1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 /* 72 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 73 * turned on when DEBUG is also defined. 74 */ 75 #ifdef DEBUG 76 #define ZNODE_STATS 77 #endif /* DEBUG */ 78 79 #ifdef ZNODE_STATS 80 #define ZNODE_STAT_ADD(stat) ((stat)++) 81 #else 82 #define ZNODE_STAT_ADD(stat) /* nothing */ 83 #endif /* ZNODE_STATS */ 84 85 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 86 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 87 88 /* 89 * Functions needed for userland (ie: libzpool) are not put under 90 * #ifdef_KERNEL; the rest of the functions have dependencies 91 * (such as VFS logic) that will not compile easily in userland. 92 */ 93 #ifdef _KERNEL 94 /* 95 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 96 * be freed before it can be safely accessed. 97 */ 98 krwlock_t zfsvfs_lock; 99 100 static kmem_cache_t *znode_cache = NULL; 101 102 /*ARGSUSED*/ 103 static void 104 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 105 { 106 /* 107 * We should never drop all dbuf refs without first clearing 108 * the eviction callback. 109 */ 110 panic("evicting znode %p\n", user_ptr); 111 } 112 113 /*ARGSUSED*/ 114 static int 115 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 116 { 117 znode_t *zp = buf; 118 119 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 120 121 zp->z_vnode = vn_alloc(kmflags); 122 if (zp->z_vnode == NULL) { 123 return (-1); 124 } 125 ZTOV(zp)->v_data = zp; 126 127 list_link_init(&zp->z_link_node); 128 129 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 130 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 131 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 132 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 133 134 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 135 avl_create(&zp->z_range_avl, zfs_range_compare, 136 sizeof (rl_t), offsetof(rl_t, r_node)); 137 138 zp->z_dirlocks = NULL; 139 zp->z_acl_cached = NULL; 140 return (0); 141 } 142 143 /*ARGSUSED*/ 144 static void 145 zfs_znode_cache_destructor(void *buf, void *arg) 146 { 147 znode_t *zp = buf; 148 149 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 150 ASSERT(ZTOV(zp)->v_data == zp); 151 vn_free(ZTOV(zp)); 152 ASSERT(!list_link_active(&zp->z_link_node)); 153 mutex_destroy(&zp->z_lock); 154 rw_destroy(&zp->z_parent_lock); 155 rw_destroy(&zp->z_name_lock); 156 mutex_destroy(&zp->z_acl_lock); 157 avl_destroy(&zp->z_range_avl); 158 mutex_destroy(&zp->z_range_lock); 159 160 ASSERT(zp->z_dirlocks == NULL); 161 ASSERT(zp->z_acl_cached == NULL); 162 } 163 164 #ifdef ZNODE_STATS 165 static struct { 166 uint64_t zms_zfsvfs_invalid; 167 uint64_t zms_zfsvfs_recheck1; 168 uint64_t zms_zfsvfs_unmounted; 169 uint64_t zms_zfsvfs_recheck2; 170 uint64_t zms_obj_held; 171 uint64_t zms_vnode_locked; 172 uint64_t zms_not_only_dnlc; 173 } znode_move_stats; 174 #endif /* ZNODE_STATS */ 175 176 static void 177 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 178 { 179 vnode_t *vp; 180 181 /* Copy fields. */ 182 nzp->z_zfsvfs = ozp->z_zfsvfs; 183 184 /* Swap vnodes. */ 185 vp = nzp->z_vnode; 186 nzp->z_vnode = ozp->z_vnode; 187 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 188 ZTOV(ozp)->v_data = ozp; 189 ZTOV(nzp)->v_data = nzp; 190 191 nzp->z_id = ozp->z_id; 192 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 193 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 194 nzp->z_unlinked = ozp->z_unlinked; 195 nzp->z_atime_dirty = ozp->z_atime_dirty; 196 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 197 nzp->z_blksz = ozp->z_blksz; 198 nzp->z_seq = ozp->z_seq; 199 nzp->z_mapcnt = ozp->z_mapcnt; 200 nzp->z_last_itx = ozp->z_last_itx; 201 nzp->z_gen = ozp->z_gen; 202 nzp->z_sync_cnt = ozp->z_sync_cnt; 203 nzp->z_is_sa = ozp->z_is_sa; 204 nzp->z_sa_hdl = ozp->z_sa_hdl; 205 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 206 nzp->z_links = ozp->z_links; 207 nzp->z_size = ozp->z_size; 208 nzp->z_pflags = ozp->z_pflags; 209 nzp->z_uid = ozp->z_uid; 210 nzp->z_gid = ozp->z_gid; 211 nzp->z_mode = ozp->z_mode; 212 213 /* 214 * Since this is just an idle znode and kmem is already dealing with 215 * memory pressure, release any cached ACL. 216 */ 217 if (ozp->z_acl_cached) { 218 zfs_acl_free(ozp->z_acl_cached); 219 ozp->z_acl_cached = NULL; 220 } 221 222 sa_set_userp(nzp->z_sa_hdl, nzp); 223 224 /* 225 * Invalidate the original znode by clearing fields that provide a 226 * pointer back to the znode. Set the low bit of the vfs pointer to 227 * ensure that zfs_znode_move() recognizes the znode as invalid in any 228 * subsequent callback. 229 */ 230 ozp->z_sa_hdl = NULL; 231 POINTER_INVALIDATE(&ozp->z_zfsvfs); 232 } 233 234 /*ARGSUSED*/ 235 static kmem_cbrc_t 236 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 237 { 238 znode_t *ozp = buf, *nzp = newbuf; 239 zfsvfs_t *zfsvfs; 240 vnode_t *vp; 241 242 /* 243 * The znode is on the file system's list of known znodes if the vfs 244 * pointer is valid. We set the low bit of the vfs pointer when freeing 245 * the znode to invalidate it, and the memory patterns written by kmem 246 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 247 * created znode sets the vfs pointer last of all to indicate that the 248 * znode is known and in a valid state to be moved by this function. 249 */ 250 zfsvfs = ozp->z_zfsvfs; 251 if (!POINTER_IS_VALID(zfsvfs)) { 252 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 253 return (KMEM_CBRC_DONT_KNOW); 254 } 255 256 /* 257 * Close a small window in which it's possible that the filesystem could 258 * be unmounted and freed, and zfsvfs, though valid in the previous 259 * statement, could point to unrelated memory by the time we try to 260 * prevent the filesystem from being unmounted. 261 */ 262 rw_enter(&zfsvfs_lock, RW_WRITER); 263 if (zfsvfs != ozp->z_zfsvfs) { 264 rw_exit(&zfsvfs_lock); 265 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 266 return (KMEM_CBRC_DONT_KNOW); 267 } 268 269 /* 270 * If the znode is still valid, then so is the file system. We know that 271 * no valid file system can be freed while we hold zfsvfs_lock, so we 272 * can safely ensure that the filesystem is not and will not be 273 * unmounted. The next statement is equivalent to ZFS_ENTER(). 