1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <sys/socket.h> 43 #include <net/if_dl.h> 44 #include <net/if.h> 45 #include <netinet/ip.h> 46 #include <sys/dlpi.h> 47 #include <netinet/igmp.h> 48 49 #ifdef _KERNEL 50 #include <netinet/ip6.h> 51 #include <sys/avl.h> 52 #include <sys/vmem.h> 53 #include <sys/squeue.h> 54 #include <net/route.h> 55 #include <sys/systm.h> 56 #include <sys/multidata.h> 57 58 #ifdef DEBUG 59 #define ILL_DEBUG 60 #define IRE_DEBUG 61 #define NCE_DEBUG 62 #define CONN_DEBUG 63 #endif 64 65 #define IP_DEBUG 66 /* 67 * The mt-streams(9F) flags for the IP module; put here so that other 68 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 69 * of flags. 70 */ 71 #define IP_DEVMTFLAGS D_MP 72 #endif /* _KERNEL */ 73 74 #define IP_MOD_NAME "ip" 75 #define IP_DEV_NAME "/dev/ip" 76 #define IP6_DEV_NAME "/dev/ip6" 77 78 #define UDP_MOD_NAME "udp" 79 #define UDP_DEV_NAME "/dev/udp" 80 #define UDP6_DEV_NAME "/dev/udp6" 81 82 #define TCP_MOD_NAME "tcp" 83 #define TCP_DEV_NAME "/dev/tcp" 84 #define TCP6_DEV_NAME "/dev/tcp6" 85 86 /* Minor numbers */ 87 #define IPV4_MINOR 0 88 #define IPV6_MINOR 1 89 #define TCP_MINOR 2 90 #define TCP_MINOR6 3 91 92 #ifndef _IPADDR_T 93 #define _IPADDR_T 94 typedef uint32_t ipaddr_t; 95 #endif 96 97 /* Number of bits in an address */ 98 #define IP_ABITS 32 99 #define IPV6_ABITS 128 100 101 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 102 103 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 104 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 105 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 106 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 107 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 108 109 /* 110 * Flag to IP write side to indicate that the appln has sent in a pre-built 111 * IP header. Stored in ipha_ident (which is otherwise zero). 112 */ 113 #define IP_HDR_INCLUDED 0xFFFF 114 115 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 116 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 117 118 #define IPV4_ADDR_LEN 4 119 #define IP_ADDR_LEN IPV4_ADDR_LEN 120 #define IP_ARP_PROTO_TYPE 0x0800 121 122 #define IPV4_VERSION 4 123 #define IP_VERSION IPV4_VERSION 124 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 125 #define IP_SIMPLE_HDR_LENGTH 20 126 #define IP_MAX_HDR_LENGTH 60 127 128 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 129 130 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 131 132 /* 133 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 134 * 2 files should be cleaned up to remove all redundant definitions. 135 */ 136 #define IP_MAXPACKET 65535 137 #define IP_SIMPLE_HDR_VERSION \ 138 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 139 140 #define UDPH_SIZE 8 141 142 /* 143 * Constants and type definitions to support IP IOCTL commands 144 */ 145 #define IP_IOCTL (('i'<<8)|'p') 146 #define IP_IOC_IRE_DELETE 4 147 #define IP_IOC_IRE_DELETE_NO_REPLY 5 148 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 149 #define IP_IOC_RTS_REQUEST 7 150 151 /* Common definitions used by IP IOCTL data structures */ 152 typedef struct ipllcmd_s { 153 uint_t ipllc_cmd; 154 uint_t ipllc_name_offset; 155 uint_t ipllc_name_length; 156 } ipllc_t; 157 158 /* IP IRE Change Command Structure. */ 159 typedef struct ipic_s { 160 ipllc_t ipic_ipllc; 161 uint_t ipic_ire_type; 162 uint_t ipic_max_frag; 163 uint_t ipic_addr_offset; 164 uint_t ipic_addr_length; 165 uint_t ipic_mask_offset; 166 uint_t ipic_mask_length; 167 uint_t ipic_src_addr_offset; 168 uint_t ipic_src_addr_length; 169 uint_t ipic_ll_hdr_offset; 170 uint_t ipic_ll_hdr_length; 171 uint_t ipic_gateway_addr_offset; 172 uint_t ipic_gateway_addr_length; 173 clock_t ipic_rtt; 174 uint32_t ipic_ssthresh; 175 clock_t ipic_rtt_sd; 176 uchar_t ipic_ire_marks; 177 } ipic_t; 178 179 #define ipic_cmd ipic_ipllc.ipllc_cmd 180 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 181 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 182 183 /* IP IRE Delete Command Structure. */ 184 typedef struct ipid_s { 185 ipllc_t ipid_ipllc; 186 uint_t ipid_ire_type; 187 uint_t ipid_addr_offset; 188 uint_t ipid_addr_length; 189 uint_t ipid_mask_offset; 190 uint_t ipid_mask_length; 191 } ipid_t; 192 193 #define ipid_cmd ipid_ipllc.ipllc_cmd 194 195 #ifdef _KERNEL 196 /* 197 * Temporary state for ip options parser. 198 */ 199 typedef struct ipoptp_s 200 { 201 uint8_t *ipoptp_next; /* next option to look at */ 202 uint8_t *ipoptp_end; /* end of options */ 203 uint8_t *ipoptp_cur; /* start of current option */ 204 uint8_t ipoptp_len; /* length of current option */ 205 uint32_t ipoptp_flags; 206 } ipoptp_t; 207 208 /* 209 * Flag(s) for ipoptp_flags 210 */ 211 #define IPOPTP_ERROR 0x00000001 212 #endif /* _KERNEL */ 213 214 215 /* Controls forwarding of IP packets, set via ndd */ 216 #define IP_FORWARD_NEVER 0 217 #define IP_FORWARD_ALWAYS 1 218 219 #define WE_ARE_FORWARDING (ip_g_forward == IP_FORWARD_ALWAYS) 220 221 #define IPH_HDR_LENGTH(ipha) \ 222 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 223 224 #define IPH_HDR_VERSION(ipha) \ 225 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 226 227 #ifdef _KERNEL 228 /* 229 * IP reassembly macros. We hide starting and ending offsets in b_next and 230 * b_prev of messages on the reassembly queue. The messages are chained using 231 * b_cont. These macros are used in ip_reassemble() so we don't have to see 232 * the ugly casts and assignments. 233 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 234 * them. 235 */ 236 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 237 #define IP_REASS_SET_START(mp, u) \ 238 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 239 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 240 #define IP_REASS_SET_END(mp, u) \ 241 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 242 243 #define IP_REASS_COMPLETE 0x1 244 #define IP_REASS_PARTIAL 0x2 245 #define IP_REASS_FAILED 0x4 246 247 /* 248 * Test to determine whether this is a module instance of IP or a 249 * driver instance of IP. 250 */ 251 #define CONN_Q(q) (WR(q)->q_next == NULL) 252 253 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 254 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 255 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 256 257 /* 258 * The following two macros are used by IP to get the appropriate 259 * wq and rq for a conn. If it is a TCP conn, then we need 260 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 261 * from a conn directly if it knows that the conn is not TCP. 262 */ 263 #define CONNP_TO_WQ(connp) \ 264 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 265 266 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 267 268 #define GRAB_CONN_LOCK(q) { \ 269 if (q != NULL && CONN_Q(q)) \ 270 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 271 } 272 273 #define RELEASE_CONN_LOCK(q) { \ 274 if (q != NULL && CONN_Q(q)) \ 275 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 276 } 277 278 /* "Congestion controlled" protocol */ 279 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 280 281 /* 282 * Complete the pending operation. Usually an ioctl. Can also 283 * be a bind or option management request that got enqueued 284 * in an ipsq_t. Called on completion of the operation. 285 */ 286 #define CONN_OPER_PENDING_DONE(connp) { \ 287 mutex_enter(&(connp)->conn_lock); \ 288 (connp)->conn_oper_pending_ill = NULL; \ 289 cv_broadcast(&(connp)->conn_refcv); \ 290 mutex_exit(&(connp)->conn_lock); \ 291 CONN_DEC_REF(connp); \ 292 } 293 294 /* Get the credential of an IP queue of unknown type */ 295 #define GET_QUEUE_CRED(wq) \ 296 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 297 : ((Q_TO_CONN((wq)))->conn_cred)) 298 299 /* 300 * Flags for the various ip_fanout_* routines. 301 */ 302 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 303 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 304 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 305 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 306 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 307 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 308 #define IP_FF_IP6INFO 0x80 /* Add ip6i_t if needed */ 309 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 310 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 311 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 312 313 /* 314 * Following flags are used by IPQoS to determine if policy processing is 315 * required. 316 */ 317 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 318 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 319 320 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 321 322 #ifndef IRE_DB_TYPE 323 #define IRE_DB_TYPE M_SIG 324 #endif 325 326 #ifndef IRE_DB_REQ_TYPE 327 #define IRE_DB_REQ_TYPE M_PCSIG 328 #endif 329 330 /* 331 * Values for squeue switch: 332 */ 333 334 #define IP_SQUEUE_ENTER_NODRAIN 1 335 #define IP_SQUEUE_ENTER 2 336 /* 337 * This is part of the interface between Transport provider and 338 * IP which can be used to set policy information. This is usually 339 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 340 * only IPSEC_POLICY_SET is there when it is found in the chain. 341 * The information contained is an struct ipsec_req_t. On success 342 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 343 * IPSEC_POLICY_SET is never returned. 344 */ 345 #define IPSEC_POLICY_SET M_SETOPTS 346 347 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 348 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 349 350 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 351 ((ire)->ire_type != IRE_BROADCAST)) 352 353 /* IP Fragmentation Reassembly Header */ 354 typedef struct ipf_s { 355 struct ipf_s *ipf_hash_next; 356 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 357 uint32_t ipf_ident; /* Ident to match. */ 358 uint8_t ipf_protocol; /* Protocol to match. */ 359 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 360 time_t ipf_timestamp; /* Reassembly start time. */ 361 mblk_t *ipf_mp; /* mblk we live in. */ 362 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 363 int ipf_hole_cnt; /* Number of holes (hard-case). */ 364 int ipf_end; /* Tail end offset (0 -> hard-case). */ 365 uint_t ipf_gen; /* Frag queue generation */ 366 size_t ipf_count; /* Count of bytes used by frag */ 367 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 368 in6_addr_t ipf_v6src; /* IPv6 source address */ 369 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 370 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 371 uint8_t ipf_ecn; /* ECN info for the fragments */ 372 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 373 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 374 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 375 } ipf_t; 376 377 #define ipf_src V4_PART_OF_V6(ipf_v6src) 378 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 379 380 typedef enum { 381 IB_PKT = 0x01, 382 OB_PKT = 0x02 383 } ip_pkt_t; 384 385 #define UPDATE_IB_PKT_COUNT(ire)\ 386 { \ 387 (ire)->ire_ib_pkt_count++; \ 388 if ((ire)->ire_ipif != NULL) { \ 389 /* \ 390 * forwarding packet \ 391 */ \ 392 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 393 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 394 else \ 395 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 396 } \ 397 } 398 #define UPDATE_OB_PKT_COUNT(ire)\ 399 { \ 400 (ire)->ire_ob_pkt_count++;\ 401 if ((ire)->ire_ipif != NULL) { \ 402 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 403 } \ 404 } 405 406 407 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 408 { \ 409 switch (ipha->ipha_protocol) { \ 410 case IPPROTO_UDP: \ 411 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 412 break; \ 413 default: \ 414 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 415 break; \ 416 } \ 417 } 418 419 420 #endif /* _KERNEL */ 421 422 /* ICMP types */ 423 #define ICMP_ECHO_REPLY 0 424 #define ICMP_DEST_UNREACHABLE 3 425 #define ICMP_SOURCE_QUENCH 4 426 #define ICMP_REDIRECT 5 427 #define ICMP_ECHO_REQUEST 8 428 #define ICMP_ROUTER_ADVERTISEMENT 9 429 #define ICMP_ROUTER_SOLICITATION 10 430 #define ICMP_TIME_EXCEEDED 11 431 #define ICMP_PARAM_PROBLEM 12 432 #define ICMP_TIME_STAMP_REQUEST 13 433 #define ICMP_TIME_STAMP_REPLY 14 434 #define ICMP_INFO_REQUEST 15 435 #define ICMP_INFO_REPLY 16 436 #define ICMP_ADDRESS_MASK_REQUEST 17 437 #define ICMP_ADDRESS_MASK_REPLY 18 438 439 /* ICMP_TIME_EXCEEDED codes */ 440 #define ICMP_TTL_EXCEEDED 0 441 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 442 443 /* ICMP_DEST_UNREACHABLE codes */ 444 #define ICMP_NET_UNREACHABLE 0 445 #define ICMP_HOST_UNREACHABLE 1 446 #define ICMP_PROTOCOL_UNREACHABLE 2 447 #define ICMP_PORT_UNREACHABLE 3 448 #define ICMP_FRAGMENTATION_NEEDED 4 449 #define ICMP_SOURCE_ROUTE_FAILED 5 450 #define ICMP_DEST_NET_UNKNOWN 6 451 #define ICMP_DEST_HOST_UNKNOWN 7 452 #define ICMP_SRC_HOST_ISOLATED 8 453 #define ICMP_DEST_NET_UNREACH_ADMIN 9 454 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 455 #define ICMP_DEST_NET_UNREACH_TOS 11 456 #define ICMP_DEST_HOST_UNREACH_TOS 12 457 458 /* ICMP Header Structure */ 459 typedef struct icmph_s { 460 uint8_t icmph_type; 461 uint8_t icmph_code; 462 uint16_t icmph_checksum; 463 union { 464 struct { /* ECHO request/response structure */ 465 uint16_t u_echo_ident; 466 uint16_t u_echo_seqnum; 467 } u_echo; 468 struct { /* Destination unreachable structure */ 469 uint16_t u_du_zero; 470 uint16_t u_du_mtu; 471 } u_du; 472 struct { /* Parameter problem structure */ 473 uint8_t u_pp_ptr; 474 uint8_t u_pp_rsvd[3]; 475 } u_pp; 476 struct { /* Redirect structure */ 477 ipaddr_t u_rd_gateway; 478 } u_rd; 479 } icmph_u; 480 } icmph_t; 481 482 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 483 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 484 #define icmph_du_zero icmph_u.u_du.u_du_zero 485 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 486 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 487 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 488 489 #define ICMPH_SIZE 8 490 491 /* 492 * Minimum length of transport layer header included in an ICMP error 493 * message for it to be considered valid. 