xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision bd181d5a0c2b96669dcb4aa44619e0b7dbbedab9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115  *      dmu_tx_assign().  This is critical because we don't want to block
116  *      while holding locks.
117  *
118  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
119  *	reduces lock contention and CPU usage when we must wait (note that if
120  *	throughput is constrained by the storage, nearly every transaction
121  *	must wait).
122  *
123  *      Note, in particular, that if a lock is sometimes acquired before
124  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
125  *      to use a non-blocking assign can deadlock the system.  The scenario:
126  *
127  *	Thread A has grabbed a lock before calling dmu_tx_assign().
128  *	Thread B is in an already-assigned tx, and blocks for this lock.
129  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130  *	forever, because the previous txg can't quiesce until B's tx commits.
131  *
132  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
134  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135  *	to indicate that this operation has already called dmu_tx_wait().
136  *	This will ensure that we don't retry forever, waiting a short bit
137  *	each time.
138  *
139  *  (5)	If the operation succeeded, generate the intent log entry for it
140  *	before dropping locks.  This ensures that the ordering of events
141  *	in the intent log matches the order in which they actually occurred.
142  *	During ZIL replay the zfs_log_* functions will update the sequence
143  *	number to indicate the zil transaction has replayed.
144  *
145  *  (6)	At the end of each vnode op, the DMU tx must always commit,
146  *	regardless of whether there were any errors.
147  *
148  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
149  *	to ensure that synchronous semantics are provided when necessary.
150  *
151  * In general, this is how things should be ordered in each vnode op:
152  *
153  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
154  * top:
155  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
156  *	rw_enter(...);			// grab any other locks you need
157  *	tx = dmu_tx_create(...);	// get DMU tx
158  *	dmu_tx_hold_*();		// hold each object you might modify
159  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160  *	if (error) {
161  *		rw_exit(...);		// drop locks
162  *		zfs_dirent_unlock(dl);	// unlock directory entry
163  *		VN_RELE(...);		// release held vnodes
164  *		if (error == ERESTART) {
165  *			waited = B_TRUE;
166  *			dmu_tx_wait(tx);
167  *			dmu_tx_abort(tx);
168  *			goto top;
169  *		}
170  *		dmu_tx_abort(tx);	// abort DMU tx
171  *		ZFS_EXIT(zfsvfs);	// finished in zfs
172  *		return (error);		// really out of space
173  *	}
174  *	error = do_real_work();		// do whatever this VOP does
175  *	if (error == 0)
176  *		zfs_log_*(...);		// on success, make ZIL entry
177  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
178  *	rw_exit(...);			// drop locks
179  *	zfs_dirent_unlock(dl);		// unlock directory entry
180  *	VN_RELE(...);			// release held vnodes
181  *	zil_commit(zilog, foid);	// synchronous when necessary
182  *	ZFS_EXIT(zfsvfs);		// finished in zfs
183  *	return (error);			// done, report error
184  */
185 
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 	znode_t	*zp = VTOZ(*vpp);
191 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192 
193 	ZFS_ENTER(zfsvfs);
194 	ZFS_VERIFY_ZP(zp);
195 
196 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 	    ((flag & FAPPEND) == 0)) {
198 		ZFS_EXIT(zfsvfs);
199 		return (SET_ERROR(EPERM));
200 	}
201 
202 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 	    ZTOV(zp)->v_type == VREG &&
204 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 		if (fs_vscan(*vpp, cr, 0) != 0) {
206 			ZFS_EXIT(zfsvfs);
207 			return (SET_ERROR(EACCES));
208 		}
209 	}
210 
211 	/* Keep a count of the synchronous opens in the znode */
212 	if (flag & (FSYNC | FDSYNC))
213 		atomic_inc_32(&zp->z_sync_cnt);
214 
215 	ZFS_EXIT(zfsvfs);
216 	return (0);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222     caller_context_t *ct)
223 {
224 	znode_t	*zp = VTOZ(vp);
225 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226 
227 	/*
228 	 * Clean up any locks held by this process on the vp.
229 	 */
230 	cleanlocks(vp, ddi_get_pid(), 0);
231 	cleanshares(vp, ddi_get_pid());
232 
233 	ZFS_ENTER(zfsvfs);
234 	ZFS_VERIFY_ZP(zp);
235 
236 	/* Decrement the synchronous opens in the znode */
237 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 		atomic_dec_32(&zp->z_sync_cnt);
239 
240 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 	    ZTOV(zp)->v_type == VREG &&
242 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 		VERIFY(fs_vscan(vp, cr, 1) == 0);
244 
245 	ZFS_EXIT(zfsvfs);
246 	return (0);
247 }
248 
249 /*
250  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252  */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 	znode_t	*zp = VTOZ(vp);
257 	uint64_t noff = (uint64_t)*off; /* new offset */
258 	uint64_t file_sz;
259 	int error;
260 	boolean_t hole;
261 
262 	file_sz = zp->z_size;
263 	if (noff >= file_sz)  {
264 		return (SET_ERROR(ENXIO));
265 	}
266 
267 	if (cmd == _FIO_SEEK_HOLE)
268 		hole = B_TRUE;
269 	else
270 		hole = B_FALSE;
271 
272 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273 
274 	if (error == ESRCH)
275 		return (SET_ERROR(ENXIO));
276 
277 	/*
278 	 * We could find a hole that begins after the logical end-of-file,
279 	 * because dmu_offset_next() only works on whole blocks.  If the
280 	 * EOF falls mid-block, then indicate that the "virtual hole"
281 	 * at the end of the file begins at the logical EOF, rather than
282 	 * at the end of the last block.
283 	 */
284 	if (noff > file_sz) {
285 		ASSERT(hole);
286 		noff = file_sz;
287 	}
288 
289 	if (noff < *off)
290 		return (error);
291 	*off = noff;
292 	return (error);
293 }
294 
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298     int *rvalp, caller_context_t *ct)
299 {
300 	offset_t off;
301 	int error;
302 	zfsvfs_t *zfsvfs;
303 	znode_t *zp;
304 
305 	switch (com) {
306 	case _FIOFFS:
307 		return (zfs_sync(vp->v_vfsp, 0, cred));
308 
309 		/*
310 		 * The following two ioctls are used by bfu.  Faking out,
311 		 * necessary to avoid bfu errors.
312 		 */
313 	case _FIOGDIO:
314 	case _FIOSDIO:
315 		return (0);
316 
317 	case _FIO_SEEK_DATA:
318 	case _FIO_SEEK_HOLE:
319 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
320 			return (SET_ERROR(EFAULT));
321 
322 		zp = VTOZ(vp);
323 		zfsvfs = zp->z_zfsvfs;
324 		ZFS_ENTER(zfsvfs);
325 		ZFS_VERIFY_ZP(zp);
326 
327 		/* offset parameter is in/out */
328 		error = zfs_holey(vp, com, &off);
329 		ZFS_EXIT(zfsvfs);
330 		if (error)
331 			return (error);
332 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
333 			return (SET_ERROR(EFAULT));
334 		return (0);
335 	}
336 	return (SET_ERROR(ENOTTY));
337 }
338 
339 /*
340  * Utility functions to map and unmap a single physical page.  These
341  * are used to manage the mappable copies of ZFS file data, and therefore
342  * do not update ref/mod bits.
343  */
344 caddr_t
345 zfs_map_page(page_t *pp, enum seg_rw rw)
346 {
347 	if (kpm_enable)
348 		return (hat_kpm_mapin(pp, 0));
349 	ASSERT(rw == S_READ || rw == S_WRITE);
350 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
351 	    (caddr_t)-1));
352 }
353 
354 void
355 zfs_unmap_page(page_t *pp, caddr_t addr)
356 {
357 	if (kpm_enable) {
358 		hat_kpm_mapout(pp, 0, addr);
359 	} else {
360 		ppmapout(addr);
361 	}
362 }
363 
364 /*
365  * When a file is memory mapped, we must keep the IO data synchronized
366  * between the DMU cache and the memory mapped pages.  What this means:
367  *
368  * On Write:	If we find a memory mapped page, we write to *both*
369  *		the page and the dmu buffer.
370  */
371 static void
372 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
373 {
374 	int64_t	off;
375 
376 	off = start & PAGEOFFSET;
377 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
378 		page_t *pp;
379 		uint64_t nbytes = MIN(PAGESIZE - off, len);
380 
381 		if (pp = page_lookup(vp, start, SE_SHARED)) {
382 			caddr_t va;
383 
384 			va = zfs_map_page(pp, S_WRITE);
385 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
386 			    DMU_READ_PREFETCH);
387 			zfs_unmap_page(pp, va);
388 			page_unlock(pp);
389 		}
390 		len -= nbytes;
391 		off = 0;
392 	}
393 }
394 
395 /*
396  * When a file is memory mapped, we must keep the IO data synchronized
397  * between the DMU cache and the memory mapped pages.  What this means:
398  *
399  * On Read:	We "read" preferentially from memory mapped pages,
400  *		else we default from the dmu buffer.
401  *
402  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
403  *	 the file is memory mapped.
404  */
405 static int
406 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
407 {
408 	znode_t *zp = VTOZ(vp);
409 	int64_t	start, off;
410 	int len = nbytes;
411 	int error = 0;
412 
413 	start = uio->uio_loffset;
414 	off = start & PAGEOFFSET;
415 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
416 		page_t *pp;
417 		uint64_t bytes = MIN(PAGESIZE - off, len);
418 
419 		if (pp = page_lookup(vp, start, SE_SHARED)) {
420 			caddr_t va;
421 
422 			va = zfs_map_page(pp, S_READ);
423 			error = uiomove(va + off, bytes, UIO_READ, uio);
424 			zfs_unmap_page(pp, va);
425 			page_unlock(pp);
426 		} else {
427 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
428 			    uio, bytes);
429 		}
430 		len -= bytes;
431 		off = 0;
432 		if (error)
433 			break;
434 	}
435 	return (error);
436 }
437 
438 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
439 
440 /*
441  * Read bytes from specified file into supplied buffer.
442  *
443  *	IN:	vp	- vnode of file to be read from.
444  *		uio	- structure supplying read location, range info,
445  *			  and return buffer.
446  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
447  *		cr	- credentials of caller.
448  *		ct	- caller context
449  *
450  *	OUT:	uio	- updated offset and range, buffer filled.
451  *
452  *	RETURN:	0 on success, error code on failure.
453  *
454  * Side Effects:
455  *	vp - atime updated if byte count > 0
456  */
457 /* ARGSUSED */
458 static int
459 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
460 {
461 	znode_t		*zp = VTOZ(vp);
462 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
463 	ssize_t		n, nbytes;
464 	int		error = 0;
465 	rl_t		*rl;
466 	xuio_t		*xuio = NULL;
467 
468 	ZFS_ENTER(zfsvfs);
469 	ZFS_VERIFY_ZP(zp);
470 
471 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
472 		ZFS_EXIT(zfsvfs);
473 		return (SET_ERROR(EACCES));
474 	}
475 
476 	/*
477 	 * Validate file offset
478 	 */
479 	if (uio->uio_loffset < (offset_t)0) {
480 		ZFS_EXIT(zfsvfs);
481 		return (SET_ERROR(EINVAL));
482 	}
483 
484 	/*
485 	 * Fasttrack empty reads
486 	 */
487 	if (uio->uio_resid == 0) {
488 		ZFS_EXIT(zfsvfs);
489 		return (0);
490 	}
491 
492 	/*
493 	 * Check for mandatory locks
494 	 */
495 	if (MANDMODE(zp->z_mode)) {
496 		if (error = chklock(vp, FREAD,
497 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
498 			ZFS_EXIT(zfsvfs);
499 			return (error);
500 		}
501 	}
502 
503 	/*
504 	 * If we're in FRSYNC mode, sync out this znode before reading it.
505 	 */
506 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
507 		zil_commit(zfsvfs->z_log, zp->z_id);
508 
509 	/*
510 	 * Lock the range against changes.
511 	 */
512 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
513 
514 	/*
515 	 * If we are reading past end-of-file we can skip
516 	 * to the end; but we might still need to set atime.
517 	 */
518 	if (uio->uio_loffset >= zp->z_size) {
519 		error = 0;
520 		goto out;
521 	}
522 
523 	ASSERT(uio->uio_loffset < zp->z_size);
524 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
525 
526 	if ((uio->uio_extflg == UIO_XUIO) &&
527 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
528 		int nblk;
529 		int blksz = zp->z_blksz;
530 		uint64_t offset = uio->uio_loffset;
531 
532 		xuio = (xuio_t *)uio;
533 		if ((ISP2(blksz))) {
534 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
535 			    blksz)) / blksz;
536 		} else {
537 			ASSERT(offset + n <= blksz);
538 			nblk = 1;
539 		}
540 		(void) dmu_xuio_init(xuio, nblk);
541 
542 		if (vn_has_cached_data(vp)) {
543 			/*
544 			 * For simplicity, we always allocate a full buffer
545 			 * even if we only expect to read a portion of a block.
546 			 */
547 			while (--nblk >= 0) {
548 				(void) dmu_xuio_add(xuio,
549 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
550 				    blksz), 0, blksz);
551 			}
552 		}
553 	}
554 
555 	while (n > 0) {
556 		nbytes = MIN(n, zfs_read_chunk_size -
557 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
558 
559 		if (vn_has_cached_data(vp)) {
560 			error = mappedread(vp, nbytes, uio);
561 		} else {
562 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
563 			    uio, nbytes);
564 		}
565 		if (error) {
566 			/* convert checksum errors into IO errors */
567 			if (error == ECKSUM)
568 				error = SET_ERROR(EIO);
569 			break;
570 		}
571 
572 		n -= nbytes;
573 	}
574 out:
575 	zfs_range_unlock(rl);
576 
577 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
578 	ZFS_EXIT(zfsvfs);
579 	return (error);
580 }
581 
582 /*
583  * Write the bytes to a file.
584  *
585  *	IN:	vp	- vnode of file to be written to.
586  *		uio	- structure supplying write location, range info,
587  *			  and data buffer.
588  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
589  *			  set if in append mode.
590  *		cr	- credentials of caller.
591  *		ct	- caller context (NFS/CIFS fem monitor only)
592  *
593  *	OUT:	uio	- updated offset and range.
594  *
595  *	RETURN:	0 on success, error code on failure.
596  *
597  * Timestamps:
598  *	vp - ctime|mtime updated if byte count > 0
599  */
600 
601 /* ARGSUSED */
602 static int
603 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
604 {
605 	znode_t		*zp = VTOZ(vp);
606 	rlim64_t	limit = uio->uio_llimit;
607 	ssize_t		start_resid = uio->uio_resid;
608 	ssize_t		tx_bytes;
609 	uint64_t	end_size;
610 	dmu_tx_t	*tx;
611 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
612 	zilog_t		*zilog;
613 	offset_t	woff;
614 	ssize_t		n, nbytes;
615 	rl_t		*rl;
616 	int		max_blksz = zfsvfs->z_max_blksz;
617 	int		error = 0;
618 	arc_buf_t	*abuf;
619 	iovec_t		*aiov = NULL;
620 	xuio_t		*xuio = NULL;
621 	int		i_iov = 0;
622 	int		iovcnt = uio->uio_iovcnt;
623 	iovec_t		*iovp = uio->uio_iov;
624 	int		write_eof;
625 	int		count = 0;
626 	sa_bulk_attr_t	bulk[4];
627 	uint64_t	mtime[2], ctime[2];
628 
629 	/*
630 	 * Fasttrack empty write
631 	 */
632 	n = start_resid;
633 	if (n == 0)
634 		return (0);
635 
636 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
637 		limit = MAXOFFSET_T;
638 
639 	ZFS_ENTER(zfsvfs);
640 	ZFS_VERIFY_ZP(zp);
641 
642 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
643 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
644 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
645 	    &zp->z_size, 8);
646 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
647 	    &zp->z_pflags, 8);
648 
649 	/*
650 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
651 	 * callers might not be able to detect properly that we are read-only,
652 	 * so check it explicitly here.
653 	 */
654 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
655 		ZFS_EXIT(zfsvfs);
656 		return (SET_ERROR(EROFS));
657 	}
658 
659 	/*
660 	 * If immutable or not appending then return EPERM
661 	 */
662 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
663 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
664 	    (uio->uio_loffset < zp->z_size))) {
665 		ZFS_EXIT(zfsvfs);
666 		return (SET_ERROR(EPERM));
667 	}
668 
669 	zilog = zfsvfs->z_log;
670 
671 	/*
672 	 * Validate file offset
673 	 */
674 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
675 	if (woff < 0) {
676 		ZFS_EXIT(zfsvfs);
677 		return (SET_ERROR(EINVAL));
678 	}
679 
680 	/*
681 	 * Check for mandatory locks before calling zfs_range_lock()
682 	 * in order to prevent a deadlock with locks set via fcntl().
683 	 */
684 	if (MANDMODE((mode_t)zp->z_mode) &&
685 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
686 		ZFS_EXIT(zfsvfs);
687 		return (error);
688 	}
689 
690 	/*
691 	 * Pre-fault the pages to ensure slow (eg NFS) pages
692 	 * don't hold up txg.
693 	 * Skip this if uio contains loaned arc_buf.
694 	 */
695 	if ((uio->uio_extflg == UIO_XUIO) &&
696 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
697 		xuio = (xuio_t *)uio;
698 	else
699 		uio_prefaultpages(MIN(n, max_blksz), uio);
700 
701 	/*
702 	 * If in append mode, set the io offset pointer to eof.
703 	 */
704 	if (ioflag & FAPPEND) {
705 		/*
706 		 * Obtain an appending range lock to guarantee file append
707 		 * semantics.  We reset the write offset once we have the lock.
708 		 */
709 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
710 		woff = rl->r_off;
711 		if (rl->r_len == UINT64_MAX) {
712 			/*
713 			 * We overlocked the file because this write will cause
714 			 * the file block size to increase.
715 			 * Note that zp_size cannot change with this lock held.
716 			 */
717 			woff = zp->z_size;
718 		}
719 		uio->uio_loffset = woff;
720 	} else {
721 		/*
722 		 * Note that if the file block size will change as a result of
723 		 * this write, then this range lock will lock the entire file
724 		 * so that we can re-write the block safely.
725 		 */
726 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
727 	}
728 
729 	if (woff >= limit) {
730 		zfs_range_unlock(rl);
731 		ZFS_EXIT(zfsvfs);
732 		return (SET_ERROR(EFBIG));
733 	}
734 
735 	if ((woff + n) > limit || woff > (limit - n))
736 		n = limit - woff;
737 
738 	/* Will this write extend the file length? */
739 	write_eof = (woff + n > zp->z_size);
740 
741 	end_size = MAX(zp->z_size, woff + n);
742 
743 	/*
744 	 * Write the file in reasonable size chunks.  Each chunk is written
745 	 * in a separate transaction; this keeps the intent log records small
746 	 * and allows us to do more fine-grained space accounting.