274 */ 275 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 276 if (zfsvfs->z_unmounted) { 277 ZFS_EXIT(zfsvfs); 278 rw_exit(&zfsvfs_lock); 279 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 280 return (KMEM_CBRC_DONT_KNOW); 281 } 282 rw_exit(&zfsvfs_lock); 283 284 mutex_enter(&zfsvfs->z_znodes_lock); 285 /* 286 * Recheck the vfs pointer in case the znode was removed just before 287 * acquiring the lock. 288 */ 289 if (zfsvfs != ozp->z_zfsvfs) { 290 mutex_exit(&zfsvfs->z_znodes_lock); 291 ZFS_EXIT(zfsvfs); 292 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 293 return (KMEM_CBRC_DONT_KNOW); 294 } 295 296 /* 297 * At this point we know that as long as we hold z_znodes_lock, the 298 * znode cannot be freed and fields within the znode can be safely 299 * accessed. Now, prevent a race with zfs_zget(). 300 */ 301 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 305 return (KMEM_CBRC_LATER); 306 } 307 308 vp = ZTOV(ozp); 309 if (mutex_tryenter(&vp->v_lock) == 0) { 310 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 311 mutex_exit(&zfsvfs->z_znodes_lock); 312 ZFS_EXIT(zfsvfs); 313 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 314 return (KMEM_CBRC_LATER); 315 } 316 317 /* Only move znodes that are referenced _only_ by the DNLC. */ 318 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 319 mutex_exit(&vp->v_lock); 320 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 321 mutex_exit(&zfsvfs->z_znodes_lock); 322 ZFS_EXIT(zfsvfs); 323 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 324 return (KMEM_CBRC_LATER); 325 } 326 327 /* 328 * The znode is known and in a valid state to move. We're holding the 329 * locks needed to execute the critical section. 330 */ 331 zfs_znode_move_impl(ozp, nzp); 332 mutex_exit(&vp->v_lock); 333 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 334 335 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 336 mutex_exit(&zfsvfs->z_znodes_lock); 337 ZFS_EXIT(zfsvfs); 338 339 return (KMEM_CBRC_YES); 340 } 341 342 void 343 zfs_znode_init(void) 344 { 345 /* 346 * Initialize zcache 347 */ 348 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 349 ASSERT(znode_cache == NULL); 350 znode_cache = kmem_cache_create("zfs_znode_cache", 351 sizeof (znode_t), 0, zfs_znode_cache_constructor, 352 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 353 kmem_cache_set_move(znode_cache, zfs_znode_move); 354 } 355 356 void 357 zfs_znode_fini(void) 358 { 359 /* 360 * Cleanup vfs & vnode ops 361 */ 362 zfs_remove_op_tables(); 363 364 /* 365 * Cleanup zcache 366 */ 367 if (znode_cache) 368 kmem_cache_destroy(znode_cache); 369 znode_cache = NULL; 370 rw_destroy(&zfsvfs_lock); 371 } 372 373 struct vnodeops *zfs_dvnodeops; 374 struct vnodeops *zfs_fvnodeops; 375 struct vnodeops *zfs_symvnodeops; 376 struct vnodeops *zfs_xdvnodeops; 377 struct vnodeops *zfs_evnodeops; 378 struct vnodeops *zfs_sharevnodeops; 379 380 void 381 zfs_remove_op_tables() 382 { 383 /* 384 * Remove vfs ops 385 */ 386 ASSERT(zfsfstype); 387 (void) vfs_freevfsops_by_type(zfsfstype); 388 zfsfstype = 0; 389 390 /* 391 * Remove vnode ops 392 */ 393 if (zfs_dvnodeops) 394 vn_freevnodeops(zfs_dvnodeops); 395 if (zfs_fvnodeops) 396 vn_freevnodeops(zfs_fvnodeops); 397 if (zfs_symvnodeops) 398 vn_freevnodeops(zfs_symvnodeops); 399 if (zfs_xdvnodeops) 400 vn_freevnodeops(zfs_xdvnodeops); 401 if (zfs_evnodeops) 402 vn_freevnodeops(zfs_evnodeops); 403 if (zfs_sharevnodeops) 404 vn_freevnodeops(zfs_sharevnodeops); 405 406 zfs_dvnodeops = NULL; 407 zfs_fvnodeops = NULL; 408 zfs_symvnodeops = NULL; 409 zfs_xdvnodeops = NULL; 410 zfs_evnodeops = NULL; 411 zfs_sharevnodeops = NULL; 412 } 413 414 extern const fs_operation_def_t zfs_dvnodeops_template[]; 415 extern const fs_operation_def_t zfs_fvnodeops_template[]; 416 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 417 extern const fs_operation_def_t zfs_symvnodeops_template[]; 418 extern const fs_operation_def_t zfs_evnodeops_template[]; 419 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 420 421 int 422 zfs_create_op_tables() 423 { 424 int error; 425 426 /* 427 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 428 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 429 * In this case we just return as the ops vectors are already set up. 430 */ 431 if (zfs_dvnodeops) 432 return (0); 433 434 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 435 &zfs_dvnodeops); 436 if (error) 437 return (error); 438 439 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 440 &zfs_fvnodeops); 441 if (error) 442 return (error); 443 444 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 445 &zfs_symvnodeops); 446 if (error) 447 return (error); 448 449 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 450 &zfs_xdvnodeops); 451 if (error) 452 return (error); 453 454 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 455 &zfs_evnodeops); 456 if (error) 457 return (error); 458 459 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 460 &zfs_sharevnodeops); 461 462 return (error); 463 } 464 465 int 466 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 467 { 468 zfs_acl_ids_t acl_ids; 469 vattr_t vattr; 470 znode_t *sharezp; 471 vnode_t *vp; 472 znode_t *zp; 473 int error; 474 475 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 476 vattr.va_type = VDIR; 477 vattr.va_mode = S_IFDIR|0555; 478 vattr.va_uid = crgetuid(kcred); 479 vattr.va_gid = crgetgid(kcred); 480 481 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 482 sharezp->z_unlinked = 0; 483 sharezp->z_atime_dirty = 0; 484 sharezp->z_zfsvfs = zfsvfs; 485 sharezp->z_is_sa = zfsvfs->z_use_sa; 486 487 vp = ZTOV(sharezp); 488 vn_reinit(vp); 489 vp->v_type = VDIR; 490 491 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 492 kcred, NULL, &acl_ids)); 493 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 494 ASSERT3P(zp, ==, sharezp); 495 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 496 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 497 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 498 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 499 zfsvfs->z_shares_dir = sharezp->z_id; 500 501 zfs_acl_ids_free(&acl_ids); 502 ZTOV(sharezp)->v_count = 0; 503 sa_handle_destroy(sharezp->z_sa_hdl); 504 kmem_cache_free(znode_cache, sharezp); 505 506 return (error); 507 } 508 509 /* 510 * define a couple of values we need available 511 * for both 64 and 32 bit environments. 512 */ 513 #ifndef NBITSMINOR64 514 #define NBITSMINOR64 32 515 #endif 516 #ifndef MAXMAJ64 517 #define MAXMAJ64 0xffffffffUL 518 #endif 519 #ifndef MAXMIN64 520 #define MAXMIN64 0xffffffffUL 521 #endif 522 523 /* 524 * Create special expldev for ZFS private use. 525 * Can't use standard expldev since it doesn't do 526 * what we want. The standard expldev() takes a 527 * dev32_t in LP64 and expands it to a long dev_t. 528 * We need an interface that takes a dev32_t in ILP32 529 * and expands it to a long dev_t. 530 */ 531 static uint64_t 532 zfs_expldev(dev_t dev) 533 { 534 #ifndef _LP64 535 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 536 return (((uint64_t)major << NBITSMINOR64) | 537 ((minor_t)dev & MAXMIN32)); 538 #else 539 return (dev); 540 #endif 541 } 542 543 /* 544 * Special cmpldev for ZFS private use. 545 * Can't use standard cmpldev since it takes 546 * a long dev_t and compresses it to dev32_t in 547 * LP64. We need to do a compaction of a long dev_t 548 * to a dev32_t in ILP32. 