494 */ 495 #define ICMP_MIN_TP_HDR_LEN 8 496 497 /* Aligned IP header */ 498 typedef struct ipha_s { 499 uint8_t ipha_version_and_hdr_length; 500 uint8_t ipha_type_of_service; 501 uint16_t ipha_length; 502 uint16_t ipha_ident; 503 uint16_t ipha_fragment_offset_and_flags; 504 uint8_t ipha_ttl; 505 uint8_t ipha_protocol; 506 uint16_t ipha_hdr_checksum; 507 ipaddr_t ipha_src; 508 ipaddr_t ipha_dst; 509 } ipha_t; 510 511 #define IPH_DF 0x4000 /* Don't fragment */ 512 #define IPH_MF 0x2000 /* More fragments to come */ 513 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 514 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 515 516 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 517 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 518 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 519 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 520 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 521 522 /* IP Mac info structure */ 523 typedef struct ip_m_s { 524 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 525 int ip_m_type; /* From <net/if_types.h> */ 526 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 527 uint32_t *, ipaddr_t *); 528 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 529 uint32_t *, in6_addr_t *); 530 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 531 } ip_m_t; 532 533 /* 534 * The following functions attempt to reduce the link layer dependency 535 * of the IP stack. The current set of link specific operations are: 536 * a. map from IPv4 class D (224.0/4) multicast address range to the link 537 * layer multicast address range. 538 * b. map from IPv6 multicast address range (ff00::/8) to the link 539 * layer multicast address range. 540 * c. derive the default IPv6 interface identifier from the link layer 541 * address. 542 */ 543 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 544 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 545 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 546 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 547 (((ip_m)->ip_m_v6intfid != NULL) && \ 548 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 549 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 550 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 551 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 552 553 /* Router entry types */ 554 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 555 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 556 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 557 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 558 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 559 #define IRE_CACHE 0x0020 /* Cached Route entry */ 560 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 561 /* net without any address mapping. */ 562 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 563 /* net with resolver. */ 564 #define IRE_HOST 0x0100 /* Host route entry */ 565 #define IRE_HOST_REDIRECT 0x0200 /* Host route entry from redirects */ 566 567 /* 568 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 569 * This ire_type must not be set for ftable and ctable routing entries. 570 */ 571 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 572 573 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 574 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \ 575 IRE_HOST_REDIRECT) 576 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 577 IRE_LOOPBACK) 578 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 579 580 /* 581 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 582 * the bucket should delete this IRE from this bucket. 583 */ 584 #define IRE_MARK_CONDEMNED 0x0001 585 /* 586 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 587 * broadcast packets received on that interface. This is marked only 588 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 589 * same subnet receiving the same broadcast packet. 590 */ 591 #define IRE_MARK_NORECV 0x0002 592 /* 593 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 594 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 595 */ 596 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 597 598 /* 599 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 600 * interface is specified by IP_XMIT_IF socket option. This ire is not 601 * added in IRE_CACHE. For example, this is used by mipagent to prevent 602 * any entry to be added in the cache table. We do not want to add any 603 * entry for a mobile-node in the routing table for foreign agent originated 604 * packets. Adding routes in cache table in this case, may run the risks of 605 * incorrect routing path in case of private overlapping addresses. 606 */ 607 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 608 609 /* 610 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 611 * either for forwarding a packet or has not been used for sending 612 * traffic on TCP connections terminated on this system. In both 613 * cases, this IRE is the first to go when IRE is being cleaned up. 614 */ 615 #define IRE_MARK_TEMPORARY 0x0010 616 617 /* 618 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 619 * this mark, additional atomic checks need to be performed. For eg: by the 620 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 621 * usesrc grouping could have changed in which case we want to fail adding 622 * the IRE_CACHE entry 623 */ 624 #define IRE_MARK_USESRC_CHECK 0x0020 625 626 /* 627 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 628 * routing table lookup for the destination is bypassed and the packet is 629 * sent directly to the specified nexthop. The associated IRE_CACHE entries 630 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 631 * in regular ire cache lookups. 632 */ 633 #define IRE_MARK_PRIVATE_ADDR 0x0040 634 635 /* Flags with ire_expire routine */ 636 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 637 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 638 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 639 640 /* Arguments to ire_flush_cache() */ 641 #define IRE_FLUSH_DELETE 0 642 #define IRE_FLUSH_ADD 1 643 644 /* 645 * Open/close synchronization flags. 646 * These are kept in a separate field in the conn and the synchronization 647 * depends on the atomic 32 bit access to that field. 648 */ 649 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 650 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 651 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 652 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 653 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 654 655 /* 656 * Parameter to ip_output giving the identity of the caller. 657 * IP_WSRV means the packet was enqueued in the STREAMS queue 658 * due to flow control and is now being reprocessed in the context of 659 * the STREAMS service procedure, consequent to flow control relief. 660 * IRE_SEND means the packet is being reprocessed consequent to an 661 * ire cache creation and addition and this may or may not be happening 662 * in the service procedure context. Anything other than the above 2 663 * cases is identified as IP_WPUT. Most commonly this is the case of 664 * packets coming down from the application. 665 */ 666 #ifdef _KERNEL 667 #define IP_WSRV 1 /* Called from ip_wsrv */ 668 #define IP_WPUT 2 /* Called from ip_wput */ 669 #define IRE_SEND 3 /* Called from ire_send */ 670 671 /* 672 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 673 */ 674 #define MAX_FILTER_SIZE 64 675 676 typedef struct slist_s { 677 int sl_numsrc; 678 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 679 } slist_t; 680 681 /* 682 * Following struct is used to maintain retransmission state for 683 * a multicast group. One rtx_state_t struct is an in-line field 684 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 685 * alloc'd as needed. 686 */ 687 typedef struct rtx_state_s { 688 uint_t rtx_timer; /* retrans timer */ 689 int rtx_cnt; /* retrans count */ 690 int rtx_fmode_cnt; /* retrans count for fmode change */ 691 slist_t *rtx_allow; 692 slist_t *rtx_block; 693 } rtx_state_t; 694 695 /* 696 * Used to construct list of multicast address records that will be 697 * sent in a single listener report. 698 */ 699 typedef struct mrec_s { 700 struct mrec_s *mrec_next; 701 uint8_t mrec_type; 702 uint8_t mrec_auxlen; /* currently unused */ 703 in6_addr_t mrec_group; 704 slist_t mrec_srcs; 705 } mrec_t; 706 707 /* Group membership list per upper conn */ 708 /* 709 * XXX add ilg info for ifaddr/ifindex. 710 * XXX can we make ilg survive an ifconfig unplumb + plumb 711 * by setting the ipif/ill to NULL and recover that later? 712 * 713 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 714 * address (ipif). 715 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 716 * index (phyint->phyint_ifindex). 717 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 718 * 719 * ilg records the state of multicast memberships of a socket end point. 720 * ilm records the state of multicast memberships with the driver and is 721 * maintained per interface. 722 * 723 * Notes : 724 * 725 * 1) There is no direct link between a given ilg and ilm. If the 726 * application has joined a group G with ifindex I, we will have 727 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 728 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 729 * To delete the membership, 730 * 731 * a) Search for ilg matching on G and I with ilg_v6group 732 * and ilg_ill. Delete ilg_ill. 733 * b) Search the corresponding ilm matching on G and I with 734 * ilm_v6addr and ilm_ill. Delete ilm. 735 * 736 * In IPv4, the only difference is, we look using ipifs instead of 737 * ills. 738 * 739 * 2) With IP multipathing, we want to keep receiving even after the 740 * interface has failed. We do this by moving multicast memberships 741 * to a new_ill within the group. This is acheived by sending 742 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 743 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 744 * need to be able to delete memberships which will still come down 745 * with the ifindex of the old ill which is what the application 746 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 747 * of where we joined initially so that we can lookup even after we 748 * moved the membership. It is also used for moving back the membership 749 * when the old ill has been repaired. This is done by looking up for 750 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 751 * ilms actually move from old ill to new ill. ilgs don't move (just 752 * the ilg_ill is changed when it moves) as it just records the state 753 * of the application that has joined a group G where as ilm records 754 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 755 * we also need to keep the ilm in the right ill. 756 * 757 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 758 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 759 * a given ilm/ilg even after it fails without the support of 760 * orig_ifindex. We move ilms still to record the driver state as 761 * mentioned above. 762 */ 763 764 /* 765 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 766 * by a thread executing in the ipsq. In other words add/delete of a 767 * multicast group has to execute in the ipsq. 768 */ 769 #define ILG_DELETED 0x1 /* ilg_flags */ 770 typedef struct ilg_s { 771 in6_addr_t ilg_v6group; 772 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 773 struct ill_s *ilg_ill; /* Used by IPv6 */ 774 int ilg_orig_ifindex; /* Interface originally joined on */ 775 uint_t ilg_flags; 776 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 777 slist_t *ilg_filter; 778 } ilg_t; 779 780 781 /* 782 * Multicast address list entry for lower ill. 783 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 784 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 785 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 786 */ 787 #define ILM_DELETED 0x1 /* ilm_flags */ 788 typedef struct ilm_s { 789 in6_addr_t ilm_v6addr; 790 int ilm_refcnt; 791 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 792 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 793 struct ilm_s *ilm_next; /* Linked list for each ill */ 794 uint_t ilm_state; /* state of the membership */ 795 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 796 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 797 uint_t ilm_flags; 798 boolean_t ilm_is_new; /* new ilm */ 799 boolean_t ilm_notify_driver; /* Need to notify the driver */ 800 zoneid_t ilm_zoneid; 801 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 802 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 803 slist_t *ilm_filter; /* source filter list */ 804 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 805 rtx_state_t ilm_rtx; /* SCR retransmission state */ 806 } ilm_t; 807 808 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 809 810 /* 811 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 812 * zero. In addition it needs to block new walkers while it is unlinking ilm's 813 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 814 */ 815 #define ILM_WALKER_HOLD(ill) { \ 816 mutex_enter(&(ill)->ill_lock); \ 817 ill->ill_ilm_walker_cnt++; \ 818 mutex_exit(&(ill)->ill_lock); \ 819 } 820 821 #define ILM_WALKER_RELE(ill) { \ 822 mutex_enter(&(ill)->ill_lock); \ 823 (ill)->ill_ilm_walker_cnt--; \ 824 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 825 ilm_walker_cleanup(ill); \ 826 mutex_exit(&(ill)->ill_lock); \ 827 } 828 829 /* 830 * Soft reference to an IPsec SA. 831 * 832 * On relative terms, conn's can be persistant (living as long as the 833 * processes which create them), while SA's are ephemeral (dying when 834 * they hit their time-based or byte-based lifetimes). 835 * 836 * We could hold a hard reference to an SA from an ipsec_latch_t, 837 * but this would cause expired SA's to linger for a potentially 838 * unbounded time. 839 * 840 * Instead, we remember the hash bucket number and bucket generation 841 * in addition to the pointer. The bucket generation is incremented on 842 * each deletion. 843 */ 844 typedef struct ipsa_ref_s 845 { 846 struct ipsa_s *ipsr_sa; 847 struct isaf_s *ipsr_bucket; 848 uint64_t ipsr_gen; 849 } ipsa_ref_t; 850 851 /* 852 * IPsec "latching" state. 853 * 854 * In the presence of IPsec policy, fully-bound conn's bind a connection 855 * to more than just the 5-tuple, but also a specific IPsec action and 856 * identity-pair. 857 * 858 * As an optimization, we also cache soft references to IPsec SA's 859 * here so that we can fast-path around most of the work needed for 860 * outbound IPsec SA selection. 861 * 862 * Were it not for TCP's detached connections, this state would be 863 * in-line in conn_t; instead, this is in a separate structure so it 864 * can be handed off to TCP when a connection is detached. 