xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 13cc0a0b8d667c14344b4ff49cc47350cd9ef182)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 
27 #ifdef _KERNEL
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/mntent.h>
35 #include <sys/mkdev.h>
36 #include <sys/u8_textprep.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/kmem.h>
43 #include <sys/errno.h>
44 #include <sys/unistd.h>
45 #include <sys/mode.h>
46 #include <sys/atomic.h>
47 #include <vm/pvn.h>
48 #include "fs/fs_subr.h"
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zfs_rlock.h>
53 #include <sys/zfs_fuid.h>
54 #include <sys/dnode.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58 
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64 #include <sys/sa.h>
65 #include <sys/zfs_sa.h>
66 
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69 
70 /*
71  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
72  * turned on when DEBUG is also defined.
73  */
74 #ifdef	DEBUG
75 #define	ZNODE_STATS
76 #endif	/* DEBUG */
77 
78 #ifdef	ZNODE_STATS
79 #define	ZNODE_STAT_ADD(stat)			((stat)++)
80 #else
81 #define	ZNODE_STAT_ADD(stat)			/* nothing */
82 #endif	/* ZNODE_STATS */
83 
84 /*
85  * Functions needed for userland (ie: libzpool) are not put under
86  * #ifdef_KERNEL; the rest of the functions have dependencies
87  * (such as VFS logic) that will not compile easily in userland.
88  */
89 #ifdef _KERNEL
90 /*
91  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
92  * be freed before it can be safely accessed.
93  */
94 krwlock_t zfsvfs_lock;
95 
96 static kmem_cache_t *znode_cache = NULL;
97 
98 /*ARGSUSED*/
99 static void
100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
101 {
102 	/*
103 	 * We should never drop all dbuf refs without first clearing
104 	 * the eviction callback.
105 	 */
106 	panic("evicting znode %p\n", user_ptr);
107 }
108 
109 /*ARGSUSED*/
110 static int
111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
112 {
113 	znode_t *zp = buf;
114 
115 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
116 
117 	zp->z_vnode = vn_alloc(kmflags);
118 	if (zp->z_vnode == NULL) {
119 		return (-1);
120 	}
121 	ZTOV(zp)->v_data = zp;
122 
123 	list_link_init(&zp->z_link_node);
124 
125 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
128 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129 
130 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
131 	avl_create(&zp->z_range_avl, zfs_range_compare,
132 	    sizeof (rl_t), offsetof(rl_t, r_node));
133 
134 	zp->z_dirlocks = NULL;
135 	zp->z_acl_cached = NULL;
136 	zp->z_moved = 0;
137 	return (0);
138 }
139 
140 /*ARGSUSED*/
141 static void
142 zfs_znode_cache_destructor(void *buf, void *arg)
143 {
144 	znode_t *zp = buf;
145 
146 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
147 	ASSERT(ZTOV(zp)->v_data == zp);
148 	vn_free(ZTOV(zp));
149 	ASSERT(!list_link_active(&zp->z_link_node));
150 	mutex_destroy(&zp->z_lock);
151 	rw_destroy(&zp->z_parent_lock);
152 	rw_destroy(&zp->z_name_lock);
153 	mutex_destroy(&zp->z_acl_lock);
154 	avl_destroy(&zp->z_range_avl);
155 	mutex_destroy(&zp->z_range_lock);
156 
157 	ASSERT(zp->z_dirlocks == NULL);
158 	ASSERT(zp->z_acl_cached == NULL);
159 }
160 
161 #ifdef	ZNODE_STATS
162 static struct {
163 	uint64_t zms_zfsvfs_invalid;
164 	uint64_t zms_zfsvfs_recheck1;
165 	uint64_t zms_zfsvfs_unmounted;
166 	uint64_t zms_zfsvfs_recheck2;
167 	uint64_t zms_obj_held;
168 	uint64_t zms_vnode_locked;
169 	uint64_t zms_not_only_dnlc;
170 } znode_move_stats;
171 #endif	/* ZNODE_STATS */
172 
173 static void
174 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
175 {
176 	vnode_t *vp;
177 
178 	/* Copy fields. */
179 	nzp->z_zfsvfs = ozp->z_zfsvfs;
180 
181 	/* Swap vnodes. */
182 	vp = nzp->z_vnode;
183 	nzp->z_vnode = ozp->z_vnode;
184 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
185 	ZTOV(ozp)->v_data = ozp;
186 	ZTOV(nzp)->v_data = nzp;
187 
188 	nzp->z_id = ozp->z_id;
189 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
190 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
191 	nzp->z_unlinked = ozp->z_unlinked;
192 	nzp->z_atime_dirty = ozp->z_atime_dirty;
193 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
194 	nzp->z_blksz = ozp->z_blksz;
195 	nzp->z_seq = ozp->z_seq;
196 	nzp->z_mapcnt = ozp->z_mapcnt;
197 	nzp->z_last_itx = ozp->z_last_itx;
198 	nzp->z_gen = ozp->z_gen;
199 	nzp->z_sync_cnt = ozp->z_sync_cnt;
200 	nzp->z_is_sa = ozp->z_is_sa;
201 	nzp->z_sa_hdl = ozp->z_sa_hdl;
202 	bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
203 	nzp->z_links = ozp->z_links;
204 	nzp->z_size = ozp->z_size;
205 	nzp->z_pflags = ozp->z_pflags;
206 	nzp->z_uid = ozp->z_uid;
207 	nzp->z_gid = ozp->z_gid;
208 	nzp->z_mode = ozp->z_mode;
209 
210 	/*
211 	 * Since this is just an idle znode and kmem is already dealing with
212 	 * memory pressure, release any cached ACL.
213 	 */
214 	if (ozp->z_acl_cached) {
215 		zfs_acl_free(ozp->z_acl_cached);
216 		ozp->z_acl_cached = NULL;
217 	}
218 
219 	sa_set_userp(nzp->z_sa_hdl, nzp);
220 
221 	/*
222 	 * Invalidate the original znode by clearing fields that provide a
223 	 * pointer back to the znode. Set the low bit of the vfs pointer to
224 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
225 	 * subsequent callback.
226 	 */
227 	ozp->z_sa_hdl = NULL;
228 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
229 
230 	/*
231 	 * Mark the znode.
232 	 */
233 	nzp->z_moved = 1;
234 	ozp->z_moved = (uint8_t)-1;
235 }
236 
237 /*ARGSUSED*/
238 static kmem_cbrc_t
239 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
240 {
241 	znode_t *ozp = buf, *nzp = newbuf;
242 	zfsvfs_t *zfsvfs;
243 	vnode_t *vp;
244 
245 	/*
246 	 * The znode is on the file system's list of known znodes if the vfs
247 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
248 	 * the znode to invalidate it, and the memory patterns written by kmem
249 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
250 	 * created znode sets the vfs pointer last of all to indicate that the
251 	 * znode is known and in a valid state to be moved by this function.
252 	 */
253 	zfsvfs = ozp->z_zfsvfs;
254 	if (!POINTER_IS_VALID(zfsvfs)) {
255 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
256 		return (KMEM_CBRC_DONT_KNOW);
257 	}
258 
259 	/*
260 	 * Close a small window in which it's possible that the filesystem could
261 	 * be unmounted and freed, and zfsvfs, though valid in the previous
262 	 * statement, could point to unrelated memory by the time we try to
263 	 * prevent the filesystem from being unmounted.
