1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 /* end of file? */ 275 if ((error == ESRCH) || (noff > file_sz)) { 276 /* 277 * Handle the virtual hole at the end of file. 278 */ 279 if (hole) { 280 *off = file_sz; 281 return (0); 282 } 283 return (SET_ERROR(ENXIO)); 284 } 285 286 if (noff < *off) 287 return (error); 288 *off = noff; 289 return (error); 290 } 291 292 /* ARGSUSED */ 293 static int 294 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 295 int *rvalp, caller_context_t *ct) 296 { 297 offset_t off; 298 int error; 299 zfsvfs_t *zfsvfs; 300 znode_t *zp; 301 302 switch (com) { 303 case _FIOFFS: 304 return (zfs_sync(vp->v_vfsp, 0, cred)); 305 306 /* 307 * The following two ioctls are used by bfu. Faking out, 308 * necessary to avoid bfu errors. 309 */ 310 case _FIOGDIO: 311 case _FIOSDIO: 312 return (0); 313 314 case _FIO_SEEK_DATA: 315 case _FIO_SEEK_HOLE: 316 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 317 return (SET_ERROR(EFAULT)); 318 319 zp = VTOZ(vp); 320 zfsvfs = zp->z_zfsvfs; 321 ZFS_ENTER(zfsvfs); 322 ZFS_VERIFY_ZP(zp); 323 324 /* offset parameter is in/out */ 325 error = zfs_holey(vp, com, &off); 326 ZFS_EXIT(zfsvfs); 327 if (error) 328 return (error); 329 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 330 return (SET_ERROR(EFAULT)); 331 return (0); 332 } 333 return (SET_ERROR(ENOTTY)); 334 } 335 336 /* 337 * Utility functions to map and unmap a single physical page. These 338 * are used to manage the mappable copies of ZFS file data, and therefore 339 * do not update ref/mod bits. 340 */ 341 caddr_t 342 zfs_map_page(page_t *pp, enum seg_rw rw) 343 { 344 if (kpm_enable) 345 return (hat_kpm_mapin(pp, 0)); 346 ASSERT(rw == S_READ || rw == S_WRITE); 347 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 348 (caddr_t)-1)); 349 } 350 351 void 352 zfs_unmap_page(page_t *pp, caddr_t addr) 353 { 354 if (kpm_enable) { 355 hat_kpm_mapout(pp, 0, addr); 356 } else { 357 ppmapout(addr); 358 } 359 } 360 361 /* 362 * When a file is memory mapped, we must keep the IO data synchronized 363 * between the DMU cache and the memory mapped pages. What this means: 364 * 365 * On Write: If we find a memory mapped page, we write to *both* 366 * the page and the dmu buffer. 367 */ 368 static void 369 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 370 { 371 int64_t off; 372 373 off = start & PAGEOFFSET; 374 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 375 page_t *pp; 376 uint64_t nbytes = MIN(PAGESIZE - off, len); 377 378 if (pp = page_lookup(vp, start, SE_SHARED)) { 379 caddr_t va; 380 381 va = zfs_map_page(pp, S_WRITE); 382 (void) dmu_read(os, oid, start+off, nbytes, va+off, 383 DMU_READ_PREFETCH); 384 zfs_unmap_page(pp, va); 385 page_unlock(pp); 386 } 387 len -= nbytes; 388 off = 0; 389 } 390 } 391 392 /* 393 * When a file is memory mapped, we must keep the IO data synchronized 394 * between the DMU cache and the memory mapped pages. What this means: 395 * 396 * On Read: We "read" preferentially from memory mapped pages, 397 * else we default from the dmu buffer. 398 * 399 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 400 * the file is memory mapped. 401 */ 402 static int 403 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 404 { 405 znode_t *zp = VTOZ(vp); 406 objset_t *os = zp->z_zfsvfs->z_os; 407 int64_t start, off; 408 int len = nbytes; 409 int error = 0; 410 411 start = uio->uio_loffset; 412 off = start & PAGEOFFSET; 413 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 414 page_t *pp; 415 uint64_t bytes = MIN(PAGESIZE - off, len); 416 417 if (pp = page_lookup(vp, start, SE_SHARED)) { 418 caddr_t va; 419 420 va = zfs_map_page(pp, S_READ); 421 error = uiomove(va + off, bytes, UIO_READ, uio); 422 zfs_unmap_page(pp, va); 423 page_unlock(pp); 424 } else { 425 error = dmu_read_uio(os, zp->z_id, uio, bytes); 426 } 427 len -= bytes; 428 off = 0; 429 if (error) 430 break; 431 } 432 return (error); 433 } 434 435 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 436 437 /* 438 * Read bytes from specified file into supplied buffer. 439 * 440 * IN: vp - vnode of file to be read from. 441 * uio - structure supplying read location, range info, 442 * and return buffer. 443 * ioflag - SYNC flags; used to provide FRSYNC semantics. 444 * cr - credentials of caller. 445 * ct - caller context 446 * 447 * OUT: uio - updated offset and range, buffer filled. 448 * 449 * RETURN: 0 on success, error code on failure. 450 * 451 * Side Effects: 452 * vp - atime updated if byte count > 0 453 */ 454 /* ARGSUSED */ 455 static int 456 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 457 { 458 znode_t *zp = VTOZ(vp); 459 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 460 objset_t *os; 461 ssize_t n, nbytes; 462 int error = 0; 463 rl_t *rl; 464 xuio_t *xuio = NULL; 465 466 ZFS_ENTER(zfsvfs); 467 ZFS_VERIFY_ZP(zp); 468 os = zfsvfs->z_os; 469 470 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 471 ZFS_EXIT(zfsvfs); 472 return (SET_ERROR(EACCES)); 473 } 474 475 /* 476 * Validate file offset 477 */ 478 if (uio->uio_loffset < (offset_t)0) { 479 ZFS_EXIT(zfsvfs); 480 return (SET_ERROR(EINVAL)); 481 } 482 483 /* 484 * Fasttrack empty reads 485 */ 486 if (uio->uio_resid == 0) { 487 ZFS_EXIT(zfsvfs); 488 return (0); 489 } 490 491 /* 492 * Check for mandatory locks 493 */ 494 if (MANDMODE(zp->z_mode)) { 495 if (error = chklock(vp, FREAD, 496 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 497 ZFS_EXIT(zfsvfs); 498 return (error); 499 } 500 } 501 502 /* 503 * If we're in FRSYNC mode, sync out this znode before reading it. 504 */ 505 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 506 zil_commit(zfsvfs->z_log, zp->z_id); 507 508 /* 509 * Lock the range against changes. 510 */ 511 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 512 513 /* 514 * If we are reading past end-of-file we can skip 515 * to the end; but we might still need to set atime. 516 */ 517 if (uio->uio_loffset >= zp->z_size) { 518 error = 0; 519 goto out; 520 } 521 522 ASSERT(uio->uio_loffset < zp->z_size); 523 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 524 525 if ((uio->uio_extflg == UIO_XUIO) && 526 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 527 int nblk; 528 int blksz = zp->z_blksz; 529 uint64_t offset = uio->uio_loffset; 530 531 xuio = (xuio_t *)uio; 532 if ((ISP2(blksz))) { 533 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 534 blksz)) / blksz; 535 } else { 536 ASSERT(offset + n <= blksz); 537 nblk = 1; 538 } 539 (void) dmu_xuio_init(xuio, nblk); 540 541 if (vn_has_cached_data(vp)) { 542 /* 543 * For simplicity, we always allocate a full buffer 544 * even if we only expect to read a portion of a block. 545 */ 546 while (--nblk >= 0) { 547 (void) dmu_xuio_add(xuio, 548 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 549 blksz), 0, blksz); 550 } 551 } 552 } 553 554 while (n > 0) { 555 nbytes = MIN(n, zfs_read_chunk_size - 556 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 557 558 if (vn_has_cached_data(vp)) 559 error = mappedread(vp, nbytes, uio); 560 else 561 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 562 if (error) { 563 /* convert checksum errors into IO errors */ 564 if (error == ECKSUM) 565 error = SET_ERROR(EIO); 566 break; 567 } 568 569 n -= nbytes; 570 } 571 out: 572 zfs_range_unlock(rl); 573 574 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 575 ZFS_EXIT(zfsvfs); 576 return (error); 577 } 578 579 /* 580 * Write the bytes to a file. 581 * 582 * IN: vp - vnode of file to be written to. 583 * uio - structure supplying write location, range info, 584 * and data buffer. 585 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 586 * set if in append mode. 587 * cr - credentials of caller. 588 * ct - caller context (NFS/CIFS fem monitor only) 589 * 590 * OUT: uio - updated offset and range. 591 * 592 * RETURN: 0 on success, error code on failure. 593 * 594 * Timestamps: 595 * vp - ctime|mtime updated if byte count > 0 596 */ 597 598 /* ARGSUSED */ 599 static int 600 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 601 { 602 znode_t *zp = VTOZ(vp); 603 rlim64_t limit = uio->uio_llimit; 604 ssize_t start_resid = uio->uio_resid; 605 ssize_t tx_bytes; 606 uint64_t end_size; 607 dmu_tx_t *tx; 608 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 609 zilog_t *zilog; 610 offset_t woff; 611 ssize_t n, nbytes; 612 rl_t *rl; 613 int max_blksz = zfsvfs->z_max_blksz; 614 int error = 0; 615 arc_buf_t *abuf; 616 iovec_t *aiov = NULL; 617 xuio_t *xuio = NULL; 618 int i_iov = 0; 619 int iovcnt = uio->uio_iovcnt; 620 iovec_t *iovp = uio->uio_iov; 621 int write_eof; 622 int count = 0; 623 sa_bulk_attr_t bulk[4]; 624 uint64_t mtime[2], ctime[2]; 625 626 /* 627 * Fasttrack empty write 628 */ 629 n = start_resid; 630 if (n == 0) 631 return (0); 632 633 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 634 limit = MAXOFFSET_T; 635 636 ZFS_ENTER(zfsvfs); 637 ZFS_VERIFY_ZP(zp); 638 639 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 640 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 641 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 642 &zp->z_size, 8); 643 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 644 &zp->z_pflags, 8); 645 646 /* 647 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 648 * callers might not be able to detect properly that we are read-only, 649 * so check it explicitly here. 650 */ 651 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 652 ZFS_EXIT(zfsvfs); 653 return (SET_ERROR(EROFS)); 654 } 655 656 /* 657 * If immutable or not appending then return EPERM 658 */ 659 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 660 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 661 (uio->uio_loffset < zp->z_size))) { 662 ZFS_EXIT(zfsvfs); 663 return (SET_ERROR(EPERM)); 664 } 665 666 zilog = zfsvfs->z_log; 667 668 /* 669 * Validate file offset 670 */ 671 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 672 if (woff < 0) { 673 ZFS_EXIT(zfsvfs); 674 return (SET_ERROR(EINVAL)); 675 } 676 677 /* 678 * Check for mandatory locks before calling zfs_range_lock() 679 * in order to prevent a deadlock with locks set via fcntl(). 680 */ 681 if (MANDMODE((mode_t)zp->z_mode) && 682 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 683 ZFS_EXIT(zfsvfs); 684 return (error); 685 } 686 687 /* 688 * Pre-fault the pages to ensure slow (eg NFS) pages 689 * don't hold up txg. 690 * Skip this if uio contains loaned arc_buf. 691 */ 692 if ((uio->uio_extflg == UIO_XUIO) && 693 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 694 xuio = (xuio_t *)uio; 695 else 696 uio_prefaultpages(MIN(n, max_blksz), uio); 697 698 /* 699 * If in append mode, set the io offset pointer to eof. 700 */ 701 if (ioflag & FAPPEND) { 702 /* 703 * Obtain an appending range lock to guarantee file append 704 * semantics. We reset the write offset once we have the lock. 705 */ 706 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 707 woff = rl->r_off; 708 if (rl->r_len == UINT64_MAX) { 709 /* 710 * We overlocked the file because this write will cause 711 * the file block size to increase. 712 * Note that zp_size cannot change with this lock held. 713 */ 714 woff = zp->z_size; 715 } 716 uio->uio_loffset = woff; 717 } else { 718 /* 719 * Note that if the file block size will change as a result of 720 * this write, then this range lock will lock the entire file 721 * so that we can re-write the block safely. 722 */ 723 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 724 } 725 726 if (woff >= limit) { 727 zfs_range_unlock(rl); 728 ZFS_EXIT(zfsvfs); 729 return (SET_ERROR(EFBIG)); 730 } 731 732 if ((woff + n) > limit || woff > (limit - n)) 733 n = limit - woff; 734 735 /* Will this write extend the file length? */ 736 write_eof = (woff + n > zp->z_size); 737 738 end_size = MAX(zp->z_size, woff + n); 739 740 /* 741 * Write the file in reasonable size chunks. Each chunk is written 742 * in a separate transaction; this keeps the intent log records small 743 * and allows us to do more fine-grained space accounting. 744 */ 745 while (n > 0) { 746 abuf = NULL; 747 woff = uio->uio_loffset; 748 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 749 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 750 if (abuf != NULL) 751 dmu_return_arcbuf(abuf); 752 error = SET_ERROR(EDQUOT); 753 break; 754 } 755 756 if (xuio && abuf == NULL) { 757 ASSERT(i_iov < iovcnt); 758 aiov = &iovp[i_iov]; 759 abuf = dmu_xuio_arcbuf(xuio, i_iov); 760 dmu_xuio_clear(xuio, i_iov); 761 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 762 iovec_t *, aiov, arc_buf_t *, abuf); 763 ASSERT((aiov->iov_base == abuf->b_data) || 764 ((char *)aiov->iov_base - (char *)abuf->b_data + 765 aiov->iov_len == arc_buf_size(abuf))); 766 i_iov++; 767 } else if (abuf == NULL && n >= max_blksz && 768 woff >= zp->z_size && 769 P2PHASE(woff, max_blksz) == 0 && 770 zp->z_blksz == max_blksz) { 771 /* 772 * This write covers a full block. "Borrow" a buffer 773 * from the dmu so that we can fill it before we enter 774 * a transaction. This avoids the possibility of 775 * holding up the transaction if the data copy hangs 776 * up on a pagefault (e.g., from an NFS server mapping). 777 */ 778 size_t cbytes; 779 780 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 781 max_blksz); 782 ASSERT(abuf != NULL); 783 ASSERT(arc_buf_size(abuf) == max_blksz); 784 if (error = uiocopy(abuf->b_data, max_blksz, 785 UIO_WRITE, uio, &cbytes)) { 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 ASSERT(cbytes == max_blksz); 790 } 791 792 /* 793 * Start a transaction. 794 */ 795 tx = dmu_tx_create(zfsvfs->z_os); 796 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 797 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 798 zfs_sa_upgrade_txholds(tx, zp); 799 error = dmu_tx_assign(tx, TXG_WAIT); 800 if (error) { 801 dmu_tx_abort(tx); 802 if (abuf != NULL) 803 dmu_return_arcbuf(abuf); 804 break; 805 } 806 807 /* 808 * If zfs_range_lock() over-locked we grow the blocksize 809 * and then reduce the lock range. This will only happen 810 * on the first iteration since zfs_range_reduce() will 811 * shrink down r_len to the appropriate size. 812 */ 813 if (rl->r_len == UINT64_MAX) { 814 uint64_t new_blksz; 815 816 if (zp->z_blksz > max_blksz) { 817 ASSERT(!ISP2(zp->z_blksz)); 818 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 819 } else { 820 new_blksz = MIN(end_size, max_blksz); 821 } 822 zfs_grow_blocksize(zp, new_blksz, tx); 823 zfs_range_reduce(rl, woff, n); 824 } 825 826 /* 827 * XXX - should we really limit each write to z_max_blksz? 828 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 829 */ 830 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 831 832 if (abuf == NULL) { 833 tx_bytes = uio->uio_resid; 834 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 835 uio, nbytes, tx); 836 tx_bytes -= uio->uio_resid; 837 } else { 838 tx_bytes = nbytes; 839 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 840 /* 841 * If this is not a full block write, but we are 842 * extending the file past EOF and this data starts 843 * block-aligned, use assign_arcbuf(). Otherwise, 844 * write via dmu_write(). 845 */ 846 if (tx_bytes < max_blksz && (!write_eof || 847 aiov->iov_base != abuf->b_data)) { 848 ASSERT(xuio); 849 dmu_write(zfsvfs->z_os, zp->z_id, woff, 850 aiov->iov_len, aiov->iov_base, tx); 851 dmu_return_arcbuf(abuf); 852 xuio_stat_wbuf_copied(); 853 } else { 854 ASSERT(xuio || tx_bytes == max_blksz); 855 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 856 woff, abuf, tx); 857 } 858 ASSERT(tx_bytes <= uio->uio_resid); 859 uioskip(uio, tx_bytes); 860 } 861 if (tx_bytes && vn_has_cached_data(vp)) { 862 update_pages(vp, woff, 863 tx_bytes, zfsvfs->z_os, zp->z_id); 864 } 865 866 /* 867 * If we made no progress, we're done. If we made even 868 * partial progress, update the znode and ZIL accordingly. 869 */ 870 if (tx_bytes == 0) { 871 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 872 (void *)&zp->z_size, sizeof (uint64_t), tx); 873 dmu_tx_commit(tx); 874 ASSERT(error != 0); 875 break; 876 } 877 878 /* 879 * Clear Set-UID/Set-GID bits on successful write if not 880 * privileged and at least one of the excute bits is set. 881 * 882 * It would be nice to to this after all writes have 883 * been done, but that would still expose the ISUID/ISGID 884 * to another app after the partial write is committed. 885 * 886 * Note: we don't call zfs_fuid_map_id() here because 887 * user 0 is not an ephemeral uid. 888 */ 889 mutex_enter(&zp->z_acl_lock); 890 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 891 (S_IXUSR >> 6))) != 0 && 892 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 893 secpolicy_vnode_setid_retain(cr, 894 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 895 uint64_t newmode; 896 zp->z_mode &= ~(S_ISUID | S_ISGID); 897 newmode = zp->z_mode; 898 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 899 (void *)&newmode, sizeof (uint64_t), tx); 900 } 901 mutex_exit(&zp->z_acl_lock); 902 903 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 904 B_TRUE); 905 906 /* 907 * Update the file size (zp_size) if it has changed; 908 * account for possible concurrent updates. 909 */ 910 while ((end_size = zp->z_size) < uio->uio_loffset) { 911 (void) atomic_cas_64(&zp->z_size, end_size, 912 uio->uio_loffset); 913 ASSERT(error == 0); 914 } 915 /* 916 * If we are replaying and eof is non zero then force 917 * the file size to the specified eof. Note, there's no 918 * concurrency during replay. 