865 */ 866 typedef struct ipsec_latch_s 867 { 868 kmutex_t ipl_lock; 869 uint32_t ipl_refcnt; 870 871 uint64_t ipl_unique; 872 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 873 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 874 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 875 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 876 cred_t *ipl_local_id; 877 struct ipsid_s *ipl_local_cid; 878 struct ipsid_s *ipl_remote_cid; 879 unsigned int 880 ipl_out_action_latched : 1, 881 ipl_in_action_latched : 1, 882 ipl_out_policy_latched : 1, 883 ipl_in_policy_latched : 1, 884 885 ipl_ids_latched : 1, 886 887 ipl_pad_to_bit_31 : 27; 888 889 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 890 891 } ipsec_latch_t; 892 893 #define IPLATCH_REFHOLD(ipl) { \ 894 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 895 ASSERT((ipl)->ipl_refcnt != 0); \ 896 } 897 898 #define IPLATCH_REFRELE(ipl) { \ 899 ASSERT((ipl)->ipl_refcnt != 0); \ 900 membar_exit(); \ 901 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 902 iplatch_free(ipl); \ 903 } 904 905 /* 906 * peer identity structure. 907 */ 908 909 typedef struct conn_s conn_t; 910 911 /* 912 * The old IP client structure "ipc_t" is gone. All the data is stored in the 913 * connection structure "conn_t" now. The mapping of old and new fields looks 914 * like this: 915 * 916 * ipc_ulp conn_ulp 917 * ipc_rq conn_rq 918 * ipc_wq conn_wq 919 * 920 * ipc_laddr conn_src 921 * ipc_faddr conn_rem 922 * ipc_v6laddr conn_srcv6 923 * ipc_v6faddr conn_remv6 924 * 925 * ipc_lport conn_lport 926 * ipc_fport conn_fport 927 * ipc_ports conn_ports 928 * 929 * ipc_policy conn_policy 930 * ipc_latch conn_latch 931 * 932 * ipc_irc_lock conn_lock 933 * ipc_ire_cache conn_ire_cache 934 * 935 * ipc_state_flags conn_state_flags 936 * ipc_outgoing_ill conn_outgoing_ill 937 * 938 * ipc_dontroute conn_dontroute 939 * ipc_loopback conn_loopback 940 * ipc_broadcast conn_broadcast 941 * ipc_reuseaddr conn_reuseaddr 942 * 943 * ipc_multicast_loop conn_multicast_loop 944 * ipc_multi_router conn_multi_router 945 * ipc_priv_stream conn_priv_stream 946 * ipc_draining conn_draining 947 * 948 * ipc_did_putbq conn_did_putbq 949 * ipc_unspec_src conn_unspec_src 950 * ipc_policy_cached conn_policy_cached 951 * 952 * ipc_in_enforce_policy conn_in_enforce_policy 953 * ipc_out_enforce_policy conn_out_enforce_policy 954 * ipc_af_isv6 conn_af_isv6 955 * ipc_pkt_isv6 conn_pkt_isv6 956 * 957 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 958 * 959 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 960 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 961 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 962 * 963 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 964 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 965 * ipc_fully_bound conn_fully_bound 966 * 967 * ipc_recvif conn_recvif 968 * 969 * ipc_recvslla conn_recvslla 970 * ipc_acking_unbind conn_acking_unbind 971 * ipc_pad_to_bit_31 conn_pad_to_bit_31 972 * 973 * ipc_xmit_if_ill conn_xmit_if_ill 974 * ipc_nofailover_ill conn_nofailover_ill 975 * 976 * ipc_proto conn_proto 977 * ipc_incoming_ill conn_incoming_ill 978 * ipc_outgoing_pill conn_outgoing_pill 979 * ipc_pending_ill conn_pending_ill 980 * ipc_unbind_mp conn_unbind_mp 981 * ipc_ilg conn_ilg 982 * ipc_ilg_allocated conn_ilg_allocated 983 * ipc_ilg_inuse conn_ilg_inuse 984 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 985 * ipc_refcv conn_refcv 986 * ipc_multicast_ipif conn_multicast_ipif 987 * ipc_multicast_ill conn_multicast_ill 988 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 989 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 990 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 991 * ipc_drain_next conn_drain_next 992 * ipc_drain_prev conn_drain_prev 993 * ipc_idl conn_idl 994 */ 995 996 /* 997 * This is used to match an inbound/outbound datagram with 998 * policy. 999 */ 1000 1001 typedef struct ipsec_selector { 1002 in6_addr_t ips_local_addr_v6; 1003 in6_addr_t ips_remote_addr_v6; 1004 uint16_t ips_local_port; 1005 uint16_t ips_remote_port; 1006 uint8_t ips_icmp_type; 1007 uint8_t ips_icmp_code; 1008 uint8_t ips_protocol; 1009 uint8_t ips_isv4 : 1, 1010 ips_is_icmp_inv_acq: 1; 1011 } ipsec_selector_t; 1012 1013 /* 1014 * Note that we put v4 addresses in the *first* 32-bit word of the 1015 * selector rather than the last to simplify the prefix match/mask code 1016 * in spd.c 1017 */ 1018 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1019 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1020 1021 /* Values used in IP by IPSEC Code */ 1022 #define IPSEC_OUTBOUND B_TRUE 1023 #define IPSEC_INBOUND B_FALSE 1024 1025 /* 1026 * There are two variants in policy failures. The packet may come in 1027 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1028 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1029 */ 1030 #define IPSEC_POLICY_NOT_NEEDED 0 1031 #define IPSEC_POLICY_MISMATCH 1 1032 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1033 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1034 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1035 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1036 1037 /* 1038 * Folowing macro is used whenever the code does not know whether there 1039 * is a M_CTL present in the front and it needs to examine the actual mp 1040 * i.e the IP header. As a M_CTL message could be in the front, this 1041 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1042 * mp is not present, both first_mp and mp point to the same message. 1043 */ 1044 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1045 (first_mp) = (mp); \ 1046 if ((mp)->b_datap->db_type == M_CTL) { \ 1047 (mp) = (mp)->b_cont; \ 1048 (mctl_present) = B_TRUE; \ 1049 } else { \ 1050 (mctl_present) = B_FALSE; \ 1051 } 1052 1053 /* 1054 * Check with IPSEC inbound policy if 1055 * 1056 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1057 * 2) Or if we have not cached policy on the conn and the global policy is 1058 * non-empty. 1059 */ 1060 #define CONN_INBOUND_POLICY_PRESENT(connp) \ 1061 ((connp)->conn_in_enforce_policy || \ 1062 (!((connp)->conn_policy_cached) && \ 1063 ipsec_inbound_v4_policy_present)) 1064 1065 #define CONN_INBOUND_POLICY_PRESENT_V6(connp) \ 1066 ((connp)->conn_in_enforce_policy || \ 1067 (!(connp)->conn_policy_cached && \ 1068 ipsec_inbound_v6_policy_present)) 1069 1070 #define CONN_OUTBOUND_POLICY_PRESENT(connp) \ 1071 ((connp)->conn_out_enforce_policy || \ 1072 (!((connp)->conn_policy_cached) && \ 1073 ipsec_outbound_v4_policy_present)) 1074 1075 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp) \ 1076 ((connp)->conn_out_enforce_policy || \ 1077 (!(connp)->conn_policy_cached && \ 1078 ipsec_outbound_v6_policy_present)) 1079 1080 /* 1081 * Information cached in IRE for upper layer protocol (ULP). 1082 * 1083 * Notice that ire_max_frag is not included in the iulp_t structure, which 1084 * it may seem that it should. But ire_max_frag cannot really be cached. It 1085 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1086 * it. But currently, we do not do that. 1087 */ 1088 typedef struct iulp_s { 1089 boolean_t iulp_set; /* Is any metric set? */ 1090 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1091 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1092 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1093 uint32_t iulp_spipe; /* Send pipe size. */ 1094 uint32_t iulp_rpipe; /* Receive pipe size. */ 1095 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1096 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1097 uint32_t 1098 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1099 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1100 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1101 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1102 1103 iulp_not_used : 28; 1104 } iulp_t; 1105 1106 /* Zero iulp_t. */ 1107 extern const iulp_t ire_uinfo_null; 1108 1109 /* 1110 * The conn drain list structure. 1111 * The list is protected by idl_lock. Each conn_t inserted in the list 1112 * points back at this idl_t using conn_idl. IP primes the draining of the 1113 * conns queued in these lists, by qenabling the 1st conn of each list. This 1114 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1115 * of ip_wsrv successively qenables the next conn in the list. 1116 * idl_lock protects all other members of idl_t and conn_drain_next 1117 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1118 * flag of the conn_t and conn_idl. 1119 */ 1120 typedef struct idl_s { 1121 conn_t *idl_conn; /* Head of drain list */ 1122 kmutex_t idl_lock; /* Lock for this list */ 1123 conn_t *idl_conn_draining; /* conn that is draining */ 1124 uint32_t 1125 idl_repeat : 1, /* Last conn must re-enable */ 1126 /* drain list again */ 1127 idl_unused : 31; 1128 } idl_t; 1129 1130 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1131 /* 1132 * Interface route structure which holds the necessary information to recreate 1133 * routes that are tied to an interface (namely where ire_ipif != NULL). 1134 * These routes which were initially created via a routing socket or via the 1135 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1136 * traditional interface routes. When an interface comes back up after being 1137 * marked down, this information will be used to recreate the routes. These 1138 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1139 */ 1140 typedef struct ifrt_s { 1141 ushort_t ifrt_type; /* Type of IRE */ 1142 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1143 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1144 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1145 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1146 uint32_t ifrt_flags; /* flags related to route */ 1147 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1148 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1149 } ifrt_t; 1150 1151 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1152 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1153 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1154 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1155 1156 /* Number of IP addresses that can be hosted on a physical interface */ 1157 #define MAX_ADDRS_PER_IF 8192 1158 /* 1159 * Number of Source addresses to be considered for source address 1160 * selection. Used by ipif_select_source[_v6]. 1161 */ 1162 #define MAX_IPIF_SELECT_SOURCE 50 1163 1164 #ifdef IP_DEBUG 1165 /* 1166 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1167 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1168 * mechanism should be revisited once dtrace is available. 1169 */ 1170 #define IP_STACK_DEPTH 15 1171 typedef struct tr_buf_s { 1172 int tr_depth; 1173 pc_t tr_stack[IP_STACK_DEPTH]; 1174 } tr_buf_t; 1175 1176 typedef struct th_trace_s { 1177 struct th_trace_s *th_next; 1178 struct th_trace_s **th_prev; 1179 kthread_t *th_id; 1180 int th_refcnt; 1181 uint_t th_trace_lastref; 1182 #define TR_BUF_MAX 38 1183 tr_buf_t th_trbuf[TR_BUF_MAX]; 1184 } th_trace_t; 1185 #endif 1186 1187 /* The following are ipif_state_flags */ 1188 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1189 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1190 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1191 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1192 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1193 1194 /* IP interface structure, one per local address */ 1195 typedef struct ipif_s { 1196 struct ipif_s *ipif_next; 1197 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1198 int ipif_id; /* Logical unit number */ 1199 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1200 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1201 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1202 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1203 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1204 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1205 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1206 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1207 uint64_t ipif_flags; /* Interface flags. */ 1208 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1209 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1210 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1211 /* prevent awkward out of mem */ 1212 /* condition later */ 1213 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1214 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1215 /* on this interface so that they */ 1216 /* can survive ifconfig down. */ 1217 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1218 1219 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1220 /* will be reported on. Used when */ 1221 /* handling an igmp timeout. */ 1222 1223 /* 1224 * The packet counts in the ipif contain the sum of the 1225 * packet counts in dead IREs that were affiliated with 1226 * this ipif. 1227 */ 1228 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1229 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1230 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1231 /* Exclusive bit fields, protected by ipsq_t */ 1232 unsigned int 1233 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1234 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1235 ipif_replace_zero : 1, /* Replacement for zero */ 1236 ipif_was_up : 1, /* ipif was up before */ 1237 1238 ipif_pad_to_31 : 28; 1239 1240 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1241 uint_t ipif_seqid; /* unique index across all ills */ 1242 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1243 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1244 uint_t ipif_refcnt; /* active consistent reader cnt */ 1245 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1246 uint_t ipif_saved_ire_cnt; 1247 zoneid_t 1248 ipif_zoneid; /* zone ID number */ 1249 #ifdef ILL_DEBUG 1250 #define IP_TR_HASH_MAX 64 1251 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1252 boolean_t ipif_trace_disable; /* True when alloc fails */ 1253 #endif 1254 } ipif_t; 1255 1256 /* 1257 * The following table lists the protection levels of the various members 1258 * of the ipif_t. The following notation is used. 1259 * 1260 * Write once - Written to only once at the time of bringing up 1261 * the interface and can be safely read after the bringup without any lock. 1262 * 1263 * ipsq - Need to execute in the ipsq to perform the indicated access. 1264 * 1265 * ill_lock - Need to hold this mutex to perform the indicated access. 1266 * 1267 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1268 * write access respectively. 