1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <sys/isa_defs.h> 36 #include <sys/types.h> 37 #include <inet/mib2.h> 38 #include <inet/nd.h> 39 #include <sys/atomic.h> 40 #include <net/if_dl.h> 41 #include <net/if.h> 42 #include <netinet/ip.h> 43 #include <netinet/igmp.h> 44 #include <sys/neti.h> 45 #include <sys/hook.h> 46 #include <sys/hook_event.h> 47 #include <sys/hook_impl.h> 48 #include <inet/ip_stack.h> 49 50 #ifdef _KERNEL 51 #include <netinet/ip6.h> 52 #include <sys/avl.h> 53 #include <sys/list.h> 54 #include <sys/vmem.h> 55 #include <sys/squeue.h> 56 #include <net/route.h> 57 #include <sys/systm.h> 58 #include <sys/multidata.h> 59 #include <sys/list.h> 60 #include <net/radix.h> 61 #include <sys/modhash.h> 62 63 #ifdef DEBUG 64 #define CONN_DEBUG 65 #endif 66 67 #define IP_DEBUG 68 /* 69 * The mt-streams(9F) flags for the IP module; put here so that other 70 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 71 * of flags. 72 */ 73 #define IP_DEVMTFLAGS D_MP 74 #endif /* _KERNEL */ 75 76 #define IP_MOD_NAME "ip" 77 #define IP_DEV_NAME "/dev/ip" 78 #define IP6_DEV_NAME "/dev/ip6" 79 80 #define UDP_MOD_NAME "udp" 81 #define UDP_DEV_NAME "/dev/udp" 82 #define UDP6_DEV_NAME "/dev/udp6" 83 84 #define TCP_MOD_NAME "tcp" 85 #define TCP_DEV_NAME "/dev/tcp" 86 #define TCP6_DEV_NAME "/dev/tcp6" 87 88 #define SCTP_MOD_NAME "sctp" 89 90 #ifndef _IPADDR_T 91 #define _IPADDR_T 92 typedef uint32_t ipaddr_t; 93 #endif 94 95 /* Number of bits in an address */ 96 #define IP_ABITS 32 97 #define IPV6_ABITS 128 98 99 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 100 101 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 102 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 103 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 104 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 105 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 106 107 /* 108 * Flag to IP write side to indicate that the appln has sent in a pre-built 109 * IP header. Stored in ipha_ident (which is otherwise zero). 110 */ 111 #define IP_HDR_INCLUDED 0xFFFF 112 113 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 114 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 115 116 #define IPV4_ADDR_LEN 4 117 #define IP_ADDR_LEN IPV4_ADDR_LEN 118 #define IP_ARP_PROTO_TYPE 0x0800 119 120 #define IPV4_VERSION 4 121 #define IP_VERSION IPV4_VERSION 122 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 123 #define IP_SIMPLE_HDR_LENGTH 20 124 #define IP_MAX_HDR_LENGTH 60 125 126 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 127 128 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 129 130 /* 131 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 132 * 2 files should be cleaned up to remove all redundant definitions. 133 */ 134 #define IP_MAXPACKET 65535 135 #define IP_SIMPLE_HDR_VERSION \ 136 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 137 138 #define UDPH_SIZE 8 139 140 /* Leave room for ip_newroute to tack on the src and target addresses */ 141 #define OK_RESOLVER_MP(mp) \ 142 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 143 144 /* 145 * Constants and type definitions to support IP IOCTL commands 146 */ 147 #define IP_IOCTL (('i'<<8)|'p') 148 #define IP_IOC_IRE_DELETE 4 149 #define IP_IOC_IRE_DELETE_NO_REPLY 5 150 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 151 #define IP_IOC_RTS_REQUEST 7 152 153 /* Common definitions used by IP IOCTL data structures */ 154 typedef struct ipllcmd_s { 155 uint_t ipllc_cmd; 156 uint_t ipllc_name_offset; 157 uint_t ipllc_name_length; 158 } ipllc_t; 159 160 /* IP IRE Change Command Structure. */ 161 typedef struct ipic_s { 162 ipllc_t ipic_ipllc; 163 uint_t ipic_ire_type; 164 uint_t ipic_max_frag; 165 uint_t ipic_addr_offset; 166 uint_t ipic_addr_length; 167 uint_t ipic_mask_offset; 168 uint_t ipic_mask_length; 169 uint_t ipic_src_addr_offset; 170 uint_t ipic_src_addr_length; 171 uint_t ipic_ll_hdr_offset; 172 uint_t ipic_ll_hdr_length; 173 uint_t ipic_gateway_addr_offset; 174 uint_t ipic_gateway_addr_length; 175 clock_t ipic_rtt; 176 uint32_t ipic_ssthresh; 177 clock_t ipic_rtt_sd; 178 uchar_t ipic_ire_marks; 179 } ipic_t; 180 181 #define ipic_cmd ipic_ipllc.ipllc_cmd 182 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 183 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 184 185 /* IP IRE Delete Command Structure. */ 186 typedef struct ipid_s { 187 ipllc_t ipid_ipllc; 188 uint_t ipid_ire_type; 189 uint_t ipid_addr_offset; 190 uint_t ipid_addr_length; 191 uint_t ipid_mask_offset; 192 uint_t ipid_mask_length; 193 } ipid_t; 194 195 #define ipid_cmd ipid_ipllc.ipllc_cmd 196 197 #ifdef _KERNEL 198 /* 199 * Temporary state for ip options parser. 200 */ 201 typedef struct ipoptp_s 202 { 203 uint8_t *ipoptp_next; /* next option to look at */ 204 uint8_t *ipoptp_end; /* end of options */ 205 uint8_t *ipoptp_cur; /* start of current option */ 206 uint8_t ipoptp_len; /* length of current option */ 207 uint32_t ipoptp_flags; 208 } ipoptp_t; 209 210 /* 211 * Flag(s) for ipoptp_flags 212 */ 213 #define IPOPTP_ERROR 0x00000001 214 #endif /* _KERNEL */ 215 216 /* Controls forwarding of IP packets, set via ndd */ 217 #define IP_FORWARD_NEVER 0 218 #define IP_FORWARD_ALWAYS 1 219 220 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 221 222 #define IPH_HDR_LENGTH(ipha) \ 223 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 224 225 #define IPH_HDR_VERSION(ipha) \ 226 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 227 228 #ifdef _KERNEL 229 /* 230 * IP reassembly macros. We hide starting and ending offsets in b_next and 231 * b_prev of messages on the reassembly queue. The messages are chained using 232 * b_cont. These macros are used in ip_reassemble() so we don't have to see 233 * the ugly casts and assignments. 234 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 235 * them. 236 */ 237 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 238 #define IP_REASS_SET_START(mp, u) \ 239 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 240 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 241 #define IP_REASS_SET_END(mp, u) \ 242 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 243 244 #define IP_REASS_COMPLETE 0x1 245 #define IP_REASS_PARTIAL 0x2 246 #define IP_REASS_FAILED 0x4 247 248 /* 249 * Test to determine whether this is a module instance of IP or a 250 * driver instance of IP. 251 */ 252 #define CONN_Q(q) (WR(q)->q_next == NULL) 253 254 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 255 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 256 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 257 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp) 258 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts) 259 260 /* 261 * The following two macros are used by IP to get the appropriate 262 * wq and rq for a conn. If it is a TCP conn, then we need 263 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 264 * from a conn directly if it knows that the conn is not TCP. 265 */ 266 #define CONNP_TO_WQ(connp) \ 267 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 268 269 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 270 271 #define GRAB_CONN_LOCK(q) { \ 272 if (q != NULL && CONN_Q(q)) \ 273 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 274 } 275 276 #define RELEASE_CONN_LOCK(q) { \ 277 if (q != NULL && CONN_Q(q)) \ 278 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 279 } 280 281 /* "Congestion controlled" protocol */ 282 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 283 284 /* 285 * Complete the pending operation. Usually an ioctl. Can also 286 * be a bind or option management request that got enqueued 287 * in an ipsq_t. Called on completion of the operation. 288 */ 289 #define CONN_OPER_PENDING_DONE(connp) { \ 290 mutex_enter(&(connp)->conn_lock); \ 291 (connp)->conn_oper_pending_ill = NULL; \ 292 cv_broadcast(&(connp)->conn_refcv); \ 293 mutex_exit(&(connp)->conn_lock); \ 294 CONN_DEC_REF(connp); \ 295 } 296 297 /* 298 * Flags for the various ip_fanout_* routines. 299 */ 300 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 301 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 302 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 303 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 304 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 305 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 306 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 307 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 308 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 309 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 310 311 /* 312 * Following flags are used by IPQoS to determine if policy processing is 313 * required. 314 */ 315 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 316 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 317 318 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 319 #define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */ 320 321 #ifndef IRE_DB_TYPE 322 #define IRE_DB_TYPE M_SIG 323 #endif 324 325 #ifndef IRE_DB_REQ_TYPE 326 #define IRE_DB_REQ_TYPE M_PCSIG 327 #endif 328 329 #ifndef IRE_ARPRESOLVE_TYPE 330 #define IRE_ARPRESOLVE_TYPE M_EVENT 331 #endif 332 333 /* 334 * Values for squeue switch: 335 */ 336 337 #define IP_SQUEUE_ENTER_NODRAIN 1 338 #define IP_SQUEUE_ENTER 2 339 /* 340 * This is part of the interface between Transport provider and 341 * IP which can be used to set policy information. This is usually 342 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 343 * only IPSEC_POLICY_SET is there when it is found in the chain. 344 * The information contained is an struct ipsec_req_t. On success 345 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 346 * IPSEC_POLICY_SET is never returned. 347 */ 348 #define IPSEC_POLICY_SET M_SETOPTS 349 350 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 351 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 352 353 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 354 ((ire)->ire_type != IRE_BROADCAST)) 355 356 /* IP Fragmentation Reassembly Header */ 357 typedef struct ipf_s { 358 struct ipf_s *ipf_hash_next; 359 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 360 uint32_t ipf_ident; /* Ident to match. */ 361 uint8_t ipf_protocol; /* Protocol to match. */ 362 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 363 time_t ipf_timestamp; /* Reassembly start time. */ 364 mblk_t *ipf_mp; /* mblk we live in. */ 365 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 366 int ipf_hole_cnt; /* Number of holes (hard-case). */ 367 int ipf_end; /* Tail end offset (0 -> hard-case). */ 368 uint_t ipf_gen; /* Frag queue generation */ 369 size_t ipf_count; /* Count of bytes used by frag */ 370 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 371 in6_addr_t ipf_v6src; /* IPv6 source address */ 372 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 373 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 374 uint8_t ipf_ecn; /* ECN info for the fragments */ 375 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 376 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 377 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 378 } ipf_t; 379 380 /* 381 * IPv4 Fragments 382 */ 383 #define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \ 384 (((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \ 385 ((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0)) 386 387 #define ipf_src V4_PART_OF_V6(ipf_v6src) 388 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 389 390 typedef enum { 391 IB_PKT = 0x01, 392 OB_PKT = 0x02 393 } ip_pkt_t; 394 395 #define UPDATE_IB_PKT_COUNT(ire)\ 396 { \ 397 (ire)->ire_ib_pkt_count++; \ 398 if ((ire)->ire_ipif != NULL) { \ 399 /* \ 400 * forwarding packet \ 401 */ \ 402 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 403 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 404 else \ 405 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 406 } \ 407 } 408 409 #define UPDATE_OB_PKT_COUNT(ire)\ 410 { \ 411 (ire)->ire_ob_pkt_count++;\ 412 if ((ire)->ire_ipif != NULL) { \ 413 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 414 } \ 415 } 416 417 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 418 { \ 419 switch (ipha->ipha_protocol) { \ 420 case IPPROTO_UDP: \ 421 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 422 break; \ 423 default: \ 424 ip_proto_input(q, mp, ipha, ire, recv_ill, 0); \ 425 break; \ 426 } \ 427 } 428 429 /* 430 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 431 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 432 * This macro is used to age existing nce_t entries. The 433 * nce's will get cleaned up in the following circumstances: 434 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 435 * when memory is low, 436 * - ip_arp_news, when updates are received. 437 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 438 * arp request will need to be triggered from an ND_INITIAL nce. 439 * 440 * Note that the nce state transition follows the pattern: 441 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 442 * after which the nce is deleted when it has expired. 443 * 444 * nce_last is the timestamp that indicates when the nce_res_mp in the 445 * nce_t was last updated to a valid link-layer address. nce_last gets 446 * modified/updated : 447 * - when the nce is created 448 * - every time we get a sane arp response for the nce. 449 */ 450 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 451 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 452 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 453 (ipst)->ips_ip_ire_arp_interval)) 454 455 #endif /* _KERNEL */ 456 457 /* ICMP types */ 458 #define ICMP_ECHO_REPLY 0 459 #define ICMP_DEST_UNREACHABLE 3 460 #define ICMP_SOURCE_QUENCH 4 461 #define ICMP_REDIRECT 5 462 #define ICMP_ECHO_REQUEST 8 463 #define ICMP_ROUTER_ADVERTISEMENT 9 464 #define ICMP_ROUTER_SOLICITATION 10 465 #define ICMP_TIME_EXCEEDED 11 466 #define ICMP_PARAM_PROBLEM 12 467 #define ICMP_TIME_STAMP_REQUEST 13 468 #define ICMP_TIME_STAMP_REPLY 14 469 #define ICMP_INFO_REQUEST 15 470 #define ICMP_INFO_REPLY 16 471 #define ICMP_ADDRESS_MASK_REQUEST 17 472 #define ICMP_ADDRESS_MASK_REPLY 18 473 474 /* ICMP_TIME_EXCEEDED codes */ 475 #define ICMP_TTL_EXCEEDED 0 476 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 477 478 /* ICMP_DEST_UNREACHABLE codes */ 479 #define ICMP_NET_UNREACHABLE 0 480 #define ICMP_HOST_UNREACHABLE 1 481 #define ICMP_PROTOCOL_UNREACHABLE 2 482 #define ICMP_PORT_UNREACHABLE 3 483 #define ICMP_FRAGMENTATION_NEEDED 4 484 #define ICMP_SOURCE_ROUTE_FAILED 5 485 #define ICMP_DEST_NET_UNKNOWN 6 486 #define ICMP_DEST_HOST_UNKNOWN 7 487 #define ICMP_SRC_HOST_ISOLATED 8 488 #define ICMP_DEST_NET_UNREACH_ADMIN 9 489 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 490 #define ICMP_DEST_NET_UNREACH_TOS 11 491 #define ICMP_DEST_HOST_UNREACH_TOS 12 492 493 /* ICMP Header Structure */ 494 typedef struct icmph_s { 495 uint8_t icmph_type; 496 uint8_t icmph_code; 497 uint16_t icmph_checksum; 498 union { 499 struct { /* ECHO request/response structure */ 500 uint16_t u_echo_ident; 501 uint16_t u_echo_seqnum; 502 } u_echo; 503 struct { /* Destination unreachable structure */ 504 uint16_t u_du_zero; 505 uint16_t u_du_mtu; 506 } u_du; 507 struct { /* Parameter problem structure */ 508 uint8_t u_pp_ptr; 509 uint8_t u_pp_rsvd[3]; 510 } u_pp; 511 struct { /* Redirect structure */ 512 ipaddr_t u_rd_gateway; 513 } u_rd; 514 } icmph_u; 515 } icmph_t; 516 517 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 518 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 519 #define icmph_du_zero icmph_u.u_du.u_du_zero 520 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 521 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 522 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 523 524 #define ICMPH_SIZE 8 525 526 /* 527 * Minimum length of transport layer header included in an ICMP error 528 * message for it to be considered valid. 529 */ 530 #define ICMP_MIN_TP_HDR_LEN 8 531 532 /* Aligned IP header */ 533 typedef struct ipha_s { 534 uint8_t ipha_version_and_hdr_length; 535 uint8_t ipha_type_of_service; 536 uint16_t ipha_length; 537 uint16_t ipha_ident; 538 uint16_t ipha_fragment_offset_and_flags; 539 uint8_t ipha_ttl; 540 uint8_t ipha_protocol; 541 uint16_t ipha_hdr_checksum; 542 ipaddr_t ipha_src; 543 ipaddr_t ipha_dst; 544 } ipha_t; 545 546 /* 547 * IP Flags 548 * 549 * Some of these constant names are copied for the DTrace IP provider in 550 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept 551 * in sync. 552 */ 553 #define IPH_DF 0x4000 /* Don't fragment */ 554 #define IPH_MF 0x2000 /* More fragments to come */ 555 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 556 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 557 558 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 559 #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */ 560 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 561 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 562 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 563 564 struct ill_s; 565 566 typedef boolean_t ip_v6intfid_func_t(struct ill_s *, in6_addr_t *); 567 typedef boolean_t ip_v6mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *, 568 in6_addr_t *); 569 typedef boolean_t ip_v4mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *, 570 ipaddr_t *); 571 572 /* IP Mac info structure */ 573 typedef struct ip_m_s { 574 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 575 int ip_m_type; /* From <net/if_types.h> */ 576 ip_v4mapinfo_func_t *ip_m_v4mapinfo; 577 ip_v6mapinfo_func_t *ip_m_v6mapinfo; 578 ip_v6intfid_func_t *ip_m_v6intfid; 579 } ip_m_t; 580 581 /* 582 * The following functions attempt to reduce the link layer dependency 583 * of the IP stack. The current set of link specific operations are: 584 * a. map from IPv4 class D (224.0/4) multicast address range to the link 585 * layer multicast address range. 