xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision a73c0fe4e90b82a478f821ef3adb5cf34f6a9346)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/spa.h>
61 #include <sys/txg.h>
62 #include <sys/dbuf.h>
63 #include <sys/zap.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/filio.h>
68 #include <sys/sid.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/dnlc.h>
73 #include <sys/zfs_rlock.h>
74 #include <sys/extdirent.h>
75 #include <sys/kidmap.h>
76 #include <sys/cred_impl.h>
77 #include <sys/attr.h>
78 
79 /*
80  * Programming rules.
81  *
82  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83  * properly lock its in-core state, create a DMU transaction, do the work,
84  * record this work in the intent log (ZIL), commit the DMU transaction,
85  * and wait for the intent log to commit if it is a synchronous operation.
86  * Moreover, the vnode ops must work in both normal and log replay context.
87  * The ordering of events is important to avoid deadlocks and references
88  * to freed memory.  The example below illustrates the following Big Rules:
89  *
90  *  (1) A check must be made in each zfs thread for a mounted file system.
91  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94  *      can return EIO from the calling function.
95  *
96  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98  *	First, if it's the last reference, the vnode/znode
99  *	can be freed, so the zp may point to freed memory.  Second, the last
100  *	reference will call zfs_zinactive(), which may induce a lot of work --
101  *	pushing cached pages (which acquires range locks) and syncing out
102  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103  *	which could deadlock the system if you were already holding one.
104  *
105  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
106  *	as they can span dmu_tx_assign() calls.
107  *
108  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
109  *	This is critical because we don't want to block while holding locks.
110  *	Note, in particular, that if a lock is sometimes acquired before
111  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
112  *	use a non-blocking assign can deadlock the system.  The scenario:
113  *
114  *	Thread A has grabbed a lock before calling dmu_tx_assign().
115  *	Thread B is in an already-assigned tx, and blocks for this lock.
116  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
117  *	forever, because the previous txg can't quiesce until B's tx commits.
118  *
119  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
120  *	then drop all locks, call dmu_tx_wait(), and try again.
121  *
122  *  (5)	If the operation succeeded, generate the intent log entry for it
123  *	before dropping locks.  This ensures that the ordering of events
124  *	in the intent log matches the order in which they actually occurred.
125  *      During ZIL replay the zfs_log_* functions will update the sequence
126  *	number to indicate the zil transaction has replayed.
127  *
128  *  (6)	At the end of each vnode op, the DMU tx must always commit,
129  *	regardless of whether there were any errors.
130  *
131  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
132  *	to ensure that synchronous semantics are provided when necessary.
133  *
134  * In general, this is how things should be ordered in each vnode op:
135  *
136  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
137  * top:
138  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
139  *	rw_enter(...);			// grab any other locks you need
140  *	tx = dmu_tx_create(...);	// get DMU tx
141  *	dmu_tx_hold_*();		// hold each object you might modify
142  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
143  *	if (error) {
144  *		rw_exit(...);		// drop locks
145  *		zfs_dirent_unlock(dl);	// unlock directory entry
146  *		VN_RELE(...);		// release held vnodes
147  *		if (error == ERESTART) {
148  *			dmu_tx_wait(tx);
149  *			dmu_tx_abort(tx);
150  *			goto top;
151  *		}
152  *		dmu_tx_abort(tx);	// abort DMU tx
153  *		ZFS_EXIT(zfsvfs);	// finished in zfs
154  *		return (error);		// really out of space
155  *	}
156  *	error = do_real_work();		// do whatever this VOP does
157  *	if (error == 0)
158  *		zfs_log_*(...);		// on success, make ZIL entry
159  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
160  *	rw_exit(...);			// drop locks
161  *	zfs_dirent_unlock(dl);		// unlock directory entry
162  *	VN_RELE(...);			// release held vnodes
163  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
164  *	ZFS_EXIT(zfsvfs);		// finished in zfs
165  *	return (error);			// done, report error
166  */
167 
168 /* ARGSUSED */
169 static int
170 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
171 {
172 	znode_t	*zp = VTOZ(*vpp);
173 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
174 
175 	ZFS_ENTER(zfsvfs);
176 	ZFS_VERIFY_ZP(zp);
177 
178 	if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
179 	    ((flag & FAPPEND) == 0)) {
180 		ZFS_EXIT(zfsvfs);
181 		return (EPERM);
182 	}
183 
184 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
185 	    ZTOV(zp)->v_type == VREG &&
186 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
187 	    zp->z_phys->zp_size > 0) {
188 		if (fs_vscan(*vpp, cr, 0) != 0) {
189 			ZFS_EXIT(zfsvfs);
190 			return (EACCES);
191 		}
192 	}
193 
194 	/* Keep a count of the synchronous opens in the znode */
195 	if (flag & (FSYNC | FDSYNC))
196 		atomic_inc_32(&zp->z_sync_cnt);
197 
198 	ZFS_EXIT(zfsvfs);
199 	return (0);
200 }
201 
202 /* ARGSUSED */
203 static int
204 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
205     caller_context_t *ct)
206 {
207 	znode_t	*zp = VTOZ(vp);
208 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
209 
210 	ZFS_ENTER(zfsvfs);
211 	ZFS_VERIFY_ZP(zp);
212 
213 	/* Decrement the synchronous opens in the znode */
214 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
215 		atomic_dec_32(&zp->z_sync_cnt);
216 
217 	/*
218 	 * Clean up any locks held by this process on the vp.
219 	 */
220 	cleanlocks(vp, ddi_get_pid(), 0);
221 	cleanshares(vp, ddi_get_pid());
222 
223 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
224 	    ZTOV(zp)->v_type == VREG &&
225 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
226 	    zp->z_phys->zp_size > 0)
227 		VERIFY(fs_vscan(vp, cr, 1) == 0);
228 
229 	ZFS_EXIT(zfsvfs);
230 	return (0);
231 }
232 
233 /*
234  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236  */
237 static int
238 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
239 {
240 	znode_t	*zp = VTOZ(vp);
241 	uint64_t noff = (uint64_t)*off; /* new offset */
242 	uint64_t file_sz;
243 	int error;
244 	boolean_t hole;
245 
246 	file_sz = zp->z_phys->zp_size;
247 	if (noff >= file_sz)  {
248 		return (ENXIO);
249 	}
250 
251 	if (cmd == _FIO_SEEK_HOLE)
252 		hole = B_TRUE;
253 	else
254 		hole = B_FALSE;
255 
256 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257 
258 	/* end of file? */
259 	if ((error == ESRCH) || (noff > file_sz)) {
260 		/*
261 		 * Handle the virtual hole at the end of file.
262 		 */
263 		if (hole) {
264 			*off = file_sz;
265 			return (0);
266 		}
267 		return (ENXIO);
268 	}
269 
270 	if (noff < *off)
271 		return (error);
272 	*off = noff;
273 	return (error);
274 }
275 
276 /* ARGSUSED */
277 static int
278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
279     int *rvalp, caller_context_t *ct)
280 {
281 	offset_t off;
282 	int error;
283 	zfsvfs_t *zfsvfs;
284 	znode_t *zp;
285 
286 	switch (com) {
287 	case _FIOFFS:
288 		return (zfs_sync(vp->v_vfsp, 0, cred));
289 
290 		/*
291 		 * The following two ioctls are used by bfu.  Faking out,
292 		 * necessary to avoid bfu errors.
293 		 */
294 	case _FIOGDIO:
295 	case _FIOSDIO:
296 		return (0);
297 
298 	case _FIO_SEEK_DATA:
299 	case _FIO_SEEK_HOLE:
300 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
301 			return (EFAULT);
302 
303 		zp = VTOZ(vp);
304 		zfsvfs = zp->z_zfsvfs;
305 		ZFS_ENTER(zfsvfs);
306 		ZFS_VERIFY_ZP(zp);
307 
308 		/* offset parameter is in/out */
309 		error = zfs_holey(vp, com, &off);
310 		ZFS_EXIT(zfsvfs);
311 		if (error)
312 			return (error);
313 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
314 			return (EFAULT);
315 		return (0);
316 	}
317 	return (ENOTTY);
318 }
319 
320 /*
321  * Utility functions to map and unmap a single physical page.  These
322  * are used to manage the mappable copies of ZFS file data, and therefore
323  * do not update ref/mod bits.
324  */
325 caddr_t
326 zfs_map_page(page_t *pp, enum seg_rw rw)
327 {
328 	if (kpm_enable)
329 		return (hat_kpm_mapin(pp, 0));
330 	ASSERT(rw == S_READ || rw == S_WRITE);
331 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
332 	    (caddr_t)-1));
333 }
334 
335 void
336 zfs_unmap_page(page_t *pp, caddr_t addr)
337 {
338 	if (kpm_enable) {
339 		hat_kpm_mapout(pp, 0, addr);
340 	} else {
341 		ppmapout(addr);
342 	}
343 }
344 
345 /*
346  * When a file is memory mapped, we must keep the IO data synchronized
347  * between the DMU cache and the memory mapped pages.  What this means:
348  *
349  * On Write:	If we find a memory mapped page, we write to *both*
350  *		the page and the dmu buffer.
351  *
352  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
353  *	the file is memory mapped.
354  */
355 static int
356 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx)
357 {
358 	znode_t	*zp = VTOZ(vp);
359 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
360 	int64_t	start, off;
361 	int len = nbytes;
362 	int error = 0;
363 
364 	start = uio->uio_loffset;
365 	off = start & PAGEOFFSET;
366 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
367 		page_t *pp;
368 		uint64_t bytes = MIN(PAGESIZE - off, len);
369 		uint64_t woff = uio->uio_loffset;
370 
371 		/*
372 		 * We don't want a new page to "appear" in the middle of
373 		 * the file update (because it may not get the write
374 		 * update data), so we grab a lock to block
375 		 * zfs_getpage().
376 		 */
377 		rw_enter(&zp->z_map_lock, RW_WRITER);
378 		if (pp = page_lookup(vp, start, SE_SHARED)) {
379 			caddr_t va;
380 
381 			rw_exit(&zp->z_map_lock);
382 			va = zfs_map_page(pp, S_WRITE);
383 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
384 			if (error == 0) {
385 				dmu_write(zfsvfs->z_os, zp->z_id,
386 				    woff, bytes, va+off, tx);
387 			}
388 			zfs_unmap_page(pp, va);
389 			page_unlock(pp);
390 		} else {
391 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
392 			    uio, bytes, tx);
393 			rw_exit(&zp->z_map_lock);
394 		}
395 		len -= bytes;
396 		off = 0;
397 		if (error)
398 			break;
399 	}
400 	return (error);
401 }
402 
403 /*
404  * When a file is memory mapped, we must keep the IO data synchronized
405  * between the DMU cache and the memory mapped pages.  What this means:
406  *
407  * On Read:	We "read" preferentially from memory mapped pages,
408  *		else we default from the dmu buffer.
409  *
410  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
411  *	the file is memory mapped.
412  */
413 static int
414 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
415 {
416 	znode_t *zp = VTOZ(vp);
417 	objset_t *os = zp->z_zfsvfs->z_os;
418 	int64_t	start, off;
419 	int len = nbytes;
420 	int error = 0;
421 
422 	start = uio->uio_loffset;
423 	off = start & PAGEOFFSET;
424 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 		page_t *pp;
426 		uint64_t bytes = MIN(PAGESIZE - off, len);
427 
428 		if (pp = page_lookup(vp, start, SE_SHARED)) {
429 			caddr_t va;
430 
431 			va = zfs_map_page(pp, S_READ);
432 			error = uiomove(va + off, bytes, UIO_READ, uio);
433 			zfs_unmap_page(pp, va);
434 			page_unlock(pp);
435 		} else {
436 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
437 		}
438 		len -= bytes;
439 		off = 0;
440 		if (error)
441 			break;
442 	}
443 	return (error);
444 }
445 
446 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
447 
448 /*
449  * Read bytes from specified file into supplied buffer.
450  *
451  *	IN:	vp	- vnode of file to be read from.
452  *		uio	- structure supplying read location, range info,
453  *			  and return buffer.
454  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
455  *		cr	- credentials of caller.
456  *		ct	- caller context
457  *
458  *	OUT:	uio	- updated offset and range, buffer filled.
459  *
460  *	RETURN:	0 if success
461  *		error code if failure
462  *
463  * Side Effects:
464  *	vp - atime updated if byte count > 0
465  */
466 /* ARGSUSED */
467 static int
468 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
469 {
470 	znode_t		*zp = VTOZ(vp);
471 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
472 	objset_t	*os;
473 	ssize_t		n, nbytes;
474 	int		error;
475 	rl_t		*rl;
476 
477 	ZFS_ENTER(zfsvfs);
478 	ZFS_VERIFY_ZP(zp);
479 	os = zfsvfs->z_os;
480 
481 	if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
482 		ZFS_EXIT(zfsvfs);
483 		return (EACCES);
484 	}
485 
486 	/*
487 	 * Validate file offset
488 	 */
489 	if (uio->uio_loffset < (offset_t)0) {
490 		ZFS_EXIT(zfsvfs);
491 		return (EINVAL);
492 	}
493 
494 	/*
495 	 * Fasttrack empty reads
496 	 */
497 	if (uio->uio_resid == 0) {
498 		ZFS_EXIT(zfsvfs);
499 		return (0);
500 	}
501 
502 	/*
503 	 * Check for mandatory locks
504 	 */
505 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
506 		if (error = chklock(vp, FREAD,
507 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
508 			ZFS_EXIT(zfsvfs);
509 			return (error);
510 		}
511 	}
512 
513 	/*
514 	 * If we're in FRSYNC mode, sync out this znode before reading it.
515 	 */
516 	if (ioflag & FRSYNC)
517 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
518 
519 	/*
520 	 * Lock the range against changes.
521 	 */
522 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
523 
524 	/*
525 	 * If we are reading past end-of-file we can skip
526 	 * to the end; but we might still need to set atime.
527 	 */
528 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
529 		error = 0;
530 		goto out;
531 	}
532 
533 	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
534 	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
535 
536 	while (n > 0) {
537 		nbytes = MIN(n, zfs_read_chunk_size -
538 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
539 
540 		if (vn_has_cached_data(vp))
541 			error = mappedread(vp, nbytes, uio);
542 		else
543 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
544 		if (error) {
545 			/* convert checksum errors into IO errors */
546 			if (error == ECKSUM)
547 				error = EIO;
548 			break;
549 		}
550 
551 		n -= nbytes;
552 	}
553 
554 out:
555 	zfs_range_unlock(rl);
556 
557 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
558 	ZFS_EXIT(zfsvfs);
559 	return (error);
560 }
561 
562 /*
563  * Write the bytes to a file.
564  *
565  *	IN:	vp	- vnode of file to be written to.
566  *		uio	- structure supplying write location, range info,
567  *			  and data buffer.
568  *		ioflag	- FAPPEND flag set if in append mode.
569  *		cr	- credentials of caller.
570  *		ct	- caller context (NFS/CIFS fem monitor only)
571  *
572  *	OUT:	uio	- updated offset and range.
573  *
574  *	RETURN:	0 if success
575  *		error code if failure
576  *
577  * Timestamps:
578  *	vp - ctime|mtime updated if byte count > 0
579  */
580 /* ARGSUSED */
581 static int
582 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
583 {
584 	znode_t		*zp = VTOZ(vp);
585 	rlim64_t	limit = uio->uio_llimit;
586 	ssize_t		start_resid = uio->uio_resid;
587 	ssize_t		tx_bytes;
588 	uint64_t	end_size;
589 	dmu_tx_t	*tx;
590 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
591 	zilog_t		*zilog;
592 	offset_t	woff;
593 	ssize_t		n, nbytes;
594 	rl_t		*rl;
595 	int		max_blksz = zfsvfs->z_max_blksz;
596 	uint64_t	pflags;
597 	int		error;
598 
599 	/*
600 	 * Fasttrack empty write
601 	 */
602 	n = start_resid;
603 	if (n == 0)
604 		return (0);
605 
606 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
607 		limit = MAXOFFSET_T;
608 
609 	ZFS_ENTER(zfsvfs);
610 	ZFS_VERIFY_ZP(zp);
611 
612 	/*
613 	 * If immutable or not appending then return EPERM
614 	 */
615 	pflags = zp->z_phys->zp_flags;
616 	if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
617 	    ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
618 	    (uio->uio_loffset < zp->z_phys->zp_size))) {
619 		ZFS_EXIT(zfsvfs);
620 		return (EPERM);
621 	}
622 
623 	zilog = zfsvfs->z_log;
624 
625 	/*
626 	 * Pre-fault the pages to ensure slow (eg NFS) pages
627 	 * don't hold up txg.
628 	 */
629 	uio_prefaultpages(n, uio);
630 
631 	/*
632 	 * If in append mode, set the io offset pointer to eof.
633 	 */
634 	if (ioflag & FAPPEND) {
635 		/*
636 		 * Range lock for a file append:
637 		 * The value for the start of range will be determined by
638 		 * zfs_range_lock() (to guarantee append semantics).
639 		 * If this write will cause the block size to increase,
640 		 * zfs_range_lock() will lock the entire file, so we must
641 		 * later reduce the range after we grow the block size.
