xref: /titanic_52/usr/src/uts/common/fs/zfs/zil.c (revision 58d0718061c87e3d647c891ec5281b93c08dba4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 
42 /*
43  * The zfs intent log (ZIL) saves transaction records of system calls
44  * that change the file system in memory with enough information
45  * to be able to replay them. These are stored in memory until
46  * either the DMU transaction group (txg) commits them to the stable pool
47  * and they can be discarded, or they are flushed to the stable log
48  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49  * requirement. In the event of a panic or power fail then those log
50  * records (transactions) are replayed.
51  *
52  * There is one ZIL per file system. Its on-disk (pool) format consists
53  * of 3 parts:
54  *
55  * 	- ZIL header
56  * 	- ZIL blocks
57  * 	- ZIL records
58  *
59  * A log record holds a system call transaction. Log blocks can
60  * hold many log records and the blocks are chained together.
61  * Each ZIL block contains a block pointer (blkptr_t) to the next
62  * ZIL block in the chain. The ZIL header points to the first
63  * block in the chain. Note there is not a fixed place in the pool
64  * to hold blocks. They are dynamically allocated and freed as
65  * needed from the blocks available. Figure X shows the ZIL structure:
66  */
67 
68 /*
69  * Disable intent logging replay.  This global ZIL switch affects all pools.
70  */
71 int zil_replay_disable = 0;
72 
73 /*
74  * Tunable parameter for debugging or performance analysis.  Setting
75  * zfs_nocacheflush will cause corruption on power loss if a volatile
76  * out-of-order write cache is enabled.
77  */
78 boolean_t zfs_nocacheflush = B_FALSE;
79 
80 static kmem_cache_t *zil_lwb_cache;
81 
82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
83 
84 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
85     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
86 
87 
88 /*
89  * ziltest is by and large an ugly hack, but very useful in
90  * checking replay without tedious work.
91  * When running ziltest we want to keep all itx's and so maintain
92  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93  * We subtract TXG_CONCURRENT_STATES to allow for common code.
94  */
95 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
96 
97 static int
98 zil_bp_compare(const void *x1, const void *x2)
99 {
100 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
101 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
102 
103 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
104 		return (-1);
105 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
106 		return (1);
107 
108 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
109 		return (-1);
110 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 		return (1);
112 
113 	return (0);
114 }
115 
116 static void
117 zil_bp_tree_init(zilog_t *zilog)
118 {
119 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
120 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
121 }
122 
123 static void
124 zil_bp_tree_fini(zilog_t *zilog)
125 {
126 	avl_tree_t *t = &zilog->zl_bp_tree;
127 	zil_bp_node_t *zn;
128 	void *cookie = NULL;
129 
130 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
131 		kmem_free(zn, sizeof (zil_bp_node_t));
132 
133 	avl_destroy(t);
134 }
135 
136 int
137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
138 {
139 	avl_tree_t *t = &zilog->zl_bp_tree;
140 	const dva_t *dva;
141 	zil_bp_node_t *zn;
142 	avl_index_t where;
143 
144 	if (BP_IS_EMBEDDED(bp))
145 		return (0);
146 
147 	dva = BP_IDENTITY(bp);
148 
149 	if (avl_find(t, dva, &where) != NULL)
150 		return (SET_ERROR(EEXIST));
151 
152 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
153 	zn->zn_dva = *dva;
154 	avl_insert(t, zn, where);
155 
156 	return (0);
157 }
158 
159 static zil_header_t *
160 zil_header_in_syncing_context(zilog_t *zilog)
161 {
162 	return ((zil_header_t *)zilog->zl_header);
163 }
164 
165 static void
166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
167 {
168 	zio_cksum_t *zc = &bp->blk_cksum;
169 
170 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
171 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
172 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
173 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
174 }
175 
176 /*
177  * Read a log block and make sure it's valid.
178  */
179 static int
180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
181     char **end)
182 {
183 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
184 	uint32_t aflags = ARC_WAIT;
185 	arc_buf_t *abuf = NULL;
186 	zbookmark_phys_t zb;
187 	int error;
188 
189 	if (zilog->zl_header->zh_claim_txg == 0)
190 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
191 
192 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
193 		zio_flags |= ZIO_FLAG_SPECULATIVE;
194 
195 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
196 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
197 
198 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
199 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
200 
201 	if (error == 0) {
202 		zio_cksum_t cksum = bp->blk_cksum;
203 
204 		/*
205 		 * Validate the checksummed log block.
206 		 *
207 		 * Sequence numbers should be... sequential.  The checksum
208 		 * verifier for the next block should be bp's checksum plus 1.
209 		 *
210 		 * Also check the log chain linkage and size used.
211 		 */
212 		cksum.zc_word[ZIL_ZC_SEQ]++;
213 
214 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
215 			zil_chain_t *zilc = abuf->b_data;
216 			char *lr = (char *)(zilc + 1);
217 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
218 
219 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
220 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
221 				error = SET_ERROR(ECKSUM);
222 			} else {
223 				bcopy(lr, dst, len);
224 				*end = (char *)dst + len;
225 				*nbp = zilc->zc_next_blk;
226 			}
227 		} else {
228 			char *lr = abuf->b_data;
229 			uint64_t size = BP_GET_LSIZE(bp);
230 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
231 
232 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
233 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
234 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
235 				error = SET_ERROR(ECKSUM);
236 			} else {
237 				bcopy(lr, dst, zilc->zc_nused);
238 				*end = (char *)dst + zilc->zc_nused;
239 				*nbp = zilc->zc_next_blk;
240 			}
241 		}
242 
243 		VERIFY(arc_buf_remove_ref(abuf, &abuf));
244 	}
245 
246 	return (error);
247 }
248 
249 /*
250  * Read a TX_WRITE log data block.
251  */
252 static int
253 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
254 {
255 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
256 	const blkptr_t *bp = &lr->lr_blkptr;
257 	uint32_t aflags = ARC_WAIT;
258 	arc_buf_t *abuf = NULL;
259 	zbookmark_phys_t zb;
260 	int error;
261 
262 	if (BP_IS_HOLE(bp)) {
263 		if (wbuf != NULL)
264 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
265 		return (0);
266 	}
267 
268 	if (zilog->zl_header->zh_claim_txg == 0)
269 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
270 
271 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
272 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
273 
274 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
275 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
276 
277 	if (error == 0) {
278 		if (wbuf != NULL)
279 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
280 		(void) arc_buf_remove_ref(abuf, &abuf);
281 	}
282 
283 	return (error);
284 }
285 
286 /*
287  * Parse the intent log, and call parse_func for each valid record within.
288  */
289 int
290 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
291     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
292 {
293 	const zil_header_t *zh = zilog->zl_header;
294 	boolean_t claimed = !!zh->zh_claim_txg;
295 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
296 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
297 	uint64_t max_blk_seq = 0;
298 	uint64_t max_lr_seq = 0;
299 	uint64_t blk_count = 0;
300 	uint64_t lr_count = 0;
301 	blkptr_t blk, next_blk;
302 	char *lrbuf, *lrp;
303 	int error = 0;
304 
305 	/*
306 	 * Old logs didn't record the maximum zh_claim_lr_seq.
307 	 */
308 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
309 		claim_lr_seq = UINT64_MAX;
310 
311 	/*
312 	 * Starting at the block pointed to by zh_log we read the log chain.
313 	 * For each block in the chain we strongly check that block to
314 	 * ensure its validity.  We stop when an invalid block is found.
315 	 * For each block pointer in the chain we call parse_blk_func().
316 	 * For each record in each valid block we call parse_lr_func().
317 	 * If the log has been claimed, stop if we encounter a sequence
318 	 * number greater than the highest claimed sequence number.
