xref: /titanic_52/usr/src/uts/common/fs/zfs/zio.c (revision b0f673c4626e4cb1db7785287eaeed2731dfefe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 #include <sys/zfeature.h>
40 
41 /*
42  * ==========================================================================
43  * I/O type descriptions
44  * ==========================================================================
45  */
46 const char *zio_type_name[ZIO_TYPES] = {
47 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
48 	"zio_ioctl"
49 };
50 
51 /*
52  * ==========================================================================
53  * I/O kmem caches
54  * ==========================================================================
55  */
56 kmem_cache_t *zio_cache;
57 kmem_cache_t *zio_link_cache;
58 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
59 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
60 
61 #ifdef _KERNEL
62 extern vmem_t *zio_alloc_arena;
63 #endif
64 extern int zfs_mg_alloc_failures;
65 
66 /*
67  * The following actions directly effect the spa's sync-to-convergence logic.
68  * The values below define the sync pass when we start performing the action.
69  * Care should be taken when changing these values as they directly impact
70  * spa_sync() performance. Tuning these values may introduce subtle performance
71  * pathologies and should only be done in the context of performance analysis.
72  * These tunables will eventually be removed and replaced with #defines once
73  * enough analysis has been done to determine optimal values.
74  *
75  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
76  * regular blocks are not deferred.
77  */
78 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
79 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
80 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
81 
82 /*
83  * An allocating zio is one that either currently has the DVA allocate
84  * stage set or will have it later in its lifetime.
85  */
86 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
87 
88 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
89 
90 #ifdef ZFS_DEBUG
91 int zio_buf_debug_limit = 16384;
92 #else
93 int zio_buf_debug_limit = 0;
94 #endif
95 
96 void
97 zio_init(void)
98 {
99 	size_t c;
100 	vmem_t *data_alloc_arena = NULL;
101 
102 #ifdef _KERNEL
103 	data_alloc_arena = zio_alloc_arena;
104 #endif
105 	zio_cache = kmem_cache_create("zio_cache",
106 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
107 	zio_link_cache = kmem_cache_create("zio_link_cache",
108 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
109 
110 	/*
111 	 * For small buffers, we want a cache for each multiple of
112 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
113 	 * for each quarter-power of 2.  For large buffers, we want
114 	 * a cache for each multiple of PAGESIZE.
115 	 */
116 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
117 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
118 		size_t p2 = size;
119 		size_t align = 0;
120 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
121 
122 		while (p2 & (p2 - 1))
123 			p2 &= p2 - 1;
124 
125 #ifndef _KERNEL
126 		/*
127 		 * If we are using watchpoints, put each buffer on its own page,
128 		 * to eliminate the performance overhead of trapping to the
129 		 * kernel when modifying a non-watched buffer that shares the
130 		 * page with a watched buffer.
131 		 */
132 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
133 			continue;
134 #endif
135 		if (size <= 4 * SPA_MINBLOCKSIZE) {
136 			align = SPA_MINBLOCKSIZE;
137 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
138 			align = PAGESIZE;
139 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
140 			align = p2 >> 2;
141 		}
142 
143 		if (align != 0) {
144 			char name[36];
145 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
146 			zio_buf_cache[c] = kmem_cache_create(name, size,
147 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
148 
149 			/*
150 			 * Since zio_data bufs do not appear in crash dumps, we
151 			 * pass KMC_NOTOUCH so that no allocator metadata is
152 			 * stored with the buffers.
153 			 */
154 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
155 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
156 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
157 			    cflags | KMC_NOTOUCH);
158 		}
159 	}
160 
161 	while (--c != 0) {
162 		ASSERT(zio_buf_cache[c] != NULL);
163 		if (zio_buf_cache[c - 1] == NULL)
164 			zio_buf_cache[c - 1] = zio_buf_cache[c];
165 
166 		ASSERT(zio_data_buf_cache[c] != NULL);
167 		if (zio_data_buf_cache[c - 1] == NULL)
168 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
169 	}
170 
171 	/*
172 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
173 	 * to fail 3 times per txg or 8 failures, whichever is greater.
174 	 */
175 	if (zfs_mg_alloc_failures == 0)
176 		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
177 
178 	zio_inject_init();
179 }
180 
181 void
182 zio_fini(void)
183 {
184 	size_t c;
185 	kmem_cache_t *last_cache = NULL;
186 	kmem_cache_t *last_data_cache = NULL;
187 
188 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
189 		if (zio_buf_cache[c] != last_cache) {
190 			last_cache = zio_buf_cache[c];
191 			kmem_cache_destroy(zio_buf_cache[c]);
192 		}
193 		zio_buf_cache[c] = NULL;
194 
195 		if (zio_data_buf_cache[c] != last_data_cache) {
196 			last_data_cache = zio_data_buf_cache[c];
197 			kmem_cache_destroy(zio_data_buf_cache[c]);
198 		}
199 		zio_data_buf_cache[c] = NULL;
200 	}
201 
202 	kmem_cache_destroy(zio_link_cache);
203 	kmem_cache_destroy(zio_cache);
204 
205 	zio_inject_fini();
206 }
207 
208 /*
209  * ==========================================================================
210  * Allocate and free I/O buffers
211  * ==========================================================================
212  */
213 
214 /*
215  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
216  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
217  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
218  * excess / transient data in-core during a crashdump.
219  */
220 void *
221 zio_buf_alloc(size_t size)
222 {
223 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
224 
225 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
226 
227 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
228 }
229 
230 /*
231  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
232  * crashdump if the kernel panics.  This exists so that we will limit the amount
233  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
234  * of kernel heap dumped to disk when the kernel panics)
235  */
236 void *
237 zio_data_buf_alloc(size_t size)
238 {
239 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
240 
241 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
242 
243 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
244 }
245 
246 void
247 zio_buf_free(void *buf, size_t size)
248 {
249 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
250 
251 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
252 
253 	kmem_cache_free(zio_buf_cache[c], buf);
254 }
255 
256 void
257 zio_data_buf_free(void *buf, size_t size)
258 {
259 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
260 
261 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
262 
263 	kmem_cache_free(zio_data_buf_cache[c], buf);
264 }
265 
266 /*
267  * ==========================================================================
268  * Push and pop I/O transform buffers
269  * ==========================================================================
270  */
271 static void
272 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
273 	zio_transform_func_t *transform)
274 {
275 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
276 
277 	zt->zt_orig_data = zio->io_data;
278 	zt->zt_orig_size = zio->io_size;
279 	zt->zt_bufsize = bufsize;
280 	zt->zt_transform = transform;
281 
282 	zt->zt_next = zio->io_transform_stack;
283 	zio->io_transform_stack = zt;
284 
285 	zio->io_data = data;
286 	zio->io_size = size;
287 }
288 
289 static void
290 zio_pop_transforms(zio_t *zio)
291 {
292 	zio_transform_t *zt;
293 
294 	while ((zt = zio->io_transform_stack) != NULL) {
295 		if (zt->zt_transform != NULL)
296 			zt->zt_transform(zio,
297 			    zt->zt_orig_data, zt->zt_orig_size);
298 
299 		if (zt->zt_bufsize != 0)
300 			zio_buf_free(zio->io_data, zt->zt_bufsize);
301 
302 		zio->io_data = zt->zt_orig_data;
303 		zio->io_size = zt->zt_orig_size;
304 		zio->io_transform_stack = zt->zt_next;
305 
306 		kmem_free(zt, sizeof (zio_transform_t));
307 	}
308 }
309 
310 /*
311  * ==========================================================================
312  * I/O transform callbacks for subblocks and decompression
313  * ==========================================================================
314  */
315 static void
316 zio_subblock(zio_t *zio, void *data, uint64_t size)
317 {
318 	ASSERT(zio->io_size > size);
319 
320 	if (zio->io_type == ZIO_TYPE_READ)
321 		bcopy(zio->io_data, data, size);
322 }
323 
324 static void
325 zio_decompress(zio_t *zio, void *data, uint64_t size)
326 {
327 	if (zio->io_error == 0 &&
328 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
329 	    zio->io_data, data, zio->io_size, size) != 0)
330 		zio->io_error = SET_ERROR(EIO);
331 }
332 
333 /*
334  * ==========================================================================
335  * I/O parent/child relationships and pipeline interlocks
336  * ==========================================================================
337  */
338 /*
339  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
340  *        continue calling these functions until they return NULL.
341  *        Otherwise, the next caller will pick up the list walk in
342  *        some indeterminate state.  (Otherwise every caller would
343  *        have to pass in a cookie to keep the state represented by
344  *        io_walk_link, which gets annoying.)
345  */
346 zio_t *
347 zio_walk_parents(zio_t *cio)
348 {
349 	zio_link_t *zl = cio->io_walk_link;
350 	list_t *pl = &cio->io_parent_list;
351 
352 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
353 	cio->io_walk_link = zl;
354 
355 	if (zl == NULL)
356 		return (NULL);
357 
358 	ASSERT(zl->zl_child == cio);
359 	return (zl->zl_parent);
360 }
361 
362 zio_t *
363 zio_walk_children(zio_t *pio)
364 {
365 	zio_link_t *zl = pio->io_walk_link;
366 	list_t *cl = &pio->io_child_list;
367 
368 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
369 	pio->io_walk_link = zl;
370 
371 	if (zl == NULL)
372 		return (NULL);
373 
374 	ASSERT(zl->zl_parent == pio);
375 	return (zl->zl_child);
376 }
377 
378 zio_t *
379 zio_unique_parent(zio_t *cio)
380 {
381 	zio_t *pio = zio_walk_parents(cio);
382 
383 	VERIFY(zio_walk_parents(cio) == NULL);
384 	return (pio);
385 }
386 
387 void
388 zio_add_child(zio_t *pio, zio_t *cio)
389 {
390 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
391 
392 	/*
393 	 * Logical I/Os can have logical, gang, or vdev children.
394 	 * Gang I/Os can have gang or vdev children.
395 	 * Vdev I/Os can only have vdev children.
396 	 * The following ASSERT captures all of these constraints.
