1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_dir.h> 57 #include <sys/zfs_acl.h> 58 #include <sys/zfs_ioctl.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/dmu.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/dirent.h> 66 #include <sys/policy.h> 67 #include <sys/sunddi.h> 68 #include <sys/filio.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 74 /* 75 * Programming rules. 76 * 77 * Each vnode op performs some logical unit of work. To do this, the ZPL must 78 * properly lock its in-core state, create a DMU transaction, do the work, 79 * record this work in the intent log (ZIL), commit the DMU transaction, 80 * and wait the the intent log to commit if it's is a synchronous operation. 81 * Morover, the vnode ops must work in both normal and log replay context. 82 * The ordering of events is important to avoid deadlocks and references 83 * to freed memory. The example below illustrates the following Big Rules: 84 * 85 * (1) A check must be made in each zfs thread for a mounted file system. 86 * This is done avoiding races using ZFS_ENTER(zfsvfs). 87 * A ZFS_EXIT(zfsvfs) is needed before all returns. 88 * 89 * (2) VN_RELE() should always be the last thing except for zil_commit() 90 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 91 * First, if it's the last reference, the vnode/znode 92 * can be freed, so the zp may point to freed memory. Second, the last 93 * reference will call zfs_zinactive(), which may induce a lot of work -- 94 * pushing cached pages (which acquires range locks) and syncing out 95 * cached atime changes. Third, zfs_zinactive() may require a new tx, 96 * which could deadlock the system if you were already holding one. 97 * 98 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 99 * as they can span dmu_tx_assign() calls. 100 * 101 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 102 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 103 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 104 * This is critical because we don't want to block while holding locks. 105 * Note, in particular, that if a lock is sometimes acquired before 106 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 107 * use a non-blocking assign can deadlock the system. The scenario: 108 * 109 * Thread A has grabbed a lock before calling dmu_tx_assign(). 110 * Thread B is in an already-assigned tx, and blocks for this lock. 111 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 112 * forever, because the previous txg can't quiesce until B's tx commits. 113 * 114 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 115 * then drop all locks, call dmu_tx_wait(), and try again. 116 * 117 * (5) If the operation succeeded, generate the intent log entry for it 118 * before dropping locks. This ensures that the ordering of events 119 * in the intent log matches the order in which they actually occurred. 120 * 121 * (6) At the end of each vnode op, the DMU tx must always commit, 122 * regardless of whether there were any errors. 123 * 124 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 125 * to ensure that synchronous semantics are provided when necessary. 126 * 127 * In general, this is how things should be ordered in each vnode op: 128 * 129 * ZFS_ENTER(zfsvfs); // exit if unmounted 130 * top: 131 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 132 * rw_enter(...); // grab any other locks you need 133 * tx = dmu_tx_create(...); // get DMU tx 134 * dmu_tx_hold_*(); // hold each object you might modify 135 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 136 * if (error) { 137 * rw_exit(...); // drop locks 138 * zfs_dirent_unlock(dl); // unlock directory entry 139 * VN_RELE(...); // release held vnodes 140 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 141 * dmu_tx_wait(tx); 142 * dmu_tx_abort(tx); 143 * goto top; 144 * } 145 * dmu_tx_abort(tx); // abort DMU tx 146 * ZFS_EXIT(zfsvfs); // finished in zfs 147 * return (error); // really out of space 148 * } 149 * error = do_real_work(); // do whatever this VOP does 150 * if (error == 0) 151 * zfs_log_*(...); // on success, make ZIL entry 152 * dmu_tx_commit(tx); // commit DMU tx -- error or not 153 * rw_exit(...); // drop locks 154 * zfs_dirent_unlock(dl); // unlock directory entry 155 * VN_RELE(...); // release held vnodes 156 * zil_commit(zilog, seq, foid); // synchronous when necessary 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // done, report error 159 */ 160 /* ARGSUSED */ 161 static int 162 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 163 { 164 znode_t *zp = VTOZ(*vpp); 165 166 /* Keep a count of the synchronous opens in the znode */ 167 if (flag & (FSYNC | FDSYNC)) 168 atomic_inc_32(&zp->z_sync_cnt); 169 return (0); 170 } 171 172 /* ARGSUSED */ 173 static int 174 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 175 { 176 znode_t *zp = VTOZ(vp); 177 178 /* Decrement the synchronous opens in the znode */ 179 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 180 atomic_dec_32(&zp->z_sync_cnt); 181 182 /* 183 * Clean up any locks held by this process on the vp. 184 */ 185 cleanlocks(vp, ddi_get_pid(), 0); 186 cleanshares(vp, ddi_get_pid()); 187 188 return (0); 189 } 190 191 /* 192 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 193 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 194 */ 195 static int 196 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 197 { 198 znode_t *zp = VTOZ(vp); 199 uint64_t noff = (uint64_t)*off; /* new offset */ 200 uint64_t file_sz; 201 int error; 202 boolean_t hole; 203 204 file_sz = zp->z_phys->zp_size; 205 if (noff >= file_sz) { 206 return (ENXIO); 207 } 208 209 if (cmd == _FIO_SEEK_HOLE) 210 hole = B_TRUE; 211 else 212 hole = B_FALSE; 213 214 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 215 216 /* end of file? */ 217 if ((error == ESRCH) || (noff > file_sz)) { 218 /* 219 * Handle the virtual hole at the end of file. 220 */ 221 if (hole) { 222 *off = file_sz; 223 return (0); 224 } 225 return (ENXIO); 226 } 227 228 if (noff < *off) 229 return (error); 230 *off = noff; 231 return (error); 232 } 233 234 /* ARGSUSED */ 235 static int 236 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 237 int *rvalp) 238 { 239 offset_t off; 240 int error; 241 zfsvfs_t *zfsvfs; 242 243 switch (com) { 244 case _FIOFFS: 245 return (zfs_sync(vp->v_vfsp, 0, cred)); 246 247 /* 248 * The following two ioctls are used by bfu. Faking out, 249 * necessary to avoid bfu errors. 250 */ 251 case _FIOGDIO: 252 case _FIOSDIO: 253 return (0); 254 255 case _FIO_SEEK_DATA: 256 case _FIO_SEEK_HOLE: 257 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 258 return (EFAULT); 259 260 zfsvfs = VTOZ(vp)->z_zfsvfs; 261 ZFS_ENTER(zfsvfs); 262 263 /* offset parameter is in/out */ 264 error = zfs_holey(vp, com, &off); 265 ZFS_EXIT(zfsvfs); 266 if (error) 267 return (error); 268 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 269 return (EFAULT); 270 return (0); 271 } 272 return (ENOTTY); 273 } 274 275 /* 276 * When a file is memory mapped, we must keep the IO data synchronized 277 * between the DMU cache and the memory mapped pages. What this means: 278 * 279 * On Write: If we find a memory mapped page, we write to *both* 280 * the page and the dmu buffer. 281 * 282 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 283 * the file is memory mapped. 284 */ 285 static int 286 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 287 { 288 znode_t *zp = VTOZ(vp); 289 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 290 int64_t start, off; 291 int len = nbytes; 292 int error = 0; 293 294 start = uio->uio_loffset; 295 off = start & PAGEOFFSET; 296 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 297 page_t *pp; 298 uint64_t bytes = MIN(PAGESIZE - off, len); 299 uint64_t woff = uio->uio_loffset; 300 301 /* 302 * We don't want a new page to "appear" in the middle of 303 * the file update (because it may not get the write 304 * update data), so we grab a lock to block 305 * zfs_getpage(). 306 */ 307 rw_enter(&zp->z_map_lock, RW_WRITER); 308 if (pp = page_lookup(vp, start, SE_SHARED)) { 309 caddr_t va; 310 311 rw_exit(&zp->z_map_lock); 312 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 313 error = uiomove(va+off, bytes, UIO_WRITE, uio); 314 if (error == 0) { 315 dmu_write(zfsvfs->z_os, zp->z_id, 316 woff, bytes, va+off, tx); 317 } 318 ppmapout(va); 319 page_unlock(pp); 320 } else { 321 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 322 uio, bytes, tx); 323 rw_exit(&zp->z_map_lock); 324 } 325 len -= bytes; 326 off = 0; 327 if (error) 328 break; 329 } 330 return (error); 331 } 332 333 /* 334 * When a file is memory mapped, we must keep the IO data synchronized 335 * between the DMU cache and the memory mapped pages. What this means: 336 * 337 * On Read: We "read" preferentially from memory mapped pages, 338 * else we default from the dmu buffer. 339 * 340 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 341 * the file is memory mapped. 342 */ 343 static int 344 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 345 { 346 znode_t *zp = VTOZ(vp); 347 objset_t *os = zp->z_zfsvfs->z_os; 348 int64_t start, off; 349 int len = nbytes; 350 int error = 0; 351 352 start = uio->uio_loffset; 353 off = start & PAGEOFFSET; 354 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 355 page_t *pp; 356 uint64_t bytes = MIN(PAGESIZE - off, len); 357 358 if (pp = page_lookup(vp, start, SE_SHARED)) { 359 caddr_t va; 360 361 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 362 error = uiomove(va + off, bytes, UIO_READ, uio); 363 ppmapout(va); 364 page_unlock(pp); 365 } else { 366 error = dmu_read_uio(os, zp->z_id, uio, bytes); 367 } 368 len -= bytes; 369 off = 0; 370 if (error) 371 break; 372 } 373 return (error); 374 } 375 376 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 377 378 /* 379 * Read bytes from specified file into supplied buffer. 380 * 381 * IN: vp - vnode of file to be read from. 382 * uio - structure supplying read location, range info, 383 * and return buffer. 384 * ioflag - SYNC flags; used to provide FRSYNC semantics. 385 * cr - credentials of caller. 386 * 387 * OUT: uio - updated offset and range, buffer filled. 388 * 389 * RETURN: 0 if success 390 * error code if failure 391 * 392 * Side Effects: 393 * vp - atime updated if byte count > 0 394 */ 395 /* ARGSUSED */ 396 static int 397 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 398 { 399 znode_t *zp = VTOZ(vp); 400 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 401 objset_t *os = zfsvfs->z_os; 402 ssize_t n, nbytes; 403 int error; 404 rl_t *rl; 405 406 ZFS_ENTER(zfsvfs); 407 408 /* 409 * Validate file offset 410 */ 411 if (uio->uio_loffset < (offset_t)0) { 412 ZFS_EXIT(zfsvfs); 413 return (EINVAL); 414 } 415 416 /* 417 * Fasttrack empty reads 418 */ 419 if (uio->uio_resid == 0) { 420 ZFS_EXIT(zfsvfs); 421 return (0); 422 } 423 424 /* 425 * Check for mandatory locks 426 */ 427 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 428 if (error = chklock(vp, FREAD, 429 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 430 ZFS_EXIT(zfsvfs); 431 return (error); 432 } 433 } 434 435 /* 436 * If we're in FRSYNC mode, sync out this znode before reading it. 437 */ 438 if (ioflag & FRSYNC) 439 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 440 441 /* 442 * Lock the range against changes. 443 */ 444 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 445 446 /* 447 * If we are reading past end-of-file we can skip 448 * to the end; but we might still need to set atime. 449 */ 450 if (uio->uio_loffset >= zp->z_phys->zp_size) { 451 error = 0; 452 goto out; 453 } 454 455 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 456 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 457 458 while (n > 0) { 459 nbytes = MIN(n, zfs_read_chunk_size - 460 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 461 462 if (vn_has_cached_data(vp)) 463 error = mappedread(vp, nbytes, uio); 464 else 465 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 466 if (error) 467 break; 468 469 n -= nbytes; 470 } 471 472 out: 473 zfs_range_unlock(rl); 474 475 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 476 ZFS_EXIT(zfsvfs); 477 return (error); 478 } 479 480 /* 481 * Fault in the pages of the first n bytes specified by the uio structure. 482 * 1 byte in each page is touched and the uio struct is unmodified. 483 * Any error will exit this routine as this is only a best 484 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 485 */ 486 static void 487 zfs_prefault_write(ssize_t n, struct uio *uio) 488 { 489 struct iovec *iov; 490 ulong_t cnt, incr; 491 caddr_t p; 492 uint8_t tmp; 493 494 iov = uio->uio_iov; 495 496 while (n) { 497 cnt = MIN(iov->iov_len, n); 498 if (cnt == 0) { 499 /* empty iov entry */ 500 iov++; 501 continue; 502 } 503 n -= cnt; 504 /* 505 * touch each page in this segment. 