1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 #include <sys/sunddi.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 132 * IP_SQUEUE_ENTER: squeue_enter 133 * IP_SQUEUE_FILL: squeue_fill 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 squeue_func_t ip_input_proc; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPsec notes : 400 * 401 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPsec code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 605 cred_t *credp, boolean_t isv6); 606 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 607 ipha_t **); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 789 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 790 791 int ip_debug; 792 793 #ifdef DEBUG 794 uint32_t ipsechw_debug = 0; 795 #endif 796 797 /* 798 * Multirouting/CGTP stuff 799 */ 800 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 801 802 /* 803 * XXX following really should only be in a header. Would need more 804 * header and .c clean up first. 805 */ 806 extern optdb_obj_t ip_opt_obj; 807 808 ulong_t ip_squeue_enter_unbound = 0; 809 810 /* 811 * Named Dispatch Parameter Table. 812 * All of these are alterable, within the min/max values given, at run time. 813 */ 814 static ipparam_t lcl_param_arr[] = { 815 /* min max value name */ 816 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 819 { 0, 1, 0, "ip_respond_to_timestamp"}, 820 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 821 { 0, 1, 1, "ip_send_redirects"}, 822 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_conn_report, NULL, NULL, 904 "ip_conn_status" }, 905 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 906 "ip_rput_pullups" }, 907 { ip_srcid_report, NULL, NULL, 908 "ip_srcid_status" }, 909 { ip_param_generic_get, ip_squeue_profile_set, 910 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 911 { ip_param_generic_get, ip_squeue_bind_set, 912 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 913 { ip_param_generic_get, ip_input_proc_set, 914 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 915 { ip_param_generic_get, ip_int_set, 916 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 917 #define IPNDP_CGTP_FILTER_OFFSET 11 918 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 919 "ip_cgtp_filter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 922 #define IPNDP_IPMP_HOOK_OFFSET 13 923 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 924 "ipmp_hook_emulation" }, 925 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 926 "ip_debug" }, 927 }; 928 929 /* 930 * Table of IP ioctls encoding the various properties of the ioctl and 931 * indexed based on the last byte of the ioctl command. Occasionally there 932 * is a clash, and there is more than 1 ioctl with the same last byte. 933 * In such a case 1 ioctl is encoded in the ndx table and the remaining 934 * ioctls are encoded in the misc table. An entry in the ndx table is 935 * retrieved by indexing on the last byte of the ioctl command and comparing 936 * the ioctl command with the value in the ndx table. In the event of a 937 * mismatch the misc table is then searched sequentially for the desired 938 * ioctl command. 939 * 940 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 941 */ 942 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 943 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 954 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 955 MISC_CMD, ip_siocaddrt, NULL }, 956 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocdelrt, NULL }, 958 959 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 960 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 961 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 962 IF_CMD, ip_sioctl_get_addr, NULL }, 963 964 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 966 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 967 IPI_GET_CMD | IPI_REPL, 968 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 969 970 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 971 IPI_PRIV | IPI_WR | IPI_REPL, 972 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 973 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 974 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 975 IF_CMD, ip_sioctl_get_flags, NULL }, 976 977 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 980 /* copyin size cannot be coded for SIOCGIFCONF */ 981 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 982 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 983 984 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 985 IF_CMD, ip_sioctl_mtu, NULL }, 986 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_mtu, NULL }, 988 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 989 IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 991 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_brdaddr, NULL }, 993 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_netmask, NULL }, 996 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 998 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_metric, NULL }, 1001 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1002 IF_CMD, ip_sioctl_metric, NULL }, 1003 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 1005 /* See 166-168 below for extended SIOC*XARP ioctls */ 1006 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1007 ARP_CMD, ip_sioctl_arp, NULL }, 1008 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 1013 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1014 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1036 MISC_CMD, if_unitsel, if_unitsel_restart }, 1037 1038 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1058 IPI_PRIV | IPI_WR | IPI_MODOK, 1059 IF_CMD, ip_sioctl_sifname, NULL }, 1060 1061 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 1075 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1076 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1077 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1078 IF_CMD, ip_sioctl_get_muxid, NULL }, 1079 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1080 IPI_PRIV | IPI_WR | IPI_REPL, 1081 IF_CMD, ip_sioctl_muxid, NULL }, 1082 1083 /* Both if and lif variants share same func */ 1084 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1086 /* Both if and lif variants share same func */ 1087 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1088 IPI_PRIV | IPI_WR | IPI_REPL, 1089 IF_CMD, ip_sioctl_slifindex, NULL }, 1090 1091 /* copyin size cannot be coded for SIOCGIFCONF */ 1092 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1093 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1094 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1113 IPI_PRIV | IPI_WR | IPI_REPL, 1114 LIF_CMD, ip_sioctl_removeif, 1115 ip_sioctl_removeif_restart }, 1116 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1117 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_addif, NULL }, 1119 #define SIOCLIFADDR_NDX 112 1120 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1121 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1122 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 LIF_CMD, ip_sioctl_get_addr, NULL }, 1125 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1127 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1130 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1131 IPI_PRIV | IPI_WR | IPI_REPL, 1132 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1133 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1134 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1135 LIF_CMD, ip_sioctl_get_flags, NULL }, 1136 1137 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 1140 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1141 ip_sioctl_get_lifconf, NULL }, 1142 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1143 LIF_CMD, ip_sioctl_mtu, NULL }, 1144 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1145 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1146 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1147 IPI_GET_CMD | IPI_REPL, 1148 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1149 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1151 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1154 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1156 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_metric, NULL }, 1159 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_metric, NULL }, 1161 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1162 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1163 LIF_CMD, ip_sioctl_slifname, 1164 ip_sioctl_slifname_restart }, 1165 1166 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1167 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1168 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1171 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1172 IPI_PRIV | IPI_WR | IPI_REPL, 1173 LIF_CMD, ip_sioctl_muxid, NULL }, 1174 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1175 IPI_GET_CMD | IPI_REPL, 1176 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1177 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 LIF_CMD, ip_sioctl_slifindex, 0 }, 1180 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1181 LIF_CMD, ip_sioctl_token, NULL }, 1182 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1183 IPI_GET_CMD | IPI_REPL, 1184 LIF_CMD, ip_sioctl_get_token, NULL }, 1185 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1187 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1190 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1192 1193 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1194 IPI_GET_CMD | IPI_REPL, 1195 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1196 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1197 LIF_CMD, ip_siocdelndp_v6, NULL }, 1198 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1199 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1200 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocsetndp_v6, NULL }, 1202 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1203 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1204 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tonlink, NULL }, 1206 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1207 MISC_CMD, ip_sioctl_tmysite, NULL }, 1208 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1209 TUN_CMD, ip_sioctl_tunparam, NULL }, 1210 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1211 IPI_PRIV | IPI_WR, 1212 TUN_CMD, ip_sioctl_tunparam, NULL }, 1213 1214 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1215 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1216 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 1220 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1223 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1224 IPI_PRIV | IPI_WR | IPI_REPL, 1225 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1226 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1227 IPI_PRIV | IPI_WR | IPI_REPL, 1228 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1229 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1230 IPI_GET_CMD | IPI_REPL, 1231 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1232 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1235 1236 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1237 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 1241 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1242 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1243 1244 /* These are handled in ip_sioctl_copyin_setup itself */ 1245 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1246 MISC_CMD, NULL, NULL }, 1247 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1250 1251 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1252 ip_sioctl_get_lifconf, NULL }, 1253 1254 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1255 XARP_CMD, ip_sioctl_arp, NULL }, 1256 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 1261 /* SIOCPOPSOCKFS is not handled by IP */ 1262 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1263 1264 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1265 IPI_GET_CMD | IPI_REPL, 1266 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1267 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1268 IPI_PRIV | IPI_WR | IPI_REPL, 1269 LIF_CMD, ip_sioctl_slifzone, 1270 ip_sioctl_slifzone_restart }, 1271 /* 172-174 are SCTP ioctls and not handled by IP */ 1272 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1276 IPI_GET_CMD, LIF_CMD, 1277 ip_sioctl_get_lifusesrc, 0 }, 1278 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1279 IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_slifusesrc, 1281 NULL }, 1282 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1283 ip_sioctl_get_lifsrcof, NULL }, 1284 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1285 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1286 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1293 ip_sioctl_set_ipmpfailback, NULL }, 1294 /* SIOCSENABLESDP is handled by SDP */ 1295 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1296 }; 1297 1298 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1299 1300 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1301 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1302 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1303 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1304 TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1306 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1312 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1313 MISC_CMD, mrt_ioctl}, 1314 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl} 1318 }; 1319 1320 int ip_misc_ioctl_count = 1321 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1322 1323 int conn_drain_nthreads; /* Number of drainers reqd. */ 1324 /* Settable in /etc/system */ 1325 /* Defined in ip_ire.c */ 1326 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1327 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1328 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1329 1330 static nv_t ire_nv_arr[] = { 1331 { IRE_BROADCAST, "BROADCAST" }, 1332 { IRE_LOCAL, "LOCAL" }, 1333 { IRE_LOOPBACK, "LOOPBACK" }, 1334 { IRE_CACHE, "CACHE" }, 1335 { IRE_DEFAULT, "DEFAULT" }, 1336 { IRE_PREFIX, "PREFIX" }, 1337 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1338 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1339 { IRE_HOST, "HOST" }, 1340 { 0 } 1341 }; 1342 1343 nv_t *ire_nv_tbl = ire_nv_arr; 1344 1345 /* Simple ICMP IP Header Template */ 1346 static ipha_t icmp_ipha = { 1347 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1348 }; 1349 1350 struct module_info ip_mod_info = { 1351 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1352 }; 1353 1354 /* 1355 * Duplicate static symbols within a module confuses mdb; so we avoid the 1356 * problem by making the symbols here distinct from those in udp.c. 1357 */ 1358 1359 /* 1360 * Entry points for IP as a device and as a module. 1361 * FIXME: down the road we might want a separate module and driver qinit. 1362 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1363 */ 1364 static struct qinit iprinitv4 = { 1365 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1366 &ip_mod_info 1367 }; 1368 1369 struct qinit iprinitv6 = { 1370 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1371 &ip_mod_info 1372 }; 1373 1374 static struct qinit ipwinitv4 = { 1375 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 struct qinit ipwinitv6 = { 1380 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit iplrinit = { 1385 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplwinit = { 1390 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 /* For AF_INET aka /dev/ip */ 1395 struct streamtab ipinfov4 = { 1396 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1397 }; 1398 1399 /* For AF_INET6 aka /dev/ip6 */ 1400 struct streamtab ipinfov6 = { 1401 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1402 }; 1403 1404 #ifdef DEBUG 1405 static boolean_t skip_sctp_cksum = B_FALSE; 1406 #endif 1407 1408 /* 1409 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1410 * ip_rput_v6(), ip_output(), etc. If the message 1411 * block already has a M_CTL at the front of it, then simply set the zoneid 1412 * appropriately. 1413 */ 1414 mblk_t * 1415 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1416 { 1417 mblk_t *first_mp; 1418 ipsec_out_t *io; 1419 1420 ASSERT(zoneid != ALL_ZONES); 1421 if (mp->b_datap->db_type == M_CTL) { 1422 io = (ipsec_out_t *)mp->b_rptr; 1423 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1424 io->ipsec_out_zoneid = zoneid; 1425 return (mp); 1426 } 1427 1428 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1429 if (first_mp == NULL) 1430 return (NULL); 1431 io = (ipsec_out_t *)first_mp->b_rptr; 1432 /* This is not a secure packet */ 1433 io->ipsec_out_secure = B_FALSE; 1434 io->ipsec_out_zoneid = zoneid; 1435 first_mp->b_cont = mp; 1436 return (first_mp); 1437 } 1438 1439 /* 1440 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1441 */ 1442 mblk_t * 1443 ip_copymsg(mblk_t *mp) 1444 { 1445 mblk_t *nmp; 1446 ipsec_info_t *in; 1447 1448 if (mp->b_datap->db_type != M_CTL) 1449 return (copymsg(mp)); 1450 1451 in = (ipsec_info_t *)mp->b_rptr; 1452 1453 /* 1454 * Note that M_CTL is also used for delivering ICMP error messages 1455 * upstream to transport layers. 1456 */ 1457 if (in->ipsec_info_type != IPSEC_OUT && 1458 in->ipsec_info_type != IPSEC_IN) 1459 return (copymsg(mp)); 1460 1461 nmp = copymsg(mp->b_cont); 1462 1463 if (in->ipsec_info_type == IPSEC_OUT) { 1464 return (ipsec_out_tag(mp, nmp, 1465 ((ipsec_out_t *)in)->ipsec_out_ns)); 1466 } else { 1467 return (ipsec_in_tag(mp, nmp, 1468 ((ipsec_in_t *)in)->ipsec_in_ns)); 1469 } 1470 } 1471 1472 /* Generate an ICMP fragmentation needed message. */ 1473 static void 1474 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1475 ip_stack_t *ipst) 1476 { 1477 icmph_t icmph; 1478 mblk_t *first_mp; 1479 boolean_t mctl_present; 1480 1481 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1482 1483 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1484 if (mctl_present) 1485 freeb(first_mp); 1486 return; 1487 } 1488 1489 bzero(&icmph, sizeof (icmph_t)); 1490 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1491 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1492 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1493 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1494 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1495 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1496 ipst); 1497 } 1498 1499 /* 1500 * icmp_inbound deals with ICMP messages in the following ways. 1501 * 1502 * 1) It needs to send a reply back and possibly delivering it 1503 * to the "interested" upper clients. 1504 * 2) It needs to send it to the upper clients only. 1505 * 3) It needs to change some values in IP only. 1506 * 4) It needs to change some values in IP and upper layers e.g TCP. 1507 * 1508 * We need to accomodate icmp messages coming in clear until we get 1509 * everything secure from the wire. If icmp_accept_clear_messages 1510 * is zero we check with the global policy and act accordingly. If 1511 * it is non-zero, we accept the message without any checks. But 1512 * *this does not mean* that this will be delivered to the upper 1513 * clients. By accepting we might send replies back, change our MTU 1514 * value etc. but delivery to the ULP/clients depends on their policy 1515 * dispositions. 1516 * 1517 * We handle the above 4 cases in the context of IPsec in the 1518 * following way : 1519 * 1520 * 1) Send the reply back in the same way as the request came in. 1521 * If it came in encrypted, it goes out encrypted. If it came in 1522 * clear, it goes out in clear. Thus, this will prevent chosen 1523 * plain text attack. 1524 * 2) The client may or may not expect things to come in secure. 1525 * If it comes in secure, the policy constraints are checked 1526 * before delivering it to the upper layers. If it comes in 1527 * clear, ipsec_inbound_accept_clear will decide whether to 1528 * accept this in clear or not. In both the cases, if the returned 1529 * message (IP header + 8 bytes) that caused the icmp message has 1530 * AH/ESP headers, it is sent up to AH/ESP for validation before 1531 * sending up. If there are only 8 bytes of returned message, then 1532 * upper client will not be notified. 1533 * 3) Check with global policy to see whether it matches the constaints. 1534 * But this will be done only if icmp_accept_messages_in_clear is 1535 * zero. 1536 * 4) If we need to change both in IP and ULP, then the decision taken 1537 * while affecting the values in IP and while delivering up to TCP 1538 * should be the same. 1539 * 1540 * There are two cases. 1541 * 1542 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1543 * failed), we will not deliver it to the ULP, even though they 1544 * are *willing* to accept in *clear*. This is fine as our global 1545 * disposition to icmp messages asks us reject the datagram. 1546 * 1547 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1548 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1549 * to deliver it to ULP (policy failed), it can lead to 1550 * consistency problems. The cases known at this time are 1551 * ICMP_DESTINATION_UNREACHABLE messages with following code 1552 * values : 1553 * 1554 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1555 * and Upper layer rejects. Then the communication will 1556 * come to a stop. This is solved by making similar decisions 1557 * at both levels. Currently, when we are unable to deliver 1558 * to the Upper Layer (due to policy failures) while IP has 1559 * adjusted ire_max_frag, the next outbound datagram would 1560 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1561 * will be with the right level of protection. Thus the right 1562 * value will be communicated even if we are not able to 1563 * communicate when we get from the wire initially. But this 1564 * assumes there would be at least one outbound datagram after 1565 * IP has adjusted its ire_max_frag value. To make things 1566 * simpler, we accept in clear after the validation of 1567 * AH/ESP headers. 1568 * 1569 * - Other ICMP ERRORS : We may not be able to deliver it to the 1570 * upper layer depending on the level of protection the upper 1571 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1572 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1573 * should be accepted in clear when the Upper layer expects secure. 1574 * Thus the communication may get aborted by some bad ICMP 1575 * packets. 1576 * 1577 * IPQoS Notes: 1578 * The only instance when a packet is sent for processing is when there 1579 * isn't an ICMP client and if we are interested in it. 1580 * If there is a client, IPPF processing will take place in the 1581 * ip_fanout_proto routine. 1582 * 1583 * Zones notes: 1584 * The packet is only processed in the context of the specified zone: typically 1585 * only this zone will reply to an echo request, and only interested clients in 1586 * this zone will receive a copy of the packet. This means that the caller must 1587 * call icmp_inbound() for each relevant zone. 1588 */ 1589 static void 1590 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1591 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1592 ill_t *recv_ill, zoneid_t zoneid) 1593 { 1594 icmph_t *icmph; 1595 ipha_t *ipha; 1596 int iph_hdr_length; 1597 int hdr_length; 1598 boolean_t interested; 1599 uint32_t ts; 1600 uchar_t *wptr; 1601 ipif_t *ipif; 1602 mblk_t *first_mp; 1603 ipsec_in_t *ii; 1604 ire_t *src_ire; 1605 boolean_t onlink; 1606 timestruc_t now; 1607 uint32_t ill_index; 1608 ip_stack_t *ipst; 1609 1610 ASSERT(ill != NULL); 1611 ipst = ill->ill_ipst; 1612 1613 first_mp = mp; 1614 if (mctl_present) { 1615 mp = first_mp->b_cont; 1616 ASSERT(mp != NULL); 1617 } 1618 1619 ipha = (ipha_t *)mp->b_rptr; 1620 if (ipst->ips_icmp_accept_clear_messages == 0) { 1621 first_mp = ipsec_check_global_policy(first_mp, NULL, 1622 ipha, NULL, mctl_present, ipst->ips_netstack); 1623 if (first_mp == NULL) 1624 return; 1625 } 1626 1627 /* 1628 * On a labeled system, we have to check whether the zone itself is 1629 * permitted to receive raw traffic. 1630 */ 1631 if (is_system_labeled()) { 1632 if (zoneid == ALL_ZONES) 1633 zoneid = tsol_packet_to_zoneid(mp); 1634 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1635 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1636 zoneid)); 1637 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1638 freemsg(first_mp); 1639 return; 1640 } 1641 } 1642 1643 /* 1644 * We have accepted the ICMP message. It means that we will 1645 * respond to the packet if needed. It may not be delivered 1646 * to the upper client depending on the policy constraints 1647 * and the disposition in ipsec_inbound_accept_clear. 1648 */ 1649 1650 ASSERT(ill != NULL); 1651 1652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1653 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1654 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1655 /* Last chance to get real. */ 1656 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1658 freemsg(first_mp); 1659 return; 1660 } 1661 /* Refresh iph following the pullup. */ 1662 ipha = (ipha_t *)mp->b_rptr; 1663 } 1664 /* ICMP header checksum, including checksum field, should be zero. */ 1665 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1666 IP_CSUM(mp, iph_hdr_length, 0)) { 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1668 freemsg(first_mp); 1669 return; 1670 } 1671 /* The IP header will always be a multiple of four bytes */ 1672 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1673 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1674 icmph->icmph_code)); 1675 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1676 /* We will set "interested" to "true" if we want a copy */ 1677 interested = B_FALSE; 1678 switch (icmph->icmph_type) { 1679 case ICMP_ECHO_REPLY: 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1681 break; 1682 case ICMP_DEST_UNREACHABLE: 1683 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1685 interested = B_TRUE; /* Pass up to transport */ 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1687 break; 1688 case ICMP_SOURCE_QUENCH: 1689 interested = B_TRUE; /* Pass up to transport */ 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1691 break; 1692 case ICMP_REDIRECT: 1693 if (!ipst->ips_ip_ignore_redirect) 1694 interested = B_TRUE; 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1696 break; 1697 case ICMP_ECHO_REQUEST: 1698 /* 1699 * Whether to respond to echo requests that come in as IP 1700 * broadcasts or as IP multicast is subject to debate 1701 * (what isn't?). We aim to please, you pick it. 1702 * Default is do it. 1703 */ 1704 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1705 /* unicast: always respond */ 1706 interested = B_TRUE; 1707 } else if (CLASSD(ipha->ipha_dst)) { 1708 /* multicast: respond based on tunable */ 1709 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1710 } else if (broadcast) { 1711 /* broadcast: respond based on tunable */ 1712 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1713 } 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1715 break; 1716 case ICMP_ROUTER_ADVERTISEMENT: 1717 case ICMP_ROUTER_SOLICITATION: 1718 break; 1719 case ICMP_TIME_EXCEEDED: 1720 interested = B_TRUE; /* Pass up to transport */ 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1722 break; 1723 case ICMP_PARAM_PROBLEM: 1724 interested = B_TRUE; /* Pass up to transport */ 1725 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1726 break; 1727 case ICMP_TIME_STAMP_REQUEST: 1728 /* Response to Time Stamp Requests is local policy. */ 1729 if (ipst->ips_ip_g_resp_to_timestamp && 1730 /* So is whether to respond if it was an IP broadcast. */ 1731 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1732 int tstamp_len = 3 * sizeof (uint32_t); 1733 1734 if (wptr + tstamp_len > mp->b_wptr) { 1735 if (!pullupmsg(mp, wptr + tstamp_len - 1736 mp->b_rptr)) { 1737 BUMP_MIB(ill->ill_ip_mib, 1738 ipIfStatsInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1760 !broadcast) && 1761 /* TODO m_pullup of complete header? */ 1762 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1763 interested = B_TRUE; 1764 } 1765 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1766 break; 1767 case ICMP_ADDRESS_MASK_REPLY: 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1769 break; 1770 default: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1773 break; 1774 } 1775 /* See if there is an ICMP client. */ 1776 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1777 /* If there is an ICMP client and we want one too, copy it. */ 1778 mblk_t *first_mp1; 1779 1780 if (!interested) { 1781 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1782 ip_policy, recv_ill, zoneid); 1783 return; 1784 } 1785 first_mp1 = ip_copymsg(first_mp); 1786 if (first_mp1 != NULL) { 1787 ip_fanout_proto(q, first_mp1, ill, ipha, 1788 0, mctl_present, ip_policy, recv_ill, zoneid); 1789 } 1790 } else if (!interested) { 1791 freemsg(first_mp); 1792 return; 1793 } else { 1794 /* 1795 * Initiate policy processing for this packet if ip_policy 1796 * is true. 1797 */ 1798 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1799 ill_index = ill->ill_phyint->phyint_ifindex; 1800 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1801 if (mp == NULL) { 1802 if (mctl_present) { 1803 freeb(first_mp); 1804 } 1805 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1806 return; 1807 } 1808 } 1809 } 1810 /* We want to do something with it. */ 1811 /* Check db_ref to make sure we can modify the packet. */ 1812 if (mp->b_datap->db_ref > 1) { 1813 mblk_t *first_mp1; 1814 1815 first_mp1 = ip_copymsg(first_mp); 1816 freemsg(first_mp); 1817 if (!first_mp1) { 1818 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1819 return; 1820 } 1821 first_mp = first_mp1; 1822 if (mctl_present) { 1823 mp = first_mp->b_cont; 1824 ASSERT(mp != NULL); 1825 } else { 1826 mp = first_mp; 1827 } 1828 ipha = (ipha_t *)mp->b_rptr; 1829 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1830 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1831 } 1832 switch (icmph->icmph_type) { 1833 case ICMP_ADDRESS_MASK_REQUEST: 1834 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1835 if (ipif == NULL) { 1836 freemsg(first_mp); 1837 return; 1838 } 1839 /* 1840 * outging interface must be IPv4 1841 */ 1842 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1843 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1844 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1845 ipif_refrele(ipif); 1846 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1847 break; 1848 case ICMP_ECHO_REQUEST: 1849 icmph->icmph_type = ICMP_ECHO_REPLY; 1850 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1851 break; 1852 case ICMP_TIME_STAMP_REQUEST: { 1853 uint32_t *tsp; 1854 1855 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1856 tsp = (uint32_t *)wptr; 1857 tsp++; /* Skip past 'originate time' */ 1858 /* Compute # of milliseconds since midnight */ 1859 gethrestime(&now); 1860 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1861 now.tv_nsec / (NANOSEC / MILLISEC); 1862 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1863 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1864 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1865 break; 1866 } 1867 default: 1868 ipha = (ipha_t *)&icmph[1]; 1869 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1870 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1876 ipha = (ipha_t *)&icmph[1]; 1877 } 1878 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 hdr_length = IPH_HDR_LENGTH(ipha); 1884 if (hdr_length < sizeof (ipha_t)) { 1885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1886 freemsg(first_mp); 1887 return; 1888 } 1889 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1890 if (!pullupmsg(mp, 1891 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1893 freemsg(first_mp); 1894 return; 1895 } 1896 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1897 ipha = (ipha_t *)&icmph[1]; 1898 } 1899 switch (icmph->icmph_type) { 1900 case ICMP_REDIRECT: 1901 /* 1902 * As there is no upper client to deliver, we don't 1903 * need the first_mp any more. 1904 */ 1905 if (mctl_present) { 1906 freeb(first_mp); 1907 } 1908 icmp_redirect(ill, mp); 1909 return; 1910 case ICMP_DEST_UNREACHABLE: 1911 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1912 if (!icmp_inbound_too_big(icmph, ipha, ill, 1913 zoneid, mp, iph_hdr_length, ipst)) { 1914 freemsg(first_mp); 1915 return; 1916 } 1917 /* 1918 * icmp_inbound_too_big() may alter mp. 1919 * Resynch ipha and icmph accordingly. 1920 */ 1921 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1922 ipha = (ipha_t *)&icmph[1]; 1923 } 1924 /* FALLTHRU */ 1925 default : 1926 /* 1927 * IPQoS notes: Since we have already done IPQoS 1928 * processing we don't want to do it again in 1929 * the fanout routines called by 1930 * icmp_inbound_error_fanout, hence the last 1931 * argument, ip_policy, is B_FALSE. 1932 */ 1933 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1934 ipha, iph_hdr_length, hdr_length, mctl_present, 1935 B_FALSE, recv_ill, zoneid); 1936 } 1937 return; 1938 } 1939 /* Send out an ICMP packet */ 1940 icmph->icmph_checksum = 0; 1941 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1942 if (broadcast || CLASSD(ipha->ipha_dst)) { 1943 ipif_t *ipif_chosen; 1944 /* 1945 * Make it look like it was directed to us, so we don't look 1946 * like a fool with a broadcast or multicast source address. 1947 */ 1948 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1949 /* 1950 * Make sure that we haven't grabbed an interface that's DOWN. 1951 */ 1952 if (ipif != NULL) { 1953 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1954 ipha->ipha_src, zoneid); 1955 if (ipif_chosen != NULL) { 1956 ipif_refrele(ipif); 1957 ipif = ipif_chosen; 1958 } 1959 } 1960 if (ipif == NULL) { 1961 ip0dbg(("icmp_inbound: " 1962 "No source for broadcast/multicast:\n" 1963 "\tsrc 0x%x dst 0x%x ill %p " 1964 "ipif_lcl_addr 0x%x\n", 1965 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1966 (void *)ill, 1967 ill->ill_ipif->ipif_lcl_addr)); 1968 freemsg(first_mp); 1969 return; 1970 } 1971 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1972 ipha->ipha_dst = ipif->ipif_src_addr; 1973 ipif_refrele(ipif); 1974 } 1975 /* Reset time to live. */ 1976 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1977 { 1978 /* Swap source and destination addresses */ 1979 ipaddr_t tmp; 1980 1981 tmp = ipha->ipha_src; 1982 ipha->ipha_src = ipha->ipha_dst; 1983 ipha->ipha_dst = tmp; 1984 } 1985 ipha->ipha_ident = 0; 1986 if (!IS_SIMPLE_IPH(ipha)) 1987 icmp_options_update(ipha); 1988 1989 /* 1990 * ICMP echo replies should go out on the same interface 1991 * the request came on as probes used by in.mpathd for detecting 1992 * NIC failures are ECHO packets. We turn-off load spreading 1993 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1994 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1995 * function. This is in turn handled by ip_wput and ip_newroute 1996 * to make sure that the packet goes out on the interface it came 1997 * in on. If we don't turnoff load spreading, the packets might get 1998 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1999 * to go out and in.mpathd would wrongly detect a failure or 2000 * mis-detect a NIC failure for link failure. As load spreading 2001 * can happen only if ill_group is not NULL, we do only for 2002 * that case and this does not affect the normal case. 2003 * 2004 * We turn off load spreading only on echo packets that came from 2005 * on-link hosts. If the interface route has been deleted, this will 2006 * not be enforced as we can't do much. For off-link hosts, as the 2007 * default routes in IPv4 does not typically have an ire_ipif 2008 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2009 * Moreover, expecting a default route through this interface may 2010 * not be correct. We use ipha_dst because of the swap above. 2011 */ 2012 onlink = B_FALSE; 2013 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2014 /* 2015 * First, we need to make sure that it is not one of our 2016 * local addresses. If we set onlink when it is one of 2017 * our local addresses, we will end up creating IRE_CACHES 2018 * for one of our local addresses. Then, we will never 2019 * accept packets for them afterwards. 2020 */ 2021 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2022 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2023 if (src_ire == NULL) { 2024 ipif = ipif_get_next_ipif(NULL, ill); 2025 if (ipif == NULL) { 2026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2027 freemsg(mp); 2028 return; 2029 } 2030 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2031 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2032 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2033 ipif_refrele(ipif); 2034 if (src_ire != NULL) { 2035 onlink = B_TRUE; 2036 ire_refrele(src_ire); 2037 } 2038 } else { 2039 ire_refrele(src_ire); 2040 } 2041 } 2042 if (!mctl_present) { 2043 /* 2044 * This packet should go out the same way as it 2045 * came in i.e in clear. To make sure that global 2046 * policy will not be applied to this in ip_wput_ire, 2047 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2048 */ 2049 ASSERT(first_mp == mp); 2050 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2051 if (first_mp == NULL) { 2052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2053 freemsg(mp); 2054 return; 2055 } 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 2058 /* This is not a secure packet */ 2059 ii->ipsec_in_secure = B_FALSE; 2060 if (onlink) { 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = 2063 ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = 2065 recv_ill->ill_phyint->phyint_ifindex; 2066 } 2067 first_mp->b_cont = mp; 2068 } else if (onlink) { 2069 ii = (ipsec_in_t *)first_mp->b_rptr; 2070 ii->ipsec_in_attach_if = B_TRUE; 2071 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2074 } else { 2075 ii = (ipsec_in_t *)first_mp->b_rptr; 2076 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2077 } 2078 ii->ipsec_in_zoneid = zoneid; 2079 ASSERT(zoneid != ALL_ZONES); 2080 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2082 return; 2083 } 2084 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2085 put(WR(q), first_mp); 2086 } 2087 2088 static ipaddr_t 2089 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2090 { 2091 conn_t *connp; 2092 connf_t *connfp; 2093 ipaddr_t nexthop_addr = INADDR_ANY; 2094 int hdr_length = IPH_HDR_LENGTH(ipha); 2095 uint16_t *up; 2096 uint32_t ports; 2097 ip_stack_t *ipst = ill->ill_ipst; 2098 2099 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2100 switch (ipha->ipha_protocol) { 2101 case IPPROTO_TCP: 2102 { 2103 tcph_t *tcph; 2104 2105 /* do a reverse lookup */ 2106 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2107 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2108 TCPS_LISTEN, ipst); 2109 break; 2110 } 2111 case IPPROTO_UDP: 2112 { 2113 uint32_t dstport, srcport; 2114 2115 ((uint16_t *)&ports)[0] = up[1]; 2116 ((uint16_t *)&ports)[1] = up[0]; 2117 2118 /* Extract ports in net byte order */ 2119 dstport = htons(ntohl(ports) & 0xFFFF); 2120 srcport = htons(ntohl(ports) >> 16); 2121 2122 connfp = &ipst->ips_ipcl_udp_fanout[ 2123 IPCL_UDP_HASH(dstport, ipst)]; 2124 mutex_enter(&connfp->connf_lock); 2125 connp = connfp->connf_head; 2126 2127 /* do a reverse lookup */ 2128 while ((connp != NULL) && 2129 (!IPCL_UDP_MATCH(connp, dstport, 2130 ipha->ipha_src, srcport, ipha->ipha_dst) || 2131 !IPCL_ZONE_MATCH(connp, zoneid))) { 2132 connp = connp->conn_next; 2133 } 2134 if (connp != NULL) 2135 CONN_INC_REF(connp); 2136 mutex_exit(&connfp->connf_lock); 2137 break; 2138 } 2139 case IPPROTO_SCTP: 2140 { 2141 in6_addr_t map_src, map_dst; 2142 2143 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2145 ((uint16_t *)&ports)[0] = up[1]; 2146 ((uint16_t *)&ports)[1] = up[0]; 2147 2148 connp = sctp_find_conn(&map_src, &map_dst, ports, 2149 zoneid, ipst->ips_netstack->netstack_sctp); 2150 if (connp == NULL) { 2151 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2152 zoneid, ports, ipha, ipst); 2153 } else { 2154 CONN_INC_REF(connp); 2155 SCTP_REFRELE(CONN2SCTP(connp)); 2156 } 2157 break; 2158 } 2159 default: 2160 { 2161 ipha_t ripha; 2162 2163 ripha.ipha_src = ipha->ipha_dst; 2164 ripha.ipha_dst = ipha->ipha_src; 2165 ripha.ipha_protocol = ipha->ipha_protocol; 2166 2167 connfp = &ipst->ips_ipcl_proto_fanout[ 2168 ipha->ipha_protocol]; 2169 mutex_enter(&connfp->connf_lock); 2170 connp = connfp->connf_head; 2171 for (connp = connfp->connf_head; connp != NULL; 2172 connp = connp->conn_next) { 2173 if (IPCL_PROTO_MATCH(connp, 2174 ipha->ipha_protocol, &ripha, ill, 2175 0, zoneid)) { 2176 CONN_INC_REF(connp); 2177 break; 2178 } 2179 } 2180 mutex_exit(&connfp->connf_lock); 2181 } 2182 } 2183 if (connp != NULL) { 2184 if (connp->conn_nexthop_set) 2185 nexthop_addr = connp->conn_nexthop_v4; 2186 CONN_DEC_REF(connp); 2187 } 2188 return (nexthop_addr); 2189 } 2190 2191 /* Table from RFC 1191 */ 2192 static int icmp_frag_size_table[] = 2193 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2194 2195 /* 2196 * Process received ICMP Packet too big. 2197 * After updating any IRE it does the fanout to any matching transport streams. 2198 * Assumes the message has been pulled up till the IP header that caused 2199 * the error. 2200 * 2201 * Returns B_FALSE on failure and B_TRUE on success. 2202 */ 2203 static boolean_t 2204 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2205 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2206 ip_stack_t *ipst) 2207 { 2208 ire_t *ire, *first_ire; 2209 int mtu; 2210 int hdr_length; 2211 ipaddr_t nexthop_addr; 2212 2213 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2214 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2215 ASSERT(ill != NULL); 2216 2217 hdr_length = IPH_HDR_LENGTH(ipha); 2218 2219 /* Drop if the original packet contained a source route */ 2220 if (ip_source_route_included(ipha)) { 2221 return (B_FALSE); 2222 } 2223 /* 2224 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2225 * header. 2226 */ 2227 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2228 mp->b_wptr) { 2229 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2230 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2232 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2233 return (B_FALSE); 2234 } 2235 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2236 ipha = (ipha_t *)&icmph[1]; 2237 } 2238 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2239 if (nexthop_addr != INADDR_ANY) { 2240 /* nexthop set */ 2241 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2242 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2243 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2244 } else { 2245 /* nexthop not set */ 2246 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2247 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2248 } 2249 2250 if (!first_ire) { 2251 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2252 ntohl(ipha->ipha_dst))); 2253 return (B_FALSE); 2254 } 2255 /* Check for MTU discovery advice as described in RFC 1191 */ 2256 mtu = ntohs(icmph->icmph_du_mtu); 2257 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2258 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2259 ire = ire->ire_next) { 2260 /* 2261 * Look for the connection to which this ICMP message is 2262 * directed. If it has the IP_NEXTHOP option set, then the 2263 * search is limited to IREs with the MATCH_IRE_PRIVATE 2264 * option. Else the search is limited to regular IREs. 2265 */ 2266 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2267 (nexthop_addr != ire->ire_gateway_addr)) || 2268 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != INADDR_ANY))) 2270 continue; 2271 2272 mutex_enter(&ire->ire_lock); 2273 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2274 /* Reduce the IRE max frag value as advised. */ 2275 ip1dbg(("Received mtu from router: %d (was %d)\n", 2276 mtu, ire->ire_max_frag)); 2277 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2278 } else { 2279 uint32_t length; 2280 int i; 2281 2282 /* 2283 * Use the table from RFC 1191 to figure out 2284 * the next "plateau" based on the length in 2285 * the original IP packet. 2286 */ 2287 length = ntohs(ipha->ipha_length); 2288 if (ire->ire_max_frag <= length && 2289 ire->ire_max_frag >= length - hdr_length) { 2290 /* 2291 * Handle broken BSD 4.2 systems that 2292 * return the wrong iph_length in ICMP 2293 * errors. 2294 */ 2295 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2296 length, ire->ire_max_frag)); 2297 length -= hdr_length; 2298 } 2299 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2300 if (length > icmp_frag_size_table[i]) 2301 break; 2302 } 2303 if (i == A_CNT(icmp_frag_size_table)) { 2304 /* Smaller than 68! */ 2305 ip1dbg(("Too big for packet size %d\n", 2306 length)); 2307 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2308 ire->ire_frag_flag = 0; 2309 } else { 2310 mtu = icmp_frag_size_table[i]; 2311 ip1dbg(("Calculated mtu %d, packet size %d, " 2312 "before %d", mtu, length, 2313 ire->ire_max_frag)); 2314 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2315 ip1dbg((", after %d\n", ire->ire_max_frag)); 2316 } 2317 /* Record the new max frag size for the ULP. */ 2318 icmph->icmph_du_zero = 0; 2319 icmph->icmph_du_mtu = 2320 htons((uint16_t)ire->ire_max_frag); 2321 } 2322 mutex_exit(&ire->ire_lock); 2323 } 2324 rw_exit(&first_ire->ire_bucket->irb_lock); 2325 ire_refrele(first_ire); 2326 return (B_TRUE); 2327 } 2328 2329 /* 2330 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2331 * calls this function. 2332 */ 2333 static mblk_t * 2334 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2335 { 2336 ipha_t *ipha; 2337 icmph_t *icmph; 2338 ipha_t *in_ipha; 2339 int length; 2340 2341 ASSERT(mp->b_datap->db_type == M_DATA); 2342 2343 /* 2344 * For Self-encapsulated packets, we added an extra IP header 2345 * without the options. Inner IP header is the one from which 2346 * the outer IP header was formed. Thus, we need to remove the 2347 * outer IP header. To do this, we pullup the whole message 2348 * and overlay whatever follows the outer IP header over the 2349 * outer IP header. 2350 */ 2351 2352 if (!pullupmsg(mp, -1)) 2353 return (NULL); 2354 2355 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2356 ipha = (ipha_t *)&icmph[1]; 2357 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2358 2359 /* 2360 * The length that we want to overlay is following the inner 2361 * IP header. Subtracting the IP header + icmp header + outer 2362 * IP header's length should give us the length that we want to 2363 * overlay. 2364 */ 2365 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2366 hdr_length; 2367 /* 2368 * Overlay whatever follows the inner header over the 2369 * outer header. 2370 */ 2371 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2372 2373 /* Set the wptr to account for the outer header */ 2374 mp->b_wptr -= hdr_length; 2375 return (mp); 2376 } 2377 2378 /* 2379 * Try to pass the ICMP message upstream in case the ULP cares. 2380 * 2381 * If the packet that caused the ICMP error is secure, we send 2382 * it to AH/ESP to make sure that the attached packet has a 2383 * valid association. ipha in the code below points to the 2384 * IP header of the packet that caused the error. 2385 * 2386 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2387 * in the context of IPsec. Normally we tell the upper layer 2388 * whenever we send the ire (including ip_bind), the IPsec header 2389 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2390 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2391 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2392 * same thing. As TCP has the IPsec options size that needs to be 2393 * adjusted, we just pass the MTU unchanged. 2394 * 2395 * IFN could have been generated locally or by some router. 2396 * 2397 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2398 * This happens because IP adjusted its value of MTU on an 2399 * earlier IFN message and could not tell the upper layer, 2400 * the new adjusted value of MTU e.g. Packet was encrypted 2401 * or there was not enough information to fanout to upper 2402 * layers. Thus on the next outbound datagram, ip_wput_ire 2403 * generates the IFN, where IPsec processing has *not* been 2404 * done. 2405 * 2406 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2407 * could have generated this. This happens because ire_max_frag 2408 * value in IP was set to a new value, while the IPsec processing 2409 * was being done and after we made the fragmentation check in 2410 * ip_wput_ire. Thus on return from IPsec processing, 2411 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2412 * and generates the IFN. As IPsec processing is over, we fanout 2413 * to AH/ESP to remove the header. 2414 * 2415 * In both these cases, ipsec_in_loopback will be set indicating 2416 * that IFN was generated locally. 2417 * 2418 * ROUTER : IFN could be secure or non-secure. 2419 * 2420 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2421 * packet in error has AH/ESP headers to validate the AH/ESP 2422 * headers. AH/ESP will verify whether there is a valid SA or 2423 * not and send it back. We will fanout again if we have more 2424 * data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 * 2429 * * NON_SECURE : If the packet in error has AH/ESP headers, 2430 * we attach a dummy ipsec_in and send it up to AH/ESP 2431 * for validation. AH/ESP will verify whether there is a 2432 * valid SA or not and send it back. We will fanout again if 2433 * we have more data in the packet. 2434 * 2435 * If the packet in error does not have AH/ESP, we handle it 2436 * like any other case. 2437 */ 2438 static void 2439 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2440 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2441 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2442 zoneid_t zoneid) 2443 { 2444 uint16_t *up; /* Pointer to ports in ULP header */ 2445 uint32_t ports; /* reversed ports for fanout */ 2446 ipha_t ripha; /* With reversed addresses */ 2447 mblk_t *first_mp; 2448 ipsec_in_t *ii; 2449 tcph_t *tcph; 2450 conn_t *connp; 2451 ip_stack_t *ipst; 2452 2453 ASSERT(ill != NULL); 2454 2455 ASSERT(recv_ill != NULL); 2456 ipst = recv_ill->ill_ipst; 2457 2458 first_mp = mp; 2459 if (mctl_present) { 2460 mp = first_mp->b_cont; 2461 ASSERT(mp != NULL); 2462 2463 ii = (ipsec_in_t *)first_mp->b_rptr; 2464 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2465 } else { 2466 ii = NULL; 2467 } 2468 2469 switch (ipha->ipha_protocol) { 2470 case IPPROTO_UDP: 2471 /* 2472 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2473 * transport header. 2474 */ 2475 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2476 mp->b_wptr) { 2477 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2478 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2479 goto discard_pkt; 2480 } 2481 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2482 ipha = (ipha_t *)&icmph[1]; 2483 } 2484 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2485 2486 /* 2487 * Attempt to find a client stream based on port. 2488 * Note that we do a reverse lookup since the header is 2489 * in the form we sent it out. 2490 * The ripha header is only used for the IP_UDP_MATCH and we 2491 * only set the src and dst addresses and protocol. 2492 */ 2493 ripha.ipha_src = ipha->ipha_dst; 2494 ripha.ipha_dst = ipha->ipha_src; 2495 ripha.ipha_protocol = ipha->ipha_protocol; 2496 ((uint16_t *)&ports)[0] = up[1]; 2497 ((uint16_t *)&ports)[1] = up[0]; 2498 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2499 ntohl(ipha->ipha_src), ntohs(up[0]), 2500 ntohl(ipha->ipha_dst), ntohs(up[1]), 2501 icmph->icmph_type, icmph->icmph_code)); 2502 2503 /* Have to change db_type after any pullupmsg */ 2504 DB_TYPE(mp) = M_CTL; 2505 2506 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2507 mctl_present, ip_policy, recv_ill, zoneid); 2508 return; 2509 2510 case IPPROTO_TCP: 2511 /* 2512 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2513 * transport header. 2514 */ 2515 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2518 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2519 goto discard_pkt; 2520 } 2521 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2522 ipha = (ipha_t *)&icmph[1]; 2523 } 2524 /* 2525 * Find a TCP client stream for this packet. 2526 * Note that we do a reverse lookup since the header is 2527 * in the form we sent it out. 2528 */ 2529 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2530 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2531 ipst); 2532 if (connp == NULL) 2533 goto discard_pkt; 2534 2535 /* Have to change db_type after any pullupmsg */ 2536 DB_TYPE(mp) = M_CTL; 2537 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2538 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2539 return; 2540 2541 case IPPROTO_SCTP: 2542 /* 2543 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2544 * transport header. 2545 */ 2546 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2547 mp->b_wptr) { 2548 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2549 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2550 goto discard_pkt; 2551 } 2552 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2553 ipha = (ipha_t *)&icmph[1]; 2554 } 2555 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2556 /* 2557 * Find a SCTP client stream for this packet. 2558 * Note that we do a reverse lookup since the header is 2559 * in the form we sent it out. 2560 * The ripha header is only used for the matching and we 2561 * only set the src and dst addresses, protocol, and version. 2562 */ 2563 ripha.ipha_src = ipha->ipha_dst; 2564 ripha.ipha_dst = ipha->ipha_src; 2565 ripha.ipha_protocol = ipha->ipha_protocol; 2566 ripha.ipha_version_and_hdr_length = 2567 ipha->ipha_version_and_hdr_length; 2568 ((uint16_t *)&ports)[0] = up[1]; 2569 ((uint16_t *)&ports)[1] = up[0]; 2570 2571 /* Have to change db_type after any pullupmsg */ 2572 DB_TYPE(mp) = M_CTL; 2573 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2574 mctl_present, ip_policy, zoneid); 2575 return; 2576 2577 case IPPROTO_ESP: 2578 case IPPROTO_AH: { 2579 int ipsec_rc; 2580 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2581 2582 /* 2583 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2584 * We will re-use the IPSEC_IN if it is already present as 2585 * AH/ESP will not affect any fields in the IPSEC_IN for 2586 * ICMP errors. If there is no IPSEC_IN, allocate a new 2587 * one and attach it in the front. 2588 */ 2589 if (ii != NULL) { 2590 /* 2591 * ip_fanout_proto_again converts the ICMP errors 2592 * that come back from AH/ESP to M_DATA so that 2593 * if it is non-AH/ESP and we do a pullupmsg in 2594 * this function, it would work. Convert it back 2595 * to M_CTL before we send up as this is a ICMP 2596 * error. This could have been generated locally or 2597 * by some router. Validate the inner IPsec 2598 * headers. 2599 * 2600 * NOTE : ill_index is used by ip_fanout_proto_again 2601 * to locate the ill. 2602 */ 2603 ASSERT(ill != NULL); 2604 ii->ipsec_in_ill_index = 2605 ill->ill_phyint->phyint_ifindex; 2606 ii->ipsec_in_rill_index = 2607 recv_ill->ill_phyint->phyint_ifindex; 2608 DB_TYPE(first_mp->b_cont) = M_CTL; 2609 } else { 2610 /* 2611 * IPSEC_IN is not present. We attach a ipsec_in 2612 * message and send up to IPsec for validating 2613 * and removing the IPsec headers. Clear 2614 * ipsec_in_secure so that when we return 2615 * from IPsec, we don't mistakenly think that this 2616 * is a secure packet came from the network. 2617 * 2618 * NOTE : ill_index is used by ip_fanout_proto_again 2619 * to locate the ill. 2620 */ 2621 ASSERT(first_mp == mp); 2622 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2623 if (first_mp == NULL) { 2624 freemsg(mp); 2625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2626 return; 2627 } 2628 ii = (ipsec_in_t *)first_mp->b_rptr; 2629 2630 /* This is not a secure packet */ 2631 ii->ipsec_in_secure = B_FALSE; 2632 first_mp->b_cont = mp; 2633 DB_TYPE(mp) = M_CTL; 2634 ASSERT(ill != NULL); 2635 ii->ipsec_in_ill_index = 2636 ill->ill_phyint->phyint_ifindex; 2637 ii->ipsec_in_rill_index = 2638 recv_ill->ill_phyint->phyint_ifindex; 2639 } 2640 ip2dbg(("icmp_inbound_error: ipsec\n")); 2641 2642 if (!ipsec_loaded(ipss)) { 2643 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2644 return; 2645 } 2646 2647 if (ipha->ipha_protocol == IPPROTO_ESP) 2648 ipsec_rc = ipsecesp_icmp_error(first_mp); 2649 else 2650 ipsec_rc = ipsecah_icmp_error(first_mp); 2651 if (ipsec_rc == IPSEC_STATUS_FAILED) 2652 return; 2653 2654 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2655 return; 2656 } 2657 default: 2658 /* 2659 * The ripha header is only used for the lookup and we 2660 * only set the src and dst addresses and protocol. 2661 */ 2662 ripha.ipha_src = ipha->ipha_dst; 2663 ripha.ipha_dst = ipha->ipha_src; 2664 ripha.ipha_protocol = ipha->ipha_protocol; 2665 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2666 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2667 ntohl(ipha->ipha_dst), 2668 icmph->icmph_type, icmph->icmph_code)); 2669 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2670 ipha_t *in_ipha; 2671 2672 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2673 mp->b_wptr) { 2674 if (!pullupmsg(mp, (uchar_t *)ipha + 2675 hdr_length + sizeof (ipha_t) - 2676 mp->b_rptr)) { 2677 goto discard_pkt; 2678 } 2679 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2680 ipha = (ipha_t *)&icmph[1]; 2681 } 2682 /* 2683 * Caller has verified that length has to be 2684 * at least the size of IP header. 2685 */ 2686 ASSERT(hdr_length >= sizeof (ipha_t)); 2687 /* 2688 * Check the sanity of the inner IP header like 2689 * we did for the outer header. 2690 */ 2691 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2692 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2693 goto discard_pkt; 2694 } 2695 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2696 goto discard_pkt; 2697 } 2698 /* Check for Self-encapsulated tunnels */ 2699 if (in_ipha->ipha_src == ipha->ipha_src && 2700 in_ipha->ipha_dst == ipha->ipha_dst) { 2701 2702 mp = icmp_inbound_self_encap_error(mp, 2703 iph_hdr_length, hdr_length); 2704 if (mp == NULL) 2705 goto discard_pkt; 2706 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2707 ipha = (ipha_t *)&icmph[1]; 2708 hdr_length = IPH_HDR_LENGTH(ipha); 2709 /* 2710 * The packet in error is self-encapsualted. 2711 * And we are finding it further encapsulated 2712 * which we could not have possibly generated. 2713 */ 2714 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2715 goto discard_pkt; 2716 } 2717 icmp_inbound_error_fanout(q, ill, first_mp, 2718 icmph, ipha, iph_hdr_length, hdr_length, 2719 mctl_present, ip_policy, recv_ill, zoneid); 2720 return; 2721 } 2722 } 2723 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2724 ipha->ipha_protocol == IPPROTO_IPV6) && 2725 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2726 ii != NULL && 2727 ii->ipsec_in_loopback && 2728 ii->ipsec_in_secure) { 2729 /* 2730 * For IP tunnels that get a looped-back 2731 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2732 * reported new MTU to take into account the IPsec 2733 * headers protecting this configured tunnel. 2734 * 2735 * This allows the tunnel module (tun.c) to blindly 2736 * accept the MTU reported in an ICMP "too big" 2737 * message. 2738 * 2739 * Non-looped back ICMP messages will just be 2740 * handled by the security protocols (if needed), 2741 * and the first subsequent packet will hit this 2742 * path. 2743 */ 2744 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2745 ipsec_in_extra_length(first_mp)); 2746 } 2747 /* Have to change db_type after any pullupmsg */ 2748 DB_TYPE(mp) = M_CTL; 2749 2750 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2751 ip_policy, recv_ill, zoneid); 2752 return; 2753 } 2754 /* NOTREACHED */ 2755 discard_pkt: 2756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2757 drop_pkt:; 2758 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2759 freemsg(first_mp); 2760 } 2761 2762 /* 2763 * Common IP options parser. 2764 * 2765 * Setup routine: fill in *optp with options-parsing state, then 2766 * tail-call ipoptp_next to return the first option. 2767 */ 2768 uint8_t 2769 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2770 { 2771 uint32_t totallen; /* total length of all options */ 2772 2773 totallen = ipha->ipha_version_and_hdr_length - 2774 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2775 totallen <<= 2; 2776 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2777 optp->ipoptp_end = optp->ipoptp_next + totallen; 2778 optp->ipoptp_flags = 0; 2779 return (ipoptp_next(optp)); 2780 } 2781 2782 /* 2783 * Common IP options parser: extract next option. 2784 */ 2785 uint8_t 2786 ipoptp_next(ipoptp_t *optp) 2787 { 2788 uint8_t *end = optp->ipoptp_end; 2789 uint8_t *cur = optp->ipoptp_next; 2790 uint8_t opt, len, pointer; 2791 2792 /* 2793 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2794 * has been corrupted. 2795 */ 2796 ASSERT(cur <= end); 2797 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 2801 opt = cur[IPOPT_OPTVAL]; 2802 2803 /* 2804 * Skip any NOP options. 2805 */ 2806 while (opt == IPOPT_NOP) { 2807 cur++; 2808 if (cur == end) 2809 return (IPOPT_EOL); 2810 opt = cur[IPOPT_OPTVAL]; 2811 } 2812 2813 if (opt == IPOPT_EOL) 2814 return (IPOPT_EOL); 2815 2816 /* 2817 * Option requiring a length. 2818 */ 2819 if ((cur + 1) >= end) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 len = cur[IPOPT_OLEN]; 2824 if (len < 2) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 optp->ipoptp_cur = cur; 2829 optp->ipoptp_len = len; 2830 optp->ipoptp_next = cur + len; 2831 if (cur + len > end) { 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 return (IPOPT_EOL); 2834 } 2835 2836 /* 2837 * For the options which require a pointer field, make sure 2838 * its there, and make sure it points to either something 2839 * inside this option, or the end of the option. 2840 */ 2841 switch (opt) { 2842 case IPOPT_RR: 2843 case IPOPT_TS: 2844 case IPOPT_LSRR: 2845 case IPOPT_SSRR: 2846 if (len <= IPOPT_OFFSET) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 pointer = cur[IPOPT_OFFSET]; 2851 if (pointer - 1 > len) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (opt); 2854 } 2855 break; 2856 } 2857 2858 /* 2859 * Sanity check the pointer field based on the type of the 2860 * option. 2861 */ 2862 switch (opt) { 2863 case IPOPT_RR: 2864 case IPOPT_SSRR: 2865 case IPOPT_LSRR: 2866 if (pointer < IPOPT_MINOFF_SR) 2867 optp->ipoptp_flags |= IPOPTP_ERROR; 2868 break; 2869 case IPOPT_TS: 2870 if (pointer < IPOPT_MINOFF_IT) 2871 optp->ipoptp_flags |= IPOPTP_ERROR; 2872 /* 2873 * Note that the Internet Timestamp option also 2874 * contains two four bit fields (the Overflow field, 2875 * and the Flag field), which follow the pointer 2876 * field. We don't need to check that these fields 2877 * fall within the length of the option because this 2878 * was implicitely done above. We've checked that the 2879 * pointer value is at least IPOPT_MINOFF_IT, and that 2880 * it falls within the option. Since IPOPT_MINOFF_IT > 2881 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2882 */ 2883 ASSERT(len > IPOPT_POS_OV_FLG); 2884 break; 2885 } 2886 2887 return (opt); 2888 } 2889 2890 /* 2891 * Use the outgoing IP header to create an IP_OPTIONS option the way 2892 * it was passed down from the application. 2893 */ 2894 int 2895 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2896 { 2897 ipoptp_t opts; 2898 const uchar_t *opt; 2899 uint8_t optval; 2900 uint8_t optlen; 2901 uint32_t len = 0; 2902 uchar_t *buf1 = buf; 2903 2904 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2905 len += IP_ADDR_LEN; 2906 bzero(buf1, IP_ADDR_LEN); 2907 2908 /* 2909 * OK to cast away const here, as we don't store through the returned 2910 * opts.ipoptp_cur pointer. 2911 */ 2912 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2913 optval != IPOPT_EOL; 2914 optval = ipoptp_next(&opts)) { 2915 int off; 2916 2917 opt = opts.ipoptp_cur; 2918 optlen = opts.ipoptp_len; 2919 switch (optval) { 2920 case IPOPT_SSRR: 2921 case IPOPT_LSRR: 2922 2923 /* 2924 * Insert ipha_dst as the first entry in the source 2925 * route and move down the entries on step. 2926 * The last entry gets placed at buf1. 2927 */ 2928 buf[IPOPT_OPTVAL] = optval; 2929 buf[IPOPT_OLEN] = optlen; 2930 buf[IPOPT_OFFSET] = optlen; 2931 2932 off = optlen - IP_ADDR_LEN; 2933 if (off < 0) { 2934 /* No entries in source route */ 2935 break; 2936 } 2937 /* Last entry in source route */ 2938 bcopy(opt + off, buf1, IP_ADDR_LEN); 2939 off -= IP_ADDR_LEN; 2940 2941 while (off > 0) { 2942 bcopy(opt + off, 2943 buf + off + IP_ADDR_LEN, 2944 IP_ADDR_LEN); 2945 off -= IP_ADDR_LEN; 2946 } 2947 /* ipha_dst into first slot */ 2948 bcopy(&ipha->ipha_dst, 2949 buf + off + IP_ADDR_LEN, 2950 IP_ADDR_LEN); 2951 buf += optlen; 2952 len += optlen; 2953 break; 2954 2955 case IPOPT_COMSEC: 2956 case IPOPT_SECURITY: 2957 /* if passing up a label is not ok, then remove */ 2958 if (is_system_labeled()) 2959 break; 2960 /* FALLTHROUGH */ 2961 default: 2962 bcopy(opt, buf, optlen); 2963 buf += optlen; 2964 len += optlen; 2965 break; 2966 } 2967 } 2968 done: 2969 /* Pad the resulting options */ 2970 while (len & 0x3) { 2971 *buf++ = IPOPT_EOL; 2972 len++; 2973 } 2974 return (len); 2975 } 2976 2977 /* 2978 * Update any record route or timestamp options to include this host. 2979 * Reverse any source route option. 2980 * This routine assumes that the options are well formed i.e. that they 2981 * have already been checked. 2982 */ 2983 static void 2984 icmp_options_update(ipha_t *ipha) 2985 { 2986 ipoptp_t opts; 2987 uchar_t *opt; 2988 uint8_t optval; 2989 ipaddr_t src; /* Our local address */ 2990 ipaddr_t dst; 2991 2992 ip2dbg(("icmp_options_update\n")); 2993 src = ipha->ipha_src; 2994 dst = ipha->ipha_dst; 2995 2996 for (optval = ipoptp_first(&opts, ipha); 2997 optval != IPOPT_EOL; 2998 optval = ipoptp_next(&opts)) { 2999 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3000 opt = opts.ipoptp_cur; 3001 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3002 optval, opts.ipoptp_len)); 3003 switch (optval) { 3004 int off1, off2; 3005 case IPOPT_SSRR: 3006 case IPOPT_LSRR: 3007 /* 3008 * Reverse the source route. The first entry 3009 * should be the next to last one in the current 3010 * source route (the last entry is our address). 3011 * The last entry should be the final destination. 3012 */ 3013 off1 = IPOPT_MINOFF_SR - 1; 3014 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3015 if (off2 < 0) { 3016 /* No entries in source route */ 3017 ip1dbg(( 3018 "icmp_options_update: bad src route\n")); 3019 break; 3020 } 3021 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3022 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3023 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3024 off2 -= IP_ADDR_LEN; 3025 3026 while (off1 < off2) { 3027 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3028 bcopy((char *)opt + off2, (char *)opt + off1, 3029 IP_ADDR_LEN); 3030 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3031 off1 += IP_ADDR_LEN; 3032 off2 -= IP_ADDR_LEN; 3033 } 3034 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3035 break; 3036 } 3037 } 3038 } 3039 3040 /* 3041 * Process received ICMP Redirect messages. 3042 */ 3043 static void 3044 icmp_redirect(ill_t *ill, mblk_t *mp) 3045 { 3046 ipha_t *ipha; 3047 int iph_hdr_length; 3048 icmph_t *icmph; 3049 ipha_t *ipha_err; 3050 ire_t *ire; 3051 ire_t *prev_ire; 3052 ire_t *save_ire; 3053 ipaddr_t src, dst, gateway; 3054 iulp_t ulp_info = { 0 }; 3055 int error; 3056 ip_stack_t *ipst; 3057 3058 ASSERT(ill != NULL); 3059 ipst = ill->ill_ipst; 3060 3061 ipha = (ipha_t *)mp->b_rptr; 3062 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3063 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3064 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3065 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3066 freemsg(mp); 3067 return; 3068 } 3069 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3070 ipha_err = (ipha_t *)&icmph[1]; 3071 src = ipha->ipha_src; 3072 dst = ipha_err->ipha_dst; 3073 gateway = icmph->icmph_rd_gateway; 3074 /* Make sure the new gateway is reachable somehow. */ 3075 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3076 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3077 /* 3078 * Make sure we had a route for the dest in question and that 3079 * that route was pointing to the old gateway (the source of the 3080 * redirect packet.) 3081 */ 3082 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3083 NULL, MATCH_IRE_GW, ipst); 3084 /* 3085 * Check that 3086 * the redirect was not from ourselves 3087 * the new gateway and the old gateway are directly reachable 3088 */ 3089 if (!prev_ire || 3090 !ire || 3091 ire->ire_type == IRE_LOCAL) { 3092 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3093 freemsg(mp); 3094 if (ire != NULL) 3095 ire_refrele(ire); 3096 if (prev_ire != NULL) 3097 ire_refrele(prev_ire); 3098 return; 3099 } 3100 3101 /* 3102 * Should we use the old ULP info to create the new gateway? From 3103 * a user's perspective, we should inherit the info so that it 3104 * is a "smooth" transition. If we do not do that, then new 3105 * connections going thru the new gateway will have no route metrics, 3106 * which is counter-intuitive to user. From a network point of 3107 * view, this may or may not make sense even though the new gateway 3108 * is still directly connected to us so the route metrics should not 3109 * change much. 3110 * 3111 * But if the old ire_uinfo is not initialized, we do another 3112 * recursive lookup on the dest using the new gateway. There may 3113 * be a route to that. If so, use it to initialize the redirect 3114 * route. 3115 */ 3116 if (prev_ire->ire_uinfo.iulp_set) { 3117 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 } else { 3119 ire_t *tmp_ire; 3120 ire_t *sire; 3121 3122 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3123 ALL_ZONES, 0, NULL, 3124 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3125 ipst); 3126 if (sire != NULL) { 3127 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3128 /* 3129 * If sire != NULL, ire_ftable_lookup() should not 3130 * return a NULL value. 3131 */ 3132 ASSERT(tmp_ire != NULL); 3133 ire_refrele(tmp_ire); 3134 ire_refrele(sire); 3135 } else if (tmp_ire != NULL) { 3136 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3137 sizeof (iulp_t)); 3138 ire_refrele(tmp_ire); 3139 } 3140 } 3141 if (prev_ire->ire_type == IRE_CACHE) 3142 ire_delete(prev_ire); 3143 ire_refrele(prev_ire); 3144 /* 3145 * TODO: more precise handling for cases 0, 2, 3, the latter two 3146 * require TOS routing 3147 */ 3148 switch (icmph->icmph_code) { 3149 case 0: 3150 case 1: 3151 /* TODO: TOS specificity for cases 2 and 3 */ 3152 case 2: 3153 case 3: 3154 break; 3155 default: 3156 freemsg(mp); 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3158 ire_refrele(ire); 3159 return; 3160 } 3161 /* 3162 * Create a Route Association. This will allow us to remember that 3163 * someone we believe told us to use the particular gateway. 3164 */ 3165 save_ire = ire; 3166 ire = ire_create( 3167 (uchar_t *)&dst, /* dest addr */ 3168 (uchar_t *)&ip_g_all_ones, /* mask */ 3169 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3170 (uchar_t *)&gateway, /* gateway addr */ 3171 &save_ire->ire_max_frag, /* max frag */ 3172 NULL, /* no src nce */ 3173 NULL, /* no rfq */ 3174 NULL, /* no stq */ 3175 IRE_HOST, 3176 NULL, /* ipif */ 3177 0, /* cmask */ 3178 0, /* phandle */ 3179 0, /* ihandle */ 3180 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3181 &ulp_info, 3182 NULL, /* tsol_gc_t */ 3183 NULL, /* gcgrp */ 3184 ipst); 3185 3186 if (ire == NULL) { 3187 freemsg(mp); 3188 ire_refrele(save_ire); 3189 return; 3190 } 3191 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3192 ire_refrele(save_ire); 3193 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3194 3195 if (error == 0) { 3196 ire_refrele(ire); /* Held in ire_add_v4 */ 3197 /* tell routing sockets that we received a redirect */ 3198 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3199 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3200 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3201 } 3202 3203 /* 3204 * Delete any existing IRE_HOST type redirect ires for this destination. 3205 * This together with the added IRE has the effect of 3206 * modifying an existing redirect. 3207 */ 3208 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3209 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3210 if (prev_ire != NULL) { 3211 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3212 ire_delete(prev_ire); 3213 ire_refrele(prev_ire); 3214 } 3215 3216 freemsg(mp); 3217 } 3218 3219 /* 3220 * Generate an ICMP parameter problem message. 3221 */ 3222 static void 3223 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3224 ip_stack_t *ipst) 3225 { 3226 icmph_t icmph; 3227 boolean_t mctl_present; 3228 mblk_t *first_mp; 3229 3230 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3231 3232 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3233 if (mctl_present) 3234 freeb(first_mp); 3235 return; 3236 } 3237 3238 bzero(&icmph, sizeof (icmph_t)); 3239 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3240 icmph.icmph_pp_ptr = ptr; 3241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3242 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3243 ipst); 3244 } 3245 3246 /* 3247 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3248 * the ICMP header pointed to by "stuff". (May be called as writer.) 3249 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3250 * an icmp error packet can be sent. 3251 * Assigns an appropriate source address to the packet. If ipha_dst is 3252 * one of our addresses use it for source. Otherwise pick a source based 3253 * on a route lookup back to ipha_src. 3254 * Note that ipha_src must be set here since the 3255 * packet is likely to arrive on an ill queue in ip_wput() which will 3256 * not set a source address. 3257 */ 3258 static void 3259 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3260 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3261 { 3262 ipaddr_t dst; 3263 icmph_t *icmph; 3264 ipha_t *ipha; 3265 uint_t len_needed; 3266 size_t msg_len; 3267 mblk_t *mp1; 3268 ipaddr_t src; 3269 ire_t *ire; 3270 mblk_t *ipsec_mp; 3271 ipsec_out_t *io = NULL; 3272 3273 if (mctl_present) { 3274 /* 3275 * If it is : 3276 * 3277 * 1) a IPSEC_OUT, then this is caused by outbound 3278 * datagram originating on this host. IPsec processing 3279 * may or may not have been done. Refer to comments above 3280 * icmp_inbound_error_fanout for details. 3281 * 3282 * 2) a IPSEC_IN if we are generating a icmp_message 3283 * for an incoming datagram destined for us i.e called 3284 * from ip_fanout_send_icmp. 3285 */ 3286 ipsec_info_t *in; 3287 ipsec_mp = mp; 3288 mp = ipsec_mp->b_cont; 3289 3290 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3291 ipha = (ipha_t *)mp->b_rptr; 3292 3293 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3294 in->ipsec_info_type == IPSEC_IN); 3295 3296 if (in->ipsec_info_type == IPSEC_IN) { 3297 /* 3298 * Convert the IPSEC_IN to IPSEC_OUT. 3299 */ 3300 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3301 BUMP_MIB(&ipst->ips_ip_mib, 3302 ipIfStatsOutDiscards); 3303 return; 3304 } 3305 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3306 } else { 3307 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3308 io = (ipsec_out_t *)in; 3309 /* 3310 * Clear out ipsec_out_proc_begin, so we do a fresh 3311 * ire lookup. 3312 */ 3313 io->ipsec_out_proc_begin = B_FALSE; 3314 } 3315 ASSERT(zoneid == io->ipsec_out_zoneid); 3316 ASSERT(zoneid != ALL_ZONES); 3317 } else { 3318 /* 3319 * This is in clear. The icmp message we are building 3320 * here should go out in clear. 3321 * 3322 * Pardon the convolution of it all, but it's easier to 3323 * allocate a "use cleartext" IPSEC_IN message and convert 3324 * it than it is to allocate a new one. 3325 */ 3326 ipsec_in_t *ii; 3327 ASSERT(DB_TYPE(mp) == M_DATA); 3328 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3329 if (ipsec_mp == NULL) { 3330 freemsg(mp); 3331 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3332 return; 3333 } 3334 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3335 3336 /* This is not a secure packet */ 3337 ii->ipsec_in_secure = B_FALSE; 3338 /* 3339 * For trusted extensions using a shared IP address we can 3340 * send using any zoneid. 3341 */ 3342 if (zoneid == ALL_ZONES) 3343 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3344 else 3345 ii->ipsec_in_zoneid = zoneid; 3346 ipsec_mp->b_cont = mp; 3347 ipha = (ipha_t *)mp->b_rptr; 3348 /* 3349 * Convert the IPSEC_IN to IPSEC_OUT. 3350 */ 3351 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3352 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3353 return; 3354 } 3355 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3356 } 3357 3358 /* Remember our eventual destination */ 3359 dst = ipha->ipha_src; 3360 3361 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3362 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3363 if (ire != NULL && 3364 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3365 src = ipha->ipha_dst; 3366 } else { 3367 if (ire != NULL) 3368 ire_refrele(ire); 3369 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3370 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3371 ipst); 3372 if (ire == NULL) { 3373 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3374 freemsg(ipsec_mp); 3375 return; 3376 } 3377 src = ire->ire_src_addr; 3378 } 3379 3380 if (ire != NULL) 3381 ire_refrele(ire); 3382 3383 /* 3384 * Check if we can send back more then 8 bytes in addition to 3385 * the IP header. We try to send 64 bytes of data and the internal 3386 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3387 */ 3388 len_needed = IPH_HDR_LENGTH(ipha); 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3390 ipha->ipha_protocol == IPPROTO_IPV6) { 3391 3392 if (!pullupmsg(mp, -1)) { 3393 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3394 freemsg(ipsec_mp); 3395 return; 3396 } 3397 ipha = (ipha_t *)mp->b_rptr; 3398 3399 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3400 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3401 len_needed)); 3402 } else { 3403 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3404 3405 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3406 len_needed += ip_hdr_length_v6(mp, ip6h); 3407 } 3408 } 3409 len_needed += ipst->ips_ip_icmp_return; 3410 msg_len = msgdsize(mp); 3411 if (msg_len > len_needed) { 3412 (void) adjmsg(mp, len_needed - msg_len); 3413 msg_len = len_needed; 3414 } 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 area_t *area; 3707 ip_stack_t *ipst = ill->ill_ipst; 3708 3709 ipif->ipif_recovery_id = 0; 3710 3711 /* 3712 * No lock needed for moving or condemned check, as this is just an 3713 * optimization. 3714 */ 3715 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3716 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3717 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3718 /* No reason to try to bring this address back. */ 3719 return; 3720 } 3721 3722 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 /* Setting the 'unverified' flag restarts DAD */ 3732 area = (area_t *)arp_add_mp->b_rptr; 3733 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3734 ACE_F_UNVERIFIED; 3735 putnext(ill->ill_rq, arp_add_mp); 3736 return; 3737 3738 alloc_fail: 3739 /* 3740 * On allocation failure, just restart the timer. Note that the ipif 3741 * is down here, so no other thread could be trying to start a recovery 3742 * timer. The ill_lock protects the condemned flag and the recovery 3743 * timer ID. 3744 */ 3745 freemsg(arp_add_mp); 3746 mutex_enter(&ill->ill_lock); 3747 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3748 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3749 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3750 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3751 } 3752 mutex_exit(&ill->ill_lock); 3753 } 3754 3755 /* 3756 * This is for exclusive changes due to ARP. Either tear down an interface due 3757 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3758 */ 3759 /* ARGSUSED */ 3760 static void 3761 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3762 { 3763 ill_t *ill = rq->q_ptr; 3764 arh_t *arh; 3765 ipaddr_t src; 3766 ipif_t *ipif; 3767 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3768 char hbuf[MAC_STR_LEN]; 3769 char sbuf[INET_ADDRSTRLEN]; 3770 const char *failtype; 3771 boolean_t bring_up; 3772 ip_stack_t *ipst = ill->ill_ipst; 3773 3774 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3775 case AR_CN_READY: 3776 failtype = NULL; 3777 bring_up = B_TRUE; 3778 break; 3779 case AR_CN_FAILED: 3780 failtype = "in use"; 3781 bring_up = B_FALSE; 3782 break; 3783 default: 3784 failtype = "claimed"; 3785 bring_up = B_FALSE; 3786 break; 3787 } 3788 3789 arh = (arh_t *)mp->b_cont->b_rptr; 3790 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3791 3792 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3793 sizeof (hbuf)); 3794 (void) ip_dot_addr(src, sbuf); 3795 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3796 3797 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3798 ipif->ipif_lcl_addr != src) { 3799 continue; 3800 } 3801 3802 /* 3803 * If we failed on a recovery probe, then restart the timer to 3804 * try again later. 3805 */ 3806 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3807 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3808 ill->ill_net_type == IRE_IF_RESOLVER && 3809 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3810 ipst->ips_ip_dup_recovery > 0 && 3811 ipif->ipif_recovery_id == 0) { 3812 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3813 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3814 continue; 3815 } 3816 3817 /* 3818 * If what we're trying to do has already been done, then do 3819 * nothing. 3820 */ 3821 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3822 continue; 3823 3824 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3825 3826 if (failtype == NULL) { 3827 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3828 ibuf); 3829 } else { 3830 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3831 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3832 } 3833 3834 if (bring_up) { 3835 ASSERT(ill->ill_dl_up); 3836 /* 3837 * Free up the ARP delete message so we can allocate 3838 * a fresh one through the normal path. 3839 */ 3840 freemsg(ipif->ipif_arp_del_mp); 3841 ipif->ipif_arp_del_mp = NULL; 3842 if (ipif_resolver_up(ipif, Res_act_initial) != 3843 EINPROGRESS) { 3844 ipif->ipif_addr_ready = 1; 3845 (void) ipif_up_done(ipif); 3846 } 3847 continue; 3848 } 3849 3850 mutex_enter(&ill->ill_lock); 3851 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3852 ipif->ipif_flags |= IPIF_DUPLICATE; 3853 ill->ill_ipif_dup_count++; 3854 mutex_exit(&ill->ill_lock); 3855 /* 3856 * Already exclusive on the ill; no need to handle deferred 3857 * processing here. 3858 */ 3859 (void) ipif_down(ipif, NULL, NULL); 3860 ipif_down_tail(ipif); 3861 mutex_enter(&ill->ill_lock); 3862 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3863 ill->ill_net_type == IRE_IF_RESOLVER && 3864 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3865 ipst->ips_ip_dup_recovery > 0) { 3866 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3867 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3868 } 3869 mutex_exit(&ill->ill_lock); 3870 } 3871 freemsg(mp); 3872 } 3873 3874 /* ARGSUSED */ 3875 static void 3876 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3877 { 3878 ill_t *ill = rq->q_ptr; 3879 arh_t *arh; 3880 ipaddr_t src; 3881 ipif_t *ipif; 3882 3883 arh = (arh_t *)mp->b_cont->b_rptr; 3884 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3885 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3886 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3887 (void) ipif_resolver_up(ipif, Res_act_defend); 3888 } 3889 freemsg(mp); 3890 } 3891 3892 /* 3893 * News from ARP. ARP sends notification of interesting events down 3894 * to its clients using M_CTL messages with the interesting ARP packet 3895 * attached via b_cont. 3896 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3897 * queue as opposed to ARP sending the message to all the clients, i.e. all 3898 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3899 * table if a cache IRE is found to delete all the entries for the address in 3900 * the packet. 3901 */ 3902 static void 3903 ip_arp_news(queue_t *q, mblk_t *mp) 3904 { 3905 arcn_t *arcn; 3906 arh_t *arh; 3907 ire_t *ire = NULL; 3908 char hbuf[MAC_STR_LEN]; 3909 char sbuf[INET_ADDRSTRLEN]; 3910 ipaddr_t src; 3911 in6_addr_t v6src; 3912 boolean_t isv6 = B_FALSE; 3913 ipif_t *ipif; 3914 ill_t *ill; 3915 ip_stack_t *ipst; 3916 3917 if (CONN_Q(q)) { 3918 conn_t *connp = Q_TO_CONN(q); 3919 3920 ipst = connp->conn_netstack->netstack_ip; 3921 } else { 3922 ill_t *ill = (ill_t *)q->q_ptr; 3923 3924 ipst = ill->ill_ipst; 3925 } 3926 3927 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3928 if (q->q_next) { 3929 putnext(q, mp); 3930 } else 3931 freemsg(mp); 3932 return; 3933 } 3934 arh = (arh_t *)mp->b_cont->b_rptr; 3935 /* Is it one we are interested in? */ 3936 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3937 isv6 = B_TRUE; 3938 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3939 IPV6_ADDR_LEN); 3940 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3941 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3942 IP_ADDR_LEN); 3943 } else { 3944 freemsg(mp); 3945 return; 3946 } 3947 3948 ill = q->q_ptr; 3949 3950 arcn = (arcn_t *)mp->b_rptr; 3951 switch (arcn->arcn_code) { 3952 case AR_CN_BOGON: 3953 /* 3954 * Someone is sending ARP packets with a source protocol 3955 * address that we have published and for which we believe our 3956 * entry is authoritative and (when ill_arp_extend is set) 3957 * verified to be unique on the network. 3958 * 3959 * The ARP module internally handles the cases where the sender 3960 * is just probing (for DAD) and where the hardware address of 3961 * a non-authoritative entry has changed. Thus, these are the 3962 * real conflicts, and we have to do resolution. 3963 * 3964 * We back away quickly from the address if it's from DHCP or 3965 * otherwise temporary and hasn't been used recently (or at 3966 * all). We'd like to include "deprecated" addresses here as 3967 * well (as there's no real reason to defend something we're 3968 * discarding), but IPMP "reuses" this flag to mean something 3969 * other than the standard meaning. 3970 * 3971 * If the ARP module above is not extended (meaning that it 3972 * doesn't know how to defend the address), then we just log 3973 * the problem as we always did and continue on. It's not 3974 * right, but there's little else we can do, and those old ATM 3975 * users are going away anyway. 3976 */ 3977 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3978 hbuf, sizeof (hbuf)); 3979 (void) ip_dot_addr(src, sbuf); 3980 if (isv6) { 3981 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3982 ipst); 3983 } else { 3984 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3985 } 3986 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3987 uint32_t now; 3988 uint32_t maxage; 3989 clock_t lused; 3990 uint_t maxdefense; 3991 uint_t defs; 3992 3993 /* 3994 * First, figure out if this address hasn't been used 3995 * in a while. If it hasn't, then it's a better 3996 * candidate for abandoning. 3997 */ 3998 ipif = ire->ire_ipif; 3999 ASSERT(ipif != NULL); 4000 now = gethrestime_sec(); 4001 maxage = now - ire->ire_create_time; 4002 if (maxage > ipst->ips_ip_max_temp_idle) 4003 maxage = ipst->ips_ip_max_temp_idle; 4004 lused = drv_hztousec(ddi_get_lbolt() - 4005 ire->ire_last_used_time) / MICROSEC + 1; 4006 if (lused >= maxage && (ipif->ipif_flags & 4007 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4008 maxdefense = ipst->ips_ip_max_temp_defend; 4009 else 4010 maxdefense = ipst->ips_ip_max_defend; 4011 4012 /* 4013 * Now figure out how many times we've defended 4014 * ourselves. Ignore defenses that happened long in 4015 * the past. 4016 */ 4017 mutex_enter(&ire->ire_lock); 4018 if ((defs = ire->ire_defense_count) > 0 && 4019 now - ire->ire_defense_time > 4020 ipst->ips_ip_defend_interval) { 4021 ire->ire_defense_count = defs = 0; 4022 } 4023 ire->ire_defense_count++; 4024 ire->ire_defense_time = now; 4025 mutex_exit(&ire->ire_lock); 4026 ill_refhold(ill); 4027 ire_refrele(ire); 4028 4029 /* 4030 * If we've defended ourselves too many times already, 4031 * then give up and tear down the interface(s) using 4032 * this address. Otherwise, defend by sending out a 4033 * gratuitous ARP. 4034 */ 4035 if (defs >= maxdefense && ill->ill_arp_extend) { 4036 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4037 B_FALSE); 4038 } else { 4039 cmn_err(CE_WARN, 4040 "node %s is using our IP address %s on %s", 4041 hbuf, sbuf, ill->ill_name); 4042 /* 4043 * If this is an old (ATM) ARP module, then 4044 * don't try to defend the address. Remain 4045 * compatible with the old behavior. Defend 4046 * only with new ARP. 4047 */ 4048 if (ill->ill_arp_extend) { 4049 qwriter_ip(ill, q, mp, ip_arp_defend, 4050 NEW_OP, B_FALSE); 4051 } else { 4052 ill_refrele(ill); 4053 } 4054 } 4055 return; 4056 } 4057 cmn_err(CE_WARN, 4058 "proxy ARP problem? Node '%s' is using %s on %s", 4059 hbuf, sbuf, ill->ill_name); 4060 if (ire != NULL) 4061 ire_refrele(ire); 4062 break; 4063 case AR_CN_ANNOUNCE: 4064 if (isv6) { 4065 /* 4066 * For XRESOLV interfaces. 4067 * Delete the IRE cache entry and NCE for this 4068 * v6 address 4069 */ 4070 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4071 /* 4072 * If v6src is a non-zero, it's a router address 4073 * as below. Do the same sort of thing to clean 4074 * out off-net IRE_CACHE entries that go through 4075 * the router. 4076 */ 4077 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4078 ire_walk_v6(ire_delete_cache_gw_v6, 4079 (char *)&v6src, ALL_ZONES, ipst); 4080 } 4081 } else { 4082 nce_hw_map_t hwm; 4083 4084 /* 4085 * ARP gives us a copy of any packet where it thinks 4086 * the address has changed, so that we can update our 4087 * caches. We're responsible for caching known answers 4088 * in the current design. We check whether the 4089 * hardware address really has changed in all of our 4090 * entries that have cached this mapping, and if so, we 4091 * blow them away. This way we will immediately pick 4092 * up the rare case of a host changing hardware 4093 * address. 4094 */ 4095 if (src == 0) 4096 break; 4097 hwm.hwm_addr = src; 4098 hwm.hwm_hwlen = arh->arh_hlen; 4099 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4100 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4101 ndp_walk_common(ipst->ips_ndp4, NULL, 4102 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4103 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4104 } 4105 break; 4106 case AR_CN_READY: 4107 /* No external v6 resolver has a contract to use this */ 4108 if (isv6) 4109 break; 4110 /* If the link is down, we'll retry this later */ 4111 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4112 break; 4113 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4114 NULL, NULL, ipst); 4115 if (ipif != NULL) { 4116 /* 4117 * If this is a duplicate recovery, then we now need to 4118 * go exclusive to bring this thing back up. 4119 */ 4120 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4121 IPIF_DUPLICATE) { 4122 ipif_refrele(ipif); 4123 ill_refhold(ill); 4124 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4125 B_FALSE); 4126 return; 4127 } 4128 /* 4129 * If this is the first notice that this address is 4130 * ready, then let the user know now. 4131 */ 4132 if ((ipif->ipif_flags & IPIF_UP) && 4133 !ipif->ipif_addr_ready) { 4134 ipif_mask_reply(ipif); 4135 ip_rts_ifmsg(ipif); 4136 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4137 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4138 } 4139 ipif->ipif_addr_ready = 1; 4140 ipif_refrele(ipif); 4141 } 4142 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4143 if (ire != NULL) { 4144 ire->ire_defense_count = 0; 4145 ire_refrele(ire); 4146 } 4147 break; 4148 case AR_CN_FAILED: 4149 /* No external v6 resolver has a contract to use this */ 4150 if (isv6) 4151 break; 4152 ill_refhold(ill); 4153 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4154 return; 4155 } 4156 freemsg(mp); 4157 } 4158 4159 /* 4160 * Create a mblk suitable for carrying the interface index and/or source link 4161 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4162 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4163 * application. 4164 */ 4165 mblk_t * 4166 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4167 ip_stack_t *ipst) 4168 { 4169 mblk_t *mp; 4170 ip_pktinfo_t *pinfo; 4171 ipha_t *ipha; 4172 struct ether_header *pether; 4173 4174 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4175 if (mp == NULL) { 4176 ip1dbg(("ip_add_info: allocation failure.\n")); 4177 return (data_mp); 4178 } 4179 4180 ipha = (ipha_t *)data_mp->b_rptr; 4181 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4182 bzero(pinfo, sizeof (ip_pktinfo_t)); 4183 pinfo->ip_pkt_flags = (uchar_t)flags; 4184 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4185 4186 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4187 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4188 if (flags & IPF_RECVADDR) { 4189 ipif_t *ipif; 4190 ire_t *ire; 4191 4192 /* 4193 * Only valid for V4 4194 */ 4195 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4196 (IPV4_VERSION << 4)); 4197 4198 ipif = ipif_get_next_ipif(NULL, ill); 4199 if (ipif != NULL) { 4200 /* 4201 * Since a decision has already been made to deliver the 4202 * packet, there is no need to test for SECATTR and 4203 * ZONEONLY. 4204 * When a multicast packet is transmitted 4205 * a cache entry is created for the multicast address. 4206 * When delivering a copy of the packet or when new 4207 * packets are received we do not want to match on the 4208 * cached entry so explicitly match on 4209 * IRE_LOCAL and IRE_LOOPBACK 4210 */ 4211 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4212 IRE_LOCAL | IRE_LOOPBACK, 4213 ipif, zoneid, NULL, 4214 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4215 if (ire == NULL) { 4216 /* 4217 * packet must have come on a different 4218 * interface. 4219 * Since a decision has already been made to 4220 * deliver the packet, there is no need to test 4221 * for SECATTR and ZONEONLY. 4222 * Only match on local and broadcast ire's. 4223 * See detailed comment above. 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4227 NULL, MATCH_IRE_TYPE, ipst); 4228 } 4229 4230 if (ire == NULL) { 4231 /* 4232 * This is either a multicast packet or 4233 * the address has been removed since 4234 * the packet was received. 4235 * Return INADDR_ANY so that normal source 4236 * selection occurs for the response. 4237 */ 4238 4239 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4240 } else { 4241 pinfo->ip_pkt_match_addr.s_addr = 4242 ire->ire_src_addr; 4243 ire_refrele(ire); 4244 } 4245 ipif_refrele(ipif); 4246 } else { 4247 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4248 } 4249 } 4250 4251 pether = (struct ether_header *)((char *)ipha 4252 - sizeof (struct ether_header)); 4253 /* 4254 * Make sure the interface is an ethernet type, since this option 4255 * is currently supported only on this type of interface. Also make 4256 * sure we are pointing correctly above db_base. 4257 */ 4258 4259 if ((flags & IPF_RECVSLLA) && 4260 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4261 (ill->ill_type == IFT_ETHER) && 4262 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4263 4264 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4265 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4266 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4267 } else { 4268 /* 4269 * Clear the bit. Indicate to upper layer that IP is not 4270 * sending this ancillary info. 4271 */ 4272 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4273 } 4274 4275 mp->b_datap->db_type = M_CTL; 4276 mp->b_wptr += sizeof (ip_pktinfo_t); 4277 mp->b_cont = data_mp; 4278 4279 return (mp); 4280 } 4281 4282 /* 4283 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4284 * part of the bind request. 4285 */ 4286 4287 boolean_t 4288 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4289 { 4290 ipsec_in_t *ii; 4291 4292 ASSERT(policy_mp != NULL); 4293 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4294 4295 ii = (ipsec_in_t *)policy_mp->b_rptr; 4296 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4297 4298 connp->conn_policy = ii->ipsec_in_policy; 4299 ii->ipsec_in_policy = NULL; 4300 4301 if (ii->ipsec_in_action != NULL) { 4302 if (connp->conn_latch == NULL) { 4303 connp->conn_latch = iplatch_create(); 4304 if (connp->conn_latch == NULL) 4305 return (B_FALSE); 4306 } 4307 ipsec_latch_inbound(connp->conn_latch, ii); 4308 } 4309 return (B_TRUE); 4310 } 4311 4312 /* 4313 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4314 * and to arrange for power-fanout assist. The ULP is identified by 4315 * adding a single byte at the end of the original bind message. 4316 * A ULP other than UDP or TCP that wishes to be recognized passes 4317 * down a bind with a zero length address. 4318 * 4319 * The binding works as follows: 4320 * - A zero byte address means just bind to the protocol. 4321 * - A four byte address is treated as a request to validate 4322 * that the address is a valid local address, appropriate for 4323 * an application to bind to. This does not affect any fanout 4324 * information in IP. 4325 * - A sizeof sin_t byte address is used to bind to only the local address 4326 * and port. 4327 * - A sizeof ipa_conn_t byte address contains complete fanout information 4328 * consisting of local and remote addresses and ports. In 4329 * this case, the addresses are both validated as appropriate 4330 * for this operation, and, if so, the information is retained 4331 * for use in the inbound fanout. 4332 * 4333 * The ULP (except in the zero-length bind) can append an 4334 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4335 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4336 * a copy of the source or destination IRE (source for local bind; 4337 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4338 * policy information contained should be copied on to the conn. 4339 * 4340 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4341 */ 4342 mblk_t * 4343 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4344 { 4345 ssize_t len; 4346 struct T_bind_req *tbr; 4347 sin_t *sin; 4348 ipa_conn_t *ac; 4349 uchar_t *ucp; 4350 mblk_t *mp1; 4351 boolean_t ire_requested; 4352 boolean_t ipsec_policy_set = B_FALSE; 4353 int error = 0; 4354 int protocol; 4355 ipa_conn_x_t *acx; 4356 4357 ASSERT(!connp->conn_af_isv6); 4358 connp->conn_pkt_isv6 = B_FALSE; 4359 4360 len = MBLKL(mp); 4361 if (len < (sizeof (*tbr) + 1)) { 4362 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4363 "ip_bind: bogus msg, len %ld", len); 4364 /* XXX: Need to return something better */ 4365 goto bad_addr; 4366 } 4367 /* Back up and extract the protocol identifier. */ 4368 mp->b_wptr--; 4369 protocol = *mp->b_wptr & 0xFF; 4370 tbr = (struct T_bind_req *)mp->b_rptr; 4371 /* Reset the message type in preparation for shipping it back. */ 4372 DB_TYPE(mp) = M_PCPROTO; 4373 4374 connp->conn_ulp = (uint8_t)protocol; 4375 4376 /* 4377 * Check for a zero length address. This is from a protocol that 4378 * wants to register to receive all packets of its type. 4379 */ 4380 if (tbr->ADDR_length == 0) { 4381 /* 4382 * These protocols are now intercepted in ip_bind_v6(). 4383 * Reject protocol-level binds here for now. 4384 * 4385 * For SCTP raw socket, ICMP sends down a bind with sin_t 4386 * so that the protocol type cannot be SCTP. 4387 */ 4388 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4389 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4390 goto bad_addr; 4391 } 4392 4393 /* 4394 * 4395 * The udp module never sends down a zero-length address, 4396 * and allowing this on a labeled system will break MLP 4397 * functionality. 4398 */ 4399 if (is_system_labeled() && protocol == IPPROTO_UDP) 4400 goto bad_addr; 4401 4402 if (connp->conn_mac_exempt) 4403 goto bad_addr; 4404 4405 /* No hash here really. The table is big enough. */ 4406 connp->conn_srcv6 = ipv6_all_zeros; 4407 4408 ipcl_proto_insert(connp, protocol); 4409 4410 tbr->PRIM_type = T_BIND_ACK; 4411 return (mp); 4412 } 4413 4414 /* Extract the address pointer from the message. */ 4415 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4416 tbr->ADDR_length); 4417 if (ucp == NULL) { 4418 ip1dbg(("ip_bind: no address\n")); 4419 goto bad_addr; 4420 } 4421 if (!OK_32PTR(ucp)) { 4422 ip1dbg(("ip_bind: unaligned address\n")); 4423 goto bad_addr; 4424 } 4425 /* 4426 * Check for trailing mps. 4427 */ 4428 4429 mp1 = mp->b_cont; 4430 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4431 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4432 4433 switch (tbr->ADDR_length) { 4434 default: 4435 ip1dbg(("ip_bind: bad address length %d\n", 4436 (int)tbr->ADDR_length)); 4437 goto bad_addr; 4438 4439 case IP_ADDR_LEN: 4440 /* Verification of local address only */ 4441 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4442 ire_requested, ipsec_policy_set, B_FALSE); 4443 break; 4444 4445 case sizeof (sin_t): 4446 sin = (sin_t *)ucp; 4447 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4448 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4449 break; 4450 4451 case sizeof (ipa_conn_t): 4452 ac = (ipa_conn_t *)ucp; 4453 /* For raw socket, the local port is not set. */ 4454 if (ac->ac_lport == 0) 4455 ac->ac_lport = connp->conn_lport; 4456 /* Always verify destination reachability. */ 4457 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4458 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4459 ipsec_policy_set, B_TRUE, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_x_t): 4463 acx = (ipa_conn_x_t *)ucp; 4464 /* 4465 * Whether or not to verify destination reachability depends 4466 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4467 */ 4468 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4469 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4470 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4471 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4472 break; 4473 } 4474 if (error == EINPROGRESS) 4475 return (NULL); 4476 else if (error != 0) 4477 goto bad_addr; 4478 /* 4479 * Pass the IPsec headers size in ire_ipsec_overhead. 4480 * We can't do this in ip_bind_insert_ire because the policy 4481 * may not have been inherited at that point in time and hence 4482 * conn_out_enforce_policy may not be set. 4483 */ 4484 mp1 = mp->b_cont; 4485 if (ire_requested && connp->conn_out_enforce_policy && 4486 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4487 ire_t *ire = (ire_t *)mp1->b_rptr; 4488 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4489 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4490 } 4491 4492 /* Send it home. */ 4493 mp->b_datap->db_type = M_PCPROTO; 4494 tbr->PRIM_type = T_BIND_ACK; 4495 return (mp); 4496 4497 bad_addr: 4498 /* 4499 * If error = -1 then we generate a TBADADDR - otherwise error is 4500 * a unix errno. 4501 */ 4502 if (error > 0) 4503 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4504 else 4505 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4506 return (mp); 4507 } 4508 4509 /* 4510 * Here address is verified to be a valid local address. 4511 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4512 * address is also considered a valid local address. 4513 * In the case of a broadcast/multicast address, however, the 4514 * upper protocol is expected to reset the src address 4515 * to 0 if it sees a IRE_BROADCAST type returned so that 4516 * no packets are emitted with broadcast/multicast address as 4517 * source address (that violates hosts requirements RFC1122) 4518 * The addresses valid for bind are: 4519 * (1) - INADDR_ANY (0) 4520 * (2) - IP address of an UP interface 4521 * (3) - IP address of a DOWN interface 4522 * (4) - valid local IP broadcast addresses. In this case 4523 * the conn will only receive packets destined to 4524 * the specified broadcast address. 4525 * (5) - a multicast address. In this case 4526 * the conn will only receive packets destined to 4527 * the specified multicast address. Note: the 4528 * application still has to issue an 4529 * IP_ADD_MEMBERSHIP socket option. 4530 * 4531 * On error, return -1 for TBADADDR otherwise pass the 4532 * errno with TSYSERR reply. 4533 * 4534 * In all the above cases, the bound address must be valid in the current zone. 4535 * When the address is loopback, multicast or broadcast, there might be many 4536 * matching IREs so bind has to look up based on the zone. 4537 * 4538 * Note: lport is in network byte order. 4539 */ 4540 int 4541 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4542 boolean_t ire_requested, boolean_t ipsec_policy_set, 4543 boolean_t fanout_insert) 4544 { 4545 int error = 0; 4546 ire_t *src_ire; 4547 mblk_t *policy_mp; 4548 ipif_t *ipif; 4549 zoneid_t zoneid; 4550 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4551 4552 if (ipsec_policy_set) { 4553 policy_mp = mp->b_cont; 4554 } 4555 4556 /* 4557 * If it was previously connected, conn_fully_bound would have 4558 * been set. 4559 */ 4560 connp->conn_fully_bound = B_FALSE; 4561 4562 src_ire = NULL; 4563 ipif = NULL; 4564 4565 zoneid = IPCL_ZONEID(connp); 4566 4567 if (src_addr) { 4568 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4569 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4570 /* 4571 * If an address other than 0.0.0.0 is requested, 4572 * we verify that it is a valid address for bind 4573 * Note: Following code is in if-else-if form for 4574 * readability compared to a condition check. 4575 */ 4576 /* LINTED - statement has no consequent */ 4577 if (IRE_IS_LOCAL(src_ire)) { 4578 /* 4579 * (2) Bind to address of local UP interface 4580 */ 4581 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4582 /* 4583 * (4) Bind to broadcast address 4584 * Note: permitted only from transports that 4585 * request IRE 4586 */ 4587 if (!ire_requested) 4588 error = EADDRNOTAVAIL; 4589 } else { 4590 /* 4591 * (3) Bind to address of local DOWN interface 4592 * (ipif_lookup_addr() looks up all interfaces 4593 * but we do not get here for UP interfaces 4594 * - case (2) above) 4595 * We put the protocol byte back into the mblk 4596 * since we may come back via ip_wput_nondata() 4597 * later with this mblk if ipif_lookup_addr chooses 4598 * to defer processing. 4599 */ 4600 *mp->b_wptr++ = (char)connp->conn_ulp; 4601 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4602 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4603 &error, ipst)) != NULL) { 4604 ipif_refrele(ipif); 4605 } else if (error == EINPROGRESS) { 4606 if (src_ire != NULL) 4607 ire_refrele(src_ire); 4608 return (EINPROGRESS); 4609 } else if (CLASSD(src_addr)) { 4610 error = 0; 4611 if (src_ire != NULL) 4612 ire_refrele(src_ire); 4613 /* 4614 * (5) bind to multicast address. 4615 * Fake out the IRE returned to upper 4616 * layer to be a broadcast IRE. 4617 */ 4618 src_ire = ire_ctable_lookup( 4619 INADDR_BROADCAST, INADDR_ANY, 4620 IRE_BROADCAST, NULL, zoneid, NULL, 4621 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4622 ipst); 4623 if (src_ire == NULL || !ire_requested) 4624 error = EADDRNOTAVAIL; 4625 } else { 4626 /* 4627 * Not a valid address for bind 4628 */ 4629 error = EADDRNOTAVAIL; 4630 } 4631 /* 4632 * Just to keep it consistent with the processing in 4633 * ip_bind_v4() 4634 */ 4635 mp->b_wptr--; 4636 } 4637 if (error) { 4638 /* Red Alert! Attempting to be a bogon! */ 4639 ip1dbg(("ip_bind: bad src address 0x%x\n", 4640 ntohl(src_addr))); 4641 goto bad_addr; 4642 } 4643 } 4644 4645 /* 4646 * Allow setting new policies. For example, disconnects come 4647 * down as ipa_t bind. As we would have set conn_policy_cached 4648 * to B_TRUE before, we should set it to B_FALSE, so that policy 4649 * can change after the disconnect. 4650 */ 4651 connp->conn_policy_cached = B_FALSE; 4652 4653 /* 4654 * If not fanout_insert this was just an address verification 4655 */ 4656 if (fanout_insert) { 4657 /* 4658 * The addresses have been verified. Time to insert in 4659 * the correct fanout list. 4660 */ 4661 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4662 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4663 connp->conn_lport = lport; 4664 connp->conn_fport = 0; 4665 /* 4666 * Do we need to add a check to reject Multicast packets 4667 */ 4668 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4669 } 4670 4671 if (error == 0) { 4672 if (ire_requested) { 4673 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4674 error = -1; 4675 /* Falls through to bad_addr */ 4676 } 4677 } else if (ipsec_policy_set) { 4678 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4679 error = -1; 4680 /* Falls through to bad_addr */ 4681 } 4682 } 4683 } 4684 bad_addr: 4685 if (error != 0) { 4686 if (connp->conn_anon_port) { 4687 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4688 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4689 B_FALSE); 4690 } 4691 connp->conn_mlp_type = mlptSingle; 4692 } 4693 if (src_ire != NULL) 4694 IRE_REFRELE(src_ire); 4695 if (ipsec_policy_set) { 4696 ASSERT(policy_mp == mp->b_cont); 4697 ASSERT(policy_mp != NULL); 4698 freeb(policy_mp); 4699 /* 4700 * As of now assume that nothing else accompanies 4701 * IPSEC_POLICY_SET. 4702 */ 4703 mp->b_cont = NULL; 4704 } 4705 return (error); 4706 } 4707 4708 /* 4709 * Verify that both the source and destination addresses 4710 * are valid. If verify_dst is false, then the destination address may be 4711 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4712 * destination reachability, while tunnels do not. 4713 * Note that we allow connect to broadcast and multicast 4714 * addresses when ire_requested is set. Thus the ULP 4715 * has to check for IRE_BROADCAST and multicast. 4716 * 4717 * Returns zero if ok. 4718 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4719 * (for use with TSYSERR reply). 4720 * 4721 * Note: lport and fport are in network byte order. 4722 */ 4723 int 4724 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4725 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4726 boolean_t ire_requested, boolean_t ipsec_policy_set, 4727 boolean_t fanout_insert, boolean_t verify_dst) 4728 { 4729 ire_t *src_ire; 4730 ire_t *dst_ire; 4731 int error = 0; 4732 int protocol; 4733 mblk_t *policy_mp; 4734 ire_t *sire = NULL; 4735 ire_t *md_dst_ire = NULL; 4736 ire_t *lso_dst_ire = NULL; 4737 ill_t *ill = NULL; 4738 zoneid_t zoneid; 4739 ipaddr_t src_addr = *src_addrp; 4740 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4741 4742 src_ire = dst_ire = NULL; 4743 protocol = *mp->b_wptr & 0xFF; 4744 4745 /* 4746 * If we never got a disconnect before, clear it now. 4747 */ 4748 connp->conn_fully_bound = B_FALSE; 4749 4750 if (ipsec_policy_set) { 4751 policy_mp = mp->b_cont; 4752 } 4753 4754 zoneid = IPCL_ZONEID(connp); 4755 4756 if (CLASSD(dst_addr)) { 4757 /* Pick up an IRE_BROADCAST */ 4758 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4759 NULL, zoneid, MBLK_GETLABEL(mp), 4760 (MATCH_IRE_RECURSIVE | 4761 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4762 MATCH_IRE_SECATTR), ipst); 4763 } else { 4764 /* 4765 * If conn_dontroute is set or if conn_nexthop_set is set, 4766 * and onlink ipif is not found set ENETUNREACH error. 4767 */ 4768 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4769 ipif_t *ipif; 4770 4771 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4772 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4773 if (ipif == NULL) { 4774 error = ENETUNREACH; 4775 goto bad_addr; 4776 } 4777 ipif_refrele(ipif); 4778 } 4779 4780 if (connp->conn_nexthop_set) { 4781 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4782 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4783 MATCH_IRE_SECATTR, ipst); 4784 } else { 4785 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4786 &sire, zoneid, MBLK_GETLABEL(mp), 4787 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4788 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4789 MATCH_IRE_SECATTR), ipst); 4790 } 4791 } 4792 /* 4793 * dst_ire can't be a broadcast when not ire_requested. 4794 * We also prevent ire's with src address INADDR_ANY to 4795 * be used, which are created temporarily for 4796 * sending out packets from endpoints that have 4797 * conn_unspec_src set. If verify_dst is true, the destination must be 4798 * reachable. If verify_dst is false, the destination needn't be 4799 * reachable. 4800 * 4801 * If we match on a reject or black hole, then we've got a 4802 * local failure. May as well fail out the connect() attempt, 4803 * since it's never going to succeed. 