1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/txg.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio_impl.h> 34 #include <sys/zio_compress.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/arc.h> 38 #include <sys/ddt.h> 39 #include <sys/blkptr.h> 40 #include <sys/zfeature.h> 41 42 /* 43 * ========================================================================== 44 * I/O type descriptions 45 * ========================================================================== 46 */ 47 const char *zio_type_name[ZIO_TYPES] = { 48 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 49 "zio_ioctl" 50 }; 51 52 /* 53 * ========================================================================== 54 * I/O kmem caches 55 * ========================================================================== 56 */ 57 kmem_cache_t *zio_cache; 58 kmem_cache_t *zio_link_cache; 59 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 60 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 61 62 #ifdef _KERNEL 63 extern vmem_t *zio_alloc_arena; 64 #endif 65 66 #define ZIO_PIPELINE_CONTINUE 0x100 67 #define ZIO_PIPELINE_STOP 0x101 68 69 /* 70 * The following actions directly effect the spa's sync-to-convergence logic. 71 * The values below define the sync pass when we start performing the action. 72 * Care should be taken when changing these values as they directly impact 73 * spa_sync() performance. Tuning these values may introduce subtle performance 74 * pathologies and should only be done in the context of performance analysis. 75 * These tunables will eventually be removed and replaced with #defines once 76 * enough analysis has been done to determine optimal values. 77 * 78 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 79 * regular blocks are not deferred. 80 */ 81 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 82 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 83 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 84 85 /* 86 * An allocating zio is one that either currently has the DVA allocate 87 * stage set or will have it later in its lifetime. 88 */ 89 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 90 91 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 92 93 #ifdef ZFS_DEBUG 94 int zio_buf_debug_limit = 16384; 95 #else 96 int zio_buf_debug_limit = 0; 97 #endif 98 99 void 100 zio_init(void) 101 { 102 size_t c; 103 vmem_t *data_alloc_arena = NULL; 104 105 #ifdef _KERNEL 106 data_alloc_arena = zio_alloc_arena; 107 #endif 108 zio_cache = kmem_cache_create("zio_cache", 109 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 110 zio_link_cache = kmem_cache_create("zio_link_cache", 111 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 112 113 /* 114 * For small buffers, we want a cache for each multiple of 115 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 116 * for each quarter-power of 2. For large buffers, we want 117 * a cache for each multiple of PAGESIZE. 118 */ 119 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 120 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 121 size_t p2 = size; 122 size_t align = 0; 123 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 124 125 while (p2 & (p2 - 1)) 126 p2 &= p2 - 1; 127 128 #ifndef _KERNEL 129 /* 130 * If we are using watchpoints, put each buffer on its own page, 131 * to eliminate the performance overhead of trapping to the 132 * kernel when modifying a non-watched buffer that shares the 133 * page with a watched buffer. 134 */ 135 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 136 continue; 137 #endif 138 if (size <= 4 * SPA_MINBLOCKSIZE) { 139 align = SPA_MINBLOCKSIZE; 140 } else if (IS_P2ALIGNED(size, PAGESIZE)) { 141 align = PAGESIZE; 142 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 143 align = p2 >> 2; 144 } 145 146 if (align != 0) { 147 char name[36]; 148 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 149 zio_buf_cache[c] = kmem_cache_create(name, size, 150 align, NULL, NULL, NULL, NULL, NULL, cflags); 151 152 /* 153 * Since zio_data bufs do not appear in crash dumps, we 154 * pass KMC_NOTOUCH so that no allocator metadata is 155 * stored with the buffers. 156 */ 157 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 158 zio_data_buf_cache[c] = kmem_cache_create(name, size, 159 align, NULL, NULL, NULL, NULL, data_alloc_arena, 160 cflags | KMC_NOTOUCH); 161 } 162 } 163 164 while (--c != 0) { 165 ASSERT(zio_buf_cache[c] != NULL); 166 if (zio_buf_cache[c - 1] == NULL) 167 zio_buf_cache[c - 1] = zio_buf_cache[c]; 168 169 ASSERT(zio_data_buf_cache[c] != NULL); 170 if (zio_data_buf_cache[c - 1] == NULL) 171 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 172 } 173 174 zio_inject_init(); 175 } 176 177 void 178 zio_fini(void) 179 { 180 size_t c; 181 kmem_cache_t *last_cache = NULL; 182 kmem_cache_t *last_data_cache = NULL; 183 184 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 185 if (zio_buf_cache[c] != last_cache) { 186 last_cache = zio_buf_cache[c]; 187 kmem_cache_destroy(zio_buf_cache[c]); 188 } 189 zio_buf_cache[c] = NULL; 190 191 if (zio_data_buf_cache[c] != last_data_cache) { 192 last_data_cache = zio_data_buf_cache[c]; 193 kmem_cache_destroy(zio_data_buf_cache[c]); 194 } 195 zio_data_buf_cache[c] = NULL; 196 } 197 198 kmem_cache_destroy(zio_link_cache); 199 kmem_cache_destroy(zio_cache); 200 201 zio_inject_fini(); 202 } 203 204 /* 205 * ========================================================================== 206 * Allocate and free I/O buffers 207 * ========================================================================== 208 */ 209 210 /* 211 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 212 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 213 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 214 * excess / transient data in-core during a crashdump. 215 */ 216 void * 217 zio_buf_alloc(size_t size) 218 { 219 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 220 221 ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 222 223 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 224 } 225 226 /* 227 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 228 * crashdump if the kernel panics. This exists so that we will limit the amount 229 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 230 * of kernel heap dumped to disk when the kernel panics) 231 */ 232 void * 233 zio_data_buf_alloc(size_t size) 234 { 235 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 236 237 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 238 239 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 240 } 241 242 void 243 zio_buf_free(void *buf, size_t size) 244 { 245 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 246 247 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 248 249 kmem_cache_free(zio_buf_cache[c], buf); 250 } 251 252 void 253 zio_data_buf_free(void *buf, size_t size) 254 { 255 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 256 257 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 258 259 kmem_cache_free(zio_data_buf_cache[c], buf); 260 } 261 262 /* 263 * ========================================================================== 264 * Push and pop I/O transform buffers 265 * ========================================================================== 266 */ 267 static void 268 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 269 zio_transform_func_t *transform) 270 { 271 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 272 273 zt->zt_orig_data = zio->io_data; 274 zt->zt_orig_size = zio->io_size; 275 zt->zt_bufsize = bufsize; 276 zt->zt_transform = transform; 277 278 zt->zt_next = zio->io_transform_stack; 279 zio->io_transform_stack = zt; 280 281 zio->io_data = data; 282 zio->io_size = size; 283 } 284 285 static void 286 zio_pop_transforms(zio_t *zio) 287 { 288 zio_transform_t *zt; 289 290 while ((zt = zio->io_transform_stack) != NULL) { 291 if (zt->zt_transform != NULL) 292 zt->zt_transform(zio, 293 zt->zt_orig_data, zt->zt_orig_size); 294 295 if (zt->zt_bufsize != 0) 296 zio_buf_free(zio->io_data, zt->zt_bufsize); 297 298 zio->io_data = zt->zt_orig_data; 299 zio->io_size = zt->zt_orig_size; 300 zio->io_transform_stack = zt->zt_next; 301 302 kmem_free(zt, sizeof (zio_transform_t)); 303 } 304 } 305 306 /* 307 * ========================================================================== 308 * I/O transform callbacks for subblocks and decompression 309 * ========================================================================== 310 */ 311 static void 312 zio_subblock(zio_t *zio, void *data, uint64_t size) 313 { 314 ASSERT(zio->io_size > size); 315 316 if (zio->io_type == ZIO_TYPE_READ) 317 bcopy(zio->io_data, data, size); 318 } 319 320 static void 321 zio_decompress(zio_t *zio, void *data, uint64_t size) 322 { 323 if (zio->io_error == 0 && 324 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 325 zio->io_data, data, zio->io_size, size) != 0) 326 zio->io_error = SET_ERROR(EIO); 327 } 328 329 /* 330 * ========================================================================== 331 * I/O parent/child relationships and pipeline interlocks 332 * ========================================================================== 333 */ 334 /* 335 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 336 * continue calling these functions until they return NULL. 337 * Otherwise, the next caller will pick up the list walk in 338 * some indeterminate state. (Otherwise every caller would 339 * have to pass in a cookie to keep the state represented by 340 * io_walk_link, which gets annoying.) 341 */ 342 zio_t * 343 zio_walk_parents(zio_t *cio) 344 { 345 zio_link_t *zl = cio->io_walk_link; 346 list_t *pl = &cio->io_parent_list; 347 348 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 349 cio->io_walk_link = zl; 350 351 if (zl == NULL) 352 return (NULL); 353 354 ASSERT(zl->zl_child == cio); 355 return (zl->zl_parent); 356 } 357 358 zio_t * 359 zio_walk_children(zio_t *pio) 360 { 361 zio_link_t *zl = pio->io_walk_link; 362 list_t *cl = &pio->io_child_list; 363 364 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 365 pio->io_walk_link = zl; 366 367 if (zl == NULL) 368 return (NULL); 369 370 ASSERT(zl->zl_parent == pio); 371 return (zl->zl_child); 372 } 373 374 zio_t * 375 zio_unique_parent(zio_t *cio) 376 { 377 zio_t *pio = zio_walk_parents(cio); 378 379 VERIFY(zio_walk_parents(cio) == NULL); 380 return (pio); 381 } 382 383 void 384 zio_add_child(zio_t *pio, zio_t *cio) 385 { 386 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 387 388 /* 389 * Logical I/Os can have logical, gang, or vdev children. 390 * Gang I/Os can have gang or vdev children. 391 * Vdev I/Os can only have vdev children. 392 * The following ASSERT captures all of these constraints. 393 */ 394 ASSERT(cio->io_child_type <= pio->io_child_type); 395 396 zl->zl_parent = pio; 397 zl->zl_child = cio; 398 399 mutex_enter(&cio->io_lock); 400 mutex_enter(&pio->io_lock); 401 402 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 403 404 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 405 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 406 407 list_insert_head(&pio->io_child_list, zl); 408 list_insert_head(&cio->io_parent_list, zl); 409 410 pio->io_child_count++; 411 cio->io_parent_count++; 412 413 mutex_exit(&pio->io_lock); 414 mutex_exit(&cio->io_lock); 415 } 416 417 static void 418 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 419 { 420 ASSERT(zl->zl_parent == pio); 421 ASSERT(zl->zl_child == cio); 422 423 mutex_enter(&cio->io_lock); 424 mutex_enter(&pio->io_lock); 425 426 list_remove(&pio->io_child_list, zl); 427 list_remove(&cio->io_parent_list, zl); 428 429 pio->io_child_count--; 430 cio->io_parent_count--; 431 432 mutex_exit(&pio->io_lock); 433 mutex_exit(&cio->io_lock); 434 435 kmem_cache_free(zio_link_cache, zl); 436 } 437 438 static boolean_t 439 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 440 { 441 uint64_t *countp = &zio->io_children[child][wait]; 442 boolean_t waiting = B_FALSE; 443 444 mutex_enter(&zio->io_lock); 445 ASSERT(zio->io_stall == NULL); 446 if (*countp != 0) { 447 zio->io_stage >>= 1; 448 zio->io_stall = countp; 449 waiting = B_TRUE; 450 } 451 mutex_exit(&zio->io_lock); 452 453 return (waiting); 454 } 455 456 static void 457 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 458 { 459 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 460 int *errorp = &pio->io_child_error[zio->io_child_type]; 461 462 mutex_enter(&pio->io_lock); 463 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 464 *errorp = zio_worst_error(*errorp, zio->io_error); 465 pio->io_reexecute |= zio->io_reexecute; 466 ASSERT3U(*countp, >, 0); 467 468 (*countp)--; 469 470 if (*countp == 0 && pio->io_stall == countp) { 471 