747 	 */
748 	while (n > 0) {
749 		abuf = NULL;
750 		woff = uio->uio_loffset;
751 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
752 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
753 			if (abuf != NULL)
754 				dmu_return_arcbuf(abuf);
755 			error = SET_ERROR(EDQUOT);
756 			break;
757 		}
758 
759 		if (xuio && abuf == NULL) {
760 			ASSERT(i_iov < iovcnt);
761 			aiov = &iovp[i_iov];
762 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
763 			dmu_xuio_clear(xuio, i_iov);
764 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
765 			    iovec_t *, aiov, arc_buf_t *, abuf);
766 			ASSERT((aiov->iov_base == abuf->b_data) ||
767 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
768 			    aiov->iov_len == arc_buf_size(abuf)));
769 			i_iov++;
770 		} else if (abuf == NULL && n >= max_blksz &&
771 		    woff >= zp->z_size &&
772 		    P2PHASE(woff, max_blksz) == 0 &&
773 		    zp->z_blksz == max_blksz) {
774 			/*
775 			 * This write covers a full block.  "Borrow" a buffer
776 			 * from the dmu so that we can fill it before we enter
777 			 * a transaction.  This avoids the possibility of
778 			 * holding up the transaction if the data copy hangs
779 			 * up on a pagefault (e.g., from an NFS server mapping).
780 			 */
781 			size_t cbytes;
782 
783 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
784 			    max_blksz);
785 			ASSERT(abuf != NULL);
786 			ASSERT(arc_buf_size(abuf) == max_blksz);
787 			if (error = uiocopy(abuf->b_data, max_blksz,
788 			    UIO_WRITE, uio, &cbytes)) {
789 				dmu_return_arcbuf(abuf);
790 				break;
791 			}
792 			ASSERT(cbytes == max_blksz);
793 		}
794 
795 		/*
796 		 * Start a transaction.
797 		 */
798 		tx = dmu_tx_create(zfsvfs->z_os);
799 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
800 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
801 		zfs_sa_upgrade_txholds(tx, zp);
802 		error = dmu_tx_assign(tx, TXG_WAIT);
803 		if (error) {
804 			dmu_tx_abort(tx);
805 			if (abuf != NULL)
806 				dmu_return_arcbuf(abuf);
807 			break;
808 		}
809 
810 		/*
811 		 * If zfs_range_lock() over-locked we grow the blocksize
812 		 * and then reduce the lock range.  This will only happen
813 		 * on the first iteration since zfs_range_reduce() will
814 		 * shrink down r_len to the appropriate size.
815 		 */
816 		if (rl->r_len == UINT64_MAX) {
817 			uint64_t new_blksz;
818 
819 			if (zp->z_blksz > max_blksz) {
820 				/*
821 				 * File's blocksize is already larger than the
822 				 * "recordsize" property.  Only let it grow to
823 				 * the next power of 2.
824 				 */
825 				ASSERT(!ISP2(zp->z_blksz));
826 				new_blksz = MIN(end_size,
827 				    1 << highbit64(zp->z_blksz));
828 			} else {
829 				new_blksz = MIN(end_size, max_blksz);
830 			}
831 			zfs_grow_blocksize(zp, new_blksz, tx);
832 			zfs_range_reduce(rl, woff, n);
833 		}
834 
835 		/*
836 		 * XXX - should we really limit each write to z_max_blksz?
837 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
838 		 */
839 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
840 
841 		if (abuf == NULL) {
842 			tx_bytes = uio->uio_resid;
843 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
844 			    uio, nbytes, tx);
845 			tx_bytes -= uio->uio_resid;
846 		} else {
847 			tx_bytes = nbytes;
848 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
849 			/*
850 			 * If this is not a full block write, but we are
851 			 * extending the file past EOF and this data starts
852 			 * block-aligned, use assign_arcbuf().  Otherwise,
853 			 * write via dmu_write().
854 			 */
855 			if (tx_bytes < max_blksz && (!write_eof ||
856 			    aiov->iov_base != abuf->b_data)) {
857 				ASSERT(xuio);
858 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
859 				    aiov->iov_len, aiov->iov_base, tx);
860 				dmu_return_arcbuf(abuf);
861 				xuio_stat_wbuf_copied();
862 			} else {
863 				ASSERT(xuio || tx_bytes == max_blksz);
864 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
865 				    woff, abuf, tx);
866 			}
867 			ASSERT(tx_bytes <= uio->uio_resid);
868 			uioskip(uio, tx_bytes);
869 		}
870 		if (tx_bytes && vn_has_cached_data(vp)) {
871 			update_pages(vp, woff,
872 			    tx_bytes, zfsvfs->z_os, zp->z_id);
873 		}
874 
875 		/*
876 		 * If we made no progress, we're done.  If we made even
877 		 * partial progress, update the znode and ZIL accordingly.
878 		 */
879 		if (tx_bytes == 0) {
880 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
881 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
882 			dmu_tx_commit(tx);
883 			ASSERT(error != 0);
884 			break;
885 		}
886 
887 		/*
888 		 * Clear Set-UID/Set-GID bits on successful write if not
889 		 * privileged and at least one of the excute bits is set.
890 		 *
891 		 * It would be nice to to this after all writes have
892 		 * been done, but that would still expose the ISUID/ISGID
893 		 * to another app after the partial write is committed.
894 		 *
895 		 * Note: we don't call zfs_fuid_map_id() here because
896 		 * user 0 is not an ephemeral uid.
897 		 */
898 		mutex_enter(&zp->z_acl_lock);
899 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
900 		    (S_IXUSR >> 6))) != 0 &&
901 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
902 		    secpolicy_vnode_setid_retain(cr,
903 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
904 			uint64_t newmode;
905 			zp->z_mode &= ~(S_ISUID | S_ISGID);
906 			newmode = zp->z_mode;
907 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
908 			    (void *)&newmode, sizeof (uint64_t), tx);
909 		}
910 		mutex_exit(&zp->z_acl_lock);
911 
912 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
913 		    B_TRUE);
914 
915 		/*
916 		 * Update the file size (zp_size) if it has changed;
917 		 * account for possible concurrent updates.
918 		 */
919 		while ((end_size = zp->z_size) < uio->uio_loffset) {
920 			(void) atomic_cas_64(&zp->z_size, end_size,
921 			    uio->uio_loffset);
922 			ASSERT(error == 0);
923 		}
924 		/*
925 		 * If we are replaying and eof is non zero then force
926 		 * the file size to the specified eof. Note, there's no
927 		 * concurrency during replay.
928 		 */
929 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
930 			zp->z_size = zfsvfs->z_replay_eof;
931 
932 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
933 
934 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
935 		dmu_tx_commit(tx);
936 
937 		if (error != 0)
938 			break;
939 		ASSERT(tx_bytes == nbytes);
940 		n -= nbytes;
941 
942 		if (!xuio && n > 0)
943 			uio_prefaultpages(MIN(n, max_blksz), uio);
944 	}
945 
946 	zfs_range_unlock(rl);
947 
948 	/*
949 	 * If we're in replay mode, or we made no progress, return error.
950 	 * Otherwise, it's at least a partial write, so it's successful.
951 	 */
952 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
953 		ZFS_EXIT(zfsvfs);
954 		return (error);
955 	}
956 
957 	if (ioflag & (FSYNC | FDSYNC) ||
958 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
959 		zil_commit(zilog, zp->z_id);
960 
961 	ZFS_EXIT(zfsvfs);
962 	return (0);
963 }
964 
965 void
966 zfs_get_done(zgd_t *zgd, int error)
967 {
968 	znode_t *zp = zgd->zgd_private;
969 	objset_t *os = zp->z_zfsvfs->z_os;
970 
971 	if (zgd->zgd_db)
972 		dmu_buf_rele(zgd->zgd_db, zgd);
973 
974 	zfs_range_unlock(zgd->zgd_rl);
975 
976 	/*
977 	 * Release the vnode asynchronously as we currently have the
978 	 * txg stopped from syncing.
979 	 */
980 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
981 
982 	if (error == 0 && zgd->zgd_bp)
983 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
984 
985 	kmem_free(zgd, sizeof (zgd_t));
986 }
987 
988 #ifdef DEBUG
989 static int zil_fault_io = 0;
990 #endif
991 
992 /*
993  * Get data to generate a TX_WRITE intent log record.
994  */
995 int
996 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
997 {
998 	zfsvfs_t *zfsvfs = arg;
999 	objset_t *os = zfsvfs->z_os;
1000 	znode_t *zp;
1001 	uint64_t object = lr->lr_foid;
1002 	uint64_t offset = lr->lr_offset;
1003 	uint64_t size = lr->lr_length;
1004 	blkptr_t *bp = &lr->lr_blkptr;
1005 	dmu_buf_t *db;
1006 	zgd_t *zgd;
1007 	int error = 0;
1008 
1009 	ASSERT(zio != NULL);
1010 	ASSERT(size != 0);
1011 
1012 	/*
1013 	 * Nothing to do if the file has been removed
1014 	 */
1015 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1016 		return (SET_ERROR(ENOENT));
1017 	if (zp->z_unlinked) {
1018 		/*
1019 		 * Release the vnode asynchronously as we currently have the
1020 		 * txg stopped from syncing.
1021 		 */
1022 		VN_RELE_ASYNC(ZTOV(zp),
1023 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1024 		return (SET_ERROR(ENOENT));
1025 	}
1026 
1027 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1028 	zgd->zgd_zilog = zfsvfs->z_log;
1029 	zgd->zgd_private = zp;
1030 
1031 	/*
1032 	 * Write records come in two flavors: immediate and indirect.
1033 	 * For small writes it's cheaper to store the data with the
1034 	 * log record (immediate); for large writes it's cheaper to
1035 	 * sync the data and get a pointer to it (indirect) so that
1036 	 * we don't have to write the data twice.
1037 	 */
1038 	if (buf != NULL) { /* immediate write */
1039 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1040 		/* test for truncation needs to be done while range locked */
1041 		if (offset >= zp->z_size) {
1042 			error = SET_ERROR(ENOENT);
1043 		} else {
1044 			error = dmu_read(os, object, offset, size, buf,
1045 			    DMU_READ_NO_PREFETCH);
1046 		}
1047 		ASSERT(error == 0 || error == ENOENT);
1048 	} else { /* indirect write */
1049 		/*
1050 		 * Have to lock the whole block to ensure when it's
1051 		 * written out and it's checksum is being calculated
1052 		 * that no one can change the data. We need to re-check
1053 		 * blocksize after we get the lock in case it's changed!
1054 		 */
1055 		for (;;) {
1056 			uint64_t blkoff;
1057 			size = zp->z_blksz;
1058 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1059 			offset -= blkoff;
1060 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1061 			    RL_READER);
1062 			if (zp->z_blksz == size)
1063 				break;
1064 			offset += blkoff;
1065 			zfs_range_unlock(zgd->zgd_rl);
1066 		}
1067 		/* test for truncation needs to be done while range locked */
1068 		if (lr->lr_offset >= zp->z_size)
1069 			error = SET_ERROR(ENOENT);
1070 #ifdef DEBUG
1071 		if (zil_fault_io) {
1072 			error = SET_ERROR(EIO);
1073 			zil_fault_io = 0;
1074 		}
1075 #endif
1076 		if (error == 0)
1077 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1078 			    DMU_READ_NO_PREFETCH);
1079 
1080 		if (error == 0) {
1081 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1082 			if (obp) {
1083 				ASSERT(BP_IS_HOLE(bp));
1084 				*bp = *obp;
1085 			}
1086 
1087 			zgd->zgd_db = db;
1088 			zgd->zgd_bp = bp;
1089 
1090 			ASSERT(db->db_offset == offset);
1091 			ASSERT(db->db_size == size);
1092 
1093 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1094 			    zfs_get_done, zgd);
1095 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1096 
1097 			/*
1098 			 * On success, we need to wait for the write I/O
1099 			 * initiated by dmu_sync() to complete before we can
1100 			 * release this dbuf.  We will finish everything up
1101 			 * in the zfs_get_done() callback.
1102 			 */
1103 			if (error == 0)
1104 				return (0);
1105 
1106 			if (error == EALREADY) {
1107 				lr->lr_common.lrc_txtype = TX_WRITE2;
1108 				error = 0;
1109 			}
1110 		}
1111 	}
1112 
1113 	zfs_get_done(zgd, error);
1114 
1115 	return (error);
1116 }
1117 
1118 /*ARGSUSED*/
1119 static int
1120 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1121     caller_context_t *ct)
1122 {
1123 	znode_t *zp = VTOZ(vp);
1124 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1125 	int error;
1126 
1127 	ZFS_ENTER(zfsvfs);
1128 	ZFS_VERIFY_ZP(zp);
1129 
1130 	if (flag & V_ACE_MASK)
1131 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1132 	else
1133 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1134 
1135 	ZFS_EXIT(zfsvfs);
1136 	return (error);
1137 }
1138 
1139 /*
1140  * If vnode is for a device return a specfs vnode instead.
1141  */
1142 static int
1143 specvp_check(vnode_t **vpp, cred_t *cr)
1144 {
1145 	int error = 0;
1146 
1147 	if (IS_DEVVP(*vpp)) {
1148 		struct vnode *svp;
1149 
1150 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1151 		VN_RELE(*vpp);
1152 		if (svp == NULL)
1153 			error = SET_ERROR(ENOSYS);
1154 		*vpp = svp;
1155 	}
1156 	return (error);
1157 }
1158 
1159 
1160 /*
1161  * Lookup an entry in a directory, or an extended attribute directory.
1162  * If it exists, return a held vnode reference for it.
1163  *
1164  *	IN:	dvp	- vnode of directory to search.
1165  *		nm	- name of entry to lookup.
1166  *		pnp	- full pathname to lookup [UNUSED].
1167  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1168  *		rdir	- root directory vnode [UNUSED].
1169  *		cr	- credentials of caller.
1170  *		ct	- caller context
1171  *		direntflags - directory lookup flags
1172  *		realpnp - returned pathname.
1173  *
1174  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1175  *
1176  *	RETURN:	0 on success, error code on failure.
1177  *
1178  * Timestamps:
1179  *	NA
1180  */
1181 /* ARGSUSED */
1182 static int
1183 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1184     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1185     int *direntflags, pathname_t *realpnp)
1186 {
1187 	znode_t *zdp = VTOZ(dvp);
1188 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1189 	int	error = 0;
1190 
1191 	/* fast path */
1192 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1193 
1194 		if (dvp->v_type != VDIR) {
1195 			return (SET_ERROR(ENOTDIR));
1196 		} else if (zdp->z_sa_hdl == NULL) {
1197 			return (SET_ERROR(EIO));
1198 		}
1199 
1200 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1201 			error = zfs_fastaccesschk_execute(zdp, cr);
1202 			if (!error) {
1203 				*vpp = dvp;
1204 				VN_HOLD(*vpp);
1205 				return (0);
1206 			}
1207 			return (error);
1208 		} else {
1209 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1210 
1211 			if (tvp) {
1212 				error = zfs_fastaccesschk_execute(zdp, cr);
1213 				if (error) {
1214 					VN_RELE(tvp);
1215 					return (error);
1216 				}
1217 				if (tvp == DNLC_NO_VNODE) {
1218 					VN_RELE(tvp);
1219 					return (SET_ERROR(ENOENT));
1220 				} else {
1221 					*vpp = tvp;
1222 					return (specvp_check(vpp, cr));
1223 				}
1224 			}
1225 		}
1226 	}
1227 
1228 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1229 
1230 	ZFS_ENTER(zfsvfs);
1231 	ZFS_VERIFY_ZP(zdp);
1232 
1233 	*vpp = NULL;
1234 
1235 	if (flags & LOOKUP_XATTR) {
1236 		/*
1237 		 * If the xattr property is off, refuse the lookup request.
1238 		 */
1239 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1240 			ZFS_EXIT(zfsvfs);
1241 			return (SET_ERROR(EINVAL));
1242 		}
1243 
1244 		/*
1245 		 * We don't allow recursive attributes..
1246 		 * Maybe someday we will.
1247 		 */
1248 		if (zdp->z_pflags & ZFS_XATTR) {
1249 			ZFS_EXIT(zfsvfs);
1250 			return (SET_ERROR(EINVAL));
1251 		}
1252 
1253 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1254 			ZFS_EXIT(zfsvfs);
1255 			return (error);
1256 		}
1257 
1258 		/*
1259 		 * Do we have permission to get into attribute directory?
1260 		 */
1261 
1262 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1263 		    B_FALSE, cr)) {
1264 			VN_RELE(*vpp);
1265 			*vpp = NULL;
1266 		}
1267 
1268 		ZFS_EXIT(zfsvfs);
1269 		return (error);
1270 	}
1271 
1272 	if (dvp->v_type != VDIR) {
1273 		ZFS_EXIT(zfsvfs);
1274 		return (SET_ERROR(ENOTDIR));
1275 	}
1276 
1277 	/*
1278 	 * Check accessibility of directory.
1279 	 */
1280 
1281 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1282 		ZFS_EXIT(zfsvfs);
1283 		return (error);
1284 	}
1285 
1286 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1287 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1288 		ZFS_EXIT(zfsvfs);
1289 		return (SET_ERROR(EILSEQ));
1290 	}
1291 
1292 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1293 	if (error == 0)
1294 		error = specvp_check(vpp, cr);
1295 
1296 	ZFS_EXIT(zfsvfs);
1297 	return (error);
1298 }
1299 
1300 /*
1301  * Attempt to create a new entry in a directory.  If the entry
1302  * already exists, truncate the file if permissible, else return
1303  * an error.  Return the vp of the created or trunc'd file.
1304  *
1305  *	IN:	dvp	- vnode of directory to put new file entry in.
1306  *		name	- name of new file entry.
1307  *		vap	- attributes of new file.
1308  *		excl	- flag indicating exclusive or non-exclusive mode.
1309  *		mode	- mode to open file with.
1310  *		cr	- credentials of caller.
1311  *		flag	- large file flag [UNUSED].
1312  *		ct	- caller context
1313  *		vsecp	- ACL to be set
1314  *
1315  *	OUT:	vpp	- vnode of created or trunc'd entry.
1316  *
1317  *	RETURN:	0 on success, error code on failure.
1318  *
1319  * Timestamps:
1320  *	dvp - ctime|mtime updated if new entry created
1321  *	 vp - ctime|mtime always, atime if new
1322  */
1323 
1324 /* ARGSUSED */
1325 static int
1326 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1327     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1328     vsecattr_t *vsecp)
1329 {
1330 	znode_t		*zp, *dzp = VTOZ(dvp);
1331 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1332 	zilog_t		*zilog;
1333 	objset_t	*os;
1334 	zfs_dirlock_t	*dl;
1335 	dmu_tx_t	*tx;
1336 	int		error;
1337 	ksid_t		*ksid;
1338 	uid_t		uid;
1339 	gid_t		gid = crgetgid(cr);
1340 	zfs_acl_ids_t   acl_ids;
1341 	boolean_t	fuid_dirtied;
1342 	boolean_t	have_acl = B_FALSE;
1343 	boolean_t	waited = B_FALSE;
1344 
1345 	/*
1346 	 * If we have an ephemeral id, ACL, or XVATTR then
1347 	 * make sure file system is at proper version
1348 	 */
1349 
1350 	ksid = crgetsid(cr, KSID_OWNER);
1351 	if (ksid)
1352 		uid = ksid_getid(ksid);
1353 	else
1354 		uid = crgetuid(cr);
1355 
1356 	if (zfsvfs->z_use_fuids == B_FALSE &&
1357 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1358 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1359 		return (SET_ERROR(EINVAL));
1360 
1361 	ZFS_ENTER(zfsvfs);
1362 	ZFS_VERIFY_ZP(dzp);
1363 	os = zfsvfs->z_os;
1364 	zilog = zfsvfs->z_log;
1365 
1366 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1367 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1368 		ZFS_EXIT(zfsvfs);
1369 		return (SET_ERROR(EILSEQ));
1370 	}
1371 
1372 	if (vap->va_mask & AT_XVATTR) {
1373 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1374 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1375 			ZFS_EXIT(zfsvfs);
1376 			return (error);
1377 		}
1378 	}
1379 top:
1380 	*vpp = NULL;
1381 
1382 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1383 		vap->va_mode &= ~VSVTX;
1384 
1385 	if (*name == '\0') {
1386 		/*
1387 		 * Null component name refers to the directory itself.