319 	 */
320 	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
321 	zil_bp_tree_init(zilog);
322 
323 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
324 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
325 		int reclen;
326 		char *end;
327 
328 		if (blk_seq > claim_blk_seq)
329 			break;
330 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
331 			break;
332 		ASSERT3U(max_blk_seq, <, blk_seq);
333 		max_blk_seq = blk_seq;
334 		blk_count++;
335 
336 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
337 			break;
338 
339 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
340 		if (error != 0)
341 			break;
342 
343 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
344 			lr_t *lr = (lr_t *)lrp;
345 			reclen = lr->lrc_reclen;
346 			ASSERT3U(reclen, >=, sizeof (lr_t));
347 			if (lr->lrc_seq > claim_lr_seq)
348 				goto done;
349 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
350 				goto done;
351 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
352 			max_lr_seq = lr->lrc_seq;
353 			lr_count++;
354 		}
355 	}
356 done:
357 	zilog->zl_parse_error = error;
358 	zilog->zl_parse_blk_seq = max_blk_seq;
359 	zilog->zl_parse_lr_seq = max_lr_seq;
360 	zilog->zl_parse_blk_count = blk_count;
361 	zilog->zl_parse_lr_count = lr_count;
362 
363 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
364 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
365 
366 	zil_bp_tree_fini(zilog);
367 	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
368 
369 	return (error);
370 }
371 
372 static int
373 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
374 {
375 	/*
376 	 * Claim log block if not already committed and not already claimed.
377 	 * If tx == NULL, just verify that the block is claimable.
378 	 */
379 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
380 	    zil_bp_tree_add(zilog, bp) != 0)
381 		return (0);
382 
383 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
384 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
385 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
386 }
387 
388 static int
389 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
390 {
391 	lr_write_t *lr = (lr_write_t *)lrc;
392 	int error;
393 
394 	if (lrc->lrc_txtype != TX_WRITE)
395 		return (0);
396 
397 	/*
398 	 * If the block is not readable, don't claim it.  This can happen
399 	 * in normal operation when a log block is written to disk before
400 	 * some of the dmu_sync() blocks it points to.  In this case, the
401 	 * transaction cannot have been committed to anyone (we would have
402 	 * waited for all writes to be stable first), so it is semantically
403 	 * correct to declare this the end of the log.
404 	 */
405 	if (lr->lr_blkptr.blk_birth >= first_txg &&
406 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
407 		return (error);
408 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
409 }
410 
411 /* ARGSUSED */
412 static int
413 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
414 {
415 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
416 
417 	return (0);
418 }
419 
420 static int
421 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
422 {
423 	lr_write_t *lr = (lr_write_t *)lrc;
424 	blkptr_t *bp = &lr->lr_blkptr;
425 
426 	/*
427 	 * If we previously claimed it, we need to free it.
428 	 */
429 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
430 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
431 	    !BP_IS_HOLE(bp))
432 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
433 
434 	return (0);
435 }
436 
437 static lwb_t *
438 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
439 {
440 	lwb_t *lwb;
441 
442 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
443 	lwb->lwb_zilog = zilog;
444 	lwb->lwb_blk = *bp;
445 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
446 	lwb->lwb_max_txg = txg;
447 	lwb->lwb_zio = NULL;
448 	lwb->lwb_tx = NULL;
449 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
450 		lwb->lwb_nused = sizeof (zil_chain_t);
451 		lwb->lwb_sz = BP_GET_LSIZE(bp);
452 	} else {
453 		lwb->lwb_nused = 0;
454 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
455 	}
456 
457 	mutex_enter(&zilog->zl_lock);
458 	list_insert_tail(&zilog->zl_lwb_list, lwb);
459 	mutex_exit(&zilog->zl_lock);
460 
461 	return (lwb);
462 }
463 
464 /*
465  * Called when we create in-memory log transactions so that we know
466  * to cleanup the itxs at the end of spa_sync().
467  */
468 void
469 zilog_dirty(zilog_t *zilog, uint64_t txg)
470 {
471 	dsl_pool_t *dp = zilog->zl_dmu_pool;
472 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
473 
474 	if (dsl_dataset_is_snapshot(ds))
475 		panic("dirtying snapshot!");
476 
477 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
478 		/* up the hold count until we can be written out */
479 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
480 	}
481 }
482 
483 boolean_t
484 zilog_is_dirty(zilog_t *zilog)
485 {
486 	dsl_pool_t *dp = zilog->zl_dmu_pool;
487 
488 	for (int t = 0; t < TXG_SIZE; t++) {
489 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
490 			return (B_TRUE);
491 	}
492 	return (B_FALSE);
493 }
494 
495 /*
496  * Create an on-disk intent log.
497  */
498 static lwb_t *
499 zil_create(zilog_t *zilog)
500 {
501 	const zil_header_t *zh = zilog->zl_header;
502 	lwb_t *lwb = NULL;
503 	uint64_t txg = 0;
504 	dmu_tx_t *tx = NULL;
505 	blkptr_t blk;
506 	int error = 0;
507 
508 	/*
509 	 * Wait for any previous destroy to complete.
510 	 */
511 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
512 
513 	ASSERT(zh->zh_claim_txg == 0);
514 	ASSERT(zh->zh_replay_seq == 0);
515 
516 	blk = zh->zh_log;
517 
518 	/*
519 	 * Allocate an initial log block if:
520 	 *    - there isn't one already
521 	 *    - the existing block is the wrong endianess
522 	 */
523 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
524 		tx = dmu_tx_create(zilog->zl_os);
525 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
526 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
527 		txg = dmu_tx_get_txg(tx);
528 
529 		if (!BP_IS_HOLE(&blk)) {
530 			zio_free_zil(zilog->zl_spa, txg, &blk);
531 			BP_ZERO(&blk);
532 		}
533 
534 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
535 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
536 
537 		if (error == 0)
538 			zil_init_log_chain(zilog, &blk);
539 	}
540 
541 	/*
542 	 * Allocate a log write buffer (lwb) for the first log block.
543 	 */
544 	if (error == 0)
545 		lwb = zil_alloc_lwb(zilog, &blk, txg);
546 
547 	/*
548 	 * If we just allocated the first log block, commit our transaction
549 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
550 	 * (zh is part of the MOS, so we cannot modify it in open context.)
551 	 */
552 	if (tx != NULL) {
553 		dmu_tx_commit(tx);
554 		txg_wait_synced(zilog->zl_dmu_pool, txg);
555 	}
556 
557 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
558 
559 	return (lwb);
560 }
561 
562 /*
563  * In one tx, free all log blocks and clear the log header.
564  * If keep_first is set, then we're replaying a log with no content.
565  * We want to keep the first block, however, so that the first
566  * synchronous transaction doesn't require a txg_wait_synced()
567  * in zil_create().  We don't need to txg_wait_synced() here either
568  * when keep_first is set, because both zil_create() and zil_destroy()
569  * will wait for any in-progress destroys to complete.
570  */
571 void
572 zil_destroy(zilog_t *zilog, boolean_t keep_first)
573 {
574 	const zil_header_t *zh = zilog->zl_header;
575 	lwb_t *lwb;
576 	dmu_tx_t *tx;
577 	uint64_t txg;
578 
579 	/*
580 	 * Wait for any previous destroy to complete.