4804 */ 4805 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4806 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4807 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4808 /* 4809 * If we're verifying destination reachability, we always want 4810 * to complain here. 4811 * 4812 * If we're not verifying destination reachability but the 4813 * destination has a route, we still want to fail on the 4814 * temporary address and broadcast address tests. 4815 */ 4816 if (verify_dst || (dst_ire != NULL)) { 4817 if (ip_debug > 2) { 4818 pr_addr_dbg("ip_bind_connected: bad connected " 4819 "dst %s\n", AF_INET, &dst_addr); 4820 } 4821 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4822 error = ENETUNREACH; 4823 else 4824 error = EHOSTUNREACH; 4825 goto bad_addr; 4826 } 4827 } 4828 4829 /* 4830 * We now know that routing will allow us to reach the destination. 4831 * Check whether Trusted Solaris policy allows communication with this 4832 * host, and pretend that the destination is unreachable if not. 4833 * 4834 * This is never a problem for TCP, since that transport is known to 4835 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4836 * handling. If the remote is unreachable, it will be detected at that 4837 * point, so there's no reason to check it here. 4838 * 4839 * Note that for sendto (and other datagram-oriented friends), this 4840 * check is done as part of the data path label computation instead. 4841 * The check here is just to make non-TCP connect() report the right 4842 * error. 4843 */ 4844 if (dst_ire != NULL && is_system_labeled() && 4845 !IPCL_IS_TCP(connp) && 4846 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4847 connp->conn_mac_exempt, ipst) != 0) { 4848 error = EHOSTUNREACH; 4849 if (ip_debug > 2) { 4850 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4851 AF_INET, &dst_addr); 4852 } 4853 goto bad_addr; 4854 } 4855 4856 /* 4857 * If the app does a connect(), it means that it will most likely 4858 * send more than 1 packet to the destination. It makes sense 4859 * to clear the temporary flag. 4860 */ 4861 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4862 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4863 irb_t *irb = dst_ire->ire_bucket; 4864 4865 rw_enter(&irb->irb_lock, RW_WRITER); 4866 /* 4867 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4868 * the lock to guarantee irb_tmp_ire_cnt. 4869 */ 4870 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4871 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4872 irb->irb_tmp_ire_cnt--; 4873 } 4874 rw_exit(&irb->irb_lock); 4875 } 4876 4877 /* 4878 * See if we should notify ULP about LSO/MDT; we do this whether or not 4879 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4880 * eligibility tests for passive connects are handled separately 4881 * through tcp_adapt_ire(). We do this before the source address 4882 * selection, because dst_ire may change after a call to 4883 * ipif_select_source(). This is a best-effort check, as the 4884 * packet for this connection may not actually go through 4885 * dst_ire->ire_stq, and the exact IRE can only be known after 4886 * calling ip_newroute(). This is why we further check on the 4887 * IRE during LSO/Multidata packet transmission in 4888 * tcp_lsosend()/tcp_multisend(). 4889 */ 4890 if (!ipsec_policy_set && dst_ire != NULL && 4891 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4892 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4893 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4894 lso_dst_ire = dst_ire; 4895 IRE_REFHOLD(lso_dst_ire); 4896 } else if (ipst->ips_ip_multidata_outbound && 4897 ILL_MDT_CAPABLE(ill)) { 4898 md_dst_ire = dst_ire; 4899 IRE_REFHOLD(md_dst_ire); 4900 } 4901 } 4902 4903 if (dst_ire != NULL && 4904 dst_ire->ire_type == IRE_LOCAL && 4905 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4906 /* 4907 * If the IRE belongs to a different zone, look for a matching 4908 * route in the forwarding table and use the source address from 4909 * that route. 4910 */ 4911 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4912 zoneid, 0, NULL, 4913 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4914 MATCH_IRE_RJ_BHOLE, ipst); 4915 if (src_ire == NULL) { 4916 error = EHOSTUNREACH; 4917 goto bad_addr; 4918 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4919 if (!(src_ire->ire_type & IRE_HOST)) 4920 error = ENETUNREACH; 4921 else 4922 error = EHOSTUNREACH; 4923 goto bad_addr; 4924 } 4925 if (src_addr == INADDR_ANY) 4926 src_addr = src_ire->ire_src_addr; 4927 ire_refrele(src_ire); 4928 src_ire = NULL; 4929 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4930 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4931 src_addr = sire->ire_src_addr; 4932 ire_refrele(dst_ire); 4933 dst_ire = sire; 4934 sire = NULL; 4935 } else { 4936 /* 4937 * Pick a source address so that a proper inbound 4938 * load spreading would happen. 4939 */ 4940 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4941 ipif_t *src_ipif = NULL; 4942 ire_t *ipif_ire; 4943 4944 /* 4945 * Supply a local source address such that inbound 4946 * load spreading happens. 4947 * 4948 * Determine the best source address on this ill for 4949 * the destination. 4950 * 4951 * 1) For broadcast, we should return a broadcast ire 4952 * found above so that upper layers know that the 4953 * destination address is a broadcast address. 4954 * 4955 * 2) If this is part of a group, select a better 4956 * source address so that better inbound load 4957 * balancing happens. Do the same if the ipif 4958 * is DEPRECATED. 4959 * 4960 * 3) If the outgoing interface is part of a usesrc 4961 * group, then try selecting a source address from 4962 * the usesrc ILL. 4963 */ 4964 if ((dst_ire->ire_zoneid != zoneid && 4965 dst_ire->ire_zoneid != ALL_ZONES) || 4966 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4967 (!(dst_ire->ire_type & IRE_BROADCAST) && 4968 ((dst_ill->ill_group != NULL) || 4969 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4970 (dst_ill->ill_usesrc_ifindex != 0)))) { 4971 /* 4972 * If the destination is reachable via a 4973 * given gateway, the selected source address 4974 * should be in the same subnet as the gateway. 4975 * Otherwise, the destination is not reachable. 4976 * 4977 * If there are no interfaces on the same subnet 4978 * as the destination, ipif_select_source gives 4979 * first non-deprecated interface which might be 4980 * on a different subnet than the gateway. 4981 * This is not desirable. Hence pass the dst_ire 4982 * source address to ipif_select_source. 4983 * It is sure that the destination is reachable 4984 * with the dst_ire source address subnet. 4985 * So passing dst_ire source address to 4986 * ipif_select_source will make sure that the 4987 * selected source will be on the same subnet 4988 * as dst_ire source address. 4989 */ 4990 ipaddr_t saddr = 4991 dst_ire->ire_ipif->ipif_src_addr; 4992 src_ipif = ipif_select_source(dst_ill, 4993 saddr, zoneid); 4994 if (src_ipif != NULL) { 4995 if (IS_VNI(src_ipif->ipif_ill)) { 4996 /* 4997 * For VNI there is no 4998 * interface route 4999 */ 5000 src_addr = 5001 src_ipif->ipif_src_addr; 5002 } else { 5003 ipif_ire = 5004 ipif_to_ire(src_ipif); 5005 if (ipif_ire != NULL) { 5006 IRE_REFRELE(dst_ire); 5007 dst_ire = ipif_ire; 5008 } 5009 src_addr = 5010 dst_ire->ire_src_addr; 5011 } 5012 ipif_refrele(src_ipif); 5013 } else { 5014 src_addr = dst_ire->ire_src_addr; 5015 } 5016 } else { 5017 src_addr = dst_ire->ire_src_addr; 5018 } 5019 } 5020 } 5021 5022 /* 5023 * We do ire_route_lookup() here (and not 5024 * interface lookup as we assert that 5025 * src_addr should only come from an 5026 * UP interface for hard binding. 5027 */ 5028 ASSERT(src_ire == NULL); 5029 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5030 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5031 /* src_ire must be a local|loopback */ 5032 if (!IRE_IS_LOCAL(src_ire)) { 5033 if (ip_debug > 2) { 5034 pr_addr_dbg("ip_bind_connected: bad connected " 5035 "src %s\n", AF_INET, &src_addr); 5036 } 5037 error = EADDRNOTAVAIL; 5038 goto bad_addr; 5039 } 5040 5041 /* 5042 * If the source address is a loopback address, the 5043 * destination had best be local or multicast. 5044 * The transports that can't handle multicast will reject 5045 * those addresses. 5046 */ 5047 if (src_ire->ire_type == IRE_LOOPBACK && 5048 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5049 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5050 error = -1; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * Allow setting new policies. For example, disconnects come 5056 * down as ipa_t bind. As we would have set conn_policy_cached 5057 * to B_TRUE before, we should set it to B_FALSE, so that policy 5058 * can change after the disconnect. 5059 */ 5060 connp->conn_policy_cached = B_FALSE; 5061 5062 /* 5063 * Set the conn addresses/ports immediately, so the IPsec policy calls 5064 * can handle their passed-in conn's. 5065 */ 5066 5067 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5068 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5069 connp->conn_lport = lport; 5070 connp->conn_fport = fport; 5071 *src_addrp = src_addr; 5072 5073 ASSERT(!(ipsec_policy_set && ire_requested)); 5074 if (ire_requested) { 5075 iulp_t *ulp_info = NULL; 5076 5077 /* 5078 * Note that sire will not be NULL if this is an off-link 5079 * connection and there is not cache for that dest yet. 5080 * 5081 * XXX Because of an existing bug, if there are multiple 5082 * default routes, the IRE returned now may not be the actual 5083 * default route used (default routes are chosen in a 5084 * round robin fashion). So if the metrics for different 5085 * default routes are different, we may return the wrong 5086 * metrics. This will not be a problem if the existing 5087 * bug is fixed. 5088 */ 5089 if (sire != NULL) { 5090 ulp_info = &(sire->ire_uinfo); 5091 } 5092 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5093 error = -1; 5094 goto bad_addr; 5095 } 5096 } else if (ipsec_policy_set) { 5097 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5098 error = -1; 5099 goto bad_addr; 5100 } 5101 } 5102 5103 /* 5104 * Cache IPsec policy in this conn. If we have per-socket policy, 5105 * we'll cache that. If we don't, we'll inherit global policy. 5106 * 5107 * We can't insert until the conn reflects the policy. Note that 5108 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5109 * connections where we don't have a policy. This is to prevent 5110 * global policy lookups in the inbound path. 5111 * 5112 * If we insert before we set conn_policy_cached, 5113 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5114 * because global policy cound be non-empty. We normally call 5115 * ipsec_check_policy() for conn_policy_cached connections only if 5116 * ipc_in_enforce_policy is set. But in this case, 5117 * conn_policy_cached can get set anytime since we made the 5118 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5119 * called, which will make the above assumption false. Thus, we 5120 * need to insert after we set conn_policy_cached. 5121 */ 5122 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5123 goto bad_addr; 5124 5125 if (fanout_insert) { 5126 /* 5127 * The addresses have been verified. Time to insert in 5128 * the correct fanout list. 5129 */ 5130 error = ipcl_conn_insert(connp, protocol, src_addr, 5131 dst_addr, connp->conn_ports); 5132 } 5133 5134 if (error == 0) { 5135 connp->conn_fully_bound = B_TRUE; 5136 /* 5137 * Our initial checks for LSO/MDT have passed; the IRE is not 5138 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5139 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5140 * ip_xxinfo_return(), which performs further checks 5141 * against them and upon success, returns the LSO/MDT info 5142 * mblk which we will attach to the bind acknowledgment. 5143 */ 5144 if (lso_dst_ire != NULL) { 5145 mblk_t *lsoinfo_mp; 5146 5147 ASSERT(ill->ill_lso_capab != NULL); 5148 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5149 ill->ill_name, ill->ill_lso_capab)) != NULL) 5150 linkb(mp, lsoinfo_mp); 5151 } else if (md_dst_ire != NULL) { 5152 mblk_t *mdinfo_mp; 5153 5154 ASSERT(ill->ill_mdt_capab != NULL); 5155 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5156 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5157 linkb(mp, mdinfo_mp); 5158 } 5159 } 5160 bad_addr: 5161 if (ipsec_policy_set) { 5162 ASSERT(policy_mp == mp->b_cont); 5163 ASSERT(policy_mp != NULL); 5164 freeb(policy_mp); 5165 /* 5166 * As of now assume that nothing else accompanies 5167 * IPSEC_POLICY_SET. 5168 */ 5169 mp->b_cont = NULL; 5170 } 5171 if (src_ire != NULL) 5172 IRE_REFRELE(src_ire); 5173 if (dst_ire != NULL) 5174 IRE_REFRELE(dst_ire); 5175 if (sire != NULL) 5176 IRE_REFRELE(sire); 5177 if (md_dst_ire != NULL) 5178 IRE_REFRELE(md_dst_ire); 5179 if (lso_dst_ire != NULL) 5180 IRE_REFRELE(lso_dst_ire); 5181 return (error); 5182 } 5183 5184 /* 5185 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5186 * Prefers dst_ire over src_ire. 5187 */ 5188 static boolean_t 5189 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5190 { 5191 mblk_t *mp1; 5192 ire_t *ret_ire = NULL; 5193 5194 mp1 = mp->b_cont; 5195 ASSERT(mp1 != NULL); 5196 5197 if (ire != NULL) { 5198 /* 5199 * mp1 initialized above to IRE_DB_REQ_TYPE 5200 * appended mblk. Its <upper protocol>'s 5201 * job to make sure there is room. 5202 */ 5203 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5204 return (0); 5205 5206 mp1->b_datap->db_type = IRE_DB_TYPE; 5207 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5208 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5209 ret_ire = (ire_t *)mp1->b_rptr; 5210 /* 5211 * Pass the latest setting of the ip_path_mtu_discovery and 5212 * copy the ulp info if any. 5213 */ 5214 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5215 IPH_DF : 0; 5216 if (ulp_info != NULL) { 5217 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5218 sizeof (iulp_t)); 5219 } 5220 ret_ire->ire_mp = mp1; 5221 } else { 5222 /* 5223 * No IRE was found. Remove IRE mblk. 5224 */ 5225 mp->b_cont = mp1->b_cont; 5226 freeb(mp1); 5227 } 5228 5229 return (1); 5230 } 5231 5232 /* 5233 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5234 * the final piece where we don't. Return a pointer to the first mblk in the 5235 * result, and update the pointer to the next mblk to chew on. If anything 5236 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5237 * NULL pointer. 5238 */ 5239 mblk_t * 5240 ip_carve_mp(mblk_t **mpp, ssize_t len) 5241 { 5242 mblk_t *mp0; 5243 mblk_t *mp1; 5244 mblk_t *mp2; 5245 5246 if (!len || !mpp || !(mp0 = *mpp)) 5247 return (NULL); 5248 /* If we aren't going to consume the first mblk, we need a dup. */ 5249 if (mp0->b_wptr - mp0->b_rptr > len) { 5250 mp1 = dupb(mp0); 5251 if (mp1) { 5252 /* Partition the data between the two mblks. */ 5253 mp1->b_wptr = mp1->b_rptr + len; 5254 mp0->b_rptr = mp1->b_wptr; 5255 /* 5256 * after adjustments if mblk not consumed is now 5257 * unaligned, try to align it. If this fails free 5258 * all messages and let upper layer recover. 5259 */ 5260 if (!OK_32PTR(mp0->b_rptr)) { 5261 if (!pullupmsg(mp0, -1)) { 5262 freemsg(mp0); 5263 freemsg(mp1); 5264 *mpp = NULL; 5265 return (NULL); 5266 } 5267 } 5268 } 5269 return (mp1); 5270 } 5271 /* Eat through as many mblks as we need to get len bytes. */ 5272 len -= mp0->b_wptr - mp0->b_rptr; 5273 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5274 if (mp2->b_wptr - mp2->b_rptr > len) { 5275 /* 5276 * We won't consume the entire last mblk. Like 5277 * above, dup and partition it. 5278 */ 5279 mp1->b_cont = dupb(mp2); 5280 mp1 = mp1->b_cont; 5281 if (!mp1) { 5282 /* 5283 * Trouble. Rather than go to a lot of 5284 * trouble to clean up, we free the messages. 5285 * This won't be any worse than losing it on 5286 * the wire. 5287 */ 5288 freemsg(mp0); 5289 freemsg(mp2); 5290 *mpp = NULL; 5291 return (NULL); 5292 } 5293 mp1->b_wptr = mp1->b_rptr + len; 5294 mp2->b_rptr = mp1->b_wptr; 5295 /* 5296 * after adjustments if mblk not consumed is now 5297 * unaligned, try to align it. If this fails free 5298 * all messages and let upper layer recover. 5299 */ 5300 if (!OK_32PTR(mp2->b_rptr)) { 5301 if (!pullupmsg(mp2, -1)) { 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 } 5308 *mpp = mp2; 5309 return (mp0); 5310 } 5311 /* Decrement len by the amount we just got. */ 5312 len -= mp2->b_wptr - mp2->b_rptr; 5313 } 5314 /* 5315 * len should be reduced to zero now. If not our caller has 5316 * screwed up. 5317 */ 5318 if (len) { 5319 /* Shouldn't happen! */ 5320 freemsg(mp0); 5321 *mpp = NULL; 5322 return (NULL); 5323 } 5324 /* 5325 * We consumed up to exactly the end of an mblk. Detach the part 5326 * we are returning from the rest of the chain. 5327 */ 5328 mp1->b_cont = NULL; 5329 *mpp = mp2; 5330 return (mp0); 5331 } 5332 5333 /* The ill stream is being unplumbed. Called from ip_close */ 5334 int 5335 ip_modclose(ill_t *ill) 5336 { 5337 boolean_t success; 5338 ipsq_t *ipsq; 5339 ipif_t *ipif; 5340 queue_t *q = ill->ill_rq; 5341 ip_stack_t *ipst = ill->ill_ipst; 5342 clock_t timeout; 5343 5344 /* 5345 * Wait for the ACKs of all deferred control messages to be processed. 5346 * In particular, we wait for a potential capability reset initiated 5347 * in ip_sioctl_plink() to complete before proceeding. 5348 * 5349 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5350 * in case the driver never replies. 5351 */ 5352 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5353 mutex_enter(&ill->ill_lock); 5354 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5355 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5356 /* Timeout */ 5357 break; 5358 } 5359 } 5360 mutex_exit(&ill->ill_lock); 5361 5362 /* 5363 * Forcibly enter the ipsq after some delay. This is to take 5364 * care of the case when some ioctl does not complete because 5365 * we sent a control message to the driver and it did not 5366 * send us a reply. We want to be able to at least unplumb 5367 * and replumb rather than force the user to reboot the system. 5368 */ 5369 success = ipsq_enter(ill, B_FALSE); 5370 5371 /* 5372 * Open/close/push/pop is guaranteed to be single threaded 5373 * per stream by STREAMS. FS guarantees that all references 5374 * from top are gone before close is called. So there can't 5375 * be another close thread that has set CONDEMNED on this ill. 5376 * and cause ipsq_enter to return failure. 5377 */ 5378 ASSERT(success); 5379 ipsq = ill->ill_phyint->phyint_ipsq; 5380 5381 /* 5382 * Mark it condemned. No new reference will be made to this ill. 5383 * Lookup functions will return an error. Threads that try to 5384 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5385 * that the refcnt will drop down to zero. 5386 */ 5387 mutex_enter(&ill->ill_lock); 5388 ill->ill_state_flags |= ILL_CONDEMNED; 5389 for (ipif = ill->ill_ipif; ipif != NULL; 5390 ipif = ipif->ipif_next) { 5391 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5392 } 5393 /* 5394 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5395 * returns error if ILL_CONDEMNED is set 5396 */ 5397 cv_broadcast(&ill->ill_cv); 5398 mutex_exit(&ill->ill_lock); 5399 5400 /* 5401 * Send all the deferred DLPI messages downstream which came in 5402 * during the small window right before ipsq_enter(). We do this 5403 * without waiting for the ACKs because all the ACKs for M_PROTO 5404 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5405 */ 5406 ill_dlpi_send_deferred(ill); 5407 5408 /* 5409 * Shut down fragmentation reassembly. 5410 * ill_frag_timer won't start a timer again. 5411 * Now cancel any existing timer 5412 */ 5413 (void) untimeout(ill->ill_frag_timer_id); 5414 (void) ill_frag_timeout(ill, 0); 5415 5416 /* 5417 * If MOVE was in progress, clear the 5418 * move_in_progress fields also. 5419 */ 5420 if (ill->ill_move_in_progress) { 5421 ILL_CLEAR_MOVE(ill); 5422 } 5423 5424 /* 5425 * Call ill_delete to bring down the ipifs, ilms and ill on 5426 * this ill. Then wait for the refcnts to drop to zero. 5427 * ill_is_freeable checks whether the ill is really quiescent. 5428 * Then make sure that threads that are waiting to enter the 5429 * ipsq have seen the error returned by ipsq_enter and have 5430 * gone away. Then we call ill_delete_tail which does the 5431 * DL_UNBIND_REQ with the driver and then qprocsoff. 5432 */ 5433 ill_delete(ill); 5434 mutex_enter(&ill->ill_lock); 5435 while (!ill_is_freeable(ill)) 5436 cv_wait(&ill->ill_cv, &ill->ill_lock); 5437 while (ill->ill_waiters) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 5440 mutex_exit(&ill->ill_lock); 5441 5442 /* 5443 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5444 * it held until the end of the function since the cleanup 5445 * below needs to be able to use the ip_stack_t. 5446 */ 5447 netstack_hold(ipst->ips_netstack); 5448 5449 /* qprocsoff is called in ill_delete_tail */ 5450 ill_delete_tail(ill); 5451 ASSERT(ill->ill_ipst == NULL); 5452 5453 /* 5454 * Walk through all upper (conn) streams and qenable 5455 * those that have queued data. 5456 * close synchronization needs this to 5457 * be done to ensure that all upper layers blocked 5458 * due to flow control to the closing device 5459 * get unblocked. 5460 */ 5461 ip1dbg(("ip_wsrv: walking\n")); 5462 conn_walk_drain(ipst); 5463 5464 mutex_enter(&ipst->ips_ip_mi_lock); 5465 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5466 mutex_exit(&ipst->ips_ip_mi_lock); 5467 5468 /* 5469 * credp could be null if the open didn't succeed and ip_modopen 5470 * itself calls ip_close. 5471 */ 5472 if (ill->ill_credp != NULL) 5473 crfree(ill->ill_credp); 5474 5475 mutex_enter(&ill->ill_lock); 5476 ill_nic_info_dispatch(ill); 5477 mutex_exit(&ill->ill_lock); 5478 5479 /* 5480 * Now we are done with the module close pieces that 5481 * need the netstack_t. 5482 */ 5483 netstack_rele(ipst->ips_netstack); 5484 5485 mi_close_free((IDP)ill); 5486 q->q_ptr = WR(q)->q_ptr = NULL; 5487 5488 ipsq_exit(ipsq); 5489 5490 return (0); 5491 } 5492 5493 /* 5494 * This is called as part of close() for IP, UDP, ICMP, and RTS 5495 * in order to quiesce the conn. 5496 */ 5497 void 5498 ip_quiesce_conn(conn_t *connp) 5499 { 5500 boolean_t drain_cleanup_reqd = B_FALSE; 5501 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5502 boolean_t ilg_cleanup_reqd = B_FALSE; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(!IPCL_IS_TCP(connp)); 5506 ipst = connp->conn_netstack->netstack_ip; 5507 5508 /* 5509 * Mark the conn as closing, and this conn must not be 5510 * inserted in future into any list. Eg. conn_drain_insert(), 5511 * won't insert this conn into the conn_drain_list. 5512 * Similarly ill_pending_mp_add() will not add any mp to 5513 * the pending mp list, after this conn has started closing. 5514 * 5515 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5516 * cannot get set henceforth. 5517 */ 5518 mutex_enter(&connp->conn_lock); 5519 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5520 connp->conn_state_flags |= CONN_CLOSING; 5521 if (connp->conn_idl != NULL) 5522 drain_cleanup_reqd = B_TRUE; 5523 if (connp->conn_oper_pending_ill != NULL) 5524 conn_ioctl_cleanup_reqd = B_TRUE; 5525 if (connp->conn_dhcpinit_ill != NULL) { 5526 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5527 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5528 connp->conn_dhcpinit_ill = NULL; 5529 } 5530 if (connp->conn_ilg_inuse != 0) 5531 ilg_cleanup_reqd = B_TRUE; 5532 mutex_exit(&connp->conn_lock); 5533 5534 if (conn_ioctl_cleanup_reqd) 5535 conn_ioctl_cleanup(connp); 5536 5537 if (is_system_labeled() && connp->conn_anon_port) { 5538 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5539 connp->conn_mlp_type, connp->conn_ulp, 5540 ntohs(connp->conn_lport), B_FALSE); 5541 connp->conn_anon_port = 0; 5542 } 5543 connp->conn_mlp_type = mlptSingle; 5544 5545 /* 5546 * Remove this conn from any fanout list it is on. 5547 * and then wait for any threads currently operating 5548 * on this endpoint to finish 5549 */ 5550 ipcl_hash_remove(connp); 5551 5552 /* 5553 * Remove this conn from the drain list, and do 5554 * any other cleanup that may be required. 5555 * (Only non-tcp streams may have a non-null conn_idl. 5556 * TCP streams are never flow controlled, and 5557 * conn_idl will be null) 5558 */ 5559 if (drain_cleanup_reqd) 5560 conn_drain_tail(connp, B_TRUE); 5561 5562 if (connp == ipst->ips_ip_g_mrouter) 5563 (void) ip_mrouter_done(NULL, ipst); 5564 5565 if (ilg_cleanup_reqd) 5566 ilg_delete_all(connp); 5567 5568 conn_delete_ire(connp, NULL); 5569 5570 /* 5571 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5572 * callers from write side can't be there now because close 5573 * is in progress. The only other caller is ipcl_walk 5574 * which checks for the condemned flag. 5575 */ 5576 mutex_enter(&connp->conn_lock); 5577 connp->conn_state_flags |= CONN_CONDEMNED; 5578 while (connp->conn_ref != 1) 5579 cv_wait(&connp->conn_cv, &connp->conn_lock); 5580 connp->conn_state_flags |= CONN_QUIESCED; 5581 mutex_exit(&connp->conn_lock); 5582 } 5583 5584 /* ARGSUSED */ 5585 int 5586 ip_close(queue_t *q, int flags) 5587 { 5588 conn_t *connp; 5589 5590 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5591 5592 /* 5593 * Call the appropriate delete routine depending on whether this is 5594 * a module or device. 5595 */ 5596 if (WR(q)->q_next != NULL) { 5597 /* This is a module close */ 5598 return (ip_modclose((ill_t *)q->q_ptr)); 5599 } 5600 5601 connp = q->q_ptr; 5602 ip_quiesce_conn(connp); 5603 5604 qprocsoff(q); 5605 5606 /* 5607 * Now we are truly single threaded on this stream, and can 5608 * delete the things hanging off the connp, and finally the connp. 5609 * We removed this connp from the fanout list, it cannot be 5610 * accessed thru the fanouts, and we already waited for the 5611 * conn_ref to drop to 0. We are already in close, so 5612 * there cannot be any other thread from the top. qprocsoff 5613 * has completed, and service has completed or won't run in 5614 * future. 5615 */ 5616 ASSERT(connp->conn_ref == 1); 5617 5618 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5619 5620 connp->conn_ref--; 5621 ipcl_conn_destroy(connp); 5622 5623 q->q_ptr = WR(q)->q_ptr = NULL; 5624 return (0); 5625 } 5626 5627 /* 5628 * Wapper around putnext() so that ip_rts_request can merely use 5629 * conn_recv. 5630 */ 5631 /*ARGSUSED2*/ 5632 static void 5633 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5634 { 5635 conn_t *connp = (conn_t *)arg1; 5636 5637 putnext(connp->conn_rq, mp); 5638 } 5639 5640 /* Return the IP checksum for the IP header at "iph". */ 5641 uint16_t 5642 ip_csum_hdr(ipha_t *ipha) 5643 { 5644 uint16_t *uph; 5645 uint32_t sum; 5646 int opt_len; 5647 5648 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5649 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5650 uph = (uint16_t *)ipha; 5651 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5652 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5653 if (opt_len > 0) { 5654 do { 5655 sum += uph[10]; 5656 sum += uph[11]; 5657 uph += 2; 5658 } while (--opt_len); 5659 } 5660 sum = (sum & 0xFFFF) + (sum >> 16); 5661 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5662 if (sum == 0xffff) 5663 sum = 0; 5664 return ((uint16_t)sum); 5665 } 5666 5667 /* 5668 * Called when the module is about to be unloaded 5669 */ 5670 void 5671 ip_ddi_destroy(void) 5672 { 5673 tnet_fini(); 5674 5675 icmp_ddi_destroy(); 5676 rts_ddi_destroy(); 5677 udp_ddi_destroy(); 5678 sctp_ddi_g_destroy(); 5679 tcp_ddi_g_destroy(); 5680 ipsec_policy_g_destroy(); 5681 ipcl_g_destroy(); 5682 ip_net_g_destroy(); 5683 ip_ire_g_fini(); 5684 inet_minor_destroy(ip_minor_arena_sa); 5685 #if defined(_LP64) 5686 inet_minor_destroy(ip_minor_arena_la); 5687 #endif 5688 5689 #ifdef DEBUG 5690 list_destroy(&ip_thread_list); 5691 rw_destroy(&ip_thread_rwlock); 5692 tsd_destroy(&ip_thread_data); 5693 #endif 5694 5695 netstack_unregister(NS_IP); 5696 } 5697 5698 /* 5699 * First step in cleanup. 5700 */ 5701 /* ARGSUSED */ 5702 static void 5703 ip_stack_shutdown(netstackid_t stackid, void *arg) 5704 { 5705 ip_stack_t *ipst = (ip_stack_t *)arg; 5706 5707 #ifdef NS_DEBUG 5708 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5709 #endif 5710 5711 /* Get rid of loopback interfaces and their IREs */ 5712 ip_loopback_cleanup(ipst); 5713 } 5714 5715 /* 5716 * Free the IP stack instance. 5717 */ 5718 static void 5719 ip_stack_fini(netstackid_t stackid, void *arg) 5720 { 5721 ip_stack_t *ipst = (ip_stack_t *)arg; 5722 int ret; 5723 5724 #ifdef NS_DEBUG 5725 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5726 #endif 5727 ipv4_hook_destroy(ipst); 5728 ipv6_hook_destroy(ipst); 5729 ip_net_destroy(ipst); 5730 5731 rw_destroy(&ipst->ips_srcid_lock); 5732 5733 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5734 ipst->ips_ip_mibkp = NULL; 5735 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5736 ipst->ips_icmp_mibkp = NULL; 5737 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5738 ipst->ips_ip_kstat = NULL; 5739 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5740 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5741 ipst->ips_ip6_kstat = NULL; 5742 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5743 5744 nd_free(&ipst->ips_ip_g_nd); 5745 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5746 ipst->ips_param_arr = NULL; 5747 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5748 ipst->ips_ndp_arr = NULL; 5749 5750 ip_mrouter_stack_destroy(ipst); 5751 5752 mutex_destroy(&ipst->ips_ip_mi_lock); 5753 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5754 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5755 rw_destroy(&ipst->ips_ip_g_nd_lock); 5756 5757 ret = untimeout(ipst->ips_igmp_timeout_id); 5758 if (ret == -1) { 5759 ASSERT(ipst->ips_igmp_timeout_id == 0); 5760 } else { 5761 ASSERT(ipst->ips_igmp_timeout_id != 0); 5762 ipst->ips_igmp_timeout_id = 0; 5763 } 5764 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5765 if (ret == -1) { 5766 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5767 } else { 5768 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5769 ipst->ips_igmp_slowtimeout_id = 0; 5770 } 5771 ret = untimeout(ipst->ips_mld_timeout_id); 5772 if (ret == -1) { 5773 ASSERT(ipst->ips_mld_timeout_id == 0); 5774 } else { 5775 ASSERT(ipst->ips_mld_timeout_id != 0); 5776 ipst->ips_mld_timeout_id = 0; 5777 } 5778 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5779 if (ret == -1) { 5780 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5781 } else { 5782 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5783 ipst->ips_mld_slowtimeout_id = 0; 5784 } 5785 ret = untimeout(ipst->ips_ip_ire_expire_id); 5786 if (ret == -1) { 5787 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5788 } else { 5789 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5790 ipst->ips_ip_ire_expire_id = 0; 5791 } 5792 5793 mutex_destroy(&ipst->ips_igmp_timer_lock); 5794 mutex_destroy(&ipst->ips_mld_timer_lock); 5795 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5796 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5797 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5798 rw_destroy(&ipst->ips_ill_g_lock); 5799 5800 ip_ire_fini(ipst); 5801 ip6_asp_free(ipst); 5802 conn_drain_fini(ipst); 5803 ipcl_destroy(ipst); 5804 5805 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5806 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5807 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5808 ipst->ips_ndp4 = NULL; 5809 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5810 ipst->ips_ndp6 = NULL; 5811 5812 if (ipst->ips_loopback_ksp != NULL) { 5813 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5814 ipst->ips_loopback_ksp = NULL; 5815 } 5816 5817 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5818 ipst->ips_phyint_g_list = NULL; 5819 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5820 ipst->ips_ill_g_heads = NULL; 5821 5822 kmem_free(ipst, sizeof (*ipst)); 5823 } 5824 5825 /* 5826 * This function is called from the TSD destructor, and is used to debug 5827 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5828 * details. 5829 */ 5830 static void 5831 ip_thread_exit(void *phash) 5832 { 5833 th_hash_t *thh = phash; 5834 5835 rw_enter(&ip_thread_rwlock, RW_WRITER); 5836 list_remove(&ip_thread_list, thh); 5837 rw_exit(&ip_thread_rwlock); 5838 mod_hash_destroy_hash(thh->thh_hash); 5839 kmem_free(thh, sizeof (*thh)); 5840 } 5841 5842 /* 5843 * Called when the IP kernel module is loaded into the kernel 5844 */ 5845 void 5846 ip_ddi_init(void) 5847 { 5848 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5849 5850 /* 5851 * For IP and TCP the minor numbers should start from 2 since we have 4 5852 * initial devices: ip, ip6, tcp, tcp6. 5853 */ 5854 /* 5855 * If this is a 64-bit kernel, then create two separate arenas - 5856 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5857 * other for socket apps in the range 2^^18 through 2^^32-1. 5858 */ 5859 ip_minor_arena_la = NULL; 5860 ip_minor_arena_sa = NULL; 5861 #if defined(_LP64) 5862 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5863 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5864 cmn_err(CE_PANIC, 5865 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5866 } 5867 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5868 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5869 cmn_err(CE_PANIC, 5870 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5871 } 5872 #else 5873 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5874 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5875 cmn_err(CE_PANIC, 5876 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5877 } 5878 #endif 5879 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5880 5881 ipcl_g_init(); 5882 ip_ire_g_init(); 5883 ip_net_g_init(); 5884 5885 #ifdef DEBUG 5886 tsd_create(&ip_thread_data, ip_thread_exit); 5887 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5888 list_create(&ip_thread_list, sizeof (th_hash_t), 5889 offsetof(th_hash_t, thh_link)); 5890 #endif 5891 5892 /* 5893 * We want to be informed each time a stack is created or 5894 * destroyed in the kernel, so we can maintain the 5895 * set of udp_stack_t's. 5896 */ 5897 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5898 ip_stack_fini); 5899 5900 ipsec_policy_g_init(); 5901 tcp_ddi_g_init(); 5902 sctp_ddi_g_init(); 5903 5904 tnet_init(); 5905 5906 udp_ddi_init(); 5907 rts_ddi_init(); 5908 icmp_ddi_init(); 5909 } 5910 5911 /* 5912 * Initialize the IP stack instance. 5913 */ 5914 static void * 5915 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5916 { 5917 ip_stack_t *ipst; 5918 ipparam_t *pa; 5919 ipndp_t *na; 5920 5921 #ifdef NS_DEBUG 5922 printf("ip_stack_init(stack %d)\n", stackid); 5923 #endif 5924 5925 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5926 ipst->ips_netstack = ns; 5927 5928 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5929 KM_SLEEP); 5930 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5931 KM_SLEEP); 5932 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5933 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5934 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5936 5937 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5938 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5939 ipst->ips_igmp_deferred_next = INFINITY; 5940 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5941 ipst->ips_mld_deferred_next = INFINITY; 5942 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5943 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5944 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5946 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5947 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5948 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5949 5950 ipcl_init(ipst); 5951 ip_ire_init(ipst); 5952 ip6_asp_init(ipst); 5953 ipif_init(ipst); 5954 conn_drain_init(ipst); 5955 ip_mrouter_stack_init(ipst); 5956 5957 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5958 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5959 5960 ipst->ips_ip_multirt_log_interval = 1000; 5961 5962 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5963 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5964 ipst->ips_ill_index = 1; 5965 5966 ipst->ips_saved_ip_g_forward = -1; 5967 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5968 5969 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5970 ipst->ips_param_arr = pa; 5971 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5972 5973 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5974 ipst->ips_ndp_arr = na; 5975 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5976 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5977 (caddr_t)&ipst->ips_ip_g_forward; 5978 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5979 (caddr_t)&ipst->ips_ipv6_forward; 5980 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5981 "ip_cgtp_filter") == 0); 5982 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5983 (caddr_t)&ipst->ips_ip_cgtp_filter; 5984 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5985 "ipmp_hook_emulation") == 0); 5986 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5987 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5988 5989 (void) ip_param_register(&ipst->ips_ip_g_nd, 5990 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5991 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5992 5993 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5994 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5995 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5996 ipst->ips_ip6_kstat = 5997 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5998 5999 ipst->ips_ipmp_enable_failback = B_TRUE; 6000 6001 ipst->ips_ip_src_id = 1; 6002 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6003 6004 ip_net_init(ipst, ns); 6005 ipv4_hook_init(ipst); 6006 ipv6_hook_init(ipst); 6007 6008 return (ipst); 6009 } 6010 6011 /* 6012 * Allocate and initialize a DLPI template of the specified length. (May be 6013 * called as writer.) 6014 */ 6015 mblk_t * 6016 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6017 { 6018 mblk_t *mp; 6019 6020 mp = allocb(len, BPRI_MED); 6021 if (!mp) 6022 return (NULL); 6023 6024 /* 6025 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6026 * of which we don't seem to use) are sent with M_PCPROTO, and 6027 * that other DLPI are M_PROTO. 6028 */ 6029 if (prim == DL_INFO_REQ) { 6030 mp->b_datap->db_type = M_PCPROTO; 6031 } else { 6032 mp->b_datap->db_type = M_PROTO; 6033 } 6034 6035 mp->b_wptr = mp->b_rptr + len; 6036 bzero(mp->b_rptr, len); 6037 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6038 return (mp); 6039 } 6040 6041 /* 6042 * Debug formatting routine. Returns a character string representation of the 6043 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6044 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6045 * 6046 * Once the ndd table-printing interfaces are removed, this can be changed to 6047 * standard dotted-decimal form. 6048 */ 6049 char * 6050 ip_dot_addr(ipaddr_t addr, char *buf) 6051 { 6052 uint8_t *ap = (uint8_t *)&addr; 6053 6054 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6055 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6056 return (buf); 6057 } 6058 6059 /* 6060 * Write the given MAC address as a printable string in the usual colon- 6061 * separated format. 6062 */ 6063 const char * 6064 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6065 { 6066 char *bp; 6067 6068 if (alen == 0 || buflen < 4) 6069 return ("?"); 6070 bp = buf; 6071 for (;;) { 6072 /* 6073 * If there are more MAC address bytes available, but we won't 6074 * have any room to print them, then add "..." to the string 6075 * instead. See below for the 'magic number' explanation. 6076 */ 6077 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6078 (void) strcpy(bp, "..."); 6079 break; 6080 } 6081 (void) sprintf(bp, "%02x", *addr++); 6082 bp += 2; 6083 if (--alen == 0) 6084 break; 6085 *bp++ = ':'; 6086 buflen -= 3; 6087 /* 6088 * At this point, based on the first 'if' statement above, 6089 * either alen == 1 and buflen >= 3, or alen > 1 and 6090 * buflen >= 4. The first case leaves room for the final "xx" 6091 * number and trailing NUL byte. The second leaves room for at 6092 * least "...". Thus the apparently 'magic' numbers chosen for 6093 * that statement. 6094 */ 6095 } 6096 return (buf); 6097 } 6098 6099 /* 6100 * Send an ICMP error after patching up the packet appropriately. Returns 6101 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6102 */ 6103 static boolean_t 6104 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6105 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6106 zoneid_t zoneid, ip_stack_t *ipst) 6107 { 6108 ipha_t *ipha; 6109 mblk_t *first_mp; 6110 boolean_t secure; 6111 unsigned char db_type; 6112 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6113 6114 first_mp = mp; 6115 if (mctl_present) { 6116 mp = mp->b_cont; 6117 secure = ipsec_in_is_secure(first_mp); 6118 ASSERT(mp != NULL); 6119 } else { 6120 /* 6121 * If this is an ICMP error being reported - which goes 6122 * up as M_CTLs, we need to convert them to M_DATA till 6123 * we finish checking with global policy because 6124 * ipsec_check_global_policy() assumes M_DATA as clear 6125 * and M_CTL as secure. 6126 */ 6127 db_type = DB_TYPE(mp); 6128 DB_TYPE(mp) = M_DATA; 6129 secure = B_FALSE; 6130 } 6131 /* 6132 * We are generating an icmp error for some inbound packet. 6133 * Called from all ip_fanout_(udp, tcp, proto) functions. 6134 * Before we generate an error, check with global policy 6135 * to see whether this is allowed to enter the system. As 6136 * there is no "conn", we are checking with global policy. 6137 */ 6138 ipha = (ipha_t *)mp->b_rptr; 6139 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6140 first_mp = ipsec_check_global_policy(first_mp, NULL, 6141 ipha, NULL, mctl_present, ipst->ips_netstack); 6142 if (first_mp == NULL) 6143 return (B_FALSE); 6144 } 6145 6146 if (!mctl_present) 6147 DB_TYPE(mp) = db_type; 6148 6149 if (flags & IP_FF_SEND_ICMP) { 6150 if (flags & IP_FF_HDR_COMPLETE) { 6151 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6152 freemsg(first_mp); 6153 return (B_TRUE); 6154 } 6155 } 6156 if (flags & IP_FF_CKSUM) { 6157 /* 6158 * Have to correct checksum since 6159 * the packet might have been 6160 * fragmented and the reassembly code in ip_rput 6161 * does not restore the IP checksum. 6162 */ 6163 ipha->ipha_hdr_checksum = 0; 6164 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6165 } 6166 switch (icmp_type) { 6167 case ICMP_DEST_UNREACHABLE: 6168 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6169 ipst); 6170 break; 6171 default: 6172 freemsg(first_mp); 6173 break; 6174 } 6175 } else { 6176 freemsg(first_mp); 6177 return (B_FALSE); 6178 } 6179 6180 return (B_TRUE); 6181 } 6182 6183 /* 6184 * Used to send an ICMP error message when a packet is received for 6185 * a protocol that is not supported. The mblk passed as argument 6186 * is consumed by this function. 6187 */ 6188 void 6189 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6190 ip_stack_t *ipst) 6191 { 6192 mblk_t *mp; 6193 ipha_t *ipha; 6194 ill_t *ill; 6195 ipsec_in_t *ii; 6196 6197 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6198 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6199 6200 mp = ipsec_mp->b_cont; 6201 ipsec_mp->b_cont = NULL; 6202 ipha = (ipha_t *)mp->b_rptr; 6203 /* Get ill from index in ipsec_in_t. */ 6204 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6205 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6206 ipst); 6207 if (ill != NULL) { 6208 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6209 if (ip_fanout_send_icmp(q, mp, flags, 6210 ICMP_DEST_UNREACHABLE, 6211 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6212 BUMP_MIB(ill->ill_ip_mib, 6213 ipIfStatsInUnknownProtos); 6214 } 6215 } else { 6216 if (ip_fanout_send_icmp_v6(q, mp, flags, 6217 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6218 0, B_FALSE, zoneid, ipst)) { 6219 BUMP_MIB(ill->ill_ip_mib, 6220 ipIfStatsInUnknownProtos); 6221 } 6222 } 6223 ill_refrele(ill); 6224 } else { /* re-link for the freemsg() below. */ 6225 ipsec_mp->b_cont = mp; 6226 } 6227 6228 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6229 freemsg(ipsec_mp); 6230 } 6231 6232 /* 6233 * See if the inbound datagram has had IPsec processing applied to it. 6234 */ 6235 boolean_t 6236 ipsec_in_is_secure(mblk_t *ipsec_mp) 6237 { 6238 ipsec_in_t *ii; 6239 6240 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6241 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6242 6243 if (ii->ipsec_in_loopback) { 6244 return (ii->ipsec_in_secure); 6245 } else { 6246 return (ii->ipsec_in_ah_sa != NULL || 6247 ii->ipsec_in_esp_sa != NULL || 6248 ii->ipsec_in_decaps); 6249 } 6250 } 6251 6252 /* 6253 * Handle protocols with which IP is less intimate. There 6254 * can be more than one stream bound to a particular 6255 * protocol. When this is the case, normally each one gets a copy 6256 * of any incoming packets. 6257 * 6258 * IPsec NOTE : 6259 * 6260 * Don't allow a secure packet going up a non-secure connection. 6261 * We don't allow this because 6262 * 6263 * 1) Reply might go out in clear which will be dropped at 6264 * the sending side. 6265 * 2) If the reply goes out in clear it will give the 6266 * adversary enough information for getting the key in 6267 * most of the cases. 6268 * 6269 * Moreover getting a secure packet when we expect clear 6270 * implies that SA's were added without checking for 6271 * policy on both ends. This should not happen once ISAKMP 6272 * is used to negotiate SAs as SAs will be added only after 6273 * verifying the policy. 6274 * 6275 * NOTE : If the packet was tunneled and not multicast we only send 6276 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6277 * back to delivering packets to AF_INET6 raw sockets. 6278 * 6279 * IPQoS Notes: 6280 * Once we have determined the client, invoke IPPF processing. 6281 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6282 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6283 * ip_policy will be false. 6284 * 6285 * Zones notes: 6286 * Currently only applications in the global zone can create raw sockets for 6287 * protocols other than ICMP. So unlike the broadcast / multicast case of 6288 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6289 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6290 */ 6291 static void 6292 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6293 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6294 zoneid_t zoneid) 6295 { 6296 queue_t *rq; 6297 mblk_t *mp1, *first_mp1; 6298 uint_t protocol = ipha->ipha_protocol; 6299 ipaddr_t dst; 6300 boolean_t one_only; 6301 mblk_t *first_mp = mp; 6302 boolean_t secure; 6303 uint32_t ill_index; 6304 conn_t *connp, *first_connp, *next_connp; 6305 connf_t *connfp; 6306 boolean_t shared_addr; 6307 mib2_ipIfStatsEntry_t *mibptr; 6308 ip_stack_t *ipst = recv_ill->ill_ipst; 6309 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6310 6311 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6312 if (mctl_present) { 6313 mp = first_mp->b_cont; 6314 secure = ipsec_in_is_secure(first_mp); 6315 ASSERT(mp != NULL); 6316 } else { 6317 secure = B_FALSE; 6318 } 6319 dst = ipha->ipha_dst; 6320 /* 6321 * If the packet was tunneled and not multicast we only send to it 6322 * the first match. 6323 */ 6324 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6325 !CLASSD(dst)); 6326 6327 shared_addr = (zoneid == ALL_ZONES); 6328 if (shared_addr) { 6329 /* 6330 * We don't allow multilevel ports for raw IP, so no need to 6331 * check for that here. 6332 */ 6333 zoneid = tsol_packet_to_zoneid(mp); 6334 } 6335 6336 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6337 mutex_enter(&connfp->connf_lock); 6338 connp = connfp->connf_head; 6339 for (connp = connfp->connf_head; connp != NULL; 6340 connp = connp->conn_next) { 6341 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6342 zoneid) && 6343 (!is_system_labeled() || 6344 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6345 connp))) { 6346 break; 6347 } 6348 } 6349 6350 if (connp == NULL || connp->conn_upq == NULL) { 6351 /* 6352 * No one bound to these addresses. Is 6353 * there a client that wants all 6354 * unclaimed datagrams? 6355 */ 6356 mutex_exit(&connfp->connf_lock); 6357 /* 6358 * Check for IPPROTO_ENCAP... 6359 */ 6360 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6361 /* 6362 * If an IPsec mblk is here on a multicast 6363 * tunnel (using ip_mroute stuff), check policy here, 6364 * THEN ship off to ip_mroute_decap(). 6365 * 6366 * BTW, If I match a configured IP-in-IP 6367 * tunnel, this path will not be reached, and 6368 * ip_mroute_decap will never be called. 6369 */ 6370 first_mp = ipsec_check_global_policy(first_mp, connp, 6371 ipha, NULL, mctl_present, ipst->ips_netstack); 6372 if (first_mp != NULL) { 6373 if (mctl_present) 6374 freeb(first_mp); 6375 ip_mroute_decap(q, mp, ill); 6376 } /* Else we already freed everything! */ 6377 } else { 6378 /* 6379 * Otherwise send an ICMP protocol unreachable. 6380 */ 6381 if (ip_fanout_send_icmp(q, first_mp, flags, 6382 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6383 mctl_present, zoneid, ipst)) { 6384 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6385 } 6386 } 6387 return; 6388 } 6389 CONN_INC_REF(connp); 6390 first_connp = connp; 6391 6392 /* 6393 * Only send message to one tunnel driver by immediately 6394 * terminating the loop. 6395 */ 6396 connp = one_only ? NULL : connp->conn_next; 6397 6398 for (;;) { 6399 while (connp != NULL) { 6400 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6401 flags, zoneid) && 6402 (!is_system_labeled() || 6403 tsol_receive_local(mp, &dst, IPV4_VERSION, 6404 shared_addr, connp))) 6405 break; 6406 connp = connp->conn_next; 6407 } 6408 6409 /* 6410 * Copy the packet. 6411 */ 6412 if (connp == NULL || connp->conn_upq == NULL || 6413 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6414 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6415 /* 6416 * No more interested clients or memory 6417 * allocation failed 6418 */ 6419 connp = first_connp; 6420 break; 6421 } 6422 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6423 CONN_INC_REF(connp); 6424 mutex_exit(&connfp->connf_lock); 6425 rq = connp->conn_rq; 6426 if (!canputnext(rq)) { 6427 if (flags & IP_FF_RAWIP) { 6428 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6429 } else { 6430 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6431 } 6432 6433 freemsg(first_mp1); 6434 } else { 6435 /* 6436 * Don't enforce here if we're an actual tunnel - 6437 * let "tun" do it instead. 6438 */ 6439 if (!IPCL_IS_IPTUN(connp) && 6440 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6441 secure)) { 6442 first_mp1 = ipsec_check_inbound_policy 6443 (first_mp1, connp, ipha, NULL, 6444 mctl_present); 6445 } 6446 if (first_mp1 != NULL) { 6447 int in_flags = 0; 6448 /* 6449 * ip_fanout_proto also gets called from 6450 * icmp_inbound_error_fanout, in which case 6451 * the msg type is M_CTL. Don't add info 6452 * in this case for the time being. In future 6453 * when there is a need for knowing the 6454 * inbound iface index for ICMP error msgs, 6455 * then this can be changed. 6456 */ 6457 if (connp->conn_recvif) 6458 in_flags = IPF_RECVIF; 6459 /* 6460 * The ULP may support IP_RECVPKTINFO for both 6461 * IP v4 and v6 so pass the appropriate argument 6462 * based on conn IP version. 6463 */ 6464 if (connp->conn_ip_recvpktinfo) { 6465 if (connp->conn_af_isv6) { 6466 /* 6467 * V6 only needs index 6468 */ 6469 in_flags |= IPF_RECVIF; 6470 } else { 6471 /* 6472 * V4 needs index + 6473 * matching address. 6474 */ 6475 in_flags |= IPF_RECVADDR; 6476 } 6477 } 6478 if ((in_flags != 0) && 6479 (mp->b_datap->db_type != M_CTL)) { 6480 /* 6481 * the actual data will be 6482 * contained in b_cont upon 6483 * successful return of the 6484 * following call else 6485 * original mblk is returned 6486 */ 6487 ASSERT(recv_ill != NULL); 6488 mp1 = ip_add_info(mp1, recv_ill, 6489 in_flags, IPCL_ZONEID(connp), ipst); 6490 } 6491 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6492 if (mctl_present) 6493 freeb(first_mp1); 6494 (connp->conn_recv)(connp, mp1, NULL); 6495 } 6496 } 6497 mutex_enter(&connfp->connf_lock); 6498 /* Follow the next pointer before releasing the conn. */ 6499 next_connp = connp->conn_next; 6500 CONN_DEC_REF(connp); 6501 connp = next_connp; 6502 } 6503 6504 /* Last one. Send it upstream. */ 6505 mutex_exit(&connfp->connf_lock); 6506 6507 /* 6508 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6509 * will be set to false. 6510 */ 6511 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6512 ill_index = ill->ill_phyint->phyint_ifindex; 6513 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6514 if (mp == NULL) { 6515 CONN_DEC_REF(connp); 6516 if (mctl_present) { 6517 freeb(first_mp); 6518 } 6519 return; 6520 } 6521 } 6522 6523 rq = connp->conn_rq; 6524 if (!canputnext(rq)) { 6525 if (flags & IP_FF_RAWIP) { 6526 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6527 } else { 6528 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6529 } 6530 6531 freemsg(first_mp); 6532 } else { 6533 if (IPCL_IS_IPTUN(connp)) { 6534 /* 6535 * Tunneled packet. We enforce policy in the tunnel 6536 * module itself. 6537 * 6538 * Send the WHOLE packet up (incl. IPSEC_IN) without 6539 * a policy check. 6540 * FIXME to use conn_recv for tun later. 6541 */ 6542 putnext(rq, first_mp); 6543 CONN_DEC_REF(connp); 6544 return; 6545 } 6546 6547 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6548 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6549 ipha, NULL, mctl_present); 6550 } 6551 6552 if (first_mp != NULL) { 6553 int in_flags = 0; 6554 6555 /* 6556 * ip_fanout_proto also gets called 6557 * from icmp_inbound_error_fanout, in 6558 * which case the msg type is M_CTL. 6559 * Don't add info in this case for time 6560 * being. In future when there is a 6561 * need for knowing the inbound iface 6562 * index for ICMP error msgs, then this 6563 * can be changed 6564 */ 6565 if (connp->conn_recvif) 6566 in_flags = IPF_RECVIF; 6567 if (connp->conn_ip_recvpktinfo) { 6568 if (connp->conn_af_isv6) { 6569 /* 6570 * V6 only needs index 6571 */ 6572 in_flags |= IPF_RECVIF; 6573 } else { 6574 /* 6575 * V4 needs index + 6576 * matching address. 6577 */ 6578 in_flags |= IPF_RECVADDR; 6579 } 6580 } 6581 if ((in_flags != 0) && 6582 (mp->b_datap->db_type != M_CTL)) { 6583 6584 /* 6585 * the actual data will be contained in 6586 * b_cont upon successful return 6587 * of the following call else original 6588 * mblk is returned 6589 */ 6590 ASSERT(recv_ill != NULL); 6591 mp = ip_add_info(mp, recv_ill, 6592 in_flags, IPCL_ZONEID(connp), ipst); 6593 } 6594 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6595 (connp->conn_recv)(connp, mp, NULL); 6596 if (mctl_present) 6597 freeb(first_mp); 6598 } 6599 } 6600 CONN_DEC_REF(connp); 6601 } 6602 6603 /* 6604 * Fanout for TCP packets 6605 * The caller puts <fport, lport> in the ports parameter. 6606 * 6607 * IPQoS Notes 6608 * Before sending it to the client, invoke IPPF processing. 6609 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6610 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6611 * ip_policy is false. 6612 */ 6613 static void 6614 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6615 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6616 { 6617 mblk_t *first_mp; 6618 boolean_t secure; 6619 uint32_t ill_index; 6620 int ip_hdr_len; 6621 tcph_t *tcph; 6622 boolean_t syn_present = B_FALSE; 6623 conn_t *connp; 6624 ip_stack_t *ipst = recv_ill->ill_ipst; 6625 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6626 6627 ASSERT(recv_ill != NULL); 6628 6629 first_mp = mp; 6630 if (mctl_present) { 6631 ASSERT(first_mp->b_datap->db_type == M_CTL); 6632 mp = first_mp->b_cont; 6633 secure = ipsec_in_is_secure(first_mp); 6634 ASSERT(mp != NULL); 6635 } else { 6636 secure = B_FALSE; 6637 } 6638 6639 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6640 6641 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6642 zoneid, ipst)) == NULL) { 6643 /* 6644 * No connected connection or listener. Send a 6645 * TH_RST via tcp_xmit_listeners_reset. 6646 */ 6647 6648 /* Initiate IPPf processing, if needed. */ 6649 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6650 uint32_t ill_index; 6651 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6652 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6653 if (first_mp == NULL) 6654 return; 6655 } 6656 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6657 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6658 zoneid)); 6659 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6660 ipst->ips_netstack->netstack_tcp, NULL); 6661 return; 6662 } 6663 6664 /* 6665 * Allocate the SYN for the TCP connection here itself 6666 */ 6667 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6668 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6669 if (IPCL_IS_TCP(connp)) { 6670 squeue_t *sqp; 6671 6672 /* 6673 * For fused tcp loopback, assign the eager's 6674 * squeue to be that of the active connect's. 6675 * Note that we don't check for IP_FF_LOOPBACK 6676 * here since this routine gets called only 6677 * for loopback (unlike the IPv6 counterpart). 6678 */ 6679 ASSERT(Q_TO_CONN(q) != NULL); 6680 if (do_tcp_fusion && 6681 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6682 !secure && 6683 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6684 IPCL_IS_TCP(Q_TO_CONN(q))) { 6685 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6686 sqp = Q_TO_CONN(q)->conn_sqp; 6687 } else { 6688 sqp = IP_SQUEUE_GET(lbolt); 6689 } 6690 6691 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6692 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6693 syn_present = B_TRUE; 6694 } 6695 } 6696 6697 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6698 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6699 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6700 if ((flags & TH_RST) || (flags & TH_URG)) { 6701 CONN_DEC_REF(connp); 6702 freemsg(first_mp); 6703 return; 6704 } 6705 if (flags & TH_ACK) { 6706 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6707 ipst->ips_netstack->netstack_tcp, connp); 6708 CONN_DEC_REF(connp); 6709 return; 6710 } 6711 6712 CONN_DEC_REF(connp); 6713 freemsg(first_mp); 6714 return; 6715 } 6716 6717 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6718 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6719 NULL, mctl_present); 6720 if (first_mp == NULL) { 6721 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6722 CONN_DEC_REF(connp); 6723 return; 6724 } 6725 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6726 ASSERT(syn_present); 6727 if (mctl_present) { 6728 ASSERT(first_mp != mp); 6729 first_mp->b_datap->db_struioflag |= 6730 STRUIO_POLICY; 6731 } else { 6732 ASSERT(first_mp == mp); 6733 mp->b_datap->db_struioflag &= 6734 ~STRUIO_EAGER; 6735 mp->b_datap->db_struioflag |= 6736 STRUIO_POLICY; 6737 } 6738 } else { 6739 /* 6740 * Discard first_mp early since we're dealing with a 6741 * fully-connected conn_t and tcp doesn't do policy in 6742 * this case. 6743 */ 6744 if (mctl_present) { 6745 freeb(first_mp); 6746 mctl_present = B_FALSE; 6747 } 6748 first_mp = mp; 6749 } 6750 } 6751 6752 /* 6753 * Initiate policy processing here if needed. If we get here from 6754 * icmp_inbound_error_fanout, ip_policy is false. 6755 */ 6756 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6757 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6758 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6759 if (mp == NULL) { 6760 CONN_DEC_REF(connp); 6761 if (mctl_present) 6762 freeb(first_mp); 6763 return; 6764 } else if (mctl_present) { 6765 ASSERT(first_mp != mp); 6766 first_mp->b_cont = mp; 6767 } else { 6768 first_mp = mp; 6769 } 6770 } 6771 6772 6773 6774 /* Handle socket options. */ 6775 if (!syn_present && 6776 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6777 /* Add header */ 6778 ASSERT(recv_ill != NULL); 6779 /* 6780 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6781 * IPF_RECVIF. 6782 */ 6783 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6784 ipst); 6785 if (mp == NULL) { 6786 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6787 CONN_DEC_REF(connp); 6788 if (mctl_present) 6789 freeb(first_mp); 6790 return; 6791 } else if (mctl_present) { 6792 /* 6793 * ip_add_info might return a new mp. 6794 */ 6795 ASSERT(first_mp != mp); 6796 first_mp->b_cont = mp; 6797 } else { 6798 first_mp = mp; 6799 } 6800 } 6801 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6802 if (IPCL_IS_TCP(connp)) { 6803 /* do not drain, certain use cases can blow the stack */ 6804 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6805 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6806 } else { 6807 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6808 (connp->conn_recv)(connp, first_mp, NULL); 6809 CONN_DEC_REF(connp); 6810 } 6811 } 6812 6813 /* 6814 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6815 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6816 * is not consumed. 6817 * 6818 * One of four things can happen, all of which affect the passed-in mblk: 6819 * 6820 * 1.) ICMP messages that go through here just get returned TRUE. 6821 * 6822 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6823 * 6824 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6825 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6826 * 6827 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6828 */ 6829 static boolean_t 6830 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6831 ipsec_stack_t *ipss) 6832 { 6833 int shift, plen, iph_len; 6834 ipha_t *ipha; 6835 udpha_t *udpha; 6836 uint32_t *spi; 6837 uint32_t esp_ports; 6838 uint8_t *orptr; 6839 boolean_t free_ire; 6840 6841 if (DB_TYPE(mp) == M_CTL) { 6842 /* 6843 * ICMP message with UDP inside. Don't bother stripping, just 6844 * send it up. 6845 * 6846 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6847 * to ignore errors set by ICMP anyway ('cause they might be 6848 * forged), but that's the app's decision, not ours. 6849 */ 6850 6851 /* Bunch of reality checks for DEBUG kernels... */ 6852 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6853 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6854 6855 return (B_TRUE); 6856 } 6857 6858 ipha = (ipha_t *)mp->b_rptr; 6859 iph_len = IPH_HDR_LENGTH(ipha); 6860 plen = ntohs(ipha->ipha_length); 6861 6862 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6863 /* 6864 * Most likely a keepalive for the benefit of an intervening 6865 * NAT. These aren't for us, per se, so drop it. 6866 * 6867 * RFC 3947/8 doesn't say for sure what to do for 2-3 6868 * byte packets (keepalives are 1-byte), but we'll drop them 6869 * also. 6870 */ 6871 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6872 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6873 return (B_FALSE); 6874 } 6875 6876 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6877 /* might as well pull it all up - it might be ESP. */ 6878 if (!pullupmsg(mp, -1)) { 6879 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6880 DROPPER(ipss, ipds_esp_nomem), 6881 &ipss->ipsec_dropper); 6882 return (B_FALSE); 6883 } 6884 6885 ipha = (ipha_t *)mp->b_rptr; 6886 } 6887 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6888 if (*spi == 0) { 6889 /* UDP packet - remove 0-spi. */ 6890 shift = sizeof (uint32_t); 6891 } else { 6892 /* ESP-in-UDP packet - reduce to ESP. */ 6893 ipha->ipha_protocol = IPPROTO_ESP; 6894 shift = sizeof (udpha_t); 6895 } 6896 6897 /* Fix IP header */ 6898 ipha->ipha_length = htons(plen - shift); 6899 ipha->ipha_hdr_checksum = 0; 6900 6901 orptr = mp->b_rptr; 6902 mp->b_rptr += shift; 6903 6904 udpha = (udpha_t *)(orptr + iph_len); 6905 if (*spi == 0) { 6906 ASSERT((uint8_t *)ipha == orptr); 6907 udpha->uha_length = htons(plen - shift - iph_len); 6908 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6909 esp_ports = 0; 6910 } else { 6911 esp_ports = *((uint32_t *)udpha); 6912 ASSERT(esp_ports != 0); 6913 } 6914 ovbcopy(orptr, orptr + shift, iph_len); 6915 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6916 ipha = (ipha_t *)(orptr + shift); 6917 6918 free_ire = (ire == NULL); 6919 if (free_ire) { 6920 /* Re-acquire ire. */ 6921 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6922 ipss->ipsec_netstack->netstack_ip); 6923 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6924 if (ire != NULL) 6925 ire_refrele(ire); 6926 /* 6927 * Do a regular freemsg(), as this is an IP 6928 * error (no local route) not an IPsec one. 6929 */ 6930 freemsg(mp); 6931 } 6932 } 6933 6934 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6935 if (free_ire) 6936 ire_refrele(ire); 6937 } 6938 6939 return (esp_ports == 0); 6940 } 6941 6942 /* 6943 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6944 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6945 * Caller is responsible for dropping references to the conn, and freeing 6946 * first_mp. 6947 * 6948 * IPQoS Notes 6949 * Before sending it to the client, invoke IPPF processing. Policy processing 6950 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6951 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6952 * ip_wput_local, ip_policy is false. 6953 */ 6954 static void 6955 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6956 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6957 boolean_t ip_policy) 6958 { 6959 boolean_t mctl_present = (first_mp != NULL); 6960 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6961 uint32_t ill_index; 6962 ip_stack_t *ipst = recv_ill->ill_ipst; 6963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6964 6965 ASSERT(ill != NULL); 6966 6967 if (mctl_present) 6968 first_mp->b_cont = mp; 6969 else 6970 first_mp = mp; 6971 6972 if (CONN_UDP_FLOWCTLD(connp)) { 6973 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6974 freemsg(first_mp); 6975 return; 6976 } 6977 6978 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6979 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6980 NULL, mctl_present); 6981 if (first_mp == NULL) { 6982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6983 return; /* Freed by ipsec_check_inbound_policy(). */ 6984 } 6985 } 6986 if (mctl_present) 6987 freeb(first_mp); 6988 6989 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6990 if (connp->conn_udp->udp_nat_t_endpoint) { 6991 if (mctl_present) { 6992 /* mctl_present *shouldn't* happen. */ 6993 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6994 DROPPER(ipss, ipds_esp_nat_t_ipsec), 6995 &ipss->ipsec_dropper); 6996 return; 6997 } 6998 6999 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7000 return; 7001 } 7002 7003 /* Handle options. */ 7004 if (connp->conn_recvif) 7005 in_flags = IPF_RECVIF; 7006 /* 7007 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7008 * passed to ip_add_info is based on IP version of connp. 7009 */ 7010 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7011 if (connp->conn_af_isv6) { 7012 /* 7013 * V6 only needs index 7014 */ 7015 in_flags |= IPF_RECVIF; 7016 } else { 7017 /* 7018 * V4 needs index + matching address. 7019 */ 7020 in_flags |= IPF_RECVADDR; 7021 } 7022 } 7023 7024 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7025 in_flags |= IPF_RECVSLLA; 7026 7027 /* 7028 * Initiate IPPF processing here, if needed. Note first_mp won't be 7029 * freed if the packet is dropped. The caller will do so. 7030 */ 7031 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7032 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7033 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7034 if (mp == NULL) { 7035 return; 7036 } 7037 } 7038 if ((in_flags != 0) && 7039 (mp->b_datap->db_type != M_CTL)) { 7040 /* 7041 * The actual data will be contained in b_cont 7042 * upon successful return of the following call 7043 * else original mblk is returned 7044 */ 7045 ASSERT(recv_ill != NULL); 7046 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7047 ipst); 7048 } 7049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7050 /* Send it upstream */ 7051 (connp->conn_recv)(connp, mp, NULL); 7052 } 7053 7054 /* 7055 * Fanout for UDP packets. 7056 * The caller puts <fport, lport> in the ports parameter. 7057 * 7058 * If SO_REUSEADDR is set all multicast and broadcast packets 7059 * will be delivered to all streams bound to the same port. 7060 * 7061 * Zones notes: 7062 * Multicast and broadcast packets will be distributed to streams in all zones. 7063 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7064 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7065 * packets. To maintain this behavior with multiple zones, the conns are grouped 7066 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7067 * each zone. If unset, all the following conns in the same zone are skipped. 7068 */ 7069 static void 7070 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7071 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7072 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7073 { 7074 uint32_t dstport, srcport; 7075 ipaddr_t dst; 7076 mblk_t *first_mp; 7077 boolean_t secure; 7078 in6_addr_t v6src; 7079 conn_t *connp; 7080 connf_t *connfp; 7081 conn_t *first_connp; 7082 conn_t *next_connp; 7083 mblk_t *mp1, *first_mp1; 7084 ipaddr_t src; 7085 zoneid_t last_zoneid; 7086 boolean_t reuseaddr; 7087 boolean_t shared_addr; 7088 boolean_t unlabeled; 7089 ip_stack_t *ipst; 7090 7091 ASSERT(recv_ill != NULL); 7092 ipst = recv_ill->ill_ipst; 7093 7094 first_mp = mp; 7095 if (mctl_present) { 7096 mp = first_mp->b_cont; 7097 first_mp->b_cont = NULL; 7098 secure = ipsec_in_is_secure(first_mp); 7099 ASSERT(mp != NULL); 7100 } else { 7101 first_mp = NULL; 7102 secure = B_FALSE; 7103 } 7104 7105 /* Extract ports in net byte order */ 7106 dstport = htons(ntohl(ports) & 0xFFFF); 7107 srcport = htons(ntohl(ports) >> 16); 7108 dst = ipha->ipha_dst; 7109 src = ipha->ipha_src; 7110 7111 unlabeled = B_FALSE; 7112 if (is_system_labeled()) 7113 /* Cred cannot be null on IPv4 */ 7114 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7115 TSLF_UNLABELED) != 0; 7116 shared_addr = (zoneid == ALL_ZONES); 7117 if (shared_addr) { 7118 /* 7119 * No need to handle exclusive-stack zones since ALL_ZONES 7120 * only applies to the shared stack. 7121 */ 7122 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7123 /* 7124 * If no shared MLP is found, tsol_mlp_findzone returns 7125 * ALL_ZONES. In that case, we assume it's SLP, and 7126 * search for the zone based on the packet label. 7127 * 7128 * If there is such a zone, we prefer to find a 7129 * connection in it. Otherwise, we look for a 7130 * MAC-exempt connection in any zone whose label 7131 * dominates the default label on the packet. 7132 */ 7133 if (zoneid == ALL_ZONES) 7134 zoneid = tsol_packet_to_zoneid(mp); 7135 else 7136 unlabeled = B_FALSE; 7137 } 7138 7139 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7140 mutex_enter(&connfp->connf_lock); 7141 connp = connfp->connf_head; 7142 if (!broadcast && !CLASSD(dst)) { 7143 /* 7144 * Not broadcast or multicast. Send to the one (first) 7145 * client we find. No need to check conn_wantpacket() 7146 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7147 * IPv4 unicast packets. 7148 */ 7149 while ((connp != NULL) && 7150 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7151 (!IPCL_ZONE_MATCH(connp, zoneid) && 7152 !(unlabeled && connp->conn_mac_exempt)))) { 7153 /* 7154 * We keep searching since the conn did not match, 7155 * or its zone did not match and it is not either 7156 * an allzones conn or a mac exempt conn (if the 7157 * sender is unlabeled.) 7158 */ 7159 connp = connp->conn_next; 7160 } 7161 7162 if (connp == NULL || connp->conn_upq == NULL) 7163 goto notfound; 7164 7165 if (is_system_labeled() && 7166 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7167 connp)) 7168 goto notfound; 7169 7170 CONN_INC_REF(connp); 7171 mutex_exit(&connfp->connf_lock); 7172 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7173 flags, recv_ill, ip_policy); 7174 IP_STAT(ipst, ip_udp_fannorm); 7175 CONN_DEC_REF(connp); 7176 return; 7177 } 7178 7179 /* 7180 * Broadcast and multicast case 7181 * 7182 * Need to check conn_wantpacket(). 7183 * If SO_REUSEADDR has been set on the first we send the 7184 * packet to all clients that have joined the group and 7185 * match the port. 7186 */ 7187 7188 while (connp != NULL) { 7189 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7190 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7191 (!is_system_labeled() || 7192 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7193 connp))) 7194 break; 7195 connp = connp->conn_next; 7196 } 7197 7198 if (connp == NULL || connp->conn_upq == NULL) 7199 goto notfound; 7200 7201 first_connp = connp; 7202 /* 7203 * When SO_REUSEADDR is not set, send the packet only to the first 7204 * matching connection in its zone by keeping track of the zoneid. 7205 */ 7206 reuseaddr = first_connp->conn_reuseaddr; 7207 last_zoneid = first_connp->conn_zoneid; 7208 7209 CONN_INC_REF(connp); 7210 connp = connp->conn_next; 7211 for (;;) { 7212 while (connp != NULL) { 7213 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7214 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7215 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7216 (!is_system_labeled() || 7217 tsol_receive_local(mp, &dst, IPV4_VERSION, 7218 shared_addr, connp))) 7219 break; 7220 connp = connp->conn_next; 7221 } 7222 /* 7223 * Just copy the data part alone. The mctl part is 7224 * needed just for verifying policy and it is never 7225 * sent up. 7226 */ 7227 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7228 ((mp1 = copymsg(mp)) == NULL))) { 7229 /* 7230 * No more interested clients or memory 7231 * allocation failed 7232 */ 7233 connp = first_connp; 7234 break; 7235 } 7236 if (connp->conn_zoneid != last_zoneid) { 7237 /* 7238 * Update the zoneid so that the packet isn't sent to 7239 * any more conns in the same zone unless SO_REUSEADDR 7240 * is set. 7241 */ 7242 reuseaddr = connp->conn_reuseaddr; 7243 last_zoneid = connp->conn_zoneid; 7244 } 7245 if (first_mp != NULL) { 7246 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7247 ipsec_info_type == IPSEC_IN); 7248 first_mp1 = ipsec_in_tag(first_mp, NULL, 7249 ipst->ips_netstack); 7250 if (first_mp1 == NULL) { 7251 freemsg(mp1); 7252 connp = first_connp; 7253 break; 7254 } 7255 } else { 7256 first_mp1 = NULL; 7257 } 7258 CONN_INC_REF(connp); 7259 mutex_exit(&connfp->connf_lock); 7260 /* 7261 * IPQoS notes: We don't send the packet for policy 7262 * processing here, will do it for the last one (below). 7263 * i.e. we do it per-packet now, but if we do policy 7264 * processing per-conn, then we would need to do it 7265 * here too. 7266 */ 7267 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7268 ipha, flags, recv_ill, B_FALSE); 7269 mutex_enter(&connfp->connf_lock); 7270 /* Follow the next pointer before releasing the conn. */ 7271 next_connp = connp->conn_next; 7272 IP_STAT(ipst, ip_udp_fanmb); 7273 CONN_DEC_REF(connp); 7274 connp = next_connp; 7275 } 7276 7277 /* Last one. Send it upstream. */ 7278 mutex_exit(&connfp->connf_lock); 7279 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7280 recv_ill, ip_policy); 7281 IP_STAT(ipst, ip_udp_fanmb); 7282 CONN_DEC_REF(connp); 7283 return; 7284 7285 notfound: 7286 7287 mutex_exit(&connfp->connf_lock); 7288 IP_STAT(ipst, ip_udp_fanothers); 7289 /* 7290 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7291 * have already been matched above, since they live in the IPv4 7292 * fanout tables. This implies we only need to 7293 * check for IPv6 in6addr_any endpoints here. 7294 * Thus we compare using ipv6_all_zeros instead of the destination 7295 * address, except for the multicast group membership lookup which 7296 * uses the IPv4 destination. 7297 */ 7298 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7299 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7300 mutex_enter(&connfp->connf_lock); 7301 connp = connfp->connf_head; 7302 if (!broadcast && !CLASSD(dst)) { 7303 while (connp != NULL) { 7304 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7305 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7306 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7307 !connp->conn_ipv6_v6only) 7308 break; 7309 connp = connp->conn_next; 7310 } 7311 7312 if (connp != NULL && is_system_labeled() && 7313 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7314 connp)) 7315 connp = NULL; 7316 7317 if (connp == NULL || connp->conn_upq == NULL) { 7318 /* 7319 * No one bound to this port. Is 7320 * there a client that wants all 7321 * unclaimed datagrams? 7322 */ 7323 mutex_exit(&connfp->connf_lock); 7324 7325 if (mctl_present) 7326 first_mp->b_cont = mp; 7327 else 7328 first_mp = mp; 7329 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7330 connf_head != NULL) { 7331 ip_fanout_proto(q, first_mp, ill, ipha, 7332 flags | IP_FF_RAWIP, mctl_present, 7333 ip_policy, recv_ill, zoneid); 7334 } else { 7335 if (ip_fanout_send_icmp(q, first_mp, flags, 7336 ICMP_DEST_UNREACHABLE, 7337 ICMP_PORT_UNREACHABLE, 7338 mctl_present, zoneid, ipst)) { 7339 BUMP_MIB(ill->ill_ip_mib, 7340 udpIfStatsNoPorts); 7341 } 7342 } 7343 return; 7344 } 7345 7346 CONN_INC_REF(connp); 7347 mutex_exit(&connfp->connf_lock); 7348 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7349 flags, recv_ill, ip_policy); 7350 CONN_DEC_REF(connp); 7351 return; 7352 } 7353 /* 7354 * IPv4 multicast packet being delivered to an AF_INET6 7355 * in6addr_any endpoint. 7356 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7357 * and not conn_wantpacket_v6() since any multicast membership is 7358 * for an IPv4-mapped multicast address. 7359 * The packet is sent to all clients in all zones that have joined the 7360 * group and match the port. 7361 */ 7362 while (connp != NULL) { 7363 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7364 srcport, v6src) && 7365 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7366 (!is_system_labeled() || 7367 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7368 connp))) 7369 break; 7370 connp = connp->conn_next; 7371 } 7372 7373 if (connp == NULL || connp->conn_upq == NULL) { 7374 /* 7375 * No one bound to this port. Is 7376 * there a client that wants all 7377 * unclaimed datagrams? 7378 */ 7379 mutex_exit(&connfp->connf_lock); 7380 7381 if (mctl_present) 7382 first_mp->b_cont = mp; 7383 else 7384 first_mp = mp; 7385 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7386 NULL) { 7387 ip_fanout_proto(q, first_mp, ill, ipha, 7388 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7389 recv_ill, zoneid); 7390 } else { 7391 /* 7392 * We used to attempt to send an icmp error here, but 7393 * since this is known to be a multicast packet 7394 * and we don't send icmp errors in response to 7395 * multicast, just drop the packet and give up sooner. 7396 */ 7397 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7398 freemsg(first_mp); 7399 } 7400 return; 7401 } 7402 7403 first_connp = connp; 7404 7405 CONN_INC_REF(connp); 7406 connp = connp->conn_next; 7407 for (;;) { 7408 while (connp != NULL) { 7409 if (IPCL_UDP_MATCH_V6(connp, dstport, 7410 ipv6_all_zeros, srcport, v6src) && 7411 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7412 (!is_system_labeled() || 7413 tsol_receive_local(mp, &dst, IPV4_VERSION, 7414 shared_addr, connp))) 7415 break; 7416 connp = connp->conn_next; 7417 } 7418 /* 7419 * Just copy the data part alone. The mctl part is 7420 * needed just for verifying policy and it is never 7421 * sent up. 7422 */ 7423 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7424 ((mp1 = copymsg(mp)) == NULL))) { 7425 /* 7426 * No more intested clients or memory 7427 * allocation failed 7428 */ 7429 connp = first_connp; 7430 break; 7431 } 7432 if (first_mp != NULL) { 7433 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7434 ipsec_info_type == IPSEC_IN); 7435 first_mp1 = ipsec_in_tag(first_mp, NULL, 7436 ipst->ips_netstack); 7437 if (first_mp1 == NULL) { 7438 freemsg(mp1); 7439 connp = first_connp; 7440 break; 7441 } 7442 } else { 7443 first_mp1 = NULL; 7444 } 7445 CONN_INC_REF(connp); 7446 mutex_exit(&connfp->connf_lock); 7447 /* 7448 * IPQoS notes: We don't send the packet for policy 7449 * processing here, will do it for the last one (below). 7450 * i.e. we do it per-packet now, but if we do policy 7451 * processing per-conn, then we would need to do it 7452 * here too. 7453 */ 7454 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7455 ipha, flags, recv_ill, B_FALSE); 7456 mutex_enter(&connfp->connf_lock); 7457 /* Follow the next pointer before releasing the conn. */ 7458 next_connp = connp->conn_next; 7459 CONN_DEC_REF(connp); 7460 connp = next_connp; 7461 } 7462 7463 /* Last one. Send it upstream. */ 7464 mutex_exit(&connfp->connf_lock); 7465 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7466 recv_ill, ip_policy); 7467 CONN_DEC_REF(connp); 7468 } 7469 7470 /* 7471 * Complete the ip_wput header so that it 7472 * is possible to generate ICMP 7473 * errors. 7474 */ 7475 int 7476 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7477 { 7478 ire_t *ire; 7479 7480 if (ipha->ipha_src == INADDR_ANY) { 7481 ire = ire_lookup_local(zoneid, ipst); 7482 if (ire == NULL) { 7483 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7484 return (1); 7485 } 7486 ipha->ipha_src = ire->ire_addr; 7487 ire_refrele(ire); 7488 } 7489 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7490 ipha->ipha_hdr_checksum = 0; 7491 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7492 return (0); 7493 } 7494 7495 /* 7496 * Nobody should be sending 7497 * packets up this stream 7498 */ 7499 static void 7500 ip_lrput(queue_t *q, mblk_t *mp) 7501 { 7502 mblk_t *mp1; 7503 7504 switch (mp->b_datap->db_type) { 7505 case M_FLUSH: 7506 /* Turn around */ 7507 if (*mp->b_rptr & FLUSHW) { 7508 *mp->b_rptr &= ~FLUSHR; 7509 qreply(q, mp); 7510 return; 7511 } 7512 break; 7513 } 7514 /* Could receive messages that passed through ar_rput */ 7515 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7516 mp1->b_prev = mp1->b_next = NULL; 7517 freemsg(mp); 7518 } 7519 7520 /* Nobody should be sending packets down this stream */ 7521 /* ARGSUSED */ 7522 void 7523 ip_lwput(queue_t *q, mblk_t *mp) 7524 { 7525 freemsg(mp); 7526 } 7527 7528 /* 7529 * Move the first hop in any source route to ipha_dst and remove that part of 7530 * the source route. Called by other protocols. Errors in option formatting 7531 * are ignored - will be handled by ip_wput_options Return the final 7532 * destination (either ipha_dst or the last entry in a source route.) 7533 */ 7534 ipaddr_t 7535 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7536 { 7537 ipoptp_t opts; 7538 uchar_t *opt; 7539 uint8_t optval; 7540 uint8_t optlen; 7541 ipaddr_t dst; 7542 int i; 7543 ire_t *ire; 7544 ip_stack_t *ipst = ns->netstack_ip; 7545 7546 ip2dbg(("ip_massage_options\n")); 7547 dst = ipha->ipha_dst; 7548 for (optval = ipoptp_first(&opts, ipha); 7549 optval != IPOPT_EOL; 7550 optval = ipoptp_next(&opts)) { 7551 opt = opts.ipoptp_cur; 7552 switch (optval) { 7553 uint8_t off; 7554 case IPOPT_SSRR: 7555 case IPOPT_LSRR: 7556 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7557 ip1dbg(("ip_massage_options: bad src route\n")); 7558 break; 7559 } 7560 optlen = opts.ipoptp_len; 7561 off = opt[IPOPT_OFFSET]; 7562 off--; 7563 redo_srr: 7564 if (optlen < IP_ADDR_LEN || 7565 off > optlen - IP_ADDR_LEN) { 7566 /* End of source route */ 7567 ip1dbg(("ip_massage_options: end of SR\n")); 7568 break; 7569 } 7570 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7571 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7572 ntohl(dst))); 7573 /* 7574 * Check if our address is present more than 7575 * once as consecutive hops in source route. 7576 * XXX verify per-interface ip_forwarding 7577 * for source route? 7578 */ 7579 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7580 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7581 if (ire != NULL) { 7582 ire_refrele(ire); 7583 off += IP_ADDR_LEN; 7584 goto redo_srr; 7585 } 7586 if (dst == htonl(INADDR_LOOPBACK)) { 7587 ip1dbg(("ip_massage_options: loopback addr in " 7588 "source route!\n")); 7589 break; 7590 } 7591 /* 7592 * Update ipha_dst to be the first hop and remove the 7593 * first hop from the source route (by overwriting 7594 * part of the option with NOP options). 7595 */ 7596 ipha->ipha_dst = dst; 7597 /* Put the last entry in dst */ 7598 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7599 3; 7600 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7601 7602 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7603 ntohl(dst))); 7604 /* Move down and overwrite */ 7605 opt[IP_ADDR_LEN] = opt[0]; 7606 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7607 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7608 for (i = 0; i < IP_ADDR_LEN; i++) 7609 opt[i] = IPOPT_NOP; 7610 break; 7611 } 7612 } 7613 return (dst); 7614 } 7615 7616 /* 7617 * Return the network mask 7618 * associated with the specified address. 7619 */ 7620 ipaddr_t 7621 ip_net_mask(ipaddr_t addr) 7622 { 7623 uchar_t *up = (uchar_t *)&addr; 7624 ipaddr_t mask = 0; 7625 uchar_t *maskp = (uchar_t *)&mask; 7626 7627 #if defined(__i386) || defined(__amd64) 7628 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7629 #endif 7630 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7631 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7632 #endif 7633 if (CLASSD(addr)) { 7634 maskp[0] = 0xF0; 7635 return (mask); 7636 } 7637 7638 /* We assume Class E default netmask to be 32 */ 7639 if (CLASSE(addr)) 7640 return (0xffffffffU); 7641 7642 if (addr == 0) 7643 return (0); 7644 maskp[0] = 0xFF; 7645 if ((up[0] & 0x80) == 0) 7646 return (mask); 7647 7648 maskp[1] = 0xFF; 7649 if ((up[0] & 0xC0) == 0x80) 7650 return (mask); 7651 7652 maskp[2] = 0xFF; 7653 if ((up[0] & 0xE0) == 0xC0) 7654 return (mask); 7655 7656 /* Otherwise return no mask */ 7657 return ((ipaddr_t)0); 7658 } 7659 7660 /* 7661 * Select an ill for the packet by considering load spreading across 7662 * a different ill in the group if dst_ill is part of some group. 7663 */ 7664 ill_t * 7665 ip_newroute_get_dst_ill(ill_t *dst_ill) 7666 { 7667 ill_t *ill; 7668 7669 /* 7670 * We schedule irrespective of whether the source address is 7671 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7672 */ 7673 ill = illgrp_scheduler(dst_ill); 7674 if (ill == NULL) 7675 return (NULL); 7676 7677 /* 7678 * For groups with names ip_sioctl_groupname ensures that all 7679 * ills are of same type. For groups without names, ifgrp_insert 7680 * ensures this. 7681 */ 7682 ASSERT(dst_ill->ill_type == ill->ill_type); 7683 7684 return (ill); 7685 } 7686 7687 /* 7688 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7689 */ 7690 ill_t * 7691 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7692 ip_stack_t *ipst) 7693 { 7694 ill_t *ret_ill; 7695 7696 ASSERT(ifindex != 0); 7697 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7698 ipst); 7699 if (ret_ill == NULL || 7700 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7701 if (isv6) { 7702 if (ill != NULL) { 7703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7704 } else { 7705 BUMP_MIB(&ipst->ips_ip6_mib, 7706 ipIfStatsOutDiscards); 7707 } 7708 ip1dbg(("ip_grab_attach_ill (IPv6): " 7709 "bad ifindex %d.\n", ifindex)); 7710 } else { 7711 if (ill != NULL) { 7712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7713 } else { 7714 BUMP_MIB(&ipst->ips_ip_mib, 7715 ipIfStatsOutDiscards); 7716 } 7717 ip1dbg(("ip_grab_attach_ill (IPv4): " 7718 "bad ifindex %d.\n", ifindex)); 7719 } 7720 if (ret_ill != NULL) 7721 ill_refrele(ret_ill); 7722 freemsg(first_mp); 7723 return (NULL); 7724 } 7725 7726 return (ret_ill); 7727 } 7728 7729 /* 7730 * IPv4 - 7731 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7732 * out a packet to a destination address for which we do not have specific 7733 * (or sufficient) routing information. 7734 * 7735 * NOTE : These are the scopes of some of the variables that point at IRE, 7736 * which needs to be followed while making any future modifications 7737 * to avoid memory leaks. 7738 * 7739 * - ire and sire are the entries looked up initially by 7740 * ire_ftable_lookup. 7741 * - ipif_ire is used to hold the interface ire associated with 7742 * the new cache ire. But it's scope is limited, so we always REFRELE 7743 * it before branching out to error paths. 7744 * - save_ire is initialized before ire_create, so that ire returned 7745 * by ire_create will not over-write the ire. We REFRELE save_ire 7746 * before breaking out of the switch. 7747 * 7748 * Thus on failures, we have to REFRELE only ire and sire, if they 7749 * are not NULL. 7750 */ 7751 void 7752 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7753 zoneid_t zoneid, ip_stack_t *ipst) 7754 { 7755 areq_t *areq; 7756 ipaddr_t gw = 0; 7757 ire_t *ire = NULL; 7758 mblk_t *res_mp; 7759 ipaddr_t *addrp; 7760 ipaddr_t nexthop_addr; 7761 ipif_t *src_ipif = NULL; 7762 ill_t *dst_ill = NULL; 7763 ipha_t *ipha; 7764 ire_t *sire = NULL; 7765 mblk_t *first_mp; 7766 ire_t *save_ire; 7767 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7768 ushort_t ire_marks = 0; 7769 boolean_t mctl_present; 7770 ipsec_out_t *io; 7771 mblk_t *saved_mp; 7772 ire_t *first_sire = NULL; 7773 mblk_t *copy_mp = NULL; 7774 mblk_t *xmit_mp = NULL; 7775 ipaddr_t save_dst; 7776 uint32_t multirt_flags = 7777 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7778 boolean_t multirt_is_resolvable; 7779 boolean_t multirt_resolve_next; 7780 boolean_t unspec_src; 7781 boolean_t do_attach_ill = B_FALSE; 7782 boolean_t ip_nexthop = B_FALSE; 7783 tsol_ire_gw_secattr_t *attrp = NULL; 7784 tsol_gcgrp_t *gcgrp = NULL; 7785 tsol_gcgrp_addr_t ga; 7786 7787 if (ip_debug > 2) { 7788 /* ip1dbg */ 7789 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7790 } 7791 7792 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7793 if (mctl_present) { 7794 io = (ipsec_out_t *)first_mp->b_rptr; 7795 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7796 ASSERT(zoneid == io->ipsec_out_zoneid); 7797 ASSERT(zoneid != ALL_ZONES); 7798 } 7799 7800 ipha = (ipha_t *)mp->b_rptr; 7801 7802 /* All multicast lookups come through ip_newroute_ipif() */ 7803 if (CLASSD(dst)) { 7804 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7805 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7806 freemsg(first_mp); 7807 return; 7808 } 7809 7810 if (mctl_present && io->ipsec_out_attach_if) { 7811 /* ip_grab_attach_ill returns a held ill */ 7812 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7813 io->ipsec_out_ill_index, B_FALSE, ipst); 7814 7815 /* Failure case frees things for us. */ 7816 if (attach_ill == NULL) 7817 return; 7818 7819 /* 7820 * Check if we need an ire that will not be 7821 * looked up by anybody else i.e. HIDDEN. 7822 */ 7823 if (ill_is_probeonly(attach_ill)) 7824 ire_marks = IRE_MARK_HIDDEN; 7825 } 7826 if (mctl_present && io->ipsec_out_ip_nexthop) { 7827 ip_nexthop = B_TRUE; 7828 nexthop_addr = io->ipsec_out_nexthop_addr; 7829 } 7830 /* 7831 * If this IRE is created for forwarding or it is not for 7832 * traffic for congestion controlled protocols, mark it as temporary. 7833 */ 7834 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7835 ire_marks |= IRE_MARK_TEMPORARY; 7836 7837 /* 7838 * Get what we can from ire_ftable_lookup which will follow an IRE 7839 * chain until it gets the most specific information available. 7840 * For example, we know that there is no IRE_CACHE for this dest, 7841 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7842 * ire_ftable_lookup will look up the gateway, etc. 7843 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7844 * to the destination, of equal netmask length in the forward table, 7845 * will be recursively explored. If no information is available 7846 * for the final gateway of that route, we force the returned ire 7847 * to be equal to sire using MATCH_IRE_PARENT. 7848 * At least, in this case we have a starting point (in the buckets) 7849 * to look for other routes to the destination in the forward table. 7850 * This is actually used only for multirouting, where a list 7851 * of routes has to be processed in sequence. 7852 * 7853 * In the process of coming up with the most specific information, 7854 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7855 * for the gateway (i.e., one for which the ire_nce->nce_state is 7856 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7857 * Two caveats when handling incomplete ire's in ip_newroute: 7858 * - we should be careful when accessing its ire_nce (specifically 7859 * the nce_res_mp) ast it might change underneath our feet, and, 7860 * - not all legacy code path callers are prepared to handle 7861 * incomplete ire's, so we should not create/add incomplete 7862 * ire_cache entries here. (See discussion about temporary solution 7863 * further below). 7864 * 7865 * In order to minimize packet dropping, and to preserve existing 7866 * behavior, we treat this case as if there were no IRE_CACHE for the 7867 * gateway, and instead use the IF_RESOLVER ire to send out 7868 * another request to ARP (this is achieved by passing the 7869 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7870 * arp response comes back in ip_wput_nondata, we will create 7871 * a per-dst ire_cache that has an ND_COMPLETE ire. 7872 * 7873 * Note that this is a temporary solution; the correct solution is 7874 * to create an incomplete per-dst ire_cache entry, and send the 7875 * packet out when the gw's nce is resolved. In order to achieve this, 7876 * all packet processing must have been completed prior to calling 7877 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7878 * to be modified to accomodate this solution. 7879 */ 7880 if (ip_nexthop) { 7881 /* 7882 * The first time we come here, we look for an IRE_INTERFACE 7883 * entry for the specified nexthop, set the dst to be the 7884 * nexthop address and create an IRE_CACHE entry for the 7885 * nexthop. The next time around, we are able to find an 7886 * IRE_CACHE entry for the nexthop, set the gateway to be the 7887 * nexthop address and create an IRE_CACHE entry for the 7888 * destination address via the specified nexthop. 7889 */ 7890 ire = ire_cache_lookup(nexthop_addr, zoneid, 7891 MBLK_GETLABEL(mp), ipst); 7892 if (ire != NULL) { 7893 gw = nexthop_addr; 7894 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7895 } else { 7896 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7897 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7898 MBLK_GETLABEL(mp), 7899 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7900 ipst); 7901 if (ire != NULL) { 7902 dst = nexthop_addr; 7903 } 7904 } 7905 } else if (attach_ill == NULL) { 7906 ire = ire_ftable_lookup(dst, 0, 0, 0, 7907 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7908 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7909 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7910 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7911 ipst); 7912 } else { 7913 /* 7914 * attach_ill is set only for communicating with 7915 * on-link hosts. So, don't look for DEFAULT. 7916 */ 7917 ipif_t *attach_ipif; 7918 7919 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7920 if (attach_ipif == NULL) { 7921 ill_refrele(attach_ill); 7922 goto icmp_err_ret; 7923 } 7924 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7925 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7926 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7927 MATCH_IRE_SECATTR, ipst); 7928 ipif_refrele(attach_ipif); 7929 } 7930 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7931 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7932 7933 /* 7934 * This loop is run only once in most cases. 7935 * We loop to resolve further routes only when the destination 7936 * can be reached through multiple RTF_MULTIRT-flagged ires. 7937 */ 7938 do { 7939 /* Clear the previous iteration's values */ 7940 if (src_ipif != NULL) { 7941 ipif_refrele(src_ipif); 7942 src_ipif = NULL; 7943 } 7944 if (dst_ill != NULL) { 7945 ill_refrele(dst_ill); 7946 dst_ill = NULL; 7947 } 7948 7949 multirt_resolve_next = B_FALSE; 7950 /* 7951 * We check if packets have to be multirouted. 7952 * In this case, given the current <ire, sire> couple, 7953 * we look for the next suitable <ire, sire>. 7954 * This check is done in ire_multirt_lookup(), 7955 * which applies various criteria to find the next route 7956 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7957 * unchanged if it detects it has not been tried yet. 7958 */ 7959 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7960 ip3dbg(("ip_newroute: starting next_resolution " 7961 "with first_mp %p, tag %d\n", 7962 (void *)first_mp, 7963 MULTIRT_DEBUG_TAGGED(first_mp))); 7964 7965 ASSERT(sire != NULL); 7966 multirt_is_resolvable = 7967 ire_multirt_lookup(&ire, &sire, multirt_flags, 7968 MBLK_GETLABEL(mp), ipst); 7969 7970 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7971 "ire %p, sire %p\n", 7972 multirt_is_resolvable, 7973 (void *)ire, (void *)sire)); 7974 7975 if (!multirt_is_resolvable) { 7976 /* 7977 * No more multirt route to resolve; give up 7978 * (all routes resolved or no more 7979 * resolvable routes). 7980 */ 7981 if (ire != NULL) { 7982 ire_refrele(ire); 7983 ire = NULL; 7984 } 7985 } else { 7986 ASSERT(sire != NULL); 7987 ASSERT(ire != NULL); 7988 /* 7989 * We simply use first_sire as a flag that 7990 * indicates if a resolvable multirt route 7991 * has already been found. 7992 * If it is not the case, we may have to send 7993 * an ICMP error to report that the 7994 * destination is unreachable. 7995 * We do not IRE_REFHOLD first_sire. 7996 */ 7997 if (first_sire == NULL) { 7998 first_sire = sire; 7999 } 8000 } 8001 } 8002 if (ire == NULL) { 8003 if (ip_debug > 3) { 8004 /* ip2dbg */ 8005 pr_addr_dbg("ip_newroute: " 8006 "can't resolve %s\n", AF_INET, &dst); 8007 } 8008 ip3dbg(("ip_newroute: " 8009 "ire %p, sire %p, first_sire %p\n", 8010 (void *)ire, (void *)sire, (void *)first_sire)); 8011 8012 if (sire != NULL) { 8013 ire_refrele(sire); 8014 sire = NULL; 8015 } 8016 8017 if (first_sire != NULL) { 8018 /* 8019 * At least one multirt route has been found 8020 * in the same call to ip_newroute(); 8021 * there is no need to report an ICMP error. 8022 * first_sire was not IRE_REFHOLDed. 8023 */ 8024 MULTIRT_DEBUG_UNTAG(first_mp); 8025 freemsg(first_mp); 8026 return; 8027 } 8028 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8029 RTA_DST, ipst); 8030 if (attach_ill != NULL) 8031 ill_refrele(attach_ill); 8032 goto icmp_err_ret; 8033 } 8034 8035 /* 8036 * Verify that the returned IRE does not have either 8037 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8038 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8039 */ 8040 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8041 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8042 if (attach_ill != NULL) 8043 ill_refrele(attach_ill); 8044 goto icmp_err_ret; 8045 } 8046 /* 8047 * Increment the ire_ob_pkt_count field for ire if it is an 8048 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8049 * increment the same for the parent IRE, sire, if it is some 8050 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8051 */ 8052 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8053 UPDATE_OB_PKT_COUNT(ire); 8054 ire->ire_last_used_time = lbolt; 8055 } 8056 8057 if (sire != NULL) { 8058 gw = sire->ire_gateway_addr; 8059 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8060 IRE_INTERFACE)) == 0); 8061 UPDATE_OB_PKT_COUNT(sire); 8062 sire->ire_last_used_time = lbolt; 8063 } 8064 /* 8065 * We have a route to reach the destination. 8066 * 8067 * 1) If the interface is part of ill group, try to get a new 8068 * ill taking load spreading into account. 8069 * 8070 * 2) After selecting the ill, get a source address that 8071 * might create good inbound load spreading. 8072 * ipif_select_source does this for us. 8073 * 8074 * If the application specified the ill (ifindex), we still 8075 * load spread. Only if the packets needs to go out 8076 * specifically on a given ill e.g. binding to 8077 * IPIF_NOFAILOVER address, then we don't try to use a 8078 * different ill for load spreading. 8079 */ 8080 if (attach_ill == NULL) { 8081 /* 8082 * Don't perform outbound load spreading in the 8083 * case of an RTF_MULTIRT route, as we actually 8084 * typically want to replicate outgoing packets 8085 * through particular interfaces. 8086 */ 8087 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8088 dst_ill = ire->ire_ipif->ipif_ill; 8089 /* for uniformity */ 8090 ill_refhold(dst_ill); 8091 } else { 8092 /* 8093 * If we are here trying to create an IRE_CACHE 8094 * for an offlink destination and have the 8095 * IRE_CACHE for the next hop and the latter is 8096 * using virtual IP source address selection i.e 8097 * it's ire->ire_ipif is pointing to a virtual 8098 * network interface (vni) then 8099 * ip_newroute_get_dst_ll() will return the vni 8100 * interface as the dst_ill. Since the vni is 8101 * virtual i.e not associated with any physical 8102 * interface, it cannot be the dst_ill, hence 8103 * in such a case call ip_newroute_get_dst_ll() 8104 * with the stq_ill instead of the ire_ipif ILL. 8105 * The function returns a refheld ill. 8106 */ 8107 if ((ire->ire_type == IRE_CACHE) && 8108 IS_VNI(ire->ire_ipif->ipif_ill)) 8109 dst_ill = ip_newroute_get_dst_ill( 8110 ire->ire_stq->q_ptr); 8111 else 8112 dst_ill = ip_newroute_get_dst_ill( 8113 ire->ire_ipif->ipif_ill); 8114 } 8115 if (dst_ill == NULL) { 8116 if (ip_debug > 2) { 8117 pr_addr_dbg("ip_newroute: " 8118 "no dst ill for dst" 8119 " %s\n", AF_INET, &dst); 8120 } 8121 goto icmp_err_ret; 8122 } 8123 } else { 8124 dst_ill = ire->ire_ipif->ipif_ill; 8125 /* for uniformity */ 8126 ill_refhold(dst_ill); 8127 /* 8128 * We should have found a route matching ill as we 8129 * called ire_ftable_lookup with MATCH_IRE_ILL. 8130 * Rather than asserting, when there is a mismatch, 8131 * we just drop the packet. 8132 */ 8133 if (dst_ill != attach_ill) { 8134 ip0dbg(("ip_newroute: Packet dropped as " 8135 "IPIF_NOFAILOVER ill is %s, " 8136 "ire->ire_ipif->ipif_ill is %s\n", 8137 attach_ill->ill_name, 8138 dst_ill->ill_name)); 8139 ill_refrele(attach_ill); 8140 goto icmp_err_ret; 8141 } 8142 } 8143 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8144 if (attach_ill != NULL) { 8145 ill_refrele(attach_ill); 8146 attach_ill = NULL; 8147 do_attach_ill = B_TRUE; 8148 } 8149 ASSERT(dst_ill != NULL); 8150 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8151 8152 /* 8153 * Pick the best source address from dst_ill. 8154 * 8155 * 1) If it is part of a multipathing group, we would 8156 * like to spread the inbound packets across different 8157 * interfaces. ipif_select_source picks a random source 8158 * across the different ills in the group. 8159 * 8160 * 2) If it is not part of a multipathing group, we try 8161 * to pick the source address from the destination 8162 * route. Clustering assumes that when we have multiple 8163 * prefixes hosted on an interface, the prefix of the 8164 * source address matches the prefix of the destination 8165 * route. We do this only if the address is not 8166 * DEPRECATED. 8167 * 8168 * 3) If the conn is in a different zone than the ire, we 8169 * need to pick a source address from the right zone. 8170 * 8171 * NOTE : If we hit case (1) above, the prefix of the source 8172 * address picked may not match the prefix of the 8173 * destination routes prefix as ipif_select_source 8174 * does not look at "dst" while picking a source 8175 * address. 8176 * If we want the same behavior as (2), we will need 8177 * to change the behavior of ipif_select_source. 8178 */ 8179 ASSERT(src_ipif == NULL); 8180 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8181 /* 8182 * The RTF_SETSRC flag is set in the parent ire (sire). 8183 * Check that the ipif matching the requested source 8184 * address still exists. 8185 */ 8186 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8187 zoneid, NULL, NULL, NULL, NULL, ipst); 8188 } 8189 8190 unspec_src = (connp != NULL && connp->conn_unspec_src); 8191 8192 if (src_ipif == NULL && 8193 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8194 ire_marks |= IRE_MARK_USESRC_CHECK; 8195 if ((dst_ill->ill_group != NULL) || 8196 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8197 (connp != NULL && ire->ire_zoneid != zoneid && 8198 ire->ire_zoneid != ALL_ZONES) || 8199 (dst_ill->ill_usesrc_ifindex != 0)) { 8200 /* 8201 * If the destination is reachable via a 8202 * given gateway, the selected source address 8203 * should be in the same subnet as the gateway. 8204 * Otherwise, the destination is not reachable. 8205 * 8206 * If there are no interfaces on the same subnet 8207 * as the destination, ipif_select_source gives 8208 * first non-deprecated interface which might be 8209 * on a different subnet than the gateway. 8210 * This is not desirable. Hence pass the dst_ire 8211 * source address to ipif_select_source. 8212 * It is sure that the destination is reachable 8213 * with the dst_ire source address subnet. 8214 * So passing dst_ire source address to 8215 * ipif_select_source will make sure that the 8216 * selected source will be on the same subnet 8217 * as dst_ire source address. 8218 */ 8219 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8220 src_ipif = ipif_select_source(dst_ill, saddr, 8221 zoneid); 8222 if (src_ipif == NULL) { 8223 if (ip_debug > 2) { 8224 pr_addr_dbg("ip_newroute: " 8225 "no src for dst %s ", 8226 AF_INET, &dst); 8227 printf("through interface %s\n", 8228 dst_ill->ill_name); 8229 } 8230 goto icmp_err_ret; 8231 } 8232 } else { 8233 src_ipif = ire->ire_ipif; 8234 ASSERT(src_ipif != NULL); 8235 /* hold src_ipif for uniformity */ 8236 ipif_refhold(src_ipif); 8237 } 8238 } 8239 8240 /* 8241 * Assign a source address while we have the conn. 8242 * We can't have ip_wput_ire pick a source address when the 8243 * packet returns from arp since we need to look at 8244 * conn_unspec_src and conn_zoneid, and we lose the conn when 8245 * going through arp. 8246 * 8247 * NOTE : ip_newroute_v6 does not have this piece of code as 8248 * it uses ip6i to store this information. 8249 */ 8250 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8251 ipha->ipha_src = src_ipif->ipif_src_addr; 8252 8253 if (ip_debug > 3) { 8254 /* ip2dbg */ 8255 pr_addr_dbg("ip_newroute: first hop %s\n", 8256 AF_INET, &gw); 8257 } 8258 ip2dbg(("\tire type %s (%d)\n", 8259 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8260 8261 /* 8262 * The TTL of multirouted packets is bounded by the 8263 * ip_multirt_ttl ndd variable. 8264 */ 8265 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8266 /* Force TTL of multirouted packets */ 8267 if ((ipst->ips_ip_multirt_ttl > 0) && 8268 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8269 ip2dbg(("ip_newroute: forcing multirt TTL " 8270 "to %d (was %d), dst 0x%08x\n", 8271 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8272 ntohl(sire->ire_addr))); 8273 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8274 } 8275 } 8276 /* 8277 * At this point in ip_newroute(), ire is either the 8278 * IRE_CACHE of the next-hop gateway for an off-subnet 8279 * destination or an IRE_INTERFACE type that should be used 8280 * to resolve an on-subnet destination or an on-subnet 8281 * next-hop gateway. 8282 * 8283 * In the IRE_CACHE case, we have the following : 8284 * 8285 * 1) src_ipif - used for getting a source address. 8286 * 8287 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8288 * means packets using this IRE_CACHE will go out on 8289 * dst_ill. 8290 * 8291 * 3) The IRE sire will point to the prefix that is the 8292 * longest matching route for the destination. These 8293 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8294 * 8295 * The newly created IRE_CACHE entry for the off-subnet 8296 * destination is tied to both the prefix route and the 8297 * interface route used to resolve the next-hop gateway 8298 * via the ire_phandle and ire_ihandle fields, 8299 * respectively. 8300 * 8301 * In the IRE_INTERFACE case, we have the following : 8302 * 8303 * 1) src_ipif - used for getting a source address. 8304 * 8305 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8306 * means packets using the IRE_CACHE that we will build 8307 * here will go out on dst_ill. 8308 * 8309 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8310 * to be created will only be tied to the IRE_INTERFACE 8311 * that was derived from the ire_ihandle field. 8312 * 8313 * If sire is non-NULL, it means the destination is 8314 * off-link and we will first create the IRE_CACHE for the 8315 * gateway. Next time through ip_newroute, we will create 8316 * the IRE_CACHE for the final destination as described 8317 * above. 8318 * 8319 * In both cases, after the current resolution has been 8320 * completed (or possibly initialised, in the IRE_INTERFACE 8321 * case), the loop may be re-entered to attempt the resolution 8322 * of another RTF_MULTIRT route. 8323 * 8324 * When an IRE_CACHE entry for the off-subnet destination is 8325 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8326 * for further processing in emission loops. 8327 */ 8328 save_ire = ire; 8329 switch (ire->ire_type) { 8330 case IRE_CACHE: { 8331 ire_t *ipif_ire; 8332 8333 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8334 if (gw == 0) 8335 gw = ire->ire_gateway_addr; 8336 /* 8337 * We need 3 ire's to create a new cache ire for an 8338 * off-link destination from the cache ire of the 8339 * gateway. 8340 * 8341 * 1. The prefix ire 'sire' (Note that this does 8342 * not apply to the conn_nexthop_set case) 8343 * 2. The cache ire of the gateway 'ire' 8344 * 3. The interface ire 'ipif_ire' 8345 * 8346 * We have (1) and (2). We lookup (3) below. 8347 * 8348 * If there is no interface route to the gateway, 8349 * it is a race condition, where we found the cache 8350 * but the interface route has been deleted. 8351 */ 8352 if (ip_nexthop) { 8353 ipif_ire = ire_ihandle_lookup_onlink(ire); 8354 } else { 8355 ipif_ire = 8356 ire_ihandle_lookup_offlink(ire, sire); 8357 } 8358 if (ipif_ire == NULL) { 8359 ip1dbg(("ip_newroute: " 8360 "ire_ihandle_lookup_offlink failed\n")); 8361 goto icmp_err_ret; 8362 } 8363 8364 /* 8365 * Check cached gateway IRE for any security 8366 * attributes; if found, associate the gateway 8367 * credentials group to the destination IRE. 8368 */ 8369 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8370 mutex_enter(&attrp->igsa_lock); 8371 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8372 GCGRP_REFHOLD(gcgrp); 8373 mutex_exit(&attrp->igsa_lock); 8374 } 8375 8376 /* 8377 * XXX For the source of the resolver mp, 8378 * we are using the same DL_UNITDATA_REQ 8379 * (from save_ire->ire_nce->nce_res_mp) 8380 * though the save_ire is not pointing at the same ill. 8381 * This is incorrect. We need to send it up to the 8382 * resolver to get the right res_mp. For ethernets 8383 * this may be okay (ill_type == DL_ETHER). 8384 */ 8385 8386 ire = ire_create( 8387 (uchar_t *)&dst, /* dest address */ 8388 (uchar_t *)&ip_g_all_ones, /* mask */ 8389 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8390 (uchar_t *)&gw, /* gateway address */ 8391 &save_ire->ire_max_frag, 8392 save_ire->ire_nce, /* src nce */ 8393 dst_ill->ill_rq, /* recv-from queue */ 8394 dst_ill->ill_wq, /* send-to queue */ 8395 IRE_CACHE, /* IRE type */ 8396 src_ipif, 8397 (sire != NULL) ? 8398 sire->ire_mask : 0, /* Parent mask */ 8399 (sire != NULL) ? 8400 sire->ire_phandle : 0, /* Parent handle */ 8401 ipif_ire->ire_ihandle, /* Interface handle */ 8402 (sire != NULL) ? (sire->ire_flags & 8403 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8404 (sire != NULL) ? 8405 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8406 NULL, 8407 gcgrp, 8408 ipst); 8409 8410 if (ire == NULL) { 8411 if (gcgrp != NULL) { 8412 GCGRP_REFRELE(gcgrp); 8413 gcgrp = NULL; 8414 } 8415 ire_refrele(ipif_ire); 8416 ire_refrele(save_ire); 8417 break; 8418 } 8419 8420 /* reference now held by IRE */ 8421 gcgrp = NULL; 8422 8423 ire->ire_marks |= ire_marks; 8424 8425 /* 8426 * Prevent sire and ipif_ire from getting deleted. 8427 * The newly created ire is tied to both of them via 8428 * the phandle and ihandle respectively. 8429 */ 8430 if (sire != NULL) { 8431 IRB_REFHOLD(sire->ire_bucket); 8432 /* Has it been removed already ? */ 8433 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8434 IRB_REFRELE(sire->ire_bucket); 8435 ire_refrele(ipif_ire); 8436 ire_refrele(save_ire); 8437 break; 8438 } 8439 } 8440 8441 IRB_REFHOLD(ipif_ire->ire_bucket); 8442 /* Has it been removed already ? */ 8443 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8444 IRB_REFRELE(ipif_ire->ire_bucket); 8445 if (sire != NULL) 8446 IRB_REFRELE(sire->ire_bucket); 8447 ire_refrele(ipif_ire); 8448 ire_refrele(save_ire); 8449 break; 8450 } 8451 8452 xmit_mp = first_mp; 8453 /* 8454 * In the case of multirouting, a copy 8455 * of the packet is done before its sending. 8456 * The copy is used to attempt another 8457 * route resolution, in a next loop. 8458 */ 8459 if (ire->ire_flags & RTF_MULTIRT) { 8460 copy_mp = copymsg(first_mp); 8461 if (copy_mp != NULL) { 8462 xmit_mp = copy_mp; 8463 MULTIRT_DEBUG_TAG(first_mp); 8464 } 8465 } 8466 ire_add_then_send(q, ire, xmit_mp); 8467 ire_refrele(save_ire); 8468 8469 /* Assert that sire is not deleted yet. */ 8470 if (sire != NULL) { 8471 ASSERT(sire->ire_ptpn != NULL); 8472 IRB_REFRELE(sire->ire_bucket); 8473 } 8474 8475 /* Assert that ipif_ire is not deleted yet. */ 8476 ASSERT(ipif_ire->ire_ptpn != NULL); 8477 IRB_REFRELE(ipif_ire->ire_bucket); 8478 ire_refrele(ipif_ire); 8479 8480 /* 8481 * If copy_mp is not NULL, multirouting was 8482 * requested. We loop to initiate a next 8483 * route resolution attempt, starting from sire. 8484 */ 8485 if (copy_mp != NULL) { 8486 /* 8487 * Search for the next unresolved 8488 * multirt route. 