pio->io_stall = NULL; 472 mutex_exit(&pio->io_lock); 473 zio_execute(pio); 474 } else { 475 mutex_exit(&pio->io_lock); 476 } 477 } 478 479 static void 480 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 481 { 482 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 483 zio->io_error = zio->io_child_error[c]; 484 } 485 486 /* 487 * ========================================================================== 488 * Create the various types of I/O (read, write, free, etc) 489 * ========================================================================== 490 */ 491 static zio_t * 492 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 493 void *data, uint64_t size, zio_done_func_t *done, void *private, 494 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 495 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, 496 enum zio_stage stage, enum zio_stage pipeline) 497 { 498 zio_t *zio; 499 500 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 501 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 502 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 503 504 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 505 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 506 ASSERT(vd || stage == ZIO_STAGE_OPEN); 507 508 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 509 bzero(zio, sizeof (zio_t)); 510 511 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 512 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 513 514 list_create(&zio->io_parent_list, sizeof (zio_link_t), 515 offsetof(zio_link_t, zl_parent_node)); 516 list_create(&zio->io_child_list, sizeof (zio_link_t), 517 offsetof(zio_link_t, zl_child_node)); 518 519 if (vd != NULL) 520 zio->io_child_type = ZIO_CHILD_VDEV; 521 else if (flags & ZIO_FLAG_GANG_CHILD) 522 zio->io_child_type = ZIO_CHILD_GANG; 523 else if (flags & ZIO_FLAG_DDT_CHILD) 524 zio->io_child_type = ZIO_CHILD_DDT; 525 else 526 zio->io_child_type = ZIO_CHILD_LOGICAL; 527 528 if (bp != NULL) { 529 zio->io_bp = (blkptr_t *)bp; 530 zio->io_bp_copy = *bp; 531 zio->io_bp_orig = *bp; 532 if (type != ZIO_TYPE_WRITE || 533 zio->io_child_type == ZIO_CHILD_DDT) 534 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 535 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 536 zio->io_logical = zio; 537 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 538 pipeline |= ZIO_GANG_STAGES; 539 } 540 541 zio->io_spa = spa; 542 zio->io_txg = txg; 543 zio->io_done = done; 544 zio->io_private = private; 545 zio->io_type = type; 546 zio->io_priority = priority; 547 zio->io_vd = vd; 548 zio->io_offset = offset; 549 zio->io_orig_data = zio->io_data = data; 550 zio->io_orig_size = zio->io_size = size; 551 zio->io_orig_flags = zio->io_flags = flags; 552 zio->io_orig_stage = zio->io_stage = stage; 553 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 554 555 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 556 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 557 558 if (zb != NULL) 559 zio->io_bookmark = *zb; 560 561 if (pio != NULL) { 562 if (zio->io_logical == NULL) 563 zio->io_logical = pio->io_logical; 564 if (zio->io_child_type == ZIO_CHILD_GANG) 565 zio->io_gang_leader = pio->io_gang_leader; 566 zio_add_child(pio, zio); 567 } 568 569 return (zio); 570 } 571 572 static void 573 zio_destroy(zio_t *zio) 574 { 575 list_destroy(&zio->io_parent_list); 576 list_destroy(&zio->io_child_list); 577 mutex_destroy(&zio->io_lock); 578 cv_destroy(&zio->io_cv); 579 kmem_cache_free(zio_cache, zio); 580 } 581 582 zio_t * 583 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 584 void *private, enum zio_flag flags) 585 { 586 zio_t *zio; 587 588 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 589 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 590 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 591 592 return (zio); 593 } 594 595 zio_t * 596 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 597 { 598 return (zio_null(NULL, spa, NULL, done, private, flags)); 599 } 600 601 zio_t * 602 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 603 void *data, uint64_t size, zio_done_func_t *done, void *private, 604 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 605 { 606 zio_t *zio; 607 608 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 609 data, size, done, private, 610 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 611 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 612 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 613 614 return (zio); 615 } 616 617 zio_t * 618 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 619 void *data, uint64_t size, const zio_prop_t *zp, 620 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done, 621 void *private, 622 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 623 { 624 zio_t *zio; 625 626 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 627 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 628 zp->zp_compress >= ZIO_COMPRESS_OFF && 629 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 630 DMU_OT_IS_VALID(zp->zp_type) && 631 zp->zp_level < 32 && 632 zp->zp_copies > 0 && 633 zp->zp_copies <= spa_max_replication(spa)); 634 635 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 636 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 637 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 638 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 639 640 zio->io_ready = ready; 641 zio->io_physdone = physdone; 642 zio->io_prop = *zp; 643 644 /* 645 * Data can be NULL if we are going to call zio_write_override() to 646 * provide the already-allocated BP. But we may need the data to 647 * verify a dedup hit (if requested). In this case, don't try to 648 * dedup (just take the already-allocated BP verbatim). 649 */ 650 if (data == NULL && zio->io_prop.zp_dedup_verify) { 651 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 652 } 653 654 return (zio); 655 } 656 657 zio_t * 658 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 659 uint64_t size, zio_done_func_t *done, void *private, 660 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 661 { 662 zio_t *zio; 663 664 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 665 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 666 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 667 668 return (zio); 669 } 670 671 void 672 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 673 { 674 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 675 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 676 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 677 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 678 679 /* 680 * We must reset the io_prop to match the values that existed 681 * when the bp was first written by dmu_sync() keeping in mind 682 * that nopwrite and dedup are mutually exclusive. 683 */ 684 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 685 zio->io_prop.zp_nopwrite = nopwrite; 686 zio->io_prop.zp_copies = copies; 687 zio->io_bp_override = bp; 688 } 689 690 void 691 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 692 { 693 694 /* 695 * The check for EMBEDDED is a performance optimization. We 696 * process the free here (by ignoring it) rather than 697 * putting it on the list and then processing it in zio_free_sync(). 698 */ 699 if (BP_IS_EMBEDDED(bp)) 700 return; 701 metaslab_check_free(spa, bp); 702 703 /* 704 * Frees that are for the currently-syncing txg, are not going to be 705 * deferred, and which will not need to do a read (i.e. not GANG or 706 * DEDUP), can be processed immediately. Otherwise, put them on the 707 * in-memory list for later processing. 708 */ 709 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 710 txg != spa->spa_syncing_txg || 711 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 712 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 713 } else { 714 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 715 } 716 } 717 718 zio_t * 719 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 720 enum zio_flag flags) 721 { 722 zio_t *zio; 723 enum zio_stage stage = ZIO_FREE_PIPELINE; 724 725 ASSERT(!BP_IS_HOLE(bp)); 726 ASSERT(spa_syncing_txg(spa) == txg); 727 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 728 729 if (BP_IS_EMBEDDED(bp)) 730 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 731 732 metaslab_check_free(spa, bp); 733 arc_freed(spa, bp); 734 735 /* 736 * GANG and DEDUP blocks can induce a read (for the gang block header, 737 * or the DDT), so issue them asynchronously so that this thread is 738 * not tied up. 739 */ 740 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 741 stage |= ZIO_STAGE_ISSUE_ASYNC; 742 743 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 744 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, 745 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 746 747 return (zio); 748 } 749 750 zio_t * 751 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 752 zio_done_func_t *done, void *private, enum zio_flag flags) 753 { 754 zio_t *zio; 755 756 dprintf_bp(bp, "claiming in txg %llu", txg); 757 758 if (BP_IS_EMBEDDED(bp)) 759 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 760 761 /* 762 * A claim is an allocation of a specific block. Claims are needed 763 * to support immediate writes in the intent log. The issue is that 764 * immediate writes contain committed data, but in a txg that was 765 * *not* committed. Upon opening the pool after an unclean shutdown, 766 * the intent log claims all blocks that contain immediate write data 767 * so that the SPA knows they're in use. 768 * 769 * All claims *must* be resolved in the first txg -- before the SPA 770 * starts allocating blocks -- so that nothing is allocated twice. 771 * If txg == 0 we just verify that the block is claimable. 772 */ 773 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 774 ASSERT(txg == spa_first_txg(spa) || txg == 0); 775 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 776 777 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 778 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 779 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 780 781 return (zio); 782 } 783 784 zio_t * 785 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 786 zio_done_func_t *done, void *private, enum zio_flag flags) 787 { 788 zio_t *zio; 789 int c; 790 791 if (vd->vdev_children == 0) { 792 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 793 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 794 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 795 796 zio->io_cmd = cmd; 797 } else { 798 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 799 800 for (c = 0; c < vd->vdev_children; c++) 801 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 802 done, private, flags)); 803 } 804 805 return (zio); 806 } 807 808 zio_t * 809 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 810 void *data, int checksum, zio_done_func_t *done, void *private, 811 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 812 { 813 zio_t *zio; 814 815 ASSERT(vd->vdev_children == 0); 816 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 817 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 818 ASSERT3U(offset + size, <=, vd->vdev_psize); 819 820 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 821 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 822 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 823 824 zio->io_prop.zp_checksum = checksum; 825 826 return (zio); 827 } 828 829 zio_t * 830 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 831 void *data, int checksum, zio_done_func_t *done, void *private, 832 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 833 { 834 zio_t *zio; 835 836 ASSERT(vd->vdev_children == 0); 837 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 838 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 839 ASSERT3U(offset + size, <=, vd->vdev_psize); 840 841 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 842 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 843 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 844 845 zio->io_prop.zp_checksum = checksum; 846 847 if (zio_checksum_table[checksum].ci_eck) { 848 /* 849 * zec checksums are necessarily destructive -- they modify 850 * the end of the write buffer to hold the verifier/checksum. 851 * Therefore, we must make a local copy in case the data is 852 * being written to multiple places in parallel. 