1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 /* Force an allocation failure when non-zero */ 68 uint16_t zio_zil_fail_shift = 0; 69 70 typedef struct zio_sync_pass { 71 int zp_defer_free; /* defer frees after this pass */ 72 int zp_dontcompress; /* don't compress after this pass */ 73 int zp_rewrite; /* rewrite new bps after this pass */ 74 } zio_sync_pass_t; 75 76 zio_sync_pass_t zio_sync_pass = { 77 1, /* zp_defer_free */ 78 4, /* zp_dontcompress */ 79 1, /* zp_rewrite */ 80 }; 81 82 /* 83 * ========================================================================== 84 * I/O kmem caches 85 * ========================================================================== 86 */ 87 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 88 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 89 90 #ifdef _KERNEL 91 extern vmem_t *zio_alloc_arena; 92 #endif 93 94 void 95 zio_init(void) 96 { 97 size_t c; 98 vmem_t *data_alloc_arena = NULL; 99 100 #ifdef _KERNEL 101 data_alloc_arena = zio_alloc_arena; 102 #endif 103 104 /* 105 * For small buffers, we want a cache for each multiple of 106 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 107 * for each quarter-power of 2. For large buffers, we want 108 * a cache for each multiple of PAGESIZE. 109 */ 110 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 111 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 112 size_t p2 = size; 113 size_t align = 0; 114 115 while (p2 & (p2 - 1)) 116 p2 &= p2 - 1; 117 118 if (size <= 4 * SPA_MINBLOCKSIZE) { 119 align = SPA_MINBLOCKSIZE; 120 } else if (P2PHASE(size, PAGESIZE) == 0) { 121 align = PAGESIZE; 122 } else if (P2PHASE(size, p2 >> 2) == 0) { 123 align = p2 >> 2; 124 } 125 126 if (align != 0) { 127 char name[36]; 128 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 129 zio_buf_cache[c] = kmem_cache_create(name, size, 130 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 131 132 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 133 zio_data_buf_cache[c] = kmem_cache_create(name, size, 134 align, NULL, NULL, NULL, NULL, data_alloc_arena, 135 KMC_NODEBUG); 136 137 dprintf("creating cache for size %5lx align %5lx\n", 138 size, align); 139 } 140 } 141 142 while (--c != 0) { 143 ASSERT(zio_buf_cache[c] != NULL); 144 if (zio_buf_cache[c - 1] == NULL) 145 zio_buf_cache[c - 1] = zio_buf_cache[c]; 146 147 ASSERT(zio_data_buf_cache[c] != NULL); 148 if (zio_data_buf_cache[c - 1] == NULL) 149 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 150 } 151 152 zio_inject_init(); 153 } 154 155 void 156 zio_fini(void) 157 { 158 size_t c; 159 kmem_cache_t *last_cache = NULL; 160 kmem_cache_t *last_data_cache = NULL; 161 162 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 163 if (zio_buf_cache[c] != last_cache) { 164 last_cache = zio_buf_cache[c]; 165 kmem_cache_destroy(zio_buf_cache[c]); 166 } 167 zio_buf_cache[c] = NULL; 168 169 if (zio_data_buf_cache[c] != last_data_cache) { 170 last_data_cache = zio_data_buf_cache[c]; 171 kmem_cache_destroy(zio_data_buf_cache[c]); 172 } 173 zio_data_buf_cache[c] = NULL; 174 } 175 176 zio_inject_fini(); 177 } 178 179 /* 180 * ========================================================================== 181 * Allocate and free I/O buffers 182 * ========================================================================== 183 */ 184 185 /* 186 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 187 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 188 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 189 * excess / transient data in-core during a crashdump. 190 */ 191 void * 192 zio_buf_alloc(size_t size) 193 { 194 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 195 196 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 197 198 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 199 } 200 201 /* 202 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 203 * crashdump if the kernel panics. This exists so that we will limit the amount 204 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 205 * of kernel heap dumped to disk when the kernel panics) 206 */ 207 void * 208 zio_data_buf_alloc(size_t size) 209 { 210 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 211 212 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 213 214 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 215 } 216 217 void 218 zio_buf_free(void *buf, size_t size) 219 { 220 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 221 222 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 223 224 kmem_cache_free(zio_buf_cache[c], buf); 225 } 226 227 void 228 zio_data_buf_free(void *buf, size_t size) 229 { 230 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 231 232 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 233 234 kmem_cache_free(zio_data_buf_cache[c], buf); 235 } 236 237 /* 238 * ========================================================================== 239 * Push and pop I/O transform buffers 240 * ========================================================================== 241 */ 242 static void 243 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 244 { 245 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 246 247 zt->zt_data = data; 248 zt->zt_size = size; 249 zt->zt_bufsize = bufsize; 250 251 zt->zt_next = zio->io_transform_stack; 252 zio->io_transform_stack = zt; 253 254 zio->io_data = data; 255 zio->io_size = size; 256 } 257 258 static void 259 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 260 { 261 zio_transform_t *zt = zio->io_transform_stack; 262 263 *data = zt->zt_data; 264 *size = zt->zt_size; 265 *bufsize = zt->zt_bufsize; 266 267 zio->io_transform_stack = zt->zt_next; 268 kmem_free(zt, sizeof (zio_transform_t)); 269 270 if ((zt = zio->io_transform_stack) != NULL) { 271 zio->io_data = zt->zt_data; 272 zio->io_size = zt->zt_size; 273 } 274 } 275 276 static void 277 zio_clear_transform_stack(zio_t *zio) 278 { 279 void *data; 280 uint64_t size, bufsize; 281 282 ASSERT(zio->io_transform_stack != NULL); 283 284 zio_pop_transform(zio, &data, &size, &bufsize); 285 while (zio->io_transform_stack != NULL) { 286 zio_buf_free(data, bufsize); 287 zio_pop_transform(zio, &data, &size, &bufsize); 288 } 289 } 290 291 /* 292 * ========================================================================== 293 * Create the various types of I/O (read, write, free) 294 * ========================================================================== 