1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 29 #ifdef _KERNEL 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/mntent.h> 37 #include <sys/mkdev.h> 38 #include <sys/u8_textprep.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/kmem.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/dnode.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/kidmap.h> 59 #endif /* _KERNEL */ 60 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/refcount.h> 64 #include <sys/stat.h> 65 #include <sys/zap.h> 66 #include <sys/zfs_znode.h> 67 #include <sys/sa.h> 68 #include <sys/zfs_sa.h> 69 #include <sys/zfs_stat.h> 70 #include <sys/zfs_events.h> 71 #include <zev/zev.h> 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 /* 77 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 78 * turned on when DEBUG is also defined. 79 */ 80 #ifdef DEBUG 81 #define ZNODE_STATS 82 #endif /* DEBUG */ 83 84 #ifdef ZNODE_STATS 85 #define ZNODE_STAT_ADD(stat) ((stat)++) 86 #else 87 #define ZNODE_STAT_ADD(stat) /* nothing */ 88 #endif /* ZNODE_STATS */ 89 90 /* 91 * Functions needed for userland (ie: libzpool) are not put under 92 * #ifdef_KERNEL; the rest of the functions have dependencies 93 * (such as VFS logic) that will not compile easily in userland. 94 */ 95 #ifdef _KERNEL 96 /* 97 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 98 * be freed before it can be safely accessed. 99 */ 100 krwlock_t zfsvfs_lock; 101 102 static kmem_cache_t *znode_cache = NULL; 103 104 /*ARGSUSED*/ 105 static void 106 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 107 { 108 /* 109 * We should never drop all dbuf refs without first clearing 110 * the eviction callback. 111 */ 112 panic("evicting znode %p\n", user_ptr); 113 } 114 115 /*ARGSUSED*/ 116 static int 117 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 118 { 119 znode_t *zp = buf; 120 121 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 122 123 zp->z_vnode = vn_alloc(kmflags); 124 if (zp->z_vnode == NULL) { 125 return (-1); 126 } 127 ZTOV(zp)->v_data = zp; 128 129 list_link_init(&zp->z_link_node); 130 131 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 132 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 133 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 134 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 135 136 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 137 avl_create(&zp->z_range_avl, zfs_range_compare, 138 sizeof (rl_t), offsetof(rl_t, r_node)); 139 140 zp->z_dirlocks = NULL; 141 zp->z_acl_cached = NULL; 142 zp->z_moved = 0; 143 return (0); 144 } 145 146 /*ARGSUSED*/ 147 static void 148 zfs_znode_cache_destructor(void *buf, void *arg) 149 { 150 znode_t *zp = buf; 151 152 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 153 ASSERT(ZTOV(zp)->v_data == zp); 154 vn_free(ZTOV(zp)); 155 ASSERT(!list_link_active(&zp->z_link_node)); 156 mutex_destroy(&zp->z_lock); 157 rw_destroy(&zp->z_parent_lock); 158 rw_destroy(&zp->z_name_lock); 159 mutex_destroy(&zp->z_acl_lock); 160 avl_destroy(&zp->z_range_avl); 161 mutex_destroy(&zp->z_range_lock); 162 163 ASSERT(zp->z_dirlocks == NULL); 164 ASSERT(zp->z_acl_cached == NULL); 165 } 166 167 #ifdef ZNODE_STATS 168 static struct { 169 uint64_t zms_zfsvfs_invalid; 170 uint64_t zms_zfsvfs_recheck1; 171 uint64_t zms_zfsvfs_unmounted; 172 uint64_t zms_zfsvfs_recheck2; 173 uint64_t zms_obj_held; 174 uint64_t zms_vnode_locked; 175 uint64_t zms_not_only_dnlc; 176 } znode_move_stats; 177 #endif /* ZNODE_STATS */ 178 179 static void 180 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 181 { 182 vnode_t *vp; 183 184 /* Copy fields. */ 185 nzp->z_zfsvfs = ozp->z_zfsvfs; 186 187 /* Swap vnodes. */ 188 vp = nzp->z_vnode; 189 nzp->z_vnode = ozp->z_vnode; 190 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 191 ZTOV(ozp)->v_data = ozp; 192 ZTOV(nzp)->v_data = nzp; 193 194 nzp->z_id = ozp->z_id; 195 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 196 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 197 nzp->z_unlinked = ozp->z_unlinked; 198 nzp->z_atime_dirty = ozp->z_atime_dirty; 199 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 200 nzp->z_blksz = ozp->z_blksz; 201 nzp->z_seq = ozp->z_seq; 202 nzp->z_mapcnt = ozp->z_mapcnt; 203 nzp->z_gen = ozp->z_gen; 204 nzp->z_sync_cnt = ozp->z_sync_cnt; 205 nzp->z_is_sa = ozp->z_is_sa; 206 nzp->z_sa_hdl = ozp->z_sa_hdl; 207 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 208 nzp->z_links = ozp->z_links; 209 nzp->z_size = ozp->z_size; 210 nzp->z_pflags = ozp->z_pflags; 211 nzp->z_uid = ozp->z_uid; 212 nzp->z_gid = ozp->z_gid; 213 nzp->z_mode = ozp->z_mode; 214 nzp->z_new_content = ozp->z_new_content; 215 216 /* 217 * Since this is just an idle znode and kmem is already dealing with 218 * memory pressure, release any cached ACL. 219 */ 220 if (ozp->z_acl_cached) { 221 zfs_acl_free(ozp->z_acl_cached); 222 ozp->z_acl_cached = NULL; 223 } 224 225 sa_set_userp(nzp->z_sa_hdl, nzp); 226 227 /* 228 * Invalidate the original znode by clearing fields that provide a 229 * pointer back to the znode. Set the low bit of the vfs pointer to 230 * ensure that zfs_znode_move() recognizes the znode as invalid in any 231 * subsequent callback. 232 */ 233 ozp->z_sa_hdl = NULL; 234 POINTER_INVALIDATE(&ozp->z_zfsvfs); 235 236 /* 237 * Mark the znode. 238 */ 239 nzp->z_moved = 1; 240 ozp->z_moved = (uint8_t)-1; 241 } 242 243 /*ARGSUSED*/ 244 static kmem_cbrc_t 245 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 246 { 247 znode_t *ozp = buf, *nzp = newbuf; 248 zfsvfs_t *zfsvfs; 249 vnode_t *vp; 250 251 /* 252 * The znode is on the file system's list of known znodes if the vfs 253 * pointer is valid. We set the low bit of the vfs pointer when freeing 254 * the znode to invalidate it, and the memory patterns written by kmem 255 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 256 * created znode sets the vfs pointer last of all to indicate that the 257 * znode is known and in a valid state to be moved by this function. 258 */ 259 zfsvfs = ozp->z_zfsvfs; 260 if (!POINTER_IS_VALID(zfsvfs)) { 261 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 262 return (KMEM_CBRC_DONT_KNOW); 263 } 264 265 /* 266 * Close a small window in which it's possible that the filesystem could 267 * be unmounted and freed, and zfsvfs, though valid in the previous 268 * statement, could point to unrelated memory by the time we try to 269 * prevent the filesystem from being unmounted. 270 */ 271 rw_enter(&zfsvfs_lock, RW_WRITER); 272 if (zfsvfs != ozp->z_zfsvfs) { 273 rw_exit(&zfsvfs_lock); 274 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 275 return (KMEM_CBRC_DONT_KNOW); 276 } 277 278 /* 279 * If the znode is still valid, then so is the file system. We know that 280 * no valid file system can be freed while we hold zfsvfs_lock, so we 281 * can safely ensure that the filesystem is not and will not be 282 * unmounted. The next statement is equivalent to ZFS_ENTER(). 