853 */ 854 void *wbuf = zio_buf_alloc(size); 855 bcopy(data, wbuf, size); 856 zio_push_transform(zio, wbuf, size, size, NULL); 857 } 858 859 return (zio); 860 } 861 862 /* 863 * Create a child I/O to do some work for us. 864 */ 865 zio_t * 866 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 867 void *data, uint64_t size, int type, zio_priority_t priority, 868 enum zio_flag flags, zio_done_func_t *done, void *private) 869 { 870 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 871 zio_t *zio; 872 873 ASSERT(vd->vdev_parent == 874 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 875 876 if (type == ZIO_TYPE_READ && bp != NULL) { 877 /* 878 * If we have the bp, then the child should perform the 879 * checksum and the parent need not. This pushes error 880 * detection as close to the leaves as possible and 881 * eliminates redundant checksums in the interior nodes. 882 */ 883 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 884 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 885 } 886 887 if (vd->vdev_children == 0) 888 offset += VDEV_LABEL_START_SIZE; 889 890 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 891 892 /* 893 * If we've decided to do a repair, the write is not speculative -- 894 * even if the original read was. 895 */ 896 if (flags & ZIO_FLAG_IO_REPAIR) 897 flags &= ~ZIO_FLAG_SPECULATIVE; 898 899 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 900 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 901 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 902 903 zio->io_physdone = pio->io_physdone; 904 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 905 zio->io_logical->io_phys_children++; 906 907 return (zio); 908 } 909 910 zio_t * 911 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 912 int type, zio_priority_t priority, enum zio_flag flags, 913 zio_done_func_t *done, void *private) 914 { 915 zio_t *zio; 916 917 ASSERT(vd->vdev_ops->vdev_op_leaf); 918 919 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 920 data, size, done, private, type, priority, 921 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 922 vd, offset, NULL, 923 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 924 925 return (zio); 926 } 927 928 void 929 zio_flush(zio_t *zio, vdev_t *vd) 930 { 931 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 932 NULL, NULL, 933 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 934 } 935 936 void 937 zio_shrink(zio_t *zio, uint64_t size) 938 { 939 ASSERT(zio->io_executor == NULL); 940 ASSERT(zio->io_orig_size == zio->io_size); 941 ASSERT(size <= zio->io_size); 942 943 /* 944 * We don't shrink for raidz because of problems with the 945 * reconstruction when reading back less than the block size. 946 * Note, BP_IS_RAIDZ() assumes no compression. 947 */ 948 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 949 if (!BP_IS_RAIDZ(zio->io_bp)) 950 zio->io_orig_size = zio->io_size = size; 951 } 952 953 /* 954 * ========================================================================== 955 * Prepare to read and write logical blocks 956 * ========================================================================== 957 */ 958 959 static int 960 zio_read_bp_init(zio_t *zio) 961 { 962 blkptr_t *bp = zio->io_bp; 963 964 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 965 zio->io_child_type == ZIO_CHILD_LOGICAL && 966 !(zio->io_flags & ZIO_FLAG_RAW)) { 967 uint64_t psize = 968 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 969 void *cbuf = zio_buf_alloc(psize); 970 971 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 972 } 973 974 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 975 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 976 decode_embedded_bp_compressed(bp, zio->io_data); 977 } else { 978 ASSERT(!BP_IS_EMBEDDED(bp)); 979 } 980 981 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 982 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 983 984 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 985 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 986 987 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 988 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 989 990 return (ZIO_PIPELINE_CONTINUE); 991 } 992 993 static int 994 zio_write_bp_init(zio_t *zio) 995 { 996 spa_t *spa = zio->io_spa; 997 zio_prop_t *zp = &zio->io_prop; 998 enum zio_compress compress = zp->zp_compress; 999 blkptr_t *bp = zio->io_bp; 1000 uint64_t lsize = zio->io_size; 1001 uint64_t psize = lsize; 1002 int pass = 1; 1003 1004 /* 1005 * If our children haven't all reached the ready stage, 1006 * wait for them and then repeat this pipeline stage. 1007 */ 1008 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 1009 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 1010 return (ZIO_PIPELINE_STOP); 1011 1012 if (!IO_IS_ALLOCATING(zio)) 1013 return (ZIO_PIPELINE_CONTINUE); 1014 1015 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1016 1017 if (zio->io_bp_override) { 1018 ASSERT(bp->blk_birth != zio->io_txg); 1019 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1020 1021 *bp = *zio->io_bp_override; 1022 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1023 1024 if (BP_IS_EMBEDDED(bp)) 1025 return (ZIO_PIPELINE_CONTINUE); 1026 1027 /* 1028 * If we've been overridden and nopwrite is set then 1029 * set the flag accordingly to indicate that a nopwrite 1030 * has already occurred. 1031 */ 1032 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1033 ASSERT(!zp->zp_dedup); 1034 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1035 return (ZIO_PIPELINE_CONTINUE); 1036 } 1037 1038 ASSERT(!zp->zp_nopwrite); 1039 1040 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1041 return (ZIO_PIPELINE_CONTINUE); 1042 1043 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup || 1044 zp->zp_dedup_verify); 1045 1046 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1047 BP_SET_DEDUP(bp, 1); 1048 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1049 return (ZIO_PIPELINE_CONTINUE); 1050 } 1051 zio->io_bp_override = NULL; 1052 BP_ZERO(bp); 1053 } 1054 1055 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1056 /* 1057 * We're rewriting an existing block, which means we're 1058 * working on behalf of spa_sync(). For spa_sync() to 1059 * converge, it must eventually be the case that we don't 1060 * have to allocate new blocks. But compression changes 1061 * the blocksize, which forces a reallocate, and makes 1062 * convergence take longer. Therefore, after the first 1063 * few passes, stop compressing to ensure convergence. 1064 */ 1065 pass = spa_sync_pass(spa); 1066 1067 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1068 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1069 ASSERT(!BP_GET_DEDUP(bp)); 1070 1071 if (pass >= zfs_sync_pass_dont_compress) 1072 compress = ZIO_COMPRESS_OFF; 1073 1074 /* Make sure someone doesn't change their mind on overwrites */ 1075 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1076 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1077 } 1078 1079 if (compress != ZIO_COMPRESS_OFF) { 1080 void *cbuf = zio_buf_alloc(lsize); 1081 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1082 if (psize == 0 || psize == lsize) { 1083 compress = ZIO_COMPRESS_OFF; 1084 zio_buf_free(cbuf, lsize); 1085 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1086 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1087 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1088 encode_embedded_bp_compressed(bp, 1089 cbuf, compress, lsize, psize); 1090 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1091 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1092 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1093 zio_buf_free(cbuf, lsize); 1094 bp->blk_birth = zio->io_txg; 1095 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1096 ASSERT(spa_feature_is_active(spa, 1097 SPA_FEATURE_EMBEDDED_DATA)); 1098 return (ZIO_PIPELINE_CONTINUE); 1099 } else { 1100 /* 1101 * Round up compressed size to MINBLOCKSIZE and 1102 * zero the tail. 1103 */ 1104 size_t rounded = 1105 P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE); 1106 if (rounded > psize) { 1107 bzero((char *)cbuf + psize, rounded - psize); 1108 psize = rounded; 1109 } 1110 if (psize == lsize) { 1111 compress = ZIO_COMPRESS_OFF; 1112 zio_buf_free(cbuf, lsize); 1113 } else { 1114 zio_push_transform(zio, cbuf, 1115 psize, lsize, NULL); 1116 } 1117 } 1118 } 1119 1120 /* 1121 * The final pass of spa_sync() must be all rewrites, but the first 1122 * few passes offer a trade-off: allocating blocks defers convergence, 1123 * but newly allocated blocks are sequential, so they can be written 1124 * to disk faster. Therefore, we allow the first few passes of 1125 * spa_sync() to allocate new blocks, but force rewrites after that. 1126 * There should only be a handful of blocks after pass 1 in any case. 1127 */ 1128 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1129 BP_GET_PSIZE(bp) == psize && 1130 pass >= zfs_sync_pass_rewrite) { 1131 ASSERT(psize != 0); 1132 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1133 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1134 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1135 } else { 1136 BP_ZERO(bp); 1137 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1138 } 1139 1140 if (psize == 0) { 1141 if (zio->io_bp_orig.blk_birth != 0 && 1142 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1143 BP_SET_LSIZE(bp, lsize); 1144 BP_SET_TYPE(bp, zp->zp_type); 1145 BP_SET_LEVEL(bp, zp->zp_level); 1146 BP_SET_BIRTH(bp, zio->io_txg, 0); 1147 } 1148 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1149 } else { 1150 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1151 BP_SET_LSIZE(bp, lsize); 1152 BP_SET_TYPE(bp, zp->zp_type); 1153 BP_SET_LEVEL(bp, zp->zp_level); 1154 BP_SET_PSIZE(bp, psize); 1155 BP_SET_COMPRESS(bp, compress); 1156 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1157 BP_SET_DEDUP(bp, zp->zp_dedup); 1158 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1159 if (zp->zp_dedup) { 1160 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1161 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1162 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1163 } 1164 if (zp->zp_nopwrite) { 1165 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1166 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1167 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1168 } 1169 } 1170 1171 return (ZIO_PIPELINE_CONTINUE); 1172 } 1173 1174 static int 1175 zio_free_bp_init(zio_t *zio) 1176 { 1177 blkptr_t *bp = zio->io_bp; 1178 1179 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1180 if (BP_GET_DEDUP(bp)) 1181 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1182 } 1183 1184 return (ZIO_PIPELINE_CONTINUE); 1185 } 1186 1187 /* 1188 * ========================================================================== 1189 * Execute the I/O pipeline 1190 * ========================================================================== 1191 */ 1192 1193 static void 1194 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1195 { 1196 spa_t *spa = zio->io_spa; 1197 zio_type_t t = zio->io_type; 1198 int flags = (cutinline ? TQ_FRONT : 0); 1199 1200 /* 1201 * If we're a config writer or a probe, the normal issue and 1202 * interrupt threads may all be blocked waiting for the config lock. 1203 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1204 */ 1205 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1206 t = ZIO_TYPE_NULL; 1207 1208 /* 1209 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1210 */ 1211 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1212 t = ZIO_TYPE_NULL; 1213 1214 /* 1215 * If this is a high priority I/O, then use the high priority taskq if 1216 * available. 1217 */ 1218 if (zio->io_priority == ZIO_PRIORITY_NOW && 1219 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1220 q++; 1221 1222 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1223 1224 /* 1225 * NB: We are assuming that the zio can only be dispatched 1226 * to a single taskq at a time. It would be a grievous error 1227 * to dispatch the zio to another taskq at the same time. 1228 */ 1229 ASSERT(zio->io_tqent.tqent_next == NULL); 1230 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1231 flags, &zio->io_tqent); 1232 } 1233 1234 static boolean_t 1235 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1236 { 1237 kthread_t *executor = zio->io_executor; 1238 spa_t *spa = zio->io_spa; 1239 1240 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1241 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1242 uint_t i; 1243 for (i = 0; i < tqs->stqs_count; i++) { 1244 if (taskq_member(tqs->stqs_taskq[i], executor)) 1245 return (B_TRUE); 1246 } 1247 } 1248 1249 return (B_FALSE); 1250 } 1251 1252 static int 1253 zio_issue_async(zio_t *zio) 1254 { 1255 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1256 1257 return (ZIO_PIPELINE_STOP); 1258 } 1259 1260 void 1261 zio_interrupt(zio_t *zio) 1262 { 1263 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1264 } 1265 1266 /* 1267 * Execute the I/O pipeline until one of the following occurs: 1268 * 1269 * (1) the I/O completes 1270 * (2) the pipeline stalls waiting for dependent child I/Os 1271 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1272 * (4) the I/O is delegated by vdev-level caching or aggregation 1273 * (5) the I/O is deferred due to vdev-level queueing 1274 * (6) the I/O is handed off to another thread. 