397 	 */
398 	ASSERT(cio->io_child_type <= pio->io_child_type);
399 
400 	zl->zl_parent = pio;
401 	zl->zl_child = cio;
402 
403 	mutex_enter(&cio->io_lock);
404 	mutex_enter(&pio->io_lock);
405 
406 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
407 
408 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
409 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
410 
411 	list_insert_head(&pio->io_child_list, zl);
412 	list_insert_head(&cio->io_parent_list, zl);
413 
414 	pio->io_child_count++;
415 	cio->io_parent_count++;
416 
417 	mutex_exit(&pio->io_lock);
418 	mutex_exit(&cio->io_lock);
419 }
420 
421 static void
422 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
423 {
424 	ASSERT(zl->zl_parent == pio);
425 	ASSERT(zl->zl_child == cio);
426 
427 	mutex_enter(&cio->io_lock);
428 	mutex_enter(&pio->io_lock);
429 
430 	list_remove(&pio->io_child_list, zl);
431 	list_remove(&cio->io_parent_list, zl);
432 
433 	pio->io_child_count--;
434 	cio->io_parent_count--;
435 
436 	mutex_exit(&pio->io_lock);
437 	mutex_exit(&cio->io_lock);
438 
439 	kmem_cache_free(zio_link_cache, zl);
440 }
441 
442 static boolean_t
443 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
444 {
445 	uint64_t *countp = &zio->io_children[child][wait];
446 	boolean_t waiting = B_FALSE;
447 
448 	mutex_enter(&zio->io_lock);
449 	ASSERT(zio->io_stall == NULL);
450 	if (*countp != 0) {
451 		zio->io_stage >>= 1;
452 		zio->io_stall = countp;
453 		waiting = B_TRUE;
454 	}
455 	mutex_exit(&zio->io_lock);
456 
457 	return (waiting);
458 }
459 
460 static void
461 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
464 	int *errorp = &pio->io_child_error[zio->io_child_type];
465 
466 	mutex_enter(&pio->io_lock);
467 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
468 		*errorp = zio_worst_error(*errorp, zio->io_error);
469 	pio->io_reexecute |= zio->io_reexecute;
470 	ASSERT3U(*countp, >, 0);
471 
472 	(*countp)--;
473 
474 	if (*countp == 0 && pio->io_stall == countp) {
475 		pio->io_stall = NULL;
476 		mutex_exit(&pio->io_lock);
477 		zio_execute(pio);
478 	} else {
479 		mutex_exit(&pio->io_lock);
480 	}
481 }
482 
483 static void
484 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
485 {
486 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
487 		zio->io_error = zio->io_child_error[c];
488 }
489 
490 /*
491  * ==========================================================================
492  * Create the various types of I/O (read, write, free, etc)
493  * ==========================================================================
494  */
495 static zio_t *
496 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
497     void *data, uint64_t size, zio_done_func_t *done, void *private,
498     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
499     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
500     enum zio_stage stage, enum zio_stage pipeline)
501 {
502 	zio_t *zio;
503 
504 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
505 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
506 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
507 
508 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
509 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
510 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
511 
512 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
513 	bzero(zio, sizeof (zio_t));
514 
515 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
516 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
517 
518 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
519 	    offsetof(zio_link_t, zl_parent_node));
520 	list_create(&zio->io_child_list, sizeof (zio_link_t),
521 	    offsetof(zio_link_t, zl_child_node));
522 
523 	if (vd != NULL)
524 		zio->io_child_type = ZIO_CHILD_VDEV;
525 	else if (flags & ZIO_FLAG_GANG_CHILD)
526 		zio->io_child_type = ZIO_CHILD_GANG;
527 	else if (flags & ZIO_FLAG_DDT_CHILD)
528 		zio->io_child_type = ZIO_CHILD_DDT;
529 	else
530 		zio->io_child_type = ZIO_CHILD_LOGICAL;
531 
532 	if (bp != NULL) {
533 		zio->io_bp = (blkptr_t *)bp;
534 		zio->io_bp_copy = *bp;
535 		zio->io_bp_orig = *bp;
536 		if (type != ZIO_TYPE_WRITE ||
537 		    zio->io_child_type == ZIO_CHILD_DDT)
538 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
539 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
540 			zio->io_logical = zio;
541 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
542 			pipeline |= ZIO_GANG_STAGES;
543 	}
544 
545 	zio->io_spa = spa;
546 	zio->io_txg = txg;
547 	zio->io_done = done;
548 	zio->io_private = private;
549 	zio->io_type = type;
550 	zio->io_priority = priority;
551 	zio->io_vd = vd;
552 	zio->io_offset = offset;
553 	zio->io_orig_data = zio->io_data = data;
554 	zio->io_orig_size = zio->io_size = size;
555 	zio->io_orig_flags = zio->io_flags = flags;
556 	zio->io_orig_stage = zio->io_stage = stage;
557 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
558 
559 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
560 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
561 
562 	if (zb != NULL)
563 		zio->io_bookmark = *zb;
564 
565 	if (pio != NULL) {
566 		if (zio->io_logical == NULL)
567 			zio->io_logical = pio->io_logical;
568 		if (zio->io_child_type == ZIO_CHILD_GANG)
569 			zio->io_gang_leader = pio->io_gang_leader;
570 		zio_add_child(pio, zio);
571 	}
572 
573 	return (zio);
574 }
575 
576 static void
577 zio_destroy(zio_t *zio)
578 {
579 	list_destroy(&zio->io_parent_list);
580 	list_destroy(&zio->io_child_list);
581 	mutex_destroy(&zio->io_lock);
582 	cv_destroy(&zio->io_cv);
583 	kmem_cache_free(zio_cache, zio);
584 }
585 
586 zio_t *
587 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
588     void *private, enum zio_flag flags)
589 {
590 	zio_t *zio;
591 
592 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
593 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
594 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
595 
596 	return (zio);
597 }
598 
599 zio_t *
600 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
601 {
602 	return (zio_null(NULL, spa, NULL, done, private, flags));
603 }
604 
605 zio_t *
606 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
607     void *data, uint64_t size, zio_done_func_t *done, void *private,
608     zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
609 {
610 	zio_t *zio;
611 
612 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
613 	    data, size, done, private,
614 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
615 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
616 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
617 
618 	return (zio);
619 }
620 
621 zio_t *
622 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
623     void *data, uint64_t size, const zio_prop_t *zp,
624     zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
625     void *private,
626     zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
627 {
628 	zio_t *zio;
629 
630 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
631 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
632 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
633 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
634 	    DMU_OT_IS_VALID(zp->zp_type) &&
635 	    zp->zp_level < 32 &&
636 	    zp->zp_copies > 0 &&
637 	    zp->zp_copies <= spa_max_replication(spa));
638 
639 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
640 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
641 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
642 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
643 
644 	zio->io_ready = ready;
645 	zio->io_physdone = physdone;
646 	zio->io_prop = *zp;
647 
648 	return (zio);
649 }
650 
651 zio_t *
652 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
653     uint64_t size, zio_done_func_t *done, void *private,
654     zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb)
655 {
656 	zio_t *zio;
657 
658 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
659 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
660 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
661 
662 	return (zio);
663 }
664 
665 void
666 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
667 {
668 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
669 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
670 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
671 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
672 
673 	/*
674 	 * We must reset the io_prop to match the values that existed
675 	 * when the bp was first written by dmu_sync() keeping in mind
676 	 * that nopwrite and dedup are mutually exclusive.
677 	 */
678 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
679 	zio->io_prop.zp_nopwrite = nopwrite;
680 	zio->io_prop.zp_copies = copies;
681 	zio->io_bp_override = bp;
682 }
683 
684 void
685 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
686 {
687 	metaslab_check_free(spa, bp);
688 
689 	/*
690 	 * Frees that are for the currently-syncing txg, are not going to be
691 	 * deferred, and which will not need to do a read (i.e. not GANG or
692 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
693 	 * in-memory list for later processing.
694 	 */
695 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
696 	    txg != spa->spa_syncing_txg ||
697 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
698 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
699 	} else {
700 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
701 	}
702 }
703 
704 zio_t *
705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
706     enum zio_flag flags)
707 {
708 	zio_t *zio;
709 	enum zio_stage stage = ZIO_FREE_PIPELINE;
710 
711 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
712 	    (longlong_t)txg, spa->spa_sync_pass);
713 
714 	ASSERT(!BP_IS_HOLE(bp));
715 	ASSERT(spa_syncing_txg(spa) == txg);
716 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
717 
718 	metaslab_check_free(spa, bp);
719 	arc_freed(spa, bp);
720 
721 	/*
722 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
723 	 * or the DDT), so issue them asynchronously so that this thread is
724 	 * not tied up.
725 	 */
726 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
727 		stage |= ZIO_STAGE_ISSUE_ASYNC;
728 
729 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
730 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
731 	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
732 
733 
734 	return (zio);
735 }
736 
737 zio_t *
738 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
739     zio_done_func_t *done, void *private, enum zio_flag flags)
740 {
741 	zio_t *zio;
742 
743 	/*
744 	 * A claim is an allocation of a specific block.  Claims are needed
745 	 * to support immediate writes in the intent log.  The issue is that
746 	 * immediate writes contain committed data, but in a txg that was
747 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
748 	 * the intent log claims all blocks that contain immediate write data
749 	 * so that the SPA knows they're in use.
750 	 *
751 	 * All claims *must* be resolved in the first txg -- before the SPA
752 	 * starts allocating blocks -- so that nothing is allocated twice.
753 	 * If txg == 0 we just verify that the block is claimable.
754 	 */
755 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
756 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
757 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
758 
759 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
760 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
761 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
762 
763 	return (zio);
764 }
765 
766 zio_t *
767 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
768     zio_done_func_t *done, void *private, enum zio_flag flags)
769 {
770 	zio_t *zio;
771 	int c;
772 
773 	if (vd->vdev_children == 0) {
774 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
775 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
776 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
777 
778 		zio->io_cmd = cmd;
779 	} else {
780 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
781 
782 		for (c = 0; c < vd->vdev_children; c++)
783 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
784 			    done, private, flags));
785 	}
786 
787 	return (zio);
788 }
789 
790 zio_t *
791 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
792     void *data, int checksum, zio_done_func_t *done, void *private,
793     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
794 {
795 	zio_t *zio;
796 
797 	ASSERT(vd->vdev_children == 0);
798 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
799 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
800 	ASSERT3U(offset + size, <=, vd->vdev_psize);
801 
802 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
803 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
804 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
805 
806 	zio->io_prop.zp_checksum = checksum;
807 
808 	return (zio);
809 }
810 
811 zio_t *
812 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
813     void *data, int checksum, zio_done_func_t *done, void *private,
814     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
815 {
816 	zio_t *zio;
817 
818 	ASSERT(vd->vdev_children == 0);
819 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
820 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
821 	ASSERT3U(offset + size, <=, vd->vdev_psize);
822 
823 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
824 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
825 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
826 
827 	zio->io_prop.zp_checksum = checksum;
828 
829 	if (zio_checksum_table[checksum].ci_eck) {
830 		/*
831 		 * zec checksums are necessarily destructive -- they modify
832 		 * the end of the write buffer to hold the verifier/checksum.
833 		 * Therefore, we must make a local copy in case the data is
834 		 * being written to multiple places in parallel.
835 		 */
836 		void *wbuf = zio_buf_alloc(size);
837 		bcopy(data, wbuf, size);
838 		zio_push_transform(zio, wbuf, size, size, NULL);
839 	}
840 
841 	return (zio);
842 }
843 
844 /*
845  * Create a child I/O to do some work for us.
846  */
847 zio_t *
848 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
849 	void *data, uint64_t size, int type, zio_priority_t priority,
850 	enum zio_flag flags, zio_done_func_t *done, void *private)
851 {
852 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
853 	zio_t *zio;
854 
855 	ASSERT(vd->vdev_parent ==
856 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
857 
858 	if (type == ZIO_TYPE_READ && bp != NULL) {
859 		/*
860 		 * If we have the bp, then the child should perform the
861 		 * checksum and the parent need not.  This pushes error
862 		 * detection as close to the leaves as possible and
863 		 * eliminates redundant checksums in the interior nodes.
864 		 */
865 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
866 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
867 	}
868 
869 	if (vd->vdev_children == 0)
870 		offset += VDEV_LABEL_START_SIZE;
871 
872 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
873 
874 	/*
875 	 * If we've decided to do a repair, the write is not speculative --
876 	 * even if the original read was.