1388 		 */
1389 		VN_HOLD(dvp);
1390 		zp = dzp;
1391 		dl = NULL;
1392 		error = 0;
1393 	} else {
1394 		/* possible VN_HOLD(zp) */
1395 		int zflg = 0;
1396 
1397 		if (flag & FIGNORECASE)
1398 			zflg |= ZCILOOK;
1399 
1400 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1401 		    NULL, NULL);
1402 		if (error) {
1403 			if (have_acl)
1404 				zfs_acl_ids_free(&acl_ids);
1405 			if (strcmp(name, "..") == 0)
1406 				error = SET_ERROR(EISDIR);
1407 			ZFS_EXIT(zfsvfs);
1408 			return (error);
1409 		}
1410 	}
1411 
1412 	if (zp == NULL) {
1413 		uint64_t txtype;
1414 
1415 		/*
1416 		 * Create a new file object and update the directory
1417 		 * to reference it.
1418 		 */
1419 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1420 			if (have_acl)
1421 				zfs_acl_ids_free(&acl_ids);
1422 			goto out;
1423 		}
1424 
1425 		/*
1426 		 * We only support the creation of regular files in
1427 		 * extended attribute directories.
1428 		 */
1429 
1430 		if ((dzp->z_pflags & ZFS_XATTR) &&
1431 		    (vap->va_type != VREG)) {
1432 			if (have_acl)
1433 				zfs_acl_ids_free(&acl_ids);
1434 			error = SET_ERROR(EINVAL);
1435 			goto out;
1436 		}
1437 
1438 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1439 		    cr, vsecp, &acl_ids)) != 0)
1440 			goto out;
1441 		have_acl = B_TRUE;
1442 
1443 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1444 			zfs_acl_ids_free(&acl_ids);
1445 			error = SET_ERROR(EDQUOT);
1446 			goto out;
1447 		}
1448 
1449 		tx = dmu_tx_create(os);
1450 
1451 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1452 		    ZFS_SA_BASE_ATTR_SIZE);
1453 
1454 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1455 		if (fuid_dirtied)
1456 			zfs_fuid_txhold(zfsvfs, tx);
1457 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1458 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1459 		if (!zfsvfs->z_use_sa &&
1460 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1461 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1462 			    0, acl_ids.z_aclp->z_acl_bytes);
1463 		}
1464 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1465 		if (error) {
1466 			zfs_dirent_unlock(dl);
1467 			if (error == ERESTART) {
1468 				waited = B_TRUE;
1469 				dmu_tx_wait(tx);
1470 				dmu_tx_abort(tx);
1471 				goto top;
1472 			}
1473 			zfs_acl_ids_free(&acl_ids);
1474 			dmu_tx_abort(tx);
1475 			ZFS_EXIT(zfsvfs);
1476 			return (error);
1477 		}
1478 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1479 
1480 		if (fuid_dirtied)
1481 			zfs_fuid_sync(zfsvfs, tx);
1482 
1483 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1484 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1485 		if (flag & FIGNORECASE)
1486 			txtype |= TX_CI;
1487 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1488 		    vsecp, acl_ids.z_fuidp, vap);
1489 		zfs_acl_ids_free(&acl_ids);
1490 		dmu_tx_commit(tx);
1491 	} else {
1492 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1493 
1494 		if (have_acl)
1495 			zfs_acl_ids_free(&acl_ids);
1496 		have_acl = B_FALSE;
1497 
1498 		/*
1499 		 * A directory entry already exists for this name.
1500 		 */
1501 		/*
1502 		 * Can't truncate an existing file if in exclusive mode.
1503 		 */
1504 		if (excl == EXCL) {
1505 			error = SET_ERROR(EEXIST);
1506 			goto out;
1507 		}
1508 		/*
1509 		 * Can't open a directory for writing.
1510 		 */
1511 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1512 			error = SET_ERROR(EISDIR);
1513 			goto out;
1514 		}
1515 		/*
1516 		 * Verify requested access to file.
1517 		 */
1518 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1519 			goto out;
1520 		}
1521 
1522 		mutex_enter(&dzp->z_lock);
1523 		dzp->z_seq++;
1524 		mutex_exit(&dzp->z_lock);
1525 
1526 		/*
1527 		 * Truncate regular files if requested.
1528 		 */
1529 		if ((ZTOV(zp)->v_type == VREG) &&
1530 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1531 			/* we can't hold any locks when calling zfs_freesp() */
1532 			zfs_dirent_unlock(dl);
1533 			dl = NULL;
1534 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1535 			if (error == 0) {
1536 				vnevent_create(ZTOV(zp), ct);
1537 			}
1538 		}
1539 	}
1540 out:
1541 
1542 	if (dl)
1543 		zfs_dirent_unlock(dl);
1544 
1545 	if (error) {
1546 		if (zp)
1547 			VN_RELE(ZTOV(zp));
1548 	} else {
1549 		*vpp = ZTOV(zp);
1550 		error = specvp_check(vpp, cr);
1551 	}
1552 
1553 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1554 		zil_commit(zilog, 0);
1555 
1556 	ZFS_EXIT(zfsvfs);
1557 	return (error);
1558 }
1559 
1560 /*
1561  * Remove an entry from a directory.
1562  *
1563  *	IN:	dvp	- vnode of directory to remove entry from.
1564  *		name	- name of entry to remove.
1565  *		cr	- credentials of caller.
1566  *		ct	- caller context
1567  *		flags	- case flags
1568  *
1569  *	RETURN:	0 on success, error code on failure.
1570  *
1571  * Timestamps:
1572  *	dvp - ctime|mtime
1573  *	 vp - ctime (if nlink > 0)
1574  */
1575 
1576 uint64_t null_xattr = 0;
1577 
1578 /*ARGSUSED*/
1579 static int
1580 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1581     int flags)
1582 {
1583 	znode_t		*zp, *dzp = VTOZ(dvp);
1584 	znode_t		*xzp;
1585 	vnode_t		*vp;
1586 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1587 	zilog_t		*zilog;
1588 	uint64_t	acl_obj, xattr_obj;
1589 	uint64_t	xattr_obj_unlinked = 0;
1590 	uint64_t	obj = 0;
1591 	zfs_dirlock_t	*dl;
1592 	dmu_tx_t	*tx;
1593 	boolean_t	may_delete_now, delete_now = FALSE;
1594 	boolean_t	unlinked, toobig = FALSE;
1595 	uint64_t	txtype;
1596 	pathname_t	*realnmp = NULL;
1597 	pathname_t	realnm;
1598 	int		error;
1599 	int		zflg = ZEXISTS;
1600 	boolean_t	waited = B_FALSE;
1601 
1602 	ZFS_ENTER(zfsvfs);
1603 	ZFS_VERIFY_ZP(dzp);
1604 	zilog = zfsvfs->z_log;
1605 
1606 	if (flags & FIGNORECASE) {
1607 		zflg |= ZCILOOK;
1608 		pn_alloc(&realnm);
1609 		realnmp = &realnm;
1610 	}
1611 
1612 top:
1613 	xattr_obj = 0;
1614 	xzp = NULL;
1615 	/*
1616 	 * Attempt to lock directory; fail if entry doesn't exist.
1617 	 */
1618 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1619 	    NULL, realnmp)) {
1620 		if (realnmp)
1621 			pn_free(realnmp);
1622 		ZFS_EXIT(zfsvfs);
1623 		return (error);
1624 	}
1625 
1626 	vp = ZTOV(zp);
1627 
1628 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1629 		goto out;
1630 	}
1631 
1632 	/*
1633 	 * Need to use rmdir for removing directories.
1634 	 */
1635 	if (vp->v_type == VDIR) {
1636 		error = SET_ERROR(EPERM);
1637 		goto out;
1638 	}
1639 
1640 	vnevent_remove(vp, dvp, name, ct);
1641 
1642 	if (realnmp)
1643 		dnlc_remove(dvp, realnmp->pn_buf);
1644 	else
1645 		dnlc_remove(dvp, name);
1646 
1647 	mutex_enter(&vp->v_lock);
1648 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1649 	mutex_exit(&vp->v_lock);
1650 
1651 	/*
1652 	 * We may delete the znode now, or we may put it in the unlinked set;
1653 	 * it depends on whether we're the last link, and on whether there are
1654 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1655 	 * allow for either case.
1656 	 */
1657 	obj = zp->z_id;
1658 	tx = dmu_tx_create(zfsvfs->z_os);
1659 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1660 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1661 	zfs_sa_upgrade_txholds(tx, zp);
1662 	zfs_sa_upgrade_txholds(tx, dzp);
1663 	if (may_delete_now) {
1664 		toobig =
1665 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1666 		/* if the file is too big, only hold_free a token amount */
1667 		dmu_tx_hold_free(tx, zp->z_id, 0,
1668 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1669 	}
1670 
1671 	/* are there any extended attributes? */
1672 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1673 	    &xattr_obj, sizeof (xattr_obj));
1674 	if (error == 0 && xattr_obj) {
1675 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1676 		ASSERT0(error);
1677 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1678 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1679 	}
1680 
1681 	mutex_enter(&zp->z_lock);
1682 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1683 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1684 	mutex_exit(&zp->z_lock);
1685 
1686 	/* charge as an update -- would be nice not to charge at all */
1687 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1688 
1689 	/*
1690 	 * Mark this transaction as typically resulting in a net free of
1691 	 * space, unless object removal will be delayed indefinitely
1692 	 * (due to active holds on the vnode due to the file being open).
1693 	 */
1694 	if (may_delete_now)
1695 		dmu_tx_mark_netfree(tx);
1696 
1697 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1698 	if (error) {
1699 		zfs_dirent_unlock(dl);
1700 		VN_RELE(vp);
1701 		if (xzp)
1702 			VN_RELE(ZTOV(xzp));
1703 		if (error == ERESTART) {
1704 			waited = B_TRUE;
1705 			dmu_tx_wait(tx);
1706 			dmu_tx_abort(tx);
1707 			goto top;
1708 		}
1709 		if (realnmp)
1710 			pn_free(realnmp);
1711 		dmu_tx_abort(tx);
1712 		ZFS_EXIT(zfsvfs);
1713 		return (error);
1714 	}
1715 
1716 	/*
1717 	 * Remove the directory entry.
1718 	 */
1719 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1720 
1721 	if (error) {
1722 		dmu_tx_commit(tx);
1723 		goto out;
1724 	}
1725 
1726 	if (unlinked) {
1727 		/*
1728 		 * Hold z_lock so that we can make sure that the ACL obj
1729 		 * hasn't changed.  Could have been deleted due to
1730 		 * zfs_sa_upgrade().
1731 		 */
1732 		mutex_enter(&zp->z_lock);
1733 		mutex_enter(&vp->v_lock);
1734 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1735 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1736 		delete_now = may_delete_now && !toobig &&
1737 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1738 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1739 		    acl_obj;
1740 		mutex_exit(&vp->v_lock);
1741 	}
1742 
1743 	if (delete_now) {
1744 		if (xattr_obj_unlinked) {
1745 			ASSERT3U(xzp->z_links, ==, 2);
1746 			mutex_enter(&xzp->z_lock);
1747 			xzp->z_unlinked = 1;
1748 			xzp->z_links = 0;
1749 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1750 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1751 			ASSERT3U(error,  ==,  0);
1752 			mutex_exit(&xzp->z_lock);
1753 			zfs_unlinked_add(xzp, tx);
1754 
1755 			if (zp->z_is_sa)
1756 				error = sa_remove(zp->z_sa_hdl,
1757 				    SA_ZPL_XATTR(zfsvfs), tx);
1758 			else
1759 				error = sa_update(zp->z_sa_hdl,
1760 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1761 				    sizeof (uint64_t), tx);
1762 			ASSERT0(error);
1763 		}
1764 		mutex_enter(&vp->v_lock);
1765 		vp->v_count--;
1766 		ASSERT0(vp->v_count);
1767 		mutex_exit(&vp->v_lock);
1768 		mutex_exit(&zp->z_lock);
1769 		zfs_znode_delete(zp, tx);
1770 	} else if (unlinked) {
1771 		mutex_exit(&zp->z_lock);
1772 		zfs_unlinked_add(zp, tx);
1773 	}
1774 
1775 	txtype = TX_REMOVE;
1776 	if (flags & FIGNORECASE)
1777 		txtype |= TX_CI;
1778 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1779 
1780 	dmu_tx_commit(tx);
1781 out:
1782 	if (realnmp)
1783 		pn_free(realnmp);
1784 
1785 	zfs_dirent_unlock(dl);
1786 
1787 	if (!delete_now)
1788 		VN_RELE(vp);
1789 	if (xzp)
1790 		VN_RELE(ZTOV(xzp));
1791 
1792 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1793 		zil_commit(zilog, 0);
1794 
1795 	ZFS_EXIT(zfsvfs);
1796 	return (error);
1797 }
1798 
1799 /*
1800  * Create a new directory and insert it into dvp using the name
1801  * provided.  Return a pointer to the inserted directory.
1802  *
1803  *	IN:	dvp	- vnode of directory to add subdir to.
1804  *		dirname	- name of new directory.
1805  *		vap	- attributes of new directory.
1806  *		cr	- credentials of caller.
1807  *		ct	- caller context
1808  *		flags	- case flags
1809  *		vsecp	- ACL to be set
1810  *
1811  *	OUT:	vpp	- vnode of created directory.
1812  *
1813  *	RETURN:	0 on success, error code on failure.
1814  *
1815  * Timestamps:
1816  *	dvp - ctime|mtime updated
1817  *	 vp - ctime|mtime|atime updated
1818  */
1819 /*ARGSUSED*/
1820 static int
1821 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1822     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1823 {
1824 	znode_t		*zp, *dzp = VTOZ(dvp);
1825 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1826 	zilog_t		*zilog;
1827 	zfs_dirlock_t	*dl;
1828 	uint64_t	txtype;
1829 	dmu_tx_t	*tx;
1830 	int		error;
1831 	int		zf = ZNEW;
1832 	ksid_t		*ksid;
1833 	uid_t		uid;
1834 	gid_t		gid = crgetgid(cr);
1835 	zfs_acl_ids_t   acl_ids;
1836 	boolean_t	fuid_dirtied;
1837 	boolean_t	waited = B_FALSE;
1838 
1839 	ASSERT(vap->va_type == VDIR);
1840 
1841 	/*
1842 	 * If we have an ephemeral id, ACL, or XVATTR then
1843 	 * make sure file system is at proper version
1844 	 */
1845 
1846 	ksid = crgetsid(cr, KSID_OWNER);
1847 	if (ksid)
1848 		uid = ksid_getid(ksid);
1849 	else
1850 		uid = crgetuid(cr);
1851 	if (zfsvfs->z_use_fuids == B_FALSE &&
1852 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1853 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1854 		return (SET_ERROR(EINVAL));
1855 
1856 	ZFS_ENTER(zfsvfs);
1857 	ZFS_VERIFY_ZP(dzp);
1858 	zilog = zfsvfs->z_log;
1859 
1860 	if (dzp->z_pflags & ZFS_XATTR) {
1861 		ZFS_EXIT(zfsvfs);
1862 		return (SET_ERROR(EINVAL));
1863 	}
1864 
1865 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1866 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1867 		ZFS_EXIT(zfsvfs);
1868 		return (SET_ERROR(EILSEQ));
1869 	}
1870 	if (flags & FIGNORECASE)
1871 		zf |= ZCILOOK;
1872 
1873 	if (vap->va_mask & AT_XVATTR) {
1874 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1875 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1876 			ZFS_EXIT(zfsvfs);
1877 			return (error);
1878 		}
1879 	}
1880 
1881 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1882 	    vsecp, &acl_ids)) != 0) {
1883 		ZFS_EXIT(zfsvfs);
1884 		return (error);
1885 	}
1886 	/*
1887 	 * First make sure the new directory doesn't exist.
1888 	 *
1889 	 * Existence is checked first to make sure we don't return
1890 	 * EACCES instead of EEXIST which can cause some applications
1891 	 * to fail.
1892 	 */
1893 top:
1894 	*vpp = NULL;
1895 
1896 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1897 	    NULL, NULL)) {
1898 		zfs_acl_ids_free(&acl_ids);
1899 		ZFS_EXIT(zfsvfs);
1900 		return (error);
1901 	}
1902 
1903 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1904 		zfs_acl_ids_free(&acl_ids);
1905 		zfs_dirent_unlock(dl);
1906 		ZFS_EXIT(zfsvfs);
1907 		return (error);
1908 	}
1909 
1910 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1911 		zfs_acl_ids_free(&acl_ids);
1912 		zfs_dirent_unlock(dl);
1913 		ZFS_EXIT(zfsvfs);
1914 		return (SET_ERROR(EDQUOT));
1915 	}
1916 
1917 	/*
1918 	 * Add a new entry to the directory.
1919 	 */
1920 	tx = dmu_tx_create(zfsvfs->z_os);
1921 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1922 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1923 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1924 	if (fuid_dirtied)
1925 		zfs_fuid_txhold(zfsvfs, tx);
1926 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1927 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1928 		    acl_ids.z_aclp->z_acl_bytes);
1929 	}
1930 
1931 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1932 	    ZFS_SA_BASE_ATTR_SIZE);
1933 
1934 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1935 	if (error) {
1936 		zfs_dirent_unlock(dl);
1937 		if (error == ERESTART) {
1938 			waited = B_TRUE;
1939 			dmu_tx_wait(tx);
1940 			dmu_tx_abort(tx);
1941 			goto top;
1942 		}
1943 		zfs_acl_ids_free(&acl_ids);
1944 		dmu_tx_abort(tx);
1945 		ZFS_EXIT(zfsvfs);
1946 		return (error);
1947 	}
1948 
1949 	/*
1950 	 * Create new node.
1951 	 */
1952 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1953 
1954 	if (fuid_dirtied)
1955 		zfs_fuid_sync(zfsvfs, tx);
1956 
1957 	/*
1958 	 * Now put new name in parent dir.
1959 	 */
1960 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1961 
1962 	*vpp = ZTOV(zp);
1963 
1964 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1965 	if (flags & FIGNORECASE)
1966 		txtype |= TX_CI;
1967 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1968 	    acl_ids.z_fuidp, vap);
1969 
1970 	zfs_acl_ids_free(&acl_ids);
1971 
1972 	dmu_tx_commit(tx);
1973 
1974 	zfs_dirent_unlock(dl);
1975 
1976 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1977 		zil_commit(zilog, 0);
1978 
1979 	ZFS_EXIT(zfsvfs);
1980 	return (0);
1981 }
1982 
1983 /*
1984  * Remove a directory subdir entry.  If the current working
1985  * directory is the same as the subdir to be removed, the
1986  * remove will fail.
1987  *
1988  *	IN:	dvp	- vnode of directory to remove from.
1989  *		name	- name of directory to be removed.
1990  *		cwd	- vnode of current working directory.
1991  *		cr	- credentials of caller.
1992  *		ct	- caller context
1993  *		flags	- case flags
1994  *
1995  *	RETURN:	0 on success, error code on failure.