549 */ 550 dev_t 551 zfs_cmpldev(uint64_t dev) 552 { 553 #ifndef _LP64 554 minor_t minor = (minor_t)dev & MAXMIN64; 555 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 556 557 if (major > MAXMAJ32 || minor > MAXMIN32) 558 return (NODEV32); 559 560 return (((dev32_t)major << NBITSMINOR32) | minor); 561 #else 562 return (dev); 563 #endif 564 } 565 566 static void 567 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 568 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 569 { 570 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 571 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 572 573 mutex_enter(&zp->z_lock); 574 575 ASSERT(zp->z_sa_hdl == NULL); 576 ASSERT(zp->z_acl_cached == NULL); 577 if (sa_hdl == NULL) { 578 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 579 SA_HDL_SHARED, &zp->z_sa_hdl)); 580 } else { 581 zp->z_sa_hdl = sa_hdl; 582 sa_set_userp(sa_hdl, zp); 583 } 584 585 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 586 587 /* 588 * Slap on VROOT if we are the root znode 589 */ 590 if (zp->z_id == zfsvfs->z_root) 591 ZTOV(zp)->v_flag |= VROOT; 592 593 mutex_exit(&zp->z_lock); 594 vn_exists(ZTOV(zp)); 595 } 596 597 void 598 zfs_znode_dmu_fini(znode_t *zp) 599 { 600 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 601 zp->z_unlinked || 602 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 603 604 sa_handle_destroy(zp->z_sa_hdl); 605 zp->z_sa_hdl = NULL; 606 } 607 608 /* 609 * Construct a new znode/vnode and intialize. 610 * 611 * This does not do a call to dmu_set_user() that is 612 * up to the caller to do, in case you don't want to 613 * return the znode 614 */ 615 static znode_t * 616 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 617 dmu_object_type_t obj_type, sa_handle_t *hdl) 618 { 619 znode_t *zp; 620 vnode_t *vp; 621 uint64_t mode; 622 uint64_t parent; 623 uint64_t uid, gid; 624 sa_bulk_attr_t bulk[9]; 625 int count = 0; 626 627 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 628 629 ASSERT(zp->z_dirlocks == NULL); 630 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 631 632 /* 633 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 634 * the zfs_znode_move() callback. 635 */ 636 zp->z_sa_hdl = NULL; 637 zp->z_unlinked = 0; 638 zp->z_atime_dirty = 0; 639 zp->z_mapcnt = 0; 640 zp->z_last_itx = 0; 641 zp->z_id = db->db_object; 642 zp->z_blksz = blksz; 643 zp->z_seq = 0x7A4653; 644 zp->z_sync_cnt = 0; 645 646 vp = ZTOV(zp); 647 vn_reinit(vp); 648 649 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 650 651 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 653 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 654 &zp->z_size, 8); 655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 656 &zp->z_links, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 658 &zp->z_pflags, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 661 &zp->z_atime, 16); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 663 &uid, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 665 &gid, 8); 666 667 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 668 if (hdl == NULL) 669 sa_handle_destroy(zp->z_sa_hdl); 670 kmem_cache_free(znode_cache, zp); 671 return (NULL); 672 } 673 674 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 675 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 676 zp->z_mode = mode; 677 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 678 679 vp->v_type = IFTOVT((mode_t)mode); 680 681 switch (vp->v_type) { 682 case VDIR: 683 if (zp->z_pflags & ZFS_XATTR) { 684 vn_setops(vp, zfs_xdvnodeops); 685 vp->v_flag |= V_XATTRDIR; 686 } else { 687 vn_setops(vp, zfs_dvnodeops); 688 } 689 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 690 break; 691 case VBLK: 692 case VCHR: 693 { 694 uint64_t rdev; 695 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 696 &rdev, sizeof (rdev)) == 0); 697 698 vp->v_rdev = zfs_cmpldev(rdev); 699 } 700 /*FALLTHROUGH*/ 701 case VFIFO: 702 case VSOCK: 703 case VDOOR: 704 vn_setops(vp, zfs_fvnodeops); 705 break; 706 case VREG: 707 vp->v_flag |= VMODSORT; 708 if (parent == zfsvfs->z_shares_dir) { 709 ASSERT(uid == 0 && gid == 0); 710 vn_setops(vp, zfs_sharevnodeops); 711 } else { 712 vn_setops(vp, zfs_fvnodeops); 713 } 714 break; 715 case VLNK: 716 vn_setops(vp, zfs_symvnodeops); 717 break; 718 default: 719 vn_setops(vp, zfs_evnodeops); 720 break; 721 } 722 723 mutex_enter(&zfsvfs->z_znodes_lock); 724 list_insert_tail(&zfsvfs->z_all_znodes, zp); 725 membar_producer(); 726 /* 727 * Everything else must be valid before assigning z_zfsvfs makes the 728 * znode eligible for zfs_znode_move(). 729 */ 730 zp->z_zfsvfs = zfsvfs; 731 mutex_exit(&zfsvfs->z_znodes_lock); 732 733 VFS_HOLD(zfsvfs->z_vfs); 734 return (zp); 735 } 736 737 static uint64_t empty_xattr; 738 static uint64_t pad[4]; 739 static zfs_acl_phys_t acl_phys; 740 /* 741 * Create a new DMU object to hold a zfs znode. 742 * 743 * IN: dzp - parent directory for new znode 744 * vap - file attributes for new znode 745 * tx - dmu transaction id for zap operations 746 * cr - credentials of caller 747 * flag - flags: 748 * IS_ROOT_NODE - new object will be root 749 * IS_XATTR - new object is an attribute 750 * bonuslen - length of bonus buffer 751 * setaclp - File/Dir initial ACL 752 * fuidp - Tracks fuid allocation. 753 * 754 * OUT: zpp - allocated znode 755 * 756 */ 757 void 758 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 759 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 760 { 761 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 762 uint64_t mode, size, links, parent, pflags; 763 uint64_t dzp_pflags = 0; 764 uint64_t rdev = 0; 765 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 766 dmu_buf_t *db; 767 timestruc_t now; 768 uint64_t gen, obj; 769 int err; 770 int bonuslen; 771 sa_handle_t *sa_hdl; 772 dmu_object_type_t obj_type; 773 sa_bulk_attr_t sa_attrs[ZPL_END]; 774 int cnt = 0; 775 zfs_acl_locator_cb_t locate = { 0 }; 776 777 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 778 779 if (zfsvfs->z_replay) { 780 obj = vap->va_nodeid; 781 now = vap->va_ctime; /* see zfs_replay_create() */ 782 gen = vap->va_nblocks; /* ditto */ 783 } else { 784 obj = 0; 785 gethrestime(&now); 786 gen = dmu_tx_get_txg(tx); 787 } 788 789 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 790 bonuslen = (obj_type == DMU_OT_SA) ? 