1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 609 ipha_t **); 610 611 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 612 ip_stack_t *); 613 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 614 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 615 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 616 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 617 mblk_t *, int, ip_stack_t *); 618 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 619 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 620 ill_t *, zoneid_t); 621 static void icmp_options_update(ipha_t *); 622 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 623 ip_stack_t *); 624 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 625 zoneid_t zoneid, ip_stack_t *); 626 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 627 static void icmp_redirect(ill_t *, mblk_t *); 628 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 629 ip_stack_t *); 630 631 static void ip_arp_news(queue_t *, mblk_t *); 632 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 633 ip_stack_t *); 634 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 635 char *ip_dot_addr(ipaddr_t, char *); 636 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 637 int ip_close(queue_t *, int); 638 static char *ip_dot_saddr(uchar_t *, char *); 639 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, ill_t *, zoneid_t); 641 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 642 boolean_t, boolean_t, zoneid_t); 643 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 644 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 645 static void ip_lrput(queue_t *, mblk_t *); 646 ipaddr_t ip_net_mask(ipaddr_t); 647 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 648 ip_stack_t *); 649 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 650 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 651 char *ip_nv_lookup(nv_t *, int); 652 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 653 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 655 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 656 ipndp_t *, size_t); 657 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 658 void ip_rput(queue_t *, mblk_t *); 659 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 660 void *dummy_arg); 661 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 662 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 663 ip_stack_t *); 664 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 665 ire_t *, ip_stack_t *); 666 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 667 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 668 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 669 ip_stack_t *); 670 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 671 uint16_t *); 672 int ip_snmp_get(queue_t *, mblk_t *, int); 673 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 674 mib2_ipIfStatsEntry_t *, ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 676 ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 678 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 703 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 704 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 705 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 706 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 707 static boolean_t ip_source_route_included(ipha_t *); 708 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 709 710 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 711 zoneid_t, ip_stack_t *); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 713 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t, ip_stack_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 730 zoneid_t); 731 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 732 void *dummy_arg); 733 734 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 735 736 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 737 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 738 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 739 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 740 741 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 742 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 743 caddr_t, cred_t *); 744 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 749 caddr_t cp, cred_t *cr); 750 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static squeue_func_t ip_squeue_switch(int); 755 756 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 757 static void ip_kstat_fini(netstackid_t, kstat_t *); 758 static int ip_kstat_update(kstat_t *kp, int rw); 759 static void *icmp_kstat_init(netstackid_t); 760 static void icmp_kstat_fini(netstackid_t, kstat_t *); 761 static int icmp_kstat_update(kstat_t *kp, int rw); 762 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 763 static void ip_kstat2_fini(netstackid_t, kstat_t *); 764 765 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 766 767 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 768 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 769 770 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 771 ipha_t *, ill_t *, boolean_t); 772 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 773 774 /* How long, in seconds, we allow frags to hang around. */ 775 #define IP_FRAG_TIMEOUT 60 776 777 /* 778 * Threshold which determines whether MDT should be used when 779 * generating IP fragments; payload size must be greater than 780 * this threshold for MDT to take place. 781 */ 782 #define IP_WPUT_FRAG_MDT_MIN 32768 783 784 /* Setable in /etc/system only */ 785 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 786 787 static long ip_rput_pullups; 788 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 789 790 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 791 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 792 793 int ip_debug; 794 795 #ifdef DEBUG 796 uint32_t ipsechw_debug = 0; 797 #endif 798 799 /* 800 * Multirouting/CGTP stuff 801 */ 802 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 803 804 /* 805 * XXX following really should only be in a header. Would need more 806 * header and .c clean up first. 807 */ 808 extern optdb_obj_t ip_opt_obj; 809 810 ulong_t ip_squeue_enter_unbound = 0; 811 812 /* 813 * Named Dispatch Parameter Table. 814 * All of these are alterable, within the min/max values given, at run time. 815 */ 816 static ipparam_t lcl_param_arr[] = { 817 /* min max value name */ 818 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 820 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 821 { 0, 1, 0, "ip_respond_to_timestamp"}, 822 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 823 { 0, 1, 1, "ip_send_redirects"}, 824 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 825 { 0, 10, 0, "ip_mrtdebug"}, 826 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 827 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 828 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 829 { 1, 255, 255, "ip_def_ttl" }, 830 { 0, 1, 0, "ip_forward_src_routed"}, 831 { 0, 256, 32, "ip_wroff_extra" }, 832 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 833 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 834 { 0, 1, 1, "ip_path_mtu_discovery" }, 835 { 0, 240, 30, "ip_ignore_delete_time" }, 836 { 0, 1, 0, "ip_ignore_redirect" }, 837 { 0, 1, 1, "ip_output_queue" }, 838 { 1, 254, 1, "ip_broadcast_ttl" }, 839 { 0, 99999, 100, "ip_icmp_err_interval" }, 840 { 1, 99999, 10, "ip_icmp_err_burst" }, 841 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 842 { 0, 1, 0, "ip_strict_dst_multihoming" }, 843 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 844 { 0, 1, 0, "ipsec_override_persocket_policy" }, 845 { 0, 1, 1, "icmp_accept_clear_messages" }, 846 { 0, 1, 1, "igmp_accept_clear_messages" }, 847 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 848 "ip_ndp_delay_first_probe_time"}, 849 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 850 "ip_ndp_max_unicast_solicit"}, 851 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 852 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 853 { 0, 1, 0, "ip6_forward_src_routed"}, 854 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 855 { 0, 1, 1, "ip6_send_redirects"}, 856 { 0, 1, 0, "ip6_ignore_redirect" }, 857 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 858 859 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 860 861 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 862 863 { 0, 1, 1, "pim_accept_clear_messages" }, 864 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 865 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 866 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 867 { 0, 15, 0, "ip_policy_mask" }, 868 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 869 { 0, 255, 1, "ip_multirt_ttl" }, 870 { 0, 1, 1, "ip_multidata_outbound" }, 871 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 872 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 873 { 0, 1000, 1, "ip_max_temp_defend" }, 874 { 0, 1000, 3, "ip_max_defend" }, 875 { 0, 999999, 30, "ip_defend_interval" }, 876 { 0, 3600000, 300000, "ip_dup_recovery" }, 877 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 878 { 0, 1, 1, "ip_lso_outbound" }, 879 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 880 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 881 #ifdef DEBUG 882 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 883 #else 884 { 0, 0, 0, "" }, 885 #endif 886 }; 887 888 /* 889 * Extended NDP table 890 * The addresses for the first two are filled in to be ips_ip_g_forward 891 * and ips_ipv6_forward at init time. 892 */ 893 static ipndp_t lcl_ndp_arr[] = { 894 /* getf setf data name */ 895 #define IPNDP_IP_FORWARDING_OFFSET 0 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip_forwarding" }, 898 #define IPNDP_IP6_FORWARDING_OFFSET 1 899 { ip_param_generic_get, ip_forward_set, NULL, 900 "ip6_forwarding" }, 901 { ip_ill_report, NULL, NULL, 902 "ip_ill_status" }, 903 { ip_ipif_report, NULL, NULL, 904 "ip_ipif_status" }, 905 { ip_conn_report, NULL, NULL, 906 "ip_conn_status" }, 907 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 908 "ip_rput_pullups" }, 909 { ip_srcid_report, NULL, NULL, 910 "ip_srcid_status" }, 911 { ip_param_generic_get, ip_squeue_profile_set, 912 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 913 { ip_param_generic_get, ip_squeue_bind_set, 914 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 915 { ip_param_generic_get, ip_input_proc_set, 916 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 917 { ip_param_generic_get, ip_int_set, 918 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 919 #define IPNDP_CGTP_FILTER_OFFSET 11 920 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 921 "ip_cgtp_filter" }, 922 { ip_param_generic_get, ip_int_set, 923 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 924 #define IPNDP_IPMP_HOOK_OFFSET 13 925 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 926 "ipmp_hook_emulation" }, 927 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 928 "ip_debug" }, 929 }; 930 931 /* 932 * Table of IP ioctls encoding the various properties of the ioctl and 933 * indexed based on the last byte of the ioctl command. Occasionally there 934 * is a clash, and there is more than 1 ioctl with the same last byte. 935 * In such a case 1 ioctl is encoded in the ndx table and the remaining 936 * ioctls are encoded in the misc table. An entry in the ndx table is 937 * retrieved by indexing on the last byte of the ioctl command and comparing 938 * the ioctl command with the value in the ndx table. In the event of a 939 * mismatch the misc table is then searched sequentially for the desired 940 * ioctl command. 941 * 942 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 943 */ 944 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 945 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 956 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocaddrt, NULL }, 958 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocdelrt, NULL }, 960 961 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 962 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 963 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 964 IF_CMD, ip_sioctl_get_addr, NULL }, 965 966 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 968 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 969 IPI_GET_CMD | IPI_REPL, 970 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 971 972 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 973 IPI_PRIV | IPI_WR | IPI_REPL, 974 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 975 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 976 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 977 IF_CMD, ip_sioctl_get_flags, NULL }, 978 979 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 981 982 /* copyin size cannot be coded for SIOCGIFCONF */ 983 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 984 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 985 986 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 987 IF_CMD, ip_sioctl_mtu, NULL }, 988 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 989 IF_CMD, ip_sioctl_get_mtu, NULL }, 990 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 991 IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 993 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 994 IF_CMD, ip_sioctl_brdaddr, NULL }, 995 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 996 IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_netmask, NULL }, 998 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1000 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_metric, NULL }, 1003 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1004 IF_CMD, ip_sioctl_metric, NULL }, 1005 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 1007 /* See 166-168 below for extended SIOC*XARP ioctls */ 1008 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 1015 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1038 MISC_CMD, if_unitsel, if_unitsel_restart }, 1039 1040 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1060 IPI_PRIV | IPI_WR | IPI_MODOK, 1061 IF_CMD, ip_sioctl_sifname, NULL }, 1062 1063 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1078 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1079 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1080 IF_CMD, ip_sioctl_get_muxid, NULL }, 1081 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1082 IPI_PRIV | IPI_WR | IPI_REPL, 1083 IF_CMD, ip_sioctl_muxid, NULL }, 1084 1085 /* Both if and lif variants share same func */ 1086 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1088 /* Both if and lif variants share same func */ 1089 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR | IPI_REPL, 1091 IF_CMD, ip_sioctl_slifindex, NULL }, 1092 1093 /* copyin size cannot be coded for SIOCGIFCONF */ 1094 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1095 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1096 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 1114 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1115 IPI_PRIV | IPI_WR | IPI_REPL, 1116 LIF_CMD, ip_sioctl_removeif, 1117 ip_sioctl_removeif_restart }, 1118 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1119 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1120 LIF_CMD, ip_sioctl_addif, NULL }, 1121 #define SIOCLIFADDR_NDX 112 1122 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1123 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1124 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1125 IPI_GET_CMD | IPI_REPL, 1126 LIF_CMD, ip_sioctl_get_addr, NULL }, 1127 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1128 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1129 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1130 IPI_GET_CMD | IPI_REPL, 1131 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1132 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1133 IPI_PRIV | IPI_WR | IPI_REPL, 1134 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1135 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1136 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1137 LIF_CMD, ip_sioctl_get_flags, NULL }, 1138 1139 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 1142 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1143 ip_sioctl_get_lifconf, NULL }, 1144 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1145 LIF_CMD, ip_sioctl_mtu, NULL }, 1146 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1148 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1149 IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1151 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1152 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1153 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1156 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1158 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_metric, NULL }, 1161 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_metric, NULL }, 1163 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1164 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1165 LIF_CMD, ip_sioctl_slifname, 1166 ip_sioctl_slifname_restart }, 1167 1168 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1169 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1170 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1171 IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1173 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_REPL, 1175 LIF_CMD, ip_sioctl_muxid, NULL }, 1176 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1177 IPI_GET_CMD | IPI_REPL, 1178 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1179 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1180 IPI_PRIV | IPI_WR | IPI_REPL, 1181 LIF_CMD, ip_sioctl_slifindex, 0 }, 1182 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1183 LIF_CMD, ip_sioctl_token, NULL }, 1184 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1185 IPI_GET_CMD | IPI_REPL, 1186 LIF_CMD, ip_sioctl_get_token, NULL }, 1187 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1189 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1192 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1194 1195 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1196 IPI_GET_CMD | IPI_REPL, 1197 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1198 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1199 LIF_CMD, ip_siocdelndp_v6, NULL }, 1200 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1201 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1202 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1203 LIF_CMD, ip_siocsetndp_v6, NULL }, 1204 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1206 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tonlink, NULL }, 1208 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1209 MISC_CMD, ip_sioctl_tmysite, NULL }, 1210 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1211 TUN_CMD, ip_sioctl_tunparam, NULL }, 1212 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1213 IPI_PRIV | IPI_WR, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 1216 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1217 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 1222 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1223 IPI_PRIV | IPI_WR | IPI_REPL, 1224 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1225 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1231 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_GET_CMD | IPI_REPL, 1233 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1234 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1237 1238 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1239 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 1243 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1244 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1245 1246 /* These are handled in ip_sioctl_copyin_setup itself */ 1247 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1252 1253 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1254 ip_sioctl_get_lifconf, NULL }, 1255 1256 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 1263 /* SIOCPOPSOCKFS is not handled by IP */ 1264 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1265 1266 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1269 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1270 IPI_PRIV | IPI_WR | IPI_REPL, 1271 LIF_CMD, ip_sioctl_slifzone, 1272 ip_sioctl_slifzone_restart }, 1273 /* 172-174 are SCTP ioctls and not handled by IP */ 1274 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1278 IPI_GET_CMD, LIF_CMD, 1279 ip_sioctl_get_lifusesrc, 0 }, 1280 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1281 IPI_PRIV | IPI_WR, 1282 LIF_CMD, ip_sioctl_slifusesrc, 1283 NULL }, 1284 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1285 ip_sioctl_get_lifsrcof, NULL }, 1286 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1295 ip_sioctl_set_ipmpfailback, NULL }, 1296 /* SIOCSENABLESDP is handled by SDP */ 1297 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1298 }; 1299 1300 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1303 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1304 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1306 TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1314 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl} 1320 }; 1321 1322 int ip_misc_ioctl_count = 1323 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 int conn_drain_nthreads; /* Number of drainers reqd. */ 1326 /* Settable in /etc/system */ 1327 /* Defined in ip_ire.c */ 1328 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1329 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1330 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1331 1332 static nv_t ire_nv_arr[] = { 1333 { IRE_BROADCAST, "BROADCAST" }, 1334 { IRE_LOCAL, "LOCAL" }, 1335 { IRE_LOOPBACK, "LOOPBACK" }, 1336 { IRE_CACHE, "CACHE" }, 1337 { IRE_DEFAULT, "DEFAULT" }, 1338 { IRE_PREFIX, "PREFIX" }, 1339 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1340 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1341 { IRE_HOST, "HOST" }, 1342 { 0 } 1343 }; 1344 1345 nv_t *ire_nv_tbl = ire_nv_arr; 1346 1347 /* Simple ICMP IP Header Template */ 1348 static ipha_t icmp_ipha = { 1349 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1350 }; 1351 1352 struct module_info ip_mod_info = { 1353 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1354 }; 1355 1356 /* 1357 * Duplicate static symbols within a module confuses mdb; so we avoid the 1358 * problem by making the symbols here distinct from those in udp.c. 1359 */ 1360 1361 /* 1362 * Entry points for IP as a device and as a module. 1363 * FIXME: down the road we might want a separate module and driver qinit. 1364 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1365 */ 1366 static struct qinit iprinitv4 = { 1367 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 struct qinit iprinitv6 = { 1372 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 static struct qinit ipwinitv4 = { 1377 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 struct qinit ipwinitv6 = { 1382 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1383 &ip_mod_info 1384 }; 1385 1386 static struct qinit iplrinit = { 1387 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1388 &ip_mod_info 1389 }; 1390 1391 static struct qinit iplwinit = { 1392 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1393 &ip_mod_info 1394 }; 1395 1396 /* For AF_INET aka /dev/ip */ 1397 struct streamtab ipinfov4 = { 1398 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1399 }; 1400 1401 /* For AF_INET6 aka /dev/ip6 */ 1402 struct streamtab ipinfov6 = { 1403 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1404 }; 1405 1406 #ifdef DEBUG 1407 static boolean_t skip_sctp_cksum = B_FALSE; 1408 #endif 1409 1410 /* 1411 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1412 * ip_rput_v6(), ip_output(), etc. If the message 1413 * block already has a M_CTL at the front of it, then simply set the zoneid 1414 * appropriately. 1415 */ 1416 mblk_t * 1417 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1418 { 1419 mblk_t *first_mp; 1420 ipsec_out_t *io; 1421 1422 ASSERT(zoneid != ALL_ZONES); 1423 if (mp->b_datap->db_type == M_CTL) { 1424 io = (ipsec_out_t *)mp->b_rptr; 1425 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1426 io->ipsec_out_zoneid = zoneid; 1427 return (mp); 1428 } 1429 1430 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1431 if (first_mp == NULL) 1432 return (NULL); 1433 io = (ipsec_out_t *)first_mp->b_rptr; 1434 /* This is not a secure packet */ 1435 io->ipsec_out_secure = B_FALSE; 1436 io->ipsec_out_zoneid = zoneid; 1437 first_mp->b_cont = mp; 1438 return (first_mp); 1439 } 1440 1441 /* 1442 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1443 */ 1444 mblk_t * 1445 ip_copymsg(mblk_t *mp) 1446 { 1447 mblk_t *nmp; 1448 ipsec_info_t *in; 1449 1450 if (mp->b_datap->db_type != M_CTL) 1451 return (copymsg(mp)); 1452 1453 in = (ipsec_info_t *)mp->b_rptr; 1454 1455 /* 1456 * Note that M_CTL is also used for delivering ICMP error messages 1457 * upstream to transport layers. 1458 */ 1459 if (in->ipsec_info_type != IPSEC_OUT && 1460 in->ipsec_info_type != IPSEC_IN) 1461 return (copymsg(mp)); 1462 1463 nmp = copymsg(mp->b_cont); 1464 1465 if (in->ipsec_info_type == IPSEC_OUT) { 1466 return (ipsec_out_tag(mp, nmp, 1467 ((ipsec_out_t *)in)->ipsec_out_ns)); 1468 } else { 1469 return (ipsec_in_tag(mp, nmp, 1470 ((ipsec_in_t *)in)->ipsec_in_ns)); 1471 } 1472 } 1473 1474 /* Generate an ICMP fragmentation needed message. */ 1475 static void 1476 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1477 ip_stack_t *ipst) 1478 { 1479 icmph_t icmph; 1480 mblk_t *first_mp; 1481 boolean_t mctl_present; 1482 1483 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1484 1485 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1486 if (mctl_present) 1487 freeb(first_mp); 1488 return; 1489 } 1490 1491 bzero(&icmph, sizeof (icmph_t)); 1492 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1493 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1494 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1496 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1497 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1498 ipst); 1499 } 1500 1501 /* 1502 * icmp_inbound deals with ICMP messages in the following ways. 1503 * 1504 * 1) It needs to send a reply back and possibly delivering it 1505 * to the "interested" upper clients. 1506 * 2) It needs to send it to the upper clients only. 1507 * 3) It needs to change some values in IP only. 1508 * 4) It needs to change some values in IP and upper layers e.g TCP. 1509 * 1510 * We need to accomodate icmp messages coming in clear until we get 1511 * everything secure from the wire. If icmp_accept_clear_messages 1512 * is zero we check with the global policy and act accordingly. If 1513 * it is non-zero, we accept the message without any checks. But 1514 * *this does not mean* that this will be delivered to the upper 1515 * clients. By accepting we might send replies back, change our MTU 1516 * value etc. but delivery to the ULP/clients depends on their policy 1517 * dispositions. 1518 * 1519 * We handle the above 4 cases in the context of IPsec in the 1520 * following way : 1521 * 1522 * 1) Send the reply back in the same way as the request came in. 1523 * If it came in encrypted, it goes out encrypted. If it came in 1524 * clear, it goes out in clear. Thus, this will prevent chosen 1525 * plain text attack. 1526 * 2) The client may or may not expect things to come in secure. 1527 * If it comes in secure, the policy constraints are checked 1528 * before delivering it to the upper layers. If it comes in 1529 * clear, ipsec_inbound_accept_clear will decide whether to 1530 * accept this in clear or not. In both the cases, if the returned 1531 * message (IP header + 8 bytes) that caused the icmp message has 1532 * AH/ESP headers, it is sent up to AH/ESP for validation before 1533 * sending up. If there are only 8 bytes of returned message, then 1534 * upper client will not be notified. 1535 * 3) Check with global policy to see whether it matches the constaints. 1536 * But this will be done only if icmp_accept_messages_in_clear is 1537 * zero. 1538 * 4) If we need to change both in IP and ULP, then the decision taken 1539 * while affecting the values in IP and while delivering up to TCP 1540 * should be the same. 1541 * 1542 * There are two cases. 1543 * 1544 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1545 * failed), we will not deliver it to the ULP, even though they 1546 * are *willing* to accept in *clear*. This is fine as our global 1547 * disposition to icmp messages asks us reject the datagram. 1548 * 1549 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1550 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1551 * to deliver it to ULP (policy failed), it can lead to 1552 * consistency problems. The cases known at this time are 1553 * ICMP_DESTINATION_UNREACHABLE messages with following code 1554 * values : 1555 * 1556 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1557 * and Upper layer rejects. Then the communication will 1558 * come to a stop. This is solved by making similar decisions 1559 * at both levels. Currently, when we are unable to deliver 1560 * to the Upper Layer (due to policy failures) while IP has 1561 * adjusted ire_max_frag, the next outbound datagram would 1562 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1563 * will be with the right level of protection. Thus the right 1564 * value will be communicated even if we are not able to 1565 * communicate when we get from the wire initially. But this 1566 * assumes there would be at least one outbound datagram after 1567 * IP has adjusted its ire_max_frag value. To make things 1568 * simpler, we accept in clear after the validation of 1569 * AH/ESP headers. 1570 * 1571 * - Other ICMP ERRORS : We may not be able to deliver it to the 1572 * upper layer depending on the level of protection the upper 1573 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1574 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1575 * should be accepted in clear when the Upper layer expects secure. 1576 * Thus the communication may get aborted by some bad ICMP 1577 * packets. 1578 * 1579 * IPQoS Notes: 1580 * The only instance when a packet is sent for processing is when there 1581 * isn't an ICMP client and if we are interested in it. 1582 * If there is a client, IPPF processing will take place in the 1583 * ip_fanout_proto routine. 1584 * 1585 * Zones notes: 1586 * The packet is only processed in the context of the specified zone: typically 1587 * only this zone will reply to an echo request, and only interested clients in 1588 * this zone will receive a copy of the packet. This means that the caller must 1589 * call icmp_inbound() for each relevant zone. 1590 */ 1591 static void 1592 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1593 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1594 ill_t *recv_ill, zoneid_t zoneid) 1595 { 1596 icmph_t *icmph; 1597 ipha_t *ipha; 1598 int iph_hdr_length; 1599 int hdr_length; 1600 boolean_t interested; 1601 uint32_t ts; 1602 uchar_t *wptr; 1603 ipif_t *ipif; 1604 mblk_t *first_mp; 1605 ipsec_in_t *ii; 1606 ire_t *src_ire; 1607 boolean_t onlink; 1608 timestruc_t now; 1609 uint32_t ill_index; 1610 ip_stack_t *ipst; 1611 1612 ASSERT(ill != NULL); 1613 ipst = ill->ill_ipst; 1614 1615 first_mp = mp; 1616 if (mctl_present) { 1617 mp = first_mp->b_cont; 1618 ASSERT(mp != NULL); 1619 } 1620 1621 ipha = (ipha_t *)mp->b_rptr; 1622 if (ipst->ips_icmp_accept_clear_messages == 0) { 1623 first_mp = ipsec_check_global_policy(first_mp, NULL, 1624 ipha, NULL, mctl_present, ipst->ips_netstack); 1625 if (first_mp == NULL) 1626 return; 1627 } 1628 1629 /* 1630 * On a labeled system, we have to check whether the zone itself is 1631 * permitted to receive raw traffic. 1632 */ 1633 if (is_system_labeled()) { 1634 if (zoneid == ALL_ZONES) 1635 zoneid = tsol_packet_to_zoneid(mp); 1636 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1637 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1638 zoneid)); 1639 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1640 freemsg(first_mp); 1641 return; 1642 } 1643 } 1644 1645 /* 1646 * We have accepted the ICMP message. It means that we will 1647 * respond to the packet if needed. It may not be delivered 1648 * to the upper client depending on the policy constraints 1649 * and the disposition in ipsec_inbound_accept_clear. 1650 */ 1651 1652 ASSERT(ill != NULL); 1653 1654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1655 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1656 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1657 /* Last chance to get real. */ 1658 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* Refresh iph following the pullup. */ 1664 ipha = (ipha_t *)mp->b_rptr; 1665 } 1666 /* ICMP header checksum, including checksum field, should be zero. */ 1667 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1668 IP_CSUM(mp, iph_hdr_length, 0)) { 1669 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1670 freemsg(first_mp); 1671 return; 1672 } 1673 /* The IP header will always be a multiple of four bytes */ 1674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1675 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1676 icmph->icmph_code)); 1677 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1678 /* We will set "interested" to "true" if we want a copy */ 1679 interested = B_FALSE; 1680 switch (icmph->icmph_type) { 1681 case ICMP_ECHO_REPLY: 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1683 break; 1684 case ICMP_DEST_UNREACHABLE: 1685 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1687 interested = B_TRUE; /* Pass up to transport */ 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1689 break; 1690 case ICMP_SOURCE_QUENCH: 1691 interested = B_TRUE; /* Pass up to transport */ 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1693 break; 1694 case ICMP_REDIRECT: 1695 if (!ipst->ips_ip_ignore_redirect) 1696 interested = B_TRUE; 1697 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1698 break; 1699 case ICMP_ECHO_REQUEST: 1700 /* 1701 * Whether to respond to echo requests that come in as IP 1702 * broadcasts or as IP multicast is subject to debate 1703 * (what isn't?). We aim to please, you pick it. 1704 * Default is do it. 1705 */ 1706 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1707 /* unicast: always respond */ 1708 interested = B_TRUE; 1709 } else if (CLASSD(ipha->ipha_dst)) { 1710 /* multicast: respond based on tunable */ 1711 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1712 } else if (broadcast) { 1713 /* broadcast: respond based on tunable */ 1714 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1715 } 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1717 break; 1718 case ICMP_ROUTER_ADVERTISEMENT: 1719 case ICMP_ROUTER_SOLICITATION: 1720 break; 1721 case ICMP_TIME_EXCEEDED: 1722 interested = B_TRUE; /* Pass up to transport */ 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1724 break; 1725 case ICMP_PARAM_PROBLEM: 1726 interested = B_TRUE; /* Pass up to transport */ 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1728 break; 1729 case ICMP_TIME_STAMP_REQUEST: 1730 /* Response to Time Stamp Requests is local policy. */ 1731 if (ipst->ips_ip_g_resp_to_timestamp && 1732 /* So is whether to respond if it was an IP broadcast. */ 1733 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1734 int tstamp_len = 3 * sizeof (uint32_t); 1735 1736 if (wptr + tstamp_len > mp->b_wptr) { 1737 if (!pullupmsg(mp, wptr + tstamp_len - 1738 mp->b_rptr)) { 1739 BUMP_MIB(ill->ill_ip_mib, 1740 ipIfStatsInDiscards); 1741 freemsg(first_mp); 1742 return; 1743 } 1744 /* Refresh ipha following the pullup. */ 1745 ipha = (ipha_t *)mp->b_rptr; 1746 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1747 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1748 } 1749 interested = B_TRUE; 1750 } 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1752 break; 1753 case ICMP_TIME_STAMP_REPLY: 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1755 break; 1756 case ICMP_INFO_REQUEST: 1757 /* Per RFC 1122 3.2.2.7, ignore this. */ 1758 case ICMP_INFO_REPLY: 1759 break; 1760 case ICMP_ADDRESS_MASK_REQUEST: 1761 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1762 !broadcast) && 1763 /* TODO m_pullup of complete header? */ 1764 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1765 interested = B_TRUE; 1766 } 1767 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1768 break; 1769 case ICMP_ADDRESS_MASK_REPLY: 1770 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1771 break; 1772 default: 1773 interested = B_TRUE; /* Pass up to transport */ 1774 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1775 break; 1776 } 1777 /* See if there is an ICMP client. */ 1778 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1779 /* If there is an ICMP client and we want one too, copy it. */ 1780 mblk_t *first_mp1; 1781 1782 if (!interested) { 1783 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1784 ip_policy, recv_ill, zoneid); 1785 return; 1786 } 1787 first_mp1 = ip_copymsg(first_mp); 1788 if (first_mp1 != NULL) { 1789 ip_fanout_proto(q, first_mp1, ill, ipha, 1790 0, mctl_present, ip_policy, recv_ill, zoneid); 1791 } 1792 } else if (!interested) { 1793 freemsg(first_mp); 1794 return; 1795 } else { 1796 /* 1797 * Initiate policy processing for this packet if ip_policy 1798 * is true. 1799 */ 1800 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1801 ill_index = ill->ill_phyint->phyint_ifindex; 1802 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1803 if (mp == NULL) { 1804 if (mctl_present) { 1805 freeb(first_mp); 1806 } 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1808 return; 1809 } 1810 } 1811 } 1812 /* We want to do something with it. */ 1813 /* Check db_ref to make sure we can modify the packet. */ 1814 if (mp->b_datap->db_ref > 1) { 1815 mblk_t *first_mp1; 1816 1817 first_mp1 = ip_copymsg(first_mp); 1818 freemsg(first_mp); 1819 if (!first_mp1) { 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1821 return; 1822 } 1823 first_mp = first_mp1; 1824 if (mctl_present) { 1825 mp = first_mp->b_cont; 1826 ASSERT(mp != NULL); 1827 } else { 1828 mp = first_mp; 1829 } 1830 ipha = (ipha_t *)mp->b_rptr; 1831 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1832 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1833 } 1834 switch (icmph->icmph_type) { 1835 case ICMP_ADDRESS_MASK_REQUEST: 1836 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1837 if (ipif == NULL) { 1838 freemsg(first_mp); 1839 return; 1840 } 1841 /* 1842 * outging interface must be IPv4 1843 */ 1844 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1845 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1846 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1847 ipif_refrele(ipif); 1848 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1849 break; 1850 case ICMP_ECHO_REQUEST: 1851 icmph->icmph_type = ICMP_ECHO_REPLY; 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1853 break; 1854 case ICMP_TIME_STAMP_REQUEST: { 1855 uint32_t *tsp; 1856 1857 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1858 tsp = (uint32_t *)wptr; 1859 tsp++; /* Skip past 'originate time' */ 1860 /* Compute # of milliseconds since midnight */ 1861 gethrestime(&now); 1862 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1863 now.tv_nsec / (NANOSEC / MILLISEC); 1864 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1865 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1866 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1867 break; 1868 } 1869 default: 1870 ipha = (ipha_t *)&icmph[1]; 1871 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1872 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1878 ipha = (ipha_t *)&icmph[1]; 1879 } 1880 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 hdr_length = IPH_HDR_LENGTH(ipha); 1886 if (hdr_length < sizeof (ipha_t)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1892 if (!pullupmsg(mp, 1893 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1895 freemsg(first_mp); 1896 return; 1897 } 1898 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1899 ipha = (ipha_t *)&icmph[1]; 1900 } 1901 switch (icmph->icmph_type) { 1902 case ICMP_REDIRECT: 1903 /* 1904 * As there is no upper client to deliver, we don't 1905 * need the first_mp any more. 1906 */ 1907 if (mctl_present) { 1908 freeb(first_mp); 1909 } 1910 icmp_redirect(ill, mp); 1911 return; 1912 case ICMP_DEST_UNREACHABLE: 1913 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1914 if (!icmp_inbound_too_big(icmph, ipha, ill, 1915 zoneid, mp, iph_hdr_length, ipst)) { 1916 freemsg(first_mp); 1917 return; 1918 } 1919 /* 1920 * icmp_inbound_too_big() may alter mp. 1921 * Resynch ipha and icmph accordingly. 1922 */ 1923 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1924 ipha = (ipha_t *)&icmph[1]; 1925 } 1926 /* FALLTHRU */ 1927 default : 1928 /* 1929 * IPQoS notes: Since we have already done IPQoS 1930 * processing we don't want to do it again in 1931 * the fanout routines called by 1932 * icmp_inbound_error_fanout, hence the last 1933 * argument, ip_policy, is B_FALSE. 1934 */ 1935 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1936 ipha, iph_hdr_length, hdr_length, mctl_present, 1937 B_FALSE, recv_ill, zoneid); 1938 } 1939 return; 1940 } 1941 /* Send out an ICMP packet */ 1942 icmph->icmph_checksum = 0; 1943 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1944 if (broadcast || CLASSD(ipha->ipha_dst)) { 1945 ipif_t *ipif_chosen; 1946 /* 1947 * Make it look like it was directed to us, so we don't look 1948 * like a fool with a broadcast or multicast source address. 1949 */ 1950 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1951 /* 1952 * Make sure that we haven't grabbed an interface that's DOWN. 1953 */ 1954 if (ipif != NULL) { 1955 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1956 ipha->ipha_src, zoneid); 1957 if (ipif_chosen != NULL) { 1958 ipif_refrele(ipif); 1959 ipif = ipif_chosen; 1960 } 1961 } 1962 if (ipif == NULL) { 1963 ip0dbg(("icmp_inbound: " 1964 "No source for broadcast/multicast:\n" 1965 "\tsrc 0x%x dst 0x%x ill %p " 1966 "ipif_lcl_addr 0x%x\n", 1967 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1968 (void *)ill, 1969 ill->ill_ipif->ipif_lcl_addr)); 1970 freemsg(first_mp); 1971 return; 1972 } 1973 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1974 ipha->ipha_dst = ipif->ipif_src_addr; 1975 ipif_refrele(ipif); 1976 } 1977 /* Reset time to live. */ 1978 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1979 { 1980 /* Swap source and destination addresses */ 1981 ipaddr_t tmp; 1982 1983 tmp = ipha->ipha_src; 1984 ipha->ipha_src = ipha->ipha_dst; 1985 ipha->ipha_dst = tmp; 1986 } 1987 ipha->ipha_ident = 0; 1988 if (!IS_SIMPLE_IPH(ipha)) 1989 icmp_options_update(ipha); 1990 1991 /* 1992 * ICMP echo replies should go out on the same interface 1993 * the request came on as probes used by in.mpathd for detecting 1994 * NIC failures are ECHO packets. We turn-off load spreading 1995 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1996 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1997 * function. This is in turn handled by ip_wput and ip_newroute 1998 * to make sure that the packet goes out on the interface it came 1999 * in on. If we don't turnoff load spreading, the packets might get 2000 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2001 * to go out and in.mpathd would wrongly detect a failure or 2002 * mis-detect a NIC failure for link failure. As load spreading 2003 * can happen only if ill_group is not NULL, we do only for 2004 * that case and this does not affect the normal case. 2005 * 2006 * We turn off load spreading only on echo packets that came from 2007 * on-link hosts. If the interface route has been deleted, this will 2008 * not be enforced as we can't do much. For off-link hosts, as the 2009 * default routes in IPv4 does not typically have an ire_ipif 2010 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2011 * Moreover, expecting a default route through this interface may 2012 * not be correct. We use ipha_dst because of the swap above. 2013 */ 2014 onlink = B_FALSE; 2015 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2016 /* 2017 * First, we need to make sure that it is not one of our 2018 * local addresses. If we set onlink when it is one of 2019 * our local addresses, we will end up creating IRE_CACHES 2020 * for one of our local addresses. Then, we will never 2021 * accept packets for them afterwards. 2022 */ 2023 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2025 if (src_ire == NULL) { 2026 ipif = ipif_get_next_ipif(NULL, ill); 2027 if (ipif == NULL) { 2028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2029 freemsg(mp); 2030 return; 2031 } 2032 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2033 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2034 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2035 ipif_refrele(ipif); 2036 if (src_ire != NULL) { 2037 onlink = B_TRUE; 2038 ire_refrele(src_ire); 2039 } 2040 } else { 2041 ire_refrele(src_ire); 2042 } 2043 } 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 if (onlink) { 2063 ii->ipsec_in_attach_if = B_TRUE; 2064 ii->ipsec_in_ill_index = 2065 ill->ill_phyint->phyint_ifindex; 2066 ii->ipsec_in_rill_index = 2067 recv_ill->ill_phyint->phyint_ifindex; 2068 } 2069 first_mp->b_cont = mp; 2070 } else if (onlink) { 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 ii->ipsec_in_attach_if = B_TRUE; 2073 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2075 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2076 } else { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } 2080 ii->ipsec_in_zoneid = zoneid; 2081 ASSERT(zoneid != ALL_ZONES); 2082 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2084 return; 2085 } 2086 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2087 put(WR(q), first_mp); 2088 } 2089 2090 static ipaddr_t 2091 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2092 { 2093 conn_t *connp; 2094 connf_t *connfp; 2095 ipaddr_t nexthop_addr = INADDR_ANY; 2096 int hdr_length = IPH_HDR_LENGTH(ipha); 2097 uint16_t *up; 2098 uint32_t ports; 2099 ip_stack_t *ipst = ill->ill_ipst; 2100 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_TCP: 2104 { 2105 tcph_t *tcph; 2106 2107 /* do a reverse lookup */ 2108 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2109 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2110 TCPS_LISTEN, ipst); 2111 break; 2112 } 2113 case IPPROTO_UDP: 2114 { 2115 uint32_t dstport, srcport; 2116 2117 ((uint16_t *)&ports)[0] = up[1]; 2118 ((uint16_t *)&ports)[1] = up[0]; 2119 2120 /* Extract ports in net byte order */ 2121 dstport = htons(ntohl(ports) & 0xFFFF); 2122 srcport = htons(ntohl(ports) >> 16); 2123 2124 connfp = &ipst->ips_ipcl_udp_fanout[ 2125 IPCL_UDP_HASH(dstport, ipst)]; 2126 mutex_enter(&connfp->connf_lock); 2127 connp = connfp->connf_head; 2128 2129 /* do a reverse lookup */ 2130 while ((connp != NULL) && 2131 (!IPCL_UDP_MATCH(connp, dstport, 2132 ipha->ipha_src, srcport, ipha->ipha_dst) || 2133 !IPCL_ZONE_MATCH(connp, zoneid))) { 2134 connp = connp->conn_next; 2135 } 2136 if (connp != NULL) 2137 CONN_INC_REF(connp); 2138 mutex_exit(&connfp->connf_lock); 2139 break; 2140 } 2141 case IPPROTO_SCTP: 2142 { 2143 in6_addr_t map_src, map_dst; 2144 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2147 ((uint16_t *)&ports)[0] = up[1]; 2148 ((uint16_t *)&ports)[1] = up[0]; 2149 2150 connp = sctp_find_conn(&map_src, &map_dst, ports, 2151 zoneid, ipst->ips_netstack->netstack_sctp); 2152 if (connp == NULL) { 2153 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2154 zoneid, ports, ipha, ipst); 2155 } else { 2156 CONN_INC_REF(connp); 2157 SCTP_REFRELE(CONN2SCTP(connp)); 2158 } 2159 break; 2160 } 2161 default: 2162 { 2163 ipha_t ripha; 2164 2165 ripha.ipha_src = ipha->ipha_dst; 2166 ripha.ipha_dst = ipha->ipha_src; 2167 ripha.ipha_protocol = ipha->ipha_protocol; 2168 2169 connfp = &ipst->ips_ipcl_proto_fanout[ 2170 ipha->ipha_protocol]; 2171 mutex_enter(&connfp->connf_lock); 2172 connp = connfp->connf_head; 2173 for (connp = connfp->connf_head; connp != NULL; 2174 connp = connp->conn_next) { 2175 if (IPCL_PROTO_MATCH(connp, 2176 ipha->ipha_protocol, &ripha, ill, 2177 0, zoneid)) { 2178 CONN_INC_REF(connp); 2179 break; 2180 } 2181 } 2182 mutex_exit(&connfp->connf_lock); 2183 } 2184 } 2185 if (connp != NULL) { 2186 if (connp->conn_nexthop_set) 2187 nexthop_addr = connp->conn_nexthop_v4; 2188 CONN_DEC_REF(connp); 2189 } 2190 return (nexthop_addr); 2191 } 2192 2193 /* Table from RFC 1191 */ 2194 static int icmp_frag_size_table[] = 2195 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2196 2197 /* 2198 * Process received ICMP Packet too big. 2199 * After updating any IRE it does the fanout to any matching transport streams. 2200 * Assumes the message has been pulled up till the IP header that caused 2201 * the error. 2202 * 2203 * Returns B_FALSE on failure and B_TRUE on success. 2204 */ 2205 static boolean_t 2206 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2207 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2208 ip_stack_t *ipst) 2209 { 2210 ire_t *ire, *first_ire; 2211 int mtu; 2212 int hdr_length; 2213 ipaddr_t nexthop_addr; 2214 2215 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2216 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2217 ASSERT(ill != NULL); 2218 2219 hdr_length = IPH_HDR_LENGTH(ipha); 2220 2221 /* Drop if the original packet contained a source route */ 2222 if (ip_source_route_included(ipha)) { 2223 return (B_FALSE); 2224 } 2225 /* 2226 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2227 * header. 2228 */ 2229 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2230 mp->b_wptr) { 2231 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2232 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2234 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2235 return (B_FALSE); 2236 } 2237 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2238 ipha = (ipha_t *)&icmph[1]; 2239 } 2240 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2241 if (nexthop_addr != INADDR_ANY) { 2242 /* nexthop set */ 2243 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2244 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2245 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2246 } else { 2247 /* nexthop not set */ 2248 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2249 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2250 } 2251 2252 if (!first_ire) { 2253 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2254 ntohl(ipha->ipha_dst))); 2255 return (B_FALSE); 2256 } 2257 /* Check for MTU discovery advice as described in RFC 1191 */ 2258 mtu = ntohs(icmph->icmph_du_mtu); 2259 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2260 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2261 ire = ire->ire_next) { 2262 /* 2263 * Look for the connection to which this ICMP message is 2264 * directed. If it has the IP_NEXTHOP option set, then the 2265 * search is limited to IREs with the MATCH_IRE_PRIVATE 2266 * option. Else the search is limited to regular IREs. 2267 */ 2268 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != ire->ire_gateway_addr)) || 2270 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2271 (nexthop_addr != INADDR_ANY))) 2272 continue; 2273 2274 mutex_enter(&ire->ire_lock); 2275 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2276 /* Reduce the IRE max frag value as advised. */ 2277 ip1dbg(("Received mtu from router: %d (was %d)\n", 2278 mtu, ire->ire_max_frag)); 2279 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2280 } else { 2281 uint32_t length; 2282 int i; 2283 2284 /* 2285 * Use the table from RFC 1191 to figure out 2286 * the next "plateau" based on the length in 2287 * the original IP packet. 2288 */ 2289 length = ntohs(ipha->ipha_length); 2290 if (ire->ire_max_frag <= length && 2291 ire->ire_max_frag >= length - hdr_length) { 2292 /* 2293 * Handle broken BSD 4.2 systems that 2294 * return the wrong iph_length in ICMP 2295 * errors. 2296 */ 2297 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2298 length, ire->ire_max_frag)); 2299 length -= hdr_length; 2300 } 2301 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2302 if (length > icmp_frag_size_table[i]) 2303 break; 2304 } 2305 if (i == A_CNT(icmp_frag_size_table)) { 2306 /* Smaller than 68! */ 2307 ip1dbg(("Too big for packet size %d\n", 2308 length)); 2309 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2310 ire->ire_frag_flag = 0; 2311 } else { 2312 mtu = icmp_frag_size_table[i]; 2313 ip1dbg(("Calculated mtu %d, packet size %d, " 2314 "before %d", mtu, length, 2315 ire->ire_max_frag)); 2316 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2317 ip1dbg((", after %d\n", ire->ire_max_frag)); 2318 } 2319 /* Record the new max frag size for the ULP. */ 2320 icmph->icmph_du_zero = 0; 2321 icmph->icmph_du_mtu = 2322 htons((uint16_t)ire->ire_max_frag); 2323 } 2324 mutex_exit(&ire->ire_lock); 2325 } 2326 rw_exit(&first_ire->ire_bucket->irb_lock); 2327 ire_refrele(first_ire); 2328 return (B_TRUE); 2329 } 2330 2331 /* 2332 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2333 * calls this function. 2334 */ 2335 static mblk_t * 2336 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2337 { 2338 ipha_t *ipha; 2339 icmph_t *icmph; 2340 ipha_t *in_ipha; 2341 int length; 2342 2343 ASSERT(mp->b_datap->db_type == M_DATA); 2344 2345 /* 2346 * For Self-encapsulated packets, we added an extra IP header 2347 * without the options. Inner IP header is the one from which 2348 * the outer IP header was formed. Thus, we need to remove the 2349 * outer IP header. To do this, we pullup the whole message 2350 * and overlay whatever follows the outer IP header over the 2351 * outer IP header. 2352 */ 2353 2354 if (!pullupmsg(mp, -1)) 2355 return (NULL); 2356 2357 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2358 ipha = (ipha_t *)&icmph[1]; 2359 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2360 2361 /* 2362 * The length that we want to overlay is following the inner 2363 * IP header. Subtracting the IP header + icmp header + outer 2364 * IP header's length should give us the length that we want to 2365 * overlay. 2366 */ 2367 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2368 hdr_length; 2369 /* 2370 * Overlay whatever follows the inner header over the 2371 * outer header. 2372 */ 2373 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2374 2375 /* Set the wptr to account for the outer header */ 2376 mp->b_wptr -= hdr_length; 2377 return (mp); 2378 } 2379 2380 /* 2381 * Try to pass the ICMP message upstream in case the ULP cares. 2382 * 2383 * If the packet that caused the ICMP error is secure, we send 2384 * it to AH/ESP to make sure that the attached packet has a 2385 * valid association. ipha in the code below points to the 2386 * IP header of the packet that caused the error. 2387 * 2388 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2389 * in the context of IPsec. Normally we tell the upper layer 2390 * whenever we send the ire (including ip_bind), the IPsec header 2391 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2392 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2393 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2394 * same thing. As TCP has the IPsec options size that needs to be 2395 * adjusted, we just pass the MTU unchanged. 2396 * 2397 * IFN could have been generated locally or by some router. 2398 * 2399 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2400 * This happens because IP adjusted its value of MTU on an 2401 * earlier IFN message and could not tell the upper layer, 2402 * the new adjusted value of MTU e.g. Packet was encrypted 2403 * or there was not enough information to fanout to upper 2404 * layers. Thus on the next outbound datagram, ip_wput_ire 2405 * generates the IFN, where IPsec processing has *not* been 2406 * done. 2407 * 2408 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2409 * could have generated this. This happens because ire_max_frag 2410 * value in IP was set to a new value, while the IPsec processing 2411 * was being done and after we made the fragmentation check in 2412 * ip_wput_ire. Thus on return from IPsec processing, 2413 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2414 * and generates the IFN. As IPsec processing is over, we fanout 2415 * to AH/ESP to remove the header. 2416 * 2417 * In both these cases, ipsec_in_loopback will be set indicating 2418 * that IFN was generated locally. 2419 * 2420 * ROUTER : IFN could be secure or non-secure. 2421 * 2422 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2423 * packet in error has AH/ESP headers to validate the AH/ESP 2424 * headers. AH/ESP will verify whether there is a valid SA or 2425 * not and send it back. We will fanout again if we have more 2426 * data in the packet. 2427 * 2428 * If the packet in error does not have AH/ESP, we handle it 2429 * like any other case. 2430 * 2431 * * NON_SECURE : If the packet in error has AH/ESP headers, 2432 * we attach a dummy ipsec_in and send it up to AH/ESP 2433 * for validation. AH/ESP will verify whether there is a 2434 * valid SA or not and send it back. We will fanout again if 2435 * we have more data in the packet. 2436 * 2437 * If the packet in error does not have AH/ESP, we handle it 2438 * like any other case. 2439 */ 2440 static void 2441 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2442 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2443 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2444 zoneid_t zoneid) 2445 { 2446 uint16_t *up; /* Pointer to ports in ULP header */ 2447 uint32_t ports; /* reversed ports for fanout */ 2448 ipha_t ripha; /* With reversed addresses */ 2449 mblk_t *first_mp; 2450 ipsec_in_t *ii; 2451 tcph_t *tcph; 2452 conn_t *connp; 2453 ip_stack_t *ipst; 2454 2455 ASSERT(ill != NULL); 2456 2457 ASSERT(recv_ill != NULL); 2458 ipst = recv_ill->ill_ipst; 2459 2460 first_mp = mp; 2461 if (mctl_present) { 2462 mp = first_mp->b_cont; 2463 ASSERT(mp != NULL); 2464 2465 ii = (ipsec_in_t *)first_mp->b_rptr; 2466 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2467 } else { 2468 ii = NULL; 2469 } 2470 2471 switch (ipha->ipha_protocol) { 2472 case IPPROTO_UDP: 2473 /* 2474 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2475 * transport header. 2476 */ 2477 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2478 mp->b_wptr) { 2479 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2480 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2481 goto discard_pkt; 2482 } 2483 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2484 ipha = (ipha_t *)&icmph[1]; 2485 } 2486 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2487 2488 /* 2489 * Attempt to find a client stream based on port. 2490 * Note that we do a reverse lookup since the header is 2491 * in the form we sent it out. 2492 * The ripha header is only used for the IP_UDP_MATCH and we 2493 * only set the src and dst addresses and protocol. 2494 */ 2495 ripha.ipha_src = ipha->ipha_dst; 2496 ripha.ipha_dst = ipha->ipha_src; 2497 ripha.ipha_protocol = ipha->ipha_protocol; 2498 ((uint16_t *)&ports)[0] = up[1]; 2499 ((uint16_t *)&ports)[1] = up[0]; 2500 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2501 ntohl(ipha->ipha_src), ntohs(up[0]), 2502 ntohl(ipha->ipha_dst), ntohs(up[1]), 2503 icmph->icmph_type, icmph->icmph_code)); 2504 2505 /* Have to change db_type after any pullupmsg */ 2506 DB_TYPE(mp) = M_CTL; 2507 2508 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2509 mctl_present, ip_policy, recv_ill, zoneid); 2510 return; 2511 2512 case IPPROTO_TCP: 2513 /* 2514 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2515 * transport header. 2516 */ 2517 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2518 mp->b_wptr) { 2519 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2520 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2521 goto discard_pkt; 2522 } 2523 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2524 ipha = (ipha_t *)&icmph[1]; 2525 } 2526 /* 2527 * Find a TCP client stream for this packet. 2528 * Note that we do a reverse lookup since the header is 2529 * in the form we sent it out. 2530 */ 2531 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2532 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2533 ipst); 2534 if (connp == NULL) 2535 goto discard_pkt; 2536 2537 /* Have to change db_type after any pullupmsg */ 2538 DB_TYPE(mp) = M_CTL; 2539 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2540 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2541 return; 2542 2543 case IPPROTO_SCTP: 2544 /* 2545 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2546 * transport header. 2547 */ 2548 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2549 mp->b_wptr) { 2550 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2551 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2552 goto discard_pkt; 2553 } 2554 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2555 ipha = (ipha_t *)&icmph[1]; 2556 } 2557 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2558 /* 2559 * Find a SCTP client stream for this packet. 2560 * Note that we do a reverse lookup since the header is 2561 * in the form we sent it out. 2562 * The ripha header is only used for the matching and we 2563 * only set the src and dst addresses, protocol, and version. 2564 */ 2565 ripha.ipha_src = ipha->ipha_dst; 2566 ripha.ipha_dst = ipha->ipha_src; 2567 ripha.ipha_protocol = ipha->ipha_protocol; 2568 ripha.ipha_version_and_hdr_length = 2569 ipha->ipha_version_and_hdr_length; 2570 ((uint16_t *)&ports)[0] = up[1]; 2571 ((uint16_t *)&ports)[1] = up[0]; 2572 2573 /* Have to change db_type after any pullupmsg */ 2574 DB_TYPE(mp) = M_CTL; 2575 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2576 mctl_present, ip_policy, zoneid); 2577 return; 2578 2579 case IPPROTO_ESP: 2580 case IPPROTO_AH: { 2581 int ipsec_rc; 2582 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2583 2584 /* 2585 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2586 * We will re-use the IPSEC_IN if it is already present as 2587 * AH/ESP will not affect any fields in the IPSEC_IN for 2588 * ICMP errors. If there is no IPSEC_IN, allocate a new 2589 * one and attach it in the front. 2590 */ 2591 if (ii != NULL) { 2592 /* 2593 * ip_fanout_proto_again converts the ICMP errors 2594 * that come back from AH/ESP to M_DATA so that 2595 * if it is non-AH/ESP and we do a pullupmsg in 2596 * this function, it would work. Convert it back 2597 * to M_CTL before we send up as this is a ICMP 2598 * error. This could have been generated locally or 2599 * by some router. Validate the inner IPsec 2600 * headers. 2601 * 2602 * NOTE : ill_index is used by ip_fanout_proto_again 2603 * to locate the ill. 2604 */ 2605 ASSERT(ill != NULL); 2606 ii->ipsec_in_ill_index = 2607 ill->ill_phyint->phyint_ifindex; 2608 ii->ipsec_in_rill_index = 2609 recv_ill->ill_phyint->phyint_ifindex; 2610 DB_TYPE(first_mp->b_cont) = M_CTL; 2611 } else { 2612 /* 2613 * IPSEC_IN is not present. We attach a ipsec_in 2614 * message and send up to IPsec for validating 2615 * and removing the IPsec headers. Clear 2616 * ipsec_in_secure so that when we return 2617 * from IPsec, we don't mistakenly think that this 2618 * is a secure packet came from the network. 2619 * 2620 * NOTE : ill_index is used by ip_fanout_proto_again 2621 * to locate the ill. 2622 */ 2623 ASSERT(first_mp == mp); 2624 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2625 if (first_mp == NULL) { 2626 freemsg(mp); 2627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2628 return; 2629 } 2630 ii = (ipsec_in_t *)first_mp->b_rptr; 2631 2632 /* This is not a secure packet */ 2633 ii->ipsec_in_secure = B_FALSE; 2634 first_mp->b_cont = mp; 2635 DB_TYPE(mp) = M_CTL; 2636 ASSERT(ill != NULL); 2637 ii->ipsec_in_ill_index = 2638 ill->ill_phyint->phyint_ifindex; 2639 ii->ipsec_in_rill_index = 2640 recv_ill->ill_phyint->phyint_ifindex; 2641 } 2642 ip2dbg(("icmp_inbound_error: ipsec\n")); 2643 2644 if (!ipsec_loaded(ipss)) { 2645 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2646 return; 2647 } 2648 2649 if (ipha->ipha_protocol == IPPROTO_ESP) 2650 ipsec_rc = ipsecesp_icmp_error(first_mp); 2651 else 2652 ipsec_rc = ipsecah_icmp_error(first_mp); 2653 if (ipsec_rc == IPSEC_STATUS_FAILED) 2654 return; 2655 2656 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2657 return; 2658 } 2659 default: 2660 /* 2661 * The ripha header is only used for the lookup and we 2662 * only set the src and dst addresses and protocol. 2663 */ 2664 ripha.ipha_src = ipha->ipha_dst; 2665 ripha.ipha_dst = ipha->ipha_src; 2666 ripha.ipha_protocol = ipha->ipha_protocol; 2667 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2668 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2669 ntohl(ipha->ipha_dst), 2670 icmph->icmph_type, icmph->icmph_code)); 2671 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2672 ipha_t *in_ipha; 2673 2674 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2675 mp->b_wptr) { 2676 if (!pullupmsg(mp, (uchar_t *)ipha + 2677 hdr_length + sizeof (ipha_t) - 2678 mp->b_rptr)) { 2679 goto discard_pkt; 2680 } 2681 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2682 ipha = (ipha_t *)&icmph[1]; 2683 } 2684 /* 2685 * Caller has verified that length has to be 2686 * at least the size of IP header. 2687 */ 2688 ASSERT(hdr_length >= sizeof (ipha_t)); 2689 /* 2690 * Check the sanity of the inner IP header like 2691 * we did for the outer header. 2692 */ 2693 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2694 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2695 goto discard_pkt; 2696 } 2697 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2698 goto discard_pkt; 2699 } 2700 /* Check for Self-encapsulated tunnels */ 2701 if (in_ipha->ipha_src == ipha->ipha_src && 2702 in_ipha->ipha_dst == ipha->ipha_dst) { 2703 2704 mp = icmp_inbound_self_encap_error(mp, 2705 iph_hdr_length, hdr_length); 2706 if (mp == NULL) 2707 goto discard_pkt; 2708 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2709 ipha = (ipha_t *)&icmph[1]; 2710 hdr_length = IPH_HDR_LENGTH(ipha); 2711 /* 2712 * The packet in error is self-encapsualted. 2713 * And we are finding it further encapsulated 2714 * which we could not have possibly generated. 2715 */ 2716 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2717 goto discard_pkt; 2718 } 2719 icmp_inbound_error_fanout(q, ill, first_mp, 2720 icmph, ipha, iph_hdr_length, hdr_length, 2721 mctl_present, ip_policy, recv_ill, zoneid); 2722 return; 2723 } 2724 } 2725 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2726 ipha->ipha_protocol == IPPROTO_IPV6) && 2727 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2728 ii != NULL && 2729 ii->ipsec_in_loopback && 2730 ii->ipsec_in_secure) { 2731 /* 2732 * For IP tunnels that get a looped-back 2733 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2734 * reported new MTU to take into account the IPsec 2735 * headers protecting this configured tunnel. 2736 * 2737 * This allows the tunnel module (tun.c) to blindly 2738 * accept the MTU reported in an ICMP "too big" 2739 * message. 2740 * 2741 * Non-looped back ICMP messages will just be 2742 * handled by the security protocols (if needed), 2743 * and the first subsequent packet will hit this 2744 * path. 2745 */ 2746 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2747 ipsec_in_extra_length(first_mp)); 2748 } 2749 /* Have to change db_type after any pullupmsg */ 2750 DB_TYPE(mp) = M_CTL; 2751 2752 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2753 ip_policy, recv_ill, zoneid); 2754 return; 2755 } 2756 /* NOTREACHED */ 2757 discard_pkt: 2758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2759 drop_pkt:; 2760 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2761 freemsg(first_mp); 2762 } 2763 2764 /* 2765 * Common IP options parser. 2766 * 2767 * Setup routine: fill in *optp with options-parsing state, then 2768 * tail-call ipoptp_next to return the first option. 2769 */ 2770 uint8_t 2771 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2772 { 2773 uint32_t totallen; /* total length of all options */ 2774 2775 totallen = ipha->ipha_version_and_hdr_length - 2776 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2777 totallen <<= 2; 2778 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2779 optp->ipoptp_end = optp->ipoptp_next + totallen; 2780 optp->ipoptp_flags = 0; 2781 return (ipoptp_next(optp)); 2782 } 2783 2784 /* 2785 * Common IP options parser: extract next option. 2786 */ 2787 uint8_t 2788 ipoptp_next(ipoptp_t *optp) 2789 { 2790 uint8_t *end = optp->ipoptp_end; 2791 uint8_t *cur = optp->ipoptp_next; 2792 uint8_t opt, len, pointer; 2793 2794 /* 2795 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2796 * has been corrupted. 2797 */ 2798 ASSERT(cur <= end); 2799 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 2803 opt = cur[IPOPT_OPTVAL]; 2804 2805 /* 2806 * Skip any NOP options. 2807 */ 2808 while (opt == IPOPT_NOP) { 2809 cur++; 2810 if (cur == end) 2811 return (IPOPT_EOL); 2812 opt = cur[IPOPT_OPTVAL]; 2813 } 2814 2815 if (opt == IPOPT_EOL) 2816 return (IPOPT_EOL); 2817 2818 /* 2819 * Option requiring a length. 2820 */ 2821 if ((cur + 1) >= end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 len = cur[IPOPT_OLEN]; 2826 if (len < 2) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 optp->ipoptp_cur = cur; 2831 optp->ipoptp_len = len; 2832 optp->ipoptp_next = cur + len; 2833 if (cur + len > end) { 2834 optp->ipoptp_flags |= IPOPTP_ERROR; 2835 return (IPOPT_EOL); 2836 } 2837 2838 /* 2839 * For the options which require a pointer field, make sure 2840 * its there, and make sure it points to either something 2841 * inside this option, or the end of the option. 2842 */ 2843 switch (opt) { 2844 case IPOPT_RR: 2845 case IPOPT_TS: 2846 case IPOPT_LSRR: 2847 case IPOPT_SSRR: 2848 if (len <= IPOPT_OFFSET) { 2849 optp->ipoptp_flags |= IPOPTP_ERROR; 2850 return (opt); 2851 } 2852 pointer = cur[IPOPT_OFFSET]; 2853 if (pointer - 1 > len) { 2854 optp->ipoptp_flags |= IPOPTP_ERROR; 2855 return (opt); 2856 } 2857 break; 2858 } 2859 2860 /* 2861 * Sanity check the pointer field based on the type of the 2862 * option. 2863 */ 2864 switch (opt) { 2865 case IPOPT_RR: 2866 case IPOPT_SSRR: 2867 case IPOPT_LSRR: 2868 if (pointer < IPOPT_MINOFF_SR) 2869 optp->ipoptp_flags |= IPOPTP_ERROR; 2870 break; 2871 case IPOPT_TS: 2872 if (pointer < IPOPT_MINOFF_IT) 2873 optp->ipoptp_flags |= IPOPTP_ERROR; 2874 /* 2875 * Note that the Internet Timestamp option also 2876 * contains two four bit fields (the Overflow field, 2877 * and the Flag field), which follow the pointer 2878 * field. We don't need to check that these fields 2879 * fall within the length of the option because this 2880 * was implicitely done above. We've checked that the 2881 * pointer value is at least IPOPT_MINOFF_IT, and that 2882 * it falls within the option. Since IPOPT_MINOFF_IT > 2883 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2884 */ 2885 ASSERT(len > IPOPT_POS_OV_FLG); 2886 break; 2887 } 2888 2889 return (opt); 2890 } 2891 2892 /* 2893 * Use the outgoing IP header to create an IP_OPTIONS option the way 2894 * it was passed down from the application. 2895 */ 2896 int 2897 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2898 { 2899 ipoptp_t opts; 2900 const uchar_t *opt; 2901 uint8_t optval; 2902 uint8_t optlen; 2903 uint32_t len = 0; 2904 uchar_t *buf1 = buf; 2905 2906 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2907 len += IP_ADDR_LEN; 2908 bzero(buf1, IP_ADDR_LEN); 2909 2910 /* 2911 * OK to cast away const here, as we don't store through the returned 2912 * opts.ipoptp_cur pointer. 2913 */ 2914 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2915 optval != IPOPT_EOL; 2916 optval = ipoptp_next(&opts)) { 2917 int off; 2918 2919 opt = opts.ipoptp_cur; 2920 optlen = opts.ipoptp_len; 2921 switch (optval) { 2922 case IPOPT_SSRR: 2923 case IPOPT_LSRR: 2924 2925 /* 2926 * Insert ipha_dst as the first entry in the source 2927 * route and move down the entries on step. 2928 * The last entry gets placed at buf1. 2929 */ 2930 buf[IPOPT_OPTVAL] = optval; 2931 buf[IPOPT_OLEN] = optlen; 2932 buf[IPOPT_OFFSET] = optlen; 2933 2934 off = optlen - IP_ADDR_LEN; 2935 if (off < 0) { 2936 /* No entries in source route */ 2937 break; 2938 } 2939 /* Last entry in source route */ 2940 bcopy(opt + off, buf1, IP_ADDR_LEN); 2941 off -= IP_ADDR_LEN; 2942 2943 while (off > 0) { 2944 bcopy(opt + off, 2945 buf + off + IP_ADDR_LEN, 2946 IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 } 2949 /* ipha_dst into first slot */ 2950 bcopy(&ipha->ipha_dst, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 2957 case IPOPT_COMSEC: 2958 case IPOPT_SECURITY: 2959 /* if passing up a label is not ok, then remove */ 2960 if (is_system_labeled()) 2961 break; 2962 /* FALLTHROUGH */ 2963 default: 2964 bcopy(opt, buf, optlen); 2965 buf += optlen; 2966 len += optlen; 2967 break; 2968 } 2969 } 2970 done: 2971 /* Pad the resulting options */ 2972 while (len & 0x3) { 2973 *buf++ = IPOPT_EOL; 2974 len++; 2975 } 2976 return (len); 2977 } 2978 2979 /* 2980 * Update any record route or timestamp options to include this host. 2981 * Reverse any source route option. 2982 * This routine assumes that the options are well formed i.e. that they 2983 * have already been checked. 2984 */ 2985 static void 2986 icmp_options_update(ipha_t *ipha) 2987 { 2988 ipoptp_t opts; 2989 uchar_t *opt; 2990 uint8_t optval; 2991 ipaddr_t src; /* Our local address */ 2992 ipaddr_t dst; 2993 2994 ip2dbg(("icmp_options_update\n")); 2995 src = ipha->ipha_src; 2996 dst = ipha->ipha_dst; 2997 2998 for (optval = ipoptp_first(&opts, ipha); 2999 optval != IPOPT_EOL; 3000 optval = ipoptp_next(&opts)) { 3001 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3002 opt = opts.ipoptp_cur; 3003 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3004 optval, opts.ipoptp_len)); 3005 switch (optval) { 3006 int off1, off2; 3007 case IPOPT_SSRR: 3008 case IPOPT_LSRR: 3009 /* 3010 * Reverse the source route. The first entry 3011 * should be the next to last one in the current 3012 * source route (the last entry is our address). 3013 * The last entry should be the final destination. 3014 */ 3015 off1 = IPOPT_MINOFF_SR - 1; 3016 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3017 if (off2 < 0) { 3018 /* No entries in source route */ 3019 ip1dbg(( 3020 "icmp_options_update: bad src route\n")); 3021 break; 3022 } 3023 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3024 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3025 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3026 off2 -= IP_ADDR_LEN; 3027 3028 while (off1 < off2) { 3029 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3030 bcopy((char *)opt + off2, (char *)opt + off1, 3031 IP_ADDR_LEN); 3032 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3033 off1 += IP_ADDR_LEN; 3034 off2 -= IP_ADDR_LEN; 3035 } 3036 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3037 break; 3038 } 3039 } 3040 } 3041 3042 /* 3043 * Process received ICMP Redirect messages. 3044 */ 3045 static void 3046 icmp_redirect(ill_t *ill, mblk_t *mp) 3047 { 3048 ipha_t *ipha; 3049 int iph_hdr_length; 3050 icmph_t *icmph; 3051 ipha_t *ipha_err; 3052 ire_t *ire; 3053 ire_t *prev_ire; 3054 ire_t *save_ire; 3055 ipaddr_t src, dst, gateway; 3056 iulp_t ulp_info = { 0 }; 3057 int error; 3058 ip_stack_t *ipst; 3059 3060 ASSERT(ill != NULL); 3061 ipst = ill->ill_ipst; 3062 3063 ipha = (ipha_t *)mp->b_rptr; 3064 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3065 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3066 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3067 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3068 freemsg(mp); 3069 return; 3070 } 3071 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3072 ipha_err = (ipha_t *)&icmph[1]; 3073 src = ipha->ipha_src; 3074 dst = ipha_err->ipha_dst; 3075 gateway = icmph->icmph_rd_gateway; 3076 /* Make sure the new gateway is reachable somehow. */ 3077 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3078 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3079 /* 3080 * Make sure we had a route for the dest in question and that 3081 * that route was pointing to the old gateway (the source of the 3082 * redirect packet.) 3083 */ 3084 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3085 NULL, MATCH_IRE_GW, ipst); 3086 /* 3087 * Check that 3088 * the redirect was not from ourselves 3089 * the new gateway and the old gateway are directly reachable 3090 */ 3091 if (!prev_ire || 3092 !ire || 3093 ire->ire_type == IRE_LOCAL) { 3094 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3095 freemsg(mp); 3096 if (ire != NULL) 3097 ire_refrele(ire); 3098 if (prev_ire != NULL) 3099 ire_refrele(prev_ire); 3100 return; 3101 } 3102 3103 /* 3104 * Should we use the old ULP info to create the new gateway? From 3105 * a user's perspective, we should inherit the info so that it 3106 * is a "smooth" transition. If we do not do that, then new 3107 * connections going thru the new gateway will have no route metrics, 3108 * which is counter-intuitive to user. From a network point of 3109 * view, this may or may not make sense even though the new gateway 3110 * is still directly connected to us so the route metrics should not 3111 * change much. 3112 * 3113 * But if the old ire_uinfo is not initialized, we do another 3114 * recursive lookup on the dest using the new gateway. There may 3115 * be a route to that. If so, use it to initialize the redirect 3116 * route. 3117 */ 3118 if (prev_ire->ire_uinfo.iulp_set) { 3119 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 } else { 3121 ire_t *tmp_ire; 3122 ire_t *sire; 3123 3124 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3125 ALL_ZONES, 0, NULL, 3126 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3127 ipst); 3128 if (sire != NULL) { 3129 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3130 /* 3131 * If sire != NULL, ire_ftable_lookup() should not 3132 * return a NULL value. 3133 */ 3134 ASSERT(tmp_ire != NULL); 3135 ire_refrele(tmp_ire); 3136 ire_refrele(sire); 3137 } else if (tmp_ire != NULL) { 3138 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3139 sizeof (iulp_t)); 3140 ire_refrele(tmp_ire); 3141 } 3142 } 3143 if (prev_ire->ire_type == IRE_CACHE) 3144 ire_delete(prev_ire); 3145 ire_refrele(prev_ire); 3146 /* 3147 * TODO: more precise handling for cases 0, 2, 3, the latter two 3148 * require TOS routing 3149 */ 3150 switch (icmph->icmph_code) { 3151 case 0: 3152 case 1: 3153 /* TODO: TOS specificity for cases 2 and 3 */ 3154 case 2: 3155 case 3: 3156 break; 3157 default: 3158 freemsg(mp); 3159 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3160 ire_refrele(ire); 3161 return; 3162 } 3163 /* 3164 * Create a Route Association. This will allow us to remember that 3165 * someone we believe told us to use the particular gateway. 3166 */ 3167 save_ire = ire; 3168 ire = ire_create( 3169 (uchar_t *)&dst, /* dest addr */ 3170 (uchar_t *)&ip_g_all_ones, /* mask */ 3171 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3172 (uchar_t *)&gateway, /* gateway addr */ 3173 &save_ire->ire_max_frag, /* max frag */ 3174 NULL, /* no src nce */ 3175 NULL, /* no rfq */ 3176 NULL, /* no stq */ 3177 IRE_HOST, 3178 NULL, /* ipif */ 3179 0, /* cmask */ 3180 0, /* phandle */ 3181 0, /* ihandle */ 3182 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3183 &ulp_info, 3184 NULL, /* tsol_gc_t */ 3185 NULL, /* gcgrp */ 3186 ipst); 3187 3188 if (ire == NULL) { 3189 freemsg(mp); 3190 ire_refrele(save_ire); 3191 return; 3192 } 3193 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3194 ire_refrele(save_ire); 3195 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3196 3197 if (error == 0) { 3198 ire_refrele(ire); /* Held in ire_add_v4 */ 3199 /* tell routing sockets that we received a redirect */ 3200 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3201 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3202 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3203 } 3204 3205 /* 3206 * Delete any existing IRE_HOST type redirect ires for this destination. 3207 * This together with the added IRE has the effect of 3208 * modifying an existing redirect. 3209 */ 3210 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3211 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3212 if (prev_ire != NULL) { 3213 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3214 ire_delete(prev_ire); 3215 ire_refrele(prev_ire); 3216 } 3217 3218 freemsg(mp); 3219 } 3220 3221 /* 3222 * Generate an ICMP parameter problem message. 3223 */ 3224 static void 3225 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3226 ip_stack_t *ipst) 3227 { 3228 icmph_t icmph; 3229 boolean_t mctl_present; 3230 mblk_t *first_mp; 3231 3232 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3233 3234 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3235 if (mctl_present) 3236 freeb(first_mp); 3237 return; 3238 } 3239 3240 bzero(&icmph, sizeof (icmph_t)); 3241 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3242 icmph.icmph_pp_ptr = ptr; 3243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3244 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3245 ipst); 3246 } 3247 3248 /* 3249 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3250 * the ICMP header pointed to by "stuff". (May be called as writer.) 3251 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3252 * an icmp error packet can be sent. 3253 * Assigns an appropriate source address to the packet. If ipha_dst is 3254 * one of our addresses use it for source. Otherwise pick a source based 3255 * on a route lookup back to ipha_src. 3256 * Note that ipha_src must be set here since the 3257 * packet is likely to arrive on an ill queue in ip_wput() which will 3258 * not set a source address. 3259 */ 3260 static void 3261 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3262 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3263 { 3264 ipaddr_t dst; 3265 icmph_t *icmph; 3266 ipha_t *ipha; 3267 uint_t len_needed; 3268 size_t msg_len; 3269 mblk_t *mp1; 3270 ipaddr_t src; 3271 ire_t *ire; 3272 mblk_t *ipsec_mp; 3273 ipsec_out_t *io = NULL; 3274 3275 if (mctl_present) { 3276 /* 3277 * If it is : 3278 * 3279 * 1) a IPSEC_OUT, then this is caused by outbound 3280 * datagram originating on this host. IPsec processing 3281 * may or may not have been done. Refer to comments above 3282 * icmp_inbound_error_fanout for details. 3283 * 3284 * 2) a IPSEC_IN if we are generating a icmp_message 3285 * for an incoming datagram destined for us i.e called 3286 * from ip_fanout_send_icmp. 3287 */ 3288 ipsec_info_t *in; 3289 ipsec_mp = mp; 3290 mp = ipsec_mp->b_cont; 3291 3292 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3293 ipha = (ipha_t *)mp->b_rptr; 3294 3295 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3296 in->ipsec_info_type == IPSEC_IN); 3297 3298 if (in->ipsec_info_type == IPSEC_IN) { 3299 /* 3300 * Convert the IPSEC_IN to IPSEC_OUT. 3301 */ 3302 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3303 BUMP_MIB(&ipst->ips_ip_mib, 3304 ipIfStatsOutDiscards); 3305 return; 3306 } 3307 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3308 } else { 3309 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3310 io = (ipsec_out_t *)in; 3311 /* 3312 * Clear out ipsec_out_proc_begin, so we do a fresh 3313 * ire lookup. 3314 */ 3315 io->ipsec_out_proc_begin = B_FALSE; 3316 } 3317 ASSERT(zoneid == io->ipsec_out_zoneid); 3318 ASSERT(zoneid != ALL_ZONES); 3319 } else { 3320 /* 3321 * This is in clear. The icmp message we are building 3322 * here should go out in clear. 3323 * 3324 * Pardon the convolution of it all, but it's easier to 3325 * allocate a "use cleartext" IPSEC_IN message and convert 3326 * it than it is to allocate a new one. 3327 */ 3328 ipsec_in_t *ii; 3329 ASSERT(DB_TYPE(mp) == M_DATA); 3330 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3331 if (ipsec_mp == NULL) { 3332 freemsg(mp); 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3337 3338 /* This is not a secure packet */ 3339 ii->ipsec_in_secure = B_FALSE; 3340 /* 3341 * For trusted extensions using a shared IP address we can 3342 * send using any zoneid. 3343 */ 3344 if (zoneid == ALL_ZONES) 3345 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3346 else 3347 ii->ipsec_in_zoneid = zoneid; 3348 ipsec_mp->b_cont = mp; 3349 ipha = (ipha_t *)mp->b_rptr; 3350 /* 3351 * Convert the IPSEC_IN to IPSEC_OUT. 3352 */ 3353 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3355 return; 3356 } 3357 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3358 } 3359 3360 /* Remember our eventual destination */ 3361 dst = ipha->ipha_src; 3362 3363 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3364 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3365 if (ire != NULL && 3366 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3367 src = ipha->ipha_dst; 3368 } else { 3369 if (ire != NULL) 3370 ire_refrele(ire); 3371 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3372 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3373 ipst); 3374 if (ire == NULL) { 3375 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3376 freemsg(ipsec_mp); 3377 return; 3378 } 3379 src = ire->ire_src_addr; 3380 } 3381 3382 if (ire != NULL) 3383 ire_refrele(ire); 3384 3385 /* 3386 * Check if we can send back more then 8 bytes in addition to 3387 * the IP header. We try to send 64 bytes of data and the internal 3388 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3389 */ 3390 len_needed = IPH_HDR_LENGTH(ipha); 3391 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3392 ipha->ipha_protocol == IPPROTO_IPV6) { 3393 3394 if (!pullupmsg(mp, -1)) { 3395 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3396 freemsg(ipsec_mp); 3397 return; 3398 } 3399 ipha = (ipha_t *)mp->b_rptr; 3400 3401 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3402 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3403 len_needed)); 3404 } else { 3405 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3406 3407 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3408 len_needed += ip_hdr_length_v6(mp, ip6h); 3409 } 3410 } 3411 len_needed += ipst->ips_ip_icmp_return; 3412 msg_len = msgdsize(mp); 3413 if (msg_len > len_needed) { 3414 (void) adjmsg(mp, len_needed - msg_len); 3415 msg_len = len_needed; 3416 } 3417 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3418 if (mp1 == NULL) { 3419 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3420 freemsg(ipsec_mp); 3421 return; 3422 } 3423 mp1->b_cont = mp; 3424 mp = mp1; 3425 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3426 ipsec_mp->b_rptr == (uint8_t *)io && 3427 io->ipsec_out_type == IPSEC_OUT); 3428 ipsec_mp->b_cont = mp; 3429 3430 /* 3431 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3432 * node generates be accepted in peace by all on-host destinations. 3433 * If we do NOT assume that all on-host destinations trust 3434 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3435 * (Look for ipsec_out_icmp_loopback). 3436 */ 3437 io->ipsec_out_icmp_loopback = B_TRUE; 3438 3439 ipha = (ipha_t *)mp->b_rptr; 3440 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3441 *ipha = icmp_ipha; 3442 ipha->ipha_src = src; 3443 ipha->ipha_dst = dst; 3444 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3445 msg_len += sizeof (icmp_ipha) + len; 3446 if (msg_len > IP_MAXPACKET) { 3447 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3448 msg_len = IP_MAXPACKET; 3449 } 3450 ipha->ipha_length = htons((uint16_t)msg_len); 3451 icmph = (icmph_t *)&ipha[1]; 3452 bcopy(stuff, icmph, len); 3453 icmph->icmph_checksum = 0; 3454 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3455 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3456 put(q, ipsec_mp); 3457 } 3458 3459 /* 3460 * Determine if an ICMP error packet can be sent given the rate limit. 3461 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3462 * in milliseconds) and a burst size. Burst size number of packets can 3463 * be sent arbitrarely closely spaced. 3464 * The state is tracked using two variables to implement an approximate 3465 * token bucket filter: 3466 * icmp_pkt_err_last - lbolt value when the last burst started 3467 * icmp_pkt_err_sent - number of packets sent in current burst 3468 */ 3469 boolean_t 3470 icmp_err_rate_limit(ip_stack_t *ipst) 3471 { 3472 clock_t now = TICK_TO_MSEC(lbolt); 3473 uint_t refilled; /* Number of packets refilled in tbf since last */ 3474 /* Guard against changes by loading into local variable */ 3475 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3476 3477 if (err_interval == 0) 3478 return (B_FALSE); 3479 3480 if (ipst->ips_icmp_pkt_err_last > now) { 3481 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3482 ipst->ips_icmp_pkt_err_last = 0; 3483 ipst->ips_icmp_pkt_err_sent = 0; 3484 } 3485 /* 3486 * If we are in a burst update the token bucket filter. 3487 * Update the "last" time to be close to "now" but make sure 3488 * we don't loose precision. 3489 */ 3490 if (ipst->ips_icmp_pkt_err_sent != 0) { 3491 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3492 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3493 ipst->ips_icmp_pkt_err_sent = 0; 3494 } else { 3495 ipst->ips_icmp_pkt_err_sent -= refilled; 3496 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3497 } 3498 } 3499 if (ipst->ips_icmp_pkt_err_sent == 0) { 3500 /* Start of new burst */ 3501 ipst->ips_icmp_pkt_err_last = now; 3502 } 3503 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3504 ipst->ips_icmp_pkt_err_sent++; 3505 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3506 ipst->ips_icmp_pkt_err_sent)); 3507 return (B_FALSE); 3508 } 3509 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3510 return (B_TRUE); 3511 } 3512 3513 /* 3514 * Check if it is ok to send an IPv4 ICMP error packet in 3515 * response to the IPv4 packet in mp. 3516 * Free the message and return null if no 3517 * ICMP error packet should be sent. 3518 */ 3519 static mblk_t * 3520 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3521 { 3522 icmph_t *icmph; 3523 ipha_t *ipha; 3524 uint_t len_needed; 3525 ire_t *src_ire; 3526 ire_t *dst_ire; 3527 3528 if (!mp) 3529 return (NULL); 3530 ipha = (ipha_t *)mp->b_rptr; 3531 if (ip_csum_hdr(ipha)) { 3532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3533 freemsg(mp); 3534 return (NULL); 3535 } 3536 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3539 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3540 if (src_ire != NULL || dst_ire != NULL || 3541 CLASSD(ipha->ipha_dst) || 3542 CLASSD(ipha->ipha_src) || 3543 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3544 /* Note: only errors to the fragment with offset 0 */ 3545 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3546 freemsg(mp); 3547 if (src_ire != NULL) 3548 ire_refrele(src_ire); 3549 if (dst_ire != NULL) 3550 ire_refrele(dst_ire); 3551 return (NULL); 3552 } 3553 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3554 /* 3555 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3556 * errors in response to any ICMP errors. 3557 */ 3558 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3559 if (mp->b_wptr - mp->b_rptr < len_needed) { 3560 if (!pullupmsg(mp, len_needed)) { 3561 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3562 freemsg(mp); 3563 return (NULL); 3564 } 3565 ipha = (ipha_t *)mp->b_rptr; 3566 } 3567 icmph = (icmph_t *) 3568 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3569 switch (icmph->icmph_type) { 3570 case ICMP_DEST_UNREACHABLE: 3571 case ICMP_SOURCE_QUENCH: 3572 case ICMP_TIME_EXCEEDED: 3573 case ICMP_PARAM_PROBLEM: 3574 case ICMP_REDIRECT: 3575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3576 freemsg(mp); 3577 return (NULL); 3578 default: 3579 break; 3580 } 3581 } 3582 /* 3583 * If this is a labeled system, then check to see if we're allowed to 3584 * send a response to this particular sender. If not, then just drop. 3585 */ 3586 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3587 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3588 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3589 freemsg(mp); 3590 return (NULL); 3591 } 3592 if (icmp_err_rate_limit(ipst)) { 3593 /* 3594 * Only send ICMP error packets every so often. 3595 * This should be done on a per port/source basis, 3596 * but for now this will suffice. 3597 */ 3598 freemsg(mp); 3599 return (NULL); 3600 } 3601 return (mp); 3602 } 3603 3604 /* 3605 * Generate an ICMP redirect message. 3606 */ 3607 static void 3608 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3609 { 3610 icmph_t icmph; 3611 3612 /* 3613 * We are called from ip_rput where we could 3614 * not have attached an IPSEC_IN. 3615 */ 3616 ASSERT(mp->b_datap->db_type == M_DATA); 3617 3618 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3619 return; 3620 } 3621 3622 bzero(&icmph, sizeof (icmph_t)); 3623 icmph.icmph_type = ICMP_REDIRECT; 3624 icmph.icmph_code = 1; 3625 icmph.icmph_rd_gateway = gateway; 3626 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3627 /* Redirects sent by router, and router is global zone */ 3628 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3629 } 3630 3631 /* 3632 * Generate an ICMP time exceeded message. 3633 */ 3634 void 3635 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3636 ip_stack_t *ipst) 3637 { 3638 icmph_t icmph; 3639 boolean_t mctl_present; 3640 mblk_t *first_mp; 3641 3642 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3643 3644 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3645 if (mctl_present) 3646 freeb(first_mp); 3647 return; 3648 } 3649 3650 bzero(&icmph, sizeof (icmph_t)); 3651 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3652 icmph.icmph_code = code; 3653 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3654 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3655 ipst); 3656 } 3657 3658 /* 3659 * Generate an ICMP unreachable message. 3660 */ 3661 void 3662 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3663 ip_stack_t *ipst) 3664 { 3665 icmph_t icmph; 3666 mblk_t *first_mp; 3667 boolean_t mctl_present; 3668 3669 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3670 3671 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3672 if (mctl_present) 3673 freeb(first_mp); 3674 return; 3675 } 3676 3677 bzero(&icmph, sizeof (icmph_t)); 3678 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3679 icmph.icmph_code = code; 3680 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3681 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3682 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3683 zoneid, ipst); 3684 } 3685 3686 /* 3687 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3688 * duplicate. As long as someone else holds the address, the interface will 3689 * stay down. When that conflict goes away, the interface is brought back up. 3690 * This is done so that accidental shutdowns of addresses aren't made 3691 * permanent. Your server will recover from a failure. 3692 * 3693 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3694 * user space process (dhcpagent). 3695 * 3696 * Recovery completes if ARP reports that the address is now ours (via 3697 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3698 * 3699 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3700 */ 3701 static void 3702 ipif_dup_recovery(void *arg) 3703 { 3704 ipif_t *ipif = arg; 3705 ill_t *ill = ipif->ipif_ill; 3706 mblk_t *arp_add_mp; 3707 mblk_t *arp_del_mp; 3708 area_t *area; 3709 ip_stack_t *ipst = ill->ill_ipst; 3710 3711 ipif->ipif_recovery_id = 0; 3712 3713 /* 3714 * No lock needed for moving or condemned check, as this is just an 3715 * optimization. 3716 */ 3717 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3718 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3719 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3720 /* No reason to try to bring this address back. */ 3721 return; 3722 } 3723 3724 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3725 goto alloc_fail; 3726 3727 if (ipif->ipif_arp_del_mp == NULL) { 3728 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3729 goto alloc_fail; 3730 ipif->ipif_arp_del_mp = arp_del_mp; 3731 } 3732 3733 /* Setting the 'unverified' flag restarts DAD */ 3734 area = (area_t *)arp_add_mp->b_rptr; 3735 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3736 ACE_F_UNVERIFIED; 3737 putnext(ill->ill_rq, arp_add_mp); 3738 return; 3739 3740 alloc_fail: 3741 /* 3742 * On allocation failure, just restart the timer. Note that the ipif 3743 * is down here, so no other thread could be trying to start a recovery 3744 * timer. The ill_lock protects the condemned flag and the recovery 3745 * timer ID. 3746 */ 3747 freemsg(arp_add_mp); 3748 mutex_enter(&ill->ill_lock); 3749 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3751 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3752 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3753 } 3754 mutex_exit(&ill->ill_lock); 3755 } 3756 3757 /* 3758 * This is for exclusive changes due to ARP. Either tear down an interface due 3759 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3760 */ 3761 /* ARGSUSED */ 3762 static void 3763 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3764 { 3765 ill_t *ill = rq->q_ptr; 3766 arh_t *arh; 3767 ipaddr_t src; 3768 ipif_t *ipif; 3769 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3770 char hbuf[MAC_STR_LEN]; 3771 char sbuf[INET_ADDRSTRLEN]; 3772 const char *failtype; 3773 boolean_t bring_up; 3774 ip_stack_t *ipst = ill->ill_ipst; 3775 3776 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3777 case AR_CN_READY: 3778 failtype = NULL; 3779 bring_up = B_TRUE; 3780 break; 3781 case AR_CN_FAILED: 3782 failtype = "in use"; 3783 bring_up = B_FALSE; 3784 break; 3785 default: 3786 failtype = "claimed"; 3787 bring_up = B_FALSE; 3788 break; 3789 } 3790 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3793 3794 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3795 sizeof (hbuf)); 3796 (void) ip_dot_addr(src, sbuf); 3797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3798 3799 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3800 ipif->ipif_lcl_addr != src) { 3801 continue; 3802 } 3803 3804 /* 3805 * If we failed on a recovery probe, then restart the timer to 3806 * try again later. 3807 */ 3808 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3809 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3810 ill->ill_net_type == IRE_IF_RESOLVER && 3811 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3812 ipst->ips_ip_dup_recovery > 0 && 3813 ipif->ipif_recovery_id == 0) { 3814 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3815 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3816 continue; 3817 } 3818 3819 /* 3820 * If what we're trying to do has already been done, then do 3821 * nothing. 3822 */ 3823 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3824 continue; 3825 3826 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3827 3828 if (failtype == NULL) { 3829 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3830 ibuf); 3831 } else { 3832 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3833 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3834 } 3835 3836 if (bring_up) { 3837 ASSERT(ill->ill_dl_up); 3838 /* 3839 * Free up the ARP delete message so we can allocate 3840 * a fresh one through the normal path. 3841 */ 3842 freemsg(ipif->ipif_arp_del_mp); 3843 ipif->ipif_arp_del_mp = NULL; 3844 if (ipif_resolver_up(ipif, Res_act_initial) != 3845 EINPROGRESS) { 3846 ipif->ipif_addr_ready = 1; 3847 (void) ipif_up_done(ipif); 3848 } 3849 continue; 3850 } 3851 3852 mutex_enter(&ill->ill_lock); 3853 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3854 ipif->ipif_flags |= IPIF_DUPLICATE; 3855 ill->ill_ipif_dup_count++; 3856 mutex_exit(&ill->ill_lock); 3857 /* 3858 * Already exclusive on the ill; no need to handle deferred 3859 * processing here. 3860 */ 3861 (void) ipif_down(ipif, NULL, NULL); 3862 ipif_down_tail(ipif); 3863 mutex_enter(&ill->ill_lock); 3864 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3865 ill->ill_net_type == IRE_IF_RESOLVER && 3866 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3867 ipst->ips_ip_dup_recovery > 0) { 3868 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3869 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3870 } 3871 mutex_exit(&ill->ill_lock); 3872 } 3873 freemsg(mp); 3874 } 3875 3876 /* ARGSUSED */ 3877 static void 3878 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3879 { 3880 ill_t *ill = rq->q_ptr; 3881 arh_t *arh; 3882 ipaddr_t src; 3883 ipif_t *ipif; 3884 3885 arh = (arh_t *)mp->b_cont->b_rptr; 3886 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3887 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3888 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3889 (void) ipif_resolver_up(ipif, Res_act_defend); 3890 } 3891 freemsg(mp); 3892 } 3893 3894 /* 3895 * News from ARP. ARP sends notification of interesting events down 3896 * to its clients using M_CTL messages with the interesting ARP packet 3897 * attached via b_cont. 3898 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3899 * queue as opposed to ARP sending the message to all the clients, i.e. all 3900 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3901 * table if a cache IRE is found to delete all the entries for the address in 3902 * the packet. 3903 */ 3904 static void 3905 ip_arp_news(queue_t *q, mblk_t *mp) 3906 { 3907 arcn_t *arcn; 3908 arh_t *arh; 3909 ire_t *ire = NULL; 3910 char hbuf[MAC_STR_LEN]; 3911 char sbuf[INET_ADDRSTRLEN]; 3912 ipaddr_t src; 3913 in6_addr_t v6src; 3914 boolean_t isv6 = B_FALSE; 3915 ipif_t *ipif; 3916 ill_t *ill; 3917 ip_stack_t *ipst; 3918 3919 if (CONN_Q(q)) { 3920 conn_t *connp = Q_TO_CONN(q); 3921 3922 ipst = connp->conn_netstack->netstack_ip; 3923 } else { 3924 ill_t *ill = (ill_t *)q->q_ptr; 3925 3926 ipst = ill->ill_ipst; 3927 } 3928 3929 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3930 if (q->q_next) { 3931 putnext(q, mp); 3932 } else 3933 freemsg(mp); 3934 return; 3935 } 3936 arh = (arh_t *)mp->b_cont->b_rptr; 3937 /* Is it one we are interested in? */ 3938 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3939 isv6 = B_TRUE; 3940 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3941 IPV6_ADDR_LEN); 3942 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3943 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3944 IP_ADDR_LEN); 3945 } else { 3946 freemsg(mp); 3947 return; 3948 } 3949 3950 ill = q->q_ptr; 3951 3952 arcn = (arcn_t *)mp->b_rptr; 3953 switch (arcn->arcn_code) { 3954 case AR_CN_BOGON: 3955 /* 3956 * Someone is sending ARP packets with a source protocol 3957 * address that we have published and for which we believe our 3958 * entry is authoritative and (when ill_arp_extend is set) 3959 * verified to be unique on the network. 3960 * 3961 * The ARP module internally handles the cases where the sender 3962 * is just probing (for DAD) and where the hardware address of 3963 * a non-authoritative entry has changed. Thus, these are the 3964 * real conflicts, and we have to do resolution. 3965 * 3966 * We back away quickly from the address if it's from DHCP or 3967 * otherwise temporary and hasn't been used recently (or at 3968 * all). We'd like to include "deprecated" addresses here as 3969 * well (as there's no real reason to defend something we're 3970 * discarding), but IPMP "reuses" this flag to mean something 3971 * other than the standard meaning. 3972 * 3973 * If the ARP module above is not extended (meaning that it 3974 * doesn't know how to defend the address), then we just log 3975 * the problem as we always did and continue on. It's not 3976 * right, but there's little else we can do, and those old ATM 3977 * users are going away anyway. 3978 */ 3979 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3980 hbuf, sizeof (hbuf)); 3981 (void) ip_dot_addr(src, sbuf); 3982 if (isv6) { 3983 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3984 ipst); 3985 } else { 3986 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3987 } 3988 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3989 uint32_t now; 3990 uint32_t maxage; 3991 clock_t lused; 3992 uint_t maxdefense; 3993 uint_t defs; 3994 3995 /* 3996 * First, figure out if this address hasn't been used 3997 * in a while. If it hasn't, then it's a better 3998 * candidate for abandoning. 3999 */ 4000 ipif = ire->ire_ipif; 4001 ASSERT(ipif != NULL); 4002 now = gethrestime_sec(); 4003 maxage = now - ire->ire_create_time; 4004 if (maxage > ipst->ips_ip_max_temp_idle) 4005 maxage = ipst->ips_ip_max_temp_idle; 4006 lused = drv_hztousec(ddi_get_lbolt() - 4007 ire->ire_last_used_time) / MICROSEC + 1; 4008 if (lused >= maxage && (ipif->ipif_flags & 4009 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4010 maxdefense = ipst->ips_ip_max_temp_defend; 4011 else 4012 maxdefense = ipst->ips_ip_max_defend; 4013 4014 /* 4015 * Now figure out how many times we've defended 4016 * ourselves. Ignore defenses that happened long in 4017 * the past. 4018 */ 4019 mutex_enter(&ire->ire_lock); 4020 if ((defs = ire->ire_defense_count) > 0 && 4021 now - ire->ire_defense_time > 4022 ipst->ips_ip_defend_interval) { 4023 ire->ire_defense_count = defs = 0; 4024 } 4025 ire->ire_defense_count++; 4026 ire->ire_defense_time = now; 4027 mutex_exit(&ire->ire_lock); 4028 ill_refhold(ill); 4029 ire_refrele(ire); 4030 4031 /* 4032 * If we've defended ourselves too many times already, 4033 * then give up and tear down the interface(s) using 4034 * this address. Otherwise, defend by sending out a 4035 * gratuitous ARP. 4036 */ 4037 if (defs >= maxdefense && ill->ill_arp_extend) { 4038 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4039 B_FALSE); 4040 } else { 4041 cmn_err(CE_WARN, 4042 "node %s is using our IP address %s on %s", 4043 hbuf, sbuf, ill->ill_name); 4044 /* 4045 * If this is an old (ATM) ARP module, then 4046 * don't try to defend the address. Remain 4047 * compatible with the old behavior. Defend 4048 * only with new ARP. 4049 */ 4050 if (ill->ill_arp_extend) { 4051 qwriter_ip(ill, q, mp, ip_arp_defend, 4052 NEW_OP, B_FALSE); 4053 } else { 4054 ill_refrele(ill); 4055 } 4056 } 4057 return; 4058 } 4059 cmn_err(CE_WARN, 4060 "proxy ARP problem? Node '%s' is using %s on %s", 4061 hbuf, sbuf, ill->ill_name); 4062 if (ire != NULL) 4063 ire_refrele(ire); 4064 break; 4065 case AR_CN_ANNOUNCE: 4066 if (isv6) { 4067 /* 4068 * For XRESOLV interfaces. 4069 * Delete the IRE cache entry and NCE for this 4070 * v6 address 4071 */ 4072 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4073 /* 4074 * If v6src is a non-zero, it's a router address 4075 * as below. Do the same sort of thing to clean 4076 * out off-net IRE_CACHE entries that go through 4077 * the router. 4078 */ 4079 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4080 ire_walk_v6(ire_delete_cache_gw_v6, 4081 (char *)&v6src, ALL_ZONES, ipst); 4082 } 4083 } else { 4084 nce_hw_map_t hwm; 4085 4086 /* 4087 * ARP gives us a copy of any packet where it thinks 4088 * the address has changed, so that we can update our 4089 * caches. We're responsible for caching known answers 4090 * in the current design. We check whether the 4091 * hardware address really has changed in all of our 4092 * entries that have cached this mapping, and if so, we 4093 * blow them away. This way we will immediately pick 4094 * up the rare case of a host changing hardware 4095 * address. 4096 */ 4097 if (src == 0) 4098 break; 4099 hwm.hwm_addr = src; 4100 hwm.hwm_hwlen = arh->arh_hlen; 4101 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4102 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4103 ndp_walk_common(ipst->ips_ndp4, NULL, 4104 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4105 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4106 } 4107 break; 4108 case AR_CN_READY: 4109 /* No external v6 resolver has a contract to use this */ 4110 if (isv6) 4111 break; 4112 /* If the link is down, we'll retry this later */ 4113 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4114 break; 4115 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4116 NULL, NULL, ipst); 4117 if (ipif != NULL) { 4118 /* 4119 * If this is a duplicate recovery, then we now need to 4120 * go exclusive to bring this thing back up. 4121 */ 4122 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4123 IPIF_DUPLICATE) { 4124 ipif_refrele(ipif); 4125 ill_refhold(ill); 4126 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4127 B_FALSE); 4128 return; 4129 } 4130 /* 4131 * If this is the first notice that this address is 4132 * ready, then let the user know now. 4133 */ 4134 if ((ipif->ipif_flags & IPIF_UP) && 4135 !ipif->ipif_addr_ready) { 4136 ipif_mask_reply(ipif); 4137 ip_rts_ifmsg(ipif); 4138 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4139 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4140 } 4141 ipif->ipif_addr_ready = 1; 4142 ipif_refrele(ipif); 4143 } 4144 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4145 if (ire != NULL) { 4146 ire->ire_defense_count = 0; 4147 ire_refrele(ire); 4148 } 4149 break; 4150 case AR_CN_FAILED: 4151 /* No external v6 resolver has a contract to use this */ 4152 if (isv6) 4153 break; 4154 ill_refhold(ill); 4155 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4156 return; 4157 } 4158 freemsg(mp); 4159 } 4160 4161 /* 4162 * Create a mblk suitable for carrying the interface index and/or source link 4163 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4164 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4165 * application. 4166 */ 4167 mblk_t * 4168 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4169 ip_stack_t *ipst) 4170 { 4171 mblk_t *mp; 4172 ip_pktinfo_t *pinfo; 4173 ipha_t *ipha; 4174 struct ether_header *pether; 4175 4176 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4177 if (mp == NULL) { 4178 ip1dbg(("ip_add_info: allocation failure.\n")); 4179 return (data_mp); 4180 } 4181 4182 ipha = (ipha_t *)data_mp->b_rptr; 4183 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4184 bzero(pinfo, sizeof (ip_pktinfo_t)); 4185 pinfo->ip_pkt_flags = (uchar_t)flags; 4186 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4187 4188 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4189 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4190 if (flags & IPF_RECVADDR) { 4191 ipif_t *ipif; 4192 ire_t *ire; 4193 4194 /* 4195 * Only valid for V4 4196 */ 4197 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4198 (IPV4_VERSION << 4)); 4199 4200 ipif = ipif_get_next_ipif(NULL, ill); 4201 if (ipif != NULL) { 4202 /* 4203 * Since a decision has already been made to deliver the 4204 * packet, there is no need to test for SECATTR and 4205 * ZONEONLY. 4206 * When a multicast packet is transmitted 4207 * a cache entry is created for the multicast address. 4208 * When delivering a copy of the packet or when new 4209 * packets are received we do not want to match on the 4210 * cached entry so explicitly match on 4211 * IRE_LOCAL and IRE_LOOPBACK 4212 */ 4213 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4214 IRE_LOCAL | IRE_LOOPBACK, 4215 ipif, zoneid, NULL, 4216 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4217 if (ire == NULL) { 4218 /* 4219 * packet must have come on a different 4220 * interface. 4221 * Since a decision has already been made to 4222 * deliver the packet, there is no need to test 4223 * for SECATTR and ZONEONLY. 4224 * Only match on local and broadcast ire's. 4225 * See detailed comment above. 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4228 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4229 NULL, MATCH_IRE_TYPE, ipst); 4230 } 4231 4232 if (ire == NULL) { 4233 /* 4234 * This is either a multicast packet or 4235 * the address has been removed since 4236 * the packet was received. 4237 * Return INADDR_ANY so that normal source 4238 * selection occurs for the response. 4239 */ 4240 4241 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4242 } else { 4243 pinfo->ip_pkt_match_addr.s_addr = 4244 ire->ire_src_addr; 4245 ire_refrele(ire); 4246 } 4247 ipif_refrele(ipif); 4248 } else { 4249 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4250 } 4251 } 4252 4253 pether = (struct ether_header *)((char *)ipha 4254 - sizeof (struct ether_header)); 4255 /* 4256 * Make sure the interface is an ethernet type, since this option 4257 * is currently supported only on this type of interface. Also make 4258 * sure we are pointing correctly above db_base. 4259 */ 4260 4261 if ((flags & IPF_RECVSLLA) && 4262 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4263 (ill->ill_type == IFT_ETHER) && 4264 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4265 4266 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4267 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4268 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4269 } else { 4270 /* 4271 * Clear the bit. Indicate to upper layer that IP is not 4272 * sending this ancillary info. 4273 */ 4274 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4275 } 4276 4277 mp->b_datap->db_type = M_CTL; 4278 mp->b_wptr += sizeof (ip_pktinfo_t); 4279 mp->b_cont = data_mp; 4280 4281 return (mp); 4282 } 4283 4284 /* 4285 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4286 * part of the bind request. 4287 */ 4288 4289 boolean_t 4290 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4291 { 4292 ipsec_in_t *ii; 4293 4294 ASSERT(policy_mp != NULL); 4295 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4296 4297 ii = (ipsec_in_t *)policy_mp->b_rptr; 4298 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4299 4300 connp->conn_policy = ii->ipsec_in_policy; 4301 ii->ipsec_in_policy = NULL; 4302 4303 if (ii->ipsec_in_action != NULL) { 4304 if (connp->conn_latch == NULL) { 4305 connp->conn_latch = iplatch_create(); 4306 if (connp->conn_latch == NULL) 4307 return (B_FALSE); 4308 } 4309 ipsec_latch_inbound(connp->conn_latch, ii); 4310 } 4311 return (B_TRUE); 4312 } 4313 4314 /* 4315 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4316 * and to arrange for power-fanout assist. The ULP is identified by 4317 * adding a single byte at the end of the original bind message. 4318 * A ULP other than UDP or TCP that wishes to be recognized passes 4319 * down a bind with a zero length address. 4320 * 4321 * The binding works as follows: 4322 * - A zero byte address means just bind to the protocol. 4323 * - A four byte address is treated as a request to validate 4324 * that the address is a valid local address, appropriate for 4325 * an application to bind to. This does not affect any fanout 4326 * information in IP. 4327 * - A sizeof sin_t byte address is used to bind to only the local address 4328 * and port. 4329 * - A sizeof ipa_conn_t byte address contains complete fanout information 4330 * consisting of local and remote addresses and ports. In 4331 * this case, the addresses are both validated as appropriate 4332 * for this operation, and, if so, the information is retained 4333 * for use in the inbound fanout. 