1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 #include <sys/zfs_stat.h> 68 69 #include "zfs_prop.h" 70 #include "zfs_comutil.h" 71 72 /* 73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 74 * turned on when DEBUG is also defined. 75 */ 76 #ifdef DEBUG 77 #define ZNODE_STATS 78 #endif /* DEBUG */ 79 80 #ifdef ZNODE_STATS 81 #define ZNODE_STAT_ADD(stat) ((stat)++) 82 #else 83 #define ZNODE_STAT_ADD(stat) /* nothing */ 84 #endif /* ZNODE_STATS */ 85 86 /* 87 * Functions needed for userland (ie: libzpool) are not put under 88 * #ifdef_KERNEL; the rest of the functions have dependencies 89 * (such as VFS logic) that will not compile easily in userland. 90 */ 91 #ifdef _KERNEL 92 /* 93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 94 * be freed before it can be safely accessed. 95 */ 96 krwlock_t zfsvfs_lock; 97 98 static kmem_cache_t *znode_cache = NULL; 99 100 /*ARGSUSED*/ 101 static void 102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 103 { 104 /* 105 * We should never drop all dbuf refs without first clearing 106 * the eviction callback. 107 */ 108 panic("evicting znode %p\n", user_ptr); 109 } 110 111 /*ARGSUSED*/ 112 static int 113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 114 { 115 znode_t *zp = buf; 116 117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 118 119 zp->z_vnode = vn_alloc(kmflags); 120 if (zp->z_vnode == NULL) { 121 return (-1); 122 } 123 ZTOV(zp)->v_data = zp; 124 125 list_link_init(&zp->z_link_node); 126 127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 131 132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 133 avl_create(&zp->z_range_avl, zfs_range_compare, 134 sizeof (rl_t), offsetof(rl_t, r_node)); 135 136 zp->z_dirlocks = NULL; 137 zp->z_acl_cached = NULL; 138 zp->z_moved = 0; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_is_sa = ozp->z_is_sa; 202 nzp->z_sa_hdl = ozp->z_sa_hdl; 203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 204 nzp->z_links = ozp->z_links; 205 nzp->z_size = ozp->z_size; 206 nzp->z_pflags = ozp->z_pflags; 207 nzp->z_uid = ozp->z_uid; 208 nzp->z_gid = ozp->z_gid; 209 nzp->z_mode = ozp->z_mode; 210 211 /* 212 * Since this is just an idle znode and kmem is already dealing with 213 * memory pressure, release any cached ACL. 214 */ 215 if (ozp->z_acl_cached) { 216 zfs_acl_free(ozp->z_acl_cached); 217 ozp->z_acl_cached = NULL; 218 } 219 220 sa_set_userp(nzp->z_sa_hdl, nzp); 221 222 /* 223 * Invalidate the original znode by clearing fields that provide a 224 * pointer back to the znode. Set the low bit of the vfs pointer to 225 * ensure that zfs_znode_move() recognizes the znode as invalid in any 226 * subsequent callback. 227 */ 228 ozp->z_sa_hdl = NULL; 229 POINTER_INVALIDATE(&ozp->z_zfsvfs); 230 231 /* 232 * Mark the znode. 233 */ 234 nzp->z_moved = 1; 235 ozp->z_moved = (uint8_t)-1; 236 } 237 238 /*ARGSUSED*/ 239 static kmem_cbrc_t 240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 241 { 242 znode_t *ozp = buf, *nzp = newbuf; 243 zfsvfs_t *zfsvfs; 244 vnode_t *vp; 245 246 /* 247 * The znode is on the file system's list of known znodes if the vfs 248 * pointer is valid. We set the low bit of the vfs pointer when freeing 249 * the znode to invalidate it, and the memory patterns written by kmem 250 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 251 * created znode sets the vfs pointer last of all to indicate that the 252 * znode is known and in a valid state to be moved by this function. 253 */ 254 zfsvfs = ozp->z_zfsvfs; 255 if (!POINTER_IS_VALID(zfsvfs)) { 256 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 257 return (KMEM_CBRC_DONT_KNOW); 258 } 259 260 /* 261 * Close a small window in which it's possible that the filesystem could 262 * be unmounted and freed, and zfsvfs, though valid in the previous 263 * statement, could point to unrelated memory by the time we try to 264 * prevent the filesystem from being unmounted. 265 */ 266 rw_enter(&zfsvfs_lock, RW_WRITER); 267 if (zfsvfs != ozp->z_zfsvfs) { 268 rw_exit(&zfsvfs_lock); 269 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 270 return (KMEM_CBRC_DONT_KNOW); 271 } 272 273 /* 274 * If the znode is still valid, then so is the file system. We know that 275 * no valid file system can be freed while we hold zfsvfs_lock, so we 276 * can safely ensure that the filesystem is not and will not be 277 * unmounted. The next statement is equivalent to ZFS_ENTER(). 278 */ 279 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 280 if (zfsvfs->z_unmounted) { 281 ZFS_EXIT(zfsvfs); 282 rw_exit(&zfsvfs_lock); 283 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 284 return (KMEM_CBRC_DONT_KNOW); 285 } 286 rw_exit(&zfsvfs_lock); 287 288 mutex_enter(&zfsvfs->z_znodes_lock); 289 /* 290 * Recheck the vfs pointer in case the znode was removed just before 291 * acquiring the lock. 292 */ 293 if (zfsvfs != ozp->z_zfsvfs) { 294 mutex_exit(&zfsvfs->z_znodes_lock); 295 ZFS_EXIT(zfsvfs); 296 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 297 return (KMEM_CBRC_DONT_KNOW); 298 } 299 300 /* 301 * At this point we know that as long as we hold z_znodes_lock, the 302 * znode cannot be freed and fields within the znode can be safely 303 * accessed. Now, prevent a race with zfs_zget(). 304 */ 305 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 306 mutex_exit(&zfsvfs->z_znodes_lock); 307 ZFS_EXIT(zfsvfs); 308 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 309 return (KMEM_CBRC_LATER); 310 } 311 312 vp = ZTOV(ozp); 313 if (mutex_tryenter(&vp->v_lock) == 0) { 314 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 315 mutex_exit(&zfsvfs->z_znodes_lock); 316 ZFS_EXIT(zfsvfs); 317 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 318 return (KMEM_CBRC_LATER); 319 } 320 321 /* Only move znodes that are referenced _only_ by the DNLC. */ 322 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 323 mutex_exit(&vp->v_lock); 324 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 325 mutex_exit(&zfsvfs->z_znodes_lock); 326 ZFS_EXIT(zfsvfs); 327 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 328 return (KMEM_CBRC_LATER); 329 } 330 331 /* 332 * The znode is known and in a valid state to move. We're holding the 333 * locks needed to execute the critical section. 