295 */ 296 static zio_t * 297 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 298 void *data, uint64_t size, zio_done_func_t *done, void *private, 299 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 300 { 301 zio_t *zio; 302 303 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 304 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 305 306 zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 307 zio->io_parent = pio; 308 zio->io_spa = spa; 309 zio->io_txg = txg; 310 if (bp != NULL) { 311 zio->io_bp = bp; 312 zio->io_bp_copy = *bp; 313 zio->io_bp_orig = *bp; 314 } 315 zio->io_done = done; 316 zio->io_private = private; 317 zio->io_type = type; 318 zio->io_priority = priority; 319 zio->io_stage = stage; 320 zio->io_pipeline = pipeline; 321 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 322 zio->io_timestamp = lbolt64; 323 zio->io_flags = flags; 324 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 325 zio_push_transform(zio, data, size, size); 326 327 /* 328 * Note on config lock: 329 * 330 * If CONFIG_HELD is set, then the caller already has the config 331 * lock, so we don't need it for this io. 332 * 333 * We set CONFIG_GRABBED to indicate that we have grabbed the 334 * config lock on behalf of this io, so it should be released 335 * in zio_done. 336 * 337 * Unless CONFIG_HELD is set, we will grab the config lock for 338 * any top-level (parent-less) io, *except* NULL top-level ios. 339 * The NULL top-level ios rarely have any children, so we delay 340 * grabbing the lock until the first child is added (but it is 341 * still grabbed on behalf of the top-level i/o, so additional 342 * children don't need to also grab it). This greatly reduces 343 * contention on the config lock. 344 */ 345 if (pio == NULL) { 346 if (type != ZIO_TYPE_NULL && 347 !(flags & ZIO_FLAG_CONFIG_HELD)) { 348 spa_config_enter(zio->io_spa, RW_READER, zio); 349 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 350 } 351 zio->io_root = zio; 352 } else { 353 zio->io_root = pio->io_root; 354 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 355 zio->io_logical = pio->io_logical; 356 mutex_enter(&pio->io_lock); 357 if (pio->io_parent == NULL && 358 pio->io_type == ZIO_TYPE_NULL && 359 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 360 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 361 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 362 spa_config_enter(zio->io_spa, RW_READER, pio); 363 } 364 if (stage < ZIO_STAGE_READY) 365 pio->io_children_notready++; 366 pio->io_children_notdone++; 367 zio->io_sibling_next = pio->io_child; 368 zio->io_sibling_prev = NULL; 369 if (pio->io_child != NULL) 370 pio->io_child->io_sibling_prev = zio; 371 pio->io_child = zio; 372 zio->io_ndvas = pio->io_ndvas; 373 mutex_exit(&pio->io_lock); 374 } 375 376 return (zio); 377 } 378 379 zio_t * 380 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 381 int flags) 382 { 383 zio_t *zio; 384 385 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 386 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 387 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 388 389 return (zio); 390 } 391 392 zio_t * 393 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 394 { 395 return (zio_null(NULL, spa, done, private, flags)); 396 } 397 398 zio_t * 399 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 400 uint64_t size, zio_done_func_t *done, void *private, 401 int priority, int flags, zbookmark_t *zb) 402 { 403 zio_t *zio; 404 405 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 406 407 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 408 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 409 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 410 zio->io_bookmark = *zb; 411 412 zio->io_logical = zio; 413 414 /* 415 * Work off our copy of the bp so the caller can free it. 416 */ 417 zio->io_bp = &zio->io_bp_copy; 418 419 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 420 uint64_t csize = BP_GET_PSIZE(bp); 421 void *cbuf = zio_buf_alloc(csize); 422 423 zio_push_transform(zio, cbuf, csize, csize); 424 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 425 } 426 427 if (BP_IS_GANG(bp)) { 428 uint64_t gsize = SPA_GANGBLOCKSIZE; 429 void *gbuf = zio_buf_alloc(gsize); 430 431 zio_push_transform(zio, gbuf, gsize, gsize); 432 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 433 } 434 435 return (zio); 436 } 437 438 zio_t * 439 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 440 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 441 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 442 int flags, zbookmark_t *zb) 443 { 444 zio_t *zio; 445 446 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 447 checksum < ZIO_CHECKSUM_FUNCTIONS); 448 449 ASSERT(compress >= ZIO_COMPRESS_OFF && 450 compress < ZIO_COMPRESS_FUNCTIONS); 451 452 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 453 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 454 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 455 456 zio->io_ready = ready; 457 458 zio->io_bookmark = *zb; 459 460 zio->io_logical = zio; 461 462 zio->io_checksum = checksum; 463 zio->io_compress = compress; 464 zio->io_ndvas = ncopies; 465 466 if (compress != ZIO_COMPRESS_OFF) 467 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 468 469 if (bp->blk_birth != txg) { 470 /* XXX the bp usually (always?) gets re-zeroed later */ 471 BP_ZERO(bp); 472 BP_SET_LSIZE(bp, size); 473 BP_SET_PSIZE(bp, size); 474 } else { 475 /* Make sure someone doesn't change their mind on overwrites */ 476 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 477 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 478 } 479 480 return (zio); 481 } 482 483 zio_t * 484 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 485 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 486 zio_done_func_t *done, void *private, int priority, int flags, 487 zbookmark_t *zb) 488 { 489 zio_t *zio; 490 491 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 492 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 493 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 494 495 zio->io_bookmark = *zb; 496 zio->io_checksum = checksum; 497 zio->io_compress = ZIO_COMPRESS_OFF; 498 499 if (pio != NULL) 500 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 501 502 return (zio); 503 } 504 505 