1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/txg.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio_impl.h> 33 #include <sys/zio_compress.h> 34 #include <sys/zio_checksum.h> 35 36 /* 37 * ========================================================================== 38 * I/O priority table 39 * ========================================================================== 40 */ 41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 42 0, /* ZIO_PRIORITY_NOW */ 43 0, /* ZIO_PRIORITY_SYNC_READ */ 44 0, /* ZIO_PRIORITY_SYNC_WRITE */ 45 6, /* ZIO_PRIORITY_ASYNC_READ */ 46 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 47 4, /* ZIO_PRIORITY_FREE */ 48 0, /* ZIO_PRIORITY_CACHE_FILL */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 10, /* ZIO_PRIORITY_RESILVER */ 51 20, /* ZIO_PRIORITY_SCRUB */ 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 char *zio_type_name[ZIO_TYPES] = { 60 "null", "read", "write", "free", "claim", "ioctl" }; 61 62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ 63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ 64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ 65 66 /* 67 * ========================================================================== 68 * I/O kmem caches 69 * ========================================================================== 70 */ 71 kmem_cache_t *zio_cache; 72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 74 75 #ifdef _KERNEL 76 extern vmem_t *zio_alloc_arena; 77 #endif 78 79 /* 80 * An allocating zio is one that either currently has the DVA allocate 81 * stage set or will have it later in its lifetime. 82 */ 83 #define IO_IS_ALLOCATING(zio) \ 84 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 85 86 void 87 zio_init(void) 88 { 89 size_t c; 90 vmem_t *data_alloc_arena = NULL; 91 92 #ifdef _KERNEL 93 data_alloc_arena = zio_alloc_arena; 94 #endif 95 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 96 NULL, NULL, NULL, NULL, NULL, 0); 97 98 /* 99 * For small buffers, we want a cache for each multiple of 100 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 101 * for each quarter-power of 2. For large buffers, we want 102 * a cache for each multiple of PAGESIZE. 103 */ 104 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 105 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 106 size_t p2 = size; 107 size_t align = 0; 108 109 while (p2 & (p2 - 1)) 110 p2 &= p2 - 1; 111 112 if (size <= 4 * SPA_MINBLOCKSIZE) { 113 align = SPA_MINBLOCKSIZE; 114 } else if (P2PHASE(size, PAGESIZE) == 0) { 115 align = PAGESIZE; 116 } else if (P2PHASE(size, p2 >> 2) == 0) { 117 align = p2 >> 2; 118 } 119 120 if (align != 0) { 121 char name[36]; 122 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 123 zio_buf_cache[c] = kmem_cache_create(name, size, 124 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 125 126 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 127 zio_data_buf_cache[c] = kmem_cache_create(name, size, 128 align, NULL, NULL, NULL, NULL, data_alloc_arena, 129 KMC_NODEBUG); 130 } 131 } 132 133 while (--c != 0) { 134 ASSERT(zio_buf_cache[c] != NULL); 135 if (zio_buf_cache[c - 1] == NULL) 136 zio_buf_cache[c - 1] = zio_buf_cache[c]; 137 138 ASSERT(zio_data_buf_cache[c] != NULL); 139 if (zio_data_buf_cache[c - 1] == NULL) 140 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 141 } 142 143 zio_inject_init(); 144 } 145 146 void 147 zio_fini(void) 148 { 149 size_t c; 150 kmem_cache_t *last_cache = NULL; 151 kmem_cache_t *last_data_cache = NULL; 152 153 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 154 if (zio_buf_cache[c] != last_cache) { 155 last_cache = zio_buf_cache[c]; 156 kmem_cache_destroy(zio_buf_cache[c]); 157 } 158 zio_buf_cache[c] = NULL; 159 160 if (zio_data_buf_cache[c] != last_data_cache) { 161 last_data_cache = zio_data_buf_cache[c]; 162 kmem_cache_destroy(zio_data_buf_cache[c]); 163 } 164 zio_data_buf_cache[c] = NULL; 165 } 166 167 kmem_cache_destroy(zio_cache); 168 169 zio_inject_fini(); 170 } 171 172 /* 173 * ========================================================================== 174 * Allocate and free I/O buffers 175 * ========================================================================== 176 */ 177 178 /* 179 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 180 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 181 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 182 * excess / transient data in-core during a crashdump. 183 */ 184 void * 185 zio_buf_alloc(size_t size) 186 { 187 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 188 189 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 190 191 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 192 } 193 194 /* 195 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 196 * crashdump if the kernel panics. This exists so that we will limit the amount 197 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 198 * of kernel heap dumped to disk when the kernel panics) 199 */ 200 void * 201 zio_data_buf_alloc(size_t size) 202 { 203 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 204 205 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 206 207 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 208 } 209 210 void 211 zio_buf_free(void *buf, size_t size) 212 { 213 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 214 215 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 216 217 kmem_cache_free(zio_buf_cache[c], buf); 218 } 219 220 void 221 zio_data_buf_free(void *buf, size_t size) 222 { 223 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 224 225 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 226 227 kmem_cache_free(zio_data_buf_cache[c], buf); 228 } 229 230 /* 231 * ========================================================================== 232 * Push and pop I/O transform buffers 233 * ========================================================================== 234 */ 235 static void 236 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 237 zio_transform_func_t *transform) 238 { 239 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 240 241 zt->zt_orig_data = zio->io_data; 242 zt->zt_orig_size = zio->io_size; 243 zt->zt_bufsize = bufsize; 244 zt->zt_transform = transform; 245 246 zt->zt_next = zio->io_transform_stack; 247 zio->io_transform_stack = zt; 248 249 zio->io_data = data; 250 zio->io_size = size; 251 } 252 253 static void 254 zio_pop_transforms(zio_t *zio) 255 { 256 zio_transform_t *zt; 257 258 while ((zt = zio->io_transform_stack) != NULL) { 259 if (zt->zt_transform != NULL) 260 zt->zt_transform(zio, 261 zt->zt_orig_data, zt->zt_orig_size); 262 263 zio_buf_free(zio->io_data, zt->zt_bufsize); 264 265 zio->io_data = zt->zt_orig_data; 266 zio->io_size = zt->zt_orig_size; 267 zio->io_transform_stack = zt->zt_next; 268 269 kmem_free(zt, sizeof (zio_transform_t)); 270 } 271 } 272 273 /* 274 * ========================================================================== 275 * I/O transform callbacks for subblocks and decompression 276 * ========================================================================== 277 */ 278 static void 279 zio_subblock(zio_t *zio, void *data, uint64_t size) 280 { 281 ASSERT(zio->io_size > size); 282 283 if (zio->io_type == ZIO_TYPE_READ) 284 bcopy(zio->io_data, data, size); 285 } 286 287 static void 288 zio_decompress(zio_t *zio, void *data, uint64_t size) 289 { 290 if (zio->io_error == 0 && 291 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 292 zio->io_data, zio->io_size, data, size) != 0) 293 zio->io_error = EIO; 294 } 295 296 /* 297 * ========================================================================== 298 * I/O parent/child relationships and pipeline interlocks 299 * ========================================================================== 300 */ 301 302 static void 303 zio_add_child(zio_t *pio, zio_t *zio) 304 { 305 mutex_enter(&pio->io_lock); 306 if (zio->io_stage < ZIO_STAGE_READY) 307 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 308 if (zio->io_stage < ZIO_STAGE_DONE) 309 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 310 zio->io_sibling_prev = NULL; 311 zio->io_sibling_next = pio->io_child; 312 if (pio->io_child != NULL) 313 pio->io_child->io_sibling_prev = zio; 314 pio->io_child = zio; 315 zio->io_parent = pio; 316 mutex_exit(&pio->io_lock); 317 } 318 319 static void 320 zio_remove_child(zio_t *pio, zio_t *zio) 321 { 322 zio_t *next, *prev; 323 324 ASSERT(zio->io_parent == pio); 325 326 mutex_enter(&pio->io_lock); 