1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_pool.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_replay_disable = 0; /* disable intent logging replay */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 82 83 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 84 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 85 86 87 /* 88 * ziltest is by and large an ugly hack, but very useful in 89 * checking replay without tedious work. 90 * When running ziltest we want to keep all itx's and so maintain 91 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 92 * We subtract TXG_CONCURRENT_STATES to allow for common code. 93 */ 94 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 95 96 static int 97 zil_bp_compare(const void *x1, const void *x2) 98 { 99 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 100 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 101 102 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 103 return (-1); 104 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 105 return (1); 106 107 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 108 return (-1); 109 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 110 return (1); 111 112 return (0); 113 } 114 115 static void 116 zil_bp_tree_init(zilog_t *zilog) 117 { 118 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 119 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 120 } 121 122 static void 123 zil_bp_tree_fini(zilog_t *zilog) 124 { 125 avl_tree_t *t = &zilog->zl_bp_tree; 126 zil_bp_node_t *zn; 127 void *cookie = NULL; 128 129 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 130 kmem_free(zn, sizeof (zil_bp_node_t)); 131 132 avl_destroy(t); 133 } 134 135 int 136 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 137 { 138 avl_tree_t *t = &zilog->zl_bp_tree; 139 const dva_t *dva = BP_IDENTITY(bp); 140 zil_bp_node_t *zn; 141 avl_index_t where; 142 143 if (avl_find(t, dva, &where) != NULL) 144 return (EEXIST); 145 146 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 147 zn->zn_dva = *dva; 148 avl_insert(t, zn, where); 149 150 return (0); 151 } 152 153 static zil_header_t * 154 zil_header_in_syncing_context(zilog_t *zilog) 155 { 156 return ((zil_header_t *)zilog->zl_header); 157 } 158 159 static void 160 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 161 { 162 zio_cksum_t *zc = &bp->blk_cksum; 163 164 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 165 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 167 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 168 } 169 170 /* 171 * Read a log block and make sure it's valid. 172 */ 173 static int 174 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 175 char **end) 176 { 177 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 178 uint32_t aflags = ARC_WAIT; 179 arc_buf_t *abuf = NULL; 180 zbookmark_t zb; 181 int error; 182 183 if (zilog->zl_header->zh_claim_txg == 0) 184 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 185 186 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 187 zio_flags |= ZIO_FLAG_SPECULATIVE; 188 189 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 190 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 191 192 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 193 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 194 195 if (error == 0) { 196 zio_cksum_t cksum = bp->blk_cksum; 197 198 /* 199 * Validate the checksummed log block. 200 * 201 * Sequence numbers should be... sequential. The checksum 202 * verifier for the next block should be bp's checksum plus 1. 203 * 204 * Also check the log chain linkage and size used. 205 */ 206 cksum.zc_word[ZIL_ZC_SEQ]++; 207 208 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 209 zil_chain_t *zilc = abuf->b_data; 210 char *lr = (char *)(zilc + 1); 211 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 212 213 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 214 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 215 error = ECKSUM; 216 } else { 217 bcopy(lr, dst, len); 218 *end = (char *)dst + len; 219 *nbp = zilc->zc_next_blk; 220 } 221 } else { 222 char *lr = abuf->b_data; 223 uint64_t size = BP_GET_LSIZE(bp); 224 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 225 226 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 227 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 228 (zilc->zc_nused > (size - sizeof (*zilc)))) { 229 error = ECKSUM; 230 } else { 231 bcopy(lr, dst, zilc->zc_nused); 232 *end = (char *)dst + zilc->zc_nused; 233 *nbp = zilc->zc_next_blk; 234 } 235 } 236 237 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 238 } 239 240 return (error); 241 } 242 243 /* 244 * Read a TX_WRITE log data block. 245 */ 246 static int 247 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 248 { 249 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 250 const blkptr_t *bp = &lr->lr_blkptr; 251 uint32_t aflags = ARC_WAIT; 252 arc_buf_t *abuf = NULL; 253 zbookmark_t zb; 254 int error; 255 256 if (BP_IS_HOLE(bp)) { 257 if (wbuf != NULL) 258 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 259 return (0); 260 } 261 262 if (zilog->zl_header->zh_claim_txg == 0) 263 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 264 265 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 266 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 267 268 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 269 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 270 271 if (error == 0) { 272 if (wbuf != NULL) 273 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 274 (void) arc_buf_remove_ref(abuf, &abuf); 275 } 276 277 return (error); 278 } 279 280 /* 281 * Parse the intent log, and call parse_func for each valid record within. 282 */ 283 int 284 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 285 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 286 { 287 const zil_header_t *zh = zilog->zl_header; 288 boolean_t claimed = !!zh->zh_claim_txg; 289 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 290 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 291 uint64_t max_blk_seq = 0; 292 uint64_t max_lr_seq = 0; 293 uint64_t blk_count = 0; 294 uint64_t lr_count = 0; 295 blkptr_t blk, next_blk; 296 char *lrbuf, *lrp; 297 int error = 0; 298 299 /* 300 * Old logs didn't record the maximum zh_claim_lr_seq. 301 */ 302 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 303 claim_lr_seq = UINT64_MAX; 304 305 /* 306 * Starting at the block pointed to by zh_log we read the log chain. 307 * For each block in the chain we strongly check that block to 308 * ensure its validity. We stop when an invalid block is found. 309 * For each block pointer in the chain we call parse_blk_func(). 310 * For each record in each valid block we call parse_lr_func(). 311 * If the log has been claimed, stop if we encounter a sequence 312 * number greater than the highest claimed sequence number. 