581 	 */
582 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
583 
584 	zilog->zl_old_header = *zh;		/* debugging aid */
585 
586 	if (BP_IS_HOLE(&zh->zh_log))
587 		return;
588 
589 	tx = dmu_tx_create(zilog->zl_os);
590 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
591 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
592 	txg = dmu_tx_get_txg(tx);
593 
594 	mutex_enter(&zilog->zl_lock);
595 
596 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
597 	zilog->zl_destroy_txg = txg;
598 	zilog->zl_keep_first = keep_first;
599 
600 	if (!list_is_empty(&zilog->zl_lwb_list)) {
601 		ASSERT(zh->zh_claim_txg == 0);
602 		VERIFY(!keep_first);
603 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
604 			list_remove(&zilog->zl_lwb_list, lwb);
605 			if (lwb->lwb_buf != NULL)
606 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
607 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
608 			kmem_cache_free(zil_lwb_cache, lwb);
609 		}
610 	} else if (!keep_first) {
611 		zil_destroy_sync(zilog, tx);
612 	}
613 	mutex_exit(&zilog->zl_lock);
614 
615 	dmu_tx_commit(tx);
616 }
617 
618 void
619 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
620 {
621 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
622 	(void) zil_parse(zilog, zil_free_log_block,
623 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
624 }
625 
626 int
627 zil_claim(const char *osname, void *txarg)
628 {
629 	dmu_tx_t *tx = txarg;
630 	uint64_t first_txg = dmu_tx_get_txg(tx);
631 	zilog_t *zilog;
632 	zil_header_t *zh;
633 	objset_t *os;
634 	int error;
635 
636 	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
637 	if (error != 0) {
638 		cmn_err(CE_WARN, "can't open objset for %s", osname);
639 		return (0);
640 	}
641 
642 	zilog = dmu_objset_zil(os);
643 	zh = zil_header_in_syncing_context(zilog);
644 
645 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
646 		if (!BP_IS_HOLE(&zh->zh_log))
647 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
648 		BP_ZERO(&zh->zh_log);
649 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
650 		dmu_objset_disown(os, FTAG);
651 		return (0);
652 	}
653 
654 	/*
655 	 * Claim all log blocks if we haven't already done so, and remember
656 	 * the highest claimed sequence number.  This ensures that if we can
657 	 * read only part of the log now (e.g. due to a missing device),
658 	 * but we can read the entire log later, we will not try to replay
659 	 * or destroy beyond the last block we successfully claimed.
660 	 */
661 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
662 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
663 		(void) zil_parse(zilog, zil_claim_log_block,
664 		    zil_claim_log_record, tx, first_txg);
665 		zh->zh_claim_txg = first_txg;
666 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
667 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
668 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
669 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
670 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
671 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
672 	}
673 
674 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
675 	dmu_objset_disown(os, FTAG);
676 	return (0);
677 }
678 
679 /*
680  * Check the log by walking the log chain.
681  * Checksum errors are ok as they indicate the end of the chain.
682  * Any other error (no device or read failure) returns an error.
683  */
684 int
685 zil_check_log_chain(const char *osname, void *tx)
686 {
687 	zilog_t *zilog;
688 	objset_t *os;
689 	blkptr_t *bp;
690 	int error;
691 
692 	ASSERT(tx == NULL);
693 
694 	error = dmu_objset_hold(osname, FTAG, &os);
695 	if (error != 0) {
696 		cmn_err(CE_WARN, "can't open objset for %s", osname);
697 		return (0);
698 	}
699 
700 	zilog = dmu_objset_zil(os);
701 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
702 
703 	/*
704 	 * Check the first block and determine if it's on a log device
705 	 * which may have been removed or faulted prior to loading this
706 	 * pool.  If so, there's no point in checking the rest of the log
707 	 * as its content should have already been synced to the pool.
708 	 */
709 	if (!BP_IS_HOLE(bp)) {
710 		vdev_t *vd;
711 		boolean_t valid = B_TRUE;
712 
713 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
714 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
715 		if (vd->vdev_islog && vdev_is_dead(vd))
716 			valid = vdev_log_state_valid(vd);
717 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
718 
719 		if (!valid) {
720 			dmu_objset_rele(os, FTAG);
721 			return (0);
722 		}
723 	}
724 
725 	/*
726 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
727 	 * any blocks, but just determine whether it is possible to do so.
728 	 * In addition to checking the log chain, zil_claim_log_block()
729 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
730 	 * which will update spa_max_claim_txg.  See spa_load() for details.
731 	 */
732 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
733 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
734 
735 	dmu_objset_rele(os, FTAG);
736 
737 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
738 }
739 
740 static int
741 zil_vdev_compare(const void *x1, const void *x2)
742 {
743 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
744 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
745 
746 	if (v1 < v2)
747 		return (-1);
748 	if (v1 > v2)
749 		return (1);
750 
751 	return (0);
752 }
753 
754 void
755 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
756 {
757 	avl_tree_t *t = &zilog->zl_vdev_tree;
758 	avl_index_t where;
759 	zil_vdev_node_t *zv, zvsearch;
760 	int ndvas = BP_GET_NDVAS(bp);
761 	int i;
762 
763 	if (zfs_nocacheflush)
764 		return;
765 
766 	ASSERT(zilog->zl_writer);
767 
768 	/*
769 	 * Even though we're zl_writer, we still need a lock because the
770 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
771 	 * that will run concurrently.
772 	 */
773 	mutex_enter(&zilog->zl_vdev_lock);
774 	for (i = 0; i < ndvas; i++) {
775 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
776 		if (avl_find(t, &zvsearch, &where) == NULL) {
777 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
778 			zv->zv_vdev = zvsearch.zv_vdev;
779 			avl_insert(t, zv, where);
780 		}
781 	}
782 	mutex_exit(&zilog->zl_vdev_lock);
783 }
784 
785 static void
786 zil_flush_vdevs(zilog_t *zilog)
787 {
788 	spa_t *spa = zilog->zl_spa;
789 	avl_tree_t *t = &zilog->zl_vdev_tree;
790 	void *cookie = NULL;
791 	zil_vdev_node_t *zv;
792 	zio_t *zio;
793 
794 	ASSERT(zilog->zl_writer);
795 
796 	/*
797 	 * We don't need zl_vdev_lock here because we're the zl_writer,
798 	 * and all zl_get_data() callbacks are done.
799 	 */
800 	if (avl_numnodes(t) == 0)
801 		return;
802 
803 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
804 
805 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
806 
807 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
808 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
809 		if (vd != NULL)
810 			zio_flush(zio, vd);
811 		kmem_free(zv, sizeof (*zv));
812 	}
813 
814 	/*
815 	 * Wait for all the flushes to complete.  Not all devices actually
816 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
817 	 */
818 	(void) zio_wait(zio);
819 
820 	spa_config_exit(spa, SCL_STATE, FTAG);
821 }
822 
823 /*
824  * Function called when a log block write completes
825  */
826 static void
827 zil_lwb_write_done(zio_t *zio)
828 {
829 	lwb_t *lwb = zio->io_private;
830 	zilog_t *zilog = lwb->lwb_zilog;
831 	dmu_tx_t *tx = lwb->lwb_tx;
832 
833 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
834 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
835 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
836 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
837 	ASSERT(!BP_IS_GANG(zio->io_bp));
838 	ASSERT(!BP_IS_HOLE(zio->io_bp));
839 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
840 
841 	/*
842 	 * Ensure the lwb buffer pointer is cleared before releasing
843 	 * the txg. If we have had an allocation failure and
844 	 * the txg is waiting to sync then we want want zil_sync()
845 	 * to remove the lwb so that it's not picked up as the next new
846 	 * one in zil_commit_writer(). zil_sync() will only remove
847 	 * the lwb if lwb_buf is null.
848 	 */
849 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
850 	mutex_enter(&zilog->zl_lock);
851 	lwb->lwb_buf = NULL;
852 	lwb->lwb_tx = NULL;
853 	mutex_exit(&zilog->zl_lock);
854 
855 	/*
856 	 * Now that we've written this log block, we have a stable pointer
857 	 * to the next block in the chain, so it's OK to let the txg in
858 	 * which we allocated the next block sync.
859 	 */
860 	dmu_tx_commit(tx);
861 }
862 
863 /*
864  * Initialize the io for a log block.