919 */ 920 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 921 zp->z_size = zfsvfs->z_replay_eof; 922 923 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 924 925 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 926 dmu_tx_commit(tx); 927 928 if (error != 0) 929 break; 930 ASSERT(tx_bytes == nbytes); 931 n -= nbytes; 932 933 if (!xuio && n > 0) 934 uio_prefaultpages(MIN(n, max_blksz), uio); 935 } 936 937 zfs_range_unlock(rl); 938 939 /* 940 * If we're in replay mode, or we made no progress, return error. 941 * Otherwise, it's at least a partial write, so it's successful. 942 */ 943 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 944 ZFS_EXIT(zfsvfs); 945 return (error); 946 } 947 948 if (ioflag & (FSYNC | FDSYNC) || 949 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 950 zil_commit(zilog, zp->z_id); 951 952 ZFS_EXIT(zfsvfs); 953 return (0); 954 } 955 956 void 957 zfs_get_done(zgd_t *zgd, int error) 958 { 959 znode_t *zp = zgd->zgd_private; 960 objset_t *os = zp->z_zfsvfs->z_os; 961 962 if (zgd->zgd_db) 963 dmu_buf_rele(zgd->zgd_db, zgd); 964 965 zfs_range_unlock(zgd->zgd_rl); 966 967 /* 968 * Release the vnode asynchronously as we currently have the 969 * txg stopped from syncing. 970 */ 971 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 972 973 if (error == 0 && zgd->zgd_bp) 974 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 975 976 kmem_free(zgd, sizeof (zgd_t)); 977 } 978 979 #ifdef DEBUG 980 static int zil_fault_io = 0; 981 #endif 982 983 /* 984 * Get data to generate a TX_WRITE intent log record. 985 */ 986 int 987 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 988 { 989 zfsvfs_t *zfsvfs = arg; 990 objset_t *os = zfsvfs->z_os; 991 znode_t *zp; 992 uint64_t object = lr->lr_foid; 993 uint64_t offset = lr->lr_offset; 994 uint64_t size = lr->lr_length; 995 blkptr_t *bp = &lr->lr_blkptr; 996 dmu_buf_t *db; 997 zgd_t *zgd; 998 int error = 0; 999 1000 ASSERT(zio != NULL); 1001 ASSERT(size != 0); 1002 1003 /* 1004 * Nothing to do if the file has been removed 1005 */ 1006 if (zfs_zget(zfsvfs, object, &zp) != 0) 1007 return (SET_ERROR(ENOENT)); 1008 if (zp->z_unlinked) { 1009 /* 1010 * Release the vnode asynchronously as we currently have the 1011 * txg stopped from syncing. 1012 */ 1013 VN_RELE_ASYNC(ZTOV(zp), 1014 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1015 return (SET_ERROR(ENOENT)); 1016 } 1017 1018 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1019 zgd->zgd_zilog = zfsvfs->z_log; 1020 zgd->zgd_private = zp; 1021 1022 /* 1023 * Write records come in two flavors: immediate and indirect. 1024 * For small writes it's cheaper to store the data with the 1025 * log record (immediate); for large writes it's cheaper to 1026 * sync the data and get a pointer to it (indirect) so that 1027 * we don't have to write the data twice. 1028 */ 1029 if (buf != NULL) { /* immediate write */ 1030 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1031 /* test for truncation needs to be done while range locked */ 1032 if (offset >= zp->z_size) { 1033 error = SET_ERROR(ENOENT); 1034 } else { 1035 error = dmu_read(os, object, offset, size, buf, 1036 DMU_READ_NO_PREFETCH); 1037 } 1038 ASSERT(error == 0 || error == ENOENT); 1039 } else { /* indirect write */ 1040 /* 1041 * Have to lock the whole block to ensure when it's 1042 * written out and it's checksum is being calculated 1043 * that no one can change the data. We need to re-check 1044 * blocksize after we get the lock in case it's changed! 1045 */ 1046 for (;;) { 1047 uint64_t blkoff; 1048 size = zp->z_blksz; 1049 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1050 offset -= blkoff; 1051 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1052 RL_READER); 1053 if (zp->z_blksz == size) 1054 break; 1055 offset += blkoff; 1056 zfs_range_unlock(zgd->zgd_rl); 1057 } 1058 /* test for truncation needs to be done while range locked */ 1059 if (lr->lr_offset >= zp->z_size) 1060 error = SET_ERROR(ENOENT); 1061 #ifdef DEBUG 1062 if (zil_fault_io) { 1063 error = SET_ERROR(EIO); 1064 zil_fault_io = 0; 1065 } 1066 #endif 1067 if (error == 0) 1068 error = dmu_buf_hold(os, object, offset, zgd, &db, 1069 DMU_READ_NO_PREFETCH); 1070 1071 if (error == 0) { 1072 blkptr_t *obp = dmu_buf_get_blkptr(db); 1073 if (obp) { 1074 ASSERT(BP_IS_HOLE(bp)); 1075 *bp = *obp; 1076 } 1077 1078 zgd->zgd_db = db; 1079 zgd->zgd_bp = bp; 1080 1081 ASSERT(db->db_offset == offset); 1082 ASSERT(db->db_size == size); 1083 1084 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1085 zfs_get_done, zgd); 1086 ASSERT(error || lr->lr_length <= zp->z_blksz); 1087 1088 /* 1089 * On success, we need to wait for the write I/O 1090 * initiated by dmu_sync() to complete before we can 1091 * release this dbuf. We will finish everything up 1092 * in the zfs_get_done() callback. 1093 */ 1094 if (error == 0) 1095 return (0); 1096 1097 if (error == EALREADY) { 1098 lr->lr_common.lrc_txtype = TX_WRITE2; 1099 error = 0; 1100 } 1101 } 1102 } 1103 1104 zfs_get_done(zgd, error); 1105 1106 return (error); 1107 } 1108 1109 /*ARGSUSED*/ 1110 static int 1111 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1112 caller_context_t *ct) 1113 { 1114 znode_t *zp = VTOZ(vp); 1115 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1116 int error; 1117 1118 ZFS_ENTER(zfsvfs); 1119 ZFS_VERIFY_ZP(zp); 1120 1121 if (flag & V_ACE_MASK) 1122 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1123 else 1124 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1125 1126 ZFS_EXIT(zfsvfs); 1127 return (error); 1128 } 1129 1130 /* 1131 * If vnode is for a device return a specfs vnode instead. 1132 */ 1133 static int 1134 specvp_check(vnode_t **vpp, cred_t *cr) 1135 { 1136 int error = 0; 1137 1138 if (IS_DEVVP(*vpp)) { 1139 struct vnode *svp; 1140 1141 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1142 VN_RELE(*vpp); 1143 if (svp == NULL) 1144 error = SET_ERROR(ENOSYS); 1145 *vpp = svp; 1146 } 1147 return (error); 1148 } 1149 1150 1151 /* 1152 * Lookup an entry in a directory, or an extended attribute directory. 1153 * If it exists, return a held vnode reference for it. 1154 * 1155 * IN: dvp - vnode of directory to search. 1156 * nm - name of entry to lookup. 1157 * pnp - full pathname to lookup [UNUSED]. 1158 * flags - LOOKUP_XATTR set if looking for an attribute. 1159 * rdir - root directory vnode [UNUSED]. 1160 * cr - credentials of caller. 1161 * ct - caller context 1162 * direntflags - directory lookup flags 1163 * realpnp - returned pathname. 1164 * 1165 * OUT: vpp - vnode of located entry, NULL if not found. 1166 * 1167 * RETURN: 0 on success, error code on failure. 1168 * 1169 * Timestamps: 1170 * NA 1171 */ 1172 /* ARGSUSED */ 1173 static int 1174 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1175 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1176 int *direntflags, pathname_t *realpnp) 1177 { 1178 znode_t *zdp = VTOZ(dvp); 1179 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1180 int error = 0; 1181 1182 /* fast path */ 1183 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1184 1185 if (dvp->v_type != VDIR) { 1186 return (SET_ERROR(ENOTDIR)); 1187 } else if (zdp->z_sa_hdl == NULL) { 1188 return (SET_ERROR(EIO)); 1189 } 1190 1191 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1192 error = zfs_fastaccesschk_execute(zdp, cr); 1193 if (!error) { 1194 *vpp = dvp; 1195 VN_HOLD(*vpp); 1196 return (0); 1197 } 1198 return (error); 1199 } else { 1200 vnode_t *tvp = dnlc_lookup(dvp, nm); 1201 1202 if (tvp) { 1203 error = zfs_fastaccesschk_execute(zdp, cr); 1204 if (error) { 1205 VN_RELE(tvp); 1206 return (error); 1207 } 1208 if (tvp == DNLC_NO_VNODE) { 1209 VN_RELE(tvp); 1210 return (SET_ERROR(ENOENT)); 1211 } else { 1212 *vpp = tvp; 1213 return (specvp_check(vpp, cr)); 1214 } 1215 } 1216 } 1217 } 1218 1219 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1220 1221 ZFS_ENTER(zfsvfs); 1222 ZFS_VERIFY_ZP(zdp); 1223 1224 *vpp = NULL; 1225 1226 if (flags & LOOKUP_XATTR) { 1227 /* 1228 * If the xattr property is off, refuse the lookup request. 1229 */ 1230 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1231 ZFS_EXIT(zfsvfs); 1232 return (SET_ERROR(EINVAL)); 1233 } 1234 1235 /* 1236 * We don't allow recursive attributes.. 1237 * Maybe someday we will. 1238 */ 1239 if (zdp->z_pflags & ZFS_XATTR) { 1240 ZFS_EXIT(zfsvfs); 1241 return (SET_ERROR(EINVAL)); 1242 } 1243 1244 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1245 ZFS_EXIT(zfsvfs); 1246 return (error); 1247 } 1248 1249 /* 1250 * Do we have permission to get into attribute directory? 1251 */ 1252 1253 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1254 B_FALSE, cr)) { 1255 VN_RELE(*vpp); 1256 *vpp = NULL; 1257 } 1258 1259 ZFS_EXIT(zfsvfs); 1260 return (error); 1261 } 1262 1263 if (dvp->v_type != VDIR) { 1264 ZFS_EXIT(zfsvfs); 1265 return (SET_ERROR(ENOTDIR)); 1266 } 1267 1268 /* 1269 * Check accessibility of directory. 1270 */ 1271 1272 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1273 ZFS_EXIT(zfsvfs); 1274 return (error); 1275 } 1276 1277 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1278 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1279 ZFS_EXIT(zfsvfs); 1280 return (SET_ERROR(EILSEQ)); 1281 } 1282 1283 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1284 if (error == 0) 1285 error = specvp_check(vpp, cr); 1286 1287 ZFS_EXIT(zfsvfs); 1288 return (error); 1289 } 1290 1291 /* 1292 * Attempt to create a new entry in a directory. If the entry 1293 * already exists, truncate the file if permissible, else return 1294 * an error. Return the vp of the created or trunc'd file. 1295 * 1296 * IN: dvp - vnode of directory to put new file entry in. 1297 * name - name of new file entry. 1298 * vap - attributes of new file. 1299 * excl - flag indicating exclusive or non-exclusive mode. 1300 * mode - mode to open file with. 1301 * cr - credentials of caller. 1302 * flag - large file flag [UNUSED]. 1303 * ct - caller context 1304 * vsecp - ACL to be set 1305 * 1306 * OUT: vpp - vnode of created or trunc'd entry. 1307 * 1308 * RETURN: 0 on success, error code on failure. 1309 * 1310 * Timestamps: 1311 * dvp - ctime|mtime updated if new entry created 1312 * vp - ctime|mtime always, atime if new 1313 */ 1314 1315 /* ARGSUSED */ 1316 static int 1317 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1318 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1319 vsecattr_t *vsecp) 1320 { 1321 znode_t *zp, *dzp = VTOZ(dvp); 1322 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1323 zilog_t *zilog; 1324 objset_t *os; 1325 zfs_dirlock_t *dl; 1326 dmu_tx_t *tx; 1327 int error; 1328 ksid_t *ksid; 1329 uid_t uid; 1330 gid_t gid = crgetgid(cr); 1331 zfs_acl_ids_t acl_ids; 1332 boolean_t fuid_dirtied; 1333 boolean_t have_acl = B_FALSE; 1334 boolean_t waited = B_FALSE; 1335 1336 /* 1337 * If we have an ephemeral id, ACL, or XVATTR then 1338 * make sure file system is at proper version 1339 */ 1340 1341 ksid = crgetsid(cr, KSID_OWNER); 1342 if (ksid) 1343 uid = ksid_getid(ksid); 1344 else 1345 uid = crgetuid(cr); 1346 1347 if (zfsvfs->z_use_fuids == B_FALSE && 1348 (vsecp || (vap->va_mask & AT_XVATTR) || 1349 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1350 return (SET_ERROR(EINVAL)); 1351 1352 ZFS_ENTER(zfsvfs); 1353 ZFS_VERIFY_ZP(dzp); 1354 os = zfsvfs->z_os; 1355 zilog = zfsvfs->z_log; 1356 1357 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1358 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1359 ZFS_EXIT(zfsvfs); 1360 return (SET_ERROR(EILSEQ)); 1361 } 1362 1363 if (vap->va_mask & AT_XVATTR) { 1364 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1365 crgetuid(cr), cr, vap->va_type)) != 0) { 1366 ZFS_EXIT(zfsvfs); 1367 return (error); 1368 } 1369 } 1370 top: 1371 *vpp = NULL; 1372 1373 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1374 vap->va_mode &= ~VSVTX; 1375 1376 if (*name == '\0') { 1377 /* 1378 * Null component name refers to the directory itself. 1379 */ 1380 VN_HOLD(dvp); 1381 zp = dzp; 1382 dl = NULL; 1383 error = 0; 1384 } else { 1385 /* possible VN_HOLD(zp) */ 1386 int zflg = 0; 1387 1388 if (flag & FIGNORECASE) 1389 zflg |= ZCILOOK; 1390 1391 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1392 NULL, NULL); 1393 if (error) { 1394 if (have_acl) 1395 zfs_acl_ids_free(&acl_ids); 1396 if (strcmp(name, "..") == 0) 1397 error = SET_ERROR(EISDIR); 1398 ZFS_EXIT(zfsvfs); 1399 return (error); 1400 } 1401 } 1402 1403 if (zp == NULL) { 1404 uint64_t txtype; 1405 1406 /* 1407 * Create a new file object and update the directory 1408 * to reference it. 1409 */ 1410 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1411 if (have_acl) 1412 zfs_acl_ids_free(&acl_ids); 1413 goto out; 1414 } 1415 1416 /* 1417 * We only support the creation of regular files in 1418 * extended attribute directories. 1419 */ 1420 1421 if ((dzp->z_pflags & ZFS_XATTR) && 1422 (vap->va_type != VREG)) { 1423 if (have_acl) 1424 zfs_acl_ids_free(&acl_ids); 1425 error = SET_ERROR(EINVAL); 1426 goto out; 1427 } 1428 1429 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1430 cr, vsecp, &acl_ids)) != 0) 1431 goto out; 1432 have_acl = B_TRUE; 1433 1434 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1435 zfs_acl_ids_free(&acl_ids); 1436 error = SET_ERROR(EDQUOT); 1437 goto out; 1438 } 1439 1440 tx = dmu_tx_create(os); 1441 1442 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1443 ZFS_SA_BASE_ATTR_SIZE); 1444 1445 fuid_dirtied = zfsvfs->z_fuid_dirty; 1446 if (fuid_dirtied) 1447 zfs_fuid_txhold(zfsvfs, tx); 1448 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1449 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1450 if (!zfsvfs->z_use_sa && 1451 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1452 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1453 0, acl_ids.z_aclp->z_acl_bytes); 1454 } 1455 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1456 if (error) { 1457 zfs_dirent_unlock(dl); 1458 if (error == ERESTART) { 1459 waited = B_TRUE; 1460 dmu_tx_wait(tx); 1461 dmu_tx_abort(tx); 1462 goto top; 1463 } 1464 zfs_acl_ids_free(&acl_ids); 1465 dmu_tx_abort(tx); 1466 ZFS_EXIT(zfsvfs); 1467 return (error); 1468 } 1469 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1470 1471 if (fuid_dirtied) 1472 zfs_fuid_sync(zfsvfs, tx); 1473 1474 (void) zfs_link_create(dl, zp, tx, ZNEW); 1475 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1476 if (flag & FIGNORECASE) 1477 txtype |= TX_CI; 1478 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1479 vsecp, acl_ids.z_fuidp, vap); 1480 zfs_acl_ids_free(&acl_ids); 1481 dmu_tx_commit(tx); 1482 } else { 1483 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1484 1485 if (have_acl) 1486 zfs_acl_ids_free(&acl_ids); 1487 have_acl = B_FALSE; 1488 1489 /* 1490 * A directory entry already exists for this name. 1491 */ 1492 /* 1493 * Can't truncate an existing file if in exclusive mode. 1494 */ 1495 if (excl == EXCL) { 1496 error = SET_ERROR(EEXIST); 1497 goto out; 1498 } 1499 /* 1500 * Can't open a directory for writing. 1501 */ 1502 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1503 error = SET_ERROR(EISDIR); 1504 goto out; 1505 } 1506 /* 1507 * Verify requested access to file. 1508 */ 1509 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1510 goto out; 1511 } 1512 1513 mutex_enter(&dzp->z_lock); 1514 dzp->z_seq++; 1515 mutex_exit(&dzp->z_lock); 1516 1517 /* 1518 * Truncate regular files if requested. 1519 */ 1520 if ((ZTOV(zp)->v_type == VREG) && 1521 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1522 /* we can't hold any locks when calling zfs_freesp() */ 1523 zfs_dirent_unlock(dl); 1524 dl = NULL; 1525 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1526 if (error == 0) { 1527 vnevent_create(ZTOV(zp), ct); 1528 } 1529 } 1530 } 1531 out: 1532 1533 if (dl) 1534 zfs_dirent_unlock(dl); 1535 1536 if (error) { 1537 if (zp) 1538 VN_RELE(ZTOV(zp)); 1539 } else { 1540 *vpp = ZTOV(zp); 1541 error = specvp_check(vpp, cr); 1542 } 1543 1544 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1545 zil_commit(zilog, 0); 1546 1547 ZFS_EXIT(zfsvfs); 1548 return (error); 1549 } 1550 1551 /* 1552 * Remove an entry from a directory. 1553 * 1554 * IN: dvp - vnode of directory to remove entry from. 1555 * name - name of entry to remove. 1556 * cr - credentials of caller. 1557 * ct - caller context 1558 * flags - case flags 1559 * 1560 * RETURN: 0 on success, error code on failure. 1561 * 1562 * Timestamps: 1563 * dvp - ctime|mtime 1564 * vp - ctime (if nlink > 0) 1565 */ 1566 1567 uint64_t null_xattr = 0; 1568 1569 /*ARGSUSED*/ 1570 static int 1571 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1572 int flags) 1573 { 1574 znode_t *zp, *dzp = VTOZ(dvp); 1575 znode_t *xzp; 1576 vnode_t *vp; 1577 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1578 zilog_t *zilog; 1579 uint64_t acl_obj, xattr_obj; 1580 uint64_t xattr_obj_unlinked = 0; 1581 uint64_t obj = 0; 1582 zfs_dirlock_t *dl; 1583 dmu_tx_t *tx; 1584 boolean_t may_delete_now, delete_now = FALSE; 1585 boolean_t unlinked, toobig = FALSE; 1586 uint64_t txtype; 1587 pathname_t *realnmp = NULL; 1588 pathname_t realnm; 1589 int error; 1590 int zflg = ZEXISTS; 1591 boolean_t waited = B_FALSE; 1592 1593 ZFS_ENTER(zfsvfs); 1594 ZFS_VERIFY_ZP(dzp); 1595 zilog = zfsvfs->z_log; 1596 1597 if (flags & FIGNORECASE) { 1598 zflg |= ZCILOOK; 1599 pn_alloc(&realnm); 1600 realnmp = &realnm; 1601 } 1602 1603 top: 1604 xattr_obj = 0; 1605 xzp = NULL; 1606 /* 1607 * Attempt to lock directory; fail if entry doesn't exist. 