1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 /* Force an allocation failure when non-zero */ 68 uint16_t zio_zil_fail_shift = 0; 69 70 typedef struct zio_sync_pass { 71 int zp_defer_free; /* defer frees after this pass */ 72 int zp_dontcompress; /* don't compress after this pass */ 73 int zp_rewrite; /* rewrite new bps after this pass */ 74 } zio_sync_pass_t; 75 76 zio_sync_pass_t zio_sync_pass = { 77 1, /* zp_defer_free */ 78 4, /* zp_dontcompress */ 79 1, /* zp_rewrite */ 80 }; 81 82 /* 83 * ========================================================================== 84 * I/O kmem caches 85 * ========================================================================== 86 */ 87 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 88 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 89 90 #ifdef _KERNEL 91 extern vmem_t *zio_alloc_arena; 92 #endif 93 94 void 95 zio_init(void) 96 { 97 size_t c; 98 vmem_t *data_alloc_arena = NULL; 99 100 #ifdef _KERNEL 101 data_alloc_arena = zio_alloc_arena; 102 #endif 103 104 /* 105 * For small buffers, we want a cache for each multiple of 106 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 107 * for each quarter-power of 2. For large buffers, we want 108 * a cache for each multiple of PAGESIZE. 109 */ 110 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 111 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 112 size_t p2 = size; 113 size_t align = 0; 114 115 while (p2 & (p2 - 1)) 116 p2 &= p2 - 1; 117 118 if (size <= 4 * SPA_MINBLOCKSIZE) { 119 align = SPA_MINBLOCKSIZE; 120 } else if (P2PHASE(size, PAGESIZE) == 0) { 121 align = PAGESIZE; 122 } else if (P2PHASE(size, p2 >> 2) == 0) { 123 align = p2 >> 2; 124 } 125 126 if (align != 0) { 127 char name[36]; 128 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 129 zio_buf_cache[c] = kmem_cache_create(name, size, 130 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 131 132 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 133 zio_data_buf_cache[c] = kmem_cache_create(name, size, 134 align, NULL, NULL, NULL, NULL, data_alloc_arena, 135 KMC_NODEBUG); 136 137 dprintf("creating cache for size %5lx align %5lx\n", 138 size, align); 139 } 140 } 141 142 while (--c != 0) { 143 ASSERT(zio_buf_cache[c] != NULL); 144 if (zio_buf_cache[c - 1] == NULL) 145 zio_buf_cache[c - 1] = zio_buf_cache[c]; 146 147 ASSERT(zio_data_buf_cache[c] != NULL); 148 if (zio_data_buf_cache[c - 1] == NULL) 149 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 150 } 151 152 zio_inject_init(); 153 } 154 155 void 156 zio_fini(void) 157 { 158 size_t c; 159 kmem_cache_t *last_cache = NULL; 160 kmem_cache_t *last_data_cache = NULL; 161 162 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 163 if (zio_buf_cache[c] != last_cache) { 164 last_cache = zio_buf_cache[c]; 165 kmem_cache_destroy(zio_buf_cache[c]); 166 } 167 zio_buf_cache[c] = NULL; 168 169 if (zio_data_buf_cache[c] != last_data_cache) { 170 last_data_cache = zio_data_buf_cache[c]; 171 kmem_cache_destroy(zio_data_buf_cache[c]); 172 } 173 zio_data_buf_cache[c] = NULL; 174 } 175 176 zio_inject_fini(); 177 } 178 179 /* 180 * ========================================================================== 181 * Allocate and free I/O buffers 182 * ========================================================================== 183 */ 184 185 /* 186 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 187 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 188 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 189 * excess / transient data in-core during a crashdump. 190 */ 191 void * 192 zio_buf_alloc(size_t size) 193 { 194 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 195 196 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 197 198 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 199 } 200 201 /* 202 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 203 * crashdump if the kernel panics. This exists so that we will limit the amount 204 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 205 * of kernel heap dumped to disk when the kernel panics) 206 */ 207 void * 208 zio_data_buf_alloc(size_t size) 209 { 210 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 211 212 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 213 214 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 215 } 216 217 void 218 zio_buf_free(void *buf, size_t size) 219 { 220 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 221 222 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 223 224 kmem_cache_free(zio_buf_cache[c], buf); 225 } 226 227 void 228 zio_data_buf_free(void *buf, size_t size) 229 { 230 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 231 232 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 233 234 kmem_cache_free(zio_data_buf_cache[c], buf); 235 } 236 237 /* 238 * ========================================================================== 239 * Push and pop I/O transform buffers 240 * ========================================================================== 241 */ 242 static void 243 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 244 { 245 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 246 247 zt->zt_data = data; 248 zt->zt_size = size; 249 zt->zt_bufsize = bufsize; 250 251 zt->zt_next = zio->io_transform_stack; 252 zio->io_transform_stack = zt; 253 254 zio->io_data = data; 255 zio->io_size = size; 256 } 257 258 static void 259 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 260 { 261 zio_transform_t *zt = zio->io_transform_stack; 262 263 *data = zt->zt_data; 264 *size = zt->zt_size; 265 *bufsize = zt->zt_bufsize; 266 267 zio->io_transform_stack = zt->zt_next; 268 kmem_free(zt, sizeof (zio_transform_t)); 269 270 if ((zt = zio->io_transform_stack) != NULL) { 271 zio->io_data = zt->zt_data; 272 zio->io_size = zt->zt_size; 273 } 274 } 275 276 static void 277 zio_clear_transform_stack(zio_t *zio) 278 { 279 void *data; 280 uint64_t size, bufsize; 281 282 ASSERT(zio->io_transform_stack != NULL); 283 284 zio_pop_transform(zio, &data, &size, &bufsize); 285 while (zio->io_transform_stack != NULL) { 286 zio_buf_free(data, bufsize); 287 zio_pop_transform(zio, &data, &size, &bufsize); 288 } 289 } 290 291 /* 292 * ========================================================================== 293 * Create the various types of I/O (read, write, free) 294 * ========================================================================== 295 */ 296 static zio_t * 297 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 298 void *data, uint64_t size, zio_done_func_t *done, void *private, 299 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 300 { 301 zio_t *zio; 302 303 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 304 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 305 306 zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 307 zio->io_parent = pio; 308 zio->io_spa = spa; 309 zio->io_txg = txg; 310 if (bp != NULL) { 311 zio->io_bp = bp; 312 zio->io_bp_copy = *bp; 313 zio->io_bp_orig = *bp; 314 } 315 zio->io_done = done; 316 zio->io_private = private; 317 zio->io_type = type; 318 zio->io_priority = priority; 319 zio->io_stage = stage; 320 zio->io_pipeline = pipeline; 321 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 322 zio->io_timestamp = lbolt64; 323 zio->io_flags = flags; 324 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 325 zio_push_transform(zio, data, size, size); 326 327 /* 328 * Note on config lock: 329 * 330 * If CONFIG_HELD is set, then the caller already has the config 331 * lock, so we don't need it for this io. 332 * 333 * We set CONFIG_GRABBED to indicate that we have grabbed the 334 * config lock on behalf of this io, so it should be released 335 * in zio_done. 336 * 337 * Unless CONFIG_HELD is set, we will grab the config lock for 338 * any top-level (parent-less) io, *except* NULL top-level ios. 339 * The NULL top-level ios rarely have any children, so we delay 340 * grabbing the lock until the first child is added (but it is 341 * still grabbed on behalf of the top-level i/o, so additional 342 * children don't need to also grab it). This greatly reduces 343 * contention on the config lock. 344 */ 345 if (pio == NULL) { 346 if (type != ZIO_TYPE_NULL && 347 !(flags & ZIO_FLAG_CONFIG_HELD)) { 348 spa_config_enter(zio->io_spa, RW_READER, zio); 349 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 350 } 351 zio->io_root = zio; 352 } else { 353 zio->io_root = pio->io_root; 354 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 355 zio->io_logical = pio->io_logical; 356 mutex_enter(&pio->io_lock); 357 if (pio->io_parent == NULL && 358 pio->io_type == ZIO_TYPE_NULL && 359 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 360 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 361 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 362 spa_config_enter(zio->io_spa, RW_READER, pio); 363 } 364 if (stage < ZIO_STAGE_READY) 365 pio->io_children_notready++; 366 pio->io_children_notdone++; 367 zio->io_sibling_next = pio->io_child; 368 zio->io_sibling_prev = NULL; 369 if (pio->io_child != NULL) 370 pio->io_child->io_sibling_prev = zio; 371 pio->io_child = zio; 372 zio->io_ndvas = pio->io_ndvas; 373 mutex_exit(&pio->io_lock); 374 } 375 376 return (zio); 377 } 378 379 zio_t * 380 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 381 int flags) 382 { 383 zio_t *zio; 384 385 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 386 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 387 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 388 389 return (zio); 390 } 391 392 zio_t * 393 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 394 { 395 return (zio_null(NULL, spa, done, private, flags)); 396 } 397 398 zio_t * 399 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 400 uint64_t size, zio_done_func_t *done, void *private, 401 int priority, int flags, zbookmark_t *zb) 402 { 403 zio_t *zio; 404 405 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 406 407 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 408 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 409 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 410 zio->io_bookmark = *zb; 411 412 zio->io_logical = zio; 413 414 /* 415 * Work off our copy of the bp so the caller can free it. 416 */ 417 zio->io_bp = &zio->io_bp_copy; 418 419 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 420 uint64_t csize = BP_GET_PSIZE(bp); 421 void *cbuf = zio_buf_alloc(csize); 422 423 zio_push_transform(zio, cbuf, csize, csize); 424 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 425 } 426 427 if (BP_IS_GANG(bp)) { 428 uint64_t gsize = SPA_GANGBLOCKSIZE; 429 void *gbuf = zio_buf_alloc(gsize); 430 431 zio_push_transform(zio, gbuf, gsize, gsize); 432 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 433 } 434 435 return (zio); 436 } 437 438 zio_t * 439 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 440 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 441 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 442 int flags, zbookmark_t *zb) 443 { 444 zio_t *zio; 445 446 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 447 checksum < ZIO_CHECKSUM_FUNCTIONS); 448 449 ASSERT(compress >= ZIO_COMPRESS_OFF && 450 compress < ZIO_COMPRESS_FUNCTIONS); 451 452 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 453 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 454 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 455 456 zio->io_ready = ready; 457 458 zio->io_bookmark = *zb; 459 460 zio->io_logical = zio; 461 462 zio->io_checksum = checksum; 463 zio->io_compress = compress; 464 zio->io_ndvas = ncopies; 465 466 if (compress != ZIO_COMPRESS_OFF) 467 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 468 469 if (bp->blk_birth != txg) { 470 /* XXX the bp usually (always?) gets re-zeroed later */ 471 BP_ZERO(bp); 472 BP_SET_LSIZE(bp, size); 473 BP_SET_PSIZE(bp, size); 474 } else { 475 /* Make sure someone doesn't change their mind on overwrites */ 476 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 477 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 478 } 479 480 return (zio); 481 } 482 483 zio_t * 484 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 485 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 486 zio_done_func_t *done, void *private, int priority, int flags, 487 zbookmark_t *zb) 488 { 489 zio_t *zio; 490 491 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 492 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 493 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 494 495 zio->io_bookmark = *zb; 496 zio->io_checksum = checksum; 497 zio->io_compress = ZIO_COMPRESS_OFF; 498 499 if (pio != NULL) 500 