586 * b. map from IPv6 multicast address range (ff00::/8) to the link 587 * layer multicast address range. 588 * c. derive the default IPv6 interface identifier from the interface. 589 * d. derive the default IPv6 destination interface identifier from 590 * the interface (point-to-point only). 591 */ 592 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 593 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 594 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 595 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 596 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 597 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 598 #define MEDIA_V6INTFID(ip_m, ill, v6ptr) \ 599 (((ip_m)->ip_m_v6intfid != NULL) && \ 600 (*(ip_m)->ip_m_v6intfid)(ill, v6ptr)) 601 #define MEDIA_V6DESTINTFID(ip_m, ill, v6ptr) \ 602 (((ip_m)->ip_m_v6destintfid != NULL) && \ 603 (*(ip_m)->ip_m_v6destintfid)(ill, v6ptr)) 604 605 /* Router entry types */ 606 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 607 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 608 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 609 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 610 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 611 #define IRE_CACHE 0x0020 /* Cached Route entry */ 612 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 613 /* net without any address mapping. */ 614 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 615 /* net with resolver. */ 616 #define IRE_HOST 0x0100 /* Host route entry */ 617 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 618 619 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 620 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 621 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 622 IRE_LOOPBACK) 623 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 624 625 /* 626 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 627 * the bucket should delete this IRE from this bucket. 628 */ 629 #define IRE_MARK_CONDEMNED 0x0001 630 631 /* 632 * An IRE with IRE_MARK_TESTHIDDEN is used by in.mpathd for test traffic. It 633 * can only be looked up by requesting MATCH_IRE_MARK_TESTHIDDEN. 634 */ 635 #define IRE_MARK_TESTHIDDEN 0x0004 636 637 /* 638 * An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing 639 * interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE 640 * cache table. 641 */ 642 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 643 644 /* 645 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 646 * either for forwarding a packet or has not been used for sending 647 * traffic on TCP connections terminated on this system. In both 648 * cases, this IRE is the first to go when IRE is being cleaned up. 649 */ 650 #define IRE_MARK_TEMPORARY 0x0010 651 652 /* 653 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 654 * this mark, additional atomic checks need to be performed. For eg: by the 655 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 656 * usesrc grouping could have changed in which case we want to fail adding 657 * the IRE_CACHE entry 658 */ 659 #define IRE_MARK_USESRC_CHECK 0x0020 660 661 /* 662 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 663 * routing table lookup for the destination is bypassed and the packet is 664 * sent directly to the specified nexthop. The associated IRE_CACHE entries 665 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 666 * in regular ire cache lookups. 667 */ 668 #define IRE_MARK_PRIVATE_ADDR 0x0040 669 670 /* 671 * When we send an ARP resolution query for the nexthop gateway's ire, 672 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 673 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 674 * indicates that information from ARP has not been transferred to a 675 * permanent IRE_CACHE entry. The flag is reset only when the 676 * information is successfully transferred to an ire_cache entry (in 677 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 678 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 679 * require that the resources (incomplete ire_cache and/or nce) must 680 * be cleaned up. The free callback routine (ire_freemblk()) checks 681 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 682 * will need to be cleaned up or not. 683 */ 684 685 #define IRE_MARK_UNCACHED 0x0080 686 687 /* 688 * The comment below (and for other netstack_t references) refers 689 * to the fact that we only do netstack_hold in particular cases, 690 * such as the references from open streams (ill_t and conn_t's 691 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 692 * ire_t's when an ill goes away. 693 */ 694 typedef struct ire_expire_arg_s { 695 int iea_flush_flag; 696 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 697 } ire_expire_arg_t; 698 699 /* Flags with ire_expire routine */ 700 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 701 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 702 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 703 704 /* Arguments to ire_flush_cache() */ 705 #define IRE_FLUSH_DELETE 0 706 #define IRE_FLUSH_ADD 1 707 708 /* 709 * Open/close synchronization flags. 710 * These are kept in a separate field in the conn and the synchronization 711 * depends on the atomic 32 bit access to that field. 712 */ 713 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 714 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 715 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 716 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 717 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 718 719 /* Used to check connection state flags before caching the IRE */ 720 #define CONN_CACHE_IRE(connp) \ 721 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 722 723 /* 724 * Parameter to ip_output giving the identity of the caller. 725 * IP_WSRV means the packet was enqueued in the STREAMS queue 726 * due to flow control and is now being reprocessed in the context of 727 * the STREAMS service procedure, consequent to flow control relief. 728 * IRE_SEND means the packet is being reprocessed consequent to an 729 * ire cache creation and addition and this may or may not be happening 730 * in the service procedure context. Anything other than the above 2 731 * cases is identified as IP_WPUT. Most commonly this is the case of 732 * packets coming down from the application. 733 */ 734 #ifdef _KERNEL 735 #define IP_WSRV 1 /* Called from ip_wsrv */ 736 #define IP_WPUT 2 /* Called from ip_wput */ 737 #define IRE_SEND 3 /* Called from ire_send */ 738 739 /* 740 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 741 */ 742 #define MAX_FILTER_SIZE 64 743 744 typedef struct slist_s { 745 int sl_numsrc; 746 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 747 } slist_t; 748 749 /* 750 * Following struct is used to maintain retransmission state for 751 * a multicast group. One rtx_state_t struct is an in-line field 752 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 753 * alloc'd as needed. 754 */ 755 typedef struct rtx_state_s { 756 uint_t rtx_timer; /* retrans timer */ 757 int rtx_cnt; /* retrans count */ 758 int rtx_fmode_cnt; /* retrans count for fmode change */ 759 slist_t *rtx_allow; 760 slist_t *rtx_block; 761 } rtx_state_t; 762 763 /* 764 * Used to construct list of multicast address records that will be 765 * sent in a single listener report. 766 */ 767 typedef struct mrec_s { 768 struct mrec_s *mrec_next; 769 uint8_t mrec_type; 770 uint8_t mrec_auxlen; /* currently unused */ 771 in6_addr_t mrec_group; 772 slist_t mrec_srcs; 773 } mrec_t; 774 775 /* Group membership list per upper conn */ 776 /* 777 * XXX add ilg info for ifaddr/ifindex. 778 * XXX can we make ilg survive an ifconfig unplumb + plumb 779 * by setting the ipif/ill to NULL and recover that later? 780 * 781 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 782 * address (ipif). 783 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 784 * index (phyint->phyint_ifindex). 785 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 786 * 787 * ilg records the state of multicast memberships of a socket end point. 788 * ilm records the state of multicast memberships with the driver and is 789 * maintained per interface. 790 * 791 * There is no direct link between a given ilg and ilm. If the 792 * application has joined a group G with ifindex I, we will have 793 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 794 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 795 * To delete the membership: 796 * 797 * a) Search for ilg matching on G and I with ilg_v6group 798 * and ilg_ill. Delete ilg_ill. 799 * b) Search the corresponding ilm matching on G and I with 800 * ilm_v6addr and ilm_ill. Delete ilm. 801 * 802 * For IPv4 the only difference is that we look using ipifs, not ills. 803 */ 804 805 /* 806 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 807 * by a thread executing in the ipsq. In other words add/delete of a 808 * multicast group has to execute in the ipsq. 809 */ 810 #define ILG_DELETED 0x1 /* ilg_flags */ 811 typedef struct ilg_s { 812 in6_addr_t ilg_v6group; 813 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 814 struct ill_s *ilg_ill; /* Used by IPv6 */ 815 uint_t ilg_flags; 816 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 817 slist_t *ilg_filter; 818 } ilg_t; 819 820 /* 821 * Multicast address list entry for ill. 822 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 823 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 824 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 825 * 826 * The comment below (and for other netstack_t references) refers 827 * to the fact that we only do netstack_hold in particular cases, 828 * such as the references from open streams (ill_t and conn_t's 829 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 830 * ire_t's when an ill goes away. 831 */ 832 #define ILM_DELETED 0x1 /* ilm_flags */ 833 typedef struct ilm_s { 834 in6_addr_t ilm_v6addr; 835 int ilm_refcnt; 836 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 837 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 838 struct ilm_s *ilm_next; /* Linked list for each ill */ 839 uint_t ilm_state; /* state of the membership */ 840 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 841 uint_t ilm_flags; 842 boolean_t ilm_notify_driver; /* Need to notify the driver */ 843 zoneid_t ilm_zoneid; 844 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 845 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 846 slist_t *ilm_filter; /* source filter list */ 847 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 848 rtx_state_t ilm_rtx; /* SCR retransmission state */ 849 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 850 } ilm_t; 851 852 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 853 854 typedef struct ilm_walker { 855 struct ill_s *ilw_ill; /* associated ill */ 856 struct ill_s *ilw_ipmp_ill; /* associated ipmp ill (if any) */ 857 struct ill_s *ilw_walk_ill; /* current ill being walked */ 858 } ilm_walker_t; 859 860 /* 861 * Soft reference to an IPsec SA. 862 * 863 * On relative terms, conn's can be persistent (living as long as the 864 * processes which create them), while SA's are ephemeral (dying when 865 * they hit their time-based or byte-based lifetimes). 866 * 867 * We could hold a hard reference to an SA from an ipsec_latch_t, 868 * but this would cause expired SA's to linger for a potentially 869 * unbounded time. 870 * 871 * Instead, we remember the hash bucket number and bucket generation 872 * in addition to the pointer. The bucket generation is incremented on 873 * each deletion. 874 */ 875 typedef struct ipsa_ref_s 876 { 877 struct ipsa_s *ipsr_sa; 878 struct isaf_s *ipsr_bucket; 879 uint64_t ipsr_gen; 880 } ipsa_ref_t; 881 882 /* 883 * IPsec "latching" state. 884 * 885 * In the presence of IPsec policy, fully-bound conn's bind a connection 886 * to more than just the 5-tuple, but also a specific IPsec action and 887 * identity-pair. 888 * 889 * As an optimization, we also cache soft references to IPsec SA's 890 * here so that we can fast-path around most of the work needed for 891 * outbound IPsec SA selection. 892 * 893 * Were it not for TCP's detached connections, this state would be 894 * in-line in conn_t; instead, this is in a separate structure so it 895 * can be handed off to TCP when a connection is detached. 896 */ 897 typedef struct ipsec_latch_s 898 { 899 kmutex_t ipl_lock; 900 uint32_t ipl_refcnt; 901 902 uint64_t ipl_unique; 903 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 904 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 905 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 906 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 907 cred_t *ipl_local_id; 908 struct ipsid_s *ipl_local_cid; 909 struct ipsid_s *ipl_remote_cid; 910 unsigned int 911 ipl_out_action_latched : 1, 912 ipl_in_action_latched : 1, 913 ipl_out_policy_latched : 1, 914 ipl_in_policy_latched : 1, 915 916 ipl_ids_latched : 1, 917 918 ipl_pad_to_bit_31 : 27; 919 920 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 921 922 } ipsec_latch_t; 923 924 #define IPLATCH_REFHOLD(ipl) { \ 925 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 926 ASSERT((ipl)->ipl_refcnt != 0); \ 927 } 928 929 #define IPLATCH_REFRELE(ipl, ns) { \ 930 ASSERT((ipl)->ipl_refcnt != 0); \ 931 membar_exit(); \ 932 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 933 iplatch_free(ipl, ns); \ 934 } 935 936 /* 937 * peer identity structure. 938 */ 939 940 typedef struct conn_s conn_t; 941 942 /* 943 * The old IP client structure "ipc_t" is gone. All the data is stored in the 944 * connection structure "conn_t" now. The mapping of old and new fields looks 945 * like this: 946 * 947 * ipc_ulp conn_ulp 948 * ipc_rq conn_rq 949 * ipc_wq conn_wq 950 * 951 * ipc_laddr conn_src 952 * ipc_faddr conn_rem 953 * ipc_v6laddr conn_srcv6 954 * ipc_v6faddr conn_remv6 955 * 956 * ipc_lport conn_lport 957 * ipc_fport conn_fport 958 * ipc_ports conn_ports 959 * 960 * ipc_policy conn_policy 961 * ipc_latch conn_latch 962 * 963 * ipc_irc_lock conn_lock 964 * ipc_ire_cache conn_ire_cache 965 * 966 * ipc_state_flags conn_state_flags 967 * ipc_outgoing_ill conn_outgoing_ill 968 * 969 * ipc_dontroute conn_dontroute 970 * ipc_loopback conn_loopback 971 * ipc_broadcast conn_broadcast 972 * ipc_reuseaddr conn_reuseaddr 973 * 974 * ipc_multicast_loop conn_multicast_loop 975 * ipc_multi_router conn_multi_router 976 * ipc_draining conn_draining 977 * 978 * ipc_did_putbq conn_did_putbq 979 * ipc_unspec_src conn_unspec_src 980 * ipc_policy_cached conn_policy_cached 981 * 982 * ipc_in_enforce_policy conn_in_enforce_policy 983 * ipc_out_enforce_policy conn_out_enforce_policy 984 * ipc_af_isv6 conn_af_isv6 985 * ipc_pkt_isv6 conn_pkt_isv6 986 * 987 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 988 * 989 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 990 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 991 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 992 * 993 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 994 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 995 * ipc_fully_bound conn_fully_bound 996 * 997 * ipc_recvif conn_recvif 998 * 999 * ipc_recvslla conn_recvslla 1000 * ipc_acking_unbind conn_acking_unbind 1001 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1002 * 1003 * ipc_proto conn_proto 1004 * ipc_incoming_ill conn_incoming_ill 1005 * ipc_pending_ill conn_pending_ill 1006 * ipc_unbind_mp conn_unbind_mp 1007 * ipc_ilg conn_ilg 1008 * ipc_ilg_allocated conn_ilg_allocated 1009 * ipc_ilg_inuse conn_ilg_inuse 1010 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1011 * ipc_refcv conn_refcv 1012 * ipc_multicast_ipif conn_multicast_ipif 1013 * ipc_multicast_ill conn_multicast_ill 1014 * ipc_drain_next conn_drain_next 1015 * ipc_drain_prev conn_drain_prev 1016 * ipc_idl conn_idl 1017 */ 1018 1019 /* 1020 * This is used to match an inbound/outbound datagram with policy. 1021 */ 1022 typedef struct ipsec_selector { 1023 in6_addr_t ips_local_addr_v6; 1024 in6_addr_t ips_remote_addr_v6; 1025 uint16_t ips_local_port; 1026 uint16_t ips_remote_port; 1027 uint8_t ips_icmp_type; 1028 uint8_t ips_icmp_code; 1029 uint8_t ips_protocol; 1030 uint8_t ips_isv4 : 1, 1031 ips_is_icmp_inv_acq: 1; 1032 } ipsec_selector_t; 1033 1034 /* 1035 * Note that we put v4 addresses in the *first* 32-bit word of the 1036 * selector rather than the last to simplify the prefix match/mask code 1037 * in spd.c 1038 */ 1039 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1040 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1041 1042 /* Values used in IP by IPSEC Code */ 1043 #define IPSEC_OUTBOUND B_TRUE 1044 #define IPSEC_INBOUND B_FALSE 1045 1046 /* 1047 * There are two variants in policy failures. The packet may come in 1048 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1049 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1050 */ 1051 #define IPSEC_POLICY_NOT_NEEDED 0 1052 #define IPSEC_POLICY_MISMATCH 1 1053 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1054 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1055 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1056 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1057 1058 /* 1059 * Folowing macro is used whenever the code does not know whether there 1060 * is a M_CTL present in the front and it needs to examine the actual mp 1061 * i.e the IP header. As a M_CTL message could be in the front, this 1062 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1063 * mp is not present, both first_mp and mp point to the same message. 