "interested" upper clients.
1269  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1270  * 3) It needs to change some values in IP only.
1271  * 4) It needs to change some values in IP and upper layers e.g TCP
1272  *    by delivering an error to the upper layers.
1273  *
1274  * We handle the above three cases in the context of IPsec in the
1275  * following way :
1276  *
1277  * 1) Send the reply back in the same way as the request came in.
1278  *    If it came in encrypted, it goes out encrypted. If it came in
1279  *    clear, it goes out in clear. Thus, this will prevent chosen
1280  *    plain text attack.
1281  * 2) The client may or may not expect things to come in secure.
1282  *    If it comes in secure, the policy constraints are checked
1283  *    before delivering it to the upper layers. If it comes in
1284  *    clear, ipsec_inbound_accept_clear will decide whether to
1285  *    accept this in clear or not. In both the cases, if the returned
1286  *    message (IP header + 8 bytes) that caused the icmp message has
1287  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1288  *    sending up. If there are only 8 bytes of returned message, then
1289  *    upper client will not be notified.
1290  * 3) Check with global policy to see whether it matches the constaints.
1291  *    But this will be done only if icmp_accept_messages_in_clear is
1292  *    zero.
1293  * 4) If we need to change both in IP and ULP, then the decision taken
1294  *    while affecting the values in IP and while delivering up to TCP
1295  *    should be the same.
1296  *
1297  * 	There are two cases.
1298  *
1299  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1300  *	   failed), we will not deliver it to the ULP, even though they
1301  *	   are *willing* to accept in *clear*. This is fine as our global
1302  *	   disposition to icmp messages asks us reject the datagram.
1303  *
1304  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1305  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1306  *	   to deliver it to ULP (policy failed), it can lead to
1307  *	   consistency problems. The cases known at this time are
1308  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1309  *	   values :
1310  *
1311  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1312  *	     and Upper layer rejects. Then the communication will
1313  *	     come to a stop. This is solved by making similar decisions
1314  *	     at both levels. Currently, when we are unable to deliver
1315  *	     to the Upper Layer (due to policy failures) while IP has
1316  *	     adjusted dce_pmtu, the next outbound datagram would
1317  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1318  *	     will be with the right level of protection. Thus the right
1319  *	     value will be communicated even if we are not able to
1320  *	     communicate when we get from the wire initially. But this
1321  *	     assumes there would be at least one outbound datagram after
1322  *	     IP has adjusted its dce_pmtu value. To make things
1323  *	     simpler, we accept in clear after the validation of
1324  *	     AH/ESP headers.
1325  *
1326  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1327  *	     upper layer depending on the level of protection the upper
1328  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1329  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1330  *	     should be accepted in clear when the Upper layer expects secure.
1331  *	     Thus the communication may get aborted by some bad ICMP
1332  *	     packets.
1333  */
1334 mblk_t *
1335 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1336 {
1337 	icmph_t		*icmph;
1338 	ipha_t		*ipha;		/* Outer header */
1339 	int		ip_hdr_length;	/* Outer header length */
1340 	boolean_t	interested;
1341 	ipif_t		*ipif;
1342 	uint32_t	ts;
1343 	uint32_t	*tsp;
1344 	timestruc_t	now;
1345 	ill_t		*ill = ira->ira_ill;
1346 	ip_stack_t	*ipst = ill->ill_ipst;
1347 	zoneid_t	zoneid = ira->ira_zoneid;
1348 	int		len_needed;
1349 	mblk_t		*mp_ret = NULL;
1350 
1351 	ipha = (ipha_t *)mp->b_rptr;
1352 
1353 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1354 
1355 	ip_hdr_length = ira->ira_ip_hdr_length;
1356 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1357 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1358 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1359 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1360 			freemsg(mp);
1361 			return (NULL);
1362 		}
1363 		/* Last chance to get real. */
1364 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1365 		if (ipha == NULL) {
1366 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1367 			freemsg(mp);
1368 			return (NULL);
1369 		}
1370 	}
1371 
1372 	/* The IP header will always be a multiple of four bytes */
1373 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1374 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1375 	    icmph->icmph_code));
1376 
1377 	/*
1378 	 * We will set "interested" to "true" if we should pass a copy to
1379 	 * the transport or if we handle the packet locally.
1380 	 */
1381 	interested = B_FALSE;
1382 	switch (icmph->icmph_type) {
1383 	case ICMP_ECHO_REPLY:
1384 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1385 		break;
1386 	case ICMP_DEST_UNREACHABLE:
1387 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1388 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1389 		interested = B_TRUE;	/* Pass up to transport */
1390 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1391 		break;
1392 	case ICMP_SOURCE_QUENCH:
1393 		interested = B_TRUE;	/* Pass up to transport */
1394 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1395 		break;
1396 	case ICMP_REDIRECT:
1397 		if (!ipst->ips_ip_ignore_redirect)
1398 			interested = B_TRUE;
1399 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1400 		break;
1401 	case ICMP_ECHO_REQUEST:
1402 		/*
1403 		 * Whether to respond to echo requests that come in as IP
1404 		 * broadcasts or as IP multicast is subject to debate
1405 		 * (what isn't?).  We aim to please, you pick it.
1406 		 * Default is do it.
1407 		 */
1408 		if (ira->ira_flags & IRAF_MULTICAST) {
1409 			/* multicast: respond based on tunable */
1410 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1411 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1412 			/* broadcast: respond based on tunable */
1413 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1414 		} else {
1415 			/* unicast: always respond */
1416 			interested = B_TRUE;
1417 		}
1418 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1419 		if (!interested) {
1420 			/* We never pass these to RAW sockets */
1421 			freemsg(mp);
1422 			return (NULL);
1423 		}
1424 
1425 		/* Check db_ref to make sure we can modify the packet. */
1426 		if (mp->b_datap->db_ref > 1) {
1427 			mblk_t	*mp1;
1428 
1429 			mp1 = copymsg(mp);
1430 			freemsg(mp);
1431 			if (!mp1) {
1432 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1433 				return (NULL);
1434 			}
1435 			mp = mp1;
1436 			ipha = (ipha_t *)mp->b_rptr;
1437 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1438 		}
1439 		icmph->icmph_type = ICMP_ECHO_REPLY;
1440 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1441 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1442 		return (NULL);
1443 
1444 	case ICMP_ROUTER_ADVERTISEMENT:
1445 	case ICMP_ROUTER_SOLICITATION:
1446 		break;
1447 	case ICMP_TIME_EXCEEDED:
1448 		interested = B_TRUE;	/* Pass up to transport */
1449 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1450 		break;
1451 	case ICMP_PARAM_PROBLEM:
1452 		interested = B_TRUE;	/* Pass up to transport */
1453 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1454 		break;
1455 	case ICMP_TIME_STAMP_REQUEST:
1456 		/* Response to Time Stamp Requests is local policy. */
1457 		if (ipst->ips_ip_g_resp_to_timestamp) {
1458 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1459 				interested =
1460 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1461 			else
1462 				interested = B_TRUE;
1463 		}
1464 		if (!interested) {
1465 			/* We never pass these to RAW sockets */
1466 			freemsg(mp);
1467 			return (NULL);
1468 		}
1469 
1470 		/* Make sure we have enough of the packet */
1471 		len_needed = ip_hdr_length + ICMPH_SIZE +
1472 		    3 * sizeof (uint32_t);
1473 
1474 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1475 			ipha = ip_pullup(mp, len_needed, ira);
1476 			if (ipha == NULL) {
1477 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1478 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1479 				    mp, ill);
1480 				freemsg(mp);
1481 				return (NULL);
1482 			}
1483 			/* Refresh following the pullup. */
1484 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1485 		}
1486 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1487 		/* Check db_ref to make sure we can modify the packet. */
1488 		if (mp->b_datap->db_ref > 1) {
1489 			mblk_t	*mp1;
1490 
1491 			mp1 = copymsg(mp);
1492 			freemsg(mp);
1493 			if (!mp1) {
1494 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1495 				return (NULL);
1496 			}
1497 			mp = mp1;
1498 			ipha = (ipha_t *)mp->b_rptr;
1499 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1500 		}
1501 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1502 		tsp = (uint32_t *)&icmph[1];
1503 		tsp++;		/* Skip past 'originate time' */
1504 		/* Compute # of milliseconds since midnight */
1505 		gethrestime(&now);
1506 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1507 		    now.tv_nsec / (NANOSEC / MILLISEC);
1508 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1509 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1510 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1511 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1512 		return (NULL);
1513 
1514 	case ICMP_TIME_STAMP_REPLY:
1515 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1516 		break;
1517 	case ICMP_INFO_REQUEST:
1518 		/* Per RFC 1122 3.2.2.7, ignore this. */
1519 	case ICMP_INFO_REPLY:
1520 		break;
1521 	case ICMP_ADDRESS_MASK_REQUEST:
1522 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1523 			interested =
1524 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1525 		} else {
1526 			interested = B_TRUE;
1527 		}
1528 		if (!interested) {
1529 			/* We never pass these to RAW sockets */
1530 			freemsg(mp);
1531 			return (NULL);
1532 		}
1533 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1534 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1535 			ipha = ip_pullup(mp, len_needed, ira);
1536 			if (ipha == NULL) {
1537 				BUMP_MIB(ill->ill_ip_mib,
1538 				    ipIfStatsInTruncatedPkts);
1539 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1540 				    ill);
1541 				freemsg(mp);
1542 				return (NULL);
1543 			}
1544 			/* Refresh following the pullup. */
1545 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1546 		}
1547 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1548 		/* Check db_ref to make sure we can modify the packet. */
1549 		if (mp->b_datap->db_ref > 1) {
1550 			mblk_t	*mp1;
1551 
1552 			mp1 = copymsg(mp);
1553 			freemsg(mp);
1554 			if (!mp1) {
1555 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1556 				return (NULL);
1557 			}
1558 			mp = mp1;
1559 			ipha = (ipha_t *)mp->b_rptr;
1560 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1561 		}
1562 		/*
1563 		 * Need the ipif with the mask be the same as the source
1564 		 * address of the mask reply. For unicast we have a specific
1565 		 * ipif. For multicast/broadcast we only handle onlink
1566 		 * senders, and use the source address to pick an ipif.
1567 		 */
1568 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1569 		if (ipif == NULL) {
1570 			/* Broadcast or multicast */
1571 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1572 			if (ipif == NULL) {
1573 				freemsg(mp);
1574 				return (NULL);
1575 			}
1576 		}
1577 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1578 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1579 		ipif_refrele(ipif);
1580 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1581 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1582 		return (NULL);
1583 
1584 	case ICMP_ADDRESS_MASK_REPLY:
1585 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1586 		break;
1587 	default:
1588 		interested = B_TRUE;	/* Pass up to transport */
1589 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1590 		break;
1591 	}
1592 	/*
1593 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1594 	 * if there isn't one.
1595 	 */
1596 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1597 		/* If there is an ICMP client and we want one too, copy it. */
1598 
1599 		if (!interested) {
1600 			/* Caller will deliver to RAW sockets */
1601 			return (mp);
1602 		}
1603 		mp_ret = copymsg(mp);
1604 		if (mp_ret == NULL) {
1605 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1606 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1607 		}
1608 	} else if (!interested) {
1609 		/* Neither we nor raw sockets are interested. Drop packet now */
1610 		freemsg(mp);
1611 		return (NULL);
1612 	}
1613 
1614 	/*
1615 	 * ICMP error or redirect packet. Make sure we have enough of
1616 	 * the header and that db_ref == 1 since we might end up modifying
1617 	 * the packet.
1618 	 */
1619 	if (mp->b_cont != NULL) {
1620 		if (ip_pullup(mp, -1, ira) == NULL) {
1621 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1622 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1623 			    mp, ill);
1624 			freemsg(mp);
1625 			return (mp_ret);
1626 		}
1627 	}
1628 
1629 	if (mp->b_datap->db_ref > 1) {
1630 		mblk_t	*mp1;
1631 
1632 		mp1 = copymsg(mp);
1633 		if (mp1 == NULL) {
1634 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1635 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1636 			freemsg(mp);
1637 			return (mp_ret);
1638 		}
1639 		freemsg(mp);
1640 		mp = mp1;
1641 	}
1642 
1643 	/*
1644 	 * In case mp has changed, verify the message before any further
1645 	 * processes.
1646 	 */
1647 	ipha = (ipha_t *)mp->b_rptr;
1648 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1649 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1650 		freemsg(mp);
1651 		return (mp_ret);
1652 	}
1653 
1654 	switch (icmph->icmph_type) {
1655 	case ICMP_REDIRECT:
1656 		icmp_redirect_v4(mp, ipha, icmph, ira);
1657 		break;
1658 	case ICMP_DEST_UNREACHABLE:
1659 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1660 			/* Update DCE and adjust MTU is icmp header if needed */
1661 			icmp_inbound_too_big_v4(icmph, ira);
1662 		}
1663 		/* FALLTHRU */
1664 	default:
1665 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1666 		break;
1667 	}
1668 	return (mp_ret);
1669 }
1670 
1671 /*
1672  * Send an ICMP echo, timestamp or address mask reply.
1673  * The caller has already updated the payload part of the packet.
1674  * We handle the ICMP checksum, IP source address selection and feed
1675  * the packet into ip_output_simple.
1676  */
1677 static void
1678 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1679     ip_recv_attr_t *ira)
1680 {
1681 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1682 	ill_t		*ill = ira->ira_ill;
1683 	ip_stack_t	*ipst = ill->ill_ipst;
1684 	ip_xmit_attr_t	ixas;
1685 
1686 	/* Send out an ICMP packet */
1687 	icmph->icmph_checksum = 0;
1688 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1689 	/* Reset time to live. */
1690 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1691 	{
1692 		/* Swap source and destination addresses */
1693 		ipaddr_t tmp;
1694 
1695 		tmp = ipha->ipha_src;
1696 		ipha->ipha_src = ipha->ipha_dst;
1697 		ipha->ipha_dst = tmp;
1698 	}
1699 	ipha->ipha_ident = 0;
1700 	if (!IS_SIMPLE_IPH(ipha))
1701 		icmp_options_update(ipha);
1702 
1703 	bzero(&ixas, sizeof (ixas));
1704 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1705 	ixas.ixa_zoneid = ira->ira_zoneid;
1706 	ixas.ixa_cred = kcred;
1707 	ixas.ixa_cpid = NOPID;
1708 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1709 	ixas.ixa_ifindex = 0;
1710 	ixas.ixa_ipst = ipst;
1711 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1712 
1713 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1714 		/*
1715 		 * This packet should go out the same way as it
1716 		 * came in i.e in clear, independent of the IPsec policy
1717 		 * for transmitting packets.
1718 		 */
1719 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1720 	} else {
1721 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1722 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1723 			/* Note: mp already consumed and ip_drop_packet done */
1724 			return;
1725 		}
1726 	}
1727 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1728 		/*
1729 		 * Not one or our addresses (IRE_LOCALs), thus we let
1730 		 * ip_output_simple pick the source.
1731 		 */
1732 		ipha->ipha_src = INADDR_ANY;
1733 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1734 	}
1735 	/* Should we send with DF and use dce_pmtu? */
1736 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1737 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1738 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1739 	}
1740 
1741 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1742 
1743 	(void) ip_output_simple(mp, &ixas);
1744 	ixa_cleanup(&ixas);
1745 }
1746 
1747 /*
1748  * Verify the ICMP messages for either for ICMP error or redirect packet.
1749  * The caller should have fully pulled up the message. If it's a redirect
1750  * packet, only basic checks on IP header will be done; otherwise, verify
1751  * the packet by looking at the included ULP header.
1752  *
1753  * Called before icmp_inbound_error_fanout_v4 is called.
1754  */
1755 static boolean_t
1756 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1757 {
1758 	ill_t		*ill = ira->ira_ill;
1759 	int		hdr_length;
1760 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1761 	conn_t		*connp;
1762 	ipha_t		*ipha;	/* Inner IP header */
1763 
1764 	ipha = (ipha_t *)&icmph[1];
1765 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1766 		goto truncated;
1767 
1768 	hdr_length = IPH_HDR_LENGTH(ipha);
1769 
1770 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1771 		goto discard_pkt;
1772 
1773 	if (hdr_length < sizeof (ipha_t))
1774 		goto truncated;
1775 
1776 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1777 		goto truncated;
1778 
1779 	/*
1780 	 * Stop here for ICMP_REDIRECT.
1781 	 */
1782 	if (icmph->icmph_type == ICMP_REDIRECT)
1783 		return (B_TRUE);
1784 
1785 	/*
1786 	 * ICMP errors only.
1787 	 */
1788 	switch (ipha->ipha_protocol) {
1789 	case IPPROTO_UDP:
1790 		/*
1791 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1792 		 * transport header.
1793 		 */
1794 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1795 		    mp->b_wptr)
1796 			goto truncated;
1797 		break;
1798 	case IPPROTO_TCP: {
1799 		tcpha_t		*tcpha;
1800 
1801 		/*
1802 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1803 		 * transport header.
1804 		 */
1805 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1806 		    mp->b_wptr)
1807 			goto truncated;
1808 
1809 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1810 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1811 		    ipst);
1812 		if (connp == NULL)
1813 			goto discard_pkt;
1814 
1815 		if ((connp->conn_verifyicmp != NULL) &&
1816 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1817 			CONN_DEC_REF(connp);
1818 			goto discard_pkt;
1819 		}
1820 		CONN_DEC_REF(connp);
1821 		break;
1822 	}
1823 	case IPPROTO_SCTP:
1824 		/*
1825 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1826 		 * transport header.
1827 		 */
1828 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1829 		    mp->b_wptr)
1830 			goto truncated;
1831 		break;
1832 	case IPPROTO_ESP:
1833 	case IPPROTO_AH:
1834 		break;
1835 	case IPPROTO_ENCAP:
1836 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1837 		    mp->b_wptr)
1838 			goto truncated;
1839 		break;
1840 	default:
1841 		break;
1842 	}
1843 
1844 	return (B_TRUE);
1845 
1846 discard_pkt:
1847 	/* Bogus ICMP error. */
1848 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1849 	return (B_FALSE);
1850 
1851 truncated:
1852 	/* We pulled up everthing already. Must be truncated */
1853 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1854 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1855 	return (B_FALSE);
1856 }
1857 
1858 /* Table from RFC 1191 */
1859 static int icmp_frag_size_table[] =
1860 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1861 
1862 /*
1863  * Process received ICMP Packet too big.
1864  * Just handles the DCE create/update, including using the above table of
1865  * PMTU guesses. The caller is responsible for validating the packet before
1866  * passing it in and also to fanout the ICMP error to any matching transport
1867  * conns. Assumes the message has been fully pulled up and verified.
1868  *
1869  * Before getting here, the caller has called icmp_inbound_verify_v4()
1870  * that should have verified with ULP to prevent undoing the changes we're
1871  * going to make to DCE. For example, TCP might have verified that the packet
1872  * which generated error is in the send window.
1873  *
1874  * In some cases modified this MTU in the ICMP header packet; the caller
1875  * should pass to the matching ULP after this returns.
1876  */
1877 static void
1878 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1879 {
1880 	dce_t		*dce;
1881 	int		old_mtu;
1882 	int		mtu, orig_mtu;
1883 	ipaddr_t	dst;
1884 	boolean_t	disable_pmtud;
1885 	ill_t		*ill = ira->ira_ill;
1886 	ip_stack_t	*ipst = ill->ill_ipst;
1887 	uint_t		hdr_length;
1888 	ipha_t		*ipha;
1889 
1890 	/* Caller already pulled up everything. */
1891 	ipha = (ipha_t *)&icmph[1];
1892 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1893 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1894 	ASSERT(ill != NULL);
1895 
1896 	hdr_length = IPH_HDR_LENGTH(ipha);
1897 
1898 	/*
1899 	 * We handle path MTU for source routed packets since the DCE
1900 	 * is looked up using the final destination.
1901 	 */
1902 	dst = ip_get_dst(ipha);
1903 
1904 	dce = dce_lookup_and_add_v4(dst, ipst);
1905 	if (dce == NULL) {
1906 		/* Couldn't add a unique one - ENOMEM */
1907 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1908 		    ntohl(dst)));
1909 		return;
1910 	}
1911 
1912 	/* Check for MTU discovery advice as described in RFC 1191 */
1913 	mtu = ntohs(icmph->icmph_du_mtu);
1914 	orig_mtu = mtu;
1915 	disable_pmtud = B_FALSE;
1916 
1917 	mutex_enter(&dce->dce_lock);
1918 	if (dce->dce_flags & DCEF_PMTU)
1919 		old_mtu = dce->dce_pmtu;
1920 	else
1921 		old_mtu = ill->ill_mtu;
1922 
1923 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1924 		uint32_t length;
1925 		int	i;
1926 
1927 		/*
1928 		 * Use the table from RFC 1191 to figure out
1929 		 * the next "plateau" based on the length in
1930 		 * the original IP packet.
1931 		 */
1932 		length = ntohs(ipha->ipha_length);
1933 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1934 		    uint32_t, length);
1935 		if (old_mtu <= length &&
1936 		    old_mtu >= length - hdr_length) {
1937 			/*
1938 			 * Handle broken BSD 4.2 systems that
1939 			 * return the wrong ipha_length in ICMP
1940 			 * errors.
1941 			 */
1942 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1943 			    length, old_mtu));
1944 			length -= hdr_length;
1945 		}
1946 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1947 			if (length > icmp_frag_size_table[i])
1948 				break;
1949 		}
1950 		if (i == A_CNT(icmp_frag_size_table)) {
1951 			/* Smaller than IP_MIN_MTU! */
1952 			ip1dbg(("Too big for packet size %d\n",
1953 			    length));
1954 			disable_pmtud = B_TRUE;
1955 			mtu = ipst->ips_ip_pmtu_min;
1956 		} else {
1957 			mtu = icmp_frag_size_table[i];
1958 			ip1dbg(("Calculated mtu %d, packet size %d, "
1959 			    "before %d\n", mtu, length, old_mtu));
1960 			if (mtu < ipst->ips_ip_pmtu_min) {
1961 				mtu = ipst->ips_ip_pmtu_min;
1962 				disable_pmtud = B_TRUE;
1963 			}
1964 		}
1965 	}
1966 	if (disable_pmtud)
1967 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1968 	else
1969 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1970 
1971 	dce->dce_pmtu = MIN(old_mtu, mtu);
1972 	/* Prepare to send the new max frag size for the ULP. */
1973 	icmph->icmph_du_zero = 0;
1974 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1975 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1976 	    dce, int, orig_mtu, int, mtu);
1977 
1978 	/* We now have a PMTU for sure */
1979 	dce->dce_flags |= DCEF_PMTU;
1980 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1981 	mutex_exit(&dce->dce_lock);
1982 	/*
1983 	 * After dropping the lock the new value is visible to everyone.
1984 	 * Then we bump the generation number so any cached values reinspect
1985 	 * the dce_t.
1986 	 */
1987 	dce_increment_generation(dce);
1988 	dce_refrele(dce);
1989 }
1990 
1991 /*
1992  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1993  * calls this function.
1994  */
1995 static mblk_t *
1996 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1997 {
1998 	int length;
1999 
2000 	ASSERT(mp->b_datap->db_type == M_DATA);
2001 
2002 	/* icmp_inbound_v4 has already pulled up the whole error packet */
2003 	ASSERT(mp->b_cont == NULL);
2004 
2005 	/*
2006 	 * The length that we want to overlay is the inner header
2007 	 * and what follows it.
2008 	 */
2009 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2010 
2011 	/*
2012 	 * Overlay the inner header and whatever follows it over the
2013 	 * outer header.
2014 	 */
2015 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2016 
2017 	/* Adjust for what we removed */
2018 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2019 	return (mp);
2020 }
2021 
2022 /*
2023  * Try to pass the ICMP message upstream in case the ULP cares.
2024  *
2025  * If the packet that caused the ICMP error is secure, we send
2026  * it to AH/ESP to make sure that the attached packet has a
2027  * valid association. ipha in the code below points to the
2028  * IP header of the packet that caused the error.
2029  *
2030  * For IPsec cases, we let the next-layer-up (which has access to
2031  * cached policy on the conn_t, or can query the SPD directly)
2032  * subtract out any IPsec overhead if they must.  We therefore make no
2033  * adjustments here for IPsec overhead.
2034  *
2035  * IFN could have been generated locally or by some router.
2036  *
2037  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2038  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2039  *	    This happens because IP adjusted its value of MTU on an
2040  *	    earlier IFN message and could not tell the upper layer,
2041  *	    the new adjusted value of MTU e.g. Packet was encrypted
2042  *	    or there was not enough information to fanout to upper
2043  *	    layers. Thus on the next outbound datagram, ire_send_wire
2044  *	    generates the IFN, where IPsec processing has *not* been
2045  *	    done.
2046  *
2047  *	    Note that we retain ixa_fragsize across IPsec thus once
2048  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2049  *	    no change the fragsize even if the path MTU changes before
2050  *	    we reach ip_output_post_ipsec.
2051  *
2052  *	    In the local case, IRAF_LOOPBACK will be set indicating
2053  *	    that IFN was generated locally.
2054  *
2055  * ROUTER : IFN could be secure or non-secure.
2056  *
2057  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2058  *	      packet in error has AH/ESP headers to validate the AH/ESP
2059  *	      headers. AH/ESP will verify whether there is a valid SA or
2060  *	      not and send it back. We will fanout again if we have more
2061  *	      data in the packet.
2062  *
2063  *	      If the packet in error does not have AH/ESP, we handle it
2064  *	      like any other case.
2065  *
2066  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2067  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2068  *	      valid SA or not and send it back. We will fanout again if
2069  *	      we have more data in the packet.
2070  *
2071  *	      If the packet in error does not have AH/ESP, we handle it
2072  *	      like any other case.
2073  *
2074  * The caller must have called icmp_inbound_verify_v4.
2075  */
2076 static void
2077 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2078 {
2079 	uint16_t	*up;	/* Pointer to ports in ULP header */
2080 	uint32_t	ports;	/* reversed ports for fanout */
2081 	ipha_t		ripha;	/* With reversed addresses */
2082 	ipha_t		*ipha;  /* Inner IP header */
2083 	uint_t		hdr_length; /* Inner IP header length */
2084 	tcpha_t		*tcpha;
2085 	conn_t		*connp;
2086 	ill_t		*ill = ira->ira_ill;
2087 	ip_stack_t	*ipst = ill->ill_ipst;
2088 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2089 	ill_t		*rill = ira->ira_rill;
2090 
2091 	/* Caller already pulled up everything. */
2092 	ipha = (ipha_t *)&icmph[1];
2093 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2094 	ASSERT(mp->b_cont == NULL);
2095 
2096 	hdr_length = IPH_HDR_LENGTH(ipha);
2097 	ira->ira_protocol = ipha->ipha_protocol;
2098 
2099 	/*
2100 	 * We need a separate IP header with the source and destination
2101 	 * addresses reversed to do fanout/classification because the ipha in
2102 	 * the ICMP error is in the form we sent it out.
2103 	 */
2104 	ripha.ipha_src = ipha->ipha_dst;
2105 	ripha.ipha_dst = ipha->ipha_src;
2106 	ripha.ipha_protocol = ipha->ipha_protocol;
2107 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2108 
2109 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2110 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2111 	    ntohl(ipha->ipha_dst),
2112 	    icmph->icmph_type, icmph->icmph_code));
2113 
2114 	switch (ipha->ipha_protocol) {
2115 	case IPPROTO_UDP:
2116 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2117 
2118 		/* Attempt to find a client stream based on port. */
2119 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2120 		    ntohs(up[0]), ntohs(up[1])));
2121 
2122 		/* Note that we send error to all matches. */
2123 		ira->ira_flags |= IRAF_ICMP_ERROR;
2124 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2125 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2126 		return;
2127 
2128 	case IPPROTO_TCP:
2129 		/*
2130 		 * Find a TCP client stream for this packet.
2131 		 * Note that we do a reverse lookup since the header is
2132 		 * in the form we sent it out.
2133 		 */
2134 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2135 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2136 		    ipst);
2137 		if (connp == NULL)
2138 			goto discard_pkt;
2139 
2140 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2141 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2142 			mp = ipsec_check_inbound_policy(mp, connp,
2143 			    ipha, NULL, ira);
2144 			if (mp == NULL) {
2145 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2146 				/* Note that mp is NULL */
2147 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2148 				CONN_DEC_REF(connp);
2149 				return;
2150 			}
2151 		}
2152 
2153 		ira->ira_flags |= IRAF_ICMP_ERROR;
2154 		ira->ira_ill = ira->ira_rill = NULL;
2155 		if (IPCL_IS_TCP(connp)) {
2156 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2157 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2158 			    SQTAG_TCP_INPUT_ICMP_ERR);
2159 		} else {
2160 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2161 			(connp->conn_recv)(connp, mp, NULL, ira);
2162 			CONN_DEC_REF(connp);
2163 		}
2164 		ira->ira_ill = ill;
2165 		ira->ira_rill = rill;
2166 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2167 		return;
2168 
2169 	case IPPROTO_SCTP:
2170 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2171 		/* Find a SCTP client stream for this packet. */
2172 		((uint16_t *)&ports)[0] = up[1];
2173 		((uint16_t *)&ports)[1] = up[0];
2174 
2175 		ira->ira_flags |= IRAF_ICMP_ERROR;
2176 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2177 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2178 		return;
2179 
2180 	case IPPROTO_ESP:
2181 	case IPPROTO_AH:
2182 		if (!ipsec_loaded(ipss)) {
2183 			ip_proto_not_sup(mp, ira);
2184 			return;
2185 		}
2186 
2187 		if (ipha->ipha_protocol == IPPROTO_ESP)
2188 			mp = ipsecesp_icmp_error(mp, ira);
2189 		else
2190 			mp = ipsecah_icmp_error(mp, ira);
2191 		if (mp == NULL)
2192 			return;
2193 
2194 		/* Just in case ipsec didn't preserve the NULL b_cont */
2195 		if (mp->b_cont != NULL) {
2196 			if (!pullupmsg(mp, -1))
2197 				goto discard_pkt;
2198 		}
2199 
2200 		/*
2201 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2202 		 * correct, but we don't use them any more here.
2203 		 *
2204 		 * If succesful, the mp has been modified to not include
2205 		 * the ESP/AH header so we can fanout to the ULP's icmp
2206 		 * error handler.
2207 		 */
2208 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2209 			goto truncated;
2210 
2211 		/* Verify the modified message before any further processes. */
2212 		ipha = (ipha_t *)mp->b_rptr;
2213 		hdr_length = IPH_HDR_LENGTH(ipha);
2214 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2215 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2216 			freemsg(mp);
2217 			return;
2218 		}
2219 
2220 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2221 		return;
2222 
2223 	case IPPROTO_ENCAP: {
2224 		/* Look for self-encapsulated packets that caused an error */
2225 		ipha_t *in_ipha;
2226 
2227 		/*
2228 		 * Caller has verified that length has to be
2229 		 * at least the size of IP header.
2230 		 */
2231 		ASSERT(hdr_length >= sizeof (ipha_t));
2232 		/*
2233 		 * Check the sanity of the inner IP header like
2234 		 * we did for the outer header.
2235 		 */
2236 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2237 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2238 			goto discard_pkt;
2239 		}
2240 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2241 			goto discard_pkt;
2242 		}
2243 		/* Check for Self-encapsulated tunnels */
2244 		if (in_ipha->ipha_src == ipha->ipha_src &&
2245 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2246 
2247 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2248 			    in_ipha);
2249 			if (mp == NULL)
2250 				goto discard_pkt;
2251 
2252 			/*
2253 			 * Just in case self_encap didn't preserve the NULL
2254 			 * b_cont
2255 			 */
2256 			if (mp->b_cont != NULL) {
2257 				if (!pullupmsg(mp, -1))
2258 					goto discard_pkt;
2259 			}
2260 			/*
2261 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2262 			 * longer correct, but we don't use them any more here.
2263 			 */
2264 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2265 				goto truncated;
2266 
2267 			/*
2268 			 * Verify the modified message before any further
2269 			 * processes.
2270 			 */
2271 			ipha = (ipha_t *)mp->b_rptr;
2272 			hdr_length = IPH_HDR_LENGTH(ipha);
2273 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2274 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2275 				freemsg(mp);
2276 				return;
2277 			}
2278 
2279 			/*
2280 			 * The packet in error is self-encapsualted.
2281 			 * And we are finding it further encapsulated
2282 			 * which we could not have possibly generated.
2283 			 */
2284 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2285 				goto discard_pkt;
2286 			}
2287 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2288 			return;
2289 		}
2290 		/* No self-encapsulated */
2291 		/* FALLTHRU */
2292 	}
2293 	case IPPROTO_IPV6:
2294 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2295 		    &ripha.ipha_dst, ipst)) != NULL) {
2296 			ira->ira_flags |= IRAF_ICMP_ERROR;
2297 			connp->conn_recvicmp(connp, mp, NULL, ira);
2298 			CONN_DEC_REF(connp);
2299 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2300 			return;
2301 		}
2302 		/*
2303 		 * No IP tunnel is interested, fallthrough and see
2304 		 * if a raw socket will want it.
2305 		 */
2306 		/* FALLTHRU */
2307 	default:
2308 		ira->ira_flags |= IRAF_ICMP_ERROR;
2309 		ip_fanout_proto_v4(mp, &ripha, ira);
2310 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2311 		return;
2312 	}
2313 	/* NOTREACHED */
2314 discard_pkt:
2315 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2316 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2317 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2318 	freemsg(mp);
2319 	return;
2320 
2321 truncated:
2322 	/* We pulled up everthing already. Must be truncated */
2323 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2324 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2325 	freemsg(mp);
2326 }
2327 
2328 /*
2329  * Common IP options parser.
2330  *
2331  * Setup routine: fill in *optp with options-parsing state, then
2332  * tail-call ipoptp_next to return the first option.
2333  */
2334 uint8_t
2335 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2336 {
2337 	uint32_t totallen; /* total length of all options */
2338 
2339 	totallen = ipha->ipha_version_and_hdr_length -
2340 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2341 	totallen <<= 2;
2342 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2343 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2344 	optp->ipoptp_flags = 0;
2345 	return (ipoptp_next(optp));
2346 }
2347 
2348 /* Like above but without an ipha_t */
2349 uint8_t
2350 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2351 {
2352 	optp->ipoptp_next = opt;
2353 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2354 	optp->ipoptp_flags = 0;
2355 	return (ipoptp_next(optp));
2356 }
2357 
2358 /*
2359  * Common IP options parser: extract next option.
2360  */
2361 uint8_t
2362 ipoptp_next(ipoptp_t *optp)
2363 {
2364 	uint8_t *end = optp->ipoptp_end;
2365 	uint8_t *cur = optp->ipoptp_next;
2366 	uint8_t opt, len, pointer;
2367 
2368 	/*
2369 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2370 	 * has been corrupted.
2371 	 */
2372 	ASSERT(cur <= end);
2373 
2374 	if (cur == end)
2375 		return (IPOPT_EOL);
2376 
2377 	opt = cur[IPOPT_OPTVAL];
2378 
2379 	/*
2380 	 * Skip any NOP options.
2381 	 */
2382 	while (opt == IPOPT_NOP) {
2383 		cur++;
2384 		if (cur == end)
2385 			return (IPOPT_EOL);
2386 		opt = cur[IPOPT_OPTVAL];
2387 	}
2388 
2389 	if (opt == IPOPT_EOL)
2390 		return (IPOPT_EOL);
2391 
2392 	/*
2393 	 * Option requiring a length.
2394 	 */
2395 	if ((cur + 1) >= end) {
2396 		optp->ipoptp_flags |= IPOPTP_ERROR;
2397 		return (IPOPT_EOL);
2398 	}
2399 	len = cur[IPOPT_OLEN];
2400 	if (len < 2) {
2401 		optp->ipoptp_flags |= IPOPTP_ERROR;
2402 		return (IPOPT_EOL);
2403 	}
2404 	optp->ipoptp_cur = cur;
2405 	optp->ipoptp_len = len;
2406 	optp->ipoptp_next = cur + len;
2407 	if (cur + len > end) {
2408 		optp->ipoptp_flags |= IPOPTP_ERROR;
2409 		return (IPOPT_EOL);
2410 	}
2411 
2412 	/*
2413 	 * For the options which require a pointer field, make sure
2414 	 * its there, and make sure it points to either something
2415 	 * inside this option, or the end of the option.
2416 	 */
2417 	switch (opt) {
2418 	case IPOPT_RR:
2419 	case IPOPT_TS:
2420 	case IPOPT_LSRR:
2421 	case IPOPT_SSRR:
2422 		if (len <= IPOPT_OFFSET) {
2423 			optp->ipoptp_flags |= IPOPTP_ERROR;
2424 			return (opt);
2425 		}
2426 		pointer = cur[IPOPT_OFFSET];
2427 		if (pointer - 1 > len) {
2428 			optp->ipoptp_flags |= IPOPTP_ERROR;
2429 			return (opt);
2430 		}
2431 		break;
2432 	}
2433 
2434 	/*
2435 	 * Sanity check the pointer field based on the type of the
2436 	 * option.
2437 	 */
2438 	switch (opt) {
2439 	case IPOPT_RR:
2440 	case IPOPT_SSRR:
2441 	case IPOPT_LSRR:
2442 		if (pointer < IPOPT_MINOFF_SR)
2443 			optp->ipoptp_flags |= IPOPTP_ERROR;
2444 		break;
2445 	case IPOPT_TS:
2446 		if (pointer < IPOPT_MINOFF_IT)
2447 			optp->ipoptp_flags |= IPOPTP_ERROR;
2448 		/*
2449 		 * Note that the Internet Timestamp option also
2450 		 * contains two four bit fields (the Overflow field,
2451 		 * and the Flag field), which follow the pointer
2452 		 * field.  We don't need to check that these fields
2453 		 * fall within the length of the option because this
2454 		 * was implicitely done above.  We've checked that the
2455 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2456 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2457 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2458 		 */
2459 		ASSERT(len > IPOPT_POS_OV_FLG);
2460 		break;
2461 	}
2462 
2463 	return (opt);
2464 }
2465 
2466 /*
2467  * Use the outgoing IP header to create an IP_OPTIONS option the way
2468  * it was passed down from the application.
2469  *
2470  * This is compatible with BSD in that it returns
2471  * the reverse source route with the final destination
2472  * as the last entry. The first 4 bytes of the option
2473  * will contain the final destination.
2474  */
2475 int
2476 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2477 {
2478 	ipoptp_t	opts;
2479 	uchar_t		*opt;
2480 	uint8_t		optval;
2481 	uint8_t		optlen;
2482 	uint32_t	len = 0;
2483 	uchar_t		*buf1 = buf;
2484 	uint32_t	totallen;
2485 	ipaddr_t	dst;
2486 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2487 
2488 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2489 		return (0);
2490 
2491 	totallen = ipp->ipp_ipv4_options_len;
2492 	if (totallen & 0x3)
2493 		return (0);
2494 
2495 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2496 	len += IP_ADDR_LEN;
2497 	bzero(buf1, IP_ADDR_LEN);
2498 
2499 	dst = connp->conn_faddr_v4;
2500 
2501 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2502 	    optval != IPOPT_EOL;
2503 	    optval = ipoptp_next(&opts)) {
2504 		int	off;
2505 
2506 		opt = opts.ipoptp_cur;
2507 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2508 			break;
2509 		}
2510 		optlen = opts.ipoptp_len;
2511 
2512 		switch (optval) {
2513 		case IPOPT_SSRR:
2514 		case IPOPT_LSRR:
2515 
2516 			/*
2517 			 * Insert destination as the first entry in the source
2518 			 * route and move down the entries on step.
2519 			 * The last entry gets placed at buf1.
2520 			 */
2521 			buf[IPOPT_OPTVAL] = optval;
2522 			buf[IPOPT_OLEN] = optlen;
2523 			buf[IPOPT_OFFSET] = optlen;
2524 
2525 			off = optlen - IP_ADDR_LEN;
2526 			if (off < 0) {
2527 				/* No entries in source route */
2528 				break;
2529 			}
2530 			/* Last entry in source route if not already set */
2531 			if (dst == INADDR_ANY)
2532 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2533 			off -= IP_ADDR_LEN;
2534 
2535 			while (off > 0) {
2536 				bcopy(opt + off,
2537 				    buf + off + IP_ADDR_LEN,
2538 				    IP_ADDR_LEN);
2539 				off -= IP_ADDR_LEN;
2540 			}
2541 			/* ipha_dst into first slot */
2542 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2543 			    IP_ADDR_LEN);
2544 			buf += optlen;
2545 			len += optlen;
2546 			break;
2547 
2548 		default:
2549 			bcopy(opt, buf, optlen);
2550 			buf += optlen;
2551 			len += optlen;
2552 			break;
2553 		}
2554 	}
2555 done:
2556 	/* Pad the resulting options */
2557 	while (len & 0x3) {
2558 		*buf++ = IPOPT_EOL;
2559 		len++;
2560 	}
2561 	return (len);
2562 }
2563 
2564 /*
2565  * Update any record route or timestamp options to include this host.
2566  * Reverse any source route option.
2567  * This routine assumes that the options are well formed i.e. that they
2568  * have already been checked.
2569  */
2570 static void
2571 icmp_options_update(ipha_t *ipha)
2572 {
2573 	ipoptp_t	opts;
2574 	uchar_t		*opt;
2575 	uint8_t		optval;
2576 	ipaddr_t	src;		/* Our local address */
2577 	ipaddr_t	dst;
2578 
2579 	ip2dbg(("icmp_options_update\n"));
2580 	src = ipha->ipha_src;
2581 	dst = ipha->ipha_dst;
2582 
2583 	for (optval = ipoptp_first(&opts, ipha);
2584 	    optval != IPOPT_EOL;
2585 	    optval = ipoptp_next(&opts)) {
2586 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2587 		opt = opts.ipoptp_cur;
2588 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2589 		    optval, opts.ipoptp_len));
2590 		switch (optval) {
2591 			int off1, off2;
2592 		case IPOPT_SSRR:
2593 		case IPOPT_LSRR:
2594 			/*
2595 			 * Reverse the source route.  The first entry
2596 			 * should be the next to last one in the current
2597 			 * source route (the last entry is our address).
2598 			 * The last entry should be the final destination.
2599 			 */
2600 			off1 = IPOPT_MINOFF_SR - 1;
2601 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2602 			if (off2 < 0) {
2603 				/* No entries in source route */
2604 				ip1dbg((
2605 				    "icmp_options_update: bad src route\n"));
2606 				break;
2607 			}
2608 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2609 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2610 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2611 			off2 -= IP_ADDR_LEN;
2612 
2613 			while (off1 < off2) {
2614 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2615 				bcopy((char *)opt + off2, (char *)opt + off1,
2616 				    IP_ADDR_LEN);
2617 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2618 				off1 += IP_ADDR_LEN;
2619 				off2 -= IP_ADDR_LEN;
2620 			}
2621 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2622 			break;
2623 		}
2624 	}
2625 }
2626 
2627 /*
2628  * Process received ICMP Redirect messages.
2629  * Assumes the caller has verified that the headers are in the pulled up mblk.
2630  * Consumes mp.
2631  */
2632 static void
2633 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2634 {
2635 	ire_t		*ire, *nire;
2636 	ire_t		*prev_ire;
2637 	ipaddr_t  	src, dst, gateway;
2638 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2639 	ipha_t		*inner_ipha;	/* Inner IP header */
2640 
2641 	/* Caller already pulled up everything. */
2642 	inner_ipha = (ipha_t *)&icmph[1];
2643 	src = ipha->ipha_src;
2644 	dst = inner_ipha->ipha_dst;
2645 	gateway = icmph->icmph_rd_gateway;
2646 	/* Make sure the new gateway is reachable somehow. */
2647 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2648 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2649 	/*
2650 	 * Make sure we had a route for the dest in question and that
2651 	 * that route was pointing to the old gateway (the source of the
2652 	 * redirect packet.)
2653 	 * We do longest match and then compare ire_gateway_addr below.
2654 	 */
2655 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2656 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2657 	/*
2658 	 * Check that
2659 	 *	the redirect was not from ourselves
2660 	 *	the new gateway and the old gateway are directly reachable
2661 	 */
2662 	if (prev_ire == NULL || ire == NULL ||
2663 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2664 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2665 	    !(ire->ire_type & IRE_IF_ALL) ||
2666 	    prev_ire->ire_gateway_addr != src) {
2667 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2668 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2669 		freemsg(mp);
2670 		if (ire != NULL)
2671 			ire_refrele(ire);
2672 		if (prev_ire != NULL)
2673 			ire_refrele(prev_ire);
2674 		return;
2675 	}
2676 
2677 	ire_refrele(prev_ire);
2678 	ire_refrele(ire);
2679 
2680 	/*
2681 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2682 	 * require TOS routing
2683 	 */
2684 	switch (icmph->icmph_code) {
2685 	case 0:
2686 	case 1:
2687 		/* TODO: TOS specificity for cases 2 and 3 */
2688 	case 2:
2689 	case 3:
2690 		break;
2691 	default:
2692 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2693 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2694 		freemsg(mp);
2695 		return;
2696 	}
2697 	/*
2698 	 * Create a Route Association.  This will allow us to remember that
2699 	 * someone we believe told us to use the particular gateway.
2700 	 */
2701 	ire = ire_create(
2702 	    (uchar_t *)&dst,			/* dest addr */
2703 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2704 	    (uchar_t *)&gateway,		/* gateway addr */
2705 	    IRE_HOST,
2706 	    NULL,				/* ill */
2707 	    ALL_ZONES,
2708 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2709 	    NULL,				/* tsol_gc_t */
2710 	    ipst);
2711 
2712 	if (ire == NULL) {
2713 		freemsg(mp);
2714 		return;
2715 	}
2716 	nire = ire_add(ire);
2717 	/* Check if it was a duplicate entry */
2718 	if (nire != NULL && nire != ire) {
2719 		ASSERT(nire->ire_identical_ref > 1);
2720 		ire_delete(nire);
2721 		ire_refrele(nire);
2722 		nire = NULL;
2723 	}
2724 	ire = nire;
2725 	if (ire != NULL) {
2726 		ire_refrele(ire);		/* Held in ire_add */
2727 
2728 		/* tell routing sockets that we received a redirect */
2729 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2730 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2731 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2732 	}
2733 
2734 	/*
2735 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2736 	 * This together with the added IRE has the effect of
2737 	 * modifying an existing redirect.
2738 	 */
2739 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2740 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2741 	if (prev_ire != NULL) {
2742 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2743 			ire_delete(prev_ire);
2744 		ire_refrele(prev_ire);
2745 	}
2746 
2747 	freemsg(mp);
2748 }
2749 
2750 /*
2751  * Generate an ICMP parameter problem message.
2752  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2753  * constructed by the caller.
2754  */
2755 static void
2756 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2757 {
2758 	icmph_t	icmph;
2759 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2760 
2761 	mp = icmp_pkt_err_ok(mp, ira);
2762 	if (mp == NULL)
2763 		return;
2764 
2765 	bzero(&icmph, sizeof (icmph_t));
2766 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2767 	icmph.icmph_pp_ptr = ptr;
2768 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2769 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2770 }
2771 
2772 /*
2773  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2774  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2775  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2776  * an icmp error packet can be sent.
2777  * Assigns an appropriate source address to the packet. If ipha_dst is
2778  * one of our addresses use it for source. Otherwise let ip_output_simple
2779  * pick the source address.
2780  */
2781 static void
2782 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2783 {
2784 	ipaddr_t dst;
2785 	icmph_t	*icmph;
2786 	ipha_t	*ipha;
2787 	uint_t	len_needed;
2788 	size_t	msg_len;
2789 	mblk_t	*mp1;
2790 	ipaddr_t src;
2791 	ire_t	*ire;
2792 	ip_xmit_attr_t ixas;
2793 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2794 
2795 	ipha = (ipha_t *)mp->b_rptr;
2796 
2797 	bzero(&ixas, sizeof (ixas));
2798 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2799 	ixas.ixa_zoneid = ira->ira_zoneid;
2800 	ixas.ixa_ifindex = 0;
2801 	ixas.ixa_ipst = ipst;
2802 	ixas.ixa_cred = kcred;
2803 	ixas.ixa_cpid = NOPID;
2804 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2805 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2806 
2807 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2808 		/*
2809 		 * Apply IPsec based on how IPsec was applied to
2810 		 * the packet that had the error.
2811 		 *
2812 		 * If it was an outbound packet that caused the ICMP
2813 		 * error, then the caller will have setup the IRA
2814 		 * appropriately.
2815 		 */
2816 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2817 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2818 			/* Note: mp already consumed and ip_drop_packet done */
2819 			return;
2820 		}
2821 	} else {
2822 		/*
2823 		 * This is in clear. The icmp message we are building
2824 		 * here should go out in clear, independent of our policy.
2825 		 */
2826 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2827 	}
2828 
2829 	/* Remember our eventual destination */
2830 	dst = ipha->ipha_src;
2831 
2832 	/*
2833 	 * If the packet was for one of our unicast addresses, make
2834 	 * sure we respond with that as the source. Otherwise
2835 	 * have ip_output_simple pick the source address.
2836 	 */
2837 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2838 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2839 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2840 	if (ire != NULL) {
2841 		ire_refrele(ire);
2842 		src = ipha->ipha_dst;
2843 	} else {
2844 		src = INADDR_ANY;
2845 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2846 	}
2847 
2848 	/*
2849 	 * Check if we can send back more then 8 bytes in addition to
2850 	 * the IP header.  We try to send 64 bytes of data and the internal
2851 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2852 	 */
2853 	len_needed = IPH_HDR_LENGTH(ipha);
2854 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2855 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2856 		if (!pullupmsg(mp, -1)) {
2857 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2858 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2859 			freemsg(mp);
2860 			return;
2861 		}
2862 		ipha = (ipha_t *)mp->b_rptr;
2863 
2864 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2865 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2866 			    len_needed));
2867 		} else {
2868 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2869 
2870 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2871 			len_needed += ip_hdr_length_v6(mp, ip6h);
2872 		}
2873 	}
2874 	len_needed += ipst->ips_ip_icmp_return;
2875 	msg_len = msgdsize(mp);
2876 	if (msg_len > len_needed) {
2877 		(void) adjmsg(mp, len_needed - msg_len);
2878 		msg_len = len_needed;
2879 	}
2880 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2881 	if (mp1 == NULL) {
2882 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2883 		freemsg(mp);
2884 		return;
2885 	}
2886 	mp1->b_cont = mp;
2887 	mp = mp1;
2888 
2889 	/*
2890 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2891 	 * node generates be accepted in peace by all on-host destinations.
2892 	 * If we do NOT assume that all on-host destinations trust
2893 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2894 	 * (Look for IXAF_TRUSTED_ICMP).
2895 	 */
2896 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2897 
2898 	ipha = (ipha_t *)mp->b_rptr;
2899 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2900 	*ipha = icmp_ipha;
2901 	ipha->ipha_src = src;
2902 	ipha->ipha_dst = dst;
2903 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2904 	msg_len += sizeof (icmp_ipha) + len;
2905 	if (msg_len > IP_MAXPACKET) {
2906 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2907 		msg_len = IP_MAXPACKET;
2908 	}
2909 	ipha->ipha_length = htons((uint16_t)msg_len);
2910 	icmph = (icmph_t *)&ipha[1];
2911 	bcopy(stuff, icmph, len);
2912 	icmph->icmph_checksum = 0;
2913 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2914 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2915 
2916 	(void) ip_output_simple(mp, &ixas);
2917 	ixa_cleanup(&ixas);
2918 }
2919 
2920 /*
2921  * Determine if an ICMP error packet can be sent given the rate limit.
2922  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2923  * in milliseconds) and a burst size. Burst size number of packets can
2924  * be sent arbitrarely closely spaced.
2925  * The state is tracked using two variables to implement an approximate
2926  * token bucket filter:
2927  *	icmp_pkt_err_last - lbolt value when the last burst started
2928  *	icmp_pkt_err_sent - number of packets sent in current burst
2929  */
2930 boolean_t
2931 icmp_err_rate_limit(ip_stack_t *ipst)
2932 {
2933 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2934 	uint_t refilled; /* Number of packets refilled in tbf since last */
2935 	/* Guard against changes by loading into local variable */
2936 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2937 
2938 	if (err_interval == 0)
2939 		return (B_FALSE);
2940 
2941 	if (ipst->ips_icmp_pkt_err_last > now) {
2942 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2943 		ipst->ips_icmp_pkt_err_last = 0;
2944 		ipst->ips_icmp_pkt_err_sent = 0;
2945 	}
2946 	/*
2947 	 * If we are in a burst update the token bucket filter.
2948 	 * Update the "last" time to be close to "now" but make sure
2949 	 * we don't loose precision.
2950 	 */
2951 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2952 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2953 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2954 			ipst->ips_icmp_pkt_err_sent = 0;
2955 		} else {
2956 			ipst->ips_icmp_pkt_err_sent -= refilled;
2957 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2958 		}
2959 	}
2960 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2961 		/* Start of new burst */
2962 		ipst->ips_icmp_pkt_err_last = now;
2963 	}
2964 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2965 		ipst->ips_icmp_pkt_err_sent++;
2966 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2967 		    ipst->ips_icmp_pkt_err_sent));
2968 		return (B_FALSE);
2969 	}
2970 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2971 	return (B_TRUE);
2972 }
2973 
2974 /*
2975  * Check if it is ok to send an IPv4 ICMP error packet in
2976  * response to the IPv4 packet in mp.
2977  * Free the message and return null if no
2978  * ICMP error packet should be sent.
