xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 930176a00b697a09f5256ff3d4b1550f8e73c3a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/mntent.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/kmem.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/unistd.h>
42 #include <sys/stat.h>
43 #include <sys/mode.h>
44 #include <sys/atomic.h>
45 #include <vm/pvn.h>
46 #include "fs/fs_subr.h"
47 #include <sys/zfs_dir.h>
48 #include <sys/zfs_acl.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zfs_rlock.h>
52 #include <sys/zap.h>
53 #include <sys/dmu.h>
54 #include <sys/fs/zfs.h>
55 
56 struct kmem_cache *znode_cache = NULL;
57 
58 /*ARGSUSED*/
59 static void
60 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
61 {
62 	znode_t *zp = user_ptr;
63 	vnode_t *vp = ZTOV(zp);
64 
65 	mutex_enter(&zp->z_lock);
66 	if (vp->v_count == 0) {
67 		mutex_exit(&zp->z_lock);
68 		vn_invalid(vp);
69 		zfs_znode_free(zp);
70 	} else {
71 		/* signal force unmount that this znode can be freed */
72 		zp->z_dbuf = NULL;
73 		mutex_exit(&zp->z_lock);
74 	}
75 }
76 
77 /*ARGSUSED*/
78 static int
79 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
80 {
81 	znode_t *zp = buf;
82 
83 	zp->z_vnode = vn_alloc(KM_SLEEP);
84 	zp->z_vnode->v_data = (caddr_t)zp;
85 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
86 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
87 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
88 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
89 
90 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
91 	avl_create(&zp->z_range_avl, zfs_range_compare,
92 	    sizeof (rl_t), offsetof(rl_t, r_node));
93 
94 	zp->z_dbuf_held = 0;
95 	zp->z_dirlocks = 0;
96 	return (0);
97 }
98 
99 /*ARGSUSED*/
100 static void
101 zfs_znode_cache_destructor(void *buf, void *cdarg)
102 {
103 	znode_t *zp = buf;
104 
105 	ASSERT(zp->z_dirlocks == 0);
106 	mutex_destroy(&zp->z_lock);
107 	rw_destroy(&zp->z_map_lock);
108 	rw_destroy(&zp->z_parent_lock);
109 	mutex_destroy(&zp->z_acl_lock);
110 	avl_destroy(&zp->z_range_avl);
111 
112 	ASSERT(zp->z_dbuf_held == 0);
113 	ASSERT(ZTOV(zp)->v_count == 0);
114 	vn_free(ZTOV(zp));
115 }
116 
117 void
118 zfs_znode_init(void)
119 {
120 	/*
121 	 * Initialize zcache
122 	 */
123 	ASSERT(znode_cache == NULL);
124 	znode_cache = kmem_cache_create("zfs_znode_cache",
125 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
126 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
127 }
128 
129 void
130 zfs_znode_fini(void)
131 {
132 	/*
133 	 * Cleanup vfs & vnode ops
134 	 */
135 	zfs_remove_op_tables();
136 
137 	/*
138 	 * Cleanup zcache
139 	 */
140 	if (znode_cache)
141 		kmem_cache_destroy(znode_cache);
142 	znode_cache = NULL;
143 }
144 
145 struct vnodeops *zfs_dvnodeops;
146 struct vnodeops *zfs_fvnodeops;
147 struct vnodeops *zfs_symvnodeops;
148 struct vnodeops *zfs_xdvnodeops;
149 struct vnodeops *zfs_evnodeops;
150 
151 void
152 zfs_remove_op_tables()
153 {
154 	/*
155 	 * Remove vfs ops
156 	 */
157 	ASSERT(zfsfstype);
158 	(void) vfs_freevfsops_by_type(zfsfstype);
159 	zfsfstype = 0;
160 
161 	/*
162 	 * Remove vnode ops
163 	 */
164 	if (zfs_dvnodeops)
165 		vn_freevnodeops(zfs_dvnodeops);
166 	if (zfs_fvnodeops)
167 		vn_freevnodeops(zfs_fvnodeops);
168 	if (zfs_symvnodeops)
169 		vn_freevnodeops(zfs_symvnodeops);
170 	if (zfs_xdvnodeops)
171 		vn_freevnodeops(zfs_xdvnodeops);
172 	if (zfs_evnodeops)
173 		vn_freevnodeops(zfs_evnodeops);
174 
175 	zfs_dvnodeops = NULL;
176 	zfs_fvnodeops = NULL;
177 	zfs_symvnodeops = NULL;
178 	zfs_xdvnodeops = NULL;
179 	zfs_evnodeops = NULL;
180 }
181 
182 extern const fs_operation_def_t zfs_dvnodeops_template[];
183 extern const fs_operation_def_t zfs_fvnodeops_template[];
184 extern const fs_operation_def_t zfs_xdvnodeops_template[];
185 extern const fs_operation_def_t zfs_symvnodeops_template[];
186 extern const fs_operation_def_t zfs_evnodeops_template[];
187 
188 int
189 zfs_create_op_tables()
190 {
191 	int error;
192 
193 	/*
194 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
195 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
196 	 * In this case we just return as the ops vectors are already set up.