1608 */ 1609 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1610 NULL, realnmp)) { 1611 if (realnmp) 1612 pn_free(realnmp); 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 vp = ZTOV(zp); 1618 1619 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1620 goto out; 1621 } 1622 1623 /* 1624 * Need to use rmdir for removing directories. 1625 */ 1626 if (vp->v_type == VDIR) { 1627 error = SET_ERROR(EPERM); 1628 goto out; 1629 } 1630 1631 vnevent_remove(vp, dvp, name, ct); 1632 1633 if (realnmp) 1634 dnlc_remove(dvp, realnmp->pn_buf); 1635 else 1636 dnlc_remove(dvp, name); 1637 1638 mutex_enter(&vp->v_lock); 1639 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1640 mutex_exit(&vp->v_lock); 1641 1642 /* 1643 * We may delete the znode now, or we may put it in the unlinked set; 1644 * it depends on whether we're the last link, and on whether there are 1645 * other holds on the vnode. So we dmu_tx_hold() the right things to 1646 * allow for either case. 1647 */ 1648 obj = zp->z_id; 1649 tx = dmu_tx_create(zfsvfs->z_os); 1650 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1651 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1652 zfs_sa_upgrade_txholds(tx, zp); 1653 zfs_sa_upgrade_txholds(tx, dzp); 1654 if (may_delete_now) { 1655 toobig = 1656 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1657 /* if the file is too big, only hold_free a token amount */ 1658 dmu_tx_hold_free(tx, zp->z_id, 0, 1659 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1660 } 1661 1662 /* are there any extended attributes? */ 1663 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1664 &xattr_obj, sizeof (xattr_obj)); 1665 if (error == 0 && xattr_obj) { 1666 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1667 ASSERT0(error); 1668 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1669 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1670 } 1671 1672 mutex_enter(&zp->z_lock); 1673 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1674 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1675 mutex_exit(&zp->z_lock); 1676 1677 /* charge as an update -- would be nice not to charge at all */ 1678 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1679 1680 /* 1681 * Mark this transaction as typically resulting in a net free of 1682 * space, unless object removal will be delayed indefinitely 1683 * (due to active holds on the vnode due to the file being open). 1684 */ 1685 if (may_delete_now) 1686 dmu_tx_mark_netfree(tx); 1687 1688 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1689 if (error) { 1690 zfs_dirent_unlock(dl); 1691 VN_RELE(vp); 1692 if (xzp) 1693 VN_RELE(ZTOV(xzp)); 1694 if (error == ERESTART) { 1695 waited = B_TRUE; 1696 dmu_tx_wait(tx); 1697 dmu_tx_abort(tx); 1698 goto top; 1699 } 1700 if (realnmp) 1701 pn_free(realnmp); 1702 dmu_tx_abort(tx); 1703 ZFS_EXIT(zfsvfs); 1704 return (error); 1705 } 1706 1707 /* 1708 * Remove the directory entry. 1709 */ 1710 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1711 1712 if (error) { 1713 dmu_tx_commit(tx); 1714 goto out; 1715 } 1716 1717 if (unlinked) { 1718 /* 1719 * Hold z_lock so that we can make sure that the ACL obj 1720 * hasn't changed. Could have been deleted due to 1721 * zfs_sa_upgrade(). 1722 */ 1723 mutex_enter(&zp->z_lock); 1724 mutex_enter(&vp->v_lock); 1725 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1726 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1727 delete_now = may_delete_now && !toobig && 1728 vp->v_count == 1 && !vn_has_cached_data(vp) && 1729 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1730 acl_obj; 1731 mutex_exit(&vp->v_lock); 1732 } 1733 1734 if (delete_now) { 1735 if (xattr_obj_unlinked) { 1736 ASSERT3U(xzp->z_links, ==, 2); 1737 mutex_enter(&xzp->z_lock); 1738 xzp->z_unlinked = 1; 1739 xzp->z_links = 0; 1740 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1741 &xzp->z_links, sizeof (xzp->z_links), tx); 1742 ASSERT3U(error, ==, 0); 1743 mutex_exit(&xzp->z_lock); 1744 zfs_unlinked_add(xzp, tx); 1745 1746 if (zp->z_is_sa) 1747 error = sa_remove(zp->z_sa_hdl, 1748 SA_ZPL_XATTR(zfsvfs), tx); 1749 else 1750 error = sa_update(zp->z_sa_hdl, 1751 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1752 sizeof (uint64_t), tx); 1753 ASSERT0(error); 1754 } 1755 mutex_enter(&vp->v_lock); 1756 vp->v_count--; 1757 ASSERT0(vp->v_count); 1758 mutex_exit(&vp->v_lock); 1759 mutex_exit(&zp->z_lock); 1760 zfs_znode_delete(zp, tx); 1761 } else if (unlinked) { 1762 mutex_exit(&zp->z_lock); 1763 zfs_unlinked_add(zp, tx); 1764 } 1765 1766 txtype = TX_REMOVE; 1767 if (flags & FIGNORECASE) 1768 txtype |= TX_CI; 1769 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1770 1771 dmu_tx_commit(tx); 1772 out: 1773 if (realnmp) 1774 pn_free(realnmp); 1775 1776 zfs_dirent_unlock(dl); 1777 1778 if (!delete_now) 1779 VN_RELE(vp); 1780 if (xzp) 1781 VN_RELE(ZTOV(xzp)); 1782 1783 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1784 zil_commit(zilog, 0); 1785 1786 ZFS_EXIT(zfsvfs); 1787 return (error); 1788 } 1789 1790 /* 1791 * Create a new directory and insert it into dvp using the name 1792 * provided. Return a pointer to the inserted directory. 1793 * 1794 * IN: dvp - vnode of directory to add subdir to. 1795 * dirname - name of new directory. 1796 * vap - attributes of new directory. 1797 * cr - credentials of caller. 1798 * ct - caller context 1799 * flags - case flags 1800 * vsecp - ACL to be set 1801 * 1802 * OUT: vpp - vnode of created directory. 1803 * 1804 * RETURN: 0 on success, error code on failure. 1805 * 1806 * Timestamps: 1807 * dvp - ctime|mtime updated 1808 * vp - ctime|mtime|atime updated 1809 */ 1810 /*ARGSUSED*/ 1811 static int 1812 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1813 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1814 { 1815 znode_t *zp, *dzp = VTOZ(dvp); 1816 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1817 zilog_t *zilog; 1818 zfs_dirlock_t *dl; 1819 uint64_t txtype; 1820 dmu_tx_t *tx; 1821 int error; 1822 int zf = ZNEW; 1823 ksid_t *ksid; 1824 uid_t uid; 1825 gid_t gid = crgetgid(cr); 1826 zfs_acl_ids_t acl_ids; 1827 boolean_t fuid_dirtied; 1828 boolean_t waited = B_FALSE; 1829 1830 ASSERT(vap->va_type == VDIR); 1831 1832 /* 1833 * If we have an ephemeral id, ACL, or XVATTR then 1834 * make sure file system is at proper version 1835 */ 1836 1837 ksid = crgetsid(cr, KSID_OWNER); 1838 if (ksid) 1839 uid = ksid_getid(ksid); 1840 else 1841 uid = crgetuid(cr); 1842 if (zfsvfs->z_use_fuids == B_FALSE && 1843 (vsecp || (vap->va_mask & AT_XVATTR) || 1844 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1845 return (SET_ERROR(EINVAL)); 1846 1847 ZFS_ENTER(zfsvfs); 1848 ZFS_VERIFY_ZP(dzp); 1849 zilog = zfsvfs->z_log; 1850 1851 if (dzp->z_pflags & ZFS_XATTR) { 1852 ZFS_EXIT(zfsvfs); 1853 return (SET_ERROR(EINVAL)); 1854 } 1855 1856 if (zfsvfs->z_utf8 && u8_validate(dirname, 1857 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1858 ZFS_EXIT(zfsvfs); 1859 return (SET_ERROR(EILSEQ)); 1860 } 1861 if (flags & FIGNORECASE) 1862 zf |= ZCILOOK; 1863 1864 if (vap->va_mask & AT_XVATTR) { 1865 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1866 crgetuid(cr), cr, vap->va_type)) != 0) { 1867 ZFS_EXIT(zfsvfs); 1868 return (error); 1869 } 1870 } 1871 1872 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1873 vsecp, &acl_ids)) != 0) { 1874 ZFS_EXIT(zfsvfs); 1875 return (error); 1876 } 1877 /* 1878 * First make sure the new directory doesn't exist. 1879 * 1880 * Existence is checked first to make sure we don't return 1881 * EACCES instead of EEXIST which can cause some applications 1882 * to fail. 1883 */ 1884 top: 1885 *vpp = NULL; 1886 1887 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1888 NULL, NULL)) { 1889 zfs_acl_ids_free(&acl_ids); 1890 ZFS_EXIT(zfsvfs); 1891 return (error); 1892 } 1893 1894 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1895 zfs_acl_ids_free(&acl_ids); 1896 zfs_dirent_unlock(dl); 1897 ZFS_EXIT(zfsvfs); 1898 return (error); 1899 } 1900 1901 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1902 zfs_acl_ids_free(&acl_ids); 1903 zfs_dirent_unlock(dl); 1904 ZFS_EXIT(zfsvfs); 1905 return (SET_ERROR(EDQUOT)); 1906 } 1907 1908 /* 1909 * Add a new entry to the directory. 1910 */ 1911 tx = dmu_tx_create(zfsvfs->z_os); 1912 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1913 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1914 fuid_dirtied = zfsvfs->z_fuid_dirty; 1915 if (fuid_dirtied) 1916 zfs_fuid_txhold(zfsvfs, tx); 1917 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1918 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1919 acl_ids.z_aclp->z_acl_bytes); 1920 } 1921 1922 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1923 ZFS_SA_BASE_ATTR_SIZE); 1924 1925 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1926 if (error) { 1927 zfs_dirent_unlock(dl); 1928 if (error == ERESTART) { 1929 waited = B_TRUE; 1930 dmu_tx_wait(tx); 1931 dmu_tx_abort(tx); 1932 goto top; 1933 } 1934 zfs_acl_ids_free(&acl_ids); 1935 dmu_tx_abort(tx); 1936 ZFS_EXIT(zfsvfs); 1937 return (error); 1938 } 1939 1940 /* 1941 * Create new node. 1942 */ 1943 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1944 1945 if (fuid_dirtied) 1946 zfs_fuid_sync(zfsvfs, tx); 1947 1948 /* 1949 * Now put new name in parent dir. 1950 */ 1951 (void) zfs_link_create(dl, zp, tx, ZNEW); 1952 1953 *vpp = ZTOV(zp); 1954 1955 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1956 if (flags & FIGNORECASE) 1957 txtype |= TX_CI; 1958 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1959 acl_ids.z_fuidp, vap); 1960 1961 zfs_acl_ids_free(&acl_ids); 1962 1963 dmu_tx_commit(tx); 1964 1965 zfs_dirent_unlock(dl); 1966 1967 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1968 zil_commit(zilog, 0); 1969 1970 ZFS_EXIT(zfsvfs); 1971 return (0); 1972 } 1973 1974 /* 1975 * Remove a directory subdir entry. If the current working 1976 * directory is the same as the subdir to be removed, the 1977 * remove will fail. 1978 * 1979 * IN: dvp - vnode of directory to remove from. 1980 * name - name of directory to be removed. 1981 * cwd - vnode of current working directory. 1982 * cr - credentials of caller. 1983 * ct - caller context 1984 * flags - case flags 1985 * 1986 * RETURN: 0 on success, error code on failure. 1987 * 1988 * Timestamps: 1989 * dvp - ctime|mtime updated 1990 */ 1991 /*ARGSUSED*/ 1992 static int 1993 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1994 caller_context_t *ct, int flags) 1995 { 1996 znode_t *dzp = VTOZ(dvp); 1997 znode_t *zp; 1998 vnode_t *vp; 1999 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2000 zilog_t *zilog; 2001 zfs_dirlock_t *dl; 2002 dmu_tx_t *tx; 2003 int error; 2004 int zflg = ZEXISTS; 2005 boolean_t waited = B_FALSE; 2006 2007 ZFS_ENTER(zfsvfs); 2008 ZFS_VERIFY_ZP(dzp); 2009 zilog = zfsvfs->z_log; 2010 2011 if (flags & FIGNORECASE) 2012 zflg |= ZCILOOK; 2013 top: 2014 zp = NULL; 2015 2016 /* 2017 * Attempt to lock directory; fail if entry doesn't exist. 2018 */ 2019 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2020 NULL, NULL)) { 2021 ZFS_EXIT(zfsvfs); 2022 return (error); 2023 } 2024 2025 vp = ZTOV(zp); 2026 2027 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2028 goto out; 2029 } 2030 2031 if (vp->v_type != VDIR) { 2032 error = SET_ERROR(ENOTDIR); 2033 goto out; 2034 } 2035 2036 if (vp == cwd) { 2037 error = SET_ERROR(EINVAL); 2038 goto out; 2039 } 2040 2041 vnevent_rmdir(vp, dvp, name, ct); 2042 2043 /* 2044 * Grab a lock on the directory to make sure that noone is 2045 * trying to add (or lookup) entries while we are removing it. 2046 */ 2047 rw_enter(&zp->z_name_lock, RW_WRITER); 2048 2049 /* 2050 * Grab a lock on the parent pointer to make sure we play well 2051 * with the treewalk and directory rename code. 2052 */ 2053 rw_enter(&zp->z_parent_lock, RW_WRITER); 2054 2055 tx = dmu_tx_create(zfsvfs->z_os); 2056 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2057 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2058 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2059 zfs_sa_upgrade_txholds(tx, zp); 2060 zfs_sa_upgrade_txholds(tx, dzp); 2061 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2062 if (error) { 2063 rw_exit(&zp->z_parent_lock); 2064 rw_exit(&zp->z_name_lock); 2065 zfs_dirent_unlock(dl); 2066 VN_RELE(vp); 2067 if (error == ERESTART) { 2068 waited = B_TRUE; 2069 dmu_tx_wait(tx); 2070 dmu_tx_abort(tx); 2071 goto top; 2072 } 2073 dmu_tx_abort(tx); 2074 ZFS_EXIT(zfsvfs); 2075 return (error); 2076 } 2077 2078 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2079 2080 if (error == 0) { 2081 uint64_t txtype = TX_RMDIR; 2082 if (flags & FIGNORECASE) 2083 txtype |= TX_CI; 2084 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2085 } 2086 2087 dmu_tx_commit(tx); 2088 2089 rw_exit(&zp->z_parent_lock); 2090 rw_exit(&zp->z_name_lock); 2091 out: 2092 zfs_dirent_unlock(dl); 2093 2094 VN_RELE(vp); 2095 2096 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2097 zil_commit(zilog, 0); 2098 2099 ZFS_EXIT(zfsvfs); 2100 return (error); 2101 } 2102 2103 /* 2104 * Read as many directory entries as will fit into the provided 2105 * buffer from the given directory cursor position (specified in 2106 * the uio structure). 2107 * 2108 * IN: vp - vnode of directory to read. 2109 * uio - structure supplying read location, range info, 2110 * and return buffer. 2111 * cr - credentials of caller. 2112 * ct - caller context 2113 * flags - case flags 2114 * 2115 * OUT: uio - updated offset and range, buffer filled. 2116 * eofp - set to true if end-of-file detected. 2117 * 2118 * RETURN: 0 on success, error code on failure. 2119 * 2120 * Timestamps: 2121 * vp - atime updated 2122 * 2123 * Note that the low 4 bits of the cookie returned by zap is always zero. 2124 * This allows us to use the low range for "special" directory entries: 2125 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2126 * we use the offset 2 for the '.zfs' directory. 2127 */ 2128 /* ARGSUSED */ 2129 static int 2130 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2131 caller_context_t *ct, int flags) 2132 { 2133 znode_t *zp = VTOZ(vp); 2134 iovec_t *iovp; 2135 edirent_t *eodp; 2136 dirent64_t *odp; 2137 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2138 objset_t *os; 2139 caddr_t outbuf; 2140 size_t bufsize; 2141 zap_cursor_t zc; 2142 zap_attribute_t zap; 2143 uint_t bytes_wanted; 2144 uint64_t offset; /* must be unsigned; checks for < 1 */ 2145 uint64_t parent; 2146 int local_eof; 2147 int outcount; 2148 int error; 2149 uint8_t prefetch; 2150 boolean_t check_sysattrs; 2151 2152 ZFS_ENTER(zfsvfs); 2153 ZFS_VERIFY_ZP(zp); 2154 2155 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2156 &parent, sizeof (parent))) != 0) { 2157 ZFS_EXIT(zfsvfs); 2158 return (error); 2159 } 2160 2161 /* 2162 * If we are not given an eof variable, 2163 * use a local one. 2164 */ 2165 if (eofp == NULL) 2166 eofp = &local_eof; 2167 2168 /* 2169 * Check for valid iov_len. 2170 */ 2171 if (uio->uio_iov->iov_len <= 0) { 2172 ZFS_EXIT(zfsvfs); 2173 return (SET_ERROR(EINVAL)); 2174 } 2175 2176 /* 2177 * Quit if directory has been removed (posix) 2178 */ 2179 if ((*eofp = zp->z_unlinked) != 0) { 2180 ZFS_EXIT(zfsvfs); 2181 return (0); 2182 } 2183 2184 error = 0; 2185 os = zfsvfs->z_os; 2186 offset = uio->uio_loffset; 2187 prefetch = zp->z_zn_prefetch; 2188 2189 /* 2190 * Initialize the iterator cursor. 2191 */ 2192 if (offset <= 3) { 2193 /* 2194 * Start iteration from the beginning of the directory. 2195 */ 2196 zap_cursor_init(&zc, os, zp->z_id); 2197 } else { 2198 /* 2199 * The offset is a serialized cursor. 2200 */ 2201 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2202 } 2203 2204 /* 2205 * Get space to change directory entries into fs independent format. 2206 */ 2207 iovp = uio->uio_iov; 2208 bytes_wanted = iovp->iov_len; 2209 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2210 bufsize = bytes_wanted; 2211 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2212 odp = (struct dirent64 *)outbuf; 2213 } else { 2214 bufsize = bytes_wanted; 2215 outbuf = NULL; 2216 odp = (struct dirent64 *)iovp->iov_base; 2217 } 2218 eodp = (struct edirent *)odp; 2219 2220 /* 2221 * If this VFS supports the system attribute view interface; and 2222 * we're looking at an extended attribute directory; and we care 2223 * about normalization conflicts on this vfs; then we must check 2224 * for normalization conflicts with the sysattr name space. 2225 */ 2226 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2227 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2228 (flags & V_RDDIR_ENTFLAGS); 2229 2230 /* 2231 * Transform to file-system independent format 2232 */ 2233 outcount = 0; 2234 while (outcount < bytes_wanted) { 2235 ino64_t objnum; 2236 ushort_t reclen; 2237 off64_t *next = NULL; 2238 2239 /* 2240 * Special case `.', `..', and `.zfs'. 2241 */ 2242 if (offset == 0) { 2243 (void) strcpy(zap.za_name, "."); 2244 zap.za_normalization_conflict = 0; 2245 objnum = zp->z_id; 2246 } else if (offset == 1) { 2247 (void) strcpy(zap.za_name, ".."); 2248 zap.za_normalization_conflict = 0; 2249 objnum = parent; 2250 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2251 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2252 zap.za_normalization_conflict = 0; 2253 objnum = ZFSCTL_INO_ROOT; 2254 } else { 2255 /* 2256 * Grab next entry. 