642 		 */
643 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
644 		if (rl->r_len == UINT64_MAX) {
645 			/* overlocked, zp_size can't change */
646 			woff = uio->uio_loffset = zp->z_phys->zp_size;
647 		} else {
648 			woff = uio->uio_loffset = rl->r_off;
649 		}
650 	} else {
651 		woff = uio->uio_loffset;
652 		/*
653 		 * Validate file offset
654 		 */
655 		if (woff < 0) {
656 			ZFS_EXIT(zfsvfs);
657 			return (EINVAL);
658 		}
659 
660 		/*
661 		 * If we need to grow the block size then zfs_range_lock()
662 		 * will lock a wider range than we request here.
663 		 * Later after growing the block size we reduce the range.
664 		 */
665 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
666 	}
667 
668 	if (woff >= limit) {
669 		zfs_range_unlock(rl);
670 		ZFS_EXIT(zfsvfs);
671 		return (EFBIG);
672 	}
673 
674 	if ((woff + n) > limit || woff > (limit - n))
675 		n = limit - woff;
676 
677 	/*
678 	 * Check for mandatory locks
679 	 */
680 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
681 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
682 		zfs_range_unlock(rl);
683 		ZFS_EXIT(zfsvfs);
684 		return (error);
685 	}
686 	end_size = MAX(zp->z_phys->zp_size, woff + n);
687 
688 	/*
689 	 * Write the file in reasonable size chunks.  Each chunk is written
690 	 * in a separate transaction; this keeps the intent log records small
691 	 * and allows us to do more fine-grained space accounting.
692 	 */
693 	while (n > 0) {
694 		/*
695 		 * Start a transaction.
696 		 */
697 		woff = uio->uio_loffset;
698 		tx = dmu_tx_create(zfsvfs->z_os);
699 		dmu_tx_hold_bonus(tx, zp->z_id);
700 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
701 		error = dmu_tx_assign(tx, TXG_NOWAIT);
702 		if (error) {
703 			if (error == ERESTART) {
704 				dmu_tx_wait(tx);
705 				dmu_tx_abort(tx);
706 				continue;
707 			}
708 			dmu_tx_abort(tx);
709 			break;
710 		}
711 
712 		/*
713 		 * If zfs_range_lock() over-locked we grow the blocksize
714 		 * and then reduce the lock range.  This will only happen
715 		 * on the first iteration since zfs_range_reduce() will
716 		 * shrink down r_len to the appropriate size.
717 		 */
718 		if (rl->r_len == UINT64_MAX) {
719 			uint64_t new_blksz;
720 
721 			if (zp->z_blksz > max_blksz) {
722 				ASSERT(!ISP2(zp->z_blksz));
723 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
724 			} else {
725 				new_blksz = MIN(end_size, max_blksz);
726 			}
727 			zfs_grow_blocksize(zp, new_blksz, tx);
728 			zfs_range_reduce(rl, woff, n);
729 		}
730 
731 		/*
732 		 * XXX - should we really limit each write to z_max_blksz?
733 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
734 		 */
735 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
736 		rw_enter(&zp->z_map_lock, RW_READER);
737 
738 		tx_bytes = uio->uio_resid;
739 		if (vn_has_cached_data(vp)) {
740 			rw_exit(&zp->z_map_lock);
741 			error = mappedwrite(vp, nbytes, uio, tx);
742 		} else {
743 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
744 			    uio, nbytes, tx);
745 			rw_exit(&zp->z_map_lock);
746 		}
747 		tx_bytes -= uio->uio_resid;
748 
749 		/*
750 		 * If we made no progress, we're done.  If we made even
751 		 * partial progress, update the znode and ZIL accordingly.
752 		 */
753 		if (tx_bytes == 0) {
754 			dmu_tx_commit(tx);
755 			ASSERT(error != 0);
756 			break;
757 		}
758 
759 		/*
760 		 * Clear Set-UID/Set-GID bits on successful write if not
761 		 * privileged and at least one of the excute bits is set.
762 		 *
763 		 * It would be nice to to this after all writes have
764 		 * been done, but that would still expose the ISUID/ISGID
765 		 * to another app after the partial write is committed.
766 		 *
767 		 * Note: we don't call zfs_fuid_map_id() here because
768 		 * user 0 is not an ephemeral uid.
769 		 */
770 		mutex_enter(&zp->z_acl_lock);
771 		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
772 		    (S_IXUSR >> 6))) != 0 &&
773 		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
774 		    secpolicy_vnode_setid_retain(cr,
775 		    (zp->z_phys->zp_mode & S_ISUID) != 0 &&
776 		    zp->z_phys->zp_uid == 0) != 0) {
777 			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
778 		}
779 		mutex_exit(&zp->z_acl_lock);
780 
781 		/*
782 		 * Update time stamp.  NOTE: This marks the bonus buffer as
783 		 * dirty, so we don't have to do it again for zp_size.
784 		 */
785 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
786 
787 		/*
788 		 * Update the file size (zp_size) if it has changed;
789 		 * account for possible concurrent updates.
790 		 */
791 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
792 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
793 			    uio->uio_loffset);
794 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
795 		dmu_tx_commit(tx);
796 
797 		if (error != 0)
798 			break;
799 		ASSERT(tx_bytes == nbytes);
800 		n -= nbytes;
801 	}
802 
803 	zfs_range_unlock(rl);
804 
805 	/*
806 	 * If we're in replay mode, or we made no progress, return error.
807 	 * Otherwise, it's at least a partial write, so it's successful.
808 	 */
809 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
810 		ZFS_EXIT(zfsvfs);
811 		return (error);
812 	}
813 
814 	if (ioflag & (FSYNC | FDSYNC))
815 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
816 
817 	ZFS_EXIT(zfsvfs);
818 	return (0);
819 }
820 
821 void
822 zfs_get_done(dmu_buf_t *db, void *vzgd)
823 {
824 	zgd_t *zgd = (zgd_t *)vzgd;
825 	rl_t *rl = zgd->zgd_rl;
826 	vnode_t *vp = ZTOV(rl->r_zp);
827 
828 	dmu_buf_rele(db, vzgd);
829 	zfs_range_unlock(rl);
830 	VN_RELE(vp);
831 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
832 	kmem_free(zgd, sizeof (zgd_t));
833 }
834 
835 /*
836  * Get data to generate a TX_WRITE intent log record.
837  */
838 int
839 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
840 {
841 	zfsvfs_t *zfsvfs = arg;
842 	objset_t *os = zfsvfs->z_os;
843 	znode_t *zp;
844 	uint64_t off = lr->lr_offset;
845 	dmu_buf_t *db;
846 	rl_t *rl;
847 	zgd_t *zgd;
848 	int dlen = lr->lr_length;		/* length of user data */
849 	int error = 0;
850 
851 	ASSERT(zio);
852 	ASSERT(dlen != 0);
853 
854 	/*
855 	 * Nothing to do if the file has been removed
856 	 */
857 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
858 		return (ENOENT);
859 	if (zp->z_unlinked) {
860 		VN_RELE(ZTOV(zp));
861 		return (ENOENT);
862 	}
863 
864 	/*
865 	 * Write records come in two flavors: immediate and indirect.
866 	 * For small writes it's cheaper to store the data with the
867 	 * log record (immediate); for large writes it's cheaper to
868 	 * sync the data and get a pointer to it (indirect) so that
869 	 * we don't have to write the data twice.
870 	 */
871 	if (buf != NULL) { /* immediate write */
872 		rl = zfs_range_lock(zp, off, dlen, RL_READER);
873 		/* test for truncation needs to be done while range locked */
874 		if (off >= zp->z_phys->zp_size) {
875 			error = ENOENT;
876 			goto out;
877 		}
878 		VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
879 	} else { /* indirect write */
880 		uint64_t boff; /* block starting offset */
881 
882 		/*
883 		 * Have to lock the whole block to ensure when it's
884 		 * written out and it's checksum is being calculated
885 		 * that no one can change the data. We need to re-check
886 		 * blocksize after we get the lock in case it's changed!
887 		 */
888 		for (;;) {
889 			if (ISP2(zp->z_blksz)) {
890 				boff = P2ALIGN_TYPED(off, zp->z_blksz,
891 				    uint64_t);
892 			} else {
893 				boff = 0;
894 			}
895 			dlen = zp->z_blksz;
896 			rl = zfs_range_lock(zp, boff, dlen, RL_READER);
897 			if (zp->z_blksz == dlen)
898 				break;
899 			zfs_range_unlock(rl);
900 		}
901 		/* test for truncation needs to be done while range locked */
902 		if (off >= zp->z_phys->zp_size) {
903 			error = ENOENT;
904 			goto out;
905 		}
906 		zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
907 		zgd->zgd_rl = rl;
908 		zgd->zgd_zilog = zfsvfs->z_log;
909 		zgd->zgd_bp = &lr->lr_blkptr;
910 		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
911 		ASSERT(boff == db->db_offset);
912 		lr->lr_blkoff = off - boff;
913 		error = dmu_sync(zio, db, &lr->lr_blkptr,
914 		    lr->lr_common.lrc_txg, zfs_get_done, zgd);
915 		ASSERT((error && error != EINPROGRESS) ||
916 		    lr->lr_length <= zp->z_blksz);
917 		if (error == 0)
918 			zil_add_block(zfsvfs->z_log, &lr->lr_blkptr);
919 		/*
920 		 * If we get EINPROGRESS, then we need to wait for a
921 		 * write IO initiated by dmu_sync() to complete before
922 		 * we can release this dbuf.  We will finish everything
923 		 * up in the zfs_get_done() callback.
924 		 */
925 		if (error == EINPROGRESS)
926 			return (0);
927 		dmu_buf_rele(db, zgd);
928 		kmem_free(zgd, sizeof (zgd_t));
929 	}
930 out:
931 	zfs_range_unlock(rl);
932 	VN_RELE(ZTOV(zp));
933 	return (error);
934 }
935 
936 /*ARGSUSED*/
937 static int
938 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
939     caller_context_t *ct)
940 {
941 	znode_t *zp = VTOZ(vp);
942 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
943 	int error;
944 
945 	ZFS_ENTER(zfsvfs);
946 	ZFS_VERIFY_ZP(zp);
947 
948 	if (flag & V_ACE_MASK)
949 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
950 	else
951 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
952 
953 	ZFS_EXIT(zfsvfs);
954 	return (error);
955 }
956 
957 /*
958  * Lookup an entry in a directory, or an extended attribute directory.
959  * If it exists, return a held vnode reference for it.
960  *
961  *	IN:	dvp	- vnode of directory to search.
962  *		nm	- name of entry to lookup.
963  *		pnp	- full pathname to lookup [UNUSED].
964  *		flags	- LOOKUP_XATTR set if looking for an attribute.
965  *		rdir	- root directory vnode [UNUSED].
966  *		cr	- credentials of caller.
967  *		ct	- caller context
968  *		direntflags - directory lookup flags
969  *		realpnp - returned pathname.
970  *
971  *	OUT:	vpp	- vnode of located entry, NULL if not found.
972  *
973  *	RETURN:	0 if success
974  *		error code if failure
975  *
976  * Timestamps:
977  *	NA
978  */
979 /* ARGSUSED */
980 static int
981 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
982     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
983     int *direntflags, pathname_t *realpnp)
984 {
985 	znode_t *zdp = VTOZ(dvp);
986 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
987 	int	error;
988 
989 	ZFS_ENTER(zfsvfs);
990 	ZFS_VERIFY_ZP(zdp);
991 
992 	*vpp = NULL;
993 
994 	if (flags & LOOKUP_XATTR) {
995 		/*
996 		 * If the xattr property is off, refuse the lookup request.
997 		 */
998 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
999 			ZFS_EXIT(zfsvfs);
1000 			return (EINVAL);
1001 		}
1002 
1003 		/*
1004 		 * We don't allow recursive attributes..
1005 		 * Maybe someday we will.
1006 		 */
1007 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
1008 			ZFS_EXIT(zfsvfs);
1009 			return (EINVAL);
1010 		}
1011 
1012 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1013 			ZFS_EXIT(zfsvfs);
1014 			return (error);
1015 		}
1016 
1017 		/*
1018 		 * Do we have permission to get into attribute directory?
1019 		 */
1020 
1021 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1022 		    B_FALSE, cr)) {
1023 			VN_RELE(*vpp);
1024 			*vpp = NULL;
1025 		}
1026 
1027 		ZFS_EXIT(zfsvfs);
1028 		return (error);
1029 	}
1030 
1031 	if (dvp->v_type != VDIR) {
1032 		ZFS_EXIT(zfsvfs);
1033 		return (ENOTDIR);
1034 	}
1035 
1036 	/*
1037 	 * Check accessibility of directory.
1038 	 */
1039 
1040 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1041 		ZFS_EXIT(zfsvfs);
1042 		return (error);
1043 	}
1044 
1045 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1046 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1047 		ZFS_EXIT(zfsvfs);
1048 		return (EILSEQ);
1049 	}
1050 
1051 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1052 	if (error == 0) {
1053 		/*
1054 		 * Convert device special files
1055 		 */
1056 		if (IS_DEVVP(*vpp)) {
1057 			vnode_t	*svp;
1058 
1059 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1060 			VN_RELE(*vpp);
1061 			if (svp == NULL)
1062 				error = ENOSYS;
1063 			else
1064 				*vpp = svp;
1065 		}
1066 	}
1067 
1068 	ZFS_EXIT(zfsvfs);
1069 	return (error);
1070 }
1071 
1072 /*
1073  * Attempt to create a new entry in a directory.  If the entry
1074  * already exists, truncate the file if permissible, else return
1075  * an error.  Return the vp of the created or trunc'd file.
1076  *
1077  *	IN:	dvp	- vnode of directory to put new file entry in.
1078  *		name	- name of new file entry.
1079  *		vap	- attributes of new file.
1080  *		excl	- flag indicating exclusive or non-exclusive mode.
1081  *		mode	- mode to open file with.
1082  *		cr	- credentials of caller.
1083  *		flag	- large file flag [UNUSED].
1084  *		ct	- caller context
1085  *		vsecp 	- ACL to be set
1086  *
1087  *	OUT:	vpp	- vnode of created or trunc'd entry.
1088  *
1089  *	RETURN:	0 if success
1090  *		error code if failure
1091  *
1092  * Timestamps:
1093  *	dvp - ctime|mtime updated if new entry created
1094  *	 vp - ctime|mtime always, atime if new
1095  */
1096 
1097 /* ARGSUSED */
1098 static int
1099 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1100     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1101     vsecattr_t *vsecp)
1102 {
1103 	znode_t		*zp, *dzp = VTOZ(dvp);
1104 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1105 	zilog_t		*zilog;
1106 	objset_t	*os;
1107 	zfs_dirlock_t	*dl;
1108 	dmu_tx_t	*tx;
1109 	int		error;
1110 	zfs_acl_t	*aclp = NULL;
1111 	zfs_fuid_info_t *fuidp = NULL;
1112 	ksid_t		*ksid;
1113 	uid_t		uid;
1114 	gid_t		gid = crgetgid(cr);
1115 
1116 	/*
1117 	 * If we have an ephemeral id, ACL, or XVATTR then
1118 	 * make sure file system is at proper version
1119 	 */
1120 
1121 	ksid = crgetsid(cr, KSID_OWNER);
1122 	if (ksid)
1123 		uid = ksid_getid(ksid);
1124 	else
1125 		uid = crgetuid(cr);
1126 
1127 	if (zfsvfs->z_use_fuids == B_FALSE &&
1128 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1129 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1130 		return (EINVAL);
1131 
1132 	ZFS_ENTER(zfsvfs);
1133 	ZFS_VERIFY_ZP(dzp);
1134 	os = zfsvfs->z_os;
1135 	zilog = zfsvfs->z_log;
1136 
1137 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1138 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1139 		ZFS_EXIT(zfsvfs);
1140 		return (EILSEQ);
1141 	}
1142 
1143 	if (vap->va_mask & AT_XVATTR) {
1144 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1145 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1146 			ZFS_EXIT(zfsvfs);
1147 			return (error);
1148 		}
1149 	}
1150 top:
1151 	*vpp = NULL;
1152 
1153 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1154 		vap->va_mode &= ~VSVTX;
1155 
1156 	if (*name == '\0') {
1157 		/*
1158 		 * Null component name refers to the directory itself.
1159 		 */
1160 		VN_HOLD(dvp);
1161 		zp = dzp;
1162 		dl = NULL;
1163 		error = 0;
1164 	} else {
1165 		/* possible VN_HOLD(zp) */
1166 		int zflg = 0;
1167 
1168 		if (flag & FIGNORECASE)
1169 			zflg |= ZCILOOK;
1170 
1171 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1172 		    NULL, NULL);
1173 		if (error) {
1174 			if (strcmp(name, "..") == 0)
1175 				error = EISDIR;
1176 			ZFS_EXIT(zfsvfs);
1177 			if (aclp)
1178 				zfs_acl_free(aclp);
1179 			return (error);
1180 		}
1181 	}
1182 	if (vsecp && aclp == NULL) {
1183 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1184 		if (error) {
1185 			ZFS_EXIT(zfsvfs);
1186 			if (dl)
1187 				zfs_dirent_unlock(dl);
1188 			return (error);
1189 		}
1190 	}
1191 
1192 	if (zp == NULL) {
1193 		uint64_t txtype;
1194 
1195 		/*
1196 		 * Create a new file object and update the directory
1197 		 * to reference it.