1275 * 1276 * In all cases, the pipeline stops whenever there's no CPU work; it never 1277 * burns a thread in cv_wait(). 1278 * 1279 * There's no locking on io_stage because there's no legitimate way 1280 * for multiple threads to be attempting to process the same I/O. 1281 */ 1282 static zio_pipe_stage_t *zio_pipeline[]; 1283 1284 void 1285 zio_execute(zio_t *zio) 1286 { 1287 zio->io_executor = curthread; 1288 1289 while (zio->io_stage < ZIO_STAGE_DONE) { 1290 enum zio_stage pipeline = zio->io_pipeline; 1291 enum zio_stage stage = zio->io_stage; 1292 int rv; 1293 1294 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1295 ASSERT(ISP2(stage)); 1296 ASSERT(zio->io_stall == NULL); 1297 1298 do { 1299 stage <<= 1; 1300 } while ((stage & pipeline) == 0); 1301 1302 ASSERT(stage <= ZIO_STAGE_DONE); 1303 1304 /* 1305 * If we are in interrupt context and this pipeline stage 1306 * will grab a config lock that is held across I/O, 1307 * or may wait for an I/O that needs an interrupt thread 1308 * to complete, issue async to avoid deadlock. 1309 * 1310 * For VDEV_IO_START, we cut in line so that the io will 1311 * be sent to disk promptly. 1312 */ 1313 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1314 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1315 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1316 zio_requeue_io_start_cut_in_line : B_FALSE; 1317 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1318 return; 1319 } 1320 1321 zio->io_stage = stage; 1322 rv = zio_pipeline[highbit64(stage) - 1](zio); 1323 1324 if (rv == ZIO_PIPELINE_STOP) 1325 return; 1326 1327 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1328 } 1329 } 1330 1331 /* 1332 * ========================================================================== 1333 * Initiate I/O, either sync or async 1334 * ========================================================================== 1335 */ 1336 int 1337 zio_wait(zio_t *zio) 1338 { 1339 int error; 1340 1341 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1342 ASSERT(zio->io_executor == NULL); 1343 1344 zio->io_waiter = curthread; 1345 1346 zio_execute(zio); 1347 1348 mutex_enter(&zio->io_lock); 1349 while (zio->io_executor != NULL) 1350 cv_wait(&zio->io_cv, &zio->io_lock); 1351 mutex_exit(&zio->io_lock); 1352 1353 error = zio->io_error; 1354 zio_destroy(zio); 1355 1356 return (error); 1357 } 1358 1359 void 1360 zio_nowait(zio_t *zio) 1361 { 1362 ASSERT(zio->io_executor == NULL); 1363 1364 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1365 zio_unique_parent(zio) == NULL) { 1366 /* 1367 * This is a logical async I/O with no parent to wait for it. 1368 * We add it to the spa_async_root_zio "Godfather" I/O which 1369 * will ensure they complete prior to unloading the pool. 1370 */ 1371 spa_t *spa = zio->io_spa; 1372 1373 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1374 } 1375 1376 zio_execute(zio); 1377 } 1378 1379 /* 1380 * ========================================================================== 1381 * Reexecute or suspend/resume failed I/O 1382 * ========================================================================== 1383 */ 1384 1385 static void 1386 zio_reexecute(zio_t *pio) 1387 { 1388 zio_t *cio, *cio_next; 1389 1390 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1391 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1392 ASSERT(pio->io_gang_leader == NULL); 1393 ASSERT(pio->io_gang_tree == NULL); 1394 1395 pio->io_flags = pio->io_orig_flags; 1396 pio->io_stage = pio->io_orig_stage; 1397 pio->io_pipeline = pio->io_orig_pipeline; 1398 pio->io_reexecute = 0; 1399 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1400 pio->io_error = 0; 1401 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1402 pio->io_state[w] = 0; 1403 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1404 pio->io_child_error[c] = 0; 1405 1406 if (IO_IS_ALLOCATING(pio)) 1407 BP_ZERO(pio->io_bp); 1408 1409 /* 1410 * As we reexecute pio's children, new children could be created. 1411 * New children go to the head of pio's io_child_list, however, 1412 * so we will (correctly) not reexecute them. The key is that 1413 * the remainder of pio's io_child_list, from 'cio_next' onward, 1414 * cannot be affected by any side effects of reexecuting 'cio'. 1415 */ 1416 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1417 cio_next = zio_walk_children(pio); 1418 mutex_enter(&pio->io_lock); 1419 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1420 pio->io_children[cio->io_child_type][w]++; 1421 mutex_exit(&pio->io_lock); 1422 zio_reexecute(cio); 1423 } 1424 1425 /* 1426 * Now that all children have been reexecuted, execute the parent. 1427 * We don't reexecute "The Godfather" I/O here as it's the 1428 * responsibility of the caller to wait on him. 1429 */ 1430 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1431 zio_execute(pio); 1432 } 1433 1434 void 1435 zio_suspend(spa_t *spa, zio_t *zio) 1436 { 1437 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1438 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1439 "failure and the failure mode property for this pool " 1440 "is set to panic.", spa_name(spa)); 1441 1442 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1443 1444 mutex_enter(&spa->spa_suspend_lock); 1445 1446 if (spa->spa_suspend_zio_root == NULL) 1447 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1448 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1449 ZIO_FLAG_GODFATHER); 1450 1451 spa->spa_suspended = B_TRUE; 1452 1453 if (zio != NULL) { 1454 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1455 ASSERT(zio != spa->spa_suspend_zio_root); 1456 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1457 ASSERT(zio_unique_parent(zio) == NULL); 1458 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1459 zio_add_child(spa->spa_suspend_zio_root, zio); 1460 } 1461 1462 mutex_exit(&spa->spa_suspend_lock); 1463 } 1464 1465 int 1466 zio_resume(spa_t *spa) 1467 { 1468 zio_t *pio; 1469 1470 /* 1471 * Reexecute all previously suspended i/o. 1472 */ 1473 mutex_enter(&spa->spa_suspend_lock); 1474 spa->spa_suspended = B_FALSE; 1475 cv_broadcast(&spa->spa_suspend_cv); 1476 pio = spa->spa_suspend_zio_root; 1477 spa->spa_suspend_zio_root = NULL; 1478 mutex_exit(&spa->spa_suspend_lock); 1479 1480 if (pio == NULL) 1481 return (0); 1482 1483 zio_reexecute(pio); 1484 return (zio_wait(pio)); 1485 } 1486 1487 void 1488 zio_resume_wait(spa_t *spa) 1489 { 1490 mutex_enter(&spa->spa_suspend_lock); 1491 while (spa_suspended(spa)) 1492 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1493 mutex_exit(&spa->spa_suspend_lock); 1494 } 1495 1496 /* 1497 * ========================================================================== 1498 * Gang blocks. 1499 * 1500 * A gang block is a collection of small blocks that looks to the DMU 1501 * like one large block. When zio_dva_allocate() cannot find a block 1502 * of the requested size, due to either severe fragmentation or the pool 1503 * being nearly full, it calls zio_write_gang_block() to construct the 1504 * block from smaller fragments. 1505 * 1506 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1507 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1508 * an indirect block: it's an array of block pointers. It consumes 1509 * only one sector and hence is allocatable regardless of fragmentation. 1510 * The gang header's bps point to its gang members, which hold the data. 1511 * 1512 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1513 * as the verifier to ensure uniqueness of the SHA256 checksum. 1514 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1515 * not the gang header. This ensures that data block signatures (needed for 1516 * deduplication) are independent of how the block is physically stored. 1517 * 1518 * Gang blocks can be nested: a gang member may itself be a gang block. 1519 * Thus every gang block is a tree in which root and all interior nodes are 1520 * gang headers, and the leaves are normal blocks that contain user data. 1521 * The root of the gang tree is called the gang leader. 1522 * 1523 * To perform any operation (read, rewrite, free, claim) on a gang block, 1524 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1525 * in the io_gang_tree field of the original logical i/o by recursively 1526 * reading the gang leader and all gang headers below it. This yields 1527 * an in-core tree containing the contents of every gang header and the 1528 * bps for every constituent of the gang block. 1529 * 1530 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1531 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1532 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1533 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1534 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1535 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1536 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1537 * of the gang header plus zio_checksum_compute() of the data to update the 1538 * gang header's blk_cksum as described above. 1539 * 1540 * The two-phase assemble/issue model solves the problem of partial failure -- 1541 * what if you'd freed part of a gang block but then couldn't read the 1542 * gang header for another part? Assembling the entire gang tree first 1543 * ensures that all the necessary gang header I/O has succeeded before 1544 * starting the actual work of free, claim, or write. Once the gang tree 1545 * is assembled, free and claim are in-memory operations that cannot fail. 1546 * 1547 * In the event that a gang write fails, zio_dva_unallocate() walks the 1548 * gang tree to immediately free (i.e. insert back into the space map) 1549 * everything we've allocated. This ensures that we don't get ENOSPC 1550 * errors during repeated suspend/resume cycles due to a flaky device. 1551 * 1552 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1553 * the gang tree, we won't modify the block, so we can safely defer the free 1554 * (knowing that the block is still intact). If we *can* assemble the gang 1555 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1556 * each constituent bp and we can allocate a new block on the next sync pass. 1557 * 1558 * In all cases, the gang tree allows complete recovery from partial failure. 1559 * ========================================================================== 1560 */ 1561 1562 static zio_t * 1563 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1564 { 1565 if (gn != NULL) 1566 return (pio); 1567 1568 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1569 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1570 &pio->io_bookmark)); 1571 } 1572 1573 zio_t * 1574 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1575 { 1576 zio_t *zio; 1577 1578 if (gn != NULL) { 1579 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1580 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1581 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1582 /* 1583 * As we rewrite each gang header, the pipeline will compute 1584 * a new gang block header checksum for it; but no one will 1585 * compute a new data checksum, so we do that here. The one 1586 * exception is the gang leader: the pipeline already computed 1587 * its data checksum because that stage precedes gang assembly. 1588 * (Presently, nothing actually uses interior data checksums; 1589 * this is just good hygiene.) 1590 */ 1591 if (gn != pio->io_gang_leader->io_gang_tree) { 1592 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1593 data, BP_GET_PSIZE(bp)); 1594 } 1595 /* 1596 * If we are here to damage data for testing purposes, 1597 * leave the GBH alone so that we can detect the damage. 