506 */ 507 p = iov->iov_base; 508 while (cnt) { 509 switch (uio->uio_segflg) { 510 case UIO_USERSPACE: 511 case UIO_USERISPACE: 512 if (fuword8(p, &tmp)) 513 return; 514 break; 515 case UIO_SYSSPACE: 516 if (kcopy(p, &tmp, 1)) 517 return; 518 break; 519 } 520 incr = MIN(cnt, PAGESIZE); 521 p += incr; 522 cnt -= incr; 523 } 524 /* 525 * touch the last byte in case it straddles a page. 526 */ 527 p--; 528 switch (uio->uio_segflg) { 529 case UIO_USERSPACE: 530 case UIO_USERISPACE: 531 if (fuword8(p, &tmp)) 532 return; 533 break; 534 case UIO_SYSSPACE: 535 if (kcopy(p, &tmp, 1)) 536 return; 537 break; 538 } 539 iov++; 540 } 541 } 542 543 /* 544 * Write the bytes to a file. 545 * 546 * IN: vp - vnode of file to be written to. 547 * uio - structure supplying write location, range info, 548 * and data buffer. 549 * ioflag - FAPPEND flag set if in append mode. 550 * cr - credentials of caller. 551 * 552 * OUT: uio - updated offset and range. 553 * 554 * RETURN: 0 if success 555 * error code if failure 556 * 557 * Timestamps: 558 * vp - ctime|mtime updated if byte count > 0 559 */ 560 /* ARGSUSED */ 561 static int 562 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 563 { 564 znode_t *zp = VTOZ(vp); 565 rlim64_t limit = uio->uio_llimit; 566 ssize_t start_resid = uio->uio_resid; 567 ssize_t tx_bytes; 568 uint64_t end_size; 569 dmu_tx_t *tx; 570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 571 zilog_t *zilog = zfsvfs->z_log; 572 offset_t woff; 573 ssize_t n, nbytes; 574 rl_t *rl; 575 int max_blksz = zfsvfs->z_max_blksz; 576 int error; 577 578 /* 579 * Fasttrack empty write 580 */ 581 n = start_resid; 582 if (n == 0) 583 return (0); 584 585 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 586 limit = MAXOFFSET_T; 587 588 ZFS_ENTER(zfsvfs); 589 590 /* 591 * Pre-fault the pages to ensure slow (eg NFS) pages 592 * don't hold up txg. 593 */ 594 zfs_prefault_write(n, uio); 595 596 /* 597 * If in append mode, set the io offset pointer to eof. 598 */ 599 if (ioflag & FAPPEND) { 600 /* 601 * Range lock for a file append: 602 * The value for the start of range will be determined by 603 * zfs_range_lock() (to guarantee append semantics). 604 * If this write will cause the block size to increase, 605 * zfs_range_lock() will lock the entire file, so we must 606 * later reduce the range after we grow the block size. 607 */ 608 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 609 if (rl->r_len == UINT64_MAX) { 610 /* overlocked, zp_size can't change */ 611 woff = uio->uio_loffset = zp->z_phys->zp_size; 612 } else { 613 woff = uio->uio_loffset = rl->r_off; 614 } 615 } else { 616 woff = uio->uio_loffset; 617 /* 618 * Validate file offset 619 */ 620 if (woff < 0) { 621 ZFS_EXIT(zfsvfs); 622 return (EINVAL); 623 } 624 625 /* 626 * If we need to grow the block size then zfs_range_lock() 627 * will lock a wider range than we request here. 628 * Later after growing the block size we reduce the range. 629 */ 630 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 631 } 632 633 if (woff >= limit) { 634 zfs_range_unlock(rl); 635 ZFS_EXIT(zfsvfs); 636 return (EFBIG); 637 } 638 639 if ((woff + n) > limit || woff > (limit - n)) 640 n = limit - woff; 641 642 /* 643 * Check for mandatory locks 644 */ 645 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 646 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 647 zfs_range_unlock(rl); 648 ZFS_EXIT(zfsvfs); 649 return (error); 650 } 651 end_size = MAX(zp->z_phys->zp_size, woff + n); 652 653 /* 654 * Write the file in reasonable size chunks. Each chunk is written 655 * in a separate transaction; this keeps the intent log records small 656 * and allows us to do more fine-grained space accounting. 657 */ 658 while (n > 0) { 659 /* 660 * Start a transaction. 661 */ 662 woff = uio->uio_loffset; 663 tx = dmu_tx_create(zfsvfs->z_os); 664 dmu_tx_hold_bonus(tx, zp->z_id); 665 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 666 error = dmu_tx_assign(tx, zfsvfs->z_assign); 667 if (error) { 668 if (error == ERESTART && 669 zfsvfs->z_assign == TXG_NOWAIT) { 670 dmu_tx_wait(tx); 671 dmu_tx_abort(tx); 672 continue; 673 } 674 dmu_tx_abort(tx); 675 break; 676 } 677 678 /* 679 * If zfs_range_lock() over-locked we grow the blocksize 680 * and then reduce the lock range. This will only happen 681 * on the first iteration since zfs_range_reduce() will 682 * shrink down r_len to the appropriate size. 683 */ 684 if (rl->r_len == UINT64_MAX) { 685 uint64_t new_blksz; 686 687 if (zp->z_blksz > max_blksz) { 688 ASSERT(!ISP2(zp->z_blksz)); 689 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 690 } else { 691 new_blksz = MIN(end_size, max_blksz); 692 } 693 zfs_grow_blocksize(zp, new_blksz, tx); 694 zfs_range_reduce(rl, woff, n); 695 } 696 697 /* 698 * XXX - should we really limit each write to z_max_blksz? 699 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 700 */ 701 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 702 rw_enter(&zp->z_map_lock, RW_READER); 703 704 tx_bytes = uio->uio_resid; 705 if (vn_has_cached_data(vp)) { 706 rw_exit(&zp->z_map_lock); 707 error = mappedwrite(vp, nbytes, uio, tx); 708 } else { 709 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 710 uio, nbytes, tx); 711 rw_exit(&zp->z_map_lock); 712 } 713 tx_bytes -= uio->uio_resid; 714 715 /* 716 * If we made no progress, we're done. If we made even 717 * partial progress, update the znode and ZIL accordingly. 718 */ 719 if (tx_bytes == 0) { 720 dmu_tx_commit(tx); 721 ASSERT(error != 0); 722 break; 723 } 724 725 /* 726 * Clear Set-UID/Set-GID bits on successful write if not 727 * privileged and at least one of the excute bits is set. 728 * 729 * It would be nice to to this after all writes have 730 * been done, but that would still expose the ISUID/ISGID 731 * to another app after the partial write is committed. 732 */ 733 mutex_enter(&zp->z_acl_lock); 734 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 735 (S_IXUSR >> 6))) != 0 && 736 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 737 secpolicy_vnode_setid_retain(cr, 738 (zp->z_phys->zp_mode & S_ISUID) != 0 && 739 zp->z_phys->zp_uid == 0) != 0) { 740 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 741 } 742 mutex_exit(&zp->z_acl_lock); 743 744 /* 745 * Update time stamp. NOTE: This marks the bonus buffer as 746 * dirty, so we don't have to do it again for zp_size. 747 */ 748 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 749 750 /* 751 * Update the file size (zp_size) if it has changed; 752 * account for possible concurrent updates. 753 */ 754 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 755 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 756 uio->uio_loffset); 757 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 758 dmu_tx_commit(tx); 759 760 if (error != 0) 761 break; 762 ASSERT(tx_bytes == nbytes); 763 n -= nbytes; 764 } 765 766 zfs_range_unlock(rl); 767 768 /* 769 * If we're in replay mode, or we made no progress, return error. 770 * Otherwise, it's at least a partial write, so it's successful. 771 */ 772 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 773 ZFS_EXIT(zfsvfs); 774 return (error); 775 } 776 777 if (ioflag & (FSYNC | FDSYNC)) 778 zil_commit(zilog, zp->z_last_itx, zp->z_id); 779 780 ZFS_EXIT(zfsvfs); 781 return (0); 782 } 783 784 void 785 zfs_get_done(dmu_buf_t *db, void *vzgd) 786 { 787 zgd_t *zgd = (zgd_t *)vzgd; 788 rl_t *rl = zgd->zgd_rl; 789 vnode_t *vp = ZTOV(rl->r_zp); 790 791 dmu_buf_rele(db, vzgd); 792 zfs_range_unlock(rl); 793 VN_RELE(vp); 794 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 795 kmem_free(zgd, sizeof (zgd_t)); 796 } 797 798 /* 799 * Get data to generate a TX_WRITE intent log record. 800 */ 801 int 802 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 803 { 804 zfsvfs_t *zfsvfs = arg; 805 objset_t *os = zfsvfs->z_os; 806 znode_t *zp; 807 uint64_t off = lr->lr_offset; 808 dmu_buf_t *db; 809 rl_t *rl; 810 zgd_t *zgd; 811 int dlen = lr->lr_length; /* length of user data */ 812 int error = 0; 813 814 ASSERT(zio); 815 ASSERT(dlen != 0); 816 817 /* 818 * Nothing to do if the file has been removed 819 */ 820 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 821 return (ENOENT); 822 if (zp->z_unlinked) { 823 VN_RELE(ZTOV(zp)); 824 return (ENOENT); 825 } 826 827 /* 828 * Write records come in two flavors: immediate and indirect. 829 * For small writes it's cheaper to store the data with the 830 * log record (immediate); for large writes it's cheaper to 831 * sync the data and get a pointer to it (indirect) so that 832 * we don't have to write the data twice. 833 */ 834 if (buf != NULL) { /* immediate write */ 835 rl = zfs_range_lock(zp, off, dlen, RL_READER); 836 /* test for truncation needs to be done while range locked */ 837 if (off >= zp->z_phys->zp_size) { 838 error = ENOENT; 839 goto out; 840 } 841 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 842 } else { /* indirect write */ 843 uint64_t boff; /* block starting offset */ 844 845 /* 846 * Have to lock the whole block to ensure when it's 847 * written out and it's checksum is being calculated 848 * that no one can change the data. We need to re-check 849 * blocksize after we get the lock in case it's changed! 850 */ 851 for (;;) { 852 if (ISP2(zp->z_blksz)) { 853 boff = P2ALIGN_TYPED(off, zp->z_blksz, 854 uint64_t); 855 } else { 856 boff = 0; 857 } 858 dlen = zp->z_blksz; 859 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 860 if (zp->z_blksz == dlen) 861 break; 862 zfs_range_unlock(rl); 863 } 864 /* test for truncation needs to be done while range locked */ 865 if (off >= zp->z_phys->zp_size) { 866 error = ENOENT; 867 goto out; 868 } 869 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 870 zgd->zgd_rl = rl; 871 zgd->zgd_zilog = zfsvfs->z_log; 872 zgd->zgd_bp = &lr->lr_blkptr; 873 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 874 ASSERT(boff == db->db_offset); 875 lr->lr_blkoff = off - boff; 876 error = dmu_sync(zio, db, &lr->lr_blkptr, 877 lr->lr_common.lrc_txg, zfs_get_done, zgd); 878 ASSERT((error && error != EINPROGRESS) || 879 lr->lr_length <= zp->z_blksz); 880 if (error == 0) { 881 zil_add_vdev(zfsvfs->z_log, 882 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 883 } 884 /* 885 * If we get EINPROGRESS, then we need to wait for a 886 * write IO initiated by dmu_sync() to complete before 887 * we can release this dbuf. We will finish everything 888 * up in the zfs_get_done() callback. 889 */ 890 if (error == EINPROGRESS) 891 return (0); 892 dmu_buf_rele(db, zgd); 893 kmem_free(zgd, sizeof (zgd_t)); 894 } 895 out: 896 zfs_range_unlock(rl); 897 VN_RELE(ZTOV(zp)); 898 return (error); 899 } 900 901 /*ARGSUSED*/ 902 static int 903 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 904 { 905 znode_t *zp = VTOZ(vp); 906 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 907 int error; 908 909 ZFS_ENTER(zfsvfs); 910 error = zfs_zaccess_rwx(zp, mode, cr); 911 ZFS_EXIT(zfsvfs); 912 return (error); 913 } 914 915 /* 916 * Lookup an entry in a directory, or an extended attribute directory. 917 * If it exists, return a held vnode reference for it. 918 * 919 * IN: dvp - vnode of directory to search. 920 * nm - name of entry to lookup. 921 * pnp - full pathname to lookup [UNUSED]. 922 * flags - LOOKUP_XATTR set if looking for an attribute. 923 * rdir - root directory vnode [UNUSED]. 924 * cr - credentials of caller. 925 * 926 * OUT: vpp - vnode of located entry, NULL if not found. 927 * 928 * RETURN: 0 if success 929 * error code if failure 930 * 931 * Timestamps: 932 * NA 933 */ 934 /* ARGSUSED */ 935 static int 936 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 937 int flags, vnode_t *rdir, cred_t *cr) 938 { 939 940 znode_t *zdp = VTOZ(dvp); 941 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 942 int error; 943 944 ZFS_ENTER(zfsvfs); 945 946 *vpp = NULL; 947 948 if (flags & LOOKUP_XATTR) { 949 /* 950 * If the xattr property is off, refuse the lookup request. 951 */ 952 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 953 ZFS_EXIT(zfsvfs); 954 return (EINVAL); 955 } 956 957 /* 958 * We don't allow recursive attributes.. 959 * Maybe someday we will. 960 */ 961 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 962 ZFS_EXIT(zfsvfs); 963 return (EINVAL); 964 } 965 966 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 967 ZFS_EXIT(zfsvfs); 968 return (error); 969 } 970 971 /* 972 * Do we have permission to get into attribute directory? 973 */ 974 975 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 976 VN_RELE(*vpp); 977 } 978 979 ZFS_EXIT(zfsvfs); 980 return (error); 981 } 982 983 if (dvp->v_type != VDIR) { 984 ZFS_EXIT(zfsvfs); 985 return (ENOTDIR); 986 } 987 988 /* 989 * Check accessibility of directory. 