264 	 */
265 	rw_enter(&zfsvfs_lock, RW_WRITER);
266 	if (zfsvfs != ozp->z_zfsvfs) {
267 		rw_exit(&zfsvfs_lock);
268 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
269 		return (KMEM_CBRC_DONT_KNOW);
270 	}
271 
272 	/*
273 	 * If the znode is still valid, then so is the file system. We know that
274 	 * no valid file system can be freed while we hold zfsvfs_lock, so we
275 	 * can safely ensure that the filesystem is not and will not be
276 	 * unmounted. The next statement is equivalent to ZFS_ENTER().
277 	 */
278 	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
279 	if (zfsvfs->z_unmounted) {
280 		ZFS_EXIT(zfsvfs);
281 		rw_exit(&zfsvfs_lock);
282 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
283 		return (KMEM_CBRC_DONT_KNOW);
284 	}
285 	rw_exit(&zfsvfs_lock);
286 
287 	mutex_enter(&zfsvfs->z_znodes_lock);
288 	/*
289 	 * Recheck the vfs pointer in case the znode was removed just before
290 	 * acquiring the lock.
291 	 */
292 	if (zfsvfs != ozp->z_zfsvfs) {
293 		mutex_exit(&zfsvfs->z_znodes_lock);
294 		ZFS_EXIT(zfsvfs);
295 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
296 		return (KMEM_CBRC_DONT_KNOW);
297 	}
298 
299 	/*
300 	 * At this point we know that as long as we hold z_znodes_lock, the
301 	 * znode cannot be freed and fields within the znode can be safely
302 	 * accessed. Now, prevent a race with zfs_zget().
303 	 */
304 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
305 		mutex_exit(&zfsvfs->z_znodes_lock);
306 		ZFS_EXIT(zfsvfs);
307 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
308 		return (KMEM_CBRC_LATER);
309 	}
310 
311 	vp = ZTOV(ozp);
312 	if (mutex_tryenter(&vp->v_lock) == 0) {
313 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
314 		mutex_exit(&zfsvfs->z_znodes_lock);
315 		ZFS_EXIT(zfsvfs);
316 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
317 		return (KMEM_CBRC_LATER);
318 	}
319 
320 	/* Only move znodes that are referenced _only_ by the DNLC. */
321 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
322 		mutex_exit(&vp->v_lock);
323 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
324 		mutex_exit(&zfsvfs->z_znodes_lock);
325 		ZFS_EXIT(zfsvfs);
326 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
327 		return (KMEM_CBRC_LATER);
328 	}
329 
330 	/*
331 	 * The znode is known and in a valid state to move. We're holding the
332 	 * locks needed to execute the critical section.
333 	 */
334 	zfs_znode_move_impl(ozp, nzp);
335 	mutex_exit(&vp->v_lock);
336 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
337 
338 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
339 	mutex_exit(&zfsvfs->z_znodes_lock);
340 	ZFS_EXIT(zfsvfs);
341 
342 	return (KMEM_CBRC_YES);
343 }
344 
345 void
346 zfs_znode_init(void)
347 {
348 	/*
349 	 * Initialize zcache
350 	 */
351 	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
352 	ASSERT(znode_cache == NULL);
353 	znode_cache = kmem_cache_create("zfs_znode_cache",
354 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
355 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
356 	kmem_cache_set_move(znode_cache, zfs_znode_move);
357 }
358 
359 void
360 zfs_znode_fini(void)
361 {
362 	/*
363 	 * Cleanup vfs & vnode ops
364 	 */
365 	zfs_remove_op_tables();
366 
367 	/*
368 	 * Cleanup zcache
369 	 */
370 	if (znode_cache)
371 		kmem_cache_destroy(znode_cache);
372 	znode_cache = NULL;
373 	rw_destroy(&zfsvfs_lock);
374 }
375 
376 struct vnodeops *zfs_dvnodeops;
377 struct vnodeops *zfs_fvnodeops;
378 struct vnodeops *zfs_symvnodeops;
379 struct vnodeops *zfs_xdvnodeops;
380 struct vnodeops *zfs_evnodeops;
381 struct vnodeops *zfs_sharevnodeops;
382 
383 void
384 zfs_remove_op_tables()
385 {
386 	/*
387 	 * Remove vfs ops
388 	 */
389 	ASSERT(zfsfstype);
390 	(void) vfs_freevfsops_by_type(zfsfstype);
391 	zfsfstype = 0;
392 
393 	/*
394 	 * Remove vnode ops
395 	 */
396 	if (zfs_dvnodeops)
397 		vn_freevnodeops(zfs_dvnodeops);
398 	if (zfs_fvnodeops)
399 		vn_freevnodeops(zfs_fvnodeops);
400 	if (zfs_symvnodeops)
401 		vn_freevnodeops(zfs_symvnodeops);
402 	if (zfs_xdvnodeops)
403 		vn_freevnodeops(zfs_xdvnodeops);
404 	if (zfs_evnodeops)
405 		vn_freevnodeops(zfs_evnodeops);
406 	if (zfs_sharevnodeops)
407 		vn_freevnodeops(zfs_sharevnodeops);
408 
409 	zfs_dvnodeops = NULL;
410 	zfs_fvnodeops = NULL;
411 	zfs_symvnodeops = NULL;
412 	zfs_xdvnodeops = NULL;
413 	zfs_evnodeops = NULL;
414 	zfs_sharevnodeops = NULL;
415 }
416 
417 extern const fs_operation_def_t zfs_dvnodeops_template[];
418 extern const fs_operation_def_t zfs_fvnodeops_template[];
419 extern const fs_operation_def_t zfs_xdvnodeops_template[];
420 extern const fs_operation_def_t zfs_symvnodeops_template[];
421 extern const fs_operation_def_t zfs_evnodeops_template[];
422 extern const fs_operation_def_t zfs_sharevnodeops_template[];
423 
424 int
425 zfs_create_op_tables()
426 {
427 	int error;
428 
429 	/*
430 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
431 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
432 	 * In this case we just return as the ops vectors are already set up.
433 	 */
434 	if (zfs_dvnodeops)
435 		return (0);
436 
437 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
438 	    &zfs_dvnodeops);
439 	if (error)
440 		return (error);
441 
442 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
443 	    &zfs_fvnodeops);
444 	if (error)
445 		return (error);
446 
447 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
448 	    &zfs_symvnodeops);
449 	if (error)
450 		return (error);
451 
452 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
453 	    &zfs_xdvnodeops);
454 	if (error)
455 		return (error);
456 
457 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
458 	    &zfs_evnodeops);
459 	if (error)
460 		return (error);
461 
462 	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
463 	    &zfs_sharevnodeops);
464 
465 	return (error);
466 }
467 
468 int
469 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
470 {
471 	zfs_acl_ids_t acl_ids;
472 	vattr_t vattr;
473 	znode_t *sharezp;
474 	vnode_t *vp;
475 	znode_t *zp;
476 	int error;
477 
478 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
479 	vattr.va_type = VDIR;
480 	vattr.va_mode = S_IFDIR|0555;
481 	vattr.va_uid = crgetuid(kcred);
482 	vattr.va_gid = crgetgid(kcred);
483 
484 	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
485 	ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
486 	sharezp->z_moved = 0;
487 	sharezp->z_unlinked = 0;
488 	sharezp->z_atime_dirty = 0;
489 	sharezp->z_zfsvfs = zfsvfs;
490 	sharezp->z_is_sa = zfsvfs->z_use_sa;
491 
492 	vp = ZTOV(sharezp);
493 	vn_reinit(vp);
494 	vp->v_type = VDIR;
495 
496 	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
497 	    kcred, NULL, &acl_ids));
498 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
499 	ASSERT3P(zp, ==, sharezp);
500 	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
501 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
502 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
503 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
504 	zfsvfs->z_shares_dir = sharezp->z_id;
505 
506 	zfs_acl_ids_free(&acl_ids);
507 	ZTOV(sharezp)->v_count = 0;
508 	sa_handle_destroy(sharezp->z_sa_hdl);
509 	kmem_cache_free(znode_cache, sharezp);
510 
511 	return (error);
512 }
513 
514 /*
515  * define a couple of values we need available
516  * for both 64 and 32 bit environments.