1064 */ 1065 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1066 (first_mp) = (mp); \ 1067 if ((mp)->b_datap->db_type == M_CTL) { \ 1068 (mp) = (mp)->b_cont; \ 1069 (mctl_present) = B_TRUE; \ 1070 } else { \ 1071 (mctl_present) = B_FALSE; \ 1072 } 1073 1074 /* 1075 * Check with IPSEC inbound policy if 1076 * 1077 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1078 * 2) Or if we have not cached policy on the conn and the global policy is 1079 * non-empty. 1080 */ 1081 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1082 ((connp)->conn_in_enforce_policy || \ 1083 (!((connp)->conn_policy_cached) && \ 1084 (ipss)->ipsec_inbound_v4_policy_present)) 1085 1086 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1087 ((connp)->conn_in_enforce_policy || \ 1088 (!(connp)->conn_policy_cached && \ 1089 (ipss)->ipsec_inbound_v6_policy_present)) 1090 1091 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1092 ((connp)->conn_out_enforce_policy || \ 1093 (!((connp)->conn_policy_cached) && \ 1094 (ipss)->ipsec_outbound_v4_policy_present)) 1095 1096 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1097 ((connp)->conn_out_enforce_policy || \ 1098 (!(connp)->conn_policy_cached && \ 1099 (ipss)->ipsec_outbound_v6_policy_present)) 1100 1101 /* 1102 * Information cached in IRE for upper layer protocol (ULP). 1103 * 1104 * Notice that ire_max_frag is not included in the iulp_t structure, which 1105 * it may seem that it should. But ire_max_frag cannot really be cached. It 1106 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1107 * it. But currently, we do not do that. 1108 */ 1109 typedef struct iulp_s { 1110 boolean_t iulp_set; /* Is any metric set? */ 1111 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1112 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1113 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1114 uint32_t iulp_spipe; /* Send pipe size. */ 1115 uint32_t iulp_rpipe; /* Receive pipe size. */ 1116 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1117 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1118 uint32_t 1119 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1120 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1121 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1122 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1123 1124 iulp_not_used : 28; 1125 } iulp_t; 1126 1127 /* Zero iulp_t. */ 1128 extern const iulp_t ire_uinfo_null; 1129 1130 /* 1131 * The conn drain list structure. 1132 * The list is protected by idl_lock. Each conn_t inserted in the list 1133 * points back at this idl_t using conn_idl. IP primes the draining of the 1134 * conns queued in these lists, by qenabling the 1st conn of each list. This 1135 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1136 * of ip_wsrv successively qenables the next conn in the list. 1137 * idl_lock protects all other members of idl_t and conn_drain_next 1138 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1139 * flag of the conn_t and conn_idl. 1140 */ 1141 typedef struct idl_s { 1142 conn_t *idl_conn; /* Head of drain list */ 1143 kmutex_t idl_lock; /* Lock for this list */ 1144 conn_t *idl_conn_draining; /* conn that is draining */ 1145 uint32_t 1146 idl_repeat : 1, /* Last conn must re-enable */ 1147 /* drain list again */ 1148 idl_unused : 31; 1149 } idl_t; 1150 1151 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1152 /* 1153 * Interface route structure which holds the necessary information to recreate 1154 * routes that are tied to an interface (namely where ire_ipif != NULL). 1155 * These routes which were initially created via a routing socket or via the 1156 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1157 * traditional interface routes. When an interface comes back up after being 1158 * marked down, this information will be used to recreate the routes. These 1159 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1160 */ 1161 typedef struct ifrt_s { 1162 ushort_t ifrt_type; /* Type of IRE */ 1163 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1164 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1165 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1166 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1167 uint32_t ifrt_flags; /* flags related to route */ 1168 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1169 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1170 } ifrt_t; 1171 1172 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1173 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1174 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1175 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1176 1177 /* Number of IP addresses that can be hosted on a physical interface */ 1178 #define MAX_ADDRS_PER_IF 8192 1179 /* 1180 * Number of Source addresses to be considered for source address 1181 * selection. Used by ipif_select_source[_v6]. 1182 */ 1183 #define MAX_IPIF_SELECT_SOURCE 50 1184 1185 #ifdef IP_DEBUG 1186 /* 1187 * Trace refholds and refreles for debugging. 1188 */ 1189 #define TR_STACK_DEPTH 14 1190 typedef struct tr_buf_s { 1191 int tr_depth; 1192 clock_t tr_time; 1193 pc_t tr_stack[TR_STACK_DEPTH]; 1194 } tr_buf_t; 1195 1196 typedef struct th_trace_s { 1197 int th_refcnt; 1198 uint_t th_trace_lastref; 1199 kthread_t *th_id; 1200 #define TR_BUF_MAX 38 1201 tr_buf_t th_trbuf[TR_BUF_MAX]; 1202 } th_trace_t; 1203 1204 typedef struct th_hash_s { 1205 list_node_t thh_link; 1206 mod_hash_t *thh_hash; 1207 ip_stack_t *thh_ipst; 1208 } th_hash_t; 1209 #endif 1210 1211 /* The following are ipif_state_flags */ 1212 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1213 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1214 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1215 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1216 1217 /* IP interface structure, one per local address */ 1218 typedef struct ipif_s { 1219 struct ipif_s *ipif_next; 1220 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1221 int ipif_id; /* Logical unit number */ 1222 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1223 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1224 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1225 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1226 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1227 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1228 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1229 uint64_t ipif_flags; /* Interface flags. */ 1230 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1231 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1232 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1233 /* prevent awkward out of mem */ 1234 /* condition later */ 1235 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1236 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1237 /* on this interface so that they */ 1238 /* can survive ifconfig down. */ 1239 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1240 1241 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1242 /* will be reported on. Used when */ 1243 /* handling an igmp timeout. */ 1244 1245 /* 1246 * The packet counts in the ipif contain the sum of the 1247 * packet counts in dead IREs that were affiliated with 1248 * this ipif. 1249 */ 1250 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1251 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1252 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1253 /* Exclusive bit fields, protected by ipsq_t */ 1254 unsigned int 1255 ipif_multicast_up : 1, /* ipif_multicast_up() successful */ 1256 ipif_was_up : 1, /* ipif was up before */ 1257 ipif_addr_ready : 1, /* DAD is done */ 1258 ipif_was_dup : 1, /* DAD had failed */ 1259 1260 ipif_joined_allhosts : 1, /* allhosts joined */ 1261 ipif_pad_to_31 : 27; 1262 1263 uint_t ipif_seqid; /* unique index across all ills */ 1264 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1265 uint_t ipif_refcnt; /* active consistent reader cnt */ 1266 1267 /* Number of ire's and ilm's referencing this ipif */ 1268 uint_t ipif_ire_cnt; 1269 uint_t ipif_ilm_cnt; 1270 1271 uint_t ipif_saved_ire_cnt; 1272 zoneid_t ipif_zoneid; /* zone ID number */ 1273 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1274 boolean_t ipif_trace_disable; /* True when alloc fails */ 1275 /* 1276 * For an IPMP interface, ipif_bound_ill tracks the ill whose hardware 1277 * information this ipif is associated with via ARP/NDP. We can use 1278 * an ill pointer (rather than an index) because only ills that are 1279 * part of a group will be pointed to, and an ill cannot disappear 1280 * while it's in a group. 1281 */ 1282 struct ill_s *ipif_bound_ill; 1283 struct ipif_s *ipif_bound_next; /* bound ipif chain */ 1284 boolean_t ipif_bound; /* B_TRUE if we successfully bound */ 1285 } ipif_t; 1286 1287 /* 1288 * IPIF_FREE_OK() means that there are no incoming references 1289 * to the ipif. Incoming refs would prevent the ipif from being freed. 1290 */ 1291 #define IPIF_FREE_OK(ipif) \ 1292 ((ipif)->ipif_ire_cnt == 0 && (ipif)->ipif_ilm_cnt == 0) 1293 /* 1294 * IPIF_DOWN_OK() determines whether the incoming pointer reference counts 1295 * would permit the ipif to be considered quiescent. In order for 1296 * an ipif or ill to be considered quiescent, the ire and nce references 1297 * to that ipif/ill must be zero. 1298 * 1299 * We do not require the ilm references to go to zero for quiescence 1300 * because the quiescence checks are done to ensure that 1301 * outgoing packets do not use addresses from the ipif/ill after it 1302 * has been marked down, and incoming packets to addresses on a 1303 * queiscent interface are rejected. This implies that all the 1304 * ire/nce's using that source address need to be deleted and future 1305 * creation of any ires using that source address must be prevented. 1306 * Similarly incoming unicast packets destined to the 'down' address 1307 * will not be accepted once that ire is gone. However incoming 1308 * multicast packets are not destined to the downed address. 1309 * They are only related to the ill in question. Furthermore 1310 * the current API behavior allows applications to join or leave 1311 * multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a 1312 * down address. Therefore the ilm references are not included in 1313 * the _DOWN_OK macros. 1314 */ 1315 #define IPIF_DOWN_OK(ipif) ((ipif)->ipif_ire_cnt == 0) 1316 1317 /* 1318 * The following table lists the protection levels of the various members 1319 * of the ipif_t. The following notation is used. 1320 * 1321 * Write once - Written to only once at the time of bringing up 1322 * the interface and can be safely read after the bringup without any lock. 1323 * 1324 * ipsq - Need to execute in the ipsq to perform the indicated access. 1325 * 1326 * ill_lock - Need to hold this mutex to perform the indicated access. 1327 * 1328 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1329 * write access respectively. 1330 * 1331 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1332 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1333 * 1334 * Table of ipif_t members and their protection 1335 * 1336 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1337 * ill_g_lock ill_g_lock 1338 * ipif_ill ipsq + down ipif write once 1339 * ipif_id ipsq + down ipif write once 1340 * ipif_mtu ipsq 1341 * ipif_v6lcl_addr ipsq + down ipif up ipif 1342 * ipif_v6src_addr ipsq + down ipif up ipif 1343 * ipif_v6subnet ipsq + down ipif up ipif 1344 * ipif_v6net_mask ipsq + down ipif up ipif 1345 * 1346 * ipif_v6brd_addr 1347 * ipif_v6pp_dst_addr 1348 * ipif_flags ill_lock ill_lock 1349 * ipif_metric 1350 * ipif_ire_type ipsq + down ill up ill 1351 * 1352 * ipif_arp_del_mp ipsq ipsq 1353 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1354 * ipif_igmp_rpt ipsq ipsq 1355 * 1356 * ipif_fo_pkt_count Approx 1357 * ipif_ib_pkt_count Approx 1358 * ipif_ob_pkt_count Approx 1359 * 1360 * bit fields ill_lock ill_lock 1361 * 1362 * ipif_seqid ipsq Write once 1363 * 1364 * ipif_state_flags ill_lock ill_lock 1365 * ipif_refcnt ill_lock ill_lock 1366 * ipif_ire_cnt ill_lock ill_lock 1367 * ipif_ilm_cnt ill_lock ill_lock 1368 * ipif_saved_ire_cnt 1369 * 1370 * ipif_bound_ill ipsq + ipmp_lock ipsq OR ipmp_lock 1371 * ipif_bound_next ipsq ipsq 1372 * ipif_bound ipsq ipsq 1373 */ 1374 1375 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1376 1377 #ifdef DEBUG 1378 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1379 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1380 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1381 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1382 #else 1383 #define IPIF_TRACE_REF(ipif) 1384 #define ILL_TRACE_REF(ill) 1385 #define IPIF_UNTRACE_REF(ipif) 1386 #define ILL_UNTRACE_REF(ill) 1387 #endif 1388 1389 /* IPv4 compatibility macros */ 1390 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1391 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1392 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1393 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1394 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1395 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1396 1397 /* Macros for easy backreferences to the ill. */ 1398 #define ipif_wq ipif_ill->ill_wq 1399 #define ipif_rq ipif_ill->ill_rq 1400 #define ipif_net_type ipif_ill->ill_net_type 1401 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1402 #define ipif_type ipif_ill->ill_type 1403 #define ipif_isv6 ipif_ill->ill_isv6 1404 1405 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1406 1407 /* 1408 * mode value for ip_ioctl_finish for finishing an ioctl 1409 */ 1410 #define CONN_CLOSE 1 /* No mi_copy */ 1411 #define COPYOUT 2 /* do an mi_copyout if needed */ 1412 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1413 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1414 1415 /* 1416 * The IP-MT design revolves around the serialization objects ipsq_t (IPSQ) 1417 * and ipxop_t (exclusive operation or "xop"). Becoming "writer" on an IPSQ 1418 * ensures that no other threads can become "writer" on any IPSQs sharing that 1419 * IPSQ's xop until the writer thread is done. 1420 * 1421 * Each phyint points to one IPSQ that remains fixed over the phyint's life. 1422 * Each IPSQ points to one xop that can change over the IPSQ's life. If a 1423 * phyint is *not* in an IPMP group, then its IPSQ will refer to the IPSQ's 1424 * "own" xop (ipsq_ownxop). If a phyint *is* part of an IPMP group, then its 1425 * IPSQ will refer to the "group" xop, which is shorthand for the xop of the 1426 * IPSQ of the IPMP meta-interface's phyint. Thus, all phyints that are part 1427 * of the same IPMP group will have their IPSQ's point to the group xop, and 1428 * thus becoming "writer" on any phyint in the group will prevent any other 1429 * writer on any other phyint in the group. All IPSQs sharing the same xop 1430 * are chained together through ipsq_next (in the degenerate common case, 1431 * ipsq_next simply refers to itself). Note that the group xop is guaranteed 1432 * to exist at least as long as there are members in the group, since the IPMP 1433 * meta-interface can only be destroyed if the group is empty. 1434 * 1435 * Incoming exclusive operation requests are enqueued on the IPSQ they arrived 1436 * on rather than the xop. This makes switching xop's (as would happen when a 1437 * phyint leaves an IPMP group) simple, because after the phyint leaves the 1438 * group, any operations enqueued on its IPSQ can be safely processed with 1439 * respect to its new xop, and any operations enqueued on the IPSQs of its 1440 * former group can be processed with respect to their existing group xop. 1441 * Even so, switching xops is a subtle dance; see ipsq_dq() for details. 1442 * 1443 * An IPSQ's "own" xop is embedded within the IPSQ itself since they have have 1444 * identical lifetimes, and because doing so simplifies pointer management. 1445 * While each phyint and IPSQ point to each other, it is not possible to free 1446 * the IPSQ when the phyint is freed, since we may still *inside* the IPSQ 1447 * when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the 1448 * phyint is freed, and the IPSQ free is later done in ipsq_exit(). 