334 */ 335 zfs_znode_move_impl(ozp, nzp); 336 mutex_exit(&vp->v_lock); 337 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 338 339 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 340 mutex_exit(&zfsvfs->z_znodes_lock); 341 ZFS_EXIT(zfsvfs); 342 343 return (KMEM_CBRC_YES); 344 } 345 346 void 347 zfs_znode_init(void) 348 { 349 /* 350 * Initialize zcache 351 */ 352 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 353 ASSERT(znode_cache == NULL); 354 znode_cache = kmem_cache_create("zfs_znode_cache", 355 sizeof (znode_t), 0, zfs_znode_cache_constructor, 356 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 357 kmem_cache_set_move(znode_cache, zfs_znode_move); 358 } 359 360 void 361 zfs_znode_fini(void) 362 { 363 /* 364 * Cleanup vfs & vnode ops 365 */ 366 zfs_remove_op_tables(); 367 368 /* 369 * Cleanup zcache 370 */ 371 if (znode_cache) 372 kmem_cache_destroy(znode_cache); 373 znode_cache = NULL; 374 rw_destroy(&zfsvfs_lock); 375 } 376 377 struct vnodeops *zfs_dvnodeops; 378 struct vnodeops *zfs_fvnodeops; 379 struct vnodeops *zfs_symvnodeops; 380 struct vnodeops *zfs_xdvnodeops; 381 struct vnodeops *zfs_evnodeops; 382 struct vnodeops *zfs_sharevnodeops; 383 384 void 385 zfs_remove_op_tables() 386 { 387 /* 388 * Remove vfs ops 389 */ 390 ASSERT(zfsfstype); 391 (void) vfs_freevfsops_by_type(zfsfstype); 392 zfsfstype = 0; 393 394 /* 395 * Remove vnode ops 396 */ 397 if (zfs_dvnodeops) 398 vn_freevnodeops(zfs_dvnodeops); 399 if (zfs_fvnodeops) 400 vn_freevnodeops(zfs_fvnodeops); 401 if (zfs_symvnodeops) 402 vn_freevnodeops(zfs_symvnodeops); 403 if (zfs_xdvnodeops) 404 vn_freevnodeops(zfs_xdvnodeops); 405 if (zfs_evnodeops) 406 vn_freevnodeops(zfs_evnodeops); 407 if (zfs_sharevnodeops) 408 vn_freevnodeops(zfs_sharevnodeops); 409 410 zfs_dvnodeops = NULL; 411 zfs_fvnodeops = NULL; 412 zfs_symvnodeops = NULL; 413 zfs_xdvnodeops = NULL; 414 zfs_evnodeops = NULL; 415 zfs_sharevnodeops = NULL; 416 } 417 418 extern const fs_operation_def_t zfs_dvnodeops_template[]; 419 extern const fs_operation_def_t zfs_fvnodeops_template[]; 420 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 421 extern const fs_operation_def_t zfs_symvnodeops_template[]; 422 extern const fs_operation_def_t zfs_evnodeops_template[]; 423 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 424 425 int 426 zfs_create_op_tables() 427 { 428 int error; 429 430 /* 431 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 432 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 433 * In this case we just return as the ops vectors are already set up. 434 */ 435 if (zfs_dvnodeops) 436 return (0); 437 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 439 &zfs_dvnodeops); 440 if (error) 441 return (error); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 444 &zfs_fvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 449 &zfs_symvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 454 &zfs_xdvnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 459 &zfs_evnodeops); 460 if (error) 461 return (error); 462 463 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 464 &zfs_sharevnodeops); 465 466 return (error); 467 } 468 469 int 470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 471 { 472 zfs_acl_ids_t acl_ids; 473 vattr_t vattr; 474 znode_t *sharezp; 475 vnode_t *vp; 476 znode_t *zp; 477 int error; 478 479 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 480 vattr.va_type = VDIR; 481 vattr.va_mode = S_IFDIR|0555; 482 vattr.va_uid = crgetuid(kcred); 483 vattr.va_gid = crgetgid(kcred); 484 485 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 486 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 487 sharezp->z_moved = 0; 488 sharezp->z_unlinked = 0; 489 sharezp->z_atime_dirty = 0; 490 sharezp->z_zfsvfs = zfsvfs; 491 sharezp->z_is_sa = zfsvfs->z_use_sa; 492 493 vp = ZTOV(sharezp); 494 vn_reinit(vp); 495 vp->v_type = VDIR; 496 497 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 498 kcred, NULL, &acl_ids)); 499 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 500 ASSERT3P(zp, ==, sharezp); 501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 502 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 503 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 504 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 505 zfsvfs->z_shares_dir = sharezp->z_id; 506 507 zfs_acl_ids_free(&acl_ids); 508 ZTOV(sharezp)->v_count = 0; 509 sa_handle_destroy(sharezp->z_sa_hdl); 510 kmem_cache_free(znode_cache, sharezp); 511 512 return (error); 513 } 514 515 /* 516 * define a couple of values we need available 517 * for both 64 and 32 bit environments. 518 */ 519 #ifndef NBITSMINOR64 520 #define NBITSMINOR64 32 521 #endif 522 #ifndef MAXMAJ64 523 #define MAXMAJ64 0xffffffffUL 524 #endif 525 #ifndef MAXMIN64 526 #define MAXMIN64 0xffffffffUL 527 #endif 528 529 /* 530 * Create special expldev for ZFS private use. 531 * Can't use standard expldev since it doesn't do 532 * what we want. The standard expldev() takes a 533 * dev32_t in LP64 and expands it to a long dev_t. 534 * We need an interface that takes a dev32_t in ILP32 535 * and expands it to a long dev_t. 536 */ 537 static uint64_t 538 zfs_expldev(dev_t dev) 539 { 540 #ifndef _LP64 541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 542 return (((uint64_t)major << NBITSMINOR64) | 543 ((minor_t)dev & MAXMIN32)); 544 #else 545 return (dev); 546 #endif 547 } 548 549 /* 550 * Special cmpldev for ZFS private use. 551 * Can't use standard cmpldev since it takes 552 * a long dev_t and compresses it to dev32_t in 553 * LP64. We need to do a compaction of a long dev_t 554 * to a dev32_t in ILP32. 555 */ 556 dev_t 557 zfs_cmpldev(uint64_t dev) 558 { 559 #ifndef _LP64 560 minor_t minor = (minor_t)dev & MAXMIN64; 561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 562 563 if (major > MAXMAJ32 || minor > MAXMIN32) 564 return (NODEV32); 565 566 return (((dev32_t)major << NBITSMINOR32) | minor); 567 #else 568 return (dev); 569 #endif 570 } 571 572 static void 573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 574 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 575 { 576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 578 579 mutex_enter(&zp->z_lock); 580 581 ASSERT(zp->z_sa_hdl == NULL); 582 ASSERT(zp->z_acl_cached == NULL); 583 if (sa_hdl == NULL) { 584 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 585 SA_HDL_SHARED, &zp->z_sa_hdl)); 586 } else { 587 zp->z_sa_hdl = sa_hdl; 588 sa_set_userp(sa_hdl, zp); 589 } 590 591 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 592 593 /* 594 * Slap on VROOT if we are the root znode 595 */ 596 if (zp->z_id == zfsvfs->z_root) 597 ZTOV(zp)->v_flag |= VROOT; 598 599 mutex_exit(&zp->z_lock); 600 vn_exists(ZTOV(zp)); 601 } 602 603 void 604 zfs_znode_dmu_fini(znode_t *zp) 605 { 606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 607 zp->z_unlinked || 608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 609 610 sa_handle_destroy(zp->z_sa_hdl); 611 zp->z_sa_hdl = NULL; 612 } 613 614 /* 615 * Construct a new znode/vnode and intialize. 616 * 617 * This does not do a call to dmu_set_user() that is 618 * up to the caller to do, in case you don't want to 619 * return the znode 620 */ 621 static znode_t * 622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 623 dmu_object_type_t obj_type, sa_handle_t *hdl) 624 { 625 znode_t *zp; 626 vnode_t *vp; 627 uint64_t mode; 628 uint64_t parent; 629 sa_bulk_attr_t bulk[9]; 630 int count = 0; 631 632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 633 634 ASSERT(zp->z_dirlocks == NULL); 635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 636 zp->z_moved = 0; 637 638 /* 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 640 * the zfs_znode_move() callback. 