1269 * 1270 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1271 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1272 * 1273 * Table of ipif_t members and their protection 1274 * 1275 * ipif_next ill_g_lock ill_g_lock 1276 * ipif_ill ipsq + down ipif write once 1277 * ipif_id ipsq + down ipif write once 1278 * ipif_mtu ipsq 1279 * ipif_v6lcl_addr ipsq + down ipif up ipif 1280 * ipif_v6src_addr ipsq + down ipif up ipif 1281 * ipif_v6subnet ipsq + down ipif up ipif 1282 * ipif_v6net_mask ipsq + down ipif up ipif 1283 * 1284 * ipif_v6brd_addr 1285 * ipif_v6pp_dst_addr 1286 * ipif_flags ill_lock ill_lock 1287 * ipif_metric 1288 * ipif_ire_type ipsq + down ill up ill 1289 * 1290 * ipif_arp_del_mp ipsq ipsq 1291 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1292 * ipif_igmp_rpt ipsq ipsq 1293 * 1294 * ipif_fo_pkt_count Approx 1295 * ipif_ib_pkt_count Approx 1296 * ipif_ob_pkt_count Approx 1297 * 1298 * bit fields ill_lock ill_lock 1299 * 1300 * ipif_orig_ifindex ipsq None 1301 * ipif_orig_ipifid ipsq None 1302 * ipif_seqid ipsq Write once 1303 * 1304 * ipif_state_flags ill_lock ill_lock 1305 * ipif_refcnt ill_lock ill_lock 1306 * ipif_ire_cnt ill_lock ill_lock 1307 * ipif_saved_ire_cnt 1308 */ 1309 1310 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1311 1312 #ifdef ILL_DEBUG 1313 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1314 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1315 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1316 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1317 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1318 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1319 #else 1320 #define IPIF_TRACE_REF(ipif) 1321 #define ILL_TRACE_REF(ill) 1322 #define IPIF_UNTRACE_REF(ipif) 1323 #define ILL_UNTRACE_REF(ill) 1324 #define ILL_TRACE_CLEANUP(ill) 1325 #define IPIF_TRACE_CLEANUP(ipif) 1326 #endif 1327 1328 /* IPv4 compatability macros */ 1329 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1330 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1331 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1332 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1333 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1334 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1335 1336 /* Macros for easy backreferences to the ill. */ 1337 #define ipif_wq ipif_ill->ill_wq 1338 #define ipif_rq ipif_ill->ill_rq 1339 #define ipif_net_type ipif_ill->ill_net_type 1340 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1341 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1342 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1343 #define ipif_type ipif_ill->ill_type 1344 #define ipif_isv6 ipif_ill->ill_isv6 1345 1346 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1347 1348 /* 1349 * mode value for ip_ioctl_finish for finishing an ioctl 1350 */ 1351 #define CONN_CLOSE 1 /* No mi_copy */ 1352 #define COPYOUT 2 /* do an mi_copyout if needed */ 1353 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1354 1355 /* 1356 * The IP-MT design revolves around the serialization object ipsq_t. 1357 * It is associated with an IPMP group. If IPMP is not enabled, there is 1358 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1359 * 1360 * ipsq_lock protects 1361 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1362 * ipsq_mphead, ipsq_mptail, ipsq_split 1363 * 1364 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1365 * ipsq_waitfor 1366 * 1367 * The fields in the last line above below are set mostly by a writer thread 1368 * But there is an exception in the last call to ipif_ill_refrele_tail which 1369 * could also race with a conn close which could be cleaning up the 1370 * fields. So we choose to protect using ipsq_lock instead of depending on 1371 * the property of the writer. 1372 * ill_g_lock protects 1373 * ipsq_refs, ipsq_phyint_list 1374 */ 1375 typedef struct ipsq_s { 1376 kmutex_t ipsq_lock; 1377 int ipsq_reentry_cnt; 1378 kthread_t *ipsq_writer; /* current owner (thread id) */ 1379 int ipsq_flags; 1380 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1381 mblk_t *ipsq_xopq_mptail; 1382 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1383 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1384 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1385 ipif_t *ipsq_current_ipif; /* ipif associated with current ioctl */ 1386 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1387 /* response from another module */ 1388 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1389 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1390 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1391 boolean_t ipsq_split; /* ipsq may need to be split */ 1392 int ipsq_waitfor; /* Values encoded below */ 1393 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1394 int ipsq_last_cmd; /* debugging aid */ 1395 #ifdef ILL_DEBUG 1396 int ipsq_depth; /* debugging aid */ 1397 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1398 #endif 1399 } ipsq_t; 1400 1401 /* ipsq_flags */ 1402 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1403 1404 /* 1405 * ipsq_waitfor: 1406 * 1407 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1408 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1409 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1410 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1411 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1412 */ 1413 1414 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1415 1416 /* Flags passed to ipsq_try_enter */ 1417 #define CUR_OP 0 /* Current ioctl continuing again */ 1418 #define NEW_OP 1 /* New ioctl starting afresh */ 1419 1420 /* 1421 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1422 * There is a separate ill_t representing IPv4 and IPv6 which has a 1423 * backpointer to the phyint structure for acessing common state. 1424 * 1425 * NOTE : It just stores the group name as there is only one name for 1426 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1427 * IPv4 and IPv6 ill are grouped together when their phyints have 1428 * the same name. 1429 */ 1430 typedef struct phyint { 1431 struct ill_s *phyint_illv4; 1432 struct ill_s *phyint_illv6; 1433 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1434 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1435 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1436 uint_t phyint_groupname_len; 1437 uint64_t phyint_flags; 1438 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1439 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1440 kmutex_t phyint_lock; 1441 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1442 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1443 } phyint_t; 1444 1445 #define CACHE_ALIGN_SIZE 64 1446 1447 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1448 CACHE_ALIGN_SIZE) 1449 struct _phyint_list_s_ { 1450 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1451 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1452 }; 1453 1454 typedef union phyint_list_u { 1455 struct _phyint_list_s_ phyint_list_s; 1456 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1457 } phyint_list_t; 1458 1459 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1460 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1461 /* 1462 * ILL groups. We group ills, 1463 * 1464 * - if the ills have the same group name. (New way) 1465 * 1466 * ill_group locking notes: 1467 * 1468 * illgrp_lock protects ill_grp_ill_schednext. 1469 * 1470 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1471 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1472 * It also freezes the global list of ills and all ipifs in all ills. 1473 * 1474 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1475 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1476 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1477 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1478 * that need to walk the members of an illgrp. They just hold ill_g_lock 1479 * as reader to do the walk. 1480 * 1481 */ 1482 typedef struct ill_group { 1483 kmutex_t illgrp_lock; 1484 struct ill_group *illgrp_next; /* Next ill_group */ 1485 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1486 struct ill_s *illgrp_ill; /* First ill in the group */ 1487 int illgrp_ill_count; 1488 } ill_group_t; 1489 1490 extern ill_group_t *illgrp_head_v6; 1491 1492 /* 1493 * Fragmentation hash bucket 1494 */ 1495 typedef struct ipfb_s { 1496 struct ipf_s *ipfb_ipf; /* List of ... */ 1497 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1498 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1499 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1500 } ipfb_t; 1501 1502 /* 1503 * IRE bucket structure. Usually there is an array of such structures, 1504 * each pointing to a linked list of ires. irb_refcnt counts the number 1505 * of walkers of a given hash bucket. Usually the reference count is 1506 * bumped up if the walker wants no IRES to be DELETED while walking the 1507 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1508 * hash bucket without stumbling up on a free pointer. 1509 */ 1510 typedef struct irb { 1511 struct ire_s *irb_ire; /* First ire in this bucket */ 1512 /* Should be first in this struct */ 1513 krwlock_t irb_lock; /* Protect this bucket */ 1514 uint_t irb_refcnt; /* Protected by irb_lock */ 1515 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1516 uint_t irb_ire_cnt; /* Num of IRE in this bucket */ 1517 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1518 } irb_t; 1519 1520 #define IP_V4_G_HEAD 0 1521 #define IP_V6_G_HEAD 1 1522 1523 #define MAX_G_HEADS 2 1524 1525 /* 1526 * unpadded ill_if structure 1527 */ 1528 struct _ill_if_s_ { 1529 union ill_if_u *illif_next; 1530 union ill_if_u *illif_prev; 1531 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1532 vmem_t *illif_ppa_arena; /* ppa index space */ 1533 uint16_t illif_mcast_v1; /* hints for */ 1534 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1535 int illif_name_len; /* name length */ 1536 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1537 }; 1538 1539 /* cache aligned ill_if structure */ 1540 typedef union ill_if_u { 1541 struct _ill_if_s_ ill_if_s; 1542 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1543 } ill_if_t; 1544 1545 1546 #define illif_next ill_if_s.illif_next 1547 #define illif_prev ill_if_s.illif_prev 1548 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1549 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1550 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1551 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1552 #define illif_name ill_if_s.illif_name 1553 #define illif_name_len ill_if_s.illif_name_len 1554 1555 typedef struct ill_walk_context_s { 1556 int ctx_current_list; /* current list being searched */ 1557 int ctx_last_list; /* last list to search */ 1558 } ill_walk_context_t; 1559 1560 /* 1561 * ill_gheads structure, one for IPV4 and one for IPV6 1562 */ 1563 struct _ill_g_head_s_ { 1564 ill_if_t *ill_g_list_head; 1565 ill_if_t *ill_g_list_tail; 1566 }; 1567 1568 typedef union ill_g_head_u { 1569 struct _ill_g_head_s_ ill_g_head_s; 1570 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1571 } ill_g_head_t; 1572 1573 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1574 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1575 1576 #pragma align CACHE_ALIGN_SIZE(ill_g_heads) 1577 extern ill_g_head_t ill_g_heads[]; /* ILL List Head */ 1578 1579 1580 #define IP_V4_ILL_G_LIST ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1581 #define IP_V6_ILL_G_LIST ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1582 #define IP_VX_ILL_G_LIST(i) ill_g_heads[i].ill_g_list_head 1583 1584 #define ILL_START_WALK_V4(ctx_ptr) ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \ 1585 ctx_ptr) 1586 #define ILL_START_WALK_V6(ctx_ptr) ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \ 1587 ctx_ptr) 1588 #define ILL_START_WALK_ALL(ctx_ptr) ill_first(MAX_G_HEADS, MAX_G_HEADS, \ 1589 ctx_ptr) 1590 1591 /* 1592 * Capabilities, possible flags for ill_capabilities. 1593 */ 1594 1595 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1596 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1597 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1598 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1599 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1600 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1601 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1602 1603 /* 1604 * Per-ill Multidata Transmit capabilities. 1605 */ 1606 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1607 1608 /* 1609 * Per-ill IPsec capabilities. 1610 */ 1611 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1612 1613 /* 1614 * Per-ill Hardware Checksumming capbilities. 1615 */ 1616 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1617 1618 /* 1619 * Per-ill Zero-copy capabilities. 1620 */ 1621 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1622 1623 /* 1624 * Per-ill Polling/soft ring capbilities. 1625 */ 1626 typedef struct ill_dls_capab_s ill_dls_capab_t; 1627 1628 /* 1629 * Per-ill polling resource map. 1630 */ 1631 typedef struct ill_rx_ring ill_rx_ring_t; 1632 1633 /* The following are ill_state_flags */ 1634 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1635 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1636 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1637 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1638 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1639 1640 /* Is this an ILL whose source address is used by other ILL's ? */ 1641 #define IS_USESRC_ILL(ill) \ 1642 (((ill)->ill_usesrc_ifindex == 0) && \ 1643 ((ill)->ill_usesrc_grp_next != NULL)) 1644 1645 /* Is this a client/consumer of the usesrc ILL ? */ 1646 #define IS_USESRC_CLI_ILL(ill) \ 1647 (((ill)->ill_usesrc_ifindex != 0) && \ 1648 ((ill)->ill_usesrc_grp_next != NULL)) 1649 1650 /* Is this an virtual network interface (vni) ILL ? */ 1651 #define IS_VNI(ill) \ 1652 (((ill) != NULL) && !((ill)->ill_phyint->phyint_flags & \ 1653 PHYI_LOOPBACK) && ((ill)->ill_phyint->phyint_flags & \ 1654 PHYI_VIRTUAL)) 1655 1656 /* 1657 * IP Lower level Structure. 1658 * Instance data structure in ip_open when there is a device below us. 1659 */ 1660 typedef struct ill_s { 1661 ill_if_t *ill_ifptr; /* pointer to interface type */ 1662 queue_t *ill_rq; /* Read queue. */ 1663 queue_t *ill_wq; /* Write queue. */ 1664 1665 int ill_error; /* Error value sent up by device. */ 1666 1667 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1668 1669 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1670 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1671 char *ill_name; /* Our name. */ 1672 uint_t ill_name_length; /* Name length, incl. terminator. */ 1673 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1674 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1675 /* 1676 * Physical Point of Attachment num. If DLPI style 1 provider 1677 * then this is derived from the devname. 