327 next = zio->io_sibling_next; 328 prev = zio->io_sibling_prev; 329 if (next != NULL) 330 next->io_sibling_prev = prev; 331 if (prev != NULL) 332 prev->io_sibling_next = next; 333 if (pio->io_child == zio) 334 pio->io_child = next; 335 mutex_exit(&pio->io_lock); 336 } 337 338 static boolean_t 339 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 340 { 341 uint64_t *countp = &zio->io_children[child][wait]; 342 boolean_t waiting = B_FALSE; 343 344 mutex_enter(&zio->io_lock); 345 ASSERT(zio->io_stall == NULL); 346 if (*countp != 0) { 347 zio->io_stage--; 348 zio->io_stall = countp; 349 waiting = B_TRUE; 350 } 351 mutex_exit(&zio->io_lock); 352 353 return (waiting); 354 } 355 356 static void 357 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 358 { 359 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 360 int *errorp = &pio->io_child_error[zio->io_child_type]; 361 362 mutex_enter(&pio->io_lock); 363 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 364 *errorp = zio_worst_error(*errorp, zio->io_error); 365 pio->io_reexecute |= zio->io_reexecute; 366 ASSERT3U(*countp, >, 0); 367 if (--*countp == 0 && pio->io_stall == countp) { 368 pio->io_stall = NULL; 369 mutex_exit(&pio->io_lock); 370 zio_execute(pio); 371 } else { 372 mutex_exit(&pio->io_lock); 373 } 374 } 375 376 static void 377 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 378 { 379 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 380 zio->io_error = zio->io_child_error[c]; 381 } 382 383 /* 384 * ========================================================================== 385 * Create the various types of I/O (read, write, free, etc) 386 * ========================================================================== 387 */ 388 static zio_t * 389 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 390 void *data, uint64_t size, zio_done_func_t *done, void *private, 391 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, 392 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) 393 { 394 zio_t *zio; 395 396 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 397 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 398 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 399 400 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 401 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 402 ASSERT(vd || stage == ZIO_STAGE_OPEN); 403 404 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 405 bzero(zio, sizeof (zio_t)); 406 407 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 408 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 409 410 if (vd != NULL) 411 zio->io_child_type = ZIO_CHILD_VDEV; 412 else if (flags & ZIO_FLAG_GANG_CHILD) 413 zio->io_child_type = ZIO_CHILD_GANG; 414 else 415 zio->io_child_type = ZIO_CHILD_LOGICAL; 416 417 if (bp != NULL) { 418 zio->io_bp = bp; 419 zio->io_bp_copy = *bp; 420 zio->io_bp_orig = *bp; 421 if (type != ZIO_TYPE_WRITE) 422 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 423 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 424 if (BP_IS_GANG(bp)) 425 pipeline |= ZIO_GANG_STAGES; 426 zio->io_logical = zio; 427 } 428 } 429 430 zio->io_spa = spa; 431 zio->io_txg = txg; 432 zio->io_data = data; 433 zio->io_size = size; 434 zio->io_done = done; 435 zio->io_private = private; 436 zio->io_type = type; 437 zio->io_priority = priority; 438 zio->io_vd = vd; 439 zio->io_offset = offset; 440 zio->io_orig_flags = zio->io_flags = flags; 441 zio->io_orig_stage = zio->io_stage = stage; 442 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 443 444 if (zb != NULL) 445 zio->io_bookmark = *zb; 446 447 if (pio != NULL) { 448 /* 449 * Logical I/Os can have logical, gang, or vdev children. 450 * Gang I/Os can have gang or vdev children. 451 * Vdev I/Os can only have vdev children. 452 * The following ASSERT captures all of these constraints. 453 */ 454 ASSERT(zio->io_child_type <= pio->io_child_type); 455 if (zio->io_logical == NULL) 456 zio->io_logical = pio->io_logical; 457 zio_add_child(pio, zio); 458 } 459 460 return (zio); 461 } 462 463 static void 464 zio_destroy(zio_t *zio) 465 { 466 spa_t *spa = zio->io_spa; 467 uint8_t async_root = zio->io_async_root; 468 469 mutex_destroy(&zio->io_lock); 470 cv_destroy(&zio->io_cv); 471 kmem_cache_free(zio_cache, zio); 472 473 if (async_root) { 474 mutex_enter(&spa->spa_async_root_lock); 475 if (--spa->spa_async_root_count == 0) 476 cv_broadcast(&spa->spa_async_root_cv); 477 mutex_exit(&spa->spa_async_root_lock); 478 } 479 } 480 481 zio_t * 482 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 483 int flags) 484 { 485 zio_t *zio; 486 487 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 488 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 489 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 490 491 return (zio); 492 } 493 494 zio_t * 495 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 496 { 497 return (zio_null(NULL, spa, done, private, flags)); 498 } 499 500 zio_t * 501 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 502 void *data, uint64_t size, zio_done_func_t *done, void *private, 503 int priority, int flags, const zbookmark_t *zb) 504 { 505 zio_t *zio; 506 507 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, 508 data, size, done, private, 509 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 510 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 511 512 return (zio); 513 } 514 515 zio_t * 516 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 517 void *data, uint64_t size, zio_prop_t *zp, 518 zio_done_func_t *ready, zio_done_func_t *done, void *private, 519 int priority, int flags, const zbookmark_t *zb) 520 { 521 zio_t *zio; 522 523 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 524 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 525 zp->zp_compress >= ZIO_COMPRESS_OFF && 526 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 527 zp->zp_type < DMU_OT_NUMTYPES && 528 zp->zp_level < 32 && 529 zp->zp_ndvas > 0 && 530 zp->zp_ndvas <= spa_max_replication(spa)); 531 ASSERT(ready != NULL); 532 533 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 534 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 535 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 536 537 zio->io_ready = ready; 538 zio->io_prop = *zp; 539 540 return (zio); 541 } 542 543 zio_t * 544 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 545 uint64_t size, zio_done_func_t *done, void *private, int priority, 546 int flags, zbookmark_t *zb) 547 { 548 zio_t *zio; 549 550 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 551 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 552 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 553 554 return (zio); 555 } 556 557 zio_t * 558 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 559 zio_done_func_t *done, void *private, int flags) 560 { 561 zio_t *zio; 562 563 ASSERT(!BP_IS_HOLE(bp)); 564 565 if (bp->blk_fill == BLK_FILL_ALREADY_FREED) 566 return (zio_null(pio, spa, NULL, NULL, flags)); 567 568 if (txg == spa->spa_syncing_txg && 569 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { 570 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 571 return (zio_null(pio, spa, NULL, NULL, flags)); 572 } 573 574 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 575 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 576 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 577 578 return (zio); 579 } 580 581 zio_t * 582 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 583 zio_done_func_t *done, void *private, int flags) 584 { 585 zio_t *zio; 586 587 /* 588 * A claim is an allocation of a specific block. Claims are needed 589 * to support immediate writes in the intent log. The issue is that 590 * immediate writes contain committed data, but in a txg that was 591 * *not* committed. Upon opening the pool after an unclean shutdown, 592 * the intent log claims all blocks that contain immediate write data 593 * so that the SPA knows they're in use. 594 * 595 * All claims *must* be resolved in the first txg -- before the SPA 596 * starts allocating blocks -- so that nothing is allocated twice. 