1598 */ 1599 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1600 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1601 } else { 1602 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1603 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1604 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1605 } 1606 1607 return (zio); 1608 } 1609 1610 /* ARGSUSED */ 1611 zio_t * 1612 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1613 { 1614 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1615 ZIO_GANG_CHILD_FLAGS(pio))); 1616 } 1617 1618 /* ARGSUSED */ 1619 zio_t * 1620 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1621 { 1622 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1623 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1624 } 1625 1626 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1627 NULL, 1628 zio_read_gang, 1629 zio_rewrite_gang, 1630 zio_free_gang, 1631 zio_claim_gang, 1632 NULL 1633 }; 1634 1635 static void zio_gang_tree_assemble_done(zio_t *zio); 1636 1637 static zio_gang_node_t * 1638 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1639 { 1640 zio_gang_node_t *gn; 1641 1642 ASSERT(*gnpp == NULL); 1643 1644 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1645 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1646 *gnpp = gn; 1647 1648 return (gn); 1649 } 1650 1651 static void 1652 zio_gang_node_free(zio_gang_node_t **gnpp) 1653 { 1654 zio_gang_node_t *gn = *gnpp; 1655 1656 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1657 ASSERT(gn->gn_child[g] == NULL); 1658 1659 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1660 kmem_free(gn, sizeof (*gn)); 1661 *gnpp = NULL; 1662 } 1663 1664 static void 1665 zio_gang_tree_free(zio_gang_node_t **gnpp) 1666 { 1667 zio_gang_node_t *gn = *gnpp; 1668 1669 if (gn == NULL) 1670 return; 1671 1672 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1673 zio_gang_tree_free(&gn->gn_child[g]); 1674 1675 zio_gang_node_free(gnpp); 1676 } 1677 1678 static void 1679 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1680 { 1681 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1682 1683 ASSERT(gio->io_gang_leader == gio); 1684 ASSERT(BP_IS_GANG(bp)); 1685 1686 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1687 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1688 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1689 } 1690 1691 static void 1692 zio_gang_tree_assemble_done(zio_t *zio) 1693 { 1694 zio_t *gio = zio->io_gang_leader; 1695 zio_gang_node_t *gn = zio->io_private; 1696 blkptr_t *bp = zio->io_bp; 1697 1698 ASSERT(gio == zio_unique_parent(zio)); 1699 ASSERT(zio->io_child_count == 0); 1700 1701 if (zio->io_error) 1702 return; 1703 1704 if (BP_SHOULD_BYTESWAP(bp)) 1705 byteswap_uint64_array(zio->io_data, zio->io_size); 1706 1707 ASSERT(zio->io_data == gn->gn_gbh); 1708 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1709 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1710 1711 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1712 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1713 if (!BP_IS_GANG(gbp)) 1714 continue; 1715 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1716 } 1717 } 1718 1719 static void 1720 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1721 { 1722 zio_t *gio = pio->io_gang_leader; 1723 zio_t *zio; 1724 1725 ASSERT(BP_IS_GANG(bp) == !!gn); 1726 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1727 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1728 1729 /* 1730 * If you're a gang header, your data is in gn->gn_gbh. 1731 * If you're a gang member, your data is in 'data' and gn == NULL. 1732 */ 1733 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1734 1735 if (gn != NULL) { 1736 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1737 1738 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1739 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1740 if (BP_IS_HOLE(gbp)) 1741 continue; 1742 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1743 data = (char *)data + BP_GET_PSIZE(gbp); 1744 } 1745 } 1746 1747 if (gn == gio->io_gang_tree) 1748 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1749 1750 if (zio != pio) 1751 zio_nowait(zio); 1752 } 1753 1754 static int 1755 zio_gang_assemble(zio_t *zio) 1756 { 1757 blkptr_t *bp = zio->io_bp; 1758 1759 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1760 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1761 1762 zio->io_gang_leader = zio; 1763 1764 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1765 1766 return (ZIO_PIPELINE_CONTINUE); 1767 } 1768 1769 static int 1770 zio_gang_issue(zio_t *zio) 1771 { 1772 blkptr_t *bp = zio->io_bp; 1773 1774 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1775 return (ZIO_PIPELINE_STOP); 1776 1777 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1778 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1779 1780 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1781 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1782 else 1783 zio_gang_tree_free(&zio->io_gang_tree); 1784 1785 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1786 1787 return (ZIO_PIPELINE_CONTINUE); 1788 } 1789 1790 static void 1791 zio_write_gang_member_ready(zio_t *zio) 1792 { 1793 zio_t *pio = zio_unique_parent(zio); 1794 zio_t *gio = zio->io_gang_leader; 1795 dva_t *cdva = zio->io_bp->blk_dva; 1796 dva_t *pdva = pio->io_bp->blk_dva; 1797 uint64_t asize; 1798 1799 if (BP_IS_HOLE(zio->io_bp)) 1800 return; 1801 1802 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1803 1804 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1805 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1806 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1807 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1808 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1809 1810 mutex_enter(&pio->io_lock); 1811 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1812 ASSERT(DVA_GET_GANG(&pdva[d])); 1813 asize = DVA_GET_ASIZE(&pdva[d]); 1814 asize += DVA_GET_ASIZE(&cdva[d]); 1815 DVA_SET_ASIZE(&pdva[d], asize); 1816 } 1817 mutex_exit(&pio->io_lock); 1818 } 1819 1820 static int 1821 zio_write_gang_block(zio_t *pio) 1822 { 1823 spa_t *spa = pio->io_spa; 1824 blkptr_t *bp = pio->io_bp; 1825 zio_t *gio = pio->io_gang_leader; 1826 zio_t *zio; 1827 zio_gang_node_t *gn, **gnpp; 1828 zio_gbh_phys_t *gbh; 1829 uint64_t txg = pio->io_txg; 1830 uint64_t resid = pio->io_size; 1831 uint64_t lsize; 1832 int copies = gio->io_prop.zp_copies; 1833 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1834 zio_prop_t zp; 1835 int error; 1836 1837 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1838 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1839 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1840 if (error) { 1841 pio->io_error = error; 1842 return (ZIO_PIPELINE_CONTINUE); 1843 } 1844 1845 if (pio == gio) { 1846 gnpp = &gio->io_gang_tree; 1847 } else { 1848 gnpp = pio->io_private; 1849 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1850 } 1851 1852 gn = zio_gang_node_alloc(gnpp); 1853 gbh = gn->gn_gbh; 1854 bzero(gbh, SPA_GANGBLOCKSIZE); 1855 1856 /* 1857 * Create the gang header. 1858 */ 1859 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1860 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1861 1862 /* 1863 * Create and nowait the gang children. 1864 */ 1865 for (int g = 0; resid != 0; resid -= lsize, g++) { 1866 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1867 SPA_MINBLOCKSIZE); 1868 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1869 1870 zp.zp_checksum = gio->io_prop.zp_checksum; 1871 zp.zp_compress = ZIO_COMPRESS_OFF; 1872 zp.zp_type = DMU_OT_NONE; 1873 zp.zp_level = 0; 1874 zp.zp_copies = gio->io_prop.zp_copies; 1875 zp.zp_dedup = B_FALSE; 1876 zp.zp_dedup_verify = B_FALSE; 1877 zp.zp_nopwrite = B_FALSE; 1878 1879 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1880 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1881 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g], 1882 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1883 &pio->io_bookmark)); 1884 } 1885 1886 /* 1887 * Set pio's pipeline to just wait for zio to finish. 1888 */ 1889 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1890 1891 zio_nowait(zio); 1892 1893 return (ZIO_PIPELINE_CONTINUE); 1894 } 1895 1896 /* 1897 * The zio_nop_write stage in the pipeline determines if allocating 1898 * a new bp is necessary. By leveraging a cryptographically secure checksum, 1899 * such as SHA256, we can compare the checksums of the new data and the old 1900 * to determine if allocating a new block is required. The nopwrite 1901 * feature can handle writes in either syncing or open context (i.e. zil 1902 * writes) and as a result is mutually exclusive with dedup. 1903 */ 1904 static int 1905 zio_nop_write(zio_t *zio) 1906 { 1907 blkptr_t *bp = zio->io_bp; 1908 blkptr_t *bp_orig = &zio->io_bp_orig; 1909 zio_prop_t *zp = &zio->io_prop; 1910 1911 ASSERT(BP_GET_LEVEL(bp) == 0); 1912 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1913 ASSERT(zp->zp_nopwrite); 1914 ASSERT(!zp->zp_dedup); 1915 ASSERT(zio->io_bp_override == NULL); 1916 ASSERT(IO_IS_ALLOCATING(zio)); 1917 1918 /* 1919 * Check to see if the original bp and the new bp have matching 1920 * characteristics (i.e. same checksum, compression algorithms, etc). 1921 * If they don't then just continue with the pipeline which will 1922 * allocate a new bp. 1923 */ 1924 if (BP_IS_HOLE(bp_orig) || 1925 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup || 1926 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 1927 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 1928 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 1929 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 1930 return (ZIO_PIPELINE_CONTINUE); 1931 1932 /* 1933 * If the checksums match then reset the pipeline so that we 1934 * avoid allocating a new bp and issuing any I/O. 1935 */ 1936 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 1937 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup); 1938 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 1939 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 1940 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 1941 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 1942 sizeof (uint64_t)) == 0); 1943 1944 *bp = *bp_orig; 1945 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1946 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1947 } 1948 1949 return (ZIO_PIPELINE_CONTINUE); 1950 } 1951 1952 /* 1953 * ========================================================================== 1954 * Dedup 1955 * ========================================================================== 1956 */ 1957 static void 1958 zio_ddt_child_read_done(zio_t *zio) 1959 { 1960 blkptr_t *bp = zio->io_bp; 1961 ddt_entry_t *dde = zio->io_private; 1962 ddt_phys_t *ddp; 1963 zio_t *pio = zio_unique_parent(zio); 1964 1965 mutex_enter(&pio->io_lock); 1966 ddp = ddt_phys_select(dde, bp); 1967 if (zio->io_error == 0) 1968 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 1969 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 1970 dde->dde_repair_data = zio->io_data; 1971 else 1972 zio_buf_free(zio->io_data, zio->io_size); 1973 mutex_exit(&pio->io_lock); 1974 } 1975 1976 static int 1977 zio_ddt_read_start(zio_t *zio) 1978 { 1979 blkptr_t *bp = zio->io_bp; 1980 1981 ASSERT(BP_GET_DEDUP(bp)); 1982 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 1983 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1984 1985 if (zio->io_child_error[ZIO_CHILD_DDT]) { 1986 ddt_t *ddt = ddt_select(zio->io_spa, bp); 1987 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 1988 ddt_phys_t *ddp = dde->dde_phys; 1989 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 1990 blkptr_t blk; 1991 1992 ASSERT(zio->io_vsd == NULL); 1993 zio->io_vsd = dde; 1994 1995 if (ddp_self == NULL) 1996 return (ZIO_PIPELINE_CONTINUE); 1997 1998 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1999 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2000 continue; 2001 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2002 &blk); 2003 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2004 zio_buf_alloc(zio->io_size), zio->io_size, 2005 zio_ddt_child_read_done, dde, zio->io_priority, 2006 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2007 &zio->io_bookmark)); 2008 } 2009 return (ZIO_PIPELINE_CONTINUE); 2010 } 2011 2012 zio_nowait(zio_read(zio, zio->io_spa, bp, 2013 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2014 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2015 2016 return (ZIO_PIPELINE_CONTINUE); 2017 } 2018 2019 static int 2020 zio_ddt_read_done(zio_t *zio) 2021 { 2022 blkptr_t *bp = zio->io_bp; 2023 2024 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 2025 return (ZIO_PIPELINE_STOP); 2026 2027 ASSERT(BP_GET_DEDUP(bp)); 2028 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2029 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2030 2031 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2032 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2033 ddt_entry_t *dde = zio->io_vsd; 2034 if (ddt == NULL) { 2035 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2036 return (ZIO_PIPELINE_CONTINUE); 2037 } 2038 if (dde == NULL) { 