990 */ 991 992 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 993 ZFS_EXIT(zfsvfs); 994 return (error); 995 } 996 997 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 998 999 /* 1000 * Convert device special files 1001 */ 1002 if (IS_DEVVP(*vpp)) { 1003 vnode_t *svp; 1004 1005 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1006 VN_RELE(*vpp); 1007 if (svp == NULL) 1008 error = ENOSYS; 1009 else 1010 *vpp = svp; 1011 } 1012 } 1013 1014 ZFS_EXIT(zfsvfs); 1015 return (error); 1016 } 1017 1018 /* 1019 * Attempt to create a new entry in a directory. If the entry 1020 * already exists, truncate the file if permissible, else return 1021 * an error. Return the vp of the created or trunc'd file. 1022 * 1023 * IN: dvp - vnode of directory to put new file entry in. 1024 * name - name of new file entry. 1025 * vap - attributes of new file. 1026 * excl - flag indicating exclusive or non-exclusive mode. 1027 * mode - mode to open file with. 1028 * cr - credentials of caller. 1029 * flag - large file flag [UNUSED]. 1030 * 1031 * OUT: vpp - vnode of created or trunc'd entry. 1032 * 1033 * RETURN: 0 if success 1034 * error code if failure 1035 * 1036 * Timestamps: 1037 * dvp - ctime|mtime updated if new entry created 1038 * vp - ctime|mtime always, atime if new 1039 */ 1040 /* ARGSUSED */ 1041 static int 1042 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1043 int mode, vnode_t **vpp, cred_t *cr, int flag) 1044 { 1045 znode_t *zp, *dzp = VTOZ(dvp); 1046 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1047 zilog_t *zilog = zfsvfs->z_log; 1048 objset_t *os = zfsvfs->z_os; 1049 zfs_dirlock_t *dl; 1050 dmu_tx_t *tx; 1051 int error; 1052 uint64_t zoid; 1053 1054 ZFS_ENTER(zfsvfs); 1055 1056 top: 1057 *vpp = NULL; 1058 1059 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1060 vap->va_mode &= ~VSVTX; 1061 1062 if (*name == '\0') { 1063 /* 1064 * Null component name refers to the directory itself. 1065 */ 1066 VN_HOLD(dvp); 1067 zp = dzp; 1068 dl = NULL; 1069 error = 0; 1070 } else { 1071 /* possible VN_HOLD(zp) */ 1072 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1073 if (strcmp(name, "..") == 0) 1074 error = EISDIR; 1075 ZFS_EXIT(zfsvfs); 1076 return (error); 1077 } 1078 } 1079 1080 zoid = zp ? zp->z_id : -1ULL; 1081 1082 if (zp == NULL) { 1083 /* 1084 * Create a new file object and update the directory 1085 * to reference it. 1086 */ 1087 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1088 goto out; 1089 } 1090 1091 /* 1092 * We only support the creation of regular files in 1093 * extended attribute directories. 1094 */ 1095 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1096 (vap->va_type != VREG)) { 1097 error = EINVAL; 1098 goto out; 1099 } 1100 1101 tx = dmu_tx_create(os); 1102 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1103 dmu_tx_hold_bonus(tx, dzp->z_id); 1104 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1105 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1106 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1107 0, SPA_MAXBLOCKSIZE); 1108 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1109 if (error) { 1110 zfs_dirent_unlock(dl); 1111 if (error == ERESTART && 1112 zfsvfs->z_assign == TXG_NOWAIT) { 1113 dmu_tx_wait(tx); 1114 dmu_tx_abort(tx); 1115 goto top; 1116 } 1117 dmu_tx_abort(tx); 1118 ZFS_EXIT(zfsvfs); 1119 return (error); 1120 } 1121 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1122 ASSERT(zp->z_id == zoid); 1123 (void) zfs_link_create(dl, zp, tx, ZNEW); 1124 zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1125 dmu_tx_commit(tx); 1126 } else { 1127 /* 1128 * A directory entry already exists for this name. 1129 */ 1130 /* 1131 * Can't truncate an existing file if in exclusive mode. 1132 */ 1133 if (excl == EXCL) { 1134 error = EEXIST; 1135 goto out; 1136 } 1137 /* 1138 * Can't open a directory for writing. 1139 */ 1140 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1141 error = EISDIR; 1142 goto out; 1143 } 1144 /* 1145 * Verify requested access to file. 1146 */ 1147 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1148 goto out; 1149 } 1150 1151 mutex_enter(&dzp->z_lock); 1152 dzp->z_seq++; 1153 mutex_exit(&dzp->z_lock); 1154 1155 /* 1156 * Truncate regular files if requested. 1157 */ 1158 if ((ZTOV(zp)->v_type == VREG) && 1159 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1160 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1161 if (error == ERESTART && 1162 zfsvfs->z_assign == TXG_NOWAIT) { 1163 /* NB: we already did dmu_tx_wait() */ 1164 zfs_dirent_unlock(dl); 1165 VN_RELE(ZTOV(zp)); 1166 goto top; 1167 } 1168 } 1169 } 1170 out: 1171 1172 if (dl) 1173 zfs_dirent_unlock(dl); 1174 1175 if (error) { 1176 if (zp) 1177 VN_RELE(ZTOV(zp)); 1178 } else { 1179 *vpp = ZTOV(zp); 1180 /* 1181 * If vnode is for a device return a specfs vnode instead. 1182 */ 1183 if (IS_DEVVP(*vpp)) { 1184 struct vnode *svp; 1185 1186 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1187 VN_RELE(*vpp); 1188 if (svp == NULL) { 1189 error = ENOSYS; 1190 } 1191 *vpp = svp; 1192 } 1193 } 1194 1195 ZFS_EXIT(zfsvfs); 1196 return (error); 1197 } 1198 1199 /* 1200 * Remove an entry from a directory. 1201 * 1202 * IN: dvp - vnode of directory to remove entry from. 1203 * name - name of entry to remove. 1204 * cr - credentials of caller. 1205 * 1206 * RETURN: 0 if success 1207 * error code if failure 1208 * 1209 * Timestamps: 1210 * dvp - ctime|mtime 1211 * vp - ctime (if nlink > 0) 1212 */ 1213 static int 1214 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1215 { 1216 znode_t *zp, *dzp = VTOZ(dvp); 1217 znode_t *xzp = NULL; 1218 vnode_t *vp; 1219 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1220 zilog_t *zilog = zfsvfs->z_log; 1221 uint64_t acl_obj, xattr_obj; 1222 zfs_dirlock_t *dl; 1223 dmu_tx_t *tx; 1224 boolean_t may_delete_now, delete_now = FALSE; 1225 boolean_t unlinked; 1226 int error; 1227 1228 ZFS_ENTER(zfsvfs); 1229 1230 top: 1231 /* 1232 * Attempt to lock directory; fail if entry doesn't exist. 1233 */ 1234 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1235 ZFS_EXIT(zfsvfs); 1236 return (error); 1237 } 1238 1239 vp = ZTOV(zp); 1240 1241 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1242 goto out; 1243 } 1244 1245 /* 1246 * Need to use rmdir for removing directories. 1247 */ 1248 if (vp->v_type == VDIR) { 1249 error = EPERM; 1250 goto out; 1251 } 1252 1253 vnevent_remove(vp); 1254 1255 dnlc_remove(dvp, name); 1256 1257 mutex_enter(&vp->v_lock); 1258 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1259 mutex_exit(&vp->v_lock); 1260 1261 /* 1262 * We may delete the znode now, or we may put it in the unlinked set; 1263 * it depends on whether we're the last link, and on whether there are 1264 * other holds on the vnode. So we dmu_tx_hold() the right things to 1265 * allow for either case. 1266 */ 1267 tx = dmu_tx_create(zfsvfs->z_os); 1268 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1269 dmu_tx_hold_bonus(tx, zp->z_id); 1270 if (may_delete_now) 1271 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1272 1273 /* are there any extended attributes? */ 1274 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1275 /* XXX - do we need this if we are deleting? */ 1276 dmu_tx_hold_bonus(tx, xattr_obj); 1277 } 1278 1279 /* are there any additional acls */ 1280 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1281 may_delete_now) 1282 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1283 1284 /* charge as an update -- would be nice not to charge at all */ 1285 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1286 1287 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1288 if (error) { 1289 zfs_dirent_unlock(dl); 1290 VN_RELE(vp); 1291 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1292 dmu_tx_wait(tx); 1293 dmu_tx_abort(tx); 1294 goto top; 1295 } 1296 dmu_tx_abort(tx); 1297 ZFS_EXIT(zfsvfs); 1298 return (error); 1299 } 1300 1301 /* 1302 * Remove the directory entry. 1303 */ 1304 error = zfs_link_destroy(dl, zp, tx, 0, &unlinked); 1305 1306 if (error) { 1307 dmu_tx_commit(tx); 1308 goto out; 1309 } 1310 1311 if (unlinked) { 1312 mutex_enter(&vp->v_lock); 1313 delete_now = may_delete_now && 1314 vp->v_count == 1 && !vn_has_cached_data(vp) && 1315 zp->z_phys->zp_xattr == xattr_obj && 1316 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1317 mutex_exit(&vp->v_lock); 1318 } 1319 1320 if (delete_now) { 1321 if (zp->z_phys->zp_xattr) { 1322 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1323 ASSERT3U(error, ==, 0); 1324 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1325 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1326 mutex_enter(&xzp->z_lock); 1327 xzp->z_unlinked = 1; 1328 xzp->z_phys->zp_links = 0; 1329 mutex_exit(&xzp->z_lock); 1330 zfs_unlinked_add(xzp, tx); 1331 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1332 } 1333 mutex_enter(&zp->z_lock); 1334 mutex_enter(&vp->v_lock); 1335 vp->v_count--; 1336 ASSERT3U(vp->v_count, ==, 0); 1337 mutex_exit(&vp->v_lock); 1338 mutex_exit(&zp->z_lock); 1339 zfs_znode_delete(zp, tx); 1340 VFS_RELE(zfsvfs->z_vfs); 1341 } else if (unlinked) { 1342 zfs_unlinked_add(zp, tx); 1343 } 1344 1345 zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1346 1347 dmu_tx_commit(tx); 1348 out: 1349 zfs_dirent_unlock(dl); 1350 1351 if (!delete_now) { 1352 VN_RELE(vp); 1353 } else if (xzp) { 1354 /* this rele delayed to prevent nesting transactions */ 1355 VN_RELE(ZTOV(xzp)); 1356 } 1357 1358 ZFS_EXIT(zfsvfs); 1359 return (error); 1360 } 1361 1362 /* 1363 * Create a new directory and insert it into dvp using the name 1364 * provided. Return a pointer to the inserted directory. 1365 * 1366 * IN: dvp - vnode of directory to add subdir to. 1367 * dirname - name of new directory. 1368 * vap - attributes of new directory. 1369 * cr - credentials of caller. 1370 * 1371 * OUT: vpp - vnode of created directory. 1372 * 1373 * RETURN: 0 if success 1374 * error code if failure 1375 * 1376 * Timestamps: 1377 * dvp - ctime|mtime updated 1378 * vp - ctime|mtime|atime updated 1379 */ 1380 static int 1381 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1382 { 1383 znode_t *zp, *dzp = VTOZ(dvp); 1384 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1385 zilog_t *zilog = zfsvfs->z_log; 1386 zfs_dirlock_t *dl; 1387 uint64_t zoid = 0; 1388 dmu_tx_t *tx; 1389 int error; 1390 1391 ASSERT(vap->va_type == VDIR); 1392 1393 ZFS_ENTER(zfsvfs); 1394 1395 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1396 ZFS_EXIT(zfsvfs); 1397 return (EINVAL); 1398 } 1399 top: 1400 *vpp = NULL; 1401 1402 /* 1403 * First make sure the new directory doesn't exist. 1404 */ 1405 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1406 ZFS_EXIT(zfsvfs); 1407 return (error); 1408 } 1409 1410 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1411 zfs_dirent_unlock(dl); 1412 ZFS_EXIT(zfsvfs); 1413 return (error); 1414 } 1415 1416 /* 1417 * Add a new entry to the directory. 1418 */ 1419 tx = dmu_tx_create(zfsvfs->z_os); 1420 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1421 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1422 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1423 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1424 0, SPA_MAXBLOCKSIZE); 1425 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1426 if (error) { 1427 zfs_dirent_unlock(dl); 1428 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1429 dmu_tx_wait(tx); 1430 dmu_tx_abort(tx); 1431 goto top; 1432 } 1433 dmu_tx_abort(tx); 1434 ZFS_EXIT(zfsvfs); 1435 return (error); 1436 } 1437 1438 /* 1439 * Create new node. 1440 */ 1441 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1442 1443 /* 1444 * Now put new name in parent dir. 1445 */ 1446 (void) zfs_link_create(dl, zp, tx, ZNEW); 1447 1448 *vpp = ZTOV(zp); 1449 1450 zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1451 dmu_tx_commit(tx); 1452 1453 zfs_dirent_unlock(dl); 1454 1455 ZFS_EXIT(zfsvfs); 1456 return (0); 1457 } 1458 1459 /* 1460 * Remove a directory subdir entry. If the current working 1461 * directory is the same as the subdir to be removed, the 1462 * remove will fail. 1463 * 1464 * IN: dvp - vnode of directory to remove from. 1465 * name - name of directory to be removed. 1466 * cwd - vnode of current working directory. 1467 * cr - credentials of caller. 1468 * 1469 * RETURN: 0 if success 1470 * error code if failure 1471 * 1472 * Timestamps: 1473 * dvp - ctime|mtime updated 1474 */ 1475 static int 1476 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1477 { 1478 znode_t *dzp = VTOZ(dvp); 1479 znode_t *zp; 1480 vnode_t *vp; 1481 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1482 zilog_t *zilog = zfsvfs->z_log; 1483 zfs_dirlock_t *dl; 1484 dmu_tx_t *tx; 1485 int error; 1486 1487 ZFS_ENTER(zfsvfs); 1488 1489 top: 1490 zp = NULL; 1491 1492 /* 1493 * Attempt to lock directory; fail if entry doesn't exist. 