597 */ 598 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 599 ASSERT3U(spa_first_txg(spa), <=, txg); 600 601 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 602 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 603 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 604 605 return (zio); 606 } 607 608 zio_t * 609 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 610 zio_done_func_t *done, void *private, int priority, int flags) 611 { 612 zio_t *zio; 613 int c; 614 615 if (vd->vdev_children == 0) { 616 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 617 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 618 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 619 620 zio->io_cmd = cmd; 621 } else { 622 zio = zio_null(pio, spa, NULL, NULL, flags); 623 624 for (c = 0; c < vd->vdev_children; c++) 625 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 626 done, private, priority, flags)); 627 } 628 629 return (zio); 630 } 631 632 zio_t * 633 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 634 void *data, int checksum, zio_done_func_t *done, void *private, 635 int priority, int flags, boolean_t labels) 636 { 637 zio_t *zio; 638 639 ASSERT(vd->vdev_children == 0); 640 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 641 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 642 ASSERT3U(offset + size, <=, vd->vdev_psize); 643 644 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 645 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 646 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 647 648 zio->io_prop.zp_checksum = checksum; 649 650 return (zio); 651 } 652 653 zio_t * 654 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 655 void *data, int checksum, zio_done_func_t *done, void *private, 656 int priority, int flags, boolean_t labels) 657 { 658 zio_t *zio; 659 660 ASSERT(vd->vdev_children == 0); 661 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 662 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 663 ASSERT3U(offset + size, <=, vd->vdev_psize); 664 665 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 666 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 667 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 668 669 zio->io_prop.zp_checksum = checksum; 670 671 if (zio_checksum_table[checksum].ci_zbt) { 672 /* 673 * zbt checksums are necessarily destructive -- they modify 674 * the end of the write buffer to hold the verifier/checksum. 675 * Therefore, we must make a local copy in case the data is 676 * being written to multiple places in parallel. 677 */ 678 void *wbuf = zio_buf_alloc(size); 679 bcopy(data, wbuf, size); 680 zio_push_transform(zio, wbuf, size, size, NULL); 681 } 682 683 return (zio); 684 } 685 686 /* 687 * Create a child I/O to do some work for us. 688 */ 689 zio_t * 690 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 691 void *data, uint64_t size, int type, int priority, int flags, 692 zio_done_func_t *done, void *private) 693 { 694 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 695 zio_t *zio; 696 697 ASSERT(vd->vdev_parent == 698 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 699 700 if (type == ZIO_TYPE_READ && bp != NULL) { 701 /* 702 * If we have the bp, then the child should perform the 703 * checksum and the parent need not. This pushes error 704 * detection as close to the leaves as possible and 705 * eliminates redundant checksums in the interior nodes. 706 */ 707 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 708 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 709 } 710 711 if (vd->vdev_children == 0) 712 offset += VDEV_LABEL_START_SIZE; 713 714 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 715 done, private, type, priority, 716 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | 717 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, 718 vd, offset, &pio->io_bookmark, 719 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 720 721 return (zio); 722 } 723 724 zio_t * 725 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 726 int type, int priority, int flags, zio_done_func_t *done, void *private) 727 { 728 zio_t *zio; 729 730 ASSERT(vd->vdev_ops->vdev_op_leaf); 731 732 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 733 data, size, done, private, type, priority, 734 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 735 vd, offset, NULL, 736 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); 737 738 return (zio); 739 } 740 741 void 742 zio_flush(zio_t *zio, vdev_t *vd) 743 { 744 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 745 NULL, NULL, ZIO_PRIORITY_NOW, 746 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 747 } 748 749 /* 750 * ========================================================================== 751 * Prepare to read and write logical blocks 752 * ========================================================================== 753 */ 754 755 static int 756 zio_read_bp_init(zio_t *zio) 757 { 758 blkptr_t *bp = zio->io_bp; 759 760 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_logical == zio) { 761 uint64_t csize = BP_GET_PSIZE(bp); 762 void *cbuf = zio_buf_alloc(csize); 763 764 zio_push_transform(zio, cbuf, csize, csize, zio_decompress); 765 } 766 767 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 768 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 769 770 return (ZIO_PIPELINE_CONTINUE); 771 } 772 773 static int 774 zio_write_bp_init(zio_t *zio) 775 { 776 zio_prop_t *zp = &zio->io_prop; 777 int compress = zp->zp_compress; 778 blkptr_t *bp = zio->io_bp; 779 void *cbuf; 780 uint64_t lsize = zio->io_size; 781 uint64_t csize = lsize; 782 uint64_t cbufsize = 0; 783 int pass = 1; 784 785 /* 786 * If our children haven't all reached the ready stage, 787 * wait for them and then repeat this pipeline stage. 788 */ 789 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 790 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 791 return (ZIO_PIPELINE_STOP); 792 793 if (!IO_IS_ALLOCATING(zio)) 794 return (ZIO_PIPELINE_CONTINUE); 795 796 ASSERT(compress != ZIO_COMPRESS_INHERIT); 797 798 if (bp->blk_birth == zio->io_txg) { 799 /* 800 * We're rewriting an existing block, which means we're 801 * working on behalf of spa_sync(). For spa_sync() to 802 * converge, it must eventually be the case that we don't 803 * have to allocate new blocks. But compression changes 804 * the blocksize, which forces a reallocate, and makes 805 * convergence take longer. Therefore, after the first 806 * few passes, stop compressing to ensure convergence. 807 */ 808 pass = spa_sync_pass(zio->io_spa); 809 ASSERT(pass > 1); 810 811 if (pass > SYNC_PASS_DONT_COMPRESS) 812 compress = ZIO_COMPRESS_OFF; 813 814 /* 815 * Only MOS (objset 0) data should need to be rewritten. 816 */ 817 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0); 818 819 /* Make sure someone doesn't change their mind on overwrites */ 820 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), 821 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); 822 } 823 824 if (compress != ZIO_COMPRESS_OFF) { 825 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 826 &cbuf, &csize, &cbufsize)) { 827 compress = ZIO_COMPRESS_OFF; 828 } else if (csize != 0) { 829 zio_push_transform(zio, cbuf, csize, cbufsize, NULL); 830 } 831 } 832 833 /* 834 * The final pass of spa_sync() must be all rewrites, but the first 835 * few passes offer a trade-off: allocating blocks defers convergence, 836 * but newly allocated blocks are sequential, so they can be written 837 * to disk faster. Therefore, we allow the first few passes of 838 * spa_sync() to allocate new blocks, but force rewrites after that. 839 * There should only be a handful of blocks after pass 1 in any case. 840 */ 841 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 842 pass > SYNC_PASS_REWRITE) { 843 ASSERT(csize != 0); 844 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 845 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 846 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 847 } else { 848 BP_ZERO(bp); 849 zio->io_pipeline = ZIO_WRITE_PIPELINE; 850 } 851 852 if (csize == 0) { 853 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 854 } else { 855 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 856 BP_SET_LSIZE(bp, lsize); 857 BP_SET_PSIZE(bp, csize); 858 BP_SET_COMPRESS(bp, compress); 859 BP_SET_CHECKSUM(bp, zp->zp_checksum); 860 BP_SET_TYPE(bp, zp->zp_type); 861 BP_SET_LEVEL(bp, zp->zp_level); 862 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 863 } 864 865 return (ZIO_PIPELINE_CONTINUE); 866 } 867 868 /* 869 * ========================================================================== 870 * Execute the I/O pipeline 871 * ========================================================================== 872 */ 873 874 static void 875 