4334 * 4335 * The ULP (except in the zero-length bind) can append an 4336 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4337 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4338 * a copy of the source or destination IRE (source for local bind; 4339 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4340 * policy information contained should be copied on to the conn. 4341 * 4342 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4343 */ 4344 mblk_t * 4345 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4346 { 4347 ssize_t len; 4348 struct T_bind_req *tbr; 4349 sin_t *sin; 4350 ipa_conn_t *ac; 4351 uchar_t *ucp; 4352 mblk_t *mp1; 4353 boolean_t ire_requested; 4354 boolean_t ipsec_policy_set = B_FALSE; 4355 int error = 0; 4356 int protocol; 4357 ipa_conn_x_t *acx; 4358 4359 ASSERT(!connp->conn_af_isv6); 4360 connp->conn_pkt_isv6 = B_FALSE; 4361 4362 len = MBLKL(mp); 4363 if (len < (sizeof (*tbr) + 1)) { 4364 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4365 "ip_bind: bogus msg, len %ld", len); 4366 /* XXX: Need to return something better */ 4367 goto bad_addr; 4368 } 4369 /* Back up and extract the protocol identifier. */ 4370 mp->b_wptr--; 4371 protocol = *mp->b_wptr & 0xFF; 4372 tbr = (struct T_bind_req *)mp->b_rptr; 4373 /* Reset the message type in preparation for shipping it back. */ 4374 DB_TYPE(mp) = M_PCPROTO; 4375 4376 connp->conn_ulp = (uint8_t)protocol; 4377 4378 /* 4379 * Check for a zero length address. This is from a protocol that 4380 * wants to register to receive all packets of its type. 4381 */ 4382 if (tbr->ADDR_length == 0) { 4383 /* 4384 * These protocols are now intercepted in ip_bind_v6(). 4385 * Reject protocol-level binds here for now. 4386 * 4387 * For SCTP raw socket, ICMP sends down a bind with sin_t 4388 * so that the protocol type cannot be SCTP. 4389 */ 4390 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4391 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4392 goto bad_addr; 4393 } 4394 4395 /* 4396 * 4397 * The udp module never sends down a zero-length address, 4398 * and allowing this on a labeled system will break MLP 4399 * functionality. 4400 */ 4401 if (is_system_labeled() && protocol == IPPROTO_UDP) 4402 goto bad_addr; 4403 4404 if (connp->conn_mac_exempt) 4405 goto bad_addr; 4406 4407 /* No hash here really. The table is big enough. */ 4408 connp->conn_srcv6 = ipv6_all_zeros; 4409 4410 ipcl_proto_insert(connp, protocol); 4411 4412 tbr->PRIM_type = T_BIND_ACK; 4413 return (mp); 4414 } 4415 4416 /* Extract the address pointer from the message. */ 4417 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4418 tbr->ADDR_length); 4419 if (ucp == NULL) { 4420 ip1dbg(("ip_bind: no address\n")); 4421 goto bad_addr; 4422 } 4423 if (!OK_32PTR(ucp)) { 4424 ip1dbg(("ip_bind: unaligned address\n")); 4425 goto bad_addr; 4426 } 4427 /* 4428 * Check for trailing mps. 4429 */ 4430 4431 mp1 = mp->b_cont; 4432 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4433 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4434 4435 switch (tbr->ADDR_length) { 4436 default: 4437 ip1dbg(("ip_bind: bad address length %d\n", 4438 (int)tbr->ADDR_length)); 4439 goto bad_addr; 4440 4441 case IP_ADDR_LEN: 4442 /* Verification of local address only */ 4443 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4444 ire_requested, ipsec_policy_set, B_FALSE); 4445 break; 4446 4447 case sizeof (sin_t): 4448 sin = (sin_t *)ucp; 4449 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4450 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4451 break; 4452 4453 case sizeof (ipa_conn_t): 4454 ac = (ipa_conn_t *)ucp; 4455 /* For raw socket, the local port is not set. */ 4456 if (ac->ac_lport == 0) 4457 ac->ac_lport = connp->conn_lport; 4458 /* Always verify destination reachability. */ 4459 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4460 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4461 ipsec_policy_set, B_TRUE, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_x_t): 4465 acx = (ipa_conn_x_t *)ucp; 4466 /* 4467 * Whether or not to verify destination reachability depends 4468 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4469 */ 4470 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4471 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4472 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4473 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4474 break; 4475 } 4476 if (error == EINPROGRESS) 4477 return (NULL); 4478 else if (error != 0) 4479 goto bad_addr; 4480 /* 4481 * Pass the IPsec headers size in ire_ipsec_overhead. 4482 * We can't do this in ip_bind_insert_ire because the policy 4483 * may not have been inherited at that point in time and hence 4484 * conn_out_enforce_policy may not be set. 4485 */ 4486 mp1 = mp->b_cont; 4487 if (ire_requested && connp->conn_out_enforce_policy && 4488 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4489 ire_t *ire = (ire_t *)mp1->b_rptr; 4490 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4491 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4492 } 4493 4494 /* Send it home. */ 4495 mp->b_datap->db_type = M_PCPROTO; 4496 tbr->PRIM_type = T_BIND_ACK; 4497 return (mp); 4498 4499 bad_addr: 4500 /* 4501 * If error = -1 then we generate a TBADADDR - otherwise error is 4502 * a unix errno. 4503 */ 4504 if (error > 0) 4505 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4506 else 4507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4508 return (mp); 4509 } 4510 4511 /* 4512 * Here address is verified to be a valid local address. 4513 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4514 * address is also considered a valid local address. 4515 * In the case of a broadcast/multicast address, however, the 4516 * upper protocol is expected to reset the src address 4517 * to 0 if it sees a IRE_BROADCAST type returned so that 4518 * no packets are emitted with broadcast/multicast address as 4519 * source address (that violates hosts requirements RFC1122) 4520 * The addresses valid for bind are: 4521 * (1) - INADDR_ANY (0) 4522 * (2) - IP address of an UP interface 4523 * (3) - IP address of a DOWN interface 4524 * (4) - valid local IP broadcast addresses. In this case 4525 * the conn will only receive packets destined to 4526 * the specified broadcast address. 4527 * (5) - a multicast address. In this case 4528 * the conn will only receive packets destined to 4529 * the specified multicast address. Note: the 4530 * application still has to issue an 4531 * IP_ADD_MEMBERSHIP socket option. 4532 * 4533 * On error, return -1 for TBADADDR otherwise pass the 4534 * errno with TSYSERR reply. 4535 * 4536 * In all the above cases, the bound address must be valid in the current zone. 4537 * When the address is loopback, multicast or broadcast, there might be many 4538 * matching IREs so bind has to look up based on the zone. 4539 * 4540 * Note: lport is in network byte order. 4541 */ 4542 int 4543 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4544 boolean_t ire_requested, boolean_t ipsec_policy_set, 4545 boolean_t fanout_insert) 4546 { 4547 int error = 0; 4548 ire_t *src_ire; 4549 mblk_t *policy_mp; 4550 ipif_t *ipif; 4551 zoneid_t zoneid; 4552 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4553 4554 if (ipsec_policy_set) { 4555 policy_mp = mp->b_cont; 4556 } 4557 4558 /* 4559 * If it was previously connected, conn_fully_bound would have 4560 * been set. 4561 */ 4562 connp->conn_fully_bound = B_FALSE; 4563 4564 src_ire = NULL; 4565 ipif = NULL; 4566 4567 zoneid = IPCL_ZONEID(connp); 4568 4569 if (src_addr) { 4570 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4571 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4572 /* 4573 * If an address other than 0.0.0.0 is requested, 4574 * we verify that it is a valid address for bind 4575 * Note: Following code is in if-else-if form for 4576 * readability compared to a condition check. 4577 */ 4578 /* LINTED - statement has no consequent */ 4579 if (IRE_IS_LOCAL(src_ire)) { 4580 /* 4581 * (2) Bind to address of local UP interface 4582 */ 4583 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4584 /* 4585 * (4) Bind to broadcast address 4586 * Note: permitted only from transports that 4587 * request IRE 4588 */ 4589 if (!ire_requested) 4590 error = EADDRNOTAVAIL; 4591 } else { 4592 /* 4593 * (3) Bind to address of local DOWN interface 4594 * (ipif_lookup_addr() looks up all interfaces 4595 * but we do not get here for UP interfaces 4596 * - case (2) above) 4597 * We put the protocol byte back into the mblk 4598 * since we may come back via ip_wput_nondata() 4599 * later with this mblk if ipif_lookup_addr chooses 4600 * to defer processing. 4601 */ 4602 *mp->b_wptr++ = (char)connp->conn_ulp; 4603 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4604 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4605 &error, ipst)) != NULL) { 4606 ipif_refrele(ipif); 4607 } else if (error == EINPROGRESS) { 4608 if (src_ire != NULL) 4609 ire_refrele(src_ire); 4610 return (EINPROGRESS); 4611 } else if (CLASSD(src_addr)) { 4612 error = 0; 4613 if (src_ire != NULL) 4614 ire_refrele(src_ire); 4615 /* 4616 * (5) bind to multicast address. 4617 * Fake out the IRE returned to upper 4618 * layer to be a broadcast IRE. 4619 */ 4620 src_ire = ire_ctable_lookup( 4621 INADDR_BROADCAST, INADDR_ANY, 4622 IRE_BROADCAST, NULL, zoneid, NULL, 4623 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4624 ipst); 4625 if (src_ire == NULL || !ire_requested) 4626 error = EADDRNOTAVAIL; 4627 } else { 4628 /* 4629 * Not a valid address for bind 4630 */ 4631 error = EADDRNOTAVAIL; 4632 } 4633 /* 4634 * Just to keep it consistent with the processing in 4635 * ip_bind_v4() 4636 */ 4637 mp->b_wptr--; 4638 } 4639 if (error) { 4640 /* Red Alert! Attempting to be a bogon! */ 4641 ip1dbg(("ip_bind: bad src address 0x%x\n", 4642 ntohl(src_addr))); 4643 goto bad_addr; 4644 } 4645 } 4646 4647 /* 4648 * Allow setting new policies. For example, disconnects come 4649 * down as ipa_t bind. As we would have set conn_policy_cached 4650 * to B_TRUE before, we should set it to B_FALSE, so that policy 4651 * can change after the disconnect. 4652 */ 4653 connp->conn_policy_cached = B_FALSE; 4654 4655 /* 4656 * If not fanout_insert this was just an address verification 4657 */ 4658 if (fanout_insert) { 4659 /* 4660 * The addresses have been verified. Time to insert in 4661 * the correct fanout list. 4662 */ 4663 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4664 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4665 connp->conn_lport = lport; 4666 connp->conn_fport = 0; 4667 /* 4668 * Do we need to add a check to reject Multicast packets 4669 */ 4670 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4671 } 4672 4673 if (error == 0) { 4674 if (ire_requested) { 4675 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4676 error = -1; 4677 /* Falls through to bad_addr */ 4678 } 4679 } else if (ipsec_policy_set) { 4680 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4681 error = -1; 4682 /* Falls through to bad_addr */ 4683 } 4684 } 4685 } 4686 bad_addr: 4687 if (error != 0) { 4688 if (connp->conn_anon_port) { 4689 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4690 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4691 B_FALSE); 4692 } 4693 connp->conn_mlp_type = mlptSingle; 4694 } 4695 if (src_ire != NULL) 4696 IRE_REFRELE(src_ire); 4697 if (ipsec_policy_set) { 4698 ASSERT(policy_mp == mp->b_cont); 4699 ASSERT(policy_mp != NULL); 4700 freeb(policy_mp); 4701 /* 4702 * As of now assume that nothing else accompanies 4703 * IPSEC_POLICY_SET. 4704 */ 4705 mp->b_cont = NULL; 4706 } 4707 return (error); 4708 } 4709 4710 /* 4711 * Verify that both the source and destination addresses 4712 * are valid. If verify_dst is false, then the destination address may be 4713 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4714 * destination reachability, while tunnels do not. 4715 * Note that we allow connect to broadcast and multicast 4716 * addresses when ire_requested is set. Thus the ULP 4717 * has to check for IRE_BROADCAST and multicast. 4718 * 4719 * Returns zero if ok. 4720 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4721 * (for use with TSYSERR reply). 4722 * 4723 * Note: lport and fport are in network byte order. 4724 */ 4725 int 4726 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4727 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4728 boolean_t ire_requested, boolean_t ipsec_policy_set, 4729 boolean_t fanout_insert, boolean_t verify_dst) 4730 { 4731 ire_t *src_ire; 4732 ire_t *dst_ire; 4733 int error = 0; 4734 int protocol; 4735 mblk_t *policy_mp; 4736 ire_t *sire = NULL; 4737 ire_t *md_dst_ire = NULL; 4738 ire_t *lso_dst_ire = NULL; 4739 ill_t *ill = NULL; 4740 zoneid_t zoneid; 4741 ipaddr_t src_addr = *src_addrp; 4742 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4743 4744 src_ire = dst_ire = NULL; 4745 protocol = *mp->b_wptr & 0xFF; 4746 4747 /* 4748 * If we never got a disconnect before, clear it now. 4749 */ 4750 connp->conn_fully_bound = B_FALSE; 4751 4752 if (ipsec_policy_set) { 4753 policy_mp = mp->b_cont; 4754 } 4755 4756 zoneid = IPCL_ZONEID(connp); 4757 4758 if (CLASSD(dst_addr)) { 4759 /* Pick up an IRE_BROADCAST */ 4760 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4761 NULL, zoneid, MBLK_GETLABEL(mp), 4762 (MATCH_IRE_RECURSIVE | 4763 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4764 MATCH_IRE_SECATTR), ipst); 4765 } else { 4766 /* 4767 * If conn_dontroute is set or if conn_nexthop_set is set, 4768 * and onlink ipif is not found set ENETUNREACH error. 4769 */ 4770 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4771 ipif_t *ipif; 4772 4773 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4774 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4775 if (ipif == NULL) { 4776 error = ENETUNREACH; 4777 goto bad_addr; 4778 } 4779 ipif_refrele(ipif); 4780 } 4781 4782 if (connp->conn_nexthop_set) { 4783 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4784 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4785 MATCH_IRE_SECATTR, ipst); 4786 } else { 4787 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4788 &sire, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4790 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR), ipst); 4792 } 4793 } 4794 /* 4795 * dst_ire can't be a broadcast when not ire_requested. 4796 * We also prevent ire's with src address INADDR_ANY to 4797 * be used, which are created temporarily for 4798 * sending out packets from endpoints that have 4799 * conn_unspec_src set. If verify_dst is true, the destination must be 4800 * reachable. If verify_dst is false, the destination needn't be 4801 * reachable. 4802 * 4803 * If we match on a reject or black hole, then we've got a 4804 * local failure. May as well fail out the connect() attempt, 4805 * since it's never going to succeed. 4806 */ 4807 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4808 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4809 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4810 /* 4811 * If we're verifying destination reachability, we always want 4812 * to complain here. 4813 * 4814 * If we're not verifying destination reachability but the 4815 * destination has a route, we still want to fail on the 4816 * temporary address and broadcast address tests. 4817 */ 4818 if (verify_dst || (dst_ire != NULL)) { 4819 if (ip_debug > 2) { 4820 pr_addr_dbg("ip_bind_connected: bad connected " 4821 "dst %s\n", AF_INET, &dst_addr); 4822 } 4823 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4824 error = ENETUNREACH; 4825 else 4826 error = EHOSTUNREACH; 4827 goto bad_addr; 4828 } 4829 } 4830 4831 /* 4832 * We now know that routing will allow us to reach the destination. 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (dst_ire != NULL && is_system_labeled() && 4847 !IPCL_IS_TCP(connp) && 4848 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4849 connp->conn_mac_exempt, ipst) != 0) { 4850 error = EHOSTUNREACH; 4851 if (ip_debug > 2) { 4852 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * If the app does a connect(), it means that it will most likely 4860 * send more than 1 packet to the destination. It makes sense 4861 * to clear the temporary flag. 4862 */ 4863 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4864 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4865 irb_t *irb = dst_ire->ire_bucket; 4866 4867 rw_enter(&irb->irb_lock, RW_WRITER); 4868 /* 4869 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4870 * the lock to guarantee irb_tmp_ire_cnt. 4871 */ 4872 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4873 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4874 irb->irb_tmp_ire_cnt--; 4875 } 4876 rw_exit(&irb->irb_lock); 4877 } 4878 4879 /* 4880 * See if we should notify ULP about LSO/MDT; we do this whether or not 4881 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4882 * eligibility tests for passive connects are handled separately 4883 * through tcp_adapt_ire(). We do this before the source address 4884 * selection, because dst_ire may change after a call to 4885 * ipif_select_source(). This is a best-effort check, as the 4886 * packet for this connection may not actually go through 4887 * dst_ire->ire_stq, and the exact IRE can only be known after 4888 * calling ip_newroute(). This is why we further check on the 4889 * IRE during LSO/Multidata packet transmission in 4890 * tcp_lsosend()/tcp_multisend(). 4891 */ 4892 if (!ipsec_policy_set && dst_ire != NULL && 4893 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4894 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4895 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4896 lso_dst_ire = dst_ire; 4897 IRE_REFHOLD(lso_dst_ire); 4898 } else if (ipst->ips_ip_multidata_outbound && 4899 ILL_MDT_CAPABLE(ill)) { 4900 md_dst_ire = dst_ire; 4901 IRE_REFHOLD(md_dst_ire); 4902 } 4903 } 4904 4905 if (dst_ire != NULL && 4906 dst_ire->ire_type == IRE_LOCAL && 4907 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4908 /* 4909 * If the IRE belongs to a different zone, look for a matching 4910 * route in the forwarding table and use the source address from 4911 * that route. 4912 */ 4913 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4914 zoneid, 0, NULL, 4915 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4916 MATCH_IRE_RJ_BHOLE, ipst); 4917 if (src_ire == NULL) { 4918 error = EHOSTUNREACH; 4919 goto bad_addr; 4920 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4921 if (!(src_ire->ire_type & IRE_HOST)) 4922 error = ENETUNREACH; 4923 else 4924 error = EHOSTUNREACH; 4925 goto bad_addr; 4926 } 4927 if (src_addr == INADDR_ANY) 4928 src_addr = src_ire->ire_src_addr; 4929 ire_refrele(src_ire); 4930 src_ire = NULL; 4931 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4932 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4933 src_addr = sire->ire_src_addr; 4934 ire_refrele(dst_ire); 4935 dst_ire = sire; 4936 sire = NULL; 4937 } else { 4938 /* 4939 * Pick a source address so that a proper inbound 4940 * load spreading would happen. 4941 */ 4942 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4943 ipif_t *src_ipif = NULL; 4944 ire_t *ipif_ire; 4945 4946 /* 4947 * Supply a local source address such that inbound 4948 * load spreading happens. 4949 * 4950 * Determine the best source address on this ill for 4951 * the destination. 4952 * 4953 * 1) For broadcast, we should return a broadcast ire 4954 * found above so that upper layers know that the 4955 * destination address is a broadcast address. 4956 * 4957 * 2) If this is part of a group, select a better 4958 * source address so that better inbound load 4959 * balancing happens. Do the same if the ipif 4960 * is DEPRECATED. 4961 * 4962 * 3) If the outgoing interface is part of a usesrc 4963 * group, then try selecting a source address from 4964 * the usesrc ILL. 4965 */ 4966 if ((dst_ire->ire_zoneid != zoneid && 4967 dst_ire->ire_zoneid != ALL_ZONES) || 4968 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4969 (!(dst_ire->ire_type & IRE_BROADCAST) && 4970 ((dst_ill->ill_group != NULL) || 4971 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4972 (dst_ill->ill_usesrc_ifindex != 0)))) { 4973 /* 4974 * If the destination is reachable via a 4975 * given gateway, the selected source address 4976 * should be in the same subnet as the gateway. 4977 * Otherwise, the destination is not reachable. 4978 * 4979 * If there are no interfaces on the same subnet 4980 * as the destination, ipif_select_source gives 4981 * first non-deprecated interface which might be 4982 * on a different subnet than the gateway. 4983 * This is not desirable. Hence pass the dst_ire 4984 * source address to ipif_select_source. 4985 * It is sure that the destination is reachable 4986 * with the dst_ire source address subnet. 4987 * So passing dst_ire source address to 4988 * ipif_select_source will make sure that the 4989 * selected source will be on the same subnet 4990 * as dst_ire source address. 4991 */ 4992 ipaddr_t saddr = 4993 dst_ire->ire_ipif->ipif_src_addr; 4994 src_ipif = ipif_select_source(dst_ill, 4995 saddr, zoneid); 4996 if (src_ipif != NULL) { 4997 if (IS_VNI(src_ipif->ipif_ill)) { 4998 /* 4999 * For VNI there is no 5000 * interface route 5001 */ 5002 src_addr = 5003 src_ipif->ipif_src_addr; 5004 } else { 5005 ipif_ire = 5006 ipif_to_ire(src_ipif); 5007 if (ipif_ire != NULL) { 5008 IRE_REFRELE(dst_ire); 5009 dst_ire = ipif_ire; 5010 } 5011 src_addr = 5012 dst_ire->ire_src_addr; 5013 } 5014 ipif_refrele(src_ipif); 5015 } else { 5016 src_addr = dst_ire->ire_src_addr; 5017 } 5018 } else { 5019 src_addr = dst_ire->ire_src_addr; 5020 } 5021 } 5022 } 5023 5024 /* 5025 * We do ire_route_lookup() here (and not 5026 * interface lookup as we assert that 5027 * src_addr should only come from an 5028 * UP interface for hard binding. 5029 */ 5030 ASSERT(src_ire == NULL); 5031 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5032 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5033 /* src_ire must be a local|loopback */ 5034 if (!IRE_IS_LOCAL(src_ire)) { 5035 if (ip_debug > 2) { 5036 pr_addr_dbg("ip_bind_connected: bad connected " 5037 "src %s\n", AF_INET, &src_addr); 5038 } 5039 error = EADDRNOTAVAIL; 5040 goto bad_addr; 5041 } 5042 5043 /* 5044 * If the source address is a loopback address, the 5045 * destination had best be local or multicast. 5046 * The transports that can't handle multicast will reject 5047 * those addresses. 5048 */ 5049 if (src_ire->ire_type == IRE_LOOPBACK && 5050 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5051 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5052 error = -1; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * Allow setting new policies. For example, disconnects come 5058 * down as ipa_t bind. As we would have set conn_policy_cached 5059 * to B_TRUE before, we should set it to B_FALSE, so that policy 5060 * can change after the disconnect. 5061 */ 5062 connp->conn_policy_cached = B_FALSE; 5063 5064 /* 5065 * Set the conn addresses/ports immediately, so the IPsec policy calls 5066 * can handle their passed-in conn's. 5067 */ 5068 5069 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5070 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5071 connp->conn_lport = lport; 5072 connp->conn_fport = fport; 5073 *src_addrp = src_addr; 5074 5075 ASSERT(!(ipsec_policy_set && ire_requested)); 5076 if (ire_requested) { 5077 iulp_t *ulp_info = NULL; 5078 5079 /* 5080 * Note that sire will not be NULL if this is an off-link 5081 * connection and there is not cache for that dest yet. 5082 * 5083 * XXX Because of an existing bug, if there are multiple 5084 * default routes, the IRE returned now may not be the actual 5085 * default route used (default routes are chosen in a 5086 * round robin fashion). So if the metrics for different 5087 * default routes are different, we may return the wrong 5088 * metrics. This will not be a problem if the existing 5089 * bug is fixed. 5090 */ 5091 if (sire != NULL) { 5092 ulp_info = &(sire->ire_uinfo); 5093 } 5094 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5095 error = -1; 5096 goto bad_addr; 5097 } 5098 } else if (ipsec_policy_set) { 5099 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5100 error = -1; 5101 goto bad_addr; 5102 } 5103 } 5104 5105 /* 5106 * Cache IPsec policy in this conn. If we have per-socket policy, 5107 * we'll cache that. If we don't, we'll inherit global policy. 5108 * 5109 * We can't insert until the conn reflects the policy. Note that 5110 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5111 * connections where we don't have a policy. This is to prevent 5112 * global policy lookups in the inbound path. 5113 * 5114 * If we insert before we set conn_policy_cached, 5115 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5116 * because global policy cound be non-empty. We normally call 5117 * ipsec_check_policy() for conn_policy_cached connections only if 5118 * ipc_in_enforce_policy is set. But in this case, 5119 * conn_policy_cached can get set anytime since we made the 5120 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5121 * called, which will make the above assumption false. Thus, we 5122 * need to insert after we set conn_policy_cached. 5123 */ 5124 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5125 goto bad_addr; 5126 5127 if (fanout_insert) { 5128 /* 5129 * The addresses have been verified. Time to insert in 5130 * the correct fanout list. 5131 */ 5132 error = ipcl_conn_insert(connp, protocol, src_addr, 5133 dst_addr, connp->conn_ports); 5134 } 5135 5136 if (error == 0) { 5137 connp->conn_fully_bound = B_TRUE; 5138 /* 5139 * Our initial checks for LSO/MDT have passed; the IRE is not 5140 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5141 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5142 * ip_xxinfo_return(), which performs further checks 5143 * against them and upon success, returns the LSO/MDT info 5144 * mblk which we will attach to the bind acknowledgment. 5145 */ 5146 if (lso_dst_ire != NULL) { 5147 mblk_t *lsoinfo_mp; 5148 5149 ASSERT(ill->ill_lso_capab != NULL); 5150 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5151 ill->ill_name, ill->ill_lso_capab)) != NULL) 5152 linkb(mp, lsoinfo_mp); 5153 } else if (md_dst_ire != NULL) { 5154 mblk_t *mdinfo_mp; 5155 5156 ASSERT(ill->ill_mdt_capab != NULL); 5157 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5158 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5159 linkb(mp, mdinfo_mp); 5160 } 5161 } 5162 bad_addr: 5163 if (ipsec_policy_set) { 5164 ASSERT(policy_mp == mp->b_cont); 5165 ASSERT(policy_mp != NULL); 5166 freeb(policy_mp); 5167 /* 5168 * As of now assume that nothing else accompanies 5169 * IPSEC_POLICY_SET. 5170 */ 5171 mp->b_cont = NULL; 5172 } 5173 if (src_ire != NULL) 5174 IRE_REFRELE(src_ire); 5175 if (dst_ire != NULL) 5176 IRE_REFRELE(dst_ire); 5177 if (sire != NULL) 5178 IRE_REFRELE(sire); 5179 if (md_dst_ire != NULL) 5180 IRE_REFRELE(md_dst_ire); 5181 if (lso_dst_ire != NULL) 5182 IRE_REFRELE(lso_dst_ire); 5183 return (error); 5184 } 5185 5186 /* 5187 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5188 * Prefers dst_ire over src_ire. 5189 */ 5190 static boolean_t 5191 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5192 { 5193 mblk_t *mp1; 5194 ire_t *ret_ire = NULL; 5195 5196 mp1 = mp->b_cont; 5197 ASSERT(mp1 != NULL); 5198 5199 if (ire != NULL) { 5200 /* 5201 * mp1 initialized above to IRE_DB_REQ_TYPE 5202 * appended mblk. Its <upper protocol>'s 5203 * job to make sure there is room. 5204 */ 5205 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5206 return (0); 5207 5208 mp1->b_datap->db_type = IRE_DB_TYPE; 5209 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5210 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5211 ret_ire = (ire_t *)mp1->b_rptr; 5212 /* 5213 * Pass the latest setting of the ip_path_mtu_discovery and 5214 * copy the ulp info if any. 5215 */ 5216 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5217 IPH_DF : 0; 5218 if (ulp_info != NULL) { 5219 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5220 sizeof (iulp_t)); 5221 } 5222 ret_ire->ire_mp = mp1; 5223 } else { 5224 /* 5225 * No IRE was found. Remove IRE mblk. 5226 */ 5227 mp->b_cont = mp1->b_cont; 5228 freeb(mp1); 5229 } 5230 5231 return (1); 5232 } 5233 5234 /* 5235 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5236 * the final piece where we don't. Return a pointer to the first mblk in the 5237 * result, and update the pointer to the next mblk to chew on. If anything 5238 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5239 * NULL pointer. 5240 */ 5241 mblk_t * 5242 ip_carve_mp(mblk_t **mpp, ssize_t len) 5243 { 5244 mblk_t *mp0; 5245 mblk_t *mp1; 5246 mblk_t *mp2; 5247 5248 if (!len || !mpp || !(mp0 = *mpp)) 5249 return (NULL); 5250 /* If we aren't going to consume the first mblk, we need a dup. */ 5251 if (mp0->b_wptr - mp0->b_rptr > len) { 5252 mp1 = dupb(mp0); 5253 if (mp1) { 5254 /* Partition the data between the two mblks. */ 5255 mp1->b_wptr = mp1->b_rptr + len; 5256 mp0->b_rptr = mp1->b_wptr; 5257 /* 5258 * after adjustments if mblk not consumed is now 5259 * unaligned, try to align it. If this fails free 5260 * all messages and let upper layer recover. 5261 */ 5262 if (!OK_32PTR(mp0->b_rptr)) { 5263 if (!pullupmsg(mp0, -1)) { 5264 freemsg(mp0); 5265 freemsg(mp1); 5266 *mpp = NULL; 5267 return (NULL); 5268 } 5269 } 5270 } 5271 return (mp1); 5272 } 5273 /* Eat through as many mblks as we need to get len bytes. */ 5274 len -= mp0->b_wptr - mp0->b_rptr; 5275 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5276 if (mp2->b_wptr - mp2->b_rptr > len) { 5277 /* 5278 * We won't consume the entire last mblk. Like 5279 * above, dup and partition it. 5280 */ 5281 mp1->b_cont = dupb(mp2); 5282 mp1 = mp1->b_cont; 5283 if (!mp1) { 5284 /* 5285 * Trouble. Rather than go to a lot of 5286 * trouble to clean up, we free the messages. 5287 * This won't be any worse than losing it on 5288 * the wire. 5289 */ 5290 freemsg(mp0); 5291 freemsg(mp2); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 mp1->b_wptr = mp1->b_rptr + len; 5296 mp2->b_rptr = mp1->b_wptr; 5297 /* 5298 * after adjustments if mblk not consumed is now 5299 * unaligned, try to align it. If this fails free 5300 * all messages and let upper layer recover. 5301 */ 5302 if (!OK_32PTR(mp2->b_rptr)) { 5303 if (!pullupmsg(mp2, -1)) { 5304 freemsg(mp0); 5305 freemsg(mp2); 5306 *mpp = NULL; 5307 return (NULL); 5308 } 5309 } 5310 *mpp = mp2; 5311 return (mp0); 5312 } 5313 /* Decrement len by the amount we just got. */ 5314 len -= mp2->b_wptr - mp2->b_rptr; 5315 } 5316 /* 5317 * len should be reduced to zero now. If not our caller has 5318 * screwed up. 5319 */ 5320 if (len) { 5321 /* Shouldn't happen! */ 5322 freemsg(mp0); 5323 *mpp = NULL; 5324 return (NULL); 5325 } 5326 /* 5327 * We consumed up to exactly the end of an mblk. Detach the part 5328 * we are returning from the rest of the chain. 5329 */ 5330 mp1->b_cont = NULL; 5331 *mpp = mp2; 5332 return (mp0); 5333 } 5334 5335 /* The ill stream is being unplumbed. Called from ip_close */ 5336 int 5337 ip_modclose(ill_t *ill) 5338 { 5339 boolean_t success; 5340 ipsq_t *ipsq; 5341 ipif_t *ipif; 5342 queue_t *q = ill->ill_rq; 5343 ip_stack_t *ipst = ill->ill_ipst; 5344 clock_t timeout; 5345 5346 /* 5347 * Wait for the ACKs of all deferred control messages to be processed. 5348 * In particular, we wait for a potential capability reset initiated 5349 * in ip_sioctl_plink() to complete before proceeding. 5350 * 5351 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5352 * in case the driver never replies. 5353 */ 5354 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5355 mutex_enter(&ill->ill_lock); 5356 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5357 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5358 /* Timeout */ 5359 break; 5360 } 5361 } 5362 mutex_exit(&ill->ill_lock); 5363 5364 /* 5365 * Forcibly enter the ipsq after some delay. This is to take 5366 * care of the case when some ioctl does not complete because 5367 * we sent a control message to the driver and it did not 5368 * send us a reply. We want to be able to at least unplumb 5369 * and replumb rather than force the user to reboot the system. 5370 */ 5371 success = ipsq_enter(ill, B_FALSE); 5372 5373 /* 5374 * Open/close/push/pop is guaranteed to be single threaded 5375 * per stream by STREAMS. FS guarantees that all references 5376 * from top are gone before close is called. So there can't 5377 * be another close thread that has set CONDEMNED on this ill. 5378 * and cause ipsq_enter to return failure. 5379 */ 5380 ASSERT(success); 5381 ipsq = ill->ill_phyint->phyint_ipsq; 5382 5383 /* 5384 * Mark it condemned. No new reference will be made to this ill. 5385 * Lookup functions will return an error. Threads that try to 5386 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5387 * that the refcnt will drop down to zero. 5388 */ 5389 mutex_enter(&ill->ill_lock); 5390 ill->ill_state_flags |= ILL_CONDEMNED; 5391 for (ipif = ill->ill_ipif; ipif != NULL; 5392 ipif = ipif->ipif_next) { 5393 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5394 } 5395 /* 5396 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5397 * returns error if ILL_CONDEMNED is set 5398 */ 5399 cv_broadcast(&ill->ill_cv); 5400 mutex_exit(&ill->ill_lock); 5401 5402 /* 5403 * Send all the deferred DLPI messages downstream which came in 5404 * during the small window right before ipsq_enter(). We do this 5405 * without waiting for the ACKs because all the ACKs for M_PROTO 5406 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5407 */ 5408 ill_dlpi_send_deferred(ill); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * If MOVE was in progress, clear the 5420 * move_in_progress fields also. 5421 */ 5422 if (ill->ill_move_in_progress) { 5423 ILL_CLEAR_MOVE(ill); 5424 } 5425 5426 /* 5427 * Call ill_delete to bring down the ipifs, ilms and ill on 5428 * this ill. Then wait for the refcnts to drop to zero. 5429 * ill_is_freeable checks whether the ill is really quiescent. 5430 * Then make sure that threads that are waiting to enter the 5431 * ipsq have seen the error returned by ipsq_enter and have 5432 * gone away. Then we call ill_delete_tail which does the 5433 * DL_UNBIND_REQ with the driver and then qprocsoff. 5434 */ 5435 ill_delete(ill); 5436 mutex_enter(&ill->ill_lock); 5437 while (!ill_is_freeable(ill)) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 while (ill->ill_waiters) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* 5445 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5446 * it held until the end of the function since the cleanup 5447 * below needs to be able to use the ip_stack_t. 5448 */ 5449 netstack_hold(ipst->ips_netstack); 5450 5451 /* qprocsoff is called in ill_delete_tail */ 5452 ill_delete_tail(ill); 5453 ASSERT(ill->ill_ipst == NULL); 5454 5455 /* 5456 * Walk through all upper (conn) streams and qenable 5457 * those that have queued data. 5458 * close synchronization needs this to 5459 * be done to ensure that all upper layers blocked 5460 * due to flow control to the closing device 5461 * get unblocked. 5462 */ 5463 ip1dbg(("ip_wsrv: walking\n")); 5464 conn_walk_drain(ipst); 5465 5466 mutex_enter(&ipst->ips_ip_mi_lock); 5467 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5468 mutex_exit(&ipst->ips_ip_mi_lock); 5469 5470 /* 5471 * credp could be null if the open didn't succeed and ip_modopen 5472 * itself calls ip_close. 5473 */ 5474 if (ill->ill_credp != NULL) 5475 crfree(ill->ill_credp); 5476 5477 mutex_enter(&ill->ill_lock); 5478 ill_nic_info_dispatch(ill); 5479 mutex_exit(&ill->ill_lock); 5480 5481 /* 5482 * Now we are done with the module close pieces that 5483 * need the netstack_t. 5484 */ 5485 netstack_rele(ipst->ips_netstack); 5486 5487 mi_close_free((IDP)ill); 5488 q->q_ptr = WR(q)->q_ptr = NULL; 5489 5490 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5491 5492 return (0); 5493 } 5494 5495 /* 5496 * This is called as part of close() for IP, UDP, ICMP, and RTS 5497 * in order to quiesce the conn. 5498 */ 5499 void 5500 ip_quiesce_conn(conn_t *connp) 5501 { 5502 boolean_t drain_cleanup_reqd = B_FALSE; 5503 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5504 boolean_t ilg_cleanup_reqd = B_FALSE; 5505 ip_stack_t *ipst; 5506 5507 ASSERT(!IPCL_IS_TCP(connp)); 5508 ipst = connp->conn_netstack->netstack_ip; 5509 5510 /* 5511 * Mark the conn as closing, and this conn must not be 5512 * inserted in future into any list. Eg. conn_drain_insert(), 5513 * won't insert this conn into the conn_drain_list. 5514 * Similarly ill_pending_mp_add() will not add any mp to 5515 * the pending mp list, after this conn has started closing. 5516 * 5517 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5518 * cannot get set henceforth. 5519 */ 5520 mutex_enter(&connp->conn_lock); 5521 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5522 connp->conn_state_flags |= CONN_CLOSING; 5523 if (connp->conn_idl != NULL) 5524 drain_cleanup_reqd = B_TRUE; 5525 if (connp->conn_oper_pending_ill != NULL) 5526 conn_ioctl_cleanup_reqd = B_TRUE; 5527 if (connp->conn_dhcpinit_ill != NULL) { 5528 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5529 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5530 connp->conn_dhcpinit_ill = NULL; 5531 } 5532 if (connp->conn_ilg_inuse != 0) 5533 ilg_cleanup_reqd = B_TRUE; 5534 mutex_exit(&connp->conn_lock); 5535 5536 if (conn_ioctl_cleanup_reqd) 5537 conn_ioctl_cleanup(connp); 5538 5539 if (is_system_labeled() && connp->conn_anon_port) { 5540 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5541 connp->conn_mlp_type, connp->conn_ulp, 5542 ntohs(connp->conn_lport), B_FALSE); 5543 connp->conn_anon_port = 0; 5544 } 5545 connp->conn_mlp_type = mlptSingle; 5546 5547 /* 5548 * Remove this conn from any fanout list it is on. 5549 * and then wait for any threads currently operating 5550 * on this endpoint to finish 5551 */ 5552 ipcl_hash_remove(connp); 5553 5554 /* 5555 * Remove this conn from the drain list, and do 5556 * any other cleanup that may be required. 5557 * (Only non-tcp streams may have a non-null conn_idl. 5558 * TCP streams are never flow controlled, and 5559 * conn_idl will be null) 5560 */ 5561 if (drain_cleanup_reqd) 5562 conn_drain_tail(connp, B_TRUE); 5563 5564 if (connp == ipst->ips_ip_g_mrouter) 5565 (void) ip_mrouter_done(NULL, ipst); 5566 5567 if (ilg_cleanup_reqd) 5568 ilg_delete_all(connp); 5569 5570 conn_delete_ire(connp, NULL); 5571 5572 /* 5573 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5574 * callers from write side can't be there now because close 5575 * is in progress. The only other caller is ipcl_walk 5576 * which checks for the condemned flag. 5577 */ 5578 mutex_enter(&connp->conn_lock); 5579 connp->conn_state_flags |= CONN_CONDEMNED; 5580 while (connp->conn_ref != 1) 5581 cv_wait(&connp->conn_cv, &connp->conn_lock); 5582 connp->conn_state_flags |= CONN_QUIESCED; 5583 mutex_exit(&connp->conn_lock); 5584 } 5585 5586 /* ARGSUSED */ 5587 int 5588 ip_close(queue_t *q, int flags) 5589 { 5590 conn_t *connp; 5591 5592 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5593 5594 /* 5595 * Call the appropriate delete routine depending on whether this is 5596 * a module or device. 5597 */ 5598 if (WR(q)->q_next != NULL) { 5599 /* This is a module close */ 5600 return (ip_modclose((ill_t *)q->q_ptr)); 5601 } 5602 5603 connp = q->q_ptr; 5604 ip_quiesce_conn(connp); 5605 5606 qprocsoff(q); 5607 5608 /* 5609 * Now we are truly single threaded on this stream, and can 5610 * delete the things hanging off the connp, and finally the connp. 5611 * We removed this connp from the fanout list, it cannot be 5612 * accessed thru the fanouts, and we already waited for the 5613 * conn_ref to drop to 0. We are already in close, so 5614 * there cannot be any other thread from the top. qprocsoff 5615 * has completed, and service has completed or won't run in 5616 * future. 5617 */ 5618 ASSERT(connp->conn_ref == 1); 5619 5620 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5621 5622 connp->conn_ref--; 5623 ipcl_conn_destroy(connp); 5624 5625 q->q_ptr = WR(q)->q_ptr = NULL; 5626 return (0); 5627 } 5628 5629 /* 5630 * Wapper around putnext() so that ip_rts_request can merely use 5631 * conn_recv. 5632 */ 5633 /*ARGSUSED2*/ 5634 static void 5635 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5636 { 5637 conn_t *connp = (conn_t *)arg1; 5638 5639 putnext(connp->conn_rq, mp); 5640 } 5641 5642 /* Return the IP checksum for the IP header at "iph". */ 5643 uint16_t 5644 ip_csum_hdr(ipha_t *ipha) 5645 { 5646 uint16_t *uph; 5647 uint32_t sum; 5648 int opt_len; 5649 5650 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5651 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5652 uph = (uint16_t *)ipha; 5653 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5654 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5655 if (opt_len > 0) { 5656 do { 5657 sum += uph[10]; 5658 sum += uph[11]; 5659 uph += 2; 5660 } while (--opt_len); 5661 } 5662 sum = (sum & 0xFFFF) + (sum >> 16); 5663 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5664 if (sum == 0xffff) 5665 sum = 0; 5666 return ((uint16_t)sum); 5667 } 5668 5669 /* 5670 * Called when the module is about to be unloaded 5671 */ 5672 void 5673 ip_ddi_destroy(void) 5674 { 5675 tnet_fini(); 5676 5677 icmp_ddi_destroy(); 5678 rts_ddi_destroy(); 5679 udp_ddi_destroy(); 5680 sctp_ddi_g_destroy(); 5681 tcp_ddi_g_destroy(); 5682 ipsec_policy_g_destroy(); 5683 ipcl_g_destroy(); 5684 ip_net_g_destroy(); 5685 ip_ire_g_fini(); 5686 inet_minor_destroy(ip_minor_arena_sa); 5687 #if defined(_LP64) 5688 inet_minor_destroy(ip_minor_arena_la); 5689 #endif 5690 5691 #ifdef DEBUG 5692 list_destroy(&ip_thread_list); 5693 rw_destroy(&ip_thread_rwlock); 5694 tsd_destroy(&ip_thread_data); 5695 #endif 5696 5697 netstack_unregister(NS_IP); 5698 } 5699 5700 /* 5701 * First step in cleanup. 5702 */ 5703 /* ARGSUSED */ 5704 static void 5705 ip_stack_shutdown(netstackid_t stackid, void *arg) 5706 { 5707 ip_stack_t *ipst = (ip_stack_t *)arg; 5708 5709 #ifdef NS_DEBUG 5710 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5711 #endif 5712 5713 /* Get rid of loopback interfaces and their IREs */ 5714 ip_loopback_cleanup(ipst); 5715 } 5716 5717 /* 5718 * Free the IP stack instance. 5719 */ 5720 static void 5721 ip_stack_fini(netstackid_t stackid, void *arg) 5722 { 5723 ip_stack_t *ipst = (ip_stack_t *)arg; 5724 int ret; 5725 5726 #ifdef NS_DEBUG 5727 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5728 #endif 5729 ipv4_hook_destroy(ipst); 5730 ipv6_hook_destroy(ipst); 5731 ip_net_destroy(ipst); 5732 5733 rw_destroy(&ipst->ips_srcid_lock); 5734 5735 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5736 ipst->ips_ip_mibkp = NULL; 5737 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5738 ipst->ips_icmp_mibkp = NULL; 5739 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5740 ipst->ips_ip_kstat = NULL; 5741 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5742 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5743 ipst->ips_ip6_kstat = NULL; 5744 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5745 5746 nd_free(&ipst->ips_ip_g_nd); 5747 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5748 ipst->ips_param_arr = NULL; 5749 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5750 ipst->ips_ndp_arr = NULL; 5751 5752 ip_mrouter_stack_destroy(ipst); 5753 5754 mutex_destroy(&ipst->ips_ip_mi_lock); 5755 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5756 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5757 rw_destroy(&ipst->ips_ip_g_nd_lock); 5758 5759 ret = untimeout(ipst->ips_igmp_timeout_id); 5760 if (ret == -1) { 5761 ASSERT(ipst->ips_igmp_timeout_id == 0); 5762 } else { 5763 ASSERT(ipst->ips_igmp_timeout_id != 0); 5764 ipst->ips_igmp_timeout_id = 0; 5765 } 5766 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5767 if (ret == -1) { 5768 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5769 } else { 5770 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5771 ipst->ips_igmp_slowtimeout_id = 0; 5772 } 5773 ret = untimeout(ipst->ips_mld_timeout_id); 5774 if (ret == -1) { 5775 ASSERT(ipst->ips_mld_timeout_id == 0); 5776 } else { 5777 ASSERT(ipst->ips_mld_timeout_id != 0); 5778 ipst->ips_mld_timeout_id = 0; 5779 } 5780 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5781 if (ret == -1) { 5782 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5783 } else { 5784 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5785 ipst->ips_mld_slowtimeout_id = 0; 5786 } 5787 ret = untimeout(ipst->ips_ip_ire_expire_id); 5788 if (ret == -1) { 5789 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5790 } else { 5791 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5792 ipst->ips_ip_ire_expire_id = 0; 5793 } 5794 5795 mutex_destroy(&ipst->ips_igmp_timer_lock); 5796 mutex_destroy(&ipst->ips_mld_timer_lock); 5797 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5798 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5799 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5800 rw_destroy(&ipst->ips_ill_g_lock); 5801 5802 ip_ire_fini(ipst); 5803 ip6_asp_free(ipst); 5804 conn_drain_fini(ipst); 5805 ipcl_destroy(ipst); 5806 5807 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5808 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5809 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5810 ipst->ips_ndp4 = NULL; 5811 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5812 ipst->ips_ndp6 = NULL; 5813 5814 if (ipst->ips_loopback_ksp != NULL) { 5815 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5816 ipst->ips_loopback_ksp = NULL; 5817 } 5818 5819 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5820 ipst->ips_phyint_g_list = NULL; 5821 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5822 ipst->ips_ill_g_heads = NULL; 5823 5824 kmem_free(ipst, sizeof (*ipst)); 5825 } 5826 5827 /* 5828 * This function is called from the TSD destructor, and is used to debug 5829 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5830 * details. 5831 */ 5832 static void 5833 ip_thread_exit(void *phash) 5834 { 5835 th_hash_t *thh = phash; 5836 5837 rw_enter(&ip_thread_rwlock, RW_WRITER); 5838 list_remove(&ip_thread_list, thh); 5839 rw_exit(&ip_thread_rwlock); 5840 mod_hash_destroy_hash(thh->thh_hash); 5841 kmem_free(thh, sizeof (*thh)); 5842 } 5843 5844 /* 5845 * Called when the IP kernel module is loaded into the kernel 5846 */ 5847 void 5848 ip_ddi_init(void) 5849 { 5850 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5851 5852 /* 5853 * For IP and TCP the minor numbers should start from 2 since we have 4 5854 * initial devices: ip, ip6, tcp, tcp6. 5855 */ 5856 /* 5857 * If this is a 64-bit kernel, then create two separate arenas - 5858 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5859 * other for socket apps in the range 2^^18 through 2^^32-1. 5860 */ 5861 ip_minor_arena_la = NULL; 5862 ip_minor_arena_sa = NULL; 5863 #if defined(_LP64) 5864 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5865 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5868 } 5869 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5870 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5871 cmn_err(CE_PANIC, 5872 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5873 } 5874 #else 5875 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5876 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5877 cmn_err(CE_PANIC, 5878 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5879 } 5880 #endif 5881 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5882 5883 ipcl_g_init(); 5884 ip_ire_g_init(); 5885 ip_net_g_init(); 5886 5887 #ifdef DEBUG 5888 tsd_create(&ip_thread_data, ip_thread_exit); 5889 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5890 list_create(&ip_thread_list, sizeof (th_hash_t), 5891 offsetof(th_hash_t, thh_link)); 5892 #endif 5893 5894 /* 5895 * We want to be informed each time a stack is created or 5896 * destroyed in the kernel, so we can maintain the 5897 * set of udp_stack_t's. 5898 */ 5899 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5900 ip_stack_fini); 5901 5902 ipsec_policy_g_init(); 5903 tcp_ddi_g_init(); 5904 sctp_ddi_g_init(); 5905 5906 tnet_init(); 5907 5908 udp_ddi_init(); 5909 rts_ddi_init(); 5910 icmp_ddi_init(); 5911 } 5912 5913 /* 5914 * Initialize the IP stack instance. 5915 */ 5916 static void * 5917 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5918 { 5919 ip_stack_t *ipst; 5920 ipparam_t *pa; 5921 ipndp_t *na; 5922 5923 #ifdef NS_DEBUG 5924 printf("ip_stack_init(stack %d)\n", stackid); 5925 #endif 5926 5927 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5928 ipst->ips_netstack = ns; 5929 5930 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5931 KM_SLEEP); 5932 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5933 KM_SLEEP); 5934 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5935 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5936 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5937 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5938 5939 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5940 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5941 ipst->ips_igmp_deferred_next = INFINITY; 5942 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5943 ipst->ips_mld_deferred_next = INFINITY; 5944 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5946 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5947 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5948 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5949 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5950 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5951 5952 ipcl_init(ipst); 5953 ip_ire_init(ipst); 5954 ip6_asp_init(ipst); 5955 ipif_init(ipst); 5956 conn_drain_init(ipst); 5957 ip_mrouter_stack_init(ipst); 5958 5959 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5960 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5961 5962 ipst->ips_ip_multirt_log_interval = 1000; 5963 5964 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5965 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5966 ipst->ips_ill_index = 1; 5967 5968 ipst->ips_saved_ip_g_forward = -1; 5969 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5970 5971 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5972 ipst->ips_param_arr = pa; 5973 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5974 5975 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5976 ipst->ips_ndp_arr = na; 5977 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5978 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5979 (caddr_t)&ipst->ips_ip_g_forward; 5980 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5981 (caddr_t)&ipst->ips_ipv6_forward; 5982 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5983 "ip_cgtp_filter") == 0); 5984 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ip_cgtp_filter; 5986 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5987 "ipmp_hook_emulation") == 0); 5988 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5989 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5990 5991 (void) ip_param_register(&ipst->ips_ip_g_nd, 5992 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5993 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5994 5995 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5996 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5997 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5998 ipst->ips_ip6_kstat = 5999 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6000 6001 ipst->ips_ipmp_enable_failback = B_TRUE; 6002 6003 ipst->ips_ip_src_id = 1; 6004 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6005 6006 ip_net_init(ipst, ns); 6007 ipv4_hook_init(ipst); 6008 ipv6_hook_init(ipst); 6009 6010 return (ipst); 6011 } 6012 6013 /* 6014 * Allocate and initialize a DLPI template of the specified length. (May be 6015 * called as writer.) 6016 */ 6017 mblk_t * 6018 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6019 { 6020 mblk_t *mp; 6021 6022 mp = allocb(len, BPRI_MED); 6023 if (!mp) 6024 return (NULL); 6025 6026 /* 6027 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6028 * of which we don't seem to use) are sent with M_PCPROTO, and 6029 * that other DLPI are M_PROTO. 6030 */ 6031 if (prim == DL_INFO_REQ) { 6032 mp->b_datap->db_type = M_PCPROTO; 6033 } else { 6034 mp->b_datap->db_type = M_PROTO; 6035 } 6036 6037 mp->b_wptr = mp->b_rptr + len; 6038 bzero(mp->b_rptr, len); 6039 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6040 return (mp); 6041 } 6042 6043 /* 6044 * Debug formatting routine. Returns a character string representation of the 6045 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6046 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6047 * 6048 * Once the ndd table-printing interfaces are removed, this can be changed to 6049 * standard dotted-decimal form. 6050 */ 6051 char * 6052 ip_dot_addr(ipaddr_t addr, char *buf) 6053 { 6054 uint8_t *ap = (uint8_t *)&addr; 6055 6056 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6057 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6058 return (buf); 6059 } 6060 6061 /* 6062 * Write the given MAC address as a printable string in the usual colon- 6063 * separated format. 6064 */ 6065 const char * 6066 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6067 { 6068 char *bp; 6069 6070 if (alen == 0 || buflen < 4) 6071 return ("?"); 6072 bp = buf; 6073 for (;;) { 6074 /* 6075 * If there are more MAC address bytes available, but we won't 6076 * have any room to print them, then add "..." to the string 6077 * instead. See below for the 'magic number' explanation. 6078 */ 6079 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6080 (void) strcpy(bp, "..."); 6081 break; 6082 } 6083 (void) sprintf(bp, "%02x", *addr++); 6084 bp += 2; 6085 if (--alen == 0) 6086 break; 6087 *bp++ = ':'; 6088 buflen -= 3; 6089 /* 6090 * At this point, based on the first 'if' statement above, 6091 * either alen == 1 and buflen >= 3, or alen > 1 and 6092 * buflen >= 4. The first case leaves room for the final "xx" 6093 * number and trailing NUL byte. The second leaves room for at 6094 * least "...". Thus the apparently 'magic' numbers chosen for 6095 * that statement. 6096 */ 6097 } 6098 return (buf); 6099 } 6100 6101 /* 6102 * Send an ICMP error after patching up the packet appropriately. Returns 6103 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6104 */ 6105 static boolean_t 6106 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6107 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6108 zoneid_t zoneid, ip_stack_t *ipst) 6109 { 6110 ipha_t *ipha; 6111 mblk_t *first_mp; 6112 boolean_t secure; 6113 unsigned char db_type; 6114 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6115 6116 first_mp = mp; 6117 if (mctl_present) { 6118 mp = mp->b_cont; 6119 secure = ipsec_in_is_secure(first_mp); 6120 ASSERT(mp != NULL); 6121 } else { 6122 /* 6123 * If this is an ICMP error being reported - which goes 6124 * up as M_CTLs, we need to convert them to M_DATA till 6125 * we finish checking with global policy because 6126 * ipsec_check_global_policy() assumes M_DATA as clear 6127 * and M_CTL as secure. 6128 */ 6129 db_type = DB_TYPE(mp); 6130 DB_TYPE(mp) = M_DATA; 6131 secure = B_FALSE; 6132 } 6133 /* 6134 * We are generating an icmp error for some inbound packet. 6135 * Called from all ip_fanout_(udp, tcp, proto) functions. 6136 * Before we generate an error, check with global policy 6137 * to see whether this is allowed to enter the system. As 6138 * there is no "conn", we are checking with global policy. 6139 */ 6140 ipha = (ipha_t *)mp->b_rptr; 6141 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6142 first_mp = ipsec_check_global_policy(first_mp, NULL, 6143 ipha, NULL, mctl_present, ipst->ips_netstack); 6144 if (first_mp == NULL) 6145 return (B_FALSE); 6146 } 6147 6148 if (!mctl_present) 6149 DB_TYPE(mp) = db_type; 6150 6151 if (flags & IP_FF_SEND_ICMP) { 6152 if (flags & IP_FF_HDR_COMPLETE) { 6153 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6154 freemsg(first_mp); 6155 return (B_TRUE); 6156 } 6157 } 6158 if (flags & IP_FF_CKSUM) { 6159 /* 6160 * Have to correct checksum since 6161 * the packet might have been 6162 * fragmented and the reassembly code in ip_rput 6163 * does not restore the IP checksum. 6164 */ 6165 ipha->ipha_hdr_checksum = 0; 6166 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6167 } 6168 switch (icmp_type) { 6169 case ICMP_DEST_UNREACHABLE: 6170 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6171 ipst); 6172 break; 6173 default: 6174 freemsg(first_mp); 6175 break; 6176 } 6177 } else { 6178 freemsg(first_mp); 6179 return (B_FALSE); 6180 } 6181 6182 return (B_TRUE); 6183 } 6184 6185 /* 6186 * Used to send an ICMP error message when a packet is received for 6187 * a protocol that is not supported. The mblk passed as argument 6188 * is consumed by this function. 6189 */ 6190 void 6191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6192 ip_stack_t *ipst) 6193 { 6194 mblk_t *mp; 6195 ipha_t *ipha; 6196 ill_t *ill; 6197 ipsec_in_t *ii; 6198 6199 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6200 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6201 6202 mp = ipsec_mp->b_cont; 6203 ipsec_mp->b_cont = NULL; 6204 ipha = (ipha_t *)mp->b_rptr; 6205 /* Get ill from index in ipsec_in_t. */ 6206 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6207 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6208 ipst); 6209 if (ill != NULL) { 6210 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6211 if (ip_fanout_send_icmp(q, mp, flags, 6212 ICMP_DEST_UNREACHABLE, 6213 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6214 BUMP_MIB(ill->ill_ip_mib, 6215 ipIfStatsInUnknownProtos); 6216 } 6217 } else { 6218 if (ip_fanout_send_icmp_v6(q, mp, flags, 6219 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6220 0, B_FALSE, zoneid, ipst)) { 6221 BUMP_MIB(ill->ill_ip_mib, 6222 ipIfStatsInUnknownProtos); 6223 } 6224 } 6225 ill_refrele(ill); 6226 } else { /* re-link for the freemsg() below. */ 6227 ipsec_mp->b_cont = mp; 6228 } 6229 6230 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6231 freemsg(ipsec_mp); 6232 } 6233 6234 /* 6235 * See if the inbound datagram has had IPsec processing applied to it. 6236 */ 6237 boolean_t 6238 ipsec_in_is_secure(mblk_t *ipsec_mp) 6239 { 6240 ipsec_in_t *ii; 6241 6242 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6243 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6244 6245 if (ii->ipsec_in_loopback) { 6246 return (ii->ipsec_in_secure); 6247 } else { 6248 return (ii->ipsec_in_ah_sa != NULL || 6249 ii->ipsec_in_esp_sa != NULL || 6250 ii->ipsec_in_decaps); 6251 } 6252 } 6253 6254 /* 6255 * Handle protocols with which IP is less intimate. There 6256 * can be more than one stream bound to a particular 6257 * protocol. When this is the case, normally each one gets a copy 6258 * of any incoming packets. 6259 * 6260 * IPsec NOTE : 6261 * 6262 * Don't allow a secure packet going up a non-secure connection. 6263 * We don't allow this because 6264 * 6265 * 1) Reply might go out in clear which will be dropped at 6266 * the sending side. 6267 * 2) If the reply goes out in clear it will give the 6268 * adversary enough information for getting the key in 6269 * most of the cases. 6270 * 6271 * Moreover getting a secure packet when we expect clear 6272 * implies that SA's were added without checking for 6273 * policy on both ends. This should not happen once ISAKMP 6274 * is used to negotiate SAs as SAs will be added only after 6275 * verifying the policy. 6276 * 6277 * NOTE : If the packet was tunneled and not multicast we only send 6278 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6279 * back to delivering packets to AF_INET6 raw sockets. 6280 * 6281 * IPQoS Notes: 6282 * Once we have determined the client, invoke IPPF processing. 6283 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6284 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6285 * ip_policy will be false. 6286 * 6287 * Zones notes: 6288 * Currently only applications in the global zone can create raw sockets for 6289 * protocols other than ICMP. So unlike the broadcast / multicast case of 6290 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6291 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6292 */ 6293 static void 6294 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6295 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6296 zoneid_t zoneid) 6297 { 6298 queue_t *rq; 6299 mblk_t *mp1, *first_mp1; 6300 uint_t protocol = ipha->ipha_protocol; 6301 ipaddr_t dst; 6302 boolean_t one_only; 6303 mblk_t *first_mp = mp; 6304 boolean_t secure; 6305 uint32_t ill_index; 6306 conn_t *connp, *first_connp, *next_connp; 6307 connf_t *connfp; 6308 boolean_t shared_addr; 6309 mib2_ipIfStatsEntry_t *mibptr; 6310 ip_stack_t *ipst = recv_ill->ill_ipst; 6311 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6312 6313 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6314 if (mctl_present) { 6315 mp = first_mp->b_cont; 6316 secure = ipsec_in_is_secure(first_mp); 6317 ASSERT(mp != NULL); 6318 } else { 6319 secure = B_FALSE; 6320 } 6321 dst = ipha->ipha_dst; 6322 /* 6323 * If the packet was tunneled and not multicast we only send to it 6324 * the first match. 6325 */ 6326 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6327 !CLASSD(dst)); 6328 6329 shared_addr = (zoneid == ALL_ZONES); 6330 if (shared_addr) { 6331 /* 6332 * We don't allow multilevel ports for raw IP, so no need to 6333 * check for that here. 6334 */ 6335 zoneid = tsol_packet_to_zoneid(mp); 6336 } 6337 6338 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6339 mutex_enter(&connfp->connf_lock); 6340 connp = connfp->connf_head; 6341 for (connp = connfp->connf_head; connp != NULL; 6342 connp = connp->conn_next) { 6343 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6344 zoneid) && 6345 (!is_system_labeled() || 6346 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6347 connp))) { 6348 break; 6349 } 6350 } 6351 6352 if (connp == NULL || connp->conn_upq == NULL) { 6353 /* 6354 * No one bound to these addresses. Is 6355 * there a client that wants all 6356 * unclaimed datagrams? 6357 */ 6358 mutex_exit(&connfp->connf_lock); 6359 /* 6360 * Check for IPPROTO_ENCAP... 6361 */ 6362 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6363 /* 6364 * If an IPsec mblk is here on a multicast 6365 * tunnel (using ip_mroute stuff), check policy here, 6366 * THEN ship off to ip_mroute_decap(). 6367 * 6368 * BTW, If I match a configured IP-in-IP 6369 * tunnel, this path will not be reached, and 6370 * ip_mroute_decap will never be called. 6371 */ 6372 first_mp = ipsec_check_global_policy(first_mp, connp, 6373 ipha, NULL, mctl_present, ipst->ips_netstack); 6374 if (first_mp != NULL) { 6375 if (mctl_present) 6376 freeb(first_mp); 6377 ip_mroute_decap(q, mp, ill); 6378 } /* Else we already freed everything! */ 6379 } else { 6380 /* 6381 * Otherwise send an ICMP protocol unreachable. 6382 */ 6383 if (ip_fanout_send_icmp(q, first_mp, flags, 6384 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6385 mctl_present, zoneid, ipst)) { 6386 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6387 } 6388 } 6389 return; 6390 } 6391 CONN_INC_REF(connp); 6392 first_connp = connp; 6393 6394 /* 6395 * Only send message to one tunnel driver by immediately 6396 * terminating the loop. 6397 */ 6398 connp = one_only ? NULL : connp->conn_next; 6399 6400 for (;;) { 6401 while (connp != NULL) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6403 flags, zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, 6406 shared_addr, connp))) 6407 break; 6408 connp = connp->conn_next; 6409 } 6410 6411 /* 6412 * Copy the packet. 6413 */ 6414 if (connp == NULL || connp->conn_upq == NULL || 6415 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6416 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6417 /* 6418 * No more interested clients or memory 6419 * allocation failed 6420 */ 6421 connp = first_connp; 6422 break; 6423 } 6424 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6425 CONN_INC_REF(connp); 6426 mutex_exit(&connfp->connf_lock); 6427 rq = connp->conn_rq; 6428 if (!canputnext(rq)) { 6429 if (flags & IP_FF_RAWIP) { 6430 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6431 } else { 6432 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6433 } 6434 6435 freemsg(first_mp1); 6436 } else { 6437 /* 6438 * Don't enforce here if we're an actual tunnel - 6439 * let "tun" do it instead. 6440 */ 6441 if (!IPCL_IS_IPTUN(connp) && 6442 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6443 secure)) { 6444 first_mp1 = ipsec_check_inbound_policy 6445 (first_mp1, connp, ipha, NULL, 6446 mctl_present); 6447 } 6448 if (first_mp1 != NULL) { 6449 int in_flags = 0; 6450 /* 6451 * ip_fanout_proto also gets called from 6452 * icmp_inbound_error_fanout, in which case 6453 * the msg type is M_CTL. Don't add info 6454 * in this case for the time being. In future 6455 * when there is a need for knowing the 6456 * inbound iface index for ICMP error msgs, 6457 * then this can be changed. 6458 */ 6459 if (connp->conn_recvif) 6460 in_flags = IPF_RECVIF; 6461 /* 6462 * The ULP may support IP_RECVPKTINFO for both 6463 * IP v4 and v6 so pass the appropriate argument 6464 * based on conn IP version. 6465 */ 6466 if (connp->conn_ip_recvpktinfo) { 6467 if (connp->conn_af_isv6) { 6468 /* 6469 * V6 only needs index 6470 */ 6471 in_flags |= IPF_RECVIF; 6472 } else { 6473 /* 6474 * V4 needs index + 6475 * matching address. 6476 */ 6477 in_flags |= IPF_RECVADDR; 6478 } 6479 } 6480 if ((in_flags != 0) && 6481 (mp->b_datap->db_type != M_CTL)) { 6482 /* 6483 * the actual data will be 6484 * contained in b_cont upon 6485 * successful return of the 6486 * following call else 6487 * original mblk is returned 6488 */ 6489 ASSERT(recv_ill != NULL); 6490 mp1 = ip_add_info(mp1, recv_ill, 6491 in_flags, IPCL_ZONEID(connp), ipst); 6492 } 6493 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6494 if (mctl_present) 6495 freeb(first_mp1); 6496 (connp->conn_recv)(connp, mp1, NULL); 6497 } 6498 } 6499 mutex_enter(&connfp->connf_lock); 6500 /* Follow the next pointer before releasing the conn. */ 6501 next_connp = connp->conn_next; 6502 CONN_DEC_REF(connp); 6503 connp = next_connp; 6504 } 6505 6506 /* Last one. Send it upstream. */ 6507 mutex_exit(&connfp->connf_lock); 6508 6509 /* 6510 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6511 * will be set to false. 6512 */ 6513 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6514 ill_index = ill->ill_phyint->phyint_ifindex; 6515 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6516 if (mp == NULL) { 6517 CONN_DEC_REF(connp); 6518 if (mctl_present) { 6519 freeb(first_mp); 6520 } 6521 return; 6522 } 6523 } 6524 6525 rq = connp->conn_rq; 6526 if (!canputnext(rq)) { 6527 if (flags & IP_FF_RAWIP) { 6528 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6529 } else { 6530 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6531 } 6532 6533 freemsg(first_mp); 6534 } else { 6535 if (IPCL_IS_IPTUN(connp)) { 6536 /* 6537 * Tunneled packet. We enforce policy in the tunnel 6538 * module itself. 6539 * 6540 * Send the WHOLE packet up (incl. IPSEC_IN) without 6541 * a policy check. 6542 * FIXME to use conn_recv for tun later. 6543 */ 6544 putnext(rq, first_mp); 6545 CONN_DEC_REF(connp); 6546 return; 6547 } 6548 6549 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6550 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6551 ipha, NULL, mctl_present); 6552 } 6553 6554 if (first_mp != NULL) { 6555 int in_flags = 0; 6556 6557 /* 6558 * ip_fanout_proto also gets called 6559 * from icmp_inbound_error_fanout, in 6560 * which case the msg type is M_CTL. 6561 * Don't add info in this case for time 6562 * being. In future when there is a 6563 * need for knowing the inbound iface 6564 * index for ICMP error msgs, then this 6565 * can be changed 6566 */ 6567 if (connp->conn_recvif) 6568 in_flags = IPF_RECVIF; 6569 if (connp->conn_ip_recvpktinfo) { 6570 if (connp->conn_af_isv6) { 6571 /* 6572 * V6 only needs index 6573 */ 6574 in_flags |= IPF_RECVIF; 6575 } else { 6576 /* 6577 * V4 needs index + 6578 * matching address. 6579 */ 6580 in_flags |= IPF_RECVADDR; 6581 } 6582 } 6583 if ((in_flags != 0) && 6584 (mp->b_datap->db_type != M_CTL)) { 6585 6586 /* 6587 * the actual data will be contained in 6588 * b_cont upon successful return 6589 * of the following call else original 6590 * mblk is returned 6591 */ 6592 ASSERT(recv_ill != NULL); 6593 mp = ip_add_info(mp, recv_ill, 6594 in_flags, IPCL_ZONEID(connp), ipst); 6595 } 6596 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6597 (connp->conn_recv)(connp, mp, NULL); 6598 if (mctl_present) 6599 freeb(first_mp); 6600 } 6601 } 6602 CONN_DEC_REF(connp); 6603 } 6604 6605 /* 6606 * Fanout for TCP packets 6607 * The caller puts <fport, lport> in the ports parameter. 6608 * 6609 * IPQoS Notes 6610 * Before sending it to the client, invoke IPPF processing. 6611 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6612 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6613 * ip_policy is false. 6614 */ 6615 static void 6616 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6617 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6618 { 6619 mblk_t *first_mp; 6620 boolean_t secure; 6621 uint32_t ill_index; 6622 int ip_hdr_len; 6623 tcph_t *tcph; 6624 boolean_t syn_present = B_FALSE; 6625 conn_t *connp; 6626 ip_stack_t *ipst = recv_ill->ill_ipst; 6627 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6628 6629 ASSERT(recv_ill != NULL); 6630 6631 first_mp = mp; 6632 if (mctl_present) { 6633 ASSERT(first_mp->b_datap->db_type == M_CTL); 6634 mp = first_mp->b_cont; 6635 secure = ipsec_in_is_secure(first_mp); 6636 ASSERT(mp != NULL); 6637 } else { 6638 secure = B_FALSE; 6639 } 6640 6641 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6642 6643 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6644 zoneid, ipst)) == NULL) { 6645 /* 6646 * No connected connection or listener. Send a 6647 * TH_RST via tcp_xmit_listeners_reset. 6648 */ 6649 6650 /* Initiate IPPf processing, if needed. */ 6651 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6652 uint32_t ill_index; 6653 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6654 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6655 if (first_mp == NULL) 6656 return; 6657 } 6658 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6659 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6660 zoneid)); 6661 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6662 ipst->ips_netstack->netstack_tcp, NULL); 6663 return; 6664 } 6665 6666 /* 6667 * Allocate the SYN for the TCP connection here itself 6668 */ 6669 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6670 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6671 if (IPCL_IS_TCP(connp)) { 6672 squeue_t *sqp; 6673 6674 /* 6675 * For fused tcp loopback, assign the eager's 6676 * squeue to be that of the active connect's. 6677 * Note that we don't check for IP_FF_LOOPBACK 6678 * here since this routine gets called only 6679 * for loopback (unlike the IPv6 counterpart). 6680 */ 6681 ASSERT(Q_TO_CONN(q) != NULL); 6682 if (do_tcp_fusion && 6683 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6684 !secure && 6685 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6686 IPCL_IS_TCP(Q_TO_CONN(q))) { 6687 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6688 sqp = Q_TO_CONN(q)->conn_sqp; 6689 } else { 6690 sqp = IP_SQUEUE_GET(lbolt); 6691 } 6692 6693 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6694 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6695 syn_present = B_TRUE; 6696 } 6697 } 6698 6699 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6700 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6701 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6702 if ((flags & TH_RST) || (flags & TH_URG)) { 6703 CONN_DEC_REF(connp); 6704 freemsg(first_mp); 6705 return; 6706 } 6707 if (flags & TH_ACK) { 6708 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6709 ipst->ips_netstack->netstack_tcp, connp); 6710 CONN_DEC_REF(connp); 6711 return; 6712 } 6713 6714 CONN_DEC_REF(connp); 6715 freemsg(first_mp); 6716 return; 6717 } 6718 6719 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6720 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6721 NULL, mctl_present); 6722 if (first_mp == NULL) { 6723 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6724 CONN_DEC_REF(connp); 6725 return; 6726 } 6727 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6728 ASSERT(syn_present); 6729 if (mctl_present) { 6730 ASSERT(first_mp != mp); 6731 first_mp->b_datap->db_struioflag |= 6732 STRUIO_POLICY; 6733 } else { 6734 ASSERT(first_mp == mp); 6735 mp->b_datap->db_struioflag &= 6736 ~STRUIO_EAGER; 6737 mp->b_datap->db_struioflag |= 6738 STRUIO_POLICY; 6739 } 6740 } else { 6741 /* 6742 * Discard first_mp early since we're dealing with a 6743 * fully-connected conn_t and tcp doesn't do policy in 6744 * this case. 6745 */ 6746 if (mctl_present) { 6747 freeb(first_mp); 6748 mctl_present = B_FALSE; 6749 } 6750 first_mp = mp; 6751 } 6752 } 6753 6754 /* 6755 * Initiate policy processing here if needed. If we get here from 6756 * icmp_inbound_error_fanout, ip_policy is false. 6757 */ 6758 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6759 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6760 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6761 if (mp == NULL) { 6762 CONN_DEC_REF(connp); 6763 if (mctl_present) 6764 freeb(first_mp); 6765 return; 6766 } else if (mctl_present) { 6767 ASSERT(first_mp != mp); 6768 first_mp->b_cont = mp; 6769 } else { 6770 first_mp = mp; 6771 } 6772 } 6773 6774 6775 6776 /* Handle socket options. */ 6777 if (!syn_present && 6778 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6779 /* Add header */ 6780 ASSERT(recv_ill != NULL); 6781 /* 6782 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6783 * IPF_RECVIF. 6784 */ 6785 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6786 ipst); 6787 if (mp == NULL) { 6788 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6789 CONN_DEC_REF(connp); 6790 if (mctl_present) 6791 freeb(first_mp); 6792 return; 6793 } else if (mctl_present) { 6794 /* 6795 * ip_add_info might return a new mp. 6796 */ 6797 ASSERT(first_mp != mp); 6798 first_mp->b_cont = mp; 6799 } else { 6800 first_mp = mp; 6801 } 6802 } 6803 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6804 if (IPCL_IS_TCP(connp)) { 6805 /* do not drain, certain use cases can blow the stack */ 6806 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6807 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6808 } else { 6809 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6810 (connp->conn_recv)(connp, first_mp, NULL); 6811 CONN_DEC_REF(connp); 6812 } 6813 } 6814 6815 /* 6816 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6817 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6818 * is not consumed. 6819 * 6820 * One of four things can happen, all of which affect the passed-in mblk: 6821 * 6822 * 1.) ICMP messages that go through here just get returned TRUE. 6823 * 6824 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6825 * 6826 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6827 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6828 * 6829 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6830 */ 6831 static boolean_t 6832 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6833 ipsec_stack_t *ipss) 6834 { 6835 int shift, plen, iph_len; 6836 ipha_t *ipha; 6837 udpha_t *udpha; 6838 uint32_t *spi; 6839 uint8_t *orptr; 6840 boolean_t udp_pkt, free_ire; 6841 6842 if (DB_TYPE(mp) == M_CTL) { 6843 /* 6844 * ICMP message with UDP inside. Don't bother stripping, just 6845 * send it up. 6846 * 6847 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6848 * to ignore errors set by ICMP anyway ('cause they might be 6849 * forged), but that's the app's decision, not ours. 6850 */ 6851 6852 /* Bunch of reality checks for DEBUG kernels... */ 6853 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6854 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6855 6856 return (B_TRUE); 6857 } 6858 6859 ipha = (ipha_t *)mp->b_rptr; 6860 iph_len = IPH_HDR_LENGTH(ipha); 6861 plen = ntohs(ipha->ipha_length); 6862 6863 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6864 /* 6865 * Most likely a keepalive for the benefit of an intervening 6866 * NAT. These aren't for us, per se, so drop it. 6867 * 6868 * RFC 3947/8 doesn't say for sure what to do for 2-3 6869 * byte packets (keepalives are 1-byte), but we'll drop them 6870 * also. 6871 */ 6872 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6873 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6874 return (B_FALSE); 6875 } 6876 6877 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6878 /* might as well pull it all up - it might be ESP. */ 6879 if (!pullupmsg(mp, -1)) { 6880 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6881 DROPPER(ipss, ipds_esp_nomem), 6882 &ipss->ipsec_dropper); 6883 return (B_FALSE); 6884 } 6885 6886 ipha = (ipha_t *)mp->b_rptr; 6887 } 6888 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6889 if (*spi == 0) { 6890 /* UDP packet - remove 0-spi. */ 6891 shift = sizeof (uint32_t); 6892 } else { 6893 /* ESP-in-UDP packet - reduce to ESP. */ 6894 ipha->ipha_protocol = IPPROTO_ESP; 6895 shift = sizeof (udpha_t); 6896 } 6897 6898 /* Fix IP header */ 6899 ipha->ipha_length = htons(plen - shift); 6900 ipha->ipha_hdr_checksum = 0; 6901 6902 orptr = mp->b_rptr; 6903 mp->b_rptr += shift; 6904 6905 if (*spi == 0) { 6906 ASSERT((uint8_t *)ipha == orptr); 6907 udpha = (udpha_t *)(orptr + iph_len); 6908 udpha->uha_length = htons(plen - shift - iph_len); 6909 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6910 udp_pkt = B_TRUE; 6911 } else { 6912 udp_pkt = B_FALSE; 6913 } 6914 ovbcopy(orptr, orptr + shift, iph_len); 6915 if (!udp_pkt) /* Punt up for ESP processing. */ { 6916 ipha = (ipha_t *)(orptr + shift); 6917 6918 free_ire = (ire == NULL); 6919 if (free_ire) { 6920 /* Re-acquire ire. */ 6921 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6922 ipss->ipsec_netstack->netstack_ip); 6923 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6924 if (ire != NULL) 6925 ire_refrele(ire); 6926 /* 6927 * Do a regular freemsg(), as this is an IP 6928 * error (no local route) not an IPsec one. 6929 */ 6930 freemsg(mp); 6931 } 6932 } 6933 6934 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6935 if (free_ire) 6936 ire_refrele(ire); 6937 } 6938 6939 return (udp_pkt); 6940 } 6941 6942 /* 6943 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6944 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6945 * Caller is responsible for dropping references to the conn, and freeing 6946 * first_mp. 6947 * 6948 * IPQoS Notes 6949 * Before sending it to the client, invoke IPPF processing. Policy processing 6950 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6951 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6952 * ip_wput_local, ip_policy is false. 6953 */ 6954 static void 6955 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6956 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6957 boolean_t ip_policy) 6958 { 6959 boolean_t mctl_present = (first_mp != NULL); 6960 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6961 uint32_t ill_index; 6962 ip_stack_t *ipst = recv_ill->ill_ipst; 6963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6964 6965 ASSERT(ill != NULL); 6966 6967 if (mctl_present) 6968 first_mp->b_cont = mp; 6969 else 6970 first_mp = mp; 6971 6972 if (CONN_UDP_FLOWCTLD(connp)) { 6973 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6974 freemsg(first_mp); 6975 return; 6976 } 6977 6978 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6979 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6980 NULL, mctl_present); 6981 if (first_mp == NULL) { 6982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6983 return; /* Freed by ipsec_check_inbound_policy(). */ 6984 } 6985 } 6986 if (mctl_present) 6987 freeb(first_mp); 6988 6989 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6990 if (connp->conn_udp->udp_nat_t_endpoint) { 6991 if (mctl_present) { 6992 /* mctl_present *shouldn't* happen. */ 6993 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6994 DROPPER(ipss, ipds_esp_nat_t_ipsec), 6995 &ipss->ipsec_dropper); 6996 return; 6997 } 6998 6999 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7000 return; 7001 } 7002 7003 /* Handle options. */ 7004 if (connp->conn_recvif) 7005 in_flags = IPF_RECVIF; 7006 /* 7007 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7008 * passed to ip_add_info is based on IP version of connp. 7009 */ 7010 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7011 if (connp->conn_af_isv6) { 7012 /* 7013 * V6 only needs index 7014 */ 7015 in_flags |= IPF_RECVIF; 7016 } else { 7017 /* 7018 * V4 needs index + matching address. 7019 */ 7020 in_flags |= IPF_RECVADDR; 7021 } 7022 } 7023 7024 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7025 in_flags |= IPF_RECVSLLA; 7026 7027 /* 7028 * Initiate IPPF processing here, if needed. Note first_mp won't be 7029 * freed if the packet is dropped. The caller will do so. 7030 */ 7031 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7032 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7033 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7034 if (mp == NULL) { 7035 return; 7036 } 7037 } 7038 if ((in_flags != 0) && 7039 (mp->b_datap->db_type != M_CTL)) { 7040 /* 7041 * The actual data will be contained in b_cont 7042 * upon successful return of the following call 7043 * else original mblk is returned 7044 */ 7045 ASSERT(recv_ill != NULL); 7046 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7047 ipst); 7048 } 7049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7050 /* Send it upstream */ 7051 (connp->conn_recv)(connp, mp, NULL); 7052 } 7053 7054 /* 7055 * Fanout for UDP packets. 7056 * The caller puts <fport, lport> in the ports parameter. 7057 * 7058 * If SO_REUSEADDR is set all multicast and broadcast packets 7059 * will be delivered to all streams bound to the same port. 7060 * 7061 * Zones notes: 7062 * Multicast and broadcast packets will be distributed to streams in all zones. 7063 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7064 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7065 * packets. To maintain this behavior with multiple zones, the conns are grouped 7066 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7067 * each zone. If unset, all the following conns in the same zone are skipped. 7068 */ 7069 static void 7070 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7071 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7072 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7073 { 7074 uint32_t dstport, srcport; 7075 ipaddr_t dst; 7076 mblk_t *first_mp; 7077 boolean_t secure; 7078 in6_addr_t v6src; 7079 conn_t *connp; 7080 connf_t *connfp; 7081 conn_t *first_connp; 7082 conn_t *next_connp; 7083 mblk_t *mp1, *first_mp1; 7084 ipaddr_t src; 7085 zoneid_t last_zoneid; 7086 boolean_t reuseaddr; 7087 boolean_t shared_addr; 7088 boolean_t unlabeled; 7089 ip_stack_t *ipst; 7090 7091 ASSERT(recv_ill != NULL); 7092 ipst = recv_ill->ill_ipst; 7093 7094 first_mp = mp; 7095 if (mctl_present) { 7096 mp = first_mp->b_cont; 7097 first_mp->b_cont = NULL; 7098 secure = ipsec_in_is_secure(first_mp); 7099 ASSERT(mp != NULL); 7100 } else { 7101 first_mp = NULL; 7102 secure = B_FALSE; 7103 } 7104 7105 /* Extract ports in net byte order */ 7106 dstport = htons(ntohl(ports) & 0xFFFF); 7107 srcport = htons(ntohl(ports) >> 16); 7108 dst = ipha->ipha_dst; 7109 src = ipha->ipha_src; 7110 7111 unlabeled = B_FALSE; 7112 if (is_system_labeled()) 7113 /* Cred cannot be null on IPv4 */ 7114 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7115 TSLF_UNLABELED) != 0; 7116 shared_addr = (zoneid == ALL_ZONES); 7117 if (shared_addr) { 7118 /* 7119 * No need to handle exclusive-stack zones since ALL_ZONES 7120 * only applies to the shared stack. 7121 */ 7122 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7123 /* 7124 * If no shared MLP is found, tsol_mlp_findzone returns 7125 * ALL_ZONES. In that case, we assume it's SLP, and 7126 * search for the zone based on the packet label. 7127 * 7128 * If there is such a zone, we prefer to find a 7129 * connection in it. Otherwise, we look for a 7130 * MAC-exempt connection in any zone whose label 7131 * dominates the default label on the packet. 7132 */ 7133 if (zoneid == ALL_ZONES) 7134 zoneid = tsol_packet_to_zoneid(mp); 7135 else 7136 unlabeled = B_FALSE; 7137 } 7138 7139 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7140 mutex_enter(&connfp->connf_lock); 7141 connp = connfp->connf_head; 7142 if (!broadcast && !CLASSD(dst)) { 7143 /* 7144 * Not broadcast or multicast. Send to the one (first) 7145 * client we find. No need to check conn_wantpacket() 7146 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7147 * IPv4 unicast packets. 7148 */ 7149 while ((connp != NULL) && 7150 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7151 (!IPCL_ZONE_MATCH(connp, zoneid) && 7152 !(unlabeled && connp->conn_mac_exempt)))) { 7153 /* 7154 * We keep searching since the conn did not match, 7155 * or its zone did not match and it is not either 7156 * an allzones conn or a mac exempt conn (if the 7157 * sender is unlabeled.) 7158 */ 7159 connp = connp->conn_next; 7160 } 7161 7162 if (connp == NULL || connp->conn_upq == NULL) 7163 goto notfound; 7164 7165 if (is_system_labeled() && 7166 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7167 connp)) 7168 goto notfound; 7169 7170 CONN_INC_REF(connp); 7171 mutex_exit(&connfp->connf_lock); 7172 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7173 flags, recv_ill, ip_policy); 7174 IP_STAT(ipst, ip_udp_fannorm); 7175 CONN_DEC_REF(connp); 7176 return; 7177 } 7178 7179 /* 7180 * Broadcast and multicast case 7181 * 7182 * Need to check conn_wantpacket(). 7183 * If SO_REUSEADDR has been set on the first we send the 7184 * packet to all clients that have joined the group and 7185 * match the port. 7186 */ 7187 7188 while (connp != NULL) { 7189 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7190 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7191 (!is_system_labeled() || 7192 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7193 connp))) 7194 break; 7195 connp = connp->conn_next; 7196 } 7197 7198 if (connp == NULL || connp->conn_upq == NULL) 7199 goto notfound; 7200 7201 first_connp = connp; 7202 /* 7203 * When SO_REUSEADDR is not set, send the packet only to the first 7204 * matching connection in its zone by keeping track of the zoneid. 7205 */ 7206 reuseaddr = first_connp->conn_reuseaddr; 7207 last_zoneid = first_connp->conn_zoneid; 7208 7209 CONN_INC_REF(connp); 7210 connp = connp->conn_next; 7211 for (;;) { 7212 while (connp != NULL) { 7213 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7214 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7215 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7216 (!is_system_labeled() || 7217 tsol_receive_local(mp, &dst, IPV4_VERSION, 7218 shared_addr, connp))) 7219 break; 7220 connp = connp->conn_next; 7221 } 7222 /* 7223 * Just copy the data part alone. The mctl part is 7224 * needed just for verifying policy and it is never 7225 * sent up. 7226 */ 7227 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7228 ((mp1 = copymsg(mp)) == NULL))) { 7229 /* 7230 * No more interested clients or memory 7231 * allocation failed 7232 */ 7233 connp = first_connp; 7234 break; 7235 } 7236 if (connp->conn_zoneid != last_zoneid) { 7237 /* 7238 * Update the zoneid so that the packet isn't sent to 7239 * any more conns in the same zone unless SO_REUSEADDR 7240 * is set. 7241 */ 7242 reuseaddr = connp->conn_reuseaddr; 7243 last_zoneid = connp->conn_zoneid; 7244 } 7245 if (first_mp != NULL) { 7246 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7247 ipsec_info_type == IPSEC_IN); 7248 first_mp1 = ipsec_in_tag(first_mp, NULL, 7249 ipst->ips_netstack); 7250 if (first_mp1 == NULL) { 7251 freemsg(mp1); 7252 connp = first_connp; 7253 break; 7254 } 7255 } else { 7256 first_mp1 = NULL; 7257 } 7258 CONN_INC_REF(connp); 7259 mutex_exit(&connfp->connf_lock); 7260 /* 7261 * IPQoS notes: We don't send the packet for policy 7262 * processing here, will do it for the last one (below). 7263 * i.e. we do it per-packet now, but if we do policy 7264 * processing per-conn, then we would need to do it 7265 * here too. 7266 */ 7267 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7268 ipha, flags, recv_ill, B_FALSE); 7269 mutex_enter(&connfp->connf_lock); 7270 /* Follow the next pointer before releasing the conn. */ 7271 next_connp = connp->conn_next; 7272 IP_STAT(ipst, ip_udp_fanmb); 7273 CONN_DEC_REF(connp); 7274 connp = next_connp; 7275 } 7276 7277 /* Last one. Send it upstream. */ 7278 mutex_exit(&connfp->connf_lock); 7279 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7280 recv_ill, ip_policy); 7281 IP_STAT(ipst, ip_udp_fanmb); 7282 CONN_DEC_REF(connp); 7283 return; 7284 7285 notfound: 7286 7287 mutex_exit(&connfp->connf_lock); 7288 IP_STAT(ipst, ip_udp_fanothers); 7289 /* 7290 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7291 * have already been matched above, since they live in the IPv4 7292 * fanout tables. This implies we only need to 7293 * check for IPv6 in6addr_any endpoints here. 7294 * Thus we compare using ipv6_all_zeros instead of the destination 7295 * address, except for the multicast group membership lookup which 7296 * uses the IPv4 destination. 7297 */ 7298 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7299 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7300 mutex_enter(&connfp->connf_lock); 7301 connp = connfp->connf_head; 7302 if (!broadcast && !CLASSD(dst)) { 7303 while (connp != NULL) { 7304 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7305 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7306 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7307 !connp->conn_ipv6_v6only) 7308 break; 7309 connp = connp->conn_next; 7310 } 7311 7312 if (connp != NULL && is_system_labeled() && 7313 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7314 connp)) 7315 connp = NULL; 7316 7317 if (connp == NULL || connp->conn_upq == NULL) { 7318 /* 7319 * No one bound to this port. Is 7320 * there a client that wants all 7321 * unclaimed datagrams? 7322 */ 7323 mutex_exit(&connfp->connf_lock); 7324 7325 if (mctl_present) 7326 first_mp->b_cont = mp; 7327 else 7328 first_mp = mp; 7329 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7330 connf_head != NULL) { 7331 ip_fanout_proto(q, first_mp, ill, ipha, 7332 flags | IP_FF_RAWIP, mctl_present, 7333 ip_policy, recv_ill, zoneid); 7334 } else { 7335 if (ip_fanout_send_icmp(q, first_mp, flags, 7336 ICMP_DEST_UNREACHABLE, 7337 ICMP_PORT_UNREACHABLE, 7338 mctl_present, zoneid, ipst)) { 7339 BUMP_MIB(ill->ill_ip_mib, 7340 udpIfStatsNoPorts); 7341 } 7342 } 7343 return; 7344 } 7345 7346 CONN_INC_REF(connp); 7347 mutex_exit(&connfp->connf_lock); 7348 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7349 flags, recv_ill, ip_policy); 7350 CONN_DEC_REF(connp); 7351 return; 7352 } 7353 /* 7354 * IPv4 multicast packet being delivered to an AF_INET6 7355 * in6addr_any endpoint. 7356 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7357 * and not conn_wantpacket_v6() since any multicast membership is 7358 * for an IPv4-mapped multicast address. 7359 * The packet is sent to all clients in all zones that have joined the 7360 * group and match the port. 7361 */ 7362 while (connp != NULL) { 7363 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7364 srcport, v6src) && 7365 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7366 (!is_system_labeled() || 7367 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7368 connp))) 7369 break; 7370 connp = connp->conn_next; 7371 } 7372 7373 if (connp == NULL || connp->conn_upq == NULL) { 7374 /* 7375 * No one bound to this port. Is 7376 * there a client that wants all 7377 * unclaimed datagrams? 7378 */ 7379 mutex_exit(&connfp->connf_lock); 7380 7381 if (mctl_present) 7382 first_mp->b_cont = mp; 7383 else 7384 first_mp = mp; 7385 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7386 NULL) { 7387 ip_fanout_proto(q, first_mp, ill, ipha, 7388 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7389 recv_ill, zoneid); 7390 } else { 7391 /* 7392 * We used to attempt to send an icmp error here, but 7393 * since this is known to be a multicast packet 7394 * and we don't send icmp errors in response to 7395 * multicast, just drop the packet and give up sooner. 7396 */ 7397 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7398 freemsg(first_mp); 7399 } 7400 return; 7401 } 7402 7403 first_connp = connp; 7404 7405 CONN_INC_REF(connp); 7406 connp = connp->conn_next; 7407 for (;;) { 7408 while (connp != NULL) { 7409 if (IPCL_UDP_MATCH_V6(connp, dstport, 7410 ipv6_all_zeros, srcport, v6src) && 7411 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7412 (!is_system_labeled() || 7413 tsol_receive_local(mp, &dst, IPV4_VERSION, 7414 shared_addr, connp))) 7415 break; 7416 connp = connp->conn_next; 7417 } 7418 /* 7419 * Just copy the data part alone. The mctl part is 7420 * needed just for verifying policy and it is never 7421 * sent up. 7422 */ 7423 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7424 ((mp1 = copymsg(mp)) == NULL))) { 7425 /* 7426 * No more intested clients or memory 7427 * allocation failed 7428 */ 7429 connp = first_connp; 7430 break; 7431 } 7432 if (first_mp != NULL) { 7433 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7434 ipsec_info_type == IPSEC_IN); 7435 first_mp1 = ipsec_in_tag(first_mp, NULL, 7436 ipst->ips_netstack); 7437 if (first_mp1 == NULL) { 7438 freemsg(mp1); 7439 connp = first_connp; 7440 break; 7441 } 7442 } else { 7443 first_mp1 = NULL; 7444 } 7445 CONN_INC_REF(connp); 7446 mutex_exit(&connfp->connf_lock); 7447 /* 7448 * IPQoS notes: We don't send the packet for policy 7449 * processing here, will do it for the last one (below). 7450 * i.e. we do it per-packet now, but if we do policy 7451 * processing per-conn, then we would need to do it 7452 * here too. 7453 */ 7454 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7455 ipha, flags, recv_ill, B_FALSE); 7456 mutex_enter(&connfp->connf_lock); 7457 /* Follow the next pointer before releasing the conn. */ 7458 next_connp = connp->conn_next; 7459 CONN_DEC_REF(connp); 7460 connp = next_connp; 7461 } 7462 7463 /* Last one. Send it upstream. */ 7464 mutex_exit(&connfp->connf_lock); 7465 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7466 recv_ill, ip_policy); 7467 CONN_DEC_REF(connp); 7468 } 7469 7470 /* 7471 * Complete the ip_wput header so that it 7472 * is possible to generate ICMP 7473 * errors. 7474 */ 7475 int 7476 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7477 { 7478 ire_t *ire; 7479 7480 if (ipha->ipha_src == INADDR_ANY) { 7481 ire = ire_lookup_local(zoneid, ipst); 7482 if (ire == NULL) { 7483 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7484 return (1); 7485 } 7486 ipha->ipha_src = ire->ire_addr; 7487 ire_refrele(ire); 7488 } 7489 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7490 ipha->ipha_hdr_checksum = 0; 7491 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7492 return (0); 7493 } 7494 7495 /* 7496 * Nobody should be sending 7497 * packets up this stream 7498 */ 7499 static void 7500 ip_lrput(queue_t *q, mblk_t *mp) 7501 { 7502 mblk_t *mp1; 7503 7504 switch (mp->b_datap->db_type) { 7505 case M_FLUSH: 7506 /* Turn around */ 7507 if (*mp->b_rptr & FLUSHW) { 7508 *mp->b_rptr &= ~FLUSHR; 7509 qreply(q, mp); 7510 return; 7511 } 7512 break; 7513 } 7514 /* Could receive messages that passed through ar_rput */ 7515 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7516 mp1->b_prev = mp1->b_next = NULL; 7517 freemsg(mp); 7518 } 7519 7520 /* Nobody should be sending packets down this stream */ 7521 /* ARGSUSED */ 7522 void 7523 ip_lwput(queue_t *q, mblk_t *mp) 7524 { 7525 freemsg(mp); 7526 } 7527 7528 /* 7529 * Move the first hop in any source route to ipha_dst and remove that part of 7530 * the source route. Called by other protocols. Errors in option formatting 7531 * are ignored - will be handled by ip_wput_options Return the final 7532 * destination (either ipha_dst or the last entry in a source route.) 7533 */ 7534 ipaddr_t 7535 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7536 { 7537 ipoptp_t opts; 7538 uchar_t *opt; 7539 uint8_t optval; 7540 uint8_t optlen; 7541 ipaddr_t dst; 7542 int i; 7543 ire_t *ire; 7544 ip_stack_t *ipst = ns->netstack_ip; 7545 7546 ip2dbg(("ip_massage_options\n")); 7547 dst = ipha->ipha_dst; 7548 for (optval = ipoptp_first(&opts, ipha); 7549 optval != IPOPT_EOL; 7550 optval = ipoptp_next(&opts)) { 7551 opt = opts.ipoptp_cur; 7552 switch (optval) { 7553 uint8_t off; 7554 case IPOPT_SSRR: 7555 case IPOPT_LSRR: 7556 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7557 ip1dbg(("ip_massage_options: bad src route\n")); 7558 break; 7559 } 7560 optlen = opts.ipoptp_len; 7561 off = opt[IPOPT_OFFSET]; 7562 off--; 7563 redo_srr: 7564 if (optlen < IP_ADDR_LEN || 7565 off > optlen - IP_ADDR_LEN) { 7566 /* End of source route */ 7567 ip1dbg(("ip_massage_options: end of SR\n")); 7568 break; 7569 } 7570 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7571 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7572 ntohl(dst))); 7573 /* 7574 * Check if our address is present more than 7575 * once as consecutive hops in source route. 7576 * XXX verify per-interface ip_forwarding 7577 * for source route? 7578 */ 7579 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7580 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7581 if (ire != NULL) { 7582 ire_refrele(ire); 7583 off += IP_ADDR_LEN; 7584 goto redo_srr; 7585 } 7586 if (dst == htonl(INADDR_LOOPBACK)) { 7587 ip1dbg(("ip_massage_options: loopback addr in " 7588 "source route!\n")); 7589 break; 7590 } 7591 /* 7592 * Update ipha_dst to be the first hop and remove the 7593 * first hop from the source route (by overwriting 7594 * part of the option with NOP options). 7595 */ 7596 ipha->ipha_dst = dst; 7597 /* Put the last entry in dst */ 7598 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7599 3; 7600 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7601 7602 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7603 ntohl(dst))); 7604 /* Move down and overwrite */ 7605 opt[IP_ADDR_LEN] = opt[0]; 7606 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7607 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7608 for (i = 0; i < IP_ADDR_LEN; i++) 7609 opt[i] = IPOPT_NOP; 7610 break; 7611 } 7612 } 7613 return (dst); 7614 } 7615 7616 /* 7617 * Return the network mask 7618 * associated with the specified address. 7619 */ 7620 ipaddr_t 7621 ip_net_mask(ipaddr_t addr) 7622 { 7623 uchar_t *up = (uchar_t *)&addr; 7624 ipaddr_t mask = 0; 7625 uchar_t *maskp = (uchar_t *)&mask; 7626 7627 #if defined(__i386) || defined(__amd64) 7628 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7629 #endif 7630 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7631 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7632 #endif 7633 if (CLASSD(addr)) { 7634 maskp[0] = 0xF0; 7635 return (mask); 7636 } 7637 7638 /* We assume Class E default netmask to be 32 */ 7639 if (CLASSE(addr)) 7640 return (0xffffffffU); 7641 7642 if (addr == 0) 7643 return (0); 7644 maskp[0] = 0xFF; 7645 if ((up[0] & 0x80) == 0) 7646 return (mask); 7647 7648 maskp[1] = 0xFF; 7649 if ((up[0] & 0xC0) == 0x80) 7650 return (mask); 7651 7652 maskp[2] = 0xFF; 7653 if ((up[0] & 0xE0) == 0xC0) 7654 return (mask); 7655 7656 /* Otherwise return no mask */ 7657 return ((ipaddr_t)0); 7658 } 7659 7660 /* 7661 * Select an ill for the packet by considering load spreading across 7662 * a different ill in the group if dst_ill is part of some group. 7663 */ 7664 ill_t * 7665 ip_newroute_get_dst_ill(ill_t *dst_ill) 7666 { 7667 ill_t *ill; 7668 7669 /* 7670 * We schedule irrespective of whether the source address is 7671 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7672 */ 7673 ill = illgrp_scheduler(dst_ill); 7674 if (ill == NULL) 7675 return (NULL); 7676 7677 /* 7678 * For groups with names ip_sioctl_groupname ensures that all 7679 * ills are of same type. For groups without names, ifgrp_insert 7680 * ensures this. 7681 */ 7682 ASSERT(dst_ill->ill_type == ill->ill_type); 7683 7684 return (ill); 7685 } 7686 7687 /* 7688 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7689 */ 7690 ill_t * 7691 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7692 ip_stack_t *ipst) 7693 { 7694 ill_t *ret_ill; 7695 7696 ASSERT(ifindex != 0); 7697 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7698 ipst); 7699 if (ret_ill == NULL || 7700 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7701 if (isv6) { 7702 if (ill != NULL) { 7703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7704 } else { 7705 BUMP_MIB(&ipst->ips_ip6_mib, 7706 ipIfStatsOutDiscards); 7707 } 7708 ip1dbg(("ip_grab_attach_ill (IPv6): " 7709 "bad ifindex %d.\n", ifindex)); 7710 } else { 7711 if (ill != NULL) { 7712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7713 } else { 7714 BUMP_MIB(&ipst->ips_ip_mib, 7715 ipIfStatsOutDiscards); 7716 } 7717 ip1dbg(("ip_grab_attach_ill (IPv4): " 7718 "bad ifindex %d.\n", ifindex)); 7719 } 7720 if (ret_ill != NULL) 7721 ill_refrele(ret_ill); 7722 freemsg(first_mp); 7723 return (NULL); 7724 } 7725 7726 return (ret_ill); 7727 } 7728 7729 /* 7730 * IPv4 - 7731 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7732 * out a packet to a destination address for which we do not have specific 7733 * (or sufficient) routing information. 7734 * 7735 * NOTE : These are the scopes of some of the variables that point at IRE, 7736 * which needs to be followed while making any future modifications 7737 * to avoid memory leaks. 7738 * 7739 * - ire and sire are the entries looked up initially by 7740 * ire_ftable_lookup. 7741 * - ipif_ire is used to hold the interface ire associated with 7742 * the new cache ire. But it's scope is limited, so we always REFRELE 7743 * it before branching out to error paths. 7744 * - save_ire is initialized before ire_create, so that ire returned 7745 * by ire_create will not over-write the ire. We REFRELE save_ire 7746 * before breaking out of the switch. 7747 * 7748 * Thus on failures, we have to REFRELE only ire and sire, if they 7749 * are not NULL. 7750 */ 7751 void 7752 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7753 zoneid_t zoneid, ip_stack_t *ipst) 7754 { 7755 areq_t *areq; 7756 ipaddr_t gw = 0; 7757 ire_t *ire = NULL; 7758 mblk_t *res_mp; 7759 ipaddr_t *addrp; 7760 ipaddr_t nexthop_addr; 7761 ipif_t *src_ipif = NULL; 7762 ill_t *dst_ill = NULL; 7763 ipha_t *ipha; 7764 ire_t *sire = NULL; 7765 mblk_t *first_mp; 7766 ire_t *save_ire; 7767 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7768 ushort_t ire_marks = 0; 7769 boolean_t mctl_present; 7770 ipsec_out_t *io; 7771 mblk_t *saved_mp; 7772 ire_t *first_sire = NULL; 7773 mblk_t *copy_mp = NULL; 7774 mblk_t *xmit_mp = NULL; 7775 ipaddr_t save_dst; 7776 uint32_t multirt_flags = 7777 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7778 boolean_t multirt_is_resolvable; 7779 boolean_t multirt_resolve_next; 7780 boolean_t unspec_src; 7781 boolean_t do_attach_ill = B_FALSE; 7782 boolean_t ip_nexthop = B_FALSE; 7783 tsol_ire_gw_secattr_t *attrp = NULL; 7784 tsol_gcgrp_t *gcgrp = NULL; 7785 tsol_gcgrp_addr_t ga; 7786 7787 if (ip_debug > 2) { 7788 /* ip1dbg */ 7789 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7790 } 7791 7792 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7793 if (mctl_present) { 7794 io = (ipsec_out_t *)first_mp->b_rptr; 7795 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7796 ASSERT(zoneid == io->ipsec_out_zoneid); 7797 ASSERT(zoneid != ALL_ZONES); 7798 } 7799 7800 ipha = (ipha_t *)mp->b_rptr; 7801 7802 /* All multicast lookups come through ip_newroute_ipif() */ 7803 if (CLASSD(dst)) { 7804 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7805 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7806 freemsg(first_mp); 7807 return; 7808 } 7809 7810 if (mctl_present && io->ipsec_out_attach_if) { 7811 /* ip_grab_attach_ill returns a held ill */ 7812 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7813 io->ipsec_out_ill_index, B_FALSE, ipst); 7814 7815 /* Failure case frees things for us. */ 7816 if (attach_ill == NULL) 7817 return; 7818 7819 /* 7820 * Check if we need an ire that will not be 7821 * looked up by anybody else i.e. HIDDEN. 7822 */ 7823 if (ill_is_probeonly(attach_ill)) 7824 ire_marks = IRE_MARK_HIDDEN; 7825 } 7826 if (mctl_present && io->ipsec_out_ip_nexthop) { 7827 ip_nexthop = B_TRUE; 7828 nexthop_addr = io->ipsec_out_nexthop_addr; 7829 } 7830 /* 7831 * If this IRE is created for forwarding or it is not for 7832 * traffic for congestion controlled protocols, mark it as temporary. 7833 */ 7834 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7835 ire_marks |= IRE_MARK_TEMPORARY; 7836 7837 /* 7838 * Get what we can from ire_ftable_lookup which will follow an IRE 7839 * chain until it gets the most specific information available. 7840 * For example, we know that there is no IRE_CACHE for this dest, 7841 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7842 * ire_ftable_lookup will look up the gateway, etc. 7843 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7844 * to the destination, of equal netmask length in the forward table, 7845 * will be recursively explored. If no information is available 7846 * for the final gateway of that route, we force the returned ire 7847 * to be equal to sire using MATCH_IRE_PARENT. 7848 * At least, in this case we have a starting point (in the buckets) 7849 * to look for other routes to the destination in the forward table. 7850 * This is actually used only for multirouting, where a list 7851 * of routes has to be processed in sequence. 7852 * 7853 * In the process of coming up with the most specific information, 7854 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7855 * for the gateway (i.e., one for which the ire_nce->nce_state is 7856 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7857 * Two caveats when handling incomplete ire's in ip_newroute: 7858 * - we should be careful when accessing its ire_nce (specifically 7859 * the nce_res_mp) ast it might change underneath our feet, and, 7860 * - not all legacy code path callers are prepared to handle 7861 * incomplete ire's, so we should not create/add incomplete 7862 * ire_cache entries here. (See discussion about temporary solution 7863 * further below). 7864 * 7865 * In order to minimize packet dropping, and to preserve existing 7866 * behavior, we treat this case as if there were no IRE_CACHE for the 7867 * gateway, and instead use the IF_RESOLVER ire to send out 7868 * another request to ARP (this is achieved by passing the 7869 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7870 * arp response comes back in ip_wput_nondata, we will create 7871 * a per-dst ire_cache that has an ND_COMPLETE ire. 7872 * 7873 * Note that this is a temporary solution; the correct solution is 7874 * to create an incomplete per-dst ire_cache entry, and send the 7875 * packet out when the gw's nce is resolved. In order to achieve this, 7876 * all packet processing must have been completed prior to calling 7877 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7878 * to be modified to accomodate this solution. 7879 */ 7880 if (ip_nexthop) { 7881 /* 7882 * The first time we come here, we look for an IRE_INTERFACE 7883 * entry for the specified nexthop, set the dst to be the 7884 * nexthop address and create an IRE_CACHE entry for the 7885 * nexthop. The next time around, we are able to find an 7886 * IRE_CACHE entry for the nexthop, set the gateway to be the 7887 * nexthop address and create an IRE_CACHE entry for the 7888 * destination address via the specified nexthop. 7889 */ 7890 ire = ire_cache_lookup(nexthop_addr, zoneid, 7891 MBLK_GETLABEL(mp), ipst); 7892 if (ire != NULL) { 7893 gw = nexthop_addr; 7894 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7895 } else { 7896 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7897 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7898 MBLK_GETLABEL(mp), 7899 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7900 ipst); 7901 if (ire != NULL) { 7902 dst = nexthop_addr; 7903 } 7904 } 7905 } else if (attach_ill == NULL) { 7906 ire = ire_ftable_lookup(dst, 0, 0, 0, 7907 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7908 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7909 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7910 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7911 ipst); 7912 } else { 7913 /* 7914 * attach_ill is set only for communicating with 7915 * on-link hosts. So, don't look for DEFAULT. 7916 */ 7917 ipif_t *attach_ipif; 7918 7919 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7920 if (attach_ipif == NULL) { 7921 ill_refrele(attach_ill); 7922 goto icmp_err_ret; 7923 } 7924 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7925 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7926 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7927 MATCH_IRE_SECATTR, ipst); 7928 ipif_refrele(attach_ipif); 7929 } 7930 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7931 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7932 7933 /* 7934 * This loop is run only once in most cases. 7935 * We loop to resolve further routes only when the destination 7936 * can be reached through multiple RTF_MULTIRT-flagged ires. 7937 */ 7938 do { 7939 /* Clear the previous iteration's values */ 7940 if (src_ipif != NULL) { 7941 ipif_refrele(src_ipif); 7942 src_ipif = NULL; 7943 } 7944 if (dst_ill != NULL) { 7945 ill_refrele(dst_ill); 7946 dst_ill = NULL; 7947 } 7948 7949 multirt_resolve_next = B_FALSE; 7950 /* 7951 * We check if packets have to be multirouted. 7952 * In this case, given the current <ire, sire> couple, 7953 * we look for the next suitable <ire, sire>. 7954 * This check is done in ire_multirt_lookup(), 7955 * which applies various criteria to find the next route 7956 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7957 * unchanged if it detects it has not been tried yet. 7958 */ 7959 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7960 ip3dbg(("ip_newroute: starting next_resolution " 7961 "with first_mp %p, tag %d\n", 7962 (void *)first_mp, 7963 MULTIRT_DEBUG_TAGGED(first_mp))); 7964 7965 ASSERT(sire != NULL); 7966 multirt_is_resolvable = 7967 ire_multirt_lookup(&ire, &sire, multirt_flags, 7968 MBLK_GETLABEL(mp), ipst); 7969 7970 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7971 "ire %p, sire %p\n", 7972 multirt_is_resolvable, 7973 (void *)ire, (void *)sire)); 7974 7975 if (!multirt_is_resolvable) { 7976 /* 7977 * No more multirt route to resolve; give up 7978 * (all routes resolved or no more 7979 * resolvable routes). 7980 */ 7981 if (ire != NULL) { 7982 ire_refrele(ire); 7983 ire = NULL; 7984 } 7985 } else { 7986 ASSERT(sire != NULL); 7987 ASSERT(ire != NULL); 7988 /* 7989 * We simply use first_sire as a flag that 7990 * indicates if a resolvable multirt route 7991 * has already been found. 7992 * If it is not the case, we may have to send 7993 * an ICMP error to report that the 7994 * destination is unreachable. 7995 * We do not IRE_REFHOLD first_sire. 7996 */ 7997 if (first_sire == NULL) { 7998 first_sire = sire; 7999 } 8000 } 8001 } 8002 if (ire == NULL) { 8003 if (ip_debug > 3) { 8004 /* ip2dbg */ 8005 pr_addr_dbg("ip_newroute: " 8006 "can't resolve %s\n", AF_INET, &dst); 8007 } 8008 ip3dbg(("ip_newroute: " 8009 "ire %p, sire %p, first_sire %p\n", 8010 (void *)ire, (void *)sire, (void *)first_sire)); 8011 8012 if (sire != NULL) { 8013 ire_refrele(sire); 8014 sire = NULL; 8015 } 8016 8017 if (first_sire != NULL) { 8018 /* 8019 * At least one multirt route has been found 8020 * in the same call to ip_newroute(); 8021 * there is no need to report an ICMP error. 8022 * first_sire was not IRE_REFHOLDed. 8023 */ 8024 MULTIRT_DEBUG_UNTAG(first_mp); 8025 freemsg(first_mp); 8026 return; 8027 } 8028 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8029 RTA_DST, ipst); 8030 if (attach_ill != NULL) 8031 ill_refrele(attach_ill); 8032 goto icmp_err_ret; 8033 } 8034 8035 /* 8036 * Verify that the returned IRE does not have either 8037 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8038 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8039 */ 8040 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8041 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8042 if (attach_ill != NULL) 8043 ill_refrele(attach_ill); 8044 goto icmp_err_ret; 8045 } 8046 /* 8047 * Increment the ire_ob_pkt_count field for ire if it is an 8048 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8049 * increment the same for the parent IRE, sire, if it is some 8050 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8051 */ 8052 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8053 UPDATE_OB_PKT_COUNT(ire); 8054 ire->ire_last_used_time = lbolt; 8055 } 8056 8057 if (sire != NULL) { 8058 gw = sire->ire_gateway_addr; 8059 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8060 IRE_INTERFACE)) == 0); 8061 UPDATE_OB_PKT_COUNT(sire); 8062 sire->ire_last_used_time = lbolt; 8063 } 8064 /* 8065 * We have a route to reach the destination. 8066 * 8067 * 1) If the interface is part of ill group, try to get a new 8068 * ill taking load spreading into account. 8069 * 8070 * 2) After selecting the ill, get a source address that 8071 * might create good inbound load spreading. 8072 * ipif_select_source does this for us. 8073 * 8074 * If the application specified the ill (ifindex), we still 8075 * load spread. Only if the packets needs to go out 8076 * specifically on a given ill e.g. binding to 8077 * IPIF_NOFAILOVER address, then we don't try to use a 8078 * different ill for load spreading. 8079 */ 8080 if (attach_ill == NULL) { 8081 /* 8082 * Don't perform outbound load spreading in the 8083 * case of an RTF_MULTIRT route, as we actually 8084 * typically want to replicate outgoing packets 8085 * through particular interfaces. 8086 */ 8087 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8088 dst_ill = ire->ire_ipif->ipif_ill; 8089 /* for uniformity */ 8090 ill_refhold(dst_ill); 8091 } else { 8092 /* 8093 * If we are here trying to create an IRE_CACHE 8094 * for an offlink destination and have the 8095 * IRE_CACHE for the next hop and the latter is 8096 * using virtual IP source address selection i.e 8097 * it's ire->ire_ipif is pointing to a virtual 8098 * network interface (vni) then 8099 * ip_newroute_get_dst_ll() will return the vni 8100 * interface as the dst_ill. Since the vni is 8101 * virtual i.e not associated with any physical 8102 * interface, it cannot be the dst_ill, hence 8103 * in such a case call ip_newroute_get_dst_ll() 8104 * with the stq_ill instead of the ire_ipif ILL. 8105 * The function returns a refheld ill. 8106 */ 8107 if ((ire->ire_type == IRE_CACHE) && 8108 IS_VNI(ire->ire_ipif->ipif_ill)) 8109 dst_ill = ip_newroute_get_dst_ill( 8110 ire->ire_stq->q_ptr); 8111 else 8112 dst_ill = ip_newroute_get_dst_ill( 8113 ire->ire_ipif->ipif_ill); 8114 } 8115 if (dst_ill == NULL) { 8116 if (ip_debug > 2) { 8117 pr_addr_dbg("ip_newroute: " 8118 "no dst ill for dst" 8119 " %s\n", AF_INET, &dst); 8120 } 8121 goto icmp_err_ret; 8122 } 8123 } else { 8124 dst_ill = ire->ire_ipif->ipif_ill; 8125 /* for uniformity */ 8126 ill_refhold(dst_ill); 8127 /* 8128 * We should have found a route matching ill as we 8129 * called ire_ftable_lookup with MATCH_IRE_ILL. 8130 * Rather than asserting, when there is a mismatch, 8131 * we just drop the packet. 