877 	 */
878 	if (flags & ZIO_FLAG_IO_REPAIR)
879 		flags &= ~ZIO_FLAG_SPECULATIVE;
880 
881 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
882 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
883 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
884 
885 	zio->io_physdone = pio->io_physdone;
886 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
887 		zio->io_logical->io_phys_children++;
888 
889 	return (zio);
890 }
891 
892 zio_t *
893 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
894 	int type, zio_priority_t priority, enum zio_flag flags,
895 	zio_done_func_t *done, void *private)
896 {
897 	zio_t *zio;
898 
899 	ASSERT(vd->vdev_ops->vdev_op_leaf);
900 
901 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
902 	    data, size, done, private, type, priority,
903 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
904 	    vd, offset, NULL,
905 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
906 
907 	return (zio);
908 }
909 
910 void
911 zio_flush(zio_t *zio, vdev_t *vd)
912 {
913 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
914 	    NULL, NULL,
915 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
916 }
917 
918 void
919 zio_shrink(zio_t *zio, uint64_t size)
920 {
921 	ASSERT(zio->io_executor == NULL);
922 	ASSERT(zio->io_orig_size == zio->io_size);
923 	ASSERT(size <= zio->io_size);
924 
925 	/*
926 	 * We don't shrink for raidz because of problems with the
927 	 * reconstruction when reading back less than the block size.
928 	 * Note, BP_IS_RAIDZ() assumes no compression.
929 	 */
930 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
931 	if (!BP_IS_RAIDZ(zio->io_bp))
932 		zio->io_orig_size = zio->io_size = size;
933 }
934 
935 /*
936  * ==========================================================================
937  * Prepare to read and write logical blocks
938  * ==========================================================================
939  */
940 
941 static int
942 zio_read_bp_init(zio_t *zio)
943 {
944 	blkptr_t *bp = zio->io_bp;
945 
946 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
947 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
948 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
949 		uint64_t psize = BP_GET_PSIZE(bp);
950 		void *cbuf = zio_buf_alloc(psize);
951 
952 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
953 	}
954 
955 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
956 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
957 
958 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
959 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
960 
961 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
962 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
963 
964 	return (ZIO_PIPELINE_CONTINUE);
965 }
966 
967 static int
968 zio_write_bp_init(zio_t *zio)
969 {
970 	spa_t *spa = zio->io_spa;
971 	zio_prop_t *zp = &zio->io_prop;
972 	enum zio_compress compress = zp->zp_compress;
973 	blkptr_t *bp = zio->io_bp;
974 	uint64_t lsize = zio->io_size;
975 	uint64_t psize = lsize;
976 	int pass = 1;
977 
978 	/*
979 	 * If our children haven't all reached the ready stage,
980 	 * wait for them and then repeat this pipeline stage.
981 	 */
982 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
983 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
984 		return (ZIO_PIPELINE_STOP);
985 
986 	if (!IO_IS_ALLOCATING(zio))
987 		return (ZIO_PIPELINE_CONTINUE);
988 
989 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
990 
991 	if (zio->io_bp_override) {
992 		ASSERT(bp->blk_birth != zio->io_txg);
993 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
994 
995 		*bp = *zio->io_bp_override;
996 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
997 
998 		/*
999 		 * If we've been overridden and nopwrite is set then
1000 		 * set the flag accordingly to indicate that a nopwrite
1001 		 * has already occurred.
1002 		 */
1003 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1004 			ASSERT(!zp->zp_dedup);
1005 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1006 			return (ZIO_PIPELINE_CONTINUE);
1007 		}
1008 
1009 		ASSERT(!zp->zp_nopwrite);
1010 
1011 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1012 			return (ZIO_PIPELINE_CONTINUE);
1013 
1014 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1015 		    zp->zp_dedup_verify);
1016 
1017 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1018 			BP_SET_DEDUP(bp, 1);
1019 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1020 			return (ZIO_PIPELINE_CONTINUE);
1021 		}
1022 		zio->io_bp_override = NULL;
1023 		BP_ZERO(bp);
1024 	}
1025 
1026 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1027 		/*
1028 		 * We're rewriting an existing block, which means we're
1029 		 * working on behalf of spa_sync().  For spa_sync() to
1030 		 * converge, it must eventually be the case that we don't
1031 		 * have to allocate new blocks.  But compression changes
1032 		 * the blocksize, which forces a reallocate, and makes
1033 		 * convergence take longer.  Therefore, after the first
1034 		 * few passes, stop compressing to ensure convergence.
1035 		 */
1036 		pass = spa_sync_pass(spa);
1037 
1038 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1039 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1040 		ASSERT(!BP_GET_DEDUP(bp));
1041 
1042 		if (pass >= zfs_sync_pass_dont_compress)
1043 			compress = ZIO_COMPRESS_OFF;
1044 
1045 		/* Make sure someone doesn't change their mind on overwrites */
1046 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1047 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1048 	}
1049 
1050 	if (compress != ZIO_COMPRESS_OFF) {
1051 		void *cbuf = zio_buf_alloc(lsize);
1052 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1053 		if (psize == 0 || psize == lsize) {
1054 			compress = ZIO_COMPRESS_OFF;
1055 			zio_buf_free(cbuf, lsize);
1056 		} else {
1057 			ASSERT(psize < lsize);
1058 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * The final pass of spa_sync() must be all rewrites, but the first
1064 	 * few passes offer a trade-off: allocating blocks defers convergence,
1065 	 * but newly allocated blocks are sequential, so they can be written
1066 	 * to disk faster.  Therefore, we allow the first few passes of
1067 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1068 	 * There should only be a handful of blocks after pass 1 in any case.
1069 	 */
1070 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1071 	    BP_GET_PSIZE(bp) == psize &&
1072 	    pass >= zfs_sync_pass_rewrite) {
1073 		ASSERT(psize != 0);
1074 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1075 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1076 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1077 	} else {
1078 		BP_ZERO(bp);
1079 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1080 	}
1081 
1082 	if (psize == 0) {
1083 		if (zio->io_bp_orig.blk_birth != 0 &&
1084 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1085 			BP_SET_LSIZE(bp, lsize);
1086 			BP_SET_TYPE(bp, zp->zp_type);
1087 			BP_SET_LEVEL(bp, zp->zp_level);
1088 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1089 		}
1090 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1091 	} else {
1092 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1093 		BP_SET_LSIZE(bp, lsize);
1094 		BP_SET_TYPE(bp, zp->zp_type);
1095 		BP_SET_LEVEL(bp, zp->zp_level);
1096 		BP_SET_PSIZE(bp, psize);
1097 		BP_SET_COMPRESS(bp, compress);
1098 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1099 		BP_SET_DEDUP(bp, zp->zp_dedup);
1100 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1101 		if (zp->zp_dedup) {
1102 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1103 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1104 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1105 		}
1106 		if (zp->zp_nopwrite) {
1107 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1108 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1109 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1110 		}
1111 	}
1112 
1113 	return (ZIO_PIPELINE_CONTINUE);
1114 }
1115 
1116 static int
1117 zio_free_bp_init(zio_t *zio)
1118 {
1119 	blkptr_t *bp = zio->io_bp;
1120 
1121 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1122 		if (BP_GET_DEDUP(bp))
1123 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1124 	}
1125 
1126 	return (ZIO_PIPELINE_CONTINUE);
1127 }
1128 
1129 /*
1130  * ==========================================================================
1131  * Execute the I/O pipeline
1132  * ==========================================================================
1133  */
1134 
1135 static void
1136 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1137 {
1138 	spa_t *spa = zio->io_spa;
1139 	zio_type_t t = zio->io_type;
1140 	int flags = (cutinline ? TQ_FRONT : 0);
1141 
1142 	/*
1143 	 * If we're a config writer or a probe, the normal issue and
1144 	 * interrupt threads may all be blocked waiting for the config lock.
1145 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1146 	 */
1147 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1148 		t = ZIO_TYPE_NULL;
1149 
1150 	/*
1151 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1152 	 */
1153 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1154 		t = ZIO_TYPE_NULL;
1155 
1156 	/*
1157 	 * If this is a high priority I/O, then use the high priority taskq if
1158 	 * available.
1159 	 */
1160 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1161 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1162 		q++;
1163 
1164 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1165 
1166 	/*
1167 	 * NB: We are assuming that the zio can only be dispatched
1168 	 * to a single taskq at a time.  It would be a grievous error
1169 	 * to dispatch the zio to another taskq at the same time.
1170 	 */
1171 	ASSERT(zio->io_tqent.tqent_next == NULL);
1172 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1173 	    flags, &zio->io_tqent);
1174 }
1175 
1176 static boolean_t
1177 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1178 {
1179 	kthread_t *executor = zio->io_executor;
1180 	spa_t *spa = zio->io_spa;
1181 
1182 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1183 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1184 		uint_t i;
1185 		for (i = 0; i < tqs->stqs_count; i++) {
1186 			if (taskq_member(tqs->stqs_taskq[i], executor))
1187 				return (B_TRUE);
1188 		}
1189 	}
1190 
1191 	return (B_FALSE);
1192 }
1193 
1194 static int
1195 zio_issue_async(zio_t *zio)
1196 {
1197 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1198 
1199 	return (ZIO_PIPELINE_STOP);
1200 }
1201 
1202 void
1203 zio_interrupt(zio_t *zio)
1204 {
1205 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1206 }
1207 
1208 /*
1209  * Execute the I/O pipeline until one of the following occurs:
1210  *
1211  *	(1) the I/O completes
1212  *	(2) the pipeline stalls waiting for dependent child I/Os
1213  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1214  *	(4) the I/O is delegated by vdev-level caching or aggregation
1215  *	(5) the I/O is deferred due to vdev-level queueing
1216  *	(6) the I/O is handed off to another thread.
1217  *
1218  * In all cases, the pipeline stops whenever there's no CPU work; it never
1219  * burns a thread in cv_wait().
1220  *
1221  * There's no locking on io_stage because there's no legitimate way
1222  * for multiple threads to be attempting to process the same I/O.
1223  */
1224 static zio_pipe_stage_t *zio_pipeline[];
1225 
1226 void
1227 zio_execute(zio_t *zio)
1228 {
1229 	zio->io_executor = curthread;
1230 
1231 	while (zio->io_stage < ZIO_STAGE_DONE) {
1232 		enum zio_stage pipeline = zio->io_pipeline;
1233 		enum zio_stage stage = zio->io_stage;
1234 		int rv;
1235 
1236 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1237 		ASSERT(ISP2(stage));
1238 		ASSERT(zio->io_stall == NULL);
1239 
1240 		do {
1241 			stage <<= 1;
1242 		} while ((stage & pipeline) == 0);
1243 
1244 		ASSERT(stage <= ZIO_STAGE_DONE);
1245 
1246 		/*
1247 		 * If we are in interrupt context and this pipeline stage
1248 		 * will grab a config lock that is held across I/O,
1249 		 * or may wait for an I/O that needs an interrupt thread
1250 		 * to complete, issue async to avoid deadlock.
1251 		 *
1252 		 * For VDEV_IO_START, we cut in line so that the io will
1253 		 * be sent to disk promptly.
1254 		 */
1255 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1256 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1257 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1258 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1259 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1260 			return;
1261 		}
1262 
1263 		zio->io_stage = stage;
1264 		rv = zio_pipeline[highbit(stage) - 1](zio);
1265 
1266 		if (rv == ZIO_PIPELINE_STOP)
1267 			return;
1268 
1269 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1270 	}
1271 }
1272 
1273 /*
1274  * ==========================================================================
1275  * Initiate I/O, either sync or async
1276  * ==========================================================================
1277  */
1278 int
1279 zio_wait(zio_t *zio)
1280 {
1281 	int error;
1282 
1283 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1284 	ASSERT(zio->io_executor == NULL);
1285 
1286 	zio->io_waiter = curthread;
1287 
1288 	zio_execute(zio);
1289 
1290 	mutex_enter(&zio->io_lock);
1291 	while (zio->io_executor != NULL)
1292 		cv_wait(&zio->io_cv, &zio->io_lock);
1293 	mutex_exit(&zio->io_lock);
1294 
1295 	error = zio->io_error;
1296 	zio_destroy(zio);
1297 
1298 	return (error);
1299 }
1300 
1301 void
1302 zio_nowait(zio_t *zio)
1303 {
1304 	ASSERT(zio->io_executor == NULL);
1305 
1306 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1307 	    zio_unique_parent(zio) == NULL) {
1308 		/*
1309 		 * This is a logical async I/O with no parent to wait for it.