2979  */
2980 static mblk_t *
2981 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2982 {
2983 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2984 	icmph_t	*icmph;
2985 	ipha_t	*ipha;
2986 	uint_t	len_needed;
2987 
2988 	if (!mp)
2989 		return (NULL);
2990 	ipha = (ipha_t *)mp->b_rptr;
2991 	if (ip_csum_hdr(ipha)) {
2992 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2993 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2994 		freemsg(mp);
2995 		return (NULL);
2996 	}
2997 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2998 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2999 	    CLASSD(ipha->ipha_dst) ||
3000 	    CLASSD(ipha->ipha_src) ||
3001 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3002 		/* Note: only errors to the fragment with offset 0 */
3003 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3004 		freemsg(mp);
3005 		return (NULL);
3006 	}
3007 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3008 		/*
3009 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3010 		 * errors in response to any ICMP errors.
3011 		 */
3012 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3013 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3014 			if (!pullupmsg(mp, len_needed)) {
3015 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3016 				freemsg(mp);
3017 				return (NULL);
3018 			}
3019 			ipha = (ipha_t *)mp->b_rptr;
3020 		}
3021 		icmph = (icmph_t *)
3022 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3023 		switch (icmph->icmph_type) {
3024 		case ICMP_DEST_UNREACHABLE:
3025 		case ICMP_SOURCE_QUENCH:
3026 		case ICMP_TIME_EXCEEDED:
3027 		case ICMP_PARAM_PROBLEM:
3028 		case ICMP_REDIRECT:
3029 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3030 			freemsg(mp);
3031 			return (NULL);
3032 		default:
3033 			break;
3034 		}
3035 	}
3036 	/*
3037 	 * If this is a labeled system, then check to see if we're allowed to
3038 	 * send a response to this particular sender.  If not, then just drop.
3039 	 */
3040 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3041 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3042 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3043 		freemsg(mp);
3044 		return (NULL);
3045 	}
3046 	if (icmp_err_rate_limit(ipst)) {
3047 		/*
3048 		 * Only send ICMP error packets every so often.
3049 		 * This should be done on a per port/source basis,
3050 		 * but for now this will suffice.
3051 		 */
3052 		freemsg(mp);
3053 		return (NULL);
3054 	}
3055 	return (mp);
3056 }
3057 
3058 /*
3059  * Called when a packet was sent out the same link that it arrived on.
3060  * Check if it is ok to send a redirect and then send it.
3061  */
3062 void
3063 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3064     ip_recv_attr_t *ira)
3065 {
3066 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3067 	ipaddr_t	src, nhop;
3068 	mblk_t		*mp1;
3069 	ire_t		*nhop_ire;
3070 
3071 	/*
3072 	 * Check the source address to see if it originated
3073 	 * on the same logical subnet it is going back out on.
3074 	 * If so, we should be able to send it a redirect.
3075 	 * Avoid sending a redirect if the destination
3076 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3077 	 * or if the packet was source routed out this interface.
3078 	 *
3079 	 * We avoid sending a redirect if the
3080 	 * destination is directly connected
3081 	 * because it is possible that multiple
3082 	 * IP subnets may have been configured on
3083 	 * the link, and the source may not
3084 	 * be on the same subnet as ip destination,
3085 	 * even though they are on the same
3086 	 * physical link.
3087 	 */
3088 	if ((ire->ire_type & IRE_ONLINK) ||
3089 	    ip_source_routed(ipha, ipst))
3090 		return;
3091 
3092 	nhop_ire = ire_nexthop(ire);
3093 	if (nhop_ire == NULL)
3094 		return;
3095 
3096 	nhop = nhop_ire->ire_addr;
3097 
3098 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3099 		ire_t	*ire2;
3100 
3101 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3102 		mutex_enter(&nhop_ire->ire_lock);
3103 		ire2 = nhop_ire->ire_dep_parent;
3104 		if (ire2 != NULL)
3105 			ire_refhold(ire2);
3106 		mutex_exit(&nhop_ire->ire_lock);
3107 		ire_refrele(nhop_ire);
3108 		nhop_ire = ire2;
3109 	}
3110 	if (nhop_ire == NULL)
3111 		return;
3112 
3113 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3114 
3115 	src = ipha->ipha_src;
3116 
3117 	/*
3118 	 * We look at the interface ire for the nexthop,
3119 	 * to see if ipha_src is in the same subnet
3120 	 * as the nexthop.
3121 	 */
3122 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3123 		/*
3124 		 * The source is directly connected.
3125 		 */
3126 		mp1 = copymsg(mp);
3127 		if (mp1 != NULL) {
3128 			icmp_send_redirect(mp1, nhop, ira);
3129 		}
3130 	}
3131 	ire_refrele(nhop_ire);
3132 }
3133 
3134 /*
3135  * Generate an ICMP redirect message.
3136  */
3137 static void
3138 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3139 {
3140 	icmph_t	icmph;
3141 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3142 
3143 	mp = icmp_pkt_err_ok(mp, ira);
3144 	if (mp == NULL)
3145 		return;
3146 
3147 	bzero(&icmph, sizeof (icmph_t));
3148 	icmph.icmph_type = ICMP_REDIRECT;
3149 	icmph.icmph_code = 1;
3150 	icmph.icmph_rd_gateway = gateway;
3151 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3152 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3153 }
3154 
3155 /*
3156  * Generate an ICMP time exceeded message.
3157  */
3158 void
3159 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3160 {
3161 	icmph_t	icmph;
3162 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3163 
3164 	mp = icmp_pkt_err_ok(mp, ira);
3165 	if (mp == NULL)
3166 		return;
3167 
3168 	bzero(&icmph, sizeof (icmph_t));
3169 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3170 	icmph.icmph_code = code;
3171 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3172 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3173 }
3174 
3175 /*
3176  * Generate an ICMP unreachable message.
3177  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3178  * constructed by the caller.
3179  */
3180 void
3181 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3182 {
3183 	icmph_t	icmph;
3184 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3185 
3186 	mp = icmp_pkt_err_ok(mp, ira);
3187 	if (mp == NULL)
3188 		return;
3189 
3190 	bzero(&icmph, sizeof (icmph_t));
3191 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3192 	icmph.icmph_code = code;
3193 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3194 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3195 }
3196 
3197 /*
3198  * Latch in the IPsec state for a stream based the policy in the listener
3199  * and the actions in the ip_recv_attr_t.
3200  * Called directly from TCP and SCTP.
3201  */
3202 boolean_t
3203 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3204 {
3205 	ASSERT(lconnp->conn_policy != NULL);
3206 	ASSERT(connp->conn_policy == NULL);
3207 
3208 	IPPH_REFHOLD(lconnp->conn_policy);
3209 	connp->conn_policy = lconnp->conn_policy;
3210 
3211 	if (ira->ira_ipsec_action != NULL) {
3212 		if (connp->conn_latch == NULL) {
3213 			connp->conn_latch = iplatch_create();
3214 			if (connp->conn_latch == NULL)
3215 				return (B_FALSE);
3216 		}
3217 		ipsec_latch_inbound(connp, ira);
3218 	}
3219 	return (B_TRUE);
3220 }
3221 
3222 /*
3223  * Verify whether or not the IP address is a valid local address.
3224  * Could be a unicast, including one for a down interface.
3225  * If allow_mcbc then a multicast or broadcast address is also
3226  * acceptable.
3227  *
3228  * In the case of a broadcast/multicast address, however, the
3229  * upper protocol is expected to reset the src address
3230  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3231  * no packets are emitted with broadcast/multicast address as
3232  * source address (that violates hosts requirements RFC 1122)
3233  * The addresses valid for bind are:
3234  *	(1) - INADDR_ANY (0)
3235  *	(2) - IP address of an UP interface
3236  *	(3) - IP address of a DOWN interface
3237  *	(4) - valid local IP broadcast addresses. In this case
3238  *	the conn will only receive packets destined to
3239  *	the specified broadcast address.
3240  *	(5) - a multicast address. In this case
3241  *	the conn will only receive packets destined to
3242  *	the specified multicast address. Note: the
3243  *	application still has to issue an
3244  *	IP_ADD_MEMBERSHIP socket option.
3245  *
3246  * In all the above cases, the bound address must be valid in the current zone.
3247  * When the address is loopback, multicast or broadcast, there might be many
3248  * matching IREs so bind has to look up based on the zone.
3249  */
3250 ip_laddr_t
3251 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3252     ip_stack_t *ipst, boolean_t allow_mcbc)
3253 {
3254 	ire_t *src_ire;
3255 
3256 	ASSERT(src_addr != INADDR_ANY);
3257 
3258 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3259 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3260 
3261 	/*
3262 	 * If an address other than in6addr_any is requested,
3263 	 * we verify that it is a valid address for bind
3264 	 * Note: Following code is in if-else-if form for
3265 	 * readability compared to a condition check.
3266 	 */
3267 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3268 		/*
3269 		 * (2) Bind to address of local UP interface
3270 		 */
3271 		ire_refrele(src_ire);
3272 		return (IPVL_UNICAST_UP);
3273 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3274 		/*
3275 		 * (4) Bind to broadcast address
3276 		 */
3277 		ire_refrele(src_ire);
3278 		if (allow_mcbc)
3279 			return (IPVL_BCAST);
3280 		else
3281 			return (IPVL_BAD);
3282 	} else if (CLASSD(src_addr)) {
3283 		/* (5) bind to multicast address. */
3284 		if (src_ire != NULL)
3285 			ire_refrele(src_ire);
3286 
3287 		if (allow_mcbc)
3288 			return (IPVL_MCAST);
3289 		else
3290 			return (IPVL_BAD);
3291 	} else {
3292 		ipif_t *ipif;
3293 
3294 		/*
3295 		 * (3) Bind to address of local DOWN interface?
3296 		 * (ipif_lookup_addr() looks up all interfaces
3297 		 * but we do not get here for UP interfaces
3298 		 * - case (2) above)
3299 		 */
3300 		if (src_ire != NULL)
3301 			ire_refrele(src_ire);
3302 
3303 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3304 		if (ipif == NULL)
3305 			return (IPVL_BAD);
3306 
3307 		/* Not a useful source? */
3308 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3309 			ipif_refrele(ipif);
3310 			return (IPVL_BAD);
3311 		}
3312 		ipif_refrele(ipif);
3313 		return (IPVL_UNICAST_DOWN);
3314 	}
3315 }
3316 
3317 /*
3318  * Insert in the bind fanout for IPv4 and IPv6.
3319  * The caller should already have used ip_laddr_verify_v*() before calling
3320  * this.
3321  */
3322 int
3323 ip_laddr_fanout_insert(conn_t *connp)
3324 {
3325 	int		error;
3326 
3327 	/*
3328 	 * Allow setting new policies. For example, disconnects result
3329 	 * in us being called. As we would have set conn_policy_cached
3330 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3331 	 * can change after the disconnect.
3332 	 */
3333 	connp->conn_policy_cached = B_FALSE;
3334 
3335 	error = ipcl_bind_insert(connp);
3336 	if (error != 0) {
3337 		if (connp->conn_anon_port) {
3338 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3339 			    connp->conn_mlp_type, connp->conn_proto,
3340 			    ntohs(connp->conn_lport), B_FALSE);
3341 		}
3342 		connp->conn_mlp_type = mlptSingle;
3343 	}
3344 	return (error);
3345 }
3346 
3347 /*
3348  * Verify that both the source and destination addresses are valid. If
3349  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3350  * i.e. have no route to it.  Protocols like TCP want to verify destination
3351  * reachability, while tunnels do not.
3352  *
3353  * Determine the route, the interface, and (optionally) the source address
3354  * to use to reach a given destination.
3355  * Note that we allow connect to broadcast and multicast addresses when
3356  * IPDF_ALLOW_MCBC is set.
3357  * first_hop and dst_addr are normally the same, but if source routing
3358  * they will differ; in that case the first_hop is what we'll use for the
3359  * routing lookup but the dce and label checks will be done on dst_addr,
3360  *
3361  * If uinfo is set, then we fill in the best available information
3362  * we have for the destination. This is based on (in priority order) any
3363  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3364  * ill_mtu.
3365  *
3366  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3367  * always do the label check on dst_addr.
3368  */
3369 int
3370 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3371     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3372 {
3373 	ire_t		*ire = NULL;
3374 	int		error = 0;
3375 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3376 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3377 	ip_stack_t	*ipst = ixa->ixa_ipst;
3378 	dce_t		*dce;
3379 	uint_t		pmtu;
3380 	uint_t		generation;
3381 	nce_t		*nce;
3382 	ill_t		*ill = NULL;
3383 	boolean_t	multirt = B_FALSE;
3384 
3385 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3386 
3387 	/*
3388 	 * We never send to zero; the ULPs map it to the loopback address.
3389 	 * We can't allow it since we use zero to mean unitialized in some
3390 	 * places.
3391 	 */
3392 	ASSERT(dst_addr != INADDR_ANY);
3393 
3394 	if (is_system_labeled()) {
3395 		ts_label_t *tsl = NULL;
3396 
3397 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3398 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3399 		if (error != 0)
3400 			return (error);
3401 		if (tsl != NULL) {
3402 			/* Update the label */
3403 			ip_xmit_attr_replace_tsl(ixa, tsl);
3404 		}
3405 	}
3406 
3407 	setsrc = INADDR_ANY;
3408 	/*
3409 	 * Select a route; For IPMP interfaces, we would only select
3410 	 * a "hidden" route (i.e., going through a specific under_ill)
3411 	 * if ixa_ifindex has been specified.
3412 	 */
3413 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3414 	    &generation, &setsrc, &error, &multirt);
3415 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3416 	if (error != 0)
3417 		goto bad_addr;
3418 
3419 	/*
3420 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3421 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3422 	 * Otherwise the destination needn't be reachable.
3423 	 *
3424 	 * If we match on a reject or black hole, then we've got a
3425 	 * local failure.  May as well fail out the connect() attempt,
3426 	 * since it's never going to succeed.
3427 	 */
3428 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3429 		/*
3430 		 * If we're verifying destination reachability, we always want
3431 		 * to complain here.
3432 		 *
3433 		 * If we're not verifying destination reachability but the
3434 		 * destination has a route, we still want to fail on the
3435 		 * temporary address and broadcast address tests.
3436 		 *
3437 		 * In both cases do we let the code continue so some reasonable
3438 		 * information is returned to the caller. That enables the
3439 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3440 		 * use the generation mismatch path to check for the unreachable
3441 		 * case thereby avoiding any specific check in the main path.
3442 		 */
3443 		ASSERT(generation == IRE_GENERATION_VERIFY);
3444 		if (flags & IPDF_VERIFY_DST) {
3445 			/*
3446 			 * Set errno but continue to set up ixa_ire to be
3447 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3448 			 * That allows callers to use ip_output to get an
3449 			 * ICMP error back.
3450 			 */
3451 			if (!(ire->ire_type & IRE_HOST))
3452 				error = ENETUNREACH;
3453 			else
3454 				error = EHOSTUNREACH;
3455 		}
3456 	}
3457 
3458 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3459 	    !(flags & IPDF_ALLOW_MCBC)) {
3460 		ire_refrele(ire);
3461 		ire = ire_reject(ipst, B_FALSE);
3462 		generation = IRE_GENERATION_VERIFY;
3463 		error = ENETUNREACH;
3464 	}
3465 
3466 	/* Cache things */
3467 	if (ixa->ixa_ire != NULL)
3468 		ire_refrele_notr(ixa->ixa_ire);
3469 #ifdef DEBUG
3470 	ire_refhold_notr(ire);
3471 	ire_refrele(ire);
3472 #endif
3473 	ixa->ixa_ire = ire;
3474 	ixa->ixa_ire_generation = generation;
3475 
3476 	/*
3477 	 * For multicast with multirt we have a flag passed back from
3478 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3479 	 * possible multicast address.
3480 	 * We also need a flag for multicast since we can't check
3481 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3482 	 */
3483 	if (multirt) {
3484 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3485 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3486 	} else {
3487 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3488 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3489 	}
3490 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3491 		/* Get an nce to cache. */
3492 		nce = ire_to_nce(ire, firsthop, NULL);
3493 		if (nce == NULL) {
3494 			/* Allocation failure? */
3495 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3496 		} else {
3497 			if (ixa->ixa_nce != NULL)
3498 				nce_refrele(ixa->ixa_nce);
3499 			ixa->ixa_nce = nce;
3500 		}
3501 	}
3502 
3503 	/*
3504 	 * If the source address is a loopback address, the
3505 	 * destination had best be local or multicast.
3506 	 * If we are sending to an IRE_LOCAL using a loopback source then
3507 	 * it had better be the same zoneid.
3508 	 */
3509 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3510 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3511 			ire = NULL;	/* Stored in ixa_ire */
3512 			error = EADDRNOTAVAIL;
3513 			goto bad_addr;
3514 		}
3515 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3516 			ire = NULL;	/* Stored in ixa_ire */
3517 			error = EADDRNOTAVAIL;
3518 			goto bad_addr;
3519 		}
3520 	}
3521 	if (ire->ire_type & IRE_BROADCAST) {
3522 		/*
3523 		 * If the ULP didn't have a specified source, then we
3524 		 * make sure we reselect the source when sending
3525 		 * broadcasts out different interfaces.
3526 		 */
3527 		if (flags & IPDF_SELECT_SRC)
3528 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3529 		else
3530 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3531 	}
3532 
3533 	/*
3534 	 * Does the caller want us to pick a source address?
3535 	 */
3536 	if (flags & IPDF_SELECT_SRC) {
3537 		ipaddr_t	src_addr;
3538 
3539 		/*
3540 		 * We use use ire_nexthop_ill to avoid the under ipmp
3541 		 * interface for source address selection. Note that for ipmp
3542 		 * probe packets, ixa_ifindex would have been specified, and
3543 		 * the ip_select_route() invocation would have picked an ire
3544 		 * will ire_ill pointing at an under interface.
3545 		 */
3546 		ill = ire_nexthop_ill(ire);
3547 
3548 		/* If unreachable we have no ill but need some source */
3549 		if (ill == NULL) {
3550 			src_addr = htonl(INADDR_LOOPBACK);
3551 			/* Make sure we look for a better source address */
3552 			generation = SRC_GENERATION_VERIFY;
3553 		} else {
3554 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3555 			    ixa->ixa_multicast_ifaddr, zoneid,
3556 			    ipst, &src_addr, &generation, NULL);
3557 			if (error != 0) {
3558 				ire = NULL;	/* Stored in ixa_ire */
3559 				goto bad_addr;
3560 			}
3561 		}
3562 
3563 		/*
3564 		 * We allow the source address to to down.
3565 		 * However, we check that we don't use the loopback address
3566 		 * as a source when sending out on the wire.
3567 		 */
3568 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3569 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3570 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3571 			ire = NULL;	/* Stored in ixa_ire */
3572 			error = EADDRNOTAVAIL;
3573 			goto bad_addr;
3574 		}
3575 
3576 		*src_addrp = src_addr;
3577 		ixa->ixa_src_generation = generation;
3578 	}
3579 
3580 	if (flags & IPDF_UNIQUE_DCE) {
3581 		/* Fallback to the default dce if allocation fails */
3582 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3583 		if (dce != NULL)
3584 			generation = dce->dce_generation;
3585 		else
3586 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3587 	} else {
3588 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3589 	}
3590 	ASSERT(dce != NULL);
3591 	if (ixa->ixa_dce != NULL)
3592 		dce_refrele_notr(ixa->ixa_dce);
3593 #ifdef DEBUG
3594 	dce_refhold_notr(dce);
3595 	dce_refrele(dce);
3596 #endif
3597 	ixa->ixa_dce = dce;
3598 	ixa->ixa_dce_generation = generation;
3599 
3600 	/*
3601 	 * Make sure we don't leave an unreachable ixa_nce in place
3602 	 * since ip_select_route is used when we unplumb i.e., remove
3603 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3604 	 */
3605 	nce = ixa->ixa_nce;
3606 	if (nce != NULL && nce->nce_is_condemned) {
3607 		nce_refrele(nce);
3608 		ixa->ixa_nce = NULL;
3609 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3610 	}
3611 
3612 	/*
3613 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3614 	 * However, we can't do it for IPv4 multicast or broadcast.
3615 	 */
3616 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3617 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3618 
3619 	/*
3620 	 * Set initial value for fragmentation limit. Either conn_ip_output
3621 	 * or ULP might updates it when there are routing changes.
3622 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3623 	 */
3624 	pmtu = ip_get_pmtu(ixa);
3625 	ixa->ixa_fragsize = pmtu;
3626 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3627 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3628 		ixa->ixa_pmtu = pmtu;
3629 
3630 	/*
3631 	 * Extract information useful for some transports.
3632 	 * First we look for DCE metrics. Then we take what we have in
3633 	 * the metrics in the route, where the offlink is used if we have
3634 	 * one.
3635 	 */
3636 	if (uinfo != NULL) {
3637 		bzero(uinfo, sizeof (*uinfo));
3638 
3639 		if (dce->dce_flags & DCEF_UINFO)
3640 			*uinfo = dce->dce_uinfo;
3641 
3642 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3643 
3644 		/* Allow ire_metrics to decrease the path MTU from above */
3645 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3646 			uinfo->iulp_mtu = pmtu;
3647 
3648 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3649 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3650 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3651 	}
3652 
3653 	if (ill != NULL)
3654 		ill_refrele(ill);
3655 
3656 	return (error);
3657 
3658 bad_addr:
3659 	if (ire != NULL)
3660 		ire_refrele(ire);
3661 
3662 	if (ill != NULL)
3663 		ill_refrele(ill);
3664 
3665 	/*
3666 	 * Make sure we don't leave an unreachable ixa_nce in place
3667 	 * since ip_select_route is used when we unplumb i.e., remove
3668 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3669 	 */
3670 	nce = ixa->ixa_nce;
3671 	if (nce != NULL && nce->nce_is_condemned) {
3672 		nce_refrele(nce);
3673 		ixa->ixa_nce = NULL;
3674 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3675 	}
3676 
3677 	return (error);
3678 }
3679 
3680 
3681 /*
3682  * Get the base MTU for the case when path MTU discovery is not used.
3683  * Takes the MTU of the IRE into account.
3684  */
3685 uint_t
3686 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3687 {
3688 	uint_t mtu = ill->ill_mtu;
3689 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3690 
3691 	if (iremtu != 0 && iremtu < mtu)
3692 		mtu = iremtu;
3693 
3694 	return (mtu);
3695 }
3696 
3697 /*
3698  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3699  * Assumes that ixa_ire, dce, and nce have already been set up.
3700  *
3701  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3702  * We avoid path MTU discovery if it is disabled with ndd.
3703  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3704  *
3705  * NOTE: We also used to turn it off for source routed packets. That
3706  * is no longer required since the dce is per final destination.
3707  */
3708 uint_t
3709 ip_get_pmtu(ip_xmit_attr_t *ixa)
3710 {
3711 	ip_stack_t	*ipst = ixa->ixa_ipst;
3712 	dce_t		*dce;
3713 	nce_t		*nce;
3714 	ire_t		*ire;
3715 	uint_t		pmtu;
3716 
3717 	ire = ixa->ixa_ire;
3718 	dce = ixa->ixa_dce;
3719 	nce = ixa->ixa_nce;
3720 
3721 	/*
3722 	 * If path MTU discovery has been turned off by ndd, then we ignore
3723 	 * any dce_pmtu and for IPv4 we will not set DF.
3724 	 */
3725 	if (!ipst->ips_ip_path_mtu_discovery)
3726 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3727 
3728 	pmtu = IP_MAXPACKET;
3729 	/*
3730 	 * Decide whether whether IPv4 sets DF
3731 	 * For IPv6 "no DF" means to use the 1280 mtu
3732 	 */
3733 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3734 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3735 	} else {
3736 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3737 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3738 			pmtu = IPV6_MIN_MTU;
3739 	}
3740 
3741 	/* Check if the PMTU is to old before we use it */
3742 	if ((dce->dce_flags & DCEF_PMTU) &&
3743 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3744 	    ipst->ips_ip_pathmtu_interval) {
3745 		/*
3746 		 * Older than 20 minutes. Drop the path MTU information.
3747 		 */
3748 		mutex_enter(&dce->dce_lock);
3749 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3750 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3751 		mutex_exit(&dce->dce_lock);
3752 		dce_increment_generation(dce);
3753 	}
3754 
3755 	/* The metrics on the route can lower the path MTU */
3756 	if (ire->ire_metrics.iulp_mtu != 0 &&
3757 	    ire->ire_metrics.iulp_mtu < pmtu)
3758 		pmtu = ire->ire_metrics.iulp_mtu;
3759 
3760 	/*
3761 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3762 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3763 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3764 	 */
3765 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3766 		if (dce->dce_flags & DCEF_PMTU) {
3767 			if (dce->dce_pmtu < pmtu)
3768 				pmtu = dce->dce_pmtu;
3769 
3770 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3771 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3772 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3773 			} else {
3774 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3775 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3776 			}
3777 		} else {
3778 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3785 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3786 	 * mtu as IRE_LOOPBACK.
3787 	 */
3788 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3789 		uint_t loopback_mtu;
3790 
3791 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3792 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3793 
3794 		if (loopback_mtu < pmtu)
3795 			pmtu = loopback_mtu;
3796 	} else if (nce != NULL) {
3797 		/*
3798 		 * Make sure we don't exceed the interface MTU.
3799 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3800 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3801 		 * to tell the transport something larger than zero.
3802 		 */
3803 		if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3804 			pmtu = nce->nce_common->ncec_ill->ill_mtu;
3805 		if (nce->nce_common->ncec_ill != nce->nce_ill &&
3806 		    nce->nce_ill->ill_mtu < pmtu) {
3807 			/*
3808 			 * for interfaces in an IPMP group, the mtu of
3809 			 * the nce_ill (under_ill) could be different
3810 			 * from the mtu of the ncec_ill, so we take the
3811 			 * min of the two.
3812 			 */
3813 			pmtu = nce->nce_ill->ill_mtu;
3814 		}
3815 	}
3816 
3817 	/*
3818 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3819 	 * Only applies to IPv6.
3820 	 */
3821 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3822 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3823 			switch (ixa->ixa_use_min_mtu) {
3824 			case IPV6_USE_MIN_MTU_MULTICAST:
3825 				if (ire->ire_type & IRE_MULTICAST)
3826 					pmtu = IPV6_MIN_MTU;
3827 				break;
3828 			case IPV6_USE_MIN_MTU_ALWAYS:
3829 				pmtu = IPV6_MIN_MTU;
3830 				break;
3831 			case IPV6_USE_MIN_MTU_NEVER:
3832 				break;
3833 			}
3834 		} else {
3835 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3836 			if (ire->ire_type & IRE_MULTICAST)
3837 				pmtu = IPV6_MIN_MTU;
3838 		}
3839 	}
3840 
3841 	/*
3842 	 * After receiving an ICMPv6 "packet too big" message with a
3843 	 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3844 	 * will insert a 8-byte fragment header in every packet. We compensate
3845 	 * for those cases by returning a smaller path MTU to the ULP.
3846 	 *
3847 	 * In the case of CGTP then ip_output will add a fragment header.
3848 	 * Make sure there is room for it by telling a smaller number
3849 	 * to the transport.
3850 	 *
3851 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3852 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3853 	 * which is the size of the packets it can send.
3854 	 */
3855 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3856 		if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3857 		    (ire->ire_flags & RTF_MULTIRT) ||
3858 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3859 			pmtu -= sizeof (ip6_frag_t);
3860 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3861 		}
3862 	}
3863 
3864 	return (pmtu);
3865 }
3866 
3867 /*
3868  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3869  * the final piece where we don't.  Return a pointer to the first mblk in the
3870  * result, and update the pointer to the next mblk to chew on.  If anything
3871  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3872  * NULL pointer.
3873  */
3874 mblk_t *
3875 ip_carve_mp(mblk_t **mpp, ssize_t len)
3876 {
3877 	mblk_t	*mp0;
3878 	mblk_t	*mp1;
3879 	mblk_t	*mp2;
3880 
3881 	if (!len || !mpp || !(mp0 = *mpp))
3882 		return (NULL);
3883 	/* If we aren't going to consume the first mblk, we need a dup. */
3884 	if (mp0->b_wptr - mp0->b_rptr > len) {
3885 		mp1 = dupb(mp0);
3886 		if (mp1) {
3887 			/* Partition the data between the two mblks. */
3888 			mp1->b_wptr = mp1->b_rptr + len;
3889 			mp0->b_rptr = mp1->b_wptr;
3890 			/*
3891 			 * after adjustments if mblk not consumed is now
3892 			 * unaligned, try to align it. If this fails free
3893 			 * all messages and let upper layer recover.
3894 			 */
3895 			if (!OK_32PTR(mp0->b_rptr)) {
3896 				if (!pullupmsg(mp0, -1)) {
3897 					freemsg(mp0);
3898 					freemsg(mp1);
3899 					*mpp = NULL;
3900 					return (NULL);
3901 				}
3902 			}
3903 		}
3904 		return (mp1);
3905 	}
3906 	/* Eat through as many mblks as we need to get len bytes. */
3907 	len -= mp0->b_wptr - mp0->b_rptr;
3908 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3909 		if (mp2->b_wptr - mp2->b_rptr > len) {
3910 			/*
3911 			 * We won't consume the entire last mblk.  Like
3912 			 * above, dup and partition it.
3913 			 */
3914 			mp1->b_cont = dupb(mp2);
3915 			mp1 = mp1->b_cont;
3916 			if (!mp1) {
3917 				/*
3918 				 * Trouble.  Rather than go to a lot of
3919 				 * trouble to clean up, we free the messages.
3920 				 * This won't be any worse than losing it on
3921 				 * the wire.
3922 				 */
3923 				freemsg(mp0);
3924 				freemsg(mp2);
3925 				*mpp = NULL;
3926 				return (NULL);
3927 			}
3928 			mp1->b_wptr = mp1->b_rptr + len;
3929 			mp2->b_rptr = mp1->b_wptr;
3930 			/*
3931 			 * after adjustments if mblk not consumed is now
3932 			 * unaligned, try to align it. If this fails free
3933 			 * all messages and let upper layer recover.
3934 			 */
3935 			if (!OK_32PTR(mp2->b_rptr)) {
3936 				if (!pullupmsg(mp2, -1)) {
3937 					freemsg(mp0);
3938 					freemsg(mp2);
3939 					*mpp = NULL;
3940 					return (NULL);
3941 				}
3942 			}
3943 			*mpp = mp2;
3944 			return (mp0);
3945 		}
3946 		/* Decrement len by the amount we just got. */
3947 		len -= mp2->b_wptr - mp2->b_rptr;
3948 	}
3949 	/*
3950 	 * len should be reduced to zero now.  If not our caller has
3951 	 * screwed up.
3952 	 */
3953 	if (len) {
3954 		/* Shouldn't happen! */
3955 		freemsg(mp0);
3956 		*mpp = NULL;
3957 		return (NULL);
3958 	}
3959 	/*
3960 	 * We consumed up to exactly the end of an mblk.  Detach the part
3961 	 * we are returning from the rest of the chain.
3962 	 */
3963 	mp1->b_cont = NULL;
3964 	*mpp = mp2;
3965 	return (mp0);
3966 }
3967 
3968 /* The ill stream is being unplumbed. Called from ip_close */
3969 int
3970 ip_modclose(ill_t *ill)
3971 {
3972 	boolean_t success;
3973 	ipsq_t	*ipsq;
3974 	ipif_t	*ipif;
3975 	queue_t	*q = ill->ill_rq;
3976 	ip_stack_t	*ipst = ill->ill_ipst;
3977 	int	i;
3978 	arl_ill_common_t *ai = ill->ill_common;
3979 
3980 	/*
3981 	 * The punlink prior to this may have initiated a capability
3982 	 * negotiation. But ipsq_enter will block until that finishes or
3983 	 * times out.
3984 	 */
3985 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
3986 
3987 	/*
3988 	 * Open/close/push/pop is guaranteed to be single threaded
3989 	 * per stream by STREAMS. FS guarantees that all references
3990 	 * from top are gone before close is called. So there can't
3991 	 * be another close thread that has set CONDEMNED on this ill.
3992 	 * and cause ipsq_enter to return failure.
3993 	 */
3994 	ASSERT(success);
3995 	ipsq = ill->ill_phyint->phyint_ipsq;
3996 
3997 	/*
3998 	 * Mark it condemned. No new reference will be made to this ill.
3999 	 * Lookup functions will return an error. Threads that try to
4000 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4001 	 * that the refcnt will drop down to zero.
4002 	 */
4003 	mutex_enter(&ill->ill_lock);
4004 	ill->ill_state_flags |= ILL_CONDEMNED;
4005 	for (ipif = ill->ill_ipif; ipif != NULL;
4006 	    ipif = ipif->ipif_next) {
4007 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4008 	}
4009 	/*
4010 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4011 	 * returns  error if ILL_CONDEMNED is set
4012 	 */
4013 	cv_broadcast(&ill->ill_cv);
4014 	mutex_exit(&ill->ill_lock);
4015 
4016 	/*
4017 	 * Send all the deferred DLPI messages downstream which came in
4018 	 * during the small window right before ipsq_enter(). We do this
4019 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4020 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4021 	 */
4022 	ill_dlpi_send_deferred(ill);
4023 
4024 	/*
4025 	 * Shut down fragmentation reassembly.
4026 	 * ill_frag_timer won't start a timer again.
4027 	 * Now cancel any existing timer
4028 	 */
4029 	(void) untimeout(ill->ill_frag_timer_id);
4030 	(void) ill_frag_timeout(ill, 0);
4031 
4032 	/*
4033 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4034 	 * this ill. Then wait for the refcnts to drop to zero.
4035 	 * ill_is_freeable checks whether the ill is really quiescent.
4036 	 * Then make sure that threads that are waiting to enter the
4037 	 * ipsq have seen the error returned by ipsq_enter and have
4038 	 * gone away. Then we call ill_delete_tail which does the
4039 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4040 	 */
4041 	ill_delete(ill);
4042 	mutex_enter(&ill->ill_lock);
4043 	while (!ill_is_freeable(ill))
4044 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4045 
4046 	while (ill->ill_waiters)
4047 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4048 
4049 	mutex_exit(&ill->ill_lock);
4050 
4051 	/*
4052 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4053 	 * it held until the end of the function since the cleanup
4054 	 * below needs to be able to use the ip_stack_t.
4055 	 */
4056 	netstack_hold(ipst->ips_netstack);
4057 
4058 	/* qprocsoff is done via ill_delete_tail */
4059 	ill_delete_tail(ill);
4060 	/*
4061 	 * synchronously wait for arp stream to unbind. After this, we
4062 	 * cannot get any data packets up from the driver.
4063 	 */
4064 	arp_unbind_complete(ill);
4065 	ASSERT(ill->ill_ipst == NULL);
4066 
4067 	/*
4068 	 * Walk through all conns and qenable those that have queued data.
4069 	 * Close synchronization needs this to
4070 	 * be done to ensure that all upper layers blocked
4071 	 * due to flow control to the closing device
4072 	 * get unblocked.
4073 	 */
4074 	ip1dbg(("ip_wsrv: walking\n"));
4075 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4076 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4077 	}
4078 
4079 	/*
4080 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4081 	 * stream is being torn down before ARP was plumbed (e.g.,
4082 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4083 	 * an error
4084 	 */
4085 	if (ai != NULL) {
4086 		ASSERT(!ill->ill_isv6);
4087 		mutex_enter(&ai->ai_lock);
4088 		ai->ai_ill = NULL;
4089 		if (ai->ai_arl == NULL) {
4090 			mutex_destroy(&ai->ai_lock);
4091 			kmem_free(ai, sizeof (*ai));
4092 		} else {
4093 			cv_signal(&ai->ai_ill_unplumb_done);
4094 			mutex_exit(&ai->ai_lock);
4095 		}
4096 	}
4097 
4098 	mutex_enter(&ipst->ips_ip_mi_lock);
4099 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4100 	mutex_exit(&ipst->ips_ip_mi_lock);
4101 
4102 	/*
4103 	 * credp could be null if the open didn't succeed and ip_modopen
4104 	 * itself calls ip_close.
4105 	 */
4106 	if (ill->ill_credp != NULL)
4107 		crfree(ill->ill_credp);
4108 
4109 	mutex_destroy(&ill->ill_saved_ire_lock);
4110 	mutex_destroy(&ill->ill_lock);
4111 	rw_destroy(&ill->ill_mcast_lock);
4112 	mutex_destroy(&ill->ill_mcast_serializer);
4113 	list_destroy(&ill->ill_nce);
4114 
4115 	/*
4116 	 * Now we are done with the module close pieces that
4117 	 * need the netstack_t.
4118 	 */
4119 	netstack_rele(ipst->ips_netstack);
4120 
4121 	mi_close_free((IDP)ill);
4122 	q->q_ptr = WR(q)->q_ptr = NULL;
4123 
4124 	ipsq_exit(ipsq);
4125 
4126 	return (0);
4127 }
4128 
4129 /*
4130  * This is called as part of close() for IP, UDP, ICMP, and RTS
4131  * in order to quiesce the conn.
4132  */
4133 void
4134 ip_quiesce_conn(conn_t *connp)
4135 {
4136 	boolean_t	drain_cleanup_reqd = B_FALSE;
4137 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4138 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4139 	ip_stack_t	*ipst;
4140 
4141 	ASSERT(!IPCL_IS_TCP(connp));
4142 	ipst = connp->conn_netstack->netstack_ip;
4143 
4144 	/*
4145 	 * Mark the conn as closing, and this conn must not be
4146 	 * inserted in future into any list. Eg. conn_drain_insert(),
4147 	 * won't insert this conn into the conn_drain_list.
4148 	 *
4149 	 * conn_idl, and conn_ilg cannot get set henceforth.
4150 	 */
4151 	mutex_enter(&connp->conn_lock);
4152 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4153 	connp->conn_state_flags |= CONN_CLOSING;
4154 	if (connp->conn_idl != NULL)
4155 		drain_cleanup_reqd = B_TRUE;
4156 	if (connp->conn_oper_pending_ill != NULL)
4157 		conn_ioctl_cleanup_reqd = B_TRUE;
4158 	if (connp->conn_dhcpinit_ill != NULL) {
4159 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4160 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4161 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4162 		connp->conn_dhcpinit_ill = NULL;
4163 	}
4164 	if (connp->conn_ilg != NULL)
4165 		ilg_cleanup_reqd = B_TRUE;
4166 	mutex_exit(&connp->conn_lock);
4167 
4168 	if (conn_ioctl_cleanup_reqd)
4169 		conn_ioctl_cleanup(connp);
4170 
4171 	if (is_system_labeled() && connp->conn_anon_port) {
4172 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4173 		    connp->conn_mlp_type, connp->conn_proto,
4174 		    ntohs(connp->conn_lport), B_FALSE);
4175 		connp->conn_anon_port = 0;
4176 	}
4177 	connp->conn_mlp_type = mlptSingle;
4178 
4179 	/*
4180 	 * Remove this conn from any fanout list it is on.
4181 	 * and then wait for any threads currently operating
4182 	 * on this endpoint to finish
4183 	 */
4184 	ipcl_hash_remove(connp);
4185 
4186 	/*
4187 	 * Remove this conn from the drain list, and do
4188 	 * any other cleanup that may be required.
4189 	 * (Only non-tcp conns may have a non-null conn_idl.
4190 	 * TCP conns are never flow controlled, and
4191 	 * conn_idl will be null)
4192 	 */
4193 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4194 		mutex_enter(&connp->conn_idl->idl_lock);
4195 		conn_drain_tail(connp, B_TRUE);
4196 		mutex_exit(&connp->conn_idl->idl_lock);
4197 	}
4198 
4199 	if (connp == ipst->ips_ip_g_mrouter)
4200 		(void) ip_mrouter_done(ipst);
4201 
4202 	if (ilg_cleanup_reqd)
4203 		ilg_delete_all(connp);
4204 
4205 	/*
4206 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4207 	 * callers from write side can't be there now because close
4208 	 * is in progress. The only other caller is ipcl_walk
4209 	 * which checks for the condemned flag.
4210 	 */
4211 	mutex_enter(&connp->conn_lock);
4212 	connp->conn_state_flags |= CONN_CONDEMNED;
4213 	while (connp->conn_ref != 1)
4214 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4215 	connp->conn_state_flags |= CONN_QUIESCED;
4216 	mutex_exit(&connp->conn_lock);
4217 }
4218 
4219 /* ARGSUSED */
4220 int
4221 ip_close(queue_t *q, int flags)
4222 {
4223 	conn_t		*connp;
4224 
4225 	/*
4226 	 * Call the appropriate delete routine depending on whether this is
4227 	 * a module or device.
4228 	 */
4229 	if (WR(q)->q_next != NULL) {
4230 		/* This is a module close */
4231 		return (ip_modclose((ill_t *)q->q_ptr));
4232 	}
4233 
4234 	connp = q->q_ptr;
4235 	ip_quiesce_conn(connp);
4236 
4237 	qprocsoff(q);
4238 
4239 	/*
4240 	 * Now we are truly single threaded on this stream, and can
4241 	 * delete the things hanging off the connp, and finally the connp.
4242 	 * We removed this connp from the fanout list, it cannot be
4243 	 * accessed thru the fanouts, and we already waited for the
4244 	 * conn_ref to drop to 0. We are already in close, so
4245 	 * there cannot be any other thread from the top. qprocsoff
4246 	 * has completed, and service has completed or won't run in
4247 	 * future.
4248 	 */
4249 	ASSERT(connp->conn_ref == 1);
4250 
4251 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4252 
4253 	connp->conn_ref--;
4254 	ipcl_conn_destroy(connp);
4255 
4256 	q->q_ptr = WR(q)->q_ptr = NULL;
4257 	return (0);
4258 }
4259 
4260 /*
4261  * Wapper around putnext() so that ip_rts_request can merely use
4262  * conn_recv.
4263  */
4264 /*ARGSUSED2*/
4265 static void
4266 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4267 {
4268 	conn_t *connp = (conn_t *)arg1;
4269 
4270 	putnext(connp->conn_rq, mp);
4271 }
4272 
4273 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4274 /* ARGSUSED */
4275 static void
4276 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4277 {
4278 	freemsg(mp);
4279 }
4280 
4281 /*
4282  * Called when the module is about to be unloaded
4283  */
4284 void
4285 ip_ddi_destroy(void)
4286 {
4287 	tnet_fini();
4288 
4289 	icmp_ddi_g_destroy();
4290 	rts_ddi_g_destroy();
4291 	udp_ddi_g_destroy();
4292 	sctp_ddi_g_destroy();
4293 	tcp_ddi_g_destroy();
4294 	ilb_ddi_g_destroy();
4295 	dce_g_destroy();
4296 	ipsec_policy_g_destroy();
4297 	ipcl_g_destroy();
4298 	ip_net_g_destroy();
4299 	ip_ire_g_fini();
4300 	inet_minor_destroy(ip_minor_arena_sa);
4301 #if defined(_LP64)
4302 	inet_minor_destroy(ip_minor_arena_la);
4303 #endif
4304 
4305 #ifdef DEBUG
4306 	list_destroy(&ip_thread_list);
4307 	rw_destroy(&ip_thread_rwlock);
4308 	tsd_destroy(&ip_thread_data);
4309 #endif
4310 
4311 	netstack_unregister(NS_IP);
4312 }
4313 
4314 /*
4315  * First step in cleanup.
4316  */
4317 /* ARGSUSED */
4318 static void
4319 ip_stack_shutdown(netstackid_t stackid, void *arg)
4320 {
4321 	ip_stack_t *ipst = (ip_stack_t *)arg;
4322 
4323 #ifdef NS_DEBUG
4324 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4325 #endif
4326 
4327 	/*
4328 	 * Perform cleanup for special interfaces (loopback and IPMP).
4329 	 */
4330 	ip_interface_cleanup(ipst);
4331 
4332 	/*
4333 	 * The *_hook_shutdown()s start the process of notifying any
4334 	 * consumers that things are going away.... nothing is destroyed.
4335 	 */
4336 	ipv4_hook_shutdown(ipst);
4337 	ipv6_hook_shutdown(ipst);
4338 	arp_hook_shutdown(ipst);
4339 
4340 	mutex_enter(&ipst->ips_capab_taskq_lock);
4341 	ipst->ips_capab_taskq_quit = B_TRUE;
4342 	cv_signal(&ipst->ips_capab_taskq_cv);
4343 	mutex_exit(&ipst->ips_capab_taskq_lock);
4344 }
4345 
4346 /*
4347  * Free the IP stack instance.
4348  */
4349 static void
4350 ip_stack_fini(netstackid_t stackid, void *arg)
4351 {
4352 	ip_stack_t *ipst = (ip_stack_t *)arg;
4353 	int ret;
4354 
4355 #ifdef NS_DEBUG
4356 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4357 #endif
4358 	/*
4359 	 * At this point, all of the notifications that the events and
4360 	 * protocols are going away have been run, meaning that we can
4361 	 * now set about starting to clean things up.
4362 	 */
4363 	ipobs_fini(ipst);
4364 	ipv4_hook_destroy(ipst);
4365 	ipv6_hook_destroy(ipst);
4366 	arp_hook_destroy(ipst);
4367 	ip_net_destroy(ipst);
4368 
4369 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4370 	cv_destroy(&ipst->ips_capab_taskq_cv);
4371 
4372 	ipmp_destroy(ipst);
4373 	rw_destroy(&ipst->ips_srcid_lock);
4374 
4375 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4376 	ipst->ips_ip_mibkp = NULL;
4377 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4378 	ipst->ips_icmp_mibkp = NULL;
4379 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4380 	ipst->ips_ip_kstat = NULL;
4381 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4382 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4383 	ipst->ips_ip6_kstat = NULL;
4384 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4385 
4386 	kmem_free(ipst->ips_propinfo_tbl,
4387 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4388 	ipst->ips_propinfo_tbl = NULL;
4389 
4390 	dce_stack_destroy(ipst);
4391 	ip_mrouter_stack_destroy(ipst);
4392 
4393 	mutex_destroy(&ipst->ips_ip_mi_lock);
4394 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4395 
4396 	ret = untimeout(ipst->ips_igmp_timeout_id);
4397 	if (ret == -1) {
4398 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4399 	} else {
4400 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4401 		ipst->ips_igmp_timeout_id = 0;
4402 	}
4403 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4404 	if (ret == -1) {
4405 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4406 	} else {
4407 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4408 		ipst->ips_igmp_slowtimeout_id = 0;
4409 	}
4410 	ret = untimeout(ipst->ips_mld_timeout_id);
4411 	if (ret == -1) {
4412 		ASSERT(ipst->ips_mld_timeout_id == 0);
4413 	} else {
4414 		ASSERT(ipst->ips_mld_timeout_id != 0);
4415 		ipst->ips_mld_timeout_id = 0;
4416 	}
4417 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4418 	if (ret == -1) {
4419 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4420 	} else {
4421 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4422 		ipst->ips_mld_slowtimeout_id = 0;
4423 	}
4424 
4425 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4426 	mutex_destroy(&ipst->ips_mld_timer_lock);
4427 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4428 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4429 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4430 	rw_destroy(&ipst->ips_ill_g_lock);
4431 
4432 	ip_ire_fini(ipst);
4433 	ip6_asp_free(ipst);
4434 	conn_drain_fini(ipst);
4435 	ipcl_destroy(ipst);
4436 
4437 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4438 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4439 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4440 	ipst->ips_ndp4 = NULL;
4441 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4442 	ipst->ips_ndp6 = NULL;
4443 
4444 	if (ipst->ips_loopback_ksp != NULL) {
4445 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4446 		ipst->ips_loopback_ksp = NULL;
4447 	}
4448 
4449 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4450 	ipst->ips_phyint_g_list = NULL;
4451 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4452 	ipst->ips_ill_g_heads = NULL;
4453 
4454 	ldi_ident_release(ipst->ips_ldi_ident);
4455 	kmem_free(ipst, sizeof (*ipst));
4456 }
4457 
4458 /*
4459  * This function is called from the TSD destructor, and is used to debug
4460  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4461  * details.
4462  */
4463 static void
4464 ip_thread_exit(void *phash)
4465 {
4466 	th_hash_t *thh = phash;
4467 
4468 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4469 	list_remove(&ip_thread_list, thh);
4470 	rw_exit(&ip_thread_rwlock);
4471 	mod_hash_destroy_hash(thh->thh_hash);
4472 	kmem_free(thh, sizeof (*thh));
4473 }
4474 
4475 /*
4476  * Called when the IP kernel module is loaded into the kernel
4477  */
4478 void
4479 ip_ddi_init(void)
4480 {
4481 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4482 
4483 	/*
4484 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4485 	 * initial devices: ip, ip6, tcp, tcp6.
4486 	 */
4487 	/*
4488 	 * If this is a 64-bit kernel, then create two separate arenas -
4489 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4490 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4491 	 */
4492 	ip_minor_arena_la = NULL;
4493 	ip_minor_arena_sa = NULL;
4494 #if defined(_LP64)
4495 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4496 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4497 		cmn_err(CE_PANIC,
4498 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4499 	}
4500 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4501 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4502 		cmn_err(CE_PANIC,
4503 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4504 	}
4505 #else
4506 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4507 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4508 		cmn_err(CE_PANIC,
4509 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4510 	}
4511 #endif
4512 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4513 
4514 	ipcl_g_init();
4515 	ip_ire_g_init();
4516 	ip_net_g_init();
4517 
4518 #ifdef DEBUG
4519 	tsd_create(&ip_thread_data, ip_thread_exit);
4520 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4521 	list_create(&ip_thread_list, sizeof (th_hash_t),
4522 	    offsetof(th_hash_t, thh_link));
4523 #endif
4524 	ipsec_policy_g_init();
4525 	tcp_ddi_g_init();
4526 	sctp_ddi_g_init();
4527 	dce_g_init();
4528 
4529 	/*
4530 	 * We want to be informed each time a stack is created or
4531 	 * destroyed in the kernel, so we can maintain the
4532 	 * set of udp_stack_t's.
4533 	 */
4534 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4535 	    ip_stack_fini);
4536 
4537 	tnet_init();
4538 
4539 	udp_ddi_g_init();
4540 	rts_ddi_g_init();
4541 	icmp_ddi_g_init();
4542 	ilb_ddi_g_init();
4543 }
4544 
4545 /*
4546  * Initialize the IP stack instance.
4547  */
4548 static void *
4549 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4550 {
4551 	ip_stack_t	*ipst;
4552 	size_t		arrsz;
4553 	major_t		major;
4554 
4555 #ifdef NS_DEBUG
4556 	printf("ip_stack_init(stack %d)\n", stackid);
4557 #endif
4558 
4559 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4560 	ipst->ips_netstack = ns;
4561 
4562 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4563 	    KM_SLEEP);
4564 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4565 	    KM_SLEEP);
4566 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4567 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4568 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4569 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4570 
4571 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4572 	ipst->ips_igmp_deferred_next = INFINITY;
4573 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4574 	ipst->ips_mld_deferred_next = INFINITY;
4575 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4576 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4577 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4578 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4579 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4580 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4581 
4582 	ipcl_init(ipst);
4583 	ip_ire_init(ipst);
4584 	ip6_asp_init(ipst);
4585 	ipif_init(ipst);
4586 	conn_drain_init(ipst);
4587 	ip_mrouter_stack_init(ipst);
4588 	dce_stack_init(ipst);
4589 
4590 	ipst->ips_ip_multirt_log_interval = 1000;
4591 
4592 	ipst->ips_ill_index = 1;
4593 
4594 	ipst->ips_saved_ip_forwarding = -1;
4595 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
4596 
4597 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4598 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4599 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4600 
4601 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4602 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4603 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4604 	ipst->ips_ip6_kstat =
4605 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4606 
4607 	ipst->ips_ip_src_id = 1;
4608 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4609 
4610 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4611 
4612 	ip_net_init(ipst, ns);
4613 	ipv4_hook_init(ipst);
4614 	ipv6_hook_init(ipst);
4615 	arp_hook_init(ipst);
4616 	ipmp_init(ipst);
4617 	ipobs_init(ipst);
4618 
4619 	/*
4620 	 * Create the taskq dispatcher thread and initialize related stuff.
4621 	 */
4622 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4623 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4624 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4625 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4626 
4627 	major = mod_name_to_major(INET_NAME);
4628 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4629 	return (ipst);
4630 }
4631 
4632 /*
4633  * Allocate and initialize a DLPI template of the specified length.  (May be
4634  * called as writer.)
4635  */
4636 mblk_t *
4637 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4638 {
4639 	mblk_t	*mp;
4640 
4641 	mp = allocb(len, BPRI_MED);
4642 	if (!mp)
4643 		return (NULL);
4644 
4645 	/*
4646 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4647 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4648 	 * that other DLPI are M_PROTO.
4649 	 */
4650 	if (prim == DL_INFO_REQ) {
4651 		mp->b_datap->db_type = M_PCPROTO;
4652 	} else {
4653 		mp->b_datap->db_type = M_PROTO;
4654 	}
4655 
4656 	mp->b_wptr = mp->b_rptr + len;
4657 	bzero(mp->b_rptr, len);
4658 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4659 	return (mp);
4660 }
4661 
4662 /*
4663  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4664  */
4665 mblk_t *
4666 ip_dlnotify_alloc(uint_t notification, uint_t data)
4667 {
4668 	dl_notify_ind_t	*notifyp;
4669 	mblk_t		*mp;
4670 
4671 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4672 		return (NULL);
4673 
4674 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4675 	notifyp->dl_notification = notification;
4676 	notifyp->dl_data = data;
4677 	return (mp);
4678 }
4679 
4680 /*
4681  * Debug formatting routine.  Returns a character string representation of the
4682  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4683  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4684  *
4685  * Once the ndd table-printing interfaces are removed, this can be changed to
4686  * standard dotted-decimal form.