1678 */ 1679 uint_t ill_ppa; 1680 t_uscalar_t ill_sap; 1681 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1682 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1683 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1684 /* supports broadcast. */ 1685 t_uscalar_t ill_mactype; 1686 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1687 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1688 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1689 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1690 1691 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1692 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1693 int ill_mcast_type; /* type of router which is querier */ 1694 /* on this interface */ 1695 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1696 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1697 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1698 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1699 1700 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1701 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1702 1703 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1704 /* 1705 * All non-NULL cells between 'ill_first_mp_to_free' and 1706 * 'ill_last_mp_to_free' are freed in ill_delete. 1707 */ 1708 #define ill_first_mp_to_free ill_bcast_mp 1709 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1710 mblk_t *ill_resolver_mp; /* Resolver template. */ 1711 mblk_t *ill_detach_mp; /* detach mp, or NULL if style1 */ 1712 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1713 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1714 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1715 #define ill_last_mp_to_free ill_phys_addr_mp 1716 1717 cred_t *ill_credp; /* opener's credentials */ 1718 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1719 1720 uint_t ill_state_flags; /* see ILL_* flags above */ 1721 1722 /* Following bit fields protected by ipsq_t */ 1723 uint_t 1724 ill_needs_attach : 1, 1725 ill_reserved : 1, 1726 ill_isv6 : 1, 1727 ill_dlpi_style_set : 1, 1728 1729 ill_ifname_pending : 1, 1730 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1731 ill_join_allmulti : 1, 1732 ill_logical_down : 1, 1733 1734 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1735 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1736 ill_dl_up : 1, 1737 ill_up_ipifs : 1, 1738 1739 ill_pad_to_bit_31 : 20; 1740 1741 /* Following bit fields protected by ill_lock */ 1742 uint_t 1743 ill_fragtimer_executing : 1, 1744 ill_fragtimer_needrestart : 1, 1745 ill_ilm_cleanup_reqd : 1, 1746 ill_arp_closing : 1, 1747 1748 ill_arp_bringup_pending : 1, 1749 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1750 ill_pad_bit_31 : 26; 1751 1752 /* 1753 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1754 */ 1755 int ill_arp_muxid; /* muxid returned from plink for arp */ 1756 int ill_ip_muxid; /* muxid returned from plink for ip */ 1757 1758 /* 1759 * Used for IP frag reassembly throttling on a per ILL basis. 1760 * 1761 * Note: frag_count is approximate, its added to and subtracted from 1762 * without any locking, so simultaneous load/modify/stores can 1763 * collide, also ill_frag_purge() recalculates its value by 1764 * summing all the ipfb_count's without locking out updates 1765 * to the ipfb's. 1766 */ 1767 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1768 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1769 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1770 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1771 int ill_type; /* From <net/if_types.h> */ 1772 uint_t ill_dlpi_multicast_state; /* See below IDMS_* */ 1773 uint_t ill_dlpi_fastpath_state; /* See below IDMS_* */ 1774 1775 /* 1776 * Capabilities related fields. 1777 */ 1778 uint_t ill_capab_state; /* State of capability query, IDMS_* */ 1779 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1780 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1781 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1782 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1783 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1784 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1785 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1786 1787 /* 1788 * New fields for IPv6 1789 */ 1790 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1791 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1792 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1793 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1794 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1795 in6_addr_t ill_token; 1796 uint_t ill_token_length; 1797 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1798 mib2_ipv6IfStatsEntry_t *ill_ip6_mib; /* Per interface mib */ 1799 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1800 /* 1801 * Following two mblks are allocated common to all 1802 * the ipifs when the first interface is coming up. 1803 * It is sent up to arp when the last ipif is coming 1804 * down. 1805 */ 1806 mblk_t *ill_arp_down_mp; 1807 mblk_t *ill_arp_del_mapping_mp; 1808 /* 1809 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1810 * to turn off for all the logicals, it is here instead 1811 * of the ipif. 1812 */ 1813 mblk_t *ill_arp_on_mp; 1814 /* Peer ill of an IPMP move operation */ 1815 struct ill_s *ill_move_peer; 1816 1817 phyint_t *ill_phyint; 1818 uint64_t ill_flags; 1819 ill_group_t *ill_group; 1820 struct ill_s *ill_group_next; 1821 /* 1822 * Reverse tunnel related count. This count 1823 * determines how many mobile nodes are using this 1824 * ill to send packet to reverse tunnel via foreign 1825 * agent. A non-zero count specifies presence of 1826 * mobile node(s) using reverse tunnel through this 1827 * interface. 1828 */ 1829 uint32_t ill_mrtun_refcnt; 1830 1831 /* 1832 * This count is bumped up when a route is added with 1833 * RTA_SRCIFP bit flag using routing socket. 1834 */ 1835 uint32_t ill_srcif_refcnt; 1836 /* 1837 * Pointer to the special interface based routing table. 1838 * This routing table is created dynamically when RTA_SRCIFP 1839 * is set by the routing socket. 1840 */ 1841 irb_t *ill_srcif_table; 1842 kmutex_t ill_lock; /* Please see table below */ 1843 /* 1844 * The ill_nd_lla* fields handle the link layer address option 1845 * from neighbor discovery. This is used for external IPv6 1846 * address resolution. 1847 */ 1848 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1849 uint8_t *ill_nd_lla; /* Link Layer Address */ 1850 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1851 /* 1852 * We now have 3 phys_addr_req's sent down. This field keeps track 1853 * of which one is pending. 1854 */ 1855 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1856 /* 1857 * Used to save errors that occur during plumbing 1858 */ 1859 uint_t ill_ifname_pending_err; 1860 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1861 void *ill_fastpath_list; /* both ire and nce hang off this */ 1862 uint_t ill_refcnt; /* active refcnt by threads */ 1863 uint_t ill_ire_cnt; /* ires associated with this ill */ 1864 kcondvar_t ill_cv; 1865 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1866 uint_t ill_nce_cnt; /* nces associated with this ill */ 1867 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1868 /* 1869 * Contains the upper read queue pointer of the module immediately 1870 * beneath IP. This field allows IP to validate sub-capability 1871 * acknowledgments coming up from downstream. 1872 */ 1873 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1874 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1875 ip_m_t *ill_media; /* media specific params/functions */ 1876 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1877 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1878 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1879 #ifdef ILL_DEBUG 1880 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1881 boolean_t ill_trace_disable; /* True when alloc fails */ 1882 #endif 1883 } ill_t; 1884 1885 extern void ill_delete_glist(ill_t *); 1886 1887 /* 1888 * The following table lists the protection levels of the various members 1889 * of the ill_t. Same notation as that used for ipif_t above is used. 1890 * 1891 * Write Read 1892 * 1893 * ill_ifptr ill_g_lock + s Write once 1894 * ill_rq ipsq Write once 1895 * ill_wq ipsq Write once 1896 * 1897 * ill_error ipsq None 1898 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1899 * ill_ipif_up_count ill_lock + ipsq ill_lock 1900 * ill_max_frag ipsq Write once 1901 * 1902 * ill_name ill_g_lock + ipsq Write once 1903 * ill_name_length ill_g_lock + ipsq Write once 1904 * ill_ndd_name ipsq Write once 1905 * ill_net_type ipsq Write once 1906 * ill_ppa ill_g_lock + ipsq Write once 1907 * ill_sap ipsq + down ill Write once 1908 * ill_sap_length ipsq + down ill Write once 1909 * ill_phys_addr_length ipsq + down ill Write once 1910 * 1911 * ill_bcast_addr_length ipsq ipsq 1912 * ill_mactype ipsq ipsq 1913 * ill_frag_ptr ipsq ipsq 1914 * 1915 * ill_frag_timer_id ill_lock ill_lock 1916 * ill_frag_hash_tbl ipsq up ill 1917 * ill_ilm ipsq + ill_lock ill_lock 1918 * ill_mcast_type ill_lock ill_lock 1919 * ill_mcast_v1_time ill_lock ill_lock 1920 * ill_mcast_v2_time ill_lock ill_lock 1921 * ill_mcast_v1_tset ill_lock ill_lock 1922 * ill_mcast_v2_tset ill_lock ill_lock 1923 * ill_mcast_rv ill_lock ill_lock 1924 * ill_mcast_qi ill_lock ill_lock 1925 * ill_pending_mp ill_lock ill_lock 1926 * 1927 * ill_bcast_mp ipsq ipsq 1928 * ill_resolver_mp ipsq only when ill is up 1929 * ill_down_mp ipsq ipsq 1930 * ill_dlpi_deferred ipsq ipsq 1931 * ill_phys_addr_mp ipsq ipsq 1932 * ill_phys_addr ipsq up ill 1933 * ill_ick ipsq + down ill only when ill is up 1934 * 1935 * ill_state_flags ill_lock ill_lock 1936 * exclusive bit flags ipsq_t ipsq_t 1937 * shared bit flags ill_lock ill_lock 1938 * 1939 * ill_arp_muxid ipsq Not atomic 1940 * ill_ip_muxid ipsq Not atomic 1941 * 1942 * ill_ipf_gen Not atomic 1943 * ill_frag_count Approx. not protected 1944 * ill_type ipsq + down ill only when ill is up 1945 * ill_dlpi_multicast_state ill_lock ill_lock 1946 * ill_dlpi_fastpath_state ill_lock ill_lock 1947 * ill_max_hops ipsq Not atomic 1948 * 1949 * ill_max_mtu 1950 * 1951 * ill_reachable_time ipsq + ill_lock ill_lock 1952 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 1953 * ill_max_buf ipsq + ill_lock ill_lock 1954 * 1955 * Next 2 fields need ill_lock because of the get ioctls. They should not 1956 * report partially updated results without executing in the ipsq. 1957 * ill_token ipsq + ill_lock ill_lock 1958 * ill_token_length ipsq + ill_lock ill_lock 1959 * ill_xmit_count ipsq + down ill write once 1960 * ill_ip6_mib ipsq + down ill only when ill is up 1961 * ill_icmp6_mib ipsq + down ill only when ill is up 1962 * ill_arp_down_mp ipsq ipsq 1963 * ill_arp_del_mapping_mp ipsq ipsq 1964 * ill_arp_on_mp ipsq ipsq 1965 * ill_move_peer ipsq ipsq 1966 * 1967 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 1968 * ill_flags ill_lock ill_lock 1969 * ill_group ipsq, ill_g_lock, ill_lock Any of them 1970 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 1971 * ill_mrtun_refcnt ill_lock ill_lock 1972 * ill_srcif_refcnt ill_lock ill_lock 1973 * ill_srcif_table ill_lock ill_lock 1974 * ill_nd_lla_mp ill_lock ill_lock 1975 * ill_nd_lla ill_lock ill_lock 1976 * ill_nd_lla_len ill_lock ill_lock 1977 * ill_phys_addr_pend ipsq + down ill only when ill is up 1978 * ill_ifname_pending_err ipsq ipsq 1979 * ill_avl_byppa ipsq, ill_g_lock Write once 1980 * 1981 * ill_fastpath_list ill_lock ill_lock 1982 * ill_refcnt ill_lock ill_lock 1983 * ill_ire_cnt ill_lock ill_lock 1984 * ill_cv ill_lock ill_lock 1985 * ill_ilm_walker_cnt ill_lock ill_lock 1986 * ill_nce_cnt ill_lock ill_lock 1987 * ill_trace ill_lock ill_lock 1988 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 1989 */ 1990 1991 /* 1992 * For ioctl restart mechanism see ip_reprocess_ioctl() 1993 */ 1994 struct ip_ioctl_cmd_s; 1995 1996 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 1997 struct ip_ioctl_cmd_s *, void *); 1998 1999 typedef struct ip_ioctl_cmd_s { 2000 int ipi_cmd; 2001 size_t ipi_copyin_size; 2002 uint_t ipi_flags; 2003 uint_t ipi_cmd_type; 2004 ifunc_t ipi_func; 2005 ifunc_t ipi_func_restart; 2006 } ip_ioctl_cmd_t; 2007 2008 /* 2009 * ipi_cmd_type: 2010 * 2011 * IF_CMD 1 old style ifreq cmd 2012 * LIF_CMD 2 new style lifreq cmd 2013 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2014 * TUN_CMD 4 tunnel related 2015 */ 2016 2017 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2018 2019 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2020 2021 /* Flag values in ipi_flags */ 2022 #define IPI_PRIV 0x1 /* Root only command */ 2023 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2024 #define IPI_WR 0x4 /* Need to grab writer access */ 2025 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2026 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2027 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2028 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2029 2030 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2031 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2032 extern int ip_ndx_ioctl_count; 2033 extern int ip_misc_ioctl_count; 2034 2035 #define ILL_CLEAR_MOVE(ill) { \ 2036 ill_t *peer_ill; \ 2037 \ 2038 peer_ill = (ill)->ill_move_peer; \ 2039 ASSERT(peer_ill != NULL); \ 2040 (ill)->ill_move_in_progress = B_FALSE; \ 2041 peer_ill->ill_move_in_progress = B_FALSE; \ 2042 (ill)->ill_move_peer = NULL; \ 2043 peer_ill->ill_move_peer = NULL; \ 2044 } 2045 2046 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2047 typedef struct ipmx_s { 2048 char ipmx_name[LIFNAMSIZ]; /* if name */ 2049 uint_t 2050 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2051 ipmx_notused : 31; 2052 } ipmx_t; 2053 2054 /* 2055 * State for detecting if a driver supports certain features. 