1996  *
1997  * Timestamps:
1998  *	dvp - ctime|mtime updated
1999  */
2000 /*ARGSUSED*/
2001 static int
2002 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2003     caller_context_t *ct, int flags)
2004 {
2005 	znode_t		*dzp = VTOZ(dvp);
2006 	znode_t		*zp;
2007 	vnode_t		*vp;
2008 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2009 	zilog_t		*zilog;
2010 	zfs_dirlock_t	*dl;
2011 	dmu_tx_t	*tx;
2012 	int		error;
2013 	int		zflg = ZEXISTS;
2014 	boolean_t	waited = B_FALSE;
2015 
2016 	ZFS_ENTER(zfsvfs);
2017 	ZFS_VERIFY_ZP(dzp);
2018 	zilog = zfsvfs->z_log;
2019 
2020 	if (flags & FIGNORECASE)
2021 		zflg |= ZCILOOK;
2022 top:
2023 	zp = NULL;
2024 
2025 	/*
2026 	 * Attempt to lock directory; fail if entry doesn't exist.
2027 	 */
2028 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2029 	    NULL, NULL)) {
2030 		ZFS_EXIT(zfsvfs);
2031 		return (error);
2032 	}
2033 
2034 	vp = ZTOV(zp);
2035 
2036 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2037 		goto out;
2038 	}
2039 
2040 	if (vp->v_type != VDIR) {
2041 		error = SET_ERROR(ENOTDIR);
2042 		goto out;
2043 	}
2044 
2045 	if (vp == cwd) {
2046 		error = SET_ERROR(EINVAL);
2047 		goto out;
2048 	}
2049 
2050 	vnevent_rmdir(vp, dvp, name, ct);
2051 
2052 	/*
2053 	 * Grab a lock on the directory to make sure that noone is
2054 	 * trying to add (or lookup) entries while we are removing it.
2055 	 */
2056 	rw_enter(&zp->z_name_lock, RW_WRITER);
2057 
2058 	/*
2059 	 * Grab a lock on the parent pointer to make sure we play well
2060 	 * with the treewalk and directory rename code.
2061 	 */
2062 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2063 
2064 	tx = dmu_tx_create(zfsvfs->z_os);
2065 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2066 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2067 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2068 	zfs_sa_upgrade_txholds(tx, zp);
2069 	zfs_sa_upgrade_txholds(tx, dzp);
2070 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2071 	if (error) {
2072 		rw_exit(&zp->z_parent_lock);
2073 		rw_exit(&zp->z_name_lock);
2074 		zfs_dirent_unlock(dl);
2075 		VN_RELE(vp);
2076 		if (error == ERESTART) {
2077 			waited = B_TRUE;
2078 			dmu_tx_wait(tx);
2079 			dmu_tx_abort(tx);
2080 			goto top;
2081 		}
2082 		dmu_tx_abort(tx);
2083 		ZFS_EXIT(zfsvfs);
2084 		return (error);
2085 	}
2086 
2087 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2088 
2089 	if (error == 0) {
2090 		uint64_t txtype = TX_RMDIR;
2091 		if (flags & FIGNORECASE)
2092 			txtype |= TX_CI;
2093 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2094 	}
2095 
2096 	dmu_tx_commit(tx);
2097 
2098 	rw_exit(&zp->z_parent_lock);
2099 	rw_exit(&zp->z_name_lock);
2100 out:
2101 	zfs_dirent_unlock(dl);
2102 
2103 	VN_RELE(vp);
2104 
2105 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2106 		zil_commit(zilog, 0);
2107 
2108 	ZFS_EXIT(zfsvfs);
2109 	return (error);
2110 }
2111 
2112 /*
2113  * Read as many directory entries as will fit into the provided
2114  * buffer from the given directory cursor position (specified in
2115  * the uio structure).
2116  *
2117  *	IN:	vp	- vnode of directory to read.
2118  *		uio	- structure supplying read location, range info,
2119  *			  and return buffer.
2120  *		cr	- credentials of caller.
2121  *		ct	- caller context
2122  *		flags	- case flags
2123  *
2124  *	OUT:	uio	- updated offset and range, buffer filled.
2125  *		eofp	- set to true if end-of-file detected.
2126  *
2127  *	RETURN:	0 on success, error code on failure.
2128  *
2129  * Timestamps:
2130  *	vp - atime updated
2131  *
2132  * Note that the low 4 bits of the cookie returned by zap is always zero.
2133  * This allows us to use the low range for "special" directory entries:
2134  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2135  * we use the offset 2 for the '.zfs' directory.
2136  */
2137 /* ARGSUSED */
2138 static int
2139 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2140     caller_context_t *ct, int flags)
2141 {
2142 	znode_t		*zp = VTOZ(vp);
2143 	iovec_t		*iovp;
2144 	edirent_t	*eodp;
2145 	dirent64_t	*odp;
2146 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2147 	objset_t	*os;
2148 	caddr_t		outbuf;
2149 	size_t		bufsize;
2150 	zap_cursor_t	zc;
2151 	zap_attribute_t	zap;
2152 	uint_t		bytes_wanted;
2153 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2154 	uint64_t	parent;
2155 	int		local_eof;
2156 	int		outcount;
2157 	int		error;
2158 	uint8_t		prefetch;
2159 	boolean_t	check_sysattrs;
2160 
2161 	ZFS_ENTER(zfsvfs);
2162 	ZFS_VERIFY_ZP(zp);
2163 
2164 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2165 	    &parent, sizeof (parent))) != 0) {
2166 		ZFS_EXIT(zfsvfs);
2167 		return (error);
2168 	}
2169 
2170 	/*
2171 	 * If we are not given an eof variable,
2172 	 * use a local one.
2173 	 */
2174 	if (eofp == NULL)
2175 		eofp = &local_eof;
2176 
2177 	/*
2178 	 * Check for valid iov_len.
2179 	 */
2180 	if (uio->uio_iov->iov_len <= 0) {
2181 		ZFS_EXIT(zfsvfs);
2182 		return (SET_ERROR(EINVAL));
2183 	}
2184 
2185 	/*
2186 	 * Quit if directory has been removed (posix)
2187 	 */
2188 	if ((*eofp = zp->z_unlinked) != 0) {
2189 		ZFS_EXIT(zfsvfs);
2190 		return (0);
2191 	}
2192 
2193 	error = 0;
2194 	os = zfsvfs->z_os;
2195 	offset = uio->uio_loffset;
2196 	prefetch = zp->z_zn_prefetch;
2197 
2198 	/*
2199 	 * Initialize the iterator cursor.
2200 	 */
2201 	if (offset <= 3) {
2202 		/*
2203 		 * Start iteration from the beginning of the directory.
2204 		 */
2205 		zap_cursor_init(&zc, os, zp->z_id);
2206 	} else {
2207 		/*
2208 		 * The offset is a serialized cursor.
2209 		 */
2210 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2211 	}
2212 
2213 	/*
2214 	 * Get space to change directory entries into fs independent format.
2215 	 */
2216 	iovp = uio->uio_iov;
2217 	bytes_wanted = iovp->iov_len;
2218 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2219 		bufsize = bytes_wanted;
2220 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2221 		odp = (struct dirent64 *)outbuf;
2222 	} else {
2223 		bufsize = bytes_wanted;
2224 		outbuf = NULL;
2225 		odp = (struct dirent64 *)iovp->iov_base;
2226 	}
2227 	eodp = (struct edirent *)odp;
2228 
2229 	/*
2230 	 * If this VFS supports the system attribute view interface; and
2231 	 * we're looking at an extended attribute directory; and we care
2232 	 * about normalization conflicts on this vfs; then we must check
2233 	 * for normalization conflicts with the sysattr name space.
2234 	 */
2235 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2236 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2237 	    (flags & V_RDDIR_ENTFLAGS);
2238 
2239 	/*
2240 	 * Transform to file-system independent format
2241 	 */
2242 	outcount = 0;
2243 	while (outcount < bytes_wanted) {
2244 		ino64_t objnum;
2245 		ushort_t reclen;
2246 		off64_t *next = NULL;
2247 
2248 		/*
2249 		 * Special case `.', `..', and `.zfs'.
2250 		 */
2251 		if (offset == 0) {
2252 			(void) strcpy(zap.za_name, ".");
2253 			zap.za_normalization_conflict = 0;
2254 			objnum = zp->z_id;
2255 		} else if (offset == 1) {
2256 			(void) strcpy(zap.za_name, "..");
2257 			zap.za_normalization_conflict = 0;
2258 			objnum = parent;
2259 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2260 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2261 			zap.za_normalization_conflict = 0;
2262 			objnum = ZFSCTL_INO_ROOT;
2263 		} else {
2264 			/*
2265 			 * Grab next entry.
2266 			 */
2267 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2268 				if ((*eofp = (error == ENOENT)) != 0)
2269 					break;
2270 				else
2271 					goto update;
2272 			}
2273 
2274 			if (zap.za_integer_length != 8 ||
2275 			    zap.za_num_integers != 1) {
2276 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2277 				    "entry, obj = %lld, offset = %lld\n",
2278 				    (u_longlong_t)zp->z_id,
2279 				    (u_longlong_t)offset);
2280 				error = SET_ERROR(ENXIO);
2281 				goto update;
2282 			}
2283 
2284 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2285 			/*
2286 			 * MacOS X can extract the object type here such as:
2287 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2288 			 */
2289 
2290 			if (check_sysattrs && !zap.za_normalization_conflict) {
2291 				zap.za_normalization_conflict =
2292 				    xattr_sysattr_casechk(zap.za_name);
2293 			}
2294 		}
2295 
2296 		if (flags & V_RDDIR_ACCFILTER) {
2297 			/*
2298 			 * If we have no access at all, don't include
2299 			 * this entry in the returned information
2300 			 */
2301 			znode_t	*ezp;
2302 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2303 				goto skip_entry;
2304 			if (!zfs_has_access(ezp, cr)) {
2305 				VN_RELE(ZTOV(ezp));
2306 				goto skip_entry;
2307 			}
2308 			VN_RELE(ZTOV(ezp));
2309 		}
2310 
2311 		if (flags & V_RDDIR_ENTFLAGS)
2312 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2313 		else
2314 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2315 
2316 		/*
2317 		 * Will this entry fit in the buffer?
2318 		 */
2319 		if (outcount + reclen > bufsize) {
2320 			/*
2321 			 * Did we manage to fit anything in the buffer?
2322 			 */
2323 			if (!outcount) {
2324 				error = SET_ERROR(EINVAL);
2325 				goto update;
2326 			}
2327 			break;
2328 		}
2329 		if (flags & V_RDDIR_ENTFLAGS) {
2330 			/*
2331 			 * Add extended flag entry:
2332 			 */
2333 			eodp->ed_ino = objnum;
2334 			eodp->ed_reclen = reclen;
2335 			/* NOTE: ed_off is the offset for the *next* entry */
2336 			next = &(eodp->ed_off);
2337 			eodp->ed_eflags = zap.za_normalization_conflict ?
2338 			    ED_CASE_CONFLICT : 0;
2339 			(void) strncpy(eodp->ed_name, zap.za_name,
2340 			    EDIRENT_NAMELEN(reclen));
2341 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2342 		} else {
2343 			/*
2344 			 * Add normal entry:
2345 			 */
2346 			odp->d_ino = objnum;
2347 			odp->d_reclen = reclen;
2348 			/* NOTE: d_off is the offset for the *next* entry */
2349 			next = &(odp->d_off);
2350 			(void) strncpy(odp->d_name, zap.za_name,
2351 			    DIRENT64_NAMELEN(reclen));
2352 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2353 		}
2354 		outcount += reclen;
2355 
2356 		ASSERT(outcount <= bufsize);
2357 
2358 		/* Prefetch znode */
2359 		if (prefetch)
2360 			dmu_prefetch(os, objnum, 0, 0);
2361 
2362 	skip_entry:
2363 		/*
2364 		 * Move to the next entry, fill in the previous offset.
2365 		 */
2366 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2367 			zap_cursor_advance(&zc);
2368 			offset = zap_cursor_serialize(&zc);
2369 		} else {
2370 			offset += 1;
2371 		}
2372 		if (next)
2373 			*next = offset;
2374 	}
2375 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2376 
2377 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2378 		iovp->iov_base += outcount;
2379 		iovp->iov_len -= outcount;
2380 		uio->uio_resid -= outcount;
2381 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2382 		/*
2383 		 * Reset the pointer.
2384 		 */
2385 		offset = uio->uio_loffset;
2386 	}
2387 
2388 update:
2389 	zap_cursor_fini(&zc);
2390 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2391 		kmem_free(outbuf, bufsize);
2392 
2393 	if (error == ENOENT)
2394 		error = 0;
2395 
2396 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2397 
2398 	uio->uio_loffset = offset;
2399 	ZFS_EXIT(zfsvfs);
2400 	return (error);
2401 }
2402 
2403 ulong_t zfs_fsync_sync_cnt = 4;
2404 
2405 static int
2406 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2407 {
2408 	znode_t	*zp = VTOZ(vp);
2409 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2410 
2411 	/*
2412 	 * Regardless of whether this is required for standards conformance,
2413 	 * this is the logical behavior when fsync() is called on a file with
2414 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2415 	 * going to be pushed out as part of the zil_commit().
2416 	 */
2417 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2418 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2419 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2420 
2421 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2422 
2423 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2424 		ZFS_ENTER(zfsvfs);
2425 		ZFS_VERIFY_ZP(zp);
2426 		zil_commit(zfsvfs->z_log, zp->z_id);
2427 		ZFS_EXIT(zfsvfs);
2428 	}
2429 	return (0);
2430 }
2431 
2432 
2433 /*
2434  * Get the requested file attributes and place them in the provided
2435  * vattr structure.
2436  *
2437  *	IN:	vp	- vnode of file.
2438  *		vap	- va_mask identifies requested attributes.
2439  *			  If AT_XVATTR set, then optional attrs are requested
2440  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2441  *		cr	- credentials of caller.
2442  *		ct	- caller context
2443  *
2444  *	OUT:	vap	- attribute values.
2445  *
2446  *	RETURN:	0 (always succeeds).
2447  */
2448 /* ARGSUSED */
2449 static int
2450 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2451     caller_context_t *ct)
2452 {
2453 	znode_t *zp = VTOZ(vp);
2454 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2455 	int	error = 0;
2456 	uint64_t links;
2457 	uint64_t mtime[2], ctime[2];
2458 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2459 	xoptattr_t *xoap = NULL;
2460 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2461 	sa_bulk_attr_t bulk[2];
2462 	int count = 0;
2463 
2464 	ZFS_ENTER(zfsvfs);
2465 	ZFS_VERIFY_ZP(zp);
2466 
2467 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2468 
2469 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2470 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2471 
2472 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2473 		ZFS_EXIT(zfsvfs);
2474 		return (error);
2475 	}
2476 
2477 	/*
2478 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2479 	 * Also, if we are the owner don't bother, since owner should
2480 	 * always be allowed to read basic attributes of file.
2481 	 */
2482 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2483 	    (vap->va_uid != crgetuid(cr))) {
2484 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2485 		    skipaclchk, cr)) {
2486 			ZFS_EXIT(zfsvfs);
2487 			return (error);
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * Return all attributes.  It's cheaper to provide the answer
2493 	 * than to determine whether we were asked the question.
2494 	 */
2495 
2496 	mutex_enter(&zp->z_lock);
2497 	vap->va_type = vp->v_type;
2498 	vap->va_mode = zp->z_mode & MODEMASK;
2499 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2500 	vap->va_nodeid = zp->z_id;
2501 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2502 		links = zp->z_links + 1;
2503 	else
2504 		links = zp->z_links;
2505 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2506 	vap->va_size = zp->z_size;
2507 	vap->va_rdev = vp->v_rdev;
2508 	vap->va_seq = zp->z_seq;
2509 
2510 	/*
2511 	 * Add in any requested optional attributes and the create time.
2512 	 * Also set the corresponding bits in the returned attribute bitmap.
2513 	 */
2514 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2515 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2516 			xoap->xoa_archive =
2517 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2518 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2519 		}
2520 
2521 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2522 			xoap->xoa_readonly =
2523 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2524 			XVA_SET_RTN(xvap, XAT_READONLY);
2525 		}
2526 
2527 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2528 			xoap->xoa_system =
2529 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2530 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2531 		}
2532 
2533 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2534 			xoap->xoa_hidden =
2535 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2536 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2537 		}
2538 
2539 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2540 			xoap->xoa_nounlink =
2541 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2542 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2543 		}
2544 
2545 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2546 			xoap->xoa_immutable =
2547 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2548 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2549 		}
2550 
2551 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2552 			xoap->xoa_appendonly =
2553 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2554 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2555 		}
2556 
2557 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2558 			xoap->xoa_nodump =
2559 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2560 			XVA_SET_RTN(xvap, XAT_NODUMP);
2561 		}
2562 
2563 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2564 			xoap->xoa_opaque =
2565 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2566 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2567 		}
2568 
2569 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2570 			xoap->xoa_av_quarantined =
2571 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2572 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2573 		}
2574 
2575 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2576 			xoap->xoa_av_modified =
2577 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2578 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2579 		}
2580 
2581 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2582 		    vp->v_type == VREG) {
2583 			zfs_sa_get_scanstamp(zp, xvap);
2584 		}
2585 
2586 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2587 			uint64_t times[2];
2588 
2589 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2590 			    times, sizeof (times));
2591 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2592 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2593 		}
2594 
2595 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2596 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2597 			XVA_SET_RTN(xvap, XAT_REPARSE);
2598 		}
2599 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2600 			xoap->xoa_generation = zp->z_gen;
2601 			XVA_SET_RTN(xvap, XAT_GEN);
2602 		}
2603 
2604 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2605 			xoap->xoa_offline =
2606 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2607 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2608 		}
2609 
2610 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2611 			xoap->xoa_sparse =
2612 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2613 			XVA_SET_RTN(xvap, XAT_SPARSE);
2614 		}
2615 	}
2616 
2617 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2618 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2619 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2620 
2621 	mutex_exit(&zp->z_lock);
2622 
2623 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2624 
2625 	if (zp->z_blksz == 0) {
2626 		/*
2627 		 * Block size hasn't been set; suggest maximal I/O transfers.
2628 		 */
2629 		vap->va_blksize = zfsvfs->z_max_blksz;
2630 	}
2631 
2632 	ZFS_EXIT(zfsvfs);
2633 	return (0);
2634 }
2635 
2636 /*
2637  * Set the file attributes to the values contained in the
2638  * vattr structure.
2639  *
2640  *	IN:	vp	- vnode of file to be modified.
2641  *		vap	- new attribute values.
2642  *			  If AT_XVATTR set, then optional attrs are being set
2643  *		flags	- ATTR_UTIME set if non-default time values provided.
2644  *			- ATTR_NOACLCHECK (CIFS context only).
2645  *		cr	- credentials of caller.
2646  *		ct	- caller context
2647  *
2648  *	RETURN:	0 on success, error code on failure.
2649  *
2650  * Timestamps:
2651  *	vp - ctime updated, mtime updated if size changed.