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) 876 { 877 zio_type_t t = zio->io_type; 878 879 /* 880 * If we're a config writer, the normal issue and interrupt threads 881 * may all be blocked waiting for the config lock. In this case, 882 * select the otherwise-unused taskq for ZIO_TYPE_NULL. 883 */ 884 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) 885 t = ZIO_TYPE_NULL; 886 887 /* 888 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 889 */ 890 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 891 t = ZIO_TYPE_NULL; 892 893 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], 894 (task_func_t *)zio_execute, zio, TQ_SLEEP); 895 } 896 897 static boolean_t 898 zio_taskq_member(zio_t *zio, enum zio_taskq_type q) 899 { 900 kthread_t *executor = zio->io_executor; 901 spa_t *spa = zio->io_spa; 902 903 for (zio_type_t t = 0; t < ZIO_TYPES; t++) 904 if (taskq_member(spa->spa_zio_taskq[t][q], executor)) 905 return (B_TRUE); 906 907 return (B_FALSE); 908 } 909 910 static int 911 zio_issue_async(zio_t *zio) 912 { 913 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 914 915 return (ZIO_PIPELINE_STOP); 916 } 917 918 void 919 zio_interrupt(zio_t *zio) 920 { 921 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); 922 } 923 924 /* 925 * Execute the I/O pipeline until one of the following occurs: 926 * (1) the I/O completes; (2) the pipeline stalls waiting for 927 * dependent child I/Os; (3) the I/O issues, so we're waiting 928 * for an I/O completion interrupt; (4) the I/O is delegated by 929 * vdev-level caching or aggregation; (5) the I/O is deferred 930 * due to vdev-level queueing; (6) the I/O is handed off to 931 * another thread. In all cases, the pipeline stops whenever 932 * there's no CPU work; it never burns a thread in cv_wait(). 933 * 934 * There's no locking on io_stage because there's no legitimate way 935 * for multiple threads to be attempting to process the same I/O. 936 */ 937 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; 938 939 void 940 zio_execute(zio_t *zio) 941 { 942 zio->io_executor = curthread; 943 944 while (zio->io_stage < ZIO_STAGE_DONE) { 945 uint32_t pipeline = zio->io_pipeline; 946 zio_stage_t stage = zio->io_stage; 947 int rv; 948 949 ASSERT(!MUTEX_HELD(&zio->io_lock)); 950 951 while (((1U << ++stage) & pipeline) == 0) 952 continue; 953 954 ASSERT(stage <= ZIO_STAGE_DONE); 955 ASSERT(zio->io_stall == NULL); 956 957 /* 958 * If we are in interrupt context and this pipeline stage 959 * will grab a config lock that is held across I/O, 960 * issue async to avoid deadlock. 961 */ 962 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && 963 zio->io_vd == NULL && 964 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 965 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 966 return; 967 } 968 969 zio->io_stage = stage; 970 rv = zio_pipeline[stage](zio); 971 972 if (rv == ZIO_PIPELINE_STOP) 973 return; 974 975 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 976 } 977 } 978 979 /* 980 * ========================================================================== 981 * Initiate I/O, either sync or async 982 * ========================================================================== 983 */ 984 int 985 zio_wait(zio_t *zio) 986 { 987 int error; 988 989 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 990 ASSERT(zio->io_executor == NULL); 991 992 zio->io_waiter = curthread; 993 994 zio_execute(zio); 995 996 mutex_enter(&zio->io_lock); 997 while (zio->io_executor != NULL) 998 cv_wait(&zio->io_cv, &zio->io_lock); 999 mutex_exit(&zio->io_lock); 1000 1001 error = zio->io_error; 1002 zio_destroy(zio); 1003 1004 return (error); 1005 } 1006 1007 void 1008 zio_nowait(zio_t *zio) 1009 { 1010 ASSERT(zio->io_executor == NULL); 1011 1012 if (zio->io_parent == NULL && zio->io_child_type == ZIO_CHILD_LOGICAL) { 1013 /* 1014 * This is a logical async I/O with no parent to wait for it. 1015 * Attach it to the pool's global async root zio so that 1016 * spa_unload() has a way of waiting for async I/O to finish. 1017 */ 1018 spa_t *spa = zio->io_spa; 1019 zio->io_async_root = B_TRUE; 1020 mutex_enter(&spa->spa_async_root_lock); 1021 spa->spa_async_root_count++; 1022 mutex_exit(&spa->spa_async_root_lock); 1023 } 1024 1025 zio_execute(zio); 1026 } 1027 1028 /* 1029 * ========================================================================== 1030 * Reexecute or suspend/resume failed I/O 1031 * ========================================================================== 1032 */ 1033 1034 static void 1035 zio_reexecute(zio_t *pio) 1036 { 1037 zio_t *zio, *zio_next; 1038 1039 pio->io_flags = pio->io_orig_flags; 1040 pio->io_stage = pio->io_orig_stage; 1041 pio->io_pipeline = pio->io_orig_pipeline; 1042 pio->io_reexecute = 0; 1043 pio->io_error = 0; 1044 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1045 pio->io_child_error[c] = 0; 1046 1047 if (IO_IS_ALLOCATING(pio)) { 1048 /* 1049 * Remember the failed bp so that the io_ready() callback 1050 * can update its accounting upon reexecution. The block 1051 * was already freed in zio_done(); we indicate this with 1052 * a fill count of -1 so that zio_free() knows to skip it. 1053 */ 1054 blkptr_t *bp = pio->io_bp; 1055 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); 1056 bp->blk_fill = BLK_FILL_ALREADY_FREED; 1057 pio->io_bp_orig = *bp; 1058 BP_ZERO(bp); 1059 } 1060 1061 /* 1062 * As we reexecute pio's children, new children could be created. 1063 * New children go to the head of the io_child list, however, 1064 * so we will (correctly) not reexecute them. The key is that 1065 * the remainder of the io_child list, from 'zio_next' onward, 1066 * cannot be affected by any side effects of reexecuting 'zio'. 1067 */ 1068 for (zio = pio->io_child; zio != NULL; zio = zio_next) { 1069 zio_next = zio->io_sibling_next; 1070 mutex_enter(&pio->io_lock); 1071 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++; 1072 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++; 1073 mutex_exit(&pio->io_lock); 1074 zio_reexecute(zio); 1075 } 1076 1077 /* 1078 * Now that all children have been reexecuted, execute the parent. 1079 */ 1080 zio_execute(pio); 1081 } 1082 1083 void 1084 zio_suspend(spa_t *spa, zio_t *zio) 1085 { 1086 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1087 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1088 "failure and the failure mode property for this pool " 1089 "is set to panic.", spa_name(spa)); 1090 1091 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1092 1093 mutex_enter(&spa->spa_suspend_lock); 1094 1095 if (spa->spa_suspend_zio_root == NULL) 1096 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0); 1097 1098 spa->spa_suspended = B_TRUE; 1099 1100 if (zio != NULL) { 1101 ASSERT(zio != spa->spa_suspend_zio_root); 1102 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1103 ASSERT(zio->io_parent == NULL); 1104 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1105 zio_add_child(spa->spa_suspend_zio_root, zio); 1106 } 1107 1108 mutex_exit(&spa->spa_suspend_lock); 1109 } 1110 1111 void 1112 zio_resume(spa_t *spa) 1113 { 1114 zio_t *pio, *zio; 1115 1116 /* 1117 * Reexecute all previously suspended i/o. 1118 */ 1119 mutex_enter(&spa->spa_suspend_lock); 1120 spa->spa_suspended = B_FALSE; 1121 cv_broadcast(&spa->spa_suspend_cv); 1122 pio = spa->spa_suspend_zio_root; 1123 spa->spa_suspend_zio_root = NULL; 1124 mutex_exit(&spa->spa_suspend_lock); 1125 1126 if (pio == NULL) 1127 return; 1128 1129 while ((zio = pio->io_child) != NULL) { 1130 zio_remove_child(pio, zio); 1131 zio->io_parent = NULL; 1132 zio_reexecute(zio); 1133 } 1134 1135 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0); 1136 1137 (void) zio_wait(pio); 1138 } 1139 1140 void 1141 zio_resume_wait(spa_t *spa) 1142 { 1143 mutex_enter(&spa->spa_suspend_lock); 1144 while (spa_suspended(spa)) 1145 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1146 mutex_exit(&spa->spa_suspend_lock); 1147 } 1148 1149 /* 1150 * ========================================================================== 1151 * Gang blocks. 1152 * 1153 * A gang block is a collection of small blocks that looks to the DMU 1154 * like one large block. When zio_dva_allocate() cannot find a block 1155 * of the requested size, due to either severe fragmentation or the pool 1156 * being nearly full, it calls zio_write_gang_block() to construct the 1157 * block from smaller fragments. 