791 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 792 793 /* 794 * Create a new DMU object. 795 */ 796 /* 797 * There's currently no mechanism for pre-reading the blocks that will 798 * be to needed allocate a new object, so we accept the small chance 799 * that there will be an i/o error and we will fail one of the 800 * assertions below. 801 */ 802 if (vap->va_type == VDIR) { 803 if (zfsvfs->z_replay) { 804 err = zap_create_claim_norm(zfsvfs->z_os, obj, 805 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 806 obj_type, bonuslen, tx); 807 ASSERT3U(err, ==, 0); 808 } else { 809 obj = zap_create_norm(zfsvfs->z_os, 810 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 811 obj_type, bonuslen, tx); 812 } 813 } else { 814 if (zfsvfs->z_replay) { 815 err = dmu_object_claim(zfsvfs->z_os, obj, 816 DMU_OT_PLAIN_FILE_CONTENTS, 0, 817 obj_type, bonuslen, tx); 818 ASSERT3U(err, ==, 0); 819 } else { 820 obj = dmu_object_alloc(zfsvfs->z_os, 821 DMU_OT_PLAIN_FILE_CONTENTS, 0, 822 obj_type, bonuslen, tx); 823 } 824 } 825 826 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 827 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 828 829 /* 830 * If this is the root, fix up the half-initialized parent pointer 831 * to reference the just-allocated physical data area. 832 */ 833 if (flag & IS_ROOT_NODE) { 834 dzp->z_id = obj; 835 } else { 836 dzp_pflags = dzp->z_pflags; 837 } 838 839 /* 840 * If parent is an xattr, so am I. 841 */ 842 if (dzp_pflags & ZFS_XATTR) { 843 flag |= IS_XATTR; 844 } 845 846 if (zfsvfs->z_use_fuids) 847 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 848 else 849 pflags = 0; 850 851 if (vap->va_type == VDIR) { 852 size = 2; /* contents ("." and "..") */ 853 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 854 } else { 855 size = links = 0; 856 } 857 858 if (vap->va_type == VBLK || vap->va_type == VCHR) { 859 rdev = zfs_expldev(vap->va_rdev); 860 } 861 862 parent = dzp->z_id; 863 mode = acl_ids->z_mode; 864 if (flag & IS_XATTR) 865 pflags |= ZFS_XATTR; 866 867 /* 868 * No execs denied will be deterimed when zfs_mode_compute() is called. 869 */ 870 pflags |= acl_ids->z_aclp->z_hints & 871 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 872 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 873 874 ZFS_TIME_ENCODE(&now, crtime); 875 ZFS_TIME_ENCODE(&now, ctime); 876 877 if (vap->va_mask & AT_ATIME) { 878 ZFS_TIME_ENCODE(&vap->va_atime, atime); 879 } else { 880 ZFS_TIME_ENCODE(&now, atime); 881 } 882 883 if (vap->va_mask & AT_MTIME) { 884 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 885 } else { 886 ZFS_TIME_ENCODE(&now, mtime); 887 } 888 889 /* Now add in all of the "SA" attributes */ 890 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 891 &sa_hdl)); 892 893 /* 894 * Setup the array of attributes to be replaced/set on the new file 895 * 896 * order for DMU_OT_ZNODE is critical since it needs to be constructed 897 * in the old znode_phys_t format. Don't change this ordering 898 */ 899 900 if (obj_type == DMU_OT_ZNODE) { 901 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 902 NULL, &atime, 16); 903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 904 NULL, &mtime, 16); 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 906 NULL, &ctime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 908 NULL, &crtime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 910 NULL, &gen, 8); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 912 NULL, &mode, 8); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 914 NULL, &size, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 916 NULL, &parent, 8); 917 } else { 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 919 NULL, &mode, 8); 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 921 NULL, &size, 8); 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 923 NULL, &gen, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 925 &acl_ids->z_fuid, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 927 &acl_ids->z_fgid, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 929 NULL, &parent, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 931 NULL, &pflags, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 933 NULL, &atime, 16); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 935 NULL, &mtime, 16); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 937 NULL, &ctime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 939 NULL, &crtime, 16); 940 } 941 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 943 944 if (obj_type == DMU_OT_ZNODE) { 945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 946 &empty_xattr, 8); 947 } 948 if (obj_type == DMU_OT_ZNODE || 949 (vap->va_type == VBLK || vap->va_type == VCHR)) { 950 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 951 NULL, &rdev, 8); 952 953 } 954 if (obj_type == DMU_OT_ZNODE) { 955 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 956 NULL, &pflags, 8); 957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 958 &acl_ids->z_fuid, 8); 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 960 &acl_ids->z_fgid, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 962 sizeof (uint64_t) * 4); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 964 &acl_phys, sizeof (zfs_acl_phys_t)); 965 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 967 &acl_ids->z_aclp->z_acl_count, 8); 968 locate.cb_aclp = acl_ids->z_aclp; 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 970 zfs_acl_data_locator, &locate, 971 acl_ids->z_aclp->z_acl_bytes); 972 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags); 973 } 974 975 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 976 977 if (!