313 */ 314 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 315 zil_bp_tree_init(zilog); 316 317 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 318 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 319 int reclen; 320 char *end; 321 322 if (blk_seq > claim_blk_seq) 323 break; 324 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 325 break; 326 ASSERT3U(max_blk_seq, <, blk_seq); 327 max_blk_seq = blk_seq; 328 blk_count++; 329 330 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 331 break; 332 333 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 334 if (error) 335 break; 336 337 for (lrp = lrbuf; lrp < end; lrp += reclen) { 338 lr_t *lr = (lr_t *)lrp; 339 reclen = lr->lrc_reclen; 340 ASSERT3U(reclen, >=, sizeof (lr_t)); 341 if (lr->lrc_seq > claim_lr_seq) 342 goto done; 343 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 344 goto done; 345 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 346 max_lr_seq = lr->lrc_seq; 347 lr_count++; 348 } 349 } 350 done: 351 zilog->zl_parse_error = error; 352 zilog->zl_parse_blk_seq = max_blk_seq; 353 zilog->zl_parse_lr_seq = max_lr_seq; 354 zilog->zl_parse_blk_count = blk_count; 355 zilog->zl_parse_lr_count = lr_count; 356 357 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 358 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 359 360 zil_bp_tree_fini(zilog); 361 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 362 363 return (error); 364 } 365 366 static int 367 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 368 { 369 /* 370 * Claim log block if not already committed and not already claimed. 371 * If tx == NULL, just verify that the block is claimable. 372 */ 373 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 374 return (0); 375 376 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 377 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 379 } 380 381 static int 382 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 383 { 384 lr_write_t *lr = (lr_write_t *)lrc; 385 int error; 386 387 if (lrc->lrc_txtype != TX_WRITE) 388 return (0); 389 390 /* 391 * If the block is not readable, don't claim it. This can happen 392 * in normal operation when a log block is written to disk before 393 * some of the dmu_sync() blocks it points to. In this case, the 394 * transaction cannot have been committed to anyone (we would have 395 * waited for all writes to be stable first), so it is semantically 396 * correct to declare this the end of the log. 397 */ 398 if (lr->lr_blkptr.blk_birth >= first_txg && 399 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 400 return (error); 401 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 402 } 403 404 /* ARGSUSED */ 405 static int 406 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 407 { 408 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 409 410 return (0); 411 } 412 413 static int 414 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 415 { 416 lr_write_t *lr = (lr_write_t *)lrc; 417 blkptr_t *bp = &lr->lr_blkptr; 418 419 /* 420 * If we previously claimed it, we need to free it. 421 */ 422 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 423 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 424 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 425 426 return (0); 427 } 428 429 static lwb_t * 430 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 431 { 432 lwb_t *lwb; 433 434 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 435 lwb->lwb_zilog = zilog; 436 lwb->lwb_blk = *bp; 437 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 438 lwb->lwb_max_txg = txg; 439 lwb->lwb_zio = NULL; 440 lwb->lwb_tx = NULL; 441 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 442 lwb->lwb_nused = sizeof (zil_chain_t); 443 lwb->lwb_sz = BP_GET_LSIZE(bp); 444 } else { 445 lwb->lwb_nused = 0; 446 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 447 } 448 449 mutex_enter(&zilog->zl_lock); 450 list_insert_tail(&zilog->zl_lwb_list, lwb); 451 mutex_exit(&zilog->zl_lock); 452 453 return (lwb); 454 } 455 456 /* 457 * Create an on-disk intent log. 458 */ 459 static lwb_t * 460 zil_create(zilog_t *zilog) 461 { 462 const zil_header_t *zh = zilog->zl_header; 463 lwb_t *lwb = NULL; 464 uint64_t txg = 0; 465 dmu_tx_t *tx = NULL; 466 blkptr_t blk; 467 int error = 0; 468 469 /* 470 * Wait for any previous destroy to complete. 471 */ 472 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 473 474 ASSERT(zh->zh_claim_txg == 0); 475 ASSERT(zh->zh_replay_seq == 0); 476 477 blk = zh->zh_log; 478 479 /* 480 * Allocate an initial log block if: 481 * - there isn't one already 482 * - the existing block is the wrong endianess 483 */ 484 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 485 tx = dmu_tx_create(zilog->zl_os); 486 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 487 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 488 txg = dmu_tx_get_txg(tx); 489 490 if (!BP_IS_HOLE(&blk)) { 491 zio_free_zil(zilog->zl_spa, txg, &blk); 492 BP_ZERO(&blk); 493 } 494 495 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 496 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 497 498 if (error == 0) 499 zil_init_log_chain(zilog, &blk); 500 } 501 502 /* 503 * Allocate a log write buffer (lwb) for the first log block. 504 */ 505 if (error == 0) 506 lwb = zil_alloc_lwb(zilog, &blk, txg); 507 508 /* 509 * If we just allocated the first log block, commit our transaction 510 * and wait for zil_sync() to stuff the block poiner into zh_log. 511 * (zh is part of the MOS, so we cannot modify it in open context.) 512 */ 513 if (tx != NULL) { 514 dmu_tx_commit(tx); 515 txg_wait_synced(zilog->zl_dmu_pool, txg); 516 } 517 518 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 519 520 return (lwb); 521 } 522 523 /* 524 * In one tx, free all log blocks and clear the log header. 525 * If keep_first is set, then we're replaying a log with no content. 526 * We want to keep the first block, however, so that the first 527 * synchronous transaction doesn't require a txg_wait_synced() 528 * in zil_create(). We don't need to txg_wait_synced() here either 529 * when keep_first is set, because both zil_create() and zil_destroy() 530 * will wait for any in-progress destroys to complete. 531 */ 532 void 533 zil_destroy(zilog_t *zilog, boolean_t keep_first) 534 { 535 const zil_header_t *zh = zilog->zl_header; 536 lwb_t *lwb; 537 dmu_tx_t *tx; 538 uint64_t txg; 539 540 /* 541 * Wait for any previous destroy to complete. 