static zio_t * 506 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 507 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 508 zio_done_func_t *done, void *private, int priority, int flags) 509 { 510 zio_t *zio; 511 512 BP_ZERO(bp); 513 BP_SET_LSIZE(bp, size); 514 BP_SET_PSIZE(bp, size); 515 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 516 517 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 518 ZIO_TYPE_WRITE, priority, flags, 519 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 520 521 zio->io_checksum = checksum; 522 zio->io_compress = ZIO_COMPRESS_OFF; 523 524 return (zio); 525 } 526 527 zio_t * 528 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 529 zio_done_func_t *done, void *private) 530 { 531 zio_t *zio; 532 533 ASSERT(!BP_IS_HOLE(bp)); 534 535 if (txg == spa->spa_syncing_txg && 536 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 537 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 538 return (zio_null(pio, spa, NULL, NULL, 0)); 539 } 540 541 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 542 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 543 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 544 545 zio->io_bp = &zio->io_bp_copy; 546 547 return (zio); 548 } 549 550 zio_t * 551 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 552 zio_done_func_t *done, void *private) 553 { 554 zio_t *zio; 555 556 /* 557 * A claim is an allocation of a specific block. Claims are needed 558 * to support immediate writes in the intent log. The issue is that 559 * immediate writes contain committed data, but in a txg that was 560 * *not* committed. Upon opening the pool after an unclean shutdown, 561 * the intent log claims all blocks that contain immediate write data 562 * so that the SPA knows they're in use. 563 * 564 * All claims *must* be resolved in the first txg -- before the SPA 565 * starts allocating blocks -- so that nothing is allocated twice. 566 */ 567 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 568 ASSERT3U(spa_first_txg(spa), <=, txg); 569 570 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 571 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 572 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 573 574 zio->io_bp = &zio->io_bp_copy; 575 576 return (zio); 577 } 578 579 zio_t * 580 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 581 zio_done_func_t *done, void *private, int priority, int flags) 582 { 583 zio_t *zio; 584 int c; 585 586 if (vd->vdev_children == 0) { 587 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 588 ZIO_TYPE_IOCTL, priority, flags, 589 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 590 591 zio->io_vd = vd; 592 zio->io_cmd = cmd; 593 } else { 594 zio = zio_null(pio, spa, NULL, NULL, flags); 595 596 for (c = 0; c < vd->vdev_children; c++) 597 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 598 done, private, priority, flags)); 599 } 600 601 return (zio); 602 } 603 604 static void 605 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 606 int checksum) 607 { 608 ASSERT(vd->vdev_children == 0); 609 610 ASSERT(size <= SPA_MAXBLOCKSIZE); 611 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 612 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 613 614 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 615 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 616 ASSERT3U(offset + size, <=, vd->vdev_psize); 617 618 BP_ZERO(bp); 619 620 BP_SET_LSIZE(bp, size); 621 BP_SET_PSIZE(bp, size); 622 623 BP_SET_CHECKSUM(bp, checksum); 624 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 625 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 626 627 if (checksum != ZIO_CHECKSUM_OFF) 628 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 629 } 630 631 zio_t * 632 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 633 void *data, int checksum, zio_done_func_t *done, void *private, 634 int priority, int flags) 635 { 636 zio_t *zio; 637 blkptr_t blk; 638 639 zio_phys_bp_init(vd, &blk, offset, size, checksum); 640 641 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 642 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 643 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 644 645 zio->io_vd = vd; 646 zio->io_offset = offset; 647 648 /* 649 * Work off our copy of the bp so the caller can free it. 650 */ 651 zio->io_bp = &zio->io_bp_copy; 652 653 return (zio); 654 } 655 656 zio_t * 657 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 658 void *data, int checksum, zio_done_func_t *done, void *private, 659 int priority, int flags) 660 { 661 zio_block_tail_t *zbt; 662 void *wbuf; 663 zio_t *zio; 664 blkptr_t blk; 665 666 zio_phys_bp_init(vd, &blk, offset, size, checksum); 667 668 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 669 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 670 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 671 672 zio->io_vd = vd; 673 zio->io_offset = offset; 674 675 zio->io_bp = &zio->io_bp_copy; 676 zio->io_checksum = checksum; 677 678 if (zio_checksum_table[checksum].ci_zbt) { 679 /* 680 * zbt checksums are necessarily destructive -- they modify 681 * one word of the write buffer to hold the verifier/checksum. 682 * Therefore, we must make a local copy in case the data is 683 * being written to multiple places. 684 */ 685 wbuf = zio_buf_alloc(size); 686 bcopy(data, wbuf, size); 687 zio_push_transform(zio, wbuf, size, size); 688 689 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 690 zbt->zbt_cksum = blk.blk_cksum; 691 } 692 693 return (zio); 694 } 695 696 /* 697 * Create a child I/O to do some work for us. It has no associated bp. 698 */ 699 zio_t * 700 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 701 void *data, uint64_t size, int type, int priority, int flags, 702 zio_done_func_t *done, void *private) 703 { 704 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 705 zio_t *cio; 706 707 if (type == ZIO_TYPE_READ && bp != NULL) { 708 /* 709 * If we have the bp, then the child should perform the 710 * checksum and the parent need not. This pushes error 711 * detection as close to the leaves as possible and 712 * eliminates redundant checksums in the interior nodes. 