1494 */ 1495 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1496 ZFS_EXIT(zfsvfs); 1497 return (error); 1498 } 1499 1500 vp = ZTOV(zp); 1501 1502 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1503 goto out; 1504 } 1505 1506 if (vp->v_type != VDIR) { 1507 error = ENOTDIR; 1508 goto out; 1509 } 1510 1511 if (vp == cwd) { 1512 error = EINVAL; 1513 goto out; 1514 } 1515 1516 vnevent_rmdir(vp); 1517 1518 /* 1519 * Grab a lock on the directory to make sure that noone is 1520 * trying to add (or lookup) entries while we are removing it. 1521 */ 1522 rw_enter(&zp->z_name_lock, RW_WRITER); 1523 1524 /* 1525 * Grab a lock on the parent pointer to make sure we play well 1526 * with the treewalk and directory rename code. 1527 */ 1528 rw_enter(&zp->z_parent_lock, RW_WRITER); 1529 1530 tx = dmu_tx_create(zfsvfs->z_os); 1531 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1532 dmu_tx_hold_bonus(tx, zp->z_id); 1533 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1534 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1535 if (error) { 1536 rw_exit(&zp->z_parent_lock); 1537 rw_exit(&zp->z_name_lock); 1538 zfs_dirent_unlock(dl); 1539 VN_RELE(vp); 1540 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1541 dmu_tx_wait(tx); 1542 dmu_tx_abort(tx); 1543 goto top; 1544 } 1545 dmu_tx_abort(tx); 1546 ZFS_EXIT(zfsvfs); 1547 return (error); 1548 } 1549 1550 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1551 1552 if (error == 0) 1553 zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1554 1555 dmu_tx_commit(tx); 1556 1557 rw_exit(&zp->z_parent_lock); 1558 rw_exit(&zp->z_name_lock); 1559 out: 1560 zfs_dirent_unlock(dl); 1561 1562 VN_RELE(vp); 1563 1564 ZFS_EXIT(zfsvfs); 1565 return (error); 1566 } 1567 1568 /* 1569 * Read as many directory entries as will fit into the provided 1570 * buffer from the given directory cursor position (specified in 1571 * the uio structure. 1572 * 1573 * IN: vp - vnode of directory to read. 1574 * uio - structure supplying read location, range info, 1575 * and return buffer. 1576 * cr - credentials of caller. 1577 * 1578 * OUT: uio - updated offset and range, buffer filled. 1579 * eofp - set to true if end-of-file detected. 1580 * 1581 * RETURN: 0 if success 1582 * error code if failure 1583 * 1584 * Timestamps: 1585 * vp - atime updated 1586 * 1587 * Note that the low 4 bits of the cookie returned by zap is always zero. 1588 * This allows us to use the low range for "special" directory entries: 1589 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1590 * we use the offset 2 for the '.zfs' directory. 1591 */ 1592 /* ARGSUSED */ 1593 static int 1594 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1595 { 1596 znode_t *zp = VTOZ(vp); 1597 iovec_t *iovp; 1598 dirent64_t *odp; 1599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1600 objset_t *os; 1601 caddr_t outbuf; 1602 size_t bufsize; 1603 zap_cursor_t zc; 1604 zap_attribute_t zap; 1605 uint_t bytes_wanted; 1606 uint64_t offset; /* must be unsigned; checks for < 1 */ 1607 int local_eof; 1608 int outcount; 1609 int error; 1610 uint8_t prefetch; 1611 1612 ZFS_ENTER(zfsvfs); 1613 1614 /* 1615 * If we are not given an eof variable, 1616 * use a local one. 1617 */ 1618 if (eofp == NULL) 1619 eofp = &local_eof; 1620 1621 /* 1622 * Check for valid iov_len. 1623 */ 1624 if (uio->uio_iov->iov_len <= 0) { 1625 ZFS_EXIT(zfsvfs); 1626 return (EINVAL); 1627 } 1628 1629 /* 1630 * Quit if directory has been removed (posix) 1631 */ 1632 if ((*eofp = zp->z_unlinked) != 0) { 1633 ZFS_EXIT(zfsvfs); 1634 return (0); 1635 } 1636 1637 error = 0; 1638 os = zfsvfs->z_os; 1639 offset = uio->uio_loffset; 1640 prefetch = zp->z_zn_prefetch; 1641 1642 /* 1643 * Initialize the iterator cursor. 1644 */ 1645 if (offset <= 3) { 1646 /* 1647 * Start iteration from the beginning of the directory. 1648 */ 1649 zap_cursor_init(&zc, os, zp->z_id); 1650 } else { 1651 /* 1652 * The offset is a serialized cursor. 1653 */ 1654 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1655 } 1656 1657 /* 1658 * Get space to change directory entries into fs independent format. 1659 */ 1660 iovp = uio->uio_iov; 1661 bytes_wanted = iovp->iov_len; 1662 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1663 bufsize = bytes_wanted; 1664 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1665 odp = (struct dirent64 *)outbuf; 1666 } else { 1667 bufsize = bytes_wanted; 1668 odp = (struct dirent64 *)iovp->iov_base; 1669 } 1670 1671 /* 1672 * Transform to file-system independent format 1673 */ 1674 outcount = 0; 1675 while (outcount < bytes_wanted) { 1676 ino64_t objnum; 1677 ushort_t reclen; 1678 off64_t *next; 1679 1680 /* 1681 * Special case `.', `..', and `.zfs'. 1682 */ 1683 if (offset == 0) { 1684 (void) strcpy(zap.za_name, "."); 1685 objnum = zp->z_id; 1686 } else if (offset == 1) { 1687 (void) strcpy(zap.za_name, ".."); 1688 objnum = zp->z_phys->zp_parent; 1689 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1690 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1691 objnum = ZFSCTL_INO_ROOT; 1692 } else { 1693 /* 1694 * Grab next entry. 1695 */ 1696 if (error = zap_cursor_retrieve(&zc, &zap)) { 1697 if ((*eofp = (error == ENOENT)) != 0) 1698 break; 1699 else 1700 goto update; 1701 } 1702 1703 if (zap.za_integer_length != 8 || 1704 zap.za_num_integers != 1) { 1705 cmn_err(CE_WARN, "zap_readdir: bad directory " 1706 "entry, obj = %lld, offset = %lld\n", 1707 (u_longlong_t)zp->z_id, 1708 (u_longlong_t)offset); 1709 error = ENXIO; 1710 goto update; 1711 } 1712 1713 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1714 /* 1715 * MacOS X can extract the object type here such as: 1716 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1717 */ 1718 } 1719 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1720 1721 /* 1722 * Will this entry fit in the buffer? 1723 */ 1724 if (outcount + reclen > bufsize) { 1725 /* 1726 * Did we manage to fit anything in the buffer? 1727 */ 1728 if (!outcount) { 1729 error = EINVAL; 1730 goto update; 1731 } 1732 break; 1733 } 1734 /* 1735 * Add this entry: 1736 */ 1737 odp->d_ino = objnum; 1738 odp->d_reclen = reclen; 1739 /* NOTE: d_off is the offset for the *next* entry */ 1740 next = &(odp->d_off); 1741 (void) strncpy(odp->d_name, zap.za_name, 1742 DIRENT64_NAMELEN(reclen)); 1743 outcount += reclen; 1744 odp = (dirent64_t *)((intptr_t)odp + reclen); 1745 1746 ASSERT(outcount <= bufsize); 1747 1748 /* Prefetch znode */ 1749 if (prefetch) 1750 dmu_prefetch(os, objnum, 0, 0); 1751 1752 /* 1753 * Move to the next entry, fill in the previous offset. 1754 */ 1755 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1756 zap_cursor_advance(&zc); 1757 offset = zap_cursor_serialize(&zc); 1758 } else { 1759 offset += 1; 1760 } 1761 *next = offset; 1762 } 1763 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1764 1765 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1766 iovp->iov_base += outcount; 1767 iovp->iov_len -= outcount; 1768 uio->uio_resid -= outcount; 1769 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1770 /* 1771 * Reset the pointer. 1772 */ 1773 offset = uio->uio_loffset; 1774 } 1775 1776 update: 1777 zap_cursor_fini(&zc); 1778 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1779 kmem_free(outbuf, bufsize); 1780 1781 if (error == ENOENT) 1782 error = 0; 1783 1784 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1785 1786 uio->uio_loffset = offset; 1787 ZFS_EXIT(zfsvfs); 1788 return (error); 1789 } 1790 1791 ulong_t zfs_fsync_sync_cnt = 4; 1792 1793 static int 1794 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1795 { 1796 znode_t *zp = VTOZ(vp); 1797 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1798 1799 /* 1800 * Regardless of whether this is required for standards conformance, 1801 * this is the logical behavior when fsync() is called on a file with 1802 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1803 * going to be pushed out as part of the zil_commit(). 1804 */ 1805 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1806 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1807 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1808 1809 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 1810 1811 ZFS_ENTER(zfsvfs); 1812 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 1813 ZFS_EXIT(zfsvfs); 1814 return (0); 1815 } 1816 1817 /* 1818 * Get the requested file attributes and place them in the provided 1819 * vattr structure. 1820 * 1821 * IN: vp - vnode of file. 1822 * vap - va_mask identifies requested attributes. 1823 * flags - [UNUSED] 1824 * cr - credentials of caller. 1825 * 1826 * OUT: vap - attribute values. 1827 * 1828 * RETURN: 0 (always succeeds) 1829 */ 1830 /* ARGSUSED */ 1831 static int 1832 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1833 { 1834 znode_t *zp = VTOZ(vp); 1835 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1836 znode_phys_t *pzp = zp->z_phys; 1837 int error; 1838 uint64_t links; 1839 1840 ZFS_ENTER(zfsvfs); 1841 1842 /* 1843 * Return all attributes. It's cheaper to provide the answer 1844 * than to determine whether we were asked the question. 1845 */ 1846 mutex_enter(&zp->z_lock); 1847 1848 vap->va_type = vp->v_type; 1849 vap->va_mode = pzp->zp_mode & MODEMASK; 1850 vap->va_uid = zp->z_phys->zp_uid; 1851 vap->va_gid = zp->z_phys->zp_gid; 1852 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1853 vap->va_nodeid = zp->z_id; 1854 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 1855 links = pzp->zp_links + 1; 1856 else 1857 links = pzp->zp_links; 1858 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 1859 vap->va_size = pzp->zp_size; 1860 vap->va_rdev = vp->v_rdev; 1861 vap->va_seq = zp->z_seq; 1862 1863 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1864 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1865 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1866 1867 /* 1868 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1869 * Also, if we are the owner don't bother, since owner should 1870 * always be allowed to read basic attributes of file. 1871 */ 1872 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1873 (zp->z_phys->zp_uid != crgetuid(cr))) { 1874 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1875 mutex_exit(&zp->z_lock); 1876 ZFS_EXIT(zfsvfs); 1877 return (error); 1878 } 1879 } 1880 1881 mutex_exit(&zp->z_lock); 1882 1883 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1884 1885 if (zp->z_blksz == 0) { 1886 /* 1887 * Block size hasn't been set; suggest maximal I/O transfers. 1888 */ 1889 vap->va_blksize = zfsvfs->z_max_blksz; 1890 } 1891 1892 ZFS_EXIT(zfsvfs); 1893 return (0); 1894 } 1895 1896 /* 1897 * Set the file attributes to the values contained in the 1898 * vattr structure. 1899 * 1900 * IN: vp - vnode of file to be modified. 1901 * vap - new attribute values. 1902 * flags - ATTR_UTIME set if non-default time values provided. 1903 * cr - credentials of caller. 1904 * 1905 * RETURN: 0 if success 1906 * error code if failure 1907 * 1908 * Timestamps: 1909 * vp - ctime updated, mtime updated if size changed. 1910 */ 1911 /* ARGSUSED */ 1912 static int 1913 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1914 caller_context_t *ct) 1915 { 1916 struct znode *zp = VTOZ(vp); 1917 znode_phys_t *pzp = zp->z_phys; 1918 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1919 zilog_t *zilog = zfsvfs->z_log; 1920 dmu_tx_t *tx; 1921 vattr_t oldva; 1922 uint_t mask = vap->va_mask; 1923 uint_t saved_mask; 1924 int trim_mask = 0; 1925 uint64_t new_mode; 1926 znode_t *attrzp; 1927 int need_policy = FALSE; 1928 int err; 1929 1930 if (mask == 0) 1931 return (0); 1932 1933 if (mask & AT_NOSET) 1934 return (EINVAL); 1935 1936 if (mask & AT_SIZE && vp->v_type == VDIR) 1937 return (EISDIR); 1938 1939 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1940 return (EINVAL); 1941 1942 ZFS_ENTER(zfsvfs); 1943 1944 top: 1945 attrzp = NULL; 1946 1947 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1948 ZFS_EXIT(zfsvfs); 1949 return (EROFS); 1950 } 1951 1952 /* 1953 * First validate permissions 1954 */ 1955 1956 if (mask & AT_SIZE) { 1957 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1958 if (err) { 1959 ZFS_EXIT(zfsvfs); 1960 return (err); 1961 } 1962 /* 1963 * XXX - Note, we are not providing any open 1964 * mode flags here (like FNDELAY), so we may 1965 * block if there are locks present... this 1966 * should be addressed in openat(). 