2039 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2040 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2041 return (ZIO_PIPELINE_STOP); 2042 } 2043 if (dde->dde_repair_data != NULL) { 2044 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2045 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2046 } 2047 ddt_repair_done(ddt, dde); 2048 zio->io_vsd = NULL; 2049 } 2050 2051 ASSERT(zio->io_vsd == NULL); 2052 2053 return (ZIO_PIPELINE_CONTINUE); 2054 } 2055 2056 static boolean_t 2057 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2058 { 2059 spa_t *spa = zio->io_spa; 2060 2061 /* 2062 * Note: we compare the original data, not the transformed data, 2063 * because when zio->io_bp is an override bp, we will not have 2064 * pushed the I/O transforms. That's an important optimization 2065 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2066 */ 2067 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2068 zio_t *lio = dde->dde_lead_zio[p]; 2069 2070 if (lio != NULL) { 2071 return (lio->io_orig_size != zio->io_orig_size || 2072 bcmp(zio->io_orig_data, lio->io_orig_data, 2073 zio->io_orig_size) != 0); 2074 } 2075 } 2076 2077 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2078 ddt_phys_t *ddp = &dde->dde_phys[p]; 2079 2080 if (ddp->ddp_phys_birth != 0) { 2081 arc_buf_t *abuf = NULL; 2082 uint32_t aflags = ARC_WAIT; 2083 blkptr_t blk = *zio->io_bp; 2084 int error; 2085 2086 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2087 2088 ddt_exit(ddt); 2089 2090 error = arc_read(NULL, spa, &blk, 2091 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2092 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2093 &aflags, &zio->io_bookmark); 2094 2095 if (error == 0) { 2096 if (arc_buf_size(abuf) != zio->io_orig_size || 2097 bcmp(abuf->b_data, zio->io_orig_data, 2098 zio->io_orig_size) != 0) 2099 error = SET_ERROR(EEXIST); 2100 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2101 } 2102 2103 ddt_enter(ddt); 2104 return (error != 0); 2105 } 2106 } 2107 2108 return (B_FALSE); 2109 } 2110 2111 static void 2112 zio_ddt_child_write_ready(zio_t *zio) 2113 { 2114 int p = zio->io_prop.zp_copies; 2115 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2116 ddt_entry_t *dde = zio->io_private; 2117 ddt_phys_t *ddp = &dde->dde_phys[p]; 2118 zio_t *pio; 2119 2120 if (zio->io_error) 2121 return; 2122 2123 ddt_enter(ddt); 2124 2125 ASSERT(dde->dde_lead_zio[p] == zio); 2126 2127 ddt_phys_fill(ddp, zio->io_bp); 2128 2129 while ((pio = zio_walk_parents(zio)) != NULL) 2130 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2131 2132 ddt_exit(ddt); 2133 } 2134 2135 static void 2136 zio_ddt_child_write_done(zio_t *zio) 2137 { 2138 int p = zio->io_prop.zp_copies; 2139 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2140 ddt_entry_t *dde = zio->io_private; 2141 ddt_phys_t *ddp = &dde->dde_phys[p]; 2142 2143 ddt_enter(ddt); 2144 2145 ASSERT(ddp->ddp_refcnt == 0); 2146 ASSERT(dde->dde_lead_zio[p] == zio); 2147 dde->dde_lead_zio[p] = NULL; 2148 2149 if (zio->io_error == 0) { 2150 while (zio_walk_parents(zio) != NULL) 2151 ddt_phys_addref(ddp); 2152 } else { 2153 ddt_phys_clear(ddp); 2154 } 2155 2156 ddt_exit(ddt); 2157 } 2158 2159 static void 2160 zio_ddt_ditto_write_done(zio_t *zio) 2161 { 2162 int p = DDT_PHYS_DITTO; 2163 zio_prop_t *zp = &zio->io_prop; 2164 blkptr_t *bp = zio->io_bp; 2165 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2166 ddt_entry_t *dde = zio->io_private; 2167 ddt_phys_t *ddp = &dde->dde_phys[p]; 2168 ddt_key_t *ddk = &dde->dde_key; 2169 2170 ddt_enter(ddt); 2171 2172 ASSERT(ddp->ddp_refcnt == 0); 2173 ASSERT(dde->dde_lead_zio[p] == zio); 2174 dde->dde_lead_zio[p] = NULL; 2175 2176 if (zio->io_error == 0) { 2177 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2178 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2179 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2180 if (ddp->ddp_phys_birth != 0) 2181 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2182 ddt_phys_fill(ddp, bp); 2183 } 2184 2185 ddt_exit(ddt); 2186 } 2187 2188 static int 2189 zio_ddt_write(zio_t *zio) 2190 { 2191 spa_t *spa = zio->io_spa; 2192 blkptr_t *bp = zio->io_bp; 2193 uint64_t txg = zio->io_txg; 2194 zio_prop_t *zp = &zio->io_prop; 2195 int p = zp->zp_copies; 2196 int ditto_copies; 2197 zio_t *cio = NULL; 2198 zio_t *dio = NULL; 2199 ddt_t *ddt = ddt_select(spa, bp); 2200 ddt_entry_t *dde; 2201 ddt_phys_t *ddp; 2202 2203 ASSERT(BP_GET_DEDUP(bp)); 2204 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2205 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2206 2207 ddt_enter(ddt); 2208 dde = ddt_lookup(ddt, bp, B_TRUE); 2209 ddp = &dde->dde_phys[p]; 2210 2211 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2212 /* 2213 * If we're using a weak checksum, upgrade to a strong checksum 2214 * and try again. If we're already using a strong checksum, 2215 * we can't resolve it, so just convert to an ordinary write. 2216 * (And automatically e-mail a paper to Nature?) 2217 */ 2218 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) { 2219 zp->zp_checksum = spa_dedup_checksum(spa); 2220 zio_pop_transforms(zio); 2221 zio->io_stage = ZIO_STAGE_OPEN; 2222 BP_ZERO(bp); 2223 } else { 2224 zp->zp_dedup = B_FALSE; 2225 } 2226 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2227 ddt_exit(ddt); 2228 return (ZIO_PIPELINE_CONTINUE); 2229 } 2230 2231 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2232 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2233 2234 if (ditto_copies > ddt_ditto_copies_present(dde) && 2235 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2236 zio_prop_t czp = *zp; 2237 2238 czp.zp_copies = ditto_copies; 2239 2240 /* 2241 * If we arrived here with an override bp, we won't have run 2242 * the transform stack, so we won't have the data we need to 2243 * generate a child i/o. So, toss the override bp and restart. 2244 * This is safe, because using the override bp is just an 2245 * optimization; and it's rare, so the cost doesn't matter. 2246 */ 2247 if (zio->io_bp_override) { 2248 zio_pop_transforms(zio); 2249 zio->io_stage = ZIO_STAGE_OPEN; 2250 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2251 zio->io_bp_override = NULL; 2252 BP_ZERO(bp); 2253 ddt_exit(ddt); 2254 return (ZIO_PIPELINE_CONTINUE); 2255 } 2256 2257 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2258 zio->io_orig_size, &czp, NULL, NULL, 2259 zio_ddt_ditto_write_done, dde, zio->io_priority, 2260 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2261 2262 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2263 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2264 } 2265 2266 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2267 if (ddp->ddp_phys_birth != 0) 2268 ddt_bp_fill(ddp, bp, txg); 2269 if (dde->dde_lead_zio[p] != NULL) 2270 zio_add_child(zio, dde->dde_lead_zio[p]); 2271 else 2272 ddt_phys_addref(ddp); 2273 } else if (zio->io_bp_override) { 2274 ASSERT(bp->blk_birth == txg); 2275 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2276 ddt_phys_fill(ddp, bp); 2277 ddt_phys_addref(ddp); 2278 } else { 2279 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2280 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, 2281 zio_ddt_child_write_done, dde, zio->io_priority, 2282 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2283 2284 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2285 dde->dde_lead_zio[p] = cio; 2286 } 2287 2288 ddt_exit(ddt); 2289 2290 if (cio) 2291 zio_nowait(cio); 2292 if (dio) 2293 zio_nowait(dio); 2294 2295 return (ZIO_PIPELINE_CONTINUE); 2296 } 2297 2298 ddt_entry_t *freedde; /* for debugging */ 2299 2300 static int 2301 zio_ddt_free(zio_t *zio) 2302 { 2303 spa_t *spa = zio->io_spa; 2304 blkptr_t *bp = zio->io_bp; 2305 ddt_t *ddt = ddt_select(spa, bp); 2306 ddt_entry_t *dde; 2307 ddt_phys_t *ddp; 2308 2309 ASSERT(BP_GET_DEDUP(bp)); 2310 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2311 2312 ddt_enter(ddt); 2313 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2314 ddp = ddt_phys_select(dde, bp); 2315 ddt_phys_decref(ddp); 2316 ddt_exit(ddt); 2317 2318 return (ZIO_PIPELINE_CONTINUE); 2319 } 2320 2321 /* 2322 * ========================================================================== 2323 * Allocate and free blocks 2324 * ========================================================================== 2325 */ 2326 static int 2327 zio_dva_allocate(zio_t *zio) 2328 { 2329 spa_t *spa = zio->io_spa; 2330 metaslab_class_t *mc = spa_normal_class(spa); 2331 blkptr_t *bp = zio->io_bp; 2332 int error; 2333 int flags = 0; 2334 2335 if (zio->io_gang_leader == NULL) { 2336 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2337 zio->io_gang_leader = zio; 2338 } 2339 2340 ASSERT(BP_IS_HOLE(bp)); 2341 ASSERT0(BP_GET_NDVAS(bp)); 2342 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2343 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2344 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2345 2346 /* 2347 * The dump device does not support gang blocks so allocation on 2348 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2349 * the "fast" gang feature. 2350 */ 2351 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2352 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2353 METASLAB_GANG_CHILD : 0; 2354 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2355 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2356 2357 if (error) { 2358 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2359 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2360 error); 2361 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2362 return (zio_write_gang_block(zio)); 2363 zio->io_error = error; 2364 } 2365 2366 return (ZIO_PIPELINE_CONTINUE); 2367 } 2368 2369 static int 2370 zio_dva_free(zio_t *zio) 2371 { 2372 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2373 2374 return (ZIO_PIPELINE_CONTINUE); 2375 } 2376 2377 static int 2378 zio_dva_claim(zio_t *zio) 2379 { 2380 int error; 2381 2382 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2383 if (error) 2384 zio->io_error = error; 2385 2386 return (ZIO_PIPELINE_CONTINUE); 2387 } 2388 2389 /* 2390 * Undo an allocation. This is used by zio_done() when an I/O fails 2391 * and we want to give back the block we just allocated. 2392 * This handles both normal blocks and gang blocks. 2393 */ 2394 static void 2395 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2396 { 2397 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2398 ASSERT(zio->io_bp_override == NULL); 2399 2400 if (!BP_IS_HOLE(bp)) 2401 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2402 2403 if (gn != NULL) { 2404 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2405 zio_dva_unallocate(zio, gn->gn_child[g], 2406 &gn->gn_gbh->zg_blkptr[g]); 2407 } 2408 } 2409 } 2410 2411 /* 2412 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2413 */ 2414 int 2415 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2416 uint64_t size, boolean_t use_slog) 2417 { 2418 int error = 1; 2419 2420 ASSERT(txg > spa_syncing_txg(spa)); 2421 2422 /* 2423 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2424 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2425 * when allocating them. 2426 */ 2427 if (use_slog) { 2428 error = metaslab_alloc(spa, spa_log_class(spa), size, 2429 new_bp, 1, txg, old_bp, 2430 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2431 } 2432 2433 if (error) { 2434 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2435 new_bp, 1, txg, old_bp, 2436 METASLAB_HINTBP_AVOID); 2437 } 2438 2439 if (error == 0) { 2440 BP_SET_LSIZE(new_bp, size); 2441 BP_SET_PSIZE(new_bp, size); 2442 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2443 BP_SET_CHECKSUM(new_bp, 2444 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2445 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2446 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2447 BP_SET_LEVEL(new_bp, 0); 2448 BP_SET_DEDUP(new_bp, 0); 2449 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2450 } 2451 2452 return (error); 2453 } 2454 2455 /* 2456 * Free an intent log block. 2457 */ 2458 void 2459 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2460 { 2461 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2462 ASSERT(!BP_IS_GANG(bp)); 2463 2464 zio_free(spa, txg, bp); 2465 } 2466 2467 /* 2468 * ========================================================================== 2469 * Read and write to physical devices 2470 * ========================================================================== 2471 */ 2472 2473 2474 /* 2475 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2476 * stops after this stage and will resume upon I/O completion. 