4687  */
4688 char *
4689 ip_dot_addr(ipaddr_t addr, char *buf)
4690 {
4691 	uint8_t *ap = (uint8_t *)&addr;
4692 
4693 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4694 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4695 	return (buf);
4696 }
4697 
4698 /*
4699  * Write the given MAC address as a printable string in the usual colon-
4700  * separated format.
4701  */
4702 const char *
4703 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4704 {
4705 	char *bp;
4706 
4707 	if (alen == 0 || buflen < 4)
4708 		return ("?");
4709 	bp = buf;
4710 	for (;;) {
4711 		/*
4712 		 * If there are more MAC address bytes available, but we won't
4713 		 * have any room to print them, then add "..." to the string
4714 		 * instead.  See below for the 'magic number' explanation.
4715 		 */
4716 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4717 			(void) strcpy(bp, "...");
4718 			break;
4719 		}
4720 		(void) sprintf(bp, "%02x", *addr++);
4721 		bp += 2;
4722 		if (--alen == 0)
4723 			break;
4724 		*bp++ = ':';
4725 		buflen -= 3;
4726 		/*
4727 		 * At this point, based on the first 'if' statement above,
4728 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4729 		 * buflen >= 4.  The first case leaves room for the final "xx"
4730 		 * number and trailing NUL byte.  The second leaves room for at
4731 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4732 		 * that statement.
4733 		 */
4734 	}
4735 	return (buf);
4736 }
4737 
4738 /*
4739  * Called when it is conceptually a ULP that would sent the packet
4740  * e.g., port unreachable and protocol unreachable. Check that the packet
4741  * would have passed the IPsec global policy before sending the error.
4742  *
4743  * Send an ICMP error after patching up the packet appropriately.
4744  * Uses ip_drop_input and bumps the appropriate MIB.
4745  */
4746 void
4747 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4748     ip_recv_attr_t *ira)
4749 {
4750 	ipha_t		*ipha;
4751 	boolean_t	secure;
4752 	ill_t		*ill = ira->ira_ill;
4753 	ip_stack_t	*ipst = ill->ill_ipst;
4754 	netstack_t	*ns = ipst->ips_netstack;
4755 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4756 
4757 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4758 
4759 	/*
4760 	 * We are generating an icmp error for some inbound packet.
4761 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4762 	 * Before we generate an error, check with global policy
4763 	 * to see whether this is allowed to enter the system. As
4764 	 * there is no "conn", we are checking with global policy.
4765 	 */
4766 	ipha = (ipha_t *)mp->b_rptr;
4767 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4768 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4769 		if (mp == NULL)
4770 			return;
4771 	}
4772 
4773 	/* We never send errors for protocols that we do implement */
4774 	if (ira->ira_protocol == IPPROTO_ICMP ||
4775 	    ira->ira_protocol == IPPROTO_IGMP) {
4776 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4777 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4778 		freemsg(mp);
4779 		return;
4780 	}
4781 	/*
4782 	 * Have to correct checksum since
4783 	 * the packet might have been
4784 	 * fragmented and the reassembly code in ip_rput
4785 	 * does not restore the IP checksum.
4786 	 */
4787 	ipha->ipha_hdr_checksum = 0;
4788 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4789 
4790 	switch (icmp_type) {
4791 	case ICMP_DEST_UNREACHABLE:
4792 		switch (icmp_code) {
4793 		case ICMP_PROTOCOL_UNREACHABLE:
4794 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4795 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4796 			break;
4797 		case ICMP_PORT_UNREACHABLE:
4798 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4799 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4800 			break;
4801 		}
4802 
4803 		icmp_unreachable(mp, icmp_code, ira);
4804 		break;
4805 	default:
4806 #ifdef DEBUG
4807 		panic("ip_fanout_send_icmp_v4: wrong type");
4808 		/*NOTREACHED*/
4809 #else
4810 		freemsg(mp);
4811 		break;
4812 #endif
4813 	}
4814 }
4815 
4816 /*
4817  * Used to send an ICMP error message when a packet is received for
4818  * a protocol that is not supported. The mblk passed as argument
4819  * is consumed by this function.
4820  */
4821 void
4822 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4823 {
4824 	ipha_t		*ipha;
4825 
4826 	ipha = (ipha_t *)mp->b_rptr;
4827 	if (ira->ira_flags & IRAF_IS_IPV4) {
4828 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4829 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4830 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4831 	} else {
4832 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4833 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4834 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4835 	}
4836 }
4837 
4838 /*
4839  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4840  * Handles IPv4 and IPv6.
4841  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4842  * Caller is responsible for dropping references to the conn.
4843  */
4844 void
4845 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4846     ip_recv_attr_t *ira)
4847 {
4848 	ill_t		*ill = ira->ira_ill;
4849 	ip_stack_t	*ipst = ill->ill_ipst;
4850 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4851 	boolean_t	secure;
4852 	uint_t		protocol = ira->ira_protocol;
4853 	iaflags_t	iraflags = ira->ira_flags;
4854 	queue_t		*rq;
4855 
4856 	secure = iraflags & IRAF_IPSEC_SECURE;
4857 
4858 	rq = connp->conn_rq;
4859 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4860 		switch (protocol) {
4861 		case IPPROTO_ICMPV6:
4862 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4863 			break;
4864 		case IPPROTO_ICMP:
4865 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4866 			break;
4867 		default:
4868 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4869 			break;
4870 		}
4871 		freemsg(mp);
4872 		return;
4873 	}
4874 
4875 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4876 
4877 	if (((iraflags & IRAF_IS_IPV4) ?
4878 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4879 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4880 	    secure) {
4881 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4882 		    ip6h, ira);
4883 		if (mp == NULL) {
4884 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4885 			/* Note that mp is NULL */
4886 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4887 			return;
4888 		}
4889 	}
4890 
4891 	if (iraflags & IRAF_ICMP_ERROR) {
4892 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4893 	} else {
4894 		ill_t *rill = ira->ira_rill;
4895 
4896 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4897 		ira->ira_ill = ira->ira_rill = NULL;
4898 		/* Send it upstream */
4899 		(connp->conn_recv)(connp, mp, NULL, ira);
4900 		ira->ira_ill = ill;
4901 		ira->ira_rill = rill;
4902 	}
4903 }
4904 
4905 /*
4906  * Handle protocols with which IP is less intimate.  There
4907  * can be more than one stream bound to a particular
4908  * protocol.  When this is the case, normally each one gets a copy
4909  * of any incoming packets.
4910  *
4911  * IPsec NOTE :
4912  *
4913  * Don't allow a secure packet going up a non-secure connection.
4914  * We don't allow this because
4915  *
4916  * 1) Reply might go out in clear which will be dropped at
4917  *    the sending side.
4918  * 2) If the reply goes out in clear it will give the
4919  *    adversary enough information for getting the key in
4920  *    most of the cases.
4921  *
4922  * Moreover getting a secure packet when we expect clear
4923  * implies that SA's were added without checking for
4924  * policy on both ends. This should not happen once ISAKMP
4925  * is used to negotiate SAs as SAs will be added only after
4926  * verifying the policy.
4927  *
4928  * Zones notes:
4929  * Earlier in ip_input on a system with multiple shared-IP zones we
4930  * duplicate the multicast and broadcast packets and send them up
4931  * with each explicit zoneid that exists on that ill.
4932  * This means that here we can match the zoneid with SO_ALLZONES being special.
4933  */
4934 void
4935 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4936 {
4937 	mblk_t		*mp1;
4938 	ipaddr_t	laddr;
4939 	conn_t		*connp, *first_connp, *next_connp;
4940 	connf_t		*connfp;
4941 	ill_t		*ill = ira->ira_ill;
4942 	ip_stack_t	*ipst = ill->ill_ipst;
4943 
4944 	laddr = ipha->ipha_dst;
4945 
4946 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4947 	mutex_enter(&connfp->connf_lock);
4948 	connp = connfp->connf_head;
4949 	for (connp = connfp->connf_head; connp != NULL;
4950 	    connp = connp->conn_next) {
4951 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4952 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4953 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4954 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4955 			break;
4956 		}
4957 	}
4958 
4959 	if (connp == NULL) {
4960 		/*
4961 		 * No one bound to these addresses.  Is
4962 		 * there a client that wants all
4963 		 * unclaimed datagrams?
4964 		 */
4965 		mutex_exit(&connfp->connf_lock);
4966 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4967 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4968 		return;
4969 	}
4970 
4971 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
4972 
4973 	CONN_INC_REF(connp);
4974 	first_connp = connp;
4975 	connp = connp->conn_next;
4976 
4977 	for (;;) {
4978 		while (connp != NULL) {
4979 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4980 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4981 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4982 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
4983 			    ira, connp)))
4984 				break;
4985 			connp = connp->conn_next;
4986 		}
4987 
4988 		if (connp == NULL) {
4989 			/* No more interested clients */
4990 			connp = first_connp;
4991 			break;
4992 		}
4993 		if (((mp1 = dupmsg(mp)) == NULL) &&
4994 		    ((mp1 = copymsg(mp)) == NULL)) {
4995 			/* Memory allocation failed */
4996 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4997 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4998 			connp = first_connp;
4999 			break;
5000 		}
5001 
5002 		CONN_INC_REF(connp);
5003 		mutex_exit(&connfp->connf_lock);
5004 
5005 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5006 		    ira);
5007 
5008 		mutex_enter(&connfp->connf_lock);
5009 		/* Follow the next pointer before releasing the conn. */
5010 		next_connp = connp->conn_next;
5011 		CONN_DEC_REF(connp);
5012 		connp = next_connp;
5013 	}
5014 
5015 	/* Last one.  Send it upstream. */
5016 	mutex_exit(&connfp->connf_lock);
5017 
5018 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5019 
5020 	CONN_DEC_REF(connp);
5021 }
5022 
5023 /*
5024  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5025  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5026  * is not consumed.
5027  *
5028  * One of three things can happen, all of which affect the passed-in mblk:
5029  *
5030  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5031  *
5032  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5033  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5034  *
5035  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5036  */
5037 mblk_t *
5038 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5039 {
5040 	int shift, plen, iph_len;
5041 	ipha_t *ipha;
5042 	udpha_t *udpha;
5043 	uint32_t *spi;
5044 	uint32_t esp_ports;
5045 	uint8_t *orptr;
5046 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5047 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5048 
5049 	ipha = (ipha_t *)mp->b_rptr;
5050 	iph_len = ira->ira_ip_hdr_length;
5051 	plen = ira->ira_pktlen;
5052 
5053 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5054 		/*
5055 		 * Most likely a keepalive for the benefit of an intervening
5056 		 * NAT.  These aren't for us, per se, so drop it.
5057 		 *
5058 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5059 		 * byte packets (keepalives are 1-byte), but we'll drop them
5060 		 * also.
5061 		 */
5062 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5063 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5064 		return (NULL);
5065 	}
5066 
5067 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5068 		/* might as well pull it all up - it might be ESP. */
5069 		if (!pullupmsg(mp, -1)) {
5070 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5071 			    DROPPER(ipss, ipds_esp_nomem),
5072 			    &ipss->ipsec_dropper);
5073 			return (NULL);
5074 		}
5075 
5076 		ipha = (ipha_t *)mp->b_rptr;
5077 	}
5078 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5079 	if (*spi == 0) {
5080 		/* UDP packet - remove 0-spi. */
5081 		shift = sizeof (uint32_t);
5082 	} else {
5083 		/* ESP-in-UDP packet - reduce to ESP. */
5084 		ipha->ipha_protocol = IPPROTO_ESP;
5085 		shift = sizeof (udpha_t);
5086 	}
5087 
5088 	/* Fix IP header */
5089 	ira->ira_pktlen = (plen - shift);
5090 	ipha->ipha_length = htons(ira->ira_pktlen);
5091 	ipha->ipha_hdr_checksum = 0;
5092 
5093 	orptr = mp->b_rptr;
5094 	mp->b_rptr += shift;
5095 
5096 	udpha = (udpha_t *)(orptr + iph_len);
5097 	if (*spi == 0) {
5098 		ASSERT((uint8_t *)ipha == orptr);
5099 		udpha->uha_length = htons(plen - shift - iph_len);
5100 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5101 		esp_ports = 0;
5102 	} else {
5103 		esp_ports = *((uint32_t *)udpha);
5104 		ASSERT(esp_ports != 0);
5105 	}
5106 	ovbcopy(orptr, orptr + shift, iph_len);
5107 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5108 		ipha = (ipha_t *)(orptr + shift);
5109 
5110 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5111 		ira->ira_esp_udp_ports = esp_ports;
5112 		ip_fanout_v4(mp, ipha, ira);
5113 		return (NULL);
5114 	}
5115 	return (mp);
5116 }
5117 
5118 /*
5119  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5120  * Handles IPv4 and IPv6.
5121  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5122  * Caller is responsible for dropping references to the conn.
5123  */
5124 void
5125 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5126     ip_recv_attr_t *ira)
5127 {
5128 	ill_t		*ill = ira->ira_ill;
5129 	ip_stack_t	*ipst = ill->ill_ipst;
5130 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5131 	boolean_t	secure;
5132 	iaflags_t	iraflags = ira->ira_flags;
5133 
5134 	secure = iraflags & IRAF_IPSEC_SECURE;
5135 
5136 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5137 	    !canputnext(connp->conn_rq)) {
5138 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5139 		freemsg(mp);
5140 		return;
5141 	}
5142 
5143 	if (((iraflags & IRAF_IS_IPV4) ?
5144 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5145 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5146 	    secure) {
5147 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5148 		    ip6h, ira);
5149 		if (mp == NULL) {
5150 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5151 			/* Note that mp is NULL */
5152 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5153 			return;
5154 		}
5155 	}
5156 
5157 	/*
5158 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5159 	 * check. Only ip_fanout_v4 has that check.
5160 	 */
5161 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5162 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5163 	} else {
5164 		ill_t *rill = ira->ira_rill;
5165 
5166 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5167 		ira->ira_ill = ira->ira_rill = NULL;
5168 		/* Send it upstream */
5169 		(connp->conn_recv)(connp, mp, NULL, ira);
5170 		ira->ira_ill = ill;
5171 		ira->ira_rill = rill;
5172 	}
5173 }
5174 
5175 /*
5176  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5177  * (Unicast fanout is handled in ip_input_v4.)
5178  *
5179  * If SO_REUSEADDR is set all multicast and broadcast packets
5180  * will be delivered to all conns bound to the same port.
5181  *
5182  * If there is at least one matching AF_INET receiver, then we will
5183  * ignore any AF_INET6 receivers.
5184  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5185  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5186  * packets.
5187  *
5188  * Zones notes:
5189  * Earlier in ip_input on a system with multiple shared-IP zones we
5190  * duplicate the multicast and broadcast packets and send them up
5191  * with each explicit zoneid that exists on that ill.
5192  * This means that here we can match the zoneid with SO_ALLZONES being special.
5193  */
5194 void
5195 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5196     ip_recv_attr_t *ira)
5197 {
5198 	ipaddr_t	laddr;
5199 	in6_addr_t	v6faddr;
5200 	conn_t		*connp;
5201 	connf_t		*connfp;
5202 	ipaddr_t	faddr;
5203 	ill_t		*ill = ira->ira_ill;
5204 	ip_stack_t	*ipst = ill->ill_ipst;
5205 
5206 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5207 
5208 	laddr = ipha->ipha_dst;
5209 	faddr = ipha->ipha_src;
5210 
5211 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5212 	mutex_enter(&connfp->connf_lock);
5213 	connp = connfp->connf_head;
5214 
5215 	/*
5216 	 * If SO_REUSEADDR has been set on the first we send the
5217 	 * packet to all clients that have joined the group and
5218 	 * match the port.
5219 	 */
5220 	while (connp != NULL) {
5221 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5222 		    conn_wantpacket(connp, ira, ipha) &&
5223 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5224 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5225 			break;
5226 		connp = connp->conn_next;
5227 	}
5228 
5229 	if (connp == NULL)
5230 		goto notfound;
5231 
5232 	CONN_INC_REF(connp);
5233 
5234 	if (connp->conn_reuseaddr) {
5235 		conn_t		*first_connp = connp;
5236 		conn_t		*next_connp;
5237 		mblk_t		*mp1;
5238 
5239 		connp = connp->conn_next;
5240 		for (;;) {
5241 			while (connp != NULL) {
5242 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5243 				    fport, faddr) &&
5244 				    conn_wantpacket(connp, ira, ipha) &&
5245 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5246 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5247 				    ira, connp)))
5248 					break;
5249 				connp = connp->conn_next;
5250 			}
5251 			if (connp == NULL) {
5252 				/* No more interested clients */
5253 				connp = first_connp;
5254 				break;
5255 			}
5256 			if (((mp1 = dupmsg(mp)) == NULL) &&
5257 			    ((mp1 = copymsg(mp)) == NULL)) {
5258 				/* Memory allocation failed */
5259 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5260 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5261 				connp = first_connp;
5262 				break;
5263 			}
5264 			CONN_INC_REF(connp);
5265 			mutex_exit(&connfp->connf_lock);
5266 
5267 			IP_STAT(ipst, ip_udp_fanmb);
5268 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5269 			    NULL, ira);
5270 			mutex_enter(&connfp->connf_lock);
5271 			/* Follow the next pointer before releasing the conn */
5272 			next_connp = connp->conn_next;
5273 			CONN_DEC_REF(connp);
5274 			connp = next_connp;
5275 		}
5276 	}
5277 
5278 	/* Last one.  Send it upstream. */
5279 	mutex_exit(&connfp->connf_lock);
5280 	IP_STAT(ipst, ip_udp_fanmb);
5281 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5282 	CONN_DEC_REF(connp);
5283 	return;
5284 
5285 notfound:
5286 	mutex_exit(&connfp->connf_lock);
5287 	/*
5288 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5289 	 * have already been matched above, since they live in the IPv4
5290 	 * fanout tables. This implies we only need to
5291 	 * check for IPv6 in6addr_any endpoints here.
5292 	 * Thus we compare using ipv6_all_zeros instead of the destination
5293 	 * address, except for the multicast group membership lookup which
5294 	 * uses the IPv4 destination.
5295 	 */
5296 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5297 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5298 	mutex_enter(&connfp->connf_lock);
5299 	connp = connfp->connf_head;
5300 	/*
5301 	 * IPv4 multicast packet being delivered to an AF_INET6
5302 	 * in6addr_any endpoint.
5303 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5304 	 * and not conn_wantpacket_v6() since any multicast membership is
5305 	 * for an IPv4-mapped multicast address.
5306 	 */
5307 	while (connp != NULL) {
5308 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5309 		    fport, v6faddr) &&
5310 		    conn_wantpacket(connp, ira, ipha) &&
5311 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5312 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5313 			break;
5314 		connp = connp->conn_next;
5315 	}
5316 
5317 	if (connp == NULL) {
5318 		/*
5319 		 * No one bound to this port.  Is
5320 		 * there a client that wants all
5321 		 * unclaimed datagrams?
5322 		 */
5323 		mutex_exit(&connfp->connf_lock);
5324 
5325 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5326 		    NULL) {
5327 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5328 			ip_fanout_proto_v4(mp, ipha, ira);
5329 		} else {
5330 			/*
5331 			 * We used to attempt to send an icmp error here, but
5332 			 * since this is known to be a multicast packet
5333 			 * and we don't send icmp errors in response to
5334 			 * multicast, just drop the packet and give up sooner.
5335 			 */
5336 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5337 			freemsg(mp);
5338 		}
5339 		return;
5340 	}
5341 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5342 
5343 	/*
5344 	 * If SO_REUSEADDR has been set on the first we send the
5345 	 * packet to all clients that have joined the group and
5346 	 * match the port.
5347 	 */
5348 	if (connp->conn_reuseaddr) {
5349 		conn_t		*first_connp = connp;
5350 		conn_t		*next_connp;
5351 		mblk_t		*mp1;
5352 
5353 		CONN_INC_REF(connp);
5354 		connp = connp->conn_next;
5355 		for (;;) {
5356 			while (connp != NULL) {
5357 				if (IPCL_UDP_MATCH_V6(connp, lport,
5358 				    ipv6_all_zeros, fport, v6faddr) &&
5359 				    conn_wantpacket(connp, ira, ipha) &&
5360 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5361 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5362 				    ira, connp)))
5363 					break;
5364 				connp = connp->conn_next;
5365 			}
5366 			if (connp == NULL) {
5367 				/* No more interested clients */
5368 				connp = first_connp;
5369 				break;
5370 			}
5371 			if (((mp1 = dupmsg(mp)) == NULL) &&
5372 			    ((mp1 = copymsg(mp)) == NULL)) {
5373 				/* Memory allocation failed */
5374 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5375 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5376 				connp = first_connp;
5377 				break;
5378 			}
5379 			CONN_INC_REF(connp);
5380 			mutex_exit(&connfp->connf_lock);
5381 
5382 			IP_STAT(ipst, ip_udp_fanmb);
5383 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5384 			    NULL, ira);
5385 			mutex_enter(&connfp->connf_lock);
5386 			/* Follow the next pointer before releasing the conn */
5387 			next_connp = connp->conn_next;
5388 			CONN_DEC_REF(connp);
5389 			connp = next_connp;
5390 		}
5391 	}
5392 
5393 	/* Last one.  Send it upstream. */
5394 	mutex_exit(&connfp->connf_lock);
5395 	IP_STAT(ipst, ip_udp_fanmb);
5396 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5397 	CONN_DEC_REF(connp);
5398 }
5399 
5400 /*
5401  * Split an incoming packet's IPv4 options into the label and the other options.
5402  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5403  * clearing out any leftover label or options.
5404  * Otherwise it just makes ipp point into the packet.
5405  *
5406  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5407  */
5408 int
5409 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5410 {
5411 	uchar_t		*opt;
5412 	uint32_t	totallen;
5413 	uint32_t	optval;
5414 	uint32_t	optlen;
5415 
5416 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5417 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5418 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5419 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5420 
5421 	/*
5422 	 * Get length (in 4 byte octets) of IP header options.
5423 	 */
5424 	totallen = ipha->ipha_version_and_hdr_length -
5425 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5426 
5427 	if (totallen == 0) {
5428 		if (!allocate)
5429 			return (0);
5430 
5431 		/* Clear out anything from a previous packet */
5432 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5433 			kmem_free(ipp->ipp_ipv4_options,
5434 			    ipp->ipp_ipv4_options_len);
5435 			ipp->ipp_ipv4_options = NULL;
5436 			ipp->ipp_ipv4_options_len = 0;
5437 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5438 		}
5439 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5440 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5441 			ipp->ipp_label_v4 = NULL;
5442 			ipp->ipp_label_len_v4 = 0;
5443 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5444 		}
5445 		return (0);
5446 	}
5447 
5448 	totallen <<= 2;
5449 	opt = (uchar_t *)&ipha[1];
5450 	if (!is_system_labeled()) {
5451 
5452 	copyall:
5453 		if (!allocate) {
5454 			if (totallen != 0) {
5455 				ipp->ipp_ipv4_options = opt;
5456 				ipp->ipp_ipv4_options_len = totallen;
5457 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5458 			}
5459 			return (0);
5460 		}
5461 		/* Just copy all of options */
5462 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5463 			if (totallen == ipp->ipp_ipv4_options_len) {
5464 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5465 				return (0);
5466 			}
5467 			kmem_free(ipp->ipp_ipv4_options,
5468 			    ipp->ipp_ipv4_options_len);
5469 			ipp->ipp_ipv4_options = NULL;
5470 			ipp->ipp_ipv4_options_len = 0;
5471 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5472 		}
5473 		if (totallen == 0)
5474 			return (0);
5475 
5476 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5477 		if (ipp->ipp_ipv4_options == NULL)
5478 			return (ENOMEM);
5479 		ipp->ipp_ipv4_options_len = totallen;
5480 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5481 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5482 		return (0);
5483 	}
5484 
5485 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5486 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5487 		ipp->ipp_label_v4 = NULL;
5488 		ipp->ipp_label_len_v4 = 0;
5489 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5490 	}
5491 
5492 	/*
5493 	 * Search for CIPSO option.
5494 	 * We assume CIPSO is first in options if it is present.
5495 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5496 	 * prior to the CIPSO option.
5497 	 */
5498 	while (totallen != 0) {
5499 		switch (optval = opt[IPOPT_OPTVAL]) {
5500 		case IPOPT_EOL:
5501 			return (0);
5502 		case IPOPT_NOP:
5503 			optlen = 1;
5504 			break;
5505 		default:
5506 			if (totallen <= IPOPT_OLEN)
5507 				return (EINVAL);
5508 			optlen = opt[IPOPT_OLEN];
5509 			if (optlen < 2)
5510 				return (EINVAL);
5511 		}
5512 		if (optlen > totallen)
5513 			return (EINVAL);
5514 
5515 		switch (optval) {
5516 		case IPOPT_COMSEC:
5517 			if (!allocate) {
5518 				ipp->ipp_label_v4 = opt;
5519 				ipp->ipp_label_len_v4 = optlen;
5520 				ipp->ipp_fields |= IPPF_LABEL_V4;
5521 			} else {
5522 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5523 				    KM_NOSLEEP);
5524 				if (ipp->ipp_label_v4 == NULL)
5525 					return (ENOMEM);
5526 				ipp->ipp_label_len_v4 = optlen;
5527 				ipp->ipp_fields |= IPPF_LABEL_V4;
5528 				bcopy(opt, ipp->ipp_label_v4, optlen);
5529 			}
5530 			totallen -= optlen;
5531 			opt += optlen;
5532 
5533 			/* Skip padding bytes until we get to a multiple of 4 */
5534 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5535 				totallen--;
5536 				opt++;
5537 			}
5538 			/* Remaining as ipp_ipv4_options */
5539 			goto copyall;
5540 		}
5541 		totallen -= optlen;
5542 		opt += optlen;
5543 	}
5544 	/* No CIPSO found; return everything as ipp_ipv4_options */
5545 	totallen = ipha->ipha_version_and_hdr_length -
5546 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5547 	totallen <<= 2;
5548 	opt = (uchar_t *)&ipha[1];
5549 	goto copyall;
5550 }
5551 
5552 /*
5553  * Efficient versions of lookup for an IRE when we only
5554  * match the address.
5555  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5556  * Does not handle multicast addresses.
5557  */
5558 uint_t
5559 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5560 {
5561 	ire_t *ire;
5562 	uint_t result;
5563 
5564 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5565 	ASSERT(ire != NULL);
5566 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5567 		result = IRE_NOROUTE;
5568 	else
5569 		result = ire->ire_type;
5570 	ire_refrele(ire);
5571 	return (result);
5572 }
5573 
5574 /*
5575  * Efficient versions of lookup for an IRE when we only
5576  * match the address.
5577  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5578  * Does not handle multicast addresses.
5579  */
5580 uint_t
5581 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5582 {
5583 	ire_t *ire;
5584 	uint_t result;
5585 
5586 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5587 	ASSERT(ire != NULL);
5588 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5589 		result = IRE_NOROUTE;
5590 	else
5591 		result = ire->ire_type;
5592 	ire_refrele(ire);
5593 	return (result);
5594 }
5595 
5596 /*
5597  * Nobody should be sending
5598  * packets up this stream
5599  */
5600 static void
5601 ip_lrput(queue_t *q, mblk_t *mp)
5602 {
5603 	switch (mp->b_datap->db_type) {
5604 	case M_FLUSH:
5605 		/* Turn around */
5606 		if (*mp->b_rptr & FLUSHW) {
5607 			*mp->b_rptr &= ~FLUSHR;
5608 			qreply(q, mp);
5609 			return;
5610 		}
5611 		break;
5612 	}
5613 	freemsg(mp);
5614 }
5615 
5616 /* Nobody should be sending packets down this stream */
5617 /* ARGSUSED */
5618 void
5619 ip_lwput(queue_t *q, mblk_t *mp)
5620 {
5621 	freemsg(mp);
5622 }
5623 
5624 /*
5625  * Move the first hop in any source route to ipha_dst and remove that part of
5626  * the source route.  Called by other protocols.  Errors in option formatting
5627  * are ignored - will be handled by ip_output_options. Return the final
5628  * destination (either ipha_dst or the last entry in a source route.)
5629  */
5630 ipaddr_t
5631 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5632 {
5633 	ipoptp_t	opts;
5634 	uchar_t		*opt;
5635 	uint8_t		optval;
5636 	uint8_t		optlen;
5637 	ipaddr_t	dst;
5638 	int		i;
5639 	ip_stack_t	*ipst = ns->netstack_ip;
5640 
5641 	ip2dbg(("ip_massage_options\n"));
5642 	dst = ipha->ipha_dst;
5643 	for (optval = ipoptp_first(&opts, ipha);
5644 	    optval != IPOPT_EOL;
5645 	    optval = ipoptp_next(&opts)) {
5646 		opt = opts.ipoptp_cur;
5647 		switch (optval) {
5648 			uint8_t off;
5649 		case IPOPT_SSRR:
5650 		case IPOPT_LSRR:
5651 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5652 				ip1dbg(("ip_massage_options: bad src route\n"));
5653 				break;
5654 			}
5655 			optlen = opts.ipoptp_len;
5656 			off = opt[IPOPT_OFFSET];
5657 			off--;
5658 		redo_srr:
5659 			if (optlen < IP_ADDR_LEN ||
5660 			    off > optlen - IP_ADDR_LEN) {
5661 				/* End of source route */
5662 				ip1dbg(("ip_massage_options: end of SR\n"));
5663 				break;
5664 			}
5665 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5666 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5667 			    ntohl(dst)));
5668 			/*
5669 			 * Check if our address is present more than
5670 			 * once as consecutive hops in source route.
5671 			 * XXX verify per-interface ip_forwarding
5672 			 * for source route?
5673 			 */
5674 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5675 				off += IP_ADDR_LEN;
5676 				goto redo_srr;
5677 			}
5678 			if (dst == htonl(INADDR_LOOPBACK)) {
5679 				ip1dbg(("ip_massage_options: loopback addr in "
5680 				    "source route!\n"));
5681 				break;
5682 			}
5683 			/*
5684 			 * Update ipha_dst to be the first hop and remove the
5685 			 * first hop from the source route (by overwriting
5686 			 * part of the option with NOP options).
5687 			 */
5688 			ipha->ipha_dst = dst;
5689 			/* Put the last entry in dst */
5690 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5691 			    3;
5692 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5693 
5694 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5695 			    ntohl(dst)));
5696 			/* Move down and overwrite */
5697 			opt[IP_ADDR_LEN] = opt[0];
5698 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5699 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5700 			for (i = 0; i < IP_ADDR_LEN; i++)
5701 				opt[i] = IPOPT_NOP;
5702 			break;
5703 		}
5704 	}
5705 	return (dst);
5706 }
5707 
5708 /*
5709  * Return the network mask
5710  * associated with the specified address.
5711  */
5712 ipaddr_t
5713 ip_net_mask(ipaddr_t addr)
5714 {
5715 	uchar_t	*up = (uchar_t *)&addr;
5716 	ipaddr_t mask = 0;
5717 	uchar_t	*maskp = (uchar_t *)&mask;
5718 
5719 #if defined(__i386) || defined(__amd64)
5720 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5721 #endif
5722 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5723 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5724 #endif
5725 	if (CLASSD(addr)) {
5726 		maskp[0] = 0xF0;
5727 		return (mask);
5728 	}
5729 
5730 	/* We assume Class E default netmask to be 32 */
5731 	if (CLASSE(addr))
5732 		return (0xffffffffU);
5733 
5734 	if (addr == 0)
5735 		return (0);
5736 	maskp[0] = 0xFF;
5737 	if ((up[0] & 0x80) == 0)
5738 		return (mask);
5739 
5740 	maskp[1] = 0xFF;
5741 	if ((up[0] & 0xC0) == 0x80)
5742 		return (mask);
5743 
5744 	maskp[2] = 0xFF;
5745 	if ((up[0] & 0xE0) == 0xC0)
5746 		return (mask);
5747 
5748 	/* Otherwise return no mask */
5749 	return ((ipaddr_t)0);
5750 }
5751 
5752 /* Name/Value Table Lookup Routine */
5753 char *
5754 ip_nv_lookup(nv_t *nv, int value)
5755 {
5756 	if (!nv)
5757 		return (NULL);
5758 	for (; nv->nv_name; nv++) {
5759 		if (nv->nv_value == value)
5760 			return (nv->nv_name);
5761 	}
5762 	return ("unknown");
5763 }
5764 
5765 static int
5766 ip_wait_for_info_ack(ill_t *ill)
5767 {
5768 	int err;
5769 
5770 	mutex_enter(&ill->ill_lock);
5771 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5772 		/*
5773 		 * Return value of 0 indicates a pending signal.
5774 		 */
5775 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5776 		if (err == 0) {
5777 			mutex_exit(&ill->ill_lock);
5778 			return (EINTR);
5779 		}
5780 	}
5781 	mutex_exit(&ill->ill_lock);
5782 	/*
5783 	 * ip_rput_other could have set an error  in ill_error on
5784 	 * receipt of M_ERROR.
5785 	 */
5786 	return (ill->ill_error);
5787 }
5788 
5789 /*
5790  * This is a module open, i.e. this is a control stream for access
5791  * to a DLPI device.  We allocate an ill_t as the instance data in
5792  * this case.
5793  */
5794 static int
5795 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5796 {
5797 	ill_t	*ill;
5798 	int	err;
5799 	zoneid_t zoneid;
5800 	netstack_t *ns;
5801 	ip_stack_t *ipst;
5802 
5803 	/*
5804 	 * Prevent unprivileged processes from pushing IP so that
5805 	 * they can't send raw IP.
5806 	 */
5807 	if (secpolicy_net_rawaccess(credp) != 0)
5808 		return (EPERM);
5809 
5810 	ns = netstack_find_by_cred(credp);
5811 	ASSERT(ns != NULL);
5812 	ipst = ns->netstack_ip;
5813 	ASSERT(ipst != NULL);
5814 
5815 	/*
5816 	 * For exclusive stacks we set the zoneid to zero
5817 	 * to make IP operate as if in the global zone.
5818 	 */
5819 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5820 		zoneid = GLOBAL_ZONEID;
5821 	else
5822 		zoneid = crgetzoneid(credp);
5823 
5824 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5825 	q->q_ptr = WR(q)->q_ptr = ill;
5826 	ill->ill_ipst = ipst;
5827 	ill->ill_zoneid = zoneid;
5828 
5829 	/*
5830 	 * ill_init initializes the ill fields and then sends down
5831 	 * down a DL_INFO_REQ after calling qprocson.
5832 	 */
5833 	err = ill_init(q, ill);
5834 
5835 	if (err != 0) {
5836 		mi_free(ill);
5837 		netstack_rele(ipst->ips_netstack);
5838 		q->q_ptr = NULL;
5839 		WR(q)->q_ptr = NULL;
5840 		return (err);
5841 	}
5842 
5843 	/*
5844 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5845 	 *
5846 	 * ill_init initializes the ipsq marking this thread as
5847 	 * writer
5848 	 */
5849 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5850 	err = ip_wait_for_info_ack(ill);
5851 	if (err == 0)
5852 		ill->ill_credp = credp;
5853 	else
5854 		goto fail;
5855 
5856 	crhold(credp);
5857 
5858 	mutex_enter(&ipst->ips_ip_mi_lock);
5859 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5860 	    sflag, credp);
5861 	mutex_exit(&ipst->ips_ip_mi_lock);
5862 fail:
5863 	if (err) {
5864 		(void) ip_close(q, 0);
5865 		return (err);
5866 	}
5867 	return (0);
5868 }
5869 
5870 /* For /dev/ip aka AF_INET open */
5871 int
5872 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5873 {
5874 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5875 }
5876 
5877 /* For /dev/ip6 aka AF_INET6 open */
5878 int
5879 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5880 {
5881 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5882 }
5883 
5884 /* IP open routine. */
5885 int
5886 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5887     boolean_t isv6)
5888 {
5889 	conn_t 		*connp;
5890 	major_t		maj;
5891 	zoneid_t	zoneid;
5892 	netstack_t	*ns;
5893 	ip_stack_t	*ipst;
5894 
5895 	/* Allow reopen. */
5896 	if (q->q_ptr != NULL)
5897 		return (0);
5898 
5899 	if (sflag & MODOPEN) {
5900 		/* This is a module open */
5901 		return (ip_modopen(q, devp, flag, sflag, credp));
5902 	}
5903 
5904 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5905 		/*
5906 		 * Non streams based socket looking for a stream
5907 		 * to access IP
5908 		 */
5909 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5910 		    credp, isv6));
5911 	}
5912 
5913 	ns = netstack_find_by_cred(credp);
5914 	ASSERT(ns != NULL);
5915 	ipst = ns->netstack_ip;
5916 	ASSERT(ipst != NULL);
5917 
5918 	/*
5919 	 * For exclusive stacks we set the zoneid to zero
5920 	 * to make IP operate as if in the global zone.
5921 	 */
5922 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5923 		zoneid = GLOBAL_ZONEID;
5924 	else
5925 		zoneid = crgetzoneid(credp);
5926 
5927 	/*
5928 	 * We are opening as a device. This is an IP client stream, and we
5929 	 * allocate an conn_t as the instance data.
5930 	 */
5931 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5932 
5933 	/*
5934 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5935 	 * done by netstack_find_by_cred()
5936 	 */
5937 	netstack_rele(ipst->ips_netstack);
5938 
5939 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5940 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5941 	connp->conn_ixa->ixa_zoneid = zoneid;
5942 	connp->conn_zoneid = zoneid;
5943 
5944 	connp->conn_rq = q;
5945 	q->q_ptr = WR(q)->q_ptr = connp;
5946 
5947 	/* Minor tells us which /dev entry was opened */
5948 	if (isv6) {
5949 		connp->conn_family = AF_INET6;
5950 		connp->conn_ipversion = IPV6_VERSION;
5951 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5952 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5953 	} else {
5954 		connp->conn_family = AF_INET;
5955 		connp->conn_ipversion = IPV4_VERSION;
5956 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
5957 	}
5958 
5959 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
5960 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
5961 		connp->conn_minor_arena = ip_minor_arena_la;
5962 	} else {
5963 		/*
5964 		 * Either minor numbers in the large arena were exhausted
5965 		 * or a non socket application is doing the open.
5966 		 * Try to allocate from the small arena.
5967 		 */
5968 		if ((connp->conn_dev =
5969 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
5970 			/* CONN_DEC_REF takes care of netstack_rele() */
5971 			q->q_ptr = WR(q)->q_ptr = NULL;
5972 			CONN_DEC_REF(connp);
5973 			return (EBUSY);
5974 		}
5975 		connp->conn_minor_arena = ip_minor_arena_sa;
5976 	}
5977 
5978 	maj = getemajor(*devp);
5979 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
5980 
5981 	/*
5982 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
5983 	 */
5984 	connp->conn_cred = credp;
5985 	connp->conn_cpid = curproc->p_pid;
5986 	/* Cache things in ixa without an extra refhold */
5987 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
5988 	connp->conn_ixa->ixa_cred = connp->conn_cred;
5989 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
5990 	if (is_system_labeled())
5991 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
5992 
5993 	/*
5994 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
5995 	 */
5996 	connp->conn_recv = ip_conn_input;
5997 	connp->conn_recvicmp = ip_conn_input_icmp;
5998 
5999 	crhold(connp->conn_cred);
6000 
6001 	/*
6002 	 * If the caller has the process-wide flag set, then default to MAC
6003 	 * exempt mode.  This allows read-down to unlabeled hosts.
6004 	 */
6005 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6006 		connp->conn_mac_mode = CONN_MAC_AWARE;
6007 
6008 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6009 
6010 	connp->conn_rq = q;
6011 	connp->conn_wq = WR(q);
6012 
6013 	/* Non-zero default values */
6014 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6015 
6016 	/*
6017 	 * Make the conn globally visible to walkers
6018 	 */
6019 	ASSERT(connp->conn_ref == 1);
6020 	mutex_enter(&connp->conn_lock);
6021 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6022 	mutex_exit(&connp->conn_lock);
6023 
6024 	qprocson(q);
6025 
6026 	return (0);
6027 }
6028 
6029 /*
6030  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6031  * all of them are copied to the conn_t. If the req is "zero", the policy is
6032  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6033  * fields.
6034  * We keep only the latest setting of the policy and thus policy setting
6035  * is not incremental/cumulative.
6036  *
6037  * Requests to set policies with multiple alternative actions will
6038  * go through a different API.
6039  */
6040 int
6041 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6042 {
6043 	uint_t ah_req = 0;
6044 	uint_t esp_req = 0;
6045 	uint_t se_req = 0;
6046 	ipsec_act_t *actp = NULL;
6047 	uint_t nact;
6048 	ipsec_policy_head_t *ph;
6049 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6050 	int error = 0;
6051 	netstack_t	*ns = connp->conn_netstack;
6052 	ip_stack_t	*ipst = ns->netstack_ip;
6053 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6054 
6055 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6056 
6057 	/*
6058 	 * The IP_SEC_OPT option does not allow variable length parameters,
6059 	 * hence a request cannot be NULL.
6060 	 */
6061 	if (req == NULL)
6062 		return (EINVAL);
6063 
6064 	ah_req = req->ipsr_ah_req;
6065 	esp_req = req->ipsr_esp_req;
6066 	se_req = req->ipsr_self_encap_req;
6067 
6068 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6069 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6070 		return (EINVAL);
6071 
6072 	/*
6073 	 * Are we dealing with a request to reset the policy (i.e.
6074 	 * zero requests).
6075 	 */
6076 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6077 	    (esp_req & REQ_MASK) == 0 &&
6078 	    (se_req & REQ_MASK) == 0);
6079 
6080 	if (!is_pol_reset) {
6081 		/*
6082 		 * If we couldn't load IPsec, fail with "protocol
6083 		 * not supported".
6084 		 * IPsec may not have been loaded for a request with zero
6085 		 * policies, so we don't fail in this case.
6086 		 */
6087 		mutex_enter(&ipss->ipsec_loader_lock);
6088 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6089 			mutex_exit(&ipss->ipsec_loader_lock);
6090 			return (EPROTONOSUPPORT);
6091 		}
6092 		mutex_exit(&ipss->ipsec_loader_lock);
6093 
6094 		/*
6095 		 * Test for valid requests. Invalid algorithms
6096 		 * need to be tested by IPsec code because new
6097 		 * algorithms can be added dynamically.
6098 		 */
6099 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6100 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6101 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6102 			return (EINVAL);
6103 		}
6104 
6105 		/*
6106 		 * Only privileged users can issue these
6107 		 * requests.
6108 		 */
6109 		if (((ah_req & IPSEC_PREF_NEVER) ||
6110 		    (esp_req & IPSEC_PREF_NEVER) ||
6111 		    (se_req & IPSEC_PREF_NEVER)) &&
6112 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6113 			return (EPERM);
6114 		}
6115 
6116 		/*
6117 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6118 		 * are mutually exclusive.
6119 		 */
6120 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6121 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6122 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6123 			/* Both of them are set */
6124 			return (EINVAL);
6125 		}
6126 	}
6127 
6128 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6129 
6130 	/*
6131 	 * If we have already cached policies in conn_connect(), don't
6132 	 * let them change now. We cache policies for connections
6133 	 * whose src,dst [addr, port] is known.
6134 	 */
6135 	if (connp->conn_policy_cached) {
6136 		return (EINVAL);
6137 	}
6138 
6139 	/*
6140 	 * We have a zero policies, reset the connection policy if already
6141 	 * set. This will cause the connection to inherit the
6142 	 * global policy, if any.
6143 	 */
6144 	if (is_pol_reset) {
6145 		if (connp->conn_policy != NULL) {
6146 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6147 			connp->conn_policy = NULL;
6148 		}
6149 		connp->conn_in_enforce_policy = B_FALSE;
6150 		connp->conn_out_enforce_policy = B_FALSE;
6151 		return (0);
6152 	}
6153 
6154 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6155 	    ipst->ips_netstack);
6156 	if (ph == NULL)
6157 		goto enomem;
6158 
6159 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6160 	if (actp == NULL)
6161 		goto enomem;
6162 
6163 	/*
6164 	 * Always insert IPv4 policy entries, since they can also apply to
6165 	 * ipv6 sockets being used in ipv4-compat mode.
6166 	 */
6167 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6168 	    IPSEC_TYPE_INBOUND, ns))
6169 		goto enomem;
6170 	is_pol_inserted = B_TRUE;
6171 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6172 	    IPSEC_TYPE_OUTBOUND, ns))
6173 		goto enomem;
6174 
6175 	/*
6176 	 * We're looking at a v6 socket, also insert the v6-specific
6177 	 * entries.
6178 	 */
6179 	if (connp->conn_family == AF_INET6) {
6180 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6181 		    IPSEC_TYPE_INBOUND, ns))
6182 			goto enomem;
6183 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6184 		    IPSEC_TYPE_OUTBOUND, ns))
6185 			goto enomem;
6186 	}
6187 
6188 	ipsec_actvec_free(actp, nact);
6189 
6190 	/*
6191 	 * If the requests need security, set enforce_policy.
6192 	 * If the requests are IPSEC_PREF_NEVER, one should
6193 	 * still set conn_out_enforce_policy so that ip_set_destination
6194 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6195 	 * for connections that we don't cache policy in at connect time,
6196 	 * if global policy matches in ip_output_attach_policy, we
6197 	 * don't wrongly inherit global policy. Similarly, we need
6198 	 * to set conn_in_enforce_policy also so that we don't verify
6199 	 * policy wrongly.
6200 	 */
6201 	if ((ah_req & REQ_MASK) != 0 ||
6202 	    (esp_req & REQ_MASK) != 0 ||
6203 	    (se_req & REQ_MASK) != 0) {
6204 		connp->conn_in_enforce_policy = B_TRUE;
6205 		connp->conn_out_enforce_policy = B_TRUE;
6206 	}
6207 
6208 	return (error);
6209 #undef REQ_MASK
6210 
6211 	/*
6212 	 * Common memory-allocation-failure exit path.
6213 	 */
6214 enomem:
6215 	if (actp != NULL)
6216 		ipsec_actvec_free(actp, nact);
6217 	if (is_pol_inserted)
6218 		ipsec_polhead_flush(ph, ns);
6219 	return (ENOMEM);
6220 }
6221 
6222 /*
6223  * Set socket options for joining and leaving multicast groups.
6224  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6225  * The caller has already check that the option name is consistent with
6226  * the address family of the socket.
6227  */
6228 int
6229 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6230     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6231 {
6232 	int		*i1 = (int *)invalp;
6233 	int		error = 0;
6234 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6235 	struct ip_mreq	*v4_mreqp;
6236 	struct ipv6_mreq *v6_mreqp;
6237 	struct group_req *greqp;
6238 	ire_t *ire;
6239 	boolean_t done = B_FALSE;
6240 	ipaddr_t ifaddr;
6241 	in6_addr_t v6group;
6242 	uint_t ifindex;
6243 	boolean_t mcast_opt = B_TRUE;
6244 	mcast_record_t fmode;
6245 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6246 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6247 
6248 	switch (name) {
6249 	case IP_ADD_MEMBERSHIP:
6250 	case IPV6_JOIN_GROUP:
6251 		mcast_opt = B_FALSE;
6252 		/* FALLTHRU */
6253 	case MCAST_JOIN_GROUP:
6254 		fmode = MODE_IS_EXCLUDE;
6255 		optfn = ip_opt_add_group;
6256 		break;
6257 
6258 	case IP_DROP_MEMBERSHIP:
6259 	case IPV6_LEAVE_GROUP:
6260 		mcast_opt = B_FALSE;
6261 		/* FALLTHRU */
6262 	case MCAST_LEAVE_GROUP:
6263 		fmode = MODE_IS_INCLUDE;
6264 		optfn = ip_opt_delete_group;
6265 		break;
6266 	default:
6267 		ASSERT(0);
6268 	}
6269 
6270 	if (mcast_opt) {
6271 		struct sockaddr_in *sin;
6272 		struct sockaddr_in6 *sin6;
6273 
6274 		greqp = (struct group_req *)i1;
6275 		if (greqp->gr_group.ss_family == AF_INET) {
6276 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6277 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6278 		} else {
6279 			if (!inet6)
6280 				return (EINVAL);	/* Not on INET socket */
6281 
6282 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6283 			v6group = sin6->sin6_addr;
6284 		}
6285 		ifaddr = INADDR_ANY;
6286 		ifindex = greqp->gr_interface;
6287 	} else if (inet6) {
6288 		v6_mreqp = (struct ipv6_mreq *)i1;
6289 		v6group = v6_mreqp->ipv6mr_multiaddr;
6290 		ifaddr = INADDR_ANY;
6291 		ifindex = v6_mreqp->ipv6mr_interface;
6292 	} else {
6293 		v4_mreqp = (struct ip_mreq *)i1;
6294 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6295 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6296 		ifindex = 0;
6297 	}
6298 
6299 	/*
6300 	 * In the multirouting case, we need to replicate
6301 	 * the request on all interfaces that will take part
6302 	 * in replication.  We do so because multirouting is
6303 	 * reflective, thus we will probably receive multi-
6304 	 * casts on those interfaces.
6305 	 * The ip_multirt_apply_membership() succeeds if
6306 	 * the operation succeeds on at least one interface.
6307 	 */
6308 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6309 		ipaddr_t group;
6310 
6311 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6312 
6313 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6314 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6315 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6316 	} else {
6317 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6318 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6319 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6320 	}
6321 	if (ire != NULL) {
6322 		if (ire->ire_flags & RTF_MULTIRT) {
6323 			error = ip_multirt_apply_membership(optfn, ire, connp,
6324 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6325 			done = B_TRUE;
6326 		}
6327 		ire_refrele(ire);
6328 	}
6329 
6330 	if (!done) {
6331 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6332 		    fmode, &ipv6_all_zeros);
6333 	}
6334 	return (error);
6335 }
6336 
6337 /*
6338  * Set socket options for joining and leaving multicast groups
6339  * for specific sources.
6340  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6341  * The caller has already check that the option name is consistent with
6342  * the address family of the socket.
6343  */
6344 int
6345 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6346     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6347 {
6348 	int		*i1 = (int *)invalp;
6349 	int		error = 0;
6350 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6351 	struct ip_mreq_source *imreqp;
6352 	struct group_source_req *gsreqp;
6353 	in6_addr_t v6group, v6src;
6354 	uint32_t ifindex;
6355 	ipaddr_t ifaddr;
6356 	boolean_t mcast_opt = B_TRUE;
6357 	mcast_record_t fmode;
6358 	ire_t *ire;
6359 	boolean_t done = B_FALSE;
6360 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6361 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6362 
6363 	switch (name) {
6364 	case IP_BLOCK_SOURCE:
6365 		mcast_opt = B_FALSE;
6366 		/* FALLTHRU */
6367 	case MCAST_BLOCK_SOURCE:
6368 		fmode = MODE_IS_EXCLUDE;
6369 		optfn = ip_opt_add_group;
6370 		break;
6371 
6372 	case IP_UNBLOCK_SOURCE:
6373 		mcast_opt = B_FALSE;
6374 		/* FALLTHRU */
6375 	case MCAST_UNBLOCK_SOURCE:
6376 		fmode = MODE_IS_EXCLUDE;
6377 		optfn = ip_opt_delete_group;
6378 		break;
6379 
6380 	case IP_ADD_SOURCE_MEMBERSHIP:
6381 		mcast_opt = B_FALSE;
6382 		/* FALLTHRU */
6383 	case MCAST_JOIN_SOURCE_GROUP:
6384 		fmode = MODE_IS_INCLUDE;
6385 		optfn = ip_opt_add_group;
6386 		break;
6387 
6388 	case IP_DROP_SOURCE_MEMBERSHIP:
6389 		mcast_opt = B_FALSE;
6390 		/* FALLTHRU */
6391 	case MCAST_LEAVE_SOURCE_GROUP:
6392 		fmode = MODE_IS_INCLUDE;
6393 		optfn = ip_opt_delete_group;
6394 		break;
6395 	default:
6396 		ASSERT(0);
6397 	}
6398 
6399 	if (mcast_opt) {
6400 		gsreqp = (struct group_source_req *)i1;
6401 		ifindex = gsreqp->gsr_interface;
6402 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6403 			struct sockaddr_in *s;
6404 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6405 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6406 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6407 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6408 		} else {
6409 			struct sockaddr_in6 *s6;
6410 
6411 			if (!inet6)
6412 				return (EINVAL);	/* Not on INET socket */
6413 
6414 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6415 			v6group = s6->sin6_addr;
6416 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6417 			v6src = s6->sin6_addr;
6418 		}
6419 		ifaddr = INADDR_ANY;
6420 	} else {
6421 		imreqp = (struct ip_mreq_source *)i1;
6422 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6423 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6424 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6425 		ifindex = 0;
6426 	}
6427 
6428 	/*
6429 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6430 	 */
6431 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6432 		v6src = ipv6_all_zeros;
6433 
6434 	/*
6435 	 * In the multirouting case, we need to replicate
6436 	 * the request as noted in the mcast cases above.
6437 	 */
6438 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6439 		ipaddr_t group;
6440 
6441 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6442 
6443 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6444 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6445 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6446 	} else {
6447 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6448 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6449 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6450 	}
6451 	if (ire != NULL) {
6452 		if (ire->ire_flags & RTF_MULTIRT) {
6453 			error = ip_multirt_apply_membership(optfn, ire, connp,
6454 			    checkonly, &v6group, fmode, &v6src);
6455 			done = B_TRUE;
6456 		}
6457 		ire_refrele(ire);
6458 	}
6459 	if (!done) {
6460 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6461 		    fmode, &v6src);
6462 	}
6463 	return (error);
6464 }
6465 
6466 /*
6467  * Given a destination address and a pointer to where to put the information
6468  * this routine fills in the mtuinfo.