1198 		 */
1199 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1200 			goto out;
1201 		}
1202 
1203 		/*
1204 		 * We only support the creation of regular files in
1205 		 * extended attribute directories.
1206 		 */
1207 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1208 		    (vap->va_type != VREG)) {
1209 			error = EINVAL;
1210 			goto out;
1211 		}
1212 
1213 		tx = dmu_tx_create(os);
1214 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1215 		if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1216 		    IS_EPHEMERAL(gid)) {
1217 			if (zfsvfs->z_fuid_obj == 0) {
1218 				dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1219 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1220 				    FUID_SIZE_ESTIMATE(zfsvfs));
1221 				dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
1222 				    FALSE, NULL);
1223 			} else {
1224 				dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1225 				dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1226 				    FUID_SIZE_ESTIMATE(zfsvfs));
1227 			}
1228 		}
1229 		dmu_tx_hold_bonus(tx, dzp->z_id);
1230 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1231 		if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) {
1232 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1233 			    0, SPA_MAXBLOCKSIZE);
1234 		}
1235 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1236 		if (error) {
1237 			zfs_dirent_unlock(dl);
1238 			if (error == ERESTART) {
1239 				dmu_tx_wait(tx);
1240 				dmu_tx_abort(tx);
1241 				goto top;
1242 			}
1243 			dmu_tx_abort(tx);
1244 			ZFS_EXIT(zfsvfs);
1245 			if (aclp)
1246 				zfs_acl_free(aclp);
1247 			return (error);
1248 		}
1249 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1250 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1251 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1252 		if (flag & FIGNORECASE)
1253 			txtype |= TX_CI;
1254 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1255 		    vsecp, fuidp, vap);
1256 		if (fuidp)
1257 			zfs_fuid_info_free(fuidp);
1258 		dmu_tx_commit(tx);
1259 	} else {
1260 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1261 
1262 		/*
1263 		 * A directory entry already exists for this name.
1264 		 */
1265 		/*
1266 		 * Can't truncate an existing file if in exclusive mode.
1267 		 */
1268 		if (excl == EXCL) {
1269 			error = EEXIST;
1270 			goto out;
1271 		}
1272 		/*
1273 		 * Can't open a directory for writing.
1274 		 */
1275 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1276 			error = EISDIR;
1277 			goto out;
1278 		}
1279 		/*
1280 		 * Verify requested access to file.
1281 		 */
1282 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1283 			goto out;
1284 		}
1285 
1286 		mutex_enter(&dzp->z_lock);
1287 		dzp->z_seq++;
1288 		mutex_exit(&dzp->z_lock);
1289 
1290 		/*
1291 		 * Truncate regular files if requested.
1292 		 */
1293 		if ((ZTOV(zp)->v_type == VREG) &&
1294 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1295 			/* we can't hold any locks when calling zfs_freesp() */
1296 			zfs_dirent_unlock(dl);
1297 			dl = NULL;
1298 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1299 			if (error == 0) {
1300 				vnevent_create(ZTOV(zp), ct);
1301 			}
1302 		}
1303 	}
1304 out:
1305 
1306 	if (dl)
1307 		zfs_dirent_unlock(dl);
1308 
1309 	if (error) {
1310 		if (zp)
1311 			VN_RELE(ZTOV(zp));
1312 	} else {
1313 		*vpp = ZTOV(zp);
1314 		/*
1315 		 * If vnode is for a device return a specfs vnode instead.
1316 		 */
1317 		if (IS_DEVVP(*vpp)) {
1318 			struct vnode *svp;
1319 
1320 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1321 			VN_RELE(*vpp);
1322 			if (svp == NULL) {
1323 				error = ENOSYS;
1324 			}
1325 			*vpp = svp;
1326 		}
1327 	}
1328 	if (aclp)
1329 		zfs_acl_free(aclp);
1330 
1331 	ZFS_EXIT(zfsvfs);
1332 	return (error);
1333 }
1334 
1335 /*
1336  * Remove an entry from a directory.
1337  *
1338  *	IN:	dvp	- vnode of directory to remove entry from.
1339  *		name	- name of entry to remove.
1340  *		cr	- credentials of caller.
1341  *		ct	- caller context
1342  *		flags	- case flags
1343  *
1344  *	RETURN:	0 if success
1345  *		error code if failure
1346  *
1347  * Timestamps:
1348  *	dvp - ctime|mtime
1349  *	 vp - ctime (if nlink > 0)
1350  */
1351 /*ARGSUSED*/
1352 static int
1353 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1354     int flags)
1355 {
1356 	znode_t		*zp, *dzp = VTOZ(dvp);
1357 	znode_t		*xzp = NULL;
1358 	vnode_t		*vp;
1359 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1360 	zilog_t		*zilog;
1361 	uint64_t	acl_obj, xattr_obj;
1362 	zfs_dirlock_t	*dl;
1363 	dmu_tx_t	*tx;
1364 	boolean_t	may_delete_now, delete_now = FALSE;
1365 	boolean_t	unlinked, toobig = FALSE;
1366 	uint64_t	txtype;
1367 	pathname_t	*realnmp = NULL;
1368 	pathname_t	realnm;
1369 	int		error;
1370 	int		zflg = ZEXISTS;
1371 
1372 	ZFS_ENTER(zfsvfs);
1373 	ZFS_VERIFY_ZP(dzp);
1374 	zilog = zfsvfs->z_log;
1375 
1376 	if (flags & FIGNORECASE) {
1377 		zflg |= ZCILOOK;
1378 		pn_alloc(&realnm);
1379 		realnmp = &realnm;
1380 	}
1381 
1382 top:
1383 	/*
1384 	 * Attempt to lock directory; fail if entry doesn't exist.
1385 	 */
1386 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1387 	    NULL, realnmp)) {
1388 		if (realnmp)
1389 			pn_free(realnmp);
1390 		ZFS_EXIT(zfsvfs);
1391 		return (error);
1392 	}
1393 
1394 	vp = ZTOV(zp);
1395 
1396 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1397 		goto out;
1398 	}
1399 
1400 	/*
1401 	 * Need to use rmdir for removing directories.
1402 	 */
1403 	if (vp->v_type == VDIR) {
1404 		error = EPERM;
1405 		goto out;
1406 	}
1407 
1408 	vnevent_remove(vp, dvp, name, ct);
1409 
1410 	if (realnmp)
1411 		dnlc_remove(dvp, realnmp->pn_buf);
1412 	else
1413 		dnlc_remove(dvp, name);
1414 
1415 	mutex_enter(&vp->v_lock);
1416 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1417 	mutex_exit(&vp->v_lock);
1418 
1419 	/*
1420 	 * We may delete the znode now, or we may put it in the unlinked set;
1421 	 * it depends on whether we're the last link, and on whether there are
1422 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1423 	 * allow for either case.
1424 	 */
1425 	tx = dmu_tx_create(zfsvfs->z_os);
1426 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1427 	dmu_tx_hold_bonus(tx, zp->z_id);
1428 	if (may_delete_now) {
1429 		toobig =
1430 		    zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1431 		/* if the file is too big, only hold_free a token amount */
1432 		dmu_tx_hold_free(tx, zp->z_id, 0,
1433 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1434 	}
1435 
1436 	/* are there any extended attributes? */
1437 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1438 		/* XXX - do we need this if we are deleting? */
1439 		dmu_tx_hold_bonus(tx, xattr_obj);
1440 	}
1441 
1442 	/* are there any additional acls */
1443 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1444 	    may_delete_now)
1445 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1446 
1447 	/* charge as an update -- would be nice not to charge at all */
1448 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1449 
1450 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1451 	if (error) {
1452 		zfs_dirent_unlock(dl);
1453 		VN_RELE(vp);
1454 		if (error == ERESTART) {
1455 			dmu_tx_wait(tx);
1456 			dmu_tx_abort(tx);
1457 			goto top;
1458 		}
1459 		if (realnmp)
1460 			pn_free(realnmp);
1461 		dmu_tx_abort(tx);
1462 		ZFS_EXIT(zfsvfs);
1463 		return (error);
1464 	}
1465 
1466 	/*
1467 	 * Remove the directory entry.
1468 	 */
1469 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1470 
1471 	if (error) {
1472 		dmu_tx_commit(tx);
1473 		goto out;
1474 	}
1475 
1476 	if (unlinked) {
1477 		mutex_enter(&vp->v_lock);
1478 		delete_now = may_delete_now && !toobig &&
1479 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1480 		    zp->z_phys->zp_xattr == xattr_obj &&
1481 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1482 		mutex_exit(&vp->v_lock);
1483 	}
1484 
1485 	if (delete_now) {
1486 		if (zp->z_phys->zp_xattr) {
1487 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1488 			ASSERT3U(error, ==, 0);
1489 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1490 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1491 			mutex_enter(&xzp->z_lock);
1492 			xzp->z_unlinked = 1;
1493 			xzp->z_phys->zp_links = 0;
1494 			mutex_exit(&xzp->z_lock);
1495 			zfs_unlinked_add(xzp, tx);
1496 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1497 		}
1498 		mutex_enter(&zp->z_lock);
1499 		mutex_enter(&vp->v_lock);
1500 		vp->v_count--;
1501 		ASSERT3U(vp->v_count, ==, 0);
1502 		mutex_exit(&vp->v_lock);
1503 		mutex_exit(&zp->z_lock);
1504 		zfs_znode_delete(zp, tx);
1505 	} else if (unlinked) {
1506 		zfs_unlinked_add(zp, tx);
1507 	}
1508 
1509 	txtype = TX_REMOVE;
1510 	if (flags & FIGNORECASE)
1511 		txtype |= TX_CI;
1512 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1513 
1514 	dmu_tx_commit(tx);
1515 out:
1516 	if (realnmp)
1517 		pn_free(realnmp);
1518 
1519 	zfs_dirent_unlock(dl);
1520 
1521 	if (!delete_now) {
1522 		VN_RELE(vp);
1523 	} else if (xzp) {
1524 		/* this rele is delayed to prevent nesting transactions */
1525 		VN_RELE(ZTOV(xzp));
1526 	}
1527 
1528 	ZFS_EXIT(zfsvfs);
1529 	return (error);
1530 }
1531 
1532 /*
1533  * Create a new directory and insert it into dvp using the name
1534  * provided.  Return a pointer to the inserted directory.
1535  *
1536  *	IN:	dvp	- vnode of directory to add subdir to.
1537  *		dirname	- name of new directory.
1538  *		vap	- attributes of new directory.
1539  *		cr	- credentials of caller.
1540  *		ct	- caller context
1541  *		vsecp	- ACL to be set
1542  *
1543  *	OUT:	vpp	- vnode of created directory.
1544  *
1545  *	RETURN:	0 if success
1546  *		error code if failure
1547  *
1548  * Timestamps:
1549  *	dvp - ctime|mtime updated
1550  *	 vp - ctime|mtime|atime updated
1551  */
1552 /*ARGSUSED*/
1553 static int
1554 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1555     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1556 {
1557 	znode_t		*zp, *dzp = VTOZ(dvp);
1558 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1559 	zilog_t		*zilog;
1560 	zfs_dirlock_t	*dl;
1561 	uint64_t	txtype;
1562 	dmu_tx_t	*tx;
1563 	int		error;
1564 	zfs_acl_t	*aclp = NULL;
1565 	zfs_fuid_info_t	*fuidp = NULL;
1566 	int		zf = ZNEW;
1567 	ksid_t		*ksid;
1568 	uid_t		uid;
1569 	gid_t		gid = crgetgid(cr);
1570 
1571 	ASSERT(vap->va_type == VDIR);
1572 
1573 	/*
1574 	 * If we have an ephemeral id, ACL, or XVATTR then
1575 	 * make sure file system is at proper version
1576 	 */
1577 
1578 	ksid = crgetsid(cr, KSID_OWNER);
1579 	if (ksid)
1580 		uid = ksid_getid(ksid);
1581 	else
1582 		uid = crgetuid(cr);
1583 	if (zfsvfs->z_use_fuids == B_FALSE &&
1584 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1585 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1586 		return (EINVAL);
1587 
1588 	ZFS_ENTER(zfsvfs);
1589 	ZFS_VERIFY_ZP(dzp);
1590 	zilog = zfsvfs->z_log;
1591 
1592 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1593 		ZFS_EXIT(zfsvfs);
1594 		return (EINVAL);
1595 	}
1596 
1597 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1598 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1599 		ZFS_EXIT(zfsvfs);
1600 		return (EILSEQ);
1601 	}
1602 	if (flags & FIGNORECASE)
1603 		zf |= ZCILOOK;
1604 
1605 	if (vap->va_mask & AT_XVATTR)
1606 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1607 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1608 			ZFS_EXIT(zfsvfs);
1609 			return (error);
1610 		}
1611 
1612 	/*
1613 	 * First make sure the new directory doesn't exist.
1614 	 */
1615 top:
1616 	*vpp = NULL;
1617 
1618 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1619 	    NULL, NULL)) {
1620 		ZFS_EXIT(zfsvfs);
1621 		return (error);
1622 	}
1623 
1624 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1625 		zfs_dirent_unlock(dl);
1626 		ZFS_EXIT(zfsvfs);
1627 		return (error);
1628 	}
1629 
1630 	if (vsecp && aclp == NULL) {
1631 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1632 		if (error) {
1633 			zfs_dirent_unlock(dl);
1634 			ZFS_EXIT(zfsvfs);
1635 			return (error);
1636 		}
1637 	}
1638 	/*
1639 	 * Add a new entry to the directory.
1640 	 */
1641 	tx = dmu_tx_create(zfsvfs->z_os);
1642 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1643 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1644 	if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1645 	    IS_EPHEMERAL(gid)) {
1646 		if (zfsvfs->z_fuid_obj == 0) {
1647 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1648 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1649 			    FUID_SIZE_ESTIMATE(zfsvfs));
1650 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
1651 		} else {
1652 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1653 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1654 			    FUID_SIZE_ESTIMATE(zfsvfs));
1655 		}
1656 	}
1657 	if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp)
1658 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1659 		    0, SPA_MAXBLOCKSIZE);
1660 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1661 	if (error) {
1662 		zfs_dirent_unlock(dl);
1663 		if (error == ERESTART) {
1664 			dmu_tx_wait(tx);
1665 			dmu_tx_abort(tx);
1666 			goto top;
1667 		}
1668 		dmu_tx_abort(tx);
1669 		ZFS_EXIT(zfsvfs);
1670 		if (aclp)
1671 			zfs_acl_free(aclp);
1672 		return (error);
1673 	}
1674 
1675 	/*
1676 	 * Create new node.
1677 	 */
1678 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1679 
1680 	if (aclp)
1681 		zfs_acl_free(aclp);
1682 
1683 	/*
1684 	 * Now put new name in parent dir.
1685 	 */
1686 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1687 
1688 	*vpp = ZTOV(zp);
1689 
1690 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1691 	if (flags & FIGNORECASE)
1692 		txtype |= TX_CI;
1693 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap);
1694 
1695 	if (fuidp)
1696 		zfs_fuid_info_free(fuidp);
1697 	dmu_tx_commit(tx);
1698 
1699 	zfs_dirent_unlock(dl);
1700 
1701 	ZFS_EXIT(zfsvfs);
1702 	return (0);
1703 }
1704 
1705 /*
1706  * Remove a directory subdir entry.  If the current working
1707  * directory is the same as the subdir to be removed, the
1708  * remove will fail.
1709  *
1710  *	IN:	dvp	- vnode of directory to remove from.
1711  *		name	- name of directory to be removed.
1712  *		cwd	- vnode of current working directory.
1713  *		cr	- credentials of caller.
1714  *		ct	- caller context
1715  *		flags	- case flags
1716  *
1717  *	RETURN:	0 if success
1718  *		error code if failure
1719  *
1720  * Timestamps:
1721  *	dvp - ctime|mtime updated
1722  */
1723 /*ARGSUSED*/
1724 static int
1725 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1726     caller_context_t *ct, int flags)
1727 {
1728 	znode_t		*dzp = VTOZ(dvp);
1729 	znode_t		*zp;
1730 	vnode_t		*vp;
1731 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1732 	zilog_t		*zilog;
1733 	zfs_dirlock_t	*dl;
1734 	dmu_tx_t	*tx;
1735 	int		error;
1736 	int		zflg = ZEXISTS;
1737 
1738 	ZFS_ENTER(zfsvfs);
1739 	ZFS_VERIFY_ZP(dzp);
1740 	zilog = zfsvfs->z_log;
1741 
1742 	if (flags & FIGNORECASE)
1743 		zflg |= ZCILOOK;
1744 top:
1745 	zp = NULL;
1746 
1747 	/*
1748 	 * Attempt to lock directory; fail if entry doesn't exist.