865  */
866 static void
867 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
868 {
869 	zbookmark_phys_t zb;
870 
871 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
872 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
873 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
874 
875 	if (zilog->zl_root_zio == NULL) {
876 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
877 		    ZIO_FLAG_CANFAIL);
878 	}
879 	if (lwb->lwb_zio == NULL) {
880 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
881 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
882 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
883 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
884 	}
885 }
886 
887 /*
888  * Define a limited set of intent log block sizes.
889  *
890  * These must be a multiple of 4KB. Note only the amount used (again
891  * aligned to 4KB) actually gets written. However, we can't always just
892  * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
893  */
894 uint64_t zil_block_buckets[] = {
895     4096,		/* non TX_WRITE */
896     8192+4096,		/* data base */
897     32*1024 + 4096, 	/* NFS writes */
898     UINT64_MAX
899 };
900 
901 /*
902  * Use the slog as long as the logbias is 'latency' and the current commit size
903  * is less than the limit or the total list size is less than 2X the limit.
904  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
905  */
906 uint64_t zil_slog_limit = 1024 * 1024;
907 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
908 	(((zilog)->zl_cur_used < zil_slog_limit) || \
909 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
910 
911 /*
912  * Start a log block write and advance to the next log block.
913  * Calls are serialized.
914  */
915 static lwb_t *
916 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
917 {
918 	lwb_t *nlwb = NULL;
919 	zil_chain_t *zilc;
920 	spa_t *spa = zilog->zl_spa;
921 	blkptr_t *bp;
922 	dmu_tx_t *tx;
923 	uint64_t txg;
924 	uint64_t zil_blksz, wsz;
925 	int i, error;
926 
927 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
928 		zilc = (zil_chain_t *)lwb->lwb_buf;
929 		bp = &zilc->zc_next_blk;
930 	} else {
931 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
932 		bp = &zilc->zc_next_blk;
933 	}
934 
935 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
936 
937 	/*
938 	 * Allocate the next block and save its address in this block
939 	 * before writing it in order to establish the log chain.
940 	 * Note that if the allocation of nlwb synced before we wrote
941 	 * the block that points at it (lwb), we'd leak it if we crashed.
942 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
943 	 * We dirty the dataset to ensure that zil_sync() will be called
944 	 * to clean up in the event of allocation failure or I/O failure.
945 	 */
946 	tx = dmu_tx_create(zilog->zl_os);
947 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
948 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
949 	txg = dmu_tx_get_txg(tx);
950 
951 	lwb->lwb_tx = tx;
952 
953 	/*
954 	 * Log blocks are pre-allocated. Here we select the size of the next
955 	 * block, based on size used in the last block.
956 	 * - first find the smallest bucket that will fit the block from a
957 	 *   limited set of block sizes. This is because it's faster to write
958 	 *   blocks allocated from the same metaslab as they are adjacent or
959 	 *   close.
960 	 * - next find the maximum from the new suggested size and an array of
961 	 *   previous sizes. This lessens a picket fence effect of wrongly
962 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
963 	 *   requests.
964 	 *
965 	 * Note we only write what is used, but we can't just allocate
966 	 * the maximum block size because we can exhaust the available
967 	 * pool log space.
968 	 */
969 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
970 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
971 		continue;
972 	zil_blksz = zil_block_buckets[i];
973 	if (zil_blksz == UINT64_MAX)
974 		zil_blksz = SPA_MAXBLOCKSIZE;
975 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
976 	for (i = 0; i < ZIL_PREV_BLKS; i++)
977 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
978 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
979 
980 	BP_ZERO(bp);
981 	/* pass the old blkptr in order to spread log blocks across devs */
982 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
983 	    USE_SLOG(zilog));
984 	if (error == 0) {
985 		ASSERT3U(bp->blk_birth, ==, txg);
986 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
987 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
988 
989 		/*
990 		 * Allocate a new log write buffer (lwb).
991 		 */
992 		nlwb = zil_alloc_lwb(zilog, bp, txg);
993 
994 		/* Record the block for later vdev flushing */
995 		zil_add_block(zilog, &lwb->lwb_blk);
996 	}
997 
998 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
999 		/* For Slim ZIL only write what is used. */
1000 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1001 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1002 		zio_shrink(lwb->lwb_zio, wsz);
1003 
1004 	} else {
1005 		wsz = lwb->lwb_sz;
1006 	}
1007 
1008 	zilc->zc_pad = 0;
1009 	zilc->zc_nused = lwb->lwb_nused;
1010 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1011 
1012 	/*
1013 	 * clear unused data for security
1014 	 */
1015 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1016 
1017 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1018 
1019 	/*
1020 	 * If there was an allocation failure then nlwb will be null which
1021 	 * forces a txg_wait_synced().
1022 	 */
1023 	return (nlwb);
1024 }
1025 
1026 static lwb_t *
1027 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1028 {
1029 	lr_t *lrc = &itx->itx_lr; /* common log record */
1030 	lr_write_t *lrw = (lr_write_t *)lrc;
1031 	char *lr_buf;
1032 	uint64_t txg = lrc->lrc_txg;
1033 	uint64_t reclen = lrc->lrc_reclen;
1034 	uint64_t dlen = 0;
1035 
1036 	if (lwb == NULL)
1037 		return (NULL);
1038 
1039 	ASSERT(lwb->lwb_buf != NULL);
1040 	ASSERT(zilog_is_dirty(zilog) ||
1041 	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1042 
1043 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1044 		dlen = P2ROUNDUP_TYPED(
1045 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1046 
1047 	zilog->zl_cur_used += (reclen + dlen);
1048 
1049 	zil_lwb_write_init(zilog, lwb);
1050 
1051 	/*
1052 	 * If this record won't fit in the current log block, start a new one.
1053 	 */
1054 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1055 		lwb = zil_lwb_write_start(zilog, lwb);
1056 		if (lwb == NULL)
1057 			return (NULL);
1058 		zil_lwb_write_init(zilog, lwb);
1059 		ASSERT(LWB_EMPTY(lwb));
1060 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1061 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1062 			return (lwb);
1063 		}
1064 	}
1065 
1066 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1067 	bcopy(lrc, lr_buf, reclen);
1068 	lrc = (lr_t *)lr_buf;
1069 	lrw = (lr_write_t *)lrc;
1070 
1071 	/*
1072 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1073 	 */
1074 	if (lrc->lrc_txtype == TX_WRITE) {
1075 		if (txg > spa_freeze_txg(zilog->zl_spa))
1076 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1077 		if (itx->itx_wr_state != WR_COPIED) {
1078 			char *dbuf;
1079 			int error;
1080 
1081 			if (dlen) {
1082 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1083 				dbuf = lr_buf + reclen;
1084 				lrw->lr_common.lrc_reclen += dlen;
1085 			} else {
1086 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1087 				dbuf = NULL;
1088 			}
1089 			error = zilog->zl_get_data(
1090 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1091 			if (error == EIO) {
1092 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1093 				return (lwb);
1094 			}
1095 			if (error != 0) {
1096 				ASSERT(error == ENOENT || error == EEXIST ||
1097 				    error == EALREADY);
1098 				return (lwb);
1099 			}
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * We're actually making an entry, so update lrc_seq to be the
1105 	 * log record sequence number.  Note that this is generally not
1106 	 * equal to the itx sequence number because not all transactions
1107 	 * are synchronous, and sometimes spa_sync() gets there first.
1108 	 */
1109 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1110 	lwb->lwb_nused += reclen + dlen;
1111 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1112 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1113 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1114 
1115 	return (lwb);
1116 }
1117 
1118 itx_t *
1119 zil_itx_create(uint64_t txtype, size_t lrsize)
1120 {
1121 	itx_t *itx;
1122 
1123 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1124 
1125 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1126 	itx->itx_lr.lrc_txtype = txtype;
1127 	itx->itx_lr.lrc_reclen = lrsize;
1128 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1129 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1130 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1131 
1132 	return (itx);
1133 }
1134 
1135 void
1136 zil_itx_destroy(itx_t *itx)
1137 {
1138 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1139 }
1140 
1141 /*
1142  * Free up the sync and async itxs. The itxs_t has already been detached
1143  * so no locks are needed.