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 501 502 return (zio); 503 } 504 505 static zio_t * 506 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 507 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 508 zio_done_func_t *done, void *private, int priority, int flags) 509 { 510 zio_t *zio; 511 512 BP_ZERO(bp); 513 BP_SET_LSIZE(bp, size); 514 BP_SET_PSIZE(bp, size); 515 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 516 517 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 518 ZIO_TYPE_WRITE, priority, flags, 519 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 520 521 zio->io_checksum = checksum; 522 zio->io_compress = ZIO_COMPRESS_OFF; 523 524 return (zio); 525 } 526 527 zio_t * 528 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 529 zio_done_func_t *done, void *private) 530 { 531 zio_t *zio; 532 533 ASSERT(!BP_IS_HOLE(bp)); 534 535 if (txg == spa->spa_syncing_txg && 536 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 537 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 538 return (zio_null(pio, spa, NULL, NULL, 0)); 539 } 540 541 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 542 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 543 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 544 545 zio->io_bp = &zio->io_bp_copy; 546 547 return (zio); 548 } 549 550 zio_t * 551 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 552 zio_done_func_t *done, void *private) 553 { 554 zio_t *zio; 555 556 /* 557 * A claim is an allocation of a specific block. Claims are needed 558 * to support immediate writes in the intent log. The issue is that 559 * immediate writes contain committed data, but in a txg that was 560 * *not* committed. Upon opening the pool after an unclean shutdown, 561 * the intent log claims all blocks that contain immediate write data 562 * so that the SPA knows they're in use. 563 * 564 * All claims *must* be resolved in the first txg -- before the SPA 565 * starts allocating blocks -- so that nothing is allocated twice. 566 */ 567 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 568 ASSERT3U(spa_first_txg(spa), <=, txg); 569 570 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 571 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 572 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 573 574 zio->io_bp = &zio->io_bp_copy; 575 576 return (zio); 577 } 578 579 zio_t * 580 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 581 zio_done_func_t *done, void *private, int priority, int flags) 582 { 583 zio_t *zio; 584 int c; 585 586 if (vd->vdev_children == 0) { 587 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 588 ZIO_TYPE_IOCTL, priority, flags, 589 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 590 591 zio->io_vd = vd; 592 zio->io_cmd = cmd; 593 } else { 594 zio = zio_null(pio, spa, NULL, NULL, flags); 595 596 for (c = 0; c < vd->vdev_children; c++) 597 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 598 done, private, priority, flags)); 599 } 600 601 return (zio); 602 } 603 604 static void 605 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 606 int checksum) 607 { 608 ASSERT(vd->vdev_children == 0); 609 610 ASSERT(size <= SPA_MAXBLOCKSIZE); 611 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 612 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 613 614 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 615 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 616 ASSERT3U(offset + size, <=, vd->vdev_psize); 617 618 BP_ZERO(bp); 619 620 BP_SET_LSIZE(bp, size); 621 BP_SET_PSIZE(bp, size); 622 623 BP_SET_CHECKSUM(bp, checksum); 624 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 625 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 626 627 if (checksum != ZIO_CHECKSUM_OFF) 628 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 629 } 630 631 zio_t * 632 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 633 void *data, int checksum, zio_done_func_t *done, void *private, 634 int priority, int flags) 635 { 636 zio_t *zio; 637 blkptr_t blk; 638 639 zio_phys_bp_init(vd, &blk, offset, size, checksum); 640 641 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 642 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 643 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 644 645 zio->io_vd = vd; 646 zio->io_offset = offset; 647 648 /* 649 * Work off our copy of the bp so the caller can free it. 650 */ 651 zio->io_bp = &zio->io_bp_copy; 652 653 return (zio); 654 } 655 656 zio_t * 657 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 658 void *data, int checksum, zio_done_func_t *done, void *private, 659 int priority, int flags) 660 { 661 zio_block_tail_t *zbt; 662 void *wbuf; 663 zio_t *zio; 664 blkptr_t blk; 665 666 zio_phys_bp_init(vd, &blk, offset, size, checksum); 667 668 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 669 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 670 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 671 672 zio->io_vd = vd; 673 zio->io_offset = offset; 674 675 zio->io_bp = &zio->io_bp_copy; 676 zio->io_checksum = checksum; 677 678 if (zio_checksum_table[checksum].ci_zbt) { 679 /* 680 * zbt checksums are necessarily destructive -- they modify 681 * one word of the write buffer to hold the verifier/checksum. 682 * Therefore, we must make a local copy in case the data is 683 * being written to multiple places. 684 */ 685 wbuf = zio_buf_alloc(size); 686 bcopy(data, wbuf, size); 687 zio_push_transform(zio, wbuf, size, size); 688 689 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 690 zbt->zbt_cksum = blk.blk_cksum; 691 } 692 693 return (zio); 694 } 695 696 /* 697 * Create a child I/O to do some work for us. It has no associated bp. 698 */ 699 zio_t * 700 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 701 void *data, uint64_t size, int type, int priority, int flags, 702 zio_done_func_t *done, void *private) 703 { 704 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 705 zio_t *cio; 706 707 if (type == ZIO_TYPE_READ && bp != NULL) { 708 /* 709 * If we have the bp, then the child should perform the 710 * checksum and the parent need not. This pushes error 711 * detection as close to the leaves as possible and 712 * eliminates redundant checksums in the interior nodes. 