1749 	 */
1750 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1751 	    NULL, NULL)) {
1752 		ZFS_EXIT(zfsvfs);
1753 		return (error);
1754 	}
1755 
1756 	vp = ZTOV(zp);
1757 
1758 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1759 		goto out;
1760 	}
1761 
1762 	if (vp->v_type != VDIR) {
1763 		error = ENOTDIR;
1764 		goto out;
1765 	}
1766 
1767 	if (vp == cwd) {
1768 		error = EINVAL;
1769 		goto out;
1770 	}
1771 
1772 	vnevent_rmdir(vp, dvp, name, ct);
1773 
1774 	/*
1775 	 * Grab a lock on the directory to make sure that noone is
1776 	 * trying to add (or lookup) entries while we are removing it.
1777 	 */
1778 	rw_enter(&zp->z_name_lock, RW_WRITER);
1779 
1780 	/*
1781 	 * Grab a lock on the parent pointer to make sure we play well
1782 	 * with the treewalk and directory rename code.
1783 	 */
1784 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1785 
1786 	tx = dmu_tx_create(zfsvfs->z_os);
1787 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1788 	dmu_tx_hold_bonus(tx, zp->z_id);
1789 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1790 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1791 	if (error) {
1792 		rw_exit(&zp->z_parent_lock);
1793 		rw_exit(&zp->z_name_lock);
1794 		zfs_dirent_unlock(dl);
1795 		VN_RELE(vp);
1796 		if (error == ERESTART) {
1797 			dmu_tx_wait(tx);
1798 			dmu_tx_abort(tx);
1799 			goto top;
1800 		}
1801 		dmu_tx_abort(tx);
1802 		ZFS_EXIT(zfsvfs);
1803 		return (error);
1804 	}
1805 
1806 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1807 
1808 	if (error == 0) {
1809 		uint64_t txtype = TX_RMDIR;
1810 		if (flags & FIGNORECASE)
1811 			txtype |= TX_CI;
1812 		zfs_log_remove(zilog, tx, txtype, dzp, name);
1813 	}
1814 
1815 	dmu_tx_commit(tx);
1816 
1817 	rw_exit(&zp->z_parent_lock);
1818 	rw_exit(&zp->z_name_lock);
1819 out:
1820 	zfs_dirent_unlock(dl);
1821 
1822 	VN_RELE(vp);
1823 
1824 	ZFS_EXIT(zfsvfs);
1825 	return (error);
1826 }
1827 
1828 /*
1829  * Read as many directory entries as will fit into the provided
1830  * buffer from the given directory cursor position (specified in
1831  * the uio structure.
1832  *
1833  *	IN:	vp	- vnode of directory to read.
1834  *		uio	- structure supplying read location, range info,
1835  *			  and return buffer.
1836  *		cr	- credentials of caller.
1837  *		ct	- caller context
1838  *		flags	- case flags
1839  *
1840  *	OUT:	uio	- updated offset and range, buffer filled.
1841  *		eofp	- set to true if end-of-file detected.
1842  *
1843  *	RETURN:	0 if success
1844  *		error code if failure
1845  *
1846  * Timestamps:
1847  *	vp - atime updated
1848  *
1849  * Note that the low 4 bits of the cookie returned by zap is always zero.
1850  * This allows us to use the low range for "special" directory entries:
1851  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1852  * we use the offset 2 for the '.zfs' directory.
1853  */
1854 /* ARGSUSED */
1855 static int
1856 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
1857     caller_context_t *ct, int flags)
1858 {
1859 	znode_t		*zp = VTOZ(vp);
1860 	iovec_t		*iovp;
1861 	edirent_t	*eodp;
1862 	dirent64_t	*odp;
1863 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1864 	objset_t	*os;
1865 	caddr_t		outbuf;
1866 	size_t		bufsize;
1867 	zap_cursor_t	zc;
1868 	zap_attribute_t	zap;
1869 	uint_t		bytes_wanted;
1870 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1871 	int		local_eof;
1872 	int		outcount;
1873 	int		error;
1874 	uint8_t		prefetch;
1875 	boolean_t	check_sysattrs;
1876 
1877 	ZFS_ENTER(zfsvfs);
1878 	ZFS_VERIFY_ZP(zp);
1879 
1880 	/*
1881 	 * If we are not given an eof variable,
1882 	 * use a local one.
1883 	 */
1884 	if (eofp == NULL)
1885 		eofp = &local_eof;
1886 
1887 	/*
1888 	 * Check for valid iov_len.
1889 	 */
1890 	if (uio->uio_iov->iov_len <= 0) {
1891 		ZFS_EXIT(zfsvfs);
1892 		return (EINVAL);
1893 	}
1894 
1895 	/*
1896 	 * Quit if directory has been removed (posix)
1897 	 */
1898 	if ((*eofp = zp->z_unlinked) != 0) {
1899 		ZFS_EXIT(zfsvfs);
1900 		return (0);
1901 	}
1902 
1903 	error = 0;
1904 	os = zfsvfs->z_os;
1905 	offset = uio->uio_loffset;
1906 	prefetch = zp->z_zn_prefetch;
1907 
1908 	/*
1909 	 * Initialize the iterator cursor.
1910 	 */
1911 	if (offset <= 3) {
1912 		/*
1913 		 * Start iteration from the beginning of the directory.
1914 		 */
1915 		zap_cursor_init(&zc, os, zp->z_id);
1916 	} else {
1917 		/*
1918 		 * The offset is a serialized cursor.
1919 		 */
1920 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1921 	}
1922 
1923 	/*
1924 	 * Get space to change directory entries into fs independent format.
1925 	 */
1926 	iovp = uio->uio_iov;
1927 	bytes_wanted = iovp->iov_len;
1928 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1929 		bufsize = bytes_wanted;
1930 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1931 		odp = (struct dirent64 *)outbuf;
1932 	} else {
1933 		bufsize = bytes_wanted;
1934 		odp = (struct dirent64 *)iovp->iov_base;
1935 	}
1936 	eodp = (struct edirent *)odp;
1937 
1938 	/*
1939 	 * If this VFS supports the system attribute view interface; and
1940 	 * we're looking at an extended attribute directory; and we care
1941 	 * about normalization conflicts on this vfs; then we must check
1942 	 * for normalization conflicts with the sysattr name space.
1943 	 */
1944 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
1945 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
1946 	    (flags & V_RDDIR_ENTFLAGS);
1947 
1948 	/*
1949 	 * Transform to file-system independent format
1950 	 */
1951 	outcount = 0;
1952 	while (outcount < bytes_wanted) {
1953 		ino64_t objnum;
1954 		ushort_t reclen;
1955 		off64_t *next;
1956 
1957 		/*
1958 		 * Special case `.', `..', and `.zfs'.
1959 		 */
1960 		if (offset == 0) {
1961 			(void) strcpy(zap.za_name, ".");
1962 			zap.za_normalization_conflict = 0;
1963 			objnum = zp->z_id;
1964 		} else if (offset == 1) {
1965 			(void) strcpy(zap.za_name, "..");
1966 			zap.za_normalization_conflict = 0;
1967 			objnum = zp->z_phys->zp_parent;
1968 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1969 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1970 			zap.za_normalization_conflict = 0;
1971 			objnum = ZFSCTL_INO_ROOT;
1972 		} else {
1973 			/*
1974 			 * Grab next entry.
1975 			 */
1976 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1977 				if ((*eofp = (error == ENOENT)) != 0)
1978 					break;
1979 				else
1980 					goto update;
1981 			}
1982 
1983 			if (zap.za_integer_length != 8 ||
1984 			    zap.za_num_integers != 1) {
1985 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1986 				    "entry, obj = %lld, offset = %lld\n",
1987 				    (u_longlong_t)zp->z_id,
1988 				    (u_longlong_t)offset);
1989 				error = ENXIO;
1990 				goto update;
1991 			}
1992 
1993 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1994 			/*
1995 			 * MacOS X can extract the object type here such as:
1996 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1997 			 */
1998 
1999 			if (check_sysattrs && !zap.za_normalization_conflict) {
2000 				zap.za_normalization_conflict =
2001 				    xattr_sysattr_casechk(zap.za_name);
2002 			}
2003 		}
2004 
2005 		if (flags & V_RDDIR_ENTFLAGS)
2006 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2007 		else
2008 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2009 
2010 		/*
2011 		 * Will this entry fit in the buffer?
2012 		 */
2013 		if (outcount + reclen > bufsize) {
2014 			/*
2015 			 * Did we manage to fit anything in the buffer?
2016 			 */
2017 			if (!outcount) {
2018 				error = EINVAL;
2019 				goto update;
2020 			}
2021 			break;
2022 		}
2023 		if (flags & V_RDDIR_ENTFLAGS) {
2024 			/*
2025 			 * Add extended flag entry:
2026 			 */
2027 			eodp->ed_ino = objnum;
2028 			eodp->ed_reclen = reclen;
2029 			/* NOTE: ed_off is the offset for the *next* entry */
2030 			next = &(eodp->ed_off);
2031 			eodp->ed_eflags = zap.za_normalization_conflict ?
2032 			    ED_CASE_CONFLICT : 0;
2033 			(void) strncpy(eodp->ed_name, zap.za_name,
2034 			    EDIRENT_NAMELEN(reclen));
2035 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2036 		} else {
2037 			/*
2038 			 * Add normal entry:
2039 			 */
2040 			odp->d_ino = objnum;
2041 			odp->d_reclen = reclen;
2042 			/* NOTE: d_off is the offset for the *next* entry */
2043 			next = &(odp->d_off);
2044 			(void) strncpy(odp->d_name, zap.za_name,
2045 			    DIRENT64_NAMELEN(reclen));
2046 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2047 		}
2048 		outcount += reclen;
2049 
2050 		ASSERT(outcount <= bufsize);
2051 
2052 		/* Prefetch znode */
2053 		if (prefetch)
2054 			dmu_prefetch(os, objnum, 0, 0);
2055 
2056 		/*
2057 		 * Move to the next entry, fill in the previous offset.
2058 		 */
2059 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2060 			zap_cursor_advance(&zc);
2061 			offset = zap_cursor_serialize(&zc);
2062 		} else {
2063 			offset += 1;
2064 		}
2065 		*next = offset;
2066 	}
2067 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2068 
2069 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2070 		iovp->iov_base += outcount;
2071 		iovp->iov_len -= outcount;
2072 		uio->uio_resid -= outcount;
2073 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2074 		/*
2075 		 * Reset the pointer.
2076 		 */
2077 		offset = uio->uio_loffset;
2078 	}
2079 
2080 update:
2081 	zap_cursor_fini(&zc);
2082 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2083 		kmem_free(outbuf, bufsize);
2084 
2085 	if (error == ENOENT)
2086 		error = 0;
2087 
2088 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2089 
2090 	uio->uio_loffset = offset;
2091 	ZFS_EXIT(zfsvfs);
2092 	return (error);
2093 }
2094 
2095 ulong_t zfs_fsync_sync_cnt = 4;
2096 
2097 static int
2098 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2099 {
2100 	znode_t	*zp = VTOZ(vp);
2101 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2102 
2103 	/*
2104 	 * Regardless of whether this is required for standards conformance,
2105 	 * this is the logical behavior when fsync() is called on a file with
2106 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2107 	 * going to be pushed out as part of the zil_commit().
2108 	 */
2109 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2110 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2111 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2112 
2113 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2114 
2115 	ZFS_ENTER(zfsvfs);
2116 	ZFS_VERIFY_ZP(zp);
2117 	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2118 	ZFS_EXIT(zfsvfs);
2119 	return (0);
2120 }
2121 
2122 
2123 /*
2124  * Get the requested file attributes and place them in the provided
2125  * vattr structure.
2126  *
2127  *	IN:	vp	- vnode of file.
2128  *		vap	- va_mask identifies requested attributes.
2129  *			  If AT_XVATTR set, then optional attrs are requested
2130  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2131  *		cr	- credentials of caller.
2132  *		ct	- caller context
2133  *
2134  *	OUT:	vap	- attribute values.
2135  *
2136  *	RETURN:	0 (always succeeds)
2137  */
2138 /* ARGSUSED */
2139 static int
2140 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2141     caller_context_t *ct)
2142 {
2143 	znode_t *zp = VTOZ(vp);
2144 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2145 	znode_phys_t *pzp;
2146 	int	error = 0;
2147 	uint64_t links;
2148 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2149 	xoptattr_t *xoap = NULL;
2150 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2151 
2152 	ZFS_ENTER(zfsvfs);
2153 	ZFS_VERIFY_ZP(zp);
2154 	pzp = zp->z_phys;
2155 
2156 	mutex_enter(&zp->z_lock);
2157 
2158 	/*
2159 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2160 	 * Also, if we are the owner don't bother, since owner should
2161 	 * always be allowed to read basic attributes of file.
2162 	 */
2163 	if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2164 	    (pzp->zp_uid != crgetuid(cr))) {
2165 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2166 		    skipaclchk, cr)) {
2167 			mutex_exit(&zp->z_lock);
2168 			ZFS_EXIT(zfsvfs);
2169 			return (error);
2170 		}
2171 	}
2172 
2173 	/*
2174 	 * Return all attributes.  It's cheaper to provide the answer
2175 	 * than to determine whether we were asked the question.
2176 	 */
2177 
2178 	vap->va_type = vp->v_type;
2179 	vap->va_mode = pzp->zp_mode & MODEMASK;
2180 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2181 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2182 	vap->va_nodeid = zp->z_id;
2183 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2184 		links = pzp->zp_links + 1;
2185 	else
2186 		links = pzp->zp_links;
2187 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2188 	vap->va_size = pzp->zp_size;
2189 	vap->va_rdev = vp->v_rdev;
2190 	vap->va_seq = zp->z_seq;
2191 
2192 	/*
2193 	 * Add in any requested optional attributes and the create time.
2194 	 * Also set the corresponding bits in the returned attribute bitmap.
2195 	 */
2196 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2197 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2198 			xoap->xoa_archive =
2199 			    ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2200 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2201 		}
2202 
2203 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2204 			xoap->xoa_readonly =
2205 			    ((pzp->zp_flags & ZFS_READONLY) != 0);
2206 			XVA_SET_RTN(xvap, XAT_READONLY);
2207 		}
2208 
2209 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2210 			xoap->xoa_system =
2211 			    ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2212 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2213 		}
2214 
2215 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2216 			xoap->xoa_hidden =
2217 			    ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2218 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2219 		}
2220 
2221 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2222 			xoap->xoa_nounlink =
2223 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2224 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2225 		}
2226 
2227 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2228 			xoap->xoa_immutable =
2229 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2230 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2231 		}
2232 
2233 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2234 			xoap->xoa_appendonly =
2235 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2236 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2237 		}
2238 
2239 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2240 			xoap->xoa_nodump =
2241 			    ((pzp->zp_flags & ZFS_NODUMP) != 0);
2242 			XVA_SET_RTN(xvap, XAT_NODUMP);
2243 		}
2244 
2245 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2246 			xoap->xoa_opaque =
2247 			    ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2248 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2249 		}
2250 
2251 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2252 			xoap->xoa_av_quarantined =
2253 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2254 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2255 		}
2256 
2257 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2258 			xoap->xoa_av_modified =
2259 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2260 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2261 		}
2262 
2263 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2264 		    vp->v_type == VREG &&
2265 		    (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2266 			size_t len;
2267 			dmu_object_info_t doi;
2268 
2269 			/*
2270 			 * Only VREG files have anti-virus scanstamps, so we
2271 			 * won't conflict with symlinks in the bonus buffer.
2272 			 */
2273 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2274 			len = sizeof (xoap->xoa_av_scanstamp) +
2275 			    sizeof (znode_phys_t);
2276 			if (len <= doi.doi_bonus_size) {
2277 				/*
2278 				 * pzp points to the start of the
2279 				 * znode_phys_t. pzp + 1 points to the
2280 				 * first byte after the znode_phys_t.
2281 				 */
2282 				(void) memcpy(xoap->xoa_av_scanstamp,
2283 				    pzp + 1,
2284 				    sizeof (xoap->xoa_av_scanstamp));
2285 				XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2286 			}
2287 		}
2288 
2289 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2290 			ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2291 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2292 		}
2293 	}
2294 
2295 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2296 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2297 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2298 
2299 	mutex_exit(&zp->z_lock);
2300 
2301 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
2302 
2303 	if (zp->z_blksz == 0) {
2304 		/*
2305 		 * Block size hasn't been set; suggest maximal I/O transfers.
2306 		 */
2307 		vap->va_blksize = zfsvfs->z_max_blksz;
2308 	}
2309 
2310 	ZFS_EXIT(zfsvfs);
2311 	return (0);
2312 }
2313 
2314 /*
2315  * Set the file attributes to the values contained in the
2316  * vattr structure.
2317  *
2318  *	IN:	vp	- vnode of file to be modified.
2319  *		vap	- new attribute values.
2320  *			  If AT_XVATTR set, then optional attrs are being set
2321  *		flags	- ATTR_UTIME set if non-default time values provided.
2322  *			- ATTR_NOACLCHECK (CIFS context only).
2323  *		cr	- credentials of caller.