(flag & IS_ROOT_NODE)) { 978 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 979 ASSERT(*zpp != NULL); 980 } else { 981 /* 982 * If we are creating the root node, the "parent" we 983 * passed in is the znode for the root. 984 */ 985 *zpp = dzp; 986 987 (*zpp)->z_sa_hdl = sa_hdl; 988 } 989 990 if (vap->va_mask & AT_XVATTR) 991 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 992 993 (*zpp)->z_pflags = pflags; 994 (*zpp)->z_mode = mode; 995 996 if (obj_type == DMU_OT_ZNODE || 997 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 998 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 999 ASSERT3P(err, ==, 0); 1000 } 1001 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1002 } 1003 1004 /* 1005 * zfs_xvattr_set only updates the in-core attributes 1006 * it is assumed the caller will be doing an sa_bulk_update 1007 * to push the changes out 1008 */ 1009 void 1010 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1011 { 1012 xoptattr_t *xoap; 1013 1014 xoap = xva_getxoptattr(xvap); 1015 ASSERT(xoap); 1016 1017 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1018 uint64_t times[2]; 1019 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1020 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1021 ×, sizeof (times), tx); 1022 XVA_SET_RTN(xvap, XAT_CREATETIME); 1023 } 1024 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1025 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1026 zp->z_pflags, tx); 1027 XVA_SET_RTN(xvap, XAT_READONLY); 1028 } 1029 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1030 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1031 zp->z_pflags, tx); 1032 XVA_SET_RTN(xvap, XAT_HIDDEN); 1033 } 1034 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1035 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1036 zp->z_pflags, tx); 1037 XVA_SET_RTN(xvap, XAT_SYSTEM); 1038 } 1039 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1040 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1041 zp->z_pflags, tx); 1042 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1043 } 1044 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1045 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1046 zp->z_pflags, tx); 1047 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1048 } 1049 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1050 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1051 zp->z_pflags, tx); 1052 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1053 } 1054 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1055 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1056 zp->z_pflags, tx); 1057 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1058 } 1059 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1060 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1061 zp->z_pflags, tx); 1062 XVA_SET_RTN(xvap, XAT_NODUMP); 1063 } 1064 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1065 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1066 zp->z_pflags, tx); 1067 XVA_SET_RTN(xvap, XAT_OPAQUE); 1068 } 1069 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1070 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1071 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1072 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1073 } 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1075 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1076 zp->z_pflags, tx); 1077 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1078 } 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1080 zfs_sa_set_scanstamp(zp, xvap, tx); 1081 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1082 } 1083 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1084 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1085 zp->z_pflags, tx); 1086 XVA_SET_RTN(xvap, XAT_REPARSE); 1087 } 1088 } 1089 1090 int 1091 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1092 { 1093 dmu_object_info_t doi; 1094 dmu_buf_t *db; 1095 znode_t *zp; 1096 int err; 1097 sa_handle_t *hdl; 1098 1099 *zpp = NULL; 1100 1101 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1102 1103 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1104 if (err) { 1105 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1106 return (err); 1107 } 1108 1109 dmu_object_info_from_db(db, &doi); 1110 if (doi.doi_bonus_type != DMU_OT_SA && 1111 (doi.doi_bonus_type != DMU_OT_ZNODE || 1112 (doi.doi_bonus_type == DMU_OT_ZNODE && 1113 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1114 sa_buf_rele(db, NULL); 1115 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1116 return (EINVAL); 1117 } 1118 1119 hdl = dmu_buf_get_user(db); 1120 if (hdl != NULL) { 1121 zp = sa_get_userdata(hdl); 1122 1123 1124 /* 1125 * Since "SA" does immediate eviction we 1126 * should never find a sa handle that doesn't 1127 * know about the znode. 1128 */ 1129 1130 ASSERT3P(zp, !=, NULL); 1131 1132 mutex_enter(&zp->z_lock); 1133 ASSERT3U(zp->z_id, ==, obj_num); 1134 if (zp->z_unlinked) { 1135 err = ENOENT; 1136 } else { 1137 VN_HOLD(ZTOV(zp)); 1138 *zpp = zp; 1139 err = 0; 1140 } 1141 sa_buf_rele(db, NULL); 1142 mutex_exit(&zp->z_lock); 1143 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1144 return (err); 1145 } 1146 1147 /* 1148 * Not found create new znode/vnode 1149 * but only if file exists. 1150 * 1151 * There is a small window where zfs_vget() could 1152 * find this object while a file create is still in 1153 * progress. This is checked for in zfs_znode_alloc() 1154 * 1155 * if zfs_znode_alloc() fails it will drop the hold on the 1156 * bonus buffer. 1157 */ 1158 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1159 doi.doi_bonus_type, NULL); 1160 if (zp == NULL) { 1161 err = ENOENT; 1162 } else { 1163 *zpp = zp; 1164 } 1165 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1166 return (err); 1167 } 1168 1169 int 1170 zfs_rezget(znode_t *zp) 1171 { 1172 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1173 dmu_object_info_t doi; 1174 dmu_buf_t *db; 1175 uint64_t obj_num = zp->z_id; 1176 uint64_t mode; 1177 uint64_t uid, gid; 1178 sa_bulk_attr_t bulk[8]; 1179 int err; 1180 int count = 0; 1181 uint64_t gen; 1182 1183 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1184 1185 mutex_enter(&zp->z_acl_lock); 1186 if (zp->z_acl_cached) { 1187 zfs_acl_free(zp->z_acl_cached); 1188 zp->z_acl_cached = NULL; 1189 } 1190 1191 mutex_exit(&zp->z_acl_lock); 1192 ASSERT(zp->z_sa_hdl == NULL); 1193 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1194 if (err) { 1195 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1196 return (err); 1197 } 1198 1199 dmu_object_info_from_db(db, &doi); 1200 if (doi.doi_bonus_type != DMU_OT_SA && 1201 (doi.doi_bonus_type != DMU_OT_ZNODE || 1202 (doi.doi_bonus_type == DMU_OT_ZNODE && 1203 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1204 sa_buf_rele(db, NULL); 1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1206 return (EINVAL); 1207 } 1208 1209 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1210 1211 /* reload cached values */ 1212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1213 &gen, sizeof (gen)); 1214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1215 &zp->z_size, sizeof (zp->z_size)); 1216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1217 &zp->z_links, sizeof (zp->z_links)); 1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1219 &zp->z_pflags, sizeof (zp->z_pflags)); 1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1221 &zp->z_atime, sizeof (zp->z_atime)); 