517  */
518 #ifndef NBITSMINOR64
519 #define	NBITSMINOR64	32
520 #endif
521 #ifndef MAXMAJ64
522 #define	MAXMAJ64	0xffffffffUL
523 #endif
524 #ifndef	MAXMIN64
525 #define	MAXMIN64	0xffffffffUL
526 #endif
527 
528 /*
529  * Create special expldev for ZFS private use.
530  * Can't use standard expldev since it doesn't do
531  * what we want.  The standard expldev() takes a
532  * dev32_t in LP64 and expands it to a long dev_t.
533  * We need an interface that takes a dev32_t in ILP32
534  * and expands it to a long dev_t.
535  */
536 static uint64_t
537 zfs_expldev(dev_t dev)
538 {
539 #ifndef _LP64
540 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
541 	return (((uint64_t)major << NBITSMINOR64) |
542 	    ((minor_t)dev & MAXMIN32));
543 #else
544 	return (dev);
545 #endif
546 }
547 
548 /*
549  * Special cmpldev for ZFS private use.
550  * Can't use standard cmpldev since it takes
551  * a long dev_t and compresses it to dev32_t in
552  * LP64.  We need to do a compaction of a long dev_t
553  * to a dev32_t in ILP32.
554  */
555 dev_t
556 zfs_cmpldev(uint64_t dev)
557 {
558 #ifndef _LP64
559 	minor_t minor = (minor_t)dev & MAXMIN64;
560 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
561 
562 	if (major > MAXMAJ32 || minor > MAXMIN32)
563 		return (NODEV32);
564 
565 	return (((dev32_t)major << NBITSMINOR32) | minor);
566 #else
567 	return (dev);
568 #endif
569 }
570 
571 static void
572 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
573     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
574 {
575 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
576 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
577 
578 	mutex_enter(&zp->z_lock);
579 
580 	ASSERT(zp->z_sa_hdl == NULL);
581 	ASSERT(zp->z_acl_cached == NULL);
582 	if (sa_hdl == NULL) {
583 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
584 		    SA_HDL_SHARED, &zp->z_sa_hdl));
585 	} else {
586 		zp->z_sa_hdl = sa_hdl;
587 		sa_set_userp(sa_hdl, zp);
588 	}
589 
590 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
591 
592 	/*
593 	 * Slap on VROOT if we are the root znode
594 	 */
595 	if (zp->z_id == zfsvfs->z_root)
596 		ZTOV(zp)->v_flag |= VROOT;
597 
598 	mutex_exit(&zp->z_lock);
599 	vn_exists(ZTOV(zp));
600 }
601 
602 void
603 zfs_znode_dmu_fini(znode_t *zp)
604 {
605 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
606 	    zp->z_unlinked ||
607 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
608 
609 	sa_handle_destroy(zp->z_sa_hdl);
610 	zp->z_sa_hdl = NULL;
611 }
612 
613 /*
614  * Construct a new znode/vnode and intialize.
615  *
616  * This does not do a call to dmu_set_user() that is
617  * up to the caller to do, in case you don't want to
618  * return the znode
619  */
620 static znode_t *
621 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
622     dmu_object_type_t obj_type, sa_handle_t *hdl)
623 {
624 	znode_t	*zp;
625 	vnode_t *vp;
626 	uint64_t mode;
627 	uint64_t parent;
628 	uint64_t uid, gid;
629 	sa_bulk_attr_t bulk[9];
630 	int count = 0;
631 
632 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
633 
634 	ASSERT(zp->z_dirlocks == NULL);
635 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
636 	zp->z_moved = 0;
637 
638 	/*
639 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
640 	 * the zfs_znode_move() callback.
641 	 */
642 	zp->z_sa_hdl = NULL;
643 	zp->z_unlinked = 0;
644 	zp->z_atime_dirty = 0;
645 	zp->z_mapcnt = 0;
646 	zp->z_last_itx = 0;
647 	zp->z_id = db->db_object;
648 	zp->z_blksz = blksz;
649 	zp->z_seq = 0x7A4653;
650 	zp->z_sync_cnt = 0;
651 
652 	vp = ZTOV(zp);
653 	vn_reinit(vp);
654 
655 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
656 
657 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
658 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
659 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
660 	    &zp->z_size, 8);
661 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
662 	    &zp->z_links, 8);
663 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
664 	    &zp->z_pflags, 8);
665 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
666 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
667 	    &zp->z_atime, 16);
668 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
669 	    &uid, 8);
670 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
671 	    &gid, 8);
672 
673 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
674 		if (hdl == NULL)
675 			sa_handle_destroy(zp->z_sa_hdl);
676 		kmem_cache_free(znode_cache, zp);
677 		return (NULL);
678 	}
679 
680 	zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER);
681 	zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP);
682 	zp->z_mode = mode;
683 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
684 
685 	vp->v_type = IFTOVT((mode_t)mode);
686 
687 	switch (vp->v_type) {
688 	case VDIR:
689 		if (zp->z_pflags & ZFS_XATTR) {
690 			vn_setops(vp, zfs_xdvnodeops);
691 			vp->v_flag |= V_XATTRDIR;
692 		} else {
693 			vn_setops(vp, zfs_dvnodeops);
694 		}
695 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
696 		break;
697 	case VBLK:
698 	case VCHR:
699 		{
700 			uint64_t rdev;
701 			VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
702 			    &rdev, sizeof (rdev)) == 0);
703 
704 			vp->v_rdev = zfs_cmpldev(rdev);
705 		}
706 		/*FALLTHROUGH*/
707 	case VFIFO:
708 	case VSOCK:
709 	case VDOOR:
710 		vn_setops(vp, zfs_fvnodeops);
711 		break;
712 	case VREG:
713 		vp->v_flag |= VMODSORT;
714 		if (parent == zfsvfs->z_shares_dir) {
715 			ASSERT(uid == 0 && gid == 0);
716 			vn_setops(vp, zfs_sharevnodeops);
717 		} else {
718 			vn_setops(vp, zfs_fvnodeops);
719 		}
720 		break;
721 	case VLNK:
722 		vn_setops(vp, zfs_symvnodeops);
723 		break;
724 	default:
725 		vn_setops(vp, zfs_evnodeops);
726 		break;
727 	}
728 
729 	mutex_enter(&zfsvfs->z_znodes_lock);
730 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
731 	membar_producer();
732 	/*
733 	 * Everything else must be valid before assigning z_zfsvfs makes the
734 	 * znode eligible for zfs_znode_move().