2324  *		ct	- caller context
2325  *
2326  *	RETURN:	0 if success
2327  *		error code if failure
2328  *
2329  * Timestamps:
2330  *	vp - ctime updated, mtime updated if size changed.
2331  */
2332 /* ARGSUSED */
2333 static int
2334 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2335 	caller_context_t *ct)
2336 {
2337 	znode_t		*zp = VTOZ(vp);
2338 	znode_phys_t	*pzp;
2339 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2340 	zilog_t		*zilog;
2341 	dmu_tx_t	*tx;
2342 	vattr_t		oldva;
2343 	xvattr_t	tmpxvattr;
2344 	uint_t		mask = vap->va_mask;
2345 	uint_t		saved_mask;
2346 	int		trim_mask = 0;
2347 	uint64_t	new_mode;
2348 	znode_t		*attrzp;
2349 	int		need_policy = FALSE;
2350 	int		err;
2351 	zfs_fuid_info_t *fuidp = NULL;
2352 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2353 	xoptattr_t	*xoap;
2354 	zfs_acl_t	*aclp = NULL;
2355 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2356 
2357 	if (mask == 0)
2358 		return (0);
2359 
2360 	if (mask & AT_NOSET)
2361 		return (EINVAL);
2362 
2363 	ZFS_ENTER(zfsvfs);
2364 	ZFS_VERIFY_ZP(zp);
2365 
2366 	pzp = zp->z_phys;
2367 	zilog = zfsvfs->z_log;
2368 
2369 	/*
2370 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2371 	 * that file system is at proper version level
2372 	 */
2373 
2374 	if (zfsvfs->z_use_fuids == B_FALSE &&
2375 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2376 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2377 	    (mask & AT_XVATTR))) {
2378 		ZFS_EXIT(zfsvfs);
2379 		return (EINVAL);
2380 	}
2381 
2382 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2383 		ZFS_EXIT(zfsvfs);
2384 		return (EISDIR);
2385 	}
2386 
2387 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2388 		ZFS_EXIT(zfsvfs);
2389 		return (EINVAL);
2390 	}
2391 
2392 	/*
2393 	 * If this is an xvattr_t, then get a pointer to the structure of
2394 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2395 	 */
2396 	xoap = xva_getxoptattr(xvap);
2397 
2398 	xva_init(&tmpxvattr);
2399 
2400 	/*
2401 	 * Immutable files can only alter immutable bit and atime
2402 	 */
2403 	if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2404 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2405 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2406 		ZFS_EXIT(zfsvfs);
2407 		return (EPERM);
2408 	}
2409 
2410 	if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2411 		ZFS_EXIT(zfsvfs);
2412 		return (EPERM);
2413 	}
2414 
2415 	/*
2416 	 * Verify timestamps doesn't overflow 32 bits.
2417 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2418 	 * handle times greater than 2039.  This check should be removed
2419 	 * once large timestamps are fully supported.
2420 	 */
2421 	if (mask & (AT_ATIME | AT_MTIME)) {
2422 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2423 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2424 			ZFS_EXIT(zfsvfs);
2425 			return (EOVERFLOW);
2426 		}
2427 	}
2428 
2429 top:
2430 	attrzp = NULL;
2431 
2432 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2433 		ZFS_EXIT(zfsvfs);
2434 		return (EROFS);
2435 	}
2436 
2437 	/*
2438 	 * First validate permissions
2439 	 */
2440 
2441 	if (mask & AT_SIZE) {
2442 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2443 		if (err) {
2444 			ZFS_EXIT(zfsvfs);
2445 			return (err);
2446 		}
2447 		/*
2448 		 * XXX - Note, we are not providing any open
2449 		 * mode flags here (like FNDELAY), so we may
2450 		 * block if there are locks present... this
2451 		 * should be addressed in openat().
2452 		 */
2453 		/* XXX - would it be OK to generate a log record here? */
2454 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2455 		if (err) {
2456 			ZFS_EXIT(zfsvfs);
2457 			return (err);
2458 		}
2459 	}
2460 
2461 	if (mask & (AT_ATIME|AT_MTIME) ||
2462 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2463 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2464 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2465 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2466 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2467 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2468 		    skipaclchk, cr);
2469 
2470 	if (mask & (AT_UID|AT_GID)) {
2471 		int	idmask = (mask & (AT_UID|AT_GID));
2472 		int	take_owner;
2473 		int	take_group;
2474 
2475 		/*
2476 		 * NOTE: even if a new mode is being set,
2477 		 * we may clear S_ISUID/S_ISGID bits.
2478 		 */
2479 
2480 		if (!(mask & AT_MODE))
2481 			vap->va_mode = pzp->zp_mode;
2482 
2483 		/*
2484 		 * Take ownership or chgrp to group we are a member of
2485 		 */
2486 
2487 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2488 		take_group = (mask & AT_GID) &&
2489 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2490 
2491 		/*
2492 		 * If both AT_UID and AT_GID are set then take_owner and
2493 		 * take_group must both be set in order to allow taking
2494 		 * ownership.
2495 		 *
2496 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2497 		 *
2498 		 */
2499 
2500 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2501 		    ((idmask == AT_UID) && take_owner) ||
2502 		    ((idmask == AT_GID) && take_group)) {
2503 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2504 			    skipaclchk, cr) == 0) {
2505 				/*
2506 				 * Remove setuid/setgid for non-privileged users
2507 				 */
2508 				secpolicy_setid_clear(vap, cr);
2509 				trim_mask = (mask & (AT_UID|AT_GID));
2510 			} else {
2511 				need_policy =  TRUE;
2512 			}
2513 		} else {
2514 			need_policy =  TRUE;
2515 		}
2516 	}
2517 
2518 	mutex_enter(&zp->z_lock);
2519 	oldva.va_mode = pzp->zp_mode;
2520 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2521 	if (mask & AT_XVATTR) {
2522 		/*
2523 		 * Update xvattr mask to include only those attributes
2524 		 * that are actually changing.
2525 		 *
2526 		 * the bits will be restored prior to actually setting
2527 		 * the attributes so the caller thinks they were set.
2528 		 */
2529 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2530 			if (xoap->xoa_appendonly !=
2531 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) {
2532 				need_policy = TRUE;
2533 			} else {
2534 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2535 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2536 			}
2537 		}
2538 
2539 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2540 			if (xoap->xoa_nounlink !=
2541 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) {
2542 				need_policy = TRUE;
2543 			} else {
2544 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2545 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2546 			}
2547 		}
2548 
2549 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2550 			if (xoap->xoa_immutable !=
2551 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) {
2552 				need_policy = TRUE;
2553 			} else {
2554 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2555 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2556 			}
2557 		}
2558 
2559 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2560 			if (xoap->xoa_nodump !=
2561 			    ((pzp->zp_flags & ZFS_NODUMP) != 0)) {
2562 				need_policy = TRUE;
2563 			} else {
2564 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2565 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2566 			}
2567 		}
2568 
2569 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2570 			if (xoap->xoa_av_modified !=
2571 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) {
2572 				need_policy = TRUE;
2573 			} else {
2574 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2575 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2576 			}
2577 		}
2578 
2579 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2580 			if ((vp->v_type != VREG &&
2581 			    xoap->xoa_av_quarantined) ||
2582 			    xoap->xoa_av_quarantined !=
2583 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) {
2584 				need_policy = TRUE;
2585 			} else {
2586 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2587 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2588 			}
2589 		}
2590 
2591 		if (need_policy == FALSE &&
2592 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2593 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2594 			need_policy = TRUE;
2595 		}
2596 	}
2597 
2598 	mutex_exit(&zp->z_lock);
2599 
2600 	if (mask & AT_MODE) {
2601 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2602 			err = secpolicy_setid_setsticky_clear(vp, vap,
2603 			    &oldva, cr);
2604 			if (err) {
2605 				ZFS_EXIT(zfsvfs);
2606 				return (err);
2607 			}
2608 			trim_mask |= AT_MODE;
2609 		} else {
2610 			need_policy = TRUE;
2611 		}
2612 	}
2613 
2614 	if (need_policy) {
2615 		/*
2616 		 * If trim_mask is set then take ownership
2617 		 * has been granted or write_acl is present and user
2618 		 * has the ability to modify mode.  In that case remove
2619 		 * UID|GID and or MODE from mask so that
2620 		 * secpolicy_vnode_setattr() doesn't revoke it.
2621 		 */
2622 
2623 		if (trim_mask) {
2624 			saved_mask = vap->va_mask;
2625 			vap->va_mask &= ~trim_mask;
2626 		}
2627 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2628 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2629 		if (err) {
2630 			ZFS_EXIT(zfsvfs);
2631 			return (err);
2632 		}
2633 
2634 		if (trim_mask)
2635 			vap->va_mask |= saved_mask;
2636 	}
2637 
2638 	/*
2639 	 * secpolicy_vnode_setattr, or take ownership may have
2640 	 * changed va_mask
2641 	 */
2642 	mask = vap->va_mask;
2643 
2644 	tx = dmu_tx_create(zfsvfs->z_os);
2645 	dmu_tx_hold_bonus(tx, zp->z_id);
2646 	if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2647 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) {
2648 		if (zfsvfs->z_fuid_obj == 0) {
2649 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2650 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2651 			    FUID_SIZE_ESTIMATE(zfsvfs));
2652 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
2653 		} else {
2654 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
2655 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
2656 			    FUID_SIZE_ESTIMATE(zfsvfs));
2657 		}
2658 	}
2659 
2660 	if (mask & AT_MODE) {
2661 		uint64_t pmode = pzp->zp_mode;
2662 
2663 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2664 
2665 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) {
2666 			dmu_tx_abort(tx);
2667 			ZFS_EXIT(zfsvfs);
2668 			return (err);
2669 		}
2670 		if (pzp->zp_acl.z_acl_extern_obj) {
2671 			/* Are we upgrading ACL from old V0 format to new V1 */
2672 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2673 			    pzp->zp_acl.z_acl_version ==
2674 			    ZFS_ACL_VERSION_INITIAL) {
2675 				dmu_tx_hold_free(tx,
2676 				    pzp->zp_acl.z_acl_extern_obj, 0,
2677 				    DMU_OBJECT_END);
2678 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2679 				    0, aclp->z_acl_bytes);
2680 			} else {
2681 				dmu_tx_hold_write(tx,
2682 				    pzp->zp_acl.z_acl_extern_obj, 0,
2683 				    aclp->z_acl_bytes);
2684 			}
2685 		} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2686 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2687 			    0, aclp->z_acl_bytes);
2688 		}
2689 	}
2690 
2691 	if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) {
2692 		err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
2693 		if (err) {
2694 			dmu_tx_abort(tx);
2695 			ZFS_EXIT(zfsvfs);
2696 			if (aclp)
2697 				zfs_acl_free(aclp);
2698 			return (err);
2699 		}
2700 		dmu_tx_hold_bonus(tx, attrzp->z_id);
2701 	}
2702 
2703 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2704 	if (err) {
2705 		if (attrzp)
2706 			VN_RELE(ZTOV(attrzp));
2707 
2708 		if (aclp) {
2709 			zfs_acl_free(aclp);
2710 			aclp = NULL;
2711 		}
2712 
2713 		if (err == ERESTART) {
2714 			dmu_tx_wait(tx);
2715 			dmu_tx_abort(tx);
2716 			goto top;
2717 		}
2718 		dmu_tx_abort(tx);
2719 		ZFS_EXIT(zfsvfs);
2720 		return (err);
2721 	}
2722 
2723 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2724 
2725 	/*
2726 	 * Set each attribute requested.
2727 	 * We group settings according to the locks they need to acquire.
2728 	 *
2729 	 * Note: you cannot set ctime directly, although it will be
2730 	 * updated as a side-effect of calling this function.
2731 	 */
2732 
2733 	mutex_enter(&zp->z_lock);
2734 
2735 	if (mask & AT_MODE) {
2736 		mutex_enter(&zp->z_acl_lock);
2737 		zp->z_phys->zp_mode = new_mode;
2738 		err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx);
2739 		ASSERT3U(err, ==, 0);
2740 		mutex_exit(&zp->z_acl_lock);
2741 	}
2742 
2743 	if (attrzp)
2744 		mutex_enter(&attrzp->z_lock);
2745 
2746 	if (mask & AT_UID) {
2747 		pzp->zp_uid = zfs_fuid_create(zfsvfs,
2748 		    vap->va_uid, cr, ZFS_OWNER, tx, &fuidp);
2749 		if (attrzp) {
2750 			attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs,
2751 			    vap->va_uid,  cr, ZFS_OWNER, tx, &fuidp);
2752 		}
2753 	}
2754 
2755 	if (mask & AT_GID) {
2756 		pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid,
2757 		    cr, ZFS_GROUP, tx, &fuidp);
2758 		if (attrzp)
2759 			attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs,
2760 			    vap->va_gid, cr, ZFS_GROUP, tx, &fuidp);
2761 	}
2762 
2763 	if (aclp)
2764 		zfs_acl_free(aclp);
2765 
2766 	if (attrzp)
2767 		mutex_exit(&attrzp->z_lock);
2768 
2769 	if (mask & AT_ATIME)
2770 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2771 
2772 	if (mask & AT_MTIME)
2773 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2774 
2775 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2776 	if (mask & AT_SIZE)
2777 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2778 	else if (mask != 0)
2779 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2780 	/*
2781 	 * Do this after setting timestamps to prevent timestamp
2782 	 * update from toggling bit
2783 	 */
2784 
2785 	if (xoap && (mask & AT_XVATTR)) {
2786 
2787 		/*
2788 		 * restore trimmed off masks
2789 		 * so that return masks can be set for caller.
2790 		 */
2791 
2792 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
2793 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2794 		}
2795 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
2796 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2797 		}
2798 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
2799 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2800 		}
2801 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
2802 			XVA_SET_REQ(xvap, XAT_NODUMP);
2803 		}
2804 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
2805 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2806 		}
2807 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
2808 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2809 		}
2810 
2811 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
2812 			size_t len;
2813 			dmu_object_info_t doi;
2814 
2815 			ASSERT(vp->v_type == VREG);
2816 
2817 			/* Grow the bonus buffer if necessary. */
2818 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2819 			len = sizeof (xoap->xoa_av_scanstamp) +
2820 			    sizeof (znode_phys_t);
2821 			if (len > doi.doi_bonus_size)
2822 				VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
2823 		}
2824 		zfs_xvattr_set(zp, xvap);
2825 	}
2826 
2827 	if (mask != 0)
2828 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2829 
2830 	if (fuidp)
2831 		zfs_fuid_info_free(fuidp);
2832 	mutex_exit(&zp->z_lock);
2833 
2834 	if (attrzp)
2835 		VN_RELE(ZTOV(attrzp));
2836 
2837 	dmu_tx_commit(tx);
2838 
2839 	ZFS_EXIT(zfsvfs);
2840 	return (err);
2841 }
2842 
2843 typedef struct zfs_zlock {
2844 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2845 	znode_t		*zl_znode;	/* znode we held */
2846 	struct zfs_zlock *zl_next;	/* next in list */
2847 } zfs_zlock_t;
2848 
2849 /*
2850  * Drop locks and release vnodes that were held by zfs_rename_lock().
2851  */
2852 static void
2853 zfs_rename_unlock(zfs_zlock_t **zlpp)
2854 {
2855 	zfs_zlock_t *zl;
2856 
2857 	while ((zl = *zlpp) != NULL) {
2858 		if (zl->zl_znode != NULL)
2859 			VN_RELE(ZTOV(zl->zl_znode));
2860 		rw_exit(zl->zl_rwlock);
2861 		*zlpp = zl->zl_next;
2862 		kmem_free(zl, sizeof (*zl));
2863 	}
2864 }
2865 
2866 /*
2867  * Search back through the directory tree, using the ".." entries.
2868  * Lock each directory in the chain to prevent concurrent renames.
2869  * Fail any attempt to move a directory into one of its own descendants.
2870  * XXX - z_parent_lock can overlap with map or grow locks
2871  */
2872 static int
2873 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2874 {
2875 	zfs_zlock_t	*zl;
2876 	znode_t		*zp = tdzp;
2877 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2878 	uint64_t	*oidp = &zp->z_id;
2879 	krwlock_t	*rwlp = &szp->z_parent_lock;
2880 	krw_t		rw = RW_WRITER;
2881 
2882 	/*
2883 	 * First pass write-locks szp and compares to zp->z_id.
2884 	 * Later passes read-lock zp and compare to zp->z_parent.
2885 	 */
2886 	do {
2887 		if (!rw_tryenter(rwlp, rw)) {
2888 			/*
2889 			 * Another thread is renaming in this path.
2890 			 * Note that if we are a WRITER, we don't have any
2891 			 * parent_locks held yet.