197 	 */
198 	if (zfs_dvnodeops)
199 		return (0);
200 
201 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
202 	    &zfs_dvnodeops);
203 	if (error)
204 		return (error);
205 
206 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
207 	    &zfs_fvnodeops);
208 	if (error)
209 		return (error);
210 
211 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
212 	    &zfs_symvnodeops);
213 	if (error)
214 		return (error);
215 
216 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
217 	    &zfs_xdvnodeops);
218 	if (error)
219 		return (error);
220 
221 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
222 	    &zfs_evnodeops);
223 
224 	return (error);
225 }
226 
227 /*
228  * zfs_init_fs - Initialize the zfsvfs struct and the file system
229  *	incore "master" object.  Verify version compatibility.
230  */
231 int
232 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
233 {
234 	extern int zfsfstype;
235 
236 	objset_t	*os = zfsvfs->z_os;
237 	uint64_t	zoid;
238 	uint64_t	version = ZFS_VERSION;
239 	int		i, error;
240 	dmu_object_info_t doi;
241 	dmu_objset_stats_t *stats;
242 
243 	*zpp = NULL;
244 
245 	/*
246 	 * XXX - hack to auto-create the pool root filesystem at
247 	 * the first attempted mount.
248 	 */
249 	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
250 		dmu_tx_t *tx = dmu_tx_create(os);
251 
252 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */
253 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */
254 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
255 		error = dmu_tx_assign(tx, TXG_WAIT);
256 		ASSERT3U(error, ==, 0);
257 		zfs_create_fs(os, cr, tx);
258 		dmu_tx_commit(tx);
259 	}
260 
261 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_VERSION_OBJ, 8, 1,
262 	    &version);
263 	if (error) {
264 		return (error);
265 	} else if (version != ZFS_VERSION) {
266 		(void) printf("Mismatched versions:  File system "
267 		    "is version %lld on-disk format, which is "
268 		    "incompatible with this software version %lld!",
269 		    (u_longlong_t)version, ZFS_VERSION);
270 		return (ENOTSUP);
271 	}
272 
273 	/*
274 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
275 	 * separates our fsid from any other filesystem types, and a
276 	 * 56-bit objset unique ID.  The objset unique ID is unique to
277 	 * all objsets open on this system, provided by unique_create().
278 	 * The 8-bit fs type must be put in the low bits of fsid[1]
279 	 * because that's where other Solaris filesystems put it.
280 	 */
281 	stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP);
282 	dmu_objset_stats(os, stats);
283 	ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0);
284 	zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid;
285 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) |
286 	    zfsfstype & 0xFF;
287 	kmem_free(stats, sizeof (dmu_objset_stats_t));
288 	stats = NULL;
289 
290 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid);
291 	if (error)
292 		return (error);
293 	ASSERT(zoid != 0);
294 	zfsvfs->z_root = zoid;
295 
296 	/*
297 	 * Create the per mount vop tables.
298 	 */
299 
300 	/*
301 	 * Initialize zget mutex's
302 	 */
303 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
304 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
305 
306 	error = zfs_zget(zfsvfs, zoid, zpp);
307 	if (error)
308 		return (error);
309 	ASSERT3U((*zpp)->z_id, ==, zoid);
310 
311 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid);
312 	if (error)
313 		return (error);
314 
315 	zfsvfs->z_dqueue = zoid;
316 
317 	/*
318 	 * Initialize delete head structure
319 	 * Thread(s) will be started/stopped via
320 	 * readonly_changed_cb() depending
321 	 * on whether this is rw/ro mount.