8489 */ 8490 copy_mp = NULL; 8491 ipif_ire = NULL; 8492 ire = NULL; 8493 multirt_resolve_next = B_TRUE; 8494 continue; 8495 } 8496 if (sire != NULL) 8497 ire_refrele(sire); 8498 ipif_refrele(src_ipif); 8499 ill_refrele(dst_ill); 8500 return; 8501 } 8502 case IRE_IF_NORESOLVER: { 8503 8504 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8505 dst_ill->ill_resolver_mp == NULL) { 8506 ip1dbg(("ip_newroute: dst_ill %p " 8507 "for IRE_IF_NORESOLVER ire %p has " 8508 "no ill_resolver_mp\n", 8509 (void *)dst_ill, (void *)ire)); 8510 break; 8511 } 8512 8513 /* 8514 * TSol note: We are creating the ire cache for the 8515 * destination 'dst'. If 'dst' is offlink, going 8516 * through the first hop 'gw', the security attributes 8517 * of 'dst' must be set to point to the gateway 8518 * credentials of gateway 'gw'. If 'dst' is onlink, it 8519 * is possible that 'dst' is a potential gateway that is 8520 * referenced by some route that has some security 8521 * attributes. Thus in the former case, we need to do a 8522 * gcgrp_lookup of 'gw' while in the latter case we 8523 * need to do gcgrp_lookup of 'dst' itself. 8524 */ 8525 ga.ga_af = AF_INET; 8526 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8527 &ga.ga_addr); 8528 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8529 8530 ire = ire_create( 8531 (uchar_t *)&dst, /* dest address */ 8532 (uchar_t *)&ip_g_all_ones, /* mask */ 8533 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8534 (uchar_t *)&gw, /* gateway address */ 8535 &save_ire->ire_max_frag, 8536 NULL, /* no src nce */ 8537 dst_ill->ill_rq, /* recv-from queue */ 8538 dst_ill->ill_wq, /* send-to queue */ 8539 IRE_CACHE, 8540 src_ipif, 8541 save_ire->ire_mask, /* Parent mask */ 8542 (sire != NULL) ? /* Parent handle */ 8543 sire->ire_phandle : 0, 8544 save_ire->ire_ihandle, /* Interface handle */ 8545 (sire != NULL) ? sire->ire_flags & 8546 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8547 &(save_ire->ire_uinfo), 8548 NULL, 8549 gcgrp, 8550 ipst); 8551 8552 if (ire == NULL) { 8553 if (gcgrp != NULL) { 8554 GCGRP_REFRELE(gcgrp); 8555 gcgrp = NULL; 8556 } 8557 ire_refrele(save_ire); 8558 break; 8559 } 8560 8561 /* reference now held by IRE */ 8562 gcgrp = NULL; 8563 8564 ire->ire_marks |= ire_marks; 8565 8566 /* Prevent save_ire from getting deleted */ 8567 IRB_REFHOLD(save_ire->ire_bucket); 8568 /* Has it been removed already ? */ 8569 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8570 IRB_REFRELE(save_ire->ire_bucket); 8571 ire_refrele(save_ire); 8572 break; 8573 } 8574 8575 /* 8576 * In the case of multirouting, a copy 8577 * of the packet is made before it is sent. 8578 * The copy is used in the next 8579 * loop to attempt another resolution. 8580 */ 8581 xmit_mp = first_mp; 8582 if ((sire != NULL) && 8583 (sire->ire_flags & RTF_MULTIRT)) { 8584 copy_mp = copymsg(first_mp); 8585 if (copy_mp != NULL) { 8586 xmit_mp = copy_mp; 8587 MULTIRT_DEBUG_TAG(first_mp); 8588 } 8589 } 8590 ire_add_then_send(q, ire, xmit_mp); 8591 8592 /* Assert that it is not deleted yet. */ 8593 ASSERT(save_ire->ire_ptpn != NULL); 8594 IRB_REFRELE(save_ire->ire_bucket); 8595 ire_refrele(save_ire); 8596 8597 if (copy_mp != NULL) { 8598 /* 8599 * If we found a (no)resolver, we ignore any 8600 * trailing top priority IRE_CACHE in further 8601 * loops. This ensures that we do not omit any 8602 * (no)resolver. 8603 * This IRE_CACHE, if any, will be processed 8604 * by another thread entering ip_newroute(). 8605 * IRE_CACHE entries, if any, will be processed 8606 * by another thread entering ip_newroute(), 8607 * (upon resolver response, for instance). 8608 * This aims to force parallel multirt 8609 * resolutions as soon as a packet must be sent. 8610 * In the best case, after the tx of only one 8611 * packet, all reachable routes are resolved. 8612 * Otherwise, the resolution of all RTF_MULTIRT 8613 * routes would require several emissions. 8614 */ 8615 multirt_flags &= ~MULTIRT_CACHEGW; 8616 8617 /* 8618 * Search for the next unresolved multirt 8619 * route. 8620 */ 8621 copy_mp = NULL; 8622 save_ire = NULL; 8623 ire = NULL; 8624 multirt_resolve_next = B_TRUE; 8625 continue; 8626 } 8627 8628 /* 8629 * Don't need sire anymore 8630 */ 8631 if (sire != NULL) 8632 ire_refrele(sire); 8633 8634 ipif_refrele(src_ipif); 8635 ill_refrele(dst_ill); 8636 return; 8637 } 8638 case IRE_IF_RESOLVER: 8639 /* 8640 * We can't build an IRE_CACHE yet, but at least we 8641 * found a resolver that can help. 8642 */ 8643 res_mp = dst_ill->ill_resolver_mp; 8644 if (!OK_RESOLVER_MP(res_mp)) 8645 break; 8646 8647 /* 8648 * To be at this point in the code with a non-zero gw 8649 * means that dst is reachable through a gateway that 8650 * we have never resolved. By changing dst to the gw 8651 * addr we resolve the gateway first. 8652 * When ire_add_then_send() tries to put the IP dg 8653 * to dst, it will reenter ip_newroute() at which 8654 * time we will find the IRE_CACHE for the gw and 8655 * create another IRE_CACHE in case IRE_CACHE above. 8656 */ 8657 if (gw != INADDR_ANY) { 8658 /* 8659 * The source ipif that was determined above was 8660 * relative to the destination address, not the 8661 * gateway's. If src_ipif was not taken out of 8662 * the IRE_IF_RESOLVER entry, we'll need to call 8663 * ipif_select_source() again. 8664 */ 8665 if (src_ipif != ire->ire_ipif) { 8666 ipif_refrele(src_ipif); 8667 src_ipif = ipif_select_source(dst_ill, 8668 gw, zoneid); 8669 if (src_ipif == NULL) { 8670 if (ip_debug > 2) { 8671 pr_addr_dbg( 8672 "ip_newroute: no " 8673 "src for gw %s ", 8674 AF_INET, &gw); 8675 printf("through " 8676 "interface %s\n", 8677 dst_ill->ill_name); 8678 } 8679 goto icmp_err_ret; 8680 } 8681 } 8682 save_dst = dst; 8683 dst = gw; 8684 gw = INADDR_ANY; 8685 } 8686 8687 /* 8688 * We obtain a partial IRE_CACHE which we will pass 8689 * along with the resolver query. When the response 8690 * comes back it will be there ready for us to add. 8691 * The ire_max_frag is atomically set under the 8692 * irebucket lock in ire_add_v[46]. 8693 */ 8694 8695 ire = ire_create_mp( 8696 (uchar_t *)&dst, /* dest address */ 8697 (uchar_t *)&ip_g_all_ones, /* mask */ 8698 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8699 (uchar_t *)&gw, /* gateway address */ 8700 NULL, /* ire_max_frag */ 8701 NULL, /* no src nce */ 8702 dst_ill->ill_rq, /* recv-from queue */ 8703 dst_ill->ill_wq, /* send-to queue */ 8704 IRE_CACHE, 8705 src_ipif, /* Interface ipif */ 8706 save_ire->ire_mask, /* Parent mask */ 8707 0, 8708 save_ire->ire_ihandle, /* Interface handle */ 8709 0, /* flags if any */ 8710 &(save_ire->ire_uinfo), 8711 NULL, 8712 NULL, 8713 ipst); 8714 8715 if (ire == NULL) { 8716 ire_refrele(save_ire); 8717 break; 8718 } 8719 8720 if ((sire != NULL) && 8721 (sire->ire_flags & RTF_MULTIRT)) { 8722 copy_mp = copymsg(first_mp); 8723 if (copy_mp != NULL) 8724 MULTIRT_DEBUG_TAG(copy_mp); 8725 } 8726 8727 ire->ire_marks |= ire_marks; 8728 8729 /* 8730 * Construct message chain for the resolver 8731 * of the form: 8732 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8733 * Packet could contain a IPSEC_OUT mp. 8734 * 8735 * NOTE : ire will be added later when the response 8736 * comes back from ARP. If the response does not 8737 * come back, ARP frees the packet. For this reason, 8738 * we can't REFHOLD the bucket of save_ire to prevent 8739 * deletions. We may not be able to REFRELE the bucket 8740 * if the response never comes back. Thus, before 8741 * adding the ire, ire_add_v4 will make sure that the 8742 * interface route does not get deleted. This is the 8743 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8744 * where we can always prevent deletions because of 8745 * the synchronous nature of adding IRES i.e 8746 * ire_add_then_send is called after creating the IRE. 8747 */ 8748 ASSERT(ire->ire_mp != NULL); 8749 ire->ire_mp->b_cont = first_mp; 8750 /* Have saved_mp handy, for cleanup if canput fails */ 8751 saved_mp = mp; 8752 mp = copyb(res_mp); 8753 if (mp == NULL) { 8754 /* Prepare for cleanup */ 8755 mp = saved_mp; /* pkt */ 8756 ire_delete(ire); /* ire_mp */ 8757 ire = NULL; 8758 ire_refrele(save_ire); 8759 if (copy_mp != NULL) { 8760 MULTIRT_DEBUG_UNTAG(copy_mp); 8761 freemsg(copy_mp); 8762 copy_mp = NULL; 8763 } 8764 break; 8765 } 8766 linkb(mp, ire->ire_mp); 8767 8768 /* 8769 * Fill in the source and dest addrs for the resolver. 8770 * NOTE: this depends on memory layouts imposed by 8771 * ill_init(). 8772 */ 8773 areq = (areq_t *)mp->b_rptr; 8774 addrp = (ipaddr_t *)((char *)areq + 8775 areq->areq_sender_addr_offset); 8776 if (do_attach_ill) { 8777 /* 8778 * This is bind to no failover case. 8779 * arp packet also must go out on attach_ill. 8780 */ 8781 ASSERT(ipha->ipha_src != NULL); 8782 *addrp = ipha->ipha_src; 8783 } else { 8784 *addrp = save_ire->ire_src_addr; 8785 } 8786 8787 ire_refrele(save_ire); 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_target_addr_offset); 8790 *addrp = dst; 8791 /* Up to the resolver. */ 8792 if (canputnext(dst_ill->ill_rq) && 8793 !(dst_ill->ill_arp_closing)) { 8794 putnext(dst_ill->ill_rq, mp); 8795 ire = NULL; 8796 if (copy_mp != NULL) { 8797 /* 8798 * If we found a resolver, we ignore 8799 * any trailing top priority IRE_CACHE 8800 * in the further loops. This ensures 8801 * that we do not omit any resolver. 8802 * IRE_CACHE entries, if any, will be 8803 * processed next time we enter 8804 * ip_newroute(). 8805 */ 8806 multirt_flags &= ~MULTIRT_CACHEGW; 8807 /* 8808 * Search for the next unresolved 8809 * multirt route. 8810 */ 8811 first_mp = copy_mp; 8812 copy_mp = NULL; 8813 /* Prepare the next resolution loop. */ 8814 mp = first_mp; 8815 EXTRACT_PKT_MP(mp, first_mp, 8816 mctl_present); 8817 if (mctl_present) 8818 io = (ipsec_out_t *) 8819 first_mp->b_rptr; 8820 ipha = (ipha_t *)mp->b_rptr; 8821 8822 ASSERT(sire != NULL); 8823 8824 dst = save_dst; 8825 multirt_resolve_next = B_TRUE; 8826 continue; 8827 } 8828 8829 if (sire != NULL) 8830 ire_refrele(sire); 8831 8832 /* 8833 * The response will come back in ip_wput 8834 * with db_type IRE_DB_TYPE. 8835 */ 8836 ipif_refrele(src_ipif); 8837 ill_refrele(dst_ill); 8838 return; 8839 } else { 8840 /* Prepare for cleanup */ 8841 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8842 mp); 8843 mp->b_cont = NULL; 8844 freeb(mp); /* areq */ 8845 /* 8846 * this is an ire that is not added to the 8847 * cache. ire_freemblk will handle the release 8848 * of any resources associated with the ire. 8849 */ 8850 ire_delete(ire); /* ire_mp */ 8851 mp = saved_mp; /* pkt */ 8852 ire = NULL; 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 default: 8861 break; 8862 } 8863 } while (multirt_resolve_next); 8864 8865 ip1dbg(("ip_newroute: dropped\n")); 8866 /* Did this packet originate externally? */ 8867 if (mp->b_prev) { 8868 mp->b_next = NULL; 8869 mp->b_prev = NULL; 8870 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8871 } else { 8872 if (dst_ill != NULL) { 8873 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8874 } else { 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8876 } 8877 } 8878 ASSERT(copy_mp == NULL); 8879 MULTIRT_DEBUG_UNTAG(first_mp); 8880 freemsg(first_mp); 8881 if (ire != NULL) 8882 ire_refrele(ire); 8883 if (sire != NULL) 8884 ire_refrele(sire); 8885 if (src_ipif != NULL) 8886 ipif_refrele(src_ipif); 8887 if (dst_ill != NULL) 8888 ill_refrele(dst_ill); 8889 return; 8890 8891 icmp_err_ret: 8892 ip1dbg(("ip_newroute: no route\n")); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 if (sire != NULL) 8898 ire_refrele(sire); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8904 q = WR(q); 8905 } else { 8906 /* 8907 * There is no outgoing ill, so just increment the 8908 * system MIB. 8909 */ 8910 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8911 /* 8912 * Since ip_wput() isn't close to finished, we fill 8913 * in enough of the header for credible error reporting. 8914 */ 8915 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8916 /* Failed */ 8917 MULTIRT_DEBUG_UNTAG(first_mp); 8918 freemsg(first_mp); 8919 if (ire != NULL) 8920 ire_refrele(ire); 8921 return; 8922 } 8923 } 8924 8925 /* 8926 * At this point we will have ire only if RTF_BLACKHOLE 8927 * or RTF_REJECT flags are set on the IRE. It will not 8928 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8929 */ 8930 if (ire != NULL) { 8931 if (ire->ire_flags & RTF_BLACKHOLE) { 8932 ire_refrele(ire); 8933 MULTIRT_DEBUG_UNTAG(first_mp); 8934 freemsg(first_mp); 8935 return; 8936 } 8937 ire_refrele(ire); 8938 } 8939 if (ip_source_routed(ipha, ipst)) { 8940 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8941 zoneid, ipst); 8942 return; 8943 } 8944 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8945 } 8946 8947 ip_opt_info_t zero_info; 8948 8949 /* 8950 * IPv4 - 8951 * ip_newroute_ipif is called by ip_wput_multicast and 8952 * ip_rput_forward_multicast whenever we need to send 8953 * out a packet to a destination address for which we do not have specific 8954 * routing information. It is used when the packet will be sent out 8955 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8956 * socket option is set or icmp error message wants to go out on a particular 8957 * interface for a unicast packet. 8958 * 8959 * In most cases, the destination address is resolved thanks to the ipif 8960 * intrinsic resolver. However, there are some cases where the call to 8961 * ip_newroute_ipif must take into account the potential presence of 8962 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8963 * that uses the interface. This is specified through flags, 8964 * which can be a combination of: 8965 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8966 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8967 * and flags. Additionally, the packet source address has to be set to 8968 * the specified address. The caller is thus expected to set this flag 8969 * if the packet has no specific source address yet. 8970 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8971 * flag, the resulting ire will inherit the flag. All unresolved routes 8972 * to the destination must be explored in the same call to 8973 * ip_newroute_ipif(). 8974 */ 8975 static void 8976 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8977 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8978 { 8979 areq_t *areq; 8980 ire_t *ire = NULL; 8981 mblk_t *res_mp; 8982 ipaddr_t *addrp; 8983 mblk_t *first_mp; 8984 ire_t *save_ire = NULL; 8985 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8986 ipif_t *src_ipif = NULL; 8987 ushort_t ire_marks = 0; 8988 ill_t *dst_ill = NULL; 8989 boolean_t mctl_present; 8990 ipsec_out_t *io; 8991 ipha_t *ipha; 8992 int ihandle = 0; 8993 mblk_t *saved_mp; 8994 ire_t *fire = NULL; 8995 mblk_t *copy_mp = NULL; 8996 boolean_t multirt_resolve_next; 8997 boolean_t unspec_src; 8998 ipaddr_t ipha_dst; 8999 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9000 9001 /* 9002 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9003 * here for uniformity 9004 */ 9005 ipif_refhold(ipif); 9006 9007 /* 9008 * This loop is run only once in most cases. 9009 * We loop to resolve further routes only when the destination 9010 * can be reached through multiple RTF_MULTIRT-flagged ires. 9011 */ 9012 do { 9013 if (dst_ill != NULL) { 9014 ill_refrele(dst_ill); 9015 dst_ill = NULL; 9016 } 9017 if (src_ipif != NULL) { 9018 ipif_refrele(src_ipif); 9019 src_ipif = NULL; 9020 } 9021 multirt_resolve_next = B_FALSE; 9022 9023 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9024 ipif->ipif_ill->ill_name)); 9025 9026 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9027 if (mctl_present) 9028 io = (ipsec_out_t *)first_mp->b_rptr; 9029 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 /* 9033 * Save the packet destination address, we may need it after 9034 * the packet has been consumed. 9035 */ 9036 ipha_dst = ipha->ipha_dst; 9037 9038 /* 9039 * If the interface is a pt-pt interface we look for an 9040 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9041 * local_address and the pt-pt destination address. Otherwise 9042 * we just match the local address. 9043 * NOTE: dst could be different than ipha->ipha_dst in case 9044 * of sending igmp multicast packets over a point-to-point 9045 * connection. 9046 * Thus we must be careful enough to check ipha_dst to be a 9047 * multicast address, otherwise it will take xmit_if path for 9048 * multicast packets resulting into kernel stack overflow by 9049 * repeated calls to ip_newroute_ipif from ire_send(). 9050 */ 9051 if (CLASSD(ipha_dst) && 9052 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9053 goto err_ret; 9054 } 9055 9056 /* 9057 * We check if an IRE_OFFSUBNET for the addr that goes through 9058 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9059 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9060 * propagate its flags to the new ire. 9061 */ 9062 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9063 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9064 ip2dbg(("ip_newroute_ipif: " 9065 "ipif_lookup_multi_ire(" 9066 "ipif %p, dst %08x) = fire %p\n", 9067 (void *)ipif, ntohl(dst), (void *)fire)); 9068 } 9069 9070 if (mctl_present && io->ipsec_out_attach_if) { 9071 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9072 io->ipsec_out_ill_index, B_FALSE, ipst); 9073 9074 /* Failure case frees things for us. */ 9075 if (attach_ill == NULL) { 9076 ipif_refrele(ipif); 9077 if (fire != NULL) 9078 ire_refrele(fire); 9079 return; 9080 } 9081 9082 /* 9083 * Check if we need an ire that will not be 9084 * looked up by anybody else i.e. HIDDEN. 9085 */ 9086 if (ill_is_probeonly(attach_ill)) { 9087 ire_marks = IRE_MARK_HIDDEN; 9088 } 9089 /* 9090 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9091 * case. 9092 */ 9093 dst_ill = ipif->ipif_ill; 9094 /* attach_ill has been refheld by ip_grab_attach_ill */ 9095 ASSERT(dst_ill == attach_ill); 9096 } else { 9097 /* 9098 * If the interface belongs to an interface group, 9099 * make sure the next possible interface in the group 9100 * is used. This encourages load spreading among 9101 * peers in an interface group. 9102 * Note: load spreading is disabled for RTF_MULTIRT 9103 * routes. 9104 */ 9105 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9106 (fire->ire_flags & RTF_MULTIRT)) { 9107 /* 9108 * Don't perform outbound load spreading 9109 * in the case of an RTF_MULTIRT issued route, 9110 * we actually typically want to replicate 9111 * outgoing packets through particular 9112 * interfaces. 9113 */ 9114 dst_ill = ipif->ipif_ill; 9115 ill_refhold(dst_ill); 9116 } else { 9117 dst_ill = ip_newroute_get_dst_ill( 9118 ipif->ipif_ill); 9119 } 9120 if (dst_ill == NULL) { 9121 if (ip_debug > 2) { 9122 pr_addr_dbg("ip_newroute_ipif: " 9123 "no dst ill for dst %s\n", 9124 AF_INET, &dst); 9125 } 9126 goto err_ret; 9127 } 9128 } 9129 9130 /* 9131 * Pick a source address preferring non-deprecated ones. 9132 * Unlike ip_newroute, we don't do any source address 9133 * selection here since for multicast it really does not help 9134 * in inbound load spreading as in the unicast case. 9135 */ 9136 if ((flags & RTF_SETSRC) && (fire != NULL) && 9137 (fire->ire_flags & RTF_SETSRC)) { 9138 /* 9139 * As requested by flags, an IRE_OFFSUBNET was looked up 9140 * on that interface. This ire has RTF_SETSRC flag, so 9141 * the source address of the packet must be changed. 9142 * Check that the ipif matching the requested source 9143 * address still exists. 9144 */ 9145 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9146 zoneid, NULL, NULL, NULL, NULL, ipst); 9147 } 9148 9149 unspec_src = (connp != NULL && connp->conn_unspec_src); 9150 9151 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9152 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9153 (connp != NULL && ipif->ipif_zoneid != zoneid && 9154 ipif->ipif_zoneid != ALL_ZONES)) && 9155 (src_ipif == NULL) && 9156 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9157 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9158 if (src_ipif == NULL) { 9159 if (ip_debug > 2) { 9160 /* ip1dbg */ 9161 pr_addr_dbg("ip_newroute_ipif: " 9162 "no src for dst %s", 9163 AF_INET, &dst); 9164 } 9165 ip1dbg((" through interface %s\n", 9166 dst_ill->ill_name)); 9167 goto err_ret; 9168 } 9169 ipif_refrele(ipif); 9170 ipif = src_ipif; 9171 ipif_refhold(ipif); 9172 } 9173 if (src_ipif == NULL) { 9174 src_ipif = ipif; 9175 ipif_refhold(src_ipif); 9176 } 9177 9178 /* 9179 * Assign a source address while we have the conn. 9180 * We can't have ip_wput_ire pick a source address when the 9181 * packet returns from arp since conn_unspec_src might be set 9182 * and we lose the conn when going through arp. 9183 */ 9184 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9185 ipha->ipha_src = src_ipif->ipif_src_addr; 9186 9187 /* 9188 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9189 * that the outgoing interface does not have an interface ire. 9190 */ 9191 if (CLASSD(ipha_dst) && (connp == NULL || 9192 connp->conn_outgoing_ill == NULL) && 9193 infop->ip_opt_ill_index == 0) { 9194 /* ipif_to_ire returns an held ire */ 9195 ire = ipif_to_ire(ipif); 9196 if (ire == NULL) 9197 goto err_ret; 9198 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9199 goto err_ret; 9200 /* 9201 * ihandle is needed when the ire is added to 9202 * cache table. 9203 */ 9204 save_ire = ire; 9205 ihandle = save_ire->ire_ihandle; 9206 9207 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9208 "flags %04x\n", 9209 (void *)ire, (void *)ipif, flags)); 9210 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9211 (fire->ire_flags & RTF_MULTIRT)) { 9212 /* 9213 * As requested by flags, an IRE_OFFSUBNET was 9214 * looked up on that interface. This ire has 9215 * RTF_MULTIRT flag, so the resolution loop will 9216 * be re-entered to resolve additional routes on 9217 * other interfaces. For that purpose, a copy of 9218 * the packet is performed at this point. 9219 */ 9220 fire->ire_last_used_time = lbolt; 9221 copy_mp = copymsg(first_mp); 9222 if (copy_mp) { 9223 MULTIRT_DEBUG_TAG(copy_mp); 9224 } 9225 } 9226 if ((flags & RTF_SETSRC) && (fire != NULL) && 9227 (fire->ire_flags & RTF_SETSRC)) { 9228 /* 9229 * As requested by flags, an IRE_OFFSUBET was 9230 * looked up on that interface. This ire has 9231 * RTF_SETSRC flag, so the source address of the 9232 * packet must be changed. 9233 */ 9234 ipha->ipha_src = fire->ire_src_addr; 9235 } 9236 } else { 9237 ASSERT((connp == NULL) || 9238 (connp->conn_outgoing_ill != NULL) || 9239 (connp->conn_dontroute) || 9240 infop->ip_opt_ill_index != 0); 9241 /* 9242 * The only ways we can come here are: 9243 * 1) IP_BOUND_IF socket option is set 9244 * 2) SO_DONTROUTE socket option is set 9245 * 3) IP_PKTINFO option is passed in as ancillary data. 9246 * In all cases, the new ire will not be added 9247 * into cache table. 9248 */ 9249 ire_marks |= IRE_MARK_NOADD; 9250 } 9251 9252 switch (ipif->ipif_net_type) { 9253 case IRE_IF_NORESOLVER: { 9254 /* We have what we need to build an IRE_CACHE. */ 9255 9256 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9257 (dst_ill->ill_resolver_mp == NULL)) { 9258 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9259 "for IRE_IF_NORESOLVER ire %p has " 9260 "no ill_resolver_mp\n", 9261 (void *)dst_ill, (void *)ire)); 9262 break; 9263 } 9264 9265 /* 9266 * The new ire inherits the IRE_OFFSUBNET flags 9267 * and source address, if this was requested. 9268 */ 9269 ire = ire_create( 9270 (uchar_t *)&dst, /* dest address */ 9271 (uchar_t *)&ip_g_all_ones, /* mask */ 9272 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9273 NULL, /* gateway address */ 9274 &ipif->ipif_mtu, 9275 NULL, /* no src nce */ 9276 dst_ill->ill_rq, /* recv-from queue */ 9277 dst_ill->ill_wq, /* send-to queue */ 9278 IRE_CACHE, 9279 src_ipif, 9280 (save_ire != NULL ? save_ire->ire_mask : 0), 9281 (fire != NULL) ? /* Parent handle */ 9282 fire->ire_phandle : 0, 9283 ihandle, /* Interface handle */ 9284 (fire != NULL) ? 9285 (fire->ire_flags & 9286 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9287 (save_ire == NULL ? &ire_uinfo_null : 9288 &save_ire->ire_uinfo), 9289 NULL, 9290 NULL, 9291 ipst); 9292 9293 if (ire == NULL) { 9294 if (save_ire != NULL) 9295 ire_refrele(save_ire); 9296 break; 9297 } 9298 9299 ire->ire_marks |= ire_marks; 9300 9301 /* 9302 * If IRE_MARK_NOADD is set then we need to convert 9303 * the max_fragp to a useable value now. This is 9304 * normally done in ire_add_v[46]. We also need to 9305 * associate the ire with an nce (normally would be 9306 * done in ip_wput_nondata()). 9307 * 9308 * Note that IRE_MARK_NOADD packets created here 9309 * do not have a non-null ire_mp pointer. The null 9310 * value of ire_bucket indicates that they were 9311 * never added. 9312 */ 9313 if (ire->ire_marks & IRE_MARK_NOADD) { 9314 uint_t max_frag; 9315 9316 max_frag = *ire->ire_max_fragp; 9317 ire->ire_max_fragp = NULL; 9318 ire->ire_max_frag = max_frag; 9319 9320 if ((ire->ire_nce = ndp_lookup_v4( 9321 ire_to_ill(ire), 9322 (ire->ire_gateway_addr != INADDR_ANY ? 9323 &ire->ire_gateway_addr : &ire->ire_addr), 9324 B_FALSE)) == NULL) { 9325 if (save_ire != NULL) 9326 ire_refrele(save_ire); 9327 break; 9328 } 9329 ASSERT(ire->ire_nce->nce_state == 9330 ND_REACHABLE); 9331 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9332 } 9333 9334 /* Prevent save_ire from getting deleted */ 9335 if (save_ire != NULL) { 9336 IRB_REFHOLD(save_ire->ire_bucket); 9337 /* Has it been removed already ? */ 9338 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9339 IRB_REFRELE(save_ire->ire_bucket); 9340 ire_refrele(save_ire); 9341 break; 9342 } 9343 } 9344 9345 ire_add_then_send(q, ire, first_mp); 9346 9347 /* Assert that save_ire is not deleted yet. */ 9348 if (save_ire != NULL) { 9349 ASSERT(save_ire->ire_ptpn != NULL); 9350 IRB_REFRELE(save_ire->ire_bucket); 9351 ire_refrele(save_ire); 9352 save_ire = NULL; 9353 } 9354 if (fire != NULL) { 9355 ire_refrele(fire); 9356 fire = NULL; 9357 } 9358 9359 /* 9360 * the resolution loop is re-entered if this 9361 * was requested through flags and if we 9362 * actually are in a multirouting case. 9363 */ 9364 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9365 boolean_t need_resolve = 9366 ire_multirt_need_resolve(ipha_dst, 9367 MBLK_GETLABEL(copy_mp), ipst); 9368 if (!need_resolve) { 9369 MULTIRT_DEBUG_UNTAG(copy_mp); 9370 freemsg(copy_mp); 9371 copy_mp = NULL; 9372 } else { 9373 /* 9374 * ipif_lookup_group() calls 9375 * ire_lookup_multi() that uses 9376 * ire_ftable_lookup() to find 9377 * an IRE_INTERFACE for the group. 9378 * In the multirt case, 9379 * ire_lookup_multi() then invokes 9380 * ire_multirt_lookup() to find 9381 * the next resolvable ire. 9382 * As a result, we obtain an new 9383 * interface, derived from the 9384 * next ire. 9385 */ 9386 ipif_refrele(ipif); 9387 ipif = ipif_lookup_group(ipha_dst, 9388 zoneid, ipst); 9389 ip2dbg(("ip_newroute_ipif: " 9390 "multirt dst %08x, ipif %p\n", 9391 htonl(dst), (void *)ipif)); 9392 if (ipif != NULL) { 9393 mp = copy_mp; 9394 copy_mp = NULL; 9395 multirt_resolve_next = B_TRUE; 9396 continue; 9397 } else { 9398 freemsg(copy_mp); 9399 } 9400 } 9401 } 9402 if (ipif != NULL) 9403 ipif_refrele(ipif); 9404 ill_refrele(dst_ill); 9405 ipif_refrele(src_ipif); 9406 return; 9407 } 9408 case IRE_IF_RESOLVER: 9409 /* 9410 * We can't build an IRE_CACHE yet, but at least 9411 * we found a resolver that can help. 9412 */ 9413 res_mp = dst_ill->ill_resolver_mp; 9414 if (!OK_RESOLVER_MP(res_mp)) 9415 break; 9416 9417 /* 9418 * We obtain a partial IRE_CACHE which we will pass 9419 * along with the resolver query. When the response 9420 * comes back it will be there ready for us to add. 9421 * The new ire inherits the IRE_OFFSUBNET flags 9422 * and source address, if this was requested. 9423 * The ire_max_frag is atomically set under the 9424 * irebucket lock in ire_add_v[46]. Only in the 9425 * case of IRE_MARK_NOADD, we set it here itself. 9426 */ 9427 ire = ire_create_mp( 9428 (uchar_t *)&dst, /* dest address */ 9429 (uchar_t *)&ip_g_all_ones, /* mask */ 9430 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9431 NULL, /* gateway address */ 9432 (ire_marks & IRE_MARK_NOADD) ? 9433 ipif->ipif_mtu : 0, /* max_frag */ 9434 NULL, /* no src nce */ 9435 dst_ill->ill_rq, /* recv-from queue */ 9436 dst_ill->ill_wq, /* send-to queue */ 9437 IRE_CACHE, 9438 src_ipif, 9439 (save_ire != NULL ? save_ire->ire_mask : 0), 9440 (fire != NULL) ? /* Parent handle */ 9441 fire->ire_phandle : 0, 9442 ihandle, /* Interface handle */ 9443 (fire != NULL) ? /* flags if any */ 9444 (fire->ire_flags & 9445 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9446 (save_ire == NULL ? &ire_uinfo_null : 9447 &save_ire->ire_uinfo), 9448 NULL, 9449 NULL, 9450 ipst); 9451 9452 if (save_ire != NULL) { 9453 ire_refrele(save_ire); 9454 save_ire = NULL; 9455 } 9456 if (ire == NULL) 9457 break; 9458 9459 ire->ire_marks |= ire_marks; 9460 /* 9461 * Construct message chain for the resolver of the 9462 * form: 9463 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9464 * 9465 * NOTE : ire will be added later when the response 9466 * comes back from ARP. If the response does not 9467 * come back, ARP frees the packet. For this reason, 9468 * we can't REFHOLD the bucket of save_ire to prevent 9469 * deletions. We may not be able to REFRELE the 9470 * bucket if the response never comes back. 9471 * Thus, before adding the ire, ire_add_v4 will make 9472 * sure that the interface route does not get deleted. 9473 * This is the only case unlike ip_newroute_v6, 9474 * ip_newroute_ipif_v6 where we can always prevent 9475 * deletions because ire_add_then_send is called after 9476 * creating the IRE. 9477 * If IRE_MARK_NOADD is set, then ire_add_then_send 9478 * does not add this IRE into the IRE CACHE. 9479 */ 9480 ASSERT(ire->ire_mp != NULL); 9481 ire->ire_mp->b_cont = first_mp; 9482 /* Have saved_mp handy, for cleanup if canput fails */ 9483 saved_mp = mp; 9484 mp = copyb(res_mp); 9485 if (mp == NULL) { 9486 /* Prepare for cleanup */ 9487 mp = saved_mp; /* pkt */ 9488 ire_delete(ire); /* ire_mp */ 9489 ire = NULL; 9490 if (copy_mp != NULL) { 9491 MULTIRT_DEBUG_UNTAG(copy_mp); 9492 freemsg(copy_mp); 9493 copy_mp = NULL; 9494 } 9495 break; 9496 } 9497 linkb(mp, ire->ire_mp); 9498 9499 /* 9500 * Fill in the source and dest addrs for the resolver. 9501 * NOTE: this depends on memory layouts imposed by 9502 * ill_init(). 9503 */ 9504 areq = (areq_t *)mp->b_rptr; 9505 addrp = (ipaddr_t *)((char *)areq + 9506 areq->areq_sender_addr_offset); 9507 *addrp = ire->ire_src_addr; 9508 addrp = (ipaddr_t *)((char *)areq + 9509 areq->areq_target_addr_offset); 9510 *addrp = dst; 9511 /* Up to the resolver. */ 9512 if (canputnext(dst_ill->ill_rq) && 9513 !(dst_ill->ill_arp_closing)) { 9514 putnext(dst_ill->ill_rq, mp); 9515 /* 9516 * The response will come back in ip_wput 9517 * with db_type IRE_DB_TYPE. 9518 */ 9519 } else { 9520 mp->b_cont = NULL; 9521 freeb(mp); /* areq */ 9522 ire_delete(ire); /* ire_mp */ 9523 saved_mp->b_next = NULL; 9524 saved_mp->b_prev = NULL; 9525 freemsg(first_mp); /* pkt */ 9526 ip2dbg(("ip_newroute_ipif: dropped\n")); 9527 } 9528 9529 if (fire != NULL) { 9530 ire_refrele(fire); 9531 fire = NULL; 9532 } 9533 9534 9535 /* 9536 * The resolution loop is re-entered if this was 9537 * requested through flags and we actually are 9538 * in a multirouting case. 9539 */ 9540 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9541 boolean_t need_resolve = 9542 ire_multirt_need_resolve(ipha_dst, 9543 MBLK_GETLABEL(copy_mp), ipst); 9544 if (!need_resolve) { 9545 MULTIRT_DEBUG_UNTAG(copy_mp); 9546 freemsg(copy_mp); 9547 copy_mp = NULL; 9548 } else { 9549 /* 9550 * ipif_lookup_group() calls 9551 * ire_lookup_multi() that uses 9552 * ire_ftable_lookup() to find 9553 * an IRE_INTERFACE for the group. 9554 * In the multirt case, 9555 * ire_lookup_multi() then invokes 9556 * ire_multirt_lookup() to find 9557 * the next resolvable ire. 9558 * As a result, we obtain an new 9559 * interface, derived from the 9560 * next ire. 9561 */ 9562 ipif_refrele(ipif); 9563 ipif = ipif_lookup_group(ipha_dst, 9564 zoneid, ipst); 9565 if (ipif != NULL) { 9566 mp = copy_mp; 9567 copy_mp = NULL; 9568 multirt_resolve_next = B_TRUE; 9569 continue; 9570 } else { 9571 freemsg(copy_mp); 9572 } 9573 } 9574 } 9575 if (ipif != NULL) 9576 ipif_refrele(ipif); 9577 ill_refrele(dst_ill); 9578 ipif_refrele(src_ipif); 9579 return; 9580 default: 9581 break; 9582 } 9583 } while (multirt_resolve_next); 9584 9585 err_ret: 9586 ip2dbg(("ip_newroute_ipif: dropped\n")); 9587 if (fire != NULL) 9588 ire_refrele(fire); 9589 ipif_refrele(ipif); 9590 /* Did this packet originate externally? */ 9591 if (dst_ill != NULL) 9592 ill_refrele(dst_ill); 9593 if (src_ipif != NULL) 9594 ipif_refrele(src_ipif); 9595 if (mp->b_prev || mp->b_next) { 9596 mp->b_next = NULL; 9597 mp->b_prev = NULL; 9598 } else { 9599 /* 9600 * Since ip_wput() isn't close to finished, we fill 9601 * in enough of the header for credible error reporting. 9602 */ 9603 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9604 /* Failed */ 9605 freemsg(first_mp); 9606 if (ire != NULL) 9607 ire_refrele(ire); 9608 return; 9609 } 9610 } 9611 /* 9612 * At this point we will have ire only if RTF_BLACKHOLE 9613 * or RTF_REJECT flags are set on the IRE. It will not 9614 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9615 */ 9616 if (ire != NULL) { 9617 if (ire->ire_flags & RTF_BLACKHOLE) { 9618 ire_refrele(ire); 9619 freemsg(first_mp); 9620 return; 9621 } 9622 ire_refrele(ire); 9623 } 9624 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9625 } 9626 9627 /* Name/Value Table Lookup Routine */ 9628 char * 9629 ip_nv_lookup(nv_t *nv, int value) 9630 { 9631 if (!nv) 9632 return (NULL); 9633 for (; nv->nv_name; nv++) { 9634 if (nv->nv_value == value) 9635 return (nv->nv_name); 9636 } 9637 return ("unknown"); 9638 } 9639 9640 /* 9641 * This is a module open, i.e. this is a control stream for access 9642 * to a DLPI device. We allocate an ill_t as the instance data in 9643 * this case. 9644 */ 9645 int 9646 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9647 { 9648 ill_t *ill; 9649 int err; 9650 zoneid_t zoneid; 9651 netstack_t *ns; 9652 ip_stack_t *ipst; 9653 9654 /* 9655 * Prevent unprivileged processes from pushing IP so that 9656 * they can't send raw IP. 9657 */ 9658 if (secpolicy_net_rawaccess(credp) != 0) 9659 return (EPERM); 9660 9661 ns = netstack_find_by_cred(credp); 9662 ASSERT(ns != NULL); 9663 ipst = ns->netstack_ip; 9664 ASSERT(ipst != NULL); 9665 9666 /* 9667 * For exclusive stacks we set the zoneid to zero 9668 * to make IP operate as if in the global zone. 9669 */ 9670 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9671 zoneid = GLOBAL_ZONEID; 9672 else 9673 zoneid = crgetzoneid(credp); 9674 9675 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9676 q->q_ptr = WR(q)->q_ptr = ill; 9677 ill->ill_ipst = ipst; 9678 ill->ill_zoneid = zoneid; 9679 9680 /* 9681 * ill_init initializes the ill fields and then sends down 9682 * down a DL_INFO_REQ after calling qprocson. 9683 */ 9684 err = ill_init(q, ill); 9685 if (err != 0) { 9686 mi_free(ill); 9687 netstack_rele(ipst->ips_netstack); 9688 q->q_ptr = NULL; 9689 WR(q)->q_ptr = NULL; 9690 return (err); 9691 } 9692 9693 /* ill_init initializes the ipsq marking this thread as writer */ 9694 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9695 /* Wait for the DL_INFO_ACK */ 9696 mutex_enter(&ill->ill_lock); 9697 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9698 /* 9699 * Return value of 0 indicates a pending signal. 9700 */ 9701 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9702 if (err == 0) { 9703 mutex_exit(&ill->ill_lock); 9704 (void) ip_close(q, 0); 9705 return (EINTR); 9706 } 9707 } 9708 mutex_exit(&ill->ill_lock); 9709 9710 /* 9711 * ip_rput_other could have set an error in ill_error on 9712 * receipt of M_ERROR. 9713 */ 9714 9715 err = ill->ill_error; 9716 if (err != 0) { 9717 (void) ip_close(q, 0); 9718 return (err); 9719 } 9720 9721 ill->ill_credp = credp; 9722 crhold(credp); 9723 9724 mutex_enter(&ipst->ips_ip_mi_lock); 9725 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9726 credp); 9727 mutex_exit(&ipst->ips_ip_mi_lock); 9728 if (err) { 9729 (void) ip_close(q, 0); 9730 return (err); 9731 } 9732 return (0); 9733 } 9734 9735 /* For /dev/ip aka AF_INET open */ 9736 int 9737 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9738 { 9739 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9740 } 9741 9742 /* For /dev/ip6 aka AF_INET6 open */ 9743 int 9744 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9745 { 9746 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9747 } 9748 9749 /* IP open routine. */ 9750 int 9751 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9752 boolean_t isv6) 9753 { 9754 conn_t *connp; 9755 major_t maj; 9756 zoneid_t zoneid; 9757 netstack_t *ns; 9758 ip_stack_t *ipst; 9759 9760 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9761 9762 /* Allow reopen. */ 9763 if (q->q_ptr != NULL) 9764 return (0); 9765 9766 if (sflag & MODOPEN) { 9767 /* This is a module open */ 9768 return (ip_modopen(q, devp, flag, sflag, credp)); 9769 } 9770 9771 ns = netstack_find_by_cred(credp); 9772 ASSERT(ns != NULL); 9773 ipst = ns->netstack_ip; 9774 ASSERT(ipst != NULL); 9775 9776 /* 9777 * For exclusive stacks we set the zoneid to zero 9778 * to make IP operate as if in the global zone. 9779 */ 9780 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9781 zoneid = GLOBAL_ZONEID; 9782 else 9783 zoneid = crgetzoneid(credp); 9784 9785 /* 9786 * We are opening as a device. This is an IP client stream, and we 9787 * allocate an conn_t as the instance data. 9788 */ 9789 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9790 9791 /* 9792 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9793 * done by netstack_find_by_cred() 9794 */ 9795 netstack_rele(ipst->ips_netstack); 9796 9797 connp->conn_zoneid = zoneid; 9798 9799 connp->conn_upq = q; 9800 q->q_ptr = WR(q)->q_ptr = connp; 9801 9802 if (flag & SO_SOCKSTR) 9803 connp->conn_flags |= IPCL_SOCKET; 9804 9805 /* Minor tells us which /dev entry was opened */ 9806 if (isv6) { 9807 connp->conn_flags |= IPCL_ISV6; 9808 connp->conn_af_isv6 = B_TRUE; 9809 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9810 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9811 } else { 9812 connp->conn_af_isv6 = B_FALSE; 9813 connp->conn_pkt_isv6 = B_FALSE; 9814 } 9815 9816 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9817 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9818 connp->conn_minor_arena = ip_minor_arena_la; 9819 } else { 9820 /* 9821 * Either minor numbers in the large arena were exhausted 9822 * or a non socket application is doing the open. 9823 * Try to allocate from the small arena. 9824 */ 9825 if ((connp->conn_dev = 9826 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9827 /* CONN_DEC_REF takes care of netstack_rele() */ 9828 q->q_ptr = WR(q)->q_ptr = NULL; 9829 CONN_DEC_REF(connp); 9830 return (EBUSY); 9831 } 9832 connp->conn_minor_arena = ip_minor_arena_sa; 9833 } 9834 9835 maj = getemajor(*devp); 9836 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9837 9838 /* 9839 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9840 */ 9841 connp->conn_cred = credp; 9842 9843 /* 9844 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9845 */ 9846 connp->conn_recv = ip_conn_input; 9847 9848 crhold(connp->conn_cred); 9849 9850 /* 9851 * If the caller has the process-wide flag set, then default to MAC 9852 * exempt mode. This allows read-down to unlabeled hosts. 9853 */ 9854 if (getpflags(NET_MAC_AWARE, credp) != 0) 9855 connp->conn_mac_exempt = B_TRUE; 9856 9857 connp->conn_rq = q; 9858 connp->conn_wq = WR(q); 9859 9860 /* Non-zero default values */ 9861 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9862 9863 /* 9864 * Make the conn globally visible to walkers 9865 */ 9866 ASSERT(connp->conn_ref == 1); 9867 mutex_enter(&connp->conn_lock); 9868 connp->conn_state_flags &= ~CONN_INCIPIENT; 9869 mutex_exit(&connp->conn_lock); 9870 9871 qprocson(q); 9872 9873 return (0); 9874 } 9875 9876 /* 9877 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9878 * Note that there is no race since either ip_output function works - it 9879 * is just an optimization to enter the best ip_output routine directly. 9880 */ 9881 void 9882 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9883 ip_stack_t *ipst) 9884 { 9885 if (isv6) { 9886 if (bump_mib) { 9887 BUMP_MIB(&ipst->ips_ip6_mib, 9888 ipIfStatsOutSwitchIPVersion); 9889 } 9890 connp->conn_send = ip_output_v6; 9891 connp->conn_pkt_isv6 = B_TRUE; 9892 } else { 9893 if (bump_mib) { 9894 BUMP_MIB(&ipst->ips_ip_mib, 9895 ipIfStatsOutSwitchIPVersion); 9896 } 9897 connp->conn_send = ip_output; 9898 connp->conn_pkt_isv6 = B_FALSE; 9899 } 9900 9901 } 9902 9903 /* 9904 * See if IPsec needs loading because of the options in mp. 9905 */ 9906 static boolean_t 9907 ipsec_opt_present(mblk_t *mp) 9908 { 9909 uint8_t *optcp, *next_optcp, *opt_endcp; 9910 struct opthdr *opt; 9911 struct T_opthdr *topt; 9912 int opthdr_len; 9913 t_uscalar_t optname, optlevel; 9914 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9915 ipsec_req_t *ipsr; 9916 9917 /* 9918 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9919 * return TRUE. 9920 */ 9921 9922 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9923 opt_endcp = optcp + tor->OPT_length; 9924 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9925 opthdr_len = sizeof (struct T_opthdr); 9926 } else { /* O_OPTMGMT_REQ */ 9927 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9928 opthdr_len = sizeof (struct opthdr); 9929 } 9930 for (; optcp < opt_endcp; optcp = next_optcp) { 9931 if (optcp + opthdr_len > opt_endcp) 9932 return (B_FALSE); /* Not enough option header. */ 9933 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9934 topt = (struct T_opthdr *)optcp; 9935 optlevel = topt->level; 9936 optname = topt->name; 9937 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9938 } else { 9939 opt = (struct opthdr *)optcp; 9940 optlevel = opt->level; 9941 optname = opt->name; 9942 next_optcp = optcp + opthdr_len + 9943 _TPI_ALIGN_OPT(opt->len); 9944 } 9945 if ((next_optcp < optcp) || /* wraparound pointer space */ 9946 ((next_optcp >= opt_endcp) && /* last option bad len */ 9947 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9948 return (B_FALSE); /* bad option buffer */ 9949 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9950 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9951 /* 9952 * Check to see if it's an all-bypass or all-zeroes 9953 * IPsec request. Don't bother loading IPsec if 9954 * the socket doesn't want to use it. (A good example 9955 * is a bypass request.) 9956 * 9957 * Basically, if any of the non-NEVER bits are set, 9958 * load IPsec. 9959 */ 9960 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9961 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9962 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9963 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9964 != 0) 9965 return (B_TRUE); 9966 } 9967 } 9968 return (B_FALSE); 9969 } 9970 9971 /* 9972 * If conn is is waiting for ipsec to finish loading, kick it. 9973 */ 9974 /* ARGSUSED */ 9975 static void 9976 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9977 { 9978 t_scalar_t optreq_prim; 9979 mblk_t *mp; 9980 cred_t *cr; 9981 int err = 0; 9982 9983 /* 9984 * This function is called, after ipsec loading is complete. 9985 * Since IP checks exclusively and atomically (i.e it prevents 9986 * ipsec load from completing until ip_optcom_req completes) 9987 * whether ipsec load is complete, there cannot be a race with IP 9988 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9989 */ 9990 mutex_enter(&connp->conn_lock); 9991 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9992 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9993 mp = connp->conn_ipsec_opt_mp; 9994 connp->conn_ipsec_opt_mp = NULL; 9995 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9996 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9997 mutex_exit(&connp->conn_lock); 9998 9999 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10000 10001 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10002 if (optreq_prim == T_OPTMGMT_REQ) { 10003 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10004 &ip_opt_obj, B_FALSE); 10005 } else { 10006 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10007 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10008 &ip_opt_obj, B_FALSE); 10009 } 10010 if (err != EINPROGRESS) 10011 CONN_OPER_PENDING_DONE(connp); 10012 return; 10013 } 10014 mutex_exit(&connp->conn_lock); 10015 } 10016 10017 /* 10018 * Called from the ipsec_loader thread, outside any perimeter, to tell 10019 * ip qenable any of the queues waiting for the ipsec loader to 10020 * complete. 10021 */ 10022 void 10023 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10024 { 10025 netstack_t *ns = ipss->ipsec_netstack; 10026 10027 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10028 } 10029 10030 /* 10031 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10032 * determines the grp on which it has to become exclusive, queues the mp 10033 * and sq draining restarts the optmgmt 10034 */ 10035 static boolean_t 10036 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10037 { 10038 conn_t *connp = Q_TO_CONN(q); 10039 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10040 10041 /* 10042 * Take IPsec requests and treat them special. 10043 */ 10044 if (ipsec_opt_present(mp)) { 10045 /* First check if IPsec is loaded. */ 10046 mutex_enter(&ipss->ipsec_loader_lock); 10047 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10048 mutex_exit(&ipss->ipsec_loader_lock); 10049 return (B_FALSE); 10050 } 10051 mutex_enter(&connp->conn_lock); 10052 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10053 10054 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10055 connp->conn_ipsec_opt_mp = mp; 10056 mutex_exit(&connp->conn_lock); 10057 mutex_exit(&ipss->ipsec_loader_lock); 10058 10059 ipsec_loader_loadnow(ipss); 10060 return (B_TRUE); 10061 } 10062 return (B_FALSE); 10063 } 10064 10065 /* 10066 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10067 * all of them are copied to the conn_t. If the req is "zero", the policy is 10068 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10069 * fields. 10070 * We keep only the latest setting of the policy and thus policy setting 10071 * is not incremental/cumulative. 10072 * 10073 * Requests to set policies with multiple alternative actions will 10074 * go through a different API. 10075 */ 10076 int 10077 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10078 { 10079 uint_t ah_req = 0; 10080 uint_t esp_req = 0; 10081 uint_t se_req = 0; 10082 ipsec_selkey_t sel; 10083 ipsec_act_t *actp = NULL; 10084 uint_t nact; 10085 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10086 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10087 ipsec_policy_root_t *pr; 10088 ipsec_policy_head_t *ph; 10089 int fam; 10090 boolean_t is_pol_reset; 10091 int error = 0; 10092 netstack_t *ns = connp->conn_netstack; 10093 ip_stack_t *ipst = ns->netstack_ip; 10094 ipsec_stack_t *ipss = ns->netstack_ipsec; 10095 10096 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10097 10098 /* 10099 * The IP_SEC_OPT option does not allow variable length parameters, 10100 * hence a request cannot be NULL. 10101 */ 10102 if (req == NULL) 10103 return (EINVAL); 10104 10105 ah_req = req->ipsr_ah_req; 10106 esp_req = req->ipsr_esp_req; 10107 se_req = req->ipsr_self_encap_req; 10108 10109 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10110 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10111 return (EINVAL); 10112 10113 /* 10114 * Are we dealing with a request to reset the policy (i.e. 10115 * zero requests). 10116 */ 10117 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10118 (esp_req & REQ_MASK) == 0 && 10119 (se_req & REQ_MASK) == 0); 10120 10121 if (!is_pol_reset) { 10122 /* 10123 * If we couldn't load IPsec, fail with "protocol 10124 * not supported". 10125 * IPsec may not have been loaded for a request with zero 10126 * policies, so we don't fail in this case. 10127 */ 10128 mutex_enter(&ipss->ipsec_loader_lock); 10129 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10130 mutex_exit(&ipss->ipsec_loader_lock); 10131 return (EPROTONOSUPPORT); 10132 } 10133 mutex_exit(&ipss->ipsec_loader_lock); 10134 10135 /* 10136 * Test for valid requests. Invalid algorithms 10137 * need to be tested by IPsec code because new 10138 * algorithms can be added dynamically. 10139 */ 10140 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10141 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10142 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10143 return (EINVAL); 10144 } 10145 10146 /* 10147 * Only privileged users can issue these 10148 * requests. 10149 */ 10150 if (((ah_req & IPSEC_PREF_NEVER) || 10151 (esp_req & IPSEC_PREF_NEVER) || 10152 (se_req & IPSEC_PREF_NEVER)) && 10153 secpolicy_ip_config(cr, B_FALSE) != 0) { 10154 return (EPERM); 10155 } 10156 10157 /* 10158 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10159 * are mutually exclusive. 10160 */ 10161 if (((ah_req & REQ_MASK) == REQ_MASK) || 10162 ((esp_req & REQ_MASK) == REQ_MASK) || 10163 ((se_req & REQ_MASK) == REQ_MASK)) { 10164 /* Both of them are set */ 10165 return (EINVAL); 10166 } 10167 } 10168 10169 mutex_enter(&connp->conn_lock); 10170 10171 /* 10172 * If we have already cached policies in ip_bind_connected*(), don't 10173 * let them change now. We cache policies for connections 10174 * whose src,dst [addr, port] is known. 10175 */ 10176 if (connp->conn_policy_cached) { 10177 mutex_exit(&connp->conn_lock); 10178 return (EINVAL); 10179 } 10180 10181 /* 10182 * We have a zero policies, reset the connection policy if already 10183 * set. This will cause the connection to inherit the 10184 * global policy, if any. 10185 */ 10186 if (is_pol_reset) { 10187 if (connp->conn_policy != NULL) { 10188 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10189 connp->conn_policy = NULL; 10190 } 10191 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10192 connp->conn_in_enforce_policy = B_FALSE; 10193 connp->conn_out_enforce_policy = B_FALSE; 10194 mutex_exit(&connp->conn_lock); 10195 return (0); 10196 } 10197 10198 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10199 ipst->ips_netstack); 10200 if (ph == NULL) 10201 goto enomem; 10202 10203 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10204 if (actp == NULL) 10205 goto enomem; 10206 10207 /* 10208 * Always allocate IPv4 policy entries, since they can also 10209 * apply to ipv6 sockets being used in ipv4-compat mode. 10210 */ 10211 bzero(&sel, sizeof (sel)); 10212 sel.ipsl_valid = IPSL_IPV4; 10213 10214 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10215 ipst->ips_netstack); 10216 if (pin4 == NULL) 10217 goto enomem; 10218 10219 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10220 ipst->ips_netstack); 10221 if (pout4 == NULL) 10222 goto enomem; 10223 10224 if (connp->conn_af_isv6) { 10225 /* 10226 * We're looking at a v6 socket, also allocate the 10227 * v6-specific entries... 10228 */ 10229 sel.ipsl_valid = IPSL_IPV6; 10230 pin6 = ipsec_policy_create(&sel, actp, nact, 10231 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10232 if (pin6 == NULL) 10233 goto enomem; 10234 10235 pout6 = ipsec_policy_create(&sel, actp, nact, 10236 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10237 if (pout6 == NULL) 10238 goto enomem; 10239 10240 /* 10241 * .. and file them away in the right place. 10242 */ 10243 fam = IPSEC_AF_V6; 10244 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10245 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10246 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10247 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10248 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10249 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10250 } 10251 10252 ipsec_actvec_free(actp, nact); 10253 10254 /* 10255 * File the v4 policies. 10256 */ 10257 fam = IPSEC_AF_V4; 10258 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10259 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10260 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10261 10262 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10263 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10264 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10265 10266 /* 10267 * If the requests need security, set enforce_policy. 10268 * If the requests are IPSEC_PREF_NEVER, one should 10269 * still set conn_out_enforce_policy so that an ipsec_out 10270 * gets attached in ip_wput. This is needed so that 10271 * for connections that we don't cache policy in ip_bind, 10272 * if global policy matches in ip_wput_attach_policy, we 10273 * don't wrongly inherit global policy. Similarly, we need 10274 * to set conn_in_enforce_policy also so that we don't verify 10275 * policy wrongly. 10276 */ 10277 if ((ah_req & REQ_MASK) != 0 || 10278 (esp_req & REQ_MASK) != 0 || 10279 (se_req & REQ_MASK) != 0) { 10280 connp->conn_in_enforce_policy = B_TRUE; 10281 connp->conn_out_enforce_policy = B_TRUE; 10282 connp->conn_flags |= IPCL_CHECK_POLICY; 10283 } 10284 10285 mutex_exit(&connp->conn_lock); 10286 return (error); 10287 #undef REQ_MASK 10288 10289 /* 10290 * Common memory-allocation-failure exit path. 10291 */ 10292 enomem: 10293 mutex_exit(&connp->conn_lock); 10294 if (actp != NULL) 10295 ipsec_actvec_free(actp, nact); 10296 if (pin4 != NULL) 10297 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10298 if (pout4 != NULL) 10299 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10300 if (pin6 != NULL) 10301 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10302 if (pout6 != NULL) 10303 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10304 return (ENOMEM); 10305 } 10306 10307 /* 10308 * Only for options that pass in an IP addr. Currently only V4 options 10309 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10310 * So this function assumes level is IPPROTO_IP 10311 */ 10312 int 10313 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10314 mblk_t *first_mp) 10315 { 10316 ipif_t *ipif = NULL; 10317 int error; 10318 ill_t *ill; 10319 int zoneid; 10320 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10321 10322 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10323 10324 if (addr != INADDR_ANY || checkonly) { 10325 ASSERT(connp != NULL); 10326 zoneid = IPCL_ZONEID(connp); 10327 if (option == IP_NEXTHOP) { 10328 ipif = ipif_lookup_onlink_addr(addr, 10329 connp->conn_zoneid, ipst); 10330 } else { 10331 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10332 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10333 &error, ipst); 10334 } 10335 if (ipif == NULL) { 10336 if (error == EINPROGRESS) 10337 return (error); 10338 else if ((option == IP_MULTICAST_IF) || 10339 (option == IP_NEXTHOP)) 10340 return (EHOSTUNREACH); 10341 else 10342 return (EINVAL); 10343 } else if (checkonly) { 10344 if (option == IP_MULTICAST_IF) { 10345 ill = ipif->ipif_ill; 10346 /* not supported by the virtual network iface */ 10347 if (IS_VNI(ill)) { 10348 ipif_refrele(ipif); 10349 return (EINVAL); 10350 } 10351 } 10352 ipif_refrele(ipif); 10353 return (0); 10354 } 10355 ill = ipif->ipif_ill; 10356 mutex_enter(&connp->conn_lock); 10357 mutex_enter(&ill->ill_lock); 10358 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10359 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10360 mutex_exit(&ill->ill_lock); 10361 mutex_exit(&connp->conn_lock); 10362 ipif_refrele(ipif); 10363 return (option == IP_MULTICAST_IF ? 10364 EHOSTUNREACH : EINVAL); 10365 } 10366 } else { 10367 mutex_enter(&connp->conn_lock); 10368 } 10369 10370 /* None of the options below are supported on the VNI */ 10371 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10372 mutex_exit(&ill->ill_lock); 10373 mutex_exit(&connp->conn_lock); 10374 ipif_refrele(ipif); 10375 return (EINVAL); 10376 } 10377 10378 switch (option) { 10379 case IP_DONTFAILOVER_IF: 10380 /* 10381 * This option is used by in.mpathd to ensure 10382 * that IPMP probe packets only go out on the 10383 * test interfaces. in.mpathd sets this option 10384 * on the non-failover interfaces. 10385 * For backward compatibility, this option 10386 * implicitly sets IP_MULTICAST_IF, as used 10387 * be done in bind(), so that ip_wput gets 10388 * this ipif to send mcast packets. 10389 */ 10390 if (ipif != NULL) { 10391 ASSERT(addr != INADDR_ANY); 10392 connp->conn_nofailover_ill = ipif->ipif_ill; 10393 connp->conn_multicast_ipif = ipif; 10394 } else { 10395 ASSERT(addr == INADDR_ANY); 10396 connp->conn_nofailover_ill = NULL; 10397 connp->conn_multicast_ipif = NULL; 10398 } 10399 break; 10400 10401 case IP_MULTICAST_IF: 10402 connp->conn_multicast_ipif = ipif; 10403 break; 10404 case IP_NEXTHOP: 10405 connp->conn_nexthop_v4 = addr; 10406 connp->conn_nexthop_set = B_TRUE; 10407 break; 10408 } 10409 10410 if (ipif != NULL) { 10411 mutex_exit(&ill->ill_lock); 10412 mutex_exit(&connp->conn_lock); 10413 ipif_refrele(ipif); 10414 return (0); 10415 } 10416 mutex_exit(&connp->conn_lock); 10417 /* We succeded in cleared the option */ 10418 return (0); 10419 } 10420 10421 /* 10422 * For options that pass in an ifindex specifying the ill. V6 options always 10423 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10424 */ 10425 int 10426 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10427 int level, int option, mblk_t *first_mp) 10428 { 10429 ill_t *ill = NULL; 10430 int error = 0; 10431 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10432 10433 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10434 if (ifindex != 0) { 10435 ASSERT(connp != NULL); 10436 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10437 first_mp, ip_restart_optmgmt, &error, ipst); 10438 if (ill != NULL) { 10439 if (checkonly) { 10440 /* not supported by the virtual network iface */ 10441 if (IS_VNI(ill)) { 10442 ill_refrele(ill); 10443 return (EINVAL); 10444 } 10445 ill_refrele(ill); 10446 return (0); 10447 } 10448 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10449 0, NULL)) { 10450 ill_refrele(ill); 10451 ill = NULL; 10452 mutex_enter(&connp->conn_lock); 10453 goto setit; 10454 } 10455 mutex_enter(&connp->conn_lock); 10456 mutex_enter(&ill->ill_lock); 10457 if (ill->ill_state_flags & ILL_CONDEMNED) { 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&connp->conn_lock); 10460 ill_refrele(ill); 10461 ill = NULL; 10462 mutex_enter(&connp->conn_lock); 10463 } 10464 goto setit; 10465 } else if (error == EINPROGRESS) { 10466 return (error); 10467 } else { 10468 error = 0; 10469 } 10470 } 10471 mutex_enter(&connp->conn_lock); 10472 setit: 10473 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10474 10475 /* 10476 * The options below assume that the ILL (if any) transmits and/or 10477 * receives traffic. Neither of which is true for the virtual network 10478 * interface, so fail setting these on a VNI. 10479 */ 10480 if (IS_VNI(ill)) { 10481 ASSERT(ill != NULL); 10482 mutex_exit(&ill->ill_lock); 10483 mutex_exit(&connp->conn_lock); 10484 ill_refrele(ill); 10485 return (EINVAL); 10486 } 10487 10488 if (level == IPPROTO_IP) { 10489 switch (option) { 10490 case IP_BOUND_IF: 10491 connp->conn_incoming_ill = ill; 10492 connp->conn_outgoing_ill = ill; 10493 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10494 0 : ifindex; 10495 break; 10496 10497 case IP_MULTICAST_IF: 10498 /* 10499 * This option is an internal special. The socket 10500 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10501 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10502 * specifies an ifindex and we try first on V6 ill's. 10503 * If we don't find one, we they try using on v4 ill's 10504 * intenally and we come here. 10505 */ 10506 if (!checkonly && ill != NULL) { 10507 ipif_t *ipif; 10508 ipif = ill->ill_ipif; 10509 10510 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10511 mutex_exit(&ill->ill_lock); 10512 mutex_exit(&connp->conn_lock); 10513 ill_refrele(ill); 10514 ill = NULL; 10515 mutex_enter(&connp->conn_lock); 10516 } else { 10517 connp->conn_multicast_ipif = ipif; 10518 } 10519 } 10520 break; 10521 10522 case IP_DHCPINIT_IF: 10523 if (connp->conn_dhcpinit_ill != NULL) { 10524 /* 10525 * We've locked the conn so conn_cleanup_ill() 10526 * cannot clear conn_dhcpinit_ill -- so it's 10527 * safe to access the ill. 10528 */ 10529 ill_t *oill = connp->conn_dhcpinit_ill; 10530 10531 ASSERT(oill->ill_dhcpinit != 0); 10532 atomic_dec_32(&oill->ill_dhcpinit); 10533 connp->conn_dhcpinit_ill = NULL; 10534 } 10535 10536 if (ill != NULL) { 10537 connp->conn_dhcpinit_ill = ill; 10538 atomic_inc_32(&ill->ill_dhcpinit); 10539 } 10540 break; 10541 } 10542 } else { 10543 switch (option) { 10544 case IPV6_BOUND_IF: 10545 connp->conn_incoming_ill = ill; 10546 connp->conn_outgoing_ill = ill; 10547 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10548 0 : ifindex; 10549 break; 10550 10551 case IPV6_BOUND_PIF: 10552 /* 10553 * Limit all transmit to this ill. 10554 * Unlike IPV6_BOUND_IF, using this option 10555 * prevents load spreading and failover from 10556 * happening when the interface is part of the 10557 * group. That's why we don't need to remember 10558 * the ifindex in orig_bound_ifindex as in 10559 * IPV6_BOUND_IF. 10560 */ 10561 connp->conn_outgoing_pill = ill; 10562 break; 10563 10564 case IPV6_DONTFAILOVER_IF: 10565 /* 10566 * This option is used by in.mpathd to ensure 10567 * that IPMP probe packets only go out on the 10568 * test interfaces. in.mpathd sets this option 10569 * on the non-failover interfaces. 10570 */ 10571 connp->conn_nofailover_ill = ill; 10572 /* 10573 * For backward compatibility, this option 10574 * implicitly sets ip_multicast_ill as used in 10575 * IPV6_MULTICAST_IF so that ip_wput gets 10576 * this ill to send mcast packets. 10577 */ 10578 connp->conn_multicast_ill = ill; 10579 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10580 0 : ifindex; 10581 break; 10582 10583 case IPV6_MULTICAST_IF: 10584 /* 10585 * Set conn_multicast_ill to be the IPv6 ill. 10586 * Set conn_multicast_ipif to be an IPv4 ipif 10587 * for ifindex to make IPv4 mapped addresses 10588 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10589 * Even if no IPv6 ill exists for the ifindex 10590 * we need to check for an IPv4 ifindex in order 10591 * for this to work with mapped addresses. In that 10592 * case only set conn_multicast_ipif. 10593 */ 10594 if (!checkonly) { 10595 if (ifindex == 0) { 10596 connp->conn_multicast_ill = NULL; 10597 connp->conn_orig_multicast_ifindex = 0; 10598 connp->conn_multicast_ipif = NULL; 10599 } else if (ill != NULL) { 10600 connp->conn_multicast_ill = ill; 10601 connp->conn_orig_multicast_ifindex = 10602 ifindex; 10603 } 10604 } 10605 break; 10606 } 10607 } 10608 10609 if (ill != NULL) { 10610 mutex_exit(&ill->ill_lock); 10611 mutex_exit(&connp->conn_lock); 10612 ill_refrele(ill); 10613 return (0); 10614 } 10615 mutex_exit(&connp->conn_lock); 10616 /* 10617 * We succeeded in clearing the option (ifindex == 0) or failed to 10618 * locate the ill and could not set the option (ifindex != 0) 10619 */ 10620 return (ifindex == 0 ? 0 : EINVAL); 10621 } 10622 10623 /* This routine sets socket options. */ 10624 /* ARGSUSED */ 10625 int 10626 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10627 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10628 void *dummy, cred_t *cr, mblk_t *first_mp) 10629 { 10630 int *i1 = (int *)invalp; 10631 conn_t *connp = Q_TO_CONN(q); 10632 int error = 0; 10633 boolean_t checkonly; 10634 ire_t *ire; 10635 boolean_t found; 10636 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10637 10638 switch (optset_context) { 10639 10640 case SETFN_OPTCOM_CHECKONLY: 10641 checkonly = B_TRUE; 10642 /* 10643 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10644 * inlen != 0 implies value supplied and 10645 * we have to "pretend" to set it. 10646 * inlen == 0 implies that there is no 10647 * value part in T_CHECK request and just validation 10648 * done elsewhere should be enough, we just return here. 10649 */ 10650 if (inlen == 0) { 10651 *outlenp = 0; 10652 return (0); 10653 } 10654 break; 10655 case SETFN_OPTCOM_NEGOTIATE: 10656 case SETFN_UD_NEGOTIATE: 10657 case SETFN_CONN_NEGOTIATE: 10658 checkonly = B_FALSE; 10659 break; 10660 default: 10661 /* 10662 * We should never get here 10663 */ 10664 *outlenp = 0; 10665 return (EINVAL); 10666 } 10667 10668 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10669 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10670 10671 /* 10672 * For fixed length options, no sanity check 10673 * of passed in length is done. It is assumed *_optcom_req() 10674 * routines do the right thing. 10675 */ 10676 10677 switch (level) { 10678 case SOL_SOCKET: 10679 /* 10680 * conn_lock protects the bitfields, and is used to 10681 * set the fields atomically. 10682 */ 10683 switch (name) { 10684 case SO_BROADCAST: 10685 if (!checkonly) { 10686 /* TODO: use value someplace? */ 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_broadcast = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case SO_USELOOPBACK: 10693 if (!checkonly) { 10694 /* TODO: use value someplace? */ 10695 mutex_enter(&connp->conn_lock); 10696 connp->conn_loopback = *i1 ? 1 : 0; 10697 mutex_exit(&connp->conn_lock); 10698 } 10699 break; /* goto sizeof (int) option return */ 10700 case SO_DONTROUTE: 10701 if (!checkonly) { 10702 mutex_enter(&connp->conn_lock); 10703 connp->conn_dontroute = *i1 ? 1 : 0; 10704 mutex_exit(&connp->conn_lock); 10705 } 10706 break; /* goto sizeof (int) option return */ 10707 case SO_REUSEADDR: 10708 if (!checkonly) { 10709 mutex_enter(&connp->conn_lock); 10710 connp->conn_reuseaddr = *i1 ? 1 : 0; 10711 mutex_exit(&connp->conn_lock); 10712 } 10713 break; /* goto sizeof (int) option return */ 10714 case SO_PROTOTYPE: 10715 if (!checkonly) { 10716 mutex_enter(&connp->conn_lock); 10717 connp->conn_proto = *i1; 10718 mutex_exit(&connp->conn_lock); 10719 } 10720 break; /* goto sizeof (int) option return */ 10721 case SO_ALLZONES: 10722 if (!checkonly) { 10723 mutex_enter(&connp->conn_lock); 10724 if (IPCL_IS_BOUND(connp)) { 10725 mutex_exit(&connp->conn_lock); 10726 return (EINVAL); 10727 } 10728 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10729 mutex_exit(&connp->conn_lock); 10730 } 10731 break; /* goto sizeof (int) option return */ 10732 case SO_ANON_MLP: 10733 if (!checkonly) { 10734 mutex_enter(&connp->conn_lock); 10735 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10736 mutex_exit(&connp->conn_lock); 10737 } 10738 break; /* goto sizeof (int) option return */ 10739 case SO_MAC_EXEMPT: 10740 if (secpolicy_net_mac_aware(cr) != 0 || 10741 IPCL_IS_BOUND(connp)) 10742 return (EACCES); 10743 if (!checkonly) { 10744 mutex_enter(&connp->conn_lock); 10745 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10746 mutex_exit(&connp->conn_lock); 10747 } 10748 break; /* goto sizeof (int) option return */ 10749 default: 10750 /* 10751 * "soft" error (negative) 10752 * option not handled at this level 10753 * Note: Do not modify *outlenp 10754 */ 10755 return (-EINVAL); 10756 } 10757 break; 10758 case IPPROTO_IP: 10759 switch (name) { 10760 case IP_NEXTHOP: 10761 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10762 return (EPERM); 10763 /* FALLTHRU */ 10764 case IP_MULTICAST_IF: 10765 case IP_DONTFAILOVER_IF: { 10766 ipaddr_t addr = *i1; 10767 10768 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10769 first_mp); 10770 if (error != 0) 10771 return (error); 10772 break; /* goto sizeof (int) option return */ 10773 } 10774 10775 case IP_MULTICAST_TTL: 10776 /* Recorded in transport above IP */ 10777 *outvalp = *invalp; 10778 *outlenp = sizeof (uchar_t); 10779 return (0); 10780 case IP_MULTICAST_LOOP: 10781 if (!checkonly) { 10782 mutex_enter(&connp->conn_lock); 10783 connp->conn_multicast_loop = *invalp ? 1 : 0; 10784 mutex_exit(&connp->conn_lock); 10785 } 10786 *outvalp = *invalp; 10787 *outlenp = sizeof (uchar_t); 10788 return (0); 10789 case IP_ADD_MEMBERSHIP: 10790 case MCAST_JOIN_GROUP: 10791 case IP_DROP_MEMBERSHIP: 10792 case MCAST_LEAVE_GROUP: { 10793 struct ip_mreq *mreqp; 10794 struct group_req *greqp; 10795 ire_t *ire; 10796 boolean_t done = B_FALSE; 10797 ipaddr_t group, ifaddr; 10798 struct sockaddr_in *sin; 10799 uint32_t *ifindexp; 10800 boolean_t mcast_opt = B_TRUE; 10801 mcast_record_t fmode; 10802 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10803 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10804 10805 switch (name) { 10806 case IP_ADD_MEMBERSHIP: 10807 mcast_opt = B_FALSE; 10808 /* FALLTHRU */ 10809 case MCAST_JOIN_GROUP: 10810 fmode = MODE_IS_EXCLUDE; 10811 optfn = ip_opt_add_group; 10812 break; 10813 10814 case IP_DROP_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_LEAVE_GROUP: 10818 fmode = MODE_IS_INCLUDE; 10819 optfn = ip_opt_delete_group; 10820 break; 10821 } 10822 10823 if (mcast_opt) { 10824 greqp = (struct group_req *)i1; 10825 sin = (struct sockaddr_in *)&greqp->gr_group; 10826 if (sin->sin_family != AF_INET) { 10827 *outlenp = 0; 10828 return (ENOPROTOOPT); 10829 } 10830 group = (ipaddr_t)sin->sin_addr.s_addr; 10831 ifaddr = INADDR_ANY; 10832 ifindexp = &greqp->gr_interface; 10833 } else { 10834 mreqp = (struct ip_mreq *)i1; 10835 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10836 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10837 ifindexp = NULL; 10838 } 10839 10840 /* 10841 * In the multirouting case, we need to replicate 10842 * the request on all interfaces that will take part 10843 * in replication. We do so because multirouting is 10844 * reflective, thus we will probably receive multi- 10845 * casts on those interfaces. 10846 * The ip_multirt_apply_membership() succeeds if the 10847 * operation succeeds on at least one interface. 10848 */ 10849 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10850 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10851 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10852 if (ire != NULL) { 10853 if (ire->ire_flags & RTF_MULTIRT) { 10854 error = ip_multirt_apply_membership( 10855 optfn, ire, connp, checkonly, group, 10856 fmode, INADDR_ANY, first_mp); 10857 done = B_TRUE; 10858 } 10859 ire_refrele(ire); 10860 } 10861 if (!done) { 10862 error = optfn(connp, checkonly, group, ifaddr, 10863 ifindexp, fmode, INADDR_ANY, first_mp); 10864 } 10865 if (error) { 10866 /* 10867 * EINPROGRESS is a soft error, needs retry 10868 * so don't make *outlenp zero. 10869 */ 10870 if (error != EINPROGRESS) 10871 *outlenp = 0; 10872 return (error); 10873 } 10874 /* OK return - copy input buffer into output buffer */ 10875 if (invalp != outvalp) { 10876 /* don't trust bcopy for identical src/dst */ 10877 bcopy(invalp, outvalp, inlen); 10878 } 10879 *outlenp = inlen; 10880 return (0); 10881 } 10882 case IP_BLOCK_SOURCE: 10883 case IP_UNBLOCK_SOURCE: 10884 case IP_ADD_SOURCE_MEMBERSHIP: 10885 case IP_DROP_SOURCE_MEMBERSHIP: 10886 case MCAST_BLOCK_SOURCE: 10887 case MCAST_UNBLOCK_SOURCE: 10888 case MCAST_JOIN_SOURCE_GROUP: 10889 case MCAST_LEAVE_SOURCE_GROUP: { 10890 struct ip_mreq_source *imreqp; 10891 struct group_source_req *gsreqp; 10892 in_addr_t grp, src, ifaddr = INADDR_ANY; 10893 uint32_t ifindex = 0; 10894 mcast_record_t fmode; 10895 struct sockaddr_in *sin; 10896 ire_t *ire; 10897 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10898 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10899 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10900 10901 switch (name) { 10902 case IP_BLOCK_SOURCE: 10903 mcast_opt = B_FALSE; 10904 /* FALLTHRU */ 10905 case MCAST_BLOCK_SOURCE: 10906 fmode = MODE_IS_EXCLUDE; 10907 optfn = ip_opt_add_group; 10908 break; 10909 10910 case IP_UNBLOCK_SOURCE: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_UNBLOCK_SOURCE: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_delete_group; 10916 break; 10917 10918 case IP_ADD_SOURCE_MEMBERSHIP: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_JOIN_SOURCE_GROUP: 10922 fmode = MODE_IS_INCLUDE; 10923 optfn = ip_opt_add_group; 10924 break; 10925 10926 case IP_DROP_SOURCE_MEMBERSHIP: 10927 mcast_opt = B_FALSE; 10928 /* FALLTHRU */ 10929 case MCAST_LEAVE_SOURCE_GROUP: 10930 fmode = MODE_IS_INCLUDE; 10931 optfn = ip_opt_delete_group; 10932 break; 10933 } 10934 10935 if (mcast_opt) { 10936 gsreqp = (struct group_source_req *)i1; 10937 if (gsreqp->gsr_group.ss_family != AF_INET) { 10938 *outlenp = 0; 10939 return (ENOPROTOOPT); 10940 } 10941 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10942 grp = (ipaddr_t)sin->sin_addr.s_addr; 10943 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10944 src = (ipaddr_t)sin->sin_addr.s_addr; 10945 ifindex = gsreqp->gsr_interface; 10946 } else { 10947 imreqp = (struct ip_mreq_source *)i1; 10948 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10949 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10950 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10951 } 10952 10953 /* 10954 * In the multirouting case, we need to replicate 10955 * the request as noted in the mcast cases above. 10956 */ 10957 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10958 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10959 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10960 if (ire != NULL) { 10961 if (ire->ire_flags & RTF_MULTIRT) { 10962 error = ip_multirt_apply_membership( 10963 optfn, ire, connp, checkonly, grp, 10964 fmode, src, first_mp); 10965 done = B_TRUE; 10966 } 10967 ire_refrele(ire); 10968 } 10969 if (!done) { 10970 error = optfn(connp, checkonly, grp, ifaddr, 10971 &ifindex, fmode, src, first_mp); 10972 } 10973 if (error != 0) { 10974 /* 10975 * EINPROGRESS is a soft error, needs retry 10976 * so don't make *outlenp zero. 10977 */ 10978 if (error != EINPROGRESS) 10979 *outlenp = 0; 10980 return (error); 10981 } 10982 /* OK return - copy input buffer into output buffer */ 10983 if (invalp != outvalp) { 10984 bcopy(invalp, outvalp, inlen); 10985 } 10986 *outlenp = inlen; 10987 return (0); 10988 } 10989 case IP_SEC_OPT: 10990 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10991 if (error != 0) { 10992 *outlenp = 0; 10993 return (error); 10994 } 10995 break; 10996 case IP_HDRINCL: 10997 case IP_OPTIONS: 10998 case T_IP_OPTIONS: 10999 case IP_TOS: 11000 case T_IP_TOS: 11001 case IP_TTL: 11002 case IP_RECVDSTADDR: 11003 case IP_RECVOPTS: 11004 /* OK return - copy input buffer into output buffer */ 11005 if (invalp != outvalp) { 11006 /* don't trust bcopy for identical src/dst */ 11007 bcopy(invalp, outvalp, inlen); 11008 } 11009 *outlenp = inlen; 11010 return (0); 11011 case IP_RECVIF: 11012 /* Retrieve the inbound interface index */ 11013 if (!checkonly) { 11014 mutex_enter(&connp->conn_lock); 11015 connp->conn_recvif = *i1 ? 1 : 0; 11016 mutex_exit(&connp->conn_lock); 11017 } 11018 break; /* goto sizeof (int) option return */ 11019 case IP_RECVPKTINFO: 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 break; /* goto sizeof (int) option return */ 11026 case IP_RECVSLLA: 11027 /* Retrieve the source link layer address */ 11028 if (!checkonly) { 11029 mutex_enter(&connp->conn_lock); 11030 connp->conn_recvslla = *i1 ? 1 : 0; 11031 mutex_exit(&connp->conn_lock); 11032 } 11033 break; /* goto sizeof (int) option return */ 11034 case MRT_INIT: 11035 case MRT_DONE: 11036 case MRT_ADD_VIF: 11037 case MRT_DEL_VIF: 11038 case MRT_ADD_MFC: 11039 case MRT_DEL_MFC: 11040 case MRT_ASSERT: 11041 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11042 *outlenp = 0; 11043 return (error); 11044 } 11045 error = ip_mrouter_set((int)name, q, checkonly, 11046 (uchar_t *)invalp, inlen, first_mp); 11047 if (error) { 11048 *outlenp = 0; 11049 return (error); 11050 } 11051 /* OK return - copy input buffer into output buffer */ 11052 if (invalp != outvalp) { 11053 /* don't trust bcopy for identical src/dst */ 11054 bcopy(invalp, outvalp, inlen); 11055 } 11056 *outlenp = inlen; 11057 return (0); 11058 case IP_BOUND_IF: 11059 case IP_DHCPINIT_IF: 11060 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11061 level, name, first_mp); 11062 if (error != 0) 11063 return (error); 11064 break; /* goto sizeof (int) option return */ 11065 11066 case IP_UNSPEC_SRC: 11067 /* Allow sending with a zero source address */ 11068 if (!checkonly) { 11069 mutex_enter(&connp->conn_lock); 11070 connp->conn_unspec_src = *i1 ? 1 : 0; 11071 mutex_exit(&connp->conn_lock); 11072 } 11073 break; /* goto sizeof (int) option return */ 11074 default: 11075 /* 11076 * "soft" error (negative) 11077 * option not handled at this level 11078 * Note: Do not modify *outlenp 11079 */ 11080 return (-EINVAL); 11081 } 11082 break; 11083 case IPPROTO_IPV6: 11084 switch (name) { 11085 case IPV6_BOUND_IF: 11086 case IPV6_BOUND_PIF: 11087 case IPV6_DONTFAILOVER_IF: 11088 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11089 level, name, first_mp); 11090 if (error != 0) 11091 return (error); 11092 break; /* goto sizeof (int) option return */ 11093 11094 case IPV6_MULTICAST_IF: 11095 /* 11096 * The only possible errors are EINPROGRESS and 11097 * EINVAL. EINPROGRESS will be restarted and is not 11098 * a hard error. We call this option on both V4 and V6 11099 * If both return EINVAL, then this call returns 11100 * EINVAL. If at least one of them succeeds we 11101 * return success. 11102 */ 11103 found = B_FALSE; 11104 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11105 level, name, first_mp); 11106 if (error == EINPROGRESS) 11107 return (error); 11108 if (error == 0) 11109 found = B_TRUE; 11110 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11111 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11112 if (error == 0) 11113 found = B_TRUE; 11114 if (!found) 11115 return (error); 11116 break; /* goto sizeof (int) option return */ 11117 11118 case IPV6_MULTICAST_HOPS: 11119 /* Recorded in transport above IP */ 11120 break; /* goto sizeof (int) option return */ 11121 case IPV6_MULTICAST_LOOP: 11122 if (!checkonly) { 11123 mutex_enter(&connp->conn_lock); 11124 connp->conn_multicast_loop = *i1; 11125 mutex_exit(&connp->conn_lock); 11126 } 11127 break; /* goto sizeof (int) option return */ 11128 case IPV6_JOIN_GROUP: 11129 case MCAST_JOIN_GROUP: 11130 case IPV6_LEAVE_GROUP: 11131 case MCAST_LEAVE_GROUP: { 11132 struct ipv6_mreq *ip_mreqp; 11133 struct group_req *greqp; 11134 ire_t *ire; 11135 boolean_t done = B_FALSE; 11136 in6_addr_t groupv6; 11137 uint32_t ifindex; 11138 boolean_t mcast_opt = B_TRUE; 11139 mcast_record_t fmode; 11140 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11141 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11142 11143 switch (name) { 11144 case IPV6_JOIN_GROUP: 11145 mcast_opt = B_FALSE; 11146 /* FALLTHRU */ 11147 case MCAST_JOIN_GROUP: 11148 fmode = MODE_IS_EXCLUDE; 11149 optfn = ip_opt_add_group_v6; 11150 break; 11151 11152 case IPV6_LEAVE_GROUP: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_LEAVE_GROUP: 11156 fmode = MODE_IS_INCLUDE; 11157 optfn = ip_opt_delete_group_v6; 11158 break; 11159 } 11160 11161 if (mcast_opt) { 11162 struct sockaddr_in *sin; 11163 struct sockaddr_in6 *sin6; 11164 greqp = (struct group_req *)i1; 11165 if (greqp->gr_group.ss_family == AF_INET) { 11166 sin = (struct sockaddr_in *) 11167 &(greqp->gr_group); 11168 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11169 &groupv6); 11170 } else { 11171 sin6 = (struct sockaddr_in6 *) 11172 &(greqp->gr_group); 11173 groupv6 = sin6->sin6_addr; 11174 } 11175 ifindex = greqp->gr_interface; 11176 } else { 11177 ip_mreqp = (struct ipv6_mreq *)i1; 11178 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11179 ifindex = ip_mreqp->ipv6mr_interface; 11180 } 11181 /* 11182 * In the multirouting case, we need to replicate 11183 * the request on all interfaces that will take part 11184 * in replication. We do so because multirouting is 11185 * reflective, thus we will probably receive multi- 11186 * casts on those interfaces. 11187 * The ip_multirt_apply_membership_v6() succeeds if 11188 * the operation succeeds on at least one interface. 11189 */ 11190 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11191 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11192 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11193 if (ire != NULL) { 11194 if (ire->ire_flags & RTF_MULTIRT) { 11195 error = ip_multirt_apply_membership_v6( 11196 optfn, ire, connp, checkonly, 11197 &groupv6, fmode, &ipv6_all_zeros, 11198 first_mp); 11199 done = B_TRUE; 11200 } 11201 ire_refrele(ire); 11202 } 11203 if (!done) { 11204 error = optfn(connp, checkonly, &groupv6, 11205 ifindex, fmode, &ipv6_all_zeros, first_mp); 11206 } 11207 if (error) { 11208 /* 11209 * EINPROGRESS is a soft error, needs retry 11210 * so don't make *outlenp zero. 11211 */ 11212 if (error != EINPROGRESS) 11213 *outlenp = 0; 11214 return (error); 11215 } 11216 /* OK return - copy input buffer into output buffer */ 11217 if (invalp != outvalp) { 11218 /* don't trust bcopy for identical src/dst */ 11219 bcopy(invalp, outvalp, inlen); 11220 } 11221 *outlenp = inlen; 11222 return (0); 11223 } 11224 case MCAST_BLOCK_SOURCE: 11225 case MCAST_UNBLOCK_SOURCE: 11226 case MCAST_JOIN_SOURCE_GROUP: 11227 case MCAST_LEAVE_SOURCE_GROUP: { 11228 struct group_source_req *gsreqp; 11229 in6_addr_t v6grp, v6src; 11230 uint32_t ifindex; 11231 mcast_record_t fmode; 11232 ire_t *ire; 11233 boolean_t done = B_FALSE; 11234 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11235 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11236 11237 switch (name) { 11238 case MCAST_BLOCK_SOURCE: 11239 fmode = MODE_IS_EXCLUDE; 11240 optfn = ip_opt_add_group_v6; 11241 break; 11242 case MCAST_UNBLOCK_SOURCE: 11243 fmode = MODE_IS_EXCLUDE; 11244 optfn = ip_opt_delete_group_v6; 11245 break; 11246 case MCAST_JOIN_SOURCE_GROUP: 11247 fmode = MODE_IS_INCLUDE; 11248 optfn = ip_opt_add_group_v6; 11249 break; 11250 case MCAST_LEAVE_SOURCE_GROUP: 11251 fmode = MODE_IS_INCLUDE; 11252 optfn = ip_opt_delete_group_v6; 11253 break; 11254 } 11255 11256 gsreqp = (struct group_source_req *)i1; 11257 ifindex = gsreqp->gsr_interface; 11258 if (gsreqp->gsr_group.ss_family == AF_INET) { 11259 struct sockaddr_in *s; 11260 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11261 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11262 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11263 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11264 } else { 11265 struct sockaddr_in6 *s6; 11266 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11267 v6grp = s6->sin6_addr; 11268 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11269 v6src = s6->sin6_addr; 11270 } 11271 11272 /* 11273 * In the multirouting case, we need to replicate 11274 * the request as noted in the mcast cases above. 11275 */ 11276 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11277 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11278 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11279 if (ire != NULL) { 11280 if (ire->ire_flags & RTF_MULTIRT) { 11281 error = ip_multirt_apply_membership_v6( 11282 optfn, ire, connp, checkonly, 11283 &v6grp, fmode, &v6src, first_mp); 11284 done = B_TRUE; 11285 } 11286 ire_refrele(ire); 11287 } 11288 if (!done) { 11289 error = optfn(connp, checkonly, &v6grp, 11290 ifindex, fmode, &v6src, first_mp); 11291 } 11292 if (error != 0) { 11293 /* 11294 * EINPROGRESS is a soft error, needs retry 11295 * so don't make *outlenp zero. 11296 */ 11297 if (error != EINPROGRESS) 11298 *outlenp = 0; 11299 return (error); 11300 } 11301 /* OK return - copy input buffer into output buffer */ 11302 if (invalp != outvalp) { 11303 bcopy(invalp, outvalp, inlen); 11304 } 11305 *outlenp = inlen; 11306 return (0); 11307 } 11308 case IPV6_UNICAST_HOPS: 11309 /* Recorded in transport above IP */ 11310 break; /* goto sizeof (int) option return */ 11311 case IPV6_UNSPEC_SRC: 11312 /* Allow sending with a zero source address */ 11313 if (!checkonly) { 11314 mutex_enter(&connp->conn_lock); 11315 connp->conn_unspec_src = *i1 ? 1 : 0; 11316 mutex_exit(&connp->conn_lock); 11317 } 11318 break; /* goto sizeof (int) option return */ 11319 case IPV6_RECVPKTINFO: 11320 if (!checkonly) { 11321 mutex_enter(&connp->conn_lock); 11322 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11323 mutex_exit(&connp->conn_lock); 11324 } 11325 break; /* goto sizeof (int) option return */ 11326 case IPV6_RECVTCLASS: 11327 if (!checkonly) { 11328 if (*i1 < 0 || *i1 > 1) { 11329 return (EINVAL); 11330 } 11331 mutex_enter(&connp->conn_lock); 11332 connp->conn_ipv6_recvtclass = *i1; 11333 mutex_exit(&connp->conn_lock); 11334 } 11335 break; 11336 case IPV6_RECVPATHMTU: 11337 if (!checkonly) { 11338 if (*i1 < 0 || *i1 > 1) { 11339 return (EINVAL); 11340 } 11341 mutex_enter(&connp->conn_lock); 11342 connp->conn_ipv6_recvpathmtu = *i1; 11343 mutex_exit(&connp->conn_lock); 11344 } 11345 break; 11346 case IPV6_RECVHOPLIMIT: 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVHOPOPTS: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVDSTOPTS: 11361 if (!checkonly) { 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; /* goto sizeof (int) option return */ 11367 case IPV6_RECVRTHDR: 11368 if (!checkonly) { 11369 mutex_enter(&connp->conn_lock); 11370 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11371 mutex_exit(&connp->conn_lock); 11372 } 11373 break; /* goto sizeof (int) option return */ 11374 case IPV6_RECVRTHDRDSTOPTS: 11375 if (!checkonly) { 11376 mutex_enter(&connp->conn_lock); 11377 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11378 mutex_exit(&connp->conn_lock); 11379 } 11380 break; /* goto sizeof (int) option return */ 11381 case IPV6_PKTINFO: 11382 if (inlen == 0) 11383 return (-EINVAL); /* clearing option */ 11384 error = ip6_set_pktinfo(cr, connp, 11385 (struct in6_pktinfo *)invalp, first_mp); 11386 if (error != 0) 11387 *outlenp = 0; 11388 else 11389 *outlenp = inlen; 11390 return (error); 11391 case IPV6_NEXTHOP: { 11392 struct sockaddr_in6 *sin6; 11393 11394 /* Verify that the nexthop is reachable */ 11395 if (inlen == 0) 11396 return (-EINVAL); /* clearing option */ 11397 11398 sin6 = (struct sockaddr_in6 *)invalp; 11399 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11400 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11401 NULL, MATCH_IRE_DEFAULT, ipst); 11402 11403 if (ire == NULL) { 11404 *outlenp = 0; 11405 return (EHOSTUNREACH); 11406 } 11407 ire_refrele(ire); 11408 return (-EINVAL); 11409 } 11410 case IPV6_SEC_OPT: 11411 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11412 if (error != 0) { 11413 *outlenp = 0; 11414 return (error); 11415 } 11416 break; 11417 case IPV6_SRC_PREFERENCES: { 11418 /* 11419 * This is implemented strictly in the ip module 11420 * (here and in tcp_opt_*() to accomodate tcp 11421 * sockets). Modules above ip pass this option 11422 * down here since ip is the only one that needs to 11423 * be aware of source address preferences. 11424 * 11425 * This socket option only affects connected 11426 * sockets that haven't already bound to a specific 11427 * IPv6 address. In other words, sockets that 11428 * don't call bind() with an address other than the 11429 * unspecified address and that call connect(). 11430 * ip_bind_connected_v6() passes these preferences 11431 * to the ipif_select_source_v6() function. 11432 */ 11433 if (inlen != sizeof (uint32_t)) 11434 return (EINVAL); 11435 error = ip6_set_src_preferences(connp, 11436 *(uint32_t *)invalp); 11437 if (error != 0) { 11438 *outlenp = 0; 11439 return (error); 11440 } else { 11441 *outlenp = sizeof (uint32_t); 11442 } 11443 break; 11444 } 11445 case IPV6_V6ONLY: 11446 if (*i1 < 0 || *i1 > 1) { 11447 return (EINVAL); 11448 } 11449 mutex_enter(&connp->conn_lock); 11450 connp->conn_ipv6_v6only = *i1; 11451 mutex_exit(&connp->conn_lock); 11452 break; 11453 default: 11454 return (-EINVAL); 11455 } 11456 break; 11457 default: 11458 /* 11459 * "soft" error (negative) 11460 * option not handled at this level 11461 * Note: Do not modify *outlenp 11462 */ 11463 return (-EINVAL); 11464 } 11465 /* 11466 * Common case of return from an option that is sizeof (int) 11467 */ 11468 *(int *)outvalp = *i1; 11469 *outlenp = sizeof (int); 11470 return (0); 11471 } 11472 11473 /* 11474 * This routine gets default values of certain options whose default 11475 * values are maintained by protocol specific code 11476 */ 11477 /* ARGSUSED */ 11478 int 11479 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11480 { 11481 int *i1 = (int *)ptr; 11482 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11483 11484 switch (level) { 11485 case IPPROTO_IP: 11486 switch (name) { 11487 case IP_MULTICAST_TTL: 11488 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11489 return (sizeof (uchar_t)); 11490 case IP_MULTICAST_LOOP: 11491 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11492 return (sizeof (uchar_t)); 11493 default: 11494 return (-1); 11495 } 11496 case IPPROTO_IPV6: 11497 switch (name) { 11498 case IPV6_UNICAST_HOPS: 11499 *i1 = ipst->ips_ipv6_def_hops; 11500 return (sizeof (int)); 11501 case IPV6_MULTICAST_HOPS: 11502 *i1 = IP_DEFAULT_MULTICAST_TTL; 11503 return (sizeof (int)); 11504 case IPV6_MULTICAST_LOOP: 11505 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11506 return (sizeof (int)); 11507 case IPV6_V6ONLY: 11508 *i1 = 1; 11509 return (sizeof (int)); 11510 default: 11511 return (-1); 11512 } 11513 default: 11514 return (-1); 11515 } 11516 /* NOTREACHED */ 11517 } 11518 11519 /* 11520 * Given a destination address and a pointer to where to put the information 11521 * this routine fills in the mtuinfo. 11522 */ 11523 int 11524 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11525 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11526 { 11527 ire_t *ire; 11528 ip_stack_t *ipst = ns->netstack_ip; 11529 11530 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11531 return (-1); 11532 11533 bzero(mtuinfo, sizeof (*mtuinfo)); 11534 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11535 mtuinfo->ip6m_addr.sin6_port = port; 11536 mtuinfo->ip6m_addr.sin6_addr = *in6; 11537 11538 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11539 if (ire != NULL) { 11540 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11541 ire_refrele(ire); 11542 } else { 11543 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11544 } 11545 return (sizeof (struct ip6_mtuinfo)); 11546 } 11547 11548 /* 11549 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11550 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11551 * isn't. This doesn't matter as the error checking is done properly for the 11552 * other MRT options coming in through ip_opt_set. 11553 */ 11554 int 11555 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11556 { 11557 conn_t *connp = Q_TO_CONN(q); 11558 ipsec_req_t *req = (ipsec_req_t *)ptr; 11559 11560 switch (level) { 11561 case IPPROTO_IP: 11562 switch (name) { 11563 case MRT_VERSION: 11564 case MRT_ASSERT: 11565 (void) ip_mrouter_get(name, q, ptr); 11566 return (sizeof (int)); 11567 case IP_SEC_OPT: 11568 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11569 case IP_NEXTHOP: 11570 if (connp->conn_nexthop_set) { 11571 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11572 return (sizeof (ipaddr_t)); 11573 } else 11574 return (0); 11575 case IP_RECVPKTINFO: 11576 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11577 return (sizeof (int)); 11578 default: 11579 break; 11580 } 11581 break; 11582 case IPPROTO_IPV6: 11583 switch (name) { 11584 case IPV6_SEC_OPT: 11585 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11586 case IPV6_SRC_PREFERENCES: { 11587 return (ip6_get_src_preferences(connp, 11588 (uint32_t *)ptr)); 11589 } 11590 case IPV6_V6ONLY: 11591 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11592 return (sizeof (int)); 11593 case IPV6_PATHMTU: 11594 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11595 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11596 default: 11597 break; 11598 } 11599 break; 11600 default: 11601 break; 11602 } 11603 return (-1); 11604 } 11605 11606 /* Named Dispatch routine to get a current value out of our parameter table. */ 11607 /* ARGSUSED */ 11608 static int 11609 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11610 { 11611 ipparam_t *ippa = (ipparam_t *)cp; 11612 11613 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11614 return (0); 11615 } 11616 11617 /* ARGSUSED */ 11618 static int 11619 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11620 { 11621 11622 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11623 return (0); 11624 } 11625 11626 /* 11627 * Set ip{,6}_forwarding values. This means walking through all of the 11628 * ill's and toggling their forwarding values. 11629 */ 11630 /* ARGSUSED */ 11631 static int 11632 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11633 { 11634 long new_value; 11635 int *forwarding_value = (int *)cp; 11636 ill_t *ill; 11637 boolean_t isv6; 11638 ill_walk_context_t ctx; 11639 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11640 11641 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11642 11643 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11644 new_value < 0 || new_value > 1) { 11645 return (EINVAL); 11646 } 11647 11648 *forwarding_value = new_value; 11649 11650 /* 11651 * Regardless of the current value of ip_forwarding, set all per-ill 11652 * values of ip_forwarding to the value being set. 11653 * 11654 * Bring all the ill's up to date with the new global value. 11655 */ 11656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11657 11658 if (isv6) 11659 ill = ILL_START_WALK_V6(&ctx, ipst); 11660 else 11661 ill = ILL_START_WALK_V4(&ctx, ipst); 11662 11663 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11664 (void) ill_forward_set(ill, new_value != 0); 11665 11666 rw_exit(&ipst->ips_ill_g_lock); 11667 return (0); 11668 } 11669 11670 /* 11671 * Walk through the param array specified registering each element with the 11672 * Named Dispatch handler. This is called only during init. So it is ok 11673 * not to acquire any locks 11674 */ 11675 static boolean_t 11676 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11677 ipndp_t *ipnd, size_t ipnd_cnt) 11678 { 11679 for (; ippa_cnt-- > 0; ippa++) { 11680 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11681 if (!nd_load(ndp, ippa->ip_param_name, 11682 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11683 nd_free(ndp); 11684 return (B_FALSE); 11685 } 11686 } 11687 } 11688 11689 for (; ipnd_cnt-- > 0; ipnd++) { 11690 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11691 if (!nd_load(ndp, ipnd->ip_ndp_name, 11692 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11693 ipnd->ip_ndp_data)) { 11694 nd_free(ndp); 11695 return (B_FALSE); 11696 } 11697 } 11698 } 11699 11700 return (B_TRUE); 11701 } 11702 11703 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11704 /* ARGSUSED */ 11705 static int 11706 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11707 { 11708 long new_value; 11709 ipparam_t *ippa = (ipparam_t *)cp; 11710 11711 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11712 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11713 return (EINVAL); 11714 } 11715 ippa->ip_param_value = new_value; 11716 return (0); 11717 } 11718 11719 /* 11720 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11721 * When an ipf is passed here for the first time, if 11722 * we already have in-order fragments on the queue, we convert from the fast- 11723 * path reassembly scheme to the hard-case scheme. From then on, additional 11724 * fragments are reassembled here. We keep track of the start and end offsets 11725 * of each piece, and the number of holes in the chain. When the hole count 11726 * goes to zero, we are done! 11727 * 11728 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11729 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11730 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11731 * after the call to ip_reassemble(). 11732 */ 11733 int 11734 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11735 size_t msg_len) 11736 { 11737 uint_t end; 11738 mblk_t *next_mp; 11739 mblk_t *mp1; 11740 uint_t offset; 11741 boolean_t incr_dups = B_TRUE; 11742 boolean_t offset_zero_seen = B_FALSE; 11743 boolean_t pkt_boundary_checked = B_FALSE; 11744 11745 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11746 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11747 11748 /* Add in byte count */ 11749 ipf->ipf_count += msg_len; 11750 if (ipf->ipf_end) { 11751 /* 11752 * We were part way through in-order reassembly, but now there 11753 * is a hole. We walk through messages already queued, and 11754 * mark them for hard case reassembly. We know that up till 11755 * now they were in order starting from offset zero. 11756 */ 11757 offset = 0; 11758 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11759 IP_REASS_SET_START(mp1, offset); 11760 if (offset == 0) { 11761 ASSERT(ipf->ipf_nf_hdr_len != 0); 11762 offset = -ipf->ipf_nf_hdr_len; 11763 } 11764 offset += mp1->b_wptr - mp1->b_rptr; 11765 IP_REASS_SET_END(mp1, offset); 11766 } 11767 /* One hole at the end. */ 11768 ipf->ipf_hole_cnt = 1; 11769 /* Brand it as a hard case, forever. */ 11770 ipf->ipf_end = 0; 11771 } 11772 /* Walk through all the new pieces. */ 11773 do { 11774 end = start + (mp->b_wptr - mp->b_rptr); 11775 /* 11776 * If start is 0, decrease 'end' only for the first mblk of 11777 * the fragment. Otherwise 'end' can get wrong value in the 11778 * second pass of the loop if first mblk is exactly the 11779 * size of ipf_nf_hdr_len. 11780 */ 11781 if (start == 0 && !offset_zero_seen) { 11782 /* First segment */ 11783 ASSERT(ipf->ipf_nf_hdr_len != 0); 11784 end -= ipf->ipf_nf_hdr_len; 11785 offset_zero_seen = B_TRUE; 11786 } 11787 next_mp = mp->b_cont; 11788 /* 11789 * We are checking to see if there is any interesing data 11790 * to process. If there isn't and the mblk isn't the 11791 * one which carries the unfragmentable header then we 11792 * drop it. It's possible to have just the unfragmentable 11793 * header come through without any data. That needs to be 11794 * saved. 11795 * 11796 * If the assert at the top of this function holds then the 11797 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11798 * is infrequently traveled enough that the test is left in 11799 * to protect against future code changes which break that 11800 * invariant. 11801 */ 11802 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11803 /* Empty. Blast it. */ 11804 IP_REASS_SET_START(mp, 0); 11805 IP_REASS_SET_END(mp, 0); 11806 /* 11807 * If the ipf points to the mblk we are about to free, 11808 * update ipf to point to the next mblk (or NULL 11809 * if none). 11810 */ 11811 if (ipf->ipf_mp->b_cont == mp) 11812 ipf->ipf_mp->b_cont = next_mp; 11813 freeb(mp); 11814 continue; 11815 } 11816 mp->b_cont = NULL; 11817 IP_REASS_SET_START(mp, start); 11818 IP_REASS_SET_END(mp, end); 11819 if (!ipf->ipf_tail_mp) { 11820 ipf->ipf_tail_mp = mp; 11821 ipf->ipf_mp->b_cont = mp; 11822 if (start == 0 || !more) { 11823 ipf->ipf_hole_cnt = 1; 11824 /* 11825 * if the first fragment comes in more than one 11826 * mblk, this loop will be executed for each 11827 * mblk. Need to adjust hole count so exiting 11828 * this routine will leave hole count at 1. 11829 */ 11830 if (next_mp) 11831 ipf->ipf_hole_cnt++; 11832 } else 11833 ipf->ipf_hole_cnt = 2; 11834 continue; 11835 } else if (ipf->ipf_last_frag_seen && !more && 11836 !pkt_boundary_checked) { 11837 /* 11838 * We check datagram boundary only if this fragment 11839 * claims to be the last fragment and we have seen a 11840 * last fragment in the past too. We do this only 11841 * once for a given fragment. 11842 * 11843 * start cannot be 0 here as fragments with start=0 11844 * and MF=0 gets handled as a complete packet. These 11845 * fragments should not reach here. 11846 */ 11847 11848 if (start + msgdsize(mp) != 11849 IP_REASS_END(ipf->ipf_tail_mp)) { 11850 /* 11851 * We have two fragments both of which claim 11852 * to be the last fragment but gives conflicting 11853 * information about the whole datagram size. 11854 * Something fishy is going on. Drop the 11855 * fragment and free up the reassembly list. 11856 */ 11857 return (IP_REASS_FAILED); 11858 } 11859 11860 /* 11861 * We shouldn't come to this code block again for this 11862 * particular fragment. 11863 */ 11864 pkt_boundary_checked = B_TRUE; 11865 } 11866 11867 /* New stuff at or beyond tail? */ 11868 offset = IP_REASS_END(ipf->ipf_tail_mp); 11869 if (start >= offset) { 11870 if (ipf->ipf_last_frag_seen) { 11871 /* current fragment is beyond last fragment */ 11872 return (IP_REASS_FAILED); 11873 } 11874 /* Link it on end. */ 11875 ipf->ipf_tail_mp->b_cont = mp; 11876 ipf->ipf_tail_mp = mp; 11877 if (more) { 11878 if (start != offset) 11879 ipf->ipf_hole_cnt++; 11880 } else if (start == offset && next_mp == NULL) 11881 ipf->ipf_hole_cnt--; 11882 continue; 11883 } 11884 mp1 = ipf->ipf_mp->b_cont; 11885 offset = IP_REASS_START(mp1); 11886 /* New stuff at the front? */ 11887 if (start < offset) { 11888 if (start == 0) { 11889 if (end >= offset) { 11890 /* Nailed the hole at the begining. */ 11891 ipf->ipf_hole_cnt--; 11892 } 11893 } else if (end < offset) { 11894 /* 11895 * A hole, stuff, and a hole where there used 11896 * to be just a hole. 11897 */ 11898 ipf->ipf_hole_cnt++; 11899 } 11900 mp->b_cont = mp1; 11901 /* Check for overlap. */ 11902 while (end > offset) { 11903 if (end < IP_REASS_END(mp1)) { 11904 mp->b_wptr -= end - offset; 11905 IP_REASS_SET_END(mp, offset); 11906 BUMP_MIB(ill->ill_ip_mib, 11907 ipIfStatsReasmPartDups); 11908 break; 11909 } 11910 /* Did we cover another hole? */ 11911 if ((mp1->b_cont && 11912 IP_REASS_END(mp1) != 11913 IP_REASS_START(mp1->b_cont) && 11914 end >= IP_REASS_START(mp1->b_cont)) || 11915 (!ipf->ipf_last_frag_seen && !more)) { 11916 ipf->ipf_hole_cnt--; 11917 } 11918 /* Clip out mp1. */ 11919 if ((mp->b_cont = mp1->b_cont) == NULL) { 11920 /* 11921 * After clipping out mp1, this guy 11922 * is now hanging off the end. 11923 */ 11924 ipf->ipf_tail_mp = mp; 11925 } 11926 IP_REASS_SET_START(mp1, 0); 11927 IP_REASS_SET_END(mp1, 0); 11928 /* Subtract byte count */ 11929 ipf->ipf_count -= mp1->b_datap->db_lim - 11930 mp1->b_datap->db_base; 11931 freeb(mp1); 11932 BUMP_MIB(ill->ill_ip_mib, 11933 ipIfStatsReasmPartDups); 11934 mp1 = mp->b_cont; 11935 if (!mp1) 11936 break; 11937 offset = IP_REASS_START(mp1); 11938 } 11939 ipf->ipf_mp->b_cont = mp; 11940 continue; 11941 } 11942 /* 11943 * The new piece starts somewhere between the start of the head 11944 * and before the end of the tail. 11945 */ 11946 for (; mp1; mp1 = mp1->b_cont) { 11947 offset = IP_REASS_END(mp1); 11948 if (start < offset) { 11949 if (end <= offset) { 11950 /* Nothing new. */ 11951 IP_REASS_SET_START(mp, 0); 11952 IP_REASS_SET_END(mp, 0); 11953 /* Subtract byte count */ 11954 ipf->ipf_count -= mp->b_datap->db_lim - 11955 mp->b_datap->db_base; 11956 if (incr_dups) { 11957 ipf->ipf_num_dups++; 11958 incr_dups = B_FALSE; 11959 } 11960 freeb(mp); 11961 BUMP_MIB(ill->ill_ip_mib, 11962 ipIfStatsReasmDuplicates); 11963 break; 11964 } 11965 /* 11966 * Trim redundant stuff off beginning of new 11967 * piece. 11968 */ 11969 IP_REASS_SET_START(mp, offset); 11970 mp->b_rptr += offset - start; 11971 BUMP_MIB(ill->ill_ip_mib, 11972 ipIfStatsReasmPartDups); 11973 start = offset; 11974 if (!mp1->b_cont) { 11975 /* 11976 * After trimming, this guy is now 11977 * hanging off the end. 11978 */ 11979 mp1->b_cont = mp; 11980 ipf->ipf_tail_mp = mp; 11981 if (!more) { 11982 ipf->ipf_hole_cnt--; 11983 } 11984 break; 11985 } 11986 } 11987 if (start >= IP_REASS_START(mp1->b_cont)) 11988 continue; 11989 /* Fill a hole */ 11990 if (start > offset) 11991 ipf->ipf_hole_cnt++; 11992 mp->b_cont = mp1->b_cont; 11993 mp1->b_cont = mp; 11994 mp1 = mp->b_cont; 11995 offset = IP_REASS_START(mp1); 11996 if (end >= offset) { 11997 ipf->ipf_hole_cnt--; 11998 /* Check for overlap. */ 11999 while (end > offset) { 12000 if (end < IP_REASS_END(mp1)) { 12001 mp->b_wptr -= end - offset; 12002 IP_REASS_SET_END(mp, offset); 12003 /* 12004 * TODO we might bump 12005 * this up twice if there is 12006 * overlap at both ends. 12007 */ 12008 BUMP_MIB(ill->ill_ip_mib, 12009 ipIfStatsReasmPartDups); 12010 break; 12011 } 12012 /* Did we cover another hole? */ 12013 if ((mp1->b_cont && 12014 IP_REASS_END(mp1) 12015 != IP_REASS_START(mp1->b_cont) && 12016 end >= 12017 IP_REASS_START(mp1->b_cont)) || 12018 (!ipf->ipf_last_frag_seen && 12019 !more)) { 12020 ipf->ipf_hole_cnt--; 12021 } 12022 /* Clip out mp1. */ 12023 if ((mp->b_cont = mp1->b_cont) == 12024 NULL) { 12025 /* 12026 * After clipping out mp1, 12027 * this guy is now hanging 12028 * off the end. 12029 */ 12030 ipf->ipf_tail_mp = mp; 12031 } 12032 IP_REASS_SET_START(mp1, 0); 12033 IP_REASS_SET_END(mp1, 0); 12034 /* Subtract byte count */ 12035 ipf->ipf_count -= 12036 mp1->b_datap->db_lim - 12037 mp1->b_datap->db_base; 12038 freeb(mp1); 12039 BUMP_MIB(ill->ill_ip_mib, 12040 ipIfStatsReasmPartDups); 12041 mp1 = mp->b_cont; 12042 if (!mp1) 12043 break; 12044 offset = IP_REASS_START(mp1); 12045 } 12046 } 12047 break; 12048 } 12049 } while (start = end, mp = next_mp); 12050 12051 /* Fragment just processed could be the last one. Remember this fact */ 12052 if (!more) 12053 ipf->ipf_last_frag_seen = B_TRUE; 12054 12055 /* Still got holes? */ 12056 if (ipf->ipf_hole_cnt) 12057 return (IP_REASS_PARTIAL); 12058 /* Clean up overloaded fields to avoid upstream disasters. */ 12059 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12060 IP_REASS_SET_START(mp1, 0); 12061 IP_REASS_SET_END(mp1, 0); 12062 } 12063 return (IP_REASS_COMPLETE); 12064 } 12065 12066 /* 12067 * ipsec processing for the fast path, used for input UDP Packets 12068 * Returns true if ready for passup to UDP. 12069 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12070 * was an ESP-in-UDP packet, etc.). 12071 */ 12072 static boolean_t 12073 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12074 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12075 { 12076 uint32_t ill_index; 12077 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12078 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12080 udp_t *udp = connp->conn_udp; 12081 12082 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12083 /* The ill_index of the incoming ILL */ 12084 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12085 12086 /* pass packet up to the transport */ 12087 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12088 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12089 NULL, mctl_present); 12090 if (*first_mpp == NULL) { 12091 return (B_FALSE); 12092 } 12093 } 12094 12095 /* Initiate IPPF processing for fastpath UDP */ 12096 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12097 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12098 if (*mpp == NULL) { 12099 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12100 "deferred/dropped during IPPF processing\n")); 12101 return (B_FALSE); 12102 } 12103 } 12104 /* 12105 * Remove 0-spi if it's 0, or move everything behind 12106 * the UDP header over it and forward to ESP via 12107 * ip_proto_input(). 12108 */ 12109 if (udp->udp_nat_t_endpoint) { 12110 if (mctl_present) { 12111 /* mctl_present *shouldn't* happen. */ 12112 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12113 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12114 &ipss->ipsec_dropper); 12115 *first_mpp = NULL; 12116 return (B_FALSE); 12117 } 12118 12119 /* "ill" is "recv_ill" in actuality. */ 12120 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12121 return (B_FALSE); 12122 12123 /* Else continue like a normal UDP packet. */ 12124 } 12125 12126 /* 12127 * We make the checks as below since we are in the fast path 12128 * and want to minimize the number of checks if the IP_RECVIF and/or 12129 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12130 */ 12131 if (connp->conn_recvif || connp->conn_recvslla || 12132 connp->conn_ip_recvpktinfo) { 12133 if (connp->conn_recvif) { 12134 in_flags = IPF_RECVIF; 12135 } 12136 /* 12137 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12138 * so the flag passed to ip_add_info is based on IP version 12139 * of connp. 12140 */ 12141 if (connp->conn_ip_recvpktinfo) { 12142 if (connp->conn_af_isv6) { 12143 /* 12144 * V6 only needs index 12145 */ 12146 in_flags |= IPF_RECVIF; 12147 } else { 12148 /* 12149 * V4 needs index + matching address. 12150 */ 12151 in_flags |= IPF_RECVADDR; 12152 } 12153 } 12154 if (connp->conn_recvslla) { 12155 in_flags |= IPF_RECVSLLA; 12156 } 12157 /* 12158 * since in_flags are being set ill will be 12159 * referenced in ip_add_info, so it better not 12160 * be NULL. 12161 */ 12162 /* 12163 * the actual data will be contained in b_cont 12164 * upon successful return of the following call. 12165 * If the call fails then the original mblk is 12166 * returned. 12167 */ 12168 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12169 ipst); 12170 } 12171 12172 return (B_TRUE); 12173 } 12174 12175 /* 12176 * Fragmentation reassembly. Each ILL has a hash table for 12177 * queuing packets undergoing reassembly for all IPIFs 12178 * associated with the ILL. The hash is based on the packet 12179 * IP ident field. The ILL frag hash table was allocated 12180 * as a timer block at the time the ILL was created. Whenever 12181 * there is anything on the reassembly queue, the timer will 12182 * be running. Returns B_TRUE if successful else B_FALSE; 12183 * frees mp on failure. 12184 */ 12185 static boolean_t 12186 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12187 uint32_t *cksum_val, uint16_t *cksum_flags) 12188 { 12189 uint32_t frag_offset_flags; 12190 ill_t *ill = (ill_t *)q->q_ptr; 12191 mblk_t *mp = *mpp; 12192 mblk_t *t_mp; 12193 ipaddr_t dst; 12194 uint8_t proto = ipha->ipha_protocol; 12195 uint32_t sum_val; 12196 uint16_t sum_flags; 12197 ipf_t *ipf; 12198 ipf_t **ipfp; 12199 ipfb_t *ipfb; 12200 uint16_t ident; 12201 uint32_t offset; 12202 ipaddr_t src; 12203 uint_t hdr_length; 12204 uint32_t end; 12205 mblk_t *mp1; 12206 mblk_t *tail_mp; 12207 size_t count; 12208 size_t msg_len; 12209 uint8_t ecn_info = 0; 12210 uint32_t packet_size; 12211 boolean_t pruned = B_FALSE; 12212 ip_stack_t *ipst = ill->ill_ipst; 12213 12214 if (cksum_val != NULL) 12215 *cksum_val = 0; 12216 if (cksum_flags != NULL) 12217 *cksum_flags = 0; 12218 12219 /* 12220 * Drop the fragmented as early as possible, if 12221 * we don't have resource(s) to re-assemble. 12222 */ 12223 if (ipst->ips_ip_reass_queue_bytes == 0) { 12224 freemsg(mp); 12225 return (B_FALSE); 12226 } 12227 12228 /* Check for fragmentation offset; return if there's none */ 12229 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12230 (IPH_MF | IPH_OFFSET)) == 0) 12231 return (B_TRUE); 12232 12233 /* 12234 * We utilize hardware computed checksum info only for UDP since 12235 * IP fragmentation is a normal occurence for the protocol. In 12236 * addition, checksum offload support for IP fragments carrying 12237 * UDP payload is commonly implemented across network adapters. 12238 */ 12239 ASSERT(ill != NULL); 12240 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12241 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12242 mblk_t *mp1 = mp->b_cont; 12243 int32_t len; 12244 12245 /* Record checksum information from the packet */ 12246 sum_val = (uint32_t)DB_CKSUM16(mp); 12247 sum_flags = DB_CKSUMFLAGS(mp); 12248 12249 /* IP payload offset from beginning of mblk */ 12250 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12251 12252 if ((sum_flags & HCK_PARTIALCKSUM) && 12253 (mp1 == NULL || mp1->b_cont == NULL) && 12254 offset >= DB_CKSUMSTART(mp) && 12255 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12256 uint32_t adj; 12257 /* 12258 * Partial checksum has been calculated by hardware 12259 * and attached to the packet; in addition, any 12260 * prepended extraneous data is even byte aligned. 12261 * If any such data exists, we adjust the checksum; 12262 * this would also handle any postpended data. 12263 */ 12264 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12265 mp, mp1, len, adj); 12266 12267 /* One's complement subtract extraneous checksum */ 12268 if (adj >= sum_val) 12269 sum_val = ~(adj - sum_val) & 0xFFFF; 12270 else 12271 sum_val -= adj; 12272 } 12273 } else { 12274 sum_val = 0; 12275 sum_flags = 0; 12276 } 12277 12278 /* Clear hardware checksumming flag */ 12279 DB_CKSUMFLAGS(mp) = 0; 12280 12281 ident = ipha->ipha_ident; 12282 offset = (frag_offset_flags << 3) & 0xFFFF; 12283 src = ipha->ipha_src; 12284 dst = ipha->ipha_dst; 12285 hdr_length = IPH_HDR_LENGTH(ipha); 12286 end = ntohs(ipha->ipha_length) - hdr_length; 12287 12288 /* If end == 0 then we have a packet with no data, so just free it */ 12289 if (end == 0) { 12290 freemsg(mp); 12291 return (B_FALSE); 12292 } 12293 12294 /* Record the ECN field info. */ 12295 ecn_info = (ipha->ipha_type_of_service & 0x3); 12296 if (offset != 0) { 12297 /* 12298 * If this isn't the first piece, strip the header, and 12299 * add the offset to the end value. 