641 */ 642 zp->z_sa_hdl = NULL; 643 zp->z_unlinked = 0; 644 zp->z_atime_dirty = 0; 645 zp->z_mapcnt = 0; 646 zp->z_id = db->db_object; 647 zp->z_blksz = blksz; 648 zp->z_seq = 0x7A4653; 649 zp->z_sync_cnt = 0; 650 651 vp = ZTOV(zp); 652 vn_reinit(vp); 653 654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 655 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 659 &zp->z_size, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 661 &zp->z_links, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 663 &zp->z_pflags, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 666 &zp->z_atime, 16); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 668 &zp->z_uid, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 670 &zp->z_gid, 8); 671 672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 673 if (hdl == NULL) 674 sa_handle_destroy(zp->z_sa_hdl); 675 kmem_cache_free(znode_cache, zp); 676 return (NULL); 677 } 678 679 zp->z_mode = mode; 680 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 681 682 vp->v_type = IFTOVT((mode_t)mode); 683 684 switch (vp->v_type) { 685 case VDIR: 686 if (zp->z_pflags & ZFS_XATTR) { 687 vn_setops(vp, zfs_xdvnodeops); 688 vp->v_flag |= V_XATTRDIR; 689 } else { 690 vn_setops(vp, zfs_dvnodeops); 691 } 692 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 693 break; 694 case VBLK: 695 case VCHR: 696 { 697 uint64_t rdev; 698 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 699 &rdev, sizeof (rdev)) == 0); 700 701 vp->v_rdev = zfs_cmpldev(rdev); 702 } 703 /*FALLTHROUGH*/ 704 case VFIFO: 705 case VSOCK: 706 case VDOOR: 707 vn_setops(vp, zfs_fvnodeops); 708 break; 709 case VREG: 710 vp->v_flag |= VMODSORT; 711 if (parent == zfsvfs->z_shares_dir) { 712 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 713 vn_setops(vp, zfs_sharevnodeops); 714 } else { 715 vn_setops(vp, zfs_fvnodeops); 716 } 717 break; 718 case VLNK: 719 vn_setops(vp, zfs_symvnodeops); 720 break; 721 default: 722 vn_setops(vp, zfs_evnodeops); 723 break; 724 } 725 726 mutex_enter(&zfsvfs->z_znodes_lock); 727 list_insert_tail(&zfsvfs->z_all_znodes, zp); 728 membar_producer(); 729 /* 730 * Everything else must be valid before assigning z_zfsvfs makes the 731 * znode eligible for zfs_znode_move(). 732 */ 733 zp->z_zfsvfs = zfsvfs; 734 mutex_exit(&zfsvfs->z_znodes_lock); 735 736 VFS_HOLD(zfsvfs->z_vfs); 737 return (zp); 738 } 739 740 static uint64_t empty_xattr; 741 static uint64_t pad[4]; 742 static zfs_acl_phys_t acl_phys; 743 /* 744 * Create a new DMU object to hold a zfs znode. 745 * 746 * IN: dzp - parent directory for new znode 747 * vap - file attributes for new znode 748 * tx - dmu transaction id for zap operations 749 * cr - credentials of caller 750 * flag - flags: 751 * IS_ROOT_NODE - new object will be root 752 * IS_XATTR - new object is an attribute 753 * bonuslen - length of bonus buffer 754 * setaclp - File/Dir initial ACL 755 * fuidp - Tracks fuid allocation. 756 * 757 * OUT: zpp - allocated znode 758 * 759 */ 760 void 761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 762 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 763 { 764 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 765 uint64_t mode, size, links, parent, pflags; 766 uint64_t dzp_pflags = 0; 767 uint64_t rdev = 0; 768 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 769 dmu_buf_t *db; 770 timestruc_t now; 771 uint64_t gen, obj; 772 int bonuslen; 773 sa_handle_t *sa_hdl; 774 dmu_object_type_t obj_type; 775 sa_bulk_attr_t sa_attrs[ZPL_END]; 776 int cnt = 0; 777 zfs_acl_locator_cb_t locate = { 0 }; 778 779 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 780 781 if (zfsvfs->z_replay) { 782 obj = vap->va_nodeid; 783 now = vap->va_ctime; /* see zfs_replay_create() */ 784 gen = vap->va_nblocks; /* ditto */ 785 } else { 786 obj = 0; 787 gethrestime(&now); 788 gen = dmu_tx_get_txg(tx); 789 } 790 791 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 792 bonuslen = (obj_type == DMU_OT_SA) ? 793 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 794 795 /* 796 * Create a new DMU object. 797 */ 798 /* 799 * There's currently no mechanism for pre-reading the blocks that will 800 * be needed to allocate a new object, so we accept the small chance 801 * that there will be an i/o error and we will fail one of the 802 * assertions below. 803 */ 804 if (vap->va_type == VDIR) { 805 if (zfsvfs->z_replay) { 806 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 807 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 808 obj_type, bonuslen, tx)); 809 } else { 810 obj = zap_create_norm(zfsvfs->z_os, 811 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 812 obj_type, bonuslen, tx); 813 } 814 } else { 815 if (zfsvfs->z_replay) { 816 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 817 DMU_OT_PLAIN_FILE_CONTENTS, 0, 818 obj_type, bonuslen, tx)); 819 } else { 820 obj = dmu_object_alloc(zfsvfs->z_os, 821 DMU_OT_PLAIN_FILE_CONTENTS, 0, 822 obj_type, bonuslen, tx); 823 } 824 } 825 826 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 827 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 828 829 /* 830 * If this is the root, fix up the half-initialized parent pointer 831 * to reference the just-allocated physical data area. 832 */ 833 if (flag & IS_ROOT_NODE) { 834 dzp->z_id = obj; 835 } else { 836 dzp_pflags = dzp->z_pflags; 837 } 838 839 /* 840 * If parent is an xattr, so am I. 841 */ 842 if (dzp_pflags & ZFS_XATTR) { 843 flag |= IS_XATTR; 844 } 845 846 if (zfsvfs->z_use_fuids) 847 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 848 else 849 pflags = 0; 850 851 if (vap->va_type == VDIR) { 852 size = 2; /* contents ("." and "..") */ 853 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 854 } else { 855 size = links = 0; 856 } 857 858 if (vap->va_type == VBLK || vap->va_type == VCHR) { 859 rdev = zfs_expldev(vap->va_rdev); 860 } 861 862 parent = dzp->z_id; 863 mode = acl_ids->z_mode; 864 if (flag & IS_XATTR) 865 pflags |= ZFS_XATTR; 866 867 /* 868 * No execs denied will be deterimed when zfs_mode_compute() is called. 