1144  */
1145 static void
1146 zil_itxg_clean(itxs_t *itxs)
1147 {
1148 	itx_t *itx;
1149 	list_t *list;
1150 	avl_tree_t *t;
1151 	void *cookie;
1152 	itx_async_node_t *ian;
1153 
1154 	list = &itxs->i_sync_list;
1155 	while ((itx = list_head(list)) != NULL) {
1156 		list_remove(list, itx);
1157 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1158 		    itx->itx_lr.lrc_reclen);
1159 	}
1160 
1161 	cookie = NULL;
1162 	t = &itxs->i_async_tree;
1163 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1164 		list = &ian->ia_list;
1165 		while ((itx = list_head(list)) != NULL) {
1166 			list_remove(list, itx);
1167 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1168 			    itx->itx_lr.lrc_reclen);
1169 		}
1170 		list_destroy(list);
1171 		kmem_free(ian, sizeof (itx_async_node_t));
1172 	}
1173 	avl_destroy(t);
1174 
1175 	kmem_free(itxs, sizeof (itxs_t));
1176 }
1177 
1178 static int
1179 zil_aitx_compare(const void *x1, const void *x2)
1180 {
1181 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1182 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1183 
1184 	if (o1 < o2)
1185 		return (-1);
1186 	if (o1 > o2)
1187 		return (1);
1188 
1189 	return (0);
1190 }
1191 
1192 /*
1193  * Remove all async itx with the given oid.
1194  */
1195 static void
1196 zil_remove_async(zilog_t *zilog, uint64_t oid)
1197 {
1198 	uint64_t otxg, txg;
1199 	itx_async_node_t *ian;
1200 	avl_tree_t *t;
1201 	avl_index_t where;
1202 	list_t clean_list;
1203 	itx_t *itx;
1204 
1205 	ASSERT(oid != 0);
1206 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1207 
1208 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1209 		otxg = ZILTEST_TXG;
1210 	else
1211 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1212 
1213 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1214 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1215 
1216 		mutex_enter(&itxg->itxg_lock);
1217 		if (itxg->itxg_txg != txg) {
1218 			mutex_exit(&itxg->itxg_lock);
1219 			continue;
1220 		}
1221 
1222 		/*
1223 		 * Locate the object node and append its list.
1224 		 */
1225 		t = &itxg->itxg_itxs->i_async_tree;
1226 		ian = avl_find(t, &oid, &where);
1227 		if (ian != NULL)
1228 			list_move_tail(&clean_list, &ian->ia_list);
1229 		mutex_exit(&itxg->itxg_lock);
1230 	}
1231 	while ((itx = list_head(&clean_list)) != NULL) {
1232 		list_remove(&clean_list, itx);
1233 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1234 		    itx->itx_lr.lrc_reclen);
1235 	}
1236 	list_destroy(&clean_list);
1237 }
1238 
1239 void
1240 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1241 {
1242 	uint64_t txg;
1243 	itxg_t *itxg;
1244 	itxs_t *itxs, *clean = NULL;
1245 
1246 	/*
1247 	 * Object ids can be re-instantiated in the next txg so
1248 	 * remove any async transactions to avoid future leaks.
1249 	 * This can happen if a fsync occurs on the re-instantiated
1250 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1251 	 * the new file data and flushes a write record for the old object.
1252 	 */
1253 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1254 		zil_remove_async(zilog, itx->itx_oid);
1255 
1256 	/*
1257 	 * Ensure the data of a renamed file is committed before the rename.
1258 	 */
1259 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1260 		zil_async_to_sync(zilog, itx->itx_oid);
1261 
1262 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1263 		txg = ZILTEST_TXG;
1264 	else
1265 		txg = dmu_tx_get_txg(tx);
1266 
1267 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1268 	mutex_enter(&itxg->itxg_lock);
1269 	itxs = itxg->itxg_itxs;
1270 	if (itxg->itxg_txg != txg) {
1271 		if (itxs != NULL) {
1272 			/*
1273 			 * The zil_clean callback hasn't got around to cleaning
1274 			 * this itxg. Save the itxs for release below.
1275 			 * This should be rare.
1276 			 */
1277 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1278 			itxg->itxg_sod = 0;
1279 			clean = itxg->itxg_itxs;
1280 		}
1281 		ASSERT(itxg->itxg_sod == 0);
1282 		itxg->itxg_txg = txg;
1283 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1284 
1285 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1286 		    offsetof(itx_t, itx_node));
1287 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1288 		    sizeof (itx_async_node_t),
1289 		    offsetof(itx_async_node_t, ia_node));
1290 	}
1291 	if (itx->itx_sync) {
1292 		list_insert_tail(&itxs->i_sync_list, itx);
1293 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1294 		itxg->itxg_sod += itx->itx_sod;
1295 	} else {
1296 		avl_tree_t *t = &itxs->i_async_tree;
1297 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1298 		itx_async_node_t *ian;
1299 		avl_index_t where;
1300 
1301 		ian = avl_find(t, &foid, &where);
1302 		if (ian == NULL) {
1303 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1304 			list_create(&ian->ia_list, sizeof (itx_t),
1305 			    offsetof(itx_t, itx_node));
1306 			ian->ia_foid = foid;
1307 			avl_insert(t, ian, where);
1308 		}
1309 		list_insert_tail(&ian->ia_list, itx);
1310 	}
1311 
1312 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1313 	zilog_dirty(zilog, txg);
1314 	mutex_exit(&itxg->itxg_lock);
1315 
1316 	/* Release the old itxs now we've dropped the lock */
1317 	if (clean != NULL)
1318 		zil_itxg_clean(clean);
1319 }
1320 
1321 /*
1322  * If there are any in-memory intent log transactions which have now been
1323  * synced then start up a taskq to free them. We should only do this after we
1324  * have written out the uberblocks (i.e. txg has been comitted) so that
1325  * don't inadvertently clean out in-memory log records that would be required
1326  * by zil_commit().
1327  */
1328 void
1329 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1330 {
1331 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1332 	itxs_t *clean_me;
1333 
1334 	mutex_enter(&itxg->itxg_lock);
1335 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1336 		mutex_exit(&itxg->itxg_lock);
1337 		return;
1338 	}
1339 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1340 	ASSERT(itxg->itxg_txg != 0);
1341 	ASSERT(zilog->zl_clean_taskq != NULL);
1342 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1343 	itxg->itxg_sod = 0;
1344 	clean_me = itxg->itxg_itxs;
1345 	itxg->itxg_itxs = NULL;
1346 	itxg->itxg_txg = 0;
1347 	mutex_exit(&itxg->itxg_lock);
1348 	/*
1349 	 * Preferably start a task queue to free up the old itxs but
1350 	 * if taskq_dispatch can't allocate resources to do that then
1351 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1352 	 * created a bad performance problem.
1353 	 */
1354 	if (taskq_dispatch(zilog->zl_clean_taskq,
1355 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1356 		zil_itxg_clean(clean_me);
1357 }
1358 
1359 /*
1360  * Get the list of itxs to commit into zl_itx_commit_list.
1361  */
1362 static void
1363 zil_get_commit_list(zilog_t *zilog)
1364 {
1365 	uint64_t otxg, txg;
1366 	list_t *commit_list = &zilog->zl_itx_commit_list;
1367 	uint64_t push_sod = 0;
1368 
1369 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1370 		otxg = ZILTEST_TXG;
1371 	else
1372 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1373 
1374 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1375 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1376 
1377 		mutex_enter(&itxg->itxg_lock);
1378 		if (itxg->itxg_txg != txg) {
1379 			mutex_exit(&itxg->itxg_lock);
1380 			continue;
1381 		}
1382 
1383 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1384 		push_sod += itxg->itxg_sod;
1385 		itxg->itxg_sod = 0;
1386 
1387 		mutex_exit(&itxg->itxg_lock);
1388 	}
1389 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1390 }
1391 
1392 /*
1393  * Move the async itxs for a specified object to commit into sync lists.