12300 */ 12301 mp->b_rptr += hdr_length; 12302 end += offset; 12303 } 12304 12305 msg_len = MBLKSIZE(mp); 12306 tail_mp = mp; 12307 while (tail_mp->b_cont != NULL) { 12308 tail_mp = tail_mp->b_cont; 12309 msg_len += MBLKSIZE(tail_mp); 12310 } 12311 12312 /* If the reassembly list for this ILL will get too big, prune it */ 12313 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12314 ipst->ips_ip_reass_queue_bytes) { 12315 ill_frag_prune(ill, 12316 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12317 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12318 pruned = B_TRUE; 12319 } 12320 12321 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12322 mutex_enter(&ipfb->ipfb_lock); 12323 12324 ipfp = &ipfb->ipfb_ipf; 12325 /* Try to find an existing fragment queue for this packet. */ 12326 for (;;) { 12327 ipf = ipfp[0]; 12328 if (ipf != NULL) { 12329 /* 12330 * It has to match on ident and src/dst address. 12331 */ 12332 if (ipf->ipf_ident == ident && 12333 ipf->ipf_src == src && 12334 ipf->ipf_dst == dst && 12335 ipf->ipf_protocol == proto) { 12336 /* 12337 * If we have received too many 12338 * duplicate fragments for this packet 12339 * free it. 12340 */ 12341 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12342 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12343 freemsg(mp); 12344 mutex_exit(&ipfb->ipfb_lock); 12345 return (B_FALSE); 12346 } 12347 /* Found it. */ 12348 break; 12349 } 12350 ipfp = &ipf->ipf_hash_next; 12351 continue; 12352 } 12353 12354 /* 12355 * If we pruned the list, do we want to store this new 12356 * fragment?. We apply an optimization here based on the 12357 * fact that most fragments will be received in order. 12358 * So if the offset of this incoming fragment is zero, 12359 * it is the first fragment of a new packet. We will 12360 * keep it. Otherwise drop the fragment, as we have 12361 * probably pruned the packet already (since the 12362 * packet cannot be found). 12363 */ 12364 if (pruned && offset != 0) { 12365 mutex_exit(&ipfb->ipfb_lock); 12366 freemsg(mp); 12367 return (B_FALSE); 12368 } 12369 12370 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12371 /* 12372 * Too many fragmented packets in this hash 12373 * bucket. Free the oldest. 12374 */ 12375 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12376 } 12377 12378 /* New guy. Allocate a frag message. */ 12379 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12380 if (mp1 == NULL) { 12381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12382 freemsg(mp); 12383 reass_done: 12384 mutex_exit(&ipfb->ipfb_lock); 12385 return (B_FALSE); 12386 } 12387 12388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12389 mp1->b_cont = mp; 12390 12391 /* Initialize the fragment header. */ 12392 ipf = (ipf_t *)mp1->b_rptr; 12393 ipf->ipf_mp = mp1; 12394 ipf->ipf_ptphn = ipfp; 12395 ipfp[0] = ipf; 12396 ipf->ipf_hash_next = NULL; 12397 ipf->ipf_ident = ident; 12398 ipf->ipf_protocol = proto; 12399 ipf->ipf_src = src; 12400 ipf->ipf_dst = dst; 12401 ipf->ipf_nf_hdr_len = 0; 12402 /* Record reassembly start time. */ 12403 ipf->ipf_timestamp = gethrestime_sec(); 12404 /* Record ipf generation and account for frag header */ 12405 ipf->ipf_gen = ill->ill_ipf_gen++; 12406 ipf->ipf_count = MBLKSIZE(mp1); 12407 ipf->ipf_last_frag_seen = B_FALSE; 12408 ipf->ipf_ecn = ecn_info; 12409 ipf->ipf_num_dups = 0; 12410 ipfb->ipfb_frag_pkts++; 12411 ipf->ipf_checksum = 0; 12412 ipf->ipf_checksum_flags = 0; 12413 12414 /* Store checksum value in fragment header */ 12415 if (sum_flags != 0) { 12416 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12417 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12418 ipf->ipf_checksum = sum_val; 12419 ipf->ipf_checksum_flags = sum_flags; 12420 } 12421 12422 /* 12423 * We handle reassembly two ways. In the easy case, 12424 * where all the fragments show up in order, we do 12425 * minimal bookkeeping, and just clip new pieces on 12426 * the end. If we ever see a hole, then we go off 12427 * to ip_reassemble which has to mark the pieces and 12428 * keep track of the number of holes, etc. Obviously, 12429 * the point of having both mechanisms is so we can 12430 * handle the easy case as efficiently as possible. 12431 */ 12432 if (offset == 0) { 12433 /* Easy case, in-order reassembly so far. */ 12434 ipf->ipf_count += msg_len; 12435 ipf->ipf_tail_mp = tail_mp; 12436 /* 12437 * Keep track of next expected offset in 12438 * ipf_end. 12439 */ 12440 ipf->ipf_end = end; 12441 ipf->ipf_nf_hdr_len = hdr_length; 12442 } else { 12443 /* Hard case, hole at the beginning. */ 12444 ipf->ipf_tail_mp = NULL; 12445 /* 12446 * ipf_end == 0 means that we have given up 12447 * on easy reassembly. 12448 */ 12449 ipf->ipf_end = 0; 12450 12451 /* Forget checksum offload from now on */ 12452 ipf->ipf_checksum_flags = 0; 12453 12454 /* 12455 * ipf_hole_cnt is set by ip_reassemble. 12456 * ipf_count is updated by ip_reassemble. 12457 * No need to check for return value here 12458 * as we don't expect reassembly to complete 12459 * or fail for the first fragment itself. 12460 */ 12461 (void) ip_reassemble(mp, ipf, 12462 (frag_offset_flags & IPH_OFFSET) << 3, 12463 (frag_offset_flags & IPH_MF), ill, msg_len); 12464 } 12465 /* Update per ipfb and ill byte counts */ 12466 ipfb->ipfb_count += ipf->ipf_count; 12467 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12468 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12469 /* If the frag timer wasn't already going, start it. */ 12470 mutex_enter(&ill->ill_lock); 12471 ill_frag_timer_start(ill); 12472 mutex_exit(&ill->ill_lock); 12473 goto reass_done; 12474 } 12475 12476 /* 12477 * If the packet's flag has changed (it could be coming up 12478 * from an interface different than the previous, therefore 12479 * possibly different checksum capability), then forget about 12480 * any stored checksum states. Otherwise add the value to 12481 * the existing one stored in the fragment header. 12482 */ 12483 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12484 sum_val += ipf->ipf_checksum; 12485 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12486 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12487 ipf->ipf_checksum = sum_val; 12488 } else if (ipf->ipf_checksum_flags != 0) { 12489 /* Forget checksum offload from now on */ 12490 ipf->ipf_checksum_flags = 0; 12491 } 12492 12493 /* 12494 * We have a new piece of a datagram which is already being 12495 * reassembled. Update the ECN info if all IP fragments 12496 * are ECN capable. If there is one which is not, clear 12497 * all the info. If there is at least one which has CE 12498 * code point, IP needs to report that up to transport. 12499 */ 12500 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12501 if (ecn_info == IPH_ECN_CE) 12502 ipf->ipf_ecn = IPH_ECN_CE; 12503 } else { 12504 ipf->ipf_ecn = IPH_ECN_NECT; 12505 } 12506 if (offset && ipf->ipf_end == offset) { 12507 /* The new fragment fits at the end */ 12508 ipf->ipf_tail_mp->b_cont = mp; 12509 /* Update the byte count */ 12510 ipf->ipf_count += msg_len; 12511 /* Update per ipfb and ill byte counts */ 12512 ipfb->ipfb_count += msg_len; 12513 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12514 atomic_add_32(&ill->ill_frag_count, msg_len); 12515 if (frag_offset_flags & IPH_MF) { 12516 /* More to come. */ 12517 ipf->ipf_end = end; 12518 ipf->ipf_tail_mp = tail_mp; 12519 goto reass_done; 12520 } 12521 } else { 12522 /* Go do the hard cases. */ 12523 int ret; 12524 12525 if (offset == 0) 12526 ipf->ipf_nf_hdr_len = hdr_length; 12527 12528 /* Save current byte count */ 12529 count = ipf->ipf_count; 12530 ret = ip_reassemble(mp, ipf, 12531 (frag_offset_flags & IPH_OFFSET) << 3, 12532 (frag_offset_flags & IPH_MF), ill, msg_len); 12533 /* Count of bytes added and subtracted (freeb()ed) */ 12534 count = ipf->ipf_count - count; 12535 if (count) { 12536 /* Update per ipfb and ill byte counts */ 12537 ipfb->ipfb_count += count; 12538 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12539 atomic_add_32(&ill->ill_frag_count, count); 12540 } 12541 if (ret == IP_REASS_PARTIAL) { 12542 goto reass_done; 12543 } else if (ret == IP_REASS_FAILED) { 12544 /* Reassembly failed. Free up all resources */ 12545 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12546 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12547 IP_REASS_SET_START(t_mp, 0); 12548 IP_REASS_SET_END(t_mp, 0); 12549 } 12550 freemsg(mp); 12551 goto reass_done; 12552 } 12553 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12554 } 12555 /* 12556 * We have completed reassembly. Unhook the frag header from 12557 * the reassembly list. 12558 * 12559 * Before we free the frag header, record the ECN info 12560 * to report back to the transport. 12561 */ 12562 ecn_info = ipf->ipf_ecn; 12563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12564 ipfp = ipf->ipf_ptphn; 12565 12566 /* We need to supply these to caller */ 12567 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12568 sum_val = ipf->ipf_checksum; 12569 else 12570 sum_val = 0; 12571 12572 mp1 = ipf->ipf_mp; 12573 count = ipf->ipf_count; 12574 ipf = ipf->ipf_hash_next; 12575 if (ipf != NULL) 12576 ipf->ipf_ptphn = ipfp; 12577 ipfp[0] = ipf; 12578 atomic_add_32(&ill->ill_frag_count, -count); 12579 ASSERT(ipfb->ipfb_count >= count); 12580 ipfb->ipfb_count -= count; 12581 ipfb->ipfb_frag_pkts--; 12582 mutex_exit(&ipfb->ipfb_lock); 12583 /* Ditch the frag header. */ 12584 mp = mp1->b_cont; 12585 12586 freeb(mp1); 12587 12588 /* Restore original IP length in header. */ 12589 packet_size = (uint32_t)msgdsize(mp); 12590 if (packet_size > IP_MAXPACKET) { 12591 freemsg(mp); 12592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12593 return (B_FALSE); 12594 } 12595 12596 if (DB_REF(mp) > 1) { 12597 mblk_t *mp2 = copymsg(mp); 12598 12599 freemsg(mp); 12600 if (mp2 == NULL) { 12601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12602 return (B_FALSE); 12603 } 12604 mp = mp2; 12605 } 12606 ipha = (ipha_t *)mp->b_rptr; 12607 12608 ipha->ipha_length = htons((uint16_t)packet_size); 12609 /* We're now complete, zip the frag state */ 12610 ipha->ipha_fragment_offset_and_flags = 0; 12611 /* Record the ECN info. */ 12612 ipha->ipha_type_of_service &= 0xFC; 12613 ipha->ipha_type_of_service |= ecn_info; 12614 *mpp = mp; 12615 12616 /* Reassembly is successful; return checksum information if needed */ 12617 if (cksum_val != NULL) 12618 *cksum_val = sum_val; 12619 if (cksum_flags != NULL) 12620 *cksum_flags = sum_flags; 12621 12622 return (B_TRUE); 12623 } 12624 12625 /* 12626 * Perform ip header check sum update local options. 12627 * return B_TRUE if all is well, else return B_FALSE and release 12628 * the mp. caller is responsible for decrementing ire ref cnt. 12629 */ 12630 static boolean_t 12631 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12632 ip_stack_t *ipst) 12633 { 12634 mblk_t *first_mp; 12635 boolean_t mctl_present; 12636 uint16_t sum; 12637 12638 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12639 /* 12640 * Don't do the checksum if it has gone through AH/ESP 12641 * processing. 12642 */ 12643 if (!mctl_present) { 12644 sum = ip_csum_hdr(ipha); 12645 if (sum != 0) { 12646 if (ill != NULL) { 12647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12648 } else { 12649 BUMP_MIB(&ipst->ips_ip_mib, 12650 ipIfStatsInCksumErrs); 12651 } 12652 freemsg(first_mp); 12653 return (B_FALSE); 12654 } 12655 } 12656 12657 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12658 if (mctl_present) 12659 freeb(first_mp); 12660 return (B_FALSE); 12661 } 12662 12663 return (B_TRUE); 12664 } 12665 12666 /* 12667 * All udp packet are delivered to the local host via this routine. 12668 */ 12669 void 12670 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12671 ill_t *recv_ill) 12672 { 12673 uint32_t sum; 12674 uint32_t u1; 12675 boolean_t mctl_present; 12676 conn_t *connp; 12677 mblk_t *first_mp; 12678 uint16_t *up; 12679 ill_t *ill = (ill_t *)q->q_ptr; 12680 uint16_t reass_hck_flags = 0; 12681 ip_stack_t *ipst; 12682 12683 ASSERT(recv_ill != NULL); 12684 ipst = recv_ill->ill_ipst; 12685 12686 #define rptr ((uchar_t *)ipha) 12687 12688 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12689 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12690 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12691 ASSERT(ill != NULL); 12692 12693 /* 12694 * FAST PATH for udp packets 12695 */ 12696 12697 /* u1 is # words of IP options */ 12698 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12699 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12700 12701 /* IP options present */ 12702 if (u1 != 0) 12703 goto ipoptions; 12704 12705 /* Check the IP header checksum. */ 12706 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12707 /* Clear the IP header h/w cksum flag */ 12708 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12709 } else if (!mctl_present) { 12710 /* 12711 * Don't verify header checksum if this packet is coming 12712 * back from AH/ESP as we already did it. 12713 */ 12714 #define uph ((uint16_t *)ipha) 12715 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12716 uph[6] + uph[7] + uph[8] + uph[9]; 12717 #undef uph 12718 /* finish doing IP checksum */ 12719 sum = (sum & 0xFFFF) + (sum >> 16); 12720 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12721 if (sum != 0 && sum != 0xFFFF) { 12722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12723 freemsg(first_mp); 12724 return; 12725 } 12726 } 12727 12728 /* 12729 * Count for SNMP of inbound packets for ire. 12730 * if mctl is present this might be a secure packet and 12731 * has already been counted for in ip_proto_input(). 12732 */ 12733 if (!mctl_present) { 12734 UPDATE_IB_PKT_COUNT(ire); 12735 ire->ire_last_used_time = lbolt; 12736 } 12737 12738 /* packet part of fragmented IP packet? */ 12739 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12740 if (u1 & (IPH_MF | IPH_OFFSET)) { 12741 goto fragmented; 12742 } 12743 12744 /* u1 = IP header length (20 bytes) */ 12745 u1 = IP_SIMPLE_HDR_LENGTH; 12746 12747 /* packet does not contain complete IP & UDP headers */ 12748 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12749 goto udppullup; 12750 12751 /* up points to UDP header */ 12752 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12753 #define iphs ((uint16_t *)ipha) 12754 12755 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12756 if (up[3] != 0) { 12757 mblk_t *mp1 = mp->b_cont; 12758 boolean_t cksum_err; 12759 uint16_t hck_flags = 0; 12760 12761 /* Pseudo-header checksum */ 12762 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12763 iphs[9] + up[2]; 12764 12765 /* 12766 * Revert to software checksum calculation if the interface 12767 * isn't capable of checksum offload or if IPsec is present. 12768 */ 12769 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12770 hck_flags = DB_CKSUMFLAGS(mp); 12771 12772 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12773 IP_STAT(ipst, ip_in_sw_cksum); 12774 12775 IP_CKSUM_RECV(hck_flags, u1, 12776 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12777 (int32_t)((uchar_t *)up - rptr), 12778 mp, mp1, cksum_err); 12779 12780 if (cksum_err) { 12781 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12782 if (hck_flags & HCK_FULLCKSUM) 12783 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12784 else if (hck_flags & HCK_PARTIALCKSUM) 12785 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12786 else 12787 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12788 12789 freemsg(first_mp); 12790 return; 12791 } 12792 } 12793 12794 /* Non-fragmented broadcast or multicast packet? */ 12795 if (ire->ire_type == IRE_BROADCAST) 12796 goto udpslowpath; 12797 12798 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12799 ire->ire_zoneid, ipst)) != NULL) { 12800 ASSERT(connp->conn_upq != NULL); 12801 IP_STAT(ipst, ip_udp_fast_path); 12802 12803 if (CONN_UDP_FLOWCTLD(connp)) { 12804 freemsg(mp); 12805 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12806 } else { 12807 if (!mctl_present) { 12808 BUMP_MIB(ill->ill_ip_mib, 12809 ipIfStatsHCInDelivers); 12810 } 12811 /* 12812 * mp and first_mp can change. 12813 */ 12814 if (ip_udp_check(q, connp, recv_ill, 12815 ipha, &mp, &first_mp, mctl_present, ire)) { 12816 /* Send it upstream */ 12817 (connp->conn_recv)(connp, mp, NULL); 12818 } 12819 } 12820 /* 12821 * freeb() cannot deal with null mblk being passed 12822 * in and first_mp can be set to null in the call 12823 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12824 */ 12825 if (mctl_present && first_mp != NULL) { 12826 freeb(first_mp); 12827 } 12828 CONN_DEC_REF(connp); 12829 return; 12830 } 12831 12832 /* 12833 * if we got here we know the packet is not fragmented and 12834 * has no options. The classifier could not find a conn_t and 12835 * most likely its an icmp packet so send it through slow path. 12836 */ 12837 12838 goto udpslowpath; 12839 12840 ipoptions: 12841 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12842 goto slow_done; 12843 } 12844 12845 UPDATE_IB_PKT_COUNT(ire); 12846 ire->ire_last_used_time = lbolt; 12847 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12848 if (u1 & (IPH_MF | IPH_OFFSET)) { 12849 fragmented: 12850 /* 12851 * "sum" and "reass_hck_flags" are non-zero if the 12852 * reassembled packet has a valid hardware computed 12853 * checksum information associated with it. 12854 */ 12855 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12856 goto slow_done; 12857 /* 12858 * Make sure that first_mp points back to mp as 12859 * the mp we came in with could have changed in 12860 * ip_rput_fragment(). 12861 */ 12862 ASSERT(!mctl_present); 12863 ipha = (ipha_t *)mp->b_rptr; 12864 first_mp = mp; 12865 } 12866 12867 /* Now we have a complete datagram, destined for this machine. */ 12868 u1 = IPH_HDR_LENGTH(ipha); 12869 /* Pull up the UDP header, if necessary. */ 12870 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12871 udppullup: 12872 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12874 freemsg(first_mp); 12875 goto slow_done; 12876 } 12877 ipha = (ipha_t *)mp->b_rptr; 12878 } 12879 12880 /* 12881 * Validate the checksum for the reassembled packet; for the 12882 * pullup case we calculate the payload checksum in software. 12883 */ 12884 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12885 if (up[3] != 0) { 12886 boolean_t cksum_err; 12887 12888 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12889 IP_STAT(ipst, ip_in_sw_cksum); 12890 12891 IP_CKSUM_RECV_REASS(reass_hck_flags, 12892 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12893 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12894 iphs[9] + up[2], sum, cksum_err); 12895 12896 if (cksum_err) { 12897 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12898 12899 if (reass_hck_flags & HCK_FULLCKSUM) 12900 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12901 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12902 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12903 else 12904 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12905 12906 freemsg(first_mp); 12907 goto slow_done; 12908 } 12909 } 12910 udpslowpath: 12911 12912 /* Clear hardware checksum flag to be safe */ 12913 DB_CKSUMFLAGS(mp) = 0; 12914 12915 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12916 (ire->ire_type == IRE_BROADCAST), 12917 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12918 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12919 12920 slow_done: 12921 IP_STAT(ipst, ip_udp_slow_path); 12922 return; 12923 12924 #undef iphs 12925 #undef rptr 12926 } 12927 12928 /* ARGSUSED */ 12929 static mblk_t * 12930 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12931 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12932 ill_rx_ring_t *ill_ring) 12933 { 12934 conn_t *connp; 12935 uint32_t sum; 12936 uint32_t u1; 12937 uint16_t *up; 12938 int offset; 12939 ssize_t len; 12940 mblk_t *mp1; 12941 boolean_t syn_present = B_FALSE; 12942 tcph_t *tcph; 12943 uint_t ip_hdr_len; 12944 ill_t *ill = (ill_t *)q->q_ptr; 12945 zoneid_t zoneid = ire->ire_zoneid; 12946 boolean_t cksum_err; 12947 uint16_t hck_flags = 0; 12948 ip_stack_t *ipst = recv_ill->ill_ipst; 12949 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12950 12951 #define rptr ((uchar_t *)ipha) 12952 12953 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12954 ASSERT(ill != NULL); 12955 12956 /* 12957 * FAST PATH for tcp packets 12958 */ 12959 12960 /* u1 is # words of IP options */ 12961 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12962 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12963 12964 /* IP options present */ 12965 if (u1) { 12966 goto ipoptions; 12967 } else if (!mctl_present) { 12968 /* Check the IP header checksum. */ 12969 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12970 /* Clear the IP header h/w cksum flag */ 12971 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12972 } else if (!mctl_present) { 12973 /* 12974 * Don't verify header checksum if this packet 12975 * is coming back from AH/ESP as we already did it. 12976 */ 12977 #define uph ((uint16_t *)ipha) 12978 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12979 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12980 #undef uph 12981 /* finish doing IP checksum */ 12982 sum = (sum & 0xFFFF) + (sum >> 16); 12983 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12984 if (sum != 0 && sum != 0xFFFF) { 12985 BUMP_MIB(ill->ill_ip_mib, 12986 ipIfStatsInCksumErrs); 12987 goto error; 12988 } 12989 } 12990 } 12991 12992 if (!mctl_present) { 12993 UPDATE_IB_PKT_COUNT(ire); 12994 ire->ire_last_used_time = lbolt; 12995 } 12996 12997 /* packet part of fragmented IP packet? */ 12998 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12999 if (u1 & (IPH_MF | IPH_OFFSET)) { 13000 goto fragmented; 13001 } 13002 13003 /* u1 = IP header length (20 bytes) */ 13004 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13005 13006 /* does packet contain IP+TCP headers? */ 13007 len = mp->b_wptr - rptr; 13008 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13009 IP_STAT(ipst, ip_tcppullup); 13010 goto tcppullup; 13011 } 13012 13013 /* TCP options present? */ 13014 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13015 13016 /* 13017 * If options need to be pulled up, then goto tcpoptions. 13018 * otherwise we are still in the fast path 13019 */ 13020 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13021 IP_STAT(ipst, ip_tcpoptions); 13022 goto tcpoptions; 13023 } 13024 13025 /* multiple mblks of tcp data? */ 13026 if ((mp1 = mp->b_cont) != NULL) { 13027 /* more then two? */ 13028 if (mp1->b_cont != NULL) { 13029 IP_STAT(ipst, ip_multipkttcp); 13030 goto multipkttcp; 13031 } 13032 len += mp1->b_wptr - mp1->b_rptr; 13033 } 13034 13035 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13036 13037 /* part of pseudo checksum */ 13038 13039 /* TCP datagram length */ 13040 u1 = len - IP_SIMPLE_HDR_LENGTH; 13041 13042 #define iphs ((uint16_t *)ipha) 13043 13044 #ifdef _BIG_ENDIAN 13045 u1 += IPPROTO_TCP; 13046 #else 13047 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13048 #endif 13049 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13050 13051 /* 13052 * Revert to software checksum calculation if the interface 13053 * isn't capable of checksum offload or if IPsec is present. 13054 */ 13055 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13056 hck_flags = DB_CKSUMFLAGS(mp); 13057 13058 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13059 IP_STAT(ipst, ip_in_sw_cksum); 13060 13061 IP_CKSUM_RECV(hck_flags, u1, 13062 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13063 (int32_t)((uchar_t *)up - rptr), 13064 mp, mp1, cksum_err); 13065 13066 if (cksum_err) { 13067 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13068 13069 if (hck_flags & HCK_FULLCKSUM) 13070 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13071 else if (hck_flags & HCK_PARTIALCKSUM) 13072 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13073 else 13074 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13075 13076 goto error; 13077 } 13078 13079 try_again: 13080 13081 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13082 zoneid, ipst)) == NULL) { 13083 /* Send the TH_RST */ 13084 goto no_conn; 13085 } 13086 13087 /* 13088 * TCP FAST PATH for AF_INET socket. 13089 * 13090 * TCP fast path to avoid extra work. An AF_INET socket type 13091 * does not have facility to receive extra information via 13092 * ip_process or ip_add_info. Also, when the connection was 13093 * established, we made a check if this connection is impacted 13094 * by any global IPsec policy or per connection policy (a 13095 * policy that comes in effect later will not apply to this 13096 * connection). Since all this can be determined at the 13097 * connection establishment time, a quick check of flags 13098 * can avoid extra work. 13099 */ 13100 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13101 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13102 ASSERT(first_mp == mp); 13103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13104 SET_SQUEUE(mp, tcp_rput_data, connp); 13105 return (mp); 13106 } 13107 13108 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13109 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13110 if (IPCL_IS_TCP(connp)) { 13111 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13112 DB_CKSUMSTART(mp) = 13113 (intptr_t)ip_squeue_get(ill_ring); 13114 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13115 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13116 BUMP_MIB(ill->ill_ip_mib, 13117 ipIfStatsHCInDelivers); 13118 SET_SQUEUE(mp, connp->conn_recv, connp); 13119 return (mp); 13120 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13121 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13122 BUMP_MIB(ill->ill_ip_mib, 13123 ipIfStatsHCInDelivers); 13124 ip_squeue_enter_unbound++; 13125 SET_SQUEUE(mp, tcp_conn_request_unbound, 13126 connp); 13127 return (mp); 13128 } 13129 syn_present = B_TRUE; 13130 } 13131 13132 } 13133 13134 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13135 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13136 13137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13138 /* No need to send this packet to TCP */ 13139 if ((flags & TH_RST) || (flags & TH_URG)) { 13140 CONN_DEC_REF(connp); 13141 freemsg(first_mp); 13142 return (NULL); 13143 } 13144 if (flags & TH_ACK) { 13145 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13146 ipst->ips_netstack->netstack_tcp, connp); 13147 CONN_DEC_REF(connp); 13148 return (NULL); 13149 } 13150 13151 CONN_DEC_REF(connp); 13152 freemsg(first_mp); 13153 return (NULL); 13154 } 13155 13156 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13157 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13158 ipha, NULL, mctl_present); 13159 if (first_mp == NULL) { 13160 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13161 CONN_DEC_REF(connp); 13162 return (NULL); 13163 } 13164 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13165 ASSERT(syn_present); 13166 if (mctl_present) { 13167 ASSERT(first_mp != mp); 13168 first_mp->b_datap->db_struioflag |= 13169 STRUIO_POLICY; 13170 } else { 13171 ASSERT(first_mp == mp); 13172 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13173 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13174 } 13175 } else { 13176 /* 13177 * Discard first_mp early since we're dealing with a 13178 * fully-connected conn_t and tcp doesn't do policy in 13179 * this case. 13180 */ 13181 if (mctl_present) { 13182 freeb(first_mp); 13183 mctl_present = B_FALSE; 13184 } 13185 first_mp = mp; 13186 } 13187 } 13188 13189 /* Initiate IPPF processing for fastpath */ 13190 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13191 uint32_t ill_index; 13192 13193 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13194 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13195 if (mp == NULL) { 13196 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13197 "deferred/dropped during IPPF processing\n")); 13198 CONN_DEC_REF(connp); 13199 if (mctl_present) 13200 freeb(first_mp); 13201 return (NULL); 13202 } else if (mctl_present) { 13203 /* 13204 * ip_process might return a new mp. 13205 */ 13206 ASSERT(first_mp != mp); 13207 first_mp->b_cont = mp; 13208 } else { 13209 first_mp = mp; 13210 } 13211 13212 } 13213 13214 if (!syn_present && connp->conn_ip_recvpktinfo) { 13215 /* 13216 * TCP does not support IP_RECVPKTINFO for v4 so lets 13217 * make sure IPF_RECVIF is passed to ip_add_info. 13218 */ 13219 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13220 IPCL_ZONEID(connp), ipst); 13221 if (mp == NULL) { 13222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13223 CONN_DEC_REF(connp); 13224 if (mctl_present) 13225 freeb(first_mp); 13226 return (NULL); 13227 } else if (mctl_present) { 13228 /* 13229 * ip_add_info might return a new mp. 13230 */ 13231 ASSERT(first_mp != mp); 13232 first_mp->b_cont = mp; 13233 } else { 13234 first_mp = mp; 13235 } 13236 } 13237 13238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13239 if (IPCL_IS_TCP(connp)) { 13240 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13241 return (first_mp); 13242 } else { 13243 /* SOCK_RAW, IPPROTO_TCP case */ 13244 (connp->conn_recv)(connp, first_mp, NULL); 13245 CONN_DEC_REF(connp); 13246 return (NULL); 13247 } 13248 13249 no_conn: 13250 /* Initiate IPPf processing, if needed. */ 13251 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13252 uint32_t ill_index; 13253 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13254 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13255 if (first_mp == NULL) { 13256 return (NULL); 13257 } 13258 } 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13260 13261 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13262 ipst->ips_netstack->netstack_tcp, NULL); 13263 return (NULL); 13264 ipoptions: 13265 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13266 goto slow_done; 13267 } 13268 13269 UPDATE_IB_PKT_COUNT(ire); 13270 ire->ire_last_used_time = lbolt; 13271 13272 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13273 if (u1 & (IPH_MF | IPH_OFFSET)) { 13274 fragmented: 13275 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13276 if (mctl_present) 13277 freeb(first_mp); 13278 goto slow_done; 13279 } 13280 /* 13281 * Make sure that first_mp points back to mp as 13282 * the mp we came in with could have changed in 13283 * ip_rput_fragment(). 13284 */ 13285 ASSERT(!mctl_present); 13286 ipha = (ipha_t *)mp->b_rptr; 13287 first_mp = mp; 13288 } 13289 13290 /* Now we have a complete datagram, destined for this machine. */ 13291 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13292 13293 len = mp->b_wptr - mp->b_rptr; 13294 /* Pull up a minimal TCP header, if necessary. */ 13295 if (len < (u1 + 20)) { 13296 tcppullup: 13297 if (!pullupmsg(mp, u1 + 20)) { 13298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13299 goto error; 13300 } 13301 ipha = (ipha_t *)mp->b_rptr; 13302 len = mp->b_wptr - mp->b_rptr; 13303 } 13304 13305 /* 13306 * Extract the offset field from the TCP header. As usual, we 13307 * try to help the compiler more than the reader. 13308 */ 13309 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13310 if (offset != 5) { 13311 tcpoptions: 13312 if (offset < 5) { 13313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13314 goto error; 13315 } 13316 /* 13317 * There must be TCP options. 13318 * Make sure we can grab them. 13319 */ 13320 offset <<= 2; 13321 offset += u1; 13322 if (len < offset) { 13323 if (!pullupmsg(mp, offset)) { 13324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13325 goto error; 13326 } 13327 ipha = (ipha_t *)mp->b_rptr; 13328 len = mp->b_wptr - rptr; 13329 } 13330 } 13331 13332 /* Get the total packet length in len, including headers. */ 13333 if (mp->b_cont) { 13334 multipkttcp: 13335 len = msgdsize(mp); 13336 } 13337 13338 /* 13339 * Check the TCP checksum by pulling together the pseudo- 13340 * header checksum, and passing it to ip_csum to be added in 13341 * with the TCP datagram. 13342 * 13343 * Since we are not using the hwcksum if available we must 13344 * clear the flag. We may come here via tcppullup or tcpoptions. 13345 * If either of these fails along the way the mblk is freed. 13346 * If this logic ever changes and mblk is reused to say send 13347 * ICMP's back, then this flag may need to be cleared in 13348 * other places as well. 13349 */ 13350 DB_CKSUMFLAGS(mp) = 0; 13351 13352 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13353 13354 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13355 #ifdef _BIG_ENDIAN 13356 u1 += IPPROTO_TCP; 13357 #else 13358 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13359 #endif 13360 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13361 /* 13362 * Not M_DATA mblk or its a dup, so do the checksum now. 13363 */ 13364 IP_STAT(ipst, ip_in_sw_cksum); 13365 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13366 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13367 goto error; 13368 } 13369 13370 IP_STAT(ipst, ip_tcp_slow_path); 13371 goto try_again; 13372 #undef iphs 13373 #undef rptr 13374 13375 error: 13376 freemsg(first_mp); 13377 slow_done: 13378 return (NULL); 13379 } 13380 13381 /* ARGSUSED */ 13382 static void 13383 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13384 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13385 { 13386 conn_t *connp; 13387 uint32_t sum; 13388 uint32_t u1; 13389 ssize_t len; 13390 sctp_hdr_t *sctph; 13391 zoneid_t zoneid = ire->ire_zoneid; 13392 uint32_t pktsum; 13393 uint32_t calcsum; 13394 uint32_t ports; 13395 in6_addr_t map_src, map_dst; 13396 ill_t *ill = (ill_t *)q->q_ptr; 13397 ip_stack_t *ipst; 13398 sctp_stack_t *sctps; 13399 boolean_t sctp_csum_err = B_FALSE; 13400 13401 ASSERT(recv_ill != NULL); 13402 ipst = recv_ill->ill_ipst; 13403 sctps = ipst->ips_netstack->netstack_sctp; 13404 13405 #define rptr ((uchar_t *)ipha) 13406 13407 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13408 ASSERT(ill != NULL); 13409 13410 /* u1 is # words of IP options */ 13411 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13412 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13413 13414 /* IP options present */ 13415 if (u1 > 0) { 13416 goto ipoptions; 13417 } else { 13418 /* Check the IP header checksum. */ 13419 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13420 !mctl_present) { 13421 #define uph ((uint16_t *)ipha) 13422 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13423 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13424 #undef uph 13425 /* finish doing IP checksum */ 13426 sum = (sum & 0xFFFF) + (sum >> 16); 13427 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13428 /* 13429 * Don't verify header checksum if this packet 13430 * is coming back from AH/ESP as we already did it. 13431 */ 13432 if (sum != 0 && sum != 0xFFFF) { 13433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13434 goto error; 13435 } 13436 } 13437 /* 13438 * Since there is no SCTP h/w cksum support yet, just 13439 * clear the flag. 13440 */ 13441 DB_CKSUMFLAGS(mp) = 0; 13442 } 13443 13444 /* 13445 * Don't verify header checksum if this packet is coming 13446 * back from AH/ESP as we already did it. 13447 */ 13448 if (!mctl_present) { 13449 UPDATE_IB_PKT_COUNT(ire); 13450 ire->ire_last_used_time = lbolt; 13451 } 13452 13453 /* packet part of fragmented IP packet? */ 13454 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13455 if (u1 & (IPH_MF | IPH_OFFSET)) 13456 goto fragmented; 13457 13458 /* u1 = IP header length (20 bytes) */ 13459 u1 = IP_SIMPLE_HDR_LENGTH; 13460 13461 find_sctp_client: 13462 /* Pullup if we don't have the sctp common header. */ 13463 len = MBLKL(mp); 13464 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13465 if (mp->b_cont == NULL || 13466 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13468 goto error; 13469 } 13470 ipha = (ipha_t *)mp->b_rptr; 13471 len = MBLKL(mp); 13472 } 13473 13474 sctph = (sctp_hdr_t *)(rptr + u1); 13475 #ifdef DEBUG 13476 if (!skip_sctp_cksum) { 13477 #endif 13478 pktsum = sctph->sh_chksum; 13479 sctph->sh_chksum = 0; 13480 calcsum = sctp_cksum(mp, u1); 13481 sctph->sh_chksum = pktsum; 13482 if (calcsum != pktsum) 13483 sctp_csum_err = B_TRUE; 13484 #ifdef DEBUG /* skip_sctp_cksum */ 13485 } 13486 #endif 13487 /* get the ports */ 13488 ports = *(uint32_t *)&sctph->sh_sport; 13489 13490 IRE_REFRELE(ire); 13491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13493 if (sctp_csum_err) { 13494 /* 13495 * No potential sctp checksum errors go to the Sun 13496 * sctp stack however they might be Adler-32 summed 13497 * packets a userland stack bound to a raw IP socket 13498 * could reasonably use. Note though that Adler-32 is 13499 * a long deprecated algorithm and customer sctp 13500 * networks should eventually migrate to CRC-32 at 13501 * which time this facility should be removed. 13502 */ 13503 flags |= IP_FF_SCTP_CSUM_ERR; 13504 goto no_conn; 13505 } 13506 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13507 sctps)) == NULL) { 13508 /* Check for raw socket or OOTB handling */ 13509 goto no_conn; 13510 } 13511 13512 /* Found a client; up it goes */ 13513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13514 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13515 return; 13516 13517 no_conn: 13518 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13519 ports, mctl_present, flags, B_TRUE, zoneid); 13520 return; 13521 13522 ipoptions: 13523 DB_CKSUMFLAGS(mp) = 0; 13524 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13525 goto slow_done; 13526 13527 UPDATE_IB_PKT_COUNT(ire); 13528 ire->ire_last_used_time = lbolt; 13529 13530 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13531 if (u1 & (IPH_MF | IPH_OFFSET)) { 13532 fragmented: 13533 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13534 goto slow_done; 13535 /* 13536 * Make sure that first_mp points back to mp as 13537 * the mp we came in with could have changed in 13538 * ip_rput_fragment(). 13539 */ 13540 ASSERT(!mctl_present); 13541 ipha = (ipha_t *)mp->b_rptr; 13542 first_mp = mp; 13543 } 13544 13545 /* Now we have a complete datagram, destined for this machine. */ 13546 u1 = IPH_HDR_LENGTH(ipha); 13547 goto find_sctp_client; 13548 #undef iphs 13549 #undef rptr 13550 13551 error: 13552 freemsg(first_mp); 13553 slow_done: 13554 IRE_REFRELE(ire); 13555 } 13556 13557 #define VER_BITS 0xF0 13558 #define VERSION_6 0x60 13559 13560 static boolean_t 13561 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13562 ipaddr_t *dstp, ip_stack_t *ipst) 13563 { 13564 uint_t opt_len; 13565 ipha_t *ipha; 13566 ssize_t len; 13567 uint_t pkt_len; 13568 13569 ASSERT(ill != NULL); 13570 IP_STAT(ipst, ip_ipoptions); 13571 ipha = *iphapp; 13572 13573 #define rptr ((uchar_t *)ipha) 13574 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13575 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13577 freemsg(mp); 13578 return (B_FALSE); 13579 } 13580 13581 /* multiple mblk or too short */ 13582 pkt_len = ntohs(ipha->ipha_length); 13583 13584 /* Get the number of words of IP options in the IP header. */ 13585 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13586 if (opt_len) { 13587 /* IP Options present! Validate and process. */ 13588 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13590 goto done; 13591 } 13592 /* 13593 * Recompute complete header length and make sure we 13594 * have access to all of it. 13595 */ 13596 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13597 if (len > (mp->b_wptr - rptr)) { 13598 if (len > pkt_len) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13600 goto done; 13601 } 13602 if (!pullupmsg(mp, len)) { 13603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13604 goto done; 13605 } 13606 ipha = (ipha_t *)mp->b_rptr; 13607 } 13608 /* 13609 * Go off to ip_rput_options which returns the next hop 13610 * destination address, which may have been affected 13611 * by source routing. 13612 */ 13613 IP_STAT(ipst, ip_opt); 13614 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13616 return (B_FALSE); 13617 } 13618 } 13619 *iphapp = ipha; 13620 return (B_TRUE); 13621 done: 13622 /* clear b_prev - used by ip_mroute_decap */ 13623 mp->b_prev = NULL; 13624 freemsg(mp); 13625 return (B_FALSE); 13626 #undef rptr 13627 } 13628 13629 /* 13630 * Deal with the fact that there is no ire for the destination. 13631 */ 13632 static ire_t * 13633 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13634 { 13635 ipha_t *ipha; 13636 ill_t *ill; 13637 ire_t *ire; 13638 ip_stack_t *ipst; 13639 enum ire_forward_action ret_action; 13640 13641 ipha = (ipha_t *)mp->b_rptr; 13642 ill = (ill_t *)q->q_ptr; 13643 13644 ASSERT(ill != NULL); 13645 ipst = ill->ill_ipst; 13646 13647 /* 13648 * No IRE for this destination, so it can't be for us. 13649 * Unless we are forwarding, drop the packet. 13650 * We have to let source routed packets through 13651 * since we don't yet know if they are 'ping -l' 13652 * packets i.e. if they will go out over the 13653 * same interface as they came in on. 13654 */ 13655 if (ll_multicast) { 13656 freemsg(mp); 13657 return (NULL); 13658 } 13659 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13661 freemsg(mp); 13662 return (NULL); 13663 } 13664 13665 /* 13666 * Mark this packet as having originated externally. 13667 * 13668 * For non-forwarding code path, ire_send later double 13669 * checks this interface to see if it is still exists 13670 * post-ARP resolution. 13671 * 13672 * Also, IPQOS uses this to differentiate between 13673 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13674 * QOS packet processing in ip_wput_attach_llhdr(). 13675 * The QoS module can mark the b_band for a fastpath message 13676 * or the dl_priority field in a unitdata_req header for 13677 * CoS marking. This info can only be found in 13678 * ip_wput_attach_llhdr(). 13679 */ 13680 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13681 /* 13682 * Clear the indication that this may have a hardware checksum 13683 * as we are not using it 13684 */ 13685 DB_CKSUMFLAGS(mp) = 0; 13686 13687 ire = ire_forward(dst, &ret_action, NULL, NULL, 13688 MBLK_GETLABEL(mp), ipst); 13689 13690 if (ire == NULL && ret_action == Forward_check_multirt) { 13691 /* Let ip_newroute handle CGTP */ 13692 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13693 return (NULL); 13694 } 13695 13696 if (ire != NULL) 13697 return (ire); 13698 13699 mp->b_prev = mp->b_next = 0; 13700 13701 if (ret_action == Forward_blackhole) { 13702 freemsg(mp); 13703 return (NULL); 13704 } 13705 /* send icmp unreachable */ 13706 q = WR(q); 13707 /* Sent by forwarding path, and router is global zone */ 13708 if (ip_source_routed(ipha, ipst)) { 13709 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13710 GLOBAL_ZONEID, ipst); 13711 } else { 13712 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13713 ipst); 13714 } 13715 13716 return (NULL); 13717 13718 } 13719 13720 /* 13721 * check ip header length and align it. 13722 */ 13723 static boolean_t 13724 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13725 { 13726 ssize_t len; 13727 ill_t *ill; 13728 ipha_t *ipha; 13729 13730 len = MBLKL(mp); 13731 13732 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13733 ill = (ill_t *)q->q_ptr; 13734 13735 if (!OK_32PTR(mp->b_rptr)) 13736 IP_STAT(ipst, ip_notaligned1); 13737 else 13738 IP_STAT(ipst, ip_notaligned2); 13739 /* Guard against bogus device drivers */ 13740 if (len < 0) { 13741 /* clear b_prev - used by ip_mroute_decap */ 13742 mp->b_prev = NULL; 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13744 freemsg(mp); 13745 return (B_FALSE); 13746 } 13747 13748 if (ip_rput_pullups++ == 0) { 13749 ipha = (ipha_t *)mp->b_rptr; 13750 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13751 "ip_check_and_align_header: %s forced us to " 13752 " pullup pkt, hdr len %ld, hdr addr %p", 13753 ill->ill_name, len, ipha); 13754 } 13755 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13756 /* clear b_prev - used by ip_mroute_decap */ 13757 mp->b_prev = NULL; 13758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13759 freemsg(mp); 13760 return (B_FALSE); 13761 } 13762 } 13763 return (B_TRUE); 13764 } 13765 13766 ire_t * 13767 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13768 { 13769 ire_t *new_ire; 13770 ill_t *ire_ill; 13771 uint_t ifindex; 13772 ip_stack_t *ipst = ill->ill_ipst; 13773 boolean_t strict_check = B_FALSE; 13774 13775 /* 13776 * This packet came in on an interface other than the one associated 13777 * with the first ire we found for the destination address. We do 13778 * another ire lookup here, using the ingress ill, to see if the 13779 * interface is in an interface group. 13780 * As long as the ills belong to the same group, we don't consider 13781 * them to be arriving on the wrong interface. Thus, if the switch 13782 * is doing inbound load spreading, we won't drop packets when the 13783 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13784 * for 'usesrc groups' where the destination address may belong to 13785 * another interface to allow multipathing to happen. 13786 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13787 * where the local address may not be unique. In this case we were 13788 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13789 * actually returned. The new lookup, which is more specific, should 13790 * only find the IRE_LOCAL associated with the ingress ill if one 13791 * exists. 13792 */ 13793 13794 if (ire->ire_ipversion == IPV4_VERSION) { 13795 if (ipst->ips_ip_strict_dst_multihoming) 13796 strict_check = B_TRUE; 13797 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13798 ill->ill_ipif, ALL_ZONES, NULL, 13799 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13800 } else { 13801 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13802 if (ipst->ips_ipv6_strict_dst_multihoming) 13803 strict_check = B_TRUE; 13804 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13805 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13806 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13807 } 13808 /* 13809 * If the same ire that was returned in ip_input() is found then this 13810 * is an indication that interface groups are in use. The packet 13811 * arrived on a different ill in the group than the one associated with 13812 * the destination address. If a different ire was found then the same 13813 * IP address must be hosted on multiple ills. This is possible with 13814 * unnumbered point2point interfaces. We switch to use this new ire in 13815 * order to have accurate interface statistics. 13816 */ 13817 if (new_ire != NULL) { 13818 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13819 ire_refrele(ire); 13820 ire = new_ire; 13821 } else { 13822 ire_refrele(new_ire); 13823 } 13824 return (ire); 13825 } else if ((ire->ire_rfq == NULL) && 13826 (ire->ire_ipversion == IPV4_VERSION)) { 13827 /* 13828 * The best match could have been the original ire which 13829 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13830 * the strict multihoming checks are irrelevant as we consider 13831 * local addresses hosted on lo0 to be interface agnostic. We 13832 * only expect a null ire_rfq on IREs which are associated with 13833 * lo0 hence we can return now. 13834 */ 13835 return (ire); 13836 } 13837 13838 /* 13839 * Chase pointers once and store locally. 13840 */ 13841 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13842 (ill_t *)(ire->ire_rfq->q_ptr); 13843 ifindex = ill->ill_usesrc_ifindex; 13844 13845 /* 13846 * Check if it's a legal address on the 'usesrc' interface. 13847 */ 13848 if ((ifindex != 0) && (ire_ill != NULL) && 13849 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13850 return (ire); 13851 } 13852 13853 /* 13854 * If the ip*_strict_dst_multihoming switch is on then we can 13855 * only accept this packet if the interface is marked as routing. 13856 */ 13857 if (!(strict_check)) 13858 return (ire); 13859 13860 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13861 ILLF_ROUTER) != 0) { 13862 return (ire); 13863 } 13864 13865 ire_refrele(ire); 13866 return (NULL); 13867 } 13868 13869 ire_t * 13870 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13871 { 13872 ipha_t *ipha; 13873 ire_t *src_ire; 13874 ill_t *stq_ill; 13875 uint_t hlen; 13876 uint_t pkt_len; 13877 uint32_t sum; 13878 queue_t *dev_q; 13879 ip_stack_t *ipst = ill->ill_ipst; 13880 mblk_t *fpmp; 13881 enum ire_forward_action ret_action; 13882 13883 ipha = (ipha_t *)mp->b_rptr; 13884 13885 if (ire != NULL && 13886 ire->ire_zoneid != GLOBAL_ZONEID && 13887 ire->ire_zoneid != ALL_ZONES) { 13888 /* 13889 * Should only use IREs that are visible to the global 13890 * zone for forwarding. 13891 */ 13892 ire_refrele(ire); 13893 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13894 } 13895 13896 /* 13897 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13898 * The loopback address check for both src and dst has already 13899 * been checked in ip_input 13900 */ 13901 13902 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13904 goto drop; 13905 } 13906 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13907 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13908 13909 if (src_ire != NULL) { 13910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13911 ire_refrele(src_ire); 13912 goto drop; 13913 } 13914 13915 /* No ire cache of nexthop. So first create one */ 13916 if (ire == NULL) { 13917 13918 ire = ire_forward(dst, &ret_action, NULL, NULL, 13919 NULL, ipst); 13920 /* 13921 * We only come to ip_fast_forward if ip_cgtp_filter 13922 * is not set. So ire_forward() should not return with 13923 * Forward_check_multirt as the next action. 13924 */ 13925 ASSERT(ret_action != Forward_check_multirt); 13926 if (ire == NULL) { 13927 /* An attempt was made to forward the packet */ 13928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13930 mp->b_prev = mp->b_next = 0; 13931 /* send icmp unreachable */ 13932 /* Sent by forwarding path, and router is global zone */ 13933 if (ret_action == Forward_ret_icmp_err) { 13934 if (ip_source_routed(ipha, ipst)) { 13935 icmp_unreachable(ill->ill_wq, mp, 13936 ICMP_SOURCE_ROUTE_FAILED, 13937 GLOBAL_ZONEID, ipst); 13938 } else { 13939 icmp_unreachable(ill->ill_wq, mp, 13940 ICMP_HOST_UNREACHABLE, 13941 GLOBAL_ZONEID, ipst); 13942 } 13943 } else { 13944 freemsg(mp); 13945 } 13946 return (NULL); 13947 } 13948 } 13949 13950 /* 13951 * Forwarding fastpath exception case: 13952 * If either of the follwoing case is true, we take 13953 * the slowpath 13954 * o forwarding is not enabled 13955 * o incoming and outgoing interface are the same, or the same 13956 * IPMP group 13957 * o corresponding ire is in incomplete state 13958 * o packet needs fragmentation 13959 * o ARP cache is not resolved 13960 * 13961 * The codeflow from here on is thus: 13962 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13963 */ 13964 pkt_len = ntohs(ipha->ipha_length); 13965 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13966 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13967 !(ill->ill_flags & ILLF_ROUTER) || 13968 (ill == stq_ill) || 13969 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13970 (ire->ire_nce == NULL) || 13971 (pkt_len > ire->ire_max_frag) || 13972 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13973 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13974 ipha->ipha_ttl <= 1) { 13975 ip_rput_process_forward(ill->ill_rq, mp, ire, 13976 ipha, ill, B_FALSE); 13977 return (ire); 13978 } 13979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13980 13981 DTRACE_PROBE4(ip4__forwarding__start, 13982 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13983 13984 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13985 ipst->ips_ipv4firewall_forwarding, 13986 ill, stq_ill, ipha, mp, mp, 0, ipst); 13987 13988 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13989 13990 if (mp == NULL) 13991 goto drop; 13992 13993 mp->b_datap->db_struioun.cksum.flags = 0; 13994 /* Adjust the checksum to reflect the ttl decrement. */ 13995 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13996 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13997 ipha->ipha_ttl--; 13998 13999 /* 14000 * Write the link layer header. We can do this safely here, 14001 * because we have already tested to make sure that the IP 14002 * policy is not set, and that we have a fast path destination 14003 * header. 14004 */ 14005 mp->b_rptr -= hlen; 14006 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14007 14008 UPDATE_IB_PKT_COUNT(ire); 14009 ire->ire_last_used_time = lbolt; 14010 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14011 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14012 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14013 14014 dev_q = ire->ire_stq->q_next; 14015 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14016 !canputnext(ire->ire_stq)) { 14017 goto indiscard; 14018 } 14019 if (ILL_DLS_CAPABLE(stq_ill)) { 14020 /* 14021 * Send the packet directly to DLD, where it 14022 * may be queued depending on the availability 14023 * of transmit resources at the media layer. 14024 */ 14025 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14026 } else { 14027 DTRACE_PROBE4(ip4__physical__out__start, 14028 ill_t *, NULL, ill_t *, stq_ill, 14029 ipha_t *, ipha, mblk_t *, mp); 14030 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14031 ipst->ips_ipv4firewall_physical_out, 14032 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14033 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14034 if (mp == NULL) 14035 goto drop; 14036 14037 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14038 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14039 ip6_t *, NULL, int, 0); 14040 14041 putnext(ire->ire_stq, mp); 14042 } 14043 return (ire); 14044 14045 indiscard: 14046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14047 drop: 14048 if (mp != NULL) 14049 freemsg(mp); 14050 return (ire); 14051 14052 } 14053 14054 /* 14055 * This function is called in the forwarding slowpath, when 14056 * either the ire lacks the link-layer address, or the packet needs 14057 * further processing(eg. fragmentation), before transmission. 14058 */ 14059 14060 static void 14061 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14062 ill_t *ill, boolean_t ll_multicast) 14063 { 14064 ill_group_t *ill_group; 14065 ill_group_t *ire_group; 14066 queue_t *dev_q; 14067 ire_t *src_ire; 14068 ip_stack_t *ipst = ill->ill_ipst; 14069 14070 ASSERT(ire->ire_stq != NULL); 14071 14072 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14073 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14074 14075 if (ll_multicast != 0) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14077 goto drop_pkt; 14078 } 14079 14080 /* 14081 * check if ipha_src is a broadcast address. Note that this 14082 * check is redundant when we get here from ip_fast_forward() 14083 * which has already done this check. However, since we can 14084 * also get here from ip_rput_process_broadcast() or, for 14085 * for the slow path through ip_fast_forward(), we perform 14086 * the check again for code-reusability 14087 */ 14088 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14089 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14090 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14091 if (src_ire != NULL) 14092 ire_refrele(src_ire); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14094 ip2dbg(("ip_rput_process_forward: Received packet with" 14095 " bad src/dst address on %s\n", ill->ill_name)); 14096 goto drop_pkt; 14097 } 14098 14099 ill_group = ill->ill_group; 14100 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14101 /* 14102 * Check if we want to forward this one at this time. 14103 * We allow source routed packets on a host provided that 14104 * they go out the same interface or same interface group 14105 * as they came in on. 14106 * 14107 * XXX To be quicker, we may wish to not chase pointers to 14108 * get the ILLF_ROUTER flag and instead store the 14109 * forwarding policy in the ire. An unfortunate 14110 * side-effect of that would be requiring an ire flush 14111 * whenever the ILLF_ROUTER flag changes. 14112 */ 14113 if (((ill->ill_flags & 14114 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14115 ILLF_ROUTER) == 0) && 14116 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14117 (ill_group != NULL && ill_group == ire_group)))) { 14118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14119 if (ip_source_routed(ipha, ipst)) { 14120 q = WR(q); 14121 /* 14122 * Clear the indication that this may have 14123 * hardware checksum as we are not using it. 14124 */ 14125 DB_CKSUMFLAGS(mp) = 0; 14126 /* Sent by forwarding path, and router is global zone */ 14127 icmp_unreachable(q, mp, 14128 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14129 return; 14130 } 14131 goto drop_pkt; 14132 } 14133 14134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14135 14136 /* Packet is being forwarded. Turning off hwcksum flag. */ 14137 DB_CKSUMFLAGS(mp) = 0; 14138 if (ipst->ips_ip_g_send_redirects) { 14139 /* 14140 * Check whether the incoming interface and outgoing 14141 * interface is part of the same group. If so, 14142 * send redirects. 14143 * 14144 * Check the source address to see if it originated 14145 * on the same logical subnet it is going back out on. 14146 * If so, we should be able to send it a redirect. 14147 * Avoid sending a redirect if the destination 14148 * is directly connected (i.e., ipha_dst is the same 14149 * as ire_gateway_addr or the ire_addr of the 14150 * nexthop IRE_CACHE ), or if the packet was source 14151 * routed out this interface. 14152 */ 14153 ipaddr_t src, nhop; 14154 mblk_t *mp1; 14155 ire_t *nhop_ire = NULL; 14156 14157 /* 14158 * Check whether ire_rfq and q are from the same ill 14159 * or if they are not same, they at least belong 14160 * to the same group. If so, send redirects. 14161 */ 14162 if ((ire->ire_rfq == q || 14163 (ill_group != NULL && ill_group == ire_group)) && 14164 !ip_source_routed(ipha, ipst)) { 14165 14166 nhop = (ire->ire_gateway_addr != 0 ? 14167 ire->ire_gateway_addr : ire->ire_addr); 14168 14169 if (ipha->ipha_dst == nhop) { 14170 /* 14171 * We avoid sending a redirect if the 14172 * destination is directly connected 14173 * because it is possible that multiple 14174 * IP subnets may have been configured on 14175 * the link, and the source may not 14176 * be on the same subnet as ip destination, 14177 * even though they are on the same 14178 * physical link. 14179 */ 14180 goto sendit; 14181 } 14182 14183 src = ipha->ipha_src; 14184 14185 /* 14186 * We look up the interface ire for the nexthop, 14187 * to see if ipha_src is in the same subnet 14188 * as the nexthop. 14189 * 14190 * Note that, if, in the future, IRE_CACHE entries 14191 * are obsoleted, this lookup will not be needed, 14192 * as the ire passed to this function will be the 14193 * same as the nhop_ire computed below. 14194 */ 14195 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14196 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14197 0, NULL, MATCH_IRE_TYPE, ipst); 14198 14199 if (nhop_ire != NULL) { 14200 if ((src & nhop_ire->ire_mask) == 14201 (nhop & nhop_ire->ire_mask)) { 14202 /* 14203 * The source is directly connected. 14204 * Just copy the ip header (which is 14205 * in the first mblk) 14206 */ 14207 mp1 = copyb(mp); 14208 if (mp1 != NULL) { 14209 icmp_send_redirect(WR(q), mp1, 14210 nhop, ipst); 14211 } 14212 } 14213 ire_refrele(nhop_ire); 14214 } 14215 } 14216 } 14217 sendit: 14218 dev_q = ire->ire_stq->q_next; 14219 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14221 freemsg(mp); 14222 return; 14223 } 14224 14225 ip_rput_forward(ire, ipha, mp, ill); 14226 return; 14227 14228 drop_pkt: 14229 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14230 freemsg(mp); 14231 } 14232 14233 ire_t * 14234 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14235 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14236 { 14237 queue_t *q; 14238 uint16_t hcksumflags; 14239 ip_stack_t *ipst = ill->ill_ipst; 14240 14241 q = *qp; 14242 14243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14244 14245 /* 14246 * Clear the indication that this may have hardware 14247 * checksum as we are not using it for forwarding. 14248 */ 14249 hcksumflags = DB_CKSUMFLAGS(mp); 14250 DB_CKSUMFLAGS(mp) = 0; 14251 14252 /* 14253 * Directed broadcast forwarding: if the packet came in over a 14254 * different interface then it is routed out over we can forward it. 14255 */ 14256 if (ipha->ipha_protocol == IPPROTO_TCP) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 /* 14263 * For multicast we have set dst to be INADDR_BROADCAST 14264 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14265 * only for broadcast packets. 14266 */ 14267 if (!CLASSD(ipha->ipha_dst)) { 14268 ire_t *new_ire; 14269 ipif_t *ipif; 14270 /* 14271 * For ill groups, as the switch duplicates broadcasts 14272 * across all the ports, we need to filter out and 14273 * send up only one copy. There is one copy for every 14274 * broadcast address on each ill. Thus, we look for a 14275 * specific IRE on this ill and look at IRE_MARK_NORECV 14276 * later to see whether this ill is eligible to receive 14277 * them or not. ill_nominate_bcast_rcv() nominates only 14278 * one set of IREs for receiving. 14279 */ 14280 14281 ipif = ipif_get_next_ipif(NULL, ill); 14282 if (ipif == NULL) { 14283 ire_refrele(ire); 14284 freemsg(mp); 14285 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14286 return (NULL); 14287 } 14288 new_ire = ire_ctable_lookup(dst, 0, 0, 14289 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14290 ipif_refrele(ipif); 14291 14292 if (new_ire != NULL) { 14293 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14294 ire_refrele(ire); 14295 ire_refrele(new_ire); 14296 freemsg(mp); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14298 return (NULL); 14299 } 14300 /* 14301 * In the special case of multirouted broadcast 14302 * packets, we unconditionally need to "gateway" 14303 * them to the appropriate interface here. 14304 * In the normal case, this cannot happen, because 14305 * there is no broadcast IRE tagged with the 14306 * RTF_MULTIRT flag. 14307 */ 14308 if (new_ire->ire_flags & RTF_MULTIRT) { 14309 ire_refrele(new_ire); 14310 if (ire->ire_rfq != NULL) { 14311 q = ire->ire_rfq; 14312 *qp = q; 14313 } 14314 } else { 14315 ire_refrele(ire); 14316 ire = new_ire; 14317 } 14318 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14319 if (!ipst->ips_ip_g_forward_directed_bcast) { 14320 /* 14321 * Free the message if 14322 * ip_g_forward_directed_bcast is turned 14323 * off for non-local broadcast. 14324 */ 14325 ire_refrele(ire); 14326 freemsg(mp); 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14328 return (NULL); 14329 } 14330 } else { 14331 /* 14332 * This CGTP packet successfully passed the 14333 * CGTP filter, but the related CGTP 14334 * broadcast IRE has not been found, 14335 * meaning that the redundant ipif is 14336 * probably down. However, if we discarded 14337 * this packet, its duplicate would be 14338 * filtered out by the CGTP filter so none 14339 * of them would get through. So we keep 14340 * going with this one. 14341 */ 14342 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14343 if (ire->ire_rfq != NULL) { 14344 q = ire->ire_rfq; 14345 *qp = q; 14346 } 14347 } 14348 } 14349 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14350 /* 14351 * Verify that there are not more then one 14352 * IRE_BROADCAST with this broadcast address which 14353 * has ire_stq set. 14354 * TODO: simplify, loop over all IRE's 14355 */ 14356 ire_t *ire1; 14357 int num_stq = 0; 14358 mblk_t *mp1; 14359 14360 /* Find the first one with ire_stq set */ 14361 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14362 for (ire1 = ire; ire1 && 14363 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14364 ire1 = ire1->ire_next) 14365 ; 14366 if (ire1) { 14367 ire_refrele(ire); 14368 ire = ire1; 14369 IRE_REFHOLD(ire); 14370 } 14371 14372 /* Check if there are additional ones with stq set */ 14373 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14374 if (ire->ire_addr != ire1->ire_addr) 14375 break; 14376 if (ire1->ire_stq) { 14377 num_stq++; 14378 break; 14379 } 14380 } 14381 rw_exit(&ire->ire_bucket->irb_lock); 14382 if (num_stq == 1 && ire->ire_stq != NULL) { 14383 ip1dbg(("ip_rput_process_broadcast: directed " 14384 "broadcast to 0x%x\n", 14385 ntohl(ire->ire_addr))); 14386 mp1 = copymsg(mp); 14387 if (mp1) { 14388 switch (ipha->ipha_protocol) { 14389 case IPPROTO_UDP: 14390 ip_udp_input(q, mp1, ipha, ire, ill); 14391 break; 14392 default: 14393 ip_proto_input(q, mp1, ipha, ire, ill, 14394 0); 14395 break; 14396 } 14397 } 14398 /* 14399 * Adjust ttl to 2 (1+1 - the forward engine 14400 * will decrement it by one. 14401 */ 14402 if (ip_csum_hdr(ipha)) { 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14404 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14405 freemsg(mp); 14406 ire_refrele(ire); 14407 return (NULL); 14408 } 14409 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14410 ipha->ipha_hdr_checksum = 0; 14411 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14412 ip_rput_process_forward(q, mp, ire, ipha, 14413 ill, ll_multicast); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14418 ntohl(ire->ire_addr))); 14419 } 14420 14421 14422 /* Restore any hardware checksum flags */ 14423 DB_CKSUMFLAGS(mp) = hcksumflags; 14424 return (ire); 14425 } 14426 14427 /* ARGSUSED */ 14428 static boolean_t 14429 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14430 int *ll_multicast, ipaddr_t *dstp) 14431 { 14432 ip_stack_t *ipst = ill->ill_ipst; 14433 14434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14435 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14436 ntohs(ipha->ipha_length)); 14437 14438 /* 14439 * Forward packets only if we have joined the allmulti 14440 * group on this interface. 14441 */ 14442 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14443 int retval; 14444 14445 /* 14446 * Clear the indication that this may have hardware 14447 * checksum as we are not using it. 14448 */ 14449 DB_CKSUMFLAGS(mp) = 0; 14450 retval = ip_mforward(ill, ipha, mp); 14451 /* ip_mforward updates mib variables if needed */ 14452 /* clear b_prev - used by ip_mroute_decap */ 14453 mp->b_prev = NULL; 14454 14455 switch (retval) { 14456 case 0: 14457 /* 14458 * pkt is okay and arrived on phyint. 14459 * 14460 * If we are running as a multicast router 14461 * we need to see all IGMP and/or PIM packets. 14462 */ 14463 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14464 (ipha->ipha_protocol == IPPROTO_PIM)) { 14465 goto done; 14466 } 14467 break; 14468 case -1: 14469 /* pkt is mal-formed, toss it */ 14470 goto drop_pkt; 14471 case 1: 14472 /* pkt is okay and arrived on a tunnel */ 14473 /* 14474 * If we are running a multicast router 14475 * we need to see all igmp packets. 14476 */ 14477 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14478 *dstp = INADDR_BROADCAST; 14479 *ll_multicast = 1; 14480 return (B_FALSE); 14481 } 14482 14483 goto drop_pkt; 14484 } 14485 } 14486 14487 ILM_WALKER_HOLD(ill); 14488 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14489 /* 14490 * This might just be caused by the fact that 14491 * multiple IP Multicast addresses map to the same 14492 * link layer multicast - no need to increment counter! 14493 */ 14494 ILM_WALKER_RELE(ill); 14495 freemsg(mp); 14496 return (B_TRUE); 14497 } 14498 ILM_WALKER_RELE(ill); 14499 done: 14500 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14501 /* 14502 * This assumes the we deliver to all streams for multicast 14503 * and broadcast packets. 14504 */ 14505 *dstp = INADDR_BROADCAST; 14506 *ll_multicast = 1; 14507 return (B_FALSE); 14508 drop_pkt: 14509 ip2dbg(("ip_rput: drop pkt\n")); 14510 freemsg(mp); 14511 return (B_TRUE); 14512 } 14513 14514 /* 14515 * This function is used to both return an indication of whether or not 14516 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14517 * and in doing so, determine whether or not it is broadcast vs multicast. 14518 * For it to be a broadcast packet, we must have the appropriate mblk_t 14519 * hanging off the ill_t. If this is either not present or doesn't match 14520 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14521 * to be multicast. Thus NICs that have no broadcast address (or no 14522 * capability for one, such as point to point links) cannot return as 14523 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14524 * the return values simplifies the current use of the return value of this 14525 * function, which is to pass through the multicast/broadcast characteristic 14526 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14527 * changing the return value to some other symbol demands the appropriate 14528 * "translation" when hpe_flags is set prior to calling hook_run() for 14529 * packet events. 14530 */ 14531 int 14532 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14533 { 14534 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14535 mblk_t *bmp; 14536 14537 if (ind->dl_group_address) { 14538 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14539 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14540 MBLKL(mb) && 14541 (bmp = ill->ill_bcast_mp) != NULL) { 14542 dl_unitdata_req_t *dlur; 14543 uint8_t *bphys_addr; 14544 14545 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14546 if (ill->ill_sap_length < 0) 14547 bphys_addr = (uchar_t *)dlur + 14548 dlur->dl_dest_addr_offset; 14549 else 14550 bphys_addr = (uchar_t *)dlur + 14551 dlur->dl_dest_addr_offset + 14552 ill->ill_sap_length; 14553 14554 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14555 bphys_addr, ind->dl_dest_addr_length) == 0) { 14556 return (HPE_BROADCAST); 14557 } 14558 return (HPE_MULTICAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (0); 14563 } 14564 14565 static boolean_t 14566 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14567 int *ll_multicast, mblk_t **mpp) 14568 { 14569 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14570 boolean_t must_copy = B_FALSE; 14571 struct iocblk *iocp; 14572 ipha_t *ipha; 14573 ip_stack_t *ipst = ill->ill_ipst; 14574 14575 #define rptr ((uchar_t *)ipha) 14576 14577 first_mp = *first_mpp; 14578 mp = *mpp; 14579 14580 ASSERT(first_mp == mp); 14581 14582 /* 14583 * if db_ref > 1 then copymsg and free original. Packet may be 14584 * changed and do not want other entity who has a reference to this 14585 * message to trip over the changes. This is a blind change because 14586 * trying to catch all places that might change packet is too 14587 * difficult (since it may be a module above this one) 14588 * 14589 * This corresponds to the non-fast path case. We walk down the full 14590 * chain in this case, and check the db_ref count of all the dblks, 14591 * and do a copymsg if required. It is possible that the db_ref counts 14592 * of the data blocks in the mblk chain can be different. 14593 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14594 * count of 1, followed by a M_DATA block with a ref count of 2, if 14595 * 'snoop' is running. 14596 */ 14597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14598 if (mp1->b_datap->db_ref > 1) { 14599 must_copy = B_TRUE; 14600 break; 14601 } 14602 } 14603 14604 if (must_copy) { 14605 mp1 = copymsg(mp); 14606 if (mp1 == NULL) { 14607 for (mp1 = mp; mp1 != NULL; 14608 mp1 = mp1->b_cont) { 14609 mp1->b_next = NULL; 14610 mp1->b_prev = NULL; 14611 } 14612 freemsg(mp); 14613 if (ill != NULL) { 14614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14615 } else { 14616 BUMP_MIB(&ipst->ips_ip_mib, 14617 ipIfStatsInDiscards); 14618 } 14619 return (B_TRUE); 14620 } 14621 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14622 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14623 /* Copy b_prev - used by ip_mroute_decap */ 14624 to_mp->b_prev = from_mp->b_prev; 14625 from_mp->b_prev = NULL; 14626 } 14627 *first_mpp = first_mp = mp1; 14628 freemsg(mp); 14629 mp = mp1; 14630 *mpp = mp1; 14631 } 14632 14633 ipha = (ipha_t *)mp->b_rptr; 14634 14635 /* 14636 * previous code has a case for M_DATA. 14637 * We want to check how that happens. 14638 */ 14639 ASSERT(first_mp->b_datap->db_type != M_DATA); 14640 switch (first_mp->b_datap->db_type) { 14641 case M_PROTO: 14642 case M_PCPROTO: 14643 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14644 DL_UNITDATA_IND) { 14645 /* Go handle anything other than data elsewhere. */ 14646 ip_rput_dlpi(q, mp); 14647 return (B_TRUE); 14648 } 14649 14650 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14651 /* Ditch the DLPI header. */ 14652 mp1 = mp->b_cont; 14653 ASSERT(first_mp == mp); 14654 *first_mpp = mp1; 14655 freeb(mp); 14656 *mpp = mp1; 14657 return (B_FALSE); 14658 case M_IOCACK: 14659 ip1dbg(("got iocack ")); 14660 iocp = (struct iocblk *)mp->b_rptr; 14661 switch (iocp->ioc_cmd) { 14662 case DL_IOC_HDR_INFO: 14663 ill = (ill_t *)q->q_ptr; 14664 ill_fastpath_ack(ill, mp); 14665 return (B_TRUE); 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* Go through qwriter_ip */ 14669 break; 14670 case SIOCGTUNPARAM: 14671 case OSIOCGTUNPARAM: 14672 ip_rput_other(NULL, q, mp, NULL); 14673 return (B_TRUE); 14674 default: 14675 putnext(q, mp); 14676 return (B_TRUE); 14677 } 14678 /* FALLTHRU */ 14679 case M_ERROR: 14680 case M_HANGUP: 14681 /* 14682 * Since this is on the ill stream we unconditionally 14683 * bump up the refcount 14684 */ 14685 ill_refhold(ill); 14686 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14687 return (B_TRUE); 14688 case M_CTL: 14689 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14690 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14691 IPHADA_M_CTL)) { 14692 /* 14693 * It's an IPsec accelerated packet. 14694 * Make sure that the ill from which we received the 14695 * packet has enabled IPsec hardware acceleration. 14696 */ 14697 if (!(ill->ill_capabilities & 14698 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14699 /* IPsec kstats: bean counter */ 14700 freemsg(mp); 14701 return (B_TRUE); 14702 } 14703 14704 /* 14705 * Make mp point to the mblk following the M_CTL, 14706 * then process according to type of mp. 14707 * After this processing, first_mp will point to 14708 * the data-attributes and mp to the pkt following 14709 * the M_CTL. 14710 */ 14711 mp = first_mp->b_cont; 14712 if (mp == NULL) { 14713 freemsg(first_mp); 14714 return (B_TRUE); 14715 } 14716 /* 14717 * A Hardware Accelerated packet can only be M_DATA 14718 * ESP or AH packet. 14719 */ 14720 if (mp->b_datap->db_type != M_DATA) { 14721 /* non-M_DATA IPsec accelerated packet */ 14722 IPSECHW_DEBUG(IPSECHW_PKT, 14723 ("non-M_DATA IPsec accelerated pkt\n")); 14724 freemsg(first_mp); 14725 return (B_TRUE); 14726 } 14727 ipha = (ipha_t *)mp->b_rptr; 14728 if (ipha->ipha_protocol != IPPROTO_AH && 14729 ipha->ipha_protocol != IPPROTO_ESP) { 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 *mpp = mp; 14736 return (B_FALSE); 14737 } 14738 putnext(q, mp); 14739 return (B_TRUE); 14740 case M_IOCNAK: 14741 ip1dbg(("got iocnak ")); 14742 iocp = (struct iocblk *)mp->b_rptr; 14743 switch (iocp->ioc_cmd) { 14744 case SIOCSTUNPARAM: 14745 case OSIOCSTUNPARAM: 14746 /* 14747 * Since this is on the ill stream we unconditionally 14748 * bump up the refcount 14749 */ 14750 ill_refhold(ill); 14751 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14752 return (B_TRUE); 14753 case DL_IOC_HDR_INFO: 14754 case SIOCGTUNPARAM: 14755 case OSIOCGTUNPARAM: 14756 ip_rput_other(NULL, q, mp, NULL); 14757 return (B_TRUE); 14758 default: 14759 break; 14760 } 14761 /* FALLTHRU */ 14762 default: 14763 putnext(q, mp); 14764 return (B_TRUE); 14765 } 14766 } 14767 14768 /* Read side put procedure. Packets coming from the wire arrive here. */ 14769 void 14770 ip_rput(queue_t *q, mblk_t *mp) 14771 { 14772 ill_t *ill; 14773 union DL_primitives *dl; 14774 14775 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14776 14777 ill = (ill_t *)q->q_ptr; 14778 14779 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14780 /* 14781 * If things are opening or closing, only accept high-priority 14782 * DLPI messages. (On open ill->ill_ipif has not yet been 14783 * created; on close, things hanging off the ill may have been 14784 * freed already.) 14785 */ 14786 dl = (union DL_primitives *)mp->b_rptr; 14787 if (DB_TYPE(mp) != M_PCPROTO || 14788 dl->dl_primitive == DL_UNITDATA_IND) { 14789 /* 14790 * SIOC[GS]TUNPARAM ioctls can come here. 14791 */ 14792 inet_freemsg(mp); 14793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14794 "ip_rput_end: q %p (%S)", q, "uninit"); 14795 return; 14796 } 14797 } 14798 14799 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14800 "ip_rput_end: q %p (%S)", q, "end"); 14801 14802 ip_input(ill, NULL, mp, NULL); 14803 } 14804 14805 static mblk_t * 14806 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14807 { 14808 mblk_t *mp1; 14809 boolean_t adjusted = B_FALSE; 14810 ip_stack_t *ipst = ill->ill_ipst; 14811 14812 IP_STAT(ipst, ip_db_ref); 14813 /* 14814 * The IP_RECVSLLA option depends on having the 14815 * link layer header. First check that: 14816 * a> the underlying device is of type ether, 14817 * since this option is currently supported only 14818 * over ethernet. 14819 * b> there is enough room to copy over the link 14820 * layer header. 14821 * 14822 * Once the checks are done, adjust rptr so that 14823 * the link layer header will be copied via 14824 * copymsg. Note that, IFT_ETHER may be returned 14825 * by some non-ethernet drivers but in this case 14826 * the second check will fail. 14827 */ 14828 if (ill->ill_type == IFT_ETHER && 14829 (mp->b_rptr - mp->b_datap->db_base) >= 14830 sizeof (struct ether_header)) { 14831 mp->b_rptr -= sizeof (struct ether_header); 14832 adjusted = B_TRUE; 14833 } 14834 mp1 = copymsg(mp); 14835 14836 if (mp1 == NULL) { 14837 mp->b_next = NULL; 14838 /* clear b_prev - used by ip_mroute_decap */ 14839 mp->b_prev = NULL; 14840 freemsg(mp); 14841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14842 return (NULL); 14843 } 14844 14845 if (adjusted) { 14846 /* 14847 * Copy is done. Restore the pointer in 14848 * the _new_ mblk 14849 */ 14850 mp1->b_rptr += sizeof (struct ether_header); 14851 } 14852 14853 /* Copy b_prev - used by ip_mroute_decap */ 14854 mp1->b_prev = mp->b_prev; 14855 mp->b_prev = NULL; 14856 14857 /* preserve the hardware checksum flags and data, if present */ 14858 if (DB_CKSUMFLAGS(mp) != 0) { 14859 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14860 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14861 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14862 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14863 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14864 } 14865 14866 freemsg(mp); 14867 return (mp1); 14868 } 14869 14870 /* 14871 * Direct read side procedure capable of dealing with chains. GLDv3 based 14872 * drivers call this function directly with mblk chains while STREAMS 14873 * read side procedure ip_rput() calls this for single packet with ip_ring 14874 * set to NULL to process one packet at a time. 14875 * 14876 * The ill will always be valid if this function is called directly from 14877 * the driver. 14878 * 14879 * If ip_input() is called from GLDv3: 14880 * 14881 * - This must be a non-VLAN IP stream. 14882 * - 'mp' is either an untagged or a special priority-tagged packet. 14883 * - Any VLAN tag that was in the MAC header has been stripped. 14884 * 14885 * If the IP header in packet is not 32-bit aligned, every message in the 14886 * chain will be aligned before further operations. This is required on SPARC 14887 * platform. 14888 */ 14889 /* ARGSUSED */ 14890 void 14891 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14892 struct mac_header_info_s *mhip) 14893 { 14894 ipaddr_t dst = NULL; 14895 ipaddr_t prev_dst; 14896 ire_t *ire = NULL; 14897 ipha_t *ipha; 14898 uint_t pkt_len; 14899 ssize_t len; 14900 uint_t opt_len; 14901 int ll_multicast; 14902 int cgtp_flt_pkt; 14903 queue_t *q = ill->ill_rq; 14904 squeue_t *curr_sqp = NULL; 14905 mblk_t *head = NULL; 14906 mblk_t *tail = NULL; 14907 mblk_t *first_mp; 14908 mblk_t *mp; 14909 mblk_t *dmp; 14910 int cnt = 0; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 14913 ASSERT(mp_chain != NULL); 14914 ASSERT(ill != NULL); 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14917 14918 #define rptr ((uchar_t *)ipha) 14919 14920 while (mp_chain != NULL) { 14921 first_mp = mp = mp_chain; 14922 mp_chain = mp_chain->b_next; 14923 mp->b_next = NULL; 14924 ll_multicast = 0; 14925 14926 /* 14927 * We do ire caching from one iteration to 14928 * another. In the event the packet chain contains 14929 * all packets from the same dst, this caching saves 14930 * an ire_cache_lookup for each of the succeeding 14931 * packets in a packet chain. 14932 */ 14933 prev_dst = dst; 14934 14935 /* 14936 * if db_ref > 1 then copymsg and free original. Packet 14937 * may be changed and we do not want the other entity 14938 * who has a reference to this message to trip over the 14939 * changes. This is a blind change because trying to 14940 * catch all places that might change the packet is too 14941 * difficult. 14942 * 14943 * This corresponds to the fast path case, where we have 14944 * a chain of M_DATA mblks. We check the db_ref count 14945 * of only the 1st data block in the mblk chain. There 14946 * doesn't seem to be a reason why a device driver would 14947 * send up data with varying db_ref counts in the mblk 14948 * chain. In any case the Fast path is a private 14949 * interface, and our drivers don't do such a thing. 14950 * Given the above assumption, there is no need to walk 14951 * down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 */ 14954 14955 if (DB_REF(mp) > 1) { 14956 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14957 continue; 14958 } 14959 14960 /* 14961 * Check and align the IP header. 14962 */ 14963 first_mp = mp; 14964 if (DB_TYPE(mp) == M_DATA) { 14965 dmp = mp; 14966 } else if (DB_TYPE(mp) == M_PROTO && 14967 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14968 dmp = mp->b_cont; 14969 } else { 14970 dmp = NULL; 14971 } 14972 if (dmp != NULL) { 14973 /* 14974 * IP header ptr not aligned? 14975 * OR IP header not complete in first mblk 14976 */ 14977 if (!OK_32PTR(dmp->b_rptr) || 14978 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14979 if (!ip_check_and_align_header(q, dmp, ipst)) 14980 continue; 14981 } 14982 } 14983 14984 /* 14985 * ip_input fast path 14986 */ 14987 14988 /* mblk type is not M_DATA */ 14989 if (DB_TYPE(mp) != M_DATA) { 14990 if (ip_rput_process_notdata(q, &first_mp, ill, 14991 &ll_multicast, &mp)) 14992 continue; 14993 14994 /* 14995 * The only way we can get here is if we had a 14996 * packet that was either a DL_UNITDATA_IND or 14997 * an M_CTL for an IPsec accelerated packet. 14998 * 14999 * In either case, the first_mp will point to 15000 * the leading M_PROTO or M_CTL. 15001 */ 15002 ASSERT(first_mp != NULL); 15003 } else if (mhip != NULL) { 15004 /* 15005 * ll_multicast is set here so that it is ready 15006 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15007 * manipulates ll_multicast in the same fashion when 15008 * called from ip_rput_process_notdata. 15009 */ 15010 switch (mhip->mhi_dsttype) { 15011 case MAC_ADDRTYPE_MULTICAST : 15012 ll_multicast = HPE_MULTICAST; 15013 break; 15014 case MAC_ADDRTYPE_BROADCAST : 15015 ll_multicast = HPE_BROADCAST; 15016 break; 15017 default : 15018 break; 15019 } 15020 } 15021 15022 /* Make sure its an M_DATA and that its aligned */ 15023 ASSERT(DB_TYPE(mp) == M_DATA); 15024 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15025 15026 ipha = (ipha_t *)mp->b_rptr; 15027 len = mp->b_wptr - rptr; 15028 pkt_len = ntohs(ipha->ipha_length); 15029 15030 /* 15031 * We must count all incoming packets, even if they end 15032 * up being dropped later on. 15033 */ 15034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15035 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15036 15037 /* multiple mblk or too short */ 15038 len -= pkt_len; 15039 if (len != 0) { 15040 /* 15041 * Make sure we have data length consistent 15042 * with the IP header. 15043 */ 15044 if (mp->b_cont == NULL) { 15045 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15046 BUMP_MIB(ill->ill_ip_mib, 15047 ipIfStatsInHdrErrors); 15048 ip2dbg(("ip_input: drop pkt\n")); 15049 freemsg(mp); 15050 continue; 15051 } 15052 mp->b_wptr = rptr + pkt_len; 15053 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15054 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15055 BUMP_MIB(ill->ill_ip_mib, 15056 ipIfStatsInHdrErrors); 15057 ip2dbg(("ip_input: drop pkt\n")); 15058 freemsg(mp); 15059 continue; 15060 } 15061 (void) adjmsg(mp, -len); 15062 IP_STAT(ipst, ip_multimblk3); 15063 } 15064 } 15065 15066 /* Obtain the dst of the current packet */ 15067 dst = ipha->ipha_dst; 15068 15069 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15070 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15071 ipha, ip6_t *, NULL, int, 0); 15072 15073 /* 15074 * The following test for loopback is faster than 15075 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15076 * operations. 15077 * Note that these addresses are always in network byte order 15078 */ 15079 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15080 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15082 freemsg(mp); 15083 continue; 15084 } 15085 15086 /* 15087 * The event for packets being received from a 'physical' 15088 * interface is placed after validation of the source and/or 15089 * destination address as being local so that packets can be 15090 * redirected to loopback addresses using ipnat. 15091 */ 15092 DTRACE_PROBE4(ip4__physical__in__start, 15093 ill_t *, ill, ill_t *, NULL, 15094 ipha_t *, ipha, mblk_t *, first_mp); 15095 15096 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15097 ipst->ips_ipv4firewall_physical_in, 15098 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15099 15100 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15101 15102 if (first_mp == NULL) { 15103 continue; 15104 } 15105 dst = ipha->ipha_dst; 15106 15107 /* 15108 * Attach any necessary label information to 15109 * this packet 15110 */ 15111 if (is_system_labeled() && 15112 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15114 freemsg(mp); 15115 continue; 15116 } 15117 15118 /* 15119 * Reuse the cached ire only if the ipha_dst of the previous 15120 * packet is the same as the current packet AND it is not 15121 * INADDR_ANY. 15122 */ 15123 if (!(dst == prev_dst && dst != INADDR_ANY) && 15124 (ire != NULL)) { 15125 ire_refrele(ire); 15126 ire = NULL; 15127 } 15128 opt_len = ipha->ipha_version_and_hdr_length - 15129 IP_SIMPLE_HDR_VERSION; 15130 15131 /* 15132 * Check to see if we can take the fastpath. 15133 * That is possible if the following conditions are met 15134 * o Tsol disabled 15135 * o CGTP disabled 15136 * o ipp_action_count is 0 15137 * o no options in the packet 15138 * o not a RSVP packet 15139 * o not a multicast packet 15140 * o ill not in IP_DHCPINIT_IF mode 15141 */ 15142 if (!is_system_labeled() && 15143 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15144 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15145 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15146 if (ire == NULL) 15147 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15148 ipst); 15149 15150 /* incoming packet is for forwarding */ 15151 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15152 ire = ip_fast_forward(ire, dst, ill, mp); 15153 continue; 15154 } 15155 /* incoming packet is for local consumption */ 15156 if (ire->ire_type & IRE_LOCAL) 15157 goto local; 15158 } 15159 15160 /* 15161 * Disable ire caching for anything more complex 15162 * than the simple fast path case we checked for above. 15163 */ 15164 if (ire != NULL) { 15165 ire_refrele(ire); 15166 ire = NULL; 15167 } 15168 15169 /* 15170 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15171 * server to unicast DHCP packets to a DHCP client using the 15172 * IP address it is offering to the client. This can be 15173 * disabled through the "broadcast bit", but not all DHCP 15174 * servers honor that bit. Therefore, to interoperate with as 15175 * many DHCP servers as possible, the DHCP client allows the 15176 * server to unicast, but we treat those packets as broadcast 15177 * here. Note that we don't rewrite the packet itself since 15178 * (a) that would mess up the checksums and (b) the DHCP 15179 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15180 * hand it the packet regardless. 15181 */ 15182 if (ill->ill_dhcpinit != 0 && 15183 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15184 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15185 udpha_t *udpha; 15186 15187 /* 15188 * Reload ipha since pullupmsg() can change b_rptr. 15189 */ 15190 ipha = (ipha_t *)mp->b_rptr; 15191 udpha = (udpha_t *)&ipha[1]; 15192 15193 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15194 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15195 mblk_t *, mp); 15196 dst = INADDR_BROADCAST; 15197 } 15198 } 15199 15200 /* Full-blown slow path */ 15201 if (opt_len != 0) { 15202 if (len != 0) 15203 IP_STAT(ipst, ip_multimblk4); 15204 else 15205 IP_STAT(ipst, ip_ipoptions); 15206 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15207 &dst, ipst)) 15208 continue; 15209 } 15210 15211 /* 15212 * Invoke the CGTP (multirouting) filtering module to process 15213 * the incoming packet. Packets identified as duplicates 15214 * must be discarded. Filtering is active only if the 15215 * the ip_cgtp_filter ndd variable is non-zero. 15216 */ 15217 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15218 if (ipst->ips_ip_cgtp_filter && 15219 ipst->ips_ip_cgtp_filter_ops != NULL) { 15220 netstackid_t stackid; 15221 15222 stackid = ipst->ips_netstack->netstack_stackid; 15223 cgtp_flt_pkt = 15224 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15225 ill->ill_phyint->phyint_ifindex, mp); 15226 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15227 freemsg(first_mp); 15228 continue; 15229 } 15230 } 15231 15232 /* 15233 * If rsvpd is running, let RSVP daemon handle its processing 15234 * and forwarding of RSVP multicast/unicast packets. 15235 * If rsvpd is not running but mrouted is running, RSVP 15236 * multicast packets are forwarded as multicast traffic 15237 * and RSVP unicast packets are forwarded by unicast router. 15238 * If neither rsvpd nor mrouted is running, RSVP multicast 15239 * packets are not forwarded, but the unicast packets are 15240 * forwarded like unicast traffic. 15241 */ 15242 if (ipha->ipha_protocol == IPPROTO_RSVP && 15243 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15244 NULL) { 15245 /* RSVP packet and rsvpd running. Treat as ours */ 15246 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15247 /* 15248 * This assumes that we deliver to all streams for 15249 * multicast and broadcast packets. 15250 * We have to force ll_multicast to 1 to handle the 15251 * M_DATA messages passed in from ip_mroute_decap. 15252 */ 15253 dst = INADDR_BROADCAST; 15254 ll_multicast = 1; 15255 } else if (CLASSD(dst)) { 15256 /* packet is multicast */ 15257 mp->b_next = NULL; 15258 if (ip_rput_process_multicast(q, mp, ill, ipha, 15259 &ll_multicast, &dst)) 15260 continue; 15261 } 15262 15263 if (ire == NULL) { 15264 ire = ire_cache_lookup(dst, ALL_ZONES, 15265 MBLK_GETLABEL(mp), ipst); 15266 } 15267 15268 if (ire != NULL && ire->ire_stq != NULL && 15269 ire->ire_zoneid != GLOBAL_ZONEID && 15270 ire->ire_zoneid != ALL_ZONES) { 15271 /* 15272 * Should only use IREs that are visible from the 15273 * global zone for forwarding. 15274 */ 15275 ire_refrele(ire); 15276 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15277 MBLK_GETLABEL(mp), ipst); 15278 } 15279 15280 if (ire == NULL) { 15281 /* 15282 * No IRE for this destination, so it can't be for us. 15283 * Unless we are forwarding, drop the packet. 15284 * We have to let source routed packets through 15285 * since we don't yet know if they are 'ping -l' 15286 * packets i.e. if they will go out over the 15287 * same interface as they came in on. 15288 */ 15289 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15290 if (ire == NULL) 15291 continue; 15292 } 15293 15294 /* 15295 * Broadcast IRE may indicate either broadcast or 15296 * multicast packet 15297 */ 15298 if (ire->ire_type == IRE_BROADCAST) { 15299 /* 15300 * Skip broadcast checks if packet is UDP multicast; 15301 * we'd rather not enter ip_rput_process_broadcast() 15302 * unless the packet is broadcast for real, since 15303 * that routine is a no-op for multicast. 15304 */ 15305 if (ipha->ipha_protocol != IPPROTO_UDP || 15306 !CLASSD(ipha->ipha_dst)) { 15307 ire = ip_rput_process_broadcast(&q, mp, 15308 ire, ipha, ill, dst, cgtp_flt_pkt, 15309 ll_multicast); 15310 if (ire == NULL) 15311 continue; 15312 } 15313 } else if (ire->ire_stq != NULL) { 15314 /* fowarding? */ 15315 ip_rput_process_forward(q, mp, ire, ipha, ill, 15316 ll_multicast); 15317 /* ip_rput_process_forward consumed the packet */ 15318 continue; 15319 } 15320 15321 local: 15322 /* 15323 * If the queue in the ire is different to the ingress queue 15324 * then we need to check to see if we can accept the packet. 15325 * Note that for multicast packets and broadcast packets sent 15326 * to a broadcast address which is shared between multiple 15327 * interfaces we should not do this since we just got a random 15328 * broadcast ire. 15329 */ 15330 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15331 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15332 ill)) == NULL) { 15333 /* Drop packet */ 15334 BUMP_MIB(ill->ill_ip_mib, 15335 ipIfStatsForwProhibits); 15336 freemsg(mp); 15337 continue; 15338 } 15339 if (ire->ire_rfq != NULL) 15340 q = ire->ire_rfq; 15341 } 15342 15343 switch (ipha->ipha_protocol) { 15344 case IPPROTO_TCP: 15345 ASSERT(first_mp == mp); 15346 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15347 mp, 0, q, ip_ring)) != NULL) { 15348 if (curr_sqp == NULL) { 15349 curr_sqp = GET_SQUEUE(mp); 15350 ASSERT(cnt == 0); 15351 cnt++; 15352 head = tail = mp; 15353 } else if (curr_sqp == GET_SQUEUE(mp)) { 15354 ASSERT(tail != NULL); 15355 cnt++; 15356 tail->b_next = mp; 15357 tail = mp; 15358 } else { 15359 /* 15360 * A different squeue. Send the 15361 * chain for the previous squeue on 15362 * its way. This shouldn't happen 15363 * often unless interrupt binding 15364 * changes. 15365 */ 15366 IP_STAT(ipst, ip_input_multi_squeue); 15367 squeue_enter_chain(curr_sqp, head, 15368 tail, cnt, SQTAG_IP_INPUT); 15369 curr_sqp = GET_SQUEUE(mp); 15370 head = mp; 15371 tail = mp; 15372 cnt = 1; 15373 } 15374 } 15375 continue; 15376 case IPPROTO_UDP: 15377 ASSERT(first_mp == mp); 15378 ip_udp_input(q, mp, ipha, ire, ill); 15379 continue; 15380 case IPPROTO_SCTP: 15381 ASSERT(first_mp == mp); 15382 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15383 q, dst); 15384 /* ire has been released by ip_sctp_input */ 15385 ire = NULL; 15386 continue; 15387 default: 15388 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15389 continue; 15390 } 15391 } 15392 15393 if (ire != NULL) 15394 ire_refrele(ire); 15395 15396 if (head != NULL) 15397 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15398 15399 /* 15400 * This code is there just to make netperf/ttcp look good. 15401 * 15402 * Its possible that after being in polling mode (and having cleared 15403 * the backlog), squeues have turned the interrupt frequency higher 15404 * to improve latency at the expense of more CPU utilization (less 15405 * packets per interrupts or more number of interrupts). Workloads 15406 * like ttcp/netperf do manage to tickle polling once in a while 15407 * but for the remaining time, stay in higher interrupt mode since 15408 * their packet arrival rate is pretty uniform and this shows up 15409 * as higher CPU utilization. Since people care about CPU utilization 15410 * while running netperf/ttcp, turn the interrupt frequency back to 15411 * normal/default if polling has not been used in ip_poll_normal_ticks. 15412 */ 15413 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15414 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15415 ip_ring->rr_poll_state &= ~ILL_POLLING; 15416 ip_ring->rr_blank(ip_ring->rr_handle, 15417 ip_ring->rr_normal_blank_time, 15418 ip_ring->rr_normal_pkt_cnt); 15419 } 15420 } 15421 15422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15423 "ip_input_end: q %p (%S)", q, "end"); 15424 #undef rptr 15425 } 15426 15427 static void 15428 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15429 t_uscalar_t err) 15430 { 15431 if (dl_err == DL_SYSERR) { 15432 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15433 "%s: %s failed: DL_SYSERR (errno %u)\n", 15434 ill->ill_name, dl_primstr(prim), err); 15435 return; 15436 } 15437 15438 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15439 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15440 dl_errstr(dl_err)); 15441 } 15442 15443 /* 15444 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15445 * than DL_UNITDATA_IND messages. If we need to process this message 15446 * exclusively, we call qwriter_ip, in which case we also need to call 15447 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15448 */ 15449 void 15450 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15451 { 15452 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15453 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15454 ill_t *ill = q->q_ptr; 15455 t_uscalar_t prim = dloa->dl_primitive; 15456 t_uscalar_t reqprim = DL_PRIM_INVAL; 15457 15458 ip1dbg(("ip_rput_dlpi")); 15459 15460 /* 15461 * If we received an ACK but didn't send a request for it, then it 15462 * can't be part of any pending operation; discard up-front. 15463 */ 15464 switch (prim) { 15465 case DL_ERROR_ACK: 15466 reqprim = dlea->dl_error_primitive; 15467 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15468 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15469 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15470 dlea->dl_unix_errno)); 15471 break; 15472 case DL_OK_ACK: 15473 reqprim = dloa->dl_correct_primitive; 15474 break; 15475 case DL_INFO_ACK: 15476 reqprim = DL_INFO_REQ; 15477 break; 15478 case DL_BIND_ACK: 15479 reqprim = DL_BIND_REQ; 15480 break; 15481 case DL_PHYS_ADDR_ACK: 15482 reqprim = DL_PHYS_ADDR_REQ; 15483 break; 15484 case DL_NOTIFY_ACK: 15485 reqprim = DL_NOTIFY_REQ; 15486 break; 15487 case DL_CONTROL_ACK: 15488 reqprim = DL_CONTROL_REQ; 15489 break; 15490 case DL_CAPABILITY_ACK: 15491 reqprim = DL_CAPABILITY_REQ; 15492 break; 15493 } 15494 15495 if (prim != DL_NOTIFY_IND) { 15496 if (reqprim == DL_PRIM_INVAL || 15497 !ill_dlpi_pending(ill, reqprim)) { 15498 /* Not a DLPI message we support or expected */ 15499 freemsg(mp); 15500 return; 15501 } 15502 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15503 dl_primstr(reqprim))); 15504 } 15505 15506 switch (reqprim) { 15507 case DL_UNBIND_REQ: 15508 /* 15509 * NOTE: we mark the unbind as complete even if we got a 15510 * DL_ERROR_ACK, since there's not much else we can do. 15511 */ 15512 mutex_enter(&ill->ill_lock); 15513 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15514 cv_signal(&ill->ill_cv); 15515 mutex_exit(&ill->ill_lock); 15516 break; 15517 15518 case DL_ENABMULTI_REQ: 15519 if (prim == DL_OK_ACK) { 15520 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15521 ill->ill_dlpi_multicast_state = IDS_OK; 15522 } 15523 break; 15524 } 15525 15526 /* 15527 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15528 * need to become writer to continue to process it. Because an 15529 * exclusive operation doesn't complete until replies to all queued 15530 * DLPI messages have been received, we know we're in the middle of an 15531 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15532 * 15533 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15534 * Since this is on the ill stream we unconditionally bump up the 15535 * refcount without doing ILL_CAN_LOOKUP(). 15536 */ 15537 ill_refhold(ill); 15538 if (prim == DL_NOTIFY_IND) 15539 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15540 else 15541 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15542 } 15543 15544 /* 15545 * Handling of DLPI messages that require exclusive access to the ipsq. 15546 * 15547 * Need to do ill_pending_mp_release on ioctl completion, which could 15548 * happen here. (along with mi_copy_done) 15549 */ 15550 /* ARGSUSED */ 15551 static void 15552 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15553 { 15554 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15555 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15556 int err = 0; 15557 ill_t *ill; 15558 ipif_t *ipif = NULL; 15559 mblk_t *mp1 = NULL; 15560 conn_t *connp = NULL; 15561 t_uscalar_t paddrreq; 15562 mblk_t *mp_hw; 15563 boolean_t success; 15564 boolean_t ioctl_aborted = B_FALSE; 15565 boolean_t log = B_TRUE; 15566 ip_stack_t *ipst; 15567 15568 ip1dbg(("ip_rput_dlpi_writer ..")); 15569 ill = (ill_t *)q->q_ptr; 15570 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15571 15572 ASSERT(IAM_WRITER_ILL(ill)); 15573 15574 ipst = ill->ill_ipst; 15575 15576 /* 15577 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15578 * both are null or non-null. However we can assert that only 15579 * after grabbing the ipsq_lock. So we don't make any assertion 15580 * here and in other places in the code. 15581 */ 15582 ipif = ipsq->ipsq_pending_ipif; 15583 /* 15584 * The current ioctl could have been aborted by the user and a new 15585 * ioctl to bring up another ill could have started. We could still 15586 * get a response from the driver later. 15587 */ 15588 if (ipif != NULL && ipif->ipif_ill != ill) 15589 ioctl_aborted = B_TRUE; 15590 15591 switch (dloa->dl_primitive) { 15592 case DL_ERROR_ACK: 15593 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15594 dl_primstr(dlea->dl_error_primitive))); 15595 15596 switch (dlea->dl_error_primitive) { 15597 case DL_DISABMULTI_REQ: 15598 if (!ill->ill_isv6) 15599 ipsq_current_finish(ipsq); 15600 ill_dlpi_done(ill, dlea->dl_error_primitive); 15601 break; 15602 case DL_PROMISCON_REQ: 15603 case DL_PROMISCOFF_REQ: 15604 case DL_UNBIND_REQ: 15605 case DL_ATTACH_REQ: 15606 case DL_INFO_REQ: 15607 ill_dlpi_done(ill, dlea->dl_error_primitive); 15608 break; 15609 case DL_NOTIFY_REQ: 15610 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15611 log = B_FALSE; 15612 break; 15613 case DL_PHYS_ADDR_REQ: 15614 /* 15615 * For IPv6 only, there are two additional 15616 * phys_addr_req's sent to the driver to get the 15617 * IPv6 token and lla. This allows IP to acquire 15618 * the hardware address format for a given interface 15619 * without having built in knowledge of the hardware 15620 * address. ill_phys_addr_pend keeps track of the last 15621 * DL_PAR sent so we know which response we are 15622 * dealing with. ill_dlpi_done will update 15623 * ill_phys_addr_pend when it sends the next req. 15624 * We don't complete the IOCTL until all three DL_PARs 15625 * have been attempted, so set *_len to 0 and break. 15626 */ 15627 paddrreq = ill->ill_phys_addr_pend; 15628 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15629 if (paddrreq == DL_IPV6_TOKEN) { 15630 ill->ill_token_length = 0; 15631 log = B_FALSE; 15632 break; 15633 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15634 ill->ill_nd_lla_len = 0; 15635 log = B_FALSE; 15636 break; 15637 } 15638 /* 15639 * Something went wrong with the DL_PHYS_ADDR_REQ. 15640 * We presumably have an IOCTL hanging out waiting 15641 * for completion. Find it and complete the IOCTL 15642 * with the error noted. 15643 * However, ill_dl_phys was called on an ill queue 15644 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15645 * set. But the ioctl is known to be pending on ill_wq. 15646 */ 15647 if (!ill->ill_ifname_pending) 15648 break; 15649 ill->ill_ifname_pending = 0; 15650 if (!ioctl_aborted) 15651 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15652 if (mp1 != NULL) { 15653 /* 15654 * This operation (SIOCSLIFNAME) must have 15655 * happened on the ill. Assert there is no conn 15656 */ 15657 ASSERT(connp == NULL); 15658 q = ill->ill_wq; 15659 } 15660 break; 15661 case DL_BIND_REQ: 15662 ill_dlpi_done(ill, DL_BIND_REQ); 15663 if (ill->ill_ifname_pending) 15664 break; 15665 /* 15666 * Something went wrong with the bind. We presumably 15667 * have an IOCTL hanging out waiting for completion. 15668 * Find it, take down the interface that was coming 15669 * up, and complete the IOCTL with the error noted. 15670 */ 15671 if (!ioctl_aborted) 15672 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15673 if (mp1 != NULL) { 15674 /* 15675 * This operation (SIOCSLIFFLAGS) must have 15676 * happened from a conn. 15677 */ 15678 ASSERT(connp != NULL); 15679 q = CONNP_TO_WQ(connp); 15680 if (ill->ill_move_in_progress) { 15681 ILL_CLEAR_MOVE(ill); 15682 } 15683 (void) ipif_down(ipif, NULL, NULL); 15684 /* error is set below the switch */ 15685 } 15686 break; 15687 case DL_ENABMULTI_REQ: 15688 if (!ill->ill_isv6) 15689 ipsq_current_finish(ipsq); 15690 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15691 15692 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15693 ill->ill_dlpi_multicast_state = IDS_FAILED; 15694 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15695 ipif_t *ipif; 15696 15697 printf("ip: joining multicasts failed (%d)" 15698 " on %s - will use link layer " 15699 "broadcasts for multicast\n", 15700 dlea->dl_errno, ill->ill_name); 15701 15702 /* 15703 * Set up the multicast mapping alone. 15704 * writer, so ok to access ill->ill_ipif 15705 * without any lock. 15706 */ 15707 ipif = ill->ill_ipif; 15708 mutex_enter(&ill->ill_phyint->phyint_lock); 15709 ill->ill_phyint->phyint_flags |= 15710 PHYI_MULTI_BCAST; 15711 mutex_exit(&ill->ill_phyint->phyint_lock); 15712 15713 if (!ill->ill_isv6) { 15714 (void) ipif_arp_setup_multicast(ipif, 15715 NULL); 15716 } else { 15717 (void) ipif_ndp_setup_multicast(ipif, 15718 NULL); 15719 } 15720 } 15721 freemsg(mp); /* Don't want to pass this up */ 15722 return; 15723 15724 case DL_CAPABILITY_REQ: 15725 case DL_CONTROL_REQ: 15726 ill_dlpi_done(ill, dlea->dl_error_primitive); 15727 ill->ill_dlpi_capab_state = IDS_FAILED; 15728 freemsg(mp); 15729 return; 15730 } 15731 /* 15732 * Note the error for IOCTL completion (mp1 is set when 15733 * ready to complete ioctl). If ill_ifname_pending_err is 15734 * set, an error occured during plumbing (ill_ifname_pending), 15735 * so we want to report that error. 15736 * 15737 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15738 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15739 * expected to get errack'd if the driver doesn't support 15740 * these flags (e.g. ethernet). log will be set to B_FALSE 15741 * if these error conditions are encountered. 15742 */ 15743 if (mp1 != NULL) { 15744 if (ill->ill_ifname_pending_err != 0) { 15745 err = ill->ill_ifname_pending_err; 15746 ill->ill_ifname_pending_err = 0; 15747 } else { 15748 err = dlea->dl_unix_errno ? 15749 dlea->dl_unix_errno : ENXIO; 15750 } 15751 /* 15752 * If we're plumbing an interface and an error hasn't already 15753 * been saved, set ill_ifname_pending_err to the error passed 15754 * up. Ignore the error if log is B_FALSE (see comment above). 15755 */ 15756 } else if (log && ill->ill_ifname_pending && 15757 ill->ill_ifname_pending_err == 0) { 15758 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15759 dlea->dl_unix_errno : ENXIO; 15760 } 15761 15762 if (log) 15763 ip_dlpi_error(ill, dlea->dl_error_primitive, 15764 dlea->dl_errno, dlea->dl_unix_errno); 15765 break; 15766 case DL_CAPABILITY_ACK: 15767 /* Call a routine to handle this one. */ 15768 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15769 ill_capability_ack(ill, mp); 15770 15771 /* 15772 * If the ack is due to renegotiation, we will need to send 15773 * a new CAPABILITY_REQ to start the renegotiation. 15774 */ 15775 if (ill->ill_capab_reneg) { 15776 ill->ill_capab_reneg = B_FALSE; 15777 ill_capability_probe(ill); 15778 } 15779 break; 15780 case DL_CONTROL_ACK: 15781 /* We treat all of these as "fire and forget" */ 15782 ill_dlpi_done(ill, DL_CONTROL_REQ); 15783 break; 15784 case DL_INFO_ACK: 15785 /* Call a routine to handle this one. */ 15786 ill_dlpi_done(ill, DL_INFO_REQ); 15787 ip_ll_subnet_defaults(ill, mp); 15788 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15789 return; 15790 case DL_BIND_ACK: 15791 /* 15792 * We should have an IOCTL waiting on this unless 15793 * sent by ill_dl_phys, in which case just return 15794 */ 15795 ill_dlpi_done(ill, DL_BIND_REQ); 15796 if (ill->ill_ifname_pending) 15797 break; 15798 15799 if (!ioctl_aborted) 15800 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15801 if (mp1 == NULL) 15802 break; 15803 /* 15804 * Because mp1 was added by ill_dl_up(), and it always 15805 * passes a valid connp, connp must be valid here. 15806 */ 15807 ASSERT(connp != NULL); 15808 q = CONNP_TO_WQ(connp); 15809 15810 /* 15811 * We are exclusive. So nothing can change even after 15812 * we get the pending mp. If need be we can put it back 15813 * and restart, as in calling ipif_arp_up() below. 15814 */ 15815 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15816 15817 mutex_enter(&ill->ill_lock); 15818 ill->ill_dl_up = 1; 15819 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15820 mutex_exit(&ill->ill_lock); 15821 15822 /* 15823 * Now bring up the resolver; when that is complete, we'll 15824 * create IREs. Note that we intentionally mirror what 15825 * ipif_up() would have done, because we got here by way of 15826 * ill_dl_up(), which stopped ipif_up()'s processing. 15827 */ 15828 if (ill->ill_isv6) { 15829 /* 15830 * v6 interfaces. 15831 * Unlike ARP which has to do another bind 15832 * and attach, once we get here we are 15833 * done with NDP. Except in the case of 15834 * ILLF_XRESOLV, in which case we send an 15835 * AR_INTERFACE_UP to the external resolver. 15836 * If all goes well, the ioctl will complete 15837 * in ip_rput(). If there's an error, we 15838 * complete it here. 15839 */ 15840 if ((err = ipif_ndp_up(ipif)) == 0) { 15841 if (ill->ill_flags & ILLF_XRESOLV) { 15842 mutex_enter(&connp->conn_lock); 15843 mutex_enter(&ill->ill_lock); 15844 success = ipsq_pending_mp_add( 15845 connp, ipif, q, mp1, 0); 15846 mutex_exit(&ill->ill_lock); 15847 mutex_exit(&connp->conn_lock); 15848 if (success) { 15849 err = ipif_resolver_up(ipif, 15850 Res_act_initial); 15851 if (err == EINPROGRESS) { 15852 freemsg(mp); 15853 return; 15854 } 15855 ASSERT(err != 0); 15856 mp1 = ipsq_pending_mp_get(ipsq, 15857 &connp); 15858 ASSERT(mp1 != NULL); 15859 } else { 15860 /* conn has started closing */ 15861 err = EINTR; 15862 } 15863 } else { /* Non XRESOLV interface */ 15864 (void) ipif_resolver_up(ipif, 15865 Res_act_initial); 15866 err = ipif_up_done_v6(ipif); 15867 } 15868 } 15869 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15870 /* 15871 * ARP and other v4 external resolvers. 15872 * Leave the pending mblk intact so that 15873 * the ioctl completes in ip_rput(). 15874 */ 15875 mutex_enter(&connp->conn_lock); 15876 mutex_enter(&ill->ill_lock); 15877 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15878 mutex_exit(&ill->ill_lock); 15879 mutex_exit(&connp->conn_lock); 15880 if (success) { 15881 err = ipif_resolver_up(ipif, Res_act_initial); 15882 if (err == EINPROGRESS) { 15883 freemsg(mp); 15884 return; 15885 } 15886 ASSERT(err != 0); 15887 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15888 } else { 15889 /* The conn has started closing */ 15890 err = EINTR; 15891 } 15892 } else { 15893 /* 15894 * This one is complete. Reply to pending ioctl. 15895 */ 15896 (void) ipif_resolver_up(ipif, Res_act_initial); 15897 err = ipif_up_done(ipif); 15898 } 15899 15900 if ((err == 0) && (ill->ill_up_ipifs)) { 15901 err = ill_up_ipifs(ill, q, mp1); 15902 if (err == EINPROGRESS) { 15903 freemsg(mp); 15904 return; 15905 } 15906 } 15907 15908 if (ill->ill_up_ipifs) { 15909 ill_group_cleanup(ill); 15910 } 15911 15912 break; 15913 case DL_NOTIFY_IND: { 15914 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15915 ire_t *ire; 15916 boolean_t need_ire_walk_v4 = B_FALSE; 15917 boolean_t need_ire_walk_v6 = B_FALSE; 15918 15919 switch (notify->dl_notification) { 15920 case DL_NOTE_PHYS_ADDR: 15921 err = ill_set_phys_addr(ill, mp); 15922 break; 15923 15924 case DL_NOTE_FASTPATH_FLUSH: 15925 ill_fastpath_flush(ill); 15926 break; 15927 15928 case DL_NOTE_SDU_SIZE: 15929 /* 15930 * Change the MTU size of the interface, of all 15931 * attached ipif's, and of all relevant ire's. The 15932 * new value's a uint32_t at notify->dl_data. 15933 * Mtu change Vs. new ire creation - protocol below. 15934 * 15935 * a Mark the ipif as IPIF_CHANGING. 15936 * b Set the new mtu in the ipif. 15937 * c Change the ire_max_frag on all affected ires 15938 * d Unmark the IPIF_CHANGING 15939 * 15940 * To see how the protocol works, assume an interface 15941 * route is also being added simultaneously by 15942 * ip_rt_add and let 'ipif' be the ipif referenced by 15943 * the ire. If the ire is created before step a, 15944 * it will be cleaned up by step c. If the ire is 15945 * created after step d, it will see the new value of 15946 * ipif_mtu. Any attempt to create the ire between 15947 * steps a to d will fail because of the IPIF_CHANGING 15948 * flag. Note that ire_create() is passed a pointer to 15949 * the ipif_mtu, and not the value. During ire_add 15950 * under the bucket lock, the ire_max_frag of the 15951 * new ire being created is set from the ipif/ire from 15952 * which it is being derived. 