8132 */ 8133 if (dst_ill != attach_ill) { 8134 ip0dbg(("ip_newroute: Packet dropped as " 8135 "IPIF_NOFAILOVER ill is %s, " 8136 "ire->ire_ipif->ipif_ill is %s\n", 8137 attach_ill->ill_name, 8138 dst_ill->ill_name)); 8139 ill_refrele(attach_ill); 8140 goto icmp_err_ret; 8141 } 8142 } 8143 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8144 if (attach_ill != NULL) { 8145 ill_refrele(attach_ill); 8146 attach_ill = NULL; 8147 do_attach_ill = B_TRUE; 8148 } 8149 ASSERT(dst_ill != NULL); 8150 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8151 8152 /* 8153 * Pick the best source address from dst_ill. 8154 * 8155 * 1) If it is part of a multipathing group, we would 8156 * like to spread the inbound packets across different 8157 * interfaces. ipif_select_source picks a random source 8158 * across the different ills in the group. 8159 * 8160 * 2) If it is not part of a multipathing group, we try 8161 * to pick the source address from the destination 8162 * route. Clustering assumes that when we have multiple 8163 * prefixes hosted on an interface, the prefix of the 8164 * source address matches the prefix of the destination 8165 * route. We do this only if the address is not 8166 * DEPRECATED. 8167 * 8168 * 3) If the conn is in a different zone than the ire, we 8169 * need to pick a source address from the right zone. 8170 * 8171 * NOTE : If we hit case (1) above, the prefix of the source 8172 * address picked may not match the prefix of the 8173 * destination routes prefix as ipif_select_source 8174 * does not look at "dst" while picking a source 8175 * address. 8176 * If we want the same behavior as (2), we will need 8177 * to change the behavior of ipif_select_source. 8178 */ 8179 ASSERT(src_ipif == NULL); 8180 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8181 /* 8182 * The RTF_SETSRC flag is set in the parent ire (sire). 8183 * Check that the ipif matching the requested source 8184 * address still exists. 8185 */ 8186 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8187 zoneid, NULL, NULL, NULL, NULL, ipst); 8188 } 8189 8190 unspec_src = (connp != NULL && connp->conn_unspec_src); 8191 8192 if (src_ipif == NULL && 8193 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8194 ire_marks |= IRE_MARK_USESRC_CHECK; 8195 if ((dst_ill->ill_group != NULL) || 8196 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8197 (connp != NULL && ire->ire_zoneid != zoneid && 8198 ire->ire_zoneid != ALL_ZONES) || 8199 (dst_ill->ill_usesrc_ifindex != 0)) { 8200 /* 8201 * If the destination is reachable via a 8202 * given gateway, the selected source address 8203 * should be in the same subnet as the gateway. 8204 * Otherwise, the destination is not reachable. 8205 * 8206 * If there are no interfaces on the same subnet 8207 * as the destination, ipif_select_source gives 8208 * first non-deprecated interface which might be 8209 * on a different subnet than the gateway. 8210 * This is not desirable. Hence pass the dst_ire 8211 * source address to ipif_select_source. 8212 * It is sure that the destination is reachable 8213 * with the dst_ire source address subnet. 8214 * So passing dst_ire source address to 8215 * ipif_select_source will make sure that the 8216 * selected source will be on the same subnet 8217 * as dst_ire source address. 8218 */ 8219 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8220 src_ipif = ipif_select_source(dst_ill, saddr, 8221 zoneid); 8222 if (src_ipif == NULL) { 8223 if (ip_debug > 2) { 8224 pr_addr_dbg("ip_newroute: " 8225 "no src for dst %s ", 8226 AF_INET, &dst); 8227 printf("through interface %s\n", 8228 dst_ill->ill_name); 8229 } 8230 goto icmp_err_ret; 8231 } 8232 } else { 8233 src_ipif = ire->ire_ipif; 8234 ASSERT(src_ipif != NULL); 8235 /* hold src_ipif for uniformity */ 8236 ipif_refhold(src_ipif); 8237 } 8238 } 8239 8240 /* 8241 * Assign a source address while we have the conn. 8242 * We can't have ip_wput_ire pick a source address when the 8243 * packet returns from arp since we need to look at 8244 * conn_unspec_src and conn_zoneid, and we lose the conn when 8245 * going through arp. 8246 * 8247 * NOTE : ip_newroute_v6 does not have this piece of code as 8248 * it uses ip6i to store this information. 8249 */ 8250 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8251 ipha->ipha_src = src_ipif->ipif_src_addr; 8252 8253 if (ip_debug > 3) { 8254 /* ip2dbg */ 8255 pr_addr_dbg("ip_newroute: first hop %s\n", 8256 AF_INET, &gw); 8257 } 8258 ip2dbg(("\tire type %s (%d)\n", 8259 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8260 8261 /* 8262 * The TTL of multirouted packets is bounded by the 8263 * ip_multirt_ttl ndd variable. 8264 */ 8265 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8266 /* Force TTL of multirouted packets */ 8267 if ((ipst->ips_ip_multirt_ttl > 0) && 8268 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8269 ip2dbg(("ip_newroute: forcing multirt TTL " 8270 "to %d (was %d), dst 0x%08x\n", 8271 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8272 ntohl(sire->ire_addr))); 8273 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8274 } 8275 } 8276 /* 8277 * At this point in ip_newroute(), ire is either the 8278 * IRE_CACHE of the next-hop gateway for an off-subnet 8279 * destination or an IRE_INTERFACE type that should be used 8280 * to resolve an on-subnet destination or an on-subnet 8281 * next-hop gateway. 8282 * 8283 * In the IRE_CACHE case, we have the following : 8284 * 8285 * 1) src_ipif - used for getting a source address. 8286 * 8287 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8288 * means packets using this IRE_CACHE will go out on 8289 * dst_ill. 8290 * 8291 * 3) The IRE sire will point to the prefix that is the 8292 * longest matching route for the destination. These 8293 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8294 * 8295 * The newly created IRE_CACHE entry for the off-subnet 8296 * destination is tied to both the prefix route and the 8297 * interface route used to resolve the next-hop gateway 8298 * via the ire_phandle and ire_ihandle fields, 8299 * respectively. 8300 * 8301 * In the IRE_INTERFACE case, we have the following : 8302 * 8303 * 1) src_ipif - used for getting a source address. 8304 * 8305 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8306 * means packets using the IRE_CACHE that we will build 8307 * here will go out on dst_ill. 8308 * 8309 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8310 * to be created will only be tied to the IRE_INTERFACE 8311 * that was derived from the ire_ihandle field. 8312 * 8313 * If sire is non-NULL, it means the destination is 8314 * off-link and we will first create the IRE_CACHE for the 8315 * gateway. Next time through ip_newroute, we will create 8316 * the IRE_CACHE for the final destination as described 8317 * above. 8318 * 8319 * In both cases, after the current resolution has been 8320 * completed (or possibly initialised, in the IRE_INTERFACE 8321 * case), the loop may be re-entered to attempt the resolution 8322 * of another RTF_MULTIRT route. 8323 * 8324 * When an IRE_CACHE entry for the off-subnet destination is 8325 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8326 * for further processing in emission loops. 8327 */ 8328 save_ire = ire; 8329 switch (ire->ire_type) { 8330 case IRE_CACHE: { 8331 ire_t *ipif_ire; 8332 8333 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8334 if (gw == 0) 8335 gw = ire->ire_gateway_addr; 8336 /* 8337 * We need 3 ire's to create a new cache ire for an 8338 * off-link destination from the cache ire of the 8339 * gateway. 8340 * 8341 * 1. The prefix ire 'sire' (Note that this does 8342 * not apply to the conn_nexthop_set case) 8343 * 2. The cache ire of the gateway 'ire' 8344 * 3. The interface ire 'ipif_ire' 8345 * 8346 * We have (1) and (2). We lookup (3) below. 8347 * 8348 * If there is no interface route to the gateway, 8349 * it is a race condition, where we found the cache 8350 * but the interface route has been deleted. 8351 */ 8352 if (ip_nexthop) { 8353 ipif_ire = ire_ihandle_lookup_onlink(ire); 8354 } else { 8355 ipif_ire = 8356 ire_ihandle_lookup_offlink(ire, sire); 8357 } 8358 if (ipif_ire == NULL) { 8359 ip1dbg(("ip_newroute: " 8360 "ire_ihandle_lookup_offlink failed\n")); 8361 goto icmp_err_ret; 8362 } 8363 8364 /* 8365 * Check cached gateway IRE for any security 8366 * attributes; if found, associate the gateway 8367 * credentials group to the destination IRE. 8368 */ 8369 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8370 mutex_enter(&attrp->igsa_lock); 8371 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8372 GCGRP_REFHOLD(gcgrp); 8373 mutex_exit(&attrp->igsa_lock); 8374 } 8375 8376 /* 8377 * XXX For the source of the resolver mp, 8378 * we are using the same DL_UNITDATA_REQ 8379 * (from save_ire->ire_nce->nce_res_mp) 8380 * though the save_ire is not pointing at the same ill. 8381 * This is incorrect. We need to send it up to the 8382 * resolver to get the right res_mp. For ethernets 8383 * this may be okay (ill_type == DL_ETHER). 8384 */ 8385 8386 ire = ire_create( 8387 (uchar_t *)&dst, /* dest address */ 8388 (uchar_t *)&ip_g_all_ones, /* mask */ 8389 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8390 (uchar_t *)&gw, /* gateway address */ 8391 &save_ire->ire_max_frag, 8392 save_ire->ire_nce, /* src nce */ 8393 dst_ill->ill_rq, /* recv-from queue */ 8394 dst_ill->ill_wq, /* send-to queue */ 8395 IRE_CACHE, /* IRE type */ 8396 src_ipif, 8397 (sire != NULL) ? 8398 sire->ire_mask : 0, /* Parent mask */ 8399 (sire != NULL) ? 8400 sire->ire_phandle : 0, /* Parent handle */ 8401 ipif_ire->ire_ihandle, /* Interface handle */ 8402 (sire != NULL) ? (sire->ire_flags & 8403 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8404 (sire != NULL) ? 8405 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8406 NULL, 8407 gcgrp, 8408 ipst); 8409 8410 if (ire == NULL) { 8411 if (gcgrp != NULL) { 8412 GCGRP_REFRELE(gcgrp); 8413 gcgrp = NULL; 8414 } 8415 ire_refrele(ipif_ire); 8416 ire_refrele(save_ire); 8417 break; 8418 } 8419 8420 /* reference now held by IRE */ 8421 gcgrp = NULL; 8422 8423 ire->ire_marks |= ire_marks; 8424 8425 /* 8426 * Prevent sire and ipif_ire from getting deleted. 8427 * The newly created ire is tied to both of them via 8428 * the phandle and ihandle respectively. 8429 */ 8430 if (sire != NULL) { 8431 IRB_REFHOLD(sire->ire_bucket); 8432 /* Has it been removed already ? */ 8433 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8434 IRB_REFRELE(sire->ire_bucket); 8435 ire_refrele(ipif_ire); 8436 ire_refrele(save_ire); 8437 break; 8438 } 8439 } 8440 8441 IRB_REFHOLD(ipif_ire->ire_bucket); 8442 /* Has it been removed already ? */ 8443 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8444 IRB_REFRELE(ipif_ire->ire_bucket); 8445 if (sire != NULL) 8446 IRB_REFRELE(sire->ire_bucket); 8447 ire_refrele(ipif_ire); 8448 ire_refrele(save_ire); 8449 break; 8450 } 8451 8452 xmit_mp = first_mp; 8453 /* 8454 * In the case of multirouting, a copy 8455 * of the packet is done before its sending. 8456 * The copy is used to attempt another 8457 * route resolution, in a next loop. 8458 */ 8459 if (ire->ire_flags & RTF_MULTIRT) { 8460 copy_mp = copymsg(first_mp); 8461 if (copy_mp != NULL) { 8462 xmit_mp = copy_mp; 8463 MULTIRT_DEBUG_TAG(first_mp); 8464 } 8465 } 8466 ire_add_then_send(q, ire, xmit_mp); 8467 ire_refrele(save_ire); 8468 8469 /* Assert that sire is not deleted yet. */ 8470 if (sire != NULL) { 8471 ASSERT(sire->ire_ptpn != NULL); 8472 IRB_REFRELE(sire->ire_bucket); 8473 } 8474 8475 /* Assert that ipif_ire is not deleted yet. */ 8476 ASSERT(ipif_ire->ire_ptpn != NULL); 8477 IRB_REFRELE(ipif_ire->ire_bucket); 8478 ire_refrele(ipif_ire); 8479 8480 /* 8481 * If copy_mp is not NULL, multirouting was 8482 * requested. We loop to initiate a next 8483 * route resolution attempt, starting from sire. 8484 */ 8485 if (copy_mp != NULL) { 8486 /* 8487 * Search for the next unresolved 8488 * multirt route. 8489 */ 8490 copy_mp = NULL; 8491 ipif_ire = NULL; 8492 ire = NULL; 8493 multirt_resolve_next = B_TRUE; 8494 continue; 8495 } 8496 if (sire != NULL) 8497 ire_refrele(sire); 8498 ipif_refrele(src_ipif); 8499 ill_refrele(dst_ill); 8500 return; 8501 } 8502 case IRE_IF_NORESOLVER: { 8503 8504 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8505 dst_ill->ill_resolver_mp == NULL) { 8506 ip1dbg(("ip_newroute: dst_ill %p " 8507 "for IRE_IF_NORESOLVER ire %p has " 8508 "no ill_resolver_mp\n", 8509 (void *)dst_ill, (void *)ire)); 8510 break; 8511 } 8512 8513 /* 8514 * TSol note: We are creating the ire cache for the 8515 * destination 'dst'. If 'dst' is offlink, going 8516 * through the first hop 'gw', the security attributes 8517 * of 'dst' must be set to point to the gateway 8518 * credentials of gateway 'gw'. If 'dst' is onlink, it 8519 * is possible that 'dst' is a potential gateway that is 8520 * referenced by some route that has some security 8521 * attributes. Thus in the former case, we need to do a 8522 * gcgrp_lookup of 'gw' while in the latter case we 8523 * need to do gcgrp_lookup of 'dst' itself. 8524 */ 8525 ga.ga_af = AF_INET; 8526 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8527 &ga.ga_addr); 8528 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8529 8530 ire = ire_create( 8531 (uchar_t *)&dst, /* dest address */ 8532 (uchar_t *)&ip_g_all_ones, /* mask */ 8533 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8534 (uchar_t *)&gw, /* gateway address */ 8535 &save_ire->ire_max_frag, 8536 NULL, /* no src nce */ 8537 dst_ill->ill_rq, /* recv-from queue */ 8538 dst_ill->ill_wq, /* send-to queue */ 8539 IRE_CACHE, 8540 src_ipif, 8541 save_ire->ire_mask, /* Parent mask */ 8542 (sire != NULL) ? /* Parent handle */ 8543 sire->ire_phandle : 0, 8544 save_ire->ire_ihandle, /* Interface handle */ 8545 (sire != NULL) ? sire->ire_flags & 8546 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8547 &(save_ire->ire_uinfo), 8548 NULL, 8549 gcgrp, 8550 ipst); 8551 8552 if (ire == NULL) { 8553 if (gcgrp != NULL) { 8554 GCGRP_REFRELE(gcgrp); 8555 gcgrp = NULL; 8556 } 8557 ire_refrele(save_ire); 8558 break; 8559 } 8560 8561 /* reference now held by IRE */ 8562 gcgrp = NULL; 8563 8564 ire->ire_marks |= ire_marks; 8565 8566 /* Prevent save_ire from getting deleted */ 8567 IRB_REFHOLD(save_ire->ire_bucket); 8568 /* Has it been removed already ? */ 8569 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8570 IRB_REFRELE(save_ire->ire_bucket); 8571 ire_refrele(save_ire); 8572 break; 8573 } 8574 8575 /* 8576 * In the case of multirouting, a copy 8577 * of the packet is made before it is sent. 8578 * The copy is used in the next 8579 * loop to attempt another resolution. 8580 */ 8581 xmit_mp = first_mp; 8582 if ((sire != NULL) && 8583 (sire->ire_flags & RTF_MULTIRT)) { 8584 copy_mp = copymsg(first_mp); 8585 if (copy_mp != NULL) { 8586 xmit_mp = copy_mp; 8587 MULTIRT_DEBUG_TAG(first_mp); 8588 } 8589 } 8590 ire_add_then_send(q, ire, xmit_mp); 8591 8592 /* Assert that it is not deleted yet. */ 8593 ASSERT(save_ire->ire_ptpn != NULL); 8594 IRB_REFRELE(save_ire->ire_bucket); 8595 ire_refrele(save_ire); 8596 8597 if (copy_mp != NULL) { 8598 /* 8599 * If we found a (no)resolver, we ignore any 8600 * trailing top priority IRE_CACHE in further 8601 * loops. This ensures that we do not omit any 8602 * (no)resolver. 8603 * This IRE_CACHE, if any, will be processed 8604 * by another thread entering ip_newroute(). 8605 * IRE_CACHE entries, if any, will be processed 8606 * by another thread entering ip_newroute(), 8607 * (upon resolver response, for instance). 8608 * This aims to force parallel multirt 8609 * resolutions as soon as a packet must be sent. 8610 * In the best case, after the tx of only one 8611 * packet, all reachable routes are resolved. 8612 * Otherwise, the resolution of all RTF_MULTIRT 8613 * routes would require several emissions. 8614 */ 8615 multirt_flags &= ~MULTIRT_CACHEGW; 8616 8617 /* 8618 * Search for the next unresolved multirt 8619 * route. 8620 */ 8621 copy_mp = NULL; 8622 save_ire = NULL; 8623 ire = NULL; 8624 multirt_resolve_next = B_TRUE; 8625 continue; 8626 } 8627 8628 /* 8629 * Don't need sire anymore 8630 */ 8631 if (sire != NULL) 8632 ire_refrele(sire); 8633 8634 ipif_refrele(src_ipif); 8635 ill_refrele(dst_ill); 8636 return; 8637 } 8638 case IRE_IF_RESOLVER: 8639 /* 8640 * We can't build an IRE_CACHE yet, but at least we 8641 * found a resolver that can help. 8642 */ 8643 res_mp = dst_ill->ill_resolver_mp; 8644 if (!OK_RESOLVER_MP(res_mp)) 8645 break; 8646 8647 /* 8648 * To be at this point in the code with a non-zero gw 8649 * means that dst is reachable through a gateway that 8650 * we have never resolved. By changing dst to the gw 8651 * addr we resolve the gateway first. 8652 * When ire_add_then_send() tries to put the IP dg 8653 * to dst, it will reenter ip_newroute() at which 8654 * time we will find the IRE_CACHE for the gw and 8655 * create another IRE_CACHE in case IRE_CACHE above. 8656 */ 8657 if (gw != INADDR_ANY) { 8658 /* 8659 * The source ipif that was determined above was 8660 * relative to the destination address, not the 8661 * gateway's. If src_ipif was not taken out of 8662 * the IRE_IF_RESOLVER entry, we'll need to call 8663 * ipif_select_source() again. 8664 */ 8665 if (src_ipif != ire->ire_ipif) { 8666 ipif_refrele(src_ipif); 8667 src_ipif = ipif_select_source(dst_ill, 8668 gw, zoneid); 8669 if (src_ipif == NULL) { 8670 if (ip_debug > 2) { 8671 pr_addr_dbg( 8672 "ip_newroute: no " 8673 "src for gw %s ", 8674 AF_INET, &gw); 8675 printf("through " 8676 "interface %s\n", 8677 dst_ill->ill_name); 8678 } 8679 goto icmp_err_ret; 8680 } 8681 } 8682 save_dst = dst; 8683 dst = gw; 8684 gw = INADDR_ANY; 8685 } 8686 8687 /* 8688 * We obtain a partial IRE_CACHE which we will pass 8689 * along with the resolver query. When the response 8690 * comes back it will be there ready for us to add. 8691 * The ire_max_frag is atomically set under the 8692 * irebucket lock in ire_add_v[46]. 8693 */ 8694 8695 ire = ire_create_mp( 8696 (uchar_t *)&dst, /* dest address */ 8697 (uchar_t *)&ip_g_all_ones, /* mask */ 8698 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8699 (uchar_t *)&gw, /* gateway address */ 8700 NULL, /* ire_max_frag */ 8701 NULL, /* no src nce */ 8702 dst_ill->ill_rq, /* recv-from queue */ 8703 dst_ill->ill_wq, /* send-to queue */ 8704 IRE_CACHE, 8705 src_ipif, /* Interface ipif */ 8706 save_ire->ire_mask, /* Parent mask */ 8707 0, 8708 save_ire->ire_ihandle, /* Interface handle */ 8709 0, /* flags if any */ 8710 &(save_ire->ire_uinfo), 8711 NULL, 8712 NULL, 8713 ipst); 8714 8715 if (ire == NULL) { 8716 ire_refrele(save_ire); 8717 break; 8718 } 8719 8720 if ((sire != NULL) && 8721 (sire->ire_flags & RTF_MULTIRT)) { 8722 copy_mp = copymsg(first_mp); 8723 if (copy_mp != NULL) 8724 MULTIRT_DEBUG_TAG(copy_mp); 8725 } 8726 8727 ire->ire_marks |= ire_marks; 8728 8729 /* 8730 * Construct message chain for the resolver 8731 * of the form: 8732 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8733 * Packet could contain a IPSEC_OUT mp. 8734 * 8735 * NOTE : ire will be added later when the response 8736 * comes back from ARP. If the response does not 8737 * come back, ARP frees the packet. For this reason, 8738 * we can't REFHOLD the bucket of save_ire to prevent 8739 * deletions. We may not be able to REFRELE the bucket 8740 * if the response never comes back. Thus, before 8741 * adding the ire, ire_add_v4 will make sure that the 8742 * interface route does not get deleted. This is the 8743 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8744 * where we can always prevent deletions because of 8745 * the synchronous nature of adding IRES i.e 8746 * ire_add_then_send is called after creating the IRE. 8747 */ 8748 ASSERT(ire->ire_mp != NULL); 8749 ire->ire_mp->b_cont = first_mp; 8750 /* Have saved_mp handy, for cleanup if canput fails */ 8751 saved_mp = mp; 8752 mp = copyb(res_mp); 8753 if (mp == NULL) { 8754 /* Prepare for cleanup */ 8755 mp = saved_mp; /* pkt */ 8756 ire_delete(ire); /* ire_mp */ 8757 ire = NULL; 8758 ire_refrele(save_ire); 8759 if (copy_mp != NULL) { 8760 MULTIRT_DEBUG_UNTAG(copy_mp); 8761 freemsg(copy_mp); 8762 copy_mp = NULL; 8763 } 8764 break; 8765 } 8766 linkb(mp, ire->ire_mp); 8767 8768 /* 8769 * Fill in the source and dest addrs for the resolver. 8770 * NOTE: this depends on memory layouts imposed by 8771 * ill_init(). 8772 */ 8773 areq = (areq_t *)mp->b_rptr; 8774 addrp = (ipaddr_t *)((char *)areq + 8775 areq->areq_sender_addr_offset); 8776 if (do_attach_ill) { 8777 /* 8778 * This is bind to no failover case. 8779 * arp packet also must go out on attach_ill. 8780 */ 8781 ASSERT(ipha->ipha_src != NULL); 8782 *addrp = ipha->ipha_src; 8783 } else { 8784 *addrp = save_ire->ire_src_addr; 8785 } 8786 8787 ire_refrele(save_ire); 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_target_addr_offset); 8790 *addrp = dst; 8791 /* Up to the resolver. */ 8792 if (canputnext(dst_ill->ill_rq) && 8793 !(dst_ill->ill_arp_closing)) { 8794 putnext(dst_ill->ill_rq, mp); 8795 ire = NULL; 8796 if (copy_mp != NULL) { 8797 /* 8798 * If we found a resolver, we ignore 8799 * any trailing top priority IRE_CACHE 8800 * in the further loops. This ensures 8801 * that we do not omit any resolver. 8802 * IRE_CACHE entries, if any, will be 8803 * processed next time we enter 8804 * ip_newroute(). 8805 */ 8806 multirt_flags &= ~MULTIRT_CACHEGW; 8807 /* 8808 * Search for the next unresolved 8809 * multirt route. 8810 */ 8811 first_mp = copy_mp; 8812 copy_mp = NULL; 8813 /* Prepare the next resolution loop. */ 8814 mp = first_mp; 8815 EXTRACT_PKT_MP(mp, first_mp, 8816 mctl_present); 8817 if (mctl_present) 8818 io = (ipsec_out_t *) 8819 first_mp->b_rptr; 8820 ipha = (ipha_t *)mp->b_rptr; 8821 8822 ASSERT(sire != NULL); 8823 8824 dst = save_dst; 8825 multirt_resolve_next = B_TRUE; 8826 continue; 8827 } 8828 8829 if (sire != NULL) 8830 ire_refrele(sire); 8831 8832 /* 8833 * The response will come back in ip_wput 8834 * with db_type IRE_DB_TYPE. 8835 */ 8836 ipif_refrele(src_ipif); 8837 ill_refrele(dst_ill); 8838 return; 8839 } else { 8840 /* Prepare for cleanup */ 8841 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8842 mp); 8843 mp->b_cont = NULL; 8844 freeb(mp); /* areq */ 8845 /* 8846 * this is an ire that is not added to the 8847 * cache. ire_freemblk will handle the release 8848 * of any resources associated with the ire. 8849 */ 8850 ire_delete(ire); /* ire_mp */ 8851 mp = saved_mp; /* pkt */ 8852 ire = NULL; 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 default: 8861 break; 8862 } 8863 } while (multirt_resolve_next); 8864 8865 ip1dbg(("ip_newroute: dropped\n")); 8866 /* Did this packet originate externally? */ 8867 if (mp->b_prev) { 8868 mp->b_next = NULL; 8869 mp->b_prev = NULL; 8870 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8871 } else { 8872 if (dst_ill != NULL) { 8873 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8874 } else { 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8876 } 8877 } 8878 ASSERT(copy_mp == NULL); 8879 MULTIRT_DEBUG_UNTAG(first_mp); 8880 freemsg(first_mp); 8881 if (ire != NULL) 8882 ire_refrele(ire); 8883 if (sire != NULL) 8884 ire_refrele(sire); 8885 if (src_ipif != NULL) 8886 ipif_refrele(src_ipif); 8887 if (dst_ill != NULL) 8888 ill_refrele(dst_ill); 8889 return; 8890 8891 icmp_err_ret: 8892 ip1dbg(("ip_newroute: no route\n")); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 if (sire != NULL) 8898 ire_refrele(sire); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8904 q = WR(q); 8905 } else { 8906 /* 8907 * There is no outgoing ill, so just increment the 8908 * system MIB. 8909 */ 8910 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8911 /* 8912 * Since ip_wput() isn't close to finished, we fill 8913 * in enough of the header for credible error reporting. 8914 */ 8915 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8916 /* Failed */ 8917 MULTIRT_DEBUG_UNTAG(first_mp); 8918 freemsg(first_mp); 8919 if (ire != NULL) 8920 ire_refrele(ire); 8921 return; 8922 } 8923 } 8924 8925 /* 8926 * At this point we will have ire only if RTF_BLACKHOLE 8927 * or RTF_REJECT flags are set on the IRE. It will not 8928 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8929 */ 8930 if (ire != NULL) { 8931 if (ire->ire_flags & RTF_BLACKHOLE) { 8932 ire_refrele(ire); 8933 MULTIRT_DEBUG_UNTAG(first_mp); 8934 freemsg(first_mp); 8935 return; 8936 } 8937 ire_refrele(ire); 8938 } 8939 if (ip_source_routed(ipha, ipst)) { 8940 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8941 zoneid, ipst); 8942 return; 8943 } 8944 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8945 } 8946 8947 ip_opt_info_t zero_info; 8948 8949 /* 8950 * IPv4 - 8951 * ip_newroute_ipif is called by ip_wput_multicast and 8952 * ip_rput_forward_multicast whenever we need to send 8953 * out a packet to a destination address for which we do not have specific 8954 * routing information. It is used when the packet will be sent out 8955 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8956 * socket option is set or icmp error message wants to go out on a particular 8957 * interface for a unicast packet. 8958 * 8959 * In most cases, the destination address is resolved thanks to the ipif 8960 * intrinsic resolver. However, there are some cases where the call to 8961 * ip_newroute_ipif must take into account the potential presence of 8962 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8963 * that uses the interface. This is specified through flags, 8964 * which can be a combination of: 8965 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8966 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8967 * and flags. Additionally, the packet source address has to be set to 8968 * the specified address. The caller is thus expected to set this flag 8969 * if the packet has no specific source address yet. 8970 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8971 * flag, the resulting ire will inherit the flag. All unresolved routes 8972 * to the destination must be explored in the same call to 8973 * ip_newroute_ipif(). 8974 */ 8975 static void 8976 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8977 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8978 { 8979 areq_t *areq; 8980 ire_t *ire = NULL; 8981 mblk_t *res_mp; 8982 ipaddr_t *addrp; 8983 mblk_t *first_mp; 8984 ire_t *save_ire = NULL; 8985 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8986 ipif_t *src_ipif = NULL; 8987 ushort_t ire_marks = 0; 8988 ill_t *dst_ill = NULL; 8989 boolean_t mctl_present; 8990 ipsec_out_t *io; 8991 ipha_t *ipha; 8992 int ihandle = 0; 8993 mblk_t *saved_mp; 8994 ire_t *fire = NULL; 8995 mblk_t *copy_mp = NULL; 8996 boolean_t multirt_resolve_next; 8997 boolean_t unspec_src; 8998 ipaddr_t ipha_dst; 8999 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9000 9001 /* 9002 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9003 * here for uniformity 9004 */ 9005 ipif_refhold(ipif); 9006 9007 /* 9008 * This loop is run only once in most cases. 9009 * We loop to resolve further routes only when the destination 9010 * can be reached through multiple RTF_MULTIRT-flagged ires. 9011 */ 9012 do { 9013 if (dst_ill != NULL) { 9014 ill_refrele(dst_ill); 9015 dst_ill = NULL; 9016 } 9017 if (src_ipif != NULL) { 9018 ipif_refrele(src_ipif); 9019 src_ipif = NULL; 9020 } 9021 multirt_resolve_next = B_FALSE; 9022 9023 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9024 ipif->ipif_ill->ill_name)); 9025 9026 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9027 if (mctl_present) 9028 io = (ipsec_out_t *)first_mp->b_rptr; 9029 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 /* 9033 * Save the packet destination address, we may need it after 9034 * the packet has been consumed. 9035 */ 9036 ipha_dst = ipha->ipha_dst; 9037 9038 /* 9039 * If the interface is a pt-pt interface we look for an 9040 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9041 * local_address and the pt-pt destination address. Otherwise 9042 * we just match the local address. 9043 * NOTE: dst could be different than ipha->ipha_dst in case 9044 * of sending igmp multicast packets over a point-to-point 9045 * connection. 9046 * Thus we must be careful enough to check ipha_dst to be a 9047 * multicast address, otherwise it will take xmit_if path for 9048 * multicast packets resulting into kernel stack overflow by 9049 * repeated calls to ip_newroute_ipif from ire_send(). 9050 */ 9051 if (CLASSD(ipha_dst) && 9052 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9053 goto err_ret; 9054 } 9055 9056 /* 9057 * We check if an IRE_OFFSUBNET for the addr that goes through 9058 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9059 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9060 * propagate its flags to the new ire. 9061 */ 9062 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9063 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9064 ip2dbg(("ip_newroute_ipif: " 9065 "ipif_lookup_multi_ire(" 9066 "ipif %p, dst %08x) = fire %p\n", 9067 (void *)ipif, ntohl(dst), (void *)fire)); 9068 } 9069 9070 if (mctl_present && io->ipsec_out_attach_if) { 9071 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9072 io->ipsec_out_ill_index, B_FALSE, ipst); 9073 9074 /* Failure case frees things for us. */ 9075 if (attach_ill == NULL) { 9076 ipif_refrele(ipif); 9077 if (fire != NULL) 9078 ire_refrele(fire); 9079 return; 9080 } 9081 9082 /* 9083 * Check if we need an ire that will not be 9084 * looked up by anybody else i.e. HIDDEN. 9085 */ 9086 if (ill_is_probeonly(attach_ill)) { 9087 ire_marks = IRE_MARK_HIDDEN; 9088 } 9089 /* 9090 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9091 * case. 9092 */ 9093 dst_ill = ipif->ipif_ill; 9094 /* attach_ill has been refheld by ip_grab_attach_ill */ 9095 ASSERT(dst_ill == attach_ill); 9096 } else { 9097 /* 9098 * If the interface belongs to an interface group, 9099 * make sure the next possible interface in the group 9100 * is used. This encourages load spreading among 9101 * peers in an interface group. 9102 * Note: load spreading is disabled for RTF_MULTIRT 9103 * routes. 9104 */ 9105 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9106 (fire->ire_flags & RTF_MULTIRT)) { 9107 /* 9108 * Don't perform outbound load spreading 9109 * in the case of an RTF_MULTIRT issued route, 9110 * we actually typically want to replicate 9111 * outgoing packets through particular 9112 * interfaces. 9113 */ 9114 dst_ill = ipif->ipif_ill; 9115 ill_refhold(dst_ill); 9116 } else { 9117 dst_ill = ip_newroute_get_dst_ill( 9118 ipif->ipif_ill); 9119 } 9120 if (dst_ill == NULL) { 9121 if (ip_debug > 2) { 9122 pr_addr_dbg("ip_newroute_ipif: " 9123 "no dst ill for dst %s\n", 9124 AF_INET, &dst); 9125 } 9126 goto err_ret; 9127 } 9128 } 9129 9130 /* 9131 * Pick a source address preferring non-deprecated ones. 9132 * Unlike ip_newroute, we don't do any source address 9133 * selection here since for multicast it really does not help 9134 * in inbound load spreading as in the unicast case. 9135 */ 9136 if ((flags & RTF_SETSRC) && (fire != NULL) && 9137 (fire->ire_flags & RTF_SETSRC)) { 9138 /* 9139 * As requested by flags, an IRE_OFFSUBNET was looked up 9140 * on that interface. This ire has RTF_SETSRC flag, so 9141 * the source address of the packet must be changed. 9142 * Check that the ipif matching the requested source 9143 * address still exists. 9144 */ 9145 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9146 zoneid, NULL, NULL, NULL, NULL, ipst); 9147 } 9148 9149 unspec_src = (connp != NULL && connp->conn_unspec_src); 9150 9151 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9152 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9153 (connp != NULL && ipif->ipif_zoneid != zoneid && 9154 ipif->ipif_zoneid != ALL_ZONES)) && 9155 (src_ipif == NULL) && 9156 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9157 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9158 if (src_ipif == NULL) { 9159 if (ip_debug > 2) { 9160 /* ip1dbg */ 9161 pr_addr_dbg("ip_newroute_ipif: " 9162 "no src for dst %s", 9163 AF_INET, &dst); 9164 } 9165 ip1dbg((" through interface %s\n", 9166 dst_ill->ill_name)); 9167 goto err_ret; 9168 } 9169 ipif_refrele(ipif); 9170 ipif = src_ipif; 9171 ipif_refhold(ipif); 9172 } 9173 if (src_ipif == NULL) { 9174 src_ipif = ipif; 9175 ipif_refhold(src_ipif); 9176 } 9177 9178 /* 9179 * Assign a source address while we have the conn. 9180 * We can't have ip_wput_ire pick a source address when the 9181 * packet returns from arp since conn_unspec_src might be set 9182 * and we lose the conn when going through arp. 9183 */ 9184 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9185 ipha->ipha_src = src_ipif->ipif_src_addr; 9186 9187 /* 9188 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9189 * that the outgoing interface does not have an interface ire. 9190 */ 9191 if (CLASSD(ipha_dst) && (connp == NULL || 9192 connp->conn_outgoing_ill == NULL) && 9193 infop->ip_opt_ill_index == 0) { 9194 /* ipif_to_ire returns an held ire */ 9195 ire = ipif_to_ire(ipif); 9196 if (ire == NULL) 9197 goto err_ret; 9198 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9199 goto err_ret; 9200 /* 9201 * ihandle is needed when the ire is added to 9202 * cache table. 9203 */ 9204 save_ire = ire; 9205 ihandle = save_ire->ire_ihandle; 9206 9207 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9208 "flags %04x\n", 9209 (void *)ire, (void *)ipif, flags)); 9210 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9211 (fire->ire_flags & RTF_MULTIRT)) { 9212 /* 9213 * As requested by flags, an IRE_OFFSUBNET was 9214 * looked up on that interface. This ire has 9215 * RTF_MULTIRT flag, so the resolution loop will 9216 * be re-entered to resolve additional routes on 9217 * other interfaces. For that purpose, a copy of 9218 * the packet is performed at this point. 9219 */ 9220 fire->ire_last_used_time = lbolt; 9221 copy_mp = copymsg(first_mp); 9222 if (copy_mp) { 9223 MULTIRT_DEBUG_TAG(copy_mp); 9224 } 9225 } 9226 if ((flags & RTF_SETSRC) && (fire != NULL) && 9227 (fire->ire_flags & RTF_SETSRC)) { 9228 /* 9229 * As requested by flags, an IRE_OFFSUBET was 9230 * looked up on that interface. This ire has 9231 * RTF_SETSRC flag, so the source address of the 9232 * packet must be changed. 9233 */ 9234 ipha->ipha_src = fire->ire_src_addr; 9235 } 9236 } else { 9237 ASSERT((connp == NULL) || 9238 (connp->conn_outgoing_ill != NULL) || 9239 (connp->conn_dontroute) || 9240 infop->ip_opt_ill_index != 0); 9241 /* 9242 * The only ways we can come here are: 9243 * 1) IP_BOUND_IF socket option is set 9244 * 2) SO_DONTROUTE socket option is set 9245 * 3) IP_PKTINFO option is passed in as ancillary data. 9246 * In all cases, the new ire will not be added 9247 * into cache table. 9248 */ 9249 ire_marks |= IRE_MARK_NOADD; 9250 } 9251 9252 switch (ipif->ipif_net_type) { 9253 case IRE_IF_NORESOLVER: { 9254 /* We have what we need to build an IRE_CACHE. */ 9255 9256 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9257 (dst_ill->ill_resolver_mp == NULL)) { 9258 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9259 "for IRE_IF_NORESOLVER ire %p has " 9260 "no ill_resolver_mp\n", 9261 (void *)dst_ill, (void *)ire)); 9262 break; 9263 } 9264 9265 /* 9266 * The new ire inherits the IRE_OFFSUBNET flags 9267 * and source address, if this was requested. 9268 */ 9269 ire = ire_create( 9270 (uchar_t *)&dst, /* dest address */ 9271 (uchar_t *)&ip_g_all_ones, /* mask */ 9272 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9273 NULL, /* gateway address */ 9274 &ipif->ipif_mtu, 9275 NULL, /* no src nce */ 9276 dst_ill->ill_rq, /* recv-from queue */ 9277 dst_ill->ill_wq, /* send-to queue */ 9278 IRE_CACHE, 9279 src_ipif, 9280 (save_ire != NULL ? save_ire->ire_mask : 0), 9281 (fire != NULL) ? /* Parent handle */ 9282 fire->ire_phandle : 0, 9283 ihandle, /* Interface handle */ 9284 (fire != NULL) ? 9285 (fire->ire_flags & 9286 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9287 (save_ire == NULL ? &ire_uinfo_null : 9288 &save_ire->ire_uinfo), 9289 NULL, 9290 NULL, 9291 ipst); 9292 9293 if (ire == NULL) { 9294 if (save_ire != NULL) 9295 ire_refrele(save_ire); 9296 break; 9297 } 9298 9299 ire->ire_marks |= ire_marks; 9300 9301 /* 9302 * If IRE_MARK_NOADD is set then we need to convert 9303 * the max_fragp to a useable value now. This is 9304 * normally done in ire_add_v[46]. We also need to 9305 * associate the ire with an nce (normally would be 9306 * done in ip_wput_nondata()). 9307 * 9308 * Note that IRE_MARK_NOADD packets created here 9309 * do not have a non-null ire_mp pointer. The null 9310 * value of ire_bucket indicates that they were 9311 * never added. 9312 */ 9313 if (ire->ire_marks & IRE_MARK_NOADD) { 9314 uint_t max_frag; 9315 9316 max_frag = *ire->ire_max_fragp; 9317 ire->ire_max_fragp = NULL; 9318 ire->ire_max_frag = max_frag; 9319 9320 if ((ire->ire_nce = ndp_lookup_v4( 9321 ire_to_ill(ire), 9322 (ire->ire_gateway_addr != INADDR_ANY ? 9323 &ire->ire_gateway_addr : &ire->ire_addr), 9324 B_FALSE)) == NULL) { 9325 if (save_ire != NULL) 9326 ire_refrele(save_ire); 9327 break; 9328 } 9329 ASSERT(ire->ire_nce->nce_state == 9330 ND_REACHABLE); 9331 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9332 } 9333 9334 /* Prevent save_ire from getting deleted */ 9335 if (save_ire != NULL) { 9336 IRB_REFHOLD(save_ire->ire_bucket); 9337 /* Has it been removed already ? */ 9338 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9339 IRB_REFRELE(save_ire->ire_bucket); 9340 ire_refrele(save_ire); 9341 break; 9342 } 9343 } 9344 9345 ire_add_then_send(q, ire, first_mp); 9346 9347 /* Assert that save_ire is not deleted yet. */ 9348 if (save_ire != NULL) { 9349 ASSERT(save_ire->ire_ptpn != NULL); 9350 IRB_REFRELE(save_ire->ire_bucket); 9351 ire_refrele(save_ire); 9352 save_ire = NULL; 9353 } 9354 if (fire != NULL) { 9355 ire_refrele(fire); 9356 fire = NULL; 9357 } 9358 9359 /* 9360 * the resolution loop is re-entered if this 9361 * was requested through flags and if we 9362 * actually are in a multirouting case. 9363 */ 9364 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9365 boolean_t need_resolve = 9366 ire_multirt_need_resolve(ipha_dst, 9367 MBLK_GETLABEL(copy_mp), ipst); 9368 if (!need_resolve) { 9369 MULTIRT_DEBUG_UNTAG(copy_mp); 9370 freemsg(copy_mp); 9371 copy_mp = NULL; 9372 } else { 9373 /* 9374 * ipif_lookup_group() calls 9375 * ire_lookup_multi() that uses 9376 * ire_ftable_lookup() to find 9377 * an IRE_INTERFACE for the group. 9378 * In the multirt case, 9379 * ire_lookup_multi() then invokes 9380 * ire_multirt_lookup() to find 9381 * the next resolvable ire. 9382 * As a result, we obtain an new 9383 * interface, derived from the 9384 * next ire. 9385 */ 9386 ipif_refrele(ipif); 9387 ipif = ipif_lookup_group(ipha_dst, 9388 zoneid, ipst); 9389 ip2dbg(("ip_newroute_ipif: " 9390 "multirt dst %08x, ipif %p\n", 9391 htonl(dst), (void *)ipif)); 9392 if (ipif != NULL) { 9393 mp = copy_mp; 9394 copy_mp = NULL; 9395 multirt_resolve_next = B_TRUE; 9396 continue; 9397 } else { 9398 freemsg(copy_mp); 9399 } 9400 } 9401 } 9402 if (ipif != NULL) 9403 ipif_refrele(ipif); 9404 ill_refrele(dst_ill); 9405 ipif_refrele(src_ipif); 9406 return; 9407 } 9408 case IRE_IF_RESOLVER: 9409 /* 9410 * We can't build an IRE_CACHE yet, but at least 9411 * we found a resolver that can help. 9412 */ 9413 res_mp = dst_ill->ill_resolver_mp; 9414 if (!OK_RESOLVER_MP(res_mp)) 9415 break; 9416 9417 /* 9418 * We obtain a partial IRE_CACHE which we will pass 9419 * along with the resolver query. When the response 9420 * comes back it will be there ready for us to add. 9421 * The new ire inherits the IRE_OFFSUBNET flags 9422 * and source address, if this was requested. 9423 * The ire_max_frag is atomically set under the 9424 * irebucket lock in ire_add_v[46]. Only in the 9425 * case of IRE_MARK_NOADD, we set it here itself. 9426 */ 9427 ire = ire_create_mp( 9428 (uchar_t *)&dst, /* dest address */ 9429 (uchar_t *)&ip_g_all_ones, /* mask */ 9430 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9431 NULL, /* gateway address */ 9432 (ire_marks & IRE_MARK_NOADD) ? 9433 ipif->ipif_mtu : 0, /* max_frag */ 9434 NULL, /* no src nce */ 9435 dst_ill->ill_rq, /* recv-from queue */ 9436 dst_ill->ill_wq, /* send-to queue */ 9437 IRE_CACHE, 9438 src_ipif, 9439 (save_ire != NULL ? save_ire->ire_mask : 0), 9440 (fire != NULL) ? /* Parent handle */ 9441 fire->ire_phandle : 0, 9442 ihandle, /* Interface handle */ 9443 (fire != NULL) ? /* flags if any */ 9444 (fire->ire_flags & 9445 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9446 (save_ire == NULL ? &ire_uinfo_null : 9447 &save_ire->ire_uinfo), 9448 NULL, 9449 NULL, 9450 ipst); 9451 9452 if (save_ire != NULL) { 9453 ire_refrele(save_ire); 9454 save_ire = NULL; 9455 } 9456 if (ire == NULL) 9457 break; 9458 9459 ire->ire_marks |= ire_marks; 9460 /* 9461 * Construct message chain for the resolver of the 9462 * form: 9463 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9464 * 9465 * NOTE : ire will be added later when the response 9466 * comes back from ARP. If the response does not 9467 * come back, ARP frees the packet. For this reason, 9468 * we can't REFHOLD the bucket of save_ire to prevent 9469 * deletions. We may not be able to REFRELE the 9470 * bucket if the response never comes back. 9471 * Thus, before adding the ire, ire_add_v4 will make 9472 * sure that the interface route does not get deleted. 9473 * This is the only case unlike ip_newroute_v6, 9474 * ip_newroute_ipif_v6 where we can always prevent 9475 * deletions because ire_add_then_send is called after 9476 * creating the IRE. 9477 * If IRE_MARK_NOADD is set, then ire_add_then_send 9478 * does not add this IRE into the IRE CACHE. 9479 */ 9480 ASSERT(ire->ire_mp != NULL); 9481 ire->ire_mp->b_cont = first_mp; 9482 /* Have saved_mp handy, for cleanup if canput fails */ 9483 saved_mp = mp; 9484 mp = copyb(res_mp); 9485 if (mp == NULL) { 9486 /* Prepare for cleanup */ 9487 mp = saved_mp; /* pkt */ 9488 ire_delete(ire); /* ire_mp */ 9489 ire = NULL; 9490 if (copy_mp != NULL) { 9491 MULTIRT_DEBUG_UNTAG(copy_mp); 9492 freemsg(copy_mp); 9493 copy_mp = NULL; 9494 } 9495 break; 9496 } 9497 linkb(mp, ire->ire_mp); 9498 9499 /* 9500 * Fill in the source and dest addrs for the resolver. 9501 * NOTE: this depends on memory layouts imposed by 9502 * ill_init(). 9503 */ 9504 areq = (areq_t *)mp->b_rptr; 9505 addrp = (ipaddr_t *)((char *)areq + 9506 areq->areq_sender_addr_offset); 9507 *addrp = ire->ire_src_addr; 9508 addrp = (ipaddr_t *)((char *)areq + 9509 areq->areq_target_addr_offset); 9510 *addrp = dst; 9511 /* Up to the resolver. */ 9512 if (canputnext(dst_ill->ill_rq) && 9513 !(dst_ill->ill_arp_closing)) { 9514 putnext(dst_ill->ill_rq, mp); 9515 /* 9516 * The response will come back in ip_wput 9517 * with db_type IRE_DB_TYPE. 9518 */ 9519 } else { 9520 mp->b_cont = NULL; 9521 freeb(mp); /* areq */ 9522 ire_delete(ire); /* ire_mp */ 9523 saved_mp->b_next = NULL; 9524 saved_mp->b_prev = NULL; 9525 freemsg(first_mp); /* pkt */ 9526 ip2dbg(("ip_newroute_ipif: dropped\n")); 9527 } 9528 9529 if (fire != NULL) { 9530 ire_refrele(fire); 9531 fire = NULL; 9532 } 9533 9534 9535 /* 9536 * The resolution loop is re-entered if this was 9537 * requested through flags and we actually are 9538 * in a multirouting case. 9539 */ 9540 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9541 boolean_t need_resolve = 9542 ire_multirt_need_resolve(ipha_dst, 9543 MBLK_GETLABEL(copy_mp), ipst); 9544 if (!need_resolve) { 9545 MULTIRT_DEBUG_UNTAG(copy_mp); 9546 freemsg(copy_mp); 9547 copy_mp = NULL; 9548 } else { 9549 /* 9550 * ipif_lookup_group() calls 9551 * ire_lookup_multi() that uses 9552 * ire_ftable_lookup() to find 9553 * an IRE_INTERFACE for the group. 9554 * In the multirt case, 9555 * ire_lookup_multi() then invokes 9556 * ire_multirt_lookup() to find 9557 * the next resolvable ire. 9558 * As a result, we obtain an new 9559 * interface, derived from the 9560 * next ire. 9561 */ 9562 ipif_refrele(ipif); 9563 ipif = ipif_lookup_group(ipha_dst, 9564 zoneid, ipst); 9565 if (ipif != NULL) { 9566 mp = copy_mp; 9567 copy_mp = NULL; 9568 multirt_resolve_next = B_TRUE; 9569 continue; 9570 } else { 9571 freemsg(copy_mp); 9572 } 9573 } 9574 } 9575 if (ipif != NULL) 9576 ipif_refrele(ipif); 9577 ill_refrele(dst_ill); 9578 ipif_refrele(src_ipif); 9579 return; 9580 default: 9581 break; 9582 } 9583 } while (multirt_resolve_next); 9584 9585 err_ret: 9586 ip2dbg(("ip_newroute_ipif: dropped\n")); 9587 if (fire != NULL) 9588 ire_refrele(fire); 9589 ipif_refrele(ipif); 9590 /* Did this packet originate externally? */ 9591 if (dst_ill != NULL) 9592 ill_refrele(dst_ill); 9593 if (src_ipif != NULL) 9594 ipif_refrele(src_ipif); 9595 if (mp->b_prev || mp->b_next) { 9596 mp->b_next = NULL; 9597 mp->b_prev = NULL; 9598 } else { 9599 /* 9600 * Since ip_wput() isn't close to finished, we fill 9601 * in enough of the header for credible error reporting. 9602 */ 9603 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9604 /* Failed */ 9605 freemsg(first_mp); 9606 if (ire != NULL) 9607 ire_refrele(ire); 9608 return; 9609 } 9610 } 9611 /* 9612 * At this point we will have ire only if RTF_BLACKHOLE 9613 * or RTF_REJECT flags are set on the IRE. It will not 9614 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9615 */ 9616 if (ire != NULL) { 9617 if (ire->ire_flags & RTF_BLACKHOLE) { 9618 ire_refrele(ire); 9619 freemsg(first_mp); 9620 return; 9621 } 9622 ire_refrele(ire); 9623 } 9624 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9625 } 9626 9627 /* Name/Value Table Lookup Routine */ 9628 char * 9629 ip_nv_lookup(nv_t *nv, int value) 9630 { 9631 if (!nv) 9632 return (NULL); 9633 for (; nv->nv_name; nv++) { 9634 if (nv->nv_value == value) 9635 return (nv->nv_name); 9636 } 9637 return ("unknown"); 9638 } 9639 9640 /* 9641 * This is a module open, i.e. this is a control stream for access 9642 * to a DLPI device. We allocate an ill_t as the instance data in 9643 * this case. 9644 */ 9645 int 9646 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9647 { 9648 ill_t *ill; 9649 int err; 9650 zoneid_t zoneid; 9651 netstack_t *ns; 9652 ip_stack_t *ipst; 9653 9654 /* 9655 * Prevent unprivileged processes from pushing IP so that 9656 * they can't send raw IP. 9657 */ 9658 if (secpolicy_net_rawaccess(credp) != 0) 9659 return (EPERM); 9660 9661 ns = netstack_find_by_cred(credp); 9662 ASSERT(ns != NULL); 9663 ipst = ns->netstack_ip; 9664 ASSERT(ipst != NULL); 9665 9666 /* 9667 * For exclusive stacks we set the zoneid to zero 9668 * to make IP operate as if in the global zone. 9669 */ 9670 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9671 zoneid = GLOBAL_ZONEID; 9672 else 9673 zoneid = crgetzoneid(credp); 9674 9675 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9676 q->q_ptr = WR(q)->q_ptr = ill; 9677 ill->ill_ipst = ipst; 9678 ill->ill_zoneid = zoneid; 9679 9680 /* 9681 * ill_init initializes the ill fields and then sends down 9682 * down a DL_INFO_REQ after calling qprocson. 9683 */ 9684 err = ill_init(q, ill); 9685 if (err != 0) { 9686 mi_free(ill); 9687 netstack_rele(ipst->ips_netstack); 9688 q->q_ptr = NULL; 9689 WR(q)->q_ptr = NULL; 9690 return (err); 9691 } 9692 9693 /* ill_init initializes the ipsq marking this thread as writer */ 9694 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9695 /* Wait for the DL_INFO_ACK */ 9696 mutex_enter(&ill->ill_lock); 9697 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9698 /* 9699 * Return value of 0 indicates a pending signal. 9700 */ 9701 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9702 if (err == 0) { 9703 mutex_exit(&ill->ill_lock); 9704 (void) ip_close(q, 0); 9705 return (EINTR); 9706 } 9707 } 9708 mutex_exit(&ill->ill_lock); 9709 9710 /* 9711 * ip_rput_other could have set an error in ill_error on 9712 * receipt of M_ERROR. 9713 */ 9714 9715 err = ill->ill_error; 9716 if (err != 0) { 9717 (void) ip_close(q, 0); 9718 return (err); 9719 } 9720 9721 ill->ill_credp = credp; 9722 crhold(credp); 9723 9724 mutex_enter(&ipst->ips_ip_mi_lock); 9725 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9726 credp); 9727 mutex_exit(&ipst->ips_ip_mi_lock); 9728 if (err) { 9729 (void) ip_close(q, 0); 9730 return (err); 9731 } 9732 return (0); 9733 } 9734 9735 /* For /dev/ip aka AF_INET open */ 9736 int 9737 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9738 { 9739 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9740 } 9741 9742 /* For /dev/ip6 aka AF_INET6 open */ 9743 int 9744 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9745 { 9746 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9747 } 9748 9749 /* IP open routine. */ 9750 int 9751 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9752 boolean_t isv6) 9753 { 9754 conn_t *connp; 9755 major_t maj; 9756 zoneid_t zoneid; 9757 netstack_t *ns; 9758 ip_stack_t *ipst; 9759 9760 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9761 9762 /* Allow reopen. */ 9763 if (q->q_ptr != NULL) 9764 return (0); 9765 9766 if (sflag & MODOPEN) { 9767 /* This is a module open */ 9768 return (ip_modopen(q, devp, flag, sflag, credp)); 9769 } 9770 9771 ns = netstack_find_by_cred(credp); 9772 ASSERT(ns != NULL); 9773 ipst = ns->netstack_ip; 9774 ASSERT(ipst != NULL); 9775 9776 /* 9777 * For exclusive stacks we set the zoneid to zero 9778 * to make IP operate as if in the global zone. 9779 */ 9780 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9781 zoneid = GLOBAL_ZONEID; 9782 else 9783 zoneid = crgetzoneid(credp); 9784 9785 /* 9786 * We are opening as a device. This is an IP client stream, and we 9787 * allocate an conn_t as the instance data. 9788 */ 9789 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9790 9791 /* 9792 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9793 * done by netstack_find_by_cred() 9794 */ 9795 netstack_rele(ipst->ips_netstack); 9796 9797 connp->conn_zoneid = zoneid; 9798 9799 connp->conn_upq = q; 9800 q->q_ptr = WR(q)->q_ptr = connp; 9801 9802 if (flag & SO_SOCKSTR) 9803 connp->conn_flags |= IPCL_SOCKET; 9804 9805 /* Minor tells us which /dev entry was opened */ 9806 if (isv6) { 9807 connp->conn_flags |= IPCL_ISV6; 9808 connp->conn_af_isv6 = B_TRUE; 9809 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9810 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9811 } else { 9812 connp->conn_af_isv6 = B_FALSE; 9813 connp->conn_pkt_isv6 = B_FALSE; 9814 } 9815 9816 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9817 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9818 connp->conn_minor_arena = ip_minor_arena_la; 9819 } else { 9820 /* 9821 * Either minor numbers in the large arena were exhausted 9822 * or a non socket application is doing the open. 9823 * Try to allocate from the small arena. 9824 */ 9825 if ((connp->conn_dev = 9826 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9827 /* CONN_DEC_REF takes care of netstack_rele() */ 9828 q->q_ptr = WR(q)->q_ptr = NULL; 9829 CONN_DEC_REF(connp); 9830 return (EBUSY); 9831 } 9832 connp->conn_minor_arena = ip_minor_arena_sa; 9833 } 9834 9835 maj = getemajor(*devp); 9836 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9837 9838 /* 9839 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9840 */ 9841 connp->conn_cred = credp; 9842 9843 /* 9844 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9845 */ 9846 connp->conn_recv = ip_conn_input; 9847 9848 crhold(connp->conn_cred); 9849 9850 /* 9851 * If the caller has the process-wide flag set, then default to MAC 9852 * exempt mode. This allows read-down to unlabeled hosts. 9853 */ 9854 if (getpflags(NET_MAC_AWARE, credp) != 0) 9855 connp->conn_mac_exempt = B_TRUE; 9856 9857 connp->conn_rq = q; 9858 connp->conn_wq = WR(q); 9859 9860 /* Non-zero default values */ 9861 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9862 9863 /* 9864 * Make the conn globally visible to walkers 9865 */ 9866 ASSERT(connp->conn_ref == 1); 9867 mutex_enter(&connp->conn_lock); 9868 connp->conn_state_flags &= ~CONN_INCIPIENT; 9869 mutex_exit(&connp->conn_lock); 9870 9871 qprocson(q); 9872 9873 return (0); 9874 } 9875 9876 /* 9877 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9878 * Note that there is no race since either ip_output function works - it 9879 * is just an optimization to enter the best ip_output routine directly. 9880 */ 9881 void 9882 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9883 ip_stack_t *ipst) 9884 { 9885 if (isv6) { 9886 if (bump_mib) { 9887 BUMP_MIB(&ipst->ips_ip6_mib, 9888 ipIfStatsOutSwitchIPVersion); 9889 } 9890 connp->conn_send = ip_output_v6; 9891 connp->conn_pkt_isv6 = B_TRUE; 9892 } else { 9893 if (bump_mib) { 9894 BUMP_MIB(&ipst->ips_ip_mib, 9895 ipIfStatsOutSwitchIPVersion); 9896 } 9897 connp->conn_send = ip_output; 9898 connp->conn_pkt_isv6 = B_FALSE; 9899 } 9900 9901 } 9902 9903 /* 9904 * See if IPsec needs loading because of the options in mp. 9905 */ 9906 static boolean_t 9907 ipsec_opt_present(mblk_t *mp) 9908 { 9909 uint8_t *optcp, *next_optcp, *opt_endcp; 9910 struct opthdr *opt; 9911 struct T_opthdr *topt; 9912 int opthdr_len; 9913 t_uscalar_t optname, optlevel; 9914 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9915 ipsec_req_t *ipsr; 9916 9917 /* 9918 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9919 * return TRUE. 9920 */ 9921 9922 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9923 opt_endcp = optcp + tor->OPT_length; 9924 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9925 opthdr_len = sizeof (struct T_opthdr); 9926 } else { /* O_OPTMGMT_REQ */ 9927 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9928 opthdr_len = sizeof (struct opthdr); 9929 } 9930 for (; optcp < opt_endcp; optcp = next_optcp) { 9931 if (optcp + opthdr_len > opt_endcp) 9932 return (B_FALSE); /* Not enough option header. */ 9933 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9934 topt = (struct T_opthdr *)optcp; 9935 optlevel = topt->level; 9936 optname = topt->name; 9937 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9938 } else { 9939 opt = (struct opthdr *)optcp; 9940 optlevel = opt->level; 9941 optname = opt->name; 9942 next_optcp = optcp + opthdr_len + 9943 _TPI_ALIGN_OPT(opt->len); 9944 } 9945 if ((next_optcp < optcp) || /* wraparound pointer space */ 9946 ((next_optcp >= opt_endcp) && /* last option bad len */ 9947 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9948 return (B_FALSE); /* bad option buffer */ 9949 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9950 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9951 /* 9952 * Check to see if it's an all-bypass or all-zeroes 9953 * IPsec request. Don't bother loading IPsec if 9954 * the socket doesn't want to use it. (A good example 9955 * is a bypass request.) 9956 * 9957 * Basically, if any of the non-NEVER bits are set, 9958 * load IPsec. 9959 */ 9960 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9961 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9962 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9963 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9964 != 0) 9965 return (B_TRUE); 9966 } 9967 } 9968 return (B_FALSE); 9969 } 9970 9971 /* 9972 * If conn is is waiting for ipsec to finish loading, kick it. 9973 */ 9974 /* ARGSUSED */ 9975 static void 9976 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9977 { 9978 t_scalar_t optreq_prim; 9979 mblk_t *mp; 9980 cred_t *cr; 9981 int err = 0; 9982 9983 /* 9984 * This function is called, after ipsec loading is complete. 9985 * Since IP checks exclusively and atomically (i.e it prevents 9986 * ipsec load from completing until ip_optcom_req completes) 9987 * whether ipsec load is complete, there cannot be a race with IP 9988 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9989 */ 9990 mutex_enter(&connp->conn_lock); 9991 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9992 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9993 mp = connp->conn_ipsec_opt_mp; 9994 connp->conn_ipsec_opt_mp = NULL; 9995 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9996 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9997 mutex_exit(&connp->conn_lock); 9998 9999 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10000 10001 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10002 if (optreq_prim == T_OPTMGMT_REQ) { 10003 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10004 &ip_opt_obj, B_FALSE); 10005 } else { 10006 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10007 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10008 &ip_opt_obj, B_FALSE); 10009 } 10010 if (err != EINPROGRESS) 10011 CONN_OPER_PENDING_DONE(connp); 10012 return; 10013 } 10014 mutex_exit(&connp->conn_lock); 10015 } 10016 10017 /* 10018 * Called from the ipsec_loader thread, outside any perimeter, to tell 10019 * ip qenable any of the queues waiting for the ipsec loader to 10020 * complete. 10021 */ 10022 void 10023 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10024 { 10025 netstack_t *ns = ipss->ipsec_netstack; 10026 10027 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10028 } 10029 10030 /* 10031 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10032 * determines the grp on which it has to become exclusive, queues the mp 10033 * and sq draining restarts the optmgmt 10034 */ 10035 static boolean_t 10036 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10037 { 10038 conn_t *connp = Q_TO_CONN(q); 10039 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10040 10041 /* 10042 * Take IPsec requests and treat them special. 10043 */ 10044 if (ipsec_opt_present(mp)) { 10045 /* First check if IPsec is loaded. */ 10046 mutex_enter(&ipss->ipsec_loader_lock); 10047 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10048 mutex_exit(&ipss->ipsec_loader_lock); 10049 return (B_FALSE); 10050 } 10051 mutex_enter(&connp->conn_lock); 10052 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10053 10054 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10055 connp->conn_ipsec_opt_mp = mp; 10056 mutex_exit(&connp->conn_lock); 10057 mutex_exit(&ipss->ipsec_loader_lock); 10058 10059 ipsec_loader_loadnow(ipss); 10060 return (B_TRUE); 10061 } 10062 return (B_FALSE); 10063 } 10064 10065 /* 10066 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10067 * all of them are copied to the conn_t. If the req is "zero", the policy is 10068 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10069 * fields. 10070 * We keep only the latest setting of the policy and thus policy setting 10071 * is not incremental/cumulative. 10072 * 10073 * Requests to set policies with multiple alternative actions will 10074 * go through a different API. 10075 */ 10076 int 10077 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10078 { 10079 uint_t ah_req = 0; 10080 uint_t esp_req = 0; 10081 uint_t se_req = 0; 10082 ipsec_selkey_t sel; 10083 ipsec_act_t *actp = NULL; 10084 uint_t nact; 10085 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10086 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10087 ipsec_policy_root_t *pr; 10088 ipsec_policy_head_t *ph; 10089 int fam; 10090 boolean_t is_pol_reset; 10091 int error = 0; 10092 netstack_t *ns = connp->conn_netstack; 10093 ip_stack_t *ipst = ns->netstack_ip; 10094 ipsec_stack_t *ipss = ns->netstack_ipsec; 10095 10096 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10097 10098 /* 10099 * The IP_SEC_OPT option does not allow variable length parameters, 10100 * hence a request cannot be NULL. 10101 */ 10102 if (req == NULL) 10103 return (EINVAL); 10104 10105 ah_req = req->ipsr_ah_req; 10106 esp_req = req->ipsr_esp_req; 10107 se_req = req->ipsr_self_encap_req; 10108 10109 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10110 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10111 return (EINVAL); 10112 10113 /* 10114 * Are we dealing with a request to reset the policy (i.e. 10115 * zero requests). 10116 */ 10117 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10118 (esp_req & REQ_MASK) == 0 && 10119 (se_req & REQ_MASK) == 0); 10120 10121 if (!is_pol_reset) { 10122 /* 10123 * If we couldn't load IPsec, fail with "protocol 10124 * not supported". 10125 * IPsec may not have been loaded for a request with zero 10126 * policies, so we don't fail in this case. 10127 */ 10128 mutex_enter(&ipss->ipsec_loader_lock); 10129 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10130 mutex_exit(&ipss->ipsec_loader_lock); 10131 return (EPROTONOSUPPORT); 10132 } 10133 mutex_exit(&ipss->ipsec_loader_lock); 10134 10135 /* 10136 * Test for valid requests. Invalid algorithms 10137 * need to be tested by IPsec code because new 10138 * algorithms can be added dynamically. 10139 */ 10140 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10141 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10142 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10143 return (EINVAL); 10144 } 10145 10146 /* 10147 * Only privileged users can issue these 10148 * requests. 10149 */ 10150 if (((ah_req & IPSEC_PREF_NEVER) || 10151 (esp_req & IPSEC_PREF_NEVER) || 10152 (se_req & IPSEC_PREF_NEVER)) && 10153 secpolicy_ip_config(cr, B_FALSE) != 0) { 10154 return (EPERM); 10155 } 10156 10157 /* 10158 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10159 * are mutually exclusive. 10160 */ 10161 if (((ah_req & REQ_MASK) == REQ_MASK) || 10162 ((esp_req & REQ_MASK) == REQ_MASK) || 10163 ((se_req & REQ_MASK) == REQ_MASK)) { 10164 /* Both of them are set */ 10165 return (EINVAL); 10166 } 10167 } 10168 10169 mutex_enter(&connp->conn_lock); 10170 10171 /* 10172 * If we have already cached policies in ip_bind_connected*(), don't 10173 * let them change now. We cache policies for connections 10174 * whose src,dst [addr, port] is known. 10175 */ 10176 if (connp->conn_policy_cached) { 10177 mutex_exit(&connp->conn_lock); 10178 return (EINVAL); 10179 } 10180 10181 /* 10182 * We have a zero policies, reset the connection policy if already 10183 * set. This will cause the connection to inherit the 10184 * global policy, if any. 10185 */ 10186 if (is_pol_reset) { 10187 if (connp->conn_policy != NULL) { 10188 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10189 connp->conn_policy = NULL; 10190 } 10191 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10192 connp->conn_in_enforce_policy = B_FALSE; 10193 connp->conn_out_enforce_policy = B_FALSE; 10194 mutex_exit(&connp->conn_lock); 10195 return (0); 10196 } 10197 10198 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10199 ipst->ips_netstack); 10200 if (ph == NULL) 10201 goto enomem; 10202 10203 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10204 if (actp == NULL) 10205 goto enomem; 10206 10207 /* 10208 * Always allocate IPv4 policy entries, since they can also 10209 * apply to ipv6 sockets being used in ipv4-compat mode. 10210 */ 10211 bzero(&sel, sizeof (sel)); 10212 sel.ipsl_valid = IPSL_IPV4; 10213 10214 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10215 ipst->ips_netstack); 10216 if (pin4 == NULL) 10217 goto enomem; 10218 10219 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10220 ipst->ips_netstack); 10221 if (pout4 == NULL) 10222 goto enomem; 10223 10224 if (connp->conn_af_isv6) { 10225 /* 10226 * We're looking at a v6 socket, also allocate the 10227 * v6-specific entries... 10228 */ 10229 sel.ipsl_valid = IPSL_IPV6; 10230 pin6 = ipsec_policy_create(&sel, actp, nact, 10231 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10232 if (pin6 == NULL) 10233 goto enomem; 10234 10235 pout6 = ipsec_policy_create(&sel, actp, nact, 10236 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10237 if (pout6 == NULL) 10238 goto enomem; 10239 10240 /* 10241 * .. and file them away in the right place. 10242 */ 10243 fam = IPSEC_AF_V6; 10244 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10245 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10246 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10247 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10248 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10249 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10250 } 10251 10252 ipsec_actvec_free(actp, nact); 10253 10254 /* 10255 * File the v4 policies. 10256 */ 10257 fam = IPSEC_AF_V4; 10258 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10259 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10260 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10261 10262 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10263 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10264 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10265 10266 /* 10267 * If the requests need security, set enforce_policy. 10268 * If the requests are IPSEC_PREF_NEVER, one should 10269 * still set conn_out_enforce_policy so that an ipsec_out 10270 * gets attached in ip_wput. This is needed so that 10271 * for connections that we don't cache policy in ip_bind, 10272 * if global policy matches in ip_wput_attach_policy, we 10273 * don't wrongly inherit global policy. Similarly, we need 10274 * to set conn_in_enforce_policy also so that we don't verify 10275 * policy wrongly. 10276 */ 10277 if ((ah_req & REQ_MASK) != 0 || 10278 (esp_req & REQ_MASK) != 0 || 10279 (se_req & REQ_MASK) != 0) { 10280 connp->conn_in_enforce_policy = B_TRUE; 10281 connp->conn_out_enforce_policy = B_TRUE; 10282 connp->conn_flags |= IPCL_CHECK_POLICY; 10283 } 10284 10285 mutex_exit(&connp->conn_lock); 10286 return (error); 10287 #undef REQ_MASK 10288 10289 /* 10290 * Common memory-allocation-failure exit path. 10291 */ 10292 enomem: 10293 mutex_exit(&connp->conn_lock); 10294 if (actp != NULL) 10295 ipsec_actvec_free(actp, nact); 10296 if (pin4 != NULL) 10297 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10298 if (pout4 != NULL) 10299 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10300 if (pin6 != NULL) 10301 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10302 if (pout6 != NULL) 10303 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10304 return (ENOMEM); 10305 } 10306 10307 /* 10308 * Only for options that pass in an IP addr. Currently only V4 options 10309 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10310 * So this function assumes level is IPPROTO_IP 10311 */ 10312 int 10313 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10314 mblk_t *first_mp) 10315 { 10316 ipif_t *ipif = NULL; 10317 int error; 10318 ill_t *ill; 10319 int zoneid; 10320 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10321 10322 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10323 10324 if (addr != INADDR_ANY || checkonly) { 10325 ASSERT(connp != NULL); 10326 zoneid = IPCL_ZONEID(connp); 10327 if (option == IP_NEXTHOP) { 10328 ipif = ipif_lookup_onlink_addr(addr, 10329 connp->conn_zoneid, ipst); 10330 } else { 10331 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10332 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10333 &error, ipst); 10334 } 10335 if (ipif == NULL) { 10336 if (error == EINPROGRESS) 10337 return (error); 10338 else if ((option == IP_MULTICAST_IF) || 10339 (option == IP_NEXTHOP)) 10340 return (EHOSTUNREACH); 10341 else 10342 return (EINVAL); 10343 } else if (checkonly) { 10344 if (option == IP_MULTICAST_IF) { 10345 ill = ipif->ipif_ill; 10346 /* not supported by the virtual network iface */ 10347 if (IS_VNI(ill)) { 10348 ipif_refrele(ipif); 10349 return (EINVAL); 10350 } 10351 } 10352 ipif_refrele(ipif); 10353 return (0); 10354 } 10355 ill = ipif->ipif_ill; 10356 mutex_enter(&connp->conn_lock); 10357 mutex_enter(&ill->ill_lock); 10358 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10359 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10360 mutex_exit(&ill->ill_lock); 10361 mutex_exit(&connp->conn_lock); 10362 ipif_refrele(ipif); 10363 return (option == IP_MULTICAST_IF ? 10364 EHOSTUNREACH : EINVAL); 10365 } 10366 } else { 10367 mutex_enter(&connp->conn_lock); 10368 } 10369 10370 /* None of the options below are supported on the VNI */ 10371 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10372 mutex_exit(&ill->ill_lock); 10373 mutex_exit(&connp->conn_lock); 10374 ipif_refrele(ipif); 10375 return (EINVAL); 10376 } 10377 10378 switch (option) { 10379 case IP_DONTFAILOVER_IF: 10380 /* 10381 * This option is used by in.mpathd to ensure 10382 * that IPMP probe packets only go out on the 10383 * test interfaces. in.mpathd sets this option 10384 * on the non-failover interfaces. 10385 * For backward compatibility, this option 10386 * implicitly sets IP_MULTICAST_IF, as used 10387 * be done in bind(), so that ip_wput gets 10388 * this ipif to send mcast packets. 10389 */ 10390 if (ipif != NULL) { 10391 ASSERT(addr != INADDR_ANY); 10392 connp->conn_nofailover_ill = ipif->ipif_ill; 10393 connp->conn_multicast_ipif = ipif; 10394 } else { 10395 ASSERT(addr == INADDR_ANY); 10396 connp->conn_nofailover_ill = NULL; 10397 connp->conn_multicast_ipif = NULL; 10398 } 10399 break; 10400 10401 case IP_MULTICAST_IF: 10402 connp->conn_multicast_ipif = ipif; 10403 break; 10404 case IP_NEXTHOP: 10405 connp->conn_nexthop_v4 = addr; 10406 connp->conn_nexthop_set = B_TRUE; 10407 break; 10408 } 10409 10410 if (ipif != NULL) { 10411 mutex_exit(&ill->ill_lock); 10412 mutex_exit(&connp->conn_lock); 10413 ipif_refrele(ipif); 10414 return (0); 10415 } 10416 mutex_exit(&connp->conn_lock); 10417 /* We succeded in cleared the option */ 10418 return (0); 10419 } 10420 10421 /* 10422 * For options that pass in an ifindex specifying the ill. V6 options always 10423 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10424 */ 10425 int 10426 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10427 int level, int option, mblk_t *first_mp) 10428 { 10429 ill_t *ill = NULL; 10430 int error = 0; 10431 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10432 10433 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10434 if (ifindex != 0) { 10435 ASSERT(connp != NULL); 10436 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10437 first_mp, ip_restart_optmgmt, &error, ipst); 10438 if (ill != NULL) { 10439 if (checkonly) { 10440 /* not supported by the virtual network iface */ 10441 if (IS_VNI(ill)) { 10442 ill_refrele(ill); 10443 return (EINVAL); 10444 } 10445 ill_refrele(ill); 10446 return (0); 10447 } 10448 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10449 0, NULL)) { 10450 ill_refrele(ill); 10451 ill = NULL; 10452 mutex_enter(&connp->conn_lock); 10453 goto setit; 10454 } 10455 mutex_enter(&connp->conn_lock); 10456 mutex_enter(&ill->ill_lock); 10457 if (ill->ill_state_flags & ILL_CONDEMNED) { 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&connp->conn_lock); 10460 ill_refrele(ill); 10461 ill = NULL; 10462 mutex_enter(&connp->conn_lock); 10463 } 10464 goto setit; 10465 } else if (error == EINPROGRESS) { 10466 return (error); 10467 } else { 10468 error = 0; 10469 } 10470 } 10471 mutex_enter(&connp->conn_lock); 10472 setit: 10473 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10474 10475 /* 10476 * The options below assume that the ILL (if any) transmits and/or 10477 * receives traffic. Neither of which is true for the virtual network 10478 * interface, so fail setting these on a VNI. 10479 */ 10480 if (IS_VNI(ill)) { 10481 ASSERT(ill != NULL); 10482 mutex_exit(&ill->ill_lock); 10483 mutex_exit(&connp->conn_lock); 10484 ill_refrele(ill); 10485 return (EINVAL); 10486 } 10487 10488 if (level == IPPROTO_IP) { 10489 switch (option) { 10490 case IP_BOUND_IF: 10491 connp->conn_incoming_ill = ill; 10492 connp->conn_outgoing_ill = ill; 10493 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10494 0 : ifindex; 10495 break; 10496 10497 case IP_MULTICAST_IF: 10498 /* 10499 * This option is an internal special. The socket 10500 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10501 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10502 * specifies an ifindex and we try first on V6 ill's. 10503 * If we don't find one, we they try using on v4 ill's 10504 * intenally and we come here. 10505 */ 10506 if (!checkonly && ill != NULL) { 10507 ipif_t *ipif; 10508 ipif = ill->ill_ipif; 10509 10510 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10511 mutex_exit(&ill->ill_lock); 10512 mutex_exit(&connp->conn_lock); 10513 ill_refrele(ill); 10514 ill = NULL; 10515 mutex_enter(&connp->conn_lock); 10516 } else { 10517 connp->conn_multicast_ipif = ipif; 10518 } 10519 } 10520 break; 10521 10522 case IP_DHCPINIT_IF: 10523 if (connp->conn_dhcpinit_ill != NULL) { 10524 /* 10525 * We've locked the conn so conn_cleanup_ill() 10526 * cannot clear conn_dhcpinit_ill -- so it's 10527 * safe to access the ill. 10528 */ 10529 ill_t *oill = connp->conn_dhcpinit_ill; 10530 10531 ASSERT(oill->ill_dhcpinit != 0); 10532 atomic_dec_32(&oill->ill_dhcpinit); 10533 connp->conn_dhcpinit_ill = NULL; 10534 } 10535 10536 if (ill != NULL) { 10537 connp->conn_dhcpinit_ill = ill; 10538 atomic_inc_32(&ill->ill_dhcpinit); 10539 } 10540 break; 10541 } 10542 } else { 10543 switch (option) { 10544 case IPV6_BOUND_IF: 10545 connp->conn_incoming_ill = ill; 10546 connp->conn_outgoing_ill = ill; 10547 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10548 0 : ifindex; 10549 break; 10550 10551 case IPV6_BOUND_PIF: 10552 /* 10553 * Limit all transmit to this ill. 10554 * Unlike IPV6_BOUND_IF, using this option 10555 * prevents load spreading and failover from 10556 * happening when the interface is part of the 10557 * group. That's why we don't need to remember 10558 * the ifindex in orig_bound_ifindex as in 10559 * IPV6_BOUND_IF. 10560 */ 10561 connp->conn_outgoing_pill = ill; 10562 break; 10563 10564 case IPV6_DONTFAILOVER_IF: 10565 /* 10566 * This option is used by in.mpathd to ensure 10567 * that IPMP probe packets only go out on the 10568 * test interfaces. in.mpathd sets this option 10569 * on the non-failover interfaces. 10570 */ 10571 connp->conn_nofailover_ill = ill; 10572 /* 10573 * For backward compatibility, this option 10574 * implicitly sets ip_multicast_ill as used in 10575 * IPV6_MULTICAST_IF so that ip_wput gets 10576 * this ill to send mcast packets. 10577 */ 10578 connp->conn_multicast_ill = ill; 10579 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10580 0 : ifindex; 10581 break; 10582 10583 case IPV6_MULTICAST_IF: 10584 /* 10585 * Set conn_multicast_ill to be the IPv6 ill. 10586 * Set conn_multicast_ipif to be an IPv4 ipif 10587 * for ifindex to make IPv4 mapped addresses 10588 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10589 * Even if no IPv6 ill exists for the ifindex 10590 * we need to check for an IPv4 ifindex in order 10591 * for this to work with mapped addresses. In that 10592 * case only set conn_multicast_ipif. 10593 */ 10594 if (!checkonly) { 10595 if (ifindex == 0) { 10596 connp->conn_multicast_ill = NULL; 10597 connp->conn_orig_multicast_ifindex = 0; 10598 connp->conn_multicast_ipif = NULL; 10599 } else if (ill != NULL) { 10600 connp->conn_multicast_ill = ill; 10601 connp->conn_orig_multicast_ifindex = 10602 ifindex; 10603 } 10604 } 10605 break; 10606 } 10607 } 10608 10609 if (ill != NULL) { 10610 mutex_exit(&ill->ill_lock); 10611 mutex_exit(&connp->conn_lock); 10612 ill_refrele(ill); 10613 return (0); 10614 } 10615 mutex_exit(&connp->conn_lock); 10616 /* 10617 * We succeeded in clearing the option (ifindex == 0) or failed to 10618 * locate the ill and could not set the option (ifindex != 0) 10619 */ 10620 return (ifindex == 0 ? 0 : EINVAL); 10621 } 10622 10623 /* This routine sets socket options. */ 10624 /* ARGSUSED */ 10625 int 10626 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10627 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10628 void *dummy, cred_t *cr, mblk_t *first_mp) 10629 { 10630 int *i1 = (int *)invalp; 10631 conn_t *connp = Q_TO_CONN(q); 10632 int error = 0; 10633 boolean_t checkonly; 10634 ire_t *ire; 10635 boolean_t found; 10636 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10637 10638 switch (optset_context) { 10639 10640 case SETFN_OPTCOM_CHECKONLY: 10641 checkonly = B_TRUE; 10642 /* 10643 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10644 * inlen != 0 implies value supplied and 10645 * we have to "pretend" to set it. 10646 * inlen == 0 implies that there is no 10647 * value part in T_CHECK request and just validation 10648 * done elsewhere should be enough, we just return here. 10649 */ 10650 if (inlen == 0) { 10651 *outlenp = 0; 10652 return (0); 10653 } 10654 break; 10655 case SETFN_OPTCOM_NEGOTIATE: 10656 case SETFN_UD_NEGOTIATE: 10657 case SETFN_CONN_NEGOTIATE: 10658 checkonly = B_FALSE; 10659 break; 10660 default: 10661 /* 10662 * We should never get here 10663 */ 10664 *outlenp = 0; 10665 return (EINVAL); 10666 } 10667 10668 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10669 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10670 10671 /* 10672 * For fixed length options, no sanity check 10673 * of passed in length is done. It is assumed *_optcom_req() 10674 * routines do the right thing. 10675 */ 10676 10677 switch (level) { 10678 case SOL_SOCKET: 10679 /* 10680 * conn_lock protects the bitfields, and is used to 10681 * set the fields atomically. 10682 */ 10683 switch (name) { 10684 case SO_BROADCAST: 10685 if (!checkonly) { 10686 /* TODO: use value someplace? */ 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_broadcast = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case SO_USELOOPBACK: 10693 if (!checkonly) { 10694 /* TODO: use value someplace? */ 10695 mutex_enter(&connp->conn_lock); 10696 connp->conn_loopback = *i1 ? 1 : 0; 10697 mutex_exit(&connp->conn_lock); 10698 } 10699 break; /* goto sizeof (int) option return */ 10700 case SO_DONTROUTE: 10701 if (!checkonly) { 10702 mutex_enter(&connp->conn_lock); 10703 connp->conn_dontroute = *i1 ? 1 : 0; 10704 mutex_exit(&connp->conn_lock); 10705 } 10706 break; /* goto sizeof (int) option return */ 10707 case SO_REUSEADDR: 10708 if (!checkonly) { 10709 mutex_enter(&connp->conn_lock); 10710 connp->conn_reuseaddr = *i1 ? 1 : 0; 10711 mutex_exit(&connp->conn_lock); 10712 } 10713 break; /* goto sizeof (int) option return */ 10714 case SO_PROTOTYPE: 10715 if (!checkonly) { 10716 mutex_enter(&connp->conn_lock); 10717 connp->conn_proto = *i1; 10718 mutex_exit(&connp->conn_lock); 10719 } 10720 break; /* goto sizeof (int) option return */ 10721 case SO_ALLZONES: 10722 if (!checkonly) { 10723 mutex_enter(&connp->conn_lock); 10724 if (IPCL_IS_BOUND(connp)) { 10725 mutex_exit(&connp->conn_lock); 10726 return (EINVAL); 10727 } 10728 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case SO_ANON_MLP: 10733 if (!checkonly) { 10734 mutex_enter(&connp->conn_lock); 10735 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10736 mutex_exit(&connp->conn_lock); 10737 } 10738 break; /* goto sizeof (int) option return */ 10739 case SO_MAC_EXEMPT: 10740 if (secpolicy_net_mac_aware(cr) != 0 || 10741 IPCL_IS_BOUND(connp)) 10742 return (EACCES); 10743 if (!checkonly) { 10744 mutex_enter(&connp->conn_lock); 10745 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10746 mutex_exit(&connp->conn_lock); 10747 } 10748 break; /* goto sizeof (int) option return */ 10749 default: 10750 /* 10751 * "soft" error (negative) 10752 * option not handled at this level 10753 * Note: Do not modify *outlenp 10754 */ 10755 return (-EINVAL); 10756 } 10757 break; 10758 case IPPROTO_IP: 10759 switch (name) { 10760 case IP_NEXTHOP: 10761 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10762 return (EPERM); 10763 /* FALLTHRU */ 10764 case IP_MULTICAST_IF: 10765 case IP_DONTFAILOVER_IF: { 10766 ipaddr_t addr = *i1; 10767 10768 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10769 first_mp); 10770 if (error != 0) 10771 return (error); 10772 break; /* goto sizeof (int) option return */ 10773 } 10774 10775 case IP_MULTICAST_TTL: 10776 /* Recorded in transport above IP */ 10777 *outvalp = *invalp; 10778 *outlenp = sizeof (uchar_t); 10779 return (0); 10780 case IP_MULTICAST_LOOP: 10781 if (!checkonly) { 10782 mutex_enter(&connp->conn_lock); 10783 connp->conn_multicast_loop = *invalp ? 1 : 0; 10784 mutex_exit(&connp->conn_lock); 10785 } 10786 *outvalp = *invalp; 10787 *outlenp = sizeof (uchar_t); 10788 return (0); 10789 case IP_ADD_MEMBERSHIP: 10790 case MCAST_JOIN_GROUP: 10791 case IP_DROP_MEMBERSHIP: 10792 case MCAST_LEAVE_GROUP: { 10793 struct ip_mreq *mreqp; 10794 struct group_req *greqp; 10795 ire_t *ire; 10796 boolean_t done = B_FALSE; 10797 ipaddr_t group, ifaddr; 10798 struct sockaddr_in *sin; 10799 uint32_t *ifindexp; 10800 boolean_t mcast_opt = B_TRUE; 10801 mcast_record_t fmode; 10802 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10803 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10804 10805 switch (name) { 10806 case IP_ADD_MEMBERSHIP: 10807 mcast_opt = B_FALSE; 10808 /* FALLTHRU */ 10809 case MCAST_JOIN_GROUP: 10810 fmode = MODE_IS_EXCLUDE; 10811 optfn = ip_opt_add_group; 10812 break; 10813 10814 case IP_DROP_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_LEAVE_GROUP: 10818 fmode = MODE_IS_INCLUDE; 10819 optfn = ip_opt_delete_group; 10820 break; 10821 } 10822 10823 if (mcast_opt) { 10824 greqp = (struct group_req *)i1; 10825 sin = (struct sockaddr_in *)&greqp->gr_group; 10826 if (sin->sin_family != AF_INET) { 10827 *outlenp = 0; 10828 return (ENOPROTOOPT); 10829 } 10830 group = (ipaddr_t)sin->sin_addr.s_addr; 10831 ifaddr = INADDR_ANY; 10832 ifindexp = &greqp->gr_interface; 10833 } else { 10834 mreqp = (struct ip_mreq *)i1; 10835 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10836 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10837 ifindexp = NULL; 10838 } 10839 10840 /* 10841 * In the multirouting case, we need to replicate 10842 * the request on all interfaces that will take part 10843 * in replication. We do so because multirouting is 10844 * reflective, thus we will probably receive multi- 10845 * casts on those interfaces. 10846 * The ip_multirt_apply_membership() succeeds if the 10847 * operation succeeds on at least one interface. 10848 */ 10849 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10850 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10851 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10852 if (ire != NULL) { 10853 if (ire->ire_flags & RTF_MULTIRT) { 10854 error = ip_multirt_apply_membership( 10855 optfn, ire, connp, checkonly, group, 10856 fmode, INADDR_ANY, first_mp); 10857 done = B_TRUE; 10858 } 10859 ire_refrele(ire); 10860 } 10861 if (!done) { 10862 error = optfn(connp, checkonly, group, ifaddr, 10863 ifindexp, fmode, INADDR_ANY, first_mp); 10864 } 10865 if (error) { 10866 /* 10867 * EINPROGRESS is a soft error, needs retry 10868 * so don't make *outlenp zero. 10869 */ 10870 if (error != EINPROGRESS) 10871 *outlenp = 0; 10872 return (error); 10873 } 10874 /* OK return - copy input buffer into output buffer */ 10875 if (invalp != outvalp) { 10876 /* don't trust bcopy for identical src/dst */ 10877 bcopy(invalp, outvalp, inlen); 10878 } 10879 *outlenp = inlen; 10880 return (0); 10881 } 10882 case IP_BLOCK_SOURCE: 10883 case IP_UNBLOCK_SOURCE: 10884 case IP_ADD_SOURCE_MEMBERSHIP: 10885 case IP_DROP_SOURCE_MEMBERSHIP: 10886 case MCAST_BLOCK_SOURCE: 10887 case MCAST_UNBLOCK_SOURCE: 10888 case MCAST_JOIN_SOURCE_GROUP: 10889 case MCAST_LEAVE_SOURCE_GROUP: { 10890 struct ip_mreq_source *imreqp; 10891 struct group_source_req *gsreqp; 10892 in_addr_t grp, src, ifaddr = INADDR_ANY; 10893 uint32_t ifindex = 0; 10894 mcast_record_t fmode; 10895 struct sockaddr_in *sin; 10896 ire_t *ire; 10897 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10898 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10899 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10900 10901 switch (name) { 10902 case IP_BLOCK_SOURCE: 10903 mcast_opt = B_FALSE; 10904 /* FALLTHRU */ 10905 case MCAST_BLOCK_SOURCE: 10906 fmode = MODE_IS_EXCLUDE; 10907 optfn = ip_opt_add_group; 10908 break; 10909 10910 case IP_UNBLOCK_SOURCE: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_UNBLOCK_SOURCE: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_delete_group; 10916 break; 10917 10918 case IP_ADD_SOURCE_MEMBERSHIP: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_JOIN_SOURCE_GROUP: 10922 fmode = MODE_IS_INCLUDE; 10923 optfn = ip_opt_add_group; 10924 break; 10925 10926 case IP_DROP_SOURCE_MEMBERSHIP: 10927 mcast_opt = B_FALSE; 10928 /* FALLTHRU */ 10929 case MCAST_LEAVE_SOURCE_GROUP: 10930 fmode = MODE_IS_INCLUDE; 10931 optfn = ip_opt_delete_group; 10932 break; 10933 } 10934 10935 if (mcast_opt) { 10936 gsreqp = (struct group_source_req *)i1; 10937 if (gsreqp->gsr_group.ss_family != AF_INET) { 10938 *outlenp = 0; 10939 return (ENOPROTOOPT); 10940 } 10941 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10942 grp = (ipaddr_t)sin->sin_addr.s_addr; 10943 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10944 src = (ipaddr_t)sin->sin_addr.s_addr; 10945 ifindex = gsreqp->gsr_interface; 10946 } else { 10947 imreqp = (struct ip_mreq_source *)i1; 10948 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10949 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10950 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10951 } 10952 10953 /* 10954 * In the multirouting case, we need to replicate 10955 * the request as noted in the mcast cases above. 10956 */ 10957 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10958 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10959 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10960 if (ire != NULL) { 10961 if (ire->ire_flags & RTF_MULTIRT) { 10962 error = ip_multirt_apply_membership( 10963 optfn, ire, connp, checkonly, grp, 10964 fmode, src, first_mp); 10965 done = B_TRUE; 10966 } 10967 ire_refrele(ire); 10968 } 10969 if (!done) { 10970 error = optfn(connp, checkonly, grp, ifaddr, 10971 &ifindex, fmode, src, first_mp); 10972 } 10973 if (error != 0) { 10974 /* 10975 * EINPROGRESS is a soft error, needs retry 10976 * so don't make *outlenp zero. 10977 */ 10978 if (error != EINPROGRESS) 10979 *outlenp = 0; 10980 return (error); 10981 } 10982 /* OK return - copy input buffer into output buffer */ 10983 if (invalp != outvalp) { 10984 bcopy(invalp, outvalp, inlen); 10985 } 10986 *outlenp = inlen; 10987 return (0); 10988 } 10989 case IP_SEC_OPT: 10990 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10991 if (error != 0) { 10992 *outlenp = 0; 10993 return (error); 10994 } 10995 break; 10996 case IP_HDRINCL: 10997 case IP_OPTIONS: 10998 case T_IP_OPTIONS: 10999 case IP_TOS: 11000 case T_IP_TOS: 11001 case IP_TTL: 11002 case IP_RECVDSTADDR: 11003 case IP_RECVOPTS: 11004 /* OK return - copy input buffer into output buffer */ 11005 if (invalp != outvalp) { 11006 /* don't trust bcopy for identical src/dst */ 11007 bcopy(invalp, outvalp, inlen); 11008 } 11009 *outlenp = inlen; 11010 return (0); 11011 case IP_RECVIF: 11012 /* Retrieve the inbound interface index */ 11013 if (!checkonly) { 11014 mutex_enter(&connp->conn_lock); 11015 connp->conn_recvif = *i1 ? 1 : 0; 11016 mutex_exit(&connp->conn_lock); 11017 } 11018 break; /* goto sizeof (int) option return */ 11019 case IP_RECVPKTINFO: 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 break; /* goto sizeof (int) option return */ 11026 case IP_RECVSLLA: 11027 /* Retrieve the source link layer address */ 11028 if (!checkonly) { 11029 mutex_enter(&connp->conn_lock); 11030 connp->conn_recvslla = *i1 ? 1 : 0; 11031 mutex_exit(&connp->conn_lock); 11032 } 11033 break; /* goto sizeof (int) option return */ 11034 case MRT_INIT: 11035 case MRT_DONE: 11036 case MRT_ADD_VIF: 11037 case MRT_DEL_VIF: 11038 case MRT_ADD_MFC: 11039 case MRT_DEL_MFC: 11040 case MRT_ASSERT: 11041 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11042 *outlenp = 0; 11043 return (error); 11044 } 11045 error = ip_mrouter_set((int)name, q, checkonly, 11046 (uchar_t *)invalp, inlen, first_mp); 11047 if (error) { 11048 *outlenp = 0; 11049 return (error); 11050 } 11051 /* OK return - copy input buffer into output buffer */ 11052 if (invalp != outvalp) { 11053 /* don't trust bcopy for identical src/dst */ 11054 bcopy(invalp, outvalp, inlen); 11055 } 11056 *outlenp = inlen; 11057 return (0); 11058 case IP_BOUND_IF: 11059 case IP_DHCPINIT_IF: 11060 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11061 level, name, first_mp); 11062 if (error != 0) 11063 return (error); 11064 break; /* goto sizeof (int) option return */ 11065 11066 case IP_UNSPEC_SRC: 11067 /* Allow sending with a zero source address */ 11068 if (!checkonly) { 11069 mutex_enter(&connp->conn_lock); 11070 connp->conn_unspec_src = *i1 ? 1 : 0; 11071 mutex_exit(&connp->conn_lock); 11072 } 11073 break; /* goto sizeof (int) option return */ 11074 default: 11075 /* 11076 * "soft" error (negative) 11077 * option not handled at this level 11078 * Note: Do not modify *outlenp 11079 */ 11080 return (-EINVAL); 11081 } 11082 break; 11083 case IPPROTO_IPV6: 11084 switch (name) { 11085 case IPV6_BOUND_IF: 11086 case IPV6_BOUND_PIF: 11087 case IPV6_DONTFAILOVER_IF: 11088 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11089 level, name, first_mp); 11090 if (error != 0) 11091 return (error); 11092 break; /* goto sizeof (int) option return */ 11093 11094 case IPV6_MULTICAST_IF: 11095 /* 11096 * The only possible errors are EINPROGRESS and 11097 * EINVAL. EINPROGRESS will be restarted and is not 11098 * a hard error. We call this option on both V4 and V6 11099 * If both return EINVAL, then this call returns 11100 * EINVAL. If at least one of them succeeds we 11101 * return success. 11102 */ 11103 found = B_FALSE; 11104 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11105 level, name, first_mp); 11106 if (error == EINPROGRESS) 11107 return (error); 11108 if (error == 0) 11109 found = B_TRUE; 11110 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11111 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11112 if (error == 0) 11113 found = B_TRUE; 11114 if (!found) 11115 return (error); 11116 break; /* goto sizeof (int) option return */ 11117 11118 case IPV6_MULTICAST_HOPS: 11119 /* Recorded in transport above IP */ 11120 break; /* goto sizeof (int) option return */ 11121 case IPV6_MULTICAST_LOOP: 11122 if (!checkonly) { 11123 mutex_enter(&connp->conn_lock); 11124 connp->conn_multicast_loop = *i1; 11125 mutex_exit(&connp->conn_lock); 11126 } 11127 break; /* goto sizeof (int) option return */ 11128 case IPV6_JOIN_GROUP: 11129 case MCAST_JOIN_GROUP: 11130 case IPV6_LEAVE_GROUP: 11131 case MCAST_LEAVE_GROUP: { 11132 struct ipv6_mreq *ip_mreqp; 11133 struct group_req *greqp; 11134 ire_t *ire; 11135 boolean_t done = B_FALSE; 11136 in6_addr_t groupv6; 11137 uint32_t ifindex; 11138 boolean_t mcast_opt = B_TRUE; 11139 mcast_record_t fmode; 11140 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11141 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11142 11143 switch (name) { 11144 case IPV6_JOIN_GROUP: 11145 mcast_opt = B_FALSE; 11146 /* FALLTHRU */ 11147 case MCAST_JOIN_GROUP: 11148 fmode = MODE_IS_EXCLUDE; 11149 optfn = ip_opt_add_group_v6; 11150 break; 11151 11152 case IPV6_LEAVE_GROUP: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_LEAVE_GROUP: 11156 fmode = MODE_IS_INCLUDE; 11157 optfn = ip_opt_delete_group_v6; 11158 break; 11159 } 11160 11161 if (mcast_opt) { 11162 struct sockaddr_in *sin; 11163 struct sockaddr_in6 *sin6; 11164 greqp = (struct group_req *)i1; 11165 if (greqp->gr_group.ss_family == AF_INET) { 11166 sin = (struct sockaddr_in *) 11167 &(greqp->gr_group); 11168 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11169 &groupv6); 11170 } else { 11171 sin6 = (struct sockaddr_in6 *) 11172 &(greqp->gr_group); 11173 groupv6 = sin6->sin6_addr; 11174 } 11175 ifindex = greqp->gr_interface; 11176 } else { 11177 ip_mreqp = (struct ipv6_mreq *)i1; 11178 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11179 ifindex = ip_mreqp->ipv6mr_interface; 11180 } 11181 /* 11182 * In the multirouting case, we need to replicate 11183 * the request on all interfaces that will take part 11184 * in replication. We do so because multirouting is 11185 * reflective, thus we will probably receive multi- 11186 * casts on those interfaces. 11187 * The ip_multirt_apply_membership_v6() succeeds if 11188 * the operation succeeds on at least one interface. 11189 */ 11190 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11191 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11192 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11193 if (ire != NULL) { 11194 if (ire->ire_flags & RTF_MULTIRT) { 11195 error = ip_multirt_apply_membership_v6( 11196 optfn, ire, connp, checkonly, 11197 &groupv6, fmode, &ipv6_all_zeros, 11198 first_mp); 11199 done = B_TRUE; 11200 } 11201 ire_refrele(ire); 11202 } 11203 if (!done) { 11204 error = optfn(connp, checkonly, &groupv6, 11205 ifindex, fmode, &ipv6_all_zeros, first_mp); 11206 } 11207 if (error) { 11208 /* 11209 * EINPROGRESS is a soft error, needs retry 11210 * so don't make *outlenp zero. 11211 */ 11212 if (error != EINPROGRESS) 11213 *outlenp = 0; 11214 return (error); 11215 } 11216 /* OK return - copy input buffer into output buffer */ 11217 if (invalp != outvalp) { 11218 /* don't trust bcopy for identical src/dst */ 11219 bcopy(invalp, outvalp, inlen); 11220 } 11221 *outlenp = inlen; 11222 return (0); 11223 } 11224 case MCAST_BLOCK_SOURCE: 11225 case MCAST_UNBLOCK_SOURCE: 11226 case MCAST_JOIN_SOURCE_GROUP: 11227 case MCAST_LEAVE_SOURCE_GROUP: { 11228 struct group_source_req *gsreqp; 11229 in6_addr_t v6grp, v6src; 11230 uint32_t ifindex; 11231 mcast_record_t fmode; 11232 ire_t *ire; 11233 boolean_t done = B_FALSE; 11234 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11235 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11236 11237 switch (name) { 11238 case MCAST_BLOCK_SOURCE: 11239 fmode = MODE_IS_EXCLUDE; 11240 optfn = ip_opt_add_group_v6; 11241 break; 11242 case MCAST_UNBLOCK_SOURCE: 11243 fmode = MODE_IS_EXCLUDE; 11244 optfn = ip_opt_delete_group_v6; 11245 break; 11246 case MCAST_JOIN_SOURCE_GROUP: 11247 fmode = MODE_IS_INCLUDE; 11248 optfn = ip_opt_add_group_v6; 11249 break; 11250 case MCAST_LEAVE_SOURCE_GROUP: 11251 fmode = MODE_IS_INCLUDE; 11252 optfn = ip_opt_delete_group_v6; 11253 break; 11254 } 11255 11256 gsreqp = (struct group_source_req *)i1; 11257 ifindex = gsreqp->gsr_interface; 11258 if (gsreqp->gsr_group.ss_family == AF_INET) { 11259 struct sockaddr_in *s; 11260 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11261 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11262 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11263 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11264 } else { 11265 struct sockaddr_in6 *s6; 11266 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11267 v6grp = s6->sin6_addr; 11268 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11269 v6src = s6->sin6_addr; 11270 } 11271 11272 /* 11273 * In the multirouting case, we need to replicate 11274 * the request as noted in the mcast cases above. 11275 */ 11276 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11277 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11278 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11279 if (ire != NULL) { 11280 if (ire->ire_flags & RTF_MULTIRT) { 11281 error = ip_multirt_apply_membership_v6( 11282 optfn, ire, connp, checkonly, 11283 &v6grp, fmode, &v6src, first_mp); 11284 done = B_TRUE; 11285 } 11286 ire_refrele(ire); 11287 } 11288 if (!done) { 11289 error = optfn(connp, checkonly, &v6grp, 11290 ifindex, fmode, &v6src, first_mp); 11291 } 11292 if (error != 0) { 11293 /* 11294 * EINPROGRESS is a soft error, needs retry 11295 * so don't make *outlenp zero. 11296 */ 11297 if (error != EINPROGRESS) 11298 *outlenp = 0; 11299 return (error); 11300 } 11301 /* OK return - copy input buffer into output buffer */ 11302 if (invalp != outvalp) { 11303 bcopy(invalp, outvalp, inlen); 11304 } 11305 *outlenp = inlen; 11306 return (0); 11307 } 11308 case IPV6_UNICAST_HOPS: 11309 /* Recorded in transport above IP */ 11310 break; /* goto sizeof (int) option return */ 11311 case IPV6_UNSPEC_SRC: 11312 /* Allow sending with a zero source address */ 11313 if (!checkonly) { 11314 mutex_enter(&connp->conn_lock); 11315 connp->conn_unspec_src = *i1 ? 1 : 0; 11316 mutex_exit(&connp->conn_lock); 11317 } 11318 break; /* goto sizeof (int) option return */ 11319 case IPV6_RECVPKTINFO: 11320 if (!checkonly) { 11321 mutex_enter(&connp->conn_lock); 11322 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11323 mutex_exit(&connp->conn_lock); 11324 } 11325 break; /* goto sizeof (int) option return */ 11326 case IPV6_RECVTCLASS: 11327 if (!checkonly) { 11328 if (*i1 < 0 || *i1 > 1) { 11329 return (EINVAL); 11330 } 11331 mutex_enter(&connp->conn_lock); 11332 connp->conn_ipv6_recvtclass = *i1; 11333 mutex_exit(&connp->conn_lock); 11334 } 11335 break; 11336 case IPV6_RECVPATHMTU: 11337 if (!checkonly) { 11338 if (*i1 < 0 || *i1 > 1) { 11339 return (EINVAL); 11340 } 11341 mutex_enter(&connp->conn_lock); 11342 connp->conn_ipv6_recvpathmtu = *i1; 11343 mutex_exit(&connp->conn_lock); 11344 } 11345 break; 11346 case IPV6_RECVHOPLIMIT: 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVHOPOPTS: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVDSTOPTS: 11361 if (!checkonly) { 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; /* goto sizeof (int) option return */ 11367 case IPV6_RECVRTHDR: 11368 if (!checkonly) { 11369 mutex_enter(&connp->conn_lock); 11370 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11371 mutex_exit(&connp->conn_lock); 11372 } 11373 break; /* goto sizeof (int) option return */ 11374 case IPV6_RECVRTHDRDSTOPTS: 11375 if (!checkonly) { 11376 mutex_enter(&connp->conn_lock); 11377 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11378 mutex_exit(&connp->conn_lock); 11379 } 11380 break; /* goto sizeof (int) option return */ 11381 case IPV6_PKTINFO: 11382 if (inlen == 0) 11383 return (-EINVAL); /* clearing option */ 11384 error = ip6_set_pktinfo(cr, connp, 11385 (struct in6_pktinfo *)invalp, first_mp); 11386 if (error != 0) 11387 *outlenp = 0; 11388 else 11389 *outlenp = inlen; 11390 return (error); 11391 case IPV6_NEXTHOP: { 11392 struct sockaddr_in6 *sin6; 11393 11394 /* Verify that the nexthop is reachable */ 11395 if (inlen == 0) 11396 return (-EINVAL); /* clearing option */ 11397 11398 sin6 = (struct sockaddr_in6 *)invalp; 11399 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11400 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11401 NULL, MATCH_IRE_DEFAULT, ipst); 11402 11403 if (ire == NULL) { 11404 *outlenp = 0; 11405 return (EHOSTUNREACH); 11406 } 11407 ire_refrele(ire); 11408 return (-EINVAL); 11409 } 11410 case IPV6_SEC_OPT: 11411 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11412 if (error != 0) { 11413 *outlenp = 0; 11414 return (error); 11415 } 11416 break; 11417 case IPV6_SRC_PREFERENCES: { 11418 /* 11419 * This is implemented strictly in the ip module 11420 * (here and in tcp_opt_*() to accomodate tcp 11421 * sockets). Modules above ip pass this option 11422 * down here since ip is the only one that needs to 11423 * be aware of source address preferences. 11424 * 11425 * This socket option only affects connected 11426 * sockets that haven't already bound to a specific 11427 * IPv6 address. In other words, sockets that 11428 * don't call bind() with an address other than the 11429 * unspecified address and that call connect(). 11430 * ip_bind_connected_v6() passes these preferences 11431 * to the ipif_select_source_v6() function. 11432 */ 11433 if (inlen != sizeof (uint32_t)) 11434 return (EINVAL); 11435 error = ip6_set_src_preferences(connp, 11436 *(uint32_t *)invalp); 11437 if (error != 0) { 11438 *outlenp = 0; 11439 return (error); 11440 } else { 11441 *outlenp = sizeof (uint32_t); 11442 } 11443 break; 11444 } 11445 case IPV6_V6ONLY: 11446 if (*i1 < 0 || *i1 > 1) { 11447 return (EINVAL); 11448 } 11449 mutex_enter(&connp->conn_lock); 11450 connp->conn_ipv6_v6only = *i1; 11451 mutex_exit(&connp->conn_lock); 11452 break; 11453 default: 11454 return (-EINVAL); 11455 } 11456 break; 11457 default: 11458 /* 11459 * "soft" error (negative) 11460 * option not handled at this level 11461 * Note: Do not modify *outlenp 11462 */ 11463 return (-EINVAL); 11464 } 11465 /* 11466 * Common case of return from an option that is sizeof (int) 11467 */ 11468 *(int *)outvalp = *i1; 11469 *outlenp = sizeof (int); 11470 return (0); 11471 } 11472 11473 /* 11474 * This routine gets default values of certain options whose default 11475 * values are maintained by protocol specific code 11476 */ 11477 /* ARGSUSED */ 11478 int 11479 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11480 { 11481 int *i1 = (int *)ptr; 11482 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11483 11484 switch (level) { 11485 case IPPROTO_IP: 11486 switch (name) { 11487 case IP_MULTICAST_TTL: 11488 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11489 return (sizeof (uchar_t)); 11490 case IP_MULTICAST_LOOP: 11491 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11492 return (sizeof (uchar_t)); 11493 default: 11494 return (-1); 11495 } 11496 case IPPROTO_IPV6: 11497 switch (name) { 11498 case IPV6_UNICAST_HOPS: 11499 *i1 = ipst->ips_ipv6_def_hops; 11500 return (sizeof (int)); 11501 case IPV6_MULTICAST_HOPS: 11502 *i1 = IP_DEFAULT_MULTICAST_TTL; 11503 return (sizeof (int)); 11504 case IPV6_MULTICAST_LOOP: 11505 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11506 return (sizeof (int)); 11507 case IPV6_V6ONLY: 11508 *i1 = 1; 11509 return (sizeof (int)); 11510 default: 11511 return (-1); 11512 } 11513 default: 11514 return (-1); 11515 } 11516 /* NOTREACHED */ 11517 } 11518 11519 /* 11520 * Given a destination address and a pointer to where to put the information 11521 * this routine fills in the mtuinfo. 11522 */ 11523 int 11524 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11525 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11526 { 11527 ire_t *ire; 11528 ip_stack_t *ipst = ns->netstack_ip; 11529 11530 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11531 return (-1); 11532 11533 bzero(mtuinfo, sizeof (*mtuinfo)); 11534 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11535 mtuinfo->ip6m_addr.sin6_port = port; 11536 mtuinfo->ip6m_addr.sin6_addr = *in6; 11537 11538 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11539 if (ire != NULL) { 11540 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11541 ire_refrele(ire); 11542 } else { 11543 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11544 } 11545 return (sizeof (struct ip6_mtuinfo)); 11546 } 11547 11548 /* 11549 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11550 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11551 * isn't. This doesn't matter as the error checking is done properly for the 11552 * other MRT options coming in through ip_opt_set. 11553 */ 11554 int 11555 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11556 { 11557 conn_t *connp = Q_TO_CONN(q); 11558 ipsec_req_t *req = (ipsec_req_t *)ptr; 11559 11560 switch (level) { 11561 case IPPROTO_IP: 11562 switch (name) { 11563 case MRT_VERSION: 11564 case MRT_ASSERT: 11565 (void) ip_mrouter_get(name, q, ptr); 11566 return (sizeof (int)); 11567 case IP_SEC_OPT: 11568 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11569 case IP_NEXTHOP: 11570 if (connp->conn_nexthop_set) { 11571 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11572 return (sizeof (ipaddr_t)); 11573 } else 11574 return (0); 11575 case IP_RECVPKTINFO: 11576 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11577 return (sizeof (int)); 11578 default: 11579 break; 11580 } 11581 break; 11582 case IPPROTO_IPV6: 11583 switch (name) { 11584 case IPV6_SEC_OPT: 11585 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11586 case IPV6_SRC_PREFERENCES: { 11587 return (ip6_get_src_preferences(connp, 11588 (uint32_t *)ptr)); 11589 } 11590 case IPV6_V6ONLY: 11591 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11592 return (sizeof (int)); 11593 case IPV6_PATHMTU: 11594 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11595 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11596 default: 11597 break; 11598 } 11599 break; 11600 default: 11601 break; 11602 } 11603 return (-1); 11604 } 11605 11606 /* Named Dispatch routine to get a current value out of our parameter table. */ 11607 /* ARGSUSED */ 11608 static int 11609 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11610 { 11611 ipparam_t *ippa = (ipparam_t *)cp; 11612 11613 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11614 return (0); 11615 } 11616 11617 /* ARGSUSED */ 11618 static int 11619 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11620 { 11621 11622 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11623 return (0); 11624 } 11625 11626 /* 11627 * Set ip{,6}_forwarding values. This means walking through all of the 11628 * ill's and toggling their forwarding values. 11629 */ 11630 /* ARGSUSED */ 11631 static int 11632 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11633 { 11634 long new_value; 11635 int *forwarding_value = (int *)cp; 11636 ill_t *ill; 11637 boolean_t isv6; 11638 ill_walk_context_t ctx; 11639 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11640 11641 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11642 11643 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11644 new_value < 0 || new_value > 1) { 11645 return (EINVAL); 11646 } 11647 11648 *forwarding_value = new_value; 11649 11650 /* 11651 * Regardless of the current value of ip_forwarding, set all per-ill 11652 * values of ip_forwarding to the value being set. 11653 * 11654 * Bring all the ill's up to date with the new global value. 11655 */ 11656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11657 11658 if (isv6) 11659 ill = ILL_START_WALK_V6(&ctx, ipst); 11660 else 11661 ill = ILL_START_WALK_V4(&ctx, ipst); 11662 11663 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11664 (void) ill_forward_set(ill, new_value != 0); 11665 11666 rw_exit(&ipst->ips_ill_g_lock); 11667 return (0); 11668 } 11669 11670 /* 11671 * Walk through the param array specified registering each element with the 11672 * Named Dispatch handler. This is called only during init. So it is ok 11673 * not to acquire any locks 11674 */ 11675 static boolean_t 11676 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11677 ipndp_t *ipnd, size_t ipnd_cnt) 11678 { 11679 for (; ippa_cnt-- > 0; ippa++) { 11680 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11681 if (!nd_load(ndp, ippa->ip_param_name, 11682 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11683 nd_free(ndp); 11684 return (B_FALSE); 11685 } 11686 } 11687 } 11688 11689 for (; ipnd_cnt-- > 0; ipnd++) { 11690 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11691 if (!nd_load(ndp, ipnd->ip_ndp_name, 11692 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11693 ipnd->ip_ndp_data)) { 11694 nd_free(ndp); 11695 return (B_FALSE); 11696 } 11697 } 11698 } 11699 11700 return (B_TRUE); 11701 } 11702 11703 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11704 /* ARGSUSED */ 11705 static int 11706 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11707 { 11708 long new_value; 11709 ipparam_t *ippa = (ipparam_t *)cp; 11710 11711 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11712 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11713 return (EINVAL); 11714 } 11715 ippa->ip_param_value = new_value; 11716 return (0); 11717 } 11718 11719 /* 11720 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11721 * When an ipf is passed here for the first time, if 11722 * we already have in-order fragments on the queue, we convert from the fast- 11723 * path reassembly scheme to the hard-case scheme. From then on, additional 11724 * fragments are reassembled here. We keep track of the start and end offsets 11725 * of each piece, and the number of holes in the chain. When the hole count 11726 * goes to zero, we are done! 11727 * 11728 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11729 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11730 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11731 * after the call to ip_reassemble(). 11732 */ 11733 int 11734 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11735 size_t msg_len) 11736 { 11737 uint_t end; 11738 mblk_t *next_mp; 11739 mblk_t *mp1; 11740 uint_t offset; 11741 boolean_t incr_dups = B_TRUE; 11742 boolean_t offset_zero_seen = B_FALSE; 11743 boolean_t pkt_boundary_checked = B_FALSE; 11744 11745 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11746 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11747 11748 /* Add in byte count */ 11749 ipf->ipf_count += msg_len; 11750 if (ipf->ipf_end) { 11751 /* 11752 * We were part way through in-order reassembly, but now there 11753 * is a hole. We walk through messages already queued, and 11754 * mark them for hard case reassembly. We know that up till 11755 * now they were in order starting from offset zero. 11756 */ 11757 offset = 0; 11758 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11759 IP_REASS_SET_START(mp1, offset); 11760 if (offset == 0) { 11761 ASSERT(ipf->ipf_nf_hdr_len != 0); 11762 offset = -ipf->ipf_nf_hdr_len; 11763 } 11764 offset += mp1->b_wptr - mp1->b_rptr; 11765 IP_REASS_SET_END(mp1, offset); 11766 } 11767 /* One hole at the end. */ 11768 ipf->ipf_hole_cnt = 1; 11769 /* Brand it as a hard case, forever. */ 11770 ipf->ipf_end = 0; 11771 } 11772 /* Walk through all the new pieces. */ 11773 do { 11774 end = start + (mp->b_wptr - mp->b_rptr); 11775 /* 11776 * If start is 0, decrease 'end' only for the first mblk of 11777 * the fragment. Otherwise 'end' can get wrong value in the 11778 * second pass of the loop if first mblk is exactly the 11779 * size of ipf_nf_hdr_len. 11780 */ 11781 if (start == 0 && !offset_zero_seen) { 11782 /* First segment */ 11783 ASSERT(ipf->ipf_nf_hdr_len != 0); 11784 end -= ipf->ipf_nf_hdr_len; 11785 offset_zero_seen = B_TRUE; 11786 } 11787 next_mp = mp->b_cont; 11788 /* 11789 * We are checking to see if there is any interesing data 11790 * to process. If there isn't and the mblk isn't the 11791 * one which carries the unfragmentable header then we 11792 * drop it. It's possible to have just the unfragmentable 11793 * header come through without any data. That needs to be 11794 * saved. 11795 * 11796 * If the assert at the top of this function holds then the 11797 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11798 * is infrequently traveled enough that the test is left in 11799 * to protect against future code changes which break that 11800 * invariant. 11801 */ 11802 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11803 /* Empty. Blast it. */ 11804 IP_REASS_SET_START(mp, 0); 11805 IP_REASS_SET_END(mp, 0); 11806 /* 11807 * If the ipf points to the mblk we are about to free, 11808 * update ipf to point to the next mblk (or NULL 11809 * if none). 11810 */ 11811 if (ipf->ipf_mp->b_cont == mp) 11812 ipf->ipf_mp->b_cont = next_mp; 11813 freeb(mp); 11814 continue; 11815 } 11816 mp->b_cont = NULL; 11817 IP_REASS_SET_START(mp, start); 11818 IP_REASS_SET_END(mp, end); 11819 if (!ipf->ipf_tail_mp) { 11820 ipf->ipf_tail_mp = mp; 11821 ipf->ipf_mp->b_cont = mp; 11822 if (start == 0 || !more) { 11823 ipf->ipf_hole_cnt = 1; 11824 /* 11825 * if the first fragment comes in more than one 11826 * mblk, this loop will be executed for each 11827 * mblk. Need to adjust hole count so exiting 11828 * this routine will leave hole count at 1. 11829 */ 11830 if (next_mp) 11831 ipf->ipf_hole_cnt++; 11832 } else 11833 ipf->ipf_hole_cnt = 2; 11834 continue; 11835 } else if (ipf->ipf_last_frag_seen && !more && 11836 !pkt_boundary_checked) { 11837 /* 11838 * We check datagram boundary only if this fragment 11839 * claims to be the last fragment and we have seen a 11840 * last fragment in the past too. We do this only 11841 * once for a given fragment. 11842 * 11843 * start cannot be 0 here as fragments with start=0 11844 * and MF=0 gets handled as a complete packet. These 11845 * fragments should not reach here. 11846 */ 11847 11848 if (start + msgdsize(mp) != 11849 IP_REASS_END(ipf->ipf_tail_mp)) { 11850 /* 11851 * We have two fragments both of which claim 11852 * to be the last fragment but gives conflicting 11853 * information about the whole datagram size. 11854 * Something fishy is going on. Drop the 11855 * fragment and free up the reassembly list. 11856 */ 11857 return (IP_REASS_FAILED); 11858 } 11859 11860 /* 11861 * We shouldn't come to this code block again for this 11862 * particular fragment. 11863 */ 11864 pkt_boundary_checked = B_TRUE; 11865 } 11866 11867 /* New stuff at or beyond tail? */ 11868 offset = IP_REASS_END(ipf->ipf_tail_mp); 11869 if (start >= offset) { 11870 if (ipf->ipf_last_frag_seen) { 11871 /* current fragment is beyond last fragment */ 11872 return (IP_REASS_FAILED); 11873 } 11874 /* Link it on end. */ 11875 ipf->ipf_tail_mp->b_cont = mp; 11876 ipf->ipf_tail_mp = mp; 11877 if (more) { 11878 if (start != offset) 11879 ipf->ipf_hole_cnt++; 11880 } else if (start == offset && next_mp == NULL) 11881 ipf->ipf_hole_cnt--; 11882 continue; 11883 } 11884 mp1 = ipf->ipf_mp->b_cont; 11885 offset = IP_REASS_START(mp1); 11886 /* New stuff at the front? */ 11887 if (start < offset) { 11888 if (start == 0) { 11889 if (end >= offset) { 11890 /* Nailed the hole at the begining. */ 11891 ipf->ipf_hole_cnt--; 11892 } 11893 } else if (end < offset) { 11894 /* 11895 * A hole, stuff, and a hole where there used 11896 * to be just a hole. 11897 */ 11898 ipf->ipf_hole_cnt++; 11899 } 11900 mp->b_cont = mp1; 11901 /* Check for overlap. */ 11902 while (end > offset) { 11903 if (end < IP_REASS_END(mp1)) { 11904 mp->b_wptr -= end - offset; 11905 IP_REASS_SET_END(mp, offset); 11906 BUMP_MIB(ill->ill_ip_mib, 11907 ipIfStatsReasmPartDups); 11908 break; 11909 } 11910 /* Did we cover another hole? */ 11911 if ((mp1->b_cont && 11912 IP_REASS_END(mp1) != 11913 IP_REASS_START(mp1->b_cont) && 11914 end >= IP_REASS_START(mp1->b_cont)) || 11915 (!ipf->ipf_last_frag_seen && !more)) { 11916 ipf->ipf_hole_cnt--; 11917 } 11918 /* Clip out mp1. */ 11919 if ((mp->b_cont = mp1->b_cont) == NULL) { 11920 /* 11921 * After clipping out mp1, this guy 11922 * is now hanging off the end. 11923 */ 11924 ipf->ipf_tail_mp = mp; 11925 } 11926 IP_REASS_SET_START(mp1, 0); 11927 IP_REASS_SET_END(mp1, 0); 11928 /* Subtract byte count */ 11929 ipf->ipf_count -= mp1->b_datap->db_lim - 11930 mp1->b_datap->db_base; 11931 freeb(mp1); 11932 BUMP_MIB(ill->ill_ip_mib, 11933 ipIfStatsReasmPartDups); 11934 mp1 = mp->b_cont; 11935 if (!mp1) 11936 break; 11937 offset = IP_REASS_START(mp1); 11938 } 11939 ipf->ipf_mp->b_cont = mp; 11940 continue; 11941 } 11942 /* 11943 * The new piece starts somewhere between the start of the head 11944 * and before the end of the tail. 11945 */ 11946 for (; mp1; mp1 = mp1->b_cont) { 11947 offset = IP_REASS_END(mp1); 11948 if (start < offset) { 11949 if (end <= offset) { 11950 /* Nothing new. */ 11951 IP_REASS_SET_START(mp, 0); 11952 IP_REASS_SET_END(mp, 0); 11953 /* Subtract byte count */ 11954 ipf->ipf_count -= mp->b_datap->db_lim - 11955 mp->b_datap->db_base; 11956 if (incr_dups) { 11957 ipf->ipf_num_dups++; 11958 incr_dups = B_FALSE; 11959 } 11960 freeb(mp); 11961 BUMP_MIB(ill->ill_ip_mib, 11962 ipIfStatsReasmDuplicates); 11963 break; 11964 } 11965 /* 11966 * Trim redundant stuff off beginning of new 11967 * piece. 