2056 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2057 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2058 */ 2059 #define IDMS_UNKNOWN 0 /* No DL_ENABMULTI_REQ sent */ 2060 #define IDMS_INPROGRESS 1 /* Sent DL_ENABMULTI_REQ */ 2061 #define IDMS_OK 2 /* DL_ENABMULTI_REQ ok */ 2062 #define IDMS_FAILED 3 /* DL_ENABMULTI_REQ failed */ 2063 #define IDMS_RENEG 4 /* Driver asked for a renegotiation */ 2064 2065 /* Named Dispatch Parameter Management Structure */ 2066 typedef struct ipparam_s { 2067 uint_t ip_param_min; 2068 uint_t ip_param_max; 2069 uint_t ip_param_value; 2070 char *ip_param_name; 2071 } ipparam_t; 2072 2073 /* Extended NDP Management Structure */ 2074 typedef struct ipndp_s { 2075 ndgetf_t ip_ndp_getf; 2076 ndsetf_t ip_ndp_setf; 2077 caddr_t ip_ndp_data; 2078 char *ip_ndp_name; 2079 } ipndp_t; 2080 2081 /* 2082 * The kernel stores security attributes of all gateways in a database made 2083 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2084 * security-related credentials of the gateway. More than one gateways may 2085 * share entries in the database. 2086 * 2087 * The tsol_gc_t structure represents the gateway to credential association, 2088 * and refers to an entry in the database. One or more tsol_gc_t entities are 2089 * grouped together to form one or more tsol_gcgrp_t, each representing the 2090 * list of security attributes specific to the gateway. A gateway may be 2091 * associated with at most one credentials group. 2092 */ 2093 struct tsol_gcgrp_s; 2094 2095 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2096 2097 /* 2098 * Gateway security credential record. 2099 */ 2100 typedef struct tsol_gcdb_s { 2101 uint_t gcdb_refcnt; /* reference count */ 2102 struct rtsa_s gcdb_attr; /* security attributes */ 2103 #define gcdb_mask gcdb_attr.rtsa_mask 2104 #define gcdb_doi gcdb_attr.rtsa_doi 2105 #define gcdb_slrange gcdb_attr.rtsa_slrange 2106 } tsol_gcdb_t; 2107 2108 /* 2109 * Gateway to credential association. 2110 */ 2111 typedef struct tsol_gc_s { 2112 uint_t gc_refcnt; /* reference count */ 2113 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2114 struct tsol_gc_s *gc_prev; /* previous in list */ 2115 struct tsol_gc_s *gc_next; /* next in list */ 2116 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2117 } tsol_gc_t; 2118 2119 /* 2120 * Gateway credentials group address. 2121 */ 2122 typedef struct tsol_gcgrp_addr_s { 2123 int ga_af; /* address family */ 2124 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2125 } tsol_gcgrp_addr_t; 2126 2127 /* 2128 * Gateway credentials group. 2129 */ 2130 typedef struct tsol_gcgrp_s { 2131 uint_t gcgrp_refcnt; /* reference count */ 2132 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2133 uint_t gcgrp_count; /* number of credentials */ 2134 tsol_gc_t *gcgrp_head; /* first credential in list */ 2135 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2136 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2137 } tsol_gcgrp_t; 2138 2139 extern kmutex_t gcgrp_lock; 2140 2141 #define GC_REFRELE(p) { \ 2142 ASSERT((p)->gc_grp != NULL); \ 2143 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2144 ASSERT((p)->gc_refcnt > 0); \ 2145 if (--((p)->gc_refcnt) == 0) \ 2146 gc_inactive(p); \ 2147 else \ 2148 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2149 } 2150 2151 #define GCGRP_REFHOLD(p) { \ 2152 mutex_enter(&gcgrp_lock); \ 2153 ++((p)->gcgrp_refcnt); \ 2154 ASSERT((p)->gcgrp_refcnt != 0); \ 2155 mutex_exit(&gcgrp_lock); \ 2156 } 2157 2158 #define GCGRP_REFRELE(p) { \ 2159 mutex_enter(&gcgrp_lock); \ 2160 ASSERT((p)->gcgrp_refcnt > 0); \ 2161 if (--((p)->gcgrp_refcnt) == 0) \ 2162 gcgrp_inactive(p); \ 2163 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2164 mutex_exit(&gcgrp_lock); \ 2165 } 2166 2167 /* 2168 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2169 */ 2170 struct tsol_tnrhc; 2171 2172 typedef struct tsol_ire_gw_secattr_s { 2173 kmutex_t igsa_lock; /* lock to protect following */ 2174 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2175 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2176 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2177 } tsol_ire_gw_secattr_t; 2178 2179 /* 2180 * Following are the macros to increment/decrement the reference 2181 * count of the IREs and IRBs (ire bucket). 2182 * 2183 * 1) We bump up the reference count of an IRE to make sure that 2184 * it does not get deleted and freed while we are using it. 2185 * Typically all the lookup functions hold the bucket lock, 2186 * and look for the IRE. If it finds an IRE, it bumps up the 2187 * reference count before dropping the lock. Sometimes we *may* want 2188 * to bump up the reference count after we *looked* up i.e without 2189 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2190 * on the bucket lock being held. Any thread trying to delete from 2191 * the hash bucket can still do so but cannot free the IRE if 2192 * ire_refcnt is not 0. 2193 * 2194 * 2) We bump up the reference count on the bucket where the IRE resides 2195 * (IRB), when we want to prevent the IREs getting deleted from a given 2196 * hash bucket. This makes life easier for ire_walk type functions which 2197 * wants to walk the IRE list, call a function, but needs to drop 2198 * the bucket lock to prevent recursive rw_enters. While the 2199 * lock is dropped, the list could be changed by other threads or 2200 * the same thread could end up deleting the ire or the ire pointed by 2201 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2202 * a delete will still remove the ire from the bucket while we have 2203 * dropped the lock and hence the ire_next would be NULL. Thus, we 2204 * need a mechanism to prevent deletions from a given bucket. 2205 * 2206 * To prevent deletions, we bump up the reference count on the 2207 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2208 * both on the ire's ire_marks and the bucket's irb_marks. When the 2209 * reference count on the bucket drops to zero, all the CONDEMNED ires 2210 * are deleted. We don't have to bump up the reference count on the 2211 * bucket if we are walking the bucket and never have to drop the bucket 2212 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2213 * in the list. It is okay because addition of new ires will not cause 2214 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2215 * all of the 3 conditions are true : 2216 * 2217 * 1) The code needs to walk the IRE bucket from start to end. 2218 * 2) It may have to drop the bucket lock sometimes while doing (1) 2219 * 3) It does not want any ires to be deleted meanwhile. 2220 */ 2221 2222 /* 2223 * Bump up the reference count on the IRE. We cannot assert that the 2224 * bucket lock is being held as it is legal to bump up the reference 2225 * count after the first lookup has returned the IRE without 2226 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2227 */ 2228 2229 #ifndef IRE_DEBUG 2230 2231 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2232 #define IRE_UNTRACE_REF(ire) 2233 #define IRE_TRACE_REF(ire) 2234 2235 #else 2236 2237 #define IRE_REFHOLD_NOTR(ire) { \ 2238 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2239 ASSERT((ire)->ire_refcnt != 0); \ 2240 } 2241 2242 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2243 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2244 #endif 2245 2246 #define IRE_REFHOLD(ire) { \ 2247 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2248 ASSERT((ire)->ire_refcnt != 0); \ 2249 IRE_TRACE_REF(ire); \ 2250 } 2251 2252 #define IRE_REFHOLD_LOCKED(ire) { \ 2253 IRE_TRACE_REF(ire); \ 2254 (ire)->ire_refcnt++; \ 2255 } 2256 2257 /* 2258 * Decrement the reference count on the IRE. 2259 * In architectures e.g sun4u, where atomic_add_32_nv is just 2260 * a cas, we need to maintain the right memory barrier semantics 2261 * as that of mutex_exit i.e all the loads and stores should complete 2262 * before the cas is executed. membar_exit() does that here. 2263 * 2264 * NOTE : This macro is used only in places where we want performance. 2265 * To avoid bloating the code, we use the function "ire_refrele" 2266 * which essentially calls the macro. 2267 */ 2268 #ifndef IRE_DEBUG 2269 #define IRE_REFRELE(ire) { \ 2270 ASSERT((ire)->ire_refcnt != 0); \ 2271 membar_exit(); \ 2272 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2273 ire_inactive(ire); \ 2274 } 2275 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2276 #else 2277 #define IRE_REFRELE(ire) { \ 2278 if (ire->ire_bucket != NULL) \ 2279 ire_untrace_ref(ire); \ 2280 ASSERT((ire)->ire_refcnt != 0); \ 2281 membar_exit(); \ 2282 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2283 ire_inactive(ire); \ 2284 } 2285 #define IRE_REFRELE_NOTR(ire) { \ 2286 ASSERT((ire)->ire_refcnt != 0); \ 2287 membar_exit(); \ 2288 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2289 ire_inactive(ire); \ 2290 } 2291 #endif 2292 2293 /* 2294 * Bump up the reference count on the hash bucket - IRB to 2295 * prevent ires from being deleted in this bucket. 2296 */ 2297 #define IRB_REFHOLD(irb) { \ 2298 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2299 (irb)->irb_refcnt++; \ 2300 ASSERT((irb)->irb_refcnt != 0); \ 2301 rw_exit(&(irb)->irb_lock); \ 2302 } 2303 2304 #define IRB_REFRELE(irb) { \ 2305 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2306 ASSERT((irb)->irb_refcnt != 0); \ 2307 if (--(irb)->irb_refcnt == 0 && \ 2308 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2309 ire_t *ire_list; \ 2310 \ 2311 ire_list = ire_unlink(irb); \ 2312 rw_exit(&(irb)->irb_lock); \ 2313 ASSERT(ire_list != NULL); \ 2314 ire_cleanup(ire_list); \ 2315 } else { \ 2316 rw_exit(&(irb)->irb_lock); \ 2317 } \ 2318 } 2319 2320 /* 2321 * Lock the fast path mp for access, since the ire_fp_mp can be deleted 2322 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2323 */ 2324 2325 #define LOCK_IRE_FP_MP(ire) { \ 2326 if ((ire)->ire_type == IRE_BROADCAST || \ 2327 (ire)->ire_type == IRE_MIPRTUN) \ 2328 mutex_enter(&ire->ire_lock); \ 2329 } 2330 #define UNLOCK_IRE_FP_MP(ire) { \ 2331 if ((ire)->ire_type == IRE_BROADCAST || \ 2332 (ire)->ire_type == IRE_MIPRTUN) \ 2333 mutex_exit(&ire->ire_lock); \ 2334 } 2335 2336 typedef struct ire4 { 2337 ipaddr_t ire4_src_addr; /* Source address to use. */ 2338 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2339 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2340 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2341 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2342 } ire4_t; 2343 2344 typedef struct ire6 { 2345 in6_addr_t ire6_src_addr; /* Source address to use. */ 2346 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2347 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2348 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2349 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2350 } ire6_t; 2351 2352 typedef union ire_addr { 2353 ire6_t ire6_u; 2354 ire4_t ire4_u; 2355 } ire_addr_u_t; 2356 2357 /* Internet Routing Entry */ 2358 typedef struct ire_s { 2359 struct ire_s *ire_next; /* The hash chain must be first. */ 2360 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2361 uint32_t ire_refcnt; /* Number of references */ 2362 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2363 mblk_t *ire_fp_mp; /* Fast path header */ 2364 queue_t *ire_rfq; /* recv from this queue */ 2365 queue_t *ire_stq; /* send to this queue */ 2366 union { 2367 uint_t *max_fragp; /* Used only during ire creation */ 2368 uint_t max_frag; /* MTU (next hop or path). */ 2369 } imf_u; 2370 #define ire_max_frag imf_u.max_frag 2371 #define ire_max_fragp imf_u.max_fragp 2372 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2373 uint32_t ire_ident; /* Per IRE IP ident. */ 2374 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2375 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2376 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2377 ushort_t ire_type; /* Type of IRE */ 2378 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2379 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2380 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2381 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2382 mblk_t *ire_dlureq_mp; /* DL_UNIT_DATA_REQ/RESOLVER mp */ 2383 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2384 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2385 ipif_t *ire_ipif; /* the interface that this ire uses */ 2386 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2387 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2388 struct nce_s *ire_nce; /* Neighbor Cache Entry for IPv6 */ 2389 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2390 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2391 2392 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2393 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2394 /* 2395 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2396 */ 2397 kmutex_t ire_lock; 2398 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2399 /* 2400 * For regular routes in forwarding table and cache table the 2401 * the following entries are NULL/zero. Only reverse tunnel 2402 * table and interface based forwarding table use these fields. 2403 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2404 * non-zero values for the following fields. 2405 */ 2406 ill_t *ire_in_ill; /* Incoming ill interface */ 2407 ipaddr_t ire_in_src_addr; 2408 /* source ip-addr of incoming packet */ 2409 clock_t ire_last_used_time; /* Last used time */ 2410 struct ire_s *ire_fastpath; /* Pointer to next ire in fastpath */ 2411 zoneid_t ire_zoneid; /* for local address discrimination */ 2412 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2413 #ifdef IRE_DEBUG 2414 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2415 boolean_t ire_trace_disable; /* True when alloc fails */ 2416 #endif 2417 } ire_t; 2418 2419 /* IPv4 compatiblity macros */ 2420 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2421 #define ire_mask ire_u.ire4_u.ire4_mask 2422 #define ire_addr ire_u.ire4_u.ire4_addr 2423 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2424 #define ire_cmask ire_u.ire4_u.ire4_cmask 2425 2426 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2427 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2428 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2429 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2430 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2431 2432 /* Convenient typedefs for sockaddrs */ 2433 typedef struct sockaddr_in sin_t; 2434 typedef struct sockaddr_in6 sin6_t; 2435 2436 /* Address structure used for internal bind with IP */ 2437 typedef struct ipa_conn_s { 2438 ipaddr_t ac_laddr; 2439 ipaddr_t ac_faddr; 2440 uint16_t ac_fport; 2441 uint16_t ac_lport; 2442 } ipa_conn_t; 2443 2444 typedef struct ipa6_conn_s { 2445 in6_addr_t ac6_laddr; 2446 in6_addr_t ac6_faddr; 2447 uint16_t ac6_fport; 2448 uint16_t ac6_lport; 2449 } ipa6_conn_t; 2450 2451 /* 2452 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2453 * bind handler. 