1158 * 1159 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1160 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1161 * an indirect block: it's an array of block pointers. It consumes 1162 * only one sector and hence is allocatable regardless of fragmentation. 1163 * The gang header's bps point to its gang members, which hold the data. 1164 * 1165 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1166 * as the verifier to ensure uniqueness of the SHA256 checksum. 1167 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1168 * not the gang header. This ensures that data block signatures (needed for 1169 * deduplication) are independent of how the block is physically stored. 1170 * 1171 * Gang blocks can be nested: a gang member may itself be a gang block. 1172 * Thus every gang block is a tree in which root and all interior nodes are 1173 * gang headers, and the leaves are normal blocks that contain user data. 1174 * The root of the gang tree is called the gang leader. 1175 * 1176 * To perform any operation (read, rewrite, free, claim) on a gang block, 1177 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1178 * in the io_gang_tree field of the original logical i/o by recursively 1179 * reading the gang leader and all gang headers below it. This yields 1180 * an in-core tree containing the contents of every gang header and the 1181 * bps for every constituent of the gang block. 1182 * 1183 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1184 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1185 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1186 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1187 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1188 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1189 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1190 * of the gang header plus zio_checksum_compute() of the data to update the 1191 * gang header's blk_cksum as described above. 1192 * 1193 * The two-phase assemble/issue model solves the problem of partial failure -- 1194 * what if you'd freed part of a gang block but then couldn't read the 1195 * gang header for another part? Assembling the entire gang tree first 1196 * ensures that all the necessary gang header I/O has succeeded before 1197 * starting the actual work of free, claim, or write. Once the gang tree 1198 * is assembled, free and claim are in-memory operations that cannot fail. 1199 * 1200 * In the event that a gang write fails, zio_dva_unallocate() walks the 1201 * gang tree to immediately free (i.e. insert back into the space map) 1202 * everything we've allocated. This ensures that we don't get ENOSPC 1203 * errors during repeated suspend/resume cycles due to a flaky device. 1204 * 1205 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1206 * the gang tree, we won't modify the block, so we can safely defer the free 1207 * (knowing that the block is still intact). If we *can* assemble the gang 1208 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1209 * each constituent bp and we can allocate a new block on the next sync pass. 1210 * 1211 * In all cases, the gang tree allows complete recovery from partial failure. 1212 * ========================================================================== 1213 */ 1214 1215 static zio_t * 1216 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1217 { 1218 if (gn != NULL) 1219 return (pio); 1220 1221 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1222 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1223 &pio->io_bookmark)); 1224 } 1225 1226 zio_t * 1227 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1228 { 1229 zio_t *zio; 1230 1231 if (gn != NULL) { 1232 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1233 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1234 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1235 /* 1236 * As we rewrite each gang header, the pipeline will compute 1237 * a new gang block header checksum for it; but no one will 1238 * compute a new data checksum, so we do that here. The one 1239 * exception is the gang leader: the pipeline already computed 1240 * its data checksum because that stage precedes gang assembly. 1241 * (Presently, nothing actually uses interior data checksums; 1242 * this is just good hygiene.) 1243 */ 1244 if (gn != pio->io_logical->io_gang_tree) { 1245 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1246 data, BP_GET_PSIZE(bp)); 1247 } 1248 } else { 1249 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1250 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1251 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1252 } 1253 1254 return (zio); 1255 } 1256 1257 /* ARGSUSED */ 1258 zio_t * 1259 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1260 { 1261 return (zio_free(pio, pio->io_spa, pio->io_txg, bp, 1262 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1263 } 1264 1265 /* ARGSUSED */ 1266 zio_t * 1267 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1268 { 1269 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1270 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1271 } 1272 1273 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1274 NULL, 1275 zio_read_gang, 1276 zio_rewrite_gang, 1277 zio_free_gang, 1278 zio_claim_gang, 1279 NULL 1280 }; 1281 1282 static void zio_gang_tree_assemble_done(zio_t *zio); 1283 1284 static zio_gang_node_t * 1285 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1286 { 1287 zio_gang_node_t *gn; 1288 1289 ASSERT(*gnpp == NULL); 1290 1291 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1292 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1293 *gnpp = gn; 1294 1295 return (gn); 1296 } 1297 1298 static void 1299 zio_gang_node_free(zio_gang_node_t **gnpp) 1300 { 1301 zio_gang_node_t *gn = *gnpp; 1302 1303 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1304 ASSERT(gn->gn_child[g] == NULL); 1305 1306 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1307 kmem_free(gn, sizeof (*gn)); 1308 *gnpp = NULL; 1309 } 1310 1311 static void 1312 zio_gang_tree_free(zio_gang_node_t **gnpp) 1313 { 1314 zio_gang_node_t *gn = *gnpp; 1315 1316 if (gn == NULL) 1317 return; 1318 1319 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1320 zio_gang_tree_free(&gn->gn_child[g]); 1321 1322 zio_gang_node_free(gnpp); 1323 } 1324 1325 static void 1326 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp) 1327 { 1328 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1329 1330 ASSERT(lio->io_logical == lio); 1331 ASSERT(BP_IS_GANG(bp)); 1332 1333 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh, 1334 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1335 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark)); 1336 } 1337 1338 static void 1339 zio_gang_tree_assemble_done(zio_t *zio) 1340 { 1341 zio_t *lio = zio->io_logical; 1342 zio_gang_node_t *gn = zio->io_private; 1343 blkptr_t *bp = zio->io_bp; 1344 1345 ASSERT(zio->io_parent == lio); 1346 ASSERT(zio->io_child == NULL); 1347 1348 if (zio->io_error) 1349 return; 1350 1351 if (BP_SHOULD_BYTESWAP(bp)) 1352 byteswap_uint64_array(zio->io_data, zio->io_size); 1353 1354 ASSERT(zio->io_data == gn->gn_gbh); 1355 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1356 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1357 1358 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1359 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1360 if (!BP_IS_GANG(gbp)) 1361 continue; 1362 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]); 1363 } 1364 } 1365 1366 static void 1367 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1368 { 1369 zio_t *lio = pio->io_logical; 1370 zio_t *zio; 1371 1372 ASSERT(BP_IS_GANG(bp) == !!gn); 1373 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp)); 1374 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree); 1375 1376 /* 1377 * If you're a gang header, your data is in gn->gn_gbh. 1378 * If you're a gang member, your data is in 'data' and gn == NULL. 1379 */ 1380 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data); 1381 1382 if (gn != NULL) { 1383 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); 1384 1385 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1386 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1387 if (BP_IS_HOLE(gbp)) 1388 continue; 1389 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1390 data = (char *)data + BP_GET_PSIZE(gbp); 1391 } 1392 } 1393 1394 if (gn == lio->io_gang_tree) 1395 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data); 1396 1397 if (zio != pio) 1398 