6469  * The socket must be connected.
6470  * For sctp conn_faddr is the primary address.
6471  */
6472 int
6473 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6474 {
6475 	uint32_t	pmtu = IP_MAXPACKET;
6476 	uint_t		scopeid;
6477 
6478 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6479 		return (-1);
6480 
6481 	/* In case we never sent or called ip_set_destination_v4/v6 */
6482 	if (ixa->ixa_ire != NULL)
6483 		pmtu = ip_get_pmtu(ixa);
6484 
6485 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6486 		scopeid = ixa->ixa_scopeid;
6487 	else
6488 		scopeid = 0;
6489 
6490 	bzero(mtuinfo, sizeof (*mtuinfo));
6491 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6492 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6493 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6494 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6495 	mtuinfo->ip6m_mtu = pmtu;
6496 
6497 	return (sizeof (struct ip6_mtuinfo));
6498 }
6499 
6500 /*
6501  * When the src multihoming is changed from weak to [strong, preferred]
6502  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6503  * and identify routes that were created by user-applications in the
6504  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6505  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6506  * is selected by finding an interface route for the gateway.
6507  */
6508 /* ARGSUSED */
6509 void
6510 ip_ire_rebind_walker(ire_t *ire, void *notused)
6511 {
6512 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6513 		return;
6514 	ire_rebind(ire);
6515 	ire_delete(ire);
6516 }
6517 
6518 /*
6519  * When the src multihoming is changed from  [strong, preferred] to weak,
6520  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6521  * set any entries that were created by user-applications in the unbound state
6522  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6523  */
6524 /* ARGSUSED */
6525 void
6526 ip_ire_unbind_walker(ire_t *ire, void *notused)
6527 {
6528 	ire_t *new_ire;
6529 
6530 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6531 		return;
6532 	if (ire->ire_ipversion == IPV6_VERSION) {
6533 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6534 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6535 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6536 	} else {
6537 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6538 		    (uchar_t *)&ire->ire_mask,
6539 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6540 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6541 	}
6542 	if (new_ire == NULL)
6543 		return;
6544 	new_ire->ire_unbound = B_TRUE;
6545 	/*
6546 	 * The bound ire must first be deleted so that we don't return
6547 	 * the existing one on the attempt to add the unbound new_ire.
6548 	 */
6549 	ire_delete(ire);
6550 	new_ire = ire_add(new_ire);
6551 	if (new_ire != NULL)
6552 		ire_refrele(new_ire);
6553 }
6554 
6555 /*
6556  * When the settings of ip*_strict_src_multihoming tunables are changed,
6557  * all cached routes need to be recomputed. This recomputation needs to be
6558  * done when going from weaker to stronger modes so that the cached ire
6559  * for the connection does not violate the current ip*_strict_src_multihoming
6560  * setting. It also needs to be done when going from stronger to weaker modes,
6561  * so that we fall back to matching on the longest-matching-route (as opposed
6562  * to a shorter match that may have been selected in the strong mode
6563  * to satisfy src_multihoming settings).
6564  *
6565  * The cached ixa_ire entires for all conn_t entries are marked as
6566  * "verify" so that they will be recomputed for the next packet.
6567  */
6568 void
6569 conn_ire_revalidate(conn_t *connp, void *arg)
6570 {
6571 	boolean_t isv6 = (boolean_t)arg;
6572 
6573 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6574 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6575 		return;
6576 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6577 }
6578 
6579 /*
6580  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6581  * When an ipf is passed here for the first time, if
6582  * we already have in-order fragments on the queue, we convert from the fast-
6583  * path reassembly scheme to the hard-case scheme.  From then on, additional
6584  * fragments are reassembled here.  We keep track of the start and end offsets
6585  * of each piece, and the number of holes in the chain.  When the hole count
6586  * goes to zero, we are done!
6587  *
6588  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6589  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6590  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6591  * after the call to ip_reassemble().
6592  */
6593 int
6594 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6595     size_t msg_len)
6596 {
6597 	uint_t	end;
6598 	mblk_t	*next_mp;
6599 	mblk_t	*mp1;
6600 	uint_t	offset;
6601 	boolean_t incr_dups = B_TRUE;
6602 	boolean_t offset_zero_seen = B_FALSE;
6603 	boolean_t pkt_boundary_checked = B_FALSE;
6604 
6605 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6606 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6607 
6608 	/* Add in byte count */
6609 	ipf->ipf_count += msg_len;
6610 	if (ipf->ipf_end) {
6611 		/*
6612 		 * We were part way through in-order reassembly, but now there
6613 		 * is a hole.  We walk through messages already queued, and
6614 		 * mark them for hard case reassembly.  We know that up till
6615 		 * now they were in order starting from offset zero.
6616 		 */
6617 		offset = 0;
6618 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6619 			IP_REASS_SET_START(mp1, offset);
6620 			if (offset == 0) {
6621 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6622 				offset = -ipf->ipf_nf_hdr_len;
6623 			}
6624 			offset += mp1->b_wptr - mp1->b_rptr;
6625 			IP_REASS_SET_END(mp1, offset);
6626 		}
6627 		/* One hole at the end. */
6628 		ipf->ipf_hole_cnt = 1;
6629 		/* Brand it as a hard case, forever. */
6630 		ipf->ipf_end = 0;
6631 	}
6632 	/* Walk through all the new pieces. */
6633 	do {
6634 		end = start + (mp->b_wptr - mp->b_rptr);
6635 		/*
6636 		 * If start is 0, decrease 'end' only for the first mblk of
6637 		 * the fragment. Otherwise 'end' can get wrong value in the
6638 		 * second pass of the loop if first mblk is exactly the
6639 		 * size of ipf_nf_hdr_len.
6640 		 */
6641 		if (start == 0 && !offset_zero_seen) {
6642 			/* First segment */
6643 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6644 			end -= ipf->ipf_nf_hdr_len;
6645 			offset_zero_seen = B_TRUE;
6646 		}
6647 		next_mp = mp->b_cont;
6648 		/*
6649 		 * We are checking to see if there is any interesing data
6650 		 * to process.  If there isn't and the mblk isn't the
6651 		 * one which carries the unfragmentable header then we
6652 		 * drop it.  It's possible to have just the unfragmentable
6653 		 * header come through without any data.  That needs to be
6654 		 * saved.
6655 		 *
6656 		 * If the assert at the top of this function holds then the
6657 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6658 		 * is infrequently traveled enough that the test is left in
6659 		 * to protect against future code changes which break that
6660 		 * invariant.
6661 		 */
6662 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6663 			/* Empty.  Blast it. */
6664 			IP_REASS_SET_START(mp, 0);
6665 			IP_REASS_SET_END(mp, 0);
6666 			/*
6667 			 * If the ipf points to the mblk we are about to free,
6668 			 * update ipf to point to the next mblk (or NULL
6669 			 * if none).
6670 			 */
6671 			if (ipf->ipf_mp->b_cont == mp)
6672 				ipf->ipf_mp->b_cont = next_mp;
6673 			freeb(mp);
6674 			continue;
6675 		}
6676 		mp->b_cont = NULL;
6677 		IP_REASS_SET_START(mp, start);
6678 		IP_REASS_SET_END(mp, end);
6679 		if (!ipf->ipf_tail_mp) {
6680 			ipf->ipf_tail_mp = mp;
6681 			ipf->ipf_mp->b_cont = mp;
6682 			if (start == 0 || !more) {
6683 				ipf->ipf_hole_cnt = 1;
6684 				/*
6685 				 * if the first fragment comes in more than one
6686 				 * mblk, this loop will be executed for each
6687 				 * mblk. Need to adjust hole count so exiting
6688 				 * this routine will leave hole count at 1.
6689 				 */
6690 				if (next_mp)
6691 					ipf->ipf_hole_cnt++;
6692 			} else
6693 				ipf->ipf_hole_cnt = 2;
6694 			continue;
6695 		} else if (ipf->ipf_last_frag_seen && !more &&
6696 		    !pkt_boundary_checked) {
6697 			/*
6698 			 * We check datagram boundary only if this fragment
6699 			 * claims to be the last fragment and we have seen a
6700 			 * last fragment in the past too. We do this only
6701 			 * once for a given fragment.
6702 			 *
6703 			 * start cannot be 0 here as fragments with start=0
6704 			 * and MF=0 gets handled as a complete packet. These
6705 			 * fragments should not reach here.
6706 			 */
6707 
6708 			if (start + msgdsize(mp) !=
6709 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6710 				/*
6711 				 * We have two fragments both of which claim
6712 				 * to be the last fragment but gives conflicting
6713 				 * information about the whole datagram size.
6714 				 * Something fishy is going on. Drop the
6715 				 * fragment and free up the reassembly list.
6716 				 */
6717 				return (IP_REASS_FAILED);
6718 			}
6719 
6720 			/*
6721 			 * We shouldn't come to this code block again for this
6722 			 * particular fragment.
6723 			 */
6724 			pkt_boundary_checked = B_TRUE;
6725 		}
6726 
6727 		/* New stuff at or beyond tail? */
6728 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6729 		if (start >= offset) {
6730 			if (ipf->ipf_last_frag_seen) {
6731 				/* current fragment is beyond last fragment */
6732 				return (IP_REASS_FAILED);
6733 			}
6734 			/* Link it on end. */
6735 			ipf->ipf_tail_mp->b_cont = mp;
6736 			ipf->ipf_tail_mp = mp;
6737 			if (more) {
6738 				if (start != offset)
6739 					ipf->ipf_hole_cnt++;
6740 			} else if (start == offset && next_mp == NULL)
6741 					ipf->ipf_hole_cnt--;
6742 			continue;
6743 		}
6744 		mp1 = ipf->ipf_mp->b_cont;
6745 		offset = IP_REASS_START(mp1);
6746 		/* New stuff at the front? */
6747 		if (start < offset) {
6748 			if (start == 0) {
6749 				if (end >= offset) {
6750 					/* Nailed the hole at the begining. */
6751 					ipf->ipf_hole_cnt--;
6752 				}
6753 			} else if (end < offset) {
6754 				/*
6755 				 * A hole, stuff, and a hole where there used
6756 				 * to be just a hole.
6757 				 */
6758 				ipf->ipf_hole_cnt++;
6759 			}
6760 			mp->b_cont = mp1;
6761 			/* Check for overlap. */
6762 			while (end > offset) {
6763 				if (end < IP_REASS_END(mp1)) {
6764 					mp->b_wptr -= end - offset;
6765 					IP_REASS_SET_END(mp, offset);
6766 					BUMP_MIB(ill->ill_ip_mib,
6767 					    ipIfStatsReasmPartDups);
6768 					break;
6769 				}
6770 				/* Did we cover another hole? */
6771 				if ((mp1->b_cont &&
6772 				    IP_REASS_END(mp1) !=
6773 				    IP_REASS_START(mp1->b_cont) &&
6774 				    end >= IP_REASS_START(mp1->b_cont)) ||
6775 				    (!ipf->ipf_last_frag_seen && !more)) {
6776 					ipf->ipf_hole_cnt--;
6777 				}
6778 				/* Clip out mp1. */
6779 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6780 					/*
6781 					 * After clipping out mp1, this guy
6782 					 * is now hanging off the end.
6783 					 */
6784 					ipf->ipf_tail_mp = mp;
6785 				}
6786 				IP_REASS_SET_START(mp1, 0);
6787 				IP_REASS_SET_END(mp1, 0);
6788 				/* Subtract byte count */
6789 				ipf->ipf_count -= mp1->b_datap->db_lim -
6790 				    mp1->b_datap->db_base;
6791 				freeb(mp1);
6792 				BUMP_MIB(ill->ill_ip_mib,
6793 				    ipIfStatsReasmPartDups);
6794 				mp1 = mp->b_cont;
6795 				if (!mp1)
6796 					break;
6797 				offset = IP_REASS_START(mp1);
6798 			}
6799 			ipf->ipf_mp->b_cont = mp;
6800 			continue;
6801 		}
6802 		/*
6803 		 * The new piece starts somewhere between the start of the head
6804 		 * and before the end of the tail.
6805 		 */
6806 		for (; mp1; mp1 = mp1->b_cont) {
6807 			offset = IP_REASS_END(mp1);
6808 			if (start < offset) {
6809 				if (end <= offset) {
6810 					/* Nothing new. */
6811 					IP_REASS_SET_START(mp, 0);
6812 					IP_REASS_SET_END(mp, 0);
6813 					/* Subtract byte count */
6814 					ipf->ipf_count -= mp->b_datap->db_lim -
6815 					    mp->b_datap->db_base;
6816 					if (incr_dups) {
6817 						ipf->ipf_num_dups++;
6818 						incr_dups = B_FALSE;
6819 					}
6820 					freeb(mp);
6821 					BUMP_MIB(ill->ill_ip_mib,
6822 					    ipIfStatsReasmDuplicates);
6823 					break;
6824 				}
6825 				/*
6826 				 * Trim redundant stuff off beginning of new
6827 				 * piece.
6828 				 */
6829 				IP_REASS_SET_START(mp, offset);
6830 				mp->b_rptr += offset - start;
6831 				BUMP_MIB(ill->ill_ip_mib,
6832 				    ipIfStatsReasmPartDups);
6833 				start = offset;
6834 				if (!mp1->b_cont) {
6835 					/*
6836 					 * After trimming, this guy is now
6837 					 * hanging off the end.
6838 					 */
6839 					mp1->b_cont = mp;
6840 					ipf->ipf_tail_mp = mp;
6841 					if (!more) {
6842 						ipf->ipf_hole_cnt--;
6843 					}
6844 					break;
6845 				}
6846 			}
6847 			if (start >= IP_REASS_START(mp1->b_cont))
6848 				continue;
6849 			/* Fill a hole */
6850 			if (start > offset)
6851 				ipf->ipf_hole_cnt++;
6852 			mp->b_cont = mp1->b_cont;
6853 			mp1->b_cont = mp;
6854 			mp1 = mp->b_cont;
6855 			offset = IP_REASS_START(mp1);
6856 			if (end >= offset) {
6857 				ipf->ipf_hole_cnt--;
6858 				/* Check for overlap. */
6859 				while (end > offset) {
6860 					if (end < IP_REASS_END(mp1)) {
6861 						mp->b_wptr -= end - offset;
6862 						IP_REASS_SET_END(mp, offset);
6863 						/*
6864 						 * TODO we might bump
6865 						 * this up twice if there is
6866 						 * overlap at both ends.
6867 						 */
6868 						BUMP_MIB(ill->ill_ip_mib,
6869 						    ipIfStatsReasmPartDups);
6870 						break;
6871 					}
6872 					/* Did we cover another hole? */
6873 					if ((mp1->b_cont &&
6874 					    IP_REASS_END(mp1)
6875 					    != IP_REASS_START(mp1->b_cont) &&
6876 					    end >=
6877 					    IP_REASS_START(mp1->b_cont)) ||
6878 					    (!ipf->ipf_last_frag_seen &&
6879 					    !more)) {
6880 						ipf->ipf_hole_cnt--;
6881 					}
6882 					/* Clip out mp1. */
6883 					if ((mp->b_cont = mp1->b_cont) ==
6884 					    NULL) {
6885 						/*
6886 						 * After clipping out mp1,
6887 						 * this guy is now hanging
6888 						 * off the end.
6889 						 */
6890 						ipf->ipf_tail_mp = mp;
6891 					}
6892 					IP_REASS_SET_START(mp1, 0);
6893 					IP_REASS_SET_END(mp1, 0);
6894 					/* Subtract byte count */
6895 					ipf->ipf_count -=
6896 					    mp1->b_datap->db_lim -
6897 					    mp1->b_datap->db_base;
6898 					freeb(mp1);
6899 					BUMP_MIB(ill->ill_ip_mib,
6900 					    ipIfStatsReasmPartDups);
6901 					mp1 = mp->b_cont;
6902 					if (!mp1)
6903 						break;
6904 					offset = IP_REASS_START(mp1);
6905 				}
6906 			}
6907 			break;
6908 		}
6909 	} while (start = end, mp = next_mp);
6910 
6911 	/* Fragment just processed could be the last one. Remember this fact */
6912 	if (!more)
6913 		ipf->ipf_last_frag_seen = B_TRUE;
6914 
6915 	/* Still got holes? */
6916 	if (ipf->ipf_hole_cnt)
6917 		return (IP_REASS_PARTIAL);
6918 	/* Clean up overloaded fields to avoid upstream disasters. */
6919 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6920 		IP_REASS_SET_START(mp1, 0);
6921 		IP_REASS_SET_END(mp1, 0);
6922 	}
6923 	return (IP_REASS_COMPLETE);
6924 }
6925 
6926 /*
6927  * Fragmentation reassembly.  Each ILL has a hash table for
6928  * queuing packets undergoing reassembly for all IPIFs
6929  * associated with the ILL.  The hash is based on the packet
6930  * IP ident field.  The ILL frag hash table was allocated
6931  * as a timer block at the time the ILL was created.  Whenever
6932  * there is anything on the reassembly queue, the timer will
6933  * be running.  Returns the reassembled packet if reassembly completes.
6934  */
6935 mblk_t *
6936 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6937 {
6938 	uint32_t	frag_offset_flags;
6939 	mblk_t		*t_mp;
6940 	ipaddr_t	dst;
6941 	uint8_t		proto = ipha->ipha_protocol;
6942 	uint32_t	sum_val;
6943 	uint16_t	sum_flags;
6944 	ipf_t		*ipf;
6945 	ipf_t		**ipfp;
6946 	ipfb_t		*ipfb;
6947 	uint16_t	ident;
6948 	uint32_t	offset;
6949 	ipaddr_t	src;
6950 	uint_t		hdr_length;
6951 	uint32_t	end;
6952 	mblk_t		*mp1;
6953 	mblk_t		*tail_mp;
6954 	size_t		count;
6955 	size_t		msg_len;
6956 	uint8_t		ecn_info = 0;
6957 	uint32_t	packet_size;
6958 	boolean_t	pruned = B_FALSE;
6959 	ill_t		*ill = ira->ira_ill;
6960 	ip_stack_t	*ipst = ill->ill_ipst;
6961 
6962 	/*
6963 	 * Drop the fragmented as early as possible, if
6964 	 * we don't have resource(s) to re-assemble.
6965 	 */
6966 	if (ipst->ips_ip_reass_queue_bytes == 0) {
6967 		freemsg(mp);
6968 		return (NULL);
6969 	}
6970 
6971 	/* Check for fragmentation offset; return if there's none */
6972 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
6973 	    (IPH_MF | IPH_OFFSET)) == 0)
6974 		return (mp);
6975 
6976 	/*
6977 	 * We utilize hardware computed checksum info only for UDP since
6978 	 * IP fragmentation is a normal occurrence for the protocol.  In
6979 	 * addition, checksum offload support for IP fragments carrying
6980 	 * UDP payload is commonly implemented across network adapters.
6981 	 */
6982 	ASSERT(ira->ira_rill != NULL);
6983 	if (proto == IPPROTO_UDP && dohwcksum &&
6984 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
6985 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
6986 		mblk_t *mp1 = mp->b_cont;
6987 		int32_t len;
6988 
6989 		/* Record checksum information from the packet */
6990 		sum_val = (uint32_t)DB_CKSUM16(mp);
6991 		sum_flags = DB_CKSUMFLAGS(mp);
6992 
6993 		/* IP payload offset from beginning of mblk */
6994 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
6995 
6996 		if ((sum_flags & HCK_PARTIALCKSUM) &&
6997 		    (mp1 == NULL || mp1->b_cont == NULL) &&
6998 		    offset >= DB_CKSUMSTART(mp) &&
6999 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7000 			uint32_t adj;
7001 			/*
7002 			 * Partial checksum has been calculated by hardware
7003 			 * and attached to the packet; in addition, any
7004 			 * prepended extraneous data is even byte aligned.
7005 			 * If any such data exists, we adjust the checksum;
7006 			 * this would also handle any postpended data.
7007 			 */
7008 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7009 			    mp, mp1, len, adj);
7010 
7011 			/* One's complement subtract extraneous checksum */
7012 			if (adj >= sum_val)
7013 				sum_val = ~(adj - sum_val) & 0xFFFF;
7014 			else
7015 				sum_val -= adj;
7016 		}
7017 	} else {
7018 		sum_val = 0;
7019 		sum_flags = 0;
7020 	}
7021 
7022 	/* Clear hardware checksumming flag */
7023 	DB_CKSUMFLAGS(mp) = 0;
7024 
7025 	ident = ipha->ipha_ident;
7026 	offset = (frag_offset_flags << 3) & 0xFFFF;
7027 	src = ipha->ipha_src;
7028 	dst = ipha->ipha_dst;
7029 	hdr_length = IPH_HDR_LENGTH(ipha);
7030 	end = ntohs(ipha->ipha_length) - hdr_length;
7031 
7032 	/* If end == 0 then we have a packet with no data, so just free it */
7033 	if (end == 0) {
7034 		freemsg(mp);
7035 		return (NULL);
7036 	}
7037 
7038 	/* Record the ECN field info. */
7039 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7040 	if (offset != 0) {
7041 		/*
7042 		 * If this isn't the first piece, strip the header, and
7043 		 * add the offset to the end value.
7044 		 */
7045 		mp->b_rptr += hdr_length;
7046 		end += offset;
7047 	}
7048 
7049 	/* Handle vnic loopback of fragments */
7050 	if (mp->b_datap->db_ref > 2)
7051 		msg_len = 0;
7052 	else
7053 		msg_len = MBLKSIZE(mp);
7054 
7055 	tail_mp = mp;
7056 	while (tail_mp->b_cont != NULL) {
7057 		tail_mp = tail_mp->b_cont;
7058 		if (tail_mp->b_datap->db_ref <= 2)
7059 			msg_len += MBLKSIZE(tail_mp);
7060 	}
7061 
7062 	/* If the reassembly list for this ILL will get too big, prune it */
7063 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7064 	    ipst->ips_ip_reass_queue_bytes) {
7065 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7066 		    uint_t, ill->ill_frag_count,
7067 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7068 		ill_frag_prune(ill,
7069 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7070 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7071 		pruned = B_TRUE;
7072 	}
7073 
7074 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7075 	mutex_enter(&ipfb->ipfb_lock);
7076 
7077 	ipfp = &ipfb->ipfb_ipf;
7078 	/* Try to find an existing fragment queue for this packet. */
7079 	for (;;) {
7080 		ipf = ipfp[0];
7081 		if (ipf != NULL) {
7082 			/*
7083 			 * It has to match on ident and src/dst address.
7084 			 */
7085 			if (ipf->ipf_ident == ident &&
7086 			    ipf->ipf_src == src &&
7087 			    ipf->ipf_dst == dst &&
7088 			    ipf->ipf_protocol == proto) {
7089 				/*
7090 				 * If we have received too many
7091 				 * duplicate fragments for this packet
7092 				 * free it.
7093 				 */
7094 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7095 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7096 					freemsg(mp);
7097 					mutex_exit(&ipfb->ipfb_lock);
7098 					return (NULL);
7099 				}
7100 				/* Found it. */
7101 				break;
7102 			}
7103 			ipfp = &ipf->ipf_hash_next;
7104 			continue;
7105 		}
7106 
7107 		/*
7108 		 * If we pruned the list, do we want to store this new
7109 		 * fragment?. We apply an optimization here based on the
7110 		 * fact that most fragments will be received in order.
7111 		 * So if the offset of this incoming fragment is zero,
7112 		 * it is the first fragment of a new packet. We will
7113 		 * keep it.  Otherwise drop the fragment, as we have
7114 		 * probably pruned the packet already (since the
7115 		 * packet cannot be found).
7116 		 */
7117 		if (pruned && offset != 0) {
7118 			mutex_exit(&ipfb->ipfb_lock);
7119 			freemsg(mp);
7120 			return (NULL);
7121 		}
7122 
7123 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7124 			/*
7125 			 * Too many fragmented packets in this hash
7126 			 * bucket. Free the oldest.
7127 			 */
7128 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7129 		}
7130 
7131 		/* New guy.  Allocate a frag message. */
7132 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7133 		if (mp1 == NULL) {
7134 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7135 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7136 			freemsg(mp);
7137 reass_done:
7138 			mutex_exit(&ipfb->ipfb_lock);
7139 			return (NULL);
7140 		}
7141 
7142 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7143 		mp1->b_cont = mp;
7144 
7145 		/* Initialize the fragment header. */
7146 		ipf = (ipf_t *)mp1->b_rptr;
7147 		ipf->ipf_mp = mp1;
7148 		ipf->ipf_ptphn = ipfp;
7149 		ipfp[0] = ipf;
7150 		ipf->ipf_hash_next = NULL;
7151 		ipf->ipf_ident = ident;
7152 		ipf->ipf_protocol = proto;
7153 		ipf->ipf_src = src;
7154 		ipf->ipf_dst = dst;
7155 		ipf->ipf_nf_hdr_len = 0;
7156 		/* Record reassembly start time. */
7157 		ipf->ipf_timestamp = gethrestime_sec();
7158 		/* Record ipf generation and account for frag header */
7159 		ipf->ipf_gen = ill->ill_ipf_gen++;
7160 		ipf->ipf_count = MBLKSIZE(mp1);
7161 		ipf->ipf_last_frag_seen = B_FALSE;
7162 		ipf->ipf_ecn = ecn_info;
7163 		ipf->ipf_num_dups = 0;
7164 		ipfb->ipfb_frag_pkts++;
7165 		ipf->ipf_checksum = 0;
7166 		ipf->ipf_checksum_flags = 0;
7167 
7168 		/* Store checksum value in fragment header */
7169 		if (sum_flags != 0) {
7170 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7171 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7172 			ipf->ipf_checksum = sum_val;
7173 			ipf->ipf_checksum_flags = sum_flags;
7174 		}
7175 
7176 		/*
7177 		 * We handle reassembly two ways.  In the easy case,
7178 		 * where all the fragments show up in order, we do
7179 		 * minimal bookkeeping, and just clip new pieces on
7180 		 * the end.  If we ever see a hole, then we go off
7181 		 * to ip_reassemble which has to mark the pieces and
7182 		 * keep track of the number of holes, etc.  Obviously,
7183 		 * the point of having both mechanisms is so we can
7184 		 * handle the easy case as efficiently as possible.
7185 		 */
7186 		if (offset == 0) {
7187 			/* Easy case, in-order reassembly so far. */
7188 			ipf->ipf_count += msg_len;
7189 			ipf->ipf_tail_mp = tail_mp;
7190 			/*
7191 			 * Keep track of next expected offset in
7192 			 * ipf_end.
7193 			 */
7194 			ipf->ipf_end = end;
7195 			ipf->ipf_nf_hdr_len = hdr_length;
7196 		} else {
7197 			/* Hard case, hole at the beginning. */
7198 			ipf->ipf_tail_mp = NULL;
7199 			/*
7200 			 * ipf_end == 0 means that we have given up
7201 			 * on easy reassembly.
7202 			 */
7203 			ipf->ipf_end = 0;
7204 
7205 			/* Forget checksum offload from now on */
7206 			ipf->ipf_checksum_flags = 0;
7207 
7208 			/*
7209 			 * ipf_hole_cnt is set by ip_reassemble.
7210 			 * ipf_count is updated by ip_reassemble.
7211 			 * No need to check for return value here
7212 			 * as we don't expect reassembly to complete
7213 			 * or fail for the first fragment itself.
7214 			 */
7215 			(void) ip_reassemble(mp, ipf,
7216 			    (frag_offset_flags & IPH_OFFSET) << 3,
7217 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7218 		}
7219 		/* Update per ipfb and ill byte counts */
7220 		ipfb->ipfb_count += ipf->ipf_count;
7221 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7222 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7223 		/* If the frag timer wasn't already going, start it. */
7224 		mutex_enter(&ill->ill_lock);
7225 		ill_frag_timer_start(ill);
7226 		mutex_exit(&ill->ill_lock);
7227 		goto reass_done;
7228 	}
7229 
7230 	/*
7231 	 * If the packet's flag has changed (it could be coming up
7232 	 * from an interface different than the previous, therefore
7233 	 * possibly different checksum capability), then forget about
7234 	 * any stored checksum states.  Otherwise add the value to
7235 	 * the existing one stored in the fragment header.
7236 	 */
7237 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7238 		sum_val += ipf->ipf_checksum;
7239 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7240 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7241 		ipf->ipf_checksum = sum_val;
7242 	} else if (ipf->ipf_checksum_flags != 0) {
7243 		/* Forget checksum offload from now on */
7244 		ipf->ipf_checksum_flags = 0;
7245 	}
7246 
7247 	/*
7248 	 * We have a new piece of a datagram which is already being
7249 	 * reassembled.  Update the ECN info if all IP fragments
7250 	 * are ECN capable.  If there is one which is not, clear
7251 	 * all the info.  If there is at least one which has CE
7252 	 * code point, IP needs to report that up to transport.
7253 	 */
7254 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7255 		if (ecn_info == IPH_ECN_CE)
7256 			ipf->ipf_ecn = IPH_ECN_CE;
7257 	} else {
7258 		ipf->ipf_ecn = IPH_ECN_NECT;
7259 	}
7260 	if (offset && ipf->ipf_end == offset) {
7261 		/* The new fragment fits at the end */
7262 		ipf->ipf_tail_mp->b_cont = mp;
7263 		/* Update the byte count */
7264 		ipf->ipf_count += msg_len;
7265 		/* Update per ipfb and ill byte counts */
7266 		ipfb->ipfb_count += msg_len;
7267 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7268 		atomic_add_32(&ill->ill_frag_count, msg_len);
7269 		if (frag_offset_flags & IPH_MF) {
7270 			/* More to come. */
7271 			ipf->ipf_end = end;
7272 			ipf->ipf_tail_mp = tail_mp;
7273 			goto reass_done;
7274 		}
7275 	} else {
7276 		/* Go do the hard cases. */
7277 		int ret;
7278 
7279 		if (offset == 0)
7280 			ipf->ipf_nf_hdr_len = hdr_length;
7281 
7282 		/* Save current byte count */
7283 		count = ipf->ipf_count;
7284 		ret = ip_reassemble(mp, ipf,
7285 		    (frag_offset_flags & IPH_OFFSET) << 3,
7286 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7287 		/* Count of bytes added and subtracted (freeb()ed) */
7288 		count = ipf->ipf_count - count;
7289 		if (count) {
7290 			/* Update per ipfb and ill byte counts */
7291 			ipfb->ipfb_count += count;
7292 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7293 			atomic_add_32(&ill->ill_frag_count, count);
7294 		}
7295 		if (ret == IP_REASS_PARTIAL) {
7296 			goto reass_done;
7297 		} else if (ret == IP_REASS_FAILED) {
7298 			/* Reassembly failed. Free up all resources */
7299 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7300 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7301 				IP_REASS_SET_START(t_mp, 0);
7302 				IP_REASS_SET_END(t_mp, 0);
7303 			}
7304 			freemsg(mp);
7305 			goto reass_done;
7306 		}
7307 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7308 	}
7309 	/*
7310 	 * We have completed reassembly.  Unhook the frag header from
7311 	 * the reassembly list.
7312 	 *
7313 	 * Before we free the frag header, record the ECN info
7314 	 * to report back to the transport.
7315 	 */
7316 	ecn_info = ipf->ipf_ecn;
7317 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7318 	ipfp = ipf->ipf_ptphn;
7319 
7320 	/* We need to supply these to caller */
7321 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7322 		sum_val = ipf->ipf_checksum;
7323 	else
7324 		sum_val = 0;
7325 
7326 	mp1 = ipf->ipf_mp;
7327 	count = ipf->ipf_count;
7328 	ipf = ipf->ipf_hash_next;
7329 	if (ipf != NULL)
7330 		ipf->ipf_ptphn = ipfp;
7331 	ipfp[0] = ipf;
7332 	atomic_add_32(&ill->ill_frag_count, -count);
7333 	ASSERT(ipfb->ipfb_count >= count);
7334 	ipfb->ipfb_count -= count;
7335 	ipfb->ipfb_frag_pkts--;
7336 	mutex_exit(&ipfb->ipfb_lock);
7337 	/* Ditch the frag header. */
7338 	mp = mp1->b_cont;
7339 
7340 	freeb(mp1);
7341 
7342 	/* Restore original IP length in header. */
7343 	packet_size = (uint32_t)msgdsize(mp);
7344 	if (packet_size > IP_MAXPACKET) {
7345 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7346 		ip_drop_input("Reassembled packet too large", mp, ill);
7347 		freemsg(mp);
7348 		return (NULL);
7349 	}
7350 
7351 	if (DB_REF(mp) > 1) {
7352 		mblk_t *mp2 = copymsg(mp);
7353 
7354 		if (mp2 == NULL) {
7355 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7356 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7357 			freemsg(mp);
7358 			return (NULL);
7359 		}
7360 		freemsg(mp);
7361 		mp = mp2;
7362 	}
7363 	ipha = (ipha_t *)mp->b_rptr;
7364 
7365 	ipha->ipha_length = htons((uint16_t)packet_size);
7366 	/* We're now complete, zip the frag state */
7367 	ipha->ipha_fragment_offset_and_flags = 0;
7368 	/* Record the ECN info. */
7369 	ipha->ipha_type_of_service &= 0xFC;
7370 	ipha->ipha_type_of_service |= ecn_info;
7371 
7372 	/* Update the receive attributes */
7373 	ira->ira_pktlen = packet_size;
7374 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7375 
7376 	/* Reassembly is successful; set checksum information in packet */
7377 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7378 	DB_CKSUMFLAGS(mp) = sum_flags;
7379 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7380 
7381 	return (mp);
7382 }
7383 
7384 /*
7385  * Pullup function that should be used for IP input in order to
7386  * ensure we do not loose the L2 source address; we need the l2 source
7387  * address for IP_RECVSLLA and for ndp_input.
7388  *
7389  * We return either NULL or b_rptr.
7390  */
7391 void *
7392 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7393 {
7394 	ill_t		*ill = ira->ira_ill;
7395 
7396 	if (ip_rput_pullups++ == 0) {
7397 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7398 		    "ip_pullup: %s forced us to "
7399 		    " pullup pkt, hdr len %ld, hdr addr %p",
7400 		    ill->ill_name, len, (void *)mp->b_rptr);
7401 	}
7402 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7403 		ip_setl2src(mp, ira, ira->ira_rill);
7404 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7405 	if (!pullupmsg(mp, len))
7406 		return (NULL);
7407 	else
7408 		return (mp->b_rptr);
7409 }
7410 
7411 /*
7412  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7413  * When called from the ULP ira_rill will be NULL hence the caller has to
7414  * pass in the ill.
7415  */
7416 /* ARGSUSED */
7417 void
7418 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7419 {
7420 	const uchar_t *addr;
7421 	int alen;
7422 
7423 	if (ira->ira_flags & IRAF_L2SRC_SET)
7424 		return;
7425 
7426 	ASSERT(ill != NULL);
7427 	alen = ill->ill_phys_addr_length;
7428 	ASSERT(alen <= sizeof (ira->ira_l2src));
7429 	if (ira->ira_mhip != NULL &&
7430 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7431 		bcopy(addr, ira->ira_l2src, alen);
7432 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7433 	    (addr = ill->ill_phys_addr) != NULL) {
7434 		bcopy(addr, ira->ira_l2src, alen);
7435 	} else {
7436 		bzero(ira->ira_l2src, alen);
7437 	}
7438 	ira->ira_flags |= IRAF_L2SRC_SET;
7439 }
7440 
7441 /*
7442  * check ip header length and align it.
7443  */
7444 mblk_t *
7445 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7446 {
7447 	ill_t	*ill = ira->ira_ill;
7448 	ssize_t len;
7449 
7450 	len = MBLKL(mp);
7451 
7452 	if (!OK_32PTR(mp->b_rptr))
7453 		IP_STAT(ill->ill_ipst, ip_notaligned);
7454 	else
7455 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7456 
7457 	/* Guard against bogus device drivers */
7458 	if (len < 0) {
7459 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7460 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7461 		freemsg(mp);
7462 		return (NULL);
7463 	}
7464 
7465 	if (len == 0) {
7466 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7467 		mblk_t *mp1 = mp->b_cont;
7468 
7469 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7470 			ip_setl2src(mp, ira, ira->ira_rill);
7471 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7472 
7473 		freeb(mp);
7474 		mp = mp1;
7475 		if (mp == NULL)
7476 			return (NULL);
7477 
7478 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7479 			return (mp);
7480 	}
7481 	if (ip_pullup(mp, min_size, ira) == NULL) {
7482 		if (msgdsize(mp) < min_size) {
7483 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7484 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7485 		} else {
7486 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7487 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7488 		}
7489 		freemsg(mp);
7490 		return (NULL);
7491 	}
7492 	return (mp);
7493 }
7494 
7495 /*
7496  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7497  */
7498 mblk_t *
7499 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7500     uint_t min_size, ip_recv_attr_t *ira)
7501 {
7502 	ill_t	*ill = ira->ira_ill;
7503 
7504 	/*
7505 	 * Make sure we have data length consistent
7506 	 * with the IP header.
7507 	 */
7508 	if (mp->b_cont == NULL) {
7509 		/* pkt_len is based on ipha_len, not the mblk length */
7510 		if (pkt_len < min_size) {
7511 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7512 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7513 			freemsg(mp);
7514 			return (NULL);
7515 		}
7516 		if (len < 0) {
7517 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7518 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7519 			freemsg(mp);
7520 			return (NULL);
7521 		}
7522 		/* Drop any pad */
7523 		mp->b_wptr = rptr + pkt_len;
7524 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7525 		ASSERT(pkt_len >= min_size);
7526 		if (pkt_len < min_size) {
7527 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7528 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7529 			freemsg(mp);
7530 			return (NULL);
7531 		}
7532 		if (len < 0) {
7533 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7534 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7535 			freemsg(mp);
7536 			return (NULL);
7537 		}
7538 		/* Drop any pad */
7539 		(void) adjmsg(mp, -len);
7540 		/*
7541 		 * adjmsg may have freed an mblk from the chain, hence
7542 		 * invalidate any hw checksum here. This will force IP to
7543 		 * calculate the checksum in sw, but only for this packet.
7544 		 */
7545 		DB_CKSUMFLAGS(mp) = 0;
7546 		IP_STAT(ill->ill_ipst, ip_multimblk);
7547 	}
7548 	return (mp);
7549 }
7550 
7551 /*
7552  * Check that the IPv4 opt_len is consistent with the packet and pullup
7553  * the options.
7554  */
7555 mblk_t *
7556 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7557     ip_recv_attr_t *ira)
7558 {
7559 	ill_t	*ill = ira->ira_ill;
7560 	ssize_t len;
7561 
7562 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7563 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7564 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7565 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7566 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7567 		freemsg(mp);
7568 		return (NULL);
7569 	}
7570 
7571 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7572 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7573 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7574 		freemsg(mp);
7575 		return (NULL);
7576 	}
7577 	/*
7578 	 * Recompute complete header length and make sure we
7579 	 * have access to all of it.
7580 	 */
7581 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7582 	if (len > (mp->b_wptr - mp->b_rptr)) {
7583 		if (len > pkt_len) {
7584 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7585 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7586 			freemsg(mp);
7587 			return (NULL);
7588 		}
7589 		if (ip_pullup(mp, len, ira) == NULL) {
7590 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7591 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7592 			freemsg(mp);
7593 			return (NULL);
7594 		}
7595 	}
7596 	return (mp);
7597 }
7598 
7599 /*
7600  * Returns a new ire, or the same ire, or NULL.
7601  * If a different IRE is returned, then it is held; the caller
7602  * needs to release it.
7603  * In no case is there any hold/release on the ire argument.
7604  */
7605 ire_t *
7606 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7607 {
7608 	ire_t		*new_ire;
7609 	ill_t		*ire_ill;
7610 	uint_t		ifindex;
7611 	ip_stack_t	*ipst = ill->ill_ipst;
7612 	boolean_t	strict_check = B_FALSE;
7613 
7614 	/*
7615 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7616 	 * issue (e.g. packet received on an underlying interface matched an
7617 	 * IRE_LOCAL on its associated group interface).
7618 	 */
7619 	ASSERT(ire->ire_ill != NULL);
7620 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7621 		return (ire);
7622 
7623 	/*
7624 	 * Do another ire lookup here, using the ingress ill, to see if the
7625 	 * interface is in a usesrc group.
7626 	 * As long as the ills belong to the same group, we don't consider
7627 	 * them to be arriving on the wrong interface. Thus, if the switch
7628 	 * is doing inbound load spreading, we won't drop packets when the
7629 	 * ip*_strict_dst_multihoming switch is on.
7630 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7631 	 * where the local address may not be unique. In this case we were
7632 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7633 	 * actually returned. The new lookup, which is more specific, should
7634 	 * only find the IRE_LOCAL associated with the ingress ill if one
7635 	 * exists.
7636 	 */
7637 	if (ire->ire_ipversion == IPV4_VERSION) {
7638 		if (ipst->ips_ip_strict_dst_multihoming)
7639 			strict_check = B_TRUE;
7640 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7641 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7642 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7643 	} else {
7644 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7645 		if (ipst->ips_ipv6_strict_dst_multihoming)
7646 			strict_check = B_TRUE;
7647 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7648 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7649 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7650 	}
7651 	/*
7652 	 * If the same ire that was returned in ip_input() is found then this
7653 	 * is an indication that usesrc groups are in use. The packet
7654 	 * arrived on a different ill in the group than the one associated with
7655 	 * the destination address.  If a different ire was found then the same
7656 	 * IP address must be hosted on multiple ills. This is possible with
7657 	 * unnumbered point2point interfaces. We switch to use this new ire in
7658 	 * order to have accurate interface statistics.
7659 	 */
7660 	if (new_ire != NULL) {
7661 		/* Note: held in one case but not the other? Caller handles */
7662 		if (new_ire != ire)
7663 			return (new_ire);
7664 		/* Unchanged */
7665 		ire_refrele(new_ire);
7666 		return (ire);
7667 	}
7668 
7669 	/*
7670 	 * Chase pointers once and store locally.
7671 	 */
7672 	ASSERT(ire->ire_ill != NULL);
7673 	ire_ill = ire->ire_ill;
7674 	ifindex = ill->ill_usesrc_ifindex;
7675 
7676 	/*
7677 	 * Check if it's a legal address on the 'usesrc' interface.
7678 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7679 	 * can just check phyint_ifindex.
7680 	 */
7681 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7682 		return (ire);
7683 	}
7684 
7685 	/*
7686 	 * If the ip*_strict_dst_multihoming switch is on then we can
7687 	 * only accept this packet if the interface is marked as routing.
7688 	 */
7689 	if (!(strict_check))
7690 		return (ire);
7691 
7692 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7693 		return (ire);
7694 	}
7695 	return (NULL);
7696 }
7697 
7698 /*
7699  * This function is used to construct a mac_header_info_s from a
7700  * DL_UNITDATA_IND message.
7701  * The address fields in the mhi structure points into the message,
7702  * thus the caller can't use those fields after freeing the message.
7703  *
7704  * We determine whether the packet received is a non-unicast packet
7705  * and in doing so, determine whether or not it is broadcast vs multicast.
7706  * For it to be a broadcast packet, we must have the appropriate mblk_t
7707  * hanging off the ill_t.  If this is either not present or doesn't match
7708  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7709  * to be multicast.  Thus NICs that have no broadcast address (or no
7710  * capability for one, such as point to point links) cannot return as
7711  * the packet being broadcast.
7712  */
7713 void
7714 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7715 {
7716 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7717 	mblk_t *bmp;
7718 	uint_t extra_offset;
7719 
7720 	bzero(mhip, sizeof (struct mac_header_info_s));
7721 
7722 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7723 
7724 	if (ill->ill_sap_length < 0)
7725 		extra_offset = 0;
7726 	else
7727 		extra_offset = ill->ill_sap_length;
7728 
7729 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7730 	    extra_offset;
7731 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7732 	    extra_offset;
7733 
7734 	if (!ind->dl_group_address)
7735 		return;
7736 
7737 	/* Multicast or broadcast */
7738 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7739 
7740 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7741 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7742 	    (bmp = ill->ill_bcast_mp) != NULL) {
7743 		dl_unitdata_req_t *dlur;
7744 		uint8_t *bphys_addr;
7745 
7746 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7747 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7748 		    extra_offset;
7749 
7750 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7751 		    ind->dl_dest_addr_length) == 0)
7752 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7753 	}
7754 }
7755 
7756 /*
7757  * This function is used to construct a mac_header_info_s from a
7758  * M_DATA fastpath message from a DLPI driver.
7759  * The address fields in the mhi structure points into the message,
7760  * thus the caller can't use those fields after freeing the message.
7761  *
7762  * We determine whether the packet received is a non-unicast packet
7763  * and in doing so, determine whether or not it is broadcast vs multicast.
7764  * For it to be a broadcast packet, we must have the appropriate mblk_t
7765  * hanging off the ill_t.  If this is either not present or doesn't match
7766  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7767  * to be multicast.  Thus NICs that have no broadcast address (or no
7768  * capability for one, such as point to point links) cannot return as
7769  * the packet being broadcast.
7770  */
7771 void
7772 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7773 {
7774 	mblk_t *bmp;
7775 	struct ether_header *pether;
7776 
7777 	bzero(mhip, sizeof (struct mac_header_info_s));
7778 
7779 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7780 
7781 	pether = (struct ether_header *)((char *)mp->b_rptr
7782 	    - sizeof (struct ether_header));
7783 
7784 	/*
7785 	 * Make sure the interface is an ethernet type, since we don't
7786 	 * know the header format for anything but Ethernet. Also make
7787 	 * sure we are pointing correctly above db_base.
7788 	 */
7789 	if (ill->ill_type != IFT_ETHER)
7790 		return;
7791 
7792 retry:
7793 	if ((uchar_t *)pether < mp->b_datap->db_base)
7794 		return;
7795 
7796 	/* Is there a VLAN tag? */
7797 	if (ill->ill_isv6) {
7798 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7799 			pether = (struct ether_header *)((char *)pether - 4);
7800 			goto retry;
7801 		}
7802 	} else {
7803 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7804 			pether = (struct ether_header *)((char *)pether - 4);
7805 			goto retry;
7806 		}
7807 	}
7808 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7809 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7810 
7811 	if (!(mhip->mhi_daddr[0] & 0x01))
7812 		return;
7813 
7814 	/* Multicast or broadcast */
7815 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7816 
7817 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7818 		dl_unitdata_req_t *dlur;
7819 		uint8_t *bphys_addr;
7820 		uint_t	addrlen;
7821 
7822 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7823 		addrlen = dlur->dl_dest_addr_length;
7824 		if (ill->ill_sap_length < 0) {
7825 			bphys_addr = (uchar_t *)dlur +
7826 			    dlur->dl_dest_addr_offset;
7827 			addrlen += ill->ill_sap_length;
7828 		} else {
7829 			bphys_addr = (uchar_t *)dlur +
7830 			    dlur->dl_dest_addr_offset +
7831 			    ill->ill_sap_length;
7832 			addrlen -= ill->ill_sap_length;
7833 		}
7834 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7835 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7836 	}
7837 }
7838 
7839 /*
7840  * Handle anything but M_DATA messages
7841  * We see the DL_UNITDATA_IND which are part
7842  * of the data path, and also the other messages from the driver.
7843  */
7844 void
7845 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7846 {
7847 	mblk_t		*first_mp;
7848 	struct iocblk   *iocp;
7849 	struct mac_header_info_s mhi;
7850 
7851 	switch (DB_TYPE(mp)) {
7852 	case M_PROTO:
7853 	case M_PCPROTO: {
7854 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7855 		    DL_UNITDATA_IND) {
7856 			/* Go handle anything other than data elsewhere. */
7857 			ip_rput_dlpi(ill, mp);
7858 			return;
7859 		}
7860 
7861 		first_mp = mp;
7862 		mp = first_mp->b_cont;
7863 		first_mp->b_cont = NULL;
7864 
7865 		if (mp == NULL) {
7866 			freeb(first_mp);
7867 			return;
7868 		}
7869 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7870 		if (ill->ill_isv6)
7871 			ip_input_v6(ill, NULL, mp, &mhi);
7872 		else
7873 			ip_input(ill, NULL, mp, &mhi);
7874 
7875 		/* Ditch the DLPI header. */
7876 		freeb(first_mp);
7877 		return;
7878 	}
7879 	case M_IOCACK:
7880 		iocp = (struct iocblk *)mp->b_rptr;
7881 		switch (iocp->ioc_cmd) {
7882 		case DL_IOC_HDR_INFO:
7883 			ill_fastpath_ack(ill, mp);
7884 			return;
7885 		default:
7886 			putnext(ill->ill_rq, mp);
7887 			return;
7888 		}
7889 		/* FALLTHRU */
7890 	case M_ERROR:
7891 	case M_HANGUP:
7892 		mutex_enter(&ill->ill_lock);
7893 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7894 			mutex_exit(&ill->ill_lock);
7895 			freemsg(mp);
7896 			return;
7897 		}
7898 		ill_refhold_locked(ill);
7899 		mutex_exit(&ill->ill_lock);
7900 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7901 		    B_FALSE);
7902 		return;
7903 	case M_CTL:
7904 		putnext(ill->ill_rq, mp);
7905 		return;
7906 	case M_IOCNAK:
7907 		ip1dbg(("got iocnak "));
7908 		iocp = (struct iocblk *)mp->b_rptr;
7909 		switch (iocp->ioc_cmd) {
7910 		case DL_IOC_HDR_INFO:
7911 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7912 			return;
7913 		default:
7914 			break;
7915 		}
7916 		/* FALLTHRU */
7917 	default:
7918 		putnext(ill->ill_rq, mp);
7919 		return;
7920 	}
7921 }
7922 
7923 /* Read side put procedure.  Packets coming from the wire arrive here. */
7924 void
7925 ip_rput(queue_t *q, mblk_t *mp)
7926 {
7927 	ill_t	*ill;
7928 	union DL_primitives *dl;
7929 
7930 	ill = (ill_t *)q->q_ptr;
7931 
7932 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7933 		/*
7934 		 * If things are opening or closing, only accept high-priority
7935 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
7936 		 * created; on close, things hanging off the ill may have been
7937 		 * freed already.)
7938 		 */
7939 		dl = (union DL_primitives *)mp->b_rptr;
7940 		if (DB_TYPE(mp) != M_PCPROTO ||
7941 		    dl->dl_primitive == DL_UNITDATA_IND) {
7942 			inet_freemsg(mp);
7943 			return;
7944 		}
7945 	}
7946 	if (DB_TYPE(mp) == M_DATA) {
7947 		struct mac_header_info_s mhi;
7948 
7949 		ip_mdata_to_mhi(ill, mp, &mhi);
7950 		ip_input(ill, NULL, mp, &mhi);
7951 	} else {
7952 		ip_rput_notdata(ill, mp);
7953 	}
7954 }
7955 
7956 /*
7957  * Move the information to a copy.
7958  */
7959 mblk_t *
7960 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
7961 {
7962 	mblk_t		*mp1;
7963 	ill_t		*ill = ira->ira_ill;
7964 	ip_stack_t	*ipst = ill->ill_ipst;
7965 
7966 	IP_STAT(ipst, ip_db_ref);
7967 
7968 	/* Make sure we have ira_l2src before we loose the original mblk */
7969 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7970 		ip_setl2src(mp, ira, ira->ira_rill);
7971 
7972 	mp1 = copymsg(mp);
7973 	if (mp1 == NULL) {
7974 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7975 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
7976 		freemsg(mp);
7977 		return (NULL);
7978 	}
7979 	/* preserve the hardware checksum flags and data, if present */
7980 	if (DB_CKSUMFLAGS(mp) != 0) {
7981 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
7982 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
7983 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
7984 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
7985 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
7986 	}
7987 	freemsg(mp);
7988 	return (mp1);
7989 }
7990 
7991 static void
7992 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
7993     t_uscalar_t err)
7994 {
7995 	if (dl_err == DL_SYSERR) {
7996 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
7997 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
7998 		    ill->ill_name, dl_primstr(prim), err);
7999 		return;
8000 	}
8001 
8002 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8003 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8004 	    dl_errstr(dl_err));
8005 }
8006 
8007 /*
8008  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8009  * than DL_UNITDATA_IND messages. If we need to process this message
8010  * exclusively, we call qwriter_ip, in which case we also need to call
8011  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8012  */
8013 void
8014 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8015 {
8016 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8017 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8018 	queue_t		*q = ill->ill_rq;
8019 	t_uscalar_t	prim = dloa->dl_primitive;
8020 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8021 
8022 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8023 	    char *, dl_primstr(prim), ill_t *, ill);
8024 	ip1dbg(("ip_rput_dlpi"));
8025 
8026 	/*
8027 	 * If we received an ACK but didn't send a request for it, then it
8028 	 * can't be part of any pending operation; discard up-front.
8029 	 */
8030 	switch (prim) {
8031 	case DL_ERROR_ACK:
8032 		reqprim = dlea->dl_error_primitive;
8033 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8034 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8035 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8036 		    dlea->dl_unix_errno));
8037 		break;
8038 	case DL_OK_ACK:
8039 		reqprim = dloa->dl_correct_primitive;
8040 		break;
8041 	case DL_INFO_ACK:
8042 		reqprim = DL_INFO_REQ;
8043 		break;
8044 	case DL_BIND_ACK:
8045 		reqprim = DL_BIND_REQ;
8046 		break;
8047 	case DL_PHYS_ADDR_ACK:
8048 		reqprim = DL_PHYS_ADDR_REQ;
8049 		break;
8050 	case DL_NOTIFY_ACK:
8051 		reqprim = DL_NOTIFY_REQ;
8052 		break;
8053 	case DL_CAPABILITY_ACK:
8054 		reqprim = DL_CAPABILITY_REQ;
8055 		break;
8056 	}
8057 
8058 	if (prim != DL_NOTIFY_IND) {
8059 		if (reqprim == DL_PRIM_INVAL ||
8060 		    !ill_dlpi_pending(ill, reqprim)) {
8061 			/* Not a DLPI message we support or expected */
8062 			freemsg(mp);
8063 			return;
8064 		}
8065 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8066 		    dl_primstr(reqprim)));
8067 	}
8068 
8069 	switch (reqprim) {
8070 	case DL_UNBIND_REQ:
8071 		/*
8072 		 * NOTE: we mark the unbind as complete even if we got a
8073 		 * DL_ERROR_ACK, since there's not much else we can do.