1449 * 1450 * ipsq_t synchronization: read write 1451 * 1452 * ipsq_xopq_mphead ipx_lock ipx_lock 1453 * ipsq_xopq_mptail ipx_lock ipx_lock 1454 * ipsq_xop_switch_mp ipsq_lock ipsq_lock 1455 * ipsq_phyint write once write once 1456 * ipsq_next RW_READER ill_g_lock RW_WRITER ill_g_lock 1457 * ipsq_xop ipsq_lock or ipsq ipsq_lock + ipsq 1458 * ipsq_swxop ipsq ipsq 1459 * ipsq_ownxop see ipxop_t see ipxop_t 1460 * ipsq_ipst write once write once 1461 * 1462 * ipxop_t synchronization: read write 1463 * 1464 * ipx_writer ipx_lock ipx_lock 1465 * ipx_xop_queued ipx_lock ipx_lock 1466 * ipx_mphead ipx_lock ipx_lock 1467 * ipx_mptail ipx_lock ipx_lock 1468 * ipx_ipsq write once write once 1469 * ips_ipsq_queued ipx_lock ipx_lock 1470 * ipx_waitfor ipsq or ipx_lock ipsq + ipx_lock 1471 * ipx_reentry_cnt ipsq or ipx_lock ipsq + ipx_lock 1472 * ipx_current_done ipsq ipsq 1473 * ipx_current_ioctl ipsq ipsq 1474 * ipx_current_ipif ipsq or ipx_lock ipsq + ipx_lock 1475 * ipx_pending_ipif ipsq or ipx_lock ipsq + ipx_lock 1476 * ipx_pending_mp ipsq or ipx_lock ipsq + ipx_lock 1477 * ipx_forced ipsq ipsq 1478 * ipx_depth ipsq ipsq 1479 * ipx_stack ipsq ipsq 1480 */ 1481 typedef struct ipxop_s { 1482 kmutex_t ipx_lock; /* see above */ 1483 kthread_t *ipx_writer; /* current owner */ 1484 mblk_t *ipx_mphead; /* messages tied to this op */ 1485 mblk_t *ipx_mptail; 1486 struct ipsq_s *ipx_ipsq; /* associated ipsq */ 1487 boolean_t ipx_ipsq_queued; /* ipsq using xop has queued op */ 1488 int ipx_waitfor; /* waiting; values encoded below */ 1489 int ipx_reentry_cnt; 1490 boolean_t ipx_current_done; /* is the current operation done? */ 1491 int ipx_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1492 ipif_t *ipx_current_ipif; /* ipif for current op */ 1493 ipif_t *ipx_pending_ipif; /* ipif for ipsq_pending_mp */ 1494 mblk_t *ipx_pending_mp; /* current ioctl mp while waiting */ 1495 boolean_t ipx_forced; /* debugging aid */ 1496 #ifdef DEBUG 1497 int ipx_depth; /* debugging aid */ 1498 #define IPX_STACK_DEPTH 15 1499 pc_t ipx_stack[IPX_STACK_DEPTH]; /* debugging aid */ 1500 #endif 1501 } ipxop_t; 1502 1503 typedef struct ipsq_s { 1504 kmutex_t ipsq_lock; /* see above */ 1505 mblk_t *ipsq_switch_mp; /* op to handle right after switch */ 1506 mblk_t *ipsq_xopq_mphead; /* list of excl ops (mostly ioctls) */ 1507 mblk_t *ipsq_xopq_mptail; 1508 struct phyint *ipsq_phyint; /* associated phyint */ 1509 struct ipsq_s *ipsq_next; /* next ipsq sharing ipsq_xop */ 1510 struct ipxop_s *ipsq_xop; /* current xop synchronization info */ 1511 struct ipxop_s *ipsq_swxop; /* switch xop to on ipsq_exit() */ 1512 struct ipxop_s ipsq_ownxop; /* our own xop (may not be in-use) */ 1513 ip_stack_t *ipsq_ipst; /* does not have a netstack_hold */ 1514 } ipsq_t; 1515 1516 /* 1517 * ipx_waitfor values: 1518 */ 1519 enum { 1520 IPIF_DOWN = 1, /* ipif_down() waiting for refcnts to drop */ 1521 ILL_DOWN, /* ill_down() waiting for refcnts to drop */ 1522 IPIF_FREE, /* ipif_free() waiting for refcnts to drop */ 1523 ILL_FREE /* ill unplumb waiting for refcnts to drop */ 1524 }; 1525 1526 /* Operation types for ipsq_try_enter() */ 1527 #define CUR_OP 0 /* request writer within current operation */ 1528 #define NEW_OP 1 /* request writer for a new operation */ 1529 #define SWITCH_OP 2 /* request writer once IPSQ XOP switches */ 1530 1531 /* 1532 * Kstats tracked on each IPMP meta-interface. Order here must match 1533 * ipmp_kstats[] in ip/ipmp.c. 1534 */ 1535 enum { 1536 IPMP_KSTAT_OBYTES, IPMP_KSTAT_OBYTES64, IPMP_KSTAT_RBYTES, 1537 IPMP_KSTAT_RBYTES64, IPMP_KSTAT_OPACKETS, IPMP_KSTAT_OPACKETS64, 1538 IPMP_KSTAT_OERRORS, IPMP_KSTAT_IPACKETS, IPMP_KSTAT_IPACKETS64, 1539 IPMP_KSTAT_IERRORS, IPMP_KSTAT_MULTIRCV, IPMP_KSTAT_MULTIXMT, 1540 IPMP_KSTAT_BRDCSTRCV, IPMP_KSTAT_BRDCSTXMT, IPMP_KSTAT_LINK_UP, 1541 IPMP_KSTAT_MAX /* keep last */ 1542 }; 1543 1544 /* 1545 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1546 * There is a separate ill_t representing IPv4 and IPv6 which has a 1547 * backpointer to the phyint structure for accessing common state. 1548 */ 1549 typedef struct phyint { 1550 struct ill_s *phyint_illv4; 1551 struct ill_s *phyint_illv6; 1552 uint_t phyint_ifindex; /* SIOCSLIFINDEX */ 1553 uint64_t phyint_flags; 1554 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1555 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1556 kmutex_t phyint_lock; 1557 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1558 struct ipmp_grp_s *phyint_grp; /* associated IPMP group */ 1559 char phyint_name[LIFNAMSIZ]; /* physical interface name */ 1560 uint64_t phyint_kstats0[IPMP_KSTAT_MAX]; /* baseline kstats */ 1561 } phyint_t; 1562 1563 #define CACHE_ALIGN_SIZE 64 1564 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1565 CACHE_ALIGN_SIZE) 1566 struct _phyint_list_s_ { 1567 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1568 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1569 }; 1570 1571 typedef union phyint_list_u { 1572 struct _phyint_list_s_ phyint_list_s; 1573 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1574 } phyint_list_t; 1575 1576 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1577 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1578 1579 /* 1580 * Fragmentation hash bucket 1581 */ 1582 typedef struct ipfb_s { 1583 struct ipf_s *ipfb_ipf; /* List of ... */ 1584 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1585 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1586 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1587 } ipfb_t; 1588 1589 /* 1590 * IRE bucket structure. Usually there is an array of such structures, 1591 * each pointing to a linked list of ires. irb_refcnt counts the number 1592 * of walkers of a given hash bucket. Usually the reference count is 1593 * bumped up if the walker wants no IRES to be DELETED while walking the 1594 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1595 * hash bucket without stumbling up on a free pointer. 1596 * 1597 * irb_t structures in ip_ftable are dynamically allocated and freed. 1598 * In order to identify the irb_t structures that can be safely kmem_free'd 1599 * we need to ensure that 1600 * - the irb_refcnt is quiescent, indicating no other walkers, 1601 * - no other threads or ire's are holding references to the irb, 1602 * i.e., irb_nire == 0, 1603 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1604 */ 1605 typedef struct irb { 1606 struct ire_s *irb_ire; /* First ire in this bucket */ 1607 /* Should be first in this struct */ 1608 krwlock_t irb_lock; /* Protect this bucket */ 1609 uint_t irb_refcnt; /* Protected by irb_lock */ 1610 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1611 #define IRB_MARK_CONDEMNED 0x0001 1612 #define IRB_MARK_FTABLE 0x0002 1613 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1614 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1615 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1616 int irb_nire; /* Num of ftable ire's that ref irb */ 1617 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1618 } irb_t; 1619 1620 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1621 1622 /* The following are return values of ip_xmit_v4() */ 1623 typedef enum { 1624 SEND_PASSED = 0, /* sent packet out on wire */ 1625 SEND_FAILED, /* sending of packet failed */ 1626 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1627 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1628 } ipxmit_state_t; 1629 1630 #define IP_V4_G_HEAD 0 1631 #define IP_V6_G_HEAD 1 1632 1633 #define MAX_G_HEADS 2 1634 1635 /* 1636 * unpadded ill_if structure 1637 */ 1638 struct _ill_if_s_ { 1639 union ill_if_u *illif_next; 1640 union ill_if_u *illif_prev; 1641 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1642 vmem_t *illif_ppa_arena; /* ppa index space */ 1643 uint16_t illif_mcast_v1; /* hints for */ 1644 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1645 int illif_name_len; /* name length */ 1646 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1647 }; 1648 1649 /* cache aligned ill_if structure */ 1650 typedef union ill_if_u { 1651 struct _ill_if_s_ ill_if_s; 1652 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1653 } ill_if_t; 1654 1655 #define illif_next ill_if_s.illif_next 1656 #define illif_prev ill_if_s.illif_prev 1657 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1658 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1659 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1660 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1661 #define illif_name ill_if_s.illif_name 1662 #define illif_name_len ill_if_s.illif_name_len 1663 1664 typedef struct ill_walk_context_s { 1665 int ctx_current_list; /* current list being searched */ 1666 int ctx_last_list; /* last list to search */ 1667 } ill_walk_context_t; 1668 1669 /* 1670 * ill_g_heads structure, one for IPV4 and one for IPV6 1671 */ 1672 struct _ill_g_head_s_ { 1673 ill_if_t *ill_g_list_head; 1674 ill_if_t *ill_g_list_tail; 1675 }; 1676 1677 typedef union ill_g_head_u { 1678 struct _ill_g_head_s_ ill_g_head_s; 1679 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1680 } ill_g_head_t; 1681 1682 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1683 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1684 1685 #define IP_V4_ILL_G_LIST(ipst) \ 1686 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1687 #define IP_V6_ILL_G_LIST(ipst) \ 1688 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1689 #define IP_VX_ILL_G_LIST(i, ipst) \ 1690 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1691 1692 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1693 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1694 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1695 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1696 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1697 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1698 1699 /* 1700 * Capabilities, possible flags for ill_capabilities. 1701 */ 1702 1703 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1704 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1705 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1706 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1707 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1708 #define ILL_CAPAB_DLD 0x20 /* DLD capabilities */ 1709 #define ILL_CAPAB_DLD_POLL 0x40 /* Polling */ 1710 #define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */ 1711 #define ILL_CAPAB_DLD_LSO 0x100 /* Large Segment Offload */ 1712 1713 /* 1714 * Per-ill Multidata Transmit capabilities. 1715 */ 1716 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1717 1718 /* 1719 * Per-ill IPsec capabilities. 1720 */ 1721 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1722 1723 /* 1724 * Per-ill Hardware Checksumming capbilities. 1725 */ 1726 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1727 1728 /* 1729 * Per-ill Zero-copy capabilities. 1730 */ 1731 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1732 1733 /* 1734 * DLD capbilities. 1735 */ 1736 typedef struct ill_dld_capab_s ill_dld_capab_t; 1737 1738 /* 1739 * Per-ill polling resource map. 1740 */ 1741 typedef struct ill_rx_ring ill_rx_ring_t; 1742 1743 /* 1744 * Per-ill Large Segment Offload capabilities. 1745 */ 1746 typedef struct ill_lso_capab_s ill_lso_capab_t; 1747 1748 /* The following are ill_state_flags */ 1749 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1750 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1751 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1752 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1753 1754 /* Is this an ILL whose source address is used by other ILL's ? */ 1755 #define IS_USESRC_ILL(ill) \ 1756 (((ill)->ill_usesrc_ifindex == 0) && \ 1757 ((ill)->ill_usesrc_grp_next != NULL)) 1758 1759 /* Is this a client/consumer of the usesrc ILL ? */ 1760 #define IS_USESRC_CLI_ILL(ill) \ 1761 (((ill)->ill_usesrc_ifindex != 0) && \ 1762 ((ill)->ill_usesrc_grp_next != NULL)) 1763 1764 /* Is this an virtual network interface (vni) ILL ? */ 1765 #define IS_VNI(ill) \ 1766 (((ill) != NULL) && \ 1767 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1768 PHYI_VIRTUAL)) 1769 1770 /* Is this a loopback ILL? */ 1771 #define IS_LOOPBACK(ill) \ 1772 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1773 1774 /* Is this an IPMP meta-interface ILL? */ 1775 #define IS_IPMP(ill) \ 1776 ((ill)->ill_phyint->phyint_flags & PHYI_IPMP) 1777 1778 /* Is this ILL under an IPMP meta-interface? (aka "in a group?") */ 1779 #define IS_UNDER_IPMP(ill) \ 1780 ((ill)->ill_grp != NULL && !IS_IPMP(ill)) 1781 1782 /* Is ill1 in the same illgrp as ill2? */ 1783 #define IS_IN_SAME_ILLGRP(ill1, ill2) \ 1784 ((ill1)->ill_grp != NULL && ((ill1)->ill_grp == (ill2)->ill_grp)) 1785 1786 /* Is ill1 on the same LAN as ill2? */ 1787 #define IS_ON_SAME_LAN(ill1, ill2) \ 1788 ((ill1) == (ill2) || IS_IN_SAME_ILLGRP(ill1, ill2)) 1789 1790 #define ILL_OTHER(ill) \ 1791 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 1792 (ill)->ill_phyint->phyint_illv6) 1793 1794 /* 1795 * IPMP group ILL state structure -- up to two per IPMP group (V4 and V6). 1796 * Created when the V4 and/or V6 IPMP meta-interface is I_PLINK'd. It is 1797 * guaranteed to persist while there are interfaces of that type in the group. 1798 * In general, most fields are accessed outside of the IPSQ (e.g., in the 1799 * datapath), and thus use locks in addition to the IPSQ for protection. 1800 * 1801 * synchronization: read write 1802 * 1803 * ig_if ipsq or ill_g_lock ipsq and ill_g_lock 1804 * ig_actif ipsq or ipmp_lock ipsq and ipmp_lock 1805 * ig_nactif ipsq or ipmp_lock ipsq and ipmp_lock 1806 * ig_next_ill ipsq or ipmp_lock ipsq and ipmp_lock 1807 * ig_ipmp_ill write once write once 1808 * ig_cast_ill ipsq or ipmp_lock ipsq and ipmp_lock 1809 * ig_arpent ipsq ipsq 1810 * ig_mtu ipsq ipsq 1811 */ 1812 typedef struct ipmp_illgrp_s { 1813 list_t ig_if; /* list of all interfaces */ 1814 list_t ig_actif; /* list of active interfaces */ 1815 uint_t ig_nactif; /* number of active interfaces */ 1816 struct ill_s *ig_next_ill; /* next active interface to use */ 1817 struct ill_s *ig_ipmp_ill; /* backpointer to IPMP meta-interface */ 1818 struct ill_s *ig_cast_ill; /* nominated ill for multi/broadcast */ 1819 list_t ig_arpent; /* list of ARP entries */ 1820 uint_t ig_mtu; /* ig_ipmp_ill->ill_max_mtu */ 1821 } ipmp_illgrp_t; 1822 1823 /* 1824 * IPMP group state structure -- one per IPMP group. Created when the 1825 * IPMP meta-interface is plumbed; it is guaranteed to persist while there 1826 * are interfaces in it. 1827 * 1828 * ipmp_grp_t synchronization: read write 1829 * 1830 * gr_name ipmp_lock ipmp_lock 1831 * gr_ifname write once write once 1832 * gr_mactype ipmp_lock ipmp_lock 1833 * gr_phyint write once write once 1834 * gr_nif ipmp_lock ipmp_lock 1835 * gr_nactif ipsq ipsq 1836 * gr_v4 ipmp_lock ipmp_lock 1837 * gr_v6 ipmp_lock ipmp_lock 1838 * gr_nv4 ipmp_lock ipmp_lock 1839 * gr_nv6 ipmp_lock ipmp_lock 1840 * gr_pendv4 ipmp_lock ipmp_lock 1841 * gr_pendv6 ipmp_lock ipmp_lock 1842 * gr_linkdownmp ipsq ipsq 1843 * gr_ksp ipmp_lock ipmp_lock 1844 * gr_kstats0 atomic atomic 1845 */ 1846 typedef struct ipmp_grp_s { 1847 char gr_name[LIFGRNAMSIZ]; /* group name */ 1848 char gr_ifname[LIFNAMSIZ]; /* interface name */ 1849 t_uscalar_t gr_mactype; /* DLPI mactype of group */ 1850 phyint_t *gr_phyint; /* IPMP group phyint */ 1851 uint_t gr_nif; /* number of interfaces in group */ 1852 uint_t gr_nactif; /* number of active interfaces */ 1853 ipmp_illgrp_t *gr_v4; /* V4 group information */ 1854 ipmp_illgrp_t *gr_v6; /* V6 group information */ 1855 uint_t gr_nv4; /* number of ills in V4 group */ 1856 uint_t gr_nv6; /* number of ills in V6 group */ 1857 uint_t gr_pendv4; /* number of pending ills in V4 group */ 1858 uint_t gr_pendv6; /* number of pending ills in V6 group */ 1859 mblk_t *gr_linkdownmp; /* message used to bring link down */ 1860 kstat_t *gr_ksp; /* group kstat pointer */ 1861 uint64_t gr_kstats0[IPMP_KSTAT_MAX]; /* baseline group kstats */ 1862 } ipmp_grp_t; 1863 1864 /* 1865 * IPMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep 1866 * ARP up-to-date as the active set of interfaces in the group changes. 1867 */ 1868 typedef struct ipmp_arpent_s { 1869 mblk_t *ia_area_mp; /* AR_ENTRY_ADD pointer */ 1870 ipaddr_t ia_ipaddr; /* IP address for this entry */ 1871 boolean_t ia_proxyarp; /* proxy ARP entry? */ 1872 boolean_t ia_notified; /* ARP notified about this entry? */ 1873 list_node_t ia_node; /* next ARP entry in list */ 1874 } ipmp_arpent_t; 1875 1876 /* 1877 * IP Lower level Structure. 1878 * Instance data structure in ip_open when there is a device below us. 1879 */ 1880 typedef struct ill_s { 1881 ill_if_t *ill_ifptr; /* pointer to interface type */ 1882 queue_t *ill_rq; /* Read queue. */ 1883 queue_t *ill_wq; /* Write queue. */ 1884 1885 int ill_error; /* Error value sent up by device. */ 1886 1887 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1888 1889 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1890 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1891 char *ill_name; /* Our name. */ 1892 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1893 uint_t ill_name_length; /* Name length, incl. terminator. */ 1894 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1895 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1896 /* 1897 * Physical Point of Attachment num. If DLPI style 1 provider 1898 * then this is derived from the devname. 1899 */ 1900 uint_t ill_ppa; 1901 t_uscalar_t ill_sap; 1902 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1903 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1904 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1905 /* supports broadcast. */ 1906 t_uscalar_t ill_mactype; 1907 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1908 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1909 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1910 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1911 1912 ilm_t *ill_ilm; /* Multicast membership for ill */ 1913 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1914 int ill_mcast_type; /* type of router which is querier */ 1915 /* on this interface */ 1916 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1917 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1918 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1919 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1920 1921 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1922 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1923 1924 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1925 /* 1926 * All non-NULL cells between 'ill_first_mp_to_free' and 1927 * 'ill_last_mp_to_free' are freed in ill_delete. 