zio_nowait(zio); 1399 } 1400 1401 static int 1402 zio_gang_assemble(zio_t *zio) 1403 { 1404 blkptr_t *bp = zio->io_bp; 1405 1406 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical); 1407 1408 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1409 1410 return (ZIO_PIPELINE_CONTINUE); 1411 } 1412 1413 static int 1414 zio_gang_issue(zio_t *zio) 1415 { 1416 zio_t *lio = zio->io_logical; 1417 blkptr_t *bp = zio->io_bp; 1418 1419 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1420 return (ZIO_PIPELINE_STOP); 1421 1422 ASSERT(BP_IS_GANG(bp) && zio == lio); 1423 1424 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1425 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data); 1426 else 1427 zio_gang_tree_free(&lio->io_gang_tree); 1428 1429 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1430 1431 return (ZIO_PIPELINE_CONTINUE); 1432 } 1433 1434 static void 1435 zio_write_gang_member_ready(zio_t *zio) 1436 { 1437 zio_t *pio = zio->io_parent; 1438 zio_t *lio = zio->io_logical; 1439 dva_t *cdva = zio->io_bp->blk_dva; 1440 dva_t *pdva = pio->io_bp->blk_dva; 1441 uint64_t asize; 1442 1443 if (BP_IS_HOLE(zio->io_bp)) 1444 return; 1445 1446 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1447 1448 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1449 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas); 1450 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1451 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1452 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1453 1454 mutex_enter(&pio->io_lock); 1455 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1456 ASSERT(DVA_GET_GANG(&pdva[d])); 1457 asize = DVA_GET_ASIZE(&pdva[d]); 1458 asize += DVA_GET_ASIZE(&cdva[d]); 1459 DVA_SET_ASIZE(&pdva[d], asize); 1460 } 1461 mutex_exit(&pio->io_lock); 1462 } 1463 1464 static int 1465 zio_write_gang_block(zio_t *pio) 1466 { 1467 spa_t *spa = pio->io_spa; 1468 blkptr_t *bp = pio->io_bp; 1469 zio_t *lio = pio->io_logical; 1470 zio_t *zio; 1471 zio_gang_node_t *gn, **gnpp; 1472 zio_gbh_phys_t *gbh; 1473 uint64_t txg = pio->io_txg; 1474 uint64_t resid = pio->io_size; 1475 uint64_t lsize; 1476 int ndvas = lio->io_prop.zp_ndvas; 1477 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1478 zio_prop_t zp; 1479 int error; 1480 1481 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, 1482 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp, 1483 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1484 if (error) { 1485 pio->io_error = error; 1486 return (ZIO_PIPELINE_CONTINUE); 1487 } 1488 1489 if (pio == lio) { 1490 gnpp = &lio->io_gang_tree; 1491 } else { 1492 gnpp = pio->io_private; 1493 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1494 } 1495 1496 gn = zio_gang_node_alloc(gnpp); 1497 gbh = gn->gn_gbh; 1498 bzero(gbh, SPA_GANGBLOCKSIZE); 1499 1500 /* 1501 * Create the gang header. 1502 */ 1503 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1504 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1505 1506 /* 1507 * Create and nowait the gang children. 1508 */ 1509 for (int g = 0; resid != 0; resid -= lsize, g++) { 1510 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1511 SPA_MINBLOCKSIZE); 1512 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1513 1514 zp.zp_checksum = lio->io_prop.zp_checksum; 1515 zp.zp_compress = ZIO_COMPRESS_OFF; 1516 zp.zp_type = DMU_OT_NONE; 1517 zp.zp_level = 0; 1518 zp.zp_ndvas = lio->io_prop.zp_ndvas; 1519 1520 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1521 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1522 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1523 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1524 &pio->io_bookmark)); 1525 } 1526 1527 /* 1528 * Set pio's pipeline to just wait for zio to finish. 1529 */ 1530 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1531 1532 zio_nowait(zio); 1533 1534 return (ZIO_PIPELINE_CONTINUE); 1535 } 1536 1537 /* 1538 * ========================================================================== 1539 * Allocate and free blocks 1540 * ========================================================================== 1541 */ 1542 1543 static int 1544 zio_dva_allocate(zio_t *zio) 1545 { 1546 spa_t *spa = zio->io_spa; 1547 metaslab_class_t *mc = spa->spa_normal_class; 1548 blkptr_t *bp = zio->io_bp; 1549 int error; 1550 1551 ASSERT(BP_IS_HOLE(bp)); 1552 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1553 ASSERT3U(zio->io_prop.zp_ndvas, >, 0); 1554 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); 1555 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1556 1557 error = metaslab_alloc(spa, mc, zio->io_size, bp, 1558 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); 1559 1560 if (error) { 1561 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 1562 return (zio_write_gang_block(zio)); 1563 zio->io_error = error; 1564 } 1565 1566 return (ZIO_PIPELINE_CONTINUE); 1567 } 1568 1569 static int 1570 zio_dva_free(zio_t *zio) 1571 { 1572 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 1573 1574 return (ZIO_PIPELINE_CONTINUE); 1575 } 1576 1577 static int 1578 zio_dva_claim(zio_t *zio) 1579 { 1580 int error; 1581 1582 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1583 if (error) 1584 zio->io_error = error; 1585 1586 return (ZIO_PIPELINE_CONTINUE); 1587 } 1588 1589 /* 1590 * Undo an allocation. This is used by zio_done() when an I/O fails 1591 * and we want to give back the block we just allocated. 1592 * This handles both normal blocks and gang blocks. 1593 */ 1594 static void 1595 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 1596 { 1597 spa_t *spa = zio->io_spa; 1598 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); 1599 1600 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 1601 1602 if (zio->io_bp == bp && !now) { 1603 /* 1604 * This is a rewrite for sync-to-convergence. 1605 * We can't do a metaslab_free(NOW) because bp wasn't allocated 1606 * during this sync pass, which means that metaslab_sync() 1607 * already committed the allocation. 1608 */ 1609 ASSERT(DVA_EQUAL(BP_IDENTITY(bp), 1610 BP_IDENTITY(&zio->io_bp_orig))); 1611 ASSERT(spa_sync_pass(spa) > 1); 1612 1613 if (BP_IS_GANG(bp) && gn == NULL) { 1614 /* 1615 * This is a gang leader whose gang header(s) we 1616 * couldn't read now, so defer the free until later. 1617 * The block should still be intact because without 1618 * the headers, we'd never even start the rewrite. 1619 */ 1620 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 1621 return; 1622 } 1623 } 1624 1625 if (!BP_IS_HOLE(bp)) 1626 metaslab_free(spa, bp, bp->blk_birth, now); 1627 1628 if (gn != NULL) { 1629 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1630 zio_dva_unallocate(zio, gn->gn_child[g], 1631 &gn->gn_gbh->zg_blkptr[g]); 1632 } 1633 } 1634 } 1635 1636 /* 1637 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1638 */ 1639 int 1640 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1641 uint64_t txg) 1642 { 1643 int error; 1644 1645 error = metaslab_alloc(spa, spa->spa_log_class, size, 1646 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1647 1648 if (error) 1649 error = metaslab_alloc(spa, spa->spa_normal_class, size, 1650 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); 1651 1652 if (error == 0) { 1653 BP_SET_LSIZE(new_bp, size); 1654 BP_SET_PSIZE(new_bp, size); 1655 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1656 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1657 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1658 BP_SET_LEVEL(new_bp, 0); 1659 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1660 } 1661 1662 return (error); 1663 } 1664 1665 /* 1666 * Free an intent log block. We know it can't be a gang block, so there's 1667 * nothing to do except metaslab_free() it. 1668 */ 1669 void 1670 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1671 { 1672 ASSERT(!BP_IS_GANG(bp)); 1673 1674 metaslab_free(spa, bp, txg, B_FALSE); 1675 } 1676 1677 /* 1678 * ========================================================================== 1679 * Read and write to physical devices 1680 * ========================================================================== 1681 */ 1682 1683 static void 1684 zio_vdev_io_probe_done(zio_t *zio) 1685 { 1686 zio_t *dio; 1687 vdev_t *vd = zio->io_private; 1688 1689 mutex_enter(&vd->vdev_probe_lock); 1690 ASSERT(vd->vdev_probe_zio == zio); 1691 vd->vdev_probe_zio = NULL; 1692 mutex_exit(&vd->vdev_probe_lock); 1693 1694 while ((dio = zio->io_delegate_list) != NULL) { 1695 zio->io_delegate_list = dio->io_delegate_next; 1696 dio->io_delegate_next = NULL; 1697 if (!vdev_accessible(vd, dio)) 1698 dio->io_error = ENXIO; 1699 zio_execute(dio); 1700 } 1701 } 1702 1703 /* 1704 * Probe the device to determine whether I/O failure is specific to this 1705 * zio (e.g. a bad sector) or affects the entire vdev (e.g. unplugged). 