2454 */ 2455 typedef struct ipa_conn_extended_s { 2456 uint64_t acx_flags; 2457 ipa_conn_t acx_conn; 2458 } ipa_conn_x_t; 2459 2460 typedef struct ipa6_conn_extended_s { 2461 uint64_t ac6x_flags; 2462 ipa6_conn_t ac6x_conn; 2463 } ipa6_conn_x_t; 2464 2465 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2466 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2467 2468 /* Name/Value Descriptor. */ 2469 typedef struct nv_s { 2470 uint64_t nv_value; 2471 char *nv_name; 2472 } nv_t; 2473 2474 /* IP Forwarding Ticket */ 2475 typedef struct ipftk_s { 2476 queue_t *ipftk_queue; 2477 ipaddr_t ipftk_dst; 2478 } ipftk_t; 2479 2480 typedef struct ipt_s { 2481 pfv_t func; /* Routine to call */ 2482 uchar_t *arg; /* ire or nce passed in */ 2483 } ipt_t; 2484 2485 #define ILL_FRAG_HASH(s, i) \ 2486 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2487 2488 /* 2489 * The MAX number of allowed fragmented packets per hash bucket 2490 * calculation is based on the most common mtu size of 1500. This limit 2491 * will work well for other mtu sizes as well. 2492 */ 2493 #define COMMON_IP_MTU 1500 2494 #define MAX_FRAG_MIN 10 2495 #define MAX_FRAG_PKTS \ 2496 MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \ 2497 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2498 2499 /* 2500 * Maximum dups allowed per packet. 2501 */ 2502 extern uint_t ip_max_frag_dups; 2503 2504 /* 2505 * Per-packet information for received packets and transmitted. 2506 * Used by the transport protocols when converting between the packet 2507 * and ancillary data and socket options. 2508 * 2509 * Note: This private data structure and related IPPF_* constant 2510 * definitions are exposed to enable compilation of some debugging tools 2511 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2512 * a temporary hack and long term alternate interfaces should be defined 2513 * to support the needs of such tools and private definitions moved to 2514 * private headers. 2515 */ 2516 struct ip6_pkt_s { 2517 uint_t ipp_fields; /* Which fields are valid */ 2518 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2519 uint_t ipp_ifindex; /* pktinfo ifindex */ 2520 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2521 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2522 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2523 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2524 uint_t ipp_hopoptslen; 2525 uint_t ipp_rtdstoptslen; 2526 uint_t ipp_rthdrlen; 2527 uint_t ipp_dstoptslen; 2528 uint_t ipp_pathmtulen; 2529 ip6_hbh_t *ipp_hopopts; 2530 ip6_dest_t *ipp_rtdstopts; 2531 ip6_rthdr_t *ipp_rthdr; 2532 ip6_dest_t *ipp_dstopts; 2533 struct ip6_mtuinfo *ipp_pathmtu; 2534 in6_addr_t ipp_nexthop; /* Transmit only */ 2535 uint8_t ipp_tclass; 2536 int8_t ipp_use_min_mtu; 2537 }; 2538 typedef struct ip6_pkt_s ip6_pkt_t; 2539 2540 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2541 2542 /* 2543 * This structure is used to convey information from IP and the ULP. 2544 * Currently used for the IP_RECVSLLA and IP_RECVIF options. The 2545 * type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2546 */ 2547 typedef struct in_pktinfo { 2548 uint32_t in_pkt_ulp_type; /* type of info sent */ 2549 /* to UDP */ 2550 uint32_t in_pkt_flags; /* what is sent up by IP */ 2551 uint32_t in_pkt_ifindex; /* inbound interface index */ 2552 struct sockaddr_dl in_pkt_slla; /* has source link layer addr */ 2553 } in_pktinfo_t; 2554 2555 /* 2556 * flags to tell UDP what IP is sending; in_pkt_flags 2557 */ 2558 #define IPF_RECVIF 0x01 /* inbound interface index */ 2559 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2560 2561 /* ipp_fields values */ 2562 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2563 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2564 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2565 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2566 2567 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2568 #define IPPF_HOPLIMIT 0x0020 2569 #define IPPF_HOPOPTS 0x0040 2570 #define IPPF_RTHDR 0x0080 2571 2572 #define IPPF_RTDSTOPTS 0x0100 2573 #define IPPF_DSTOPTS 0x0200 2574 #define IPPF_NEXTHOP 0x0400 2575 #define IPPF_PATHMTU 0x0800 2576 2577 #define IPPF_TCLASS 0x1000 2578 #define IPPF_DONTFRAG 0x2000 2579 #define IPPF_USE_MIN_MTU 0x04000 2580 #define IPPF_MULTICAST_HOPS 0x08000 2581 #define IPPF_UNICAST_HOPS 0x10000 2582 2583 #define IPPF_HAS_IP6I \ 2584 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2585 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2586 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2587 2588 #define TCP_PORTS_OFFSET 0 2589 #define UDP_PORTS_OFFSET 0 2590 2591 /* 2592 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2593 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2594 * after calling these macros. This ensures that the refcnt on the ipif or 2595 * ill will eventually drop down to zero. 2596 */ 2597 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2598 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2599 2600 #define ILL_CAN_LOOKUP(ill) \ 2601 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2602 IAM_WRITER_ILL(ill)) 2603 2604 #define ILL_CAN_WAIT(ill, q) \ 2605 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2606 2607 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2608 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2609 2610 #define IPIF_CAN_LOOKUP(ipif) \ 2611 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2612 IAM_WRITER_IPIF(ipif)) 2613 2614 /* 2615 * If the parameter 'q' is NULL, the caller is not interested in wait and 2616 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2617 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2618 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2619 * in this case 'q' is NULL 2620 */ 2621 #define IPIF_CAN_WAIT(ipif, q) \ 2622 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2623 2624 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2625 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2626 IAM_WRITER_IPIF(ipif)) 2627 2628 /* 2629 * These macros are used by critical set ioctls and failover ioctls to 2630 * mark the ipif appropriately before starting the operation and to clear the 2631 * marks after completing the operation. 2632 */ 2633 #define IPIF_UNMARK_MOVING(ipif) \ 2634 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2635 2636 #define ILL_UNMARK_CHANGING(ill) \ 2637 (ill)->ill_state_flags &= ~ILL_CHANGING; 2638 2639 /* Macros used to assert that this thread is a writer */ 2640 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2641 #define IAM_WRITER_ILL(ill) \ 2642 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2643 #define IAM_WRITER_IPIF(ipif) \ 2644 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2645 2646 /* 2647 * Grab ill locks in the proper order. The order is highest addressed 2648 * ill is locked first. 2649 */ 2650 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2651 { \ 2652 if ((ill_1) > (ill_2)) { \ 2653 if (ill_1 != NULL) \ 2654 mutex_enter(&(ill_1)->ill_lock); \ 2655 if (ill_2 != NULL) \ 2656 mutex_enter(&(ill_2)->ill_lock); \ 2657 } else { \ 2658 if (ill_2 != NULL) \ 2659 mutex_enter(&(ill_2)->ill_lock); \ 2660 if (ill_1 != NULL && ill_1 != ill_2) \ 2661 mutex_enter(&(ill_1)->ill_lock); \ 2662 } \ 2663 } 2664 2665 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2666 { \ 2667 if (ill_1 != NULL) \ 2668 mutex_exit(&(ill_1)->ill_lock); \ 2669 if (ill_2 != NULL && ill_2 != ill_1) \ 2670 mutex_exit(&(ill_2)->ill_lock); \ 2671 } 2672 2673 /* Get the other protocol instance ill */ 2674 #define ILL_OTHER(ill) \ 2675 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2676 (ill)->ill_phyint->phyint_illv6) 2677 2678 #define MATCH_V4_ONLY 0x1 2679 #define MATCH_V6_ONLY 0x2 2680 #define MATCH_ILL_ONLY 0x4 2681 2682 /* ioctl command info: Ioctl properties extracted and stored in here */ 2683 typedef struct cmd_info_s 2684 { 2685 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2686 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2687 sin_t *ci_sin; /* the sin struct passed down */ 2688 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2689 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2690 } cmd_info_t; 2691 2692 extern krwlock_t ill_g_lock; 2693 extern kmutex_t ip_addr_avail_lock; 2694 extern ipsq_t *ipsq_g_head; 2695 2696 extern ill_t *ip_timer_ill; /* ILL for IRE expiration timer. */ 2697 extern timeout_id_t ip_ire_expire_id; /* IRE expiration timeout id. */ 2698 extern timeout_id_t ip_ire_reclaim_id; /* IRE recalaim timeout id. */ 2699 2700 extern kmutex_t ip_mi_lock; 2701 extern krwlock_t ip_g_nd_lock; /* For adding/removing nd variables */ 2702 extern kmutex_t ip_trash_timer_lock; /* Protects ip_ire_expire_id */ 2703 2704 extern kmutex_t igmp_timer_lock; /* Protects the igmp timer */ 2705 extern kmutex_t mld_timer_lock; /* Protects the mld timer */ 2706 2707 extern krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 2708 2709 extern struct kmem_cache *ire_cache; 2710 2711 extern uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries */ 2712 extern uint_t ip_ire_default_index; /* Walking index used to mod in */ 2713 2714 extern ipaddr_t ip_g_all_ones; 2715 extern caddr_t ip_g_nd; /* Named Dispatch List Head */ 2716 2717 extern uint_t ip_loopback_mtu; 2718 2719 extern ipparam_t *ip_param_arr; 2720 2721 extern int ip_g_forward; 2722 extern int ipv6_forward; 2723 extern vmem_t *ip_minor_arena; 2724 2725 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 2726 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 2727 #define ip_debug ip_param_arr[7].ip_param_value 2728 #define ip_mrtdebug ip_param_arr[8].ip_param_value 2729 #define ip_timer_interval ip_param_arr[9].ip_param_value 2730 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value 2731 #define ip_def_ttl ip_param_arr[12].ip_param_value 2732 #define ip_wroff_extra ip_param_arr[14].ip_param_value 2733 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value 2734 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value 2735 #define ip_output_queue ip_param_arr[20].ip_param_value 2736 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 2737 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 2738 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 2739 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 2740 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 2741 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value 2742 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 2743 #define delay_first_probe_time ip_param_arr[30].ip_param_value 2744 #define max_unicast_solicit ip_param_arr[31].ip_param_value 2745 #define ipv6_def_hops ip_param_arr[32].ip_param_value 2746 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 2747 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 2748 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 2749 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 2750 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 2751 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 2752 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 2753 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 2754 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 2755 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 2756 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 2757 #define ip_policy_mask ip_param_arr[45].ip_param_value 2758 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 2759 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 2760 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 2761 #ifdef DEBUG 2762 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 2763 #else 2764 #define ipv6_drop_inbound_icmpv6 0 2765 #endif 2766 2767 extern hrtime_t ipsec_policy_failure_last; 2768 2769 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2770 #ifdef ZC_TEST 2771 extern int noswcksum; 2772 #endif 2773 2774 extern char ipif_loopback_name[]; 2775 2776 extern nv_t *ire_nv_tbl; 2777 2778 extern time_t ip_g_frag_timeout; 2779 extern clock_t ip_g_frag_timo_ms; 2780 2781 extern mib2_ip_t ip_mib; /* For tcpInErrs and udpNoPorts */ 2782 2783 extern struct module_info ip_mod_info; 2784 2785 extern timeout_id_t igmp_slowtimeout_id; 2786 extern timeout_id_t mld_slowtimeout_id; 2787 2788 extern uint_t loopback_packets; 2789 2790 /* 2791 * Network byte order macros 2792 */ 2793 #ifdef _BIG_ENDIAN 2794 #define N_IN_CLASSD_NET IN_CLASSD_NET 2795 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 2796 #else /* _BIG_ENDIAN */ 2797 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 2798 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 2799 #endif /* _BIG_ENDIAN */ 2800 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 2801 2802 #ifdef DEBUG 2803 /* IPsec HW acceleration debugging support */ 2804 2805 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 2806 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 2807 #define IPSECHW_PKT 0x0004 /* general packet flow */ 2808 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 2809 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 2810 2811 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 2812 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 2813 2814 extern uint32_t ipsechw_debug; 2815 #else 2816 #define IPSECHW_DEBUG(f, x) {} 2817 #define IPSECHW_CALL(f, r, x) {} 2818 #endif 2819 2820 #ifdef IP_DEBUG 2821 #include <sys/debug.h> 2822 #include <sys/promif.h> 2823 2824 #define ip0dbg(a) printf a 2825 #define ip1dbg(a) if (ip_debug > 2) printf a 2826 #define ip2dbg(a) if (ip_debug > 3) printf a 2827 #define ip3dbg(a) if (ip_debug > 4) printf a 2828 #else 2829 #define ip0dbg(a) /* */ 2830 #define ip1dbg(a) /* */ 2831 #define ip2dbg(a) /* */ 2832 #define ip3dbg(a) /* */ 2833 #endif /* IP_DEBUG */ 2834 2835 extern const char *dlpi_prim_str(int); 2836 extern const char *dlpi_err_str(int); 2837 extern void ill_frag_timer(void *); 2838 extern ill_t *ill_first(int, int, ill_walk_context_t *); 2839 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 2840 extern void ill_frag_timer_start(ill_t *); 2841 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 2842 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 2843 extern char *ip_dot_addr(ipaddr_t, char *); 2844 extern void ip_lwput(queue_t *, mblk_t *); 2845 extern boolean_t icmp_err_rate_limit(void); 2846 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t); 2847 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t); 2848 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t); 2849 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 2850 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 2851 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 2852 boolean_t); 2853 