542 */ 543 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 544 545 zilog->zl_old_header = *zh; /* debugging aid */ 546 547 if (BP_IS_HOLE(&zh->zh_log)) 548 return; 549 550 tx = dmu_tx_create(zilog->zl_os); 551 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 552 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 553 txg = dmu_tx_get_txg(tx); 554 555 mutex_enter(&zilog->zl_lock); 556 557 ASSERT3U(zilog->zl_destroy_txg, <, txg); 558 zilog->zl_destroy_txg = txg; 559 zilog->zl_keep_first = keep_first; 560 561 if (!list_is_empty(&zilog->zl_lwb_list)) { 562 ASSERT(zh->zh_claim_txg == 0); 563 ASSERT(!keep_first); 564 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 565 list_remove(&zilog->zl_lwb_list, lwb); 566 if (lwb->lwb_buf != NULL) 567 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 568 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 569 kmem_cache_free(zil_lwb_cache, lwb); 570 } 571 } else if (!keep_first) { 572 (void) zil_parse(zilog, zil_free_log_block, 573 zil_free_log_record, tx, zh->zh_claim_txg); 574 } 575 mutex_exit(&zilog->zl_lock); 576 577 dmu_tx_commit(tx); 578 } 579 580 int 581 zil_claim(const char *osname, void *txarg) 582 { 583 dmu_tx_t *tx = txarg; 584 uint64_t first_txg = dmu_tx_get_txg(tx); 585 zilog_t *zilog; 586 zil_header_t *zh; 587 objset_t *os; 588 int error; 589 590 error = dmu_objset_hold(osname, FTAG, &os); 591 if (error) { 592 cmn_err(CE_WARN, "can't open objset for %s", osname); 593 return (0); 594 } 595 596 zilog = dmu_objset_zil(os); 597 zh = zil_header_in_syncing_context(zilog); 598 599 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 600 if (!BP_IS_HOLE(&zh->zh_log)) 601 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 602 BP_ZERO(&zh->zh_log); 603 dsl_dataset_dirty(dmu_objset_ds(os), tx); 604 dmu_objset_rele(os, FTAG); 605 return (0); 606 } 607 608 /* 609 * Claim all log blocks if we haven't already done so, and remember 610 * the highest claimed sequence number. This ensures that if we can 611 * read only part of the log now (e.g. due to a missing device), 612 * but we can read the entire log later, we will not try to replay 613 * or destroy beyond the last block we successfully claimed. 614 */ 615 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 616 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 617 (void) zil_parse(zilog, zil_claim_log_block, 618 zil_claim_log_record, tx, first_txg); 619 zh->zh_claim_txg = first_txg; 620 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 621 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 622 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 623 zh->zh_flags |= ZIL_REPLAY_NEEDED; 624 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 625 dsl_dataset_dirty(dmu_objset_ds(os), tx); 626 } 627 628 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 629 dmu_objset_rele(os, FTAG); 630 return (0); 631 } 632 633 /* 634 * Check the log by walking the log chain. 635 * Checksum errors are ok as they indicate the end of the chain. 636 * Any other error (no device or read failure) returns an error. 637 */ 638 int 639 zil_check_log_chain(const char *osname, void *tx) 640 { 641 zilog_t *zilog; 642 objset_t *os; 643 int error; 644 645 ASSERT(tx == NULL); 646 647 error = dmu_objset_hold(osname, FTAG, &os); 648 if (error) { 649 cmn_err(CE_WARN, "can't open objset for %s", osname); 650 return (0); 651 } 652 653 zilog = dmu_objset_zil(os); 654 655 /* 656 * Because tx == NULL, zil_claim_log_block() will not actually claim 657 * any blocks, but just determine whether it is possible to do so. 658 * In addition to checking the log chain, zil_claim_log_block() 659 * will invoke zio_claim() with a done func of spa_claim_notify(), 660 * which will update spa_max_claim_txg. See spa_load() for details. 661 */ 662 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 663 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 664 665 dmu_objset_rele(os, FTAG); 666 667 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 668 } 669 670 static int 671 zil_vdev_compare(const void *x1, const void *x2) 672 { 673 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 674 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 675 676 if (v1 < v2) 677 return (-1); 678 if (v1 > v2) 679 return (1); 680 681 return (0); 682 } 683 684 void 685 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 686 { 687 avl_tree_t *t = &zilog->zl_vdev_tree; 688 avl_index_t where; 689 zil_vdev_node_t *zv, zvsearch; 690 int ndvas = BP_GET_NDVAS(bp); 691 int i; 692 693 if (zfs_nocacheflush) 694 return; 695 696 ASSERT(zilog->zl_writer); 697 698 /* 699 * Even though we're zl_writer, we still need a lock because the 700 * zl_get_data() callbacks may have dmu_sync() done callbacks 701 * that will run concurrently. 702 */ 703 mutex_enter(&zilog->zl_vdev_lock); 704 for (i = 0; i < ndvas; i++) { 705 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 706 if (avl_find(t, &zvsearch, &where) == NULL) { 707 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 708 zv->zv_vdev = zvsearch.zv_vdev; 709 avl_insert(t, zv, where); 710 } 711 } 712 mutex_exit(&zilog->zl_vdev_lock); 713 } 714 715 static void 716 zil_flush_vdevs(zilog_t *zilog) 717 { 718 spa_t *spa = zilog->zl_spa; 719 avl_tree_t *t = &zilog->zl_vdev_tree; 720 void *cookie = NULL; 721 zil_vdev_node_t *zv; 722 zio_t *zio; 723 724 ASSERT(zilog->zl_writer); 725 726 /* 727 * We don't need zl_vdev_lock here because we're the zl_writer, 728 * and all zl_get_data() callbacks are done. 729 */ 730 if (avl_numnodes(t) == 0) 731 return; 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 735 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 736 737 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 738 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 739 if (vd != NULL) 740 zio_flush(zio, vd); 741 kmem_free(zv, sizeof (*zv)); 742 } 743 744 /* 745 * Wait for all the flushes to complete. Not all devices actually 746 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 747 */ 748 (void) zio_wait(zio); 749 750 spa_config_exit(spa, SCL_STATE, FTAG); 751 } 752 753 /* 754 * Function called when a log block write completes 755 */ 756 static void 757 zil_lwb_write_done(zio_t *zio) 758 { 759 lwb_t *lwb = zio->io_private; 760 zilog_t *zilog = lwb->lwb_zilog; 761 dmu_tx_t *tx = lwb->lwb_tx; 762 763 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 764 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 765 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 766 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 767 ASSERT(!BP_IS_GANG(zio->io_bp)); 768 ASSERT(!BP_IS_HOLE(zio->io_bp)); 769 ASSERT(zio->io_bp->blk_fill == 0); 770 771 /* 772 * Ensure the lwb buffer pointer is cleared before releasing 773 * the txg. If we have had an allocation failure and 774 * the txg is waiting to sync then we want want zil_sync() 775 * to remove the lwb so that it's not picked up as the next new 776 * one in zil_commit_writer(). zil_sync() will only remove 777 * the lwb if lwb_buf is null. 778 */ 779 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 780 mutex_enter(&zilog->zl_lock); 781 lwb->lwb_buf = NULL; 782 lwb->lwb_tx = NULL; 783 mutex_exit(&zilog->zl_lock); 784 785 /* 786 * Now that we've written this log block, we have a stable pointer 787 * to the next block in the chain, so it's OK to let the txg in 788 * which we allocated the next block sync. 789 */ 790 dmu_tx_commit(tx); 791 } 792 793 /* 794 * Initialize the io for a log block. 