2892 			 */
2893 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2894 				/*
2895 				 * Drop our locks and restart
2896 				 */
2897 				zfs_rename_unlock(&zl);
2898 				*zlpp = NULL;
2899 				zp = tdzp;
2900 				oidp = &zp->z_id;
2901 				rwlp = &szp->z_parent_lock;
2902 				rw = RW_WRITER;
2903 				continue;
2904 			} else {
2905 				/*
2906 				 * Wait for other thread to drop its locks
2907 				 */
2908 				rw_enter(rwlp, rw);
2909 			}
2910 		}
2911 
2912 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2913 		zl->zl_rwlock = rwlp;
2914 		zl->zl_znode = NULL;
2915 		zl->zl_next = *zlpp;
2916 		*zlpp = zl;
2917 
2918 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2919 			return (EINVAL);
2920 
2921 		if (*oidp == rootid)		/* We've hit the top */
2922 			return (0);
2923 
2924 		if (rw == RW_READER) {		/* i.e. not the first pass */
2925 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2926 			if (error)
2927 				return (error);
2928 			zl->zl_znode = zp;
2929 		}
2930 		oidp = &zp->z_phys->zp_parent;
2931 		rwlp = &zp->z_parent_lock;
2932 		rw = RW_READER;
2933 
2934 	} while (zp->z_id != sdzp->z_id);
2935 
2936 	return (0);
2937 }
2938 
2939 /*
2940  * Move an entry from the provided source directory to the target
2941  * directory.  Change the entry name as indicated.
2942  *
2943  *	IN:	sdvp	- Source directory containing the "old entry".
2944  *		snm	- Old entry name.
2945  *		tdvp	- Target directory to contain the "new entry".
2946  *		tnm	- New entry name.
2947  *		cr	- credentials of caller.
2948  *		ct	- caller context
2949  *		flags	- case flags
2950  *
2951  *	RETURN:	0 if success
2952  *		error code if failure
2953  *
2954  * Timestamps:
2955  *	sdvp,tdvp - ctime|mtime updated
2956  */
2957 /*ARGSUSED*/
2958 static int
2959 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
2960     caller_context_t *ct, int flags)
2961 {
2962 	znode_t		*tdzp, *szp, *tzp;
2963 	znode_t		*sdzp = VTOZ(sdvp);
2964 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2965 	zilog_t		*zilog;
2966 	vnode_t		*realvp;
2967 	zfs_dirlock_t	*sdl, *tdl;
2968 	dmu_tx_t	*tx;
2969 	zfs_zlock_t	*zl;
2970 	int		cmp, serr, terr;
2971 	int		error = 0;
2972 	int		zflg = 0;
2973 
2974 	ZFS_ENTER(zfsvfs);
2975 	ZFS_VERIFY_ZP(sdzp);
2976 	zilog = zfsvfs->z_log;
2977 
2978 	/*
2979 	 * Make sure we have the real vp for the target directory.
2980 	 */
2981 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
2982 		tdvp = realvp;
2983 
2984 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2985 		ZFS_EXIT(zfsvfs);
2986 		return (EXDEV);
2987 	}
2988 
2989 	tdzp = VTOZ(tdvp);
2990 	ZFS_VERIFY_ZP(tdzp);
2991 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2992 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2993 		ZFS_EXIT(zfsvfs);
2994 		return (EILSEQ);
2995 	}
2996 
2997 	if (flags & FIGNORECASE)
2998 		zflg |= ZCILOOK;
2999 
3000 top:
3001 	szp = NULL;
3002 	tzp = NULL;
3003 	zl = NULL;
3004 
3005 	/*
3006 	 * This is to prevent the creation of links into attribute space
3007 	 * by renaming a linked file into/outof an attribute directory.
3008 	 * See the comment in zfs_link() for why this is considered bad.
3009 	 */
3010 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
3011 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
3012 		ZFS_EXIT(zfsvfs);
3013 		return (EINVAL);
3014 	}
3015 
3016 	/*
3017 	 * Lock source and target directory entries.  To prevent deadlock,
3018 	 * a lock ordering must be defined.  We lock the directory with
3019 	 * the smallest object id first, or if it's a tie, the one with
3020 	 * the lexically first name.
3021 	 */
3022 	if (sdzp->z_id < tdzp->z_id) {
3023 		cmp = -1;
3024 	} else if (sdzp->z_id > tdzp->z_id) {
3025 		cmp = 1;
3026 	} else {
3027 		/*
3028 		 * First compare the two name arguments without
3029 		 * considering any case folding.
3030 		 */
3031 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3032 
3033 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3034 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3035 		if (cmp == 0) {
3036 			/*
3037 			 * POSIX: "If the old argument and the new argument
3038 			 * both refer to links to the same existing file,
3039 			 * the rename() function shall return successfully
3040 			 * and perform no other action."
3041 			 */
3042 			ZFS_EXIT(zfsvfs);
3043 			return (0);
3044 		}
3045 		/*
3046 		 * If the file system is case-folding, then we may
3047 		 * have some more checking to do.  A case-folding file
3048 		 * system is either supporting mixed case sensitivity
3049 		 * access or is completely case-insensitive.  Note
3050 		 * that the file system is always case preserving.
3051 		 *
3052 		 * In mixed sensitivity mode case sensitive behavior
3053 		 * is the default.  FIGNORECASE must be used to
3054 		 * explicitly request case insensitive behavior.
3055 		 *
3056 		 * If the source and target names provided differ only
3057 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3058 		 * we will treat this as a special case in the
3059 		 * case-insensitive mode: as long as the source name
3060 		 * is an exact match, we will allow this to proceed as
3061 		 * a name-change request.
3062 		 */
3063 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3064 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3065 		    flags & FIGNORECASE)) &&
3066 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3067 		    &error) == 0) {
3068 			/*
3069 			 * case preserving rename request, require exact
3070 			 * name matches
3071 			 */
3072 			zflg |= ZCIEXACT;
3073 			zflg &= ~ZCILOOK;
3074 		}
3075 	}
3076 
3077 	if (cmp < 0) {
3078 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3079 		    ZEXISTS | zflg, NULL, NULL);
3080 		terr = zfs_dirent_lock(&tdl,
3081 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3082 	} else {
3083 		terr = zfs_dirent_lock(&tdl,
3084 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3085 		serr = zfs_dirent_lock(&sdl,
3086 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3087 		    NULL, NULL);
3088 	}
3089 
3090 	if (serr) {
3091 		/*
3092 		 * Source entry invalid or not there.
3093 		 */
3094 		if (!terr) {
3095 			zfs_dirent_unlock(tdl);
3096 			if (tzp)
3097 				VN_RELE(ZTOV(tzp));
3098 		}
3099 		if (strcmp(snm, "..") == 0)
3100 			serr = EINVAL;
3101 		ZFS_EXIT(zfsvfs);
3102 		return (serr);
3103 	}
3104 	if (terr) {
3105 		zfs_dirent_unlock(sdl);
3106 		VN_RELE(ZTOV(szp));
3107 		if (strcmp(tnm, "..") == 0)
3108 			terr = EINVAL;
3109 		ZFS_EXIT(zfsvfs);
3110 		return (terr);
3111 	}
3112 
3113 	/*
3114 	 * Must have write access at the source to remove the old entry
3115 	 * and write access at the target to create the new entry.
3116 	 * Note that if target and source are the same, this can be
3117 	 * done in a single check.
3118 	 */
3119 
3120 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3121 		goto out;
3122 
3123 	if (ZTOV(szp)->v_type == VDIR) {
3124 		/*
3125 		 * Check to make sure rename is valid.
3126 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3127 		 */
3128 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3129 			goto out;
3130 	}
3131 
3132 	/*
3133 	 * Does target exist?
3134 	 */
3135 	if (tzp) {
3136 		/*
3137 		 * Source and target must be the same type.
3138 		 */
3139 		if (ZTOV(szp)->v_type == VDIR) {
3140 			if (ZTOV(tzp)->v_type != VDIR) {
3141 				error = ENOTDIR;
3142 				goto out;
3143 			}
3144 		} else {
3145 			if (ZTOV(tzp)->v_type == VDIR) {
3146 				error = EISDIR;
3147 				goto out;
3148 			}
3149 		}
3150 		/*
3151 		 * POSIX dictates that when the source and target
3152 		 * entries refer to the same file object, rename
3153 		 * must do nothing and exit without error.
3154 		 */
3155 		if (szp->z_id == tzp->z_id) {
3156 			error = 0;
3157 			goto out;
3158 		}
3159 	}
3160 
3161 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3162 	if (tzp)
3163 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3164 
3165 	/*
3166 	 * notify the target directory if it is not the same
3167 	 * as source directory.
3168 	 */
3169 	if (tdvp != sdvp) {
3170 		vnevent_rename_dest_dir(tdvp, ct);
3171 	}
3172 
3173 	tx = dmu_tx_create(zfsvfs->z_os);
3174 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
3175 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
3176 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3177 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3178 	if (sdzp != tdzp)
3179 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
3180 	if (tzp)
3181 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
3182 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3183 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3184 	if (error) {
3185 		if (zl != NULL)
3186 			zfs_rename_unlock(&zl);
3187 		zfs_dirent_unlock(sdl);
3188 		zfs_dirent_unlock(tdl);
3189 		VN_RELE(ZTOV(szp));
3190 		if (tzp)
3191 			VN_RELE(ZTOV(tzp));
3192 		if (error == ERESTART) {
3193 			dmu_tx_wait(tx);
3194 			dmu_tx_abort(tx);
3195 			goto top;
3196 		}
3197 		dmu_tx_abort(tx);
3198 		ZFS_EXIT(zfsvfs);
3199 		return (error);
3200 	}
3201 
3202 	if (tzp)	/* Attempt to remove the existing target */
3203 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3204 
3205 	if (error == 0) {
3206 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3207 		if (error == 0) {
3208 			szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3209 
3210 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3211 			ASSERT(error == 0);
3212 
3213 			zfs_log_rename(zilog, tx,
3214 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3215 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3216 
3217 			/* Update path information for the target vnode */
3218 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3219 		}
3220 	}
3221 
3222 	dmu_tx_commit(tx);
3223 out:
3224 	if (zl != NULL)
3225 		zfs_rename_unlock(&zl);
3226 
3227 	zfs_dirent_unlock(sdl);
3228 	zfs_dirent_unlock(tdl);
3229 
3230 	VN_RELE(ZTOV(szp));
3231 	if (tzp)
3232 		VN_RELE(ZTOV(tzp));
3233 
3234 	ZFS_EXIT(zfsvfs);
3235 	return (error);
3236 }
3237 
3238 /*
3239  * Insert the indicated symbolic reference entry into the directory.
3240  *
3241  *	IN:	dvp	- Directory to contain new symbolic link.
3242  *		link	- Name for new symlink entry.
3243  *		vap	- Attributes of new entry.
3244  *		target	- Target path of new symlink.
3245  *		cr	- credentials of caller.
3246  *		ct	- caller context
3247  *		flags	- case flags
3248  *
3249  *	RETURN:	0 if success
3250  *		error code if failure
3251  *
3252  * Timestamps:
3253  *	dvp - ctime|mtime updated
3254  */
3255 /*ARGSUSED*/
3256 static int
3257 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3258     caller_context_t *ct, int flags)
3259 {
3260 	znode_t		*zp, *dzp = VTOZ(dvp);
3261 	zfs_dirlock_t	*dl;
3262 	dmu_tx_t	*tx;
3263 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3264 	zilog_t		*zilog;
3265 	int		len = strlen(link);
3266 	int		error;
3267 	int		zflg = ZNEW;
3268 	zfs_fuid_info_t *fuidp = NULL;
3269 
3270 	ASSERT(vap->va_type == VLNK);
3271 
3272 	ZFS_ENTER(zfsvfs);
3273 	ZFS_VERIFY_ZP(dzp);
3274 	zilog = zfsvfs->z_log;
3275 
3276 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3277 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3278 		ZFS_EXIT(zfsvfs);
3279 		return (EILSEQ);
3280 	}
3281 	if (flags & FIGNORECASE)
3282 		zflg |= ZCILOOK;
3283 top:
3284 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3285 		ZFS_EXIT(zfsvfs);
3286 		return (error);
3287 	}
3288 
3289 	if (len > MAXPATHLEN) {
3290 		ZFS_EXIT(zfsvfs);
3291 		return (ENAMETOOLONG);
3292 	}
3293 
3294 	/*
3295 	 * Attempt to lock directory; fail if entry already exists.
3296 	 */
3297 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3298 	if (error) {
3299 		ZFS_EXIT(zfsvfs);
3300 		return (error);
3301 	}
3302 
3303 	tx = dmu_tx_create(zfsvfs->z_os);
3304 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3305 	dmu_tx_hold_bonus(tx, dzp->z_id);
3306 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3307 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
3308 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3309 	if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
3310 		if (zfsvfs->z_fuid_obj == 0) {
3311 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
3312 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3313 			    FUID_SIZE_ESTIMATE(zfsvfs));
3314 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
3315 		} else {
3316 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
3317 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
3318 			    FUID_SIZE_ESTIMATE(zfsvfs));
3319 		}
3320 	}
3321 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3322 	if (error) {
3323 		zfs_dirent_unlock(dl);
3324 		if (error == ERESTART) {
3325 			dmu_tx_wait(tx);
3326 			dmu_tx_abort(tx);
3327 			goto top;
3328 		}
3329 		dmu_tx_abort(tx);
3330 		ZFS_EXIT(zfsvfs);
3331 		return (error);
3332 	}
3333 
3334 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
3335 
3336 	/*
3337 	 * Create a new object for the symlink.
3338 	 * Put the link content into bonus buffer if it will fit;
3339 	 * otherwise, store it just like any other file data.
3340 	 */
3341 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3342 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp);
3343 		if (len != 0)
3344 			bcopy(link, zp->z_phys + 1, len);
3345 	} else {
3346 		dmu_buf_t *dbp;
3347 
3348 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp);
3349 		/*
3350 		 * Nothing can access the znode yet so no locking needed
3351 		 * for growing the znode's blocksize.
3352 		 */
3353 		zfs_grow_blocksize(zp, len, tx);
3354 
3355 		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3356 		    zp->z_id, 0, FTAG, &dbp));
3357 		dmu_buf_will_dirty(dbp, tx);
3358 
3359 		ASSERT3U(len, <=, dbp->db_size);
3360 		bcopy(link, dbp->db_data, len);
3361 		dmu_buf_rele(dbp, FTAG);
3362 	}
3363 	zp->z_phys->zp_size = len;
3364 
3365 	/*
3366 	 * Insert the new object into the directory.
3367 	 */
3368 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3369 out:
3370 	if (error == 0) {
3371 		uint64_t txtype = TX_SYMLINK;
3372 		if (flags & FIGNORECASE)
3373 			txtype |= TX_CI;
3374 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3375 	}
3376 	if (fuidp)
3377 		zfs_fuid_info_free(fuidp);
3378 
3379 	dmu_tx_commit(tx);
3380 
3381 	zfs_dirent_unlock(dl);
3382 
3383 	VN_RELE(ZTOV(zp));
3384 
3385 	ZFS_EXIT(zfsvfs);
3386 	return (error);
3387 }
3388 
3389 /*
3390  * Return, in the buffer contained in the provided uio structure,
3391  * the symbolic path referred to by vp.
3392  *
3393  *	IN:	vp	- vnode of symbolic link.
3394  *		uoip	- structure to contain the link path.
3395  *		cr	- credentials of caller.
3396  *		ct	- caller context
3397  *
3398  *	OUT:	uio	- structure to contain the link path.
3399  *
3400  *	RETURN:	0 if success
3401  *		error code if failure
3402  *
3403  * Timestamps:
3404  *	vp - atime updated
3405  */
3406 /* ARGSUSED */
3407 static int
3408 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3409 {
3410 	znode_t		*zp = VTOZ(vp);
3411 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3412 	size_t		bufsz;
3413 	int		error;
3414 
3415 	ZFS_ENTER(zfsvfs);
3416 	ZFS_VERIFY_ZP(zp);
3417 
3418 	bufsz = (size_t)zp->z_phys->zp_size;
3419 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3420 		error = uiomove(zp->z_phys + 1,
3421 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3422 	} else {
3423 		dmu_buf_t *dbp;
3424 		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3425 		if (error) {
3426 			ZFS_EXIT(zfsvfs);
3427 			return (error);
3428 		}
3429 		error = uiomove(dbp->db_data,
3430 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3431 		dmu_buf_rele(dbp, FTAG);
3432 	}
3433 
3434 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3435 	ZFS_EXIT(zfsvfs);
3436 	return (error);
3437 }
3438 
3439 /*
3440  * Insert a new entry into directory tdvp referencing svp.
3441  *
3442  *	IN:	tdvp	- Directory to contain new entry.
3443  *		svp	- vnode of new entry.
3444  *		name	- name of new entry.
3445  *		cr	- credentials of caller.