1394  */
1395 static void
1396 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1397 {
1398 	uint64_t otxg, txg;
1399 	itx_async_node_t *ian;
1400 	avl_tree_t *t;
1401 	avl_index_t where;
1402 
1403 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1404 		otxg = ZILTEST_TXG;
1405 	else
1406 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1407 
1408 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1409 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1410 
1411 		mutex_enter(&itxg->itxg_lock);
1412 		if (itxg->itxg_txg != txg) {
1413 			mutex_exit(&itxg->itxg_lock);
1414 			continue;
1415 		}
1416 
1417 		/*
1418 		 * If a foid is specified then find that node and append its
1419 		 * list. Otherwise walk the tree appending all the lists
1420 		 * to the sync list. We add to the end rather than the
1421 		 * beginning to ensure the create has happened.
1422 		 */
1423 		t = &itxg->itxg_itxs->i_async_tree;
1424 		if (foid != 0) {
1425 			ian = avl_find(t, &foid, &where);
1426 			if (ian != NULL) {
1427 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1428 				    &ian->ia_list);
1429 			}
1430 		} else {
1431 			void *cookie = NULL;
1432 
1433 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1434 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1435 				    &ian->ia_list);
1436 				list_destroy(&ian->ia_list);
1437 				kmem_free(ian, sizeof (itx_async_node_t));
1438 			}
1439 		}
1440 		mutex_exit(&itxg->itxg_lock);
1441 	}
1442 }
1443 
1444 static void
1445 zil_commit_writer(zilog_t *zilog)
1446 {
1447 	uint64_t txg;
1448 	itx_t *itx;
1449 	lwb_t *lwb;
1450 	spa_t *spa = zilog->zl_spa;
1451 	int error = 0;
1452 
1453 	ASSERT(zilog->zl_root_zio == NULL);
1454 
1455 	mutex_exit(&zilog->zl_lock);
1456 
1457 	zil_get_commit_list(zilog);
1458 
1459 	/*
1460 	 * Return if there's nothing to commit before we dirty the fs by
1461 	 * calling zil_create().
1462 	 */
1463 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1464 		mutex_enter(&zilog->zl_lock);
1465 		return;
1466 	}
1467 
1468 	if (zilog->zl_suspend) {
1469 		lwb = NULL;
1470 	} else {
1471 		lwb = list_tail(&zilog->zl_lwb_list);
1472 		if (lwb == NULL)
1473 			lwb = zil_create(zilog);
1474 	}
1475 
1476 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1477 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1478 		txg = itx->itx_lr.lrc_txg;
1479 		ASSERT(txg);
1480 
1481 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1482 			lwb = zil_lwb_commit(zilog, itx, lwb);
1483 		list_remove(&zilog->zl_itx_commit_list, itx);
1484 		kmem_free(itx, offsetof(itx_t, itx_lr)
1485 		    + itx->itx_lr.lrc_reclen);
1486 	}
1487 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1488 
1489 	/* write the last block out */
1490 	if (lwb != NULL && lwb->lwb_zio != NULL)
1491 		lwb = zil_lwb_write_start(zilog, lwb);
1492 
1493 	zilog->zl_cur_used = 0;
1494 
1495 	/*
1496 	 * Wait if necessary for the log blocks to be on stable storage.
1497 	 */
1498 	if (zilog->zl_root_zio) {
1499 		error = zio_wait(zilog->zl_root_zio);
1500 		zilog->zl_root_zio = NULL;
1501 		zil_flush_vdevs(zilog);
1502 	}
1503 
1504 	if (error || lwb == NULL)
1505 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1506 
1507 	mutex_enter(&zilog->zl_lock);
1508 
1509 	/*
1510 	 * Remember the highest committed log sequence number for ztest.
1511 	 * We only update this value when all the log writes succeeded,
1512 	 * because ztest wants to ASSERT that it got the whole log chain.
1513 	 */
1514 	if (error == 0 && lwb != NULL)
1515 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1516 }
1517 
1518 /*
1519  * Commit zfs transactions to stable storage.
1520  * If foid is 0 push out all transactions, otherwise push only those
1521  * for that object or might reference that object.
1522  *
1523  * itxs are committed in batches. In a heavily stressed zil there will be
1524  * a commit writer thread who is writing out a bunch of itxs to the log
1525  * for a set of committing threads (cthreads) in the same batch as the writer.
1526  * Those cthreads are all waiting on the same cv for that batch.
1527  *
1528  * There will also be a different and growing batch of threads that are
1529  * waiting to commit (qthreads). When the committing batch completes
1530  * a transition occurs such that the cthreads exit and the qthreads become
1531  * cthreads. One of the new cthreads becomes the writer thread for the
1532  * batch. Any new threads arriving become new qthreads.
1533  *
1534  * Only 2 condition variables are needed and there's no transition
1535  * between the two cvs needed. They just flip-flop between qthreads
1536  * and cthreads.
1537  *
1538  * Using this scheme we can efficiently wakeup up only those threads
1539  * that have been committed.
1540  */
1541 void
1542 zil_commit(zilog_t *zilog, uint64_t foid)
1543 {
1544 	uint64_t mybatch;
1545 
1546 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1547 		return;
1548 
1549 	/* move the async itxs for the foid to the sync queues */
1550 	zil_async_to_sync(zilog, foid);
1551 
1552 	mutex_enter(&zilog->zl_lock);
1553 	mybatch = zilog->zl_next_batch;
1554 	while (zilog->zl_writer) {
1555 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1556 		if (mybatch <= zilog->zl_com_batch) {
1557 			mutex_exit(&zilog->zl_lock);
1558 			return;
1559 		}
1560 	}
1561 
1562 	zilog->zl_next_batch++;
1563 	zilog->zl_writer = B_TRUE;
1564 	zil_commit_writer(zilog);
1565 	zilog->zl_com_batch = mybatch;
1566 	zilog->zl_writer = B_FALSE;
1567 	mutex_exit(&zilog->zl_lock);
1568 
1569 	/* wake up one thread to become the next writer */
1570 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1571 
1572 	/* wake up all threads waiting for this batch to be committed */
1573 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1574 }
1575 
1576 /*
1577  * Called in syncing context to free committed log blocks and update log header.
1578  */
1579 void
1580 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1581 {
1582 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1583 	uint64_t txg = dmu_tx_get_txg(tx);
1584 	spa_t *spa = zilog->zl_spa;
1585 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1586 	lwb_t *lwb;
1587 
1588 	/*
1589 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1590 	 * to destroy it twice.
1591 	 */
1592 	if (spa_sync_pass(spa) != 1)
1593 		return;
1594 
1595 	mutex_enter(&zilog->zl_lock);
1596 
1597 	ASSERT(zilog->zl_stop_sync == 0);
1598 
1599 	if (*replayed_seq != 0) {
1600 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1601 		zh->zh_replay_seq = *replayed_seq;
1602 		*replayed_seq = 0;
1603 	}
1604 
1605 	if (zilog->zl_destroy_txg == txg) {
1606 		blkptr_t blk = zh->zh_log;
1607 
1608 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1609 
1610 		bzero(zh, sizeof (zil_header_t));
1611 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1612 
1613 		if (zilog->zl_keep_first) {
1614 			/*
1615 			 * If this block was part of log chain that couldn't
1616 			 * be claimed because a device was missing during
1617 			 * zil_claim(), but that device later returns,
1618 			 * then this block could erroneously appear valid.