2477 * However, there are instances where the vdev layer may need to 2478 * continue the pipeline when an I/O was not issued. Since the I/O 2479 * that was sent to the vdev layer might be different than the one 2480 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2481 * force the underlying vdev layers to call either zio_execute() or 2482 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2483 */ 2484 static int 2485 zio_vdev_io_start(zio_t *zio) 2486 { 2487 vdev_t *vd = zio->io_vd; 2488 uint64_t align; 2489 spa_t *spa = zio->io_spa; 2490 2491 ASSERT(zio->io_error == 0); 2492 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2493 2494 if (vd == NULL) { 2495 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2496 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2497 2498 /* 2499 * The mirror_ops handle multiple DVAs in a single BP. 2500 */ 2501 vdev_mirror_ops.vdev_op_io_start(zio); 2502 return (ZIO_PIPELINE_STOP); 2503 } 2504 2505 /* 2506 * We keep track of time-sensitive I/Os so that the scan thread 2507 * can quickly react to certain workloads. In particular, we care 2508 * about non-scrubbing, top-level reads and writes with the following 2509 * characteristics: 2510 * - synchronous writes of user data to non-slog devices 2511 * - any reads of user data 2512 * When these conditions are met, adjust the timestamp of spa_last_io 2513 * which allows the scan thread to adjust its workload accordingly. 2514 */ 2515 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2516 vd == vd->vdev_top && !vd->vdev_islog && 2517 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2518 zio->io_txg != spa_syncing_txg(spa)) { 2519 uint64_t old = spa->spa_last_io; 2520 uint64_t new = ddi_get_lbolt64(); 2521 if (old != new) 2522 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2523 } 2524 2525 align = 1ULL << vd->vdev_top->vdev_ashift; 2526 2527 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2528 P2PHASE(zio->io_size, align) != 0) { 2529 /* Transform logical writes to be a full physical block size. */ 2530 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2531 char *abuf = zio_buf_alloc(asize); 2532 ASSERT(vd == vd->vdev_top); 2533 if (zio->io_type == ZIO_TYPE_WRITE) { 2534 bcopy(zio->io_data, abuf, zio->io_size); 2535 bzero(abuf + zio->io_size, asize - zio->io_size); 2536 } 2537 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2538 } 2539 2540 /* 2541 * If this is not a physical io, make sure that it is properly aligned 2542 * before proceeding. 2543 */ 2544 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2545 ASSERT0(P2PHASE(zio->io_offset, align)); 2546 ASSERT0(P2PHASE(zio->io_size, align)); 2547 } else { 2548 /* 2549 * For physical writes, we allow 512b aligned writes and assume 2550 * the device will perform a read-modify-write as necessary. 2551 */ 2552 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2553 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2554 } 2555 2556 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2557 2558 /* 2559 * If this is a repair I/O, and there's no self-healing involved -- 2560 * that is, we're just resilvering what we expect to resilver -- 2561 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2562 * This prevents spurious resilvering with nested replication. 2563 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2564 * A is out of date, we'll read from C+D, then use the data to 2565 * resilver A+B -- but we don't actually want to resilver B, just A. 2566 * The top-level mirror has no way to know this, so instead we just 2567 * discard unnecessary repairs as we work our way down the vdev tree. 2568 * The same logic applies to any form of nested replication: 2569 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2570 */ 2571 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2572 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2573 zio->io_txg != 0 && /* not a delegated i/o */ 2574 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2575 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2576 zio_vdev_io_bypass(zio); 2577 return (ZIO_PIPELINE_CONTINUE); 2578 } 2579 2580 if (vd->vdev_ops->vdev_op_leaf && 2581 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2582 2583 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 2584 return (ZIO_PIPELINE_CONTINUE); 2585 2586 if ((zio = vdev_queue_io(zio)) == NULL) 2587 return (ZIO_PIPELINE_STOP); 2588 2589 if (!vdev_accessible(vd, zio)) { 2590 zio->io_error = SET_ERROR(ENXIO); 2591 zio_interrupt(zio); 2592 return (ZIO_PIPELINE_STOP); 2593 } 2594 } 2595 2596 vd->vdev_ops->vdev_op_io_start(zio); 2597 return (ZIO_PIPELINE_STOP); 2598 } 2599 2600 static int 2601 zio_vdev_io_done(zio_t *zio) 2602 { 2603 vdev_t *vd = zio->io_vd; 2604 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2605 boolean_t unexpected_error = B_FALSE; 2606 2607 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2608 return (ZIO_PIPELINE_STOP); 2609 2610 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2611 2612 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2613 2614 vdev_queue_io_done(zio); 2615 2616 if (zio->io_type == ZIO_TYPE_WRITE) 2617 vdev_cache_write(zio); 2618 2619 if (zio_injection_enabled && zio->io_error == 0) 2620 zio->io_error = zio_handle_device_injection(vd, 2621 zio, EIO); 2622 2623 if (zio_injection_enabled && zio->io_error == 0) 2624 zio->io_error = zio_handle_label_injection(zio, EIO); 2625 2626 if (zio->io_error) { 2627 if (!vdev_accessible(vd, zio)) { 2628 zio->io_error = SET_ERROR(ENXIO); 2629 } else { 2630 unexpected_error = B_TRUE; 2631 } 2632 } 2633 } 2634 2635 ops->vdev_op_io_done(zio); 2636 2637 if (unexpected_error) 2638 VERIFY(vdev_probe(vd, zio) == NULL); 2639 2640 return (ZIO_PIPELINE_CONTINUE); 2641 } 2642 2643 /* 2644 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2645 * disk, and use that to finish the checksum ereport later. 2646 */ 2647 static void 2648 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2649 const void *good_buf) 2650 { 2651 /* no processing needed */ 2652 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2653 } 2654 2655 /*ARGSUSED*/ 2656 void 2657 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2658 { 2659 void *buf = zio_buf_alloc(zio->io_size); 2660 2661 bcopy(zio->io_data, buf, zio->io_size); 2662 2663 zcr->zcr_cbinfo = zio->io_size; 2664 zcr->zcr_cbdata = buf; 2665 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2666 zcr->zcr_free = zio_buf_free; 2667 } 2668 2669 static int 2670 zio_vdev_io_assess(zio_t *zio) 2671 { 2672 vdev_t *vd = zio->io_vd; 2673 2674 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2675 return (ZIO_PIPELINE_STOP); 2676 2677 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2678 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2679 2680 if (zio->io_vsd != NULL) { 2681 zio->io_vsd_ops->vsd_free(zio); 2682 zio->io_vsd = NULL; 2683 } 2684 2685 if (zio_injection_enabled && zio->io_error == 0) 2686 zio->io_error = zio_handle_fault_injection(zio, EIO); 2687 2688 /* 2689 * If the I/O failed, determine whether we should attempt to retry it. 2690 * 2691 * On retry, we cut in line in the issue queue, since we don't want 2692 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2693 */ 2694 if (zio->io_error && vd == NULL && 2695 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2696 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2697 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2698 zio->io_error = 0; 2699 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2700 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2701 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2702 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2703 zio_requeue_io_start_cut_in_line); 2704 return (ZIO_PIPELINE_STOP); 2705 } 2706 2707 /* 2708 * If we got an error on a leaf device, convert it to ENXIO 2709 * if the device is not accessible at all. 2710 */ 2711 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2712 !vdev_accessible(vd, zio)) 2713 zio->io_error = SET_ERROR(ENXIO); 2714 2715 /* 2716 * If we can't write to an interior vdev (mirror or RAID-Z), 2717 * set vdev_cant_write so that we stop trying to allocate from it. 2718 */ 2719 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2720 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2721 vd->vdev_cant_write = B_TRUE; 2722 } 2723 2724 if (zio->io_error) 2725 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2726 2727 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2728 zio->io_physdone != NULL) { 2729 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 2730 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 2731 zio->io_physdone(zio->io_logical); 2732 } 2733 2734 return (ZIO_PIPELINE_CONTINUE); 2735 } 2736 2737 void 2738 zio_vdev_io_reissue(zio_t *zio) 2739 { 2740 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2741 ASSERT(zio->io_error == 0); 2742 2743 zio->io_stage >>= 1; 2744 } 2745 2746 void 2747 zio_vdev_io_redone(zio_t *zio) 2748 { 2749 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2750 2751 zio->io_stage >>= 1; 2752 } 2753 2754 void 2755 zio_vdev_io_bypass(zio_t *zio) 2756 { 2757 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2758 ASSERT(zio->io_error == 0); 2759 2760 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2761 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2762 } 2763 2764 /* 2765 * ========================================================================== 2766 * Generate and verify checksums 2767 * ========================================================================== 2768 */ 2769 static int 2770 zio_checksum_generate(zio_t *zio) 2771 { 2772 blkptr_t *bp = zio->io_bp; 2773 enum zio_checksum checksum; 2774 2775 if (bp == NULL) { 2776 /* 2777 * This is zio_write_phys(). 2778 * We're either generating a label checksum, or none at all. 2779 */ 2780 checksum = zio->io_prop.zp_checksum; 2781 2782 if (checksum == ZIO_CHECKSUM_OFF) 2783 return (ZIO_PIPELINE_CONTINUE); 2784 2785 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2786 } else { 2787 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2788 ASSERT(!IO_IS_ALLOCATING(zio)); 2789 checksum = ZIO_CHECKSUM_GANG_HEADER; 2790 } else { 2791 checksum = BP_GET_CHECKSUM(bp); 2792 } 2793 } 2794 2795 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2796 2797 return (ZIO_PIPELINE_CONTINUE); 2798 } 2799 2800 static int 2801 zio_checksum_verify(zio_t *zio) 2802 { 2803 zio_bad_cksum_t info; 2804 blkptr_t *bp = zio->io_bp; 2805 int error; 2806 2807 ASSERT(zio->io_vd != NULL); 2808 2809 if (bp == NULL) { 2810 /* 2811 * This is zio_read_phys(). 2812 * We're either verifying a label checksum, or nothing at all. 2813 */ 2814 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2815 return (ZIO_PIPELINE_CONTINUE); 2816 2817 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2818 } 2819 2820 if ((error = zio_checksum_error(zio, &info)) != 0) { 2821 zio->io_error = error; 2822 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2823 zfs_ereport_start_checksum(zio->io_spa, 2824 zio->io_vd, zio, zio->io_offset, 2825 zio->io_size, NULL, &info); 2826 } 2827 } 2828 2829 return (ZIO_PIPELINE_CONTINUE); 2830 } 2831 2832 /* 2833 * Called by RAID-Z to ensure we don't compute the checksum twice. 2834 */ 2835 void 2836 zio_checksum_verified(zio_t *zio) 2837 { 2838 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2839 } 2840 2841 /* 2842 * ========================================================================== 2843 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2844 * An error of 0 indicates success. ENXIO indicates whole-device failure, 2845 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2846 * indicate errors that are specific to one I/O, and most likely permanent. 2847 * Any other error is presumed to be worse because we weren't expecting it. 2848 * ========================================================================== 2849 */ 2850 int 2851 zio_worst_error(int e1, int e2) 2852 { 2853 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2854 int r1, r2; 2855 2856 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2857 if (e1 == zio_error_rank[r1]) 2858 break; 2859 2860 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2861 if (e2 == zio_error_rank[r2]) 2862 break; 2863 2864 return (r1 > r2 ? e1 : e2); 2865 } 2866 2867 /* 2868 * ========================================================================== 2869 * I/O completion 2870 * ========================================================================== 2871 */ 2872 static int 2873 zio_ready(zio_t *zio) 2874 { 2875 blkptr_t *bp = zio->io_bp; 2876 zio_t *pio, *pio_next; 2877 2878 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 2879 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 2880 return (ZIO_PIPELINE_STOP); 2881 2882 if (zio->io_ready) { 2883 ASSERT(IO_IS_ALLOCATING(zio)); 2884 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 2885 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 2886 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2887 2888 zio->io_ready(zio); 2889 } 2890 2891 if (bp != NULL && bp != &zio->io_bp_copy) 2892 zio->io_bp_copy = *bp; 2893 2894 if (zio->io_error) 2895 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2896 2897 mutex_enter(&zio->io_lock); 2898 zio->io_state[ZIO_WAIT_READY] = 1; 2899 pio = zio_walk_parents(zio); 2900 mutex_exit(&zio->io_lock); 2901 2902 /* 2903 * As we notify zio's parents, new parents could be added. 