795 */ 796 static void 797 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 798 { 799 zbookmark_t zb; 800 801 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 802 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 803 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 804 805 if (zilog->zl_root_zio == NULL) { 806 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 807 ZIO_FLAG_CANFAIL); 808 } 809 if (lwb->lwb_zio == NULL) { 810 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 811 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 812 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 813 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 814 } 815 } 816 817 /* 818 * Define a limited set of intent log block sizes. 819 * These must be a multiple of 4KB. Note only the amount used (again 820 * aligned to 4KB) actually gets written. However, we can't always just 821 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 822 */ 823 uint64_t zil_block_buckets[] = { 824 4096, /* non TX_WRITE */ 825 8192+4096, /* data base */ 826 32*1024 + 4096, /* NFS writes */ 827 UINT64_MAX 828 }; 829 830 /* 831 * Use the slog as long as the logbias is 'latency' and the current commit size 832 * is less than the limit or the total list size is less than 2X the limit. 833 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 834 */ 835 uint64_t zil_slog_limit = 1024 * 1024; 836 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 837 (((zilog)->zl_cur_used < zil_slog_limit) || \ 838 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 839 840 /* 841 * Start a log block write and advance to the next log block. 842 * Calls are serialized. 843 */ 844 static lwb_t * 845 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 846 { 847 lwb_t *nlwb = NULL; 848 zil_chain_t *zilc; 849 spa_t *spa = zilog->zl_spa; 850 blkptr_t *bp; 851 dmu_tx_t *tx; 852 uint64_t txg; 853 uint64_t zil_blksz, wsz; 854 int i, error; 855 856 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 857 zilc = (zil_chain_t *)lwb->lwb_buf; 858 bp = &zilc->zc_next_blk; 859 } else { 860 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 861 bp = &zilc->zc_next_blk; 862 } 863 864 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 865 866 /* 867 * Allocate the next block and save its address in this block 868 * before writing it in order to establish the log chain. 869 * Note that if the allocation of nlwb synced before we wrote 870 * the block that points at it (lwb), we'd leak it if we crashed. 871 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 872 * We dirty the dataset to ensure that zil_sync() will be called 873 * to clean up in the event of allocation failure or I/O failure. 874 */ 875 tx = dmu_tx_create(zilog->zl_os); 876 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 877 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 878 txg = dmu_tx_get_txg(tx); 879 880 lwb->lwb_tx = tx; 881 882 /* 883 * Log blocks are pre-allocated. Here we select the size of the next 884 * block, based on size used in the last block. 885 * - first find the smallest bucket that will fit the block from a 886 * limited set of block sizes. This is because it's faster to write 887 * blocks allocated from the same metaslab as they are adjacent or 888 * close. 889 * - next find the maximum from the new suggested size and an array of 890 * previous sizes. This lessens a picket fence effect of wrongly 891 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 892 * requests. 893 * 894 * Note we only write what is used, but we can't just allocate 895 * the maximum block size because we can exhaust the available 896 * pool log space. 897 */ 898 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 899 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 900 continue; 901 zil_blksz = zil_block_buckets[i]; 902 if (zil_blksz == UINT64_MAX) 903 zil_blksz = SPA_MAXBLOCKSIZE; 904 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 905 for (i = 0; i < ZIL_PREV_BLKS; i++) 906 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 907 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 908 909 BP_ZERO(bp); 910 /* pass the old blkptr in order to spread log blocks across devs */ 911 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 912 USE_SLOG(zilog)); 913 if (!error) { 914 ASSERT3U(bp->blk_birth, ==, txg); 915 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 916 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 917 918 /* 919 * Allocate a new log write buffer (lwb). 920 */ 921 nlwb = zil_alloc_lwb(zilog, bp, txg); 922 923 /* Record the block for later vdev flushing */ 924 zil_add_block(zilog, &lwb->lwb_blk); 925 } 926 927 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 928 /* For Slim ZIL only write what is used. */ 929 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 930 ASSERT3U(wsz, <=, lwb->lwb_sz); 931 zio_shrink(lwb->lwb_zio, wsz); 932 933 } else { 934 wsz = lwb->lwb_sz; 935 } 936 937 zilc->zc_pad = 0; 938 zilc->zc_nused = lwb->lwb_nused; 939 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 940 941 /* 942 * clear unused data for security 943 */ 944 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 945 946 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 947 948 /* 949 * If there was an allocation failure then nlwb will be null which 950 * forces a txg_wait_synced(). 951 */ 952 return (nlwb); 953 } 954 955 static lwb_t * 956 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 957 { 958 lr_t *lrc = &itx->itx_lr; /* common log record */ 959 lr_write_t *lrw = (lr_write_t *)lrc; 960 char *lr_buf; 961 uint64_t txg = lrc->lrc_txg; 962 uint64_t reclen = lrc->lrc_reclen; 963 uint64_t dlen = 0; 964 965 if (lwb == NULL) 966 return (NULL); 967 968 ASSERT(lwb->lwb_buf != NULL); 969 970 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 971 dlen = P2ROUNDUP_TYPED( 972 lrw->lr_length, sizeof (uint64_t), uint64_t); 973 974 zilog->zl_cur_used += (reclen + dlen); 975 976 zil_lwb_write_init(zilog, lwb); 977 978 /* 979 * If this record won't fit in the current log block, start a new one. 980 */ 981 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 982 lwb = zil_lwb_write_start(zilog, lwb); 983 if (lwb == NULL) 984 return (NULL); 985 zil_lwb_write_init(zilog, lwb); 986 ASSERT(LWB_EMPTY(lwb)); 987 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 988 txg_wait_synced(zilog->zl_dmu_pool, txg); 989 return (lwb); 990 } 991 } 992 993 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 994 bcopy(lrc, lr_buf, reclen); 995 lrc = (lr_t *)lr_buf; 996 lrw = (lr_write_t *)lrc; 997 998 /* 999 * If it's a write, fetch the data or get its blkptr as appropriate. 