322 	 */
323 	list_create(&zfsvfs->z_delete_head.z_znodes,
324 	    sizeof (znode_t), offsetof(znode_t, z_list_node));
325 
326 	return (0);
327 }
328 
329 /*
330  * Construct a new znode/vnode and intialize.
331  *
332  * This does not do a call to dmu_set_user() that is
333  * up to the caller to do, in case you don't want to
334  * return the znode
335  */
336 static znode_t *
337 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
338 {
339 	znode_t	*zp;
340 	vnode_t *vp;
341 
342 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
343 
344 	ASSERT(zp->z_dirlocks == NULL);
345 
346 	zp->z_phys = db->db_data;
347 	zp->z_zfsvfs = zfsvfs;
348 	zp->z_active = 1;
349 	zp->z_reap = 0;
350 	zp->z_atime_dirty = 0;
351 	zp->z_dbuf_held = 0;
352 	zp->z_mapcnt = 0;
353 	zp->z_last_itx = 0;
354 	zp->z_dbuf = db;
355 	zp->z_id = obj_num;
356 	zp->z_blksz = blksz;
357 	zp->z_seq = 0x7A4653;
358 
359 	mutex_enter(&zfsvfs->z_znodes_lock);
360 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
361 	mutex_exit(&zfsvfs->z_znodes_lock);
362 
363 	vp = ZTOV(zp);
364 	vn_reinit(vp);
365 
366 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
367 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
368 
369 	switch (vp->v_type) {
370 	case VDIR:
371 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
372 			vn_setops(vp, zfs_xdvnodeops);
373 			vp->v_flag |= V_XATTRDIR;
374 		} else
375 			vn_setops(vp, zfs_dvnodeops);
376 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
377 		break;
378 	case VBLK:
379 	case VCHR:
380 		vp->v_rdev = (dev_t)zp->z_phys->zp_rdev;
381 		/*FALLTHROUGH*/
382 	case VFIFO:
383 	case VSOCK:
384 	case VDOOR:
385 		vn_setops(vp, zfs_fvnodeops);
386 		break;
387 	case VREG:
388 		vp->v_flag |= VMODSORT;
389 		vn_setops(vp, zfs_fvnodeops);
390 		break;
391 	case VLNK:
392 		vn_setops(vp, zfs_symvnodeops);
393 		break;
394 	default:
395 		vn_setops(vp, zfs_evnodeops);
396 		break;
397 	}
398 
399 	return (zp);
400 }
401 
402 static void
403 zfs_znode_dmu_init(znode_t *zp)
404 {
405 	znode_t		*nzp;
406 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
407 	dmu_buf_t	*db = zp->z_dbuf;
408 
409 	mutex_enter(&zp->z_lock);
410 
411 	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);
412 
413 	/*
414 	 * there should be no
415 	 * concurrent zgets on this object.
416 	 */
417 	ASSERT3P(nzp, ==, NULL);
418 
419 	/*
420 	 * Slap on VROOT if we are the root znode
421 	 */
422 	if (zp->z_id == zfsvfs->z_root) {
423 		ZTOV(zp)->v_flag |= VROOT;
424 	}
425 
426 	ASSERT(zp->z_dbuf_held == 0);
427 	zp->z_dbuf_held = 1;
428 	VFS_HOLD(zfsvfs->z_vfs);
429 	mutex_exit(&zp->z_lock);
430 	vn_exists(ZTOV(zp));
431 }
432 
433 /*
434  * Create a new DMU object to hold a zfs znode.