2257 */ 2258 if (error = zap_cursor_retrieve(&zc, &zap)) { 2259 if ((*eofp = (error == ENOENT)) != 0) 2260 break; 2261 else 2262 goto update; 2263 } 2264 2265 if (zap.za_integer_length != 8 || 2266 zap.za_num_integers != 1) { 2267 cmn_err(CE_WARN, "zap_readdir: bad directory " 2268 "entry, obj = %lld, offset = %lld\n", 2269 (u_longlong_t)zp->z_id, 2270 (u_longlong_t)offset); 2271 error = SET_ERROR(ENXIO); 2272 goto update; 2273 } 2274 2275 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2276 /* 2277 * MacOS X can extract the object type here such as: 2278 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2279 */ 2280 2281 if (check_sysattrs && !zap.za_normalization_conflict) { 2282 zap.za_normalization_conflict = 2283 xattr_sysattr_casechk(zap.za_name); 2284 } 2285 } 2286 2287 if (flags & V_RDDIR_ACCFILTER) { 2288 /* 2289 * If we have no access at all, don't include 2290 * this entry in the returned information 2291 */ 2292 znode_t *ezp; 2293 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2294 goto skip_entry; 2295 if (!zfs_has_access(ezp, cr)) { 2296 VN_RELE(ZTOV(ezp)); 2297 goto skip_entry; 2298 } 2299 VN_RELE(ZTOV(ezp)); 2300 } 2301 2302 if (flags & V_RDDIR_ENTFLAGS) 2303 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2304 else 2305 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2306 2307 /* 2308 * Will this entry fit in the buffer? 2309 */ 2310 if (outcount + reclen > bufsize) { 2311 /* 2312 * Did we manage to fit anything in the buffer? 2313 */ 2314 if (!outcount) { 2315 error = SET_ERROR(EINVAL); 2316 goto update; 2317 } 2318 break; 2319 } 2320 if (flags & V_RDDIR_ENTFLAGS) { 2321 /* 2322 * Add extended flag entry: 2323 */ 2324 eodp->ed_ino = objnum; 2325 eodp->ed_reclen = reclen; 2326 /* NOTE: ed_off is the offset for the *next* entry */ 2327 next = &(eodp->ed_off); 2328 eodp->ed_eflags = zap.za_normalization_conflict ? 2329 ED_CASE_CONFLICT : 0; 2330 (void) strncpy(eodp->ed_name, zap.za_name, 2331 EDIRENT_NAMELEN(reclen)); 2332 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2333 } else { 2334 /* 2335 * Add normal entry: 2336 */ 2337 odp->d_ino = objnum; 2338 odp->d_reclen = reclen; 2339 /* NOTE: d_off is the offset for the *next* entry */ 2340 next = &(odp->d_off); 2341 (void) strncpy(odp->d_name, zap.za_name, 2342 DIRENT64_NAMELEN(reclen)); 2343 odp = (dirent64_t *)((intptr_t)odp + reclen); 2344 } 2345 outcount += reclen; 2346 2347 ASSERT(outcount <= bufsize); 2348 2349 /* Prefetch znode */ 2350 if (prefetch) 2351 dmu_prefetch(os, objnum, 0, 0); 2352 2353 skip_entry: 2354 /* 2355 * Move to the next entry, fill in the previous offset. 2356 */ 2357 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2358 zap_cursor_advance(&zc); 2359 offset = zap_cursor_serialize(&zc); 2360 } else { 2361 offset += 1; 2362 } 2363 if (next) 2364 *next = offset; 2365 } 2366 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2367 2368 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2369 iovp->iov_base += outcount; 2370 iovp->iov_len -= outcount; 2371 uio->uio_resid -= outcount; 2372 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2373 /* 2374 * Reset the pointer. 2375 */ 2376 offset = uio->uio_loffset; 2377 } 2378 2379 update: 2380 zap_cursor_fini(&zc); 2381 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2382 kmem_free(outbuf, bufsize); 2383 2384 if (error == ENOENT) 2385 error = 0; 2386 2387 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2388 2389 uio->uio_loffset = offset; 2390 ZFS_EXIT(zfsvfs); 2391 return (error); 2392 } 2393 2394 ulong_t zfs_fsync_sync_cnt = 4; 2395 2396 static int 2397 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2398 { 2399 znode_t *zp = VTOZ(vp); 2400 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2401 2402 /* 2403 * Regardless of whether this is required for standards conformance, 2404 * this is the logical behavior when fsync() is called on a file with 2405 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2406 * going to be pushed out as part of the zil_commit(). 2407 */ 2408 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2409 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2410 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2411 2412 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2413 2414 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2415 ZFS_ENTER(zfsvfs); 2416 ZFS_VERIFY_ZP(zp); 2417 zil_commit(zfsvfs->z_log, zp->z_id); 2418 ZFS_EXIT(zfsvfs); 2419 } 2420 return (0); 2421 } 2422 2423 2424 /* 2425 * Get the requested file attributes and place them in the provided 2426 * vattr structure. 2427 * 2428 * IN: vp - vnode of file. 2429 * vap - va_mask identifies requested attributes. 2430 * If AT_XVATTR set, then optional attrs are requested 2431 * flags - ATTR_NOACLCHECK (CIFS server context) 2432 * cr - credentials of caller. 2433 * ct - caller context 2434 * 2435 * OUT: vap - attribute values. 2436 * 2437 * RETURN: 0 (always succeeds). 2438 */ 2439 /* ARGSUSED */ 2440 static int 2441 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2442 caller_context_t *ct) 2443 { 2444 znode_t *zp = VTOZ(vp); 2445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2446 int error = 0; 2447 uint64_t links; 2448 uint64_t mtime[2], ctime[2]; 2449 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2450 xoptattr_t *xoap = NULL; 2451 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2452 sa_bulk_attr_t bulk[2]; 2453 int count = 0; 2454 2455 ZFS_ENTER(zfsvfs); 2456 ZFS_VERIFY_ZP(zp); 2457 2458 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2459 2460 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2461 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2462 2463 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2464 ZFS_EXIT(zfsvfs); 2465 return (error); 2466 } 2467 2468 /* 2469 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2470 * Also, if we are the owner don't bother, since owner should 2471 * always be allowed to read basic attributes of file. 2472 */ 2473 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2474 (vap->va_uid != crgetuid(cr))) { 2475 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2476 skipaclchk, cr)) { 2477 ZFS_EXIT(zfsvfs); 2478 return (error); 2479 } 2480 } 2481 2482 /* 2483 * Return all attributes. It's cheaper to provide the answer 2484 * than to determine whether we were asked the question. 2485 */ 2486 2487 mutex_enter(&zp->z_lock); 2488 vap->va_type = vp->v_type; 2489 vap->va_mode = zp->z_mode & MODEMASK; 2490 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2491 vap->va_nodeid = zp->z_id; 2492 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2493 links = zp->z_links + 1; 2494 else 2495 links = zp->z_links; 2496 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2497 vap->va_size = zp->z_size; 2498 vap->va_rdev = vp->v_rdev; 2499 vap->va_seq = zp->z_seq; 2500 2501 /* 2502 * Add in any requested optional attributes and the create time. 2503 * Also set the corresponding bits in the returned attribute bitmap. 2504 */ 2505 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2506 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2507 xoap->xoa_archive = 2508 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2509 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2510 } 2511 2512 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2513 xoap->xoa_readonly = 2514 ((zp->z_pflags & ZFS_READONLY) != 0); 2515 XVA_SET_RTN(xvap, XAT_READONLY); 2516 } 2517 2518 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2519 xoap->xoa_system = 2520 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2521 XVA_SET_RTN(xvap, XAT_SYSTEM); 2522 } 2523 2524 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2525 xoap->xoa_hidden = 2526 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2527 XVA_SET_RTN(xvap, XAT_HIDDEN); 2528 } 2529 2530 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2531 xoap->xoa_nounlink = 2532 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2533 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2534 } 2535 2536 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2537 xoap->xoa_immutable = 2538 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2539 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2540 } 2541 2542 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2543 xoap->xoa_appendonly = 2544 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2545 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2546 } 2547 2548 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2549 xoap->xoa_nodump = 2550 ((zp->z_pflags & ZFS_NODUMP) != 0); 2551 XVA_SET_RTN(xvap, XAT_NODUMP); 2552 } 2553 2554 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2555 xoap->xoa_opaque = 2556 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2557 XVA_SET_RTN(xvap, XAT_OPAQUE); 2558 } 2559 2560 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2561 xoap->xoa_av_quarantined = 2562 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2563 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2564 } 2565 2566 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2567 xoap->xoa_av_modified = 2568 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2569 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2570 } 2571 2572 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2573 vp->v_type == VREG) { 2574 zfs_sa_get_scanstamp(zp, xvap); 2575 } 2576 2577 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2578 uint64_t times[2]; 2579 2580 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2581 times, sizeof (times)); 2582 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2583 XVA_SET_RTN(xvap, XAT_CREATETIME); 2584 } 2585 2586 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2587 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2588 XVA_SET_RTN(xvap, XAT_REPARSE); 2589 } 2590 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2591 xoap->xoa_generation = zp->z_gen; 2592 XVA_SET_RTN(xvap, XAT_GEN); 2593 } 2594 2595 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2596 xoap->xoa_offline = 2597 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2598 XVA_SET_RTN(xvap, XAT_OFFLINE); 2599 } 2600 2601 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2602 xoap->xoa_sparse = 2603 ((zp->z_pflags & ZFS_SPARSE) != 0); 2604 XVA_SET_RTN(xvap, XAT_SPARSE); 2605 } 2606 } 2607 2608 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2609 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2610 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2611 2612 mutex_exit(&zp->z_lock); 2613 2614 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2615 2616 if (zp->z_blksz == 0) { 2617 /* 2618 * Block size hasn't been set; suggest maximal I/O transfers. 2619 */ 2620 vap->va_blksize = zfsvfs->z_max_blksz; 2621 } 2622 2623 ZFS_EXIT(zfsvfs); 2624 return (0); 2625 } 2626 2627 /* 2628 * Set the file attributes to the values contained in the 2629 * vattr structure. 2630 * 2631 * IN: vp - vnode of file to be modified. 2632 * vap - new attribute values. 2633 * If AT_XVATTR set, then optional attrs are being set 2634 * flags - ATTR_UTIME set if non-default time values provided. 2635 * - ATTR_NOACLCHECK (CIFS context only). 2636 * cr - credentials of caller. 2637 * ct - caller context 2638 * 2639 * RETURN: 0 on success, error code on failure. 2640 * 2641 * Timestamps: 2642 * vp - ctime updated, mtime updated if size changed. 2643 */ 2644 /* ARGSUSED */ 2645 static int 2646 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2647 caller_context_t *ct) 2648 { 2649 znode_t *zp = VTOZ(vp); 2650 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2651 zilog_t *zilog; 2652 dmu_tx_t *tx; 2653 vattr_t oldva; 2654 xvattr_t tmpxvattr; 2655 uint_t mask = vap->va_mask; 2656 uint_t saved_mask = 0; 2657 int trim_mask = 0; 2658 uint64_t new_mode; 2659 uint64_t new_uid, new_gid; 2660 uint64_t xattr_obj; 2661 uint64_t mtime[2], ctime[2]; 2662 znode_t *attrzp; 2663 int need_policy = FALSE; 2664 int err, err2; 2665 zfs_fuid_info_t *fuidp = NULL; 2666 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2667 xoptattr_t *xoap; 2668 zfs_acl_t *aclp; 2669 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2670 boolean_t fuid_dirtied = B_FALSE; 2671 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2672 int count = 0, xattr_count = 0; 2673 2674 if (mask == 0) 2675 return (0); 2676 2677 if (mask & AT_NOSET) 2678 return (SET_ERROR(EINVAL)); 2679 2680 ZFS_ENTER(zfsvfs); 2681 ZFS_VERIFY_ZP(zp); 2682 2683 zilog = zfsvfs->z_log; 2684 2685 /* 2686 * Make sure that if we have ephemeral uid/gid or xvattr specified 2687 * that file system is at proper version level 2688 */ 2689 2690 if (zfsvfs->z_use_fuids == B_FALSE && 2691 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2692 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2693 (mask & AT_XVATTR))) { 2694 ZFS_EXIT(zfsvfs); 2695 return (SET_ERROR(EINVAL)); 2696 } 2697 2698 if (mask & AT_SIZE && vp->v_type == VDIR) { 2699 ZFS_EXIT(zfsvfs); 2700 return (SET_ERROR(EISDIR)); 2701 } 2702 2703 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2704 ZFS_EXIT(zfsvfs); 2705 return (SET_ERROR(EINVAL)); 2706 } 2707 2708 /* 2709 * If this is an xvattr_t, then get a pointer to the structure of 2710 * optional attributes. If this is NULL, then we have a vattr_t. 2711 */ 2712 xoap = xva_getxoptattr(xvap); 2713 2714 xva_init(&tmpxvattr); 2715 2716 /* 2717 * Immutable files can only alter immutable bit and atime 2718 */ 2719 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2720 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2721 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2722 ZFS_EXIT(zfsvfs); 2723 return (SET_ERROR(EPERM)); 2724 } 2725 2726 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2727 ZFS_EXIT(zfsvfs); 2728 return (SET_ERROR(EPERM)); 2729 } 2730 2731 /* 2732 * Verify timestamps doesn't overflow 32 bits. 2733 * ZFS can handle large timestamps, but 32bit syscalls can't 2734 * handle times greater than 2039. This check should be removed 2735 * once large timestamps are fully supported. 2736 */ 2737 if (mask & (AT_ATIME | AT_MTIME)) { 2738 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2739 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2740 ZFS_EXIT(zfsvfs); 2741 return (SET_ERROR(EOVERFLOW)); 2742 } 2743 } 2744 2745 top: 2746 attrzp = NULL; 2747 aclp = NULL; 2748 2749 /* Can this be moved to before the top label? */ 2750 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2751 ZFS_EXIT(zfsvfs); 2752 return (SET_ERROR(EROFS)); 2753 } 2754 2755 /* 2756 * First validate permissions 2757 */ 2758 2759 if (mask & AT_SIZE) { 2760 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2761 if (err) { 2762 ZFS_EXIT(zfsvfs); 2763 return (err); 2764 } 2765 /* 2766 * XXX - Note, we are not providing any open 2767 * mode flags here (like FNDELAY), so we may 2768 * block if there are locks present... this 2769 * should be addressed in openat(). 2770 */ 2771 /* XXX - would it be OK to generate a log record here? */ 2772 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2773 if (err) { 2774 ZFS_EXIT(zfsvfs); 2775 return (err); 2776 } 2777 2778 if (vap->va_size == 0) 2779 vnevent_truncate(ZTOV(zp), ct); 2780 } 2781 2782 if (mask & (AT_ATIME|AT_MTIME) || 2783 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2784 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2785 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2786 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2787 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2788 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2789 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2790 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2791 skipaclchk, cr); 2792 } 2793 2794 if (mask & (AT_UID|AT_GID)) { 2795 int idmask = (mask & (AT_UID|AT_GID)); 2796 int take_owner; 2797 int take_group; 2798 2799 /* 2800 * NOTE: even if a new mode is being set, 2801 * we may clear S_ISUID/S_ISGID bits. 2802 */ 2803 2804 if (!(mask & AT_MODE)) 2805 vap->va_mode = zp->z_mode; 2806 2807 /* 2808 * Take ownership or chgrp to group we are a member of 2809 */ 2810 2811 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2812 take_group = (mask & AT_GID) && 2813 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2814 2815 /* 2816 * If both AT_UID and AT_GID are set then take_owner and 2817 * take_group must both be set in order to allow taking 2818 * ownership. 2819 * 2820 * Otherwise, send the check through secpolicy_vnode_setattr() 2821 * 2822 */ 2823 2824 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2825 ((idmask == AT_UID) && take_owner) || 2826 ((idmask == AT_GID) && take_group)) { 2827 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2828 skipaclchk, cr) == 0) { 2829 /* 2830 * Remove setuid/setgid for non-privileged users 2831 */ 2832 secpolicy_setid_clear(vap, cr); 2833 trim_mask = (mask & (AT_UID|AT_GID)); 2834 } else { 2835 need_policy = TRUE; 2836 } 2837 } else { 2838 need_policy = TRUE; 2839 } 2840 } 2841 2842 mutex_enter(&zp->z_lock); 2843 oldva.va_mode = zp->z_mode; 2844 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2845 if (mask & AT_XVATTR) { 2846 /* 2847 * Update xvattr mask to include only those attributes 2848 * that are actually changing. 