2904 * New parents go to the head of zio's io_parent_list, however, 2905 * so we will (correctly) not notify them. The remainder of zio's 2906 * io_parent_list, from 'pio_next' onward, cannot change because 2907 * all parents must wait for us to be done before they can be done. 2908 */ 2909 for (; pio != NULL; pio = pio_next) { 2910 pio_next = zio_walk_parents(zio); 2911 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2912 } 2913 2914 if (zio->io_flags & ZIO_FLAG_NODATA) { 2915 if (BP_IS_GANG(bp)) { 2916 zio->io_flags &= ~ZIO_FLAG_NODATA; 2917 } else { 2918 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 2919 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2920 } 2921 } 2922 2923 if (zio_injection_enabled && 2924 zio->io_spa->spa_syncing_txg == zio->io_txg) 2925 zio_handle_ignored_writes(zio); 2926 2927 return (ZIO_PIPELINE_CONTINUE); 2928 } 2929 2930 static int 2931 zio_done(zio_t *zio) 2932 { 2933 spa_t *spa = zio->io_spa; 2934 zio_t *lio = zio->io_logical; 2935 blkptr_t *bp = zio->io_bp; 2936 vdev_t *vd = zio->io_vd; 2937 uint64_t psize = zio->io_size; 2938 zio_t *pio, *pio_next; 2939 2940 /* 2941 * If our children haven't all completed, 2942 * wait for them and then repeat this pipeline stage. 2943 */ 2944 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2945 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2946 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 2947 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2948 return (ZIO_PIPELINE_STOP); 2949 2950 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2951 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2952 ASSERT(zio->io_children[c][w] == 0); 2953 2954 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 2955 ASSERT(bp->blk_pad[0] == 0); 2956 ASSERT(bp->blk_pad[1] == 0); 2957 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2958 (bp == zio_unique_parent(zio)->io_bp)); 2959 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2960 zio->io_bp_override == NULL && 2961 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2962 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2963 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 2964 ASSERT(BP_COUNT_GANG(bp) == 0 || 2965 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2966 } 2967 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 2968 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 2969 } 2970 2971 /* 2972 * If there were child vdev/gang/ddt errors, they apply to us now. 2973 */ 2974 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2975 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2976 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 2977 2978 /* 2979 * If the I/O on the transformed data was successful, generate any 2980 * checksum reports now while we still have the transformed data. 2981 */ 2982 if (zio->io_error == 0) { 2983 while (zio->io_cksum_report != NULL) { 2984 zio_cksum_report_t *zcr = zio->io_cksum_report; 2985 uint64_t align = zcr->zcr_align; 2986 uint64_t asize = P2ROUNDUP(psize, align); 2987 char *abuf = zio->io_data; 2988 2989 if (asize != psize) { 2990 abuf = zio_buf_alloc(asize); 2991 bcopy(zio->io_data, abuf, psize); 2992 bzero(abuf + psize, asize - psize); 2993 } 2994 2995 zio->io_cksum_report = zcr->zcr_next; 2996 zcr->zcr_next = NULL; 2997 zcr->zcr_finish(zcr, abuf); 2998 zfs_ereport_free_checksum(zcr); 2999 3000 if (asize != psize) 3001 zio_buf_free(abuf, asize); 3002 } 3003 } 3004 3005 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3006 3007 vdev_stat_update(zio, psize); 3008 3009 if (zio->io_error) { 3010 /* 3011 * If this I/O is attached to a particular vdev, 3012 * generate an error message describing the I/O failure 3013 * at the block level. We ignore these errors if the 3014 * device is currently unavailable. 3015 */ 3016 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3017 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3018 3019 if ((zio->io_error == EIO || !(zio->io_flags & 3020 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3021 zio == lio) { 3022 /* 3023 * For logical I/O requests, tell the SPA to log the 3024 * error and generate a logical data ereport. 3025 */ 3026 spa_log_error(spa, zio); 3027 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3028 0, 0); 3029 } 3030 } 3031 3032 if (zio->io_error && zio == lio) { 3033 /* 3034 * Determine whether zio should be reexecuted. This will 3035 * propagate all the way to the root via zio_notify_parent(). 3036 */ 3037 ASSERT(vd == NULL && bp != NULL); 3038 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3039 3040 if (IO_IS_ALLOCATING(zio) && 3041 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3042 if (zio->io_error != ENOSPC) 3043 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3044 else 3045 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3046 } 3047 3048 if ((zio->io_type == ZIO_TYPE_READ || 3049 zio->io_type == ZIO_TYPE_FREE) && 3050 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3051 zio->io_error == ENXIO && 3052 spa_load_state(spa) == SPA_LOAD_NONE && 3053 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3054 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3055 3056 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3057 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3058 3059 /* 3060 * Here is a possibly good place to attempt to do 3061 * either combinatorial reconstruction or error correction 3062 * based on checksums. It also might be a good place 3063 * to send out preliminary ereports before we suspend 3064 * processing. 3065 */ 3066 } 3067 3068 /* 3069 * If there were logical child errors, they apply to us now. 3070 * We defer this until now to avoid conflating logical child 3071 * errors with errors that happened to the zio itself when 3072 * updating vdev stats and reporting FMA events above. 3073 */ 3074 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3075 3076 if ((zio->io_error || zio->io_reexecute) && 3077 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3078 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3079 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3080 3081 zio_gang_tree_free(&zio->io_gang_tree); 3082 3083 /* 3084 * Godfather I/Os should never suspend. 3085 */ 3086 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3087 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3088 zio->io_reexecute = 0; 3089 3090 if (zio->io_reexecute) { 3091 /* 3092 * This is a logical I/O that wants to reexecute. 3093 * 3094 * Reexecute is top-down. When an i/o fails, if it's not 3095 * the root, it simply notifies its parent and sticks around. 3096 * The parent, seeing that it still has children in zio_done(), 3097 * does the same. This percolates all the way up to the root. 3098 * The root i/o will reexecute or suspend the entire tree. 3099 * 3100 * This approach ensures that zio_reexecute() honors 3101 * all the original i/o dependency relationships, e.g. 3102 * parents not executing until children are ready. 3103 */ 3104 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3105 3106 zio->io_gang_leader = NULL; 3107 3108 mutex_enter(&zio->io_lock); 3109 zio->io_state[ZIO_WAIT_DONE] = 1; 3110 mutex_exit(&zio->io_lock); 3111 3112 /* 3113 * "The Godfather" I/O monitors its children but is 3114 * not a true parent to them. It will track them through 3115 * the pipeline but severs its ties whenever they get into 3116 * trouble (e.g. suspended). This allows "The Godfather" 3117 * I/O to return status without blocking. 3118 */ 3119 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3120 zio_link_t *zl = zio->io_walk_link; 3121 pio_next = zio_walk_parents(zio); 3122 3123 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3124 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3125 zio_remove_child(pio, zio, zl); 3126 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3127 } 3128 } 3129 3130 if ((pio = zio_unique_parent(zio)) != NULL) { 3131 /* 3132 * We're not a root i/o, so there's nothing to do 3133 * but notify our parent. Don't propagate errors 3134 * upward since we haven't permanently failed yet. 3135 */ 3136 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3137 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3138 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3139 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3140 /* 3141 * We'd fail again if we reexecuted now, so suspend 3142 * until conditions improve (e.g. device comes online). 3143 */ 3144 zio_suspend(spa, zio); 3145 } else { 3146 /* 3147 * Reexecution is potentially a huge amount of work. 3148 * Hand it off to the otherwise-unused claim taskq. 3149 */ 3150 ASSERT(zio->io_tqent.tqent_next == NULL); 3151 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3152 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3153 0, &zio->io_tqent); 3154 } 3155 return (ZIO_PIPELINE_STOP); 3156 } 3157 3158 ASSERT(zio->io_child_count == 0); 3159 ASSERT(zio->io_reexecute == 0); 3160 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3161 3162 /* 3163 * Report any checksum errors, since the I/O is complete. 3164 */ 3165 while (zio->io_cksum_report != NULL) { 3166 zio_cksum_report_t *zcr = zio->io_cksum_report; 3167 zio->io_cksum_report = zcr->zcr_next; 3168 zcr->zcr_next = NULL; 3169 zcr->zcr_finish(zcr, NULL); 3170 zfs_ereport_free_checksum(zcr); 3171 } 3172 3173 /* 3174 * It is the responsibility of the done callback to ensure that this 3175 * particular zio is no longer discoverable for adoption, and as 3176 * such, cannot acquire any new parents. 3177 */ 3178 if (zio->io_done) 3179 zio->io_done(zio); 3180 3181 mutex_enter(&zio->io_lock); 3182 zio->io_state[ZIO_WAIT_DONE] = 1; 3183 mutex_exit(&zio->io_lock); 3184 3185 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3186 zio_link_t *zl = zio->io_walk_link; 3187 pio_next = zio_walk_parents(zio); 3188 zio_remove_child(pio, zio, zl); 3189 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3190 } 3191 3192 if (zio->io_waiter != NULL) { 3193 mutex_enter(&zio->io_lock); 3194 zio->io_executor = NULL; 3195 cv_broadcast(&zio->io_cv); 3196 mutex_exit(&zio->io_lock); 3197 } else { 3198 zio_destroy(zio); 3199 } 3200 3201 return (ZIO_PIPELINE_STOP); 3202 } 3203 3204 /* 3205 * ========================================================================== 3206 * I/O pipeline definition 3207 * ========================================================================== 3208 */ 3209 static zio_pipe_stage_t *zio_pipeline[] = { 3210 NULL, 3211 zio_read_bp_init, 3212 zio_free_bp_init, 3213 zio_issue_async, 3214 zio_write_bp_init, 3215 zio_checksum_generate, 3216 zio_nop_write, 3217 zio_ddt_read_start, 3218 zio_ddt_read_done, 3219 zio_ddt_write, 3220 zio_ddt_free, 3221 zio_gang_assemble, 3222 zio_gang_issue, 3223 zio_dva_allocate, 3224 zio_dva_free, 3225 zio_dva_claim, 3226 zio_ready, 3227 zio_vdev_io_start, 3228 zio_vdev_io_done, 3229 zio_vdev_io_assess, 3230 zio_checksum_verify, 3231 zio_done 3232 }; 3233 3234 /* dnp is the dnode for zb1->zb_object */ 3235 boolean_t 3236 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1, 3237 const zbookmark_phys_t *zb2) 3238 { 3239 uint64_t zb1nextL0, zb2thisobj; 3240 3241 ASSERT(zb1->zb_objset == zb2->zb_objset); 3242 ASSERT(zb2->zb_level == 0); 3243 3244 /* The objset_phys_t isn't before anything. */ 3245 if (dnp == NULL) 3246 return (B_FALSE); 3247 3248 zb1nextL0 = (zb1->zb_blkid + 1) << 3249 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT)); 3250 3251 zb2thisobj = zb2->zb_object ? zb2->zb_object : 3252 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT); 3253 3254 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3255 uint64_t nextobj = zb1nextL0 * 3256 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT; 3257 return (nextobj <= zb2thisobj); 3258 } 3259 3260 if (zb1->zb_object < zb2thisobj) 3261 return (B_TRUE); 3262 if (zb1->zb_object > zb2thisobj) 3263 return (B_FALSE); 3264 if (zb2->zb_object == DMU_META_DNODE_OBJECT) 3265 return (B_FALSE); 3266 return (zb1nextL0 <= zb2->zb_blkid); 3267 } 3268