713 */ 714 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 715 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 716 } 717 718 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 719 done, private, type, priority, 720 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 721 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 722 723 cio->io_vd = vd; 724 cio->io_offset = offset; 725 726 return (cio); 727 } 728 729 /* 730 * ========================================================================== 731 * Initiate I/O, either sync or async 732 * ========================================================================== 733 */ 734 int 735 zio_wait(zio_t *zio) 736 { 737 int error; 738 739 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 740 741 zio->io_waiter = curthread; 742 743 zio_next_stage_async(zio); 744 745 mutex_enter(&zio->io_lock); 746 while (zio->io_stalled != ZIO_STAGE_DONE) 747 cv_wait(&zio->io_cv, &zio->io_lock); 748 mutex_exit(&zio->io_lock); 749 750 error = zio->io_error; 751 mutex_destroy(&zio->io_lock); 752 kmem_free(zio, sizeof (zio_t)); 753 754 return (error); 755 } 756 757 void 758 zio_nowait(zio_t *zio) 759 { 760 zio_next_stage_async(zio); 761 } 762 763 /* 764 * ========================================================================== 765 * I/O pipeline interlocks: parent/child dependency scoreboarding 766 * ========================================================================== 767 */ 768 static void 769 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 770 { 771 mutex_enter(&zio->io_lock); 772 if (*countp == 0) { 773 ASSERT(zio->io_stalled == 0); 774 mutex_exit(&zio->io_lock); 775 zio_next_stage(zio); 776 } else { 777 zio->io_stalled = stage; 778 mutex_exit(&zio->io_lock); 779 } 780 } 781 782 static void 783 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 784 { 785 zio_t *pio = zio->io_parent; 786 787 mutex_enter(&pio->io_lock); 788 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 789 pio->io_error = zio->io_error; 790 if (--*countp == 0 && pio->io_stalled == stage) { 791 pio->io_stalled = 0; 792 mutex_exit(&pio->io_lock); 793 zio_next_stage_async(pio); 794 } else { 795 mutex_exit(&pio->io_lock); 796 } 797 } 798 799 static void 800 zio_wait_children_ready(zio_t *zio) 801 { 802 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 803 &zio->io_children_notready); 804 } 805 806 void 807 zio_wait_children_done(zio_t *zio) 808 { 809 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 810 &zio->io_children_notdone); 811 } 812 813 static void 814 zio_ready(zio_t *zio) 815 { 816 zio_t *pio = zio->io_parent; 817 818 if (zio->io_ready) 819 zio->io_ready(zio); 820 821 if (pio != NULL) 822 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 823 &pio->io_children_notready); 824 825 if (zio->io_bp) 826 zio->io_bp_copy = *zio->io_bp; 827 828 zio_next_stage(zio); 829 } 830 831 static void 832 zio_done(zio_t *zio) 833 { 834 zio_t *pio = zio->io_parent; 835 spa_t *spa = zio->io_spa; 836 blkptr_t *bp = zio->io_bp; 837 vdev_t *vd = zio->io_vd; 838 839 ASSERT(zio->io_children_notready == 0); 840 ASSERT(zio->io_children_notdone == 0); 841 842 if (bp != NULL) { 843 ASSERT(bp->blk_pad[0] == 0); 844 ASSERT(bp->blk_pad[1] == 0); 845 ASSERT(bp->blk_pad[2] == 0); 846 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 847 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 848 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 849 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 850 if (zio->io_ndvas != 0) 851 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 852 ASSERT(BP_COUNT_GANG(bp) == 0 || 853 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 854 } 855 } 856 857 if (vd != NULL) 858 vdev_stat_update(zio); 859 860 if (zio->io_error) { 861 /* 862 * If this I/O is attached to a particular vdev, 863 * generate an error message describing the I/O failure 864 * at the block level. We ignore these errors if the 865 * device is currently unavailable. 866 */ 867 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 868 zfs_ereport_post(FM_EREPORT_ZFS_IO, 869 zio->io_spa, vd, zio, 0, 0); 870 871 if ((zio->io_error == EIO || 872 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 873 zio->io_logical == zio) { 874 /* 875 * For root I/O requests, tell the SPA to log the error 876 * appropriately. Also, generate a logical data 877 * ereport. 878 */ 879 spa_log_error(zio->io_spa, zio); 880 881 zfs_ereport_post(FM_EREPORT_ZFS_DATA, 882 zio->io_spa, NULL, zio, 0, 0); 883 } 884 885 /* 886 * For I/O requests that cannot fail, panic appropriately. 887 */ 888 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 889 char *blkbuf; 890 891 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 892 if (blkbuf) { 893 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 894 bp ? bp : &zio->io_bp_copy); 895 } 896 panic("ZFS: %s (%s on %s off %llx: zio %p %s): error " 897 "%d", zio->io_error == ECKSUM ? 898 "bad checksum" : "I/O failure", 899 zio_type_name[zio->io_type], 900 vdev_description(vd), 901 (u_longlong_t)zio->io_offset, 902 zio, blkbuf ? blkbuf : "", zio->io_error); 903 } 904 } 905 zio_clear_transform_stack(zio); 906 907 if (zio->io_done) 908 zio->io_done(zio); 909 910 ASSERT(zio->io_delegate_list == NULL); 911 ASSERT(zio->io_delegate_next == NULL); 912 913 if (pio != NULL) { 914 zio_t *next, *prev; 915 916 mutex_enter(&pio->io_lock); 917 next = zio->io_sibling_next; 918 prev = zio->io_sibling_prev; 919 if (next != NULL) 920 next->io_sibling_prev = prev; 921 if (prev != NULL) 922 prev->io_sibling_next = next; 923 if (pio->io_child == zio) 924 pio->io_child = next; 925 mutex_exit(&pio->io_lock); 926 927 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 928 &pio->io_children_notdone); 929 } 930 931 /* 932 * Note: this I/O is now done, and will shortly be 933 * kmem_free()'d, so there is no need to clear this (or any 934 * other) flag. 935 */ 936 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 937 spa_config_exit(spa, zio); 938 939 if (zio->io_waiter != NULL) { 940 mutex_enter(&zio->io_lock); 941 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 942 zio->io_stalled = zio->io_stage; 943 cv_broadcast(&zio->io_cv); 944 mutex_exit(&zio->io_lock); 945 } else { 946 kmem_free(zio, sizeof (zio_t)); 947 } 948 } 949 950 /* 951 * ========================================================================== 952 * Compression support 953 * ========================================================================== 954 */ 955 static void 956 zio_write_compress(zio_t *zio) 957 { 958 int compress = zio->io_compress; 959 blkptr_t *bp = zio->io_bp; 960 void *cbuf; 961 uint64_t lsize = zio->io_size; 962 uint64_t csize = lsize; 963 uint64_t cbufsize = 0; 964 int pass; 965 966 if (bp->blk_birth == zio->io_txg) { 967 /* 968 * We're rewriting an existing block, which means we're 969 * working on behalf of spa_sync(). For spa_sync() to 970 * converge, it must eventually be the case that we don't 971 * have to allocate new blocks. But compression changes 972 * the blocksize, which forces a reallocate, and makes 973 * convergence take longer. Therefore, after the first 974 * few passes, stop compressing to ensure convergence. 