283 */ 284 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 285 if (zfsvfs->z_unmounted) { 286 ZFS_EXIT(zfsvfs); 287 rw_exit(&zfsvfs_lock); 288 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 289 return (KMEM_CBRC_DONT_KNOW); 290 } 291 rw_exit(&zfsvfs_lock); 292 293 mutex_enter(&zfsvfs->z_znodes_lock); 294 /* 295 * Recheck the vfs pointer in case the znode was removed just before 296 * acquiring the lock. 297 */ 298 if (zfsvfs != ozp->z_zfsvfs) { 299 mutex_exit(&zfsvfs->z_znodes_lock); 300 ZFS_EXIT(zfsvfs); 301 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 302 return (KMEM_CBRC_DONT_KNOW); 303 } 304 305 /* 306 * At this point we know that as long as we hold z_znodes_lock, the 307 * znode cannot be freed and fields within the znode can be safely 308 * accessed. Now, prevent a race with zfs_zget(). 309 */ 310 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 311 mutex_exit(&zfsvfs->z_znodes_lock); 312 ZFS_EXIT(zfsvfs); 313 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 314 return (KMEM_CBRC_LATER); 315 } 316 317 vp = ZTOV(ozp); 318 if (mutex_tryenter(&vp->v_lock) == 0) { 319 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 320 mutex_exit(&zfsvfs->z_znodes_lock); 321 ZFS_EXIT(zfsvfs); 322 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 323 return (KMEM_CBRC_LATER); 324 } 325 326 /* Only move znodes that are referenced _only_ by the DNLC. */ 327 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 328 mutex_exit(&vp->v_lock); 329 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 330 mutex_exit(&zfsvfs->z_znodes_lock); 331 ZFS_EXIT(zfsvfs); 332 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 333 return (KMEM_CBRC_LATER); 334 } 335 336 /* 337 * The znode is known and in a valid state to move. We're holding the 338 * locks needed to execute the critical section. 339 */ 340 zfs_znode_move_impl(ozp, nzp); 341 mutex_exit(&vp->v_lock); 342 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 343 344 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 345 mutex_exit(&zfsvfs->z_znodes_lock); 346 ZFS_EXIT(zfsvfs); 347 348 return (KMEM_CBRC_YES); 349 } 350 351 void 352 zfs_znode_init(void) 353 { 354 /* 355 * Initialize zcache 356 */ 357 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 358 ASSERT(znode_cache == NULL); 359 znode_cache = kmem_cache_create("zfs_znode_cache", 360 sizeof (znode_t), 0, zfs_znode_cache_constructor, 361 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 362 kmem_cache_set_move(znode_cache, zfs_znode_move); 363 } 364 365 void 366 zfs_znode_fini(void) 367 { 368 /* 369 * Cleanup vfs & vnode ops 370 */ 371 zfs_remove_op_tables(); 372 373 /* 374 * Cleanup zcache 375 */ 376 if (znode_cache) 377 kmem_cache_destroy(znode_cache); 378 znode_cache = NULL; 379 rw_destroy(&zfsvfs_lock); 380 } 381 382 struct vnodeops *zfs_dvnodeops; 383 struct vnodeops *zfs_fvnodeops; 384 struct vnodeops *zfs_symvnodeops; 385 struct vnodeops *zfs_xdvnodeops; 386 struct vnodeops *zfs_evnodeops; 387 struct vnodeops *zfs_sharevnodeops; 388 389 void 390 zfs_remove_op_tables() 391 { 392 /* 393 * Remove vfs ops 394 */ 395 ASSERT(zfsfstype); 396 (void) vfs_freevfsops_by_type(zfsfstype); 397 zfsfstype = 0; 398 399 /* 400 * Remove vnode ops 401 */ 402 if (zfs_dvnodeops) 403 vn_freevnodeops(zfs_dvnodeops); 404 if (zfs_fvnodeops) 405 vn_freevnodeops(zfs_fvnodeops); 406 if (zfs_symvnodeops) 407 vn_freevnodeops(zfs_symvnodeops); 408 if (zfs_xdvnodeops) 409 vn_freevnodeops(zfs_xdvnodeops); 410 if (zfs_evnodeops) 411 vn_freevnodeops(zfs_evnodeops); 412 if (zfs_sharevnodeops) 413 vn_freevnodeops(zfs_sharevnodeops); 414 415 zfs_dvnodeops = NULL; 416 zfs_fvnodeops = NULL; 417 zfs_symvnodeops = NULL; 418 zfs_xdvnodeops = NULL; 419 zfs_evnodeops = NULL; 420 zfs_sharevnodeops = NULL; 421 } 422 423 extern const fs_operation_def_t zfs_dvnodeops_template[]; 424 extern const fs_operation_def_t zfs_fvnodeops_template[]; 425 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 426 extern const fs_operation_def_t zfs_symvnodeops_template[]; 427 extern const fs_operation_def_t zfs_evnodeops_template[]; 428 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 429 430 int 431 zfs_create_op_tables() 432 { 433 int error; 434 435 /* 436 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 437 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 438 * In this case we just return as the ops vectors are already set up. 439 */ 440 if (zfs_dvnodeops) 441 return (0); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 444 &zfs_dvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 449 &zfs_fvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 454 &zfs_symvnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 459 &zfs_xdvnodeops); 460 if (error) 461 return (error); 462 463 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 464 &zfs_evnodeops); 465 if (error) 466 return (error); 467 468 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 469 &zfs_sharevnodeops); 470 471 return (error); 472 } 473 474 int 475 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 476 { 477 zfs_acl_ids_t acl_ids; 478 vattr_t vattr; 479 znode_t *sharezp; 480 vnode_t *vp; 481 znode_t *zp; 482 int error; 483 484 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 485 vattr.va_type = VDIR; 486 vattr.va_mode = S_IFDIR|0555; 487 vattr.va_uid = crgetuid(kcred); 488 vattr.va_gid = crgetgid(kcred); 489 490 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 491 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 492 sharezp->z_moved = 0; 493 sharezp->z_unlinked = 0; 494 sharezp->z_atime_dirty = 0; 495 sharezp->z_zfsvfs = zfsvfs; 496 sharezp->z_is_sa = zfsvfs->z_use_sa; 497 498 vp = ZTOV(sharezp); 499 vn_reinit(vp); 500 vp->v_type = VDIR; 501 502 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 503 kcred, NULL, &acl_ids)); 504 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 505 ASSERT3P(zp, ==, sharezp); 506 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 507 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 508 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 509 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 510 zfsvfs->z_shares_dir = sharezp->z_id; 511 512 zfs_acl_ids_free(&acl_ids); 513 ZTOV(sharezp)->v_count = 0; 514 sa_handle_destroy(sharezp->z_sa_hdl); 515 kmem_cache_free(znode_cache, sharezp); 516 517 return (error); 518 } 519 520 /* 521 * define a couple of values we need available 522 * for both 64 and 32 bit environments. 523 */ 524 #ifndef NBITSMINOR64 525 #define NBITSMINOR64 32 526 #endif 527 #ifndef MAXMAJ64 528 #define MAXMAJ64 0xffffffffUL 529 #endif 530 #ifndef MAXMIN64 531 #define MAXMIN64 0xffffffffUL 532 #endif 533 534 /* 535 * Create special expldev for ZFS private use. 536 * Can't use standard expldev since it doesn't do 537 * what we want. The standard expldev() takes a 538 * dev32_t in LP64 and expands it to a long dev_t. 539 * We need an interface that takes a dev32_t in ILP32 540 * and expands it to a long dev_t. 541 */ 542 static uint64_t 543 zfs_expldev(dev_t dev) 544 { 545 #ifndef _LP64 546 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 547 return (((uint64_t)major << NBITSMINOR64) | 548 ((minor_t)dev & MAXMIN32)); 549 #else 550 return (dev); 551 #endif 552 } 553 554 /* 555 * Special cmpldev for ZFS private use. 556 * Can't use standard cmpldev since it takes 557 * a long dev_t and compresses it to dev32_t in 558 * LP64. We need to do a compaction of a long dev_t 559 * to a dev32_t in ILP32. 