2652  */
2653 /* ARGSUSED */
2654 static int
2655 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2656     caller_context_t *ct)
2657 {
2658 	znode_t		*zp = VTOZ(vp);
2659 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2660 	zilog_t		*zilog;
2661 	dmu_tx_t	*tx;
2662 	vattr_t		oldva;
2663 	xvattr_t	tmpxvattr;
2664 	uint_t		mask = vap->va_mask;
2665 	uint_t		saved_mask = 0;
2666 	int		trim_mask = 0;
2667 	uint64_t	new_mode;
2668 	uint64_t	new_uid, new_gid;
2669 	uint64_t	xattr_obj;
2670 	uint64_t	mtime[2], ctime[2];
2671 	znode_t		*attrzp;
2672 	int		need_policy = FALSE;
2673 	int		err, err2;
2674 	zfs_fuid_info_t *fuidp = NULL;
2675 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2676 	xoptattr_t	*xoap;
2677 	zfs_acl_t	*aclp;
2678 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2679 	boolean_t	fuid_dirtied = B_FALSE;
2680 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2681 	int		count = 0, xattr_count = 0;
2682 
2683 	if (mask == 0)
2684 		return (0);
2685 
2686 	if (mask & AT_NOSET)
2687 		return (SET_ERROR(EINVAL));
2688 
2689 	ZFS_ENTER(zfsvfs);
2690 	ZFS_VERIFY_ZP(zp);
2691 
2692 	zilog = zfsvfs->z_log;
2693 
2694 	/*
2695 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2696 	 * that file system is at proper version level
2697 	 */
2698 
2699 	if (zfsvfs->z_use_fuids == B_FALSE &&
2700 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2701 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2702 	    (mask & AT_XVATTR))) {
2703 		ZFS_EXIT(zfsvfs);
2704 		return (SET_ERROR(EINVAL));
2705 	}
2706 
2707 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2708 		ZFS_EXIT(zfsvfs);
2709 		return (SET_ERROR(EISDIR));
2710 	}
2711 
2712 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2713 		ZFS_EXIT(zfsvfs);
2714 		return (SET_ERROR(EINVAL));
2715 	}
2716 
2717 	/*
2718 	 * If this is an xvattr_t, then get a pointer to the structure of
2719 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2720 	 */
2721 	xoap = xva_getxoptattr(xvap);
2722 
2723 	xva_init(&tmpxvattr);
2724 
2725 	/*
2726 	 * Immutable files can only alter immutable bit and atime
2727 	 */
2728 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2729 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2730 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2731 		ZFS_EXIT(zfsvfs);
2732 		return (SET_ERROR(EPERM));
2733 	}
2734 
2735 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2736 		ZFS_EXIT(zfsvfs);
2737 		return (SET_ERROR(EPERM));
2738 	}
2739 
2740 	/*
2741 	 * Verify timestamps doesn't overflow 32 bits.
2742 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2743 	 * handle times greater than 2039.  This check should be removed
2744 	 * once large timestamps are fully supported.
2745 	 */
2746 	if (mask & (AT_ATIME | AT_MTIME)) {
2747 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2748 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2749 			ZFS_EXIT(zfsvfs);
2750 			return (SET_ERROR(EOVERFLOW));
2751 		}
2752 	}
2753 
2754 top:
2755 	attrzp = NULL;
2756 	aclp = NULL;
2757 
2758 	/* Can this be moved to before the top label? */
2759 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2760 		ZFS_EXIT(zfsvfs);
2761 		return (SET_ERROR(EROFS));
2762 	}
2763 
2764 	/*
2765 	 * First validate permissions
2766 	 */
2767 
2768 	if (mask & AT_SIZE) {
2769 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2770 		if (err) {
2771 			ZFS_EXIT(zfsvfs);
2772 			return (err);
2773 		}
2774 		/*
2775 		 * XXX - Note, we are not providing any open
2776 		 * mode flags here (like FNDELAY), so we may
2777 		 * block if there are locks present... this
2778 		 * should be addressed in openat().
2779 		 */
2780 		/* XXX - would it be OK to generate a log record here? */
2781 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2782 		if (err) {
2783 			ZFS_EXIT(zfsvfs);
2784 			return (err);
2785 		}
2786 
2787 		if (vap->va_size == 0)
2788 			vnevent_truncate(ZTOV(zp), ct);
2789 	}
2790 
2791 	if (mask & (AT_ATIME|AT_MTIME) ||
2792 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2793 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2794 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2795 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2796 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2797 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2798 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2799 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2800 		    skipaclchk, cr);
2801 	}
2802 
2803 	if (mask & (AT_UID|AT_GID)) {
2804 		int	idmask = (mask & (AT_UID|AT_GID));
2805 		int	take_owner;
2806 		int	take_group;
2807 
2808 		/*
2809 		 * NOTE: even if a new mode is being set,
2810 		 * we may clear S_ISUID/S_ISGID bits.
2811 		 */
2812 
2813 		if (!(mask & AT_MODE))
2814 			vap->va_mode = zp->z_mode;
2815 
2816 		/*
2817 		 * Take ownership or chgrp to group we are a member of
2818 		 */
2819 
2820 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2821 		take_group = (mask & AT_GID) &&
2822 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2823 
2824 		/*
2825 		 * If both AT_UID and AT_GID are set then take_owner and
2826 		 * take_group must both be set in order to allow taking
2827 		 * ownership.
2828 		 *
2829 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2830 		 *
2831 		 */
2832 
2833 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2834 		    ((idmask == AT_UID) && take_owner) ||
2835 		    ((idmask == AT_GID) && take_group)) {
2836 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2837 			    skipaclchk, cr) == 0) {
2838 				/*
2839 				 * Remove setuid/setgid for non-privileged users
2840 				 */
2841 				secpolicy_setid_clear(vap, cr);
2842 				trim_mask = (mask & (AT_UID|AT_GID));
2843 			} else {
2844 				need_policy =  TRUE;
2845 			}
2846 		} else {
2847 			need_policy =  TRUE;
2848 		}
2849 	}
2850 
2851 	mutex_enter(&zp->z_lock);
2852 	oldva.va_mode = zp->z_mode;
2853 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2854 	if (mask & AT_XVATTR) {
2855 		/*
2856 		 * Update xvattr mask to include only those attributes
2857 		 * that are actually changing.
2858 		 *
2859 		 * the bits will be restored prior to actually setting
2860 		 * the attributes so the caller thinks they were set.
2861 		 */
2862 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2863 			if (xoap->xoa_appendonly !=
2864 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2865 				need_policy = TRUE;
2866 			} else {
2867 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2868 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2869 			}
2870 		}
2871 
2872 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2873 			if (xoap->xoa_nounlink !=
2874 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2875 				need_policy = TRUE;
2876 			} else {
2877 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2878 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2879 			}
2880 		}
2881 
2882 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2883 			if (xoap->xoa_immutable !=
2884 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2885 				need_policy = TRUE;
2886 			} else {
2887 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2888 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2889 			}
2890 		}
2891 
2892 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2893 			if (xoap->xoa_nodump !=
2894 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2895 				need_policy = TRUE;
2896 			} else {
2897 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2898 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2899 			}
2900 		}
2901 
2902 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2903 			if (xoap->xoa_av_modified !=
2904 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2905 				need_policy = TRUE;
2906 			} else {
2907 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2908 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2909 			}
2910 		}
2911 
2912 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2913 			if ((vp->v_type != VREG &&
2914 			    xoap->xoa_av_quarantined) ||
2915 			    xoap->xoa_av_quarantined !=
2916 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2917 				need_policy = TRUE;
2918 			} else {
2919 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2920 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2921 			}
2922 		}
2923 
2924 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2925 			mutex_exit(&zp->z_lock);
2926 			ZFS_EXIT(zfsvfs);
2927 			return (SET_ERROR(EPERM));
2928 		}
2929 
2930 		if (need_policy == FALSE &&
2931 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2932 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2933 			need_policy = TRUE;
2934 		}
2935 	}
2936 
2937 	mutex_exit(&zp->z_lock);
2938 
2939 	if (mask & AT_MODE) {
2940 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2941 			err = secpolicy_setid_setsticky_clear(vp, vap,
2942 			    &oldva, cr);
2943 			if (err) {
2944 				ZFS_EXIT(zfsvfs);
2945 				return (err);
2946 			}
2947 			trim_mask |= AT_MODE;
2948 		} else {
2949 			need_policy = TRUE;
2950 		}
2951 	}
2952 
2953 	if (need_policy) {
2954 		/*
2955 		 * If trim_mask is set then take ownership
2956 		 * has been granted or write_acl is present and user
2957 		 * has the ability to modify mode.  In that case remove
2958 		 * UID|GID and or MODE from mask so that
2959 		 * secpolicy_vnode_setattr() doesn't revoke it.
2960 		 */
2961 
2962 		if (trim_mask) {
2963 			saved_mask = vap->va_mask;
2964 			vap->va_mask &= ~trim_mask;
2965 		}
2966 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2967 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2968 		if (err) {
2969 			ZFS_EXIT(zfsvfs);
2970 			return (err);
2971 		}
2972 
2973 		if (trim_mask)
2974 			vap->va_mask |= saved_mask;
2975 	}
2976 
2977 	/*
2978 	 * secpolicy_vnode_setattr, or take ownership may have
2979 	 * changed va_mask
2980 	 */
2981 	mask = vap->va_mask;
2982 
2983 	if ((mask & (AT_UID | AT_GID))) {
2984 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2985 		    &xattr_obj, sizeof (xattr_obj));
2986 
2987 		if (err == 0 && xattr_obj) {
2988 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2989 			if (err)
2990 				goto out2;
2991 		}
2992 		if (mask & AT_UID) {
2993 			new_uid = zfs_fuid_create(zfsvfs,
2994 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2995 			if (new_uid != zp->z_uid &&
2996 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2997 				if (attrzp)
2998 					VN_RELE(ZTOV(attrzp));
2999 				err = SET_ERROR(EDQUOT);
3000 				goto out2;
3001 			}
3002 		}
3003 
3004 		if (mask & AT_GID) {
3005 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3006 			    cr, ZFS_GROUP, &fuidp);
3007 			if (new_gid != zp->z_gid &&
3008 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3009 				if (attrzp)
3010 					VN_RELE(ZTOV(attrzp));
3011 				err = SET_ERROR(EDQUOT);
3012 				goto out2;
3013 			}
3014 		}
3015 	}
3016 	tx = dmu_tx_create(zfsvfs->z_os);
3017 
3018 	if (mask & AT_MODE) {
3019 		uint64_t pmode = zp->z_mode;
3020 		uint64_t acl_obj;
3021 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3022 
3023 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3024 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3025 			err = SET_ERROR(EPERM);
3026 			goto out;
3027 		}
3028 
3029 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3030 			goto out;
3031 
3032 		mutex_enter(&zp->z_lock);
3033 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3034 			/*
3035 			 * Are we upgrading ACL from old V0 format
3036 			 * to V1 format?
3037 			 */
3038 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3039 			    zfs_znode_acl_version(zp) ==
3040 			    ZFS_ACL_VERSION_INITIAL) {
3041 				dmu_tx_hold_free(tx, acl_obj, 0,
3042 				    DMU_OBJECT_END);
3043 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3044 				    0, aclp->z_acl_bytes);
3045 			} else {
3046 				dmu_tx_hold_write(tx, acl_obj, 0,
3047 				    aclp->z_acl_bytes);
3048 			}
3049 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3050 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3051 			    0, aclp->z_acl_bytes);
3052 		}
3053 		mutex_exit(&zp->z_lock);
3054 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3055 	} else {
3056 		if ((mask & AT_XVATTR) &&
3057 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3058 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3059 		else
3060 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3061 	}
3062 
3063 	if (attrzp) {
3064 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3065 	}
3066 
3067 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3068 	if (fuid_dirtied)
3069 		zfs_fuid_txhold(zfsvfs, tx);
3070 
3071 	zfs_sa_upgrade_txholds(tx, zp);
3072 
3073 	err = dmu_tx_assign(tx, TXG_WAIT);
3074 	if (err)
3075 		goto out;
3076 
3077 	count = 0;
3078 	/*
3079 	 * Set each attribute requested.
3080 	 * We group settings according to the locks they need to acquire.
3081 	 *
3082 	 * Note: you cannot set ctime directly, although it will be
3083 	 * updated as a side-effect of calling this function.
3084 	 */
3085 
3086 
3087 	if (mask & (AT_UID|AT_GID|AT_MODE))
3088 		mutex_enter(&zp->z_acl_lock);
3089 	mutex_enter(&zp->z_lock);
3090 
3091 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3092 	    &zp->z_pflags, sizeof (zp->z_pflags));
3093 
3094 	if (attrzp) {
3095 		if (mask & (AT_UID|AT_GID|AT_MODE))
3096 			mutex_enter(&attrzp->z_acl_lock);
3097 		mutex_enter(&attrzp->z_lock);
3098 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3099 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3100 		    sizeof (attrzp->z_pflags));
3101 	}
3102 
3103 	if (mask & (AT_UID|AT_GID)) {
3104 
3105 		if (mask & AT_UID) {
3106 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3107 			    &new_uid, sizeof (new_uid));
3108 			zp->z_uid = new_uid;
3109 			if (attrzp) {
3110 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3111 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3112 				    sizeof (new_uid));
3113 				attrzp->z_uid = new_uid;
3114 			}
3115 		}
3116 
3117 		if (mask & AT_GID) {
3118 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3119 			    NULL, &new_gid, sizeof (new_gid));
3120 			zp->z_gid = new_gid;
3121 			if (attrzp) {
3122 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3123 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3124 				    sizeof (new_gid));
3125 				attrzp->z_gid = new_gid;
3126 			}
3127 		}
3128 		if (!(mask & AT_MODE)) {
3129 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3130 			    NULL, &new_mode, sizeof (new_mode));
3131 			new_mode = zp->z_mode;
3132 		}
3133 		err = zfs_acl_chown_setattr(zp);
3134 		ASSERT(err == 0);
3135 		if (attrzp) {
3136 			err = zfs_acl_chown_setattr(attrzp);
3137 			ASSERT(err == 0);
3138 		}
3139 	}
3140 
3141 	if (mask & AT_MODE) {
3142 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3143 		    &new_mode, sizeof (new_mode));
3144 		zp->z_mode = new_mode;
3145 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3146 		err = zfs_aclset_common(zp, aclp, cr, tx);
3147 		ASSERT0(err);
3148 		if (zp->z_acl_cached)
3149 			zfs_acl_free(zp->z_acl_cached);
3150 		zp->z_acl_cached = aclp;
3151 		aclp = NULL;
3152 	}
3153 
3154 
3155 	if (mask & AT_ATIME) {
3156 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3157 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3158 		    &zp->z_atime, sizeof (zp->z_atime));
3159 	}
3160 
3161 	if (mask & AT_MTIME) {
3162 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3163 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3164 		    mtime, sizeof (mtime));
3165 	}
3166 
3167 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3168 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3169 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3170 		    NULL, mtime, sizeof (mtime));
3171 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3172 		    &ctime, sizeof (ctime));
3173 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3174 		    B_TRUE);
3175 	} else if (mask != 0) {
3176 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3177 		    &ctime, sizeof (ctime));
3178 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3179 		    B_TRUE);
3180 		if (attrzp) {
3181 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3182 			    SA_ZPL_CTIME(zfsvfs), NULL,
3183 			    &ctime, sizeof (ctime));
3184 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3185 			    mtime, ctime, B_TRUE);
3186 		}
3187 	}
3188 	/*
3189 	 * Do this after setting timestamps to prevent timestamp
3190 	 * update from toggling bit
3191 	 */
3192 
3193 	if (xoap && (mask & AT_XVATTR)) {
3194 
3195 		/*
3196 		 * restore trimmed off masks
3197 		 * so that return masks can be set for caller.
3198 		 */
3199 
3200 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3201 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3202 		}
3203 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3204 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3205 		}
3206 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3207 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3208 		}
3209 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3210 			XVA_SET_REQ(xvap, XAT_NODUMP);
3211 		}
3212 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3213 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3214 		}
3215 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3216 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3217 		}
3218 
3219 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3220 			ASSERT(vp->v_type == VREG);
3221 
3222 		zfs_xvattr_set(zp, xvap, tx);
3223 	}
3224 
3225 	if (fuid_dirtied)
3226 		zfs_fuid_sync(zfsvfs, tx);
3227 
3228 	if (mask != 0)
3229 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3230 
3231 	mutex_exit(&zp->z_lock);
3232 	if (mask & (AT_UID|AT_GID|AT_MODE))
3233 		mutex_exit(&zp->z_acl_lock);
3234 
3235 	if (attrzp) {
3236 		if (mask & (AT_UID|AT_GID|AT_MODE))
3237 			mutex_exit(&attrzp->z_acl_lock);
3238 		mutex_exit(&attrzp->z_lock);
3239 	}
3240 out:
3241 	if (err == 0 && attrzp) {
3242 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3243 		    xattr_count, tx);
3244 		ASSERT(err2 == 0);
3245 	}
3246 
3247 	if (attrzp)
3248 		VN_RELE(ZTOV(attrzp));
3249 
3250 	if (aclp)
3251 		zfs_acl_free(aclp);
3252 
3253 	if (fuidp) {
3254 		zfs_fuid_info_free(fuidp);
3255 		fuidp = NULL;
3256 	}
3257 
3258 	if (err) {
3259 		dmu_tx_abort(tx);
3260 		if (err == ERESTART)
3261 			goto top;
3262 	} else {
3263 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3264 		dmu_tx_commit(tx);
3265 	}
3266 
3267 out2:
3268 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3269 		zil_commit(zilog, 0);
3270 
3271 	ZFS_EXIT(zfsvfs);
3272 	return (err);
3273 }
3274 
3275 typedef struct zfs_zlock {
3276 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3277 	znode_t		*zl_znode;	/* znode we held */
3278 	struct zfs_zlock *zl_next;	/* next in list */
3279 } zfs_zlock_t;
3280 
3281 /*
3282  * Drop locks and release vnodes that were held by zfs_rename_lock().
3283  */
3284 static void
3285 zfs_rename_unlock(zfs_zlock_t **zlpp)
3286 {
3287 	zfs_zlock_t *zl;
3288 
3289 	while ((zl = *zlpp) != NULL) {
3290 		if (zl->zl_znode != NULL)
3291 			VN_RELE(ZTOV(zl->zl_znode));
3292 		rw_exit(zl->zl_rwlock);
3293 		*zlpp = zl->zl_next;
3294 		kmem_free(zl, sizeof (*zl));
3295 	}
3296 }
3297 
3298 /*
3299  * Search back through the directory tree, using the ".." entries.
3300  * Lock each directory in the chain to prevent concurrent renames.
3301  * Fail any attempt to move a directory into one of its own descendants.
3302  * XXX - z_parent_lock can overlap with map or grow locks
3303  */
3304 static int
3305 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3306 {
3307 	zfs_zlock_t	*zl;
3308 	znode_t		*zp = tdzp;
3309 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3310 	uint64_t	oidp = zp->z_id;
3311 	krwlock_t	*rwlp = &szp->z_parent_lock;
3312 	krw_t		rw = RW_WRITER;
3313 
3314 	/*
3315 	 * First pass write-locks szp and compares to zp->z_id.
3316 	 * Later passes read-lock zp and compare to zp->z_parent.
3317 	 */
3318 	do {
3319 		if (!rw_tryenter(rwlp, rw)) {
3320 			/*
3321 			 * Another thread is renaming in this path.
3322 			 * Note that if we are a WRITER, we don't have any
3323 			 * parent_locks held yet.