1310 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1311 		 * will ensure they complete prior to unloading the pool.
1312 		 */
1313 		spa_t *spa = zio->io_spa;
1314 
1315 		zio_add_child(spa->spa_async_zio_root, zio);
1316 	}
1317 
1318 	zio_execute(zio);
1319 }
1320 
1321 /*
1322  * ==========================================================================
1323  * Reexecute or suspend/resume failed I/O
1324  * ==========================================================================
1325  */
1326 
1327 static void
1328 zio_reexecute(zio_t *pio)
1329 {
1330 	zio_t *cio, *cio_next;
1331 
1332 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1333 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1334 	ASSERT(pio->io_gang_leader == NULL);
1335 	ASSERT(pio->io_gang_tree == NULL);
1336 
1337 	pio->io_flags = pio->io_orig_flags;
1338 	pio->io_stage = pio->io_orig_stage;
1339 	pio->io_pipeline = pio->io_orig_pipeline;
1340 	pio->io_reexecute = 0;
1341 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1342 	pio->io_error = 0;
1343 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1344 		pio->io_state[w] = 0;
1345 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1346 		pio->io_child_error[c] = 0;
1347 
1348 	if (IO_IS_ALLOCATING(pio))
1349 		BP_ZERO(pio->io_bp);
1350 
1351 	/*
1352 	 * As we reexecute pio's children, new children could be created.
1353 	 * New children go to the head of pio's io_child_list, however,
1354 	 * so we will (correctly) not reexecute them.  The key is that
1355 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1356 	 * cannot be affected by any side effects of reexecuting 'cio'.
1357 	 */
1358 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1359 		cio_next = zio_walk_children(pio);
1360 		mutex_enter(&pio->io_lock);
1361 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1362 			pio->io_children[cio->io_child_type][w]++;
1363 		mutex_exit(&pio->io_lock);
1364 		zio_reexecute(cio);
1365 	}
1366 
1367 	/*
1368 	 * Now that all children have been reexecuted, execute the parent.
1369 	 * We don't reexecute "The Godfather" I/O here as it's the
1370 	 * responsibility of the caller to wait on him.
1371 	 */
1372 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1373 		zio_execute(pio);
1374 }
1375 
1376 void
1377 zio_suspend(spa_t *spa, zio_t *zio)
1378 {
1379 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1380 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1381 		    "failure and the failure mode property for this pool "
1382 		    "is set to panic.", spa_name(spa));
1383 
1384 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1385 
1386 	mutex_enter(&spa->spa_suspend_lock);
1387 
1388 	if (spa->spa_suspend_zio_root == NULL)
1389 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1390 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1391 		    ZIO_FLAG_GODFATHER);
1392 
1393 	spa->spa_suspended = B_TRUE;
1394 
1395 	if (zio != NULL) {
1396 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1397 		ASSERT(zio != spa->spa_suspend_zio_root);
1398 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1399 		ASSERT(zio_unique_parent(zio) == NULL);
1400 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1401 		zio_add_child(spa->spa_suspend_zio_root, zio);
1402 	}
1403 
1404 	mutex_exit(&spa->spa_suspend_lock);
1405 }
1406 
1407 int
1408 zio_resume(spa_t *spa)
1409 {
1410 	zio_t *pio;
1411 
1412 	/*
1413 	 * Reexecute all previously suspended i/o.
1414 	 */
1415 	mutex_enter(&spa->spa_suspend_lock);
1416 	spa->spa_suspended = B_FALSE;
1417 	cv_broadcast(&spa->spa_suspend_cv);
1418 	pio = spa->spa_suspend_zio_root;
1419 	spa->spa_suspend_zio_root = NULL;
1420 	mutex_exit(&spa->spa_suspend_lock);
1421 
1422 	if (pio == NULL)
1423 		return (0);
1424 
1425 	zio_reexecute(pio);
1426 	return (zio_wait(pio));
1427 }
1428 
1429 void
1430 zio_resume_wait(spa_t *spa)
1431 {
1432 	mutex_enter(&spa->spa_suspend_lock);
1433 	while (spa_suspended(spa))
1434 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1435 	mutex_exit(&spa->spa_suspend_lock);
1436 }
1437 
1438 /*
1439  * ==========================================================================
1440  * Gang blocks.
1441  *
1442  * A gang block is a collection of small blocks that looks to the DMU
1443  * like one large block.  When zio_dva_allocate() cannot find a block
1444  * of the requested size, due to either severe fragmentation or the pool
1445  * being nearly full, it calls zio_write_gang_block() to construct the
1446  * block from smaller fragments.
1447  *
1448  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1449  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1450  * an indirect block: it's an array of block pointers.  It consumes
1451  * only one sector and hence is allocatable regardless of fragmentation.
1452  * The gang header's bps point to its gang members, which hold the data.
1453  *
1454  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1455  * as the verifier to ensure uniqueness of the SHA256 checksum.
1456  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1457  * not the gang header.  This ensures that data block signatures (needed for
1458  * deduplication) are independent of how the block is physically stored.
1459  *
1460  * Gang blocks can be nested: a gang member may itself be a gang block.
1461  * Thus every gang block is a tree in which root and all interior nodes are
1462  * gang headers, and the leaves are normal blocks that contain user data.
1463  * The root of the gang tree is called the gang leader.
1464  *
1465  * To perform any operation (read, rewrite, free, claim) on a gang block,
1466  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1467  * in the io_gang_tree field of the original logical i/o by recursively
1468  * reading the gang leader and all gang headers below it.  This yields
1469  * an in-core tree containing the contents of every gang header and the
1470  * bps for every constituent of the gang block.
1471  *
1472  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1473  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1474  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1475  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1476  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1477  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1478  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1479  * of the gang header plus zio_checksum_compute() of the data to update the
1480  * gang header's blk_cksum as described above.
1481  *
1482  * The two-phase assemble/issue model solves the problem of partial failure --
1483  * what if you'd freed part of a gang block but then couldn't read the
1484  * gang header for another part?  Assembling the entire gang tree first
1485  * ensures that all the necessary gang header I/O has succeeded before
1486  * starting the actual work of free, claim, or write.  Once the gang tree
1487  * is assembled, free and claim are in-memory operations that cannot fail.
1488  *
1489  * In the event that a gang write fails, zio_dva_unallocate() walks the
1490  * gang tree to immediately free (i.e. insert back into the space map)
1491  * everything we've allocated.  This ensures that we don't get ENOSPC
1492  * errors during repeated suspend/resume cycles due to a flaky device.
1493  *
1494  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1495  * the gang tree, we won't modify the block, so we can safely defer the free
1496  * (knowing that the block is still intact).  If we *can* assemble the gang
1497  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1498  * each constituent bp and we can allocate a new block on the next sync pass.
1499  *
1500  * In all cases, the gang tree allows complete recovery from partial failure.
1501  * ==========================================================================
1502  */
1503 
1504 static zio_t *
1505 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1506 {
1507 	if (gn != NULL)
1508 		return (pio);
1509 
1510 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1511 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1512 	    &pio->io_bookmark));
1513 }
1514 
1515 zio_t *
1516 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1517 {
1518 	zio_t *zio;
1519 
1520 	if (gn != NULL) {
1521 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1522 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1523 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1524 		/*
1525 		 * As we rewrite each gang header, the pipeline will compute
1526 		 * a new gang block header checksum for it; but no one will
1527 		 * compute a new data checksum, so we do that here.  The one
1528 		 * exception is the gang leader: the pipeline already computed
1529 		 * its data checksum because that stage precedes gang assembly.
1530 		 * (Presently, nothing actually uses interior data checksums;
1531 		 * this is just good hygiene.)
1532 		 */
1533 		if (gn != pio->io_gang_leader->io_gang_tree) {
1534 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1535 			    data, BP_GET_PSIZE(bp));
1536 		}
1537 		/*
1538 		 * If we are here to damage data for testing purposes,
1539 		 * leave the GBH alone so that we can detect the damage.
1540 		 */
1541 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1542 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1543 	} else {
1544 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1545 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1546 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1547 	}
1548 
1549 	return (zio);
1550 }
1551 
1552 /* ARGSUSED */
1553 zio_t *
1554 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1555 {
1556 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1557 	    ZIO_GANG_CHILD_FLAGS(pio)));
1558 }
1559 
1560 /* ARGSUSED */
1561 zio_t *
1562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1563 {
1564 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1565 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1566 }
1567 
1568 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1569 	NULL,
1570 	zio_read_gang,
1571 	zio_rewrite_gang,
1572 	zio_free_gang,
1573 	zio_claim_gang,
1574 	NULL
1575 };
1576 
1577 static void zio_gang_tree_assemble_done(zio_t *zio);
1578 
1579 static zio_gang_node_t *
1580 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1581 {
1582 	zio_gang_node_t *gn;
1583 
1584 	ASSERT(*gnpp == NULL);
1585 
1586 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1587 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1588 	*gnpp = gn;
1589 
1590 	return (gn);
1591 }
1592 
1593 static void
1594 zio_gang_node_free(zio_gang_node_t **gnpp)
1595 {
1596 	zio_gang_node_t *gn = *gnpp;
1597 
1598 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1599 		ASSERT(gn->gn_child[g] == NULL);
1600 
1601 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1602 	kmem_free(gn, sizeof (*gn));
1603 	*gnpp = NULL;
1604 }
1605 
1606 static void
1607 zio_gang_tree_free(zio_gang_node_t **gnpp)
1608 {
1609 	zio_gang_node_t *gn = *gnpp;
1610 
1611 	if (gn == NULL)
1612 		return;
1613 
1614 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1615 		zio_gang_tree_free(&gn->gn_child[g]);
1616 
1617 	zio_gang_node_free(gnpp);
1618 }
1619 
1620 static void
1621 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1622 {
1623 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1624 
1625 	ASSERT(gio->io_gang_leader == gio);
1626 	ASSERT(BP_IS_GANG(bp));
1627 
1628 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1629 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1630 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1631 }
1632 
1633 static void
1634 zio_gang_tree_assemble_done(zio_t *zio)
1635 {
1636 	zio_t *gio = zio->io_gang_leader;
1637 	zio_gang_node_t *gn = zio->io_private;
1638 	blkptr_t *bp = zio->io_bp;
1639 
1640 	ASSERT(gio == zio_unique_parent(zio));
1641 	ASSERT(zio->io_child_count == 0);
1642 
1643 	if (zio->io_error)
1644 		return;
1645 
1646 	if (BP_SHOULD_BYTESWAP(bp))
1647 		byteswap_uint64_array(zio->io_data, zio->io_size);
1648 
1649 	ASSERT(zio->io_data == gn->gn_gbh);
1650 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1651 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1652 
1653 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1654 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1655 		if (!BP_IS_GANG(gbp))
1656 			continue;
1657 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1658 	}
1659 }
1660 
1661 static void
1662 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1663 {
1664 	zio_t *gio = pio->io_gang_leader;
1665 	zio_t *zio;
1666 
1667 	ASSERT(BP_IS_GANG(bp) == !!gn);
1668 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1669 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1670 
1671 	/*
1672 	 * If you're a gang header, your data is in gn->gn_gbh.