1706 */ 1707 static int 1708 zio_vdev_io_probe(zio_t *zio) 1709 { 1710 vdev_t *vd = zio->io_vd; 1711 zio_t *pio = NULL; 1712 boolean_t created_pio = B_FALSE; 1713 1714 /* 1715 * Don't probe the probe. 1716 */ 1717 if (zio->io_flags & ZIO_FLAG_PROBE) 1718 return (ZIO_PIPELINE_CONTINUE); 1719 1720 /* 1721 * To prevent 'probe storms' when a device fails, we create 1722 * just one probe i/o at a time. All zios that want to probe 1723 * this vdev will join the probe zio's io_delegate_list. 1724 */ 1725 mutex_enter(&vd->vdev_probe_lock); 1726 1727 if ((pio = vd->vdev_probe_zio) == NULL) { 1728 vd->vdev_probe_zio = pio = zio_root(zio->io_spa, 1729 zio_vdev_io_probe_done, vd, ZIO_FLAG_CANFAIL); 1730 created_pio = B_TRUE; 1731 vd->vdev_probe_wanted = B_TRUE; 1732 spa_async_request(zio->io_spa, SPA_ASYNC_PROBE); 1733 } 1734 1735 zio->io_delegate_next = pio->io_delegate_list; 1736 pio->io_delegate_list = zio; 1737 1738 mutex_exit(&vd->vdev_probe_lock); 1739 1740 if (created_pio) { 1741 zio_nowait(vdev_probe(vd, pio)); 1742 zio_nowait(pio); 1743 } 1744 1745 return (ZIO_PIPELINE_STOP); 1746 } 1747 1748 static int 1749 zio_vdev_io_start(zio_t *zio) 1750 { 1751 vdev_t *vd = zio->io_vd; 1752 uint64_t align; 1753 spa_t *spa = zio->io_spa; 1754 1755 ASSERT(zio->io_error == 0); 1756 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 1757 1758 if (vd == NULL) { 1759 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1760 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 1761 1762 /* 1763 * The mirror_ops handle multiple DVAs in a single BP. 1764 */ 1765 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1766 } 1767 1768 align = 1ULL << vd->vdev_top->vdev_ashift; 1769 1770 if (P2PHASE(zio->io_size, align) != 0) { 1771 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1772 char *abuf = zio_buf_alloc(asize); 1773 ASSERT(vd == vd->vdev_top); 1774 if (zio->io_type == ZIO_TYPE_WRITE) { 1775 bcopy(zio->io_data, abuf, zio->io_size); 1776 bzero(abuf + zio->io_size, asize - zio->io_size); 1777 } 1778 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 1779 } 1780 1781 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1782 ASSERT(P2PHASE(zio->io_size, align) == 0); 1783 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1784 1785 if (vd->vdev_ops->vdev_op_leaf && 1786 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 1787 1788 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 1789 return (ZIO_PIPELINE_STOP); 1790 1791 if ((zio = vdev_queue_io(zio)) == NULL) 1792 return (ZIO_PIPELINE_STOP); 1793 1794 if (!vdev_accessible(vd, zio)) { 1795 zio->io_error = ENXIO; 1796 zio_interrupt(zio); 1797 return (ZIO_PIPELINE_STOP); 1798 } 1799 1800 } 1801 1802 return (vd->vdev_ops->vdev_op_io_start(zio)); 1803 } 1804 1805 static int 1806 zio_vdev_io_done(zio_t *zio) 1807 { 1808 vdev_t *vd = zio->io_vd; 1809 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 1810 boolean_t unexpected_error = B_FALSE; 1811 1812 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1813 return (ZIO_PIPELINE_STOP); 1814 1815 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 1816 1817 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 1818 1819 vdev_queue_io_done(zio); 1820 1821 if (zio->io_type == ZIO_TYPE_WRITE) 1822 vdev_cache_write(zio); 1823 1824 if (zio_injection_enabled && zio->io_error == 0) 1825 zio->io_error = zio_handle_device_injection(vd, EIO); 1826 1827 if (zio_injection_enabled && zio->io_error == 0) 1828 zio->io_error = zio_handle_label_injection(zio, EIO); 1829 1830 if (zio->io_error) { 1831 if (!vdev_accessible(vd, zio)) { 1832 zio->io_error = ENXIO; 1833 } else { 1834 unexpected_error = B_TRUE; 1835 } 1836 } 1837 } 1838 1839 ops->vdev_op_io_done(zio); 1840 1841 if (unexpected_error) 1842 return (zio_vdev_io_probe(zio)); 1843 1844 return (ZIO_PIPELINE_CONTINUE); 1845 } 1846 1847 static int 1848 zio_vdev_io_assess(zio_t *zio) 1849 { 1850 vdev_t *vd = zio->io_vd; 1851 1852 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 1853 return (ZIO_PIPELINE_STOP); 1854 1855 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 1856 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 1857 1858 if (zio->io_vsd != NULL) { 1859 zio->io_vsd_free(zio); 1860 zio->io_vsd = NULL; 1861 } 1862 1863 if (zio_injection_enabled && zio->io_error == 0) 1864 zio->io_error = zio_handle_fault_injection(zio, EIO); 1865 1866 /* 1867 * If the I/O failed, determine whether we should attempt to retry it. 1868 */ 1869 if (zio->io_error && vd == NULL && 1870 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 1871 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 1872 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 1873 zio->io_error = 0; 1874 zio->io_flags |= ZIO_FLAG_IO_RETRY | 1875 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 1876 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1877 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); 1878 return (ZIO_PIPELINE_STOP); 1879 } 1880 1881 /* 1882 * If we got an error on a leaf device, convert it to ENXIO 1883 * if the device is not accessible at all. 1884 */ 1885 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 1886 !vdev_accessible(vd, zio)) 1887 zio->io_error = ENXIO; 1888 1889 /* 1890 * If we can't write to an interior vdev (mirror or RAID-Z), 1891 * set vdev_cant_write so that we stop trying to allocate from it. 1892 */ 1893 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 1894 vd != NULL && !vd->vdev_ops->vdev_op_leaf) 1895 vd->vdev_cant_write = B_TRUE; 1896 1897 if (zio->io_error) 1898 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1899 1900 return (ZIO_PIPELINE_CONTINUE); 1901 } 1902 1903 void 1904 zio_vdev_io_reissue(zio_t *zio) 1905 { 1906 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1907 ASSERT(zio->io_error == 0); 1908 1909 zio->io_stage--; 1910 } 1911 1912 void 1913 zio_vdev_io_redone(zio_t *zio) 1914 { 1915 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1916 1917 zio->io_stage--; 1918 } 1919 1920 void 1921 zio_vdev_io_bypass(zio_t *zio) 1922 { 1923 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1924 ASSERT(zio->io_error == 0); 1925 1926 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1927 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1928 } 1929 1930 /* 1931 * ========================================================================== 1932 * Generate and verify checksums 1933 * ========================================================================== 1934 */ 1935 static int 1936 zio_checksum_generate(zio_t *zio) 1937 { 1938 blkptr_t *bp = zio->io_bp; 1939 enum zio_checksum checksum; 1940 1941 if (bp == NULL) { 1942 /* 1943 * This is zio_write_phys(). 1944 * We're either generating a label checksum, or none at all. 1945 */ 1946 checksum = zio->io_prop.zp_checksum; 1947 1948 if (checksum == ZIO_CHECKSUM_OFF) 1949 return (ZIO_PIPELINE_CONTINUE); 1950 1951 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 1952 } else { 1953 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 1954 ASSERT(!IO_IS_ALLOCATING(zio)); 1955 checksum = ZIO_CHECKSUM_GANG_HEADER; 1956 } else { 1957 checksum = BP_GET_CHECKSUM(bp); 1958 } 1959 } 1960 1961 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 1962 1963 return (ZIO_PIPELINE_CONTINUE); 1964 } 1965 1966 static int 1967 zio_checksum_verify(zio_t *zio) 1968 { 1969 blkptr_t *bp = zio->io_bp; 1970 int error; 1971 1972 if (bp == NULL) { 1973 /* 1974 * This is zio_read_phys(). 1975 * We're either verifying a label checksum, or nothing at all. 1976 */ 1977 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 1978 return (ZIO_PIPELINE_CONTINUE); 1979 1980 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 1981 } 1982 1983 if ((error = zio_checksum_error(zio)) != 0) { 1984 zio->io_error = error; 1985 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 1986 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1987 zio->io_spa, zio->io_vd, zio, 0, 0); 1988 } 1989 } 1990 1991 return (ZIO_PIPELINE_CONTINUE); 1992 } 1993 1994 /* 1995 * Called by RAID-Z to ensure we don't compute the checksum twice. 