560 */ 561 dev_t 562 zfs_cmpldev(uint64_t dev) 563 { 564 #ifndef _LP64 565 minor_t minor = (minor_t)dev & MAXMIN64; 566 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 567 568 if (major > MAXMAJ32 || minor > MAXMIN32) 569 return (NODEV32); 570 571 return (((dev32_t)major << NBITSMINOR32) | minor); 572 #else 573 return (dev); 574 #endif 575 } 576 577 static void 578 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 579 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 580 { 581 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 582 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 583 584 mutex_enter(&zp->z_lock); 585 586 ASSERT(zp->z_sa_hdl == NULL); 587 ASSERT(zp->z_acl_cached == NULL); 588 if (sa_hdl == NULL) { 589 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 590 SA_HDL_SHARED, &zp->z_sa_hdl)); 591 } else { 592 zp->z_sa_hdl = sa_hdl; 593 sa_set_userp(sa_hdl, zp); 594 } 595 596 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 597 598 /* 599 * Slap on VROOT if we are the root znode 600 */ 601 if (zp->z_id == zfsvfs->z_root) 602 ZTOV(zp)->v_flag |= VROOT; 603 604 mutex_exit(&zp->z_lock); 605 vn_exists(ZTOV(zp)); 606 } 607 608 void 609 zfs_znode_dmu_fini(znode_t *zp) 610 { 611 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 612 zp->z_unlinked || 613 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 614 615 sa_handle_destroy(zp->z_sa_hdl); 616 zp->z_sa_hdl = NULL; 617 } 618 619 /* 620 * Construct a new znode/vnode and intialize. 621 * 622 * This does not do a call to dmu_set_user() that is 623 * up to the caller to do, in case you don't want to 624 * return the znode 625 */ 626 static znode_t * 627 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 628 dmu_object_type_t obj_type, sa_handle_t *hdl) 629 { 630 znode_t *zp; 631 vnode_t *vp; 632 uint64_t mode; 633 uint64_t parent; 634 sa_bulk_attr_t bulk[9]; 635 int count = 0; 636 637 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 638 639 ASSERT(zp->z_dirlocks == NULL); 640 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 641 zp->z_moved = 0; 642 643 /* 644 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 645 * the zfs_znode_move() callback. 646 */ 647 zp->z_sa_hdl = NULL; 648 zp->z_unlinked = 0; 649 zp->z_atime_dirty = 0; 650 zp->z_mapcnt = 0; 651 zp->z_id = db->db_object; 652 zp->z_blksz = blksz; 653 zp->z_seq = 0x7A4653; 654 zp->z_sync_cnt = 0; 655 zp->z_new_content = 0; 656 657 vp = ZTOV(zp); 658 vn_reinit(vp); 659 660 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 661 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 665 &zp->z_size, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 667 &zp->z_links, 8); 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 669 &zp->z_pflags, 8); 670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 671 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 672 &zp->z_atime, 16); 673 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 674 &zp->z_uid, 8); 675 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 676 &zp->z_gid, 8); 677 678 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 679 if (hdl == NULL) 680 sa_handle_destroy(zp->z_sa_hdl); 681 kmem_cache_free(znode_cache, zp); 682 return (NULL); 683 } 684 685 zp->z_mode = mode; 686 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 687 688 vp->v_type = IFTOVT((mode_t)mode); 689 690 switch (vp->v_type) { 691 case VDIR: 692 if (zp->z_pflags & ZFS_XATTR) { 693 vn_setops(vp, zfs_xdvnodeops); 694 vp->v_flag |= V_XATTRDIR; 695 } else { 696 vn_setops(vp, zfs_dvnodeops); 697 } 698 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 699 break; 700 case VBLK: 701 case VCHR: 702 { 703 uint64_t rdev; 704 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 705 &rdev, sizeof (rdev)) == 0); 706 707 vp->v_rdev = zfs_cmpldev(rdev); 708 } 709 /*FALLTHROUGH*/ 710 case VFIFO: 711 case VSOCK: 712 case VDOOR: 713 vn_setops(vp, zfs_fvnodeops); 714 break; 715 case VREG: 716 vp->v_flag |= VMODSORT; 717 if (parent == zfsvfs->z_shares_dir) { 718 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 719 vn_setops(vp, zfs_sharevnodeops); 720 } else { 721 vn_setops(vp, zfs_fvnodeops); 722 } 723 break; 724 case VLNK: 725 vn_setops(vp, zfs_symvnodeops); 726 break; 727 default: 728 vn_setops(vp, zfs_evnodeops); 729 break; 730 } 731 732 mutex_enter(&zfsvfs->z_znodes_lock); 733 list_insert_tail(&zfsvfs->z_all_znodes, zp); 734 membar_producer(); 735 /* 736 * Everything else must be valid before assigning z_zfsvfs makes the 737 * znode eligible for zfs_znode_move(). 738 */ 739 zp->z_zfsvfs = zfsvfs; 740 mutex_exit(&zfsvfs->z_znodes_lock); 741 742 VFS_HOLD(zfsvfs->z_vfs); 743 return (zp); 744 } 745 746 static uint64_t empty_xattr; 747 static uint64_t pad[4]; 748 static zfs_acl_phys_t acl_phys; 749 /* 750 * Create a new DMU object to hold a zfs znode. 751 * 752 * IN: dzp - parent directory for new znode 753 * vap - file attributes for new znode 754 * tx - dmu transaction id for zap operations 755 * cr - credentials of caller 756 * flag - flags: 757 * IS_ROOT_NODE - new object will be root 758 * IS_XATTR - new object is an attribute 759 * bonuslen - length of bonus buffer 760 * setaclp - File/Dir initial ACL 761 * fuidp - Tracks fuid allocation. 762 * 763 * OUT: zpp - allocated znode 764 * 765 */ 766 void 767 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 768 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 769 { 770 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 771 uint64_t mode, size, links, parent, pflags; 772 uint64_t dzp_pflags = 0; 773 uint64_t rdev = 0; 774 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 775 dmu_buf_t *db; 776 timestruc_t now; 777 uint64_t gen, obj; 778 int bonuslen; 779 sa_handle_t *sa_hdl; 780 dmu_object_type_t obj_type; 781 sa_bulk_attr_t sa_attrs[ZPL_END]; 782 int cnt = 0; 783 zfs_acl_locator_cb_t locate = { 0 }; 784 785 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 786 787 if (zfsvfs->z_replay) { 788 obj = vap->va_nodeid; 789 now = vap->va_ctime; /* see zfs_replay_create() */ 790 gen = vap->va_nblocks; /* ditto */ 791 } else { 792 obj = 0; 793 gethrestime(&now); 794 gen = dmu_tx_get_txg(tx); 795 } 796 797 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 798 bonuslen = (obj_type == DMU_OT_SA) ? 799 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 800 801 /* 802 * Create a new DMU object. 803 */ 804 /* 805 * There's currently no mechanism for pre-reading the blocks that will 806 * be needed to allocate a new object, so we accept the small chance 807 * that there will be an i/o error and we will fail one of the 808 * assertions below. 809 */ 810 if (vap->va_type == VDIR) { 811 if (zfsvfs->z_replay) { 812 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 814 obj_type, bonuslen, tx)); 815 } else { 816 obj = zap_create_norm(zfsvfs->z_os, 817 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 818 obj_type, bonuslen, tx); 819 } 820 } else { 821 if (zfsvfs->z_replay) { 822 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 823 DMU_OT_PLAIN_FILE_CONTENTS, 0, 824 obj_type, bonuslen, tx)); 825 } else { 826 obj = dmu_object_alloc(zfsvfs->z_os, 827 DMU_OT_PLAIN_FILE_CONTENTS, 0, 828 obj_type, bonuslen, tx); 829 } 830 } 831 832 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 833 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 834 835 /* 836 * If this is the root, fix up the half-initialized parent pointer 837 * to reference the just-allocated physical data area. 838 */ 839 if (flag & IS_ROOT_NODE) { 840 dzp->z_id = obj; 841 } else { 842 dzp_pflags = dzp->z_pflags; 843 } 844 845 /* 846 * If parent is an xattr, so am I. 847 */ 848 if (dzp_pflags & ZFS_XATTR) { 849 flag |= IS_XATTR; 850 } 851 852 if (zfsvfs->z_use_fuids) 853 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 854 else 855 pflags = 0; 856 857 if (vap->va_type == VDIR) { 858 size = 2; /* contents ("." and "..") */ 859 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 860 } else { 861 size = links = 0; 862 } 863 864 if (vap->va_type == VBLK || vap->va_type == VCHR) { 865 rdev = zfs_expldev(vap->va_rdev); 866 } 867 868 parent = dzp->z_id; 869 mode = acl_ids->z_mode; 870 if (flag & IS_XATTR) 871 pflags |= ZFS_XATTR; 872 873 /* 874 * No execs denied will be deterimed when zfs_mode_compute() is called. 