713 */ 714 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 715 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 716 } 717 718 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 719 done, private, type, priority, 720 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 721 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 722 723 cio->io_vd = vd; 724 cio->io_offset = offset; 725 726 return (cio); 727 } 728 729 /* 730 * ========================================================================== 731 * Initiate I/O, either sync or async 732 * ========================================================================== 733 */ 734 int 735 zio_wait(zio_t *zio) 736 { 737 int error; 738 739 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 740 741 zio->io_waiter = curthread; 742 743 zio_next_stage_async(zio); 744 745 mutex_enter(&zio->io_lock); 746 while (zio->io_stalled != ZIO_STAGE_DONE) 747 cv_wait(&zio->io_cv, &zio->io_lock); 748 mutex_exit(&zio->io_lock); 749 750 error = zio->io_error; 751 mutex_destroy(&zio->io_lock); 752 kmem_free(zio, sizeof (zio_t)); 753 754 return (error); 755 } 756 757 void 758 zio_nowait(zio_t *zio) 759 { 760 zio_next_stage_async(zio); 761 } 762 763 /* 764 * ========================================================================== 765 * I/O pipeline interlocks: parent/child dependency scoreboarding 766 * ========================================================================== 767 */ 768 static void 769 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 770 { 771 mutex_enter(&zio->io_lock); 772 if (*countp == 0) { 773 ASSERT(zio->io_stalled == 0); 774 mutex_exit(&zio->io_lock); 775 zio_next_stage(zio); 776 } else { 777 zio->io_stalled = stage; 778 mutex_exit(&zio->io_lock); 779 } 780 } 781 782 static void 783 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 784 { 785 zio_t *pio = zio->io_parent; 786 787 mutex_enter(&pio->io_lock); 788 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 789 pio->io_error = zio->io_error; 790 if (--*countp == 0 && pio->io_stalled == stage) { 791 pio->io_stalled = 0; 792 mutex_exit(&pio->io_lock); 793 zio_next_stage_async(pio); 794 } else { 795 mutex_exit(&pio->io_lock); 796 } 797 } 798 799 static void 800 zio_wait_children_ready(zio_t *zio) 801 { 802 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 803 &zio->io_children_notready); 804 } 805 806 void 807 zio_wait_children_done(zio_t *zio) 808 { 809 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 810 &zio->io_children_notdone); 811 } 812 813 static void 814 zio_ready(zio_t *zio) 815 { 816 zio_t *pio = zio->io_parent; 817 818 if (zio->io_ready) 819 zio->io_ready(zio); 820 821 if (pio != NULL) 822 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 823 &pio->io_children_notready); 824 825 if (zio->io_bp) 826 zio->io_bp_copy = *zio->io_bp; 827 828 zio_next_stage(zio); 829 } 830 831 static void 832 zio_done(zio_t *zio) 833 { 834 zio_t *pio = zio->io_parent; 835 spa_t *spa = zio->io_spa; 836 blkptr_t *bp = zio->io_bp; 837 vdev_t *vd = zio->io_vd; 838 839 ASSERT(zio->io_children_notready == 0); 840 ASSERT(zio->io_children_notdone == 0); 841 842 if (bp != NULL) { 843 ASSERT(bp->blk_pad[0] == 0); 844 ASSERT(bp->blk_pad[1] == 0); 845 ASSERT(bp->blk_pad[2] == 0); 846 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 847 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 848 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 849 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 850 if (zio->io_ndvas != 0) 851 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 852 ASSERT(BP_COUNT_GANG(bp) == 0 || 853 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 854 } 855 } 856 857 if (vd != NULL) 858 vdev_stat_update(zio); 859 860 if (zio->io_error) { 861 /* 862 * If this I/O is attached to a particular vdev, 863 * generate an error message describing the I/O failure 864 * at the block level. We ignore these errors if the 865 * device is currently unavailable. 866 */ 867 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 868 zfs_ereport_post(FM_EREPORT_ZFS_IO, 869 zio->io_spa, vd, zio, 0, 0); 870 871 if ((zio->io_error == EIO || 872 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 873 zio->io_logical == zio) { 874 /* 875 * For root I/O requests, tell the SPA to log the error 876 * appropriately. Also, generate a logical data 877 * ereport. 878 */ 879 spa_log_error(zio->io_spa, zio); 880 881 zfs_ereport_post(FM_EREPORT_ZFS_DATA, 882 zio->io_spa, NULL, zio, 0, 0); 883 } 884 885 /* 886 * For I/O requests that cannot fail, panic appropriately. 887 */ 888 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 889 char *blkbuf; 890 891 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 892 if (blkbuf) { 893 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 894 bp ? bp : &zio->io_bp_copy); 895 } 896 panic("ZFS: %s (%s on %s off %llx: zio %p %s): error " 897 "%d", zio->io_error == ECKSUM ? 898 "bad checksum" : "I/O failure", 899 zio_type_name[zio->io_type], 900 vdev_description(vd), 901 (u_longlong_t)zio->io_offset, 902 zio, blkbuf ? blkbuf : "", zio->io_error); 903 } 904 } 905 zio_clear_transform_stack(zio); 906 907 if (zio->io_done) 908 zio->io_done(zio); 909 910 ASSERT(zio->io_delegate_list == NULL); 911 ASSERT(zio->io_delegate_next == NULL); 912 913 if (pio != NULL) { 914 zio_t *next, *prev; 915 916 mutex_enter(&pio->io_lock); 917 next = zio->io_sibling_next; 918 prev = zio->io_sibling_prev; 919 if (next != NULL) 920 next->io_sibling_prev = prev; 921 if (prev != NULL) 922 prev->io_sibling_next = next; 923 if (pio->io_child == zio) 924 pio->io_child = next; 925 mutex_exit(&pio->io_lock); 926 927 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 928 &pio->io_children_notdone); 929 } 930 931 /* 932 * Note: this I/O is now done, and will shortly be 933 * kmem_free()'d, so there is no need to clear this (or any 934 * other) flag. 935 */ 936 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 937 spa_config_exit(spa, zio); 938 939 if (zio->io_waiter != NULL) { 940 mutex_enter(&zio->io_lock); 941 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 942 zio->io_stalled = zio->io_stage; 943 cv_broadcast(&zio->io_cv); 944 mutex_exit(&zio->io_lock); 945 } else { 946 kmem_free(zio, sizeof (zio_t)); 947 } 948 } 949 950 /* 951 * ========================================================================== 952 * Compression support 953 * ========================================================================== 954 */ 955 static void 956 zio_write_compress(zio_t *zio) 957 { 958 int compress = zio->io_compress; 959 blkptr_t *bp = zio->io_bp; 960 void *cbuf; 961 uint64_t lsize = zio->io_size; 962 uint64_t csize = lsize; 963 uint64_t cbufsize = 0; 964 int pass; 965 966 if (bp->blk_birth == zio->io_txg) { 967 /* 968 * We're rewriting an existing block, which means we're 969 * working on behalf of spa_sync(). For spa_sync() to 970 * converge, it must eventually be the case that we don't 971 * have to allocate new blocks. But compression changes 972 * the blocksize, which forces a reallocate, and makes 973 * convergence take longer. Therefore, after the first 974 * few passes, stop compressing to ensure convergence. 