3324 			 */
3325 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3326 				/*
3327 				 * Drop our locks and restart
3328 				 */
3329 				zfs_rename_unlock(&zl);
3330 				*zlpp = NULL;
3331 				zp = tdzp;
3332 				oidp = zp->z_id;
3333 				rwlp = &szp->z_parent_lock;
3334 				rw = RW_WRITER;
3335 				continue;
3336 			} else {
3337 				/*
3338 				 * Wait for other thread to drop its locks
3339 				 */
3340 				rw_enter(rwlp, rw);
3341 			}
3342 		}
3343 
3344 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3345 		zl->zl_rwlock = rwlp;
3346 		zl->zl_znode = NULL;
3347 		zl->zl_next = *zlpp;
3348 		*zlpp = zl;
3349 
3350 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3351 			return (SET_ERROR(EINVAL));
3352 
3353 		if (oidp == rootid)		/* We've hit the top */
3354 			return (0);
3355 
3356 		if (rw == RW_READER) {		/* i.e. not the first pass */
3357 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3358 			if (error)
3359 				return (error);
3360 			zl->zl_znode = zp;
3361 		}
3362 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3363 		    &oidp, sizeof (oidp));
3364 		rwlp = &zp->z_parent_lock;
3365 		rw = RW_READER;
3366 
3367 	} while (zp->z_id != sdzp->z_id);
3368 
3369 	return (0);
3370 }
3371 
3372 /*
3373  * Move an entry from the provided source directory to the target
3374  * directory.  Change the entry name as indicated.
3375  *
3376  *	IN:	sdvp	- Source directory containing the "old entry".
3377  *		snm	- Old entry name.
3378  *		tdvp	- Target directory to contain the "new entry".
3379  *		tnm	- New entry name.
3380  *		cr	- credentials of caller.
3381  *		ct	- caller context
3382  *		flags	- case flags
3383  *
3384  *	RETURN:	0 on success, error code on failure.
3385  *
3386  * Timestamps:
3387  *	sdvp,tdvp - ctime|mtime updated
3388  */
3389 /*ARGSUSED*/
3390 static int
3391 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3392     caller_context_t *ct, int flags)
3393 {
3394 	znode_t		*tdzp, *szp, *tzp;
3395 	znode_t		*sdzp = VTOZ(sdvp);
3396 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3397 	zilog_t		*zilog;
3398 	vnode_t		*realvp;
3399 	zfs_dirlock_t	*sdl, *tdl;
3400 	dmu_tx_t	*tx;
3401 	zfs_zlock_t	*zl;
3402 	int		cmp, serr, terr;
3403 	int		error = 0;
3404 	int		zflg = 0;
3405 	boolean_t	waited = B_FALSE;
3406 
3407 	ZFS_ENTER(zfsvfs);
3408 	ZFS_VERIFY_ZP(sdzp);
3409 	zilog = zfsvfs->z_log;
3410 
3411 	/*
3412 	 * Make sure we have the real vp for the target directory.
3413 	 */
3414 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3415 		tdvp = realvp;
3416 
3417 	tdzp = VTOZ(tdvp);
3418 	ZFS_VERIFY_ZP(tdzp);
3419 
3420 	/*
3421 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3422 	 * ctldir appear to have the same v_vfsp.
3423 	 */
3424 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3425 		ZFS_EXIT(zfsvfs);
3426 		return (SET_ERROR(EXDEV));
3427 	}
3428 
3429 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3430 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3431 		ZFS_EXIT(zfsvfs);
3432 		return (SET_ERROR(EILSEQ));
3433 	}
3434 
3435 	if (flags & FIGNORECASE)
3436 		zflg |= ZCILOOK;
3437 
3438 top:
3439 	szp = NULL;
3440 	tzp = NULL;
3441 	zl = NULL;
3442 
3443 	/*
3444 	 * This is to prevent the creation of links into attribute space
3445 	 * by renaming a linked file into/outof an attribute directory.
3446 	 * See the comment in zfs_link() for why this is considered bad.
3447 	 */
3448 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3449 		ZFS_EXIT(zfsvfs);
3450 		return (SET_ERROR(EINVAL));
3451 	}
3452 
3453 	/*
3454 	 * Lock source and target directory entries.  To prevent deadlock,
3455 	 * a lock ordering must be defined.  We lock the directory with
3456 	 * the smallest object id first, or if it's a tie, the one with
3457 	 * the lexically first name.
3458 	 */
3459 	if (sdzp->z_id < tdzp->z_id) {
3460 		cmp = -1;
3461 	} else if (sdzp->z_id > tdzp->z_id) {
3462 		cmp = 1;
3463 	} else {
3464 		/*
3465 		 * First compare the two name arguments without
3466 		 * considering any case folding.
3467 		 */
3468 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3469 
3470 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3471 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3472 		if (cmp == 0) {
3473 			/*
3474 			 * POSIX: "If the old argument and the new argument
3475 			 * both refer to links to the same existing file,
3476 			 * the rename() function shall return successfully
3477 			 * and perform no other action."
3478 			 */
3479 			ZFS_EXIT(zfsvfs);
3480 			return (0);
3481 		}
3482 		/*
3483 		 * If the file system is case-folding, then we may
3484 		 * have some more checking to do.  A case-folding file
3485 		 * system is either supporting mixed case sensitivity
3486 		 * access or is completely case-insensitive.  Note
3487 		 * that the file system is always case preserving.
3488 		 *
3489 		 * In mixed sensitivity mode case sensitive behavior
3490 		 * is the default.  FIGNORECASE must be used to
3491 		 * explicitly request case insensitive behavior.
3492 		 *
3493 		 * If the source and target names provided differ only
3494 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3495 		 * we will treat this as a special case in the
3496 		 * case-insensitive mode: as long as the source name
3497 		 * is an exact match, we will allow this to proceed as
3498 		 * a name-change request.
3499 		 */
3500 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3501 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3502 		    flags & FIGNORECASE)) &&
3503 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3504 		    &error) == 0) {
3505 			/*
3506 			 * case preserving rename request, require exact
3507 			 * name matches
3508 			 */
3509 			zflg |= ZCIEXACT;
3510 			zflg &= ~ZCILOOK;
3511 		}
3512 	}
3513 
3514 	/*
3515 	 * If the source and destination directories are the same, we should
3516 	 * grab the z_name_lock of that directory only once.
3517 	 */
3518 	if (sdzp == tdzp) {
3519 		zflg |= ZHAVELOCK;
3520 		rw_enter(&sdzp->z_name_lock, RW_READER);
3521 	}
3522 
3523 	if (cmp < 0) {
3524 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3525 		    ZEXISTS | zflg, NULL, NULL);
3526 		terr = zfs_dirent_lock(&tdl,
3527 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3528 	} else {
3529 		terr = zfs_dirent_lock(&tdl,
3530 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3531 		serr = zfs_dirent_lock(&sdl,
3532 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3533 		    NULL, NULL);
3534 	}
3535 
3536 	if (serr) {
3537 		/*
3538 		 * Source entry invalid or not there.
3539 		 */
3540 		if (!terr) {
3541 			zfs_dirent_unlock(tdl);
3542 			if (tzp)
3543 				VN_RELE(ZTOV(tzp));
3544 		}
3545 
3546 		if (sdzp == tdzp)
3547 			rw_exit(&sdzp->z_name_lock);
3548 
3549 		if (strcmp(snm, "..") == 0)
3550 			serr = SET_ERROR(EINVAL);
3551 		ZFS_EXIT(zfsvfs);
3552 		return (serr);
3553 	}
3554 	if (terr) {
3555 		zfs_dirent_unlock(sdl);
3556 		VN_RELE(ZTOV(szp));
3557 
3558 		if (sdzp == tdzp)
3559 			rw_exit(&sdzp->z_name_lock);
3560 
3561 		if (strcmp(tnm, "..") == 0)
3562 			terr = SET_ERROR(EINVAL);
3563 		ZFS_EXIT(zfsvfs);
3564 		return (terr);
3565 	}
3566 
3567 	/*
3568 	 * Must have write access at the source to remove the old entry
3569 	 * and write access at the target to create the new entry.
3570 	 * Note that if target and source are the same, this can be
3571 	 * done in a single check.
3572 	 */
3573 
3574 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3575 		goto out;
3576 
3577 	if (ZTOV(szp)->v_type == VDIR) {
3578 		/*
3579 		 * Check to make sure rename is valid.
3580 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3581 		 */
3582 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3583 			goto out;
3584 	}
3585 
3586 	/*
3587 	 * Does target exist?
3588 	 */
3589 	if (tzp) {
3590 		/*
3591 		 * Source and target must be the same type.
3592 		 */
3593 		if (ZTOV(szp)->v_type == VDIR) {
3594 			if (ZTOV(tzp)->v_type != VDIR) {
3595 				error = SET_ERROR(ENOTDIR);
3596 				goto out;
3597 			}
3598 		} else {
3599 			if (ZTOV(tzp)->v_type == VDIR) {
3600 				error = SET_ERROR(EISDIR);
3601 				goto out;
3602 			}
3603 		}
3604 		/*
3605 		 * POSIX dictates that when the source and target
3606 		 * entries refer to the same file object, rename
3607 		 * must do nothing and exit without error.
3608 		 */
3609 		if (szp->z_id == tzp->z_id) {
3610 			error = 0;
3611 			goto out;
3612 		}
3613 	}
3614 
3615 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3616 	if (tzp)
3617 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3618 
3619 	/*
3620 	 * notify the target directory if it is not the same
3621 	 * as source directory.
3622 	 */
3623 	if (tdvp != sdvp) {
3624 		vnevent_rename_dest_dir(tdvp, ct);
3625 	}
3626 
3627 	tx = dmu_tx_create(zfsvfs->z_os);
3628 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3629 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3630 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3631 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3632 	if (sdzp != tdzp) {
3633 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3634 		zfs_sa_upgrade_txholds(tx, tdzp);
3635 	}
3636 	if (tzp) {
3637 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3638 		zfs_sa_upgrade_txholds(tx, tzp);
3639 	}
3640 
3641 	zfs_sa_upgrade_txholds(tx, szp);
3642 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3643 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3644 	if (error) {
3645 		if (zl != NULL)
3646 			zfs_rename_unlock(&zl);
3647 		zfs_dirent_unlock(sdl);
3648 		zfs_dirent_unlock(tdl);
3649 
3650 		if (sdzp == tdzp)
3651 			rw_exit(&sdzp->z_name_lock);
3652 
3653 		VN_RELE(ZTOV(szp));
3654 		if (tzp)
3655 			VN_RELE(ZTOV(tzp));
3656 		if (error == ERESTART) {
3657 			waited = B_TRUE;
3658 			dmu_tx_wait(tx);
3659 			dmu_tx_abort(tx);
3660 			goto top;
3661 		}
3662 		dmu_tx_abort(tx);
3663 		ZFS_EXIT(zfsvfs);
3664 		return (error);
3665 	}
3666 
3667 	if (tzp)	/* Attempt to remove the existing target */
3668 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3669 
3670 	if (error == 0) {
3671 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3672 		if (error == 0) {
3673 			szp->z_pflags |= ZFS_AV_MODIFIED;
3674 
3675 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3676 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3677 			ASSERT0(error);
3678 
3679 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3680 			if (error == 0) {
3681 				zfs_log_rename(zilog, tx, TX_RENAME |
3682 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3683 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3684 
3685 				/*
3686 				 * Update path information for the target vnode
3687 				 */
3688 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3689 				    strlen(tnm));
3690 			} else {
3691 				/*
3692 				 * At this point, we have successfully created
3693 				 * the target name, but have failed to remove
3694 				 * the source name.  Since the create was done
3695 				 * with the ZRENAMING flag, there are
3696 				 * complications; for one, the link count is
3697 				 * wrong.  The easiest way to deal with this
3698 				 * is to remove the newly created target, and
3699 				 * return the original error.  This must
3700 				 * succeed; fortunately, it is very unlikely to
3701 				 * fail, since we just created it.
3702 				 */
3703 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3704 				    ZRENAMING, NULL), ==, 0);
3705 			}
3706 		}
3707 	}
3708 
3709 	dmu_tx_commit(tx);
3710 out:
3711 	if (zl != NULL)
3712 		zfs_rename_unlock(&zl);
3713 
3714 	zfs_dirent_unlock(sdl);
3715 	zfs_dirent_unlock(tdl);
3716 
3717 	if (sdzp == tdzp)
3718 		rw_exit(&sdzp->z_name_lock);
3719 
3720 
3721 	VN_RELE(ZTOV(szp));
3722 	if (tzp)
3723 		VN_RELE(ZTOV(tzp));
3724 
3725 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3726 		zil_commit(zilog, 0);
3727 
3728 	ZFS_EXIT(zfsvfs);
3729 	return (error);
3730 }
3731 
3732 /*
3733  * Insert the indicated symbolic reference entry into the directory.
3734  *
3735  *	IN:	dvp	- Directory to contain new symbolic link.
3736  *		link	- Name for new symlink entry.
3737  *		vap	- Attributes of new entry.
3738  *		cr	- credentials of caller.
3739  *		ct	- caller context
3740  *		flags	- case flags
3741  *
3742  *	RETURN:	0 on success, error code on failure.
3743  *
3744  * Timestamps:
3745  *	dvp - ctime|mtime updated
3746  */
3747 /*ARGSUSED*/
3748 static int
3749 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3750     caller_context_t *ct, int flags)
3751 {
3752 	znode_t		*zp, *dzp = VTOZ(dvp);
3753 	zfs_dirlock_t	*dl;
3754 	dmu_tx_t	*tx;
3755 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3756 	zilog_t		*zilog;
3757 	uint64_t	len = strlen(link);
3758 	int		error;
3759 	int		zflg = ZNEW;
3760 	zfs_acl_ids_t	acl_ids;
3761 	boolean_t	fuid_dirtied;
3762 	uint64_t	txtype = TX_SYMLINK;
3763 	boolean_t	waited = B_FALSE;
3764 
3765 	ASSERT(vap->va_type == VLNK);
3766 
3767 	ZFS_ENTER(zfsvfs);
3768 	ZFS_VERIFY_ZP(dzp);
3769 	zilog = zfsvfs->z_log;
3770 
3771 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3772 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3773 		ZFS_EXIT(zfsvfs);
3774 		return (SET_ERROR(EILSEQ));
3775 	}
3776 	if (flags & FIGNORECASE)
3777 		zflg |= ZCILOOK;
3778 
3779 	if (len > MAXPATHLEN) {
3780 		ZFS_EXIT(zfsvfs);
3781 		return (SET_ERROR(ENAMETOOLONG));
3782 	}
3783 
3784 	if ((error = zfs_acl_ids_create(dzp, 0,
3785 	    vap, cr, NULL, &acl_ids)) != 0) {
3786 		ZFS_EXIT(zfsvfs);
3787 		return (error);
3788 	}
3789 top:
3790 	/*
3791 	 * Attempt to lock directory; fail if entry already exists.
3792 	 */
3793 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3794 	if (error) {
3795 		zfs_acl_ids_free(&acl_ids);
3796 		ZFS_EXIT(zfsvfs);
3797 		return (error);
3798 	}
3799 
3800 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3801 		zfs_acl_ids_free(&acl_ids);
3802 		zfs_dirent_unlock(dl);
3803 		ZFS_EXIT(zfsvfs);
3804 		return (error);
3805 	}
3806 
3807 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3808 		zfs_acl_ids_free(&acl_ids);
3809 		zfs_dirent_unlock(dl);
3810 		ZFS_EXIT(zfsvfs);
3811 		return (SET_ERROR(EDQUOT));
3812 	}
3813 	tx = dmu_tx_create(zfsvfs->z_os);
3814 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3815 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3816 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3817 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3818 	    ZFS_SA_BASE_ATTR_SIZE + len);
3819 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3820 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3821 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3822 		    acl_ids.z_aclp->z_acl_bytes);
3823 	}
3824 	if (fuid_dirtied)
3825 		zfs_fuid_txhold(zfsvfs, tx);
3826 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3827 	if (error) {
3828 		zfs_dirent_unlock(dl);
3829 		if (error == ERESTART) {
3830 			waited = B_TRUE;
3831 			dmu_tx_wait(tx);
3832 			dmu_tx_abort(tx);
3833 			goto top;
3834 		}
3835 		zfs_acl_ids_free(&acl_ids);
3836 		dmu_tx_abort(tx);
3837 		ZFS_EXIT(zfsvfs);
3838 		return (error);
3839 	}
3840 
3841 	/*
3842 	 * Create a new object for the symlink.
3843 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3844 	 */
3845 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3846 
3847 	if (fuid_dirtied)
3848 		zfs_fuid_sync(zfsvfs, tx);
3849 
3850 	mutex_enter(&zp->z_lock);
3851 	if (zp->z_is_sa)
3852 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3853 		    link, len, tx);
3854 	else
3855 		zfs_sa_symlink(zp, link, len, tx);
3856 	mutex_exit(&zp->z_lock);
3857 
3858 	zp->z_size = len;
3859 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3860 	    &zp->z_size, sizeof (zp->z_size), tx);
3861 	/*
3862 	 * Insert the new object into the directory.
3863 	 */
3864 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3865 
3866 	if (flags & FIGNORECASE)
3867 		txtype |= TX_CI;
3868 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3869 
3870 	zfs_acl_ids_free(&acl_ids);
3871 
3872 	dmu_tx_commit(tx);
3873 
3874 	zfs_dirent_unlock(dl);
3875 
3876 	VN_RELE(ZTOV(zp));
3877 
3878 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3879 		zil_commit(zilog, 0);
3880 
3881 	ZFS_EXIT(zfsvfs);
3882 	return (error);
3883 }
3884 
3885 /*
3886  * Return, in the buffer contained in the provided uio structure,
3887  * the symbolic path referred to by vp.
3888  *
3889  *	IN:	vp	- vnode of symbolic link.
3890  *		uio	- structure to contain the link path.
3891  *		cr	- credentials of caller.
3892  *		ct	- caller context
3893  *
3894  *	OUT:	uio	- structure containing the link path.
3895  *
3896  *	RETURN:	0 on success, error code on failure.
3897  *
3898  * Timestamps:
3899  *	vp - atime updated
3900  */
3901 /* ARGSUSED */
3902 static int
3903 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3904 {
3905 	znode_t		*zp = VTOZ(vp);
3906 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3907 	int		error;
3908 
3909 	ZFS_ENTER(zfsvfs);
3910 	ZFS_VERIFY_ZP(zp);
3911 
3912 	mutex_enter(&zp->z_lock);
3913 	if (zp->z_is_sa)
3914 		error = sa_lookup_uio(zp->z_sa_hdl,
3915 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3916 	else
3917 		error = zfs_sa_readlink(zp, uio);
3918 	mutex_exit(&zp->z_lock);
3919 
3920 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3921 
3922 	ZFS_EXIT(zfsvfs);
3923 	return (error);
3924 }
3925 
3926 /*
3927  * Insert a new entry into directory tdvp referencing svp.
3928  *
3929  *	IN:	tdvp	- Directory to contain new entry.
3930  *		svp	- vnode of new entry.
3931  *		name	- name of new entry.
3932  *		cr	- credentials of caller.
3933  *		ct	- caller context
3934  *
3935  *	RETURN:	0 on success, error code on failure.
3936  *
3937  * Timestamps:
3938  *	tdvp - ctime|mtime updated
3939  *	 svp - ctime updated
3940  */
3941 /* ARGSUSED */
3942 static int
3943 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3944     caller_context_t *ct, int flags)
3945 {
3946 	znode_t		*dzp = VTOZ(tdvp);
3947 	znode_t		*tzp, *szp;
3948 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3949 	zilog_t		*zilog;
3950 	zfs_dirlock_t	*dl;
3951 	dmu_tx_t	*tx;
3952 	vnode_t		*realvp;
3953 	int		error;
3954 	int		zf = ZNEW;
3955 	uint64_t	parent;
3956 	uid_t		owner;
3957 	boolean_t	waited = B_FALSE;
3958 
3959 	ASSERT(tdvp->v_type == VDIR);
3960 
3961 	ZFS_ENTER(zfsvfs);
3962 	ZFS_VERIFY_ZP(dzp);
3963 	zilog = zfsvfs->z_log;
3964 
3965 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3966 		svp = realvp;
3967 
3968 	/*
3969 	 * POSIX dictates that we return EPERM here.