8074 		 */
8075 		mutex_enter(&ill->ill_lock);
8076 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8077 		cv_signal(&ill->ill_cv);
8078 		mutex_exit(&ill->ill_lock);
8079 		break;
8080 
8081 	case DL_ENABMULTI_REQ:
8082 		if (prim == DL_OK_ACK) {
8083 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8084 				ill->ill_dlpi_multicast_state = IDS_OK;
8085 		}
8086 		break;
8087 	}
8088 
8089 	/*
8090 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8091 	 * need to become writer to continue to process it.  Because an
8092 	 * exclusive operation doesn't complete until replies to all queued
8093 	 * DLPI messages have been received, we know we're in the middle of an
8094 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8095 	 *
8096 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8097 	 * Since this is on the ill stream we unconditionally bump up the
8098 	 * refcount without doing ILL_CAN_LOOKUP().
8099 	 */
8100 	ill_refhold(ill);
8101 	if (prim == DL_NOTIFY_IND)
8102 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8103 	else
8104 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8105 }
8106 
8107 /*
8108  * Handling of DLPI messages that require exclusive access to the ipsq.
8109  *
8110  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8111  * happen here. (along with mi_copy_done)
8112  */
8113 /* ARGSUSED */
8114 static void
8115 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8116 {
8117 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8118 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8119 	int		err = 0;
8120 	ill_t		*ill = (ill_t *)q->q_ptr;
8121 	ipif_t		*ipif = NULL;
8122 	mblk_t		*mp1 = NULL;
8123 	conn_t		*connp = NULL;
8124 	t_uscalar_t	paddrreq;
8125 	mblk_t		*mp_hw;
8126 	boolean_t	success;
8127 	boolean_t	ioctl_aborted = B_FALSE;
8128 	boolean_t	log = B_TRUE;
8129 
8130 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8131 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8132 
8133 	ip1dbg(("ip_rput_dlpi_writer .."));
8134 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8135 	ASSERT(IAM_WRITER_ILL(ill));
8136 
8137 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8138 	/*
8139 	 * The current ioctl could have been aborted by the user and a new
8140 	 * ioctl to bring up another ill could have started. We could still
8141 	 * get a response from the driver later.
8142 	 */
8143 	if (ipif != NULL && ipif->ipif_ill != ill)
8144 		ioctl_aborted = B_TRUE;
8145 
8146 	switch (dloa->dl_primitive) {
8147 	case DL_ERROR_ACK:
8148 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8149 		    dl_primstr(dlea->dl_error_primitive)));
8150 
8151 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8152 		    char *, dl_primstr(dlea->dl_error_primitive),
8153 		    ill_t *, ill);
8154 
8155 		switch (dlea->dl_error_primitive) {
8156 		case DL_DISABMULTI_REQ:
8157 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8158 			break;
8159 		case DL_PROMISCON_REQ:
8160 		case DL_PROMISCOFF_REQ:
8161 		case DL_UNBIND_REQ:
8162 		case DL_ATTACH_REQ:
8163 		case DL_INFO_REQ:
8164 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8165 			break;
8166 		case DL_NOTIFY_REQ:
8167 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8168 			log = B_FALSE;
8169 			break;
8170 		case DL_PHYS_ADDR_REQ:
8171 			/*
8172 			 * For IPv6 only, there are two additional
8173 			 * phys_addr_req's sent to the driver to get the
8174 			 * IPv6 token and lla. This allows IP to acquire
8175 			 * the hardware address format for a given interface
8176 			 * without having built in knowledge of the hardware
8177 			 * address. ill_phys_addr_pend keeps track of the last
8178 			 * DL_PAR sent so we know which response we are
8179 			 * dealing with. ill_dlpi_done will update
8180 			 * ill_phys_addr_pend when it sends the next req.
8181 			 * We don't complete the IOCTL until all three DL_PARs
8182 			 * have been attempted, so set *_len to 0 and break.
8183 			 */
8184 			paddrreq = ill->ill_phys_addr_pend;
8185 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8186 			if (paddrreq == DL_IPV6_TOKEN) {
8187 				ill->ill_token_length = 0;
8188 				log = B_FALSE;
8189 				break;
8190 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8191 				ill->ill_nd_lla_len = 0;
8192 				log = B_FALSE;
8193 				break;
8194 			}
8195 			/*
8196 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8197 			 * We presumably have an IOCTL hanging out waiting
8198 			 * for completion. Find it and complete the IOCTL
8199 			 * with the error noted.
8200 			 * However, ill_dl_phys was called on an ill queue
8201 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8202 			 * set. But the ioctl is known to be pending on ill_wq.
8203 			 */
8204 			if (!ill->ill_ifname_pending)
8205 				break;
8206 			ill->ill_ifname_pending = 0;
8207 			if (!ioctl_aborted)
8208 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8209 			if (mp1 != NULL) {
8210 				/*
8211 				 * This operation (SIOCSLIFNAME) must have
8212 				 * happened on the ill. Assert there is no conn
8213 				 */
8214 				ASSERT(connp == NULL);
8215 				q = ill->ill_wq;
8216 			}
8217 			break;
8218 		case DL_BIND_REQ:
8219 			ill_dlpi_done(ill, DL_BIND_REQ);
8220 			if (ill->ill_ifname_pending)
8221 				break;
8222 			/*
8223 			 * Something went wrong with the bind.  We presumably
8224 			 * have an IOCTL hanging out waiting for completion.
8225 			 * Find it, take down the interface that was coming
8226 			 * up, and complete the IOCTL with the error noted.
8227 			 */
8228 			if (!ioctl_aborted)
8229 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8230 			if (mp1 != NULL) {
8231 				/*
8232 				 * This might be a result of a DL_NOTE_REPLUMB
8233 				 * notification. In that case, connp is NULL.
8234 				 */
8235 				if (connp != NULL)
8236 					q = CONNP_TO_WQ(connp);
8237 
8238 				(void) ipif_down(ipif, NULL, NULL);
8239 				/* error is set below the switch */
8240 			}
8241 			break;
8242 		case DL_ENABMULTI_REQ:
8243 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8244 
8245 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8246 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8247 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8248 
8249 				printf("ip: joining multicasts failed (%d)"
8250 				    " on %s - will use link layer "
8251 				    "broadcasts for multicast\n",
8252 				    dlea->dl_errno, ill->ill_name);
8253 
8254 				/*
8255 				 * Set up for multi_bcast; We are the
8256 				 * writer, so ok to access ill->ill_ipif
8257 				 * without any lock.
8258 				 */
8259 				mutex_enter(&ill->ill_phyint->phyint_lock);
8260 				ill->ill_phyint->phyint_flags |=
8261 				    PHYI_MULTI_BCAST;
8262 				mutex_exit(&ill->ill_phyint->phyint_lock);
8263 
8264 			}
8265 			freemsg(mp);	/* Don't want to pass this up */
8266 			return;
8267 		case DL_CAPABILITY_REQ:
8268 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8269 			    "DL_CAPABILITY REQ\n"));
8270 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8271 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8272 			ill_capability_done(ill);
8273 			freemsg(mp);
8274 			return;
8275 		}
8276 		/*
8277 		 * Note the error for IOCTL completion (mp1 is set when
8278 		 * ready to complete ioctl). If ill_ifname_pending_err is
8279 		 * set, an error occured during plumbing (ill_ifname_pending),
8280 		 * so we want to report that error.
8281 		 *
8282 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8283 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8284 		 * expected to get errack'd if the driver doesn't support
8285 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8286 		 * if these error conditions are encountered.
8287 		 */
8288 		if (mp1 != NULL) {
8289 			if (ill->ill_ifname_pending_err != 0)  {
8290 				err = ill->ill_ifname_pending_err;
8291 				ill->ill_ifname_pending_err = 0;
8292 			} else {
8293 				err = dlea->dl_unix_errno ?
8294 				    dlea->dl_unix_errno : ENXIO;
8295 			}
8296 		/*
8297 		 * If we're plumbing an interface and an error hasn't already
8298 		 * been saved, set ill_ifname_pending_err to the error passed
8299 		 * up. Ignore the error if log is B_FALSE (see comment above).
8300 		 */
8301 		} else if (log && ill->ill_ifname_pending &&
8302 		    ill->ill_ifname_pending_err == 0) {
8303 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8304 			    dlea->dl_unix_errno : ENXIO;
8305 		}
8306 
8307 		if (log)
8308 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8309 			    dlea->dl_errno, dlea->dl_unix_errno);
8310 		break;
8311 	case DL_CAPABILITY_ACK:
8312 		ill_capability_ack(ill, mp);
8313 		/*
8314 		 * The message has been handed off to ill_capability_ack
8315 		 * and must not be freed below
8316 		 */
8317 		mp = NULL;
8318 		break;
8319 
8320 	case DL_INFO_ACK:
8321 		/* Call a routine to handle this one. */
8322 		ill_dlpi_done(ill, DL_INFO_REQ);
8323 		ip_ll_subnet_defaults(ill, mp);
8324 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8325 		return;
8326 	case DL_BIND_ACK:
8327 		/*
8328 		 * We should have an IOCTL waiting on this unless
8329 		 * sent by ill_dl_phys, in which case just return
8330 		 */
8331 		ill_dlpi_done(ill, DL_BIND_REQ);
8332 		if (ill->ill_ifname_pending) {
8333 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8334 			    ill_t *, ill, mblk_t *, mp);
8335 			break;
8336 		}
8337 		if (!ioctl_aborted)
8338 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8339 		if (mp1 == NULL) {
8340 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8341 			break;
8342 		}
8343 		/*
8344 		 * mp1 was added by ill_dl_up(). if that is a result of
8345 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8346 		 */
8347 		if (connp != NULL)
8348 			q = CONNP_TO_WQ(connp);
8349 		/*
8350 		 * We are exclusive. So nothing can change even after
8351 		 * we get the pending mp.
8352 		 */
8353 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8354 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8355 
8356 		mutex_enter(&ill->ill_lock);
8357 		ill->ill_dl_up = 1;
8358 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8359 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8360 		mutex_exit(&ill->ill_lock);
8361 
8362 		/*
8363 		 * Now bring up the resolver; when that is complete, we'll
8364 		 * create IREs.  Note that we intentionally mirror what
8365 		 * ipif_up() would have done, because we got here by way of
8366 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8367 		 */
8368 		if (ill->ill_isv6) {
8369 			/*
8370 			 * v6 interfaces.
8371 			 * Unlike ARP which has to do another bind
8372 			 * and attach, once we get here we are
8373 			 * done with NDP
8374 			 */
8375 			(void) ipif_resolver_up(ipif, Res_act_initial);
8376 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8377 				err = ipif_up_done_v6(ipif);
8378 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8379 			/*
8380 			 * ARP and other v4 external resolvers.
8381 			 * Leave the pending mblk intact so that
8382 			 * the ioctl completes in ip_rput().
8383 			 */
8384 			if (connp != NULL)
8385 				mutex_enter(&connp->conn_lock);
8386 			mutex_enter(&ill->ill_lock);
8387 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8388 			mutex_exit(&ill->ill_lock);
8389 			if (connp != NULL)
8390 				mutex_exit(&connp->conn_lock);
8391 			if (success) {
8392 				err = ipif_resolver_up(ipif, Res_act_initial);
8393 				if (err == EINPROGRESS) {
8394 					freemsg(mp);
8395 					return;
8396 				}
8397 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8398 			} else {
8399 				/* The conn has started closing */
8400 				err = EINTR;
8401 			}
8402 		} else {
8403 			/*
8404 			 * This one is complete. Reply to pending ioctl.
8405 			 */
8406 			(void) ipif_resolver_up(ipif, Res_act_initial);
8407 			err = ipif_up_done(ipif);
8408 		}
8409 
8410 		if ((err == 0) && (ill->ill_up_ipifs)) {
8411 			err = ill_up_ipifs(ill, q, mp1);
8412 			if (err == EINPROGRESS) {
8413 				freemsg(mp);
8414 				return;
8415 			}
8416 		}
8417 
8418 		/*
8419 		 * If we have a moved ipif to bring up, and everything has
8420 		 * succeeded to this point, bring it up on the IPMP ill.
8421 		 * Otherwise, leave it down -- the admin can try to bring it
8422 		 * up by hand if need be.
8423 		 */
8424 		if (ill->ill_move_ipif != NULL) {
8425 			if (err != 0) {
8426 				ill->ill_move_ipif = NULL;
8427 			} else {
8428 				ipif = ill->ill_move_ipif;
8429 				ill->ill_move_ipif = NULL;
8430 				err = ipif_up(ipif, q, mp1);
8431 				if (err == EINPROGRESS) {
8432 					freemsg(mp);
8433 					return;
8434 				}
8435 			}
8436 		}
8437 		break;
8438 
8439 	case DL_NOTIFY_IND: {
8440 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8441 		uint_t orig_mtu;
8442 
8443 		switch (notify->dl_notification) {
8444 		case DL_NOTE_PHYS_ADDR:
8445 			err = ill_set_phys_addr(ill, mp);
8446 			break;
8447 
8448 		case DL_NOTE_REPLUMB:
8449 			/*
8450 			 * Directly return after calling ill_replumb().
8451 			 * Note that we should not free mp as it is reused
8452 			 * in the ill_replumb() function.
8453 			 */
8454 			err = ill_replumb(ill, mp);
8455 			return;
8456 
8457 		case DL_NOTE_FASTPATH_FLUSH:
8458 			nce_flush(ill, B_FALSE);
8459 			break;
8460 
8461 		case DL_NOTE_SDU_SIZE:
8462 			/*
8463 			 * The dce and fragmentation code can cope with
8464 			 * this changing while packets are being sent.
8465 			 * When packets are sent ip_output will discover
8466 			 * a change.
8467 			 *
8468 			 * Change the MTU size of the interface.
8469 			 */
8470 			mutex_enter(&ill->ill_lock);
8471 			ill->ill_current_frag = (uint_t)notify->dl_data;
8472 			if (ill->ill_current_frag > ill->ill_max_frag)
8473 				ill->ill_max_frag = ill->ill_current_frag;
8474 
8475 			orig_mtu = ill->ill_mtu;
8476 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8477 				ill->ill_mtu = ill->ill_current_frag;
8478 
8479 				/*
8480 				 * If ill_user_mtu was set (via
8481 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8482 				 */
8483 				if (ill->ill_user_mtu != 0 &&
8484 				    ill->ill_user_mtu < ill->ill_mtu)
8485 					ill->ill_mtu = ill->ill_user_mtu;
8486 
8487 				if (ill->ill_isv6) {
8488 					if (ill->ill_mtu < IPV6_MIN_MTU)
8489 						ill->ill_mtu = IPV6_MIN_MTU;
8490 				} else {
8491 					if (ill->ill_mtu < IP_MIN_MTU)
8492 						ill->ill_mtu = IP_MIN_MTU;
8493 				}
8494 			}
8495 			mutex_exit(&ill->ill_lock);
8496 			/*
8497 			 * Make sure all dce_generation checks find out
8498 			 * that ill_mtu has changed.
8499 			 */
8500 			if (orig_mtu != ill->ill_mtu) {
8501 				dce_increment_all_generations(ill->ill_isv6,
8502 				    ill->ill_ipst);
8503 			}
8504 
8505 			/*
8506 			 * Refresh IPMP meta-interface MTU if necessary.
8507 			 */
8508 			if (IS_UNDER_IPMP(ill))
8509 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8510 			break;
8511 
8512 		case DL_NOTE_LINK_UP:
8513 		case DL_NOTE_LINK_DOWN: {
8514 			/*
8515 			 * We are writer. ill / phyint / ipsq assocs stable.
8516 			 * The RUNNING flag reflects the state of the link.
8517 			 */
8518 			phyint_t *phyint = ill->ill_phyint;
8519 			uint64_t new_phyint_flags;
8520 			boolean_t changed = B_FALSE;
8521 			boolean_t went_up;
8522 
8523 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8524 			mutex_enter(&phyint->phyint_lock);
8525 
8526 			new_phyint_flags = went_up ?
8527 			    phyint->phyint_flags | PHYI_RUNNING :
8528 			    phyint->phyint_flags & ~PHYI_RUNNING;
8529 
8530 			if (IS_IPMP(ill)) {
8531 				new_phyint_flags = went_up ?
8532 				    new_phyint_flags & ~PHYI_FAILED :
8533 				    new_phyint_flags | PHYI_FAILED;
8534 			}
8535 
8536 			if (new_phyint_flags != phyint->phyint_flags) {
8537 				phyint->phyint_flags = new_phyint_flags;
8538 				changed = B_TRUE;
8539 			}
8540 			mutex_exit(&phyint->phyint_lock);
8541 			/*
8542 			 * ill_restart_dad handles the DAD restart and routing
8543 			 * socket notification logic.
8544 			 */
8545 			if (changed) {
8546 				ill_restart_dad(phyint->phyint_illv4, went_up);
8547 				ill_restart_dad(phyint->phyint_illv6, went_up);
8548 			}
8549 			break;
8550 		}
8551 		case DL_NOTE_PROMISC_ON_PHYS: {
8552 			phyint_t *phyint = ill->ill_phyint;
8553 
8554 			mutex_enter(&phyint->phyint_lock);
8555 			phyint->phyint_flags |= PHYI_PROMISC;
8556 			mutex_exit(&phyint->phyint_lock);
8557 			break;
8558 		}
8559 		case DL_NOTE_PROMISC_OFF_PHYS: {
8560 			phyint_t *phyint = ill->ill_phyint;
8561 
8562 			mutex_enter(&phyint->phyint_lock);
8563 			phyint->phyint_flags &= ~PHYI_PROMISC;
8564 			mutex_exit(&phyint->phyint_lock);
8565 			break;
8566 		}
8567 		case DL_NOTE_CAPAB_RENEG:
8568 			/*
8569 			 * Something changed on the driver side.
8570 			 * It wants us to renegotiate the capabilities
8571 			 * on this ill. One possible cause is the aggregation
8572 			 * interface under us where a port got added or
8573 			 * went away.
8574 			 *
8575 			 * If the capability negotiation is already done
8576 			 * or is in progress, reset the capabilities and
8577 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8578 			 * so that when the ack comes back, we can start
8579 			 * the renegotiation process.
8580 			 *
8581 			 * Note that if ill_capab_reneg is already B_TRUE
8582 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8583 			 * the capability resetting request has been sent
8584 			 * and the renegotiation has not been started yet;
8585 			 * nothing needs to be done in this case.
8586 			 */
8587 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8588 			ill_capability_reset(ill, B_TRUE);
8589 			ipsq_current_finish(ipsq);
8590 			break;
8591 		default:
8592 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8593 			    "type 0x%x for DL_NOTIFY_IND\n",
8594 			    notify->dl_notification));
8595 			break;
8596 		}
8597 
8598 		/*
8599 		 * As this is an asynchronous operation, we
8600 		 * should not call ill_dlpi_done
8601 		 */
8602 		break;
8603 	}
8604 	case DL_NOTIFY_ACK: {
8605 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8606 
8607 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8608 			ill->ill_note_link = 1;
8609 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8610 		break;
8611 	}
8612 	case DL_PHYS_ADDR_ACK: {
8613 		/*
8614 		 * As part of plumbing the interface via SIOCSLIFNAME,
8615 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8616 		 * whose answers we receive here.  As each answer is received,
8617 		 * we call ill_dlpi_done() to dispatch the next request as
8618 		 * we're processing the current one.  Once all answers have
8619 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8620 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8621 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8622 		 * available, but we know the ioctl is pending on ill_wq.)
8623 		 */
8624 		uint_t	paddrlen, paddroff;
8625 		uint8_t	*addr;
8626 
8627 		paddrreq = ill->ill_phys_addr_pend;
8628 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8629 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8630 		addr = mp->b_rptr + paddroff;
8631 
8632 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8633 		if (paddrreq == DL_IPV6_TOKEN) {
8634 			/*
8635 			 * bcopy to low-order bits of ill_token
8636 			 *
8637 			 * XXX Temporary hack - currently, all known tokens
8638 			 * are 64 bits, so I'll cheat for the moment.
8639 			 */
8640 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8641 			ill->ill_token_length = paddrlen;
8642 			break;
8643 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8644 			ASSERT(ill->ill_nd_lla_mp == NULL);
8645 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8646 			mp = NULL;
8647 			break;
8648 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8649 			ASSERT(ill->ill_dest_addr_mp == NULL);
8650 			ill->ill_dest_addr_mp = mp;
8651 			ill->ill_dest_addr = addr;
8652 			mp = NULL;
8653 			if (ill->ill_isv6) {
8654 				ill_setdesttoken(ill);
8655 				ipif_setdestlinklocal(ill->ill_ipif);
8656 			}
8657 			break;
8658 		}
8659 
8660 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8661 		ASSERT(ill->ill_phys_addr_mp == NULL);
8662 		if (!ill->ill_ifname_pending)
8663 			break;
8664 		ill->ill_ifname_pending = 0;
8665 		if (!ioctl_aborted)
8666 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8667 		if (mp1 != NULL) {
8668 			ASSERT(connp == NULL);
8669 			q = ill->ill_wq;
8670 		}
8671 		/*
8672 		 * If any error acks received during the plumbing sequence,
8673 		 * ill_ifname_pending_err will be set. Break out and send up
8674 		 * the error to the pending ioctl.
8675 		 */
8676 		if (ill->ill_ifname_pending_err != 0) {
8677 			err = ill->ill_ifname_pending_err;
8678 			ill->ill_ifname_pending_err = 0;
8679 			break;
8680 		}
8681 
8682 		ill->ill_phys_addr_mp = mp;
8683 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8684 		mp = NULL;
8685 
8686 		/*
8687 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8688 		 * provider doesn't support physical addresses.  We check both
8689 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8690 		 * not have physical addresses, but historically adversises a
8691 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8692 		 * its DL_PHYS_ADDR_ACK.
8693 		 */
8694 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8695 			ill->ill_phys_addr = NULL;
8696 		} else if (paddrlen != ill->ill_phys_addr_length) {
8697 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8698 			    paddrlen, ill->ill_phys_addr_length));
8699 			err = EINVAL;
8700 			break;
8701 		}
8702 
8703 		if (ill->ill_nd_lla_mp == NULL) {
8704 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8705 				err = ENOMEM;
8706 				break;
8707 			}
8708 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8709 		}
8710 
8711 		if (ill->ill_isv6) {
8712 			ill_setdefaulttoken(ill);
8713 			ipif_setlinklocal(ill->ill_ipif);
8714 		}
8715 		break;
8716 	}
8717 	case DL_OK_ACK:
8718 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8719 		    dl_primstr((int)dloa->dl_correct_primitive),
8720 		    dloa->dl_correct_primitive));
8721 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8722 		    char *, dl_primstr(dloa->dl_correct_primitive),
8723 		    ill_t *, ill);
8724 
8725 		switch (dloa->dl_correct_primitive) {
8726 		case DL_ENABMULTI_REQ:
8727 		case DL_DISABMULTI_REQ:
8728 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8729 			break;
8730 		case DL_PROMISCON_REQ:
8731 		case DL_PROMISCOFF_REQ:
8732 		case DL_UNBIND_REQ:
8733 		case DL_ATTACH_REQ:
8734 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8735 			break;
8736 		}
8737 		break;
8738 	default:
8739 		break;
8740 	}
8741 
8742 	freemsg(mp);
8743 	if (mp1 == NULL)
8744 		return;
8745 
8746 	/*
8747 	 * The operation must complete without EINPROGRESS since
8748 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8749 	 * the operation will be stuck forever inside the IPSQ.
8750 	 */
8751 	ASSERT(err != EINPROGRESS);
8752 
8753 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8754 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8755 	    ipif_t *, NULL);
8756 
8757 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8758 	case 0:
8759 		ipsq_current_finish(ipsq);
8760 		break;
8761 
8762 	case SIOCSLIFNAME:
8763 	case IF_UNITSEL: {
8764 		ill_t *ill_other = ILL_OTHER(ill);
8765 
8766 		/*
8767 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8768 		 * ill has a peer which is in an IPMP group, then place ill
8769 		 * into the same group.  One catch: although ifconfig plumbs
8770 		 * the appropriate IPMP meta-interface prior to plumbing this
8771 		 * ill, it is possible for multiple ifconfig applications to
8772 		 * race (or for another application to adjust plumbing), in
8773 		 * which case the IPMP meta-interface we need will be missing.
8774 		 * If so, kick the phyint out of the group.
8775 		 */
8776 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8777 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8778 			ipmp_illgrp_t	*illg;
8779 
8780 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8781 			if (illg == NULL)
8782 				ipmp_phyint_leave_grp(ill->ill_phyint);
8783 			else
8784 				ipmp_ill_join_illgrp(ill, illg);
8785 		}
8786 
8787 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8788 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8789 		else
8790 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8791 		break;
8792 	}
8793 	case SIOCLIFADDIF:
8794 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8795 		break;
8796 
8797 	default:
8798 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8799 		break;
8800 	}
8801 }
8802 
8803 /*
8804  * ip_rput_other is called by ip_rput to handle messages modifying the global
8805  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8806  */
8807 /* ARGSUSED */
8808 void
8809 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8810 {
8811 	ill_t		*ill = q->q_ptr;
8812 	struct iocblk	*iocp;
8813 
8814 	ip1dbg(("ip_rput_other "));
8815 	if (ipsq != NULL) {
8816 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8817 		ASSERT(ipsq->ipsq_xop ==
8818 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8819 	}
8820 
8821 	switch (mp->b_datap->db_type) {
8822 	case M_ERROR:
8823 	case M_HANGUP:
8824 		/*
8825 		 * The device has a problem.  We force the ILL down.  It can
8826 		 * be brought up again manually using SIOCSIFFLAGS (via
8827 		 * ifconfig or equivalent).
8828 		 */
8829 		ASSERT(ipsq != NULL);
8830 		if (mp->b_rptr < mp->b_wptr)
8831 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8832 		if (ill->ill_error == 0)
8833 			ill->ill_error = ENXIO;
8834 		if (!ill_down_start(q, mp))
8835 			return;
8836 		ipif_all_down_tail(ipsq, q, mp, NULL);
8837 		break;
8838 	case M_IOCNAK: {
8839 		iocp = (struct iocblk *)mp->b_rptr;
8840 
8841 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8842 		/*
8843 		 * If this was the first attempt, turn off the fastpath
8844 		 * probing.
8845 		 */
8846 		mutex_enter(&ill->ill_lock);
8847 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8848 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8849 			mutex_exit(&ill->ill_lock);
8850 			/*
8851 			 * don't flush the nce_t entries: we use them
8852 			 * as an index to the ncec itself.
8853 			 */
8854 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8855 			    ill->ill_name));
8856 		} else {
8857 			mutex_exit(&ill->ill_lock);
8858 		}
8859 		freemsg(mp);
8860 		break;
8861 	}
8862 	default:
8863 		ASSERT(0);
8864 		break;
8865 	}
8866 }
8867 
8868 /*
8869  * Update any source route, record route or timestamp options
8870  * When it fails it has consumed the message and BUMPed the MIB.
8871  */
8872 boolean_t
8873 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8874     ip_recv_attr_t *ira)
8875 {
8876 	ipoptp_t	opts;
8877 	uchar_t		*opt;
8878 	uint8_t		optval;
8879 	uint8_t		optlen;
8880 	ipaddr_t	dst;
8881 	ipaddr_t	ifaddr;
8882 	uint32_t	ts;
8883 	timestruc_t	now;
8884 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8885 
8886 	ip2dbg(("ip_forward_options\n"));
8887 	dst = ipha->ipha_dst;
8888 	for (optval = ipoptp_first(&opts, ipha);
8889 	    optval != IPOPT_EOL;
8890 	    optval = ipoptp_next(&opts)) {
8891 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8892 		opt = opts.ipoptp_cur;
8893 		optlen = opts.ipoptp_len;
8894 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
8895 		    optval, opts.ipoptp_len));
8896 		switch (optval) {
8897 			uint32_t off;
8898 		case IPOPT_SSRR:
8899 		case IPOPT_LSRR:
8900 			/* Check if adminstratively disabled */
8901 			if (!ipst->ips_ip_forward_src_routed) {
8902 				BUMP_MIB(dst_ill->ill_ip_mib,
8903 				    ipIfStatsForwProhibits);
8904 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8905 				    mp, dst_ill);
8906 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8907 				    ira);
8908 				return (B_FALSE);
8909 			}
8910 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8911 				/*
8912 				 * Must be partial since ip_input_options
8913 				 * checked for strict.
8914 				 */
8915 				break;
8916 			}
8917 			off = opt[IPOPT_OFFSET];
8918 			off--;
8919 		redo_srr:
8920 			if (optlen < IP_ADDR_LEN ||
8921 			    off > optlen - IP_ADDR_LEN) {
8922 				/* End of source route */
8923 				ip1dbg((
8924 				    "ip_forward_options: end of SR\n"));
8925 				break;
8926 			}
8927 			/* Pick a reasonable address on the outbound if */
8928 			ASSERT(dst_ill != NULL);
8929 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
8930 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
8931 			    NULL) != 0) {
8932 				/* No source! Shouldn't happen */
8933 				ifaddr = INADDR_ANY;
8934 			}
8935 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
8936 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
8937 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
8938 			    ntohl(dst)));
8939 
8940 			/*
8941 			 * Check if our address is present more than
8942 			 * once as consecutive hops in source route.
8943 			 */
8944 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
8945 				off += IP_ADDR_LEN;
8946 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
8947 				goto redo_srr;
8948 			}
8949 			ipha->ipha_dst = dst;
8950 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
8951 			break;
8952 		case IPOPT_RR:
8953 			off = opt[IPOPT_OFFSET];
8954 			off--;
8955 			if (optlen < IP_ADDR_LEN ||
8956 			    off > optlen - IP_ADDR_LEN) {
8957 				/* No more room - ignore */
8958 				ip1dbg((
8959 				    "ip_forward_options: end of RR\n"));
8960 				break;
8961 			}
8962 			/* Pick a reasonable address on the outbound if */
8963 			ASSERT(dst_ill != NULL);
8964 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
8965 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
8966 			    NULL) != 0) {
8967 				/* No source! Shouldn't happen */
8968 				ifaddr = INADDR_ANY;
8969 			}
8970 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
8971 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
8972 			break;
8973 		case IPOPT_TS:
8974 			/* Insert timestamp if there is room */
8975 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
8976 			case IPOPT_TS_TSONLY:
8977 				off = IPOPT_TS_TIMELEN;
8978 				break;
8979 			case IPOPT_TS_PRESPEC:
8980 			case IPOPT_TS_PRESPEC_RFC791:
8981 				/* Verify that the address matched */
8982 				off = opt[IPOPT_OFFSET] - 1;
8983 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
8984 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8985 					/* Not for us */
8986 					break;
8987 				}
8988 				/* FALLTHRU */
8989 			case IPOPT_TS_TSANDADDR:
8990 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
8991 				break;
8992 			default:
8993 				/*
8994 				 * ip_*put_options should have already
8995 				 * dropped this packet.
8996 				 */
8997 				cmn_err(CE_PANIC, "ip_forward_options: "
8998 				    "unknown IT - bug in ip_input_options?\n");
8999 				return (B_TRUE);	/* Keep "lint" happy */
9000 			}
9001 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9002 				/* Increase overflow counter */
9003 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9004 				opt[IPOPT_POS_OV_FLG] =
9005 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9006 				    (off << 4));
9007 				break;
9008 			}
9009 			off = opt[IPOPT_OFFSET] - 1;
9010 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9011 			case IPOPT_TS_PRESPEC:
9012 			case IPOPT_TS_PRESPEC_RFC791:
9013 			case IPOPT_TS_TSANDADDR:
9014 				/* Pick a reasonable addr on the outbound if */
9015 				ASSERT(dst_ill != NULL);
9016 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9017 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9018 				    NULL, NULL) != 0) {
9019 					/* No source! Shouldn't happen */
9020 					ifaddr = INADDR_ANY;
9021 				}
9022 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9023 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9024 				/* FALLTHRU */
9025 			case IPOPT_TS_TSONLY:
9026 				off = opt[IPOPT_OFFSET] - 1;
9027 				/* Compute # of milliseconds since midnight */
9028 				gethrestime(&now);
9029 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9030 				    now.tv_nsec / (NANOSEC / MILLISEC);
9031 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9032 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9033 				break;
9034 			}
9035 			break;
9036 		}
9037 	}
9038 	return (B_TRUE);
9039 }
9040 
9041 /*
9042  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9043  * returns 'true' if there are still fragments left on the queue, in
9044  * which case we restart the timer.
9045  */
9046 void
9047 ill_frag_timer(void *arg)
9048 {
9049 	ill_t	*ill = (ill_t *)arg;
9050 	boolean_t frag_pending;
9051 	ip_stack_t *ipst = ill->ill_ipst;
9052 	time_t	timeout;
9053 
9054 	mutex_enter(&ill->ill_lock);
9055 	ASSERT(!ill->ill_fragtimer_executing);
9056 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9057 		ill->ill_frag_timer_id = 0;
9058 		mutex_exit(&ill->ill_lock);
9059 		return;
9060 	}
9061 	ill->ill_fragtimer_executing = 1;
9062 	mutex_exit(&ill->ill_lock);
9063 
9064 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9065 	    ipst->ips_ip_reassembly_timeout);
9066 
9067 	frag_pending = ill_frag_timeout(ill, timeout);
9068 
9069 	/*
9070 	 * Restart the timer, if we have fragments pending or if someone
9071 	 * wanted us to be scheduled again.
9072 	 */
9073 	mutex_enter(&ill->ill_lock);
9074 	ill->ill_fragtimer_executing = 0;
9075 	ill->ill_frag_timer_id = 0;
9076 	if (frag_pending || ill->ill_fragtimer_needrestart)
9077 		ill_frag_timer_start(ill);
9078 	mutex_exit(&ill->ill_lock);
9079 }
9080 
9081 void
9082 ill_frag_timer_start(ill_t *ill)
9083 {
9084 	ip_stack_t *ipst = ill->ill_ipst;
9085 	clock_t	timeo_ms;
9086 
9087 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9088 
9089 	/* If the ill is closing or opening don't proceed */
9090 	if (ill->ill_state_flags & ILL_CONDEMNED)
9091 		return;
9092 
9093 	if (ill->ill_fragtimer_executing) {
9094 		/*
9095 		 * ill_frag_timer is currently executing. Just record the
9096 		 * the fact that we want the timer to be restarted.
9097 		 * ill_frag_timer will post a timeout before it returns,
9098 		 * ensuring it will be called again.
9099 		 */
9100 		ill->ill_fragtimer_needrestart = 1;
9101 		return;
9102 	}
9103 
9104 	if (ill->ill_frag_timer_id == 0) {
9105 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9106 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9107 
9108 		/*
9109 		 * The timer is neither running nor is the timeout handler
9110 		 * executing. Post a timeout so that ill_frag_timer will be
9111 		 * called
9112 		 */
9113 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9114 		    MSEC_TO_TICK(timeo_ms >> 1));
9115 		ill->ill_fragtimer_needrestart = 0;
9116 	}
9117 }
9118 
9119 /*
9120  * Update any source route, record route or timestamp options.
9121  * Check that we are at end of strict source route.
9122  * The options have already been checked for sanity in ip_input_options().
9123  */
9124 boolean_t
9125 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9126 {
9127 	ipoptp_t	opts;
9128 	uchar_t		*opt;
9129 	uint8_t		optval;
9130 	uint8_t		optlen;
9131 	ipaddr_t	dst;
9132 	ipaddr_t	ifaddr;
9133 	uint32_t	ts;
9134 	timestruc_t	now;
9135 	ill_t		*ill = ira->ira_ill;
9136 	ip_stack_t	*ipst = ill->ill_ipst;
9137 
9138 	ip2dbg(("ip_input_local_options\n"));
9139 
9140 	for (optval = ipoptp_first(&opts, ipha);
9141 	    optval != IPOPT_EOL;
9142 	    optval = ipoptp_next(&opts)) {
9143 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9144 		opt = opts.ipoptp_cur;
9145 		optlen = opts.ipoptp_len;
9146 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9147 		    optval, optlen));
9148 		switch (optval) {
9149 			uint32_t off;
9150 		case IPOPT_SSRR:
9151 		case IPOPT_LSRR:
9152 			off = opt[IPOPT_OFFSET];
9153 			off--;
9154 			if (optlen < IP_ADDR_LEN ||
9155 			    off > optlen - IP_ADDR_LEN) {
9156 				/* End of source route */
9157 				ip1dbg(("ip_input_local_options: end of SR\n"));
9158 				break;
9159 			}
9160 			/*
9161 			 * This will only happen if two consecutive entries
9162 			 * in the source route contains our address or if
9163 			 * it is a packet with a loose source route which
9164 			 * reaches us before consuming the whole source route
9165 			 */
9166 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9167 			if (optval == IPOPT_SSRR) {
9168 				goto bad_src_route;
9169 			}
9170 			/*
9171 			 * Hack: instead of dropping the packet truncate the
9172 			 * source route to what has been used by filling the
9173 			 * rest with IPOPT_NOP.
9174 			 */
9175 			opt[IPOPT_OLEN] = (uint8_t)off;
9176 			while (off < optlen) {
9177 				opt[off++] = IPOPT_NOP;
9178 			}
9179 			break;
9180 		case IPOPT_RR:
9181 			off = opt[IPOPT_OFFSET];
9182 			off--;
9183 			if (optlen < IP_ADDR_LEN ||
9184 			    off > optlen - IP_ADDR_LEN) {
9185 				/* No more room - ignore */
9186 				ip1dbg((
9187 				    "ip_input_local_options: end of RR\n"));
9188 				break;
9189 			}
9190 			/* Pick a reasonable address on the outbound if */
9191 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9192 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9193 			    NULL) != 0) {
9194 				/* No source! Shouldn't happen */
9195 				ifaddr = INADDR_ANY;
9196 			}
9197 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9198 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9199 			break;
9200 		case IPOPT_TS:
9201 			/* Insert timestamp if there is romm */
9202 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9203 			case IPOPT_TS_TSONLY:
9204 				off = IPOPT_TS_TIMELEN;
9205 				break;
9206 			case IPOPT_TS_PRESPEC:
9207 			case IPOPT_TS_PRESPEC_RFC791:
9208 				/* Verify that the address matched */
9209 				off = opt[IPOPT_OFFSET] - 1;
9210 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9211 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9212 					/* Not for us */
9213 					break;
9214 				}
9215 				/* FALLTHRU */
9216 			case IPOPT_TS_TSANDADDR:
9217 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9218 				break;
9219 			default:
9220 				/*
9221 				 * ip_*put_options should have already
9222 				 * dropped this packet.
9223 				 */
9224 				cmn_err(CE_PANIC, "ip_input_local_options: "
9225 				    "unknown IT - bug in ip_input_options?\n");
9226 				return (B_TRUE);	/* Keep "lint" happy */
9227 			}
9228 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9229 				/* Increase overflow counter */
9230 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9231 				opt[IPOPT_POS_OV_FLG] =
9232 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9233 				    (off << 4));
9234 				break;
9235 			}
9236 			off = opt[IPOPT_OFFSET] - 1;
9237 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9238 			case IPOPT_TS_PRESPEC:
9239 			case IPOPT_TS_PRESPEC_RFC791:
9240 			case IPOPT_TS_TSANDADDR:
9241 				/* Pick a reasonable addr on the outbound if */
9242 				if (ip_select_source_v4(ill, INADDR_ANY,
9243 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9244 				    &ifaddr, NULL, NULL) != 0) {
9245 					/* No source! Shouldn't happen */
9246 					ifaddr = INADDR_ANY;
9247 				}
9248 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9249 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9250 				/* FALLTHRU */
9251 			case IPOPT_TS_TSONLY:
9252 				off = opt[IPOPT_OFFSET] - 1;
9253 				/* Compute # of milliseconds since midnight */
9254 				gethrestime(&now);
9255 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9256 				    now.tv_nsec / (NANOSEC / MILLISEC);
9257 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9258 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9259 				break;
9260 			}
9261 			break;
9262 		}
9263 	}
9264 	return (B_TRUE);
9265 
9266 bad_src_route:
9267 	/* make sure we clear any indication of a hardware checksum */
9268 	DB_CKSUMFLAGS(mp) = 0;
9269 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9270 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9271 	return (B_FALSE);
9272 
9273 }
9274 
9275 /*
9276  * Process IP options in an inbound packet.  Always returns the nexthop.
9277  * Normally this is the passed in nexthop, but if there is an option
9278  * that effects the nexthop (such as a source route) that will be returned.
9279  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9280  * and mp freed.
9281  */
9282 ipaddr_t
9283 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9284     ip_recv_attr_t *ira, int *errorp)
9285 {
9286 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9287 	ipoptp_t	opts;
9288 	uchar_t		*opt;
9289 	uint8_t		optval;
9290 	uint8_t		optlen;
9291 	intptr_t	code = 0;
9292 	ire_t		*ire;
9293 
9294 	ip2dbg(("ip_input_options\n"));
9295 	*errorp = 0;
9296 	for (optval = ipoptp_first(&opts, ipha);
9297 	    optval != IPOPT_EOL;
9298 	    optval = ipoptp_next(&opts)) {
9299 		opt = opts.ipoptp_cur;
9300 		optlen = opts.ipoptp_len;
9301 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9302 		    optval, optlen));
9303 		/*
9304 		 * Note: we need to verify the checksum before we
9305 		 * modify anything thus this routine only extracts the next
9306 		 * hop dst from any source route.
9307 		 */
9308 		switch (optval) {
9309 			uint32_t off;
9310 		case IPOPT_SSRR:
9311 		case IPOPT_LSRR:
9312 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9313 				if (optval == IPOPT_SSRR) {
9314 					ip1dbg(("ip_input_options: not next"
9315 					    " strict source route 0x%x\n",
9316 					    ntohl(dst)));
9317 					code = (char *)&ipha->ipha_dst -
9318 					    (char *)ipha;
9319 					goto param_prob; /* RouterReq's */
9320 				}
9321 				ip2dbg(("ip_input_options: "
9322 				    "not next source route 0x%x\n",
9323 				    ntohl(dst)));
9324 				break;
9325 			}
9326 
9327 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9328 				ip1dbg((
9329 				    "ip_input_options: bad option offset\n"));
9330 				code = (char *)&opt[IPOPT_OLEN] -
9331 				    (char *)ipha;
9332 				goto param_prob;
9333 			}
9334 			off = opt[IPOPT_OFFSET];
9335 			off--;
9336 		redo_srr:
9337 			if (optlen < IP_ADDR_LEN ||
9338 			    off > optlen - IP_ADDR_LEN) {
9339 				/* End of source route */
9340 				ip1dbg(("ip_input_options: end of SR\n"));
9341 				break;
9342 			}
9343 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9344 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9345 			    ntohl(dst)));
9346 
9347 			/*
9348 			 * Check if our address is present more than
9349 			 * once as consecutive hops in source route.
9350 			 * XXX verify per-interface ip_forwarding
9351 			 * for source route?
9352 			 */
9353 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9354 				off += IP_ADDR_LEN;
9355 				goto redo_srr;
9356 			}
9357 
9358 			if (dst == htonl(INADDR_LOOPBACK)) {
9359 				ip1dbg(("ip_input_options: loopback addr in "
9360 				    "source route!\n"));
9361 				goto bad_src_route;
9362 			}
9363 			/*
9364 			 * For strict: verify that dst is directly
9365 			 * reachable.
9366 			 */
9367 			if (optval == IPOPT_SSRR) {
9368 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9369 				    IRE_IF_ALL, NULL, ALL_ZONES,
9370 				    ira->ira_tsl,
9371 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9372 				    NULL);
9373 				if (ire == NULL) {
9374 					ip1dbg(("ip_input_options: SSRR not "
9375 					    "directly reachable: 0x%x\n",
9376 					    ntohl(dst)));
9377 					goto bad_src_route;
9378 				}
9379 				ire_refrele(ire);
9380 			}
9381 			/*
9382 			 * Defer update of the offset and the record route
9383 			 * until the packet is forwarded.
9384 			 */
9385 			break;
9386 		case IPOPT_RR:
9387 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9388 				ip1dbg((
9389 				    "ip_input_options: bad option offset\n"));
9390 				code = (char *)&opt[IPOPT_OLEN] -
9391 				    (char *)ipha;
9392 				goto param_prob;
9393 			}
9394 			break;
9395 		case IPOPT_TS:
9396 			/*
9397 			 * Verify that length >= 5 and that there is either
9398 			 * room for another timestamp or that the overflow
9399 			 * counter is not maxed out.
9400 			 */
9401 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9402 			if (optlen < IPOPT_MINLEN_IT) {
9403 				goto param_prob;
9404 			}
9405 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9406 				ip1dbg((
9407 				    "ip_input_options: bad option offset\n"));
9408 				code = (char *)&opt[IPOPT_OFFSET] -
9409 				    (char *)ipha;
9410 				goto param_prob;
9411 			}
9412 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9413 			case IPOPT_TS_TSONLY:
9414 				off = IPOPT_TS_TIMELEN;
9415 				break;
9416 			case IPOPT_TS_TSANDADDR:
9417 			case IPOPT_TS_PRESPEC:
9418 			case IPOPT_TS_PRESPEC_RFC791:
9419 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9420 				break;
9421 			default:
9422 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9423 				    (char *)ipha;
9424 				goto param_prob;
9425 			}
9426 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9427 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9428 				/*
9429 				 * No room and the overflow counter is 15
9430 				 * already.
9431 				 */
9432 				goto param_prob;
9433 			}
9434 			break;
9435 		}
9436 	}
9437 
9438 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9439 		return (dst);
9440 	}
9441 
9442 	ip1dbg(("ip_input_options: error processing IP options."));
9443 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9444 
9445 param_prob:
9446 	/* make sure we clear any indication of a hardware checksum */
9447 	DB_CKSUMFLAGS(mp) = 0;
9448 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9449 	icmp_param_problem(mp, (uint8_t)code, ira);
9450 	*errorp = -1;
9451 	return (dst);
9452 
9453 bad_src_route:
9454 	/* make sure we clear any indication of a hardware checksum */
9455 	DB_CKSUMFLAGS(mp) = 0;
9456 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9457 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9458 	*errorp = -1;
9459 	return (dst);
9460 }
9461 
9462 /*
9463  * IP & ICMP info in >=14 msg's ...
9464  *  - ip fixed part (mib2_ip_t)
9465  *  - icmp fixed part (mib2_icmp_t)
9466  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9467  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9468  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9469  *  - ipRouteAttributeTable (ip 102)	labeled routes
9470  *  - ip multicast membership (ip_member_t)
9471  *  - ip multicast source filtering (ip_grpsrc_t)
9472  *  - igmp fixed part (struct igmpstat)
9473  *  - multicast routing stats (struct mrtstat)
9474  *  - multicast routing vifs (array of struct vifctl)
9475  *  - multicast routing routes (array of struct mfcctl)
9476  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9477  *					One per ill plus one generic
9478  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9479  *					One per ill plus one generic
9480  *  - ipv6RouteEntry			all IPv6 IREs
9481  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9482  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9483  *  - ipv6AddrEntry			all IPv6 ipifs
9484  *  - ipv6 multicast membership (ipv6_member_t)
9485  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9486  *
9487  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9488  * already filled in by the caller.
9489  * Return value of 0 indicates that no messages were sent and caller
9490  * should free mpctl.
9491  */
9492 int
9493 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level)
9494 {
9495 	ip_stack_t *ipst;
9496 	sctp_stack_t *sctps;
9497 
9498 	if (q->q_next != NULL) {
9499 		ipst = ILLQ_TO_IPST(q);
9500 	} else {
9501 		ipst = CONNQ_TO_IPST(q);
9502 	}
9503 	ASSERT(ipst != NULL);
9504 	sctps = ipst->ips_netstack->netstack_sctp;
9505 
9506 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9507 		return (0);
9508 	}
9509 
9510 	/*
9511 	 * For the purposes of the (broken) packet shell use
9512 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9513 	 * to make TCP and UDP appear first in the list of mib items.
9514 	 * TBD: We could expand this and use it in netstat so that
9515 	 * the kernel doesn't have to produce large tables (connections,
9516 	 * routes, etc) when netstat only wants the statistics or a particular
9517 	 * table.