875 */ 876 pflags |= acl_ids->z_aclp->z_hints & 877 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 878 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 879 880 ZFS_TIME_ENCODE(&now, crtime); 881 ZFS_TIME_ENCODE(&now, ctime); 882 883 if (vap->va_mask & AT_ATIME) { 884 ZFS_TIME_ENCODE(&vap->va_atime, atime); 885 } else { 886 ZFS_TIME_ENCODE(&now, atime); 887 } 888 889 if (vap->va_mask & AT_MTIME) { 890 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 891 } else { 892 ZFS_TIME_ENCODE(&now, mtime); 893 } 894 895 /* Now add in all of the "SA" attributes */ 896 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 897 &sa_hdl)); 898 899 /* 900 * Setup the array of attributes to be replaced/set on the new file 901 * 902 * order for DMU_OT_ZNODE is critical since it needs to be constructed 903 * in the old znode_phys_t format. Don't change this ordering 904 */ 905 906 if (obj_type == DMU_OT_ZNODE) { 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 908 NULL, &atime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 910 NULL, &mtime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 912 NULL, &ctime, 16); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 914 NULL, &crtime, 16); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 916 NULL, &gen, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 918 NULL, &mode, 8); 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 920 NULL, &size, 8); 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 922 NULL, &parent, 8); 923 } else { 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 925 NULL, &mode, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 927 NULL, &size, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 929 NULL, &gen, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 931 &acl_ids->z_fuid, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 933 &acl_ids->z_fgid, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 935 NULL, &parent, 8); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 937 NULL, &pflags, 8); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 939 NULL, &atime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 941 NULL, &mtime, 16); 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 943 NULL, &ctime, 16); 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 945 NULL, &crtime, 16); 946 } 947 948 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 949 950 if (obj_type == DMU_OT_ZNODE) { 951 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 952 &empty_xattr, 8); 953 } 954 if (obj_type == DMU_OT_ZNODE || 955 (vap->va_type == VBLK || vap->va_type == VCHR)) { 956 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 957 NULL, &rdev, 8); 958 959 } 960 if (obj_type == DMU_OT_ZNODE) { 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 962 NULL, &pflags, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 964 &acl_ids->z_fuid, 8); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 966 &acl_ids->z_fgid, 8); 967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 968 sizeof (uint64_t) * 4); 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 970 &acl_phys, sizeof (zfs_acl_phys_t)); 971 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 972 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 973 &acl_ids->z_aclp->z_acl_count, 8); 974 locate.cb_aclp = acl_ids->z_aclp; 975 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 976 zfs_acl_data_locator, &locate, 977 acl_ids->z_aclp->z_acl_bytes); 978 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 979 acl_ids->z_fuid, acl_ids->z_fgid); 980 } 981 982 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 983 984 if (!(flag & IS_ROOT_NODE)) { 985 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 986 ASSERT(*zpp != NULL); 987 } else { 988 /* 989 * If we are creating the root node, the "parent" we 990 * passed in is the znode for the root. 991 */ 992 *zpp = dzp; 993 994 (*zpp)->z_sa_hdl = sa_hdl; 995 } 996 997 (*zpp)->z_pflags = pflags; 998 (*zpp)->z_mode = mode; 999 1000 if (vap->va_mask & AT_XVATTR) 1001 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 1002 1003 if (obj_type == DMU_OT_ZNODE || 1004 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1005 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1006 } 1007 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1008 } 1009 1010 /* 1011 * Update in-core attributes. It is assumed the caller will be doing an 1012 * sa_bulk_update to push the changes out. 1013 */ 1014 void 1015 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1016 { 1017 xoptattr_t *xoap; 1018 1019 xoap = xva_getxoptattr(xvap); 1020 ASSERT(xoap); 1021 1022 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1023 uint64_t times[2]; 1024 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1025 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1026 ×, sizeof (times), tx); 1027 XVA_SET_RTN(xvap, XAT_CREATETIME); 1028 } 1029 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1030 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1031 zp->z_pflags, tx); 1032 XVA_SET_RTN(xvap, XAT_READONLY); 1033 } 1034 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1035 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1036 zp->z_pflags, tx); 1037 XVA_SET_RTN(xvap, XAT_HIDDEN); 1038 } 1039 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1040 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1041 zp->z_pflags, tx); 1042 XVA_SET_RTN(xvap, XAT_SYSTEM); 1043 } 1044 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1045 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1046 zp->z_pflags, tx); 1047 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1048 } 1049 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1050 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1051 zp->z_pflags, tx); 1052 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1053 } 1054 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1055 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1056 zp->z_pflags, tx); 1057 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1058 } 1059 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1060 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1061 zp->z_pflags, tx); 1062 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1063 } 1064 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1065 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1066 zp->z_pflags, tx); 1067 XVA_SET_RTN(xvap, XAT_NODUMP); 1068 } 1069 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1070 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1071 