1619 			 * To guard against this, assign a new GUID to the new
1620 			 * log chain so it doesn't matter what blk points to.
1621 			 */
1622 			zil_init_log_chain(zilog, &blk);
1623 			zh->zh_log = blk;
1624 		}
1625 	}
1626 
1627 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1628 		zh->zh_log = lwb->lwb_blk;
1629 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1630 			break;
1631 		list_remove(&zilog->zl_lwb_list, lwb);
1632 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1633 		kmem_cache_free(zil_lwb_cache, lwb);
1634 
1635 		/*
1636 		 * If we don't have anything left in the lwb list then
1637 		 * we've had an allocation failure and we need to zero
1638 		 * out the zil_header blkptr so that we don't end
1639 		 * up freeing the same block twice.
1640 		 */
1641 		if (list_head(&zilog->zl_lwb_list) == NULL)
1642 			BP_ZERO(&zh->zh_log);
1643 	}
1644 	mutex_exit(&zilog->zl_lock);
1645 }
1646 
1647 void
1648 zil_init(void)
1649 {
1650 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1651 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1652 }
1653 
1654 void
1655 zil_fini(void)
1656 {
1657 	kmem_cache_destroy(zil_lwb_cache);
1658 }
1659 
1660 void
1661 zil_set_sync(zilog_t *zilog, uint64_t sync)
1662 {
1663 	zilog->zl_sync = sync;
1664 }
1665 
1666 void
1667 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1668 {
1669 	zilog->zl_logbias = logbias;
1670 }
1671 
1672 zilog_t *
1673 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1674 {
1675 	zilog_t *zilog;
1676 
1677 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1678 
1679 	zilog->zl_header = zh_phys;
1680 	zilog->zl_os = os;
1681 	zilog->zl_spa = dmu_objset_spa(os);
1682 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1683 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1684 	zilog->zl_logbias = dmu_objset_logbias(os);
1685 	zilog->zl_sync = dmu_objset_syncprop(os);
1686 	zilog->zl_next_batch = 1;
1687 
1688 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1689 
1690 	for (int i = 0; i < TXG_SIZE; i++) {
1691 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1692 		    MUTEX_DEFAULT, NULL);
1693 	}
1694 
1695 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1696 	    offsetof(lwb_t, lwb_node));
1697 
1698 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1699 	    offsetof(itx_t, itx_node));
1700 
1701 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1702 
1703 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1704 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1705 
1706 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1707 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1708 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1709 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1710 
1711 	return (zilog);
1712 }
1713 
1714 void
1715 zil_free(zilog_t *zilog)
1716 {
1717 	zilog->zl_stop_sync = 1;
1718 
1719 	ASSERT0(zilog->zl_suspend);
1720 	ASSERT0(zilog->zl_suspending);
1721 
1722 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1723 	list_destroy(&zilog->zl_lwb_list);
1724 
1725 	avl_destroy(&zilog->zl_vdev_tree);
1726 	mutex_destroy(&zilog->zl_vdev_lock);
1727 
1728 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1729 	list_destroy(&zilog->zl_itx_commit_list);
1730 
1731 	for (int i = 0; i < TXG_SIZE; i++) {
1732 		/*
1733 		 * It's possible for an itx to be generated that doesn't dirty
1734 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1735 		 * callback to remove the entry. We remove those here.
1736 		 *
1737 		 * Also free up the ziltest itxs.
1738 		 */
1739 		if (zilog->zl_itxg[i].itxg_itxs)
1740 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1741 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1742 	}
1743 
1744 	mutex_destroy(&zilog->zl_lock);
1745 
1746 	cv_destroy(&zilog->zl_cv_writer);
1747 	cv_destroy(&zilog->zl_cv_suspend);
1748 	cv_destroy(&zilog->zl_cv_batch[0]);
1749 	cv_destroy(&zilog->zl_cv_batch[1]);
1750 
1751 	kmem_free(zilog, sizeof (zilog_t));
1752 }
1753 
1754 /*
1755  * Open an intent log.
1756  */
1757 zilog_t *
1758 zil_open(objset_t *os, zil_get_data_t *get_data)
1759 {
1760 	zilog_t *zilog = dmu_objset_zil(os);
1761 
1762 	ASSERT(zilog->zl_clean_taskq == NULL);
1763 	ASSERT(zilog->zl_get_data == NULL);
1764 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1765 
1766 	zilog->zl_get_data = get_data;
1767 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1768 	    2, 2, TASKQ_PREPOPULATE);
1769 
1770 	return (zilog);
1771 }
1772 
1773 /*
1774  * Close an intent log.
1775  */
1776 void
1777 zil_close(zilog_t *zilog)
1778 {
1779 	lwb_t *lwb;
1780 	uint64_t txg = 0;
1781 
1782 	zil_commit(zilog, 0); /* commit all itx */
1783 
1784 	/*
1785 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1786 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1787 	 * callbacks have occurred that may clean the zil.  Only then can we
1788 	 * destroy the zl_clean_taskq.
1789 	 */
1790 	mutex_enter(&zilog->zl_lock);
1791 	lwb = list_tail(&zilog->zl_lwb_list);
1792 	if (lwb != NULL)
1793 		txg = lwb->lwb_max_txg;
1794 	mutex_exit(&zilog->zl_lock);
1795 	if (txg)
1796 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1797 	ASSERT(!zilog_is_dirty(zilog));
1798 
1799 	taskq_destroy(zilog->zl_clean_taskq);
1800 	zilog->zl_clean_taskq = NULL;
1801 	zilog->zl_get_data = NULL;
1802 
1803 	/*
1804 	 * We should have only one LWB left on the list; remove it now.
1805 	 */
1806 	mutex_enter(&zilog->zl_lock);
1807 	lwb = list_head(&zilog->zl_lwb_list);
1808 	if (lwb != NULL) {
1809 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1810 		list_remove(&zilog->zl_lwb_list, lwb);
1811 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1812 		kmem_cache_free(zil_lwb_cache, lwb);
1813 	}
1814 	mutex_exit(&zilog->zl_lock);
1815 }
1816 
1817 static char *suspend_tag = "zil suspending";
1818 
1819 /*
1820  * Suspend an intent log.  While in suspended mode, we still honor
1821  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1822  * On old version pools, we suspend the log briefly when taking a
1823  * snapshot so that it will have an empty intent log.
1824  *
1825  * Long holds are not really intended to be used the way we do here --
1826  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1827  * could fail.  Therefore we take pains to only put a long hold if it is
1828  * actually necessary.  Fortunately, it will only be necessary if the
1829  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1830  * will already have a long hold, so we are not really making things any worse.
1831  *
1832  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1833  * zvol_state_t), and use their mechanism to prevent their hold from being
1834  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1835  * very little gain.
1836  *
1837  * if cookiep == NULL, this does both the suspend & resume.
1838  * Otherwise, it returns with the dataset "long held", and the cookie
1839  * should be passed into zil_resume().
1840  */
1841 int
1842 zil_suspend(const char *osname, void **cookiep)
1843 {
1844 	objset_t *os;
1845 	zilog_t *zilog;
1846 	const zil_header_t *zh;
1847 	int error;
1848 
1849 	error = dmu_objset_hold(osname, suspend_tag, &os);
1850 	if (error != 0)
1851 		return (error);
1852 	zilog = dmu_objset_zil(os);
1853 
1854 	mutex_enter(&zilog->zl_lock);
1855 	zh = zilog->zl_header;
1856 
1857 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1858 		mutex_exit(&zilog->zl_lock);
1859 		dmu_objset_rele(os, suspend_tag);
1860 		return (SET_ERROR(EBUSY));
1861 	}
1862 
1863 	/*
1864 	 * Don't put a long hold in the cases where we can avoid it.  This
1865 	 * is when there is no cookie so we are doing a suspend & resume
1866 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1867 	 * for the suspend because it's already suspended, or there's no ZIL.