9518 	 */
9519 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9520 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9521 			return (1);
9522 		}
9523 	}
9524 
9525 	if (level != MIB2_TCP) {
9526 		if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) {
9527 			return (1);
9528 		}
9529 	}
9530 
9531 	if (level != MIB2_UDP) {
9532 		if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) {
9533 			return (1);
9534 		}
9535 	}
9536 
9537 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9538 	    ipst)) == NULL) {
9539 		return (1);
9540 	}
9541 
9542 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) {
9543 		return (1);
9544 	}
9545 
9546 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9547 		return (1);
9548 	}
9549 
9550 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9551 		return (1);
9552 	}
9553 
9554 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9555 		return (1);
9556 	}
9557 
9558 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9559 		return (1);
9560 	}
9561 
9562 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) {
9563 		return (1);
9564 	}
9565 
9566 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) {
9567 		return (1);
9568 	}
9569 
9570 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9571 		return (1);
9572 	}
9573 
9574 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9575 		return (1);
9576 	}
9577 
9578 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9579 		return (1);
9580 	}
9581 
9582 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9583 		return (1);
9584 	}
9585 
9586 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9587 		return (1);
9588 	}
9589 
9590 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9591 		return (1);
9592 	}
9593 
9594 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9595 	if (mpctl == NULL)
9596 		return (1);
9597 
9598 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9599 	if (mpctl == NULL)
9600 		return (1);
9601 
9602 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9603 		return (1);
9604 	}
9605 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9606 		return (1);
9607 	}
9608 	freemsg(mpctl);
9609 	return (1);
9610 }
9611 
9612 /* Get global (legacy) IPv4 statistics */
9613 static mblk_t *
9614 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9615     ip_stack_t *ipst)
9616 {
9617 	mib2_ip_t		old_ip_mib;
9618 	struct opthdr		*optp;
9619 	mblk_t			*mp2ctl;
9620 
9621 	/*
9622 	 * make a copy of the original message
9623 	 */
9624 	mp2ctl = copymsg(mpctl);
9625 
9626 	/* fixed length IP structure... */
9627 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9628 	optp->level = MIB2_IP;
9629 	optp->name = 0;
9630 	SET_MIB(old_ip_mib.ipForwarding,
9631 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9632 	SET_MIB(old_ip_mib.ipDefaultTTL,
9633 	    (uint32_t)ipst->ips_ip_def_ttl);
9634 	SET_MIB(old_ip_mib.ipReasmTimeout,
9635 	    ipst->ips_ip_reassembly_timeout);
9636 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9637 	    sizeof (mib2_ipAddrEntry_t));
9638 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9639 	    sizeof (mib2_ipRouteEntry_t));
9640 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9641 	    sizeof (mib2_ipNetToMediaEntry_t));
9642 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9643 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9644 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9645 	    sizeof (mib2_ipAttributeEntry_t));
9646 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9647 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9648 
9649 	/*
9650 	 * Grab the statistics from the new IP MIB
9651 	 */
9652 	SET_MIB(old_ip_mib.ipInReceives,
9653 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9654 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9655 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9656 	SET_MIB(old_ip_mib.ipForwDatagrams,
9657 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9658 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9659 	    ipmib->ipIfStatsInUnknownProtos);
9660 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9661 	SET_MIB(old_ip_mib.ipInDelivers,
9662 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9663 	SET_MIB(old_ip_mib.ipOutRequests,
9664 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9665 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9666 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9667 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9668 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9669 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9670 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9671 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9672 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9673 
9674 	/* ipRoutingDiscards is not being used */
9675 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9676 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9677 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9678 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9679 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9680 	    ipmib->ipIfStatsReasmDuplicates);
9681 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9682 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9683 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9684 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9685 	SET_MIB(old_ip_mib.rawipInOverflows,
9686 	    ipmib->rawipIfStatsInOverflows);
9687 
9688 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9689 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9690 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9691 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9692 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9693 	    ipmib->ipIfStatsOutSwitchIPVersion);
9694 
9695 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9696 	    (int)sizeof (old_ip_mib))) {
9697 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9698 		    (uint_t)sizeof (old_ip_mib)));
9699 	}
9700 
9701 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9702 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9703 	    (int)optp->level, (int)optp->name, (int)optp->len));
9704 	qreply(q, mpctl);
9705 	return (mp2ctl);
9706 }
9707 
9708 /* Per interface IPv4 statistics */
9709 static mblk_t *
9710 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9711 {
9712 	struct opthdr		*optp;
9713 	mblk_t			*mp2ctl;
9714 	ill_t			*ill;
9715 	ill_walk_context_t	ctx;
9716 	mblk_t			*mp_tail = NULL;
9717 	mib2_ipIfStatsEntry_t	global_ip_mib;
9718 
9719 	/*
9720 	 * Make a copy of the original message
9721 	 */
9722 	mp2ctl = copymsg(mpctl);
9723 
9724 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9725 	optp->level = MIB2_IP;
9726 	optp->name = MIB2_IP_TRAFFIC_STATS;
9727 	/* Include "unknown interface" ip_mib */
9728 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9729 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9730 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9731 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9732 	    (ipst->ips_ip_forwarding ? 1 : 2));
9733 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9734 	    (uint32_t)ipst->ips_ip_def_ttl);
9735 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9736 	    sizeof (mib2_ipIfStatsEntry_t));
9737 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9738 	    sizeof (mib2_ipAddrEntry_t));
9739 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9740 	    sizeof (mib2_ipRouteEntry_t));
9741 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9742 	    sizeof (mib2_ipNetToMediaEntry_t));
9743 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9744 	    sizeof (ip_member_t));
9745 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9746 	    sizeof (ip_grpsrc_t));
9747 
9748 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9749 	    (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) {
9750 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9751 		    "failed to allocate %u bytes\n",
9752 		    (uint_t)sizeof (ipst->ips_ip_mib)));
9753 	}
9754 
9755 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9756 
9757 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9758 	ill = ILL_START_WALK_V4(&ctx, ipst);
9759 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9760 		ill->ill_ip_mib->ipIfStatsIfIndex =
9761 		    ill->ill_phyint->phyint_ifindex;
9762 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9763 		    (ipst->ips_ip_forwarding ? 1 : 2));
9764 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9765 		    (uint32_t)ipst->ips_ip_def_ttl);
9766 
9767 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9768 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9769 		    (char *)ill->ill_ip_mib,
9770 		    (int)sizeof (*ill->ill_ip_mib))) {
9771 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9772 			    "failed to allocate %u bytes\n",
9773 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9774 		}
9775 	}
9776 	rw_exit(&ipst->ips_ill_g_lock);
9777 
9778 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9779 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9780 	    "level %d, name %d, len %d\n",
9781 	    (int)optp->level, (int)optp->name, (int)optp->len));
9782 	qreply(q, mpctl);
9783 
9784 	if (mp2ctl == NULL)
9785 		return (NULL);
9786 
9787 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst));
9788 }
9789 
9790 /* Global IPv4 ICMP statistics */
9791 static mblk_t *
9792 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9793 {
9794 	struct opthdr		*optp;
9795 	mblk_t			*mp2ctl;
9796 
9797 	/*
9798 	 * Make a copy of the original message
9799 	 */
9800 	mp2ctl = copymsg(mpctl);
9801 
9802 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9803 	optp->level = MIB2_ICMP;
9804 	optp->name = 0;
9805 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9806 	    (int)sizeof (ipst->ips_icmp_mib))) {
9807 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9808 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9809 	}
9810 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9811 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9812 	    (int)optp->level, (int)optp->name, (int)optp->len));
9813 	qreply(q, mpctl);
9814 	return (mp2ctl);
9815 }
9816 
9817 /* Global IPv4 IGMP statistics */
9818 static mblk_t *
9819 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9820 {
9821 	struct opthdr		*optp;
9822 	mblk_t			*mp2ctl;
9823 
9824 	/*
9825 	 * make a copy of the original message
9826 	 */
9827 	mp2ctl = copymsg(mpctl);
9828 
9829 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9830 	optp->level = EXPER_IGMP;
9831 	optp->name = 0;
9832 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9833 	    (int)sizeof (ipst->ips_igmpstat))) {
9834 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9835 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9836 	}
9837 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9838 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9839 	    (int)optp->level, (int)optp->name, (int)optp->len));
9840 	qreply(q, mpctl);
9841 	return (mp2ctl);
9842 }
9843 
9844 /* Global IPv4 Multicast Routing statistics */
9845 static mblk_t *
9846 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9847 {
9848 	struct opthdr		*optp;
9849 	mblk_t			*mp2ctl;
9850 
9851 	/*
9852 	 * make a copy of the original message
9853 	 */
9854 	mp2ctl = copymsg(mpctl);
9855 
9856 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9857 	optp->level = EXPER_DVMRP;
9858 	optp->name = 0;
9859 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9860 		ip0dbg(("ip_mroute_stats: failed\n"));
9861 	}
9862 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9863 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9864 	    (int)optp->level, (int)optp->name, (int)optp->len));
9865 	qreply(q, mpctl);
9866 	return (mp2ctl);
9867 }
9868 
9869 /* IPv4 address information */
9870 static mblk_t *
9871 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9872 {
9873 	struct opthdr		*optp;
9874 	mblk_t			*mp2ctl;
9875 	mblk_t			*mp_tail = NULL;
9876 	ill_t			*ill;
9877 	ipif_t			*ipif;
9878 	uint_t			bitval;
9879 	mib2_ipAddrEntry_t	mae;
9880 	zoneid_t		zoneid;
9881 	ill_walk_context_t ctx;
9882 
9883 	/*
9884 	 * make a copy of the original message
9885 	 */
9886 	mp2ctl = copymsg(mpctl);
9887 
9888 	/* ipAddrEntryTable */
9889 
9890 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9891 	optp->level = MIB2_IP;
9892 	optp->name = MIB2_IP_ADDR;
9893 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9894 
9895 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9896 	ill = ILL_START_WALK_V4(&ctx, ipst);
9897 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9898 		for (ipif = ill->ill_ipif; ipif != NULL;
9899 		    ipif = ipif->ipif_next) {
9900 			if (ipif->ipif_zoneid != zoneid &&
9901 			    ipif->ipif_zoneid != ALL_ZONES)
9902 				continue;
9903 			/* Sum of count from dead IRE_LO* and our current */
9904 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
9905 			if (ipif->ipif_ire_local != NULL) {
9906 				mae.ipAdEntInfo.ae_ibcnt +=
9907 				    ipif->ipif_ire_local->ire_ib_pkt_count;
9908 			}
9909 			mae.ipAdEntInfo.ae_obcnt = 0;
9910 			mae.ipAdEntInfo.ae_focnt = 0;
9911 
9912 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
9913 			    OCTET_LENGTH);
9914 			mae.ipAdEntIfIndex.o_length =
9915 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
9916 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
9917 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
9918 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
9919 			mae.ipAdEntInfo.ae_subnet_len =
9920 			    ip_mask_to_plen(ipif->ipif_net_mask);
9921 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
9922 			for (bitval = 1;
9923 			    bitval &&
9924 			    !(bitval & ipif->ipif_brd_addr);
9925 			    bitval <<= 1)
9926 				noop;
9927 			mae.ipAdEntBcastAddr = bitval;
9928 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
9929 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
9930 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
9931 			mae.ipAdEntInfo.ae_broadcast_addr =
9932 			    ipif->ipif_brd_addr;
9933 			mae.ipAdEntInfo.ae_pp_dst_addr =
9934 			    ipif->ipif_pp_dst_addr;
9935 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
9936 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
9937 			mae.ipAdEntRetransmitTime =
9938 			    ill->ill_reachable_retrans_time;
9939 
9940 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9941 			    (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
9942 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
9943 				    "allocate %u bytes\n",
9944 				    (uint_t)sizeof (mib2_ipAddrEntry_t)));
9945 			}
9946 		}
9947 	}
9948 	rw_exit(&ipst->ips_ill_g_lock);
9949 
9950 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9951 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
9952 	    (int)optp->level, (int)optp->name, (int)optp->len));
9953 	qreply(q, mpctl);
9954 	return (mp2ctl);
9955 }
9956 
9957 /* IPv6 address information */
9958 static mblk_t *
9959 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9960 {
9961 	struct opthdr		*optp;
9962 	mblk_t			*mp2ctl;
9963 	mblk_t			*mp_tail = NULL;
9964 	ill_t			*ill;
9965 	ipif_t			*ipif;
9966 	mib2_ipv6AddrEntry_t	mae6;
9967 	zoneid_t		zoneid;
9968 	ill_walk_context_t	ctx;
9969 
9970 	/*
9971 	 * make a copy of the original message
9972 	 */
9973 	mp2ctl = copymsg(mpctl);
9974 
9975 	/* ipv6AddrEntryTable */
9976 
9977 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9978 	optp->level = MIB2_IP6;
9979 	optp->name = MIB2_IP6_ADDR;
9980 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9981 
9982 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9983 	ill = ILL_START_WALK_V6(&ctx, ipst);
9984 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9985 		for (ipif = ill->ill_ipif; ipif != NULL;
9986 		    ipif = ipif->ipif_next) {
9987 			if (ipif->ipif_zoneid != zoneid &&
9988 			    ipif->ipif_zoneid != ALL_ZONES)
9989 				continue;
9990 			/* Sum of count from dead IRE_LO* and our current */
9991 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
9992 			if (ipif->ipif_ire_local != NULL) {
9993 				mae6.ipv6AddrInfo.ae_ibcnt +=
9994 				    ipif->ipif_ire_local->ire_ib_pkt_count;
9995 			}
9996 			mae6.ipv6AddrInfo.ae_obcnt = 0;
9997 			mae6.ipv6AddrInfo.ae_focnt = 0;
9998 
9999 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10000 			    OCTET_LENGTH);
10001 			mae6.ipv6AddrIfIndex.o_length =
10002 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10003 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10004 			mae6.ipv6AddrPfxLength =
10005 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10006 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10007 			mae6.ipv6AddrInfo.ae_subnet_len =
10008 			    mae6.ipv6AddrPfxLength;
10009 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10010 
10011 			/* Type: stateless(1), stateful(2), unknown(3) */
10012 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10013 				mae6.ipv6AddrType = 1;
10014 			else
10015 				mae6.ipv6AddrType = 2;
10016 			/* Anycast: true(1), false(2) */
10017 			if (ipif->ipif_flags & IPIF_ANYCAST)
10018 				mae6.ipv6AddrAnycastFlag = 1;
10019 			else
10020 				mae6.ipv6AddrAnycastFlag = 2;
10021 
10022 			/*
10023 			 * Address status: preferred(1), deprecated(2),
10024 			 * invalid(3), inaccessible(4), unknown(5)
10025 			 */
10026 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10027 				mae6.ipv6AddrStatus = 3;
10028 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10029 				mae6.ipv6AddrStatus = 2;
10030 			else
10031 				mae6.ipv6AddrStatus = 1;
10032 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10033 			mae6.ipv6AddrInfo.ae_metric  =
10034 			    ipif->ipif_ill->ill_metric;
10035 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10036 			    ipif->ipif_v6pp_dst_addr;
10037 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10038 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10039 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10040 			mae6.ipv6AddrIdentifier = ill->ill_token;
10041 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10042 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10043 			mae6.ipv6AddrRetransmitTime =
10044 			    ill->ill_reachable_retrans_time;
10045 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10046 			    (char *)&mae6,
10047 			    (int)sizeof (mib2_ipv6AddrEntry_t))) {
10048 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10049 				    "allocate %u bytes\n",
10050 				    (uint_t)sizeof (mib2_ipv6AddrEntry_t)));
10051 			}
10052 		}
10053 	}
10054 	rw_exit(&ipst->ips_ill_g_lock);
10055 
10056 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10057 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10058 	    (int)optp->level, (int)optp->name, (int)optp->len));
10059 	qreply(q, mpctl);
10060 	return (mp2ctl);
10061 }
10062 
10063 /* IPv4 multicast group membership. */
10064 static mblk_t *
10065 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10066 {
10067 	struct opthdr		*optp;
10068 	mblk_t			*mp2ctl;
10069 	ill_t			*ill;
10070 	ipif_t			*ipif;
10071 	ilm_t			*ilm;
10072 	ip_member_t		ipm;
10073 	mblk_t			*mp_tail = NULL;
10074 	ill_walk_context_t	ctx;
10075 	zoneid_t		zoneid;
10076 
10077 	/*
10078 	 * make a copy of the original message
10079 	 */
10080 	mp2ctl = copymsg(mpctl);
10081 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10082 
10083 	/* ipGroupMember table */
10084 	optp = (struct opthdr *)&mpctl->b_rptr[
10085 	    sizeof (struct T_optmgmt_ack)];
10086 	optp->level = MIB2_IP;
10087 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10088 
10089 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10090 	ill = ILL_START_WALK_V4(&ctx, ipst);
10091 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10092 		/* Make sure the ill isn't going away. */
10093 		if (!ill_check_and_refhold(ill))
10094 			continue;
10095 		rw_exit(&ipst->ips_ill_g_lock);
10096 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10097 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10098 			if (ilm->ilm_zoneid != zoneid &&
10099 			    ilm->ilm_zoneid != ALL_ZONES)
10100 				continue;
10101 
10102 			/* Is there an ipif for ilm_ifaddr? */
10103 			for (ipif = ill->ill_ipif; ipif != NULL;
10104 			    ipif = ipif->ipif_next) {
10105 				if (!IPIF_IS_CONDEMNED(ipif) &&
10106 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10107 				    ilm->ilm_ifaddr != INADDR_ANY)
10108 					break;
10109 			}
10110 			if (ipif != NULL) {
10111 				ipif_get_name(ipif,
10112 				    ipm.ipGroupMemberIfIndex.o_bytes,
10113 				    OCTET_LENGTH);
10114 			} else {
10115 				ill_get_name(ill,
10116 				    ipm.ipGroupMemberIfIndex.o_bytes,
10117 				    OCTET_LENGTH);
10118 			}
10119 			ipm.ipGroupMemberIfIndex.o_length =
10120 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10121 
10122 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10123 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10124 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10125 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10126 			    (char *)&ipm, (int)sizeof (ipm))) {
10127 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10128 				    "failed to allocate %u bytes\n",
10129 				    (uint_t)sizeof (ipm)));
10130 			}
10131 		}
10132 		rw_exit(&ill->ill_mcast_lock);
10133 		ill_refrele(ill);
10134 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10135 	}
10136 	rw_exit(&ipst->ips_ill_g_lock);
10137 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10138 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10139 	    (int)optp->level, (int)optp->name, (int)optp->len));
10140 	qreply(q, mpctl);
10141 	return (mp2ctl);
10142 }
10143 
10144 /* IPv6 multicast group membership. */
10145 static mblk_t *
10146 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10147 {
10148 	struct opthdr		*optp;
10149 	mblk_t			*mp2ctl;
10150 	ill_t			*ill;
10151 	ilm_t			*ilm;
10152 	ipv6_member_t		ipm6;
10153 	mblk_t			*mp_tail = NULL;
10154 	ill_walk_context_t	ctx;
10155 	zoneid_t		zoneid;
10156 
10157 	/*
10158 	 * make a copy of the original message
10159 	 */
10160 	mp2ctl = copymsg(mpctl);
10161 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10162 
10163 	/* ip6GroupMember table */
10164 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10165 	optp->level = MIB2_IP6;
10166 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10167 
10168 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10169 	ill = ILL_START_WALK_V6(&ctx, ipst);
10170 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10171 		/* Make sure the ill isn't going away. */
10172 		if (!ill_check_and_refhold(ill))
10173 			continue;
10174 		rw_exit(&ipst->ips_ill_g_lock);
10175 		/*
10176 		 * Normally we don't have any members on under IPMP interfaces.
10177 		 * We report them as a debugging aid.
10178 		 */
10179 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10180 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10181 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10182 			if (ilm->ilm_zoneid != zoneid &&
10183 			    ilm->ilm_zoneid != ALL_ZONES)
10184 				continue;	/* not this zone */
10185 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10186 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10187 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10188 			if (!snmp_append_data2(mpctl->b_cont,
10189 			    &mp_tail,
10190 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10191 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10192 				    "failed to allocate %u bytes\n",
10193 				    (uint_t)sizeof (ipm6)));
10194 			}
10195 		}
10196 		rw_exit(&ill->ill_mcast_lock);
10197 		ill_refrele(ill);
10198 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10199 	}
10200 	rw_exit(&ipst->ips_ill_g_lock);
10201 
10202 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10203 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10204 	    (int)optp->level, (int)optp->name, (int)optp->len));
10205 	qreply(q, mpctl);
10206 	return (mp2ctl);
10207 }
10208 
10209 /* IP multicast filtered sources */
10210 static mblk_t *
10211 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10212 {
10213 	struct opthdr		*optp;
10214 	mblk_t			*mp2ctl;
10215 	ill_t			*ill;
10216 	ipif_t			*ipif;
10217 	ilm_t			*ilm;
10218 	ip_grpsrc_t		ips;
10219 	mblk_t			*mp_tail = NULL;
10220 	ill_walk_context_t	ctx;
10221 	zoneid_t		zoneid;
10222 	int			i;
10223 	slist_t			*sl;
10224 
10225 	/*
10226 	 * make a copy of the original message
10227 	 */
10228 	mp2ctl = copymsg(mpctl);
10229 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10230 
10231 	/* ipGroupSource table */
10232 	optp = (struct opthdr *)&mpctl->b_rptr[
10233 	    sizeof (struct T_optmgmt_ack)];
10234 	optp->level = MIB2_IP;
10235 	optp->name = EXPER_IP_GROUP_SOURCES;
10236 
10237 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10238 	ill = ILL_START_WALK_V4(&ctx, ipst);
10239 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10240 		/* Make sure the ill isn't going away. */
10241 		if (!ill_check_and_refhold(ill))
10242 			continue;
10243 		rw_exit(&ipst->ips_ill_g_lock);
10244 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10245 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10246 			sl = ilm->ilm_filter;
10247 			if (ilm->ilm_zoneid != zoneid &&
10248 			    ilm->ilm_zoneid != ALL_ZONES)
10249 				continue;
10250 			if (SLIST_IS_EMPTY(sl))
10251 				continue;
10252 
10253 			/* Is there an ipif for ilm_ifaddr? */
10254 			for (ipif = ill->ill_ipif; ipif != NULL;
10255 			    ipif = ipif->ipif_next) {
10256 				if (!IPIF_IS_CONDEMNED(ipif) &&
10257 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10258 				    ilm->ilm_ifaddr != INADDR_ANY)
10259 					break;
10260 			}
10261 			if (ipif != NULL) {
10262 				ipif_get_name(ipif,
10263 				    ips.ipGroupSourceIfIndex.o_bytes,
10264 				    OCTET_LENGTH);
10265 			} else {
10266 				ill_get_name(ill,
10267 				    ips.ipGroupSourceIfIndex.o_bytes,
10268 				    OCTET_LENGTH);
10269 			}
10270 			ips.ipGroupSourceIfIndex.o_length =
10271 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10272 
10273 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10274 			for (i = 0; i < sl->sl_numsrc; i++) {
10275 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10276 					continue;
10277 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10278 				    ips.ipGroupSourceAddress);
10279 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10280 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10281 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10282 					    " failed to allocate %u bytes\n",
10283 					    (uint_t)sizeof (ips)));
10284 				}
10285 			}
10286 		}
10287 		rw_exit(&ill->ill_mcast_lock);
10288 		ill_refrele(ill);
10289 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10290 	}
10291 	rw_exit(&ipst->ips_ill_g_lock);
10292 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10293 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10294 	    (int)optp->level, (int)optp->name, (int)optp->len));
10295 	qreply(q, mpctl);
10296 	return (mp2ctl);
10297 }
10298 
10299 /* IPv6 multicast filtered sources. */
10300 static mblk_t *
10301 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10302 {
10303 	struct opthdr		*optp;
10304 	mblk_t			*mp2ctl;
10305 	ill_t			*ill;
10306 	ilm_t			*ilm;
10307 	ipv6_grpsrc_t		ips6;
10308 	mblk_t			*mp_tail = NULL;
10309 	ill_walk_context_t	ctx;
10310 	zoneid_t		zoneid;
10311 	int			i;
10312 	slist_t			*sl;
10313 
10314 	/*
10315 	 * make a copy of the original message
10316 	 */
10317 	mp2ctl = copymsg(mpctl);
10318 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10319 
10320 	/* ip6GroupMember table */
10321 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10322 	optp->level = MIB2_IP6;
10323 	optp->name = EXPER_IP6_GROUP_SOURCES;
10324 
10325 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10326 	ill = ILL_START_WALK_V6(&ctx, ipst);
10327 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10328 		/* Make sure the ill isn't going away. */
10329 		if (!ill_check_and_refhold(ill))
10330 			continue;
10331 		rw_exit(&ipst->ips_ill_g_lock);
10332 		/*
10333 		 * Normally we don't have any members on under IPMP interfaces.
10334 		 * We report them as a debugging aid.
10335 		 */
10336 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10337 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10338 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10339 			sl = ilm->ilm_filter;
10340 			if (ilm->ilm_zoneid != zoneid &&
10341 			    ilm->ilm_zoneid != ALL_ZONES)
10342 				continue;
10343 			if (SLIST_IS_EMPTY(sl))
10344 				continue;
10345 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10346 			for (i = 0; i < sl->sl_numsrc; i++) {
10347 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10348 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10349 				    (char *)&ips6, (int)sizeof (ips6))) {
10350 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10351 					    "group_src: failed to allocate "
10352 					    "%u bytes\n",
10353 					    (uint_t)sizeof (ips6)));
10354 				}
10355 			}
10356 		}
10357 		rw_exit(&ill->ill_mcast_lock);
10358 		ill_refrele(ill);
10359 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10360 	}
10361 	rw_exit(&ipst->ips_ill_g_lock);
10362 
10363 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10364 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10365 	    (int)optp->level, (int)optp->name, (int)optp->len));
10366 	qreply(q, mpctl);
10367 	return (mp2ctl);
10368 }
10369 
10370 /* Multicast routing virtual interface table. */
10371 static mblk_t *
10372 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10373 {
10374 	struct opthdr		*optp;
10375 	mblk_t			*mp2ctl;
10376 
10377 	/*
10378 	 * make a copy of the original message
10379 	 */
10380 	mp2ctl = copymsg(mpctl);
10381 
10382 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10383 	optp->level = EXPER_DVMRP;
10384 	optp->name = EXPER_DVMRP_VIF;
10385 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10386 		ip0dbg(("ip_mroute_vif: failed\n"));
10387 	}
10388 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10389 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10390 	    (int)optp->level, (int)optp->name, (int)optp->len));
10391 	qreply(q, mpctl);
10392 	return (mp2ctl);
10393 }
10394 
10395 /* Multicast routing table. */
10396 static mblk_t *
10397 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10398 {
10399 	struct opthdr		*optp;
10400 	mblk_t			*mp2ctl;
10401 
10402 	/*
10403 	 * make a copy of the original message
10404 	 */
10405 	mp2ctl = copymsg(mpctl);
10406 
10407 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10408 	optp->level = EXPER_DVMRP;
10409 	optp->name = EXPER_DVMRP_MRT;
10410 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10411 		ip0dbg(("ip_mroute_mrt: failed\n"));
10412 	}
10413 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10414 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10415 	    (int)optp->level, (int)optp->name, (int)optp->len));
10416 	qreply(q, mpctl);
10417 	return (mp2ctl);
10418 }
10419 
10420 /*
10421  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10422  * in one IRE walk.
10423  */
10424 static mblk_t *
10425 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10426     ip_stack_t *ipst)
10427 {
10428 	struct opthdr	*optp;
10429 	mblk_t		*mp2ctl;	/* Returned */
10430 	mblk_t		*mp3ctl;	/* nettomedia */
10431 	mblk_t		*mp4ctl;	/* routeattrs */
10432 	iproutedata_t	ird;
10433 	zoneid_t	zoneid;
10434 
10435 	/*
10436 	 * make copies of the original message
10437 	 *	- mp2ctl is returned unchanged to the caller for his use
10438 	 *	- mpctl is sent upstream as ipRouteEntryTable
10439 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10440 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10441 	 */
10442 	mp2ctl = copymsg(mpctl);
10443 	mp3ctl = copymsg(mpctl);
10444 	mp4ctl = copymsg(mpctl);
10445 	if (mp3ctl == NULL || mp4ctl == NULL) {
10446 		freemsg(mp4ctl);
10447 		freemsg(mp3ctl);
10448 		freemsg(mp2ctl);
10449 		freemsg(mpctl);
10450 		return (NULL);
10451 	}
10452 
10453 	bzero(&ird, sizeof (ird));
10454 
10455 	ird.ird_route.lp_head = mpctl->b_cont;
10456 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10457 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10458 	/*
10459 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10460 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10461 	 * intended a temporary solution until a proper MIB API is provided
10462 	 * that provides complete filtering/caller-opt-in.
10463 	 */
10464 	if (level == EXPER_IP_AND_ALL_IRES)
10465 		ird.ird_flags |= IRD_REPORT_ALL;
10466 
10467 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10468 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10469 
10470 	/* ipRouteEntryTable in mpctl */
10471 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10472 	optp->level = MIB2_IP;
10473 	optp->name = MIB2_IP_ROUTE;
10474 	optp->len = msgdsize(ird.ird_route.lp_head);
10475 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10476 	    (int)optp->level, (int)optp->name, (int)optp->len));
10477 	qreply(q, mpctl);
10478 
10479 	/* ipNetToMediaEntryTable in mp3ctl */
10480 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10481 
10482 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10483 	optp->level = MIB2_IP;
10484 	optp->name = MIB2_IP_MEDIA;
10485 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10486 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10487 	    (int)optp->level, (int)optp->name, (int)optp->len));
10488 	qreply(q, mp3ctl);
10489 
10490 	/* ipRouteAttributeTable in mp4ctl */
10491 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10492 	optp->level = MIB2_IP;
10493 	optp->name = EXPER_IP_RTATTR;
10494 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10495 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10496 	    (int)optp->level, (int)optp->name, (int)optp->len));
10497 	if (optp->len == 0)
10498 		freemsg(mp4ctl);
10499 	else
10500 		qreply(q, mp4ctl);
10501 
10502 	return (mp2ctl);
10503 }
10504 
10505 /*
10506  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10507  * ipv6NetToMediaEntryTable in an NDP walk.
10508  */
10509 static mblk_t *
10510 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10511     ip_stack_t *ipst)
10512 {
10513 	struct opthdr	*optp;
10514 	mblk_t		*mp2ctl;	/* Returned */
10515 	mblk_t		*mp3ctl;	/* nettomedia */
10516 	mblk_t		*mp4ctl;	/* routeattrs */
10517 	iproutedata_t	ird;
10518 	zoneid_t	zoneid;
10519 
10520 	/*
10521 	 * make copies of the original message
10522 	 *	- mp2ctl is returned unchanged to the caller for his use
10523 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10524 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10525 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10526 	 */
10527 	mp2ctl = copymsg(mpctl);
10528 	mp3ctl = copymsg(mpctl);
10529 	mp4ctl = copymsg(mpctl);
10530 	if (mp3ctl == NULL || mp4ctl == NULL) {
10531 		freemsg(mp4ctl);
10532 		freemsg(mp3ctl);
10533 		freemsg(mp2ctl);
10534 		freemsg(mpctl);
10535 		return (NULL);
10536 	}
10537 
10538 	bzero(&ird, sizeof (ird));
10539 
10540 	ird.ird_route.lp_head = mpctl->b_cont;
10541 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10542 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10543 	/*
10544 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10545 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10546 	 * intended a temporary solution until a proper MIB API is provided
10547 	 * that provides complete filtering/caller-opt-in.
10548 	 */
10549 	if (level == EXPER_IP_AND_ALL_IRES)
10550 		ird.ird_flags |= IRD_REPORT_ALL;
10551 
10552 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10553 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10554 
10555 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10556 	optp->level = MIB2_IP6;
10557 	optp->name = MIB2_IP6_ROUTE;
10558 	optp->len = msgdsize(ird.ird_route.lp_head);
10559 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10560 	    (int)optp->level, (int)optp->name, (int)optp->len));
10561 	qreply(q, mpctl);
10562 
10563 	/* ipv6NetToMediaEntryTable in mp3ctl */
10564 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10565 
10566 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10567 	optp->level = MIB2_IP6;
10568 	optp->name = MIB2_IP6_MEDIA;
10569 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10570 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10571 	    (int)optp->level, (int)optp->name, (int)optp->len));
10572 	qreply(q, mp3ctl);
10573 
10574 	/* ipv6RouteAttributeTable in mp4ctl */
10575 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10576 	optp->level = MIB2_IP6;
10577 	optp->name = EXPER_IP_RTATTR;
10578 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10579 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10580 	    (int)optp->level, (int)optp->name, (int)optp->len));
10581 	if (optp->len == 0)
10582 		freemsg(mp4ctl);
10583 	else
10584 		qreply(q, mp4ctl);
10585 
10586 	return (mp2ctl);
10587 }
10588 
10589 /*
10590  * IPv6 mib: One per ill
10591  */
10592 static mblk_t *
10593 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10594 {
10595 	struct opthdr		*optp;
10596 	mblk_t			*mp2ctl;
10597 	ill_t			*ill;
10598 	ill_walk_context_t	ctx;
10599 	mblk_t			*mp_tail = NULL;
10600 
10601 	/*
10602 	 * Make a copy of the original message
10603 	 */
10604 	mp2ctl = copymsg(mpctl);
10605 
10606 	/* fixed length IPv6 structure ... */
10607 
10608 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10609 	optp->level = MIB2_IP6;
10610 	optp->name = 0;
10611 	/* Include "unknown interface" ip6_mib */
10612 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10613 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10614 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10615 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10616 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10617 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10618 	    ipst->ips_ipv6_def_hops);
10619 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10620 	    sizeof (mib2_ipIfStatsEntry_t));
10621 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10622 	    sizeof (mib2_ipv6AddrEntry_t));
10623 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10624 	    sizeof (mib2_ipv6RouteEntry_t));
10625 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10626 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10627 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10628 	    sizeof (ipv6_member_t));
10629 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10630 	    sizeof (ipv6_grpsrc_t));
10631 
10632 	/*
10633 	 * Synchronize 64- and 32-bit counters
10634 	 */
10635 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10636 	    ipIfStatsHCInReceives);
10637 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10638 	    ipIfStatsHCInDelivers);
10639 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10640 	    ipIfStatsHCOutRequests);
10641 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10642 	    ipIfStatsHCOutForwDatagrams);
10643 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10644 	    ipIfStatsHCOutMcastPkts);
10645 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10646 	    ipIfStatsHCInMcastPkts);
10647 
10648 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10649 	    (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) {
10650 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10651 		    (uint_t)sizeof (ipst->ips_ip6_mib)));
10652 	}
10653 
10654 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10655 	ill = ILL_START_WALK_V6(&ctx, ipst);
10656 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10657 		ill->ill_ip_mib->ipIfStatsIfIndex =
10658 		    ill->ill_phyint->phyint_ifindex;
10659 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10660 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10661 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10662 		    ill->ill_max_hops);
10663 
10664 		/*
10665 		 * Synchronize 64- and 32-bit counters
10666 		 */
10667 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10668 		    ipIfStatsHCInReceives);
10669 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10670 		    ipIfStatsHCInDelivers);
10671 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10672 		    ipIfStatsHCOutRequests);
10673 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10674 		    ipIfStatsHCOutForwDatagrams);
10675 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10676 		    ipIfStatsHCOutMcastPkts);
10677 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10678 		    ipIfStatsHCInMcastPkts);
10679 
10680 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10681 		    (char *)ill->ill_ip_mib,
10682 		    (int)sizeof (*ill->ill_ip_mib))) {
10683 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10684 			"%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib)));
10685 		}
10686 	}
10687 	rw_exit(&ipst->ips_ill_g_lock);
10688 
10689 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10690 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10691 	    (int)optp->level, (int)optp->name, (int)optp->len));
10692 	qreply(q, mpctl);
10693 	return (mp2ctl);
10694 }
10695 
10696 /*
10697  * ICMPv6 mib: One per ill
10698  */
10699 static mblk_t *
10700 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10701 {
10702 	struct opthdr		*optp;
10703 	mblk_t			*mp2ctl;
10704 	ill_t			*ill;
10705 	ill_walk_context_t	ctx;
10706 	mblk_t			*mp_tail = NULL;
10707 	/*
10708 	 * Make a copy of the original message
10709 	 */
10710 	mp2ctl = copymsg(mpctl);
10711 
10712 	/* fixed length ICMPv6 structure ... */
10713 
10714 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10715 	optp->level = MIB2_ICMP6;
10716 	optp->name = 0;
10717 	/* Include "unknown interface" icmp6_mib */
10718 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10719 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10720 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10721 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10722 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10723 	    (char *)&ipst->ips_icmp6_mib,
10724 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10725 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10726 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10727 	}
10728 
10729 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10730 	ill = ILL_START_WALK_V6(&ctx, ipst);
10731 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10732 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10733 		    ill->ill_phyint->phyint_ifindex;
10734 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10735 		    (char *)ill->ill_icmp6_mib,
10736 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10737 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10738 			    "%u bytes\n",
10739 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10740 		}
10741 	}
10742 	rw_exit(&ipst->ips_ill_g_lock);
10743 
10744 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10745 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10746 	    (int)optp->level, (int)optp->name, (int)optp->len));
10747 	qreply(q, mpctl);
10748 	return (mp2ctl);
10749 }
10750 
10751 /*
10752  * ire_walk routine to create both ipRouteEntryTable and
10753  * ipRouteAttributeTable in one IRE walk
10754  */
10755 static void
10756 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10757 {
10758 	ill_t				*ill;
10759 	mib2_ipRouteEntry_t		*re;
10760 	mib2_ipAttributeEntry_t		iaes;
10761 	tsol_ire_gw_secattr_t		*attrp;
10762 	tsol_gc_t			*gc = NULL;
10763 	tsol_gcgrp_t			*gcgrp = NULL;
10764 	ip_stack_t			*ipst = ire->ire_ipst;
10765 
10766 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10767 
10768 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10769 		if (ire->ire_testhidden)
10770 			return;
10771 		if (ire->ire_type & IRE_IF_CLONE)
10772 			return;
10773 	}
10774 
10775 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10776 		return;
10777 
10778 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10779 		mutex_enter(&attrp->igsa_lock);
10780 		if ((gc = attrp->igsa_gc) != NULL) {
10781 			gcgrp = gc->gc_grp;
10782 			ASSERT(gcgrp != NULL);
10783 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10784 		}
10785 		mutex_exit(&attrp->igsa_lock);
10786 	}
10787 	/*
10788 	 * Return all IRE types for route table... let caller pick and choose
10789 	 */
10790 	re->ipRouteDest = ire->ire_addr;
10791 	ill = ire->ire_ill;
10792 	re->ipRouteIfIndex.o_length = 0;
10793 	if (ill != NULL) {
10794 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10795 		re->ipRouteIfIndex.o_length =
10796 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10797 	}
10798 	re->ipRouteMetric1 = -1;
10799 	re->ipRouteMetric2 = -1;
10800 	re->ipRouteMetric3 = -1;
10801 	re->ipRouteMetric4 = -1;
10802 
10803 	re->ipRouteNextHop = ire->ire_gateway_addr;
10804 	/* indirect(4), direct(3), or invalid(2) */
10805 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10806 		re->ipRouteType = 2;
10807 	else if (ire->ire_type & IRE_ONLINK)
10808 		re->ipRouteType = 3;
10809 	else
10810 		re->ipRouteType = 4;
10811 
10812 	re->ipRouteProto = -1;
10813 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10814 	re->ipRouteMask = ire->ire_mask;
10815 	re->ipRouteMetric5 = -1;
10816 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10817 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10818 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10819 
10820 	re->ipRouteInfo.re_frag_flag	= 0;
10821 	re->ipRouteInfo.re_rtt		= 0;
10822 	re->ipRouteInfo.re_src_addr	= 0;
10823 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10824 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10825 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10826 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10827 
10828 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10829 	if (ire->ire_type & IRE_INTERFACE) {
10830 		ire_t *child;
10831 
10832 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10833 		child = ire->ire_dep_children;
10834 		while (child != NULL) {
10835 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10836 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10837 			child = child->ire_dep_sib_next;
10838 		}
10839 		rw_exit(&ipst->ips_ire_dep_lock);
10840 	}
10841 
10842 	if (ire->ire_flags & RTF_DYNAMIC) {
10843 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
10844 	} else {
10845 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
10846 	}
10847 
10848 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10849 	    (char *)re, (int)sizeof (*re))) {
10850 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10851 		    (uint_t)sizeof (*re)));
10852 	}
10853 
10854 	if (gc != NULL) {
10855 		iaes.iae_routeidx = ird->ird_idx;
10856 		iaes.iae_doi = gc->gc_db->gcdb_doi;
10857 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10858 
10859 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
10860 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10861 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10862 			    "bytes\n", (uint_t)sizeof (iaes)));
10863 		}
10864 	}
10865 
10866 	/* bump route index for next pass */
10867 	ird->ird_idx++;
10868 
10869 	kmem_free(re, sizeof (*re));
10870 	if (gcgrp != NULL)
10871 		rw_exit(&gcgrp->gcgrp_rwlock);
10872 }
10873 
10874 /*
10875  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
10876  */
10877 static void
10878 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
10879 {
10880 	ill_t				*ill;
10881 	mib2_ipv6RouteEntry_t		*re;
10882 	mib2_ipAttributeEntry_t		iaes;
10883 	tsol_ire_gw_secattr_t		*attrp;
10884 	tsol_gc_t			*gc = NULL;
10885 	tsol_gcgrp_t			*gcgrp = NULL;
10886 	ip_stack_t			*ipst = ire->ire_ipst;
10887 
10888 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
10889 
10890 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10891 		if (ire->ire_testhidden)
10892 			return;
10893 		if (ire->ire_type & IRE_IF_CLONE)
10894 			return;
10895 	}
10896 
10897 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10898 		return;
10899 
10900 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10901 		mutex_enter(&attrp->igsa_lock);
10902 		if ((gc = attrp->igsa_gc) != NULL) {
10903 			gcgrp = gc->gc_grp;
10904 			ASSERT(gcgrp != NULL);
10905 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10906 		}
10907 		mutex_exit(&attrp->igsa_lock);
10908 	}
10909 	/*
10910 	 * Return all IRE types for route table... let caller pick and choose
10911 	 */
10912 	re->ipv6RouteDest = ire->ire_addr_v6;
10913 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
10914 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
10915 	re->ipv6RouteIfIndex.o_length = 0;
10916 	ill = ire->ire_ill;
10917 	if (ill != NULL) {
10918 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
10919 		re->ipv6RouteIfIndex.o_length =
10920 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
10921 	}
10922 
10923 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
10924 
10925 	mutex_enter(&ire->ire_lock);
10926 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
10927 	mutex_exit(&ire->ire_lock);
10928 
10929 	/* remote(4), local(3), or discard(2) */
10930 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10931 		re->ipv6RouteType = 2;
10932 	else if (ire->ire_type & IRE_ONLINK)
10933 		re->ipv6RouteType = 3;
10934 	else
10935 		re->ipv6RouteType = 4;
10936 
10937 	re->ipv6RouteProtocol	= -1;
10938 	re->ipv6RoutePolicy	= 0;
10939 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
10940 	re->ipv6RouteNextHopRDI	= 0;
10941 	re->ipv6RouteWeight	= 0;
10942 	re->ipv6RouteMetric	= 0;
10943 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10944 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
10945 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10946 
10947 	re->ipv6RouteInfo.re_frag_flag	= 0;
10948 	re->ipv6RouteInfo.re_rtt	= 0;
10949 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
10950 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10951 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10952 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
10953 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
10954 
10955 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10956 	if (ire->ire_type & IRE_INTERFACE) {
10957 		ire_t *child;
10958 
10959 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10960 		child = ire->ire_dep_children;
10961 		while (child != NULL) {
10962 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
10963 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10964 			child = child->ire_dep_sib_next;
10965 		}
10966 		rw_exit(&ipst->ips_ire_dep_lock);
10967 	}
10968 	if (ire->ire_flags & RTF_DYNAMIC) {
10969 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
10970 	} else {
10971 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
10972 	}
10973 
10974 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10975 	    (char *)re, (int)sizeof (*re))) {
10976 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
10977 		    (uint_t)sizeof (*re)));
10978 	}
10979 
10980 	if (gc != NULL) {
10981 		iaes.iae_routeidx = ird->ird_idx;
10982 		iaes.iae_doi = gc->gc_db->gcdb_doi;
10983 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10984 
10985 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
10986 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10987 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
10988 			    "bytes\n", (uint_t)sizeof (iaes)));
10989 		}
10990 	}
10991 
10992 	/* bump route index for next pass */
10993 	ird->ird_idx++;
10994 
10995 	kmem_free(re, sizeof (*re));
10996 	if (gcgrp != NULL)
10997 		rw_exit(&gcgrp->gcgrp_rwlock);
10998 }
10999 
11000 /*
11001  * ncec_walk routine to create ipv6NetToMediaEntryTable
11002  */
11003 static int
11004 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11005 {
11006 	ill_t				*ill;
11007 	mib2_ipv6NetToMediaEntry_t	ntme;
11008 
11009 	ill = ncec->ncec_ill;
11010 	/* skip arpce entries, and loopback ncec entries */
11011 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11012 		return (0);
11013 	/*
11014 	 * Neighbor cache entry attached to IRE with on-link
11015 	 * destination.
11016 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11017 	 */
11018 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11019 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11020 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11021 	if (ncec->ncec_lladdr != NULL) {
11022 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11023 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11024 	}
11025 	/*
11026 	 * Note: Returns ND_* states. Should be:
11027 	 * reachable(1), stale(2), delay(3), probe(4),
11028 	 * invalid(5), unknown(6)
11029 	 */
11030 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11031 	ntme.ipv6NetToMediaLastUpdated = 0;
11032 
11033 	/* other(1), dynamic(2), static(3), local(4) */
11034 	if (NCE_MYADDR(ncec)) {
11035 		ntme.ipv6NetToMediaType = 4;
11036 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11037 		ntme.ipv6NetToMediaType = 1; /* proxy */
11038 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11039 		ntme.ipv6NetToMediaType = 3;
11040 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11041 		ntme.ipv6NetToMediaType = 1;
11042 	} else {
11043 		ntme.ipv6NetToMediaType = 2;
11044 	}
11045 
11046 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11047 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11048 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11049 		    (uint_t)sizeof (ntme)));
11050 	}
11051 	return (0);
11052 }
11053 
11054 int
11055 nce2ace(ncec_t *ncec)
11056 {
11057 	int flags = 0;
11058 
11059 	if (NCE_ISREACHABLE(ncec))
11060 		flags |= ACE_F_RESOLVED;
11061 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11062 		flags |= ACE_F_AUTHORITY;
11063 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11064 		flags |= ACE_F_PUBLISH;
11065 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11066 		flags |= ACE_F_PERMANENT;
11067 	if (NCE_MYADDR(ncec))
11068 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11069 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11070 		flags |= ACE_F_UNVERIFIED;
11071 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11072 		flags |= ACE_F_AUTHORITY;
11073 	if (ncec->ncec_flags & NCE_F_DELAYED)
11074 		flags |= ACE_F_DELAYED;
11075 	return (flags);
11076 }
11077 
11078 /*
11079  * ncec_walk routine to create ipNetToMediaEntryTable
11080  */
11081 static int
11082 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11083 {
11084 	ill_t				*ill;
11085 	mib2_ipNetToMediaEntry_t	ntme;
11086 	const char			*name = "unknown";
11087 	ipaddr_t			ncec_addr;
11088 
11089 	ill = ncec->ncec_ill;
11090 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11091 	    ill->ill_net_type == IRE_LOOPBACK)
11092 		return (0);
11093 
11094 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11095 	name = ill->ill_name;
11096 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11097 	if (NCE_MYADDR(ncec)) {
11098 		ntme.ipNetToMediaType = 4;
11099 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11100 		ntme.ipNetToMediaType = 1;
11101 	} else {
11102 		ntme.ipNetToMediaType = 3;
11103 	}
11104 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11105 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11106 	    ntme.ipNetToMediaIfIndex.o_length);
11107 
11108 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11109 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11110 
11111 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11112 	ncec_addr = INADDR_BROADCAST;
11113 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11114 	    sizeof (ncec_addr));
11115 	/*
11116 	 * map all the flags to the ACE counterpart.
11117 	 */
11118 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11119 
11120 	ntme.ipNetToMediaPhysAddress.o_length =
11121 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11122 
11123 	if (!NCE_ISREACHABLE(ncec))
11124 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11125 	else {
11126 		if (ncec->ncec_lladdr != NULL) {
11127 			bcopy(ncec->ncec_lladdr,
11128 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11129 			    ntme.ipNetToMediaPhysAddress.o_length);
11130 		}
11131 	}
11132 
11133 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11134 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11135 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11136 		    (uint_t)sizeof (ntme)));
11137 	}
11138 	return (0);
11139 }
11140 
11141 /*
11142  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11143  */
11144 /* ARGSUSED */
11145 int
11146 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11147 {
11148 	switch (level) {
11149 	case MIB2_IP:
11150 	case MIB2_ICMP:
11151 		switch (name) {
11152 		default:
11153 			break;
11154 		}
11155 		return (1);
11156 	default:
11157 		return (1);
11158 	}
11159 }
11160 
11161 /*
11162  * When there exists both a 64- and 32-bit counter of a particular type
11163  * (i.e., InReceives), only the 64-bit counters are added.
11164  */
11165 void
11166 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11167 {
11168 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11169 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11170 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11171 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11172 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11173 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11174 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11175 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11176 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11177 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11178 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11179 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11180 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11181 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11182 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11183 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11184 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11185 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11186 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11187 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11188 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11189 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11190 	    o2->ipIfStatsInWrongIPVersion);
11191 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11192 	    o2->ipIfStatsInWrongIPVersion);
11193 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11194 	    o2->ipIfStatsOutSwitchIPVersion);
11195 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11196 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11197 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11198 	    o2->ipIfStatsHCInForwDatagrams);
11199 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11200 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11201 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11202 	    o2->ipIfStatsHCOutForwDatagrams);
11203 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11204 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11205 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11206 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11207 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11208 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11209 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11210 	    o2->ipIfStatsHCOutMcastOctets);
11211 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11212 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11213 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11214 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11215 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11216 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11217 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11218 }
11219 
11220 void
11221 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11222 {
11223 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11224 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11225 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11226 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11227 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11228 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11229 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11230 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11231 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11232 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11233 	    o2->ipv6IfIcmpInRouterSolicits);
11234 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11235 	    o2->ipv6IfIcmpInRouterAdvertisements);
11236 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11237 	    o2->ipv6IfIcmpInNeighborSolicits);
11238 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11239 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11240 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11241 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11242 	    o2->ipv6IfIcmpInGroupMembQueries);
11243 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11244 	    o2->ipv6IfIcmpInGroupMembResponses);
11245 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11246 	    o2->ipv6IfIcmpInGroupMembReductions);
11247 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11248 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11249 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11250 	    o2->ipv6IfIcmpOutDestUnreachs);
11251 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11252 	    o2->ipv6IfIcmpOutAdminProhibs);
11253 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11254 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11255 	    o2->ipv6IfIcmpOutParmProblems);
11256 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11257 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11258 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11259 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11260 	    o2->ipv6IfIcmpOutRouterSolicits);
11261 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11262 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11263 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11264 	    o2->ipv6IfIcmpOutNeighborSolicits);
11265 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11266 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11267 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11268 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11269 	    o2->ipv6IfIcmpOutGroupMembQueries);
11270 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11271 	    o2->ipv6IfIcmpOutGroupMembResponses);
11272 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11273 	    o2->ipv6IfIcmpOutGroupMembReductions);
11274 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11275 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11276 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11277 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11278 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11279 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11280 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11281 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11282 	    o2->ipv6IfIcmpInGroupMembTotal);
11283 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11284 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11285 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11286 	    o2->ipv6IfIcmpInGroupMembBadReports);
11287 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11288 	    o2->ipv6IfIcmpInGroupMembOurReports);
11289 }
11290 
11291 /*
11292  * Called before the options are updated to check if this packet will
11293  * be source routed from here.
11294  * This routine assumes that the options are well formed i.e. that they
11295  * have already been checked.
11296  */
11297 boolean_t
11298 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11299 {
11300 	ipoptp_t	opts;
11301 	uchar_t		*opt;
11302 	uint8_t		optval;
11303 	uint8_t		optlen;
11304 	ipaddr_t	dst;
11305 
11306 	if (IS_SIMPLE_IPH(ipha)) {
11307 		ip2dbg(("not source routed\n"));
11308 		return (B_FALSE);
11309 	}
11310 	dst = ipha->ipha_dst;
11311 	for (optval = ipoptp_first(&opts, ipha);
11312 	    optval != IPOPT_EOL;
11313 	    optval = ipoptp_next(&opts)) {
11314 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11315 		opt = opts.ipoptp_cur;
11316 		optlen = opts.ipoptp_len;
11317 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11318 		    optval, optlen));
11319 		switch (optval) {
11320 			uint32_t off;
11321 		case IPOPT_SSRR:
11322 		case IPOPT_LSRR:
11323 			/*
11324 			 * If dst is one of our addresses and there are some
11325 			 * entries left in the source route return (true).
11326 			 */
11327 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11328 				ip2dbg(("ip_source_routed: not next"
11329 				    " source route 0x%x\n",
11330 				    ntohl(dst)));
11331 				return (B_FALSE);
11332 			}
11333 			off = opt[IPOPT_OFFSET];
11334 			off--;
11335 			if (optlen < IP_ADDR_LEN ||
11336 			    off > optlen - IP_ADDR_LEN) {
11337 				/* End of source route */
11338 				ip1dbg(("ip_source_routed: end of SR\n"));
11339 				return (B_FALSE);
11340 			}
11341 			return (B_TRUE);
11342 		}
11343 	}
11344 	ip2dbg(("not source routed\n"));
11345 	return (B_FALSE);
11346 }
11347 
11348 /*
11349  * ip_unbind is called by the transports to remove a conn from
11350  * the fanout table.
11351  */
11352 void
11353 ip_unbind(conn_t *connp)
11354 {
11355 
11356 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11357 
11358 	if (is_system_labeled() && connp->conn_anon_port) {
11359 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11360 		    connp->conn_mlp_type, connp->conn_proto,
11361 		    ntohs(connp->conn_lport), B_FALSE);
11362 		connp->conn_anon_port = 0;
11363 	}
11364 	connp->conn_mlp_type = mlptSingle;
11365 
11366 	ipcl_hash_remove(connp);
11367 }
11368 
11369 /*
11370  * Used for deciding the MSS size for the upper layer. Thus
11371  * we need to check the outbound policy values in the conn.
11372  */
11373 int
11374 conn_ipsec_length(conn_t *connp)
11375 {
11376 	ipsec_latch_t *ipl;
11377 
11378 	ipl = connp->conn_latch;
11379 	if (ipl == NULL)
11380 		return (0);
11381 
11382 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11383 		return (0);
11384 
11385 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11386 }
11387 
11388 /*
11389  * Returns an estimate of the IPsec headers size. This is used if
11390  * we don't want to call into IPsec to get the exact size.
11391  */
11392 int
11393 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11394 {
11395 	ipsec_action_t *a;
11396 
11397 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11398 		return (0);
11399 
11400 	a = ixa->ixa_ipsec_action;
11401 	if (a == NULL) {
11402 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11403 		a = ixa->ixa_ipsec_policy->ipsp_act;
11404 	}
11405 	ASSERT(a != NULL);
11406 
11407 	return (a->ipa_ovhd);
11408 }
11409 
11410 /*
11411  * If there are any source route options, return the true final
11412  * destination. Otherwise, return the destination.
11413  */
11414 ipaddr_t
11415 ip_get_dst(ipha_t *ipha)
11416 {
11417 	ipoptp_t	opts;
11418 	uchar_t		*opt;
11419 	uint8_t		optval;
11420 	uint8_t		optlen;
11421 	ipaddr_t	dst;
11422 	uint32_t off;
11423 
11424 	dst = ipha->ipha_dst;
11425 
11426 	if (IS_SIMPLE_IPH(ipha))
11427 		return (dst);
11428 
11429 	for (optval = ipoptp_first(&opts, ipha);
11430 	    optval != IPOPT_EOL;
11431 	    optval = ipoptp_next(&opts)) {
11432 		opt = opts.ipoptp_cur;
11433 		optlen = opts.ipoptp_len;
11434 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11435 		switch (optval) {
11436 		case IPOPT_SSRR:
11437 		case IPOPT_LSRR:
11438 			off = opt[IPOPT_OFFSET];
11439 			/*
11440 			 * If one of the conditions is true, it means
11441 			 * end of options and dst already has the right
11442 			 * value.
11443 			 */
11444 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11445 				off = optlen - IP_ADDR_LEN;
11446 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11447 			}
11448 			return (dst);
11449 		default:
11450 			break;
11451 		}
11452 	}
11453 
11454 	return (dst);
11455 }
11456 
11457 /*
11458  * Outbound IP fragmentation routine.
11459  * Assumes the caller has checked whether or not fragmentation should
11460  * be allowed. Here we copy the DF bit from the header to all the generated
11461  * fragments.
11462  */
11463 int
11464 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11465     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11466     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11467 {
11468 	int		i1;
11469 	int		hdr_len;
11470 	mblk_t		*hdr_mp;
11471 	ipha_t		*ipha;
11472 	int		ip_data_end;
11473 	int		len;
11474 	mblk_t		*mp = mp_orig;
11475 	int		offset;
11476 	ill_t		*ill = nce->nce_ill;
11477 	ip_stack_t	*ipst = ill->ill_ipst;
11478 	mblk_t		*carve_mp;
11479 	uint32_t	frag_flag;
11480 	uint_t		priority = mp->b_band;
11481 	int		error = 0;
11482 
11483 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11484 
11485 	if (pkt_len != msgdsize(mp)) {
11486 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11487 		    pkt_len, msgdsize(mp)));
11488 		freemsg(mp);
11489 		return (EINVAL);
11490 	}
11491 
11492 	if (max_frag == 0) {
11493 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11494 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11495 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11496 		freemsg(mp);
11497 		return (EINVAL);
11498 	}
11499 
11500 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11501 	ipha = (ipha_t *)mp->b_rptr;
11502 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11503 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11504 
11505 	/*
11506 	 * Establish the starting offset.  May not be zero if we are fragging
11507 	 * a fragment that is being forwarded.