15953 */ 15954 mutex_enter(&ill->ill_lock); 15955 ill->ill_max_frag = (uint_t)notify->dl_data; 15956 15957 /* 15958 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15959 * leave it alone 15960 */ 15961 if (ill->ill_mtu_userspecified) { 15962 mutex_exit(&ill->ill_lock); 15963 break; 15964 } 15965 ill->ill_max_mtu = ill->ill_max_frag; 15966 if (ill->ill_isv6) { 15967 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15968 ill->ill_max_mtu = IPV6_MIN_MTU; 15969 } else { 15970 if (ill->ill_max_mtu < IP_MIN_MTU) 15971 ill->ill_max_mtu = IP_MIN_MTU; 15972 } 15973 for (ipif = ill->ill_ipif; ipif != NULL; 15974 ipif = ipif->ipif_next) { 15975 /* 15976 * Don't override the mtu if the user 15977 * has explicitly set it. 15978 */ 15979 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15980 continue; 15981 ipif->ipif_mtu = (uint_t)notify->dl_data; 15982 if (ipif->ipif_isv6) 15983 ire = ipif_to_ire_v6(ipif); 15984 else 15985 ire = ipif_to_ire(ipif); 15986 if (ire != NULL) { 15987 ire->ire_max_frag = ipif->ipif_mtu; 15988 ire_refrele(ire); 15989 } 15990 if (ipif->ipif_flags & IPIF_UP) { 15991 if (ill->ill_isv6) 15992 need_ire_walk_v6 = B_TRUE; 15993 else 15994 need_ire_walk_v4 = B_TRUE; 15995 } 15996 } 15997 mutex_exit(&ill->ill_lock); 15998 if (need_ire_walk_v4) 15999 ire_walk_v4(ill_mtu_change, (char *)ill, 16000 ALL_ZONES, ipst); 16001 if (need_ire_walk_v6) 16002 ire_walk_v6(ill_mtu_change, (char *)ill, 16003 ALL_ZONES, ipst); 16004 break; 16005 case DL_NOTE_LINK_UP: 16006 case DL_NOTE_LINK_DOWN: { 16007 /* 16008 * We are writer. ill / phyint / ipsq assocs stable. 16009 * The RUNNING flag reflects the state of the link. 16010 */ 16011 phyint_t *phyint = ill->ill_phyint; 16012 uint64_t new_phyint_flags; 16013 boolean_t changed = B_FALSE; 16014 boolean_t went_up; 16015 16016 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16017 mutex_enter(&phyint->phyint_lock); 16018 new_phyint_flags = went_up ? 16019 phyint->phyint_flags | PHYI_RUNNING : 16020 phyint->phyint_flags & ~PHYI_RUNNING; 16021 if (new_phyint_flags != phyint->phyint_flags) { 16022 phyint->phyint_flags = new_phyint_flags; 16023 changed = B_TRUE; 16024 } 16025 mutex_exit(&phyint->phyint_lock); 16026 /* 16027 * ill_restart_dad handles the DAD restart and routing 16028 * socket notification logic. 16029 */ 16030 if (changed) { 16031 ill_restart_dad(phyint->phyint_illv4, went_up); 16032 ill_restart_dad(phyint->phyint_illv6, went_up); 16033 } 16034 break; 16035 } 16036 case DL_NOTE_PROMISC_ON_PHYS: 16037 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16038 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16039 mutex_enter(&ill->ill_lock); 16040 ill->ill_promisc_on_phys = B_TRUE; 16041 mutex_exit(&ill->ill_lock); 16042 break; 16043 case DL_NOTE_PROMISC_OFF_PHYS: 16044 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16045 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16046 mutex_enter(&ill->ill_lock); 16047 ill->ill_promisc_on_phys = B_FALSE; 16048 mutex_exit(&ill->ill_lock); 16049 break; 16050 case DL_NOTE_CAPAB_RENEG: 16051 /* 16052 * Something changed on the driver side. 16053 * It wants us to renegotiate the capabilities 16054 * on this ill. One possible cause is the aggregation 16055 * interface under us where a port got added or 16056 * went away. 16057 * 16058 * If the capability negotiation is already done 16059 * or is in progress, reset the capabilities and 16060 * mark the ill's ill_capab_reneg to be B_TRUE, 16061 * so that when the ack comes back, we can start 16062 * the renegotiation process. 16063 * 16064 * Note that if ill_capab_reneg is already B_TRUE 16065 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16066 * the capability resetting request has been sent 16067 * and the renegotiation has not been started yet; 16068 * nothing needs to be done in this case. 16069 */ 16070 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16071 ill_capability_reset(ill); 16072 ill->ill_capab_reneg = B_TRUE; 16073 } 16074 break; 16075 default: 16076 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16077 "type 0x%x for DL_NOTIFY_IND\n", 16078 notify->dl_notification)); 16079 break; 16080 } 16081 16082 /* 16083 * As this is an asynchronous operation, we 16084 * should not call ill_dlpi_done 16085 */ 16086 break; 16087 } 16088 case DL_NOTIFY_ACK: { 16089 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16090 16091 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16092 ill->ill_note_link = 1; 16093 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16094 break; 16095 } 16096 case DL_PHYS_ADDR_ACK: { 16097 /* 16098 * As part of plumbing the interface via SIOCSLIFNAME, 16099 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16100 * whose answers we receive here. As each answer is received, 16101 * we call ill_dlpi_done() to dispatch the next request as 16102 * we're processing the current one. Once all answers have 16103 * been received, we use ipsq_pending_mp_get() to dequeue the 16104 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16105 * is invoked from an ill queue, conn_oper_pending_ill is not 16106 * available, but we know the ioctl is pending on ill_wq.) 16107 */ 16108 uint_t paddrlen, paddroff; 16109 16110 paddrreq = ill->ill_phys_addr_pend; 16111 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16112 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16113 16114 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16115 if (paddrreq == DL_IPV6_TOKEN) { 16116 /* 16117 * bcopy to low-order bits of ill_token 16118 * 16119 * XXX Temporary hack - currently, all known tokens 16120 * are 64 bits, so I'll cheat for the moment. 16121 */ 16122 bcopy(mp->b_rptr + paddroff, 16123 &ill->ill_token.s6_addr32[2], paddrlen); 16124 ill->ill_token_length = paddrlen; 16125 break; 16126 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16127 ASSERT(ill->ill_nd_lla_mp == NULL); 16128 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16129 mp = NULL; 16130 break; 16131 } 16132 16133 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16134 ASSERT(ill->ill_phys_addr_mp == NULL); 16135 if (!ill->ill_ifname_pending) 16136 break; 16137 ill->ill_ifname_pending = 0; 16138 if (!ioctl_aborted) 16139 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16140 if (mp1 != NULL) { 16141 ASSERT(connp == NULL); 16142 q = ill->ill_wq; 16143 } 16144 /* 16145 * If any error acks received during the plumbing sequence, 16146 * ill_ifname_pending_err will be set. Break out and send up 16147 * the error to the pending ioctl. 16148 */ 16149 if (ill->ill_ifname_pending_err != 0) { 16150 err = ill->ill_ifname_pending_err; 16151 ill->ill_ifname_pending_err = 0; 16152 break; 16153 } 16154 16155 ill->ill_phys_addr_mp = mp; 16156 ill->ill_phys_addr = mp->b_rptr + paddroff; 16157 mp = NULL; 16158 16159 /* 16160 * If paddrlen is zero, the DLPI provider doesn't support 16161 * physical addresses. The other two tests were historical 16162 * workarounds for bugs in our former PPP implementation, but 16163 * now other things have grown dependencies on them -- e.g., 16164 * the tun module specifies a dl_addr_length of zero in its 16165 * DL_BIND_ACK, but then specifies an incorrect value in its 16166 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16167 * but only after careful testing ensures that all dependent 16168 * broken DLPI providers have been fixed. 16169 */ 16170 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16171 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16172 ill->ill_phys_addr = NULL; 16173 } else if (paddrlen != ill->ill_phys_addr_length) { 16174 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16175 paddrlen, ill->ill_phys_addr_length)); 16176 err = EINVAL; 16177 break; 16178 } 16179 16180 if (ill->ill_nd_lla_mp == NULL) { 16181 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16182 err = ENOMEM; 16183 break; 16184 } 16185 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16186 } 16187 16188 /* 16189 * Set the interface token. If the zeroth interface address 16190 * is unspecified, then set it to the link local address. 16191 */ 16192 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16193 (void) ill_setdefaulttoken(ill); 16194 16195 ASSERT(ill->ill_ipif->ipif_id == 0); 16196 if (ipif != NULL && 16197 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16198 (void) ipif_setlinklocal(ipif); 16199 } 16200 break; 16201 } 16202 case DL_OK_ACK: 16203 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16204 dl_primstr((int)dloa->dl_correct_primitive), 16205 dloa->dl_correct_primitive)); 16206 switch (dloa->dl_correct_primitive) { 16207 case DL_ENABMULTI_REQ: 16208 case DL_DISABMULTI_REQ: 16209 if (!ill->ill_isv6) 16210 ipsq_current_finish(ipsq); 16211 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16212 break; 16213 case DL_PROMISCON_REQ: 16214 case DL_PROMISCOFF_REQ: 16215 case DL_UNBIND_REQ: 16216 case DL_ATTACH_REQ: 16217 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16218 break; 16219 } 16220 break; 16221 default: 16222 break; 16223 } 16224 16225 freemsg(mp); 16226 if (mp1 != NULL) { 16227 /* 16228 * The operation must complete without EINPROGRESS 16229 * since ipsq_pending_mp_get() has removed the mblk 16230 * from ipsq_pending_mp. Otherwise, the operation 16231 * will be stuck forever in the ipsq. 16232 */ 16233 ASSERT(err != EINPROGRESS); 16234 16235 switch (ipsq->ipsq_current_ioctl) { 16236 case 0: 16237 ipsq_current_finish(ipsq); 16238 break; 16239 16240 case SIOCLIFADDIF: 16241 case SIOCSLIFNAME: 16242 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16243 break; 16244 16245 default: 16246 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16247 break; 16248 } 16249 } 16250 } 16251 16252 /* 16253 * ip_rput_other is called by ip_rput to handle messages modifying the global 16254 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16255 */ 16256 /* ARGSUSED */ 16257 void 16258 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16259 { 16260 ill_t *ill; 16261 struct iocblk *iocp; 16262 mblk_t *mp1; 16263 conn_t *connp = NULL; 16264 16265 ip1dbg(("ip_rput_other ")); 16266 ill = (ill_t *)q->q_ptr; 16267 /* 16268 * This routine is not a writer in the case of SIOCGTUNPARAM 16269 * in which case ipsq is NULL. 16270 */ 16271 if (ipsq != NULL) { 16272 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16273 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16274 } 16275 16276 switch (mp->b_datap->db_type) { 16277 case M_ERROR: 16278 case M_HANGUP: 16279 /* 16280 * The device has a problem. We force the ILL down. It can 16281 * be brought up again manually using SIOCSIFFLAGS (via 16282 * ifconfig or equivalent). 16283 */ 16284 ASSERT(ipsq != NULL); 16285 if (mp->b_rptr < mp->b_wptr) 16286 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16287 if (ill->ill_error == 0) 16288 ill->ill_error = ENXIO; 16289 if (!ill_down_start(q, mp)) 16290 return; 16291 ipif_all_down_tail(ipsq, q, mp, NULL); 16292 break; 16293 case M_IOCACK: 16294 iocp = (struct iocblk *)mp->b_rptr; 16295 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16296 switch (iocp->ioc_cmd) { 16297 case SIOCSTUNPARAM: 16298 case OSIOCSTUNPARAM: 16299 ASSERT(ipsq != NULL); 16300 /* 16301 * Finish socket ioctl passed through to tun. 16302 * We should have an IOCTL waiting on this. 16303 */ 16304 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16305 if (ill->ill_isv6) { 16306 struct iftun_req *ta; 16307 16308 /* 16309 * if a source or destination is 16310 * being set, try and set the link 16311 * local address for the tunnel 16312 */ 16313 ta = (struct iftun_req *)mp->b_cont-> 16314 b_cont->b_rptr; 16315 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16316 ipif_set_tun_llink(ill, ta); 16317 } 16318 16319 } 16320 if (mp1 != NULL) { 16321 /* 16322 * Now copy back the b_next/b_prev used by 16323 * mi code for the mi_copy* functions. 16324 * See ip_sioctl_tunparam() for the reason. 16325 * Also protect against missing b_cont. 16326 */ 16327 if (mp->b_cont != NULL) { 16328 mp->b_cont->b_next = 16329 mp1->b_cont->b_next; 16330 mp->b_cont->b_prev = 16331 mp1->b_cont->b_prev; 16332 } 16333 inet_freemsg(mp1); 16334 ASSERT(connp != NULL); 16335 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16336 iocp->ioc_error, NO_COPYOUT, ipsq); 16337 } else { 16338 ASSERT(connp == NULL); 16339 putnext(q, mp); 16340 } 16341 break; 16342 case SIOCGTUNPARAM: 16343 case OSIOCGTUNPARAM: 16344 /* 16345 * This is really M_IOCDATA from the tunnel driver. 16346 * convert back and complete the ioctl. 16347 * We should have an IOCTL waiting on this. 16348 */ 16349 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16350 if (mp1) { 16351 /* 16352 * Now copy back the b_next/b_prev used by 16353 * mi code for the mi_copy* functions. 16354 * See ip_sioctl_tunparam() for the reason. 16355 * Also protect against missing b_cont. 16356 */ 16357 if (mp->b_cont != NULL) { 16358 mp->b_cont->b_next = 16359 mp1->b_cont->b_next; 16360 mp->b_cont->b_prev = 16361 mp1->b_cont->b_prev; 16362 } 16363 inet_freemsg(mp1); 16364 if (iocp->ioc_error == 0) 16365 mp->b_datap->db_type = M_IOCDATA; 16366 ASSERT(connp != NULL); 16367 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16368 iocp->ioc_error, COPYOUT, NULL); 16369 } else { 16370 ASSERT(connp == NULL); 16371 putnext(q, mp); 16372 } 16373 break; 16374 default: 16375 break; 16376 } 16377 break; 16378 case M_IOCNAK: 16379 iocp = (struct iocblk *)mp->b_rptr; 16380 16381 switch (iocp->ioc_cmd) { 16382 int mode; 16383 16384 case DL_IOC_HDR_INFO: 16385 /* 16386 * If this was the first attempt turn of the 16387 * fastpath probing. 16388 */ 16389 mutex_enter(&ill->ill_lock); 16390 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16391 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16392 mutex_exit(&ill->ill_lock); 16393 ill_fastpath_nack(ill); 16394 ip1dbg(("ip_rput: DLPI fastpath off on " 16395 "interface %s\n", 16396 ill->ill_name)); 16397 } else { 16398 mutex_exit(&ill->ill_lock); 16399 } 16400 freemsg(mp); 16401 break; 16402 case SIOCSTUNPARAM: 16403 case OSIOCSTUNPARAM: 16404 ASSERT(ipsq != NULL); 16405 /* 16406 * Finish socket ioctl passed through to tun 16407 * We should have an IOCTL waiting on this. 16408 */ 16409 /* FALLTHRU */ 16410 case SIOCGTUNPARAM: 16411 case OSIOCGTUNPARAM: 16412 /* 16413 * This is really M_IOCDATA from the tunnel driver. 16414 * convert back and complete the ioctl. 16415 * We should have an IOCTL waiting on this. 16416 */ 16417 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16418 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16419 mp1 = ill_pending_mp_get(ill, &connp, 16420 iocp->ioc_id); 16421 mode = COPYOUT; 16422 ipsq = NULL; 16423 } else { 16424 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16425 mode = NO_COPYOUT; 16426 } 16427 if (mp1 != NULL) { 16428 /* 16429 * Now copy back the b_next/b_prev used by 16430 * mi code for the mi_copy* functions. 16431 * See ip_sioctl_tunparam() for the reason. 16432 * Also protect against missing b_cont. 16433 */ 16434 if (mp->b_cont != NULL) { 16435 mp->b_cont->b_next = 16436 mp1->b_cont->b_next; 16437 mp->b_cont->b_prev = 16438 mp1->b_cont->b_prev; 16439 } 16440 inet_freemsg(mp1); 16441 if (iocp->ioc_error == 0) 16442 iocp->ioc_error = EINVAL; 16443 ASSERT(connp != NULL); 16444 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16445 iocp->ioc_error, mode, ipsq); 16446 } else { 16447 ASSERT(connp == NULL); 16448 putnext(q, mp); 16449 } 16450 break; 16451 default: 16452 break; 16453 } 16454 default: 16455 break; 16456 } 16457 } 16458 16459 /* 16460 * NOTE : This function does not ire_refrele the ire argument passed in. 16461 * 16462 * IPQoS notes 16463 * IP policy is invoked twice for a forwarded packet, once on the read side 16464 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16465 * enabled. An additional parameter, in_ill, has been added for this purpose. 16466 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16467 * because ip_mroute drops this information. 16468 * 16469 */ 16470 void 16471 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16472 { 16473 uint32_t old_pkt_len; 16474 uint32_t pkt_len; 16475 queue_t *q; 16476 uint32_t sum; 16477 #define rptr ((uchar_t *)ipha) 16478 uint32_t max_frag; 16479 uint32_t ill_index; 16480 ill_t *out_ill; 16481 mib2_ipIfStatsEntry_t *mibptr; 16482 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16483 16484 /* Get the ill_index of the incoming ILL */ 16485 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16486 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16487 16488 /* Initiate Read side IPPF processing */ 16489 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16490 ip_process(IPP_FWD_IN, &mp, ill_index); 16491 if (mp == NULL) { 16492 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16493 "during IPPF processing\n")); 16494 return; 16495 } 16496 } 16497 16498 /* Adjust the checksum to reflect the ttl decrement. */ 16499 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16500 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16501 16502 if (ipha->ipha_ttl-- <= 1) { 16503 if (ip_csum_hdr(ipha)) { 16504 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16505 goto drop_pkt; 16506 } 16507 /* 16508 * Note: ire_stq this will be NULL for multicast 16509 * datagrams using the long path through arp (the IRE 16510 * is not an IRE_CACHE). This should not cause 16511 * problems since we don't generate ICMP errors for 16512 * multicast packets. 16513 */ 16514 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16515 q = ire->ire_stq; 16516 if (q != NULL) { 16517 /* Sent by forwarding path, and router is global zone */ 16518 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16519 GLOBAL_ZONEID, ipst); 16520 } else 16521 freemsg(mp); 16522 return; 16523 } 16524 16525 /* 16526 * Don't forward if the interface is down 16527 */ 16528 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16529 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16530 ip2dbg(("ip_rput_forward:interface is down\n")); 16531 goto drop_pkt; 16532 } 16533 16534 /* Get the ill_index of the outgoing ILL */ 16535 out_ill = ire_to_ill(ire); 16536 ill_index = out_ill->ill_phyint->phyint_ifindex; 16537 16538 DTRACE_PROBE4(ip4__forwarding__start, 16539 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16540 16541 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16542 ipst->ips_ipv4firewall_forwarding, 16543 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16544 16545 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16546 16547 if (mp == NULL) 16548 return; 16549 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16550 16551 if (is_system_labeled()) { 16552 mblk_t *mp1; 16553 16554 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16555 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16556 goto drop_pkt; 16557 } 16558 /* Size may have changed */ 16559 mp = mp1; 16560 ipha = (ipha_t *)mp->b_rptr; 16561 pkt_len = ntohs(ipha->ipha_length); 16562 } 16563 16564 /* Check if there are options to update */ 16565 if (!IS_SIMPLE_IPH(ipha)) { 16566 if (ip_csum_hdr(ipha)) { 16567 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16568 goto drop_pkt; 16569 } 16570 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16571 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16572 return; 16573 } 16574 16575 ipha->ipha_hdr_checksum = 0; 16576 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16577 } 16578 max_frag = ire->ire_max_frag; 16579 if (pkt_len > max_frag) { 16580 /* 16581 * It needs fragging on its way out. We haven't 16582 * verified the header checksum yet. Since we 16583 * are going to put a surely good checksum in the 16584 * outgoing header, we have to make sure that it 16585 * was good coming in. 16586 */ 16587 if (ip_csum_hdr(ipha)) { 16588 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16589 goto drop_pkt; 16590 } 16591 /* Initiate Write side IPPF processing */ 16592 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16593 ip_process(IPP_FWD_OUT, &mp, ill_index); 16594 if (mp == NULL) { 16595 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16596 " during IPPF processing\n")); 16597 return; 16598 } 16599 } 16600 /* 16601 * Handle labeled packet resizing. 16602 * 16603 * If we have added a label, inform ip_wput_frag() of its 16604 * effect on the MTU for ICMP messages. 16605 */ 16606 if (pkt_len > old_pkt_len) { 16607 uint32_t secopt_size; 16608 16609 secopt_size = pkt_len - old_pkt_len; 16610 if (secopt_size < max_frag) 16611 max_frag -= secopt_size; 16612 } 16613 16614 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16615 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16616 return; 16617 } 16618 16619 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16620 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16621 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16622 ipst->ips_ipv4firewall_physical_out, 16623 NULL, out_ill, ipha, mp, mp, 0, ipst); 16624 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16625 if (mp == NULL) 16626 return; 16627 16628 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16629 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16630 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16631 /* ip_xmit_v4 always consumes the packet */ 16632 return; 16633 16634 drop_pkt:; 16635 ip1dbg(("ip_rput_forward: drop pkt\n")); 16636 freemsg(mp); 16637 #undef rptr 16638 } 16639 16640 void 16641 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16642 { 16643 ire_t *ire; 16644 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16645 16646 ASSERT(!ipif->ipif_isv6); 16647 /* 16648 * Find an IRE which matches the destination and the outgoing 16649 * queue in the cache table. All we need is an IRE_CACHE which 16650 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16651 * then it is enough to have some IRE_CACHE in the group. 16652 */ 16653 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16654 dst = ipif->ipif_pp_dst_addr; 16655 16656 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16657 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16658 if (ire == NULL) { 16659 /* 16660 * Mark this packet to make it be delivered to 16661 * ip_rput_forward after the new ire has been 16662 * created. 16663 */ 16664 mp->b_prev = NULL; 16665 mp->b_next = mp; 16666 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16667 NULL, 0, GLOBAL_ZONEID, &zero_info); 16668 } else { 16669 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16670 IRE_REFRELE(ire); 16671 } 16672 } 16673 16674 /* Update any source route, record route or timestamp options */ 16675 static int 16676 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16677 { 16678 ipoptp_t opts; 16679 uchar_t *opt; 16680 uint8_t optval; 16681 uint8_t optlen; 16682 ipaddr_t dst; 16683 uint32_t ts; 16684 ire_t *dst_ire = NULL; 16685 ire_t *tmp_ire = NULL; 16686 timestruc_t now; 16687 16688 ip2dbg(("ip_rput_forward_options\n")); 16689 dst = ipha->ipha_dst; 16690 for (optval = ipoptp_first(&opts, ipha); 16691 optval != IPOPT_EOL; 16692 optval = ipoptp_next(&opts)) { 16693 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16694 opt = opts.ipoptp_cur; 16695 optlen = opts.ipoptp_len; 16696 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16697 optval, opts.ipoptp_len)); 16698 switch (optval) { 16699 uint32_t off; 16700 case IPOPT_SSRR: 16701 case IPOPT_LSRR: 16702 /* Check if adminstratively disabled */ 16703 if (!ipst->ips_ip_forward_src_routed) { 16704 if (ire->ire_stq != NULL) { 16705 /* 16706 * Sent by forwarding path, and router 16707 * is global zone 16708 */ 16709 icmp_unreachable(ire->ire_stq, mp, 16710 ICMP_SOURCE_ROUTE_FAILED, 16711 GLOBAL_ZONEID, ipst); 16712 } else { 16713 ip0dbg(("ip_rput_forward_options: " 16714 "unable to send unreach\n")); 16715 freemsg(mp); 16716 } 16717 return (-1); 16718 } 16719 16720 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16721 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16722 if (dst_ire == NULL) { 16723 /* 16724 * Must be partial since ip_rput_options 16725 * checked for strict. 16726 */ 16727 break; 16728 } 16729 off = opt[IPOPT_OFFSET]; 16730 off--; 16731 redo_srr: 16732 if (optlen < IP_ADDR_LEN || 16733 off > optlen - IP_ADDR_LEN) { 16734 /* End of source route */ 16735 ip1dbg(( 16736 "ip_rput_forward_options: end of SR\n")); 16737 ire_refrele(dst_ire); 16738 break; 16739 } 16740 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16741 bcopy(&ire->ire_src_addr, (char *)opt + off, 16742 IP_ADDR_LEN); 16743 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16744 ntohl(dst))); 16745 16746 /* 16747 * Check if our address is present more than 16748 * once as consecutive hops in source route. 16749 */ 16750 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16751 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16752 if (tmp_ire != NULL) { 16753 ire_refrele(tmp_ire); 16754 off += IP_ADDR_LEN; 16755 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16756 goto redo_srr; 16757 } 16758 ipha->ipha_dst = dst; 16759 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16760 ire_refrele(dst_ire); 16761 break; 16762 case IPOPT_RR: 16763 off = opt[IPOPT_OFFSET]; 16764 off--; 16765 if (optlen < IP_ADDR_LEN || 16766 off > optlen - IP_ADDR_LEN) { 16767 /* No more room - ignore */ 16768 ip1dbg(( 16769 "ip_rput_forward_options: end of RR\n")); 16770 break; 16771 } 16772 bcopy(&ire->ire_src_addr, (char *)opt + off, 16773 IP_ADDR_LEN); 16774 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16775 break; 16776 case IPOPT_TS: 16777 /* Insert timestamp if there is room */ 16778 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16779 case IPOPT_TS_TSONLY: 16780 off = IPOPT_TS_TIMELEN; 16781 break; 16782 case IPOPT_TS_PRESPEC: 16783 case IPOPT_TS_PRESPEC_RFC791: 16784 /* Verify that the address matched */ 16785 off = opt[IPOPT_OFFSET] - 1; 16786 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16787 dst_ire = ire_ctable_lookup(dst, 0, 16788 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16789 MATCH_IRE_TYPE, ipst); 16790 if (dst_ire == NULL) { 16791 /* Not for us */ 16792 break; 16793 } 16794 ire_refrele(dst_ire); 16795 /* FALLTHRU */ 16796 case IPOPT_TS_TSANDADDR: 16797 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16798 break; 16799 default: 16800 /* 16801 * ip_*put_options should have already 16802 * dropped this packet. 16803 */ 16804 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16805 "unknown IT - bug in ip_rput_options?\n"); 16806 return (0); /* Keep "lint" happy */ 16807 } 16808 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16809 /* Increase overflow counter */ 16810 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16811 opt[IPOPT_POS_OV_FLG] = 16812 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16813 (off << 4)); 16814 break; 16815 } 16816 off = opt[IPOPT_OFFSET] - 1; 16817 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16818 case IPOPT_TS_PRESPEC: 16819 case IPOPT_TS_PRESPEC_RFC791: 16820 case IPOPT_TS_TSANDADDR: 16821 bcopy(&ire->ire_src_addr, 16822 (char *)opt + off, IP_ADDR_LEN); 16823 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16824 /* FALLTHRU */ 16825 case IPOPT_TS_TSONLY: 16826 off = opt[IPOPT_OFFSET] - 1; 16827 /* Compute # of milliseconds since midnight */ 16828 gethrestime(&now); 16829 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16830 now.tv_nsec / (NANOSEC / MILLISEC); 16831 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16832 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16833 break; 16834 } 16835 break; 16836 } 16837 } 16838 return (0); 16839 } 16840 16841 /* 16842 * This is called after processing at least one of AH/ESP headers. 16843 * 16844 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16845 * the actual, physical interface on which the packet was received, 16846 * but, when ip_strict_dst_multihoming is set to 1, could be the 16847 * interface which had the ipha_dst configured when the packet went 16848 * through ip_rput. The ill_index corresponding to the recv_ill 16849 * is saved in ipsec_in_rill_index 16850 * 16851 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16852 * cannot assume "ire" points to valid data for any IPv6 cases. 16853 */ 16854 void 16855 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16856 { 16857 mblk_t *mp; 16858 ipaddr_t dst; 16859 in6_addr_t *v6dstp; 16860 ipha_t *ipha; 16861 ip6_t *ip6h; 16862 ipsec_in_t *ii; 16863 boolean_t ill_need_rele = B_FALSE; 16864 boolean_t rill_need_rele = B_FALSE; 16865 boolean_t ire_need_rele = B_FALSE; 16866 netstack_t *ns; 16867 ip_stack_t *ipst; 16868 16869 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16870 ASSERT(ii->ipsec_in_ill_index != 0); 16871 ns = ii->ipsec_in_ns; 16872 ASSERT(ii->ipsec_in_ns != NULL); 16873 ipst = ns->netstack_ip; 16874 16875 mp = ipsec_mp->b_cont; 16876 ASSERT(mp != NULL); 16877 16878 16879 if (ill == NULL) { 16880 ASSERT(recv_ill == NULL); 16881 /* 16882 * We need to get the original queue on which ip_rput_local 16883 * or ip_rput_data_v6 was called. 16884 */ 16885 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16886 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16887 ill_need_rele = B_TRUE; 16888 16889 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16890 recv_ill = ill_lookup_on_ifindex( 16891 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16892 NULL, NULL, NULL, NULL, ipst); 16893 rill_need_rele = B_TRUE; 16894 } else { 16895 recv_ill = ill; 16896 } 16897 16898 if ((ill == NULL) || (recv_ill == NULL)) { 16899 ip0dbg(("ip_fanout_proto_again: interface " 16900 "disappeared\n")); 16901 if (ill != NULL) 16902 ill_refrele(ill); 16903 if (recv_ill != NULL) 16904 ill_refrele(recv_ill); 16905 freemsg(ipsec_mp); 16906 return; 16907 } 16908 } 16909 16910 ASSERT(ill != NULL && recv_ill != NULL); 16911 16912 if (mp->b_datap->db_type == M_CTL) { 16913 /* 16914 * AH/ESP is returning the ICMP message after 16915 * removing their headers. Fanout again till 16916 * it gets to the right protocol. 16917 */ 16918 if (ii->ipsec_in_v4) { 16919 icmph_t *icmph; 16920 int iph_hdr_length; 16921 int hdr_length; 16922 16923 ipha = (ipha_t *)mp->b_rptr; 16924 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16925 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16926 ipha = (ipha_t *)&icmph[1]; 16927 hdr_length = IPH_HDR_LENGTH(ipha); 16928 /* 16929 * icmp_inbound_error_fanout may need to do pullupmsg. 16930 * Reset the type to M_DATA. 16931 */ 16932 mp->b_datap->db_type = M_DATA; 16933 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16934 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16935 B_FALSE, ill, ii->ipsec_in_zoneid); 16936 } else { 16937 icmp6_t *icmp6; 16938 int hdr_length; 16939 16940 ip6h = (ip6_t *)mp->b_rptr; 16941 /* Don't call hdr_length_v6() unless you have to. */ 16942 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16943 hdr_length = ip_hdr_length_v6(mp, ip6h); 16944 else 16945 hdr_length = IPV6_HDR_LEN; 16946 16947 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16948 /* 16949 * icmp_inbound_error_fanout_v6 may need to do 16950 * pullupmsg. Reset the type to M_DATA. 16951 */ 16952 mp->b_datap->db_type = M_DATA; 16953 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16954 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16955 } 16956 if (ill_need_rele) 16957 ill_refrele(ill); 16958 if (rill_need_rele) 16959 ill_refrele(recv_ill); 16960 return; 16961 } 16962 16963 if (ii->ipsec_in_v4) { 16964 ipha = (ipha_t *)mp->b_rptr; 16965 dst = ipha->ipha_dst; 16966 if (CLASSD(dst)) { 16967 /* 16968 * Multicast has to be delivered to all streams. 16969 */ 16970 dst = INADDR_BROADCAST; 16971 } 16972 16973 if (ire == NULL) { 16974 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16975 MBLK_GETLABEL(mp), ipst); 16976 if (ire == NULL) { 16977 if (ill_need_rele) 16978 ill_refrele(ill); 16979 if (rill_need_rele) 16980 ill_refrele(recv_ill); 16981 ip1dbg(("ip_fanout_proto_again: " 16982 "IRE not found")); 16983 freemsg(ipsec_mp); 16984 return; 16985 } 16986 ire_need_rele = B_TRUE; 16987 } 16988 16989 switch (ipha->ipha_protocol) { 16990 case IPPROTO_UDP: 16991 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16992 recv_ill); 16993 if (ire_need_rele) 16994 ire_refrele(ire); 16995 break; 16996 case IPPROTO_TCP: 16997 if (!ire_need_rele) 16998 IRE_REFHOLD(ire); 16999 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17000 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17001 IRE_REFRELE(ire); 17002 if (mp != NULL) 17003 squeue_enter_chain(GET_SQUEUE(mp), mp, 17004 mp, 1, SQTAG_IP_PROTO_AGAIN); 17005 break; 17006 case IPPROTO_SCTP: 17007 if (!ire_need_rele) 17008 IRE_REFHOLD(ire); 17009 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17010 ipsec_mp, 0, ill->ill_rq, dst); 17011 break; 17012 default: 17013 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17014 recv_ill, 0); 17015 if (ire_need_rele) 17016 ire_refrele(ire); 17017 break; 17018 } 17019 } else { 17020 uint32_t rput_flags = 0; 17021 17022 ip6h = (ip6_t *)mp->b_rptr; 17023 v6dstp = &ip6h->ip6_dst; 17024 /* 17025 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17026 * address. 17027 * 17028 * Currently, we don't store that state in the IPSEC_IN 17029 * message, and we may need to. 17030 */ 17031 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17032 IP6_IN_LLMCAST : 0); 17033 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17034 NULL, NULL); 17035 } 17036 if (ill_need_rele) 17037 ill_refrele(ill); 17038 if (rill_need_rele) 17039 ill_refrele(recv_ill); 17040 } 17041 17042 /* 17043 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17044 * returns 'true' if there are still fragments left on the queue, in 17045 * which case we restart the timer. 17046 */ 17047 void 17048 ill_frag_timer(void *arg) 17049 { 17050 ill_t *ill = (ill_t *)arg; 17051 boolean_t frag_pending; 17052 ip_stack_t *ipst = ill->ill_ipst; 17053 17054 mutex_enter(&ill->ill_lock); 17055 ASSERT(!ill->ill_fragtimer_executing); 17056 if (ill->ill_state_flags & ILL_CONDEMNED) { 17057 ill->ill_frag_timer_id = 0; 17058 mutex_exit(&ill->ill_lock); 17059 return; 17060 } 17061 ill->ill_fragtimer_executing = 1; 17062 mutex_exit(&ill->ill_lock); 17063 17064 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17065 17066 /* 17067 * Restart the timer, if we have fragments pending or if someone 17068 * wanted us to be scheduled again. 17069 */ 17070 mutex_enter(&ill->ill_lock); 17071 ill->ill_fragtimer_executing = 0; 17072 ill->ill_frag_timer_id = 0; 17073 if (frag_pending || ill->ill_fragtimer_needrestart) 17074 ill_frag_timer_start(ill); 17075 mutex_exit(&ill->ill_lock); 17076 } 17077 17078 void 17079 ill_frag_timer_start(ill_t *ill) 17080 { 17081 ip_stack_t *ipst = ill->ill_ipst; 17082 17083 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17084 17085 /* If the ill is closing or opening don't proceed */ 17086 if (ill->ill_state_flags & ILL_CONDEMNED) 17087 return; 17088 17089 if (ill->ill_fragtimer_executing) { 17090 /* 17091 * ill_frag_timer is currently executing. Just record the 17092 * the fact that we want the timer to be restarted. 17093 * ill_frag_timer will post a timeout before it returns, 17094 * ensuring it will be called again. 17095 */ 17096 ill->ill_fragtimer_needrestart = 1; 17097 return; 17098 } 17099 17100 if (ill->ill_frag_timer_id == 0) { 17101 /* 17102 * The timer is neither running nor is the timeout handler 17103 * executing. Post a timeout so that ill_frag_timer will be 17104 * called 17105 */ 17106 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17107 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17108 ill->ill_fragtimer_needrestart = 0; 17109 } 17110 } 17111 17112 /* 17113 * This routine is needed for loopback when forwarding multicasts. 17114 * 17115 * IPQoS Notes: 17116 * IPPF processing is done in fanout routines. 17117 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17118 * processing for IPsec packets is done when it comes back in clear. 17119 * NOTE : The callers of this function need to do the ire_refrele for the 17120 * ire that is being passed in. 17121 */ 17122 void 17123 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17124 ill_t *recv_ill, uint32_t esp_udp_ports) 17125 { 17126 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17127 ill_t *ill = (ill_t *)q->q_ptr; 17128 uint32_t sum; 17129 uint32_t u1; 17130 uint32_t u2; 17131 int hdr_length; 17132 boolean_t mctl_present; 17133 mblk_t *first_mp = mp; 17134 mblk_t *hada_mp = NULL; 17135 ipha_t *inner_ipha; 17136 ip_stack_t *ipst; 17137 17138 ASSERT(recv_ill != NULL); 17139 ipst = recv_ill->ill_ipst; 17140 17141 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17142 "ip_rput_locl_start: q %p", q); 17143 17144 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17145 ASSERT(ill != NULL); 17146 17147 17148 #define rptr ((uchar_t *)ipha) 17149 #define iphs ((uint16_t *)ipha) 17150 17151 /* 17152 * no UDP or TCP packet should come here anymore. 17153 */ 17154 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17155 ipha->ipha_protocol != IPPROTO_UDP); 17156 17157 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17158 if (mctl_present && 17159 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17160 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17161 17162 /* 17163 * It's an IPsec accelerated packet. 17164 * Keep a pointer to the data attributes around until 17165 * we allocate the ipsec_info_t. 17166 */ 17167 IPSECHW_DEBUG(IPSECHW_PKT, 17168 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17169 hada_mp = first_mp; 17170 hada_mp->b_cont = NULL; 17171 /* 17172 * Since it is accelerated, it comes directly from 17173 * the ill and the data attributes is followed by 17174 * the packet data. 17175 */ 17176 ASSERT(mp->b_datap->db_type != M_CTL); 17177 first_mp = mp; 17178 mctl_present = B_FALSE; 17179 } 17180 17181 /* 17182 * IF M_CTL is not present, then ipsec_in_is_secure 17183 * should return B_TRUE. There is a case where loopback 17184 * packets has an M_CTL in the front with all the 17185 * IPsec options set to IPSEC_PREF_NEVER - which means 17186 * ipsec_in_is_secure will return B_FALSE. As loopback 17187 * packets never comes here, it is safe to ASSERT the 17188 * following. 17189 */ 17190 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17191 17192 /* 17193 * Also, we should never have an mctl_present if this is an 17194 * ESP-in-UDP packet. 17195 */ 17196 ASSERT(!mctl_present || !esp_in_udp_packet); 17197 17198 17199 /* u1 is # words of IP options */ 17200 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17201 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17202 17203 /* 17204 * Don't verify header checksum if we just removed UDP header or 17205 * packet is coming back from AH/ESP. 17206 */ 17207 if (!esp_in_udp_packet && !mctl_present) { 17208 if (u1) { 17209 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17210 if (hada_mp != NULL) 17211 freemsg(hada_mp); 17212 return; 17213 } 17214 } else { 17215 /* Check the IP header checksum. */ 17216 #define uph ((uint16_t *)ipha) 17217 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17218 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17219 #undef uph 17220 /* finish doing IP checksum */ 17221 sum = (sum & 0xFFFF) + (sum >> 16); 17222 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17223 if (sum && sum != 0xFFFF) { 17224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17225 goto drop_pkt; 17226 } 17227 } 17228 } 17229 17230 /* 17231 * Count for SNMP of inbound packets for ire. As ip_proto_input 17232 * might be called more than once for secure packets, count only 17233 * the first time. 17234 */ 17235 if (!mctl_present) { 17236 UPDATE_IB_PKT_COUNT(ire); 17237 ire->ire_last_used_time = lbolt; 17238 } 17239 17240 /* Check for fragmentation offset. */ 17241 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17242 u1 = u2 & (IPH_MF | IPH_OFFSET); 17243 if (u1) { 17244 /* 17245 * We re-assemble fragments before we do the AH/ESP 17246 * processing. Thus, M_CTL should not be present 17247 * while we are re-assembling. 17248 */ 17249 ASSERT(!mctl_present); 17250 ASSERT(first_mp == mp); 17251 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17252 return; 17253 } 17254 /* 17255 * Make sure that first_mp points back to mp as 17256 * the mp we came in with could have changed in 17257 * ip_rput_fragment(). 17258 */ 17259 ipha = (ipha_t *)mp->b_rptr; 17260 first_mp = mp; 17261 } 17262 17263 /* 17264 * Clear hardware checksumming flag as it is currently only 17265 * used by TCP and UDP. 17266 */ 17267 DB_CKSUMFLAGS(mp) = 0; 17268 17269 /* Now we have a complete datagram, destined for this machine. */ 17270 u1 = IPH_HDR_LENGTH(ipha); 17271 switch (ipha->ipha_protocol) { 17272 case IPPROTO_ICMP: { 17273 ire_t *ire_zone; 17274 ilm_t *ilm; 17275 mblk_t *mp1; 17276 zoneid_t last_zoneid; 17277 17278 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17279 ASSERT(ire->ire_type == IRE_BROADCAST); 17280 /* 17281 * In the multicast case, applications may have joined 17282 * the group from different zones, so we need to deliver 17283 * the packet to each of them. Loop through the 17284 * multicast memberships structures (ilm) on the receive 17285 * ill and send a copy of the packet up each matching 17286 * one. However, we don't do this for multicasts sent on 17287 * the loopback interface (PHYI_LOOPBACK flag set) as 17288 * they must stay in the sender's zone. 17289 * 17290 * ilm_add_v6() ensures that ilms in the same zone are 17291 * contiguous in the ill_ilm list. We use this property 17292 * to avoid sending duplicates needed when two 17293 * applications in the same zone join the same group on 17294 * different logical interfaces: we ignore the ilm if 17295 * its zoneid is the same as the last matching one. 17296 * In addition, the sending of the packet for 17297 * ire_zoneid is delayed until all of the other ilms 17298 * have been exhausted. 17299 */ 17300 last_zoneid = -1; 17301 ILM_WALKER_HOLD(recv_ill); 17302 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17303 ilm = ilm->ilm_next) { 17304 if ((ilm->ilm_flags & ILM_DELETED) || 17305 ipha->ipha_dst != ilm->ilm_addr || 17306 ilm->ilm_zoneid == last_zoneid || 17307 ilm->ilm_zoneid == ire->ire_zoneid || 17308 ilm->ilm_zoneid == ALL_ZONES || 17309 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17310 continue; 17311 mp1 = ip_copymsg(first_mp); 17312 if (mp1 == NULL) 17313 continue; 17314 icmp_inbound(q, mp1, B_TRUE, ill, 17315 0, sum, mctl_present, B_TRUE, 17316 recv_ill, ilm->ilm_zoneid); 17317 last_zoneid = ilm->ilm_zoneid; 17318 } 17319 ILM_WALKER_RELE(recv_ill); 17320 } else if (ire->ire_type == IRE_BROADCAST) { 17321 /* 17322 * In the broadcast case, there may be many zones 17323 * which need a copy of the packet delivered to them. 17324 * There is one IRE_BROADCAST per broadcast address 17325 * and per zone; we walk those using a helper function. 17326 * In addition, the sending of the packet for ire is 17327 * delayed until all of the other ires have been 17328 * processed. 17329 */ 17330 IRB_REFHOLD(ire->ire_bucket); 17331 ire_zone = NULL; 17332 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17333 ire)) != NULL) { 17334 mp1 = ip_copymsg(first_mp); 17335 if (mp1 == NULL) 17336 continue; 17337 17338 UPDATE_IB_PKT_COUNT(ire_zone); 17339 ire_zone->ire_last_used_time = lbolt; 17340 icmp_inbound(q, mp1, B_TRUE, ill, 17341 0, sum, mctl_present, B_TRUE, 17342 recv_ill, ire_zone->ire_zoneid); 17343 } 17344 IRB_REFRELE(ire->ire_bucket); 17345 } 17346 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17347 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17348 ire->ire_zoneid); 17349 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17350 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17351 return; 17352 } 17353 case IPPROTO_IGMP: 17354 /* 17355 * If we are not willing to accept IGMP packets in clear, 17356 * then check with global policy. 17357 */ 17358 if (ipst->ips_igmp_accept_clear_messages == 0) { 17359 first_mp = ipsec_check_global_policy(first_mp, NULL, 17360 ipha, NULL, mctl_present, ipst->ips_netstack); 17361 if (first_mp == NULL) 17362 return; 17363 } 17364 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17365 freemsg(first_mp); 17366 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17367 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17368 return; 17369 } 17370 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17371 /* Bad packet - discarded by igmp_input */ 17372 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17373 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17374 if (mctl_present) 17375 freeb(first_mp); 17376 return; 17377 } 17378 /* 17379 * igmp_input() may have returned the pulled up message. 17380 * So first_mp and ipha need to be reinitialized. 17381 */ 17382 ipha = (ipha_t *)mp->b_rptr; 17383 if (mctl_present) 17384 first_mp->b_cont = mp; 17385 else 17386 first_mp = mp; 17387 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17388 connf_head != NULL) { 17389 /* No user-level listener for IGMP packets */ 17390 goto drop_pkt; 17391 } 17392 /* deliver to local raw users */ 17393 break; 17394 case IPPROTO_PIM: 17395 /* 17396 * If we are not willing to accept PIM packets in clear, 17397 * then check with global policy. 17398 */ 17399 if (ipst->ips_pim_accept_clear_messages == 0) { 17400 first_mp = ipsec_check_global_policy(first_mp, NULL, 17401 ipha, NULL, mctl_present, ipst->ips_netstack); 17402 if (first_mp == NULL) 17403 return; 17404 } 17405 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17406 freemsg(first_mp); 17407 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17409 return; 17410 } 17411 if (pim_input(q, mp, ill) != 0) { 17412 /* Bad packet - discarded by pim_input */ 17413 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17414 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17415 if (mctl_present) 17416 freeb(first_mp); 17417 return; 17418 } 17419 17420 /* 17421 * pim_input() may have pulled up the message so ipha needs to 17422 * be reinitialized. 17423 */ 17424 ipha = (ipha_t *)mp->b_rptr; 17425 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17426 connf_head != NULL) { 17427 /* No user-level listener for PIM packets */ 17428 goto drop_pkt; 17429 } 17430 /* deliver to local raw users */ 17431 break; 17432 case IPPROTO_ENCAP: 17433 /* 17434 * Handle self-encapsulated packets (IP-in-IP where 17435 * the inner addresses == the outer addresses). 17436 */ 17437 hdr_length = IPH_HDR_LENGTH(ipha); 17438 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17439 mp->b_wptr) { 17440 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17441 sizeof (ipha_t) - mp->b_rptr)) { 17442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17443 freemsg(first_mp); 17444 return; 17445 } 17446 ipha = (ipha_t *)mp->b_rptr; 17447 } 17448 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17449 /* 17450 * Check the sanity of the inner IP header. 17451 */ 17452 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17453 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17454 freemsg(first_mp); 17455 return; 17456 } 17457 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17459 freemsg(first_mp); 17460 return; 17461 } 17462 if (inner_ipha->ipha_src == ipha->ipha_src && 17463 inner_ipha->ipha_dst == ipha->ipha_dst) { 17464 ipsec_in_t *ii; 17465 17466 /* 17467 * Self-encapsulated tunnel packet. Remove 17468 * the outer IP header and fanout again. 17469 * We also need to make sure that the inner 17470 * header is pulled up until options. 17471 */ 17472 mp->b_rptr = (uchar_t *)inner_ipha; 17473 ipha = inner_ipha; 17474 hdr_length = IPH_HDR_LENGTH(ipha); 17475 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17476 if (!pullupmsg(mp, (uchar_t *)ipha + 17477 + hdr_length - mp->b_rptr)) { 17478 freemsg(first_mp); 17479 return; 17480 } 17481 ipha = (ipha_t *)mp->b_rptr; 17482 } 17483 if (hdr_length > sizeof (ipha_t)) { 17484 /* We got options on the inner packet. */ 17485 ipaddr_t dst = ipha->ipha_dst; 17486 17487 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17488 -1) { 17489 /* Bad options! */ 17490 return; 17491 } 17492 if (dst != ipha->ipha_dst) { 17493 /* 17494 * Someone put a source-route in 17495 * the inside header of a self- 17496 * encapsulated packet. Drop it 17497 * with extreme prejudice and let 17498 * the sender know. 17499 */ 17500 icmp_unreachable(q, first_mp, 17501 ICMP_SOURCE_ROUTE_FAILED, 17502 recv_ill->ill_zoneid, ipst); 17503 return; 17504 } 17505 } 17506 if (!mctl_present) { 17507 ASSERT(first_mp == mp); 17508 /* 17509 * This means that somebody is sending 17510 * Self-encapsualted packets without AH/ESP. 17511 * If AH/ESP was present, we would have already 17512 * allocated the first_mp. 17513 * 17514 * Send this packet to find a tunnel endpoint. 17515 * if I can't find one, an ICMP 17516 * PROTOCOL_UNREACHABLE will get sent. 17517 */ 17518 goto fanout; 17519 } 17520 /* 17521 * We generally store the ill_index if we need to 17522 * do IPsec processing as we lose the ill queue when 17523 * we come back. But in this case, we never should 17524 * have to store the ill_index here as it should have 17525 * been stored previously when we processed the 17526 * AH/ESP header in this routine or for non-ipsec 17527 * cases, we still have the queue. But for some bad 17528 * packets from the wire, we can get to IPsec after 17529 * this and we better store the index for that case. 17530 */ 17531 ill = (ill_t *)q->q_ptr; 17532 ii = (ipsec_in_t *)first_mp->b_rptr; 17533 ii->ipsec_in_ill_index = 17534 ill->ill_phyint->phyint_ifindex; 17535 ii->ipsec_in_rill_index = 17536 recv_ill->ill_phyint->phyint_ifindex; 17537 if (ii->ipsec_in_decaps) { 17538 /* 17539 * This packet is self-encapsulated multiple 17540 * times. We don't want to recurse infinitely. 17541 * To keep it simple, drop the packet. 17542 */ 17543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17544 freemsg(first_mp); 17545 return; 17546 } 17547 ii->ipsec_in_decaps = B_TRUE; 17548 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17549 ire); 17550 return; 17551 } 17552 break; 17553 case IPPROTO_AH: 17554 case IPPROTO_ESP: { 17555 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17556 17557 /* 17558 * Fast path for AH/ESP. If this is the first time 17559 * we are sending a datagram to AH/ESP, allocate 17560 * a IPSEC_IN message and prepend it. Otherwise, 17561 * just fanout. 17562 */ 17563 17564 int ipsec_rc; 17565 ipsec_in_t *ii; 17566 netstack_t *ns = ipst->ips_netstack; 17567 17568 IP_STAT(ipst, ipsec_proto_ahesp); 17569 if (!mctl_present) { 17570 ASSERT(first_mp == mp); 17571 first_mp = ipsec_in_alloc(B_TRUE, ns); 17572 if (first_mp == NULL) { 17573 ip1dbg(("ip_proto_input: IPSEC_IN " 17574 "allocation failure.\n")); 17575 freemsg(hada_mp); /* okay ifnull */ 17576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17577 freemsg(mp); 17578 return; 17579 } 17580 /* 17581 * Store the ill_index so that when we come back 17582 * from IPsec we ride on the same queue. 17583 */ 17584 ill = (ill_t *)q->q_ptr; 17585 ii = (ipsec_in_t *)first_mp->b_rptr; 17586 ii->ipsec_in_ill_index = 17587 ill->ill_phyint->phyint_ifindex; 17588 ii->ipsec_in_rill_index = 17589 recv_ill->ill_phyint->phyint_ifindex; 17590 first_mp->b_cont = mp; 17591 /* 17592 * Cache hardware acceleration info. 17593 */ 17594 if (hada_mp != NULL) { 17595 IPSECHW_DEBUG(IPSECHW_PKT, 17596 ("ip_rput_local: caching data attr.\n")); 17597 ii->ipsec_in_accelerated = B_TRUE; 17598 ii->ipsec_in_da = hada_mp; 17599 hada_mp = NULL; 17600 } 17601 } else { 17602 ii = (ipsec_in_t *)first_mp->b_rptr; 17603 } 17604 17605 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17606 17607 if (!ipsec_loaded(ipss)) { 17608 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17609 ire->ire_zoneid, ipst); 17610 return; 17611 } 17612 17613 ns = ipst->ips_netstack; 17614 /* select inbound SA and have IPsec process the pkt */ 17615 if (ipha->ipha_protocol == IPPROTO_ESP) { 17616 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17617 boolean_t esp_in_udp_sa; 17618 if (esph == NULL) 17619 return; 17620 ASSERT(ii->ipsec_in_esp_sa != NULL); 17621 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17622 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17623 IPSA_F_NATT) != 0); 17624 /* 17625 * The following is a fancy, but quick, way of saying: 17626 * ESP-in-UDP SA and Raw ESP packet --> drop 17627 * OR 17628 * ESP SA and ESP-in-UDP packet --> drop 17629 */ 17630 if (esp_in_udp_sa != esp_in_udp_packet) { 17631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17632 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17633 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17634 &ns->netstack_ipsec->ipsec_dropper); 17635 return; 17636 } 17637 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17638 first_mp, esph); 17639 } else { 17640 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17641 if (ah == NULL) 17642 return; 17643 ASSERT(ii->ipsec_in_ah_sa != NULL); 17644 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17645 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17646 first_mp, ah); 17647 } 17648 17649 switch (ipsec_rc) { 17650 case IPSEC_STATUS_SUCCESS: 17651 break; 17652 case IPSEC_STATUS_FAILED: 17653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17654 /* FALLTHRU */ 17655 case IPSEC_STATUS_PENDING: 17656 return; 17657 } 17658 /* we're done with IPsec processing, send it up */ 17659 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17660 return; 17661 } 17662 default: 17663 break; 17664 } 17665 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17666 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17667 ire->ire_zoneid)); 17668 goto drop_pkt; 17669 } 17670 /* 17671 * Handle protocols with which IP is less intimate. There 17672 * can be more than one stream bound to a particular 17673 * protocol. When this is the case, each one gets a copy 17674 * of any incoming packets. 17675 */ 17676 fanout: 17677 ip_fanout_proto(q, first_mp, ill, ipha, 17678 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17679 B_TRUE, recv_ill, ire->ire_zoneid); 17680 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17681 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17682 return; 17683 17684 drop_pkt: 17685 freemsg(first_mp); 17686 if (hada_mp != NULL) 17687 freeb(hada_mp); 17688 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17689 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17690 #undef rptr 17691 #undef iphs 17692 17693 } 17694 17695 /* 17696 * Update any source route, record route or timestamp options. 17697 * Check that we are at end of strict source route. 17698 * The options have already been checked for sanity in ip_rput_options(). 17699 */ 17700 static boolean_t 17701 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17702 ip_stack_t *ipst) 17703 { 17704 ipoptp_t opts; 17705 uchar_t *opt; 17706 uint8_t optval; 17707 uint8_t optlen; 17708 ipaddr_t dst; 17709 uint32_t ts; 17710 ire_t *dst_ire; 17711 timestruc_t now; 17712 zoneid_t zoneid; 17713 ill_t *ill; 17714 17715 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17716 17717 ip2dbg(("ip_rput_local_options\n")); 17718 17719 for (optval = ipoptp_first(&opts, ipha); 17720 optval != IPOPT_EOL; 17721 optval = ipoptp_next(&opts)) { 17722 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17723 opt = opts.ipoptp_cur; 17724 optlen = opts.ipoptp_len; 17725 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17726 optval, optlen)); 17727 switch (optval) { 17728 uint32_t off; 17729 case IPOPT_SSRR: 17730 case IPOPT_LSRR: 17731 off = opt[IPOPT_OFFSET]; 17732 off--; 17733 if (optlen < IP_ADDR_LEN || 17734 off > optlen - IP_ADDR_LEN) { 17735 /* End of source route */ 17736 ip1dbg(("ip_rput_local_options: end of SR\n")); 17737 break; 17738 } 17739 /* 17740 * This will only happen if two consecutive entries 17741 * in the source route contains our address or if 17742 * it is a packet with a loose source route which 17743 * reaches us before consuming the whole source route 17744 */ 17745 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17746 if (optval == IPOPT_SSRR) { 17747 goto bad_src_route; 17748 } 17749 /* 17750 * Hack: instead of dropping the packet truncate the 17751 * source route to what has been used by filling the 17752 * rest with IPOPT_NOP. 17753 */ 17754 opt[IPOPT_OLEN] = (uint8_t)off; 17755 while (off < optlen) { 17756 opt[off++] = IPOPT_NOP; 17757 } 17758 break; 17759 case IPOPT_RR: 17760 off = opt[IPOPT_OFFSET]; 17761 off--; 17762 if (optlen < IP_ADDR_LEN || 17763 off > optlen - IP_ADDR_LEN) { 17764 /* No more room - ignore */ 17765 ip1dbg(( 17766 "ip_rput_local_options: end of RR\n")); 17767 break; 17768 } 17769 bcopy(&ire->ire_src_addr, (char *)opt + off, 17770 IP_ADDR_LEN); 17771 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17772 break; 17773 case IPOPT_TS: 17774 /* Insert timestamp if there is romm */ 17775 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17776 case IPOPT_TS_TSONLY: 17777 off = IPOPT_TS_TIMELEN; 17778 break; 17779 case IPOPT_TS_PRESPEC: 17780 case IPOPT_TS_PRESPEC_RFC791: 17781 /* Verify that the address matched */ 17782 off = opt[IPOPT_OFFSET] - 1; 17783 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17784 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17785 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17786 ipst); 17787 if (dst_ire == NULL) { 17788 /* Not for us */ 17789 break; 17790 } 17791 ire_refrele(dst_ire); 17792 /* FALLTHRU */ 17793 case IPOPT_TS_TSANDADDR: 17794 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17795 break; 17796 default: 17797 /* 17798 * ip_*put_options should have already 17799 * dropped this packet. 17800 */ 17801 cmn_err(CE_PANIC, "ip_rput_local_options: " 17802 "unknown IT - bug in ip_rput_options?\n"); 17803 return (B_TRUE); /* Keep "lint" happy */ 17804 } 17805 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17806 /* Increase overflow counter */ 17807 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17808 opt[IPOPT_POS_OV_FLG] = 17809 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17810 (off << 4)); 17811 break; 17812 } 17813 off = opt[IPOPT_OFFSET] - 1; 17814 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17815 case IPOPT_TS_PRESPEC: 17816 case IPOPT_TS_PRESPEC_RFC791: 17817 case IPOPT_TS_TSANDADDR: 17818 bcopy(&ire->ire_src_addr, (char *)opt + off, 17819 IP_ADDR_LEN); 17820 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17821 /* FALLTHRU */ 17822 case IPOPT_TS_TSONLY: 17823 off = opt[IPOPT_OFFSET] - 1; 17824 /* Compute # of milliseconds since midnight */ 17825 gethrestime(&now); 17826 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17827 now.tv_nsec / (NANOSEC / MILLISEC); 17828 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17829 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17830 break; 17831 } 17832 break; 17833 } 17834 } 17835 return (B_TRUE); 17836 17837 bad_src_route: 17838 q = WR(q); 17839 if (q->q_next != NULL) 17840 ill = q->q_ptr; 17841 else 17842 ill = NULL; 17843 17844 /* make sure we clear any indication of a hardware checksum */ 17845 DB_CKSUMFLAGS(mp) = 0; 17846 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17847 if (zoneid == ALL_ZONES) 17848 freemsg(mp); 17849 else 17850 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17851 return (B_FALSE); 17852 17853 } 17854 17855 /* 17856 * Process IP options in an inbound packet. If an option affects the 17857 * effective destination address, return the next hop address via dstp. 17858 * Returns -1 if something fails in which case an ICMP error has been sent 17859 * and mp freed. 17860 */ 17861 static int 17862 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17863 ip_stack_t *ipst) 17864 { 17865 ipoptp_t opts; 17866 uchar_t *opt; 17867 uint8_t optval; 17868 uint8_t optlen; 17869 ipaddr_t dst; 17870 intptr_t code = 0; 17871 ire_t *ire = NULL; 17872 zoneid_t zoneid; 17873 ill_t *ill; 17874 17875 ip2dbg(("ip_rput_options\n")); 17876 dst = ipha->ipha_dst; 17877 for (optval = ipoptp_first(&opts, ipha); 17878 optval != IPOPT_EOL; 17879 optval = ipoptp_next(&opts)) { 17880 opt = opts.ipoptp_cur; 17881 optlen = opts.ipoptp_len; 17882 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17883 optval, optlen)); 17884 /* 17885 * Note: we need to verify the checksum before we 17886 * modify anything thus this routine only extracts the next 17887 * hop dst from any source route. 17888 */ 17889 switch (optval) { 17890 uint32_t off; 17891 case IPOPT_SSRR: 17892 case IPOPT_LSRR: 17893 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17894 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17895 if (ire == NULL) { 17896 if (optval == IPOPT_SSRR) { 17897 ip1dbg(("ip_rput_options: not next" 17898 " strict source route 0x%x\n", 17899 ntohl(dst))); 17900 code = (char *)&ipha->ipha_dst - 17901 (char *)ipha; 17902 goto param_prob; /* RouterReq's */ 17903 } 17904 ip2dbg(("ip_rput_options: " 17905 "not next source route 0x%x\n", 17906 ntohl(dst))); 17907 break; 17908 } 17909 ire_refrele(ire); 17910 17911 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17912 ip1dbg(( 17913 "ip_rput_options: bad option offset\n")); 17914 code = (char *)&opt[IPOPT_OLEN] - 17915 (char *)ipha; 17916 goto param_prob; 17917 } 17918 off = opt[IPOPT_OFFSET]; 17919 off--; 17920 redo_srr: 17921 if (optlen < IP_ADDR_LEN || 17922 off > optlen - IP_ADDR_LEN) { 17923 /* End of source route */ 17924 ip1dbg(("ip_rput_options: end of SR\n")); 17925 break; 17926 } 17927 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17928 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17929 ntohl(dst))); 17930 17931 /* 17932 * Check if our address is present more than 17933 * once as consecutive hops in source route. 17934 * XXX verify per-interface ip_forwarding 17935 * for source route? 17936 */ 17937 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17938 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17939 17940 if (ire != NULL) { 17941 ire_refrele(ire); 17942 off += IP_ADDR_LEN; 17943 goto redo_srr; 17944 } 17945 17946 if (dst == htonl(INADDR_LOOPBACK)) { 17947 ip1dbg(("ip_rput_options: loopback addr in " 17948 "source route!\n")); 17949 goto bad_src_route; 17950 } 17951 /* 17952 * For strict: verify that dst is directly 17953 * reachable. 17954 */ 17955 if (optval == IPOPT_SSRR) { 17956 ire = ire_ftable_lookup(dst, 0, 0, 17957 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17958 MBLK_GETLABEL(mp), 17959 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17960 if (ire == NULL) { 17961 ip1dbg(("ip_rput_options: SSRR not " 17962 "directly reachable: 0x%x\n", 17963 ntohl(dst))); 17964 goto bad_src_route; 17965 } 17966 ire_refrele(ire); 17967 } 17968 /* 17969 * Defer update of the offset and the record route 17970 * until the packet is forwarded. 17971 */ 17972 break; 17973 case IPOPT_RR: 17974 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17975 ip1dbg(( 17976 "ip_rput_options: bad option offset\n")); 17977 code = (char *)&opt[IPOPT_OLEN] - 17978 (char *)ipha; 17979 goto param_prob; 17980 } 17981 break; 17982 case IPOPT_TS: 17983 /* 17984 * Verify that length >= 5 and that there is either 17985 * room for another timestamp or that the overflow 17986 * counter is not maxed out. 17987 */ 17988 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17989 if (optlen < IPOPT_MINLEN_IT) { 17990 goto param_prob; 17991 } 17992 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17993 ip1dbg(( 17994 "ip_rput_options: bad option offset\n")); 17995 code = (char *)&opt[IPOPT_OFFSET] - 17996 (char *)ipha; 17997 goto param_prob; 17998 } 17999 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18000 case IPOPT_TS_TSONLY: 18001 off = IPOPT_TS_TIMELEN; 18002 break; 18003 case IPOPT_TS_TSANDADDR: 18004 case IPOPT_TS_PRESPEC: 18005 case IPOPT_TS_PRESPEC_RFC791: 18006 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18007 break; 18008 default: 18009 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18010 (char *)ipha; 18011 goto param_prob; 18012 } 18013 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18014 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18015 /* 18016 * No room and the overflow counter is 15 18017 * already. 18018 */ 18019 goto param_prob; 18020 } 18021 break; 18022 } 18023 } 18024 18025 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18026 *dstp = dst; 18027 return (0); 18028 } 18029 18030 ip1dbg(("ip_rput_options: error processing IP options.")); 18031 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18032 18033 param_prob: 18034 q = WR(q); 18035 if (q->q_next != NULL) 18036 ill = q->q_ptr; 18037 else 18038 ill = NULL; 18039 18040 /* make sure we clear any indication of a hardware checksum */ 18041 DB_CKSUMFLAGS(mp) = 0; 18042 /* Don't know whether this is for non-global or global/forwarding */ 18043 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18044 if (zoneid == ALL_ZONES) 18045 freemsg(mp); 18046 else 18047 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18048 return (-1); 18049 18050 bad_src_route: 18051 q = WR(q); 18052 if (q->q_next != NULL) 18053 ill = q->q_ptr; 18054 else 18055 ill = NULL; 18056 18057 /* make sure we clear any indication of a hardware checksum */ 18058 DB_CKSUMFLAGS(mp) = 0; 18059 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18060 if (zoneid == ALL_ZONES) 18061 freemsg(mp); 18062 else 18063 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18064 return (-1); 18065 } 18066 18067 /* 18068 * IP & ICMP info in >=14 msg's ... 18069 * - ip fixed part (mib2_ip_t) 18070 * - icmp fixed part (mib2_icmp_t) 18071 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18072 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18073 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18074 * - ipRouteAttributeTable (ip 102) labeled routes 18075 * - ip multicast membership (ip_member_t) 18076 * - ip multicast source filtering (ip_grpsrc_t) 18077 * - igmp fixed part (struct igmpstat) 18078 * - multicast routing stats (struct mrtstat) 18079 * - multicast routing vifs (array of struct vifctl) 18080 * - multicast routing routes (array of struct mfcctl) 18081 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18082 * One per ill plus one generic 18083 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18084 * One per ill plus one generic 18085 * - ipv6RouteEntry all IPv6 IREs 18086 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18087 * - ipv6NetToMediaEntry all Neighbor Cache entries 18088 * - ipv6AddrEntry all IPv6 ipifs 18089 * - ipv6 multicast membership (ipv6_member_t) 18090 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18091 * 18092 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18093 * 18094 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18095 * already filled in by the caller. 18096 * Return value of 0 indicates that no messages were sent and caller 18097 * should free mpctl. 18098 */ 18099 int 18100 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18101 { 18102 ip_stack_t *ipst; 18103 sctp_stack_t *sctps; 18104 18105 if (q->q_next != NULL) { 18106 ipst = ILLQ_TO_IPST(q); 18107 } else { 18108 ipst = CONNQ_TO_IPST(q); 18109 } 18110 ASSERT(ipst != NULL); 18111 sctps = ipst->ips_netstack->netstack_sctp; 18112 18113 if (mpctl == NULL || mpctl->b_cont == NULL) { 18114 return (0); 18115 } 18116 18117 /* 18118 * For the purposes of the (broken) packet shell use 18119 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18120 * to make TCP and UDP appear first in the list of mib items. 18121 * TBD: We could expand this and use it in netstat so that 18122 * the kernel doesn't have to produce large tables (connections, 18123 * routes, etc) when netstat only wants the statistics or a particular 18124 * table. 18125 */ 18126 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18127 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18128 return (1); 18129 } 18130 } 18131 18132 if (level != MIB2_TCP) { 18133 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18134 return (1); 18135 } 18136 } 18137 18138 if (level != MIB2_UDP) { 18139 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18140 return (1); 18141 } 18142 } 18143 18144 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18145 ipst)) == NULL) { 18146 return (1); 18147 } 18148 18149 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18150 return (1); 18151 } 18152 18153 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18154 return (1); 18155 } 18156 18157 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18158 return (1); 18159 } 18160 18161 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18162 return (1); 18163 } 18164 18165 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18166 return (1); 18167 } 18168 18169 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18170 return (1); 18171 } 18172 18173 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18174 return (1); 18175 } 18176 18177 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18178 return (1); 18179 } 18180 18181 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18182 return (1); 18183 } 18184 18185 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18186 return (1); 18187 } 18188 18189 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18190 return (1); 18191 } 18192 18193 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18194 return (1); 18195 } 18196 18197 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18198 return (1); 18199 } 18200 18201 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18202 return (1); 18203 } 18204 18205 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18206 if (mpctl == NULL) { 18207 return (1); 18208 } 18209 18210 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18211 return (1); 18212 } 18213 freemsg(mpctl); 18214 return (1); 18215 } 18216 18217 18218 /* Get global (legacy) IPv4 statistics */ 18219 static mblk_t * 18220 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18221 ip_stack_t *ipst) 18222 { 18223 mib2_ip_t old_ip_mib; 18224 struct opthdr *optp; 18225 mblk_t *mp2ctl; 18226 18227 /* 18228 * make a copy of the original message 18229 */ 18230 mp2ctl = copymsg(mpctl); 18231 18232 /* fixed length IP structure... */ 18233 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18234 optp->level = MIB2_IP; 18235 optp->name = 0; 18236 SET_MIB(old_ip_mib.ipForwarding, 18237 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18238 SET_MIB(old_ip_mib.ipDefaultTTL, 18239 (uint32_t)ipst->ips_ip_def_ttl); 18240 SET_MIB(old_ip_mib.ipReasmTimeout, 18241 ipst->ips_ip_g_frag_timeout); 18242 SET_MIB(old_ip_mib.ipAddrEntrySize, 18243 sizeof (mib2_ipAddrEntry_t)); 18244 SET_MIB(old_ip_mib.ipRouteEntrySize, 18245 sizeof (mib2_ipRouteEntry_t)); 18246 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18247 sizeof (mib2_ipNetToMediaEntry_t)); 18248 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18249 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18250 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18251 sizeof (mib2_ipAttributeEntry_t)); 18252 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18253 18254 /* 18255 * Grab the statistics from the new IP MIB 18256 */ 18257 SET_MIB(old_ip_mib.ipInReceives, 18258 (uint32_t)ipmib->ipIfStatsHCInReceives); 18259 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18260 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18261 SET_MIB(old_ip_mib.ipForwDatagrams, 18262 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18263 SET_MIB(old_ip_mib.ipInUnknownProtos, 18264 ipmib->ipIfStatsInUnknownProtos); 18265 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18266 SET_MIB(old_ip_mib.ipInDelivers, 18267 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18268 SET_MIB(old_ip_mib.ipOutRequests, 18269 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18270 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18271 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18272 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18273 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18274 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18275 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18276 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18277 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18278 18279 /* ipRoutingDiscards is not being used */ 18280 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18281 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18282 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18283 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18284 SET_MIB(old_ip_mib.ipReasmDuplicates, 18285 ipmib->ipIfStatsReasmDuplicates); 18286 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18287 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18288 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18289 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18290 SET_MIB(old_ip_mib.rawipInOverflows, 18291 ipmib->rawipIfStatsInOverflows); 18292 18293 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18294 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18295 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18296 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18297 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18298 ipmib->ipIfStatsOutSwitchIPVersion); 18299 18300 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18301 (int)sizeof (old_ip_mib))) { 18302 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18303 (uint_t)sizeof (old_ip_mib))); 18304 } 18305 18306 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18307 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18308 (int)optp->level, (int)optp->name, (int)optp->len)); 18309 qreply(q, mpctl); 18310 return (mp2ctl); 18311 } 18312 18313 /* Per interface IPv4 statistics */ 18314 static mblk_t * 18315 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18316 { 18317 struct opthdr *optp; 18318 mblk_t *mp2ctl; 18319 ill_t *ill; 18320 ill_walk_context_t ctx; 18321 mblk_t *mp_tail = NULL; 18322 mib2_ipIfStatsEntry_t global_ip_mib; 18323 18324 /* 18325 * Make a copy of the original message 18326 */ 18327 mp2ctl = copymsg(mpctl); 18328 18329 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18330 optp->level = MIB2_IP; 18331 optp->name = MIB2_IP_TRAFFIC_STATS; 18332 /* Include "unknown interface" ip_mib */ 18333 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18334 ipst->ips_ip_mib.ipIfStatsIfIndex = 18335 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18336 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18337 (ipst->ips_ip_g_forward ? 1 : 2)); 18338 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18339 (uint32_t)ipst->ips_ip_def_ttl); 18340 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18341 sizeof (mib2_ipIfStatsEntry_t)); 18342 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18343 sizeof (mib2_ipAddrEntry_t)); 18344 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18345 sizeof (mib2_ipRouteEntry_t)); 18346 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18347 sizeof (mib2_ipNetToMediaEntry_t)); 18348 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18349 sizeof (ip_member_t)); 18350 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18351 sizeof (ip_grpsrc_t)); 18352 18353 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18354 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18355 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18356 "failed to allocate %u bytes\n", 18357 (uint_t)sizeof (ipst->ips_ip_mib))); 18358 } 18359 18360 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18361 18362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18363 ill = ILL_START_WALK_V4(&ctx, ipst); 18364 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18365 ill->ill_ip_mib->ipIfStatsIfIndex = 18366 ill->ill_phyint->phyint_ifindex; 18367 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18368 (ipst->ips_ip_g_forward ? 1 : 2)); 18369 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18370 (uint32_t)ipst->ips_ip_def_ttl); 18371 18372 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18373 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18374 (char *)ill->ill_ip_mib, 18375 (int)sizeof (*ill->ill_ip_mib))) { 18376 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18377 "failed to allocate %u bytes\n", 18378 (uint_t)sizeof (*ill->ill_ip_mib))); 18379 } 18380 } 18381 rw_exit(&ipst->ips_ill_g_lock); 18382 18383 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18384 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18385 "level %d, name %d, len %d\n", 18386 (int)optp->level, (int)optp->name, (int)optp->len)); 18387 qreply(q, mpctl); 18388 18389 if (mp2ctl == NULL) 18390 return (NULL); 18391 18392 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18393 } 18394 18395 /* Global IPv4 ICMP statistics */ 18396 static mblk_t * 18397 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18398 { 18399 struct opthdr *optp; 18400 mblk_t *mp2ctl; 18401 18402 /* 18403 * Make a copy of the original message 18404 */ 18405 mp2ctl = copymsg(mpctl); 18406 18407 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18408 optp->level = MIB2_ICMP; 18409 optp->name = 0; 18410 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18411 (int)sizeof (ipst->ips_icmp_mib))) { 18412 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18413 (uint_t)sizeof (ipst->ips_icmp_mib))); 18414 } 18415 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18416 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18417 (int)optp->level, (int)optp->name, (int)optp->len)); 18418 qreply(q, mpctl); 18419 return (mp2ctl); 18420 } 18421 18422 /* Global IPv4 IGMP statistics */ 18423 static mblk_t * 18424 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18425 { 18426 struct opthdr *optp; 18427 mblk_t *mp2ctl; 18428 18429 /* 18430 * make a copy of the original message 18431 */ 18432 mp2ctl = copymsg(mpctl); 18433 18434 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18435 optp->level = EXPER_IGMP; 18436 optp->name = 0; 18437 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18438 (int)sizeof (ipst->ips_igmpstat))) { 18439 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18440 (uint_t)sizeof (ipst->ips_igmpstat))); 18441 } 18442 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18443 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18444 (int)optp->level, (int)optp->name, (int)optp->len)); 18445 qreply(q, mpctl); 18446 return (mp2ctl); 18447 } 18448 18449 /* Global IPv4 Multicast Routing statistics */ 18450 static mblk_t * 18451 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18452 { 18453 struct opthdr *optp; 18454 mblk_t *mp2ctl; 18455 18456 /* 18457 * make a copy of the original message 18458 */ 18459 mp2ctl = copymsg(mpctl); 18460 18461 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18462 optp->level = EXPER_DVMRP; 18463 optp->name = 0; 18464 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18465 ip0dbg(("ip_mroute_stats: failed\n")); 18466 } 18467 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18468 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18469 (int)optp->level, (int)optp->name, (int)optp->len)); 18470 qreply(q, mpctl); 18471 return (mp2ctl); 18472 } 18473 18474 /* IPv4 address information */ 18475 static mblk_t * 18476 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18477 { 18478 struct opthdr *optp; 18479 mblk_t *mp2ctl; 18480 mblk_t *mp_tail = NULL; 18481 ill_t *ill; 18482 ipif_t *ipif; 18483 uint_t bitval; 18484 mib2_ipAddrEntry_t mae; 18485 zoneid_t zoneid; 18486 ill_walk_context_t ctx; 18487 18488 /* 18489 * make a copy of the original message 18490 */ 18491 mp2ctl = copymsg(mpctl); 18492 18493 /* ipAddrEntryTable */ 18494 18495 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18496 optp->level = MIB2_IP; 18497 optp->name = MIB2_IP_ADDR; 18498 zoneid = Q_TO_CONN(q)->conn_zoneid; 18499 18500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18501 ill = ILL_START_WALK_V4(&ctx, ipst); 18502 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18503 for (ipif = ill->ill_ipif; ipif != NULL; 18504 ipif = ipif->ipif_next) { 18505 if (ipif->ipif_zoneid != zoneid && 18506 ipif->ipif_zoneid != ALL_ZONES) 18507 continue; 18508 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18509 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18510 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18511 18512 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18513 OCTET_LENGTH); 18514 mae.ipAdEntIfIndex.o_length = 18515 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18516 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18517 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18518 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18519 mae.ipAdEntInfo.ae_subnet_len = 18520 ip_mask_to_plen(ipif->ipif_net_mask); 18521 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18522 for (bitval = 1; 18523 bitval && 18524 !(bitval & ipif->ipif_brd_addr); 18525 bitval <<= 1) 18526 noop; 18527 mae.ipAdEntBcastAddr = bitval; 18528 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18529 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18530 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18531 mae.ipAdEntInfo.ae_broadcast_addr = 18532 ipif->ipif_brd_addr; 18533 mae.ipAdEntInfo.ae_pp_dst_addr = 18534 ipif->ipif_pp_dst_addr; 18535 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18536 ill->ill_flags | ill->ill_phyint->phyint_flags; 18537 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18538 18539 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18540 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18541 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18542 "allocate %u bytes\n", 18543 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18544 } 18545 } 18546 } 18547 rw_exit(&ipst->ips_ill_g_lock); 18548 18549 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18550 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18551 (int)optp->level, (int)optp->name, (int)optp->len)); 18552 qreply(q, mpctl); 18553 return (mp2ctl); 18554 } 18555 18556 /* IPv6 address information */ 18557 static mblk_t * 18558 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18559 { 18560 struct opthdr *optp; 18561 mblk_t *mp2ctl; 18562 mblk_t *mp_tail = NULL; 18563 ill_t *ill; 18564 ipif_t *ipif; 18565 mib2_ipv6AddrEntry_t mae6; 18566 zoneid_t zoneid; 18567 ill_walk_context_t ctx; 18568 18569 /* 18570 * make a copy of the original message 18571 */ 18572 mp2ctl = copymsg(mpctl); 18573 18574 /* ipv6AddrEntryTable */ 18575 18576 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18577 optp->level = MIB2_IP6; 18578 optp->name = MIB2_IP6_ADDR; 18579 zoneid = Q_TO_CONN(q)->conn_zoneid; 18580 18581 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18582 ill = ILL_START_WALK_V6(&ctx, ipst); 18583 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18584 for (ipif = ill->ill_ipif; ipif != NULL; 18585 ipif = ipif->ipif_next) { 18586 if (ipif->ipif_zoneid != zoneid && 18587 ipif->ipif_zoneid != ALL_ZONES) 18588 continue; 18589 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18590 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18591 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18592 18593 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18594 OCTET_LENGTH); 18595 mae6.ipv6AddrIfIndex.o_length = 18596 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18597 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18598 mae6.ipv6AddrPfxLength = 18599 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18600 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18601 mae6.ipv6AddrInfo.ae_subnet_len = 18602 mae6.ipv6AddrPfxLength; 18603 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18604 18605 /* Type: stateless(1), stateful(2), unknown(3) */ 18606 if (ipif->ipif_flags & IPIF_ADDRCONF) 18607 mae6.ipv6AddrType = 1; 18608 else 18609 mae6.ipv6AddrType = 2; 18610 /* Anycast: true(1), false(2) */ 18611 if (ipif->ipif_flags & IPIF_ANYCAST) 18612 mae6.ipv6AddrAnycastFlag = 1; 18613 else 18614 mae6.ipv6AddrAnycastFlag = 2; 18615 18616 /* 18617 * Address status: preferred(1), deprecated(2), 18618 * invalid(3), inaccessible(4), unknown(5) 18619 */ 18620 if (ipif->ipif_flags & IPIF_NOLOCAL) 18621 mae6.ipv6AddrStatus = 3; 18622 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18623 mae6.ipv6AddrStatus = 2; 18624 else 18625 mae6.ipv6AddrStatus = 1; 18626 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18627 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18628 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18629 ipif->ipif_v6pp_dst_addr; 18630 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18631 ill->ill_flags | ill->ill_phyint->phyint_flags; 18632 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18633 mae6.ipv6AddrIdentifier = ill->ill_token; 18634 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18635 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18636 mae6.ipv6AddrRetransmitTime = 18637 ill->ill_reachable_retrans_time; 18638 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18639 (char *)&mae6, 18640 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18641 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18642 "allocate %u bytes\n", 18643 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18644 } 18645 } 18646 } 18647 rw_exit(&ipst->ips_ill_g_lock); 18648 18649 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18650 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18651 (int)optp->level, (int)optp->name, (int)optp->len)); 18652 qreply(q, mpctl); 18653 return (mp2ctl); 18654 } 18655 18656 /* IPv4 multicast group membership. */ 18657 static mblk_t * 18658 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18659 { 18660 struct opthdr *optp; 18661 mblk_t *mp2ctl; 18662 ill_t *ill; 18663 ipif_t *ipif; 18664 ilm_t *ilm; 18665 ip_member_t ipm; 18666 mblk_t *mp_tail = NULL; 18667 ill_walk_context_t ctx; 18668 zoneid_t zoneid; 18669 18670 /* 18671 * make a copy of the original message 18672 */ 18673 mp2ctl = copymsg(mpctl); 18674 zoneid = Q_TO_CONN(q)->conn_zoneid; 18675 18676 /* ipGroupMember table */ 18677 optp = (struct opthdr *)&mpctl->b_rptr[ 18678 sizeof (struct T_optmgmt_ack)]; 18679 optp->level = MIB2_IP; 18680 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18681 18682 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18683 ill = ILL_START_WALK_V4(&ctx, ipst); 18684 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18685 ILM_WALKER_HOLD(ill); 18686 for (ipif = ill->ill_ipif; ipif != NULL; 18687 ipif = ipif->ipif_next) { 18688 if (ipif->ipif_zoneid != zoneid && 18689 ipif->ipif_zoneid != ALL_ZONES) 18690 continue; /* not this zone */ 18691 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18692 OCTET_LENGTH); 18693 ipm.ipGroupMemberIfIndex.o_length = 18694 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18695 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18696 ASSERT(ilm->ilm_ipif != NULL); 18697 ASSERT(ilm->ilm_ill == NULL); 18698 if (ilm->ilm_ipif != ipif) 18699 continue; 18700 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18701 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18702 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18703 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18704 (char *)&ipm, (int)sizeof (ipm))) { 18705 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18706 "failed to allocate %u bytes\n", 18707 (uint_t)sizeof (ipm))); 18708 } 18709 } 18710 } 18711 ILM_WALKER_RELE(ill); 18712 } 18713 rw_exit(&ipst->ips_ill_g_lock); 18714 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18715 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18716 (int)optp->level, (int)optp->name, (int)optp->len)); 18717 qreply(q, mpctl); 18718 return (mp2ctl); 18719 } 18720 18721 /* IPv6 multicast group membership. */ 18722 static mblk_t * 18723 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18724 { 18725 struct opthdr *optp; 18726 mblk_t *mp2ctl; 18727 ill_t *ill; 18728 ilm_t *ilm; 18729 ipv6_member_t ipm6; 18730 mblk_t *mp_tail = NULL; 18731 ill_walk_context_t ctx; 18732 zoneid_t zoneid; 18733 18734 /* 18735 * make a copy of the original message 18736 */ 18737 mp2ctl = copymsg(mpctl); 18738 zoneid = Q_TO_CONN(q)->conn_zoneid; 18739 18740 /* ip6GroupMember table */ 18741 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18742 optp->level = MIB2_IP6; 18743 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18744 18745 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18746 ill = ILL_START_WALK_V6(&ctx, ipst); 18747 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18748 ILM_WALKER_HOLD(ill); 18749 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18750 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18751 ASSERT(ilm->ilm_ipif == NULL); 18752 ASSERT(ilm->ilm_ill != NULL); 18753 if (ilm->ilm_zoneid != zoneid) 18754 continue; /* not this zone */ 18755 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18756 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18757 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18758 if (!snmp_append_data2(mpctl->b_cont, 18759 &mp_tail, 18760 (char *)&ipm6, (int)sizeof (ipm6))) { 18761 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18762 "failed to allocate %u bytes\n", 18763 (uint_t)sizeof (ipm6))); 18764 } 18765 } 18766 ILM_WALKER_RELE(ill); 18767 } 18768 rw_exit(&ipst->ips_ill_g_lock); 18769 18770 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18771 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18772 (int)optp->level, (int)optp->name, (int)optp->len)); 18773 qreply(q, mpctl); 18774 return (mp2ctl); 18775 } 18776 18777 /* IP multicast filtered sources */ 18778 static mblk_t * 18779 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18780 { 18781 struct opthdr *optp; 18782 mblk_t *mp2ctl; 18783 ill_t *ill; 18784 ipif_t *ipif; 18785 ilm_t *ilm; 18786 ip_grpsrc_t ips; 18787 mblk_t *mp_tail = NULL; 18788 ill_walk_context_t ctx; 18789 zoneid_t zoneid; 18790 int i; 18791 slist_t *sl; 18792 18793 /* 18794 * make a copy of the original message 18795 */ 18796 mp2ctl = copymsg(mpctl); 18797 zoneid = Q_TO_CONN(q)->conn_zoneid; 18798 18799 /* ipGroupSource table */ 18800 optp = (struct opthdr *)&mpctl->b_rptr[ 18801 sizeof (struct T_optmgmt_ack)]; 18802 optp->level = MIB2_IP; 18803 optp->name = EXPER_IP_GROUP_SOURCES; 18804 18805 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18806 ill = ILL_START_WALK_V4(&ctx, ipst); 18807 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18808 ILM_WALKER_HOLD(ill); 18809 for (ipif = ill->ill_ipif; ipif != NULL; 18810 ipif = ipif->ipif_next) { 18811 if (ipif->ipif_zoneid != zoneid) 18812 continue; /* not this zone */ 18813 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18814 OCTET_LENGTH); 18815 ips.ipGroupSourceIfIndex.o_length = 18816 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18817 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18818 ASSERT(ilm->ilm_ipif != NULL); 18819 ASSERT(ilm->ilm_ill == NULL); 18820 sl = ilm->ilm_filter; 18821 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18822 continue; 18823 ips.ipGroupSourceGroup = ilm->ilm_addr; 18824 for (i = 0; i < sl->sl_numsrc; i++) { 18825 if (!IN6_IS_ADDR_V4MAPPED( 18826 &sl->sl_addr[i])) 18827 continue; 18828 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18829 ips.ipGroupSourceAddress); 18830 if (snmp_append_data2(mpctl->b_cont, 18831 &mp_tail, (char *)&ips, 18832 (int)sizeof (ips)) == 0) { 18833 ip1dbg(("ip_snmp_get_mib2_" 18834 "ip_group_src: failed to " 18835 "allocate %u bytes\n", 18836 (uint_t)sizeof (ips))); 18837 } 18838 } 18839 } 18840 } 18841 ILM_WALKER_RELE(ill); 18842 } 18843 rw_exit(&ipst->ips_ill_g_lock); 18844 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18845 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18846 (int)optp->level, (int)optp->name, (int)optp->len)); 18847 qreply(q, mpctl); 18848 return (mp2ctl); 18849 } 18850 18851 /* IPv6 multicast filtered sources. */ 18852 static mblk_t * 18853 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18854 { 18855 struct opthdr *optp; 18856 mblk_t *mp2ctl; 18857 ill_t *ill; 18858 ilm_t *ilm; 18859 ipv6_grpsrc_t ips6; 18860 mblk_t *mp_tail = NULL; 18861 ill_walk_context_t ctx; 18862 zoneid_t zoneid; 18863 int i; 18864 slist_t *sl; 18865 18866 /* 18867 * make a copy of the original message 18868 */ 18869 mp2ctl = copymsg(mpctl); 18870 zoneid = Q_TO_CONN(q)->conn_zoneid; 18871 18872 /* ip6GroupMember table */ 18873 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18874 optp->level = MIB2_IP6; 18875 optp->name = EXPER_IP6_GROUP_SOURCES; 18876 18877 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18878 ill = ILL_START_WALK_V6(&ctx, ipst); 18879 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18880 ILM_WALKER_HOLD(ill); 18881 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18882 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18883 ASSERT(ilm->ilm_ipif == NULL); 18884 ASSERT(ilm->ilm_ill != NULL); 18885 sl = ilm->ilm_filter; 18886 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18887 continue; 18888 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18889 for (i = 0; i < sl->sl_numsrc; i++) { 18890 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18891 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18892 (char *)&ips6, (int)sizeof (ips6))) { 18893 ip1dbg(("ip_snmp_get_mib2_ip6_" 18894 "group_src: failed to allocate " 18895 "%u bytes\n", 18896 (uint_t)sizeof (ips6))); 18897 } 18898 } 18899 } 18900 ILM_WALKER_RELE(ill); 18901 } 18902 rw_exit(&ipst->ips_ill_g_lock); 18903 18904 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18905 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18906 (int)optp->level, (int)optp->name, (int)optp->len)); 18907 qreply(q, mpctl); 18908 return (mp2ctl); 18909 } 18910 18911 /* Multicast routing virtual interface table. */ 18912 static mblk_t * 18913 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18914 { 18915 struct opthdr *optp; 18916 mblk_t *mp2ctl; 18917 18918 /* 18919 * make a copy of the original message 18920 */ 18921 mp2ctl = copymsg(mpctl); 18922 18923 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18924 optp->level = EXPER_DVMRP; 18925 optp->name = EXPER_DVMRP_VIF; 18926 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18927 ip0dbg(("ip_mroute_vif: failed\n")); 18928 } 18929 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18930 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18931 (int)optp->level, (int)optp->name, (int)optp->len)); 18932 qreply(q, mpctl); 18933 return (mp2ctl); 18934 } 18935 18936 /* Multicast routing table. */ 18937 static mblk_t * 18938 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18939 { 18940 struct opthdr *optp; 18941 mblk_t *mp2ctl; 18942 18943 /* 18944 * make a copy of the original message 18945 */ 18946 mp2ctl = copymsg(mpctl); 18947 18948 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18949 optp->level = EXPER_DVMRP; 18950 optp->name = EXPER_DVMRP_MRT; 18951 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18952 ip0dbg(("ip_mroute_mrt: failed\n")); 18953 } 18954 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18955 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18956 (int)optp->level, (int)optp->name, (int)optp->len)); 18957 qreply(q, mpctl); 18958 return (mp2ctl); 18959 } 18960 18961 /* 18962 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18963 * in one IRE walk. 18964 */ 18965 static mblk_t * 18966 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18967 { 18968 struct opthdr *optp; 18969 mblk_t *mp2ctl; /* Returned */ 18970 mblk_t *mp3ctl; /* nettomedia */ 18971 mblk_t *mp4ctl; /* routeattrs */ 18972 iproutedata_t ird; 18973 zoneid_t zoneid; 18974 18975 /* 18976 * make copies of the original message 18977 * - mp2ctl is returned unchanged to the caller for his use 18978 * - mpctl is sent upstream as ipRouteEntryTable 18979 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18980 * - mp4ctl is sent upstream as ipRouteAttributeTable 18981 */ 18982 mp2ctl = copymsg(mpctl); 18983 mp3ctl = copymsg(mpctl); 18984 mp4ctl = copymsg(mpctl); 18985 if (mp3ctl == NULL || mp4ctl == NULL) { 18986 freemsg(mp4ctl); 18987 freemsg(mp3ctl); 18988 freemsg(mp2ctl); 18989 freemsg(mpctl); 18990 return (NULL); 18991 } 18992 18993 bzero(&ird, sizeof (ird)); 18994 18995 ird.ird_route.lp_head = mpctl->b_cont; 18996 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18997 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18998 18999 zoneid = Q_TO_CONN(q)->conn_zoneid; 19000 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19001 19002 /* ipRouteEntryTable in mpctl */ 19003 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19004 optp->level = MIB2_IP; 19005 optp->name = MIB2_IP_ROUTE; 19006 optp->len = msgdsize(ird.ird_route.lp_head); 19007 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19008 (int)optp->level, (int)optp->name, (int)optp->len)); 19009 qreply(q, mpctl); 19010 19011 /* ipNetToMediaEntryTable in mp3ctl */ 19012 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19013 optp->level = MIB2_IP; 19014 optp->name = MIB2_IP_MEDIA; 19015 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19016 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19017 (int)optp->level, (int)optp->name, (int)optp->len)); 19018 qreply(q, mp3ctl); 19019 19020 /* ipRouteAttributeTable in mp4ctl */ 19021 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19022 optp->level = MIB2_IP; 19023 optp->name = EXPER_IP_RTATTR; 19024 optp->len = msgdsize(ird.ird_attrs.lp_head); 19025 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19026 (int)optp->level, (int)optp->name, (int)optp->len)); 19027 if (optp->len == 0) 19028 freemsg(mp4ctl); 19029 else 19030 qreply(q, mp4ctl); 19031 19032 return (mp2ctl); 19033 } 19034 19035 /* 19036 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19037 * ipv6NetToMediaEntryTable in an NDP walk. 19038 */ 19039 static mblk_t * 19040 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19041 { 19042 struct opthdr *optp; 19043 mblk_t *mp2ctl; /* Returned */ 19044 mblk_t *mp3ctl; /* nettomedia */ 19045 mblk_t *mp4ctl; /* routeattrs */ 19046 iproutedata_t ird; 19047 zoneid_t zoneid; 19048 19049 /* 19050 * make copies of the original message 19051 * - mp2ctl is returned unchanged to the caller for his use 19052 * - mpctl is sent upstream as ipv6RouteEntryTable 19053 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19054 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19055 */ 19056 mp2ctl = copymsg(mpctl); 19057 mp3ctl = copymsg(mpctl); 19058 mp4ctl = copymsg(mpctl); 19059 if (mp3ctl == NULL || mp4ctl == NULL) { 19060 freemsg(mp4ctl); 19061 freemsg(mp3ctl); 19062 freemsg(mp2ctl); 19063 freemsg(mpctl); 19064 return (NULL); 19065 } 19066 19067 bzero(&ird, sizeof (ird)); 19068 19069 ird.ird_route.lp_head = mpctl->b_cont; 19070 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19071 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19072 19073 zoneid = Q_TO_CONN(q)->conn_zoneid; 19074 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19075 19076 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19077 optp->level = MIB2_IP6; 19078 optp->name = MIB2_IP6_ROUTE; 19079 optp->len = msgdsize(ird.ird_route.lp_head); 19080 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19081 (int)optp->level, (int)optp->name, (int)optp->len)); 19082 qreply(q, mpctl); 19083 19084 /* ipv6NetToMediaEntryTable in mp3ctl */ 19085 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19086 19087 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19088 optp->level = MIB2_IP6; 19089 optp->name = MIB2_IP6_MEDIA; 19090 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19091 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19092 (int)optp->level, (int)optp->name, (int)optp->len)); 19093 qreply(q, mp3ctl); 19094 19095 /* ipv6RouteAttributeTable in mp4ctl */ 19096 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19097 optp->level = MIB2_IP6; 19098 optp->name = EXPER_IP_RTATTR; 19099 optp->len = msgdsize(ird.ird_attrs.lp_head); 19100 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19101 (int)optp->level, (int)optp->name, (int)optp->len)); 19102 if (optp->len == 0) 19103 freemsg(mp4ctl); 19104 else 19105 qreply(q, mp4ctl); 19106 19107 return (mp2ctl); 19108 } 19109 19110 /* 19111 * IPv6 mib: One per ill 19112 */ 19113 static mblk_t * 19114 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19115 { 19116 struct opthdr *optp; 19117 mblk_t *mp2ctl; 19118 ill_t *ill; 19119 ill_walk_context_t ctx; 19120 mblk_t *mp_tail = NULL; 19121 19122 /* 19123 * Make a copy of the original message 19124 */ 19125 mp2ctl = copymsg(mpctl); 19126 19127 /* fixed length IPv6 structure ... */ 19128 19129 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19130 optp->level = MIB2_IP6; 19131 optp->name = 0; 19132 /* Include "unknown interface" ip6_mib */ 19133 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19134 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19135 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19136 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19137 ipst->ips_ipv6_forward ? 1 : 2); 19138 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19139 ipst->ips_ipv6_def_hops); 19140 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19141 sizeof (mib2_ipIfStatsEntry_t)); 19142 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19143 sizeof (mib2_ipv6AddrEntry_t)); 19144 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19145 sizeof (mib2_ipv6RouteEntry_t)); 19146 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19147 sizeof (mib2_ipv6NetToMediaEntry_t)); 19148 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19149 sizeof (ipv6_member_t)); 19150 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19151 sizeof (ipv6_grpsrc_t)); 19152 19153 /* 19154 * Synchronize 64- and 32-bit counters 19155 */ 19156 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19157 ipIfStatsHCInReceives); 19158 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19159 ipIfStatsHCInDelivers); 19160 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19161 ipIfStatsHCOutRequests); 19162 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19163 ipIfStatsHCOutForwDatagrams); 19164 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19165 ipIfStatsHCOutMcastPkts); 19166 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19167 ipIfStatsHCInMcastPkts); 19168 19169 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19170 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19171 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19172 (uint_t)sizeof (ipst->ips_ip6_mib))); 19173 } 19174 19175 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19176 ill = ILL_START_WALK_V6(&ctx, ipst); 19177 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19178 ill->ill_ip_mib->ipIfStatsIfIndex = 19179 ill->ill_phyint->phyint_ifindex; 19180 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19181 ipst->ips_ipv6_forward ? 1 : 2); 19182 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19183 ill->ill_max_hops); 19184 19185 /* 19186 * Synchronize 64- and 32-bit counters 19187 */ 19188 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19189 ipIfStatsHCInReceives); 19190 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19191 ipIfStatsHCInDelivers); 19192 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19193 ipIfStatsHCOutRequests); 19194 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19195 ipIfStatsHCOutForwDatagrams); 19196 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19197 ipIfStatsHCOutMcastPkts); 19198 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19199 ipIfStatsHCInMcastPkts); 19200 19201 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19202 (char *)ill->ill_ip_mib, 19203 (int)sizeof (*ill->ill_ip_mib))) { 19204 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19205 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19206 } 19207 } 19208 rw_exit(&ipst->ips_ill_g_lock); 19209 19210 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19211 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19212 (int)optp->level, (int)optp->name, (int)optp->len)); 19213 qreply(q, mpctl); 19214 return (mp2ctl); 19215 } 19216 19217 /* 19218 * ICMPv6 mib: One per ill 19219 */ 19220 static mblk_t * 19221 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19222 { 19223 struct opthdr *optp; 19224 mblk_t *mp2ctl; 19225 ill_t *ill; 19226 ill_walk_context_t ctx; 19227 mblk_t *mp_tail = NULL; 19228 /* 19229 * Make a copy of the original message 19230 */ 19231 mp2ctl = copymsg(mpctl); 19232 19233 /* fixed length ICMPv6 structure ... */ 19234 19235 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19236 optp->level = MIB2_ICMP6; 19237 optp->name = 0; 19238 /* Include "unknown interface" icmp6_mib */ 19239 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19240 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19241 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19242 sizeof (mib2_ipv6IfIcmpEntry_t); 19243 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19244 (char *)&ipst->ips_icmp6_mib, 19245 (int)sizeof (ipst->ips_icmp6_mib))) { 19246 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19247 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19248 } 19249 19250 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19251 ill = ILL_START_WALK_V6(&ctx, ipst); 19252 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19253 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19254 ill->ill_phyint->phyint_ifindex; 19255 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19256 (char *)ill->ill_icmp6_mib, 19257 (int)sizeof (*ill->ill_icmp6_mib))) { 19258 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19259 "%u bytes\n", 19260 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19261 } 19262 } 19263 rw_exit(&ipst->ips_ill_g_lock); 19264 19265 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19266 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19267 (int)optp->level, (int)optp->name, (int)optp->len)); 19268 qreply(q, mpctl); 19269 return (mp2ctl); 19270 } 19271 19272 /* 19273 * ire_walk routine to create both ipRouteEntryTable and 19274 * ipRouteAttributeTable in one IRE walk 19275 */ 19276 static void 19277 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19278 { 19279 ill_t *ill; 19280 ipif_t *ipif; 19281 mib2_ipRouteEntry_t *re; 19282 mib2_ipAttributeEntry_t *iae, *iaeptr; 19283 ipaddr_t gw_addr; 19284 tsol_ire_gw_secattr_t *attrp; 19285 tsol_gc_t *gc = NULL; 19286 tsol_gcgrp_t *gcgrp = NULL; 19287 uint_t sacnt = 0; 19288 int i; 19289 19290 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19291 19292 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19293 return; 19294 19295 if ((attrp = ire->ire_gw_secattr) != NULL) { 19296 mutex_enter(&attrp->igsa_lock); 19297 if ((gc = attrp->igsa_gc) != NULL) { 19298 gcgrp = gc->gc_grp; 19299 ASSERT(gcgrp != NULL); 19300 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19301 sacnt = 1; 19302 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19303 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19304 gc = gcgrp->gcgrp_head; 19305 sacnt = gcgrp->gcgrp_count; 19306 } 19307 mutex_exit(&attrp->igsa_lock); 19308 19309 /* do nothing if there's no gc to report */ 19310 if (gc == NULL) { 19311 ASSERT(sacnt == 0); 19312 if (gcgrp != NULL) { 19313 /* we might as well drop the lock now */ 19314 rw_exit(&gcgrp->gcgrp_rwlock); 19315 gcgrp = NULL; 19316 } 19317 attrp = NULL; 19318 } 19319 19320 ASSERT(gc == NULL || (gcgrp != NULL && 19321 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19322 } 19323 ASSERT(sacnt == 0 || gc != NULL); 19324 19325 if (sacnt != 0 && 19326 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19327 kmem_free(re, sizeof (*re)); 19328 rw_exit(&gcgrp->gcgrp_rwlock); 19329 return; 19330 } 19331 19332 /* 19333 * Return all IRE types for route table... let caller pick and choose 19334 */ 19335 re->ipRouteDest = ire->ire_addr; 19336 ipif = ire->ire_ipif; 19337 re->ipRouteIfIndex.o_length = 0; 19338 if (ire->ire_type == IRE_CACHE) { 19339 ill = (ill_t *)ire->ire_stq->q_ptr; 19340 re->ipRouteIfIndex.o_length = 19341 ill->ill_name_length == 0 ? 0 : 19342 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19343 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19344 re->ipRouteIfIndex.o_length); 19345 } else if (ipif != NULL) { 19346 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19347 re->ipRouteIfIndex.o_length = 19348 mi_strlen(re->ipRouteIfIndex.o_bytes); 19349 } 19350 re->ipRouteMetric1 = -1; 19351 re->ipRouteMetric2 = -1; 19352 re->ipRouteMetric3 = -1; 19353 re->ipRouteMetric4 = -1; 19354 19355 gw_addr = ire->ire_gateway_addr; 19356 19357 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19358 re->ipRouteNextHop = ire->ire_src_addr; 19359 else 19360 re->ipRouteNextHop = gw_addr; 19361 /* indirect(4), direct(3), or invalid(2) */ 19362 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19363 re->ipRouteType = 2; 19364 else 19365 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19366 re->ipRouteProto = -1; 19367 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19368 re->ipRouteMask = ire->ire_mask; 19369 re->ipRouteMetric5 = -1; 19370 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19371 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19372 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19373 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19374 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19375 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19376 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19377 re->ipRouteInfo.re_flags = ire->ire_flags; 19378 19379 if (ire->ire_flags & RTF_DYNAMIC) { 19380 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19381 } else { 19382 re->ipRouteInfo.re_ire_type = ire->ire_type; 19383 } 19384 19385 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19386 (char *)re, (int)sizeof (*re))) { 19387 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19388 (uint_t)sizeof (*re))); 19389 } 19390 19391 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19392 iaeptr->iae_routeidx = ird->ird_idx; 19393 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19394 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19395 } 19396 19397 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19398 (char *)iae, sacnt * sizeof (*iae))) { 19399 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19400 (unsigned)(sacnt * sizeof (*iae)))); 19401 } 19402 19403 /* bump route index for next pass */ 19404 ird->ird_idx++; 19405 19406 kmem_free(re, sizeof (*re)); 19407 if (sacnt != 0) 19408 kmem_free(iae, sacnt * sizeof (*iae)); 19409 19410 if (gcgrp != NULL) 19411 rw_exit(&gcgrp->gcgrp_rwlock); 19412 } 19413 19414 /* 19415 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19416 */ 19417 static void 19418 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19419 { 19420 ill_t *ill; 19421 ipif_t *ipif; 19422 mib2_ipv6RouteEntry_t *re; 19423 mib2_ipAttributeEntry_t *iae, *iaeptr; 19424 in6_addr_t gw_addr_v6; 19425 tsol_ire_gw_secattr_t *attrp; 19426 tsol_gc_t *gc = NULL; 19427 tsol_gcgrp_t *gcgrp = NULL; 19428 uint_t sacnt = 0; 19429 int i; 19430 19431 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19432 19433 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19434 return; 19435 19436 if ((attrp = ire->ire_gw_secattr) != NULL) { 19437 mutex_enter(&attrp->igsa_lock); 19438 if ((gc = attrp->igsa_gc) != NULL) { 19439 gcgrp = gc->gc_grp; 19440 ASSERT(gcgrp != NULL); 19441 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19442 sacnt = 1; 19443 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19444 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19445 gc = gcgrp->gcgrp_head; 19446 sacnt = gcgrp->gcgrp_count; 19447 } 19448 mutex_exit(&attrp->igsa_lock); 19449 19450 /* do nothing if there's no gc to report */ 19451 if (gc == NULL) { 19452 ASSERT(sacnt == 0); 19453 if (gcgrp != NULL) { 19454 /* we might as well drop the lock now */ 19455 rw_exit(&gcgrp->gcgrp_rwlock); 19456 gcgrp = NULL; 19457 } 19458 attrp = NULL; 19459 } 19460 19461 ASSERT(gc == NULL || (gcgrp != NULL && 19462 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19463 } 19464 ASSERT(sacnt == 0 || gc != NULL); 19465 19466 if (sacnt != 0 && 19467 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19468 kmem_free(re, sizeof (*re)); 19469 rw_exit(&gcgrp->gcgrp_rwlock); 19470 return; 19471 } 19472 19473 /* 19474 * Return all IRE types for route table... let caller pick and choose 19475 */ 19476 re->ipv6RouteDest = ire->ire_addr_v6; 19477 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19478 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19479 re->ipv6RouteIfIndex.o_length = 0; 19480 ipif = ire->ire_ipif; 19481 if (ire->ire_type == IRE_CACHE) { 19482 ill = (ill_t *)ire->ire_stq->q_ptr; 19483 re->ipv6RouteIfIndex.o_length = 19484 ill->ill_name_length == 0 ? 