735 	 */
736 	zp->z_zfsvfs = zfsvfs;
737 	mutex_exit(&zfsvfs->z_znodes_lock);
738 
739 	VFS_HOLD(zfsvfs->z_vfs);
740 	return (zp);
741 }
742 
743 static uint64_t empty_xattr;
744 static uint64_t pad[4];
745 static zfs_acl_phys_t acl_phys;
746 /*
747  * Create a new DMU object to hold a zfs znode.
748  *
749  *	IN:	dzp	- parent directory for new znode
750  *		vap	- file attributes for new znode
751  *		tx	- dmu transaction id for zap operations
752  *		cr	- credentials of caller
753  *		flag	- flags:
754  *			  IS_ROOT_NODE	- new object will be root
755  *			  IS_XATTR	- new object is an attribute
756  *		bonuslen - length of bonus buffer
757  *		setaclp  - File/Dir initial ACL
758  *		fuidp	 - Tracks fuid allocation.
759  *
760  *	OUT:	zpp	- allocated znode
761  *
762  */
763 void
764 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
765     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
766 {
767 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
768 	uint64_t	mode, size, links, parent, pflags;
769 	uint64_t	dzp_pflags = 0;
770 	uint64_t	rdev = 0;
771 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
772 	dmu_buf_t	*db;
773 	timestruc_t	now;
774 	uint64_t	gen, obj;
775 	int		err;
776 	int		bonuslen;
777 	sa_handle_t	*sa_hdl;
778 	dmu_object_type_t obj_type;
779 	sa_bulk_attr_t	sa_attrs[ZPL_END];
780 	int		cnt = 0;
781 	zfs_acl_locator_cb_t locate = { 0 };
782 
783 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
784 
785 	if (zfsvfs->z_replay) {
786 		obj = vap->va_nodeid;
787 		now = vap->va_ctime;		/* see zfs_replay_create() */
788 		gen = vap->va_nblocks;		/* ditto */
789 	} else {
790 		obj = 0;
791 		gethrestime(&now);
792 		gen = dmu_tx_get_txg(tx);
793 	}
794 
795 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
796 	bonuslen = (obj_type == DMU_OT_SA) ?
797 	    DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
798 
799 	/*
800 	 * Create a new DMU object.
801 	 */
802 	/*
803 	 * There's currently no mechanism for pre-reading the blocks that will
804 	 * be needed to allocate a new object, so we accept the small chance
805 	 * that there will be an i/o error and we will fail one of the
806 	 * assertions below.
807 	 */
808 	if (vap->va_type == VDIR) {
809 		if (zfsvfs->z_replay) {
810 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
811 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
812 			    obj_type, bonuslen, tx);
813 			ASSERT3U(err, ==, 0);
814 		} else {
815 			obj = zap_create_norm(zfsvfs->z_os,
816 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
817 			    obj_type, bonuslen, tx);
818 		}
819 	} else {
820 		if (zfsvfs->z_replay) {
821 			err = dmu_object_claim(zfsvfs->z_os, obj,
822 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
823 			    obj_type, bonuslen, tx);
824 			ASSERT3U(err, ==, 0);
825 		} else {
826 			obj = dmu_object_alloc(zfsvfs->z_os,
827 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
828 			    obj_type, bonuslen, tx);
829 		}
830 	}
831 
832 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
833 	VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
834 
835 	/*
836 	 * If this is the root, fix up the half-initialized parent pointer
837 	 * to reference the just-allocated physical data area.
838 	 */
839 	if (flag & IS_ROOT_NODE) {
840 		dzp->z_id = obj;
841 	} else {
842 		dzp_pflags = dzp->z_pflags;
843 	}
844 
845 	/*
846 	 * If parent is an xattr, so am I.
847 	 */
848 	if (dzp_pflags & ZFS_XATTR) {
849 		flag |= IS_XATTR;
850 	}
851 
852 	if (zfsvfs->z_use_fuids)
853 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
854 	else
855 		pflags = 0;
856 
857 	if (vap->va_type == VDIR) {
858 		size = 2;		/* contents ("." and "..") */
859 		links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
860 	} else {
861 		size = links = 0;
862 	}
863 
864 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
865 		rdev = zfs_expldev(vap->va_rdev);
866 	}
867 
868 	parent = dzp->z_id;
869 	mode = acl_ids->z_mode;
870 	if (flag & IS_XATTR)
871 		pflags |= ZFS_XATTR;
872 
873 	/*
874 	 * No execs denied will be deterimed when zfs_mode_compute() is called.
875 	 */
876 	pflags |= acl_ids->z_aclp->z_hints &
877 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
878 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
879 
880 	ZFS_TIME_ENCODE(&now, crtime);
881 	ZFS_TIME_ENCODE(&now, ctime);
882 
883 	if (vap->va_mask & AT_ATIME) {
884 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
885 	} else {
886 		ZFS_TIME_ENCODE(&now, atime);
887 	}
888 
889 	if (vap->va_mask & AT_MTIME) {
890 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
891 	} else {
892 		ZFS_TIME_ENCODE(&now, mtime);
893 	}
894 
895 	/* Now add in all of the "SA" attributes */
896 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
897 	    &sa_hdl));
898 
899 	/*
900 	 * Setup the array of attributes to be replaced/set on the new file
901 	 *
902 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
903 	 * in the old znode_phys_t format.  Don't change this ordering
904 	 */
905 
906 	if (obj_type == DMU_OT_ZNODE) {
907 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
908 		    NULL, &atime, 16);
909 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
910 		    NULL, &mtime, 16);
911 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
912 		    NULL, &ctime, 16);
913 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
914 		    NULL, &crtime, 16);
915 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
916 		    NULL, &gen, 8);
917 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
918 		    NULL, &mode, 8);
919 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
920 		    NULL, &size, 8);
921 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
922 		    NULL, &parent, 8);
923 	} else {
924 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
925 		    NULL, &mode, 8);
926 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
927 		    NULL, &size, 8);
928 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
929 		    NULL, &gen, 8);
930 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
931 		    &acl_ids->z_fuid, 8);
932 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
933 		    &acl_ids->z_fgid, 8);
934 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
935 		    NULL, &parent, 8);
936 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
937 		    NULL, &pflags, 8);
938 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
939 		    NULL, &atime, 16);
940 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
941 		    NULL, &mtime, 16);
942 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
943 		    NULL, &ctime, 16);
944 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
945 		    NULL, &crtime, 16);
946 	}
947 
948 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
949 
950 	if (obj_type == DMU_OT_ZNODE) {
951 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
952 		    &empty_xattr, 8);
953 	}
954 	if (obj_type == DMU_OT_ZNODE ||
955 	    (vap->va_type == VBLK || vap->va_type == VCHR)) {
956 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
957 		    NULL, &rdev, 8);
958 
959 	}
960 	if (obj_type == DMU_OT_ZNODE) {
961 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
962 		    NULL, &pflags, 8);
963 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
964 		    &acl_ids->z_fuid, 8);
965 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
966 		    &acl_ids->z_fgid, 8);
967 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
968 		    sizeof (uint64_t) * 4);
969 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
970 		    &acl_phys, sizeof (zfs_acl_phys_t));
971 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
972 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
973 		    &acl_ids->z_aclp->z_acl_count, 8);
974 		locate.cb_aclp = acl_ids->z_aclp;
975 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
976 		    zfs_acl_data_locator, &locate,
977 		    acl_ids->z_aclp->z_acl_bytes);
978 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
979 		    acl_ids->z_fuid, acl_ids->z_fgid);
980 	}
981 
982 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
983 
984 	if (!(flag & IS_ROOT_NODE)) {
985 		*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
986 		ASSERT(*zpp != NULL);
987 	} else {
988 		/*
989 		 * If we are creating the root node, the "parent" we
990 		 * passed in is the znode for the root.