11508 	 */
11509 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11510 
11511 	/* TODO why is this test needed? */
11512 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11513 		/* TODO: notify ulp somehow */
11514 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11515 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11516 		freemsg(mp);
11517 		return (EINVAL);
11518 	}
11519 
11520 	hdr_len = IPH_HDR_LENGTH(ipha);
11521 	ipha->ipha_hdr_checksum = 0;
11522 
11523 	/*
11524 	 * Establish the number of bytes maximum per frag, after putting
11525 	 * in the header.
11526 	 */
11527 	len = (max_frag - hdr_len) & ~7;
11528 
11529 	/* Get a copy of the header for the trailing frags */
11530 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11531 	    mp);
11532 	if (hdr_mp == NULL) {
11533 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11534 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11535 		freemsg(mp);
11536 		return (ENOBUFS);
11537 	}
11538 
11539 	/* Store the starting offset, with the MoreFrags flag. */
11540 	i1 = offset | IPH_MF | frag_flag;
11541 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11542 
11543 	/* Establish the ending byte offset, based on the starting offset. */
11544 	offset <<= 3;
11545 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11546 
11547 	/* Store the length of the first fragment in the IP header. */
11548 	i1 = len + hdr_len;
11549 	ASSERT(i1 <= IP_MAXPACKET);
11550 	ipha->ipha_length = htons((uint16_t)i1);
11551 
11552 	/*
11553 	 * Compute the IP header checksum for the first frag.  We have to
11554 	 * watch out that we stop at the end of the header.
11555 	 */
11556 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11557 
11558 	/*
11559 	 * Now carve off the first frag.  Note that this will include the
11560 	 * original IP header.
11561 	 */
11562 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11563 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11564 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11565 		freeb(hdr_mp);
11566 		freemsg(mp_orig);
11567 		return (ENOBUFS);
11568 	}
11569 
11570 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11571 
11572 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11573 	    ixa_cookie);
11574 	if (error != 0 && error != EWOULDBLOCK) {
11575 		/* No point in sending the other fragments */
11576 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11577 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11578 		freeb(hdr_mp);
11579 		freemsg(mp_orig);
11580 		return (error);
11581 	}
11582 
11583 	/* No need to redo state machine in loop */
11584 	ixaflags &= ~IXAF_REACH_CONF;
11585 
11586 	/* Advance the offset to the second frag starting point. */
11587 	offset += len;
11588 	/*
11589 	 * Update hdr_len from the copied header - there might be less options
11590 	 * in the later fragments.
11591 	 */
11592 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11593 	/* Loop until done. */
11594 	for (;;) {
11595 		uint16_t	offset_and_flags;
11596 		uint16_t	ip_len;
11597 
11598 		if (ip_data_end - offset > len) {
11599 			/*
11600 			 * Carve off the appropriate amount from the original
11601 			 * datagram.
11602 			 */
11603 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11604 				mp = NULL;
11605 				break;
11606 			}
11607 			/*
11608 			 * More frags after this one.  Get another copy
11609 			 * of the header.
11610 			 */
11611 			if (carve_mp->b_datap->db_ref == 1 &&
11612 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11613 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11614 				/* Inline IP header */
11615 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11616 				    hdr_mp->b_rptr;
11617 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11618 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11619 				mp = carve_mp;
11620 			} else {
11621 				if (!(mp = copyb(hdr_mp))) {
11622 					freemsg(carve_mp);
11623 					break;
11624 				}
11625 				/* Get priority marking, if any. */
11626 				mp->b_band = priority;
11627 				mp->b_cont = carve_mp;
11628 			}
11629 			ipha = (ipha_t *)mp->b_rptr;
11630 			offset_and_flags = IPH_MF;
11631 		} else {
11632 			/*
11633 			 * Last frag.  Consume the header. Set len to
11634 			 * the length of this last piece.
11635 			 */
11636 			len = ip_data_end - offset;
11637 
11638 			/*
11639 			 * Carve off the appropriate amount from the original
11640 			 * datagram.
11641 			 */
11642 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11643 				mp = NULL;
11644 				break;
11645 			}
11646 			if (carve_mp->b_datap->db_ref == 1 &&
11647 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11648 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11649 				/* Inline IP header */
11650 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11651 				    hdr_mp->b_rptr;
11652 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11653 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11654 				mp = carve_mp;
11655 				freeb(hdr_mp);
11656 				hdr_mp = mp;
11657 			} else {
11658 				mp = hdr_mp;
11659 				/* Get priority marking, if any. */
11660 				mp->b_band = priority;
11661 				mp->b_cont = carve_mp;
11662 			}
11663 			ipha = (ipha_t *)mp->b_rptr;
11664 			/* A frag of a frag might have IPH_MF non-zero */
11665 			offset_and_flags =
11666 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11667 			    IPH_MF;
11668 		}
11669 		offset_and_flags |= (uint16_t)(offset >> 3);
11670 		offset_and_flags |= (uint16_t)frag_flag;
11671 		/* Store the offset and flags in the IP header. */
11672 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11673 
11674 		/* Store the length in the IP header. */
11675 		ip_len = (uint16_t)(len + hdr_len);
11676 		ipha->ipha_length = htons(ip_len);
11677 
11678 		/*
11679 		 * Set the IP header checksum.	Note that mp is just
11680 		 * the header, so this is easy to pass to ip_csum.
11681 		 */
11682 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11683 
11684 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11685 
11686 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11687 		    nolzid, ixa_cookie);
11688 		/* All done if we just consumed the hdr_mp. */
11689 		if (mp == hdr_mp) {
11690 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11691 			return (error);
11692 		}
11693 		if (error != 0 && error != EWOULDBLOCK) {
11694 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11695 			    mblk_t *, hdr_mp);
11696 			/* No point in sending the other fragments */
11697 			break;
11698 		}
11699 
11700 		/* Otherwise, advance and loop. */
11701 		offset += len;
11702 	}
11703 	/* Clean up following allocation failure. */
11704 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11705 	ip_drop_output("FragFails: loop ended", NULL, ill);
11706 	if (mp != hdr_mp)
11707 		freeb(hdr_mp);
11708 	if (mp != mp_orig)
11709 		freemsg(mp_orig);
11710 	return (error);
11711 }
11712 
11713 /*
11714  * Copy the header plus those options which have the copy bit set
11715  */
11716 static mblk_t *
11717 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11718     mblk_t *src)
11719 {
11720 	mblk_t	*mp;
11721 	uchar_t	*up;
11722 
11723 	/*
11724 	 * Quick check if we need to look for options without the copy bit
11725 	 * set
11726 	 */
11727 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11728 	if (!mp)
11729 		return (mp);
11730 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11731 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11732 		bcopy(rptr, mp->b_rptr, hdr_len);
11733 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11734 		return (mp);
11735 	}
11736 	up  = mp->b_rptr;
11737 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11738 	up += IP_SIMPLE_HDR_LENGTH;
11739 	rptr += IP_SIMPLE_HDR_LENGTH;
11740 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11741 	while (hdr_len > 0) {
11742 		uint32_t optval;
11743 		uint32_t optlen;
11744 
11745 		optval = *rptr;
11746 		if (optval == IPOPT_EOL)
11747 			break;
11748 		if (optval == IPOPT_NOP)
11749 			optlen = 1;
11750 		else
11751 			optlen = rptr[1];
11752 		if (optval & IPOPT_COPY) {
11753 			bcopy(rptr, up, optlen);
11754 			up += optlen;
11755 		}
11756 		rptr += optlen;
11757 		hdr_len -= optlen;
11758 	}
11759 	/*
11760 	 * Make sure that we drop an even number of words by filling
11761 	 * with EOL to the next word boundary.
11762 	 */
11763 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11764 	    hdr_len & 0x3; hdr_len++)
11765 		*up++ = IPOPT_EOL;
11766 	mp->b_wptr = up;
11767 	/* Update header length */
11768 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11769 	return (mp);
11770 }
11771 
11772 /*
11773  * Update any source route, record route, or timestamp options when
11774  * sending a packet back to ourselves.
11775  * Check that we are at end of strict source route.
11776  * The options have been sanity checked by ip_output_options().
11777  */
11778 void
11779 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11780 {
11781 	ipoptp_t	opts;
11782 	uchar_t		*opt;
11783 	uint8_t		optval;
11784 	uint8_t		optlen;
11785 	ipaddr_t	dst;
11786 	uint32_t	ts;
11787 	timestruc_t	now;
11788 
11789 	for (optval = ipoptp_first(&opts, ipha);
11790 	    optval != IPOPT_EOL;
11791 	    optval = ipoptp_next(&opts)) {
11792 		opt = opts.ipoptp_cur;
11793 		optlen = opts.ipoptp_len;
11794 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11795 		switch (optval) {
11796 			uint32_t off;
11797 		case IPOPT_SSRR:
11798 		case IPOPT_LSRR:
11799 			off = opt[IPOPT_OFFSET];
11800 			off--;
11801 			if (optlen < IP_ADDR_LEN ||
11802 			    off > optlen - IP_ADDR_LEN) {
11803 				/* End of source route */
11804 				break;
11805 			}
11806 			/*
11807 			 * This will only happen if two consecutive entries
11808 			 * in the source route contains our address or if
11809 			 * it is a packet with a loose source route which
11810 			 * reaches us before consuming the whole source route
11811 			 */
11812 
11813 			if (optval == IPOPT_SSRR) {
11814 				return;
11815 			}
11816 			/*
11817 			 * Hack: instead of dropping the packet truncate the
11818 			 * source route to what has been used by filling the
11819 			 * rest with IPOPT_NOP.
11820 			 */
11821 			opt[IPOPT_OLEN] = (uint8_t)off;
11822 			while (off < optlen) {
11823 				opt[off++] = IPOPT_NOP;
11824 			}
11825 			break;
11826 		case IPOPT_RR:
11827 			off = opt[IPOPT_OFFSET];
11828 			off--;
11829 			if (optlen < IP_ADDR_LEN ||
11830 			    off > optlen - IP_ADDR_LEN) {
11831 				/* No more room - ignore */
11832 				ip1dbg((
11833 				    "ip_output_local_options: end of RR\n"));
11834 				break;
11835 			}
11836 			dst = htonl(INADDR_LOOPBACK);
11837 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11838 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11839 			break;
11840 		case IPOPT_TS:
11841 			/* Insert timestamp if there is romm */
11842 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11843 			case IPOPT_TS_TSONLY:
11844 				off = IPOPT_TS_TIMELEN;
11845 				break;
11846 			case IPOPT_TS_PRESPEC:
11847 			case IPOPT_TS_PRESPEC_RFC791:
11848 				/* Verify that the address matched */
11849 				off = opt[IPOPT_OFFSET] - 1;
11850 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11851 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11852 					/* Not for us */
11853 					break;
11854 				}
11855 				/* FALLTHRU */
11856 			case IPOPT_TS_TSANDADDR:
11857 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11858 				break;
11859 			default:
11860 				/*
11861 				 * ip_*put_options should have already
11862 				 * dropped this packet.
11863 				 */
11864 				cmn_err(CE_PANIC, "ip_output_local_options: "
11865 				    "unknown IT - bug in ip_output_options?\n");
11866 				return;	/* Keep "lint" happy */
11867 			}
11868 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11869 				/* Increase overflow counter */
11870 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11871 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
11872 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11873 				    (off << 4);
11874 				break;
11875 			}
11876 			off = opt[IPOPT_OFFSET] - 1;
11877 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11878 			case IPOPT_TS_PRESPEC:
11879 			case IPOPT_TS_PRESPEC_RFC791:
11880 			case IPOPT_TS_TSANDADDR:
11881 				dst = htonl(INADDR_LOOPBACK);
11882 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11883 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11884 				/* FALLTHRU */
11885 			case IPOPT_TS_TSONLY:
11886 				off = opt[IPOPT_OFFSET] - 1;
11887 				/* Compute # of milliseconds since midnight */
11888 				gethrestime(&now);
11889 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
11890 				    now.tv_nsec / (NANOSEC / MILLISEC);
11891 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
11892 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
11893 				break;
11894 			}
11895 			break;
11896 		}
11897 	}
11898 }
11899 
11900 /*
11901  * Prepend an M_DATA fastpath header, and if none present prepend a
11902  * DL_UNITDATA_REQ. Frees the mblk on failure.
11903  *
11904  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
11905  * If there is a change to them, the nce will be deleted (condemned) and
11906  * a new nce_t will be created when packets are sent. Thus we need no locks
11907  * to access those fields.
11908  *
11909  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
11910  * we place b_band in dl_priority.dl_max.
11911  */
11912 static mblk_t *
11913 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
11914 {
11915 	uint_t	hlen;
11916 	mblk_t *mp1;
11917 	uint_t	priority;
11918 	uchar_t *rptr;
11919 
11920 	rptr = mp->b_rptr;
11921 
11922 	ASSERT(DB_TYPE(mp) == M_DATA);
11923 	priority = mp->b_band;
11924 
11925 	ASSERT(nce != NULL);
11926 	if ((mp1 = nce->nce_fp_mp) != NULL) {
11927 		hlen = MBLKL(mp1);
11928 		/*
11929 		 * Check if we have enough room to prepend fastpath
11930 		 * header
11931 		 */
11932 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
11933 			rptr -= hlen;
11934 			bcopy(mp1->b_rptr, rptr, hlen);
11935 			/*
11936 			 * Set the b_rptr to the start of the link layer
11937 			 * header
11938 			 */
11939 			mp->b_rptr = rptr;
11940 			return (mp);
11941 		}
11942 		mp1 = copyb(mp1);
11943 		if (mp1 == NULL) {
11944 			ill_t *ill = nce->nce_ill;
11945 
11946 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
11947 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
11948 			freemsg(mp);
11949 			return (NULL);
11950 		}
11951 		mp1->b_band = priority;
11952 		mp1->b_cont = mp;
11953 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
11954 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
11955 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
11956 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
11957 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
11958 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
11959 		/*
11960 		 * XXX disable ICK_VALID and compute checksum
11961 		 * here; can happen if nce_fp_mp changes and
11962 		 * it can't be copied now due to insufficient
11963 		 * space. (unlikely, fp mp can change, but it
11964 		 * does not increase in length)
11965 		 */
11966 		return (mp1);
11967 	}
11968 	mp1 = copyb(nce->nce_dlur_mp);
11969 
11970 	if (mp1 == NULL) {
11971 		ill_t *ill = nce->nce_ill;
11972 
11973 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
11974 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
11975 		freemsg(mp);
11976 		return (NULL);
11977 	}
11978 	mp1->b_cont = mp;
11979 	if (priority != 0) {
11980 		mp1->b_band = priority;
11981 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
11982 		    priority;
11983 	}
11984 	return (mp1);
11985 #undef rptr
11986 }
11987 
11988 /*
11989  * Finish the outbound IPsec processing. This function is called from
11990  * ipsec_out_process() if the IPsec packet was processed
11991  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
11992  * asynchronously.
11993  *
11994  * This is common to IPv4 and IPv6.
11995  */
11996 int
11997 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
11998 {
11999 	iaflags_t	ixaflags = ixa->ixa_flags;
12000 	uint_t		pktlen;
12001 
12002 
12003 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12004 	if (ixaflags & IXAF_IS_IPV4) {
12005 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12006 
12007 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12008 		pktlen = ntohs(ipha->ipha_length);
12009 	} else {
12010 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12011 
12012 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12013 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12014 	}
12015 
12016 	/*
12017 	 * We release any hard reference on the SAs here to make
12018 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12019 	 * on the SAs.
12020 	 * If in the future we want the hard latching of the SAs in the
12021 	 * ip_xmit_attr_t then we should remove this.
12022 	 */
12023 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12024 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12025 		ixa->ixa_ipsec_esp_sa = NULL;
12026 	}
12027 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12028 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12029 		ixa->ixa_ipsec_ah_sa = NULL;
12030 	}
12031 
12032 	/* Do we need to fragment? */
12033 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12034 	    pktlen > ixa->ixa_fragsize) {
12035 		if (ixaflags & IXAF_IS_IPV4) {
12036 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12037 			/*
12038 			 * We check for the DF case in ipsec_out_process
12039 			 * hence this only handles the non-DF case.
12040 			 */
12041 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12042 			    pktlen, ixa->ixa_fragsize,
12043 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12044 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12045 			    &ixa->ixa_cookie));
12046 		} else {
12047 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12048 			if (mp == NULL) {
12049 				/* MIB and ip_drop_output already done */
12050 				return (ENOMEM);
12051 			}
12052 			pktlen += sizeof (ip6_frag_t);
12053 			if (pktlen > ixa->ixa_fragsize) {
12054 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12055 				    ixa->ixa_flags, pktlen,
12056 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12057 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12058 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12059 			}
12060 		}
12061 	}
12062 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12063 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12064 	    ixa->ixa_no_loop_zoneid, NULL));
12065 }
12066 
12067 /*
12068  * Finish the inbound IPsec processing. This function is called from
12069  * ipsec_out_process() if the IPsec packet was processed
12070  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12071  * asynchronously.
12072  *
12073  * This is common to IPv4 and IPv6.
12074  */
12075 void
12076 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12077 {
12078 	iaflags_t	iraflags = ira->ira_flags;
12079 
12080 	/* Length might have changed */
12081 	if (iraflags & IRAF_IS_IPV4) {
12082 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12083 
12084 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12085 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12086 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12087 		ira->ira_protocol = ipha->ipha_protocol;
12088 
12089 		ip_fanout_v4(mp, ipha, ira);
12090 	} else {
12091 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12092 		uint8_t		*nexthdrp;
12093 
12094 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12095 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12096 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12097 		    &nexthdrp)) {
12098 			/* Malformed packet */
12099 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12100 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12101 			freemsg(mp);
12102 			return;
12103 		}
12104 		ira->ira_protocol = *nexthdrp;
12105 		ip_fanout_v6(mp, ip6h, ira);
12106 	}
12107 }
12108 
12109 /*
12110  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12111  *
12112  * If this function returns B_TRUE, the requested SA's have been filled
12113  * into the ixa_ipsec_*_sa pointers.
12114  *
12115  * If the function returns B_FALSE, the packet has been "consumed", most
12116  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12117  *
12118  * The SA references created by the protocol-specific "select"
12119  * function will be released in ip_output_post_ipsec.
12120  */
12121 static boolean_t
12122 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12123 {
12124 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12125 	ipsec_policy_t *pp;
12126 	ipsec_action_t *ap;
12127 
12128 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12129 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12130 	    (ixa->ixa_ipsec_action != NULL));
12131 
12132 	ap = ixa->ixa_ipsec_action;
12133 	if (ap == NULL) {
12134 		pp = ixa->ixa_ipsec_policy;
12135 		ASSERT(pp != NULL);
12136 		ap = pp->ipsp_act;
12137 		ASSERT(ap != NULL);
12138 	}
12139 
12140 	/*
12141 	 * We have an action.  now, let's select SA's.
12142 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12143 	 * be cached in the conn_t.
12144 	 */
12145 	if (ap->ipa_want_esp) {
12146 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12147 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12148 			    IPPROTO_ESP);
12149 		}
12150 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12151 	}
12152 
12153 	if (ap->ipa_want_ah) {
12154 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12155 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12156 			    IPPROTO_AH);
12157 		}
12158 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12159 		/*
12160 		 * The ESP and AH processing order needs to be preserved
12161 		 * when both protocols are required (ESP should be applied
12162 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12163 		 * when both ESP and AH are required, and an AH ACQUIRE
12164 		 * is needed.
12165 		 */
12166 		if (ap->ipa_want_esp && need_ah_acquire)
12167 			need_esp_acquire = B_TRUE;
12168 	}
12169 
12170 	/*
12171 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12172 	 * Release SAs that got referenced, but will not be used until we
12173 	 * acquire _all_ of the SAs we need.
12174 	 */
12175 	if (need_ah_acquire || need_esp_acquire) {
12176 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12177 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12178 			ixa->ixa_ipsec_ah_sa = NULL;
12179 		}
12180 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12181 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12182 			ixa->ixa_ipsec_esp_sa = NULL;
12183 		}
12184 
12185 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12186 		return (B_FALSE);
12187 	}
12188 
12189 	return (B_TRUE);
12190 }
12191 
12192 /*
12193  * Handle IPsec output processing.
12194  * This function is only entered once for a given packet.
12195  * We try to do things synchronously, but if we need to have user-level
12196  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12197  * will be completed
12198  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12199  *  - when asynchronous ESP is done it will do AH
12200  *
12201  * In all cases we come back in ip_output_post_ipsec() to fragment and
12202  * send out the packet.
12203  */
12204 int
12205 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12206 {
12207 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12208 	ip_stack_t	*ipst = ixa->ixa_ipst;
12209 	ipsec_stack_t	*ipss;
12210 	ipsec_policy_t	*pp;
12211 	ipsec_action_t	*ap;
12212 
12213 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12214 
12215 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12216 	    (ixa->ixa_ipsec_action != NULL));
12217 
12218 	ipss = ipst->ips_netstack->netstack_ipsec;
12219 	if (!ipsec_loaded(ipss)) {
12220 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12221 		ip_drop_packet(mp, B_TRUE, ill,
12222 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12223 		    &ipss->ipsec_dropper);
12224 		return (ENOTSUP);
12225 	}
12226 
12227 	ap = ixa->ixa_ipsec_action;
12228 	if (ap == NULL) {
12229 		pp = ixa->ixa_ipsec_policy;
12230 		ASSERT(pp != NULL);
12231 		ap = pp->ipsp_act;
12232 		ASSERT(ap != NULL);
12233 	}
12234 
12235 	/* Handle explicit drop action and bypass. */
12236 	switch (ap->ipa_act.ipa_type) {
12237 	case IPSEC_ACT_DISCARD:
12238 	case IPSEC_ACT_REJECT:
12239 		ip_drop_packet(mp, B_FALSE, ill,
12240 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12241 		return (EHOSTUNREACH);	/* IPsec policy failure */
12242 	case IPSEC_ACT_BYPASS:
12243 		return (ip_output_post_ipsec(mp, ixa));
12244 	}
12245 
12246 	/*
12247 	 * The order of processing is first insert a IP header if needed.
12248 	 * Then insert the ESP header and then the AH header.
12249 	 */
12250 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12251 		/*
12252 		 * First get the outer IP header before sending
12253 		 * it to ESP.
12254 		 */
12255 		ipha_t *oipha, *iipha;
12256 		mblk_t *outer_mp, *inner_mp;
12257 
12258 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12259 			(void) mi_strlog(ill->ill_rq, 0,
12260 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12261 			    "ipsec_out_process: "
12262 			    "Self-Encapsulation failed: Out of memory\n");
12263 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12264 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12265 			freemsg(mp);
12266 			return (ENOBUFS);
12267 		}
12268 		inner_mp = mp;
12269 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12270 		oipha = (ipha_t *)outer_mp->b_rptr;
12271 		iipha = (ipha_t *)inner_mp->b_rptr;
12272 		*oipha = *iipha;
12273 		outer_mp->b_wptr += sizeof (ipha_t);
12274 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12275 		    sizeof (ipha_t));
12276 		oipha->ipha_protocol = IPPROTO_ENCAP;
12277 		oipha->ipha_version_and_hdr_length =
12278 		    IP_SIMPLE_HDR_VERSION;
12279 		oipha->ipha_hdr_checksum = 0;
12280 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12281 		outer_mp->b_cont = inner_mp;
12282 		mp = outer_mp;
12283 
12284 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12285 	}
12286 
12287 	/* If we need to wait for a SA then we can't return any errno */
12288 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12289 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12290 	    !ipsec_out_select_sa(mp, ixa))
12291 		return (0);
12292 
12293 	/*
12294 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12295 	 * to do the heavy lifting.
12296 	 */
12297 	if (ap->ipa_want_esp) {
12298 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12299 
12300 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12301 		if (mp == NULL) {
12302 			/*
12303 			 * Either it failed or is pending. In the former case
12304 			 * ipIfStatsInDiscards was increased.
12305 			 */
12306 			return (0);
12307 		}
12308 	}
12309 
12310 	if (ap->ipa_want_ah) {
12311 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12312 
12313 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12314 		if (mp == NULL) {
12315 			/*
12316 			 * Either it failed or is pending. In the former case
12317 			 * ipIfStatsInDiscards was increased.
12318 			 */
12319 			return (0);
12320 		}
12321 	}
12322 	/*
12323 	 * We are done with IPsec processing. Send it over
12324 	 * the wire.
12325 	 */
12326 	return (ip_output_post_ipsec(mp, ixa));
12327 }
12328 
12329 /*
12330  * ioctls that go through a down/up sequence may need to wait for the down
12331  * to complete. This involves waiting for the ire and ipif refcnts to go down
12332  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12333  */
12334 /* ARGSUSED */
12335 void
12336 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12337 {
12338 	struct iocblk *iocp;
12339 	mblk_t *mp1;
12340 	ip_ioctl_cmd_t *ipip;
12341 	int err;
12342 	sin_t	*sin;
12343 	struct lifreq *lifr;
12344 	struct ifreq *ifr;
12345 
12346 	iocp = (struct iocblk *)mp->b_rptr;
12347 	ASSERT(ipsq != NULL);
12348 	/* Existence of mp1 verified in ip_wput_nondata */
12349 	mp1 = mp->b_cont->b_cont;
12350 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12351 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12352 		/*
12353 		 * Special case where ipx_current_ipif is not set:
12354 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12355 		 * We are here as were not able to complete the operation in
12356 		 * ipif_set_values because we could not become exclusive on
12357 		 * the new ipsq.
12358 		 */
12359 		ill_t *ill = q->q_ptr;
12360 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12361 	}
12362 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12363 
12364 	if (ipip->ipi_cmd_type == IF_CMD) {
12365 		/* This a old style SIOC[GS]IF* command */
12366 		ifr = (struct ifreq *)mp1->b_rptr;
12367 		sin = (sin_t *)&ifr->ifr_addr;
12368 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12369 		/* This a new style SIOC[GS]LIF* command */
12370 		lifr = (struct lifreq *)mp1->b_rptr;
12371 		sin = (sin_t *)&lifr->lifr_addr;
12372 	} else {
12373 		sin = NULL;
12374 	}
12375 
12376 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12377 	    q, mp, ipip, mp1->b_rptr);
12378 
12379 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12380 	    int, ipip->ipi_cmd,
12381 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12382 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12383 
12384 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12385 }
12386 
12387 /*
12388  * ioctl processing
12389  *
12390  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12391  * the ioctl command in the ioctl tables, determines the copyin data size
12392  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12393  *
12394  * ioctl processing then continues when the M_IOCDATA makes its way down to
12395  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12396  * associated 'conn' is refheld till the end of the ioctl and the general
12397  * ioctl processing function ip_process_ioctl() is called to extract the
12398  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12399  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12400  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12401  * is used to extract the ioctl's arguments.
12402  *
12403  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12404  * so goes thru the serialization primitive ipsq_try_enter. Then the
12405  * appropriate function to handle the ioctl is called based on the entry in
12406  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12407  * which also refreleases the 'conn' that was refheld at the start of the
12408  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12409  *
12410  * Many exclusive ioctls go thru an internal down up sequence as part of
12411  * the operation. For example an attempt to change the IP address of an
12412  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12413  * does all the cleanup such as deleting all ires that use this address.
12414  * Then we need to wait till all references to the interface go away.
12415  */
12416 void
12417 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12418 {
12419 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12420 	ip_ioctl_cmd_t *ipip = arg;
12421 	ip_extract_func_t *extract_funcp;
12422 	cmd_info_t ci;
12423 	int err;
12424 	boolean_t entered_ipsq = B_FALSE;
12425 
12426 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12427 
12428 	if (ipip == NULL)
12429 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12430 
12431 	/*
12432 	 * SIOCLIFADDIF needs to go thru a special path since the
12433 	 * ill may not exist yet. This happens in the case of lo0
12434 	 * which is created using this ioctl.
12435 	 */
12436 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12437 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12438 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12439 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12440 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12441 		return;
12442 	}
12443 
12444 	ci.ci_ipif = NULL;
12445 	switch (ipip->ipi_cmd_type) {
12446 	case MISC_CMD:
12447 	case MSFILT_CMD:
12448 		/*
12449 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12450 		 */
12451 		if (ipip->ipi_cmd == IF_UNITSEL) {
12452 			/* ioctl comes down the ill */
12453 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12454 			ipif_refhold(ci.ci_ipif);
12455 		}
12456 		err = 0;
12457 		ci.ci_sin = NULL;
12458 		ci.ci_sin6 = NULL;
12459 		ci.ci_lifr = NULL;
12460 		extract_funcp = NULL;
12461 		break;
12462 
12463 	case IF_CMD:
12464 	case LIF_CMD:
12465 		extract_funcp = ip_extract_lifreq;
12466 		break;
12467 
12468 	case ARP_CMD:
12469 	case XARP_CMD:
12470 		extract_funcp = ip_extract_arpreq;
12471 		break;
12472 
12473 	default:
12474 		ASSERT(0);
12475 	}
12476 
12477 	if (extract_funcp != NULL) {
12478 		err = (*extract_funcp)(q, mp, ipip, &ci);
12479 		if (err != 0) {
12480 			DTRACE_PROBE4(ipif__ioctl,
12481 			    char *, "ip_process_ioctl finish err",
12482 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12483 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12484 			return;
12485 		}
12486 
12487 		/*
12488 		 * All of the extraction functions return a refheld ipif.
12489 		 */
12490 		ASSERT(ci.ci_ipif != NULL);
12491 	}
12492 
12493 	if (!(ipip->ipi_flags & IPI_WR)) {
12494 		/*
12495 		 * A return value of EINPROGRESS means the ioctl is
12496 		 * either queued and waiting for some reason or has
12497 		 * already completed.
12498 		 */
12499 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12500 		    ci.ci_lifr);
12501 		if (ci.ci_ipif != NULL) {
12502 			DTRACE_PROBE4(ipif__ioctl,
12503 			    char *, "ip_process_ioctl finish RD",
12504 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12505 			    ipif_t *, ci.ci_ipif);
12506 			ipif_refrele(ci.ci_ipif);
12507 		} else {
12508 			DTRACE_PROBE4(ipif__ioctl,
12509 			    char *, "ip_process_ioctl finish RD",
12510 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12511 		}
12512 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12513 		return;
12514 	}
12515 
12516 	ASSERT(ci.ci_ipif != NULL);
12517 
12518 	/*
12519 	 * If ipsq is non-NULL, we are already being called exclusively
12520 	 */
12521 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12522 	if (ipsq == NULL) {
12523 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12524 		    NEW_OP, B_TRUE);
12525 		if (ipsq == NULL) {
12526 			ipif_refrele(ci.ci_ipif);
12527 			return;
12528 		}
12529 		entered_ipsq = B_TRUE;
12530 	}
12531 	/*
12532 	 * Release the ipif so that ipif_down and friends that wait for
12533 	 * references to go away are not misled about the current ipif_refcnt
12534 	 * values. We are writer so we can access the ipif even after releasing
12535 	 * the ipif.
12536 	 */
12537 	ipif_refrele(ci.ci_ipif);
12538 
12539 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12540 
12541 	/*
12542 	 * A return value of EINPROGRESS means the ioctl is
12543 	 * either queued and waiting for some reason or has
12544 	 * already completed.
12545 	 */
12546 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12547 
12548 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12549 	    int, ipip->ipi_cmd,
12550 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12551 	    ipif_t *, ci.ci_ipif);
12552 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12553 
12554 	if (entered_ipsq)
12555 		ipsq_exit(ipsq);
12556 }
12557 
12558 /*
12559  * Complete the ioctl. Typically ioctls use the mi package and need to
12560  * do mi_copyout/mi_copy_done.
12561  */
12562 void
12563 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12564 {
12565 	conn_t	*connp = NULL;
12566 
12567 	if (err == EINPROGRESS)
12568 		return;
12569 
12570 	if (CONN_Q(q)) {
12571 		connp = Q_TO_CONN(q);
12572 		ASSERT(connp->conn_ref >= 2);
12573 	}
12574 
12575 	switch (mode) {
12576 	case COPYOUT:
12577 		if (err == 0)
12578 			mi_copyout(q, mp);
12579 		else
12580 			mi_copy_done(q, mp, err);
12581 		break;
12582 
12583 	case NO_COPYOUT:
12584 		mi_copy_done(q, mp, err);
12585 		break;
12586 
12587 	default:
12588 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12589 		break;
12590 	}
12591 
12592 	/*
12593 	 * The conn refhold and ioctlref placed on the conn at the start of the
12594 	 * ioctl are released here.
12595 	 */
12596 	if (connp != NULL) {
12597 		CONN_DEC_IOCTLREF(connp);
12598 		CONN_OPER_PENDING_DONE(connp);
12599 	}
12600 
12601 	if (ipsq != NULL)
12602 		ipsq_current_finish(ipsq);
12603 }
12604 
12605 /* Handles all non data messages */
12606 void
12607 ip_wput_nondata(queue_t *q, mblk_t *mp)
12608 {
12609 	mblk_t		*mp1;
12610 	struct iocblk	*iocp;
12611 	ip_ioctl_cmd_t	*ipip;
12612 	conn_t		*connp;
12613 	cred_t		*cr;
12614 	char		*proto_str;
12615 
12616 	if (CONN_Q(q))
12617 		connp = Q_TO_CONN(q);
12618 	else
12619 		connp = NULL;
12620 
12621 	switch (DB_TYPE(mp)) {
12622 	case M_IOCTL:
12623 		/*
12624 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12625 		 * will arrange to copy in associated control structures.
12626 		 */
12627 		ip_sioctl_copyin_setup(q, mp);
12628 		return;
12629 	case M_IOCDATA:
12630 		/*
12631 		 * Ensure that this is associated with one of our trans-
12632 		 * parent ioctls.  If it's not ours, discard it if we're
12633 		 * running as a driver, or pass it on if we're a module.
12634 		 */
12635 		iocp = (struct iocblk *)mp->b_rptr;
12636 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12637 		if (ipip == NULL) {
12638 			if (q->q_next == NULL) {
12639 				goto nak;
12640 			} else {
12641 				putnext(q, mp);
12642 			}
12643 			return;
12644 		}
12645 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12646 			/*
12647 			 * The ioctl is one we recognise, but is not consumed
12648 			 * by IP as a module and we are a module, so we drop
12649 			 */
12650 			goto nak;
12651 		}
12652 
12653 		/* IOCTL continuation following copyin or copyout. */
12654 		if (mi_copy_state(q, mp, NULL) == -1) {
12655 			/*
12656 			 * The copy operation failed.  mi_copy_state already
12657 			 * cleaned up, so we're out of here.
12658 			 */
12659 			return;
12660 		}
12661 		/*
12662 		 * If we just completed a copy in, we become writer and
12663 		 * continue processing in ip_sioctl_copyin_done.  If it
12664 		 * was a copy out, we call mi_copyout again.  If there is
12665 		 * nothing more to copy out, it will complete the IOCTL.
12666 		 */
12667 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12668 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12669 				mi_copy_done(q, mp, EPROTO);
12670 				return;
12671 			}
12672 			/*
12673 			 * Check for cases that need more copying.  A return
12674 			 * value of 0 means a second copyin has been started,
12675 			 * so we return; a return value of 1 means no more
12676 			 * copying is needed, so we continue.
12677 			 */
12678 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12679 			    MI_COPY_COUNT(mp) == 1) {
12680 				if (ip_copyin_msfilter(q, mp) == 0)
12681 					return;
12682 			}
12683 			/*
12684 			 * Refhold the conn, till the ioctl completes. This is
12685 			 * needed in case the ioctl ends up in the pending mp
12686 			 * list. Every mp in the ipx_pending_mp list must have
12687 			 * a refhold on the conn to resume processing. The
12688 			 * refhold is released when the ioctl completes
12689 			 * (whether normally or abnormally). An ioctlref is also
12690 			 * placed on the conn to prevent TCP from removing the
12691 			 * queue needed to send the ioctl reply back.
12692 			 * In all cases ip_ioctl_finish is called to finish
12693 			 * the ioctl and release the refholds.
12694 			 */
12695 			if (connp != NULL) {
12696 				/* This is not a reentry */
12697 				CONN_INC_REF(connp);
12698 				CONN_INC_IOCTLREF(connp);
12699 			} else {
12700 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12701 					mi_copy_done(q, mp, EINVAL);
12702 					return;
12703 				}
12704 			}
12705 
12706 			ip_process_ioctl(NULL, q, mp, ipip);
12707 
12708 		} else {
12709 			mi_copyout(q, mp);
12710 		}
12711 		return;
12712 
12713 	case M_IOCNAK:
12714 		/*
12715 		 * The only way we could get here is if a resolver didn't like
12716 		 * an IOCTL we sent it.	 This shouldn't happen.
12717 		 */
12718 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12719 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12720 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12721 		freemsg(mp);
12722 		return;
12723 	case M_IOCACK:
12724 		/* /dev/ip shouldn't see this */
12725 		goto nak;
12726 	case M_FLUSH:
12727 		if (*mp->b_rptr & FLUSHW)
12728 			flushq(q, FLUSHALL);
12729 		if (q->q_next) {
12730 			putnext(q, mp);
12731 			return;
12732 		}
12733 		if (*mp->b_rptr & FLUSHR) {
12734 			*mp->b_rptr &= ~FLUSHW;
12735 			qreply(q, mp);
12736 			return;
12737 		}
12738 		freemsg(mp);
12739 		return;
12740 	case M_CTL:
12741 		break;
12742 	case M_PROTO:
12743 	case M_PCPROTO:
12744 		/*
12745 		 * The only PROTO messages we expect are SNMP-related.
12746 		 */
12747 		switch (((union T_primitives *)mp->b_rptr)->type) {
12748 		case T_SVR4_OPTMGMT_REQ:
12749 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12750 			    "flags %x\n",
12751 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12752 
12753 			if (connp == NULL) {
12754 				proto_str = "T_SVR4_OPTMGMT_REQ";
12755 				goto protonak;
12756 			}
12757 
12758 			/*
12759 			 * All Solaris components should pass a db_credp
12760 			 * for this TPI message, hence we ASSERT.
12761 			 * But in case there is some other M_PROTO that looks
12762 			 * like a TPI message sent by some other kernel
12763 			 * component, we check and return an error.
12764 			 */
12765 			cr = msg_getcred(mp, NULL);
12766 			ASSERT(cr != NULL);
12767 			if (cr == NULL) {
12768 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12769 				if (mp != NULL)
12770 					qreply(q, mp);
12771 				return;
12772 			}
12773 
12774 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12775 				proto_str = "Bad SNMPCOM request?";
12776 				goto protonak;
12777 			}
12778 			return;
12779 		default:
12780 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12781 			    (int)*(uint_t *)mp->b_rptr));
12782 			freemsg(mp);
12783 			return;
12784 		}
12785 	default:
12786 		break;
12787 	}
12788 	if (q->q_next) {
12789 		putnext(q, mp);
12790 	} else
12791 		freemsg(mp);
12792 	return;
12793 
12794 nak:
12795 	iocp->ioc_error = EINVAL;
12796 	mp->b_datap->db_type = M_IOCNAK;
12797 	iocp->ioc_count = 0;
12798 	qreply(q, mp);
12799 	return;
12800 
12801 protonak:
12802 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12803 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12804 		qreply(q, mp);
12805 }
12806 
12807 /*
12808  * Process IP options in an outbound packet.  Verify that the nexthop in a
12809  * strict source route is onlink.
12810  * Returns non-zero if something fails in which case an ICMP error has been
12811  * sent and mp freed.
12812  *
12813  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12814  */
12815 int
12816 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12817 {
12818 	ipoptp_t	opts;
12819 	uchar_t		*opt;
12820 	uint8_t		optval;
12821 	uint8_t		optlen;
12822 	ipaddr_t	dst;
12823 	intptr_t	code = 0;
12824 	ire_t		*ire;
12825 	ip_stack_t	*ipst = ixa->ixa_ipst;
12826 	ip_recv_attr_t	iras;
12827 
12828 	ip2dbg(("ip_output_options\n"));
12829 
12830 	dst = ipha->ipha_dst;
12831 	for (optval = ipoptp_first(&opts, ipha);
12832 	    optval != IPOPT_EOL;
12833 	    optval = ipoptp_next(&opts)) {
12834 		opt = opts.ipoptp_cur;
12835 		optlen = opts.ipoptp_len;
12836 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12837 		    optval, optlen));
12838 		switch (optval) {
12839 			uint32_t off;
12840 		case IPOPT_SSRR:
12841 		case IPOPT_LSRR:
12842 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12843 				ip1dbg((
12844 				    "ip_output_options: bad option offset\n"));
12845 				code = (char *)&opt[IPOPT_OLEN] -
12846 				    (char *)ipha;
12847 				goto param_prob;
12848 			}
12849 			off = opt[IPOPT_OFFSET];
12850 			ip1dbg(("ip_output_options: next hop 0x%x\n",
12851 			    ntohl(dst)));
12852 			/*
12853 			 * For strict: verify that dst is directly
12854 			 * reachable.
12855 			 */
12856 			if (optval == IPOPT_SSRR) {
12857 				ire = ire_ftable_lookup_v4(dst, 0, 0,
12858 				    IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl,
12859 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12860 				    NULL);
12861 				if (ire == NULL) {
12862 					ip1dbg(("ip_output_options: SSRR not"
12863 					    " directly reachable: 0x%x\n",
12864 					    ntohl(dst)));
12865 					goto bad_src_route;
12866 				}
12867 				ire_refrele(ire);
12868 			}
12869 			break;
12870 		case IPOPT_RR:
12871 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12872 				ip1dbg((
12873 				    "ip_output_options: bad option offset\n"));
12874 				code = (char *)&opt[IPOPT_OLEN] -
12875 				    (char *)ipha;
12876 				goto param_prob;
12877 			}
12878 			break;
12879 		case IPOPT_TS:
12880 			/*
12881 			 * Verify that length >=5 and that there is either
12882 			 * room for another timestamp or that the overflow
12883 			 * counter is not maxed out.
12884 			 */
12885 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
12886 			if (optlen < IPOPT_MINLEN_IT) {
12887 				goto param_prob;
12888 			}
12889 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12890 				ip1dbg((
12891 				    "ip_output_options: bad option offset\n"));
12892 				code = (char *)&opt[IPOPT_OFFSET] -
12893 				    (char *)ipha;
12894 				goto param_prob;
12895 			}
12896 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12897 			case IPOPT_TS_TSONLY:
12898 				off = IPOPT_TS_TIMELEN;
12899 				break;
12900 			case IPOPT_TS_TSANDADDR:
12901 			case IPOPT_TS_PRESPEC:
12902 			case IPOPT_TS_PRESPEC_RFC791:
12903 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12904 				break;
12905 			default:
12906 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
12907 				    (char *)ipha;
12908 				goto param_prob;
12909 			}
12910 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
12911 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
12912 				/*
12913 				 * No room and the overflow counter is 15
12914 				 * already.
12915 				 */
12916 				goto param_prob;
12917 			}
12918 			break;
12919 		}
12920 	}
12921 
12922 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
12923 		return (0);
12924 
12925 	ip1dbg(("ip_output_options: error processing IP options."));
12926 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
12927 
12928 param_prob:
12929 	bzero(&iras, sizeof (iras));
12930 	iras.ira_ill = iras.ira_rill = ill;
12931 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
12932 	iras.ira_rifindex = iras.ira_ruifindex;
12933 	iras.ira_flags = IRAF_IS_IPV4;
12934 
12935 	ip_drop_output("ip_output_options", mp, ill);
12936 	icmp_param_problem(mp, (uint8_t)code, &iras);
12937 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
12938 	return (-1);
12939 
12940 bad_src_route:
12941 	bzero(&iras, sizeof (iras));
12942 	iras.ira_ill = iras.ira_rill = ill;
12943 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
12944 	iras.ira_rifindex = iras.ira_ruifindex;
12945 	iras.ira_flags = IRAF_IS_IPV4;
12946 
12947 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
12948 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
12949 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
12950 	return (-1);
12951 }
12952 
12953 /*
12954  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
12955  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
12956  * thru /etc/system.
12957  */
12958 #define	CONN_MAXDRAINCNT	64
12959 
12960 static void
12961 conn_drain_init(ip_stack_t *ipst)
12962 {
12963 	int i, j;
12964 	idl_tx_list_t *itl_tx;
12965 
12966 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
12967 
12968 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
12969 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
12970 		/*
12971 		 * Default value of the number of drainers is the
12972 		 * number of cpus, subject to maximum of 8 drainers.
12973 		 */
12974 		if (boot_max_ncpus != -1)
12975 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
12976 		else
12977 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
12978 	}
12979 
12980 	ipst->ips_idl_tx_list =
12981 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
12982 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
12983 		itl_tx =  &ipst->ips_idl_tx_list[i];
12984 		itl_tx->txl_drain_list =
12985 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
12986 		    sizeof (idl_t), KM_SLEEP);
12987 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
12988 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
12989 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
12990 			    MUTEX_DEFAULT, NULL);
12991 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
12992 		}
12993 	}
12994 }
12995 
12996 static void
12997 conn_drain_fini(ip_stack_t *ipst)
12998 {
12999 	int i;
13000 	idl_tx_list_t *itl_tx;
13001 
13002 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13003 		itl_tx =  &ipst->ips_idl_tx_list[i];
13004 		kmem_free(itl_tx->txl_drain_list,
13005 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13006 	}
13007 	kmem_free(ipst->ips_idl_tx_list,
13008 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13009 	ipst->ips_idl_tx_list = NULL;
13010 }
13011 
13012 /*
13013  * Note: For an overview of how flowcontrol is handled in IP please see the
13014  * IP Flowcontrol notes at the top of this file.
13015  *
13016  * Flow control has blocked us from proceeding. Insert the given conn in one
13017  * of the conn drain lists. These conn wq's will be qenabled later on when
13018  * STREAMS flow control does a backenable. conn_walk_drain will enable
13019  * the first conn in each of these drain lists. Each of these qenabled conns
13020  * in turn enables the next in the list, after it runs, or when it closes,
13021  * thus sustaining the drain process.
13022  */
13023 void
13024 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13025 {
13026 	idl_t	*idl = tx_list->txl_drain_list;
13027 	uint_t	index;
13028 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13029 
13030 	mutex_enter(&connp->conn_lock);
13031 	if (connp->conn_state_flags & CONN_CLOSING) {
13032 		/*
13033 		 * The conn is closing as a result of which CONN_CLOSING
13034 		 * is set. Return.
13035 		 */
13036 		mutex_exit(&connp->conn_lock);
13037 		return;
13038 	} else if (connp->conn_idl == NULL) {
13039 		/*
13040 		 * Assign the next drain list round robin. We dont' use
13041 		 * a lock, and thus it may not be strictly round robin.
13042 		 * Atomicity of load/stores is enough to make sure that
13043 		 * conn_drain_list_index is always within bounds.
13044 		 */
13045 		index = tx_list->txl_drain_index;
13046 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13047 		connp->conn_idl = &tx_list->txl_drain_list[index];
13048 		index++;
13049 		if (index == ipst->ips_conn_drain_list_cnt)
13050 			index = 0;
13051 		tx_list->txl_drain_index = index;
13052 	}
13053 	mutex_exit(&connp->conn_lock);
13054 
13055 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
13056 	if ((connp->conn_drain_prev != NULL) ||
13057 	    (connp->conn_state_flags & CONN_CLOSING)) {
13058 		/*
13059 		 * The conn is already in the drain list, OR
13060 		 * the conn is closing. We need to check again for
13061 		 * the closing case again since close can happen
13062 		 * after we drop the conn_lock, and before we
13063 		 * acquire the CONN_DRAIN_LIST_LOCK.
13064 		 */
13065 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
13066 		return;
13067 	} else {
13068 		idl = connp->conn_idl;
13069 	}
13070 
13071 	/*
13072 	 * The conn is not in the drain list. Insert it at the
13073 	 * tail of the drain list. The drain list is circular
13074 	 * and doubly linked. idl_conn points to the 1st element
13075 	 * in the list.
13076 	 */
13077 	if (idl->idl_conn == NULL) {
13078 		idl->idl_conn = connp;
13079 		connp->conn_drain_next = connp;
13080 		connp->conn_drain_prev = connp;
13081 	} else {
13082 		conn_t *head = idl->idl_conn;
13083 
13084 		connp->conn_drain_next = head;
13085 		connp->conn_drain_prev = head->conn_drain_prev;
13086 		head->conn_drain_prev->conn_drain_next = connp;
13087 		head->conn_drain_prev = connp;
13088 	}
13089 	/*
13090 	 * For non streams based sockets assert flow control.
13091 	 */
13092 	conn_setqfull(connp, NULL);
13093 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
13094 }
13095 
13096 static void
13097 conn_idl_remove(conn_t *connp)
13098 {
13099 	idl_t *idl = connp->conn_idl;
13100 
13101 	if (idl != NULL) {
13102 		/*
13103 		 * Remove ourself from the drain list, if we did not do
13104 		 * a putq, or if the conn is closing.
13105 		 * Note: It is possible that q->q_first is non-null. It means
13106 		 * that these messages landed after we did a enableok() in
13107 		 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to
13108 		 * service them.
13109 		 */
13110 		if (connp->conn_drain_next == connp) {
13111 			/* Singleton in the list */
13112 			ASSERT(connp->conn_drain_prev == connp);
13113 			idl->idl_conn = NULL;
13114 		} else {
13115 			connp->conn_drain_prev->conn_drain_next =
13116 			    connp->conn_drain_next;
13117 			connp->conn_drain_next->conn_drain_prev =
13118 			    connp->conn_drain_prev;
13119 			if (idl->idl_conn == connp)
13120 				idl->idl_conn = connp->conn_drain_next;
13121 		}
13122 	}
13123 	connp->conn_drain_next = NULL;
13124 	connp->conn_drain_prev = NULL;
13125 
13126 	conn_clrqfull(connp, NULL);
13127 	/*
13128 	 * For streams based sockets open up flow control.
13129 	 */
13130 	if (!IPCL_IS_NONSTR(connp))
13131 		enableok(connp->conn_wq);
13132 }
13133 
13134 /*
13135  * This conn is closing, and we are called from ip_close. OR
13136  * this conn is draining because flow-control on the ill has been relieved.
13137  *
13138  * We must also need to remove conn's on this idl from the list, and also
13139  * inform the sockfs upcalls about the change in flow-control.
13140  */
13141 static void
13142 conn_drain_tail(conn_t *connp, boolean_t closing)
13143 {
13144 	idl_t *idl;
13145 	conn_t *next_connp;
13146 
13147 	/*
13148 	 * connp->conn_idl is stable at this point, and no lock is needed
13149 	 * to check it. If we are called from ip_close, close has already
13150 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13151 	 * called us only because conn_idl is non-null. If we are called thru
13152 	 * service, conn_idl could be null, but it cannot change because
13153 	 * service is single-threaded per queue, and there cannot be another
13154 	 * instance of service trying to call conn_drain_insert on this conn
13155 	 * now.
13156 	 */
13157 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13158 
13159 	/*
13160 	 * If connp->conn_idl is null, the conn has not been inserted into any
13161 	 * drain list even once since creation of the conn. Just return.
13162 	 */
13163 	if (connp == NULL || connp->conn_idl == NULL)
13164 		return;
13165 
13166 	if (connp->conn_drain_prev == NULL) {
13167 		/* This conn is currently not in the drain list.  */
13168 		return;
13169 	}
13170 	idl = connp->conn_idl;
13171 	if (!closing) {
13172 		/*
13173 		 * This conn is the current drainer. If this is the last conn
13174 		 * in the drain list, we need to do more checks, in the 'if'
13175 		 * below. Otherwwise we need to just qenable the next conn,
13176 		 * to sustain the draining, and is handled in the 'else'
13177 		 * below.
13178 		 */
13179 		next_connp = connp->conn_drain_next;
13180 		while (next_connp != connp) {
13181 			conn_t *delconnp = next_connp;
13182 
13183 			next_connp = next_connp->conn_drain_next;
13184 			conn_idl_remove(delconnp);
13185 		}
13186 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13187 	}
13188 	conn_idl_remove(connp);
13189 
13190 }
13191 
13192 /*
13193  * Write service routine. Shared perimeter entry point.
13194  * The device queue's messages has fallen below the low water mark and STREAMS
13195  * has backenabled the ill_wq. Send sockfs notification about flow-control onx
13196  * each waiting conn.
13197  */
13198 void
13199 ip_wsrv(queue_t *q)
13200 {
13201 	ill_t	*ill;
13202 
13203 	ill = (ill_t *)q->q_ptr;
13204 	if (ill->ill_state_flags == 0) {
13205 		ip_stack_t *ipst = ill->ill_ipst;
13206 
13207 		/*
13208 		 * The device flow control has opened up.
13209 		 * Walk through conn drain lists and qenable the
13210 		 * first conn in each list. This makes sense only
13211 		 * if the stream is fully plumbed and setup.
13212 		 * Hence the ill_state_flags check above.
13213 		 */
13214 		ip1dbg(("ip_wsrv: walking\n"));
13215 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13216 		enableok(ill->ill_wq);
13217 	}
13218 }
13219 
13220 /*
13221  * Callback to disable flow control in IP.
13222  *
13223  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13224  * is enabled.
13225  *
13226  * When MAC_TX() is not able to send any more packets, dld sets its queue
13227  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13228  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13229  * function and wakes up corresponding mac worker threads, which in turn
13230  * calls this callback function, and disables flow control.