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1223 &uid, sizeof (uid)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1225 &gid, sizeof (gid)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1227 &mode, sizeof (mode)); 1228 1229 zp->z_mode = mode; 1230 1231 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1232 zfs_znode_dmu_fini(zp); 1233 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1234 return (EIO); 1235 } 1236 1237 if (gen != zp->z_gen) { 1238 zfs_znode_dmu_fini(zp); 1239 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1240 return (EIO); 1241 } 1242 1243 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER); 1244 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP); 1245 zp->z_unlinked = (zp->z_links == 0); 1246 zp->z_blksz = doi.doi_data_block_size; 1247 1248 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1249 1250 return (0); 1251 } 1252 1253 void 1254 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1255 { 1256 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1257 objset_t *os = zfsvfs->z_os; 1258 uint64_t obj = zp->z_id; 1259 uint64_t acl_obj = ZFS_EXTERNAL_ACL(zp); 1260 1261 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1262 if (acl_obj) 1263 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1264 VERIFY(0 == dmu_object_free(os, obj, tx)); 1265 zfs_znode_dmu_fini(zp); 1266 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1267 zfs_znode_free(zp); 1268 } 1269 1270 void 1271 zfs_zinactive(znode_t *zp) 1272 { 1273 vnode_t *vp = ZTOV(zp); 1274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1275 uint64_t z_id = zp->z_id; 1276 1277 ASSERT(zp->z_sa_hdl); 1278 1279 /* 1280 * Don't allow a zfs_zget() while were trying to release this znode 1281 */ 1282 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1283 1284 mutex_enter(&zp->z_lock); 1285 mutex_enter(&vp->v_lock); 1286 vp->v_count--; 1287 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1288 /* 1289 * If the hold count is greater than zero, somebody has 1290 * obtained a new reference on this znode while we were 1291 * processing it here, so we are done. If we still have 1292 * mapped pages then we are also done, since we don't 1293 * want to inactivate the znode until the pages get pushed. 1294 * 1295 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1296 * this seems like it would leave the znode hanging with 1297 * no chance to go inactive... 1298 */ 1299 mutex_exit(&vp->v_lock); 1300 mutex_exit(&zp->z_lock); 1301 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1302 return; 1303 } 1304 mutex_exit(&vp->v_lock); 1305 1306 /* 1307 * If this was the last reference to a file with no links, 1308 * remove the file from the file system. 1309 */ 1310 if (zp->z_unlinked) { 1311 mutex_exit(&zp->z_lock); 1312 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1313 zfs_rmnode(zp); 1314 return; 1315 } 1316 1317 mutex_exit(&zp->z_lock); 1318 zfs_znode_dmu_fini(zp); 1319 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1320 zfs_znode_free(zp); 1321 } 1322 1323 void 1324 zfs_znode_free(znode_t *zp) 1325 { 1326 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1327 1328 vn_invalid(ZTOV(zp)); 1329 1330 ASSERT(ZTOV(zp)->v_count == 0); 1331 1332 mutex_enter(&zfsvfs->z_znodes_lock); 1333 POINTER_INVALIDATE(&zp->z_zfsvfs); 1334 list_remove(&zfsvfs->z_all_znodes, zp); 1335 mutex_exit(&zfsvfs->z_znodes_lock); 1336 1337 if (zp->z_acl_cached) { 1338 zfs_acl_free(zp->z_acl_cached); 1339 zp->z_acl_cached = NULL; 1340 } 1341 1342 kmem_cache_free(znode_cache, zp); 1343 1344 VFS_RELE(zfsvfs->z_vfs); 1345 } 1346 1347 void 1348 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1349 uint64_t ctime[2], boolean_t have_tx) 1350 { 1351 timestruc_t now; 1352 1353 gethrestime(&now); 1354 1355 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1356 zp->z_atime_dirty = 0; 1357 zp->z_seq++; 1358 } else { 1359 zp->z_atime_dirty = 1; 1360 } 1361 1362 if (flag & AT_ATIME) { 1363 ZFS_TIME_ENCODE(&now, zp->z_atime); 1364 } 1365 1366 if (flag & AT_MTIME) { 1367 ZFS_TIME_ENCODE(&now, mtime); 1368 if (zp->z_zfsvfs->z_use_fuids) { 1369 zp->z_pflags |= (ZFS_ARCHIVE | 1370 ZFS_AV_MODIFIED); 1371 } 1372 } 1373 1374 if (flag & AT_CTIME) { 1375 ZFS_TIME_ENCODE(&now, ctime); 1376 if (zp->z_zfsvfs->z_use_fuids) 1377 zp->z_pflags |= ZFS_ARCHIVE; 1378 } 1379 } 1380 1381 /* 1382 * Grow the block size for a file. 1383 * 1384 * IN: zp - znode of file to free data in. 1385 * size - requested block size 1386 * tx - open transaction. 1387 * 1388 * NOTE: this function assumes that the znode is write locked. 1389 */ 1390 void 1391 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1392 { 1393 int error; 1394 u_longlong_t dummy; 1395 1396 if (size <= zp->z_blksz) 1397 return; 1398 /* 1399 * If the file size is already greater than the current blocksize, 1400 * we will not grow. If there is more than one block in a file, 1401 * the blocksize cannot change. 1402 */ 1403 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1404 return; 1405 1406 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1407 size, 0, tx); 1408 1409 if (error == ENOTSUP) 1410 return; 1411 ASSERT3U(error, ==, 0); 1412 1413 /* What blocksize did we actually get? */ 1414 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1415 } 1416 1417 /* 1418 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1419 * be calling back into the fs for a putpage(). E.g.: when truncating 1420 * a file, the pages being "thrown away* don't need to be written out. 1421 */ 1422 /* ARGSUSED */ 1423 static int 1424 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1425 int flags, cred_t *cr) 1426 { 1427 ASSERT(0); 1428 return (0); 1429 } 1430 1431 /* 1432 * Increase the file length 1433 * 1434 * IN: zp - znode of file to free data in. 1435 * end - new end-of-file 1436 * 1437 * RETURN: 0 if success 1438 * error code if failure 1439 */ 1440 static int 1441 zfs_extend(znode_t *zp, uint64_t end) 1442 { 1443 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1444 dmu_tx_t *tx; 1445 rl_t *rl; 1446 uint64_t newblksz; 1447 int error; 1448 1449 /* 1450 * We will change zp_size, lock the whole file. 1451 */ 1452 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1453 1454 /* 1455 * Nothing to do if file already at desired length. 