1967 */ 1968 do { 1969 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1970 /* NB: we already did dmu_tx_wait() if necessary */ 1971 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1972 if (err) { 1973 ZFS_EXIT(zfsvfs); 1974 return (err); 1975 } 1976 } 1977 1978 if (mask & (AT_ATIME|AT_MTIME)) 1979 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1980 1981 if (mask & (AT_UID|AT_GID)) { 1982 int idmask = (mask & (AT_UID|AT_GID)); 1983 int take_owner; 1984 int take_group; 1985 1986 /* 1987 * NOTE: even if a new mode is being set, 1988 * we may clear S_ISUID/S_ISGID bits. 1989 */ 1990 1991 if (!(mask & AT_MODE)) 1992 vap->va_mode = pzp->zp_mode; 1993 1994 /* 1995 * Take ownership or chgrp to group we are a member of 1996 */ 1997 1998 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1999 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2000 2001 /* 2002 * If both AT_UID and AT_GID are set then take_owner and 2003 * take_group must both be set in order to allow taking 2004 * ownership. 2005 * 2006 * Otherwise, send the check through secpolicy_vnode_setattr() 2007 * 2008 */ 2009 2010 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2011 ((idmask == AT_UID) && take_owner) || 2012 ((idmask == AT_GID) && take_group)) { 2013 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2014 /* 2015 * Remove setuid/setgid for non-privileged users 2016 */ 2017 secpolicy_setid_clear(vap, cr); 2018 trim_mask = (mask & (AT_UID|AT_GID)); 2019 } else { 2020 need_policy = TRUE; 2021 } 2022 } else { 2023 need_policy = TRUE; 2024 } 2025 } 2026 2027 mutex_enter(&zp->z_lock); 2028 oldva.va_mode = pzp->zp_mode; 2029 oldva.va_uid = zp->z_phys->zp_uid; 2030 oldva.va_gid = zp->z_phys->zp_gid; 2031 mutex_exit(&zp->z_lock); 2032 2033 if (mask & AT_MODE) { 2034 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_ACL, cr) == 0) { 2035 err = secpolicy_setid_setsticky_clear(vp, vap, 2036 &oldva, cr); 2037 if (err) { 2038 ZFS_EXIT(zfsvfs); 2039 return (err); 2040 } 2041 trim_mask |= AT_MODE; 2042 } else { 2043 need_policy = TRUE; 2044 } 2045 } 2046 2047 if (need_policy) { 2048 /* 2049 * If trim_mask is set then take ownership 2050 * has been granted or write_acl is present and user 2051 * has the ability to modify mode. In that case remove 2052 * UID|GID and or MODE from mask so that 2053 * secpolicy_vnode_setattr() doesn't revoke it. 2054 */ 2055 2056 if (trim_mask) { 2057 saved_mask = vap->va_mask; 2058 vap->va_mask &= ~trim_mask; 2059 2060 } 2061 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2062 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2063 if (err) { 2064 ZFS_EXIT(zfsvfs); 2065 return (err); 2066 } 2067 2068 if (trim_mask) 2069 vap->va_mask |= saved_mask; 2070 } 2071 2072 /* 2073 * secpolicy_vnode_setattr, or take ownership may have 2074 * changed va_mask 2075 */ 2076 mask = vap->va_mask; 2077 2078 tx = dmu_tx_create(zfsvfs->z_os); 2079 dmu_tx_hold_bonus(tx, zp->z_id); 2080 2081 if (mask & AT_MODE) { 2082 uint64_t pmode = pzp->zp_mode; 2083 2084 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2085 2086 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2087 dmu_tx_hold_write(tx, 2088 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2089 else 2090 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2091 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2092 } 2093 2094 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2095 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2096 if (err) { 2097 dmu_tx_abort(tx); 2098 ZFS_EXIT(zfsvfs); 2099 return (err); 2100 } 2101 dmu_tx_hold_bonus(tx, attrzp->z_id); 2102 } 2103 2104 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2105 if (err) { 2106 if (attrzp) 2107 VN_RELE(ZTOV(attrzp)); 2108 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2109 dmu_tx_wait(tx); 2110 dmu_tx_abort(tx); 2111 goto top; 2112 } 2113 dmu_tx_abort(tx); 2114 ZFS_EXIT(zfsvfs); 2115 return (err); 2116 } 2117 2118 dmu_buf_will_dirty(zp->z_dbuf, tx); 2119 2120 /* 2121 * Set each attribute requested. 2122 * We group settings according to the locks they need to acquire. 2123 * 2124 * Note: you cannot set ctime directly, although it will be 2125 * updated as a side-effect of calling this function. 2126 */ 2127 2128 mutex_enter(&zp->z_lock); 2129 2130 if (mask & AT_MODE) { 2131 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2132 ASSERT3U(err, ==, 0); 2133 } 2134 2135 if (attrzp) 2136 mutex_enter(&attrzp->z_lock); 2137 2138 if (mask & AT_UID) { 2139 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2140 if (attrzp) { 2141 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2142 } 2143 } 2144 2145 if (mask & AT_GID) { 2146 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2147 if (attrzp) 2148 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2149 } 2150 2151 if (attrzp) 2152 mutex_exit(&attrzp->z_lock); 2153 2154 if (mask & AT_ATIME) 2155 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2156 2157 if (mask & AT_MTIME) 2158 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2159 2160 if (mask & AT_SIZE) 2161 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2162 else if (mask != 0) 2163 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2164 2165 if (mask != 0) 2166 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2167 2168 mutex_exit(&zp->z_lock); 2169 2170 if (attrzp) 2171 VN_RELE(ZTOV(attrzp)); 2172 2173 dmu_tx_commit(tx); 2174 2175 ZFS_EXIT(zfsvfs); 2176 return (err); 2177 } 2178 2179 typedef struct zfs_zlock { 2180 krwlock_t *zl_rwlock; /* lock we acquired */ 2181 znode_t *zl_znode; /* znode we held */ 2182 struct zfs_zlock *zl_next; /* next in list */ 2183 } zfs_zlock_t; 2184 2185 /* 2186 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2187 */ 2188 static void 2189 zfs_rename_unlock(zfs_zlock_t **zlpp) 2190 { 2191 zfs_zlock_t *zl; 2192 2193 while ((zl = *zlpp) != NULL) { 2194 if (zl->zl_znode != NULL) 2195 VN_RELE(ZTOV(zl->zl_znode)); 2196 rw_exit(zl->zl_rwlock); 2197 *zlpp = zl->zl_next; 2198 kmem_free(zl, sizeof (*zl)); 2199 } 2200 } 2201 2202 /* 2203 * Search back through the directory tree, using the ".." entries. 2204 * Lock each directory in the chain to prevent concurrent renames. 2205 * Fail any attempt to move a directory into one of its own descendants. 2206 * XXX - z_parent_lock can overlap with map or grow locks 2207 */ 2208 static int 2209 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2210 { 2211 zfs_zlock_t *zl; 2212 znode_t *zp = tdzp; 2213 uint64_t rootid = zp->z_zfsvfs->z_root; 2214 uint64_t *oidp = &zp->z_id; 2215 krwlock_t *rwlp = &szp->z_parent_lock; 2216 krw_t rw = RW_WRITER; 2217 2218 /* 2219 * First pass write-locks szp and compares to zp->z_id. 2220 * Later passes read-lock zp and compare to zp->z_parent. 2221 */ 2222 do { 2223 if (!rw_tryenter(rwlp, rw)) { 2224 /* 2225 * Another thread is renaming in this path. 2226 * Note that if we are a WRITER, we don't have any 2227 * parent_locks held yet. 2228 */ 2229 if (rw == RW_READER && zp->z_id > szp->z_id) { 2230 /* 2231 * Drop our locks and restart 2232 */ 2233 zfs_rename_unlock(&zl); 2234 *zlpp = NULL; 2235 zp = tdzp; 2236 oidp = &zp->z_id; 2237 rwlp = &szp->z_parent_lock; 2238 rw = RW_WRITER; 2239 continue; 2240 } else { 2241 /* 2242 * Wait for other thread to drop its locks 2243 */ 2244 rw_enter(rwlp, rw); 2245 } 2246 } 2247 2248 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2249 zl->zl_rwlock = rwlp; 2250 zl->zl_znode = NULL; 2251 zl->zl_next = *zlpp; 2252 *zlpp = zl; 2253 2254 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2255 return (EINVAL); 2256 2257 if (*oidp == rootid) /* We've hit the top */ 2258 return (0); 2259 2260 if (rw == RW_READER) { /* i.e. not the first pass */ 2261 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2262 if (error) 2263 return (error); 2264 zl->zl_znode = zp; 2265 } 2266 oidp = &zp->z_phys->zp_parent; 2267 rwlp = &zp->z_parent_lock; 2268 rw = RW_READER; 2269 2270 } while (zp->z_id != sdzp->z_id); 2271 2272 return (0); 2273 } 2274 2275 /* 2276 * Move an entry from the provided source directory to the target 2277 * directory. Change the entry name as indicated. 2278 * 2279 * IN: sdvp - Source directory containing the "old entry". 2280 * snm - Old entry name. 2281 * tdvp - Target directory to contain the "new entry". 2282 * tnm - New entry name. 2283 * cr - credentials of caller. 2284 * 2285 * RETURN: 0 if success 2286 * error code if failure 2287 * 2288 * Timestamps: 2289 * sdvp,tdvp - ctime|mtime updated 2290 */ 2291 static int 2292 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2293 { 2294 znode_t *tdzp, *szp, *tzp; 2295 znode_t *sdzp = VTOZ(sdvp); 2296 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2297 zilog_t *zilog = zfsvfs->z_log; 2298 vnode_t *realvp; 2299 zfs_dirlock_t *sdl, *tdl; 2300 dmu_tx_t *tx; 2301 zfs_zlock_t *zl; 2302 int cmp, serr, terr, error; 2303 2304 ZFS_ENTER(zfsvfs); 2305 2306 /* 2307 * Make sure we have the real vp for the target directory. 2308 */ 2309 if (VOP_REALVP(tdvp, &realvp) == 0) 2310 tdvp = realvp; 2311 2312 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2313 ZFS_EXIT(zfsvfs); 2314 return (EXDEV); 2315 } 2316 2317 tdzp = VTOZ(tdvp); 2318 top: 2319 szp = NULL; 2320 tzp = NULL; 2321 zl = NULL; 2322 2323 /* 2324 * This is to prevent the creation of links into attribute space 2325 * by renaming a linked file into/outof an attribute directory. 2326 * See the comment in zfs_link() for why this is considered bad. 2327 */ 2328 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2329 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2330 ZFS_EXIT(zfsvfs); 2331 return (EINVAL); 2332 } 2333 2334 /* 2335 * Lock source and target directory entries. To prevent deadlock, 2336 * a lock ordering must be defined. We lock the directory with 2337 * the smallest object id first, or if it's a tie, the one with 2338 * the lexically first name. 2339 */ 2340 if (sdzp->z_id < tdzp->z_id) { 2341 cmp = -1; 2342 } else if (sdzp->z_id > tdzp->z_id) { 2343 cmp = 1; 2344 } else { 2345 cmp = strcmp(snm, tnm); 2346 if (cmp == 0) { 2347 /* 2348 * POSIX: "If the old argument and the new argument 2349 * both refer to links to the same existing file, 2350 * the rename() function shall return successfully 2351 * and perform no other action." 2352 */ 2353 ZFS_EXIT(zfsvfs); 2354 return (0); 2355 } 2356 } 2357 if (cmp < 0) { 2358 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2359 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2360 } else { 2361 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2362 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2363 } 2364 2365 if (serr) { 2366 /* 2367 * Source entry invalid or not there. 2368 */ 2369 if (!terr) { 2370 zfs_dirent_unlock(tdl); 2371 if (tzp) 2372 VN_RELE(ZTOV(tzp)); 2373 } 2374 if (strcmp(snm, "..") == 0) 2375 serr = EINVAL; 2376 ZFS_EXIT(zfsvfs); 2377 return (serr); 2378 } 2379 if (terr) { 2380 zfs_dirent_unlock(sdl); 2381 VN_RELE(ZTOV(szp)); 2382 if (strcmp(tnm, "..") == 0) 2383 terr = EINVAL; 2384 ZFS_EXIT(zfsvfs); 2385 return (terr); 2386 } 2387 2388 /* 2389 * Must have write access at the source to remove the old entry 2390 * and write access at the target to create the new entry. 2391 * Note that if target and source are the same, this can be 2392 * done in a single check. 2393 */ 2394 2395 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2396 goto out; 2397 2398 if (ZTOV(szp)->v_type == VDIR) { 2399 /* 2400 * Check to make sure rename is valid. 2401 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2402 */ 2403 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2404 goto out; 2405 } 2406 2407 /* 2408 * Does target exist? 2409 */ 2410 if (tzp) { 2411 /* 2412 * Source and target must be the same type. 2413 */ 2414 if (ZTOV(szp)->v_type == VDIR) { 2415 if (ZTOV(tzp)->v_type != VDIR) { 2416 error = ENOTDIR; 2417 goto out; 2418 } 2419 } else { 2420 if (ZTOV(tzp)->v_type == VDIR) { 2421 error = EISDIR; 2422 goto out; 2423 } 2424 } 2425 /* 2426 * POSIX dictates that when the source and target 2427 * entries refer to the same file object, rename 2428 * must do nothing and exit without error. 