13231  */
13232 void
13233 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13234 {
13235 	ill_t *ill = (ill_t *)arg;
13236 	ip_stack_t *ipst = ill->ill_ipst;
13237 	idl_tx_list_t *idl_txl;
13238 
13239 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13240 	mutex_enter(&idl_txl->txl_lock);
13241 	/* add code to to set a flag to indicate idl_txl is enabled */
13242 	conn_walk_drain(ipst, idl_txl);
13243 	mutex_exit(&idl_txl->txl_lock);
13244 }
13245 
13246 /*
13247  * Flowcontrol has relieved, and STREAMS has backenabled us. For each list
13248  * of conns that need to be drained, check if drain is already in progress.
13249  * If so set the idl_repeat bit, indicating that the last conn in the list
13250  * needs to reinitiate the drain once again, for the list. If drain is not
13251  * in progress for the list, initiate the draining, by qenabling the 1st
13252  * conn in the list. The drain is self-sustaining, each qenabled conn will
13253  * in turn qenable the next conn, when it is done/blocked/closing.
13254  */
13255 static void
13256 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13257 {
13258 	int i;
13259 	idl_t *idl;
13260 
13261 	IP_STAT(ipst, ip_conn_walk_drain);
13262 
13263 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13264 		idl = &tx_list->txl_drain_list[i];
13265 		mutex_enter(&idl->idl_lock);
13266 		conn_drain_tail(idl->idl_conn, B_FALSE);
13267 		mutex_exit(&idl->idl_lock);
13268 	}
13269 }
13270 
13271 /*
13272  * Determine if the ill and multicast aspects of that packets
13273  * "matches" the conn.
13274  */
13275 boolean_t
13276 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13277 {
13278 	ill_t		*ill = ira->ira_rill;
13279 	zoneid_t	zoneid = ira->ira_zoneid;
13280 	uint_t		in_ifindex;
13281 	ipaddr_t	dst, src;
13282 
13283 	dst = ipha->ipha_dst;
13284 	src = ipha->ipha_src;
13285 
13286 	/*
13287 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13288 	 * unicast, broadcast and multicast reception to
13289 	 * conn_incoming_ifindex.
13290 	 * conn_wantpacket is called for unicast, broadcast and
13291 	 * multicast packets.
13292 	 */
13293 	in_ifindex = connp->conn_incoming_ifindex;
13294 
13295 	/* mpathd can bind to the under IPMP interface, which we allow */
13296 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13297 		if (!IS_UNDER_IPMP(ill))
13298 			return (B_FALSE);
13299 
13300 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13301 			return (B_FALSE);
13302 	}
13303 
13304 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13305 		return (B_FALSE);
13306 
13307 	if (!(ira->ira_flags & IRAF_MULTICAST))
13308 		return (B_TRUE);
13309 
13310 	if (connp->conn_multi_router) {
13311 		/* multicast packet and multicast router socket: send up */
13312 		return (B_TRUE);
13313 	}
13314 
13315 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13316 	    ipha->ipha_protocol == IPPROTO_RSVP)
13317 		return (B_TRUE);
13318 
13319 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13320 }
13321 
13322 void
13323 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13324 {
13325 	if (IPCL_IS_NONSTR(connp)) {
13326 		(*connp->conn_upcalls->su_txq_full)
13327 		    (connp->conn_upper_handle, B_TRUE);
13328 		if (flow_stopped != NULL)
13329 			*flow_stopped = B_TRUE;
13330 	} else {
13331 		queue_t *q = connp->conn_wq;
13332 
13333 		ASSERT(q != NULL);
13334 		if (!(q->q_flag & QFULL)) {
13335 			mutex_enter(QLOCK(q));
13336 			if (!(q->q_flag & QFULL)) {
13337 				/* still need to set QFULL */
13338 				q->q_flag |= QFULL;
13339 				/* set flow_stopped to true under QLOCK */
13340 				if (flow_stopped != NULL)
13341 					*flow_stopped = B_TRUE;
13342 				mutex_exit(QLOCK(q));
13343 			} else {
13344 				/* flow_stopped is left unchanged */
13345 				mutex_exit(QLOCK(q));
13346 			}
13347 		}
13348 	}
13349 }
13350 
13351 void
13352 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13353 {
13354 	if (IPCL_IS_NONSTR(connp)) {
13355 		(*connp->conn_upcalls->su_txq_full)
13356 		    (connp->conn_upper_handle, B_FALSE);
13357 		if (flow_stopped != NULL)
13358 			*flow_stopped = B_FALSE;
13359 	} else {
13360 		queue_t *q = connp->conn_wq;
13361 
13362 		ASSERT(q != NULL);
13363 		if (q->q_flag & QFULL) {
13364 			mutex_enter(QLOCK(q));
13365 			if (q->q_flag & QFULL) {
13366 				q->q_flag &= ~QFULL;
13367 				/* set flow_stopped to false under QLOCK */
13368 				if (flow_stopped != NULL)
13369 					*flow_stopped = B_FALSE;
13370 				mutex_exit(QLOCK(q));
13371 				if (q->q_flag & QWANTW)
13372 					qbackenable(q, 0);
13373 			} else {
13374 				/* flow_stopped is left unchanged */
13375 				mutex_exit(QLOCK(q));
13376 			}
13377 		}
13378 	}
13379 	connp->conn_direct_blocked = B_FALSE;
13380 }
13381 
13382 /*
13383  * Return the length in bytes of the IPv4 headers (base header, label, and
13384  * other IP options) that will be needed based on the
13385  * ip_pkt_t structure passed by the caller.
13386  *
13387  * The returned length does not include the length of the upper level
13388  * protocol (ULP) header.
13389  * The caller needs to check that the length doesn't exceed the max for IPv4.
13390  */
13391 int
13392 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13393 {
13394 	int len;
13395 
13396 	len = IP_SIMPLE_HDR_LENGTH;
13397 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13398 		ASSERT(ipp->ipp_label_len_v4 != 0);
13399 		/* We need to round up here */
13400 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13401 	}
13402 
13403 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13404 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13405 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13406 		len += ipp->ipp_ipv4_options_len;
13407 	}
13408 	return (len);
13409 }
13410 
13411 /*
13412  * All-purpose routine to build an IPv4 header with options based
13413  * on the abstract ip_pkt_t.
13414  *
13415  * The caller has to set the source and destination address as well as
13416  * ipha_length. The caller has to massage any source route and compensate
13417  * for the ULP pseudo-header checksum due to the source route.
13418  */
13419 void
13420 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13421     uint8_t protocol)
13422 {
13423 	ipha_t	*ipha = (ipha_t *)buf;
13424 	uint8_t *cp;
13425 
13426 	/* Initialize IPv4 header */
13427 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13428 	ipha->ipha_length = 0;	/* Caller will set later */
13429 	ipha->ipha_ident = 0;
13430 	ipha->ipha_fragment_offset_and_flags = 0;
13431 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13432 	ipha->ipha_protocol = protocol;
13433 	ipha->ipha_hdr_checksum = 0;
13434 
13435 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13436 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13437 		ipha->ipha_src = ipp->ipp_addr_v4;
13438 
13439 	cp = (uint8_t *)&ipha[1];
13440 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13441 		ASSERT(ipp->ipp_label_len_v4 != 0);
13442 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13443 		cp += ipp->ipp_label_len_v4;
13444 		/* We need to round up here */
13445 		while ((uintptr_t)cp & 0x3) {
13446 			*cp++ = IPOPT_NOP;
13447 		}
13448 	}
13449 
13450 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13451 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13452 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13453 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13454 		cp += ipp->ipp_ipv4_options_len;
13455 	}
13456 	ipha->ipha_version_and_hdr_length =
13457 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13458 
13459 	ASSERT((int)(cp - buf) == buf_len);
13460 }
13461 
13462 /* Allocate the private structure */
13463 static int
13464 ip_priv_alloc(void **bufp)
13465 {
13466 	void	*buf;
13467 
13468 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13469 		return (ENOMEM);
13470 
13471 	*bufp = buf;
13472 	return (0);
13473 }
13474 
13475 /* Function to delete the private structure */
13476 void
13477 ip_priv_free(void *buf)
13478 {
13479 	ASSERT(buf != NULL);
13480 	kmem_free(buf, sizeof (ip_priv_t));
13481 }
13482 
13483 /*
13484  * The entry point for IPPF processing.
13485  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13486  * routine just returns.
13487  *
13488  * When called, ip_process generates an ipp_packet_t structure
13489  * which holds the state information for this packet and invokes the
13490  * the classifier (via ipp_packet_process). The classification, depending on
13491  * configured filters, results in a list of actions for this packet. Invoking
13492  * an action may cause the packet to be dropped, in which case we return NULL.
13493  * proc indicates the callout position for
13494  * this packet and ill is the interface this packet arrived on or will leave
13495  * on (inbound and outbound resp.).
13496  *
13497  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13498  * on the ill corrsponding to the destination IP address.
13499  */
13500 mblk_t *
13501 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13502 {
13503 	ip_priv_t	*priv;
13504 	ipp_action_id_t	aid;
13505 	int		rc = 0;
13506 	ipp_packet_t	*pp;
13507 
13508 	/* If the classifier is not loaded, return  */
13509 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13510 		return (mp);
13511 	}
13512 
13513 	ASSERT(mp != NULL);
13514 
13515 	/* Allocate the packet structure */
13516 	rc = ipp_packet_alloc(&pp, "ip", aid);
13517 	if (rc != 0)
13518 		goto drop;
13519 
13520 	/* Allocate the private structure */
13521 	rc = ip_priv_alloc((void **)&priv);
13522 	if (rc != 0) {
13523 		ipp_packet_free(pp);
13524 		goto drop;
13525 	}
13526 	priv->proc = proc;
13527 	priv->ill_index = ill_get_upper_ifindex(rill);
13528 
13529 	ipp_packet_set_private(pp, priv, ip_priv_free);
13530 	ipp_packet_set_data(pp, mp);
13531 
13532 	/* Invoke the classifier */
13533 	rc = ipp_packet_process(&pp);
13534 	if (pp != NULL) {
13535 		mp = ipp_packet_get_data(pp);
13536 		ipp_packet_free(pp);
13537 		if (rc != 0)
13538 			goto drop;
13539 		return (mp);
13540 	} else {
13541 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13542 		mp = NULL;
13543 	}
13544 drop:
13545 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13546 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13547 		ip_drop_input("ip_process", mp, ill);
13548 	} else {
13549 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13550 		ip_drop_output("ip_process", mp, ill);
13551 	}
13552 	freemsg(mp);
13553 	return (NULL);
13554 }
13555 
13556 /*
13557  * Propagate a multicast group membership operation (add/drop) on
13558  * all the interfaces crossed by the related multirt routes.
13559  * The call is considered successful if the operation succeeds
13560  * on at least one interface.
13561  *
13562  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13563  * multicast addresses with the ire argument being the first one.
13564  * We walk the bucket to find all the of those.
13565  *
13566  * Common to IPv4 and IPv6.
13567  */
13568 static int
13569 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13570     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13571     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13572     mcast_record_t fmode, const in6_addr_t *v6src)
13573 {
13574 	ire_t		*ire_gw;
13575 	irb_t		*irb;
13576 	int		ifindex;
13577 	int		error = 0;
13578 	int		result;
13579 	ip_stack_t	*ipst = ire->ire_ipst;
13580 	ipaddr_t	group;
13581 	boolean_t	isv6;
13582 	int		match_flags;
13583 
13584 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13585 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13586 		isv6 = B_FALSE;
13587 	} else {
13588 		isv6 = B_TRUE;
13589 	}
13590 
13591 	irb = ire->ire_bucket;
13592 	ASSERT(irb != NULL);
13593 
13594 	result = 0;
13595 	irb_refhold(irb);
13596 	for (; ire != NULL; ire = ire->ire_next) {
13597 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13598 			continue;
13599 
13600 		/* We handle -ifp routes by matching on the ill if set */
13601 		match_flags = MATCH_IRE_TYPE;
13602 		if (ire->ire_ill != NULL)
13603 			match_flags |= MATCH_IRE_ILL;
13604 
13605 		if (isv6) {
13606 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13607 				continue;
13608 
13609 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13610 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13611 			    match_flags, 0, ipst, NULL);
13612 		} else {
13613 			if (ire->ire_addr != group)
13614 				continue;
13615 
13616 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13617 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13618 			    match_flags, 0, ipst, NULL);
13619 		}
13620 		/* No interface route exists for the gateway; skip this ire. */
13621 		if (ire_gw == NULL)
13622 			continue;
13623 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13624 			ire_refrele(ire_gw);
13625 			continue;
13626 		}
13627 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13628 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13629 
13630 		/*
13631 		 * The operation is considered a success if
13632 		 * it succeeds at least once on any one interface.
13633 		 */
13634 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13635 		    fmode, v6src);
13636 		if (error == 0)
13637 			result = CGTP_MCAST_SUCCESS;
13638 
13639 		ire_refrele(ire_gw);
13640 	}
13641 	irb_refrele(irb);
13642 	/*
13643 	 * Consider the call as successful if we succeeded on at least
13644 	 * one interface. Otherwise, return the last encountered error.
13645 	 */
13646 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13647 }
13648 
13649 /*
13650  * Return the expected CGTP hooks version number.
13651  */
13652 int
13653 ip_cgtp_filter_supported(void)
13654 {
13655 	return (ip_cgtp_filter_rev);
13656 }
13657 
13658 /*
13659  * CGTP hooks can be registered by invoking this function.
13660  * Checks that the version number matches.
13661  */
13662 int
13663 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13664 {
13665 	netstack_t *ns;
13666 	ip_stack_t *ipst;
13667 
13668 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13669 		return (ENOTSUP);
13670 
13671 	ns = netstack_find_by_stackid(stackid);
13672 	if (ns == NULL)
13673 		return (EINVAL);
13674 	ipst = ns->netstack_ip;
13675 	ASSERT(ipst != NULL);
13676 
13677 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13678 		netstack_rele(ns);
13679 		return (EALREADY);
13680 	}
13681 
13682 	ipst->ips_ip_cgtp_filter_ops = ops;
13683 
13684 	ill_set_inputfn_all(ipst);
13685 
13686 	netstack_rele(ns);
13687 	return (0);
13688 }
13689 
13690 /*
13691  * CGTP hooks can be unregistered by invoking this function.
13692  * Returns ENXIO if there was no registration.
13693  * Returns EBUSY if the ndd variable has not been turned off.
13694  */
13695 int
13696 ip_cgtp_filter_unregister(netstackid_t stackid)
13697 {
13698 	netstack_t *ns;
13699 	ip_stack_t *ipst;
13700 
13701 	ns = netstack_find_by_stackid(stackid);
13702 	if (ns == NULL)
13703 		return (EINVAL);
13704 	ipst = ns->netstack_ip;
13705 	ASSERT(ipst != NULL);
13706 
13707 	if (ipst->ips_ip_cgtp_filter) {
13708 		netstack_rele(ns);
13709 		return (EBUSY);
13710 	}
13711 
13712 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13713 		netstack_rele(ns);
13714 		return (ENXIO);
13715 	}
13716 	ipst->ips_ip_cgtp_filter_ops = NULL;
13717 
13718 	ill_set_inputfn_all(ipst);
13719 
13720 	netstack_rele(ns);
13721 	return (0);
13722 }
13723 
13724 /*
13725  * Check whether there is a CGTP filter registration.
13726  * Returns non-zero if there is a registration, otherwise returns zero.
13727  * Note: returns zero if bad stackid.
13728  */
13729 int
13730 ip_cgtp_filter_is_registered(netstackid_t stackid)
13731 {
13732 	netstack_t *ns;
13733 	ip_stack_t *ipst;
13734 	int ret;
13735 
13736 	ns = netstack_find_by_stackid(stackid);
13737 	if (ns == NULL)
13738 		return (0);
13739 	ipst = ns->netstack_ip;
13740 	ASSERT(ipst != NULL);
13741 
13742 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13743 		ret = 1;
13744 	else
13745 		ret = 0;
13746 
13747 	netstack_rele(ns);
13748 	return (ret);
13749 }
13750 
13751 static int
13752 ip_squeue_switch(int val)
13753 {
13754 	int rval;
13755 
13756 	switch (val) {
13757 	case IP_SQUEUE_ENTER_NODRAIN:
13758 		rval = SQ_NODRAIN;
13759 		break;
13760 	case IP_SQUEUE_ENTER:
13761 		rval = SQ_PROCESS;
13762 		break;
13763 	case IP_SQUEUE_FILL:
13764 	default:
13765 		rval = SQ_FILL;
13766 		break;
13767 	}
13768 	return (rval);
13769 }
13770 
13771 static void *
13772 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13773 {
13774 	kstat_t *ksp;
13775 
13776 	ip_stat_t template = {
13777 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
13778 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
13779 		{ "ip_recv_pullup", 		KSTAT_DATA_UINT64 },
13780 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13781 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13782 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13783 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13784 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13785 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13786 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13787 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13788 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13789 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13790 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13791 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13792 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13793 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13794 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13795 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13796 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13797 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13798 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13799 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13800 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13801 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13802 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13803 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13804 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13805 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13806 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13807 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13808 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13809 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13810 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13811 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13812 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13813 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13814 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13815 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13816 	};
13817 
13818 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13819 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13820 	    KSTAT_FLAG_VIRTUAL, stackid);
13821 
13822 	if (ksp == NULL)
13823 		return (NULL);
13824 
13825 	bcopy(&template, ip_statisticsp, sizeof (template));
13826 	ksp->ks_data = (void *)ip_statisticsp;
13827 	ksp->ks_private = (void *)(uintptr_t)stackid;
13828 
13829 	kstat_install(ksp);
13830 	return (ksp);
13831 }
13832 
13833 static void
13834 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13835 {
13836 	if (ksp != NULL) {
13837 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13838 		kstat_delete_netstack(ksp, stackid);
13839 	}
13840 }
13841 
13842 static void *
13843 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13844 {
13845 	kstat_t	*ksp;
13846 
13847 	ip_named_kstat_t template = {
13848 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
13849 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
13850 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
13851 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
13852 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
13853 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
13854 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
13855 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
13856 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
13857 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
13858 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
13859 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
13860 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
13861 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
13862 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
13863 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
13864 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
13865 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
13866 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
13867 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
13868 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
13869 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
13870 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
13871 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
13872 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
13873 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
13874 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
13875 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
13876 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
13877 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
13878 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
13879 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
13880 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
13881 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
13882 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
13883 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
13884 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
13885 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
13886 	};
13887 
13888 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
13889 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
13890 	if (ksp == NULL || ksp->ks_data == NULL)
13891 		return (NULL);
13892 
13893 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
13894 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
13895 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
13896 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
13897 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
13898 
13899 	template.netToMediaEntrySize.value.i32 =
13900 	    sizeof (mib2_ipNetToMediaEntry_t);
13901 
13902 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
13903 
13904 	bcopy(&template, ksp->ks_data, sizeof (template));
13905 	ksp->ks_update = ip_kstat_update;
13906 	ksp->ks_private = (void *)(uintptr_t)stackid;
13907 
13908 	kstat_install(ksp);
13909 	return (ksp);
13910 }
13911 
13912 static void
13913 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
13914 {
13915 	if (ksp != NULL) {
13916 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13917 		kstat_delete_netstack(ksp, stackid);
13918 	}
13919 }
13920 
13921 static int
13922 ip_kstat_update(kstat_t *kp, int rw)
13923 {
13924 	ip_named_kstat_t *ipkp;
13925 	mib2_ipIfStatsEntry_t ipmib;
13926 	ill_walk_context_t ctx;
13927 	ill_t *ill;
13928 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
13929 	netstack_t	*ns;
13930 	ip_stack_t	*ipst;
13931 
13932 	if (kp == NULL || kp->ks_data == NULL)
13933 		return (EIO);
13934 
13935 	if (rw == KSTAT_WRITE)
13936 		return (EACCES);
13937 
13938 	ns = netstack_find_by_stackid(stackid);
13939 	if (ns == NULL)
13940 		return (-1);
13941 	ipst = ns->netstack_ip;
13942 	if (ipst == NULL) {
13943 		netstack_rele(ns);
13944 		return (-1);
13945 	}
13946 	ipkp = (ip_named_kstat_t *)kp->ks_data;
13947 
13948 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
13949 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13950 	ill = ILL_START_WALK_V4(&ctx, ipst);
13951 	for (; ill != NULL; ill = ill_next(&ctx, ill))
13952 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
13953 	rw_exit(&ipst->ips_ill_g_lock);
13954 
13955 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
13956 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
13957 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
13958 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
13959 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
13960 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
13961 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
13962 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
13963 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
13964 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
13965 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
13966 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
13967 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
13968 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
13969 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
13970 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
13971 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
13972 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
13973 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
13974 
13975 	ipkp->routingDiscards.value.ui32 =	0;
13976 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
13977 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
13978 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
13979 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
13980 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
13981 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
13982 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
13983 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
13984 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
13985 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
13986 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
13987 
13988 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
13989 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
13990 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
13991 
13992 	netstack_rele(ns);
13993 
13994 	return (0);
13995 }
13996 
13997 static void *
13998 icmp_kstat_init(netstackid_t stackid)
13999 {
14000 	kstat_t	*ksp;
14001 
14002 	icmp_named_kstat_t template = {
14003 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14004 		{ "inErrors",		KSTAT_DATA_UINT32 },
14005 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14006 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14007 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14008 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14009 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14010 		{ "inEchos",		KSTAT_DATA_UINT32 },
14011 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14012 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14013 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14014 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14015 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14016 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14017 		{ "outErrors",		KSTAT_DATA_UINT32 },
14018 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14019 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14020 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14021 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14022 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14023 		{ "outEchos",		KSTAT_DATA_UINT32 },
14024 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14025 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14026 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14027 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14028 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14029 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14030 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14031 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14032 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14033 		{ "outDrops",		KSTAT_DATA_UINT32 },
14034 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14035 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14036 	};
14037 
14038 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14039 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14040 	if (ksp == NULL || ksp->ks_data == NULL)
14041 		return (NULL);
14042 
14043 	bcopy(&template, ksp->ks_data, sizeof (template));
14044 
14045 	ksp->ks_update = icmp_kstat_update;
14046 	ksp->ks_private = (void *)(uintptr_t)stackid;
14047 
14048 	kstat_install(ksp);
14049 	return (ksp);
14050 }
14051 
14052 static void
14053 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14054 {
14055 	if (ksp != NULL) {
14056 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14057 		kstat_delete_netstack(ksp, stackid);
14058 	}
14059 }
14060 
14061 static int
14062 icmp_kstat_update(kstat_t *kp, int rw)
14063 {
14064 	icmp_named_kstat_t *icmpkp;
14065 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14066 	netstack_t	*ns;
14067 	ip_stack_t	*ipst;
14068 
14069 	if ((kp == NULL) || (kp->ks_data == NULL))
14070 		return (EIO);
14071 
14072 	if (rw == KSTAT_WRITE)
14073 		return (EACCES);
14074 
14075 	ns = netstack_find_by_stackid(stackid);
14076 	if (ns == NULL)
14077 		return (-1);
14078 	ipst = ns->netstack_ip;
14079 	if (ipst == NULL) {
14080 		netstack_rele(ns);
14081 		return (-1);
14082 	}
14083 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14084 
14085 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14086 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14087 	icmpkp->inDestUnreachs.value.ui32 =
14088 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14089 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14090 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14091 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14092 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14093 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14094 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14095 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14096 	icmpkp->inTimestampReps.value.ui32 =
14097 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14098 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14099 	icmpkp->inAddrMaskReps.value.ui32 =
14100 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14101 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14102 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14103 	icmpkp->outDestUnreachs.value.ui32 =
14104 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14105 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14106 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14107 	icmpkp->outSrcQuenchs.value.ui32 =
14108 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14109 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14110 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14111 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14112 	icmpkp->outTimestamps.value.ui32 =
14113 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14114 	icmpkp->outTimestampReps.value.ui32 =
14115 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14116 	icmpkp->outAddrMasks.value.ui32 =
14117 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14118 	icmpkp->outAddrMaskReps.value.ui32 =
14119 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14120 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14121 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14122 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14123 	icmpkp->outFragNeeded.value.ui32 =
14124 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14125 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14126 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14127 	icmpkp->inBadRedirects.value.ui32 =
14128 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14129 
14130 	netstack_rele(ns);
14131 	return (0);
14132 }
14133 
14134 /*
14135  * This is the fanout function for raw socket opened for SCTP.  Note
14136  * that it is called after SCTP checks that there is no socket which
14137  * wants a packet.  Then before SCTP handles this out of the blue packet,
14138  * this function is called to see if there is any raw socket for SCTP.
14139  * If there is and it is bound to the correct address, the packet will
14140  * be sent to that socket.  Note that only one raw socket can be bound to
14141  * a port.  This is assured in ipcl_sctp_hash_insert();
14142  */
14143 void
14144 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14145     ip_recv_attr_t *ira)
14146 {
14147 	conn_t		*connp;
14148 	queue_t		*rq;
14149 	boolean_t	secure;
14150 	ill_t		*ill = ira->ira_ill;
14151 	ip_stack_t	*ipst = ill->ill_ipst;
14152 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14153 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14154 	iaflags_t	iraflags = ira->ira_flags;
14155 	ill_t		*rill = ira->ira_rill;
14156 
14157 	secure = iraflags & IRAF_IPSEC_SECURE;
14158 
14159 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14160 	    ira, ipst);
14161 	if (connp == NULL) {
14162 		/*
14163 		 * Although raw sctp is not summed, OOB chunks must be.
14164 		 * Drop the packet here if the sctp checksum failed.
14165 		 */
14166 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14167 			BUMP_MIB(&sctps->sctps_mib, sctpChecksumError);
14168 			freemsg(mp);
14169 			return;
14170 		}
14171 		ira->ira_ill = ira->ira_rill = NULL;
14172 		sctp_ootb_input(mp, ira, ipst);
14173 		ira->ira_ill = ill;
14174 		ira->ira_rill = rill;
14175 		return;
14176 	}
14177 	rq = connp->conn_rq;
14178 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14179 		CONN_DEC_REF(connp);
14180 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14181 		freemsg(mp);
14182 		return;
14183 	}
14184 	if (((iraflags & IRAF_IS_IPV4) ?
14185 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14186 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14187 	    secure) {
14188 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14189 		    ip6h, ira);
14190 		if (mp == NULL) {
14191 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14192 			/* Note that mp is NULL */
14193 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14194 			CONN_DEC_REF(connp);
14195 			return;
14196 		}
14197 	}
14198 
14199 	if (iraflags & IRAF_ICMP_ERROR) {
14200 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14201 	} else {
14202 		ill_t *rill = ira->ira_rill;
14203 
14204 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14205 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14206 		ira->ira_ill = ira->ira_rill = NULL;
14207 		(connp->conn_recv)(connp, mp, NULL, ira);
14208 		ira->ira_ill = ill;
14209 		ira->ira_rill = rill;
14210 	}
14211 	CONN_DEC_REF(connp);
14212 }
14213 
14214 /*
14215  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14216  * header before the ip payload.
14217  */
14218 static void
14219 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14220 {
14221 	int len = (mp->b_wptr - mp->b_rptr);
14222 	mblk_t *ip_mp;
14223 
14224 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14225 	if (is_fp_mp || len != fp_mp_len) {
14226 		if (len > fp_mp_len) {
14227 			/*
14228 			 * fastpath header and ip header in the first mblk
14229 			 */
14230 			mp->b_rptr += fp_mp_len;
14231 		} else {
14232 			/*
14233 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14234 			 * attach the fastpath header before ip header.
14235 			 */
14236 			ip_mp = mp->b_cont;
14237 			freeb(mp);
14238 			mp = ip_mp;
14239 			mp->b_rptr += (fp_mp_len - len);
14240 		}
14241 	} else {
14242 		ip_mp = mp->b_cont;
14243 		freeb(mp);
14244 		mp = ip_mp;
14245 	}
14246 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14247 	freemsg(mp);
14248 }
14249 
14250 /*
14251  * Normal post fragmentation function.
14252  *
14253  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14254  * using the same state machine.
14255  *
14256  * We return an error on failure. In particular we return EWOULDBLOCK
14257  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14258  * (currently by canputnext failure resulting in backenabling from GLD.)
14259  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14260  * indication that they can flow control until ip_wsrv() tells then to restart.
14261  *
14262  * If the nce passed by caller is incomplete, this function
14263  * queues the packet and if necessary, sends ARP request and bails.
14264  * If the Neighbor Cache passed is fully resolved, we simply prepend
14265  * the link-layer header to the packet, do ipsec hw acceleration
14266  * work if necessary, and send the packet out on the wire.
14267  */
14268 /* ARGSUSED6 */
14269 int
14270 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14271     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14272 {
14273 	queue_t		*wq;
14274 	ill_t		*ill = nce->nce_ill;
14275 	ip_stack_t	*ipst = ill->ill_ipst;
14276 	uint64_t	delta;
14277 	boolean_t	isv6 = ill->ill_isv6;
14278 	boolean_t	fp_mp;
14279 	ncec_t		*ncec = nce->nce_common;
14280 	int64_t		now = LBOLT_FASTPATH64;
14281 	boolean_t	is_probe;
14282 
14283 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14284 
14285 	ASSERT(mp != NULL);
14286 	ASSERT(mp->b_datap->db_type == M_DATA);
14287 	ASSERT(pkt_len == msgdsize(mp));
14288 
14289 	/*
14290 	 * If we have already been here and are coming back after ARP/ND.
14291 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14292 	 * in that case since they have seen the packet when it came here
14293 	 * the first time.
14294 	 */
14295 	if (ixaflags & IXAF_NO_TRACE)
14296 		goto sendit;
14297 
14298 	if (ixaflags & IXAF_IS_IPV4) {
14299 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14300 
14301 		ASSERT(!isv6);
14302 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14303 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14304 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14305 			int	error;
14306 
14307 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14308 			    ipst->ips_ipv4firewall_physical_out,
14309 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14310 			DTRACE_PROBE1(ip4__physical__out__end,
14311 			    mblk_t *, mp);
14312 			if (mp == NULL)
14313 				return (error);
14314 
14315 			/* The length could have changed */
14316 			pkt_len = msgdsize(mp);
14317 		}
14318 		if (ipst->ips_ip4_observe.he_interested) {
14319 			/*
14320 			 * Note that for TX the zoneid is the sending
14321 			 * zone, whether or not MLP is in play.
14322 			 * Since the szone argument is the IP zoneid (i.e.,
14323 			 * zero for exclusive-IP zones) and ipobs wants
14324 			 * the system zoneid, we map it here.
14325 			 */
14326 			szone = IP_REAL_ZONEID(szone, ipst);
14327 
14328 			/*
14329 			 * On the outbound path the destination zone will be
14330 			 * unknown as we're sending this packet out on the
14331 			 * wire.
14332 			 */
14333 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14334 			    ill, ipst);
14335 		}
14336 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14337 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14338 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14339 	} else {
14340 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14341 
14342 		ASSERT(isv6);
14343 		ASSERT(pkt_len ==
14344 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14345 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14346 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14347 			int	error;
14348 
14349 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14350 			    ipst->ips_ipv6firewall_physical_out,
14351 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14352 			DTRACE_PROBE1(ip6__physical__out__end,
14353 			    mblk_t *, mp);
14354 			if (mp == NULL)
14355 				return (error);
14356 
14357 			/* The length could have changed */
14358 			pkt_len = msgdsize(mp);
14359 		}
14360 		if (ipst->ips_ip6_observe.he_interested) {
14361 			/* See above */
14362 			szone = IP_REAL_ZONEID(szone, ipst);
14363 
14364 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14365 			    ill, ipst);
14366 		}
14367 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14368 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14369 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14370 	}
14371 
14372 sendit:
14373 	/*
14374 	 * We check the state without a lock because the state can never
14375 	 * move "backwards" to initial or incomplete.
14376 	 */
14377 	switch (ncec->ncec_state) {
14378 	case ND_REACHABLE:
14379 	case ND_STALE:
14380 	case ND_DELAY:
14381 	case ND_PROBE:
14382 		mp = ip_xmit_attach_llhdr(mp, nce);
14383 		if (mp == NULL) {
14384 			/*
14385 			 * ip_xmit_attach_llhdr has increased
14386 			 * ipIfStatsOutDiscards and called ip_drop_output()
14387 			 */
14388 			return (ENOBUFS);
14389 		}
14390 		/*
14391 		 * check if nce_fastpath completed and we tagged on a
14392 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14393 		 */
14394 		fp_mp = (mp->b_datap->db_type == M_DATA);
14395 
14396 		if (fp_mp &&
14397 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14398 			ill_dld_direct_t *idd;
14399 
14400 			idd = &ill->ill_dld_capab->idc_direct;
14401 			/*
14402 			 * Send the packet directly to DLD, where it
14403 			 * may be queued depending on the availability
14404 			 * of transmit resources at the media layer.
14405 			 * Return value should be taken into
14406 			 * account and flow control the TCP.
14407 			 */
14408 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14409 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14410 			    pkt_len);
14411 
14412 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14413 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14414 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14415 			} else {
14416 				uintptr_t cookie;
14417 
14418 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14419 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14420 					if (ixacookie != NULL)
14421 						*ixacookie = cookie;
14422 					return (EWOULDBLOCK);
14423 				}
14424 			}
14425 		} else {
14426 			wq = ill->ill_wq;
14427 
14428 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14429 			    !canputnext(wq)) {
14430 				if (ixacookie != NULL)
14431 					*ixacookie = 0;
14432 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14433 				    nce->nce_fp_mp != NULL ?
14434 				    MBLKL(nce->nce_fp_mp) : 0);
14435 				return (EWOULDBLOCK);
14436 			}
14437 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14438 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14439 			    pkt_len);
14440 			putnext(wq, mp);
14441 		}
14442 
14443 		/*
14444 		 * The rest of this function implements Neighbor Unreachability
14445 		 * detection. Determine if the ncec is eligible for NUD.
14446 		 */
14447 		if (ncec->ncec_flags & NCE_F_NONUD)
14448 			return (0);
14449 
14450 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14451 
14452 		/*
14453 		 * Check for upper layer advice
14454 		 */
14455 		if (ixaflags & IXAF_REACH_CONF) {
14456 			timeout_id_t tid;
14457 
14458 			/*
14459 			 * It should be o.k. to check the state without
14460 			 * a lock here, at most we lose an advice.
14461 			 */
14462 			ncec->ncec_last = TICK_TO_MSEC(now);
14463 			if (ncec->ncec_state != ND_REACHABLE) {
14464 				mutex_enter(&ncec->ncec_lock);
14465 				ncec->ncec_state = ND_REACHABLE;
14466 				tid = ncec->ncec_timeout_id;
14467 				ncec->ncec_timeout_id = 0;
14468 				mutex_exit(&ncec->ncec_lock);
14469 				(void) untimeout(tid);
14470 				if (ip_debug > 2) {
14471 					/* ip1dbg */
14472 					pr_addr_dbg("ip_xmit: state"
14473 					    " for %s changed to"
14474 					    " REACHABLE\n", AF_INET6,
14475 					    &ncec->ncec_addr);
14476 				}
14477 			}
14478 			return (0);
14479 		}
14480 
14481 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14482 		ip1dbg(("ip_xmit: delta = %" PRId64
14483 		    " ill_reachable_time = %d \n", delta,
14484 		    ill->ill_reachable_time));
14485 		if (delta > (uint64_t)ill->ill_reachable_time) {
14486 			mutex_enter(&ncec->ncec_lock);
14487 			switch (ncec->ncec_state) {
14488 			case ND_REACHABLE:
14489 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14490 				/* FALLTHROUGH */
14491 			case ND_STALE:
14492 				/*
14493 				 * ND_REACHABLE is identical to
14494 				 * ND_STALE in this specific case. If
14495 				 * reachable time has expired for this
14496 				 * neighbor (delta is greater than
14497 				 * reachable time), conceptually, the
14498 				 * neighbor cache is no longer in
14499 				 * REACHABLE state, but already in
14500 				 * STALE state.  So the correct
14501 				 * transition here is to ND_DELAY.
14502 				 */
14503 				ncec->ncec_state = ND_DELAY;
14504 				mutex_exit(&ncec->ncec_lock);
14505 				nce_restart_timer(ncec,
14506 				    ipst->ips_delay_first_probe_time);
14507 				if (ip_debug > 3) {
14508 					/* ip2dbg */
14509 					pr_addr_dbg("ip_xmit: state"
14510 					    " for %s changed to"
14511 					    " DELAY\n", AF_INET6,
14512 					    &ncec->ncec_addr);
14513 				}
14514 				break;
14515 			case ND_DELAY:
14516 			case ND_PROBE:
14517 				mutex_exit(&ncec->ncec_lock);
14518 				/* Timers have already started */
14519 				break;
14520 			case ND_UNREACHABLE:
14521 				/*
14522 				 * nce_timer has detected that this ncec
14523 				 * is unreachable and initiated deleting
14524 				 * this ncec.
14525 				 * This is a harmless race where we found the
14526 				 * ncec before it was deleted and have
14527 				 * just sent out a packet using this
14528 				 * unreachable ncec.
14529 				 */
14530 				mutex_exit(&ncec->ncec_lock);
14531 				break;
14532 			default:
14533 				ASSERT(0);
14534 				mutex_exit(&ncec->ncec_lock);
14535 			}
14536 		}
14537 		return (0);
14538 
14539 	case ND_INCOMPLETE:
14540 		/*
14541 		 * the state could have changed since we didn't hold the lock.
14542 		 * Re-verify state under lock.
14543 		 */
14544 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14545 		mutex_enter(&ncec->ncec_lock);
14546 		if (NCE_ISREACHABLE(ncec)) {
14547 			mutex_exit(&ncec->ncec_lock);
14548 			goto sendit;
14549 		}
14550 		/* queue the packet */
14551 		nce_queue_mp(ncec, mp, is_probe);
14552 		mutex_exit(&ncec->ncec_lock);
14553 		DTRACE_PROBE2(ip__xmit__incomplete,
14554 		    (ncec_t *), ncec, (mblk_t *), mp);
14555 		return (0);
14556 
14557 	case ND_INITIAL:
14558 		/*
14559 		 * State could have changed since we didn't hold the lock, so
14560 		 * re-verify state.
14561 		 */
14562 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14563 		mutex_enter(&ncec->ncec_lock);
14564 		if (NCE_ISREACHABLE(ncec))  {
14565 			mutex_exit(&ncec->ncec_lock);
14566 			goto sendit;
14567 		}
14568 		nce_queue_mp(ncec, mp, is_probe);
14569 		if (ncec->ncec_state == ND_INITIAL) {
14570 			ncec->ncec_state = ND_INCOMPLETE;
14571 			mutex_exit(&ncec->ncec_lock);
14572 			/*
14573 			 * figure out the source we want to use
14574 			 * and resolve it.
14575 			 */
14576 			ip_ndp_resolve(ncec);
14577 		} else  {
14578 			mutex_exit(&ncec->ncec_lock);
14579 		}
14580 		return (0);
14581 
14582 	case ND_UNREACHABLE:
14583 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14584 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14585 		    mp, ill);
14586 		freemsg(mp);
14587 		return (0);
14588 
14589 	default:
14590 		ASSERT(0);
14591 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14592 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14593 		    mp, ill);
14594 		freemsg(mp);
14595 		return (ENETUNREACH);
14596 	}
14597 }
14598 
14599 /*
14600  * Return B_TRUE if the buffers differ in length or content.
14601  * This is used for comparing extension header buffers.
14602  * Note that an extension header would be declared different
14603  * even if all that changed was the next header value in that header i.e.
14604  * what really changed is the next extension header.
14605  */
14606 boolean_t
14607 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14608     uint_t blen)
14609 {
14610 	if (!b_valid)
14611 		blen = 0;
14612 
14613 	if (alen != blen)
14614 		return (B_TRUE);
14615 	if (alen == 0)
14616 		return (B_FALSE);	/* Both zero length */
14617 	return (bcmp(abuf, bbuf, alen));
14618 }
14619 
14620 /*
14621  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14622  * Return B_FALSE if memory allocation fails - don't change any state!
14623  */
14624 boolean_t
14625 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14626     const void *src, uint_t srclen)
14627 {
14628 	void *dst;
14629 
14630 	if (!src_valid)
14631 		srclen = 0;
14632 
14633 	ASSERT(*dstlenp == 0);
14634 	if (src != NULL && srclen != 0) {
14635 		dst = mi_alloc(srclen, BPRI_MED);
14636 		if (dst == NULL)
14637 			return (B_FALSE);
14638 	} else {
14639 		dst = NULL;
14640 	}
14641 	if (*dstp != NULL)
14642 		mi_free(*dstp);
14643 	*dstp = dst;
14644 	*dstlenp = dst == NULL ? 0 : srclen;
14645 	return (B_TRUE);
14646 }
14647 
14648 /*
14649  * Replace what is in *dst, *dstlen with the source.
14650  * Assumes ip_allocbuf has already been called.
14651  */
14652 void
14653 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14654     const void *src, uint_t srclen)
14655 {
14656 	if (!src_valid)
14657 		srclen = 0;
14658 
14659 	ASSERT(*dstlenp == srclen);
14660 	if (src != NULL && srclen != 0)
14661 		bcopy(src, *dstp, srclen);
14662 }
14663 
14664 /*
14665  * Free the storage pointed to by the members of an ip_pkt_t.
14666  */
14667 void
14668 ip_pkt_free(ip_pkt_t *ipp)
14669 {
14670 	uint_t	fields = ipp->ipp_fields;
14671 
14672 	if (fields & IPPF_HOPOPTS) {
14673 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14674 		ipp->ipp_hopopts = NULL;
14675 		ipp->ipp_hopoptslen = 0;
14676 	}
14677 	if (fields & IPPF_RTHDRDSTOPTS) {
14678 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14679 		ipp->ipp_rthdrdstopts = NULL;
14680 		ipp->ipp_rthdrdstoptslen = 0;
14681 	}
14682 	if (fields & IPPF_DSTOPTS) {
14683 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14684 		ipp->ipp_dstopts = NULL;
14685 		ipp->ipp_dstoptslen = 0;
14686 	}
14687 	if (fields & IPPF_RTHDR) {
14688 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14689 		ipp->ipp_rthdr = NULL;
14690 		ipp->ipp_rthdrlen = 0;
14691 	}
14692 	if (fields & IPPF_IPV4_OPTIONS) {
14693 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14694 		ipp->ipp_ipv4_options = NULL;
14695 		ipp->ipp_ipv4_options_len = 0;
14696 	}
14697 	if (fields & IPPF_LABEL_V4) {
14698 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14699 		ipp->ipp_label_v4 = NULL;
14700 		ipp->ipp_label_len_v4 = 0;
14701 	}
14702 	if (fields & IPPF_LABEL_V6) {
14703 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14704 		ipp->ipp_label_v6 = NULL;
14705 		ipp->ipp_label_len_v6 = 0;
14706 	}
14707 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14708 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14709 }
14710 
14711 /*
14712  * Copy from src to dst and allocate as needed.
14713  * Returns zero or ENOMEM.
14714  *
14715  * The caller must initialize dst to zero.
14716  */
14717 int
14718 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14719 {
14720 	uint_t	fields = src->ipp_fields;
14721 
14722 	/* Start with fields that don't require memory allocation */
14723 	dst->ipp_fields = fields &
14724 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14725 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14726 
14727 	dst->ipp_addr = src->ipp_addr;
14728 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14729 	dst->ipp_hoplimit = src->ipp_hoplimit;
14730 	dst->ipp_tclass = src->ipp_tclass;
14731 	dst->ipp_type_of_service = src->ipp_type_of_service;
14732 
14733 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14734 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14735 		return (0);
14736 
14737 	if (fields & IPPF_HOPOPTS) {
14738 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14739 		if (dst->ipp_hopopts == NULL) {
14740 			ip_pkt_free(dst);
14741 			return (ENOMEM);
14742 		}
14743 		dst->ipp_fields |= IPPF_HOPOPTS;
14744 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14745 		    src->ipp_hopoptslen);
14746 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14747 	}
14748 	if (fields & IPPF_RTHDRDSTOPTS) {
14749 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14750 		    kmflag);
14751 		if (dst->ipp_rthdrdstopts == NULL) {
14752 			ip_pkt_free(dst);
14753 			return (ENOMEM);
14754 		}
14755 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14756 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14757 		    src->ipp_rthdrdstoptslen);
14758 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14759 	}
14760 	if (fields & IPPF_DSTOPTS) {
14761 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14762 		if (dst->ipp_dstopts == NULL) {
14763 			ip_pkt_free(dst);
14764 			return (ENOMEM);
14765 		}
14766 		dst->ipp_fields |= IPPF_DSTOPTS;
14767 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14768 		    src->ipp_dstoptslen);
14769 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14770 	}
14771 	if (fields & IPPF_RTHDR) {
14772 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14773 		if (dst->ipp_rthdr == NULL) {
14774 			ip_pkt_free(dst);
14775 			return (ENOMEM);
14776 		}
14777 		dst->ipp_fields |= IPPF_RTHDR;
14778 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14779 		    src->ipp_rthdrlen);
14780 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14781 	}
14782 	if (fields & IPPF_IPV4_OPTIONS) {
14783 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14784 		    kmflag);
14785 		if (dst->ipp_ipv4_options == NULL) {
14786 			ip_pkt_free(dst);
14787 			return (ENOMEM);
14788 		}
14789 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14790 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14791 		    src->ipp_ipv4_options_len);
14792 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14793 	}
14794 	if (fields & IPPF_LABEL_V4) {
14795 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14796 		if (dst->ipp_label_v4 == NULL) {
14797 			ip_pkt_free(dst);
14798 			return (ENOMEM);
14799 		}
14800 		dst->ipp_fields |= IPPF_LABEL_V4;
14801 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14802 		    src->ipp_label_len_v4);
14803 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14804 	}
14805 	if (fields & IPPF_LABEL_V6) {
14806 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14807 		if (dst->ipp_label_v6 == NULL) {
14808 			ip_pkt_free(dst);
14809 			return (ENOMEM);
14810 		}
14811 		dst->ipp_fields |= IPPF_LABEL_V6;
14812 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14813 		    src->ipp_label_len_v6);
14814 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14815 	}
14816 	if (fields & IPPF_FRAGHDR) {
14817 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14818 		if (dst->ipp_fraghdr == NULL) {
14819 			ip_pkt_free(dst);
14820 			return (ENOMEM);
14821 		}
14822 		dst->ipp_fields |= IPPF_FRAGHDR;
14823 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14824 		    src->ipp_fraghdrlen);
14825 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14826 	}
14827 	return (0);
14828 }
14829 
14830 /*
14831  * Returns INADDR_ANY if no source route
14832  */
14833 ipaddr_t
14834 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14835 {
14836 	ipaddr_t	nexthop = INADDR_ANY;
14837 	ipoptp_t	opts;
14838 	uchar_t		*opt;
14839 	uint8_t		optval;
14840 	uint8_t		optlen;
14841 	uint32_t	totallen;
14842 
14843 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14844 		return (INADDR_ANY);
14845 
14846 	totallen = ipp->ipp_ipv4_options_len;
14847 	if (totallen & 0x3)
14848 		return (INADDR_ANY);
14849 
14850 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14851 	    optval != IPOPT_EOL;
14852 	    optval = ipoptp_next(&opts)) {
14853 		opt = opts.ipoptp_cur;
14854 		switch (optval) {
14855 			uint8_t off;
14856 		case IPOPT_SSRR:
14857 		case IPOPT_LSRR:
14858 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14859 				break;
14860 			}
14861 			optlen = opts.ipoptp_len;
14862 			off = opt[IPOPT_OFFSET];
14863 			off--;
14864 			if (optlen < IP_ADDR_LEN ||
14865 			    off > optlen - IP_ADDR_LEN) {
14866 				/* End of source route */
14867 				break;
14868 			}
14869 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14870 			if (nexthop == htonl(INADDR_LOOPBACK)) {
14871 				/* Ignore */
14872 				nexthop = INADDR_ANY;
14873 				break;
14874 			}
14875 			break;
14876 		}
14877 	}
14878 	return (nexthop);
14879 }
14880 
14881 /*
14882  * Reverse a source route.
14883  */
14884 void
14885 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
14886 {
14887 	ipaddr_t	tmp;
14888 	ipoptp_t	opts;
14889 	uchar_t		*opt;
14890 	uint8_t		optval;
14891 	uint32_t	totallen;
14892 
14893 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14894 		return;
14895 
14896 	totallen = ipp->ipp_ipv4_options_len;
14897 	if (totallen & 0x3)
14898 		return;
14899 
14900 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14901 	    optval != IPOPT_EOL;
14902 	    optval = ipoptp_next(&opts)) {
14903 		uint8_t off1, off2;
14904 
14905 		opt = opts.ipoptp_cur;
14906 		switch (optval) {
14907 		case IPOPT_SSRR:
14908 		case IPOPT_LSRR:
14909 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14910 				break;
14911 			}
14912 			off1 = IPOPT_MINOFF_SR - 1;
14913 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
14914 			while (off2 > off1) {
14915 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
14916 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
14917 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
14918 				off2 -= IP_ADDR_LEN;
14919 				off1 += IP_ADDR_LEN;
14920 			}
14921 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
14922 			break;
14923 		}
14924 	}
14925 }
14926 
14927 /*
14928  * Returns NULL if no routing header
14929  */
14930 in6_addr_t *
14931 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
14932 {
14933 	in6_addr_t	*nexthop = NULL;
14934 	ip6_rthdr0_t	*rthdr;
14935 
14936 	if (!(ipp->ipp_fields & IPPF_RTHDR))
14937 		return (NULL);
14938 
14939 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
14940 	if (rthdr->ip6r0_segleft == 0)
14941 		return (NULL);
14942 
14943 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
14944 	return (nexthop);
14945 }
14946 
14947 zoneid_t
14948 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
14949     zoneid_t lookup_zoneid)
14950 {
14951 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
14952 	ire_t		*ire;
14953 	int		ire_flags = MATCH_IRE_TYPE;
14954 	zoneid_t	zoneid = ALL_ZONES;
14955 
14956 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
14957 		return (ALL_ZONES);
14958 
14959 	if (lookup_zoneid != ALL_ZONES)
14960 		ire_flags |= MATCH_IRE_ZONEONLY;
14961 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
14962 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
14963 	if (ire != NULL) {
14964 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
14965 		ire_refrele(ire);
14966 	}
14967 	return (zoneid);
14968 }
14969 
14970 zoneid_t
14971 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
14972     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
14973 {
14974 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
14975 	ire_t		*ire;
14976 	int		ire_flags = MATCH_IRE_TYPE;
14977 	zoneid_t	zoneid = ALL_ZONES;
14978 
14979 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
14980 		return (ALL_ZONES);
14981 
14982 	if (IN6_IS_ADDR_LINKLOCAL(addr))
14983 		ire_flags |= MATCH_IRE_ILL;
14984 
14985 	if (lookup_zoneid != ALL_ZONES)
14986 		ire_flags |= MATCH_IRE_ZONEONLY;
14987 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
14988 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
14989 	if (ire != NULL) {
14990 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
14991 		ire_refrele(ire);
14992 	}
14993 	return (zoneid);
14994 }
14995 
14996 /*
14997  * IP obserability hook support functions.
14998  */
14999 static void
15000 ipobs_init(ip_stack_t *ipst)
15001 {
15002 	netid_t id;
15003 
15004 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15005 
15006 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15007 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15008 
15009 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15010 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15011 }
15012 
15013 static void
15014 ipobs_fini(ip_stack_t *ipst)
15015 {
15016 
15017 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15018 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15019 }
15020 
15021 /*
15022  * hook_pkt_observe_t is composed in network byte order so that the
15023  * entire mblk_t chain handed into hook_run can be used as-is.
15024  * The caveat is that use of the fields, such as the zone fields,
15025  * requires conversion into host byte order first.
15026  */
15027 void
15028 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15029     const ill_t *ill, ip_stack_t *ipst)
15030 {
15031 	hook_pkt_observe_t *hdr;
15032 	uint64_t grifindex;
15033 	mblk_t *imp;
15034 
15035 	imp = allocb(sizeof (*hdr), BPRI_HI);
15036 	if (imp == NULL)
15037 		return;
15038 
15039 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15040 	/*
15041 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15042 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15043 	 */
15044 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15045 	imp->b_cont = mp;
15046 
15047 	ASSERT(DB_TYPE(mp) == M_DATA);
15048 
15049 	if (IS_UNDER_IPMP(ill))
15050 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15051 	else
15052 		grifindex = 0;
15053 
15054 	hdr->hpo_version = 1;
15055 	hdr->hpo_htype = htons(htype);
15056 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15057 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15058 	hdr->hpo_grifindex = htonl(grifindex);
15059 	hdr->hpo_zsrc = htonl(zsrc);
15060 	hdr->hpo_zdst = htonl(zdst);
15061 	hdr->hpo_pkt = imp;
15062 	hdr->hpo_ctx = ipst->ips_netstack;
15063 
15064 	if (ill->ill_isv6) {
15065 		hdr->hpo_family = AF_INET6;
15066 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15067 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15068 	} else {
15069 		hdr->hpo_family = AF_INET;
15070 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15071 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15072 	}
15073 
15074 	imp->b_cont = NULL;
15075 	freemsg(imp);
15076 }
15077 
15078 /*
15079  * Utility routine that checks if `v4srcp' is a valid address on underlying
15080  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15081  * associated with `v4srcp' on success.  NOTE: if this is not called from
15082  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15083  * group during or after this lookup.
15084  */
15085 boolean_t
15086 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15087 {
15088 	ipif_t *ipif;
15089 
15090 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15091 	if (ipif != NULL) {
15092 		if (ipifp != NULL)
15093 			*ipifp = ipif;
15094 		else
15095 			ipif_refrele(ipif);
15096 		return (B_TRUE);
15097 	}
15098 
15099 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15100 	    *v4srcp));
15101 	return (B_FALSE);
15102 }
15103