1928 */ 1929 #define ill_first_mp_to_free ill_bcast_mp 1930 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1931 mblk_t *ill_resolver_mp; /* Resolver template. */ 1932 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1933 mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */ 1934 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1935 mblk_t *ill_ardeact_mp; /* deact mp from ipmp_ill_activate() */ 1936 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1937 #define ill_last_mp_to_free ill_phys_addr_mp 1938 1939 cred_t *ill_credp; /* opener's credentials */ 1940 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1941 1942 uint_t ill_state_flags; /* see ILL_* flags above */ 1943 1944 /* Following bit fields protected by ipsq_t */ 1945 uint_t 1946 ill_needs_attach : 1, 1947 ill_reserved : 1, 1948 ill_isv6 : 1, 1949 ill_dlpi_style_set : 1, 1950 1951 ill_ifname_pending : 1, 1952 ill_join_allmulti : 1, 1953 ill_logical_down : 1, 1954 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1955 1956 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1957 ill_dl_up : 1, 1958 ill_up_ipifs : 1, 1959 ill_note_link : 1, /* supports link-up notification */ 1960 1961 ill_capab_reneg : 1, /* capability renegotiation to be done */ 1962 ill_dld_capab_inprog : 1, /* direct dld capab call in prog */ 1963 ill_need_recover_multicast : 1, 1964 ill_pad_to_bit_31 : 17; 1965 1966 /* Following bit fields protected by ill_lock */ 1967 uint_t 1968 ill_fragtimer_executing : 1, 1969 ill_fragtimer_needrestart : 1, 1970 ill_ilm_cleanup_reqd : 1, 1971 ill_arp_closing : 1, 1972 1973 ill_arp_bringup_pending : 1, 1974 ill_arp_extend : 1, /* ARP has DAD extensions */ 1975 ill_pad_bit_31 : 26; 1976 1977 /* 1978 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1979 */ 1980 int ill_arp_muxid; /* muxid returned from plink for arp */ 1981 int ill_ip_muxid; /* muxid returned from plink for ip */ 1982 1983 /* Used for IP frag reassembly throttling on a per ILL basis. */ 1984 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1985 uint_t ill_frag_count; /* Count of all reassembly mblk bytes */ 1986 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1987 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1988 int ill_type; /* From <net/if_types.h> */ 1989 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1990 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1991 1992 /* 1993 * Capabilities related fields. 1994 */ 1995 uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */ 1996 uint_t ill_capab_pending_cnt; 1997 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1998 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1999 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 2000 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 2001 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 2002 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 2003 ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */ 2004 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 2005 mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */ 2006 2007 /* 2008 * New fields for IPv6 2009 */ 2010 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 2011 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 2012 uint_t ill_user_mtu; /* User-specified MTU via SIOCSLIFLNKINFO */ 2013 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 2014 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 2015 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 2016 in6_addr_t ill_token; 2017 uint_t ill_token_length; 2018 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 2019 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 2020 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 2021 /* 2022 * Following two mblks are allocated common to all 2023 * the ipifs when the first interface is coming up. 2024 * It is sent up to arp when the last ipif is coming 2025 * down. 2026 */ 2027 mblk_t *ill_arp_down_mp; 2028 mblk_t *ill_arp_del_mapping_mp; 2029 /* 2030 * Used for implementing IFF_NOARP. As IFF_NOARP is used 2031 * to turn off for all the logicals, it is here instead 2032 * of the ipif. 2033 */ 2034 mblk_t *ill_arp_on_mp; 2035 2036 phyint_t *ill_phyint; 2037 uint64_t ill_flags; 2038 2039 kmutex_t ill_lock; /* Please see table below */ 2040 /* 2041 * The ill_nd_lla* fields handle the link layer address option 2042 * from neighbor discovery. This is used for external IPv6 2043 * address resolution. 2044 */ 2045 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 2046 uint8_t *ill_nd_lla; /* Link Layer Address */ 2047 uint_t ill_nd_lla_len; /* Link Layer Address length */ 2048 /* 2049 * We now have 3 phys_addr_req's sent down. This field keeps track 2050 * of which one is pending. 2051 */ 2052 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 2053 /* 2054 * Used to save errors that occur during plumbing 2055 */ 2056 uint_t ill_ifname_pending_err; 2057 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 2058 void *ill_fastpath_list; /* both ire and nce hang off this */ 2059 uint_t ill_refcnt; /* active refcnt by threads */ 2060 uint_t ill_ire_cnt; /* ires associated with this ill */ 2061 kcondvar_t ill_cv; 2062 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 2063 uint_t ill_nce_cnt; /* nces associated with this ill */ 2064 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 2065 /* 2066 * Contains the upper read queue pointer of the module immediately 2067 * beneath IP. This field allows IP to validate sub-capability 2068 * acknowledgments coming up from downstream. 2069 */ 2070 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 2071 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 2072 ip_m_t *ill_media; /* media specific params/functions */ 2073 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 2074 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 2075 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 2076 boolean_t ill_trace_disable; /* True when alloc fails */ 2077 zoneid_t ill_zoneid; 2078 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 2079 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */ 2080 void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */ 2081 uint_t ill_ilm_cnt; /* ilms referencing this ill */ 2082 uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */ 2083 /* 2084 * IPMP fields. 2085 */ 2086 ipmp_illgrp_t *ill_grp; /* IPMP group information */ 2087 list_node_t ill_actnode; /* next active ill in group */ 2088 list_node_t ill_grpnode; /* next ill in group */ 2089 ipif_t *ill_src_ipif; /* source address selection rotor */ 2090 ipif_t *ill_move_ipif; /* ipif awaiting move to new ill */ 2091 boolean_t ill_nom_cast; /* nominated for mcast/bcast */ 2092 uint_t ill_bound_cnt; /* # of data addresses bound to ill */ 2093 ipif_t *ill_bound_ipif; /* ipif chain bound to ill */ 2094 timeout_id_t ill_refresh_tid; /* ill refresh retry timeout id */ 2095 } ill_t; 2096 2097 /* 2098 * ILL_FREE_OK() means that there are no incoming pointer references 2099 * to the ill. 2100 */ 2101 #define ILL_FREE_OK(ill) \ 2102 ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \ 2103 (ill)->ill_nce_cnt == 0) 2104 2105 /* 2106 * An ipif/ill can be marked down only when the ire and nce references 2107 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition 2108 * quiescence checks. See comments above IPIF_DOWN_OK for details 2109 * on why ires and nces are selectively considered for this macro. 2110 */ 2111 #define ILL_DOWN_OK(ill) (ill->ill_ire_cnt == 0 && ill->ill_nce_cnt == 0) 2112 2113 /* 2114 * The following table lists the protection levels of the various members 2115 * of the ill_t. Same notation as that used for ipif_t above is used. 2116 * 2117 * Write Read 2118 * 2119 * ill_ifptr ill_g_lock + s Write once 2120 * ill_rq ipsq Write once 2121 * ill_wq ipsq Write once 2122 * 2123 * ill_error ipsq None 2124 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 2125 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 2126 * ill_max_frag ipsq Write once 2127 * 2128 * ill_name ill_g_lock + ipsq Write once 2129 * ill_name_length ill_g_lock + ipsq Write once 2130 * ill_ndd_name ipsq Write once 2131 * ill_net_type ipsq Write once 2132 * ill_ppa ill_g_lock + ipsq Write once 2133 * ill_sap ipsq + down ill Write once 2134 * ill_sap_length ipsq + down ill Write once 2135 * ill_phys_addr_length ipsq + down ill Write once 2136 * 2137 * ill_bcast_addr_length ipsq ipsq 2138 * ill_mactype ipsq ipsq 2139 * ill_frag_ptr ipsq ipsq 2140 * 2141 * ill_frag_timer_id ill_lock ill_lock 2142 * ill_frag_hash_tbl ipsq up ill 2143 * ill_ilm ipsq + ill_lock ill_lock 2144 * ill_mcast_type ill_lock ill_lock 2145 * ill_mcast_v1_time ill_lock ill_lock 2146 * ill_mcast_v2_time ill_lock ill_lock 2147 * ill_mcast_v1_tset ill_lock ill_lock 2148 * ill_mcast_v2_tset ill_lock ill_lock 2149 * ill_mcast_rv ill_lock ill_lock 2150 * ill_mcast_qi ill_lock ill_lock 2151 * ill_pending_mp ill_lock ill_lock 2152 * 2153 * ill_bcast_mp ipsq ipsq 2154 * ill_resolver_mp ipsq only when ill is up 2155 * ill_down_mp ipsq ipsq 2156 * ill_dlpi_deferred ill_lock ill_lock 2157 * ill_dlpi_pending ill_lock ill_lock 2158 * ill_phys_addr_mp ipsq + down ill only when ill is up 2159 * ill_phys_addr ipsq + down ill only when ill is up 2160 * 2161 * ill_state_flags ill_lock ill_lock 2162 * exclusive bit flags ipsq_t ipsq_t 2163 * shared bit flags ill_lock ill_lock 2164 * 2165 * ill_arp_muxid ipsq Not atomic 2166 * ill_ip_muxid ipsq Not atomic 2167 * 2168 * ill_ipf_gen Not atomic 2169 * ill_frag_count atomics atomics 2170 * ill_type ipsq + down ill only when ill is up 2171 * ill_dlpi_multicast_state ill_lock ill_lock 2172 * ill_dlpi_fastpath_state ill_lock ill_lock 2173 * ill_dlpi_capab_state ipsq ipsq 2174 * ill_max_hops ipsq Not atomic 2175 * 2176 * ill_max_mtu 2177 * 2178 * ill_user_mtu ipsq + ill_lock ill_lock 2179 * ill_reachable_time ipsq + ill_lock ill_lock 2180 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2181 * ill_max_buf ipsq + ill_lock ill_lock 2182 * 2183 * Next 2 fields need ill_lock because of the get ioctls. They should not 2184 * report partially updated results without executing in the ipsq. 2185 * ill_token ipsq + ill_lock ill_lock 2186 * ill_token_length ipsq + ill_lock ill_lock 2187 * ill_xmit_count ipsq + down ill write once 2188 * ill_ip6_mib ipsq + down ill only when ill is up 2189 * ill_icmp6_mib ipsq + down ill only when ill is up 2190 * ill_arp_down_mp ipsq ipsq 2191 * ill_arp_del_mapping_mp ipsq ipsq 2192 * ill_arp_on_mp ipsq ipsq 2193 * 2194 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2195 * ill_flags ill_lock ill_lock 2196 * ill_nd_lla_mp ipsq + down ill only when ill is up 2197 * ill_nd_lla ipsq + down ill only when ill is up 2198 * ill_nd_lla_len ipsq + down ill only when ill is up 2199 * ill_phys_addr_pend ipsq + down ill only when ill is up 2200 * ill_ifname_pending_err ipsq ipsq 2201 * ill_avl_byppa ipsq, ill_g_lock write once 2202 * 2203 * ill_fastpath_list ill_lock ill_lock 2204 * ill_refcnt ill_lock ill_lock 2205 * ill_ire_cnt ill_lock ill_lock 2206 * ill_cv ill_lock ill_lock 2207 * ill_ilm_walker_cnt ill_lock ill_lock 2208 * ill_nce_cnt ill_lock ill_lock 2209 * ill_ilm_cnt ill_lock ill_lock 2210 * ill_src_ipif ill_g_lock ill_g_lock 2211 * ill_trace ill_lock ill_lock 2212 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2213 * ill_dhcpinit atomics atomics 2214 * ill_flownotify_mh write once write once 2215 * ill_capab_pending_cnt ipsq ipsq 2216 * 2217 * ill_bound_cnt ipsq ipsq 2218 * ill_bound_ipif ipsq ipsq 2219 * ill_actnode ipsq + ipmp_lock ipsq OR ipmp_lock 2220 * ill_grpnode ipsq + ill_g_lock ipsq OR ill_g_lock 2221 * ill_src_ipif ill_g_lock ill_g_lock 2222 * ill_move_ipif ipsq ipsq 2223 * ill_nom_cast ipsq ipsq OR advisory 2224 * ill_refresh_tid ill_lock ill_lock 2225 * ill_grp (for IPMP ill) write once write once 2226 * ill_grp (for underlying ill) ipsq + ill_g_lock ipsq OR ill_g_lock 2227 * 2228 * NOTE: It's OK to make heuristic decisions on an underlying interface 2229 * by using IS_UNDER_IPMP() or comparing ill_grp's raw pointer value. 2230 */ 2231 2232 /* 2233 * For ioctl restart mechanism see ip_reprocess_ioctl() 2234 */ 2235 struct ip_ioctl_cmd_s; 2236 2237 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2238 struct ip_ioctl_cmd_s *, void *); 2239 2240 typedef struct ip_ioctl_cmd_s { 2241 int ipi_cmd; 2242 size_t ipi_copyin_size; 2243 uint_t ipi_flags; 2244 uint_t ipi_cmd_type; 2245 ifunc_t ipi_func; 2246 ifunc_t ipi_func_restart; 2247 } ip_ioctl_cmd_t; 2248 2249 /* 2250 * ipi_cmd_type: 2251 * 2252 * IF_CMD 1 old style ifreq cmd 2253 * LIF_CMD 2 new style lifreq cmd 2254 * TUN_CMD 3 tunnel related 2255 * ARP_CMD 4 arpreq cmd 2256 * XARP_CMD 5 xarpreq cmd 2257 * MSFILT_CMD 6 multicast source filter cmd 2258 * MISC_CMD 7 misc cmd (not a more specific one above) 2259 */ 2260 2261 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; 2262 2263 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2264 2265 /* Flag values in ipi_flags */ 2266 #define IPI_PRIV 0x1 /* Root only command */ 2267 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2268 #define IPI_WR 0x4 /* Need to grab writer access */ 2269 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2270 /* unused 0x10 */ 2271 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2272 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2273 2274 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2275 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2276 extern int ip_ndx_ioctl_count; 2277 extern int ip_misc_ioctl_count; 2278 2279 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2280 typedef struct ipmx_s { 2281 char ipmx_name[LIFNAMSIZ]; /* if name */ 2282 uint_t 2283 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2284 ipmx_notused : 31; 2285 } ipmx_t; 2286 2287 /* 2288 * State for detecting if a driver supports certain features. 2289 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2290 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2291 */ 2292 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2293 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2294 #define IDS_OK 2 /* DLPI request completed successfully */ 2295 #define IDS_FAILED 3 /* DLPI request failed */ 2296 2297 /* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */ 2298 enum { 2299 IDCS_UNKNOWN, 2300 IDCS_PROBE_SENT, 2301 IDCS_OK, 2302 IDCS_RESET_SENT, 2303 IDCS_RENEG, 2304 IDCS_FAILED 2305 }; 2306 2307 /* Named Dispatch Parameter Management Structure */ 2308 typedef struct ipparam_s { 2309 uint_t ip_param_min; 2310 uint_t ip_param_max; 2311 uint_t ip_param_value; 2312 char *ip_param_name; 2313 } ipparam_t; 2314 2315 /* Extended NDP Management Structure */ 2316 typedef struct ipndp_s { 2317 ndgetf_t ip_ndp_getf; 2318 ndsetf_t ip_ndp_setf; 2319 caddr_t ip_ndp_data; 2320 char *ip_ndp_name; 2321 } ipndp_t; 2322 2323 /* 2324 * The kernel stores security attributes of all gateways in a database made 2325 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2326 * security-related credentials of the gateway. More than one gateways may 2327 * share entries in the database. 2328 * 2329 * The tsol_gc_t structure represents the gateway to credential association, 2330 * and refers to an entry in the database. One or more tsol_gc_t entities are 2331 * grouped together to form one or more tsol_gcgrp_t, each representing the 2332 * list of security attributes specific to the gateway. A gateway may be 2333 * associated with at most one credentials group. 2334 */ 2335 struct tsol_gcgrp_s; 2336 2337 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2338 2339 /* 2340 * Gateway security credential record. 2341 */ 2342 typedef struct tsol_gcdb_s { 2343 uint_t gcdb_refcnt; /* reference count */ 2344 struct rtsa_s gcdb_attr; /* security attributes */ 2345 #define gcdb_mask gcdb_attr.rtsa_mask 2346 #define gcdb_doi gcdb_attr.rtsa_doi 2347 #define gcdb_slrange gcdb_attr.rtsa_slrange 2348 } tsol_gcdb_t; 2349 2350 /* 2351 * Gateway to credential association. 2352 */ 2353 typedef struct tsol_gc_s { 2354 uint_t gc_refcnt; /* reference count */ 2355 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2356 struct tsol_gc_s *gc_prev; /* previous in list */ 2357 struct tsol_gc_s *gc_next; /* next in list */ 2358 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2359 } tsol_gc_t; 2360 2361 /* 2362 * Gateway credentials group address. 2363 */ 2364 typedef struct tsol_gcgrp_addr_s { 2365 int ga_af; /* address family */ 2366 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2367 } tsol_gcgrp_addr_t; 2368 2369 /* 2370 * Gateway credentials group. 2371 */ 2372 typedef struct tsol_gcgrp_s { 2373 uint_t gcgrp_refcnt; /* reference count */ 2374 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2375 uint_t gcgrp_count; /* number of credentials */ 2376 tsol_gc_t *gcgrp_head; /* first credential in list */ 2377 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2378 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2379 } tsol_gcgrp_t; 2380 2381 extern kmutex_t gcgrp_lock; 2382 2383 #define GC_REFRELE(p) { \ 2384 ASSERT((p)->gc_grp != NULL); \ 2385 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2386 ASSERT((p)->gc_refcnt > 0); \ 2387 if (--((p)->gc_refcnt) == 0) \ 2388 gc_inactive(p); \ 2389 else \ 2390 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2391 } 2392 2393 #define GCGRP_REFHOLD(p) { \ 2394 mutex_enter(&gcgrp_lock); \ 2395 ++((p)->gcgrp_refcnt); \ 2396 ASSERT((p)->gcgrp_refcnt != 0); \ 2397 mutex_exit(&gcgrp_lock); \ 2398 } 2399 2400 #define GCGRP_REFRELE(p) { \ 2401 mutex_enter(&gcgrp_lock); \ 2402 ASSERT((p)->gcgrp_refcnt > 0); \ 2403 if (--((p)->gcgrp_refcnt) == 0) \ 2404 gcgrp_inactive(p); \ 2405 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2406 mutex_exit(&gcgrp_lock); \ 2407 } 2408 2409 /* 2410 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2411 */ 2412 struct tsol_tnrhc; 2413 2414 typedef struct tsol_ire_gw_secattr_s { 2415 kmutex_t igsa_lock; /* lock to protect following */ 2416 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2417 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2418 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2419 } tsol_ire_gw_secattr_t; 2420 2421 /* 2422 * Following are the macros to increment/decrement the reference 2423 * count of the IREs and IRBs (ire bucket). 