11968 */ 11969 IP_REASS_SET_START(mp, offset); 11970 mp->b_rptr += offset - start; 11971 BUMP_MIB(ill->ill_ip_mib, 11972 ipIfStatsReasmPartDups); 11973 start = offset; 11974 if (!mp1->b_cont) { 11975 /* 11976 * After trimming, this guy is now 11977 * hanging off the end. 11978 */ 11979 mp1->b_cont = mp; 11980 ipf->ipf_tail_mp = mp; 11981 if (!more) { 11982 ipf->ipf_hole_cnt--; 11983 } 11984 break; 11985 } 11986 } 11987 if (start >= IP_REASS_START(mp1->b_cont)) 11988 continue; 11989 /* Fill a hole */ 11990 if (start > offset) 11991 ipf->ipf_hole_cnt++; 11992 mp->b_cont = mp1->b_cont; 11993 mp1->b_cont = mp; 11994 mp1 = mp->b_cont; 11995 offset = IP_REASS_START(mp1); 11996 if (end >= offset) { 11997 ipf->ipf_hole_cnt--; 11998 /* Check for overlap. */ 11999 while (end > offset) { 12000 if (end < IP_REASS_END(mp1)) { 12001 mp->b_wptr -= end - offset; 12002 IP_REASS_SET_END(mp, offset); 12003 /* 12004 * TODO we might bump 12005 * this up twice if there is 12006 * overlap at both ends. 12007 */ 12008 BUMP_MIB(ill->ill_ip_mib, 12009 ipIfStatsReasmPartDups); 12010 break; 12011 } 12012 /* Did we cover another hole? */ 12013 if ((mp1->b_cont && 12014 IP_REASS_END(mp1) 12015 != IP_REASS_START(mp1->b_cont) && 12016 end >= 12017 IP_REASS_START(mp1->b_cont)) || 12018 (!ipf->ipf_last_frag_seen && 12019 !more)) { 12020 ipf->ipf_hole_cnt--; 12021 } 12022 /* Clip out mp1. */ 12023 if ((mp->b_cont = mp1->b_cont) == 12024 NULL) { 12025 /* 12026 * After clipping out mp1, 12027 * this guy is now hanging 12028 * off the end. 12029 */ 12030 ipf->ipf_tail_mp = mp; 12031 } 12032 IP_REASS_SET_START(mp1, 0); 12033 IP_REASS_SET_END(mp1, 0); 12034 /* Subtract byte count */ 12035 ipf->ipf_count -= 12036 mp1->b_datap->db_lim - 12037 mp1->b_datap->db_base; 12038 freeb(mp1); 12039 BUMP_MIB(ill->ill_ip_mib, 12040 ipIfStatsReasmPartDups); 12041 mp1 = mp->b_cont; 12042 if (!mp1) 12043 break; 12044 offset = IP_REASS_START(mp1); 12045 } 12046 } 12047 break; 12048 } 12049 } while (start = end, mp = next_mp); 12050 12051 /* Fragment just processed could be the last one. Remember this fact */ 12052 if (!more) 12053 ipf->ipf_last_frag_seen = B_TRUE; 12054 12055 /* Still got holes? */ 12056 if (ipf->ipf_hole_cnt) 12057 return (IP_REASS_PARTIAL); 12058 /* Clean up overloaded fields to avoid upstream disasters. */ 12059 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12060 IP_REASS_SET_START(mp1, 0); 12061 IP_REASS_SET_END(mp1, 0); 12062 } 12063 return (IP_REASS_COMPLETE); 12064 } 12065 12066 /* 12067 * ipsec processing for the fast path, used for input UDP Packets 12068 * Returns true if ready for passup to UDP. 12069 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12070 * was an ESP-in-UDP packet, etc.). 12071 */ 12072 static boolean_t 12073 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12074 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12075 { 12076 uint32_t ill_index; 12077 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12078 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12080 udp_t *udp = connp->conn_udp; 12081 12082 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12083 /* The ill_index of the incoming ILL */ 12084 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12085 12086 /* pass packet up to the transport */ 12087 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12088 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12089 NULL, mctl_present); 12090 if (*first_mpp == NULL) { 12091 return (B_FALSE); 12092 } 12093 } 12094 12095 /* Initiate IPPF processing for fastpath UDP */ 12096 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12097 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12098 if (*mpp == NULL) { 12099 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12100 "deferred/dropped during IPPF processing\n")); 12101 return (B_FALSE); 12102 } 12103 } 12104 /* 12105 * Remove 0-spi if it's 0, or move everything behind 12106 * the UDP header over it and forward to ESP via 12107 * ip_proto_input(). 12108 */ 12109 if (udp->udp_nat_t_endpoint) { 12110 if (mctl_present) { 12111 /* mctl_present *shouldn't* happen. */ 12112 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12113 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12114 &ipss->ipsec_dropper); 12115 *first_mpp = NULL; 12116 return (B_FALSE); 12117 } 12118 12119 /* "ill" is "recv_ill" in actuality. */ 12120 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12121 return (B_FALSE); 12122 12123 /* Else continue like a normal UDP packet. */ 12124 } 12125 12126 /* 12127 * We make the checks as below since we are in the fast path 12128 * and want to minimize the number of checks if the IP_RECVIF and/or 12129 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12130 */ 12131 if (connp->conn_recvif || connp->conn_recvslla || 12132 connp->conn_ip_recvpktinfo) { 12133 if (connp->conn_recvif) { 12134 in_flags = IPF_RECVIF; 12135 } 12136 /* 12137 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12138 * so the flag passed to ip_add_info is based on IP version 12139 * of connp. 12140 */ 12141 if (connp->conn_ip_recvpktinfo) { 12142 if (connp->conn_af_isv6) { 12143 /* 12144 * V6 only needs index 12145 */ 12146 in_flags |= IPF_RECVIF; 12147 } else { 12148 /* 12149 * V4 needs index + matching address. 12150 */ 12151 in_flags |= IPF_RECVADDR; 12152 } 12153 } 12154 if (connp->conn_recvslla) { 12155 in_flags |= IPF_RECVSLLA; 12156 } 12157 /* 12158 * since in_flags are being set ill will be 12159 * referenced in ip_add_info, so it better not 12160 * be NULL. 12161 */ 12162 /* 12163 * the actual data will be contained in b_cont 12164 * upon successful return of the following call. 12165 * If the call fails then the original mblk is 12166 * returned. 12167 */ 12168 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12169 ipst); 12170 } 12171 12172 return (B_TRUE); 12173 } 12174 12175 /* 12176 * Fragmentation reassembly. Each ILL has a hash table for 12177 * queuing packets undergoing reassembly for all IPIFs 12178 * associated with the ILL. The hash is based on the packet 12179 * IP ident field. The ILL frag hash table was allocated 12180 * as a timer block at the time the ILL was created. Whenever 12181 * there is anything on the reassembly queue, the timer will 12182 * be running. Returns B_TRUE if successful else B_FALSE; 12183 * frees mp on failure. 12184 */ 12185 static boolean_t 12186 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12187 uint32_t *cksum_val, uint16_t *cksum_flags) 12188 { 12189 uint32_t frag_offset_flags; 12190 ill_t *ill = (ill_t *)q->q_ptr; 12191 mblk_t *mp = *mpp; 12192 mblk_t *t_mp; 12193 ipaddr_t dst; 12194 uint8_t proto = ipha->ipha_protocol; 12195 uint32_t sum_val; 12196 uint16_t sum_flags; 12197 ipf_t *ipf; 12198 ipf_t **ipfp; 12199 ipfb_t *ipfb; 12200 uint16_t ident; 12201 uint32_t offset; 12202 ipaddr_t src; 12203 uint_t hdr_length; 12204 uint32_t end; 12205 mblk_t *mp1; 12206 mblk_t *tail_mp; 12207 size_t count; 12208 size_t msg_len; 12209 uint8_t ecn_info = 0; 12210 uint32_t packet_size; 12211 boolean_t pruned = B_FALSE; 12212 ip_stack_t *ipst = ill->ill_ipst; 12213 12214 if (cksum_val != NULL) 12215 *cksum_val = 0; 12216 if (cksum_flags != NULL) 12217 *cksum_flags = 0; 12218 12219 /* 12220 * Drop the fragmented as early as possible, if 12221 * we don't have resource(s) to re-assemble. 12222 */ 12223 if (ipst->ips_ip_reass_queue_bytes == 0) { 12224 freemsg(mp); 12225 return (B_FALSE); 12226 } 12227 12228 /* Check for fragmentation offset; return if there's none */ 12229 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12230 (IPH_MF | IPH_OFFSET)) == 0) 12231 return (B_TRUE); 12232 12233 /* 12234 * We utilize hardware computed checksum info only for UDP since 12235 * IP fragmentation is a normal occurence for the protocol. In 12236 * addition, checksum offload support for IP fragments carrying 12237 * UDP payload is commonly implemented across network adapters. 12238 */ 12239 ASSERT(ill != NULL); 12240 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12241 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12242 mblk_t *mp1 = mp->b_cont; 12243 int32_t len; 12244 12245 /* Record checksum information from the packet */ 12246 sum_val = (uint32_t)DB_CKSUM16(mp); 12247 sum_flags = DB_CKSUMFLAGS(mp); 12248 12249 /* IP payload offset from beginning of mblk */ 12250 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12251 12252 if ((sum_flags & HCK_PARTIALCKSUM) && 12253 (mp1 == NULL || mp1->b_cont == NULL) && 12254 offset >= DB_CKSUMSTART(mp) && 12255 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12256 uint32_t adj; 12257 /* 12258 * Partial checksum has been calculated by hardware 12259 * and attached to the packet; in addition, any 12260 * prepended extraneous data is even byte aligned. 12261 * If any such data exists, we adjust the checksum; 12262 * this would also handle any postpended data. 12263 */ 12264 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12265 mp, mp1, len, adj); 12266 12267 /* One's complement subtract extraneous checksum */ 12268 if (adj >= sum_val) 12269 sum_val = ~(adj - sum_val) & 0xFFFF; 12270 else 12271 sum_val -= adj; 12272 } 12273 } else { 12274 sum_val = 0; 12275 sum_flags = 0; 12276 } 12277 12278 /* Clear hardware checksumming flag */ 12279 DB_CKSUMFLAGS(mp) = 0; 12280 12281 ident = ipha->ipha_ident; 12282 offset = (frag_offset_flags << 3) & 0xFFFF; 12283 src = ipha->ipha_src; 12284 dst = ipha->ipha_dst; 12285 hdr_length = IPH_HDR_LENGTH(ipha); 12286 end = ntohs(ipha->ipha_length) - hdr_length; 12287 12288 /* If end == 0 then we have a packet with no data, so just free it */ 12289 if (end == 0) { 12290 freemsg(mp); 12291 return (B_FALSE); 12292 } 12293 12294 /* Record the ECN field info. */ 12295 ecn_info = (ipha->ipha_type_of_service & 0x3); 12296 if (offset != 0) { 12297 /* 12298 * If this isn't the first piece, strip the header, and 12299 * add the offset to the end value. 12300 */ 12301 mp->b_rptr += hdr_length; 12302 end += offset; 12303 } 12304 12305 msg_len = MBLKSIZE(mp); 12306 tail_mp = mp; 12307 while (tail_mp->b_cont != NULL) { 12308 tail_mp = tail_mp->b_cont; 12309 msg_len += MBLKSIZE(tail_mp); 12310 } 12311 12312 /* If the reassembly list for this ILL will get too big, prune it */ 12313 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12314 ipst->ips_ip_reass_queue_bytes) { 12315 ill_frag_prune(ill, 12316 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12317 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12318 pruned = B_TRUE; 12319 } 12320 12321 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12322 mutex_enter(&ipfb->ipfb_lock); 12323 12324 ipfp = &ipfb->ipfb_ipf; 12325 /* Try to find an existing fragment queue for this packet. */ 12326 for (;;) { 12327 ipf = ipfp[0]; 12328 if (ipf != NULL) { 12329 /* 12330 * It has to match on ident and src/dst address. 12331 */ 12332 if (ipf->ipf_ident == ident && 12333 ipf->ipf_src == src && 12334 ipf->ipf_dst == dst && 12335 ipf->ipf_protocol == proto) { 12336 /* 12337 * If we have received too many 12338 * duplicate fragments for this packet 12339 * free it. 12340 */ 12341 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12342 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12343 freemsg(mp); 12344 mutex_exit(&ipfb->ipfb_lock); 12345 return (B_FALSE); 12346 } 12347 /* Found it. */ 12348 break; 12349 } 12350 ipfp = &ipf->ipf_hash_next; 12351 continue; 12352 } 12353 12354 /* 12355 * If we pruned the list, do we want to store this new 12356 * fragment?. We apply an optimization here based on the 12357 * fact that most fragments will be received in order. 12358 * So if the offset of this incoming fragment is zero, 12359 * it is the first fragment of a new packet. We will 12360 * keep it. Otherwise drop the fragment, as we have 12361 * probably pruned the packet already (since the 12362 * packet cannot be found). 12363 */ 12364 if (pruned && offset != 0) { 12365 mutex_exit(&ipfb->ipfb_lock); 12366 freemsg(mp); 12367 return (B_FALSE); 12368 } 12369 12370 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12371 /* 12372 * Too many fragmented packets in this hash 12373 * bucket. Free the oldest. 12374 */ 12375 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12376 } 12377 12378 /* New guy. Allocate a frag message. */ 12379 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12380 if (mp1 == NULL) { 12381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12382 freemsg(mp); 12383 reass_done: 12384 mutex_exit(&ipfb->ipfb_lock); 12385 return (B_FALSE); 12386 } 12387 12388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12389 mp1->b_cont = mp; 12390 12391 /* Initialize the fragment header. */ 12392 ipf = (ipf_t *)mp1->b_rptr; 12393 ipf->ipf_mp = mp1; 12394 ipf->ipf_ptphn = ipfp; 12395 ipfp[0] = ipf; 12396 ipf->ipf_hash_next = NULL; 12397 ipf->ipf_ident = ident; 12398 ipf->ipf_protocol = proto; 12399 ipf->ipf_src = src; 12400 ipf->ipf_dst = dst; 12401 ipf->ipf_nf_hdr_len = 0; 12402 /* Record reassembly start time. */ 12403 ipf->ipf_timestamp = gethrestime_sec(); 12404 /* Record ipf generation and account for frag header */ 12405 ipf->ipf_gen = ill->ill_ipf_gen++; 12406 ipf->ipf_count = MBLKSIZE(mp1); 12407 ipf->ipf_last_frag_seen = B_FALSE; 12408 ipf->ipf_ecn = ecn_info; 12409 ipf->ipf_num_dups = 0; 12410 ipfb->ipfb_frag_pkts++; 12411 ipf->ipf_checksum = 0; 12412 ipf->ipf_checksum_flags = 0; 12413 12414 /* Store checksum value in fragment header */ 12415 if (sum_flags != 0) { 12416 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12417 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12418 ipf->ipf_checksum = sum_val; 12419 ipf->ipf_checksum_flags = sum_flags; 12420 } 12421 12422 /* 12423 * We handle reassembly two ways. In the easy case, 12424 * where all the fragments show up in order, we do 12425 * minimal bookkeeping, and just clip new pieces on 12426 * the end. If we ever see a hole, then we go off 12427 * to ip_reassemble which has to mark the pieces and 12428 * keep track of the number of holes, etc. Obviously, 12429 * the point of having both mechanisms is so we can 12430 * handle the easy case as efficiently as possible. 12431 */ 12432 if (offset == 0) { 12433 /* Easy case, in-order reassembly so far. */ 12434 ipf->ipf_count += msg_len; 12435 ipf->ipf_tail_mp = tail_mp; 12436 /* 12437 * Keep track of next expected offset in 12438 * ipf_end. 12439 */ 12440 ipf->ipf_end = end; 12441 ipf->ipf_nf_hdr_len = hdr_length; 12442 } else { 12443 /* Hard case, hole at the beginning. */ 12444 ipf->ipf_tail_mp = NULL; 12445 /* 12446 * ipf_end == 0 means that we have given up 12447 * on easy reassembly. 12448 */ 12449 ipf->ipf_end = 0; 12450 12451 /* Forget checksum offload from now on */ 12452 ipf->ipf_checksum_flags = 0; 12453 12454 /* 12455 * ipf_hole_cnt is set by ip_reassemble. 12456 * ipf_count is updated by ip_reassemble. 12457 * No need to check for return value here 12458 * as we don't expect reassembly to complete 12459 * or fail for the first fragment itself. 12460 */ 12461 (void) ip_reassemble(mp, ipf, 12462 (frag_offset_flags & IPH_OFFSET) << 3, 12463 (frag_offset_flags & IPH_MF), ill, msg_len); 12464 } 12465 /* Update per ipfb and ill byte counts */ 12466 ipfb->ipfb_count += ipf->ipf_count; 12467 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12468 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12469 /* If the frag timer wasn't already going, start it. */ 12470 mutex_enter(&ill->ill_lock); 12471 ill_frag_timer_start(ill); 12472 mutex_exit(&ill->ill_lock); 12473 goto reass_done; 12474 } 12475 12476 /* 12477 * If the packet's flag has changed (it could be coming up 12478 * from an interface different than the previous, therefore 12479 * possibly different checksum capability), then forget about 12480 * any stored checksum states. Otherwise add the value to 12481 * the existing one stored in the fragment header. 12482 */ 12483 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12484 sum_val += ipf->ipf_checksum; 12485 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12486 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12487 ipf->ipf_checksum = sum_val; 12488 } else if (ipf->ipf_checksum_flags != 0) { 12489 /* Forget checksum offload from now on */ 12490 ipf->ipf_checksum_flags = 0; 12491 } 12492 12493 /* 12494 * We have a new piece of a datagram which is already being 12495 * reassembled. Update the ECN info if all IP fragments 12496 * are ECN capable. If there is one which is not, clear 12497 * all the info. If there is at least one which has CE 12498 * code point, IP needs to report that up to transport. 12499 */ 12500 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12501 if (ecn_info == IPH_ECN_CE) 12502 ipf->ipf_ecn = IPH_ECN_CE; 12503 } else { 12504 ipf->ipf_ecn = IPH_ECN_NECT; 12505 } 12506 if (offset && ipf->ipf_end == offset) { 12507 /* The new fragment fits at the end */ 12508 ipf->ipf_tail_mp->b_cont = mp; 12509 /* Update the byte count */ 12510 ipf->ipf_count += msg_len; 12511 /* Update per ipfb and ill byte counts */ 12512 ipfb->ipfb_count += msg_len; 12513 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12514 atomic_add_32(&ill->ill_frag_count, msg_len); 12515 if (frag_offset_flags & IPH_MF) { 12516 /* More to come. */ 12517 ipf->ipf_end = end; 12518 ipf->ipf_tail_mp = tail_mp; 12519 goto reass_done; 12520 } 12521 } else { 12522 /* Go do the hard cases. */ 12523 int ret; 12524 12525 if (offset == 0) 12526 ipf->ipf_nf_hdr_len = hdr_length; 12527 12528 /* Save current byte count */ 12529 count = ipf->ipf_count; 12530 ret = ip_reassemble(mp, ipf, 12531 (frag_offset_flags & IPH_OFFSET) << 3, 12532 (frag_offset_flags & IPH_MF), ill, msg_len); 12533 /* Count of bytes added and subtracted (freeb()ed) */ 12534 count = ipf->ipf_count - count; 12535 if (count) { 12536 /* Update per ipfb and ill byte counts */ 12537 ipfb->ipfb_count += count; 12538 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12539 atomic_add_32(&ill->ill_frag_count, count); 12540 } 12541 if (ret == IP_REASS_PARTIAL) { 12542 goto reass_done; 12543 } else if (ret == IP_REASS_FAILED) { 12544 /* Reassembly failed. Free up all resources */ 12545 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12546 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12547 IP_REASS_SET_START(t_mp, 0); 12548 IP_REASS_SET_END(t_mp, 0); 12549 } 12550 freemsg(mp); 12551 goto reass_done; 12552 } 12553 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12554 } 12555 /* 12556 * We have completed reassembly. Unhook the frag header from 12557 * the reassembly list. 12558 * 12559 * Before we free the frag header, record the ECN info 12560 * to report back to the transport. 12561 */ 12562 ecn_info = ipf->ipf_ecn; 12563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12564 ipfp = ipf->ipf_ptphn; 12565 12566 /* We need to supply these to caller */ 12567 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12568 sum_val = ipf->ipf_checksum; 12569 else 12570 sum_val = 0; 12571 12572 mp1 = ipf->ipf_mp; 12573 count = ipf->ipf_count; 12574 ipf = ipf->ipf_hash_next; 12575 if (ipf != NULL) 12576 ipf->ipf_ptphn = ipfp; 12577 ipfp[0] = ipf; 12578 atomic_add_32(&ill->ill_frag_count, -count); 12579 ASSERT(ipfb->ipfb_count >= count); 12580 ipfb->ipfb_count -= count; 12581 ipfb->ipfb_frag_pkts--; 12582 mutex_exit(&ipfb->ipfb_lock); 12583 /* Ditch the frag header. */ 12584 mp = mp1->b_cont; 12585 12586 freeb(mp1); 12587 12588 /* Restore original IP length in header. */ 12589 packet_size = (uint32_t)msgdsize(mp); 12590 if (packet_size > IP_MAXPACKET) { 12591 freemsg(mp); 12592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12593 return (B_FALSE); 12594 } 12595 12596 if (DB_REF(mp) > 1) { 12597 mblk_t *mp2 = copymsg(mp); 12598 12599 freemsg(mp); 12600 if (mp2 == NULL) { 12601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12602 return (B_FALSE); 12603 } 12604 mp = mp2; 12605 } 12606 ipha = (ipha_t *)mp->b_rptr; 12607 12608 ipha->ipha_length = htons((uint16_t)packet_size); 12609 /* We're now complete, zip the frag state */ 12610 ipha->ipha_fragment_offset_and_flags = 0; 12611 /* Record the ECN info. */ 12612 ipha->ipha_type_of_service &= 0xFC; 12613 ipha->ipha_type_of_service |= ecn_info; 12614 *mpp = mp; 12615 12616 /* Reassembly is successful; return checksum information if needed */ 12617 if (cksum_val != NULL) 12618 *cksum_val = sum_val; 12619 if (cksum_flags != NULL) 12620 *cksum_flags = sum_flags; 12621 12622 return (B_TRUE); 12623 } 12624 12625 /* 12626 * Perform ip header check sum update local options. 12627 * return B_TRUE if all is well, else return B_FALSE and release 12628 * the mp. caller is responsible for decrementing ire ref cnt. 12629 */ 12630 static boolean_t 12631 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12632 ip_stack_t *ipst) 12633 { 12634 mblk_t *first_mp; 12635 boolean_t mctl_present; 12636 uint16_t sum; 12637 12638 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12639 /* 12640 * Don't do the checksum if it has gone through AH/ESP 12641 * processing. 12642 */ 12643 if (!mctl_present) { 12644 sum = ip_csum_hdr(ipha); 12645 if (sum != 0) { 12646 if (ill != NULL) { 12647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12648 } else { 12649 BUMP_MIB(&ipst->ips_ip_mib, 12650 ipIfStatsInCksumErrs); 12651 } 12652 freemsg(first_mp); 12653 return (B_FALSE); 12654 } 12655 } 12656 12657 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12658 if (mctl_present) 12659 freeb(first_mp); 12660 return (B_FALSE); 12661 } 12662 12663 return (B_TRUE); 12664 } 12665 12666 /* 12667 * All udp packet are delivered to the local host via this routine. 12668 */ 12669 void 12670 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12671 ill_t *recv_ill) 12672 { 12673 uint32_t sum; 12674 uint32_t u1; 12675 boolean_t mctl_present; 12676 conn_t *connp; 12677 mblk_t *first_mp; 12678 uint16_t *up; 12679 ill_t *ill = (ill_t *)q->q_ptr; 12680 uint16_t reass_hck_flags = 0; 12681 ip_stack_t *ipst; 12682 12683 ASSERT(recv_ill != NULL); 12684 ipst = recv_ill->ill_ipst; 12685 12686 #define rptr ((uchar_t *)ipha) 12687 12688 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12689 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12690 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12691 ASSERT(ill != NULL); 12692 12693 /* 12694 * FAST PATH for udp packets 12695 */ 12696 12697 /* u1 is # words of IP options */ 12698 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12699 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12700 12701 /* IP options present */ 12702 if (u1 != 0) 12703 goto ipoptions; 12704 12705 /* Check the IP header checksum. */ 12706 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12707 /* Clear the IP header h/w cksum flag */ 12708 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12709 } else if (!mctl_present) { 12710 /* 12711 * Don't verify header checksum if this packet is coming 12712 * back from AH/ESP as we already did it. 12713 */ 12714 #define uph ((uint16_t *)ipha) 12715 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12716 uph[6] + uph[7] + uph[8] + uph[9]; 12717 #undef uph 12718 /* finish doing IP checksum */ 12719 sum = (sum & 0xFFFF) + (sum >> 16); 12720 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12721 if (sum != 0 && sum != 0xFFFF) { 12722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12723 freemsg(first_mp); 12724 return; 12725 } 12726 } 12727 12728 /* 12729 * Count for SNMP of inbound packets for ire. 12730 * if mctl is present this might be a secure packet and 12731 * has already been counted for in ip_proto_input(). 12732 */ 12733 if (!mctl_present) { 12734 UPDATE_IB_PKT_COUNT(ire); 12735 ire->ire_last_used_time = lbolt; 12736 } 12737 12738 /* packet part of fragmented IP packet? */ 12739 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12740 if (u1 & (IPH_MF | IPH_OFFSET)) { 12741 goto fragmented; 12742 } 12743 12744 /* u1 = IP header length (20 bytes) */ 12745 u1 = IP_SIMPLE_HDR_LENGTH; 12746 12747 /* packet does not contain complete IP & UDP headers */ 12748 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12749 goto udppullup; 12750 12751 /* up points to UDP header */ 12752 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12753 #define iphs ((uint16_t *)ipha) 12754 12755 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12756 if (up[3] != 0) { 12757 mblk_t *mp1 = mp->b_cont; 12758 boolean_t cksum_err; 12759 uint16_t hck_flags = 0; 12760 12761 /* Pseudo-header checksum */ 12762 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12763 iphs[9] + up[2]; 12764 12765 /* 12766 * Revert to software checksum calculation if the interface 12767 * isn't capable of checksum offload or if IPsec is present. 12768 */ 12769 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12770 hck_flags = DB_CKSUMFLAGS(mp); 12771 12772 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12773 IP_STAT(ipst, ip_in_sw_cksum); 12774 12775 IP_CKSUM_RECV(hck_flags, u1, 12776 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12777 (int32_t)((uchar_t *)up - rptr), 12778 mp, mp1, cksum_err); 12779 12780 if (cksum_err) { 12781 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12782 if (hck_flags & HCK_FULLCKSUM) 12783 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12784 else if (hck_flags & HCK_PARTIALCKSUM) 12785 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12786 else 12787 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12788 12789 freemsg(first_mp); 12790 return; 12791 } 12792 } 12793 12794 /* Non-fragmented broadcast or multicast packet? */ 12795 if (ire->ire_type == IRE_BROADCAST) 12796 goto udpslowpath; 12797 12798 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12799 ire->ire_zoneid, ipst)) != NULL) { 12800 ASSERT(connp->conn_upq != NULL); 12801 IP_STAT(ipst, ip_udp_fast_path); 12802 12803 if (CONN_UDP_FLOWCTLD(connp)) { 12804 freemsg(mp); 12805 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12806 } else { 12807 if (!mctl_present) { 12808 BUMP_MIB(ill->ill_ip_mib, 12809 ipIfStatsHCInDelivers); 12810 } 12811 /* 12812 * mp and first_mp can change. 12813 */ 12814 if (ip_udp_check(q, connp, recv_ill, 12815 ipha, &mp, &first_mp, mctl_present, ire)) { 12816 /* Send it upstream */ 12817 (connp->conn_recv)(connp, mp, NULL); 12818 } 12819 } 12820 /* 12821 * freeb() cannot deal with null mblk being passed 12822 * in and first_mp can be set to null in the call 12823 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12824 */ 12825 if (mctl_present && first_mp != NULL) { 12826 freeb(first_mp); 12827 } 12828 CONN_DEC_REF(connp); 12829 return; 12830 } 12831 12832 /* 12833 * if we got here we know the packet is not fragmented and 12834 * has no options. The classifier could not find a conn_t and 12835 * most likely its an icmp packet so send it through slow path. 12836 */ 12837 12838 goto udpslowpath; 12839 12840 ipoptions: 12841 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12842 goto slow_done; 12843 } 12844 12845 UPDATE_IB_PKT_COUNT(ire); 12846 ire->ire_last_used_time = lbolt; 12847 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12848 if (u1 & (IPH_MF | IPH_OFFSET)) { 12849 fragmented: 12850 /* 12851 * "sum" and "reass_hck_flags" are non-zero if the 12852 * reassembled packet has a valid hardware computed 12853 * checksum information associated with it. 12854 */ 12855 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12856 goto slow_done; 12857 /* 12858 * Make sure that first_mp points back to mp as 12859 * the mp we came in with could have changed in 12860 * ip_rput_fragment(). 12861 */ 12862 ASSERT(!mctl_present); 12863 ipha = (ipha_t *)mp->b_rptr; 12864 first_mp = mp; 12865 } 12866 12867 /* Now we have a complete datagram, destined for this machine. */ 12868 u1 = IPH_HDR_LENGTH(ipha); 12869 /* Pull up the UDP header, if necessary. */ 12870 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12871 udppullup: 12872 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12874 freemsg(first_mp); 12875 goto slow_done; 12876 } 12877 ipha = (ipha_t *)mp->b_rptr; 12878 } 12879 12880 /* 12881 * Validate the checksum for the reassembled packet; for the 12882 * pullup case we calculate the payload checksum in software. 12883 */ 12884 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12885 if (up[3] != 0) { 12886 boolean_t cksum_err; 12887 12888 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12889 IP_STAT(ipst, ip_in_sw_cksum); 12890 12891 IP_CKSUM_RECV_REASS(reass_hck_flags, 12892 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12893 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12894 iphs[9] + up[2], sum, cksum_err); 12895 12896 if (cksum_err) { 12897 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12898 12899 if (reass_hck_flags & HCK_FULLCKSUM) 12900 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12901 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12902 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12903 else 12904 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12905 12906 freemsg(first_mp); 12907 goto slow_done; 12908 } 12909 } 12910 udpslowpath: 12911 12912 /* Clear hardware checksum flag to be safe */ 12913 DB_CKSUMFLAGS(mp) = 0; 12914 12915 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12916 (ire->ire_type == IRE_BROADCAST), 12917 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12918 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12919 12920 slow_done: 12921 IP_STAT(ipst, ip_udp_slow_path); 12922 return; 12923 12924 #undef iphs 12925 #undef rptr 12926 } 12927 12928 /* ARGSUSED */ 12929 static mblk_t * 12930 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12931 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12932 ill_rx_ring_t *ill_ring) 12933 { 12934 conn_t *connp; 12935 uint32_t sum; 12936 uint32_t u1; 12937 uint16_t *up; 12938 int offset; 12939 ssize_t len; 12940 mblk_t *mp1; 12941 boolean_t syn_present = B_FALSE; 12942 tcph_t *tcph; 12943 uint_t ip_hdr_len; 12944 ill_t *ill = (ill_t *)q->q_ptr; 12945 zoneid_t zoneid = ire->ire_zoneid; 12946 boolean_t cksum_err; 12947 uint16_t hck_flags = 0; 12948 ip_stack_t *ipst = recv_ill->ill_ipst; 12949 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12950 12951 #define rptr ((uchar_t *)ipha) 12952 12953 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12954 ASSERT(ill != NULL); 12955 12956 /* 12957 * FAST PATH for tcp packets 12958 */ 12959 12960 /* u1 is # words of IP options */ 12961 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12962 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12963 12964 /* IP options present */ 12965 if (u1) { 12966 goto ipoptions; 12967 } else if (!mctl_present) { 12968 /* Check the IP header checksum. */ 12969 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12970 /* Clear the IP header h/w cksum flag */ 12971 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12972 } else if (!mctl_present) { 12973 /* 12974 * Don't verify header checksum if this packet 12975 * is coming back from AH/ESP as we already did it. 12976 */ 12977 #define uph ((uint16_t *)ipha) 12978 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12979 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12980 #undef uph 12981 /* finish doing IP checksum */ 12982 sum = (sum & 0xFFFF) + (sum >> 16); 12983 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12984 if (sum != 0 && sum != 0xFFFF) { 12985 BUMP_MIB(ill->ill_ip_mib, 12986 ipIfStatsInCksumErrs); 12987 goto error; 12988 } 12989 } 12990 } 12991 12992 if (!mctl_present) { 12993 UPDATE_IB_PKT_COUNT(ire); 12994 ire->ire_last_used_time = lbolt; 12995 } 12996 12997 /* packet part of fragmented IP packet? */ 12998 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12999 if (u1 & (IPH_MF | IPH_OFFSET)) { 13000 goto fragmented; 13001 } 13002 13003 /* u1 = IP header length (20 bytes) */ 13004 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13005 13006 /* does packet contain IP+TCP headers? */ 13007 len = mp->b_wptr - rptr; 13008 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13009 IP_STAT(ipst, ip_tcppullup); 13010 goto tcppullup; 13011 } 13012 13013 /* TCP options present? */ 13014 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13015 13016 /* 13017 * If options need to be pulled up, then goto tcpoptions. 13018 * otherwise we are still in the fast path 13019 */ 13020 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13021 IP_STAT(ipst, ip_tcpoptions); 13022 goto tcpoptions; 13023 } 13024 13025 /* multiple mblks of tcp data? */ 13026 if ((mp1 = mp->b_cont) != NULL) { 13027 /* more then two? */ 13028 if (mp1->b_cont != NULL) { 13029 IP_STAT(ipst, ip_multipkttcp); 13030 goto multipkttcp; 13031 } 13032 len += mp1->b_wptr - mp1->b_rptr; 13033 } 13034 13035 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13036 13037 /* part of pseudo checksum */ 13038 13039 /* TCP datagram length */ 13040 u1 = len - IP_SIMPLE_HDR_LENGTH; 13041 13042 #define iphs ((uint16_t *)ipha) 13043 13044 #ifdef _BIG_ENDIAN 13045 u1 += IPPROTO_TCP; 13046 #else 13047 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13048 #endif 13049 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13050 13051 /* 13052 * Revert to software checksum calculation if the interface 13053 * isn't capable of checksum offload or if IPsec is present. 13054 */ 13055 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13056 hck_flags = DB_CKSUMFLAGS(mp); 13057 13058 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13059 IP_STAT(ipst, ip_in_sw_cksum); 13060 13061 IP_CKSUM_RECV(hck_flags, u1, 13062 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13063 (int32_t)((uchar_t *)up - rptr), 13064 mp, mp1, cksum_err); 13065 13066 if (cksum_err) { 13067 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13068 13069 if (hck_flags & HCK_FULLCKSUM) 13070 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13071 else if (hck_flags & HCK_PARTIALCKSUM) 13072 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13073 else 13074 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13075 13076 goto error; 13077 } 13078 13079 try_again: 13080 13081 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13082 zoneid, ipst)) == NULL) { 13083 /* Send the TH_RST */ 13084 goto no_conn; 13085 } 13086 13087 /* 13088 * TCP FAST PATH for AF_INET socket. 13089 * 13090 * TCP fast path to avoid extra work. An AF_INET socket type 13091 * does not have facility to receive extra information via 13092 * ip_process or ip_add_info. Also, when the connection was 13093 * established, we made a check if this connection is impacted 13094 * by any global IPsec policy or per connection policy (a 13095 * policy that comes in effect later will not apply to this 13096 * connection). Since all this can be determined at the 13097 * connection establishment time, a quick check of flags 13098 * can avoid extra work. 13099 */ 13100 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13101 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13102 ASSERT(first_mp == mp); 13103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13104 SET_SQUEUE(mp, tcp_rput_data, connp); 13105 return (mp); 13106 } 13107 13108 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13109 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13110 if (IPCL_IS_TCP(connp)) { 13111 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13112 DB_CKSUMSTART(mp) = 13113 (intptr_t)ip_squeue_get(ill_ring); 13114 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13115 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13116 BUMP_MIB(ill->ill_ip_mib, 13117 ipIfStatsHCInDelivers); 13118 SET_SQUEUE(mp, connp->conn_recv, connp); 13119 return (mp); 13120 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13121 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13122 BUMP_MIB(ill->ill_ip_mib, 13123 ipIfStatsHCInDelivers); 13124 ip_squeue_enter_unbound++; 13125 SET_SQUEUE(mp, tcp_conn_request_unbound, 13126 connp); 13127 return (mp); 13128 } 13129 syn_present = B_TRUE; 13130 } 13131 13132 } 13133 13134 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13135 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13136 13137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13138 /* No need to send this packet to TCP */ 13139 if ((flags & TH_RST) || (flags & TH_URG)) { 13140 CONN_DEC_REF(connp); 13141 freemsg(first_mp); 13142 return (NULL); 13143 } 13144 if (flags & TH_ACK) { 13145 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13146 ipst->ips_netstack->netstack_tcp, connp); 13147 CONN_DEC_REF(connp); 13148 return (NULL); 13149 } 13150 13151 CONN_DEC_REF(connp); 13152 freemsg(first_mp); 13153 return (NULL); 13154 } 13155 13156 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13157 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13158 ipha, NULL, mctl_present); 13159 if (first_mp == NULL) { 13160 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13161 CONN_DEC_REF(connp); 13162 return (NULL); 13163 } 13164 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13165 ASSERT(syn_present); 13166 if (mctl_present) { 13167 ASSERT(first_mp != mp); 13168 first_mp->b_datap->db_struioflag |= 13169 STRUIO_POLICY; 13170 } else { 13171 ASSERT(first_mp == mp); 13172 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13173 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13174 } 13175 } else { 13176 /* 13177 * Discard first_mp early since we're dealing with a 13178 * fully-connected conn_t and tcp doesn't do policy in 13179 * this case. 13180 */ 13181 if (mctl_present) { 13182 freeb(first_mp); 13183 mctl_present = B_FALSE; 13184 } 13185 first_mp = mp; 13186 } 13187 } 13188 13189 /* Initiate IPPF processing for fastpath */ 13190 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13191 uint32_t ill_index; 13192 13193 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13194 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13195 if (mp == NULL) { 13196 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13197 "deferred/dropped during IPPF processing\n")); 13198 CONN_DEC_REF(connp); 13199 if (mctl_present) 13200 freeb(first_mp); 13201 return (NULL); 13202 } else if (mctl_present) { 13203 /* 13204 * ip_process might return a new mp. 13205 */ 13206 ASSERT(first_mp != mp); 13207 first_mp->b_cont = mp; 13208 } else { 13209 first_mp = mp; 13210 } 13211 13212 } 13213 13214 if (!syn_present && connp->conn_ip_recvpktinfo) { 13215 /* 13216 * TCP does not support IP_RECVPKTINFO for v4 so lets 13217 * make sure IPF_RECVIF is passed to ip_add_info. 13218 */ 13219 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13220 IPCL_ZONEID(connp), ipst); 13221 if (mp == NULL) { 13222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13223 CONN_DEC_REF(connp); 13224 if (mctl_present) 13225 freeb(first_mp); 13226 return (NULL); 13227 } else if (mctl_present) { 13228 /* 13229 * ip_add_info might return a new mp. 13230 */ 13231 ASSERT(first_mp != mp); 13232 first_mp->b_cont = mp; 13233 } else { 13234 first_mp = mp; 13235 } 13236 } 13237 13238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13239 if (IPCL_IS_TCP(connp)) { 13240 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13241 return (first_mp); 13242 } else { 13243 /* SOCK_RAW, IPPROTO_TCP case */ 13244 (connp->conn_recv)(connp, first_mp, NULL); 13245 CONN_DEC_REF(connp); 13246 return (NULL); 13247 } 13248 13249 no_conn: 13250 /* Initiate IPPf processing, if needed. */ 13251 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13252 uint32_t ill_index; 13253 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13254 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13255 if (first_mp == NULL) { 13256 return (NULL); 13257 } 13258 } 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13260 13261 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13262 ipst->ips_netstack->netstack_tcp, NULL); 13263 return (NULL); 13264 ipoptions: 13265 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13266 goto slow_done; 13267 } 13268 13269 UPDATE_IB_PKT_COUNT(ire); 13270 ire->ire_last_used_time = lbolt; 13271 13272 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13273 if (u1 & (IPH_MF | IPH_OFFSET)) { 13274 fragmented: 13275 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13276 if (mctl_present) 13277 freeb(first_mp); 13278 goto slow_done; 13279 } 13280 /* 13281 * Make sure that first_mp points back to mp as 13282 * the mp we came in with could have changed in 13283 * ip_rput_fragment(). 13284 */ 13285 ASSERT(!mctl_present); 13286 ipha = (ipha_t *)mp->b_rptr; 13287 first_mp = mp; 13288 } 13289 13290 /* Now we have a complete datagram, destined for this machine. */ 13291 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13292 13293 len = mp->b_wptr - mp->b_rptr; 13294 /* Pull up a minimal TCP header, if necessary. */ 13295 if (len < (u1 + 20)) { 13296 tcppullup: 13297 if (!pullupmsg(mp, u1 + 20)) { 13298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13299 goto error; 13300 } 13301 ipha = (ipha_t *)mp->b_rptr; 13302 len = mp->b_wptr - mp->b_rptr; 13303 } 13304 13305 /* 13306 * Extract the offset field from the TCP header. As usual, we 13307 * try to help the compiler more than the reader. 13308 */ 13309 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13310 if (offset != 5) { 13311 tcpoptions: 13312 if (offset < 5) { 13313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13314 goto error; 13315 } 13316 /* 13317 * There must be TCP options. 13318 * Make sure we can grab them. 13319 */ 13320 offset <<= 2; 13321 offset += u1; 13322 if (len < offset) { 13323 if (!pullupmsg(mp, offset)) { 13324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13325 goto error; 13326 } 13327 ipha = (ipha_t *)mp->b_rptr; 13328 len = mp->b_wptr - rptr; 13329 } 13330 } 13331 13332 /* Get the total packet length in len, including headers. */ 13333 if (mp->b_cont) { 13334 multipkttcp: 13335 len = msgdsize(mp); 13336 } 13337 13338 /* 13339 * Check the TCP checksum by pulling together the pseudo- 13340 * header checksum, and passing it to ip_csum to be added in 13341 * with the TCP datagram. 13342 * 13343 * Since we are not using the hwcksum if available we must 13344 * clear the flag. We may come here via tcppullup or tcpoptions. 13345 * If either of these fails along the way the mblk is freed. 13346 * If this logic ever changes and mblk is reused to say send 13347 * ICMP's back, then this flag may need to be cleared in 13348 * other places as well. 13349 */ 13350 DB_CKSUMFLAGS(mp) = 0; 13351 13352 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13353 13354 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13355 #ifdef _BIG_ENDIAN 13356 u1 += IPPROTO_TCP; 13357 #else 13358 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13359 #endif 13360 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13361 /* 13362 * Not M_DATA mblk or its a dup, so do the checksum now. 13363 */ 13364 IP_STAT(ipst, ip_in_sw_cksum); 13365 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13366 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13367 goto error; 13368 } 13369 13370 IP_STAT(ipst, ip_tcp_slow_path); 13371 goto try_again; 13372 #undef iphs 13373 #undef rptr 13374 13375 error: 13376 freemsg(first_mp); 13377 slow_done: 13378 return (NULL); 13379 } 13380 13381 /* ARGSUSED */ 13382 static void 13383 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13384 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13385 { 13386 conn_t *connp; 13387 uint32_t sum; 13388 uint32_t u1; 13389 ssize_t len; 13390 sctp_hdr_t *sctph; 13391 zoneid_t zoneid = ire->ire_zoneid; 13392 uint32_t pktsum; 13393 uint32_t calcsum; 13394 uint32_t ports; 13395 in6_addr_t map_src, map_dst; 13396 ill_t *ill = (ill_t *)q->q_ptr; 13397 ip_stack_t *ipst; 13398 sctp_stack_t *sctps; 13399 boolean_t sctp_csum_err = B_FALSE; 13400 13401 ASSERT(recv_ill != NULL); 13402 ipst = recv_ill->ill_ipst; 13403 sctps = ipst->ips_netstack->netstack_sctp; 13404 13405 #define rptr ((uchar_t *)ipha) 13406 13407 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13408 ASSERT(ill != NULL); 13409 13410 /* u1 is # words of IP options */ 13411 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13412 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13413 13414 /* IP options present */ 13415 if (u1 > 0) { 13416 goto ipoptions; 13417 } else { 13418 /* Check the IP header checksum. */ 13419 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13420 !mctl_present) { 13421 #define uph ((uint16_t *)ipha) 13422 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13423 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13424 #undef uph 13425 /* finish doing IP checksum */ 13426 sum = (sum & 0xFFFF) + (sum >> 16); 13427 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13428 /* 13429 * Don't verify header checksum if this packet 13430 * is coming back from AH/ESP as we already did it. 13431 */ 13432 if (sum != 0 && sum != 0xFFFF) { 13433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13434 goto error; 13435 } 13436 } 13437 /* 13438 * Since there is no SCTP h/w cksum support yet, just 13439 * clear the flag. 13440 */ 13441 DB_CKSUMFLAGS(mp) = 0; 13442 } 13443 13444 /* 13445 * Don't verify header checksum if this packet is coming 13446 * back from AH/ESP as we already did it. 13447 */ 13448 if (!mctl_present) { 13449 UPDATE_IB_PKT_COUNT(ire); 13450 ire->ire_last_used_time = lbolt; 13451 } 13452 13453 /* packet part of fragmented IP packet? */ 13454 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13455 if (u1 & (IPH_MF | IPH_OFFSET)) 13456 goto fragmented; 13457 13458 /* u1 = IP header length (20 bytes) */ 13459 u1 = IP_SIMPLE_HDR_LENGTH; 13460 13461 find_sctp_client: 13462 /* Pullup if we don't have the sctp common header. */ 13463 len = MBLKL(mp); 13464 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13465 if (mp->b_cont == NULL || 13466 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13468 goto error; 13469 } 13470 ipha = (ipha_t *)mp->b_rptr; 13471 len = MBLKL(mp); 13472 } 13473 13474 sctph = (sctp_hdr_t *)(rptr + u1); 13475 #ifdef DEBUG 13476 if (!skip_sctp_cksum) { 13477 #endif 13478 pktsum = sctph->sh_chksum; 13479 sctph->sh_chksum = 0; 13480 calcsum = sctp_cksum(mp, u1); 13481 sctph->sh_chksum = pktsum; 13482 if (calcsum != pktsum) 13483 sctp_csum_err = B_TRUE; 13484 #ifdef DEBUG /* skip_sctp_cksum */ 13485 } 13486 #endif 13487 /* get the ports */ 13488 ports = *(uint32_t *)&sctph->sh_sport; 13489 13490 IRE_REFRELE(ire); 13491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13493 if (sctp_csum_err) { 13494 /* 13495 * No potential sctp checksum errors go to the Sun 13496 * sctp stack however they might be Adler-32 summed 13497 * packets a userland stack bound to a raw IP socket 13498 * could reasonably use. Note though that Adler-32 is 13499 * a long deprecated algorithm and customer sctp 13500 * networks should eventually migrate to CRC-32 at 13501 * which time this facility should be removed. 13502 */ 13503 flags |= IP_FF_SCTP_CSUM_ERR; 13504 goto no_conn; 13505 } 13506 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13507 sctps)) == NULL) { 13508 /* Check for raw socket or OOTB handling */ 13509 goto no_conn; 13510 } 13511 13512 /* Found a client; up it goes */ 13513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13514 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13515 return; 13516 13517 no_conn: 13518 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13519 ports, mctl_present, flags, B_TRUE, zoneid); 13520 return; 13521 13522 ipoptions: 13523 DB_CKSUMFLAGS(mp) = 0; 13524 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13525 goto slow_done; 13526 13527 UPDATE_IB_PKT_COUNT(ire); 13528 ire->ire_last_used_time = lbolt; 13529 13530 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13531 if (u1 & (IPH_MF | IPH_OFFSET)) { 13532 fragmented: 13533 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13534 goto slow_done; 13535 /* 13536 * Make sure that first_mp points back to mp as 13537 * the mp we came in with could have changed in 13538 * ip_rput_fragment(). 13539 */ 13540 ASSERT(!mctl_present); 13541 ipha = (ipha_t *)mp->b_rptr; 13542 first_mp = mp; 13543 } 13544 13545 /* Now we have a complete datagram, destined for this machine. */ 13546 u1 = IPH_HDR_LENGTH(ipha); 13547 goto find_sctp_client; 13548 #undef iphs 13549 #undef rptr 13550 13551 error: 13552 freemsg(first_mp); 13553 slow_done: 13554 IRE_REFRELE(ire); 13555 } 13556 13557 #define VER_BITS 0xF0 13558 #define VERSION_6 0x60 13559 13560 static boolean_t 13561 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13562 ipaddr_t *dstp, ip_stack_t *ipst) 13563 { 13564 uint_t opt_len; 13565 ipha_t *ipha; 13566 ssize_t len; 13567 uint_t pkt_len; 13568 13569 ASSERT(ill != NULL); 13570 IP_STAT(ipst, ip_ipoptions); 13571 ipha = *iphapp; 13572 13573 #define rptr ((uchar_t *)ipha) 13574 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13575 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13577 freemsg(mp); 13578 return (B_FALSE); 13579 } 13580 13581 /* multiple mblk or too short */ 13582 pkt_len = ntohs(ipha->ipha_length); 13583 13584 /* Get the number of words of IP options in the IP header. */ 13585 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13586 if (opt_len) { 13587 /* IP Options present! Validate and process. */ 13588 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13590 goto done; 13591 } 13592 /* 13593 * Recompute complete header length and make sure we 13594 * have access to all of it. 13595 */ 13596 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13597 if (len > (mp->b_wptr - rptr)) { 13598 if (len > pkt_len) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13600 goto done; 13601 } 13602 if (!pullupmsg(mp, len)) { 13603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13604 goto done; 13605 } 13606 ipha = (ipha_t *)mp->b_rptr; 13607 } 13608 /* 13609 * Go off to ip_rput_options which returns the next hop 13610 * destination address, which may have been affected 13611 * by source routing. 13612 */ 13613 IP_STAT(ipst, ip_opt); 13614 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13616 return (B_FALSE); 13617 } 13618 } 13619 *iphapp = ipha; 13620 return (B_TRUE); 13621 done: 13622 /* clear b_prev - used by ip_mroute_decap */ 13623 mp->b_prev = NULL; 13624 freemsg(mp); 13625 return (B_FALSE); 13626 #undef rptr 13627 } 13628 13629 /* 13630 * Deal with the fact that there is no ire for the destination. 13631 */ 13632 static ire_t * 13633 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13634 { 13635 ipha_t *ipha; 13636 ill_t *ill; 13637 ire_t *ire; 13638 ip_stack_t *ipst; 13639 enum ire_forward_action ret_action; 13640 13641 ipha = (ipha_t *)mp->b_rptr; 13642 ill = (ill_t *)q->q_ptr; 13643 13644 ASSERT(ill != NULL); 13645 ipst = ill->ill_ipst; 13646 13647 /* 13648 * No IRE for this destination, so it can't be for us. 13649 * Unless we are forwarding, drop the packet. 13650 * We have to let source routed packets through 13651 * since we don't yet know if they are 'ping -l' 13652 * packets i.e. if they will go out over the 13653 * same interface as they came in on. 13654 */ 13655 if (ll_multicast) { 13656 freemsg(mp); 13657 return (NULL); 13658 } 13659 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13661 freemsg(mp); 13662 return (NULL); 13663 } 13664 13665 /* 13666 * Mark this packet as having originated externally. 13667 * 13668 * For non-forwarding code path, ire_send later double 13669 * checks this interface to see if it is still exists 13670 * post-ARP resolution. 13671 * 13672 * Also, IPQOS uses this to differentiate between 13673 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13674 * QOS packet processing in ip_wput_attach_llhdr(). 13675 * The QoS module can mark the b_band for a fastpath message 13676 * or the dl_priority field in a unitdata_req header for 13677 * CoS marking. This info can only be found in 13678 * ip_wput_attach_llhdr(). 13679 */ 13680 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13681 /* 13682 * Clear the indication that this may have a hardware checksum 13683 * as we are not using it 13684 */ 13685 DB_CKSUMFLAGS(mp) = 0; 13686 13687 ire = ire_forward(dst, &ret_action, NULL, NULL, 13688 MBLK_GETLABEL(mp), ipst); 13689 13690 if (ire == NULL && ret_action == Forward_check_multirt) { 13691 /* Let ip_newroute handle CGTP */ 13692 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13693 return (NULL); 13694 } 13695 13696 if (ire != NULL) 13697 return (ire); 13698 13699 mp->b_prev = mp->b_next = 0; 13700 13701 if (ret_action == Forward_blackhole) { 13702 freemsg(mp); 13703 return (NULL); 13704 } 13705 /* send icmp unreachable */ 13706 q = WR(q); 13707 /* Sent by forwarding path, and router is global zone */ 13708 if (ip_source_routed(ipha, ipst)) { 13709 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13710 GLOBAL_ZONEID, ipst); 13711 } else { 13712 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13713 ipst); 13714 } 13715 13716 return (NULL); 13717 13718 } 13719 13720 /* 13721 * check ip header length and align it. 13722 */ 13723 static boolean_t 13724 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13725 { 13726 ssize_t len; 13727 ill_t *ill; 13728 ipha_t *ipha; 13729 13730 len = MBLKL(mp); 13731 13732 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13733 ill = (ill_t *)q->q_ptr; 13734 13735 if (!OK_32PTR(mp->b_rptr)) 13736 IP_STAT(ipst, ip_notaligned1); 13737 else 13738 IP_STAT(ipst, ip_notaligned2); 13739 /* Guard against bogus device drivers */ 13740 if (len < 0) { 13741 /* clear b_prev - used by ip_mroute_decap */ 13742 mp->b_prev = NULL; 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13744 freemsg(mp); 13745 return (B_FALSE); 13746 } 13747 13748 if (ip_rput_pullups++ == 0) { 13749 ipha = (ipha_t *)mp->b_rptr; 13750 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13751 "ip_check_and_align_header: %s forced us to " 13752 " pullup pkt, hdr len %ld, hdr addr %p", 13753 ill->ill_name, len, ipha); 13754 } 13755 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13756 /* clear b_prev - used by ip_mroute_decap */ 13757 mp->b_prev = NULL; 13758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13759 freemsg(mp); 13760 return (B_FALSE); 13761 } 13762 } 13763 return (B_TRUE); 13764 } 13765 13766 ire_t * 13767 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13768 { 13769 ire_t *new_ire; 13770 ill_t *ire_ill; 13771 uint_t ifindex; 13772 ip_stack_t *ipst = ill->ill_ipst; 13773 boolean_t strict_check = B_FALSE; 13774 13775 /* 13776 * This packet came in on an interface other than the one associated 13777 * with the first ire we found for the destination address. We do 13778 * another ire lookup here, using the ingress ill, to see if the 13779 * interface is in an interface group. 13780 * As long as the ills belong to the same group, we don't consider 13781 * them to be arriving on the wrong interface. Thus, if the switch 13782 * is doing inbound load spreading, we won't drop packets when the 13783 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13784 * for 'usesrc groups' where the destination address may belong to 13785 * another interface to allow multipathing to happen. 13786 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13787 * where the local address may not be unique. In this case we were 13788 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13789 * actually returned. The new lookup, which is more specific, should 13790 * only find the IRE_LOCAL associated with the ingress ill if one 13791 * exists. 13792 */ 13793 13794 if (ire->ire_ipversion == IPV4_VERSION) { 13795 if (ipst->ips_ip_strict_dst_multihoming) 13796 strict_check = B_TRUE; 13797 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13798 ill->ill_ipif, ALL_ZONES, NULL, 13799 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13800 } else { 13801 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13802 if (ipst->ips_ipv6_strict_dst_multihoming) 13803 strict_check = B_TRUE; 13804 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13805 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13806 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13807 } 13808 /* 13809 * If the same ire that was returned in ip_input() is found then this 13810 * is an indication that interface groups are in use. The packet 13811 * arrived on a different ill in the group than the one associated with 13812 * the destination address. If a different ire was found then the same 13813 * IP address must be hosted on multiple ills. This is possible with 13814 * unnumbered point2point interfaces. We switch to use this new ire in 13815 * order to have accurate interface statistics. 13816 */ 13817 if (new_ire != NULL) { 13818 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13819 ire_refrele(ire); 13820 ire = new_ire; 13821 } else { 13822 ire_refrele(new_ire); 13823 } 13824 return (ire); 13825 } else if ((ire->ire_rfq == NULL) && 13826 (ire->ire_ipversion == IPV4_VERSION)) { 13827 /* 13828 * The best match could have been the original ire which 13829 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13830 * the strict multihoming checks are irrelevant as we consider 13831 * local addresses hosted on lo0 to be interface agnostic. We 13832 * only expect a null ire_rfq on IREs which are associated with 13833 * lo0 hence we can return now. 13834 */ 13835 return (ire); 13836 } 13837 13838 /* 13839 * Chase pointers once and store locally. 13840 */ 13841 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13842 (ill_t *)(ire->ire_rfq->q_ptr); 13843 ifindex = ill->ill_usesrc_ifindex; 13844 13845 /* 13846 * Check if it's a legal address on the 'usesrc' interface. 13847 */ 13848 if ((ifindex != 0) && (ire_ill != NULL) && 13849 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13850 return (ire); 13851 } 13852 13853 /* 13854 * If the ip*_strict_dst_multihoming switch is on then we can 13855 * only accept this packet if the interface is marked as routing. 13856 */ 13857 if (!(strict_check)) 13858 return (ire); 13859 13860 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13861 ILLF_ROUTER) != 0) { 13862 return (ire); 13863 } 13864 13865 ire_refrele(ire); 13866 return (NULL); 13867 } 13868 13869 ire_t * 13870 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13871 { 13872 ipha_t *ipha; 13873 ire_t *src_ire; 13874 ill_t *stq_ill; 13875 uint_t hlen; 13876 uint_t pkt_len; 13877 uint32_t sum; 13878 queue_t *dev_q; 13879 ip_stack_t *ipst = ill->ill_ipst; 13880 mblk_t *fpmp; 13881 enum ire_forward_action ret_action; 13882 13883 ipha = (ipha_t *)mp->b_rptr; 13884 13885 if (ire != NULL && 13886 ire->ire_zoneid != GLOBAL_ZONEID && 13887 ire->ire_zoneid != ALL_ZONES) { 13888 /* 13889 * Should only use IREs that are visible to the global 13890 * zone for forwarding. 13891 */ 13892 ire_refrele(ire); 13893 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13894 } 13895 13896 /* 13897 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13898 * The loopback address check for both src and dst has already 13899 * been checked in ip_input 13900 */ 13901 13902 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13904 goto drop; 13905 } 13906 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13907 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13908 13909 if (src_ire != NULL) { 13910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13911 ire_refrele(src_ire); 13912 goto drop; 13913 } 13914 13915 /* No ire cache of nexthop. So first create one */ 13916 if (ire == NULL) { 13917 13918 ire = ire_forward(dst, &ret_action, NULL, NULL, 13919 NULL, ipst); 13920 /* 13921 * We only come to ip_fast_forward if ip_cgtp_filter 13922 * is not set. So ire_forward() should not return with 13923 * Forward_check_multirt as the next action. 13924 */ 13925 ASSERT(ret_action != Forward_check_multirt); 13926 if (ire == NULL) { 13927 /* An attempt was made to forward the packet */ 13928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13930 mp->b_prev = mp->b_next = 0; 13931 /* send icmp unreachable */ 13932 /* Sent by forwarding path, and router is global zone */ 13933 if (ret_action == Forward_ret_icmp_err) { 13934 if (ip_source_routed(ipha, ipst)) { 13935 icmp_unreachable(ill->ill_wq, mp, 13936 ICMP_SOURCE_ROUTE_FAILED, 13937 GLOBAL_ZONEID, ipst); 13938 } else { 13939 icmp_unreachable(ill->ill_wq, mp, 13940 ICMP_HOST_UNREACHABLE, 13941 GLOBAL_ZONEID, ipst); 13942 } 13943 } else { 13944 freemsg(mp); 13945 } 13946 return (NULL); 13947 } 13948 } 13949 13950 /* 13951 * Forwarding fastpath exception case: 13952 * If either of the follwoing case is true, we take 13953 * the slowpath 13954 * o forwarding is not enabled 13955 * o incoming and outgoing interface are the same, or the same 13956 * IPMP group 13957 * o corresponding ire is in incomplete state 13958 * o packet needs fragmentation 13959 * o ARP cache is not resolved 13960 * 13961 * The codeflow from here on is thus: 13962 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13963 */ 13964 pkt_len = ntohs(ipha->ipha_length); 13965 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13966 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13967 !(ill->ill_flags & ILLF_ROUTER) || 13968 (ill == stq_ill) || 13969 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13970 (ire->ire_nce == NULL) || 13971 (pkt_len > ire->ire_max_frag) || 13972 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13973 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13974 ipha->ipha_ttl <= 1) { 13975 ip_rput_process_forward(ill->ill_rq, mp, ire, 13976 ipha, ill, B_FALSE); 13977 return (ire); 13978 } 13979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13980 13981 DTRACE_PROBE4(ip4__forwarding__start, 13982 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13983 13984 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13985 ipst->ips_ipv4firewall_forwarding, 13986 ill, stq_ill, ipha, mp, mp, 0, ipst); 13987 13988 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13989 13990 if (mp == NULL) 13991 goto drop; 13992 13993 mp->b_datap->db_struioun.cksum.flags = 0; 13994 /* Adjust the checksum to reflect the ttl decrement. */ 13995 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13996 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13997 ipha->ipha_ttl--; 13998 13999 /* 14000 * Write the link layer header. We can do this safely here, 14001 * because we have already tested to make sure that the IP 14002 * policy is not set, and that we have a fast path destination 14003 * header. 14004 */ 14005 mp->b_rptr -= hlen; 14006 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14007 14008 UPDATE_IB_PKT_COUNT(ire); 14009 ire->ire_last_used_time = lbolt; 14010 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14011 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14012 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14013 14014 dev_q = ire->ire_stq->q_next; 14015 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14016 !canputnext(ire->ire_stq)) { 14017 goto indiscard; 14018 } 14019 if (ILL_DLS_CAPABLE(stq_ill)) { 14020 /* 14021 * Send the packet directly to DLD, where it 14022 * may be queued depending on the availability 14023 * of transmit resources at the media layer. 14024 */ 14025 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14026 } else { 14027 DTRACE_PROBE4(ip4__physical__out__start, 14028 ill_t *, NULL, ill_t *, stq_ill, 14029 ipha_t *, ipha, mblk_t *, mp); 14030 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14031 ipst->ips_ipv4firewall_physical_out, 14032 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14033 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14034 if (mp == NULL) 14035 goto drop; 14036 14037 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14038 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14039 ip6_t *, NULL, int, 0); 14040 14041 putnext(ire->ire_stq, mp); 14042 } 14043 return (ire); 14044 14045 indiscard: 14046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14047 drop: 14048 if (mp != NULL) 14049 freemsg(mp); 14050 return (ire); 14051 14052 } 14053 14054 /* 14055 * This function is called in the forwarding slowpath, when 14056 * either the ire lacks the link-layer address, or the packet needs 14057 * further processing(eg. fragmentation), before transmission. 14058 */ 14059 14060 static void 14061 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14062 ill_t *ill, boolean_t ll_multicast) 14063 { 14064 ill_group_t *ill_group; 14065 ill_group_t *ire_group; 14066 queue_t *dev_q; 14067 ire_t *src_ire; 14068 ip_stack_t *ipst = ill->ill_ipst; 14069 14070 ASSERT(ire->ire_stq != NULL); 14071 14072 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14073 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14074 14075 if (ll_multicast != 0) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14077 goto drop_pkt; 14078 } 14079 14080 /* 14081 * check if ipha_src is a broadcast address. Note that this 14082 * check is redundant when we get here from ip_fast_forward() 14083 * which has already done this check. However, since we can 14084 * also get here from ip_rput_process_broadcast() or, for 14085 * for the slow path through ip_fast_forward(), we perform 14086 * the check again for code-reusability 14087 */ 14088 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14089 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14090 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14091 if (src_ire != NULL) 14092 ire_refrele(src_ire); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14094 ip2dbg(("ip_rput_process_forward: Received packet with" 14095 " bad src/dst address on %s\n", ill->ill_name)); 14096 goto drop_pkt; 14097 } 14098 14099 ill_group = ill->ill_group; 14100 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14101 /* 14102 * Check if we want to forward this one at this time. 14103 * We allow source routed packets on a host provided that 14104 * they go out the same interface or same interface group 14105 * as they came in on. 14106 * 14107 * XXX To be quicker, we may wish to not chase pointers to 14108 * get the ILLF_ROUTER flag and instead store the 14109 * forwarding policy in the ire. An unfortunate 14110 * side-effect of that would be requiring an ire flush 14111 * whenever the ILLF_ROUTER flag changes. 14112 */ 14113 if (((ill->ill_flags & 14114 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14115 ILLF_ROUTER) == 0) && 14116 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14117 (ill_group != NULL && ill_group == ire_group)))) { 14118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14119 if (ip_source_routed(ipha, ipst)) { 14120 q = WR(q); 14121 /* 14122 * Clear the indication that this may have 14123 * hardware checksum as we are not using it. 14124 */ 14125 DB_CKSUMFLAGS(mp) = 0; 14126 /* Sent by forwarding path, and router is global zone */ 14127 icmp_unreachable(q, mp, 14128 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14129 return; 14130 } 14131 goto drop_pkt; 14132 } 14133 14134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14135 14136 /* Packet is being forwarded. Turning off hwcksum flag. */ 14137 DB_CKSUMFLAGS(mp) = 0; 14138 if (ipst->ips_ip_g_send_redirects) { 14139 /* 14140 * Check whether the incoming interface and outgoing 14141 * interface is part of the same group. If so, 14142 * send redirects. 14143 * 14144 * Check the source address to see if it originated 14145 * on the same logical subnet it is going back out on. 14146 * If so, we should be able to send it a redirect. 14147 * Avoid sending a redirect if the destination 14148 * is directly connected (i.e., ipha_dst is the same 14149 * as ire_gateway_addr or the ire_addr of the 14150 * nexthop IRE_CACHE ), or if the packet was source 14151 * routed out this interface. 14152 */ 14153 ipaddr_t src, nhop; 14154 mblk_t *mp1; 14155 ire_t *nhop_ire = NULL; 14156 14157 /* 14158 * Check whether ire_rfq and q are from the same ill 14159 * or if they are not same, they at least belong 14160 * to the same group. If so, send redirects. 14161 */ 14162 if ((ire->ire_rfq == q || 14163 (ill_group != NULL && ill_group == ire_group)) && 14164 !ip_source_routed(ipha, ipst)) { 14165 14166 nhop = (ire->ire_gateway_addr != 0 ? 14167 ire->ire_gateway_addr : ire->ire_addr); 14168 14169 if (ipha->ipha_dst == nhop) { 14170 /* 14171 * We avoid sending a redirect if the 14172 * destination is directly connected 14173 * because it is possible that multiple 14174 * IP subnets may have been configured on 14175 * the link, and the source may not 14176 * be on the same subnet as ip destination, 14177 * even though they are on the same 14178 * physical link. 14179 */ 14180 goto sendit; 14181 } 14182 14183 src = ipha->ipha_src; 14184 14185 /* 14186 * We look up the interface ire for the nexthop, 14187 * to see if ipha_src is in the same subnet 14188 * as the nexthop. 14189 * 14190 * Note that, if, in the future, IRE_CACHE entries 14191 * are obsoleted, this lookup will not be needed, 14192 * as the ire passed to this function will be the 14193 * same as the nhop_ire computed below. 14194 */ 14195 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14196 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14197 0, NULL, MATCH_IRE_TYPE, ipst); 14198 14199 if (nhop_ire != NULL) { 14200 if ((src & nhop_ire->ire_mask) == 14201 (nhop & nhop_ire->ire_mask)) { 14202 /* 14203 * The source is directly connected. 14204 * Just copy the ip header (which is 14205 * in the first mblk) 14206 */ 14207 mp1 = copyb(mp); 14208 if (mp1 != NULL) { 14209 icmp_send_redirect(WR(q), mp1, 14210 nhop, ipst); 14211 } 14212 } 14213 ire_refrele(nhop_ire); 14214 } 14215 } 14216 } 14217 sendit: 14218 dev_q = ire->ire_stq->q_next; 14219 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14221 freemsg(mp); 14222 return; 14223 } 14224 14225 ip_rput_forward(ire, ipha, mp, ill); 14226 return; 14227 14228 drop_pkt: 14229 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14230 freemsg(mp); 14231 } 14232 14233 ire_t * 14234 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14235 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14236 { 14237 queue_t *q; 14238 uint16_t hcksumflags; 14239 ip_stack_t *ipst = ill->ill_ipst; 14240 14241 q = *qp; 14242 14243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14244 14245 /* 14246 * Clear the indication that this may have hardware 14247 * checksum as we are not using it for forwarding. 14248 */ 14249 hcksumflags = DB_CKSUMFLAGS(mp); 14250 DB_CKSUMFLAGS(mp) = 0; 14251 14252 /* 14253 * Directed broadcast forwarding: if the packet came in over a 14254 * different interface then it is routed out over we can forward it. 14255 */ 14256 if (ipha->ipha_protocol == IPPROTO_TCP) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 /* 14263 * For multicast we have set dst to be INADDR_BROADCAST 14264 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14265 * only for broadcast packets. 14266 */ 14267 if (!CLASSD(ipha->ipha_dst)) { 14268 ire_t *new_ire; 14269 ipif_t *ipif; 14270 /* 14271 * For ill groups, as the switch duplicates broadcasts 14272 * across all the ports, we need to filter out and 14273 * send up only one copy. There is one copy for every 14274 * broadcast address on each ill. Thus, we look for a 14275 * specific IRE on this ill and look at IRE_MARK_NORECV 14276 * later to see whether this ill is eligible to receive 14277 * them or not. ill_nominate_bcast_rcv() nominates only 14278 * one set of IREs for receiving. 14279 */ 14280 14281 ipif = ipif_get_next_ipif(NULL, ill); 14282 if (ipif == NULL) { 14283 ire_refrele(ire); 14284 freemsg(mp); 14285 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14286 return (NULL); 14287 } 14288 new_ire = ire_ctable_lookup(dst, 0, 0, 14289 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14290 ipif_refrele(ipif); 14291 14292 if (new_ire != NULL) { 14293 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14294 ire_refrele(ire); 14295 ire_refrele(new_ire); 14296 freemsg(mp); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14298 return (NULL); 14299 } 14300 /* 14301 * In the special case of multirouted broadcast 14302 * packets, we unconditionally need to "gateway" 14303 * them to the appropriate interface here. 14304 * In the normal case, this cannot happen, because 14305 * there is no broadcast IRE tagged with the 14306 * RTF_MULTIRT flag. 14307 */ 14308 if (new_ire->ire_flags & RTF_MULTIRT) { 14309 ire_refrele(new_ire); 14310 if (ire->ire_rfq != NULL) { 14311 q = ire->ire_rfq; 14312 *qp = q; 14313 } 14314 } else { 14315 ire_refrele(ire); 14316 ire = new_ire; 14317 } 14318 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14319 if (!ipst->ips_ip_g_forward_directed_bcast) { 14320 /* 14321 * Free the message if 14322 * ip_g_forward_directed_bcast is turned 14323 * off for non-local broadcast. 14324 */ 14325 ire_refrele(ire); 14326 freemsg(mp); 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14328 return (NULL); 14329 } 14330 } else { 14331 /* 14332 * This CGTP packet successfully passed the 14333 * CGTP filter, but the related CGTP 14334 * broadcast IRE has not been found, 14335 * meaning that the redundant ipif is 14336 * probably down. However, if we discarded 14337 * this packet, its duplicate would be 14338 * filtered out by the CGTP filter so none 14339 * of them would get through. So we keep 14340 * going with this one. 14341 */ 14342 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14343 if (ire->ire_rfq != NULL) { 14344 q = ire->ire_rfq; 14345 *qp = q; 14346 } 14347 } 14348 } 14349 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14350 /* 14351 * Verify that there are not more then one 14352 * IRE_BROADCAST with this broadcast address which 14353 * has ire_stq set. 14354 * TODO: simplify, loop over all IRE's 14355 */ 14356 ire_t *ire1; 14357 int num_stq = 0; 14358 mblk_t *mp1; 14359 14360 /* Find the first one with ire_stq set */ 14361 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14362 for (ire1 = ire; ire1 && 14363 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14364 ire1 = ire1->ire_next) 14365 ; 14366 if (ire1) { 14367 ire_refrele(ire); 14368 ire = ire1; 14369 IRE_REFHOLD(ire); 14370 } 14371 14372 /* Check if there are additional ones with stq set */ 14373 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14374 if (ire->ire_addr != ire1->ire_addr) 14375 break; 14376 if (ire1->ire_stq) { 14377 num_stq++; 14378 break; 14379 } 14380 } 14381 rw_exit(&ire->ire_bucket->irb_lock); 14382 if (num_stq == 1 && ire->ire_stq != NULL) { 14383 ip1dbg(("ip_rput_process_broadcast: directed " 14384 "broadcast to 0x%x\n", 14385 ntohl(ire->ire_addr))); 14386 mp1 = copymsg(mp); 14387 if (mp1) { 14388 switch (ipha->ipha_protocol) { 14389 case IPPROTO_UDP: 14390 ip_udp_input(q, mp1, ipha, ire, ill); 14391 break; 14392 default: 14393 ip_proto_input(q, mp1, ipha, ire, ill, 14394 B_FALSE); 14395 break; 14396 } 14397 } 14398 /* 14399 * Adjust ttl to 2 (1+1 - the forward engine 14400 * will decrement it by one. 14401 */ 14402 if (ip_csum_hdr(ipha)) { 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14404 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14405 freemsg(mp); 14406 ire_refrele(ire); 14407 return (NULL); 14408 } 14409 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14410 ipha->ipha_hdr_checksum = 0; 14411 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14412 ip_rput_process_forward(q, mp, ire, ipha, 14413 ill, ll_multicast); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14418 ntohl(ire->ire_addr))); 14419 } 14420 14421 14422 /* Restore any hardware checksum flags */ 14423 DB_CKSUMFLAGS(mp) = hcksumflags; 14424 return (ire); 14425 } 14426 14427 /* ARGSUSED */ 14428 static boolean_t 14429 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14430 int *ll_multicast, ipaddr_t *dstp) 14431 { 14432 ip_stack_t *ipst = ill->ill_ipst; 14433 14434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14435 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14436 ntohs(ipha->ipha_length)); 14437 14438 /* 14439 * Forward packets only if we have joined the allmulti 14440 * group on this interface. 14441 */ 14442 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14443 int retval; 14444 14445 /* 14446 * Clear the indication that this may have hardware 14447 * checksum as we are not using it. 14448 */ 14449 DB_CKSUMFLAGS(mp) = 0; 14450 retval = ip_mforward(ill, ipha, mp); 14451 /* ip_mforward updates mib variables if needed */ 14452 /* clear b_prev - used by ip_mroute_decap */ 14453 mp->b_prev = NULL; 14454 14455 switch (retval) { 14456 case 0: 14457 /* 14458 * pkt is okay and arrived on phyint. 14459 * 14460 * If we are running as a multicast router 14461 * we need to see all IGMP and/or PIM packets. 14462 */ 14463 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14464 (ipha->ipha_protocol == IPPROTO_PIM)) { 14465 goto done; 14466 } 14467 break; 14468 case -1: 14469 /* pkt is mal-formed, toss it */ 14470 goto drop_pkt; 14471 case 1: 14472 /* pkt is okay and arrived on a tunnel */ 14473 /* 14474 * If we are running a multicast router 14475 * we need to see all igmp packets. 14476 */ 14477 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14478 *dstp = INADDR_BROADCAST; 14479 *ll_multicast = 1; 14480 return (B_FALSE); 14481 } 14482 14483 goto drop_pkt; 14484 } 14485 } 14486 14487 ILM_WALKER_HOLD(ill); 14488 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14489 /* 14490 * This might just be caused by the fact that 14491 * multiple IP Multicast addresses map to the same 14492 * link layer multicast - no need to increment counter! 14493 */ 14494 ILM_WALKER_RELE(ill); 14495 freemsg(mp); 14496 return (B_TRUE); 14497 } 14498 ILM_WALKER_RELE(ill); 14499 done: 14500 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14501 /* 14502 * This assumes the we deliver to all streams for multicast 14503 * and broadcast packets. 14504 */ 14505 *dstp = INADDR_BROADCAST; 14506 *ll_multicast = 1; 14507 return (B_FALSE); 14508 drop_pkt: 14509 ip2dbg(("ip_rput: drop pkt\n")); 14510 freemsg(mp); 14511 return (B_TRUE); 14512 } 14513 14514 /* 14515 * This function is used to both return an indication of whether or not 14516 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14517 * and in doing so, determine whether or not it is broadcast vs multicast. 14518 * For it to be a broadcast packet, we must have the appropriate mblk_t 14519 * hanging off the ill_t. If this is either not present or doesn't match 14520 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14521 * to be multicast. Thus NICs that have no broadcast address (or no 14522 * capability for one, such as point to point links) cannot return as 14523 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14524 * the return values simplifies the current use of the return value of this 14525 * function, which is to pass through the multicast/broadcast characteristic 14526 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14527 * changing the return value to some other symbol demands the appropriate 14528 * "translation" when hpe_flags is set prior to calling hook_run() for 14529 * packet events. 14530 */ 14531 int 14532 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14533 { 14534 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14535 mblk_t *bmp; 14536 14537 if (ind->dl_group_address) { 14538 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14539 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14540 MBLKL(mb) && 14541 (bmp = ill->ill_bcast_mp) != NULL) { 14542 dl_unitdata_req_t *dlur; 14543 uint8_t *bphys_addr; 14544 14545 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14546 if (ill->ill_sap_length < 0) 14547 bphys_addr = (uchar_t *)dlur + 14548 dlur->dl_dest_addr_offset; 14549 else 14550 bphys_addr = (uchar_t *)dlur + 14551 dlur->dl_dest_addr_offset + 14552 ill->ill_sap_length; 14553 14554 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14555 bphys_addr, ind->dl_dest_addr_length) == 0) { 14556 return (HPE_BROADCAST); 14557 } 14558 return (HPE_MULTICAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (0); 14563 } 14564 14565 static boolean_t 14566 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14567 int *ll_multicast, mblk_t **mpp) 14568 { 14569 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14570 boolean_t must_copy = B_FALSE; 14571 struct iocblk *iocp; 14572 ipha_t *ipha; 14573 ip_stack_t *ipst = ill->ill_ipst; 14574 14575 #define rptr ((uchar_t *)ipha) 14576 14577 first_mp = *first_mpp; 14578 mp = *mpp; 14579 14580 ASSERT(first_mp == mp); 14581 14582 /* 14583 * if db_ref > 1 then copymsg and free original. Packet may be 14584 * changed and do not want other entity who has a reference to this 14585 * message to trip over the changes. This is a blind change because 14586 * trying to catch all places that might change packet is too 14587 * difficult (since it may be a module above this one) 14588 * 14589 * This corresponds to the non-fast path case. We walk down the full 14590 * chain in this case, and check the db_ref count of all the dblks, 14591 * and do a copymsg if required. It is possible that the db_ref counts 14592 * of the data blocks in the mblk chain can be different. 14593 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14594 * count of 1, followed by a M_DATA block with a ref count of 2, if 14595 * 'snoop' is running. 14596 */ 14597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14598 if (mp1->b_datap->db_ref > 1) { 14599 must_copy = B_TRUE; 14600 break; 14601 } 14602 } 14603 14604 if (must_copy) { 14605 mp1 = copymsg(mp); 14606 if (mp1 == NULL) { 14607 for (mp1 = mp; mp1 != NULL; 14608 mp1 = mp1->b_cont) { 14609 mp1->b_next = NULL; 14610 mp1->b_prev = NULL; 14611 } 14612 freemsg(mp); 14613 if (ill != NULL) { 14614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14615 } else { 14616 BUMP_MIB(&ipst->ips_ip_mib, 14617 ipIfStatsInDiscards); 14618 } 14619 return (B_TRUE); 14620 } 14621 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14622 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14623 /* Copy b_prev - used by ip_mroute_decap */ 14624 to_mp->b_prev = from_mp->b_prev; 14625 from_mp->b_prev = NULL; 14626 } 14627 *first_mpp = first_mp = mp1; 14628 freemsg(mp); 14629 mp = mp1; 14630 *mpp = mp1; 14631 } 14632 14633 ipha = (ipha_t *)mp->b_rptr; 14634 14635 /* 14636 * previous code has a case for M_DATA. 14637 * We want to check how that happens. 14638 */ 14639 ASSERT(first_mp->b_datap->db_type != M_DATA); 14640 switch (first_mp->b_datap->db_type) { 14641 case M_PROTO: 14642 case M_PCPROTO: 14643 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14644 DL_UNITDATA_IND) { 14645 /* Go handle anything other than data elsewhere. */ 14646 ip_rput_dlpi(q, mp); 14647 return (B_TRUE); 14648 } 14649 14650 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14651 /* Ditch the DLPI header. */ 14652 mp1 = mp->b_cont; 14653 ASSERT(first_mp == mp); 14654 *first_mpp = mp1; 14655 freeb(mp); 14656 *mpp = mp1; 14657 return (B_FALSE); 14658 case M_IOCACK: 14659 ip1dbg(("got iocack ")); 14660 iocp = (struct iocblk *)mp->b_rptr; 14661 switch (iocp->ioc_cmd) { 14662 case DL_IOC_HDR_INFO: 14663 ill = (ill_t *)q->q_ptr; 14664 ill_fastpath_ack(ill, mp); 14665 return (B_TRUE); 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* Go through qwriter_ip */ 14669 break; 14670 case SIOCGTUNPARAM: 14671 case OSIOCGTUNPARAM: 14672 ip_rput_other(NULL, q, mp, NULL); 14673 return (B_TRUE); 14674 default: 14675 putnext(q, mp); 14676 return (B_TRUE); 14677 } 14678 /* FALLTHRU */ 14679 case M_ERROR: 14680 case M_HANGUP: 14681 /* 14682 * Since this is on the ill stream we unconditionally 14683 * bump up the refcount 14684 */ 14685 ill_refhold(ill); 14686 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14687 return (B_TRUE); 14688 case M_CTL: 14689 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14690 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14691 IPHADA_M_CTL)) { 14692 /* 14693 * It's an IPsec accelerated packet. 14694 * Make sure that the ill from which we received the 14695 * packet has enabled IPsec hardware acceleration. 14696 */ 14697 if (!(ill->ill_capabilities & 14698 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14699 /* IPsec kstats: bean counter */ 14700 freemsg(mp); 14701 return (B_TRUE); 14702 } 14703 14704 /* 14705 * Make mp point to the mblk following the M_CTL, 14706 * then process according to type of mp. 14707 * After this processing, first_mp will point to 14708 * the data-attributes and mp to the pkt following 14709 * the M_CTL. 14710 */ 14711 mp = first_mp->b_cont; 14712 if (mp == NULL) { 14713 freemsg(first_mp); 14714 return (B_TRUE); 14715 } 14716 /* 14717 * A Hardware Accelerated packet can only be M_DATA 14718 * ESP or AH packet. 14719 */ 14720 if (mp->b_datap->db_type != M_DATA) { 14721 /* non-M_DATA IPsec accelerated packet */ 14722 IPSECHW_DEBUG(IPSECHW_PKT, 14723 ("non-M_DATA IPsec accelerated pkt\n")); 14724 freemsg(first_mp); 14725 return (B_TRUE); 14726 } 14727 ipha = (ipha_t *)mp->b_rptr; 14728 if (ipha->ipha_protocol != IPPROTO_AH && 14729 ipha->ipha_protocol != IPPROTO_ESP) { 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 *mpp = mp; 14736 return (B_FALSE); 14737 } 14738 putnext(q, mp); 14739 return (B_TRUE); 14740 case M_IOCNAK: 14741 ip1dbg(("got iocnak ")); 14742 iocp = (struct iocblk *)mp->b_rptr; 14743 switch (iocp->ioc_cmd) { 14744 case SIOCSTUNPARAM: 14745 case OSIOCSTUNPARAM: 14746 /* 14747 * Since this is on the ill stream we unconditionally 14748 * bump up the refcount 14749 */ 14750 ill_refhold(ill); 14751 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14752 return (B_TRUE); 14753 case DL_IOC_HDR_INFO: 14754 case SIOCGTUNPARAM: 14755 case OSIOCGTUNPARAM: 14756 ip_rput_other(NULL, q, mp, NULL); 14757 return (B_TRUE); 14758 default: 14759 break; 14760 } 14761 /* FALLTHRU */ 14762 default: 14763 putnext(q, mp); 14764 return (B_TRUE); 14765 } 14766 } 14767 14768 /* Read side put procedure. Packets coming from the wire arrive here. */ 14769 void 14770 ip_rput(queue_t *q, mblk_t *mp) 14771 { 14772 ill_t *ill; 14773 union DL_primitives *dl; 14774 14775 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14776 14777 ill = (ill_t *)q->q_ptr; 14778 14779 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14780 /* 14781 * If things are opening or closing, only accept high-priority 14782 * DLPI messages. (On open ill->ill_ipif has not yet been 14783 * created; on close, things hanging off the ill may have been 14784 * freed already.) 14785 */ 14786 dl = (union DL_primitives *)mp->b_rptr; 14787 if (DB_TYPE(mp) != M_PCPROTO || 14788 dl->dl_primitive == DL_UNITDATA_IND) { 14789 /* 14790 * SIOC[GS]TUNPARAM ioctls can come here. 14791 */ 14792 inet_freemsg(mp); 14793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14794 "ip_rput_end: q %p (%S)", q, "uninit"); 14795 return; 14796 } 14797 } 14798 14799 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14800 "ip_rput_end: q %p (%S)", q, "end"); 14801 14802 ip_input(ill, NULL, mp, NULL); 14803 } 14804 14805 static mblk_t * 14806 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14807 { 14808 mblk_t *mp1; 14809 boolean_t adjusted = B_FALSE; 14810 ip_stack_t *ipst = ill->ill_ipst; 14811 14812 IP_STAT(ipst, ip_db_ref); 14813 /* 14814 * The IP_RECVSLLA option depends on having the 14815 * link layer header. First check that: 14816 * a> the underlying device is of type ether, 14817 * since this option is currently supported only 14818 * over ethernet. 14819 * b> there is enough room to copy over the link 14820 * layer header. 14821 * 14822 * Once the checks are done, adjust rptr so that 14823 * the link layer header will be copied via 14824 * copymsg. Note that, IFT_ETHER may be returned 14825 * by some non-ethernet drivers but in this case 14826 * the second check will fail. 14827 */ 14828 if (ill->ill_type == IFT_ETHER && 14829 (mp->b_rptr - mp->b_datap->db_base) >= 14830 sizeof (struct ether_header)) { 14831 mp->b_rptr -= sizeof (struct ether_header); 14832 adjusted = B_TRUE; 14833 } 14834 mp1 = copymsg(mp); 14835 14836 if (mp1 == NULL) { 14837 mp->b_next = NULL; 14838 /* clear b_prev - used by ip_mroute_decap */ 14839 mp->b_prev = NULL; 14840 freemsg(mp); 14841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14842 return (NULL); 14843 } 14844 14845 if (adjusted) { 14846 /* 14847 * Copy is done. Restore the pointer in 14848 * the _new_ mblk 14849 */ 14850 mp1->b_rptr += sizeof (struct ether_header); 14851 } 14852 14853 /* Copy b_prev - used by ip_mroute_decap */ 14854 mp1->b_prev = mp->b_prev; 14855 mp->b_prev = NULL; 14856 14857 /* preserve the hardware checksum flags and data, if present */ 14858 if (DB_CKSUMFLAGS(mp) != 0) { 14859 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14860 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14861 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14862 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14863 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14864 } 14865 14866 freemsg(mp); 14867 return (mp1); 14868 } 14869 14870 /* 14871 * Direct read side procedure capable of dealing with chains. GLDv3 based 14872 * drivers call this function directly with mblk chains while STREAMS 14873 * read side procedure ip_rput() calls this for single packet with ip_ring 14874 * set to NULL to process one packet at a time. 14875 * 14876 * The ill will always be valid if this function is called directly from 14877 * the driver. 14878 * 14879 * If ip_input() is called from GLDv3: 14880 * 14881 * - This must be a non-VLAN IP stream. 14882 * - 'mp' is either an untagged or a special priority-tagged packet. 14883 * - Any VLAN tag that was in the MAC header has been stripped. 14884 * 14885 * If the IP header in packet is not 32-bit aligned, every message in the 14886 * chain will be aligned before further operations. This is required on SPARC 14887 * platform. 14888 */ 14889 /* ARGSUSED */ 14890 void 14891 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14892 struct mac_header_info_s *mhip) 14893 { 14894 ipaddr_t dst = NULL; 14895 ipaddr_t prev_dst; 14896 ire_t *ire = NULL; 14897 ipha_t *ipha; 14898 uint_t pkt_len; 14899 ssize_t len; 14900 uint_t opt_len; 14901 int ll_multicast; 14902 int cgtp_flt_pkt; 14903 queue_t *q = ill->ill_rq; 14904 squeue_t *curr_sqp = NULL; 14905 mblk_t *head = NULL; 14906 mblk_t *tail = NULL; 14907 mblk_t *first_mp; 14908 mblk_t *mp; 14909 mblk_t *dmp; 14910 int cnt = 0; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 14913 ASSERT(mp_chain != NULL); 14914 ASSERT(ill != NULL); 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14917 14918 #define rptr ((uchar_t *)ipha) 14919 14920 while (mp_chain != NULL) { 14921 first_mp = mp = mp_chain; 14922 mp_chain = mp_chain->b_next; 14923 mp->b_next = NULL; 14924 ll_multicast = 0; 14925 14926 /* 14927 * We do ire caching from one iteration to 14928 * another. In the event the packet chain contains 14929 * all packets from the same dst, this caching saves 14930 * an ire_cache_lookup for each of the succeeding 14931 * packets in a packet chain. 14932 */ 14933 prev_dst = dst; 14934 14935 /* 14936 * if db_ref > 1 then copymsg and free original. Packet 14937 * may be changed and we do not want the other entity 14938 * who has a reference to this message to trip over the 14939 * changes. This is a blind change because trying to 14940 * catch all places that might change the packet is too 14941 * difficult. 14942 * 14943 * This corresponds to the fast path case, where we have 14944 * a chain of M_DATA mblks. We check the db_ref count 14945 * of only the 1st data block in the mblk chain. There 14946 * doesn't seem to be a reason why a device driver would 14947 * send up data with varying db_ref counts in the mblk 14948 * chain. In any case the Fast path is a private 14949 * interface, and our drivers don't do such a thing. 14950 * Given the above assumption, there is no need to walk 14951 * down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 */ 14954 14955 if (DB_REF(mp) > 1) { 14956 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14957 continue; 14958 } 14959 14960 /* 14961 * Check and align the IP header. 14962 */ 14963 first_mp = mp; 14964 if (DB_TYPE(mp) == M_DATA) { 14965 dmp = mp; 14966 } else if (DB_TYPE(mp) == M_PROTO && 14967 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14968 dmp = mp->b_cont; 14969 } else { 14970 dmp = NULL; 14971 } 14972 if (dmp != NULL) { 14973 /* 14974 * IP header ptr not aligned? 14975 * OR IP header not complete in first mblk 14976 */ 14977 if (!OK_32PTR(dmp->b_rptr) || 14978 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14979 if (!ip_check_and_align_header(q, dmp, ipst)) 14980 continue; 14981 } 14982 } 14983 14984 /* 14985 * ip_input fast path 14986 */ 14987 14988 /* mblk type is not M_DATA */ 14989 if (DB_TYPE(mp) != M_DATA) { 14990 if (ip_rput_process_notdata(q, &first_mp, ill, 14991 &ll_multicast, &mp)) 14992 continue; 14993 14994 /* 14995 * The only way we can get here is if we had a 14996 * packet that was either a DL_UNITDATA_IND or 14997 * an M_CTL for an IPsec accelerated packet. 14998 * 14999 * In either case, the first_mp will point to 15000 * the leading M_PROTO or M_CTL. 15001 */ 15002 ASSERT(first_mp != NULL); 15003 } else if (mhip != NULL) { 15004 /* 15005 * ll_multicast is set here so that it is ready 15006 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15007 * manipulates ll_multicast in the same fashion when 15008 * called from ip_rput_process_notdata. 15009 */ 15010 switch (mhip->mhi_dsttype) { 15011 case MAC_ADDRTYPE_MULTICAST : 15012 ll_multicast = HPE_MULTICAST; 15013 break; 15014 case MAC_ADDRTYPE_BROADCAST : 15015 ll_multicast = HPE_BROADCAST; 15016 break; 15017 default : 15018 break; 15019 } 15020 } 15021 15022 /* Make sure its an M_DATA and that its aligned */ 15023 ASSERT(DB_TYPE(mp) == M_DATA); 15024 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15025 15026 ipha = (ipha_t *)mp->b_rptr; 15027 len = mp->b_wptr - rptr; 15028 pkt_len = ntohs(ipha->ipha_length); 15029 15030 /* 15031 * We must count all incoming packets, even if they end 15032 * up being dropped later on. 15033 */ 15034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15035 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15036 15037 /* multiple mblk or too short */ 15038 len -= pkt_len; 15039 if (len != 0) { 15040 /* 15041 * Make sure we have data length consistent 15042 * with the IP header. 15043 */ 15044 if (mp->b_cont == NULL) { 15045 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15046 BUMP_MIB(ill->ill_ip_mib, 15047 ipIfStatsInHdrErrors); 15048 ip2dbg(("ip_input: drop pkt\n")); 15049 freemsg(mp); 15050 continue; 15051 } 15052 mp->b_wptr = rptr + pkt_len; 15053 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15054 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15055 BUMP_MIB(ill->ill_ip_mib, 15056 ipIfStatsInHdrErrors); 15057 ip2dbg(("ip_input: drop pkt\n")); 15058 freemsg(mp); 15059 continue; 15060 } 15061 (void) adjmsg(mp, -len); 15062 IP_STAT(ipst, ip_multimblk3); 15063 } 15064 } 15065 15066 /* Obtain the dst of the current packet */ 15067 dst = ipha->ipha_dst; 15068 15069 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15070 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15071 ipha, ip6_t *, NULL, int, 0); 15072 15073 /* 15074 * The following test for loopback is faster than 15075 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15076 * operations. 15077 * Note that these addresses are always in network byte order 15078 */ 15079 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15080 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15082 freemsg(mp); 15083 continue; 15084 } 15085 15086 /* 15087 * The event for packets being received from a 'physical' 15088 * interface is placed after validation of the source and/or 15089 * destination address as being local so that packets can be 15090 * redirected to loopback addresses using ipnat. 15091 */ 15092 DTRACE_PROBE4(ip4__physical__in__start, 15093 ill_t *, ill, ill_t *, NULL, 15094 ipha_t *, ipha, mblk_t *, first_mp); 15095 15096 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15097 ipst->ips_ipv4firewall_physical_in, 15098 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15099 15100 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15101 15102 if (first_mp == NULL) { 15103 continue; 15104 } 15105 dst = ipha->ipha_dst; 15106 15107 /* 15108 * Attach any necessary label information to 15109 * this packet 15110 */ 15111 if (is_system_labeled() && 15112 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15114 freemsg(mp); 15115 continue; 15116 } 15117 15118 /* 15119 * Reuse the cached ire only if the ipha_dst of the previous 15120 * packet is the same as the current packet AND it is not 15121 * INADDR_ANY. 15122 */ 15123 if (!(dst == prev_dst && dst != INADDR_ANY) && 15124 (ire != NULL)) { 15125 ire_refrele(ire); 15126 ire = NULL; 15127 } 15128 opt_len = ipha->ipha_version_and_hdr_length - 15129 IP_SIMPLE_HDR_VERSION; 15130 15131 /* 15132 * Check to see if we can take the fastpath. 15133 * That is possible if the following conditions are met 15134 * o Tsol disabled 15135 * o CGTP disabled 15136 * o ipp_action_count is 0 15137 * o no options in the packet 15138 * o not a RSVP packet 15139 * o not a multicast packet 15140 * o ill not in IP_DHCPINIT_IF mode 15141 */ 15142 if (!is_system_labeled() && 15143 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15144 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15145 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15146 if (ire == NULL) 15147 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15148 ipst); 15149 15150 /* incoming packet is for forwarding */ 15151 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15152 ire = ip_fast_forward(ire, dst, ill, mp); 15153 continue; 15154 } 15155 /* incoming packet is for local consumption */ 15156 if (ire->ire_type & IRE_LOCAL) 15157 goto local; 15158 } 15159 15160 /* 15161 * Disable ire caching for anything more complex 15162 * than the simple fast path case we checked for above. 15163 */ 15164 if (ire != NULL) { 15165 ire_refrele(ire); 15166 ire = NULL; 15167 } 15168 15169 /* 15170 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15171 * server to unicast DHCP packets to a DHCP client using the 15172 * IP address it is offering to the client. This can be 15173 * disabled through the "broadcast bit", but not all DHCP 15174 * servers honor that bit. Therefore, to interoperate with as 15175 * many DHCP servers as possible, the DHCP client allows the 15176 * server to unicast, but we treat those packets as broadcast 15177 * here. Note that we don't rewrite the packet itself since 15178 * (a) that would mess up the checksums and (b) the DHCP 15179 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15180 * hand it the packet regardless. 15181 */ 15182 if (ill->ill_dhcpinit != 0 && 15183 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15184 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15185 udpha_t *udpha; 15186 15187 /* 15188 * Reload ipha since pullupmsg() can change b_rptr. 15189 */ 15190 ipha = (ipha_t *)mp->b_rptr; 15191 udpha = (udpha_t *)&ipha[1]; 15192 15193 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15194 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15195 mblk_t *, mp); 15196 dst = INADDR_BROADCAST; 15197 } 15198 } 15199 15200 /* Full-blown slow path */ 15201 if (opt_len != 0) { 15202 if (len != 0) 15203 IP_STAT(ipst, ip_multimblk4); 15204 else 15205 IP_STAT(ipst, ip_ipoptions); 15206 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15207 &dst, ipst)) 15208 continue; 15209 } 15210 15211 /* 15212 * Invoke the CGTP (multirouting) filtering module to process 15213 * the incoming packet. Packets identified as duplicates 15214 * must be discarded. Filtering is active only if the 15215 * the ip_cgtp_filter ndd variable is non-zero. 15216 */ 15217 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15218 if (ipst->ips_ip_cgtp_filter && 15219 ipst->ips_ip_cgtp_filter_ops != NULL) { 15220 netstackid_t stackid; 15221 15222 stackid = ipst->ips_netstack->netstack_stackid; 15223 cgtp_flt_pkt = 15224 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15225 ill->ill_phyint->phyint_ifindex, mp); 15226 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15227 freemsg(first_mp); 15228 continue; 15229 } 15230 } 15231 15232 /* 15233 * If rsvpd is running, let RSVP daemon handle its processing 15234 * and forwarding of RSVP multicast/unicast packets. 15235 * If rsvpd is not running but mrouted is running, RSVP 15236 * multicast packets are forwarded as multicast traffic 15237 * and RSVP unicast packets are forwarded by unicast router. 15238 * If neither rsvpd nor mrouted is running, RSVP multicast 15239 * packets are not forwarded, but the unicast packets are 15240 * forwarded like unicast traffic. 15241 */ 15242 if (ipha->ipha_protocol == IPPROTO_RSVP && 15243 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15244 NULL) { 15245 /* RSVP packet and rsvpd running. Treat as ours */ 15246 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15247 /* 15248 * This assumes that we deliver to all streams for 15249 * multicast and broadcast packets. 15250 * We have to force ll_multicast to 1 to handle the 15251 * M_DATA messages passed in from ip_mroute_decap. 15252 */ 15253 dst = INADDR_BROADCAST; 15254 ll_multicast = 1; 15255 } else if (CLASSD(dst)) { 15256 /* packet is multicast */ 15257 mp->b_next = NULL; 15258 if (ip_rput_process_multicast(q, mp, ill, ipha, 15259 &ll_multicast, &dst)) 15260 continue; 15261 } 15262 15263 if (ire == NULL) { 15264 ire = ire_cache_lookup(dst, ALL_ZONES, 15265 MBLK_GETLABEL(mp), ipst); 15266 } 15267 15268 if (ire != NULL && ire->ire_stq != NULL && 15269 ire->ire_zoneid != GLOBAL_ZONEID && 15270 ire->ire_zoneid != ALL_ZONES) { 15271 /* 15272 * Should only use IREs that are visible from the 15273 * global zone for forwarding. 15274 */ 15275 ire_refrele(ire); 15276 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15277 MBLK_GETLABEL(mp), ipst); 15278 } 15279 15280 if (ire == NULL) { 15281 /* 15282 * No IRE for this destination, so it can't be for us. 15283 * Unless we are forwarding, drop the packet. 15284 * We have to let source routed packets through 15285 * since we don't yet know if they are 'ping -l' 15286 * packets i.e. if they will go out over the 15287 * same interface as they came in on. 15288 */ 15289 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15290 if (ire == NULL) 15291 continue; 15292 } 15293 15294 /* 15295 * Broadcast IRE may indicate either broadcast or 15296 * multicast packet 15297 */ 15298 if (ire->ire_type == IRE_BROADCAST) { 15299 /* 15300 * Skip broadcast checks if packet is UDP multicast; 15301 * we'd rather not enter ip_rput_process_broadcast() 15302 * unless the packet is broadcast for real, since 15303 * that routine is a no-op for multicast. 15304 */ 15305 if (ipha->ipha_protocol != IPPROTO_UDP || 15306 !CLASSD(ipha->ipha_dst)) { 15307 ire = ip_rput_process_broadcast(&q, mp, 15308 ire, ipha, ill, dst, cgtp_flt_pkt, 15309 ll_multicast); 15310 if (ire == NULL) 15311 continue; 15312 } 15313 } else if (ire->ire_stq != NULL) { 15314 /* fowarding? */ 15315 ip_rput_process_forward(q, mp, ire, ipha, ill, 15316 ll_multicast); 15317 /* ip_rput_process_forward consumed the packet */ 15318 continue; 15319 } 15320 15321 local: 15322 /* 15323 * If the queue in the ire is different to the ingress queue 15324 * then we need to check to see if we can accept the packet. 15325 * Note that for multicast packets and broadcast packets sent 15326 * to a broadcast address which is shared between multiple 15327 * interfaces we should not do this since we just got a random 15328 * broadcast ire. 15329 */ 15330 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15331 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15332 ill)) == NULL) { 15333 /* Drop packet */ 15334 BUMP_MIB(ill->ill_ip_mib, 15335 ipIfStatsForwProhibits); 15336 freemsg(mp); 15337 continue; 15338 } 15339 if (ire->ire_rfq != NULL) 15340 q = ire->ire_rfq; 15341 } 15342 15343 switch (ipha->ipha_protocol) { 15344 case IPPROTO_TCP: 15345 ASSERT(first_mp == mp); 15346 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15347 mp, 0, q, ip_ring)) != NULL) { 15348 if (curr_sqp == NULL) { 15349 curr_sqp = GET_SQUEUE(mp); 15350 ASSERT(cnt == 0); 15351 cnt++; 15352 head = tail = mp; 15353 } else if (curr_sqp == GET_SQUEUE(mp)) { 15354 ASSERT(tail != NULL); 15355 cnt++; 15356 tail->b_next = mp; 15357 tail = mp; 15358 } else { 15359 /* 15360 * A different squeue. Send the 15361 * chain for the previous squeue on 15362 * its way. This shouldn't happen 15363 * often unless interrupt binding 15364 * changes. 15365 */ 15366 IP_STAT(ipst, ip_input_multi_squeue); 15367 squeue_enter_chain(curr_sqp, head, 15368 tail, cnt, SQTAG_IP_INPUT); 15369 curr_sqp = GET_SQUEUE(mp); 15370 head = mp; 15371 tail = mp; 15372 cnt = 1; 15373 } 15374 } 15375 continue; 15376 case IPPROTO_UDP: 15377 ASSERT(first_mp == mp); 15378 ip_udp_input(q, mp, ipha, ire, ill); 15379 continue; 15380 case IPPROTO_SCTP: 15381 ASSERT(first_mp == mp); 15382 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15383 q, dst); 15384 /* ire has been released by ip_sctp_input */ 15385 ire = NULL; 15386 continue; 15387 default: 15388 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15389 continue; 15390 } 15391 } 15392 15393 if (ire != NULL) 15394 ire_refrele(ire); 15395 15396 if (head != NULL) 15397 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15398 15399 /* 15400 * This code is there just to make netperf/ttcp look good. 15401 * 15402 * Its possible that after being in polling mode (and having cleared 15403 * the backlog), squeues have turned the interrupt frequency higher 15404 * to improve latency at the expense of more CPU utilization (less 15405 * packets per interrupts or more number of interrupts). Workloads 15406 * like ttcp/netperf do manage to tickle polling once in a while 15407 * but for the remaining time, stay in higher interrupt mode since 15408 * their packet arrival rate is pretty uniform and this shows up 15409 * as higher CPU utilization. Since people care about CPU utilization 15410 * while running netperf/ttcp, turn the interrupt frequency back to 15411 * normal/default if polling has not been used in ip_poll_normal_ticks. 15412 */ 15413 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15414 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15415 ip_ring->rr_poll_state &= ~ILL_POLLING; 15416 ip_ring->rr_blank(ip_ring->rr_handle, 15417 ip_ring->rr_normal_blank_time, 15418 ip_ring->rr_normal_pkt_cnt); 15419 } 15420 } 15421 15422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15423 "ip_input_end: q %p (%S)", q, "end"); 15424 #undef rptr 15425 } 15426 15427 static void 15428 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15429 t_uscalar_t err) 15430 { 15431 if (dl_err == DL_SYSERR) { 15432 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15433 "%s: %s failed: DL_SYSERR (errno %u)\n", 15434 ill->ill_name, dl_primstr(prim), err); 15435 return; 15436 } 15437 15438 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15439 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15440 dl_errstr(dl_err)); 15441 } 15442 15443 /* 15444 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15445 * than DL_UNITDATA_IND messages. If we need to process this message 15446 * exclusively, we call qwriter_ip, in which case we also need to call 15447 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15448 */ 15449 void 15450 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15451 { 15452 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15453 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15454 ill_t *ill = (ill_t *)q->q_ptr; 15455 boolean_t pending; 15456 15457 ip1dbg(("ip_rput_dlpi")); 15458 if (dloa->dl_primitive == DL_ERROR_ACK) { 15459 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15460 "%s (0x%x), unix %u\n", ill->ill_name, 15461 dl_primstr(dlea->dl_error_primitive), 15462 dlea->dl_error_primitive, 15463 dl_errstr(dlea->dl_errno), 15464 dlea->dl_errno, 15465 dlea->dl_unix_errno)); 15466 } 15467 15468 /* 15469 * If we received an ACK but didn't send a request for it, then it 15470 * can't be part of any pending operation; discard up-front. 15471 */ 15472 switch (dloa->dl_primitive) { 15473 case DL_NOTIFY_IND: 15474 pending = B_TRUE; 15475 break; 15476 case DL_ERROR_ACK: 15477 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15478 break; 15479 case DL_OK_ACK: 15480 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15481 break; 15482 case DL_INFO_ACK: 15483 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15484 break; 15485 case DL_BIND_ACK: 15486 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15487 break; 15488 case DL_PHYS_ADDR_ACK: 15489 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15490 break; 15491 case DL_NOTIFY_ACK: 15492 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15493 break; 15494 case DL_CONTROL_ACK: 15495 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15496 break; 15497 case DL_CAPABILITY_ACK: 15498 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15499 break; 15500 default: 15501 /* Not a DLPI message we support or were expecting */ 15502 freemsg(mp); 15503 return; 15504 } 15505 15506 if (!pending) { 15507 freemsg(mp); 15508 return; 15509 } 15510 15511 switch (dloa->dl_primitive) { 15512 case DL_ERROR_ACK: 15513 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15514 mutex_enter(&ill->ill_lock); 15515 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15516 cv_signal(&ill->ill_cv); 15517 mutex_exit(&ill->ill_lock); 15518 } 15519 break; 15520 15521 case DL_OK_ACK: 15522 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15523 dl_primstr((int)dloa->dl_correct_primitive))); 15524 switch (dloa->dl_correct_primitive) { 15525 case DL_UNBIND_REQ: 15526 mutex_enter(&ill->ill_lock); 15527 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15528 cv_signal(&ill->ill_cv); 15529 mutex_exit(&ill->ill_lock); 15530 break; 15531 15532 case DL_ENABMULTI_REQ: 15533 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15534 ill->ill_dlpi_multicast_state = IDS_OK; 15535 break; 15536 } 15537 break; 15538 default: 15539 break; 15540 } 15541 15542 /* 15543 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15544 * need to become writer to continue to process it. Because an 15545 * exclusive operation doesn't complete until replies to all queued 15546 * DLPI messages have been received, we know we're in the middle of an 15547 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15548 * 15549 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15550 * Since this is on the ill stream we unconditionally bump up the 15551 * refcount without doing ILL_CAN_LOOKUP(). 15552 */ 15553 ill_refhold(ill); 15554 if (dloa->dl_primitive == DL_NOTIFY_IND) 15555 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15556 else 15557 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15558 } 15559 15560 /* 15561 * Handling of DLPI messages that require exclusive access to the ipsq. 15562 * 15563 * Need to do ill_pending_mp_release on ioctl completion, which could 15564 * happen here. (along with mi_copy_done) 15565 */ 15566 /* ARGSUSED */ 15567 static void 15568 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15569 { 15570 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15571 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15572 int err = 0; 15573 ill_t *ill; 15574 ipif_t *ipif = NULL; 15575 mblk_t *mp1 = NULL; 15576 conn_t *connp = NULL; 15577 t_uscalar_t paddrreq; 15578 mblk_t *mp_hw; 15579 boolean_t success; 15580 boolean_t ioctl_aborted = B_FALSE; 15581 boolean_t log = B_TRUE; 15582 ip_stack_t *ipst; 15583 15584 ip1dbg(("ip_rput_dlpi_writer ..")); 15585 ill = (ill_t *)q->q_ptr; 15586 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15587 15588 ASSERT(IAM_WRITER_ILL(ill)); 15589 15590 ipst = ill->ill_ipst; 15591 15592 /* 15593 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15594 * both are null or non-null. However we can assert that only 15595 * after grabbing the ipsq_lock. So we don't make any assertion 15596 * here and in other places in the code. 15597 */ 15598 ipif = ipsq->ipsq_pending_ipif; 15599 /* 15600 * The current ioctl could have been aborted by the user and a new 15601 * ioctl to bring up another ill could have started. We could still 15602 * get a response from the driver later. 15603 */ 15604 if (ipif != NULL && ipif->ipif_ill != ill) 15605 ioctl_aborted = B_TRUE; 15606 15607 switch (dloa->dl_primitive) { 15608 case DL_ERROR_ACK: 15609 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15610 dl_primstr(dlea->dl_error_primitive))); 15611 15612 switch (dlea->dl_error_primitive) { 15613 case DL_PROMISCON_REQ: 15614 case DL_PROMISCOFF_REQ: 15615 case DL_DISABMULTI_REQ: 15616 case DL_UNBIND_REQ: 15617 case DL_ATTACH_REQ: 15618 case DL_INFO_REQ: 15619 ill_dlpi_done(ill, dlea->dl_error_primitive); 15620 break; 15621 case DL_NOTIFY_REQ: 15622 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15623 log = B_FALSE; 15624 break; 15625 case DL_PHYS_ADDR_REQ: 15626 /* 15627 * For IPv6 only, there are two additional 15628 * phys_addr_req's sent to the driver to get the 15629 * IPv6 token and lla. This allows IP to acquire 15630 * the hardware address format for a given interface 15631 * without having built in knowledge of the hardware 15632 * address. ill_phys_addr_pend keeps track of the last 15633 * DL_PAR sent so we know which response we are 15634 * dealing with. ill_dlpi_done will update 15635 * ill_phys_addr_pend when it sends the next req. 15636 * We don't complete the IOCTL until all three DL_PARs 15637 * have been attempted, so set *_len to 0 and break. 15638 */ 15639 paddrreq = ill->ill_phys_addr_pend; 15640 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15641 if (paddrreq == DL_IPV6_TOKEN) { 15642 ill->ill_token_length = 0; 15643 log = B_FALSE; 15644 break; 15645 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15646 ill->ill_nd_lla_len = 0; 15647 log = B_FALSE; 15648 break; 15649 } 15650 /* 15651 * Something went wrong with the DL_PHYS_ADDR_REQ. 15652 * We presumably have an IOCTL hanging out waiting 15653 * for completion. Find it and complete the IOCTL 15654 * with the error noted. 15655 * However, ill_dl_phys was called on an ill queue 15656 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15657 * set. But the ioctl is known to be pending on ill_wq. 15658 */ 15659 if (!ill->ill_ifname_pending) 15660 break; 15661 ill->ill_ifname_pending = 0; 15662 if (!ioctl_aborted) 15663 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15664 if (mp1 != NULL) { 15665 /* 15666 * This operation (SIOCSLIFNAME) must have 15667 * happened on the ill. Assert there is no conn 15668 */ 15669 ASSERT(connp == NULL); 15670 q = ill->ill_wq; 15671 } 15672 break; 15673 case DL_BIND_REQ: 15674 ill_dlpi_done(ill, DL_BIND_REQ); 15675 if (ill->ill_ifname_pending) 15676 break; 15677 /* 15678 * Something went wrong with the bind. We presumably 15679 * have an IOCTL hanging out waiting for completion. 15680 * Find it, take down the interface that was coming 15681 * up, and complete the IOCTL with the error noted. 15682 */ 15683 if (!ioctl_aborted) 15684 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15685 if (mp1 != NULL) { 15686 /* 15687 * This operation (SIOCSLIFFLAGS) must have 15688 * happened from a conn. 15689 */ 15690 ASSERT(connp != NULL); 15691 q = CONNP_TO_WQ(connp); 15692 if (ill->ill_move_in_progress) { 15693 ILL_CLEAR_MOVE(ill); 15694 } 15695 (void) ipif_down(ipif, NULL, NULL); 15696 /* error is set below the switch */ 15697 } 15698 break; 15699 case DL_ENABMULTI_REQ: 15700 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15701 15702 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15703 ill->ill_dlpi_multicast_state = IDS_FAILED; 15704 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15705 ipif_t *ipif; 15706 15707 printf("ip: joining multicasts failed (%d)" 15708 " on %s - will use link layer " 15709 "broadcasts for multicast\n", 15710 dlea->dl_errno, ill->ill_name); 15711 15712 /* 15713 * Set up the multicast mapping alone. 