975 */ 976 pass = spa_sync_pass(zio->io_spa); 977 if (pass > zio_sync_pass.zp_dontcompress) 978 compress = ZIO_COMPRESS_OFF; 979 } else { 980 ASSERT(BP_IS_HOLE(bp)); 981 pass = 1; 982 } 983 984 if (compress != ZIO_COMPRESS_OFF) 985 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 986 &cbuf, &csize, &cbufsize)) 987 compress = ZIO_COMPRESS_OFF; 988 989 if (compress != ZIO_COMPRESS_OFF && csize != 0) 990 zio_push_transform(zio, cbuf, csize, cbufsize); 991 992 /* 993 * The final pass of spa_sync() must be all rewrites, but the first 994 * few passes offer a trade-off: allocating blocks defers convergence, 995 * but newly allocated blocks are sequential, so they can be written 996 * to disk faster. Therefore, we allow the first few passes of 997 * spa_sync() to reallocate new blocks, but force rewrites after that. 998 * There should only be a handful of blocks after pass 1 in any case. 999 */ 1000 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1001 pass > zio_sync_pass.zp_rewrite) { 1002 ASSERT(csize != 0); 1003 BP_SET_LSIZE(bp, lsize); 1004 BP_SET_COMPRESS(bp, compress); 1005 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1006 } else { 1007 if (bp->blk_birth == zio->io_txg) 1008 BP_ZERO(bp); 1009 if (csize == 0) { 1010 BP_ZERO(bp); 1011 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1012 } else { 1013 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1014 BP_SET_LSIZE(bp, lsize); 1015 BP_SET_PSIZE(bp, csize); 1016 BP_SET_COMPRESS(bp, compress); 1017 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1018 } 1019 } 1020 1021 zio_next_stage(zio); 1022 } 1023 1024 static void 1025 zio_read_decompress(zio_t *zio) 1026 { 1027 blkptr_t *bp = zio->io_bp; 1028 void *data; 1029 uint64_t size; 1030 uint64_t bufsize; 1031 int compress = BP_GET_COMPRESS(bp); 1032 1033 ASSERT(compress != ZIO_COMPRESS_OFF); 1034 1035 zio_pop_transform(zio, &data, &size, &bufsize); 1036 1037 if (zio_decompress_data(compress, data, size, 1038 zio->io_data, zio->io_size)) 1039 zio->io_error = EIO; 1040 1041 zio_buf_free(data, bufsize); 1042 1043 zio_next_stage(zio); 1044 } 1045 1046 /* 1047 * ========================================================================== 1048 * Gang block support 1049 * ========================================================================== 1050 */ 1051 static void 1052 zio_gang_pipeline(zio_t *zio) 1053 { 1054 /* 1055 * By default, the pipeline assumes that we're dealing with a gang 1056 * block. If we're not, strip out any gang-specific stages. 1057 */ 1058 if (!BP_IS_GANG(zio->io_bp)) 1059 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1060 1061 zio_next_stage(zio); 1062 } 1063 1064 static void 1065 zio_gang_byteswap(zio_t *zio) 1066 { 1067 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1068 1069 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1070 byteswap_uint64_array(zio->io_data, zio->io_size); 1071 } 1072 1073 static void 1074 zio_get_gang_header(zio_t *zio) 1075 { 1076 blkptr_t *bp = zio->io_bp; 1077 uint64_t gsize = SPA_GANGBLOCKSIZE; 1078 void *gbuf = zio_buf_alloc(gsize); 1079 1080 ASSERT(BP_IS_GANG(bp)); 1081 1082 zio_push_transform(zio, gbuf, gsize, gsize); 1083 1084 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1085 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1086 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1087 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE)); 1088 1089 zio_wait_children_done(zio); 1090 } 1091 1092 static void 1093 zio_read_gang_members(zio_t *zio) 1094 { 1095 zio_gbh_phys_t *gbh; 1096 uint64_t gsize, gbufsize, loff, lsize; 1097 int i; 1098 1099 ASSERT(BP_IS_GANG(zio->io_bp)); 1100 1101 zio_gang_byteswap(zio); 1102 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1103 1104 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1105 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1106 lsize = BP_GET_PSIZE(gbp); 1107 1108 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1109 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1110 ASSERT3U(loff + lsize, <=, zio->io_size); 1111 ASSERT(i < SPA_GBH_NBLKPTRS); 1112 ASSERT(!BP_IS_HOLE(gbp)); 1113 1114 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1115 (char *)zio->io_data + loff, lsize, NULL, NULL, 1116 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1117 &zio->io_bookmark)); 1118 } 1119 1120 zio_buf_free(gbh, gbufsize); 1121 zio_wait_children_done(zio); 1122 } 1123 1124 static void 1125 zio_rewrite_gang_members(zio_t *zio) 1126 { 1127 zio_gbh_phys_t *gbh; 1128 uint64_t gsize, gbufsize, loff, lsize; 1129 int i; 1130 1131 ASSERT(BP_IS_GANG(zio->io_bp)); 1132 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1133 1134 zio_gang_byteswap(zio); 1135 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1136 1137 ASSERT(gsize == gbufsize); 1138 1139 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1140 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1141 lsize = BP_GET_PSIZE(gbp); 1142 1143 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1144 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1145 ASSERT3U(loff + lsize, <=, zio->io_size); 1146 ASSERT(i < SPA_GBH_NBLKPTRS); 1147 ASSERT(!BP_IS_HOLE(gbp)); 1148 1149 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1150 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1151 NULL, NULL, zio->io_priority, zio->io_flags, 1152 &zio->io_bookmark)); 1153 } 1154 1155 zio_push_transform(zio, gbh, gsize, gbufsize); 1156 zio_wait_children_ready(zio); 1157 } 1158 1159 static void 1160 zio_free_gang_members(zio_t *zio) 1161 { 1162 zio_gbh_phys_t *gbh; 1163 uint64_t gsize, gbufsize; 1164 int i; 1165 1166 ASSERT(BP_IS_GANG(zio->io_bp)); 1167 1168 zio_gang_byteswap(zio); 1169 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1170 1171 