0 : 19485 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19486 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19487 re->ipv6RouteIfIndex.o_length); 19488 } else if (ipif != NULL) { 19489 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19490 re->ipv6RouteIfIndex.o_length = 19491 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19492 } 19493 19494 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19495 19496 mutex_enter(&ire->ire_lock); 19497 gw_addr_v6 = ire->ire_gateway_addr_v6; 19498 mutex_exit(&ire->ire_lock); 19499 19500 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19501 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19502 else 19503 re->ipv6RouteNextHop = gw_addr_v6; 19504 19505 /* remote(4), local(3), or discard(2) */ 19506 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19507 re->ipv6RouteType = 2; 19508 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19509 re->ipv6RouteType = 3; 19510 else 19511 re->ipv6RouteType = 4; 19512 19513 re->ipv6RouteProtocol = -1; 19514 re->ipv6RoutePolicy = 0; 19515 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19516 re->ipv6RouteNextHopRDI = 0; 19517 re->ipv6RouteWeight = 0; 19518 re->ipv6RouteMetric = 0; 19519 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19520 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19521 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19522 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19523 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19524 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19525 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19526 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19527 19528 if (ire->ire_flags & RTF_DYNAMIC) { 19529 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19530 } else { 19531 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19532 } 19533 19534 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19535 (char *)re, (int)sizeof (*re))) { 19536 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19537 (uint_t)sizeof (*re))); 19538 } 19539 19540 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19541 iaeptr->iae_routeidx = ird->ird_idx; 19542 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19543 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19544 } 19545 19546 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19547 (char *)iae, sacnt * sizeof (*iae))) { 19548 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19549 (unsigned)(sacnt * sizeof (*iae)))); 19550 } 19551 19552 /* bump route index for next pass */ 19553 ird->ird_idx++; 19554 19555 kmem_free(re, sizeof (*re)); 19556 if (sacnt != 0) 19557 kmem_free(iae, sacnt * sizeof (*iae)); 19558 19559 if (gcgrp != NULL) 19560 rw_exit(&gcgrp->gcgrp_rwlock); 19561 } 19562 19563 /* 19564 * ndp_walk routine to create ipv6NetToMediaEntryTable 19565 */ 19566 static int 19567 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19568 { 19569 ill_t *ill; 19570 mib2_ipv6NetToMediaEntry_t ntme; 19571 dl_unitdata_req_t *dl; 19572 19573 ill = nce->nce_ill; 19574 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19575 return (0); 19576 19577 /* 19578 * Neighbor cache entry attached to IRE with on-link 19579 * destination. 19580 */ 19581 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19582 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19583 if ((ill->ill_flags & ILLF_XRESOLV) && 19584 (nce->nce_res_mp != NULL)) { 19585 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19586 ntme.ipv6NetToMediaPhysAddress.o_length = 19587 dl->dl_dest_addr_length; 19588 } else { 19589 ntme.ipv6NetToMediaPhysAddress.o_length = 19590 ill->ill_phys_addr_length; 19591 } 19592 if (nce->nce_res_mp != NULL) { 19593 bcopy((char *)nce->nce_res_mp->b_rptr + 19594 NCE_LL_ADDR_OFFSET(ill), 19595 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19596 ntme.ipv6NetToMediaPhysAddress.o_length); 19597 } else { 19598 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19599 ill->ill_phys_addr_length); 19600 } 19601 /* 19602 * Note: Returns ND_* states. Should be: 19603 * reachable(1), stale(2), delay(3), probe(4), 19604 * invalid(5), unknown(6) 19605 */ 19606 ntme.ipv6NetToMediaState = nce->nce_state; 19607 ntme.ipv6NetToMediaLastUpdated = 0; 19608 19609 /* other(1), dynamic(2), static(3), local(4) */ 19610 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19611 ntme.ipv6NetToMediaType = 4; 19612 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19613 ntme.ipv6NetToMediaType = 1; 19614 } else { 19615 ntme.ipv6NetToMediaType = 2; 19616 } 19617 19618 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19619 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19620 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19621 (uint_t)sizeof (ntme))); 19622 } 19623 return (0); 19624 } 19625 19626 /* 19627 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19628 */ 19629 /* ARGSUSED */ 19630 int 19631 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19632 { 19633 switch (level) { 19634 case MIB2_IP: 19635 case MIB2_ICMP: 19636 switch (name) { 19637 default: 19638 break; 19639 } 19640 return (1); 19641 default: 19642 return (1); 19643 } 19644 } 19645 19646 /* 19647 * When there exists both a 64- and 32-bit counter of a particular type 19648 * (i.e., InReceives), only the 64-bit counters are added. 19649 */ 19650 void 19651 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19652 { 19653 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19654 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19655 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19656 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19657 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19658 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19659 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19660 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19661 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19662 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19663 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19664 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19665 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19666 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19667 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19668 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19669 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19670 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19671 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19672 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19673 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19674 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19675 o2->ipIfStatsInWrongIPVersion); 19676 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19677 o2->ipIfStatsInWrongIPVersion); 19678 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19679 o2->ipIfStatsOutSwitchIPVersion); 19680 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19681 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19682 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19683 o2->ipIfStatsHCInForwDatagrams); 19684 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19685 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19686 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19687 o2->ipIfStatsHCOutForwDatagrams); 19688 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19689 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19690 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19691 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19692 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19693 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19694 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19695 o2->ipIfStatsHCOutMcastOctets); 19696 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19697 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19698 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19699 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19700 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19701 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19702 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19703 } 19704 19705 void 19706 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19707 { 19708 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19709 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19710 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19711 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19712 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19713 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19714 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19715 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19716 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19717 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19718 o2->ipv6IfIcmpInRouterSolicits); 19719 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19720 o2->ipv6IfIcmpInRouterAdvertisements); 19721 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19722 o2->ipv6IfIcmpInNeighborSolicits); 19723 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19724 o2->ipv6IfIcmpInNeighborAdvertisements); 19725 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19726 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19727 o2->ipv6IfIcmpInGroupMembQueries); 19728 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19729 o2->ipv6IfIcmpInGroupMembResponses); 19730 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19731 o2->ipv6IfIcmpInGroupMembReductions); 19732 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19733 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19734 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19735 o2->ipv6IfIcmpOutDestUnreachs); 19736 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19737 o2->ipv6IfIcmpOutAdminProhibs); 19738 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19739 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19740 o2->ipv6IfIcmpOutParmProblems); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19742 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19743 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19744 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19745 o2->ipv6IfIcmpOutRouterSolicits); 19746 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19747 o2->ipv6IfIcmpOutRouterAdvertisements); 19748 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19749 o2->ipv6IfIcmpOutNeighborSolicits); 19750 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19751 o2->ipv6IfIcmpOutNeighborAdvertisements); 19752 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19753 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19754 o2->ipv6IfIcmpOutGroupMembQueries); 19755 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19756 o2->ipv6IfIcmpOutGroupMembResponses); 19757 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19758 o2->ipv6IfIcmpOutGroupMembReductions); 19759 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19760 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19761 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19762 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19763 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19764 o2->ipv6IfIcmpInBadNeighborSolicitations); 19765 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19766 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19767 o2->ipv6IfIcmpInGroupMembTotal); 19768 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19769 o2->ipv6IfIcmpInGroupMembBadQueries); 19770 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19771 o2->ipv6IfIcmpInGroupMembBadReports); 19772 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19773 o2->ipv6IfIcmpInGroupMembOurReports); 19774 } 19775 19776 /* 19777 * Called before the options are updated to check if this packet will 19778 * be source routed from here. 19779 * This routine assumes that the options are well formed i.e. that they 19780 * have already been checked. 19781 */ 19782 static boolean_t 19783 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19784 { 19785 ipoptp_t opts; 19786 uchar_t *opt; 19787 uint8_t optval; 19788 uint8_t optlen; 19789 ipaddr_t dst; 19790 ire_t *ire; 19791 19792 if (IS_SIMPLE_IPH(ipha)) { 19793 ip2dbg(("not source routed\n")); 19794 return (B_FALSE); 19795 } 19796 dst = ipha->ipha_dst; 19797 for (optval = ipoptp_first(&opts, ipha); 19798 optval != IPOPT_EOL; 19799 optval = ipoptp_next(&opts)) { 19800 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19801 opt = opts.ipoptp_cur; 19802 optlen = opts.ipoptp_len; 19803 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19804 optval, optlen)); 19805 switch (optval) { 19806 uint32_t off; 19807 case IPOPT_SSRR: 19808 case IPOPT_LSRR: 19809 /* 19810 * If dst is one of our addresses and there are some 19811 * entries left in the source route return (true). 19812 */ 19813 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19814 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19815 if (ire == NULL) { 19816 ip2dbg(("ip_source_routed: not next" 19817 " source route 0x%x\n", 19818 ntohl(dst))); 19819 return (B_FALSE); 19820 } 19821 ire_refrele(ire); 19822 off = opt[IPOPT_OFFSET]; 19823 off--; 19824 if (optlen < IP_ADDR_LEN || 19825 off > optlen - IP_ADDR_LEN) { 19826 /* End of source route */ 19827 ip1dbg(("ip_source_routed: end of SR\n")); 19828 return (B_FALSE); 19829 } 19830 return (B_TRUE); 19831 } 19832 } 19833 ip2dbg(("not source routed\n")); 19834 return (B_FALSE); 19835 } 19836 19837 /* 19838 * Check if the packet contains any source route. 19839 */ 19840 static boolean_t 19841 ip_source_route_included(ipha_t *ipha) 19842 { 19843 ipoptp_t opts; 19844 uint8_t optval; 19845 19846 if (IS_SIMPLE_IPH(ipha)) 19847 return (B_FALSE); 19848 for (optval = ipoptp_first(&opts, ipha); 19849 optval != IPOPT_EOL; 19850 optval = ipoptp_next(&opts)) { 19851 switch (optval) { 19852 case IPOPT_SSRR: 19853 case IPOPT_LSRR: 19854 return (B_TRUE); 19855 } 19856 } 19857 return (B_FALSE); 19858 } 19859 19860 /* 19861 * Called when the IRE expiration timer fires. 19862 */ 19863 void 19864 ip_trash_timer_expire(void *args) 19865 { 19866 int flush_flag = 0; 19867 ire_expire_arg_t iea; 19868 ip_stack_t *ipst = (ip_stack_t *)args; 19869 19870 iea.iea_ipst = ipst; /* No netstack_hold */ 19871 19872 /* 19873 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19874 * This lock makes sure that a new invocation of this function 19875 * that occurs due to an almost immediate timer firing will not 19876 * progress beyond this point until the current invocation is done 19877 */ 19878 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19879 ipst->ips_ip_ire_expire_id = 0; 19880 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19881 19882 /* Periodic timer */ 19883 if (ipst->ips_ip_ire_arp_time_elapsed >= 19884 ipst->ips_ip_ire_arp_interval) { 19885 /* 19886 * Remove all IRE_CACHE entries since they might 19887 * contain arp information. 19888 */ 19889 flush_flag |= FLUSH_ARP_TIME; 19890 ipst->ips_ip_ire_arp_time_elapsed = 0; 19891 IP_STAT(ipst, ip_ire_arp_timer_expired); 19892 } 19893 if (ipst->ips_ip_ire_rd_time_elapsed >= 19894 ipst->ips_ip_ire_redir_interval) { 19895 /* Remove all redirects */ 19896 flush_flag |= FLUSH_REDIRECT_TIME; 19897 ipst->ips_ip_ire_rd_time_elapsed = 0; 19898 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19899 } 19900 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19901 ipst->ips_ip_ire_pathmtu_interval) { 19902 /* Increase path mtu */ 19903 flush_flag |= FLUSH_MTU_TIME; 19904 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19905 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19906 } 19907 19908 /* 19909 * Optimize for the case when there are no redirects in the 19910 * ftable, that is, no need to walk the ftable in that case. 19911 */ 19912 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19913 iea.iea_flush_flag = flush_flag; 19914 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19915 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19916 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19917 NULL, ALL_ZONES, ipst); 19918 } 19919 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19920 ipst->ips_ip_redirect_cnt > 0) { 19921 iea.iea_flush_flag = flush_flag; 19922 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19923 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19924 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19925 } 19926 if (flush_flag & FLUSH_MTU_TIME) { 19927 /* 19928 * Walk all IPv6 IRE's and update them 19929 * Note that ARP and redirect timers are not 19930 * needed since NUD handles stale entries. 19931 */ 19932 flush_flag = FLUSH_MTU_TIME; 19933 iea.iea_flush_flag = flush_flag; 19934 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19935 ALL_ZONES, ipst); 19936 } 19937 19938 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19939 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19940 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19941 19942 /* 19943 * Hold the lock to serialize timeout calls and prevent 19944 * stale values in ip_ire_expire_id. Otherwise it is possible 19945 * for the timer to fire and a new invocation of this function 19946 * to start before the return value of timeout has been stored 19947 * in ip_ire_expire_id by the current invocation. 19948 */ 19949 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19950 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19951 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19952 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19953 } 19954 19955 /* 19956 * Called by the memory allocator subsystem directly, when the system 19957 * is running low on memory. 19958 */ 19959 /* ARGSUSED */ 19960 void 19961 ip_trash_ire_reclaim(void *args) 19962 { 19963 netstack_handle_t nh; 19964 netstack_t *ns; 19965 19966 netstack_next_init(&nh); 19967 while ((ns = netstack_next(&nh)) != NULL) { 19968 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19969 netstack_rele(ns); 19970 } 19971 netstack_next_fini(&nh); 19972 } 19973 19974 static void 19975 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19976 { 19977 ire_cache_count_t icc; 19978 ire_cache_reclaim_t icr; 19979 ncc_cache_count_t ncc; 19980 nce_cache_reclaim_t ncr; 19981 uint_t delete_cnt; 19982 /* 19983 * Memory reclaim call back. 19984 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19985 * Then, with a target of freeing 1/Nth of IRE_CACHE 19986 * entries, determine what fraction to free for 19987 * each category of IRE_CACHE entries giving absolute priority 19988 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19989 * entry will be freed unless all offlink entries are freed). 19990 */ 19991 icc.icc_total = 0; 19992 icc.icc_unused = 0; 19993 icc.icc_offlink = 0; 19994 icc.icc_pmtu = 0; 19995 icc.icc_onlink = 0; 19996 ire_walk(ire_cache_count, (char *)&icc, ipst); 19997 19998 /* 19999 * Free NCEs for IPv6 like the onlink ires. 20000 */ 20001 ncc.ncc_total = 0; 20002 ncc.ncc_host = 0; 20003 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20004 20005 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20006 icc.icc_pmtu + icc.icc_onlink); 20007 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20008 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20009 if (delete_cnt == 0) 20010 return; 20011 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20012 /* Always delete all unused offlink entries */ 20013 icr.icr_ipst = ipst; 20014 icr.icr_unused = 1; 20015 if (delete_cnt <= icc.icc_unused) { 20016 /* 20017 * Only need to free unused entries. In other words, 20018 * there are enough unused entries to free to meet our 20019 * target number of freed ire cache entries. 20020 */ 20021 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20022 ncr.ncr_host = 0; 20023 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20024 /* 20025 * Only need to free unused entries, plus a fraction of offlink 20026 * entries. It follows from the first if statement that 20027 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20028 */ 20029 delete_cnt -= icc.icc_unused; 20030 /* Round up # deleted by truncating fraction */ 20031 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20032 icr.icr_pmtu = icr.icr_onlink = 0; 20033 ncr.ncr_host = 0; 20034 } else if (delete_cnt <= 20035 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20036 /* 20037 * Free all unused and offlink entries, plus a fraction of 20038 * pmtu entries. It follows from the previous if statement 20039 * that icc_pmtu is non-zero, and that 20040 * delete_cnt != icc_unused + icc_offlink. 20041 */ 20042 icr.icr_offlink = 1; 20043 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20044 /* Round up # deleted by truncating fraction */ 20045 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20046 icr.icr_onlink = 0; 20047 ncr.ncr_host = 0; 20048 } else { 20049 /* 20050 * Free all unused, offlink, and pmtu entries, plus a fraction 20051 * of onlink entries. If we're here, then we know that 20052 * icc_onlink is non-zero, and that 20053 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20054 */ 20055 icr.icr_offlink = icr.icr_pmtu = 1; 20056 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20057 icc.icc_pmtu; 20058 /* Round up # deleted by truncating fraction */ 20059 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20060 /* Using the same delete fraction as for onlink IREs */ 20061 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20062 } 20063 #ifdef DEBUG 20064 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20065 "fractions %d/%d/%d/%d\n", 20066 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20067 icc.icc_unused, icc.icc_offlink, 20068 icc.icc_pmtu, icc.icc_onlink, 20069 icr.icr_unused, icr.icr_offlink, 20070 icr.icr_pmtu, icr.icr_onlink)); 20071 #endif 20072 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20073 if (ncr.ncr_host != 0) 20074 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20075 (uchar_t *)&ncr, ipst); 20076 #ifdef DEBUG 20077 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20078 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20079 ire_walk(ire_cache_count, (char *)&icc, ipst); 20080 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20081 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20082 icc.icc_pmtu, icc.icc_onlink)); 20083 #endif 20084 } 20085 20086 /* 20087 * ip_unbind is called when a copy of an unbind request is received from the 20088 * upper level protocol. We remove this conn from any fanout hash list it is 20089 * on, and zero out the bind information. No reply is expected up above. 20090 */ 20091 mblk_t * 20092 ip_unbind(queue_t *q, mblk_t *mp) 20093 { 20094 conn_t *connp = Q_TO_CONN(q); 20095 20096 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20097 20098 if (is_system_labeled() && connp->conn_anon_port) { 20099 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20100 connp->conn_mlp_type, connp->conn_ulp, 20101 ntohs(connp->conn_lport), B_FALSE); 20102 connp->conn_anon_port = 0; 20103 } 20104 connp->conn_mlp_type = mlptSingle; 20105 20106 ipcl_hash_remove(connp); 20107 20108 ASSERT(mp->b_cont == NULL); 20109 /* 20110 * Convert mp into a T_OK_ACK 20111 */ 20112 mp = mi_tpi_ok_ack_alloc(mp); 20113 20114 /* 20115 * should not happen in practice... T_OK_ACK is smaller than the 20116 * original message. 20117 */ 20118 if (mp == NULL) 20119 return (NULL); 20120 20121 return (mp); 20122 } 20123 20124 /* 20125 * Write side put procedure. Outbound data, IOCTLs, responses from 20126 * resolvers, etc, come down through here. 20127 * 20128 * arg2 is always a queue_t *. 20129 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20130 * the zoneid. 20131 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20132 */ 20133 void 20134 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20135 { 20136 ip_output_options(arg, mp, arg2, caller, &zero_info); 20137 } 20138 20139 void 20140 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20141 ip_opt_info_t *infop) 20142 { 20143 conn_t *connp = NULL; 20144 queue_t *q = (queue_t *)arg2; 20145 ipha_t *ipha; 20146 #define rptr ((uchar_t *)ipha) 20147 ire_t *ire = NULL; 20148 ire_t *sctp_ire = NULL; 20149 uint32_t v_hlen_tos_len; 20150 ipaddr_t dst; 20151 mblk_t *first_mp = NULL; 20152 boolean_t mctl_present; 20153 ipsec_out_t *io; 20154 int match_flags; 20155 ill_t *attach_ill = NULL; 20156 /* Bind to IPIF_NOFAILOVER ill etc. */ 20157 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20158 ipif_t *dst_ipif; 20159 boolean_t multirt_need_resolve = B_FALSE; 20160 mblk_t *copy_mp = NULL; 20161 int err; 20162 zoneid_t zoneid; 20163 boolean_t need_decref = B_FALSE; 20164 boolean_t ignore_dontroute = B_FALSE; 20165 boolean_t ignore_nexthop = B_FALSE; 20166 boolean_t ip_nexthop = B_FALSE; 20167 ipaddr_t nexthop_addr; 20168 ip_stack_t *ipst; 20169 20170 #ifdef _BIG_ENDIAN 20171 #define V_HLEN (v_hlen_tos_len >> 24) 20172 #else 20173 #define V_HLEN (v_hlen_tos_len & 0xFF) 20174 #endif 20175 20176 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20177 "ip_wput_start: q %p", q); 20178 20179 /* 20180 * ip_wput fast path 20181 */ 20182 20183 /* is packet from ARP ? */ 20184 if (q->q_next != NULL) { 20185 zoneid = (zoneid_t)(uintptr_t)arg; 20186 goto qnext; 20187 } 20188 20189 connp = (conn_t *)arg; 20190 ASSERT(connp != NULL); 20191 zoneid = connp->conn_zoneid; 20192 ipst = connp->conn_netstack->netstack_ip; 20193 20194 /* is queue flow controlled? */ 20195 if ((q->q_first != NULL || connp->conn_draining) && 20196 (caller == IP_WPUT)) { 20197 ASSERT(!need_decref); 20198 (void) putq(q, mp); 20199 return; 20200 } 20201 20202 /* Multidata transmit? */ 20203 if (DB_TYPE(mp) == M_MULTIDATA) { 20204 /* 20205 * We should never get here, since all Multidata messages 20206 * originating from tcp should have been directed over to 20207 * tcp_multisend() in the first place. 20208 */ 20209 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20210 freemsg(mp); 20211 return; 20212 } else if (DB_TYPE(mp) != M_DATA) 20213 goto notdata; 20214 20215 if (mp->b_flag & MSGHASREF) { 20216 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20217 mp->b_flag &= ~MSGHASREF; 20218 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20219 need_decref = B_TRUE; 20220 } 20221 ipha = (ipha_t *)mp->b_rptr; 20222 20223 /* is IP header non-aligned or mblk smaller than basic IP header */ 20224 #ifndef SAFETY_BEFORE_SPEED 20225 if (!OK_32PTR(rptr) || 20226 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20227 goto hdrtoosmall; 20228 #endif 20229 20230 ASSERT(OK_32PTR(ipha)); 20231 20232 /* 20233 * This function assumes that mp points to an IPv4 packet. If it's the 20234 * wrong version, we'll catch it again in ip_output_v6. 20235 * 20236 * Note that this is *only* locally-generated output here, and never 20237 * forwarded data, and that we need to deal only with transports that 20238 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20239 * label.) 20240 */ 20241 if (is_system_labeled() && 20242 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20243 !connp->conn_ulp_labeled) { 20244 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20245 connp->conn_mac_exempt, ipst); 20246 ipha = (ipha_t *)mp->b_rptr; 20247 if (err != 0) { 20248 first_mp = mp; 20249 if (err == EINVAL) 20250 goto icmp_parameter_problem; 20251 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20252 goto discard_pkt; 20253 } 20254 } 20255 20256 ASSERT(infop != NULL); 20257 20258 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20259 /* 20260 * IP_PKTINFO ancillary option is present. 20261 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20262 * allows using address of any zone as the source address. 20263 */ 20264 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20265 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20266 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20267 if (ire == NULL) 20268 goto drop_pkt; 20269 ire_refrele(ire); 20270 ire = NULL; 20271 } 20272 20273 /* 20274 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20275 * passed in IP_PKTINFO. 20276 */ 20277 if (infop->ip_opt_ill_index != 0 && 20278 connp->conn_outgoing_ill == NULL && 20279 connp->conn_nofailover_ill == NULL) { 20280 20281 xmit_ill = ill_lookup_on_ifindex( 20282 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20283 ipst); 20284 20285 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20286 goto drop_pkt; 20287 /* 20288 * check that there is an ipif belonging 20289 * to our zone. IPCL_ZONEID is not used because 20290 * IP_ALLZONES option is valid only when the ill is 20291 * accessible from all zones i.e has a valid ipif in 20292 * all zones. 20293 */ 20294 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20295 goto drop_pkt; 20296 } 20297 } 20298 20299 /* 20300 * If there is a policy, try to attach an ipsec_out in 20301 * the front. At the end, first_mp either points to a 20302 * M_DATA message or IPSEC_OUT message linked to a 20303 * M_DATA message. We have to do it now as we might 20304 * lose the "conn" if we go through ip_newroute. 20305 */ 20306 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20307 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20308 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20309 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20310 if (need_decref) 20311 CONN_DEC_REF(connp); 20312 return; 20313 } else { 20314 ASSERT(mp->b_datap->db_type == M_CTL); 20315 first_mp = mp; 20316 mp = mp->b_cont; 20317 mctl_present = B_TRUE; 20318 } 20319 } else { 20320 first_mp = mp; 20321 mctl_present = B_FALSE; 20322 } 20323 20324 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20325 20326 /* is wrong version or IP options present */ 20327 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20328 goto version_hdrlen_check; 20329 dst = ipha->ipha_dst; 20330 20331 if (connp->conn_nofailover_ill != NULL) { 20332 attach_ill = conn_get_held_ill(connp, 20333 &connp->conn_nofailover_ill, &err); 20334 if (err == ILL_LOOKUP_FAILED) { 20335 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20336 if (need_decref) 20337 CONN_DEC_REF(connp); 20338 freemsg(first_mp); 20339 return; 20340 } 20341 } 20342 20343 /* If IP_BOUND_IF has been set, use that ill. */ 20344 if (connp->conn_outgoing_ill != NULL) { 20345 xmit_ill = conn_get_held_ill(connp, 20346 &connp->conn_outgoing_ill, &err); 20347 if (err == ILL_LOOKUP_FAILED) 20348 goto drop_pkt; 20349 20350 goto send_from_ill; 20351 } 20352 20353 /* is packet multicast? */ 20354 if (CLASSD(dst)) 20355 goto multicast; 20356 20357 /* 20358 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20359 * takes precedence over conn_dontroute and conn_nexthop_set 20360 */ 20361 if (xmit_ill != NULL) 20362 goto send_from_ill; 20363 20364 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20365 /* 20366 * If the destination is a broadcast, local, or loopback 20367 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20368 * standard path. 20369 */ 20370 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20371 if ((ire == NULL) || (ire->ire_type & 20372 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20373 if (ire != NULL) { 20374 ire_refrele(ire); 20375 /* No more access to ire */ 20376 ire = NULL; 20377 } 20378 /* 20379 * bypass routing checks and go directly to interface. 20380 */ 20381 if (connp->conn_dontroute) 20382 goto dontroute; 20383 20384 ASSERT(connp->conn_nexthop_set); 20385 ip_nexthop = B_TRUE; 20386 nexthop_addr = connp->conn_nexthop_v4; 20387 goto send_from_ill; 20388 } 20389 20390 /* Must be a broadcast, a loopback or a local ire */ 20391 ire_refrele(ire); 20392 /* No more access to ire */ 20393 ire = NULL; 20394 } 20395 20396 if (attach_ill != NULL) 20397 goto send_from_ill; 20398 20399 /* 20400 * We cache IRE_CACHEs to avoid lookups. We don't do 20401 * this for the tcp global queue and listen end point 20402 * as it does not really have a real destination to 20403 * talk to. This is also true for SCTP. 20404 */ 20405 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20406 !connp->conn_fully_bound) { 20407 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20408 if (ire == NULL) 20409 goto noirefound; 20410 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20411 "ip_wput_end: q %p (%S)", q, "end"); 20412 20413 /* 20414 * Check if the ire has the RTF_MULTIRT flag, inherited 20415 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20416 */ 20417 if (ire->ire_flags & RTF_MULTIRT) { 20418 20419 /* 20420 * Force the TTL of multirouted packets if required. 20421 * The TTL of such packets is bounded by the 20422 * ip_multirt_ttl ndd variable. 20423 */ 20424 if ((ipst->ips_ip_multirt_ttl > 0) && 20425 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20426 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20427 "(was %d), dst 0x%08x\n", 20428 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20429 ntohl(ire->ire_addr))); 20430 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20431 } 20432 /* 20433 * We look at this point if there are pending 20434 * unresolved routes. ire_multirt_resolvable() 20435 * checks in O(n) that all IRE_OFFSUBNET ire 20436 * entries for the packet's destination and 20437 * flagged RTF_MULTIRT are currently resolved. 20438 * If some remain unresolved, we make a copy 20439 * of the current message. It will be used 20440 * to initiate additional route resolutions. 20441 */ 20442 multirt_need_resolve = 20443 ire_multirt_need_resolve(ire->ire_addr, 20444 MBLK_GETLABEL(first_mp), ipst); 20445 ip2dbg(("ip_wput[TCP]: ire %p, " 20446 "multirt_need_resolve %d, first_mp %p\n", 20447 (void *)ire, multirt_need_resolve, 20448 (void *)first_mp)); 20449 if (multirt_need_resolve) { 20450 copy_mp = copymsg(first_mp); 20451 if (copy_mp != NULL) { 20452 MULTIRT_DEBUG_TAG(copy_mp); 20453 } 20454 } 20455 } 20456 20457 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20458 20459 /* 20460 * Try to resolve another multiroute if 20461 * ire_multirt_need_resolve() deemed it necessary. 20462 */ 20463 if (copy_mp != NULL) 20464 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20465 if (need_decref) 20466 CONN_DEC_REF(connp); 20467 return; 20468 } 20469 20470 /* 20471 * Access to conn_ire_cache. (protected by conn_lock) 20472 * 20473 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20474 * the ire bucket lock here to check for CONDEMNED as it is okay to 20475 * send a packet or two with the IRE_CACHE that is going away. 20476 * Access to the ire requires an ire refhold on the ire prior to 20477 * its use since an interface unplumb thread may delete the cached 20478 * ire and release the refhold at any time. 20479 * 20480 * Caching an ire in the conn_ire_cache 20481 * 20482 * o Caching an ire pointer in the conn requires a strict check for 20483 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20484 * ires before cleaning up the conns. So the caching of an ire pointer 20485 * in the conn is done after making sure under the bucket lock that the 20486 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20487 * caching an ire after the unplumb thread has cleaned up the conn. 20488 * If the conn does not send a packet subsequently the unplumb thread 20489 * will be hanging waiting for the ire count to drop to zero. 20490 * 20491 * o We also need to atomically test for a null conn_ire_cache and 20492 * set the conn_ire_cache under the the protection of the conn_lock 20493 * to avoid races among concurrent threads trying to simultaneously 20494 * cache an ire in the conn_ire_cache. 20495 */ 20496 mutex_enter(&connp->conn_lock); 20497 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20498 20499 if (ire != NULL && ire->ire_addr == dst && 20500 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20501 20502 IRE_REFHOLD(ire); 20503 mutex_exit(&connp->conn_lock); 20504 20505 } else { 20506 boolean_t cached = B_FALSE; 20507 connp->conn_ire_cache = NULL; 20508 mutex_exit(&connp->conn_lock); 20509 /* Release the old ire */ 20510 if (ire != NULL && sctp_ire == NULL) 20511 IRE_REFRELE_NOTR(ire); 20512 20513 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20514 if (ire == NULL) 20515 goto noirefound; 20516 IRE_REFHOLD_NOTR(ire); 20517 20518 mutex_enter(&connp->conn_lock); 20519 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20520 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20521 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20522 if (connp->conn_ulp == IPPROTO_TCP) 20523 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20524 connp->conn_ire_cache = ire; 20525 cached = B_TRUE; 20526 } 20527 rw_exit(&ire->ire_bucket->irb_lock); 20528 } 20529 mutex_exit(&connp->conn_lock); 20530 20531 /* 20532 * We can continue to use the ire but since it was 20533 * not cached, we should drop the extra reference. 20534 */ 20535 if (!cached) 20536 IRE_REFRELE_NOTR(ire); 20537 } 20538 20539 20540 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20541 "ip_wput_end: q %p (%S)", q, "end"); 20542 20543 /* 20544 * Check if the ire has the RTF_MULTIRT flag, inherited 20545 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20546 */ 20547 if (ire->ire_flags & RTF_MULTIRT) { 20548 20549 /* 20550 * Force the TTL of multirouted packets if required. 20551 * The TTL of such packets is bounded by the 20552 * ip_multirt_ttl ndd variable. 20553 */ 20554 if ((ipst->ips_ip_multirt_ttl > 0) && 20555 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20556 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20557 "(was %d), dst 0x%08x\n", 20558 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20559 ntohl(ire->ire_addr))); 20560 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20561 } 20562 20563 /* 20564 * At this point, we check to see if there are any pending 20565 * unresolved routes. ire_multirt_resolvable() 20566 * checks in O(n) that all IRE_OFFSUBNET ire 20567 * entries for the packet's destination and 20568 * flagged RTF_MULTIRT are currently resolved. 20569 * If some remain unresolved, we make a copy 20570 * of the current message. It will be used 20571 * to initiate additional route resolutions. 20572 */ 20573 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20574 MBLK_GETLABEL(first_mp), ipst); 20575 ip2dbg(("ip_wput[not TCP]: ire %p, " 20576 "multirt_need_resolve %d, first_mp %p\n", 20577 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20578 if (multirt_need_resolve) { 20579 copy_mp = copymsg(first_mp); 20580 if (copy_mp != NULL) { 20581 MULTIRT_DEBUG_TAG(copy_mp); 20582 } 20583 } 20584 } 20585 20586 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20587 20588 /* 20589 * Try to resolve another multiroute if 20590 * ire_multirt_resolvable() deemed it necessary 20591 */ 20592 if (copy_mp != NULL) 20593 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20594 if (need_decref) 20595 CONN_DEC_REF(connp); 20596 return; 20597 20598 qnext: 20599 /* 20600 * Upper Level Protocols pass down complete IP datagrams 20601 * as M_DATA messages. Everything else is a sideshow. 20602 * 20603 * 1) We could be re-entering ip_wput because of ip_neworute 20604 * in which case we could have a IPSEC_OUT message. We 20605 * need to pass through ip_wput like other datagrams and 20606 * hence cannot branch to ip_wput_nondata. 20607 * 20608 * 2) ARP, AH, ESP, and other clients who are on the module 20609 * instance of IP stream, give us something to deal with. 20610 * We will handle AH and ESP here and rest in ip_wput_nondata. 20611 * 20612 * 3) ICMP replies also could come here. 20613 */ 20614 ipst = ILLQ_TO_IPST(q); 20615 20616 if (DB_TYPE(mp) != M_DATA) { 20617 notdata: 20618 if (DB_TYPE(mp) == M_CTL) { 20619 /* 20620 * M_CTL messages are used by ARP, AH and ESP to 20621 * communicate with IP. We deal with IPSEC_IN and 20622 * IPSEC_OUT here. ip_wput_nondata handles other 20623 * cases. 20624 */ 20625 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20626 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20627 first_mp = mp->b_cont; 20628 first_mp->b_flag &= ~MSGHASREF; 20629 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20630 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20631 CONN_DEC_REF(connp); 20632 connp = NULL; 20633 } 20634 if (ii->ipsec_info_type == IPSEC_IN) { 20635 /* 20636 * Either this message goes back to 20637 * IPsec for further processing or to 20638 * ULP after policy checks. 20639 */ 20640 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20641 return; 20642 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20643 io = (ipsec_out_t *)ii; 20644 if (io->ipsec_out_proc_begin) { 20645 /* 20646 * IPsec processing has already started. 20647 * Complete it. 20648 * IPQoS notes: We don't care what is 20649 * in ipsec_out_ill_index since this 20650 * won't be processed for IPQoS policies 20651 * in ipsec_out_process. 20652 */ 20653 ipsec_out_process(q, mp, NULL, 20654 io->ipsec_out_ill_index); 20655 return; 20656 } else { 20657 connp = (q->q_next != NULL) ? 20658 NULL : Q_TO_CONN(q); 20659 first_mp = mp; 20660 mp = mp->b_cont; 20661 mctl_present = B_TRUE; 20662 } 20663 zoneid = io->ipsec_out_zoneid; 20664 ASSERT(zoneid != ALL_ZONES); 20665 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20666 /* 20667 * It's an IPsec control message requesting 20668 * an SADB update to be sent to the IPsec 20669 * hardware acceleration capable ills. 20670 */ 20671 ipsec_ctl_t *ipsec_ctl = 20672 (ipsec_ctl_t *)mp->b_rptr; 20673 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20674 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20675 mblk_t *cmp = mp->b_cont; 20676 20677 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20678 ASSERT(cmp != NULL); 20679 20680 freeb(mp); 20681 ill_ipsec_capab_send_all(satype, cmp, sa, 20682 ipst->ips_netstack); 20683 return; 20684 } else { 20685 /* 20686 * This must be ARP or special TSOL signaling. 20687 */ 20688 ip_wput_nondata(NULL, q, mp, NULL); 20689 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20690 "ip_wput_end: q %p (%S)", q, "nondata"); 20691 return; 20692 } 20693 } else { 20694 /* 20695 * This must be non-(ARP/AH/ESP) messages. 20696 */ 20697 ASSERT(!need_decref); 20698 ip_wput_nondata(NULL, q, mp, NULL); 20699 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20700 "ip_wput_end: q %p (%S)", q, "nondata"); 20701 return; 20702 } 20703 } else { 20704 first_mp = mp; 20705 mctl_present = B_FALSE; 20706 } 20707 20708 ASSERT(first_mp != NULL); 20709 /* 20710 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20711 * to make sure that this packet goes out on the same interface it 20712 * came in. We handle that here. 20713 */ 20714 if (mctl_present) { 20715 uint_t ifindex; 20716 20717 io = (ipsec_out_t *)first_mp->b_rptr; 20718 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20719 /* 20720 * We may have lost the conn context if we are 20721 * coming here from ip_newroute(). Copy the 20722 * nexthop information. 20723 */ 20724 if (io->ipsec_out_ip_nexthop) { 20725 ip_nexthop = B_TRUE; 20726 nexthop_addr = io->ipsec_out_nexthop_addr; 20727 20728 ipha = (ipha_t *)mp->b_rptr; 20729 dst = ipha->ipha_dst; 20730 goto send_from_ill; 20731 } else { 20732 ASSERT(io->ipsec_out_ill_index != 0); 20733 ifindex = io->ipsec_out_ill_index; 20734 attach_ill = ill_lookup_on_ifindex(ifindex, 20735 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20736 if (attach_ill == NULL) { 20737 ASSERT(xmit_ill == NULL); 20738 ip1dbg(("ip_output: bad ifindex for " 20739 "(BIND TO IPIF_NOFAILOVER) %d\n", 20740 ifindex)); 20741 freemsg(first_mp); 20742 BUMP_MIB(&ipst->ips_ip_mib, 20743 ipIfStatsOutDiscards); 20744 ASSERT(!need_decref); 20745 return; 20746 } 20747 } 20748 } 20749 } 20750 20751 ASSERT(xmit_ill == NULL); 20752 20753 /* We have a complete IP datagram heading outbound. */ 20754 ipha = (ipha_t *)mp->b_rptr; 20755 20756 #ifndef SPEED_BEFORE_SAFETY 20757 /* 20758 * Make sure we have a full-word aligned message and that at least 20759 * a simple IP header is accessible in the first message. If not, 20760 * try a pullup. For labeled systems we need to always take this 20761 * path as M_CTLs are "notdata" but have trailing data to process. 20762 */ 20763 if (!OK_32PTR(rptr) || 20764 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20765 hdrtoosmall: 20766 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20767 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20768 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20769 if (first_mp == NULL) 20770 first_mp = mp; 20771 goto discard_pkt; 20772 } 20773 20774 /* This function assumes that mp points to an IPv4 packet. */ 20775 if (is_system_labeled() && q->q_next == NULL && 20776 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20777 !connp->conn_ulp_labeled) { 20778 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20779 connp->conn_mac_exempt, ipst); 20780 ipha = (ipha_t *)mp->b_rptr; 20781 if (first_mp != NULL) 20782 first_mp->b_cont = mp; 20783 if (err != 0) { 20784 if (first_mp == NULL) 20785 first_mp = mp; 20786 if (err == EINVAL) 20787 goto icmp_parameter_problem; 20788 ip2dbg(("ip_wput: label check failed (%d)\n", 20789 err)); 20790 goto discard_pkt; 20791 } 20792 } 20793 20794 ipha = (ipha_t *)mp->b_rptr; 20795 if (first_mp == NULL) { 20796 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20797 /* 20798 * If we got here because of "goto hdrtoosmall" 20799 * We need to attach a IPSEC_OUT. 20800 */ 20801 if (connp->conn_out_enforce_policy) { 20802 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20803 NULL, ipha->ipha_protocol, 20804 ipst->ips_netstack)) == NULL)) { 20805 BUMP_MIB(&ipst->ips_ip_mib, 20806 ipIfStatsOutDiscards); 20807 if (need_decref) 20808 CONN_DEC_REF(connp); 20809 return; 20810 } else { 20811 ASSERT(mp->b_datap->db_type == M_CTL); 20812 first_mp = mp; 20813 mp = mp->b_cont; 20814 mctl_present = B_TRUE; 20815 } 20816 } else { 20817 first_mp = mp; 20818 mctl_present = B_FALSE; 20819 } 20820 } 20821 } 20822 #endif 20823 20824 /* Most of the code below is written for speed, not readability */ 20825 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20826 20827 /* 20828 * If ip_newroute() fails, we're going to need a full 20829 * header for the icmp wraparound. 20830 */ 20831 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20832 uint_t v_hlen; 20833 version_hdrlen_check: 20834 ASSERT(first_mp != NULL); 20835 v_hlen = V_HLEN; 20836 /* 20837 * siphon off IPv6 packets coming down from transport 20838 * layer modules here. 20839 * Note: high-order bit carries NUD reachability confirmation 20840 */ 20841 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20842 /* 20843 * FIXME: assume that callers of ip_output* call 20844 * the right version? 20845 */ 20846 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20847 ASSERT(xmit_ill == NULL); 20848 if (attach_ill != NULL) 20849 ill_refrele(attach_ill); 20850 if (need_decref) 20851 mp->b_flag |= MSGHASREF; 20852 (void) ip_output_v6(arg, first_mp, arg2, caller); 20853 return; 20854 } 20855 20856 if ((v_hlen >> 4) != IP_VERSION) { 20857 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20858 "ip_wput_end: q %p (%S)", q, "badvers"); 20859 goto discard_pkt; 20860 } 20861 /* 20862 * Is the header length at least 20 bytes? 20863 * 20864 * Are there enough bytes accessible in the header? If 20865 * not, try a pullup. 20866 */ 20867 v_hlen &= 0xF; 20868 v_hlen <<= 2; 20869 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20870 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20871 "ip_wput_end: q %p (%S)", q, "badlen"); 20872 goto discard_pkt; 20873 } 20874 if (v_hlen > (mp->b_wptr - rptr)) { 20875 if (!pullupmsg(mp, v_hlen)) { 20876 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20877 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20878 goto discard_pkt; 20879 } 20880 ipha = (ipha_t *)mp->b_rptr; 20881 } 20882 /* 20883 * Move first entry from any source route into ipha_dst and 20884 * verify the options 20885 */ 20886 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20887 zoneid, ipst)) { 20888 ASSERT(xmit_ill == NULL); 20889 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20890 if (attach_ill != NULL) 20891 ill_refrele(attach_ill); 20892 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20893 "ip_wput_end: q %p (%S)", q, "badopts"); 20894 if (need_decref) 20895 CONN_DEC_REF(connp); 20896 return; 20897 } 20898 } 20899 dst = ipha->ipha_dst; 20900 20901 /* 20902 * Try to get an IRE_CACHE for the destination address. If we can't, 20903 * we have to run the packet through ip_newroute which will take 20904 * the appropriate action to arrange for an IRE_CACHE, such as querying 20905 * a resolver, or assigning a default gateway, etc. 20906 */ 20907 if (CLASSD(dst)) { 20908 ipif_t *ipif; 20909 uint32_t setsrc = 0; 20910 20911 multicast: 20912 ASSERT(first_mp != NULL); 20913 ip2dbg(("ip_wput: CLASSD\n")); 20914 if (connp == NULL) { 20915 /* 20916 * Use the first good ipif on the ill. 20917 * XXX Should this ever happen? (Appears 20918 * to show up with just ppp and no ethernet due 20919 * to in.rdisc.) 20920 * However, ire_send should be able to 20921 * call ip_wput_ire directly. 20922 * 20923 * XXX Also, this can happen for ICMP and other packets 20924 * with multicast source addresses. Perhaps we should 20925 * fix things so that we drop the packet in question, 20926 * but for now, just run with it. 20927 */ 20928 ill_t *ill = (ill_t *)q->q_ptr; 20929 20930 /* 20931 * Don't honor attach_if for this case. If ill 20932 * is part of the group, ipif could belong to 20933 * any ill and we cannot maintain attach_ill 20934 * and ipif_ill same anymore and the assert 20935 * below would fail. 20936 */ 20937 if (mctl_present && io->ipsec_out_attach_if) { 20938 io->ipsec_out_ill_index = 0; 20939 io->ipsec_out_attach_if = B_FALSE; 20940 ASSERT(attach_ill != NULL); 20941 ill_refrele(attach_ill); 20942 attach_ill = NULL; 20943 } 20944 20945 ASSERT(attach_ill == NULL); 20946 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20947 if (ipif == NULL) { 20948 if (need_decref) 20949 CONN_DEC_REF(connp); 20950 freemsg(first_mp); 20951 return; 20952 } 20953 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20954 ntohl(dst), ill->ill_name)); 20955 } else { 20956 /* 20957 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20958 * and IP_MULTICAST_IF. The block comment above this 20959 * function explains the locking mechanism used here. 20960 */ 20961 if (xmit_ill == NULL) { 20962 xmit_ill = conn_get_held_ill(connp, 20963 &connp->conn_outgoing_ill, &err); 20964 if (err == ILL_LOOKUP_FAILED) { 20965 ip1dbg(("ip_wput: No ill for " 20966 "IP_BOUND_IF\n")); 20967 BUMP_MIB(&ipst->ips_ip_mib, 20968 ipIfStatsOutNoRoutes); 20969 goto drop_pkt; 20970 } 20971 } 20972 20973 if (xmit_ill == NULL) { 20974 ipif = conn_get_held_ipif(connp, 20975 &connp->conn_multicast_ipif, &err); 20976 if (err == IPIF_LOOKUP_FAILED) { 20977 ip1dbg(("ip_wput: No ipif for " 20978 "multicast\n")); 20979 BUMP_MIB(&ipst->ips_ip_mib, 20980 ipIfStatsOutNoRoutes); 20981 goto drop_pkt; 20982 } 20983 } 20984 if (xmit_ill != NULL) { 20985 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20986 if (ipif == NULL) { 20987 ip1dbg(("ip_wput: No ipif for " 20988 "xmit_ill\n")); 20989 BUMP_MIB(&ipst->ips_ip_mib, 20990 ipIfStatsOutNoRoutes); 20991 goto drop_pkt; 20992 } 20993 } else if (ipif == NULL || ipif->ipif_isv6) { 20994 /* 20995 * We must do this ipif determination here 20996 * else we could pass through ip_newroute 20997 * and come back here without the conn context. 20998 * 20999 * Note: we do late binding i.e. we bind to 21000 * the interface when the first packet is sent. 21001 * For performance reasons we do not rebind on 21002 * each packet but keep the binding until the 21003 * next IP_MULTICAST_IF option. 21004 * 21005 * conn_multicast_{ipif,ill} are shared between 21006 * IPv4 and IPv6 and AF_INET6 sockets can 21007 * send both IPv4 and IPv6 packets. Hence 21008 * we have to check that "isv6" matches above. 21009 */ 21010 if (ipif != NULL) 21011 ipif_refrele(ipif); 21012 ipif = ipif_lookup_group(dst, zoneid, ipst); 21013 if (ipif == NULL) { 21014 ip1dbg(("ip_wput: No ipif for " 21015 "multicast\n")); 21016 BUMP_MIB(&ipst->ips_ip_mib, 21017 ipIfStatsOutNoRoutes); 21018 goto drop_pkt; 21019 } 21020 err = conn_set_held_ipif(connp, 21021 &connp->conn_multicast_ipif, ipif); 21022 if (err == IPIF_LOOKUP_FAILED) { 21023 ipif_refrele(ipif); 21024 ip1dbg(("ip_wput: No ipif for " 21025 "multicast\n")); 21026 BUMP_MIB(&ipst->ips_ip_mib, 21027 ipIfStatsOutNoRoutes); 21028 goto drop_pkt; 21029 } 21030 } 21031 } 21032 ASSERT(!ipif->ipif_isv6); 21033 /* 21034 * As we may lose the conn by the time we reach ip_wput_ire, 21035 * we copy conn_multicast_loop and conn_dontroute on to an 21036 * ipsec_out. In case if this datagram goes out secure, 21037 * we need the ill_index also. Copy that also into the 21038 * ipsec_out. 21039 */ 21040 if (mctl_present) { 21041 io = (ipsec_out_t *)first_mp->b_rptr; 21042 ASSERT(first_mp->b_datap->db_type == M_CTL); 21043 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21044 } else { 21045 ASSERT(mp == first_mp); 21046 if ((first_mp = allocb(sizeof (ipsec_info_t), 21047 BPRI_HI)) == NULL) { 21048 ipif_refrele(ipif); 21049 first_mp = mp; 21050 goto discard_pkt; 21051 } 21052 first_mp->b_datap->db_type = M_CTL; 21053 first_mp->b_wptr += sizeof (ipsec_info_t); 21054 /* ipsec_out_secure is B_FALSE now */ 21055 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21056 io = (ipsec_out_t *)first_mp->b_rptr; 21057 io->ipsec_out_type = IPSEC_OUT; 21058 io->ipsec_out_len = sizeof (ipsec_out_t); 21059 io->ipsec_out_use_global_policy = B_TRUE; 21060 io->ipsec_out_ns = ipst->ips_netstack; 21061 first_mp->b_cont = mp; 21062 mctl_present = B_TRUE; 21063 } 21064 if (attach_ill != NULL) { 21065 ASSERT(attach_ill == ipif->ipif_ill); 21066 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21067 21068 /* 21069 * Check if we need an ire that will not be 21070 * looked up by anybody else i.e. HIDDEN. 21071 */ 21072 if (ill_is_probeonly(attach_ill)) { 21073 match_flags |= MATCH_IRE_MARK_HIDDEN; 21074 } 21075 io->ipsec_out_ill_index = 21076 attach_ill->ill_phyint->phyint_ifindex; 21077 io->ipsec_out_attach_if = B_TRUE; 21078 } else { 21079 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21080 io->ipsec_out_ill_index = 21081 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21082 } 21083 if (connp != NULL) { 21084 io->ipsec_out_multicast_loop = 21085 connp->conn_multicast_loop; 21086 io->ipsec_out_dontroute = connp->conn_dontroute; 21087 io->ipsec_out_zoneid = connp->conn_zoneid; 21088 } 21089 /* 21090 * If the application uses IP_MULTICAST_IF with 21091 * different logical addresses of the same ILL, we 21092 * need to make sure that the soruce address of 21093 * the packet matches the logical IP address used 21094 * in the option. We do it by initializing ipha_src 21095 * here. This should keep IPsec also happy as 21096 * when we return from IPsec processing, we don't 21097 * have to worry about getting the right address on 21098 * the packet. Thus it is sufficient to look for 21099 * IRE_CACHE using MATCH_IRE_ILL rathen than 21100 * MATCH_IRE_IPIF. 21101 * 21102 * NOTE : We need to do it for non-secure case also as 21103 * this might go out secure if there is a global policy 21104 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21105 * address, the source should be initialized already and 21106 * hence we won't be initializing here. 21107 * 21108 * As we do not have the ire yet, it is possible that 21109 * we set the source address here and then later discover 21110 * that the ire implies the source address to be assigned 21111 * through the RTF_SETSRC flag. 21112 * In that case, the setsrc variable will remind us 21113 * that overwritting the source address by the one 21114 * of the RTF_SETSRC-flagged ire is allowed. 21115 */ 21116 if (ipha->ipha_src == INADDR_ANY && 21117 (connp == NULL || !connp->conn_unspec_src)) { 21118 ipha->ipha_src = ipif->ipif_src_addr; 21119 setsrc = RTF_SETSRC; 21120 } 21121 /* 21122 * Find an IRE which matches the destination and the outgoing 21123 * queue (i.e. the outgoing interface.) 21124 * For loopback use a unicast IP address for 21125 * the ire lookup. 21126 */ 21127 if (IS_LOOPBACK(ipif->ipif_ill)) 21128 dst = ipif->ipif_lcl_addr; 21129 21130 /* 21131 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21132 * We don't need to lookup ire in ctable as the packet 21133 * needs to be sent to the destination through the specified 21134 * ill irrespective of ires in the cache table. 21135 */ 21136 ire = NULL; 21137 if (xmit_ill == NULL) { 21138 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21139 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21140 } 21141 21142 /* 21143 * refrele attach_ill as its not needed anymore. 21144 */ 21145 if (attach_ill != NULL) { 21146 ill_refrele(attach_ill); 21147 attach_ill = NULL; 21148 } 21149 21150 if (ire == NULL) { 21151 /* 21152 * Multicast loopback and multicast forwarding is 21153 * done in ip_wput_ire. 21154 * 21155 * Mark this packet to make it be delivered to 21156 * ip_wput_ire after the new ire has been 21157 * created. 21158 * 21159 * The call to ip_newroute_ipif takes into account 21160 * the setsrc reminder. In any case, we take care 21161 * of the RTF_MULTIRT flag. 21162 */ 21163 mp->b_prev = mp->b_next = NULL; 21164 if (xmit_ill == NULL || 21165 xmit_ill->ill_ipif_up_count > 0) { 21166 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21167 setsrc | RTF_MULTIRT, zoneid, infop); 21168 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21169 "ip_wput_end: q %p (%S)", q, "noire"); 21170 } else { 21171 freemsg(first_mp); 21172 } 21173 ipif_refrele(ipif); 21174 if (xmit_ill != NULL) 21175 ill_refrele(xmit_ill); 21176 if (need_decref) 21177 CONN_DEC_REF(connp); 21178 return; 21179 } 21180 21181 ipif_refrele(ipif); 21182 ipif = NULL; 21183 ASSERT(xmit_ill == NULL); 21184 21185 /* 21186 * Honor the RTF_SETSRC flag for multicast packets, 21187 * if allowed by the setsrc reminder. 21188 */ 21189 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21190 ipha->ipha_src = ire->ire_src_addr; 21191 } 21192 21193 /* 21194 * Unconditionally force the TTL to 1 for 21195 * multirouted multicast packets: 21196 * multirouted multicast should not cross 21197 * multicast routers. 21198 */ 21199 if (ire->ire_flags & RTF_MULTIRT) { 21200 if (ipha->ipha_ttl > 1) { 21201 ip2dbg(("ip_wput: forcing multicast " 21202 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21203 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21204 ipha->ipha_ttl = 1; 21205 } 21206 } 21207 } else { 21208 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21209 if ((ire != NULL) && (ire->ire_type & 21210 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21211 ignore_dontroute = B_TRUE; 21212 ignore_nexthop = B_TRUE; 21213 } 21214 if (ire != NULL) { 21215 ire_refrele(ire); 21216 ire = NULL; 21217 } 21218 /* 21219 * Guard against coming in from arp in which case conn is NULL. 21220 * Also guard against non M_DATA with dontroute set but 21221 * destined to local, loopback or broadcast addresses. 21222 */ 21223 if (connp != NULL && connp->conn_dontroute && 21224 !ignore_dontroute) { 21225 dontroute: 21226 /* 21227 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21228 * routing protocols from seeing false direct 21229 * connectivity. 21230 */ 21231 ipha->ipha_ttl = 1; 21232 21233 /* If suitable ipif not found, drop packet */ 21234 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21235 if (dst_ipif == NULL) { 21236 noroute: 21237 ip1dbg(("ip_wput: no route for dst using" 21238 " SO_DONTROUTE\n")); 21239 BUMP_MIB(&ipst->ips_ip_mib, 21240 ipIfStatsOutNoRoutes); 21241 mp->b_prev = mp->b_next = NULL; 21242 if (first_mp == NULL) 21243 first_mp = mp; 21244 goto drop_pkt; 21245 } else { 21246 /* 21247 * If suitable ipif has been found, set 21248 * xmit_ill to the corresponding 21249 * ipif_ill because we'll be using the 21250 * send_from_ill logic below. 21251 */ 21252 ASSERT(xmit_ill == NULL); 21253 xmit_ill = dst_ipif->ipif_ill; 21254 mutex_enter(&xmit_ill->ill_lock); 21255 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21256 mutex_exit(&xmit_ill->ill_lock); 21257 xmit_ill = NULL; 21258 ipif_refrele(dst_ipif); 21259 goto noroute; 21260 } 21261 ill_refhold_locked(xmit_ill); 21262 mutex_exit(&xmit_ill->ill_lock); 21263 ipif_refrele(dst_ipif); 21264 } 21265 } 21266 /* 21267 * If we are bound to IPIF_NOFAILOVER address, look for 21268 * an IRE_CACHE matching the ill. 21269 */ 21270 send_from_ill: 21271 if (attach_ill != NULL) { 21272 ipif_t *attach_ipif; 21273 21274 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21275 21276 /* 21277 * Check if we need an ire that will not be 21278 * looked up by anybody else i.e. HIDDEN. 21279 */ 21280 if (ill_is_probeonly(attach_ill)) { 21281 match_flags |= MATCH_IRE_MARK_HIDDEN; 21282 } 21283 21284 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21285 if (attach_ipif == NULL) { 21286 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21287 goto discard_pkt; 21288 } 21289 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21290 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21291 ipif_refrele(attach_ipif); 21292 } else if (xmit_ill != NULL) { 21293 ipif_t *ipif; 21294 21295 /* 21296 * Mark this packet as originated locally 21297 */ 21298 mp->b_prev = mp->b_next = NULL; 21299 21300 /* 21301 * Could be SO_DONTROUTE case also. 21302 * Verify that at least one ipif is up on the ill. 21303 */ 21304 if (xmit_ill->ill_ipif_up_count == 0) { 21305 ip1dbg(("ip_output: xmit_ill %s is down\n", 21306 xmit_ill->ill_name)); 21307 goto drop_pkt; 21308 } 21309 21310 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21311 if (ipif == NULL) { 21312 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21313 xmit_ill->ill_name)); 21314 goto drop_pkt; 21315 } 21316 21317 /* 21318 * Look for a ire that is part of the group, 21319 * if found use it else call ip_newroute_ipif. 21320 * IPCL_ZONEID is not used for matching because 21321 * IP_ALLZONES option is valid only when the 21322 * ill is accessible from all zones i.e has a 21323 * valid ipif in all zones. 21324 */ 21325 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21326 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21327 MBLK_GETLABEL(mp), match_flags, ipst); 21328 /* 21329 * If an ire exists use it or else create 21330 * an ire but don't add it to the cache. 21331 * Adding an ire may cause issues with 21332 * asymmetric routing. 21333 * In case of multiroute always act as if 21334 * ire does not exist. 21335 */ 21336 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21337 if (ire != NULL) 21338 ire_refrele(ire); 21339 ip_newroute_ipif(q, first_mp, ipif, 21340 dst, connp, 0, zoneid, infop); 21341 ipif_refrele(ipif); 21342 ip1dbg(("ip_output: xmit_ill via %s\n", 21343 xmit_ill->ill_name)); 21344 ill_refrele(xmit_ill); 21345 if (need_decref) 21346 CONN_DEC_REF(connp); 21347 return; 21348 } 21349 ipif_refrele(ipif); 21350 } else if (ip_nexthop || (connp != NULL && 21351 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21352 if (!ip_nexthop) { 21353 ip_nexthop = B_TRUE; 21354 nexthop_addr = connp->conn_nexthop_v4; 21355 } 21356 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21357 MATCH_IRE_GW; 21358 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21359 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21360 } else { 21361 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21362 ipst); 21363 } 21364 if (!ire) { 21365 /* 21366 * Make sure we don't load spread if this 21367 * is IPIF_NOFAILOVER case. 21368 */ 21369 if ((attach_ill != NULL) || 21370 (ip_nexthop && !ignore_nexthop)) { 21371 if (mctl_present) { 21372 io = (ipsec_out_t *)first_mp->b_rptr; 21373 ASSERT(first_mp->b_datap->db_type == 21374 M_CTL); 21375 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21376 } else { 21377 ASSERT(mp == first_mp); 21378 first_mp = allocb( 21379 sizeof (ipsec_info_t), BPRI_HI); 21380 if (first_mp == NULL) { 21381 first_mp = mp; 21382 goto discard_pkt; 21383 } 21384 first_mp->b_datap->db_type = M_CTL; 21385 first_mp->b_wptr += 21386 sizeof (ipsec_info_t); 21387 /* ipsec_out_secure is B_FALSE now */ 21388 bzero(first_mp->b_rptr, 21389 sizeof (ipsec_info_t)); 21390 io = (ipsec_out_t *)first_mp->b_rptr; 21391 io->ipsec_out_type = IPSEC_OUT; 21392 io->ipsec_out_len = 21393 sizeof (ipsec_out_t); 21394 io->ipsec_out_use_global_policy = 21395 B_TRUE; 21396 io->ipsec_out_ns = ipst->ips_netstack; 21397 first_mp->b_cont = mp; 21398 mctl_present = B_TRUE; 21399 } 21400 if (attach_ill != NULL) { 21401 io->ipsec_out_ill_index = attach_ill-> 21402 ill_phyint->phyint_ifindex; 21403 io->ipsec_out_attach_if = B_TRUE; 21404 } else { 21405 io->ipsec_out_ip_nexthop = ip_nexthop; 21406 io->ipsec_out_nexthop_addr = 21407 nexthop_addr; 21408 } 21409 } 21410 noirefound: 21411 /* 21412 * Mark this packet as having originated on 21413 * this machine. This will be noted in 21414 * ire_add_then_send, which needs to know 21415 * whether to run it back through ip_wput or 21416 * ip_rput following successful resolution. 21417 */ 21418 mp->b_prev = NULL; 21419 mp->b_next = NULL; 21420 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21421 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21422 "ip_wput_end: q %p (%S)", q, "newroute"); 21423 if (attach_ill != NULL) 21424 ill_refrele(attach_ill); 21425 if (xmit_ill != NULL) 21426 ill_refrele(xmit_ill); 21427 if (need_decref) 21428 CONN_DEC_REF(connp); 21429 return; 21430 } 21431 } 21432 21433 /* We now know where we are going with it. */ 21434 21435 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21436 "ip_wput_end: q %p (%S)", q, "end"); 21437 21438 /* 21439 * Check if the ire has the RTF_MULTIRT flag, inherited 21440 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21441 */ 21442 if (ire->ire_flags & RTF_MULTIRT) { 21443 /* 21444 * Force the TTL of multirouted packets if required. 21445 * The TTL of such packets is bounded by the 21446 * ip_multirt_ttl ndd variable. 21447 */ 21448 if ((ipst->ips_ip_multirt_ttl > 0) && 21449 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21450 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21451 "(was %d), dst 0x%08x\n", 21452 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21453 ntohl(ire->ire_addr))); 21454 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21455 } 21456 /* 21457 * At this point, we check to see if there are any pending 21458 * unresolved routes. ire_multirt_resolvable() 21459 * checks in O(n) that all IRE_OFFSUBNET ire 21460 * entries for the packet's destination and 21461 * flagged RTF_MULTIRT are currently resolved. 21462 * If some remain unresolved, we make a copy 21463 * of the current message. It will be used 21464 * to initiate additional route resolutions. 21465 */ 21466 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21467 MBLK_GETLABEL(first_mp), ipst); 21468 ip2dbg(("ip_wput[noirefound]: ire %p, " 21469 "multirt_need_resolve %d, first_mp %p\n", 21470 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21471 if (multirt_need_resolve) { 21472 copy_mp = copymsg(first_mp); 21473 if (copy_mp != NULL) { 21474 MULTIRT_DEBUG_TAG(copy_mp); 21475 } 21476 } 21477 } 21478 21479 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21480 /* 21481 * Try to resolve another multiroute if 21482 * ire_multirt_resolvable() deemed it necessary. 21483 * At this point, we need to distinguish 21484 * multicasts from other packets. For multicasts, 21485 * we call ip_newroute_ipif() and request that both 21486 * multirouting and setsrc flags are checked. 21487 */ 21488 if (copy_mp != NULL) { 21489 if (CLASSD(dst)) { 21490 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21491 if (ipif) { 21492 ASSERT(infop->ip_opt_ill_index == 0); 21493 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21494 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21495 ipif_refrele(ipif); 21496 } else { 21497 MULTIRT_DEBUG_UNTAG(copy_mp); 21498 freemsg(copy_mp); 21499 copy_mp = NULL; 21500 } 21501 } else { 21502 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21503 } 21504 } 21505 if (attach_ill != NULL) 21506 ill_refrele(attach_ill); 21507 if (xmit_ill != NULL) 21508 ill_refrele(xmit_ill); 21509 if (need_decref) 21510 CONN_DEC_REF(connp); 21511 return; 21512 21513 icmp_parameter_problem: 21514 /* could not have originated externally */ 21515 ASSERT(mp->b_prev == NULL); 21516 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21517 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21518 /* it's the IP header length that's in trouble */ 21519 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21520 first_mp = NULL; 21521 } 21522 21523 discard_pkt: 21524 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21525 drop_pkt: 21526 ip1dbg(("ip_wput: dropped packet\n")); 21527 if (ire != NULL) 21528 ire_refrele(ire); 21529 if (need_decref) 21530 CONN_DEC_REF(connp); 21531 freemsg(first_mp); 21532 if (attach_ill != NULL) 21533 ill_refrele(attach_ill); 21534 if (xmit_ill != NULL) 21535 ill_refrele(xmit_ill); 21536 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21537 "ip_wput_end: q %p (%S)", q, "droppkt"); 21538 } 21539 21540 /* 21541 * If this is a conn_t queue, then we pass in the conn. This includes the 21542 * zoneid. 21543 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21544 * in which case we use the global zoneid since those are all part of 21545 * the global zone. 21546 */ 21547 void 21548 ip_wput(queue_t *q, mblk_t *mp) 21549 { 21550 if (CONN_Q(q)) 21551 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21552 else 21553 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21554 } 21555 21556 /* 21557 * 21558 * The following rules must be observed when accessing any ipif or ill 21559 * that has been cached in the conn. Typically conn_nofailover_ill, 21560 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21561 * 21562 * Access: The ipif or ill pointed to from the conn can be accessed under 21563 * the protection of the conn_lock or after it has been refheld under the 21564 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21565 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21566 * The reason for this is that a concurrent unplumb could actually be 21567 * cleaning up these cached pointers by walking the conns and might have 21568 * finished cleaning up the conn in question. The macros check that an 21569 * unplumb has not yet started on the ipif or ill. 21570 * 21571 * Caching: An ipif or ill pointer may be cached in the conn only after 21572 * making sure that an unplumb has not started. So the caching is done 21573 * while holding both the conn_lock and the ill_lock and after using the 21574 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21575 * flag before starting the cleanup of conns. 21576 * 21577 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21578 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21579 * or a reference to the ipif or a reference to an ire that references the 21580 * ipif. An ipif does not change its ill except for failover/failback. Since 21581 * failover/failback happens only after bringing down the ipif and making sure 21582 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21583 * the above holds. 21584 */ 21585 ipif_t * 21586 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21587 { 21588 ipif_t *ipif; 21589 ill_t *ill; 21590 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21591 21592 *err = 0; 21593 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21594 mutex_enter(&connp->conn_lock); 21595 ipif = *ipifp; 21596 if (ipif != NULL) { 21597 ill = ipif->ipif_ill; 21598 mutex_enter(&ill->ill_lock); 21599 if (IPIF_CAN_LOOKUP(ipif)) { 21600 ipif_refhold_locked(ipif); 21601 mutex_exit(&ill->ill_lock); 21602 mutex_exit(&connp->conn_lock); 21603 rw_exit(&ipst->ips_ill_g_lock); 21604 return (ipif); 21605 } else { 21606 *err = IPIF_LOOKUP_FAILED; 21607 } 21608 mutex_exit(&ill->ill_lock); 21609 } 21610 mutex_exit(&connp->conn_lock); 21611 rw_exit(&ipst->ips_ill_g_lock); 21612 return (NULL); 21613 } 21614 21615 ill_t * 21616 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21617 { 21618 ill_t *ill; 21619 21620 *err = 0; 21621 mutex_enter(&connp->conn_lock); 21622 ill = *illp; 21623 if (ill != NULL) { 21624 mutex_enter(&ill->ill_lock); 21625 if (ILL_CAN_LOOKUP(ill)) { 21626 ill_refhold_locked(ill); 21627 mutex_exit(&ill->ill_lock); 21628 mutex_exit(&connp->conn_lock); 21629 return (ill); 21630 } else { 21631 *err = ILL_LOOKUP_FAILED; 21632 } 21633 mutex_exit(&ill->ill_lock); 21634 } 21635 mutex_exit(&connp->conn_lock); 21636 return (NULL); 21637 } 21638 21639 static int 21640 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21641 { 21642 ill_t *ill; 21643 21644 ill = ipif->ipif_ill; 21645 mutex_enter(&connp->conn_lock); 21646 mutex_enter(&ill->ill_lock); 21647 if (IPIF_CAN_LOOKUP(ipif)) { 21648 *ipifp = ipif; 21649 mutex_exit(&ill->ill_lock); 21650 mutex_exit(&connp->conn_lock); 21651 return (0); 21652 } 21653 mutex_exit(&ill->ill_lock); 21654 mutex_exit(&connp->conn_lock); 21655 return (IPIF_LOOKUP_FAILED); 21656 } 21657 21658 /* 21659 * This is called if the outbound datagram needs fragmentation. 21660 * 21661 * NOTE : This function does not ire_refrele the ire argument passed in. 21662 */ 21663 static void 21664 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21665 ip_stack_t *ipst) 21666 { 21667 ipha_t *ipha; 21668 mblk_t *mp; 21669 uint32_t v_hlen_tos_len; 21670 uint32_t max_frag; 21671 uint32_t frag_flag; 21672 boolean_t dont_use; 21673 21674 if (ipsec_mp->b_datap->db_type == M_CTL) { 21675 mp = ipsec_mp->b_cont; 21676 } else { 21677 mp = ipsec_mp; 21678 } 21679 21680 ipha = (ipha_t *)mp->b_rptr; 21681 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21682 21683 #ifdef _BIG_ENDIAN 21684 #define V_HLEN (v_hlen_tos_len >> 24) 21685 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21686 #else 21687 #define V_HLEN (v_hlen_tos_len & 0xFF) 21688 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21689 #endif 21690 21691 #ifndef SPEED_BEFORE_SAFETY 21692 /* 21693 * Check that ipha_length is consistent with 21694 * the mblk length 21695 */ 21696 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21697 ip0dbg(("Packet length mismatch: %d, %ld\n", 21698 LENGTH, msgdsize(mp))); 21699 freemsg(ipsec_mp); 21700 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21701 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21702 "packet length mismatch"); 21703 return; 21704 } 21705 #endif 21706 /* 21707 * Don't use frag_flag if pre-built packet or source 21708 * routed or if multicast (since multicast packets do not solicit 21709 * ICMP "packet too big" messages). Get the values of 21710 * max_frag and frag_flag atomically by acquiring the 21711 * ire_lock. 21712 */ 21713 mutex_enter(&ire->ire_lock); 21714 max_frag = ire->ire_max_frag; 21715 frag_flag = ire->ire_frag_flag; 21716 mutex_exit(&ire->ire_lock); 21717 21718 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21719 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21720 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21721 21722 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21723 (dont_use ? 0 : frag_flag), zoneid, ipst); 21724 } 21725 21726 /* 21727 * Used for deciding the MSS size for the upper layer. Thus 21728 * we need to check the outbound policy values in the conn. 21729 */ 21730 int 21731 conn_ipsec_length(conn_t *connp) 21732 { 21733 ipsec_latch_t *ipl; 21734 21735 ipl = connp->conn_latch; 21736 if (ipl == NULL) 21737 return (0); 21738 21739 if (ipl->ipl_out_policy == NULL) 21740 return (0); 21741 21742 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21743 } 21744 21745 /* 21746 * Returns an estimate of the IPsec headers size. This is used if 21747 * we don't want to call into IPsec to get the exact size. 21748 */ 21749 int 21750 ipsec_out_extra_length(mblk_t *ipsec_mp) 21751 { 21752 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21753 ipsec_action_t *a; 21754 21755 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21756 if (!io->ipsec_out_secure) 21757 return (0); 21758 21759 a = io->ipsec_out_act; 21760 21761 if (a == NULL) { 21762 ASSERT(io->ipsec_out_policy != NULL); 21763 a = io->ipsec_out_policy->ipsp_act; 21764 } 21765 ASSERT(a != NULL); 21766 21767 return (a->ipa_ovhd); 21768 } 21769 21770 /* 21771 * Returns an estimate of the IPsec headers size. This is used if 21772 * we don't want to call into IPsec to get the exact size. 21773 */ 21774 int 21775 ipsec_in_extra_length(mblk_t *ipsec_mp) 21776 { 21777 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21778 ipsec_action_t *a; 21779 21780 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21781 21782 a = ii->ipsec_in_action; 21783 return (a == NULL ? 0 : a->ipa_ovhd); 21784 } 21785 21786 /* 21787 * If there are any source route options, return the true final 21788 * destination. Otherwise, return the destination. 21789 */ 21790 ipaddr_t 21791 ip_get_dst(ipha_t *ipha) 21792 { 21793 ipoptp_t opts; 21794 uchar_t *opt; 21795 uint8_t optval; 21796 uint8_t optlen; 21797 ipaddr_t dst; 21798 uint32_t off; 21799 21800 dst = ipha->ipha_dst; 21801 21802 if (IS_SIMPLE_IPH(ipha)) 21803 return (dst); 21804 21805 for (optval = ipoptp_first(&opts, ipha); 21806 optval != IPOPT_EOL; 21807 optval = ipoptp_next(&opts)) { 21808 opt = opts.ipoptp_cur; 21809 optlen = opts.ipoptp_len; 21810 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21811 switch (optval) { 21812 case IPOPT_SSRR: 21813 case IPOPT_LSRR: 21814 off = opt[IPOPT_OFFSET]; 21815 /* 21816 * If one of the conditions is true, it means 21817 * end of options and dst already has the right 21818 * value. 21819 */ 21820 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21821 off = optlen - IP_ADDR_LEN; 21822 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21823 } 21824 return (dst); 21825 default: 21826 break; 21827 } 21828 } 21829 21830 return (dst); 21831 } 21832 21833 mblk_t * 21834 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21835 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21836 { 21837 ipsec_out_t *io; 21838 mblk_t *first_mp; 21839 boolean_t policy_present; 21840 ip_stack_t *ipst; 21841 ipsec_stack_t *ipss; 21842 21843 ASSERT(ire != NULL); 21844 ipst = ire->ire_ipst; 21845 ipss = ipst->ips_netstack->netstack_ipsec; 21846 21847 first_mp = mp; 21848 if (mp->b_datap->db_type == M_CTL) { 21849 io = (ipsec_out_t *)first_mp->b_rptr; 21850 /* 21851 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21852 * 21853 * 1) There is per-socket policy (including cached global 21854 * policy) or a policy on the IP-in-IP tunnel. 21855 * 2) There is no per-socket policy, but it is 21856 * a multicast packet that needs to go out 21857 * on a specific interface. This is the case 21858 * where (ip_wput and ip_wput_multicast) attaches 21859 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21860 * 21861 * In case (2) we check with global policy to 21862 * see if there is a match and set the ill_index 21863 * appropriately so that we can lookup the ire 21864 * properly in ip_wput_ipsec_out. 21865 */ 21866 21867 /* 21868 * ipsec_out_use_global_policy is set to B_FALSE 21869 * in ipsec_in_to_out(). Refer to that function for 21870 * details. 21871 */ 21872 if ((io->ipsec_out_latch == NULL) && 21873 (io->ipsec_out_use_global_policy)) { 21874 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21875 ire, connp, unspec_src, zoneid)); 21876 } 21877 if (!io->ipsec_out_secure) { 21878 /* 21879 * If this is not a secure packet, drop 21880 * the IPSEC_OUT mp and treat it as a clear 21881 * packet. This happens when we are sending 21882 * a ICMP reply back to a clear packet. See 21883 * ipsec_in_to_out() for details. 21884 */ 21885 mp = first_mp->b_cont; 21886 freeb(first_mp); 21887 } 21888 return (mp); 21889 } 21890 /* 21891 * See whether we need to attach a global policy here. We 21892 * don't depend on the conn (as it could be null) for deciding 21893 * what policy this datagram should go through because it 21894 * should have happened in ip_wput if there was some 21895 * policy. This normally happens for connections which are not 21896 * fully bound preventing us from caching policies in 21897 * ip_bind. Packets coming from the TCP listener/global queue 21898 * - which are non-hard_bound - could also be affected by 21899 * applying policy here. 21900 * 21901 * If this packet is coming from tcp global queue or listener, 21902 * we will be applying policy here. This may not be *right* 21903 * if these packets are coming from the detached connection as 21904 * it could have gone in clear before. This happens only if a 21905 * TCP connection started when there is no policy and somebody 21906 * added policy before it became detached. Thus packets of the 21907 * detached connection could go out secure and the other end 21908 * would drop it because it will be expecting in clear. The 21909 * converse is not true i.e if somebody starts a TCP 21910 * connection and deletes the policy, all the packets will 21911 * still go out with the policy that existed before deleting 21912 * because ip_unbind sends up policy information which is used 21913 * by TCP on subsequent ip_wputs. The right solution is to fix 21914 * TCP to attach a dummy IPSEC_OUT and set 21915 * ipsec_out_use_global_policy to B_FALSE. As this might 21916 * affect performance for normal cases, we are not doing it. 21917 * Thus, set policy before starting any TCP connections. 21918 * 21919 * NOTE - We might apply policy even for a hard bound connection 21920 * - for which we cached policy in ip_bind - if somebody added 21921 * global policy after we inherited the policy in ip_bind. 21922 * This means that the packets that were going out in clear 21923 * previously would start going secure and hence get dropped 21924 * on the other side. To fix this, TCP attaches a dummy 21925 * ipsec_out and make sure that we don't apply global policy. 21926 */ 21927 if (ipha != NULL) 21928 policy_present = ipss->ipsec_outbound_v4_policy_present; 21929 else 21930 policy_present = ipss->ipsec_outbound_v6_policy_present; 21931 if (!policy_present) 21932 return (mp); 21933 21934 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21935 zoneid)); 21936 } 21937 21938 ire_t * 21939 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21940 { 21941 ipaddr_t addr; 21942 ire_t *save_ire; 21943 irb_t *irb; 21944 ill_group_t *illgrp; 21945 int err; 21946 21947 save_ire = ire; 21948 addr = ire->ire_addr; 21949 21950 ASSERT(ire->ire_type == IRE_BROADCAST); 21951 21952 illgrp = connp->conn_outgoing_ill->ill_group; 21953 if (illgrp == NULL) { 21954 *conn_outgoing_ill = conn_get_held_ill(connp, 21955 &connp->conn_outgoing_ill, &err); 21956 if (err == ILL_LOOKUP_FAILED) { 21957 ire_refrele(save_ire); 21958 return (NULL); 21959 } 21960 return (save_ire); 21961 } 21962 /* 21963 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21964 * If it is part of the group, we need to send on the ire 21965 * that has been cleared of IRE_MARK_NORECV and that belongs 21966 * to this group. This is okay as IP_BOUND_IF really means 21967 * any ill in the group. We depend on the fact that the 21968 * first ire in the group is always cleared of IRE_MARK_NORECV 21969 * if such an ire exists. This is possible only if you have 21970 * at least one ill in the group that has not failed. 21971 * 21972 * First get to the ire that matches the address and group. 21973 * 21974 * We don't look for an ire with a matching zoneid because a given zone 21975 * won't always have broadcast ires on all ills in the group. 21976 */ 21977 irb = ire->ire_bucket; 21978 rw_enter(&irb->irb_lock, RW_READER); 21979 if (ire->ire_marks & IRE_MARK_NORECV) { 21980 /* 21981 * If the current zone only has an ire broadcast for this 21982 * address marked NORECV, the ire we want is ahead in the 21983 * bucket, so we look it up deliberately ignoring the zoneid. 21984 */ 21985 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21986 if (ire->ire_addr != addr) 21987 continue; 21988 /* skip over deleted ires */ 21989 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21990 continue; 21991 } 21992 } 21993 while (ire != NULL) { 21994 /* 21995 * If a new interface is coming up, we could end up 21996 * seeing the loopback ire and the non-loopback ire 21997 * may not have been added yet. So check for ire_stq 21998 */ 21999 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22000 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22001 break; 22002 } 22003 ire = ire->ire_next; 22004 } 22005 if (ire != NULL && ire->ire_addr == addr && 22006 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22007 IRE_REFHOLD(ire); 22008 rw_exit(&irb->irb_lock); 22009 ire_refrele(save_ire); 22010 *conn_outgoing_ill = ire_to_ill(ire); 22011 /* 22012 * Refhold the ill to make the conn_outgoing_ill 22013 * independent of the ire. ip_wput_ire goes in a loop 22014 * and may refrele the ire. Since we have an ire at this 22015 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22016 */ 22017 ill_refhold(*conn_outgoing_ill); 22018 return (ire); 22019 } 22020 rw_exit(&irb->irb_lock); 22021 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22022 /* 22023 * If we can't find a suitable ire, return the original ire. 22024 */ 22025 return (save_ire); 22026 } 22027 22028 /* 22029 * This function does the ire_refrele of the ire passed in as the 22030 * argument. As this function looks up more ires i.e broadcast ires, 22031 * it needs to REFRELE them. Currently, for simplicity we don't 22032 * differentiate the one passed in and looked up here. We always 22033 * REFRELE. 22034 * IPQoS Notes: 22035 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22036 * IPsec packets are done in ipsec_out_process. 22037 * 22038 */ 22039 void 22040 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22041 zoneid_t zoneid) 22042 { 22043 ipha_t *ipha; 22044 #define rptr ((uchar_t *)ipha) 22045 queue_t *stq; 22046 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22047 uint32_t v_hlen_tos_len; 22048 uint32_t ttl_protocol; 22049 ipaddr_t src; 22050 ipaddr_t dst; 22051 uint32_t cksum; 22052 ipaddr_t orig_src; 22053 ire_t *ire1; 22054 mblk_t *next_mp; 22055 uint_t hlen; 22056 uint16_t *up; 22057 uint32_t max_frag = ire->ire_max_frag; 22058 ill_t *ill = ire_to_ill(ire); 22059 int clusterwide; 22060 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22061 int ipsec_len; 22062 mblk_t *first_mp; 22063 ipsec_out_t *io; 22064 boolean_t conn_dontroute; /* conn value for multicast */ 22065 boolean_t conn_multicast_loop; /* conn value for multicast */ 22066 boolean_t multicast_forward; /* Should we forward ? */ 22067 boolean_t unspec_src; 22068 ill_t *conn_outgoing_ill = NULL; 22069 ill_t *ire_ill; 22070 ill_t *ire1_ill; 22071 ill_t *out_ill; 22072 uint32_t ill_index = 0; 22073 boolean_t multirt_send = B_FALSE; 22074 int err; 22075 ipxmit_state_t pktxmit_state; 22076 ip_stack_t *ipst = ire->ire_ipst; 22077 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22078 22079 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22080 "ip_wput_ire_start: q %p", q); 22081 22082 multicast_forward = B_FALSE; 22083 unspec_src = (connp != NULL && connp->conn_unspec_src); 22084 22085 if (ire->ire_flags & RTF_MULTIRT) { 22086 /* 22087 * Multirouting case. The bucket where ire is stored 22088 * probably holds other RTF_MULTIRT flagged ire 22089 * to the destination. In this call to ip_wput_ire, 22090 * we attempt to send the packet through all 22091 * those ires. Thus, we first ensure that ire is the 22092 * first RTF_MULTIRT ire in the bucket, 22093 * before walking the ire list. 22094 */ 22095 ire_t *first_ire; 22096 irb_t *irb = ire->ire_bucket; 22097 ASSERT(irb != NULL); 22098 22099 /* Make sure we do not omit any multiroute ire. */ 22100 IRB_REFHOLD(irb); 22101 for (first_ire = irb->irb_ire; 22102 first_ire != NULL; 22103 first_ire = first_ire->ire_next) { 22104 if ((first_ire->ire_flags & RTF_MULTIRT) && 22105 (first_ire->ire_addr == ire->ire_addr) && 22106 !(first_ire->ire_marks & 22107 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22108 break; 22109 } 22110 } 22111 22112 if ((first_ire != NULL) && (first_ire != ire)) { 22113 IRE_REFHOLD(first_ire); 22114 ire_refrele(ire); 22115 ire = first_ire; 22116 ill = ire_to_ill(ire); 22117 } 22118 IRB_REFRELE(irb); 22119 } 22120 22121 /* 22122 * conn_outgoing_ill variable is used only in the broadcast loop. 22123 * for performance we don't grab the mutexs in the fastpath 22124 */ 22125 if ((connp != NULL) && 22126 (ire->ire_type == IRE_BROADCAST) && 22127 ((connp->conn_nofailover_ill != NULL) || 22128 (connp->conn_outgoing_ill != NULL))) { 22129 /* 22130 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22131 * option. So, see if this endpoint is bound to a 22132 * IPIF_NOFAILOVER address. If so, honor it. This implies 22133 * that if the interface is failed, we will still send 22134 * the packet on the same ill which is what we want. 22135 */ 22136 conn_outgoing_ill = conn_get_held_ill(connp, 22137 &connp->conn_nofailover_ill, &err); 22138 if (err == ILL_LOOKUP_FAILED) { 22139 ire_refrele(ire); 22140 freemsg(mp); 22141 return; 22142 } 22143 if (conn_outgoing_ill == NULL) { 22144 /* 22145 * Choose a good ill in the group to send the 22146 * packets on. 22147 */ 22148 ire = conn_set_outgoing_ill(connp, ire, 22149 &conn_outgoing_ill); 22150 if (ire == NULL) { 22151 freemsg(mp); 22152 return; 22153 } 22154 } 22155 } 22156 22157 if (mp->b_datap->db_type != M_CTL) { 22158 ipha = (ipha_t *)mp->b_rptr; 22159 } else { 22160 io = (ipsec_out_t *)mp->b_rptr; 22161 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22162 ASSERT(zoneid == io->ipsec_out_zoneid); 22163 ASSERT(zoneid != ALL_ZONES); 22164 ipha = (ipha_t *)mp->b_cont->b_rptr; 22165 dst = ipha->ipha_dst; 22166 /* 22167 * For the multicast case, ipsec_out carries conn_dontroute and 22168 * conn_multicast_loop as conn may not be available here. We 22169 * need this for multicast loopback and forwarding which is done 22170 * later in the code. 22171 */ 22172 if (CLASSD(dst)) { 22173 conn_dontroute = io->ipsec_out_dontroute; 22174 conn_multicast_loop = io->ipsec_out_multicast_loop; 22175 /* 22176 * If conn_dontroute is not set or conn_multicast_loop 22177 * is set, we need to do forwarding/loopback. For 22178 * datagrams from ip_wput_multicast, conn_dontroute is 22179 * set to B_TRUE and conn_multicast_loop is set to 22180 * B_FALSE so that we neither do forwarding nor 22181 * loopback. 22182 */ 22183 if (!conn_dontroute || conn_multicast_loop) 22184 multicast_forward = B_TRUE; 22185 } 22186 } 22187 22188 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22189 ire->ire_zoneid != ALL_ZONES) { 22190 /* 22191 * When a zone sends a packet to another zone, we try to deliver 22192 * the packet under the same conditions as if the destination 22193 * was a real node on the network. To do so, we look for a 22194 * matching route in the forwarding table. 22195 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22196 * ip_newroute() does. 22197 * Note that IRE_LOCAL are special, since they are used 22198 * when the zoneid doesn't match in some cases. This means that 22199 * we need to handle ipha_src differently since ire_src_addr 22200 * belongs to the receiving zone instead of the sending zone. 22201 * When ip_restrict_interzone_loopback is set, then 22202 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22203 * for loopback between zones when the logical "Ethernet" would 22204 * have looped them back. 22205 */ 22206 ire_t *src_ire; 22207 22208 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22209 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22210 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22211 if (src_ire != NULL && 22212 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22213 (!ipst->ips_ip_restrict_interzone_loopback || 22214 ire_local_same_ill_group(ire, src_ire))) { 22215 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22216 ipha->ipha_src = src_ire->ire_src_addr; 22217 ire_refrele(src_ire); 22218 } else { 22219 ire_refrele(ire); 22220 if (conn_outgoing_ill != NULL) 22221 ill_refrele(conn_outgoing_ill); 22222 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22223 if (src_ire != NULL) { 22224 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22225 ire_refrele(src_ire); 22226 freemsg(mp); 22227 return; 22228 } 22229 ire_refrele(src_ire); 22230 } 22231 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22232 /* Failed */ 22233 freemsg(mp); 22234 return; 22235 } 22236 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22237 ipst); 22238 return; 22239 } 22240 } 22241 22242 if (mp->b_datap->db_type == M_CTL || 22243 ipss->ipsec_outbound_v4_policy_present) { 22244 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22245 unspec_src, zoneid); 22246 if (mp == NULL) { 22247 ire_refrele(ire); 22248 if (conn_outgoing_ill != NULL) 22249 ill_refrele(conn_outgoing_ill); 22250 return; 22251 } 22252 /* 22253 * Trusted Extensions supports all-zones interfaces, so 22254 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22255 * the global zone. 22256 */ 22257 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22258 io = (ipsec_out_t *)mp->b_rptr; 22259 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22260 zoneid = io->ipsec_out_zoneid; 22261 } 22262 } 22263 22264 first_mp = mp; 22265 ipsec_len = 0; 22266 22267 if (first_mp->b_datap->db_type == M_CTL) { 22268 io = (ipsec_out_t *)first_mp->b_rptr; 22269 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22270 mp = first_mp->b_cont; 22271 ipsec_len = ipsec_out_extra_length(first_mp); 22272 ASSERT(ipsec_len >= 0); 22273 /* We already picked up the zoneid from the M_CTL above */ 22274 ASSERT(zoneid == io->ipsec_out_zoneid); 22275 ASSERT(zoneid != ALL_ZONES); 22276 22277 /* 22278 * Drop M_CTL here if IPsec processing is not needed. 22279 * (Non-IPsec use of M_CTL extracted any information it 22280 * needed above). 22281 */ 22282 if (ipsec_len == 0) { 22283 freeb(first_mp); 22284 first_mp = mp; 22285 } 22286 } 22287 22288 /* 22289 * Fast path for ip_wput_ire 22290 */ 22291 22292 ipha = (ipha_t *)mp->b_rptr; 22293 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22294 dst = ipha->ipha_dst; 22295 22296 /* 22297 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22298 * if the socket is a SOCK_RAW type. The transport checksum should 22299 * be provided in the pre-built packet, so we don't need to compute it. 22300 * Also, other application set flags, like DF, should not be altered. 22301 * Other transport MUST pass down zero. 22302 */ 22303 ip_hdr_included = ipha->ipha_ident; 22304 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22305 22306 if (CLASSD(dst)) { 22307 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22308 ntohl(dst), 22309 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22310 ntohl(ire->ire_addr))); 22311 } 22312 22313 /* Macros to extract header fields from data already in registers */ 22314 #ifdef _BIG_ENDIAN 22315 #define V_HLEN (v_hlen_tos_len >> 24) 22316 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22317 #define PROTO (ttl_protocol & 0xFF) 22318 #else 22319 #define V_HLEN (v_hlen_tos_len & 0xFF) 22320 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22321 #define PROTO (ttl_protocol >> 8) 22322 #endif 22323 22324 22325 orig_src = src = ipha->ipha_src; 22326 /* (The loop back to "another" is explained down below.) */ 22327 another:; 22328 /* 22329 * Assign an ident value for this packet. We assign idents on 22330 * a per destination basis out of the IRE. There could be 22331 * other threads targeting the same destination, so we have to 22332 * arrange for a atomic increment. Note that we use a 32-bit 22333 * atomic add because it has better performance than its 22334 * 16-bit sibling. 22335 * 22336 * If running in cluster mode and if the source address 22337 * belongs to a replicated service then vector through 22338 * cl_inet_ipident vector to allocate ip identifier 22339 * NOTE: This is a contract private interface with the 22340 * clustering group. 22341 */ 22342 clusterwide = 0; 22343 if (cl_inet_ipident) { 22344 ASSERT(cl_inet_isclusterwide); 22345 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22346 AF_INET, (uint8_t *)(uintptr_t)src)) { 22347 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22348 AF_INET, (uint8_t *)(uintptr_t)src, 22349 (uint8_t *)(uintptr_t)dst); 22350 clusterwide = 1; 22351 } 22352 } 22353 if (!clusterwide) { 22354 ipha->ipha_ident = 22355 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22356 } 22357 22358 #ifndef _BIG_ENDIAN 22359 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22360 #endif 22361 22362 /* 22363 * Set source address unless sent on an ill or conn_unspec_src is set. 22364 * This is needed to obey conn_unspec_src when packets go through 22365 * ip_newroute + arp. 22366 * Assumes ip_newroute{,_multi} sets the source address as well. 22367 */ 22368 if (src == INADDR_ANY && !unspec_src) { 22369 /* 22370 * Assign the appropriate source address from the IRE if none 22371 * was specified. 22372 */ 22373 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22374 22375 /* 22376 * With IP multipathing, broadcast packets are sent on the ire 22377 * that has been cleared of IRE_MARK_NORECV and that belongs to 22378 * the group. However, this ire might not be in the same zone so 22379 * we can't always use its source address. We look for a 22380 * broadcast ire in the same group and in the right zone. 22381 */ 22382 if (ire->ire_type == IRE_BROADCAST && 22383 ire->ire_zoneid != zoneid) { 22384 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22385 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22386 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22387 if (src_ire != NULL) { 22388 src = src_ire->ire_src_addr; 22389 ire_refrele(src_ire); 22390 } else { 22391 ire_refrele(ire); 22392 if (conn_outgoing_ill != NULL) 22393 ill_refrele(conn_outgoing_ill); 22394 freemsg(first_mp); 22395 if (ill != NULL) { 22396 BUMP_MIB(ill->ill_ip_mib, 22397 ipIfStatsOutDiscards); 22398 } else { 22399 BUMP_MIB(&ipst->ips_ip_mib, 22400 ipIfStatsOutDiscards); 22401 } 22402 return; 22403 } 22404 } else { 22405 src = ire->ire_src_addr; 22406 } 22407 22408 if (connp == NULL) { 22409 ip1dbg(("ip_wput_ire: no connp and no src " 22410 "address for dst 0x%x, using src 0x%x\n", 22411 ntohl(dst), 22412 ntohl(src))); 22413 } 22414 ipha->ipha_src = src; 22415 } 22416 stq = ire->ire_stq; 22417 22418 /* 22419 * We only allow ire chains for broadcasts since there will 22420 * be multiple IRE_CACHE entries for the same multicast 22421 * address (one per ipif). 22422 */ 22423 next_mp = NULL; 22424 22425 /* broadcast packet */ 22426 if (ire->ire_type == IRE_BROADCAST) 22427 goto broadcast; 22428 22429 /* loopback ? */ 22430 if (stq == NULL) 22431 goto nullstq; 22432 22433 /* The ill_index for outbound ILL */ 22434 ill_index = Q_TO_INDEX(stq); 22435 22436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22437 ttl_protocol = ((uint16_t *)ipha)[4]; 22438 22439 /* pseudo checksum (do it in parts for IP header checksum) */ 22440 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22441 22442 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22443 queue_t *dev_q = stq->q_next; 22444 22445 /* flow controlled */ 22446 if ((dev_q->q_next || dev_q->q_first) && 22447 !canput(dev_q)) 22448 goto blocked; 22449 if ((PROTO == IPPROTO_UDP) && 22450 (ip_hdr_included != IP_HDR_INCLUDED)) { 22451 hlen = (V_HLEN & 0xF) << 2; 22452 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22453 if (*up != 0) { 22454 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22455 hlen, LENGTH, max_frag, ipsec_len, cksum); 22456 /* Software checksum? */ 22457 if (DB_CKSUMFLAGS(mp) == 0) { 22458 IP_STAT(ipst, ip_out_sw_cksum); 22459 IP_STAT_UPDATE(ipst, 22460 ip_udp_out_sw_cksum_bytes, 22461 LENGTH - hlen); 22462 } 22463 } 22464 } 22465 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22466 hlen = (V_HLEN & 0xF) << 2; 22467 if (PROTO == IPPROTO_TCP) { 22468 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22469 /* 22470 * The packet header is processed once and for all, even 22471 * in the multirouting case. We disable hardware 22472 * checksum if the packet is multirouted, as it will be 22473 * replicated via several interfaces, and not all of 22474 * them may have this capability. 22475 */ 22476 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22477 LENGTH, max_frag, ipsec_len, cksum); 22478 /* Software checksum? */ 22479 if (DB_CKSUMFLAGS(mp) == 0) { 22480 IP_STAT(ipst, ip_out_sw_cksum); 22481 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22482 LENGTH - hlen); 22483 } 22484 } else { 22485 sctp_hdr_t *sctph; 22486 22487 ASSERT(PROTO == IPPROTO_SCTP); 22488 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22489 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22490 /* 22491 * Zero out the checksum field to ensure proper 22492 * checksum calculation. 22493 */ 22494 sctph->sh_chksum = 0; 22495 #ifdef DEBUG 22496 if (!skip_sctp_cksum) 22497 #endif 22498 sctph->sh_chksum = sctp_cksum(mp, hlen); 22499 } 22500 } 22501 22502 /* 22503 * If this is a multicast packet and originated from ip_wput 22504 * we need to do loopback and forwarding checks. If it comes 22505 * from ip_wput_multicast, we SHOULD not do this. 22506 */ 22507 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22508 22509 /* checksum */ 22510 cksum += ttl_protocol; 22511 22512 /* fragment the packet */ 22513 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22514 goto fragmentit; 22515 /* 22516 * Don't use frag_flag if packet is pre-built or source 22517 * routed or if multicast (since multicast packets do 22518 * not solicit ICMP "packet too big" messages). 22519 */ 22520 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22521 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22522 !ip_source_route_included(ipha)) && 22523 !CLASSD(ipha->ipha_dst)) 22524 ipha->ipha_fragment_offset_and_flags |= 22525 htons(ire->ire_frag_flag); 22526 22527 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22528 /* calculate IP header checksum */ 22529 cksum += ipha->ipha_ident; 22530 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22531 cksum += ipha->ipha_fragment_offset_and_flags; 22532 22533 /* IP options present */ 22534 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22535 if (hlen) 22536 goto checksumoptions; 22537 22538 /* calculate hdr checksum */ 22539 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22540 cksum = ~(cksum + (cksum >> 16)); 22541 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22542 } 22543 if (ipsec_len != 0) { 22544 /* 22545 * We will do the rest of the processing after 22546 * we come back from IPsec in ip_wput_ipsec_out(). 22547 */ 22548 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22549 22550 io = (ipsec_out_t *)first_mp->b_rptr; 22551 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22552 ill_phyint->phyint_ifindex; 22553 22554 ipsec_out_process(q, first_mp, ire, ill_index); 22555 ire_refrele(ire); 22556 if (conn_outgoing_ill != NULL) 22557 ill_refrele(conn_outgoing_ill); 22558 return; 22559 } 22560 22561 /* 22562 * In most cases, the emission loop below is entered only 22563 * once. Only in the case where the ire holds the 22564 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22565 * flagged ires in the bucket, and send the packet 22566 * through all crossed RTF_MULTIRT routes. 22567 */ 22568 if (ire->ire_flags & RTF_MULTIRT) { 22569 multirt_send = B_TRUE; 22570 } 22571 do { 22572 if (multirt_send) { 22573 irb_t *irb; 22574 /* 22575 * We are in a multiple send case, need to get 22576 * the next ire and make a duplicate of the packet. 22577 * ire1 holds here the next ire to process in the 22578 * bucket. If multirouting is expected, 22579 * any non-RTF_MULTIRT ire that has the 22580 * right destination address is ignored. 22581 */ 22582 irb = ire->ire_bucket; 22583 ASSERT(irb != NULL); 22584 22585 IRB_REFHOLD(irb); 22586 for (ire1 = ire->ire_next; 22587 ire1 != NULL; 22588 ire1 = ire1->ire_next) { 22589 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22590 continue; 22591 if (ire1->ire_addr != ire->ire_addr) 22592 continue; 22593 if (ire1->ire_marks & 22594 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22595 continue; 22596 22597 /* Got one */ 22598 IRE_REFHOLD(ire1); 22599 break; 22600 } 22601 IRB_REFRELE(irb); 22602 22603 if (ire1 != NULL) { 22604 next_mp = copyb(mp); 22605 if ((next_mp == NULL) || 22606 ((mp->b_cont != NULL) && 22607 ((next_mp->b_cont = 22608 dupmsg(mp->b_cont)) == NULL))) { 22609 freemsg(next_mp); 22610 next_mp = NULL; 22611 ire_refrele(ire1); 22612 ire1 = NULL; 22613 } 22614 } 22615 22616 /* Last multiroute ire; don't loop anymore. */ 22617 if (ire1 == NULL) { 22618 multirt_send = B_FALSE; 22619 } 22620 } 22621 22622 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22623 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22624 mblk_t *, mp); 22625 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22626 ipst->ips_ipv4firewall_physical_out, 22627 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22628 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22629 if (mp == NULL) 22630 goto release_ire_and_ill; 22631 22632 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22633 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22634 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22635 if ((pktxmit_state == SEND_FAILED) || 22636 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22637 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22638 "- packet dropped\n")); 22639 release_ire_and_ill: 22640 ire_refrele(ire); 22641 if (next_mp != NULL) { 22642 freemsg(next_mp); 22643 ire_refrele(ire1); 22644 } 22645 if (conn_outgoing_ill != NULL) 22646 ill_refrele(conn_outgoing_ill); 22647 return; 22648 } 22649 22650 if (CLASSD(dst)) { 22651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22652 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22653 LENGTH); 22654 } 22655 22656 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22657 "ip_wput_ire_end: q %p (%S)", 22658 q, "last copy out"); 22659 IRE_REFRELE(ire); 22660 22661 if (multirt_send) { 22662 ASSERT(ire1); 22663 /* 22664 * Proceed with the next RTF_MULTIRT ire, 22665 * Also set up the send-to queue accordingly. 22666 */ 22667 ire = ire1; 22668 ire1 = NULL; 22669 stq = ire->ire_stq; 22670 mp = next_mp; 22671 next_mp = NULL; 22672 ipha = (ipha_t *)mp->b_rptr; 22673 ill_index = Q_TO_INDEX(stq); 22674 ill = (ill_t *)stq->q_ptr; 22675 } 22676 } while (multirt_send); 22677 if (conn_outgoing_ill != NULL) 22678 ill_refrele(conn_outgoing_ill); 22679 return; 22680 22681 /* 22682 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22683 */ 22684 broadcast: 22685 { 22686 /* 22687 * To avoid broadcast storms, we usually set the TTL to 1 for 22688 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22689 * can be overridden stack-wide through the ip_broadcast_ttl 22690 * ndd tunable, or on a per-connection basis through the 22691 * IP_BROADCAST_TTL socket option. 22692 * 22693 * In the event that we are replying to incoming ICMP packets, 22694 * connp could be NULL. 22695 */ 22696 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22697 if (connp != NULL) { 22698 if (connp->conn_dontroute) 22699 ipha->ipha_ttl = 1; 22700 else if (connp->conn_broadcast_ttl != 0) 22701 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22702 } 22703 22704 /* 22705 * Note that we are not doing a IRB_REFHOLD here. 22706 * Actually we don't care if the list changes i.e 22707 * if somebody deletes an IRE from the list while 22708 * we drop the lock, the next time we come around 22709 * ire_next will be NULL and hence we won't send 22710 * out multiple copies which is fine. 22711 */ 22712 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22713 ire1 = ire->ire_next; 22714 if (conn_outgoing_ill != NULL) { 22715 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22716 ASSERT(ire1 == ire->ire_next); 22717 if (ire1 != NULL && ire1->ire_addr == dst) { 22718 ire_refrele(ire); 22719 ire = ire1; 22720 IRE_REFHOLD(ire); 22721 ire1 = ire->ire_next; 22722 continue; 22723 } 22724 rw_exit(&ire->ire_bucket->irb_lock); 22725 /* Did not find a matching ill */ 22726 ip1dbg(("ip_wput_ire: broadcast with no " 22727 "matching IP_BOUND_IF ill %s dst %x\n", 22728 conn_outgoing_ill->ill_name, dst)); 22729 freemsg(first_mp); 22730 if (ire != NULL) 22731 ire_refrele(ire); 22732 ill_refrele(conn_outgoing_ill); 22733 return; 22734 } 22735 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22736 /* 22737 * If the next IRE has the same address and is not one 22738 * of the two copies that we need to send, try to see 22739 * whether this copy should be sent at all. This 22740 * assumes that we insert loopbacks first and then 22741 * non-loopbacks. This is acheived by inserting the 22742 * loopback always before non-loopback. 22743 * This is used to send a single copy of a broadcast 22744 * packet out all physical interfaces that have an 22745 * matching IRE_BROADCAST while also looping 22746 * back one copy (to ip_wput_local) for each 22747 * matching physical interface. However, we avoid 22748 * sending packets out different logical that match by 22749 * having ipif_up/ipif_down supress duplicate 22750 * IRE_BROADCASTS. 22751 * 22752 * This feature is currently used to get broadcasts 22753 * sent to multiple interfaces, when the broadcast 22754 * address being used applies to multiple interfaces. 22755 * For example, a whole net broadcast will be 22756 * replicated on every connected subnet of 22757 * the target net. 22758 * 22759 * Each zone has its own set of IRE_BROADCASTs, so that 22760 * we're able to distribute inbound packets to multiple 22761 * zones who share a broadcast address. We avoid looping 22762 * back outbound packets in different zones but on the 22763 * same ill, as the application would see duplicates. 22764 * 22765 * If the interfaces are part of the same group, 22766 * we would want to send only one copy out for 22767 * whole group. 22768 * 22769 * This logic assumes that ire_add_v4() groups the 22770 * IRE_BROADCAST entries so that those with the same 22771 * ire_addr and ill_group are kept together. 22772 */ 22773 ire_ill = ire->ire_ipif->ipif_ill; 22774 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22775 if (ire_ill->ill_group != NULL && 22776 (ire->ire_marks & IRE_MARK_NORECV)) { 22777 /* 22778 * If the current zone only has an ire 22779 * broadcast for this address marked 22780 * NORECV, the ire we want is ahead in 22781 * the bucket, so we look it up 22782 * deliberately ignoring the zoneid. 22783 */ 22784 for (ire1 = ire->ire_bucket->irb_ire; 22785 ire1 != NULL; 22786 ire1 = ire1->ire_next) { 22787 ire1_ill = 22788 ire1->ire_ipif->ipif_ill; 22789 if (ire1->ire_addr != dst) 22790 continue; 22791 /* skip over the current ire */ 22792 if (ire1 == ire) 22793 continue; 22794 /* skip over deleted ires */ 22795 if (ire1->ire_marks & 22796 IRE_MARK_CONDEMNED) 22797 continue; 22798 /* 22799 * non-loopback ire in our 22800 * group: use it for the next 22801 * pass in the loop 22802 */ 22803 if (ire1->ire_stq != NULL && 22804 ire1_ill->ill_group == 22805 ire_ill->ill_group) 22806 break; 22807 } 22808 } 22809 } else { 22810 while (ire1 != NULL && ire1->ire_addr == dst) { 22811 ire1_ill = ire1->ire_ipif->ipif_ill; 22812 /* 22813 * We can have two broadcast ires on the 22814 * same ill in different zones; here 22815 * we'll send a copy of the packet on 22816 * each ill and the fanout code will 22817 * call conn_wantpacket() to check that 22818 * the zone has the broadcast address 22819 * configured on the ill. If the two 22820 * ires are in the same group we only 22821 * send one copy up. 22822 */ 22823 if (ire1_ill != ire_ill && 22824 (ire1_ill->ill_group == NULL || 22825 ire_ill->ill_group == NULL || 22826 ire1_ill->ill_group != 22827 ire_ill->ill_group)) { 22828 break; 22829 } 22830 ire1 = ire1->ire_next; 22831 } 22832 } 22833 } 22834 ASSERT(multirt_send == B_FALSE); 22835 if (ire1 != NULL && ire1->ire_addr == dst) { 22836 if ((ire->ire_flags & RTF_MULTIRT) && 22837 (ire1->ire_flags & RTF_MULTIRT)) { 22838 /* 22839 * We are in the multirouting case. 22840 * The message must be sent at least 22841 * on both ires. These ires have been 22842 * inserted AFTER the standard ones 22843 * in ip_rt_add(). There are thus no 22844 * other ire entries for the destination 22845 * address in the rest of the bucket 22846 * that do not have the RTF_MULTIRT 22847 * flag. We don't process a copy 22848 * of the message here. This will be 22849 * done in the final sending loop. 22850 */ 22851 multirt_send = B_TRUE; 22852 } else { 22853 next_mp = ip_copymsg(first_mp); 22854 if (next_mp != NULL) 22855 IRE_REFHOLD(ire1); 22856 } 22857 } 22858 rw_exit(&ire->ire_bucket->irb_lock); 22859 } 22860 22861 if (stq) { 22862 /* 22863 * A non-NULL send-to queue means this packet is going 22864 * out of this machine. 22865 */ 22866 out_ill = (ill_t *)stq->q_ptr; 22867 22868 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22869 ttl_protocol = ((uint16_t *)ipha)[4]; 22870 /* 22871 * We accumulate the pseudo header checksum in cksum. 22872 * This is pretty hairy code, so watch close. One 22873 * thing to keep in mind is that UDP and TCP have 22874 * stored their respective datagram lengths in their 22875 * checksum fields. This lines things up real nice. 22876 */ 22877 cksum = (dst >> 16) + (dst & 0xFFFF) + 22878 (src >> 16) + (src & 0xFFFF); 22879 /* 22880 * We assume the udp checksum field contains the 22881 * length, so to compute the pseudo header checksum, 22882 * all we need is the protocol number and src/dst. 22883 */ 22884 /* Provide the checksums for UDP and TCP. */ 22885 if ((PROTO == IPPROTO_TCP) && 22886 (ip_hdr_included != IP_HDR_INCLUDED)) { 22887 /* hlen gets the number of uchar_ts in the IP header */ 22888 hlen = (V_HLEN & 0xF) << 2; 22889 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22890 IP_STAT(ipst, ip_out_sw_cksum); 22891 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22892 LENGTH - hlen); 22893 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22894 } else if (PROTO == IPPROTO_SCTP && 22895 (ip_hdr_included != IP_HDR_INCLUDED)) { 22896 sctp_hdr_t *sctph; 22897 22898 hlen = (V_HLEN & 0xF) << 2; 22899 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22900 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22901 sctph->sh_chksum = 0; 22902 #ifdef DEBUG 22903 if (!skip_sctp_cksum) 22904 #endif 22905 sctph->sh_chksum = sctp_cksum(mp, hlen); 22906 } else { 22907 queue_t *dev_q = stq->q_next; 22908 22909 if ((dev_q->q_next || dev_q->q_first) && 22910 !canput(dev_q)) { 22911 blocked: 22912 ipha->ipha_ident = ip_hdr_included; 22913 /* 22914 * If we don't have a conn to apply 22915 * backpressure, free the message. 