2429 */ 2430 if (szp->z_id == tzp->z_id) { 2431 error = 0; 2432 goto out; 2433 } 2434 } 2435 2436 vnevent_rename_src(ZTOV(szp)); 2437 if (tzp) 2438 vnevent_rename_dest(ZTOV(tzp)); 2439 2440 tx = dmu_tx_create(zfsvfs->z_os); 2441 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2442 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2443 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2444 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2445 if (sdzp != tdzp) 2446 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2447 if (tzp) 2448 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2449 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2450 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2451 if (error) { 2452 if (zl != NULL) 2453 zfs_rename_unlock(&zl); 2454 zfs_dirent_unlock(sdl); 2455 zfs_dirent_unlock(tdl); 2456 VN_RELE(ZTOV(szp)); 2457 if (tzp) 2458 VN_RELE(ZTOV(tzp)); 2459 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2460 dmu_tx_wait(tx); 2461 dmu_tx_abort(tx); 2462 goto top; 2463 } 2464 dmu_tx_abort(tx); 2465 ZFS_EXIT(zfsvfs); 2466 return (error); 2467 } 2468 2469 if (tzp) /* Attempt to remove the existing target */ 2470 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2471 2472 if (error == 0) { 2473 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2474 if (error == 0) { 2475 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2476 ASSERT(error == 0); 2477 zfs_log_rename(zilog, tx, TX_RENAME, sdzp, 2478 sdl->dl_name, tdzp, tdl->dl_name, szp); 2479 } 2480 } 2481 2482 dmu_tx_commit(tx); 2483 out: 2484 if (zl != NULL) 2485 zfs_rename_unlock(&zl); 2486 2487 zfs_dirent_unlock(sdl); 2488 zfs_dirent_unlock(tdl); 2489 2490 VN_RELE(ZTOV(szp)); 2491 if (tzp) 2492 VN_RELE(ZTOV(tzp)); 2493 2494 ZFS_EXIT(zfsvfs); 2495 return (error); 2496 } 2497 2498 /* 2499 * Insert the indicated symbolic reference entry into the directory. 2500 * 2501 * IN: dvp - Directory to contain new symbolic link. 2502 * link - Name for new symlink entry. 2503 * vap - Attributes of new entry. 2504 * target - Target path of new symlink. 2505 * cr - credentials of caller. 2506 * 2507 * RETURN: 0 if success 2508 * error code if failure 2509 * 2510 * Timestamps: 2511 * dvp - ctime|mtime updated 2512 */ 2513 static int 2514 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2515 { 2516 znode_t *zp, *dzp = VTOZ(dvp); 2517 zfs_dirlock_t *dl; 2518 dmu_tx_t *tx; 2519 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2520 zilog_t *zilog = zfsvfs->z_log; 2521 uint64_t zoid; 2522 int len = strlen(link); 2523 int error; 2524 2525 ASSERT(vap->va_type == VLNK); 2526 2527 ZFS_ENTER(zfsvfs); 2528 top: 2529 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2530 ZFS_EXIT(zfsvfs); 2531 return (error); 2532 } 2533 2534 if (len > MAXPATHLEN) { 2535 ZFS_EXIT(zfsvfs); 2536 return (ENAMETOOLONG); 2537 } 2538 2539 /* 2540 * Attempt to lock directory; fail if entry already exists. 2541 */ 2542 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2543 ZFS_EXIT(zfsvfs); 2544 return (error); 2545 } 2546 2547 tx = dmu_tx_create(zfsvfs->z_os); 2548 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2549 dmu_tx_hold_bonus(tx, dzp->z_id); 2550 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2551 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2552 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2553 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2554 if (error) { 2555 zfs_dirent_unlock(dl); 2556 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2557 dmu_tx_wait(tx); 2558 dmu_tx_abort(tx); 2559 goto top; 2560 } 2561 dmu_tx_abort(tx); 2562 ZFS_EXIT(zfsvfs); 2563 return (error); 2564 } 2565 2566 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2567 2568 /* 2569 * Create a new object for the symlink. 2570 * Put the link content into bonus buffer if it will fit; 2571 * otherwise, store it just like any other file data. 2572 */ 2573 zoid = 0; 2574 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2575 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2576 if (len != 0) 2577 bcopy(link, zp->z_phys + 1, len); 2578 } else { 2579 dmu_buf_t *dbp; 2580 2581 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2582 2583 /* 2584 * Nothing can access the znode yet so no locking needed 2585 * for growing the znode's blocksize. 2586 */ 2587 zfs_grow_blocksize(zp, len, tx); 2588 2589 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2590 dmu_buf_will_dirty(dbp, tx); 2591 2592 ASSERT3U(len, <=, dbp->db_size); 2593 bcopy(link, dbp->db_data, len); 2594 dmu_buf_rele(dbp, FTAG); 2595 } 2596 zp->z_phys->zp_size = len; 2597 2598 /* 2599 * Insert the new object into the directory. 2600 */ 2601 (void) zfs_link_create(dl, zp, tx, ZNEW); 2602 out: 2603 if (error == 0) 2604 zfs_log_symlink(zilog, tx, TX_SYMLINK, dzp, zp, name, link); 2605 2606 dmu_tx_commit(tx); 2607 2608 zfs_dirent_unlock(dl); 2609 2610 VN_RELE(ZTOV(zp)); 2611 2612 ZFS_EXIT(zfsvfs); 2613 return (error); 2614 } 2615 2616 /* 2617 * Return, in the buffer contained in the provided uio structure, 2618 * the symbolic path referred to by vp. 2619 * 2620 * IN: vp - vnode of symbolic link. 2621 * uoip - structure to contain the link path. 2622 * cr - credentials of caller. 2623 * 2624 * OUT: uio - structure to contain the link path. 2625 * 2626 * RETURN: 0 if success 2627 * error code if failure 2628 * 2629 * Timestamps: 2630 * vp - atime updated 2631 */ 2632 /* ARGSUSED */ 2633 static int 2634 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2635 { 2636 znode_t *zp = VTOZ(vp); 2637 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2638 size_t bufsz; 2639 int error; 2640 2641 ZFS_ENTER(zfsvfs); 2642 2643 bufsz = (size_t)zp->z_phys->zp_size; 2644 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2645 error = uiomove(zp->z_phys + 1, 2646 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2647 } else { 2648 dmu_buf_t *dbp; 2649 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2650 if (error) { 2651 ZFS_EXIT(zfsvfs); 2652 return (error); 2653 } 2654 error = uiomove(dbp->db_data, 2655 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2656 dmu_buf_rele(dbp, FTAG); 2657 } 2658 2659 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2660 ZFS_EXIT(zfsvfs); 2661 return (error); 2662 } 2663 2664 /* 2665 * Insert a new entry into directory tdvp referencing svp. 2666 * 2667 * IN: tdvp - Directory to contain new entry. 2668 * svp - vnode of new entry. 2669 * name - name of new entry. 2670 * cr - credentials of caller. 2671 * 2672 * RETURN: 0 if success 2673 * error code if failure 2674 * 2675 * Timestamps: 2676 * tdvp - ctime|mtime updated 2677 * svp - ctime updated 2678 */ 2679 /* ARGSUSED */ 2680 static int 2681 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2682 { 2683 znode_t *dzp = VTOZ(tdvp); 2684 znode_t *tzp, *szp; 2685 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2686 zilog_t *zilog = zfsvfs->z_log; 2687 zfs_dirlock_t *dl; 2688 dmu_tx_t *tx; 2689 vnode_t *realvp; 2690 int error; 2691 2692 ASSERT(tdvp->v_type == VDIR); 2693 2694 ZFS_ENTER(zfsvfs); 2695 2696 if (VOP_REALVP(svp, &realvp) == 0) 2697 svp = realvp; 2698 2699 if (svp->v_vfsp != tdvp->v_vfsp) { 2700 ZFS_EXIT(zfsvfs); 2701 return (EXDEV); 2702 } 2703 2704 szp = VTOZ(svp); 2705 top: 2706 /* 2707 * We do not support links between attributes and non-attributes 2708 * because of the potential security risk of creating links 2709 * into "normal" file space in order to circumvent restrictions 2710 * imposed in attribute space. 2711 */ 2712 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2713 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2714 ZFS_EXIT(zfsvfs); 2715 return (EINVAL); 2716 } 2717 2718 /* 2719 * POSIX dictates that we return EPERM here. 2720 * Better choices include ENOTSUP or EISDIR. 2721 */ 2722 if (svp->v_type == VDIR) { 2723 ZFS_EXIT(zfsvfs); 2724 return (EPERM); 2725 } 2726 2727 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2728 secpolicy_basic_link(cr) != 0) { 2729 ZFS_EXIT(zfsvfs); 2730 return (EPERM); 2731 } 2732 2733 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2734 ZFS_EXIT(zfsvfs); 2735 return (error); 2736 } 2737 2738 /* 2739 * Attempt to lock directory; fail if entry already exists. 2740 */ 2741 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2742 ZFS_EXIT(zfsvfs); 2743 return (error); 2744 } 2745 2746 tx = dmu_tx_create(zfsvfs->z_os); 2747 dmu_tx_hold_bonus(tx, szp->z_id); 2748 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2749 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2750 if (error) { 2751 zfs_dirent_unlock(dl); 2752 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2753 dmu_tx_wait(tx); 2754 dmu_tx_abort(tx); 2755 goto top; 2756 } 2757 dmu_tx_abort(tx); 2758 ZFS_EXIT(zfsvfs); 2759 return (error); 2760 } 2761 2762 error = zfs_link_create(dl, szp, tx, 0); 2763 2764 if (error == 0) 2765 zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2766 2767 dmu_tx_commit(tx); 2768 2769 zfs_dirent_unlock(dl); 2770 2771 ZFS_EXIT(zfsvfs); 2772 return (error); 2773 } 2774 2775 /* 2776 * zfs_null_putapage() is used when the file system has been force 2777 * unmounted. It just drops the pages. 2778 */ 2779 /* ARGSUSED */ 2780 static int 2781 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2782 size_t *lenp, int flags, cred_t *cr) 2783 { 2784 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2785 return (0); 2786 } 2787 2788 /* 2789 * Push a page out to disk, klustering if possible. 2790 * 2791 * IN: vp - file to push page to. 2792 * pp - page to push. 2793 * flags - additional flags. 2794 * cr - credentials of caller. 2795 * 2796 * OUT: offp - start of range pushed. 2797 * lenp - len of range pushed. 2798 * 2799 * RETURN: 0 if success 2800 * error code if failure 2801 * 2802 * NOTE: callers must have locked the page to be pushed. On 2803 * exit, the page (and all other pages in the kluster) must be 2804 * unlocked. 2805 */ 2806 /* ARGSUSED */ 2807 static int 2808 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2809 size_t *lenp, int flags, cred_t *cr) 2810 { 2811 znode_t *zp = VTOZ(vp); 2812 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2813 zilog_t *zilog = zfsvfs->z_log; 2814 dmu_tx_t *tx; 2815 rl_t *rl; 2816 u_offset_t off, koff; 2817 size_t len, klen; 2818 uint64_t filesz; 2819 int err; 2820 2821 filesz = zp->z_phys->zp_size; 2822 off = pp->p_offset; 2823 len = PAGESIZE; 2824 /* 2825 * If our blocksize is bigger than the page size, try to kluster 2826 * muiltiple pages so that we write a full block (thus avoiding 2827 * a read-modify-write). 2828 */ 2829 if (off < filesz && zp->z_blksz > PAGESIZE) { 2830 if (!ISP2(zp->z_blksz)) { 2831 /* Only one block in the file. */ 2832 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 2833 koff = 0; 2834 } else { 2835 klen = zp->z_blksz; 2836 koff = P2ALIGN(off, (u_offset_t)klen); 2837 } 2838 ASSERT(koff <= filesz); 2839 if (koff + klen > filesz) 2840 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 2841 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 2842 } 2843 ASSERT3U(btop(len), ==, btopr(len)); 2844 top: 2845 rl = zfs_range_lock(zp, off, len, RL_WRITER); 2846 /* 2847 * Can't push pages past end-of-file. 2848 */ 2849 filesz = zp->z_phys->zp_size; 2850 if (off >= filesz) { 2851 /* ignore all pages */ 2852 err = 0; 2853 goto out; 2854 } else if (off + len > filesz) { 2855 int npages = btopr(filesz - off); 2856 page_t *trunc; 2857 2858 page_list_break(&pp, &trunc, npages); 2859 /* ignore pages past end of file */ 2860 if (trunc) 2861 pvn_write_done(trunc, flags); 2862 len = filesz - off; 2863 } 2864 2865 tx = dmu_tx_create(zfsvfs->z_os); 2866 dmu_tx_hold_write(tx, zp->z_id, off, len); 2867 dmu_tx_hold_bonus(tx, zp->z_id); 2868 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2869 if (err != 0) { 2870 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2871 zfs_range_unlock(rl); 2872 dmu_tx_wait(tx); 2873 dmu_tx_abort(tx); 2874 err = 0; 2875 goto top; 2876 } 2877 dmu_tx_abort(tx); 2878 goto out; 2879 } 2880 2881 if (zp->z_blksz <= PAGESIZE) { 2882 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 2883 ASSERT3U(len, <=, PAGESIZE); 2884 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2885 ppmapout(va); 2886 } else { 2887 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 2888 } 2889 2890 if (err == 0) { 2891 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2892 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 2893 dmu_tx_commit(tx); 2894 } 2895 2896 out: 2897 zfs_range_unlock(rl); 2898 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 2899 if (offp) 2900 *offp = off; 2901 if (lenp) 2902 *lenp = len; 2903 2904 return (err); 2905 } 2906 2907 /* 2908 * Copy the portion of the file indicated from pages into the file. 2909 * The pages are stored in a page list attached to the files vnode. 2910 * 2911 * IN: vp - vnode of file to push page data to. 2912 * off - position in file to put data. 2913 * len - amount of data to write. 2914 * flags - flags to control the operation. 2915 * cr - credentials of caller. 