zp->z_pflags, tx); 1072 XVA_SET_RTN(xvap, XAT_OPAQUE); 1073 } 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1075 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1076 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1077 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1078 } 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1080 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1081 zp->z_pflags, tx); 1082 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1083 } 1084 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1085 zfs_sa_set_scanstamp(zp, xvap, tx); 1086 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1087 } 1088 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1089 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1090 zp->z_pflags, tx); 1091 XVA_SET_RTN(xvap, XAT_REPARSE); 1092 } 1093 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1094 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1095 zp->z_pflags, tx); 1096 XVA_SET_RTN(xvap, XAT_OFFLINE); 1097 } 1098 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1099 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1100 zp->z_pflags, tx); 1101 XVA_SET_RTN(xvap, XAT_SPARSE); 1102 } 1103 } 1104 1105 int 1106 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1107 { 1108 dmu_object_info_t doi; 1109 dmu_buf_t *db; 1110 znode_t *zp; 1111 int err; 1112 sa_handle_t *hdl; 1113 1114 *zpp = NULL; 1115 1116 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1117 1118 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1119 if (err) { 1120 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1121 return (err); 1122 } 1123 1124 dmu_object_info_from_db(db, &doi); 1125 if (doi.doi_bonus_type != DMU_OT_SA && 1126 (doi.doi_bonus_type != DMU_OT_ZNODE || 1127 (doi.doi_bonus_type == DMU_OT_ZNODE && 1128 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1129 sa_buf_rele(db, NULL); 1130 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1131 return (SET_ERROR(EINVAL)); 1132 } 1133 1134 hdl = dmu_buf_get_user(db); 1135 if (hdl != NULL) { 1136 zp = sa_get_userdata(hdl); 1137 1138 1139 /* 1140 * Since "SA" does immediate eviction we 1141 * should never find a sa handle that doesn't 1142 * know about the znode. 1143 */ 1144 1145 ASSERT3P(zp, !=, NULL); 1146 1147 mutex_enter(&zp->z_lock); 1148 ASSERT3U(zp->z_id, ==, obj_num); 1149 if (zp->z_unlinked) { 1150 err = SET_ERROR(ENOENT); 1151 } else { 1152 VN_HOLD(ZTOV(zp)); 1153 *zpp = zp; 1154 err = 0; 1155 } 1156 mutex_exit(&zp->z_lock); 1157 sa_buf_rele(db, NULL); 1158 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1159 return (err); 1160 } 1161 1162 /* 1163 * Not found create new znode/vnode 1164 * but only if file exists. 1165 * 1166 * There is a small window where zfs_vget() could 1167 * find this object while a file create is still in 1168 * progress. This is checked for in zfs_znode_alloc() 1169 * 1170 * if zfs_znode_alloc() fails it will drop the hold on the 1171 * bonus buffer. 1172 */ 1173 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1174 doi.doi_bonus_type, NULL); 1175 if (zp == NULL) { 1176 err = SET_ERROR(ENOENT); 1177 } else { 1178 *zpp = zp; 1179 } 1180 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1181 return (err); 1182 } 1183 1184 int 1185 zfs_rezget(znode_t *zp) 1186 { 1187 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1188 dmu_object_info_t doi; 1189 dmu_buf_t *db; 1190 uint64_t obj_num = zp->z_id; 1191 uint64_t mode; 1192 sa_bulk_attr_t bulk[8]; 1193 int err; 1194 int count = 0; 1195 uint64_t gen; 1196 1197 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1198 1199 mutex_enter(&zp->z_acl_lock); 1200 if (zp->z_acl_cached) { 1201 zfs_acl_free(zp->z_acl_cached); 1202 zp->z_acl_cached = NULL; 1203 } 1204 1205 mutex_exit(&zp->z_acl_lock); 1206 ASSERT(zp->z_sa_hdl == NULL); 1207 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1208 if (err) { 1209 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1210 return (err); 1211 } 1212 1213 dmu_object_info_from_db(db, &doi); 1214 if (doi.doi_bonus_type != DMU_OT_SA && 1215 (doi.doi_bonus_type != DMU_OT_ZNODE || 1216 (doi.doi_bonus_type == DMU_OT_ZNODE && 1217 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1218 sa_buf_rele(db, NULL); 1219 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1220 return (SET_ERROR(EINVAL)); 1221 } 1222 1223 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1224 1225 /* reload cached values */ 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1227 &gen, sizeof (gen)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1229 &zp->z_size, sizeof (zp->z_size)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1231 &zp->z_links, sizeof (zp->z_links)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1233 &zp->z_pflags, sizeof (zp->z_pflags)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1235 &zp->z_atime, sizeof (zp->z_atime)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1237 &zp->z_uid, sizeof (zp->z_uid)); 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1239 &zp->z_gid, sizeof (zp->z_gid)); 1240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1241 &mode, sizeof (mode)); 1242 1243 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1244 zfs_znode_dmu_fini(zp); 1245 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1246 return (SET_ERROR(EIO)); 1247 } 1248 1249 zp->z_mode = mode; 1250 1251 if (gen != zp->z_gen) { 1252 zfs_znode_dmu_fini(zp); 1253 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1254 return (SET_ERROR(EIO)); 1255 } 1256 1257 zp->z_unlinked = (zp->z_links == 0); 1258 zp->z_blksz = doi.doi_data_block_size; 1259 1260 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1261 1262 return (0); 1263 } 1264 1265 void 1266 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1267 { 1268 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1269 objset_t *os = zfsvfs->z_os; 1270 uint64_t obj = zp->z_id; 1271 uint64_t acl_obj = zfs_external_acl(zp); 1272 1273 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1274 if (acl_obj) { 1275 VERIFY(!zp->z_is_sa); 1276 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1277 } 1278 VERIFY(0 == dmu_object_free(os, obj, tx)); 1279 zfs_znode_dmu_fini(zp); 1280 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1281 zfs_znode_free(zp); 1282 } 1283 1284 void 1285 zfs_zinactive(znode_t *zp) 1286 { 1287 vnode_t *vp = ZTOV(zp); 1288 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1289 uint64_t z_id = zp->z_id; 1290 1291 ASSERT(zp->z_sa_hdl); 1292 1293 /* 1294 * Don't allow a zfs_zget() while were trying to release this znode 1295 */ 1296 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1297 1298 mutex_enter(&zp->z_lock); 1299 mutex_enter(&vp->v_lock); 1300 vp->v_count--; 1301 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1302 /* 1303 * If the hold count is greater than zero, somebody has 1304 * obtained a new reference on this znode while we were 1305 * processing it here, so we are done. If we still have 1306 * mapped pages then we are also done, since we don't 1307 * want to inactivate the znode until the pages get pushed. 1308 * 1309 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1310 * this seems like it would leave the znode hanging with 1311 * no chance to go inactive... 