1456 */ 1457 if (end <= zp->z_size) { 1458 zfs_range_unlock(rl); 1459 return (0); 1460 } 1461 top: 1462 tx = dmu_tx_create(zfsvfs->z_os); 1463 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1464 zfs_sa_upgrade_txholds(tx, zp); 1465 if (end > zp->z_blksz && 1466 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1467 /* 1468 * We are growing the file past the current block size. 1469 */ 1470 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1471 ASSERT(!ISP2(zp->z_blksz)); 1472 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1473 } else { 1474 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1475 } 1476 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1477 } else { 1478 newblksz = 0; 1479 } 1480 1481 error = dmu_tx_assign(tx, TXG_NOWAIT); 1482 if (error) { 1483 if (error == ERESTART) { 1484 dmu_tx_wait(tx); 1485 dmu_tx_abort(tx); 1486 goto top; 1487 } 1488 dmu_tx_abort(tx); 1489 zfs_range_unlock(rl); 1490 return (error); 1491 } 1492 1493 if (newblksz) 1494 zfs_grow_blocksize(zp, newblksz, tx); 1495 1496 zp->z_size = end; 1497 1498 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1499 &zp->z_size, sizeof (zp->z_size), tx)); 1500 1501 zfs_range_unlock(rl); 1502 1503 dmu_tx_commit(tx); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * Free space in a file. 1510 * 1511 * IN: zp - znode of file to free data in. 1512 * off - start of section to free. 1513 * len - length of section to free. 1514 * 1515 * RETURN: 0 if success 1516 * error code if failure 1517 */ 1518 static int 1519 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1520 { 1521 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1522 rl_t *rl; 1523 int error; 1524 1525 /* 1526 * Lock the range being freed. 1527 */ 1528 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1529 1530 /* 1531 * Nothing to do if file already at desired length. 1532 */ 1533 if (off >= zp->z_size) { 1534 zfs_range_unlock(rl); 1535 return (0); 1536 } 1537 1538 if (off + len > zp->z_size) 1539 len = zp->z_size - off; 1540 1541 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1542 1543 zfs_range_unlock(rl); 1544 1545 return (error); 1546 } 1547 1548 /* 1549 * Truncate a file 1550 * 1551 * IN: zp - znode of file to free data in. 1552 * end - new end-of-file. 1553 * 1554 * RETURN: 0 if success 1555 * error code if failure 1556 */ 1557 static int 1558 zfs_trunc(znode_t *zp, uint64_t end) 1559 { 1560 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1561 vnode_t *vp = ZTOV(zp); 1562 dmu_tx_t *tx; 1563 rl_t *rl; 1564 int error; 1565 1566 /* 1567 * We will change zp_size, lock the whole file. 1568 */ 1569 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1570 1571 /* 1572 * Nothing to do if file already at desired length. 1573 */ 1574 if (end >= zp->z_size) { 1575 zfs_range_unlock(rl); 1576 return (0); 1577 } 1578 1579 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1580 if (error) { 1581 zfs_range_unlock(rl); 1582 return (error); 1583 } 1584 top: 1585 tx = dmu_tx_create(zfsvfs->z_os); 1586 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1587 zfs_sa_upgrade_txholds(tx, zp); 1588 error = dmu_tx_assign(tx, TXG_NOWAIT); 1589 if (error) { 1590 if (error == ERESTART) { 1591 dmu_tx_wait(tx); 1592 dmu_tx_abort(tx); 1593 goto top; 1594 } 1595 dmu_tx_abort(tx); 1596 zfs_range_unlock(rl); 1597 return (error); 1598 } 1599 1600 zp->z_size = end; 1601 1602 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1603 &zp->z_size, sizeof (zp->z_size), tx)); 1604 1605 dmu_tx_commit(tx); 1606 1607 /* 1608 * Clear any mapped pages in the truncated region. This has to 1609 * happen outside of the transaction to avoid the possibility of 1610 * a deadlock with someone trying to push a page that we are 1611 * about to invalidate. 1612 */ 1613 if (vn_has_cached_data(vp)) { 1614 page_t *pp; 1615 uint64_t start = end & PAGEMASK; 1616 int poff = end & PAGEOFFSET; 1617 1618 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1619 /* 1620 * We need to zero a partial page. 1621 */ 1622 pagezero(pp, poff, PAGESIZE - poff); 1623 start += PAGESIZE; 1624 page_unlock(pp); 1625 } 1626 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1627 B_INVAL | B_TRUNC, NULL); 1628 ASSERT(error == 0); 1629 } 1630 1631 zfs_range_unlock(rl); 1632 1633 return (0); 1634 } 1635 1636 /* 1637 * Free space in a file 1638 * 1639 * IN: zp - znode of file to free data in. 1640 * off - start of range 1641 * len - end of range (0 => EOF) 1642 * flag - current file open mode flags. 1643 * log - TRUE if this action should be logged 1644 * 1645 * RETURN: 0 if success 1646 * error code if failure 1647 */ 1648 int 1649 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1650 { 1651 vnode_t *vp = ZTOV(zp); 1652 dmu_tx_t *tx; 1653 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1654 zilog_t *zilog = zfsvfs->z_log; 1655 uint64_t mode; 1656 uint64_t mtime[2], ctime[2]; 1657 sa_bulk_attr_t bulk[2]; 1658 int count = 0; 1659 int error; 1660 1661 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1662 sizeof (mode))) != 0) 1663 return (error); 1664 1665 if (off > zp->z_size) { 1666 error = zfs_extend(zp, off+len); 1667 if (error == 0 && log) 1668 goto log; 1669 else 1670 return (error); 1671 } 1672 1673 /* 1674 * Check for any locks in the region to be freed. 1675 */ 1676 1677 if (MANDLOCK(vp, (mode_t)mode)) { 1678 uint64_t length = (len ? len : zp->z_size - off); 1679 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1680 return (error); 1681 } 1682 1683 if (len == 0) { 1684 error = zfs_trunc(zp, off); 1685 } else { 1686 if ((error = zfs_free_range(zp, off, len)) == 0 && 1687 off + len > zp->z_size) 1688 error = zfs_extend(zp, off+len); 1689 } 1690 if (error || !log) 1691 return (error); 1692 log: 1693 tx = dmu_tx_create(zfsvfs->z_os); 1694 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1695 zfs_sa_upgrade_txholds(tx, zp); 1696 error = dmu_tx_assign(tx, TXG_NOWAIT); 1697 if (error) { 1698 if (error == ERESTART) { 1699 dmu_tx_wait(tx); 1700 dmu_tx_abort(tx); 1701 goto log; 1702 } 1703 dmu_tx_abort(tx); 1704 return (error); 1705 } 1706 1707 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1708 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1709 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1710 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1711 ASSERT(error == 0); 1712 1713 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1714 1715 dmu_tx_commit(tx); 1716 return (0); 1717 } 1718 1719 void 1720 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1721 { 1722 zfsvfs_t zfsvfs; 1723 uint64_t moid, obj, sa_obj, version; 1724 uint64_t sense = ZFS_CASE_SENSITIVE; 1725 uint64_t norm = 0; 1726 nvpair_t *elem; 1727 int error; 1728 int i; 1729 znode_t *rootzp = NULL; 1730 vnode_t *vp; 1731 vattr_t vattr; 1732 znode_t *zp; 1733 zfs_acl_ids_t acl_ids; 1734 1735 /* 1736 * First attempt to create master node. 1737 */ 1738 /* 1739 * In an empty objset, there are no blocks to read and thus 1740 * there can be no i/o errors (which we assert below). 