991 		 */
992 		*zpp = dzp;
993 
994 		(*zpp)->z_sa_hdl = sa_hdl;
995 	}
996 
997 	(*zpp)->z_pflags = pflags;
998 	(*zpp)->z_mode = mode;
999 
1000 	if (vap->va_mask & AT_XVATTR)
1001 		zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
1002 
1003 	if (obj_type == DMU_OT_ZNODE ||
1004 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1005 		err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1006 		ASSERT3P(err, ==, 0);
1007 	}
1008 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1009 }
1010 
1011 /*
1012  * zfs_xvattr_set only updates the in-core attributes
1013  * it is assumed the caller will be doing an sa_bulk_update
1014  * to push the changes out
1015  */
1016 void
1017 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1018 {
1019 	xoptattr_t *xoap;
1020 
1021 	xoap = xva_getxoptattr(xvap);
1022 	ASSERT(xoap);
1023 
1024 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1025 		uint64_t times[2];
1026 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1027 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1028 		    &times, sizeof (times), tx);
1029 		XVA_SET_RTN(xvap, XAT_CREATETIME);
1030 	}
1031 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1032 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1033 		    zp->z_pflags, tx);
1034 		XVA_SET_RTN(xvap, XAT_READONLY);
1035 	}
1036 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1037 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1038 		    zp->z_pflags, tx);
1039 		XVA_SET_RTN(xvap, XAT_HIDDEN);
1040 	}
1041 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1042 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1043 		    zp->z_pflags, tx);
1044 		XVA_SET_RTN(xvap, XAT_SYSTEM);
1045 	}
1046 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1047 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1048 		    zp->z_pflags, tx);
1049 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
1050 	}
1051 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1052 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1053 		    zp->z_pflags, tx);
1054 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1055 	}
1056 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1057 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1058 		    zp->z_pflags, tx);
1059 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
1060 	}
1061 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1062 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1063 		    zp->z_pflags, tx);
1064 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1065 	}
1066 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1067 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1068 		    zp->z_pflags, tx);
1069 		XVA_SET_RTN(xvap, XAT_NODUMP);
1070 	}
1071 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1072 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1073 		    zp->z_pflags, tx);
1074 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1075 	}
1076 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1077 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1078 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1079 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1080 	}
1081 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1082 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1083 		    zp->z_pflags, tx);
1084 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1085 	}
1086 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1087 		zfs_sa_set_scanstamp(zp, xvap, tx);
1088 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1089 	}
1090 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1091 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1092 		    zp->z_pflags, tx);
1093 		XVA_SET_RTN(xvap, XAT_REPARSE);
1094 	}
1095 }
1096 
1097 int
1098 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1099 {
1100 	dmu_object_info_t doi;
1101 	dmu_buf_t	*db;
1102 	znode_t		*zp;
1103 	int err;
1104 	sa_handle_t	*hdl;
1105 
1106 	*zpp = NULL;
1107 
1108 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1109 
1110 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1111 	if (err) {
1112 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1113 		return (err);
1114 	}
1115 
1116 	dmu_object_info_from_db(db, &doi);
1117 	if (doi.doi_bonus_type != DMU_OT_SA &&
1118 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1119 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1120 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1121 		sa_buf_rele(db, NULL);
1122 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1123 		return (EINVAL);
1124 	}
1125 
1126 	hdl = dmu_buf_get_user(db);
1127 	if (hdl != NULL) {
1128 		zp  = sa_get_userdata(hdl);
1129 
1130 
1131 		/*
1132 		 * Since "SA" does immediate eviction we
1133 		 * should never find a sa handle that doesn't
1134 		 * know about the znode.
1135 		 */
1136 
1137 		ASSERT3P(zp, !=, NULL);
1138 
1139 		mutex_enter(&zp->z_lock);
1140 		ASSERT3U(zp->z_id, ==, obj_num);
1141 		if (zp->z_unlinked) {
1142 			err = ENOENT;
1143 		} else {
1144 			VN_HOLD(ZTOV(zp));
1145 			*zpp = zp;
1146 			err = 0;
1147 		}
1148 		sa_buf_rele(db, NULL);
1149 		mutex_exit(&zp->z_lock);
1150 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1151 		return (err);
1152 	}
1153 
1154 	/*
1155 	 * Not found create new znode/vnode
1156 	 * but only if file exists.
1157 	 *
1158 	 * There is a small window where zfs_vget() could
1159 	 * find this object while a file create is still in
1160 	 * progress.  This is checked for in zfs_znode_alloc()
1161 	 *
1162 	 * if zfs_znode_alloc() fails it will drop the hold on the
1163 	 * bonus buffer.