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1172 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1173 1174 if (BP_IS_HOLE(gbp)) 1175 continue; 1176 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1177 gbp, NULL, NULL)); 1178 } 1179 1180 zio_buf_free(gbh, gbufsize); 1181 zio_next_stage(zio); 1182 } 1183 1184 static void 1185 zio_claim_gang_members(zio_t *zio) 1186 { 1187 zio_gbh_phys_t *gbh; 1188 uint64_t gsize, gbufsize; 1189 int i; 1190 1191 ASSERT(BP_IS_GANG(zio->io_bp)); 1192 1193 zio_gang_byteswap(zio); 1194 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1195 1196 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1197 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1198 if (BP_IS_HOLE(gbp)) 1199 continue; 1200 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1201 gbp, NULL, NULL)); 1202 } 1203 1204 zio_buf_free(gbh, gbufsize); 1205 zio_next_stage(zio); 1206 } 1207 1208 static void 1209 zio_write_allocate_gang_member_done(zio_t *zio) 1210 { 1211 zio_t *pio = zio->io_parent; 1212 dva_t *cdva = zio->io_bp->blk_dva; 1213 dva_t *pdva = pio->io_bp->blk_dva; 1214 uint64_t asize; 1215 int d; 1216 1217 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1218 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1219 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1220 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1221 1222 mutex_enter(&pio->io_lock); 1223 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1224 ASSERT(DVA_GET_GANG(&pdva[d])); 1225 asize = DVA_GET_ASIZE(&pdva[d]); 1226 asize += DVA_GET_ASIZE(&cdva[d]); 1227 DVA_SET_ASIZE(&pdva[d], asize); 1228 } 1229 mutex_exit(&pio->io_lock); 1230 } 1231 1232 static void 1233 zio_write_allocate_gang_members(zio_t *zio) 1234 { 1235 blkptr_t *bp = zio->io_bp; 1236 dva_t *dva = bp->blk_dva; 1237 spa_t *spa = zio->io_spa; 1238 zio_gbh_phys_t *gbh; 1239 uint64_t txg = zio->io_txg; 1240 uint64_t resid = zio->io_size; 1241 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1242 uint64_t gsize, loff, lsize; 1243 uint32_t gbps_left; 1244 int ndvas = zio->io_ndvas; 1245 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1246 int error; 1247 int i, d; 1248 1249 gsize = SPA_GANGBLOCKSIZE; 1250 gbps_left = SPA_GBH_NBLKPTRS; 1251 1252 error = metaslab_alloc(spa, gsize, bp, gbh_ndvas, txg, NULL, B_FALSE); 1253 if (error == ENOSPC) 1254 panic("can't allocate gang block header"); 1255 ASSERT(error == 0); 1256 1257 for (d = 0; d < gbh_ndvas; d++) 1258 DVA_SET_GANG(&dva[d], 1); 1259 1260 bp->blk_birth = txg; 1261 1262 gbh = zio_buf_alloc(gsize); 1263 bzero(gbh, gsize); 1264 1265 /* We need to test multi-level gang blocks */ 1266 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1267 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1268 1269 for (loff = 0, i = 0; loff != zio->io_size; 1270 loff += lsize, resid -= lsize, gbps_left--, i++) { 1271 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1272 dva = gbp->blk_dva; 1273 1274 ASSERT(gbps_left != 0); 1275 maxalloc = MIN(maxalloc, resid); 1276 1277 while (resid <= maxalloc * gbps_left) { 1278 error = metaslab_alloc(spa, maxalloc, gbp, ndvas, 1279 txg, bp, B_FALSE); 1280 if (error == 0) 1281 break; 1282 ASSERT3U(error, ==, ENOSPC); 1283 if (maxalloc == SPA_MINBLOCKSIZE) 1284 panic("really out of space"); 1285 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1286 } 1287 1288 if (resid <= maxalloc * gbps_left) { 1289 lsize = maxalloc; 1290 BP_SET_LSIZE(gbp, lsize); 1291 BP_SET_PSIZE(gbp, lsize); 1292 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1293 gbp->blk_birth = txg; 1294 zio_nowait(zio_rewrite(zio, spa, 1295 zio->io_checksum, txg, gbp, 1296 (char *)zio->io_data + loff, lsize, 1297 zio_write_allocate_gang_member_done, NULL, 1298 zio->io_priority, zio->io_flags, 1299 &zio->io_bookmark)); 1300 } else { 1301 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1302 ASSERT(lsize != SPA_MINBLOCKSIZE); 1303 zio_nowait(zio_write_allocate(zio, spa, 1304 zio->io_checksum, txg, gbp, 1305 (char *)zio->io_data + loff, lsize, 1306 zio_write_allocate_gang_member_done, NULL, 1307 zio->io_priority, zio->io_flags)); 1308 } 1309 } 1310 1311 ASSERT(resid == 0 && loff == zio->io_size); 1312 1313 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1314 1315 zio_push_transform(zio, gbh, gsize, gsize); 1316 /* 1317 * As much as we'd like this to be zio_wait_children_ready(), 1318 * updating our ASIZE doesn't happen until the io_done callback, 1319 * so we have to wait for that to finish in order for our BP 1320 * to be stable. 1321 */ 1322 zio_wait_children_done(zio); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Allocate and free blocks 1328 * ========================================================================== 1329 */ 1330 static void 1331 zio_dva_allocate(zio_t *zio) 1332 { 1333 blkptr_t *bp = zio->io_bp; 1334 int error; 1335 1336 ASSERT(BP_IS_HOLE(bp)); 1337 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1338 ASSERT3U(zio->io_ndvas, >, 0); 1339 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(zio->io_spa)); 1340 1341 /* For testing, make some blocks above a certain size be gang blocks */ 1342 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1343 zio_write_allocate_gang_members(zio); 1344 return; 1345 } 1346 1347 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1348 1349 error = metaslab_alloc(zio->io_spa, zio->io_size, bp, zio->io_ndvas, 1350 zio->io_txg, NULL, B_FALSE); 1351 1352 if (error == 0) { 1353 bp->blk_birth = zio->io_txg; 1354 } else if (error == ENOSPC) { 1355 if (zio->io_size == SPA_MINBLOCKSIZE) 1356 panic("really, truly out of space"); 1357 zio_write_allocate_gang_members(zio); 1358 return; 1359 } else { 1360 zio->io_error = error; 1361 } 1362 zio_next_stage(zio); 1363 } 1364 1365 static void 1366 zio_dva_free(zio_t *zio) 1367 { 1368 blkptr_t *bp = zio->io_bp; 1369 1370 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1371 1372 BP_ZERO(bp); 1373 1374 zio_next_stage(zio); 1375 } 1376 1377 static void 1378 zio_dva_claim(zio_t *zio) 1379 { 1380 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1381 1382 zio_next_stage(zio); 1383 } 1384 1385 /* 1386 * ========================================================================== 1387 * Read and write to physical devices 1388 * ========================================================================== 1389 */ 1390 1391 static void 1392 zio_vdev_io_start(zio_t *zio) 