2849 * 2850 * the bits will be restored prior to actually setting 2851 * the attributes so the caller thinks they were set. 2852 */ 2853 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2854 if (xoap->xoa_appendonly != 2855 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2856 need_policy = TRUE; 2857 } else { 2858 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2859 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2860 } 2861 } 2862 2863 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2864 if (xoap->xoa_nounlink != 2865 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2866 need_policy = TRUE; 2867 } else { 2868 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2869 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2870 } 2871 } 2872 2873 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2874 if (xoap->xoa_immutable != 2875 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2876 need_policy = TRUE; 2877 } else { 2878 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2879 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2880 } 2881 } 2882 2883 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2884 if (xoap->xoa_nodump != 2885 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2886 need_policy = TRUE; 2887 } else { 2888 XVA_CLR_REQ(xvap, XAT_NODUMP); 2889 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2890 } 2891 } 2892 2893 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2894 if (xoap->xoa_av_modified != 2895 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2896 need_policy = TRUE; 2897 } else { 2898 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2899 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2900 } 2901 } 2902 2903 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2904 if ((vp->v_type != VREG && 2905 xoap->xoa_av_quarantined) || 2906 xoap->xoa_av_quarantined != 2907 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2908 need_policy = TRUE; 2909 } else { 2910 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2911 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2912 } 2913 } 2914 2915 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2916 mutex_exit(&zp->z_lock); 2917 ZFS_EXIT(zfsvfs); 2918 return (SET_ERROR(EPERM)); 2919 } 2920 2921 if (need_policy == FALSE && 2922 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2923 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2924 need_policy = TRUE; 2925 } 2926 } 2927 2928 mutex_exit(&zp->z_lock); 2929 2930 if (mask & AT_MODE) { 2931 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2932 err = secpolicy_setid_setsticky_clear(vp, vap, 2933 &oldva, cr); 2934 if (err) { 2935 ZFS_EXIT(zfsvfs); 2936 return (err); 2937 } 2938 trim_mask |= AT_MODE; 2939 } else { 2940 need_policy = TRUE; 2941 } 2942 } 2943 2944 if (need_policy) { 2945 /* 2946 * If trim_mask is set then take ownership 2947 * has been granted or write_acl is present and user 2948 * has the ability to modify mode. In that case remove 2949 * UID|GID and or MODE from mask so that 2950 * secpolicy_vnode_setattr() doesn't revoke it. 2951 */ 2952 2953 if (trim_mask) { 2954 saved_mask = vap->va_mask; 2955 vap->va_mask &= ~trim_mask; 2956 } 2957 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2958 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2959 if (err) { 2960 ZFS_EXIT(zfsvfs); 2961 return (err); 2962 } 2963 2964 if (trim_mask) 2965 vap->va_mask |= saved_mask; 2966 } 2967 2968 /* 2969 * secpolicy_vnode_setattr, or take ownership may have 2970 * changed va_mask 2971 */ 2972 mask = vap->va_mask; 2973 2974 if ((mask & (AT_UID | AT_GID))) { 2975 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2976 &xattr_obj, sizeof (xattr_obj)); 2977 2978 if (err == 0 && xattr_obj) { 2979 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2980 if (err) 2981 goto out2; 2982 } 2983 if (mask & AT_UID) { 2984 new_uid = zfs_fuid_create(zfsvfs, 2985 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2986 if (new_uid != zp->z_uid && 2987 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2988 if (attrzp) 2989 VN_RELE(ZTOV(attrzp)); 2990 err = SET_ERROR(EDQUOT); 2991 goto out2; 2992 } 2993 } 2994 2995 if (mask & AT_GID) { 2996 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2997 cr, ZFS_GROUP, &fuidp); 2998 if (new_gid != zp->z_gid && 2999 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3000 if (attrzp) 3001 VN_RELE(ZTOV(attrzp)); 3002 err = SET_ERROR(EDQUOT); 3003 goto out2; 3004 } 3005 } 3006 } 3007 tx = dmu_tx_create(zfsvfs->z_os); 3008 3009 if (mask & AT_MODE) { 3010 uint64_t pmode = zp->z_mode; 3011 uint64_t acl_obj; 3012 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3013 3014 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3015 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3016 err = SET_ERROR(EPERM); 3017 goto out; 3018 } 3019 3020 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3021 goto out; 3022 3023 mutex_enter(&zp->z_lock); 3024 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3025 /* 3026 * Are we upgrading ACL from old V0 format 3027 * to V1 format? 3028 */ 3029 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3030 zfs_znode_acl_version(zp) == 3031 ZFS_ACL_VERSION_INITIAL) { 3032 dmu_tx_hold_free(tx, acl_obj, 0, 3033 DMU_OBJECT_END); 3034 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3035 0, aclp->z_acl_bytes); 3036 } else { 3037 dmu_tx_hold_write(tx, acl_obj, 0, 3038 aclp->z_acl_bytes); 3039 } 3040 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3041 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3042 0, aclp->z_acl_bytes); 3043 } 3044 mutex_exit(&zp->z_lock); 3045 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3046 } else { 3047 if ((mask & AT_XVATTR) && 3048 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3049 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3050 else 3051 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3052 } 3053 3054 if (attrzp) { 3055 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3056 } 3057 3058 fuid_dirtied = zfsvfs->z_fuid_dirty; 3059 if (fuid_dirtied) 3060 zfs_fuid_txhold(zfsvfs, tx); 3061 3062 zfs_sa_upgrade_txholds(tx, zp); 3063 3064 err = dmu_tx_assign(tx, TXG_WAIT); 3065 if (err) 3066 goto out; 3067 3068 count = 0; 3069 /* 3070 * Set each attribute requested. 3071 * We group settings according to the locks they need to acquire. 3072 * 3073 * Note: you cannot set ctime directly, although it will be 3074 * updated as a side-effect of calling this function. 3075 */ 3076 3077 3078 if (mask & (AT_UID|AT_GID|AT_MODE)) 3079 mutex_enter(&zp->z_acl_lock); 3080 mutex_enter(&zp->z_lock); 3081 3082 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3083 &zp->z_pflags, sizeof (zp->z_pflags)); 3084 3085 if (attrzp) { 3086 if (mask & (AT_UID|AT_GID|AT_MODE)) 3087 mutex_enter(&attrzp->z_acl_lock); 3088 mutex_enter(&attrzp->z_lock); 3089 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3090 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3091 sizeof (attrzp->z_pflags)); 3092 } 3093 3094 if (mask & (AT_UID|AT_GID)) { 3095 3096 if (mask & AT_UID) { 3097 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3098 &new_uid, sizeof (new_uid)); 3099 zp->z_uid = new_uid; 3100 if (attrzp) { 3101 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3102 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3103 sizeof (new_uid)); 3104 attrzp->z_uid = new_uid; 3105 } 3106 } 3107 3108 if (mask & AT_GID) { 3109 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3110 NULL, &new_gid, sizeof (new_gid)); 3111 zp->z_gid = new_gid; 3112 if (attrzp) { 3113 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3114 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3115 sizeof (new_gid)); 3116 attrzp->z_gid = new_gid; 3117 } 3118 } 3119 if (!(mask & AT_MODE)) { 3120 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3121 NULL, &new_mode, sizeof (new_mode)); 3122 new_mode = zp->z_mode; 3123 } 3124 err = zfs_acl_chown_setattr(zp); 3125 ASSERT(err == 0); 3126 if (attrzp) { 3127 err = zfs_acl_chown_setattr(attrzp); 3128 ASSERT(err == 0); 3129 } 3130 } 3131 3132 if (mask & AT_MODE) { 3133 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3134 &new_mode, sizeof (new_mode)); 3135 zp->z_mode = new_mode; 3136 ASSERT3U((uintptr_t)aclp, !=, NULL); 3137 err = zfs_aclset_common(zp, aclp, cr, tx); 3138 ASSERT0(err); 3139 if (zp->z_acl_cached) 3140 zfs_acl_free(zp->z_acl_cached); 3141 zp->z_acl_cached = aclp; 3142 aclp = NULL; 3143 } 3144 3145 3146 if (mask & AT_ATIME) { 3147 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3149 &zp->z_atime, sizeof (zp->z_atime)); 3150 } 3151 3152 if (mask & AT_MTIME) { 3153 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3155 mtime, sizeof (mtime)); 3156 } 3157 3158 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3159 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3160 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3161 NULL, mtime, sizeof (mtime)); 3162 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3163 &ctime, sizeof (ctime)); 3164 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3165 B_TRUE); 3166 } else if (mask != 0) { 3167 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3168 &ctime, sizeof (ctime)); 3169 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3170 B_TRUE); 3171 if (attrzp) { 3172 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3173 SA_ZPL_CTIME(zfsvfs), NULL, 3174 &ctime, sizeof (ctime)); 3175 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3176 mtime, ctime, B_TRUE); 3177 } 3178 } 3179 /* 3180 * Do this after setting timestamps to prevent timestamp 3181 * update from toggling bit 3182 */ 3183 3184 if (xoap && (mask & AT_XVATTR)) { 3185 3186 /* 3187 * restore trimmed off masks 3188 * so that return masks can be set for caller. 3189 */ 3190 3191 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3192 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3193 } 3194 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3195 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3196 } 3197 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3198 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3199 } 3200 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3201 XVA_SET_REQ(xvap, XAT_NODUMP); 3202 } 3203 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3204 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3205 } 3206 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3207 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3208 } 3209 3210 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3211 ASSERT(vp->v_type == VREG); 3212 3213 zfs_xvattr_set(zp, xvap, tx); 3214 } 3215 3216 if (fuid_dirtied) 3217 zfs_fuid_sync(zfsvfs, tx); 3218 3219 if (mask != 0) 3220 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3221 3222 mutex_exit(&zp->z_lock); 3223 if (mask & (AT_UID|AT_GID|AT_MODE)) 3224 mutex_exit(&zp->z_acl_lock); 3225 3226 if (attrzp) { 3227 if (mask & (AT_UID|AT_GID|AT_MODE)) 3228 mutex_exit(&attrzp->z_acl_lock); 3229 mutex_exit(&attrzp->z_lock); 3230 } 3231 out: 3232 if (err == 0 && attrzp) { 3233 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3234 xattr_count, tx); 3235 ASSERT(err2 == 0); 3236 } 3237 3238 if (attrzp) 3239 VN_RELE(ZTOV(attrzp)); 3240 3241 if (aclp) 3242 zfs_acl_free(aclp); 3243 3244 if (fuidp) { 3245 zfs_fuid_info_free(fuidp); 3246 fuidp = NULL; 3247 } 3248 3249 if (err) { 3250 dmu_tx_abort(tx); 3251 if (err == ERESTART) 3252 goto top; 3253 } else { 3254 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3255 dmu_tx_commit(tx); 3256 } 3257 3258 out2: 3259 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3260 zil_commit(zilog, 0); 3261 3262 ZFS_EXIT(zfsvfs); 3263 return (err); 3264 } 3265 3266 typedef struct zfs_zlock { 3267 krwlock_t *zl_rwlock; /* lock we acquired */ 3268 znode_t *zl_znode; /* znode we held */ 3269 struct zfs_zlock *zl_next; /* next in list */ 3270 } zfs_zlock_t; 3271 3272 /* 3273 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3274 */ 3275 static void 3276 zfs_rename_unlock(zfs_zlock_t **zlpp) 3277 { 3278 zfs_zlock_t *zl; 3279 3280 while ((zl = *zlpp) != NULL) { 3281 if (zl->zl_znode != NULL) 3282 VN_RELE(ZTOV(zl->zl_znode)); 3283 rw_exit(zl->zl_rwlock); 3284 *zlpp = zl->zl_next; 3285 kmem_free(zl, sizeof (*zl)); 3286 } 3287 } 3288 3289 /* 3290 * Search back through the directory tree, using the ".." entries. 3291 * Lock each directory in the chain to prevent concurrent renames. 3292 * Fail any attempt to move a directory into one of its own descendants. 3293 * XXX - z_parent_lock can overlap with map or grow locks 3294 */ 3295 static int 3296 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3297 { 3298 zfs_zlock_t *zl; 3299 znode_t *zp = tdzp; 3300 uint64_t rootid = zp->z_zfsvfs->z_root; 3301 uint64_t oidp = zp->z_id; 3302 krwlock_t *rwlp = &szp->z_parent_lock; 3303 krw_t rw = RW_WRITER; 3304 3305 /* 3306 * First pass write-locks szp and compares to zp->z_id. 3307 * Later passes read-lock zp and compare to zp->z_parent. 3308 */ 3309 do { 3310 if (!rw_tryenter(rwlp, rw)) { 3311 /* 3312 * Another thread is renaming in this path. 3313 * Note that if we are a WRITER, we don't have any 3314 * parent_locks held yet. 3315 */ 3316 if (rw == RW_READER && zp->z_id > szp->z_id) { 3317 /* 3318 * Drop our locks and restart 3319 */ 3320 zfs_rename_unlock(&zl); 3321 *zlpp = NULL; 3322 zp = tdzp; 3323 oidp = zp->z_id; 3324 rwlp = &szp->z_parent_lock; 3325 rw = RW_WRITER; 3326 continue; 3327 } else { 3328 /* 3329 * Wait for other thread to drop its locks 3330 */ 3331 rw_enter(rwlp, rw); 3332 } 3333 } 3334 3335 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3336 zl->zl_rwlock = rwlp; 3337 zl->zl_znode = NULL; 3338 zl->zl_next = *zlpp; 3339 *zlpp = zl; 3340 3341 if (oidp == szp->z_id) /* We're a descendant of szp */ 3342 return (SET_ERROR(EINVAL)); 3343 3344 if (oidp == rootid) /* We've hit the top */ 3345 return (0); 3346 3347 if (rw == RW_READER) { /* i.e. not the first pass */ 3348 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3349 if (error) 3350 return (error); 3351 zl->zl_znode = zp; 3352 } 3353 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3354 &oidp, sizeof (oidp)); 3355 rwlp = &zp->z_parent_lock; 3356 rw = RW_READER; 3357 3358 } while (zp->z_id != sdzp->z_id); 3359 3360 return (0); 3361 } 3362 3363 /* 3364 * Move an entry from the provided source directory to the target 3365 * directory. Change the entry name as indicated. 3366 * 3367 * IN: sdvp - Source directory containing the "old entry". 3368 * snm - Old entry name. 3369 * tdvp - Target directory to contain the "new entry". 3370 * tnm - New entry name. 3371 * cr - credentials of caller. 3372 * ct - caller context 3373 * flags - case flags 3374 * 3375 * RETURN: 0 on success, error code on failure. 3376 * 3377 * Timestamps: 3378 * sdvp,tdvp - ctime|mtime updated 3379 */ 3380 /*ARGSUSED*/ 3381 static int 3382 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3383 caller_context_t *ct, int flags) 3384 { 3385 znode_t *tdzp, *szp, *tzp; 3386 znode_t *sdzp = VTOZ(sdvp); 3387 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3388 zilog_t *zilog; 3389 vnode_t *realvp; 3390 zfs_dirlock_t *sdl, *tdl; 3391 dmu_tx_t *tx; 3392 zfs_zlock_t *zl; 3393 int cmp, serr, terr; 3394 int error = 0; 3395 int zflg = 0; 3396 boolean_t waited = B_FALSE; 3397 3398 ZFS_ENTER(zfsvfs); 3399 ZFS_VERIFY_ZP(sdzp); 3400 zilog = zfsvfs->z_log; 3401 3402 /* 3403 * Make sure we have the real vp for the target directory. 3404 */ 3405 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3406 tdvp = realvp; 3407 3408 tdzp = VTOZ(tdvp); 3409 ZFS_VERIFY_ZP(tdzp); 3410 3411 /* 3412 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3413 * ctldir appear to have the same v_vfsp. 3414 */ 3415 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3416 ZFS_EXIT(zfsvfs); 3417 return (SET_ERROR(EXDEV)); 3418 } 3419 3420 if (zfsvfs->z_utf8 && u8_validate(tnm, 3421 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3422 ZFS_EXIT(zfsvfs); 3423 return (SET_ERROR(EILSEQ)); 3424 } 3425 3426 if (flags & FIGNORECASE) 3427 zflg |= ZCILOOK; 3428 3429 top: 3430 szp = NULL; 3431 tzp = NULL; 3432 zl = NULL; 3433 3434 /* 3435 * This is to prevent the creation of links into attribute space 3436 * by renaming a linked file into/outof an attribute directory. 3437 * See the comment in zfs_link() for why this is considered bad. 3438 */ 3439 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3440 ZFS_EXIT(zfsvfs); 3441 return (SET_ERROR(EINVAL)); 3442 } 3443 3444 /* 3445 * Lock source and target directory entries. To prevent deadlock, 3446 * a lock ordering must be defined. We lock the directory with 3447 * the smallest object id first, or if it's a tie, the one with 3448 * the lexically first name. 3449 */ 3450 if (sdzp->z_id < tdzp->z_id) { 3451 cmp = -1; 3452 } else if (sdzp->z_id > tdzp->z_id) { 3453 cmp = 1; 3454 } else { 3455 /* 3456 * First compare the two name arguments without 3457 * considering any case folding. 3458 */ 3459 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3460 3461 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3462 ASSERT(error == 0 || !zfsvfs->z_utf8); 3463 if (cmp == 0) { 3464 /* 3465 * POSIX: "If the old argument and the new argument 3466 * both refer to links to the same existing file, 3467 * the rename() function shall return successfully 3468 * and perform no other action." 