1000 */ 1001 if (lrc->lrc_txtype == TX_WRITE) { 1002 if (txg > spa_freeze_txg(zilog->zl_spa)) 1003 txg_wait_synced(zilog->zl_dmu_pool, txg); 1004 if (itx->itx_wr_state != WR_COPIED) { 1005 char *dbuf; 1006 int error; 1007 1008 if (dlen) { 1009 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1010 dbuf = lr_buf + reclen; 1011 lrw->lr_common.lrc_reclen += dlen; 1012 } else { 1013 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1014 dbuf = NULL; 1015 } 1016 error = zilog->zl_get_data( 1017 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1018 if (error == EIO) { 1019 txg_wait_synced(zilog->zl_dmu_pool, txg); 1020 return (lwb); 1021 } 1022 if (error) { 1023 ASSERT(error == ENOENT || error == EEXIST || 1024 error == EALREADY); 1025 return (lwb); 1026 } 1027 } 1028 } 1029 1030 /* 1031 * We're actually making an entry, so update lrc_seq to be the 1032 * log record sequence number. Note that this is generally not 1033 * equal to the itx sequence number because not all transactions 1034 * are synchronous, and sometimes spa_sync() gets there first. 1035 */ 1036 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1037 lwb->lwb_nused += reclen + dlen; 1038 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1039 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1040 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 1041 1042 return (lwb); 1043 } 1044 1045 itx_t * 1046 zil_itx_create(uint64_t txtype, size_t lrsize) 1047 { 1048 itx_t *itx; 1049 1050 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1051 1052 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1053 itx->itx_lr.lrc_txtype = txtype; 1054 itx->itx_lr.lrc_reclen = lrsize; 1055 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1056 itx->itx_lr.lrc_seq = 0; /* defensive */ 1057 itx->itx_sync = B_TRUE; /* default is synchronous */ 1058 1059 return (itx); 1060 } 1061 1062 void 1063 zil_itx_destroy(itx_t *itx) 1064 { 1065 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1066 } 1067 1068 /* 1069 * Free up the sync and async itxs. The itxs_t has already been detached 1070 * so no locks are needed. 1071 */ 1072 static void 1073 zil_itxg_clean(itxs_t *itxs) 1074 { 1075 itx_t *itx; 1076 list_t *list; 1077 avl_tree_t *t; 1078 void *cookie; 1079 itx_async_node_t *ian; 1080 1081 list = &itxs->i_sync_list; 1082 while ((itx = list_head(list)) != NULL) { 1083 list_remove(list, itx); 1084 kmem_free(itx, offsetof(itx_t, itx_lr) + 1085 itx->itx_lr.lrc_reclen); 1086 } 1087 1088 cookie = NULL; 1089 t = &itxs->i_async_tree; 1090 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1091 list = &ian->ia_list; 1092 while ((itx = list_head(list)) != NULL) { 1093 list_remove(list, itx); 1094 kmem_free(itx, offsetof(itx_t, itx_lr) + 1095 itx->itx_lr.lrc_reclen); 1096 } 1097 list_destroy(list); 1098 kmem_free(ian, sizeof (itx_async_node_t)); 1099 } 1100 avl_destroy(t); 1101 1102 kmem_free(itxs, sizeof (itxs_t)); 1103 } 1104 1105 static int 1106 zil_aitx_compare(const void *x1, const void *x2) 1107 { 1108 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1109 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1110 1111 if (o1 < o2) 1112 return (-1); 1113 if (o1 > o2) 1114 return (1); 1115 1116 return (0); 1117 } 1118 1119 /* 1120 * Remove all async itx with the given oid. 1121 */ 1122 static void 1123 zil_remove_async(zilog_t *zilog, uint64_t oid) 1124 { 1125 uint64_t otxg, txg; 1126 itx_async_node_t *ian; 1127 avl_tree_t *t; 1128 avl_index_t where; 1129 list_t clean_list; 1130 itx_t *itx; 1131 1132 ASSERT(oid != 0); 1133 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1134 1135 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1136 otxg = ZILTEST_TXG; 1137 else 1138 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1139 1140 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1141 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1142 1143 mutex_enter(&itxg->itxg_lock); 1144 if (itxg->itxg_txg != txg) { 1145 mutex_exit(&itxg->itxg_lock); 1146 continue; 1147 } 1148 1149 /* 1150 * Locate the object node and append its list. 1151 */ 1152 t = &itxg->itxg_itxs->i_async_tree; 1153 ian = avl_find(t, &oid, &where); 1154 if (ian != NULL) 1155 list_move_tail(&clean_list, &ian->ia_list); 1156 mutex_exit(&itxg->itxg_lock); 1157 } 1158 while ((itx = list_head(&clean_list)) != NULL) { 1159 list_remove(&clean_list, itx); 1160 kmem_free(itx, offsetof(itx_t, itx_lr) + 1161 itx->itx_lr.lrc_reclen); 1162 } 1163 list_destroy(&clean_list); 1164 } 1165 1166 void 1167 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1168 { 1169 uint64_t txg; 1170 itxg_t *itxg; 1171 itxs_t *itxs, *clean = NULL; 1172 1173 /* 1174 * Object ids can be re-instantiated in the next txg so 1175 * remove any async transactions to avoid future leaks. 1176 * This can happen if a fsync occurs on the re-instantiated 1177 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1178 * the new file data and flushes a write record for the old object. 1179 */ 1180 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1181 zil_remove_async(zilog, itx->itx_oid); 1182 1183 /* 1184 * Ensure the data of a renamed file is committed before the rename. 1185 */ 1186 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1187 zil_async_to_sync(zilog, itx->itx_oid); 1188 1189 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1190 txg = ZILTEST_TXG; 1191 else 1192 txg = dmu_tx_get_txg(tx); 1193 1194 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1195 mutex_enter(&itxg->itxg_lock); 1196 itxs = itxg->itxg_itxs; 1197 if (itxg->itxg_txg != txg) { 1198 if (itxs != NULL) { 1199 /* 1200 * The zil_clean callback hasn't got around to cleaning 1201 * this itxg. Save the itxs for release below. 1202 * This should be rare. 1203 */ 1204 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1205 itxg->itxg_sod = 0; 1206 clean = itxg->itxg_itxs; 1207 } 1208 ASSERT(itxg->itxg_sod == 0); 1209 itxg->itxg_txg = txg; 1210 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1211 1212 list_create(&itxs->i_sync_list, sizeof (itx_t), 1213 offsetof(itx_t, itx_node)); 1214 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1215 sizeof (itx_async_node_t), 1216 offsetof(itx_async_node_t, ia_node)); 1217 } 1218 if (itx->itx_sync) { 1219 list_insert_tail(&itxs->i_sync_list, itx); 1220 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1221 itxg->itxg_sod += itx->itx_sod; 1222 } else { 1223 avl_tree_t *t = &itxs->i_async_tree; 1224 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1225 itx_async_node_t *ian; 1226 avl_index_t where; 1227 1228 ian = avl_find(t, &foid, &where); 1229 if (ian == NULL) { 1230 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1231 list_create(&ian->ia_list, sizeof (itx_t), 1232 offsetof(itx_t, itx_node)); 1233 ian->ia_foid = foid; 1234 avl_insert(t, ian, where); 1235 } 1236 list_insert_tail(&ian->ia_list, itx); 1237 } 1238 1239 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1240 mutex_exit(&itxg->itxg_lock); 1241 1242 /* Release the old itxs now we've dropped the lock */ 1243 if (clean != NULL) 1244 zil_itxg_clean(clean); 1245 } 1246 1247 /* 1248 * If there are any in-memory intent log transactions which have now been 1249 * synced then start up a taskq to free them. 1250 */ 1251 void 1252 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1253 { 1254 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1255 itxs_t *clean_me; 1256 1257 mutex_enter(&itxg->itxg_lock); 1258 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1259 mutex_exit(&itxg->itxg_lock); 1260 return; 1261 } 1262 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1263 ASSERT(itxg->itxg_txg != 0); 1264 ASSERT(zilog->zl_clean_taskq != NULL); 1265 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1266 itxg->itxg_sod = 0; 1267 clean_me = itxg->itxg_itxs; 1268 itxg->itxg_itxs = NULL; 1269 itxg->itxg_txg = 0; 1270 mutex_exit(&itxg->itxg_lock); 1271 /* 1272 * Preferably start a task queue to free up the old itxs but 1273 * if taskq_dispatch can't allocate resources to do that then 1274 * free it in-line. This should be rare. Note, using TQ_SLEEP 1275 * created a bad performance problem. 