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 2854 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 2855 boolean_t, boolean_t, boolean_t); 2856 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 2857 extern int ip_close(queue_t *, int); 2858 extern uint16_t ip_csum_hdr(ipha_t *); 2859 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t); 2860 extern void ip_ire_fini(void); 2861 extern void ip_ire_init(void); 2862 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 2863 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 2864 size_t); 2865 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 2866 int, int, mblk_t *); 2867 extern void ip_rput(queue_t *, mblk_t *); 2868 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 2869 extern void ip_rput_dlpi(queue_t *, mblk_t *); 2870 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 2871 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 2872 2873 extern int ip_snmpmod_close(queue_t *); 2874 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 2875 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 2876 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 2877 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 2878 extern void ip_setqinfo(queue_t *, minor_t, boolean_t); 2879 extern void ip_trash_ire_reclaim(void *); 2880 extern void ip_trash_timer_expire(void *); 2881 extern void ip_wput(queue_t *, mblk_t *); 2882 extern void ip_output(void *, mblk_t *, void *, int); 2883 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 2884 2885 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int); 2886 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 2887 int, zoneid_t); 2888 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *); 2889 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 2890 extern void ip_wsrv(queue_t *); 2891 extern char *ip_nv_lookup(nv_t *, int); 2892 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 2893 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 2894 extern ipaddr_t ip_massage_options(ipha_t *); 2895 extern ipaddr_t ip_net_mask(ipaddr_t); 2896 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 2897 2898 extern struct qinit rinit_ipv6; 2899 extern struct qinit winit_ipv6; 2900 extern struct qinit rinit_tcp; 2901 extern struct qinit rinit_tcp6; 2902 extern struct qinit winit_tcp; 2903 extern struct qinit rinit_acceptor_tcp; 2904 extern struct qinit winit_acceptor_tcp; 2905 2906 extern void conn_drain_insert(conn_t *connp); 2907 extern int conn_ipsec_length(conn_t *connp); 2908 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 2909 ire_t *); 2910 extern ipaddr_t ip_get_dst(ipha_t *); 2911 extern int ipsec_out_extra_length(mblk_t *); 2912 extern int ipsec_in_extra_length(mblk_t *); 2913 extern mblk_t *ipsec_in_alloc(); 2914 extern boolean_t ipsec_in_is_secure(mblk_t *); 2915 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 2916 extern void ipsec_out_to_in(mblk_t *); 2917 extern int ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t); 2918 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 2919 2920 extern void ire_cleanup(ire_t *); 2921 extern void ire_inactive(ire_t *); 2922 extern ire_t *ire_unlink(irb_t *); 2923 #ifdef IRE_DEBUG 2924 extern void ire_trace_ref(ire_t *ire); 2925 extern void ire_untrace_ref(ire_t *ire); 2926 extern void ire_thread_exit(ire_t *ire, caddr_t); 2927 #endif 2928 #ifdef ILL_DEBUG 2929 extern void ill_trace_cleanup(ill_t *); 2930 extern void ipif_trace_cleanup(ipif_t *); 2931 #endif 2932 2933 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t); 2934 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t); 2935 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t); 2936 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t); 2937 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 2938 2939 extern uint8_t ipoptp_next(ipoptp_t *); 2940 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 2941 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 2942 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t); 2943 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 2944 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 2945 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 2946 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 2947 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 2948 extern void ip_quiesce_conn(conn_t *); 2949 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 2950 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 2951 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *, 2952 ipsq_t *); 2953 2954 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 2955 uint_t); 2956 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 2957 uint_t); 2958 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 2959 2960 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 2961 extern void conn_ioctl_cleanup(conn_t *); 2962 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 2963 2964 struct multidata_s; 2965 struct pdesc_s; 2966 2967 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 2968 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 2969 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 2970 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 2971 const mblk_t *); 2972 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 2973 uint32_t, uint32_t, uint32_t, uint32_t); 2974 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 2975 uint_t); 2976 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 2977 2978 extern void tnet_init(void); 2979 extern void tnet_fini(void); 2980 2981 /* Hooks for CGTP (multirt routes) filtering module */ 2982 #define CGTP_FILTER_REV_1 1 2983 #define CGTP_FILTER_REV_2 2 2984 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 2985 2986 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 2987 #define CGTP_IP_PKT_NOT_CGTP 0 2988 #define CGTP_IP_PKT_PREMIUM 1 2989 #define CGTP_IP_PKT_DUPLICATE 2 2990 2991 typedef struct cgtp_filter_ops { 2992 int cfo_filter_rev; 2993 int (*cfo_change_state)(int); 2994 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 2995 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 2996 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 2997 in6_addr_t *); 2998 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 2999 int (*cfo_filter)(queue_t *, mblk_t *); 3000 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3001 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3002 } cgtp_filter_ops_t; 3003 3004 #define CGTP_MCAST_SUCCESS 1 3005 3006 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3007 extern boolean_t ip_cgtp_filter; 3008 3009 extern int ip_cgtp_filter_supported(void); 3010 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3011 3012 /* Flags for ire_multirt_lookup() */ 3013 3014 #define MULTIRT_USESTAMP 0x0001 3015 #define MULTIRT_SETSTAMP 0x0002 3016 #define MULTIRT_CACHEGW 0x0004 3017 3018 /* Debug stuff for multirt route resolution. */ 3019 #if defined(DEBUG) && !defined(__lint) 3020 /* Our "don't send, rather drop" flag. */ 3021 #define MULTIRT_DEBUG_FLAG 0x8000 3022 3023 #define MULTIRT_TRACE(x) ip2dbg(x) 3024 3025 #define MULTIRT_DEBUG_TAG(mblk) \ 3026 do { \ 3027 ASSERT(mblk != NULL); \ 3028 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3029 __FILE__, __LINE__, \ 3030 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3031 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3032 } while (0) 3033 3034 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3035 do { \ 3036 ASSERT(mblk != NULL); \ 3037 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3038 __FILE__, __LINE__, \ 3039 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3040 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3041 } while (0) 3042 3043 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3044 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3045 #else 3046 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3047 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3048 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3049 #endif 3050 3051 /* 3052 * Per-ILL Multidata Transmit capabilities. 3053 */ 3054 struct ill_mdt_capab_s { 3055 uint_t ill_mdt_version; /* interface version */ 3056 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3057 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3058 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3059 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3060 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3061 }; 3062 3063 struct ill_hcksum_capab_s { 3064 uint_t ill_hcksum_version; /* interface version */ 3065 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3066 }; 3067 3068 struct ill_zerocopy_capab_s { 3069 uint_t ill_zerocopy_version; /* interface version */ 3070 uint_t ill_zerocopy_flags; /* capabilities */ 3071 }; 3072 3073 /* Possible ill_states */ 3074 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3075 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3076 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3077 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3078 3079 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3080 #define ILL_POLLING 0x01 /* Polling in use */ 3081 3082 /* 3083 * These functions pointer types are exported by the mac/dls layer. 3084 * we need to duplicate the definitions here because we cannot 3085 * include mac/dls header files here. 3086 */ 3087 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3088 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3089 3090 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3091 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3092 typedef void (*ip_dls_unbind_t)(void *); 3093 3094 struct ill_rx_ring { 3095 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3096 void *rr_handle; /* Handle for Rx ring */ 3097 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3098 ill_t *rr_ill; /* back pointer to ill */ 3099 clock_t rr_poll_time; /* Last lbolt polling was used */ 3100 uint32_t rr_poll_state; /* polling state flags */ 3101 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3102 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3103 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3104 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3105 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3106 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3107 uint32_t rr_ring_state; /* State of this ring */ 3108 }; 3109 3110 struct ill_dls_capab_s { 3111 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3112 void *ill_tx_handle; /* Driver Tx handle */ 3113 ip_dls_chg_soft_ring_t ill_dls_change_status; 3114 /* change soft ring fanout */ 3115 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3116 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3117 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3118 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3119 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3120 }; 3121 3122 /* 3123 * This message is sent by an upper-layer protocol to tell IP that it knows all 3124 * about labels and will construct them itself. IP takes the slow path and 3125 * recomputes the label on every packet when this isn't true. 3126 */ 3127 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3128 typedef struct out_labeled_s { 3129 uint32_t out_labeled_type; /* OUT_LABELED */ 3130 queue_t *out_qnext; /* intermediate detection */ 3131 } out_labeled_t; 3132 3133 /* 3134 * IP squeues exports 3135 */ 3136 extern int ip_squeue_profile; 3137 extern int ip_squeue_bind; 3138 extern boolean_t ip_squeue_fanout; 3139 extern boolean_t ip_squeue_soft_ring; 3140 extern uint_t ip_threads_per_cpu; 3141 extern uint_t ip_squeues_per_cpu; 3142 extern uint_t ip_soft_rings_cnt; 3143 3144 typedef struct squeue_set_s { 3145 kmutex_t sqs_lock; 3146 struct squeue_s **sqs_list; 3147 int sqs_size; 3148 int sqs_max_size; 3149 processorid_t sqs_bind; 3150 } squeue_set_t; 3151 3152 #define IP_SQUEUE_GET(hint) \ 3153 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3154 ip_squeue_random(hint)) 3155 3156 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3157 3158 extern void ip_squeue_init(void (*)(squeue_t *)); 3159 extern squeue_t *ip_squeue_random(uint_t); 3160 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3161 extern void ip_squeue_get_pkts(squeue_t *); 3162 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3163 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *); 3164 extern void ip_squeue_clean(void *, mblk_t *, void *); 3165 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3166 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3167 mblk_t *, size_t); 3168 3169 extern void tcp_wput(queue_t *, mblk_t *); 3170 3171 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3172 struct ip6_mtuinfo *); 3173 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3174 3175 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3176 3177 /* 3178 * Squeue tags. Tags only need to be unique when the callback function is the 3179 * same to distinguish between different calls, but we use unique tags for 3180 * convenience anyway. 3181 */ 3182 #define SQTAG_IP_INPUT 1 3183 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3184 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3185 #define SQTAG_IP_TCP_INPUT 4 3186 #define SQTAG_IP6_TCP_INPUT 5 3187 #define SQTAG_IP_TCP_CLOSE 6 3188 #define SQTAG_TCP_OUTPUT 7 3189 #define SQTAG_TCP_TIMER 8 3190 #define SQTAG_TCP_TIMEWAIT 9 3191 #define SQTAG_TCP_ACCEPT_FINISH 10 3192 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3193 #define SQTAG_TCP_ACCEPT_PENDING 12 3194 #define SQTAG_TCP_LISTEN_DISCON 13 3195 #define SQTAG_TCP_CONN_REQ 14 3196 #define SQTAG_TCP_EAGER_BLOWOFF 15 3197 #define SQTAG_TCP_EAGER_CLEANUP 16 3198 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3199 #define SQTAG_TCP_CONN_IND 18 3200 #define SQTAG_TCP_RSRV 19 3201 #define SQTAG_TCP_ABORT_BUCKET 20 3202 #define SQTAG_TCP_REINPUT 21 3203 #define SQTAG_TCP_REINPUT_EAGER 22 3204 #define SQTAG_TCP_INPUT_MCTL 23 3205 #define SQTAG_TCP_RPUTOTHER 24 3206 #define SQTAG_IP_PROTO_AGAIN 25 3207 #define SQTAG_IP_FANOUT_TCP 26 3208 #define SQTAG_IPSQ_CLEAN_RING 27 3209 #define SQTAG_TCP_WPUT_OTHER 28 3210 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3211 #define SQTAG_TCP_SEND_PENDING 30 3212 #define SQTAG_BIND_RETRY 31 3213 #define SQTAG_UDP_FANOUT 32 3214 #define SQTAG_UDP_INPUT 33 3215 #define SQTAG_UDP_WPUT 34 3216 #define SQTAG_UDP_OUTPUT 35 3217 #define SQTAG_TCP_KSSL_INPUT 36 3218 3219 #endif /* _KERNEL */ 3220 3221 #ifdef __cplusplus 3222 } 3223 #endif 3224 3225 #endif /* _INET_IP_H */ 3226