3469 */ 3470 ZFS_EXIT(zfsvfs); 3471 return (0); 3472 } 3473 /* 3474 * If the file system is case-folding, then we may 3475 * have some more checking to do. A case-folding file 3476 * system is either supporting mixed case sensitivity 3477 * access or is completely case-insensitive. Note 3478 * that the file system is always case preserving. 3479 * 3480 * In mixed sensitivity mode case sensitive behavior 3481 * is the default. FIGNORECASE must be used to 3482 * explicitly request case insensitive behavior. 3483 * 3484 * If the source and target names provided differ only 3485 * by case (e.g., a request to rename 'tim' to 'Tim'), 3486 * we will treat this as a special case in the 3487 * case-insensitive mode: as long as the source name 3488 * is an exact match, we will allow this to proceed as 3489 * a name-change request. 3490 */ 3491 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3492 (zfsvfs->z_case == ZFS_CASE_MIXED && 3493 flags & FIGNORECASE)) && 3494 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3495 &error) == 0) { 3496 /* 3497 * case preserving rename request, require exact 3498 * name matches 3499 */ 3500 zflg |= ZCIEXACT; 3501 zflg &= ~ZCILOOK; 3502 } 3503 } 3504 3505 /* 3506 * If the source and destination directories are the same, we should 3507 * grab the z_name_lock of that directory only once. 3508 */ 3509 if (sdzp == tdzp) { 3510 zflg |= ZHAVELOCK; 3511 rw_enter(&sdzp->z_name_lock, RW_READER); 3512 } 3513 3514 if (cmp < 0) { 3515 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3516 ZEXISTS | zflg, NULL, NULL); 3517 terr = zfs_dirent_lock(&tdl, 3518 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3519 } else { 3520 terr = zfs_dirent_lock(&tdl, 3521 tdzp, tnm, &tzp, zflg, NULL, NULL); 3522 serr = zfs_dirent_lock(&sdl, 3523 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3524 NULL, NULL); 3525 } 3526 3527 if (serr) { 3528 /* 3529 * Source entry invalid or not there. 3530 */ 3531 if (!terr) { 3532 zfs_dirent_unlock(tdl); 3533 if (tzp) 3534 VN_RELE(ZTOV(tzp)); 3535 } 3536 3537 if (sdzp == tdzp) 3538 rw_exit(&sdzp->z_name_lock); 3539 3540 if (strcmp(snm, "..") == 0) 3541 serr = SET_ERROR(EINVAL); 3542 ZFS_EXIT(zfsvfs); 3543 return (serr); 3544 } 3545 if (terr) { 3546 zfs_dirent_unlock(sdl); 3547 VN_RELE(ZTOV(szp)); 3548 3549 if (sdzp == tdzp) 3550 rw_exit(&sdzp->z_name_lock); 3551 3552 if (strcmp(tnm, "..") == 0) 3553 terr = SET_ERROR(EINVAL); 3554 ZFS_EXIT(zfsvfs); 3555 return (terr); 3556 } 3557 3558 /* 3559 * Must have write access at the source to remove the old entry 3560 * and write access at the target to create the new entry. 3561 * Note that if target and source are the same, this can be 3562 * done in a single check. 3563 */ 3564 3565 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3566 goto out; 3567 3568 if (ZTOV(szp)->v_type == VDIR) { 3569 /* 3570 * Check to make sure rename is valid. 3571 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3572 */ 3573 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3574 goto out; 3575 } 3576 3577 /* 3578 * Does target exist? 3579 */ 3580 if (tzp) { 3581 /* 3582 * Source and target must be the same type. 3583 */ 3584 if (ZTOV(szp)->v_type == VDIR) { 3585 if (ZTOV(tzp)->v_type != VDIR) { 3586 error = SET_ERROR(ENOTDIR); 3587 goto out; 3588 } 3589 } else { 3590 if (ZTOV(tzp)->v_type == VDIR) { 3591 error = SET_ERROR(EISDIR); 3592 goto out; 3593 } 3594 } 3595 /* 3596 * POSIX dictates that when the source and target 3597 * entries refer to the same file object, rename 3598 * must do nothing and exit without error. 3599 */ 3600 if (szp->z_id == tzp->z_id) { 3601 error = 0; 3602 goto out; 3603 } 3604 } 3605 3606 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3607 if (tzp) 3608 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3609 3610 /* 3611 * notify the target directory if it is not the same 3612 * as source directory. 3613 */ 3614 if (tdvp != sdvp) { 3615 vnevent_rename_dest_dir(tdvp, ct); 3616 } 3617 3618 tx = dmu_tx_create(zfsvfs->z_os); 3619 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3620 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3621 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3622 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3623 if (sdzp != tdzp) { 3624 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3625 zfs_sa_upgrade_txholds(tx, tdzp); 3626 } 3627 if (tzp) { 3628 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3629 zfs_sa_upgrade_txholds(tx, tzp); 3630 } 3631 3632 zfs_sa_upgrade_txholds(tx, szp); 3633 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3634 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3635 if (error) { 3636 if (zl != NULL) 3637 zfs_rename_unlock(&zl); 3638 zfs_dirent_unlock(sdl); 3639 zfs_dirent_unlock(tdl); 3640 3641 if (sdzp == tdzp) 3642 rw_exit(&sdzp->z_name_lock); 3643 3644 VN_RELE(ZTOV(szp)); 3645 if (tzp) 3646 VN_RELE(ZTOV(tzp)); 3647 if (error == ERESTART) { 3648 waited = B_TRUE; 3649 dmu_tx_wait(tx); 3650 dmu_tx_abort(tx); 3651 goto top; 3652 } 3653 dmu_tx_abort(tx); 3654 ZFS_EXIT(zfsvfs); 3655 return (error); 3656 } 3657 3658 if (tzp) /* Attempt to remove the existing target */ 3659 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3660 3661 if (error == 0) { 3662 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3663 if (error == 0) { 3664 szp->z_pflags |= ZFS_AV_MODIFIED; 3665 3666 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3667 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3668 ASSERT0(error); 3669 3670 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3671 if (error == 0) { 3672 zfs_log_rename(zilog, tx, TX_RENAME | 3673 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3674 sdl->dl_name, tdzp, tdl->dl_name, szp); 3675 3676 /* 3677 * Update path information for the target vnode 3678 */ 3679 vn_renamepath(tdvp, ZTOV(szp), tnm, 3680 strlen(tnm)); 3681 } else { 3682 /* 3683 * At this point, we have successfully created 3684 * the target name, but have failed to remove 3685 * the source name. Since the create was done 3686 * with the ZRENAMING flag, there are 3687 * complications; for one, the link count is 3688 * wrong. The easiest way to deal with this 3689 * is to remove the newly created target, and 3690 * return the original error. This must 3691 * succeed; fortunately, it is very unlikely to 3692 * fail, since we just created it. 3693 */ 3694 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3695 ZRENAMING, NULL), ==, 0); 3696 } 3697 } 3698 } 3699 3700 dmu_tx_commit(tx); 3701 out: 3702 if (zl != NULL) 3703 zfs_rename_unlock(&zl); 3704 3705 zfs_dirent_unlock(sdl); 3706 zfs_dirent_unlock(tdl); 3707 3708 if (sdzp == tdzp) 3709 rw_exit(&sdzp->z_name_lock); 3710 3711 3712 VN_RELE(ZTOV(szp)); 3713 if (tzp) 3714 VN_RELE(ZTOV(tzp)); 3715 3716 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3717 zil_commit(zilog, 0); 3718 3719 ZFS_EXIT(zfsvfs); 3720 return (error); 3721 } 3722 3723 /* 3724 * Insert the indicated symbolic reference entry into the directory. 3725 * 3726 * IN: dvp - Directory to contain new symbolic link. 3727 * link - Name for new symlink entry. 3728 * vap - Attributes of new entry. 3729 * cr - credentials of caller. 3730 * ct - caller context 3731 * flags - case flags 3732 * 3733 * RETURN: 0 on success, error code on failure. 3734 * 3735 * Timestamps: 3736 * dvp - ctime|mtime updated 3737 */ 3738 /*ARGSUSED*/ 3739 static int 3740 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3741 caller_context_t *ct, int flags) 3742 { 3743 znode_t *zp, *dzp = VTOZ(dvp); 3744 zfs_dirlock_t *dl; 3745 dmu_tx_t *tx; 3746 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3747 zilog_t *zilog; 3748 uint64_t len = strlen(link); 3749 int error; 3750 int zflg = ZNEW; 3751 zfs_acl_ids_t acl_ids; 3752 boolean_t fuid_dirtied; 3753 uint64_t txtype = TX_SYMLINK; 3754 boolean_t waited = B_FALSE; 3755 3756 ASSERT(vap->va_type == VLNK); 3757 3758 ZFS_ENTER(zfsvfs); 3759 ZFS_VERIFY_ZP(dzp); 3760 zilog = zfsvfs->z_log; 3761 3762 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3763 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3764 ZFS_EXIT(zfsvfs); 3765 return (SET_ERROR(EILSEQ)); 3766 } 3767 if (flags & FIGNORECASE) 3768 zflg |= ZCILOOK; 3769 3770 if (len > MAXPATHLEN) { 3771 ZFS_EXIT(zfsvfs); 3772 return (SET_ERROR(ENAMETOOLONG)); 3773 } 3774 3775 if ((error = zfs_acl_ids_create(dzp, 0, 3776 vap, cr, NULL, &acl_ids)) != 0) { 3777 ZFS_EXIT(zfsvfs); 3778 return (error); 3779 } 3780 top: 3781 /* 3782 * Attempt to lock directory; fail if entry already exists. 3783 */ 3784 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3785 if (error) { 3786 zfs_acl_ids_free(&acl_ids); 3787 ZFS_EXIT(zfsvfs); 3788 return (error); 3789 } 3790 3791 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3792 zfs_acl_ids_free(&acl_ids); 3793 zfs_dirent_unlock(dl); 3794 ZFS_EXIT(zfsvfs); 3795 return (error); 3796 } 3797 3798 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3799 zfs_acl_ids_free(&acl_ids); 3800 zfs_dirent_unlock(dl); 3801 ZFS_EXIT(zfsvfs); 3802 return (SET_ERROR(EDQUOT)); 3803 } 3804 tx = dmu_tx_create(zfsvfs->z_os); 3805 fuid_dirtied = zfsvfs->z_fuid_dirty; 3806 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3807 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3808 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3809 ZFS_SA_BASE_ATTR_SIZE + len); 3810 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3811 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3812 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3813 acl_ids.z_aclp->z_acl_bytes); 3814 } 3815 if (fuid_dirtied) 3816 zfs_fuid_txhold(zfsvfs, tx); 3817 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3818 if (error) { 3819 zfs_dirent_unlock(dl); 3820 if (error == ERESTART) { 3821 waited = B_TRUE; 3822 dmu_tx_wait(tx); 3823 dmu_tx_abort(tx); 3824 goto top; 3825 } 3826 zfs_acl_ids_free(&acl_ids); 3827 dmu_tx_abort(tx); 3828 ZFS_EXIT(zfsvfs); 3829 return (error); 3830 } 3831 3832 /* 3833 * Create a new object for the symlink. 3834 * for version 4 ZPL datsets the symlink will be an SA attribute 3835 */ 3836 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3837 3838 if (fuid_dirtied) 3839 zfs_fuid_sync(zfsvfs, tx); 3840 3841 mutex_enter(&zp->z_lock); 3842 if (zp->z_is_sa) 3843 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3844 link, len, tx); 3845 else 3846 zfs_sa_symlink(zp, link, len, tx); 3847 mutex_exit(&zp->z_lock); 3848 3849 zp->z_size = len; 3850 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3851 &zp->z_size, sizeof (zp->z_size), tx); 3852 /* 3853 * Insert the new object into the directory. 3854 */ 3855 (void) zfs_link_create(dl, zp, tx, ZNEW); 3856 3857 if (flags & FIGNORECASE) 3858 txtype |= TX_CI; 3859 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3860 3861 zfs_acl_ids_free(&acl_ids); 3862 3863 dmu_tx_commit(tx); 3864 3865 zfs_dirent_unlock(dl); 3866 3867 VN_RELE(ZTOV(zp)); 3868 3869 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3870 zil_commit(zilog, 0); 3871 3872 ZFS_EXIT(zfsvfs); 3873 return (error); 3874 } 3875 3876 /* 3877 * Return, in the buffer contained in the provided uio structure, 3878 * the symbolic path referred to by vp. 3879 * 3880 * IN: vp - vnode of symbolic link. 3881 * uio - structure to contain the link path. 3882 * cr - credentials of caller. 3883 * ct - caller context 3884 * 3885 * OUT: uio - structure containing the link path. 3886 * 3887 * RETURN: 0 on success, error code on failure. 3888 * 3889 * Timestamps: 3890 * vp - atime updated 3891 */ 3892 /* ARGSUSED */ 3893 static int 3894 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3895 { 3896 znode_t *zp = VTOZ(vp); 3897 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3898 int error; 3899 3900 ZFS_ENTER(zfsvfs); 3901 ZFS_VERIFY_ZP(zp); 3902 3903 mutex_enter(&zp->z_lock); 3904 if (zp->z_is_sa) 3905 error = sa_lookup_uio(zp->z_sa_hdl, 3906 SA_ZPL_SYMLINK(zfsvfs), uio); 3907 else 3908 error = zfs_sa_readlink(zp, uio); 3909 mutex_exit(&zp->z_lock); 3910 3911 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3912 3913 ZFS_EXIT(zfsvfs); 3914 return (error); 3915 } 3916 3917 /* 3918 * Insert a new entry into directory tdvp referencing svp. 3919 * 3920 * IN: tdvp - Directory to contain new entry. 3921 * svp - vnode of new entry. 3922 * name - name of new entry. 3923 * cr - credentials of caller. 3924 * ct - caller context 3925 * 3926 * RETURN: 0 on success, error code on failure. 3927 * 3928 * Timestamps: 3929 * tdvp - ctime|mtime updated 3930 * svp - ctime updated 3931 */ 3932 /* ARGSUSED */ 3933 static int 3934 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3935 caller_context_t *ct, int flags) 3936 { 3937 znode_t *dzp = VTOZ(tdvp); 3938 znode_t *tzp, *szp; 3939 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3940 zilog_t *zilog; 3941 zfs_dirlock_t *dl; 3942 dmu_tx_t *tx; 3943 vnode_t *realvp; 3944 int error; 3945 int zf = ZNEW; 3946 uint64_t parent; 3947 uid_t owner; 3948 boolean_t waited = B_FALSE; 3949 3950 ASSERT(tdvp->v_type == VDIR); 3951 3952 ZFS_ENTER(zfsvfs); 3953 ZFS_VERIFY_ZP(dzp); 3954 zilog = zfsvfs->z_log; 3955 3956 if (VOP_REALVP(svp, &realvp, ct) == 0) 3957 svp = realvp; 3958 3959 /* 3960 * POSIX dictates that we return EPERM here. 3961 * Better choices include ENOTSUP or EISDIR. 3962 */ 3963 if (svp->v_type == VDIR) { 3964 ZFS_EXIT(zfsvfs); 3965 return (SET_ERROR(EPERM)); 3966 } 3967 3968 szp = VTOZ(svp); 3969 ZFS_VERIFY_ZP(szp); 3970 3971 /* 3972 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3973 * ctldir appear to have the same v_vfsp. 3974 */ 3975 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 3976 ZFS_EXIT(zfsvfs); 3977 return (SET_ERROR(EXDEV)); 3978 } 3979 3980 /* Prevent links to .zfs/shares files */ 3981 3982 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3983 &parent, sizeof (uint64_t))) != 0) { 3984 ZFS_EXIT(zfsvfs); 3985 return (error); 3986 } 3987 if (parent == zfsvfs->z_shares_dir) { 3988 ZFS_EXIT(zfsvfs); 3989 return (SET_ERROR(EPERM)); 3990 } 3991 3992 if (zfsvfs->z_utf8 && u8_validate(name, 3993 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3994 ZFS_EXIT(zfsvfs); 3995 return (SET_ERROR(EILSEQ)); 3996 } 3997 if (flags & FIGNORECASE) 3998 zf |= ZCILOOK; 3999 4000 /* 4001 * We do not support links between attributes and non-attributes 4002 * because of the potential security risk of creating links 4003 * into "normal" file space in order to circumvent restrictions 4004 * imposed in attribute space. 4005 */ 4006 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4007 ZFS_EXIT(zfsvfs); 4008 return (SET_ERROR(EINVAL)); 4009 } 4010 4011 4012 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4013 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4014 ZFS_EXIT(zfsvfs); 4015 return (SET_ERROR(EPERM)); 4016 } 4017 4018 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4019 ZFS_EXIT(zfsvfs); 4020 return (error); 4021 } 4022 4023 top: 4024 /* 4025 * Attempt to lock directory; fail if entry already exists. 4026 */ 4027 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4028 if (error) { 4029 ZFS_EXIT(zfsvfs); 4030 return (error); 4031 } 4032 4033 tx = dmu_tx_create(zfsvfs->z_os); 4034 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4035 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4036 zfs_sa_upgrade_txholds(tx, szp); 4037 zfs_sa_upgrade_txholds(tx, dzp); 4038 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4039 if (error) { 4040 zfs_dirent_unlock(dl); 4041 if (error == ERESTART) { 4042 waited = B_TRUE; 4043 dmu_tx_wait(tx); 4044 dmu_tx_abort(tx); 4045 goto top; 4046 } 4047 dmu_tx_abort(tx); 4048 ZFS_EXIT(zfsvfs); 4049 return (error); 4050 } 4051 4052 error = zfs_link_create(dl, szp, tx, 0); 4053 4054 if (error == 0) { 4055 uint64_t txtype = TX_LINK; 4056 if (flags & FIGNORECASE) 4057 txtype |= TX_CI; 4058 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4059 } 4060 4061 dmu_tx_commit(tx); 4062 4063 zfs_dirent_unlock(dl); 4064 4065 if (error == 0) { 4066 vnevent_link(svp, ct); 4067 } 4068 4069 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4070 zil_commit(zilog, 0); 4071 4072 ZFS_EXIT(zfsvfs); 4073 return (error); 4074 } 4075 4076 /* 4077 * zfs_null_putapage() is used when the file system has been force 4078 * unmounted. It just drops the pages. 4079 */ 4080 /* ARGSUSED */ 4081 static int 4082 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4083 size_t *lenp, int flags, cred_t *cr) 4084 { 4085 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4086 return (0); 4087 } 4088 4089 /* 4090 * Push a page out to disk, klustering if possible. 4091 * 4092 * IN: vp - file to push page to. 4093 * pp - page to push. 4094 * flags - additional flags. 4095 * cr - credentials of caller. 4096 * 4097 * OUT: offp - start of range pushed. 4098 * lenp - len of range pushed. 4099 * 4100 * RETURN: 0 on success, error code on failure. 4101 * 4102 * NOTE: callers must have locked the page to be pushed. On 4103 * exit, the page (and all other pages in the kluster) must be 4104 * unlocked. 4105 */ 4106 /* ARGSUSED */ 4107 static int 4108 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4109 size_t *lenp, int flags, cred_t *cr) 4110 { 4111 znode_t *zp = VTOZ(vp); 4112 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4113 dmu_tx_t *tx; 4114 u_offset_t off, koff; 4115 size_t len, klen; 4116 int err; 4117 4118 off = pp->p_offset; 4119 len = PAGESIZE; 4120 /* 4121 * If our blocksize is bigger than the page size, try to kluster 4122 * multiple pages so that we write a full block (thus avoiding 4123 * a read-modify-write). 