22916 * In the ire_send path, we don't know 22917 * the position to requeue the packet. Rather 22918 * than reorder packets, we just drop this 22919 * packet. 22920 */ 22921 if (ipst->ips_ip_output_queue && 22922 connp != NULL && 22923 caller != IRE_SEND) { 22924 if (caller == IP_WSRV) { 22925 connp->conn_did_putbq = 1; 22926 (void) putbq(connp->conn_wq, 22927 first_mp); 22928 conn_drain_insert(connp); 22929 /* 22930 * This is the service thread, 22931 * and the queue is already 22932 * noenabled. The check for 22933 * canput and the putbq is not 22934 * atomic. So we need to check 22935 * again. 22936 */ 22937 if (canput(stq->q_next)) 22938 connp->conn_did_putbq 22939 = 0; 22940 IP_STAT(ipst, ip_conn_flputbq); 22941 } else { 22942 /* 22943 * We are not the service proc. 22944 * ip_wsrv will be scheduled or 22945 * is already running. 22946 */ 22947 (void) putq(connp->conn_wq, 22948 first_mp); 22949 } 22950 } else { 22951 out_ill = (ill_t *)stq->q_ptr; 22952 BUMP_MIB(out_ill->ill_ip_mib, 22953 ipIfStatsOutDiscards); 22954 freemsg(first_mp); 22955 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22956 "ip_wput_ire_end: q %p (%S)", 22957 q, "discard"); 22958 } 22959 ire_refrele(ire); 22960 if (next_mp) { 22961 ire_refrele(ire1); 22962 freemsg(next_mp); 22963 } 22964 if (conn_outgoing_ill != NULL) 22965 ill_refrele(conn_outgoing_ill); 22966 return; 22967 } 22968 if ((PROTO == IPPROTO_UDP) && 22969 (ip_hdr_included != IP_HDR_INCLUDED)) { 22970 /* 22971 * hlen gets the number of uchar_ts in the 22972 * IP header 22973 */ 22974 hlen = (V_HLEN & 0xF) << 2; 22975 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22976 max_frag = ire->ire_max_frag; 22977 if (*up != 0) { 22978 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22979 up, PROTO, hlen, LENGTH, max_frag, 22980 ipsec_len, cksum); 22981 /* Software checksum? */ 22982 if (DB_CKSUMFLAGS(mp) == 0) { 22983 IP_STAT(ipst, ip_out_sw_cksum); 22984 IP_STAT_UPDATE(ipst, 22985 ip_udp_out_sw_cksum_bytes, 22986 LENGTH - hlen); 22987 } 22988 } 22989 } 22990 } 22991 /* 22992 * Need to do this even when fragmenting. The local 22993 * loopback can be done without computing checksums 22994 * but forwarding out other interface must be done 22995 * after the IP checksum (and ULP checksums) have been 22996 * computed. 22997 * 22998 * NOTE : multicast_forward is set only if this packet 22999 * originated from ip_wput. For packets originating from 23000 * ip_wput_multicast, it is not set. 23001 */ 23002 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23003 multi_loopback: 23004 ip2dbg(("ip_wput: multicast, loop %d\n", 23005 conn_multicast_loop)); 23006 23007 /* Forget header checksum offload */ 23008 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23009 23010 /* 23011 * Local loopback of multicasts? Check the 23012 * ill. 23013 * 23014 * Note that the loopback function will not come 23015 * in through ip_rput - it will only do the 23016 * client fanout thus we need to do an mforward 23017 * as well. The is different from the BSD 23018 * logic. 23019 */ 23020 if (ill != NULL) { 23021 ilm_t *ilm; 23022 23023 ILM_WALKER_HOLD(ill); 23024 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23025 ALL_ZONES); 23026 ILM_WALKER_RELE(ill); 23027 if (ilm != NULL) { 23028 /* 23029 * Pass along the virtual output q. 23030 * ip_wput_local() will distribute the 23031 * packet to all the matching zones, 23032 * except the sending zone when 23033 * IP_MULTICAST_LOOP is false. 23034 */ 23035 ip_multicast_loopback(q, ill, first_mp, 23036 conn_multicast_loop ? 0 : 23037 IP_FF_NO_MCAST_LOOP, zoneid); 23038 } 23039 } 23040 if (ipha->ipha_ttl == 0) { 23041 /* 23042 * 0 => only to this host i.e. we are 23043 * done. We are also done if this was the 23044 * loopback interface since it is sufficient 23045 * to loopback one copy of a multicast packet. 23046 */ 23047 freemsg(first_mp); 23048 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23049 "ip_wput_ire_end: q %p (%S)", 23050 q, "loopback"); 23051 ire_refrele(ire); 23052 if (conn_outgoing_ill != NULL) 23053 ill_refrele(conn_outgoing_ill); 23054 return; 23055 } 23056 /* 23057 * ILLF_MULTICAST is checked in ip_newroute 23058 * i.e. we don't need to check it here since 23059 * all IRE_CACHEs come from ip_newroute. 23060 * For multicast traffic, SO_DONTROUTE is interpreted 23061 * to mean only send the packet out the interface 23062 * (optionally specified with IP_MULTICAST_IF) 23063 * and do not forward it out additional interfaces. 23064 * RSVP and the rsvp daemon is an example of a 23065 * protocol and user level process that 23066 * handles it's own routing. Hence, it uses the 23067 * SO_DONTROUTE option to accomplish this. 23068 */ 23069 23070 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23071 ill != NULL) { 23072 /* Unconditionally redo the checksum */ 23073 ipha->ipha_hdr_checksum = 0; 23074 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23075 23076 /* 23077 * If this needs to go out secure, we need 23078 * to wait till we finish the IPsec 23079 * processing. 23080 */ 23081 if (ipsec_len == 0 && 23082 ip_mforward(ill, ipha, mp)) { 23083 freemsg(first_mp); 23084 ip1dbg(("ip_wput: mforward failed\n")); 23085 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23086 "ip_wput_ire_end: q %p (%S)", 23087 q, "mforward failed"); 23088 ire_refrele(ire); 23089 if (conn_outgoing_ill != NULL) 23090 ill_refrele(conn_outgoing_ill); 23091 return; 23092 } 23093 } 23094 } 23095 max_frag = ire->ire_max_frag; 23096 cksum += ttl_protocol; 23097 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23098 /* No fragmentation required for this one. */ 23099 /* 23100 * Don't use frag_flag if packet is pre-built or source 23101 * routed or if multicast (since multicast packets do 23102 * not solicit ICMP "packet too big" messages). 23103 */ 23104 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23105 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23106 !ip_source_route_included(ipha)) && 23107 !CLASSD(ipha->ipha_dst)) 23108 ipha->ipha_fragment_offset_and_flags |= 23109 htons(ire->ire_frag_flag); 23110 23111 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23112 /* Complete the IP header checksum. */ 23113 cksum += ipha->ipha_ident; 23114 cksum += (v_hlen_tos_len >> 16)+ 23115 (v_hlen_tos_len & 0xFFFF); 23116 cksum += ipha->ipha_fragment_offset_and_flags; 23117 hlen = (V_HLEN & 0xF) - 23118 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23119 if (hlen) { 23120 checksumoptions: 23121 /* 23122 * Account for the IP Options in the IP 23123 * header checksum. 23124 */ 23125 up = (uint16_t *)(rptr+ 23126 IP_SIMPLE_HDR_LENGTH); 23127 do { 23128 cksum += up[0]; 23129 cksum += up[1]; 23130 up += 2; 23131 } while (--hlen); 23132 } 23133 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23134 cksum = ~(cksum + (cksum >> 16)); 23135 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23136 } 23137 if (ipsec_len != 0) { 23138 ipsec_out_process(q, first_mp, ire, ill_index); 23139 if (!next_mp) { 23140 ire_refrele(ire); 23141 if (conn_outgoing_ill != NULL) 23142 ill_refrele(conn_outgoing_ill); 23143 return; 23144 } 23145 goto next; 23146 } 23147 23148 /* 23149 * multirt_send has already been handled 23150 * for broadcast, but not yet for multicast 23151 * or IP options. 23152 */ 23153 if (next_mp == NULL) { 23154 if (ire->ire_flags & RTF_MULTIRT) { 23155 multirt_send = B_TRUE; 23156 } 23157 } 23158 23159 /* 23160 * In most cases, the emission loop below is 23161 * entered only once. Only in the case where 23162 * the ire holds the RTF_MULTIRT flag, do we loop 23163 * to process all RTF_MULTIRT ires in the bucket, 23164 * and send the packet through all crossed 23165 * RTF_MULTIRT routes. 23166 */ 23167 do { 23168 if (multirt_send) { 23169 irb_t *irb; 23170 23171 irb = ire->ire_bucket; 23172 ASSERT(irb != NULL); 23173 /* 23174 * We are in a multiple send case, 23175 * need to get the next IRE and make 23176 * a duplicate of the packet. 23177 */ 23178 IRB_REFHOLD(irb); 23179 for (ire1 = ire->ire_next; 23180 ire1 != NULL; 23181 ire1 = ire1->ire_next) { 23182 if (!(ire1->ire_flags & 23183 RTF_MULTIRT)) { 23184 continue; 23185 } 23186 if (ire1->ire_addr != 23187 ire->ire_addr) { 23188 continue; 23189 } 23190 if (ire1->ire_marks & 23191 (IRE_MARK_CONDEMNED| 23192 IRE_MARK_HIDDEN)) { 23193 continue; 23194 } 23195 23196 /* Got one */ 23197 IRE_REFHOLD(ire1); 23198 break; 23199 } 23200 IRB_REFRELE(irb); 23201 23202 if (ire1 != NULL) { 23203 next_mp = copyb(mp); 23204 if ((next_mp == NULL) || 23205 ((mp->b_cont != NULL) && 23206 ((next_mp->b_cont = 23207 dupmsg(mp->b_cont)) 23208 == NULL))) { 23209 freemsg(next_mp); 23210 next_mp = NULL; 23211 ire_refrele(ire1); 23212 ire1 = NULL; 23213 } 23214 } 23215 23216 /* 23217 * Last multiroute ire; don't loop 23218 * anymore. The emission is over 23219 * and next_mp is NULL. 23220 */ 23221 if (ire1 == NULL) { 23222 multirt_send = B_FALSE; 23223 } 23224 } 23225 23226 out_ill = ire_to_ill(ire); 23227 DTRACE_PROBE4(ip4__physical__out__start, 23228 ill_t *, NULL, 23229 ill_t *, out_ill, 23230 ipha_t *, ipha, mblk_t *, mp); 23231 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23232 ipst->ips_ipv4firewall_physical_out, 23233 NULL, out_ill, ipha, mp, mp, 0, ipst); 23234 DTRACE_PROBE1(ip4__physical__out__end, 23235 mblk_t *, mp); 23236 if (mp == NULL) 23237 goto release_ire_and_ill_2; 23238 23239 ASSERT(ipsec_len == 0); 23240 mp->b_prev = 23241 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23242 DTRACE_PROBE2(ip__xmit__2, 23243 mblk_t *, mp, ire_t *, ire); 23244 pktxmit_state = ip_xmit_v4(mp, ire, 23245 NULL, B_TRUE); 23246 if ((pktxmit_state == SEND_FAILED) || 23247 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23248 release_ire_and_ill_2: 23249 if (next_mp) { 23250 freemsg(next_mp); 23251 ire_refrele(ire1); 23252 } 23253 ire_refrele(ire); 23254 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23255 "ip_wput_ire_end: q %p (%S)", 23256 q, "discard MDATA"); 23257 if (conn_outgoing_ill != NULL) 23258 ill_refrele(conn_outgoing_ill); 23259 return; 23260 } 23261 23262 if (CLASSD(dst)) { 23263 BUMP_MIB(out_ill->ill_ip_mib, 23264 ipIfStatsHCOutMcastPkts); 23265 UPDATE_MIB(out_ill->ill_ip_mib, 23266 ipIfStatsHCOutMcastOctets, 23267 LENGTH); 23268 } else if (ire->ire_type == IRE_BROADCAST) { 23269 BUMP_MIB(out_ill->ill_ip_mib, 23270 ipIfStatsHCOutBcastPkts); 23271 } 23272 23273 if (multirt_send) { 23274 /* 23275 * We are in a multiple send case, 23276 * need to re-enter the sending loop 23277 * using the next ire. 23278 */ 23279 ire_refrele(ire); 23280 ire = ire1; 23281 stq = ire->ire_stq; 23282 mp = next_mp; 23283 next_mp = NULL; 23284 ipha = (ipha_t *)mp->b_rptr; 23285 ill_index = Q_TO_INDEX(stq); 23286 } 23287 } while (multirt_send); 23288 23289 if (!next_mp) { 23290 /* 23291 * Last copy going out (the ultra-common 23292 * case). Note that we intentionally replicate 23293 * the putnext rather than calling it before 23294 * the next_mp check in hopes of a little 23295 * tail-call action out of the compiler. 23296 */ 23297 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23298 "ip_wput_ire_end: q %p (%S)", 23299 q, "last copy out(1)"); 23300 ire_refrele(ire); 23301 if (conn_outgoing_ill != NULL) 23302 ill_refrele(conn_outgoing_ill); 23303 return; 23304 } 23305 /* More copies going out below. */ 23306 } else { 23307 int offset; 23308 fragmentit: 23309 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23310 /* 23311 * If this would generate a icmp_frag_needed message, 23312 * we need to handle it before we do the IPsec 23313 * processing. Otherwise, we need to strip the IPsec 23314 * headers before we send up the message to the ULPs 23315 * which becomes messy and difficult. 23316 */ 23317 if (ipsec_len != 0) { 23318 if ((max_frag < (unsigned int)(LENGTH + 23319 ipsec_len)) && (offset & IPH_DF)) { 23320 out_ill = (ill_t *)stq->q_ptr; 23321 BUMP_MIB(out_ill->ill_ip_mib, 23322 ipIfStatsOutFragFails); 23323 BUMP_MIB(out_ill->ill_ip_mib, 23324 ipIfStatsOutFragReqds); 23325 ipha->ipha_hdr_checksum = 0; 23326 ipha->ipha_hdr_checksum = 23327 (uint16_t)ip_csum_hdr(ipha); 23328 icmp_frag_needed(ire->ire_stq, first_mp, 23329 max_frag, zoneid, ipst); 23330 if (!next_mp) { 23331 ire_refrele(ire); 23332 if (conn_outgoing_ill != NULL) { 23333 ill_refrele( 23334 conn_outgoing_ill); 23335 } 23336 return; 23337 } 23338 } else { 23339 /* 23340 * This won't cause a icmp_frag_needed 23341 * message. to be generated. Send it on 23342 * the wire. Note that this could still 23343 * cause fragmentation and all we 23344 * do is the generation of the message 23345 * to the ULP if needed before IPsec. 23346 */ 23347 if (!next_mp) { 23348 ipsec_out_process(q, first_mp, 23349 ire, ill_index); 23350 TRACE_2(TR_FAC_IP, 23351 TR_IP_WPUT_IRE_END, 23352 "ip_wput_ire_end: q %p " 23353 "(%S)", q, 23354 "last ipsec_out_process"); 23355 ire_refrele(ire); 23356 if (conn_outgoing_ill != NULL) { 23357 ill_refrele( 23358 conn_outgoing_ill); 23359 } 23360 return; 23361 } 23362 ipsec_out_process(q, first_mp, 23363 ire, ill_index); 23364 } 23365 } else { 23366 /* 23367 * Initiate IPPF processing. For 23368 * fragmentable packets we finish 23369 * all QOS packet processing before 23370 * calling: 23371 * ip_wput_ire_fragmentit->ip_wput_frag 23372 */ 23373 23374 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23375 ip_process(IPP_LOCAL_OUT, &mp, 23376 ill_index); 23377 if (mp == NULL) { 23378 out_ill = (ill_t *)stq->q_ptr; 23379 BUMP_MIB(out_ill->ill_ip_mib, 23380 ipIfStatsOutDiscards); 23381 if (next_mp != NULL) { 23382 freemsg(next_mp); 23383 ire_refrele(ire1); 23384 } 23385 ire_refrele(ire); 23386 TRACE_2(TR_FAC_IP, 23387 TR_IP_WPUT_IRE_END, 23388 "ip_wput_ire: q %p (%S)", 23389 q, "discard MDATA"); 23390 if (conn_outgoing_ill != NULL) { 23391 ill_refrele( 23392 conn_outgoing_ill); 23393 } 23394 return; 23395 } 23396 } 23397 if (!next_mp) { 23398 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23399 "ip_wput_ire_end: q %p (%S)", 23400 q, "last fragmentation"); 23401 ip_wput_ire_fragmentit(mp, ire, 23402 zoneid, ipst); 23403 ire_refrele(ire); 23404 if (conn_outgoing_ill != NULL) 23405 ill_refrele(conn_outgoing_ill); 23406 return; 23407 } 23408 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23409 } 23410 } 23411 } else { 23412 nullstq: 23413 /* A NULL stq means the destination address is local. */ 23414 UPDATE_OB_PKT_COUNT(ire); 23415 ire->ire_last_used_time = lbolt; 23416 ASSERT(ire->ire_ipif != NULL); 23417 if (!next_mp) { 23418 /* 23419 * Is there an "in" and "out" for traffic local 23420 * to a host (loopback)? The code in Solaris doesn't 23421 * explicitly draw a line in its code for in vs out, 23422 * so we've had to draw a line in the sand: ip_wput_ire 23423 * is considered to be the "output" side and 23424 * ip_wput_local to be the "input" side. 23425 */ 23426 out_ill = ire_to_ill(ire); 23427 23428 /* 23429 * DTrace this as ip:::send. A blocked packet will 23430 * fire the send probe, but not the receive probe. 23431 */ 23432 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23433 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23434 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23435 23436 DTRACE_PROBE4(ip4__loopback__out__start, 23437 ill_t *, NULL, ill_t *, out_ill, 23438 ipha_t *, ipha, mblk_t *, first_mp); 23439 23440 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23441 ipst->ips_ipv4firewall_loopback_out, 23442 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23443 23444 DTRACE_PROBE1(ip4__loopback__out_end, 23445 mblk_t *, first_mp); 23446 23447 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23448 "ip_wput_ire_end: q %p (%S)", 23449 q, "local address"); 23450 23451 if (first_mp != NULL) 23452 ip_wput_local(q, out_ill, ipha, 23453 first_mp, ire, 0, ire->ire_zoneid); 23454 ire_refrele(ire); 23455 if (conn_outgoing_ill != NULL) 23456 ill_refrele(conn_outgoing_ill); 23457 return; 23458 } 23459 23460 out_ill = ire_to_ill(ire); 23461 23462 /* 23463 * DTrace this as ip:::send. A blocked packet will fire the 23464 * send probe, but not the receive probe. 23465 */ 23466 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23467 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23468 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23469 23470 DTRACE_PROBE4(ip4__loopback__out__start, 23471 ill_t *, NULL, ill_t *, out_ill, 23472 ipha_t *, ipha, mblk_t *, first_mp); 23473 23474 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23475 ipst->ips_ipv4firewall_loopback_out, 23476 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23477 23478 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23479 23480 if (first_mp != NULL) 23481 ip_wput_local(q, out_ill, ipha, 23482 first_mp, ire, 0, ire->ire_zoneid); 23483 } 23484 next: 23485 /* 23486 * More copies going out to additional interfaces. 23487 * ire1 has already been held. We don't need the 23488 * "ire" anymore. 23489 */ 23490 ire_refrele(ire); 23491 ire = ire1; 23492 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23493 mp = next_mp; 23494 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23495 ill = ire_to_ill(ire); 23496 first_mp = mp; 23497 if (ipsec_len != 0) { 23498 ASSERT(first_mp->b_datap->db_type == M_CTL); 23499 mp = mp->b_cont; 23500 } 23501 dst = ire->ire_addr; 23502 ipha = (ipha_t *)mp->b_rptr; 23503 /* 23504 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23505 * Restore ipha_ident "no checksum" flag. 23506 */ 23507 src = orig_src; 23508 ipha->ipha_ident = ip_hdr_included; 23509 goto another; 23510 23511 #undef rptr 23512 #undef Q_TO_INDEX 23513 } 23514 23515 /* 23516 * Routine to allocate a message that is used to notify the ULP about MDT. 23517 * The caller may provide a pointer to the link-layer MDT capabilities, 23518 * or NULL if MDT is to be disabled on the stream. 23519 */ 23520 mblk_t * 23521 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23522 { 23523 mblk_t *mp; 23524 ip_mdt_info_t *mdti; 23525 ill_mdt_capab_t *idst; 23526 23527 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23528 DB_TYPE(mp) = M_CTL; 23529 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23530 mdti = (ip_mdt_info_t *)mp->b_rptr; 23531 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23532 idst = &(mdti->mdt_capab); 23533 23534 /* 23535 * If the caller provides us with the capability, copy 23536 * it over into our notification message; otherwise 23537 * we zero out the capability portion. 23538 */ 23539 if (isrc != NULL) 23540 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23541 else 23542 bzero((caddr_t)idst, sizeof (*idst)); 23543 } 23544 return (mp); 23545 } 23546 23547 /* 23548 * Routine which determines whether MDT can be enabled on the destination 23549 * IRE and IPC combination, and if so, allocates and returns the MDT 23550 * notification mblk that may be used by ULP. We also check if we need to 23551 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23552 * MDT usage in the past have been lifted. This gets called during IP 23553 * and ULP binding. 23554 */ 23555 mblk_t * 23556 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23557 ill_mdt_capab_t *mdt_cap) 23558 { 23559 mblk_t *mp; 23560 boolean_t rc = B_FALSE; 23561 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23562 23563 ASSERT(dst_ire != NULL); 23564 ASSERT(connp != NULL); 23565 ASSERT(mdt_cap != NULL); 23566 23567 /* 23568 * Currently, we only support simple TCP/{IPv4,IPv6} with 23569 * Multidata, which is handled in tcp_multisend(). This 23570 * is the reason why we do all these checks here, to ensure 23571 * that we don't enable Multidata for the cases which we 23572 * can't handle at the moment. 23573 */ 23574 do { 23575 /* Only do TCP at the moment */ 23576 if (connp->conn_ulp != IPPROTO_TCP) 23577 break; 23578 23579 /* 23580 * IPsec outbound policy present? Note that we get here 23581 * after calling ipsec_conn_cache_policy() where the global 23582 * policy checking is performed. conn_latch will be 23583 * non-NULL as long as there's a policy defined, 23584 * i.e. conn_out_enforce_policy may be NULL in such case 23585 * when the connection is non-secure, and hence we check 23586 * further if the latch refers to an outbound policy. 23587 */ 23588 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23589 break; 23590 23591 /* CGTP (multiroute) is enabled? */ 23592 if (dst_ire->ire_flags & RTF_MULTIRT) 23593 break; 23594 23595 /* Outbound IPQoS enabled? */ 23596 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23597 /* 23598 * In this case, we disable MDT for this and all 23599 * future connections going over the interface. 23600 */ 23601 mdt_cap->ill_mdt_on = 0; 23602 break; 23603 } 23604 23605 /* socket option(s) present? */ 23606 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23607 break; 23608 23609 rc = B_TRUE; 23610 /* CONSTCOND */ 23611 } while (0); 23612 23613 /* Remember the result */ 23614 connp->conn_mdt_ok = rc; 23615 23616 if (!rc) 23617 return (NULL); 23618 else if (!mdt_cap->ill_mdt_on) { 23619 /* 23620 * If MDT has been previously turned off in the past, and we 23621 * currently can do MDT (due to IPQoS policy removal, etc.) 23622 * then enable it for this interface. 23623 */ 23624 mdt_cap->ill_mdt_on = 1; 23625 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23626 "interface %s\n", ill_name)); 23627 } 23628 23629 /* Allocate the MDT info mblk */ 23630 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23631 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23632 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23633 return (NULL); 23634 } 23635 return (mp); 23636 } 23637 23638 /* 23639 * Routine to allocate a message that is used to notify the ULP about LSO. 23640 * The caller may provide a pointer to the link-layer LSO capabilities, 23641 * or NULL if LSO is to be disabled on the stream. 23642 */ 23643 mblk_t * 23644 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23645 { 23646 mblk_t *mp; 23647 ip_lso_info_t *lsoi; 23648 ill_lso_capab_t *idst; 23649 23650 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23651 DB_TYPE(mp) = M_CTL; 23652 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23653 lsoi = (ip_lso_info_t *)mp->b_rptr; 23654 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23655 idst = &(lsoi->lso_capab); 23656 23657 /* 23658 * If the caller provides us with the capability, copy 23659 * it over into our notification message; otherwise 23660 * we zero out the capability portion. 23661 */ 23662 if (isrc != NULL) 23663 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23664 else 23665 bzero((caddr_t)idst, sizeof (*idst)); 23666 } 23667 return (mp); 23668 } 23669 23670 /* 23671 * Routine which determines whether LSO can be enabled on the destination 23672 * IRE and IPC combination, and if so, allocates and returns the LSO 23673 * notification mblk that may be used by ULP. We also check if we need to 23674 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23675 * LSO usage in the past have been lifted. This gets called during IP 23676 * and ULP binding. 23677 */ 23678 mblk_t * 23679 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23680 ill_lso_capab_t *lso_cap) 23681 { 23682 mblk_t *mp; 23683 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23684 23685 ASSERT(dst_ire != NULL); 23686 ASSERT(connp != NULL); 23687 ASSERT(lso_cap != NULL); 23688 23689 connp->conn_lso_ok = B_TRUE; 23690 23691 if ((connp->conn_ulp != IPPROTO_TCP) || 23692 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23693 (dst_ire->ire_flags & RTF_MULTIRT) || 23694 !CONN_IS_LSO_MD_FASTPATH(connp) || 23695 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23696 connp->conn_lso_ok = B_FALSE; 23697 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23698 /* 23699 * Disable LSO for this and all future connections going 23700 * over the interface. 23701 */ 23702 lso_cap->ill_lso_on = 0; 23703 } 23704 } 23705 23706 if (!connp->conn_lso_ok) 23707 return (NULL); 23708 else if (!lso_cap->ill_lso_on) { 23709 /* 23710 * If LSO has been previously turned off in the past, and we 23711 * currently can do LSO (due to IPQoS policy removal, etc.) 23712 * then enable it for this interface. 23713 */ 23714 lso_cap->ill_lso_on = 1; 23715 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23716 ill_name)); 23717 } 23718 23719 /* Allocate the LSO info mblk */ 23720 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23721 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23722 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23723 23724 return (mp); 23725 } 23726 23727 /* 23728 * Create destination address attribute, and fill it with the physical 23729 * destination address and SAP taken from the template DL_UNITDATA_REQ 23730 * message block. 23731 */ 23732 boolean_t 23733 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23734 { 23735 dl_unitdata_req_t *dlurp; 23736 pattr_t *pa; 23737 pattrinfo_t pa_info; 23738 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23739 uint_t das_len, das_off; 23740 23741 ASSERT(dlmp != NULL); 23742 23743 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23744 das_len = dlurp->dl_dest_addr_length; 23745 das_off = dlurp->dl_dest_addr_offset; 23746 23747 pa_info.type = PATTR_DSTADDRSAP; 23748 pa_info.len = sizeof (**das) + das_len - 1; 23749 23750 /* create and associate the attribute */ 23751 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23752 if (pa != NULL) { 23753 ASSERT(*das != NULL); 23754 (*das)->addr_is_group = 0; 23755 (*das)->addr_len = (uint8_t)das_len; 23756 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23757 } 23758 23759 return (pa != NULL); 23760 } 23761 23762 /* 23763 * Create hardware checksum attribute and fill it with the values passed. 23764 */ 23765 boolean_t 23766 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23767 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23768 { 23769 pattr_t *pa; 23770 pattrinfo_t pa_info; 23771 23772 ASSERT(mmd != NULL); 23773 23774 pa_info.type = PATTR_HCKSUM; 23775 pa_info.len = sizeof (pattr_hcksum_t); 23776 23777 /* create and associate the attribute */ 23778 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23779 if (pa != NULL) { 23780 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23781 23782 hck->hcksum_start_offset = start_offset; 23783 hck->hcksum_stuff_offset = stuff_offset; 23784 hck->hcksum_end_offset = end_offset; 23785 hck->hcksum_flags = flags; 23786 } 23787 return (pa != NULL); 23788 } 23789 23790 /* 23791 * Create zerocopy attribute and fill it with the specified flags 23792 */ 23793 boolean_t 23794 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23795 { 23796 pattr_t *pa; 23797 pattrinfo_t pa_info; 23798 23799 ASSERT(mmd != NULL); 23800 pa_info.type = PATTR_ZCOPY; 23801 pa_info.len = sizeof (pattr_zcopy_t); 23802 23803 /* create and associate the attribute */ 23804 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23805 if (pa != NULL) { 23806 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23807 23808 zcopy->zcopy_flags = flags; 23809 } 23810 return (pa != NULL); 23811 } 23812 23813 /* 23814 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23815 * block chain. We could rewrite to handle arbitrary message block chains but 23816 * that would make the code complicated and slow. Right now there three 23817 * restrictions: 23818 * 23819 * 1. The first message block must contain the complete IP header and 23820 * at least 1 byte of payload data. 23821 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23822 * so that we can use a single Multidata message. 23823 * 3. No frag must be distributed over two or more message blocks so 23824 * that we don't need more than two packet descriptors per frag. 23825 * 23826 * The above restrictions allow us to support userland applications (which 23827 * will send down a single message block) and NFS over UDP (which will 23828 * send down a chain of at most three message blocks). 23829 * 23830 * We also don't use MDT for payloads with less than or equal to 23831 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23832 */ 23833 boolean_t 23834 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23835 { 23836 int blocks; 23837 ssize_t total, missing, size; 23838 23839 ASSERT(mp != NULL); 23840 ASSERT(hdr_len > 0); 23841 23842 size = MBLKL(mp) - hdr_len; 23843 if (size <= 0) 23844 return (B_FALSE); 23845 23846 /* The first mblk contains the header and some payload. */ 23847 blocks = 1; 23848 total = size; 23849 size %= len; 23850 missing = (size == 0) ? 0 : (len - size); 23851 mp = mp->b_cont; 23852 23853 while (mp != NULL) { 23854 /* 23855 * Give up if we encounter a zero length message block. 23856 * In practice, this should rarely happen and therefore 23857 * not worth the trouble of freeing and re-linking the 23858 * mblk from the chain to handle such case. 23859 */ 23860 if ((size = MBLKL(mp)) == 0) 23861 return (B_FALSE); 23862 23863 /* Too many payload buffers for a single Multidata message? */ 23864 if (++blocks > MULTIDATA_MAX_PBUFS) 23865 return (B_FALSE); 23866 23867 total += size; 23868 /* Is a frag distributed over two or more message blocks? */ 23869 if (missing > size) 23870 return (B_FALSE); 23871 size -= missing; 23872 23873 size %= len; 23874 missing = (size == 0) ? 0 : (len - size); 23875 23876 mp = mp->b_cont; 23877 } 23878 23879 return (total > ip_wput_frag_mdt_min); 23880 } 23881 23882 /* 23883 * Outbound IPv4 fragmentation routine using MDT. 23884 */ 23885 static void 23886 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23887 uint32_t frag_flag, int offset) 23888 { 23889 ipha_t *ipha_orig; 23890 int i1, ip_data_end; 23891 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23892 mblk_t *hdr_mp, *md_mp = NULL; 23893 unsigned char *hdr_ptr, *pld_ptr; 23894 multidata_t *mmd; 23895 ip_pdescinfo_t pdi; 23896 ill_t *ill; 23897 ip_stack_t *ipst = ire->ire_ipst; 23898 23899 ASSERT(DB_TYPE(mp) == M_DATA); 23900 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23901 23902 ill = ire_to_ill(ire); 23903 ASSERT(ill != NULL); 23904 23905 ipha_orig = (ipha_t *)mp->b_rptr; 23906 mp->b_rptr += sizeof (ipha_t); 23907 23908 /* Calculate how many packets we will send out */ 23909 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23910 pkts = (i1 + len - 1) / len; 23911 ASSERT(pkts > 1); 23912 23913 /* Allocate a message block which will hold all the IP Headers. */ 23914 wroff = ipst->ips_ip_wroff_extra; 23915 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23916 23917 i1 = pkts * hdr_chunk_len; 23918 /* 23919 * Create the header buffer, Multidata and destination address 23920 * and SAP attribute that should be associated with it. 23921 */ 23922 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23923 ((hdr_mp->b_wptr += i1), 23924 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23925 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23926 freemsg(mp); 23927 if (md_mp == NULL) { 23928 freemsg(hdr_mp); 23929 } else { 23930 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23931 freemsg(md_mp); 23932 } 23933 IP_STAT(ipst, ip_frag_mdt_allocfail); 23934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23935 return; 23936 } 23937 IP_STAT(ipst, ip_frag_mdt_allocd); 23938 23939 /* 23940 * Add a payload buffer to the Multidata; this operation must not 23941 * fail, or otherwise our logic in this routine is broken. There 23942 * is no memory allocation done by the routine, so any returned 23943 * failure simply tells us that we've done something wrong. 23944 * 23945 * A failure tells us that either we're adding the same payload 23946 * buffer more than once, or we're trying to add more buffers than 23947 * allowed. None of the above cases should happen, and we panic 23948 * because either there's horrible heap corruption, and/or 23949 * programming mistake. 23950 */ 23951 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23952 goto pbuf_panic; 23953 23954 hdr_ptr = hdr_mp->b_rptr; 23955 pld_ptr = mp->b_rptr; 23956 23957 /* Establish the ending byte offset, based on the starting offset. */ 23958 offset <<= 3; 23959 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23960 IP_SIMPLE_HDR_LENGTH; 23961 23962 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23963 23964 while (pld_ptr < mp->b_wptr) { 23965 ipha_t *ipha; 23966 uint16_t offset_and_flags; 23967 uint16_t ip_len; 23968 int error; 23969 23970 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23971 ipha = (ipha_t *)(hdr_ptr + wroff); 23972 ASSERT(OK_32PTR(ipha)); 23973 *ipha = *ipha_orig; 23974 23975 if (ip_data_end - offset > len) { 23976 offset_and_flags = IPH_MF; 23977 } else { 23978 /* 23979 * Last frag. Set len to the length of this last piece. 23980 */ 23981 len = ip_data_end - offset; 23982 /* A frag of a frag might have IPH_MF non-zero */ 23983 offset_and_flags = 23984 ntohs(ipha->ipha_fragment_offset_and_flags) & 23985 IPH_MF; 23986 } 23987 offset_and_flags |= (uint16_t)(offset >> 3); 23988 offset_and_flags |= (uint16_t)frag_flag; 23989 /* Store the offset and flags in the IP header. */ 23990 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23991 23992 /* Store the length in the IP header. */ 23993 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23994 ipha->ipha_length = htons(ip_len); 23995 23996 /* 23997 * Set the IP header checksum. Note that mp is just 23998 * the header, so this is easy to pass to ip_csum. 23999 */ 24000 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24001 24002 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24003 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24004 NULL, int, 0); 24005 24006 /* 24007 * Record offset and size of header and data of the next packet 24008 * in the multidata message. 24009 */ 24010 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24011 PDESC_PLD_INIT(&pdi); 24012 i1 = MIN(mp->b_wptr - pld_ptr, len); 24013 ASSERT(i1 > 0); 24014 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24015 if (i1 == len) { 24016 pld_ptr += len; 24017 } else { 24018 i1 = len - i1; 24019 mp = mp->b_cont; 24020 ASSERT(mp != NULL); 24021 ASSERT(MBLKL(mp) >= i1); 24022 /* 24023 * Attach the next payload message block to the 24024 * multidata message. 24025 */ 24026 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24027 goto pbuf_panic; 24028 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24029 pld_ptr = mp->b_rptr + i1; 24030 } 24031 24032 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24033 KM_NOSLEEP)) == NULL) { 24034 /* 24035 * Any failure other than ENOMEM indicates that we 24036 * have passed in invalid pdesc info or parameters 24037 * to mmd_addpdesc, which must not happen. 24038 * 24039 * EINVAL is a result of failure on boundary checks 24040 * against the pdesc info contents. It should not 24041 * happen, and we panic because either there's 24042 * horrible heap corruption, and/or programming 24043 * mistake. 24044 */ 24045 if (error != ENOMEM) { 24046 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24047 "pdesc logic error detected for " 24048 "mmd %p pinfo %p (%d)\n", 24049 (void *)mmd, (void *)&pdi, error); 24050 /* NOTREACHED */ 24051 } 24052 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24053 /* Free unattached payload message blocks as well */ 24054 md_mp->b_cont = mp->b_cont; 24055 goto free_mmd; 24056 } 24057 24058 /* Advance fragment offset. */ 24059 offset += len; 24060 24061 /* Advance to location for next header in the buffer. */ 24062 hdr_ptr += hdr_chunk_len; 24063 24064 /* Did we reach the next payload message block? */ 24065 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24066 mp = mp->b_cont; 24067 /* 24068 * Attach the next message block with payload 24069 * data to the multidata message. 24070 */ 24071 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24072 goto pbuf_panic; 24073 pld_ptr = mp->b_rptr; 24074 } 24075 } 24076 24077 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24078 ASSERT(mp->b_wptr == pld_ptr); 24079 24080 /* Update IP statistics */ 24081 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24082 24083 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24085 24086 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24087 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24088 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24089 24090 if (pkt_type == OB_PKT) { 24091 ire->ire_ob_pkt_count += pkts; 24092 if (ire->ire_ipif != NULL) 24093 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24094 } else { 24095 /* The type is IB_PKT in the forwarding path. */ 24096 ire->ire_ib_pkt_count += pkts; 24097 ASSERT(!IRE_IS_LOCAL(ire)); 24098 if (ire->ire_type & IRE_BROADCAST) { 24099 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24100 } else { 24101 UPDATE_MIB(ill->ill_ip_mib, 24102 ipIfStatsHCOutForwDatagrams, pkts); 24103 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24104 } 24105 } 24106 ire->ire_last_used_time = lbolt; 24107 /* Send it down */ 24108 putnext(ire->ire_stq, md_mp); 24109 return; 24110 24111 pbuf_panic: 24112 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24113 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24114 pbuf_idx); 24115 /* NOTREACHED */ 24116 } 24117 24118 /* 24119 * Outbound IP fragmentation routine. 24120 * 24121 * NOTE : This routine does not ire_refrele the ire that is passed in 24122 * as the argument. 24123 */ 24124 static void 24125 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24126 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24127 { 24128 int i1; 24129 mblk_t *ll_hdr_mp; 24130 int ll_hdr_len; 24131 int hdr_len; 24132 mblk_t *hdr_mp; 24133 ipha_t *ipha; 24134 int ip_data_end; 24135 int len; 24136 mblk_t *mp = mp_orig, *mp1; 24137 int offset; 24138 queue_t *q; 24139 uint32_t v_hlen_tos_len; 24140 mblk_t *first_mp; 24141 boolean_t mctl_present; 24142 ill_t *ill; 24143 ill_t *out_ill; 24144 mblk_t *xmit_mp; 24145 mblk_t *carve_mp; 24146 ire_t *ire1 = NULL; 24147 ire_t *save_ire = NULL; 24148 mblk_t *next_mp = NULL; 24149 boolean_t last_frag = B_FALSE; 24150 boolean_t multirt_send = B_FALSE; 24151 ire_t *first_ire = NULL; 24152 irb_t *irb = NULL; 24153 mib2_ipIfStatsEntry_t *mibptr = NULL; 24154 24155 ill = ire_to_ill(ire); 24156 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24157 24158 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24159 24160 if (max_frag == 0) { 24161 ip1dbg(("ip_wput_frag: ire frag size is 0" 24162 " - dropping packet\n")); 24163 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24164 freemsg(mp); 24165 return; 24166 } 24167 24168 /* 24169 * IPsec does not allow hw accelerated packets to be fragmented 24170 * This check is made in ip_wput_ipsec_out prior to coming here 24171 * via ip_wput_ire_fragmentit. 24172 * 24173 * If at this point we have an ire whose ARP request has not 24174 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24175 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24176 * This packet and all fragmentable packets for this ire will 24177 * continue to get dropped while ire_nce->nce_state remains in 24178 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24179 * ND_REACHABLE, all subsquent large packets for this ire will 24180 * get fragemented and sent out by this function. 24181 */ 24182 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24183 /* If nce_state is ND_INITIAL, trigger ARP query */ 24184 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24185 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24186 " - dropping packet\n")); 24187 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24188 freemsg(mp); 24189 return; 24190 } 24191 24192 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24193 "ip_wput_frag_start:"); 24194 24195 if (mp->b_datap->db_type == M_CTL) { 24196 first_mp = mp; 24197 mp_orig = mp = mp->b_cont; 24198 mctl_present = B_TRUE; 24199 } else { 24200 first_mp = mp; 24201 mctl_present = B_FALSE; 24202 } 24203 24204 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24205 ipha = (ipha_t *)mp->b_rptr; 24206 24207 /* 24208 * If the Don't Fragment flag is on, generate an ICMP destination 24209 * unreachable, fragmentation needed. 24210 */ 24211 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24212 if (offset & IPH_DF) { 24213 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24214 if (is_system_labeled()) { 24215 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24216 ire->ire_max_frag - max_frag, AF_INET); 24217 } 24218 /* 24219 * Need to compute hdr checksum if called from ip_wput_ire. 24220 * Note that ip_rput_forward verifies the checksum before 24221 * calling this routine so in that case this is a noop. 24222 */ 24223 ipha->ipha_hdr_checksum = 0; 24224 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24225 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24226 ipst); 24227 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24228 "ip_wput_frag_end:(%S)", 24229 "don't fragment"); 24230 return; 24231 } 24232 /* 24233 * Labeled systems adjust max_frag if they add a label 24234 * to send the correct path mtu. We need the real mtu since we 24235 * are fragmenting the packet after label adjustment. 24236 */ 24237 if (is_system_labeled()) 24238 max_frag = ire->ire_max_frag; 24239 if (mctl_present) 24240 freeb(first_mp); 24241 /* 24242 * Establish the starting offset. May not be zero if we are fragging 24243 * a fragment that is being forwarded. 24244 */ 24245 offset = offset & IPH_OFFSET; 24246 24247 /* TODO why is this test needed? */ 24248 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24249 if (((max_frag - LENGTH) & ~7) < 8) { 24250 /* TODO: notify ulp somehow */ 24251 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24252 freemsg(mp); 24253 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24254 "ip_wput_frag_end:(%S)", 24255 "len < 8"); 24256 return; 24257 } 24258 24259 hdr_len = (V_HLEN & 0xF) << 2; 24260 24261 ipha->ipha_hdr_checksum = 0; 24262 24263 /* 24264 * Establish the number of bytes maximum per frag, after putting 24265 * in the header. 24266 */ 24267 len = (max_frag - hdr_len) & ~7; 24268 24269 /* Check if we can use MDT to send out the frags. */ 24270 ASSERT(!IRE_IS_LOCAL(ire)); 24271 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24272 ipst->ips_ip_multidata_outbound && 24273 !(ire->ire_flags & RTF_MULTIRT) && 24274 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24275 ill != NULL && ILL_MDT_CAPABLE(ill) && 24276 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24277 ASSERT(ill->ill_mdt_capab != NULL); 24278 if (!ill->ill_mdt_capab->ill_mdt_on) { 24279 /* 24280 * If MDT has been previously turned off in the past, 24281 * and we currently can do MDT (due to IPQoS policy 24282 * removal, etc.) then enable it for this interface. 24283 */ 24284 ill->ill_mdt_capab->ill_mdt_on = 1; 24285 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24286 ill->ill_name)); 24287 } 24288 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24289 offset); 24290 return; 24291 } 24292 24293 /* Get a copy of the header for the trailing frags */ 24294 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24295 if (!hdr_mp) { 24296 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24297 freemsg(mp); 24298 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24299 "ip_wput_frag_end:(%S)", 24300 "couldn't copy hdr"); 24301 return; 24302 } 24303 if (DB_CRED(mp) != NULL) 24304 mblk_setcred(hdr_mp, DB_CRED(mp)); 24305 24306 /* Store the starting offset, with the MoreFrags flag. */ 24307 i1 = offset | IPH_MF | frag_flag; 24308 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24309 24310 /* Establish the ending byte offset, based on the starting offset. */ 24311 offset <<= 3; 24312 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24313 24314 /* Store the length of the first fragment in the IP header. */ 24315 i1 = len + hdr_len; 24316 ASSERT(i1 <= IP_MAXPACKET); 24317 ipha->ipha_length = htons((uint16_t)i1); 24318 24319 /* 24320 * Compute the IP header checksum for the first frag. We have to 24321 * watch out that we stop at the end of the header. 24322 */ 24323 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24324 24325 /* 24326 * Now carve off the first frag. Note that this will include the 24327 * original IP header. 24328 */ 24329 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24330 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24331 freeb(hdr_mp); 24332 freemsg(mp_orig); 24333 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24334 "ip_wput_frag_end:(%S)", 24335 "couldn't carve first"); 24336 return; 24337 } 24338 24339 /* 24340 * Multirouting case. Each fragment is replicated 24341 * via all non-condemned RTF_MULTIRT routes 24342 * currently resolved. 24343 * We ensure that first_ire is the first RTF_MULTIRT 24344 * ire in the bucket. 24345 */ 24346 if (ire->ire_flags & RTF_MULTIRT) { 24347 irb = ire->ire_bucket; 24348 ASSERT(irb != NULL); 24349 24350 multirt_send = B_TRUE; 24351 24352 /* Make sure we do not omit any multiroute ire. */ 24353 IRB_REFHOLD(irb); 24354 for (first_ire = irb->irb_ire; 24355 first_ire != NULL; 24356 first_ire = first_ire->ire_next) { 24357 if ((first_ire->ire_flags & RTF_MULTIRT) && 24358 (first_ire->ire_addr == ire->ire_addr) && 24359 !(first_ire->ire_marks & 24360 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24361 break; 24362 } 24363 } 24364 24365 if (first_ire != NULL) { 24366 if (first_ire != ire) { 24367 IRE_REFHOLD(first_ire); 24368 /* 24369 * Do not release the ire passed in 24370 * as the argument. 24371 */ 24372 ire = first_ire; 24373 } else { 24374 first_ire = NULL; 24375 } 24376 } 24377 IRB_REFRELE(irb); 24378 24379 /* 24380 * Save the first ire; we will need to restore it 24381 * for the trailing frags. 24382 * We REFHOLD save_ire, as each iterated ire will be 24383 * REFRELEd. 24384 */ 24385 save_ire = ire; 24386 IRE_REFHOLD(save_ire); 24387 } 24388 24389 /* 24390 * First fragment emission loop. 24391 * In most cases, the emission loop below is entered only 24392 * once. Only in the case where the ire holds the RTF_MULTIRT 24393 * flag, do we loop to process all RTF_MULTIRT ires in the 24394 * bucket, and send the fragment through all crossed 24395 * RTF_MULTIRT routes. 24396 */ 24397 do { 24398 if (ire->ire_flags & RTF_MULTIRT) { 24399 /* 24400 * We are in a multiple send case, need to get 24401 * the next ire and make a copy of the packet. 24402 * ire1 holds here the next ire to process in the 24403 * bucket. If multirouting is expected, 24404 * any non-RTF_MULTIRT ire that has the 24405 * right destination address is ignored. 24406 * 24407 * We have to take into account the MTU of 24408 * each walked ire. max_frag is set by the 24409 * the caller and generally refers to 24410 * the primary ire entry. Here we ensure that 24411 * no route with a lower MTU will be used, as 24412 * fragments are carved once for all ires, 24413 * then replicated. 24414 */ 24415 ASSERT(irb != NULL); 24416 IRB_REFHOLD(irb); 24417 for (ire1 = ire->ire_next; 24418 ire1 != NULL; 24419 ire1 = ire1->ire_next) { 24420 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24421 continue; 24422 if (ire1->ire_addr != ire->ire_addr) 24423 continue; 24424 if (ire1->ire_marks & 24425 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24426 continue; 24427 /* 24428 * Ensure we do not exceed the MTU 24429 * of the next route. 24430 */ 24431 if (ire1->ire_max_frag < max_frag) { 24432 ip_multirt_bad_mtu(ire1, max_frag); 24433 continue; 24434 } 24435 24436 /* Got one. */ 24437 IRE_REFHOLD(ire1); 24438 break; 24439 } 24440 IRB_REFRELE(irb); 24441 24442 if (ire1 != NULL) { 24443 next_mp = copyb(mp); 24444 if ((next_mp == NULL) || 24445 ((mp->b_cont != NULL) && 24446 ((next_mp->b_cont = 24447 dupmsg(mp->b_cont)) == NULL))) { 24448 freemsg(next_mp); 24449 next_mp = NULL; 24450 ire_refrele(ire1); 24451 ire1 = NULL; 24452 } 24453 } 24454 24455 /* Last multiroute ire; don't loop anymore. */ 24456 if (ire1 == NULL) { 24457 multirt_send = B_FALSE; 24458 } 24459 } 24460 24461 ll_hdr_len = 0; 24462 LOCK_IRE_FP_MP(ire); 24463 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24464 if (ll_hdr_mp != NULL) { 24465 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24466 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24467 } else { 24468 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24469 } 24470 24471 /* If there is a transmit header, get a copy for this frag. */ 24472 /* 24473 * TODO: should check db_ref before calling ip_carve_mp since 24474 * it might give us a dup. 24475 */ 24476 if (!ll_hdr_mp) { 24477 /* No xmit header. */ 24478 xmit_mp = mp; 24479 24480 /* We have a link-layer header that can fit in our mblk. */ 24481 } else if (mp->b_datap->db_ref == 1 && 24482 ll_hdr_len != 0 && 24483 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24484 /* M_DATA fastpath */ 24485 mp->b_rptr -= ll_hdr_len; 24486 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24487 xmit_mp = mp; 24488 24489 /* Corner case if copyb has failed */ 24490 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24491 UNLOCK_IRE_FP_MP(ire); 24492 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24493 freeb(hdr_mp); 24494 freemsg(mp); 24495 freemsg(mp_orig); 24496 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24497 "ip_wput_frag_end:(%S)", 24498 "discard"); 24499 24500 if (multirt_send) { 24501 ASSERT(ire1); 24502 ASSERT(next_mp); 24503 24504 freemsg(next_mp); 24505 ire_refrele(ire1); 24506 } 24507 if (save_ire != NULL) 24508 IRE_REFRELE(save_ire); 24509 24510 if (first_ire != NULL) 24511 ire_refrele(first_ire); 24512 return; 24513 24514 /* 24515 * Case of res_mp OR the fastpath mp can't fit 24516 * in the mblk 24517 */ 24518 } else { 24519 xmit_mp->b_cont = mp; 24520 if (DB_CRED(mp) != NULL) 24521 mblk_setcred(xmit_mp, DB_CRED(mp)); 24522 /* 24523 * Get priority marking, if any. 24524 * We propagate the CoS marking from the 24525 * original packet that went to QoS processing 24526 * in ip_wput_ire to the newly carved mp. 24527 */ 24528 if (DB_TYPE(xmit_mp) == M_DATA) 24529 xmit_mp->b_band = mp->b_band; 24530 } 24531 UNLOCK_IRE_FP_MP(ire); 24532 24533 q = ire->ire_stq; 24534 out_ill = (ill_t *)q->q_ptr; 24535 24536 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24537 24538 DTRACE_PROBE4(ip4__physical__out__start, 24539 ill_t *, NULL, ill_t *, out_ill, 24540 ipha_t *, ipha, mblk_t *, xmit_mp); 24541 24542 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24543 ipst->ips_ipv4firewall_physical_out, 24544 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24545 24546 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24547 24548 if (xmit_mp != NULL) { 24549 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24550 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24551 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24552 24553 putnext(q, xmit_mp); 24554 24555 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24556 UPDATE_MIB(out_ill->ill_ip_mib, 24557 ipIfStatsHCOutOctets, i1); 24558 24559 if (pkt_type != OB_PKT) { 24560 /* 24561 * Update the packet count and MIB stats 24562 * of trailing RTF_MULTIRT ires. 24563 */ 24564 UPDATE_OB_PKT_COUNT(ire); 24565 BUMP_MIB(out_ill->ill_ip_mib, 24566 ipIfStatsOutFragReqds); 24567 } 24568 } 24569 24570 if (multirt_send) { 24571 /* 24572 * We are in a multiple send case; look for 24573 * the next ire and re-enter the loop. 24574 */ 24575 ASSERT(ire1); 24576 ASSERT(next_mp); 24577 /* REFRELE the current ire before looping */ 24578 ire_refrele(ire); 24579 ire = ire1; 24580 ire1 = NULL; 24581 mp = next_mp; 24582 next_mp = NULL; 24583 } 24584 } while (multirt_send); 24585 24586 ASSERT(ire1 == NULL); 24587 24588 /* Restore the original ire; we need it for the trailing frags */ 24589 if (save_ire != NULL) { 24590 /* REFRELE the last iterated ire */ 24591 ire_refrele(ire); 24592 /* save_ire has been REFHOLDed */ 24593 ire = save_ire; 24594 save_ire = NULL; 24595 q = ire->ire_stq; 24596 } 24597 24598 if (pkt_type == OB_PKT) { 24599 UPDATE_OB_PKT_COUNT(ire); 24600 } else { 24601 out_ill = (ill_t *)q->q_ptr; 24602 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24603 UPDATE_IB_PKT_COUNT(ire); 24604 } 24605 24606 /* Advance the offset to the second frag starting point. */ 24607 offset += len; 24608 /* 24609 * Update hdr_len from the copied header - there might be less options 24610 * in the later fragments. 24611 */ 24612 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24613 /* Loop until done. */ 24614 for (;;) { 24615 uint16_t offset_and_flags; 24616 uint16_t ip_len; 24617 24618 if (ip_data_end - offset > len) { 24619 /* 24620 * Carve off the appropriate amount from the original 24621 * datagram. 24622 */ 24623 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24624 mp = NULL; 24625 break; 24626 } 24627 /* 24628 * More frags after this one. Get another copy 24629 * of the header. 24630 */ 24631 if (carve_mp->b_datap->db_ref == 1 && 24632 hdr_mp->b_wptr - hdr_mp->b_rptr < 24633 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24634 /* Inline IP header */ 24635 carve_mp->b_rptr -= hdr_mp->b_wptr - 24636 hdr_mp->b_rptr; 24637 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24638 hdr_mp->b_wptr - hdr_mp->b_rptr); 24639 mp = carve_mp; 24640 } else { 24641 if (!(mp = copyb(hdr_mp))) { 24642 freemsg(carve_mp); 24643 break; 24644 } 24645 /* Get priority marking, if any. */ 24646 mp->b_band = carve_mp->b_band; 24647 mp->b_cont = carve_mp; 24648 } 24649 ipha = (ipha_t *)mp->b_rptr; 24650 offset_and_flags = IPH_MF; 24651 } else { 24652 /* 24653 * Last frag. Consume the header. Set len to 24654 * the length of this last piece. 24655 */ 24656 len = ip_data_end - offset; 24657 24658 /* 24659 * Carve off the appropriate amount from the original 24660 * datagram. 24661 */ 24662 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24663 mp = NULL; 24664 break; 24665 } 24666 if (carve_mp->b_datap->db_ref == 1 && 24667 hdr_mp->b_wptr - hdr_mp->b_rptr < 24668 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24669 /* Inline IP header */ 24670 carve_mp->b_rptr -= hdr_mp->b_wptr - 24671 hdr_mp->b_rptr; 24672 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24673 hdr_mp->b_wptr - hdr_mp->b_rptr); 24674 mp = carve_mp; 24675 freeb(hdr_mp); 24676 hdr_mp = mp; 24677 } else { 24678 mp = hdr_mp; 24679 /* Get priority marking, if any. */ 24680 mp->b_band = carve_mp->b_band; 24681 mp->b_cont = carve_mp; 24682 } 24683 ipha = (ipha_t *)mp->b_rptr; 24684 /* A frag of a frag might have IPH_MF non-zero */ 24685 offset_and_flags = 24686 ntohs(ipha->ipha_fragment_offset_and_flags) & 24687 IPH_MF; 24688 } 24689 offset_and_flags |= (uint16_t)(offset >> 3); 24690 offset_and_flags |= (uint16_t)frag_flag; 24691 /* Store the offset and flags in the IP header. */ 24692 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24693 24694 /* Store the length in the IP header. */ 24695 ip_len = (uint16_t)(len + hdr_len); 24696 ipha->ipha_length = htons(ip_len); 24697 24698 /* 24699 * Set the IP header checksum. Note that mp is just 24700 * the header, so this is easy to pass to ip_csum. 24701 */ 24702 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24703 24704 /* Attach a transmit header, if any, and ship it. */ 24705 if (pkt_type == OB_PKT) { 24706 UPDATE_OB_PKT_COUNT(ire); 24707 } else { 24708 out_ill = (ill_t *)q->q_ptr; 24709 BUMP_MIB(out_ill->ill_ip_mib, 24710 ipIfStatsHCOutForwDatagrams); 24711 UPDATE_IB_PKT_COUNT(ire); 24712 } 24713 24714 if (ire->ire_flags & RTF_MULTIRT) { 24715 irb = ire->ire_bucket; 24716 ASSERT(irb != NULL); 24717 24718 multirt_send = B_TRUE; 24719 24720 /* 24721 * Save the original ire; we will need to restore it 24722 * for the tailing frags. 24723 */ 24724 save_ire = ire; 24725 IRE_REFHOLD(save_ire); 24726 } 24727 /* 24728 * Emission loop for this fragment, similar 24729 * to what is done for the first fragment. 24730 */ 24731 do { 24732 if (multirt_send) { 24733 /* 24734 * We are in a multiple send case, need to get 24735 * the next ire and make a copy of the packet. 24736 */ 24737 ASSERT(irb != NULL); 24738 IRB_REFHOLD(irb); 24739 for (ire1 = ire->ire_next; 24740 ire1 != NULL; 24741 ire1 = ire1->ire_next) { 24742 if (!(ire1->ire_flags & RTF_MULTIRT)) 24743 continue; 24744 if (ire1->ire_addr != ire->ire_addr) 24745 continue; 24746 if (ire1->ire_marks & 24747 (IRE_MARK_CONDEMNED| 24748 IRE_MARK_HIDDEN)) { 24749 continue; 24750 } 24751 /* 24752 * Ensure we do not exceed the MTU 24753 * of the next route. 24754 */ 24755 if (ire1->ire_max_frag < max_frag) { 24756 ip_multirt_bad_mtu(ire1, 24757 max_frag); 24758 continue; 24759 } 24760 24761 /* Got one. */ 24762 IRE_REFHOLD(ire1); 24763 break; 24764 } 24765 IRB_REFRELE(irb); 24766 24767 if (ire1 != NULL) { 24768 next_mp = copyb(mp); 24769 if ((next_mp == NULL) || 24770 ((mp->b_cont != NULL) && 24771 ((next_mp->b_cont = 24772 dupmsg(mp->b_cont)) == NULL))) { 24773 freemsg(next_mp); 24774 next_mp = NULL; 24775 ire_refrele(ire1); 24776 ire1 = NULL; 24777 } 24778 } 24779 24780 /* Last multiroute ire; don't loop anymore. */ 24781 if (ire1 == NULL) { 24782 multirt_send = B_FALSE; 24783 } 24784 } 24785 24786 /* Update transmit header */ 24787 ll_hdr_len = 0; 24788 LOCK_IRE_FP_MP(ire); 24789 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24790 if (ll_hdr_mp != NULL) { 24791 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24792 ll_hdr_len = MBLKL(ll_hdr_mp); 24793 } else { 24794 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24795 } 24796 24797 if (!ll_hdr_mp) { 24798 xmit_mp = mp; 24799 24800 /* 24801 * We have link-layer header that can fit in 24802 * our mblk. 24803 */ 24804 } else if (mp->b_datap->db_ref == 1 && 24805 ll_hdr_len != 0 && 24806 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24807 /* M_DATA fastpath */ 24808 mp->b_rptr -= ll_hdr_len; 24809 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24810 ll_hdr_len); 24811 xmit_mp = mp; 24812 24813 /* 24814 * Case of res_mp OR the fastpath mp can't fit 24815 * in the mblk 24816 */ 24817 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24818 xmit_mp->b_cont = mp; 24819 if (DB_CRED(mp) != NULL) 24820 mblk_setcred(xmit_mp, DB_CRED(mp)); 24821 /* Get priority marking, if any. */ 24822 if (DB_TYPE(xmit_mp) == M_DATA) 24823 xmit_mp->b_band = mp->b_band; 24824 24825 /* Corner case if copyb failed */ 24826 } else { 24827 /* 24828 * Exit both the replication and 24829 * fragmentation loops. 24830 */ 24831 UNLOCK_IRE_FP_MP(ire); 24832 goto drop_pkt; 24833 } 24834 UNLOCK_IRE_FP_MP(ire); 24835 24836 mp1 = mp; 24837 out_ill = (ill_t *)q->q_ptr; 24838 24839 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24840 24841 DTRACE_PROBE4(ip4__physical__out__start, 24842 ill_t *, NULL, ill_t *, out_ill, 24843 ipha_t *, ipha, mblk_t *, xmit_mp); 24844 24845 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24846 ipst->ips_ipv4firewall_physical_out, 24847 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24848 24849 DTRACE_PROBE1(ip4__physical__out__end, 24850 mblk_t *, xmit_mp); 24851 24852 if (mp != mp1 && hdr_mp == mp1) 24853 hdr_mp = mp; 24854 if (mp != mp1 && mp_orig == mp1) 24855 mp_orig = mp; 24856 24857 if (xmit_mp != NULL) { 24858 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24859 NULL, void_ip_t *, ipha, 24860 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24861 ipha, ip6_t *, NULL, int, 0); 24862 24863 putnext(q, xmit_mp); 24864 24865 BUMP_MIB(out_ill->ill_ip_mib, 24866 ipIfStatsHCOutTransmits); 24867 UPDATE_MIB(out_ill->ill_ip_mib, 24868 ipIfStatsHCOutOctets, ip_len); 24869 24870 if (pkt_type != OB_PKT) { 24871 /* 24872 * Update the packet count of trailing 24873 * RTF_MULTIRT ires. 24874 */ 24875 UPDATE_OB_PKT_COUNT(ire); 24876 } 24877 } 24878 24879 /* All done if we just consumed the hdr_mp. */ 24880 if (mp == hdr_mp) { 24881 last_frag = B_TRUE; 24882 BUMP_MIB(out_ill->ill_ip_mib, 24883 ipIfStatsOutFragOKs); 24884 } 24885 24886 if (multirt_send) { 24887 /* 24888 * We are in a multiple send case; look for 24889 * the next ire and re-enter the loop. 24890 */ 24891 ASSERT(ire1); 24892 ASSERT(next_mp); 24893 /* REFRELE the current ire before looping */ 24894 ire_refrele(ire); 24895 ire = ire1; 24896 ire1 = NULL; 24897 q = ire->ire_stq; 24898 mp = next_mp; 24899 next_mp = NULL; 24900 } 24901 } while (multirt_send); 24902 /* 24903 * Restore the original ire; we need it for the 24904 * trailing frags 24905 */ 24906 if (save_ire != NULL) { 24907 ASSERT(ire1 == NULL); 24908 /* REFRELE the last iterated ire */ 24909 ire_refrele(ire); 24910 /* save_ire has been REFHOLDed */ 24911 ire = save_ire; 24912 q = ire->ire_stq; 24913 save_ire = NULL; 24914 } 24915 24916 if (last_frag) { 24917 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24918 "ip_wput_frag_end:(%S)", 24919 "consumed hdr_mp"); 24920 24921 if (first_ire != NULL) 24922 ire_refrele(first_ire); 24923 return; 24924 } 24925 /* Otherwise, advance and loop. */ 24926 offset += len; 24927 } 24928 24929 drop_pkt: 24930 /* Clean up following allocation failure. */ 24931 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24932 freemsg(mp); 24933 if (mp != hdr_mp) 24934 freeb(hdr_mp); 24935 if (mp != mp_orig) 24936 freemsg(mp_orig); 24937 24938 if (save_ire != NULL) 24939 IRE_REFRELE(save_ire); 24940 if (first_ire != NULL) 24941 ire_refrele(first_ire); 24942 24943 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24944 "ip_wput_frag_end:(%S)", 24945 "end--alloc failure"); 24946 } 24947 24948 /* 24949 * Copy the header plus those options which have the copy bit set 24950 */ 24951 static mblk_t * 24952 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24953 { 24954 mblk_t *mp; 24955 uchar_t *up; 24956 24957 /* 24958 * Quick check if we need to look for options without the copy bit 24959 * set 24960 */ 24961 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24962 if (!mp) 24963 return (mp); 24964 mp->b_rptr += ipst->ips_ip_wroff_extra; 24965 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24966 bcopy(rptr, mp->b_rptr, hdr_len); 24967 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24968 return (mp); 24969 } 24970 up = mp->b_rptr; 24971 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24972 up += IP_SIMPLE_HDR_LENGTH; 24973 rptr += IP_SIMPLE_HDR_LENGTH; 24974 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24975 while (hdr_len > 0) { 24976 uint32_t optval; 24977 uint32_t optlen; 24978 24979 optval = *rptr; 24980 if (optval == IPOPT_EOL) 24981 break; 24982 if (optval == IPOPT_NOP) 24983 optlen = 1; 24984 else 24985 optlen = rptr[1]; 24986 if (optval & IPOPT_COPY) { 24987 bcopy(rptr, up, optlen); 24988 up += optlen; 24989 } 24990 rptr += optlen; 24991 hdr_len -= optlen; 24992 } 24993 /* 24994 * Make sure that we drop an even number of words by filling 24995 * with EOL to the next word boundary. 24996 */ 24997 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24998 hdr_len & 0x3; hdr_len++) 24999 *up++ = IPOPT_EOL; 25000 mp->b_wptr = up; 25001 /* Update header length */ 25002 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25003 return (mp); 25004 } 25005 25006 /* 25007 * Delivery to local recipients including fanout to multiple recipients. 25008 * Does not do checksumming of UDP/TCP. 25009 * Note: q should be the read side queue for either the ill or conn. 25010 * Note: rq should be the read side q for the lower (ill) stream. 25011 * We don't send packets to IPPF processing, thus the last argument 25012 * to all the fanout calls are B_FALSE. 25013 */ 25014 void 25015 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25016 int fanout_flags, zoneid_t zoneid) 25017 { 25018 uint32_t protocol; 25019 mblk_t *first_mp; 25020 boolean_t mctl_present; 25021 int ire_type; 25022 #define rptr ((uchar_t *)ipha) 25023 ip_stack_t *ipst = ill->ill_ipst; 25024 25025 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25026 "ip_wput_local_start: q %p", q); 25027 25028 if (ire != NULL) { 25029 ire_type = ire->ire_type; 25030 } else { 25031 /* 25032 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25033 * packet is not multicast, we can't tell the ire type. 25034 */ 25035 ASSERT(CLASSD(ipha->ipha_dst)); 25036 ire_type = IRE_BROADCAST; 25037 } 25038 25039 first_mp = mp; 25040 if (first_mp->b_datap->db_type == M_CTL) { 25041 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25042 if (!io->ipsec_out_secure) { 25043 /* 25044 * This ipsec_out_t was allocated in ip_wput 25045 * for multicast packets to store the ill_index. 25046 * As this is being delivered locally, we don't 25047 * need this anymore. 25048 */ 25049 mp = first_mp->b_cont; 25050 freeb(first_mp); 25051 first_mp = mp; 25052 mctl_present = B_FALSE; 25053 } else { 25054 /* 25055 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25056 * security properties for the looped-back packet. 25057 */ 25058 mctl_present = B_TRUE; 25059 mp = first_mp->b_cont; 25060 ASSERT(mp != NULL); 25061 ipsec_out_to_in(first_mp); 25062 } 25063 } else { 25064 mctl_present = B_FALSE; 25065 } 25066 25067 DTRACE_PROBE4(ip4__loopback__in__start, 25068 ill_t *, ill, ill_t *, NULL, 25069 ipha_t *, ipha, mblk_t *, first_mp); 25070 25071 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25072 ipst->ips_ipv4firewall_loopback_in, 25073 ill, NULL, ipha, first_mp, mp, 0, ipst); 25074 25075 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25076 25077 if (first_mp == NULL) 25078 return; 25079 25080 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25081 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25082 int, 1); 25083 25084 ipst->ips_loopback_packets++; 25085 25086 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25087 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25088 if (!IS_SIMPLE_IPH(ipha)) { 25089 ip_wput_local_options(ipha, ipst); 25090 } 25091 25092 protocol = ipha->ipha_protocol; 25093 switch (protocol) { 25094 case IPPROTO_ICMP: { 25095 ire_t *ire_zone; 25096 ilm_t *ilm; 25097 mblk_t *mp1; 25098 zoneid_t last_zoneid; 25099 25100 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25101 ASSERT(ire_type == IRE_BROADCAST); 25102 /* 25103 * In the multicast case, applications may have joined 25104 * the group from different zones, so we need to deliver 25105 * the packet to each of them. Loop through the 25106 * multicast memberships structures (ilm) on the receive 25107 * ill and send a copy of the packet up each matching 25108 * one. However, we don't do this for multicasts sent on 25109 * the loopback interface (PHYI_LOOPBACK flag set) as 25110 * they must stay in the sender's zone. 25111 * 25112 * ilm_add_v6() ensures that ilms in the same zone are 25113 * contiguous in the ill_ilm list. We use this property 25114 * to avoid sending duplicates needed when two 25115 * applications in the same zone join the same group on 25116 * different logical interfaces: we ignore the ilm if 25117 * it's zoneid is the same as the last matching one. 25118 * In addition, the sending of the packet for 25119 * ire_zoneid is delayed until all of the other ilms 25120 * have been exhausted. 25121 */ 25122 last_zoneid = -1; 25123 ILM_WALKER_HOLD(ill); 25124 for (ilm = ill->ill_ilm; ilm != NULL; 25125 ilm = ilm->ilm_next) { 25126 if ((ilm->ilm_flags & ILM_DELETED) || 25127 ipha->ipha_dst != ilm->ilm_addr || 25128 ilm->ilm_zoneid == last_zoneid || 25129 ilm->ilm_zoneid == zoneid || 25130 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25131 continue; 25132 mp1 = ip_copymsg(first_mp); 25133 if (mp1 == NULL) 25134 continue; 25135 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25136 mctl_present, B_FALSE, ill, 25137 ilm->ilm_zoneid); 25138 last_zoneid = ilm->ilm_zoneid; 25139 } 25140 ILM_WALKER_RELE(ill); 25141 /* 25142 * Loopback case: the sending endpoint has 25143 * IP_MULTICAST_LOOP disabled, therefore we don't 25144 * dispatch the multicast packet to the sending zone. 25145 */ 25146 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25147 freemsg(first_mp); 25148 return; 25149 } 25150 } else if (ire_type == IRE_BROADCAST) { 25151 /* 25152 * In the broadcast case, there may be many zones 25153 * which need a copy of the packet delivered to them. 25154 * There is one IRE_BROADCAST per broadcast address 25155 * and per zone; we walk those using a helper function. 25156 * In addition, the sending of the packet for zoneid is 25157 * delayed until all of the other ires have been 25158 * processed. 25159 */ 25160 IRB_REFHOLD(ire->ire_bucket); 25161 ire_zone = NULL; 25162 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25163 ire)) != NULL) { 25164 mp1 = ip_copymsg(first_mp); 25165 if (mp1 == NULL) 25166 continue; 25167 25168 UPDATE_IB_PKT_COUNT(ire_zone); 25169 ire_zone->ire_last_used_time = lbolt; 25170 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25171 mctl_present, B_FALSE, ill, 25172 ire_zone->ire_zoneid); 25173 } 25174 IRB_REFRELE(ire->ire_bucket); 25175 } 25176 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25177 0, mctl_present, B_FALSE, ill, zoneid); 25178 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25179 "ip_wput_local_end: q %p (%S)", 25180 q, "icmp"); 25181 return; 25182 } 25183 case IPPROTO_IGMP: 25184 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25185 /* Bad packet - discarded by igmp_input */ 25186 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25187 "ip_wput_local_end: q %p (%S)", 25188 q, "igmp_input--bad packet"); 25189 if (mctl_present) 25190 freeb(first_mp); 25191 return; 25192 } 25193 /* 25194 * igmp_input() may have returned the pulled up message. 25195 * So first_mp and ipha need to be reinitialized. 25196 */ 25197 ipha = (ipha_t *)mp->b_rptr; 25198 if (mctl_present) 25199 first_mp->b_cont = mp; 25200 else 25201 first_mp = mp; 25202 /* deliver to local raw users */ 25203 break; 25204 case IPPROTO_ENCAP: 25205 /* 25206 * This case is covered by either ip_fanout_proto, or by 25207 * the above security processing for self-tunneled packets. 25208 */ 25209 break; 25210 case IPPROTO_UDP: { 25211 uint16_t *up; 25212 uint32_t ports; 25213 25214 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25215 UDP_PORTS_OFFSET); 25216 /* Force a 'valid' checksum. */ 25217 up[3] = 0; 25218 25219 ports = *(uint32_t *)up; 25220 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25221 (ire_type == IRE_BROADCAST), 25222 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25223 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25224 ill, zoneid); 25225 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25226 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25227 return; 25228 } 25229 case IPPROTO_TCP: { 25230 25231 /* 25232 * For TCP, discard broadcast packets. 25233 */ 25234 if ((ushort_t)ire_type == IRE_BROADCAST) { 25235 freemsg(first_mp); 25236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25237 ip2dbg(("ip_wput_local: discard broadcast\n")); 25238 return; 25239 } 25240 25241 if (mp->b_datap->db_type == M_DATA) { 25242 /* 25243 * M_DATA mblk, so init mblk (chain) for no struio(). 25244 */ 25245 mblk_t *mp1 = mp; 25246 25247 do { 25248 mp1->b_datap->db_struioflag = 0; 25249 } while ((mp1 = mp1->b_cont) != NULL); 25250 } 25251 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25252 <= mp->b_wptr); 25253 ip_fanout_tcp(q, first_mp, ill, ipha, 25254 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25255 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25256 mctl_present, B_FALSE, zoneid); 25257 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25258 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25259 return; 25260 } 25261 case IPPROTO_SCTP: 25262 { 25263 uint32_t ports; 25264 25265 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25266 ip_fanout_sctp(first_mp, ill, ipha, ports, 25267 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25268 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25269 return; 25270 } 25271 25272 default: 25273 break; 25274 } 25275 /* 25276 * Find a client for some other protocol. We give 25277 * copies to multiple clients, if more than one is 25278 * bound. 25279 */ 25280 ip_fanout_proto(q, first_mp, ill, ipha, 25281 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25282 mctl_present, B_FALSE, ill, zoneid); 25283 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25284 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25285 #undef rptr 25286 } 25287 25288 /* 25289 * Update any source route, record route, or timestamp options. 25290 * Check that we are at end of strict source route. 25291 * The options have been sanity checked by ip_wput_options(). 25292 */ 25293 static void 25294 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25295 { 25296 ipoptp_t opts; 25297 uchar_t *opt; 25298 uint8_t optval; 25299 uint8_t optlen; 25300 ipaddr_t dst; 25301 uint32_t ts; 25302 ire_t *ire; 25303 timestruc_t now; 25304 25305 ip2dbg(("ip_wput_local_options\n")); 25306 for (optval = ipoptp_first(&opts, ipha); 25307 optval != IPOPT_EOL; 25308 optval = ipoptp_next(&opts)) { 25309 opt = opts.ipoptp_cur; 25310 optlen = opts.ipoptp_len; 25311 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25312 switch (optval) { 25313 uint32_t off; 25314 case IPOPT_SSRR: 25315 case IPOPT_LSRR: 25316 off = opt[IPOPT_OFFSET]; 25317 off--; 25318 if (optlen < IP_ADDR_LEN || 25319 off > optlen - IP_ADDR_LEN) { 25320 /* End of source route */ 25321 break; 25322 } 25323 /* 25324 * This will only happen if two consecutive entries 25325 * in the source route contains our address or if 25326 * it is a packet with a loose source route which 25327 * reaches us before consuming the whole source route 25328 */ 25329 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25330 if (optval == IPOPT_SSRR) { 25331 return; 25332 } 25333 /* 25334 * Hack: instead of dropping the packet truncate the 25335 * source route to what has been used by filling the 25336 * rest with IPOPT_NOP. 25337 */ 25338 opt[IPOPT_OLEN] = (uint8_t)off; 25339 while (off < optlen) { 25340 opt[off++] = IPOPT_NOP; 25341 } 25342 break; 25343 case IPOPT_RR: 25344 off = opt[IPOPT_OFFSET]; 25345 off--; 25346 if (optlen < IP_ADDR_LEN || 25347 off > optlen - IP_ADDR_LEN) { 25348 /* No more room - ignore */ 25349 ip1dbg(( 25350 "ip_wput_forward_options: end of RR\n")); 25351 break; 25352 } 25353 dst = htonl(INADDR_LOOPBACK); 25354 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25355 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25356 break; 25357 case IPOPT_TS: 25358 /* Insert timestamp if there is romm */ 25359 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25360 case IPOPT_TS_TSONLY: 25361 off = IPOPT_TS_TIMELEN; 25362 break; 25363 case IPOPT_TS_PRESPEC: 25364 case IPOPT_TS_PRESPEC_RFC791: 25365 /* Verify that the address matched */ 25366 off = opt[IPOPT_OFFSET] - 1; 25367 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25368 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25369 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25370 ipst); 25371 if (ire == NULL) { 25372 /* Not for us */ 25373 break; 25374 } 25375 ire_refrele(ire); 25376 /* FALLTHRU */ 25377 case IPOPT_TS_TSANDADDR: 25378 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25379 break; 25380 default: 25381 /* 25382 * ip_*put_options should have already 25383 * dropped this packet. 25384 */ 25385 cmn_err(CE_PANIC, "ip_wput_local_options: " 25386 "unknown IT - bug in ip_wput_options?\n"); 25387 return; /* Keep "lint" happy */ 25388 } 25389 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25390 /* Increase overflow counter */ 25391 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25392 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25393 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25394 (off << 4); 25395 break; 25396 } 25397 off = opt[IPOPT_OFFSET] - 1; 25398 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25399 case IPOPT_TS_PRESPEC: 25400 case IPOPT_TS_PRESPEC_RFC791: 25401 case IPOPT_TS_TSANDADDR: 25402 dst = htonl(INADDR_LOOPBACK); 25403 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25404 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25405 /* FALLTHRU */ 25406 case IPOPT_TS_TSONLY: 25407 off = opt[IPOPT_OFFSET] - 1; 25408 /* Compute # of milliseconds since midnight */ 25409 gethrestime(&now); 25410 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25411 now.tv_nsec / (NANOSEC / MILLISEC); 25412 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25413 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25414 break; 25415 } 25416 break; 25417 } 25418 } 25419 } 25420 25421 /* 25422 * Send out a multicast packet on interface ipif. 25423 * The sender does not have an conn. 25424 * Caller verifies that this isn't a PHYI_LOOPBACK. 25425 */ 25426 void 25427 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25428 { 25429 ipha_t *ipha; 25430 ire_t *ire; 25431 ipaddr_t dst; 25432 mblk_t *first_mp; 25433 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25434 25435 /* igmp_sendpkt always allocates a ipsec_out_t */ 25436 ASSERT(mp->b_datap->db_type == M_CTL); 25437 ASSERT(!ipif->ipif_isv6); 25438 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25439 25440 first_mp = mp; 25441 mp = first_mp->b_cont; 25442 ASSERT(mp->b_datap->db_type == M_DATA); 25443 ipha = (ipha_t *)mp->b_rptr; 25444 25445 /* 25446 * Find an IRE which matches the destination and the outgoing 25447 * queue (i.e. the outgoing interface.) 25448 */ 25449 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25450 dst = ipif->ipif_pp_dst_addr; 25451 else 25452 dst = ipha->ipha_dst; 25453 /* 25454 * The source address has already been initialized by the 25455 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25456 * be sufficient rather than MATCH_IRE_IPIF. 25457 * 25458 * This function is used for sending IGMP packets. We need 25459 * to make sure that we send the packet out of the interface 25460 * (ipif->ipif_ill) where we joined the group. This is to 25461 * prevent from switches doing IGMP snooping to send us multicast 25462 * packets for a given group on the interface we have joined. 25463 * If we can't find an ire, igmp_sendpkt has already initialized 25464 * ipsec_out_attach_if so that this will not be load spread in 25465 * ip_newroute_ipif. 25466 */ 25467 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25468 MATCH_IRE_ILL, ipst); 25469 if (!ire) { 25470 /* 25471 * Mark this packet to make it be delivered to 25472 * ip_wput_ire after the new ire has been 25473 * created. 25474 */ 25475 mp->b_prev = NULL; 25476 mp->b_next = NULL; 25477 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25478 zoneid, &zero_info); 25479 return; 25480 } 25481 25482 /* 25483 * Honor the RTF_SETSRC flag; this is the only case 25484 * where we force this addr whatever the current src addr is, 25485 * because this address is set by igmp_sendpkt(), and 25486 * cannot be specified by any user. 25487 */ 25488 if (ire->ire_flags & RTF_SETSRC) { 25489 ipha->ipha_src = ire->ire_src_addr; 25490 } 25491 25492 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25493 } 25494 25495 /* 25496 * NOTE : This function does not ire_refrele the ire argument passed in. 25497 * 25498 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25499 * failure. The nce_fp_mp can vanish any time in the case of 25500 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25501 * the ire_lock to access the nce_fp_mp in this case. 25502 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25503 * prepending a fastpath message IPQoS processing must precede it, we also set 25504 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25505 * (IPQoS might have set the b_band for CoS marking). 25506 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25507 * must follow it so that IPQoS can mark the dl_priority field for CoS 25508 * marking, if needed. 25509 */ 25510 static mblk_t * 25511 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25512 uint32_t ill_index, ipha_t **iphap) 25513 { 25514 uint_t hlen; 25515 ipha_t *ipha; 25516 mblk_t *mp1; 25517 boolean_t qos_done = B_FALSE; 25518 uchar_t *ll_hdr; 25519 ip_stack_t *ipst = ire->ire_ipst; 25520 25521 #define rptr ((uchar_t *)ipha) 25522 25523 ipha = (ipha_t *)mp->b_rptr; 25524 hlen = 0; 25525 LOCK_IRE_FP_MP(ire); 25526 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25527 ASSERT(DB_TYPE(mp1) == M_DATA); 25528 /* Initiate IPPF processing */ 25529 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25530 UNLOCK_IRE_FP_MP(ire); 25531 ip_process(proc, &mp, ill_index); 25532 if (mp == NULL) 25533 return (NULL); 25534 25535 ipha = (ipha_t *)mp->b_rptr; 25536 LOCK_IRE_FP_MP(ire); 25537 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25538 qos_done = B_TRUE; 25539 goto no_fp_mp; 25540 } 25541 ASSERT(DB_TYPE(mp1) == M_DATA); 25542 } 25543 hlen = MBLKL(mp1); 25544 /* 25545 * Check if we have enough room to prepend fastpath 25546 * header 25547 */ 25548 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25549 ll_hdr = rptr - hlen; 25550 bcopy(mp1->b_rptr, ll_hdr, hlen); 25551 /* 25552 * Set the b_rptr to the start of the link layer 25553 * header 25554 */ 25555 mp->b_rptr = ll_hdr; 25556 mp1 = mp; 25557 } else { 25558 mp1 = copyb(mp1); 25559 if (mp1 == NULL) 25560 goto unlock_err; 25561 mp1->b_band = mp->b_band; 25562 mp1->b_cont = mp; 25563 /* 25564 * certain system generated traffic may not 25565 * have cred/label in ip header block. This 25566 * is true even for a labeled system. But for 25567 * labeled traffic, inherit the label in the 25568 * new header. 25569 */ 25570 if (DB_CRED(mp) != NULL) 25571 mblk_setcred(mp1, DB_CRED(mp)); 25572 /* 25573 * XXX disable ICK_VALID and compute checksum 25574 * here; can happen if nce_fp_mp changes and 25575 * it can't be copied now due to insufficient 25576 * space. (unlikely, fp mp can change, but it 25577 * does not increase in length) 25578 */ 25579 } 25580 UNLOCK_IRE_FP_MP(ire); 25581 } else { 25582 no_fp_mp: 25583 mp1 = copyb(ire->ire_nce->nce_res_mp); 25584 if (mp1 == NULL) { 25585 unlock_err: 25586 UNLOCK_IRE_FP_MP(ire); 25587 freemsg(mp); 25588 return (NULL); 25589 } 25590 UNLOCK_IRE_FP_MP(ire); 25591 mp1->b_cont = mp; 25592 /* 25593 * certain system generated traffic may not 25594 * have cred/label in ip header block. This 25595 * is true even for a labeled system. But for 25596 * labeled traffic, inherit the label in the 25597 * new header. 25598 */ 25599 if (DB_CRED(mp) != NULL) 25600 mblk_setcred(mp1, DB_CRED(mp)); 25601 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25602 ip_process(proc, &mp1, ill_index); 25603 if (mp1 == NULL) 25604 return (NULL); 25605 25606 if (mp1->b_cont == NULL) 25607 ipha = NULL; 25608 else 25609 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25610 } 25611 } 25612 25613 *iphap = ipha; 25614 return (mp1); 25615 #undef rptr 25616 } 25617 25618 /* 25619 * Finish the outbound IPsec processing for an IPv6 packet. This function 25620 * is called from ipsec_out_process() if the IPsec packet was processed 25621 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25622 * asynchronously. 25623 */ 25624 void 25625 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25626 ire_t *ire_arg) 25627 { 25628 in6_addr_t *v6dstp; 25629 ire_t *ire; 25630 mblk_t *mp; 25631 ip6_t *ip6h1; 25632 uint_t ill_index; 25633 ipsec_out_t *io; 25634 boolean_t attach_if, hwaccel; 25635 uint32_t flags = IP6_NO_IPPOLICY; 25636 int match_flags; 25637 zoneid_t zoneid; 25638 boolean_t ill_need_rele = B_FALSE; 25639 boolean_t ire_need_rele = B_FALSE; 25640 ip_stack_t *ipst; 25641 25642 mp = ipsec_mp->b_cont; 25643 ip6h1 = (ip6_t *)mp->b_rptr; 25644 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25645 ASSERT(io->ipsec_out_ns != NULL); 25646 ipst = io->ipsec_out_ns->netstack_ip; 25647 ill_index = io->ipsec_out_ill_index; 25648 if (io->ipsec_out_reachable) { 25649 flags |= IPV6_REACHABILITY_CONFIRMATION; 25650 } 25651 attach_if = io->ipsec_out_attach_if; 25652 hwaccel = io->ipsec_out_accelerated; 25653 zoneid = io->ipsec_out_zoneid; 25654 ASSERT(zoneid != ALL_ZONES); 25655 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25656 /* Multicast addresses should have non-zero ill_index. */ 25657 v6dstp = &ip6h->ip6_dst; 25658 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25659 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25660 ASSERT(!attach_if || ill_index != 0); 25661 if (ill_index != 0) { 25662 if (ill == NULL) { 25663 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25664 B_TRUE, ipst); 25665 25666 /* Failure case frees things for us. */ 25667 if (ill == NULL) 25668 return; 25669 25670 ill_need_rele = B_TRUE; 25671 } 25672 /* 25673 * If this packet needs to go out on a particular interface 25674 * honor it. 25675 */ 25676 if (attach_if) { 25677 match_flags = MATCH_IRE_ILL; 25678 25679 /* 25680 * Check if we need an ire that will not be 25681 * looked up by anybody else i.e. HIDDEN. 25682 */ 25683 if (ill_is_probeonly(ill)) { 25684 match_flags |= MATCH_IRE_MARK_HIDDEN; 25685 } 25686 } 25687 } 25688 ASSERT(mp != NULL); 25689 25690 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25691 boolean_t unspec_src; 25692 ipif_t *ipif; 25693 25694 /* 25695 * Use the ill_index to get the right ill. 25696 */ 25697 unspec_src = io->ipsec_out_unspec_src; 25698 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25699 if (ipif == NULL) { 25700 if (ill_need_rele) 25701 ill_refrele(ill); 25702 freemsg(ipsec_mp); 25703 return; 25704 } 25705 25706 if (ire_arg != NULL) { 25707 ire = ire_arg; 25708 } else { 25709 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25710 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25711 ire_need_rele = B_TRUE; 25712 } 25713 if (ire != NULL) { 25714 ipif_refrele(ipif); 25715 /* 25716 * XXX Do the multicast forwarding now, as the IPsec 25717 * processing has been done. 25718 */ 25719 goto send; 25720 } 25721 25722 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25723 mp->b_prev = NULL; 25724 mp->b_next = NULL; 25725 25726 /* 25727 * If the IPsec packet was processed asynchronously, 25728 * drop it now. 25729 */ 25730 if (q == NULL) { 25731 if (ill_need_rele) 25732 ill_refrele(ill); 25733 freemsg(ipsec_mp); 25734 return; 25735 } 25736 25737 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25738 unspec_src, zoneid); 25739 ipif_refrele(ipif); 25740 } else { 25741 if (attach_if) { 25742 ipif_t *ipif; 25743 25744 ipif = ipif_get_next_ipif(NULL, ill); 25745 if (ipif == NULL) { 25746 if (ill_need_rele) 25747 ill_refrele(ill); 25748 freemsg(ipsec_mp); 25749 return; 25750 } 25751 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25752 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25753 ire_need_rele = B_TRUE; 25754 ipif_refrele(ipif); 25755 } else { 25756 if (ire_arg != NULL) { 25757 ire = ire_arg; 25758 } else { 25759 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25760 ipst); 25761 ire_need_rele = B_TRUE; 25762 } 25763 } 25764 if (ire != NULL) 25765 goto send; 25766 /* 25767 * ire disappeared underneath. 25768 * 25769 * What we need to do here is the ip_newroute 25770 * logic to get the ire without doing the IPsec 25771 * processing. Follow the same old path. But this 25772 * time, ip_wput or ire_add_then_send will call us 25773 * directly as all the IPsec operations are done. 25774 */ 25775 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25776 mp->b_prev = NULL; 25777 mp->b_next = NULL; 25778 25779 /* 25780 * If the IPsec packet was processed asynchronously, 25781 * drop it now. 25782 */ 25783 if (q == NULL) { 25784 if (ill_need_rele) 25785 ill_refrele(ill); 25786 freemsg(ipsec_mp); 25787 return; 25788 } 25789 25790 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25791 zoneid, ipst); 25792 } 25793 if (ill != NULL && ill_need_rele) 25794 ill_refrele(ill); 25795 return; 25796 send: 25797 if (ill != NULL && ill_need_rele) 25798 ill_refrele(ill); 25799 25800 /* Local delivery */ 25801 if (ire->ire_stq == NULL) { 25802 ill_t *out_ill; 25803 ASSERT(q != NULL); 25804 25805 /* PFHooks: LOOPBACK_OUT */ 25806 out_ill = ire_to_ill(ire); 25807 25808 /* 25809 * DTrace this as ip:::send. A blocked packet will fire the 25810 * send probe, but not the receive probe. 25811 */ 25812 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25813 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25814 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25815 25816 DTRACE_PROBE4(ip6__loopback__out__start, 25817 ill_t *, NULL, ill_t *, out_ill, 25818 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25819 25820 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25821 ipst->ips_ipv6firewall_loopback_out, 25822 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25823 25824 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25825 25826 if (ipsec_mp != NULL) 25827 ip_wput_local_v6(RD(q), out_ill, 25828 ip6h, ipsec_mp, ire, 0); 25829 if (ire_need_rele) 25830 ire_refrele(ire); 25831 return; 25832 } 25833 /* 25834 * Everything is done. Send it out on the wire. 25835 * We force the insertion of a fragment header using the 25836 * IPH_FRAG_HDR flag in two cases: 25837 * - after reception of an ICMPv6 "packet too big" message 25838 * with a MTU < 1280 (cf. RFC 2460 section 5) 25839 * - for multirouted IPv6 packets, so that the receiver can 25840 * discard duplicates according to their fragment identifier 25841 */ 25842 /* XXX fix flow control problems. */ 25843 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25844 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25845 if (hwaccel) { 25846 /* 25847 * hardware acceleration does not handle these 25848 * "slow path" cases. 25849 */ 25850 /* IPsec KSTATS: should bump bean counter here. */ 25851 if (ire_need_rele) 25852 ire_refrele(ire); 25853 freemsg(ipsec_mp); 25854 return; 25855 } 25856 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25857 (mp->b_cont ? msgdsize(mp) : 25858 mp->b_wptr - (uchar_t *)ip6h)) { 25859 /* IPsec KSTATS: should bump bean counter here. */ 25860 ip0dbg(("Packet length mismatch: %d, %ld\n", 25861 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25862 msgdsize(mp))); 25863 if (ire_need_rele) 25864 ire_refrele(ire); 25865 freemsg(ipsec_mp); 25866 return; 25867 } 25868 ASSERT(mp->b_prev == NULL); 25869 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25870 ntohs(ip6h->ip6_plen) + 25871 IPV6_HDR_LEN, ire->ire_max_frag)); 25872 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25873 ire->ire_max_frag); 25874 } else { 25875 UPDATE_OB_PKT_COUNT(ire); 25876 ire->ire_last_used_time = lbolt; 25877 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25878 } 25879 if (ire_need_rele) 25880 ire_refrele(ire); 25881 freeb(ipsec_mp); 25882 } 25883 25884 void 25885 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25886 { 25887 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25888 da_ipsec_t *hada; /* data attributes */ 25889 ill_t *ill = (ill_t *)q->q_ptr; 25890 25891 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25892 25893 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25894 /* IPsec KSTATS: Bump lose counter here! */ 25895 freemsg(mp); 25896 return; 25897 } 25898 25899 /* 25900 * It's an IPsec packet that must be 25901 * accelerated by the Provider, and the 25902 * outbound ill is IPsec acceleration capable. 25903 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25904 * to the ill. 25905 * IPsec KSTATS: should bump packet counter here. 25906 */ 25907 25908 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25909 if (hada_mp == NULL) { 25910 /* IPsec KSTATS: should bump packet counter here. */ 25911 freemsg(mp); 25912 return; 25913 } 25914 25915 hada_mp->b_datap->db_type = M_CTL; 25916 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25917 hada_mp->b_cont = mp; 25918 25919 hada = (da_ipsec_t *)hada_mp->b_rptr; 25920 bzero(hada, sizeof (da_ipsec_t)); 25921 hada->da_type = IPHADA_M_CTL; 25922 25923 putnext(q, hada_mp); 25924 } 25925 25926 /* 25927 * Finish the outbound IPsec processing. This function is called from 25928 * ipsec_out_process() if the IPsec packet was processed 25929 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25930 * asynchronously. 25931 */ 25932 void 25933 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25934 ire_t *ire_arg) 25935 { 25936 uint32_t v_hlen_tos_len; 25937 ipaddr_t dst; 25938 ipif_t *ipif = NULL; 25939 ire_t *ire; 25940 ire_t *ire1 = NULL; 25941 mblk_t *next_mp = NULL; 25942 uint32_t max_frag; 25943 boolean_t multirt_send = B_FALSE; 25944 mblk_t *mp; 25945 ipha_t *ipha1; 25946 uint_t ill_index; 25947 ipsec_out_t *io; 25948 boolean_t attach_if; 25949 int match_flags; 25950 irb_t *irb = NULL; 25951 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25952 zoneid_t zoneid; 25953 ipxmit_state_t pktxmit_state; 25954 ip_stack_t *ipst; 25955 25956 #ifdef _BIG_ENDIAN 25957 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25958 #else 25959 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25960 #endif 25961 25962 mp = ipsec_mp->b_cont; 25963 ipha1 = (ipha_t *)mp->b_rptr; 25964 ASSERT(mp != NULL); 25965 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25966 dst = ipha->ipha_dst; 25967 25968 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25969 ill_index = io->ipsec_out_ill_index; 25970 attach_if = io->ipsec_out_attach_if; 25971 zoneid = io->ipsec_out_zoneid; 25972 ASSERT(zoneid != ALL_ZONES); 25973 ipst = io->ipsec_out_ns->netstack_ip; 25974 ASSERT(io->ipsec_out_ns != NULL); 25975 25976 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25977 if (ill_index != 0) { 25978 if (ill == NULL) { 25979 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25980 ill_index, B_FALSE, ipst); 25981 25982 /* Failure case frees things for us. */ 25983 if (ill == NULL) 25984 return; 25985 25986 ill_need_rele = B_TRUE; 25987 } 25988 /* 25989 * If this packet needs to go out on a particular interface 25990 * honor it. 25991 */ 25992 if (attach_if) { 25993 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25994 25995 /* 25996 * Check if we need an ire that will not be 25997 * looked up by anybody else i.e. HIDDEN. 25998 */ 25999 if (ill_is_probeonly(ill)) { 26000 match_flags |= MATCH_IRE_MARK_HIDDEN; 26001 } 26002 } 26003 } 26004 26005 if (CLASSD(dst)) { 26006 boolean_t conn_dontroute; 26007 /* 26008 * Use the ill_index to get the right ipif. 26009 */ 26010 conn_dontroute = io->ipsec_out_dontroute; 26011 if (ill_index == 0) 26012 ipif = ipif_lookup_group(dst, zoneid, ipst); 26013 else 26014 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26015 if (ipif == NULL) { 26016 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26017 " multicast\n")); 26018 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26019 freemsg(ipsec_mp); 26020 goto done; 26021 } 26022 /* 26023 * ipha_src has already been intialized with the 26024 * value of the ipif in ip_wput. All we need now is 26025 * an ire to send this downstream. 26026 */ 26027 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26028 MBLK_GETLABEL(mp), match_flags, ipst); 26029 if (ire != NULL) { 26030 ill_t *ill1; 26031 /* 26032 * Do the multicast forwarding now, as the IPsec 26033 * processing has been done. 26034 */ 26035 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26036 (ill1 = ire_to_ill(ire))) { 26037 if (ip_mforward(ill1, ipha, mp)) { 26038 freemsg(ipsec_mp); 26039 ip1dbg(("ip_wput_ipsec_out: mforward " 26040 "failed\n")); 26041 ire_refrele(ire); 26042 goto done; 26043 } 26044 } 26045 goto send; 26046 } 26047 26048 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26049 mp->b_prev = NULL; 26050 mp->b_next = NULL; 26051 26052 /* 26053 * If the IPsec packet was processed asynchronously, 26054 * drop it now. 26055 */ 26056 if (q == NULL) { 26057 freemsg(ipsec_mp); 26058 goto done; 26059 } 26060 26061 /* 26062 * We may be using a wrong ipif to create the ire. 26063 * But it is okay as the source address is assigned 26064 * for the packet already. Next outbound packet would 26065 * create the IRE with the right IPIF in ip_wput. 26066 * 26067 * Also handle RTF_MULTIRT routes. 26068 */ 26069 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26070 zoneid, &zero_info); 26071 } else { 26072 if (attach_if) { 26073 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26074 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26075 } else { 26076 if (ire_arg != NULL) { 26077 ire = ire_arg; 26078 ire_need_rele = B_FALSE; 26079 } else { 26080 ire = ire_cache_lookup(dst, zoneid, 26081 MBLK_GETLABEL(mp), ipst); 26082 } 26083 } 26084 if (ire != NULL) { 26085 goto send; 26086 } 26087 26088 /* 26089 * ire disappeared underneath. 26090 * 26091 * What we need to do here is the ip_newroute 26092 * logic to get the ire without doing the IPsec 26093 * processing. Follow the same old path. But this 26094 * time, ip_wput or ire_add_then_put will call us 26095 * directly as all the IPsec operations are done. 26096 */ 26097 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26098 mp->b_prev = NULL; 26099 mp->b_next = NULL; 26100 26101 /* 26102 * If the IPsec packet was processed asynchronously, 26103 * drop it now. 26104 */ 26105 if (q == NULL) { 26106 freemsg(ipsec_mp); 26107 goto done; 26108 } 26109 26110 /* 26111 * Since we're going through ip_newroute() again, we 26112 * need to make sure we don't: 26113 * 26114 * 1.) Trigger the ASSERT() with the ipha_ident 26115 * overloading. 26116 * 2.) Redo transport-layer checksumming, since we've 26117 * already done all that to get this far. 26118 * 26119 * The easiest way not do either of the above is to set 26120 * the ipha_ident field to IP_HDR_INCLUDED. 26121 */ 26122 ipha->ipha_ident = IP_HDR_INCLUDED; 26123 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26124 zoneid, ipst); 26125 } 26126 goto done; 26127 send: 26128 if (ire->ire_stq == NULL) { 26129 ill_t *out_ill; 26130 /* 26131 * Loopbacks go through ip_wput_local except for one case. 26132 * We come here if we generate a icmp_frag_needed message 26133 * after IPsec processing is over. When this function calls 26134 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26135 * icmp_frag_needed. The message generated comes back here 26136 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26137 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26138 * source address as it is usually set in ip_wput_ire. As 26139 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26140 * and we end up here. We can't enter ip_wput_ire once the 26141 * IPsec processing is over and hence we need to do it here. 26142 */ 26143 ASSERT(q != NULL); 26144 UPDATE_OB_PKT_COUNT(ire); 26145 ire->ire_last_used_time = lbolt; 26146 if (ipha->ipha_src == 0) 26147 ipha->ipha_src = ire->ire_src_addr; 26148 26149 /* PFHooks: LOOPBACK_OUT */ 26150 out_ill = ire_to_ill(ire); 26151 26152 /* 26153 * DTrace this as ip:::send. A blocked packet will fire the 26154 * send probe, but not the receive probe. 26155 */ 26156 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26157 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26158 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26159 26160 DTRACE_PROBE4(ip4__loopback__out__start, 26161 ill_t *, NULL, ill_t *, out_ill, 26162 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26163 26164 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26165 ipst->ips_ipv4firewall_loopback_out, 26166 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26167 26168 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26169 26170 if (ipsec_mp != NULL) 26171 ip_wput_local(RD(q), out_ill, 26172 ipha, ipsec_mp, ire, 0, zoneid); 26173 if (ire_need_rele) 26174 ire_refrele(ire); 26175 goto done; 26176 } 26177 26178 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26179 /* 26180 * We are through with IPsec processing. 26181 * Fragment this and send it on the wire. 26182 */ 26183 if (io->ipsec_out_accelerated) { 26184 /* 26185 * The packet has been accelerated but must 26186 * be fragmented. This should not happen 26187 * since AH and ESP must not accelerate 26188 * packets that need fragmentation, however 26189 * the configuration could have changed 26190 * since the AH or ESP processing. 26191 * Drop packet. 26192 * IPsec KSTATS: bump bean counter here. 26193 */ 26194 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26195 "fragmented accelerated packet!\n")); 26196 freemsg(ipsec_mp); 26197 } else { 26198 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26199 } 26200 if (ire_need_rele) 26201 ire_refrele(ire); 26202 goto done; 26203 } 26204 26205 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26206 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26207 (void *)ire->ire_ipif, (void *)ipif)); 26208 26209 /* 26210 * Multiroute the secured packet, unless IPsec really 26211 * requires the packet to go out only through a particular 26212 * interface. 26213 */ 26214 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26215 ire_t *first_ire; 26216 irb = ire->ire_bucket; 26217 ASSERT(irb != NULL); 26218 /* 26219 * This ire has been looked up as the one that 26220 * goes through the given ipif; 26221 * make sure we do not omit any other multiroute ire 26222 * that may be present in the bucket before this one. 26223 */ 26224 IRB_REFHOLD(irb); 26225 for (first_ire = irb->irb_ire; 26226 first_ire != NULL; 26227 first_ire = first_ire->ire_next) { 26228 if ((first_ire->ire_flags & RTF_MULTIRT) && 26229 (first_ire->ire_addr == ire->ire_addr) && 26230 !(first_ire->ire_marks & 26231 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26232 break; 26233 } 26234 } 26235 26236 if ((first_ire != NULL) && (first_ire != ire)) { 26237 /* 26238 * Don't change the ire if the packet must 26239 * be fragmented if sent via this new one. 26240 */ 26241 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26242 IRE_REFHOLD(first_ire); 26243 if (ire_need_rele) 26244 ire_refrele(ire); 26245 else 26246 ire_need_rele = B_TRUE; 26247 ire = first_ire; 26248 } 26249 } 26250 IRB_REFRELE(irb); 26251 26252 multirt_send = B_TRUE; 26253 max_frag = ire->ire_max_frag; 26254 } else { 26255 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26256 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26257 "flag, attach_if %d\n", attach_if)); 26258 } 26259 } 26260 26261 /* 26262 * In most cases, the emission loop below is entered only once. 26263 * Only in the case where the ire holds the RTF_MULTIRT 26264 * flag, we loop to process all RTF_MULTIRT ires in the 26265 * bucket, and send the packet through all crossed 26266 * RTF_MULTIRT routes. 26267 */ 26268 do { 26269 if (multirt_send) { 26270 /* 26271 * ire1 holds here the next ire to process in the 26272 * bucket. If multirouting is expected, 26273 * any non-RTF_MULTIRT ire that has the 26274 * right destination address is ignored. 26275 */ 26276 ASSERT(irb != NULL); 26277 IRB_REFHOLD(irb); 26278 for (ire1 = ire->ire_next; 26279 ire1 != NULL; 26280 ire1 = ire1->ire_next) { 26281 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26282 continue; 26283 if (ire1->ire_addr != ire->ire_addr) 26284 continue; 26285 if (ire1->ire_marks & 26286 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26287 continue; 26288 /* No loopback here */ 26289 if (ire1->ire_stq == NULL) 26290 continue; 26291 /* 26292 * Ensure we do not exceed the MTU 26293 * of the next route. 26294 */ 26295 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26296 ip_multirt_bad_mtu(ire1, max_frag); 26297 continue; 26298 } 26299 26300 IRE_REFHOLD(ire1); 26301 break; 26302 } 26303 IRB_REFRELE(irb); 26304 if (ire1 != NULL) { 26305 /* 26306 * We are in a multiple send case, need to 26307 * make a copy of the packet. 26308 */ 26309 next_mp = copymsg(ipsec_mp); 26310 if (next_mp == NULL) { 26311 ire_refrele(ire1); 26312 ire1 = NULL; 26313 } 26314 } 26315 } 26316 /* 26317 * Everything is done. Send it out on the wire 26318 * 26319 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26320 * either send it on the wire or, in the case of 26321 * HW acceleration, call ipsec_hw_putnext. 26322 */ 26323 if (ire->ire_nce && 26324 ire->ire_nce->nce_state != ND_REACHABLE) { 26325 DTRACE_PROBE2(ip__wput__ipsec__bail, 26326 (ire_t *), ire, (mblk_t *), ipsec_mp); 26327 /* 26328 * If ire's link-layer is unresolved (this 26329 * would only happen if the incomplete ire 26330 * was added to cachetable via forwarding path) 26331 * don't bother going to ip_xmit_v4. Just drop the 26332 * packet. 26333 * There is a slight risk here, in that, if we 26334 * have the forwarding path create an incomplete 26335 * IRE, then until the IRE is completed, any 26336 * transmitted IPsec packets will be dropped 26337 * instead of being queued waiting for resolution. 26338 * 26339 * But the likelihood of a forwarding packet and a wput 26340 * packet sending to the same dst at the same time 26341 * and there not yet be an ARP entry for it is small. 26342 * Furthermore, if this actually happens, it might 26343 * be likely that wput would generate multiple 26344 * packets (and forwarding would also have a train 26345 * of packets) for that destination. If this is 26346 * the case, some of them would have been dropped 26347 * anyway, since ARP only queues a few packets while 26348 * waiting for resolution 26349 * 26350 * NOTE: We should really call ip_xmit_v4, 26351 * and let it queue the packet and send the 26352 * ARP query and have ARP come back thus: 26353 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26354 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26355 * hw accel work. But it's too complex to get 26356 * the IPsec hw acceleration approach to fit 26357 * well with ip_xmit_v4 doing ARP without 26358 * doing IPsec simplification. For now, we just 26359 * poke ip_xmit_v4 to trigger the arp resolve, so 26360 * that we can continue with the send on the next 26361 * attempt. 26362 * 26363 * XXX THis should be revisited, when 26364 * the IPsec/IP interaction is cleaned up 26365 */ 26366 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26367 " - dropping packet\n")); 26368 freemsg(ipsec_mp); 26369 /* 26370 * Call ip_xmit_v4() to trigger ARP query 26371 * in case the nce_state is ND_INITIAL 26372 */ 26373 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26374 goto drop_pkt; 26375 } 26376 26377 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26378 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26379 mblk_t *, ipsec_mp); 26380 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26381 ipst->ips_ipv4firewall_physical_out, NULL, 26382 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26383 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26384 if (ipsec_mp == NULL) 26385 goto drop_pkt; 26386 26387 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26388 pktxmit_state = ip_xmit_v4(mp, ire, 26389 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26390 26391 if ((pktxmit_state == SEND_FAILED) || 26392 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26393 26394 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26395 drop_pkt: 26396 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26397 ipIfStatsOutDiscards); 26398 if (ire_need_rele) 26399 ire_refrele(ire); 26400 if (ire1 != NULL) { 26401 ire_refrele(ire1); 26402 freemsg(next_mp); 26403 } 26404 goto done; 26405 } 26406 26407 freeb(ipsec_mp); 26408 if (ire_need_rele) 26409 ire_refrele(ire); 26410 26411 if (ire1 != NULL) { 26412 ire = ire1; 26413 ire_need_rele = B_TRUE; 26414 ASSERT(next_mp); 26415 ipsec_mp = next_mp; 26416 mp = ipsec_mp->b_cont; 26417 ire1 = NULL; 26418 next_mp = NULL; 26419 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26420 } else { 26421 multirt_send = B_FALSE; 26422 } 26423 } while (multirt_send); 26424 done: 26425 if (ill != NULL && ill_need_rele) 26426 ill_refrele(ill); 26427 if (ipif != NULL) 26428 ipif_refrele(ipif); 26429 } 26430 26431 /* 26432 * Get the ill corresponding to the specified ire, and compare its 26433 * capabilities with the protocol and algorithms specified by the 26434 * the SA obtained from ipsec_out. If they match, annotate the 26435 * ipsec_out structure to indicate that the packet needs acceleration. 26436 * 26437 * 26438 * A packet is eligible for outbound hardware acceleration if the 26439 * following conditions are satisfied: 26440 * 26441 * 1. the packet will not be fragmented 26442 * 2. the provider supports the algorithm 26443 * 3. there is no pending control message being exchanged 26444 * 4. snoop is not attached 26445 * 5. the destination address is not a broadcast or multicast address. 26446 * 26447 * Rationale: 26448 * - Hardware drivers do not support fragmentation with 26449 * the current interface. 26450 * - snoop, multicast, and broadcast may result in exposure of 26451 * a cleartext datagram. 26452 * We check all five of these conditions here. 26453 * 26454 * XXX would like to nuke "ire_t *" parameter here; problem is that 26455 * IRE is only way to figure out if a v4 address is a broadcast and 26456 * thus ineligible for acceleration... 26457 */ 26458 static void 26459 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26460 { 26461 ipsec_out_t *io; 26462 mblk_t *data_mp; 26463 uint_t plen, overhead; 26464 ip_stack_t *ipst; 26465 26466 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26467 return; 26468 26469 if (ill == NULL) 26470 return; 26471 ipst = ill->ill_ipst; 26472 /* 26473 * Destination address is a broadcast or multicast. Punt. 26474 */ 26475 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26476 IRE_LOCAL))) 26477 return; 26478 26479 data_mp = ipsec_mp->b_cont; 26480 26481 if (ill->ill_isv6) { 26482 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26483 26484 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26485 return; 26486 26487 plen = ip6h->ip6_plen; 26488 } else { 26489 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26490 26491 if (CLASSD(ipha->ipha_dst)) 26492 return; 26493 26494 plen = ipha->ipha_length; 26495 } 26496 /* 26497 * Is there a pending DLPI control message being exchanged 26498 * between IP/IPsec and the DLS Provider? If there is, it 26499 * could be a SADB update, and the state of the DLS Provider 26500 * SADB might not be in sync with the SADB maintained by 26501 * IPsec. To avoid dropping packets or using the wrong keying 26502 * material, we do not accelerate this packet. 26503 */ 26504 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26505 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26506 "ill_dlpi_pending! don't accelerate packet\n")); 26507 return; 26508 } 26509 26510 /* 26511 * Is the Provider in promiscous mode? If it does, we don't 26512 * accelerate the packet since it will bounce back up to the 26513 * listeners in the clear. 26514 */ 26515 if (ill->ill_promisc_on_phys) { 26516 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26517 "ill in promiscous mode, don't accelerate packet\n")); 26518 return; 26519 } 26520 26521 /* 26522 * Will the packet require fragmentation? 26523 */ 26524 26525 /* 26526 * IPsec ESP note: this is a pessimistic estimate, but the same 26527 * as is used elsewhere. 26528 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26529 * + 2-byte trailer 26530 */ 26531 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26532 IPSEC_BASE_ESP_HDR_SIZE(sa); 26533 26534 if ((plen + overhead) > ill->ill_max_mtu) 26535 return; 26536 26537 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26538 26539 /* 26540 * Can the ill accelerate this IPsec protocol and algorithm 26541 * specified by the SA? 26542 */ 26543 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26544 ill->ill_isv6, sa, ipst->ips_netstack)) { 26545 return; 26546 } 26547 26548 /* 26549 * Tell AH or ESP that the outbound ill is capable of 26550 * accelerating this packet. 26551 */ 26552 io->ipsec_out_is_capab_ill = B_TRUE; 26553 } 26554 26555 /* 26556 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26557 * 26558 * If this function returns B_TRUE, the requested SA's have been filled 26559 * into the ipsec_out_*_sa pointers. 26560 * 26561 * If the function returns B_FALSE, the packet has been "consumed", most 26562 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26563 * 26564 * The SA references created by the protocol-specific "select" 26565 * function will be released when the ipsec_mp is freed, thanks to the 26566 * ipsec_out_free destructor -- see spd.c. 26567 */ 26568 static boolean_t 26569 ipsec_out_select_sa(mblk_t *ipsec_mp) 26570 { 26571 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26572 ipsec_out_t *io; 26573 ipsec_policy_t *pp; 26574 ipsec_action_t *ap; 26575 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26576 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26577 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26578 26579 if (!io->ipsec_out_secure) { 26580 /* 26581 * We came here by mistake. 26582 * Don't bother with ipsec processing 26583 * We should "discourage" this path in the future. 26584 */ 26585 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26586 return (B_FALSE); 26587 } 26588 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26589 ASSERT((io->ipsec_out_policy != NULL) || 26590 (io->ipsec_out_act != NULL)); 26591 26592 ASSERT(io->ipsec_out_failed == B_FALSE); 26593 26594 /* 26595 * IPsec processing has started. 