869 */ 870 pflags |= acl_ids->z_aclp->z_hints & 871 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 872 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 873 874 ZFS_TIME_ENCODE(&now, crtime); 875 ZFS_TIME_ENCODE(&now, ctime); 876 877 if (vap->va_mask & AT_ATIME) { 878 ZFS_TIME_ENCODE(&vap->va_atime, atime); 879 } else { 880 ZFS_TIME_ENCODE(&now, atime); 881 } 882 883 if (vap->va_mask & AT_MTIME) { 884 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 885 } else { 886 ZFS_TIME_ENCODE(&now, mtime); 887 } 888 889 /* Now add in all of the "SA" attributes */ 890 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 891 &sa_hdl)); 892 893 /* 894 * Setup the array of attributes to be replaced/set on the new file 895 * 896 * order for DMU_OT_ZNODE is critical since it needs to be constructed 897 * in the old znode_phys_t format. Don't change this ordering 898 */ 899 900 if (obj_type == DMU_OT_ZNODE) { 901 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 902 NULL, &atime, 16); 903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 904 NULL, &mtime, 16); 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 906 NULL, &ctime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 908 NULL, &crtime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 910 NULL, &gen, 8); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 912 NULL, &mode, 8); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 914 NULL, &size, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 916 NULL, &parent, 8); 917 } else { 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 919 NULL, &mode, 8); 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 921 NULL, &size, 8); 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 923 NULL, &gen, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 925 &acl_ids->z_fuid, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 927 &acl_ids->z_fgid, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 929 NULL, &parent, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 931 NULL, &pflags, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 933 NULL, &atime, 16); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 935 NULL, &mtime, 16); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 937 NULL, &ctime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 939 NULL, &crtime, 16); 940 } 941 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 943 944 if (obj_type == DMU_OT_ZNODE) { 945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 946 &empty_xattr, 8); 947 } 948 if (obj_type == DMU_OT_ZNODE || 949 (vap->va_type == VBLK || vap->va_type == VCHR)) { 950 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 951 NULL, &rdev, 8); 952 953 } 954 if (obj_type == DMU_OT_ZNODE) { 955 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 956 NULL, &pflags, 8); 957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 958 &acl_ids->z_fuid, 8); 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 960 &acl_ids->z_fgid, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 962 sizeof (uint64_t) * 4); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 964 &acl_phys, sizeof (zfs_acl_phys_t)); 965 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 967 &acl_ids->z_aclp->z_acl_count, 8); 968 locate.cb_aclp = acl_ids->z_aclp; 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 970 zfs_acl_data_locator, &locate, 971 acl_ids->z_aclp->z_acl_bytes); 972 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 973 acl_ids->z_fuid, acl_ids->z_fgid); 974 } 975 976 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 977 978 if (!(flag & IS_ROOT_NODE)) { 979 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 980 ASSERT(*zpp != NULL); 981 } else { 982 /* 983 * If we are creating the root node, the "parent" we 984 * passed in is the znode for the root. 985 */ 986 *zpp = dzp; 987 988 (*zpp)->z_sa_hdl = sa_hdl; 989 } 990 991 (*zpp)->z_pflags = pflags; 992 (*zpp)->z_mode = mode; 993 994 if (vap->va_mask & AT_XVATTR) 995 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 996 997 if (obj_type == DMU_OT_ZNODE || 998 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 999 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1000 } 1001 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1002 } 1003 1004 /* 1005 * Update in-core attributes. It is assumed the caller will be doing an 1006 * sa_bulk_update to push the changes out. 1007 */ 1008 void 1009 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1010 { 1011 xoptattr_t *xoap; 1012 1013 xoap = xva_getxoptattr(xvap); 1014 ASSERT(xoap); 1015 1016 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1017 uint64_t times[2]; 1018 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1019 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1020 ×, sizeof (times), tx); 1021 XVA_SET_RTN(xvap, XAT_CREATETIME); 1022 } 1023 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1024 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1025 zp->z_pflags, tx); 1026 XVA_SET_RTN(xvap, XAT_READONLY); 1027 } 1028 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1029 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1030 zp->z_pflags, tx); 1031 XVA_SET_RTN(xvap, XAT_HIDDEN); 1032 } 1033 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1034 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1035 zp->z_pflags, tx); 1036 XVA_SET_RTN(xvap, XAT_SYSTEM); 1037 } 1038 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1039 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1040 zp->z_pflags, tx); 1041 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1042 } 1043 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1044 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1045 zp->z_pflags, tx); 1046 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1047 } 1048 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1049 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1050 zp->z_pflags, tx); 1051 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1052 } 1053 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1054 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1055 zp->z_pflags, tx); 1056 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1057 } 1058 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1059 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1060 zp->z_pflags, tx); 1061 XVA_SET_RTN(xvap, XAT_NODUMP); 1062 } 1063 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1064 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1065 zp->z_pflags, tx); 1066 XVA_SET_RTN(xvap, XAT_OPAQUE); 1067 } 1068 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1069 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1070 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1071 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1072 } 1073 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1074 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1075 zp->z_pflags, tx); 1076 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1077 } 1078 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1079 zfs_sa_set_scanstamp(zp, xvap, tx); 1080 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1081 } 1082 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1083 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1084 zp->z_pflags, tx); 1085 XVA_SET_RTN(xvap, XAT_REPARSE); 1086 } 1087 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1088 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1089 zp->z_pflags, tx); 1090 XVA_SET_RTN(xvap, XAT_OFFLINE); 