1741 */ 1742 moid = MASTER_NODE_OBJ; 1743 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1744 DMU_OT_NONE, 0, tx); 1745 ASSERT(error == 0); 1746 1747 /* 1748 * Set starting attributes. 1749 */ 1750 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1751 elem = NULL; 1752 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1753 /* For the moment we expect all zpl props to be uint64_ts */ 1754 uint64_t val; 1755 char *name; 1756 1757 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1758 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1759 name = nvpair_name(elem); 1760 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1761 if (val < version) 1762 version = val; 1763 } else { 1764 error = zap_update(os, moid, name, 8, 1, &val, tx); 1765 } 1766 ASSERT(error == 0); 1767 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1768 norm = val; 1769 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1770 sense = val; 1771 } 1772 ASSERT(version != 0); 1773 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1774 1775 /* 1776 * Create zap object used for SA attribute registration 1777 */ 1778 1779 if (version >= ZPL_VERSION_SA) { 1780 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1781 DMU_OT_NONE, 0, tx); 1782 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1783 ASSERT(error == 0); 1784 } else { 1785 sa_obj = 0; 1786 } 1787 /* 1788 * Create a delete queue. 1789 */ 1790 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1791 1792 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1793 ASSERT(error == 0); 1794 1795 /* 1796 * Create root znode. Create minimal znode/vnode/zfsvfs 1797 * to allow zfs_mknode to work. 1798 */ 1799 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1800 vattr.va_type = VDIR; 1801 vattr.va_mode = S_IFDIR|0755; 1802 vattr.va_uid = crgetuid(cr); 1803 vattr.va_gid = crgetgid(cr); 1804 1805 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1806 rootzp->z_unlinked = 0; 1807 rootzp->z_atime_dirty = 0; 1808 rootzp->z_is_sa = USE_SA(version, os); 1809 1810 vp = ZTOV(rootzp); 1811 vn_reinit(vp); 1812 vp->v_type = VDIR; 1813 1814 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1815 1816 zfsvfs.z_os = os; 1817 zfsvfs.z_parent = &zfsvfs; 1818 zfsvfs.z_version = version; 1819 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1820 zfsvfs.z_use_sa = USE_SA(version, os); 1821 zfsvfs.z_norm = norm; 1822 1823 zfsvfs.z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 1824 1825 /* 1826 * Fold case on file systems that are always or sometimes case 1827 * insensitive. 1828 */ 1829 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1830 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1831 1832 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1833 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1834 offsetof(znode_t, z_link_node)); 1835 1836 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1837 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1838 1839 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1840 rootzp->z_zfsvfs = &zfsvfs; 1841 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1842 cr, NULL, &acl_ids)); 1843 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1844 ASSERT3P(zp, ==, rootzp); 1845 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1846 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1847 ASSERT(error == 0); 1848 zfs_acl_ids_free(&acl_ids); 1849 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1850 1851 ZTOV(rootzp)->v_count = 0; 1852 sa_handle_destroy(rootzp->z_sa_hdl); 1853 kmem_cache_free(znode_cache, rootzp); 1854 1855 /* 1856 * Create shares directory 1857 */ 1858 1859 error = zfs_create_share_dir(&zfsvfs, tx); 1860 1861 ASSERT(error == 0); 1862 1863 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1864 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1865 } 1866 1867 #endif /* _KERNEL */ 1868 1869 /* 1870 * Given an object number, return its parent object number and whether 1871 * or not the object is an extended attribute directory. 1872 */ 1873 static int 1874 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir, 1875 sa_attr_type_t *sa_table) 1876 { 1877 dmu_buf_t *db; 1878 dmu_object_info_t doi; 1879 int error; 1880 uint64_t parent; 1881 uint64_t pflags; 1882 uint64_t mode; 1883 sa_bulk_attr_t bulk[3]; 1884 sa_handle_t *hdl; 1885 int count = 0; 1886 1887 if ((error = sa_buf_hold(osp, obj, FTAG, &db)) != 0) 1888 return (error); 1889 1890 dmu_object_info_from_db(db, &doi); 1891 if ((doi.doi_bonus_type != DMU_OT_SA && 1892 doi.doi_bonus_type != DMU_OT_ZNODE) || 1893 doi.doi_bonus_type == DMU_OT_ZNODE && 1894 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1895 sa_buf_rele(db, FTAG); 1896 return (EINVAL); 1897 } 1898 1899 if ((error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, 1900 &hdl)) != 0) { 1901 sa_buf_rele(db, FTAG); 1902 return (error); 1903 } 1904 1905 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], 1906 NULL, &parent, 8); 1907 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1908 &pflags, 8); 1909 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1910 &mode, 8); 1911 1912 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) { 1913 sa_buf_rele(db, FTAG); 1914 sa_handle_destroy(hdl); 1915 return (error); 1916 } 1917 *pobjp = parent; 1918 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1919 sa_handle_destroy(hdl); 1920 sa_buf_rele(db, FTAG); 1921 1922 return (0); 1923 } 1924 1925 int 1926 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1927 { 1928 char *path = buf + len - 1; 1929 sa_attr_type_t *sa_table; 1930 int error; 1931 uint64_t sa_obj = 0; 1932 1933 *path = '\0'; 1934 1935 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1936 1937 if (error != 0 && error != ENOENT) 1938 return (error); 1939 1940 sa_table = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END); 1941 1942 for (;;) { 1943 uint64_t pobj; 1944 char component[MAXNAMELEN + 2]; 1945 size_t complen; 1946 int is_xattrdir; 1947 1948 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1949 &is_xattrdir, sa_table)) != 0) 1950 break; 1951 1952 if (pobj == obj) { 1953 if (path[0] != '/') 1954 *--path = '/'; 1955 break; 1956 } 1957 1958 component[0] = '/'; 1959 if (is_xattrdir) { 1960 (void) sprintf(component + 1, "<xattrdir>"); 1961 } else { 1962 error = zap_value_search(osp, pobj, obj, 1963 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1964 if (error != 0) 1965 break; 1966 } 1967 1968 complen = strlen(component); 1969 path -= complen; 1970 ASSERT(path >= buf); 1971 bcopy(component, path, complen); 1972 obj = pobj; 1973 } 1974 1975 if (error == 0) 1976 (void) memmove(buf, path, buf + len - path); 1977 1978 return (error); 1979 } 1980