975 */ 976 pass = spa_sync_pass(zio->io_spa); 977 if (pass > zio_sync_pass.zp_dontcompress) 978 compress = ZIO_COMPRESS_OFF; 979 } else { 980 ASSERT(BP_IS_HOLE(bp)); 981 pass = 1; 982 } 983 984 if (compress != ZIO_COMPRESS_OFF) 985 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 986 &cbuf, &csize, &cbufsize)) 987 compress = ZIO_COMPRESS_OFF; 988 989 if (compress != ZIO_COMPRESS_OFF && csize != 0) 990 zio_push_transform(zio, cbuf, csize, cbufsize); 991 992 /* 993 * The final pass of spa_sync() must be all rewrites, but the first 994 * few passes offer a trade-off: allocating blocks defers convergence, 995 * but newly allocated blocks are sequential, so they can be written 996 * to disk faster. Therefore, we allow the first few passes of 997 * spa_sync() to reallocate new blocks, but force rewrites after that. 998 * There should only be a handful of blocks after pass 1 in any case. 999 */ 1000 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1001 pass > zio_sync_pass.zp_rewrite) { 1002 ASSERT(csize != 0); 1003 BP_SET_LSIZE(bp, lsize); 1004 BP_SET_COMPRESS(bp, compress); 1005 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1006 } else { 1007 if (bp->blk_birth == zio->io_txg) { 1008 ASSERT3U(BP_GET_LSIZE(bp), ==, lsize); 1009 bzero(bp, sizeof (blkptr_t)); 1010 } 1011 if (csize == 0) { 1012 BP_ZERO(bp); 1013 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1014 } else { 1015 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1016 BP_SET_LSIZE(bp, lsize); 1017 BP_SET_PSIZE(bp, csize); 1018 BP_SET_COMPRESS(bp, compress); 1019 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1020 } 1021 } 1022 1023 zio_next_stage(zio); 1024 } 1025 1026 static void 1027 zio_read_decompress(zio_t *zio) 1028 { 1029 blkptr_t *bp = zio->io_bp; 1030 void *data; 1031 uint64_t size; 1032 uint64_t bufsize; 1033 int compress = BP_GET_COMPRESS(bp); 1034 1035 ASSERT(compress != ZIO_COMPRESS_OFF); 1036 1037 zio_pop_transform(zio, &data, &size, &bufsize); 1038 1039 if (zio_decompress_data(compress, data, size, 1040 zio->io_data, zio->io_size)) 1041 zio->io_error = EIO; 1042 1043 zio_buf_free(data, bufsize); 1044 1045 zio_next_stage(zio); 1046 } 1047 1048 /* 1049 * ========================================================================== 1050 * Gang block support 1051 * ========================================================================== 1052 */ 1053 static void 1054 zio_gang_pipeline(zio_t *zio) 1055 { 1056 /* 1057 * By default, the pipeline assumes that we're dealing with a gang 1058 * block. If we're not, strip out any gang-specific stages. 1059 */ 1060 if (!BP_IS_GANG(zio->io_bp)) 1061 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1062 1063 zio_next_stage(zio); 1064 } 1065 1066 static void 1067 zio_gang_byteswap(zio_t *zio) 1068 { 1069 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1070 1071 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1072 byteswap_uint64_array(zio->io_data, zio->io_size); 1073 } 1074 1075 static void 1076 zio_get_gang_header(zio_t *zio) 1077 { 1078 blkptr_t *bp = zio->io_bp; 1079 uint64_t gsize = SPA_GANGBLOCKSIZE; 1080 void *gbuf = zio_buf_alloc(gsize); 1081 1082 ASSERT(BP_IS_GANG(bp)); 1083 1084 zio_push_transform(zio, gbuf, gsize, gsize); 1085 1086 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1087 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1088 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1089 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE)); 1090 1091 zio_wait_children_done(zio); 1092 } 1093 1094 static void 1095 zio_read_gang_members(zio_t *zio) 1096 { 1097 zio_gbh_phys_t *gbh; 1098 uint64_t gsize, gbufsize, loff, lsize; 1099 int i; 1100 1101 ASSERT(BP_IS_GANG(zio->io_bp)); 1102 1103 zio_gang_byteswap(zio); 1104 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1105 1106 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1107 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1108 lsize = BP_GET_PSIZE(gbp); 1109 1110 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1111 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1112 ASSERT3U(loff + lsize, <=, zio->io_size); 1113 ASSERT(i < SPA_GBH_NBLKPTRS); 1114 ASSERT(!BP_IS_HOLE(gbp)); 1115 1116 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1117 (char *)zio->io_data + loff, lsize, NULL, NULL, 1118 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1119 &zio->io_bookmark)); 1120 } 1121 1122 zio_buf_free(gbh, gbufsize); 1123 zio_wait_children_done(zio); 1124 } 1125 1126 static void 1127 zio_rewrite_gang_members(zio_t *zio) 1128 { 1129 zio_gbh_phys_t *gbh; 1130 uint64_t gsize, gbufsize, loff, lsize; 1131 int i; 1132 1133 ASSERT(BP_IS_GANG(zio->io_bp)); 1134 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1135 1136 zio_gang_byteswap(zio); 1137 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1138 1139 ASSERT(gsize == gbufsize); 1140 1141 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1142 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1143 lsize = BP_GET_PSIZE(gbp); 1144 1145 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1146 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1147 ASSERT3U(loff + lsize, <=, zio->io_size); 1148 ASSERT(i < SPA_GBH_NBLKPTRS); 1149 ASSERT(!BP_IS_HOLE(gbp)); 1150 1151 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1152 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1153 NULL, NULL, zio->io_priority, zio->io_flags, 1154 &zio->io_bookmark)); 1155 } 1156 1157 zio_push_transform(zio, gbh, gsize, gbufsize); 1158 zio_wait_children_ready(zio); 1159 } 1160 1161 static void 1162 zio_free_gang_members(zio_t *zio) 1163 { 1164 zio_gbh_phys_t *gbh; 1165 uint64_t gsize, gbufsize; 1166 int i; 1167 1168 ASSERT(BP_IS_GANG(zio->io_bp)); 1169 1170 zio_gang_byteswap(zio); 1171 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1172 1173 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1174 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1175 1176 if (BP_IS_HOLE(gbp)) 1177 continue; 1178 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1179 gbp, NULL, NULL)); 1180 } 1181 1182 zio_buf_free(gbh, gbufsize); 1183 zio_next_stage(zio); 1184 } 1185 1186 static void 1187 zio_claim_gang_members(zio_t *zio) 1188 { 1189 zio_gbh_phys_t *gbh; 1190 uint64_t gsize, gbufsize; 1191 int i; 1192 1193 ASSERT(BP_IS_GANG(zio->io_bp)); 1194 1195 zio_gang_byteswap(zio); 1196 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1197 1198 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1199 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1200 if (BP_IS_HOLE(gbp)) 1201 continue; 1202 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1203 gbp, NULL, NULL)); 1204 } 1205 1206 zio_buf_free(gbh, gbufsize); 1207 zio_next_stage(zio); 1208 } 1209 1210 static void 1211 zio_write_allocate_gang_member_done(zio_t *zio) 1212 { 1213 zio_t *pio = zio->io_parent; 1214 dva_t *cdva = zio->io_bp->blk_dva; 1215 dva_t *pdva = pio->io_bp->blk_dva; 1216 uint64_t asize; 1217 int d; 1218 1219 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1220 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1221 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1222 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1223 1224 mutex_enter(&pio->io_lock); 1225 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1226 ASSERT(DVA_GET_GANG(&pdva[d])); 1227 asize = DVA_GET_ASIZE(&pdva[d]); 1228 asize += DVA_GET_ASIZE(&cdva[d]); 1229 DVA_SET_ASIZE(&pdva[d], asize); 1230 } 1231 mutex_exit(&pio->io_lock); 1232 } 1233 1234 static void 1235 zio_write_allocate_gang_members(zio_t *zio) 1236 { 1237 blkptr_t *bp = zio->io_bp; 1238 dva_t *dva = bp->blk_dva; 1239 spa_t *spa = zio->io_spa; 1240 zio_gbh_phys_t *gbh; 1241 uint64_t txg = zio->io_txg; 1242 uint64_t resid = zio->io_size; 1243 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1244 uint64_t gsize, loff, lsize; 1245 uint32_t gbps_left; 1246 int ndvas = zio->io_ndvas; 1247 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1248 int error; 1249 int i, d; 1250 1251 gsize = SPA_GANGBLOCKSIZE; 1252 gbps_left = SPA_GBH_NBLKPTRS; 1253 1254 error = metaslab_alloc(spa, gsize, bp, gbh_ndvas, txg, NULL, B_FALSE); 1255 if (error == ENOSPC) 1256 panic("can't allocate gang block header"); 1257 ASSERT(error == 0); 1258 1259 for (d = 0; d < gbh_ndvas; d++) 1260 DVA_SET_GANG(&dva[d], 1); 1261 1262 bp->blk_birth = txg; 1263 1264 gbh = zio_buf_alloc(gsize); 1265 bzero(gbh, gsize); 1266 1267 /* We need to test multi-level gang blocks */ 1268 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1269 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1270 1271 for (loff = 0, i = 0; loff != zio->io_size; 1272 loff += lsize, resid -= lsize, gbps_left--, i++) { 1273 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1274 dva = gbp->blk_dva; 1275 1276 ASSERT(gbps_left != 0); 1277 maxalloc = MIN(maxalloc, resid); 1278 1279 while (resid <= maxalloc * gbps_left) { 1280 error = metaslab_alloc(spa, maxalloc, gbp, ndvas, 1281 txg, bp, B_FALSE); 1282 if (error == 0) 1283 break; 1284 ASSERT3U(error, ==, ENOSPC); 1285 if (maxalloc == SPA_MINBLOCKSIZE) 1286 panic("really out of space"); 1287 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1288 } 1289 1290 if (resid <= maxalloc * gbps_left) { 1291 lsize = maxalloc; 1292 BP_SET_LSIZE(gbp, lsize); 1293 BP_SET_PSIZE(gbp, lsize); 1294 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1295 gbp->blk_birth = txg; 1296 zio_nowait(zio_rewrite(zio, spa, 1297 zio->io_checksum, txg, gbp, 1298 (char *)zio->io_data + loff, lsize, 1299 zio_write_allocate_gang_member_done, NULL, 1300 zio->io_priority, zio->io_flags, 1301 &zio->io_bookmark)); 1302 } else { 1303 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1304 ASSERT(lsize != SPA_MINBLOCKSIZE); 1305 zio_nowait(zio_write_allocate(zio, spa, 1306 zio->io_checksum, txg, gbp, 1307 (char *)zio->io_data + loff, lsize, 1308 zio_write_allocate_gang_member_done, NULL, 1309 zio->io_priority, zio->io_flags)); 1310 } 1311 } 1312 1313 ASSERT(resid == 0 && loff == zio->io_size); 1314 1315 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1316 1317 zio_push_transform(zio, gbh, gsize, gsize); 1318 /* 1319 * As much as we'd like this to be zio_wait_children_ready(), 1320 * updating our ASIZE doesn't happen until the io_done callback, 1321 * so we have to wait for that to finish in order for our BP 1322 * to be stable. 1323 */ 1324 zio_wait_children_done(zio); 1325 } 1326 1327 /* 1328 * ========================================================================== 1329 * Allocate and free blocks 1330 * ========================================================================== 1331 */ 1332 static void 1333 zio_dva_allocate(zio_t *zio) 1334 { 1335 blkptr_t *bp = zio->io_bp; 1336 int error; 1337 1338 ASSERT(BP_IS_HOLE(bp)); 1339 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1340 ASSERT3U(zio->io_ndvas, >, 0); 1341 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(zio->io_spa)); 1342 1343 /* For testing, make some blocks above a certain size be gang blocks */ 1344 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1345 zio_write_allocate_gang_members(zio); 1346 return; 1347 } 1348 1349 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1350 1351 error = metaslab_alloc(zio->io_spa, zio->io_size, bp, zio->io_ndvas, 1352 zio->io_txg, NULL, B_FALSE); 1353 1354 if (error == 0) { 1355 bp->blk_birth = zio->io_txg; 1356 } else if (error == ENOSPC) { 1357 if (zio->io_size == SPA_MINBLOCKSIZE) 1358 panic("really, truly out of space"); 1359 zio_write_allocate_gang_members(zio); 1360 return; 1361 } else { 1362 zio->io_error = error; 1363 } 1364 zio_next_stage(zio); 1365 } 1366 1367 static void 1368 zio_dva_free(zio_t *zio) 1369 { 1370 blkptr_t *bp = zio->io_bp; 1371 1372 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1373 1374 BP_ZERO(bp); 1375 1376 zio_next_stage(zio); 1377 } 1378 1379 static void 1380 zio_dva_claim(zio_t *zio) 1381 { 1382 