2424 * 2425 * 1) We bump up the reference count of an IRE to make sure that 2426 * it does not get deleted and freed while we are using it. 2427 * Typically all the lookup functions hold the bucket lock, 2428 * and look for the IRE. If it finds an IRE, it bumps up the 2429 * reference count before dropping the lock. Sometimes we *may* want 2430 * to bump up the reference count after we *looked* up i.e without 2431 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2432 * on the bucket lock being held. Any thread trying to delete from 2433 * the hash bucket can still do so but cannot free the IRE if 2434 * ire_refcnt is not 0. 2435 * 2436 * 2) We bump up the reference count on the bucket where the IRE resides 2437 * (IRB), when we want to prevent the IREs getting deleted from a given 2438 * hash bucket. This makes life easier for ire_walk type functions which 2439 * wants to walk the IRE list, call a function, but needs to drop 2440 * the bucket lock to prevent recursive rw_enters. While the 2441 * lock is dropped, the list could be changed by other threads or 2442 * the same thread could end up deleting the ire or the ire pointed by 2443 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2444 * a delete will still remove the ire from the bucket while we have 2445 * dropped the lock and hence the ire_next would be NULL. Thus, we 2446 * need a mechanism to prevent deletions from a given bucket. 2447 * 2448 * To prevent deletions, we bump up the reference count on the 2449 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2450 * both on the ire's ire_marks and the bucket's irb_marks. When the 2451 * reference count on the bucket drops to zero, all the CONDEMNED ires 2452 * are deleted. We don't have to bump up the reference count on the 2453 * bucket if we are walking the bucket and never have to drop the bucket 2454 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2455 * in the list. It is okay because addition of new ires will not cause 2456 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2457 * all of the 3 conditions are true : 2458 * 2459 * 1) The code needs to walk the IRE bucket from start to end. 2460 * 2) It may have to drop the bucket lock sometimes while doing (1) 2461 * 3) It does not want any ires to be deleted meanwhile. 2462 */ 2463 2464 /* 2465 * Bump up the reference count on the IRE. We cannot assert that the 2466 * bucket lock is being held as it is legal to bump up the reference 2467 * count after the first lookup has returned the IRE without 2468 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2469 */ 2470 2471 #ifdef DEBUG 2472 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2473 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2474 #else 2475 #define IRE_UNTRACE_REF(ire) 2476 #define IRE_TRACE_REF(ire) 2477 #endif 2478 2479 #define IRE_REFHOLD_NOTR(ire) { \ 2480 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2481 ASSERT((ire)->ire_refcnt != 0); \ 2482 } 2483 2484 #define IRE_REFHOLD(ire) { \ 2485 IRE_REFHOLD_NOTR(ire); \ 2486 IRE_TRACE_REF(ire); \ 2487 } 2488 2489 #define IRE_REFHOLD_LOCKED(ire) { \ 2490 IRE_TRACE_REF(ire); \ 2491 (ire)->ire_refcnt++; \ 2492 } 2493 2494 /* 2495 * Decrement the reference count on the IRE. 2496 * In architectures e.g sun4u, where atomic_add_32_nv is just 2497 * a cas, we need to maintain the right memory barrier semantics 2498 * as that of mutex_exit i.e all the loads and stores should complete 2499 * before the cas is executed. membar_exit() does that here. 2500 * 2501 * NOTE : This macro is used only in places where we want performance. 2502 * To avoid bloating the code, we use the function "ire_refrele" 2503 * which essentially calls the macro. 2504 */ 2505 #define IRE_REFRELE_NOTR(ire) { \ 2506 ASSERT((ire)->ire_refcnt != 0); \ 2507 membar_exit(); \ 2508 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2509 ire_inactive(ire); \ 2510 } 2511 2512 #define IRE_REFRELE(ire) { \ 2513 if (ire->ire_bucket != NULL) { \ 2514 IRE_UNTRACE_REF(ire); \ 2515 } \ 2516 IRE_REFRELE_NOTR(ire); \ 2517 } 2518 2519 /* 2520 * Bump up the reference count on the hash bucket - IRB to 2521 * prevent ires from being deleted in this bucket. 2522 */ 2523 #define IRB_REFHOLD(irb) { \ 2524 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2525 (irb)->irb_refcnt++; \ 2526 ASSERT((irb)->irb_refcnt != 0); \ 2527 rw_exit(&(irb)->irb_lock); \ 2528 } 2529 #define IRB_REFHOLD_LOCKED(irb) { \ 2530 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2531 (irb)->irb_refcnt++; \ 2532 ASSERT((irb)->irb_refcnt != 0); \ 2533 } 2534 2535 void irb_refrele_ftable(irb_t *); 2536 /* 2537 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2538 * is statically allocated, so that when the irb_refcnt goes to 0, 2539 * we simply clean up the ire list and continue. 2540 */ 2541 #define IRB_REFRELE(irb) { \ 2542 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2543 irb_refrele_ftable((irb)); \ 2544 } else { \ 2545 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2546 ASSERT((irb)->irb_refcnt != 0); \ 2547 if (--(irb)->irb_refcnt == 0 && \ 2548 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2549 ire_t *ire_list; \ 2550 \ 2551 ire_list = ire_unlink(irb); \ 2552 rw_exit(&(irb)->irb_lock); \ 2553 ASSERT(ire_list != NULL); \ 2554 ire_cleanup(ire_list); \ 2555 } else { \ 2556 rw_exit(&(irb)->irb_lock); \ 2557 } \ 2558 } \ 2559 } 2560 2561 extern struct kmem_cache *rt_entry_cache; 2562 2563 /* 2564 * Lock the fast path mp for access, since the fp_mp can be deleted 2565 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2566 */ 2567 2568 #define LOCK_IRE_FP_MP(ire) { \ 2569 if ((ire)->ire_type == IRE_BROADCAST) \ 2570 mutex_enter(&ire->ire_nce->nce_lock); \ 2571 } 2572 #define UNLOCK_IRE_FP_MP(ire) { \ 2573 if ((ire)->ire_type == IRE_BROADCAST) \ 2574 mutex_exit(&ire->ire_nce->nce_lock); \ 2575 } 2576 2577 typedef struct ire4 { 2578 ipaddr_t ire4_src_addr; /* Source address to use. */ 2579 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2580 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2581 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2582 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2583 } ire4_t; 2584 2585 typedef struct ire6 { 2586 in6_addr_t ire6_src_addr; /* Source address to use. */ 2587 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2588 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2589 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2590 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2591 } ire6_t; 2592 2593 typedef union ire_addr { 2594 ire6_t ire6_u; 2595 ire4_t ire4_u; 2596 } ire_addr_u_t; 2597 2598 /* Internet Routing Entry */ 2599 typedef struct ire_s { 2600 struct ire_s *ire_next; /* The hash chain must be first. */ 2601 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2602 uint32_t ire_refcnt; /* Number of references */ 2603 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2604 queue_t *ire_rfq; /* recv from this queue */ 2605 queue_t *ire_stq; /* send to this queue */ 2606 union { 2607 uint_t *max_fragp; /* Used only during ire creation */ 2608 uint_t max_frag; /* MTU (next hop or path). */ 2609 } imf_u; 2610 #define ire_max_frag imf_u.max_frag 2611 #define ire_max_fragp imf_u.max_fragp 2612 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2613 uint32_t ire_ident; /* Per IRE IP ident. */ 2614 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2615 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2616 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2617 ushort_t ire_type; /* Type of IRE */ 2618 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2619 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2620 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2621 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2622 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2623 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2624 ipif_t *ire_ipif; /* the interface that this ire uses */ 2625 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2626 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2627 /* 2628 * Neighbor Cache Entry for IPv6; arp info for IPv4 2629 */ 2630 struct nce_s *ire_nce; 2631 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2632 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2633 2634 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2635 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2636 /* 2637 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2638 */ 2639 kmutex_t ire_lock; 2640 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2641 uint_t ire_ipif_ifindex; /* ifindex associated with ipif */ 2642 clock_t ire_last_used_time; /* Last used time */ 2643 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2644 zoneid_t ire_zoneid; /* for local address discrimination */ 2645 /* 2646 * ire's that are embedded inside mblk_t and sent to the external 2647 * resolver use the ire_stq_ifindex to track the ifindex of the 2648 * ire_stq, so that the ill (if it exists) can be correctly recovered 2649 * for cleanup in the esbfree routine when arp failure occurs. 2650 * Similarly, the ire_stackid is used to recover the ip_stack_t. 2651 */ 2652 uint_t ire_stq_ifindex; 2653 netstackid_t ire_stackid; 2654 uint_t ire_defense_count; /* number of ARP conflicts */ 2655 uint_t ire_defense_time; /* last time defended (secs) */ 2656 boolean_t ire_trace_disable; /* True when alloc fails */ 2657 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2658 } ire_t; 2659 2660 /* IPv4 compatibility macros */ 2661 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2662 #define ire_mask ire_u.ire4_u.ire4_mask 2663 #define ire_addr ire_u.ire4_u.ire4_addr 2664 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2665 #define ire_cmask ire_u.ire4_u.ire4_cmask 2666 2667 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2668 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2669 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2670 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2671 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2672 2673 /* Convenient typedefs for sockaddrs */ 2674 typedef struct sockaddr_in sin_t; 2675 typedef struct sockaddr_in6 sin6_t; 2676 2677 /* Address structure used for internal bind with IP */ 2678 typedef struct ipa_conn_s { 2679 ipaddr_t ac_laddr; 2680 ipaddr_t ac_faddr; 2681 uint16_t ac_fport; 2682 uint16_t ac_lport; 2683 } ipa_conn_t; 2684 2685 typedef struct ipa6_conn_s { 2686 in6_addr_t ac6_laddr; 2687 in6_addr_t ac6_faddr; 2688 uint16_t ac6_fport; 2689 uint16_t ac6_lport; 2690 } ipa6_conn_t; 2691 2692 /* 2693 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2694 * bind handler. 2695 */ 2696 typedef struct ipa_conn_extended_s { 2697 uint64_t acx_flags; 2698 ipa_conn_t acx_conn; 2699 } ipa_conn_x_t; 2700 2701 typedef struct ipa6_conn_extended_s { 2702 uint64_t ac6x_flags; 2703 ipa6_conn_t ac6x_conn; 2704 } ipa6_conn_x_t; 2705 2706 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2707 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2708 2709 /* Name/Value Descriptor. */ 2710 typedef struct nv_s { 2711 uint64_t nv_value; 2712 char *nv_name; 2713 } nv_t; 2714 2715 #define ILL_FRAG_HASH(s, i) \ 2716 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2717 2718 /* 2719 * The MAX number of allowed fragmented packets per hash bucket 2720 * calculation is based on the most common mtu size of 1500. This limit 2721 * will work well for other mtu sizes as well. 2722 */ 2723 #define COMMON_IP_MTU 1500 2724 #define MAX_FRAG_MIN 10 2725 #define MAX_FRAG_PKTS(ipst) \ 2726 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2727 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2728 2729 /* 2730 * Maximum dups allowed per packet. 2731 */ 2732 extern uint_t ip_max_frag_dups; 2733 2734 /* 2735 * Per-packet information for received packets and transmitted. 2736 * Used by the transport protocols when converting between the packet 2737 * and ancillary data and socket options. 2738 * 2739 * Note: This private data structure and related IPPF_* constant 2740 * definitions are exposed to enable compilation of some debugging tools 2741 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2742 * a temporary hack and long term alternate interfaces should be defined 2743 * to support the needs of such tools and private definitions moved to 2744 * private headers. 2745 */ 2746 struct ip6_pkt_s { 2747 uint_t ipp_fields; /* Which fields are valid */ 2748 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2749 uint_t ipp_ifindex; /* pktinfo ifindex */ 2750 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2751 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2752 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2753 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2754 uint_t ipp_hopoptslen; 2755 uint_t ipp_rtdstoptslen; 2756 uint_t ipp_rthdrlen; 2757 uint_t ipp_dstoptslen; 2758 uint_t ipp_pathmtulen; 2759 uint_t ipp_fraghdrlen; 2760 ip6_hbh_t *ipp_hopopts; 2761 ip6_dest_t *ipp_rtdstopts; 2762 ip6_rthdr_t *ipp_rthdr; 2763 ip6_dest_t *ipp_dstopts; 2764 ip6_frag_t *ipp_fraghdr; 2765 struct ip6_mtuinfo *ipp_pathmtu; 2766 in6_addr_t ipp_nexthop; /* Transmit only */ 2767 uint8_t ipp_tclass; 2768 int8_t ipp_use_min_mtu; 2769 }; 2770 typedef struct ip6_pkt_s ip6_pkt_t; 2771 2772 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2773 2774 /* 2775 * This struct is used by ULP_opt_set() functions to return value of IPv4 2776 * ancillary options. Currently this is only used by udp and icmp and only 2777 * IP_PKTINFO option is supported. 2778 */ 2779 typedef struct ip4_pkt_s { 2780 uint_t ip4_ill_index; /* interface index */ 2781 ipaddr_t ip4_addr; /* source address */ 2782 } ip4_pkt_t; 2783 2784 /* 2785 * Used by ULP's to pass options info to ip_output 2786 * currently only IP_PKTINFO is supported. 2787 */ 2788 typedef struct ip_opt_info_s { 2789 uint_t ip_opt_ill_index; 2790 uint_t ip_opt_flags; 2791 } ip_opt_info_t; 2792 2793 /* 2794 * value for ip_opt_flags 2795 */ 2796 #define IP_VERIFY_SRC 0x1 2797 2798 /* 2799 * This structure is used to convey information from IP and the ULP. 2800 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2801 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2802 */ 2803 typedef struct ip_pktinfo { 2804 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2805 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2806 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2807 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2808 struct in_addr ip_pkt_match_addr; /* matched address */ 2809 } ip_pktinfo_t; 2810 2811 /* 2812 * flags to tell UDP what IP is sending; in_pkt_flags 2813 */ 2814 #define IPF_RECVIF 0x01 /* inbound interface index */ 2815 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2816 /* 2817 * Inbound interface index + matched address. 2818 * Used only by IPV4. 2819 */ 2820 #define IPF_RECVADDR 0x04 2821 2822 /* ipp_fields values */ 2823 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2824 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2825 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2826 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2827 2828 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2829 #define IPPF_HOPLIMIT 0x0020 2830 #define IPPF_HOPOPTS 0x0040 2831 #define IPPF_RTHDR 0x0080 2832 2833 #define IPPF_RTDSTOPTS 0x0100 2834 #define IPPF_DSTOPTS 0x0200 2835 #define IPPF_NEXTHOP 0x0400 2836 #define IPPF_PATHMTU 0x0800 2837 2838 #define IPPF_TCLASS 0x1000 2839 #define IPPF_DONTFRAG 0x2000 2840 #define IPPF_USE_MIN_MTU 0x04000 2841 #define IPPF_MULTICAST_HOPS 0x08000 2842 2843 #define IPPF_UNICAST_HOPS 0x10000 2844 #define IPPF_FRAGHDR 0x20000 2845 2846 #define IPPF_HAS_IP6I \ 2847 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2848 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2849 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2850 2851 #define TCP_PORTS_OFFSET 0 2852 #define UDP_PORTS_OFFSET 0 2853 2854 /* 2855 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2856 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2857 * after calling these macros. This ensures that the refcnt on the ipif or 2858 * ill will eventually drop down to zero. 2859 */ 2860 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2861 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2862 2863 #define ILL_CAN_LOOKUP(ill) \ 2864 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2865 IAM_WRITER_ILL(ill)) 2866 2867 #define ILL_CAN_WAIT(ill, q) \ 2868 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2869 2870 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2871 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2872 2873 #define IPIF_CAN_LOOKUP(ipif) \ 2874 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2875 IAM_WRITER_IPIF(ipif)) 2876 2877 /* 2878 * If the parameter 'q' is NULL, the caller is not interested in wait and 2879 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2880 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2881 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2882 * in this case 'q' is NULL 2883 */ 2884 #define IPIF_CAN_WAIT(ipif, q) \ 2885 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2886 2887 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2888 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2889 IAM_WRITER_IPIF(ipif)) 2890 2891 #define ILL_UNMARK_CHANGING(ill) \ 2892 (ill)->ill_state_flags &= ~ILL_CHANGING; 2893 2894 /* Macros used to assert that this thread is a writer */ 2895 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_xop->ipx_writer == curthread) 2896 #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq) 2897 #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill) 2898 2899 /* 2900 * Grab ill locks in the proper order. The order is highest addressed 2901 * ill is locked first. 