1091 } 1092 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1093 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1094 zp->z_pflags, tx); 1095 XVA_SET_RTN(xvap, XAT_SPARSE); 1096 } 1097 } 1098 1099 int 1100 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1101 { 1102 dmu_object_info_t doi; 1103 dmu_buf_t *db; 1104 znode_t *zp; 1105 int err; 1106 sa_handle_t *hdl; 1107 1108 *zpp = NULL; 1109 1110 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1111 1112 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1113 if (err) { 1114 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1115 return (err); 1116 } 1117 1118 dmu_object_info_from_db(db, &doi); 1119 if (doi.doi_bonus_type != DMU_OT_SA && 1120 (doi.doi_bonus_type != DMU_OT_ZNODE || 1121 (doi.doi_bonus_type == DMU_OT_ZNODE && 1122 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1123 sa_buf_rele(db, NULL); 1124 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1125 return (SET_ERROR(EINVAL)); 1126 } 1127 1128 hdl = dmu_buf_get_user(db); 1129 if (hdl != NULL) { 1130 zp = sa_get_userdata(hdl); 1131 1132 1133 /* 1134 * Since "SA" does immediate eviction we 1135 * should never find a sa handle that doesn't 1136 * know about the znode. 1137 */ 1138 1139 ASSERT3P(zp, !=, NULL); 1140 1141 mutex_enter(&zp->z_lock); 1142 ASSERT3U(zp->z_id, ==, obj_num); 1143 if (zp->z_unlinked) { 1144 err = SET_ERROR(ENOENT); 1145 } else { 1146 VN_HOLD(ZTOV(zp)); 1147 *zpp = zp; 1148 err = 0; 1149 } 1150 sa_buf_rele(db, NULL); 1151 mutex_exit(&zp->z_lock); 1152 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1153 return (err); 1154 } 1155 1156 /* 1157 * Not found create new znode/vnode 1158 * but only if file exists. 1159 * 1160 * There is a small window where zfs_vget() could 1161 * find this object while a file create is still in 1162 * progress. This is checked for in zfs_znode_alloc() 1163 * 1164 * if zfs_znode_alloc() fails it will drop the hold on the 1165 * bonus buffer. 1166 */ 1167 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1168 doi.doi_bonus_type, NULL); 1169 if (zp == NULL) { 1170 err = SET_ERROR(ENOENT); 1171 } else { 1172 *zpp = zp; 1173 } 1174 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1175 return (err); 1176 } 1177 1178 int 1179 zfs_rezget(znode_t *zp) 1180 { 1181 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1182 dmu_object_info_t doi; 1183 dmu_buf_t *db; 1184 uint64_t obj_num = zp->z_id; 1185 uint64_t mode; 1186 sa_bulk_attr_t bulk[8]; 1187 int err; 1188 int count = 0; 1189 uint64_t gen; 1190 1191 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1192 1193 mutex_enter(&zp->z_acl_lock); 1194 if (zp->z_acl_cached) { 1195 zfs_acl_free(zp->z_acl_cached); 1196 zp->z_acl_cached = NULL; 1197 } 1198 1199 mutex_exit(&zp->z_acl_lock); 1200 ASSERT(zp->z_sa_hdl == NULL); 1201 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1202 if (err) { 1203 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1204 return (err); 1205 } 1206 1207 dmu_object_info_from_db(db, &doi); 1208 if (doi.doi_bonus_type != DMU_OT_SA && 1209 (doi.doi_bonus_type != DMU_OT_ZNODE || 1210 (doi.doi_bonus_type == DMU_OT_ZNODE && 1211 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1212 sa_buf_rele(db, NULL); 1213 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1214 return (SET_ERROR(EINVAL)); 1215 } 1216 1217 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1218 1219 /* reload cached values */ 1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1221 &gen, sizeof (gen)); 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1223 &zp->z_size, sizeof (zp->z_size)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1225 &zp->z_links, sizeof (zp->z_links)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1227 &zp->z_pflags, sizeof (zp->z_pflags)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1229 &zp->z_atime, sizeof (zp->z_atime)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1231 &zp->z_uid, sizeof (zp->z_uid)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1233 &zp->z_gid, sizeof (zp->z_gid)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1235 &mode, sizeof (mode)); 1236 1237 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1238 zfs_znode_dmu_fini(zp); 1239 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1240 return (SET_ERROR(EIO)); 1241 } 1242 1243 zp->z_mode = mode; 1244 1245 if (gen != zp->z_gen) { 1246 zfs_znode_dmu_fini(zp); 1247 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1248 return (SET_ERROR(EIO)); 1249 } 1250 1251 zp->z_unlinked = (zp->z_links == 0); 1252 zp->z_blksz = doi.doi_data_block_size; 1253 1254 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1255 1256 return (0); 1257 } 1258 1259 void 1260 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1261 { 1262 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1263 objset_t *os = zfsvfs->z_os; 1264 uint64_t obj = zp->z_id; 1265 uint64_t acl_obj = zfs_external_acl(zp); 1266 1267 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1268 if (acl_obj) { 1269 VERIFY(!zp->z_is_sa); 1270 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1271 } 1272 VERIFY(0 == dmu_object_free(os, obj, tx)); 1273 zfs_znode_dmu_fini(zp); 1274 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1275 zfs_znode_free(zp); 1276 } 1277 1278 void 1279 zfs_zinactive(znode_t *zp) 1280 { 1281 vnode_t *vp = ZTOV(zp); 1282 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1283 uint64_t z_id = zp->z_id; 1284 1285 ASSERT(zp->z_sa_hdl); 1286 1287 /* 1288 * Don't allow a zfs_zget() while were trying to release this znode 1289 */ 1290 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1291 1292 mutex_enter(&zp->z_lock); 1293 mutex_enter(&vp->v_lock); 1294 vp->v_count--; 1295 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1296 /* 1297 * If the hold count is greater than zero, somebody has 1298 * obtained a new reference on this znode while we were 1299 * processing it here, so we are done. If we still have 1300 * mapped pages then we are also done, since we don't 1301 * want to inactivate the znode until the pages get pushed. 1302 * 1303 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1304 * this seems like it would leave the znode hanging with 1305 * no chance to go inactive... 1306 */ 1307 mutex_exit(&vp->v_lock); 1308 mutex_exit(&zp->z_lock); 1309 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1310 return; 1311 } 1312 mutex_exit(&vp->v_lock); 1313 1314 /* 1315 * If this was the last reference to a file with no links, 1316 * remove the file from the file system. 