1312 */ 1313 mutex_exit(&vp->v_lock); 1314 mutex_exit(&zp->z_lock); 1315 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1316 return; 1317 } 1318 mutex_exit(&vp->v_lock); 1319 1320 /* 1321 * If this was the last reference to a file with no links, 1322 * remove the file from the file system. 1323 */ 1324 if (zp->z_unlinked) { 1325 mutex_exit(&zp->z_lock); 1326 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1327 zfs_rmnode(zp); 1328 return; 1329 } 1330 1331 mutex_exit(&zp->z_lock); 1332 zfs_znode_dmu_fini(zp); 1333 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1334 zfs_znode_free(zp); 1335 } 1336 1337 void 1338 zfs_znode_free(znode_t *zp) 1339 { 1340 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1341 1342 vn_invalid(ZTOV(zp)); 1343 1344 ASSERT(ZTOV(zp)->v_count == 0); 1345 1346 mutex_enter(&zfsvfs->z_znodes_lock); 1347 POINTER_INVALIDATE(&zp->z_zfsvfs); 1348 list_remove(&zfsvfs->z_all_znodes, zp); 1349 mutex_exit(&zfsvfs->z_znodes_lock); 1350 1351 if (zp->z_acl_cached) { 1352 zfs_acl_free(zp->z_acl_cached); 1353 zp->z_acl_cached = NULL; 1354 } 1355 1356 kmem_cache_free(znode_cache, zp); 1357 1358 VFS_RELE(zfsvfs->z_vfs); 1359 } 1360 1361 void 1362 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1363 uint64_t ctime[2], boolean_t have_tx) 1364 { 1365 timestruc_t now; 1366 1367 gethrestime(&now); 1368 1369 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1370 zp->z_atime_dirty = 0; 1371 zp->z_seq++; 1372 } else { 1373 zp->z_atime_dirty = 1; 1374 } 1375 1376 if (flag & AT_ATIME) { 1377 ZFS_TIME_ENCODE(&now, zp->z_atime); 1378 } 1379 1380 if (flag & AT_MTIME) { 1381 ZFS_TIME_ENCODE(&now, mtime); 1382 if (zp->z_zfsvfs->z_use_fuids) { 1383 zp->z_pflags |= (ZFS_ARCHIVE | 1384 ZFS_AV_MODIFIED); 1385 } 1386 } 1387 1388 if (flag & AT_CTIME) { 1389 ZFS_TIME_ENCODE(&now, ctime); 1390 if (zp->z_zfsvfs->z_use_fuids) 1391 zp->z_pflags |= ZFS_ARCHIVE; 1392 } 1393 } 1394 1395 /* 1396 * Grow the block size for a file. 1397 * 1398 * IN: zp - znode of file to free data in. 1399 * size - requested block size 1400 * tx - open transaction. 1401 * 1402 * NOTE: this function assumes that the znode is write locked. 1403 */ 1404 void 1405 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1406 { 1407 int error; 1408 u_longlong_t dummy; 1409 1410 if (size <= zp->z_blksz) 1411 return; 1412 /* 1413 * If the file size is already greater than the current blocksize, 1414 * we will not grow. If there is more than one block in a file, 1415 * the blocksize cannot change. 1416 */ 1417 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1418 return; 1419 1420 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1421 size, 0, tx); 1422 1423 if (error == ENOTSUP) 1424 return; 1425 ASSERT0(error); 1426 1427 /* What blocksize did we actually get? */ 1428 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1429 } 1430 1431 /* 1432 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1433 * be calling back into the fs for a putpage(). E.g.: when truncating 1434 * a file, the pages being "thrown away* don't need to be written out. 1435 */ 1436 /* ARGSUSED */ 1437 static int 1438 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1439 int flags, cred_t *cr) 1440 { 1441 ASSERT(0); 1442 return (0); 1443 } 1444 1445 /* 1446 * Increase the file length 1447 * 1448 * IN: zp - znode of file to free data in. 1449 * end - new end-of-file 1450 * 1451 * RETURN: 0 on success, error code on failure 1452 */ 1453 static int 1454 zfs_extend(znode_t *zp, uint64_t end) 1455 { 1456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1457 dmu_tx_t *tx; 1458 rl_t *rl; 1459 uint64_t newblksz; 1460 int error; 1461 1462 /* 1463 * We will change zp_size, lock the whole file. 1464 */ 1465 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1466 1467 /* 1468 * Nothing to do if file already at desired length. 1469 */ 1470 if (end <= zp->z_size) { 1471 zfs_range_unlock(rl); 1472 return (0); 1473 } 1474 tx = dmu_tx_create(zfsvfs->z_os); 1475 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1476 zfs_sa_upgrade_txholds(tx, zp); 1477 if (end > zp->z_blksz && 1478 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1479 /* 1480 * We are growing the file past the current block size. 1481 */ 1482 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1483 /* 1484 * File's blocksize is already larger than the 1485 * "recordsize" property. Only let it grow to 1486 * the next power of 2. 1487 */ 1488 ASSERT(!ISP2(zp->z_blksz)); 1489 newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); 1490 } else { 1491 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1492 } 1493 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1494 } else { 1495 newblksz = 0; 1496 } 1497 1498 error = dmu_tx_assign(tx, TXG_WAIT); 1499 if (error) { 1500 dmu_tx_abort(tx); 1501 zfs_range_unlock(rl); 1502 return (error); 1503 } 1504 1505 if (newblksz) 1506 zfs_grow_blocksize(zp, newblksz, tx); 1507 1508 zp->z_size = end; 1509 1510 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1511 &zp->z_size, sizeof (zp->z_size), tx)); 1512 1513 zfs_range_unlock(rl); 1514 1515 dmu_tx_commit(tx); 1516 1517 return (0); 1518 } 1519 1520 /* 1521 * Free space in a file. 1522 * 1523 * IN: zp - znode of file to free data in. 1524 * off - start of section to free. 1525 * len - length of section to free. 1526 * 1527 * RETURN: 0 on success, error code on failure 1528 */ 1529 static int 1530 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1531 { 1532 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1533 rl_t *rl; 1534 int error; 1535 ssize_t lock_off; 1536 ssize_t lock_len; 1537 1538 #ifdef _KERNEL 1539 /* 1540 * Lock the range being freed. 1541 */ 1542 if (rz_zev_active()) { 1543 /* start of this megabyte */ 1544 lock_off = P2ALIGN(off, ZEV_L1_SIZE); 1545 /* full megabytes */ 1546 lock_len = len + (off - lock_off); 1547 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 1548 } else { 1549 lock_off = off; 1550 lock_len = len; 1551 } 1552 #else 1553 lock_off = off; 1554 lock_len = len; 1555 #endif 1556 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 1557 1558 /* 1559 * Nothing to do if file already at desired length. 1560 */ 1561 if (off >= zp->z_size) { 1562 zfs_range_unlock(rl); 1563 return (0); 1564 } 1565 1566 if (off + len > zp->z_size) 1567 len = zp->z_size - off; 1568 1569 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1570 1571 zfs_range_unlock(rl); 1572 1573 return (error); 1574 } 1575 1576 /* 1577 * Truncate a file 1578 * 1579 * IN: zp - znode of file to free data in. 1580 * end - new end-of-file. 1581 * 1582 * RETURN: 0 on success, error code on failure 1583 */ 1584 static int 1585 zfs_trunc(znode_t *zp, uint64_t end) 1586 { 1587 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1588 vnode_t *vp = ZTOV(zp); 1589 dmu_tx_t *tx; 1590 rl_t *rl; 1591 int error; 1592 sa_bulk_attr_t bulk[2]; 1593 int count = 0; 1594 1595 /* 1596 * We will change zp_size, lock the whole file. 1597 */ 1598 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1599 1600 /* 1601 * Nothing to do if file already at desired length. 