1276 */ 1277 if (taskq_dispatch(zilog->zl_clean_taskq, 1278 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1279 zil_itxg_clean(clean_me); 1280 } 1281 1282 /* 1283 * Get the list of itxs to commit into zl_itx_commit_list. 1284 */ 1285 static void 1286 zil_get_commit_list(zilog_t *zilog) 1287 { 1288 uint64_t otxg, txg; 1289 list_t *commit_list = &zilog->zl_itx_commit_list; 1290 uint64_t push_sod = 0; 1291 1292 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1293 otxg = ZILTEST_TXG; 1294 else 1295 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1296 1297 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1298 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1299 1300 mutex_enter(&itxg->itxg_lock); 1301 if (itxg->itxg_txg != txg) { 1302 mutex_exit(&itxg->itxg_lock); 1303 continue; 1304 } 1305 1306 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1307 push_sod += itxg->itxg_sod; 1308 itxg->itxg_sod = 0; 1309 1310 mutex_exit(&itxg->itxg_lock); 1311 } 1312 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1313 } 1314 1315 /* 1316 * Move the async itxs for a specified object to commit into sync lists. 1317 */ 1318 static void 1319 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1320 { 1321 uint64_t otxg, txg; 1322 itx_async_node_t *ian; 1323 avl_tree_t *t; 1324 avl_index_t where; 1325 1326 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1327 otxg = ZILTEST_TXG; 1328 else 1329 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1330 1331 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1332 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1333 1334 mutex_enter(&itxg->itxg_lock); 1335 if (itxg->itxg_txg != txg) { 1336 mutex_exit(&itxg->itxg_lock); 1337 continue; 1338 } 1339 1340 /* 1341 * If a foid is specified then find that node and append its 1342 * list. Otherwise walk the tree appending all the lists 1343 * to the sync list. We add to the end rather than the 1344 * beginning to ensure the create has happened. 1345 */ 1346 t = &itxg->itxg_itxs->i_async_tree; 1347 if (foid != 0) { 1348 ian = avl_find(t, &foid, &where); 1349 if (ian != NULL) { 1350 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1351 &ian->ia_list); 1352 } 1353 } else { 1354 void *cookie = NULL; 1355 1356 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1357 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1358 &ian->ia_list); 1359 list_destroy(&ian->ia_list); 1360 kmem_free(ian, sizeof (itx_async_node_t)); 1361 } 1362 } 1363 mutex_exit(&itxg->itxg_lock); 1364 } 1365 } 1366 1367 static void 1368 zil_commit_writer(zilog_t *zilog) 1369 { 1370 uint64_t txg; 1371 itx_t *itx; 1372 lwb_t *lwb; 1373 spa_t *spa = zilog->zl_spa; 1374 int error = 0; 1375 1376 ASSERT(zilog->zl_root_zio == NULL); 1377 1378 mutex_exit(&zilog->zl_lock); 1379 1380 zil_get_commit_list(zilog); 1381 1382 /* 1383 * Return if there's nothing to commit before we dirty the fs by 1384 * calling zil_create(). 1385 */ 1386 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1387 mutex_enter(&zilog->zl_lock); 1388 return; 1389 } 1390 1391 if (zilog->zl_suspend) { 1392 lwb = NULL; 1393 } else { 1394 lwb = list_tail(&zilog->zl_lwb_list); 1395 if (lwb == NULL) 1396 lwb = zil_create(zilog); 1397 } 1398 1399 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1400 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1401 txg = itx->itx_lr.lrc_txg; 1402 ASSERT(txg); 1403 1404 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1405 lwb = zil_lwb_commit(zilog, itx, lwb); 1406 list_remove(&zilog->zl_itx_commit_list, itx); 1407 kmem_free(itx, offsetof(itx_t, itx_lr) 1408 + itx->itx_lr.lrc_reclen); 1409 } 1410 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1411 1412 /* write the last block out */ 1413 if (lwb != NULL && lwb->lwb_zio != NULL) 1414 lwb = zil_lwb_write_start(zilog, lwb); 1415 1416 zilog->zl_cur_used = 0; 1417 1418 /* 1419 * Wait if necessary for the log blocks to be on stable storage. 1420 */ 1421 if (zilog->zl_root_zio) { 1422 error = zio_wait(zilog->zl_root_zio); 1423 zilog->zl_root_zio = NULL; 1424 zil_flush_vdevs(zilog); 1425 } 1426 1427 if (error || lwb == NULL) 1428 txg_wait_synced(zilog->zl_dmu_pool, 0); 1429 1430 mutex_enter(&zilog->zl_lock); 1431 1432 /* 1433 * Remember the highest committed log sequence number for ztest. 1434 * We only update this value when all the log writes succeeded, 1435 * because ztest wants to ASSERT that it got the whole log chain. 1436 */ 1437 if (error == 0 && lwb != NULL) 1438 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1439 } 1440 1441 /* 1442 * Commit zfs transactions to stable storage. 1443 * If foid is 0 push out all transactions, otherwise push only those 1444 * for that object or might reference that object. 1445 * 1446 * itxs are committed in batches. In a heavily stressed zil there will be 1447 * a commit writer thread who is writing out a bunch of itxs to the log 1448 * for a set of committing threads (cthreads) in the same batch as the writer. 1449 * Those cthreads are all waiting on the same cv for that batch. 1450 * 1451 * There will also be a different and growing batch of threads that are 1452 * waiting to commit (qthreads). When the committing batch completes 1453 * a transition occurs such that the cthreads exit and the qthreads become 1454 * cthreads. One of the new cthreads becomes the writer thread for the 1455 * batch. Any new threads arriving become new qthreads. 1456 * 1457 * Only 2 condition variables are needed and there's no transition 1458 * between the two cvs needed. They just flip-flop between qthreads 1459 * and cthreads. 1460 * 1461 * Using this scheme we can efficiently wakeup up only those threads 1462 * that have been committed. 1463 */ 1464 void 1465 zil_commit(zilog_t *zilog, uint64_t foid) 1466 { 1467 uint64_t mybatch; 1468 1469 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1470 return; 1471 1472 /* move the async itxs for the foid to the sync queues */ 1473 zil_async_to_sync(zilog, foid); 1474 1475 mutex_enter(&zilog->zl_lock); 1476 mybatch = zilog->zl_next_batch; 1477 while (zilog->zl_writer) { 1478 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1479 if (mybatch <= zilog->zl_com_batch) { 1480 mutex_exit(&zilog->zl_lock); 1481 return; 1482 } 1483 } 1484 1485 zilog->zl_next_batch++; 1486 zilog->zl_writer = B_TRUE; 1487 zil_commit_writer(zilog); 1488 zilog->zl_com_batch = mybatch; 1489 zilog->zl_writer = B_FALSE; 1490 mutex_exit(&zilog->zl_lock); 1491 1492 /* wake up one thread to become the next writer */ 1493 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1494 1495 /* wake up all threads waiting for this batch to be committed */ 1496 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1497 } 1498 1499 /* 1500 * Called in syncing context to free committed log blocks and update log header. 