3970 	 * Better choices include ENOTSUP or EISDIR.
3971 	 */
3972 	if (svp->v_type == VDIR) {
3973 		ZFS_EXIT(zfsvfs);
3974 		return (SET_ERROR(EPERM));
3975 	}
3976 
3977 	szp = VTOZ(svp);
3978 	ZFS_VERIFY_ZP(szp);
3979 
3980 	/*
3981 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3982 	 * ctldir appear to have the same v_vfsp.
3983 	 */
3984 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3985 		ZFS_EXIT(zfsvfs);
3986 		return (SET_ERROR(EXDEV));
3987 	}
3988 
3989 	/* Prevent links to .zfs/shares files */
3990 
3991 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3992 	    &parent, sizeof (uint64_t))) != 0) {
3993 		ZFS_EXIT(zfsvfs);
3994 		return (error);
3995 	}
3996 	if (parent == zfsvfs->z_shares_dir) {
3997 		ZFS_EXIT(zfsvfs);
3998 		return (SET_ERROR(EPERM));
3999 	}
4000 
4001 	if (zfsvfs->z_utf8 && u8_validate(name,
4002 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4003 		ZFS_EXIT(zfsvfs);
4004 		return (SET_ERROR(EILSEQ));
4005 	}
4006 	if (flags & FIGNORECASE)
4007 		zf |= ZCILOOK;
4008 
4009 	/*
4010 	 * We do not support links between attributes and non-attributes
4011 	 * because of the potential security risk of creating links
4012 	 * into "normal" file space in order to circumvent restrictions
4013 	 * imposed in attribute space.
4014 	 */
4015 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4016 		ZFS_EXIT(zfsvfs);
4017 		return (SET_ERROR(EINVAL));
4018 	}
4019 
4020 
4021 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4022 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4023 		ZFS_EXIT(zfsvfs);
4024 		return (SET_ERROR(EPERM));
4025 	}
4026 
4027 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4028 		ZFS_EXIT(zfsvfs);
4029 		return (error);
4030 	}
4031 
4032 top:
4033 	/*
4034 	 * Attempt to lock directory; fail if entry already exists.
4035 	 */
4036 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4037 	if (error) {
4038 		ZFS_EXIT(zfsvfs);
4039 		return (error);
4040 	}
4041 
4042 	tx = dmu_tx_create(zfsvfs->z_os);
4043 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4044 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4045 	zfs_sa_upgrade_txholds(tx, szp);
4046 	zfs_sa_upgrade_txholds(tx, dzp);
4047 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4048 	if (error) {
4049 		zfs_dirent_unlock(dl);
4050 		if (error == ERESTART) {
4051 			waited = B_TRUE;
4052 			dmu_tx_wait(tx);
4053 			dmu_tx_abort(tx);
4054 			goto top;
4055 		}
4056 		dmu_tx_abort(tx);
4057 		ZFS_EXIT(zfsvfs);
4058 		return (error);
4059 	}
4060 
4061 	error = zfs_link_create(dl, szp, tx, 0);
4062 
4063 	if (error == 0) {
4064 		uint64_t txtype = TX_LINK;
4065 		if (flags & FIGNORECASE)
4066 			txtype |= TX_CI;
4067 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4068 	}
4069 
4070 	dmu_tx_commit(tx);
4071 
4072 	zfs_dirent_unlock(dl);
4073 
4074 	if (error == 0) {
4075 		vnevent_link(svp, ct);
4076 	}
4077 
4078 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4079 		zil_commit(zilog, 0);
4080 
4081 	ZFS_EXIT(zfsvfs);
4082 	return (error);
4083 }
4084 
4085 /*
4086  * zfs_null_putapage() is used when the file system has been force
4087  * unmounted. It just drops the pages.
4088  */
4089 /* ARGSUSED */
4090 static int
4091 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4092 		size_t *lenp, int flags, cred_t *cr)
4093 {
4094 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4095 	return (0);
4096 }
4097 
4098 /*
4099  * Push a page out to disk, klustering if possible.
4100  *
4101  *	IN:	vp	- file to push page to.
4102  *		pp	- page to push.
4103  *		flags	- additional flags.
4104  *		cr	- credentials of caller.
4105  *
4106  *	OUT:	offp	- start of range pushed.
4107  *		lenp	- len of range pushed.
4108  *
4109  *	RETURN:	0 on success, error code on failure.
4110  *
4111  * NOTE: callers must have locked the page to be pushed.  On
4112  * exit, the page (and all other pages in the kluster) must be
4113  * unlocked.
4114  */
4115 /* ARGSUSED */
4116 static int
4117 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4118 		size_t *lenp, int flags, cred_t *cr)
4119 {
4120 	znode_t		*zp = VTOZ(vp);
4121 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4122 	dmu_tx_t	*tx;
4123 	u_offset_t	off, koff;
4124 	size_t		len, klen;
4125 	int		err;
4126 
4127 	off = pp->p_offset;
4128 	len = PAGESIZE;
4129 	/*
4130 	 * If our blocksize is bigger than the page size, try to kluster
4131 	 * multiple pages so that we write a full block (thus avoiding
4132 	 * a read-modify-write).
4133 	 */
4134 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4135 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4136 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4137 		ASSERT(koff <= zp->z_size);
4138 		if (koff + klen > zp->z_size)
4139 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4140 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4141 	}
4142 	ASSERT3U(btop(len), ==, btopr(len));
4143 
4144 	/*
4145 	 * Can't push pages past end-of-file.
4146 	 */
4147 	if (off >= zp->z_size) {
4148 		/* ignore all pages */
4149 		err = 0;
4150 		goto out;
4151 	} else if (off + len > zp->z_size) {
4152 		int npages = btopr(zp->z_size - off);
4153 		page_t *trunc;
4154 
4155 		page_list_break(&pp, &trunc, npages);
4156 		/* ignore pages past end of file */
4157 		if (trunc)
4158 			pvn_write_done(trunc, flags);
4159 		len = zp->z_size - off;
4160 	}
4161 
4162 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4163 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4164 		err = SET_ERROR(EDQUOT);
4165 		goto out;
4166 	}
4167 	tx = dmu_tx_create(zfsvfs->z_os);
4168 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4169 
4170 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4171 	zfs_sa_upgrade_txholds(tx, zp);
4172 	err = dmu_tx_assign(tx, TXG_WAIT);
4173 	if (err != 0) {
4174 		dmu_tx_abort(tx);
4175 		goto out;
4176 	}
4177 
4178 	if (zp->z_blksz <= PAGESIZE) {
4179 		caddr_t va = zfs_map_page(pp, S_READ);
4180 		ASSERT3U(len, <=, PAGESIZE);
4181 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4182 		zfs_unmap_page(pp, va);
4183 	} else {
4184 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4185 	}
4186 
4187 	if (err == 0) {
4188 		uint64_t mtime[2], ctime[2];
4189 		sa_bulk_attr_t bulk[3];
4190 		int count = 0;
4191 
4192 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4193 		    &mtime, 16);
4194 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4195 		    &ctime, 16);
4196 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4197 		    &zp->z_pflags, 8);
4198 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4199 		    B_TRUE);
4200 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4201 	}
4202 	dmu_tx_commit(tx);
4203 
4204 out:
4205 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4206 	if (offp)
4207 		*offp = off;
4208 	if (lenp)
4209 		*lenp = len;
4210 
4211 	return (err);
4212 }
4213 
4214 /*
4215  * Copy the portion of the file indicated from pages into the file.
4216  * The pages are stored in a page list attached to the files vnode.
4217  *
4218  *	IN:	vp	- vnode of file to push page data to.
4219  *		off	- position in file to put data.
4220  *		len	- amount of data to write.
4221  *		flags	- flags to control the operation.
4222  *		cr	- credentials of caller.
4223  *		ct	- caller context.
4224  *
4225  *	RETURN:	0 on success, error code on failure.
4226  *
4227  * Timestamps:
4228  *	vp - ctime|mtime updated
4229  */
4230 /*ARGSUSED*/
4231 static int
4232 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4233     caller_context_t *ct)
4234 {
4235 	znode_t		*zp = VTOZ(vp);
4236 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4237 	page_t		*pp;
4238 	size_t		io_len;
4239 	u_offset_t	io_off;
4240 	uint_t		blksz;
4241 	rl_t		*rl;
4242 	int		error = 0;
4243 
4244 	ZFS_ENTER(zfsvfs);
4245 	ZFS_VERIFY_ZP(zp);
4246 
4247 	/*
4248 	 * There's nothing to do if no data is cached.
4249 	 */
4250 	if (!vn_has_cached_data(vp)) {
4251 		ZFS_EXIT(zfsvfs);
4252 		return (0);
4253 	}
4254 
4255 	/*
4256 	 * Align this request to the file block size in case we kluster.
4257 	 * XXX - this can result in pretty aggresive locking, which can
4258 	 * impact simultanious read/write access.  One option might be
4259 	 * to break up long requests (len == 0) into block-by-block
4260 	 * operations to get narrower locking.
4261 	 */
4262 	blksz = zp->z_blksz;
4263 	if (ISP2(blksz))
4264 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4265 	else
4266 		io_off = 0;
4267 	if (len > 0 && ISP2(blksz))
4268 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4269 	else
4270 		io_len = 0;
4271 
4272 	if (io_len == 0) {
4273 		/*
4274 		 * Search the entire vp list for pages >= io_off.
4275 		 */
4276 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4277 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4278 		goto out;
4279 	}
4280 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4281 
4282 	if (off > zp->z_size) {
4283 		/* past end of file */
4284 		zfs_range_unlock(rl);
4285 		ZFS_EXIT(zfsvfs);
4286 		return (0);
4287 	}
4288 
4289 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4290 
4291 	for (off = io_off; io_off < off + len; io_off += io_len) {
4292 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4293 			pp = page_lookup(vp, io_off,
4294 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4295 		} else {
4296 			pp = page_lookup_nowait(vp, io_off,
4297 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4298 		}
4299 
4300 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4301 			int err;
4302 
4303 			/*
4304 			 * Found a dirty page to push
4305 			 */
4306 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4307 			if (err)
4308 				error = err;
4309 		} else {
4310 			io_len = PAGESIZE;
4311 		}
4312 	}
4313 out:
4314 	zfs_range_unlock(rl);
4315 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4316 		zil_commit(zfsvfs->z_log, zp->z_id);
4317 	ZFS_EXIT(zfsvfs);
4318 	return (error);
4319 }
4320 
4321 /*ARGSUSED*/
4322 void
4323 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4324 {
4325 	znode_t	*zp = VTOZ(vp);
4326 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4327 	int error;
4328 
4329 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4330 	if (zp->z_sa_hdl == NULL) {
4331 		/*
4332 		 * The fs has been unmounted, or we did a
4333 		 * suspend/resume and this file no longer exists.
4334 		 */
4335 		if (vn_has_cached_data(vp)) {
4336 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4337 			    B_INVAL, cr);
4338 		}
4339 
4340 		mutex_enter(&zp->z_lock);
4341 		mutex_enter(&vp->v_lock);
4342 		ASSERT(vp->v_count == 1);
4343 		vp->v_count = 0;
4344 		mutex_exit(&vp->v_lock);
4345 		mutex_exit(&zp->z_lock);
4346 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4347 		zfs_znode_free(zp);
4348 		return;
4349 	}
4350 
4351 	/*
4352 	 * Attempt to push any data in the page cache.  If this fails
4353 	 * we will get kicked out later in zfs_zinactive().
4354 	 */
4355 	if (vn_has_cached_data(vp)) {
4356 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4357 		    cr);
4358 	}
4359 
4360 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4361 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4362 
4363 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4364 		zfs_sa_upgrade_txholds(tx, zp);
4365 		error = dmu_tx_assign(tx, TXG_WAIT);
4366 		if (error) {
4367 			dmu_tx_abort(tx);
4368 		} else {
4369 			mutex_enter(&zp->z_lock);
4370 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4371 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4372 			zp->z_atime_dirty = 0;
4373 			mutex_exit(&zp->z_lock);
4374 			dmu_tx_commit(tx);
4375 		}
4376 	}
4377 
4378 	zfs_zinactive(zp);
4379 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4380 }
4381 
4382 /*
4383  * Bounds-check the seek operation.
4384  *
4385  *	IN:	vp	- vnode seeking within
4386  *		ooff	- old file offset
4387  *		noffp	- pointer to new file offset
4388  *		ct	- caller context
4389  *
4390  *	RETURN:	0 on success, EINVAL if new offset invalid.
4391  */
4392 /* ARGSUSED */
4393 static int
4394 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4395     caller_context_t *ct)
4396 {
4397 	if (vp->v_type == VDIR)
4398 		return (0);
4399 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4400 }
4401 
4402 /*
4403  * Pre-filter the generic locking function to trap attempts to place
4404  * a mandatory lock on a memory mapped file.
4405  */
4406 static int
4407 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4408     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4409 {
4410 	znode_t *zp = VTOZ(vp);
4411 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4412 
4413 	ZFS_ENTER(zfsvfs);
4414 	ZFS_VERIFY_ZP(zp);
4415 
4416 	/*
4417 	 * We are following the UFS semantics with respect to mapcnt
4418 	 * here: If we see that the file is mapped already, then we will
4419 	 * return an error, but we don't worry about races between this
4420 	 * function and zfs_map().
4421 	 */
4422 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4423 		ZFS_EXIT(zfsvfs);
4424 		return (SET_ERROR(EAGAIN));
4425 	}
4426 	ZFS_EXIT(zfsvfs);
4427 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4428 }
4429 
4430 /*
4431  * If we can't find a page in the cache, we will create a new page
4432  * and fill it with file data.  For efficiency, we may try to fill
4433  * multiple pages at once (klustering) to fill up the supplied page
4434  * list.  Note that the pages to be filled are held with an exclusive
4435  * lock to prevent access by other threads while they are being filled.
4436  */
4437 static int
4438 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4439     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4440 {
4441 	znode_t *zp = VTOZ(vp);
4442 	page_t *pp, *cur_pp;
4443 	objset_t *os = zp->z_zfsvfs->z_os;
4444 	u_offset_t io_off, total;
4445 	size_t io_len;
4446 	int err;
4447 
4448 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4449 		/*
4450 		 * We only have a single page, don't bother klustering
4451 		 */
4452 		io_off = off;
4453 		io_len = PAGESIZE;
4454 		pp = page_create_va(vp, io_off, io_len,
4455 		    PG_EXCL | PG_WAIT, seg, addr);
4456 	} else {
4457 		/*
4458 		 * Try to find enough pages to fill the page list
4459 		 */
4460 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4461 		    &io_len, off, plsz, 0);
4462 	}
4463 	if (pp == NULL) {
4464 		/*
4465 		 * The page already exists, nothing to do here.
4466 		 */
4467 		*pl = NULL;
4468 		return (0);
4469 	}
4470 
4471 	/*
4472 	 * Fill the pages in the kluster.
4473 	 */
4474 	cur_pp = pp;
4475 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4476 		caddr_t va;
4477 
4478 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4479 		va = zfs_map_page(cur_pp, S_WRITE);
4480 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4481 		    DMU_READ_PREFETCH);
4482 		zfs_unmap_page(cur_pp, va);
4483 		if (err) {
4484 			/* On error, toss the entire kluster */
4485 			pvn_read_done(pp, B_ERROR);
4486 			/* convert checksum errors into IO errors */
4487 			if (err == ECKSUM)
4488 				err = SET_ERROR(EIO);
4489 			return (err);
4490 		}
4491 		cur_pp = cur_pp->p_next;
4492 	}
4493 
4494 	/*
4495 	 * Fill in the page list array from the kluster starting
4496 	 * from the desired offset `off'.
4497 	 * NOTE: the page list will always be null terminated.
4498 	 */
4499 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4500 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4501 
4502 	return (0);
4503 }
4504 
4505 /*
4506  * Return pointers to the pages for the file region [off, off + len]
4507  * in the pl array.  If plsz is greater than len, this function may
4508  * also return page pointers from after the specified region
4509  * (i.e. the region [off, off + plsz]).  These additional pages are
4510  * only returned if they are already in the cache, or were created as
4511  * part of a klustered read.
4512  *
4513  *	IN:	vp	- vnode of file to get data from.
4514  *		off	- position in file to get data from.
4515  *		len	- amount of data to retrieve.
4516  *		plsz	- length of provided page list.
4517  *		seg	- segment to obtain pages for.
4518  *		addr	- virtual address of fault.
4519  *		rw	- mode of created pages.
4520  *		cr	- credentials of caller.
4521  *		ct	- caller context.
4522  *
4523  *	OUT:	protp	- protection mode of created pages.
4524  *		pl	- list of pages created.
4525  *
4526  *	RETURN:	0 on success, error code on failure.
4527  *
4528  * Timestamps:
4529  *	vp - atime updated
4530  */
4531 /* ARGSUSED */
4532 static int
4533 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4534     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4535     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4536 {
4537 	znode_t		*zp = VTOZ(vp);
4538 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4539 	page_t		**pl0 = pl;
4540 	int		err = 0;
4541 
4542 	/* we do our own caching, faultahead is unnecessary */
4543 	if (pl == NULL)
4544 		return (0);
4545 	else if (len > plsz)
4546 		len = plsz;
4547 	else
4548 		len = P2ROUNDUP(len, PAGESIZE);
4549 	ASSERT(plsz >= len);
4550 
4551 	ZFS_ENTER(zfsvfs);
4552 	ZFS_VERIFY_ZP(zp);
4553 
4554 	if (protp)
4555 		*protp = PROT_ALL;
4556 
4557 	/*
4558 	 * Loop through the requested range [off, off + len) looking
4559 	 * for pages.  If we don't find a page, we will need to create
4560 	 * a new page and fill it with data from the file.
4561 	 */
4562 	while (len > 0) {
4563 		if (*pl = page_lookup(vp, off, SE_SHARED))
4564 			*(pl+1) = NULL;
4565 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4566 			goto out;
4567 		while (*pl) {
4568 			ASSERT3U((*pl)->p_offset, ==, off);
4569 			off += PAGESIZE;
4570 			addr += PAGESIZE;
4571 			if (len > 0) {
4572 				ASSERT3U(len, >=, PAGESIZE);
4573 				len -= PAGESIZE;
4574 			}
4575 			ASSERT3U(plsz, >=, PAGESIZE);
4576 			plsz -= PAGESIZE;
4577 			pl++;
4578 		}
4579 	}
4580 
4581 	/*
4582 	 * Fill out the page array with any pages already in the cache.
4583 	 */
4584 	while (plsz > 0 &&
4585 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4586 			off += PAGESIZE;
4587 			plsz -= PAGESIZE;
4588 	}
4589 out:
4590 	if (err) {
4591 		/*
4592 		 * Release any pages we have previously locked.