1673 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1674 	 */
1675 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1676 
1677 	if (gn != NULL) {
1678 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1679 
1680 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1681 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1682 			if (BP_IS_HOLE(gbp))
1683 				continue;
1684 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1685 			data = (char *)data + BP_GET_PSIZE(gbp);
1686 		}
1687 	}
1688 
1689 	if (gn == gio->io_gang_tree)
1690 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1691 
1692 	if (zio != pio)
1693 		zio_nowait(zio);
1694 }
1695 
1696 static int
1697 zio_gang_assemble(zio_t *zio)
1698 {
1699 	blkptr_t *bp = zio->io_bp;
1700 
1701 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1702 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1703 
1704 	zio->io_gang_leader = zio;
1705 
1706 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1707 
1708 	return (ZIO_PIPELINE_CONTINUE);
1709 }
1710 
1711 static int
1712 zio_gang_issue(zio_t *zio)
1713 {
1714 	blkptr_t *bp = zio->io_bp;
1715 
1716 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1717 		return (ZIO_PIPELINE_STOP);
1718 
1719 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1720 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1721 
1722 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1723 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1724 	else
1725 		zio_gang_tree_free(&zio->io_gang_tree);
1726 
1727 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1728 
1729 	return (ZIO_PIPELINE_CONTINUE);
1730 }
1731 
1732 static void
1733 zio_write_gang_member_ready(zio_t *zio)
1734 {
1735 	zio_t *pio = zio_unique_parent(zio);
1736 	zio_t *gio = zio->io_gang_leader;
1737 	dva_t *cdva = zio->io_bp->blk_dva;
1738 	dva_t *pdva = pio->io_bp->blk_dva;
1739 	uint64_t asize;
1740 
1741 	if (BP_IS_HOLE(zio->io_bp))
1742 		return;
1743 
1744 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1745 
1746 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1747 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1748 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1749 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1750 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1751 
1752 	mutex_enter(&pio->io_lock);
1753 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1754 		ASSERT(DVA_GET_GANG(&pdva[d]));
1755 		asize = DVA_GET_ASIZE(&pdva[d]);
1756 		asize += DVA_GET_ASIZE(&cdva[d]);
1757 		DVA_SET_ASIZE(&pdva[d], asize);
1758 	}
1759 	mutex_exit(&pio->io_lock);
1760 }
1761 
1762 static int
1763 zio_write_gang_block(zio_t *pio)
1764 {
1765 	spa_t *spa = pio->io_spa;
1766 	blkptr_t *bp = pio->io_bp;
1767 	zio_t *gio = pio->io_gang_leader;
1768 	zio_t *zio;
1769 	zio_gang_node_t *gn, **gnpp;
1770 	zio_gbh_phys_t *gbh;
1771 	uint64_t txg = pio->io_txg;
1772 	uint64_t resid = pio->io_size;
1773 	uint64_t lsize;
1774 	int copies = gio->io_prop.zp_copies;
1775 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1776 	zio_prop_t zp;
1777 	int error;
1778 
1779 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1780 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1781 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1782 	if (error) {
1783 		pio->io_error = error;
1784 		return (ZIO_PIPELINE_CONTINUE);
1785 	}
1786 
1787 	if (pio == gio) {
1788 		gnpp = &gio->io_gang_tree;
1789 	} else {
1790 		gnpp = pio->io_private;
1791 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1792 	}
1793 
1794 	gn = zio_gang_node_alloc(gnpp);
1795 	gbh = gn->gn_gbh;
1796 	bzero(gbh, SPA_GANGBLOCKSIZE);
1797 
1798 	/*
1799 	 * Create the gang header.
1800 	 */
1801 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1802 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1803 
1804 	/*
1805 	 * Create and nowait the gang children.
1806 	 */
1807 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1808 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1809 		    SPA_MINBLOCKSIZE);
1810 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1811 
1812 		zp.zp_checksum = gio->io_prop.zp_checksum;
1813 		zp.zp_compress = ZIO_COMPRESS_OFF;
1814 		zp.zp_type = DMU_OT_NONE;
1815 		zp.zp_level = 0;
1816 		zp.zp_copies = gio->io_prop.zp_copies;
1817 		zp.zp_dedup = B_FALSE;
1818 		zp.zp_dedup_verify = B_FALSE;
1819 		zp.zp_nopwrite = B_FALSE;
1820 
1821 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1822 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1823 		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1824 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1825 		    &pio->io_bookmark));
1826 	}
1827 
1828 	/*
1829 	 * Set pio's pipeline to just wait for zio to finish.
1830 	 */
1831 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1832 
1833 	zio_nowait(zio);
1834 
1835 	return (ZIO_PIPELINE_CONTINUE);
1836 }
1837 
1838 /*
1839  * The zio_nop_write stage in the pipeline determines if allocating
1840  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1841  * such as SHA256, we can compare the checksums of the new data and the old
1842  * to determine if allocating a new block is required.  The nopwrite
1843  * feature can handle writes in either syncing or open context (i.e. zil
1844  * writes) and as a result is mutually exclusive with dedup.
1845  */
1846 static int
1847 zio_nop_write(zio_t *zio)
1848 {
1849 	blkptr_t *bp = zio->io_bp;
1850 	blkptr_t *bp_orig = &zio->io_bp_orig;
1851 	zio_prop_t *zp = &zio->io_prop;
1852 
1853 	ASSERT(BP_GET_LEVEL(bp) == 0);
1854 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1855 	ASSERT(zp->zp_nopwrite);
1856 	ASSERT(!zp->zp_dedup);
1857 	ASSERT(zio->io_bp_override == NULL);
1858 	ASSERT(IO_IS_ALLOCATING(zio));
1859 
1860 	/*
1861 	 * Check to see if the original bp and the new bp have matching
1862 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1863 	 * If they don't then just continue with the pipeline which will
1864 	 * allocate a new bp.
1865 	 */
1866 	if (BP_IS_HOLE(bp_orig) ||
1867 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1868 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1869 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1870 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1871 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1872 		return (ZIO_PIPELINE_CONTINUE);
1873 
1874 	/*
1875 	 * If the checksums match then reset the pipeline so that we
1876 	 * avoid allocating a new bp and issuing any I/O.
1877 	 */
1878 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1879 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1880 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1881 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1882 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1883 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1884 		    sizeof (uint64_t)) == 0);
1885 
1886 		*bp = *bp_orig;
1887 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1888 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1889 	}
1890 
1891 	return (ZIO_PIPELINE_CONTINUE);
1892 }
1893 
1894 /*
1895  * ==========================================================================
1896  * Dedup
1897  * ==========================================================================
1898  */
1899 static void
1900 zio_ddt_child_read_done(zio_t *zio)
1901 {
1902 	blkptr_t *bp = zio->io_bp;
1903 	ddt_entry_t *dde = zio->io_private;
1904 	ddt_phys_t *ddp;
1905 	zio_t *pio = zio_unique_parent(zio);
1906 
1907 	mutex_enter(&pio->io_lock);
1908 	ddp = ddt_phys_select(dde, bp);
1909 	if (zio->io_error == 0)
1910 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1911 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1912 		dde->dde_repair_data = zio->io_data;
1913 	else
1914 		zio_buf_free(zio->io_data, zio->io_size);
1915 	mutex_exit(&pio->io_lock);
1916 }
1917 
1918 static int
1919 zio_ddt_read_start(zio_t *zio)
1920 {
1921 	blkptr_t *bp = zio->io_bp;
1922 
1923 	ASSERT(BP_GET_DEDUP(bp));
1924 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1925 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1926 
1927 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1928 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1929 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1930 		ddt_phys_t *ddp = dde->dde_phys;
1931 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1932 		blkptr_t blk;
1933 
1934 		ASSERT(zio->io_vsd == NULL);
1935 		zio->io_vsd = dde;
1936 
1937 		if (ddp_self == NULL)
1938 			return (ZIO_PIPELINE_CONTINUE);
1939 
1940 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1941 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1942 				continue;
1943 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1944 			    &blk);
1945 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1946 			    zio_buf_alloc(zio->io_size), zio->io_size,
1947 			    zio_ddt_child_read_done, dde, zio->io_priority,
1948 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1949 			    &zio->io_bookmark));
1950 		}
1951 		return (ZIO_PIPELINE_CONTINUE);
1952 	}
1953 
1954 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1955 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1956 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1957 
1958 	return (ZIO_PIPELINE_CONTINUE);
1959 }
1960 
1961 static int
1962 zio_ddt_read_done(zio_t *zio)
1963 {
1964 	blkptr_t *bp = zio->io_bp;
1965 
1966 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1967 		return (ZIO_PIPELINE_STOP);
1968 
1969 	ASSERT(BP_GET_DEDUP(bp));
1970 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1971 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1972 
1973 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1974 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1975 		ddt_entry_t *dde = zio->io_vsd;
1976 		if (ddt == NULL) {
1977 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1978 			return (ZIO_PIPELINE_CONTINUE);
1979 		}
1980 		if (dde == NULL) {
1981 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1982 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1983 			return (ZIO_PIPELINE_STOP);
1984 		}
1985 		if (dde->dde_repair_data != NULL) {
1986 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1987 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1988 		}
1989 		ddt_repair_done(ddt, dde);
1990 		zio->io_vsd = NULL;
1991 	}
1992 
1993 	ASSERT(zio->io_vsd == NULL);
1994 
1995 	return (ZIO_PIPELINE_CONTINUE);
1996 }
1997 
1998 static boolean_t
1999 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2000 {
2001 	spa_t *spa = zio->io_spa;
2002 
2003 	/*
2004 	 * Note: we compare the original data, not the transformed data,
2005 	 * because when zio->io_bp is an override bp, we will not have
2006 	 * pushed the I/O transforms.  That's an important optimization
2007 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2008 	 */
2009 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2010 		zio_t *lio = dde->dde_lead_zio[p];
2011 
2012 		if (lio != NULL) {
2013 			return (lio->io_orig_size != zio->io_orig_size ||
2014 			    bcmp(zio->io_orig_data, lio->io_orig_data,
2015 			    zio->io_orig_size) != 0);
2016 		}
2017 	}
2018 
2019 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2020 		ddt_phys_t *ddp = &dde->dde_phys[p];
2021 
2022 		if (ddp->ddp_phys_birth != 0) {
2023 			arc_buf_t *abuf = NULL;
2024 			uint32_t aflags = ARC_WAIT;
2025 			blkptr_t blk = *zio->io_bp;
2026 			int error;
2027 
2028 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2029 
2030 			ddt_exit(ddt);
2031 
2032 			error = arc_read(NULL, spa, &blk,
2033 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2034 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2035 			    &aflags, &zio->io_bookmark);