1501 */ 1502 void 1503 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1504 { 1505 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1506 uint64_t txg = dmu_tx_get_txg(tx); 1507 spa_t *spa = zilog->zl_spa; 1508 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1509 lwb_t *lwb; 1510 1511 /* 1512 * We don't zero out zl_destroy_txg, so make sure we don't try 1513 * to destroy it twice. 1514 */ 1515 if (spa_sync_pass(spa) != 1) 1516 return; 1517 1518 mutex_enter(&zilog->zl_lock); 1519 1520 ASSERT(zilog->zl_stop_sync == 0); 1521 1522 if (*replayed_seq != 0) { 1523 ASSERT(zh->zh_replay_seq < *replayed_seq); 1524 zh->zh_replay_seq = *replayed_seq; 1525 *replayed_seq = 0; 1526 } 1527 1528 if (zilog->zl_destroy_txg == txg) { 1529 blkptr_t blk = zh->zh_log; 1530 1531 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1532 1533 bzero(zh, sizeof (zil_header_t)); 1534 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1535 1536 if (zilog->zl_keep_first) { 1537 /* 1538 * If this block was part of log chain that couldn't 1539 * be claimed because a device was missing during 1540 * zil_claim(), but that device later returns, 1541 * then this block could erroneously appear valid. 1542 * To guard against this, assign a new GUID to the new 1543 * log chain so it doesn't matter what blk points to. 1544 */ 1545 zil_init_log_chain(zilog, &blk); 1546 zh->zh_log = blk; 1547 } 1548 } 1549 1550 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1551 zh->zh_log = lwb->lwb_blk; 1552 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1553 break; 1554 list_remove(&zilog->zl_lwb_list, lwb); 1555 zio_free_zil(spa, txg, &lwb->lwb_blk); 1556 kmem_cache_free(zil_lwb_cache, lwb); 1557 1558 /* 1559 * If we don't have anything left in the lwb list then 1560 * we've had an allocation failure and we need to zero 1561 * out the zil_header blkptr so that we don't end 1562 * up freeing the same block twice. 1563 */ 1564 if (list_head(&zilog->zl_lwb_list) == NULL) 1565 BP_ZERO(&zh->zh_log); 1566 } 1567 mutex_exit(&zilog->zl_lock); 1568 } 1569 1570 void 1571 zil_init(void) 1572 { 1573 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1574 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1575 } 1576 1577 void 1578 zil_fini(void) 1579 { 1580 kmem_cache_destroy(zil_lwb_cache); 1581 } 1582 1583 void 1584 zil_set_sync(zilog_t *zilog, uint64_t sync) 1585 { 1586 zilog->zl_sync = sync; 1587 } 1588 1589 void 1590 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1591 { 1592 zilog->zl_logbias = logbias; 1593 } 1594 1595 zilog_t * 1596 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1597 { 1598 zilog_t *zilog; 1599 1600 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1601 1602 zilog->zl_header = zh_phys; 1603 zilog->zl_os = os; 1604 zilog->zl_spa = dmu_objset_spa(os); 1605 zilog->zl_dmu_pool = dmu_objset_pool(os); 1606 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1607 zilog->zl_logbias = dmu_objset_logbias(os); 1608 zilog->zl_sync = dmu_objset_syncprop(os); 1609 zilog->zl_next_batch = 1; 1610 1611 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1612 1613 for (int i = 0; i < TXG_SIZE; i++) { 1614 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1615 MUTEX_DEFAULT, NULL); 1616 } 1617 1618 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1619 offsetof(lwb_t, lwb_node)); 1620 1621 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1622 offsetof(itx_t, itx_node)); 1623 1624 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1625 1626 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1627 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1628 1629 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1630 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1631 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1632 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1633 1634 return (zilog); 1635 } 1636 1637 void 1638 zil_free(zilog_t *zilog) 1639 { 1640 lwb_t *head_lwb; 1641 1642 zilog->zl_stop_sync = 1; 1643 1644 /* 1645 * After zil_close() there should only be one lwb with a buffer. 1646 */ 1647 head_lwb = list_head(&zilog->zl_lwb_list); 1648 if (head_lwb) { 1649 ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list)); 1650 list_remove(&zilog->zl_lwb_list, head_lwb); 1651 zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz); 1652 kmem_cache_free(zil_lwb_cache, head_lwb); 1653 } 1654 list_destroy(&zilog->zl_lwb_list); 1655 1656 avl_destroy(&zilog->zl_vdev_tree); 1657 mutex_destroy(&zilog->zl_vdev_lock); 1658 1659 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1660 list_destroy(&zilog->zl_itx_commit_list); 1661 1662 for (int i = 0; i < TXG_SIZE; i++) { 1663 /* 1664 * It's possible for an itx to be generated that doesn't dirty 1665 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1666 * callback to remove the entry. We remove those here. 1667 * 1668 * Also free up the ziltest itxs. 1669 */ 1670 if (zilog->zl_itxg[i].itxg_itxs) 1671 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1672 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1673 } 1674 1675 mutex_destroy(&zilog->zl_lock); 1676 1677 cv_destroy(&zilog->zl_cv_writer); 1678 cv_destroy(&zilog->zl_cv_suspend); 1679 cv_destroy(&zilog->zl_cv_batch[0]); 1680 cv_destroy(&zilog->zl_cv_batch[1]); 1681 1682 kmem_free(zilog, sizeof (zilog_t)); 1683 } 1684 1685 /* 1686 * Open an intent log. 1687 */ 1688 zilog_t * 1689 zil_open(objset_t *os, zil_get_data_t *get_data) 1690 { 1691 zilog_t *zilog = dmu_objset_zil(os); 1692 1693 zilog->zl_get_data = get_data; 1694 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1695 2, 2, TASKQ_PREPOPULATE); 1696 1697 return (zilog); 1698 } 1699 1700 /* 1701 * Close an intent log. 1702 */ 1703 void 1704 zil_close(zilog_t *zilog) 1705 { 1706 lwb_t *tail_lwb; 1707 uint64_t txg = 0; 1708 1709 zil_commit(zilog, 0); /* commit all itx */ 1710 1711 /* 1712 * The lwb_max_txg for the stubby lwb will reflect the last activity 1713 * for the zil. After a txg_wait_synced() on the txg we know all the 1714 * callbacks have occurred that may clean the zil. Only then can we 1715 * destroy the zl_clean_taskq. 