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1383 1384 zio_next_stage(zio); 1385 } 1386 1387 /* 1388 * ========================================================================== 1389 * Read and write to physical devices 1390 * ========================================================================== 1391 */ 1392 1393 static void 1394 zio_vdev_io_start(zio_t *zio) 1395 { 1396 vdev_t *vd = zio->io_vd; 1397 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1398 blkptr_t *bp = zio->io_bp; 1399 uint64_t align; 1400 1401 if (vd == NULL) { 1402 /* The mirror_ops handle multiple DVAs in a single BP */ 1403 vdev_mirror_ops.vdev_op_io_start(zio); 1404 return; 1405 } 1406 1407 align = 1ULL << tvd->vdev_ashift; 1408 1409 if (zio->io_retries == 0 && vd == tvd) 1410 zio->io_flags |= ZIO_FLAG_FAILFAST; 1411 1412 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1413 vd->vdev_children == 0) { 1414 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1415 zio->io_offset += VDEV_LABEL_START_SIZE; 1416 } 1417 1418 if (P2PHASE(zio->io_size, align) != 0) { 1419 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1420 char *abuf = zio_buf_alloc(asize); 1421 ASSERT(vd == tvd); 1422 if (zio->io_type == ZIO_TYPE_WRITE) { 1423 bcopy(zio->io_data, abuf, zio->io_size); 1424 bzero(abuf + zio->io_size, asize - zio->io_size); 1425 } 1426 zio_push_transform(zio, abuf, asize, asize); 1427 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1428 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1429 } 1430 1431 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1432 ASSERT(P2PHASE(zio->io_size, align) == 0); 1433 ASSERT(bp == NULL || 1434 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1435 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1436 1437 vdev_io_start(zio); 1438 1439 /* zio_next_stage_async() gets called from io completion interrupt */ 1440 } 1441 1442 static void 1443 zio_vdev_io_done(zio_t *zio) 1444 { 1445 if (zio->io_vd == NULL) 1446 /* The mirror_ops handle multiple DVAs in a single BP */ 1447 vdev_mirror_ops.vdev_op_io_done(zio); 1448 else 1449 vdev_io_done(zio); 1450 } 1451 1452 /* XXPOLICY */ 1453 boolean_t 1454 zio_should_retry(zio_t *zio) 1455 { 1456 vdev_t *vd = zio->io_vd; 1457 1458 if (zio->io_error == 0) 1459 return (B_FALSE); 1460 if (zio->io_delegate_list != NULL) 1461 return (B_FALSE); 1462 if (vd && vd != vd->vdev_top) 1463 return (B_FALSE); 1464 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1465 return (B_FALSE); 1466 if (zio->io_retries > 0) 1467 return (B_FALSE); 1468 1469 return (B_TRUE); 1470 } 1471 1472 static void 1473 zio_vdev_io_assess(zio_t *zio) 1474 { 1475 vdev_t *vd = zio->io_vd; 1476 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1477 1478 ASSERT(zio->io_vsd == NULL); 1479 1480 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1481 void *abuf; 1482 uint64_t asize; 1483 ASSERT(vd == tvd); 1484 zio_pop_transform(zio, &abuf, &asize, &asize); 1485 if (zio->io_type == ZIO_TYPE_READ) 1486 bcopy(abuf, zio->io_data, zio->io_size); 1487 zio_buf_free(abuf, asize); 1488 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1489 } 1490 1491 if (zio_injection_enabled && !zio->io_error) 1492 zio->io_error = zio_handle_fault_injection(zio, EIO); 1493 1494 /* 1495 * If the I/O failed, determine whether we should attempt to retry it. 1496 */ 1497 /* XXPOLICY */ 1498 if (zio_should_retry(zio)) { 1499 ASSERT(tvd == vd); 1500 1501 zio->io_retries++; 1502 zio->io_error = 0; 1503 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1504 ZIO_FLAG_CONFIG_GRABBED; 1505 /* XXPOLICY */ 1506 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1507 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1508 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1509 1510 dprintf("retry #%d for %s to %s offset %llx\n", 1511 zio->io_retries, zio_type_name[zio->io_type], 1512 vdev_description(vd), zio->io_offset); 1513 1514 zio_next_stage_async(zio); 1515 return; 1516 } 1517 1518 if (zio->io_error != 0 && zio->io_error != ECKSUM && 1519 !(zio->io_flags & ZIO_FLAG_SPECULATIVE) && vd) { 1520 /* 1521 * Poor man's hotplug support. Even if we're done retrying this 1522 * I/O, try to reopen the vdev to see if it's still attached. 1523 * To avoid excessive thrashing, we only try it once a minute. 1524 * This also has the effect of detecting when missing devices 1525 * have come back, by polling the device once a minute. 1526 * 1527 * We need to do this asynchronously because we can't grab 1528 * all the necessary locks way down here. 1529 */ 1530 if (gethrtime() - vd->vdev_last_try > 60ULL * NANOSEC) { 1531 vd->vdev_last_try = gethrtime(); 1532 tvd->vdev_reopen_wanted = 1; 1533 spa_async_request(vd->vdev_spa, SPA_ASYNC_REOPEN); 1534 } 1535 } 1536 1537 zio_next_stage(zio); 1538 } 1539 1540 void 1541 zio_vdev_io_reissue(zio_t *zio) 1542 { 1543 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1544 ASSERT(zio->io_error == 0); 1545 1546 zio->io_stage--; 1547 } 1548 1549 void 1550 zio_vdev_io_redone(zio_t *zio) 1551 { 1552 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1553 1554 zio->io_stage--; 1555 } 1556 1557 void 1558 zio_vdev_io_bypass(zio_t *zio) 1559 { 1560 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1561 ASSERT(zio->io_error == 0); 1562 1563 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1564 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1565 } 1566 1567 /* 1568 * ========================================================================== 1569 * Generate and verify checksums 1570 * ========================================================================== 1571 */ 1572 static void 1573 zio_checksum_generate(zio_t *zio) 1574 { 1575 int checksum = zio->io_checksum; 1576 blkptr_t *bp = zio->io_bp; 1577 1578 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1579 1580 BP_SET_CHECKSUM(bp, checksum); 1581 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1582 1583 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1584 1585 zio_next_stage(zio); 1586 } 1587 1588 static void 1589 zio_gang_checksum_generate(zio_t *zio) 1590 { 1591 zio_cksum_t zc; 1592 zio_gbh_phys_t *gbh = zio->io_data; 1593 1594 ASSERT(BP_IS_GANG(zio->io_bp)); 1595 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1596 1597 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1598 1599 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1600 1601 zio_next_stage(zio); 1602 } 1603 1604 static void 1605 zio_checksum_verify(zio_t *zio) 1606 { 1607 if (zio->io_bp != NULL) { 1608 zio->io_error = zio_checksum_error(zio); 1609 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1610 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1611 zio->io_spa, zio->io_vd, zio, 0, 0); 1612 } 1613 1614 zio_next_stage(zio); 1615 } 1616 1617 /* 1618 * Called by RAID-Z to ensure we don't compute the checksum twice. 