435  *
436  *	IN:	dzp	- parent directory for new znode
437  *		vap	- file attributes for new znode
438  *		tx	- dmu transaction id for zap operations
439  *		cr	- credentials of caller
440  *		flag	- flags:
441  *			  IS_ROOT_NODE	- new object will be root
442  *			  IS_XATTR	- new object is an attribute
443  *			  IS_REPLAY	- intent log replay
444  *
445  *	OUT:	oid	- ID of created object
446  *
447  */
448 void
449 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
450 	uint_t flag, znode_t **zpp, int bonuslen)
451 {
452 	dmu_buf_t	*dbp;
453 	znode_phys_t	*pzp;
454 	znode_t		*zp;
455 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
456 	timestruc_t	now;
457 	uint64_t	gen;
458 	int		err;
459 
460 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
461 
462 	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
463 		*oid = vap->va_nodeid;
464 		flag |= IS_REPLAY;
465 		now = vap->va_ctime;		/* see zfs_replay_create() */
466 		gen = vap->va_nblocks;		/* ditto */
467 	} else {
468 		*oid = 0;
469 		gethrestime(&now);
470 		gen = dmu_tx_get_txg(tx);
471 	}
472 
473 	/*
474 	 * Create a new DMU object.
475 	 */
476 	/*
477 	 * There's currently no mechanism for pre-reading the blocks that will
478 	 * be to needed allocate a new object, so we accept the small chance
479 	 * that there will be an i/o error and we will fail one of the
480 	 * assertions below.
481 	 */
482 	if (vap->va_type == VDIR) {
483 		if (flag & IS_REPLAY) {
484 			err = zap_create_claim(zfsvfs->z_os, *oid,
485 			    DMU_OT_DIRECTORY_CONTENTS,
486 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
487 			ASSERT3U(err, ==, 0);
488 		} else {
489 			*oid = zap_create(zfsvfs->z_os,
490 			    DMU_OT_DIRECTORY_CONTENTS,
491 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
492 		}
493 	} else {
494 		if (flag & IS_REPLAY) {
495 			err = dmu_object_claim(zfsvfs->z_os, *oid,
496 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
497 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
498 			ASSERT3U(err, ==, 0);
499 		} else {
500 			*oid = dmu_object_alloc(zfsvfs->z_os,
501 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
502 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
503 		}
504 	}
505 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp));
506 	dmu_buf_will_dirty(dbp, tx);
507 
508 	/*
509 	 * Initialize the znode physical data to zero.
510 	 */
511 	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
512 	bzero(dbp->db_data, dbp->db_size);
513 	pzp = dbp->db_data;
514 
515 	/*
516 	 * If this is the root, fix up the half-initialized parent pointer
517 	 * to reference the just-allocated physical data area.
518 	 */
519 	if (flag & IS_ROOT_NODE) {
520 		dzp->z_phys = pzp;
521 		dzp->z_id = *oid;
522 	}
523 
524 	/*
525 	 * If parent is an xattr, so am I.
526 	 */
527 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
528 		flag |= IS_XATTR;
529 
530 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
531 		pzp->zp_rdev = vap->va_rdev;
532 	}
533 
534 	if (vap->va_type == VDIR) {
535 		pzp->zp_size = 2;		/* contents ("." and "..") */
536 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
537 	}
538 
539 	pzp->zp_parent = dzp->z_id;
540 	if (flag & IS_XATTR)
541 		pzp->zp_flags |= ZFS_XATTR;
542 
543 	pzp->zp_gen = gen;
544 
545 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
546 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
547 
548 	if (vap->va_mask & AT_ATIME) {
549 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
550 	} else {
551 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
552 	}
553 
554 	if (vap->va_mask & AT_MTIME) {
555 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
556 	} else {
557 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
558 	}
559 
560 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
561 	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);
562 
563 	zfs_perm_init(zp, dzp, flag, vap, tx, cr);
564 
565 	if (zpp) {