4593 		 */
4594 		while (pl > pl0)
4595 			page_unlock(*--pl);
4596 	} else {
4597 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4598 	}
4599 
4600 	*pl = NULL;
4601 
4602 	ZFS_EXIT(zfsvfs);
4603 	return (err);
4604 }
4605 
4606 /*
4607  * Request a memory map for a section of a file.  This code interacts
4608  * with common code and the VM system as follows:
4609  *
4610  * - common code calls mmap(), which ends up in smmap_common()
4611  * - this calls VOP_MAP(), which takes you into (say) zfs
4612  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4613  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4614  * - zfs_addmap() updates z_mapcnt
4615  */
4616 /*ARGSUSED*/
4617 static int
4618 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4619     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4620     caller_context_t *ct)
4621 {
4622 	znode_t *zp = VTOZ(vp);
4623 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4624 	segvn_crargs_t	vn_a;
4625 	int		error;
4626 
4627 	ZFS_ENTER(zfsvfs);
4628 	ZFS_VERIFY_ZP(zp);
4629 
4630 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4631 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4632 		ZFS_EXIT(zfsvfs);
4633 		return (SET_ERROR(EPERM));
4634 	}
4635 
4636 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4637 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4638 		ZFS_EXIT(zfsvfs);
4639 		return (SET_ERROR(EACCES));
4640 	}
4641 
4642 	if (vp->v_flag & VNOMAP) {
4643 		ZFS_EXIT(zfsvfs);
4644 		return (SET_ERROR(ENOSYS));
4645 	}
4646 
4647 	if (off < 0 || len > MAXOFFSET_T - off) {
4648 		ZFS_EXIT(zfsvfs);
4649 		return (SET_ERROR(ENXIO));
4650 	}
4651 
4652 	if (vp->v_type != VREG) {
4653 		ZFS_EXIT(zfsvfs);
4654 		return (SET_ERROR(ENODEV));
4655 	}
4656 
4657 	/*
4658 	 * If file is locked, disallow mapping.
4659 	 */
4660 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4661 		ZFS_EXIT(zfsvfs);
4662 		return (SET_ERROR(EAGAIN));
4663 	}
4664 
4665 	as_rangelock(as);
4666 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4667 	if (error != 0) {
4668 		as_rangeunlock(as);
4669 		ZFS_EXIT(zfsvfs);
4670 		return (error);
4671 	}
4672 
4673 	vn_a.vp = vp;
4674 	vn_a.offset = (u_offset_t)off;
4675 	vn_a.type = flags & MAP_TYPE;
4676 	vn_a.prot = prot;
4677 	vn_a.maxprot = maxprot;
4678 	vn_a.cred = cr;
4679 	vn_a.amp = NULL;
4680 	vn_a.flags = flags & ~MAP_TYPE;
4681 	vn_a.szc = 0;
4682 	vn_a.lgrp_mem_policy_flags = 0;
4683 
4684 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4685 
4686 	as_rangeunlock(as);
4687 	ZFS_EXIT(zfsvfs);
4688 	return (error);
4689 }
4690 
4691 /* ARGSUSED */
4692 static int
4693 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4694     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4695     caller_context_t *ct)
4696 {
4697 	uint64_t pages = btopr(len);
4698 
4699 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4700 	return (0);
4701 }
4702 
4703 /*
4704  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4705  * more accurate mtime for the associated file.  Since we don't have a way of
4706  * detecting when the data was actually modified, we have to resort to
4707  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4708  * last page is pushed.  The problem occurs when the msync() call is omitted,
4709  * which by far the most common case:
4710  *
4711  *	open()
4712  *	mmap()
4713  *	<modify memory>
4714  *	munmap()
4715  *	close()
4716  *	<time lapse>
4717  *	putpage() via fsflush
4718  *
4719  * If we wait until fsflush to come along, we can have a modification time that
4720  * is some arbitrary point in the future.  In order to prevent this in the
4721  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4722  * torn down.
4723  */
4724 /* ARGSUSED */
4725 static int
4726 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4727     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4728     caller_context_t *ct)
4729 {
4730 	uint64_t pages = btopr(len);
4731 
4732 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4733 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4734 
4735 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4736 	    vn_has_cached_data(vp))
4737 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4738 
4739 	return (0);
4740 }
4741 
4742 /*
4743  * Free or allocate space in a file.  Currently, this function only
4744  * supports the `F_FREESP' command.  However, this command is somewhat
4745  * misnamed, as its functionality includes the ability to allocate as
4746  * well as free space.
4747  *
4748  *	IN:	vp	- vnode of file to free data in.
4749  *		cmd	- action to take (only F_FREESP supported).
4750  *		bfp	- section of file to free/alloc.
4751  *		flag	- current file open mode flags.
4752  *		offset	- current file offset.
4753  *		cr	- credentials of caller [UNUSED].
4754  *		ct	- caller context.
4755  *
4756  *	RETURN:	0 on success, error code on failure.
4757  *
4758  * Timestamps:
4759  *	vp - ctime|mtime updated
4760  */
4761 /* ARGSUSED */
4762 static int
4763 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4764     offset_t offset, cred_t *cr, caller_context_t *ct)
4765 {
4766 	znode_t		*zp = VTOZ(vp);
4767 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4768 	uint64_t	off, len;
4769 	int		error;
4770 
4771 	ZFS_ENTER(zfsvfs);
4772 	ZFS_VERIFY_ZP(zp);
4773 
4774 	if (cmd != F_FREESP) {
4775 		ZFS_EXIT(zfsvfs);
4776 		return (SET_ERROR(EINVAL));
4777 	}
4778 
4779 	/*
4780 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4781 	 * callers might not be able to detect properly that we are read-only,
4782 	 * so check it explicitly here.
4783 	 */
4784 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4785 		ZFS_EXIT(zfsvfs);
4786 		return (SET_ERROR(EROFS));
4787 	}
4788 
4789 	if (error = convoff(vp, bfp, 0, offset)) {
4790 		ZFS_EXIT(zfsvfs);
4791 		return (error);
4792 	}
4793 
4794 	if (bfp->l_len < 0) {
4795 		ZFS_EXIT(zfsvfs);
4796 		return (SET_ERROR(EINVAL));
4797 	}
4798 
4799 	off = bfp->l_start;
4800 	len = bfp->l_len; /* 0 means from off to end of file */
4801 
4802 	error = zfs_freesp(zp, off, len, flag, TRUE);
4803 
4804 	if (error == 0 && off == 0 && len == 0)
4805 		vnevent_truncate(ZTOV(zp), ct);
4806 
4807 	ZFS_EXIT(zfsvfs);
4808 	return (error);
4809 }
4810 
4811 /*ARGSUSED*/
4812 static int
4813 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4814 {
4815 	znode_t		*zp = VTOZ(vp);
4816 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4817 	uint32_t	gen;
4818 	uint64_t	gen64;
4819 	uint64_t	object = zp->z_id;
4820 	zfid_short_t	*zfid;
4821 	int		size, i, error;
4822 
4823 	ZFS_ENTER(zfsvfs);
4824 	ZFS_VERIFY_ZP(zp);
4825 
4826 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4827 	    &gen64, sizeof (uint64_t))) != 0) {
4828 		ZFS_EXIT(zfsvfs);
4829 		return (error);
4830 	}
4831 
4832 	gen = (uint32_t)gen64;
4833 
4834 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4835 	if (fidp->fid_len < size) {
4836 		fidp->fid_len = size;
4837 		ZFS_EXIT(zfsvfs);
4838 		return (SET_ERROR(ENOSPC));
4839 	}
4840 
4841 	zfid = (zfid_short_t *)fidp;
4842 
4843 	zfid->zf_len = size;
4844 
4845 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4846 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4847 
4848 	/* Must have a non-zero generation number to distinguish from .zfs */
4849 	if (gen == 0)
4850 		gen = 1;
4851 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4852 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4853 
4854 	if (size == LONG_FID_LEN) {
4855 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4856 		zfid_long_t	*zlfid;
4857 
4858 		zlfid = (zfid_long_t *)fidp;
4859 
4860 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4861 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4862 
4863 		/* XXX - this should be the generation number for the objset */
4864 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4865 			zlfid->zf_setgen[i] = 0;
4866 	}
4867 
4868 	ZFS_EXIT(zfsvfs);
4869 	return (0);
4870 }
4871 
4872 static int
4873 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4874     caller_context_t *ct)
4875 {
4876 	znode_t		*zp, *xzp;
4877 	zfsvfs_t	*zfsvfs;
4878 	zfs_dirlock_t	*dl;
4879 	int		error;
4880 
4881 	switch (cmd) {
4882 	case _PC_LINK_MAX:
4883 		*valp = ULONG_MAX;
4884 		return (0);
4885 
4886 	case _PC_FILESIZEBITS:
4887 		*valp = 64;
4888 		return (0);
4889 
4890 	case _PC_XATTR_EXISTS:
4891 		zp = VTOZ(vp);
4892 		zfsvfs = zp->z_zfsvfs;
4893 		ZFS_ENTER(zfsvfs);
4894 		ZFS_VERIFY_ZP(zp);
4895 		*valp = 0;
4896 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4897 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4898 		if (error == 0) {
4899 			zfs_dirent_unlock(dl);
4900 			if (!zfs_dirempty(xzp))
4901 				*valp = 1;
4902 			VN_RELE(ZTOV(xzp));
4903 		} else if (error == ENOENT) {
4904 			/*
4905 			 * If there aren't extended attributes, it's the
4906 			 * same as having zero of them.
4907 			 */
4908 			error = 0;
4909 		}
4910 		ZFS_EXIT(zfsvfs);
4911 		return (error);
4912 
4913 	case _PC_SATTR_ENABLED:
4914 	case _PC_SATTR_EXISTS:
4915 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4916 		    (vp->v_type == VREG || vp->v_type == VDIR);
4917 		return (0);
4918 
4919 	case _PC_ACCESS_FILTERING:
4920 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4921 		    vp->v_type == VDIR;
4922 		return (0);
4923 
4924 	case _PC_ACL_ENABLED:
4925 		*valp = _ACL_ACE_ENABLED;
4926 		return (0);
4927 
4928 	case _PC_MIN_HOLE_SIZE:
4929 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4930 		return (0);
4931 
4932 	case _PC_TIMESTAMP_RESOLUTION:
4933 		/* nanosecond timestamp resolution */
4934 		*valp = 1L;
4935 		return (0);
4936 
4937 	default:
4938 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4939 	}
4940 }
4941 
4942 /*ARGSUSED*/
4943 static int
4944 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4945     caller_context_t *ct)
4946 {
4947 	znode_t *zp = VTOZ(vp);
4948 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4949 	int error;
4950 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4951 
4952 	ZFS_ENTER(zfsvfs);
4953 	ZFS_VERIFY_ZP(zp);
4954 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4955 	ZFS_EXIT(zfsvfs);
4956 
4957 	return (error);
4958 }
4959 
4960 /*ARGSUSED*/
4961 static int
4962 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4963     caller_context_t *ct)
4964 {
4965 	znode_t *zp = VTOZ(vp);
4966 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4967 	int error;
4968 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4969 	zilog_t	*zilog = zfsvfs->z_log;
4970 
4971 	ZFS_ENTER(zfsvfs);
4972 	ZFS_VERIFY_ZP(zp);
4973 
4974 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4975 
4976 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4977 		zil_commit(zilog, 0);
4978 
4979 	ZFS_EXIT(zfsvfs);
4980 	return (error);
4981 }
4982 
4983 /*
4984  * The smallest read we may consider to loan out an arcbuf.
4985  * This must be a power of 2.
4986  */
4987 int zcr_blksz_min = (1 << 10);	/* 1K */
4988 /*
4989  * If set to less than the file block size, allow loaning out of an
4990  * arcbuf for a partial block read.  This must be a power of 2.
4991  */
4992 int zcr_blksz_max = (1 << 17);	/* 128K */
4993 
4994 /*ARGSUSED*/
4995 static int
4996 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4997     caller_context_t *ct)
4998 {
4999 	znode_t	*zp = VTOZ(vp);
5000 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5001 	int max_blksz = zfsvfs->z_max_blksz;
5002 	uio_t *uio = &xuio->xu_uio;
5003 	ssize_t size = uio->uio_resid;
5004 	offset_t offset = uio->uio_loffset;
5005 	int blksz;
5006 	int fullblk, i;
5007 	arc_buf_t *abuf;
5008 	ssize_t maxsize;
5009 	int preamble, postamble;
5010 
5011 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5012 		return (SET_ERROR(EINVAL));
5013 
5014 	ZFS_ENTER(zfsvfs);
5015 	ZFS_VERIFY_ZP(zp);
5016 	switch (ioflag) {
5017 	case UIO_WRITE:
5018 		/*
5019 		 * Loan out an arc_buf for write if write size is bigger than
5020 		 * max_blksz, and the file's block size is also max_blksz.
5021 		 */
5022 		blksz = max_blksz;
5023 		if (size < blksz || zp->z_blksz != blksz) {
5024 			ZFS_EXIT(zfsvfs);
5025 			return (SET_ERROR(EINVAL));
5026 		}
5027 		/*
5028 		 * Caller requests buffers for write before knowing where the
5029 		 * write offset might be (e.g. NFS TCP write).
5030 		 */
5031 		if (offset == -1) {
5032 			preamble = 0;
5033 		} else {
5034 			preamble = P2PHASE(offset, blksz);
5035 			if (preamble) {
5036 				preamble = blksz - preamble;
5037 				size -= preamble;
5038 			}
5039 		}
5040 
5041 		postamble = P2PHASE(size, blksz);
5042 		size -= postamble;
5043 
5044 		fullblk = size / blksz;
5045 		(void) dmu_xuio_init(xuio,
5046 		    (preamble != 0) + fullblk + (postamble != 0));
5047 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5048 		    int, postamble, int,
5049 		    (preamble != 0) + fullblk + (postamble != 0));
5050 
5051 		/*
5052 		 * Have to fix iov base/len for partial buffers.  They
5053 		 * currently represent full arc_buf's.
5054 		 */
5055 		if (preamble) {
5056 			/* data begins in the middle of the arc_buf */
5057 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5058 			    blksz);
5059 			ASSERT(abuf);
5060 			(void) dmu_xuio_add(xuio, abuf,
5061 			    blksz - preamble, preamble);
5062 		}
5063 
5064 		for (i = 0; i < fullblk; i++) {
5065 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5066 			    blksz);
5067 			ASSERT(abuf);
5068 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5069 		}
5070 
5071 		if (postamble) {
5072 			/* data ends in the middle of the arc_buf */
5073 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5074 			    blksz);
5075 			ASSERT(abuf);
5076 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5077 		}
5078 		break;
5079 	case UIO_READ:
5080 		/*
5081 		 * Loan out an arc_buf for read if the read size is larger than
5082 		 * the current file block size.  Block alignment is not
5083 		 * considered.  Partial arc_buf will be loaned out for read.
5084 		 */
5085 		blksz = zp->z_blksz;
5086 		if (blksz < zcr_blksz_min)
5087 			blksz = zcr_blksz_min;
5088 		if (blksz > zcr_blksz_max)
5089 			blksz = zcr_blksz_max;
5090 		/* avoid potential complexity of dealing with it */
5091 		if (blksz > max_blksz) {
5092 			ZFS_EXIT(zfsvfs);
5093 			return (SET_ERROR(EINVAL));
5094 		}
5095 
5096 		maxsize = zp->z_size - uio->uio_loffset;
5097 		if (size > maxsize)
5098 			size = maxsize;
5099 
5100 		if (size < blksz || vn_has_cached_data(vp)) {
5101 			ZFS_EXIT(zfsvfs);
5102 			return (SET_ERROR(EINVAL));
5103 		}
5104 		break;
5105 	default:
5106 		ZFS_EXIT(zfsvfs);
5107 		return (SET_ERROR(EINVAL));
5108 	}
5109 
5110 	uio->uio_extflg = UIO_XUIO;
5111 	XUIO_XUZC_RW(xuio) = ioflag;
5112 	ZFS_EXIT(zfsvfs);
5113 	return (0);
5114 }
5115 
5116 /*ARGSUSED*/
5117 static int
5118 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5119 {
5120 	int i;
5121 	arc_buf_t *abuf;
5122 	int ioflag = XUIO_XUZC_RW(xuio);
5123 
5124 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5125 
5126 	i = dmu_xuio_cnt(xuio);
5127 	while (i-- > 0) {
5128 		abuf = dmu_xuio_arcbuf(xuio, i);
5129 		/*
5130 		 * if abuf == NULL, it must be a write buffer
5131 		 * that has been returned in zfs_write().
5132 		 */
5133 		if (abuf)
5134 			dmu_return_arcbuf(abuf);
5135 		ASSERT(abuf || ioflag == UIO_WRITE);
5136 	}
5137 
5138 	dmu_xuio_fini(xuio);
5139 	return (0);
5140 }
5141 
5142 /*
5143  * Predeclare these here so that the compiler assumes that
5144  * this is an "old style" function declaration that does
5145  * not include arguments => we won't get type mismatch errors
5146  * in the initializations that follow.
5147  */
5148 static int zfs_inval();
5149 static int zfs_isdir();
5150 
5151 static int
5152 zfs_inval()
5153 {
5154 	return (SET_ERROR(EINVAL));
5155 }
5156 
5157 static int
5158 zfs_isdir()
5159 {
5160 	return (SET_ERROR(EISDIR));
5161 }
5162 /*
5163  * Directory vnode operations template
5164  */
5165 vnodeops_t *zfs_dvnodeops;
5166 const fs_operation_def_t zfs_dvnodeops_template[] = {
5167 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5168 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5169 	VOPNAME_READ,		{ .error = zfs_isdir },
5170 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5171 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5172 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5173 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5174 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5175 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5176 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5177 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5178 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5179 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5180 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5181 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5182 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5183 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5184 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5185 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5186 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5187 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5188 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5189 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5190 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5191 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5192 	NULL,			NULL
5193 };
5194 
5195 /*
5196  * Regular file vnode operations template
5197  */
5198 vnodeops_t *zfs_fvnodeops;
5199 const fs_operation_def_t zfs_fvnodeops_template[] = {
5200 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5201 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5202 	VOPNAME_READ,		{ .vop_read = zfs_read },
5203 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5204 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5205 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5206 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5207 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5208 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5209 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5210 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5211 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5212 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5213 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5214 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5215 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5216 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5217 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5218 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5219 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5220 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5221 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5222 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5223 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5224 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5225 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5226 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5227 	NULL,			NULL
5228 };
5229 
5230 /*
5231  * Symbolic link vnode operations template
5232  */
5233 vnodeops_t *zfs_symvnodeops;
5234 const fs_operation_def_t zfs_symvnodeops_template[] = {
5235 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5236 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5237 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5238 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5239 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5240 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5241 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5242 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5243 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5244 	NULL,			NULL
5245 };
5246 
5247 /*
5248  * special share hidden files vnode operations template
5249  */
5250 vnodeops_t *zfs_sharevnodeops;
5251 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5252 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5253 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5254 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5255 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5256 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5257 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5258 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5259 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5260 	NULL,			NULL
5261 };
5262 
5263 /*
5264  * Extended attribute directory vnode operations template
5265  *
5266  * This template is identical to the directory vnodes
5267  * operation template except for restricted operations:
5268  *	VOP_MKDIR()
5269  *	VOP_SYMLINK()
5270  *
5271  * Note that there are other restrictions embedded in:
5272  *	zfs_create()	- restrict type to VREG
5273  *	zfs_link()	- no links into/out of attribute space
5274  *	zfs_rename()	- no moves into/out of attribute space
5275  */
5276 vnodeops_t *zfs_xdvnodeops;
5277 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5278 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5279 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5280 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5281 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5282 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5283 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5284 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5285 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5286 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5287 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5288 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5289 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5290 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5291 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5292 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5293 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5294 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5295 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5296 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5297 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5298 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5299 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5300 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5301 	NULL,			NULL
5302 };
5303 
5304 /*
5305  * Error vnode operations template
5306  */
5307 vnodeops_t *zfs_evnodeops;
5308 const fs_operation_def_t zfs_evnodeops_template[] = {
5309 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5310 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5311 	NULL,			NULL
5312 };
5313