1602 */ 1603 if (end >= zp->z_size) { 1604 zfs_range_unlock(rl); 1605 return (0); 1606 } 1607 1608 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1609 if (error) { 1610 zfs_range_unlock(rl); 1611 return (error); 1612 } 1613 tx = dmu_tx_create(zfsvfs->z_os); 1614 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1615 zfs_sa_upgrade_txholds(tx, zp); 1616 dmu_tx_mark_netfree(tx); 1617 error = dmu_tx_assign(tx, TXG_WAIT); 1618 if (error) { 1619 dmu_tx_abort(tx); 1620 zfs_range_unlock(rl); 1621 return (error); 1622 } 1623 1624 zp->z_size = end; 1625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1626 NULL, &zp->z_size, sizeof (zp->z_size)); 1627 1628 if (end == 0) { 1629 zp->z_pflags &= ~ZFS_SPARSE; 1630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1631 NULL, &zp->z_pflags, 8); 1632 } 1633 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1634 1635 dmu_tx_commit(tx); 1636 1637 /* 1638 * Clear any mapped pages in the truncated region. This has to 1639 * happen outside of the transaction to avoid the possibility of 1640 * a deadlock with someone trying to push a page that we are 1641 * about to invalidate. 1642 */ 1643 if (vn_has_cached_data(vp)) { 1644 page_t *pp; 1645 uint64_t start = end & PAGEMASK; 1646 int poff = end & PAGEOFFSET; 1647 1648 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1649 /* 1650 * We need to zero a partial page. 1651 */ 1652 pagezero(pp, poff, PAGESIZE - poff); 1653 start += PAGESIZE; 1654 page_unlock(pp); 1655 } 1656 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1657 B_INVAL | B_TRUNC, NULL); 1658 ASSERT(error == 0); 1659 } 1660 1661 zfs_range_unlock(rl); 1662 1663 return (0); 1664 } 1665 1666 /* 1667 * Free space in a file 1668 * 1669 * IN: zp - znode of file to free data in. 1670 * off - start of range 1671 * len - end of range (0 => EOF) 1672 * flag - current file open mode flags. 1673 * log - TRUE if this action should be logged 1674 * 1675 * RETURN: 0 on success, error code on failure 1676 */ 1677 int 1678 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1679 { 1680 vnode_t *vp = ZTOV(zp); 1681 dmu_tx_t *tx; 1682 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1683 zilog_t *zilog = zfsvfs->z_log; 1684 uint64_t mode; 1685 uint64_t mtime[2], ctime[2]; 1686 sa_bulk_attr_t bulk[3]; 1687 int count = 0; 1688 int error; 1689 1690 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1691 sizeof (mode))) != 0) 1692 return (error); 1693 1694 if (off > zp->z_size) { 1695 error = zfs_extend(zp, off+len); 1696 if (error == 0 && log) 1697 goto log; 1698 else 1699 return (error); 1700 } 1701 1702 /* 1703 * Check for any locks in the region to be freed. 1704 */ 1705 1706 if (MANDLOCK(vp, (mode_t)mode)) { 1707 uint64_t length = (len ? len : zp->z_size - off); 1708 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1709 return (error); 1710 } 1711 1712 if (len == 0) { 1713 error = zfs_trunc(zp, off); 1714 } else { 1715 if ((error = zfs_free_range(zp, off, len)) == 0 && 1716 off + len > zp->z_size) 1717 error = zfs_extend(zp, off+len); 1718 } 1719 if (error || !log) 1720 return (error); 1721 log: 1722 tx = dmu_tx_create(zfsvfs->z_os); 1723 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1724 zfs_sa_upgrade_txholds(tx, zp); 1725 error = dmu_tx_assign(tx, TXG_WAIT); 1726 if (error) { 1727 dmu_tx_abort(tx); 1728 return (error); 1729 } 1730 1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1732 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1733 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1734 NULL, &zp->z_pflags, 8); 1735 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1736 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1737 ASSERT(error == 0); 1738 1739 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1740 1741 dmu_tx_commit(tx); 1742 return (0); 1743 } 1744 1745 void 1746 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1747 { 1748 uint64_t moid, obj, sa_obj, version; 1749 uint64_t sense = ZFS_CASE_SENSITIVE; 1750 uint64_t norm = 0; 1751 nvpair_t *elem; 1752 int error; 1753 int i; 1754 znode_t *rootzp = NULL; 1755 zfsvfs_t *zfsvfs; 1756 vnode_t *vp; 1757 vattr_t vattr; 1758 znode_t *zp; 1759 zfs_acl_ids_t acl_ids; 1760 1761 /* 1762 * First attempt to create master node. 1763 */ 1764 /* 1765 * In an empty objset, there are no blocks to read and thus 1766 * there can be no i/o errors (which we assert below). 1767 */ 1768 moid = MASTER_NODE_OBJ; 1769 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1770 DMU_OT_NONE, 0, tx); 1771 ASSERT(error == 0); 1772 1773 /* 1774 * Set starting attributes. 1775 */ 1776 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1777 elem = NULL; 1778 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1779 /* For the moment we expect all zpl props to be uint64_ts */ 1780 uint64_t val; 1781 char *name; 1782 1783 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1784 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1785 name = nvpair_name(elem); 1786 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1787 if (val < version) 1788 version = val; 1789 } else { 1790 error = zap_update(os, moid, name, 8, 1, &val, tx); 1791 } 1792 ASSERT(error == 0); 1793 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1794 norm = val; 1795 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1796 sense = val; 1797 } 1798 ASSERT(version != 0); 1799 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1800 1801 /* 1802 * Create zap object used for SA attribute registration 1803 */ 1804 1805 if (version >= ZPL_VERSION_SA) { 1806 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1807 DMU_OT_NONE, 0, tx); 1808 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1809 ASSERT(error == 0); 1810 } else { 1811 sa_obj = 0; 1812 } 1813 /* 1814 * Create a delete queue. 1815 */ 1816 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1817 1818 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1819 ASSERT(error == 0); 1820 1821 /* 1822 * Create root znode. Create minimal znode/vnode/zfsvfs 1823 * to allow zfs_mknode to work. 1824 */ 1825 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1826 vattr.va_type = VDIR; 1827 vattr.va_mode = S_IFDIR|0755; 1828 vattr.va_uid = crgetuid(cr); 1829 vattr.va_gid = crgetgid(cr); 1830 1831 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1832 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1833 rootzp->z_moved = 0; 1834 rootzp->z_unlinked = 0; 1835 rootzp->z_atime_dirty = 0; 1836 rootzp->z_is_sa = USE_SA(version, os); 1837 1838 vp = ZTOV(rootzp); 1839 vn_reinit(vp); 1840 vp->v_type = VDIR; 1841 1842 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 1843 zfsvfs->z_os = os; 1844 zfsvfs->z_parent = zfsvfs; 1845 zfsvfs->z_version = version; 1846 zfsvfs->z_use_fuids = USE_FUIDS(version, os); 1847 zfsvfs->z_use_sa = USE_SA(version, os); 1848 zfsvfs->z_norm = norm; 1849 1850 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1851 &zfsvfs->z_attr_table); 1852 1853 ASSERT(error == 0); 1854 1855 /* 1856 * Fold case on file systems that are always or sometimes case 1857 * insensitive. 