566 		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);
567 
568 		mutex_enter(hash_mtx);
569 		zfs_znode_dmu_init(zp);
570 		mutex_exit(hash_mtx);
571 
572 		*zpp = zp;
573 	} else {
574 		ZTOV(zp)->v_count = 0;
575 		dmu_buf_rele(dbp, NULL);
576 		zfs_znode_free(zp);
577 	}
578 }
579 
580 int
581 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
582 {
583 	dmu_object_info_t doi;
584 	dmu_buf_t	*db;
585 	znode_t		*zp;
586 	int err;
587 
588 	*zpp = NULL;
589 
590 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
591 
592 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
593 	if (err) {
594 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
595 		return (err);
596 	}
597 
598 	dmu_object_info_from_db(db, &doi);
599 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
600 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
601 		dmu_buf_rele(db, NULL);
602 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
603 		return (EINVAL);
604 	}
605 
606 	ASSERT(db->db_object == obj_num);
607 	ASSERT(db->db_offset == -1);
608 	ASSERT(db->db_data != NULL);
609 
610 	zp = dmu_buf_get_user(db);
611 
612 	if (zp != NULL) {
613 		mutex_enter(&zp->z_lock);
614 
615 		ASSERT3U(zp->z_id, ==, obj_num);
616 		if (zp->z_reap) {
617 			dmu_buf_rele(db, NULL);
618 			mutex_exit(&zp->z_lock);
619 			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
620 			return (ENOENT);
621 		} else if (zp->z_dbuf_held) {
622 			dmu_buf_rele(db, NULL);
623 		} else {
624 			zp->z_dbuf_held = 1;
625 			VFS_HOLD(zfsvfs->z_vfs);
626 		}
627 
628 		if (zp->z_active == 0)
629 			zp->z_active = 1;
630 
631 		VN_HOLD(ZTOV(zp));
632 		mutex_exit(&zp->z_lock);
633 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
634 		*zpp = zp;
635 		return (0);
636 	}
637 
638 	/*
639 	 * Not found create new znode/vnode
640 	 */
641 	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
642 	ASSERT3U(zp->z_id, ==, obj_num);
643 	zfs_znode_dmu_init(zp);
644 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
645 	*zpp = zp;
646 	return (0);
647 }
648 
649 void
650 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
651 {
652 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
653 	int error;
654 
655 	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
656 	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
657 		error = dmu_object_free(zfsvfs->z_os,
658 		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
659 		ASSERT3U(error, ==, 0);
660 	}
661 	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
662 	ASSERT3U(error, ==, 0);
663 	zp->z_dbuf_held = 0;
664 	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
665 	dmu_buf_rele(zp->z_dbuf, NULL);
666 }
667 
668 void
669 zfs_zinactive(znode_t *zp)
670 {
671 	vnode_t	*vp = ZTOV(zp);
672 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
673 	uint64_t z_id = zp->z_id;
674 
675 	ASSERT(zp->z_dbuf_held && zp->z_phys);
676 
677 	/*
678 	 * Don't allow a zfs_zget() while were trying to release this znode
679 	 */
680 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
681 
682 	mutex_enter(&zp->z_lock);
683 	mutex_enter(&vp->v_lock);
684 	vp->v_count--;
685 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
686 		/*
687 		 * If the hold count is greater than zero, somebody has
688 		 * obtained a new reference on this znode while we were
689 		 * processing it here, so we are done.  If we still have
690 		 * mapped pages then we are also done, since we don't
691 		 * want to inactivate the znode until the pages get pushed.
692 		 *
693 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
694 		 * this seems like it would leave the znode hanging with
695 		 * no chance to go inactive...
696 		 */
697 		mutex_exit(&vp->v_lock);
698 		mutex_exit(&zp->z_lock);
699 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
700 		return;
701 	}
702 	mutex_exit(&vp->v_lock);
703 	zp->z_active = 0;
704 
705 	/*
706 	 * If this was the last reference to a file with no links,
707 	 * remove the file from the file system.