1393 { 1394 vdev_t *vd = zio->io_vd; 1395 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1396 blkptr_t *bp = zio->io_bp; 1397 uint64_t align; 1398 1399 if (vd == NULL) { 1400 /* The mirror_ops handle multiple DVAs in a single BP */ 1401 vdev_mirror_ops.vdev_op_io_start(zio); 1402 return; 1403 } 1404 1405 align = 1ULL << tvd->vdev_ashift; 1406 1407 if (zio->io_retries == 0 && vd == tvd) 1408 zio->io_flags |= ZIO_FLAG_FAILFAST; 1409 1410 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1411 vd->vdev_children == 0) { 1412 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1413 zio->io_offset += VDEV_LABEL_START_SIZE; 1414 } 1415 1416 if (P2PHASE(zio->io_size, align) != 0) { 1417 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1418 char *abuf = zio_buf_alloc(asize); 1419 ASSERT(vd == tvd); 1420 if (zio->io_type == ZIO_TYPE_WRITE) { 1421 bcopy(zio->io_data, abuf, zio->io_size); 1422 bzero(abuf + zio->io_size, asize - zio->io_size); 1423 } 1424 zio_push_transform(zio, abuf, asize, asize); 1425 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1426 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1427 } 1428 1429 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1430 ASSERT(P2PHASE(zio->io_size, align) == 0); 1431 ASSERT(bp == NULL || 1432 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1433 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1434 1435 vdev_io_start(zio); 1436 1437 /* zio_next_stage_async() gets called from io completion interrupt */ 1438 } 1439 1440 static void 1441 zio_vdev_io_done(zio_t *zio) 1442 { 1443 if (zio->io_vd == NULL) 1444 /* The mirror_ops handle multiple DVAs in a single BP */ 1445 vdev_mirror_ops.vdev_op_io_done(zio); 1446 else 1447 vdev_io_done(zio); 1448 } 1449 1450 /* XXPOLICY */ 1451 boolean_t 1452 zio_should_retry(zio_t *zio) 1453 { 1454 vdev_t *vd = zio->io_vd; 1455 1456 if (zio->io_error == 0) 1457 return (B_FALSE); 1458 if (zio->io_delegate_list != NULL) 1459 return (B_FALSE); 1460 if (vd && vd != vd->vdev_top) 1461 return (B_FALSE); 1462 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1463 return (B_FALSE); 1464 if (zio->io_retries > 0) 1465 return (B_FALSE); 1466 1467 return (B_TRUE); 1468 } 1469 1470 static void 1471 zio_vdev_io_assess(zio_t *zio) 1472 { 1473 vdev_t *vd = zio->io_vd; 1474 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1475 1476 ASSERT(zio->io_vsd == NULL); 1477 1478 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1479 void *abuf; 1480 uint64_t asize; 1481 ASSERT(vd == tvd); 1482 zio_pop_transform(zio, &abuf, &asize, &asize); 1483 if (zio->io_type == ZIO_TYPE_READ) 1484 bcopy(abuf, zio->io_data, zio->io_size); 1485 zio_buf_free(abuf, asize); 1486 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1487 } 1488 1489 if (zio_injection_enabled && !zio->io_error) 1490 zio->io_error = zio_handle_fault_injection(zio, EIO); 1491 1492 /* 1493 * If the I/O failed, determine whether we should attempt to retry it. 1494 */ 1495 /* XXPOLICY */ 1496 if (zio_should_retry(zio)) { 1497 ASSERT(tvd == vd); 1498 1499 zio->io_retries++; 1500 zio->io_error = 0; 1501 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1502 ZIO_FLAG_CONFIG_GRABBED; 1503 /* XXPOLICY */ 1504 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1505 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1506 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1507 1508 dprintf("retry #%d for %s to %s offset %llx\n", 1509 zio->io_retries, zio_type_name[zio->io_type], 1510 vdev_description(vd), zio->io_offset); 1511 1512 zio_next_stage_async(zio); 1513 return; 1514 } 1515 1516 if (zio->io_error != 0 && zio->io_error != ECKSUM && 1517 !(zio->io_flags & ZIO_FLAG_SPECULATIVE) && vd) { 1518 /* 1519 * Poor man's hotplug support. Even if we're done retrying this 1520 * I/O, try to reopen the vdev to see if it's still attached. 1521 * To avoid excessive thrashing, we only try it once a minute. 1522 * This also has the effect of detecting when missing devices 1523 * have come back, by polling the device once a minute. 1524 * 1525 * We need to do this asynchronously because we can't grab 1526 * all the necessary locks way down here. 1527 */ 1528 if (gethrtime() - vd->vdev_last_try > 60ULL * NANOSEC) { 1529 vd->vdev_last_try = gethrtime(); 1530 tvd->vdev_reopen_wanted = 1; 1531 spa_async_request(vd->vdev_spa, SPA_ASYNC_REOPEN); 1532 } 1533 } 1534 1535 zio_next_stage(zio); 1536 } 1537 1538 void 1539 zio_vdev_io_reissue(zio_t *zio) 1540 { 1541 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1542 ASSERT(zio->io_error == 0); 1543 1544 zio->io_stage--; 1545 } 1546 1547 void 1548 zio_vdev_io_redone(zio_t *zio) 1549 { 1550 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1551 1552 zio->io_stage--; 1553 } 1554 1555 void 1556 zio_vdev_io_bypass(zio_t *zio) 1557 { 1558 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1559 ASSERT(zio->io_error == 0); 1560 1561 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1562 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1563 } 1564 1565 /* 1566 * ========================================================================== 1567 * Generate and verify checksums 1568 * ========================================================================== 1569 */ 1570 static void 1571 zio_checksum_generate(zio_t *zio) 1572 { 1573 int checksum = zio->io_checksum; 1574 blkptr_t *bp = zio->io_bp; 1575 1576 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1577 1578 BP_SET_CHECKSUM(bp, checksum); 1579 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1580 1581 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1582 1583 zio_next_stage(zio); 1584 } 1585 1586 static void 1587 zio_gang_checksum_generate(zio_t *zio) 1588 { 1589 zio_cksum_t zc; 1590 zio_gbh_phys_t *gbh = zio->io_data; 1591 1592 ASSERT(BP_IS_GANG(zio->io_bp)); 1593 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1594 1595 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1596 1597 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1598 1599 zio_next_stage(zio); 1600 } 1601 1602 static void 1603 zio_checksum_verify(zio_t *zio) 1604 { 1605 if (zio->io_bp != NULL) { 1606 zio->io_error = zio_checksum_error(zio); 1607 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1608 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1609 zio->io_spa, zio->io_vd, zio, 0, 0); 1610 } 1611 1612 zio_next_stage(zio); 1613 } 1614 1615 /* 1616 * Called by RAID-Z to ensure we don't compute the checksum twice. 