4124 */ 4125 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4126 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4127 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4128 ASSERT(koff <= zp->z_size); 4129 if (koff + klen > zp->z_size) 4130 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4131 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4132 } 4133 ASSERT3U(btop(len), ==, btopr(len)); 4134 4135 /* 4136 * Can't push pages past end-of-file. 4137 */ 4138 if (off >= zp->z_size) { 4139 /* ignore all pages */ 4140 err = 0; 4141 goto out; 4142 } else if (off + len > zp->z_size) { 4143 int npages = btopr(zp->z_size - off); 4144 page_t *trunc; 4145 4146 page_list_break(&pp, &trunc, npages); 4147 /* ignore pages past end of file */ 4148 if (trunc) 4149 pvn_write_done(trunc, flags); 4150 len = zp->z_size - off; 4151 } 4152 4153 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4154 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4155 err = SET_ERROR(EDQUOT); 4156 goto out; 4157 } 4158 tx = dmu_tx_create(zfsvfs->z_os); 4159 dmu_tx_hold_write(tx, zp->z_id, off, len); 4160 4161 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4162 zfs_sa_upgrade_txholds(tx, zp); 4163 err = dmu_tx_assign(tx, TXG_WAIT); 4164 if (err != 0) { 4165 dmu_tx_abort(tx); 4166 goto out; 4167 } 4168 4169 if (zp->z_blksz <= PAGESIZE) { 4170 caddr_t va = zfs_map_page(pp, S_READ); 4171 ASSERT3U(len, <=, PAGESIZE); 4172 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4173 zfs_unmap_page(pp, va); 4174 } else { 4175 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4176 } 4177 4178 if (err == 0) { 4179 uint64_t mtime[2], ctime[2]; 4180 sa_bulk_attr_t bulk[3]; 4181 int count = 0; 4182 4183 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4184 &mtime, 16); 4185 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4186 &ctime, 16); 4187 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4188 &zp->z_pflags, 8); 4189 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4190 B_TRUE); 4191 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4192 } 4193 dmu_tx_commit(tx); 4194 4195 out: 4196 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4197 if (offp) 4198 *offp = off; 4199 if (lenp) 4200 *lenp = len; 4201 4202 return (err); 4203 } 4204 4205 /* 4206 * Copy the portion of the file indicated from pages into the file. 4207 * The pages are stored in a page list attached to the files vnode. 4208 * 4209 * IN: vp - vnode of file to push page data to. 4210 * off - position in file to put data. 4211 * len - amount of data to write. 4212 * flags - flags to control the operation. 4213 * cr - credentials of caller. 4214 * ct - caller context. 4215 * 4216 * RETURN: 0 on success, error code on failure. 4217 * 4218 * Timestamps: 4219 * vp - ctime|mtime updated 4220 */ 4221 /*ARGSUSED*/ 4222 static int 4223 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4224 caller_context_t *ct) 4225 { 4226 znode_t *zp = VTOZ(vp); 4227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4228 page_t *pp; 4229 size_t io_len; 4230 u_offset_t io_off; 4231 uint_t blksz; 4232 rl_t *rl; 4233 int error = 0; 4234 4235 ZFS_ENTER(zfsvfs); 4236 ZFS_VERIFY_ZP(zp); 4237 4238 /* 4239 * There's nothing to do if no data is cached. 4240 */ 4241 if (!vn_has_cached_data(vp)) { 4242 ZFS_EXIT(zfsvfs); 4243 return (0); 4244 } 4245 4246 /* 4247 * Align this request to the file block size in case we kluster. 4248 * XXX - this can result in pretty aggresive locking, which can 4249 * impact simultanious read/write access. One option might be 4250 * to break up long requests (len == 0) into block-by-block 4251 * operations to get narrower locking. 4252 */ 4253 blksz = zp->z_blksz; 4254 if (ISP2(blksz)) 4255 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4256 else 4257 io_off = 0; 4258 if (len > 0 && ISP2(blksz)) 4259 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4260 else 4261 io_len = 0; 4262 4263 if (io_len == 0) { 4264 /* 4265 * Search the entire vp list for pages >= io_off. 4266 */ 4267 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4268 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4269 goto out; 4270 } 4271 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4272 4273 if (off > zp->z_size) { 4274 /* past end of file */ 4275 zfs_range_unlock(rl); 4276 ZFS_EXIT(zfsvfs); 4277 return (0); 4278 } 4279 4280 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4281 4282 for (off = io_off; io_off < off + len; io_off += io_len) { 4283 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4284 pp = page_lookup(vp, io_off, 4285 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4286 } else { 4287 pp = page_lookup_nowait(vp, io_off, 4288 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4289 } 4290 4291 if (pp != NULL && pvn_getdirty(pp, flags)) { 4292 int err; 4293 4294 /* 4295 * Found a dirty page to push 4296 */ 4297 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4298 if (err) 4299 error = err; 4300 } else { 4301 io_len = PAGESIZE; 4302 } 4303 } 4304 out: 4305 zfs_range_unlock(rl); 4306 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4307 zil_commit(zfsvfs->z_log, zp->z_id); 4308 ZFS_EXIT(zfsvfs); 4309 return (error); 4310 } 4311 4312 /*ARGSUSED*/ 4313 void 4314 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4315 { 4316 znode_t *zp = VTOZ(vp); 4317 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4318 int error; 4319 4320 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4321 if (zp->z_sa_hdl == NULL) { 4322 /* 4323 * The fs has been unmounted, or we did a 4324 * suspend/resume and this file no longer exists. 4325 */ 4326 if (vn_has_cached_data(vp)) { 4327 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4328 B_INVAL, cr); 4329 } 4330 4331 mutex_enter(&zp->z_lock); 4332 mutex_enter(&vp->v_lock); 4333 ASSERT(vp->v_count == 1); 4334 vp->v_count = 0; 4335 mutex_exit(&vp->v_lock); 4336 mutex_exit(&zp->z_lock); 4337 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4338 zfs_znode_free(zp); 4339 return; 4340 } 4341 4342 /* 4343 * Attempt to push any data in the page cache. If this fails 4344 * we will get kicked out later in zfs_zinactive(). 4345 */ 4346 if (vn_has_cached_data(vp)) { 4347 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4348 cr); 4349 } 4350 4351 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4352 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4353 4354 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4355 zfs_sa_upgrade_txholds(tx, zp); 4356 error = dmu_tx_assign(tx, TXG_WAIT); 4357 if (error) { 4358 dmu_tx_abort(tx); 4359 } else { 4360 mutex_enter(&zp->z_lock); 4361 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4362 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4363 zp->z_atime_dirty = 0; 4364 mutex_exit(&zp->z_lock); 4365 dmu_tx_commit(tx); 4366 } 4367 } 4368 4369 zfs_zinactive(zp); 4370 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4371 } 4372 4373 /* 4374 * Bounds-check the seek operation. 4375 * 4376 * IN: vp - vnode seeking within 4377 * ooff - old file offset 4378 * noffp - pointer to new file offset 4379 * ct - caller context 4380 * 4381 * RETURN: 0 on success, EINVAL if new offset invalid. 4382 */ 4383 /* ARGSUSED */ 4384 static int 4385 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4386 caller_context_t *ct) 4387 { 4388 if (vp->v_type == VDIR) 4389 return (0); 4390 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4391 } 4392 4393 /* 4394 * Pre-filter the generic locking function to trap attempts to place 4395 * a mandatory lock on a memory mapped file. 4396 */ 4397 static int 4398 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4399 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4400 { 4401 znode_t *zp = VTOZ(vp); 4402 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4403 4404 ZFS_ENTER(zfsvfs); 4405 ZFS_VERIFY_ZP(zp); 4406 4407 /* 4408 * We are following the UFS semantics with respect to mapcnt 4409 * here: If we see that the file is mapped already, then we will 4410 * return an error, but we don't worry about races between this 4411 * function and zfs_map(). 4412 */ 4413 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4414 ZFS_EXIT(zfsvfs); 4415 return (SET_ERROR(EAGAIN)); 4416 } 4417 ZFS_EXIT(zfsvfs); 4418 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4419 } 4420 4421 /* 4422 * If we can't find a page in the cache, we will create a new page 4423 * and fill it with file data. For efficiency, we may try to fill 4424 * multiple pages at once (klustering) to fill up the supplied page 4425 * list. Note that the pages to be filled are held with an exclusive 4426 * lock to prevent access by other threads while they are being filled. 4427 */ 4428 static int 4429 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4430 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4431 { 4432 znode_t *zp = VTOZ(vp); 4433 page_t *pp, *cur_pp; 4434 objset_t *os = zp->z_zfsvfs->z_os; 4435 u_offset_t io_off, total; 4436 size_t io_len; 4437 int err; 4438 4439 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4440 /* 4441 * We only have a single page, don't bother klustering 4442 */ 4443 io_off = off; 4444 io_len = PAGESIZE; 4445 pp = page_create_va(vp, io_off, io_len, 4446 PG_EXCL | PG_WAIT, seg, addr); 4447 } else { 4448 /* 4449 * Try to find enough pages to fill the page list 4450 */ 4451 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4452 &io_len, off, plsz, 0); 4453 } 4454 if (pp == NULL) { 4455 /* 4456 * The page already exists, nothing to do here. 4457 */ 4458 *pl = NULL; 4459 return (0); 4460 } 4461 4462 /* 4463 * Fill the pages in the kluster. 4464 */ 4465 cur_pp = pp; 4466 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4467 caddr_t va; 4468 4469 ASSERT3U(io_off, ==, cur_pp->p_offset); 4470 va = zfs_map_page(cur_pp, S_WRITE); 4471 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4472 DMU_READ_PREFETCH); 4473 zfs_unmap_page(cur_pp, va); 4474 if (err) { 4475 /* On error, toss the entire kluster */ 4476 pvn_read_done(pp, B_ERROR); 4477 /* convert checksum errors into IO errors */ 4478 if (err == ECKSUM) 4479 err = SET_ERROR(EIO); 4480 return (err); 4481 } 4482 cur_pp = cur_pp->p_next; 4483 } 4484 4485 /* 4486 * Fill in the page list array from the kluster starting 4487 * from the desired offset `off'. 4488 * NOTE: the page list will always be null terminated. 4489 */ 4490 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4491 ASSERT(pl == NULL || (*pl)->p_offset == off); 4492 4493 return (0); 4494 } 4495 4496 /* 4497 * Return pointers to the pages for the file region [off, off + len] 4498 * in the pl array. If plsz is greater than len, this function may 4499 * also return page pointers from after the specified region 4500 * (i.e. the region [off, off + plsz]). These additional pages are 4501 * only returned if they are already in the cache, or were created as 4502 * part of a klustered read. 4503 * 4504 * IN: vp - vnode of file to get data from. 4505 * off - position in file to get data from. 4506 * len - amount of data to retrieve. 4507 * plsz - length of provided page list. 4508 * seg - segment to obtain pages for. 4509 * addr - virtual address of fault. 4510 * rw - mode of created pages. 4511 * cr - credentials of caller. 4512 * ct - caller context. 4513 * 4514 * OUT: protp - protection mode of created pages. 4515 * pl - list of pages created. 4516 * 4517 * RETURN: 0 on success, error code on failure. 4518 * 4519 * Timestamps: 4520 * vp - atime updated 4521 */ 4522 /* ARGSUSED */ 4523 static int 4524 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4525 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4526 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4527 { 4528 znode_t *zp = VTOZ(vp); 4529 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4530 page_t **pl0 = pl; 4531 int err = 0; 4532 4533 /* we do our own caching, faultahead is unnecessary */ 4534 if (pl == NULL) 4535 return (0); 4536 else if (len > plsz) 4537 len = plsz; 4538 else 4539 len = P2ROUNDUP(len, PAGESIZE); 4540 ASSERT(plsz >= len); 4541 4542 ZFS_ENTER(zfsvfs); 4543 ZFS_VERIFY_ZP(zp); 4544 4545 if (protp) 4546 *protp = PROT_ALL; 4547 4548 /* 4549 * Loop through the requested range [off, off + len) looking 4550 * for pages. If we don't find a page, we will need to create 4551 * a new page and fill it with data from the file. 4552 */ 4553 while (len > 0) { 4554 if (*pl = page_lookup(vp, off, SE_SHARED)) 4555 *(pl+1) = NULL; 4556 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4557 goto out; 4558 while (*pl) { 4559 ASSERT3U((*pl)->p_offset, ==, off); 4560 off += PAGESIZE; 4561 addr += PAGESIZE; 4562 if (len > 0) { 4563 ASSERT3U(len, >=, PAGESIZE); 4564 len -= PAGESIZE; 4565 } 4566 ASSERT3U(plsz, >=, PAGESIZE); 4567 plsz -= PAGESIZE; 4568 pl++; 4569 } 4570 } 4571 4572 /* 4573 * Fill out the page array with any pages already in the cache. 4574 */ 4575 while (plsz > 0 && 4576 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4577 off += PAGESIZE; 4578 plsz -= PAGESIZE; 4579 } 4580 out: 4581 if (err) { 4582 /* 4583 * Release any pages we have previously locked. 4584 */ 4585 while (pl > pl0) 4586 page_unlock(*--pl); 4587 } else { 4588 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4589 } 4590 4591 *pl = NULL; 4592 4593 ZFS_EXIT(zfsvfs); 4594 return (err); 4595 } 4596 4597 /* 4598 * Request a memory map for a section of a file. This code interacts 4599 * with common code and the VM system as follows: 4600 * 4601 * - common code calls mmap(), which ends up in smmap_common() 4602 * - this calls VOP_MAP(), which takes you into (say) zfs 4603 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4604 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4605 * - zfs_addmap() updates z_mapcnt 4606 */ 4607 /*ARGSUSED*/ 4608 static int 4609 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4610 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4611 caller_context_t *ct) 4612 { 4613 znode_t *zp = VTOZ(vp); 4614 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4615 segvn_crargs_t vn_a; 4616 int error; 4617 4618 ZFS_ENTER(zfsvfs); 4619 ZFS_VERIFY_ZP(zp); 4620 4621 if ((prot & PROT_WRITE) && (zp->z_pflags & 4622 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4623 ZFS_EXIT(zfsvfs); 4624 return (SET_ERROR(EPERM)); 4625 } 4626 4627 if ((prot & (PROT_READ | PROT_EXEC)) && 4628 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4629 ZFS_EXIT(zfsvfs); 4630 return (SET_ERROR(EACCES)); 4631 } 4632 4633 if (vp->v_flag & VNOMAP) { 4634 ZFS_EXIT(zfsvfs); 4635 return (SET_ERROR(ENOSYS)); 4636 } 4637 4638 if (off < 0 || len > MAXOFFSET_T - off) { 4639 ZFS_EXIT(zfsvfs); 4640 return (SET_ERROR(ENXIO)); 4641 } 4642 4643 if (vp->v_type != VREG) { 4644 ZFS_EXIT(zfsvfs); 4645 return (SET_ERROR(ENODEV)); 4646 } 4647 4648 /* 4649 * If file is locked, disallow mapping. 4650 */ 4651 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4652 ZFS_EXIT(zfsvfs); 4653 return (SET_ERROR(EAGAIN)); 4654 } 4655 4656 as_rangelock(as); 4657 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4658 if (error != 0) { 4659 as_rangeunlock(as); 4660 ZFS_EXIT(zfsvfs); 4661 return (error); 4662 } 4663 4664 vn_a.vp = vp; 4665 vn_a.offset = (u_offset_t)off; 4666 vn_a.type = flags & MAP_TYPE; 4667 vn_a.prot = prot; 4668 vn_a.maxprot = maxprot; 4669 vn_a.cred = cr; 4670 vn_a.amp = NULL; 4671 vn_a.flags = flags & ~MAP_TYPE; 4672 vn_a.szc = 0; 4673 vn_a.lgrp_mem_policy_flags = 0; 4674 4675 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4676 4677 as_rangeunlock(as); 4678 ZFS_EXIT(zfsvfs); 4679 return (error); 4680 } 4681 4682 /* ARGSUSED */ 4683 static int 4684 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4685 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4686 caller_context_t *ct) 4687 { 4688 uint64_t pages = btopr(len); 4689 4690 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4691 return (0); 4692 } 4693 4694 /* 4695 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4696 * more accurate mtime for the associated file. Since we don't have a way of 4697 * detecting when the data was actually modified, we have to resort to 4698 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4699 * last page is pushed. The problem occurs when the msync() call is omitted, 4700 * which by far the most common case: 4701 * 4702 * open() 4703 * mmap() 4704 * <modify memory> 4705 * munmap() 4706 * close() 4707 * <time lapse> 4708 * putpage() via fsflush 4709 * 4710 * If we wait until fsflush to come along, we can have a modification time that 4711 * is some arbitrary point in the future. In order to prevent this in the 4712 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4713 * torn down. 4714 */ 4715 /* ARGSUSED */ 4716 static int 4717 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4718 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4719 caller_context_t *ct) 4720 { 4721 uint64_t pages = btopr(len); 4722 4723 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4724 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4725 4726 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4727 vn_has_cached_data(vp)) 4728 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4729 4730 return (0); 4731 } 4732 4733 /* 4734 * Free or allocate space in a file. Currently, this function only 4735 * supports the `F_FREESP' command. However, this command is somewhat 4736 * misnamed, as its functionality includes the ability to allocate as 4737 * well as free space. 