708 	 */
709 	if (zp->z_reap) {
710 		mutex_exit(&zp->z_lock);
711 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
712 		/* XATTR files are not put on the delete queue */
713 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
714 			zfs_rmnode(zp);
715 		} else {
716 			mutex_enter(&zfsvfs->z_delete_head.z_mutex);
717 			list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp);
718 			zfsvfs->z_delete_head.z_znode_count++;
719 			cv_broadcast(&zfsvfs->z_delete_head.z_cv);
720 			mutex_exit(&zfsvfs->z_delete_head.z_mutex);
721 		}
722 		VFS_RELE(zfsvfs->z_vfs);
723 		return;
724 	}
725 	ASSERT(zp->z_phys);
726 	ASSERT(zp->z_dbuf_held);
727 
728 	zp->z_dbuf_held = 0;
729 	mutex_exit(&zp->z_lock);
730 	dmu_buf_rele(zp->z_dbuf, NULL);
731 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
732 	VFS_RELE(zfsvfs->z_vfs);
733 }
734 
735 void
736 zfs_znode_free(znode_t *zp)
737 {
738 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
739 
740 	mutex_enter(&zfsvfs->z_znodes_lock);
741 	list_remove(&zfsvfs->z_all_znodes, zp);
742 	mutex_exit(&zfsvfs->z_znodes_lock);
743 
744 	kmem_cache_free(znode_cache, zp);
745 }
746 
747 void
748 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
749 {
750 	timestruc_t	now;
751 
752 	ASSERT(MUTEX_HELD(&zp->z_lock));
753 
754 	gethrestime(&now);
755 
756 	if (tx) {
757 		dmu_buf_will_dirty(zp->z_dbuf, tx);
758 		zp->z_atime_dirty = 0;
759 		zp->z_seq++;
760 	} else {
761 		zp->z_atime_dirty = 1;
762 	}
763 
764 	if (flag & AT_ATIME)
765 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
766 
767 	if (flag & AT_MTIME)
768 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
769 
770 	if (flag & AT_CTIME)
771 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
772 }
773 
774 /*
775  * Update the requested znode timestamps with the current time.
776  * If we are in a transaction, then go ahead and mark the znode
777  * dirty in the transaction so the timestamps will go to disk.
778  * Otherwise, we will get pushed next time the znode is updated
779  * in a transaction, or when this znode eventually goes inactive.
780  *
781  * Why is this OK?
782  *  1 - Only the ACCESS time is ever updated outside of a transaction.
783  *  2 - Multiple consecutive updates will be collapsed into a single
784  *	znode update by the transaction grouping semantics of the DMU.
785  */
786 void
787 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
788 {
789 	mutex_enter(&zp->z_lock);
790 	zfs_time_stamper_locked(zp, flag, tx);
791 	mutex_exit(&zp->z_lock);
792 }
793 
794 /*
795  * Grow the block size for a file.
796  *
797  *	IN:	zp	- znode of file to free data in.
798  *		size	- requested block size
799  *		tx	- open transaction.
800  *
801  * NOTE: this function assumes that the znode is write locked.
802  */
803 void
804 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
805 {
806 	int		error;
807 	u_longlong_t	dummy;
808 
809 	if (size <= zp->z_blksz)
810 		return;
811 	/*
812 	 * If the file size is already greater than the current blocksize,
813 	 * we will not grow.  If there is more than one block in a file,
814 	 * the blocksize cannot change.
815 	 */
816 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
817 		return;
818 
819 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
820 	    size, 0, tx);
821 	if (error == ENOTSUP)
822 		return;
823 	ASSERT3U(error, ==, 0);
824 
825 	/* What blocksize did we actually get? */
826 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
827 }
828 
829 /*
830  * This is a dummy interface used when pvn_vplist_dirty() should *not*
831  * be calling back into the fs for a putpage().  E.g.: when truncating
832  * a file, the pages being "thrown away* don't need to be written out.
833  */
834 /* ARGSUSED */
835 static int
836 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
837     int flags, cred_t *cr)
838 {
839 	ASSERT(0);
840 	return (0);
841 }
842 
843 /*
844  * Free space in a file.
845  *
846  *	IN:	zp	- znode of file to free data in.
847  *		from	- start of section to free.
848  *		len	- length of section to free (0 => to EOF).
849  *		flag	- current file open mode flags.
850  *		tx	- open transaction.
851  *
852  * 	RETURN:	0 if success
853  *		error code if failure
854  */
855 int
856 zfs_freesp(znode_t *zp, uint64_t from, uint64_t len, int flag, dmu_tx_t *tx,
857 	cred_t *cr)
858 {
859 	vnode_t *vp = ZTOV(zp);
860 	uint64_t size = zp->z_phys->zp_size;
861 	uint64_t end = from + len;
862 	int error;
863 
864 	if (ZTOV(zp)->v_type == VFIFO)
865 		return (0);
866 
867 	/*
868 	 * Nothing to do if file already at desired length.
869 	 */
870 	if (len == 0 && size == from) {
871 		return (0);
872 	}
873 
874 	/*
875 	 * Check for any locks in the region to be freed.