2916 * 2917 * RETURN: 0 if success 2918 * error code if failure 2919 * 2920 * Timestamps: 2921 * vp - ctime|mtime updated 2922 */ 2923 static int 2924 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2925 { 2926 znode_t *zp = VTOZ(vp); 2927 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2928 page_t *pp; 2929 size_t io_len; 2930 u_offset_t io_off; 2931 uint64_t filesz; 2932 int error = 0; 2933 2934 ZFS_ENTER(zfsvfs); 2935 2936 ASSERT(zp->z_dbuf_held && zp->z_phys); 2937 2938 if (len == 0) { 2939 /* 2940 * Search the entire vp list for pages >= off. 2941 */ 2942 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2943 flags, cr); 2944 goto out; 2945 } 2946 2947 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2948 if (off > filesz) { 2949 /* past end of file */ 2950 ZFS_EXIT(zfsvfs); 2951 return (0); 2952 } 2953 2954 len = MIN(len, filesz - off); 2955 2956 for (io_off = off; io_off < off + len; io_off += io_len) { 2957 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2958 pp = page_lookup(vp, io_off, 2959 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 2960 } else { 2961 pp = page_lookup_nowait(vp, io_off, 2962 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2963 } 2964 2965 if (pp != NULL && pvn_getdirty(pp, flags)) { 2966 int err; 2967 2968 /* 2969 * Found a dirty page to push 2970 */ 2971 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2972 if (err) 2973 error = err; 2974 } else { 2975 io_len = PAGESIZE; 2976 } 2977 } 2978 out: 2979 if ((flags & B_ASYNC) == 0) 2980 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 2981 ZFS_EXIT(zfsvfs); 2982 return (error); 2983 } 2984 2985 void 2986 zfs_inactive(vnode_t *vp, cred_t *cr) 2987 { 2988 znode_t *zp = VTOZ(vp); 2989 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2990 int error; 2991 2992 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2993 if (zfsvfs->z_unmounted2) { 2994 ASSERT(zp->z_dbuf_held == 0); 2995 2996 if (vn_has_cached_data(vp)) { 2997 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2998 B_INVAL, cr); 2999 } 3000 3001 mutex_enter(&zp->z_lock); 3002 vp->v_count = 0; /* count arrives as 1 */ 3003 if (zp->z_dbuf == NULL) { 3004 mutex_exit(&zp->z_lock); 3005 zfs_znode_free(zp); 3006 } else { 3007 mutex_exit(&zp->z_lock); 3008 } 3009 rw_exit(&zfsvfs->z_um_lock); 3010 VFS_RELE(zfsvfs->z_vfs); 3011 return; 3012 } 3013 3014 /* 3015 * Attempt to push any data in the page cache. If this fails 3016 * we will get kicked out later in zfs_zinactive(). 3017 */ 3018 if (vn_has_cached_data(vp)) { 3019 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3020 cr); 3021 } 3022 3023 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3024 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3025 3026 dmu_tx_hold_bonus(tx, zp->z_id); 3027 error = dmu_tx_assign(tx, TXG_WAIT); 3028 if (error) { 3029 dmu_tx_abort(tx); 3030 } else { 3031 dmu_buf_will_dirty(zp->z_dbuf, tx); 3032 mutex_enter(&zp->z_lock); 3033 zp->z_atime_dirty = 0; 3034 mutex_exit(&zp->z_lock); 3035 dmu_tx_commit(tx); 3036 } 3037 } 3038 3039 zfs_zinactive(zp); 3040 rw_exit(&zfsvfs->z_um_lock); 3041 } 3042 3043 /* 3044 * Bounds-check the seek operation. 3045 * 3046 * IN: vp - vnode seeking within 3047 * ooff - old file offset 3048 * noffp - pointer to new file offset 3049 * 3050 * RETURN: 0 if success 3051 * EINVAL if new offset invalid 3052 */ 3053 /* ARGSUSED */ 3054 static int 3055 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3056 { 3057 if (vp->v_type == VDIR) 3058 return (0); 3059 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3060 } 3061 3062 /* 3063 * Pre-filter the generic locking function to trap attempts to place 3064 * a mandatory lock on a memory mapped file. 3065 */ 3066 static int 3067 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3068 flk_callback_t *flk_cbp, cred_t *cr) 3069 { 3070 znode_t *zp = VTOZ(vp); 3071 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3072 int error; 3073 3074 ZFS_ENTER(zfsvfs); 3075 3076 /* 3077 * We are following the UFS semantics with respect to mapcnt 3078 * here: If we see that the file is mapped already, then we will 3079 * return an error, but we don't worry about races between this 3080 * function and zfs_map(). 3081 */ 3082 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3083 ZFS_EXIT(zfsvfs); 3084 return (EAGAIN); 3085 } 3086 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3087 ZFS_EXIT(zfsvfs); 3088 return (error); 3089 } 3090 3091 /* 3092 * If we can't find a page in the cache, we will create a new page 3093 * and fill it with file data. For efficiency, we may try to fill 3094 * multiple pages at once (klustering). 3095 */ 3096 static int 3097 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3098 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3099 { 3100 znode_t *zp = VTOZ(vp); 3101 page_t *pp, *cur_pp; 3102 objset_t *os = zp->z_zfsvfs->z_os; 3103 caddr_t va; 3104 u_offset_t io_off, total; 3105 uint64_t oid = zp->z_id; 3106 size_t io_len; 3107 uint64_t filesz; 3108 int err; 3109 3110 /* 3111 * If we are only asking for a single page don't bother klustering. 3112 */ 3113 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3114 if (off >= filesz) 3115 return (EFAULT); 3116 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3117 io_off = off; 3118 io_len = PAGESIZE; 3119 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3120 } else { 3121 /* 3122 * Try to fill a kluster of pages (a blocks worth). 3123 */ 3124 size_t klen; 3125 u_offset_t koff; 3126 3127 if (!ISP2(zp->z_blksz)) { 3128 /* Only one block in the file. */ 3129 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3130 koff = 0; 3131 } else { 3132 /* 3133 * It would be ideal to align our offset to the 3134 * blocksize but doing so has resulted in some 3135 * strange application crashes. For now, we 3136 * leave the offset as is and only adjust the 3137 * length if we are off the end of the file. 3138 */ 3139 koff = off; 3140 klen = plsz; 3141 } 3142 ASSERT(koff <= filesz); 3143 if (koff + klen > filesz) 3144 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3145 ASSERT3U(off, >=, koff); 3146 ASSERT3U(off, <, koff + klen); 3147 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3148 &io_len, koff, klen, 0); 3149 } 3150 if (pp == NULL) { 3151 /* 3152 * Some other thread entered the page before us. 3153 * Return to zfs_getpage to retry the lookup. 3154 */ 3155 *pl = NULL; 3156 return (0); 3157 } 3158 3159 /* 3160 * Fill the pages in the kluster. 3161 */ 3162 cur_pp = pp; 3163 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3164 ASSERT3U(io_off, ==, cur_pp->p_offset); 3165 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3166 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3167 ppmapout(va); 3168 if (err) { 3169 /* On error, toss the entire kluster */ 3170 pvn_read_done(pp, B_ERROR); 3171 return (err); 3172 } 3173 cur_pp = cur_pp->p_next; 3174 } 3175 out: 3176 /* 3177 * Fill in the page list array from the kluster. If 3178 * there are too many pages in the kluster, return 3179 * as many pages as possible starting from the desired 3180 * offset `off'. 3181 * NOTE: the page list will always be null terminated. 3182 */ 3183 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3184 3185 return (0); 3186 } 3187 3188 /* 3189 * Return pointers to the pages for the file region [off, off + len] 3190 * in the pl array. If plsz is greater than len, this function may 3191 * also return page pointers from before or after the specified 3192 * region (i.e. some region [off', off' + plsz]). These additional 3193 * pages are only returned if they are already in the cache, or were 3194 * created as part of a klustered read. 3195 * 3196 * IN: vp - vnode of file to get data from. 3197 * off - position in file to get data from. 3198 * len - amount of data to retrieve. 3199 * plsz - length of provided page list. 3200 * seg - segment to obtain pages for. 3201 * addr - virtual address of fault. 3202 * rw - mode of created pages. 3203 * cr - credentials of caller. 3204 * 3205 * OUT: protp - protection mode of created pages. 3206 * pl - list of pages created. 3207 * 3208 * RETURN: 0 if success 3209 * error code if failure 3210 * 3211 * Timestamps: 3212 * vp - atime updated 3213 */ 3214 /* ARGSUSED */ 3215 static int 3216 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3217 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3218 enum seg_rw rw, cred_t *cr) 3219 { 3220 znode_t *zp = VTOZ(vp); 3221 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3222 page_t *pp, **pl0 = pl; 3223 int need_unlock = 0, err = 0; 3224 offset_t orig_off; 3225 3226 ZFS_ENTER(zfsvfs); 3227 3228 if (protp) 3229 *protp = PROT_ALL; 3230 3231 ASSERT(zp->z_dbuf_held && zp->z_phys); 3232 3233 /* no faultahead (for now) */ 3234 if (pl == NULL) { 3235 ZFS_EXIT(zfsvfs); 3236 return (0); 3237 } 3238 3239 /* can't fault past EOF */ 3240 if (off >= zp->z_phys->zp_size) { 3241 ZFS_EXIT(zfsvfs); 3242 return (EFAULT); 3243 } 3244 orig_off = off; 3245 3246 /* 3247 * If we already own the lock, then we must be page faulting 3248 * in the middle of a write to this file (i.e., we are writing 3249 * to this file using data from a mapped region of the file). 3250 */ 3251 if (rw_owner(&zp->z_map_lock) != curthread) { 3252 rw_enter(&zp->z_map_lock, RW_WRITER); 3253 need_unlock = TRUE; 3254 } 3255 3256 /* 3257 * Loop through the requested range [off, off + len] looking 3258 * for pages. If we don't find a page, we will need to create 3259 * a new page and fill it with data from the file. 3260 */ 3261 while (len > 0) { 3262 if (plsz < PAGESIZE) 3263 break; 3264 if (pp = page_lookup(vp, off, SE_SHARED)) { 3265 *pl++ = pp; 3266 off += PAGESIZE; 3267 addr += PAGESIZE; 3268 len -= PAGESIZE; 3269 plsz -= PAGESIZE; 3270 } else { 3271 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3272 if (err) 3273 goto out; 3274 /* 3275 * klustering may have changed our region 3276 * to be block aligned. 3277 */ 3278 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3279 int delta = off - pp->p_offset; 3280 len += delta; 3281 off -= delta; 3282 addr -= delta; 3283 } 3284 while (*pl) { 3285 pl++; 3286 off += PAGESIZE; 3287 addr += PAGESIZE; 3288 plsz -= PAGESIZE; 3289 if (len > PAGESIZE) 3290 len -= PAGESIZE; 3291 else 3292 len = 0; 3293 } 3294 } 3295 } 3296 3297 /* 3298 * Fill out the page array with any pages already in the cache. 3299 */ 3300 while (plsz > 0) { 3301 pp = page_lookup_nowait(vp, off, SE_SHARED); 3302 if (pp == NULL) 3303 break; 3304 *pl++ = pp; 3305 off += PAGESIZE; 3306 plsz -= PAGESIZE; 3307 } 3308 3309 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3310 out: 3311 /* 3312 * We can't grab the range lock for the page as reader which would 3313 * stop truncation as this leads to deadlock. So we need to recheck 3314 * the file size. 3315 */ 3316 if (orig_off >= zp->z_phys->zp_size) 3317 err = EFAULT; 3318 if (err) { 3319 /* 3320 * Release any pages we have previously locked. 3321 */ 3322 while (pl > pl0) 3323 page_unlock(*--pl); 3324 } 3325 3326 *pl = NULL; 3327 3328 if (need_unlock) 3329 rw_exit(&zp->z_map_lock); 3330 3331 ZFS_EXIT(zfsvfs); 3332 return (err); 3333 } 3334 3335 /* 3336 * Request a memory map for a section of a file. This code interacts 3337 * with common code and the VM system as follows: 3338 * 3339 * common code calls mmap(), which ends up in smmap_common() 3340 * 3341 * this calls VOP_MAP(), which takes you into (say) zfs 3342 * 3343 * zfs_map() calls as_map(), passing segvn_create() as the callback 3344 * 3345 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3346 * 3347 * zfs_addmap() updates z_mapcnt 3348 */ 3349 static int 3350 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3351 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3352 { 3353 znode_t *zp = VTOZ(vp); 3354 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3355 segvn_crargs_t vn_a; 3356 int error; 3357 3358 ZFS_ENTER(zfsvfs); 3359 3360 if (vp->v_flag & VNOMAP) { 3361 ZFS_EXIT(zfsvfs); 3362 return (ENOSYS); 3363 } 3364 3365 if (off < 0 || len > MAXOFFSET_T - off) { 3366 ZFS_EXIT(zfsvfs); 3367 return (ENXIO); 3368 } 3369 3370 if (vp->v_type != VREG) { 3371 ZFS_EXIT(zfsvfs); 3372 return (ENODEV); 3373 } 3374 3375 /* 3376 * If file is locked, disallow mapping. 