3446  *		ct	- caller context
3447  *
3448  *	RETURN:	0 if success
3449  *		error code if failure
3450  *
3451  * Timestamps:
3452  *	tdvp - ctime|mtime updated
3453  *	 svp - ctime updated
3454  */
3455 /* ARGSUSED */
3456 static int
3457 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3458     caller_context_t *ct, int flags)
3459 {
3460 	znode_t		*dzp = VTOZ(tdvp);
3461 	znode_t		*tzp, *szp;
3462 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3463 	zilog_t		*zilog;
3464 	zfs_dirlock_t	*dl;
3465 	dmu_tx_t	*tx;
3466 	vnode_t		*realvp;
3467 	int		error;
3468 	int		zf = ZNEW;
3469 	uid_t		owner;
3470 
3471 	ASSERT(tdvp->v_type == VDIR);
3472 
3473 	ZFS_ENTER(zfsvfs);
3474 	ZFS_VERIFY_ZP(dzp);
3475 	zilog = zfsvfs->z_log;
3476 
3477 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3478 		svp = realvp;
3479 
3480 	if (svp->v_vfsp != tdvp->v_vfsp) {
3481 		ZFS_EXIT(zfsvfs);
3482 		return (EXDEV);
3483 	}
3484 	szp = VTOZ(svp);
3485 	ZFS_VERIFY_ZP(szp);
3486 
3487 	if (zfsvfs->z_utf8 && u8_validate(name,
3488 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3489 		ZFS_EXIT(zfsvfs);
3490 		return (EILSEQ);
3491 	}
3492 	if (flags & FIGNORECASE)
3493 		zf |= ZCILOOK;
3494 
3495 top:
3496 	/*
3497 	 * We do not support links between attributes and non-attributes
3498 	 * because of the potential security risk of creating links
3499 	 * into "normal" file space in order to circumvent restrictions
3500 	 * imposed in attribute space.
3501 	 */
3502 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3503 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3504 		ZFS_EXIT(zfsvfs);
3505 		return (EINVAL);
3506 	}
3507 
3508 	/*
3509 	 * POSIX dictates that we return EPERM here.
3510 	 * Better choices include ENOTSUP or EISDIR.
3511 	 */
3512 	if (svp->v_type == VDIR) {
3513 		ZFS_EXIT(zfsvfs);
3514 		return (EPERM);
3515 	}
3516 
3517 	owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3518 	if (owner != crgetuid(cr) &&
3519 	    secpolicy_basic_link(cr) != 0) {
3520 		ZFS_EXIT(zfsvfs);
3521 		return (EPERM);
3522 	}
3523 
3524 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3525 		ZFS_EXIT(zfsvfs);
3526 		return (error);
3527 	}
3528 
3529 	/*
3530 	 * Attempt to lock directory; fail if entry already exists.
3531 	 */
3532 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3533 	if (error) {
3534 		ZFS_EXIT(zfsvfs);
3535 		return (error);
3536 	}
3537 
3538 	tx = dmu_tx_create(zfsvfs->z_os);
3539 	dmu_tx_hold_bonus(tx, szp->z_id);
3540 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3541 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3542 	if (error) {
3543 		zfs_dirent_unlock(dl);
3544 		if (error == ERESTART) {
3545 			dmu_tx_wait(tx);
3546 			dmu_tx_abort(tx);
3547 			goto top;
3548 		}
3549 		dmu_tx_abort(tx);
3550 		ZFS_EXIT(zfsvfs);
3551 		return (error);
3552 	}
3553 
3554 	error = zfs_link_create(dl, szp, tx, 0);
3555 
3556 	if (error == 0) {
3557 		uint64_t txtype = TX_LINK;
3558 		if (flags & FIGNORECASE)
3559 			txtype |= TX_CI;
3560 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3561 	}
3562 
3563 	dmu_tx_commit(tx);
3564 
3565 	zfs_dirent_unlock(dl);
3566 
3567 	if (error == 0) {
3568 		vnevent_link(svp, ct);
3569 	}
3570 
3571 	ZFS_EXIT(zfsvfs);
3572 	return (error);
3573 }
3574 
3575 /*
3576  * zfs_null_putapage() is used when the file system has been force
3577  * unmounted. It just drops the pages.
3578  */
3579 /* ARGSUSED */
3580 static int
3581 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3582 		size_t *lenp, int flags, cred_t *cr)
3583 {
3584 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3585 	return (0);
3586 }
3587 
3588 /*
3589  * Push a page out to disk, klustering if possible.
3590  *
3591  *	IN:	vp	- file to push page to.
3592  *		pp	- page to push.
3593  *		flags	- additional flags.
3594  *		cr	- credentials of caller.
3595  *
3596  *	OUT:	offp	- start of range pushed.
3597  *		lenp	- len of range pushed.
3598  *
3599  *	RETURN:	0 if success
3600  *		error code if failure
3601  *
3602  * NOTE: callers must have locked the page to be pushed.  On
3603  * exit, the page (and all other pages in the kluster) must be
3604  * unlocked.
3605  */
3606 /* ARGSUSED */
3607 static int
3608 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3609 		size_t *lenp, int flags, cred_t *cr)
3610 {
3611 	znode_t		*zp = VTOZ(vp);
3612 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3613 	zilog_t		*zilog = zfsvfs->z_log;
3614 	dmu_tx_t	*tx;
3615 	rl_t		*rl;
3616 	u_offset_t	off, koff;
3617 	size_t		len, klen;
3618 	uint64_t	filesz;
3619 	int		err;
3620 
3621 	filesz = zp->z_phys->zp_size;
3622 	off = pp->p_offset;
3623 	len = PAGESIZE;
3624 	/*
3625 	 * If our blocksize is bigger than the page size, try to kluster
3626 	 * multiple pages so that we write a full block (thus avoiding
3627 	 * a read-modify-write).
3628 	 */
3629 	if (off < filesz && zp->z_blksz > PAGESIZE) {
3630 		if (!ISP2(zp->z_blksz)) {
3631 			/* Only one block in the file. */
3632 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3633 			koff = 0;
3634 		} else {
3635 			klen = zp->z_blksz;
3636 			koff = P2ALIGN(off, (u_offset_t)klen);
3637 		}
3638 		ASSERT(koff <= filesz);
3639 		if (koff + klen > filesz)
3640 			klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
3641 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3642 	}
3643 	ASSERT3U(btop(len), ==, btopr(len));
3644 top:
3645 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
3646 	/*
3647 	 * Can't push pages past end-of-file.
3648 	 */
3649 	filesz = zp->z_phys->zp_size;
3650 	if (off >= filesz) {
3651 		/* ignore all pages */
3652 		err = 0;
3653 		goto out;
3654 	} else if (off + len > filesz) {
3655 		int npages = btopr(filesz - off);
3656 		page_t *trunc;
3657 
3658 		page_list_break(&pp, &trunc, npages);
3659 		/* ignore pages past end of file */
3660 		if (trunc)
3661 			pvn_write_done(trunc, flags);
3662 		len = filesz - off;
3663 	}
3664 
3665 	tx = dmu_tx_create(zfsvfs->z_os);
3666 	dmu_tx_hold_write(tx, zp->z_id, off, len);
3667 	dmu_tx_hold_bonus(tx, zp->z_id);
3668 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3669 	if (err != 0) {
3670 		if (err == ERESTART) {
3671 			zfs_range_unlock(rl);
3672 			dmu_tx_wait(tx);
3673 			dmu_tx_abort(tx);
3674 			err = 0;
3675 			goto top;
3676 		}
3677 		dmu_tx_abort(tx);
3678 		goto out;
3679 	}
3680 
3681 	if (zp->z_blksz <= PAGESIZE) {
3682 		caddr_t va = zfs_map_page(pp, S_READ);
3683 		ASSERT3U(len, <=, PAGESIZE);
3684 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
3685 		zfs_unmap_page(pp, va);
3686 	} else {
3687 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3688 	}
3689 
3690 	if (err == 0) {
3691 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3692 		zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0);
3693 		dmu_tx_commit(tx);
3694 	}
3695 
3696 out:
3697 	zfs_range_unlock(rl);
3698 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3699 	if (offp)
3700 		*offp = off;
3701 	if (lenp)
3702 		*lenp = len;
3703 
3704 	return (err);
3705 }
3706 
3707 /*
3708  * Copy the portion of the file indicated from pages into the file.
3709  * The pages are stored in a page list attached to the files vnode.
3710  *
3711  *	IN:	vp	- vnode of file to push page data to.
3712  *		off	- position in file to put data.
3713  *		len	- amount of data to write.
3714  *		flags	- flags to control the operation.
3715  *		cr	- credentials of caller.
3716  *		ct	- caller context.
3717  *
3718  *	RETURN:	0 if success
3719  *		error code if failure
3720  *
3721  * Timestamps:
3722  *	vp - ctime|mtime updated
3723  */
3724 /*ARGSUSED*/
3725 static int
3726 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
3727     caller_context_t *ct)
3728 {
3729 	znode_t		*zp = VTOZ(vp);
3730 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3731 	page_t		*pp;
3732 	size_t		io_len;
3733 	u_offset_t	io_off;
3734 	uint64_t	filesz;
3735 	int		error = 0;
3736 
3737 	ZFS_ENTER(zfsvfs);
3738 	ZFS_VERIFY_ZP(zp);
3739 
3740 	if (len == 0) {
3741 		/*
3742 		 * Search the entire vp list for pages >= off.
3743 		 */
3744 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
3745 		    flags, cr);
3746 		goto out;
3747 	}
3748 
3749 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3750 	if (off > filesz) {
3751 		/* past end of file */
3752 		ZFS_EXIT(zfsvfs);
3753 		return (0);
3754 	}
3755 
3756 	len = MIN(len, filesz - off);
3757 
3758 	for (io_off = off; io_off < off + len; io_off += io_len) {
3759 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
3760 			pp = page_lookup(vp, io_off,
3761 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3762 		} else {
3763 			pp = page_lookup_nowait(vp, io_off,
3764 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3765 		}
3766 
3767 		if (pp != NULL && pvn_getdirty(pp, flags)) {
3768 			int err;
3769 
3770 			/*
3771 			 * Found a dirty page to push
3772 			 */
3773 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3774 			if (err)
3775 				error = err;
3776 		} else {
3777 			io_len = PAGESIZE;
3778 		}
3779 	}
3780 out:
3781 	if ((flags & B_ASYNC) == 0)
3782 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3783 	ZFS_EXIT(zfsvfs);
3784 	return (error);
3785 }
3786 
3787 /*ARGSUSED*/
3788 void
3789 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
3790 {
3791 	znode_t	*zp = VTOZ(vp);
3792 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3793 	int error;
3794 
3795 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3796 	if (zp->z_dbuf == NULL) {
3797 		/*
3798 		 * The fs has been unmounted, or we did a
3799 		 * suspend/resume and this file no longer exists.
3800 		 */
3801 		if (vn_has_cached_data(vp)) {
3802 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3803 			    B_INVAL, cr);
3804 		}
3805 
3806 		mutex_enter(&zp->z_lock);
3807 		vp->v_count = 0; /* count arrives as 1 */
3808 		mutex_exit(&zp->z_lock);
3809 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3810 		zfs_znode_free(zp);
3811 		return;
3812 	}
3813 
3814 	/*
3815 	 * Attempt to push any data in the page cache.  If this fails
3816 	 * we will get kicked out later in zfs_zinactive().
3817 	 */
3818 	if (vn_has_cached_data(vp)) {
3819 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3820 		    cr);
3821 	}
3822 
3823 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3824 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3825 
3826 		dmu_tx_hold_bonus(tx, zp->z_id);
3827 		error = dmu_tx_assign(tx, TXG_WAIT);
3828 		if (error) {
3829 			dmu_tx_abort(tx);
3830 		} else {
3831 			dmu_buf_will_dirty(zp->z_dbuf, tx);
3832 			mutex_enter(&zp->z_lock);
3833 			zp->z_atime_dirty = 0;
3834 			mutex_exit(&zp->z_lock);
3835 			dmu_tx_commit(tx);
3836 		}
3837 	}
3838 
3839 	zfs_zinactive(zp);
3840 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
3841 }
3842 
3843 /*
3844  * Bounds-check the seek operation.
3845  *
3846  *	IN:	vp	- vnode seeking within
3847  *		ooff	- old file offset
3848  *		noffp	- pointer to new file offset
3849  *		ct	- caller context
3850  *
3851  *	RETURN:	0 if success
3852  *		EINVAL if new offset invalid
3853  */
3854 /* ARGSUSED */
3855 static int
3856 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
3857     caller_context_t *ct)
3858 {
3859 	if (vp->v_type == VDIR)
3860 		return (0);
3861 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3862 }
3863 
3864 /*
3865  * Pre-filter the generic locking function to trap attempts to place
3866  * a mandatory lock on a memory mapped file.
3867  */
3868 static int
3869 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3870     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
3871 {
3872 	znode_t *zp = VTOZ(vp);
3873 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3874 	int error;
3875 
3876 	ZFS_ENTER(zfsvfs);
3877 	ZFS_VERIFY_ZP(zp);
3878 
3879 	/*
3880 	 * We are following the UFS semantics with respect to mapcnt
3881 	 * here: If we see that the file is mapped already, then we will
3882 	 * return an error, but we don't worry about races between this
3883 	 * function and zfs_map().
3884 	 */
3885 	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3886 		ZFS_EXIT(zfsvfs);
3887 		return (EAGAIN);
3888 	}
3889 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3890 	ZFS_EXIT(zfsvfs);
3891 	return (error);
3892 }
3893 
3894 /*
3895  * If we can't find a page in the cache, we will create a new page
3896  * and fill it with file data.  For efficiency, we may try to fill
3897  * multiple pages at once (klustering).
3898  */
3899 static int
3900 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3901     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3902 {
3903 	znode_t *zp = VTOZ(vp);
3904 	page_t *pp, *cur_pp;
3905 	objset_t *os = zp->z_zfsvfs->z_os;
3906 	caddr_t va;
3907 	u_offset_t io_off, total;
3908 	uint64_t oid = zp->z_id;
3909 	size_t io_len;
3910 	uint64_t filesz;
3911 	int err;
3912 
3913 	/*
3914 	 * If we are only asking for a single page don't bother klustering.
3915 	 */
3916 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3917 	if (off >= filesz)
3918 		return (EFAULT);
3919 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
3920 		io_off = off;
3921 		io_len = PAGESIZE;
3922 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3923 	} else {
3924 		/*
3925 		 * Try to fill a kluster of pages (a blocks worth).
3926 		 */
3927 		size_t klen;
3928 		u_offset_t koff;
3929 
3930 		if (!ISP2(zp->z_blksz)) {
3931 			/* Only one block in the file. */
3932 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3933 			koff = 0;
3934 		} else {
3935 			/*
3936 			 * It would be ideal to align our offset to the
3937 			 * blocksize but doing so has resulted in some
3938 			 * strange application crashes. For now, we
3939 			 * leave the offset as is and only adjust the
3940 			 * length if we are off the end of the file.
3941 			 */
3942 			koff = off;
3943 			klen = plsz;
3944 		}
3945 		ASSERT(koff <= filesz);
3946 		if (koff + klen > filesz)
3947 			klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff;
3948 		ASSERT3U(off, >=, koff);
3949 		ASSERT3U(off, <, koff + klen);
3950 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3951 		    &io_len, koff, klen, 0);
3952 	}
3953 	if (pp == NULL) {
3954 		/*
3955 		 * Some other thread entered the page before us.
3956 		 * Return to zfs_getpage to retry the lookup.
3957 		 */
3958 		*pl = NULL;
3959 		return (0);
3960 	}
3961 
3962 	/*
3963 	 * Fill the pages in the kluster.
3964 	 */
3965 	cur_pp = pp;
3966 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3967 		ASSERT3U(io_off, ==, cur_pp->p_offset);
3968 		va = zfs_map_page(cur_pp, S_WRITE);
3969 		err = dmu_read(os, oid, io_off, PAGESIZE, va);
3970 		zfs_unmap_page(cur_pp, va);
3971 		if (err) {
3972 			/* On error, toss the entire kluster */
3973 			pvn_read_done(pp, B_ERROR);
3974 			/* convert checksum errors into IO errors */
3975 			if (err == ECKSUM)
3976 				err = EIO;
3977 			return (err);
3978 		}
3979 		cur_pp = cur_pp->p_next;
3980 	}
3981 out:
3982 	/*
3983 	 * Fill in the page list array from the kluster.  If
3984 	 * there are too many pages in the kluster, return
3985 	 * as many pages as possible starting from the desired
3986 	 * offset `off'.
3987 	 * NOTE: the page list will always be null terminated.
3988 	 */
3989 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3990 
3991 	return (0);
3992 }
3993 
3994 /*
3995  * Return pointers to the pages for the file region [off, off + len]
3996  * in the pl array.  If plsz is greater than len, this function may
3997  * also return page pointers from before or after the specified
3998  * region (i.e. some region [off', off' + plsz]).  These additional
3999  * pages are only returned if they are already in the cache, or were
4000  * created as part of a klustered read.
4001  *
4002  *	IN:	vp	- vnode of file to get data from.
4003  *		off	- position in file to get data from.
4004  *		len	- amount of data to retrieve.
4005  *		plsz	- length of provided page list.
4006  *		seg	- segment to obtain pages for.
4007  *		addr	- virtual address of fault.
4008  *		rw	- mode of created pages.
4009  *		cr	- credentials of caller.
4010  *		ct	- caller context.
4011  *
4012  *	OUT:	protp	- protection mode of created pages.
4013  *		pl	- list of pages created.