1317 */ 1318 if (zp->z_unlinked) { 1319 mutex_exit(&zp->z_lock); 1320 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1321 zfs_rmnode(zp); 1322 return; 1323 } 1324 1325 mutex_exit(&zp->z_lock); 1326 zfs_znode_dmu_fini(zp); 1327 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1328 zfs_znode_free(zp); 1329 } 1330 1331 void 1332 zfs_znode_free(znode_t *zp) 1333 { 1334 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1335 1336 vn_invalid(ZTOV(zp)); 1337 1338 ASSERT(ZTOV(zp)->v_count == 0); 1339 1340 mutex_enter(&zfsvfs->z_znodes_lock); 1341 POINTER_INVALIDATE(&zp->z_zfsvfs); 1342 list_remove(&zfsvfs->z_all_znodes, zp); 1343 mutex_exit(&zfsvfs->z_znodes_lock); 1344 1345 if (zp->z_acl_cached) { 1346 zfs_acl_free(zp->z_acl_cached); 1347 zp->z_acl_cached = NULL; 1348 } 1349 1350 kmem_cache_free(znode_cache, zp); 1351 1352 VFS_RELE(zfsvfs->z_vfs); 1353 } 1354 1355 void 1356 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1357 uint64_t ctime[2], boolean_t have_tx) 1358 { 1359 timestruc_t now; 1360 1361 gethrestime(&now); 1362 1363 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1364 zp->z_atime_dirty = 0; 1365 zp->z_seq++; 1366 } else { 1367 zp->z_atime_dirty = 1; 1368 } 1369 1370 if (flag & AT_ATIME) { 1371 ZFS_TIME_ENCODE(&now, zp->z_atime); 1372 } 1373 1374 if (flag & AT_MTIME) { 1375 ZFS_TIME_ENCODE(&now, mtime); 1376 if (zp->z_zfsvfs->z_use_fuids) { 1377 zp->z_pflags |= (ZFS_ARCHIVE | 1378 ZFS_AV_MODIFIED); 1379 } 1380 } 1381 1382 if (flag & AT_CTIME) { 1383 ZFS_TIME_ENCODE(&now, ctime); 1384 if (zp->z_zfsvfs->z_use_fuids) 1385 zp->z_pflags |= ZFS_ARCHIVE; 1386 } 1387 } 1388 1389 /* 1390 * Grow the block size for a file. 1391 * 1392 * IN: zp - znode of file to free data in. 1393 * size - requested block size 1394 * tx - open transaction. 1395 * 1396 * NOTE: this function assumes that the znode is write locked. 1397 */ 1398 void 1399 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1400 { 1401 int error; 1402 u_longlong_t dummy; 1403 1404 if (size <= zp->z_blksz) 1405 return; 1406 /* 1407 * If the file size is already greater than the current blocksize, 1408 * we will not grow. If there is more than one block in a file, 1409 * the blocksize cannot change. 1410 */ 1411 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1412 return; 1413 1414 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1415 size, 0, tx); 1416 1417 if (error == ENOTSUP) 1418 return; 1419 ASSERT0(error); 1420 1421 /* What blocksize did we actually get? */ 1422 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1423 } 1424 1425 /* 1426 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1427 * be calling back into the fs for a putpage(). E.g.: when truncating 1428 * a file, the pages being "thrown away* don't need to be written out. 1429 */ 1430 /* ARGSUSED */ 1431 static int 1432 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1433 int flags, cred_t *cr) 1434 { 1435 ASSERT(0); 1436 return (0); 1437 } 1438 1439 /* 1440 * Increase the file length 1441 * 1442 * IN: zp - znode of file to free data in. 1443 * end - new end-of-file 1444 * 1445 * RETURN: 0 on success, error code on failure 1446 */ 1447 static int 1448 zfs_extend(znode_t *zp, uint64_t end) 1449 { 1450 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1451 dmu_tx_t *tx; 1452 rl_t *rl; 1453 uint64_t newblksz; 1454 int error; 1455 1456 /* 1457 * We will change zp_size, lock the whole file. 1458 */ 1459 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1460 1461 /* 1462 * Nothing to do if file already at desired length. 1463 */ 1464 if (end <= zp->z_size) { 1465 zfs_range_unlock(rl); 1466 return (0); 1467 } 1468 tx = dmu_tx_create(zfsvfs->z_os); 1469 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1470 zfs_sa_upgrade_txholds(tx, zp); 1471 if (end > zp->z_blksz && 1472 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1473 /* 1474 * We are growing the file past the current block size. 1475 */ 1476 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1477 ASSERT(!ISP2(zp->z_blksz)); 1478 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1479 } else { 1480 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1481 } 1482 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1483 } else { 1484 newblksz = 0; 1485 } 1486 1487 error = dmu_tx_assign(tx, TXG_WAIT); 1488 if (error) { 1489 dmu_tx_abort(tx); 1490 zfs_range_unlock(rl); 1491 return (error); 1492 } 1493 1494 if (newblksz) 1495 zfs_grow_blocksize(zp, newblksz, tx); 1496 1497 zp->z_size = end; 1498 1499 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1500 &zp->z_size, sizeof (zp->z_size), tx)); 1501 1502 zfs_range_unlock(rl); 1503 1504 dmu_tx_commit(tx); 1505 1506 return (0); 1507 } 1508 1509 /* 1510 * Free space in a file. 1511 * 1512 * IN: zp - znode of file to free data in. 1513 * off - start of section to free. 1514 * len - length of section to free. 1515 * 1516 * RETURN: 0 on success, error code on failure 1517 */ 1518 static int 1519 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1520 { 1521 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1522 rl_t *rl; 1523 int error; 1524 1525 /* 1526 * Lock the range being freed. 1527 */ 1528 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1529 1530 /* 1531 * Nothing to do if file already at desired length. 1532 */ 1533 if (off >= zp->z_size) { 1534 zfs_range_unlock(rl); 1535 return (0); 1536 } 1537 1538 if (off + len > zp->z_size) 1539 len = zp->z_size - off; 1540 1541 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1542 1543 zfs_range_unlock(rl); 1544 1545 return (error); 1546 } 1547 1548 /* 1549 * Truncate a file 1550 * 1551 * IN: zp - znode of file to free data in. 1552 * end - new end-of-file. 1553 * 1554 * RETURN: 0 on success, error code on failure 1555 */ 1556 static int 1557 zfs_trunc(znode_t *zp, uint64_t end) 1558 { 1559 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1560 vnode_t *vp = ZTOV(zp); 1561 dmu_tx_t *tx; 1562 rl_t *rl; 1563 int error; 1564 sa_bulk_attr_t bulk[2]; 1565 int count = 0; 1566 1567 /* 1568 * We will change zp_size, lock the whole file. 1569 */ 1570 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1571 1572 /* 1573 * Nothing to do if file already at desired length. 1574 */ 1575 if (end >= zp->z_size) { 1576 zfs_range_unlock(rl); 1577 return (0); 1578 } 1579 1580 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1581 if (error) { 1582 zfs_range_unlock(rl); 1583 return (error); 1584 } 1585 tx = dmu_tx_create(zfsvfs->z_os); 1586 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1587 zfs_sa_upgrade_txholds(tx, zp); 1588 dmu_tx_mark_netfree(tx); 1589 error = dmu_tx_assign(tx, TXG_WAIT); 1590 if (error) { 1591 dmu_tx_abort(tx); 1592 zfs_range_unlock(rl); 1593 return (error); 1594 } 1595 1596 zp->z_size = end; 1597 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1598 NULL, &zp->z_size, sizeof (zp->z_size)); 1599 1600 if (end == 0) { 1601 zp->z_pflags &= ~ZFS_SPARSE; 1602 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1603 NULL, &zp->z_pflags, 8); 1604 } 1605 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1606 1607 dmu_tx_commit(tx); 1608 1609 /* 1610 * Clear any mapped pages in the truncated region. This has to 1611 * happen outside of the transaction to avoid the possibility of 1612 * a deadlock with someone trying to push a page that we are 1613 * about to invalidate. 