15714 * writer, so ok to access ill->ill_ipif 15715 * without any lock. 15716 */ 15717 ipif = ill->ill_ipif; 15718 mutex_enter(&ill->ill_phyint->phyint_lock); 15719 ill->ill_phyint->phyint_flags |= 15720 PHYI_MULTI_BCAST; 15721 mutex_exit(&ill->ill_phyint->phyint_lock); 15722 15723 if (!ill->ill_isv6) { 15724 (void) ipif_arp_setup_multicast(ipif, 15725 NULL); 15726 } else { 15727 (void) ipif_ndp_setup_multicast(ipif, 15728 NULL); 15729 } 15730 } 15731 freemsg(mp); /* Don't want to pass this up */ 15732 return; 15733 15734 case DL_CAPABILITY_REQ: 15735 case DL_CONTROL_REQ: 15736 ill_dlpi_done(ill, dlea->dl_error_primitive); 15737 ill->ill_dlpi_capab_state = IDS_FAILED; 15738 freemsg(mp); 15739 return; 15740 } 15741 /* 15742 * Note the error for IOCTL completion (mp1 is set when 15743 * ready to complete ioctl). If ill_ifname_pending_err is 15744 * set, an error occured during plumbing (ill_ifname_pending), 15745 * so we want to report that error. 15746 * 15747 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15748 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15749 * expected to get errack'd if the driver doesn't support 15750 * these flags (e.g. ethernet). log will be set to B_FALSE 15751 * if these error conditions are encountered. 15752 */ 15753 if (mp1 != NULL) { 15754 if (ill->ill_ifname_pending_err != 0) { 15755 err = ill->ill_ifname_pending_err; 15756 ill->ill_ifname_pending_err = 0; 15757 } else { 15758 err = dlea->dl_unix_errno ? 15759 dlea->dl_unix_errno : ENXIO; 15760 } 15761 /* 15762 * If we're plumbing an interface and an error hasn't already 15763 * been saved, set ill_ifname_pending_err to the error passed 15764 * up. Ignore the error if log is B_FALSE (see comment above). 15765 */ 15766 } else if (log && ill->ill_ifname_pending && 15767 ill->ill_ifname_pending_err == 0) { 15768 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15769 dlea->dl_unix_errno : ENXIO; 15770 } 15771 15772 if (log) 15773 ip_dlpi_error(ill, dlea->dl_error_primitive, 15774 dlea->dl_errno, dlea->dl_unix_errno); 15775 break; 15776 case DL_CAPABILITY_ACK: 15777 /* Call a routine to handle this one. */ 15778 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15779 ill_capability_ack(ill, mp); 15780 15781 /* 15782 * If the ack is due to renegotiation, we will need to send 15783 * a new CAPABILITY_REQ to start the renegotiation. 15784 */ 15785 if (ill->ill_capab_reneg) { 15786 ill->ill_capab_reneg = B_FALSE; 15787 ill_capability_probe(ill); 15788 } 15789 break; 15790 case DL_CONTROL_ACK: 15791 /* We treat all of these as "fire and forget" */ 15792 ill_dlpi_done(ill, DL_CONTROL_REQ); 15793 break; 15794 case DL_INFO_ACK: 15795 /* Call a routine to handle this one. */ 15796 ill_dlpi_done(ill, DL_INFO_REQ); 15797 ip_ll_subnet_defaults(ill, mp); 15798 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15799 return; 15800 case DL_BIND_ACK: 15801 /* 15802 * We should have an IOCTL waiting on this unless 15803 * sent by ill_dl_phys, in which case just return 15804 */ 15805 ill_dlpi_done(ill, DL_BIND_REQ); 15806 if (ill->ill_ifname_pending) 15807 break; 15808 15809 if (!ioctl_aborted) 15810 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15811 if (mp1 == NULL) 15812 break; 15813 /* 15814 * Because mp1 was added by ill_dl_up(), and it always 15815 * passes a valid connp, connp must be valid here. 15816 */ 15817 ASSERT(connp != NULL); 15818 q = CONNP_TO_WQ(connp); 15819 15820 /* 15821 * We are exclusive. So nothing can change even after 15822 * we get the pending mp. If need be we can put it back 15823 * and restart, as in calling ipif_arp_up() below. 15824 */ 15825 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15826 15827 mutex_enter(&ill->ill_lock); 15828 ill->ill_dl_up = 1; 15829 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15830 mutex_exit(&ill->ill_lock); 15831 15832 /* 15833 * Now bring up the resolver; when that is complete, we'll 15834 * create IREs. Note that we intentionally mirror what 15835 * ipif_up() would have done, because we got here by way of 15836 * ill_dl_up(), which stopped ipif_up()'s processing. 15837 */ 15838 if (ill->ill_isv6) { 15839 /* 15840 * v6 interfaces. 15841 * Unlike ARP which has to do another bind 15842 * and attach, once we get here we are 15843 * done with NDP. Except in the case of 15844 * ILLF_XRESOLV, in which case we send an 15845 * AR_INTERFACE_UP to the external resolver. 15846 * If all goes well, the ioctl will complete 15847 * in ip_rput(). If there's an error, we 15848 * complete it here. 15849 */ 15850 if ((err = ipif_ndp_up(ipif)) == 0) { 15851 if (ill->ill_flags & ILLF_XRESOLV) { 15852 mutex_enter(&connp->conn_lock); 15853 mutex_enter(&ill->ill_lock); 15854 success = ipsq_pending_mp_add( 15855 connp, ipif, q, mp1, 0); 15856 mutex_exit(&ill->ill_lock); 15857 mutex_exit(&connp->conn_lock); 15858 if (success) { 15859 err = ipif_resolver_up(ipif, 15860 Res_act_initial); 15861 if (err == EINPROGRESS) { 15862 freemsg(mp); 15863 return; 15864 } 15865 ASSERT(err != 0); 15866 mp1 = ipsq_pending_mp_get(ipsq, 15867 &connp); 15868 ASSERT(mp1 != NULL); 15869 } else { 15870 /* conn has started closing */ 15871 err = EINTR; 15872 } 15873 } else { /* Non XRESOLV interface */ 15874 (void) ipif_resolver_up(ipif, 15875 Res_act_initial); 15876 err = ipif_up_done_v6(ipif); 15877 } 15878 } 15879 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15880 /* 15881 * ARP and other v4 external resolvers. 15882 * Leave the pending mblk intact so that 15883 * the ioctl completes in ip_rput(). 15884 */ 15885 mutex_enter(&connp->conn_lock); 15886 mutex_enter(&ill->ill_lock); 15887 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15888 mutex_exit(&ill->ill_lock); 15889 mutex_exit(&connp->conn_lock); 15890 if (success) { 15891 err = ipif_resolver_up(ipif, Res_act_initial); 15892 if (err == EINPROGRESS) { 15893 freemsg(mp); 15894 return; 15895 } 15896 ASSERT(err != 0); 15897 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15898 } else { 15899 /* The conn has started closing */ 15900 err = EINTR; 15901 } 15902 } else { 15903 /* 15904 * This one is complete. Reply to pending ioctl. 15905 */ 15906 (void) ipif_resolver_up(ipif, Res_act_initial); 15907 err = ipif_up_done(ipif); 15908 } 15909 15910 if ((err == 0) && (ill->ill_up_ipifs)) { 15911 err = ill_up_ipifs(ill, q, mp1); 15912 if (err == EINPROGRESS) { 15913 freemsg(mp); 15914 return; 15915 } 15916 } 15917 15918 if (ill->ill_up_ipifs) { 15919 ill_group_cleanup(ill); 15920 } 15921 15922 break; 15923 case DL_NOTIFY_IND: { 15924 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15925 ire_t *ire; 15926 boolean_t need_ire_walk_v4 = B_FALSE; 15927 boolean_t need_ire_walk_v6 = B_FALSE; 15928 15929 switch (notify->dl_notification) { 15930 case DL_NOTE_PHYS_ADDR: 15931 err = ill_set_phys_addr(ill, mp); 15932 break; 15933 15934 case DL_NOTE_FASTPATH_FLUSH: 15935 ill_fastpath_flush(ill); 15936 break; 15937 15938 case DL_NOTE_SDU_SIZE: 15939 /* 15940 * Change the MTU size of the interface, of all 15941 * attached ipif's, and of all relevant ire's. The 15942 * new value's a uint32_t at notify->dl_data. 15943 * Mtu change Vs. new ire creation - protocol below. 15944 * 15945 * a Mark the ipif as IPIF_CHANGING. 15946 * b Set the new mtu in the ipif. 15947 * c Change the ire_max_frag on all affected ires 15948 * d Unmark the IPIF_CHANGING 15949 * 15950 * To see how the protocol works, assume an interface 15951 * route is also being added simultaneously by 15952 * ip_rt_add and let 'ipif' be the ipif referenced by 15953 * the ire. If the ire is created before step a, 15954 * it will be cleaned up by step c. If the ire is 15955 * created after step d, it will see the new value of 15956 * ipif_mtu. Any attempt to create the ire between 15957 * steps a to d will fail because of the IPIF_CHANGING 15958 * flag. Note that ire_create() is passed a pointer to 15959 * the ipif_mtu, and not the value. During ire_add 15960 * under the bucket lock, the ire_max_frag of the 15961 * new ire being created is set from the ipif/ire from 15962 * which it is being derived. 15963 */ 15964 mutex_enter(&ill->ill_lock); 15965 ill->ill_max_frag = (uint_t)notify->dl_data; 15966 15967 /* 15968 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15969 * leave it alone 15970 */ 15971 if (ill->ill_mtu_userspecified) { 15972 mutex_exit(&ill->ill_lock); 15973 break; 15974 } 15975 ill->ill_max_mtu = ill->ill_max_frag; 15976 if (ill->ill_isv6) { 15977 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15978 ill->ill_max_mtu = IPV6_MIN_MTU; 15979 } else { 15980 if (ill->ill_max_mtu < IP_MIN_MTU) 15981 ill->ill_max_mtu = IP_MIN_MTU; 15982 } 15983 for (ipif = ill->ill_ipif; ipif != NULL; 15984 ipif = ipif->ipif_next) { 15985 /* 15986 * Don't override the mtu if the user 15987 * has explicitly set it. 15988 */ 15989 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15990 continue; 15991 ipif->ipif_mtu = (uint_t)notify->dl_data; 15992 if (ipif->ipif_isv6) 15993 ire = ipif_to_ire_v6(ipif); 15994 else 15995 ire = ipif_to_ire(ipif); 15996 if (ire != NULL) { 15997 ire->ire_max_frag = ipif->ipif_mtu; 15998 ire_refrele(ire); 15999 } 16000 if (ipif->ipif_flags & IPIF_UP) { 16001 if (ill->ill_isv6) 16002 need_ire_walk_v6 = B_TRUE; 16003 else 16004 need_ire_walk_v4 = B_TRUE; 16005 } 16006 } 16007 mutex_exit(&ill->ill_lock); 16008 if (need_ire_walk_v4) 16009 ire_walk_v4(ill_mtu_change, (char *)ill, 16010 ALL_ZONES, ipst); 16011 if (need_ire_walk_v6) 16012 ire_walk_v6(ill_mtu_change, (char *)ill, 16013 ALL_ZONES, ipst); 16014 break; 16015 case DL_NOTE_LINK_UP: 16016 case DL_NOTE_LINK_DOWN: { 16017 /* 16018 * We are writer. ill / phyint / ipsq assocs stable. 16019 * The RUNNING flag reflects the state of the link. 16020 */ 16021 phyint_t *phyint = ill->ill_phyint; 16022 uint64_t new_phyint_flags; 16023 boolean_t changed = B_FALSE; 16024 boolean_t went_up; 16025 16026 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16027 mutex_enter(&phyint->phyint_lock); 16028 new_phyint_flags = went_up ? 16029 phyint->phyint_flags | PHYI_RUNNING : 16030 phyint->phyint_flags & ~PHYI_RUNNING; 16031 if (new_phyint_flags != phyint->phyint_flags) { 16032 phyint->phyint_flags = new_phyint_flags; 16033 changed = B_TRUE; 16034 } 16035 mutex_exit(&phyint->phyint_lock); 16036 /* 16037 * ill_restart_dad handles the DAD restart and routing 16038 * socket notification logic. 16039 */ 16040 if (changed) { 16041 ill_restart_dad(phyint->phyint_illv4, went_up); 16042 ill_restart_dad(phyint->phyint_illv6, went_up); 16043 } 16044 break; 16045 } 16046 case DL_NOTE_PROMISC_ON_PHYS: 16047 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16048 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16049 mutex_enter(&ill->ill_lock); 16050 ill->ill_promisc_on_phys = B_TRUE; 16051 mutex_exit(&ill->ill_lock); 16052 break; 16053 case DL_NOTE_PROMISC_OFF_PHYS: 16054 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16055 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16056 mutex_enter(&ill->ill_lock); 16057 ill->ill_promisc_on_phys = B_FALSE; 16058 mutex_exit(&ill->ill_lock); 16059 break; 16060 case DL_NOTE_CAPAB_RENEG: 16061 /* 16062 * Something changed on the driver side. 16063 * It wants us to renegotiate the capabilities 16064 * on this ill. One possible cause is the aggregation 16065 * interface under us where a port got added or 16066 * went away. 16067 * 16068 * If the capability negotiation is already done 16069 * or is in progress, reset the capabilities and 16070 * mark the ill's ill_capab_reneg to be B_TRUE, 16071 * so that when the ack comes back, we can start 16072 * the renegotiation process. 16073 * 16074 * Note that if ill_capab_reneg is already B_TRUE 16075 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16076 * the capability resetting request has been sent 16077 * and the renegotiation has not been started yet; 16078 * nothing needs to be done in this case. 16079 */ 16080 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16081 ill_capability_reset(ill); 16082 ill->ill_capab_reneg = B_TRUE; 16083 } 16084 break; 16085 default: 16086 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16087 "type 0x%x for DL_NOTIFY_IND\n", 16088 notify->dl_notification)); 16089 break; 16090 } 16091 16092 /* 16093 * As this is an asynchronous operation, we 16094 * should not call ill_dlpi_done 16095 */ 16096 break; 16097 } 16098 case DL_NOTIFY_ACK: { 16099 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16100 16101 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16102 ill->ill_note_link = 1; 16103 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16104 break; 16105 } 16106 case DL_PHYS_ADDR_ACK: { 16107 /* 16108 * As part of plumbing the interface via SIOCSLIFNAME, 16109 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16110 * whose answers we receive here. As each answer is received, 16111 * we call ill_dlpi_done() to dispatch the next request as 16112 * we're processing the current one. Once all answers have 16113 * been received, we use ipsq_pending_mp_get() to dequeue the 16114 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16115 * is invoked from an ill queue, conn_oper_pending_ill is not 16116 * available, but we know the ioctl is pending on ill_wq.) 16117 */ 16118 uint_t paddrlen, paddroff; 16119 16120 paddrreq = ill->ill_phys_addr_pend; 16121 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16122 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16123 16124 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16125 if (paddrreq == DL_IPV6_TOKEN) { 16126 /* 16127 * bcopy to low-order bits of ill_token 16128 * 16129 * XXX Temporary hack - currently, all known tokens 16130 * are 64 bits, so I'll cheat for the moment. 16131 */ 16132 bcopy(mp->b_rptr + paddroff, 16133 &ill->ill_token.s6_addr32[2], paddrlen); 16134 ill->ill_token_length = paddrlen; 16135 break; 16136 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16137 ASSERT(ill->ill_nd_lla_mp == NULL); 16138 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16139 mp = NULL; 16140 break; 16141 } 16142 16143 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16144 ASSERT(ill->ill_phys_addr_mp == NULL); 16145 if (!ill->ill_ifname_pending) 16146 break; 16147 ill->ill_ifname_pending = 0; 16148 if (!ioctl_aborted) 16149 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16150 if (mp1 != NULL) { 16151 ASSERT(connp == NULL); 16152 q = ill->ill_wq; 16153 } 16154 /* 16155 * If any error acks received during the plumbing sequence, 16156 * ill_ifname_pending_err will be set. Break out and send up 16157 * the error to the pending ioctl. 16158 */ 16159 if (ill->ill_ifname_pending_err != 0) { 16160 err = ill->ill_ifname_pending_err; 16161 ill->ill_ifname_pending_err = 0; 16162 break; 16163 } 16164 16165 ill->ill_phys_addr_mp = mp; 16166 ill->ill_phys_addr = mp->b_rptr + paddroff; 16167 mp = NULL; 16168 16169 /* 16170 * If paddrlen is zero, the DLPI provider doesn't support 16171 * physical addresses. The other two tests were historical 16172 * workarounds for bugs in our former PPP implementation, but 16173 * now other things have grown dependencies on them -- e.g., 16174 * the tun module specifies a dl_addr_length of zero in its 16175 * DL_BIND_ACK, but then specifies an incorrect value in its 16176 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16177 * but only after careful testing ensures that all dependent 16178 * broken DLPI providers have been fixed. 16179 */ 16180 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16181 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16182 ill->ill_phys_addr = NULL; 16183 } else if (paddrlen != ill->ill_phys_addr_length) { 16184 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16185 paddrlen, ill->ill_phys_addr_length)); 16186 err = EINVAL; 16187 break; 16188 } 16189 16190 if (ill->ill_nd_lla_mp == NULL) { 16191 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16192 err = ENOMEM; 16193 break; 16194 } 16195 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16196 } 16197 16198 /* 16199 * Set the interface token. If the zeroth interface address 16200 * is unspecified, then set it to the link local address. 16201 */ 16202 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16203 (void) ill_setdefaulttoken(ill); 16204 16205 ASSERT(ill->ill_ipif->ipif_id == 0); 16206 if (ipif != NULL && 16207 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16208 (void) ipif_setlinklocal(ipif); 16209 } 16210 break; 16211 } 16212 case DL_OK_ACK: 16213 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16214 dl_primstr((int)dloa->dl_correct_primitive), 16215 dloa->dl_correct_primitive)); 16216 switch (dloa->dl_correct_primitive) { 16217 case DL_PROMISCON_REQ: 16218 case DL_PROMISCOFF_REQ: 16219 case DL_ENABMULTI_REQ: 16220 case DL_DISABMULTI_REQ: 16221 case DL_UNBIND_REQ: 16222 case DL_ATTACH_REQ: 16223 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16224 break; 16225 } 16226 break; 16227 default: 16228 break; 16229 } 16230 16231 freemsg(mp); 16232 if (mp1 != NULL) { 16233 /* 16234 * The operation must complete without EINPROGRESS 16235 * since ipsq_pending_mp_get() has removed the mblk 16236 * from ipsq_pending_mp. Otherwise, the operation 16237 * will be stuck forever in the ipsq. 16238 */ 16239 ASSERT(err != EINPROGRESS); 16240 16241 switch (ipsq->ipsq_current_ioctl) { 16242 case 0: 16243 ipsq_current_finish(ipsq); 16244 break; 16245 16246 case SIOCLIFADDIF: 16247 case SIOCSLIFNAME: 16248 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16249 break; 16250 16251 default: 16252 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16253 break; 16254 } 16255 } 16256 } 16257 16258 /* 16259 * ip_rput_other is called by ip_rput to handle messages modifying the global 16260 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16261 */ 16262 /* ARGSUSED */ 16263 void 16264 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16265 { 16266 ill_t *ill; 16267 struct iocblk *iocp; 16268 mblk_t *mp1; 16269 conn_t *connp = NULL; 16270 16271 ip1dbg(("ip_rput_other ")); 16272 ill = (ill_t *)q->q_ptr; 16273 /* 16274 * This routine is not a writer in the case of SIOCGTUNPARAM 16275 * in which case ipsq is NULL. 16276 */ 16277 if (ipsq != NULL) { 16278 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16279 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16280 } 16281 16282 switch (mp->b_datap->db_type) { 16283 case M_ERROR: 16284 case M_HANGUP: 16285 /* 16286 * The device has a problem. We force the ILL down. It can 16287 * be brought up again manually using SIOCSIFFLAGS (via 16288 * ifconfig or equivalent). 16289 */ 16290 ASSERT(ipsq != NULL); 16291 if (mp->b_rptr < mp->b_wptr) 16292 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16293 if (ill->ill_error == 0) 16294 ill->ill_error = ENXIO; 16295 if (!ill_down_start(q, mp)) 16296 return; 16297 ipif_all_down_tail(ipsq, q, mp, NULL); 16298 break; 16299 case M_IOCACK: 16300 iocp = (struct iocblk *)mp->b_rptr; 16301 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16302 switch (iocp->ioc_cmd) { 16303 case SIOCSTUNPARAM: 16304 case OSIOCSTUNPARAM: 16305 ASSERT(ipsq != NULL); 16306 /* 16307 * Finish socket ioctl passed through to tun. 16308 * We should have an IOCTL waiting on this. 16309 */ 16310 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16311 if (ill->ill_isv6) { 16312 struct iftun_req *ta; 16313 16314 /* 16315 * if a source or destination is 16316 * being set, try and set the link 16317 * local address for the tunnel 16318 */ 16319 ta = (struct iftun_req *)mp->b_cont-> 16320 b_cont->b_rptr; 16321 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16322 ipif_set_tun_llink(ill, ta); 16323 } 16324 16325 } 16326 if (mp1 != NULL) { 16327 /* 16328 * Now copy back the b_next/b_prev used by 16329 * mi code for the mi_copy* functions. 16330 * See ip_sioctl_tunparam() for the reason. 16331 * Also protect against missing b_cont. 16332 */ 16333 if (mp->b_cont != NULL) { 16334 mp->b_cont->b_next = 16335 mp1->b_cont->b_next; 16336 mp->b_cont->b_prev = 16337 mp1->b_cont->b_prev; 16338 } 16339 inet_freemsg(mp1); 16340 ASSERT(connp != NULL); 16341 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16342 iocp->ioc_error, NO_COPYOUT, ipsq); 16343 } else { 16344 ASSERT(connp == NULL); 16345 putnext(q, mp); 16346 } 16347 break; 16348 case SIOCGTUNPARAM: 16349 case OSIOCGTUNPARAM: 16350 /* 16351 * This is really M_IOCDATA from the tunnel driver. 16352 * convert back and complete the ioctl. 16353 * We should have an IOCTL waiting on this. 16354 */ 16355 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16356 if (mp1) { 16357 /* 16358 * Now copy back the b_next/b_prev used by 16359 * mi code for the mi_copy* functions. 16360 * See ip_sioctl_tunparam() for the reason. 16361 * Also protect against missing b_cont. 16362 */ 16363 if (mp->b_cont != NULL) { 16364 mp->b_cont->b_next = 16365 mp1->b_cont->b_next; 16366 mp->b_cont->b_prev = 16367 mp1->b_cont->b_prev; 16368 } 16369 inet_freemsg(mp1); 16370 if (iocp->ioc_error == 0) 16371 mp->b_datap->db_type = M_IOCDATA; 16372 ASSERT(connp != NULL); 16373 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16374 iocp->ioc_error, COPYOUT, NULL); 16375 } else { 16376 ASSERT(connp == NULL); 16377 putnext(q, mp); 16378 } 16379 break; 16380 default: 16381 break; 16382 } 16383 break; 16384 case M_IOCNAK: 16385 iocp = (struct iocblk *)mp->b_rptr; 16386 16387 switch (iocp->ioc_cmd) { 16388 int mode; 16389 16390 case DL_IOC_HDR_INFO: 16391 /* 16392 * If this was the first attempt turn of the 16393 * fastpath probing. 16394 */ 16395 mutex_enter(&ill->ill_lock); 16396 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16397 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16398 mutex_exit(&ill->ill_lock); 16399 ill_fastpath_nack(ill); 16400 ip1dbg(("ip_rput: DLPI fastpath off on " 16401 "interface %s\n", 16402 ill->ill_name)); 16403 } else { 16404 mutex_exit(&ill->ill_lock); 16405 } 16406 freemsg(mp); 16407 break; 16408 case SIOCSTUNPARAM: 16409 case OSIOCSTUNPARAM: 16410 ASSERT(ipsq != NULL); 16411 /* 16412 * Finish socket ioctl passed through to tun 16413 * We should have an IOCTL waiting on this. 16414 */ 16415 /* FALLTHRU */ 16416 case SIOCGTUNPARAM: 16417 case OSIOCGTUNPARAM: 16418 /* 16419 * This is really M_IOCDATA from the tunnel driver. 16420 * convert back and complete the ioctl. 16421 * We should have an IOCTL waiting on this. 16422 */ 16423 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16424 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16425 mp1 = ill_pending_mp_get(ill, &connp, 16426 iocp->ioc_id); 16427 mode = COPYOUT; 16428 ipsq = NULL; 16429 } else { 16430 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16431 mode = NO_COPYOUT; 16432 } 16433 if (mp1 != NULL) { 16434 /* 16435 * Now copy back the b_next/b_prev used by 16436 * mi code for the mi_copy* functions. 16437 * See ip_sioctl_tunparam() for the reason. 16438 * Also protect against missing b_cont. 16439 */ 16440 if (mp->b_cont != NULL) { 16441 mp->b_cont->b_next = 16442 mp1->b_cont->b_next; 16443 mp->b_cont->b_prev = 16444 mp1->b_cont->b_prev; 16445 } 16446 inet_freemsg(mp1); 16447 if (iocp->ioc_error == 0) 16448 iocp->ioc_error = EINVAL; 16449 ASSERT(connp != NULL); 16450 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16451 iocp->ioc_error, mode, ipsq); 16452 } else { 16453 ASSERT(connp == NULL); 16454 putnext(q, mp); 16455 } 16456 break; 16457 default: 16458 break; 16459 } 16460 default: 16461 break; 16462 } 16463 } 16464 16465 /* 16466 * NOTE : This function does not ire_refrele the ire argument passed in. 16467 * 16468 * IPQoS notes 16469 * IP policy is invoked twice for a forwarded packet, once on the read side 16470 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16471 * enabled. An additional parameter, in_ill, has been added for this purpose. 16472 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16473 * because ip_mroute drops this information. 16474 * 16475 */ 16476 void 16477 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16478 { 16479 uint32_t old_pkt_len; 16480 uint32_t pkt_len; 16481 queue_t *q; 16482 uint32_t sum; 16483 #define rptr ((uchar_t *)ipha) 16484 uint32_t max_frag; 16485 uint32_t ill_index; 16486 ill_t *out_ill; 16487 mib2_ipIfStatsEntry_t *mibptr; 16488 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16489 16490 /* Get the ill_index of the incoming ILL */ 16491 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16492 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16493 16494 /* Initiate Read side IPPF processing */ 16495 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16496 ip_process(IPP_FWD_IN, &mp, ill_index); 16497 if (mp == NULL) { 16498 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16499 "during IPPF processing\n")); 16500 return; 16501 } 16502 } 16503 16504 /* Adjust the checksum to reflect the ttl decrement. */ 16505 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16506 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16507 16508 if (ipha->ipha_ttl-- <= 1) { 16509 if (ip_csum_hdr(ipha)) { 16510 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16511 goto drop_pkt; 16512 } 16513 /* 16514 * Note: ire_stq this will be NULL for multicast 16515 * datagrams using the long path through arp (the IRE 16516 * is not an IRE_CACHE). This should not cause 16517 * problems since we don't generate ICMP errors for 16518 * multicast packets. 16519 */ 16520 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16521 q = ire->ire_stq; 16522 if (q != NULL) { 16523 /* Sent by forwarding path, and router is global zone */ 16524 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16525 GLOBAL_ZONEID, ipst); 16526 } else 16527 freemsg(mp); 16528 return; 16529 } 16530 16531 /* 16532 * Don't forward if the interface is down 16533 */ 16534 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16535 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16536 ip2dbg(("ip_rput_forward:interface is down\n")); 16537 goto drop_pkt; 16538 } 16539 16540 /* Get the ill_index of the outgoing ILL */ 16541 out_ill = ire_to_ill(ire); 16542 ill_index = out_ill->ill_phyint->phyint_ifindex; 16543 16544 DTRACE_PROBE4(ip4__forwarding__start, 16545 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16546 16547 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16548 ipst->ips_ipv4firewall_forwarding, 16549 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16550 16551 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16552 16553 if (mp == NULL) 16554 return; 16555 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16556 16557 if (is_system_labeled()) { 16558 mblk_t *mp1; 16559 16560 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16561 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16562 goto drop_pkt; 16563 } 16564 /* Size may have changed */ 16565 mp = mp1; 16566 ipha = (ipha_t *)mp->b_rptr; 16567 pkt_len = ntohs(ipha->ipha_length); 16568 } 16569 16570 /* Check if there are options to update */ 16571 if (!IS_SIMPLE_IPH(ipha)) { 16572 if (ip_csum_hdr(ipha)) { 16573 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16574 goto drop_pkt; 16575 } 16576 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16577 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16578 return; 16579 } 16580 16581 ipha->ipha_hdr_checksum = 0; 16582 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16583 } 16584 max_frag = ire->ire_max_frag; 16585 if (pkt_len > max_frag) { 16586 /* 16587 * It needs fragging on its way out. We haven't 16588 * verified the header checksum yet. Since we 16589 * are going to put a surely good checksum in the 16590 * outgoing header, we have to make sure that it 16591 * was good coming in. 16592 */ 16593 if (ip_csum_hdr(ipha)) { 16594 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16595 goto drop_pkt; 16596 } 16597 /* Initiate Write side IPPF processing */ 16598 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16599 ip_process(IPP_FWD_OUT, &mp, ill_index); 16600 if (mp == NULL) { 16601 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16602 " during IPPF processing\n")); 16603 return; 16604 } 16605 } 16606 /* 16607 * Handle labeled packet resizing. 16608 * 16609 * If we have added a label, inform ip_wput_frag() of its 16610 * effect on the MTU for ICMP messages. 16611 */ 16612 if (pkt_len > old_pkt_len) { 16613 uint32_t secopt_size; 16614 16615 secopt_size = pkt_len - old_pkt_len; 16616 if (secopt_size < max_frag) 16617 max_frag -= secopt_size; 16618 } 16619 16620 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16621 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16622 return; 16623 } 16624 16625 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16626 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16627 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16628 ipst->ips_ipv4firewall_physical_out, 16629 NULL, out_ill, ipha, mp, mp, 0, ipst); 16630 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16631 if (mp == NULL) 16632 return; 16633 16634 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16635 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16636 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16637 /* ip_xmit_v4 always consumes the packet */ 16638 return; 16639 16640 drop_pkt:; 16641 ip1dbg(("ip_rput_forward: drop pkt\n")); 16642 freemsg(mp); 16643 #undef rptr 16644 } 16645 16646 void 16647 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16648 { 16649 ire_t *ire; 16650 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16651 16652 ASSERT(!ipif->ipif_isv6); 16653 /* 16654 * Find an IRE which matches the destination and the outgoing 16655 * queue in the cache table. All we need is an IRE_CACHE which 16656 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16657 * then it is enough to have some IRE_CACHE in the group. 16658 */ 16659 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16660 dst = ipif->ipif_pp_dst_addr; 16661 16662 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16663 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16664 if (ire == NULL) { 16665 /* 16666 * Mark this packet to make it be delivered to 16667 * ip_rput_forward after the new ire has been 16668 * created. 16669 */ 16670 mp->b_prev = NULL; 16671 mp->b_next = mp; 16672 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16673 NULL, 0, GLOBAL_ZONEID, &zero_info); 16674 } else { 16675 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16676 IRE_REFRELE(ire); 16677 } 16678 } 16679 16680 /* Update any source route, record route or timestamp options */ 16681 static int 16682 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16683 { 16684 ipoptp_t opts; 16685 uchar_t *opt; 16686 uint8_t optval; 16687 uint8_t optlen; 16688 ipaddr_t dst; 16689 uint32_t ts; 16690 ire_t *dst_ire = NULL; 16691 ire_t *tmp_ire = NULL; 16692 timestruc_t now; 16693 16694 ip2dbg(("ip_rput_forward_options\n")); 16695 dst = ipha->ipha_dst; 16696 for (optval = ipoptp_first(&opts, ipha); 16697 optval != IPOPT_EOL; 16698 optval = ipoptp_next(&opts)) { 16699 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16700 opt = opts.ipoptp_cur; 16701 optlen = opts.ipoptp_len; 16702 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16703 optval, opts.ipoptp_len)); 16704 switch (optval) { 16705 uint32_t off; 16706 case IPOPT_SSRR: 16707 case IPOPT_LSRR: 16708 /* Check if adminstratively disabled */ 16709 if (!ipst->ips_ip_forward_src_routed) { 16710 if (ire->ire_stq != NULL) { 16711 /* 16712 * Sent by forwarding path, and router 16713 * is global zone 16714 */ 16715 icmp_unreachable(ire->ire_stq, mp, 16716 ICMP_SOURCE_ROUTE_FAILED, 16717 GLOBAL_ZONEID, ipst); 16718 } else { 16719 ip0dbg(("ip_rput_forward_options: " 16720 "unable to send unreach\n")); 16721 freemsg(mp); 16722 } 16723 return (-1); 16724 } 16725 16726 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16727 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16728 if (dst_ire == NULL) { 16729 /* 16730 * Must be partial since ip_rput_options 16731 * checked for strict. 16732 */ 16733 break; 16734 } 16735 off = opt[IPOPT_OFFSET]; 16736 off--; 16737 redo_srr: 16738 if (optlen < IP_ADDR_LEN || 16739 off > optlen - IP_ADDR_LEN) { 16740 /* End of source route */ 16741 ip1dbg(( 16742 "ip_rput_forward_options: end of SR\n")); 16743 ire_refrele(dst_ire); 16744 break; 16745 } 16746 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16747 bcopy(&ire->ire_src_addr, (char *)opt + off, 16748 IP_ADDR_LEN); 16749 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16750 ntohl(dst))); 16751 16752 /* 16753 * Check if our address is present more than 16754 * once as consecutive hops in source route. 16755 */ 16756 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16757 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16758 if (tmp_ire != NULL) { 16759 ire_refrele(tmp_ire); 16760 off += IP_ADDR_LEN; 16761 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16762 goto redo_srr; 16763 } 16764 ipha->ipha_dst = dst; 16765 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16766 ire_refrele(dst_ire); 16767 break; 16768 case IPOPT_RR: 16769 off = opt[IPOPT_OFFSET]; 16770 off--; 16771 if (optlen < IP_ADDR_LEN || 16772 off > optlen - IP_ADDR_LEN) { 16773 /* No more room - ignore */ 16774 ip1dbg(( 16775 "ip_rput_forward_options: end of RR\n")); 16776 break; 16777 } 16778 bcopy(&ire->ire_src_addr, (char *)opt + off, 16779 IP_ADDR_LEN); 16780 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16781 break; 16782 case IPOPT_TS: 16783 /* Insert timestamp if there is room */ 16784 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16785 case IPOPT_TS_TSONLY: 16786 off = IPOPT_TS_TIMELEN; 16787 break; 16788 case IPOPT_TS_PRESPEC: 16789 case IPOPT_TS_PRESPEC_RFC791: 16790 /* Verify that the address matched */ 16791 off = opt[IPOPT_OFFSET] - 1; 16792 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16793 dst_ire = ire_ctable_lookup(dst, 0, 16794 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16795 MATCH_IRE_TYPE, ipst); 16796 if (dst_ire == NULL) { 16797 /* Not for us */ 16798 break; 16799 } 16800 ire_refrele(dst_ire); 16801 /* FALLTHRU */ 16802 case IPOPT_TS_TSANDADDR: 16803 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16804 break; 16805 default: 16806 /* 16807 * ip_*put_options should have already 16808 * dropped this packet. 16809 */ 16810 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16811 "unknown IT - bug in ip_rput_options?\n"); 16812 return (0); /* Keep "lint" happy */ 16813 } 16814 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16815 /* Increase overflow counter */ 16816 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16817 opt[IPOPT_POS_OV_FLG] = 16818 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16819 (off << 4)); 16820 break; 16821 } 16822 off = opt[IPOPT_OFFSET] - 1; 16823 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16824 case IPOPT_TS_PRESPEC: 16825 case IPOPT_TS_PRESPEC_RFC791: 16826 case IPOPT_TS_TSANDADDR: 16827 bcopy(&ire->ire_src_addr, 16828 (char *)opt + off, IP_ADDR_LEN); 16829 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16830 /* FALLTHRU */ 16831 case IPOPT_TS_TSONLY: 16832 off = opt[IPOPT_OFFSET] - 1; 16833 /* Compute # of milliseconds since midnight */ 16834 gethrestime(&now); 16835 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16836 now.tv_nsec / (NANOSEC / MILLISEC); 16837 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16838 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16839 break; 16840 } 16841 break; 16842 } 16843 } 16844 return (0); 16845 } 16846 16847 /* 16848 * This is called after processing at least one of AH/ESP headers. 16849 * 16850 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16851 * the actual, physical interface on which the packet was received, 16852 * but, when ip_strict_dst_multihoming is set to 1, could be the 16853 * interface which had the ipha_dst configured when the packet went 16854 * through ip_rput. The ill_index corresponding to the recv_ill 16855 * is saved in ipsec_in_rill_index 16856 * 16857 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16858 * cannot assume "ire" points to valid data for any IPv6 cases. 16859 */ 16860 void 16861 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16862 { 16863 mblk_t *mp; 16864 ipaddr_t dst; 16865 in6_addr_t *v6dstp; 16866 ipha_t *ipha; 16867 ip6_t *ip6h; 16868 ipsec_in_t *ii; 16869 boolean_t ill_need_rele = B_FALSE; 16870 boolean_t rill_need_rele = B_FALSE; 16871 boolean_t ire_need_rele = B_FALSE; 16872 netstack_t *ns; 16873 ip_stack_t *ipst; 16874 16875 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16876 ASSERT(ii->ipsec_in_ill_index != 0); 16877 ns = ii->ipsec_in_ns; 16878 ASSERT(ii->ipsec_in_ns != NULL); 16879 ipst = ns->netstack_ip; 16880 16881 mp = ipsec_mp->b_cont; 16882 ASSERT(mp != NULL); 16883 16884 16885 if (ill == NULL) { 16886 ASSERT(recv_ill == NULL); 16887 /* 16888 * We need to get the original queue on which ip_rput_local 16889 * or ip_rput_data_v6 was called. 16890 */ 16891 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16892 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16893 ill_need_rele = B_TRUE; 16894 16895 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16896 recv_ill = ill_lookup_on_ifindex( 16897 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16898 NULL, NULL, NULL, NULL, ipst); 16899 rill_need_rele = B_TRUE; 16900 } else { 16901 recv_ill = ill; 16902 } 16903 16904 if ((ill == NULL) || (recv_ill == NULL)) { 16905 ip0dbg(("ip_fanout_proto_again: interface " 16906 "disappeared\n")); 16907 if (ill != NULL) 16908 ill_refrele(ill); 16909 if (recv_ill != NULL) 16910 ill_refrele(recv_ill); 16911 freemsg(ipsec_mp); 16912 return; 16913 } 16914 } 16915 16916 ASSERT(ill != NULL && recv_ill != NULL); 16917 16918 if (mp->b_datap->db_type == M_CTL) { 16919 /* 16920 * AH/ESP is returning the ICMP message after 16921 * removing their headers. Fanout again till 16922 * it gets to the right protocol. 16923 */ 16924 if (ii->ipsec_in_v4) { 16925 icmph_t *icmph; 16926 int iph_hdr_length; 16927 int hdr_length; 16928 16929 ipha = (ipha_t *)mp->b_rptr; 16930 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16931 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16932 ipha = (ipha_t *)&icmph[1]; 16933 hdr_length = IPH_HDR_LENGTH(ipha); 16934 /* 16935 * icmp_inbound_error_fanout may need to do pullupmsg. 16936 * Reset the type to M_DATA. 16937 */ 16938 mp->b_datap->db_type = M_DATA; 16939 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16940 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16941 B_FALSE, ill, ii->ipsec_in_zoneid); 16942 } else { 16943 icmp6_t *icmp6; 16944 int hdr_length; 16945 16946 ip6h = (ip6_t *)mp->b_rptr; 16947 /* Don't call hdr_length_v6() unless you have to. */ 16948 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16949 hdr_length = ip_hdr_length_v6(mp, ip6h); 16950 else 16951 hdr_length = IPV6_HDR_LEN; 16952 16953 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16954 /* 16955 * icmp_inbound_error_fanout_v6 may need to do 16956 * pullupmsg. Reset the type to M_DATA. 16957 */ 16958 mp->b_datap->db_type = M_DATA; 16959 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16960 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16961 } 16962 if (ill_need_rele) 16963 ill_refrele(ill); 16964 if (rill_need_rele) 16965 ill_refrele(recv_ill); 16966 return; 16967 } 16968 16969 if (ii->ipsec_in_v4) { 16970 ipha = (ipha_t *)mp->b_rptr; 16971 dst = ipha->ipha_dst; 16972 if (CLASSD(dst)) { 16973 /* 16974 * Multicast has to be delivered to all streams. 16975 */ 16976 dst = INADDR_BROADCAST; 16977 } 16978 16979 if (ire == NULL) { 16980 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16981 MBLK_GETLABEL(mp), ipst); 16982 if (ire == NULL) { 16983 if (ill_need_rele) 16984 ill_refrele(ill); 16985 if (rill_need_rele) 16986 ill_refrele(recv_ill); 16987 ip1dbg(("ip_fanout_proto_again: " 16988 "IRE not found")); 16989 freemsg(ipsec_mp); 16990 return; 16991 } 16992 ire_need_rele = B_TRUE; 16993 } 16994 16995 switch (ipha->ipha_protocol) { 16996 case IPPROTO_UDP: 16997 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16998 recv_ill); 16999 if (ire_need_rele) 17000 ire_refrele(ire); 17001 break; 17002 case IPPROTO_TCP: 17003 if (!ire_need_rele) 17004 IRE_REFHOLD(ire); 17005 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17006 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17007 IRE_REFRELE(ire); 17008 if (mp != NULL) 17009 squeue_enter_chain(GET_SQUEUE(mp), mp, 17010 mp, 1, SQTAG_IP_PROTO_AGAIN); 17011 break; 17012 case IPPROTO_SCTP: 17013 if (!ire_need_rele) 17014 IRE_REFHOLD(ire); 17015 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17016 ipsec_mp, 0, ill->ill_rq, dst); 17017 break; 17018 default: 17019 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17020 recv_ill, B_FALSE); 17021 if (ire_need_rele) 17022 ire_refrele(ire); 17023 break; 17024 } 17025 } else { 17026 uint32_t rput_flags = 0; 17027 17028 ip6h = (ip6_t *)mp->b_rptr; 17029 v6dstp = &ip6h->ip6_dst; 17030 /* 17031 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17032 * address. 17033 * 17034 * Currently, we don't store that state in the IPSEC_IN 17035 * message, and we may need to. 17036 */ 17037 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17038 IP6_IN_LLMCAST : 0); 17039 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17040 NULL, NULL); 17041 } 17042 if (ill_need_rele) 17043 ill_refrele(ill); 17044 if (rill_need_rele) 17045 ill_refrele(recv_ill); 17046 } 17047 17048 /* 17049 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17050 * returns 'true' if there are still fragments left on the queue, in 17051 * which case we restart the timer. 17052 */ 17053 void 17054 ill_frag_timer(void *arg) 17055 { 17056 ill_t *ill = (ill_t *)arg; 17057 boolean_t frag_pending; 17058 ip_stack_t *ipst = ill->ill_ipst; 17059 17060 mutex_enter(&ill->ill_lock); 17061 ASSERT(!ill->ill_fragtimer_executing); 17062 if (ill->ill_state_flags & ILL_CONDEMNED) { 17063 ill->ill_frag_timer_id = 0; 17064 mutex_exit(&ill->ill_lock); 17065 return; 17066 } 17067 ill->ill_fragtimer_executing = 1; 17068 mutex_exit(&ill->ill_lock); 17069 17070 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17071 17072 /* 17073 * Restart the timer, if we have fragments pending or if someone 17074 * wanted us to be scheduled again. 17075 */ 17076 mutex_enter(&ill->ill_lock); 17077 ill->ill_fragtimer_executing = 0; 17078 ill->ill_frag_timer_id = 0; 17079 if (frag_pending || ill->ill_fragtimer_needrestart) 17080 ill_frag_timer_start(ill); 17081 mutex_exit(&ill->ill_lock); 17082 } 17083 17084 void 17085 ill_frag_timer_start(ill_t *ill) 17086 { 17087 ip_stack_t *ipst = ill->ill_ipst; 17088 17089 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17090 17091 /* If the ill is closing or opening don't proceed */ 17092 if (ill->ill_state_flags & ILL_CONDEMNED) 17093 return; 17094 17095 if (ill->ill_fragtimer_executing) { 17096 /* 17097 * ill_frag_timer is currently executing. Just record the 17098 * the fact that we want the timer to be restarted. 17099 * ill_frag_timer will post a timeout before it returns, 17100 * ensuring it will be called again. 17101 */ 17102 ill->ill_fragtimer_needrestart = 1; 17103 return; 17104 } 17105 17106 if (ill->ill_frag_timer_id == 0) { 17107 /* 17108 * The timer is neither running nor is the timeout handler 17109 * executing. Post a timeout so that ill_frag_timer will be 17110 * called 17111 */ 17112 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17113 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17114 ill->ill_fragtimer_needrestart = 0; 17115 } 17116 } 17117 17118 /* 17119 * This routine is needed for loopback when forwarding multicasts. 17120 * 17121 * IPQoS Notes: 17122 * IPPF processing is done in fanout routines. 17123 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17124 * processing for IPsec packets is done when it comes back in clear. 17125 * NOTE : The callers of this function need to do the ire_refrele for the 17126 * ire that is being passed in. 17127 */ 17128 void 17129 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17130 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17131 { 17132 ill_t *ill = (ill_t *)q->q_ptr; 17133 uint32_t sum; 17134 uint32_t u1; 17135 uint32_t u2; 17136 int hdr_length; 17137 boolean_t mctl_present; 17138 mblk_t *first_mp = mp; 17139 mblk_t *hada_mp = NULL; 17140 ipha_t *inner_ipha; 17141 ip_stack_t *ipst; 17142 17143 ASSERT(recv_ill != NULL); 17144 ipst = recv_ill->ill_ipst; 17145 17146 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17147 "ip_rput_locl_start: q %p", q); 17148 17149 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17150 ASSERT(ill != NULL); 17151 17152 17153 #define rptr ((uchar_t *)ipha) 17154 #define iphs ((uint16_t *)ipha) 17155 17156 /* 17157 * no UDP or TCP packet should come here anymore. 17158 */ 17159 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17160 ipha->ipha_protocol != IPPROTO_UDP); 17161 17162 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17163 if (mctl_present && 17164 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17165 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17166 17167 /* 17168 * It's an IPsec accelerated packet. 17169 * Keep a pointer to the data attributes around until 17170 * we allocate the ipsec_info_t. 17171 */ 17172 IPSECHW_DEBUG(IPSECHW_PKT, 17173 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17174 hada_mp = first_mp; 17175 hada_mp->b_cont = NULL; 17176 /* 17177 * Since it is accelerated, it comes directly from 17178 * the ill and the data attributes is followed by 17179 * the packet data. 17180 */ 17181 ASSERT(mp->b_datap->db_type != M_CTL); 17182 first_mp = mp; 17183 mctl_present = B_FALSE; 17184 } 17185 17186 /* 17187 * IF M_CTL is not present, then ipsec_in_is_secure 17188 * should return B_TRUE. There is a case where loopback 17189 * packets has an M_CTL in the front with all the 17190 * IPsec options set to IPSEC_PREF_NEVER - which means 17191 * ipsec_in_is_secure will return B_FALSE. As loopback 17192 * packets never comes here, it is safe to ASSERT the 17193 * following. 17194 */ 17195 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17196 17197 /* 17198 * Also, we should never have an mctl_present if this is an 17199 * ESP-in-UDP packet. 17200 */ 17201 ASSERT(!mctl_present || !esp_in_udp_packet); 17202 17203 17204 /* u1 is # words of IP options */ 17205 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17206 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17207 17208 /* 17209 * Don't verify header checksum if we just removed UDP header or 17210 * packet is coming back from AH/ESP. 17211 */ 17212 if (!esp_in_udp_packet && !mctl_present) { 17213 if (u1) { 17214 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17215 if (hada_mp != NULL) 17216 freemsg(hada_mp); 17217 return; 17218 } 17219 } else { 17220 /* Check the IP header checksum. */ 17221 #define uph ((uint16_t *)ipha) 17222 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17223 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17224 #undef uph 17225 /* finish doing IP checksum */ 17226 sum = (sum & 0xFFFF) + (sum >> 16); 17227 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17228 if (sum && sum != 0xFFFF) { 17229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17230 goto drop_pkt; 17231 } 17232 } 17233 } 17234 17235 /* 17236 * Count for SNMP of inbound packets for ire. As ip_proto_input 17237 * might be called more than once for secure packets, count only 17238 * the first time. 17239 */ 17240 if (!mctl_present) { 17241 UPDATE_IB_PKT_COUNT(ire); 17242 ire->ire_last_used_time = lbolt; 17243 } 17244 17245 /* Check for fragmentation offset. */ 17246 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17247 u1 = u2 & (IPH_MF | IPH_OFFSET); 17248 if (u1) { 17249 /* 17250 * We re-assemble fragments before we do the AH/ESP 17251 * processing. Thus, M_CTL should not be present 17252 * while we are re-assembling. 17253 */ 17254 ASSERT(!mctl_present); 17255 ASSERT(first_mp == mp); 17256 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17257 return; 17258 } 17259 /* 17260 * Make sure that first_mp points back to mp as 17261 * the mp we came in with could have changed in 17262 * ip_rput_fragment(). 17263 */ 17264 ipha = (ipha_t *)mp->b_rptr; 17265 first_mp = mp; 17266 } 17267 17268 /* 17269 * Clear hardware checksumming flag as it is currently only 17270 * used by TCP and UDP. 17271 */ 17272 DB_CKSUMFLAGS(mp) = 0; 17273 17274 /* Now we have a complete datagram, destined for this machine. */ 17275 u1 = IPH_HDR_LENGTH(ipha); 17276 switch (ipha->ipha_protocol) { 17277 case IPPROTO_ICMP: { 17278 ire_t *ire_zone; 17279 ilm_t *ilm; 17280 mblk_t *mp1; 17281 zoneid_t last_zoneid; 17282 17283 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17284 ASSERT(ire->ire_type == IRE_BROADCAST); 17285 /* 17286 * In the multicast case, applications may have joined 17287 * the group from different zones, so we need to deliver 17288 * the packet to each of them. Loop through the 17289 * multicast memberships structures (ilm) on the receive 17290 * ill and send a copy of the packet up each matching 17291 * one. However, we don't do this for multicasts sent on 17292 * the loopback interface (PHYI_LOOPBACK flag set) as 17293 * they must stay in the sender's zone. 17294 * 17295 * ilm_add_v6() ensures that ilms in the same zone are 17296 * contiguous in the ill_ilm list. We use this property 17297 * to avoid sending duplicates needed when two 17298 * applications in the same zone join the same group on 17299 * different logical interfaces: we ignore the ilm if 17300 * its zoneid is the same as the last matching one. 17301 * In addition, the sending of the packet for 17302 * ire_zoneid is delayed until all of the other ilms 17303 * have been exhausted. 17304 */ 17305 last_zoneid = -1; 17306 ILM_WALKER_HOLD(recv_ill); 17307 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17308 ilm = ilm->ilm_next) { 17309 if ((ilm->ilm_flags & ILM_DELETED) || 17310 ipha->ipha_dst != ilm->ilm_addr || 17311 ilm->ilm_zoneid == last_zoneid || 17312 ilm->ilm_zoneid == ire->ire_zoneid || 17313 ilm->ilm_zoneid == ALL_ZONES || 17314 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17315 continue; 17316 mp1 = ip_copymsg(first_mp); 17317 if (mp1 == NULL) 17318 continue; 17319 icmp_inbound(q, mp1, B_TRUE, ill, 17320 0, sum, mctl_present, B_TRUE, 17321 recv_ill, ilm->ilm_zoneid); 17322 last_zoneid = ilm->ilm_zoneid; 17323 } 17324 ILM_WALKER_RELE(recv_ill); 17325 } else if (ire->ire_type == IRE_BROADCAST) { 17326 /* 17327 * In the broadcast case, there may be many zones 17328 * which need a copy of the packet delivered to them. 17329 * There is one IRE_BROADCAST per broadcast address 17330 * and per zone; we walk those using a helper function. 17331 * In addition, the sending of the packet for ire is 17332 * delayed until all of the other ires have been 17333 * processed. 17334 */ 17335 IRB_REFHOLD(ire->ire_bucket); 17336 ire_zone = NULL; 17337 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17338 ire)) != NULL) { 17339 mp1 = ip_copymsg(first_mp); 17340 if (mp1 == NULL) 17341 continue; 17342 17343 UPDATE_IB_PKT_COUNT(ire_zone); 17344 ire_zone->ire_last_used_time = lbolt; 17345 icmp_inbound(q, mp1, B_TRUE, ill, 17346 0, sum, mctl_present, B_TRUE, 17347 recv_ill, ire_zone->ire_zoneid); 17348 } 17349 IRB_REFRELE(ire->ire_bucket); 17350 } 17351 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17352 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17353 ire->ire_zoneid); 17354 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17355 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17356 return; 17357 } 17358 case IPPROTO_IGMP: 17359 /* 17360 * If we are not willing to accept IGMP packets in clear, 17361 * then check with global policy. 17362 */ 17363 if (ipst->ips_igmp_accept_clear_messages == 0) { 17364 first_mp = ipsec_check_global_policy(first_mp, NULL, 17365 ipha, NULL, mctl_present, ipst->ips_netstack); 17366 if (first_mp == NULL) 17367 return; 17368 } 17369 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17370 freemsg(first_mp); 17371 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17373 return; 17374 } 17375 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17376 /* Bad packet - discarded by igmp_input */ 17377 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17378 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17379 if (mctl_present) 17380 freeb(first_mp); 17381 return; 17382 } 17383 /* 17384 * igmp_input() may have returned the pulled up message. 17385 * So first_mp and ipha need to be reinitialized. 17386 */ 17387 ipha = (ipha_t *)mp->b_rptr; 17388 if (mctl_present) 17389 first_mp->b_cont = mp; 17390 else 17391 first_mp = mp; 17392 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17393 connf_head != NULL) { 17394 /* No user-level listener for IGMP packets */ 17395 goto drop_pkt; 17396 } 17397 /* deliver to local raw users */ 17398 break; 17399 case IPPROTO_PIM: 17400 /* 17401 * If we are not willing to accept PIM packets in clear, 17402 * then check with global policy. 17403 */ 17404 if (ipst->ips_pim_accept_clear_messages == 0) { 17405 first_mp = ipsec_check_global_policy(first_mp, NULL, 17406 ipha, NULL, mctl_present, ipst->ips_netstack); 17407 if (first_mp == NULL) 17408 return; 17409 } 17410 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17411 freemsg(first_mp); 17412 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17414 return; 17415 } 17416 if (pim_input(q, mp, ill) != 0) { 17417 /* Bad packet - discarded by pim_input */ 17418 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17419 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17420 if (mctl_present) 17421 freeb(first_mp); 17422 return; 17423 } 17424 17425 /* 17426 * pim_input() may have pulled up the message so ipha needs to 17427 * be reinitialized. 17428 */ 17429 ipha = (ipha_t *)mp->b_rptr; 17430 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17431 connf_head != NULL) { 17432 /* No user-level listener for PIM packets */ 17433 goto drop_pkt; 17434 } 17435 /* deliver to local raw users */ 17436 break; 17437 case IPPROTO_ENCAP: 17438 /* 17439 * Handle self-encapsulated packets (IP-in-IP where 17440 * the inner addresses == the outer addresses). 17441 */ 17442 hdr_length = IPH_HDR_LENGTH(ipha); 17443 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17444 mp->b_wptr) { 17445 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17446 sizeof (ipha_t) - mp->b_rptr)) { 17447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17448 freemsg(first_mp); 17449 return; 17450 } 17451 ipha = (ipha_t *)mp->b_rptr; 17452 } 17453 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17454 /* 17455 * Check the sanity of the inner IP header. 17456 */ 17457 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17459 freemsg(first_mp); 17460 return; 17461 } 17462 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17464 freemsg(first_mp); 17465 return; 17466 } 17467 if (inner_ipha->ipha_src == ipha->ipha_src && 17468 inner_ipha->ipha_dst == ipha->ipha_dst) { 17469 ipsec_in_t *ii; 17470 17471 /* 17472 * Self-encapsulated tunnel packet. Remove 17473 * the outer IP header and fanout again. 17474 * We also need to make sure that the inner 17475 * header is pulled up until options. 17476 */ 17477 mp->b_rptr = (uchar_t *)inner_ipha; 17478 ipha = inner_ipha; 17479 hdr_length = IPH_HDR_LENGTH(ipha); 17480 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17481 if (!pullupmsg(mp, (uchar_t *)ipha + 17482 + hdr_length - mp->b_rptr)) { 17483 freemsg(first_mp); 17484 return; 17485 } 17486 ipha = (ipha_t *)mp->b_rptr; 17487 } 17488 if (hdr_length > sizeof (ipha_t)) { 17489 /* We got options on the inner packet. */ 17490 ipaddr_t dst = ipha->ipha_dst; 17491 17492 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17493 -1) { 17494 /* Bad options! */ 17495 return; 17496 } 17497 if (dst != ipha->ipha_dst) { 17498 /* 17499 * Someone put a source-route in 17500 * the inside header of a self- 17501 * encapsulated packet. Drop it 17502 * with extreme prejudice and let 17503 * the sender know. 17504 */ 17505 icmp_unreachable(q, first_mp, 17506 ICMP_SOURCE_ROUTE_FAILED, 17507 recv_ill->ill_zoneid, ipst); 17508 return; 17509 } 17510 } 17511 if (!mctl_present) { 17512 ASSERT(first_mp == mp); 17513 /* 17514 * This means that somebody is sending 17515 * Self-encapsualted packets without AH/ESP. 17516 * If AH/ESP was present, we would have already 17517 * allocated the first_mp. 17518 * 17519 * Send this packet to find a tunnel endpoint. 17520 * if I can't find one, an ICMP 17521 * PROTOCOL_UNREACHABLE will get sent. 17522 */ 17523 goto fanout; 17524 } 17525 /* 17526 * We generally store the ill_index if we need to 17527 * do IPsec processing as we lose the ill queue when 17528 * we come back. But in this case, we never should 17529 * have to store the ill_index here as it should have 17530 * been stored previously when we processed the 17531 * AH/ESP header in this routine or for non-ipsec 17532 * cases, we still have the queue. But for some bad 17533 * packets from the wire, we can get to IPsec after 17534 * this and we better store the index for that case. 17535 */ 17536 ill = (ill_t *)q->q_ptr; 17537 ii = (ipsec_in_t *)first_mp->b_rptr; 17538 ii->ipsec_in_ill_index = 17539 ill->ill_phyint->phyint_ifindex; 17540 ii->ipsec_in_rill_index = 17541 recv_ill->ill_phyint->phyint_ifindex; 17542 if (ii->ipsec_in_decaps) { 17543 /* 17544 * This packet is self-encapsulated multiple 17545 * times. We don't want to recurse infinitely. 17546 * To keep it simple, drop the packet. 17547 */ 17548 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17549 freemsg(first_mp); 17550 return; 17551 } 17552 ii->ipsec_in_decaps = B_TRUE; 17553 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17554 ire); 17555 return; 17556 } 17557 break; 17558 case IPPROTO_AH: 17559 case IPPROTO_ESP: { 17560 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17561 17562 /* 17563 * Fast path for AH/ESP. If this is the first time 17564 * we are sending a datagram to AH/ESP, allocate 17565 * a IPSEC_IN message and prepend it. Otherwise, 17566 * just fanout. 17567 */ 17568 17569 int ipsec_rc; 17570 ipsec_in_t *ii; 17571 netstack_t *ns = ipst->ips_netstack; 17572 17573 IP_STAT(ipst, ipsec_proto_ahesp); 17574 if (!mctl_present) { 17575 ASSERT(first_mp == mp); 17576 first_mp = ipsec_in_alloc(B_TRUE, ns); 17577 if (first_mp == NULL) { 17578 ip1dbg(("ip_proto_input: IPSEC_IN " 17579 "allocation failure.\n")); 17580 freemsg(hada_mp); /* okay ifnull */ 17581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17582 freemsg(mp); 17583 return; 17584 } 17585 /* 17586 * Store the ill_index so that when we come back 17587 * from IPsec we ride on the same queue. 17588 */ 17589 ill = (ill_t *)q->q_ptr; 17590 ii = (ipsec_in_t *)first_mp->b_rptr; 17591 ii->ipsec_in_ill_index = 17592 ill->ill_phyint->phyint_ifindex; 17593 ii->ipsec_in_rill_index = 17594 recv_ill->ill_phyint->phyint_ifindex; 17595 first_mp->b_cont = mp; 17596 /* 17597 * Cache hardware acceleration info. 17598 */ 17599 if (hada_mp != NULL) { 17600 IPSECHW_DEBUG(IPSECHW_PKT, 17601 ("ip_rput_local: caching data attr.\n")); 17602 ii->ipsec_in_accelerated = B_TRUE; 17603 ii->ipsec_in_da = hada_mp; 17604 hada_mp = NULL; 17605 } 17606 } else { 17607 ii = (ipsec_in_t *)first_mp->b_rptr; 17608 } 17609 17610 if (!ipsec_loaded(ipss)) { 17611 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17612 ire->ire_zoneid, ipst); 17613 return; 17614 } 17615 17616 ns = ipst->ips_netstack; 17617 /* select inbound SA and have IPsec process the pkt */ 17618 if (ipha->ipha_protocol == IPPROTO_ESP) { 17619 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17620 boolean_t esp_in_udp_sa; 17621 if (esph == NULL) 17622 return; 17623 ASSERT(ii->ipsec_in_esp_sa != NULL); 17624 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17625 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17626 IPSA_F_NATT) != 0); 17627 /* 17628 * The following is a fancy, but quick, way of saying: 17629 * ESP-in-UDP SA and Raw ESP packet --> drop 17630 * OR 17631 * ESP SA and ESP-in-UDP packet --> drop 17632 */ 17633 if (esp_in_udp_sa != esp_in_udp_packet) { 17634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17635 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17636 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17637 &ns->netstack_ipsec->ipsec_dropper); 17638 return; 17639 } 17640 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17641 first_mp, esph); 17642 } else { 17643 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17644 if (ah == NULL) 17645 return; 17646 ASSERT(ii->ipsec_in_ah_sa != NULL); 17647 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17648 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17649 first_mp, ah); 17650 } 17651 17652 switch (ipsec_rc) { 17653 case IPSEC_STATUS_SUCCESS: 17654 break; 17655 case IPSEC_STATUS_FAILED: 17656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17657 /* FALLTHRU */ 17658 case IPSEC_STATUS_PENDING: 17659 return; 17660 } 17661 /* we're done with IPsec processing, send it up */ 17662 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17663 return; 17664 } 17665 default: 17666 break; 17667 } 17668 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17669 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17670 ire->ire_zoneid)); 17671 goto drop_pkt; 17672 } 17673 /* 17674 * Handle protocols with which IP is less intimate. There 17675 * can be more than one stream bound to a particular 17676 * protocol. When this is the case, each one gets a copy 17677 * of any incoming packets. 17678 */ 17679 fanout: 17680 ip_fanout_proto(q, first_mp, ill, ipha, 17681 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17682 B_TRUE, recv_ill, ire->ire_zoneid); 17683 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17684 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17685 return; 17686 17687 drop_pkt: 17688 freemsg(first_mp); 17689 if (hada_mp != NULL) 17690 freeb(hada_mp); 17691 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17692 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17693 #undef rptr 17694 #undef iphs 17695 17696 } 17697 17698 /* 17699 * Update any source route, record route or timestamp options. 17700 * Check that we are at end of strict source route. 17701 * The options have already been checked for sanity in ip_rput_options(). 17702 */ 17703 static boolean_t 17704 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17705 ip_stack_t *ipst) 17706 { 17707 ipoptp_t opts; 17708 uchar_t *opt; 17709 uint8_t optval; 17710 uint8_t optlen; 17711 ipaddr_t dst; 17712 uint32_t ts; 17713 ire_t *dst_ire; 17714 timestruc_t now; 17715 zoneid_t zoneid; 17716 ill_t *ill; 17717 17718 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17719 17720 ip2dbg(("ip_rput_local_options\n")); 17721 17722 for (optval = ipoptp_first(&opts, ipha); 17723 optval != IPOPT_EOL; 17724 optval = ipoptp_next(&opts)) { 17725 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17726 opt = opts.ipoptp_cur; 17727 optlen = opts.ipoptp_len; 17728 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17729 optval, optlen)); 17730 switch (optval) { 17731 uint32_t off; 17732 case IPOPT_SSRR: 17733 case IPOPT_LSRR: 17734 off = opt[IPOPT_OFFSET]; 17735 off--; 17736 if (optlen < IP_ADDR_LEN || 17737 off > optlen - IP_ADDR_LEN) { 17738 /* End of source route */ 17739 ip1dbg(("ip_rput_local_options: end of SR\n")); 17740 break; 17741 } 17742 /* 17743 * This will only happen if two consecutive entries 17744 * in the source route contains our address or if 17745 * it is a packet with a loose source route which 17746 * reaches us before consuming the whole source route 17747 */ 17748 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17749 if (optval == IPOPT_SSRR) { 17750 goto bad_src_route; 17751 } 17752 /* 17753 * Hack: instead of dropping the packet truncate the 17754 * source route to what has been used by filling the 17755 * rest with IPOPT_NOP. 17756 */ 17757 opt[IPOPT_OLEN] = (uint8_t)off; 17758 while (off < optlen) { 17759 opt[off++] = IPOPT_NOP; 17760 } 17761 break; 17762 case IPOPT_RR: 17763 off = opt[IPOPT_OFFSET]; 17764 off--; 17765 if (optlen < IP_ADDR_LEN || 17766 off > optlen - IP_ADDR_LEN) { 17767 /* No more room - ignore */ 17768 ip1dbg(( 17769 "ip_rput_local_options: end of RR\n")); 17770 break; 17771 } 17772 bcopy(&ire->ire_src_addr, (char *)opt + off, 17773 IP_ADDR_LEN); 17774 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17775 break; 17776 case IPOPT_TS: 17777 /* Insert timestamp if there is romm */ 17778 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17779 case IPOPT_TS_TSONLY: 17780 off = IPOPT_TS_TIMELEN; 17781 break; 17782 case IPOPT_TS_PRESPEC: 17783 case IPOPT_TS_PRESPEC_RFC791: 17784 /* Verify that the address matched */ 17785 off = opt[IPOPT_OFFSET] - 1; 17786 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17787 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17788 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17789 ipst); 17790 if (dst_ire == NULL) { 17791 /* Not for us */ 17792 break; 17793 } 17794 ire_refrele(dst_ire); 17795 /* FALLTHRU */ 17796 case IPOPT_TS_TSANDADDR: 17797 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17798 break; 17799 default: 17800 /* 17801 * ip_*put_options should have already 17802 * dropped this packet. 17803 */ 17804 cmn_err(CE_PANIC, "ip_rput_local_options: " 17805 "unknown IT - bug in ip_rput_options?\n"); 17806 return (B_TRUE); /* Keep "lint" happy */ 17807 } 17808 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17809 /* Increase overflow counter */ 17810 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17811 opt[IPOPT_POS_OV_FLG] = 17812 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17813 (off << 4)); 17814 break; 17815 } 17816 off = opt[IPOPT_OFFSET] - 1; 17817 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17818 case IPOPT_TS_PRESPEC: 17819 case IPOPT_TS_PRESPEC_RFC791: 17820 case IPOPT_TS_TSANDADDR: 17821 bcopy(&ire->ire_src_addr, (char *)opt + off, 17822 IP_ADDR_LEN); 17823 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17824 /* FALLTHRU */ 17825 case IPOPT_TS_TSONLY: 17826 off = opt[IPOPT_OFFSET] - 1; 17827 /* Compute # of milliseconds since midnight */ 17828 gethrestime(&now); 17829 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17830 now.tv_nsec / (NANOSEC / MILLISEC); 17831 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17832 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17833 break; 17834 } 17835 break; 17836 } 17837 } 17838 return (B_TRUE); 17839 17840 bad_src_route: 17841 q = WR(q); 17842 if (q->q_next != NULL) 17843 ill = q->q_ptr; 17844 else 17845 ill = NULL; 17846 17847 /* make sure we clear any indication of a hardware checksum */ 17848 DB_CKSUMFLAGS(mp) = 0; 17849 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17850 if (zoneid == ALL_ZONES) 17851 freemsg(mp); 17852 else 17853 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17854 return (B_FALSE); 17855 17856 } 17857 17858 /* 17859 * Process IP options in an inbound packet. If an option affects the 17860 * effective destination address, return the next hop address via dstp. 17861 * Returns -1 if something fails in which case an ICMP error has been sent 17862 * and mp freed. 17863 */ 17864 static int 17865 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17866 ip_stack_t *ipst) 17867 { 17868 ipoptp_t opts; 17869 uchar_t *opt; 17870 uint8_t optval; 17871 uint8_t optlen; 17872 ipaddr_t dst; 17873 intptr_t code = 0; 17874 ire_t *ire = NULL; 17875 zoneid_t zoneid; 17876 ill_t *ill; 17877 17878 ip2dbg(("ip_rput_options\n")); 17879 dst = ipha->ipha_dst; 17880 for (optval = ipoptp_first(&opts, ipha); 17881 optval != IPOPT_EOL; 17882 optval = ipoptp_next(&opts)) { 17883 opt = opts.ipoptp_cur; 17884 optlen = opts.ipoptp_len; 17885 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17886 optval, optlen)); 17887 /* 17888 * Note: we need to verify the checksum before we 17889 * modify anything thus this routine only extracts the next 17890 * hop dst from any source route. 17891 */ 17892 switch (optval) { 17893 uint32_t off; 17894 case IPOPT_SSRR: 17895 case IPOPT_LSRR: 17896 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17897 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17898 if (ire == NULL) { 17899 if (optval == IPOPT_SSRR) { 17900 ip1dbg(("ip_rput_options: not next" 17901 " strict source route 0x%x\n", 17902 ntohl(dst))); 17903 code = (char *)&ipha->ipha_dst - 17904 (char *)ipha; 17905 goto param_prob; /* RouterReq's */ 17906 } 17907 ip2dbg(("ip_rput_options: " 17908 "not next source route 0x%x\n", 17909 ntohl(dst))); 17910 break; 17911 } 17912 ire_refrele(ire); 17913 17914 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17915 ip1dbg(( 17916 "ip_rput_options: bad option offset\n")); 17917 code = (char *)&opt[IPOPT_OLEN] - 17918 (char *)ipha; 17919 goto param_prob; 17920 } 17921 off = opt[IPOPT_OFFSET]; 17922 off--; 17923 redo_srr: 17924 if (optlen < IP_ADDR_LEN || 17925 off > optlen - IP_ADDR_LEN) { 17926 /* End of source route */ 17927 ip1dbg(("ip_rput_options: end of SR\n")); 17928 break; 17929 } 17930 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17931 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17932 ntohl(dst))); 17933 17934 /* 17935 * Check if our address is present more than 17936 * once as consecutive hops in source route. 17937 * XXX verify per-interface ip_forwarding 17938 * for source route? 17939 */ 17940 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17941 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17942 17943 if (ire != NULL) { 17944 ire_refrele(ire); 17945 off += IP_ADDR_LEN; 17946 goto redo_srr; 17947 } 17948 17949 if (dst == htonl(INADDR_LOOPBACK)) { 17950 ip1dbg(("ip_rput_options: loopback addr in " 17951 "source route!\n")); 17952 goto bad_src_route; 17953 } 17954 /* 17955 * For strict: verify that dst is directly 17956 * reachable. 17957 */ 17958 if (optval == IPOPT_SSRR) { 17959 ire = ire_ftable_lookup(dst, 0, 0, 17960 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17961 MBLK_GETLABEL(mp), 17962 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17963 if (ire == NULL) { 17964 ip1dbg(("ip_rput_options: SSRR not " 17965 "directly reachable: 0x%x\n", 17966 ntohl(dst))); 17967 goto bad_src_route; 17968 } 17969 ire_refrele(ire); 17970 } 17971 /* 17972 * Defer update of the offset and the record route 17973 * until the packet is forwarded. 17974 */ 17975 break; 17976 case IPOPT_RR: 17977 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17978 ip1dbg(( 17979 "ip_rput_options: bad option offset\n")); 17980 code = (char *)&opt[IPOPT_OLEN] - 17981 (char *)ipha; 17982 goto param_prob; 17983 } 17984 break; 17985 case IPOPT_TS: 17986 /* 17987 * Verify that length >= 5 and that there is either 17988 * room for another timestamp or that the overflow 17989 * counter is not maxed out. 17990 */ 17991 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17992 if (optlen < IPOPT_MINLEN_IT) { 17993 goto param_prob; 17994 } 17995 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17996 ip1dbg(( 17997 "ip_rput_options: bad option offset\n")); 17998 code = (char *)&opt[IPOPT_OFFSET] - 17999 (char *)ipha; 18000 goto param_prob; 18001 } 18002 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18003 case IPOPT_TS_TSONLY: 18004 off = IPOPT_TS_TIMELEN; 18005 break; 18006 case IPOPT_TS_TSANDADDR: 18007 case IPOPT_TS_PRESPEC: 18008 case IPOPT_TS_PRESPEC_RFC791: 18009 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18010 break; 18011 default: 18012 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18013 (char *)ipha; 18014 goto param_prob; 18015 } 18016 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18017 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18018 /* 18019 * No room and the overflow counter is 15 18020 * already. 18021 */ 18022 goto param_prob; 18023 } 18024 break; 18025 } 18026 } 18027 18028 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18029 *dstp = dst; 18030 return (0); 18031 } 18032 18033 ip1dbg(("ip_rput_options: error processing IP options.")); 18034 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18035 18036 param_prob: 18037 q = WR(q); 18038 if (q->q_next != NULL) 18039 ill = q->q_ptr; 18040 else 18041 ill = NULL; 18042 18043 /* make sure we clear any indication of a hardware checksum */ 18044 DB_CKSUMFLAGS(mp) = 0; 18045 /* Don't know whether this is for non-global or global/forwarding */ 18046 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18047 if (zoneid == ALL_ZONES) 18048 freemsg(mp); 18049 else 18050 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18051 return (-1); 18052 18053 bad_src_route: 18054 q = WR(q); 18055 if (q->q_next != NULL) 18056 ill = q->q_ptr; 18057 else 18058 ill = NULL; 18059 18060 /* make sure we clear any indication of a hardware checksum */ 18061 DB_CKSUMFLAGS(mp) = 0; 18062 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18063 if (zoneid == ALL_ZONES) 18064 freemsg(mp); 18065 else 18066 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18067 return (-1); 18068 } 18069 18070 /* 18071 * IP & ICMP info in >=14 msg's ... 18072 * - ip fixed part (mib2_ip_t) 18073 * - icmp fixed part (mib2_icmp_t) 18074 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18075 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18076 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18077 * - ipRouteAttributeTable (ip 102) labeled routes 18078 * - ip multicast membership (ip_member_t) 18079 * - ip multicast source filtering (ip_grpsrc_t) 18080 * - igmp fixed part (struct igmpstat) 18081 * - multicast routing stats (struct mrtstat) 18082 * - multicast routing vifs (array of struct vifctl) 18083 * - multicast routing routes (array of struct mfcctl) 18084 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18085 * One per ill plus one generic 18086 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18087 * One per ill plus one generic 18088 * - ipv6RouteEntry all IPv6 IREs 18089 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18090 * - ipv6NetToMediaEntry all Neighbor Cache entries 18091 * - ipv6AddrEntry all IPv6 ipifs 18092 * - ipv6 multicast membership (ipv6_member_t) 18093 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18094 * 18095 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18096 * 18097 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18098 * already filled in by the caller. 18099 * Return value of 0 indicates that no messages were sent and caller 18100 * should free mpctl. 18101 */ 18102 int 18103 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18104 { 18105 ip_stack_t *ipst; 18106 sctp_stack_t *sctps; 18107 18108 if (q->q_next != NULL) { 18109 ipst = ILLQ_TO_IPST(q); 18110 } else { 18111 ipst = CONNQ_TO_IPST(q); 18112 } 18113 ASSERT(ipst != NULL); 18114 sctps = ipst->ips_netstack->netstack_sctp; 18115 18116 if (mpctl == NULL || mpctl->b_cont == NULL) { 18117 return (0); 18118 } 18119 18120 /* 18121 * For the purposes of the (broken) packet shell use 18122 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18123 * to make TCP and UDP appear first in the list of mib items. 18124 * TBD: We could expand this and use it in netstat so that 18125 * the kernel doesn't have to produce large tables (connections, 18126 * routes, etc) when netstat only wants the statistics or a particular 18127 * table. 18128 */ 18129 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18130 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18131 return (1); 18132 } 18133 } 18134 18135 if (level != MIB2_TCP) { 18136 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18137 return (1); 18138 } 18139 } 18140 18141 if (level != MIB2_UDP) { 18142 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18143 return (1); 18144 } 18145 } 18146 18147 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18148 ipst)) == NULL) { 18149 return (1); 18150 } 18151 18152 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18153 return (1); 18154 } 18155 18156 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18157 return (1); 18158 } 18159 18160 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18161 return (1); 18162 } 18163 18164 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18165 return (1); 18166 } 18167 18168 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18169 return (1); 18170 } 18171 18172 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18173 return (1); 18174 } 18175 18176 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18177 return (1); 18178 } 18179 18180 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18181 return (1); 18182 } 18183 18184 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18185 return (1); 18186 } 18187 18188 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18189 return (1); 18190 } 18191 18192 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18193 return (1); 18194 } 18195 18196 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18197 return (1); 18198 } 18199 18200 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18201 return (1); 18202 } 18203 18204 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18205 return (1); 18206 } 18207 18208 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18209 if (mpctl == NULL) { 18210 return (1); 18211 } 18212 18213 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18214 return (1); 18215 } 18216 freemsg(mpctl); 18217 return (1); 18218 } 18219 18220 18221 /* Get global (legacy) IPv4 statistics */ 18222 static mblk_t * 18223 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18224 ip_stack_t *ipst) 18225 { 18226 mib2_ip_t old_ip_mib; 18227 struct opthdr *optp; 18228 mblk_t *mp2ctl; 18229 18230 /* 18231 * make a copy of the original message 18232 */ 18233 mp2ctl = copymsg(mpctl); 18234 18235 /* fixed length IP structure... */ 18236 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18237 optp->level = MIB2_IP; 18238 optp->name = 0; 18239 SET_MIB(old_ip_mib.ipForwarding, 18240 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18241 SET_MIB(old_ip_mib.ipDefaultTTL, 18242 (uint32_t)ipst->ips_ip_def_ttl); 18243 SET_MIB(old_ip_mib.ipReasmTimeout, 18244 ipst->ips_ip_g_frag_timeout); 18245 SET_MIB(old_ip_mib.ipAddrEntrySize, 18246 sizeof (mib2_ipAddrEntry_t)); 18247 SET_MIB(old_ip_mib.ipRouteEntrySize, 18248 sizeof (mib2_ipRouteEntry_t)); 18249 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18250 sizeof (mib2_ipNetToMediaEntry_t)); 18251 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18252 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18253 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18254 sizeof (mib2_ipAttributeEntry_t)); 18255 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18256 18257 /* 18258 * Grab the statistics from the new IP MIB 18259 */ 18260 SET_MIB(old_ip_mib.ipInReceives, 18261 (uint32_t)ipmib->ipIfStatsHCInReceives); 18262 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18263 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18264 SET_MIB(old_ip_mib.ipForwDatagrams, 18265 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18266 SET_MIB(old_ip_mib.ipInUnknownProtos, 18267 ipmib->ipIfStatsInUnknownProtos); 18268 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18269 SET_MIB(old_ip_mib.ipInDelivers, 18270 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18271 SET_MIB(old_ip_mib.ipOutRequests, 18272 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18273 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18274 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18275 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18276 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18277 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18278 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18279 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18280 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18281 18282 /* ipRoutingDiscards is not being used */ 18283 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18284 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18285 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18286 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18287 SET_MIB(old_ip_mib.ipReasmDuplicates, 18288 ipmib->ipIfStatsReasmDuplicates); 18289 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18290 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18291 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18292 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18293 SET_MIB(old_ip_mib.rawipInOverflows, 18294 ipmib->rawipIfStatsInOverflows); 18295 18296 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18297 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18298 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18299 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18300 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18301 ipmib->ipIfStatsOutSwitchIPVersion); 18302 18303 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18304 (int)sizeof (old_ip_mib))) { 18305 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18306 (uint_t)sizeof (old_ip_mib))); 18307 } 18308 18309 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18310 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18311 (int)optp->level, (int)optp->name, (int)optp->len)); 18312 qreply(q, mpctl); 18313 return (mp2ctl); 18314 } 18315 18316 /* Per interface IPv4 statistics */ 18317 static mblk_t * 18318 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18319 { 18320 struct opthdr *optp; 18321 mblk_t *mp2ctl; 18322 ill_t *ill; 18323 ill_walk_context_t ctx; 18324 mblk_t *mp_tail = NULL; 18325 mib2_ipIfStatsEntry_t global_ip_mib; 18326 18327 /* 18328 * Make a copy of the original message 18329 */ 18330 mp2ctl = copymsg(mpctl); 18331 18332 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18333 optp->level = MIB2_IP; 18334 optp->name = MIB2_IP_TRAFFIC_STATS; 18335 /* Include "unknown interface" ip_mib */ 18336 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18337 ipst->ips_ip_mib.ipIfStatsIfIndex = 18338 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18339 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18340 (ipst->ips_ip_g_forward ? 1 : 2)); 18341 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18342 (uint32_t)ipst->ips_ip_def_ttl); 18343 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18344 sizeof (mib2_ipIfStatsEntry_t)); 18345 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18346 sizeof (mib2_ipAddrEntry_t)); 18347 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18348 sizeof (mib2_ipRouteEntry_t)); 18349 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18350 sizeof (mib2_ipNetToMediaEntry_t)); 18351 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18352 sizeof (ip_member_t)); 18353 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18354 sizeof (ip_grpsrc_t)); 18355 18356 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18357 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18358 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18359 "failed to allocate %u bytes\n", 18360 (uint_t)sizeof (ipst->ips_ip_mib))); 18361 } 18362 18363 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18364 18365 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18366 ill = ILL_START_WALK_V4(&ctx, ipst); 18367 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18368 ill->ill_ip_mib->ipIfStatsIfIndex = 18369 ill->ill_phyint->phyint_ifindex; 18370 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18371 (ipst->ips_ip_g_forward ? 1 : 2)); 18372 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18373 (uint32_t)ipst->ips_ip_def_ttl); 18374 18375 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18376 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18377 (char *)ill->ill_ip_mib, 18378 (int)sizeof (*ill->ill_ip_mib))) { 18379 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18380 "failed to allocate %u bytes\n", 18381 (uint_t)sizeof (*ill->ill_ip_mib))); 18382 } 18383 } 18384 rw_exit(&ipst->ips_ill_g_lock); 18385 18386 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18387 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18388 "level %d, name %d, len %d\n", 18389 (int)optp->level, (int)optp->name, (int)optp->len)); 18390 qreply(q, mpctl); 18391 18392 if (mp2ctl == NULL) 18393 return (NULL); 18394 18395 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18396 } 18397 18398 /* Global IPv4 ICMP statistics */ 18399 static mblk_t * 18400 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18401 { 18402 struct opthdr *optp; 18403 mblk_t *mp2ctl; 18404 18405 /* 18406 * Make a copy of the original message 18407 */ 18408 mp2ctl = copymsg(mpctl); 18409 18410 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18411 optp->level = MIB2_ICMP; 18412 optp->name = 0; 18413 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18414 (int)sizeof (ipst->ips_icmp_mib))) { 18415 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18416 (uint_t)sizeof (ipst->ips_icmp_mib))); 18417 } 18418 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18419 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18420 (int)optp->level, (int)optp->name, (int)optp->len)); 18421 qreply(q, mpctl); 18422 return (mp2ctl); 18423 } 18424 18425 /* Global IPv4 IGMP statistics */ 18426 static mblk_t * 18427 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18428 { 18429 struct opthdr *optp; 18430 mblk_t *mp2ctl; 18431 18432 /* 18433 * make a copy of the original message 18434 */ 18435 mp2ctl = copymsg(mpctl); 18436 18437 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18438 optp->level = EXPER_IGMP; 18439 optp->name = 0; 18440 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18441 (int)sizeof (ipst->ips_igmpstat))) { 18442 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18443 (uint_t)sizeof (ipst->ips_igmpstat))); 18444 } 18445 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18446 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18447 (int)optp->level, (int)optp->name, (int)optp->len)); 18448 qreply(q, mpctl); 18449 return (mp2ctl); 18450 } 18451 18452 /* Global IPv4 Multicast Routing statistics */ 18453 static mblk_t * 18454 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18455 { 18456 struct opthdr *optp; 18457 mblk_t *mp2ctl; 18458 18459 /* 18460 * make a copy of the original message 18461 */ 18462 mp2ctl = copymsg(mpctl); 18463 18464 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18465 optp->level = EXPER_DVMRP; 18466 optp->name = 0; 18467 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18468 ip0dbg(("ip_mroute_stats: failed\n")); 18469 } 18470 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18471 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18472 (int)optp->level, (int)optp->name, (int)optp->len)); 18473 qreply(q, mpctl); 18474 return (mp2ctl); 18475 } 18476 18477 /* IPv4 address information */ 18478 static mblk_t * 18479 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18480 { 18481 struct opthdr *optp; 18482 mblk_t *mp2ctl; 18483 mblk_t *mp_tail = NULL; 18484 ill_t *ill; 18485 ipif_t *ipif; 18486 uint_t bitval; 18487 mib2_ipAddrEntry_t mae; 18488 zoneid_t zoneid; 18489 ill_walk_context_t ctx; 18490 18491 /* 18492 * make a copy of the original message 18493 */ 18494 mp2ctl = copymsg(mpctl); 18495 18496 /* ipAddrEntryTable */ 18497 18498 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18499 optp->level = MIB2_IP; 18500 optp->name = MIB2_IP_ADDR; 18501 zoneid = Q_TO_CONN(q)->conn_zoneid; 18502 18503 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18504 ill = ILL_START_WALK_V4(&ctx, ipst); 18505 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18506 for (ipif = ill->ill_ipif; ipif != NULL; 18507 ipif = ipif->ipif_next) { 18508 if (ipif->ipif_zoneid != zoneid && 18509 ipif->ipif_zoneid != ALL_ZONES) 18510 continue; 18511 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18512 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18513 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18514 18515 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18516 OCTET_LENGTH); 18517 mae.ipAdEntIfIndex.o_length = 18518 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18519 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18520 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18521 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18522 mae.ipAdEntInfo.ae_subnet_len = 18523 ip_mask_to_plen(ipif->ipif_net_mask); 18524 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18525 for (bitval = 1; 18526 bitval && 18527 !(bitval & ipif->ipif_brd_addr); 18528 bitval <<= 1) 18529 noop; 18530 mae.ipAdEntBcastAddr = bitval; 18531 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18532 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18533 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18534 mae.ipAdEntInfo.ae_broadcast_addr = 18535 ipif->ipif_brd_addr; 18536 mae.ipAdEntInfo.ae_pp_dst_addr = 18537 ipif->ipif_pp_dst_addr; 18538 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18539 ill->ill_flags | ill->ill_phyint->phyint_flags; 18540 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18541 18542 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18543 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18544 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18545 "allocate %u bytes\n", 18546 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18547 } 18548 } 18549 } 18550 rw_exit(&ipst->ips_ill_g_lock); 18551 18552 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18553 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18554 (int)optp->level, (int)optp->name, (int)optp->len)); 18555 qreply(q, mpctl); 18556 return (mp2ctl); 18557 } 18558 18559 /* IPv6 address information */ 18560 static mblk_t * 18561 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18562 { 18563 struct opthdr *optp; 18564 mblk_t *mp2ctl; 18565 mblk_t *mp_tail = NULL; 18566 ill_t *ill; 18567 ipif_t *ipif; 18568 mib2_ipv6AddrEntry_t mae6; 18569 zoneid_t zoneid; 18570 ill_walk_context_t ctx; 18571 18572 /* 18573 * make a copy of the original message 18574 */ 18575 mp2ctl = copymsg(mpctl); 18576 18577 /* ipv6AddrEntryTable */ 18578 18579 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18580 optp->level = MIB2_IP6; 18581 optp->name = MIB2_IP6_ADDR; 18582 zoneid = Q_TO_CONN(q)->conn_zoneid; 18583 18584 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18585 ill = ILL_START_WALK_V6(&ctx, ipst); 18586 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18587 for (ipif = ill->ill_ipif; ipif != NULL; 18588 ipif = ipif->ipif_next) { 18589 if (ipif->ipif_zoneid != zoneid && 18590 ipif->ipif_zoneid != ALL_ZONES) 18591 continue; 18592 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18593 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18594 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18595 18596 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18597 OCTET_LENGTH); 18598 mae6.ipv6AddrIfIndex.o_length = 18599 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18600 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18601 mae6.ipv6AddrPfxLength = 18602 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18603 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18604 mae6.ipv6AddrInfo.ae_subnet_len = 18605 mae6.ipv6AddrPfxLength; 18606 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18607 18608 /* Type: stateless(1), stateful(2), unknown(3) */ 18609 if (ipif->ipif_flags & IPIF_ADDRCONF) 18610 mae6.ipv6AddrType = 1; 18611 else 18612 mae6.ipv6AddrType = 2; 18613 /* Anycast: true(1), false(2) */ 18614 if (ipif->ipif_flags & IPIF_ANYCAST) 18615 mae6.ipv6AddrAnycastFlag = 1; 18616 else 18617 mae6.ipv6AddrAnycastFlag = 2; 18618 18619 /* 18620 * Address status: preferred(1), deprecated(2), 18621 * invalid(3), inaccessible(4), unknown(5) 18622 */ 18623 if (ipif->ipif_flags & IPIF_NOLOCAL) 18624 mae6.ipv6AddrStatus = 3; 18625 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18626 mae6.ipv6AddrStatus = 2; 18627 else 18628 mae6.ipv6AddrStatus = 1; 18629 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18630 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18631 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18632 ipif->ipif_v6pp_dst_addr; 18633 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18634 ill->ill_flags | ill->ill_phyint->phyint_flags; 18635 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18636 mae6.ipv6AddrIdentifier = ill->ill_token; 18637 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18638 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18639 mae6.ipv6AddrRetransmitTime = 18640 ill->ill_reachable_retrans_time; 18641 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18642 (char *)&mae6, 18643 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18644 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18645 "allocate %u bytes\n", 18646 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18647 } 18648 } 18649 } 18650 rw_exit(&ipst->ips_ill_g_lock); 18651 18652 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18653 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18654 (int)optp->level, (int)optp->name, (int)optp->len)); 18655 qreply(q, mpctl); 18656 return (mp2ctl); 18657 } 18658 18659 /* IPv4 multicast group membership. */ 18660 static mblk_t * 18661 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18662 { 18663 struct opthdr *optp; 18664 mblk_t *mp2ctl; 18665 ill_t *ill; 18666 ipif_t *ipif; 18667 ilm_t *ilm; 18668 ip_member_t ipm; 18669 mblk_t *mp_tail = NULL; 18670 ill_walk_context_t ctx; 18671 zoneid_t zoneid; 18672 18673 /* 18674 * make a copy of the original message 18675 */ 18676 mp2ctl = copymsg(mpctl); 18677 zoneid = Q_TO_CONN(q)->conn_zoneid; 18678 18679 /* ipGroupMember table */ 18680 optp = (struct opthdr *)&mpctl->b_rptr[ 18681 sizeof (struct T_optmgmt_ack)]; 18682 optp->level = MIB2_IP; 18683 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18684 18685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18686 ill = ILL_START_WALK_V4(&ctx, ipst); 18687 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18688 ILM_WALKER_HOLD(ill); 18689 for (ipif = ill->ill_ipif; ipif != NULL; 18690 ipif = ipif->ipif_next) { 18691 if (ipif->ipif_zoneid != zoneid && 18692 ipif->ipif_zoneid != ALL_ZONES) 18693 continue; /* not this zone */ 18694 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18695 OCTET_LENGTH); 18696 ipm.ipGroupMemberIfIndex.o_length = 18697 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18698 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18699 ASSERT(ilm->ilm_ipif != NULL); 18700 ASSERT(ilm->ilm_ill == NULL); 18701 if (ilm->ilm_ipif != ipif) 18702 continue; 18703 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18704 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18705 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18706 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18707 (char *)&ipm, (int)sizeof (ipm))) { 18708 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18709 "failed to allocate %u bytes\n", 18710 (uint_t)sizeof (ipm))); 18711 } 18712 } 18713 } 18714 ILM_WALKER_RELE(ill); 18715 } 18716 rw_exit(&ipst->ips_ill_g_lock); 18717 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18718 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18719 (int)optp->level, (int)optp->name, (int)optp->len)); 18720 qreply(q, mpctl); 18721 return (mp2ctl); 18722 } 18723 18724 /* IPv6 multicast group membership. */ 18725 static mblk_t * 18726 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18727 { 18728 struct opthdr *optp; 18729 mblk_t *mp2ctl; 18730 ill_t *ill; 18731 ilm_t *ilm; 18732 ipv6_member_t ipm6; 18733 mblk_t *mp_tail = NULL; 18734 ill_walk_context_t ctx; 18735 zoneid_t zoneid; 18736 18737 /* 18738 * make a copy of the original message 18739 */ 18740 mp2ctl = copymsg(mpctl); 18741 zoneid = Q_TO_CONN(q)->conn_zoneid; 18742 18743 /* ip6GroupMember table */ 18744 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18745 optp->level = MIB2_IP6; 18746 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18747 18748 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18749 ill = ILL_START_WALK_V6(&ctx, ipst); 18750 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18751 ILM_WALKER_HOLD(ill); 18752 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18753 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18754 ASSERT(ilm->ilm_ipif == NULL); 18755 ASSERT(ilm->ilm_ill != NULL); 18756 if (ilm->ilm_zoneid != zoneid) 18757 continue; /* not this zone */ 18758 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18759 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18760 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18761 if (!snmp_append_data2(mpctl->b_cont, 18762 &mp_tail, 18763 (char *)&ipm6, (int)sizeof (ipm6))) { 18764 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18765 "failed to allocate %u bytes\n", 18766 (uint_t)sizeof (ipm6))); 18767 } 18768 } 18769 ILM_WALKER_RELE(ill); 18770 } 18771 rw_exit(&ipst->ips_ill_g_lock); 18772 18773 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18774 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18775 (int)optp->level, (int)optp->name, (int)optp->len)); 18776 qreply(q, mpctl); 18777 return (mp2ctl); 18778 } 18779 18780 /* IP multicast filtered sources */ 18781 static mblk_t * 18782 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18783 { 18784 struct opthdr *optp; 18785 mblk_t *mp2ctl; 18786 ill_t *ill; 18787 ipif_t *ipif; 18788 ilm_t *ilm; 18789 ip_grpsrc_t ips; 18790 mblk_t *mp_tail = NULL; 18791 ill_walk_context_t ctx; 18792 zoneid_t zoneid; 18793 int i; 18794 slist_t *sl; 18795 18796 /* 18797 * make a copy of the original message 18798 */ 18799 mp2ctl = copymsg(mpctl); 18800 zoneid = Q_TO_CONN(q)->conn_zoneid; 18801 18802 /* ipGroupSource table */ 18803 optp = (struct opthdr *)&mpctl->b_rptr[ 18804 sizeof (struct T_optmgmt_ack)]; 18805 optp->level = MIB2_IP; 18806 optp->name = EXPER_IP_GROUP_SOURCES; 18807 18808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18809 ill = ILL_START_WALK_V4(&ctx, ipst); 18810 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18811 ILM_WALKER_HOLD(ill); 18812 for (ipif = ill->ill_ipif; ipif != NULL; 18813 ipif = ipif->ipif_next) { 18814 if (ipif->ipif_zoneid != zoneid) 18815 continue; /* not this zone */ 18816 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18817 OCTET_LENGTH); 18818 ips.ipGroupSourceIfIndex.o_length = 18819 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18820 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18821 ASSERT(ilm->ilm_ipif != NULL); 18822 ASSERT(ilm->ilm_ill == NULL); 18823 sl = ilm->ilm_filter; 18824 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18825 continue; 18826 ips.ipGroupSourceGroup = ilm->ilm_addr; 18827 for (i = 0; i < sl->sl_numsrc; i++) { 18828 if (!IN6_IS_ADDR_V4MAPPED( 18829 &sl->sl_addr[i])) 18830 continue; 18831 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18832 ips.ipGroupSourceAddress); 18833 if (snmp_append_data2(mpctl->b_cont, 18834 &mp_tail, (char *)&ips, 18835 (int)sizeof (ips)) == 0) { 18836 ip1dbg(("ip_snmp_get_mib2_" 18837 "ip_group_src: failed to " 18838 "allocate %u bytes\n", 18839 (uint_t)sizeof (ips))); 18840 } 18841 } 18842 } 18843 } 18844 ILM_WALKER_RELE(ill); 18845 } 18846 rw_exit(&ipst->ips_ill_g_lock); 18847 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18848 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18849 (int)optp->level, (int)optp->name, (int)optp->len)); 18850 qreply(q, mpctl); 18851 return (mp2ctl); 18852 } 18853 18854 /* IPv6 multicast filtered sources. */ 18855 static mblk_t * 18856 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18857 { 18858 struct opthdr *optp; 18859 mblk_t *mp2ctl; 18860 ill_t *ill; 18861 ilm_t *ilm; 18862 ipv6_grpsrc_t ips6; 18863 mblk_t *mp_tail = NULL; 18864 ill_walk_context_t ctx; 18865 zoneid_t zoneid; 18866 int i; 18867 slist_t *sl; 18868 18869 /* 18870 * make a copy of the original message 18871 */ 18872 mp2ctl = copymsg(mpctl); 18873 zoneid = Q_TO_CONN(q)->conn_zoneid; 18874 18875 /* ip6GroupMember table */ 18876 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18877 optp->level = MIB2_IP6; 18878 optp->name = EXPER_IP6_GROUP_SOURCES; 18879 18880 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18881 ill = ILL_START_WALK_V6(&ctx, ipst); 18882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18883 ILM_WALKER_HOLD(ill); 18884 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18885 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18886 ASSERT(ilm->ilm_ipif == NULL); 18887 ASSERT(ilm->ilm_ill != NULL); 18888 sl = ilm->ilm_filter; 18889 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18890 continue; 18891 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18892 for (i = 0; i < sl->sl_numsrc; i++) { 18893 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18894 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18895 (char *)&ips6, (int)sizeof (ips6))) { 18896 ip1dbg(("ip_snmp_get_mib2_ip6_" 18897 "group_src: failed to allocate " 18898 "%u bytes\n", 18899 (uint_t)sizeof (ips6))); 18900 } 18901 } 18902 } 18903 ILM_WALKER_RELE(ill); 18904 } 18905 rw_exit(&ipst->ips_ill_g_lock); 18906 18907 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18908 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18909 (int)optp->level, (int)optp->name, (int)optp->len)); 18910 qreply(q, mpctl); 18911 return (mp2ctl); 18912 } 18913 18914 /* Multicast routing virtual interface table. */ 18915 static mblk_t * 18916 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18917 { 18918 struct opthdr *optp; 18919 mblk_t *mp2ctl; 18920 18921 /* 18922 * make a copy of the original message 18923 */ 18924 mp2ctl = copymsg(mpctl); 18925 18926 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18927 optp->level = EXPER_DVMRP; 18928 optp->name = EXPER_DVMRP_VIF; 18929 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18930 ip0dbg(("ip_mroute_vif: failed\n")); 18931 } 18932 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18933 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18934 (int)optp->level, (int)optp->name, (int)optp->len)); 18935 qreply(q, mpctl); 18936 return (mp2ctl); 18937 } 18938 18939 /* Multicast routing table. */ 18940 static mblk_t * 18941 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18942 { 18943 struct opthdr *optp; 18944 mblk_t *mp2ctl; 18945 18946 /* 18947 * make a copy of the original message 18948 */ 18949 mp2ctl = copymsg(mpctl); 18950 18951 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18952 optp->level = EXPER_DVMRP; 18953 optp->name = EXPER_DVMRP_MRT; 18954 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18955 ip0dbg(("ip_mroute_mrt: failed\n")); 18956 } 18957 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18958 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18959 (int)optp->level, (int)optp->name, (int)optp->len)); 18960 qreply(q, mpctl); 18961 return (mp2ctl); 18962 } 18963 18964 /* 18965 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18966 * in one IRE walk. 18967 */ 18968 static mblk_t * 18969 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18970 { 18971 struct opthdr *optp; 18972 mblk_t *mp2ctl; /* Returned */ 18973 mblk_t *mp3ctl; /* nettomedia */ 18974 mblk_t *mp4ctl; /* routeattrs */ 18975 iproutedata_t ird; 18976 zoneid_t zoneid; 18977 18978 /* 18979 * make copies of the original message 18980 * - mp2ctl is returned unchanged to the caller for his use 18981 * - mpctl is sent upstream as ipRouteEntryTable 18982 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18983 * - mp4ctl is sent upstream as ipRouteAttributeTable 18984 */ 18985 mp2ctl = copymsg(mpctl); 18986 mp3ctl = copymsg(mpctl); 18987 mp4ctl = copymsg(mpctl); 18988 if (mp3ctl == NULL || mp4ctl == NULL) { 18989 freemsg(mp4ctl); 18990 freemsg(mp3ctl); 18991 freemsg(mp2ctl); 18992 freemsg(mpctl); 18993 return (NULL); 18994 } 18995 18996 bzero(&ird, sizeof (ird)); 18997 18998 ird.ird_route.lp_head = mpctl->b_cont; 18999 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19000 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19001 19002 zoneid = Q_TO_CONN(q)->conn_zoneid; 19003 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19004 19005 /* ipRouteEntryTable in mpctl */ 19006 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19007 optp->level = MIB2_IP; 19008 optp->name = MIB2_IP_ROUTE; 19009 optp->len = msgdsize(ird.ird_route.lp_head); 19010 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19011 (int)optp->level, (int)optp->name, (int)optp->len)); 19012 qreply(q, mpctl); 19013 19014 /* ipNetToMediaEntryTable in mp3ctl */ 19015 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19016 optp->level = MIB2_IP; 19017 optp->name = MIB2_IP_MEDIA; 19018 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19019 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19020 (int)optp->level, (int)optp->name, (int)optp->len)); 19021 qreply(q, mp3ctl); 19022 19023 /* ipRouteAttributeTable in mp4ctl */ 19024 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19025 optp->level = MIB2_IP; 19026 optp->name = EXPER_IP_RTATTR; 19027 optp->len = msgdsize(ird.ird_attrs.lp_head); 19028 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19029 (int)optp->level, (int)optp->name, (int)optp->len)); 19030 if (optp->len == 0) 19031 freemsg(mp4ctl); 19032 else 19033 qreply(q, mp4ctl); 19034 19035 return (mp2ctl); 19036 } 19037 19038 /* 19039 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19040 * ipv6NetToMediaEntryTable in an NDP walk. 19041 */ 19042 static mblk_t * 19043 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19044 { 19045 struct opthdr *optp; 19046 mblk_t *mp2ctl; /* Returned */ 19047 mblk_t *mp3ctl; /* nettomedia */ 19048 mblk_t *mp4ctl; /* routeattrs */ 19049 iproutedata_t ird; 19050 zoneid_t zoneid; 19051 19052 /* 19053 * make copies of the original message 19054 * - mp2ctl is returned unchanged to the caller for his use 19055 * - mpctl is sent upstream as ipv6RouteEntryTable 19056 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19057 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19058 */ 19059 mp2ctl = copymsg(mpctl); 19060 mp3ctl = copymsg(mpctl); 19061 mp4ctl = copymsg(mpctl); 19062 if (mp3ctl == NULL || mp4ctl == NULL) { 19063 freemsg(mp4ctl); 19064 freemsg(mp3ctl); 19065 freemsg(mp2ctl); 19066 freemsg(mpctl); 19067 return (NULL); 19068 } 19069 19070 bzero(&ird, sizeof (ird)); 19071 19072 ird.ird_route.lp_head = mpctl->b_cont; 19073 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19074 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19075 19076 zoneid = Q_TO_CONN(q)->conn_zoneid; 19077 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19078 19079 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19080 optp->level = MIB2_IP6; 19081 optp->name = MIB2_IP6_ROUTE; 19082 optp->len = msgdsize(ird.ird_route.lp_head); 19083 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19084 (int)optp->level, (int)optp->name, (int)optp->len)); 19085 qreply(q, mpctl); 19086 19087 /* ipv6NetToMediaEntryTable in mp3ctl */ 19088 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19089 19090 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19091 optp->level = MIB2_IP6; 19092 optp->name = MIB2_IP6_MEDIA; 19093 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19094 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19095 (int)optp->level, (int)optp->name, (int)optp->len)); 19096 qreply(q, mp3ctl); 19097 19098 /* ipv6RouteAttributeTable in mp4ctl */ 19099 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19100 optp->level = MIB2_IP6; 19101 optp->name = EXPER_IP_RTATTR; 19102 optp->len = msgdsize(ird.ird_attrs.lp_head); 19103 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19104 (int)optp->level, (int)optp->name, (int)optp->len)); 19105 if (optp->len == 0) 19106 freemsg(mp4ctl); 19107 else 19108 qreply(q, mp4ctl); 19109 19110 return (mp2ctl); 19111 } 19112 19113 /* 19114 * IPv6 mib: One per ill 19115 */ 19116 static mblk_t * 19117 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19118 { 19119 struct opthdr *optp; 19120 mblk_t *mp2ctl; 19121 ill_t *ill; 19122 ill_walk_context_t ctx; 19123 mblk_t *mp_tail = NULL; 19124 19125 /* 19126 * Make a copy of the original message 19127 */ 19128 mp2ctl = copymsg(mpctl); 19129 19130 /* fixed length IPv6 structure ... */ 19131 19132 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19133 optp->level = MIB2_IP6; 19134 optp->name = 0; 19135 /* Include "unknown interface" ip6_mib */ 19136 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19137 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19138 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19139 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19140 ipst->ips_ipv6_forward ? 1 : 2); 19141 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19142 ipst->ips_ipv6_def_hops); 19143 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19144 sizeof (mib2_ipIfStatsEntry_t)); 19145 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19146 sizeof (mib2_ipv6AddrEntry_t)); 19147 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19148 sizeof (mib2_ipv6RouteEntry_t)); 19149 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19150 sizeof (mib2_ipv6NetToMediaEntry_t)); 19151 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19152 sizeof (ipv6_member_t)); 19153 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19154 sizeof (ipv6_grpsrc_t)); 19155 19156 /* 19157 * Synchronize 64- and 32-bit counters 19158 */ 19159 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19160 ipIfStatsHCInReceives); 19161 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19162 ipIfStatsHCInDelivers); 19163 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19164 ipIfStatsHCOutRequests); 19165 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19166 ipIfStatsHCOutForwDatagrams); 19167 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19168 ipIfStatsHCOutMcastPkts); 19169 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19170 ipIfStatsHCInMcastPkts); 19171 19172 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19173 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19174 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19175 (uint_t)sizeof (ipst->ips_ip6_mib))); 19176 } 19177 19178 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19179 ill = ILL_START_WALK_V6(&ctx, ipst); 19180 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19181 ill->ill_ip_mib->ipIfStatsIfIndex = 19182 ill->ill_phyint->phyint_ifindex; 19183 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19184 ipst->ips_ipv6_forward ? 1 : 2); 19185 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19186 ill->ill_max_hops); 19187 19188 /* 19189 * Synchronize 64- and 32-bit counters 19190 */ 19191 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19192 ipIfStatsHCInReceives); 19193 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19194 ipIfStatsHCInDelivers); 19195 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19196 ipIfStatsHCOutRequests); 19197 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19198 ipIfStatsHCOutForwDatagrams); 19199 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19200 ipIfStatsHCOutMcastPkts); 19201 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19202 ipIfStatsHCInMcastPkts); 19203 19204 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19205 (char *)ill->ill_ip_mib, 19206 (int)sizeof (*ill->ill_ip_mib))) { 19207 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19208 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19209 } 19210 } 19211 rw_exit(&ipst->ips_ill_g_lock); 19212 19213 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19214 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19215 (int)optp->level, (int)optp->name, (int)optp->len)); 19216 qreply(q, mpctl); 19217 return (mp2ctl); 19218 } 19219 19220 /* 19221 * ICMPv6 mib: One per ill 19222 */ 19223 static mblk_t * 19224 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19225 { 19226 struct opthdr *optp; 19227 mblk_t *mp2ctl; 19228 ill_t *ill; 19229 ill_walk_context_t ctx; 19230 mblk_t *mp_tail = NULL; 19231 /* 19232 * Make a copy of the original message 19233 */ 19234 mp2ctl = copymsg(mpctl); 19235 19236 /* fixed length ICMPv6 structure ... */ 19237 19238 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19239 optp->level = MIB2_ICMP6; 19240 optp->name = 0; 19241 /* Include "unknown interface" icmp6_mib */ 19242 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19243 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19244 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19245 sizeof (mib2_ipv6IfIcmpEntry_t); 19246 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19247 (char *)&ipst->ips_icmp6_mib, 19248 (int)sizeof (ipst->ips_icmp6_mib))) { 19249 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19250 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19251 } 19252 19253 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19254 ill = ILL_START_WALK_V6(&ctx, ipst); 19255 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19256 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19257 ill->ill_phyint->phyint_ifindex; 19258 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19259 (char *)ill->ill_icmp6_mib, 19260 (int)sizeof (*ill->ill_icmp6_mib))) { 19261 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19262 "%u bytes\n", 19263 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19264 } 19265 } 19266 rw_exit(&ipst->ips_ill_g_lock); 19267 19268 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19269 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19270 (int)optp->level, (int)optp->name, (int)optp->len)); 19271 qreply(q, mpctl); 19272 return (mp2ctl); 19273 } 19274 19275 /* 19276 * ire_walk routine to create both ipRouteEntryTable and 19277 * ipRouteAttributeTable in one IRE walk 19278 */ 19279 static void 19280 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19281 { 19282 ill_t *ill; 19283 ipif_t *ipif; 19284 mib2_ipRouteEntry_t *re; 19285 mib2_ipAttributeEntry_t *iae, *iaeptr; 19286 ipaddr_t gw_addr; 19287 tsol_ire_gw_secattr_t *attrp; 19288 tsol_gc_t *gc = NULL; 19289 tsol_gcgrp_t *gcgrp = NULL; 19290 uint_t sacnt = 0; 19291 int i; 19292 19293 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19294 19295 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19296 return; 19297 19298 if ((attrp = ire->ire_gw_secattr) != NULL) { 19299 mutex_enter(&attrp->igsa_lock); 19300 if ((gc = attrp->igsa_gc) != NULL) { 19301 gcgrp = gc->gc_grp; 19302 ASSERT(gcgrp != NULL); 19303 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19304 sacnt = 1; 19305 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19306 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19307 gc = gcgrp->gcgrp_head; 19308 sacnt = gcgrp->gcgrp_count; 19309 } 19310 mutex_exit(&attrp->igsa_lock); 19311 19312 /* do nothing if there's no gc to report */ 19313 if (gc == NULL) { 19314 ASSERT(sacnt == 0); 19315 if (gcgrp != NULL) { 19316 /* we might as well drop the lock now */ 19317 rw_exit(&gcgrp->gcgrp_rwlock); 19318 gcgrp = NULL; 19319 } 19320 attrp = NULL; 19321 } 19322 19323 ASSERT(gc == NULL || (gcgrp != NULL && 19324 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19325 } 19326 ASSERT(sacnt == 0 || gc != NULL); 19327 19328 if (sacnt != 0 && 19329 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19330 kmem_free(re, sizeof (*re)); 19331 rw_exit(&gcgrp->gcgrp_rwlock); 19332 return; 19333 } 19334 19335 /* 19336 * Return all IRE types for route table... let caller pick and choose 19337 */ 19338 re->ipRouteDest = ire->ire_addr; 19339 ipif = ire->ire_ipif; 19340 re->ipRouteIfIndex.o_length = 0; 19341 if (ire->ire_type == IRE_CACHE) { 19342 ill = (ill_t *)ire->ire_stq->q_ptr; 19343 re->ipRouteIfIndex.o_length = 19344 ill->ill_name_length == 0 ? 