2036 
2037 			if (error == 0) {
2038 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2039 				    bcmp(abuf->b_data, zio->io_orig_data,
2040 				    zio->io_orig_size) != 0)
2041 					error = SET_ERROR(EEXIST);
2042 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2043 			}
2044 
2045 			ddt_enter(ddt);
2046 			return (error != 0);
2047 		}
2048 	}
2049 
2050 	return (B_FALSE);
2051 }
2052 
2053 static void
2054 zio_ddt_child_write_ready(zio_t *zio)
2055 {
2056 	int p = zio->io_prop.zp_copies;
2057 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2058 	ddt_entry_t *dde = zio->io_private;
2059 	ddt_phys_t *ddp = &dde->dde_phys[p];
2060 	zio_t *pio;
2061 
2062 	if (zio->io_error)
2063 		return;
2064 
2065 	ddt_enter(ddt);
2066 
2067 	ASSERT(dde->dde_lead_zio[p] == zio);
2068 
2069 	ddt_phys_fill(ddp, zio->io_bp);
2070 
2071 	while ((pio = zio_walk_parents(zio)) != NULL)
2072 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2073 
2074 	ddt_exit(ddt);
2075 }
2076 
2077 static void
2078 zio_ddt_child_write_done(zio_t *zio)
2079 {
2080 	int p = zio->io_prop.zp_copies;
2081 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2082 	ddt_entry_t *dde = zio->io_private;
2083 	ddt_phys_t *ddp = &dde->dde_phys[p];
2084 
2085 	ddt_enter(ddt);
2086 
2087 	ASSERT(ddp->ddp_refcnt == 0);
2088 	ASSERT(dde->dde_lead_zio[p] == zio);
2089 	dde->dde_lead_zio[p] = NULL;
2090 
2091 	if (zio->io_error == 0) {
2092 		while (zio_walk_parents(zio) != NULL)
2093 			ddt_phys_addref(ddp);
2094 	} else {
2095 		ddt_phys_clear(ddp);
2096 	}
2097 
2098 	ddt_exit(ddt);
2099 }
2100 
2101 static void
2102 zio_ddt_ditto_write_done(zio_t *zio)
2103 {
2104 	int p = DDT_PHYS_DITTO;
2105 	zio_prop_t *zp = &zio->io_prop;
2106 	blkptr_t *bp = zio->io_bp;
2107 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2108 	ddt_entry_t *dde = zio->io_private;
2109 	ddt_phys_t *ddp = &dde->dde_phys[p];
2110 	ddt_key_t *ddk = &dde->dde_key;
2111 
2112 	ddt_enter(ddt);
2113 
2114 	ASSERT(ddp->ddp_refcnt == 0);
2115 	ASSERT(dde->dde_lead_zio[p] == zio);
2116 	dde->dde_lead_zio[p] = NULL;
2117 
2118 	if (zio->io_error == 0) {
2119 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2120 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2121 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2122 		if (ddp->ddp_phys_birth != 0)
2123 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2124 		ddt_phys_fill(ddp, bp);
2125 	}
2126 
2127 	ddt_exit(ddt);
2128 }
2129 
2130 static int
2131 zio_ddt_write(zio_t *zio)
2132 {
2133 	spa_t *spa = zio->io_spa;
2134 	blkptr_t *bp = zio->io_bp;
2135 	uint64_t txg = zio->io_txg;
2136 	zio_prop_t *zp = &zio->io_prop;
2137 	int p = zp->zp_copies;
2138 	int ditto_copies;
2139 	zio_t *cio = NULL;
2140 	zio_t *dio = NULL;
2141 	ddt_t *ddt = ddt_select(spa, bp);
2142 	ddt_entry_t *dde;
2143 	ddt_phys_t *ddp;
2144 
2145 	ASSERT(BP_GET_DEDUP(bp));
2146 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2147 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2148 
2149 	ddt_enter(ddt);
2150 	dde = ddt_lookup(ddt, bp, B_TRUE);
2151 	ddp = &dde->dde_phys[p];
2152 
2153 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2154 		/*
2155 		 * If we're using a weak checksum, upgrade to a strong checksum
2156 		 * and try again.  If we're already using a strong checksum,
2157 		 * we can't resolve it, so just convert to an ordinary write.
2158 		 * (And automatically e-mail a paper to Nature?)
2159 		 */
2160 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2161 			zp->zp_checksum = spa_dedup_checksum(spa);
2162 			zio_pop_transforms(zio);
2163 			zio->io_stage = ZIO_STAGE_OPEN;
2164 			BP_ZERO(bp);
2165 		} else {
2166 			zp->zp_dedup = B_FALSE;
2167 		}
2168 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2169 		ddt_exit(ddt);
2170 		return (ZIO_PIPELINE_CONTINUE);
2171 	}
2172 
2173 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2174 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2175 
2176 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2177 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2178 		zio_prop_t czp = *zp;
2179 
2180 		czp.zp_copies = ditto_copies;
2181 
2182 		/*
2183 		 * If we arrived here with an override bp, we won't have run
2184 		 * the transform stack, so we won't have the data we need to
2185 		 * generate a child i/o.  So, toss the override bp and restart.
2186 		 * This is safe, because using the override bp is just an
2187 		 * optimization; and it's rare, so the cost doesn't matter.
2188 		 */
2189 		if (zio->io_bp_override) {
2190 			zio_pop_transforms(zio);
2191 			zio->io_stage = ZIO_STAGE_OPEN;
2192 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2193 			zio->io_bp_override = NULL;
2194 			BP_ZERO(bp);
2195 			ddt_exit(ddt);
2196 			return (ZIO_PIPELINE_CONTINUE);
2197 		}
2198 
2199 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2200 		    zio->io_orig_size, &czp, NULL, NULL,
2201 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2202 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2203 
2204 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2205 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2206 	}
2207 
2208 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2209 		if (ddp->ddp_phys_birth != 0)
2210 			ddt_bp_fill(ddp, bp, txg);
2211 		if (dde->dde_lead_zio[p] != NULL)
2212 			zio_add_child(zio, dde->dde_lead_zio[p]);
2213 		else
2214 			ddt_phys_addref(ddp);
2215 	} else if (zio->io_bp_override) {
2216 		ASSERT(bp->blk_birth == txg);
2217 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2218 		ddt_phys_fill(ddp, bp);
2219 		ddt_phys_addref(ddp);
2220 	} else {
2221 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2222 		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2223 		    zio_ddt_child_write_done, dde, zio->io_priority,
2224 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2225 
2226 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2227 		dde->dde_lead_zio[p] = cio;
2228 	}
2229 
2230 	ddt_exit(ddt);
2231 
2232 	if (cio)
2233 		zio_nowait(cio);
2234 	if (dio)
2235 		zio_nowait(dio);
2236 
2237 	return (ZIO_PIPELINE_CONTINUE);
2238 }
2239 
2240 ddt_entry_t *freedde; /* for debugging */
2241 
2242 static int
2243 zio_ddt_free(zio_t *zio)
2244 {
2245 	spa_t *spa = zio->io_spa;
2246 	blkptr_t *bp = zio->io_bp;
2247 	ddt_t *ddt = ddt_select(spa, bp);
2248 	ddt_entry_t *dde;
2249 	ddt_phys_t *ddp;
2250 
2251 	ASSERT(BP_GET_DEDUP(bp));
2252 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2253 
2254 	ddt_enter(ddt);
2255 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2256 	ddp = ddt_phys_select(dde, bp);
2257 	ddt_phys_decref(ddp);
2258 	ddt_exit(ddt);
2259 
2260 	return (ZIO_PIPELINE_CONTINUE);
2261 }
2262 
2263 /*
2264  * ==========================================================================
2265  * Allocate and free blocks
2266  * ==========================================================================
2267  */
2268 static int
2269 zio_dva_allocate(zio_t *zio)
2270 {
2271 	spa_t *spa = zio->io_spa;
2272 	metaslab_class_t *mc = spa_normal_class(spa);
2273 	blkptr_t *bp = zio->io_bp;
2274 	int error;
2275 	int flags = 0;
2276 
2277 	if (zio->io_gang_leader == NULL) {
2278 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2279 		zio->io_gang_leader = zio;
2280 	}
2281 
2282 	ASSERT(BP_IS_HOLE(bp));
2283 	ASSERT0(BP_GET_NDVAS(bp));
2284 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2285 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2286 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2287 
2288 	/*
2289 	 * The dump device does not support gang blocks so allocation on
2290 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2291 	 * the "fast" gang feature.
2292 	 */
2293 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2294 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2295 	    METASLAB_GANG_CHILD : 0;
2296 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2297 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2298 
2299 	if (error) {
2300 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2301 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2302 		    error);
2303 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2304 			return (zio_write_gang_block(zio));
2305 		zio->io_error = error;
2306 	}
2307 
2308 	return (ZIO_PIPELINE_CONTINUE);
2309 }
2310 
2311 static int
2312 zio_dva_free(zio_t *zio)
2313 {
2314 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2315 
2316 	return (ZIO_PIPELINE_CONTINUE);
2317 }
2318 
2319 static int
2320 zio_dva_claim(zio_t *zio)
2321 {
2322 	int error;
2323 
2324 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2325 	if (error)
2326 		zio->io_error = error;
2327 
2328 	return (ZIO_PIPELINE_CONTINUE);
2329 }
2330 
2331 /*
2332  * Undo an allocation.  This is used by zio_done() when an I/O fails
2333  * and we want to give back the block we just allocated.
2334  * This handles both normal blocks and gang blocks.
2335  */
2336 static void
2337 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2338 {
2339 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2340 	ASSERT(zio->io_bp_override == NULL);
2341 
2342 	if (!BP_IS_HOLE(bp))
2343 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2344 
2345 	if (gn != NULL) {
2346 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2347 			zio_dva_unallocate(zio, gn->gn_child[g],
2348 			    &gn->gn_gbh->zg_blkptr[g]);
2349 		}
2350 	}
2351 }
2352 
2353 /*
2354  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2355  */
2356 int
2357 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2358     uint64_t size, boolean_t use_slog)
2359 {
2360 	int error = 1;
2361 
2362 	ASSERT(txg > spa_syncing_txg(spa));
2363 
2364 	/*
2365 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2366 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2367 	 * when allocating them.
2368 	 */
2369 	if (use_slog) {
2370 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2371 		    new_bp, 1, txg, old_bp,
2372 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2373 	}
2374 
2375 	if (error) {
2376 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2377 		    new_bp, 1, txg, old_bp,
2378 		    METASLAB_HINTBP_AVOID);
2379 	}
2380 
2381 	if (error == 0) {
2382 		BP_SET_LSIZE(new_bp, size);
2383 		BP_SET_PSIZE(new_bp, size);
2384 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2385 		BP_SET_CHECKSUM(new_bp,
2386 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2387 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2388 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2389 		BP_SET_LEVEL(new_bp, 0);
2390 		BP_SET_DEDUP(new_bp, 0);
2391 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2392 	}
2393 
2394 	return (error);
2395 }
2396 
2397 /*
2398  * Free an intent log block.
2399  */
2400 void
2401 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2402 {
2403 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2404 	ASSERT(!BP_IS_GANG(bp));
2405 
2406 	zio_free(spa, txg, bp);
2407 }
2408 
2409 /*
2410  * ==========================================================================
2411  * Read and write to physical devices
2412  * ==========================================================================
2413  */
2414 static int
2415 zio_vdev_io_start(zio_t *zio)
2416 {
2417 	vdev_t *vd = zio->io_vd;
2418 	uint64_t align;
2419 	spa_t *spa = zio->io_spa;
2420 
2421 	ASSERT(zio->io_error == 0);
2422 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2423 
2424 	if (vd == NULL) {
2425 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2426 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2427 
2428 		/*
2429 		 * The mirror_ops handle multiple DVAs in a single BP.