1716 */ 1717 mutex_enter(&zilog->zl_lock); 1718 tail_lwb = list_tail(&zilog->zl_lwb_list); 1719 if (tail_lwb != NULL) 1720 txg = tail_lwb->lwb_max_txg; 1721 mutex_exit(&zilog->zl_lock); 1722 if (txg) 1723 txg_wait_synced(zilog->zl_dmu_pool, txg); 1724 1725 taskq_destroy(zilog->zl_clean_taskq); 1726 zilog->zl_clean_taskq = NULL; 1727 zilog->zl_get_data = NULL; 1728 } 1729 1730 /* 1731 * Suspend an intent log. While in suspended mode, we still honor 1732 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1733 * We suspend the log briefly when taking a snapshot so that the snapshot 1734 * contains all the data it's supposed to, and has an empty intent log. 1735 */ 1736 int 1737 zil_suspend(zilog_t *zilog) 1738 { 1739 const zil_header_t *zh = zilog->zl_header; 1740 1741 mutex_enter(&zilog->zl_lock); 1742 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1743 mutex_exit(&zilog->zl_lock); 1744 return (EBUSY); 1745 } 1746 if (zilog->zl_suspend++ != 0) { 1747 /* 1748 * Someone else already began a suspend. 1749 * Just wait for them to finish. 1750 */ 1751 while (zilog->zl_suspending) 1752 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1753 mutex_exit(&zilog->zl_lock); 1754 return (0); 1755 } 1756 zilog->zl_suspending = B_TRUE; 1757 mutex_exit(&zilog->zl_lock); 1758 1759 zil_commit(zilog, 0); 1760 1761 zil_destroy(zilog, B_FALSE); 1762 1763 mutex_enter(&zilog->zl_lock); 1764 zilog->zl_suspending = B_FALSE; 1765 cv_broadcast(&zilog->zl_cv_suspend); 1766 mutex_exit(&zilog->zl_lock); 1767 1768 return (0); 1769 } 1770 1771 void 1772 zil_resume(zilog_t *zilog) 1773 { 1774 mutex_enter(&zilog->zl_lock); 1775 ASSERT(zilog->zl_suspend != 0); 1776 zilog->zl_suspend--; 1777 mutex_exit(&zilog->zl_lock); 1778 } 1779 1780 typedef struct zil_replay_arg { 1781 zil_replay_func_t **zr_replay; 1782 void *zr_arg; 1783 boolean_t zr_byteswap; 1784 char *zr_lr; 1785 } zil_replay_arg_t; 1786 1787 static int 1788 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1789 { 1790 char name[MAXNAMELEN]; 1791 1792 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1793 1794 dmu_objset_name(zilog->zl_os, name); 1795 1796 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1797 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1798 (u_longlong_t)lr->lrc_seq, 1799 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1800 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1801 1802 return (error); 1803 } 1804 1805 static int 1806 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1807 { 1808 zil_replay_arg_t *zr = zra; 1809 const zil_header_t *zh = zilog->zl_header; 1810 uint64_t reclen = lr->lrc_reclen; 1811 uint64_t txtype = lr->lrc_txtype; 1812 int error = 0; 1813 1814 zilog->zl_replaying_seq = lr->lrc_seq; 1815 1816 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1817 return (0); 1818 1819 if (lr->lrc_txg < claim_txg) /* already committed */ 1820 return (0); 1821 1822 /* Strip case-insensitive bit, still present in log record */ 1823 txtype &= ~TX_CI; 1824 1825 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1826 return (zil_replay_error(zilog, lr, EINVAL)); 1827 1828 /* 1829 * If this record type can be logged out of order, the object 1830 * (lr_foid) may no longer exist. That's legitimate, not an error. 1831 */ 1832 if (TX_OOO(txtype)) { 1833 error = dmu_object_info(zilog->zl_os, 1834 ((lr_ooo_t *)lr)->lr_foid, NULL); 1835 if (error == ENOENT || error == EEXIST) 1836 return (0); 1837 } 1838 1839 /* 1840 * Make a copy of the data so we can revise and extend it. 1841 */ 1842 bcopy(lr, zr->zr_lr, reclen); 1843 1844 /* 1845 * If this is a TX_WRITE with a blkptr, suck in the data. 1846 */ 1847 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1848 error = zil_read_log_data(zilog, (lr_write_t *)lr, 1849 zr->zr_lr + reclen); 1850 if (error) 1851 return (zil_replay_error(zilog, lr, error)); 1852 } 1853 1854 /* 1855 * The log block containing this lr may have been byteswapped 1856 * so that we can easily examine common fields like lrc_txtype. 1857 * However, the log is a mix of different record types, and only the 1858 * replay vectors know how to byteswap their records. Therefore, if 1859 * the lr was byteswapped, undo it before invoking the replay vector. 1860 */ 1861 if (zr->zr_byteswap) 1862 byteswap_uint64_array(zr->zr_lr, reclen); 1863 1864 /* 1865 * We must now do two things atomically: replay this log record, 1866 * and update the log header sequence number to reflect the fact that 1867 * we did so. At the end of each replay function the sequence number 1868 * is updated if we are in replay mode. 1869 */ 1870 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 1871 if (error) { 1872 /* 1873 * The DMU's dnode layer doesn't see removes until the txg 1874 * commits, so a subsequent claim can spuriously fail with 1875 * EEXIST. So if we receive any error we try syncing out 1876 * any removes then retry the transaction. Note that we 1877 * specify B_FALSE for byteswap now, so we don't do it twice. 1878 */ 1879 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1880 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 1881 if (error) 1882 return (zil_replay_error(zilog, lr, error)); 1883 } 1884 return (0); 1885 } 1886 1887 /* ARGSUSED */ 1888 static int 1889 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1890 { 1891 zilog->zl_replay_blks++; 1892 1893 return (0); 1894 } 1895 1896 /* 1897 * If this dataset has a non-empty intent log, replay it and destroy it. 1898 */ 1899 void 1900 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1901 { 1902 zilog_t *zilog = dmu_objset_zil(os); 1903 const zil_header_t *zh = zilog->zl_header; 1904 zil_replay_arg_t zr; 1905 1906 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1907 zil_destroy(zilog, B_TRUE); 1908 return; 1909 } 1910 1911 zr.zr_replay = replay_func; 1912 zr.zr_arg = arg; 1913 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1914 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1915 1916 /* 1917 * Wait for in-progress removes to sync before starting replay. 1918 */ 1919 txg_wait_synced(zilog->zl_dmu_pool, 0); 1920 1921 zilog->zl_replay = B_TRUE; 1922 zilog->zl_replay_time = ddi_get_lbolt(); 1923 ASSERT(zilog->zl_replay_blks == 0); 1924 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1925 zh->zh_claim_txg); 1926 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 1927 1928 zil_destroy(zilog, B_FALSE); 1929 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1930 zilog->zl_replay = B_FALSE; 1931 } 1932 1933 boolean_t 1934 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 1935 { 1936 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1937 return (B_TRUE); 1938 1939 if (zilog->zl_replay) { 1940 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1941 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 1942 zilog->zl_replaying_seq; 1943 return (B_TRUE); 1944 } 1945 1946 return (B_FALSE); 1947 } 1948 1949 /* ARGSUSED */ 1950 int 1951 zil_vdev_offline(const char *osname, void *arg) 1952 { 1953 objset_t *os; 1954 zilog_t *zilog; 1955 int error; 1956 1957 error = dmu_objset_hold(osname, FTAG, &os); 1958 if (error) 1959 return (error); 1960 1961 zilog = dmu_objset_zil(os); 1962 if (zil_suspend(zilog) != 0) 1963 error = EEXIST; 1964 else 1965 zil_resume(zilog); 1966 dmu_objset_rele(os, FTAG); 1967 return (error); 1968 } 1969