0 : 19345 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19346 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19347 re->ipRouteIfIndex.o_length); 19348 } else if (ipif != NULL) { 19349 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19350 re->ipRouteIfIndex.o_length = 19351 mi_strlen(re->ipRouteIfIndex.o_bytes); 19352 } 19353 re->ipRouteMetric1 = -1; 19354 re->ipRouteMetric2 = -1; 19355 re->ipRouteMetric3 = -1; 19356 re->ipRouteMetric4 = -1; 19357 19358 gw_addr = ire->ire_gateway_addr; 19359 19360 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19361 re->ipRouteNextHop = ire->ire_src_addr; 19362 else 19363 re->ipRouteNextHop = gw_addr; 19364 /* indirect(4), direct(3), or invalid(2) */ 19365 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19366 re->ipRouteType = 2; 19367 else 19368 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19369 re->ipRouteProto = -1; 19370 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19371 re->ipRouteMask = ire->ire_mask; 19372 re->ipRouteMetric5 = -1; 19373 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19374 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19375 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19376 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19377 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19378 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19379 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19380 re->ipRouteInfo.re_flags = ire->ire_flags; 19381 19382 if (ire->ire_flags & RTF_DYNAMIC) { 19383 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19384 } else { 19385 re->ipRouteInfo.re_ire_type = ire->ire_type; 19386 } 19387 19388 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19389 (char *)re, (int)sizeof (*re))) { 19390 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19391 (uint_t)sizeof (*re))); 19392 } 19393 19394 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19395 iaeptr->iae_routeidx = ird->ird_idx; 19396 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19397 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19398 } 19399 19400 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19401 (char *)iae, sacnt * sizeof (*iae))) { 19402 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19403 (unsigned)(sacnt * sizeof (*iae)))); 19404 } 19405 19406 /* bump route index for next pass */ 19407 ird->ird_idx++; 19408 19409 kmem_free(re, sizeof (*re)); 19410 if (sacnt != 0) 19411 kmem_free(iae, sacnt * sizeof (*iae)); 19412 19413 if (gcgrp != NULL) 19414 rw_exit(&gcgrp->gcgrp_rwlock); 19415 } 19416 19417 /* 19418 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19419 */ 19420 static void 19421 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19422 { 19423 ill_t *ill; 19424 ipif_t *ipif; 19425 mib2_ipv6RouteEntry_t *re; 19426 mib2_ipAttributeEntry_t *iae, *iaeptr; 19427 in6_addr_t gw_addr_v6; 19428 tsol_ire_gw_secattr_t *attrp; 19429 tsol_gc_t *gc = NULL; 19430 tsol_gcgrp_t *gcgrp = NULL; 19431 uint_t sacnt = 0; 19432 int i; 19433 19434 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19435 19436 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19437 return; 19438 19439 if ((attrp = ire->ire_gw_secattr) != NULL) { 19440 mutex_enter(&attrp->igsa_lock); 19441 if ((gc = attrp->igsa_gc) != NULL) { 19442 gcgrp = gc->gc_grp; 19443 ASSERT(gcgrp != NULL); 19444 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19445 sacnt = 1; 19446 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19447 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19448 gc = gcgrp->gcgrp_head; 19449 sacnt = gcgrp->gcgrp_count; 19450 } 19451 mutex_exit(&attrp->igsa_lock); 19452 19453 /* do nothing if there's no gc to report */ 19454 if (gc == NULL) { 19455 ASSERT(sacnt == 0); 19456 if (gcgrp != NULL) { 19457 /* we might as well drop the lock now */ 19458 rw_exit(&gcgrp->gcgrp_rwlock); 19459 gcgrp = NULL; 19460 } 19461 attrp = NULL; 19462 } 19463 19464 ASSERT(gc == NULL || (gcgrp != NULL && 19465 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19466 } 19467 ASSERT(sacnt == 0 || gc != NULL); 19468 19469 if (sacnt != 0 && 19470 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19471 kmem_free(re, sizeof (*re)); 19472 rw_exit(&gcgrp->gcgrp_rwlock); 19473 return; 19474 } 19475 19476 /* 19477 * Return all IRE types for route table... let caller pick and choose 19478 */ 19479 re->ipv6RouteDest = ire->ire_addr_v6; 19480 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19481 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19482 re->ipv6RouteIfIndex.o_length = 0; 19483 ipif = ire->ire_ipif; 19484 if (ire->ire_type == IRE_CACHE) { 19485 ill = (ill_t *)ire->ire_stq->q_ptr; 19486 re->ipv6RouteIfIndex.o_length = 19487 ill->ill_name_length == 0 ? 0 : 19488 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19489 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19490 re->ipv6RouteIfIndex.o_length); 19491 } else if (ipif != NULL) { 19492 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19493 re->ipv6RouteIfIndex.o_length = 19494 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19495 } 19496 19497 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19498 19499 mutex_enter(&ire->ire_lock); 19500 gw_addr_v6 = ire->ire_gateway_addr_v6; 19501 mutex_exit(&ire->ire_lock); 19502 19503 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19504 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19505 else 19506 re->ipv6RouteNextHop = gw_addr_v6; 19507 19508 /* remote(4), local(3), or discard(2) */ 19509 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19510 re->ipv6RouteType = 2; 19511 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19512 re->ipv6RouteType = 3; 19513 else 19514 re->ipv6RouteType = 4; 19515 19516 re->ipv6RouteProtocol = -1; 19517 re->ipv6RoutePolicy = 0; 19518 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19519 re->ipv6RouteNextHopRDI = 0; 19520 re->ipv6RouteWeight = 0; 19521 re->ipv6RouteMetric = 0; 19522 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19523 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19524 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19525 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19526 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19527 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19528 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19529 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19530 19531 if (ire->ire_flags & RTF_DYNAMIC) { 19532 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19533 } else { 19534 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19535 } 19536 19537 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19538 (char *)re, (int)sizeof (*re))) { 19539 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19540 (uint_t)sizeof (*re))); 19541 } 19542 19543 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19544 iaeptr->iae_routeidx = ird->ird_idx; 19545 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19546 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19547 } 19548 19549 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19550 (char *)iae, sacnt * sizeof (*iae))) { 19551 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19552 (unsigned)(sacnt * sizeof (*iae)))); 19553 } 19554 19555 /* bump route index for next pass */ 19556 ird->ird_idx++; 19557 19558 kmem_free(re, sizeof (*re)); 19559 if (sacnt != 0) 19560 kmem_free(iae, sacnt * sizeof (*iae)); 19561 19562 if (gcgrp != NULL) 19563 rw_exit(&gcgrp->gcgrp_rwlock); 19564 } 19565 19566 /* 19567 * ndp_walk routine to create ipv6NetToMediaEntryTable 19568 */ 19569 static int 19570 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19571 { 19572 ill_t *ill; 19573 mib2_ipv6NetToMediaEntry_t ntme; 19574 dl_unitdata_req_t *dl; 19575 19576 ill = nce->nce_ill; 19577 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19578 return (0); 19579 19580 /* 19581 * Neighbor cache entry attached to IRE with on-link 19582 * destination. 19583 */ 19584 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19585 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19586 if ((ill->ill_flags & ILLF_XRESOLV) && 19587 (nce->nce_res_mp != NULL)) { 19588 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19589 ntme.ipv6NetToMediaPhysAddress.o_length = 19590 dl->dl_dest_addr_length; 19591 } else { 19592 ntme.ipv6NetToMediaPhysAddress.o_length = 19593 ill->ill_phys_addr_length; 19594 } 19595 if (nce->nce_res_mp != NULL) { 19596 bcopy((char *)nce->nce_res_mp->b_rptr + 19597 NCE_LL_ADDR_OFFSET(ill), 19598 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19599 ntme.ipv6NetToMediaPhysAddress.o_length); 19600 } else { 19601 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19602 ill->ill_phys_addr_length); 19603 } 19604 /* 19605 * Note: Returns ND_* states. Should be: 19606 * reachable(1), stale(2), delay(3), probe(4), 19607 * invalid(5), unknown(6) 19608 */ 19609 ntme.ipv6NetToMediaState = nce->nce_state; 19610 ntme.ipv6NetToMediaLastUpdated = 0; 19611 19612 /* other(1), dynamic(2), static(3), local(4) */ 19613 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19614 ntme.ipv6NetToMediaType = 4; 19615 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19616 ntme.ipv6NetToMediaType = 1; 19617 } else { 19618 ntme.ipv6NetToMediaType = 2; 19619 } 19620 19621 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19622 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19623 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19624 (uint_t)sizeof (ntme))); 19625 } 19626 return (0); 19627 } 19628 19629 /* 19630 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19631 */ 19632 /* ARGSUSED */ 19633 int 19634 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19635 { 19636 switch (level) { 19637 case MIB2_IP: 19638 case MIB2_ICMP: 19639 switch (name) { 19640 default: 19641 break; 19642 } 19643 return (1); 19644 default: 19645 return (1); 19646 } 19647 } 19648 19649 /* 19650 * When there exists both a 64- and 32-bit counter of a particular type 19651 * (i.e., InReceives), only the 64-bit counters are added. 19652 */ 19653 void 19654 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19655 { 19656 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19657 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19658 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19659 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19660 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19661 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19662 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19663 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19664 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19665 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19666 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19667 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19668 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19669 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19670 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19671 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19672 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19673 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19674 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19675 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19676 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19677 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19678 o2->ipIfStatsInWrongIPVersion); 19679 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19680 o2->ipIfStatsInWrongIPVersion); 19681 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19682 o2->ipIfStatsOutSwitchIPVersion); 19683 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19684 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19685 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19686 o2->ipIfStatsHCInForwDatagrams); 19687 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19688 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19689 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19690 o2->ipIfStatsHCOutForwDatagrams); 19691 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19692 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19693 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19694 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19695 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19696 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19697 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19698 o2->ipIfStatsHCOutMcastOctets); 19699 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19700 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19701 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19702 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19703 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19704 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19705 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19706 } 19707 19708 void 19709 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19710 { 19711 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19712 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19713 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19714 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19715 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19716 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19717 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19718 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19719 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19720 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19721 o2->ipv6IfIcmpInRouterSolicits); 19722 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19723 o2->ipv6IfIcmpInRouterAdvertisements); 19724 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19725 o2->ipv6IfIcmpInNeighborSolicits); 19726 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19727 o2->ipv6IfIcmpInNeighborAdvertisements); 19728 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19729 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19730 o2->ipv6IfIcmpInGroupMembQueries); 19731 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19732 o2->ipv6IfIcmpInGroupMembResponses); 19733 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19734 o2->ipv6IfIcmpInGroupMembReductions); 19735 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19736 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19737 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19738 o2->ipv6IfIcmpOutDestUnreachs); 19739 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19740 o2->ipv6IfIcmpOutAdminProhibs); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19742 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19743 o2->ipv6IfIcmpOutParmProblems); 19744 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19745 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19746 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19747 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19748 o2->ipv6IfIcmpOutRouterSolicits); 19749 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19750 o2->ipv6IfIcmpOutRouterAdvertisements); 19751 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19752 o2->ipv6IfIcmpOutNeighborSolicits); 19753 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19754 o2->ipv6IfIcmpOutNeighborAdvertisements); 19755 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19756 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19757 o2->ipv6IfIcmpOutGroupMembQueries); 19758 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19759 o2->ipv6IfIcmpOutGroupMembResponses); 19760 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19761 o2->ipv6IfIcmpOutGroupMembReductions); 19762 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19763 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19764 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19765 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19766 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19767 o2->ipv6IfIcmpInBadNeighborSolicitations); 19768 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19769 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19770 o2->ipv6IfIcmpInGroupMembTotal); 19771 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19772 o2->ipv6IfIcmpInGroupMembBadQueries); 19773 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19774 o2->ipv6IfIcmpInGroupMembBadReports); 19775 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19776 o2->ipv6IfIcmpInGroupMembOurReports); 19777 } 19778 19779 /* 19780 * Called before the options are updated to check if this packet will 19781 * be source routed from here. 19782 * This routine assumes that the options are well formed i.e. that they 19783 * have already been checked. 19784 */ 19785 static boolean_t 19786 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19787 { 19788 ipoptp_t opts; 19789 uchar_t *opt; 19790 uint8_t optval; 19791 uint8_t optlen; 19792 ipaddr_t dst; 19793 ire_t *ire; 19794 19795 if (IS_SIMPLE_IPH(ipha)) { 19796 ip2dbg(("not source routed\n")); 19797 return (B_FALSE); 19798 } 19799 dst = ipha->ipha_dst; 19800 for (optval = ipoptp_first(&opts, ipha); 19801 optval != IPOPT_EOL; 19802 optval = ipoptp_next(&opts)) { 19803 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19804 opt = opts.ipoptp_cur; 19805 optlen = opts.ipoptp_len; 19806 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19807 optval, optlen)); 19808 switch (optval) { 19809 uint32_t off; 19810 case IPOPT_SSRR: 19811 case IPOPT_LSRR: 19812 /* 19813 * If dst is one of our addresses and there are some 19814 * entries left in the source route return (true). 19815 */ 19816 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19817 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19818 if (ire == NULL) { 19819 ip2dbg(("ip_source_routed: not next" 19820 " source route 0x%x\n", 19821 ntohl(dst))); 19822 return (B_FALSE); 19823 } 19824 ire_refrele(ire); 19825 off = opt[IPOPT_OFFSET]; 19826 off--; 19827 if (optlen < IP_ADDR_LEN || 19828 off > optlen - IP_ADDR_LEN) { 19829 /* End of source route */ 19830 ip1dbg(("ip_source_routed: end of SR\n")); 19831 return (B_FALSE); 19832 } 19833 return (B_TRUE); 19834 } 19835 } 19836 ip2dbg(("not source routed\n")); 19837 return (B_FALSE); 19838 } 19839 19840 /* 19841 * Check if the packet contains any source route. 19842 */ 19843 static boolean_t 19844 ip_source_route_included(ipha_t *ipha) 19845 { 19846 ipoptp_t opts; 19847 uint8_t optval; 19848 19849 if (IS_SIMPLE_IPH(ipha)) 19850 return (B_FALSE); 19851 for (optval = ipoptp_first(&opts, ipha); 19852 optval != IPOPT_EOL; 19853 optval = ipoptp_next(&opts)) { 19854 switch (optval) { 19855 case IPOPT_SSRR: 19856 case IPOPT_LSRR: 19857 return (B_TRUE); 19858 } 19859 } 19860 return (B_FALSE); 19861 } 19862 19863 /* 19864 * Called when the IRE expiration timer fires. 19865 */ 19866 void 19867 ip_trash_timer_expire(void *args) 19868 { 19869 int flush_flag = 0; 19870 ire_expire_arg_t iea; 19871 ip_stack_t *ipst = (ip_stack_t *)args; 19872 19873 iea.iea_ipst = ipst; /* No netstack_hold */ 19874 19875 /* 19876 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19877 * This lock makes sure that a new invocation of this function 19878 * that occurs due to an almost immediate timer firing will not 19879 * progress beyond this point until the current invocation is done 19880 */ 19881 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19882 ipst->ips_ip_ire_expire_id = 0; 19883 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19884 19885 /* Periodic timer */ 19886 if (ipst->ips_ip_ire_arp_time_elapsed >= 19887 ipst->ips_ip_ire_arp_interval) { 19888 /* 19889 * Remove all IRE_CACHE entries since they might 19890 * contain arp information. 19891 */ 19892 flush_flag |= FLUSH_ARP_TIME; 19893 ipst->ips_ip_ire_arp_time_elapsed = 0; 19894 IP_STAT(ipst, ip_ire_arp_timer_expired); 19895 } 19896 if (ipst->ips_ip_ire_rd_time_elapsed >= 19897 ipst->ips_ip_ire_redir_interval) { 19898 /* Remove all redirects */ 19899 flush_flag |= FLUSH_REDIRECT_TIME; 19900 ipst->ips_ip_ire_rd_time_elapsed = 0; 19901 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19902 } 19903 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19904 ipst->ips_ip_ire_pathmtu_interval) { 19905 /* Increase path mtu */ 19906 flush_flag |= FLUSH_MTU_TIME; 19907 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19908 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19909 } 19910 19911 /* 19912 * Optimize for the case when there are no redirects in the 19913 * ftable, that is, no need to walk the ftable in that case. 19914 */ 19915 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19916 iea.iea_flush_flag = flush_flag; 19917 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19918 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19919 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19920 NULL, ALL_ZONES, ipst); 19921 } 19922 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19923 ipst->ips_ip_redirect_cnt > 0) { 19924 iea.iea_flush_flag = flush_flag; 19925 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19926 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19927 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19928 } 19929 if (flush_flag & FLUSH_MTU_TIME) { 19930 /* 19931 * Walk all IPv6 IRE's and update them 19932 * Note that ARP and redirect timers are not 19933 * needed since NUD handles stale entries. 19934 */ 19935 flush_flag = FLUSH_MTU_TIME; 19936 iea.iea_flush_flag = flush_flag; 19937 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19938 ALL_ZONES, ipst); 19939 } 19940 19941 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19942 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19943 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19944 19945 /* 19946 * Hold the lock to serialize timeout calls and prevent 19947 * stale values in ip_ire_expire_id. Otherwise it is possible 19948 * for the timer to fire and a new invocation of this function 19949 * to start before the return value of timeout has been stored 19950 * in ip_ire_expire_id by the current invocation. 19951 */ 19952 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19953 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19954 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19955 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19956 } 19957 19958 /* 19959 * Called by the memory allocator subsystem directly, when the system 19960 * is running low on memory. 19961 */ 19962 /* ARGSUSED */ 19963 void 19964 ip_trash_ire_reclaim(void *args) 19965 { 19966 netstack_handle_t nh; 19967 netstack_t *ns; 19968 19969 netstack_next_init(&nh); 19970 while ((ns = netstack_next(&nh)) != NULL) { 19971 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19972 netstack_rele(ns); 19973 } 19974 netstack_next_fini(&nh); 19975 } 19976 19977 static void 19978 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19979 { 19980 ire_cache_count_t icc; 19981 ire_cache_reclaim_t icr; 19982 ncc_cache_count_t ncc; 19983 nce_cache_reclaim_t ncr; 19984 uint_t delete_cnt; 19985 /* 19986 * Memory reclaim call back. 19987 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19988 * Then, with a target of freeing 1/Nth of IRE_CACHE 19989 * entries, determine what fraction to free for 19990 * each category of IRE_CACHE entries giving absolute priority 19991 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19992 * entry will be freed unless all offlink entries are freed). 19993 */ 19994 icc.icc_total = 0; 19995 icc.icc_unused = 0; 19996 icc.icc_offlink = 0; 19997 icc.icc_pmtu = 0; 19998 icc.icc_onlink = 0; 19999 ire_walk(ire_cache_count, (char *)&icc, ipst); 20000 20001 /* 20002 * Free NCEs for IPv6 like the onlink ires. 20003 */ 20004 ncc.ncc_total = 0; 20005 ncc.ncc_host = 0; 20006 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20007 20008 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20009 icc.icc_pmtu + icc.icc_onlink); 20010 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20011 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20012 if (delete_cnt == 0) 20013 return; 20014 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20015 /* Always delete all unused offlink entries */ 20016 icr.icr_ipst = ipst; 20017 icr.icr_unused = 1; 20018 if (delete_cnt <= icc.icc_unused) { 20019 /* 20020 * Only need to free unused entries. In other words, 20021 * there are enough unused entries to free to meet our 20022 * target number of freed ire cache entries. 20023 */ 20024 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20025 ncr.ncr_host = 0; 20026 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20027 /* 20028 * Only need to free unused entries, plus a fraction of offlink 20029 * entries. It follows from the first if statement that 20030 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20031 */ 20032 delete_cnt -= icc.icc_unused; 20033 /* Round up # deleted by truncating fraction */ 20034 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20035 icr.icr_pmtu = icr.icr_onlink = 0; 20036 ncr.ncr_host = 0; 20037 } else if (delete_cnt <= 20038 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20039 /* 20040 * Free all unused and offlink entries, plus a fraction of 20041 * pmtu entries. It follows from the previous if statement 20042 * that icc_pmtu is non-zero, and that 20043 * delete_cnt != icc_unused + icc_offlink. 20044 */ 20045 icr.icr_offlink = 1; 20046 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20047 /* Round up # deleted by truncating fraction */ 20048 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20049 icr.icr_onlink = 0; 20050 ncr.ncr_host = 0; 20051 } else { 20052 /* 20053 * Free all unused, offlink, and pmtu entries, plus a fraction 20054 * of onlink entries. If we're here, then we know that 20055 * icc_onlink is non-zero, and that 20056 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20057 */ 20058 icr.icr_offlink = icr.icr_pmtu = 1; 20059 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20060 icc.icc_pmtu; 20061 /* Round up # deleted by truncating fraction */ 20062 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20063 /* Using the same delete fraction as for onlink IREs */ 20064 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20065 } 20066 #ifdef DEBUG 20067 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20068 "fractions %d/%d/%d/%d\n", 20069 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20070 icc.icc_unused, icc.icc_offlink, 20071 icc.icc_pmtu, icc.icc_onlink, 20072 icr.icr_unused, icr.icr_offlink, 20073 icr.icr_pmtu, icr.icr_onlink)); 20074 #endif 20075 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20076 if (ncr.ncr_host != 0) 20077 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20078 (uchar_t *)&ncr, ipst); 20079 #ifdef DEBUG 20080 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20081 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20082 ire_walk(ire_cache_count, (char *)&icc, ipst); 20083 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20084 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20085 icc.icc_pmtu, icc.icc_onlink)); 20086 #endif 20087 } 20088 20089 /* 20090 * ip_unbind is called when a copy of an unbind request is received from the 20091 * upper level protocol. We remove this conn from any fanout hash list it is 20092 * on, and zero out the bind information. No reply is expected up above. 20093 */ 20094 mblk_t * 20095 ip_unbind(queue_t *q, mblk_t *mp) 20096 { 20097 conn_t *connp = Q_TO_CONN(q); 20098 20099 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20100 20101 if (is_system_labeled() && connp->conn_anon_port) { 20102 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20103 connp->conn_mlp_type, connp->conn_ulp, 20104 ntohs(connp->conn_lport), B_FALSE); 20105 connp->conn_anon_port = 0; 20106 } 20107 connp->conn_mlp_type = mlptSingle; 20108 20109 ipcl_hash_remove(connp); 20110 20111 ASSERT(mp->b_cont == NULL); 20112 /* 20113 * Convert mp into a T_OK_ACK 20114 */ 20115 mp = mi_tpi_ok_ack_alloc(mp); 20116 20117 /* 20118 * should not happen in practice... T_OK_ACK is smaller than the 20119 * original message. 20120 */ 20121 if (mp == NULL) 20122 return (NULL); 20123 20124 return (mp); 20125 } 20126 20127 /* 20128 * Write side put procedure. Outbound data, IOCTLs, responses from 20129 * resolvers, etc, come down through here. 20130 * 20131 * arg2 is always a queue_t *. 20132 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20133 * the zoneid. 20134 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20135 */ 20136 void 20137 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20138 { 20139 ip_output_options(arg, mp, arg2, caller, &zero_info); 20140 } 20141 20142 void 20143 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20144 ip_opt_info_t *infop) 20145 { 20146 conn_t *connp = NULL; 20147 queue_t *q = (queue_t *)arg2; 20148 ipha_t *ipha; 20149 #define rptr ((uchar_t *)ipha) 20150 ire_t *ire = NULL; 20151 ire_t *sctp_ire = NULL; 20152 uint32_t v_hlen_tos_len; 20153 ipaddr_t dst; 20154 mblk_t *first_mp = NULL; 20155 boolean_t mctl_present; 20156 ipsec_out_t *io; 20157 int match_flags; 20158 ill_t *attach_ill = NULL; 20159 /* Bind to IPIF_NOFAILOVER ill etc. */ 20160 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20161 ipif_t *dst_ipif; 20162 boolean_t multirt_need_resolve = B_FALSE; 20163 mblk_t *copy_mp = NULL; 20164 int err; 20165 zoneid_t zoneid; 20166 boolean_t need_decref = B_FALSE; 20167 boolean_t ignore_dontroute = B_FALSE; 20168 boolean_t ignore_nexthop = B_FALSE; 20169 boolean_t ip_nexthop = B_FALSE; 20170 ipaddr_t nexthop_addr; 20171 ip_stack_t *ipst; 20172 20173 #ifdef _BIG_ENDIAN 20174 #define V_HLEN (v_hlen_tos_len >> 24) 20175 #else 20176 #define V_HLEN (v_hlen_tos_len & 0xFF) 20177 #endif 20178 20179 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20180 "ip_wput_start: q %p", q); 20181 20182 /* 20183 * ip_wput fast path 20184 */ 20185 20186 /* is packet from ARP ? */ 20187 if (q->q_next != NULL) { 20188 zoneid = (zoneid_t)(uintptr_t)arg; 20189 goto qnext; 20190 } 20191 20192 connp = (conn_t *)arg; 20193 ASSERT(connp != NULL); 20194 zoneid = connp->conn_zoneid; 20195 ipst = connp->conn_netstack->netstack_ip; 20196 20197 /* is queue flow controlled? */ 20198 if ((q->q_first != NULL || connp->conn_draining) && 20199 (caller == IP_WPUT)) { 20200 ASSERT(!need_decref); 20201 (void) putq(q, mp); 20202 return; 20203 } 20204 20205 /* Multidata transmit? */ 20206 if (DB_TYPE(mp) == M_MULTIDATA) { 20207 /* 20208 * We should never get here, since all Multidata messages 20209 * originating from tcp should have been directed over to 20210 * tcp_multisend() in the first place. 20211 */ 20212 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20213 freemsg(mp); 20214 return; 20215 } else if (DB_TYPE(mp) != M_DATA) 20216 goto notdata; 20217 20218 if (mp->b_flag & MSGHASREF) { 20219 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20220 mp->b_flag &= ~MSGHASREF; 20221 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20222 need_decref = B_TRUE; 20223 } 20224 ipha = (ipha_t *)mp->b_rptr; 20225 20226 /* is IP header non-aligned or mblk smaller than basic IP header */ 20227 #ifndef SAFETY_BEFORE_SPEED 20228 if (!OK_32PTR(rptr) || 20229 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20230 goto hdrtoosmall; 20231 #endif 20232 20233 ASSERT(OK_32PTR(ipha)); 20234 20235 /* 20236 * This function assumes that mp points to an IPv4 packet. If it's the 20237 * wrong version, we'll catch it again in ip_output_v6. 20238 * 20239 * Note that this is *only* locally-generated output here, and never 20240 * forwarded data, and that we need to deal only with transports that 20241 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20242 * label.) 20243 */ 20244 if (is_system_labeled() && 20245 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20246 !connp->conn_ulp_labeled) { 20247 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20248 connp->conn_mac_exempt, ipst); 20249 ipha = (ipha_t *)mp->b_rptr; 20250 if (err != 0) { 20251 first_mp = mp; 20252 if (err == EINVAL) 20253 goto icmp_parameter_problem; 20254 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20255 goto discard_pkt; 20256 } 20257 } 20258 20259 ASSERT(infop != NULL); 20260 20261 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20262 /* 20263 * IP_PKTINFO ancillary option is present. 20264 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20265 * allows using address of any zone as the source address. 20266 */ 20267 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20268 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20269 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20270 if (ire == NULL) 20271 goto drop_pkt; 20272 ire_refrele(ire); 20273 ire = NULL; 20274 } 20275 20276 /* 20277 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20278 * passed in IP_PKTINFO. 20279 */ 20280 if (infop->ip_opt_ill_index != 0 && 20281 connp->conn_outgoing_ill == NULL && 20282 connp->conn_nofailover_ill == NULL) { 20283 20284 xmit_ill = ill_lookup_on_ifindex( 20285 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20286 ipst); 20287 20288 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20289 goto drop_pkt; 20290 /* 20291 * check that there is an ipif belonging 20292 * to our zone. IPCL_ZONEID is not used because 20293 * IP_ALLZONES option is valid only when the ill is 20294 * accessible from all zones i.e has a valid ipif in 20295 * all zones. 20296 */ 20297 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20298 goto drop_pkt; 20299 } 20300 } 20301 20302 /* 20303 * If there is a policy, try to attach an ipsec_out in 20304 * the front. At the end, first_mp either points to a 20305 * M_DATA message or IPSEC_OUT message linked to a 20306 * M_DATA message. We have to do it now as we might 20307 * lose the "conn" if we go through ip_newroute. 20308 */ 20309 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20310 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20311 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20312 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20313 if (need_decref) 20314 CONN_DEC_REF(connp); 20315 return; 20316 } else { 20317 ASSERT(mp->b_datap->db_type == M_CTL); 20318 first_mp = mp; 20319 mp = mp->b_cont; 20320 mctl_present = B_TRUE; 20321 } 20322 } else { 20323 first_mp = mp; 20324 mctl_present = B_FALSE; 20325 } 20326 20327 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20328 20329 /* is wrong version or IP options present */ 20330 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20331 goto version_hdrlen_check; 20332 dst = ipha->ipha_dst; 20333 20334 if (connp->conn_nofailover_ill != NULL) { 20335 attach_ill = conn_get_held_ill(connp, 20336 &connp->conn_nofailover_ill, &err); 20337 if (err == ILL_LOOKUP_FAILED) { 20338 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20339 if (need_decref) 20340 CONN_DEC_REF(connp); 20341 freemsg(first_mp); 20342 return; 20343 } 20344 } 20345 20346 /* If IP_BOUND_IF has been set, use that ill. */ 20347 if (connp->conn_outgoing_ill != NULL) { 20348 xmit_ill = conn_get_held_ill(connp, 20349 &connp->conn_outgoing_ill, &err); 20350 if (err == ILL_LOOKUP_FAILED) 20351 goto drop_pkt; 20352 20353 goto send_from_ill; 20354 } 20355 20356 /* is packet multicast? */ 20357 if (CLASSD(dst)) 20358 goto multicast; 20359 20360 /* 20361 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20362 * takes precedence over conn_dontroute and conn_nexthop_set 20363 */ 20364 if (xmit_ill != NULL) 20365 goto send_from_ill; 20366 20367 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20368 /* 20369 * If the destination is a broadcast, local, or loopback 20370 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20371 * standard path. 20372 */ 20373 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20374 if ((ire == NULL) || (ire->ire_type & 20375 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20376 if (ire != NULL) { 20377 ire_refrele(ire); 20378 /* No more access to ire */ 20379 ire = NULL; 20380 } 20381 /* 20382 * bypass routing checks and go directly to interface. 20383 */ 20384 if (connp->conn_dontroute) 20385 goto dontroute; 20386 20387 ASSERT(connp->conn_nexthop_set); 20388 ip_nexthop = B_TRUE; 20389 nexthop_addr = connp->conn_nexthop_v4; 20390 goto send_from_ill; 20391 } 20392 20393 /* Must be a broadcast, a loopback or a local ire */ 20394 ire_refrele(ire); 20395 /* No more access to ire */ 20396 ire = NULL; 20397 } 20398 20399 if (attach_ill != NULL) 20400 goto send_from_ill; 20401 20402 /* 20403 * We cache IRE_CACHEs to avoid lookups. We don't do 20404 * this for the tcp global queue and listen end point 20405 * as it does not really have a real destination to 20406 * talk to. This is also true for SCTP. 20407 */ 20408 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20409 !connp->conn_fully_bound) { 20410 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20411 if (ire == NULL) 20412 goto noirefound; 20413 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20414 "ip_wput_end: q %p (%S)", q, "end"); 20415 20416 /* 20417 * Check if the ire has the RTF_MULTIRT flag, inherited 20418 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20419 */ 20420 if (ire->ire_flags & RTF_MULTIRT) { 20421 20422 /* 20423 * Force the TTL of multirouted packets if required. 20424 * The TTL of such packets is bounded by the 20425 * ip_multirt_ttl ndd variable. 20426 */ 20427 if ((ipst->ips_ip_multirt_ttl > 0) && 20428 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20429 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20430 "(was %d), dst 0x%08x\n", 20431 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20432 ntohl(ire->ire_addr))); 20433 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20434 } 20435 /* 20436 * We look at this point if there are pending 20437 * unresolved routes. ire_multirt_resolvable() 20438 * checks in O(n) that all IRE_OFFSUBNET ire 20439 * entries for the packet's destination and 20440 * flagged RTF_MULTIRT are currently resolved. 20441 * If some remain unresolved, we make a copy 20442 * of the current message. It will be used 20443 * to initiate additional route resolutions. 20444 */ 20445 multirt_need_resolve = 20446 ire_multirt_need_resolve(ire->ire_addr, 20447 MBLK_GETLABEL(first_mp), ipst); 20448 ip2dbg(("ip_wput[TCP]: ire %p, " 20449 "multirt_need_resolve %d, first_mp %p\n", 20450 (void *)ire, multirt_need_resolve, 20451 (void *)first_mp)); 20452 if (multirt_need_resolve) { 20453 copy_mp = copymsg(first_mp); 20454 if (copy_mp != NULL) { 20455 MULTIRT_DEBUG_TAG(copy_mp); 20456 } 20457 } 20458 } 20459 20460 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20461 20462 /* 20463 * Try to resolve another multiroute if 20464 * ire_multirt_need_resolve() deemed it necessary. 20465 */ 20466 if (copy_mp != NULL) 20467 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20468 if (need_decref) 20469 CONN_DEC_REF(connp); 20470 return; 20471 } 20472 20473 /* 20474 * Access to conn_ire_cache. (protected by conn_lock) 20475 * 20476 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20477 * the ire bucket lock here to check for CONDEMNED as it is okay to 20478 * send a packet or two with the IRE_CACHE that is going away. 20479 * Access to the ire requires an ire refhold on the ire prior to 20480 * its use since an interface unplumb thread may delete the cached 20481 * ire and release the refhold at any time. 20482 * 20483 * Caching an ire in the conn_ire_cache 20484 * 20485 * o Caching an ire pointer in the conn requires a strict check for 20486 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20487 * ires before cleaning up the conns. So the caching of an ire pointer 20488 * in the conn is done after making sure under the bucket lock that the 20489 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20490 * caching an ire after the unplumb thread has cleaned up the conn. 20491 * If the conn does not send a packet subsequently the unplumb thread 20492 * will be hanging waiting for the ire count to drop to zero. 20493 * 20494 * o We also need to atomically test for a null conn_ire_cache and 20495 * set the conn_ire_cache under the the protection of the conn_lock 20496 * to avoid races among concurrent threads trying to simultaneously 20497 * cache an ire in the conn_ire_cache. 20498 */ 20499 mutex_enter(&connp->conn_lock); 20500 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20501 20502 if (ire != NULL && ire->ire_addr == dst && 20503 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20504 20505 IRE_REFHOLD(ire); 20506 mutex_exit(&connp->conn_lock); 20507 20508 } else { 20509 boolean_t cached = B_FALSE; 20510 connp->conn_ire_cache = NULL; 20511 mutex_exit(&connp->conn_lock); 20512 /* Release the old ire */ 20513 if (ire != NULL && sctp_ire == NULL) 20514 IRE_REFRELE_NOTR(ire); 20515 20516 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20517 if (ire == NULL) 20518 goto noirefound; 20519 IRE_REFHOLD_NOTR(ire); 20520 20521 mutex_enter(&connp->conn_lock); 20522 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20523 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20524 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20525 if (connp->conn_ulp == IPPROTO_TCP) 20526 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20527 connp->conn_ire_cache = ire; 20528 cached = B_TRUE; 20529 } 20530 rw_exit(&ire->ire_bucket->irb_lock); 20531 } 20532 mutex_exit(&connp->conn_lock); 20533 20534 /* 20535 * We can continue to use the ire but since it was 20536 * not cached, we should drop the extra reference. 20537 */ 20538 if (!cached) 20539 IRE_REFRELE_NOTR(ire); 20540 } 20541 20542 20543 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20544 "ip_wput_end: q %p (%S)", q, "end"); 20545 20546 /* 20547 * Check if the ire has the RTF_MULTIRT flag, inherited 20548 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20549 */ 20550 if (ire->ire_flags & RTF_MULTIRT) { 20551 20552 /* 20553 * Force the TTL of multirouted packets if required. 20554 * The TTL of such packets is bounded by the 20555 * ip_multirt_ttl ndd variable. 20556 */ 20557 if ((ipst->ips_ip_multirt_ttl > 0) && 20558 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20559 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20560 "(was %d), dst 0x%08x\n", 20561 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20562 ntohl(ire->ire_addr))); 20563 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20564 } 20565 20566 /* 20567 * At this point, we check to see if there are any pending 20568 * unresolved routes. ire_multirt_resolvable() 20569 * checks in O(n) that all IRE_OFFSUBNET ire 20570 * entries for the packet's destination and 20571 * flagged RTF_MULTIRT are currently resolved. 20572 * If some remain unresolved, we make a copy 20573 * of the current message. It will be used 20574 * to initiate additional route resolutions. 20575 */ 20576 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20577 MBLK_GETLABEL(first_mp), ipst); 20578 ip2dbg(("ip_wput[not TCP]: ire %p, " 20579 "multirt_need_resolve %d, first_mp %p\n", 20580 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20581 if (multirt_need_resolve) { 20582 copy_mp = copymsg(first_mp); 20583 if (copy_mp != NULL) { 20584 MULTIRT_DEBUG_TAG(copy_mp); 20585 } 20586 } 20587 } 20588 20589 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20590 20591 /* 20592 * Try to resolve another multiroute if 20593 * ire_multirt_resolvable() deemed it necessary 20594 */ 20595 if (copy_mp != NULL) 20596 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20597 if (need_decref) 20598 CONN_DEC_REF(connp); 20599 return; 20600 20601 qnext: 20602 /* 20603 * Upper Level Protocols pass down complete IP datagrams 20604 * as M_DATA messages. Everything else is a sideshow. 20605 * 20606 * 1) We could be re-entering ip_wput because of ip_neworute 20607 * in which case we could have a IPSEC_OUT message. We 20608 * need to pass through ip_wput like other datagrams and 20609 * hence cannot branch to ip_wput_nondata. 20610 * 20611 * 2) ARP, AH, ESP, and other clients who are on the module 20612 * instance of IP stream, give us something to deal with. 20613 * We will handle AH and ESP here and rest in ip_wput_nondata. 20614 * 20615 * 3) ICMP replies also could come here. 20616 */ 20617 ipst = ILLQ_TO_IPST(q); 20618 20619 if (DB_TYPE(mp) != M_DATA) { 20620 notdata: 20621 if (DB_TYPE(mp) == M_CTL) { 20622 /* 20623 * M_CTL messages are used by ARP, AH and ESP to 20624 * communicate with IP. We deal with IPSEC_IN and 20625 * IPSEC_OUT here. ip_wput_nondata handles other 20626 * cases. 20627 */ 20628 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20629 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20630 first_mp = mp->b_cont; 20631 first_mp->b_flag &= ~MSGHASREF; 20632 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20633 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20634 CONN_DEC_REF(connp); 20635 connp = NULL; 20636 } 20637 if (ii->ipsec_info_type == IPSEC_IN) { 20638 /* 20639 * Either this message goes back to 20640 * IPsec for further processing or to 20641 * ULP after policy checks. 20642 */ 20643 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20644 return; 20645 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20646 io = (ipsec_out_t *)ii; 20647 if (io->ipsec_out_proc_begin) { 20648 /* 20649 * IPsec processing has already started. 20650 * Complete it. 20651 * IPQoS notes: We don't care what is 20652 * in ipsec_out_ill_index since this 20653 * won't be processed for IPQoS policies 20654 * in ipsec_out_process. 20655 */ 20656 ipsec_out_process(q, mp, NULL, 20657 io->ipsec_out_ill_index); 20658 return; 20659 } else { 20660 connp = (q->q_next != NULL) ? 20661 NULL : Q_TO_CONN(q); 20662 first_mp = mp; 20663 mp = mp->b_cont; 20664 mctl_present = B_TRUE; 20665 } 20666 zoneid = io->ipsec_out_zoneid; 20667 ASSERT(zoneid != ALL_ZONES); 20668 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20669 /* 20670 * It's an IPsec control message requesting 20671 * an SADB update to be sent to the IPsec 20672 * hardware acceleration capable ills. 20673 */ 20674 ipsec_ctl_t *ipsec_ctl = 20675 (ipsec_ctl_t *)mp->b_rptr; 20676 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20677 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20678 mblk_t *cmp = mp->b_cont; 20679 20680 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20681 ASSERT(cmp != NULL); 20682 20683 freeb(mp); 20684 ill_ipsec_capab_send_all(satype, cmp, sa, 20685 ipst->ips_netstack); 20686 return; 20687 } else { 20688 /* 20689 * This must be ARP or special TSOL signaling. 20690 */ 20691 ip_wput_nondata(NULL, q, mp, NULL); 20692 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20693 "ip_wput_end: q %p (%S)", q, "nondata"); 20694 return; 20695 } 20696 } else { 20697 /* 20698 * This must be non-(ARP/AH/ESP) messages. 20699 */ 20700 ASSERT(!need_decref); 20701 ip_wput_nondata(NULL, q, mp, NULL); 20702 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20703 "ip_wput_end: q %p (%S)", q, "nondata"); 20704 return; 20705 } 20706 } else { 20707 first_mp = mp; 20708 mctl_present = B_FALSE; 20709 } 20710 20711 ASSERT(first_mp != NULL); 20712 /* 20713 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20714 * to make sure that this packet goes out on the same interface it 20715 * came in. We handle that here. 20716 */ 20717 if (mctl_present) { 20718 uint_t ifindex; 20719 20720 io = (ipsec_out_t *)first_mp->b_rptr; 20721 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20722 /* 20723 * We may have lost the conn context if we are 20724 * coming here from ip_newroute(). Copy the 20725 * nexthop information. 20726 */ 20727 if (io->ipsec_out_ip_nexthop) { 20728 ip_nexthop = B_TRUE; 20729 nexthop_addr = io->ipsec_out_nexthop_addr; 20730 20731 ipha = (ipha_t *)mp->b_rptr; 20732 dst = ipha->ipha_dst; 20733 goto send_from_ill; 20734 } else { 20735 ASSERT(io->ipsec_out_ill_index != 0); 20736 ifindex = io->ipsec_out_ill_index; 20737 attach_ill = ill_lookup_on_ifindex(ifindex, 20738 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20739 if (attach_ill == NULL) { 20740 ASSERT(xmit_ill == NULL); 20741 ip1dbg(("ip_output: bad ifindex for " 20742 "(BIND TO IPIF_NOFAILOVER) %d\n", 20743 ifindex)); 20744 freemsg(first_mp); 20745 BUMP_MIB(&ipst->ips_ip_mib, 20746 ipIfStatsOutDiscards); 20747 ASSERT(!need_decref); 20748 return; 20749 } 20750 } 20751 } 20752 } 20753 20754 ASSERT(xmit_ill == NULL); 20755 20756 /* We have a complete IP datagram heading outbound. */ 20757 ipha = (ipha_t *)mp->b_rptr; 20758 20759 #ifndef SPEED_BEFORE_SAFETY 20760 /* 20761 * Make sure we have a full-word aligned message and that at least 20762 * a simple IP header is accessible in the first message. If not, 20763 * try a pullup. For labeled systems we need to always take this 20764 * path as M_CTLs are "notdata" but have trailing data to process. 20765 */ 20766 if (!OK_32PTR(rptr) || 20767 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20768 hdrtoosmall: 20769 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20770 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20771 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20772 if (first_mp == NULL) 20773 first_mp = mp; 20774 goto discard_pkt; 20775 } 20776 20777 /* This function assumes that mp points to an IPv4 packet. */ 20778 if (is_system_labeled() && q->q_next == NULL && 20779 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20780 !connp->conn_ulp_labeled) { 20781 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20782 connp->conn_mac_exempt, ipst); 20783 ipha = (ipha_t *)mp->b_rptr; 20784 if (first_mp != NULL) 20785 first_mp->b_cont = mp; 20786 if (err != 0) { 20787 if (first_mp == NULL) 20788 first_mp = mp; 20789 if (err == EINVAL) 20790 goto icmp_parameter_problem; 20791 ip2dbg(("ip_wput: label check failed (%d)\n", 20792 err)); 20793 goto discard_pkt; 20794 } 20795 } 20796 20797 ipha = (ipha_t *)mp->b_rptr; 20798 if (first_mp == NULL) { 20799 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20800 /* 20801 * If we got here because of "goto hdrtoosmall" 20802 * We need to attach a IPSEC_OUT. 20803 */ 20804 if (connp->conn_out_enforce_policy) { 20805 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20806 NULL, ipha->ipha_protocol, 20807 ipst->ips_netstack)) == NULL)) { 20808 BUMP_MIB(&ipst->ips_ip_mib, 20809 ipIfStatsOutDiscards); 20810 if (need_decref) 20811 CONN_DEC_REF(connp); 20812 return; 20813 } else { 20814 ASSERT(mp->b_datap->db_type == M_CTL); 20815 first_mp = mp; 20816 mp = mp->b_cont; 20817 mctl_present = B_TRUE; 20818 } 20819 } else { 20820 first_mp = mp; 20821 mctl_present = B_FALSE; 20822 } 20823 } 20824 } 20825 #endif 20826 20827 /* Most of the code below is written for speed, not readability */ 20828 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20829 20830 /* 20831 * If ip_newroute() fails, we're going to need a full 20832 * header for the icmp wraparound. 20833 */ 20834 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20835 uint_t v_hlen; 20836 version_hdrlen_check: 20837 ASSERT(first_mp != NULL); 20838 v_hlen = V_HLEN; 20839 /* 20840 * siphon off IPv6 packets coming down from transport 20841 * layer modules here. 20842 * Note: high-order bit carries NUD reachability confirmation 20843 */ 20844 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20845 /* 20846 * FIXME: assume that callers of ip_output* call 20847 * the right version? 20848 */ 20849 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20850 ASSERT(xmit_ill == NULL); 20851 if (attach_ill != NULL) 20852 ill_refrele(attach_ill); 20853 if (need_decref) 20854 mp->b_flag |= MSGHASREF; 20855 (void) ip_output_v6(arg, first_mp, arg2, caller); 20856 return; 20857 } 20858 20859 if ((v_hlen >> 4) != IP_VERSION) { 20860 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20861 "ip_wput_end: q %p (%S)", q, "badvers"); 20862 goto discard_pkt; 20863 } 20864 /* 20865 * Is the header length at least 20 bytes? 20866 * 20867 * Are there enough bytes accessible in the header? If 20868 * not, try a pullup. 20869 */ 20870 v_hlen &= 0xF; 20871 v_hlen <<= 2; 20872 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20873 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20874 "ip_wput_end: q %p (%S)", q, "badlen"); 20875 goto discard_pkt; 20876 } 20877 if (v_hlen > (mp->b_wptr - rptr)) { 20878 if (!pullupmsg(mp, v_hlen)) { 20879 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20880 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20881 goto discard_pkt; 20882 } 20883 ipha = (ipha_t *)mp->b_rptr; 20884 } 20885 /* 20886 * Move first entry from any source route into ipha_dst and 20887 * verify the options 20888 */ 20889 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20890 zoneid, ipst)) { 20891 ASSERT(xmit_ill == NULL); 20892 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20893 if (attach_ill != NULL) 20894 ill_refrele(attach_ill); 20895 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20896 "ip_wput_end: q %p (%S)", q, "badopts"); 20897 if (need_decref) 20898 CONN_DEC_REF(connp); 20899 return; 20900 } 20901 } 20902 dst = ipha->ipha_dst; 20903 20904 /* 20905 * Try to get an IRE_CACHE for the destination address. If we can't, 20906 * we have to run the packet through ip_newroute which will take 20907 * the appropriate action to arrange for an IRE_CACHE, such as querying 20908 * a resolver, or assigning a default gateway, etc. 20909 */ 20910 if (CLASSD(dst)) { 20911 ipif_t *ipif; 20912 uint32_t setsrc = 0; 20913 20914 multicast: 20915 ASSERT(first_mp != NULL); 20916 ip2dbg(("ip_wput: CLASSD\n")); 20917 if (connp == NULL) { 20918 /* 20919 * Use the first good ipif on the ill. 20920 * XXX Should this ever happen? (Appears 20921 * to show up with just ppp and no ethernet due 20922 * to in.rdisc.) 20923 * However, ire_send should be able to 20924 * call ip_wput_ire directly. 20925 * 20926 * XXX Also, this can happen for ICMP and other packets 20927 * with multicast source addresses. Perhaps we should 20928 * fix things so that we drop the packet in question, 20929 * but for now, just run with it. 20930 */ 20931 ill_t *ill = (ill_t *)q->q_ptr; 20932 20933 /* 20934 * Don't honor attach_if for this case. If ill 20935 * is part of the group, ipif could belong to 20936 * any ill and we cannot maintain attach_ill 20937 * and ipif_ill same anymore and the assert 20938 * below would fail. 20939 */ 20940 if (mctl_present && io->ipsec_out_attach_if) { 20941 io->ipsec_out_ill_index = 0; 20942 io->ipsec_out_attach_if = B_FALSE; 20943 ASSERT(attach_ill != NULL); 20944 ill_refrele(attach_ill); 20945 attach_ill = NULL; 20946 } 20947 20948 ASSERT(attach_ill == NULL); 20949 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20950 if (ipif == NULL) { 20951 if (need_decref) 20952 CONN_DEC_REF(connp); 20953 freemsg(first_mp); 20954 return; 20955 } 20956 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20957 ntohl(dst), ill->ill_name)); 20958 } else { 20959 /* 20960 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20961 * and IP_MULTICAST_IF. The block comment above this 20962 * function explains the locking mechanism used here. 20963 */ 20964 if (xmit_ill == NULL) { 20965 xmit_ill = conn_get_held_ill(connp, 20966 &connp->conn_outgoing_ill, &err); 20967 if (err == ILL_LOOKUP_FAILED) { 20968 ip1dbg(("ip_wput: No ill for " 20969 "IP_BOUND_IF\n")); 20970 BUMP_MIB(&ipst->ips_ip_mib, 20971 ipIfStatsOutNoRoutes); 20972 goto drop_pkt; 20973 } 20974 } 20975 20976 if (xmit_ill == NULL) { 20977 ipif = conn_get_held_ipif(connp, 20978 &connp->conn_multicast_ipif, &err); 20979 if (err == IPIF_LOOKUP_FAILED) { 20980 ip1dbg(("ip_wput: No ipif for " 20981 "multicast\n")); 20982 BUMP_MIB(&ipst->ips_ip_mib, 20983 ipIfStatsOutNoRoutes); 20984 goto drop_pkt; 20985 } 20986 } 20987 if (xmit_ill != NULL) { 20988 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20989 if (ipif == NULL) { 20990 ip1dbg(("ip_wput: No ipif for " 20991 "xmit_ill\n")); 20992 BUMP_MIB(&ipst->ips_ip_mib, 20993 ipIfStatsOutNoRoutes); 20994 goto drop_pkt; 20995 } 20996 } else if (ipif == NULL || ipif->ipif_isv6) { 20997 /* 20998 * We must do this ipif determination here 20999 * else we could pass through ip_newroute 21000 * and come back here without the conn context. 21001 * 21002 * Note: we do late binding i.e. we bind to 21003 * the interface when the first packet is sent. 21004 * For performance reasons we do not rebind on 21005 * each packet but keep the binding until the 21006 * next IP_MULTICAST_IF option. 21007 * 21008 * conn_multicast_{ipif,ill} are shared between 21009 * IPv4 and IPv6 and AF_INET6 sockets can 21010 * send both IPv4 and IPv6 packets. Hence 21011 * we have to check that "isv6" matches above. 21012 */ 21013 if (ipif != NULL) 21014 ipif_refrele(ipif); 21015 ipif = ipif_lookup_group(dst, zoneid, ipst); 21016 if (ipif == NULL) { 21017 ip1dbg(("ip_wput: No ipif for " 21018 "multicast\n")); 21019 BUMP_MIB(&ipst->ips_ip_mib, 21020 ipIfStatsOutNoRoutes); 21021 goto drop_pkt; 21022 } 21023 err = conn_set_held_ipif(connp, 21024 &connp->conn_multicast_ipif, ipif); 21025 if (err == IPIF_LOOKUP_FAILED) { 21026 ipif_refrele(ipif); 21027 ip1dbg(("ip_wput: No ipif for " 21028 "multicast\n")); 21029 BUMP_MIB(&ipst->ips_ip_mib, 21030 ipIfStatsOutNoRoutes); 21031 goto drop_pkt; 21032 } 21033 } 21034 } 21035 ASSERT(!ipif->ipif_isv6); 21036 /* 21037 * As we may lose the conn by the time we reach ip_wput_ire, 21038 * we copy conn_multicast_loop and conn_dontroute on to an 21039 * ipsec_out. In case if this datagram goes out secure, 21040 * we need the ill_index also. Copy that also into the 21041 * ipsec_out. 21042 */ 21043 if (mctl_present) { 21044 io = (ipsec_out_t *)first_mp->b_rptr; 21045 ASSERT(first_mp->b_datap->db_type == M_CTL); 21046 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21047 } else { 21048 ASSERT(mp == first_mp); 21049 if ((first_mp = allocb(sizeof (ipsec_info_t), 21050 BPRI_HI)) == NULL) { 21051 ipif_refrele(ipif); 21052 first_mp = mp; 21053 goto discard_pkt; 21054 } 21055 first_mp->b_datap->db_type = M_CTL; 21056 first_mp->b_wptr += sizeof (ipsec_info_t); 21057 /* ipsec_out_secure is B_FALSE now */ 21058 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21059 io = (ipsec_out_t *)first_mp->b_rptr; 21060 io->ipsec_out_type = IPSEC_OUT; 21061 io->ipsec_out_len = sizeof (ipsec_out_t); 21062 io->ipsec_out_use_global_policy = B_TRUE; 21063 io->ipsec_out_ns = ipst->ips_netstack; 21064 first_mp->b_cont = mp; 21065 mctl_present = B_TRUE; 21066 } 21067 if (attach_ill != NULL) { 21068 ASSERT(attach_ill == ipif->ipif_ill); 21069 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21070 21071 /* 21072 * Check if we need an ire that will not be 21073 * looked up by anybody else i.e. HIDDEN. 21074 */ 21075 if (ill_is_probeonly(attach_ill)) { 21076 match_flags |= MATCH_IRE_MARK_HIDDEN; 21077 } 21078 io->ipsec_out_ill_index = 21079 attach_ill->ill_phyint->phyint_ifindex; 21080 io->ipsec_out_attach_if = B_TRUE; 21081 } else { 21082 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21083 io->ipsec_out_ill_index = 21084 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21085 } 21086 if (connp != NULL) { 21087 io->ipsec_out_multicast_loop = 21088 connp->conn_multicast_loop; 21089 io->ipsec_out_dontroute = connp->conn_dontroute; 21090 io->ipsec_out_zoneid = connp->conn_zoneid; 21091 } 21092 /* 21093 * If the application uses IP_MULTICAST_IF with 21094 * different logical addresses of the same ILL, we 21095 * need to make sure that the soruce address of 21096 * the packet matches the logical IP address used 21097 * in the option. We do it by initializing ipha_src 21098 * here. This should keep IPsec also happy as 21099 * when we return from IPsec processing, we don't 21100 * have to worry about getting the right address on 21101 * the packet. Thus it is sufficient to look for 21102 * IRE_CACHE using MATCH_IRE_ILL rathen than 21103 * MATCH_IRE_IPIF. 21104 * 21105 * NOTE : We need to do it for non-secure case also as 21106 * this might go out secure if there is a global policy 21107 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21108 * address, the source should be initialized already and 21109 * hence we won't be initializing here. 21110 * 21111 * As we do not have the ire yet, it is possible that 21112 * we set the source address here and then later discover 21113 * that the ire implies the source address to be assigned 21114 * through the RTF_SETSRC flag. 21115 * In that case, the setsrc variable will remind us 21116 * that overwritting the source address by the one 21117 * of the RTF_SETSRC-flagged ire is allowed. 21118 */ 21119 if (ipha->ipha_src == INADDR_ANY && 21120 (connp == NULL || !connp->conn_unspec_src)) { 21121 ipha->ipha_src = ipif->ipif_src_addr; 21122 setsrc = RTF_SETSRC; 21123 } 21124 /* 21125 * Find an IRE which matches the destination and the outgoing 21126 * queue (i.e. the outgoing interface.) 21127 * For loopback use a unicast IP address for 21128 * the ire lookup. 21129 */ 21130 if (IS_LOOPBACK(ipif->ipif_ill)) 21131 dst = ipif->ipif_lcl_addr; 21132 21133 /* 21134 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21135 * We don't need to lookup ire in ctable as the packet 21136 * needs to be sent to the destination through the specified 21137 * ill irrespective of ires in the cache table. 21138 */ 21139 ire = NULL; 21140 if (xmit_ill == NULL) { 21141 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21142 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21143 } 21144 21145 /* 21146 * refrele attach_ill as its not needed anymore. 21147 */ 21148 if (attach_ill != NULL) { 21149 ill_refrele(attach_ill); 21150 attach_ill = NULL; 21151 } 21152 21153 if (ire == NULL) { 21154 /* 21155 * Multicast loopback and multicast forwarding is 21156 * done in ip_wput_ire. 21157 * 21158 * Mark this packet to make it be delivered to 21159 * ip_wput_ire after the new ire has been 21160 * created. 21161 * 21162 * The call to ip_newroute_ipif takes into account 21163 * the setsrc reminder. In any case, we take care 21164 * of the RTF_MULTIRT flag. 21165 */ 21166 mp->b_prev = mp->b_next = NULL; 21167 if (xmit_ill == NULL || 21168 xmit_ill->ill_ipif_up_count > 0) { 21169 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21170 setsrc | RTF_MULTIRT, zoneid, infop); 21171 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21172 "ip_wput_end: q %p (%S)", q, "noire"); 21173 } else { 21174 freemsg(first_mp); 21175 } 21176 ipif_refrele(ipif); 21177 if (xmit_ill != NULL) 21178 ill_refrele(xmit_ill); 21179 if (need_decref) 21180 CONN_DEC_REF(connp); 21181 return; 21182 } 21183 21184 ipif_refrele(ipif); 21185 ipif = NULL; 21186 ASSERT(xmit_ill == NULL); 21187 21188 /* 21189 * Honor the RTF_SETSRC flag for multicast packets, 21190 * if allowed by the setsrc reminder. 21191 */ 21192 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21193 ipha->ipha_src = ire->ire_src_addr; 21194 } 21195 21196 /* 21197 * Unconditionally force the TTL to 1 for 21198 * multirouted multicast packets: 21199 * multirouted multicast should not cross 21200 * multicast routers. 21201 */ 21202 if (ire->ire_flags & RTF_MULTIRT) { 21203 if (ipha->ipha_ttl > 1) { 21204 ip2dbg(("ip_wput: forcing multicast " 21205 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21206 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21207 ipha->ipha_ttl = 1; 21208 } 21209 } 21210 } else { 21211 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21212 if ((ire != NULL) && (ire->ire_type & 21213 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21214 ignore_dontroute = B_TRUE; 21215 ignore_nexthop = B_TRUE; 21216 } 21217 if (ire != NULL) { 21218 ire_refrele(ire); 21219 ire = NULL; 21220 } 21221 /* 21222 * Guard against coming in from arp in which case conn is NULL. 21223 * Also guard against non M_DATA with dontroute set but 21224 * destined to local, loopback or broadcast addresses. 21225 */ 21226 if (connp != NULL && connp->conn_dontroute && 21227 !ignore_dontroute) { 21228 dontroute: 21229 /* 21230 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21231 * routing protocols from seeing false direct 21232 * connectivity. 21233 */ 21234 ipha->ipha_ttl = 1; 21235 21236 /* If suitable ipif not found, drop packet */ 21237 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21238 if (dst_ipif == NULL) { 21239 noroute: 21240 ip1dbg(("ip_wput: no route for dst using" 21241 " SO_DONTROUTE\n")); 21242 BUMP_MIB(&ipst->ips_ip_mib, 21243 ipIfStatsOutNoRoutes); 21244 mp->b_prev = mp->b_next = NULL; 21245 if (first_mp == NULL) 21246 first_mp = mp; 21247 goto drop_pkt; 21248 } else { 21249 /* 21250 * If suitable ipif has been found, set 21251 * xmit_ill to the corresponding 21252 * ipif_ill because we'll be using the 21253 * send_from_ill logic below. 21254 */ 21255 ASSERT(xmit_ill == NULL); 21256 xmit_ill = dst_ipif->ipif_ill; 21257 mutex_enter(&xmit_ill->ill_lock); 21258 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21259 mutex_exit(&xmit_ill->ill_lock); 21260 xmit_ill = NULL; 21261 ipif_refrele(dst_ipif); 21262 goto noroute; 21263 } 21264 ill_refhold_locked(xmit_ill); 21265 mutex_exit(&xmit_ill->ill_lock); 21266 ipif_refrele(dst_ipif); 21267 } 21268 } 21269 /* 21270 * If we are bound to IPIF_NOFAILOVER address, look for 21271 * an IRE_CACHE matching the ill. 21272 */ 21273 send_from_ill: 21274 if (attach_ill != NULL) { 21275 ipif_t *attach_ipif; 21276 21277 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21278 21279 /* 21280 * Check if we need an ire that will not be 21281 * looked up by anybody else i.e. HIDDEN. 21282 */ 21283 if (ill_is_probeonly(attach_ill)) { 21284 match_flags |= MATCH_IRE_MARK_HIDDEN; 21285 } 21286 21287 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21288 if (attach_ipif == NULL) { 21289 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21290 goto discard_pkt; 21291 } 21292 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21293 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21294 ipif_refrele(attach_ipif); 21295 } else if (xmit_ill != NULL) { 21296 ipif_t *ipif; 21297 21298 /* 21299 * Mark this packet as originated locally 21300 */ 21301 mp->b_prev = mp->b_next = NULL; 21302 21303 /* 21304 * Could be SO_DONTROUTE case also. 21305 * Verify that at least one ipif is up on the ill. 21306 */ 21307 if (xmit_ill->ill_ipif_up_count == 0) { 21308 ip1dbg(("ip_output: xmit_ill %s is down\n", 21309 xmit_ill->ill_name)); 21310 goto drop_pkt; 21311 } 21312 21313 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21314 if (ipif == NULL) { 21315 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21316 xmit_ill->ill_name)); 21317 goto drop_pkt; 21318 } 21319 21320 /* 21321 * Look for a ire that is part of the group, 21322 * if found use it else call ip_newroute_ipif. 21323 * IPCL_ZONEID is not used for matching because 21324 * IP_ALLZONES option is valid only when the 21325 * ill is accessible from all zones i.e has a 21326 * valid ipif in all zones. 21327 */ 21328 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21329 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21330 MBLK_GETLABEL(mp), match_flags, ipst); 21331 /* 21332 * If an ire exists use it or else create 21333 * an ire but don't add it to the cache. 21334 * Adding an ire may cause issues with 21335 * asymmetric routing. 21336 * In case of multiroute always act as if 21337 * ire does not exist. 21338 */ 21339 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21340 if (ire != NULL) 21341 ire_refrele(ire); 21342 ip_newroute_ipif(q, first_mp, ipif, 21343 dst, connp, 0, zoneid, infop); 21344 ipif_refrele(ipif); 21345 ip1dbg(("ip_output: xmit_ill via %s\n", 21346 xmit_ill->ill_name)); 21347 ill_refrele(xmit_ill); 21348 if (need_decref) 21349 CONN_DEC_REF(connp); 21350 return; 21351 } 21352 ipif_refrele(ipif); 21353 } else if (ip_nexthop || (connp != NULL && 21354 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21355 if (!ip_nexthop) { 21356 ip_nexthop = B_TRUE; 21357 nexthop_addr = connp->conn_nexthop_v4; 21358 } 21359 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21360 MATCH_IRE_GW; 21361 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21362 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21363 } else { 21364 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21365 ipst); 21366 } 21367 if (!ire) { 21368 /* 21369 * Make sure we don't load spread if this 21370 * is IPIF_NOFAILOVER case. 21371 */ 21372 if ((attach_ill != NULL) || 21373 (ip_nexthop && !ignore_nexthop)) { 21374 if (mctl_present) { 21375 io = (ipsec_out_t *)first_mp->b_rptr; 21376 ASSERT(first_mp->b_datap->db_type == 21377 M_CTL); 21378 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21379 } else { 21380 ASSERT(mp == first_mp); 21381 first_mp = allocb( 21382 sizeof (ipsec_info_t), BPRI_HI); 21383 if (first_mp == NULL) { 21384 first_mp = mp; 21385 goto discard_pkt; 21386 } 21387 first_mp->b_datap->db_type = M_CTL; 21388 first_mp->b_wptr += 21389 sizeof (ipsec_info_t); 21390 /* ipsec_out_secure is B_FALSE now */ 21391 bzero(first_mp->b_rptr, 21392 sizeof (ipsec_info_t)); 21393 io = (ipsec_out_t *)first_mp->b_rptr; 21394 io->ipsec_out_type = IPSEC_OUT; 21395 io->ipsec_out_len = 21396 sizeof (ipsec_out_t); 21397 io->ipsec_out_use_global_policy = 21398 B_TRUE; 21399 io->ipsec_out_ns = ipst->ips_netstack; 21400 first_mp->b_cont = mp; 21401 mctl_present = B_TRUE; 21402 } 21403 if (attach_ill != NULL) { 21404 io->ipsec_out_ill_index = attach_ill-> 21405 ill_phyint->phyint_ifindex; 21406 io->ipsec_out_attach_if = B_TRUE; 21407 } else { 21408 io->ipsec_out_ip_nexthop = ip_nexthop; 21409 io->ipsec_out_nexthop_addr = 21410 nexthop_addr; 21411 } 21412 } 21413 noirefound: 21414 /* 21415 * Mark this packet as having originated on 21416 * this machine. This will be noted in 21417 * ire_add_then_send, which needs to know 21418 * whether to run it back through ip_wput or 21419 * ip_rput following successful resolution. 21420 */ 21421 mp->b_prev = NULL; 21422 mp->b_next = NULL; 21423 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21424 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21425 "ip_wput_end: q %p (%S)", q, "newroute"); 21426 if (attach_ill != NULL) 21427 ill_refrele(attach_ill); 21428 if (xmit_ill != NULL) 21429 ill_refrele(xmit_ill); 21430 if (need_decref) 21431 CONN_DEC_REF(connp); 21432 return; 21433 } 21434 } 21435 21436 /* We now know where we are going with it. */ 21437 21438 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21439 "ip_wput_end: q %p (%S)", q, "end"); 21440 21441 /* 21442 * Check if the ire has the RTF_MULTIRT flag, inherited 21443 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21444 */ 21445 if (ire->ire_flags & RTF_MULTIRT) { 21446 /* 21447 * Force the TTL of multirouted packets if required. 21448 * The TTL of such packets is bounded by the 21449 * ip_multirt_ttl ndd variable. 21450 */ 21451 if ((ipst->ips_ip_multirt_ttl > 0) && 21452 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21453 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21454 "(was %d), dst 0x%08x\n", 21455 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21456 ntohl(ire->ire_addr))); 21457 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21458 } 21459 /* 21460 * At this point, we check to see if there are any pending 21461 * unresolved routes. ire_multirt_resolvable() 21462 * checks in O(n) that all IRE_OFFSUBNET ire 21463 * entries for the packet's destination and 21464 * flagged RTF_MULTIRT are currently resolved. 21465 * If some remain unresolved, we make a copy 21466 * of the current message. It will be used 21467 * to initiate additional route resolutions. 21468 */ 21469 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21470 MBLK_GETLABEL(first_mp), ipst); 21471 ip2dbg(("ip_wput[noirefound]: ire %p, " 21472 "multirt_need_resolve %d, first_mp %p\n", 21473 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21474 if (multirt_need_resolve) { 21475 copy_mp = copymsg(first_mp); 21476 if (copy_mp != NULL) { 21477 MULTIRT_DEBUG_TAG(copy_mp); 21478 } 21479 } 21480 } 21481 21482 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21483 /* 21484 * Try to resolve another multiroute if 21485 * ire_multirt_resolvable() deemed it necessary. 21486 * At this point, we need to distinguish 21487 * multicasts from other packets. For multicasts, 21488 * we call ip_newroute_ipif() and request that both 21489 * multirouting and setsrc flags are checked. 21490 */ 21491 if (copy_mp != NULL) { 21492 if (CLASSD(dst)) { 21493 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21494 if (ipif) { 21495 ASSERT(infop->ip_opt_ill_index == 0); 21496 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21497 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21498 ipif_refrele(ipif); 21499 } else { 21500 MULTIRT_DEBUG_UNTAG(copy_mp); 21501 freemsg(copy_mp); 21502 copy_mp = NULL; 21503 } 21504 } else { 21505 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21506 } 21507 } 21508 if (attach_ill != NULL) 21509 ill_refrele(attach_ill); 21510 if (xmit_ill != NULL) 21511 ill_refrele(xmit_ill); 21512 if (need_decref) 21513 CONN_DEC_REF(connp); 21514 return; 21515 21516 icmp_parameter_problem: 21517 /* could not have originated externally */ 21518 ASSERT(mp->b_prev == NULL); 21519 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21520 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21521 /* it's the IP header length that's in trouble */ 21522 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21523 first_mp = NULL; 21524 } 21525 21526 discard_pkt: 21527 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21528 drop_pkt: 21529 ip1dbg(("ip_wput: dropped packet\n")); 21530 if (ire != NULL) 21531 ire_refrele(ire); 21532 if (need_decref) 21533 CONN_DEC_REF(connp); 21534 freemsg(first_mp); 21535 if (attach_ill != NULL) 21536 ill_refrele(attach_ill); 21537 if (xmit_ill != NULL) 21538 ill_refrele(xmit_ill); 21539 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21540 "ip_wput_end: q %p (%S)", q, "droppkt"); 21541 } 21542 21543 /* 21544 * If this is a conn_t queue, then we pass in the conn. This includes the 21545 * zoneid. 21546 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21547 * in which case we use the global zoneid since those are all part of 21548 * the global zone. 21549 */ 21550 void 21551 ip_wput(queue_t *q, mblk_t *mp) 21552 { 21553 if (CONN_Q(q)) 21554 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21555 else 21556 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21557 } 21558 21559 /* 21560 * 21561 * The following rules must be observed when accessing any ipif or ill 21562 * that has been cached in the conn. Typically conn_nofailover_ill, 21563 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21564 * 21565 * Access: The ipif or ill pointed to from the conn can be accessed under 21566 * the protection of the conn_lock or after it has been refheld under the 21567 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21568 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21569 * The reason for this is that a concurrent unplumb could actually be 21570 * cleaning up these cached pointers by walking the conns and might have 21571 * finished cleaning up the conn in question. The macros check that an 21572 * unplumb has not yet started on the ipif or ill. 21573 * 21574 * Caching: An ipif or ill pointer may be cached in the conn only after 21575 * making sure that an unplumb has not started. So the caching is done 21576 * while holding both the conn_lock and the ill_lock and after using the 21577 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21578 * flag before starting the cleanup of conns. 21579 * 21580 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21581 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21582 * or a reference to the ipif or a reference to an ire that references the 21583 * ipif. An ipif does not change its ill except for failover/failback. Since 21584 * failover/failback happens only after bringing down the ipif and making sure 21585 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21586 * the above holds. 21587 */ 21588 ipif_t * 21589 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21590 { 21591 ipif_t *ipif; 21592 ill_t *ill; 21593 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21594 21595 *err = 0; 21596 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21597 mutex_enter(&connp->conn_lock); 21598 ipif = *ipifp; 21599 if (ipif != NULL) { 21600 ill = ipif->ipif_ill; 21601 mutex_enter(&ill->ill_lock); 21602 if (IPIF_CAN_LOOKUP(ipif)) { 21603 ipif_refhold_locked(ipif); 21604 mutex_exit(&ill->ill_lock); 21605 mutex_exit(&connp->conn_lock); 21606 rw_exit(&ipst->ips_ill_g_lock); 21607 return (ipif); 21608 } else { 21609 *err = IPIF_LOOKUP_FAILED; 21610 } 21611 mutex_exit(&ill->ill_lock); 21612 } 21613 mutex_exit(&connp->conn_lock); 21614 rw_exit(&ipst->ips_ill_g_lock); 21615 return (NULL); 21616 } 21617 21618 ill_t * 21619 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21620 { 21621 ill_t *ill; 21622 21623 *err = 0; 21624 mutex_enter(&connp->conn_lock); 21625 ill = *illp; 21626 if (ill != NULL) { 21627 mutex_enter(&ill->ill_lock); 21628 if (ILL_CAN_LOOKUP(ill)) { 21629 ill_refhold_locked(ill); 21630 mutex_exit(&ill->ill_lock); 21631 mutex_exit(&connp->conn_lock); 21632 return (ill); 21633 } else { 21634 *err = ILL_LOOKUP_FAILED; 21635 } 21636 mutex_exit(&ill->ill_lock); 21637 } 21638 mutex_exit(&connp->conn_lock); 21639 return (NULL); 21640 } 21641 21642 static int 21643 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21644 { 21645 ill_t *ill; 21646 21647 ill = ipif->ipif_ill; 21648 mutex_enter(&connp->conn_lock); 21649 mutex_enter(&ill->ill_lock); 21650 if (IPIF_CAN_LOOKUP(ipif)) { 21651 *ipifp = ipif; 21652 mutex_exit(&ill->ill_lock); 21653 mutex_exit(&connp->conn_lock); 21654 return (0); 21655 } 21656 mutex_exit(&ill->ill_lock); 21657 mutex_exit(&connp->conn_lock); 21658 return (IPIF_LOOKUP_FAILED); 21659 } 21660 21661 /* 21662 * This is called if the outbound datagram needs fragmentation. 21663 * 21664 * NOTE : This function does not ire_refrele the ire argument passed in. 21665 */ 21666 static void 21667 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21668 ip_stack_t *ipst) 21669 { 21670 ipha_t *ipha; 21671 mblk_t *mp; 21672 uint32_t v_hlen_tos_len; 21673 uint32_t max_frag; 21674 uint32_t frag_flag; 21675 boolean_t dont_use; 21676 21677 if (ipsec_mp->b_datap->db_type == M_CTL) { 21678 mp = ipsec_mp->b_cont; 21679 } else { 21680 mp = ipsec_mp; 21681 } 21682 21683 ipha = (ipha_t *)mp->b_rptr; 21684 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21685 21686 #ifdef _BIG_ENDIAN 21687 #define V_HLEN (v_hlen_tos_len >> 24) 21688 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21689 #else 21690 #define V_HLEN (v_hlen_tos_len & 0xFF) 21691 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21692 #endif 21693 21694 #ifndef SPEED_BEFORE_SAFETY 21695 /* 21696 * Check that ipha_length is consistent with 21697 * the mblk length 21698 */ 21699 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21700 ip0dbg(("Packet length mismatch: %d, %ld\n", 21701 LENGTH, msgdsize(mp))); 21702 freemsg(ipsec_mp); 21703 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21704 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21705 "packet length mismatch"); 21706 return; 21707 } 21708 #endif 21709 /* 21710 * Don't use frag_flag if pre-built packet or source 21711 * routed or if multicast (since multicast packets do not solicit 21712 * ICMP "packet too big" messages). Get the values of 21713 * max_frag and frag_flag atomically by acquiring the 21714 * ire_lock. 21715 */ 21716 mutex_enter(&ire->ire_lock); 21717 max_frag = ire->ire_max_frag; 21718 frag_flag = ire->ire_frag_flag; 21719 mutex_exit(&ire->ire_lock); 21720 21721 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21722 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21723 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21724 21725 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21726 (dont_use ? 0 : frag_flag), zoneid, ipst); 21727 } 21728 21729 /* 21730 * Used for deciding the MSS size for the upper layer. Thus 21731 * we need to check the outbound policy values in the conn. 21732 */ 21733 int 21734 conn_ipsec_length(conn_t *connp) 21735 { 21736 ipsec_latch_t *ipl; 21737 21738 ipl = connp->conn_latch; 21739 if (ipl == NULL) 21740 return (0); 21741 21742 if (ipl->ipl_out_policy == NULL) 21743 return (0); 21744 21745 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21746 } 21747 21748 /* 21749 * Returns an estimate of the IPsec headers size. This is used if 21750 * we don't want to call into IPsec to get the exact size. 21751 */ 21752 int 21753 ipsec_out_extra_length(mblk_t *ipsec_mp) 21754 { 21755 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21756 ipsec_action_t *a; 21757 21758 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21759 if (!io->ipsec_out_secure) 21760 return (0); 21761 21762 a = io->ipsec_out_act; 21763 21764 if (a == NULL) { 21765 ASSERT(io->ipsec_out_policy != NULL); 21766 a = io->ipsec_out_policy->ipsp_act; 21767 } 21768 ASSERT(a != NULL); 21769 21770 return (a->ipa_ovhd); 21771 } 21772 21773 /* 21774 * Returns an estimate of the IPsec headers size. This is used if 21775 * we don't want to call into IPsec to get the exact size. 21776 */ 21777 int 21778 ipsec_in_extra_length(mblk_t *ipsec_mp) 21779 { 21780 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21781 ipsec_action_t *a; 21782 21783 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21784 21785 a = ii->ipsec_in_action; 21786 return (a == NULL ? 0 : a->ipa_ovhd); 21787 } 21788 21789 /* 21790 * If there are any source route options, return the true final 21791 * destination. Otherwise, return the destination. 21792 */ 21793 ipaddr_t 21794 ip_get_dst(ipha_t *ipha) 21795 { 21796 ipoptp_t opts; 21797 uchar_t *opt; 21798 uint8_t optval; 21799 uint8_t optlen; 21800 ipaddr_t dst; 21801 uint32_t off; 21802 21803 dst = ipha->ipha_dst; 21804 21805 if (IS_SIMPLE_IPH(ipha)) 21806 return (dst); 21807 21808 for (optval = ipoptp_first(&opts, ipha); 21809 optval != IPOPT_EOL; 21810 optval = ipoptp_next(&opts)) { 21811 opt = opts.ipoptp_cur; 21812 optlen = opts.ipoptp_len; 21813 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21814 switch (optval) { 21815 case IPOPT_SSRR: 21816 case IPOPT_LSRR: 21817 off = opt[IPOPT_OFFSET]; 21818 /* 21819 * If one of the conditions is true, it means 21820 * end of options and dst already has the right 21821 * value. 21822 */ 21823 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21824 off = optlen - IP_ADDR_LEN; 21825 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21826 } 21827 return (dst); 21828 default: 21829 break; 21830 } 21831 } 21832 21833 return (dst); 21834 } 21835 21836 mblk_t * 21837 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21838 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21839 { 21840 ipsec_out_t *io; 21841 mblk_t *first_mp; 21842 boolean_t policy_present; 21843 ip_stack_t *ipst; 21844 ipsec_stack_t *ipss; 21845 21846 ASSERT(ire != NULL); 21847 ipst = ire->ire_ipst; 21848 ipss = ipst->ips_netstack->netstack_ipsec; 21849 21850 first_mp = mp; 21851 if (mp->b_datap->db_type == M_CTL) { 21852 io = (ipsec_out_t *)first_mp->b_rptr; 21853 /* 21854 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21855 * 21856 * 1) There is per-socket policy (including cached global 21857 * policy) or a policy on the IP-in-IP tunnel. 21858 * 2) There is no per-socket policy, but it is 21859 * a multicast packet that needs to go out 21860 * on a specific interface. This is the case 21861 * where (ip_wput and ip_wput_multicast) attaches 21862 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21863 * 21864 * In case (2) we check with global policy to 21865 * see if there is a match and set the ill_index 21866 * appropriately so that we can lookup the ire 21867 * properly in ip_wput_ipsec_out. 21868 */ 21869 21870 /* 21871 * ipsec_out_use_global_policy is set to B_FALSE 21872 * in ipsec_in_to_out(). Refer to that function for 21873 * details. 21874 */ 21875 if ((io->ipsec_out_latch == NULL) && 21876 (io->ipsec_out_use_global_policy)) { 21877 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21878 ire, connp, unspec_src, zoneid)); 21879 } 21880 if (!io->ipsec_out_secure) { 21881 /* 21882 * If this is not a secure packet, drop 21883 * the IPSEC_OUT mp and treat it as a clear 21884 * packet. This happens when we are sending 21885 * a ICMP reply back to a clear packet. See 21886 * ipsec_in_to_out() for details. 21887 */ 21888 mp = first_mp->b_cont; 21889 freeb(first_mp); 21890 } 21891 return (mp); 21892 } 21893 /* 21894 * See whether we need to attach a global policy here. We 21895 * don't depend on the conn (as it could be null) for deciding 21896 * what policy this datagram should go through because it 21897 * should have happened in ip_wput if there was some 21898 * policy. This normally happens for connections which are not 21899 * fully bound preventing us from caching policies in 21900 * ip_bind. Packets coming from the TCP listener/global queue 21901 * - which are non-hard_bound - could also be affected by 21902 * applying policy here. 21903 * 21904 * If this packet is coming from tcp global queue or listener, 21905 * we will be applying policy here. This may not be *right* 21906 * if these packets are coming from the detached connection as 21907 * it could have gone in clear before. This happens only if a 21908 * TCP connection started when there is no policy and somebody 21909 * added policy before it became detached. Thus packets of the 21910 * detached connection could go out secure and the other end 21911 * would drop it because it will be expecting in clear. The 21912 * converse is not true i.e if somebody starts a TCP 21913 * connection and deletes the policy, all the packets will 21914 * still go out with the policy that existed before deleting 21915 * because ip_unbind sends up policy information which is used 21916 * by TCP on subsequent ip_wputs. The right solution is to fix 21917 * TCP to attach a dummy IPSEC_OUT and set 21918 * ipsec_out_use_global_policy to B_FALSE. As this might 21919 * affect performance for normal cases, we are not doing it. 21920 * Thus, set policy before starting any TCP connections. 21921 * 21922 * NOTE - We might apply policy even for a hard bound connection 21923 * - for which we cached policy in ip_bind - if somebody added 21924 * global policy after we inherited the policy in ip_bind. 21925 * This means that the packets that were going out in clear 21926 * previously would start going secure and hence get dropped 21927 * on the other side. To fix this, TCP attaches a dummy 21928 * ipsec_out and make sure that we don't apply global policy. 21929 */ 21930 if (ipha != NULL) 21931 policy_present = ipss->ipsec_outbound_v4_policy_present; 21932 else 21933 policy_present = ipss->ipsec_outbound_v6_policy_present; 21934 if (!policy_present) 21935 return (mp); 21936 21937 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21938 zoneid)); 21939 } 21940 21941 ire_t * 21942 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21943 { 21944 ipaddr_t addr; 21945 ire_t *save_ire; 21946 irb_t *irb; 21947 ill_group_t *illgrp; 21948 int err; 21949 21950 save_ire = ire; 21951 addr = ire->ire_addr; 21952 21953 ASSERT(ire->ire_type == IRE_BROADCAST); 21954 21955 illgrp = connp->conn_outgoing_ill->ill_group; 21956 if (illgrp == NULL) { 21957 *conn_outgoing_ill = conn_get_held_ill(connp, 21958 &connp->conn_outgoing_ill, &err); 21959 if (err == ILL_LOOKUP_FAILED) { 21960 ire_refrele(save_ire); 21961 return (NULL); 21962 } 21963 return (save_ire); 21964 } 21965 /* 21966 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21967 * If it is part of the group, we need to send on the ire 21968 * that has been cleared of IRE_MARK_NORECV and that belongs 21969 * to this group. This is okay as IP_BOUND_IF really means 21970 * any ill in the group. We depend on the fact that the 21971 * first ire in the group is always cleared of IRE_MARK_NORECV 21972 * if such an ire exists. This is possible only if you have 21973 * at least one ill in the group that has not failed. 21974 * 21975 * First get to the ire that matches the address and group. 21976 * 21977 * We don't look for an ire with a matching zoneid because a given zone 21978 * won't always have broadcast ires on all ills in the group. 21979 */ 21980 irb = ire->ire_bucket; 21981 rw_enter(&irb->irb_lock, RW_READER); 21982 if (ire->ire_marks & IRE_MARK_NORECV) { 21983 /* 21984 * If the current zone only has an ire broadcast for this 21985 * address marked NORECV, the ire we want is ahead in the 21986 * bucket, so we look it up deliberately ignoring the zoneid. 21987 */ 21988 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21989 if (ire->ire_addr != addr) 21990 continue; 21991 /* skip over deleted ires */ 21992 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21993 continue; 21994 } 21995 } 21996 while (ire != NULL) { 21997 /* 21998 * If a new interface is coming up, we could end up 21999 * seeing the loopback ire and the non-loopback ire 22000 * may not have been added yet. So check for ire_stq 22001 */ 22002 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22003 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22004 break; 22005 } 22006 ire = ire->ire_next; 22007 } 22008 if (ire != NULL && ire->ire_addr == addr && 22009 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22010 IRE_REFHOLD(ire); 22011 rw_exit(&irb->irb_lock); 22012 ire_refrele(save_ire); 22013 *conn_outgoing_ill = ire_to_ill(ire); 22014 /* 22015 * Refhold the ill to make the conn_outgoing_ill 22016 * independent of the ire. ip_wput_ire goes in a loop 22017 * and may refrele the ire. Since we have an ire at this 22018 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22019 */ 22020 ill_refhold(*conn_outgoing_ill); 22021 return (ire); 22022 } 22023 rw_exit(&irb->irb_lock); 22024 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22025 /* 22026 * If we can't find a suitable ire, return the original ire. 22027 */ 22028 return (save_ire); 22029 } 22030 22031 /* 22032 * This function does the ire_refrele of the ire passed in as the 22033 * argument. As this function looks up more ires i.e broadcast ires, 22034 * it needs to REFRELE them. Currently, for simplicity we don't 22035 * differentiate the one passed in and looked up here. We always 22036 * REFRELE. 22037 * IPQoS Notes: 22038 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22039 * IPsec packets are done in ipsec_out_process. 22040 * 22041 */ 22042 void 22043 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22044 zoneid_t zoneid) 22045 { 22046 ipha_t *ipha; 22047 #define rptr ((uchar_t *)ipha) 22048 queue_t *stq; 22049 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22050 uint32_t v_hlen_tos_len; 22051 uint32_t ttl_protocol; 22052 ipaddr_t src; 22053 ipaddr_t dst; 22054 uint32_t cksum; 22055 ipaddr_t orig_src; 22056 ire_t *ire1; 22057 mblk_t *next_mp; 22058 uint_t hlen; 22059 uint16_t *up; 22060 uint32_t max_frag = ire->ire_max_frag; 22061 ill_t *ill = ire_to_ill(ire); 22062 int clusterwide; 22063 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22064 int ipsec_len; 22065 mblk_t *first_mp; 22066 ipsec_out_t *io; 22067 boolean_t conn_dontroute; /* conn value for multicast */ 22068 boolean_t conn_multicast_loop; /* conn value for multicast */ 22069 boolean_t multicast_forward; /* Should we forward ? */ 22070 boolean_t unspec_src; 22071 ill_t *conn_outgoing_ill = NULL; 22072 ill_t *ire_ill; 22073 ill_t *ire1_ill; 22074 ill_t *out_ill; 22075 uint32_t ill_index = 0; 22076 boolean_t multirt_send = B_FALSE; 22077 int err; 22078 ipxmit_state_t pktxmit_state; 22079 ip_stack_t *ipst = ire->ire_ipst; 22080 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22081 22082 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22083 "ip_wput_ire_start: q %p", q); 22084 22085 multicast_forward = B_FALSE; 22086 unspec_src = (connp != NULL && connp->conn_unspec_src); 22087 22088 if (ire->ire_flags & RTF_MULTIRT) { 22089 /* 22090 * Multirouting case. The bucket where ire is stored 22091 * probably holds other RTF_MULTIRT flagged ire 22092 * to the destination. In this call to ip_wput_ire, 22093 * we attempt to send the packet through all 22094 * those ires. Thus, we first ensure that ire is the 22095 * first RTF_MULTIRT ire in the bucket, 22096 * before walking the ire list. 22097 */ 22098 ire_t *first_ire; 22099 irb_t *irb = ire->ire_bucket; 22100 ASSERT(irb != NULL); 22101 22102 /* Make sure we do not omit any multiroute ire. */ 22103 IRB_REFHOLD(irb); 22104 for (first_ire = irb->irb_ire; 22105 first_ire != NULL; 22106 first_ire = first_ire->ire_next) { 22107 if ((first_ire->ire_flags & RTF_MULTIRT) && 22108 (first_ire->ire_addr == ire->ire_addr) && 22109 !(first_ire->ire_marks & 22110 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22111 break; 22112 } 22113 } 22114 22115 if ((first_ire != NULL) && (first_ire != ire)) { 22116 IRE_REFHOLD(first_ire); 22117 ire_refrele(ire); 22118 ire = first_ire; 22119 ill = ire_to_ill(ire); 22120 } 22121 IRB_REFRELE(irb); 22122 } 22123 22124 /* 22125 * conn_outgoing_ill variable is used only in the broadcast loop. 22126 * for performance we don't grab the mutexs in the fastpath 22127 */ 22128 if ((connp != NULL) && 22129 (ire->ire_type == IRE_BROADCAST) && 22130 ((connp->conn_nofailover_ill != NULL) || 22131 (connp->conn_outgoing_ill != NULL))) { 22132 /* 22133 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22134 * option. So, see if this endpoint is bound to a 22135 * IPIF_NOFAILOVER address. If so, honor it. This implies 22136 * that if the interface is failed, we will still send 22137 * the packet on the same ill which is what we want. 22138 */ 22139 conn_outgoing_ill = conn_get_held_ill(connp, 22140 &connp->conn_nofailover_ill, &err); 22141 if (err == ILL_LOOKUP_FAILED) { 22142 ire_refrele(ire); 22143 freemsg(mp); 22144 return; 22145 } 22146 if (conn_outgoing_ill == NULL) { 22147 /* 22148 * Choose a good ill in the group to send the 22149 * packets on. 22150 */ 22151 ire = conn_set_outgoing_ill(connp, ire, 22152 &conn_outgoing_ill); 22153 if (ire == NULL) { 22154 freemsg(mp); 22155 return; 22156 } 22157 } 22158 } 22159 22160 if (mp->b_datap->db_type != M_CTL) { 22161 ipha = (ipha_t *)mp->b_rptr; 22162 } else { 22163 io = (ipsec_out_t *)mp->b_rptr; 22164 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22165 ASSERT(zoneid == io->ipsec_out_zoneid); 22166 ASSERT(zoneid != ALL_ZONES); 22167 ipha = (ipha_t *)mp->b_cont->b_rptr; 22168 dst = ipha->ipha_dst; 22169 /* 22170 * For the multicast case, ipsec_out carries conn_dontroute and 22171 * conn_multicast_loop as conn may not be available here. We 22172 * need this for multicast loopback and forwarding which is done 22173 * later in the code. 22174 */ 22175 if (CLASSD(dst)) { 22176 conn_dontroute = io->ipsec_out_dontroute; 22177 conn_multicast_loop = io->ipsec_out_multicast_loop; 22178 /* 22179 * If conn_dontroute is not set or conn_multicast_loop 22180 * is set, we need to do forwarding/loopback. For 22181 * datagrams from ip_wput_multicast, conn_dontroute is 22182 * set to B_TRUE and conn_multicast_loop is set to 22183 * B_FALSE so that we neither do forwarding nor 22184 * loopback. 22185 */ 22186 if (!conn_dontroute || conn_multicast_loop) 22187 multicast_forward = B_TRUE; 22188 } 22189 } 22190 22191 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22192 ire->ire_zoneid != ALL_ZONES) { 22193 /* 22194 * When a zone sends a packet to another zone, we try to deliver 22195 * the packet under the same conditions as if the destination 22196 * was a real node on the network. To do so, we look for a 22197 * matching route in the forwarding table. 22198 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22199 * ip_newroute() does. 22200 * Note that IRE_LOCAL are special, since they are used 22201 * when the zoneid doesn't match in some cases. This means that 22202 * we need to handle ipha_src differently since ire_src_addr 22203 * belongs to the receiving zone instead of the sending zone. 22204 * When ip_restrict_interzone_loopback is set, then 22205 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22206 * for loopback between zones when the logical "Ethernet" would 22207 * have looped them back. 22208 */ 22209 ire_t *src_ire; 22210 22211 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22212 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22213 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22214 if (src_ire != NULL && 22215 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22216 (!ipst->ips_ip_restrict_interzone_loopback || 22217 ire_local_same_ill_group(ire, src_ire))) { 22218 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22219 ipha->ipha_src = src_ire->ire_src_addr; 22220 ire_refrele(src_ire); 22221 } else { 22222 ire_refrele(ire); 22223 if (conn_outgoing_ill != NULL) 22224 ill_refrele(conn_outgoing_ill); 22225 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22226 if (src_ire != NULL) { 22227 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22228 ire_refrele(src_ire); 22229 freemsg(mp); 22230 return; 22231 } 22232 ire_refrele(src_ire); 22233 } 22234 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22235 /* Failed */ 22236 freemsg(mp); 22237 return; 22238 } 22239 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22240 ipst); 22241 return; 22242 } 22243 } 22244 22245 if (mp->b_datap->db_type == M_CTL || 22246 ipss->ipsec_outbound_v4_policy_present) { 22247 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22248 unspec_src, zoneid); 22249 if (mp == NULL) { 22250 ire_refrele(ire); 22251 if (conn_outgoing_ill != NULL) 22252 ill_refrele(conn_outgoing_ill); 22253 return; 22254 } 22255 /* 22256 * Trusted Extensions supports all-zones interfaces, so 22257 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22258 * the global zone. 22259 */ 22260 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22261 io = (ipsec_out_t *)mp->b_rptr; 22262 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22263 zoneid = io->ipsec_out_zoneid; 22264 } 22265 } 22266 22267 first_mp = mp; 22268 ipsec_len = 0; 22269 22270 if (first_mp->b_datap->db_type == M_CTL) { 22271 io = (ipsec_out_t *)first_mp->b_rptr; 22272 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22273 mp = first_mp->b_cont; 22274 ipsec_len = ipsec_out_extra_length(first_mp); 22275 ASSERT(ipsec_len >= 0); 22276 /* We already picked up the zoneid from the M_CTL above */ 22277 ASSERT(zoneid == io->ipsec_out_zoneid); 22278 ASSERT(zoneid != ALL_ZONES); 22279 22280 /* 22281 * Drop M_CTL here if IPsec processing is not needed. 22282 * (Non-IPsec use of M_CTL extracted any information it 22283 * needed above). 22284 */ 22285 if (ipsec_len == 0) { 22286 freeb(first_mp); 22287 first_mp = mp; 22288 } 22289 } 22290 22291 /* 22292 * Fast path for ip_wput_ire 22293 */ 22294 22295 ipha = (ipha_t *)mp->b_rptr; 22296 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22297 dst = ipha->ipha_dst; 22298 22299 /* 22300 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22301 * if the socket is a SOCK_RAW type. The transport checksum should 22302 * be provided in the pre-built packet, so we don't need to compute it. 22303 * Also, other application set flags, like DF, should not be altered. 22304 * Other transport MUST pass down zero. 22305 */ 22306 ip_hdr_included = ipha->ipha_ident; 22307 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22308 22309 if (CLASSD(dst)) { 22310 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22311 ntohl(dst), 22312 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22313 ntohl(ire->ire_addr))); 22314 } 22315 22316 /* Macros to extract header fields from data already in registers */ 22317 #ifdef _BIG_ENDIAN 22318 #define V_HLEN (v_hlen_tos_len >> 24) 22319 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22320 #define PROTO (ttl_protocol & 0xFF) 22321 #else 22322 #define V_HLEN (v_hlen_tos_len & 0xFF) 22323 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22324 #define PROTO (ttl_protocol >> 8) 22325 #endif 22326 22327 22328 orig_src = src = ipha->ipha_src; 22329 /* (The loop back to "another" is explained down below.) */ 22330 another:; 22331 /* 22332 * Assign an ident value for this packet. We assign idents on 22333 * a per destination basis out of the IRE. There could be 22334 * other threads targeting the same destination, so we have to 22335 * arrange for a atomic increment. Note that we use a 32-bit 22336 * atomic add because it has better performance than its 22337 * 16-bit sibling. 22338 * 22339 * If running in cluster mode and if the source address 22340 * belongs to a replicated service then vector through 22341 * cl_inet_ipident vector to allocate ip identifier 22342 * NOTE: This is a contract private interface with the 22343 * clustering group. 22344 */ 22345 clusterwide = 0; 22346 if (cl_inet_ipident) { 22347 ASSERT(cl_inet_isclusterwide); 22348 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22349 AF_INET, (uint8_t *)(uintptr_t)src)) { 22350 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22351 AF_INET, (uint8_t *)(uintptr_t)src, 22352 (uint8_t *)(uintptr_t)dst); 22353 clusterwide = 1; 22354 } 22355 } 22356 if (!clusterwide) { 22357 ipha->ipha_ident = 22358 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22359 } 22360 22361 #ifndef _BIG_ENDIAN 22362 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22363 #endif 22364 22365 /* 22366 * Set source address unless sent on an ill or conn_unspec_src is set. 22367 * This is needed to obey conn_unspec_src when packets go through 22368 * ip_newroute + arp. 22369 * Assumes ip_newroute{,_multi} sets the source address as well. 22370 */ 22371 if (src == INADDR_ANY && !unspec_src) { 22372 /* 22373 * Assign the appropriate source address from the IRE if none 22374 * was specified. 22375 */ 22376 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22377 22378 /* 22379 * With IP multipathing, broadcast packets are sent on the ire 22380 * that has been cleared of IRE_MARK_NORECV and that belongs to 22381 * the group. However, this ire might not be in the same zone so 22382 * we can't always use its source address. We look for a 22383 * broadcast ire in the same group and in the right zone. 22384 */ 22385 if (ire->ire_type == IRE_BROADCAST && 22386 ire->ire_zoneid != zoneid) { 22387 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22388 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22389 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22390 if (src_ire != NULL) { 22391 src = src_ire->ire_src_addr; 22392 ire_refrele(src_ire); 22393 } else { 22394 ire_refrele(ire); 22395 if (conn_outgoing_ill != NULL) 22396 ill_refrele(conn_outgoing_ill); 22397 freemsg(first_mp); 22398 if (ill != NULL) { 22399 BUMP_MIB(ill->ill_ip_mib, 22400 ipIfStatsOutDiscards); 22401 } else { 22402 BUMP_MIB(&ipst->ips_ip_mib, 22403 ipIfStatsOutDiscards); 22404 } 22405 return; 22406 } 22407 } else { 22408 src = ire->ire_src_addr; 22409 } 22410 22411 if (connp == NULL) { 22412 ip1dbg(("ip_wput_ire: no connp and no src " 22413 "address for dst 0x%x, using src 0x%x\n", 22414 ntohl(dst), 22415 ntohl(src))); 22416 } 22417 ipha->ipha_src = src; 22418 } 22419 stq = ire->ire_stq; 22420 22421 /* 22422 * We only allow ire chains for broadcasts since there will 22423 * be multiple IRE_CACHE entries for the same multicast 22424 * address (one per ipif). 22425 */ 22426 next_mp = NULL; 22427 22428 /* broadcast packet */ 22429 if (ire->ire_type == IRE_BROADCAST) 22430 goto broadcast; 22431 22432 /* loopback ? */ 22433 if (stq == NULL) 22434 goto nullstq; 22435 22436 /* The ill_index for outbound ILL */ 22437 ill_index = Q_TO_INDEX(stq); 22438 22439 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22440 ttl_protocol = ((uint16_t *)ipha)[4]; 22441 22442 /* pseudo checksum (do it in parts for IP header checksum) */ 22443 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22444 22445 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22446 queue_t *dev_q = stq->q_next; 22447 22448 /* flow controlled */ 22449 if ((dev_q->q_next || dev_q->q_first) && 22450 !canput(dev_q)) 22451 goto blocked; 22452 if ((PROTO == IPPROTO_UDP) && 22453 (ip_hdr_included != IP_HDR_INCLUDED)) { 22454 hlen = (V_HLEN & 0xF) << 2; 22455 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22456 if (*up != 0) { 22457 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22458 hlen, LENGTH, max_frag, ipsec_len, cksum); 22459 /* Software checksum? */ 22460 if (DB_CKSUMFLAGS(mp) == 0) { 22461 IP_STAT(ipst, ip_out_sw_cksum); 22462 IP_STAT_UPDATE(ipst, 22463 ip_udp_out_sw_cksum_bytes, 22464 LENGTH - hlen); 22465 } 22466 } 22467 } 22468 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22469 hlen = (V_HLEN & 0xF) << 2; 22470 if (PROTO == IPPROTO_TCP) { 22471 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22472 /* 22473 * The packet header is processed once and for all, even 22474 * in the multirouting case. We disable hardware 22475 * checksum if the packet is multirouted, as it will be 22476 * replicated via several interfaces, and not all of 22477 * them may have this capability. 22478 */ 22479 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22480 LENGTH, max_frag, ipsec_len, cksum); 22481 /* Software checksum? */ 22482 if (DB_CKSUMFLAGS(mp) == 0) { 22483 IP_STAT(ipst, ip_out_sw_cksum); 22484 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22485 LENGTH - hlen); 22486 } 22487 } else { 22488 sctp_hdr_t *sctph; 22489 22490 ASSERT(PROTO == IPPROTO_SCTP); 22491 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22492 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22493 /* 22494 * Zero out the checksum field to ensure proper 22495 * checksum calculation. 22496 */ 22497 sctph->sh_chksum = 0; 22498 #ifdef DEBUG 22499 if (!skip_sctp_cksum) 22500 #endif 22501 sctph->sh_chksum = sctp_cksum(mp, hlen); 22502 } 22503 } 22504 22505 /* 22506 * If this is a multicast packet and originated from ip_wput 22507 * we need to do loopback and forwarding checks. If it comes 22508 * from ip_wput_multicast, we SHOULD not do this. 22509 */ 22510 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22511 22512 /* checksum */ 22513 cksum += ttl_protocol; 22514 22515 /* fragment the packet */ 22516 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22517 goto fragmentit; 22518 /* 22519 * Don't use frag_flag if packet is pre-built or source 22520 * routed or if multicast (since multicast packets do 22521 * not solicit ICMP "packet too big" messages). 22522 */ 22523 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22524 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22525 !ip_source_route_included(ipha)) && 22526 !CLASSD(ipha->ipha_dst)) 22527 ipha->ipha_fragment_offset_and_flags |= 22528 htons(ire->ire_frag_flag); 22529 22530 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22531 /* calculate IP header checksum */ 22532 cksum += ipha->ipha_ident; 22533 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22534 cksum += ipha->ipha_fragment_offset_and_flags; 22535 22536 /* IP options present */ 22537 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22538 if (hlen) 22539 goto checksumoptions; 22540 22541 /* calculate hdr checksum */ 22542 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22543 cksum = ~(cksum + (cksum >> 16)); 22544 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22545 } 22546 if (ipsec_len != 0) { 22547 /* 22548 * We will do the rest of the processing after 22549 * we come back from IPsec in ip_wput_ipsec_out(). 22550 */ 22551 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22552 22553 io = (ipsec_out_t *)first_mp->b_rptr; 22554 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22555 ill_phyint->phyint_ifindex; 22556 22557 ipsec_out_process(q, first_mp, ire, ill_index); 22558 ire_refrele(ire); 22559 if (conn_outgoing_ill != NULL) 22560 ill_refrele(conn_outgoing_ill); 22561 return; 22562 } 22563 22564 /* 22565 * In most cases, the emission loop below is entered only 22566 * once. Only in the case where the ire holds the 22567 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22568 * flagged ires in the bucket, and send the packet 22569 * through all crossed RTF_MULTIRT routes. 22570 */ 22571 if (ire->ire_flags & RTF_MULTIRT) { 22572 multirt_send = B_TRUE; 22573 } 22574 do { 22575 if (multirt_send) { 22576 irb_t *irb; 22577 /* 22578 * We are in a multiple send case, need to get 22579 * the next ire and make a duplicate of the packet. 22580 * ire1 holds here the next ire to process in the 22581 * bucket. If multirouting is expected, 22582 * any non-RTF_MULTIRT ire that has the 22583 * right destination address is ignored. 22584 */ 22585 irb = ire->ire_bucket; 22586 ASSERT(irb != NULL); 22587 22588 IRB_REFHOLD(irb); 22589 for (ire1 = ire->ire_next; 22590 ire1 != NULL; 22591 ire1 = ire1->ire_next) { 22592 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22593 continue; 22594 if (ire1->ire_addr != ire->ire_addr) 22595 continue; 22596 if (ire1->ire_marks & 22597 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22598 continue; 22599 22600 /* Got one */ 22601 IRE_REFHOLD(ire1); 22602 break; 22603 } 22604 IRB_REFRELE(irb); 22605 22606 if (ire1 != NULL) { 22607 next_mp = copyb(mp); 22608 if ((next_mp == NULL) || 22609 ((mp->b_cont != NULL) && 22610 ((next_mp->b_cont = 22611 dupmsg(mp->b_cont)) == NULL))) { 22612 freemsg(next_mp); 22613 next_mp = NULL; 22614 ire_refrele(ire1); 22615 ire1 = NULL; 22616 } 22617 } 22618 22619 /* Last multiroute ire; don't loop anymore. */ 22620 if (ire1 == NULL) { 22621 multirt_send = B_FALSE; 22622 } 22623 } 22624 22625 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22626 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22627 mblk_t *, mp); 22628 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22629 ipst->ips_ipv4firewall_physical_out, 22630 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22631 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22632 if (mp == NULL) 22633 goto release_ire_and_ill; 22634 22635 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22636 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22637 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22638 if ((pktxmit_state == SEND_FAILED) || 22639 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22640 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22641 "- packet dropped\n")); 22642 release_ire_and_ill: 22643 ire_refrele(ire); 22644 if (next_mp != NULL) { 22645 freemsg(next_mp); 22646 ire_refrele(ire1); 22647 } 22648 if (conn_outgoing_ill != NULL) 22649 ill_refrele(conn_outgoing_ill); 22650 return; 22651 } 22652 22653 if (CLASSD(dst)) { 22654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22655 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22656 LENGTH); 22657 } 22658 22659 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22660 "ip_wput_ire_end: q %p (%S)", 22661 q, "last copy out"); 22662 IRE_REFRELE(ire); 22663 22664 if (multirt_send) { 22665 ASSERT(ire1); 22666 /* 22667 * Proceed with the next RTF_MULTIRT ire, 22668 * Also set up the send-to queue accordingly. 22669 */ 22670 ire = ire1; 22671 ire1 = NULL; 22672 stq = ire->ire_stq; 22673 mp = next_mp; 22674 next_mp = NULL; 22675 ipha = (ipha_t *)mp->b_rptr; 22676 ill_index = Q_TO_INDEX(stq); 22677 ill = (ill_t *)stq->q_ptr; 22678 } 22679 } while (multirt_send); 22680 if (conn_outgoing_ill != NULL) 22681 ill_refrele(conn_outgoing_ill); 22682 return; 22683 22684 /* 22685 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22686 */ 22687 broadcast: 22688 { 22689 /* 22690 * To avoid broadcast storms, we usually set the TTL to 1 for 22691 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22692 * can be overridden stack-wide through the ip_broadcast_ttl 22693 * ndd tunable, or on a per-connection basis through the 22694 * IP_BROADCAST_TTL socket option. 22695 * 22696 * In the event that we are replying to incoming ICMP packets, 22697 * connp could be NULL. 22698 */ 22699 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22700 if (connp != NULL) { 22701 if (connp->conn_dontroute) 22702 ipha->ipha_ttl = 1; 22703 else if (connp->conn_broadcast_ttl != 0) 22704 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22705 } 22706 22707 /* 22708 * Note that we are not doing a IRB_REFHOLD here. 22709 * Actually we don't care if the list changes i.e 22710 * if somebody deletes an IRE from the list while 22711 * we drop the lock, the next time we come around 22712 * ire_next will be NULL and hence we won't send 22713 * out multiple copies which is fine. 22714 */ 22715 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22716 ire1 = ire->ire_next; 22717 if (conn_outgoing_ill != NULL) { 22718 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22719 ASSERT(ire1 == ire->ire_next); 22720 if (ire1 != NULL && ire1->ire_addr == dst) { 22721 ire_refrele(ire); 22722 ire = ire1; 22723 IRE_REFHOLD(ire); 22724 ire1 = ire->ire_next; 22725 continue; 22726 } 22727 rw_exit(&ire->ire_bucket->irb_lock); 22728 /* Did not find a matching ill */ 22729 ip1dbg(("ip_wput_ire: broadcast with no " 22730 "matching IP_BOUND_IF ill %s dst %x\n", 22731 conn_outgoing_ill->ill_name, dst)); 22732 freemsg(first_mp); 22733 if (ire != NULL) 22734 ire_refrele(ire); 22735 ill_refrele(conn_outgoing_ill); 22736 return; 22737 } 22738 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22739 /* 22740 * If the next IRE has the same address and is not one 22741 * of the two copies that we need to send, try to see 22742 * whether this copy should be sent at all. This 22743 * assumes that we insert loopbacks first and then 22744 * non-loopbacks. This is acheived by inserting the 22745 * loopback always before non-loopback. 22746 * This is used to send a single copy of a broadcast 22747 * packet out all physical interfaces that have an 22748 * matching IRE_BROADCAST while also looping 22749 * back one copy (to ip_wput_local) for each 22750 * matching physical interface. However, we avoid 22751 * sending packets out different logical that match by 22752 * having ipif_up/ipif_down supress duplicate 22753 * IRE_BROADCASTS. 22754 * 22755 * This feature is currently used to get broadcasts 22756 * sent to multiple interfaces, when the broadcast 22757 * address being used applies to multiple interfaces. 22758 * For example, a whole net broadcast will be 22759 * replicated on every connected subnet of 22760 * the target net. 22761 * 22762 * Each zone has its own set of IRE_BROADCASTs, so that 22763 * we're able to distribute inbound packets to multiple 22764 * zones who share a broadcast address. We avoid looping 22765 * back outbound packets in different zones but on the 22766 * same ill, as the application would see duplicates. 22767 * 22768 * If the interfaces are part of the same group, 22769 * we would want to send only one copy out for 22770 * whole group. 22771 * 22772 * This logic assumes that ire_add_v4() groups the 22773 * IRE_BROADCAST entries so that those with the same 22774 * ire_addr and ill_group are kept together. 