1619 */ 1620 void 1621 zio_checksum_verified(zio_t *zio) 1622 { 1623 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1624 } 1625 1626 /* 1627 * Set the external verifier for a gang block based on stuff in the bp 1628 */ 1629 void 1630 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1631 { 1632 blkptr_t *bp = zio->io_bp; 1633 1634 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1635 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1636 zcp->zc_word[2] = bp->blk_birth; 1637 zcp->zc_word[3] = 0; 1638 } 1639 1640 /* 1641 * ========================================================================== 1642 * Define the pipeline 1643 * ========================================================================== 1644 */ 1645 typedef void zio_pipe_stage_t(zio_t *zio); 1646 1647 static void 1648 zio_badop(zio_t *zio) 1649 { 1650 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1651 } 1652 1653 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1654 zio_badop, 1655 zio_wait_children_ready, 1656 zio_write_compress, 1657 zio_checksum_generate, 1658 zio_gang_pipeline, 1659 zio_get_gang_header, 1660 zio_rewrite_gang_members, 1661 zio_free_gang_members, 1662 zio_claim_gang_members, 1663 zio_dva_allocate, 1664 zio_dva_free, 1665 zio_dva_claim, 1666 zio_gang_checksum_generate, 1667 zio_ready, 1668 zio_vdev_io_start, 1669 zio_vdev_io_done, 1670 zio_vdev_io_assess, 1671 zio_wait_children_done, 1672 zio_checksum_verify, 1673 zio_read_gang_members, 1674 zio_read_decompress, 1675 zio_done, 1676 zio_badop 1677 }; 1678 1679 /* 1680 * Move an I/O to the next stage of the pipeline and execute that stage. 1681 * There's no locking on io_stage because there's no legitimate way for 1682 * multiple threads to be attempting to process the same I/O. 1683 */ 1684 void 1685 zio_next_stage(zio_t *zio) 1686 { 1687 uint32_t pipeline = zio->io_pipeline; 1688 1689 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1690 1691 if (zio->io_error) { 1692 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1693 zio, vdev_description(zio->io_vd), 1694 zio->io_offset, zio->io_stage, zio->io_error); 1695 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1696 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1697 } 1698 1699 while (((1U << ++zio->io_stage) & pipeline) == 0) 1700 continue; 1701 1702 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1703 ASSERT(zio->io_stalled == 0); 1704 1705 zio_pipeline[zio->io_stage](zio); 1706 } 1707 1708 void 1709 zio_next_stage_async(zio_t *zio) 1710 { 1711 taskq_t *tq; 1712 uint32_t pipeline = zio->io_pipeline; 1713 1714 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1715 1716 if (zio->io_error) { 1717 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1718 zio, vdev_description(zio->io_vd), 1719 zio->io_offset, zio->io_stage, zio->io_error); 1720 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1721 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1722 } 1723 1724 while (((1U << ++zio->io_stage) & pipeline) == 0) 1725 continue; 1726 1727 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1728 ASSERT(zio->io_stalled == 0); 1729 1730 /* 1731 * For performance, we'll probably want two sets of task queues: 1732 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 1733 * part is for read performance: since we have to make a pass over 1734 * the data to checksum it anyway, we want to do this on the same CPU 1735 * that issued the read, because (assuming CPU scheduling affinity) 1736 * that thread is probably still there. Getting this optimization 1737 * right avoids performance-hostile cache-to-cache transfers. 1738 * 1739 * Note that having two sets of task queues is also necessary for 1740 * correctness: if all of the issue threads get bogged down waiting 1741 * for dependent reads (e.g. metaslab freelist) to complete, then 1742 * there won't be any threads available to service I/O completion 1743 * interrupts. 1744 */ 1745 if ((1U << zio->io_stage) & zio->io_async_stages) { 1746 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 1747 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1748 else 1749 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 1750 (void) taskq_dispatch(tq, 1751 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1752 } else { 1753 zio_pipeline[zio->io_stage](zio); 1754 } 1755 } 1756 1757 static boolean_t 1758 zio_alloc_should_fail(void) 1759 { 1760 static uint16_t allocs = 0; 1761 1762 return (P2PHASE(allocs++, 1U<<zio_zil_fail_shift) == 0); 1763 } 1764 1765 /* 1766 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1767 */ 1768 int 1769 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1770 uint64_t txg) 1771 { 1772 int error; 1773 1774 spa_config_enter(spa, RW_READER, FTAG); 1775 1776 if (zio_zil_fail_shift && zio_alloc_should_fail()) { 1777 spa_config_exit(spa, FTAG); 1778 return (ENOSPC); 1779 } 1780 1781 /* 1782 * We were passed the previous log blocks dva_t in bp->blk_dva[0]. 1783 */ 1784 error = metaslab_alloc(spa, size, new_bp, 1, txg, old_bp, B_TRUE); 1785 1786 if (error == 0) { 1787 BP_SET_LSIZE(new_bp, size); 1788 BP_SET_PSIZE(new_bp, size); 1789 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1790 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1791 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1792 BP_SET_LEVEL(new_bp, 0); 1793 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1794 new_bp->blk_birth = txg; 1795 } 1796 1797 spa_config_exit(spa, FTAG); 1798 1799 return (error); 1800 } 1801 1802 /* 1803 * Free an intent log block. We know it can't be a gang block, so there's 1804 * nothing to do except metaslab_free() it. 1805 */ 1806 void 1807 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1808 { 1809 ASSERT(!BP_IS_GANG(bp)); 1810 1811 spa_config_enter(spa, RW_READER, FTAG); 1812 1813 metaslab_free(spa, bp, txg, B_FALSE); 1814 1815 spa_config_exit(spa, FTAG); 1816 } 1817