3377 */ 3378 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3379 ZFS_EXIT(zfsvfs); 3380 return (EAGAIN); 3381 } 3382 3383 as_rangelock(as); 3384 if ((flags & MAP_FIXED) == 0) { 3385 map_addr(addrp, len, off, 1, flags); 3386 if (*addrp == NULL) { 3387 as_rangeunlock(as); 3388 ZFS_EXIT(zfsvfs); 3389 return (ENOMEM); 3390 } 3391 } else { 3392 /* 3393 * User specified address - blow away any previous mappings 3394 */ 3395 (void) as_unmap(as, *addrp, len); 3396 } 3397 3398 vn_a.vp = vp; 3399 vn_a.offset = (u_offset_t)off; 3400 vn_a.type = flags & MAP_TYPE; 3401 vn_a.prot = prot; 3402 vn_a.maxprot = maxprot; 3403 vn_a.cred = cr; 3404 vn_a.amp = NULL; 3405 vn_a.flags = flags & ~MAP_TYPE; 3406 vn_a.szc = 0; 3407 vn_a.lgrp_mem_policy_flags = 0; 3408 3409 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3410 3411 as_rangeunlock(as); 3412 ZFS_EXIT(zfsvfs); 3413 return (error); 3414 } 3415 3416 /* ARGSUSED */ 3417 static int 3418 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3419 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3420 { 3421 uint64_t pages = btopr(len); 3422 3423 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3424 return (0); 3425 } 3426 3427 /* 3428 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3429 * more accurate mtime for the associated file. Since we don't have a way of 3430 * detecting when the data was actually modified, we have to resort to 3431 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3432 * last page is pushed. The problem occurs when the msync() call is omitted, 3433 * which by far the most common case: 3434 * 3435 * open() 3436 * mmap() 3437 * <modify memory> 3438 * munmap() 3439 * close() 3440 * <time lapse> 3441 * putpage() via fsflush 3442 * 3443 * If we wait until fsflush to come along, we can have a modification time that 3444 * is some arbitrary point in the future. In order to prevent this in the 3445 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3446 * torn down. 3447 */ 3448 /* ARGSUSED */ 3449 static int 3450 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3451 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3452 { 3453 uint64_t pages = btopr(len); 3454 3455 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3456 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3457 3458 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3459 vn_has_cached_data(vp)) 3460 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3461 3462 return (0); 3463 } 3464 3465 /* 3466 * Free or allocate space in a file. Currently, this function only 3467 * supports the `F_FREESP' command. However, this command is somewhat 3468 * misnamed, as its functionality includes the ability to allocate as 3469 * well as free space. 3470 * 3471 * IN: vp - vnode of file to free data in. 3472 * cmd - action to take (only F_FREESP supported). 3473 * bfp - section of file to free/alloc. 3474 * flag - current file open mode flags. 3475 * offset - current file offset. 3476 * cr - credentials of caller [UNUSED]. 3477 * 3478 * RETURN: 0 if success 3479 * error code if failure 3480 * 3481 * Timestamps: 3482 * vp - ctime|mtime updated 3483 */ 3484 /* ARGSUSED */ 3485 static int 3486 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3487 offset_t offset, cred_t *cr, caller_context_t *ct) 3488 { 3489 znode_t *zp = VTOZ(vp); 3490 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3491 uint64_t off, len; 3492 int error; 3493 3494 ZFS_ENTER(zfsvfs); 3495 3496 top: 3497 if (cmd != F_FREESP) { 3498 ZFS_EXIT(zfsvfs); 3499 return (EINVAL); 3500 } 3501 3502 if (error = convoff(vp, bfp, 0, offset)) { 3503 ZFS_EXIT(zfsvfs); 3504 return (error); 3505 } 3506 3507 if (bfp->l_len < 0) { 3508 ZFS_EXIT(zfsvfs); 3509 return (EINVAL); 3510 } 3511 3512 off = bfp->l_start; 3513 len = bfp->l_len; /* 0 means from off to end of file */ 3514 3515 do { 3516 error = zfs_freesp(zp, off, len, flag, TRUE); 3517 /* NB: we already did dmu_tx_wait() if necessary */ 3518 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3519 3520 ZFS_EXIT(zfsvfs); 3521 return (error); 3522 } 3523 3524 static int 3525 zfs_fid(vnode_t *vp, fid_t *fidp) 3526 { 3527 znode_t *zp = VTOZ(vp); 3528 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3529 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3530 uint64_t object = zp->z_id; 3531 zfid_short_t *zfid; 3532 int size, i; 3533 3534 ZFS_ENTER(zfsvfs); 3535 3536 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3537 if (fidp->fid_len < size) { 3538 fidp->fid_len = size; 3539 ZFS_EXIT(zfsvfs); 3540 return (ENOSPC); 3541 } 3542 3543 zfid = (zfid_short_t *)fidp; 3544 3545 zfid->zf_len = size; 3546 3547 for (i = 0; i < sizeof (zfid->zf_object); i++) 3548 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3549 3550 /* Must have a non-zero generation number to distinguish from .zfs */ 3551 if (gen == 0) 3552 gen = 1; 3553 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3554 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3555 3556 if (size == LONG_FID_LEN) { 3557 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3558 zfid_long_t *zlfid; 3559 3560 zlfid = (zfid_long_t *)fidp; 3561 3562 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3563 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3564 3565 /* XXX - this should be the generation number for the objset */ 3566 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3567 zlfid->zf_setgen[i] = 0; 3568 } 3569 3570 ZFS_EXIT(zfsvfs); 3571 return (0); 3572 } 3573 3574 static int 3575 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3576 { 3577 znode_t *zp, *xzp; 3578 zfsvfs_t *zfsvfs; 3579 zfs_dirlock_t *dl; 3580 int error; 3581 3582 switch (cmd) { 3583 case _PC_LINK_MAX: 3584 *valp = ULONG_MAX; 3585 return (0); 3586 3587 case _PC_FILESIZEBITS: 3588 *valp = 64; 3589 return (0); 3590 3591 case _PC_XATTR_EXISTS: 3592 zp = VTOZ(vp); 3593 zfsvfs = zp->z_zfsvfs; 3594 ZFS_ENTER(zfsvfs); 3595 *valp = 0; 3596 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3597 ZXATTR | ZEXISTS | ZSHARED); 3598 if (error == 0) { 3599 zfs_dirent_unlock(dl); 3600 if (!zfs_dirempty(xzp)) 3601 *valp = 1; 3602 VN_RELE(ZTOV(xzp)); 3603 } else if (error == ENOENT) { 3604 /* 3605 * If there aren't extended attributes, it's the 3606 * same as having zero of them. 3607 */ 3608 error = 0; 3609 } 3610 ZFS_EXIT(zfsvfs); 3611 return (error); 3612 3613 case _PC_ACL_ENABLED: 3614 *valp = _ACL_ACE_ENABLED; 3615 return (0); 3616 3617 case _PC_MIN_HOLE_SIZE: 3618 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3619 return (0); 3620 3621 default: 3622 return (fs_pathconf(vp, cmd, valp, cr)); 3623 } 3624 } 3625 3626 /*ARGSUSED*/ 3627 static int 3628 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3629 { 3630 znode_t *zp = VTOZ(vp); 3631 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3632 int error; 3633 3634 ZFS_ENTER(zfsvfs); 3635 error = zfs_getacl(zp, vsecp, cr); 3636 ZFS_EXIT(zfsvfs); 3637 3638 return (error); 3639 } 3640 3641 /*ARGSUSED*/ 3642 static int 3643 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3644 { 3645 znode_t *zp = VTOZ(vp); 3646 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3647 int error; 3648 3649 ZFS_ENTER(zfsvfs); 3650 error = zfs_setacl(zp, vsecp, cr); 3651 ZFS_EXIT(zfsvfs); 3652 return (error); 3653 } 3654 3655 /* 3656 * Predeclare these here so that the compiler assumes that 3657 * this is an "old style" function declaration that does 3658 * not include arguments => we won't get type mismatch errors 3659 * in the initializations that follow. 3660 */ 3661 static int zfs_inval(); 3662 static int zfs_isdir(); 3663 3664 static int 3665 zfs_inval() 3666 { 3667 return (EINVAL); 3668 } 3669 3670 static int 3671 zfs_isdir() 3672 { 3673 return (EISDIR); 3674 } 3675 /* 3676 * Directory vnode operations template 3677 */ 3678 vnodeops_t *zfs_dvnodeops; 3679 const fs_operation_def_t zfs_dvnodeops_template[] = { 3680 VOPNAME_OPEN, { .vop_open = zfs_open }, 3681 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3682 VOPNAME_READ, { .error = zfs_isdir }, 3683 VOPNAME_WRITE, { .error = zfs_isdir }, 3684 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3685 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3686 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3687 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3688 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3689 VOPNAME_CREATE, { .vop_create = zfs_create }, 3690 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 3691 VOPNAME_LINK, { .vop_link = zfs_link }, 3692 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3693 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 3694 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 3695 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 3696 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 3697 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3698 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3699 VOPNAME_FID, { .vop_fid = zfs_fid }, 3700 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3701 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3702 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3703 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3704 NULL, NULL 3705 }; 3706 3707 /* 3708 * Regular file vnode operations template 3709 */ 3710 vnodeops_t *zfs_fvnodeops; 3711 const fs_operation_def_t zfs_fvnodeops_template[] = { 3712 VOPNAME_OPEN, { .vop_open = zfs_open }, 3713 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3714 VOPNAME_READ, { .vop_read = zfs_read }, 3715 VOPNAME_WRITE, { .vop_write = zfs_write }, 3716 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3717 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3718 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3719 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3720 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3721 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3722 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3723 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3724 VOPNAME_FID, { .vop_fid = zfs_fid }, 3725 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3726 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 3727 VOPNAME_SPACE, { .vop_space = zfs_space }, 3728 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 3729 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 3730 VOPNAME_MAP, { .vop_map = zfs_map }, 3731 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 3732 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 3733 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3734 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3735 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3736 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3737 NULL, NULL 3738 }; 3739 3740 /* 3741 * Symbolic link vnode operations template 3742 */ 3743 vnodeops_t *zfs_symvnodeops; 3744 const fs_operation_def_t zfs_symvnodeops_template[] = { 3745 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3746 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3747 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3748 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3749 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 3750 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3751 VOPNAME_FID, { .vop_fid = zfs_fid }, 3752 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3753 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3754 NULL, NULL 3755 }; 3756 3757 /* 3758 * Extended attribute directory vnode operations template 3759 * This template is identical to the directory vnodes 3760 * operation template except for restricted operations: 3761 * VOP_MKDIR() 3762 * VOP_SYMLINK() 3763 * Note that there are other restrictions embedded in: 3764 * zfs_create() - restrict type to VREG 3765 * zfs_link() - no links into/out of attribute space 3766 * zfs_rename() - no moves into/out of attribute space 3767 */ 3768 vnodeops_t *zfs_xdvnodeops; 3769 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3770 VOPNAME_OPEN, { .vop_open = zfs_open }, 3771 VOPNAME_CLOSE, { .vop_close = zfs_close }, 3772 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 3773 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 3774 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 3775 VOPNAME_ACCESS, { .vop_access = zfs_access }, 3776 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 3777 VOPNAME_CREATE, { .vop_create = zfs_create }, 3778 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 3779 VOPNAME_LINK, { .vop_link = zfs_link }, 3780 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 3781 VOPNAME_MKDIR, { .error = zfs_inval }, 3782 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 3783 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 3784 VOPNAME_SYMLINK, { .error = zfs_inval }, 3785 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 3786 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3787 VOPNAME_FID, { .vop_fid = zfs_fid }, 3788 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 3789 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3790 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 3791 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 3792 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 3793 NULL, NULL 3794 }; 3795 3796 /* 3797 * Error vnode operations template 3798 */ 3799 vnodeops_t *zfs_evnodeops; 3800 const fs_operation_def_t zfs_evnodeops_template[] = { 3801 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 3802 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 3803 NULL, NULL 3804 }; 3805