4014  *
4015  *	RETURN:	0 if success
4016  *		error code if failure
4017  *
4018  * Timestamps:
4019  *	vp - atime updated
4020  */
4021 /* ARGSUSED */
4022 static int
4023 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4024 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4025 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4026 {
4027 	znode_t		*zp = VTOZ(vp);
4028 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4029 	page_t		*pp, **pl0 = pl;
4030 	int		need_unlock = 0, err = 0;
4031 	offset_t	orig_off;
4032 
4033 	ZFS_ENTER(zfsvfs);
4034 	ZFS_VERIFY_ZP(zp);
4035 
4036 	if (protp)
4037 		*protp = PROT_ALL;
4038 
4039 	/* no faultahead (for now) */
4040 	if (pl == NULL) {
4041 		ZFS_EXIT(zfsvfs);
4042 		return (0);
4043 	}
4044 
4045 	/* can't fault past EOF */
4046 	if (off >= zp->z_phys->zp_size) {
4047 		ZFS_EXIT(zfsvfs);
4048 		return (EFAULT);
4049 	}
4050 	orig_off = off;
4051 
4052 	/*
4053 	 * If we already own the lock, then we must be page faulting
4054 	 * in the middle of a write to this file (i.e., we are writing
4055 	 * to this file using data from a mapped region of the file).
4056 	 */
4057 	if (rw_owner(&zp->z_map_lock) != curthread) {
4058 		rw_enter(&zp->z_map_lock, RW_WRITER);
4059 		need_unlock = TRUE;
4060 	}
4061 
4062 	/*
4063 	 * Loop through the requested range [off, off + len] looking
4064 	 * for pages.  If we don't find a page, we will need to create
4065 	 * a new page and fill it with data from the file.
4066 	 */
4067 	while (len > 0) {
4068 		if (plsz < PAGESIZE)
4069 			break;
4070 		if (pp = page_lookup(vp, off, SE_SHARED)) {
4071 			*pl++ = pp;
4072 			off += PAGESIZE;
4073 			addr += PAGESIZE;
4074 			len -= PAGESIZE;
4075 			plsz -= PAGESIZE;
4076 		} else {
4077 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
4078 			if (err)
4079 				goto out;
4080 			/*
4081 			 * klustering may have changed our region
4082 			 * to be block aligned.
4083 			 */
4084 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
4085 				int delta = off - pp->p_offset;
4086 				len += delta;
4087 				off -= delta;
4088 				addr -= delta;
4089 			}
4090 			while (*pl) {
4091 				pl++;
4092 				off += PAGESIZE;
4093 				addr += PAGESIZE;
4094 				plsz -= PAGESIZE;
4095 				if (len > PAGESIZE)
4096 					len -= PAGESIZE;
4097 				else
4098 					len = 0;
4099 			}
4100 		}
4101 	}
4102 
4103 	/*
4104 	 * Fill out the page array with any pages already in the cache.
4105 	 */
4106 	while (plsz > 0) {
4107 		pp = page_lookup_nowait(vp, off, SE_SHARED);
4108 		if (pp == NULL)
4109 			break;
4110 		*pl++ = pp;
4111 		off += PAGESIZE;
4112 		plsz -= PAGESIZE;
4113 	}
4114 
4115 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4116 out:
4117 	/*
4118 	 * We can't grab the range lock for the page as reader which would
4119 	 * stop truncation as this leads to deadlock. So we need to recheck
4120 	 * the file size.
4121 	 */
4122 	if (orig_off >= zp->z_phys->zp_size)
4123 		err = EFAULT;
4124 	if (err) {
4125 		/*
4126 		 * Release any pages we have previously locked.
4127 		 */
4128 		while (pl > pl0)
4129 			page_unlock(*--pl);
4130 	}
4131 
4132 	*pl = NULL;
4133 
4134 	if (need_unlock)
4135 		rw_exit(&zp->z_map_lock);
4136 
4137 	ZFS_EXIT(zfsvfs);
4138 	return (err);
4139 }
4140 
4141 /*
4142  * Request a memory map for a section of a file.  This code interacts
4143  * with common code and the VM system as follows:
4144  *
4145  *	common code calls mmap(), which ends up in smmap_common()
4146  *
4147  *	this calls VOP_MAP(), which takes you into (say) zfs
4148  *
4149  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4150  *
4151  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4152  *
4153  *	zfs_addmap() updates z_mapcnt
4154  */
4155 /*ARGSUSED*/
4156 static int
4157 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4158     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4159     caller_context_t *ct)
4160 {
4161 	znode_t *zp = VTOZ(vp);
4162 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4163 	segvn_crargs_t	vn_a;
4164 	int		error;
4165 
4166 	ZFS_ENTER(zfsvfs);
4167 	ZFS_VERIFY_ZP(zp);
4168 
4169 	if ((prot & PROT_WRITE) &&
4170 	    (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4171 	    ZFS_APPENDONLY))) {
4172 		ZFS_EXIT(zfsvfs);
4173 		return (EPERM);
4174 	}
4175 
4176 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4177 	    (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4178 		ZFS_EXIT(zfsvfs);
4179 		return (EACCES);
4180 	}
4181 
4182 	if (vp->v_flag & VNOMAP) {
4183 		ZFS_EXIT(zfsvfs);
4184 		return (ENOSYS);
4185 	}
4186 
4187 	if (off < 0 || len > MAXOFFSET_T - off) {
4188 		ZFS_EXIT(zfsvfs);
4189 		return (ENXIO);
4190 	}
4191 
4192 	if (vp->v_type != VREG) {
4193 		ZFS_EXIT(zfsvfs);
4194 		return (ENODEV);
4195 	}
4196 
4197 	/*
4198 	 * If file is locked, disallow mapping.
4199 	 */
4200 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4201 		ZFS_EXIT(zfsvfs);
4202 		return (EAGAIN);
4203 	}
4204 
4205 	as_rangelock(as);
4206 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4207 	if (error != 0) {
4208 		as_rangeunlock(as);
4209 		ZFS_EXIT(zfsvfs);
4210 		return (error);
4211 	}
4212 
4213 	vn_a.vp = vp;
4214 	vn_a.offset = (u_offset_t)off;
4215 	vn_a.type = flags & MAP_TYPE;
4216 	vn_a.prot = prot;
4217 	vn_a.maxprot = maxprot;
4218 	vn_a.cred = cr;
4219 	vn_a.amp = NULL;
4220 	vn_a.flags = flags & ~MAP_TYPE;
4221 	vn_a.szc = 0;
4222 	vn_a.lgrp_mem_policy_flags = 0;
4223 
4224 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4225 
4226 	as_rangeunlock(as);
4227 	ZFS_EXIT(zfsvfs);
4228 	return (error);
4229 }
4230 
4231 /* ARGSUSED */
4232 static int
4233 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4234     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4235     caller_context_t *ct)
4236 {
4237 	uint64_t pages = btopr(len);
4238 
4239 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4240 	return (0);
4241 }
4242 
4243 /*
4244  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4245  * more accurate mtime for the associated file.  Since we don't have a way of
4246  * detecting when the data was actually modified, we have to resort to
4247  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4248  * last page is pushed.  The problem occurs when the msync() call is omitted,
4249  * which by far the most common case:
4250  *
4251  * 	open()
4252  * 	mmap()
4253  * 	<modify memory>
4254  * 	munmap()
4255  * 	close()
4256  * 	<time lapse>
4257  * 	putpage() via fsflush
4258  *
4259  * If we wait until fsflush to come along, we can have a modification time that
4260  * is some arbitrary point in the future.  In order to prevent this in the
4261  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4262  * torn down.
4263  */
4264 /* ARGSUSED */
4265 static int
4266 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4267     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4268     caller_context_t *ct)
4269 {
4270 	uint64_t pages = btopr(len);
4271 
4272 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4273 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4274 
4275 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4276 	    vn_has_cached_data(vp))
4277 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4278 
4279 	return (0);
4280 }
4281 
4282 /*
4283  * Free or allocate space in a file.  Currently, this function only
4284  * supports the `F_FREESP' command.  However, this command is somewhat
4285  * misnamed, as its functionality includes the ability to allocate as
4286  * well as free space.
4287  *
4288  *	IN:	vp	- vnode of file to free data in.
4289  *		cmd	- action to take (only F_FREESP supported).
4290  *		bfp	- section of file to free/alloc.
4291  *		flag	- current file open mode flags.
4292  *		offset	- current file offset.
4293  *		cr	- credentials of caller [UNUSED].
4294  *		ct	- caller context.
4295  *
4296  *	RETURN:	0 if success
4297  *		error code if failure
4298  *
4299  * Timestamps:
4300  *	vp - ctime|mtime updated
4301  */
4302 /* ARGSUSED */
4303 static int
4304 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4305     offset_t offset, cred_t *cr, caller_context_t *ct)
4306 {
4307 	znode_t		*zp = VTOZ(vp);
4308 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4309 	uint64_t	off, len;
4310 	int		error;
4311 
4312 	ZFS_ENTER(zfsvfs);
4313 	ZFS_VERIFY_ZP(zp);
4314 
4315 	if (cmd != F_FREESP) {
4316 		ZFS_EXIT(zfsvfs);
4317 		return (EINVAL);
4318 	}
4319 
4320 	if (error = convoff(vp, bfp, 0, offset)) {
4321 		ZFS_EXIT(zfsvfs);
4322 		return (error);
4323 	}
4324 
4325 	if (bfp->l_len < 0) {
4326 		ZFS_EXIT(zfsvfs);
4327 		return (EINVAL);
4328 	}
4329 
4330 	off = bfp->l_start;
4331 	len = bfp->l_len; /* 0 means from off to end of file */
4332 
4333 	error = zfs_freesp(zp, off, len, flag, TRUE);
4334 
4335 	ZFS_EXIT(zfsvfs);
4336 	return (error);
4337 }
4338 
4339 /*ARGSUSED*/
4340 static int
4341 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4342 {
4343 	znode_t		*zp = VTOZ(vp);
4344 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4345 	uint32_t	gen;
4346 	uint64_t	object = zp->z_id;
4347 	zfid_short_t	*zfid;
4348 	int		size, i;
4349 
4350 	ZFS_ENTER(zfsvfs);
4351 	ZFS_VERIFY_ZP(zp);
4352 	gen = (uint32_t)zp->z_gen;
4353 
4354 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4355 	if (fidp->fid_len < size) {
4356 		fidp->fid_len = size;
4357 		ZFS_EXIT(zfsvfs);
4358 		return (ENOSPC);
4359 	}
4360 
4361 	zfid = (zfid_short_t *)fidp;
4362 
4363 	zfid->zf_len = size;
4364 
4365 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4366 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4367 
4368 	/* Must have a non-zero generation number to distinguish from .zfs */
4369 	if (gen == 0)
4370 		gen = 1;
4371 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4372 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4373 
4374 	if (size == LONG_FID_LEN) {
4375 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4376 		zfid_long_t	*zlfid;
4377 
4378 		zlfid = (zfid_long_t *)fidp;
4379 
4380 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4381 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4382 
4383 		/* XXX - this should be the generation number for the objset */
4384 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4385 			zlfid->zf_setgen[i] = 0;
4386 	}
4387 
4388 	ZFS_EXIT(zfsvfs);
4389 	return (0);
4390 }
4391 
4392 static int
4393 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4394     caller_context_t *ct)
4395 {
4396 	znode_t		*zp, *xzp;
4397 	zfsvfs_t	*zfsvfs;
4398 	zfs_dirlock_t	*dl;
4399 	int		error;
4400 
4401 	switch (cmd) {
4402 	case _PC_LINK_MAX:
4403 		*valp = ULONG_MAX;
4404 		return (0);
4405 
4406 	case _PC_FILESIZEBITS:
4407 		*valp = 64;
4408 		return (0);
4409 
4410 	case _PC_XATTR_EXISTS:
4411 		zp = VTOZ(vp);
4412 		zfsvfs = zp->z_zfsvfs;
4413 		ZFS_ENTER(zfsvfs);
4414 		ZFS_VERIFY_ZP(zp);
4415 		*valp = 0;
4416 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4417 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4418 		if (error == 0) {
4419 			zfs_dirent_unlock(dl);
4420 			if (!zfs_dirempty(xzp))
4421 				*valp = 1;
4422 			VN_RELE(ZTOV(xzp));
4423 		} else if (error == ENOENT) {
4424 			/*
4425 			 * If there aren't extended attributes, it's the
4426 			 * same as having zero of them.
4427 			 */
4428 			error = 0;
4429 		}
4430 		ZFS_EXIT(zfsvfs);
4431 		return (error);
4432 
4433 	case _PC_SATTR_ENABLED:
4434 	case _PC_SATTR_EXISTS:
4435 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4436 		    (vp->v_type == VREG || vp->v_type == VDIR);
4437 		return (0);
4438 
4439 	case _PC_ACL_ENABLED:
4440 		*valp = _ACL_ACE_ENABLED;
4441 		return (0);
4442 
4443 	case _PC_MIN_HOLE_SIZE:
4444 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4445 		return (0);
4446 
4447 	default:
4448 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4449 	}
4450 }
4451 
4452 /*ARGSUSED*/
4453 static int
4454 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4455     caller_context_t *ct)
4456 {
4457 	znode_t *zp = VTOZ(vp);
4458 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4459 	int error;
4460 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4461 
4462 	ZFS_ENTER(zfsvfs);
4463 	ZFS_VERIFY_ZP(zp);
4464 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4465 	ZFS_EXIT(zfsvfs);
4466 
4467 	return (error);
4468 }
4469 
4470 /*ARGSUSED*/
4471 static int
4472 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4473     caller_context_t *ct)
4474 {
4475 	znode_t *zp = VTOZ(vp);
4476 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4477 	int error;
4478 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4479 
4480 	ZFS_ENTER(zfsvfs);
4481 	ZFS_VERIFY_ZP(zp);
4482 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4483 	ZFS_EXIT(zfsvfs);
4484 	return (error);
4485 }
4486 
4487 /*
4488  * Predeclare these here so that the compiler assumes that
4489  * this is an "old style" function declaration that does
4490  * not include arguments => we won't get type mismatch errors
4491  * in the initializations that follow.
4492  */
4493 static int zfs_inval();
4494 static int zfs_isdir();
4495 
4496 static int
4497 zfs_inval()
4498 {
4499 	return (EINVAL);
4500 }
4501 
4502 static int
4503 zfs_isdir()
4504 {
4505 	return (EISDIR);
4506 }
4507 /*
4508  * Directory vnode operations template
4509  */
4510 vnodeops_t *zfs_dvnodeops;
4511 const fs_operation_def_t zfs_dvnodeops_template[] = {
4512 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4513 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4514 	VOPNAME_READ,		{ .error = zfs_isdir },
4515 	VOPNAME_WRITE,		{ .error = zfs_isdir },
4516 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4517 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4518 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4519 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4520 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4521 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4522 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4523 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4524 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4525 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
4526 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4527 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4528 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
4529 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4530 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4531 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4532 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4533 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4534 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4535 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4536 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
4537 	NULL,			NULL
4538 };
4539 
4540 /*
4541  * Regular file vnode operations template
4542  */
4543 vnodeops_t *zfs_fvnodeops;
4544 const fs_operation_def_t zfs_fvnodeops_template[] = {
4545 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4546 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4547 	VOPNAME_READ,		{ .vop_read = zfs_read },
4548 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
4549 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4550 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4551 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4552 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4553 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4554 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4555 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4556 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4557 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4558 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4559 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
4560 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
4561 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
4562 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
4563 	VOPNAME_MAP,		{ .vop_map = zfs_map },
4564 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
4565 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
4566 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4567 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4568 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4569 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4570 	NULL,			NULL
4571 };
4572 
4573 /*
4574  * Symbolic link vnode operations template
4575  */
4576 vnodeops_t *zfs_symvnodeops;
4577 const fs_operation_def_t zfs_symvnodeops_template[] = {
4578 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4579 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4580 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4581 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4582 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
4583 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4584 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4585 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4586 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4587 	NULL,			NULL
4588 };
4589 
4590 /*
4591  * Extended attribute directory vnode operations template
4592  *	This template is identical to the directory vnodes
4593  *	operation template except for restricted operations:
4594  *		VOP_MKDIR()
4595  *		VOP_SYMLINK()
4596  * Note that there are other restrictions embedded in:
4597  *	zfs_create()	- restrict type to VREG
4598  *	zfs_link()	- no links into/out of attribute space
4599  *	zfs_rename()	- no moves into/out of attribute space
4600  */
4601 vnodeops_t *zfs_xdvnodeops;
4602 const fs_operation_def_t zfs_xdvnodeops_template[] = {
4603 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4604 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4605 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4606 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4607 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4608 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4609 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4610 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4611 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4612 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4613 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4614 	VOPNAME_MKDIR,		{ .error = zfs_inval },
4615 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4616 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4617 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
4618 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4619 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4620 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4621 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4622 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4623 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4624 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4625 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4626 	NULL,			NULL
4627 };
4628 
4629 /*
4630  * Error vnode operations template
4631  */
4632 vnodeops_t *zfs_evnodeops;
4633 const fs_operation_def_t zfs_evnodeops_template[] = {
4634 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4635 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4636 	NULL,			NULL
4637 };
4638