26596 */ 26597 io->ipsec_out_proc_begin = B_TRUE; 26598 ap = io->ipsec_out_act; 26599 if (ap == NULL) { 26600 pp = io->ipsec_out_policy; 26601 ASSERT(pp != NULL); 26602 ap = pp->ipsp_act; 26603 ASSERT(ap != NULL); 26604 } 26605 26606 /* 26607 * We have an action. now, let's select SA's. 26608 * (In the future, we can cache this in the conn_t..) 26609 */ 26610 if (ap->ipa_want_esp) { 26611 if (io->ipsec_out_esp_sa == NULL) { 26612 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26613 IPPROTO_ESP); 26614 } 26615 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26616 } 26617 26618 if (ap->ipa_want_ah) { 26619 if (io->ipsec_out_ah_sa == NULL) { 26620 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26621 IPPROTO_AH); 26622 } 26623 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26624 /* 26625 * The ESP and AH processing order needs to be preserved 26626 * when both protocols are required (ESP should be applied 26627 * before AH for an outbound packet). Force an ESP ACQUIRE 26628 * when both ESP and AH are required, and an AH ACQUIRE 26629 * is needed. 26630 */ 26631 if (ap->ipa_want_esp && need_ah_acquire) 26632 need_esp_acquire = B_TRUE; 26633 } 26634 26635 /* 26636 * Send an ACQUIRE (extended, regular, or both) if we need one. 26637 * Release SAs that got referenced, but will not be used until we 26638 * acquire _all_ of the SAs we need. 26639 */ 26640 if (need_ah_acquire || need_esp_acquire) { 26641 if (io->ipsec_out_ah_sa != NULL) { 26642 IPSA_REFRELE(io->ipsec_out_ah_sa); 26643 io->ipsec_out_ah_sa = NULL; 26644 } 26645 if (io->ipsec_out_esp_sa != NULL) { 26646 IPSA_REFRELE(io->ipsec_out_esp_sa); 26647 io->ipsec_out_esp_sa = NULL; 26648 } 26649 26650 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26651 return (B_FALSE); 26652 } 26653 26654 return (B_TRUE); 26655 } 26656 26657 /* 26658 * Process an IPSEC_OUT message and see what you can 26659 * do with it. 26660 * IPQoS Notes: 26661 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26662 * IPsec. 26663 * XXX would like to nuke ire_t. 26664 * XXX ill_index better be "real" 26665 */ 26666 void 26667 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26668 { 26669 ipsec_out_t *io; 26670 ipsec_policy_t *pp; 26671 ipsec_action_t *ap; 26672 ipha_t *ipha; 26673 ip6_t *ip6h; 26674 mblk_t *mp; 26675 ill_t *ill; 26676 zoneid_t zoneid; 26677 ipsec_status_t ipsec_rc; 26678 boolean_t ill_need_rele = B_FALSE; 26679 ip_stack_t *ipst; 26680 ipsec_stack_t *ipss; 26681 26682 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26683 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26684 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26685 ipst = io->ipsec_out_ns->netstack_ip; 26686 mp = ipsec_mp->b_cont; 26687 26688 /* 26689 * Initiate IPPF processing. We do it here to account for packets 26690 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26691 * We can check for ipsec_out_proc_begin even for such packets, as 26692 * they will always be false (asserted below). 26693 */ 26694 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26695 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26696 io->ipsec_out_ill_index : ill_index); 26697 if (mp == NULL) { 26698 ip2dbg(("ipsec_out_process: packet dropped "\ 26699 "during IPPF processing\n")); 26700 freeb(ipsec_mp); 26701 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26702 return; 26703 } 26704 } 26705 26706 if (!io->ipsec_out_secure) { 26707 /* 26708 * We came here by mistake. 26709 * Don't bother with ipsec processing 26710 * Should "discourage" this path in the future. 26711 */ 26712 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26713 goto done; 26714 } 26715 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26716 ASSERT((io->ipsec_out_policy != NULL) || 26717 (io->ipsec_out_act != NULL)); 26718 ASSERT(io->ipsec_out_failed == B_FALSE); 26719 26720 ipss = ipst->ips_netstack->netstack_ipsec; 26721 if (!ipsec_loaded(ipss)) { 26722 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26723 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26724 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26725 } else { 26726 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26727 } 26728 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26729 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26730 &ipss->ipsec_dropper); 26731 return; 26732 } 26733 26734 /* 26735 * IPsec processing has started. 26736 */ 26737 io->ipsec_out_proc_begin = B_TRUE; 26738 ap = io->ipsec_out_act; 26739 if (ap == NULL) { 26740 pp = io->ipsec_out_policy; 26741 ASSERT(pp != NULL); 26742 ap = pp->ipsp_act; 26743 ASSERT(ap != NULL); 26744 } 26745 26746 /* 26747 * Save the outbound ill index. When the packet comes back 26748 * from IPsec, we make sure the ill hasn't changed or disappeared 26749 * before sending it the accelerated packet. 26750 */ 26751 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26752 int ifindex; 26753 ill = ire_to_ill(ire); 26754 ifindex = ill->ill_phyint->phyint_ifindex; 26755 io->ipsec_out_capab_ill_index = ifindex; 26756 } 26757 26758 /* 26759 * The order of processing is first insert a IP header if needed. 26760 * Then insert the ESP header and then the AH header. 26761 */ 26762 if ((io->ipsec_out_se_done == B_FALSE) && 26763 (ap->ipa_want_se)) { 26764 /* 26765 * First get the outer IP header before sending 26766 * it to ESP. 26767 */ 26768 ipha_t *oipha, *iipha; 26769 mblk_t *outer_mp, *inner_mp; 26770 26771 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26772 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26773 "ipsec_out_process: " 26774 "Self-Encapsulation failed: Out of memory\n"); 26775 freemsg(ipsec_mp); 26776 if (ill != NULL) { 26777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26778 } else { 26779 BUMP_MIB(&ipst->ips_ip_mib, 26780 ipIfStatsOutDiscards); 26781 } 26782 return; 26783 } 26784 inner_mp = ipsec_mp->b_cont; 26785 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26786 oipha = (ipha_t *)outer_mp->b_rptr; 26787 iipha = (ipha_t *)inner_mp->b_rptr; 26788 *oipha = *iipha; 26789 outer_mp->b_wptr += sizeof (ipha_t); 26790 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26791 sizeof (ipha_t)); 26792 oipha->ipha_protocol = IPPROTO_ENCAP; 26793 oipha->ipha_version_and_hdr_length = 26794 IP_SIMPLE_HDR_VERSION; 26795 oipha->ipha_hdr_checksum = 0; 26796 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26797 outer_mp->b_cont = inner_mp; 26798 ipsec_mp->b_cont = outer_mp; 26799 26800 io->ipsec_out_se_done = B_TRUE; 26801 io->ipsec_out_tunnel = B_TRUE; 26802 } 26803 26804 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26805 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26806 !ipsec_out_select_sa(ipsec_mp)) 26807 return; 26808 26809 /* 26810 * By now, we know what SA's to use. Toss over to ESP & AH 26811 * to do the heavy lifting. 26812 */ 26813 zoneid = io->ipsec_out_zoneid; 26814 ASSERT(zoneid != ALL_ZONES); 26815 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26816 ASSERT(io->ipsec_out_esp_sa != NULL); 26817 io->ipsec_out_esp_done = B_TRUE; 26818 /* 26819 * Note that since hw accel can only apply one transform, 26820 * not two, we skip hw accel for ESP if we also have AH 26821 * This is an design limitation of the interface 26822 * which should be revisited. 26823 */ 26824 ASSERT(ire != NULL); 26825 if (io->ipsec_out_ah_sa == NULL) { 26826 ill = (ill_t *)ire->ire_stq->q_ptr; 26827 ipsec_out_is_accelerated(ipsec_mp, 26828 io->ipsec_out_esp_sa, ill, ire); 26829 } 26830 26831 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26832 switch (ipsec_rc) { 26833 case IPSEC_STATUS_SUCCESS: 26834 break; 26835 case IPSEC_STATUS_FAILED: 26836 if (ill != NULL) { 26837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26838 } else { 26839 BUMP_MIB(&ipst->ips_ip_mib, 26840 ipIfStatsOutDiscards); 26841 } 26842 /* FALLTHRU */ 26843 case IPSEC_STATUS_PENDING: 26844 return; 26845 } 26846 } 26847 26848 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26849 ASSERT(io->ipsec_out_ah_sa != NULL); 26850 io->ipsec_out_ah_done = B_TRUE; 26851 if (ire == NULL) { 26852 int idx = io->ipsec_out_capab_ill_index; 26853 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26854 NULL, NULL, NULL, NULL, ipst); 26855 ill_need_rele = B_TRUE; 26856 } else { 26857 ill = (ill_t *)ire->ire_stq->q_ptr; 26858 } 26859 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26860 ire); 26861 26862 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26863 switch (ipsec_rc) { 26864 case IPSEC_STATUS_SUCCESS: 26865 break; 26866 case IPSEC_STATUS_FAILED: 26867 if (ill != NULL) { 26868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26869 } else { 26870 BUMP_MIB(&ipst->ips_ip_mib, 26871 ipIfStatsOutDiscards); 26872 } 26873 /* FALLTHRU */ 26874 case IPSEC_STATUS_PENDING: 26875 if (ill != NULL && ill_need_rele) 26876 ill_refrele(ill); 26877 return; 26878 } 26879 } 26880 /* 26881 * We are done with IPsec processing. Send it over 26882 * the wire. 26883 */ 26884 done: 26885 mp = ipsec_mp->b_cont; 26886 ipha = (ipha_t *)mp->b_rptr; 26887 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26888 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26889 } else { 26890 ip6h = (ip6_t *)ipha; 26891 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26892 } 26893 if (ill != NULL && ill_need_rele) 26894 ill_refrele(ill); 26895 } 26896 26897 /* ARGSUSED */ 26898 void 26899 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26900 { 26901 opt_restart_t *or; 26902 int err; 26903 conn_t *connp; 26904 26905 ASSERT(CONN_Q(q)); 26906 connp = Q_TO_CONN(q); 26907 26908 ASSERT(first_mp->b_datap->db_type == M_CTL); 26909 or = (opt_restart_t *)first_mp->b_rptr; 26910 /* 26911 * We don't need to pass any credentials here since this is just 26912 * a restart. The credentials are passed in when svr4_optcom_req 26913 * is called the first time (from ip_wput_nondata). 26914 */ 26915 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26916 err = svr4_optcom_req(q, first_mp, NULL, 26917 &ip_opt_obj, B_FALSE); 26918 } else { 26919 ASSERT(or->or_type == T_OPTMGMT_REQ); 26920 err = tpi_optcom_req(q, first_mp, NULL, 26921 &ip_opt_obj, B_FALSE); 26922 } 26923 if (err != EINPROGRESS) { 26924 /* operation is done */ 26925 CONN_OPER_PENDING_DONE(connp); 26926 } 26927 } 26928 26929 /* 26930 * ioctls that go through a down/up sequence may need to wait for the down 26931 * to complete. This involves waiting for the ire and ipif refcnts to go down 26932 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26933 */ 26934 /* ARGSUSED */ 26935 void 26936 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26937 { 26938 struct iocblk *iocp; 26939 mblk_t *mp1; 26940 ip_ioctl_cmd_t *ipip; 26941 int err; 26942 sin_t *sin; 26943 struct lifreq *lifr; 26944 struct ifreq *ifr; 26945 26946 iocp = (struct iocblk *)mp->b_rptr; 26947 ASSERT(ipsq != NULL); 26948 /* Existence of mp1 verified in ip_wput_nondata */ 26949 mp1 = mp->b_cont->b_cont; 26950 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26951 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26952 /* 26953 * Special case where ipsq_current_ipif is not set: 26954 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26955 * ill could also have become part of a ipmp group in the 26956 * process, we are here as were not able to complete the 26957 * operation in ipif_set_values because we could not become 26958 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26959 * will not be set so we need to set it. 26960 */ 26961 ill_t *ill = q->q_ptr; 26962 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26963 } 26964 ASSERT(ipsq->ipsq_current_ipif != NULL); 26965 26966 if (ipip->ipi_cmd_type == IF_CMD) { 26967 /* This a old style SIOC[GS]IF* command */ 26968 ifr = (struct ifreq *)mp1->b_rptr; 26969 sin = (sin_t *)&ifr->ifr_addr; 26970 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26971 /* This a new style SIOC[GS]LIF* command */ 26972 lifr = (struct lifreq *)mp1->b_rptr; 26973 sin = (sin_t *)&lifr->lifr_addr; 26974 } else { 26975 sin = NULL; 26976 } 26977 26978 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26979 ipip, mp1->b_rptr); 26980 26981 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26982 } 26983 26984 /* 26985 * ioctl processing 26986 * 26987 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26988 * the ioctl command in the ioctl tables, determines the copyin data size 26989 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26990 * 26991 * ioctl processing then continues when the M_IOCDATA makes its way down to 26992 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26993 * associated 'conn' is refheld till the end of the ioctl and the general 26994 * ioctl processing function ip_process_ioctl() is called to extract the 26995 * arguments and process the ioctl. To simplify extraction, ioctl commands 26996 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26997 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26998 * is used to extract the ioctl's arguments. 26999 * 27000 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27001 * so goes thru the serialization primitive ipsq_try_enter. Then the 27002 * appropriate function to handle the ioctl is called based on the entry in 27003 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27004 * which also refreleases the 'conn' that was refheld at the start of the 27005 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27006 * 27007 * Many exclusive ioctls go thru an internal down up sequence as part of 27008 * the operation. For example an attempt to change the IP address of an 27009 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27010 * does all the cleanup such as deleting all ires that use this address. 27011 * Then we need to wait till all references to the interface go away. 27012 */ 27013 void 27014 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27015 { 27016 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27017 ip_ioctl_cmd_t *ipip = arg; 27018 ip_extract_func_t *extract_funcp; 27019 cmd_info_t ci; 27020 int err; 27021 boolean_t entered_ipsq = B_FALSE; 27022 27023 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27024 27025 if (ipip == NULL) 27026 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27027 27028 /* 27029 * SIOCLIFADDIF needs to go thru a special path since the 27030 * ill may not exist yet. This happens in the case of lo0 27031 * which is created using this ioctl. 27032 */ 27033 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27034 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27035 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27036 return; 27037 } 27038 27039 ci.ci_ipif = NULL; 27040 if (ipip->ipi_cmd_type == MISC_CMD) { 27041 /* 27042 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27043 */ 27044 if (ipip->ipi_cmd == IF_UNITSEL) { 27045 /* ioctl comes down the ill */ 27046 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27047 ipif_refhold(ci.ci_ipif); 27048 } 27049 err = 0; 27050 ci.ci_sin = NULL; 27051 ci.ci_sin6 = NULL; 27052 ci.ci_lifr = NULL; 27053 } else { 27054 switch (ipip->ipi_cmd_type) { 27055 case IF_CMD: 27056 case LIF_CMD: 27057 extract_funcp = ip_extract_lifreq; 27058 break; 27059 27060 case ARP_CMD: 27061 case XARP_CMD: 27062 extract_funcp = ip_extract_arpreq; 27063 break; 27064 27065 case TUN_CMD: 27066 extract_funcp = ip_extract_tunreq; 27067 break; 27068 27069 case MSFILT_CMD: 27070 extract_funcp = ip_extract_msfilter; 27071 break; 27072 27073 default: 27074 ASSERT(0); 27075 } 27076 27077 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27078 if (err != 0) { 27079 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27080 return; 27081 } 27082 27083 /* 27084 * All of the extraction functions return a refheld ipif. 27085 */ 27086 ASSERT(ci.ci_ipif != NULL); 27087 } 27088 27089 /* 27090 * If ipsq is non-null, we are already being called exclusively 27091 */ 27092 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27093 if (!(ipip->ipi_flags & IPI_WR)) { 27094 /* 27095 * A return value of EINPROGRESS means the ioctl is 27096 * either queued and waiting for some reason or has 27097 * already completed. 27098 */ 27099 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27100 ci.ci_lifr); 27101 if (ci.ci_ipif != NULL) 27102 ipif_refrele(ci.ci_ipif); 27103 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27104 return; 27105 } 27106 27107 ASSERT(ci.ci_ipif != NULL); 27108 27109 if (ipsq == NULL) { 27110 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27111 ip_process_ioctl, NEW_OP, B_TRUE); 27112 entered_ipsq = B_TRUE; 27113 } 27114 /* 27115 * Release the ipif so that ipif_down and friends that wait for 27116 * references to go away are not misled about the current ipif_refcnt 27117 * values. We are writer so we can access the ipif even after releasing 27118 * the ipif. 27119 */ 27120 ipif_refrele(ci.ci_ipif); 27121 if (ipsq == NULL) 27122 return; 27123 27124 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27125 27126 /* 27127 * For most set ioctls that come here, this serves as a single point 27128 * where we set the IPIF_CHANGING flag. This ensures that there won't 27129 * be any new references to the ipif. This helps functions that go 27130 * through this path and end up trying to wait for the refcnts 27131 * associated with the ipif to go down to zero. Some exceptions are 27132 * Failover, Failback, and Groupname commands that operate on more than 27133 * just the ci.ci_ipif. These commands internally determine the 27134 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27135 * flags on that set. Another exception is the Removeif command that 27136 * sets the IPIF_CONDEMNED flag internally after identifying the right 27137 * ipif to operate on. 27138 */ 27139 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27140 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27141 ipip->ipi_cmd != SIOCLIFFAILOVER && 27142 ipip->ipi_cmd != SIOCLIFFAILBACK && 27143 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27144 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27145 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27146 27147 /* 27148 * A return value of EINPROGRESS means the ioctl is 27149 * either queued and waiting for some reason or has 27150 * already completed. 27151 */ 27152 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27153 27154 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27155 27156 if (entered_ipsq) 27157 ipsq_exit(ipsq); 27158 } 27159 27160 /* 27161 * Complete the ioctl. Typically ioctls use the mi package and need to 27162 * do mi_copyout/mi_copy_done. 27163 */ 27164 void 27165 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27166 { 27167 conn_t *connp = NULL; 27168 27169 if (err == EINPROGRESS) 27170 return; 27171 27172 if (CONN_Q(q)) { 27173 connp = Q_TO_CONN(q); 27174 ASSERT(connp->conn_ref >= 2); 27175 } 27176 27177 switch (mode) { 27178 case COPYOUT: 27179 if (err == 0) 27180 mi_copyout(q, mp); 27181 else 27182 mi_copy_done(q, mp, err); 27183 break; 27184 27185 case NO_COPYOUT: 27186 mi_copy_done(q, mp, err); 27187 break; 27188 27189 default: 27190 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27191 break; 27192 } 27193 27194 /* 27195 * The refhold placed at the start of the ioctl is released here. 27196 */ 27197 if (connp != NULL) 27198 CONN_OPER_PENDING_DONE(connp); 27199 27200 if (ipsq != NULL) 27201 ipsq_current_finish(ipsq); 27202 } 27203 27204 /* 27205 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27206 */ 27207 /* ARGSUSED */ 27208 void 27209 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27210 { 27211 conn_t *connp = arg; 27212 tcp_t *tcp; 27213 27214 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27215 tcp = connp->conn_tcp; 27216 27217 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27218 freemsg(mp); 27219 else 27220 tcp_rput_other(tcp, mp); 27221 CONN_OPER_PENDING_DONE(connp); 27222 } 27223 27224 /* Called from ip_wput for all non data messages */ 27225 /* ARGSUSED */ 27226 void 27227 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27228 { 27229 mblk_t *mp1; 27230 ire_t *ire, *fake_ire; 27231 ill_t *ill; 27232 struct iocblk *iocp; 27233 ip_ioctl_cmd_t *ipip; 27234 cred_t *cr; 27235 conn_t *connp; 27236 int err; 27237 nce_t *nce; 27238 ipif_t *ipif; 27239 ip_stack_t *ipst; 27240 char *proto_str; 27241 27242 if (CONN_Q(q)) { 27243 connp = Q_TO_CONN(q); 27244 ipst = connp->conn_netstack->netstack_ip; 27245 } else { 27246 connp = NULL; 27247 ipst = ILLQ_TO_IPST(q); 27248 } 27249 27250 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27251 27252 switch (DB_TYPE(mp)) { 27253 case M_IOCTL: 27254 /* 27255 * IOCTL processing begins in ip_sioctl_copyin_setup which 27256 * will arrange to copy in associated control structures. 27257 */ 27258 ip_sioctl_copyin_setup(q, mp); 27259 return; 27260 case M_IOCDATA: 27261 /* 27262 * Ensure that this is associated with one of our trans- 27263 * parent ioctls. If it's not ours, discard it if we're 27264 * running as a driver, or pass it on if we're a module. 27265 */ 27266 iocp = (struct iocblk *)mp->b_rptr; 27267 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27268 if (ipip == NULL) { 27269 if (q->q_next == NULL) { 27270 goto nak; 27271 } else { 27272 putnext(q, mp); 27273 } 27274 return; 27275 } 27276 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27277 /* 27278 * the ioctl is one we recognise, but is not 27279 * consumed by IP as a module, pass M_IOCDATA 27280 * for processing downstream, but only for 27281 * common Streams ioctls. 27282 */ 27283 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27284 putnext(q, mp); 27285 return; 27286 } else { 27287 goto nak; 27288 } 27289 } 27290 27291 /* IOCTL continuation following copyin or copyout. */ 27292 if (mi_copy_state(q, mp, NULL) == -1) { 27293 /* 27294 * The copy operation failed. mi_copy_state already 27295 * cleaned up, so we're out of here. 27296 */ 27297 return; 27298 } 27299 /* 27300 * If we just completed a copy in, we become writer and 27301 * continue processing in ip_sioctl_copyin_done. If it 27302 * was a copy out, we call mi_copyout again. If there is 27303 * nothing more to copy out, it will complete the IOCTL. 27304 */ 27305 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27306 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27307 mi_copy_done(q, mp, EPROTO); 27308 return; 27309 } 27310 /* 27311 * Check for cases that need more copying. A return 27312 * value of 0 means a second copyin has been started, 27313 * so we return; a return value of 1 means no more 27314 * copying is needed, so we continue. 27315 */ 27316 if (ipip->ipi_cmd_type == MSFILT_CMD && 27317 MI_COPY_COUNT(mp) == 1) { 27318 if (ip_copyin_msfilter(q, mp) == 0) 27319 return; 27320 } 27321 /* 27322 * Refhold the conn, till the ioctl completes. This is 27323 * needed in case the ioctl ends up in the pending mp 27324 * list. Every mp in the ill_pending_mp list and 27325 * the ipsq_pending_mp must have a refhold on the conn 27326 * to resume processing. The refhold is released when 27327 * the ioctl completes. (normally or abnormally) 27328 * In all cases ip_ioctl_finish is called to finish 27329 * the ioctl. 27330 */ 27331 if (connp != NULL) { 27332 /* This is not a reentry */ 27333 ASSERT(ipsq == NULL); 27334 CONN_INC_REF(connp); 27335 } else { 27336 if (!(ipip->ipi_flags & IPI_MODOK)) { 27337 mi_copy_done(q, mp, EINVAL); 27338 return; 27339 } 27340 } 27341 27342 ip_process_ioctl(ipsq, q, mp, ipip); 27343 27344 } else { 27345 mi_copyout(q, mp); 27346 } 27347 return; 27348 nak: 27349 iocp->ioc_error = EINVAL; 27350 mp->b_datap->db_type = M_IOCNAK; 27351 iocp->ioc_count = 0; 27352 qreply(q, mp); 27353 return; 27354 27355 case M_IOCNAK: 27356 /* 27357 * The only way we could get here is if a resolver didn't like 27358 * an IOCTL we sent it. This shouldn't happen. 27359 */ 27360 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27361 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27362 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27363 freemsg(mp); 27364 return; 27365 case M_IOCACK: 27366 /* /dev/ip shouldn't see this */ 27367 if (CONN_Q(q)) 27368 goto nak; 27369 27370 /* Finish socket ioctls passed through to ARP. */ 27371 ip_sioctl_iocack(q, mp); 27372 return; 27373 case M_FLUSH: 27374 if (*mp->b_rptr & FLUSHW) 27375 flushq(q, FLUSHALL); 27376 if (q->q_next) { 27377 putnext(q, mp); 27378 return; 27379 } 27380 if (*mp->b_rptr & FLUSHR) { 27381 *mp->b_rptr &= ~FLUSHW; 27382 qreply(q, mp); 27383 return; 27384 } 27385 freemsg(mp); 27386 return; 27387 case IRE_DB_REQ_TYPE: 27388 if (connp == NULL) { 27389 proto_str = "IRE_DB_REQ_TYPE"; 27390 goto protonak; 27391 } 27392 /* An Upper Level Protocol wants a copy of an IRE. */ 27393 ip_ire_req(q, mp); 27394 return; 27395 case M_CTL: 27396 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27397 break; 27398 27399 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27400 TUN_HELLO) { 27401 ASSERT(connp != NULL); 27402 connp->conn_flags |= IPCL_IPTUN; 27403 freeb(mp); 27404 return; 27405 } 27406 27407 /* M_CTL messages are used by ARP to tell us things. */ 27408 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27409 break; 27410 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27411 case AR_ENTRY_SQUERY: 27412 ip_wput_ctl(q, mp); 27413 return; 27414 case AR_CLIENT_NOTIFY: 27415 ip_arp_news(q, mp); 27416 return; 27417 case AR_DLPIOP_DONE: 27418 ASSERT(q->q_next != NULL); 27419 ill = (ill_t *)q->q_ptr; 27420 /* qwriter_ip releases the refhold */ 27421 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27422 ill_refhold(ill); 27423 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27424 return; 27425 case AR_ARP_CLOSING: 27426 /* 27427 * ARP (above us) is closing. If no ARP bringup is 27428 * currently pending, ack the message so that ARP 27429 * can complete its close. Also mark ill_arp_closing 27430 * so that new ARP bringups will fail. If any 27431 * ARP bringup is currently in progress, we will 27432 * ack this when the current ARP bringup completes. 27433 */ 27434 ASSERT(q->q_next != NULL); 27435 ill = (ill_t *)q->q_ptr; 27436 mutex_enter(&ill->ill_lock); 27437 ill->ill_arp_closing = 1; 27438 if (!ill->ill_arp_bringup_pending) { 27439 mutex_exit(&ill->ill_lock); 27440 qreply(q, mp); 27441 } else { 27442 mutex_exit(&ill->ill_lock); 27443 freemsg(mp); 27444 } 27445 return; 27446 case AR_ARP_EXTEND: 27447 /* 27448 * The ARP module above us is capable of duplicate 27449 * address detection. Old ATM drivers will not send 27450 * this message. 27451 */ 27452 ASSERT(q->q_next != NULL); 27453 ill = (ill_t *)q->q_ptr; 27454 ill->ill_arp_extend = B_TRUE; 27455 freemsg(mp); 27456 return; 27457 default: 27458 break; 27459 } 27460 break; 27461 case M_PROTO: 27462 case M_PCPROTO: 27463 /* 27464 * The only PROTO messages we expect are ULP binds and 27465 * copies of option negotiation acknowledgements. 27466 */ 27467 switch (((union T_primitives *)mp->b_rptr)->type) { 27468 case O_T_BIND_REQ: 27469 case T_BIND_REQ: { 27470 /* Request can get queued in bind */ 27471 if (connp == NULL) { 27472 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27473 goto protonak; 27474 } 27475 /* 27476 * The transports except SCTP call ip_bind_{v4,v6}() 27477 * directly instead of a a putnext. SCTP doesn't 27478 * generate any T_BIND_REQ since it has its own 27479 * fanout data structures. However, ESP and AH 27480 * come in for regular binds; all other cases are 27481 * bind retries. 27482 */ 27483 ASSERT(!IPCL_IS_SCTP(connp)); 27484 27485 /* Don't increment refcnt if this is a re-entry */ 27486 if (ipsq == NULL) 27487 CONN_INC_REF(connp); 27488 27489 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27490 connp, NULL) : ip_bind_v4(q, mp, connp); 27491 if (mp == NULL) 27492 return; 27493 if (IPCL_IS_TCP(connp)) { 27494 /* 27495 * In the case of TCP endpoint we 27496 * come here only for bind retries 27497 */ 27498 ASSERT(ipsq != NULL); 27499 CONN_INC_REF(connp); 27500 squeue_fill(connp->conn_sqp, mp, 27501 ip_resume_tcp_bind, connp, 27502 SQTAG_BIND_RETRY); 27503 } else if (IPCL_IS_UDP(connp)) { 27504 /* 27505 * In the case of UDP endpoint we 27506 * come here only for bind retries 27507 */ 27508 ASSERT(ipsq != NULL); 27509 udp_resume_bind(connp, mp); 27510 } else if (IPCL_IS_RAWIP(connp)) { 27511 /* 27512 * In the case of RAWIP endpoint we 27513 * come here only for bind retries 27514 */ 27515 ASSERT(ipsq != NULL); 27516 rawip_resume_bind(connp, mp); 27517 } else { 27518 /* The case of AH and ESP */ 27519 qreply(q, mp); 27520 CONN_OPER_PENDING_DONE(connp); 27521 } 27522 return; 27523 } 27524 case T_SVR4_OPTMGMT_REQ: 27525 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27526 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27527 27528 if (connp == NULL) { 27529 proto_str = "T_SVR4_OPTMGMT_REQ"; 27530 goto protonak; 27531 } 27532 27533 if (!snmpcom_req(q, mp, ip_snmp_set, 27534 ip_snmp_get, cr)) { 27535 /* 27536 * Call svr4_optcom_req so that it can 27537 * generate the ack. We don't come here 27538 * if this operation is being restarted. 27539 * ip_restart_optmgmt will drop the conn ref. 27540 * In the case of ipsec option after the ipsec 27541 * load is complete conn_restart_ipsec_waiter 27542 * drops the conn ref. 27543 */ 27544 ASSERT(ipsq == NULL); 27545 CONN_INC_REF(connp); 27546 if (ip_check_for_ipsec_opt(q, mp)) 27547 return; 27548 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27549 B_FALSE); 27550 if (err != EINPROGRESS) { 27551 /* Operation is done */ 27552 CONN_OPER_PENDING_DONE(connp); 27553 } 27554 } 27555 return; 27556 case T_OPTMGMT_REQ: 27557 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27558 /* 27559 * Note: No snmpcom_req support through new 27560 * T_OPTMGMT_REQ. 27561 * Call tpi_optcom_req so that it can 27562 * generate the ack. 27563 */ 27564 if (connp == NULL) { 27565 proto_str = "T_OPTMGMT_REQ"; 27566 goto protonak; 27567 } 27568 27569 ASSERT(ipsq == NULL); 27570 /* 27571 * We don't come here for restart. ip_restart_optmgmt 27572 * will drop the conn ref. In the case of ipsec option 27573 * after the ipsec load is complete 27574 * conn_restart_ipsec_waiter drops the conn ref. 27575 */ 27576 CONN_INC_REF(connp); 27577 if (ip_check_for_ipsec_opt(q, mp)) 27578 return; 27579 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27580 if (err != EINPROGRESS) { 27581 /* Operation is done */ 27582 CONN_OPER_PENDING_DONE(connp); 27583 } 27584 return; 27585 case T_UNBIND_REQ: 27586 if (connp == NULL) { 27587 proto_str = "T_UNBIND_REQ"; 27588 goto protonak; 27589 } 27590 mp = ip_unbind(q, mp); 27591 qreply(q, mp); 27592 return; 27593 default: 27594 /* 27595 * Have to drop any DLPI messages coming down from 27596 * arp (such as an info_req which would cause ip 27597 * to receive an extra info_ack if it was passed 27598 * through. 27599 */ 27600 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27601 (int)*(uint_t *)mp->b_rptr)); 27602 freemsg(mp); 27603 return; 27604 } 27605 /* NOTREACHED */ 27606 case IRE_DB_TYPE: { 27607 nce_t *nce; 27608 ill_t *ill; 27609 in6_addr_t gw_addr_v6; 27610 27611 27612 /* 27613 * This is a response back from a resolver. It 27614 * consists of a message chain containing: 27615 * IRE_MBLK-->LL_HDR_MBLK->pkt 27616 * The IRE_MBLK is the one we allocated in ip_newroute. 27617 * The LL_HDR_MBLK is the DLPI header to use to get 27618 * the attached packet, and subsequent ones for the 27619 * same destination, transmitted. 27620 */ 27621 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27622 break; 27623 /* 27624 * First, check to make sure the resolution succeeded. 27625 * If it failed, the second mblk will be empty. 27626 * If it is, free the chain, dropping the packet. 27627 * (We must ire_delete the ire; that frees the ire mblk) 27628 * We're doing this now to support PVCs for ATM; it's 27629 * a partial xresolv implementation. When we fully implement 27630 * xresolv interfaces, instead of freeing everything here 27631 * we'll initiate neighbor discovery. 27632 * 27633 * For v4 (ARP and other external resolvers) the resolver 27634 * frees the message, so no check is needed. This check 27635 * is required, though, for a full xresolve implementation. 27636 * Including this code here now both shows how external 27637 * resolvers can NACK a resolution request using an 27638 * existing design that has no specific provisions for NACKs, 27639 * and also takes into account that the current non-ARP 27640 * external resolver has been coded to use this method of 27641 * NACKing for all IPv6 (xresolv) cases, 27642 * whether our xresolv implementation is complete or not. 27643 * 27644 */ 27645 ire = (ire_t *)mp->b_rptr; 27646 ill = ire_to_ill(ire); 27647 mp1 = mp->b_cont; /* dl_unitdata_req */ 27648 if (mp1->b_rptr == mp1->b_wptr) { 27649 if (ire->ire_ipversion == IPV6_VERSION) { 27650 /* 27651 * XRESOLV interface. 27652 */ 27653 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27654 mutex_enter(&ire->ire_lock); 27655 gw_addr_v6 = ire->ire_gateway_addr_v6; 27656 mutex_exit(&ire->ire_lock); 27657 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27658 nce = ndp_lookup_v6(ill, 27659 &ire->ire_addr_v6, B_FALSE); 27660 } else { 27661 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27662 B_FALSE); 27663 } 27664 if (nce != NULL) { 27665 nce_resolv_failed(nce); 27666 ndp_delete(nce); 27667 NCE_REFRELE(nce); 27668 } 27669 } 27670 mp->b_cont = NULL; 27671 freemsg(mp1); /* frees the pkt as well */ 27672 ASSERT(ire->ire_nce == NULL); 27673 ire_delete((ire_t *)mp->b_rptr); 27674 return; 27675 } 27676 27677 /* 27678 * Split them into IRE_MBLK and pkt and feed it into 27679 * ire_add_then_send. Then in ire_add_then_send 27680 * the IRE will be added, and then the packet will be 27681 * run back through ip_wput. This time it will make 27682 * it to the wire. 27683 */ 27684 mp->b_cont = NULL; 27685 mp = mp1->b_cont; /* now, mp points to pkt */ 27686 mp1->b_cont = NULL; 27687 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27688 if (ire->ire_ipversion == IPV6_VERSION) { 27689 /* 27690 * XRESOLV interface. Find the nce and put a copy 27691 * of the dl_unitdata_req in nce_res_mp 27692 */ 27693 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27694 mutex_enter(&ire->ire_lock); 27695 gw_addr_v6 = ire->ire_gateway_addr_v6; 27696 mutex_exit(&ire->ire_lock); 27697 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27698 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27699 B_FALSE); 27700 } else { 27701 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27702 } 27703 if (nce != NULL) { 27704 /* 27705 * We have to protect nce_res_mp here 27706 * from being accessed by other threads 27707 * while we change the mblk pointer. 27708 * Other functions will also lock the nce when 27709 * accessing nce_res_mp. 27710 * 27711 * The reason we change the mblk pointer 27712 * here rather than copying the resolved address 27713 * into the template is that, unlike with 27714 * ethernet, we have no guarantee that the 27715 * resolved address length will be 27716 * smaller than or equal to the lla length 27717 * with which the template was allocated, 27718 * (for ethernet, they're equal) 27719 * so we have to use the actual resolved 27720 * address mblk - which holds the real 27721 * dl_unitdata_req with the resolved address. 27722 * 27723 * Doing this is the same behavior as was 27724 * previously used in the v4 ARP case. 27725 */ 27726 mutex_enter(&nce->nce_lock); 27727 if (nce->nce_res_mp != NULL) 27728 freemsg(nce->nce_res_mp); 27729 nce->nce_res_mp = mp1; 27730 mutex_exit(&nce->nce_lock); 27731 /* 27732 * We do a fastpath probe here because 27733 * we have resolved the address without 27734 * using Neighbor Discovery. 27735 * In the non-XRESOLV v6 case, the fastpath 27736 * probe is done right after neighbor 27737 * discovery completes. 27738 */ 27739 if (nce->nce_res_mp != NULL) { 27740 int res; 27741 nce_fastpath_list_add(nce); 27742 res = ill_fastpath_probe(ill, 27743 nce->nce_res_mp); 27744 if (res != 0 && res != EAGAIN) 27745 nce_fastpath_list_delete(nce); 27746 } 27747 27748 ire_add_then_send(q, ire, mp); 27749 /* 27750 * Now we have to clean out any packets 27751 * that may have been queued on the nce 27752 * while it was waiting for address resolution 27753 * to complete. 27754 */ 27755 mutex_enter(&nce->nce_lock); 27756 mp1 = nce->nce_qd_mp; 27757 nce->nce_qd_mp = NULL; 27758 mutex_exit(&nce->nce_lock); 27759 while (mp1 != NULL) { 27760 mblk_t *nxt_mp; 27761 queue_t *fwdq = NULL; 27762 ill_t *inbound_ill; 27763 uint_t ifindex; 27764 27765 nxt_mp = mp1->b_next; 27766 mp1->b_next = NULL; 27767 /* 27768 * Retrieve ifindex stored in 27769 * ip_rput_data_v6() 27770 */ 27771 ifindex = 27772 (uint_t)(uintptr_t)mp1->b_prev; 27773 inbound_ill = 27774 ill_lookup_on_ifindex(ifindex, 27775 B_TRUE, NULL, NULL, NULL, 27776 NULL, ipst); 27777 mp1->b_prev = NULL; 27778 if (inbound_ill != NULL) 27779 fwdq = inbound_ill->ill_rq; 27780 27781 if (fwdq != NULL) { 27782 put(fwdq, mp1); 27783 ill_refrele(inbound_ill); 27784 } else 27785 put(WR(ill->ill_rq), mp1); 27786 mp1 = nxt_mp; 27787 } 27788 NCE_REFRELE(nce); 27789 } else { /* nce is NULL; clean up */ 27790 ire_delete(ire); 27791 freemsg(mp); 27792 freemsg(mp1); 27793 return; 27794 } 27795 } else { 27796 nce_t *arpce; 27797 /* 27798 * Link layer resolution succeeded. Recompute the 27799 * ire_nce. 27800 */ 27801 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27802 if ((arpce = ndp_lookup_v4(ill, 27803 (ire->ire_gateway_addr != INADDR_ANY ? 27804 &ire->ire_gateway_addr : &ire->ire_addr), 27805 B_FALSE)) == NULL) { 27806 freeb(ire->ire_mp); 27807 freeb(mp1); 27808 freemsg(mp); 27809 return; 27810 } 27811 mutex_enter(&arpce->nce_lock); 27812 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27813 if (arpce->nce_state == ND_REACHABLE) { 27814 /* 27815 * Someone resolved this before us; 27816 * cleanup the res_mp. Since ire has 27817 * not been added yet, the call to ire_add_v4 27818 * from ire_add_then_send (when a dup is 27819 * detected) will clean up the ire. 27820 */ 27821 freeb(mp1); 27822 } else { 27823 ASSERT(arpce->nce_res_mp == NULL); 27824 arpce->nce_res_mp = mp1; 27825 arpce->nce_state = ND_REACHABLE; 27826 } 27827 mutex_exit(&arpce->nce_lock); 27828 if (ire->ire_marks & IRE_MARK_NOADD) { 27829 /* 27830 * this ire will not be added to the ire 27831 * cache table, so we can set the ire_nce 27832 * here, as there are no atomicity constraints. 27833 */ 27834 ire->ire_nce = arpce; 27835 /* 27836 * We are associating this nce with the ire 27837 * so change the nce ref taken in 27838 * ndp_lookup_v4() from 27839 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27840 */ 27841 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27842 } else { 27843 NCE_REFRELE(arpce); 27844 } 27845 ire_add_then_send(q, ire, mp); 27846 } 27847 return; /* All is well, the packet has been sent. */ 27848 } 27849 case IRE_ARPRESOLVE_TYPE: { 27850 27851 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27852 break; 27853 mp1 = mp->b_cont; /* dl_unitdata_req */ 27854 mp->b_cont = NULL; 27855 /* 27856 * First, check to make sure the resolution succeeded. 27857 * If it failed, the second mblk will be empty. 27858 */ 27859 if (mp1->b_rptr == mp1->b_wptr) { 27860 /* cleanup the incomplete ire, free queued packets */ 27861 freemsg(mp); /* fake ire */ 27862 freeb(mp1); /* dl_unitdata response */ 27863 return; 27864 } 27865 27866 /* 27867 * update any incomplete nce_t found. we lookup the ctable 27868 * and find the nce from the ire->ire_nce because we need 27869 * to pass the ire to ip_xmit_v4 later, and can find both 27870 * ire and nce in one lookup from the ctable. 27871 */ 27872 fake_ire = (ire_t *)mp->b_rptr; 27873 /* 27874 * By the time we come back here from ARP 27875 * the logical outgoing interface of the incomplete ire 27876 * we added in ire_forward could have disappeared, 27877 * causing the incomplete ire to also have 27878 * dissapeared. So we need to retreive the 27879 * proper ipif for the ire before looking 27880 * in ctable; do the ctablelookup based on ire_ipif_seqid 27881 */ 27882 ill = q->q_ptr; 27883 27884 /* Get the outgoing ipif */ 27885 mutex_enter(&ill->ill_lock); 27886 if (ill->ill_state_flags & ILL_CONDEMNED) { 27887 mutex_exit(&ill->ill_lock); 27888 freemsg(mp); /* fake ire */ 27889 freeb(mp1); /* dl_unitdata response */ 27890 return; 27891 } 27892 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27893 27894 if (ipif == NULL) { 27895 mutex_exit(&ill->ill_lock); 27896 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27897 freemsg(mp); 27898 freeb(mp1); 27899 return; 27900 } 27901 ipif_refhold_locked(ipif); 27902 mutex_exit(&ill->ill_lock); 27903 ire = ire_ctable_lookup(fake_ire->ire_addr, 27904 fake_ire->ire_gateway_addr, IRE_CACHE, 27905 ipif, fake_ire->ire_zoneid, NULL, 27906 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27907 MATCH_IRE_TYPE), ipst); 27908 ipif_refrele(ipif); 27909 if (ire == NULL) { 27910 /* 27911 * no ire was found; check if there is an nce 27912 * for this lookup; if it has no ire's pointing at it 27913 * cleanup. 27914 */ 27915 if ((nce = ndp_lookup_v4(ill, 27916 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27917 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27918 B_FALSE)) != NULL) { 27919 /* 27920 * cleanup: 27921 * We check for refcnt 2 (one for the nce 27922 * hash list + 1 for the ref taken by 27923 * ndp_lookup_v4) to check that there are 27924 * no ire's pointing at the nce. 27925 */ 27926 if (nce->nce_refcnt == 2) 27927 ndp_delete(nce); 27928 NCE_REFRELE(nce); 27929 } 27930 freeb(mp1); /* dl_unitdata response */ 27931 freemsg(mp); /* fake ire */ 27932 return; 27933 } 27934 nce = ire->ire_nce; 27935 DTRACE_PROBE2(ire__arpresolve__type, 27936 ire_t *, ire, nce_t *, nce); 27937 ASSERT(nce->nce_state != ND_INITIAL); 27938 mutex_enter(&nce->nce_lock); 27939 nce->nce_last = TICK_TO_MSEC(lbolt64); 27940 if (nce->nce_state == ND_REACHABLE) { 27941 /* 27942 * Someone resolved this before us; 27943 * our response is not needed any more. 27944 */ 27945 mutex_exit(&nce->nce_lock); 27946 freeb(mp1); /* dl_unitdata response */ 27947 } else { 27948 ASSERT(nce->nce_res_mp == NULL); 27949 nce->nce_res_mp = mp1; 27950 nce->nce_state = ND_REACHABLE; 27951 mutex_exit(&nce->nce_lock); 27952 nce_fastpath(nce); 27953 } 27954 /* 27955 * The cached nce_t has been updated to be reachable; 27956 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27957 */ 27958 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27959 freemsg(mp); 27960 /* 27961 * send out queued packets. 27962 */ 27963 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27964 27965 IRE_REFRELE(ire); 27966 return; 27967 } 27968 default: 27969 break; 27970 } 27971 if (q->q_next) { 27972 putnext(q, mp); 27973 } else 27974 freemsg(mp); 27975 return; 27976 27977 protonak: 27978 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27979 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27980 qreply(q, mp); 27981 } 27982 27983 /* 27984 * Process IP options in an outbound packet. Modify the destination if there 27985 * is a source route option. 27986 * Returns non-zero if something fails in which case an ICMP error has been 27987 * sent and mp freed. 27988 */ 27989 static int 27990 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27991 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27992 { 27993 ipoptp_t opts; 27994 uchar_t *opt; 27995 uint8_t optval; 27996 uint8_t optlen; 27997 ipaddr_t dst; 27998 intptr_t code = 0; 27999 mblk_t *mp; 28000 ire_t *ire = NULL; 28001 28002 ip2dbg(("ip_wput_options\n")); 28003 mp = ipsec_mp; 28004 if (mctl_present) { 28005 mp = ipsec_mp->b_cont; 28006 } 28007 28008 dst = ipha->ipha_dst; 28009 for (optval = ipoptp_first(&opts, ipha); 28010 optval != IPOPT_EOL; 28011 optval = ipoptp_next(&opts)) { 28012 opt = opts.ipoptp_cur; 28013 optlen = opts.ipoptp_len; 28014 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28015 optval, optlen)); 28016 switch (optval) { 28017 uint32_t off; 28018 case IPOPT_SSRR: 28019 case IPOPT_LSRR: 28020 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28021 ip1dbg(( 28022 "ip_wput_options: bad option offset\n")); 28023 code = (char *)&opt[IPOPT_OLEN] - 28024 (char *)ipha; 28025 goto param_prob; 28026 } 28027 off = opt[IPOPT_OFFSET]; 28028 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28029 ntohl(dst))); 28030 /* 28031 * For strict: verify that dst is directly 28032 * reachable. 28033 */ 28034 if (optval == IPOPT_SSRR) { 28035 ire = ire_ftable_lookup(dst, 0, 0, 28036 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28037 MBLK_GETLABEL(mp), 28038 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28039 if (ire == NULL) { 28040 ip1dbg(("ip_wput_options: SSRR not" 28041 " directly reachable: 0x%x\n", 28042 ntohl(dst))); 28043 goto bad_src_route; 28044 } 28045 ire_refrele(ire); 28046 } 28047 break; 28048 case IPOPT_RR: 28049 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28050 ip1dbg(( 28051 "ip_wput_options: bad option offset\n")); 28052 code = (char *)&opt[IPOPT_OLEN] - 28053 (char *)ipha; 28054 goto param_prob; 28055 } 28056 break; 28057 case IPOPT_TS: 28058 /* 28059 * Verify that length >=5 and that there is either 28060 * room for another timestamp or that the overflow 28061 * counter is not maxed out. 28062 */ 28063 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28064 if (optlen < IPOPT_MINLEN_IT) { 28065 goto param_prob; 28066 } 28067 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28068 ip1dbg(( 28069 "ip_wput_options: bad option offset\n")); 28070 code = (char *)&opt[IPOPT_OFFSET] - 28071 (char *)ipha; 28072 goto param_prob; 28073 } 28074 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28075 case IPOPT_TS_TSONLY: 28076 off = IPOPT_TS_TIMELEN; 28077 break; 28078 case IPOPT_TS_TSANDADDR: 28079 case IPOPT_TS_PRESPEC: 28080 case IPOPT_TS_PRESPEC_RFC791: 28081 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28082 break; 28083 default: 28084 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28085 (char *)ipha; 28086 goto param_prob; 28087 } 28088 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28089 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28090 /* 28091 * No room and the overflow counter is 15 28092 * already. 28093 */ 28094 goto param_prob; 28095 } 28096 break; 28097 } 28098 } 28099 28100 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28101 return (0); 28102 28103 ip1dbg(("ip_wput_options: error processing IP options.")); 28104 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28105 28106 param_prob: 28107 /* 28108 * Since ip_wput() isn't close to finished, we fill 28109 * in enough of the header for credible error reporting. 28110 */ 28111 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28112 /* Failed */ 28113 freemsg(ipsec_mp); 28114 return (-1); 28115 } 28116 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28117 return (-1); 28118 28119 bad_src_route: 28120 /* 28121 * Since ip_wput() isn't close to finished, we fill 28122 * in enough of the header for credible error reporting. 28123 */ 28124 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28125 /* Failed */ 28126 freemsg(ipsec_mp); 28127 return (-1); 28128 } 28129 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28130 return (-1); 28131 } 28132 28133 /* 28134 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28135 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28136 * thru /etc/system. 28137 */ 28138 #define CONN_MAXDRAINCNT 64 28139 28140 static void 28141 conn_drain_init(ip_stack_t *ipst) 28142 { 28143 int i; 28144 28145 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28146 28147 if ((ipst->ips_conn_drain_list_cnt == 0) || 28148 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28149 /* 28150 * Default value of the number of drainers is the 28151 * number of cpus, subject to maximum of 8 drainers. 28152 */ 28153 if (boot_max_ncpus != -1) 28154 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28155 else 28156 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28157 } 28158 28159 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28160 sizeof (idl_t), KM_SLEEP); 28161 28162 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28163 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28164 MUTEX_DEFAULT, NULL); 28165 } 28166 } 28167 28168 static void 28169 conn_drain_fini(ip_stack_t *ipst) 28170 { 28171 int i; 28172 28173 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28174 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28175 kmem_free(ipst->ips_conn_drain_list, 28176 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28177 ipst->ips_conn_drain_list = NULL; 28178 } 28179 28180 /* 28181 * Note: For an overview of how flowcontrol is handled in IP please see the 28182 * IP Flowcontrol notes at the top of this file. 28183 * 28184 * Flow control has blocked us from proceeding. Insert the given conn in one 28185 * of the conn drain lists. These conn wq's will be qenabled later on when 28186 * STREAMS flow control does a backenable. conn_walk_drain will enable 28187 * the first conn in each of these drain lists. Each of these qenabled conns 28188 * in turn enables the next in the list, after it runs, or when it closes, 28189 * thus sustaining the drain process. 28190 * 28191 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28192 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28193 * running at any time, on a given conn, since there can be only 1 service proc 28194 * running on a queue at any time. 28195 */ 28196 void 28197 conn_drain_insert(conn_t *connp) 28198 { 28199 idl_t *idl; 28200 uint_t index; 28201 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28202 28203 mutex_enter(&connp->conn_lock); 28204 if (connp->conn_state_flags & CONN_CLOSING) { 28205 /* 28206 * The conn is closing as a result of which CONN_CLOSING 28207 * is set. Return. 28208 */ 28209 mutex_exit(&connp->conn_lock); 28210 return; 28211 } else if (connp->conn_idl == NULL) { 28212 /* 28213 * Assign the next drain list round robin. We dont' use 28214 * a lock, and thus it may not be strictly round robin. 28215 * Atomicity of load/stores is enough to make sure that 28216 * conn_drain_list_index is always within bounds. 28217 */ 28218 index = ipst->ips_conn_drain_list_index; 28219 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28220 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28221 index++; 28222 if (index == ipst->ips_conn_drain_list_cnt) 28223 index = 0; 28224 ipst->ips_conn_drain_list_index = index; 28225 } 28226 mutex_exit(&connp->conn_lock); 28227 28228 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28229 if ((connp->conn_drain_prev != NULL) || 28230 (connp->conn_state_flags & CONN_CLOSING)) { 28231 /* 28232 * The conn is already in the drain list, OR 28233 * the conn is closing. We need to check again for 28234 * the closing case again since close can happen 28235 * after we drop the conn_lock, and before we 28236 * acquire the CONN_DRAIN_LIST_LOCK. 28237 */ 28238 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28239 return; 28240 } else { 28241 idl = connp->conn_idl; 28242 } 28243 28244 /* 28245 * The conn is not in the drain list. Insert it at the 28246 * tail of the drain list. The drain list is circular 28247 * and doubly linked. idl_conn points to the 1st element 28248 * in the list. 28249 */ 28250 if (idl->idl_conn == NULL) { 28251 idl->idl_conn = connp; 28252 connp->conn_drain_next = connp; 28253 connp->conn_drain_prev = connp; 28254 } else { 28255 conn_t *head = idl->idl_conn; 28256 28257 connp->conn_drain_next = head; 28258 connp->conn_drain_prev = head->conn_drain_prev; 28259 head->conn_drain_prev->conn_drain_next = connp; 28260 head->conn_drain_prev = connp; 28261 } 28262 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28263 } 28264 28265 /* 28266 * This conn is closing, and we are called from ip_close. OR 28267 * This conn has been serviced by ip_wsrv, and we need to do the tail 28268 * processing. 28269 * If this conn is part of the drain list, we may need to sustain the drain 28270 * process by qenabling the next conn in the drain list. We may also need to 28271 * remove this conn from the list, if it is done. 28272 */ 28273 static void 28274 conn_drain_tail(conn_t *connp, boolean_t closing) 28275 { 28276 idl_t *idl; 28277 28278 /* 28279 * connp->conn_idl is stable at this point, and no lock is needed 28280 * to check it. If we are called from ip_close, close has already 28281 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28282 * called us only because conn_idl is non-null. If we are called thru 28283 * service, conn_idl could be null, but it cannot change because 28284 * service is single-threaded per queue, and there cannot be another 28285 * instance of service trying to call conn_drain_insert on this conn 28286 * now. 28287 */ 28288 ASSERT(!closing || (connp->conn_idl != NULL)); 28289 28290 /* 28291 * If connp->conn_idl is null, the conn has not been inserted into any 28292 * drain list even once since creation of the conn. Just return. 28293 */ 28294 if (connp->conn_idl == NULL) 28295 return; 28296 28297 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28298 28299 if (connp->conn_drain_prev == NULL) { 28300 /* This conn is currently not in the drain list. */ 28301 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28302 return; 28303 } 28304 idl = connp->conn_idl; 28305 if (idl->idl_conn_draining == connp) { 28306 /* 28307 * This conn is the current drainer. If this is the last conn 28308 * in the drain list, we need to do more checks, in the 'if' 28309 * below. Otherwwise we need to just qenable the next conn, 28310 * to sustain the draining, and is handled in the 'else' 28311 * below. 28312 */ 28313 if (connp->conn_drain_next == idl->idl_conn) { 28314 /* 28315 * This conn is the last in this list. This round 28316 * of draining is complete. If idl_repeat is set, 28317 * it means another flow enabling has happened from 28318 * the driver/streams and we need to another round 28319 * of draining. 28320 * If there are more than 2 conns in the drain list, 28321 * do a left rotate by 1, so that all conns except the 28322 * conn at the head move towards the head by 1, and the 28323 * the conn at the head goes to the tail. This attempts 28324 * a more even share for all queues that are being 28325 * drained. 28326 */ 28327 if ((connp->conn_drain_next != connp) && 28328 (idl->idl_conn->conn_drain_next != connp)) { 28329 idl->idl_conn = idl->idl_conn->conn_drain_next; 28330 } 28331 if (idl->idl_repeat) { 28332 qenable(idl->idl_conn->conn_wq); 28333 idl->idl_conn_draining = idl->idl_conn; 28334 idl->idl_repeat = 0; 28335 } else { 28336 idl->idl_conn_draining = NULL; 28337 } 28338 } else { 28339 /* 28340 * If the next queue that we are now qenable'ing, 28341 * is closing, it will remove itself from this list 28342 * and qenable the subsequent queue in ip_close(). 28343 * Serialization is acheived thru idl_lock. 28344 */ 28345 qenable(connp->conn_drain_next->conn_wq); 28346 idl->idl_conn_draining = connp->conn_drain_next; 28347 } 28348 } 28349 if (!connp->conn_did_putbq || closing) { 28350 /* 28351 * Remove ourself from the drain list, if we did not do 28352 * a putbq, or if the conn is closing. 28353 * Note: It is possible that q->q_first is non-null. It means 28354 * that these messages landed after we did a enableok() in 28355 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28356 * service them. 28357 */ 28358 if (connp->conn_drain_next == connp) { 28359 /* Singleton in the list */ 28360 ASSERT(connp->conn_drain_prev == connp); 28361 idl->idl_conn = NULL; 28362 idl->idl_conn_draining = NULL; 28363 } else { 28364 connp->conn_drain_prev->conn_drain_next = 28365 connp->conn_drain_next; 28366 connp->conn_drain_next->conn_drain_prev = 28367 connp->conn_drain_prev; 28368 if (idl->idl_conn == connp) 28369 idl->idl_conn = connp->conn_drain_next; 28370 ASSERT(idl->idl_conn_draining != connp); 28371 28372 } 28373 connp->conn_drain_next = NULL; 28374 connp->conn_drain_prev = NULL; 28375 } 28376 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28377 } 28378 28379 /* 28380 * Write service routine. Shared perimeter entry point. 28381 * ip_wsrv can be called in any of the following ways. 28382 * 1. The device queue's messages has fallen below the low water mark 28383 * and STREAMS has backenabled the ill_wq. We walk thru all the 28384 * the drain lists and backenable the first conn in each list. 28385 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28386 * qenabled non-tcp upper layers. We start dequeing messages and call 28387 * ip_wput for each message. 28388 */ 28389 28390 void 28391 ip_wsrv(queue_t *q) 28392 { 28393 conn_t *connp; 28394 ill_t *ill; 28395 mblk_t *mp; 28396 28397 if (q->q_next) { 28398 ill = (ill_t *)q->q_ptr; 28399 if (ill->ill_state_flags == 0) { 28400 /* 28401 * The device flow control has opened up. 28402 * Walk through conn drain lists and qenable the 28403 * first conn in each list. This makes sense only 28404 * if the stream is fully plumbed and setup. 28405 * Hence the if check above. 28406 */ 28407 ip1dbg(("ip_wsrv: walking\n")); 28408 conn_walk_drain(ill->ill_ipst); 28409 } 28410 return; 28411 } 28412 28413 connp = Q_TO_CONN(q); 28414 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28415 28416 /* 28417 * 1. Set conn_draining flag to signal that service is active. 28418 * 28419 * 2. ip_output determines whether it has been called from service, 28420 * based on the last parameter. If it is IP_WSRV it concludes it 28421 * has been called from service. 28422 * 28423 * 3. Message ordering is preserved by the following logic. 28424 * i. A directly called ip_output (i.e. not thru service) will queue 28425 * the message at the tail, if conn_draining is set (i.e. service 28426 * is running) or if q->q_first is non-null. 28427 * 28428 * ii. If ip_output is called from service, and if ip_output cannot 28429 * putnext due to flow control, it does a putbq. 28430 * 28431 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28432 * (causing an infinite loop). 28433 */ 28434 ASSERT(!connp->conn_did_putbq); 28435 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28436 connp->conn_draining = 1; 28437 noenable(q); 28438 while ((mp = getq(q)) != NULL) { 28439 ASSERT(CONN_Q(q)); 28440 28441 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28442 if (connp->conn_did_putbq) { 28443 /* ip_wput did a putbq */ 28444 break; 28445 } 28446 } 28447 /* 28448 * At this point, a thread coming down from top, calling 28449 * ip_wput, may end up queueing the message. We have not yet 28450 * enabled the queue, so ip_wsrv won't be called again. 28451 * To avoid this race, check q->q_first again (in the loop) 28452 * If the other thread queued the message before we call 28453 * enableok(), we will catch it in the q->q_first check. 28454 * If the other thread queues the message after we call 28455 * enableok(), ip_wsrv will be called again by STREAMS. 28456 */ 28457 connp->conn_draining = 0; 28458 enableok(q); 28459 } 28460 28461 /* Enable the next conn for draining */ 28462 conn_drain_tail(connp, B_FALSE); 28463 28464 connp->conn_did_putbq = 0; 28465 } 28466 28467 /* 28468 * Walk the list of all conn's calling the function provided with the 28469 * specified argument for each. Note that this only walks conn's that 28470 * have been bound. 28471 * Applies to both IPv4 and IPv6. 28472 */ 28473 static void 28474 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28475 { 28476 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28477 ipst->ips_ipcl_udp_fanout_size, 28478 func, arg, zoneid); 28479 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28480 ipst->ips_ipcl_conn_fanout_size, 28481 func, arg, zoneid); 28482 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28483 ipst->ips_ipcl_bind_fanout_size, 28484 func, arg, zoneid); 28485 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28486 IPPROTO_MAX, func, arg, zoneid); 28487 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28488 IPPROTO_MAX, func, arg, zoneid); 28489 } 28490 28491 /* 28492 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28493 * of conns that need to be drained, check if drain is already in progress. 28494 * If so set the idl_repeat bit, indicating that the last conn in the list 28495 * needs to reinitiate the drain once again, for the list. If drain is not 28496 * in progress for the list, initiate the draining, by qenabling the 1st 28497 * conn in the list. The drain is self-sustaining, each qenabled conn will 28498 * in turn qenable the next conn, when it is done/blocked/closing. 28499 */ 28500 static void 28501 conn_walk_drain(ip_stack_t *ipst) 28502 { 28503 int i; 28504 idl_t *idl; 28505 28506 IP_STAT(ipst, ip_conn_walk_drain); 28507 28508 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28509 idl = &ipst->ips_conn_drain_list[i]; 28510 mutex_enter(&idl->idl_lock); 28511 if (idl->idl_conn == NULL) { 28512 mutex_exit(&idl->idl_lock); 28513 continue; 28514 } 28515 /* 28516 * If this list is not being drained currently by 28517 * an ip_wsrv thread, start the process. 28518 */ 28519 if (idl->idl_conn_draining == NULL) { 28520 ASSERT(idl->idl_repeat == 0); 28521 qenable(idl->idl_conn->conn_wq); 28522 idl->idl_conn_draining = idl->idl_conn; 28523 } else { 28524 idl->idl_repeat = 1; 28525 } 28526 mutex_exit(&idl->idl_lock); 28527 } 28528 } 28529 28530 /* 28531 * Walk an conn hash table of `count' buckets, calling func for each entry. 28532 */ 28533 static void 28534 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28535 zoneid_t zoneid) 28536 { 28537 conn_t *connp; 28538 28539 while (count-- > 0) { 28540 mutex_enter(&connfp->connf_lock); 28541 for (connp = connfp->connf_head; connp != NULL; 28542 connp = connp->conn_next) { 28543 if (zoneid == GLOBAL_ZONEID || 28544 zoneid == connp->conn_zoneid) { 28545 CONN_INC_REF(connp); 28546 mutex_exit(&connfp->connf_lock); 28547 (*func)(connp, arg); 28548 mutex_enter(&connfp->connf_lock); 28549 CONN_DEC_REF(connp); 28550 } 28551 } 28552 mutex_exit(&connfp->connf_lock); 28553 connfp++; 28554 } 28555 } 28556 28557 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28558 static void 28559 conn_report1(conn_t *connp, void *mp) 28560 { 28561 char buf1[INET6_ADDRSTRLEN]; 28562 char buf2[INET6_ADDRSTRLEN]; 28563 uint_t print_len, buf_len; 28564 28565 ASSERT(connp != NULL); 28566 28567 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28568 if (buf_len <= 0) 28569 return; 28570 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28571 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28572 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28573 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28574 "%5d %s/%05d %s/%05d\n", 28575 (void *)connp, (void *)CONNP_TO_RQ(connp), 28576 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28577 buf1, connp->conn_lport, 28578 buf2, connp->conn_fport); 28579 if (print_len < buf_len) { 28580 ((mblk_t *)mp)->b_wptr += print_len; 28581 } else { 28582 ((mblk_t *)mp)->b_wptr += buf_len; 28583 } 28584 } 28585 28586 /* 28587 * Named Dispatch routine to produce a formatted report on all conns 28588 * that are listed in one of the fanout tables. 28589 * This report is accessed by using the ndd utility to "get" ND variable 28590 * "ip_conn_status". 28591 */ 28592 /* ARGSUSED */ 28593 static int 28594 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28595 { 28596 conn_t *connp = Q_TO_CONN(q); 28597 28598 (void) mi_mpprintf(mp, 28599 "CONN " MI_COL_HDRPAD_STR 28600 "rfq " MI_COL_HDRPAD_STR 28601 "stq " MI_COL_HDRPAD_STR 28602 " zone local remote"); 28603 28604 /* 28605 * Because of the ndd constraint, at most we can have 64K buffer 28606 * to put in all conn info. So to be more efficient, just 28607 * allocate a 64K buffer here, assuming we need that large buffer. 28608 * This should be OK as only privileged processes can do ndd /dev/ip. 28609 */ 28610 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28611 /* The following may work even if we cannot get a large buf. */ 28612 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28613 return (0); 28614 } 28615 28616 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28617 connp->conn_netstack->netstack_ip); 28618 return (0); 28619 } 28620 28621 /* 28622 * Determine if the ill and multicast aspects of that packets 28623 * "matches" the conn. 28624 */ 28625 boolean_t 28626 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28627 zoneid_t zoneid) 28628 { 28629 ill_t *in_ill; 28630 boolean_t found; 28631 ipif_t *ipif; 28632 ire_t *ire; 28633 ipaddr_t dst, src; 28634 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28635 28636 dst = ipha->ipha_dst; 28637 src = ipha->ipha_src; 28638 28639 /* 28640 * conn_incoming_ill is set by IP_BOUND_IF which limits 28641 * unicast, broadcast and multicast reception to 28642 * conn_incoming_ill. conn_wantpacket itself is called 28643 * only for BROADCAST and multicast. 28644 * 28645 * 1) ip_rput supresses duplicate broadcasts if the ill 28646 * is part of a group. Hence, we should be receiving 28647 * just one copy of broadcast for the whole group. 28648 * Thus, if it is part of the group the packet could 28649 * come on any ill of the group and hence we need a 28650 * match on the group. Otherwise, match on ill should 28651 * be sufficient. 28652 * 28653 * 2) ip_rput does not suppress duplicate multicast packets. 28654 * If there are two interfaces in a ill group and we have 28655 * 2 applications (conns) joined a multicast group G on 28656 * both the interfaces, ilm_lookup_ill filter in ip_rput 28657 * will give us two packets because we join G on both the 28658 * interfaces rather than nominating just one interface 28659 * for receiving multicast like broadcast above. So, 28660 * we have to call ilg_lookup_ill to filter out duplicate 28661 * copies, if ill is part of a group. 28662 */ 28663 in_ill = connp->conn_incoming_ill; 28664 if (in_ill != NULL) { 28665 if (in_ill->ill_group == NULL) { 28666 if (in_ill != ill) 28667 return (B_FALSE); 28668 } else if (in_ill->ill_group != ill->ill_group) { 28669 return (B_FALSE); 28670 } 28671 } 28672 28673 if (!CLASSD(dst)) { 28674 if (IPCL_ZONE_MATCH(connp, zoneid)) 28675 return (B_TRUE); 28676 /* 28677 * The conn is in a different zone; we need to check that this 28678 * broadcast address is configured in the application's zone and 28679 * on one ill in the group. 28680 */ 28681 ipif = ipif_get_next_ipif(NULL, ill); 28682 if (ipif == NULL) 28683 return (B_FALSE); 28684 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28685 connp->conn_zoneid, NULL, 28686 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28687 ipif_refrele(ipif); 28688 if (ire != NULL) { 28689 ire_refrele(ire); 28690 return (B_TRUE); 28691 } else { 28692 return (B_FALSE); 28693 } 28694 } 28695 28696 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28697 connp->conn_zoneid == zoneid) { 28698 /* 28699 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28700 * disabled, therefore we don't dispatch the multicast packet to 28701 * the sending zone. 28702 */ 28703 return (B_FALSE); 28704 } 28705 28706 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28707 /* 28708 * Multicast packet on the loopback interface: we only match 28709 * conns who joined the group in the specified zone. 28710 */ 28711 return (B_FALSE); 28712 } 28713 28714 if (connp->conn_multi_router) { 28715 /* multicast packet and multicast router socket: send up */ 28716 return (B_TRUE); 28717 } 28718 28719 mutex_enter(&connp->conn_lock); 28720 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28721 mutex_exit(&connp->conn_lock); 28722 return (found); 28723 } 28724 28725 /* 28726 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28727 */ 28728 /* ARGSUSED */ 28729 static void 28730 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28731 { 28732 ill_t *ill = (ill_t *)q->q_ptr; 28733 mblk_t *mp1, *mp2; 28734 ipif_t *ipif; 28735 int err = 0; 28736 conn_t *connp = NULL; 28737 ipsq_t *ipsq; 28738 arc_t *arc; 28739 28740 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28741 28742 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28743 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28744 28745 ASSERT(IAM_WRITER_ILL(ill)); 28746 mp2 = mp->b_cont; 28747 mp->b_cont = NULL; 28748 28749 /* 28750 * We have now received the arp bringup completion message 28751 * from ARP. Mark the arp bringup as done. Also if the arp 28752 * stream has already started closing, send up the AR_ARP_CLOSING 28753 * ack now since ARP is waiting in close for this ack. 28754 */ 28755 mutex_enter(&ill->ill_lock); 28756 ill->ill_arp_bringup_pending = 0; 28757 if (ill->ill_arp_closing) { 28758 mutex_exit(&ill->ill_lock); 28759 /* Let's reuse the mp for sending the ack */ 28760 arc = (arc_t *)mp->b_rptr; 28761 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28762 arc->arc_cmd = AR_ARP_CLOSING; 28763 qreply(q, mp); 28764 } else { 28765 mutex_exit(&ill->ill_lock); 28766 freeb(mp); 28767 } 28768 28769 ipsq = ill->ill_phyint->phyint_ipsq; 28770 ipif = ipsq->ipsq_pending_ipif; 28771 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28772 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28773 if (mp1 == NULL) { 28774 /* bringup was aborted by the user */ 28775 freemsg(mp2); 28776 return; 28777 } 28778 28779 /* 28780 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28781 * must have an associated conn_t. Otherwise, we're bringing this 28782 * interface back up as part of handling an asynchronous event (e.g., 28783 * physical address change). 28784 */ 28785 if (ipsq->ipsq_current_ioctl != 0) { 28786 ASSERT(connp != NULL); 28787 q = CONNP_TO_WQ(connp); 28788 } else { 28789 ASSERT(connp == NULL); 28790 q = ill->ill_rq; 28791 } 28792 28793 /* 28794 * If the DL_BIND_REQ fails, it is noted 28795 * in arc_name_offset. 28796 */ 28797 err = *((int *)mp2->b_rptr); 28798 if (err == 0) { 28799 if (ipif->ipif_isv6) { 28800 if ((err = ipif_up_done_v6(ipif)) != 0) 28801 ip0dbg(("ip_arp_done: init failed\n")); 28802 } else { 28803 if ((err = ipif_up_done(ipif)) != 0) 28804 ip0dbg(("ip_arp_done: init failed\n")); 28805 } 28806 } else { 28807 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28808 } 28809 28810 freemsg(mp2); 28811 28812 if ((err == 0) && (ill->ill_up_ipifs)) { 28813 err = ill_up_ipifs(ill, q, mp1); 28814 if (err == EINPROGRESS) 28815 return; 28816 } 28817 28818 if (ill->ill_up_ipifs) 28819 ill_group_cleanup(ill); 28820 28821 /* 28822 * The operation must complete without EINPROGRESS since 28823 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28824 * Otherwise, the operation will be stuck forever in the ipsq. 28825 */ 28826 ASSERT(err != EINPROGRESS); 28827 if (ipsq->ipsq_current_ioctl != 0) 28828 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28829 else 28830 ipsq_current_finish(ipsq); 28831 } 28832 28833 /* Allocate the private structure */ 28834 static int 28835 ip_priv_alloc(void **bufp) 28836 { 28837 void *buf; 28838 28839 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28840 return (ENOMEM); 28841 28842 *bufp = buf; 28843 return (0); 28844 } 28845 28846 /* Function to delete the private structure */ 28847 void 28848 ip_priv_free(void *buf) 28849 { 28850 ASSERT(buf != NULL); 28851 kmem_free(buf, sizeof (ip_priv_t)); 28852 } 28853 28854 /* 28855 * The entry point for IPPF processing. 28856 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28857 * routine just returns. 28858 * 28859 * When called, ip_process generates an ipp_packet_t structure 28860 * which holds the state information for this packet and invokes the 28861 * the classifier (via ipp_packet_process). The classification, depending on 28862 * configured filters, results in a list of actions for this packet. Invoking 28863 * an action may cause the packet to be dropped, in which case the resulting 28864 * mblk (*mpp) is NULL. proc indicates the callout position for 28865 * this packet and ill_index is the interface this packet on or will leave 28866 * on (inbound and outbound resp.). 28867 */ 28868 void 28869 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28870 { 28871 mblk_t *mp; 28872 ip_priv_t *priv; 28873 ipp_action_id_t aid; 28874 int rc = 0; 28875 ipp_packet_t *pp; 28876 #define IP_CLASS "ip" 28877 28878 /* If the classifier is not loaded, return */ 28879 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28880 return; 28881 } 28882 28883 mp = *mpp; 28884 ASSERT(mp != NULL); 28885 28886 /* Allocate the packet structure */ 28887 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28888 if (rc != 0) { 28889 *mpp = NULL; 28890 freemsg(mp); 28891 return; 28892 } 28893 28894 /* Allocate the private structure */ 28895 rc = ip_priv_alloc((void **)&priv); 28896 if (rc != 0) { 28897 *mpp = NULL; 28898 freemsg(mp); 28899 ipp_packet_free(pp); 28900 return; 28901 } 28902 priv->proc = proc; 28903 priv->ill_index = ill_index; 28904 ipp_packet_set_private(pp, priv, ip_priv_free); 28905 ipp_packet_set_data(pp, mp); 28906 28907 /* Invoke the classifier */ 28908 rc = ipp_packet_process(&pp); 28909 if (pp != NULL) { 28910 mp = ipp_packet_get_data(pp); 28911 ipp_packet_free(pp); 28912 if (rc != 0) { 28913 freemsg(mp); 28914 *mpp = NULL; 28915 } 28916 } else { 28917 *mpp = NULL; 28918 } 28919 #undef IP_CLASS 28920 } 28921 28922 /* 28923 * Propagate a multicast group membership operation (add/drop) on 28924 * all the interfaces crossed by the related multirt routes. 28925 * The call is considered successful if the operation succeeds 28926 * on at least one interface. 28927 */ 28928 static int 28929 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28930 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28931 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28932 mblk_t *first_mp) 28933 { 28934 ire_t *ire_gw; 28935 irb_t *irb; 28936 int error = 0; 28937 opt_restart_t *or; 28938 ip_stack_t *ipst = ire->ire_ipst; 28939 28940 irb = ire->ire_bucket; 28941 ASSERT(irb != NULL); 28942 28943 ASSERT(DB_TYPE(first_mp) == M_CTL); 28944 28945 or = (opt_restart_t *)first_mp->b_rptr; 28946 IRB_REFHOLD(irb); 28947 for (; ire != NULL; ire = ire->ire_next) { 28948 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28949 continue; 28950 if (ire->ire_addr != group) 28951 continue; 28952 28953 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28954 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28955 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28956 /* No resolver exists for the gateway; skip this ire. */ 28957 if (ire_gw == NULL) 28958 continue; 28959 28960 /* 28961 * This function can return EINPROGRESS. If so the operation 28962 * will be restarted from ip_restart_optmgmt which will 28963 * call ip_opt_set and option processing will restart for 28964 * this option. So we may end up calling 'fn' more than once. 28965 * This requires that 'fn' is idempotent except for the 28966 * return value. The operation is considered a success if 28967 * it succeeds at least once on any one interface. 28968 */ 28969 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28970 NULL, fmode, src, first_mp); 28971 if (error == 0) 28972 or->or_private = CGTP_MCAST_SUCCESS; 28973 28974 if (ip_debug > 0) { 28975 ulong_t off; 28976 char *ksym; 28977 ksym = kobj_getsymname((uintptr_t)fn, &off); 28978 ip2dbg(("ip_multirt_apply_membership: " 28979 "called %s, multirt group 0x%08x via itf 0x%08x, " 28980 "error %d [success %u]\n", 28981 ksym ? ksym : "?", 28982 ntohl(group), ntohl(ire_gw->ire_src_addr), 28983 error, or->or_private)); 28984 } 28985 28986 ire_refrele(ire_gw); 28987 if (error == EINPROGRESS) { 28988 IRB_REFRELE(irb); 28989 return (error); 28990 } 28991 } 28992 IRB_REFRELE(irb); 28993 /* 28994 * Consider the call as successful if we succeeded on at least 28995 * one interface. Otherwise, return the last encountered error. 28996 */ 28997 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28998 } 28999 29000 29001 /* 29002 * Issue a warning regarding a route crossing an interface with an 29003 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29004 * amount of time is logged. 29005 */ 29006 static void 29007 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29008 { 29009 hrtime_t current = gethrtime(); 29010 char buf[INET_ADDRSTRLEN]; 29011 ip_stack_t *ipst = ire->ire_ipst; 29012 29013 /* Convert interval in ms to hrtime in ns */ 29014 if (ipst->ips_multirt_bad_mtu_last_time + 29015 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29016 current) { 29017 cmn_err(CE_WARN, "ip: ignoring multiroute " 29018 "to %s, incorrect MTU %u (expected %u)\n", 29019 ip_dot_addr(ire->ire_addr, buf), 29020 ire->ire_max_frag, max_frag); 29021 29022 ipst->ips_multirt_bad_mtu_last_time = current; 29023 } 29024 } 29025 29026 29027 /* 29028 * Get the CGTP (multirouting) filtering status. 29029 * If 0, the CGTP hooks are transparent. 29030 */ 29031 /* ARGSUSED */ 29032 static int 29033 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29034 { 29035 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29036 29037 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29038 return (0); 29039 } 29040 29041 29042 /* 29043 * Set the CGTP (multirouting) filtering status. 29044 * If the status is changed from active to transparent 29045 * or from transparent to active, forward the new status 29046 * to the filtering module (if loaded). 29047 */ 29048 /* ARGSUSED */ 29049 static int 29050 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29051 cred_t *ioc_cr) 29052 { 29053 long new_value; 29054 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29055 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29056 29057 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29058 return (EPERM); 29059 29060 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29061 new_value < 0 || new_value > 1) { 29062 return (EINVAL); 29063 } 29064 29065 if ((!*ip_cgtp_filter_value) && new_value) { 29066 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29067 ipst->ips_ip_cgtp_filter_ops == NULL ? 29068 " (module not loaded)" : ""); 29069 } 29070 if (*ip_cgtp_filter_value && (!new_value)) { 29071 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29072 ipst->ips_ip_cgtp_filter_ops == NULL ? 29073 " (module not loaded)" : ""); 29074 } 29075 29076 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29077 int res; 29078 netstackid_t stackid; 29079 29080 stackid = ipst->ips_netstack->netstack_stackid; 29081 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29082 new_value); 29083 if (res) 29084 return (res); 29085 } 29086 29087 *ip_cgtp_filter_value = (boolean_t)new_value; 29088 29089 return (0); 29090 } 29091 29092 29093 /* 29094 * Return the expected CGTP hooks version number. 29095 */ 29096 int 29097 ip_cgtp_filter_supported(void) 29098 { 29099 return (ip_cgtp_filter_rev); 29100 } 29101 29102 29103 /* 29104 * CGTP hooks can be registered by invoking this function. 29105 * Checks that the version number matches. 29106 */ 29107 int 29108 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29109 { 29110 netstack_t *ns; 29111 ip_stack_t *ipst; 29112 29113 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29114 return (ENOTSUP); 29115 29116 ns = netstack_find_by_stackid(stackid); 29117 if (ns == NULL) 29118 return (EINVAL); 29119 ipst = ns->netstack_ip; 29120 ASSERT(ipst != NULL); 29121 29122 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29123 netstack_rele(ns); 29124 return (EALREADY); 29125 } 29126 29127 ipst->ips_ip_cgtp_filter_ops = ops; 29128 netstack_rele(ns); 29129 return (0); 29130 } 29131 29132 /* 29133 * CGTP hooks can be unregistered by invoking this function. 29134 * Returns ENXIO if there was no registration. 29135 * Returns EBUSY if the ndd variable has not been turned off. 29136 */ 29137 int 29138 ip_cgtp_filter_unregister(netstackid_t stackid) 29139 { 29140 netstack_t *ns; 29141 ip_stack_t *ipst; 29142 29143 ns = netstack_find_by_stackid(stackid); 29144 if (ns == NULL) 29145 return (EINVAL); 29146 ipst = ns->netstack_ip; 29147 ASSERT(ipst != NULL); 29148 29149 if (ipst->ips_ip_cgtp_filter) { 29150 netstack_rele(ns); 29151 return (EBUSY); 29152 } 29153 29154 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29155 netstack_rele(ns); 29156 return (ENXIO); 29157 } 29158 ipst->ips_ip_cgtp_filter_ops = NULL; 29159 netstack_rele(ns); 29160 return (0); 29161 } 29162 29163 /* 29164 * Check whether there is a CGTP filter registration. 29165 * Returns non-zero if there is a registration, otherwise returns zero. 29166 * Note: returns zero if bad stackid. 29167 */ 29168 int 29169 ip_cgtp_filter_is_registered(netstackid_t stackid) 29170 { 29171 netstack_t *ns; 29172 ip_stack_t *ipst; 29173 int ret; 29174 29175 ns = netstack_find_by_stackid(stackid); 29176 if (ns == NULL) 29177 return (0); 29178 ipst = ns->netstack_ip; 29179 ASSERT(ipst != NULL); 29180 29181 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29182 ret = 1; 29183 else 29184 ret = 0; 29185 29186 netstack_rele(ns); 29187 return (ret); 29188 } 29189 29190 static squeue_func_t 29191 ip_squeue_switch(int val) 29192 { 29193 squeue_func_t rval = squeue_fill; 29194 29195 switch (val) { 29196 case IP_SQUEUE_ENTER_NODRAIN: 29197 rval = squeue_enter_nodrain; 29198 break; 29199 case IP_SQUEUE_ENTER: 29200 rval = squeue_enter; 29201 break; 29202 default: 29203 break; 29204 } 29205 return (rval); 29206 } 29207 29208 /* ARGSUSED */ 29209 static int 29210 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29211 caddr_t addr, cred_t *cr) 29212 { 29213 int *v = (int *)addr; 29214 long new_value; 29215 29216 if (secpolicy_net_config(cr, B_FALSE) != 0) 29217 return (EPERM); 29218 29219 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29220 return (EINVAL); 29221 29222 ip_input_proc = ip_squeue_switch(new_value); 29223 *v = new_value; 29224 return (0); 29225 } 29226 29227 /* 29228 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29229 * ip_debug. 29230 */ 29231 /* ARGSUSED */ 29232 static int 29233 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29234 caddr_t addr, cred_t *cr) 29235 { 29236 int *v = (int *)addr; 29237 long new_value; 29238 29239 if (secpolicy_net_config(cr, B_FALSE) != 0) 29240 return (EPERM); 29241 29242 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29243 return (EINVAL); 29244 29245 *v = new_value; 29246 return (0); 29247 } 29248 29249 /* 29250 * Handle changes to ipmp_hook_emulation ndd variable. 29251 * Need to update phyint_hook_ifindex. 29252 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29253 */ 29254 static void 29255 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29256 { 29257 phyint_t *phyi; 29258 phyint_t *phyi_tmp; 29259 char *groupname; 29260 int namelen; 29261 ill_t *ill; 29262 boolean_t new_group; 29263 29264 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29265 /* 29266 * Group indicies are stored in the phyint - a common structure 29267 * to both IPv4 and IPv6. 29268 */ 29269 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29270 for (; phyi != NULL; 29271 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29272 phyi, AVL_AFTER)) { 29273 /* Ignore the ones that do not have a group */ 29274 if (phyi->phyint_groupname_len == 0) 29275 continue; 29276 29277 /* 29278 * Look for other phyint in group. 29279 * Clear name/namelen so the lookup doesn't find ourselves. 29280 */ 29281 namelen = phyi->phyint_groupname_len; 29282 groupname = phyi->phyint_groupname; 29283 phyi->phyint_groupname_len = 0; 29284 phyi->phyint_groupname = NULL; 29285 29286 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29287 /* Restore */ 29288 phyi->phyint_groupname_len = namelen; 29289 phyi->phyint_groupname = groupname; 29290 29291 new_group = B_FALSE; 29292 if (ipst->ips_ipmp_hook_emulation) { 29293 /* 29294 * If the group already exists and has already 29295 * been assigned a group ifindex, we use the existing 29296 * group_ifindex, otherwise we pick a new group_ifindex 29297 * here. 29298 */ 29299 if (phyi_tmp != NULL && 29300 phyi_tmp->phyint_group_ifindex != 0) { 29301 phyi->phyint_group_ifindex = 29302 phyi_tmp->phyint_group_ifindex; 29303 } else { 29304 /* XXX We need a recovery strategy here. */ 29305 if (!ip_assign_ifindex( 29306 &phyi->phyint_group_ifindex, ipst)) 29307 cmn_err(CE_PANIC, 29308 "ip_assign_ifindex() failed"); 29309 new_group = B_TRUE; 29310 } 29311 } else { 29312 phyi->phyint_group_ifindex = 0; 29313 } 29314 if (ipst->ips_ipmp_hook_emulation) 29315 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29316 else 29317 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29318 29319 /* 29320 * For IP Filter to find out the relationship between 29321 * names and interface indicies, we need to generate 29322 * a NE_PLUMB event when a new group can appear. 29323 * We always generate events when a new interface appears 29324 * (even when ipmp_hook_emulation is set) so there 29325 * is no need to generate NE_PLUMB events when 29326 * ipmp_hook_emulation is turned off. 29327 * And since it isn't critical for IP Filter to get 29328 * the NE_UNPLUMB events we skip those here. 29329 */ 29330 if (new_group) { 29331 /* 29332 * First phyint in group - generate group PLUMB event. 29333 * Since we are not running inside the ipsq we do 29334 * the dispatch immediately. 29335 */ 29336 if (phyi->phyint_illv4 != NULL) 29337 ill = phyi->phyint_illv4; 29338 else 29339 ill = phyi->phyint_illv6; 29340 29341 if (ill != NULL) { 29342 mutex_enter(&ill->ill_lock); 29343 ill_nic_info_plumb(ill, B_TRUE); 29344 ill_nic_info_dispatch(ill); 29345 mutex_exit(&ill->ill_lock); 29346 } 29347 } 29348 } 29349 rw_exit(&ipst->ips_ill_g_lock); 29350 } 29351 29352 /* ARGSUSED */ 29353 static int 29354 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29355 caddr_t addr, cred_t *cr) 29356 { 29357 int *v = (int *)addr; 29358 long new_value; 29359 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29360 29361 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29362 return (EINVAL); 29363 29364 if (*v != new_value) { 29365 *v = new_value; 29366 ipmp_hook_emulation_changed(ipst); 29367 } 29368 return (0); 29369 } 29370 29371 static void * 29372 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29373 { 29374 kstat_t *ksp; 29375 29376 ip_stat_t template = { 29377 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29378 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29379 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29380 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29381 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29382 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29383 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29384 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29385 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29386 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29387 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29388 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29389 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29390 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29391 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29392 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29393 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29394 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29395 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29396 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29397 { "ip_opt", KSTAT_DATA_UINT64 }, 29398 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29399 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29400 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29401 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29402 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29403 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29404 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29405 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29406 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29407 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29408 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29409 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29410 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29411 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29412 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29413 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29414 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29415 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29416 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29417 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29418 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29419 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29420 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29421 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29422 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29423 }; 29424 29425 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29426 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29427 KSTAT_FLAG_VIRTUAL, stackid); 29428 29429 if (ksp == NULL) 29430 return (NULL); 29431 29432 bcopy(&template, ip_statisticsp, sizeof (template)); 29433 ksp->ks_data = (void *)ip_statisticsp; 29434 ksp->ks_private = (void *)(uintptr_t)stackid; 29435 29436 kstat_install(ksp); 29437 return (ksp); 29438 } 29439 29440 static void 29441 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29442 { 29443 if (ksp != NULL) { 29444 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29445 kstat_delete_netstack(ksp, stackid); 29446 } 29447 } 29448 29449 static void * 29450 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29451 { 29452 kstat_t *ksp; 29453 29454 ip_named_kstat_t template = { 29455 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29456 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29457 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29458 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29459 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29460 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29461 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29462 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29463 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29464 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29465 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29466 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29467 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29468 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29469 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29470 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29471 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29472 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29473 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29474 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29475 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29476 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29477 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29478 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29479 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29480 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29481 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29482 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29483 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29484 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29485 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29486 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29487 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29488 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29489 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29490 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29491 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29492 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29493 }; 29494 29495 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29496 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29497 if (ksp == NULL || ksp->ks_data == NULL) 29498 return (NULL); 29499 29500 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29501 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29502 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29503 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29504 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29505 29506 template.netToMediaEntrySize.value.i32 = 29507 sizeof (mib2_ipNetToMediaEntry_t); 29508 29509 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29510 29511 bcopy(&template, ksp->ks_data, sizeof (template)); 29512 ksp->ks_update = ip_kstat_update; 29513 ksp->ks_private = (void *)(uintptr_t)stackid; 29514 29515 kstat_install(ksp); 29516 return (ksp); 29517 } 29518 29519 static void 29520 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29521 { 29522 if (ksp != NULL) { 29523 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29524 kstat_delete_netstack(ksp, stackid); 29525 } 29526 } 29527 29528 static int 29529 ip_kstat_update(kstat_t *kp, int rw) 29530 { 29531 ip_named_kstat_t *ipkp; 29532 mib2_ipIfStatsEntry_t ipmib; 29533 ill_walk_context_t ctx; 29534 ill_t *ill; 29535 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29536 netstack_t *ns; 29537 ip_stack_t *ipst; 29538 29539 if (kp == NULL || kp->ks_data == NULL) 29540 return (EIO); 29541 29542 if (rw == KSTAT_WRITE) 29543 return (EACCES); 29544 29545 ns = netstack_find_by_stackid(stackid); 29546 if (ns == NULL) 29547 return (-1); 29548 ipst = ns->netstack_ip; 29549 if (ipst == NULL) { 29550 netstack_rele(ns); 29551 return (-1); 29552 } 29553 ipkp = (ip_named_kstat_t *)kp->ks_data; 29554 29555 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29556 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29557 ill = ILL_START_WALK_V4(&ctx, ipst); 29558 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29559 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29560 rw_exit(&ipst->ips_ill_g_lock); 29561 29562 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29563 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29564 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29565 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29566 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29567 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29568 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29569 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29570 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29571 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29572 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29573 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29574 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29575 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29576 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29577 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29578 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29579 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29580 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29581 29582 ipkp->routingDiscards.value.ui32 = 0; 29583 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29584 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29585 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29586 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29587 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29588 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29589 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29590 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29591 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29592 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29593 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29594 29595 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29596 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29597 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29598 29599 netstack_rele(ns); 29600 29601 return (0); 29602 } 29603 29604 static void * 29605 icmp_kstat_init(netstackid_t stackid) 29606 { 29607 kstat_t *ksp; 29608 29609 icmp_named_kstat_t template = { 29610 { "inMsgs", KSTAT_DATA_UINT32 }, 29611 { "inErrors", KSTAT_DATA_UINT32 }, 29612 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29613 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29614 { "inParmProbs", KSTAT_DATA_UINT32 }, 29615 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29616 { "inRedirects", KSTAT_DATA_UINT32 }, 29617 { "inEchos", KSTAT_DATA_UINT32 }, 29618 { "inEchoReps", KSTAT_DATA_UINT32 }, 29619 { "inTimestamps", KSTAT_DATA_UINT32 }, 29620 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29621 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29622 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29623 { "outMsgs", KSTAT_DATA_UINT32 }, 29624 { "outErrors", KSTAT_DATA_UINT32 }, 29625 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29626 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29627 { "outParmProbs", KSTAT_DATA_UINT32 }, 29628 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29629 { "outRedirects", KSTAT_DATA_UINT32 }, 29630 { "outEchos", KSTAT_DATA_UINT32 }, 29631 { "outEchoReps", KSTAT_DATA_UINT32 }, 29632 { "outTimestamps", KSTAT_DATA_UINT32 }, 29633 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29634 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29635 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29636 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29637 { "inUnknowns", KSTAT_DATA_UINT32 }, 29638 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29639 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29640 { "outDrops", KSTAT_DATA_UINT32 }, 29641 { "inOverFlows", KSTAT_DATA_UINT32 }, 29642 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29643 }; 29644 29645 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29646 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29647 if (ksp == NULL || ksp->ks_data == NULL) 29648 return (NULL); 29649 29650 bcopy(&template, ksp->ks_data, sizeof (template)); 29651 29652 ksp->ks_update = icmp_kstat_update; 29653 ksp->ks_private = (void *)(uintptr_t)stackid; 29654 29655 kstat_install(ksp); 29656 return (ksp); 29657 } 29658 29659 static void 29660 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29661 { 29662 if (ksp != NULL) { 29663 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29664 kstat_delete_netstack(ksp, stackid); 29665 } 29666 } 29667 29668 static int 29669 icmp_kstat_update(kstat_t *kp, int rw) 29670 { 29671 icmp_named_kstat_t *icmpkp; 29672 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29673 netstack_t *ns; 29674 ip_stack_t *ipst; 29675 29676 if ((kp == NULL) || (kp->ks_data == NULL)) 29677 return (EIO); 29678 29679 if (rw == KSTAT_WRITE) 29680 return (EACCES); 29681 29682 ns = netstack_find_by_stackid(stackid); 29683 if (ns == NULL) 29684 return (-1); 29685 ipst = ns->netstack_ip; 29686 if (ipst == NULL) { 29687 netstack_rele(ns); 29688 return (-1); 29689 } 29690 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29691 29692 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29693 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29694 icmpkp->inDestUnreachs.value.ui32 = 29695 ipst->ips_icmp_mib.icmpInDestUnreachs; 29696 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29697 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29698 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29699 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29700 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29701 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29702 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29703 icmpkp->inTimestampReps.value.ui32 = 29704 ipst->ips_icmp_mib.icmpInTimestampReps; 29705 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29706 icmpkp->inAddrMaskReps.value.ui32 = 29707 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29708 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29709 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29710 icmpkp->outDestUnreachs.value.ui32 = 29711 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29712 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29713 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29714 icmpkp->outSrcQuenchs.value.ui32 = 29715 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29716 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29717 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29718 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29719 icmpkp->outTimestamps.value.ui32 = 29720 ipst->ips_icmp_mib.icmpOutTimestamps; 29721 icmpkp->outTimestampReps.value.ui32 = 29722 ipst->ips_icmp_mib.icmpOutTimestampReps; 29723 icmpkp->outAddrMasks.value.ui32 = 29724 ipst->ips_icmp_mib.icmpOutAddrMasks; 29725 icmpkp->outAddrMaskReps.value.ui32 = 29726 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29727 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29728 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29729 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29730 icmpkp->outFragNeeded.value.ui32 = 29731 ipst->ips_icmp_mib.icmpOutFragNeeded; 29732 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29733 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29734 icmpkp->inBadRedirects.value.ui32 = 29735 ipst->ips_icmp_mib.icmpInBadRedirects; 29736 29737 netstack_rele(ns); 29738 return (0); 29739 } 29740 29741 /* 29742 * This is the fanout function for raw socket opened for SCTP. Note 29743 * that it is called after SCTP checks that there is no socket which 29744 * wants a packet. Then before SCTP handles this out of the blue packet, 29745 * this function is called to see if there is any raw socket for SCTP. 29746 * If there is and it is bound to the correct address, the packet will 29747 * be sent to that socket. Note that only one raw socket can be bound to 29748 * a port. This is assured in ipcl_sctp_hash_insert(); 29749 */ 29750 void 29751 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29752 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29753 zoneid_t zoneid) 29754 { 29755 conn_t *connp; 29756 queue_t *rq; 29757 mblk_t *first_mp; 29758 boolean_t secure; 29759 ip6_t *ip6h; 29760 ip_stack_t *ipst = recv_ill->ill_ipst; 29761 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29762 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29763 boolean_t sctp_csum_err = B_FALSE; 29764 29765 if (flags & IP_FF_SCTP_CSUM_ERR) { 29766 sctp_csum_err = B_TRUE; 29767 flags &= ~IP_FF_SCTP_CSUM_ERR; 29768 } 29769 29770 first_mp = mp; 29771 if (mctl_present) { 29772 mp = first_mp->b_cont; 29773 secure = ipsec_in_is_secure(first_mp); 29774 ASSERT(mp != NULL); 29775 } else { 29776 secure = B_FALSE; 29777 } 29778 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29779 29780 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29781 if (connp == NULL) { 29782 /* 29783 * Although raw sctp is not summed, OOB chunks must be. 29784 * Drop the packet here if the sctp checksum failed. 29785 */ 29786 if (sctp_csum_err) { 29787 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29788 freemsg(first_mp); 29789 return; 29790 } 29791 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29792 return; 29793 } 29794 rq = connp->conn_rq; 29795 if (!canputnext(rq)) { 29796 CONN_DEC_REF(connp); 29797 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29798 freemsg(first_mp); 29799 return; 29800 } 29801 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29802 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29803 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29804 (isv4 ? ipha : NULL), ip6h, mctl_present); 29805 if (first_mp == NULL) { 29806 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29807 CONN_DEC_REF(connp); 29808 return; 29809 } 29810 } 29811 /* 29812 * We probably should not send M_CTL message up to 29813 * raw socket. 29814 */ 29815 if (mctl_present) 29816 freeb(first_mp); 29817 29818 /* Initiate IPPF processing here if needed. */ 29819 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29820 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29821 ip_process(IPP_LOCAL_IN, &mp, 29822 recv_ill->ill_phyint->phyint_ifindex); 29823 if (mp == NULL) { 29824 CONN_DEC_REF(connp); 29825 return; 29826 } 29827 } 29828 29829 if (connp->conn_recvif || connp->conn_recvslla || 29830 ((connp->conn_ip_recvpktinfo || 29831 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29832 (flags & IP_FF_IPINFO))) { 29833 int in_flags = 0; 29834 29835 /* 29836 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29837 * IPF_RECVIF. 29838 */ 29839 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29840 in_flags = IPF_RECVIF; 29841 } 29842 if (connp->conn_recvslla) { 29843 in_flags |= IPF_RECVSLLA; 29844 } 29845 if (isv4) { 29846 mp = ip_add_info(mp, recv_ill, in_flags, 29847 IPCL_ZONEID(connp), ipst); 29848 } else { 29849 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29850 if (mp == NULL) { 29851 BUMP_MIB(recv_ill->ill_ip_mib, 29852 ipIfStatsInDiscards); 29853 CONN_DEC_REF(connp); 29854 return; 29855 } 29856 } 29857 } 29858 29859 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29860 /* 29861 * We are sending the IPSEC_IN message also up. Refer 29862 * to comments above this function. 29863 * This is the SOCK_RAW, IPPROTO_SCTP case. 29864 */ 29865 (connp->conn_recv)(connp, mp, NULL); 29866 CONN_DEC_REF(connp); 29867 } 29868 29869 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29870 { \ 29871 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29872 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29873 } 29874 /* 29875 * This function should be called only if all packet processing 29876 * including fragmentation is complete. Callers of this function 29877 * must set mp->b_prev to one of these values: 29878 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29879 * prior to handing over the mp as first argument to this function. 29880 * 29881 * If the ire passed by caller is incomplete, this function 29882 * queues the packet and if necessary, sends ARP request and bails. 29883 * If the ire passed is fully resolved, we simply prepend 29884 * the link-layer header to the packet, do ipsec hw acceleration 29885 * work if necessary, and send the packet out on the wire. 29886 * 29887 * NOTE: IPsec will only call this function with fully resolved 29888 * ires if hw acceleration is involved. 29889 * TODO list : 29890 * a Handle M_MULTIDATA so that 29891 * tcp_multisend->tcp_multisend_data can 29892 * call ip_xmit_v4 directly 29893 * b Handle post-ARP work for fragments so that 29894 * ip_wput_frag can call this function. 29895 */ 29896 ipxmit_state_t 29897 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29898 { 29899 nce_t *arpce; 29900 ipha_t *ipha; 29901 queue_t *q; 29902 int ill_index; 29903 mblk_t *nxt_mp, *first_mp; 29904 boolean_t xmit_drop = B_FALSE; 29905 ip_proc_t proc; 29906 ill_t *out_ill; 29907 int pkt_len; 29908 29909 arpce = ire->ire_nce; 29910 ASSERT(arpce != NULL); 29911 29912 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29913 29914 mutex_enter(&arpce->nce_lock); 29915 switch (arpce->nce_state) { 29916 case ND_REACHABLE: 29917 /* If there are other queued packets, queue this packet */ 29918 if (arpce->nce_qd_mp != NULL) { 29919 if (mp != NULL) 29920 nce_queue_mp_common(arpce, mp, B_FALSE); 29921 mp = arpce->nce_qd_mp; 29922 } 29923 arpce->nce_qd_mp = NULL; 29924 mutex_exit(&arpce->nce_lock); 29925 29926 /* 29927 * Flush the queue. In the common case, where the 29928 * ARP is already resolved, it will go through the 29929 * while loop only once. 29930 */ 29931 while (mp != NULL) { 29932 29933 nxt_mp = mp->b_next; 29934 mp->b_next = NULL; 29935 ASSERT(mp->b_datap->db_type != M_CTL); 29936 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29937 /* 29938 * This info is needed for IPQOS to do COS marking 29939 * in ip_wput_attach_llhdr->ip_process. 29940 */ 29941 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29942 mp->b_prev = NULL; 29943 29944 /* set up ill index for outbound qos processing */ 29945 out_ill = ire_to_ill(ire); 29946 ill_index = out_ill->ill_phyint->phyint_ifindex; 29947 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29948 ill_index, &ipha); 29949 if (first_mp == NULL) { 29950 xmit_drop = B_TRUE; 29951 BUMP_MIB(out_ill->ill_ip_mib, 29952 ipIfStatsOutDiscards); 29953 goto next_mp; 29954 } 29955 29956 /* non-ipsec hw accel case */ 29957 if (io == NULL || !io->ipsec_out_accelerated) { 29958 /* send it */ 29959 q = ire->ire_stq; 29960 if (proc == IPP_FWD_OUT) { 29961 UPDATE_IB_PKT_COUNT(ire); 29962 } else { 29963 UPDATE_OB_PKT_COUNT(ire); 29964 } 29965 ire->ire_last_used_time = lbolt; 29966 29967 if (flow_ctl_enabled || canputnext(q)) { 29968 if (proc == IPP_FWD_OUT) { 29969 29970 BUMP_MIB(out_ill->ill_ip_mib, 29971 ipIfStatsHCOutForwDatagrams); 29972 29973 } 29974 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29975 pkt_len); 29976 29977 DTRACE_IP7(send, mblk_t *, first_mp, 29978 conn_t *, NULL, void_ip_t *, ipha, 29979 __dtrace_ipsr_ill_t *, out_ill, 29980 ipha_t *, ipha, ip6_t *, NULL, int, 29981 0); 29982 29983 putnext(q, first_mp); 29984 } else { 29985 BUMP_MIB(out_ill->ill_ip_mib, 29986 ipIfStatsOutDiscards); 29987 xmit_drop = B_TRUE; 29988 freemsg(first_mp); 29989 } 29990 } else { 29991 /* 29992 * Safety Pup says: make sure this 29993 * is going to the right interface! 29994 */ 29995 ill_t *ill1 = 29996 (ill_t *)ire->ire_stq->q_ptr; 29997 int ifindex = 29998 ill1->ill_phyint->phyint_ifindex; 29999 if (ifindex != 30000 io->ipsec_out_capab_ill_index) { 30001 xmit_drop = B_TRUE; 30002 freemsg(mp); 30003 } else { 30004 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30005 pkt_len); 30006 30007 DTRACE_IP7(send, mblk_t *, first_mp, 30008 conn_t *, NULL, void_ip_t *, ipha, 30009 __dtrace_ipsr_ill_t *, ill1, 30010 ipha_t *, ipha, ip6_t *, NULL, 30011 int, 0); 30012 30013 ipsec_hw_putnext(ire->ire_stq, mp); 30014 } 30015 } 30016 next_mp: 30017 mp = nxt_mp; 30018 } /* while (mp != NULL) */ 30019 if (xmit_drop) 30020 return (SEND_FAILED); 30021 else 30022 return (SEND_PASSED); 30023 30024 case ND_INITIAL: 30025 case ND_INCOMPLETE: 30026 30027 /* 30028 * While we do send off packets to dests that 30029 * use fully-resolved CGTP routes, we do not 30030 * handle unresolved CGTP routes. 30031 */ 30032 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30033 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30034 30035 if (mp != NULL) { 30036 /* queue the packet */ 30037 nce_queue_mp_common(arpce, mp, B_FALSE); 30038 } 30039 30040 if (arpce->nce_state == ND_INCOMPLETE) { 30041 mutex_exit(&arpce->nce_lock); 30042 DTRACE_PROBE3(ip__xmit__incomplete, 30043 (ire_t *), ire, (mblk_t *), mp, 30044 (ipsec_out_t *), io); 30045 return (LOOKUP_IN_PROGRESS); 30046 } 30047 30048 arpce->nce_state = ND_INCOMPLETE; 30049 mutex_exit(&arpce->nce_lock); 30050 /* 30051 * Note that ire_add() (called from ire_forward()) 30052 * holds a ref on the ire until ARP is completed. 30053 */ 30054 30055 ire_arpresolve(ire, ire_to_ill(ire)); 30056 return (LOOKUP_IN_PROGRESS); 30057 default: 30058 ASSERT(0); 30059 mutex_exit(&arpce->nce_lock); 30060 return (LLHDR_RESLV_FAILED); 30061 } 30062 } 30063 30064 #undef UPDATE_IP_MIB_OB_COUNTERS 30065 30066 /* 30067 * Return B_TRUE if the buffers differ in length or content. 30068 * This is used for comparing extension header buffers. 30069 * Note that an extension header would be declared different 30070 * even if all that changed was the next header value in that header i.e. 30071 * what really changed is the next extension header. 30072 */ 30073 boolean_t 30074 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30075 uint_t blen) 30076 { 30077 if (!b_valid) 30078 blen = 0; 30079 30080 if (alen != blen) 30081 return (B_TRUE); 30082 if (alen == 0) 30083 return (B_FALSE); /* Both zero length */ 30084 return (bcmp(abuf, bbuf, alen)); 30085 } 30086 30087 /* 30088 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30089 * Return B_FALSE if memory allocation fails - don't change any state! 30090 */ 30091 boolean_t 30092 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30093 const void *src, uint_t srclen) 30094 { 30095 void *dst; 30096 30097 if (!src_valid) 30098 srclen = 0; 30099 30100 ASSERT(*dstlenp == 0); 30101 if (src != NULL && srclen != 0) { 30102 dst = mi_alloc(srclen, BPRI_MED); 30103 if (dst == NULL) 30104 return (B_FALSE); 30105 } else { 30106 dst = NULL; 30107 } 30108 if (*dstp != NULL) 30109 mi_free(*dstp); 30110 *dstp = dst; 30111 *dstlenp = dst == NULL ? 0 : srclen; 30112 return (B_TRUE); 30113 } 30114 30115 /* 30116 * Replace what is in *dst, *dstlen with the source. 30117 * Assumes ip_allocbuf has already been called. 30118 */ 30119 void 30120 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30121 const void *src, uint_t srclen) 30122 { 30123 if (!src_valid) 30124 srclen = 0; 30125 30126 ASSERT(*dstlenp == srclen); 30127 if (src != NULL && srclen != 0) 30128 bcopy(src, *dstp, srclen); 30129 } 30130 30131 /* 30132 * Free the storage pointed to by the members of an ip6_pkt_t. 30133 */ 30134 void 30135 ip6_pkt_free(ip6_pkt_t *ipp) 30136 { 30137 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30138 30139 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30140 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30141 ipp->ipp_hopopts = NULL; 30142 ipp->ipp_hopoptslen = 0; 30143 } 30144 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30145 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30146 ipp->ipp_rtdstopts = NULL; 30147 ipp->ipp_rtdstoptslen = 0; 30148 } 30149 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30150 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30151 ipp->ipp_dstopts = NULL; 30152 ipp->ipp_dstoptslen = 0; 30153 } 30154 if (ipp->ipp_fields & IPPF_RTHDR) { 30155 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30156 ipp->ipp_rthdr = NULL; 30157 ipp->ipp_rthdrlen = 0; 30158 } 30159 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30160 IPPF_RTHDR); 30161 } 30162