1164 	 */
1165 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1166 	    doi.doi_bonus_type, NULL);
1167 	if (zp == NULL) {
1168 		err = ENOENT;
1169 	} else {
1170 		*zpp = zp;
1171 	}
1172 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1173 	return (err);
1174 }
1175 
1176 int
1177 zfs_rezget(znode_t *zp)
1178 {
1179 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1180 	dmu_object_info_t doi;
1181 	dmu_buf_t *db;
1182 	uint64_t obj_num = zp->z_id;
1183 	uint64_t mode;
1184 	uint64_t uid, gid;
1185 	sa_bulk_attr_t bulk[8];
1186 	int err;
1187 	int count = 0;
1188 	uint64_t gen;
1189 
1190 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1191 
1192 	mutex_enter(&zp->z_acl_lock);
1193 	if (zp->z_acl_cached) {
1194 		zfs_acl_free(zp->z_acl_cached);
1195 		zp->z_acl_cached = NULL;
1196 	}
1197 
1198 	mutex_exit(&zp->z_acl_lock);
1199 	ASSERT(zp->z_sa_hdl == NULL);
1200 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1201 	if (err) {
1202 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1203 		return (err);
1204 	}
1205 
1206 	dmu_object_info_from_db(db, &doi);
1207 	if (doi.doi_bonus_type != DMU_OT_SA &&
1208 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1209 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1210 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1211 		sa_buf_rele(db, NULL);
1212 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1213 		return (EINVAL);
1214 	}
1215 
1216 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1217 
1218 	/* reload cached values */
1219 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1220 	    &gen, sizeof (gen));
1221 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1222 	    &zp->z_size, sizeof (zp->z_size));
1223 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1224 	    &zp->z_links, sizeof (zp->z_links));
1225 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1226 	    &zp->z_pflags, sizeof (zp->z_pflags));
1227 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1228 	    &zp->z_atime, sizeof (zp->z_atime));
1229 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1230 	    &uid, sizeof (uid));
1231 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1232 	    &gid, sizeof (gid));
1233 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1234 	    &mode, sizeof (mode));
1235 
1236 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1237 		zfs_znode_dmu_fini(zp);
1238 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1239 		return (EIO);
1240 	}
1241 
1242 	zp->z_mode = mode;
1243 
1244 	if (gen != zp->z_gen) {
1245 		zfs_znode_dmu_fini(zp);
1246 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1247 		return (EIO);
1248 	}
1249 
1250 	zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER);
1251 	zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP);
1252 	zp->z_unlinked = (zp->z_links == 0);
1253 	zp->z_blksz = doi.doi_data_block_size;
1254 
1255 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1256 
1257 	return (0);
1258 }
1259 
1260 void
1261 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1262 {
1263 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1264 	objset_t *os = zfsvfs->z_os;
1265 	uint64_t obj = zp->z_id;
1266 	uint64_t acl_obj = zfs_external_acl(zp);
1267 
1268 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1269 	if (acl_obj) {
1270 		VERIFY(!zp->z_is_sa);
1271 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1272 	}
1273 	VERIFY(0 == dmu_object_free(os, obj, tx));
1274 	zfs_znode_dmu_fini(zp);
1275 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1276 	zfs_znode_free(zp);
1277 }
1278 
1279 void
1280 zfs_zinactive(znode_t *zp)
1281 {
1282 	vnode_t	*vp = ZTOV(zp);
1283 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1284 	uint64_t z_id = zp->z_id;
1285 
1286 	ASSERT(zp->z_sa_hdl);
1287 
1288 	/*
1289 	 * Don't allow a zfs_zget() while were trying to release this znode
1290 	 */
1291 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1292 
1293 	mutex_enter(&zp->z_lock);
1294 	mutex_enter(&vp->v_lock);
1295 	vp->v_count--;
1296 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1297 		/*
1298 		 * If the hold count is greater than zero, somebody has
1299 		 * obtained a new reference on this znode while we were
1300 		 * processing it here, so we are done.  If we still have
1301 		 * mapped pages then we are also done, since we don't
1302 		 * want to inactivate the znode until the pages get pushed.
1303 		 *
1304 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1305 		 * this seems like it would leave the znode hanging with
1306 		 * no chance to go inactive...
1307 		 */
1308 		mutex_exit(&vp->v_lock);
1309 		mutex_exit(&zp->z_lock);
1310 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1311 		return;
1312 	}
1313 	mutex_exit(&vp->v_lock);
1314 
1315 	/*
1316 	 * If this was the last reference to a file with no links,
1317 	 * remove the file from the file system.
1318 	 */
1319 	if (zp->z_unlinked) {
1320 		mutex_exit(&zp->z_lock);
1321 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1322 		zfs_rmnode(zp);
1323 		return;
1324 	}
1325 
1326 	mutex_exit(&zp->z_lock);
1327 	zfs_znode_dmu_fini(zp);
1328 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1329 	zfs_znode_free(zp);
1330 }
1331 
1332 void
1333 zfs_znode_free(znode_t *zp)
1334 {
1335 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1336 
1337 	vn_invalid(ZTOV(zp));
1338 
1339 	ASSERT(ZTOV(zp)->v_count == 0);
1340 
1341 	mutex_enter(&zfsvfs->z_znodes_lock);
1342 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1343 	list_remove(&zfsvfs->z_all_znodes, zp);
1344 	mutex_exit(&zfsvfs->z_znodes_lock);
1345 
1346 	if (zp->z_acl_cached) {
1347 		zfs_acl_free(zp->z_acl_cached);
1348 		zp->z_acl_cached = NULL;
1349 	}
1350 
1351 	kmem_cache_free(znode_cache, zp);
1352 
1353 	VFS_RELE(zfsvfs->z_vfs);
1354 }
1355 
1356 void
1357 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1358     uint64_t ctime[2], boolean_t have_tx)
1359 {
1360 	timestruc_t	now;
1361 
1362 	gethrestime(&now);
1363 
1364 	if (have_tx) {	/* will sa_bulk_update happen really soon? */
1365 		zp->z_atime_dirty = 0;
1366 		zp->z_seq++;
1367 	} else {
1368 		zp->z_atime_dirty = 1;
1369 	}
1370 
1371 	if (flag & AT_ATIME) {
1372 		ZFS_TIME_ENCODE(&now, zp->z_atime);
1373 	}
1374 
1375 	if (flag & AT_MTIME) {
1376 		ZFS_TIME_ENCODE(&now, mtime);
1377 		if (zp->z_zfsvfs->z_use_fuids) {
1378 			zp->z_pflags |= (ZFS_ARCHIVE |
1379 			    ZFS_AV_MODIFIED);
1380 		}
1381 	}
1382 
1383 	if (flag & AT_CTIME) {
1384 		ZFS_TIME_ENCODE(&now, ctime);
1385 		if (zp->z_zfsvfs->z_use_fuids)
1386 			zp->z_pflags |= ZFS_ARCHIVE;
1387 	}
1388 }
1389 
1390 /*
1391  * Grow the block size for a file.
1392  *
1393  *	IN:	zp	- znode of file to free data in.
1394  *		size	- requested block size
1395  *		tx	- open transaction.
1396  *
1397  * NOTE: this function assumes that the znode is write locked.
1398  */
1399 void
1400 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1401 {
1402 	int		error;
1403 	u_longlong_t	dummy;
1404 
1405 	if (size <= zp->z_blksz)
1406 		return;
1407 	/*
1408 	 * If the file size is already greater than the current blocksize,
1409 	 * we will not grow.  If there is more than one block in a file,
1410 	 * the blocksize cannot change.
1411 	 */
1412 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1413 		return;
1414 
1415 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1416 	    size, 0, tx);
1417 
1418 	if (error == ENOTSUP)
1419 		return;
1420 	ASSERT3U(error, ==, 0);
1421 
1422 	/* What blocksize did we actually get? */
1423 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1424 }
1425 
1426 /*
1427  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1428  * be calling back into the fs for a putpage().  E.g.: when truncating
1429  * a file, the pages being "thrown away* don't need to be written out.
1430  */
1431 /* ARGSUSED */
1432 static int
1433 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1434     int flags, cred_t *cr)
1435 {
1436 	ASSERT(0);
1437 	return (0);
1438 }
1439 
1440 /*
1441  * Increase the file length
1442  *
1443  *	IN:	zp	- znode of file to free data in.
1444  *		end	- new end-of-file
1445  *
1446  * 	RETURN:	0 if success
1447  *		error code if failure
1448  */
1449 static int
1450 zfs_extend(znode_t *zp, uint64_t end)
1451 {
1452 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1453 	dmu_tx_t *tx;
1454 	rl_t *rl;
1455 	uint64_t newblksz;
1456 	int error;
1457 
1458 	/*
1459 	 * We will change zp_size, lock the whole file.
1460 	 */
1461 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1462 
1463 	/*
1464 	 * Nothing to do if file already at desired length.
1465 	 */
1466 	if (end <= zp->z_size) {
1467 		zfs_range_unlock(rl);
1468 		return (0);
1469 	}
1470 top:
1471 	tx = dmu_tx_create(zfsvfs->z_os);
1472 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1473 	zfs_sa_upgrade_txholds(tx, zp);
1474 	if (end > zp->z_blksz &&
1475 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1476 		/*
1477 		 * We are growing the file past the current block size.