22775 */ 22776 ire_ill = ire->ire_ipif->ipif_ill; 22777 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22778 if (ire_ill->ill_group != NULL && 22779 (ire->ire_marks & IRE_MARK_NORECV)) { 22780 /* 22781 * If the current zone only has an ire 22782 * broadcast for this address marked 22783 * NORECV, the ire we want is ahead in 22784 * the bucket, so we look it up 22785 * deliberately ignoring the zoneid. 22786 */ 22787 for (ire1 = ire->ire_bucket->irb_ire; 22788 ire1 != NULL; 22789 ire1 = ire1->ire_next) { 22790 ire1_ill = 22791 ire1->ire_ipif->ipif_ill; 22792 if (ire1->ire_addr != dst) 22793 continue; 22794 /* skip over the current ire */ 22795 if (ire1 == ire) 22796 continue; 22797 /* skip over deleted ires */ 22798 if (ire1->ire_marks & 22799 IRE_MARK_CONDEMNED) 22800 continue; 22801 /* 22802 * non-loopback ire in our 22803 * group: use it for the next 22804 * pass in the loop 22805 */ 22806 if (ire1->ire_stq != NULL && 22807 ire1_ill->ill_group == 22808 ire_ill->ill_group) 22809 break; 22810 } 22811 } 22812 } else { 22813 while (ire1 != NULL && ire1->ire_addr == dst) { 22814 ire1_ill = ire1->ire_ipif->ipif_ill; 22815 /* 22816 * We can have two broadcast ires on the 22817 * same ill in different zones; here 22818 * we'll send a copy of the packet on 22819 * each ill and the fanout code will 22820 * call conn_wantpacket() to check that 22821 * the zone has the broadcast address 22822 * configured on the ill. If the two 22823 * ires are in the same group we only 22824 * send one copy up. 22825 */ 22826 if (ire1_ill != ire_ill && 22827 (ire1_ill->ill_group == NULL || 22828 ire_ill->ill_group == NULL || 22829 ire1_ill->ill_group != 22830 ire_ill->ill_group)) { 22831 break; 22832 } 22833 ire1 = ire1->ire_next; 22834 } 22835 } 22836 } 22837 ASSERT(multirt_send == B_FALSE); 22838 if (ire1 != NULL && ire1->ire_addr == dst) { 22839 if ((ire->ire_flags & RTF_MULTIRT) && 22840 (ire1->ire_flags & RTF_MULTIRT)) { 22841 /* 22842 * We are in the multirouting case. 22843 * The message must be sent at least 22844 * on both ires. These ires have been 22845 * inserted AFTER the standard ones 22846 * in ip_rt_add(). There are thus no 22847 * other ire entries for the destination 22848 * address in the rest of the bucket 22849 * that do not have the RTF_MULTIRT 22850 * flag. We don't process a copy 22851 * of the message here. This will be 22852 * done in the final sending loop. 22853 */ 22854 multirt_send = B_TRUE; 22855 } else { 22856 next_mp = ip_copymsg(first_mp); 22857 if (next_mp != NULL) 22858 IRE_REFHOLD(ire1); 22859 } 22860 } 22861 rw_exit(&ire->ire_bucket->irb_lock); 22862 } 22863 22864 if (stq) { 22865 /* 22866 * A non-NULL send-to queue means this packet is going 22867 * out of this machine. 22868 */ 22869 out_ill = (ill_t *)stq->q_ptr; 22870 22871 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22872 ttl_protocol = ((uint16_t *)ipha)[4]; 22873 /* 22874 * We accumulate the pseudo header checksum in cksum. 22875 * This is pretty hairy code, so watch close. One 22876 * thing to keep in mind is that UDP and TCP have 22877 * stored their respective datagram lengths in their 22878 * checksum fields. This lines things up real nice. 22879 */ 22880 cksum = (dst >> 16) + (dst & 0xFFFF) + 22881 (src >> 16) + (src & 0xFFFF); 22882 /* 22883 * We assume the udp checksum field contains the 22884 * length, so to compute the pseudo header checksum, 22885 * all we need is the protocol number and src/dst. 22886 */ 22887 /* Provide the checksums for UDP and TCP. */ 22888 if ((PROTO == IPPROTO_TCP) && 22889 (ip_hdr_included != IP_HDR_INCLUDED)) { 22890 /* hlen gets the number of uchar_ts in the IP header */ 22891 hlen = (V_HLEN & 0xF) << 2; 22892 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22893 IP_STAT(ipst, ip_out_sw_cksum); 22894 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22895 LENGTH - hlen); 22896 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22897 } else if (PROTO == IPPROTO_SCTP && 22898 (ip_hdr_included != IP_HDR_INCLUDED)) { 22899 sctp_hdr_t *sctph; 22900 22901 hlen = (V_HLEN & 0xF) << 2; 22902 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22903 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22904 sctph->sh_chksum = 0; 22905 #ifdef DEBUG 22906 if (!skip_sctp_cksum) 22907 #endif 22908 sctph->sh_chksum = sctp_cksum(mp, hlen); 22909 } else { 22910 queue_t *dev_q = stq->q_next; 22911 22912 if ((dev_q->q_next || dev_q->q_first) && 22913 !canput(dev_q)) { 22914 blocked: 22915 ipha->ipha_ident = ip_hdr_included; 22916 /* 22917 * If we don't have a conn to apply 22918 * backpressure, free the message. 22919 * In the ire_send path, we don't know 22920 * the position to requeue the packet. Rather 22921 * than reorder packets, we just drop this 22922 * packet. 22923 */ 22924 if (ipst->ips_ip_output_queue && 22925 connp != NULL && 22926 caller != IRE_SEND) { 22927 if (caller == IP_WSRV) { 22928 connp->conn_did_putbq = 1; 22929 (void) putbq(connp->conn_wq, 22930 first_mp); 22931 conn_drain_insert(connp); 22932 /* 22933 * This is the service thread, 22934 * and the queue is already 22935 * noenabled. The check for 22936 * canput and the putbq is not 22937 * atomic. So we need to check 22938 * again. 22939 */ 22940 if (canput(stq->q_next)) 22941 connp->conn_did_putbq 22942 = 0; 22943 IP_STAT(ipst, ip_conn_flputbq); 22944 } else { 22945 /* 22946 * We are not the service proc. 22947 * ip_wsrv will be scheduled or 22948 * is already running. 22949 */ 22950 (void) putq(connp->conn_wq, 22951 first_mp); 22952 } 22953 } else { 22954 out_ill = (ill_t *)stq->q_ptr; 22955 BUMP_MIB(out_ill->ill_ip_mib, 22956 ipIfStatsOutDiscards); 22957 freemsg(first_mp); 22958 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22959 "ip_wput_ire_end: q %p (%S)", 22960 q, "discard"); 22961 } 22962 ire_refrele(ire); 22963 if (next_mp) { 22964 ire_refrele(ire1); 22965 freemsg(next_mp); 22966 } 22967 if (conn_outgoing_ill != NULL) 22968 ill_refrele(conn_outgoing_ill); 22969 return; 22970 } 22971 if ((PROTO == IPPROTO_UDP) && 22972 (ip_hdr_included != IP_HDR_INCLUDED)) { 22973 /* 22974 * hlen gets the number of uchar_ts in the 22975 * IP header 22976 */ 22977 hlen = (V_HLEN & 0xF) << 2; 22978 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22979 max_frag = ire->ire_max_frag; 22980 if (*up != 0) { 22981 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22982 up, PROTO, hlen, LENGTH, max_frag, 22983 ipsec_len, cksum); 22984 /* Software checksum? */ 22985 if (DB_CKSUMFLAGS(mp) == 0) { 22986 IP_STAT(ipst, ip_out_sw_cksum); 22987 IP_STAT_UPDATE(ipst, 22988 ip_udp_out_sw_cksum_bytes, 22989 LENGTH - hlen); 22990 } 22991 } 22992 } 22993 } 22994 /* 22995 * Need to do this even when fragmenting. The local 22996 * loopback can be done without computing checksums 22997 * but forwarding out other interface must be done 22998 * after the IP checksum (and ULP checksums) have been 22999 * computed. 23000 * 23001 * NOTE : multicast_forward is set only if this packet 23002 * originated from ip_wput. For packets originating from 23003 * ip_wput_multicast, it is not set. 23004 */ 23005 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23006 multi_loopback: 23007 ip2dbg(("ip_wput: multicast, loop %d\n", 23008 conn_multicast_loop)); 23009 23010 /* Forget header checksum offload */ 23011 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23012 23013 /* 23014 * Local loopback of multicasts? Check the 23015 * ill. 23016 * 23017 * Note that the loopback function will not come 23018 * in through ip_rput - it will only do the 23019 * client fanout thus we need to do an mforward 23020 * as well. The is different from the BSD 23021 * logic. 23022 */ 23023 if (ill != NULL) { 23024 ilm_t *ilm; 23025 23026 ILM_WALKER_HOLD(ill); 23027 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23028 ALL_ZONES); 23029 ILM_WALKER_RELE(ill); 23030 if (ilm != NULL) { 23031 /* 23032 * Pass along the virtual output q. 23033 * ip_wput_local() will distribute the 23034 * packet to all the matching zones, 23035 * except the sending zone when 23036 * IP_MULTICAST_LOOP is false. 23037 */ 23038 ip_multicast_loopback(q, ill, first_mp, 23039 conn_multicast_loop ? 0 : 23040 IP_FF_NO_MCAST_LOOP, zoneid); 23041 } 23042 } 23043 if (ipha->ipha_ttl == 0) { 23044 /* 23045 * 0 => only to this host i.e. we are 23046 * done. We are also done if this was the 23047 * loopback interface since it is sufficient 23048 * to loopback one copy of a multicast packet. 23049 */ 23050 freemsg(first_mp); 23051 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23052 "ip_wput_ire_end: q %p (%S)", 23053 q, "loopback"); 23054 ire_refrele(ire); 23055 if (conn_outgoing_ill != NULL) 23056 ill_refrele(conn_outgoing_ill); 23057 return; 23058 } 23059 /* 23060 * ILLF_MULTICAST is checked in ip_newroute 23061 * i.e. we don't need to check it here since 23062 * all IRE_CACHEs come from ip_newroute. 23063 * For multicast traffic, SO_DONTROUTE is interpreted 23064 * to mean only send the packet out the interface 23065 * (optionally specified with IP_MULTICAST_IF) 23066 * and do not forward it out additional interfaces. 23067 * RSVP and the rsvp daemon is an example of a 23068 * protocol and user level process that 23069 * handles it's own routing. Hence, it uses the 23070 * SO_DONTROUTE option to accomplish this. 23071 */ 23072 23073 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23074 ill != NULL) { 23075 /* Unconditionally redo the checksum */ 23076 ipha->ipha_hdr_checksum = 0; 23077 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23078 23079 /* 23080 * If this needs to go out secure, we need 23081 * to wait till we finish the IPsec 23082 * processing. 23083 */ 23084 if (ipsec_len == 0 && 23085 ip_mforward(ill, ipha, mp)) { 23086 freemsg(first_mp); 23087 ip1dbg(("ip_wput: mforward failed\n")); 23088 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23089 "ip_wput_ire_end: q %p (%S)", 23090 q, "mforward failed"); 23091 ire_refrele(ire); 23092 if (conn_outgoing_ill != NULL) 23093 ill_refrele(conn_outgoing_ill); 23094 return; 23095 } 23096 } 23097 } 23098 max_frag = ire->ire_max_frag; 23099 cksum += ttl_protocol; 23100 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23101 /* No fragmentation required for this one. */ 23102 /* 23103 * Don't use frag_flag if packet is pre-built or source 23104 * routed or if multicast (since multicast packets do 23105 * not solicit ICMP "packet too big" messages). 23106 */ 23107 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23108 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23109 !ip_source_route_included(ipha)) && 23110 !CLASSD(ipha->ipha_dst)) 23111 ipha->ipha_fragment_offset_and_flags |= 23112 htons(ire->ire_frag_flag); 23113 23114 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23115 /* Complete the IP header checksum. */ 23116 cksum += ipha->ipha_ident; 23117 cksum += (v_hlen_tos_len >> 16)+ 23118 (v_hlen_tos_len & 0xFFFF); 23119 cksum += ipha->ipha_fragment_offset_and_flags; 23120 hlen = (V_HLEN & 0xF) - 23121 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23122 if (hlen) { 23123 checksumoptions: 23124 /* 23125 * Account for the IP Options in the IP 23126 * header checksum. 23127 */ 23128 up = (uint16_t *)(rptr+ 23129 IP_SIMPLE_HDR_LENGTH); 23130 do { 23131 cksum += up[0]; 23132 cksum += up[1]; 23133 up += 2; 23134 } while (--hlen); 23135 } 23136 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23137 cksum = ~(cksum + (cksum >> 16)); 23138 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23139 } 23140 if (ipsec_len != 0) { 23141 ipsec_out_process(q, first_mp, ire, ill_index); 23142 if (!next_mp) { 23143 ire_refrele(ire); 23144 if (conn_outgoing_ill != NULL) 23145 ill_refrele(conn_outgoing_ill); 23146 return; 23147 } 23148 goto next; 23149 } 23150 23151 /* 23152 * multirt_send has already been handled 23153 * for broadcast, but not yet for multicast 23154 * or IP options. 23155 */ 23156 if (next_mp == NULL) { 23157 if (ire->ire_flags & RTF_MULTIRT) { 23158 multirt_send = B_TRUE; 23159 } 23160 } 23161 23162 /* 23163 * In most cases, the emission loop below is 23164 * entered only once. Only in the case where 23165 * the ire holds the RTF_MULTIRT flag, do we loop 23166 * to process all RTF_MULTIRT ires in the bucket, 23167 * and send the packet through all crossed 23168 * RTF_MULTIRT routes. 23169 */ 23170 do { 23171 if (multirt_send) { 23172 irb_t *irb; 23173 23174 irb = ire->ire_bucket; 23175 ASSERT(irb != NULL); 23176 /* 23177 * We are in a multiple send case, 23178 * need to get the next IRE and make 23179 * a duplicate of the packet. 23180 */ 23181 IRB_REFHOLD(irb); 23182 for (ire1 = ire->ire_next; 23183 ire1 != NULL; 23184 ire1 = ire1->ire_next) { 23185 if (!(ire1->ire_flags & 23186 RTF_MULTIRT)) { 23187 continue; 23188 } 23189 if (ire1->ire_addr != 23190 ire->ire_addr) { 23191 continue; 23192 } 23193 if (ire1->ire_marks & 23194 (IRE_MARK_CONDEMNED| 23195 IRE_MARK_HIDDEN)) { 23196 continue; 23197 } 23198 23199 /* Got one */ 23200 IRE_REFHOLD(ire1); 23201 break; 23202 } 23203 IRB_REFRELE(irb); 23204 23205 if (ire1 != NULL) { 23206 next_mp = copyb(mp); 23207 if ((next_mp == NULL) || 23208 ((mp->b_cont != NULL) && 23209 ((next_mp->b_cont = 23210 dupmsg(mp->b_cont)) 23211 == NULL))) { 23212 freemsg(next_mp); 23213 next_mp = NULL; 23214 ire_refrele(ire1); 23215 ire1 = NULL; 23216 } 23217 } 23218 23219 /* 23220 * Last multiroute ire; don't loop 23221 * anymore. The emission is over 23222 * and next_mp is NULL. 23223 */ 23224 if (ire1 == NULL) { 23225 multirt_send = B_FALSE; 23226 } 23227 } 23228 23229 out_ill = ire_to_ill(ire); 23230 DTRACE_PROBE4(ip4__physical__out__start, 23231 ill_t *, NULL, 23232 ill_t *, out_ill, 23233 ipha_t *, ipha, mblk_t *, mp); 23234 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23235 ipst->ips_ipv4firewall_physical_out, 23236 NULL, out_ill, ipha, mp, mp, 0, ipst); 23237 DTRACE_PROBE1(ip4__physical__out__end, 23238 mblk_t *, mp); 23239 if (mp == NULL) 23240 goto release_ire_and_ill_2; 23241 23242 ASSERT(ipsec_len == 0); 23243 mp->b_prev = 23244 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23245 DTRACE_PROBE2(ip__xmit__2, 23246 mblk_t *, mp, ire_t *, ire); 23247 pktxmit_state = ip_xmit_v4(mp, ire, 23248 NULL, B_TRUE); 23249 if ((pktxmit_state == SEND_FAILED) || 23250 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23251 release_ire_and_ill_2: 23252 if (next_mp) { 23253 freemsg(next_mp); 23254 ire_refrele(ire1); 23255 } 23256 ire_refrele(ire); 23257 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23258 "ip_wput_ire_end: q %p (%S)", 23259 q, "discard MDATA"); 23260 if (conn_outgoing_ill != NULL) 23261 ill_refrele(conn_outgoing_ill); 23262 return; 23263 } 23264 23265 if (CLASSD(dst)) { 23266 BUMP_MIB(out_ill->ill_ip_mib, 23267 ipIfStatsHCOutMcastPkts); 23268 UPDATE_MIB(out_ill->ill_ip_mib, 23269 ipIfStatsHCOutMcastOctets, 23270 LENGTH); 23271 } else if (ire->ire_type == IRE_BROADCAST) { 23272 BUMP_MIB(out_ill->ill_ip_mib, 23273 ipIfStatsHCOutBcastPkts); 23274 } 23275 23276 if (multirt_send) { 23277 /* 23278 * We are in a multiple send case, 23279 * need to re-enter the sending loop 23280 * using the next ire. 23281 */ 23282 ire_refrele(ire); 23283 ire = ire1; 23284 stq = ire->ire_stq; 23285 mp = next_mp; 23286 next_mp = NULL; 23287 ipha = (ipha_t *)mp->b_rptr; 23288 ill_index = Q_TO_INDEX(stq); 23289 } 23290 } while (multirt_send); 23291 23292 if (!next_mp) { 23293 /* 23294 * Last copy going out (the ultra-common 23295 * case). Note that we intentionally replicate 23296 * the putnext rather than calling it before 23297 * the next_mp check in hopes of a little 23298 * tail-call action out of the compiler. 23299 */ 23300 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23301 "ip_wput_ire_end: q %p (%S)", 23302 q, "last copy out(1)"); 23303 ire_refrele(ire); 23304 if (conn_outgoing_ill != NULL) 23305 ill_refrele(conn_outgoing_ill); 23306 return; 23307 } 23308 /* More copies going out below. */ 23309 } else { 23310 int offset; 23311 fragmentit: 23312 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23313 /* 23314 * If this would generate a icmp_frag_needed message, 23315 * we need to handle it before we do the IPsec 23316 * processing. Otherwise, we need to strip the IPsec 23317 * headers before we send up the message to the ULPs 23318 * which becomes messy and difficult. 23319 */ 23320 if (ipsec_len != 0) { 23321 if ((max_frag < (unsigned int)(LENGTH + 23322 ipsec_len)) && (offset & IPH_DF)) { 23323 out_ill = (ill_t *)stq->q_ptr; 23324 BUMP_MIB(out_ill->ill_ip_mib, 23325 ipIfStatsOutFragFails); 23326 BUMP_MIB(out_ill->ill_ip_mib, 23327 ipIfStatsOutFragReqds); 23328 ipha->ipha_hdr_checksum = 0; 23329 ipha->ipha_hdr_checksum = 23330 (uint16_t)ip_csum_hdr(ipha); 23331 icmp_frag_needed(ire->ire_stq, first_mp, 23332 max_frag, zoneid, ipst); 23333 if (!next_mp) { 23334 ire_refrele(ire); 23335 if (conn_outgoing_ill != NULL) { 23336 ill_refrele( 23337 conn_outgoing_ill); 23338 } 23339 return; 23340 } 23341 } else { 23342 /* 23343 * This won't cause a icmp_frag_needed 23344 * message. to be generated. Send it on 23345 * the wire. Note that this could still 23346 * cause fragmentation and all we 23347 * do is the generation of the message 23348 * to the ULP if needed before IPsec. 23349 */ 23350 if (!next_mp) { 23351 ipsec_out_process(q, first_mp, 23352 ire, ill_index); 23353 TRACE_2(TR_FAC_IP, 23354 TR_IP_WPUT_IRE_END, 23355 "ip_wput_ire_end: q %p " 23356 "(%S)", q, 23357 "last ipsec_out_process"); 23358 ire_refrele(ire); 23359 if (conn_outgoing_ill != NULL) { 23360 ill_refrele( 23361 conn_outgoing_ill); 23362 } 23363 return; 23364 } 23365 ipsec_out_process(q, first_mp, 23366 ire, ill_index); 23367 } 23368 } else { 23369 /* 23370 * Initiate IPPF processing. For 23371 * fragmentable packets we finish 23372 * all QOS packet processing before 23373 * calling: 23374 * ip_wput_ire_fragmentit->ip_wput_frag 23375 */ 23376 23377 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23378 ip_process(IPP_LOCAL_OUT, &mp, 23379 ill_index); 23380 if (mp == NULL) { 23381 out_ill = (ill_t *)stq->q_ptr; 23382 BUMP_MIB(out_ill->ill_ip_mib, 23383 ipIfStatsOutDiscards); 23384 if (next_mp != NULL) { 23385 freemsg(next_mp); 23386 ire_refrele(ire1); 23387 } 23388 ire_refrele(ire); 23389 TRACE_2(TR_FAC_IP, 23390 TR_IP_WPUT_IRE_END, 23391 "ip_wput_ire: q %p (%S)", 23392 q, "discard MDATA"); 23393 if (conn_outgoing_ill != NULL) { 23394 ill_refrele( 23395 conn_outgoing_ill); 23396 } 23397 return; 23398 } 23399 } 23400 if (!next_mp) { 23401 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23402 "ip_wput_ire_end: q %p (%S)", 23403 q, "last fragmentation"); 23404 ip_wput_ire_fragmentit(mp, ire, 23405 zoneid, ipst); 23406 ire_refrele(ire); 23407 if (conn_outgoing_ill != NULL) 23408 ill_refrele(conn_outgoing_ill); 23409 return; 23410 } 23411 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23412 } 23413 } 23414 } else { 23415 nullstq: 23416 /* A NULL stq means the destination address is local. */ 23417 UPDATE_OB_PKT_COUNT(ire); 23418 ire->ire_last_used_time = lbolt; 23419 ASSERT(ire->ire_ipif != NULL); 23420 if (!next_mp) { 23421 /* 23422 * Is there an "in" and "out" for traffic local 23423 * to a host (loopback)? The code in Solaris doesn't 23424 * explicitly draw a line in its code for in vs out, 23425 * so we've had to draw a line in the sand: ip_wput_ire 23426 * is considered to be the "output" side and 23427 * ip_wput_local to be the "input" side. 23428 */ 23429 out_ill = ire_to_ill(ire); 23430 23431 /* 23432 * DTrace this as ip:::send. A blocked packet will 23433 * fire the send probe, but not the receive probe. 23434 */ 23435 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23436 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23437 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23438 23439 DTRACE_PROBE4(ip4__loopback__out__start, 23440 ill_t *, NULL, ill_t *, out_ill, 23441 ipha_t *, ipha, mblk_t *, first_mp); 23442 23443 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23444 ipst->ips_ipv4firewall_loopback_out, 23445 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23446 23447 DTRACE_PROBE1(ip4__loopback__out_end, 23448 mblk_t *, first_mp); 23449 23450 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23451 "ip_wput_ire_end: q %p (%S)", 23452 q, "local address"); 23453 23454 if (first_mp != NULL) 23455 ip_wput_local(q, out_ill, ipha, 23456 first_mp, ire, 0, ire->ire_zoneid); 23457 ire_refrele(ire); 23458 if (conn_outgoing_ill != NULL) 23459 ill_refrele(conn_outgoing_ill); 23460 return; 23461 } 23462 23463 out_ill = ire_to_ill(ire); 23464 23465 /* 23466 * DTrace this as ip:::send. A blocked packet will fire the 23467 * send probe, but not the receive probe. 23468 */ 23469 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23470 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23471 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23472 23473 DTRACE_PROBE4(ip4__loopback__out__start, 23474 ill_t *, NULL, ill_t *, out_ill, 23475 ipha_t *, ipha, mblk_t *, first_mp); 23476 23477 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23478 ipst->ips_ipv4firewall_loopback_out, 23479 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23480 23481 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23482 23483 if (first_mp != NULL) 23484 ip_wput_local(q, out_ill, ipha, 23485 first_mp, ire, 0, ire->ire_zoneid); 23486 } 23487 next: 23488 /* 23489 * More copies going out to additional interfaces. 23490 * ire1 has already been held. We don't need the 23491 * "ire" anymore. 23492 */ 23493 ire_refrele(ire); 23494 ire = ire1; 23495 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23496 mp = next_mp; 23497 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23498 ill = ire_to_ill(ire); 23499 first_mp = mp; 23500 if (ipsec_len != 0) { 23501 ASSERT(first_mp->b_datap->db_type == M_CTL); 23502 mp = mp->b_cont; 23503 } 23504 dst = ire->ire_addr; 23505 ipha = (ipha_t *)mp->b_rptr; 23506 /* 23507 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23508 * Restore ipha_ident "no checksum" flag. 23509 */ 23510 src = orig_src; 23511 ipha->ipha_ident = ip_hdr_included; 23512 goto another; 23513 23514 #undef rptr 23515 #undef Q_TO_INDEX 23516 } 23517 23518 /* 23519 * Routine to allocate a message that is used to notify the ULP about MDT. 23520 * The caller may provide a pointer to the link-layer MDT capabilities, 23521 * or NULL if MDT is to be disabled on the stream. 23522 */ 23523 mblk_t * 23524 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23525 { 23526 mblk_t *mp; 23527 ip_mdt_info_t *mdti; 23528 ill_mdt_capab_t *idst; 23529 23530 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23531 DB_TYPE(mp) = M_CTL; 23532 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23533 mdti = (ip_mdt_info_t *)mp->b_rptr; 23534 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23535 idst = &(mdti->mdt_capab); 23536 23537 /* 23538 * If the caller provides us with the capability, copy 23539 * it over into our notification message; otherwise 23540 * we zero out the capability portion. 23541 */ 23542 if (isrc != NULL) 23543 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23544 else 23545 bzero((caddr_t)idst, sizeof (*idst)); 23546 } 23547 return (mp); 23548 } 23549 23550 /* 23551 * Routine which determines whether MDT can be enabled on the destination 23552 * IRE and IPC combination, and if so, allocates and returns the MDT 23553 * notification mblk that may be used by ULP. We also check if we need to 23554 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23555 * MDT usage in the past have been lifted. This gets called during IP 23556 * and ULP binding. 23557 */ 23558 mblk_t * 23559 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23560 ill_mdt_capab_t *mdt_cap) 23561 { 23562 mblk_t *mp; 23563 boolean_t rc = B_FALSE; 23564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23565 23566 ASSERT(dst_ire != NULL); 23567 ASSERT(connp != NULL); 23568 ASSERT(mdt_cap != NULL); 23569 23570 /* 23571 * Currently, we only support simple TCP/{IPv4,IPv6} with 23572 * Multidata, which is handled in tcp_multisend(). This 23573 * is the reason why we do all these checks here, to ensure 23574 * that we don't enable Multidata for the cases which we 23575 * can't handle at the moment. 23576 */ 23577 do { 23578 /* Only do TCP at the moment */ 23579 if (connp->conn_ulp != IPPROTO_TCP) 23580 break; 23581 23582 /* 23583 * IPsec outbound policy present? Note that we get here 23584 * after calling ipsec_conn_cache_policy() where the global 23585 * policy checking is performed. conn_latch will be 23586 * non-NULL as long as there's a policy defined, 23587 * i.e. conn_out_enforce_policy may be NULL in such case 23588 * when the connection is non-secure, and hence we check 23589 * further if the latch refers to an outbound policy. 23590 */ 23591 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23592 break; 23593 23594 /* CGTP (multiroute) is enabled? */ 23595 if (dst_ire->ire_flags & RTF_MULTIRT) 23596 break; 23597 23598 /* Outbound IPQoS enabled? */ 23599 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23600 /* 23601 * In this case, we disable MDT for this and all 23602 * future connections going over the interface. 23603 */ 23604 mdt_cap->ill_mdt_on = 0; 23605 break; 23606 } 23607 23608 /* socket option(s) present? */ 23609 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23610 break; 23611 23612 rc = B_TRUE; 23613 /* CONSTCOND */ 23614 } while (0); 23615 23616 /* Remember the result */ 23617 connp->conn_mdt_ok = rc; 23618 23619 if (!rc) 23620 return (NULL); 23621 else if (!mdt_cap->ill_mdt_on) { 23622 /* 23623 * If MDT has been previously turned off in the past, and we 23624 * currently can do MDT (due to IPQoS policy removal, etc.) 23625 * then enable it for this interface. 23626 */ 23627 mdt_cap->ill_mdt_on = 1; 23628 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23629 "interface %s\n", ill_name)); 23630 } 23631 23632 /* Allocate the MDT info mblk */ 23633 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23634 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23635 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23636 return (NULL); 23637 } 23638 return (mp); 23639 } 23640 23641 /* 23642 * Routine to allocate a message that is used to notify the ULP about LSO. 23643 * The caller may provide a pointer to the link-layer LSO capabilities, 23644 * or NULL if LSO is to be disabled on the stream. 23645 */ 23646 mblk_t * 23647 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23648 { 23649 mblk_t *mp; 23650 ip_lso_info_t *lsoi; 23651 ill_lso_capab_t *idst; 23652 23653 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23654 DB_TYPE(mp) = M_CTL; 23655 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23656 lsoi = (ip_lso_info_t *)mp->b_rptr; 23657 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23658 idst = &(lsoi->lso_capab); 23659 23660 /* 23661 * If the caller provides us with the capability, copy 23662 * it over into our notification message; otherwise 23663 * we zero out the capability portion. 23664 */ 23665 if (isrc != NULL) 23666 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23667 else 23668 bzero((caddr_t)idst, sizeof (*idst)); 23669 } 23670 return (mp); 23671 } 23672 23673 /* 23674 * Routine which determines whether LSO can be enabled on the destination 23675 * IRE and IPC combination, and if so, allocates and returns the LSO 23676 * notification mblk that may be used by ULP. We also check if we need to 23677 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23678 * LSO usage in the past have been lifted. This gets called during IP 23679 * and ULP binding. 23680 */ 23681 mblk_t * 23682 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23683 ill_lso_capab_t *lso_cap) 23684 { 23685 mblk_t *mp; 23686 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23687 23688 ASSERT(dst_ire != NULL); 23689 ASSERT(connp != NULL); 23690 ASSERT(lso_cap != NULL); 23691 23692 connp->conn_lso_ok = B_TRUE; 23693 23694 if ((connp->conn_ulp != IPPROTO_TCP) || 23695 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23696 (dst_ire->ire_flags & RTF_MULTIRT) || 23697 !CONN_IS_LSO_MD_FASTPATH(connp) || 23698 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23699 connp->conn_lso_ok = B_FALSE; 23700 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23701 /* 23702 * Disable LSO for this and all future connections going 23703 * over the interface. 23704 */ 23705 lso_cap->ill_lso_on = 0; 23706 } 23707 } 23708 23709 if (!connp->conn_lso_ok) 23710 return (NULL); 23711 else if (!lso_cap->ill_lso_on) { 23712 /* 23713 * If LSO has been previously turned off in the past, and we 23714 * currently can do LSO (due to IPQoS policy removal, etc.) 23715 * then enable it for this interface. 23716 */ 23717 lso_cap->ill_lso_on = 1; 23718 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23719 ill_name)); 23720 } 23721 23722 /* Allocate the LSO info mblk */ 23723 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23724 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23725 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23726 23727 return (mp); 23728 } 23729 23730 /* 23731 * Create destination address attribute, and fill it with the physical 23732 * destination address and SAP taken from the template DL_UNITDATA_REQ 23733 * message block. 23734 */ 23735 boolean_t 23736 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23737 { 23738 dl_unitdata_req_t *dlurp; 23739 pattr_t *pa; 23740 pattrinfo_t pa_info; 23741 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23742 uint_t das_len, das_off; 23743 23744 ASSERT(dlmp != NULL); 23745 23746 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23747 das_len = dlurp->dl_dest_addr_length; 23748 das_off = dlurp->dl_dest_addr_offset; 23749 23750 pa_info.type = PATTR_DSTADDRSAP; 23751 pa_info.len = sizeof (**das) + das_len - 1; 23752 23753 /* create and associate the attribute */ 23754 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23755 if (pa != NULL) { 23756 ASSERT(*das != NULL); 23757 (*das)->addr_is_group = 0; 23758 (*das)->addr_len = (uint8_t)das_len; 23759 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23760 } 23761 23762 return (pa != NULL); 23763 } 23764 23765 /* 23766 * Create hardware checksum attribute and fill it with the values passed. 23767 */ 23768 boolean_t 23769 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23770 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23771 { 23772 pattr_t *pa; 23773 pattrinfo_t pa_info; 23774 23775 ASSERT(mmd != NULL); 23776 23777 pa_info.type = PATTR_HCKSUM; 23778 pa_info.len = sizeof (pattr_hcksum_t); 23779 23780 /* create and associate the attribute */ 23781 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23782 if (pa != NULL) { 23783 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23784 23785 hck->hcksum_start_offset = start_offset; 23786 hck->hcksum_stuff_offset = stuff_offset; 23787 hck->hcksum_end_offset = end_offset; 23788 hck->hcksum_flags = flags; 23789 } 23790 return (pa != NULL); 23791 } 23792 23793 /* 23794 * Create zerocopy attribute and fill it with the specified flags 23795 */ 23796 boolean_t 23797 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23798 { 23799 pattr_t *pa; 23800 pattrinfo_t pa_info; 23801 23802 ASSERT(mmd != NULL); 23803 pa_info.type = PATTR_ZCOPY; 23804 pa_info.len = sizeof (pattr_zcopy_t); 23805 23806 /* create and associate the attribute */ 23807 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23808 if (pa != NULL) { 23809 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23810 23811 zcopy->zcopy_flags = flags; 23812 } 23813 return (pa != NULL); 23814 } 23815 23816 /* 23817 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23818 * block chain. We could rewrite to handle arbitrary message block chains but 23819 * that would make the code complicated and slow. Right now there three 23820 * restrictions: 23821 * 23822 * 1. The first message block must contain the complete IP header and 23823 * at least 1 byte of payload data. 23824 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23825 * so that we can use a single Multidata message. 23826 * 3. No frag must be distributed over two or more message blocks so 23827 * that we don't need more than two packet descriptors per frag. 23828 * 23829 * The above restrictions allow us to support userland applications (which 23830 * will send down a single message block) and NFS over UDP (which will 23831 * send down a chain of at most three message blocks). 23832 * 23833 * We also don't use MDT for payloads with less than or equal to 23834 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23835 */ 23836 boolean_t 23837 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23838 { 23839 int blocks; 23840 ssize_t total, missing, size; 23841 23842 ASSERT(mp != NULL); 23843 ASSERT(hdr_len > 0); 23844 23845 size = MBLKL(mp) - hdr_len; 23846 if (size <= 0) 23847 return (B_FALSE); 23848 23849 /* The first mblk contains the header and some payload. */ 23850 blocks = 1; 23851 total = size; 23852 size %= len; 23853 missing = (size == 0) ? 0 : (len - size); 23854 mp = mp->b_cont; 23855 23856 while (mp != NULL) { 23857 /* 23858 * Give up if we encounter a zero length message block. 23859 * In practice, this should rarely happen and therefore 23860 * not worth the trouble of freeing and re-linking the 23861 * mblk from the chain to handle such case. 23862 */ 23863 if ((size = MBLKL(mp)) == 0) 23864 return (B_FALSE); 23865 23866 /* Too many payload buffers for a single Multidata message? */ 23867 if (++blocks > MULTIDATA_MAX_PBUFS) 23868 return (B_FALSE); 23869 23870 total += size; 23871 /* Is a frag distributed over two or more message blocks? */ 23872 if (missing > size) 23873 return (B_FALSE); 23874 size -= missing; 23875 23876 size %= len; 23877 missing = (size == 0) ? 0 : (len - size); 23878 23879 mp = mp->b_cont; 23880 } 23881 23882 return (total > ip_wput_frag_mdt_min); 23883 } 23884 23885 /* 23886 * Outbound IPv4 fragmentation routine using MDT. 23887 */ 23888 static void 23889 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23890 uint32_t frag_flag, int offset) 23891 { 23892 ipha_t *ipha_orig; 23893 int i1, ip_data_end; 23894 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23895 mblk_t *hdr_mp, *md_mp = NULL; 23896 unsigned char *hdr_ptr, *pld_ptr; 23897 multidata_t *mmd; 23898 ip_pdescinfo_t pdi; 23899 ill_t *ill; 23900 ip_stack_t *ipst = ire->ire_ipst; 23901 23902 ASSERT(DB_TYPE(mp) == M_DATA); 23903 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23904 23905 ill = ire_to_ill(ire); 23906 ASSERT(ill != NULL); 23907 23908 ipha_orig = (ipha_t *)mp->b_rptr; 23909 mp->b_rptr += sizeof (ipha_t); 23910 23911 /* Calculate how many packets we will send out */ 23912 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23913 pkts = (i1 + len - 1) / len; 23914 ASSERT(pkts > 1); 23915 23916 /* Allocate a message block which will hold all the IP Headers. */ 23917 wroff = ipst->ips_ip_wroff_extra; 23918 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23919 23920 i1 = pkts * hdr_chunk_len; 23921 /* 23922 * Create the header buffer, Multidata and destination address 23923 * and SAP attribute that should be associated with it. 23924 */ 23925 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23926 ((hdr_mp->b_wptr += i1), 23927 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23928 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23929 freemsg(mp); 23930 if (md_mp == NULL) { 23931 freemsg(hdr_mp); 23932 } else { 23933 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23934 freemsg(md_mp); 23935 } 23936 IP_STAT(ipst, ip_frag_mdt_allocfail); 23937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23938 return; 23939 } 23940 IP_STAT(ipst, ip_frag_mdt_allocd); 23941 23942 /* 23943 * Add a payload buffer to the Multidata; this operation must not 23944 * fail, or otherwise our logic in this routine is broken. There 23945 * is no memory allocation done by the routine, so any returned 23946 * failure simply tells us that we've done something wrong. 23947 * 23948 * A failure tells us that either we're adding the same payload 23949 * buffer more than once, or we're trying to add more buffers than 23950 * allowed. None of the above cases should happen, and we panic 23951 * because either there's horrible heap corruption, and/or 23952 * programming mistake. 23953 */ 23954 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23955 goto pbuf_panic; 23956 23957 hdr_ptr = hdr_mp->b_rptr; 23958 pld_ptr = mp->b_rptr; 23959 23960 /* Establish the ending byte offset, based on the starting offset. */ 23961 offset <<= 3; 23962 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23963 IP_SIMPLE_HDR_LENGTH; 23964 23965 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23966 23967 while (pld_ptr < mp->b_wptr) { 23968 ipha_t *ipha; 23969 uint16_t offset_and_flags; 23970 uint16_t ip_len; 23971 int error; 23972 23973 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23974 ipha = (ipha_t *)(hdr_ptr + wroff); 23975 ASSERT(OK_32PTR(ipha)); 23976 *ipha = *ipha_orig; 23977 23978 if (ip_data_end - offset > len) { 23979 offset_and_flags = IPH_MF; 23980 } else { 23981 /* 23982 * Last frag. Set len to the length of this last piece. 23983 */ 23984 len = ip_data_end - offset; 23985 /* A frag of a frag might have IPH_MF non-zero */ 23986 offset_and_flags = 23987 ntohs(ipha->ipha_fragment_offset_and_flags) & 23988 IPH_MF; 23989 } 23990 offset_and_flags |= (uint16_t)(offset >> 3); 23991 offset_and_flags |= (uint16_t)frag_flag; 23992 /* Store the offset and flags in the IP header. */ 23993 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23994 23995 /* Store the length in the IP header. */ 23996 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23997 ipha->ipha_length = htons(ip_len); 23998 23999 /* 24000 * Set the IP header checksum. Note that mp is just 24001 * the header, so this is easy to pass to ip_csum. 24002 */ 24003 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24004 24005 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24006 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24007 NULL, int, 0); 24008 24009 /* 24010 * Record offset and size of header and data of the next packet 24011 * in the multidata message. 24012 */ 24013 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24014 PDESC_PLD_INIT(&pdi); 24015 i1 = MIN(mp->b_wptr - pld_ptr, len); 24016 ASSERT(i1 > 0); 24017 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24018 if (i1 == len) { 24019 pld_ptr += len; 24020 } else { 24021 i1 = len - i1; 24022 mp = mp->b_cont; 24023 ASSERT(mp != NULL); 24024 ASSERT(MBLKL(mp) >= i1); 24025 /* 24026 * Attach the next payload message block to the 24027 * multidata message. 24028 */ 24029 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24030 goto pbuf_panic; 24031 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24032 pld_ptr = mp->b_rptr + i1; 24033 } 24034 24035 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24036 KM_NOSLEEP)) == NULL) { 24037 /* 24038 * Any failure other than ENOMEM indicates that we 24039 * have passed in invalid pdesc info or parameters 24040 * to mmd_addpdesc, which must not happen. 24041 * 24042 * EINVAL is a result of failure on boundary checks 24043 * against the pdesc info contents. It should not 24044 * happen, and we panic because either there's 24045 * horrible heap corruption, and/or programming 24046 * mistake. 24047 */ 24048 if (error != ENOMEM) { 24049 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24050 "pdesc logic error detected for " 24051 "mmd %p pinfo %p (%d)\n", 24052 (void *)mmd, (void *)&pdi, error); 24053 /* NOTREACHED */ 24054 } 24055 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24056 /* Free unattached payload message blocks as well */ 24057 md_mp->b_cont = mp->b_cont; 24058 goto free_mmd; 24059 } 24060 24061 /* Advance fragment offset. */ 24062 offset += len; 24063 24064 /* Advance to location for next header in the buffer. */ 24065 hdr_ptr += hdr_chunk_len; 24066 24067 /* Did we reach the next payload message block? */ 24068 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24069 mp = mp->b_cont; 24070 /* 24071 * Attach the next message block with payload 24072 * data to the multidata message. 24073 */ 24074 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24075 goto pbuf_panic; 24076 pld_ptr = mp->b_rptr; 24077 } 24078 } 24079 24080 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24081 ASSERT(mp->b_wptr == pld_ptr); 24082 24083 /* Update IP statistics */ 24084 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24085 24086 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24088 24089 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24090 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24091 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24092 24093 if (pkt_type == OB_PKT) { 24094 ire->ire_ob_pkt_count += pkts; 24095 if (ire->ire_ipif != NULL) 24096 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24097 } else { 24098 /* The type is IB_PKT in the forwarding path. */ 24099 ire->ire_ib_pkt_count += pkts; 24100 ASSERT(!IRE_IS_LOCAL(ire)); 24101 if (ire->ire_type & IRE_BROADCAST) { 24102 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24103 } else { 24104 UPDATE_MIB(ill->ill_ip_mib, 24105 ipIfStatsHCOutForwDatagrams, pkts); 24106 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24107 } 24108 } 24109 ire->ire_last_used_time = lbolt; 24110 /* Send it down */ 24111 putnext(ire->ire_stq, md_mp); 24112 return; 24113 24114 pbuf_panic: 24115 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24116 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24117 pbuf_idx); 24118 /* NOTREACHED */ 24119 } 24120 24121 /* 24122 * Outbound IP fragmentation routine. 24123 * 24124 * NOTE : This routine does not ire_refrele the ire that is passed in 24125 * as the argument. 24126 */ 24127 static void 24128 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24129 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24130 { 24131 int i1; 24132 mblk_t *ll_hdr_mp; 24133 int ll_hdr_len; 24134 int hdr_len; 24135 mblk_t *hdr_mp; 24136 ipha_t *ipha; 24137 int ip_data_end; 24138 int len; 24139 mblk_t *mp = mp_orig, *mp1; 24140 int offset; 24141 queue_t *q; 24142 uint32_t v_hlen_tos_len; 24143 mblk_t *first_mp; 24144 boolean_t mctl_present; 24145 ill_t *ill; 24146 ill_t *out_ill; 24147 mblk_t *xmit_mp; 24148 mblk_t *carve_mp; 24149 ire_t *ire1 = NULL; 24150 ire_t *save_ire = NULL; 24151 mblk_t *next_mp = NULL; 24152 boolean_t last_frag = B_FALSE; 24153 boolean_t multirt_send = B_FALSE; 24154 ire_t *first_ire = NULL; 24155 irb_t *irb = NULL; 24156 mib2_ipIfStatsEntry_t *mibptr = NULL; 24157 24158 ill = ire_to_ill(ire); 24159 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24160 24161 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24162 24163 if (max_frag == 0) { 24164 ip1dbg(("ip_wput_frag: ire frag size is 0" 24165 " - dropping packet\n")); 24166 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24167 freemsg(mp); 24168 return; 24169 } 24170 24171 /* 24172 * IPsec does not allow hw accelerated packets to be fragmented 24173 * This check is made in ip_wput_ipsec_out prior to coming here 24174 * via ip_wput_ire_fragmentit. 24175 * 24176 * If at this point we have an ire whose ARP request has not 24177 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24178 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24179 * This packet and all fragmentable packets for this ire will 24180 * continue to get dropped while ire_nce->nce_state remains in 24181 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24182 * ND_REACHABLE, all subsquent large packets for this ire will 24183 * get fragemented and sent out by this function. 24184 */ 24185 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24186 /* If nce_state is ND_INITIAL, trigger ARP query */ 24187 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24188 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24189 " - dropping packet\n")); 24190 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24191 freemsg(mp); 24192 return; 24193 } 24194 24195 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24196 "ip_wput_frag_start:"); 24197 24198 if (mp->b_datap->db_type == M_CTL) { 24199 first_mp = mp; 24200 mp_orig = mp = mp->b_cont; 24201 mctl_present = B_TRUE; 24202 } else { 24203 first_mp = mp; 24204 mctl_present = B_FALSE; 24205 } 24206 24207 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24208 ipha = (ipha_t *)mp->b_rptr; 24209 24210 /* 24211 * If the Don't Fragment flag is on, generate an ICMP destination 24212 * unreachable, fragmentation needed. 24213 */ 24214 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24215 if (offset & IPH_DF) { 24216 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24217 if (is_system_labeled()) { 24218 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24219 ire->ire_max_frag - max_frag, AF_INET); 24220 } 24221 /* 24222 * Need to compute hdr checksum if called from ip_wput_ire. 24223 * Note that ip_rput_forward verifies the checksum before 24224 * calling this routine so in that case this is a noop. 24225 */ 24226 ipha->ipha_hdr_checksum = 0; 24227 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24228 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24229 ipst); 24230 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24231 "ip_wput_frag_end:(%S)", 24232 "don't fragment"); 24233 return; 24234 } 24235 /* 24236 * Labeled systems adjust max_frag if they add a label 24237 * to send the correct path mtu. We need the real mtu since we 24238 * are fragmenting the packet after label adjustment. 24239 */ 24240 if (is_system_labeled()) 24241 max_frag = ire->ire_max_frag; 24242 if (mctl_present) 24243 freeb(first_mp); 24244 /* 24245 * Establish the starting offset. May not be zero if we are fragging 24246 * a fragment that is being forwarded. 24247 */ 24248 offset = offset & IPH_OFFSET; 24249 24250 /* TODO why is this test needed? */ 24251 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24252 if (((max_frag - LENGTH) & ~7) < 8) { 24253 /* TODO: notify ulp somehow */ 24254 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24255 freemsg(mp); 24256 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24257 "ip_wput_frag_end:(%S)", 24258 "len < 8"); 24259 return; 24260 } 24261 24262 hdr_len = (V_HLEN & 0xF) << 2; 24263 24264 ipha->ipha_hdr_checksum = 0; 24265 24266 /* 24267 * Establish the number of bytes maximum per frag, after putting 24268 * in the header. 24269 */ 24270 len = (max_frag - hdr_len) & ~7; 24271 24272 /* Check if we can use MDT to send out the frags. */ 24273 ASSERT(!IRE_IS_LOCAL(ire)); 24274 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24275 ipst->ips_ip_multidata_outbound && 24276 !(ire->ire_flags & RTF_MULTIRT) && 24277 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24278 ill != NULL && ILL_MDT_CAPABLE(ill) && 24279 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24280 ASSERT(ill->ill_mdt_capab != NULL); 24281 if (!ill->ill_mdt_capab->ill_mdt_on) { 24282 /* 24283 * If MDT has been previously turned off in the past, 24284 * and we currently can do MDT (due to IPQoS policy 24285 * removal, etc.) then enable it for this interface. 24286 */ 24287 ill->ill_mdt_capab->ill_mdt_on = 1; 24288 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24289 ill->ill_name)); 24290 } 24291 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24292 offset); 24293 return; 24294 } 24295 24296 /* Get a copy of the header for the trailing frags */ 24297 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24298 if (!hdr_mp) { 24299 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24300 freemsg(mp); 24301 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24302 "ip_wput_frag_end:(%S)", 24303 "couldn't copy hdr"); 24304 return; 24305 } 24306 if (DB_CRED(mp) != NULL) 24307 mblk_setcred(hdr_mp, DB_CRED(mp)); 24308 24309 /* Store the starting offset, with the MoreFrags flag. */ 24310 i1 = offset | IPH_MF | frag_flag; 24311 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24312 24313 /* Establish the ending byte offset, based on the starting offset. */ 24314 offset <<= 3; 24315 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24316 24317 /* Store the length of the first fragment in the IP header. */ 24318 i1 = len + hdr_len; 24319 ASSERT(i1 <= IP_MAXPACKET); 24320 ipha->ipha_length = htons((uint16_t)i1); 24321 24322 /* 24323 * Compute the IP header checksum for the first frag. We have to 24324 * watch out that we stop at the end of the header. 24325 */ 24326 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24327 24328 /* 24329 * Now carve off the first frag. Note that this will include the 24330 * original IP header. 24331 */ 24332 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24333 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24334 freeb(hdr_mp); 24335 freemsg(mp_orig); 24336 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24337 "ip_wput_frag_end:(%S)", 24338 "couldn't carve first"); 24339 return; 24340 } 24341 24342 /* 24343 * Multirouting case. Each fragment is replicated 24344 * via all non-condemned RTF_MULTIRT routes 24345 * currently resolved. 24346 * We ensure that first_ire is the first RTF_MULTIRT 24347 * ire in the bucket. 24348 */ 24349 if (ire->ire_flags & RTF_MULTIRT) { 24350 irb = ire->ire_bucket; 24351 ASSERT(irb != NULL); 24352 24353 multirt_send = B_TRUE; 24354 24355 /* Make sure we do not omit any multiroute ire. */ 24356 IRB_REFHOLD(irb); 24357 for (first_ire = irb->irb_ire; 24358 first_ire != NULL; 24359 first_ire = first_ire->ire_next) { 24360 if ((first_ire->ire_flags & RTF_MULTIRT) && 24361 (first_ire->ire_addr == ire->ire_addr) && 24362 !(first_ire->ire_marks & 24363 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24364 break; 24365 } 24366 } 24367 24368 if (first_ire != NULL) { 24369 if (first_ire != ire) { 24370 IRE_REFHOLD(first_ire); 24371 /* 24372 * Do not release the ire passed in 24373 * as the argument. 24374 */ 24375 ire = first_ire; 24376 } else { 24377 first_ire = NULL; 24378 } 24379 } 24380 IRB_REFRELE(irb); 24381 24382 /* 24383 * Save the first ire; we will need to restore it 24384 * for the trailing frags. 24385 * We REFHOLD save_ire, as each iterated ire will be 24386 * REFRELEd. 24387 */ 24388 save_ire = ire; 24389 IRE_REFHOLD(save_ire); 24390 } 24391 24392 /* 24393 * First fragment emission loop. 24394 * In most cases, the emission loop below is entered only 24395 * once. Only in the case where the ire holds the RTF_MULTIRT 24396 * flag, do we loop to process all RTF_MULTIRT ires in the 24397 * bucket, and send the fragment through all crossed 24398 * RTF_MULTIRT routes. 24399 */ 24400 do { 24401 if (ire->ire_flags & RTF_MULTIRT) { 24402 /* 24403 * We are in a multiple send case, need to get 24404 * the next ire and make a copy of the packet. 24405 * ire1 holds here the next ire to process in the 24406 * bucket. If multirouting is expected, 24407 * any non-RTF_MULTIRT ire that has the 24408 * right destination address is ignored. 24409 * 24410 * We have to take into account the MTU of 24411 * each walked ire. max_frag is set by the 24412 * the caller and generally refers to 24413 * the primary ire entry. Here we ensure that 24414 * no route with a lower MTU will be used, as 24415 * fragments are carved once for all ires, 24416 * then replicated. 24417 */ 24418 ASSERT(irb != NULL); 24419 IRB_REFHOLD(irb); 24420 for (ire1 = ire->ire_next; 24421 ire1 != NULL; 24422 ire1 = ire1->ire_next) { 24423 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24424 continue; 24425 if (ire1->ire_addr != ire->ire_addr) 24426 continue; 24427 if (ire1->ire_marks & 24428 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24429 continue; 24430 /* 24431 * Ensure we do not exceed the MTU 24432 * of the next route. 24433 */ 24434 if (ire1->ire_max_frag < max_frag) { 24435 ip_multirt_bad_mtu(ire1, max_frag); 24436 continue; 24437 } 24438 24439 /* Got one. */ 24440 IRE_REFHOLD(ire1); 24441 break; 24442 } 24443 IRB_REFRELE(irb); 24444 24445 if (ire1 != NULL) { 24446 next_mp = copyb(mp); 24447 if ((next_mp == NULL) || 24448 ((mp->b_cont != NULL) && 24449 ((next_mp->b_cont = 24450 dupmsg(mp->b_cont)) == NULL))) { 24451 freemsg(next_mp); 24452 next_mp = NULL; 24453 ire_refrele(ire1); 24454 ire1 = NULL; 24455 } 24456 } 24457 24458 /* Last multiroute ire; don't loop anymore. */ 24459 if (ire1 == NULL) { 24460 multirt_send = B_FALSE; 24461 } 24462 } 24463 24464 ll_hdr_len = 0; 24465 LOCK_IRE_FP_MP(ire); 24466 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24467 if (ll_hdr_mp != NULL) { 24468 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24469 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24470 } else { 24471 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24472 } 24473 24474 /* If there is a transmit header, get a copy for this frag. */ 24475 /* 24476 * TODO: should check db_ref before calling ip_carve_mp since 24477 * it might give us a dup. 24478 */ 24479 if (!ll_hdr_mp) { 24480 /* No xmit header. */ 24481 xmit_mp = mp; 24482 24483 /* We have a link-layer header that can fit in our mblk. */ 24484 } else if (mp->b_datap->db_ref == 1 && 24485 ll_hdr_len != 0 && 24486 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24487 /* M_DATA fastpath */ 24488 mp->b_rptr -= ll_hdr_len; 24489 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24490 xmit_mp = mp; 24491 24492 /* Corner case if copyb has failed */ 24493 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24494 UNLOCK_IRE_FP_MP(ire); 24495 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24496 freeb(hdr_mp); 24497 freemsg(mp); 24498 freemsg(mp_orig); 24499 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24500 "ip_wput_frag_end:(%S)", 24501 "discard"); 24502 24503 if (multirt_send) { 24504 ASSERT(ire1); 24505 ASSERT(next_mp); 24506 24507 freemsg(next_mp); 24508 ire_refrele(ire1); 24509 } 24510 if (save_ire != NULL) 24511 IRE_REFRELE(save_ire); 24512 24513 if (first_ire != NULL) 24514 ire_refrele(first_ire); 24515 return; 24516 24517 /* 24518 * Case of res_mp OR the fastpath mp can't fit 24519 * in the mblk 24520 */ 24521 } else { 24522 xmit_mp->b_cont = mp; 24523 if (DB_CRED(mp) != NULL) 24524 mblk_setcred(xmit_mp, DB_CRED(mp)); 24525 /* 24526 * Get priority marking, if any. 24527 * We propagate the CoS marking from the 24528 * original packet that went to QoS processing 24529 * in ip_wput_ire to the newly carved mp. 24530 */ 24531 if (DB_TYPE(xmit_mp) == M_DATA) 24532 xmit_mp->b_band = mp->b_band; 24533 } 24534 UNLOCK_IRE_FP_MP(ire); 24535 24536 q = ire->ire_stq; 24537 out_ill = (ill_t *)q->q_ptr; 24538 24539 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24540 24541 DTRACE_PROBE4(ip4__physical__out__start, 24542 ill_t *, NULL, ill_t *, out_ill, 24543 ipha_t *, ipha, mblk_t *, xmit_mp); 24544 24545 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24546 ipst->ips_ipv4firewall_physical_out, 24547 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24548 24549 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24550 24551 if (xmit_mp != NULL) { 24552 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24553 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24554 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24555 24556 putnext(q, xmit_mp); 24557 24558 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24559 UPDATE_MIB(out_ill->ill_ip_mib, 24560 ipIfStatsHCOutOctets, i1); 24561 24562 if (pkt_type != OB_PKT) { 24563 /* 24564 * Update the packet count and MIB stats 24565 * of trailing RTF_MULTIRT ires. 24566 */ 24567 UPDATE_OB_PKT_COUNT(ire); 24568 BUMP_MIB(out_ill->ill_ip_mib, 24569 ipIfStatsOutFragReqds); 24570 } 24571 } 24572 24573 if (multirt_send) { 24574 /* 24575 * We are in a multiple send case; look for 24576 * the next ire and re-enter the loop. 24577 */ 24578 ASSERT(ire1); 24579 ASSERT(next_mp); 24580 /* REFRELE the current ire before looping */ 24581 ire_refrele(ire); 24582 ire = ire1; 24583 ire1 = NULL; 24584 mp = next_mp; 24585 next_mp = NULL; 24586 } 24587 } while (multirt_send); 24588 24589 ASSERT(ire1 == NULL); 24590 24591 /* Restore the original ire; we need it for the trailing frags */ 24592 if (save_ire != NULL) { 24593 /* REFRELE the last iterated ire */ 24594 ire_refrele(ire); 24595 /* save_ire has been REFHOLDed */ 24596 ire = save_ire; 24597 save_ire = NULL; 24598 q = ire->ire_stq; 24599 } 24600 24601 if (pkt_type == OB_PKT) { 24602 UPDATE_OB_PKT_COUNT(ire); 24603 } else { 24604 out_ill = (ill_t *)q->q_ptr; 24605 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24606 UPDATE_IB_PKT_COUNT(ire); 24607 } 24608 24609 /* Advance the offset to the second frag starting point. */ 24610 offset += len; 24611 /* 24612 * Update hdr_len from the copied header - there might be less options 24613 * in the later fragments. 24614 */ 24615 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24616 /* Loop until done. */ 24617 for (;;) { 24618 uint16_t offset_and_flags; 24619 uint16_t ip_len; 24620 24621 if (ip_data_end - offset > len) { 24622 /* 24623 * Carve off the appropriate amount from the original 24624 * datagram. 24625 */ 24626 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24627 mp = NULL; 24628 break; 24629 } 24630 /* 24631 * More frags after this one. Get another copy 24632 * of the header. 24633 */ 24634 if (carve_mp->b_datap->db_ref == 1 && 24635 hdr_mp->b_wptr - hdr_mp->b_rptr < 24636 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24637 /* Inline IP header */ 24638 carve_mp->b_rptr -= hdr_mp->b_wptr - 24639 hdr_mp->b_rptr; 24640 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24641 hdr_mp->b_wptr - hdr_mp->b_rptr); 24642 mp = carve_mp; 24643 } else { 24644 if (!(mp = copyb(hdr_mp))) { 24645 freemsg(carve_mp); 24646 break; 24647 } 24648 /* Get priority marking, if any. */ 24649 mp->b_band = carve_mp->b_band; 24650 mp->b_cont = carve_mp; 24651 } 24652 ipha = (ipha_t *)mp->b_rptr; 24653 offset_and_flags = IPH_MF; 24654 } else { 24655 /* 24656 * Last frag. Consume the header. Set len to 24657 * the length of this last piece. 24658 */ 24659 len = ip_data_end - offset; 24660 24661 /* 24662 * Carve off the appropriate amount from the original 24663 * datagram. 24664 */ 24665 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24666 mp = NULL; 24667 break; 24668 } 24669 if (carve_mp->b_datap->db_ref == 1 && 24670 hdr_mp->b_wptr - hdr_mp->b_rptr < 24671 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24672 /* Inline IP header */ 24673 carve_mp->b_rptr -= hdr_mp->b_wptr - 24674 hdr_mp->b_rptr; 24675 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24676 hdr_mp->b_wptr - hdr_mp->b_rptr); 24677 mp = carve_mp; 24678 freeb(hdr_mp); 24679 hdr_mp = mp; 24680 } else { 24681 mp = hdr_mp; 24682 /* Get priority marking, if any. */ 24683 mp->b_band = carve_mp->b_band; 24684 mp->b_cont = carve_mp; 24685 } 24686 ipha = (ipha_t *)mp->b_rptr; 24687 /* A frag of a frag might have IPH_MF non-zero */ 24688 offset_and_flags = 24689 ntohs(ipha->ipha_fragment_offset_and_flags) & 24690 IPH_MF; 24691 } 24692 offset_and_flags |= (uint16_t)(offset >> 3); 24693 offset_and_flags |= (uint16_t)frag_flag; 24694 /* Store the offset and flags in the IP header. */ 24695 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24696 24697 /* Store the length in the IP header. */ 24698 ip_len = (uint16_t)(len + hdr_len); 24699 ipha->ipha_length = htons(ip_len); 24700 24701 /* 24702 * Set the IP header checksum. Note that mp is just 24703 * the header, so this is easy to pass to ip_csum. 24704 */ 24705 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24706 24707 /* Attach a transmit header, if any, and ship it. */ 24708 if (pkt_type == OB_PKT) { 24709 UPDATE_OB_PKT_COUNT(ire); 24710 } else { 24711 out_ill = (ill_t *)q->q_ptr; 24712 BUMP_MIB(out_ill->ill_ip_mib, 24713 ipIfStatsHCOutForwDatagrams); 24714 UPDATE_IB_PKT_COUNT(ire); 24715 } 24716 24717 if (ire->ire_flags & RTF_MULTIRT) { 24718 irb = ire->ire_bucket; 24719 ASSERT(irb != NULL); 24720 24721 multirt_send = B_TRUE; 24722 24723 /* 24724 * Save the original ire; we will need to restore it 24725 * for the tailing frags. 24726 */ 24727 save_ire = ire; 24728 IRE_REFHOLD(save_ire); 24729 } 24730 /* 24731 * Emission loop for this fragment, similar 24732 * to what is done for the first fragment. 24733 */ 24734 do { 24735 if (multirt_send) { 24736 /* 24737 * We are in a multiple send case, need to get 24738 * the next ire and make a copy of the packet. 24739 */ 24740 ASSERT(irb != NULL); 24741 IRB_REFHOLD(irb); 24742 for (ire1 = ire->ire_next; 24743 ire1 != NULL; 24744 ire1 = ire1->ire_next) { 24745 if (!(ire1->ire_flags & RTF_MULTIRT)) 24746 continue; 24747 if (ire1->ire_addr != ire->ire_addr) 24748 continue; 24749 if (ire1->ire_marks & 24750 (IRE_MARK_CONDEMNED| 24751 IRE_MARK_HIDDEN)) { 24752 continue; 24753 } 24754 /* 24755 * Ensure we do not exceed the MTU 24756 * of the next route. 24757 */ 24758 if (ire1->ire_max_frag < max_frag) { 24759 ip_multirt_bad_mtu(ire1, 24760 max_frag); 24761 continue; 24762 } 24763 24764 /* Got one. */ 24765 IRE_REFHOLD(ire1); 24766 break; 24767 } 24768 IRB_REFRELE(irb); 24769 24770 if (ire1 != NULL) { 24771 next_mp = copyb(mp); 24772 if ((next_mp == NULL) || 24773 ((mp->b_cont != NULL) && 24774 ((next_mp->b_cont = 24775 dupmsg(mp->b_cont)) == NULL))) { 24776 freemsg(next_mp); 24777 next_mp = NULL; 24778 ire_refrele(ire1); 24779 ire1 = NULL; 24780 } 24781 } 24782 24783 /* Last multiroute ire; don't loop anymore. */ 24784 if (ire1 == NULL) { 24785 multirt_send = B_FALSE; 24786 } 24787 } 24788 24789 /* Update transmit header */ 24790 ll_hdr_len = 0; 24791 LOCK_IRE_FP_MP(ire); 24792 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24793 if (ll_hdr_mp != NULL) { 24794 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24795 ll_hdr_len = MBLKL(ll_hdr_mp); 24796 } else { 24797 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24798 } 24799 24800 if (!ll_hdr_mp) { 24801 xmit_mp = mp; 24802 24803 /* 24804 * We have link-layer header that can fit in 24805 * our mblk. 24806 */ 24807 } else if (mp->b_datap->db_ref == 1 && 24808 ll_hdr_len != 0 && 24809 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24810 /* M_DATA fastpath */ 24811 mp->b_rptr -= ll_hdr_len; 24812 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24813 ll_hdr_len); 24814 xmit_mp = mp; 24815 24816 /* 24817 * Case of res_mp OR the fastpath mp can't fit 24818 * in the mblk 24819 */ 24820 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24821 xmit_mp->b_cont = mp; 24822 if (DB_CRED(mp) != NULL) 24823 mblk_setcred(xmit_mp, DB_CRED(mp)); 24824 /* Get priority marking, if any. */ 24825 if (DB_TYPE(xmit_mp) == M_DATA) 24826 xmit_mp->b_band = mp->b_band; 24827 24828 /* Corner case if copyb failed */ 24829 } else { 24830 /* 24831 * Exit both the replication and 24832 * fragmentation loops. 24833 */ 24834 UNLOCK_IRE_FP_MP(ire); 24835 goto drop_pkt; 24836 } 24837 UNLOCK_IRE_FP_MP(ire); 24838 24839 mp1 = mp; 24840 out_ill = (ill_t *)q->q_ptr; 24841 24842 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24843 24844 DTRACE_PROBE4(ip4__physical__out__start, 24845 ill_t *, NULL, ill_t *, out_ill, 24846 ipha_t *, ipha, mblk_t *, xmit_mp); 24847 24848 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24849 ipst->ips_ipv4firewall_physical_out, 24850 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24851 24852 DTRACE_PROBE1(ip4__physical__out__end, 24853 mblk_t *, xmit_mp); 24854 24855 if (mp != mp1 && hdr_mp == mp1) 24856 hdr_mp = mp; 24857 if (mp != mp1 && mp_orig == mp1) 24858 mp_orig = mp; 24859 24860 if (xmit_mp != NULL) { 24861 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24862 NULL, void_ip_t *, ipha, 24863 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24864 ipha, ip6_t *, NULL, int, 0); 24865 24866 putnext(q, xmit_mp); 24867 24868 BUMP_MIB(out_ill->ill_ip_mib, 24869 ipIfStatsHCOutTransmits); 24870 UPDATE_MIB(out_ill->ill_ip_mib, 24871 ipIfStatsHCOutOctets, ip_len); 24872 24873 if (pkt_type != OB_PKT) { 24874 /* 24875 * Update the packet count of trailing 24876 * RTF_MULTIRT ires. 24877 */ 24878 UPDATE_OB_PKT_COUNT(ire); 24879 } 24880 } 24881 24882 /* All done if we just consumed the hdr_mp. */ 24883 if (mp == hdr_mp) { 24884 last_frag = B_TRUE; 24885 BUMP_MIB(out_ill->ill_ip_mib, 24886 ipIfStatsOutFragOKs); 24887 } 24888 24889 if (multirt_send) { 24890 /* 24891 * We are in a multiple send case; look for 24892 * the next ire and re-enter the loop. 24893 */ 24894 ASSERT(ire1); 24895 ASSERT(next_mp); 24896 /* REFRELE the current ire before looping */ 24897 ire_refrele(ire); 24898 ire = ire1; 24899 ire1 = NULL; 24900 q = ire->ire_stq; 24901 mp = next_mp; 24902 next_mp = NULL; 24903 } 24904 } while (multirt_send); 24905 /* 24906 * Restore the original ire; we need it for the 24907 * trailing frags 24908 */ 24909 if (save_ire != NULL) { 24910 ASSERT(ire1 == NULL); 24911 /* REFRELE the last iterated ire */ 24912 ire_refrele(ire); 24913 /* save_ire has been REFHOLDed */ 24914 ire = save_ire; 24915 q = ire->ire_stq; 24916 save_ire = NULL; 24917 } 24918 24919 if (last_frag) { 24920 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24921 "ip_wput_frag_end:(%S)", 24922 "consumed hdr_mp"); 24923 24924 if (first_ire != NULL) 24925 ire_refrele(first_ire); 24926 return; 24927 } 24928 /* Otherwise, advance and loop. */ 24929 offset += len; 24930 } 24931 24932 drop_pkt: 24933 /* Clean up following allocation failure. */ 24934 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24935 freemsg(mp); 24936 if (mp != hdr_mp) 24937 freeb(hdr_mp); 24938 if (mp != mp_orig) 24939 freemsg(mp_orig); 24940 24941 if (save_ire != NULL) 24942 IRE_REFRELE(save_ire); 24943 if (first_ire != NULL) 24944 ire_refrele(first_ire); 24945 24946 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24947 "ip_wput_frag_end:(%S)", 24948 "end--alloc failure"); 24949 } 24950 24951 /* 24952 * Copy the header plus those options which have the copy bit set 24953 */ 24954 static mblk_t * 24955 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24956 { 24957 mblk_t *mp; 24958 uchar_t *up; 24959 24960 /* 24961 * Quick check if we need to look for options without the copy bit 24962 * set 24963 */ 24964 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24965 if (!mp) 24966 return (mp); 24967 mp->b_rptr += ipst->ips_ip_wroff_extra; 24968 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24969 bcopy(rptr, mp->b_rptr, hdr_len); 24970 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24971 return (mp); 24972 } 24973 up = mp->b_rptr; 24974 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24975 up += IP_SIMPLE_HDR_LENGTH; 24976 rptr += IP_SIMPLE_HDR_LENGTH; 24977 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24978 while (hdr_len > 0) { 24979 uint32_t optval; 24980 uint32_t optlen; 24981 24982 optval = *rptr; 24983 if (optval == IPOPT_EOL) 24984 break; 24985 if (optval == IPOPT_NOP) 24986 optlen = 1; 24987 else 24988 optlen = rptr[1]; 24989 if (optval & IPOPT_COPY) { 24990 bcopy(rptr, up, optlen); 24991 up += optlen; 24992 } 24993 rptr += optlen; 24994 hdr_len -= optlen; 24995 } 24996 /* 24997 * Make sure that we drop an even number of words by filling 24998 * with EOL to the next word boundary. 24999 */ 25000 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25001 hdr_len & 0x3; hdr_len++) 25002 *up++ = IPOPT_EOL; 25003 mp->b_wptr = up; 25004 /* Update header length */ 25005 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25006 return (mp); 25007 } 25008 25009 /* 25010 * Delivery to local recipients including fanout to multiple recipients. 25011 * Does not do checksumming of UDP/TCP. 25012 * Note: q should be the read side queue for either the ill or conn. 25013 * Note: rq should be the read side q for the lower (ill) stream. 25014 * We don't send packets to IPPF processing, thus the last argument 25015 * to all the fanout calls are B_FALSE. 25016 */ 25017 void 25018 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25019 int fanout_flags, zoneid_t zoneid) 25020 { 25021 uint32_t protocol; 25022 mblk_t *first_mp; 25023 boolean_t mctl_present; 25024 int ire_type; 25025 #define rptr ((uchar_t *)ipha) 25026 ip_stack_t *ipst = ill->ill_ipst; 25027 25028 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25029 "ip_wput_local_start: q %p", q); 25030 25031 if (ire != NULL) { 25032 ire_type = ire->ire_type; 25033 } else { 25034 /* 25035 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25036 * packet is not multicast, we can't tell the ire type. 25037 */ 25038 ASSERT(CLASSD(ipha->ipha_dst)); 25039 ire_type = IRE_BROADCAST; 25040 } 25041 25042 first_mp = mp; 25043 if (first_mp->b_datap->db_type == M_CTL) { 25044 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25045 if (!io->ipsec_out_secure) { 25046 /* 25047 * This ipsec_out_t was allocated in ip_wput 25048 * for multicast packets to store the ill_index. 25049 * As this is being delivered locally, we don't 25050 * need this anymore. 25051 */ 25052 mp = first_mp->b_cont; 25053 freeb(first_mp); 25054 first_mp = mp; 25055 mctl_present = B_FALSE; 25056 } else { 25057 /* 25058 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25059 * security properties for the looped-back packet. 25060 */ 25061 mctl_present = B_TRUE; 25062 mp = first_mp->b_cont; 25063 ASSERT(mp != NULL); 25064 ipsec_out_to_in(first_mp); 25065 } 25066 } else { 25067 mctl_present = B_FALSE; 25068 } 25069 25070 DTRACE_PROBE4(ip4__loopback__in__start, 25071 ill_t *, ill, ill_t *, NULL, 25072 ipha_t *, ipha, mblk_t *, first_mp); 25073 25074 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25075 ipst->ips_ipv4firewall_loopback_in, 25076 ill, NULL, ipha, first_mp, mp, 0, ipst); 25077 25078 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25079 25080 if (first_mp == NULL) 25081 return; 25082 25083 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25084 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25085 int, 1); 25086 25087 ipst->ips_loopback_packets++; 25088 25089 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25090 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25091 if (!IS_SIMPLE_IPH(ipha)) { 25092 ip_wput_local_options(ipha, ipst); 25093 } 25094 25095 protocol = ipha->ipha_protocol; 25096 switch (protocol) { 25097 case IPPROTO_ICMP: { 25098 ire_t *ire_zone; 25099 ilm_t *ilm; 25100 mblk_t *mp1; 25101 zoneid_t last_zoneid; 25102 25103 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25104 ASSERT(ire_type == IRE_BROADCAST); 25105 /* 25106 * In the multicast case, applications may have joined 25107 * the group from different zones, so we need to deliver 25108 * the packet to each of them. Loop through the 25109 * multicast memberships structures (ilm) on the receive 25110 * ill and send a copy of the packet up each matching 25111 * one. However, we don't do this for multicasts sent on 25112 * the loopback interface (PHYI_LOOPBACK flag set) as 25113 * they must stay in the sender's zone. 25114 * 25115 * ilm_add_v6() ensures that ilms in the same zone are 25116 * contiguous in the ill_ilm list. We use this property 25117 * to avoid sending duplicates needed when two 25118 * applications in the same zone join the same group on 25119 * different logical interfaces: we ignore the ilm if 25120 * it's zoneid is the same as the last matching one. 25121 * In addition, the sending of the packet for 25122 * ire_zoneid is delayed until all of the other ilms 25123 * have been exhausted. 25124 */ 25125 last_zoneid = -1; 25126 ILM_WALKER_HOLD(ill); 25127 for (ilm = ill->ill_ilm; ilm != NULL; 25128 ilm = ilm->ilm_next) { 25129 if ((ilm->ilm_flags & ILM_DELETED) || 25130 ipha->ipha_dst != ilm->ilm_addr || 25131 ilm->ilm_zoneid == last_zoneid || 25132 ilm->ilm_zoneid == zoneid || 25133 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25134 continue; 25135 mp1 = ip_copymsg(first_mp); 25136 if (mp1 == NULL) 25137 continue; 25138 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25139 mctl_present, B_FALSE, ill, 25140 ilm->ilm_zoneid); 25141 last_zoneid = ilm->ilm_zoneid; 25142 } 25143 ILM_WALKER_RELE(ill); 25144 /* 25145 * Loopback case: the sending endpoint has 25146 * IP_MULTICAST_LOOP disabled, therefore we don't 25147 * dispatch the multicast packet to the sending zone. 25148 */ 25149 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25150 freemsg(first_mp); 25151 return; 25152 } 25153 } else if (ire_type == IRE_BROADCAST) { 25154 /* 25155 * In the broadcast case, there may be many zones 25156 * which need a copy of the packet delivered to them. 25157 * There is one IRE_BROADCAST per broadcast address 25158 * and per zone; we walk those using a helper function. 25159 * In addition, the sending of the packet for zoneid is 25160 * delayed until all of the other ires have been 25161 * processed. 25162 */ 25163 IRB_REFHOLD(ire->ire_bucket); 25164 ire_zone = NULL; 25165 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25166 ire)) != NULL) { 25167 mp1 = ip_copymsg(first_mp); 25168 if (mp1 == NULL) 25169 continue; 25170 25171 UPDATE_IB_PKT_COUNT(ire_zone); 25172 ire_zone->ire_last_used_time = lbolt; 25173 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25174 mctl_present, B_FALSE, ill, 25175 ire_zone->ire_zoneid); 25176 } 25177 IRB_REFRELE(ire->ire_bucket); 25178 } 25179 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25180 0, mctl_present, B_FALSE, ill, zoneid); 25181 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25182 "ip_wput_local_end: q %p (%S)", 25183 q, "icmp"); 25184 return; 25185 } 25186 case IPPROTO_IGMP: 25187 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25188 /* Bad packet - discarded by igmp_input */ 25189 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25190 "ip_wput_local_end: q %p (%S)", 25191 q, "igmp_input--bad packet"); 25192 if (mctl_present) 25193 freeb(first_mp); 25194 return; 25195 } 25196 /* 25197 * igmp_input() may have returned the pulled up message. 25198 * So first_mp and ipha need to be reinitialized. 25199 */ 25200 ipha = (ipha_t *)mp->b_rptr; 25201 if (mctl_present) 25202 first_mp->b_cont = mp; 25203 else 25204 first_mp = mp; 25205 /* deliver to local raw users */ 25206 break; 25207 case IPPROTO_ENCAP: 25208 /* 25209 * This case is covered by either ip_fanout_proto, or by 25210 * the above security processing for self-tunneled packets. 25211 */ 25212 break; 25213 case IPPROTO_UDP: { 25214 uint16_t *up; 25215 uint32_t ports; 25216 25217 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25218 UDP_PORTS_OFFSET); 25219 /* Force a 'valid' checksum. */ 25220 up[3] = 0; 25221 25222 ports = *(uint32_t *)up; 25223 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25224 (ire_type == IRE_BROADCAST), 25225 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25226 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25227 ill, zoneid); 25228 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25229 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25230 return; 25231 } 25232 case IPPROTO_TCP: { 25233 25234 /* 25235 * For TCP, discard broadcast packets. 25236 */ 25237 if ((ushort_t)ire_type == IRE_BROADCAST) { 25238 freemsg(first_mp); 25239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25240 ip2dbg(("ip_wput_local: discard broadcast\n")); 25241 return; 25242 } 25243 25244 if (mp->b_datap->db_type == M_DATA) { 25245 /* 25246 * M_DATA mblk, so init mblk (chain) for no struio(). 25247 */ 25248 mblk_t *mp1 = mp; 25249 25250 do { 25251 mp1->b_datap->db_struioflag = 0; 25252 } while ((mp1 = mp1->b_cont) != NULL); 25253 } 25254 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25255 <= mp->b_wptr); 25256 ip_fanout_tcp(q, first_mp, ill, ipha, 25257 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25258 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25259 mctl_present, B_FALSE, zoneid); 25260 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25261 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25262 return; 25263 } 25264 case IPPROTO_SCTP: 25265 { 25266 uint32_t ports; 25267 25268 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25269 ip_fanout_sctp(first_mp, ill, ipha, ports, 25270 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25271 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25272 return; 25273 } 25274 25275 default: 25276 break; 25277 } 25278 /* 25279 * Find a client for some other protocol. We give 25280 * copies to multiple clients, if more than one is 25281 * bound. 25282 */ 25283 ip_fanout_proto(q, first_mp, ill, ipha, 25284 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25285 mctl_present, B_FALSE, ill, zoneid); 25286 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25287 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25288 #undef rptr 25289 } 25290 25291 /* 25292 * Update any source route, record route, or timestamp options. 25293 * Check that we are at end of strict source route. 25294 * The options have been sanity checked by ip_wput_options(). 25295 */ 25296 static void 25297 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25298 { 25299 ipoptp_t opts; 25300 uchar_t *opt; 25301 uint8_t optval; 25302 uint8_t optlen; 25303 ipaddr_t dst; 25304 uint32_t ts; 25305 ire_t *ire; 25306 timestruc_t now; 25307 25308 ip2dbg(("ip_wput_local_options\n")); 25309 for (optval = ipoptp_first(&opts, ipha); 25310 optval != IPOPT_EOL; 25311 optval = ipoptp_next(&opts)) { 25312 opt = opts.ipoptp_cur; 25313 optlen = opts.ipoptp_len; 25314 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25315 switch (optval) { 25316 uint32_t off; 25317 case IPOPT_SSRR: 25318 case IPOPT_LSRR: 25319 off = opt[IPOPT_OFFSET]; 25320 off--; 25321 if (optlen < IP_ADDR_LEN || 25322 off > optlen - IP_ADDR_LEN) { 25323 /* End of source route */ 25324 break; 25325 } 25326 /* 25327 * This will only happen if two consecutive entries 25328 * in the source route contains our address or if 25329 * it is a packet with a loose source route which 25330 * reaches us before consuming the whole source route 25331 */ 25332 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25333 if (optval == IPOPT_SSRR) { 25334 return; 25335 } 25336 /* 25337 * Hack: instead of dropping the packet truncate the 25338 * source route to what has been used by filling the 25339 * rest with IPOPT_NOP. 25340 */ 25341 opt[IPOPT_OLEN] = (uint8_t)off; 25342 while (off < optlen) { 25343 opt[off++] = IPOPT_NOP; 25344 } 25345 break; 25346 case IPOPT_RR: 25347 off = opt[IPOPT_OFFSET]; 25348 off--; 25349 if (optlen < IP_ADDR_LEN || 25350 off > optlen - IP_ADDR_LEN) { 25351 /* No more room - ignore */ 25352 ip1dbg(( 25353 "ip_wput_forward_options: end of RR\n")); 25354 break; 25355 } 25356 dst = htonl(INADDR_LOOPBACK); 25357 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25358 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25359 break; 25360 case IPOPT_TS: 25361 /* Insert timestamp if there is romm */ 25362 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25363 case IPOPT_TS_TSONLY: 25364 off = IPOPT_TS_TIMELEN; 25365 break; 25366 case IPOPT_TS_PRESPEC: 25367 case IPOPT_TS_PRESPEC_RFC791: 25368 /* Verify that the address matched */ 25369 off = opt[IPOPT_OFFSET] - 1; 25370 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25371 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25372 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25373 ipst); 25374 if (ire == NULL) { 25375 /* Not for us */ 25376 break; 25377 } 25378 ire_refrele(ire); 25379 /* FALLTHRU */ 25380 case IPOPT_TS_TSANDADDR: 25381 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25382 break; 25383 default: 25384 /* 25385 * ip_*put_options should have already 25386 * dropped this packet. 25387 */ 25388 cmn_err(CE_PANIC, "ip_wput_local_options: " 25389 "unknown IT - bug in ip_wput_options?\n"); 25390 return; /* Keep "lint" happy */ 25391 } 25392 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25393 /* Increase overflow counter */ 25394 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25395 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25396 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25397 (off << 4); 25398 break; 25399 } 25400 off = opt[IPOPT_OFFSET] - 1; 25401 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25402 case IPOPT_TS_PRESPEC: 25403 case IPOPT_TS_PRESPEC_RFC791: 25404 case IPOPT_TS_TSANDADDR: 25405 dst = htonl(INADDR_LOOPBACK); 25406 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25407 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25408 /* FALLTHRU */ 25409 case IPOPT_TS_TSONLY: 25410 off = opt[IPOPT_OFFSET] - 1; 25411 /* Compute # of milliseconds since midnight */ 25412 gethrestime(&now); 25413 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25414 now.tv_nsec / (NANOSEC / MILLISEC); 25415 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25416 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25417 break; 25418 } 25419 break; 25420 } 25421 } 25422 } 25423 25424 /* 25425 * Send out a multicast packet on interface ipif. 25426 * The sender does not have an conn. 25427 * Caller verifies that this isn't a PHYI_LOOPBACK. 25428 */ 25429 void 25430 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25431 { 25432 ipha_t *ipha; 25433 ire_t *ire; 25434 ipaddr_t dst; 25435 mblk_t *first_mp; 25436 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25437 25438 /* igmp_sendpkt always allocates a ipsec_out_t */ 25439 ASSERT(mp->b_datap->db_type == M_CTL); 25440 ASSERT(!ipif->ipif_isv6); 25441 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25442 25443 first_mp = mp; 25444 mp = first_mp->b_cont; 25445 ASSERT(mp->b_datap->db_type == M_DATA); 25446 ipha = (ipha_t *)mp->b_rptr; 25447 25448 /* 25449 * Find an IRE which matches the destination and the outgoing 25450 * queue (i.e. the outgoing interface.) 25451 */ 25452 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25453 dst = ipif->ipif_pp_dst_addr; 25454 else 25455 dst = ipha->ipha_dst; 25456 /* 25457 * The source address has already been initialized by the 25458 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25459 * be sufficient rather than MATCH_IRE_IPIF. 25460 * 25461 * This function is used for sending IGMP packets. We need 25462 * to make sure that we send the packet out of the interface 25463 * (ipif->ipif_ill) where we joined the group. This is to 25464 * prevent from switches doing IGMP snooping to send us multicast 25465 * packets for a given group on the interface we have joined. 25466 * If we can't find an ire, igmp_sendpkt has already initialized 25467 * ipsec_out_attach_if so that this will not be load spread in 25468 * ip_newroute_ipif. 25469 */ 25470 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25471 MATCH_IRE_ILL, ipst); 25472 if (!ire) { 25473 /* 25474 * Mark this packet to make it be delivered to 25475 * ip_wput_ire after the new ire has been 25476 * created. 25477 */ 25478 mp->b_prev = NULL; 25479 mp->b_next = NULL; 25480 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25481 zoneid, &zero_info); 25482 return; 25483 } 25484 25485 /* 25486 * Honor the RTF_SETSRC flag; this is the only case 25487 * where we force this addr whatever the current src addr is, 25488 * because this address is set by igmp_sendpkt(), and 25489 * cannot be specified by any user. 25490 */ 25491 if (ire->ire_flags & RTF_SETSRC) { 25492 ipha->ipha_src = ire->ire_src_addr; 25493 } 25494 25495 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25496 } 25497 25498 /* 25499 * NOTE : This function does not ire_refrele the ire argument passed in. 25500 * 25501 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25502 * failure. The nce_fp_mp can vanish any time in the case of 25503 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25504 * the ire_lock to access the nce_fp_mp in this case. 25505 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25506 * prepending a fastpath message IPQoS processing must precede it, we also set 25507 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25508 * (IPQoS might have set the b_band for CoS marking). 25509 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25510 * must follow it so that IPQoS can mark the dl_priority field for CoS 25511 * marking, if needed. 25512 */ 25513 static mblk_t * 25514 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25515 uint32_t ill_index, ipha_t **iphap) 25516 { 25517 uint_t hlen; 25518 ipha_t *ipha; 25519 mblk_t *mp1; 25520 boolean_t qos_done = B_FALSE; 25521 uchar_t *ll_hdr; 25522 ip_stack_t *ipst = ire->ire_ipst; 25523 25524 #define rptr ((uchar_t *)ipha) 25525 25526 ipha = (ipha_t *)mp->b_rptr; 25527 hlen = 0; 25528 LOCK_IRE_FP_MP(ire); 25529 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25530 ASSERT(DB_TYPE(mp1) == M_DATA); 25531 /* Initiate IPPF processing */ 25532 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25533 UNLOCK_IRE_FP_MP(ire); 25534 ip_process(proc, &mp, ill_index); 25535 if (mp == NULL) 25536 return (NULL); 25537 25538 ipha = (ipha_t *)mp->b_rptr; 25539 LOCK_IRE_FP_MP(ire); 25540 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25541 qos_done = B_TRUE; 25542 goto no_fp_mp; 25543 } 25544 ASSERT(DB_TYPE(mp1) == M_DATA); 25545 } 25546 hlen = MBLKL(mp1); 25547 /* 25548 * Check if we have enough room to prepend fastpath 25549 * header 25550 */ 25551 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25552 ll_hdr = rptr - hlen; 25553 bcopy(mp1->b_rptr, ll_hdr, hlen); 25554 /* 25555 * Set the b_rptr to the start of the link layer 25556 * header 25557 */ 25558 mp->b_rptr = ll_hdr; 25559 mp1 = mp; 25560 } else { 25561 mp1 = copyb(mp1); 25562 if (mp1 == NULL) 25563 goto unlock_err; 25564 mp1->b_band = mp->b_band; 25565 mp1->b_cont = mp; 25566 /* 25567 * certain system generated traffic may not 25568 * have cred/label in ip header block. This 25569 * is true even for a labeled system. But for 25570 * labeled traffic, inherit the label in the 25571 * new header. 25572 */ 25573 if (DB_CRED(mp) != NULL) 25574 mblk_setcred(mp1, DB_CRED(mp)); 25575 /* 25576 * XXX disable ICK_VALID and compute checksum 25577 * here; can happen if nce_fp_mp changes and 25578 * it can't be copied now due to insufficient 25579 * space. (unlikely, fp mp can change, but it 25580 * does not increase in length) 25581 */ 25582 } 25583 UNLOCK_IRE_FP_MP(ire); 25584 } else { 25585 no_fp_mp: 25586 mp1 = copyb(ire->ire_nce->nce_res_mp); 25587 if (mp1 == NULL) { 25588 unlock_err: 25589 UNLOCK_IRE_FP_MP(ire); 25590 freemsg(mp); 25591 return (NULL); 25592 } 25593 UNLOCK_IRE_FP_MP(ire); 25594 mp1->b_cont = mp; 25595 /* 25596 * certain system generated traffic may not 25597 * have cred/label in ip header block. This 25598 * is true even for a labeled system. But for 25599 * labeled traffic, inherit the label in the 25600 * new header. 25601 */ 25602 if (DB_CRED(mp) != NULL) 25603 mblk_setcred(mp1, DB_CRED(mp)); 25604 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25605 ip_process(proc, &mp1, ill_index); 25606 if (mp1 == NULL) 25607 return (NULL); 25608 25609 if (mp1->b_cont == NULL) 25610 ipha = NULL; 25611 else 25612 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25613 } 25614 } 25615 25616 *iphap = ipha; 25617 return (mp1); 25618 #undef rptr 25619 } 25620 25621 /* 25622 * Finish the outbound IPsec processing for an IPv6 packet. This function 25623 * is called from ipsec_out_process() if the IPsec packet was processed 25624 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25625 * asynchronously. 25626 */ 25627 void 25628 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25629 ire_t *ire_arg) 25630 { 25631 in6_addr_t *v6dstp; 25632 ire_t *ire; 25633 mblk_t *mp; 25634 ip6_t *ip6h1; 25635 uint_t ill_index; 25636 ipsec_out_t *io; 25637 boolean_t attach_if, hwaccel; 25638 uint32_t flags = IP6_NO_IPPOLICY; 25639 int match_flags; 25640 zoneid_t zoneid; 25641 boolean_t ill_need_rele = B_FALSE; 25642 boolean_t ire_need_rele = B_FALSE; 25643 ip_stack_t *ipst; 25644 25645 mp = ipsec_mp->b_cont; 25646 ip6h1 = (ip6_t *)mp->b_rptr; 25647 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25648 ASSERT(io->ipsec_out_ns != NULL); 25649 ipst = io->ipsec_out_ns->netstack_ip; 25650 ill_index = io->ipsec_out_ill_index; 25651 if (io->ipsec_out_reachable) { 25652 flags |= IPV6_REACHABILITY_CONFIRMATION; 25653 } 25654 attach_if = io->ipsec_out_attach_if; 25655 hwaccel = io->ipsec_out_accelerated; 25656 zoneid = io->ipsec_out_zoneid; 25657 ASSERT(zoneid != ALL_ZONES); 25658 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25659 /* Multicast addresses should have non-zero ill_index. */ 25660 v6dstp = &ip6h->ip6_dst; 25661 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25662 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25663 ASSERT(!attach_if || ill_index != 0); 25664 if (ill_index != 0) { 25665 if (ill == NULL) { 25666 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25667 B_TRUE, ipst); 25668 25669 /* Failure case frees things for us. */ 25670 if (ill == NULL) 25671 return; 25672 25673 ill_need_rele = B_TRUE; 25674 } 25675 /* 25676 * If this packet needs to go out on a particular interface 25677 * honor it. 25678 */ 25679 if (attach_if) { 25680 match_flags = MATCH_IRE_ILL; 25681 25682 /* 25683 * Check if we need an ire that will not be 25684 * looked up by anybody else i.e. HIDDEN. 25685 */ 25686 if (ill_is_probeonly(ill)) { 25687 match_flags |= MATCH_IRE_MARK_HIDDEN; 25688 } 25689 } 25690 } 25691 ASSERT(mp != NULL); 25692 25693 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25694 boolean_t unspec_src; 25695 ipif_t *ipif; 25696 25697 /* 25698 * Use the ill_index to get the right ill. 25699 */ 25700 unspec_src = io->ipsec_out_unspec_src; 25701 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25702 if (ipif == NULL) { 25703 if (ill_need_rele) 25704 ill_refrele(ill); 25705 freemsg(ipsec_mp); 25706 return; 25707 } 25708 25709 if (ire_arg != NULL) { 25710 ire = ire_arg; 25711 } else { 25712 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25713 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25714 ire_need_rele = B_TRUE; 25715 } 25716 if (ire != NULL) { 25717 ipif_refrele(ipif); 25718 /* 25719 * XXX Do the multicast forwarding now, as the IPsec 25720 * processing has been done. 25721 */ 25722 goto send; 25723 } 25724 25725 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25726 mp->b_prev = NULL; 25727 mp->b_next = NULL; 25728 25729 /* 25730 * If the IPsec packet was processed asynchronously, 25731 * drop it now. 25732 */ 25733 if (q == NULL) { 25734 if (ill_need_rele) 25735 ill_refrele(ill); 25736 freemsg(ipsec_mp); 25737 return; 25738 } 25739 25740 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25741 unspec_src, zoneid); 25742 ipif_refrele(ipif); 25743 } else { 25744 if (attach_if) { 25745 ipif_t *ipif; 25746 25747 ipif = ipif_get_next_ipif(NULL, ill); 25748 if (ipif == NULL) { 25749 if (ill_need_rele) 25750 ill_refrele(ill); 25751 freemsg(ipsec_mp); 25752 return; 25753 } 25754 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25755 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25756 ire_need_rele = B_TRUE; 25757 ipif_refrele(ipif); 25758 } else { 25759 if (ire_arg != NULL) { 25760 ire = ire_arg; 25761 } else { 25762 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25763 ipst); 25764 ire_need_rele = B_TRUE; 25765 } 25766 } 25767 if (ire != NULL) 25768 goto send; 25769 /* 25770 * ire disappeared underneath. 25771 * 25772 * What we need to do here is the ip_newroute 25773 * logic to get the ire without doing the IPsec 25774 * processing. Follow the same old path. But this 25775 * time, ip_wput or ire_add_then_send will call us 25776 * directly as all the IPsec operations are done. 25777 */ 25778 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25779 mp->b_prev = NULL; 25780 mp->b_next = NULL; 25781 25782 /* 25783 * If the IPsec packet was processed asynchronously, 25784 * drop it now. 25785 */ 25786 if (q == NULL) { 25787 if (ill_need_rele) 25788 ill_refrele(ill); 25789 freemsg(ipsec_mp); 25790 return; 25791 } 25792 25793 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25794 zoneid, ipst); 25795 } 25796 if (ill != NULL && ill_need_rele) 25797 ill_refrele(ill); 25798 return; 25799 send: 25800 if (ill != NULL && ill_need_rele) 25801 ill_refrele(ill); 25802 25803 /* Local delivery */ 25804 if (ire->ire_stq == NULL) { 25805 ill_t *out_ill; 25806 ASSERT(q != NULL); 25807 25808 /* PFHooks: LOOPBACK_OUT */ 25809 out_ill = ire_to_ill(ire); 25810 25811 /* 25812 * DTrace this as ip:::send. A blocked packet will fire the 25813 * send probe, but not the receive probe. 25814 */ 25815 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25816 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25817 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25818 25819 DTRACE_PROBE4(ip6__loopback__out__start, 25820 ill_t *, NULL, ill_t *, out_ill, 25821 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25822 25823 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25824 ipst->ips_ipv6firewall_loopback_out, 25825 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25826 25827 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25828 25829 if (ipsec_mp != NULL) 25830 ip_wput_local_v6(RD(q), out_ill, 25831 ip6h, ipsec_mp, ire, 0); 25832 if (ire_need_rele) 25833 ire_refrele(ire); 25834 return; 25835 } 25836 /* 25837 * Everything is done. Send it out on the wire. 25838 * We force the insertion of a fragment header using the 25839 * IPH_FRAG_HDR flag in two cases: 25840 * - after reception of an ICMPv6 "packet too big" message 25841 * with a MTU < 1280 (cf. RFC 2460 section 5) 25842 * - for multirouted IPv6 packets, so that the receiver can 25843 * discard duplicates according to their fragment identifier 25844 */ 25845 /* XXX fix flow control problems. */ 25846 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25847 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25848 if (hwaccel) { 25849 /* 25850 * hardware acceleration does not handle these 25851 * "slow path" cases. 25852 */ 25853 /* IPsec KSTATS: should bump bean counter here. */ 25854 if (ire_need_rele) 25855 ire_refrele(ire); 25856 freemsg(ipsec_mp); 25857 return; 25858 } 25859 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25860 (mp->b_cont ? msgdsize(mp) : 25861 mp->b_wptr - (uchar_t *)ip6h)) { 25862 /* IPsec KSTATS: should bump bean counter here. */ 25863 ip0dbg(("Packet length mismatch: %d, %ld\n", 25864 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25865 msgdsize(mp))); 25866 if (ire_need_rele) 25867 ire_refrele(ire); 25868 freemsg(ipsec_mp); 25869 return; 25870 } 25871 ASSERT(mp->b_prev == NULL); 25872 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25873 ntohs(ip6h->ip6_plen) + 25874 IPV6_HDR_LEN, ire->ire_max_frag)); 25875 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25876 ire->ire_max_frag); 25877 } else { 25878 UPDATE_OB_PKT_COUNT(ire); 25879 ire->ire_last_used_time = lbolt; 25880 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25881 } 25882 if (ire_need_rele) 25883 ire_refrele(ire); 25884 freeb(ipsec_mp); 25885 } 25886 25887 void 25888 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25889 { 25890 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25891 da_ipsec_t *hada; /* data attributes */ 25892 ill_t *ill = (ill_t *)q->q_ptr; 25893 25894 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25895 25896 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25897 /* IPsec KSTATS: Bump lose counter here! */ 25898 freemsg(mp); 25899 return; 25900 } 25901 25902 /* 25903 * It's an IPsec packet that must be 25904 * accelerated by the Provider, and the 25905 * outbound ill is IPsec acceleration capable. 25906 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25907 * to the ill. 25908 * IPsec KSTATS: should bump packet counter here. 25909 */ 25910 25911 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25912 if (hada_mp == NULL) { 25913 /* IPsec KSTATS: should bump packet counter here. */ 25914 freemsg(mp); 25915 return; 25916 } 25917 25918 hada_mp->b_datap->db_type = M_CTL; 25919 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25920 hada_mp->b_cont = mp; 25921 25922 hada = (da_ipsec_t *)hada_mp->b_rptr; 25923 bzero(hada, sizeof (da_ipsec_t)); 25924 hada->da_type = IPHADA_M_CTL; 25925 25926 putnext(q, hada_mp); 25927 } 25928 25929 /* 25930 * Finish the outbound IPsec processing. This function is called from 25931 * ipsec_out_process() if the IPsec packet was processed 25932 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25933 * asynchronously. 25934 */ 25935 void 25936 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25937 ire_t *ire_arg) 25938 { 25939 uint32_t v_hlen_tos_len; 25940 ipaddr_t dst; 25941 ipif_t *ipif = NULL; 25942 ire_t *ire; 25943 ire_t *ire1 = NULL; 25944 mblk_t *next_mp = NULL; 25945 uint32_t max_frag; 25946 boolean_t multirt_send = B_FALSE; 25947 mblk_t *mp; 25948 ipha_t *ipha1; 25949 uint_t ill_index; 25950 ipsec_out_t *io; 25951 boolean_t attach_if; 25952 int match_flags; 25953 irb_t *irb = NULL; 25954 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25955 zoneid_t zoneid; 25956 ipxmit_state_t pktxmit_state; 25957 ip_stack_t *ipst; 25958 25959 #ifdef _BIG_ENDIAN 25960 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25961 #else 25962 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25963 #endif 25964 25965 mp = ipsec_mp->b_cont; 25966 ipha1 = (ipha_t *)mp->b_rptr; 25967 ASSERT(mp != NULL); 25968 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25969 dst = ipha->ipha_dst; 25970 25971 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25972 ill_index = io->ipsec_out_ill_index; 25973 attach_if = io->ipsec_out_attach_if; 25974 zoneid = io->ipsec_out_zoneid; 25975 ASSERT(zoneid != ALL_ZONES); 25976 ipst = io->ipsec_out_ns->netstack_ip; 25977 ASSERT(io->ipsec_out_ns != NULL); 25978 25979 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25980 if (ill_index != 0) { 25981 if (ill == NULL) { 25982 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25983 ill_index, B_FALSE, ipst); 25984 25985 /* Failure case frees things for us. */ 25986 if (ill == NULL) 25987 return; 25988 25989 ill_need_rele = B_TRUE; 25990 } 25991 /* 25992 * If this packet needs to go out on a particular interface 25993 * honor it. 25994 */ 25995 if (attach_if) { 25996 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25997 25998 /* 25999 * Check if we need an ire that will not be 26000 * looked up by anybody else i.e. HIDDEN. 26001 */ 26002 if (ill_is_probeonly(ill)) { 26003 match_flags |= MATCH_IRE_MARK_HIDDEN; 26004 } 26005 } 26006 } 26007 26008 if (CLASSD(dst)) { 26009 boolean_t conn_dontroute; 26010 /* 26011 * Use the ill_index to get the right ipif. 26012 */ 26013 conn_dontroute = io->ipsec_out_dontroute; 26014 if (ill_index == 0) 26015 ipif = ipif_lookup_group(dst, zoneid, ipst); 26016 else 26017 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26018 if (ipif == NULL) { 26019 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26020 " multicast\n")); 26021 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26022 freemsg(ipsec_mp); 26023 goto done; 26024 } 26025 /* 26026 * ipha_src has already been intialized with the 26027 * value of the ipif in ip_wput. All we need now is 26028 * an ire to send this downstream. 26029 */ 26030 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26031 MBLK_GETLABEL(mp), match_flags, ipst); 26032 if (ire != NULL) { 26033 ill_t *ill1; 26034 /* 26035 * Do the multicast forwarding now, as the IPsec 26036 * processing has been done. 26037 */ 26038 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26039 (ill1 = ire_to_ill(ire))) { 26040 if (ip_mforward(ill1, ipha, mp)) { 26041 freemsg(ipsec_mp); 26042 ip1dbg(("ip_wput_ipsec_out: mforward " 26043 "failed\n")); 26044 ire_refrele(ire); 26045 goto done; 26046 } 26047 } 26048 goto send; 26049 } 26050 26051 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26052 mp->b_prev = NULL; 26053 mp->b_next = NULL; 26054 26055 /* 26056 * If the IPsec packet was processed asynchronously, 26057 * drop it now. 26058 */ 26059 if (q == NULL) { 26060 freemsg(ipsec_mp); 26061 goto done; 26062 } 26063 26064 /* 26065 * We may be using a wrong ipif to create the ire. 26066 * But it is okay as the source address is assigned 26067 * for the packet already. Next outbound packet would 26068 * create the IRE with the right IPIF in ip_wput. 26069 * 26070 * Also handle RTF_MULTIRT routes. 26071 */ 26072 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26073 zoneid, &zero_info); 26074 } else { 26075 if (attach_if) { 26076 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26077 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26078 } else { 26079 if (ire_arg != NULL) { 26080 ire = ire_arg; 26081 ire_need_rele = B_FALSE; 26082 } else { 26083 ire = ire_cache_lookup(dst, zoneid, 26084 MBLK_GETLABEL(mp), ipst); 26085 } 26086 } 26087 if (ire != NULL) { 26088 goto send; 26089 } 26090 26091 /* 26092 * ire disappeared underneath. 26093 * 26094 * What we need to do here is the ip_newroute 26095 * logic to get the ire without doing the IPsec 26096 * processing. Follow the same old path. But this 26097 * time, ip_wput or ire_add_then_put will call us 26098 * directly as all the IPsec operations are done. 26099 */ 26100 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26101 mp->b_prev = NULL; 26102 mp->b_next = NULL; 26103 26104 /* 26105 * If the IPsec packet was processed asynchronously, 26106 * drop it now. 26107 */ 26108 if (q == NULL) { 26109 freemsg(ipsec_mp); 26110 goto done; 26111 } 26112 26113 /* 26114 * Since we're going through ip_newroute() again, we 26115 * need to make sure we don't: 26116 * 26117 * 1.) Trigger the ASSERT() with the ipha_ident 26118 * overloading. 26119 * 2.) Redo transport-layer checksumming, since we've 26120 * already done all that to get this far. 26121 * 26122 * The easiest way not do either of the above is to set 26123 * the ipha_ident field to IP_HDR_INCLUDED. 26124 */ 26125 ipha->ipha_ident = IP_HDR_INCLUDED; 26126 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26127 zoneid, ipst); 26128 } 26129 goto done; 26130 send: 26131 if (ire->ire_stq == NULL) { 26132 ill_t *out_ill; 26133 /* 26134 * Loopbacks go through ip_wput_local except for one case. 26135 * We come here if we generate a icmp_frag_needed message 26136 * after IPsec processing is over. When this function calls 26137 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26138 * icmp_frag_needed. The message generated comes back here 26139 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26140 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26141 * source address as it is usually set in ip_wput_ire. As 26142 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26143 * and we end up here. We can't enter ip_wput_ire once the 26144 * IPsec processing is over and hence we need to do it here. 26145 */ 26146 ASSERT(q != NULL); 26147 UPDATE_OB_PKT_COUNT(ire); 26148 ire->ire_last_used_time = lbolt; 26149 if (ipha->ipha_src == 0) 26150 ipha->ipha_src = ire->ire_src_addr; 26151 26152 /* PFHooks: LOOPBACK_OUT */ 26153 out_ill = ire_to_ill(ire); 26154 26155 /* 26156 * DTrace this as ip:::send. A blocked packet will fire the 26157 * send probe, but not the receive probe. 26158 */ 26159 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26160 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26161 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26162 26163 DTRACE_PROBE4(ip4__loopback__out__start, 26164 ill_t *, NULL, ill_t *, out_ill, 26165 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26166 26167 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26168 ipst->ips_ipv4firewall_loopback_out, 26169 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26170 26171 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26172 26173 if (ipsec_mp != NULL) 26174 ip_wput_local(RD(q), out_ill, 26175 ipha, ipsec_mp, ire, 0, zoneid); 26176 if (ire_need_rele) 26177 ire_refrele(ire); 26178 goto done; 26179 } 26180 26181 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26182 /* 26183 * We are through with IPsec processing. 26184 * Fragment this and send it on the wire. 26185 */ 26186 if (io->ipsec_out_accelerated) { 26187 /* 26188 * The packet has been accelerated but must 26189 * be fragmented. This should not happen 26190 * since AH and ESP must not accelerate 26191 * packets that need fragmentation, however 26192 * the configuration could have changed 26193 * since the AH or ESP processing. 26194 * Drop packet. 26195 * IPsec KSTATS: bump bean counter here. 26196 */ 26197 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26198 "fragmented accelerated packet!\n")); 26199 freemsg(ipsec_mp); 26200 } else { 26201 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26202 } 26203 if (ire_need_rele) 26204 ire_refrele(ire); 26205 goto done; 26206 } 26207 26208 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26209 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26210 (void *)ire->ire_ipif, (void *)ipif)); 26211 26212 /* 26213 * Multiroute the secured packet, unless IPsec really 26214 * requires the packet to go out only through a particular 26215 * interface. 26216 */ 26217 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26218 ire_t *first_ire; 26219 irb = ire->ire_bucket; 26220 ASSERT(irb != NULL); 26221 /* 26222 * This ire has been looked up as the one that 26223 * goes through the given ipif; 26224 * make sure we do not omit any other multiroute ire 26225 * that may be present in the bucket before this one. 26226 */ 26227 IRB_REFHOLD(irb); 26228 for (first_ire = irb->irb_ire; 26229 first_ire != NULL; 26230 first_ire = first_ire->ire_next) { 26231 if ((first_ire->ire_flags & RTF_MULTIRT) && 26232 (first_ire->ire_addr == ire->ire_addr) && 26233 !(first_ire->ire_marks & 26234 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26235 break; 26236 } 26237 } 26238 26239 if ((first_ire != NULL) && (first_ire != ire)) { 26240 /* 26241 * Don't change the ire if the packet must 26242 * be fragmented if sent via this new one. 26243 */ 26244 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26245 IRE_REFHOLD(first_ire); 26246 if (ire_need_rele) 26247 ire_refrele(ire); 26248 else 26249 ire_need_rele = B_TRUE; 26250 ire = first_ire; 26251 } 26252 } 26253 IRB_REFRELE(irb); 26254 26255 multirt_send = B_TRUE; 26256 max_frag = ire->ire_max_frag; 26257 } else { 26258 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26259 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26260 "flag, attach_if %d\n", attach_if)); 26261 } 26262 } 26263 26264 /* 26265 * In most cases, the emission loop below is entered only once. 26266 * Only in the case where the ire holds the RTF_MULTIRT 26267 * flag, we loop to process all RTF_MULTIRT ires in the 26268 * bucket, and send the packet through all crossed 26269 * RTF_MULTIRT routes. 26270 */ 26271 do { 26272 if (multirt_send) { 26273 /* 26274 * ire1 holds here the next ire to process in the 26275 * bucket. If multirouting is expected, 26276 * any non-RTF_MULTIRT ire that has the 26277 * right destination address is ignored. 26278 */ 26279 ASSERT(irb != NULL); 26280 IRB_REFHOLD(irb); 26281 for (ire1 = ire->ire_next; 26282 ire1 != NULL; 26283 ire1 = ire1->ire_next) { 26284 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26285 continue; 26286 if (ire1->ire_addr != ire->ire_addr) 26287 continue; 26288 if (ire1->ire_marks & 26289 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26290 continue; 26291 /* No loopback here */ 26292 if (ire1->ire_stq == NULL) 26293 continue; 26294 /* 26295 * Ensure we do not exceed the MTU 26296 * of the next route. 26297 */ 26298 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26299 ip_multirt_bad_mtu(ire1, max_frag); 26300 continue; 26301 } 26302 26303 IRE_REFHOLD(ire1); 26304 break; 26305 } 26306 IRB_REFRELE(irb); 26307 if (ire1 != NULL) { 26308 /* 26309 * We are in a multiple send case, need to 26310 * make a copy of the packet. 26311 */ 26312 next_mp = copymsg(ipsec_mp); 26313 if (next_mp == NULL) { 26314 ire_refrele(ire1); 26315 ire1 = NULL; 26316 } 26317 } 26318 } 26319 /* 26320 * Everything is done. Send it out on the wire 26321 * 26322 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26323 * either send it on the wire or, in the case of 26324 * HW acceleration, call ipsec_hw_putnext. 26325 */ 26326 if (ire->ire_nce && 26327 ire->ire_nce->nce_state != ND_REACHABLE) { 26328 DTRACE_PROBE2(ip__wput__ipsec__bail, 26329 (ire_t *), ire, (mblk_t *), ipsec_mp); 26330 /* 26331 * If ire's link-layer is unresolved (this 26332 * would only happen if the incomplete ire 26333 * was added to cachetable via forwarding path) 26334 * don't bother going to ip_xmit_v4. Just drop the 26335 * packet. 26336 * There is a slight risk here, in that, if we 26337 * have the forwarding path create an incomplete 26338 * IRE, then until the IRE is completed, any 26339 * transmitted IPsec packets will be dropped 26340 * instead of being queued waiting for resolution. 26341 * 26342 * But the likelihood of a forwarding packet and a wput 26343 * packet sending to the same dst at the same time 26344 * and there not yet be an ARP entry for it is small. 26345 * Furthermore, if this actually happens, it might 26346 * be likely that wput would generate multiple 26347 * packets (and forwarding would also have a train 26348 * of packets) for that destination. If this is 26349 * the case, some of them would have been dropped 26350 * anyway, since ARP only queues a few packets while 26351 * waiting for resolution 26352 * 26353 * NOTE: We should really call ip_xmit_v4, 26354 * and let it queue the packet and send the 26355 * ARP query and have ARP come back thus: 26356 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26357 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26358 * hw accel work. But it's too complex to get 26359 * the IPsec hw acceleration approach to fit 26360 * well with ip_xmit_v4 doing ARP without 26361 * doing IPsec simplification. For now, we just 26362 * poke ip_xmit_v4 to trigger the arp resolve, so 26363 * that we can continue with the send on the next 26364 * attempt. 26365 * 26366 * XXX THis should be revisited, when 26367 * the IPsec/IP interaction is cleaned up 26368 */ 26369 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26370 " - dropping packet\n")); 26371 freemsg(ipsec_mp); 26372 /* 26373 * Call ip_xmit_v4() to trigger ARP query 26374 * in case the nce_state is ND_INITIAL 26375 */ 26376 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26377 goto drop_pkt; 26378 } 26379 26380 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26381 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26382 mblk_t *, ipsec_mp); 26383 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26384 ipst->ips_ipv4firewall_physical_out, NULL, 26385 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26386 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26387 if (ipsec_mp == NULL) 26388 goto drop_pkt; 26389 26390 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26391 pktxmit_state = ip_xmit_v4(mp, ire, 26392 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26393 26394 if ((pktxmit_state == SEND_FAILED) || 26395 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26396 26397 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26398 drop_pkt: 26399 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26400 ipIfStatsOutDiscards); 26401 if (ire_need_rele) 26402 ire_refrele(ire); 26403 if (ire1 != NULL) { 26404 ire_refrele(ire1); 26405 freemsg(next_mp); 26406 } 26407 goto done; 26408 } 26409 26410 freeb(ipsec_mp); 26411 if (ire_need_rele) 26412 ire_refrele(ire); 26413 26414 if (ire1 != NULL) { 26415 ire = ire1; 26416 ire_need_rele = B_TRUE; 26417 ASSERT(next_mp); 26418 ipsec_mp = next_mp; 26419 mp = ipsec_mp->b_cont; 26420 ire1 = NULL; 26421 next_mp = NULL; 26422 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26423 } else { 26424 multirt_send = B_FALSE; 26425 } 26426 } while (multirt_send); 26427 done: 26428 if (ill != NULL && ill_need_rele) 26429 ill_refrele(ill); 26430 if (ipif != NULL) 26431 ipif_refrele(ipif); 26432 } 26433 26434 /* 26435 * Get the ill corresponding to the specified ire, and compare its 26436 * capabilities with the protocol and algorithms specified by the 26437 * the SA obtained from ipsec_out. If they match, annotate the 26438 * ipsec_out structure to indicate that the packet needs acceleration. 26439 * 26440 * 26441 * A packet is eligible for outbound hardware acceleration if the 26442 * following conditions are satisfied: 26443 * 26444 * 1. the packet will not be fragmented 26445 * 2. the provider supports the algorithm 26446 * 3. there is no pending control message being exchanged 26447 * 4. snoop is not attached 26448 * 5. the destination address is not a broadcast or multicast address. 26449 * 26450 * Rationale: 26451 * - Hardware drivers do not support fragmentation with 26452 * the current interface. 26453 * - snoop, multicast, and broadcast may result in exposure of 26454 * a cleartext datagram. 26455 * We check all five of these conditions here. 26456 * 26457 * XXX would like to nuke "ire_t *" parameter here; problem is that 26458 * IRE is only way to figure out if a v4 address is a broadcast and 26459 * thus ineligible for acceleration... 26460 */ 26461 static void 26462 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26463 { 26464 ipsec_out_t *io; 26465 mblk_t *data_mp; 26466 uint_t plen, overhead; 26467 ip_stack_t *ipst; 26468 26469 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26470 return; 26471 26472 if (ill == NULL) 26473 return; 26474 ipst = ill->ill_ipst; 26475 /* 26476 * Destination address is a broadcast or multicast. Punt. 26477 */ 26478 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26479 IRE_LOCAL))) 26480 return; 26481 26482 data_mp = ipsec_mp->b_cont; 26483 26484 if (ill->ill_isv6) { 26485 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26486 26487 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26488 return; 26489 26490 plen = ip6h->ip6_plen; 26491 } else { 26492 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26493 26494 if (CLASSD(ipha->ipha_dst)) 26495 return; 26496 26497 plen = ipha->ipha_length; 26498 } 26499 /* 26500 * Is there a pending DLPI control message being exchanged 26501 * between IP/IPsec and the DLS Provider? If there is, it 26502 * could be a SADB update, and the state of the DLS Provider 26503 * SADB might not be in sync with the SADB maintained by 26504 * IPsec. To avoid dropping packets or using the wrong keying 26505 * material, we do not accelerate this packet. 26506 */ 26507 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26508 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26509 "ill_dlpi_pending! don't accelerate packet\n")); 26510 return; 26511 } 26512 26513 /* 26514 * Is the Provider in promiscous mode? If it does, we don't 26515 * accelerate the packet since it will bounce back up to the 26516 * listeners in the clear. 26517 */ 26518 if (ill->ill_promisc_on_phys) { 26519 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26520 "ill in promiscous mode, don't accelerate packet\n")); 26521 return; 26522 } 26523 26524 /* 26525 * Will the packet require fragmentation? 26526 */ 26527 26528 /* 26529 * IPsec ESP note: this is a pessimistic estimate, but the same 26530 * as is used elsewhere. 26531 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26532 * + 2-byte trailer 26533 */ 26534 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26535 IPSEC_BASE_ESP_HDR_SIZE(sa); 26536 26537 if ((plen + overhead) > ill->ill_max_mtu) 26538 return; 26539 26540 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26541 26542 /* 26543 * Can the ill accelerate this IPsec protocol and algorithm 26544 * specified by the SA? 26545 */ 26546 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26547 ill->ill_isv6, sa, ipst->ips_netstack)) { 26548 return; 26549 } 26550 26551 /* 26552 * Tell AH or ESP that the outbound ill is capable of 26553 * accelerating this packet. 