2902 */ 2903 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2904 { \ 2905 if ((ill_1) > (ill_2)) { \ 2906 if (ill_1 != NULL) \ 2907 mutex_enter(&(ill_1)->ill_lock); \ 2908 if (ill_2 != NULL) \ 2909 mutex_enter(&(ill_2)->ill_lock); \ 2910 } else { \ 2911 if (ill_2 != NULL) \ 2912 mutex_enter(&(ill_2)->ill_lock); \ 2913 if (ill_1 != NULL && ill_1 != ill_2) \ 2914 mutex_enter(&(ill_1)->ill_lock); \ 2915 } \ 2916 } 2917 2918 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2919 { \ 2920 if (ill_1 != NULL) \ 2921 mutex_exit(&(ill_1)->ill_lock); \ 2922 if (ill_2 != NULL && ill_2 != ill_1) \ 2923 mutex_exit(&(ill_2)->ill_lock); \ 2924 } 2925 2926 /* Get the other protocol instance ill */ 2927 #define ILL_OTHER(ill) \ 2928 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2929 (ill)->ill_phyint->phyint_illv6) 2930 2931 /* ioctl command info: Ioctl properties extracted and stored in here */ 2932 typedef struct cmd_info_s 2933 { 2934 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2935 sin_t *ci_sin; /* the sin struct passed down */ 2936 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2937 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2938 } cmd_info_t; 2939 2940 /* 2941 * List of AH and ESP IPsec acceleration capable ills 2942 */ 2943 typedef struct ipsec_capab_ill_s { 2944 uint_t ill_index; 2945 boolean_t ill_isv6; 2946 struct ipsec_capab_ill_s *next; 2947 } ipsec_capab_ill_t; 2948 2949 extern struct kmem_cache *ire_cache; 2950 2951 extern ipaddr_t ip_g_all_ones; 2952 2953 extern uint_t ip_loopback_mtu; /* /etc/system */ 2954 2955 extern vmem_t *ip_minor_arena_sa; 2956 extern vmem_t *ip_minor_arena_la; 2957 2958 /* 2959 * ip_g_forward controls IP forwarding. It takes two values: 2960 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2961 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2962 * 2963 * RFC1122 says there must be a configuration switch to control forwarding, 2964 * but that the default MUST be to not forward packets ever. Implicit 2965 * control based on configuration of multiple interfaces MUST NOT be 2966 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2967 * and, in fact, it was the default. That capability is now provided in the 2968 * /etc/rc2.d/S69inet script. 2969 */ 2970 2971 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2972 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2973 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2974 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2975 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2976 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2977 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2978 #define ips_ip_mrtdebug ips_param_arr[7].ip_param_value 2979 #define ips_ip_timer_interval ips_param_arr[8].ip_param_value 2980 #define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value 2981 #define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value 2982 #define ips_ip_def_ttl ips_param_arr[11].ip_param_value 2983 #define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value 2984 #define ips_ip_wroff_extra ips_param_arr[13].ip_param_value 2985 #define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value 2986 #define ips_ip_icmp_return ips_param_arr[15].ip_param_value 2987 #define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value 2988 #define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value 2989 #define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value 2990 #define ips_ip_output_queue ips_param_arr[19].ip_param_value 2991 #define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value 2992 #define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value 2993 #define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value 2994 #define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value 2995 #define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value 2996 #define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value 2997 #define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value 2998 #define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value 2999 #define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value 3000 3001 /* IPv6 configuration knobs */ 3002 #define ips_delay_first_probe_time ips_param_arr[29].ip_param_value 3003 #define ips_max_unicast_solicit ips_param_arr[30].ip_param_value 3004 #define ips_ipv6_def_hops ips_param_arr[31].ip_param_value 3005 #define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value 3006 #define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value 3007 #define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value 3008 #define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value 3009 #define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value 3010 #define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value 3011 #define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value 3012 #define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value 3013 #define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value 3014 #define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value 3015 #define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value 3016 #define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value 3017 3018 /* Misc IP configuration knobs */ 3019 #define ips_ip_policy_mask ips_param_arr[44].ip_param_value 3020 #define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value 3021 #define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value 3022 #define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value 3023 #define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value 3024 #define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value 3025 #define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value 3026 #define ips_ip_max_defend ips_param_arr[51].ip_param_value 3027 #define ips_ip_defend_interval ips_param_arr[52].ip_param_value 3028 #define ips_ip_dup_recovery ips_param_arr[53].ip_param_value 3029 #define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value 3030 #define ips_ip_lso_outbound ips_param_arr[55].ip_param_value 3031 #define ips_igmp_max_version ips_param_arr[56].ip_param_value 3032 #define ips_mld_max_version ips_param_arr[57].ip_param_value 3033 #define ips_ip_pmtu_min ips_param_arr[58].ip_param_value 3034 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value 3035 3036 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 3037 #ifdef ZC_TEST 3038 extern int noswcksum; 3039 #endif 3040 3041 extern char ipif_loopback_name[]; 3042 3043 extern nv_t *ire_nv_tbl; 3044 3045 extern struct module_info ip_mod_info; 3046 3047 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 3048 ((ipst)->ips_ip4_physical_in_event.he_interested) 3049 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 3050 ((ipst)->ips_ip6_physical_in_event.he_interested) 3051 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 3052 ((ipst)->ips_ip4_physical_out_event.he_interested) 3053 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 3054 ((ipst)->ips_ip6_physical_out_event.he_interested) 3055 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 3056 ((ipst)->ips_ip4_forwarding_event.he_interested) 3057 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 3058 ((ipst)->ips_ip6_forwarding_event.he_interested) 3059 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 3060 ((ipst)->ips_ip4_loopback_in_event.he_interested) 3061 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 3062 ((ipst)->ips_ip6_loopback_in_event.he_interested) 3063 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 3064 ((ipst)->ips_ip4_loopback_out_event.he_interested) 3065 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 3066 ((ipst)->ips_ip6_loopback_out_event.he_interested) 3067 3068 /* 3069 * Hooks macros used inside of ip 3070 */ 3071 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 3072 \ 3073 if ((_hook).he_interested) { \ 3074 hook_pkt_event_t info; \ 3075 \ 3076 _NOTE(CONSTCOND) \ 3077 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3078 \ 3079 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \ 3080 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \ 3081 info.hpe_protocol = ipst->ips_ipv4_net_data; \ 3082 info.hpe_hdr = _iph; \ 3083 info.hpe_mp = &(_fm); \ 3084 info.hpe_mb = _m; \ 3085 info.hpe_flags = _llm; \ 3086 if (hook_run(ipst->ips_ipv4_net_data->netd_hooks, \ 3087 _event, (hook_data_t)&info) != 0) { \ 3088 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3089 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3090 freemsg(_fm); \ 3091 _fm = NULL; \ 3092 _iph = NULL; \ 3093 _m = NULL; \ 3094 } else { \ 3095 _iph = info.hpe_hdr; \ 3096 _m = info.hpe_mb; \ 3097 } \ 3098 } 3099 3100 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 3101 \ 3102 if ((_hook).he_interested) { \ 3103 hook_pkt_event_t info; \ 3104 \ 3105 _NOTE(CONSTCOND) \ 3106 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3107 \ 3108 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \ 3109 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \ 3110 info.hpe_protocol = ipst->ips_ipv6_net_data; \ 3111 info.hpe_hdr = _iph; \ 3112 info.hpe_mp = &(_fm); \ 3113 info.hpe_mb = _m; \ 3114 info.hpe_flags = _llm; \ 3115 if (hook_run(ipst->ips_ipv6_net_data->netd_hooks, \ 3116 _event, (hook_data_t)&info) != 0) { \ 3117 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3118 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3119 freemsg(_fm); \ 3120 _fm = NULL; \ 3121 _iph = NULL; \ 3122 _m = NULL; \ 3123 } else { \ 3124 _iph = info.hpe_hdr; \ 3125 _m = info.hpe_mb; \ 3126 } \ 3127 } 3128 3129 #define FW_SET_ILL_INDEX(fp, ill) \ 3130 _NOTE(CONSTCOND) \ 3131 if ((ill) == NULL || (ill)->ill_phyint == NULL) { \ 3132 (fp) = 0; \ 3133 _NOTE(CONSTCOND) \ 3134 } else if (IS_UNDER_IPMP(ill)) { \ 3135 (fp) = ipmp_ill_get_ipmp_ifindex(ill); \ 3136 } else { \ 3137 (fp) = (ill)->ill_phyint->phyint_ifindex; \ 3138 } 3139 3140 /* 3141 * Network byte order macros 3142 */ 3143 #ifdef _BIG_ENDIAN 3144 #define N_IN_CLASSA_NET IN_CLASSA_NET 3145 #define N_IN_CLASSD_NET IN_CLASSD_NET 3146 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3147 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U 3148 #else /* _BIG_ENDIAN */ 3149 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU 3150 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3151 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3152 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU 3153 #endif /* _BIG_ENDIAN */ 3154 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3155 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET) 3156 #define IP_LOOPBACK_ADDR(addr) \ 3157 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET)) 3158 3159 #ifdef DEBUG 3160 /* IPsec HW acceleration debugging support */ 3161 3162 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3163 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3164 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3165 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3166 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3167 3168 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3169 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3170 3171 extern uint32_t ipsechw_debug; 3172 #else 3173 #define IPSECHW_DEBUG(f, x) {} 3174 #define IPSECHW_CALL(f, r, x) {} 3175 #endif 3176 3177 extern int ip_debug; 3178 extern uint_t ip_thread_data; 3179 extern krwlock_t ip_thread_rwlock; 3180 extern list_t ip_thread_list; 3181 3182 #ifdef IP_DEBUG 3183 #include <sys/debug.h> 3184 #include <sys/promif.h> 3185 3186 #define ip0dbg(a) printf a 3187 #define ip1dbg(a) if (ip_debug > 2) printf a 3188 #define ip2dbg(a) if (ip_debug > 3) printf a 3189 #define ip3dbg(a) if (ip_debug > 4) printf a 3190 #else 3191 #define ip0dbg(a) /* */ 3192 #define ip1dbg(a) /* */ 3193 #define ip2dbg(a) /* */ 3194 #define ip3dbg(a) /* */ 3195 #endif /* IP_DEBUG */ 3196 3197 /* Default MAC-layer address string length for mac_colon_addr */ 3198 #define MAC_STR_LEN 128 3199 3200 struct ipsec_out_s; 3201 3202 struct mac_header_info_s; 3203 3204 extern void ill_frag_timer(void *); 3205 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3206 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3207 extern void ill_frag_timer_start(ill_t *); 3208 extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t, 3209 nic_event_data_t, size_t); 3210 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3211 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3212 extern mblk_t *ip_dlnotify_alloc(uint_t, uint_t); 3213 extern char *ip_dot_addr(ipaddr_t, char *); 3214 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3215 extern void ip_lwput(queue_t *, mblk_t *); 3216 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3217 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3218 ip_stack_t *); 3219 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3220 ip_stack_t *); 3221 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3222 cred_t *ip_best_cred(mblk_t *, conn_t *); 3223 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3224 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3225 extern int ip_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, 3226 uint16_t, boolean_t); 3227 extern int ip_proto_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, 3228 uint16_t, boolean_t); 3229 extern int ip_proto_bind_connected_v4(conn_t *, mblk_t **, 3230 uint8_t, ipaddr_t *, uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t, 3231 cred_t *); 3232 extern int ip_bind_connected_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t *, 3233 uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t, cred_t *); 3234 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3235 extern int ip_close(queue_t *, int); 3236 extern uint16_t ip_csum_hdr(ipha_t *); 3237 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3238 ip_stack_t *); 3239 extern void ip_ire_g_fini(void); 3240 extern void ip_ire_g_init(void); 3241 extern void ip_ire_fini(ip_stack_t *); 3242 extern void ip_ire_init(ip_stack_t *); 3243 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 3244 cred_t *credp); 3245 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 3246 cred_t *credp); 3247 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3248 size_t); 3249 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3250 int, int, mblk_t *); 3251 extern void ip_rput(queue_t *, mblk_t *); 3252 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3253 struct mac_header_info_s *); 3254 extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *, 3255 mblk_t *, mblk_t **, uint_t *cnt); 3256 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3257 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3258 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3259 3260 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3261 mib2_ipIfStatsEntry_t *); 3262 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3263 mib2_ipv6IfIcmpEntry_t *); 3264 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3265 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, 3266 uint32_t); 3267 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3268 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3269 extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *); 3270 extern void ip_trash_ire_reclaim(void *); 3271 extern void ip_trash_timer_expire(void *); 3272 extern void ip_wput(queue_t *, mblk_t *); 3273 extern void ip_output(void *, mblk_t *, void *, int); 3274 extern void ip_output_options(void *, mblk_t *, void *, int, 3275 ip_opt_info_t *); 3276 3277 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3278 zoneid_t); 3279 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3280 int, zoneid_t); 3281 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3282 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3283 extern void ip_wsrv(queue_t *); 3284 extern char *ip_nv_lookup(nv_t *, int); 3285 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3286 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3287 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3288 extern ipaddr_t ip_net_mask(ipaddr_t); 3289 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3290 ip_stack_t *); 3291 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3292 boolean_t, conn_t *); 3293 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3294 3295 extern struct qinit iprinitv6; 3296 extern struct qinit ipwinitv6; 3297 3298 extern void ipmp_init(ip_stack_t *); 3299 extern void ipmp_destroy(ip_stack_t *); 3300 extern ipmp_grp_t *ipmp_grp_create(const char *, phyint_t *); 3301 extern void ipmp_grp_destroy(ipmp_grp_t *); 3302 extern void ipmp_grp_info(const ipmp_grp_t *, lifgroupinfo_t *); 3303 extern int ipmp_grp_rename(ipmp_grp_t *, const char *); 3304 extern ipmp_grp_t *ipmp_grp_lookup(const char *, ip_stack_t *); 3305 extern int ipmp_grp_vet_phyint(ipmp_grp_t *, phyint_t *); 3306 extern ipmp_illgrp_t *ipmp_illgrp_create(ill_t *); 3307 extern void ipmp_illgrp_destroy(ipmp_illgrp_t *); 3308 extern ill_t *ipmp_illgrp_add_ipif(ipmp_illgrp_t *, ipif_t *); 3309 extern void ipmp_illgrp_del_ipif(ipmp_illgrp_t *, ipif_t *); 3310 extern ill_t *ipmp_illgrp_next_ill(ipmp_illgrp_t *); 3311 extern ill_t *ipmp_illgrp_hold_next_ill(ipmp_illgrp_t *); 3312 extern ill_t *ipmp_illgrp_cast_ill(ipmp_illgrp_t *); 3313 extern ill_t *ipmp_illgrp_hold_cast_ill(ipmp_illgrp_t *); 3314 extern ill_t *ipmp_illgrp_ipmp_ill(ipmp_illgrp_t *); 3315 extern void ipmp_illgrp_refresh_mtu(ipmp_illgrp_t *); 3316 extern ipmp_arpent_t *ipmp_illgrp_create_arpent(ipmp_illgrp_t *, mblk_t *, 3317 boolean_t); 3318 extern void ipmp_illgrp_destroy_arpent(ipmp_illgrp_t *, ipmp_arpent_t *); 3319 extern ipmp_arpent_t *ipmp_illgrp_lookup_arpent(ipmp_illgrp_t *, ipaddr_t *); 3320 extern void ipmp_illgrp_refresh_arpent(ipmp_illgrp_t *); 3321 extern void ipmp_illgrp_mark_arpent(ipmp_illgrp_t *, ipmp_arpent_t *); 3322 extern ill_t *ipmp_illgrp_find_ill(ipmp_illgrp_t *, uchar_t *, uint_t); 3323 extern void ipmp_illgrp_link_grp(ipmp_illgrp_t *, ipmp_grp_t *); 3324 extern int ipmp_illgrp_unlink_grp(ipmp_illgrp_t *); 3325 extern uint_t ipmp_ill_get_ipmp_ifindex(const ill_t *); 3326 extern void ipmp_ill_join_illgrp(ill_t *, ipmp_illgrp_t *); 3327 extern void ipmp_ill_leave_illgrp(ill_t *); 3328 extern ill_t *ipmp_ill_hold_ipmp_ill(ill_t *); 3329 extern boolean_t ipmp_ill_is_active(ill_t *); 3330 extern void ipmp_ill_refresh_active(ill_t *); 3331 extern void ipmp_phyint_join_grp(phyint_t *, ipmp_grp_t *); 3332 extern void ipmp_phyint_leave_grp(phyint_t *); 3333 extern void ipmp_phyint_refresh_active(phyint_t *); 3334 extern ill_t *ipmp_ipif_bound_ill(const ipif_t *); 3335 extern ill_t *ipmp_ipif_hold_bound_ill(const ipif_t *); 3336 extern boolean_t ipmp_ipif_is_dataaddr(const ipif_t *); 3337 extern boolean_t ipmp_ipif_is_stubaddr(const ipif_t *); 3338 3339 extern void conn_drain_insert(conn_t *connp); 3340 extern int conn_ipsec_length(conn_t *connp); 3341 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3342 ire_t *); 3343 extern ipaddr_t ip_get_dst(ipha_t *); 3344 extern int ipsec_out_extra_length(mblk_t *); 3345 extern int ipsec_in_extra_length(mblk_t *); 3346 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3347 extern boolean_t ipsec_in_is_secure(mblk_t *); 3348 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3349 extern void ipsec_out_to_in(mblk_t *); 3350 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3351 3352 extern void ire_cleanup(ire_t *); 3353 extern void ire_inactive(ire_t *); 3354 extern boolean_t irb_inactive(irb_t *); 3355 extern ire_t *ire_unlink(irb_t *); 3356 3357 #ifdef DEBUG 3358 extern boolean_t th_trace_ref(const void *, ip_stack_t *); 3359 extern void th_trace_unref(const void *); 3360 extern void th_trace_cleanup(const void *, boolean_t); 3361 extern void ire_trace_ref(ire_t *); 3362 extern void ire_untrace_ref(ire_t *); 3363 #endif 3364 3365 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3366 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3367 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3368 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3369 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3370 3371 extern uint8_t ipoptp_next(ipoptp_t *); 3372 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3373 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3374 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3375 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level); 3376 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3377 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3378 extern void ip_quiesce_conn(conn_t *); 3379 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3380 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3381 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3382 3383 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3384 uint_t); 3385 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3386 uint_t); 3387 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3388 3389 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3390 extern void conn_ioctl_cleanup(conn_t *); 3391 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3392 3393 struct multidata_s; 3394 struct pdesc_s; 3395 3396 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3397 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3398 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3399 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3400 ill_lso_capab_t *); 3401 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3402 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3403 const mblk_t *); 3404 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3405 uint32_t, uint32_t, uint32_t, uint32_t); 3406 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3407 uint_t); 3408 extern void ip_unbind(conn_t *connp); 3409 3410 extern void tnet_init(void); 3411 extern void tnet_fini(void); 3412 3413 /* Hooks for CGTP (multirt routes) filtering module */ 3414 #define CGTP_FILTER_REV_1 1 3415 #define CGTP_FILTER_REV_2 2 3416 #define CGTP_FILTER_REV_3 3 3417 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3418 3419 /* cfo_filter and cfo_filter_v6 hooks return values */ 3420 #define CGTP_IP_PKT_NOT_CGTP 0 3421 #define CGTP_IP_PKT_PREMIUM 1 3422 #define CGTP_IP_PKT_DUPLICATE 2 3423 3424 /* Version 3 of the filter interface */ 3425 typedef struct cgtp_filter_ops { 3426 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3427 int (*cfo_change_state)(netstackid_t, int); 3428 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3429 ipaddr_t, ipaddr_t); 3430 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3431 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3432 in6_addr_t *, in6_addr_t *); 3433 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3434 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3435 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3436 ip6_frag_t *); 3437 } cgtp_filter_ops_t; 3438 3439 #define CGTP_MCAST_SUCCESS 1 3440 3441 /* 3442 * The separate CGTP module needs this global symbol so that it 3443 * can check the version and determine whether to use the old or the new 3444 * version of the filtering interface. 3445 */ 3446 extern int ip_cgtp_filter_rev; 3447 3448 extern int ip_cgtp_filter_supported(void); 3449 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3450 extern int ip_cgtp_filter_unregister(netstackid_t); 3451 extern int ip_cgtp_filter_is_registered(netstackid_t); 3452 3453 /* Flags for ire_multirt_lookup() */ 3454 3455 #define MULTIRT_USESTAMP 0x0001 3456 #define MULTIRT_SETSTAMP 0x0002 3457 #define MULTIRT_CACHEGW 0x0004 3458 3459 /* Debug stuff for multirt route resolution. */ 3460 #if defined(DEBUG) && !defined(__lint) 3461 /* Our "don't send, rather drop" flag. */ 3462 #define MULTIRT_DEBUG_FLAG 0x8000 3463 3464 #define MULTIRT_TRACE(x) ip2dbg(x) 3465 3466 #define MULTIRT_DEBUG_TAG(mblk) \ 3467 do { \ 3468 ASSERT(mblk != NULL); \ 3469 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3470 __FILE__, __LINE__, \ 3471 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3472 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3473 } while (0) 3474 3475 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3476 do { \ 3477 ASSERT(mblk != NULL); \ 3478 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3479 __FILE__, __LINE__, \ 3480 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3481 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3482 } while (0) 3483 3484 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3485 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3486 #else 3487 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3488 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3489 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3490 #endif 3491 3492 /* 3493 * IP observability hook support 3494 */ 3495 3496 /* 3497 * ipobs_hooktype_t describes the hook types supported 3498 * by the ip module. IPOBS_HOOK_LOCAL refers to packets 3499 * which are looped back internally within the ip module. 3500 */ 3501 3502 typedef enum ipobs_hook_type { 3503 IPOBS_HOOK_LOCAL, 3504 IPOBS_HOOK_OUTBOUND, 3505 IPOBS_HOOK_INBOUND 3506 } ipobs_hook_type_t; 3507 3508 typedef void ipobs_cbfunc_t(mblk_t *); 3509 3510 typedef struct ipobs_cb { 3511 ipobs_cbfunc_t *ipobs_cbfunc; 3512 list_node_t ipobs_cbnext; 3513 } ipobs_cb_t; 3514 3515 /* 3516 * This structure holds the data passed back from the ip module to 3517 * observability consumers. 3518 * 3519 * ihd_mp Pointer to the IP packet. 3520 * ihd_zsrc Source zoneid; set to ALL_ZONES when unknown. 3521 * ihd_zdst Destination zoneid; set to ALL_ZONES when unknown. 3522 * ihd_htype IPobs hook type, see above for the defined types. 3523 * ihd_ipver IP version of the packet. 3524 * ihd_ifindex Interface index that the packet was received/sent over. 3525 * For local packets, this is the index of the interface 3526 * associated with the local destination address. 3527 * ihd_grifindex IPMP group interface index (zero unless ihd_ifindex 3528 * is an IPMP underlying interface). 3529 * ihd_stack Netstack the packet is from. 3530 */ 3531 typedef struct ipobs_hook_data { 3532 mblk_t *ihd_mp; 3533 zoneid_t ihd_zsrc; 3534 zoneid_t ihd_zdst; 3535 ipobs_hook_type_t ihd_htype; 3536 uint16_t ihd_ipver; 3537 uint64_t ihd_ifindex; 3538 uint64_t ihd_grifindex; 3539 netstack_t *ihd_stack; 3540 } ipobs_hook_data_t; 3541 3542 /* 3543 * Per-ILL Multidata Transmit capabilities. 3544 */ 3545 struct ill_mdt_capab_s { 3546 uint_t ill_mdt_version; /* interface version */ 3547 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3548 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3549 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3550 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3551 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3552 }; 3553 3554 struct ill_hcksum_capab_s { 3555 uint_t ill_hcksum_version; /* interface version */ 3556 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3557 }; 3558 3559 struct ill_zerocopy_capab_s { 3560 uint_t ill_zerocopy_version; /* interface version */ 3561 uint_t ill_zerocopy_flags; /* capabilities */ 3562 }; 3563 3564 struct ill_lso_capab_s { 3565 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3566 uint_t ill_lso_flags; /* capabilities */ 3567 uint_t ill_lso_max; /* maximum size of payload */ 3568 }; 3569 3570 /* 3571 * rr_ring_state cycles in the order shown below from RR_FREE through 3572 * RR_FREE_IN_PROG and back to RR_FREE. 3573 */ 3574 typedef enum { 3575 RR_FREE, /* Free slot */ 3576 RR_SQUEUE_UNBOUND, /* Ring's squeue is unbound */ 3577 RR_SQUEUE_BIND_INPROG, /* Ring's squeue bind in progress */ 3578 RR_SQUEUE_BOUND, /* Ring's squeue bound to cpu */ 3579 RR_FREE_INPROG /* Ring is being freed */ 3580 } ip_ring_state_t; 3581 3582 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3583 #define ILL_POLLING 0x01 /* Polling in use */ 3584 3585 /* 3586 * These functions pointer types are exported by the mac/dls layer. 3587 * we need to duplicate the definitions here because we cannot 3588 * include mac/dls header files here. 3589 */ 3590 typedef void *ip_mac_tx_cookie_t; 3591 typedef void (*ip_mac_intr_disable_t)(void *); 3592 typedef void (*ip_mac_intr_enable_t)(void *); 3593 typedef void *(*ip_dld_tx_t)(void *, mblk_t *, uint64_t, uint16_t); 3594 typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t); 3595 typedef void *(*ip_dld_callb_t)(void *, ip_flow_enable_t, void *); 3596 typedef int (*ip_capab_func_t)(void *, uint_t, void *, uint_t); 3597 3598 /* 3599 * POLLING README 3600 * sq_get_pkts() is called to pick packets from softring in poll mode. It 3601 * calls rr_rx to get the chain and process it with rr_ip_accept. 3602 * rr_rx = mac_soft_ring_poll() to pick packets 3603 * rr_ip_accept = ip_accept_tcp() to process packets 3604 */ 3605 3606 /* 3607 * XXX: With protocol, service specific squeues, they will have 3608 * specific acceptor functions. 3609 */ 3610 typedef mblk_t *(*ip_mac_rx_t)(void *, size_t); 3611 typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *, 3612 squeue_t *, mblk_t *, mblk_t **, uint_t *); 3613 3614 /* 3615 * rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx: 3616 * May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB 3617 * is set. 3618 * 3619 * rr_ring_state: Protected by ill_lock. 3620 */ 3621 struct ill_rx_ring { 3622 ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */ 3623 ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */ 3624 void *rr_intr_handle; /* Handle interrupt funcs */ 3625 ip_mac_rx_t rr_rx; /* Driver receive function */ 3626 ip_accept_t rr_ip_accept; /* IP accept function */ 3627 void *rr_rx_handle; /* Handle for Rx ring */ 3628 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3629 ill_t *rr_ill; /* back pointer to ill */ 3630 ip_ring_state_t rr_ring_state; /* State of this ring */ 3631 }; 3632 3633 /* 3634 * IP - DLD direct function call capability 3635 * Suffixes, df - dld function, dh - dld handle, 3636 * cf - client (IP) function, ch - client handle 3637 */ 3638 typedef struct ill_dld_direct_s { /* DLD provided driver Tx */ 3639 ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */ 3640 void *idd_tx_dh; /* dld_str_t *dsp */ 3641 ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */ 3642 void *idd_tx_cb_dh; /* mac_client_handle_t *mch */ 3643 } ill_dld_direct_t; 3644 3645 /* IP - DLD polling capability */ 3646 typedef struct ill_dld_poll_s { 3647 ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS]; 3648 } ill_dld_poll_t; 3649 3650 /* Describes ill->ill_dld_capab */ 3651 struct ill_dld_capab_s { 3652 ip_capab_func_t idc_capab_df; /* dld_capab_func */ 3653 void *idc_capab_dh; /* dld_str_t *dsp */ 3654 ill_dld_direct_t idc_direct; 3655 ill_dld_poll_t idc_poll; 3656 }; 3657 3658 /* 3659 * IP squeues exports 3660 */ 3661 extern boolean_t ip_squeue_fanout; 3662 3663 #define IP_SQUEUE_GET(hint) ip_squeue_random(hint) 3664 3665 extern void ip_squeue_init(void (*)(squeue_t *)); 3666 extern squeue_t *ip_squeue_random(uint_t); 3667 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3668 extern squeue_t *ip_squeue_getfree(pri_t); 3669 extern int ip_squeue_cpu_move(squeue_t *, processorid_t); 3670 extern void *ip_squeue_add_ring(ill_t *, void *); 3671 extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t); 3672 extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *); 3673 extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *); 3674 extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *); 3675 extern void ip_squeue_clean_all(ill_t *); 3676 3677 extern void tcp_wput(queue_t *, mblk_t *); 3678 3679 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3680 struct ip6_mtuinfo *, netstack_t *); 3681 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3682 extern void ipobs_register_hook(netstack_t *, ipobs_cbfunc_t *); 3683 extern void ipobs_unregister_hook(netstack_t *, ipobs_cbfunc_t *); 3684 extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *, int, 3685 uint32_t, ip_stack_t *); 3686 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3687 3688 /* 3689 * Squeue tags. Tags only need to be unique when the callback function is the 3690 * same to distinguish between different calls, but we use unique tags for 3691 * convenience anyway. 3692 */ 3693 #define SQTAG_IP_INPUT 1 3694 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3695 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3696 #define SQTAG_IP_TCP_INPUT 4 3697 #define SQTAG_IP6_TCP_INPUT 5 3698 #define SQTAG_IP_TCP_CLOSE 6 3699 #define SQTAG_TCP_OUTPUT 7 3700 #define SQTAG_TCP_TIMER 8 3701 #define SQTAG_TCP_TIMEWAIT 9 3702 #define SQTAG_TCP_ACCEPT_FINISH 10 3703 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3704 #define SQTAG_TCP_ACCEPT_PENDING 12 3705 #define SQTAG_TCP_LISTEN_DISCON 13 3706 #define SQTAG_TCP_CONN_REQ_1 14 3707 #define SQTAG_TCP_EAGER_BLOWOFF 15 3708 #define SQTAG_TCP_EAGER_CLEANUP 16 3709 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3710 #define SQTAG_TCP_CONN_IND 18 3711 #define SQTAG_TCP_RSRV 19 3712 #define SQTAG_TCP_ABORT_BUCKET 20 3713 #define SQTAG_TCP_REINPUT 21 3714 #define SQTAG_TCP_REINPUT_EAGER 22 3715 #define SQTAG_TCP_INPUT_MCTL 23 3716 #define SQTAG_TCP_RPUTOTHER 24 3717 #define SQTAG_IP_PROTO_AGAIN 25 3718 #define SQTAG_IP_FANOUT_TCP 26 3719 #define SQTAG_IPSQ_CLEAN_RING 27 3720 #define SQTAG_TCP_WPUT_OTHER 28 3721 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3722 #define SQTAG_TCP_SEND_PENDING 30 3723 #define SQTAG_BIND_RETRY 31 3724 #define SQTAG_UDP_FANOUT 32 3725 #define SQTAG_UDP_INPUT 33 3726 #define SQTAG_UDP_WPUT 34 3727 #define SQTAG_UDP_OUTPUT 35 3728 #define SQTAG_TCP_KSSL_INPUT 36 3729 #define SQTAG_TCP_DROP_Q0 37 3730 #define SQTAG_TCP_CONN_REQ_2 38 3731 #define SQTAG_IP_INPUT_RX_RING 39 3732 #define SQTAG_SQUEUE_CHANGE 40 3733 #define SQTAG_CONNECT_FINISH 41 3734 #define SQTAG_SYNCHRONOUS_OP 42 3735 #define SQTAG_TCP_SHUTDOWN_OUTPUT 43 3736 3737 #define NOT_OVER_IP(ip_wq) \ 3738 (ip_wq->q_next != NULL || \ 3739 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3740 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3741 IP_MOD_NAME) != 0 || \ 3742 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3743 3744 #define PROTO_FLOW_CNTRLD(connp) (connp->conn_flow_cntrld) 3745 #endif /* _KERNEL */ 3746 3747 #ifdef __cplusplus 3748 } 3749 #endif 3750 3751 #endif /* _INET_IP_H */ 3752