876 	 */
877 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
878 		uint64_t	start;
879 
880 		if (size > from)
881 			start = from;
882 		else
883 			start = size;
884 		if (error = chklock(vp, FWRITE, start, 0, flag, NULL))
885 			return (error);
886 	}
887 
888 	if (end > zp->z_blksz && (!ISP2(zp->z_blksz) ||
889 	    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
890 		uint64_t new_blksz;
891 		/*
892 		 * We are growing the file past the current block size.
893 		 */
894 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
895 			ASSERT(!ISP2(zp->z_blksz));
896 			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
897 		} else {
898 			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
899 		}
900 		zfs_grow_blocksize(zp, new_blksz, tx);
901 	}
902 	if (end > size || len == 0)
903 		zp->z_phys->zp_size = end;
904 	if (from > size)
905 		return (0);
906 
907 	/*
908 	 * Clear any mapped pages in the truncated region.
909 	 */
910 	rw_enter(&zp->z_map_lock, RW_WRITER);
911 	if (vn_has_cached_data(vp)) {
912 		page_t *pp;
913 		uint64_t start = from & PAGEMASK;
914 		int off = from & PAGEOFFSET;
915 
916 		if (off != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
917 			/*
918 			 * We need to zero a partial page.
919 			 */
920 			pagezero(pp, off, PAGESIZE - off);
921 			start += PAGESIZE;
922 			page_unlock(pp);
923 		}
924 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
925 		    B_INVAL | B_TRUNC, cr);
926 		ASSERT(error == 0);
927 	}
928 	rw_exit(&zp->z_map_lock);
929 
930 	if (len == 0)
931 		len = -1;
932 	else if (end > size)
933 		len = size - from;
934 	VERIFY(0 == dmu_free_range(zp->z_zfsvfs->z_os,
935 	    zp->z_id, from, len, tx));
936 
937 	return (0);
938 }
939 
940 void
941 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
942 {
943 	zfsvfs_t	zfsvfs;
944 	uint64_t	moid, doid, roid = 0;
945 	uint64_t	version = ZFS_VERSION;
946 	int		error;
947 	znode_t		*rootzp = NULL;
948 	vnode_t		*vp;
949 	vattr_t		vattr;
950 
951 	/*
952 	 * First attempt to create master node.
953 	 */
954 	/*
955 	 * In an empty objset, there are no blocks to read and thus
956 	 * there can be no i/o errors (which we assert below).
957 	 */
958 	moid = MASTER_NODE_OBJ;
959 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
960 	    DMU_OT_NONE, 0, tx);
961 	ASSERT(error == 0);
962 
963 	/*
964 	 * Set starting attributes.
965 	 */
966 
967 	error = zap_update(os, moid, ZFS_VERSION_OBJ, 8, 1, &version, tx);
968 	ASSERT(error == 0);
969 
970 	/*
971 	 * Create a delete queue.
972 	 */
973 	doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx);
974 
975 	error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx);
976 	ASSERT(error == 0);
977 
978 	/*
979 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
980 	 * to allow zfs_mknode to work.
981 	 */
982 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
983 	vattr.va_type = VDIR;
984 	vattr.va_mode = S_IFDIR|0755;
985 	vattr.va_uid = 0;
986 	vattr.va_gid = 3;
987 
988 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
989 	rootzp->z_zfsvfs = &zfsvfs;
990 	rootzp->z_active = 1;
991 	rootzp->z_reap = 0;
992 	rootzp->z_atime_dirty = 0;
993 	rootzp->z_dbuf_held = 0;
994 
995 	vp = ZTOV(rootzp);
996 	vn_reinit(vp);
997 	vp->v_type = VDIR;
998 
999 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1000 
1001 	zfsvfs.z_os = os;
1002 	zfsvfs.z_assign = TXG_NOWAIT;
1003 	zfsvfs.z_parent = &zfsvfs;
1004 
1005 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1006 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1007 	    offsetof(znode_t, z_link_node));
1008 
1009 	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
1010 	ASSERT3U(rootzp->z_id, ==, roid);
1011 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
1012 	ASSERT(error == 0);
1013 
1014 	ZTOV(rootzp)->v_count = 0;
1015 	kmem_cache_free(znode_cache, rootzp);
1016 }
1017