26554 */ 26555 io->ipsec_out_is_capab_ill = B_TRUE; 26556 } 26557 26558 /* 26559 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26560 * 26561 * If this function returns B_TRUE, the requested SA's have been filled 26562 * into the ipsec_out_*_sa pointers. 26563 * 26564 * If the function returns B_FALSE, the packet has been "consumed", most 26565 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26566 * 26567 * The SA references created by the protocol-specific "select" 26568 * function will be released when the ipsec_mp is freed, thanks to the 26569 * ipsec_out_free destructor -- see spd.c. 26570 */ 26571 static boolean_t 26572 ipsec_out_select_sa(mblk_t *ipsec_mp) 26573 { 26574 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26575 ipsec_out_t *io; 26576 ipsec_policy_t *pp; 26577 ipsec_action_t *ap; 26578 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26579 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26580 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26581 26582 if (!io->ipsec_out_secure) { 26583 /* 26584 * We came here by mistake. 26585 * Don't bother with ipsec processing 26586 * We should "discourage" this path in the future. 26587 */ 26588 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26589 return (B_FALSE); 26590 } 26591 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26592 ASSERT((io->ipsec_out_policy != NULL) || 26593 (io->ipsec_out_act != NULL)); 26594 26595 ASSERT(io->ipsec_out_failed == B_FALSE); 26596 26597 /* 26598 * IPsec processing has started. 26599 */ 26600 io->ipsec_out_proc_begin = B_TRUE; 26601 ap = io->ipsec_out_act; 26602 if (ap == NULL) { 26603 pp = io->ipsec_out_policy; 26604 ASSERT(pp != NULL); 26605 ap = pp->ipsp_act; 26606 ASSERT(ap != NULL); 26607 } 26608 26609 /* 26610 * We have an action. now, let's select SA's. 26611 * (In the future, we can cache this in the conn_t..) 26612 */ 26613 if (ap->ipa_want_esp) { 26614 if (io->ipsec_out_esp_sa == NULL) { 26615 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26616 IPPROTO_ESP); 26617 } 26618 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26619 } 26620 26621 if (ap->ipa_want_ah) { 26622 if (io->ipsec_out_ah_sa == NULL) { 26623 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26624 IPPROTO_AH); 26625 } 26626 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26627 /* 26628 * The ESP and AH processing order needs to be preserved 26629 * when both protocols are required (ESP should be applied 26630 * before AH for an outbound packet). Force an ESP ACQUIRE 26631 * when both ESP and AH are required, and an AH ACQUIRE 26632 * is needed. 26633 */ 26634 if (ap->ipa_want_esp && need_ah_acquire) 26635 need_esp_acquire = B_TRUE; 26636 } 26637 26638 /* 26639 * Send an ACQUIRE (extended, regular, or both) if we need one. 26640 * Release SAs that got referenced, but will not be used until we 26641 * acquire _all_ of the SAs we need. 26642 */ 26643 if (need_ah_acquire || need_esp_acquire) { 26644 if (io->ipsec_out_ah_sa != NULL) { 26645 IPSA_REFRELE(io->ipsec_out_ah_sa); 26646 io->ipsec_out_ah_sa = NULL; 26647 } 26648 if (io->ipsec_out_esp_sa != NULL) { 26649 IPSA_REFRELE(io->ipsec_out_esp_sa); 26650 io->ipsec_out_esp_sa = NULL; 26651 } 26652 26653 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26654 return (B_FALSE); 26655 } 26656 26657 return (B_TRUE); 26658 } 26659 26660 /* 26661 * Process an IPSEC_OUT message and see what you can 26662 * do with it. 26663 * IPQoS Notes: 26664 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26665 * IPsec. 26666 * XXX would like to nuke ire_t. 26667 * XXX ill_index better be "real" 26668 */ 26669 void 26670 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26671 { 26672 ipsec_out_t *io; 26673 ipsec_policy_t *pp; 26674 ipsec_action_t *ap; 26675 ipha_t *ipha; 26676 ip6_t *ip6h; 26677 mblk_t *mp; 26678 ill_t *ill; 26679 zoneid_t zoneid; 26680 ipsec_status_t ipsec_rc; 26681 boolean_t ill_need_rele = B_FALSE; 26682 ip_stack_t *ipst; 26683 ipsec_stack_t *ipss; 26684 26685 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26686 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26687 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26688 ipst = io->ipsec_out_ns->netstack_ip; 26689 mp = ipsec_mp->b_cont; 26690 26691 /* 26692 * Initiate IPPF processing. We do it here to account for packets 26693 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26694 * We can check for ipsec_out_proc_begin even for such packets, as 26695 * they will always be false (asserted below). 26696 */ 26697 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26698 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26699 io->ipsec_out_ill_index : ill_index); 26700 if (mp == NULL) { 26701 ip2dbg(("ipsec_out_process: packet dropped "\ 26702 "during IPPF processing\n")); 26703 freeb(ipsec_mp); 26704 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26705 return; 26706 } 26707 } 26708 26709 if (!io->ipsec_out_secure) { 26710 /* 26711 * We came here by mistake. 26712 * Don't bother with ipsec processing 26713 * Should "discourage" this path in the future. 26714 */ 26715 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26716 goto done; 26717 } 26718 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26719 ASSERT((io->ipsec_out_policy != NULL) || 26720 (io->ipsec_out_act != NULL)); 26721 ASSERT(io->ipsec_out_failed == B_FALSE); 26722 26723 ipss = ipst->ips_netstack->netstack_ipsec; 26724 if (!ipsec_loaded(ipss)) { 26725 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26726 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26727 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26728 } else { 26729 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26730 } 26731 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26732 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26733 &ipss->ipsec_dropper); 26734 return; 26735 } 26736 26737 /* 26738 * IPsec processing has started. 26739 */ 26740 io->ipsec_out_proc_begin = B_TRUE; 26741 ap = io->ipsec_out_act; 26742 if (ap == NULL) { 26743 pp = io->ipsec_out_policy; 26744 ASSERT(pp != NULL); 26745 ap = pp->ipsp_act; 26746 ASSERT(ap != NULL); 26747 } 26748 26749 /* 26750 * Save the outbound ill index. When the packet comes back 26751 * from IPsec, we make sure the ill hasn't changed or disappeared 26752 * before sending it the accelerated packet. 26753 */ 26754 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26755 int ifindex; 26756 ill = ire_to_ill(ire); 26757 ifindex = ill->ill_phyint->phyint_ifindex; 26758 io->ipsec_out_capab_ill_index = ifindex; 26759 } 26760 26761 /* 26762 * The order of processing is first insert a IP header if needed. 26763 * Then insert the ESP header and then the AH header. 26764 */ 26765 if ((io->ipsec_out_se_done == B_FALSE) && 26766 (ap->ipa_want_se)) { 26767 /* 26768 * First get the outer IP header before sending 26769 * it to ESP. 26770 */ 26771 ipha_t *oipha, *iipha; 26772 mblk_t *outer_mp, *inner_mp; 26773 26774 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26775 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26776 "ipsec_out_process: " 26777 "Self-Encapsulation failed: Out of memory\n"); 26778 freemsg(ipsec_mp); 26779 if (ill != NULL) { 26780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26781 } else { 26782 BUMP_MIB(&ipst->ips_ip_mib, 26783 ipIfStatsOutDiscards); 26784 } 26785 return; 26786 } 26787 inner_mp = ipsec_mp->b_cont; 26788 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26789 oipha = (ipha_t *)outer_mp->b_rptr; 26790 iipha = (ipha_t *)inner_mp->b_rptr; 26791 *oipha = *iipha; 26792 outer_mp->b_wptr += sizeof (ipha_t); 26793 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26794 sizeof (ipha_t)); 26795 oipha->ipha_protocol = IPPROTO_ENCAP; 26796 oipha->ipha_version_and_hdr_length = 26797 IP_SIMPLE_HDR_VERSION; 26798 oipha->ipha_hdr_checksum = 0; 26799 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26800 outer_mp->b_cont = inner_mp; 26801 ipsec_mp->b_cont = outer_mp; 26802 26803 io->ipsec_out_se_done = B_TRUE; 26804 io->ipsec_out_tunnel = B_TRUE; 26805 } 26806 26807 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26808 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26809 !ipsec_out_select_sa(ipsec_mp)) 26810 return; 26811 26812 /* 26813 * By now, we know what SA's to use. Toss over to ESP & AH 26814 * to do the heavy lifting. 26815 */ 26816 zoneid = io->ipsec_out_zoneid; 26817 ASSERT(zoneid != ALL_ZONES); 26818 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26819 ASSERT(io->ipsec_out_esp_sa != NULL); 26820 io->ipsec_out_esp_done = B_TRUE; 26821 /* 26822 * Note that since hw accel can only apply one transform, 26823 * not two, we skip hw accel for ESP if we also have AH 26824 * This is an design limitation of the interface 26825 * which should be revisited. 26826 */ 26827 ASSERT(ire != NULL); 26828 if (io->ipsec_out_ah_sa == NULL) { 26829 ill = (ill_t *)ire->ire_stq->q_ptr; 26830 ipsec_out_is_accelerated(ipsec_mp, 26831 io->ipsec_out_esp_sa, ill, ire); 26832 } 26833 26834 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26835 switch (ipsec_rc) { 26836 case IPSEC_STATUS_SUCCESS: 26837 break; 26838 case IPSEC_STATUS_FAILED: 26839 if (ill != NULL) { 26840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26841 } else { 26842 BUMP_MIB(&ipst->ips_ip_mib, 26843 ipIfStatsOutDiscards); 26844 } 26845 /* FALLTHRU */ 26846 case IPSEC_STATUS_PENDING: 26847 return; 26848 } 26849 } 26850 26851 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26852 ASSERT(io->ipsec_out_ah_sa != NULL); 26853 io->ipsec_out_ah_done = B_TRUE; 26854 if (ire == NULL) { 26855 int idx = io->ipsec_out_capab_ill_index; 26856 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26857 NULL, NULL, NULL, NULL, ipst); 26858 ill_need_rele = B_TRUE; 26859 } else { 26860 ill = (ill_t *)ire->ire_stq->q_ptr; 26861 } 26862 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26863 ire); 26864 26865 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26866 switch (ipsec_rc) { 26867 case IPSEC_STATUS_SUCCESS: 26868 break; 26869 case IPSEC_STATUS_FAILED: 26870 if (ill != NULL) { 26871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26872 } else { 26873 BUMP_MIB(&ipst->ips_ip_mib, 26874 ipIfStatsOutDiscards); 26875 } 26876 /* FALLTHRU */ 26877 case IPSEC_STATUS_PENDING: 26878 if (ill != NULL && ill_need_rele) 26879 ill_refrele(ill); 26880 return; 26881 } 26882 } 26883 /* 26884 * We are done with IPsec processing. Send it over 26885 * the wire. 26886 */ 26887 done: 26888 mp = ipsec_mp->b_cont; 26889 ipha = (ipha_t *)mp->b_rptr; 26890 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26891 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26892 } else { 26893 ip6h = (ip6_t *)ipha; 26894 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26895 } 26896 if (ill != NULL && ill_need_rele) 26897 ill_refrele(ill); 26898 } 26899 26900 /* ARGSUSED */ 26901 void 26902 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26903 { 26904 opt_restart_t *or; 26905 int err; 26906 conn_t *connp; 26907 26908 ASSERT(CONN_Q(q)); 26909 connp = Q_TO_CONN(q); 26910 26911 ASSERT(first_mp->b_datap->db_type == M_CTL); 26912 or = (opt_restart_t *)first_mp->b_rptr; 26913 /* 26914 * We don't need to pass any credentials here since this is just 26915 * a restart. The credentials are passed in when svr4_optcom_req 26916 * is called the first time (from ip_wput_nondata). 26917 */ 26918 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26919 err = svr4_optcom_req(q, first_mp, NULL, 26920 &ip_opt_obj, B_FALSE); 26921 } else { 26922 ASSERT(or->or_type == T_OPTMGMT_REQ); 26923 err = tpi_optcom_req(q, first_mp, NULL, 26924 &ip_opt_obj, B_FALSE); 26925 } 26926 if (err != EINPROGRESS) { 26927 /* operation is done */ 26928 CONN_OPER_PENDING_DONE(connp); 26929 } 26930 } 26931 26932 /* 26933 * ioctls that go through a down/up sequence may need to wait for the down 26934 * to complete. This involves waiting for the ire and ipif refcnts to go down 26935 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26936 */ 26937 /* ARGSUSED */ 26938 void 26939 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26940 { 26941 struct iocblk *iocp; 26942 mblk_t *mp1; 26943 ip_ioctl_cmd_t *ipip; 26944 int err; 26945 sin_t *sin; 26946 struct lifreq *lifr; 26947 struct ifreq *ifr; 26948 26949 iocp = (struct iocblk *)mp->b_rptr; 26950 ASSERT(ipsq != NULL); 26951 /* Existence of mp1 verified in ip_wput_nondata */ 26952 mp1 = mp->b_cont->b_cont; 26953 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26954 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26955 /* 26956 * Special case where ipsq_current_ipif is not set: 26957 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26958 * ill could also have become part of a ipmp group in the 26959 * process, we are here as were not able to complete the 26960 * operation in ipif_set_values because we could not become 26961 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26962 * will not be set so we need to set it. 26963 */ 26964 ill_t *ill = q->q_ptr; 26965 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26966 } 26967 ASSERT(ipsq->ipsq_current_ipif != NULL); 26968 26969 if (ipip->ipi_cmd_type == IF_CMD) { 26970 /* This a old style SIOC[GS]IF* command */ 26971 ifr = (struct ifreq *)mp1->b_rptr; 26972 sin = (sin_t *)&ifr->ifr_addr; 26973 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26974 /* This a new style SIOC[GS]LIF* command */ 26975 lifr = (struct lifreq *)mp1->b_rptr; 26976 sin = (sin_t *)&lifr->lifr_addr; 26977 } else { 26978 sin = NULL; 26979 } 26980 26981 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26982 ipip, mp1->b_rptr); 26983 26984 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26985 } 26986 26987 /* 26988 * ioctl processing 26989 * 26990 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26991 * the ioctl command in the ioctl tables, determines the copyin data size 26992 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26993 * 26994 * ioctl processing then continues when the M_IOCDATA makes its way down to 26995 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26996 * associated 'conn' is refheld till the end of the ioctl and the general 26997 * ioctl processing function ip_process_ioctl() is called to extract the 26998 * arguments and process the ioctl. To simplify extraction, ioctl commands 26999 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27000 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27001 * is used to extract the ioctl's arguments. 27002 * 27003 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27004 * so goes thru the serialization primitive ipsq_try_enter. Then the 27005 * appropriate function to handle the ioctl is called based on the entry in 27006 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27007 * which also refreleases the 'conn' that was refheld at the start of the 27008 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27009 * 27010 * Many exclusive ioctls go thru an internal down up sequence as part of 27011 * the operation. For example an attempt to change the IP address of an 27012 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27013 * does all the cleanup such as deleting all ires that use this address. 27014 * Then we need to wait till all references to the interface go away. 27015 */ 27016 void 27017 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27018 { 27019 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27020 ip_ioctl_cmd_t *ipip = arg; 27021 ip_extract_func_t *extract_funcp; 27022 cmd_info_t ci; 27023 int err; 27024 boolean_t entered_ipsq = B_FALSE; 27025 27026 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27027 27028 if (ipip == NULL) 27029 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27030 27031 /* 27032 * SIOCLIFADDIF needs to go thru a special path since the 27033 * ill may not exist yet. This happens in the case of lo0 27034 * which is created using this ioctl. 27035 */ 27036 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27037 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27038 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27039 return; 27040 } 27041 27042 ci.ci_ipif = NULL; 27043 if (ipip->ipi_cmd_type == MISC_CMD) { 27044 /* 27045 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27046 */ 27047 if (ipip->ipi_cmd == IF_UNITSEL) { 27048 /* ioctl comes down the ill */ 27049 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27050 ipif_refhold(ci.ci_ipif); 27051 } 27052 err = 0; 27053 ci.ci_sin = NULL; 27054 ci.ci_sin6 = NULL; 27055 ci.ci_lifr = NULL; 27056 } else { 27057 switch (ipip->ipi_cmd_type) { 27058 case IF_CMD: 27059 case LIF_CMD: 27060 extract_funcp = ip_extract_lifreq; 27061 break; 27062 27063 case ARP_CMD: 27064 case XARP_CMD: 27065 extract_funcp = ip_extract_arpreq; 27066 break; 27067 27068 case TUN_CMD: 27069 extract_funcp = ip_extract_tunreq; 27070 break; 27071 27072 case MSFILT_CMD: 27073 extract_funcp = ip_extract_msfilter; 27074 break; 27075 27076 default: 27077 ASSERT(0); 27078 } 27079 27080 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27081 if (err != 0) { 27082 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27083 return; 27084 } 27085 27086 /* 27087 * All of the extraction functions return a refheld ipif. 27088 */ 27089 ASSERT(ci.ci_ipif != NULL); 27090 } 27091 27092 /* 27093 * If ipsq is non-null, we are already being called exclusively 27094 */ 27095 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27096 if (!(ipip->ipi_flags & IPI_WR)) { 27097 /* 27098 * A return value of EINPROGRESS means the ioctl is 27099 * either queued and waiting for some reason or has 27100 * already completed. 27101 */ 27102 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27103 ci.ci_lifr); 27104 if (ci.ci_ipif != NULL) 27105 ipif_refrele(ci.ci_ipif); 27106 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27107 return; 27108 } 27109 27110 ASSERT(ci.ci_ipif != NULL); 27111 27112 if (ipsq == NULL) { 27113 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27114 ip_process_ioctl, NEW_OP, B_TRUE); 27115 entered_ipsq = B_TRUE; 27116 } 27117 /* 27118 * Release the ipif so that ipif_down and friends that wait for 27119 * references to go away are not misled about the current ipif_refcnt 27120 * values. We are writer so we can access the ipif even after releasing 27121 * the ipif. 27122 */ 27123 ipif_refrele(ci.ci_ipif); 27124 if (ipsq == NULL) 27125 return; 27126 27127 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27128 27129 /* 27130 * For most set ioctls that come here, this serves as a single point 27131 * where we set the IPIF_CHANGING flag. This ensures that there won't 27132 * be any new references to the ipif. This helps functions that go 27133 * through this path and end up trying to wait for the refcnts 27134 * associated with the ipif to go down to zero. Some exceptions are 27135 * Failover, Failback, and Groupname commands that operate on more than 27136 * just the ci.ci_ipif. These commands internally determine the 27137 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27138 * flags on that set. Another exception is the Removeif command that 27139 * sets the IPIF_CONDEMNED flag internally after identifying the right 27140 * ipif to operate on. 27141 */ 27142 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27143 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27144 ipip->ipi_cmd != SIOCLIFFAILOVER && 27145 ipip->ipi_cmd != SIOCLIFFAILBACK && 27146 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27147 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27148 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27149 27150 /* 27151 * A return value of EINPROGRESS means the ioctl is 27152 * either queued and waiting for some reason or has 27153 * already completed. 27154 */ 27155 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27156 27157 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27158 27159 if (entered_ipsq) 27160 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27161 } 27162 27163 /* 27164 * Complete the ioctl. Typically ioctls use the mi package and need to 27165 * do mi_copyout/mi_copy_done. 27166 */ 27167 void 27168 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27169 { 27170 conn_t *connp = NULL; 27171 27172 if (err == EINPROGRESS) 27173 return; 27174 27175 if (CONN_Q(q)) { 27176 connp = Q_TO_CONN(q); 27177 ASSERT(connp->conn_ref >= 2); 27178 } 27179 27180 switch (mode) { 27181 case COPYOUT: 27182 if (err == 0) 27183 mi_copyout(q, mp); 27184 else 27185 mi_copy_done(q, mp, err); 27186 break; 27187 27188 case NO_COPYOUT: 27189 mi_copy_done(q, mp, err); 27190 break; 27191 27192 default: 27193 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27194 break; 27195 } 27196 27197 /* 27198 * The refhold placed at the start of the ioctl is released here. 27199 */ 27200 if (connp != NULL) 27201 CONN_OPER_PENDING_DONE(connp); 27202 27203 if (ipsq != NULL) 27204 ipsq_current_finish(ipsq); 27205 } 27206 27207 /* 27208 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27209 */ 27210 /* ARGSUSED */ 27211 void 27212 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27213 { 27214 conn_t *connp = arg; 27215 tcp_t *tcp; 27216 27217 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27218 tcp = connp->conn_tcp; 27219 27220 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27221 freemsg(mp); 27222 else 27223 tcp_rput_other(tcp, mp); 27224 CONN_OPER_PENDING_DONE(connp); 27225 } 27226 27227 /* Called from ip_wput for all non data messages */ 27228 /* ARGSUSED */ 27229 void 27230 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27231 { 27232 mblk_t *mp1; 27233 ire_t *ire, *fake_ire; 27234 ill_t *ill; 27235 struct iocblk *iocp; 27236 ip_ioctl_cmd_t *ipip; 27237 cred_t *cr; 27238 conn_t *connp; 27239 int err; 27240 nce_t *nce; 27241 ipif_t *ipif; 27242 ip_stack_t *ipst; 27243 char *proto_str; 27244 27245 if (CONN_Q(q)) { 27246 connp = Q_TO_CONN(q); 27247 ipst = connp->conn_netstack->netstack_ip; 27248 } else { 27249 connp = NULL; 27250 ipst = ILLQ_TO_IPST(q); 27251 } 27252 27253 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27254 27255 switch (DB_TYPE(mp)) { 27256 case M_IOCTL: 27257 /* 27258 * IOCTL processing begins in ip_sioctl_copyin_setup which 27259 * will arrange to copy in associated control structures. 27260 */ 27261 ip_sioctl_copyin_setup(q, mp); 27262 return; 27263 case M_IOCDATA: 27264 /* 27265 * Ensure that this is associated with one of our trans- 27266 * parent ioctls. If it's not ours, discard it if we're 27267 * running as a driver, or pass it on if we're a module. 27268 */ 27269 iocp = (struct iocblk *)mp->b_rptr; 27270 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27271 if (ipip == NULL) { 27272 if (q->q_next == NULL) { 27273 goto nak; 27274 } else { 27275 putnext(q, mp); 27276 } 27277 return; 27278 } 27279 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27280 /* 27281 * the ioctl is one we recognise, but is not 27282 * consumed by IP as a module, pass M_IOCDATA 27283 * for processing downstream, but only for 27284 * common Streams ioctls. 27285 */ 27286 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27287 putnext(q, mp); 27288 return; 27289 } else { 27290 goto nak; 27291 } 27292 } 27293 27294 /* IOCTL continuation following copyin or copyout. */ 27295 if (mi_copy_state(q, mp, NULL) == -1) { 27296 /* 27297 * The copy operation failed. mi_copy_state already 27298 * cleaned up, so we're out of here. 27299 */ 27300 return; 27301 } 27302 /* 27303 * If we just completed a copy in, we become writer and 27304 * continue processing in ip_sioctl_copyin_done. If it 27305 * was a copy out, we call mi_copyout again. If there is 27306 * nothing more to copy out, it will complete the IOCTL. 27307 */ 27308 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27309 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27310 mi_copy_done(q, mp, EPROTO); 27311 return; 27312 } 27313 /* 27314 * Check for cases that need more copying. A return 27315 * value of 0 means a second copyin has been started, 27316 * so we return; a return value of 1 means no more 27317 * copying is needed, so we continue. 27318 */ 27319 if (ipip->ipi_cmd_type == MSFILT_CMD && 27320 MI_COPY_COUNT(mp) == 1) { 27321 if (ip_copyin_msfilter(q, mp) == 0) 27322 return; 27323 } 27324 /* 27325 * Refhold the conn, till the ioctl completes. This is 27326 * needed in case the ioctl ends up in the pending mp 27327 * list. Every mp in the ill_pending_mp list and 27328 * the ipsq_pending_mp must have a refhold on the conn 27329 * to resume processing. The refhold is released when 27330 * the ioctl completes. (normally or abnormally) 27331 * In all cases ip_ioctl_finish is called to finish 27332 * the ioctl. 27333 */ 27334 if (connp != NULL) { 27335 /* This is not a reentry */ 27336 ASSERT(ipsq == NULL); 27337 CONN_INC_REF(connp); 27338 } else { 27339 if (!(ipip->ipi_flags & IPI_MODOK)) { 27340 mi_copy_done(q, mp, EINVAL); 27341 return; 27342 } 27343 } 27344 27345 ip_process_ioctl(ipsq, q, mp, ipip); 27346 27347 } else { 27348 mi_copyout(q, mp); 27349 } 27350 return; 27351 nak: 27352 iocp->ioc_error = EINVAL; 27353 mp->b_datap->db_type = M_IOCNAK; 27354 iocp->ioc_count = 0; 27355 qreply(q, mp); 27356 return; 27357 27358 case M_IOCNAK: 27359 /* 27360 * The only way we could get here is if a resolver didn't like 27361 * an IOCTL we sent it. This shouldn't happen. 27362 */ 27363 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27364 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27365 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27366 freemsg(mp); 27367 return; 27368 case M_IOCACK: 27369 /* /dev/ip shouldn't see this */ 27370 if (CONN_Q(q)) 27371 goto nak; 27372 27373 /* Finish socket ioctls passed through to ARP. */ 27374 ip_sioctl_iocack(q, mp); 27375 return; 27376 case M_FLUSH: 27377 if (*mp->b_rptr & FLUSHW) 27378 flushq(q, FLUSHALL); 27379 if (q->q_next) { 27380 putnext(q, mp); 27381 return; 27382 } 27383 if (*mp->b_rptr & FLUSHR) { 27384 *mp->b_rptr &= ~FLUSHW; 27385 qreply(q, mp); 27386 return; 27387 } 27388 freemsg(mp); 27389 return; 27390 case IRE_DB_REQ_TYPE: 27391 if (connp == NULL) { 27392 proto_str = "IRE_DB_REQ_TYPE"; 27393 goto protonak; 27394 } 27395 /* An Upper Level Protocol wants a copy of an IRE. */ 27396 ip_ire_req(q, mp); 27397 return; 27398 case M_CTL: 27399 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27400 break; 27401 27402 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27403 TUN_HELLO) { 27404 ASSERT(connp != NULL); 27405 connp->conn_flags |= IPCL_IPTUN; 27406 freeb(mp); 27407 return; 27408 } 27409 27410 /* M_CTL messages are used by ARP to tell us things. */ 27411 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27412 break; 27413 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27414 case AR_ENTRY_SQUERY: 27415 ip_wput_ctl(q, mp); 27416 return; 27417 case AR_CLIENT_NOTIFY: 27418 ip_arp_news(q, mp); 27419 return; 27420 case AR_DLPIOP_DONE: 27421 ASSERT(q->q_next != NULL); 27422 ill = (ill_t *)q->q_ptr; 27423 /* qwriter_ip releases the refhold */ 27424 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27425 ill_refhold(ill); 27426 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27427 return; 27428 case AR_ARP_CLOSING: 27429 /* 27430 * ARP (above us) is closing. If no ARP bringup is 27431 * currently pending, ack the message so that ARP 27432 * can complete its close. Also mark ill_arp_closing 27433 * so that new ARP bringups will fail. If any 27434 * ARP bringup is currently in progress, we will 27435 * ack this when the current ARP bringup completes. 27436 */ 27437 ASSERT(q->q_next != NULL); 27438 ill = (ill_t *)q->q_ptr; 27439 mutex_enter(&ill->ill_lock); 27440 ill->ill_arp_closing = 1; 27441 if (!ill->ill_arp_bringup_pending) { 27442 mutex_exit(&ill->ill_lock); 27443 qreply(q, mp); 27444 } else { 27445 mutex_exit(&ill->ill_lock); 27446 freemsg(mp); 27447 } 27448 return; 27449 case AR_ARP_EXTEND: 27450 /* 27451 * The ARP module above us is capable of duplicate 27452 * address detection. Old ATM drivers will not send 27453 * this message. 27454 */ 27455 ASSERT(q->q_next != NULL); 27456 ill = (ill_t *)q->q_ptr; 27457 ill->ill_arp_extend = B_TRUE; 27458 freemsg(mp); 27459 return; 27460 default: 27461 break; 27462 } 27463 break; 27464 case M_PROTO: 27465 case M_PCPROTO: 27466 /* 27467 * The only PROTO messages we expect are ULP binds and 27468 * copies of option negotiation acknowledgements. 27469 */ 27470 switch (((union T_primitives *)mp->b_rptr)->type) { 27471 case O_T_BIND_REQ: 27472 case T_BIND_REQ: { 27473 /* Request can get queued in bind */ 27474 if (connp == NULL) { 27475 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27476 goto protonak; 27477 } 27478 /* 27479 * The transports except SCTP call ip_bind_{v4,v6}() 27480 * directly instead of a a putnext. SCTP doesn't 27481 * generate any T_BIND_REQ since it has its own 27482 * fanout data structures. However, ESP and AH 27483 * come in for regular binds; all other cases are 27484 * bind retries. 27485 */ 27486 ASSERT(!IPCL_IS_SCTP(connp)); 27487 27488 /* Don't increment refcnt if this is a re-entry */ 27489 if (ipsq == NULL) 27490 CONN_INC_REF(connp); 27491 27492 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27493 connp, NULL) : ip_bind_v4(q, mp, connp); 27494 if (mp == NULL) 27495 return; 27496 if (IPCL_IS_TCP(connp)) { 27497 /* 27498 * In the case of TCP endpoint we 27499 * come here only for bind retries 27500 */ 27501 ASSERT(ipsq != NULL); 27502 CONN_INC_REF(connp); 27503 squeue_fill(connp->conn_sqp, mp, 27504 ip_resume_tcp_bind, connp, 27505 SQTAG_BIND_RETRY); 27506 } else if (IPCL_IS_UDP(connp)) { 27507 /* 27508 * In the case of UDP endpoint we 27509 * come here only for bind retries 27510 */ 27511 ASSERT(ipsq != NULL); 27512 udp_resume_bind(connp, mp); 27513 } else if (IPCL_IS_RAWIP(connp)) { 27514 /* 27515 * In the case of RAWIP endpoint we 27516 * come here only for bind retries 27517 */ 27518 ASSERT(ipsq != NULL); 27519 rawip_resume_bind(connp, mp); 27520 } else { 27521 /* The case of AH and ESP */ 27522 qreply(q, mp); 27523 CONN_OPER_PENDING_DONE(connp); 27524 } 27525 return; 27526 } 27527 case T_SVR4_OPTMGMT_REQ: 27528 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27529 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27530 27531 if (connp == NULL) { 27532 proto_str = "T_SVR4_OPTMGMT_REQ"; 27533 goto protonak; 27534 } 27535 27536 if (!snmpcom_req(q, mp, ip_snmp_set, 27537 ip_snmp_get, cr)) { 27538 /* 27539 * Call svr4_optcom_req so that it can 27540 * generate the ack. We don't come here 27541 * if this operation is being restarted. 27542 * ip_restart_optmgmt will drop the conn ref. 27543 * In the case of ipsec option after the ipsec 27544 * load is complete conn_restart_ipsec_waiter 27545 * drops the conn ref. 27546 */ 27547 ASSERT(ipsq == NULL); 27548 CONN_INC_REF(connp); 27549 if (ip_check_for_ipsec_opt(q, mp)) 27550 return; 27551 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27552 B_FALSE); 27553 if (err != EINPROGRESS) { 27554 /* Operation is done */ 27555 CONN_OPER_PENDING_DONE(connp); 27556 } 27557 } 27558 return; 27559 case T_OPTMGMT_REQ: 27560 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27561 /* 27562 * Note: No snmpcom_req support through new 27563 * T_OPTMGMT_REQ. 27564 * Call tpi_optcom_req so that it can 27565 * generate the ack. 27566 */ 27567 if (connp == NULL) { 27568 proto_str = "T_OPTMGMT_REQ"; 27569 goto protonak; 27570 } 27571 27572 ASSERT(ipsq == NULL); 27573 /* 27574 * We don't come here for restart. ip_restart_optmgmt 27575 * will drop the conn ref. In the case of ipsec option 27576 * after the ipsec load is complete 27577 * conn_restart_ipsec_waiter drops the conn ref. 27578 */ 27579 CONN_INC_REF(connp); 27580 if (ip_check_for_ipsec_opt(q, mp)) 27581 return; 27582 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27583 if (err != EINPROGRESS) { 27584 /* Operation is done */ 27585 CONN_OPER_PENDING_DONE(connp); 27586 } 27587 return; 27588 case T_UNBIND_REQ: 27589 if (connp == NULL) { 27590 proto_str = "T_UNBIND_REQ"; 27591 goto protonak; 27592 } 27593 mp = ip_unbind(q, mp); 27594 qreply(q, mp); 27595 return; 27596 default: 27597 /* 27598 * Have to drop any DLPI messages coming down from 27599 * arp (such as an info_req which would cause ip 27600 * to receive an extra info_ack if it was passed 27601 * through. 27602 */ 27603 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27604 (int)*(uint_t *)mp->b_rptr)); 27605 freemsg(mp); 27606 return; 27607 } 27608 /* NOTREACHED */ 27609 case IRE_DB_TYPE: { 27610 nce_t *nce; 27611 ill_t *ill; 27612 in6_addr_t gw_addr_v6; 27613 27614 27615 /* 27616 * This is a response back from a resolver. It 27617 * consists of a message chain containing: 27618 * IRE_MBLK-->LL_HDR_MBLK->pkt 27619 * The IRE_MBLK is the one we allocated in ip_newroute. 27620 * The LL_HDR_MBLK is the DLPI header to use to get 27621 * the attached packet, and subsequent ones for the 27622 * same destination, transmitted. 27623 */ 27624 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27625 break; 27626 /* 27627 * First, check to make sure the resolution succeeded. 27628 * If it failed, the second mblk will be empty. 27629 * If it is, free the chain, dropping the packet. 27630 * (We must ire_delete the ire; that frees the ire mblk) 27631 * We're doing this now to support PVCs for ATM; it's 27632 * a partial xresolv implementation. When we fully implement 27633 * xresolv interfaces, instead of freeing everything here 27634 * we'll initiate neighbor discovery. 27635 * 27636 * For v4 (ARP and other external resolvers) the resolver 27637 * frees the message, so no check is needed. This check 27638 * is required, though, for a full xresolve implementation. 27639 * Including this code here now both shows how external 27640 * resolvers can NACK a resolution request using an 27641 * existing design that has no specific provisions for NACKs, 27642 * and also takes into account that the current non-ARP 27643 * external resolver has been coded to use this method of 27644 * NACKing for all IPv6 (xresolv) cases, 27645 * whether our xresolv implementation is complete or not. 27646 * 27647 */ 27648 ire = (ire_t *)mp->b_rptr; 27649 ill = ire_to_ill(ire); 27650 mp1 = mp->b_cont; /* dl_unitdata_req */ 27651 if (mp1->b_rptr == mp1->b_wptr) { 27652 if (ire->ire_ipversion == IPV6_VERSION) { 27653 /* 27654 * XRESOLV interface. 27655 */ 27656 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27657 mutex_enter(&ire->ire_lock); 27658 gw_addr_v6 = ire->ire_gateway_addr_v6; 27659 mutex_exit(&ire->ire_lock); 27660 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27661 nce = ndp_lookup_v6(ill, 27662 &ire->ire_addr_v6, B_FALSE); 27663 } else { 27664 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27665 B_FALSE); 27666 } 27667 if (nce != NULL) { 27668 nce_resolv_failed(nce); 27669 ndp_delete(nce); 27670 NCE_REFRELE(nce); 27671 } 27672 } 27673 mp->b_cont = NULL; 27674 freemsg(mp1); /* frees the pkt as well */ 27675 ASSERT(ire->ire_nce == NULL); 27676 ire_delete((ire_t *)mp->b_rptr); 27677 return; 27678 } 27679 27680 /* 27681 * Split them into IRE_MBLK and pkt and feed it into 27682 * ire_add_then_send. Then in ire_add_then_send 27683 * the IRE will be added, and then the packet will be 27684 * run back through ip_wput. This time it will make 27685 * it to the wire. 27686 */ 27687 mp->b_cont = NULL; 27688 mp = mp1->b_cont; /* now, mp points to pkt */ 27689 mp1->b_cont = NULL; 27690 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27691 if (ire->ire_ipversion == IPV6_VERSION) { 27692 /* 27693 * XRESOLV interface. Find the nce and put a copy 27694 * of the dl_unitdata_req in nce_res_mp 27695 */ 27696 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27697 mutex_enter(&ire->ire_lock); 27698 gw_addr_v6 = ire->ire_gateway_addr_v6; 27699 mutex_exit(&ire->ire_lock); 27700 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27701 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27702 B_FALSE); 27703 } else { 27704 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27705 } 27706 if (nce != NULL) { 27707 /* 27708 * We have to protect nce_res_mp here 27709 * from being accessed by other threads 27710 * while we change the mblk pointer. 27711 * Other functions will also lock the nce when 27712 * accessing nce_res_mp. 27713 * 27714 * The reason we change the mblk pointer 27715 * here rather than copying the resolved address 27716 * into the template is that, unlike with 27717 * ethernet, we have no guarantee that the 27718 * resolved address length will be 27719 * smaller than or equal to the lla length 27720 * with which the template was allocated, 27721 * (for ethernet, they're equal) 27722 * so we have to use the actual resolved 27723 * address mblk - which holds the real 27724 * dl_unitdata_req with the resolved address. 27725 * 27726 * Doing this is the same behavior as was 27727 * previously used in the v4 ARP case. 27728 */ 27729 mutex_enter(&nce->nce_lock); 27730 if (nce->nce_res_mp != NULL) 27731 freemsg(nce->nce_res_mp); 27732 nce->nce_res_mp = mp1; 27733 mutex_exit(&nce->nce_lock); 27734 /* 27735 * We do a fastpath probe here because 27736 * we have resolved the address without 27737 * using Neighbor Discovery. 27738 * In the non-XRESOLV v6 case, the fastpath 27739 * probe is done right after neighbor 27740 * discovery completes. 27741 */ 27742 if (nce->nce_res_mp != NULL) { 27743 int res; 27744 nce_fastpath_list_add(nce); 27745 res = ill_fastpath_probe(ill, 27746 nce->nce_res_mp); 27747 if (res != 0 && res != EAGAIN) 27748 nce_fastpath_list_delete(nce); 27749 } 27750 27751 ire_add_then_send(q, ire, mp); 27752 /* 27753 * Now we have to clean out any packets 27754 * that may have been queued on the nce 27755 * while it was waiting for address resolution 27756 * to complete. 27757 */ 27758 mutex_enter(&nce->nce_lock); 27759 mp1 = nce->nce_qd_mp; 27760 nce->nce_qd_mp = NULL; 27761 mutex_exit(&nce->nce_lock); 27762 while (mp1 != NULL) { 27763 mblk_t *nxt_mp; 27764 queue_t *fwdq = NULL; 27765 ill_t *inbound_ill; 27766 uint_t ifindex; 27767 27768 nxt_mp = mp1->b_next; 27769 mp1->b_next = NULL; 27770 /* 27771 * Retrieve ifindex stored in 27772 * ip_rput_data_v6() 27773 */ 27774 ifindex = 27775 (uint_t)(uintptr_t)mp1->b_prev; 27776 inbound_ill = 27777 ill_lookup_on_ifindex(ifindex, 27778 B_TRUE, NULL, NULL, NULL, 27779 NULL, ipst); 27780 mp1->b_prev = NULL; 27781 if (inbound_ill != NULL) 27782 fwdq = inbound_ill->ill_rq; 27783 27784 if (fwdq != NULL) { 27785 put(fwdq, mp1); 27786 ill_refrele(inbound_ill); 27787 } else 27788 put(WR(ill->ill_rq), mp1); 27789 mp1 = nxt_mp; 27790 } 27791 NCE_REFRELE(nce); 27792 } else { /* nce is NULL; clean up */ 27793 ire_delete(ire); 27794 freemsg(mp); 27795 freemsg(mp1); 27796 return; 27797 } 27798 } else { 27799 nce_t *arpce; 27800 /* 27801 * Link layer resolution succeeded. Recompute the 27802 * ire_nce. 27803 */ 27804 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27805 if ((arpce = ndp_lookup_v4(ill, 27806 (ire->ire_gateway_addr != INADDR_ANY ? 27807 &ire->ire_gateway_addr : &ire->ire_addr), 27808 B_FALSE)) == NULL) { 27809 freeb(ire->ire_mp); 27810 freeb(mp1); 27811 freemsg(mp); 27812 return; 27813 } 27814 mutex_enter(&arpce->nce_lock); 27815 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27816 if (arpce->nce_state == ND_REACHABLE) { 27817 /* 27818 * Someone resolved this before us; 27819 * cleanup the res_mp. Since ire has 27820 * not been added yet, the call to ire_add_v4 27821 * from ire_add_then_send (when a dup is 27822 * detected) will clean up the ire. 27823 */ 27824 freeb(mp1); 27825 } else { 27826 ASSERT(arpce->nce_res_mp == NULL); 27827 arpce->nce_res_mp = mp1; 27828 arpce->nce_state = ND_REACHABLE; 27829 } 27830 mutex_exit(&arpce->nce_lock); 27831 if (ire->ire_marks & IRE_MARK_NOADD) { 27832 /* 27833 * this ire will not be added to the ire 27834 * cache table, so we can set the ire_nce 27835 * here, as there are no atomicity constraints. 27836 */ 27837 ire->ire_nce = arpce; 27838 /* 27839 * We are associating this nce with the ire 27840 * so change the nce ref taken in 27841 * ndp_lookup_v4() from 27842 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27843 */ 27844 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27845 } else { 27846 NCE_REFRELE(arpce); 27847 } 27848 ire_add_then_send(q, ire, mp); 27849 } 27850 return; /* All is well, the packet has been sent. */ 27851 } 27852 case IRE_ARPRESOLVE_TYPE: { 27853 27854 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27855 break; 27856 mp1 = mp->b_cont; /* dl_unitdata_req */ 27857 mp->b_cont = NULL; 27858 /* 27859 * First, check to make sure the resolution succeeded. 27860 * If it failed, the second mblk will be empty. 27861 */ 27862 if (mp1->b_rptr == mp1->b_wptr) { 27863 /* cleanup the incomplete ire, free queued packets */ 27864 freemsg(mp); /* fake ire */ 27865 freeb(mp1); /* dl_unitdata response */ 27866 return; 27867 } 27868 27869 /* 27870 * update any incomplete nce_t found. we lookup the ctable 27871 * and find the nce from the ire->ire_nce because we need 27872 * to pass the ire to ip_xmit_v4 later, and can find both 27873 * ire and nce in one lookup from the ctable. 27874 */ 27875 fake_ire = (ire_t *)mp->b_rptr; 27876 /* 27877 * By the time we come back here from ARP 27878 * the logical outgoing interface of the incomplete ire 27879 * we added in ire_forward could have disappeared, 27880 * causing the incomplete ire to also have 27881 * dissapeared. So we need to retreive the 27882 * proper ipif for the ire before looking 27883 * in ctable; do the ctablelookup based on ire_ipif_seqid 27884 */ 27885 ill = q->q_ptr; 27886 27887 /* Get the outgoing ipif */ 27888 mutex_enter(&ill->ill_lock); 27889 if (ill->ill_state_flags & ILL_CONDEMNED) { 27890 mutex_exit(&ill->ill_lock); 27891 freemsg(mp); /* fake ire */ 27892 freeb(mp1); /* dl_unitdata response */ 27893 return; 27894 } 27895 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27896 27897 if (ipif == NULL) { 27898 mutex_exit(&ill->ill_lock); 27899 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27900 freemsg(mp); 27901 freeb(mp1); 27902 return; 27903 } 27904 ipif_refhold_locked(ipif); 27905 mutex_exit(&ill->ill_lock); 27906 ire = ire_ctable_lookup(fake_ire->ire_addr, 27907 fake_ire->ire_gateway_addr, IRE_CACHE, 27908 ipif, fake_ire->ire_zoneid, NULL, 27909 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27910 MATCH_IRE_TYPE), ipst); 27911 ipif_refrele(ipif); 27912 if (ire == NULL) { 27913 /* 27914 * no ire was found; check if there is an nce 27915 * for this lookup; if it has no ire's pointing at it 27916 * cleanup. 27917 */ 27918 if ((nce = ndp_lookup_v4(ill, 27919 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27920 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27921 B_FALSE)) != NULL) { 27922 /* 27923 * cleanup: 27924 * We check for refcnt 2 (one for the nce 27925 * hash list + 1 for the ref taken by 27926 * ndp_lookup_v4) to check that there are 27927 * no ire's pointing at the nce. 27928 */ 27929 if (nce->nce_refcnt == 2) 27930 ndp_delete(nce); 27931 NCE_REFRELE(nce); 27932 } 27933 freeb(mp1); /* dl_unitdata response */ 27934 freemsg(mp); /* fake ire */ 27935 return; 27936 } 27937 nce = ire->ire_nce; 27938 DTRACE_PROBE2(ire__arpresolve__type, 27939 ire_t *, ire, nce_t *, nce); 27940 ASSERT(nce->nce_state != ND_INITIAL); 27941 mutex_enter(&nce->nce_lock); 27942 nce->nce_last = TICK_TO_MSEC(lbolt64); 27943 if (nce->nce_state == ND_REACHABLE) { 27944 /* 27945 * Someone resolved this before us; 27946 * our response is not needed any more. 27947 */ 27948 mutex_exit(&nce->nce_lock); 27949 freeb(mp1); /* dl_unitdata response */ 27950 } else { 27951 ASSERT(nce->nce_res_mp == NULL); 27952 nce->nce_res_mp = mp1; 27953 nce->nce_state = ND_REACHABLE; 27954 mutex_exit(&nce->nce_lock); 27955 nce_fastpath(nce); 27956 } 27957 /* 27958 * The cached nce_t has been updated to be reachable; 27959 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27960 */ 27961 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27962 freemsg(mp); 27963 /* 27964 * send out queued packets. 27965 */ 27966 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27967 27968 IRE_REFRELE(ire); 27969 return; 27970 } 27971 default: 27972 break; 27973 } 27974 if (q->q_next) { 27975 putnext(q, mp); 27976 } else 27977 freemsg(mp); 27978 return; 27979 27980 protonak: 27981 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27982 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27983 qreply(q, mp); 27984 } 27985 27986 /* 27987 * Process IP options in an outbound packet. Modify the destination if there 27988 * is a source route option. 27989 * Returns non-zero if something fails in which case an ICMP error has been 27990 * sent and mp freed. 27991 */ 27992 static int 27993 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27994 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27995 { 27996 ipoptp_t opts; 27997 uchar_t *opt; 27998 uint8_t optval; 27999 uint8_t optlen; 28000 ipaddr_t dst; 28001 intptr_t code = 0; 28002 mblk_t *mp; 28003 ire_t *ire = NULL; 28004 28005 ip2dbg(("ip_wput_options\n")); 28006 mp = ipsec_mp; 28007 if (mctl_present) { 28008 mp = ipsec_mp->b_cont; 28009 } 28010 28011 dst = ipha->ipha_dst; 28012 for (optval = ipoptp_first(&opts, ipha); 28013 optval != IPOPT_EOL; 28014 optval = ipoptp_next(&opts)) { 28015 opt = opts.ipoptp_cur; 28016 optlen = opts.ipoptp_len; 28017 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28018 optval, optlen)); 28019 switch (optval) { 28020 uint32_t off; 28021 case IPOPT_SSRR: 28022 case IPOPT_LSRR: 28023 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28024 ip1dbg(( 28025 "ip_wput_options: bad option offset\n")); 28026 code = (char *)&opt[IPOPT_OLEN] - 28027 (char *)ipha; 28028 goto param_prob; 28029 } 28030 off = opt[IPOPT_OFFSET]; 28031 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28032 ntohl(dst))); 28033 /* 28034 * For strict: verify that dst is directly 28035 * reachable. 28036 */ 28037 if (optval == IPOPT_SSRR) { 28038 ire = ire_ftable_lookup(dst, 0, 0, 28039 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28040 MBLK_GETLABEL(mp), 28041 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28042 if (ire == NULL) { 28043 ip1dbg(("ip_wput_options: SSRR not" 28044 " directly reachable: 0x%x\n", 28045 ntohl(dst))); 28046 goto bad_src_route; 28047 } 28048 ire_refrele(ire); 28049 } 28050 break; 28051 case IPOPT_RR: 28052 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28053 ip1dbg(( 28054 "ip_wput_options: bad option offset\n")); 28055 code = (char *)&opt[IPOPT_OLEN] - 28056 (char *)ipha; 28057 goto param_prob; 28058 } 28059 break; 28060 case IPOPT_TS: 28061 /* 28062 * Verify that length >=5 and that there is either 28063 * room for another timestamp or that the overflow 28064 * counter is not maxed out. 28065 */ 28066 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28067 if (optlen < IPOPT_MINLEN_IT) { 28068 goto param_prob; 28069 } 28070 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28071 ip1dbg(( 28072 "ip_wput_options: bad option offset\n")); 28073 code = (char *)&opt[IPOPT_OFFSET] - 28074 (char *)ipha; 28075 goto param_prob; 28076 } 28077 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28078 case IPOPT_TS_TSONLY: 28079 off = IPOPT_TS_TIMELEN; 28080 break; 28081 case IPOPT_TS_TSANDADDR: 28082 case IPOPT_TS_PRESPEC: 28083 case IPOPT_TS_PRESPEC_RFC791: 28084 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28085 break; 28086 default: 28087 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28088 (char *)ipha; 28089 goto param_prob; 28090 } 28091 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28092 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28093 /* 28094 * No room and the overflow counter is 15 28095 * already. 28096 */ 28097 goto param_prob; 28098 } 28099 break; 28100 } 28101 } 28102 28103 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28104 return (0); 28105 28106 ip1dbg(("ip_wput_options: error processing IP options.")); 28107 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28108 28109 param_prob: 28110 /* 28111 * Since ip_wput() isn't close to finished, we fill 28112 * in enough of the header for credible error reporting. 28113 */ 28114 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28115 /* Failed */ 28116 freemsg(ipsec_mp); 28117 return (-1); 28118 } 28119 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28120 return (-1); 28121 28122 bad_src_route: 28123 /* 28124 * Since ip_wput() isn't close to finished, we fill 28125 * in enough of the header for credible error reporting. 28126 */ 28127 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28128 /* Failed */ 28129 freemsg(ipsec_mp); 28130 return (-1); 28131 } 28132 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28133 return (-1); 28134 } 28135 28136 /* 28137 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28138 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28139 * thru /etc/system. 28140 */ 28141 #define CONN_MAXDRAINCNT 64 28142 28143 static void 28144 conn_drain_init(ip_stack_t *ipst) 28145 { 28146 int i; 28147 28148 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28149 28150 if ((ipst->ips_conn_drain_list_cnt == 0) || 28151 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28152 /* 28153 * Default value of the number of drainers is the 28154 * number of cpus, subject to maximum of 8 drainers. 28155 */ 28156 if (boot_max_ncpus != -1) 28157 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28158 else 28159 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28160 } 28161 28162 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28163 sizeof (idl_t), KM_SLEEP); 28164 28165 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28166 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28167 MUTEX_DEFAULT, NULL); 28168 } 28169 } 28170 28171 static void 28172 conn_drain_fini(ip_stack_t *ipst) 28173 { 28174 int i; 28175 28176 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28177 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28178 kmem_free(ipst->ips_conn_drain_list, 28179 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28180 ipst->ips_conn_drain_list = NULL; 28181 } 28182 28183 /* 28184 * Note: For an overview of how flowcontrol is handled in IP please see the 28185 * IP Flowcontrol notes at the top of this file. 28186 * 28187 * Flow control has blocked us from proceeding. Insert the given conn in one 28188 * of the conn drain lists. These conn wq's will be qenabled later on when 28189 * STREAMS flow control does a backenable. conn_walk_drain will enable 28190 * the first conn in each of these drain lists. Each of these qenabled conns 28191 * in turn enables the next in the list, after it runs, or when it closes, 28192 * thus sustaining the drain process. 28193 * 28194 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28195 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28196 * running at any time, on a given conn, since there can be only 1 service proc 28197 * running on a queue at any time. 28198 */ 28199 void 28200 conn_drain_insert(conn_t *connp) 28201 { 28202 idl_t *idl; 28203 uint_t index; 28204 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28205 28206 mutex_enter(&connp->conn_lock); 28207 if (connp->conn_state_flags & CONN_CLOSING) { 28208 /* 28209 * The conn is closing as a result of which CONN_CLOSING 28210 * is set. Return. 28211 */ 28212 mutex_exit(&connp->conn_lock); 28213 return; 28214 } else if (connp->conn_idl == NULL) { 28215 /* 28216 * Assign the next drain list round robin. We dont' use 28217 * a lock, and thus it may not be strictly round robin. 28218 * Atomicity of load/stores is enough to make sure that 28219 * conn_drain_list_index is always within bounds. 28220 */ 28221 index = ipst->ips_conn_drain_list_index; 28222 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28223 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28224 index++; 28225 if (index == ipst->ips_conn_drain_list_cnt) 28226 index = 0; 28227 ipst->ips_conn_drain_list_index = index; 28228 } 28229 mutex_exit(&connp->conn_lock); 28230 28231 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28232 if ((connp->conn_drain_prev != NULL) || 28233 (connp->conn_state_flags & CONN_CLOSING)) { 28234 /* 28235 * The conn is already in the drain list, OR 28236 * the conn is closing. We need to check again for 28237 * the closing case again since close can happen 28238 * after we drop the conn_lock, and before we 28239 * acquire the CONN_DRAIN_LIST_LOCK. 28240 */ 28241 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28242 return; 28243 } else { 28244 idl = connp->conn_idl; 28245 } 28246 28247 /* 28248 * The conn is not in the drain list. Insert it at the 28249 * tail of the drain list. The drain list is circular 28250 * and doubly linked. idl_conn points to the 1st element 28251 * in the list. 28252 */ 28253 if (idl->idl_conn == NULL) { 28254 idl->idl_conn = connp; 28255 connp->conn_drain_next = connp; 28256 connp->conn_drain_prev = connp; 28257 } else { 28258 conn_t *head = idl->idl_conn; 28259 28260 connp->conn_drain_next = head; 28261 connp->conn_drain_prev = head->conn_drain_prev; 28262 head->conn_drain_prev->conn_drain_next = connp; 28263 head->conn_drain_prev = connp; 28264 } 28265 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28266 } 28267 28268 /* 28269 * This conn is closing, and we are called from ip_close. OR 28270 * This conn has been serviced by ip_wsrv, and we need to do the tail 28271 * processing. 28272 * If this conn is part of the drain list, we may need to sustain the drain 28273 * process by qenabling the next conn in the drain list. We may also need to 28274 * remove this conn from the list, if it is done. 28275 */ 28276 static void 28277 conn_drain_tail(conn_t *connp, boolean_t closing) 28278 { 28279 idl_t *idl; 28280 28281 /* 28282 * connp->conn_idl is stable at this point, and no lock is needed 28283 * to check it. If we are called from ip_close, close has already 28284 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28285 * called us only because conn_idl is non-null. If we are called thru 28286 * service, conn_idl could be null, but it cannot change because 28287 * service is single-threaded per queue, and there cannot be another 28288 * instance of service trying to call conn_drain_insert on this conn 28289 * now. 28290 */ 28291 ASSERT(!closing || (connp->conn_idl != NULL)); 28292 28293 /* 28294 * If connp->conn_idl is null, the conn has not been inserted into any 28295 * drain list even once since creation of the conn. Just return. 28296 */ 28297 if (connp->conn_idl == NULL) 28298 return; 28299 28300 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28301 28302 if (connp->conn_drain_prev == NULL) { 28303 /* This conn is currently not in the drain list. */ 28304 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28305 return; 28306 } 28307 idl = connp->conn_idl; 28308 if (idl->idl_conn_draining == connp) { 28309 /* 28310 * This conn is the current drainer. If this is the last conn 28311 * in the drain list, we need to do more checks, in the 'if' 28312 * below. Otherwwise we need to just qenable the next conn, 28313 * to sustain the draining, and is handled in the 'else' 28314 * below. 28315 */ 28316 if (connp->conn_drain_next == idl->idl_conn) { 28317 /* 28318 * This conn is the last in this list. This round 28319 * of draining is complete. If idl_repeat is set, 28320 * it means another flow enabling has happened from 28321 * the driver/streams and we need to another round 28322 * of draining. 28323 * If there are more than 2 conns in the drain list, 28324 * do a left rotate by 1, so that all conns except the 28325 * conn at the head move towards the head by 1, and the 28326 * the conn at the head goes to the tail. This attempts 28327 * a more even share for all queues that are being 28328 * drained. 28329 */ 28330 if ((connp->conn_drain_next != connp) && 28331 (idl->idl_conn->conn_drain_next != connp)) { 28332 idl->idl_conn = idl->idl_conn->conn_drain_next; 28333 } 28334 if (idl->idl_repeat) { 28335 qenable(idl->idl_conn->conn_wq); 28336 idl->idl_conn_draining = idl->idl_conn; 28337 idl->idl_repeat = 0; 28338 } else { 28339 idl->idl_conn_draining = NULL; 28340 } 28341 } else { 28342 /* 28343 * If the next queue that we are now qenable'ing, 28344 * is closing, it will remove itself from this list 28345 * and qenable the subsequent queue in ip_close(). 28346 * Serialization is acheived thru idl_lock. 28347 */ 28348 qenable(connp->conn_drain_next->conn_wq); 28349 idl->idl_conn_draining = connp->conn_drain_next; 28350 } 28351 } 28352 if (!connp->conn_did_putbq || closing) { 28353 /* 28354 * Remove ourself from the drain list, if we did not do 28355 * a putbq, or if the conn is closing. 28356 * Note: It is possible that q->q_first is non-null. It means 28357 * that these messages landed after we did a enableok() in 28358 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28359 * service them. 28360 */ 28361 if (connp->conn_drain_next == connp) { 28362 /* Singleton in the list */ 28363 ASSERT(connp->conn_drain_prev == connp); 28364 idl->idl_conn = NULL; 28365 idl->idl_conn_draining = NULL; 28366 } else { 28367 connp->conn_drain_prev->conn_drain_next = 28368 connp->conn_drain_next; 28369 connp->conn_drain_next->conn_drain_prev = 28370 connp->conn_drain_prev; 28371 if (idl->idl_conn == connp) 28372 idl->idl_conn = connp->conn_drain_next; 28373 ASSERT(idl->idl_conn_draining != connp); 28374 28375 } 28376 connp->conn_drain_next = NULL; 28377 connp->conn_drain_prev = NULL; 28378 } 28379 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28380 } 28381 28382 /* 28383 * Write service routine. Shared perimeter entry point. 28384 * ip_wsrv can be called in any of the following ways. 28385 * 1. The device queue's messages has fallen below the low water mark 28386 * and STREAMS has backenabled the ill_wq. We walk thru all the 28387 * the drain lists and backenable the first conn in each list. 28388 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28389 * qenabled non-tcp upper layers. We start dequeing messages and call 28390 * ip_wput for each message. 28391 */ 28392 28393 void 28394 ip_wsrv(queue_t *q) 28395 { 28396 conn_t *connp; 28397 ill_t *ill; 28398 mblk_t *mp; 28399 28400 if (q->q_next) { 28401 ill = (ill_t *)q->q_ptr; 28402 if (ill->ill_state_flags == 0) { 28403 /* 28404 * The device flow control has opened up. 28405 * Walk through conn drain lists and qenable the 28406 * first conn in each list. This makes sense only 28407 * if the stream is fully plumbed and setup. 28408 * Hence the if check above. 28409 */ 28410 ip1dbg(("ip_wsrv: walking\n")); 28411 conn_walk_drain(ill->ill_ipst); 28412 } 28413 return; 28414 } 28415 28416 connp = Q_TO_CONN(q); 28417 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28418 28419 /* 28420 * 1. Set conn_draining flag to signal that service is active. 28421 * 28422 * 2. ip_output determines whether it has been called from service, 28423 * based on the last parameter. If it is IP_WSRV it concludes it 28424 * has been called from service. 28425 * 28426 * 3. Message ordering is preserved by the following logic. 28427 * i. A directly called ip_output (i.e. not thru service) will queue 28428 * the message at the tail, if conn_draining is set (i.e. service 28429 * is running) or if q->q_first is non-null. 28430 * 28431 * ii. If ip_output is called from service, and if ip_output cannot 28432 * putnext due to flow control, it does a putbq. 28433 * 28434 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28435 * (causing an infinite loop). 28436 */ 28437 ASSERT(!connp->conn_did_putbq); 28438 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28439 connp->conn_draining = 1; 28440 noenable(q); 28441 while ((mp = getq(q)) != NULL) { 28442 ASSERT(CONN_Q(q)); 28443 28444 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28445 if (connp->conn_did_putbq) { 28446 /* ip_wput did a putbq */ 28447 break; 28448 } 28449 } 28450 /* 28451 * At this point, a thread coming down from top, calling 28452 * ip_wput, may end up queueing the message. We have not yet 28453 * enabled the queue, so ip_wsrv won't be called again. 28454 * To avoid this race, check q->q_first again (in the loop) 28455 * If the other thread queued the message before we call 28456 * enableok(), we will catch it in the q->q_first check. 28457 * If the other thread queues the message after we call 28458 * enableok(), ip_wsrv will be called again by STREAMS. 28459 */ 28460 connp->conn_draining = 0; 28461 enableok(q); 28462 } 28463 28464 /* Enable the next conn for draining */ 28465 conn_drain_tail(connp, B_FALSE); 28466 28467 connp->conn_did_putbq = 0; 28468 } 28469 28470 /* 28471 * Walk the list of all conn's calling the function provided with the 28472 * specified argument for each. Note that this only walks conn's that 28473 * have been bound. 28474 * Applies to both IPv4 and IPv6. 28475 */ 28476 static void 28477 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28478 { 28479 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28480 ipst->ips_ipcl_udp_fanout_size, 28481 func, arg, zoneid); 28482 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28483 ipst->ips_ipcl_conn_fanout_size, 28484 func, arg, zoneid); 28485 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28486 ipst->ips_ipcl_bind_fanout_size, 28487 func, arg, zoneid); 28488 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28489 IPPROTO_MAX, func, arg, zoneid); 28490 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28491 IPPROTO_MAX, func, arg, zoneid); 28492 } 28493 28494 /* 28495 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28496 * of conns that need to be drained, check if drain is already in progress. 28497 * If so set the idl_repeat bit, indicating that the last conn in the list 28498 * needs to reinitiate the drain once again, for the list. If drain is not 28499 * in progress for the list, initiate the draining, by qenabling the 1st 28500 * conn in the list. The drain is self-sustaining, each qenabled conn will 28501 * in turn qenable the next conn, when it is done/blocked/closing. 28502 */ 28503 static void 28504 conn_walk_drain(ip_stack_t *ipst) 28505 { 28506 int i; 28507 idl_t *idl; 28508 28509 IP_STAT(ipst, ip_conn_walk_drain); 28510 28511 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28512 idl = &ipst->ips_conn_drain_list[i]; 28513 mutex_enter(&idl->idl_lock); 28514 if (idl->idl_conn == NULL) { 28515 mutex_exit(&idl->idl_lock); 28516 continue; 28517 } 28518 /* 28519 * If this list is not being drained currently by 28520 * an ip_wsrv thread, start the process. 28521 */ 28522 if (idl->idl_conn_draining == NULL) { 28523 ASSERT(idl->idl_repeat == 0); 28524 qenable(idl->idl_conn->conn_wq); 28525 idl->idl_conn_draining = idl->idl_conn; 28526 } else { 28527 idl->idl_repeat = 1; 28528 } 28529 mutex_exit(&idl->idl_lock); 28530 } 28531 } 28532 28533 /* 28534 * Walk an conn hash table of `count' buckets, calling func for each entry. 28535 */ 28536 static void 28537 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28538 zoneid_t zoneid) 28539 { 28540 conn_t *connp; 28541 28542 while (count-- > 0) { 28543 mutex_enter(&connfp->connf_lock); 28544 for (connp = connfp->connf_head; connp != NULL; 28545 connp = connp->conn_next) { 28546 if (zoneid == GLOBAL_ZONEID || 28547 zoneid == connp->conn_zoneid) { 28548 CONN_INC_REF(connp); 28549 mutex_exit(&connfp->connf_lock); 28550 (*func)(connp, arg); 28551 mutex_enter(&connfp->connf_lock); 28552 CONN_DEC_REF(connp); 28553 } 28554 } 28555 mutex_exit(&connfp->connf_lock); 28556 connfp++; 28557 } 28558 } 28559 28560 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28561 static void 28562 conn_report1(conn_t *connp, void *mp) 28563 { 28564 char buf1[INET6_ADDRSTRLEN]; 28565 char buf2[INET6_ADDRSTRLEN]; 28566 uint_t print_len, buf_len; 28567 28568 ASSERT(connp != NULL); 28569 28570 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28571 if (buf_len <= 0) 28572 return; 28573 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28574 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28575 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28576 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28577 "%5d %s/%05d %s/%05d\n", 28578 (void *)connp, (void *)CONNP_TO_RQ(connp), 28579 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28580 buf1, connp->conn_lport, 28581 buf2, connp->conn_fport); 28582 if (print_len < buf_len) { 28583 ((mblk_t *)mp)->b_wptr += print_len; 28584 } else { 28585 ((mblk_t *)mp)->b_wptr += buf_len; 28586 } 28587 } 28588 28589 /* 28590 * Named Dispatch routine to produce a formatted report on all conns 28591 * that are listed in one of the fanout tables. 28592 * This report is accessed by using the ndd utility to "get" ND variable 28593 * "ip_conn_status". 28594 */ 28595 /* ARGSUSED */ 28596 static int 28597 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28598 { 28599 conn_t *connp = Q_TO_CONN(q); 28600 28601 (void) mi_mpprintf(mp, 28602 "CONN " MI_COL_HDRPAD_STR 28603 "rfq " MI_COL_HDRPAD_STR 28604 "stq " MI_COL_HDRPAD_STR 28605 " zone local remote"); 28606 28607 /* 28608 * Because of the ndd constraint, at most we can have 64K buffer 28609 * to put in all conn info. So to be more efficient, just 28610 * allocate a 64K buffer here, assuming we need that large buffer. 28611 * This should be OK as only privileged processes can do ndd /dev/ip. 28612 */ 28613 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28614 /* The following may work even if we cannot get a large buf. */ 28615 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28616 return (0); 28617 } 28618 28619 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28620 connp->conn_netstack->netstack_ip); 28621 return (0); 28622 } 28623 28624 /* 28625 * Determine if the ill and multicast aspects of that packets 28626 * "matches" the conn. 28627 */ 28628 boolean_t 28629 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28630 zoneid_t zoneid) 28631 { 28632 ill_t *in_ill; 28633 boolean_t found; 28634 ipif_t *ipif; 28635 ire_t *ire; 28636 ipaddr_t dst, src; 28637 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28638 28639 dst = ipha->ipha_dst; 28640 src = ipha->ipha_src; 28641 28642 /* 28643 * conn_incoming_ill is set by IP_BOUND_IF which limits 28644 * unicast, broadcast and multicast reception to 28645 * conn_incoming_ill. conn_wantpacket itself is called 28646 * only for BROADCAST and multicast. 28647 * 28648 * 1) ip_rput supresses duplicate broadcasts if the ill 28649 * is part of a group. Hence, we should be receiving 28650 * just one copy of broadcast for the whole group. 28651 * Thus, if it is part of the group the packet could 28652 * come on any ill of the group and hence we need a 28653 * match on the group. Otherwise, match on ill should 28654 * be sufficient. 28655 * 28656 * 2) ip_rput does not suppress duplicate multicast packets. 28657 * If there are two interfaces in a ill group and we have 28658 * 2 applications (conns) joined a multicast group G on 28659 * both the interfaces, ilm_lookup_ill filter in ip_rput 28660 * will give us two packets because we join G on both the 28661 * interfaces rather than nominating just one interface 28662 * for receiving multicast like broadcast above. So, 28663 * we have to call ilg_lookup_ill to filter out duplicate 28664 * copies, if ill is part of a group. 28665 */ 28666 in_ill = connp->conn_incoming_ill; 28667 if (in_ill != NULL) { 28668 if (in_ill->ill_group == NULL) { 28669 if (in_ill != ill) 28670 return (B_FALSE); 28671 } else if (in_ill->ill_group != ill->ill_group) { 28672 return (B_FALSE); 28673 } 28674 } 28675 28676 if (!CLASSD(dst)) { 28677 if (IPCL_ZONE_MATCH(connp, zoneid)) 28678 return (B_TRUE); 28679 /* 28680 * The conn is in a different zone; we need to check that this 28681 * broadcast address is configured in the application's zone and 28682 * on one ill in the group. 28683 */ 28684 ipif = ipif_get_next_ipif(NULL, ill); 28685 if (ipif == NULL) 28686 return (B_FALSE); 28687 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28688 connp->conn_zoneid, NULL, 28689 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28690 ipif_refrele(ipif); 28691 if (ire != NULL) { 28692 ire_refrele(ire); 28693 return (B_TRUE); 28694 } else { 28695 return (B_FALSE); 28696 } 28697 } 28698 28699 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28700 connp->conn_zoneid == zoneid) { 28701 /* 28702 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28703 * disabled, therefore we don't dispatch the multicast packet to 28704 * the sending zone. 28705 */ 28706 return (B_FALSE); 28707 } 28708 28709 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28710 /* 28711 * Multicast packet on the loopback interface: we only match 28712 * conns who joined the group in the specified zone. 28713 */ 28714 return (B_FALSE); 28715 } 28716 28717 if (connp->conn_multi_router) { 28718 /* multicast packet and multicast router socket: send up */ 28719 return (B_TRUE); 28720 } 28721 28722 mutex_enter(&connp->conn_lock); 28723 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28724 mutex_exit(&connp->conn_lock); 28725 return (found); 28726 } 28727 28728 /* 28729 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28730 */ 28731 /* ARGSUSED */ 28732 static void 28733 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28734 { 28735 ill_t *ill = (ill_t *)q->q_ptr; 28736 mblk_t *mp1, *mp2; 28737 ipif_t *ipif; 28738 int err = 0; 28739 conn_t *connp = NULL; 28740 ipsq_t *ipsq; 28741 arc_t *arc; 28742 28743 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28744 28745 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28746 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28747 28748 ASSERT(IAM_WRITER_ILL(ill)); 28749 mp2 = mp->b_cont; 28750 mp->b_cont = NULL; 28751 28752 /* 28753 * We have now received the arp bringup completion message 28754 * from ARP. Mark the arp bringup as done. Also if the arp 28755 * stream has already started closing, send up the AR_ARP_CLOSING 28756 * ack now since ARP is waiting in close for this ack. 28757 */ 28758 mutex_enter(&ill->ill_lock); 28759 ill->ill_arp_bringup_pending = 0; 28760 if (ill->ill_arp_closing) { 28761 mutex_exit(&ill->ill_lock); 28762 /* Let's reuse the mp for sending the ack */ 28763 arc = (arc_t *)mp->b_rptr; 28764 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28765 arc->arc_cmd = AR_ARP_CLOSING; 28766 qreply(q, mp); 28767 } else { 28768 mutex_exit(&ill->ill_lock); 28769 freeb(mp); 28770 } 28771 28772 ipsq = ill->ill_phyint->phyint_ipsq; 28773 ipif = ipsq->ipsq_pending_ipif; 28774 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28775 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28776 if (mp1 == NULL) { 28777 /* bringup was aborted by the user */ 28778 freemsg(mp2); 28779 return; 28780 } 28781 28782 /* 28783 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28784 * must have an associated conn_t. Otherwise, we're bringing this 28785 * interface back up as part of handling an asynchronous event (e.g., 28786 * physical address change). 28787 */ 28788 if (ipsq->ipsq_current_ioctl != 0) { 28789 ASSERT(connp != NULL); 28790 q = CONNP_TO_WQ(connp); 28791 } else { 28792 ASSERT(connp == NULL); 28793 q = ill->ill_rq; 28794 } 28795 28796 /* 28797 * If the DL_BIND_REQ fails, it is noted 28798 * in arc_name_offset. 28799 */ 28800 err = *((int *)mp2->b_rptr); 28801 if (err == 0) { 28802 if (ipif->ipif_isv6) { 28803 if ((err = ipif_up_done_v6(ipif)) != 0) 28804 ip0dbg(("ip_arp_done: init failed\n")); 28805 } else { 28806 if ((err = ipif_up_done(ipif)) != 0) 28807 ip0dbg(("ip_arp_done: init failed\n")); 28808 } 28809 } else { 28810 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28811 } 28812 28813 freemsg(mp2); 28814 28815 if ((err == 0) && (ill->ill_up_ipifs)) { 28816 err = ill_up_ipifs(ill, q, mp1); 28817 if (err == EINPROGRESS) 28818 return; 28819 } 28820 28821 if (ill->ill_up_ipifs) 28822 ill_group_cleanup(ill); 28823 28824 /* 28825 * The operation must complete without EINPROGRESS since 28826 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28827 * Otherwise, the operation will be stuck forever in the ipsq. 28828 */ 28829 ASSERT(err != EINPROGRESS); 28830 if (ipsq->ipsq_current_ioctl != 0) 28831 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28832 else 28833 ipsq_current_finish(ipsq); 28834 } 28835 28836 /* Allocate the private structure */ 28837 static int 28838 ip_priv_alloc(void **bufp) 28839 { 28840 void *buf; 28841 28842 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28843 return (ENOMEM); 28844 28845 *bufp = buf; 28846 return (0); 28847 } 28848 28849 /* Function to delete the private structure */ 28850 void 28851 ip_priv_free(void *buf) 28852 { 28853 ASSERT(buf != NULL); 28854 kmem_free(buf, sizeof (ip_priv_t)); 28855 } 28856 28857 /* 28858 * The entry point for IPPF processing. 28859 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28860 * routine just returns. 28861 * 28862 * When called, ip_process generates an ipp_packet_t structure 28863 * which holds the state information for this packet and invokes the 28864 * the classifier (via ipp_packet_process). The classification, depending on 28865 * configured filters, results in a list of actions for this packet. Invoking 28866 * an action may cause the packet to be dropped, in which case the resulting 28867 * mblk (*mpp) is NULL. proc indicates the callout position for 28868 * this packet and ill_index is the interface this packet on or will leave 28869 * on (inbound and outbound resp.). 28870 */ 28871 void 28872 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28873 { 28874 mblk_t *mp; 28875 ip_priv_t *priv; 28876 ipp_action_id_t aid; 28877 int rc = 0; 28878 ipp_packet_t *pp; 28879 #define IP_CLASS "ip" 28880 28881 /* If the classifier is not loaded, return */ 28882 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28883 return; 28884 } 28885 28886 mp = *mpp; 28887 ASSERT(mp != NULL); 28888 28889 /* Allocate the packet structure */ 28890 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28891 if (rc != 0) { 28892 *mpp = NULL; 28893 freemsg(mp); 28894 return; 28895 } 28896 28897 /* Allocate the private structure */ 28898 rc = ip_priv_alloc((void **)&priv); 28899 if (rc != 0) { 28900 *mpp = NULL; 28901 freemsg(mp); 28902 ipp_packet_free(pp); 28903 return; 28904 } 28905 priv->proc = proc; 28906 priv->ill_index = ill_index; 28907 ipp_packet_set_private(pp, priv, ip_priv_free); 28908 ipp_packet_set_data(pp, mp); 28909 28910 /* Invoke the classifier */ 28911 rc = ipp_packet_process(&pp); 28912 if (pp != NULL) { 28913 mp = ipp_packet_get_data(pp); 28914 ipp_packet_free(pp); 28915 if (rc != 0) { 28916 freemsg(mp); 28917 *mpp = NULL; 28918 } 28919 } else { 28920 *mpp = NULL; 28921 } 28922 #undef IP_CLASS 28923 } 28924 28925 /* 28926 * Propagate a multicast group membership operation (add/drop) on 28927 * all the interfaces crossed by the related multirt routes. 28928 * The call is considered successful if the operation succeeds 28929 * on at least one interface. 28930 */ 28931 static int 28932 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28933 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28934 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28935 mblk_t *first_mp) 28936 { 28937 ire_t *ire_gw; 28938 irb_t *irb; 28939 int error = 0; 28940 opt_restart_t *or; 28941 ip_stack_t *ipst = ire->ire_ipst; 28942 28943 irb = ire->ire_bucket; 28944 ASSERT(irb != NULL); 28945 28946 ASSERT(DB_TYPE(first_mp) == M_CTL); 28947 28948 or = (opt_restart_t *)first_mp->b_rptr; 28949 IRB_REFHOLD(irb); 28950 for (; ire != NULL; ire = ire->ire_next) { 28951 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28952 continue; 28953 if (ire->ire_addr != group) 28954 continue; 28955 28956 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28957 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28958 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28959 /* No resolver exists for the gateway; skip this ire. */ 28960 if (ire_gw == NULL) 28961 continue; 28962 28963 /* 28964 * This function can return EINPROGRESS. If so the operation 28965 * will be restarted from ip_restart_optmgmt which will 28966 * call ip_opt_set and option processing will restart for 28967 * this option. So we may end up calling 'fn' more than once. 28968 * This requires that 'fn' is idempotent except for the 28969 * return value. The operation is considered a success if 28970 * it succeeds at least once on any one interface. 28971 */ 28972 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28973 NULL, fmode, src, first_mp); 28974 if (error == 0) 28975 or->or_private = CGTP_MCAST_SUCCESS; 28976 28977 if (ip_debug > 0) { 28978 ulong_t off; 28979 char *ksym; 28980 ksym = kobj_getsymname((uintptr_t)fn, &off); 28981 ip2dbg(("ip_multirt_apply_membership: " 28982 "called %s, multirt group 0x%08x via itf 0x%08x, " 28983 "error %d [success %u]\n", 28984 ksym ? ksym : "?", 28985 ntohl(group), ntohl(ire_gw->ire_src_addr), 28986 error, or->or_private)); 28987 } 28988 28989 ire_refrele(ire_gw); 28990 if (error == EINPROGRESS) { 28991 IRB_REFRELE(irb); 28992 return (error); 28993 } 28994 } 28995 IRB_REFRELE(irb); 28996 /* 28997 * Consider the call as successful if we succeeded on at least 28998 * one interface. Otherwise, return the last encountered error. 28999 */ 29000 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29001 } 29002 29003 29004 /* 29005 * Issue a warning regarding a route crossing an interface with an 29006 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29007 * amount of time is logged. 29008 */ 29009 static void 29010 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29011 { 29012 hrtime_t current = gethrtime(); 29013 char buf[INET_ADDRSTRLEN]; 29014 ip_stack_t *ipst = ire->ire_ipst; 29015 29016 /* Convert interval in ms to hrtime in ns */ 29017 if (ipst->ips_multirt_bad_mtu_last_time + 29018 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29019 current) { 29020 cmn_err(CE_WARN, "ip: ignoring multiroute " 29021 "to %s, incorrect MTU %u (expected %u)\n", 29022 ip_dot_addr(ire->ire_addr, buf), 29023 ire->ire_max_frag, max_frag); 29024 29025 ipst->ips_multirt_bad_mtu_last_time = current; 29026 } 29027 } 29028 29029 29030 /* 29031 * Get the CGTP (multirouting) filtering status. 29032 * If 0, the CGTP hooks are transparent. 29033 */ 29034 /* ARGSUSED */ 29035 static int 29036 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29037 { 29038 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29039 29040 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29041 return (0); 29042 } 29043 29044 29045 /* 29046 * Set the CGTP (multirouting) filtering status. 29047 * If the status is changed from active to transparent 29048 * or from transparent to active, forward the new status 29049 * to the filtering module (if loaded). 29050 */ 29051 /* ARGSUSED */ 29052 static int 29053 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29054 cred_t *ioc_cr) 29055 { 29056 long new_value; 29057 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29058 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29059 29060 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29061 return (EPERM); 29062 29063 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29064 new_value < 0 || new_value > 1) { 29065 return (EINVAL); 29066 } 29067 29068 if ((!*ip_cgtp_filter_value) && new_value) { 29069 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29070 ipst->ips_ip_cgtp_filter_ops == NULL ? 29071 " (module not loaded)" : ""); 29072 } 29073 if (*ip_cgtp_filter_value && (!new_value)) { 29074 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29075 ipst->ips_ip_cgtp_filter_ops == NULL ? 29076 " (module not loaded)" : ""); 29077 } 29078 29079 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29080 int res; 29081 netstackid_t stackid; 29082 29083 stackid = ipst->ips_netstack->netstack_stackid; 29084 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29085 new_value); 29086 if (res) 29087 return (res); 29088 } 29089 29090 *ip_cgtp_filter_value = (boolean_t)new_value; 29091 29092 return (0); 29093 } 29094 29095 29096 /* 29097 * Return the expected CGTP hooks version number. 29098 */ 29099 int 29100 ip_cgtp_filter_supported(void) 29101 { 29102 return (ip_cgtp_filter_rev); 29103 } 29104 29105 29106 /* 29107 * CGTP hooks can be registered by invoking this function. 29108 * Checks that the version number matches. 29109 */ 29110 int 29111 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29112 { 29113 netstack_t *ns; 29114 ip_stack_t *ipst; 29115 29116 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29117 return (ENOTSUP); 29118 29119 ns = netstack_find_by_stackid(stackid); 29120 if (ns == NULL) 29121 return (EINVAL); 29122 ipst = ns->netstack_ip; 29123 ASSERT(ipst != NULL); 29124 29125 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29126 netstack_rele(ns); 29127 return (EALREADY); 29128 } 29129 29130 ipst->ips_ip_cgtp_filter_ops = ops; 29131 netstack_rele(ns); 29132 return (0); 29133 } 29134 29135 /* 29136 * CGTP hooks can be unregistered by invoking this function. 29137 * Returns ENXIO if there was no registration. 29138 * Returns EBUSY if the ndd variable has not been turned off. 29139 */ 29140 int 29141 ip_cgtp_filter_unregister(netstackid_t stackid) 29142 { 29143 netstack_t *ns; 29144 ip_stack_t *ipst; 29145 29146 ns = netstack_find_by_stackid(stackid); 29147 if (ns == NULL) 29148 return (EINVAL); 29149 ipst = ns->netstack_ip; 29150 ASSERT(ipst != NULL); 29151 29152 if (ipst->ips_ip_cgtp_filter) { 29153 netstack_rele(ns); 29154 return (EBUSY); 29155 } 29156 29157 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29158 netstack_rele(ns); 29159 return (ENXIO); 29160 } 29161 ipst->ips_ip_cgtp_filter_ops = NULL; 29162 netstack_rele(ns); 29163 return (0); 29164 } 29165 29166 /* 29167 * Check whether there is a CGTP filter registration. 29168 * Returns non-zero if there is a registration, otherwise returns zero. 29169 * Note: returns zero if bad stackid. 29170 */ 29171 int 29172 ip_cgtp_filter_is_registered(netstackid_t stackid) 29173 { 29174 netstack_t *ns; 29175 ip_stack_t *ipst; 29176 int ret; 29177 29178 ns = netstack_find_by_stackid(stackid); 29179 if (ns == NULL) 29180 return (0); 29181 ipst = ns->netstack_ip; 29182 ASSERT(ipst != NULL); 29183 29184 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29185 ret = 1; 29186 else 29187 ret = 0; 29188 29189 netstack_rele(ns); 29190 return (ret); 29191 } 29192 29193 static squeue_func_t 29194 ip_squeue_switch(int val) 29195 { 29196 squeue_func_t rval = squeue_fill; 29197 29198 switch (val) { 29199 case IP_SQUEUE_ENTER_NODRAIN: 29200 rval = squeue_enter_nodrain; 29201 break; 29202 case IP_SQUEUE_ENTER: 29203 rval = squeue_enter; 29204 break; 29205 default: 29206 break; 29207 } 29208 return (rval); 29209 } 29210 29211 /* ARGSUSED */ 29212 static int 29213 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29214 caddr_t addr, cred_t *cr) 29215 { 29216 int *v = (int *)addr; 29217 long new_value; 29218 29219 if (secpolicy_net_config(cr, B_FALSE) != 0) 29220 return (EPERM); 29221 29222 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29223 return (EINVAL); 29224 29225 ip_input_proc = ip_squeue_switch(new_value); 29226 *v = new_value; 29227 return (0); 29228 } 29229 29230 /* 29231 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29232 * ip_debug. 29233 */ 29234 /* ARGSUSED */ 29235 static int 29236 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29237 caddr_t addr, cred_t *cr) 29238 { 29239 int *v = (int *)addr; 29240 long new_value; 29241 29242 if (secpolicy_net_config(cr, B_FALSE) != 0) 29243 return (EPERM); 29244 29245 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29246 return (EINVAL); 29247 29248 *v = new_value; 29249 return (0); 29250 } 29251 29252 /* 29253 * Handle changes to ipmp_hook_emulation ndd variable. 29254 * Need to update phyint_hook_ifindex. 29255 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29256 */ 29257 static void 29258 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29259 { 29260 phyint_t *phyi; 29261 phyint_t *phyi_tmp; 29262 char *groupname; 29263 int namelen; 29264 ill_t *ill; 29265 boolean_t new_group; 29266 29267 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29268 /* 29269 * Group indicies are stored in the phyint - a common structure 29270 * to both IPv4 and IPv6. 29271 */ 29272 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29273 for (; phyi != NULL; 29274 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29275 phyi, AVL_AFTER)) { 29276 /* Ignore the ones that do not have a group */ 29277 if (phyi->phyint_groupname_len == 0) 29278 continue; 29279 29280 /* 29281 * Look for other phyint in group. 29282 * Clear name/namelen so the lookup doesn't find ourselves. 29283 */ 29284 namelen = phyi->phyint_groupname_len; 29285 groupname = phyi->phyint_groupname; 29286 phyi->phyint_groupname_len = 0; 29287 phyi->phyint_groupname = NULL; 29288 29289 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29290 /* Restore */ 29291 phyi->phyint_groupname_len = namelen; 29292 phyi->phyint_groupname = groupname; 29293 29294 new_group = B_FALSE; 29295 if (ipst->ips_ipmp_hook_emulation) { 29296 /* 29297 * If the group already exists and has already 29298 * been assigned a group ifindex, we use the existing 29299 * group_ifindex, otherwise we pick a new group_ifindex 29300 * here. 29301 */ 29302 if (phyi_tmp != NULL && 29303 phyi_tmp->phyint_group_ifindex != 0) { 29304 phyi->phyint_group_ifindex = 29305 phyi_tmp->phyint_group_ifindex; 29306 } else { 29307 /* XXX We need a recovery strategy here. */ 29308 if (!ip_assign_ifindex( 29309 &phyi->phyint_group_ifindex, ipst)) 29310 cmn_err(CE_PANIC, 29311 "ip_assign_ifindex() failed"); 29312 new_group = B_TRUE; 29313 } 29314 } else { 29315 phyi->phyint_group_ifindex = 0; 29316 } 29317 if (ipst->ips_ipmp_hook_emulation) 29318 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29319 else 29320 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29321 29322 /* 29323 * For IP Filter to find out the relationship between 29324 * names and interface indicies, we need to generate 29325 * a NE_PLUMB event when a new group can appear. 29326 * We always generate events when a new interface appears 29327 * (even when ipmp_hook_emulation is set) so there 29328 * is no need to generate NE_PLUMB events when 29329 * ipmp_hook_emulation is turned off. 29330 * And since it isn't critical for IP Filter to get 29331 * the NE_UNPLUMB events we skip those here. 29332 */ 29333 if (new_group) { 29334 /* 29335 * First phyint in group - generate group PLUMB event. 29336 * Since we are not running inside the ipsq we do 29337 * the dispatch immediately. 29338 */ 29339 if (phyi->phyint_illv4 != NULL) 29340 ill = phyi->phyint_illv4; 29341 else 29342 ill = phyi->phyint_illv6; 29343 29344 if (ill != NULL) { 29345 mutex_enter(&ill->ill_lock); 29346 ill_nic_info_plumb(ill, B_TRUE); 29347 ill_nic_info_dispatch(ill); 29348 mutex_exit(&ill->ill_lock); 29349 } 29350 } 29351 } 29352 rw_exit(&ipst->ips_ill_g_lock); 29353 } 29354 29355 /* ARGSUSED */ 29356 static int 29357 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29358 caddr_t addr, cred_t *cr) 29359 { 29360 int *v = (int *)addr; 29361 long new_value; 29362 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29363 29364 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29365 return (EINVAL); 29366 29367 if (*v != new_value) { 29368 *v = new_value; 29369 ipmp_hook_emulation_changed(ipst); 29370 } 29371 return (0); 29372 } 29373 29374 static void * 29375 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29376 { 29377 kstat_t *ksp; 29378 29379 ip_stat_t template = { 29380 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29381 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29382 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29383 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29384 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29385 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29386 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29387 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29388 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29389 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29390 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29391 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29392 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29393 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29394 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29395 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29396 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29397 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29398 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29399 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29400 { "ip_opt", KSTAT_DATA_UINT64 }, 29401 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29402 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29403 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29404 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29405 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29406 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29407 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29408 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29409 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29410 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29411 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29412 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29413 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29414 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29415 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29416 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29417 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29418 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29419 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29420 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29421 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29422 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29423 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29424 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29425 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29426 }; 29427 29428 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29429 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29430 KSTAT_FLAG_VIRTUAL, stackid); 29431 29432 if (ksp == NULL) 29433 return (NULL); 29434 29435 bcopy(&template, ip_statisticsp, sizeof (template)); 29436 ksp->ks_data = (void *)ip_statisticsp; 29437 ksp->ks_private = (void *)(uintptr_t)stackid; 29438 29439 kstat_install(ksp); 29440 return (ksp); 29441 } 29442 29443 static void 29444 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29445 { 29446 if (ksp != NULL) { 29447 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29448 kstat_delete_netstack(ksp, stackid); 29449 } 29450 } 29451 29452 static void * 29453 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29454 { 29455 kstat_t *ksp; 29456 29457 ip_named_kstat_t template = { 29458 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29459 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29460 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29461 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29462 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29463 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29464 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29465 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29466 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29467 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29468 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29469 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29470 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29471 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29472 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29473 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29474 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29475 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29476 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29477 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29478 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29479 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29480 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29481 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29482 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29483 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29484 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29485 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29486 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29487 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29488 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29489 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29490 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29491 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29492 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29493 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29494 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29495 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29496 }; 29497 29498 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29499 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29500 if (ksp == NULL || ksp->ks_data == NULL) 29501 return (NULL); 29502 29503 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29504 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29505 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29506 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29507 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29508 29509 template.netToMediaEntrySize.value.i32 = 29510 sizeof (mib2_ipNetToMediaEntry_t); 29511 29512 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29513 29514 bcopy(&template, ksp->ks_data, sizeof (template)); 29515 ksp->ks_update = ip_kstat_update; 29516 ksp->ks_private = (void *)(uintptr_t)stackid; 29517 29518 kstat_install(ksp); 29519 return (ksp); 29520 } 29521 29522 static void 29523 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29524 { 29525 if (ksp != NULL) { 29526 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29527 kstat_delete_netstack(ksp, stackid); 29528 } 29529 } 29530 29531 static int 29532 ip_kstat_update(kstat_t *kp, int rw) 29533 { 29534 ip_named_kstat_t *ipkp; 29535 mib2_ipIfStatsEntry_t ipmib; 29536 ill_walk_context_t ctx; 29537 ill_t *ill; 29538 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29539 netstack_t *ns; 29540 ip_stack_t *ipst; 29541 29542 if (kp == NULL || kp->ks_data == NULL) 29543 return (EIO); 29544 29545 if (rw == KSTAT_WRITE) 29546 return (EACCES); 29547 29548 ns = netstack_find_by_stackid(stackid); 29549 if (ns == NULL) 29550 return (-1); 29551 ipst = ns->netstack_ip; 29552 if (ipst == NULL) { 29553 netstack_rele(ns); 29554 return (-1); 29555 } 29556 ipkp = (ip_named_kstat_t *)kp->ks_data; 29557 29558 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29559 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29560 ill = ILL_START_WALK_V4(&ctx, ipst); 29561 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29562 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29563 rw_exit(&ipst->ips_ill_g_lock); 29564 29565 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29566 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29567 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29568 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29569 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29570 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29571 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29572 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29573 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29574 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29575 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29576 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29577 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29578 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29579 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29580 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29581 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29582 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29583 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29584 29585 ipkp->routingDiscards.value.ui32 = 0; 29586 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29587 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29588 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29589 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29590 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29591 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29592 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29593 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29594 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29595 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29596 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29597 29598 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29599 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29600 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29601 29602 netstack_rele(ns); 29603 29604 return (0); 29605 } 29606 29607 static void * 29608 icmp_kstat_init(netstackid_t stackid) 29609 { 29610 kstat_t *ksp; 29611 29612 icmp_named_kstat_t template = { 29613 { "inMsgs", KSTAT_DATA_UINT32 }, 29614 { "inErrors", KSTAT_DATA_UINT32 }, 29615 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29616 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29617 { "inParmProbs", KSTAT_DATA_UINT32 }, 29618 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29619 { "inRedirects", KSTAT_DATA_UINT32 }, 29620 { "inEchos", KSTAT_DATA_UINT32 }, 29621 { "inEchoReps", KSTAT_DATA_UINT32 }, 29622 { "inTimestamps", KSTAT_DATA_UINT32 }, 29623 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29624 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29625 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29626 { "outMsgs", KSTAT_DATA_UINT32 }, 29627 { "outErrors", KSTAT_DATA_UINT32 }, 29628 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29629 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29630 { "outParmProbs", KSTAT_DATA_UINT32 }, 29631 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29632 { "outRedirects", KSTAT_DATA_UINT32 }, 29633 { "outEchos", KSTAT_DATA_UINT32 }, 29634 { "outEchoReps", KSTAT_DATA_UINT32 }, 29635 { "outTimestamps", KSTAT_DATA_UINT32 }, 29636 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29637 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29638 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29639 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29640 { "inUnknowns", KSTAT_DATA_UINT32 }, 29641 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29642 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29643 { "outDrops", KSTAT_DATA_UINT32 }, 29644 { "inOverFlows", KSTAT_DATA_UINT32 }, 29645 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29646 }; 29647 29648 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29649 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29650 if (ksp == NULL || ksp->ks_data == NULL) 29651 return (NULL); 29652 29653 bcopy(&template, ksp->ks_data, sizeof (template)); 29654 29655 ksp->ks_update = icmp_kstat_update; 29656 ksp->ks_private = (void *)(uintptr_t)stackid; 29657 29658 kstat_install(ksp); 29659 return (ksp); 29660 } 29661 29662 static void 29663 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29664 { 29665 if (ksp != NULL) { 29666 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29667 kstat_delete_netstack(ksp, stackid); 29668 } 29669 } 29670 29671 static int 29672 icmp_kstat_update(kstat_t *kp, int rw) 29673 { 29674 icmp_named_kstat_t *icmpkp; 29675 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29676 netstack_t *ns; 29677 ip_stack_t *ipst; 29678 29679 if ((kp == NULL) || (kp->ks_data == NULL)) 29680 return (EIO); 29681 29682 if (rw == KSTAT_WRITE) 29683 return (EACCES); 29684 29685 ns = netstack_find_by_stackid(stackid); 29686 if (ns == NULL) 29687 return (-1); 29688 ipst = ns->netstack_ip; 29689 if (ipst == NULL) { 29690 netstack_rele(ns); 29691 return (-1); 29692 } 29693 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29694 29695 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29696 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29697 icmpkp->inDestUnreachs.value.ui32 = 29698 ipst->ips_icmp_mib.icmpInDestUnreachs; 29699 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29700 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29701 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29702 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29703 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29704 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29705 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29706 icmpkp->inTimestampReps.value.ui32 = 29707 ipst->ips_icmp_mib.icmpInTimestampReps; 29708 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29709 icmpkp->inAddrMaskReps.value.ui32 = 29710 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29711 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29712 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29713 icmpkp->outDestUnreachs.value.ui32 = 29714 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29715 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29716 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29717 icmpkp->outSrcQuenchs.value.ui32 = 29718 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29719 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29720 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29721 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29722 icmpkp->outTimestamps.value.ui32 = 29723 ipst->ips_icmp_mib.icmpOutTimestamps; 29724 icmpkp->outTimestampReps.value.ui32 = 29725 ipst->ips_icmp_mib.icmpOutTimestampReps; 29726 icmpkp->outAddrMasks.value.ui32 = 29727 ipst->ips_icmp_mib.icmpOutAddrMasks; 29728 icmpkp->outAddrMaskReps.value.ui32 = 29729 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29730 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29731 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29732 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29733 icmpkp->outFragNeeded.value.ui32 = 29734 ipst->ips_icmp_mib.icmpOutFragNeeded; 29735 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29736 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29737 icmpkp->inBadRedirects.value.ui32 = 29738 ipst->ips_icmp_mib.icmpInBadRedirects; 29739 29740 netstack_rele(ns); 29741 return (0); 29742 } 29743 29744 /* 29745 * This is the fanout function for raw socket opened for SCTP. Note 29746 * that it is called after SCTP checks that there is no socket which 29747 * wants a packet. Then before SCTP handles this out of the blue packet, 29748 * this function is called to see if there is any raw socket for SCTP. 29749 * If there is and it is bound to the correct address, the packet will 29750 * be sent to that socket. Note that only one raw socket can be bound to 29751 * a port. This is assured in ipcl_sctp_hash_insert(); 29752 */ 29753 void 29754 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29755 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29756 zoneid_t zoneid) 29757 { 29758 conn_t *connp; 29759 queue_t *rq; 29760 mblk_t *first_mp; 29761 boolean_t secure; 29762 ip6_t *ip6h; 29763 ip_stack_t *ipst = recv_ill->ill_ipst; 29764 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29765 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29766 boolean_t sctp_csum_err = B_FALSE; 29767 29768 if (flags & IP_FF_SCTP_CSUM_ERR) { 29769 sctp_csum_err = B_TRUE; 29770 flags &= ~IP_FF_SCTP_CSUM_ERR; 29771 } 29772 29773 first_mp = mp; 29774 if (mctl_present) { 29775 mp = first_mp->b_cont; 29776 secure = ipsec_in_is_secure(first_mp); 29777 ASSERT(mp != NULL); 29778 } else { 29779 secure = B_FALSE; 29780 } 29781 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29782 29783 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29784 if (connp == NULL) { 29785 /* 29786 * Although raw sctp is not summed, OOB chunks must be. 29787 * Drop the packet here if the sctp checksum failed. 29788 */ 29789 if (sctp_csum_err) { 29790 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29791 freemsg(first_mp); 29792 return; 29793 } 29794 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29795 return; 29796 } 29797 rq = connp->conn_rq; 29798 if (!canputnext(rq)) { 29799 CONN_DEC_REF(connp); 29800 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29801 freemsg(first_mp); 29802 return; 29803 } 29804 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29805 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29806 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29807 (isv4 ? ipha : NULL), ip6h, mctl_present); 29808 if (first_mp == NULL) { 29809 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29810 CONN_DEC_REF(connp); 29811 return; 29812 } 29813 } 29814 /* 29815 * We probably should not send M_CTL message up to 29816 * raw socket. 29817 */ 29818 if (mctl_present) 29819 freeb(first_mp); 29820 29821 /* Initiate IPPF processing here if needed. */ 29822 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29823 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29824 ip_process(IPP_LOCAL_IN, &mp, 29825 recv_ill->ill_phyint->phyint_ifindex); 29826 if (mp == NULL) { 29827 CONN_DEC_REF(connp); 29828 return; 29829 } 29830 } 29831 29832 if (connp->conn_recvif || connp->conn_recvslla || 29833 ((connp->conn_ip_recvpktinfo || 29834 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29835 (flags & IP_FF_IPINFO))) { 29836 int in_flags = 0; 29837 29838 /* 29839 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29840 * IPF_RECVIF. 29841 */ 29842 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29843 in_flags = IPF_RECVIF; 29844 } 29845 if (connp->conn_recvslla) { 29846 in_flags |= IPF_RECVSLLA; 29847 } 29848 if (isv4) { 29849 mp = ip_add_info(mp, recv_ill, in_flags, 29850 IPCL_ZONEID(connp), ipst); 29851 } else { 29852 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29853 if (mp == NULL) { 29854 BUMP_MIB(recv_ill->ill_ip_mib, 29855 ipIfStatsInDiscards); 29856 CONN_DEC_REF(connp); 29857 return; 29858 } 29859 } 29860 } 29861 29862 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29863 /* 29864 * We are sending the IPSEC_IN message also up. Refer 29865 * to comments above this function. 29866 * This is the SOCK_RAW, IPPROTO_SCTP case. 29867 */ 29868 (connp->conn_recv)(connp, mp, NULL); 29869 CONN_DEC_REF(connp); 29870 } 29871 29872 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29873 { \ 29874 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29875 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29876 } 29877 /* 29878 * This function should be called only if all packet processing 29879 * including fragmentation is complete. Callers of this function 29880 * must set mp->b_prev to one of these values: 29881 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29882 * prior to handing over the mp as first argument to this function. 29883 * 29884 * If the ire passed by caller is incomplete, this function 29885 * queues the packet and if necessary, sends ARP request and bails. 29886 * If the ire passed is fully resolved, we simply prepend 29887 * the link-layer header to the packet, do ipsec hw acceleration 29888 * work if necessary, and send the packet out on the wire. 29889 * 29890 * NOTE: IPsec will only call this function with fully resolved 29891 * ires if hw acceleration is involved. 29892 * TODO list : 29893 * a Handle M_MULTIDATA so that 29894 * tcp_multisend->tcp_multisend_data can 29895 * call ip_xmit_v4 directly 29896 * b Handle post-ARP work for fragments so that 29897 * ip_wput_frag can call this function. 29898 */ 29899 ipxmit_state_t 29900 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29901 { 29902 nce_t *arpce; 29903 ipha_t *ipha; 29904 queue_t *q; 29905 int ill_index; 29906 mblk_t *nxt_mp, *first_mp; 29907 boolean_t xmit_drop = B_FALSE; 29908 ip_proc_t proc; 29909 ill_t *out_ill; 29910 int pkt_len; 29911 29912 arpce = ire->ire_nce; 29913 ASSERT(arpce != NULL); 29914 29915 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29916 29917 mutex_enter(&arpce->nce_lock); 29918 switch (arpce->nce_state) { 29919 case ND_REACHABLE: 29920 /* If there are other queued packets, queue this packet */ 29921 if (arpce->nce_qd_mp != NULL) { 29922 if (mp != NULL) 29923 nce_queue_mp_common(arpce, mp, B_FALSE); 29924 mp = arpce->nce_qd_mp; 29925 } 29926 arpce->nce_qd_mp = NULL; 29927 mutex_exit(&arpce->nce_lock); 29928 29929 /* 29930 * Flush the queue. In the common case, where the 29931 * ARP is already resolved, it will go through the 29932 * while loop only once. 29933 */ 29934 while (mp != NULL) { 29935 29936 nxt_mp = mp->b_next; 29937 mp->b_next = NULL; 29938 ASSERT(mp->b_datap->db_type != M_CTL); 29939 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29940 /* 29941 * This info is needed for IPQOS to do COS marking 29942 * in ip_wput_attach_llhdr->ip_process. 29943 */ 29944 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29945 mp->b_prev = NULL; 29946 29947 /* set up ill index for outbound qos processing */ 29948 out_ill = ire_to_ill(ire); 29949 ill_index = out_ill->ill_phyint->phyint_ifindex; 29950 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29951 ill_index, &ipha); 29952 if (first_mp == NULL) { 29953 xmit_drop = B_TRUE; 29954 BUMP_MIB(out_ill->ill_ip_mib, 29955 ipIfStatsOutDiscards); 29956 goto next_mp; 29957 } 29958 29959 /* non-ipsec hw accel case */ 29960 if (io == NULL || !io->ipsec_out_accelerated) { 29961 /* send it */ 29962 q = ire->ire_stq; 29963 if (proc == IPP_FWD_OUT) { 29964 UPDATE_IB_PKT_COUNT(ire); 29965 } else { 29966 UPDATE_OB_PKT_COUNT(ire); 29967 } 29968 ire->ire_last_used_time = lbolt; 29969 29970 if (flow_ctl_enabled || canputnext(q)) { 29971 if (proc == IPP_FWD_OUT) { 29972 29973 BUMP_MIB(out_ill->ill_ip_mib, 29974 ipIfStatsHCOutForwDatagrams); 29975 29976 } 29977 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29978 pkt_len); 29979 29980 DTRACE_IP7(send, mblk_t *, first_mp, 29981 conn_t *, NULL, void_ip_t *, ipha, 29982 __dtrace_ipsr_ill_t *, out_ill, 29983 ipha_t *, ipha, ip6_t *, NULL, int, 29984 0); 29985 29986 putnext(q, first_mp); 29987 } else { 29988 BUMP_MIB(out_ill->ill_ip_mib, 29989 ipIfStatsOutDiscards); 29990 xmit_drop = B_TRUE; 29991 freemsg(first_mp); 29992 } 29993 } else { 29994 /* 29995 * Safety Pup says: make sure this 29996 * is going to the right interface! 29997 */ 29998 ill_t *ill1 = 29999 (ill_t *)ire->ire_stq->q_ptr; 30000 int ifindex = 30001 ill1->ill_phyint->phyint_ifindex; 30002 if (ifindex != 30003 io->ipsec_out_capab_ill_index) { 30004 xmit_drop = B_TRUE; 30005 freemsg(mp); 30006 } else { 30007 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30008 pkt_len); 30009 30010 DTRACE_IP7(send, mblk_t *, first_mp, 30011 conn_t *, NULL, void_ip_t *, ipha, 30012 __dtrace_ipsr_ill_t *, ill1, 30013 ipha_t *, ipha, ip6_t *, NULL, 30014 int, 0); 30015 30016 ipsec_hw_putnext(ire->ire_stq, mp); 30017 } 30018 } 30019 next_mp: 30020 mp = nxt_mp; 30021 } /* while (mp != NULL) */ 30022 if (xmit_drop) 30023 return (SEND_FAILED); 30024 else 30025 return (SEND_PASSED); 30026 30027 case ND_INITIAL: 30028 case ND_INCOMPLETE: 30029 30030 /* 30031 * While we do send off packets to dests that 30032 * use fully-resolved CGTP routes, we do not 30033 * handle unresolved CGTP routes. 30034 */ 30035 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30036 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30037 30038 if (mp != NULL) { 30039 /* queue the packet */ 30040 nce_queue_mp_common(arpce, mp, B_FALSE); 30041 } 30042 30043 if (arpce->nce_state == ND_INCOMPLETE) { 30044 mutex_exit(&arpce->nce_lock); 30045 DTRACE_PROBE3(ip__xmit__incomplete, 30046 (ire_t *), ire, (mblk_t *), mp, 30047 (ipsec_out_t *), io); 30048 return (LOOKUP_IN_PROGRESS); 30049 } 30050 30051 arpce->nce_state = ND_INCOMPLETE; 30052 mutex_exit(&arpce->nce_lock); 30053 /* 30054 * Note that ire_add() (called from ire_forward()) 30055 * holds a ref on the ire until ARP is completed. 30056 */ 30057 30058 ire_arpresolve(ire, ire_to_ill(ire)); 30059 return (LOOKUP_IN_PROGRESS); 30060 default: 30061 ASSERT(0); 30062 mutex_exit(&arpce->nce_lock); 30063 return (LLHDR_RESLV_FAILED); 30064 } 30065 } 30066 30067 #undef UPDATE_IP_MIB_OB_COUNTERS 30068 30069 /* 30070 * Return B_TRUE if the buffers differ in length or content. 30071 * This is used for comparing extension header buffers. 30072 * Note that an extension header would be declared different 30073 * even if all that changed was the next header value in that header i.e. 30074 * what really changed is the next extension header. 30075 */ 30076 boolean_t 30077 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30078 uint_t blen) 30079 { 30080 if (!b_valid) 30081 blen = 0; 30082 30083 if (alen != blen) 30084 return (B_TRUE); 30085 if (alen == 0) 30086 return (B_FALSE); /* Both zero length */ 30087 return (bcmp(abuf, bbuf, alen)); 30088 } 30089 30090 /* 30091 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30092 * Return B_FALSE if memory allocation fails - don't change any state! 30093 */ 30094 boolean_t 30095 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30096 const void *src, uint_t srclen) 30097 { 30098 void *dst; 30099 30100 if (!src_valid) 30101 srclen = 0; 30102 30103 ASSERT(*dstlenp == 0); 30104 if (src != NULL && srclen != 0) { 30105 dst = mi_alloc(srclen, BPRI_MED); 30106 if (dst == NULL) 30107 return (B_FALSE); 30108 } else { 30109 dst = NULL; 30110 } 30111 if (*dstp != NULL) 30112 mi_free(*dstp); 30113 *dstp = dst; 30114 *dstlenp = dst == NULL ? 0 : srclen; 30115 return (B_TRUE); 30116 } 30117 30118 /* 30119 * Replace what is in *dst, *dstlen with the source. 30120 * Assumes ip_allocbuf has already been called. 30121 */ 30122 void 30123 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30124 const void *src, uint_t srclen) 30125 { 30126 if (!src_valid) 30127 srclen = 0; 30128 30129 ASSERT(*dstlenp == srclen); 30130 if (src != NULL && srclen != 0) 30131 bcopy(src, *dstp, srclen); 30132 } 30133 30134 /* 30135 * Free the storage pointed to by the members of an ip6_pkt_t. 30136 */ 30137 void 30138 ip6_pkt_free(ip6_pkt_t *ipp) 30139 { 30140 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30141 30142 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30143 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30144 ipp->ipp_hopopts = NULL; 30145 ipp->ipp_hopoptslen = 0; 30146 } 30147 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30148 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30149 ipp->ipp_rtdstopts = NULL; 30150 ipp->ipp_rtdstoptslen = 0; 30151 } 30152 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30153 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30154 ipp->ipp_dstopts = NULL; 30155 ipp->ipp_dstoptslen = 0; 30156 } 30157 if (ipp->ipp_fields & IPPF_RTHDR) { 30158 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30159 ipp->ipp_rthdr = NULL; 30160 ipp->ipp_rthdrlen = 0; 30161 } 30162 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30163 IPPF_RTHDR); 30164 } 30165