1478 		 */
1479 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1480 			ASSERT(!ISP2(zp->z_blksz));
1481 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1482 		} else {
1483 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1484 		}
1485 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1486 	} else {
1487 		newblksz = 0;
1488 	}
1489 
1490 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1491 	if (error) {
1492 		if (error == ERESTART) {
1493 			dmu_tx_wait(tx);
1494 			dmu_tx_abort(tx);
1495 			goto top;
1496 		}
1497 		dmu_tx_abort(tx);
1498 		zfs_range_unlock(rl);
1499 		return (error);
1500 	}
1501 
1502 	if (newblksz)
1503 		zfs_grow_blocksize(zp, newblksz, tx);
1504 
1505 	zp->z_size = end;
1506 
1507 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1508 	    &zp->z_size, sizeof (zp->z_size), tx));
1509 
1510 	zfs_range_unlock(rl);
1511 
1512 	dmu_tx_commit(tx);
1513 
1514 	return (0);
1515 }
1516 
1517 /*
1518  * Free space in a file.
1519  *
1520  *	IN:	zp	- znode of file to free data in.
1521  *		off	- start of section to free.
1522  *		len	- length of section to free.
1523  *
1524  * 	RETURN:	0 if success
1525  *		error code if failure
1526  */
1527 static int
1528 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1529 {
1530 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1531 	rl_t *rl;
1532 	int error;
1533 
1534 	/*
1535 	 * Lock the range being freed.
1536 	 */
1537 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1538 
1539 	/*
1540 	 * Nothing to do if file already at desired length.
1541 	 */
1542 	if (off >= zp->z_size) {
1543 		zfs_range_unlock(rl);
1544 		return (0);
1545 	}
1546 
1547 	if (off + len > zp->z_size)
1548 		len = zp->z_size - off;
1549 
1550 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1551 
1552 	zfs_range_unlock(rl);
1553 
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Truncate a file
1559  *
1560  *	IN:	zp	- znode of file to free data in.
1561  *		end	- new end-of-file.
1562  *
1563  * 	RETURN:	0 if success
1564  *		error code if failure
1565  */
1566 static int
1567 zfs_trunc(znode_t *zp, uint64_t end)
1568 {
1569 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1570 	vnode_t *vp = ZTOV(zp);
1571 	dmu_tx_t *tx;
1572 	rl_t *rl;
1573 	int error;
1574 
1575 	/*
1576 	 * We will change zp_size, lock the whole file.
1577 	 */
1578 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1579 
1580 	/*
1581 	 * Nothing to do if file already at desired length.
1582 	 */
1583 	if (end >= zp->z_size) {
1584 		zfs_range_unlock(rl);
1585 		return (0);
1586 	}
1587 
1588 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1589 	if (error) {
1590 		zfs_range_unlock(rl);
1591 		return (error);
1592 	}
1593 top:
1594 	tx = dmu_tx_create(zfsvfs->z_os);
1595 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1596 	zfs_sa_upgrade_txholds(tx, zp);
1597 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1598 	if (error) {
1599 		if (error == ERESTART) {
1600 			dmu_tx_wait(tx);
1601 			dmu_tx_abort(tx);
1602 			goto top;
1603 		}
1604 		dmu_tx_abort(tx);
1605 		zfs_range_unlock(rl);
1606 		return (error);
1607 	}
1608 
1609 	zp->z_size = end;
1610 
1611 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1612 	    &zp->z_size, sizeof (zp->z_size), tx));
1613 
1614 	dmu_tx_commit(tx);
1615 
1616 	/*
1617 	 * Clear any mapped pages in the truncated region.  This has to
1618 	 * happen outside of the transaction to avoid the possibility of
1619 	 * a deadlock with someone trying to push a page that we are
1620 	 * about to invalidate.
1621 	 */
1622 	if (vn_has_cached_data(vp)) {
1623 		page_t *pp;
1624 		uint64_t start = end & PAGEMASK;
1625 		int poff = end & PAGEOFFSET;
1626 
1627 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1628 			/*
1629 			 * We need to zero a partial page.
1630 			 */
1631 			pagezero(pp, poff, PAGESIZE - poff);
1632 			start += PAGESIZE;
1633 			page_unlock(pp);
1634 		}
1635 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1636 		    B_INVAL | B_TRUNC, NULL);
1637 		ASSERT(error == 0);
1638 	}
1639 
1640 	zfs_range_unlock(rl);
1641 
1642 	return (0);
1643 }
1644 
1645 /*
1646  * Free space in a file
1647  *
1648  *	IN:	zp	- znode of file to free data in.
1649  *		off	- start of range
1650  *		len	- end of range (0 => EOF)
1651  *		flag	- current file open mode flags.
1652  *		log	- TRUE if this action should be logged
1653  *
1654  * 	RETURN:	0 if success
1655  *		error code if failure
1656  */
1657 int
1658 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1659 {
1660 	vnode_t *vp = ZTOV(zp);
1661 	dmu_tx_t *tx;
1662 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1663 	zilog_t *zilog = zfsvfs->z_log;
1664 	uint64_t mode;
1665 	uint64_t mtime[2], ctime[2];
1666 	sa_bulk_attr_t bulk[3];
1667 	int count = 0;
1668 	int error;
1669 
1670 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1671 	    sizeof (mode))) != 0)
1672 		return (error);
1673 
1674 	if (off > zp->z_size) {
1675 		error =  zfs_extend(zp, off+len);
1676 		if (error == 0 && log)
1677 			goto log;
1678 		else
1679 			return (error);
1680 	}
1681 
1682 	/*
1683 	 * Check for any locks in the region to be freed.
1684 	 */
1685 
1686 	if (MANDLOCK(vp, (mode_t)mode)) {
1687 		uint64_t length = (len ? len : zp->z_size - off);
1688 		if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1689 			return (error);
1690 	}
1691 
1692 	if (len == 0) {
1693 		error = zfs_trunc(zp, off);
1694 	} else {
1695 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1696 		    off + len > zp->z_size)
1697 			error = zfs_extend(zp, off+len);
1698 	}
1699 	if (error || !log)
1700 		return (error);
1701 log:
1702 	tx = dmu_tx_create(zfsvfs->z_os);
1703 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1704 	zfs_sa_upgrade_txholds(tx, zp);
1705 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1706 	if (error) {
1707 		if (error == ERESTART) {
1708 			dmu_tx_wait(tx);
1709 			dmu_tx_abort(tx);
1710 			goto log;
1711 		}
1712 		dmu_tx_abort(tx);
1713 		return (error);
1714 	}
1715 
1716 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1717 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1718 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1719 	    NULL, &zp->z_pflags, 8);
1720 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1721 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1722 	ASSERT(error == 0);
1723 
1724 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1725 
1726 	dmu_tx_commit(tx);
1727 	return (0);
1728 }
1729 
1730 void
1731 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1732 {
1733 	zfsvfs_t	zfsvfs;
1734 	uint64_t	moid, obj, sa_obj, version;
1735 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1736 	uint64_t	norm = 0;
1737 	nvpair_t	*elem;
1738 	int		error;
1739 	int		i;
1740 	znode_t		*rootzp = NULL;
1741 	vnode_t		*vp;
1742 	vattr_t		vattr;
1743 	znode_t		*zp;
1744 	zfs_acl_ids_t	acl_ids;
1745 
1746 	/*
1747 	 * First attempt to create master node.