1614 */ 1615 if (vn_has_cached_data(vp)) { 1616 page_t *pp; 1617 uint64_t start = end & PAGEMASK; 1618 int poff = end & PAGEOFFSET; 1619 1620 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1621 /* 1622 * We need to zero a partial page. 1623 */ 1624 pagezero(pp, poff, PAGESIZE - poff); 1625 start += PAGESIZE; 1626 page_unlock(pp); 1627 } 1628 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1629 B_INVAL | B_TRUNC, NULL); 1630 ASSERT(error == 0); 1631 } 1632 1633 zfs_range_unlock(rl); 1634 1635 return (0); 1636 } 1637 1638 /* 1639 * Free space in a file 1640 * 1641 * IN: zp - znode of file to free data in. 1642 * off - start of range 1643 * len - end of range (0 => EOF) 1644 * flag - current file open mode flags. 1645 * log - TRUE if this action should be logged 1646 * 1647 * RETURN: 0 on success, error code on failure 1648 */ 1649 int 1650 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1651 { 1652 vnode_t *vp = ZTOV(zp); 1653 dmu_tx_t *tx; 1654 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1655 zilog_t *zilog = zfsvfs->z_log; 1656 uint64_t mode; 1657 uint64_t mtime[2], ctime[2]; 1658 sa_bulk_attr_t bulk[3]; 1659 int count = 0; 1660 int error; 1661 1662 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1663 sizeof (mode))) != 0) 1664 return (error); 1665 1666 if (off > zp->z_size) { 1667 error = zfs_extend(zp, off+len); 1668 if (error == 0 && log) 1669 goto log; 1670 else 1671 return (error); 1672 } 1673 1674 /* 1675 * Check for any locks in the region to be freed. 1676 */ 1677 1678 if (MANDLOCK(vp, (mode_t)mode)) { 1679 uint64_t length = (len ? len : zp->z_size - off); 1680 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1681 return (error); 1682 } 1683 1684 if (len == 0) { 1685 error = zfs_trunc(zp, off); 1686 } else { 1687 if ((error = zfs_free_range(zp, off, len)) == 0 && 1688 off + len > zp->z_size) 1689 error = zfs_extend(zp, off+len); 1690 } 1691 if (error || !log) 1692 return (error); 1693 log: 1694 tx = dmu_tx_create(zfsvfs->z_os); 1695 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1696 zfs_sa_upgrade_txholds(tx, zp); 1697 error = dmu_tx_assign(tx, TXG_WAIT); 1698 if (error) { 1699 dmu_tx_abort(tx); 1700 return (error); 1701 } 1702 1703 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1704 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1705 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1706 NULL, &zp->z_pflags, 8); 1707 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1708 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1709 ASSERT(error == 0); 1710 1711 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1712 1713 dmu_tx_commit(tx); 1714 return (0); 1715 } 1716 1717 void 1718 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1719 { 1720 zfsvfs_t zfsvfs; 1721 uint64_t moid, obj, sa_obj, version; 1722 uint64_t sense = ZFS_CASE_SENSITIVE; 1723 uint64_t norm = 0; 1724 nvpair_t *elem; 1725 int error; 1726 int i; 1727 znode_t *rootzp = NULL; 1728 vnode_t *vp; 1729 vattr_t vattr; 1730 znode_t *zp; 1731 zfs_acl_ids_t acl_ids; 1732 1733 /* 1734 * First attempt to create master node. 1735 */ 1736 /* 1737 * In an empty objset, there are no blocks to read and thus 1738 * there can be no i/o errors (which we assert below). 1739 */ 1740 moid = MASTER_NODE_OBJ; 1741 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1742 DMU_OT_NONE, 0, tx); 1743 ASSERT(error == 0); 1744 1745 /* 1746 * Set starting attributes. 1747 */ 1748 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1749 elem = NULL; 1750 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1751 /* For the moment we expect all zpl props to be uint64_ts */ 1752 uint64_t val; 1753 char *name; 1754 1755 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1756 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1757 name = nvpair_name(elem); 1758 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1759 if (val < version) 1760 version = val; 1761 } else { 1762 error = zap_update(os, moid, name, 8, 1, &val, tx); 1763 } 1764 ASSERT(error == 0); 1765 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1766 norm = val; 1767 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1768 sense = val; 1769 } 1770 ASSERT(version != 0); 1771 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1772 1773 /* 1774 * Create zap object used for SA attribute registration 1775 */ 1776 1777 if (version >= ZPL_VERSION_SA) { 1778 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1779 DMU_OT_NONE, 0, tx); 1780 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1781 ASSERT(error == 0); 1782 } else { 1783 sa_obj = 0; 1784 } 1785 /* 1786 * Create a delete queue. 1787 */ 1788 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1789 1790 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1791 ASSERT(error == 0); 1792 1793 /* 1794 * Create root znode. Create minimal znode/vnode/zfsvfs 1795 * to allow zfs_mknode to work. 1796 */ 1797 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1798 vattr.va_type = VDIR; 1799 vattr.va_mode = S_IFDIR|0755; 1800 vattr.va_uid = crgetuid(cr); 1801 vattr.va_gid = crgetgid(cr); 1802 1803 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1804 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1805 rootzp->z_moved = 0; 1806 rootzp->z_unlinked = 0; 1807 rootzp->z_atime_dirty = 0; 1808 rootzp->z_is_sa = USE_SA(version, os); 1809 1810 vp = ZTOV(rootzp); 1811 vn_reinit(vp); 1812 vp->v_type = VDIR; 1813 1814 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1815 1816 zfsvfs.z_os = os; 1817 zfsvfs.z_parent = &zfsvfs; 1818 zfsvfs.z_version = version; 1819 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1820 zfsvfs.z_use_sa = USE_SA(version, os); 1821 zfsvfs.z_norm = norm; 1822 1823 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1824 &zfsvfs.z_attr_table); 1825 1826 ASSERT(error == 0); 1827 1828 /* 1829 * Fold case on file systems that are always or sometimes case 1830 * insensitive. 