1617 */ 1618 void 1619 zio_checksum_verified(zio_t *zio) 1620 { 1621 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1622 } 1623 1624 /* 1625 * Set the external verifier for a gang block based on stuff in the bp 1626 */ 1627 void 1628 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1629 { 1630 blkptr_t *bp = zio->io_bp; 1631 1632 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1633 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1634 zcp->zc_word[2] = bp->blk_birth; 1635 zcp->zc_word[3] = 0; 1636 } 1637 1638 /* 1639 * ========================================================================== 1640 * Define the pipeline 1641 * ========================================================================== 1642 */ 1643 typedef void zio_pipe_stage_t(zio_t *zio); 1644 1645 static void 1646 zio_badop(zio_t *zio) 1647 { 1648 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1649 } 1650 1651 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1652 zio_badop, 1653 zio_wait_children_ready, 1654 zio_write_compress, 1655 zio_checksum_generate, 1656 zio_gang_pipeline, 1657 zio_get_gang_header, 1658 zio_rewrite_gang_members, 1659 zio_free_gang_members, 1660 zio_claim_gang_members, 1661 zio_dva_allocate, 1662 zio_dva_free, 1663 zio_dva_claim, 1664 zio_gang_checksum_generate, 1665 zio_ready, 1666 zio_vdev_io_start, 1667 zio_vdev_io_done, 1668 zio_vdev_io_assess, 1669 zio_wait_children_done, 1670 zio_checksum_verify, 1671 zio_read_gang_members, 1672 zio_read_decompress, 1673 zio_done, 1674 zio_badop 1675 }; 1676 1677 /* 1678 * Move an I/O to the next stage of the pipeline and execute that stage. 1679 * There's no locking on io_stage because there's no legitimate way for 1680 * multiple threads to be attempting to process the same I/O. 1681 */ 1682 void 1683 zio_next_stage(zio_t *zio) 1684 { 1685 uint32_t pipeline = zio->io_pipeline; 1686 1687 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1688 1689 if (zio->io_error) { 1690 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1691 zio, vdev_description(zio->io_vd), 1692 zio->io_offset, zio->io_stage, zio->io_error); 1693 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1694 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1695 } 1696 1697 while (((1U << ++zio->io_stage) & pipeline) == 0) 1698 continue; 1699 1700 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1701 ASSERT(zio->io_stalled == 0); 1702 1703 /* 1704 * See the comment in zio_next_stage_async() about per-CPU taskqs. 1705 */ 1706 if (((1U << zio->io_stage) & zio->io_async_stages) && 1707 (zio->io_stage == ZIO_STAGE_WRITE_COMPRESS) && 1708 !(zio->io_flags & ZIO_FLAG_METADATA)) { 1709 taskq_t *tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1710 (void) taskq_dispatch(tq, 1711 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1712 } else { 1713 zio_pipeline[zio->io_stage](zio); 1714 } 1715 } 1716 1717 void 1718 zio_next_stage_async(zio_t *zio) 1719 { 1720 taskq_t *tq; 1721 uint32_t pipeline = zio->io_pipeline; 1722 1723 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1724 1725 if (zio->io_error) { 1726 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1727 zio, vdev_description(zio->io_vd), 1728 zio->io_offset, zio->io_stage, zio->io_error); 1729 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1730 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1731 } 1732 1733 while (((1U << ++zio->io_stage) & pipeline) == 0) 1734 continue; 1735 1736 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1737 ASSERT(zio->io_stalled == 0); 1738 1739 /* 1740 * For performance, we'll probably want two sets of task queues: 1741 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 1742 * part is for read performance: since we have to make a pass over 1743 * the data to checksum it anyway, we want to do this on the same CPU 1744 * that issued the read, because (assuming CPU scheduling affinity) 1745 * that thread is probably still there. Getting this optimization 1746 * right avoids performance-hostile cache-to-cache transfers. 1747 * 1748 * Note that having two sets of task queues is also necessary for 1749 * correctness: if all of the issue threads get bogged down waiting 1750 * for dependent reads (e.g. metaslab freelist) to complete, then 1751 * there won't be any threads available to service I/O completion 1752 * interrupts. 1753 */ 1754 if ((1U << zio->io_stage) & zio->io_async_stages) { 1755 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 1756 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1757 else 1758 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 1759 (void) taskq_dispatch(tq, 1760 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1761 } else { 1762 zio_pipeline[zio->io_stage](zio); 1763 } 1764 } 1765 1766 static boolean_t 1767 zio_alloc_should_fail(void) 1768 { 1769 static uint16_t allocs = 0; 1770 1771 return (P2PHASE(allocs++, 1U<<zio_zil_fail_shift) == 0); 1772 } 1773 1774 /* 1775 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1776 */ 1777 int 1778 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1779 uint64_t txg) 1780 { 1781 int error; 1782 1783 spa_config_enter(spa, RW_READER, FTAG); 1784 1785 if (zio_zil_fail_shift && zio_alloc_should_fail()) { 1786 spa_config_exit(spa, FTAG); 1787 return (ENOSPC); 1788 } 1789 1790 /* 1791 * We were passed the previous log blocks dva_t in bp->blk_dva[0]. 1792 */ 1793 error = metaslab_alloc(spa, size, new_bp, 1, txg, old_bp, B_TRUE); 1794 1795 if (error == 0) { 1796 BP_SET_LSIZE(new_bp, size); 1797 BP_SET_PSIZE(new_bp, size); 1798 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1799 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1800 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1801 BP_SET_LEVEL(new_bp, 0); 1802 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1803 new_bp->blk_birth = txg; 1804 } 1805 1806 spa_config_exit(spa, FTAG); 1807 1808 return (error); 1809 } 1810 1811 /* 1812 * Free an intent log block. We know it can't be a gang block, so there's 1813 * nothing to do except metaslab_free() it. 1814 */ 1815 void 1816 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1817 { 1818 ASSERT(!BP_IS_GANG(bp)); 1819 1820 spa_config_enter(spa, RW_READER, FTAG); 1821 1822 metaslab_free(spa, bp, txg, B_FALSE); 1823 1824 spa_config_exit(spa, FTAG); 1825 } 1826