1748 	 */
1749 	/*
1750 	 * In an empty objset, there are no blocks to read and thus
1751 	 * there can be no i/o errors (which we assert below).
1752 	 */
1753 	moid = MASTER_NODE_OBJ;
1754 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1755 	    DMU_OT_NONE, 0, tx);
1756 	ASSERT(error == 0);
1757 
1758 	/*
1759 	 * Set starting attributes.
1760 	 */
1761 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1762 	elem = NULL;
1763 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1764 		/* For the moment we expect all zpl props to be uint64_ts */
1765 		uint64_t val;
1766 		char *name;
1767 
1768 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1769 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1770 		name = nvpair_name(elem);
1771 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1772 			if (val < version)
1773 				version = val;
1774 		} else {
1775 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1776 		}
1777 		ASSERT(error == 0);
1778 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1779 			norm = val;
1780 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1781 			sense = val;
1782 	}
1783 	ASSERT(version != 0);
1784 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1785 
1786 	/*
1787 	 * Create zap object used for SA attribute registration
1788 	 */
1789 
1790 	if (version >= ZPL_VERSION_SA) {
1791 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1792 		    DMU_OT_NONE, 0, tx);
1793 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1794 		ASSERT(error == 0);
1795 	} else {
1796 		sa_obj = 0;
1797 	}
1798 	/*
1799 	 * Create a delete queue.
1800 	 */
1801 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1802 
1803 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1804 	ASSERT(error == 0);
1805 
1806 	/*
1807 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1808 	 * to allow zfs_mknode to work.
1809 	 */
1810 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1811 	vattr.va_type = VDIR;
1812 	vattr.va_mode = S_IFDIR|0755;
1813 	vattr.va_uid = crgetuid(cr);
1814 	vattr.va_gid = crgetgid(cr);
1815 
1816 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1817 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1818 	rootzp->z_moved = 0;
1819 	rootzp->z_unlinked = 0;
1820 	rootzp->z_atime_dirty = 0;
1821 	rootzp->z_is_sa = USE_SA(version, os);
1822 
1823 	vp = ZTOV(rootzp);
1824 	vn_reinit(vp);
1825 	vp->v_type = VDIR;
1826 
1827 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1828 
1829 	zfsvfs.z_os = os;
1830 	zfsvfs.z_parent = &zfsvfs;
1831 	zfsvfs.z_version = version;
1832 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1833 	zfsvfs.z_use_sa = USE_SA(version, os);
1834 	zfsvfs.z_norm = norm;
1835 
1836 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1837 	    &zfsvfs.z_attr_table);
1838 
1839 	ASSERT(error == 0);
1840 
1841 	/*
1842 	 * Fold case on file systems that are always or sometimes case
1843 	 * insensitive.
1844 	 */
1845 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1846 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1847 
1848 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1849 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1850 	    offsetof(znode_t, z_link_node));
1851 
1852 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1853 		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1854 
1855 	rootzp->z_zfsvfs = &zfsvfs;
1856 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1857 	    cr, NULL, &acl_ids));
1858 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1859 	ASSERT3P(zp, ==, rootzp);
1860 	ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1861 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1862 	ASSERT(error == 0);
1863 	zfs_acl_ids_free(&acl_ids);
1864 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1865 
1866 	ZTOV(rootzp)->v_count = 0;
1867 	sa_handle_destroy(rootzp->z_sa_hdl);
1868 	kmem_cache_free(znode_cache, rootzp);
1869 
1870 	/*
1871 	 * Create shares directory
1872 	 */
1873 
1874 	error = zfs_create_share_dir(&zfsvfs, tx);
1875 
1876 	ASSERT(error == 0);
1877 
1878 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1879 		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1880 }
1881 
1882 #endif /* _KERNEL */
1883 
1884 /*
1885  * Given an object number, return its parent object number and whether
1886  * or not the object is an extended attribute directory.
1887  */
1888 static int
1889 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir,
1890     sa_attr_type_t *sa_table)
1891 {
1892 	dmu_buf_t *db;
1893 	dmu_object_info_t doi;
1894 	int error;
1895 	uint64_t parent;
1896 	uint64_t pflags;
1897 	uint64_t mode;
1898 	sa_bulk_attr_t bulk[3];
1899 	sa_handle_t *hdl;
1900 	int count = 0;
1901 
1902 	if ((error = sa_buf_hold(osp, obj, FTAG, &db)) != 0)
1903 		return (error);
1904 
1905 	dmu_object_info_from_db(db, &doi);
1906 	if ((doi.doi_bonus_type != DMU_OT_SA &&
1907 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
1908 	    doi.doi_bonus_type == DMU_OT_ZNODE &&
1909 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1910 		sa_buf_rele(db, FTAG);
1911 		return (EINVAL);
1912 	}
1913 
1914 	if ((error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE,
1915 	    &hdl)) != 0) {
1916 		sa_buf_rele(db, FTAG);
1917 		return (error);
1918 	}
1919 
1920 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT],
1921 	    NULL, &parent, 8);
1922 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1923 	    &pflags, 8);
1924 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1925 	    &mode, 8);
1926 
1927 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) {
1928 		sa_buf_rele(db, FTAG);
1929 		sa_handle_destroy(hdl);
1930 		return (error);
1931 	}
1932 	*pobjp = parent;
1933 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1934 	sa_handle_destroy(hdl);
1935 	sa_buf_rele(db, FTAG);
1936 
1937 	return (0);
1938 }
1939 
1940 int
1941 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1942 {
1943 	char *path = buf + len - 1;
1944 	sa_attr_type_t *sa_table;
1945 	int error;
1946 	uint64_t sa_obj = 0;
1947 
1948 	*path = '\0';
1949 
1950 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1951 
1952 	if (error != 0 && error != ENOENT)
1953 		return (error);
1954 
1955 	if ((error = sa_setup(osp, sa_obj, zfs_attr_table,
1956 	    ZPL_END, &sa_table)) != 0)
1957 		return (error);
1958 
1959 	for (;;) {
1960 		uint64_t pobj;
1961 		char component[MAXNAMELEN + 2];
1962 		size_t complen;
1963 		int is_xattrdir;
1964 
1965 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1966 		    &is_xattrdir, sa_table)) != 0)
1967 			break;
1968 
1969 		if (pobj == obj) {
1970 			if (path[0] != '/')
1971 				*--path = '/';
1972 			break;
1973 		}
1974 
1975 		component[0] = '/';
1976 		if (is_xattrdir) {
1977 			(void) sprintf(component + 1, "<xattrdir>");
1978 		} else {
1979 			error = zap_value_search(osp, pobj, obj,
1980 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1981 			if (error != 0)
1982 				break;
1983 		}
1984 
1985 		complen = strlen(component);
1986 		path -= complen;
1987 		ASSERT(path >= buf);
1988 		bcopy(component, path, complen);
1989 		obj = pobj;
1990 	}
1991 
1992 	if (error == 0)
1993 		(void) memmove(buf, path, buf + len - path);
1994 
1995 	return (error);
1996 }
1997