4738 * 4739 * IN: vp - vnode of file to free data in. 4740 * cmd - action to take (only F_FREESP supported). 4741 * bfp - section of file to free/alloc. 4742 * flag - current file open mode flags. 4743 * offset - current file offset. 4744 * cr - credentials of caller [UNUSED]. 4745 * ct - caller context. 4746 * 4747 * RETURN: 0 on success, error code on failure. 4748 * 4749 * Timestamps: 4750 * vp - ctime|mtime updated 4751 */ 4752 /* ARGSUSED */ 4753 static int 4754 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4755 offset_t offset, cred_t *cr, caller_context_t *ct) 4756 { 4757 znode_t *zp = VTOZ(vp); 4758 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4759 uint64_t off, len; 4760 int error; 4761 4762 ZFS_ENTER(zfsvfs); 4763 ZFS_VERIFY_ZP(zp); 4764 4765 if (cmd != F_FREESP) { 4766 ZFS_EXIT(zfsvfs); 4767 return (SET_ERROR(EINVAL)); 4768 } 4769 4770 /* 4771 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4772 * callers might not be able to detect properly that we are read-only, 4773 * so check it explicitly here. 4774 */ 4775 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4776 ZFS_EXIT(zfsvfs); 4777 return (SET_ERROR(EROFS)); 4778 } 4779 4780 if (error = convoff(vp, bfp, 0, offset)) { 4781 ZFS_EXIT(zfsvfs); 4782 return (error); 4783 } 4784 4785 if (bfp->l_len < 0) { 4786 ZFS_EXIT(zfsvfs); 4787 return (SET_ERROR(EINVAL)); 4788 } 4789 4790 off = bfp->l_start; 4791 len = bfp->l_len; /* 0 means from off to end of file */ 4792 4793 error = zfs_freesp(zp, off, len, flag, TRUE); 4794 4795 if (error == 0 && off == 0 && len == 0) 4796 vnevent_truncate(ZTOV(zp), ct); 4797 4798 ZFS_EXIT(zfsvfs); 4799 return (error); 4800 } 4801 4802 /*ARGSUSED*/ 4803 static int 4804 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4805 { 4806 znode_t *zp = VTOZ(vp); 4807 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4808 uint32_t gen; 4809 uint64_t gen64; 4810 uint64_t object = zp->z_id; 4811 zfid_short_t *zfid; 4812 int size, i, error; 4813 4814 ZFS_ENTER(zfsvfs); 4815 ZFS_VERIFY_ZP(zp); 4816 4817 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4818 &gen64, sizeof (uint64_t))) != 0) { 4819 ZFS_EXIT(zfsvfs); 4820 return (error); 4821 } 4822 4823 gen = (uint32_t)gen64; 4824 4825 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4826 if (fidp->fid_len < size) { 4827 fidp->fid_len = size; 4828 ZFS_EXIT(zfsvfs); 4829 return (SET_ERROR(ENOSPC)); 4830 } 4831 4832 zfid = (zfid_short_t *)fidp; 4833 4834 zfid->zf_len = size; 4835 4836 for (i = 0; i < sizeof (zfid->zf_object); i++) 4837 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4838 4839 /* Must have a non-zero generation number to distinguish from .zfs */ 4840 if (gen == 0) 4841 gen = 1; 4842 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4843 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4844 4845 if (size == LONG_FID_LEN) { 4846 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4847 zfid_long_t *zlfid; 4848 4849 zlfid = (zfid_long_t *)fidp; 4850 4851 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4852 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4853 4854 /* XXX - this should be the generation number for the objset */ 4855 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4856 zlfid->zf_setgen[i] = 0; 4857 } 4858 4859 ZFS_EXIT(zfsvfs); 4860 return (0); 4861 } 4862 4863 static int 4864 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4865 caller_context_t *ct) 4866 { 4867 znode_t *zp, *xzp; 4868 zfsvfs_t *zfsvfs; 4869 zfs_dirlock_t *dl; 4870 int error; 4871 4872 switch (cmd) { 4873 case _PC_LINK_MAX: 4874 *valp = ULONG_MAX; 4875 return (0); 4876 4877 case _PC_FILESIZEBITS: 4878 *valp = 64; 4879 return (0); 4880 4881 case _PC_XATTR_EXISTS: 4882 zp = VTOZ(vp); 4883 zfsvfs = zp->z_zfsvfs; 4884 ZFS_ENTER(zfsvfs); 4885 ZFS_VERIFY_ZP(zp); 4886 *valp = 0; 4887 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4888 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4889 if (error == 0) { 4890 zfs_dirent_unlock(dl); 4891 if (!zfs_dirempty(xzp)) 4892 *valp = 1; 4893 VN_RELE(ZTOV(xzp)); 4894 } else if (error == ENOENT) { 4895 /* 4896 * If there aren't extended attributes, it's the 4897 * same as having zero of them. 4898 */ 4899 error = 0; 4900 } 4901 ZFS_EXIT(zfsvfs); 4902 return (error); 4903 4904 case _PC_SATTR_ENABLED: 4905 case _PC_SATTR_EXISTS: 4906 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4907 (vp->v_type == VREG || vp->v_type == VDIR); 4908 return (0); 4909 4910 case _PC_ACCESS_FILTERING: 4911 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4912 vp->v_type == VDIR; 4913 return (0); 4914 4915 case _PC_ACL_ENABLED: 4916 *valp = _ACL_ACE_ENABLED; 4917 return (0); 4918 4919 case _PC_MIN_HOLE_SIZE: 4920 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4921 return (0); 4922 4923 case _PC_TIMESTAMP_RESOLUTION: 4924 /* nanosecond timestamp resolution */ 4925 *valp = 1L; 4926 return (0); 4927 4928 default: 4929 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4930 } 4931 } 4932 4933 /*ARGSUSED*/ 4934 static int 4935 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4936 caller_context_t *ct) 4937 { 4938 znode_t *zp = VTOZ(vp); 4939 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4940 int error; 4941 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4942 4943 ZFS_ENTER(zfsvfs); 4944 ZFS_VERIFY_ZP(zp); 4945 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4946 ZFS_EXIT(zfsvfs); 4947 4948 return (error); 4949 } 4950 4951 /*ARGSUSED*/ 4952 static int 4953 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4954 caller_context_t *ct) 4955 { 4956 znode_t *zp = VTOZ(vp); 4957 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4958 int error; 4959 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4960 zilog_t *zilog = zfsvfs->z_log; 4961 4962 ZFS_ENTER(zfsvfs); 4963 ZFS_VERIFY_ZP(zp); 4964 4965 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4966 4967 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4968 zil_commit(zilog, 0); 4969 4970 ZFS_EXIT(zfsvfs); 4971 return (error); 4972 } 4973 4974 /* 4975 * The smallest read we may consider to loan out an arcbuf. 4976 * This must be a power of 2. 4977 */ 4978 int zcr_blksz_min = (1 << 10); /* 1K */ 4979 /* 4980 * If set to less than the file block size, allow loaning out of an 4981 * arcbuf for a partial block read. This must be a power of 2. 4982 */ 4983 int zcr_blksz_max = (1 << 17); /* 128K */ 4984 4985 /*ARGSUSED*/ 4986 static int 4987 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4988 caller_context_t *ct) 4989 { 4990 znode_t *zp = VTOZ(vp); 4991 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4992 int max_blksz = zfsvfs->z_max_blksz; 4993 uio_t *uio = &xuio->xu_uio; 4994 ssize_t size = uio->uio_resid; 4995 offset_t offset = uio->uio_loffset; 4996 int blksz; 4997 int fullblk, i; 4998 arc_buf_t *abuf; 4999 ssize_t maxsize; 5000 int preamble, postamble; 5001 5002 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5003 return (SET_ERROR(EINVAL)); 5004 5005 ZFS_ENTER(zfsvfs); 5006 ZFS_VERIFY_ZP(zp); 5007 switch (ioflag) { 5008 case UIO_WRITE: 5009 /* 5010 * Loan out an arc_buf for write if write size is bigger than 5011 * max_blksz, and the file's block size is also max_blksz. 5012 */ 5013 blksz = max_blksz; 5014 if (size < blksz || zp->z_blksz != blksz) { 5015 ZFS_EXIT(zfsvfs); 5016 return (SET_ERROR(EINVAL)); 5017 } 5018 /* 5019 * Caller requests buffers for write before knowing where the 5020 * write offset might be (e.g. NFS TCP write). 5021 */ 5022 if (offset == -1) { 5023 preamble = 0; 5024 } else { 5025 preamble = P2PHASE(offset, blksz); 5026 if (preamble) { 5027 preamble = blksz - preamble; 5028 size -= preamble; 5029 } 5030 } 5031 5032 postamble = P2PHASE(size, blksz); 5033 size -= postamble; 5034 5035 fullblk = size / blksz; 5036 (void) dmu_xuio_init(xuio, 5037 (preamble != 0) + fullblk + (postamble != 0)); 5038 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5039 int, postamble, int, 5040 (preamble != 0) + fullblk + (postamble != 0)); 5041 5042 /* 5043 * Have to fix iov base/len for partial buffers. They 5044 * currently represent full arc_buf's. 5045 */ 5046 if (preamble) { 5047 /* data begins in the middle of the arc_buf */ 5048 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5049 blksz); 5050 ASSERT(abuf); 5051 (void) dmu_xuio_add(xuio, abuf, 5052 blksz - preamble, preamble); 5053 } 5054 5055 for (i = 0; i < fullblk; i++) { 5056 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5057 blksz); 5058 ASSERT(abuf); 5059 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5060 } 5061 5062 if (postamble) { 5063 /* data ends in the middle of the arc_buf */ 5064 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5065 blksz); 5066 ASSERT(abuf); 5067 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5068 } 5069 break; 5070 case UIO_READ: 5071 /* 5072 * Loan out an arc_buf for read if the read size is larger than 5073 * the current file block size. Block alignment is not 5074 * considered. Partial arc_buf will be loaned out for read. 5075 */ 5076 blksz = zp->z_blksz; 5077 if (blksz < zcr_blksz_min) 5078 blksz = zcr_blksz_min; 5079 if (blksz > zcr_blksz_max) 5080 blksz = zcr_blksz_max; 5081 /* avoid potential complexity of dealing with it */ 5082 if (blksz > max_blksz) { 5083 ZFS_EXIT(zfsvfs); 5084 return (SET_ERROR(EINVAL)); 5085 } 5086 5087 maxsize = zp->z_size - uio->uio_loffset; 5088 if (size > maxsize) 5089 size = maxsize; 5090 5091 if (size < blksz || vn_has_cached_data(vp)) { 5092 ZFS_EXIT(zfsvfs); 5093 return (SET_ERROR(EINVAL)); 5094 } 5095 break; 5096 default: 5097 ZFS_EXIT(zfsvfs); 5098 return (SET_ERROR(EINVAL)); 5099 } 5100 5101 uio->uio_extflg = UIO_XUIO; 5102 XUIO_XUZC_RW(xuio) = ioflag; 5103 ZFS_EXIT(zfsvfs); 5104 return (0); 5105 } 5106 5107 /*ARGSUSED*/ 5108 static int 5109 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5110 { 5111 int i; 5112 arc_buf_t *abuf; 5113 int ioflag = XUIO_XUZC_RW(xuio); 5114 5115 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5116 5117 i = dmu_xuio_cnt(xuio); 5118 while (i-- > 0) { 5119 abuf = dmu_xuio_arcbuf(xuio, i); 5120 /* 5121 * if abuf == NULL, it must be a write buffer 5122 * that has been returned in zfs_write(). 5123 */ 5124 if (abuf) 5125 dmu_return_arcbuf(abuf); 5126 ASSERT(abuf || ioflag == UIO_WRITE); 5127 } 5128 5129 dmu_xuio_fini(xuio); 5130 return (0); 5131 } 5132 5133 /* 5134 * Predeclare these here so that the compiler assumes that 5135 * this is an "old style" function declaration that does 5136 * not include arguments => we won't get type mismatch errors 5137 * in the initializations that follow. 5138 */ 5139 static int zfs_inval(); 5140 static int zfs_isdir(); 5141 5142 static int 5143 zfs_inval() 5144 { 5145 return (SET_ERROR(EINVAL)); 5146 } 5147 5148 static int 5149 zfs_isdir() 5150 { 5151 return (SET_ERROR(EISDIR)); 5152 } 5153 /* 5154 * Directory vnode operations template 5155 */ 5156 vnodeops_t *zfs_dvnodeops; 5157 const fs_operation_def_t zfs_dvnodeops_template[] = { 5158 VOPNAME_OPEN, { .vop_open = zfs_open }, 5159 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5160 VOPNAME_READ, { .error = zfs_isdir }, 5161 VOPNAME_WRITE, { .error = zfs_isdir }, 5162 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5163 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5164 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5165 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5166 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5167 VOPNAME_CREATE, { .vop_create = zfs_create }, 5168 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5169 VOPNAME_LINK, { .vop_link = zfs_link }, 5170 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5171 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5172 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5173 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5174 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5175 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5176 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5177 VOPNAME_FID, { .vop_fid = zfs_fid }, 5178 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5179 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5180 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5181 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5182 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5183 NULL, NULL 5184 }; 5185 5186 /* 5187 * Regular file vnode operations template 5188 */ 5189 vnodeops_t *zfs_fvnodeops; 5190 const fs_operation_def_t zfs_fvnodeops_template[] = { 5191 VOPNAME_OPEN, { .vop_open = zfs_open }, 5192 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5193 VOPNAME_READ, { .vop_read = zfs_read }, 5194 VOPNAME_WRITE, { .vop_write = zfs_write }, 5195 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5196 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5197 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5198 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5199 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5200 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5201 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5202 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5203 VOPNAME_FID, { .vop_fid = zfs_fid }, 5204 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5205 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5206 VOPNAME_SPACE, { .vop_space = zfs_space }, 5207 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5208 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5209 VOPNAME_MAP, { .vop_map = zfs_map }, 5210 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5211 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5212 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5213 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5214 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5215 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5216 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5217 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5218 NULL, NULL 5219 }; 5220 5221 /* 5222 * Symbolic link vnode operations template 5223 */ 5224 vnodeops_t *zfs_symvnodeops; 5225 const fs_operation_def_t zfs_symvnodeops_template[] = { 5226 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5227 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5228 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5229 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5230 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5231 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5232 VOPNAME_FID, { .vop_fid = zfs_fid }, 5233 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5235 NULL, NULL 5236 }; 5237 5238 /* 5239 * special share hidden files vnode operations template 5240 */ 5241 vnodeops_t *zfs_sharevnodeops; 5242 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5243 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5244 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5245 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5246 VOPNAME_FID, { .vop_fid = zfs_fid }, 5247 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5248 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5249 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5250 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5251 NULL, NULL 5252 }; 5253 5254 /* 5255 * Extended attribute directory vnode operations template 5256 * 5257 * This template is identical to the directory vnodes 5258 * operation template except for restricted operations: 5259 * VOP_MKDIR() 5260 * VOP_SYMLINK() 5261 * 5262 * Note that there are other restrictions embedded in: 5263 * zfs_create() - restrict type to VREG 5264 * zfs_link() - no links into/out of attribute space 5265 * zfs_rename() - no moves into/out of attribute space 5266 */ 5267 vnodeops_t *zfs_xdvnodeops; 5268 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5269 VOPNAME_OPEN, { .vop_open = zfs_open }, 5270 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5271 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5272 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5273 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5274 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5275 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5276 VOPNAME_CREATE, { .vop_create = zfs_create }, 5277 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5278 VOPNAME_LINK, { .vop_link = zfs_link }, 5279 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5280 VOPNAME_MKDIR, { .error = zfs_inval }, 5281 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5282 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5283 VOPNAME_SYMLINK, { .error = zfs_inval }, 5284 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5285 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5286 VOPNAME_FID, { .vop_fid = zfs_fid }, 5287 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5288 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5289 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5290 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5291 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5292 NULL, NULL 5293 }; 5294 5295 /* 5296 * Error vnode operations template 5297 */ 5298 vnodeops_t *zfs_evnodeops; 5299 const fs_operation_def_t zfs_evnodeops_template[] = { 5300 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5301 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5302 NULL, NULL 5303 }; 5304