2430 		 */
2431 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2432 	}
2433 
2434 	/*
2435 	 * We keep track of time-sensitive I/Os so that the scan thread
2436 	 * can quickly react to certain workloads.  In particular, we care
2437 	 * about non-scrubbing, top-level reads and writes with the following
2438 	 * characteristics:
2439 	 * 	- synchronous writes of user data to non-slog devices
2440 	 *	- any reads of user data
2441 	 * When these conditions are met, adjust the timestamp of spa_last_io
2442 	 * which allows the scan thread to adjust its workload accordingly.
2443 	 */
2444 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2445 	    vd == vd->vdev_top && !vd->vdev_islog &&
2446 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2447 	    zio->io_txg != spa_syncing_txg(spa)) {
2448 		uint64_t old = spa->spa_last_io;
2449 		uint64_t new = ddi_get_lbolt64();
2450 		if (old != new)
2451 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2452 	}
2453 
2454 	align = 1ULL << vd->vdev_top->vdev_ashift;
2455 
2456 	if (P2PHASE(zio->io_size, align) != 0) {
2457 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2458 		char *abuf = zio_buf_alloc(asize);
2459 		ASSERT(vd == vd->vdev_top);
2460 		if (zio->io_type == ZIO_TYPE_WRITE) {
2461 			bcopy(zio->io_data, abuf, zio->io_size);
2462 			bzero(abuf + zio->io_size, asize - zio->io_size);
2463 		}
2464 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2465 	}
2466 
2467 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2468 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2469 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2470 
2471 	/*
2472 	 * If this is a repair I/O, and there's no self-healing involved --
2473 	 * that is, we're just resilvering what we expect to resilver --
2474 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2475 	 * This prevents spurious resilvering with nested replication.
2476 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2477 	 * A is out of date, we'll read from C+D, then use the data to
2478 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2479 	 * The top-level mirror has no way to know this, so instead we just
2480 	 * discard unnecessary repairs as we work our way down the vdev tree.
2481 	 * The same logic applies to any form of nested replication:
2482 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2483 	 */
2484 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2485 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2486 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2487 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2488 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2489 		zio_vdev_io_bypass(zio);
2490 		return (ZIO_PIPELINE_CONTINUE);
2491 	}
2492 
2493 	if (vd->vdev_ops->vdev_op_leaf &&
2494 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2495 
2496 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2497 			return (ZIO_PIPELINE_CONTINUE);
2498 
2499 		if ((zio = vdev_queue_io(zio)) == NULL)
2500 			return (ZIO_PIPELINE_STOP);
2501 
2502 		if (!vdev_accessible(vd, zio)) {
2503 			zio->io_error = SET_ERROR(ENXIO);
2504 			zio_interrupt(zio);
2505 			return (ZIO_PIPELINE_STOP);
2506 		}
2507 	}
2508 
2509 	return (vd->vdev_ops->vdev_op_io_start(zio));
2510 }
2511 
2512 static int
2513 zio_vdev_io_done(zio_t *zio)
2514 {
2515 	vdev_t *vd = zio->io_vd;
2516 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2517 	boolean_t unexpected_error = B_FALSE;
2518 
2519 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2520 		return (ZIO_PIPELINE_STOP);
2521 
2522 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2523 
2524 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2525 
2526 		vdev_queue_io_done(zio);
2527 
2528 		if (zio->io_type == ZIO_TYPE_WRITE)
2529 			vdev_cache_write(zio);
2530 
2531 		if (zio_injection_enabled && zio->io_error == 0)
2532 			zio->io_error = zio_handle_device_injection(vd,
2533 			    zio, EIO);
2534 
2535 		if (zio_injection_enabled && zio->io_error == 0)
2536 			zio->io_error = zio_handle_label_injection(zio, EIO);
2537 
2538 		if (zio->io_error) {
2539 			if (!vdev_accessible(vd, zio)) {
2540 				zio->io_error = SET_ERROR(ENXIO);
2541 			} else {
2542 				unexpected_error = B_TRUE;
2543 			}
2544 		}
2545 	}
2546 
2547 	ops->vdev_op_io_done(zio);
2548 
2549 	if (unexpected_error)
2550 		VERIFY(vdev_probe(vd, zio) == NULL);
2551 
2552 	return (ZIO_PIPELINE_CONTINUE);
2553 }
2554 
2555 /*
2556  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2557  * disk, and use that to finish the checksum ereport later.
2558  */
2559 static void
2560 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2561     const void *good_buf)
2562 {
2563 	/* no processing needed */
2564 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2565 }
2566 
2567 /*ARGSUSED*/
2568 void
2569 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2570 {
2571 	void *buf = zio_buf_alloc(zio->io_size);
2572 
2573 	bcopy(zio->io_data, buf, zio->io_size);
2574 
2575 	zcr->zcr_cbinfo = zio->io_size;
2576 	zcr->zcr_cbdata = buf;
2577 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2578 	zcr->zcr_free = zio_buf_free;
2579 }
2580 
2581 static int
2582 zio_vdev_io_assess(zio_t *zio)
2583 {
2584 	vdev_t *vd = zio->io_vd;
2585 
2586 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2587 		return (ZIO_PIPELINE_STOP);
2588 
2589 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2590 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2591 
2592 	if (zio->io_vsd != NULL) {
2593 		zio->io_vsd_ops->vsd_free(zio);
2594 		zio->io_vsd = NULL;
2595 	}
2596 
2597 	if (zio_injection_enabled && zio->io_error == 0)
2598 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2599 
2600 	/*
2601 	 * If the I/O failed, determine whether we should attempt to retry it.
2602 	 *
2603 	 * On retry, we cut in line in the issue queue, since we don't want
2604 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2605 	 */
2606 	if (zio->io_error && vd == NULL &&
2607 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2608 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2609 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2610 		zio->io_error = 0;
2611 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2612 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2613 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2614 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2615 		    zio_requeue_io_start_cut_in_line);
2616 		return (ZIO_PIPELINE_STOP);
2617 	}
2618 
2619 	/*
2620 	 * If we got an error on a leaf device, convert it to ENXIO
2621 	 * if the device is not accessible at all.
2622 	 */
2623 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2624 	    !vdev_accessible(vd, zio))
2625 		zio->io_error = SET_ERROR(ENXIO);
2626 
2627 	/*
2628 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2629 	 * set vdev_cant_write so that we stop trying to allocate from it.
2630 	 */
2631 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2632 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2633 		vd->vdev_cant_write = B_TRUE;
2634 	}
2635 
2636 	if (zio->io_error)
2637 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2638 
2639 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2640 	    zio->io_physdone != NULL) {
2641 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2642 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2643 		zio->io_physdone(zio->io_logical);
2644 	}
2645 
2646 	return (ZIO_PIPELINE_CONTINUE);
2647 }
2648 
2649 void
2650 zio_vdev_io_reissue(zio_t *zio)
2651 {
2652 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2653 	ASSERT(zio->io_error == 0);
2654 
2655 	zio->io_stage >>= 1;
2656 }
2657 
2658 void
2659 zio_vdev_io_redone(zio_t *zio)
2660 {
2661 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2662 
2663 	zio->io_stage >>= 1;
2664 }
2665 
2666 void
2667 zio_vdev_io_bypass(zio_t *zio)
2668 {
2669 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2670 	ASSERT(zio->io_error == 0);
2671 
2672 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2673 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2674 }
2675 
2676 /*
2677  * ==========================================================================
2678  * Generate and verify checksums
2679  * ==========================================================================
2680  */
2681 static int
2682 zio_checksum_generate(zio_t *zio)
2683 {
2684 	blkptr_t *bp = zio->io_bp;
2685 	enum zio_checksum checksum;
2686 
2687 	if (bp == NULL) {
2688 		/*
2689 		 * This is zio_write_phys().
2690 		 * We're either generating a label checksum, or none at all.
2691 		 */
2692 		checksum = zio->io_prop.zp_checksum;
2693 
2694 		if (checksum == ZIO_CHECKSUM_OFF)
2695 			return (ZIO_PIPELINE_CONTINUE);
2696 
2697 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2698 	} else {
2699 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2700 			ASSERT(!IO_IS_ALLOCATING(zio));
2701 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2702 		} else {
2703 			checksum = BP_GET_CHECKSUM(bp);
2704 		}
2705 	}
2706 
2707 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2708 
2709 	return (ZIO_PIPELINE_CONTINUE);
2710 }
2711 
2712 static int
2713 zio_checksum_verify(zio_t *zio)
2714 {
2715 	zio_bad_cksum_t info;
2716 	blkptr_t *bp = zio->io_bp;
2717 	int error;
2718 
2719 	ASSERT(zio->io_vd != NULL);
2720 
2721 	if (bp == NULL) {
2722 		/*
2723 		 * This is zio_read_phys().
2724 		 * We're either verifying a label checksum, or nothing at all.
2725 		 */
2726 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2727 			return (ZIO_PIPELINE_CONTINUE);
2728 
2729 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2730 	}
2731 
2732 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2733 		zio->io_error = error;
2734 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2735 			zfs_ereport_start_checksum(zio->io_spa,
2736 			    zio->io_vd, zio, zio->io_offset,
2737 			    zio->io_size, NULL, &info);
2738 		}
2739 	}
2740 
2741 	return (ZIO_PIPELINE_CONTINUE);
2742 }
2743 
2744 /*
2745  * Called by RAID-Z to ensure we don't compute the checksum twice.
2746  */
2747 void
2748 zio_checksum_verified(zio_t *zio)
2749 {
2750 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2751 }
2752 
2753 /*
2754  * ==========================================================================
2755  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2756  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2757  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2758  * indicate errors that are specific to one I/O, and most likely permanent.
2759  * Any other error is presumed to be worse because we weren't expecting it.
2760  * ==========================================================================
2761  */
2762 int
2763 zio_worst_error(int e1, int e2)
2764 {
2765 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2766 	int r1, r2;
2767 
2768 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2769 		if (e1 == zio_error_rank[r1])
2770 			break;
2771 
2772 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2773 		if (e2 == zio_error_rank[r2])
2774 			break;
2775 
2776 	return (r1 > r2 ? e1 : e2);
2777 }
2778 
2779 /*
2780  * ==========================================================================
2781  * I/O completion
2782  * ==========================================================================
2783  */
2784 static int
2785 zio_ready(zio_t *zio)
2786 {
2787 	blkptr_t *bp = zio->io_bp;
2788 	zio_t *pio, *pio_next;
2789 
2790 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2791 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2792 		return (ZIO_PIPELINE_STOP);
2793 
2794 	if (zio->io_ready) {
2795 		ASSERT(IO_IS_ALLOCATING(zio));
2796 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2797 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2798 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2799 
2800 		zio->io_ready(zio);
2801 	}
2802 
2803 	if (bp != NULL && bp != &zio->io_bp_copy)
2804 		zio->io_bp_copy = *bp;
2805 
2806 	if (zio->io_error)
2807 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2808 
2809 	mutex_enter(&zio->io_lock);
2810 	zio->io_state[ZIO_WAIT_READY] = 1;
2811 	pio = zio_walk_parents(zio);
2812 	mutex_exit(&zio->io_lock);
2813 
2814 	/*
2815 	 * As we notify zio's parents, new parents could be added.
2816 	 * New parents go to the head of zio's io_parent_list, however,
2817 	 * so we will (correctly) not notify them.  The remainder of zio's
2818 	 * io_parent_list, from 'pio_next' onward, cannot change because
2819 	 * all parents must wait for us to be done before they can be done.