1996 */ 1997 void 1998 zio_checksum_verified(zio_t *zio) 1999 { 2000 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 2001 } 2002 2003 /* 2004 * ========================================================================== 2005 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2006 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2007 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2008 * indicate errors that are specific to one I/O, and most likely permanent. 2009 * Any other error is presumed to be worse because we weren't expecting it. 2010 * ========================================================================== 2011 */ 2012 int 2013 zio_worst_error(int e1, int e2) 2014 { 2015 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2016 int r1, r2; 2017 2018 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2019 if (e1 == zio_error_rank[r1]) 2020 break; 2021 2022 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2023 if (e2 == zio_error_rank[r2]) 2024 break; 2025 2026 return (r1 > r2 ? e1 : e2); 2027 } 2028 2029 /* 2030 * ========================================================================== 2031 * I/O completion 2032 * ========================================================================== 2033 */ 2034 static int 2035 zio_ready(zio_t *zio) 2036 { 2037 blkptr_t *bp = zio->io_bp; 2038 zio_t *pio = zio->io_parent; 2039 2040 if (zio->io_ready) { 2041 if (BP_IS_GANG(bp) && 2042 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) 2043 return (ZIO_PIPELINE_STOP); 2044 2045 ASSERT(IO_IS_ALLOCATING(zio)); 2046 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2047 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2048 2049 zio->io_ready(zio); 2050 } 2051 2052 if (bp != NULL && bp != &zio->io_bp_copy) 2053 zio->io_bp_copy = *bp; 2054 2055 if (zio->io_error) 2056 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2057 2058 if (pio != NULL) 2059 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2060 2061 return (ZIO_PIPELINE_CONTINUE); 2062 } 2063 2064 static int 2065 zio_done(zio_t *zio) 2066 { 2067 spa_t *spa = zio->io_spa; 2068 zio_t *pio = zio->io_parent; 2069 zio_t *lio = zio->io_logical; 2070 blkptr_t *bp = zio->io_bp; 2071 vdev_t *vd = zio->io_vd; 2072 uint64_t psize = zio->io_size; 2073 2074 /* 2075 * If our of children haven't all completed, 2076 * wait for them and then repeat this pipeline stage. 2077 */ 2078 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2079 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2080 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2081 return (ZIO_PIPELINE_STOP); 2082 2083 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2084 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2085 ASSERT(zio->io_children[c][w] == 0); 2086 2087 if (bp != NULL) { 2088 ASSERT(bp->blk_pad[0] == 0); 2089 ASSERT(bp->blk_pad[1] == 0); 2090 ASSERT(bp->blk_pad[2] == 0); 2091 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2092 (pio != NULL && bp == pio->io_bp)); 2093 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2094 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2095 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2096 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); 2097 ASSERT(BP_COUNT_GANG(bp) == 0 || 2098 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2099 } 2100 } 2101 2102 /* 2103 * If there were child vdev or gang errors, they apply to us now. 2104 */ 2105 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2106 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2107 2108 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2109 2110 vdev_stat_update(zio, psize); 2111 2112 if (zio->io_error) { 2113 /* 2114 * If this I/O is attached to a particular vdev, 2115 * generate an error message describing the I/O failure 2116 * at the block level. We ignore these errors if the 2117 * device is currently unavailable. 2118 */ 2119 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2120 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2121 2122 if ((zio->io_error == EIO || 2123 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { 2124 /* 2125 * For logical I/O requests, tell the SPA to log the 2126 * error and generate a logical data ereport. 2127 */ 2128 spa_log_error(spa, zio); 2129 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2130 0, 0); 2131 } 2132 } 2133 2134 if (zio->io_error && zio == lio) { 2135 /* 2136 * Determine whether zio should be reexecuted. This will 2137 * propagate all the way to the root via zio_notify_parent(). 2138 */ 2139 ASSERT(vd == NULL && bp != NULL); 2140 2141 if (IO_IS_ALLOCATING(zio)) 2142 if (zio->io_error != ENOSPC) 2143 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2144 else 2145 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2146 2147 if ((zio->io_type == ZIO_TYPE_READ || 2148 zio->io_type == ZIO_TYPE_FREE) && 2149 zio->io_error == ENXIO && 2150 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2151 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2152 2153 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2154 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2155 } 2156 2157 /* 2158 * If there were logical child errors, they apply to us now. 2159 * We defer this until now to avoid conflating logical child 2160 * errors with errors that happened to the zio itself when 2161 * updating vdev stats and reporting FMA events above. 2162 */ 2163 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2164 2165 if (zio->io_reexecute) { 2166 /* 2167 * This is a logical I/O that wants to reexecute. 2168 * 2169 * Reexecute is top-down. When an i/o fails, if it's not 2170 * the root, it simply notifies its parent and sticks around. 2171 * The parent, seeing that it still has children in zio_done(), 2172 * does the same. This percolates all the way up to the root. 2173 * The root i/o will reexecute or suspend the entire tree. 2174 * 2175 * This approach ensures that zio_reexecute() honors 2176 * all the original i/o dependency relationships, e.g. 2177 * parents not executing until children are ready. 2178 */ 2179 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2180 2181 if (IO_IS_ALLOCATING(zio)) 2182 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2183 2184 zio_gang_tree_free(&zio->io_gang_tree); 2185 2186 if (pio != NULL) { 2187 /* 2188 * We're not a root i/o, so there's nothing to do 2189 * but notify our parent. Don't propagate errors 2190 * upward since we haven't permanently failed yet. 2191 */ 2192 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 2193 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2194 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 2195 /* 2196 * We'd fail again if we reexecuted now, so suspend 2197 * until conditions improve (e.g. device comes online). 2198 */ 2199 zio_suspend(spa, zio); 2200 } else { 2201 /* 2202 * Reexecution is potentially a huge amount of work. 2203 * Hand it off to the otherwise-unused claim taskq. 2204 */ 2205 (void) taskq_dispatch( 2206 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], 2207 (task_func_t *)zio_reexecute, zio, TQ_SLEEP); 2208 } 2209 return (ZIO_PIPELINE_STOP); 2210 } 2211 2212 ASSERT(zio->io_child == NULL); 2213 ASSERT(zio->io_reexecute == 0); 2214 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 2215 2216 if (zio->io_done) 2217 zio->io_done(zio); 2218 2219 zio_gang_tree_free(&zio->io_gang_tree); 2220 2221 ASSERT(zio->io_delegate_list == NULL); 2222 ASSERT(zio->io_delegate_next == NULL); 2223 2224 if (pio != NULL) { 2225 zio_remove_child(pio, zio); 2226 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 2227 } 2228 2229 if (zio->io_waiter != NULL) { 2230 mutex_enter(&zio->io_lock); 2231 zio->io_executor = NULL; 2232 cv_broadcast(&zio->io_cv); 2233 mutex_exit(&zio->io_lock); 2234 } else { 2235 zio_destroy(zio); 2236 } 2237 2238 return (ZIO_PIPELINE_STOP); 2239 } 2240 2241 /* 2242 * ========================================================================== 2243 * I/O pipeline definition 2244 * ========================================================================== 2245 */ 2246 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { 2247 NULL, 2248 zio_issue_async, 2249 zio_read_bp_init, 2250 zio_write_bp_init, 2251 zio_checksum_generate, 2252 zio_gang_assemble, 2253 zio_gang_issue, 2254 zio_dva_allocate, 2255 zio_dva_free, 2256 zio_dva_claim, 2257 zio_ready, 2258 zio_vdev_io_start, 2259 zio_vdev_io_done, 2260 zio_vdev_io_assess, 2261 zio_checksum_verify, 2262 zio_done 2263 }; 2264