1858 */ 1859 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1860 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 1861 1862 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1863 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1864 offsetof(znode_t, z_link_node)); 1865 1866 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1867 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1868 1869 rootzp->z_zfsvfs = zfsvfs; 1870 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1871 cr, NULL, &acl_ids)); 1872 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1873 ASSERT3P(zp, ==, rootzp); 1874 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1875 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1876 ASSERT(error == 0); 1877 zfs_acl_ids_free(&acl_ids); 1878 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1879 1880 ZTOV(rootzp)->v_count = 0; 1881 sa_handle_destroy(rootzp->z_sa_hdl); 1882 kmem_cache_free(znode_cache, rootzp); 1883 1884 /* 1885 * Create shares directory 1886 */ 1887 1888 error = zfs_create_share_dir(zfsvfs, tx); 1889 1890 ASSERT(error == 0); 1891 1892 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1893 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1894 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1895 } 1896 1897 #endif /* _KERNEL */ 1898 1899 static int 1900 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1901 { 1902 uint64_t sa_obj = 0; 1903 int error; 1904 1905 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1906 if (error != 0 && error != ENOENT) 1907 return (error); 1908 1909 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1910 return (error); 1911 } 1912 1913 static int 1914 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1915 dmu_buf_t **db, void *tag) 1916 { 1917 dmu_object_info_t doi; 1918 int error; 1919 1920 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1921 return (error); 1922 1923 dmu_object_info_from_db(*db, &doi); 1924 if ((doi.doi_bonus_type != DMU_OT_SA && 1925 doi.doi_bonus_type != DMU_OT_ZNODE) || 1926 doi.doi_bonus_type == DMU_OT_ZNODE && 1927 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1928 sa_buf_rele(*db, tag); 1929 return (SET_ERROR(ENOTSUP)); 1930 } 1931 1932 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1933 if (error != 0) { 1934 sa_buf_rele(*db, tag); 1935 return (error); 1936 } 1937 1938 return (0); 1939 } 1940 1941 void 1942 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1943 { 1944 sa_handle_destroy(hdl); 1945 sa_buf_rele(db, tag); 1946 } 1947 1948 /* 1949 * Given an object number, return its parent object number and whether 1950 * or not the object is an extended attribute directory. 1951 */ 1952 static int 1953 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1954 uint64_t *pobjp, int *is_xattrdir) 1955 { 1956 uint64_t parent; 1957 uint64_t pflags; 1958 uint64_t mode; 1959 uint64_t parent_mode; 1960 sa_bulk_attr_t bulk[3]; 1961 sa_handle_t *sa_hdl; 1962 dmu_buf_t *sa_db; 1963 int count = 0; 1964 int error; 1965 1966 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1967 &parent, sizeof (parent)); 1968 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1969 &pflags, sizeof (pflags)); 1970 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1971 &mode, sizeof (mode)); 1972 1973 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1974 return (error); 1975 1976 /* 1977 * When a link is removed its parent pointer is not changed and will 1978 * be invalid. There are two cases where a link is removed but the 1979 * file stays around, when it goes to the delete queue and when there 1980 * are additional links. 1981 */ 1982 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1983 if (error != 0) 1984 return (error); 1985 1986 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1987 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1988 if (error != 0) 1989 return (error); 1990 1991 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1992 1993 /* 1994 * Extended attributes can be applied to files, directories, etc. 1995 * Otherwise the parent must be a directory. 1996 */ 1997 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1998 return (SET_ERROR(EINVAL)); 1999 2000 *pobjp = parent; 2001 2002 return (0); 2003 } 2004 2005 /* 2006 * Given an object number, return some zpl level statistics 2007 */ 2008 static int 2009 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 2010 zfs_stat_t *sb) 2011 { 2012 sa_bulk_attr_t bulk[4]; 2013 int count = 0; 2014 2015 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 2016 &sb->zs_mode, sizeof (sb->zs_mode)); 2017 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 2018 &sb->zs_gen, sizeof (sb->zs_gen)); 2019 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 2020 &sb->zs_links, sizeof (sb->zs_links)); 2021 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 2022 &sb->zs_ctime, sizeof (sb->zs_ctime)); 2023 2024 return (sa_bulk_lookup(hdl, bulk, count)); 2025 } 2026 2027 static int 2028 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2029 sa_attr_type_t *sa_table, char *buf, int len) 2030 { 2031 sa_handle_t *sa_hdl; 2032 sa_handle_t *prevhdl = NULL; 2033 dmu_buf_t *prevdb = NULL; 2034 dmu_buf_t *sa_db = NULL; 2035 char *path = buf + len - 1; 2036 int error; 2037 2038 *path = '\0'; 2039 sa_hdl = hdl; 2040 2041 for (;;) { 2042 uint64_t pobj; 2043 char component[MAXNAMELEN + 2]; 2044 size_t complen; 2045 int is_xattrdir; 2046 2047 if (prevdb) 2048 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2049 2050 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2051 &is_xattrdir)) != 0) 2052 break; 2053 2054 if (pobj == obj) { 2055 if (path[0] != '/') 2056 *--path = '/'; 2057 break; 2058 } 2059 2060 component[0] = '/'; 2061 if (is_xattrdir) { 2062 (void) sprintf(component + 1, "<xattrdir>"); 2063 } else { 2064 error = zap_value_search(osp, pobj, obj, 2065 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2066 if (error != 0) 2067 break; 2068 } 2069 2070 complen = strlen(component); 2071 path -= complen; 2072 ASSERT(path >= buf); 2073 bcopy(component, path, complen); 2074 obj = pobj; 2075 2076 if (sa_hdl != hdl) { 2077 prevhdl = sa_hdl; 2078 prevdb = sa_db; 2079 } 2080 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2081 if (error != 0) { 2082 sa_hdl = prevhdl; 2083 sa_db = prevdb; 2084 break; 2085 } 2086 } 2087 2088 if (sa_hdl != NULL && sa_hdl != hdl) { 2089 ASSERT(sa_db != NULL); 2090 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2091 } 2092 2093 if (error == 0) 2094 (void) memmove(buf, path, buf + len - path); 2095 2096 return (error); 2097 } 2098 2099 int 2100 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2101 { 2102 sa_attr_type_t *sa_table; 2103 sa_handle_t *hdl; 2104 dmu_buf_t *db; 2105 int error; 2106 2107 error = zfs_sa_setup(osp, &sa_table); 2108 if (error != 0) 2109 return (error); 2110 2111 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2112 if (error != 0) 2113 return (error); 2114 2115 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2116 2117 zfs_release_sa_handle(hdl, db, FTAG); 2118 return (error); 2119 } 2120 2121 int 2122 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2123 char *buf, int len) 2124 { 2125 char *path = buf + len - 1; 2126 sa_attr_type_t *sa_table; 2127 sa_handle_t *hdl; 2128 dmu_buf_t *db; 2129 int error; 2130 2131 *path = '\0'; 2132 2133 error = zfs_sa_setup(osp, &sa_table); 2134 if (error != 0) 2135 return (error); 2136 2137 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2138 if (error != 0) 2139 return (error); 2140 2141 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2142 if (error != 0) { 2143 zfs_release_sa_handle(hdl, db, FTAG); 2144 return (error); 2145 } 2146 2147 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2148 2149 zfs_release_sa_handle(hdl, db, FTAG); 2150 return (error); 2151 } 2152