1831 */ 1832 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1833 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1834 1835 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1836 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1837 offsetof(znode_t, z_link_node)); 1838 1839 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1840 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1841 1842 rootzp->z_zfsvfs = &zfsvfs; 1843 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1844 cr, NULL, &acl_ids)); 1845 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1846 ASSERT3P(zp, ==, rootzp); 1847 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1848 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1849 ASSERT(error == 0); 1850 zfs_acl_ids_free(&acl_ids); 1851 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1852 1853 ZTOV(rootzp)->v_count = 0; 1854 sa_handle_destroy(rootzp->z_sa_hdl); 1855 kmem_cache_free(znode_cache, rootzp); 1856 1857 /* 1858 * Create shares directory 1859 */ 1860 1861 error = zfs_create_share_dir(&zfsvfs, tx); 1862 1863 ASSERT(error == 0); 1864 1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1866 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1867 } 1868 1869 #endif /* _KERNEL */ 1870 1871 static int 1872 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1873 { 1874 uint64_t sa_obj = 0; 1875 int error; 1876 1877 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1878 if (error != 0 && error != ENOENT) 1879 return (error); 1880 1881 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1882 return (error); 1883 } 1884 1885 static int 1886 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1887 dmu_buf_t **db, void *tag) 1888 { 1889 dmu_object_info_t doi; 1890 int error; 1891 1892 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1893 return (error); 1894 1895 dmu_object_info_from_db(*db, &doi); 1896 if ((doi.doi_bonus_type != DMU_OT_SA && 1897 doi.doi_bonus_type != DMU_OT_ZNODE) || 1898 doi.doi_bonus_type == DMU_OT_ZNODE && 1899 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1900 sa_buf_rele(*db, tag); 1901 return (SET_ERROR(ENOTSUP)); 1902 } 1903 1904 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1905 if (error != 0) { 1906 sa_buf_rele(*db, tag); 1907 return (error); 1908 } 1909 1910 return (0); 1911 } 1912 1913 void 1914 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1915 { 1916 sa_handle_destroy(hdl); 1917 sa_buf_rele(db, tag); 1918 } 1919 1920 /* 1921 * Given an object number, return its parent object number and whether 1922 * or not the object is an extended attribute directory. 1923 */ 1924 static int 1925 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1926 uint64_t *pobjp, int *is_xattrdir) 1927 { 1928 uint64_t parent; 1929 uint64_t pflags; 1930 uint64_t mode; 1931 uint64_t parent_mode; 1932 sa_bulk_attr_t bulk[3]; 1933 sa_handle_t *sa_hdl; 1934 dmu_buf_t *sa_db; 1935 int count = 0; 1936 int error; 1937 1938 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1939 &parent, sizeof (parent)); 1940 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1941 &pflags, sizeof (pflags)); 1942 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1943 &mode, sizeof (mode)); 1944 1945 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1946 return (error); 1947 1948 /* 1949 * When a link is removed its parent pointer is not changed and will 1950 * be invalid. There are two cases where a link is removed but the 1951 * file stays around, when it goes to the delete queue and when there 1952 * are additional links. 1953 */ 1954 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1955 if (error != 0) 1956 return (error); 1957 1958 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1959 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1960 if (error != 0) 1961 return (error); 1962 1963 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1964 1965 /* 1966 * Extended attributes can be applied to files, directories, etc. 1967 * Otherwise the parent must be a directory. 1968 */ 1969 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1970 return (SET_ERROR(EINVAL)); 1971 1972 *pobjp = parent; 1973 1974 return (0); 1975 } 1976 1977 /* 1978 * Given an object number, return some zpl level statistics 1979 */ 1980 static int 1981 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1982 zfs_stat_t *sb) 1983 { 1984 sa_bulk_attr_t bulk[4]; 1985 int count = 0; 1986 1987 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1988 &sb->zs_mode, sizeof (sb->zs_mode)); 1989 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1990 &sb->zs_gen, sizeof (sb->zs_gen)); 1991 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1992 &sb->zs_links, sizeof (sb->zs_links)); 1993 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1994 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1995 1996 return (sa_bulk_lookup(hdl, bulk, count)); 1997 } 1998 1999 static int 2000 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2001 sa_attr_type_t *sa_table, char *buf, int len) 2002 { 2003 sa_handle_t *sa_hdl; 2004 sa_handle_t *prevhdl = NULL; 2005 dmu_buf_t *prevdb = NULL; 2006 dmu_buf_t *sa_db = NULL; 2007 char *path = buf + len - 1; 2008 int error; 2009 2010 *path = '\0'; 2011 sa_hdl = hdl; 2012 2013 for (;;) { 2014 uint64_t pobj; 2015 char component[MAXNAMELEN + 2]; 2016 size_t complen; 2017 int is_xattrdir; 2018 2019 if (prevdb) 2020 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2021 2022 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2023 &is_xattrdir)) != 0) 2024 break; 2025 2026 if (pobj == obj) { 2027 if (path[0] != '/') 2028 *--path = '/'; 2029 break; 2030 } 2031 2032 component[0] = '/'; 2033 if (is_xattrdir) { 2034 (void) sprintf(component + 1, "<xattrdir>"); 2035 } else { 2036 error = zap_value_search(osp, pobj, obj, 2037 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2038 if (error != 0) 2039 break; 2040 } 2041 2042 complen = strlen(component); 2043 path -= complen; 2044 ASSERT(path >= buf); 2045 bcopy(component, path, complen); 2046 obj = pobj; 2047 2048 if (sa_hdl != hdl) { 2049 prevhdl = sa_hdl; 2050 prevdb = sa_db; 2051 } 2052 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2053 if (error != 0) { 2054 sa_hdl = prevhdl; 2055 sa_db = prevdb; 2056 break; 2057 } 2058 } 2059 2060 if (sa_hdl != NULL && sa_hdl != hdl) { 2061 ASSERT(sa_db != NULL); 2062 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2063 } 2064 2065 if (error == 0) 2066 (void) memmove(buf, path, buf + len - path); 2067 2068 return (error); 2069 } 2070 2071 int 2072 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2073 { 2074 sa_attr_type_t *sa_table; 2075 sa_handle_t *hdl; 2076 dmu_buf_t *db; 2077 int error; 2078 2079 error = zfs_sa_setup(osp, &sa_table); 2080 if (error != 0) 2081 return (error); 2082 2083 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2084 if (error != 0) 2085 return (error); 2086 2087 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2088 2089 zfs_release_sa_handle(hdl, db, FTAG); 2090 return (error); 2091 } 2092 2093 int 2094 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2095 char *buf, int len) 2096 { 2097 char *path = buf + len - 1; 2098 sa_attr_type_t *sa_table; 2099 sa_handle_t *hdl; 2100 dmu_buf_t *db; 2101 int error; 2102 2103 *path = '\0'; 2104 2105 error = zfs_sa_setup(osp, &sa_table); 2106 if (error != 0) 2107 return (error); 2108 2109 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2110 if (error != 0) 2111 return (error); 2112 2113 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2114 if (error != 0) { 2115 zfs_release_sa_handle(hdl, db, FTAG); 2116 return (error); 2117 } 2118 2119 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2120 2121 zfs_release_sa_handle(hdl, db, FTAG); 2122 return (error); 2123 } 2124