1868 	 */
1869 	if (cookiep == NULL && !zilog->zl_suspending &&
1870 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1871 		mutex_exit(&zilog->zl_lock);
1872 		dmu_objset_rele(os, suspend_tag);
1873 		return (0);
1874 	}
1875 
1876 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1877 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1878 
1879 	zilog->zl_suspend++;
1880 
1881 	if (zilog->zl_suspend > 1) {
1882 		/*
1883 		 * Someone else is already suspending it.
1884 		 * Just wait for them to finish.
1885 		 */
1886 
1887 		while (zilog->zl_suspending)
1888 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1889 		mutex_exit(&zilog->zl_lock);
1890 
1891 		if (cookiep == NULL)
1892 			zil_resume(os);
1893 		else
1894 			*cookiep = os;
1895 		return (0);
1896 	}
1897 
1898 	/*
1899 	 * If there is no pointer to an on-disk block, this ZIL must not
1900 	 * be active (e.g. filesystem not mounted), so there's nothing
1901 	 * to clean up.
1902 	 */
1903 	if (BP_IS_HOLE(&zh->zh_log)) {
1904 		ASSERT(cookiep != NULL); /* fast path already handled */
1905 
1906 		*cookiep = os;
1907 		mutex_exit(&zilog->zl_lock);
1908 		return (0);
1909 	}
1910 
1911 	zilog->zl_suspending = B_TRUE;
1912 	mutex_exit(&zilog->zl_lock);
1913 
1914 	zil_commit(zilog, 0);
1915 
1916 	zil_destroy(zilog, B_FALSE);
1917 
1918 	mutex_enter(&zilog->zl_lock);
1919 	zilog->zl_suspending = B_FALSE;
1920 	cv_broadcast(&zilog->zl_cv_suspend);
1921 	mutex_exit(&zilog->zl_lock);
1922 
1923 	if (cookiep == NULL)
1924 		zil_resume(os);
1925 	else
1926 		*cookiep = os;
1927 	return (0);
1928 }
1929 
1930 void
1931 zil_resume(void *cookie)
1932 {
1933 	objset_t *os = cookie;
1934 	zilog_t *zilog = dmu_objset_zil(os);
1935 
1936 	mutex_enter(&zilog->zl_lock);
1937 	ASSERT(zilog->zl_suspend != 0);
1938 	zilog->zl_suspend--;
1939 	mutex_exit(&zilog->zl_lock);
1940 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1941 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1942 }
1943 
1944 typedef struct zil_replay_arg {
1945 	zil_replay_func_t **zr_replay;
1946 	void		*zr_arg;
1947 	boolean_t	zr_byteswap;
1948 	char		*zr_lr;
1949 } zil_replay_arg_t;
1950 
1951 static int
1952 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1953 {
1954 	char name[MAXNAMELEN];
1955 
1956 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1957 
1958 	dmu_objset_name(zilog->zl_os, name);
1959 
1960 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1961 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1962 	    (u_longlong_t)lr->lrc_seq,
1963 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1964 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1965 
1966 	return (error);
1967 }
1968 
1969 static int
1970 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1971 {
1972 	zil_replay_arg_t *zr = zra;
1973 	const zil_header_t *zh = zilog->zl_header;
1974 	uint64_t reclen = lr->lrc_reclen;
1975 	uint64_t txtype = lr->lrc_txtype;
1976 	int error = 0;
1977 
1978 	zilog->zl_replaying_seq = lr->lrc_seq;
1979 
1980 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1981 		return (0);
1982 
1983 	if (lr->lrc_txg < claim_txg)		/* already committed */
1984 		return (0);
1985 
1986 	/* Strip case-insensitive bit, still present in log record */
1987 	txtype &= ~TX_CI;
1988 
1989 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1990 		return (zil_replay_error(zilog, lr, EINVAL));
1991 
1992 	/*
1993 	 * If this record type can be logged out of order, the object
1994 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
1995 	 */
1996 	if (TX_OOO(txtype)) {
1997 		error = dmu_object_info(zilog->zl_os,
1998 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
1999 		if (error == ENOENT || error == EEXIST)
2000 			return (0);
2001 	}
2002 
2003 	/*
2004 	 * Make a copy of the data so we can revise and extend it.
2005 	 */
2006 	bcopy(lr, zr->zr_lr, reclen);
2007 
2008 	/*
2009 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2010 	 */
2011 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2012 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2013 		    zr->zr_lr + reclen);
2014 		if (error != 0)
2015 			return (zil_replay_error(zilog, lr, error));
2016 	}
2017 
2018 	/*
2019 	 * The log block containing this lr may have been byteswapped
2020 	 * so that we can easily examine common fields like lrc_txtype.
2021 	 * However, the log is a mix of different record types, and only the
2022 	 * replay vectors know how to byteswap their records.  Therefore, if
2023 	 * the lr was byteswapped, undo it before invoking the replay vector.
2024 	 */
2025 	if (zr->zr_byteswap)
2026 		byteswap_uint64_array(zr->zr_lr, reclen);
2027 
2028 	/*
2029 	 * We must now do two things atomically: replay this log record,
2030 	 * and update the log header sequence number to reflect the fact that
2031 	 * we did so. At the end of each replay function the sequence number
2032 	 * is updated if we are in replay mode.
2033 	 */
2034 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2035 	if (error != 0) {
2036 		/*
2037 		 * The DMU's dnode layer doesn't see removes until the txg
2038 		 * commits, so a subsequent claim can spuriously fail with
2039 		 * EEXIST. So if we receive any error we try syncing out
2040 		 * any removes then retry the transaction.  Note that we
2041 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2042 		 */
2043 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2044 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2045 		if (error != 0)
2046 			return (zil_replay_error(zilog, lr, error));
2047 	}
2048 	return (0);
2049 }
2050 
2051 /* ARGSUSED */
2052 static int
2053 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2054 {
2055 	zilog->zl_replay_blks++;
2056 
2057 	return (0);
2058 }
2059 
2060 /*
2061  * If this dataset has a non-empty intent log, replay it and destroy it.
2062  */
2063 void
2064 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2065 {
2066 	zilog_t *zilog = dmu_objset_zil(os);
2067 	const zil_header_t *zh = zilog->zl_header;
2068 	zil_replay_arg_t zr;
2069 
2070 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2071 		zil_destroy(zilog, B_TRUE);
2072 		return;
2073 	}
2074 
2075 	zr.zr_replay = replay_func;
2076 	zr.zr_arg = arg;
2077 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2078 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2079 
2080 	/*
2081 	 * Wait for in-progress removes to sync before starting replay.
2082 	 */
2083 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2084 
2085 	zilog->zl_replay = B_TRUE;
2086 	zilog->zl_replay_time = ddi_get_lbolt();
2087 	ASSERT(zilog->zl_replay_blks == 0);
2088 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2089 	    zh->zh_claim_txg);
2090 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2091 
2092 	zil_destroy(zilog, B_FALSE);
2093 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2094 	zilog->zl_replay = B_FALSE;
2095 }
2096 
2097 boolean_t
2098 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2099 {
2100 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2101 		return (B_TRUE);
2102 
2103 	if (zilog->zl_replay) {
2104 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2105 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2106 		    zilog->zl_replaying_seq;
2107 		return (B_TRUE);
2108 	}
2109 
2110 	return (B_FALSE);
2111 }
2112 
2113 /* ARGSUSED */
2114 int
2115 zil_vdev_offline(const char *osname, void *arg)
2116 {
2117 	int error;
2118 
2119 	error = zil_suspend(osname, NULL);
2120 	if (error != 0)
2121 		return (SET_ERROR(EEXIST));
2122 	return (0);
2123 }
2124