2820 	 */
2821 	for (; pio != NULL; pio = pio_next) {
2822 		pio_next = zio_walk_parents(zio);
2823 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2824 	}
2825 
2826 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2827 		if (BP_IS_GANG(bp)) {
2828 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2829 		} else {
2830 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2831 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2832 		}
2833 	}
2834 
2835 	if (zio_injection_enabled &&
2836 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2837 		zio_handle_ignored_writes(zio);
2838 
2839 	return (ZIO_PIPELINE_CONTINUE);
2840 }
2841 
2842 static int
2843 zio_done(zio_t *zio)
2844 {
2845 	spa_t *spa = zio->io_spa;
2846 	zio_t *lio = zio->io_logical;
2847 	blkptr_t *bp = zio->io_bp;
2848 	vdev_t *vd = zio->io_vd;
2849 	uint64_t psize = zio->io_size;
2850 	zio_t *pio, *pio_next;
2851 
2852 	/*
2853 	 * If our children haven't all completed,
2854 	 * wait for them and then repeat this pipeline stage.
2855 	 */
2856 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2857 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2858 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2859 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2860 		return (ZIO_PIPELINE_STOP);
2861 
2862 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2863 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2864 			ASSERT(zio->io_children[c][w] == 0);
2865 
2866 	if (bp != NULL) {
2867 		ASSERT(bp->blk_pad[0] == 0);
2868 		ASSERT(bp->blk_pad[1] == 0);
2869 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2870 		    (bp == zio_unique_parent(zio)->io_bp));
2871 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2872 		    zio->io_bp_override == NULL &&
2873 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2874 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2875 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2876 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2877 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2878 		}
2879 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2880 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2881 	}
2882 
2883 	/*
2884 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2885 	 */
2886 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2887 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2888 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2889 
2890 	/*
2891 	 * If the I/O on the transformed data was successful, generate any
2892 	 * checksum reports now while we still have the transformed data.
2893 	 */
2894 	if (zio->io_error == 0) {
2895 		while (zio->io_cksum_report != NULL) {
2896 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2897 			uint64_t align = zcr->zcr_align;
2898 			uint64_t asize = P2ROUNDUP(psize, align);
2899 			char *abuf = zio->io_data;
2900 
2901 			if (asize != psize) {
2902 				abuf = zio_buf_alloc(asize);
2903 				bcopy(zio->io_data, abuf, psize);
2904 				bzero(abuf + psize, asize - psize);
2905 			}
2906 
2907 			zio->io_cksum_report = zcr->zcr_next;
2908 			zcr->zcr_next = NULL;
2909 			zcr->zcr_finish(zcr, abuf);
2910 			zfs_ereport_free_checksum(zcr);
2911 
2912 			if (asize != psize)
2913 				zio_buf_free(abuf, asize);
2914 		}
2915 	}
2916 
2917 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2918 
2919 	vdev_stat_update(zio, psize);
2920 
2921 	if (zio->io_error) {
2922 		/*
2923 		 * If this I/O is attached to a particular vdev,
2924 		 * generate an error message describing the I/O failure
2925 		 * at the block level.  We ignore these errors if the
2926 		 * device is currently unavailable.
2927 		 */
2928 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2929 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2930 
2931 		if ((zio->io_error == EIO || !(zio->io_flags &
2932 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2933 		    zio == lio) {
2934 			/*
2935 			 * For logical I/O requests, tell the SPA to log the
2936 			 * error and generate a logical data ereport.
2937 			 */
2938 			spa_log_error(spa, zio);
2939 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2940 			    0, 0);
2941 		}
2942 	}
2943 
2944 	if (zio->io_error && zio == lio) {
2945 		/*
2946 		 * Determine whether zio should be reexecuted.  This will
2947 		 * propagate all the way to the root via zio_notify_parent().
2948 		 */
2949 		ASSERT(vd == NULL && bp != NULL);
2950 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2951 
2952 		if (IO_IS_ALLOCATING(zio) &&
2953 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2954 			if (zio->io_error != ENOSPC)
2955 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2956 			else
2957 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2958 		}
2959 
2960 		if ((zio->io_type == ZIO_TYPE_READ ||
2961 		    zio->io_type == ZIO_TYPE_FREE) &&
2962 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2963 		    zio->io_error == ENXIO &&
2964 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2965 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2966 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2967 
2968 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2969 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2970 
2971 		/*
2972 		 * Here is a possibly good place to attempt to do
2973 		 * either combinatorial reconstruction or error correction
2974 		 * based on checksums.  It also might be a good place
2975 		 * to send out preliminary ereports before we suspend
2976 		 * processing.
2977 		 */
2978 	}
2979 
2980 	/*
2981 	 * If there were logical child errors, they apply to us now.
2982 	 * We defer this until now to avoid conflating logical child
2983 	 * errors with errors that happened to the zio itself when
2984 	 * updating vdev stats and reporting FMA events above.
2985 	 */
2986 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2987 
2988 	if ((zio->io_error || zio->io_reexecute) &&
2989 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2990 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2991 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2992 
2993 	zio_gang_tree_free(&zio->io_gang_tree);
2994 
2995 	/*
2996 	 * Godfather I/Os should never suspend.
2997 	 */
2998 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2999 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3000 		zio->io_reexecute = 0;
3001 
3002 	if (zio->io_reexecute) {
3003 		/*
3004 		 * This is a logical I/O that wants to reexecute.
3005 		 *
3006 		 * Reexecute is top-down.  When an i/o fails, if it's not
3007 		 * the root, it simply notifies its parent and sticks around.
3008 		 * The parent, seeing that it still has children in zio_done(),
3009 		 * does the same.  This percolates all the way up to the root.
3010 		 * The root i/o will reexecute or suspend the entire tree.
3011 		 *
3012 		 * This approach ensures that zio_reexecute() honors
3013 		 * all the original i/o dependency relationships, e.g.
3014 		 * parents not executing until children are ready.
3015 		 */
3016 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3017 
3018 		zio->io_gang_leader = NULL;
3019 
3020 		mutex_enter(&zio->io_lock);
3021 		zio->io_state[ZIO_WAIT_DONE] = 1;
3022 		mutex_exit(&zio->io_lock);
3023 
3024 		/*
3025 		 * "The Godfather" I/O monitors its children but is
3026 		 * not a true parent to them. It will track them through
3027 		 * the pipeline but severs its ties whenever they get into
3028 		 * trouble (e.g. suspended). This allows "The Godfather"
3029 		 * I/O to return status without blocking.
3030 		 */
3031 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3032 			zio_link_t *zl = zio->io_walk_link;
3033 			pio_next = zio_walk_parents(zio);
3034 
3035 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3036 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3037 				zio_remove_child(pio, zio, zl);
3038 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3039 			}
3040 		}
3041 
3042 		if ((pio = zio_unique_parent(zio)) != NULL) {
3043 			/*
3044 			 * We're not a root i/o, so there's nothing to do
3045 			 * but notify our parent.  Don't propagate errors
3046 			 * upward since we haven't permanently failed yet.
3047 			 */
3048 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3049 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3050 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3051 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3052 			/*
3053 			 * We'd fail again if we reexecuted now, so suspend
3054 			 * until conditions improve (e.g. device comes online).
3055 			 */
3056 			zio_suspend(spa, zio);
3057 		} else {
3058 			/*
3059 			 * Reexecution is potentially a huge amount of work.
3060 			 * Hand it off to the otherwise-unused claim taskq.
3061 			 */
3062 			ASSERT(zio->io_tqent.tqent_next == NULL);
3063 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3064 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3065 			    0, &zio->io_tqent);
3066 		}
3067 		return (ZIO_PIPELINE_STOP);
3068 	}
3069 
3070 	ASSERT(zio->io_child_count == 0);
3071 	ASSERT(zio->io_reexecute == 0);
3072 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3073 
3074 	/*
3075 	 * Report any checksum errors, since the I/O is complete.
3076 	 */
3077 	while (zio->io_cksum_report != NULL) {
3078 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3079 		zio->io_cksum_report = zcr->zcr_next;
3080 		zcr->zcr_next = NULL;
3081 		zcr->zcr_finish(zcr, NULL);
3082 		zfs_ereport_free_checksum(zcr);
3083 	}
3084 
3085 	/*
3086 	 * It is the responsibility of the done callback to ensure that this
3087 	 * particular zio is no longer discoverable for adoption, and as
3088 	 * such, cannot acquire any new parents.
3089 	 */
3090 	if (zio->io_done)
3091 		zio->io_done(zio);
3092 
3093 	mutex_enter(&zio->io_lock);
3094 	zio->io_state[ZIO_WAIT_DONE] = 1;
3095 	mutex_exit(&zio->io_lock);
3096 
3097 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3098 		zio_link_t *zl = zio->io_walk_link;
3099 		pio_next = zio_walk_parents(zio);
3100 		zio_remove_child(pio, zio, zl);
3101 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3102 	}
3103 
3104 	if (zio->io_waiter != NULL) {
3105 		mutex_enter(&zio->io_lock);
3106 		zio->io_executor = NULL;
3107 		cv_broadcast(&zio->io_cv);
3108 		mutex_exit(&zio->io_lock);
3109 	} else {
3110 		zio_destroy(zio);
3111 	}
3112 
3113 	return (ZIO_PIPELINE_STOP);
3114 }
3115 
3116 /*
3117  * ==========================================================================
3118  * I/O pipeline definition
3119  * ==========================================================================
3120  */
3121 static zio_pipe_stage_t *zio_pipeline[] = {
3122 	NULL,
3123 	zio_read_bp_init,
3124 	zio_free_bp_init,
3125 	zio_issue_async,
3126 	zio_write_bp_init,
3127 	zio_checksum_generate,
3128 	zio_nop_write,
3129 	zio_ddt_read_start,
3130 	zio_ddt_read_done,
3131 	zio_ddt_write,
3132 	zio_ddt_free,
3133 	zio_gang_assemble,
3134 	zio_gang_issue,
3135 	zio_dva_allocate,
3136 	zio_dva_free,
3137 	zio_dva_claim,
3138 	zio_ready,
3139 	zio_vdev_io_start,
3140 	zio_vdev_io_done,
3141 	zio_vdev_io_assess,
3142 	zio_checksum_verify,
3143 	zio_done
3144 };
3145 
3146 /* dnp is the dnode for zb1->zb_object */
3147 boolean_t
3148 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3149     const zbookmark_t *zb2)
3150 {
3151 	uint64_t zb1nextL0, zb2thisobj;
3152 
3153 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3154 	ASSERT(zb2->zb_level == 0);
3155 
3156 	/*
3157 	 * A bookmark in the deadlist is considered to be after
3158 	 * everything else.
3159 	 */
3160 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3161 		return (B_TRUE);
3162 
3163 	/* The objset_phys_t isn't before anything. */
3164 	if (dnp == NULL)
3165 		return (B_FALSE);
3166 
3167 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3168 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3169 
3170 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3171 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3172 
3173 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3174 		uint64_t nextobj = zb1nextL0 *
3175 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3176 		return (nextobj <= zb2thisobj);
3177 	}
3178 
3179 	if (zb1->zb_object < zb2thisobj)
3180 		return (B_TRUE);
3181 	if (zb1->zb_object > zb2thisobj)
3182 		return (B_FALSE);
3183 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3184 		return (B_FALSE);
3185 	return (zb1nextL0 <= zb2->zb_blkid);
3186 }
3187